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INTRODUCTION

Let K be a field and let Vect be the category of vector spaces over K. Let V

be the full subcategory of Vect consisting of finite dimensional vector spaces and

let 0 be the category of all covariant functors V - Vect. A functor F : V - V

is called a polynomial functor if the maps Hom(V, W ) ~ Hom(FV, FW ) given by
f H F( f ) are polynomial for all V and W. If these maps are homogeneous of degree
d, then F is called homogeneous of degree d. Let us recall that a map g : X -~ Y

between finite dimensional vector spaces is called polynomial if after choosing bases it
is given by m polynomials with n variables, where n = dim X and m = dim Y. Over
finite fields there is an essential difference between polynomials and maps obtained by
polynomials. This yields another version of polynomial functors - strict polynomial
functors, which was recently proposed by Friedlander and Suslin [14]. There is a

functor P ~ F from the category of strict polynomial functors to the category of

functors, which is no longer an embedding. The category 0 is closely related to the

category of unstable modules over the Steenrod algebra thanks to the remarkable
result of Henn, Lannes and Schwartz [16], while the category P is related to the

theory of polynomial representations of the general linear group.
The aim of this talk is to describe some important properties of the categories 0

and P. We start with some general remarks on the category .~’ and then we describe

relationship between the category ,~ and the category of unstable modules over the
Steenrod algebra. In the section 2 we deal with the category P and its relations with
the category of polynomial representation of GLn . In the next section we discuss the
theorem of Franjou-Friedlander-Scorichenko-Suslin [13] on the comparison between
Extp and ExtF. In the last section we discuss the Betley-Pirashvili conjecture [2]
involving Waldhausen’s stable K-theory. Recently this conjecture was proved for
finite fields by Betley [1] and Suslin (see Appendix of [13]) independently.
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1. THE CATEGORY 0

1.1. General Properties
In what follows 0 K and HomK are denoted by 0 and Hom respectively. For any

vector space V one denotes the dual vector space by Y~.
The category ,~’ of all functors from the category V of finite dimensional vector

spaces to the category of all vector spaces is an abelian category. For any V E V one
defines Pv : = K~Hom(~, -)~. Here K~S~ denotes the free vector space generated by a
set S. For any F E .~ one has a natural isomorphism F) ~ thanks
to the Yoneda lemma and therefore Pv is a projective object in 0.

For an object F E 0(K) one defines the dual DF of F by V ~ (F(V~))~. Let

Jw = DPW. Then Hom,(F, Jv) ^--’ (DF)(V) for all F E 0. Hence Jw is injective.
Moreover PV and Jv , V E V, are respectively projective and injective generators of
the category 0. Clearly Pv 0 PW ~ PV~W and Jv 0 Jw ^--’ JV~W.

Let us recall the definition of the degree of functors due to Eilenberg and Mac Lane
[10]. Let F E .~ be a functor with F(0) = 0. The second cross-effect of F is given by

Clearly Y). In order to define the third cross-effect
of F, one can consider the second cross-effect F(X Y) as a functor on X and then
take the second cross-effect of it. In this way one gets all higher cross-effects. One
easily shows that the n-th cross-effect F(Xl ~ ’ ’ ’ of F is the same as the kernel

of the natural homomorphism:

A functor F is called of degree n if the (n + 1 )-st cross-effect of F vanishes and
the n-th cross-effect is nonzero. In this case we write deg(F) = n. We let be the

category of all functors F E F of degree ~ n. The examples of functors of degree n
are functors T", An, f. (resp. SnV, A’~V, hnV ) is the n-th tensor
(resp. symmetric, exterior, divided) power of V. Clearly while A 11

and Tn.

A functor F is called analytic if it is an union of subfunctors of finite degrees. We
let ~~, be the category of all analytic functors. The functors T*(V) = 
A* (V), r*(V) are examples of analytic functors.

If K is a finite field, then any map between finite dimensional vector spaces is

polynomial. A consequence of this phenomenon is the fact that over such fields the
functor Jv is analytic for all V E V. Indeed, since it is sufficient

to consider only JK. Clearly JK (V ) ’~ K) and therefore it has a natural
commutative algebra structure. Moreover if q is the number of elements in K, then
the equality aq = a holds in JK (V). Hence the natural embedding V C K)



yields a homomorphism of algebras Sq (Y) ~ JK (V) . It is not difficult to prove that

this homomorphism is an isomorphism. Here is the quotient of the symmetric
algebra S* (V) by the ideal generated by vq - v, v E V. Since the quotient of an
analytic functor is analytic, Jv is analytic too. Thus for finite fields the category ,~’W
is an abelian category with sufficiently many injective objects.

1.2. The quotient category 

In this section we assume for simplicity that K is a prime field, although almost
everything works for general rings (see [26]).

