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0. INTRODUCTION

The purpose of this lecture is to give a survey of recent interactions between the
theory of random matrices, the theory of random permutations and so-called inte-
grable models. The latter are described either by integrals over tangent spaces to
symmetric spaces, or by integrals over classical groups.

Going back in time, t’Hooft was led, in the 70’s, to so-called matrix models in order
to understand the behavior of quantum gauge theories with gauge group SU(N) when
N gets large. In their pioneering work, Bessis, Itzykson and Zuber [8] considered the
integral taken over the space HN of Hermitian matrices of size N, whose log has
the following expansion:

where W (g, n) is the number of graphs with k vertices drawn on a surface of genus
g, or in a dual language, the number of ways to cover a surface of genus g with k
squares. Replacing N tr M4 with tr Mi leads to coverings of surfaces of genus
g by n-gons of various n. The sequence of such integrals over N is a solution of the
standard Toda lattice equations.

Two-matrix integrals (Chadha-Mahoux-Mehta ~11~, Itzykson-Zuber [20])

provide a solution to the 2d-Toda lattice. They describe an Ising model on a random

lattice, with spin 03C3 = ±1 at each site with nearest neighbor interaction; the interaction
between two sites depends on whether the spins are equal or not.

Kontsevich [25] proves that ZN (t) is a T-function for the KdV equation for N large,
with expansion (set ti = -ci tr Z-2 for appropriate integer ci’s)

where GN are all non-equivalent ribbon graphs r with N distinct loops obtained by 
°

picking vertices from which emerge 3 ribbons, interconnecting them and associating
a za with each edge (1  a  N). Each ribbon has two edges, one going with some
za and another going with some z{3 (1  a, /~  N). The product in the formula
above is taken over all such ribbons of the graph. The second formula involves Chern



classes of line bundles on the Deligne-Mumford smooth compactification Mg,n
of the moduli space Mg,n of smooth Riemann surfaces of genus g with n distinct
marked points ~1, ... , rn ; the fibers of the line bundle are given by T;i C at each point
(C, xl, ... , xr,,) E Mg,n.

Recently, other integrals have arisen, like

whose expansion in x relate to problems in combinatorics. The integrals over the
space of Hermitian, symmetric and symplectic matrices, namely

play a prominent role in theory of random matrices. These two sets of integrals
provide the main thrust of this lecture. Sequences of such integrals (in n) provide
solutions to integrable lattices. For a more detailed overview on these questions, see
the MSRI lectures [39]. The last section contains a table listing these connections
between matrix integrals, moment matrices and integrable lattices.

1. LARGEST INCREASING SEQUENCES IN RANDOM
PERMUTATIONS

Let SN be the group of permutations equipped with the uniform probability
distribution: .

An increasing subsequence of ~rN E SN is a sequence 1  jl  ...  jk  N, such that
7r(jl)  ...  Define

Problem. - Find the probability P(LN  n).

Examples. - For ~r7 = (3, 1 , 4, 2, 6, 7, 5), we have = 4. For ~r~ _ (5, l, 4, 3, 2),
we have = 2.

1.1. Robinson-Schensted-Knuth correspondence and symmetric functions

I give here a very brief summary of well-known, but necessary facts to approach
the problem:



- A Young diagram A is a finite sequence of non-increasing, non-negative integers
~2 > ... > 0; also called a partition of n = ~~~ := al + ... + ~~, with (~

being the weight. It can be represented by a diagram, having Ai boxes in the first
row, A2 boxes in the second row, etc., all aligned to the left. A dual Young diagram
~ _ (~l > ~2 ~ ...) is the diagram obtained by flipping the diagram A about its
diagonal; thus =length of first column of A.

- A Young tableau of shape a is an array of positive integers ai~ (at place (i, j ) in
the Young diagram) placed in the Young diagram A, which are non-decreasing from
left to right and strictly increasing from top to bottom.

