SÉminaire N. Bourbaki

Pierre van Moerbeke

 Random matrices and permutations, matrix

 Random matrices and permutations, matrix integrals and integrable systems

 integrals and integrable systems}

Séminaire N. Bourbaki, 1999-2000, exp. n ${ }^{0} 879$, p. 411-433.
http://www.numdam.org/item?id=SB_1999-2000__42__411_0
© Association des collaborateurs de Nicolas Bourbaki, 1999-2000, tous droits réservés.
L'accès aux archives du séminaire Bourbaki (http://www.bourbaki. ens.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Séminaire BOURBAKI
52^{e} année, 1999-2000, $\mathrm{n}^{\mathrm{o}} 879$, p. 411 à 433

Juin 2000

RANDOM MATRICES AND PERMUTATIONS, MATRIX INTEGRALS AND INTEGRABLE SYSTEMS

by Pierre VAN MOERBEKE

Contents

0 . Introduction 412

1. Largest increasing sequences in random permutations 413
1.1. Robinson-Schensted-Knuth correspondence and symmetric functions 413
1.2. Plancherel measure, integrals over $U(n)$ and Toeplitz matrices 416
1.3. Virasoro constraints, integrable systems and Painlevé V equation 418
1.4. Random permutations π_{N} for large N 420
2. The spectrum of random matrices 422
2.1. Virasoro constraints, Toda and Pfaff lattices and KP equations 422
2.2. The Gaussian ensemble: PDE's for the statistics of the spectrum 424
2.3. Infinite Hermitian matrix ensembles 424
3. Large random matrices and permutations: a direct connection via enumerative geometry 428
4. Integrals, moment matrices and integrable systems 429
References 431
[^0]
0. INTRODUCTION

The purpose of this lecture is to give a survey of recent interactions between the theory of random matrices, the theory of random permutations and so-called integrable models. The latter are described either by integrals over tangent spaces to symmetric spaces, or by integrals over classical groups.

Going back in time, t'Hooft was led, in the 70 's, to so-called matrix models in order to understand the behavior of quantum gauge theories with gauge group $S U(N)$ when N gets large. In their pioneering work, Bessis, Itzykson and Zuber [8] considered the integral $Z_{N}^{(\varepsilon)}$ taken over the space \mathcal{H}_{N} of Hermitian matrices of size N, whose \log has the following expansion:

$$
\log Z_{N}^{(\varepsilon)}=\log \frac{\int_{\mathcal{H}_{N}} d M e^{-\frac{1}{2} \operatorname{tr} M^{2}-\frac{\varepsilon}{N} \operatorname{tr} M^{4}}}{\int_{\mathcal{H}_{N}} d M e^{-\frac{1}{2} t r M^{2}}}=\sum_{g=0}^{\infty} N^{2-2 g} \sum_{k=0}^{\infty}(-\varepsilon)^{k} W(g, k)
$$

where $W(g, n)$ is the number of graphs with k vertices drawn on a surface of genus g, or in a dual language, the number of ways to cover a surface of genus g with k squares. Replacing $\frac{\varepsilon}{N} \operatorname{tr} M^{4}$ with $\sum_{i \geq 1} t_{i} \operatorname{tr} M^{i}$ leads to coverings of surfaces of genus g by n-gons of various n. The sequence of such integrals over N is a solution of the standard Toda lattice equations.

Two-matrix integrals (Chadha-Mahoux-Mehta [11], Itzykson-Zuber [20])

$$
\iint_{\mathcal{H}_{N} \times \mathcal{H}_{N}} d M_{1} d M_{2} e^{-\operatorname{tr}\left(M_{1}^{2}+M_{2}^{2}-c M_{1} M_{2}+\alpha M_{1}^{4}+\beta M_{2}^{4}\right)}
$$

provide a solution to the 2d-Toda lattice. They describe an Ising model on a random lattice, with spin $\sigma= \pm 1$ at each site with nearest neighbor interaction; the interaction between two sites depends on whether the spins are equal or not.

Kontsevich [25] proves that $Z_{N}(t)$ is a τ-function for the KdV equation for N large, with expansion (set $t_{i}=-c_{i} \operatorname{tr} Z^{-i}$ for appropriate integer c_{i} 's)

$$
\begin{aligned}
\log Z_{N}(t) & =\log \frac{\int_{\mathcal{H}_{N}} d X e^{-\frac{1}{2} \operatorname{tr} X^{2} Z+\frac{1}{6} \operatorname{tr} X^{3}}}{\int_{\mathcal{H}_{N}} d X e^{-\frac{1}{2} \operatorname{tr} X^{2} Z}} \\
& =\sum_{\Gamma \in G_{N}} \frac{\left(\frac{1}{2}\right) \# \text { vertices in } \Gamma}{\# \text { Aut } \Gamma} \prod_{\text {ribbons } \alpha, \beta} \frac{2}{z_{\alpha}+z_{\beta}} \\
& =\sum_{n \geq 1, d_{1}, \ldots, d_{n} \geq 0} \frac{t_{2 d_{1}+1} \ldots t_{2 d_{n}+1}}{n!} \int_{\overline{\mathcal{M}}_{g, n}} \prod_{i=1}^{n} c_{1}\left(\mathcal{L}_{i}\right)^{d_{i}}
\end{aligned}
$$

where G_{N} are all non-equivalent ribbon graphs Γ with N distinct loops obtained by picking vertices from which emerge 3 ribbons, interconnecting them and associating a z_{α} with each edge $(1 \leq \alpha \leq N)$. Each ribbon has two edges, one going with some z_{α} and another going with some $z_{\beta}(1 \leq \alpha, \beta \leq N)$. The product in the formula above is taken over all such ribbons of the graph. The second formula involves Chern
classes $c_{1}\left(\mathcal{L}_{i}\right)$ of line bundles on the Deligne-Mumford smooth compactification $\overline{\mathcal{M}}_{g, n}$ of the moduli space $\mathcal{M}_{g, n}$ of smooth Riemann surfaces of genus g with n distinct marked points x_{1}, \ldots, x_{n}; the fibers of the line bundle are given by $T_{x_{i}}^{*} \mathcal{C}$ at each point $\left(\mathcal{C}, x_{1}, \ldots, x_{n}\right) \in \overline{\mathcal{M}}_{g, n}$.

Recently, other integrals have arisen, like

$$
\int_{O(n)} e^{x \operatorname{tr} M} d M, \quad \int_{U(n)} e^{\sqrt{x} \operatorname{tr}(M+\bar{M})} d M, \quad \int_{U(n)} \operatorname{det}(I+M)^{k} e^{-x \operatorname{tr} \bar{M}} d M
$$

whose expansion in x relate to problems in combinatorics. The integrals over the space of Hermitian, symmetric and symplectic matrices, namely

$$
\int_{\mathcal{H}_{n}, \mathcal{S}_{n} \text { or } \mathcal{T}_{2 n}} e^{-\operatorname{tr} V(M)} d M
$$

play a prominent role in theory of random matrices. These two sets of integrals provide the main thrust of this lecture. Sequences of such integrals (in n) provide solutions to integrable lattices. For a more detailed overview on these questions, see the MSRI lectures [39]. The last section contains a table listing these connections between matrix integrals, moment matrices and integrable lattices.

1. LARGEST INCREASING SEQUENCES IN RANDOM PERMUTATIONS

Let S_{N} be the group of permutations π_{N}, equipped with the uniform probability distribution:

$$
\begin{equation*}
P\left(\pi_{N}\right)=1 / N! \tag{1.0.1}
\end{equation*}
$$

An increasing subsequence of $\pi_{N} \in S_{N}$ is a sequence $1 \leq j_{1}<\ldots<j_{k} \leq N$, such that $\pi\left(j_{1}\right)<\ldots<\pi\left(j_{k}\right)$. Define
(1.0.2) $L_{N}\left(\pi_{N}\right)=$ length of the longest increasing subsequence of π_{N}.

Problem. - Find the probability $P\left(L_{N} \leq n\right)$.
Examples. - For $\pi_{7}=(\underline{3}, 1, \underline{4}, 2, \underline{6}, \underline{7}, 5)$, we have $L\left(\pi_{7}\right)=4$. For $\pi_{5}=(5, \underline{1}, \underline{4}, 3,2)$, we have $L\left(\pi_{5}\right)=2$.