Let F E 0n. Since I Xn ) is additive with respect to each variable we
see that

where crnF := F(K ~ ~ ~ ~ C F(®i 1 K). The action of the symmetric group ~~,
on ®2 1 K by permutation of summands yields an action of ~n on crnf. In this way
one obtains an exact functor crn : :~’n ~ En-mod. Clearly crnF = 0 if and only if
F E For any M E one denotes by Mb and M# the functors given by
M~(X) = (M 0 and M~ (X ) := (M (g) Here for a ~n-module A, we
let ALn and ALn be the coinvariants and invariants under the action of ~n. These
functors are related by the norm homomorphism N : Mb -~ M~, which is induced by
the action of a.

PROPOSITION 1.1 ([26]). - The functors M H Mb and M H M# define left and
right adjoints to the functor crn : ,~’n ~ Moreover 
Thus the kernels and cokernels of the natural maps ~ F, F - are

functors of degree  n. For any F E .~n the composition -~ F - 

coincides with the norm homomorphism.

Since the norm homomorphism is an isomorphism over the rationals it follows that
in this case for any functor F of degree d one has an isomorphism F ~ F’,
where deg(F’)  d -1. Using this fact it is not difficult to prove that any functor
of finite degree has a unique decomposition (]~ Fd, where Fd is of the form Mb and
M is a representation of Ed. Moreover any natural transformation between functors
Fd and Fl for d ~ l vanishes. Hence over the rationals one has an equivalence of
categories (see also Appendix A of ~24~).

For char(K) > 0 we only have an equivalence of categories 
If M is a simple representation of ~n then the image of the norm homomorphism 

’

Mb -~ M~ is a simple object in ,~’ and any simple object of ,~’ is of this form. This
is a formal consequence of Proposition 1.1 (compare with Proposition 4.7 of [21]).
Recently Piriou and Schwartz [30] proved that for any simple functor F E .~’ one has
Ext~ (F, F) = 0, unlike to the situation with representations of symmetric groups.



1.3. Unstable modules over the Steenrod algebra and .~’

In the 90’s Henn, Lannes and Schwartz [16] discovered a remarkable link between
the category and representations of the Steenrod algebra. For simplicity we
consider only the case K = F2.
We let A denote the mod-2 Steenrod algebra. Let us recall that it is generated by

the elements Sq2 of degree i, i > 0 and these generators satisfy the Adem relations

(see [Sl]). A (graded) module M* - Mi over A is said to be unstable if for

every x E M one has Sqix = 0 if i Here denotes the degree of x. Note

that for any space X, the mod-2 cohomology H* (X ) is an example of an unstable
A-module. Let U be the category of unstable A-modules. One observes that for any
n > 0 there exists a unique (up to an isomorphism) unstable A-module F(n) such
that for any M* E U one has a natural isomorphism

An unstable A-module M* is called nilpotent if for any x E M there exists k > 0 such
that (Sqo)kx = 0. Here Sqo : l~ln --~ M2n is given by m - and denotes

the k-th iteration of Sqo. Let us notice that H* (X ) is nilpotent as an unstable module
if and only if H* (X ) is nilpotent as a commutative algebra.

If V is a finite dimensional vector space, then by H*V and H*V we denote the

homology and cohomology of V considered as an abelian group. Let us recall that

one has the following isomorphisms of functors

Here V[l] indicates the fact that V is concentrated in degree 1. Since H* V is an un-
stable module, any 6~ E A yields a morphism S’n --~ and therefore it induces by
duality a natural transformation rn. Hence for any F E .~ the graded vector

space m(F) = ~n F) has a natural A-module structure and m(F) E U.
In this way one obtains a functor m : .~’ --~ u. It follows from the very definition that

The functor m has a left adjoint f : U - F. So one has an isomorphism

Putting F = Jv one obtains (f(M*)(Y))~ ’~ Homu(M*, S*V). One observes that
if M* is a finitely generated A-module then Homu(M*, S*V) is a finite dimensional
vector space. Hence in this case f(M*)(V) is isomorphic to (Homu(M*,S*V))~. In
general M* is a union of finitely generated A-modules and therefore Homu(M*, S* V)
has a structure of a profinite vector space, whose continuous dual is denoted by

Homu(M*,S*V)’. Since f preserves colimits one has the following isomorphism



For example, f (F(n)) = rn.

THEOREM 1.2 ([16]). - The functor f is exact and preserves tensor products. For

any V E V one has a natural isomorphism Jv. Furthermore the values of
f are analytic functors and for any analytic F the natural map F is an

isomorphism. An object M* E U is nilpotent if and only if f(M*) = 0.

Let N be the category of nilpotent unstable modules. Obviously it is a Serre

subcategory in U. Let us note that the theorem implies the equivalence of categories

The original proof of this theorem used deep structural results on injective objects
in the category of unstable modules due to Carlsson, Miller, Lannes, Zarati and others.
Kuhn [20] gave a reasonably simple proof of Theorem 1.2. His proof can be divided
in several steps. The first one is the following important result.