- A standard Young tableau of shape a is an array of integers l, ..., n placed in
the Young diagram, which are strictly increasing from left to right and from top to
bottom. The number of Young tableaux of a given shape 03BB = (al > ... > Àm) is given
by a number of formulae (for the Schur polynomial 5;B, see below)(l)

- The Schur polynomial sa associated with a Young diagram ~ is a symmetric
function in the variables x1, x2, ... (finite or infinite), defined by

- The linear space An of symmetric polynomials in xl, ..., xn with rational coef-
ficients comes equipped with an inner product, which can also be expressed as an

integral over the unitary group U(n) for Haar measure dM:

- An orthonormal basis of the space An is given by the Schur polynomials above

sa(xl, ..., xn), in which the numbers ai~ are restricted to 1, ..., n; therefore we have

the following "Fourier series":



In particular, one computes the following Fourier series:

If A = (~l > ... > ~~), with(2) ~1 = .~ > n, then obviously sa = 0.
- Robinson-Schensted-Knuth correspondence: There is a 1-1 correspondence

Given a permutation il, ..., in, the correspondence constructs two standard Young
tableaux P,Q having the same shape A. This construction is inductive. Namely,
having obtained two equally shaped Young diagrams Pk , Qk from il, ..., i~, with the
nurnbers (zi, ... , ik) in the boxes of Pk and the numbers (1, ..., k) in the boxes of Q~,
one creates a new diagram by putting the next number ik+1 in the first row of
P, according to the following rule:

(i) if all numbers appearing in the first row of Pk , then one creates a
new box with ik+i in that box to the right of the first column,

(ii) if not, place ik+i in the box (of the first row) with the smallest higher
number. That number then gets pushed down to the second row of Pk according
to the rule (i) or (ii), as if the first row had been removed.

The diagram Q is a bookkeeping device; namely, add a box (with the number k + 1
in it) to Qk exactly at the place, where the new box has been added to Pk. This

produces a new diagram of same shape as 
The inverse of this map is constructed essentially by reversing the steps above.

(2)Remember, from the definition of the dual Young diagram, that ~1 is the length of the first column
of A.



and L5(7r) = 2 = #columns of P or Q.

The Robinson-Schensted-Knuth correspondence has the following properties
- 7f ~ (P, Q), then 7f-1 ~ (Q, P)
- length (longest increasing subsequence of 7f) = # (columns in P)
- length (longest decreasing subsequence of 7r) = # (rows in P)
- 7f2 = I, then 7r ~ (P, P)
- 7f2 = I, with k fixed points, then P has exactly k columns of odd length.

1.2. Plancherel measure, integrals over U(n) and Toeplitz matrices
A next set of ideas is due to Vershik &#x26; Kerov [40], Diaconis &#x26; Shashahani [13],

Biane [9], Rains [33, 34], Baik &#x26; Rains [7]. For a nice state-of-the-art account, see
Aldous &#x26; Diaconis [5]. The uniform probability measure (see (1.1.1) for f ~ ) (1.0.I)
on SN induces on Young diagrams, via the RSK bijection (1.1.6), the "Plancherel"
probability measure

and so from (1.2.1) and the RSK bijection, one deduces a number of formulae below;
notice, equality (ii) follows from (1.1.1) and (iii) follows from (i) and (1.1.5):



using in the last equality the fact that = 0 for z ~ j. In

1990, Gessel [17] considered the generating function below and showed that it equals
a Toeplitz determinant (determinant of a matrix, whose (i, j)th entry depends on i- j
only).

where are monic orthogonal polynomials on the circle S1 for the weight

Equality (1.2.3)(i) follows from (1.2.2)(iv); moreover (1.2.3)(it) uses Haar measure
on U(n). Identity (1.2.3) (iii) follows from the fact that the product of the two
Vandermonde appearing in the integral (ii) can be expressed as sum of determinants:

The fact above that can also be expressed as a product of two deter-
minants, involving monic polynomials, implies (iv). Finally, by Szego’s strong limit
theorem for Toeplitz determinants, we have limn~~ Tn = ex, thus leading to (v).