1.1. Robinson-Schensted-Knuth correspondence and symmetric functions

I give here a very brief summary of well-known, but necessary facts to approach the problem:

- A Young diagram λ is a finite sequence of non-increasing, non-negative integers $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{\ell} \geq 0$; also called a partition of $n=|\lambda|:=\lambda_{1}+\ldots+\lambda_{\ell}$, with $|\lambda|$ being the weight. It can be represented by a diagram, having λ_{1} boxes in the first row, λ_{2} boxes in the second row, etc., all aligned to the left. A dual Young diagram $\hat{\lambda}=\left(\hat{\lambda}_{1} \geq \hat{\lambda}_{2} \geq \ldots\right)$ is the diagram obtained by flipping the diagram λ about its diagonal; thus $\hat{\lambda}_{1}=\ell=$ length of first column of λ.
- A Young tableau of shape λ is an array of positive integers $a_{i j}$ (at place (i, j) in the Young diagram) placed in the Young diagram λ, which are non-decreasing from left to right and strictly increasing from top to bottom.
- A standard Young tableau of shape λ is an array of integers $1, \ldots, n$ placed in the Young diagram, which are strictly increasing from left to right and from top to bottom. The number of Young tableaux of a given shape $\lambda=\left(\lambda_{1} \geq \ldots \geq \lambda_{m}\right)$ is given by a number of formulae (for the Schur polynomial s_{λ}, see below) ${ }^{(1)}$

$$
\begin{align*}
f^{\lambda} & =\#\{\text { standard tableaux of shape } \lambda\} \\
& =\text { coefficient of } x_{1} x_{2} \ldots x_{n} \text { in } s_{\lambda}(x) \\
& =\frac{|\lambda|!}{\prod_{\text {all } i, j} h_{i j}^{\lambda}}=|\lambda|!\operatorname{det}\left(\frac{1}{\left(\lambda_{i}-i+j\right)!}\right) \\
& =|\lambda|!\prod_{1 \leq i<j \leq m}\left(h_{i}-h_{j}\right) \prod_{1}^{m} \frac{1}{h_{i}!}, \quad \text { with } h_{i}:=\lambda_{i}-i+m, m:=\hat{\lambda}_{1} . \tag{1.1.1}
\end{align*}
$$

- The Schur polynomial s_{λ} associated with a Young diagram λ is a symmetric function in the variables x_{1}, x_{2}, \ldots (finite or infinite), defined by

$$
\begin{equation*}
s_{\lambda}\left(x_{1}, x_{2}, \ldots\right):=\sum_{\left\{a_{i j}\right\} \text { tableaux of } \lambda} \prod_{i j} x_{a_{i j}} . \tag{1.1.2}
\end{equation*}
$$

- The linear space Λ_{n} of symmetric polynomials in x_{1}, \ldots, x_{n} with rational coefficients comes equipped with an inner product, which can also be expressed as an integral over the unitary group $U(n)$ for Haar measure $d M$:

$$
\begin{align*}
\langle f, g\rangle & =\frac{1}{n!} \int_{\left(S_{1}\right)^{n}} f\left(z_{1}, \ldots, z_{n}\right) g\left(\bar{z}_{1}, \ldots, \bar{z}_{n}\right) \prod_{1 \leq k<\ell \leq n}\left|z_{k}-z_{\ell}\right|^{2} \prod_{1}^{n} \frac{d z_{k}}{2 \pi i z_{k}} \\
& =\int_{U(n)} f(M) g(\bar{M}) d M \tag{1.1.3}
\end{align*}
$$

- An orthonormal basis of the space Λ_{n} is given by the Schur polynomials above $s_{\lambda}\left(x_{1}, \ldots, x_{n}\right)$, in which the numbers $a_{i j}$ are restricted to $1, \ldots, n$; therefore we have the following "Fourier series":

$$
\begin{equation*}
f\left(x_{1}, \ldots, x_{n}\right)=\sum_{\substack{\lambda \text { with } \\ \hat{\lambda}_{1} \leq n}}\left\langle f, s_{\lambda}\right\rangle s_{\lambda}\left(x_{1}, \ldots, x_{n}\right), \text { with }\left\langle s_{\lambda}, s_{\lambda^{\prime}}\right\rangle=\delta_{\lambda \lambda^{\prime}} \tag{1.1.4}
\end{equation*}
$$

$\overline{{ }^{(1)} h_{i j}^{\lambda}}:=\lambda_{i}+\hat{\lambda}_{j}-i-j+1$ is the hook length of the i, j th box in the Young diagram.

In particular, one computes the following Fourier series:

$$
\begin{equation*}
\left(x_{1}+\cdots+x_{n}\right)^{k}=\sum_{\substack{|\lambda| \leq k \\ \lambda_{1} \leq n}} f^{\lambda} s_{\lambda} . \tag{1.1.5}
\end{equation*}
$$

If $\lambda=\left(\lambda_{1} \geq \ldots \geq \lambda_{\ell}\right)$, with $^{(2)} \hat{\lambda}_{1}=\ell>n$, then obviously $s_{\lambda}=0$.

- Robinson-Schensted-Knuth correspondence: There is a 1-1 correspondence

$$
S_{n} \longrightarrow\left\{\begin{array}{l}
(P, Q), \text { two standard Young } \tag{1.1.6}\\
\text { tableaux from } 1, \ldots, n, \text { where } \\
P \text { and } Q \text { have the same shape }
\end{array}\right\}
$$

Given a permutation i_{1}, \ldots, i_{n}, the correspondence constructs two standard Young tableaux P, Q having the same shape λ. This construction is inductive. Namely, having obtained two equally shaped Young diagrams P_{k}, Q_{k} from i_{1}, \ldots, i_{k}, with the numbers $\left(i_{1}, \ldots, i_{k}\right)$ in the boxes of P_{k} and the numbers $(1, \ldots, k)$ in the boxes of Q_{k}, one creates a new diagram Q_{k+1}, by putting the next number i_{k+1} in the first row of P, according to the following rule:
(i) if $i_{k+1} \geq$ all numbers appearing in the first row of P_{k}, then one creates a new box with i_{k+1} in that box to the right of the first column,
(ii) if not, place i_{k+1} in the box (of the first row) with the smallest higher number. That number then gets pushed down to the second row of P_{k} according to the rule (i) or (ii), as if the first row had been removed.
The diagram Q is a bookkeeping device; namely, add a box (with the number $k+1$ in it) to Q_{k} exactly at the place, where the new box has been added to P_{k}. This produces a new diagram Q_{k+1} of same shape as P_{k+1}.

The inverse of this map is constructed essentially by reversing the steps above.

Example. - $\pi=(5,1,4,3,2) \in S_{5}$,

[^1]Hence

$$
\pi \longrightarrow(P(\pi), Q(\pi))=\left(\left(\begin{array}{ll}
1 & 2 \\
3 & \\
4 & \\
5 &
\end{array}\right),\left(\begin{array}{ll}
1 & 3 \\
2 & \\
4 & \\
5 &
\end{array}\right)\right)
$$

and $L_{5}(\pi)=2=\#$ columns of P or Q.
The Robinson-Schensted-Knuth correspondence has the following properties
$-\pi \mapsto(P, Q)$, then $\pi^{-1} \mapsto(Q, P)$

- length (longest increasing subsequence of π) $=\#($ columns in $P)$
- length (longest decreasing subsequence of π) $=\#($ rows in $P)$
$-\pi^{2}=I$, then $\pi \mapsto(P, P)$
$-\pi^{2}=I$, with k fixed points, then P has exactly k columns of odd length.

1.2. Plancherel measure, integrals over $U(n)$ and Toeplitz matrices

A next set of ideas is due to Vershik \& Kerov [40], Diaconis \& Shashahani [13], Biane [9], Rains [33, 34], Baik \& Rains [7]. For a nice state-of-the-art account, see Aldous \& Diaconis [5]. The uniform probability measure (see (1.1.1) for f^{λ}) (1.0.1) on S_{N} induces on Young diagrams, via the RSK bijection (1.1.6), the "Plancherel" probability measure

$$
\begin{equation*}
P_{N}(\lambda)=\frac{\left(f^{\lambda}\right)^{2}}{N!}, \quad|\lambda|=N \tag{1.2.1}
\end{equation*}
$$

and so from (1.2.1) and the RSK bijection, one deduces a number of formulae below; notice, equality (ii) follows from (1.1.1) and (iii) follows from (i) and (1.1.5):

$$
P_{N}\left(L\left(\pi_{N}\right) \leq n\right)=\frac{1}{N!} \#\left\{\begin{array}{c}
(P, Q), \text { standard Young tableaux each of } \\
\text { arbitrary shape } \lambda, \text { with }|\lambda|=N, \lambda_{1} \leq n
\end{array}\right\}
$$

$$
\stackrel{\text { (i) }}{=} \frac{1}{N!} \sum_{\substack{|\lambda|=N \\ \lambda_{1} \leq n}}\left(f^{\lambda}\right)^{2}=\frac{1}{N!} \sum_{\substack{|\lambda|=N \\ \lambda_{1} \leq n}}\left(f^{\lambda}\right)^{2}, \quad \text { by duality of Young diagrams }
$$

$$
\begin{align*}
& \stackrel{\text { (ii) }}{=} N!\sum_{m=1}^{n} \frac{1}{m!} \sum_{\substack{h \in \mathbb{Z}^{m}, h_{i} \geq 1 \\
\sum h_{j}=N+\frac{m(m-1)}{2}}} \prod_{1 \leq i<j \leq m}\left(h_{i}-h_{j}\right)^{2} \prod_{1}^{m} \frac{1}{h_{j}!^{2}} \tag{1.2.2}\\
& \stackrel{\text { (iii) }}{=} \frac{1}{N!} \sum_{\substack{|\lambda|=|\mu|=N \\
\lambda_{1}, \mu_{1} \leq n}} f^{\lambda} f^{\mu}\left\langle s_{\lambda}, s_{\mu}\right\rangle \\
& \quad=\frac{1}{N!}\left\langle\left(x_{1}+\cdots+x_{n}\right)^{N},\left(x_{1}+\cdots+x_{n}\right)^{N}\right\rangle \\
& \stackrel{\text { (iv) }}{=} \frac{1}{N!} \int_{U(n)}|\operatorname{tr} M|^{2 N} d M
\end{align*}
$$

$$
=\frac{1}{N!}\binom{2 N}{N}^{-1} \int_{U(n)}(\operatorname{tr}(M+\bar{M}))^{2 N} d M,
$$

using in the last equality the fact that $\int_{U(n)}\left((\operatorname{tr} M)^{j}(\overline{\operatorname{tr} \bar{M}})^{j}\right) d M=0$ for $i \neq j$. In 1990, Gessel [17] considered the generating function below and showed that it equals a Toeplitz determinant (determinant of a matrix, whose (i, j) th entry depends on $i-j$ only).