THEOREM 1.3 ([20]). - Let F E .~’ be a finite functor. Then one can embed F in a
suin of the form ®~ 1 

Here a functor T E .~’ is called finite if it is of finite degree and has values in V. The
proof of Theorem 1.3 consists of several reductions. One observes that 2nd power map
and multiplication in the symmetric algebra yield a natural transformation: 

which is a monomorphism for 2r > j. Hence the class of functors for which
Theorem 1.3 is true is closed with respect to tensor products. One observes also that
F embeds in a finite sum of Jv, because Jv, V E V are injective cogenerators. Since
Jv = V) and F has finite degree it suffices to consider the case when F is
the image of into JK, m > 1 under the projection S*(~) -~ S2 (Y), because any
sub-functor of finite degree of JK is of such type. Using a combinatorial argument
Kuhn was able to give an explicit embedding in this case (see [20]).

The second step in the proof of Theorem 1.2 is the following

PROPOSITION 1.4. - The full subcategory of .~’, whose objects are n > 0, and
the full subcategory of U, whose objects are F(n), n > 0 are isomorphic categories.
The isomorphism takes hn to F(n).

Sketch of the proof. - Let a E A be a homogeneous element of degree m. It yields
a natural transformation a* : thanks to the isomorphism S*(v~l~) ^-_’
H* (V~). It is not too difficult to show that in this way we get a homomorphism

and counting argument shows that this map is an isomorphism. D

The next step is the following variant of the Gabriel-Popescu theorem on abelian
categories. Let us recall that a ringoid is a small category with abelian group structure
on Hom-sets, such that the composition is biadditive. Clearly a ringoid with one



object is the same ring considered as a category with one object. Moreover any small
subcategory of an additive category is a ringoid. A right module over a ringoid C is
a contravariant functor M : C --~ Ab with the property that the maps Homc(c, d) -
Hom(M(d), M(c)) given by M(f) are homomorphisms of abelian groups, c, d E
C. For a ringoid C we let mod-C be the category of all right C-modules.

THEOREM 1.5 ([20]). - Let A be an abelian category with exact directed colimits
and let C C A be a small subcategory, such that any object in A is a quotient of an
object of the form ® ci, where ci E C. Let r : A - mod-C be the functor given by
r(a)(c) = H omA (c, a). Then

i) The functor r has a left adjoint l : A.

ii) The functor I is exact, r is fully faithful and lra ~ a is an isomorphism for any
a E A. Hence in this case A.

iii) A has enough injectives and r preserves injectives. Moreover if I and J are

injective in A then r yields an isomorphism

If additionally all objects from C are small and projective in A then r (and hence l~
is an equivalence of categories.

Now we are in the position to give a sketch of the proof of Theorem 1.2. First

one takes A = U and C = Here is the full subcategory of
U whose objects are F(n), n > 0. The last statement of Theorem 1.5 shows that

Then we put A = and take C = where 

is the full subcategory of whose objects are > 0. By Proposition 1.4 one
has an equivalence of categories mod-C  U. It follows from Theorem 1.3 that the

condition of Theorem 1.5 holds. Applying Theorem 1.5 we obtain an adjoint pair of
functors (l, r) between the category U and One checks readily that r = m and
we get all statements of Theorem 1.2 except the statement about the tensor product
and the characterization of nilpotent modules. We refer to [20] and [34] for the proof
of these facts.

Remark 1.6. - By Proposition 1.4 one can reconstruct the category U and the

Steenrod algebra (without the Bokstein operations) from the endomorphism ring
End~(S*, S*), which has a meaning in a far more general setting. Based on this

observation an appropriate notion of "Steenrod algebra over a finite field K" was

developed in [20] in such a way that the whole material in 1.3 works for any finite
field.

Remark 1.’~. - Among other applications of Theorem 1.2 we would like to mention
the important article of Henn-Lannes-Schwartz [17] and also the work of Kuhn [23]
and Schwartz [35] on topological realizability of unstable modules over the Steenrod
algebra.



1.4. Artinian conjecture

The following conjecture was posed by L. Schwartz.

If K is a finite field then the category .~’ is locally noetherian.
Here is another formulation:

If K is a finite field and V E V then the injective object Jv is artinian.
It is known that the conjecture is true when dimV = 1. As was proved by Powell

[31] the conjecture is also true when K = F2 and dimV = 2.
The conjecture implies the following assertions

Any injective object in is also injective in .~’ and the functor f : .~’ respects

injective objects.

2. THE CATEGORY P

In this section K is a field. We give several equivalent interpretations of the cat-

egory of strict polynomial functors. We start with recalling the definition of Schur

algebras.