1.3. Virasoro constraints, integrable systems and Painleve V equation
THEOREM 1.1. - For every ~ > 0, the Gessel generating function

where g~ is the unique solution to the initial value problem:

Theorem 1.1 is due to Hisakado [19], Tracy-Widom [36], by methods of functional
analysis and Adler-van Moerbeke [3], by integrable methods. A similar statement
holds for the set S2n of fixed-point free involutions (~r°)2 = I and 
for 1  l~  2n). Put the uniform distribution on 

Then, in the following statement, due to Adler-van Moerbeke [3] and Baik-Rains ~7~,
refers to orthogonal matrices, with determinant = ~l .

THEOREM 1.2. - The generating function

where f = f ~ is the unique solution to the initial value problem:

Proof of Theorem 1.1. - A brief outline will be given here, because of its interesting
connection with an integrable system, called the Toeplitz lattice (see [3]). Inserting
times ti, with i = ..., -2, -1, o, l, 2, ..., and to = 0, in the integrals (1.2.3)(ii) over

one obtains, setting t ;_ (..., t_1, to, tl, ...) :



Virasoro constraints ~3~ . - The In’s satisfy a set of three linear partial differential
equations, forming an sl(2,Z)-algebra (Virasoro constraints), explicitly given by the
three equations:

Toeplitz lattice. - The t-dependent semi-infinite moment matrix,

is a Toeplitz matrix and satisfies the simple differential equations:

In analogy with (1.2.3)(iii), define Tn (t), instead of Tn (x) :

The Borel factorization = S~ 1 (t)S2 (t) with a lower-triangular matrix Sl (with
l’s along the diagonal) and an upper-triangular matrix S2, enables one to define(3)
Li := S1039BS-11 and L2 := S2A T S:;l, which combined with the Toeplitz nature of

has a peculiar "rank 2"-structure, where xi and Yi are certain integrals over U(n)
and where hi = Ti+IITi, hi/hi-1 =1- xiyi, h := diag(ho, hl, ...) and x0 = yo =1 :

(3)where A is the shift matrix (Av)n = 0, i.e., A is the semi-infinite matrix with all 0
entries, except for l’s just above the diagonal.



The 2d-Toda Lattice hierarchy(4)

maintains the "rank 2" nature of the semi-infinite matrices Li and L2. The first

equation in this hierarchy is equivalent to the discrete sinh-Gordon equation

The equations (1.3.11) induce on the xi and Yi the Toeplitz lattice equations; see
[3].

Using the three equations (1.3.7) and of the first equation of (1.3.7), and
setting all t2 = 0, enable one to extract various t-partials, like and

in terms of pure partials in where x = tlt_1. Substi-

tuting these expressions in the integrable Toeplitz lattice equations leads to Painleve
V (1.3.2). The integrable system associated with the integral (1.3.4) in Theorem 1.2
(with t2’s inserted) is the standard Toda lattice, instead of the Toeplitz lattice; the
integral satisfies the Virasoro constraints associated with the Toda lattice; see [3].

1.4. Random permutations 7fN for large N

Around 1960 and based on Monte-Carlo methods, Ulam [38] conjectured that

An argument of Erdos &#x26; Szekeres [14], dating back from 1935 showed that E(Ln) >
and thus c > 1/2. In ’72, Hammersley [18] showed rigorously that the

limit exists. Logan and Shepp [23] showed the limit c > 2, and finally Vershik and
Kerov [40] that c = 2. The next major contribution was due to Johansson [22] and
Baik-Deift-Johansson [6] :

THEOREM 1.3 ("Law of large numbers" and "Central limit theorem")
One has:

where g(x) is a solution of (a version of) Painlevé II,

(4)( )+ denotes the upper-triangular part of ( ), including the diagonal, whereas ( )_ denotes the
strictly lower-triangular part of ( ).