$$
\begin{align*}
\tau_{n}(x) & :=\sum_{N=0}^{\infty} \frac{x^{N}}{N!} P\left(L\left(\pi_{N}\right) \leq n\right) \\
& \stackrel{(\mathrm{i})}{=} \int_{U(n)} e^{\sqrt{x}} \operatorname{tr}(M+\bar{M}) \\
& \stackrel{(\text { ii) }}{=} \frac{1}{n!} \int_{\left(S^{1}\right)^{n}} \Delta_{n}(z) \Delta_{n}(\bar{z}) \prod_{k=1}^{n}\left(e^{\sqrt{x}\left(z_{k}+\bar{z}_{k}\right)} \frac{d z_{k}}{2 \pi i z_{k}}\right) \\
3) \quad & \stackrel{(\text { (iii) }}{=} \operatorname{det}\left(\int_{0}^{2 \pi} e^{2 \sqrt{x} \cos \theta} e^{i(k-\ell) \theta} d \theta\right)_{1 \leq k, \ell \leq n} \quad \text { (Toeplitz determinant) } \tag{1.2.3}\\
& \stackrel{(\mathrm{iv})}{=} \prod_{k=0}^{n-1} h_{k}(x)^{-1}, \text { where } h_{k}(x):=\frac{\tau_{k+1}}{\tau_{k}}=\int_{S^{1}}\left|p_{k}(z)\right|^{2} e^{\sqrt{x}(z+\bar{z})} d z, \\
& \stackrel{(\mathrm{v})}{=} e^{x} \prod_{k=n}^{\infty} h_{k}(x)^{-1},
\end{align*}
$$

where $p_{k}(z)$ are monic orthogonal polynomials on the circle S^{1} for the weight $e^{\sqrt{x}(z+\bar{z})} d z$:

$$
\begin{equation*}
\int_{S^{1}} p_{n}(z) \overline{p_{m}(z)} e^{\sqrt{x}(z+\bar{z})} \frac{d z}{2 \pi i z}=h_{n}(x) \delta_{m n} \tag{1.2.4}
\end{equation*}
$$

Equality (1.2.3)(i) follows from (1.2.2)(iv); moreover (1.2.3)(ii) uses Haar measure on $U(n)$. Identity (1.2.3) (iii) follows from the fact that the product of the two Vandermonde appearing in the integral (ii) can be expressed as sum of determinants:

$$
\begin{aligned}
\Delta_{n}(u) \Delta_{n}(v) & =\sum_{\sigma \in S_{n}} \operatorname{det}\left(u_{\sigma(k)}^{\ell-1} v_{\sigma(k)}^{k-1}\right)_{1 \leq \ell, k \leq n} \\
& =\operatorname{det}\left(p_{\ell-1}^{(1)}\left(u_{k}\right)\right)_{1 \leq \ell, k \leq n} \operatorname{det}\left(p_{\ell-1}^{(2)}\left(v_{k}\right)\right)_{1 \leq \ell, k \leq n}
\end{aligned} .
$$

The fact above that $\Delta_{n}(u) \Delta_{n}(v)$ can also be expressed as a product of two determinants, involving monic polynomials, implies (iv). Finally, by Szegö's strong limit theorem for Toeplitz determinants, we have $\lim _{n \rightarrow \infty} \tau_{n}=e^{x}$, thus leading to (v).

1.3. Virasoro constraints, integrable systems and Painlevé V equation

Theorem 1.1. - For every $\ell \geq 0$, the Gessel generating function

$$
\begin{align*}
\sum_{N=0}^{\infty} \frac{x^{N}}{N!} P\left(L\left(\pi_{N}\right) \leq \ell\right) & =\int_{U(\ell)} e^{\sqrt{x} \operatorname{tr}(M+\bar{M})} d M \tag{1.3.1}\\
& =\exp \int_{0}^{x} \log \left(\frac{x}{u}\right) g_{\ell}(u) d u
\end{align*}
$$

where g_{ℓ} is the unique solution to the initial value problem:

$$
\left\{\begin{array}{l}
g^{\prime \prime}-\frac{g^{\prime 2}}{2}\left(\frac{1}{g-1}+\frac{1}{g}\right)+\frac{g^{\prime}}{u}+\frac{2}{u} g(g-1)-\frac{\ell^{2}}{2 u^{2}} \frac{g-1}{g}=0 \tag{1.3.2}\\
\left.g_{\ell}(u)=1-\frac{u^{\ell}}{(\ell!)^{2}}+O\left(u^{\ell+1}\right), \text { near } u=0 . \quad \text { (Painlevé } \mathbf{V}\right) .
\end{array}\right.
$$

Theorem 1.1 is due to Hisakado [19], Tracy-Widom [36], by methods of functional analysis and Adler-van Moerbeke [3], by integrable methods. A similar statement holds for the set $S_{2 n}^{0}$ of fixed-point free involutions π^{0} (i.e., $\left(\pi^{0}\right)^{2}=I$ and $\pi^{0}(k) \neq k$ for $1 \leq k \leq 2 n$). Put the uniform distribution on $S_{2 n}^{0}$:

$$
\begin{equation*}
P\left(\pi_{2 n}^{0}\right)=\frac{1}{(2 n-1)!!}=\frac{2^{n} n!}{(2 n)!} \tag{1.3.3}
\end{equation*}
$$

Then, in the following statement, due to Adler-van Moerbeke [3] and Baik-Rains [7], $O(n)_{ \pm}$refers to orthogonal matrices, with determinant $= \pm 1$.

Theorem 1.2. - The generating function

$$
\begin{align*}
2 \sum_{k=0}^{\infty} \frac{\left(x^{2} / 2\right)^{k}}{k!} P\left(L\left(\pi_{2 k}^{0}\right) \leq \ell+1\right) & =E_{O(\ell+1)_{-}} e^{x \operatorname{tr} M}+E_{O(\ell+1)_{+}} e^{x \operatorname{trM}} \\
& =\exp \left(\int_{0}^{x} \frac{f_{\ell}^{-}(u)}{u} d u\right)+\exp \left(\int_{0}^{x} \frac{f_{\ell}^{+}(u)}{u} d u\right), \tag{1.3.4}
\end{align*}
$$

where $f=f_{\ell}^{ \pm}$is the unique solution to the initial value problem:

$$
\left\{\begin{array}{l}
f^{\prime \prime \prime}+\frac{1}{u} f^{\prime \prime}+\frac{6}{u} f^{\prime 2}-\frac{4}{u^{2}} f f^{\prime}-\frac{16 u^{2}+\ell^{2}}{u^{2}} f^{\prime}+\frac{16}{u} f+\frac{2\left(\ell^{2}-1\right)}{u}=0 \tag{1.3.5}\\
\left.f_{\ell}^{ \pm}(u)=u^{2} \pm \frac{u^{\ell+1}}{\ell!}+O\left(u^{\ell+2}\right), \text { near } u=0 . \quad \text { (Painlevé } \mathbf{V}\right)
\end{array}\right.
$$

Proof of Theorem 1.1. - A brief outline will be given here, because of its interesting connection with an integrable system, called the Toeplitz lattice (see [3]). Inserting times t_{i}, with $i=\ldots,-2,-1,0,1,2, \ldots$, and $t_{0}=0$, in the integrals (1.2.3)(ii) over $\left(S^{1}\right)^{n}$, one obtains, setting $t:=\left(\ldots, t_{-1}, t_{0}, t_{1}, \ldots\right)$:

$$
\begin{equation*}
I_{n}(t)=\int_{\left(S^{1}\right)^{n}}\left|\Delta_{n}(z)\right|^{2} \prod_{k=1}^{n} e^{\sum_{i \neq 0} t_{i} z_{k}^{i}} \frac{d z_{k}}{2 \pi i z_{k}}, \quad n \geq 0 \tag{1.3.6}
\end{equation*}
$$

Virasoro constraints [3]. - The I_{n} 's satisfy a set of three linear partial differential equations, forming an $\operatorname{sl}(2, \mathbb{Z})$-algebra (Virasoro constraints), explicitly given by the three equations:

$$
\begin{array}{ll}
& \left(\sum_{i \neq \mp 1,0}(i \pm 1) t_{i \pm 1} \frac{\partial}{\partial t_{i}}+n\left(t_{ \pm 1}+\frac{\partial}{\partial t_{\mp 1}}\right)\right) I_{n}(t)=0 \tag{1.3.7}\\
\text { and } \quad\left(\sum_{i \neq 0} i t_{i} \frac{\partial}{\partial t_{i}}\right) I_{n}(t)=0 .
\end{array}
$$