2.1. Polynomial representations of GLn and Schur algebras.

Let GLn = GLn,K be the general linear group over K considered as an algebraic
group. We recall that the coordinate ring K [GLn] is the quotient of the polynomial al-
gebra by the ideal generated by (y It has a Hopf algebra
structure, whose comultiplication is given by xkj . Moreover we

let Mn be the algebraic monoid of n x n-matrices. The coordinate ring K[Mn] is the
polynomial algebra Clearly it is a subbialgebra of K ~GLn~ . Comodules
over K[GLn] are called rational representations of Gln. A rational representation of
GLn is called polynomial if it is also a comodule over K~Mn~. One observes that for
each d 2: 0 the subspace A(n, d) c k[Mn] of homogeneous polynomials of degree d is a
subcoalgebra of k[Mn]. The linear dual A(n, d)~ of A(n, d) is known as Schur algebra
and it is denoted by S(n, d) (see [15]). A polynomial representation of GLn is said to
be homogeneous of degree d if it is a comodule over A(n, d). Clearly the category of
finite dimensional homogeneous polynomial representations of degree d is equivalent
to the category of finite dimensional modules over the Schur algebra S(n, d). We refer
the reader to [25] and references there for extensive information on Schur algebras.

2.2. Polynomial laws and the category P

For a vector space V we let V be the functor from the category - Klalg of com-
mutative K-algebras to the category of sets given by R ~ R 0 V. A polynomial law
from a vector space V to a vector space W is by definition a natural transformation of
functors V 2014~ W (see [32]). Let Pol be the category of vector spaces and polynomial



laws. A polynomial law f E HomPol (V, W ) is called homogeneous of degree d if for
any algebra R, r E R and x E R 0 V one has fR(rx) = rd fR(x).

Following Friedlander and Suslin [14] a strict polynomial functor F : v --~ V is a
rule which associates to each finite dimensional vector space V a vector space F(V)
and to each pair (V, W) of finite dimensional vector sDaces a polynomial laur

in such a way that for any V E V one has and for a any
U, V, W E V the following diagram of polynomial laws commutes:

where the vertical arrows are induced by F, while the horizontal arrows come from
the composition.

One says that a strict polynomial functor F is of finite degree if the degrees of
the polynomial laws F(X, Y) are bounded above. A strict polyno mial functor F
is called homogeneous of degree n if for any V, W E V the polynomial F(V, W ) is

homogeneous of degree n. We let P (resp. Pd) be the category of strict polynomial
functors of finite degree (resp. strict homogeneous polynomial functors of degree d).
Since any polynomial law is a sum of homogeneous ones, it follows that ~ ^’ 

2.3. The category rdv

The vector space SdV is the module of coinvariants of V0d under the action of
the symmetric group ~d on d symbols. Similarly is the module of invariants

T d (Y) _ (Y®d)~d . For any vector space V one has a map ~d ; Y -~ rd(V), which is
given by x - ld(x) :== x0n E (~®nlE~,. Moreover for any vector spaces V and ~’
there exists a unique linear map

with the property ~(~yd(x) ~ ~,d(y)) _ ~,d(x ~ y). One can use the transformation tu
to define the composition in the category rdv, whose objects are those of V while
morphisms are Homrdv(V, W) = The identity arrows in rdv are

Clearly 0393dV is a K-linear category, that is a category whose set of morphisms
between two objects has a vector space structure and the composition is bilinear.

PROPOSITION 2.1. - The following categories are equivalent:
- the category of K-linear functors 0393dV ~ v,
- the category of homogeneous strict polynomial functors of degree d,
- the category of homogeneous polynomial representations of degree d of GLn, pro-

vided n > d,
- the category of finite dimensional modules over S(n, d), provided n > d.



Proo f. - Clearly V is isomorphic to the functor -) as soon as
V E V. Hence by the Yoneda lemma one has S* (Y~ ) ~ W N
®d W ). Elements of W ) correspond to homogeneous polyno-
mial laws of degree d. This shows that a homogeneous strict polynomial functor
of degree d is the same as a collection of F(V) E V, V G V together with linear
maps rd Hom(V, W) 0 F(V) - F(W) satisfying associativity and unity conditions.
Therefore the first two categories are equivalent. The last two categories are also

equivalent by the discussion in 2.1. It remains to show the equivalence between the
first and the third category. For each m 2 0 we let rd,m E Pd be the functor

given by V - V)). By the Yoneda lemma one has an isomorphism
for any F E ~d. So m > 0 are small projective

generators in the abelian category Pd. By looking at cross-effects of rd,m it is clear
that each rd,m is a direct summand of provided m  n and each rd,m is a direct
summand of an object of the form (D~=i rd,n provided n > d. Therefore rd,n is a

projective generator. Thus the category of K-linear functors 0393dV ~ 03BD is equivalent
to the category of finite dimensional modules over = But

the last algebra is isomorphic to the Schur algebra S(n, d) and hence the result. D

2.4. Elementary properties of P

Clearly f - defines the (nonlinear) functor 03B3d : 03BD ~ rdv. The precom-
position with 03B3d yields the functor Pd - 0d, which is a full embedding provided the
field K contains at least d elements. By abuse of notation we denote the image of F
under this functor by the same letter F.