The point 03B3 = 2’!: - 1 corresponds to a "phase transition" for the partition
function

On the one hand, Johansson shows, for all é > 0, that there exist C and b > 0 such
that

On the other hand, setting Pn,N := n), Johansson’s de-Poissonization
Lemma goes as follows: given any a > 3, there are constants C = C(a) and No =
No (a) such that the following holds for N > No and all 0  n  N, with 

(a2 - 2a -1)/2:

The two relations (1.4.3) and (1.4.4) combined lead to the law of large numbers in
(1.4.1). To prove the "central limit theorem" (1.4.1), one uses the Riemann-Hilbert
approach to obtain asymptotics. Indeed, as a first observation, setting :=

the only solution Yn+1 (2 x 2 matrix) to the following Riemann-Hilbert
problem à la Fokas, Its and Kitaev [15], but adapted to Sl:

(1) Y(z) holomorphic in 

where pk(z) are the monic orthogonal polynomials (1.2.4) on the circle S1 for the
weight px(z)dz.

The Riemann-Hilbert formulation is an efficient tool to find the asymptotics
of (Y~+1 (0))21 - -h~ 1 (x). Then, summing up, 
Baik-Deift-Johansson [6] show the following result: Define u such that % =



1 - 21/3(,n+112/3 ) with -M  u  M for a given M > 0. Then the estimate below
holds, where g is the solution to (1.4.2):

with This estimate combined with Johansson’s de-
Poissonization Lemma leads to (1.4.1) and (1.4.2).

2. THE SPECTRUM OF RANDOM MATRICES

Random matrix theory deals with an ensemble of matrices M, having some symme-
try condition to guarantee the reality of the spectrum, e.g., the Hermitian ensemble
Hn, the symmetric ensemble Sn or the symplectic ensemble T2r,, , Define a probability
measure, based on a Haar measure, which in "polar coordinates" is expressed in terms
of the Vandermonde with a power /3:

with V’ = f rational, dM = Haar measure. The three ensembles Hn, Sn, 72n appear
very naturally as the tangent spaces (at the identity) to the simplest symmetric spaces:

Question. - What is the statistics of the spectrum of M ?

For Hn and Sn, if the probability P(M E dM) satisfies the following two require-
ments : (i) invariance under conjugation by unitary transformations M ~--~ 
(ii) the random variables 1  i  j  n are independent, then

is quadratic (Gaussian ensemble) ([28]).

2.1. Virasoro constraints, Toda and Pfaff lattices and KP equations
Consider weights of the form p(z)dz := on an interval F = [A, B] C 

with rational logarithmic derivative and subjected to the following boundary condi-
tions :

and a disjoint union of intervals E = uîr C F c 



THEOREM 2.1 (Adler-van Moerbeke ~1~)
The vector of integrals I(t, x; ~) _ (Io = 1, h (t, x; ~i), ...), with t :_ (tl, t2, ...) and

x :_ (xl, ..., x2r) and

satisfies the following Virasoro constraints~5~ for all k > -1:

in terms of the coefficients ai, bi of the rational function (-logp)’ and the end points
xi of the subset E, as in (~.1.1~. The ~~~2~ and p~~1 ~ f orm a Virasoro and a

Heisenberg algebra respectively, interacting as follows

Moreover:

(i) Tn(t) := f orm the T-functions of the standard Toda lattice; in
particular, each Tn satisfies the KP equation:

they are Pfaffians, rather than determinants); in particular, they satisfy the Pfaff-KP
equation:

(5)When E equals the whole range F, then the 8/8xi ’s are absent in the formulae (2.1.7).



2.2. The Gaussian ensemble: PDE’s for the statistics of the spectrum

THEOREM 2.2. - For the Gaussian ensemble, the probabilities(6) : (,Q = 2, 1, 4)

satisfy the following PDE’s in the xi ’s (Bk = 03A32r1 xk+1i ~ ~xi, 03B403B21,4 =1 for 03B2 =1, 4 and
0 otherwise, fn(x) = 

~ 

Note that for {3 = 2 and for E = ~-oo, x], the equation above takes on the simple
f orm:

Equation (2.2.2) was obtained by Tracy-Widom [35] and the rest of Theorem 2.2
is due to M. Adler, T. Shiota and P. van Moerbeke ([4] and [1]).