Toeplitz lattice. - The t-dependent semi-infinite moment matrix,

$$
\begin{equation*}
m_{n}(t):=\left(\left\langle z^{k}, z^{\ell}\right\rangle_{t}\right)_{0 \leq k, \ell \leq n-\overline{\overline{1}}}\left(\oint_{S^{1}} \frac{\rho(z) d z}{2 \pi i z} z^{k-\ell} e^{\sum_{i \neq 0}\left(t_{i} z^{i}\right)}\right)_{0 \leq k, \ell \leq n-1} \tag{1.3.8}
\end{equation*}
$$

is a Toeplitz matrix and satisfies the simple differential equations:

$$
\begin{equation*}
\frac{\partial \mu_{i j}}{\partial t_{k}}=\mu_{i+k, j}, \quad \frac{\partial \mu_{i j}}{\partial t_{-k}}=\mu_{i, j+k}, \quad \text { for } \quad k \geq 1 \tag{1.3.9}
\end{equation*}
$$

In analogy with (1.2.3)(iii), define $\tau_{n}(t)$, instead of $\tau_{n}(x)$:

$$
\tau_{n}(t):=\operatorname{det} m_{n}(t)
$$

The Borel factorization $m_{\infty}(t)=S_{1}^{-1}(t) S_{2}(t)$ with a lower-triangular matrix S_{1} (with 1 's along the diagonal) and an upper-triangular matrix S_{2}, enables one to define ${ }^{(3)}$ $L_{1}:=S_{1} \Lambda S_{1}^{-1} \quad$ and $\quad L_{2}:=S_{2} \Lambda^{\top} S_{2}^{-1}$, which combined with the Toeplitz nature of m_{∞} has a peculiar "rank 2"-structure, where x_{i} and y_{i} are certain integrals over $U(n)$ and where $h_{i}=\tau_{i+1} / \tau_{i}, h_{i} / h_{i-1}=1-x_{i} y_{i}, \quad h:=\operatorname{diag}\left(h_{0}, h_{1}, \ldots\right)$ and $x_{0}=y_{0}=1:$

$$
L_{1}=h\left(\begin{array}{lllll}
-x_{1} y_{0} & 1-x_{1} y_{1} & 0 & 0 & \\
-x_{2} y_{0} & -x_{2} y_{1} & 1-x_{2} y_{2} & 0 & \\
-x_{3} y_{0} & -x_{3} y_{1} & -x_{3} y_{2} & 1-x_{3} y_{3} & \\
-x_{4} y_{0} & -x_{4} y_{1} & -x_{4} y_{2} & -x_{4} y_{3} & \\
& & & & \ddots
\end{array}\right) h^{-1}
$$

and

$$
L_{2}=\left(\begin{array}{ccccc}
-x_{0} y_{1} & -x_{0} y_{2} & -x_{0} y_{3} & -x_{0} y_{4} & \tag{1.3.10}\\
1-x_{1} y_{1} & -x_{1} y_{2} & -x_{1} y_{3} & -x_{1} y_{4} & \\
0 & 1-x_{2} y_{2} & -x_{2} y_{3} & -x_{2} y_{4} & \\
0 & 0 & 1-x_{3} y_{3} & -x_{3} y_{4} & \\
& & & & \ddots
\end{array}\right)
$$

[^2]The 2d-Toda Lattice hierarchy ${ }^{(4)}$

$$
\begin{equation*}
\frac{\partial L_{i}}{\partial t_{n}}=\left[\left(L_{1}^{n}\right)_{+}, L_{i}\right] \quad \text { and } \quad \frac{\partial L_{i}}{\partial t_{-n}}=\left[\left(L_{2}^{n}\right)_{-}, L_{i}\right], \quad i=1,2, n \geq 1 \tag{1.3.11}
\end{equation*}
$$

maintains the "rank 2" nature of the semi-infinite matrices L_{1} and L_{2}. The first equation in this hierarchy is equivalent to the discrete sinh-Gordon equation

$$
\frac{\partial^{2} q_{n}}{\partial t_{1} \partial t_{-1}}=-e^{q_{n}-q_{n-1}}+e^{q_{n+1}-q_{n}}, \quad \text { where } \quad q_{n}=\log \frac{\tau_{n+1}}{\tau_{n}}
$$

The equations (1.3.11) induce on the x_{i} and y_{i} the Toeplitz lattice equations; see [3].

Using the three equations (1.3.7) and $\partial / \partial t_{1}$ of the first equation of (1.3.7), and setting all $t_{i}=0$, enable one to extract various t-partials, like $\partial^{2} \log \tau(t) / \partial t_{-1} \partial t_{1}$ and $\partial^{2} \log \tau(t) / \partial t_{-2} \partial t_{1}$, in terms of pure partials in $\partial^{k} / \partial x^{k}$, where $x=t_{1} t_{-1}$. Substituting these expressions in the integrable Toeplitz lattice equations leads to Painlevé V (1.3.2). The integrable system associated with the integral (1.3.4) in Theorem 1.2 (with t_{i} 's inserted) is the standard Toda lattice, instead of the Toeplitz lattice; the integral satisfies the Virasoro constraints associated with the Toda lattice; see [3].

1.4. Random permutations π_{N} for large N

Around 1960 and based on Monte-Carlo methods, Ulam [38] conjectured that

$$
\lim _{n \rightarrow \infty} \frac{E\left(L_{n}\right)}{\sqrt{n}}=c \text { exists. }
$$

An argument of Erdös \& Szekeres [14], dating back from 1935 showed that $E\left(L_{n}\right) \geq$ $\frac{1}{2} \sqrt{n-1}$, and thus $c \geq 1 / 2$. In ' 72 , Hammersley [18] showed rigorously that the limit exists. Logan and Shepp [23] showed the limit $c \geq 2$, and finally Vershik and Kerov [40] that $c=2$. The next major contribution was due to Johansson [22] and Baik-Deift-Johansson [6]:

Theorem 1.3 ("Law of large numbers" and "Central limit theorem")
One has:

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{L_{n}}{2 \sqrt{n}}=1, \quad \text { and } \quad \lim _{n \rightarrow \infty} P\left(\frac{L_{n}-2 \sqrt{n}}{n^{1 / 6}} \leq x\right)=\exp \left(-\int_{x}^{\infty}(u-x) g^{2}(u) d u\right) \tag{1.4.1}
\end{equation*}
$$

where $g(x)$ is a solution of (a version of) Painlevé II,

$$
\left\{\begin{array}{l}
g^{\prime \prime}=x g+2 g^{3} \quad(\text { Painlevé II }) \tag{1.4.2}\\
g(x) \cong A(x):=\int_{-\infty}^{\infty} e^{i x y-y^{3} / 3} d y \cong \frac{e^{-\frac{2}{3} x^{\frac{3}{2}}}}{2 \sqrt{\pi} x^{1 / 4}} \text { for } x \nearrow \infty .
\end{array}\right.
$$

[^3]The point $\gamma=\frac{2 \sqrt{x}}{n}=1$ corresponds to a "phase transition" for the partition function

$$
e^{-x} \tau_{n}(x)=e^{-x} \int_{U(n)} e^{\sqrt{x} \operatorname{tr}(M+\bar{M})} d M=\prod_{k=n}^{\infty} h_{k}(x)^{-1}=e^{-x} \sum_{n=0}^{\infty} \frac{x^{N}}{N!} P\left(L\left(\pi_{N}\right) \leq n\right)
$$

On the one hand, Johansson shows, for all $\varepsilon>0$, that there exist C and $\delta>0$ such that

$$
\begin{equation*}
e^{-x} \tau_{n}(x) \leq C e^{-\delta x}, \text { for } \frac{2 \sqrt{x}}{n}>1+\varepsilon \text { and } e^{-x} \tau_{n}(x) \geq 1-\frac{C}{n}, \text { for } \frac{2 \sqrt{x}}{n}<1-\varepsilon \tag{1.4.3}
\end{equation*}
$$

On the other hand, setting $P_{n, N}:=P\left(L\left(\pi_{N}\right) \leq n\right)$, Johansson's de-Poissonization Lemma goes as follows: given any $\alpha>3$, there are constants $C=C(\alpha)$ and $N_{0}=$ $N_{0}(\alpha)$ such that the following holds for $N \geq N_{0}$ and all $0 \leq n \leq N$, with $m(\alpha)=$ $\left(\alpha^{2}-2 \alpha-1\right) / 2$:

$$
\begin{align*}
&\left.e^{-x} \sum_{n=0}^{\infty} \frac{x^{N}}{N!} P_{n, N}\right|_{x=N+\alpha \sqrt{N \log N}}-\frac{C}{N^{m(\alpha)}} \leq P_{n, N} \tag{1.4.4}\\
& \leq\left. e^{-x} \sum_{n=0}^{\infty} \frac{x^{N}}{N!} P_{n, N}\right|_{x=N-\alpha \sqrt{N \log N}}+\frac{C}{N^{m(\alpha)}}
\end{align*}
$$