The natural transformation rd+l - coming from the Hopf algebra structure
on the divided power algebra can be used to define the tensor product of strict homo-
geneous polynomial functors. It yields the functor Pd x 7~l -> which corresponds
to the obvious tensor functor in 0.

The dual of the natural transformation Sdl(V) is a transformation

rdorl, which can be used to define the composition of strict homogeneous poly-
nomial functors. One observes also that the dual of a strict homogeneous polynomial
functor is a strict homogeneous polynomial functor. Since rd carries obvious structure
of a strict homogeneous polynomial functor of degree d, we see that Td, Sd, Ad E Pd.
As was observed in the proof of Proposition 2.1 the functors rd,m are projective gen-
erators of Pd. Therefore := Drd,m are injective cogenerators of Pd, m > 0.
Another system of projective generators is rdl ~ ~ ~ ~ 0 rdk, di + ... + dk = d.

2.5. Frobenius twist

In representation theory of algebraic groups over fields of characteristic p > 0
the Frobenius twist plays an important role (see [18]). By Proposition 2.1 to the
Frobenius twist on polynomial representations corresponds a similar operation on
strict polynomial functors, which can be described as follows. Let K be a field of



characteristic p > 0. For a vector space V we let be the vector space obtained by
extending scalars via the Frobenius homomorphism f : K given by f (a~ _ AP.
In other words is a vector space generated by E V modulo the following
relations

One defines > 1 by induction: v~r+1) _ (v~r))(1).
The map Vel) -~ SPV given by vel) - vp is linear. By duality one obtains the

natural transformation I ~1), where I ~1) (V ) = V(l). Using this transformation
one readily checks that E Pp. For any F E Pd we put = F o and then

by induction one defines F~r+1) _ (F~r))~1), r > 0. Clearly E Pdpr if F E Pd.
Let us note that for finite prime fields the functors I(l) and I are isomorphic in 0.

Here I(V) = V. However in P these functors are different, they even have different
degrees: I E while I(l) E Pp. For finite fields the Frobenius twist induces an

equivalence of categories (-)~1) : ,~d -j 0d.

2.6. Extp and cohomology of algebraic groups

The following theorem was proved by Donkin (see Section 3 of [14]).

THEOREM 2.2 ([6, 7]). - Let A and B be finite dimensional polynomial representa-
tions. Then

is an isomorphism. Here Ext is taken in the category of comodules.

By Proposition 2.1 we also have

is an isomorphism provided n > d.

3. FUNCTOR COHOMOLOGY

In this section we deal with Ext-groups in the categories .~ and P. Calculations

in P are easier, because each piece Pd of P is of finite global dimension thanks to a

result of Donkin [6], who proved this result in terms of Schur algebras (see also Totaro

[36] for an explicit formula for the global dimension of Pd) . Calculation in P is easier
also because the functors Snl ~ ~ ~ ~ ~ Sn~ (resp. rnl 0 ... 0 rnk ) are injective (resp.
projective) in P. Of course Sn is no longer injective in but the following result

shows that if one inverts the Frobenius S’~ ~ Snp then one gets an injective object
in 



LEMMA 3.1 ([22]). - Assume F E .~ has a projective resolution of finite type. Then,
f or any k > 0, one has

where Sn denotes the n-th symmetric power and the limit is considered with respect
to the Frobenius maps 03A6 : Spn ~ Spn+1.

Proo f. - (see [12]). Let P* be a projective resolution of F which is of finite type.
Then DP* is an injective resolution of DF. Hence

and it is enough to show that EN. Since

Theorem 1.2 implies the expected inclusion. D

Lemma 3.1 together with Lemma 3.3 plays a crucial role in this section.
Let C and D be categories and let l : C -~ D and r : D 2014~ C be functors. If l is a

left adjoint to r we will say that (l, r) is an adjoint pair from C to D. Moreover for
a small category C we let C-mod be the category of all functors C -~ Vect.

LEMMA 3.2. - Let (l, r) be an adjoint pair from C to D. Assume C and D are small
categories. Then for any F : C - Vect and G : D - Vect one has an isomorphism

LEMMA 3.3 ([27]). - Let A E .~’ be an additive functor and let B : V x V - Vect
be a bifunctor with the property B(X, o) - 0 = B(0, X ) for all X E V. Then

= 0 = A), where = B(V, v).