2.3. Infinite Hermitian matrix ensembles

Consider probability (2.2.1) for {3 = 2 and let the size n of the matrices go to oo.
To perform this limit, one uses a different representation; namely,

~6~ xn (E), Sn (E) or Tn (E) denotes the subset of matrices with spectrum in E C R.
(7) Also, define the invariant polynomials



can be represented in terms of a reproducing kernel

(2.3.2)

The reproducing property follows from the orthogonality of the monic orthogonal
polynomials for the Gaussian weight on I~, and the L2-norms

hk = of the We also have the following Fredholm determinant
formula

P(exactly k eigenvalues E ~x 1, ~2 ~ )

When the size n of the Hermitian matrices tends to oo, the following holds:
- Wigner’s semi-circle law: For this ensemble and for very large n, the density of

eigenvalues tends to the semi-circle distribution on the interval ~- 2n, 
- Bulk scaling limit: From the formula above, it follows that the average number

of eigenvalues per unit length near z = 0 ("the bulk") is given by and thus

the average distance between two consecutive eigenvalues is given by Upon
using this rescaling, one shows ([24, 27, 29, 32, 21])

(2.3.3) P(no eigenvalues e [0, .r]) - det(7 - exp / 2014-~,Jo ~

where /(.r, A) is a solution to the Painlevé V differential equation, (see Jimbo, Miwa,
Mori, Sato [21]), (’ = ~/9.r)

- Edge scaling limit: I will particularly concentrate on the "edge" 2n of the
Wigner semi-circle. There the scaling is B/2?~~, which makes the problems consider-
ably subtler; this will be used in (2.3.7) (see [10, 16, 28, 35]). The main result can be
stated as follows:

THEOREM 2.3. - Given the spectrum zl > z2 > ... of the large random Hermitian
matrix M, define the "eigenvalues" in a new scale:



then the statistics of the largest "eigenvalue" u1 (in the new scale) is given by the same
probability distribution as the length of the longest increasing sequence:

More generally, P(no points u2 E x2~) satisfies the partial differential equation
(2.3.6)

Tracy-Widom [35] have first obtained result (2.3.5) by methods of functional anal-
ysis. In [4], equations (2.3.5) and (2.3.6) were derived using integrable systems and
Virasoro constraints.

Proof. - Setting z = 2n + in the kernel Kn(x, y) of (2.3.2), one proves

where the Airy kernel K is defined in terms of the Airy function:

To find the differential equations (2.3.6), one proceeds (sketchily) as follows: as a
first step, notice that, setting L2 := ( atl )2 + q(t), t :== (tl, t2, ...), the solution q(t)
and z) (with asymptotics z) = e~~ (1 + 0(z-1)), z E C, z -~ oo) to the
initial value problem:

is given by Kontsevich’s integral (Z diagonal and N arbitrary), which itself is inti-
mately related to the Airy function 



These data define a kernel

which flows off the Airy kernel K(z2, z’2), defined in (2.3.8), upon using (2.3.10).
Then, one shows that both, Kontsevich’s integral T(t) and the product T(t, E) :=

T( t).
det (I - Kt(a, ~’)I~(~’)), with E = ~x22-1, C satisfy Virasoro constraints,
of which the two first ones read (after the time shift t3 + 2/3, in view of (2.3.9)):

Both, T(t) and T(t, E), also satisfy the Korteweg-de Vries equation (KP equation,
depending on odd ti’s only)

Differentiating (2.3.12) in ti and t3, and setting all ti = 0 enable one to express the

t-partials log T , log r , ~2 ~t1~t3 log T appearing in the KdV equation
in terms of partials 

Setting these expressions in the the KdV-equation at t = 0, implies that the
statistics of the scaled eigenvalues Ui (for the Airy kernel (2.3.8))

satisfies the partial differential equation (2.3.6) with

When E = (x, oo), the equation (2.3.6) for f = becomes a

3rd order ODE (Chazy-type equation)



According to [12] , this equation has a first integral, which is a Painleve II equation

and this equation has a solution given by f := g’2 - xg2 _ g4 and f’ - -g2, which
establishes (2.3.5) and (2.3.6).