The two relations (1.4.3) and (1.4.4) combined lead to the law of large numbers in (1.4.1). To prove the "central limit theorem" (1.4.1), one uses the Riemann-Hilbert approach to obtain asymptotics. Indeed, as a first observation, setting $\rho_{x}(z):=$ $e^{\sqrt{x}\left(z+z^{-1}\right)}$, the only solution $Y_{n+1}(2 \times 2$ matrix $)$ to the following Riemann-Hilbert problem à la Fokas, Its and Kitaev [15], but adapted to S^{1} :
(1) $Y(z)$ holomorphic in $\mathbb{C} \backslash S^{1}$
(2) $Y_{-}(z)=Y_{+}(z)\left(\begin{array}{ll}1 & \frac{\rho_{x}(z)}{z^{n+1}} \\ 0 & 1\end{array}\right)$
(3) $Y(z)\left(\begin{array}{ll}z^{-(n+1)} & 0 \\ 0 & z^{n+1}\end{array}\right)=\left(I+O\left(z^{-1}\right)\right.$, when $z \rightarrow \infty$ is given by the matrix

$$
Y_{n+1}(z)=\left(\begin{array}{ll}
p_{n+1}(z) & \int_{S^{1}} p_{n+1}(u) \frac{\rho_{x}(u)}{u-z} \frac{d u}{2 \pi i u^{n+1}} \tag{1.4.5}\\
-h_{n}^{-1} z^{n} \overline{p_{n}(1 / \bar{z})} & -h_{n}^{-1} \int_{\mathbb{R}} \overline{p_{n}(1 / \bar{u}) \frac{\rho_{x}(u)}{u-z} \frac{d u}{2 \pi i u^{n+1}}}
\end{array}\right)
$$

where $p_{k}(z)$ are the monic orthogonal polynomials (1.2.4) on the circle S^{1} for the weight $\rho_{x}(z) d z$.

The Riemann-Hilbert formulation is an efficient tool to find the asymptotics of $\left(Y_{k+1}(0)\right)_{21}=-h_{k}^{-1}(x)$. Then, summing up, $\sum_{n}^{\infty} \log h_{k}^{-1}(x)=\log \left(e^{-x} \tau_{n}(x)\right)$, Baik-Deift-Johansson [6] show the following result: Define u such that $\frac{2 \sqrt{x}}{n+1}=$
$1-\frac{u}{2^{1 / 3}(n+1)^{2 / 3}}$, with $-M<u<M$ for a given $M>0$. Then the estimate below holds, where g is the solution to (1.4.2):

$$
\left|\log \left(e^{-x} \tau_{n}(x)\right)-\int_{u}^{\infty} 2 i f(y) d y\right|=\frac{C(M)}{n^{1 / 3}}+C e^{-1 / 4 M^{3 / 2}}
$$

with $2 i f(y)=-\int_{y}^{\infty} g^{2}(\alpha) d \alpha$. This estimate combined with Johansson's dePoissonization Lemma leads to (1.4.1) and (1.4.2).

2. THE SPECTRUM OF RANDOM MATRICES

Random matrix theory deals with an ensemble of matrices M, having some symmetry condition to guarantee the reality of the spectrum, e.g., the Hermitian ensemble \mathcal{H}_{n}, the symmetric ensemble \mathcal{S}_{n} or the symplectic ensemble $\mathcal{T}_{2 n}$. Define a probability measure, based on a Haar measure, which in "polar coordinates" is expressed in terms of the Vandermonde with a power β :

$$
c_{n} e^{-t r V(M)} d M=c_{n}\left|\Delta_{n}(z)\right|^{\beta} \prod_{1}^{n} e^{-V\left(z_{k}\right)} d z_{k} d U
$$

with $V^{\prime}=\frac{g}{f}$ rational, $d M=$ Haar measure. The three ensembles $\mathcal{H}_{n}, \mathcal{S}_{n}, \mathcal{T}_{2 n}$ appear very naturally as the tangent spaces (at the identity) to the simplest symmetric spaces:

non-compact symmetric	$\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{p}$ with $\mathfrak{p}=$ tangent space to G / K at I	space $\mathfrak{p}=\{M \in \mathfrak{g}$, with... $\}$	Haar measure on \mathfrak{p}
$S L(n, \mathbb{C}) / S U(n)$	$s l(n, \mathbb{C})=\operatorname{su}(n) \oplus \mathcal{H}_{n}$	$M=\bar{M}^{\top}$	$\beta=2$
$S L(n, \mathbb{R}) / S O(n)$	$s l(n, \mathbb{R})=\operatorname{so}(n) \oplus \mathcal{S}_{n}$	$M=M^{\top}$	$\beta=1$
$S U^{*}(2 n) / U S p(n)$	$s u^{*}(2 n)=(\operatorname{sp}(n, \mathbb{C}) \cap u(2 n)) \oplus \mathcal{T}_{2 n}$	$M=\bar{M}^{\top}, M=J \bar{M} J^{-1}$	$\beta=4$

Question. - What is the statistics of the spectrum of M ?
For \mathcal{H}_{n} and \mathcal{S}_{n}, if the probability $P(M \in d M)$ satisfies the following two requirements: (i) invariance under conjugation by unitary transformations $M \mapsto U M U^{-1}$, (ii) the random variables $M_{i i}, \Re M_{i j}, \Im M_{i j}, 1 \leq i<j \leq n$ are independent, then $V(z)$ is quadratic (Gaussian ensemble) ([28]).

2.1. Virasoro constraints, Toda and Pfaff lattices and KP equations

Consider weights of the form $\rho(z) d z:=e^{-V(z)} d z$ on an interval $F=[A, B] \subseteq \mathbb{R}$, with rational logarithmic derivative and subjected to the following boundary conditions:

$$
\begin{equation*}
-\frac{\rho^{\prime}}{\rho}=\frac{g}{f}=\frac{\sum_{0}^{\infty} b_{i} z^{i}}{\sum_{0}^{\infty} a_{i} z^{i}}, \quad \lim _{z \rightarrow A, B} f(z) \rho(z) z^{k}=0 \text { for all } k \geq 0 \tag{2.1.1}
\end{equation*}
$$

and a disjoint union of intervals $E=\bigcup_{1}^{2 r}\left[x_{2 i-1}, x_{2 i}\right] \subset F \subset \mathbb{R}$.

Theorem 2.1 (Adler-van Moerbeke [1])
The vector of integrals $I(t, x ; \beta)=\left(I_{0}=1, I_{1}(t, x ; \beta), \ldots\right)$, with $t:=\left(t_{1}, t_{2}, \ldots\right)$ and $x:=\left(x_{1}, \ldots, x_{2 r}\right)$ and

$$
\begin{equation*}
I_{n}(t, x ; \beta):=\int_{E^{n}}\left|\Delta_{n}(z)\right|^{\beta} \prod_{k=1}^{n}\left(e^{\sum_{1}^{\infty} t_{i} z_{k}^{i}} \rho\left(z_{k}\right) d z_{k}\right) \text { for } n>0 \tag{2.1.2}
\end{equation*}
$$

satisfies the following Virasoro constraints ${ }^{(5)}$ for all $k \geq-1$:

$$
\left(-\sum_{1}^{2 r} x_{i}^{k+1} f\left(x_{i}\right) \frac{\partial}{\partial x_{i}}+\sum_{i \geq 0}\left(a_{i}{ }^{\beta} \mathbb{J}_{k+i}^{(2)}(t, n)-b_{i}{ }^{\beta} \mathbb{J}_{k+i+1}^{(1)}(t, n)\right)\right) I(t, x ; \beta)=0
$$

in terms of the coefficients a_{i}, b_{i} of the rational function $(-\log \rho)^{\prime}$ and the end points x_{i} of the subset E, as in (2.1.1). The ${ }^{\beta} \mathbb{J}_{k}^{(2)}$ and ${ }^{\beta} \mathbb{J}_{k}^{(1)}$ form a Virasoro and a Heisenberg algebra respectively, interacting as follows

$$
\begin{aligned}
{\left[{ }^{\beta} \mathbb{J}_{k}^{(2)},{ }^{\beta} \mathbb{J}_{\ell}^{(2)}\right] } & =(k-\ell)^{\beta} \mathbb{J}_{k+\ell}^{(2)}+c\left(\frac{k^{3}-k}{12}\right) \delta_{k,-\ell} \\
{\left[{ }^{\beta} \mathbb{J}_{k}^{(2)},{ }^{\beta} \mathbb{J}_{\ell}^{(1)}\right] } & =-\ell{ }^{\beta} \mathbb{J}_{k+\ell}^{(1)}+c^{\prime} k(k+1) \delta_{k,-\ell} \\
{\left[{ }^{\beta} \mathbb{J}_{k}^{(1)},{ }^{\beta} \mathbb{J}_{\ell}^{(1)}\right] } & =\frac{k}{\beta} \delta_{k,-\ell}
\end{aligned}
$$

with central charge $c=1-6\left(\left(\frac{\beta}{2}\right)^{1 / 2}-\left(\frac{\beta}{2}\right)^{-1 / 2}\right)^{2} \quad$ and $\quad c^{\prime}=\left(\frac{1}{\beta}-\frac{1}{2}\right)$.