Proof. - Apply the previous lemma to the adjoint pairs V -~ V x V, k _
1,2,3, where i1 (V ) - (v, O), 22(v~ - (O, v), 23(v) _ (v, v), p~ (vl, v2) - 
1, 2, p3(Yl, v2) _ and use the fact that A o p3 D

A strict polynomial functor T is called additive if T is additive as an object in 0.
The previous argument shows that Lemma 3.3 is still true in the framework of P.
Actually the proof of Lemma 3.3 gives a bit more:

where degK  n, Tl (o) _ ~ ~ ~ = Tn (0) = 0 and £ is P or 0.
Let us see how to use these facts for explicit calculations. First we consider calcu-

lations in the category P. Since I e P is projective we have -) = 0 if i > 0.
More interesting is Ext) (I ~r~, -) for r > 1.

For simplicity we restrict ourselves to the case p = 2 and refer the reader to [12],
[14] and [13] for the case p > 2. We follow ideas of [12].



It is not too hard to show that one has an exact sequence

Here the first nontrivial map is given by the Frobenius, and the rest are the compo-
sitions S~ ~ Sl ~ --~ where first map (resp. second)
is induced by the comultiplication (resp. multiplication) in the Hopf algebra S* (V).
By the P-version of Lemma 3.3 Sl) = 0 if k, I > 1 and a fortiori

Sl) = 0. Let us note that is
one dimensional spanned by the iterated Frobenius map. Hence it follows from the
injective resolution (3.1) that = K, if 2 = 0 and i = 2h+1 and

== 0 otherwise. Let us apply the degreewise action by the Frobe-
nious twist on (3.1). Then one obtains a non-injective resolution of S2h(2), which
gives rise to a hypercohomology spectral sequence

By the P-version of Lemma 3.3 the spectral sequence has only two nontrivial columns
corresponding to s = 0 and s = 2h+l. Moreover the previous calculation shows that
in both columns there are only two nontrivial terms corresponding to t = 0 and
t = 2h+2, so there is no space for differentials and we get S2h ~2~ ) = K,
if i = 0,z = 2h+l, 2h+2, 2h+2 + 2h+1 and S2h~2~) = 0 otherwise. By
iteration one obtains:

PROPOSITION 3.4 ([14]). - For any 0  j  r one has = K if
q = 0 mod 2r-j+1 and q  2r+1 and = 0 otherwise.

Such type of results was used in [14] to prove the following theorem:
The rational cohomology of any finite group scheme is a finitely generated algebra.
Now we do similar calculations in 0.

THEOREM 3.5 ([12]). - = K if i = mod 2h+1 and = 0 otherwise.

Proof. - The exact sequence (3.1) together with Lemma 3.3 yields the exact sequence

From this sequence it follows that -~ is an isomor-

phism for k  2h. It is known that any finite functor admits a projective resolution
of finite type (see [12]). Thus by Lemma 3.1 one has = 0 as soon

as 0  1~  2h+1. Now one can use this information in the same exact sequence to

get S2h) = 0 for 2h+1  k  2h+2. By iterating this process one gets the
result. D



It is worth to mention that Franjou, Friedlander, Scorichenko and Suslin give
in [13] explicit calculations of and

in the F and P framework. Let us also note that the groups

-) are known as Mac Lane cohomology (see [19]) and they are dual to the
topological Hochschild homology (see [29]). The previous theorem for h = 0 was
first obtained by Breen [4] in the framework of "Extensions du groupe additif" and
Bokstedt [3] in the framework of topological Hochschild homology.

Returning to Proposition 3.4 one sees that the Frobenius twist induces monomor-
phisms

which stabilize for each i. This phenomenon is a particular case of the well known fact
on cohomology of algebraic groups (see [18], page 347), which by virtue of Corollary
2.3 yields the following

THEOREM 3.6. - Let F, T E Pd. Then the Frobenius twist gives a monomorphism
Ext~(F, T) -~ T~1~). Moreover, for all sufficiently large m the map

is an isomorphism.

By [13] the last assertion holds as soon as i  2~~ 2014 1.
We let T) be the common value of m » 0. Since

the Frobenius twist in 0d is an equivalence of categories we see that the canonical
map gives rise to the homomorphism 

Now comparing the Proposition 3.4 and Theorem 3.5 one sees that the
homomorphism S2h ) is an isomorphism. However in
general T) is not an isomorphism even when * = 0. The

following rather surprising result of Franjou, Friedlander, Scorichenko and Suslin gives
a condition when it is an isomorphism.

THEOREM 3.7 ([13]). - Let T, F E Pd be strict polynomial functors, then

is a monomorphism. Moreover if the field K contains at least d elements then

is an isomorphism.

The proof of the theorem is quite long and can be divided essentially into two parts.
In the first part they prove a weaker version (Proposition 3.8) and then they use a
base change argument in a very clever way to finish the proof. Here we prove only
Proposition 3.8 and refer the interested reader to the original paper for the second
part of the proof of Theorem 3.7.