3. LARGE RANDOM MATRICES AND PERMUTATIONS: A
DIRECT CONNECTION VIA ENUMERATIVE GEOMETRY

For large random Hermitian matrices, whose entries have Gaussian real and imag-
inary part of variance = 1/2, the Wigner semi-circle has support on (-2~, 
instead of [-B/2~, 2n~. Then the (slightly modified) scaling (2.3.4) is given by

Given the set of partitions A = (Ai > a2 > ...) of n, in view of (1.4.1), consider

Theorems 1.3 and 2.3 show that the variables ui and vi have the same probability
distribution. Okounkov [31] shows in a direct way that the joint distribution of all Hi
and Vi coincide; more specifically:

THEOREM 3.1 (Okounkov, [31]). - For any m > 1, any ..., > 0, the following
holds:

The left hand side, which relates to random permutations, hinges on the following
expressions:

In this expression, the Xi are certain matrices, such that e.g. is an eigenvalue of
Xl, if (j, Aj) is a corner of the Young diagram (i.e., ~~ > ~~+1). Also 
are coverings of S2 ramified according to a rule, given by the numbers ..., 



The right hand side relates to random matrices and has an interpretation as a

"map" on a surface. It hinges on the following formula for M E U(n) :

where the sum is taken over all the homeomorphism classes of orientable, not neces-

sarily connected surfaces S; x(S) is its Euler number and denotes

the ways to cover the surface S with m polygons (a ki-gon, a k2-gon,... , a km-gon) by
pairwise gluing the sides of different or the same ki-gons. Each polygon has a marked

vertex, to distinguish a k-gon from its k - 1 rotations.
The main proposition, established by Okounkov and leading to Theorem 3.1, is the

following: for connected surfaces, as ki -~ oo,

4. INTEGRALS, MOMENT MATRICES AND INTEGRABLE
SYSTEMS

The first column contains a list of matrix integrals and a Fredholm determinant.
After perturbing the integral by inserting times ti’s and possibly si’s, the new in-

tegral thus obtained satisfies linear PDE’s (Virasoro constraints). The integral can
be represented as a determinant of a "moment" matrix, (defined by an appropriate
inner-product) or a Pfaffian, if the moment matrix is skew. Performing an appropriate
"Borel factorization" of this associated moment matrix, one shows that each of these

integrals, as a function of the ti and si’s, satisfies an integrable lattice or an integrable
PDE. In all the cases, combining both systems of equations leads to ODE’s or PDE’s
for the corresponding integral, in x or in the boundary of E. The last column lists
the connection with probability. For more information on the 6th integral and the
double matrix integral, see [37, 3, 2].



T-functions satisfying = determinant underlying connecting with
Virasoro constraints, or Pfaffian of integrable
after inserting ti ’s of the form: lattice or PDE

Hankel Toda lattice spectrum of random

Hermitian matrices

skew-symmetric Pfaff lattice spectrum of random

symmetric matrices

skew-symmetric Pfaff lattice spectrum of random

symplectic matrices

Toeplitz Toeplitz lattice longest increasing sequence
in random permutations

Hankel Toda lattice longest increasing sequence
in random involutions

Toeplitz Toeplitz lattice longest increasing sequence
in random words

Fredholm KdV equation spectrum of infinite

determinant random Hermitian matrices

(bulk or edge scaling limit)

general 2d-Toda lattice coupled random matrices
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