Moreover:

(i) $\tau_{n}(t):=\left.\frac{1}{n!} I_{n}(t, x, \beta)\right|_{\beta=2}$ form the τ-functions of the standard Toda lattice; in particular, each τ_{n} satisfies the KP equation:

$$
\left(\left(\frac{\partial}{\partial t_{1}}\right)^{4}+3\left(\frac{\partial}{\partial t_{2}}\right)^{2}-4 \frac{\partial^{2}}{\partial t_{1} \partial t_{3}}\right) \log \tau_{n}+6\left(\frac{\partial^{2}}{\partial t_{1}^{2}} \log \tau_{n}\right)^{2}=0
$$

(ii) $\tau_{2 n}(t):=\left\{\begin{array}{l}\left.\frac{1}{(2 n)!} I_{2 n}(t, x ; \beta)\right|_{\beta=1} \\ \left.\frac{1}{n!} I_{n}(2 t, x ; \beta)\right|_{\beta=4}\end{array}\right.$ form the τ-functions of the Pfaff lattice (i.e., they are Pfaffians, rather than determinants); in particular, they satisfy the Pfaff-KP equation:

$$
\left(\left(\frac{\partial}{\partial t_{1}}\right)^{4}+3\left(\frac{\partial}{\partial t_{2}}\right)^{2}-4 \frac{\partial^{2}}{\partial t_{1} \partial t_{3}}\right) \log \tau_{2 n}+6\left(\frac{\partial^{2}}{\partial t_{1}^{2}} \log \tau_{2 n}\right)^{2}=12 \frac{\tau_{2 n-2} \tau_{2 n+2}}{\tau_{2 n}^{2}}
$$

[^4]
2.2. The Gaussian ensemble: PDE's for the statistics of the spectrum

Theorem 2.2. - For the Gaussian ensemble, the probabilities ${ }^{(6)}$: $(\beta=2,1,4)$

$$
\begin{align*}
P_{n}(E) & :=P_{n}(\text { all spectral points of } M \in E) \\
& =\frac{\int_{\mathcal{H}_{n}(E), \mathcal{S}_{n}(E) \text { or } \mathcal{T}_{n}(E)} e^{-t r M^{2}} d M}{\int_{\mathcal{H}_{n}(\mathbb{R}), \mathcal{S}_{n}(\mathbb{R}) \text { or } \mathcal{T}_{n}(\mathbb{R})} e^{-t r M^{2}} d M} \tag{2.2.1}\\
& =\frac{\int_{E^{n}}\left|\Delta_{n}(z)\right|^{\beta} \prod_{k=1}^{n} e^{-z_{k}^{2}} d z_{k}}{\int_{\mathbb{R}^{n}}\left|\Delta_{n}(z)\right|^{\beta} \prod_{k=1}^{n} e^{-z_{k}^{2}} d z_{k}}
\end{align*}
$$

satisfy the following PDE's in the x_{i} 's $\left(\mathcal{B}_{k}=\sum_{1}^{2 r} x_{i}^{k+1} \frac{\partial}{\partial x_{i}}, \delta_{1,4}^{\beta}=1\right.$ for $\beta=1,4$ and 0 otherwise, $\left.f_{n}(x)=\frac{d}{d x} \log P_{n}\right):{ }^{(7)}$

$$
\begin{aligned}
& \delta_{1,4}^{\beta} Q\left(\frac{P_{n-{ }_{1}^{2}} P_{n+1}^{2}}{P_{n}^{2}}-1\right) \quad\left\{\begin{array}{l}
2 \text { and } n \text { even, for } \beta=1 \\
1 \text { and } n \text { arbitrary, for } \beta=4
\end{array}\right. \\
& =\left\{\begin{array}{l}
\left(\mathcal{B}_{-1}^{4}+\left(Q_{2}+6 \mathcal{B}_{-1}^{2} F\right) \mathcal{B}_{-1}^{2}+\left(2-\delta_{1,4}^{\beta}\right) \frac{4}{\beta}\left(3 \mathcal{B}_{0}^{2}-4 \mathcal{B}_{-1} \mathcal{B}_{1}+6 \mathcal{B}_{0}\right)\right) \log P_{n} \\
\text { for } E=\bigcup_{1}^{2 r}\left[x_{2 i-1}, x_{2 i}\right] \\
f_{n}^{\prime \prime \prime}+6 f_{n}^{\prime 2}+\left(\frac{4 x^{2}}{\beta}\left(\delta_{1,4}^{\beta}-2\right)+Q_{2}\right) f_{n}^{\prime}-\frac{4 x}{\beta}\left(\delta_{1,4}^{\beta}-2\right) f_{n}, \text { for } E=[-\infty, x] .
\end{array}\right.
\end{aligned}
$$

Note that for $\beta=2$ and for $E=[-\infty, x]$, the equation above takes on the simple form:

$$
\begin{equation*}
\left.f_{n}^{\prime \prime \prime}+6 f_{n}^{\prime 2}+8 n f_{n}^{\prime}+4 x f_{n}=0 . \quad \text { (Painlevé IV }\right) \tag{2.2.2}
\end{equation*}
$$

Equation (2.2.2) was obtained by Tracy-Widom [35] and the rest of Theorem 2.2 is due to M. Adler, T. Shiota and P. van Moerbeke ([4] and [1]).

2.3. Infinite Hermitian matrix ensembles

Consider probability (2.2.1) for $\beta=2$ and let the size n of the matrices go to ∞. To perform this limit, one uses a different representation; namely,

$$
\begin{equation*}
P_{n}(E):=\frac{\int_{\mathcal{H}_{n}(E)} e^{-t r M^{2}} d M}{\int_{\mathcal{H}_{n}} e^{-t r M^{2}} d M}=\frac{1}{n!} \int_{E^{n}} \operatorname{det}\left(K_{n}\left(z_{k}, z_{\ell}\right)\right)_{1 \leq k, \ell \leq n} \prod_{1}^{n} \rho\left(d z_{i}\right) \tag{2.3.1}
\end{equation*}
$$

${ }^{(6)} \mathcal{H}_{n}(E), \mathcal{S}_{n}(E)$ or $\mathcal{T}_{n}(E)$ denotes the subset of matrices with spectrum in $E \subseteq \mathbb{R}$.
${ }^{(7)}$ Also, define the invariant polynomials

$$
Q=12 n\left(n+1-\frac{2}{\beta}\right) \quad \text { and } \quad Q_{2}=4\left(1+\delta_{1,4}^{\beta}\right)\left(2 n+\delta_{1,4}^{\beta}\left(1-\frac{2}{\beta}\right)\right)
$$

can be represented in terms of a reproducing kernel

$$
\begin{equation*}
K_{n}(y, z):=\sum_{j=1}^{n} \frac{p_{j-1}(y)}{\sqrt{h_{j-1}}} \frac{p_{j-1}(z)}{\sqrt{h_{j-1}}}, \text { where } \int_{\mathbb{R}} K_{n}(y, z) K_{n}(z, u) \rho(d z)=K_{n}(y, u) \tag{2.3.2}
\end{equation*}
$$

The reproducing property follows from the orthogonality of the monic orthogonal polynomials $p_{k}=p_{k}(z)$ for the Gaussian weight $e^{-z^{2}} d z$ on \mathbb{R}, and the L^{2}-norms $h_{k}=\int_{\mathbb{R}} p_{k}^{2}(z) e^{-z^{2}} d z$ of the p_{k} 's. We also have the following Fredholm determinant formula
$P\left(\right.$ exactly k eigenvalues $\left.\in\left[x_{1}, x_{2}\right]\right)$

$$
=\left.\frac{(-1)^{k}}{k!}\left(\frac{\partial}{\partial \lambda}\right)^{k} \operatorname{det}\left(I-\lambda K_{n}(y, z) I_{\left[x_{1}, x_{2}\right]}(z)\right)\right|_{\lambda=1}
$$

When the size n of the Hermitian matrices tends to ∞, the following holds:

- Wigner's semi-circle law: For this ensemble and for very large n, the density of eigenvalues tends to the semi-circle distribution on the interval $[-\sqrt{2 n}, \sqrt{2 n}]$.
- Bulk scaling limit: From the formula above, it follows that the average number of eigenvalues per unit length near $z=0$ ("the bulk") is given by $\sqrt{2 n} / \pi$ and thus the average distance between two consecutive eigenvalues is given by $\pi / \sqrt{2 n}$. Upon using this rescaling, one shows ([24, 27, 29, 32, 21])

$$
\lim _{n \nearrow \infty} \frac{\pi}{\sqrt{2 n}} K_{n}\left(\frac{\pi y}{\sqrt{2 n}}, \frac{\pi z}{\sqrt{2 n}}\right)=\frac{\sin \pi(y-z)}{\pi(y-z)}=: K(y, z) \quad \text { (Sine kernel) }
$$

with

$$
\begin{equation*}
P(\text { no eigenvalues } \in[0, x])=\operatorname{det}\left(I-K(y, z) I_{[0, x](z)}\right)=\exp \int_{0}^{\pi x} \frac{f(x)}{x} d x \tag{2.3.3}
\end{equation*}
$$

where $f(x, \lambda)$ is a solution to the Painlevé \mathbf{V} differential equation, (see Jimbo, Miwa, Mori, Sato [21]), $\left({ }^{\prime}=\partial / \partial x\right)$

$$
\left(x f^{\prime \prime}\right)^{2}-4\left(x f^{\prime}-f\right)\left(-f^{\prime 2}-x f^{\prime}+f\right)=0 \text { with } f(x ; \lambda) \cong-\frac{x}{\pi}, \text { for } x \simeq 0
$$