PROPOSITION 3.8. - Let F, T E Pd and let m > 0. Assume K has at least 2md
elements. Then 

,

is an isomorphism provided i  2m-d+1- 2.

The rest of this section is devoted to the proof of Proposition 3.8.

DEFINITION 3.9 ([11]). - A graded object E* _ ®n En E ~, where ~ _ 0 or P
is called exponential if there exist natural isomorphisms = K, E* (V ® 
E* (Y) ~ E* (W ) and the values o f En lie in V.

If E* is an exponential functor, then E"(0) = 0, for n > 0 and  n.

Typical examples of exponential functors are given by the symmetric algebra, the
exterior algebra and the divided power algebra. If E* and E* are exponential functors
then E* (g) E* is also an exponential functor.

The same argument as in the proof of Lemma 3.3 gives also the following

LEMMA 3.10 ([11, 13]). - Let E* be an exponential functor in E. Then for any
functors B, C E ~ and any i > 0 one has isomorphisms of graded vector spaces

LEMMA 3.11 (~11, 13]). - For any exponential functor E* and any injective J E Pn,
n = 0 mod 2h one has J) = 0 provided 0  i  2n-d+2 - 2.

Proof. - First we exploit the fact that S~ E .~’ behaves like an injective with respect
to functors of degree « n. Assume n = Eo + 2EI + ... + Ei = 0,1 is the 2-adic

expansion of a natural number n and let 0152( n) be the number of nonzero elements of the
set ~EO, ~ ~ ~ , E~, }. Then S’~ is a retract of (S1)®~° ~ ~ ~ ~ ~ Hence a discussion

after Lemma 3.3 shows that sum) = 0 as soon as degK  a(n) + a(m).
Based on this fact and using the exact sequence (3.1) it is not too difficult to prove that
the Frobenius transformation yields an isomorphism S2~ ) -~ S2n+1 ) )
provided degK :S d and i  2n-d+2 - 2. Since any finite functor has a projective
resolution of finite type (see [12]), it follows from Lemma 3.1 that for such K one has
Ext~(K, S2n ) = 0 provided degK :S d and 0  i  2’~-d+2 - 2. Lemma 3.10 together
with the fact that the functors ~~ ~ -(g)6~, nl+~ ~ = n are injective generators
in Pn can be used to finish the proof. D



Proof of Proposition 3. 8. - It consists of several reductions. Using a hypercoho-
mology spectral sequence one can prove that it suffices to restrict ourselves to the case
when F is a projective object. So we assume that F = rd1 ~)’’ ~~hd~, dl+~ ~ = d.

Let T~m~ ~ J* be an injective resolution in Pd2m . Then one has a hypercohomology
spectral sequence

Since F(m) is a direct summand of the exponential functor (r* ~ ~ ~ ~ (g) r*)~m~ one
can use Lemma 3.11 to show that El~ = 0 for all 0  i  2"2-d+1 - 2. So for all

i  2~’~+~ - 2 one has

and hence the proposition. D

4. STABLE K-THEORY FOR FINITE FIELDS

4.1. Stable K-theory

Stable K-theory gives the possibility of reducing calculation of homology of the
general linear groups with twisted coefficients to the homology of the general linear
group with constant coefficients. This trick goes back to Waldhausen. Let R be a

ring and let VR be the category of finitely generated free R-modules. Moreover we let
B be the category of all functors Vi! x VR - Ab. For any such functor D the abelian
group D(Rn, has a natural GLnR-action, so one can consider the corresponding
homology groups H*(GLn(R), D(Rn, R’~)). These groups form a direct system and we
let H* (GL(R), D) be the corresponding limit when n - oo. It is a classical theorem
of Dwyer that this system always stabilizes as soon as R satisfies some finiteness
condition and D is of finite degree with respect to both variables (see [9]). Let us
denote Ho(GL(R), D) by D). The functor

is a right exact functor, whose left derived functors are denoted by -) and
called the stable K-theory of R. Similarly one can introduce the cohomological ver-
sion of stable K-theory -) : ~3 -~ Ab as a left derived functor of the functor

-). Here D) = H°(GL(R), D) for any It was proved in [2] that
in this way one recovers the original definition of Waldhausen for some class of rings
including all fields and for such rings one has the following direct sum decomposition
(see [2])



where the action of GL(R) on Kst is trivial. It was conjectured in [2] that the
groups D) are isomorphic to the homology H* (VR, D) of the category VR with
the coefficients in the bifunctor D provided D is of finite degree with respect to both
variables. This conjecture is much stronger compared to a previous conjecture from
[28] (see also [19], page 293), which was proved by Dundas and McCarthy [8]. We refer
the reader to [29] for an explicit definition of H*(VR, D). For purposes of these notes
it suffices to note that if D(X, Y) = HomR(FX, TY).
Here T, F E :_ and the values of F lie in VR. By [2] the conjecture
is true for a given ring R if and only if it is true for such bifunctors. Quillen proved
in [33] that for a finite field K the (co)homology of GL(K) with coefficients in K is
trivial. Thus for a finite field K one has

and hence the following theorem proved by Betley and Suslin independently solves
our conjecture for finite fields.

THEOREM 4.1. - Let K be a finite field and let F and T be strict homogeneous
functors of degree d. Then for each i > 0 the natural map

is an isomorphism provided n is big enough.

We give here a sketch of the proof following Suslin (Appendix of [13]), see also [1]
for a different argument.

First let us consider the case when F = T = I. In this case the theorem follows
from the result of Dundas and McCarthy [8]. Following Friedlander and Suslin it can
be proved also using the famous result of [5]. In our situation it says that for a fixed

0 there exist numbers t(m) and such that if r > t(m) and [K : Fv~ > d(m)
then

is an isomorphism for all i  m. Here Mn(K) is the adjoint representation of GLn(K).
Now comparing this result to Theorem 3.7 we see that for a fixed m Theorem 4.1 is
true for F = T = I, i  m if the field is big enough. In order to handle small fields
one uses the following trick. Since the GLn(K)-module Mn (K) is selfdual, one can
pass to homology because Now in

homology we have a possibility to change a field as follows.

L be an extension of finite fields of degree e. Then it yields a canonical
homomorphism



where M(K) = colimMn(K). Choosing a basis for Lover K one gets an

embedding L C Me (L) and hence a homomorphism H*(GLn(L),Mn(L)) -
H*(GLen(K), Men(K)) and therefore

PROPOSITION 4.2. - The composition

coincides with the multiplication by e = [L : K], while the composition

coincides with ~* ~

In order to finish the case F = T = I we choose d sufficiently big with respect
to m and prime to p and consider an extension 7~ 2014~ L of degree d. Then for L
the theorem is true in dimensions i  m. By Theorem 3.5 (for h = 0) we have
Hi(GLn(L), Mn(L)) = 0 for odd i  m and Hi(GLn(L), Mn(L)) = L for even i  m.

Based on Proposition 4.2 it is not too difficult to see that the same relations hold for
Hi(GLn(K), Mn(K)). Hence Theorem 4.1 is true for F = T = I.

Following Suslin, for a functor F E ,~’ we let aF E ,~’ be the functor which is given
on objects by

If f : v -~ V’ is a linear map, then the W’-component of the induced map

is zero on all W except W = f -1 (W’). In this case the corresponding component of
(aF)( f ) is given by f* : F(v/ f -1(W’)) -~ F(V’/W’).
PROPOSITION 4.3. - Assume F E .~’ has a projective resolution of finite type and let
T be a finite functor. Then one has a natural isomorphism

Proof. - By a hypercohomology spectral sequence argument it suffices to consider
only the case when F = Pv is a standard projective and T = Jw is a standard
injective. One can prove the claim in dimension zero by direct considerations, while
in dimensions > 0 it follows from the fact that the corresponding bifunctor D(X, Y) =
Hom(FX, TY) is injective in B and hence = 0, i > 0.

D

The canonical homomorphism T -~ aT yields a homomorphism a(F, T) :
Ext;:-(F, T) --7 aT). Thanks to Proposition 4.3 this map is an isomorphism
if and only if Theorem 4.1 is true for the pair (F, T). We will also need the following



LEMMA 4.4. - Let E* be an exponential functor and let B1, ... , Bn E F be functors
with the property Bi(o) = 0, i =1, ~ ~ ~ , n. Assume further that the natural homomor-
phisms Bi) are isomorphisms for all s  m. Then a(Am, B1 ~ ~ ~ ~ ~ Bn) is an
isomorphism as well.

Proof of Theorem ,~.1. - By the first part of the proof we know that a(I, I) is
an isomorphism and we have to show that a(F, T) is an isomorphism provided F
and T satisfy the conditions of the Theorem. This can be done by induction on the
degree of functors based on Lemma 4.4 as follows. First one uses the exact sequence
(3.1) (here we start to assume that p = 2, for odd p one needs to use De Rham and
Koszul complexes). This sequence remains exact after applying the exact functor
a : F ~ F. By induction one readily proves that 03C3(I, Sn) is an isomorphism for all
n. Indeed it suffices to note that the induction assumption and Lemma 4.4 imply

= 0, for i + j  n and one can use the same method as in Section
3. By duality one obtains that I) is an isomorphism as well. Having these
facts in mind and repeating the previous argument one sees that is an

isomorphism for all n, m too. Now Lemma 4.4 yields that a(F, T) is an isomorphism
when F is projective in P and T is an injective, and the hypercohomology spectral
sequence gives the result. D
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