- Edge scaling limit: I will particularly concentrate on the "edge" $\sqrt{2 n}$ of the Wigner semi-circle. There the scaling is $\sqrt{2} n^{1 / 6}$, which makes the problems considerably subtler; this will be used in (2.3.7) (see [10, 16, 28, 35]). The main result can be stated as follows:

Theorem 2.3. - Given the spectrum $z_{1} \geq z_{2} \geq \ldots$ of the large random Hermitian matrix M, define the "eigenvalues" in a new scale:

$$
\begin{equation*}
u_{i}=2 n^{\frac{2}{3}}\left(\frac{z_{i}}{\sqrt{2 n}}-1\right) \text { for } n \nearrow \infty \tag{2.3.4}
\end{equation*}
$$

then the statistics of the largest "eigenvalue" u_{1} (in the new scale) is given by the same probability distribution as the length of the longest increasing sequence:

$$
\begin{gather*}
P\left(u_{1} \leq x\right)=\exp \left(-\int_{x}^{\infty}(\alpha-x) g^{2}(\alpha) d \alpha\right), \\
\text { with }\left\{\begin{array}{l}
\left.g^{\prime \prime}=x g+2 g^{3} \quad \text { (Painlevé } \mathbf{I I}\right) \\
g(x) \cong A(x) \cong-\frac{e^{-\frac{2}{3} x^{\frac{3}{2}}}}{2 \sqrt{\pi} x^{1 / 4}} \text { for } x \nearrow \infty .
\end{array}\right. \tag{2.3.5}
\end{gather*}
$$

More generally, $P\left(\right.$ no points $\left.u_{i} \in\left[x_{1}, x_{2}\right]\right)$ satisfies the partial differential equation (2.3.6)

$$
\left(\mathcal{B}_{-1}^{3}-4\left(\mathcal{B}_{0}-\frac{1}{2}\right)\right) f+6\left(\mathcal{B}_{-1} f\right)^{2}=0, \text { with } f:=\sum_{1}^{2} \frac{\partial \log P}{\partial x_{i}}, \quad \mathcal{B}_{k}=\sum_{1}^{2} x^{k+1} \frac{\partial}{\partial x_{i}}
$$

Tracy-Widom [35] have first obtained result (2.3.5) by methods of functional analysis. In [4], equations (2.3.5) and (2.3.6) were derived using integrable systems and Virasoro constraints.
Proof. - Setting $z=\sqrt{2 n}+\frac{u}{\sqrt{2} n^{1 / 6}}$, in the kernel $K_{n}(x, y)$ of (2.3.2), one proves

$$
\begin{equation*}
\lim _{n \nearrow \infty} \frac{1}{\sqrt{2} n^{1 / 6}} K_{n}\left(\sqrt{2 n}+\frac{u}{\sqrt{2} n^{1 / 6}}, \sqrt{2 n}+\frac{v}{\sqrt{2} n^{1 / 6}}\right)=K(u, v) \tag{2.3.7}
\end{equation*}
$$

where the Airy kernel K is defined in terms of the Airy function:

$$
\begin{align*}
& K(u, v)=\int_{0}^{\infty} A(x+u) A(x+v) d x \\
& A(u)=\int_{-\infty}^{\infty} e^{i u x-x^{3} / 3} d x \cong \frac{e^{-(2 / 3) u^{3 / 2}}}{2 \sqrt{\pi} u^{1 / 4}}, \quad \text { for } u \nearrow \infty . \tag{2.3.8}
\end{align*}
$$

To find the differential equations (2.3.6), one proceeds (sketchily) as follows: as a first step, notice that, setting $L^{2}:=\left(\frac{\partial}{\partial t_{1}}\right)^{2}+q(t), t:=\left(t_{1}, t_{2}, \ldots\right)$, the solution $q(t)$ and $\Psi(t ; z)$ (with asymptotics $\Psi(t ; z)=e^{\sum_{1}^{\infty} t_{i} z^{i}}\left(1+O\left(z^{-1}\right)\right.$), $\left.\quad z \in \mathbb{C}, z \rightarrow \infty\right)$ to the initial value problem:

$$
\left\{\begin{array}{l}
\left(L^{2}-z^{2}\right) \Psi(t ; z)=0, \quad \frac{\partial L^{2}}{\partial t_{n}}=\left[\left(L^{n}\right)_{+}, L^{2}\right], \quad \frac{\partial \Psi}{\partial t_{n}}=\left(L^{n}\right)_{+} \Psi, \tag{2.3.9}\\
q\left(t^{(0)}\right)=-x, \quad \text { at } t=t^{(0)}:=\left(x, 0, \frac{2}{3}, 0,0, \ldots\right)
\end{array}\right.
$$

is given by Kontsevich's integral (Z diagonal and N arbitrary), which itself is intimately related to the Airy function $A(x)$,

$$
\left\{\begin{align*}
q(t) & =2 \frac{\partial^{2}}{\partial t_{1}^{2}} \log \tau(t), \tag{2.3.10}\\
\Psi(t ; z) & =e^{\sum_{1}^{\infty} t_{i} z^{i}} \tau\left(t-\left[z^{-1}\right]\right) / \tau(t), \\
\Psi\left(t^{(0)} ; z\right) & =z^{1 / 2} A\left(x+z^{2}\right)=e^{x z+\frac{2}{3} z^{3}}\left(1+O\left(z^{-1}\right)\right), \quad z \rightarrow \infty
\end{align*}\right.
$$

with

$$
\tau(t)=\frac{\int_{\mathcal{H}_{N}} d X e^{-\operatorname{tr}\left(X^{3} / 3+X^{2} Z\right)}}{\int_{\mathcal{H}_{N}} d X e^{-\operatorname{tr}\left(X^{2} Z\right)}}, \quad t_{n}:=-\frac{1}{n} \operatorname{tr} Z^{-n}+\frac{2}{3} \delta_{n 3}
$$

and

$$
\left[z^{-1}\right]=\left(z^{-1}, z^{-2} / 2, z^{-3} / 3, \ldots\right) \in \mathbb{C}^{\infty}
$$

These data define a kernel

$$
\begin{equation*}
K_{t}\left(z^{2}, z^{\prime 2}\right):=\frac{1}{z^{\frac{1}{2}} z^{\frac{1}{2}}} \int_{0}^{\infty} \Psi(t ; z) \Psi\left(t ; z^{\prime}\right) d t_{1}, \text { where } t=\left(t_{1}, t_{2}, \ldots\right) \tag{2.3.11}
\end{equation*}
$$

which flows off the Airy kernel $K\left(z^{2}, z^{2}\right)$, defined in (2.3.8), upon using (2.3.10).
Then, one shows that both, Kontsevich's integral $\tau(t)$ and the product $\tau(t, E):=$ $\tau(t)$.
$\operatorname{det}\left(I-K_{t}\left(\lambda, \lambda^{\prime}\right) I_{E}\left(\lambda^{\prime}\right)\right)$, with $E=\bigcup_{1}^{2 r}\left[x_{2 i-1}, x_{2 i}\right] \subset \mathbb{R}$, satisfy Virasoro constraints, of which the two first ones read (after the time shift $t_{3} \mapsto t_{3}+2 / 3$, in view of (2.3.9)):

$$
\begin{align*}
\sum_{i=1}^{2 r} \frac{\partial}{\partial x_{i}} \log \tau(t, E) & =\left(\frac{\partial}{\partial t_{1}}+\frac{1}{2} \sum_{i \geq 3} i t_{i} \frac{\partial}{\partial t_{i-2}}\right) \log \tau(t, E)+\frac{t_{1}^{2}}{4} \\
\sum_{i=1}^{2 r} x_{i} \frac{\partial}{\partial x_{i}} \log \tau(t, E) & =\left(\frac{\partial}{\partial t_{3}}+\frac{1}{2} \sum_{i \geq 1} i t_{i} \frac{\partial}{\partial t_{i}}\right) \log \tau(t, E)+\frac{1}{16} \tag{2.3.12}
\end{align*}
$$

Both, $\tau(t)$ and $\tau(t, E)$, also satisfy the Korteweg-de Vries equation (KP equation, depending on odd t_{i} 's only)

$$
\begin{equation*}
\left(\left(\frac{\partial}{\partial t_{1}}\right)^{4}-4 \frac{\partial^{2}}{\partial t_{1} \partial t_{3}}\right) \log \tau+6\left(\frac{\partial^{2}}{\partial t_{1}^{2}} \log \tau\right)^{2}=0 \tag{2.3.13}
\end{equation*}
$$

Differentiating (2.3.12) in t_{1} and t_{3}, and setting all $t_{i}=0$ enable one to express the t-partials $\left.\frac{\partial^{2}}{\partial t_{1}^{2}} \log \tau\right|_{t=0},\left.\frac{\partial^{4}}{\partial t_{1}^{4}} \log \tau\right|_{t=0},\left.\frac{\partial^{2}}{\partial t_{1} \partial t_{3}} \log \tau\right|_{t=0}$ appearing in the KdV equation in terms of partials $\partial / \partial x_{i}$.

Setting these expressions in the the $K d V$-equation at $t=0$, implies that the statistics of the scaled eigenvalues u_{i} (for the Airy kernel (2.3.8))

$$
P\left(E^{c}\right):=P\left(\text { all "eigenvalues", } u_{i} \in E^{c}\right)=\operatorname{det}\left(I-K I_{E}\right)=\left.\frac{\tau(t, E)}{\tau(t)}\right|_{t=0}
$$

satisfies the partial differential equation (2.3.6) with

$$
f:=\sum_{1}^{2 r} \frac{\partial \log P}{\partial x_{i}}, \quad \mathcal{B}_{k}=\sum_{1}^{2 r} x^{k+1} \frac{\partial}{\partial x_{i}} .
$$

When $E=(x, \infty)$, the equation (2.3.6) for $f=\partial \log P((-\infty, x]) / \partial x$ becomes a 3 rd order ODE (Chazy-type equation)

$$
\begin{equation*}
f^{\prime \prime \prime}-4 x f^{\prime}+2 f+6 f^{\prime 2}=0 \tag{2.3.14}
\end{equation*}
$$

According to [12] , this equation has a first integral, which is a Painlevé II equation

$$
\begin{equation*}
f^{\prime \prime 2}+4 f^{\prime}\left(f^{\prime 2}-x f^{\prime}+f\right)=0 \tag{2.3.15}
\end{equation*}
$$

and this equation has a solution given by $f:=g^{\prime 2}-x g^{2}-g^{4}$ and $f^{\prime}=-g^{2}$, which establishes (2.3.5) and (2.3.6).

3. LARGE RANDOM MATRICES AND PERMUTATIONS: A DIRECT CONNECTION VIA ENUMERATIVE GEOMETRY

For large random Hermitian matrices, whose entries have Gaussian real and imaginary part of variance $=1 / 2$, the Wigner semi-circle has support on $(-2 \sqrt{n}, 2 \sqrt{n})$, instead of $[-\sqrt{2 n}, \sqrt{2 n}]$. Then the (slightly modified) scaling (2.3.4) is given by

$$
\begin{equation*}
u_{i}=n^{2 / 3}\left(\frac{z_{i}}{2 n^{1 / 2}}-1\right) \quad \text { for } n \nearrow \infty . \tag{3.1}
\end{equation*}
$$

Given the set of partitions $\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \ldots\right)$ of n, in view of (1.4.1), consider

$$
\begin{equation*}
v_{i}=n^{1 / 3}\left(\frac{\lambda_{i}}{2 n^{1 / 2}}-1\right) \quad \text { for } n \nearrow \infty . \tag{3.2}
\end{equation*}
$$

Theorems 1.3 and 2.3 show that the variables u_{1} and v_{1} have the same probability distribution. Okounkov [31] shows in a direct way that the joint distribution of all u_{i} and v_{i} coincide; more specifically:

Theorem 3.1 (Okounkov, [31]). - For any $m \geq 1$, any $\xi_{1}, \ldots, \xi_{m}>0$, the following holds:

$$
E\left(\sum_{i=1}^{\infty} e^{\xi_{1} u_{i}} \cdots \sum_{i=1}^{\infty} e^{\xi_{m} u_{i}}\right)=E\left(\sum_{i=1}^{\infty} e^{\xi_{1} v_{i}} \cdots \sum_{i=1}^{\infty} e^{\xi_{m} v_{i}}\right) \text {, when } n \nearrow \infty .
$$

The left hand side, which relates to random permutations, hinges on the following expressions:

$$
\begin{aligned}
&\left.\left.\left(\frac{1}{2 \sqrt{n}}\right)^{k_{1}+\ldots+k_{m}} \frac{n^{m / 2}}{n!} \operatorname{tr}\left(X_{1}^{k_{1}}\right) \ldots X_{m}^{k_{m}}\right)\right) \\
&=\left(\frac{1}{2}\right)^{k_{1}+\ldots+k_{m}} \sum_{\mathbf{S}} n^{\frac{1}{2}(\chi(\mathbf{S})-m)}\left|\operatorname{Cov}_{\mathbf{S}}\left(k_{1}, \ldots, k_{m}\right)\right|
\end{aligned}
$$

In this expression, the X_{i} are certain matrices, such that e.g. $\lambda_{j}-j$ is an eigenvalue of X_{1}, if $\left(j, \lambda_{j}\right)$ is a corner of the Young diagram (i.e., $\left.\lambda_{j}>\lambda_{j+1}\right)$. Also $\operatorname{Cov}_{\mathbf{S}}\left(k_{1}, \ldots, k_{m}\right)$ are coverings of S^{2} ramified according to a rule, given by the numbers k_{1}, \ldots, k_{m}.

The right hand side relates to random matrices and has an interpretation as a "map" on a surface. It hinges on the following formula for $M \in U(n)$:

$$
\begin{aligned}
&\left(\frac{1}{2 \sqrt{n}}\right)^{k_{1}+\ldots+k_{m}} E\left(\operatorname{tr}\left(M^{k_{1}}\right) \ldots\right.\left.t r\left(M^{k_{m}}\right)\right) \\
&=\left(\frac{1}{2}\right)^{k_{1}+\ldots+k_{m}} \sum_{\mathbf{S}} n^{\chi(\mathbf{S})-m}\left|\operatorname{Map}_{\mathbf{S}}\left(k_{1}, \ldots, k_{m}\right)\right|
\end{aligned}
$$

where the sum is taken over all the homeomorphism classes of orientable, not necessarily connected surfaces $\mathbf{S} ; \chi(\mathbf{S})$ is its Euler number and $\operatorname{Map}_{\mathbf{S}}\left(k_{1}, \ldots, k_{m}\right)$ denotes the ways to cover the surface \mathbf{S} with m polygons (a k_{1}-gon, a k_{2}-gon,..., a k_{m}-gon) by pairwise gluing the sides of different or the same k_{i}-gons. Each polygon has a marked vertex, to distinguish a k-gon from its $k-1$ rotations.

The main proposition, established by Okounkov and leading to Theorem 3.1, is the following: for connected surfaces, as $k_{i} \rightarrow \infty$,

$$
\operatorname{Cov}_{\mathbf{S}}\left(k_{1}, \ldots, k_{m}\right) \cong \operatorname{Map}_{\mathbf{S}}\left(k_{1}, \ldots, k_{m}\right)
$$

4. INTEGRALS, MOMENT MATRICES AND INTEGRABLE SYSTEMS

The first column contains a list of matrix integrals and a Fredholm determinant. After perturbing the integral by inserting times t_{i} 's and possibly s_{i} 's, the new integral thus obtained satisfies linear PDE's (Virasoro constraints). The integral can be represented as a determinant of a "moment" matrix, (defined by an appropriate inner-product) or a Pfaffian, if the moment matrix is skew. Performing an appropriate "Borel factorization" of this associated moment matrix, one shows that each of these integrals, as a function of the t_{i} and s_{i} 's, satisfies an integrable lattice or an integrable PDE. In all the cases, combining both systems of equations leads to ODE's or PDE's for the corresponding integral, in x or in the boundary of E. The last column lists the connection with probability. For more information on the 6 th integral and the double matrix integral, see [37, 3, 2].

τ-functions satisfying Virasoro constraints, after inserting t_{i} 's	$=$ determinant or Pfaffian of m_{ℓ} of the form:	underlying integrable lattice or PDE	connecting with
$\int_{\mathcal{H}_{\ell}(E)} e^{-\operatorname{trV}(M)} d M$	Hänkel	Toda lattice	spectrum of random Hermitian matrices
$\int_{\mathcal{S}_{\ell}(E)} e^{-t r V(M)} d M$	skew-symmetric	Pfaff lattice	spectrum of random symmetric matrices
$\int_{\mathcal{T}_{\ell}(E)} e^{-t r V(M)} d M$	skew-symmetric	Pfaff lattice	spectrum of random symplectic matrices
$\int_{U(\ell)} e^{\sqrt{x} \operatorname{tr}(M+\bar{M})} d M$	Toeplitz	Toeplitz lattice	longest increasing sequence in random permutations
$\int_{O(\ell) \pm} e^{x t r M} d M$	Hänkel	Toda lattice	longest increasing sequence in random involutions
$\begin{aligned} & \int_{U(\ell)} \operatorname{det}(I+M)^{k} \\ & e^{-x t r \bar{M}} d M \end{aligned}$	Toeplitz	Toeplitz lattice	longest increasing sequence in random words
$\operatorname{det}\left(I-K(y, z) I_{(x, \infty)}(z)\right)$ (K sine or Airy kernel)	Fredholm determinant	KdV equation	spectrum of infinite random Hermitian matrices (bulk or edge scaling limit)
$\iint_{\mathcal{H}_{\ell} \times \mathcal{H}_{\ell}(E)} d M_{1} d M_{2}$	general	2d-Toda lattice	coupled random matrices

REFERENCES

[1] M. Adler and P. van Moerbeke: Symmetric random matrices and the Pfaff Lattice, to appear in: Annals of Mathematics, sept 2000 (solv-int/9903009) and The Hermitian, symmetric and symplectic ensembles and PDE's (math. -phys./009001).
[2] M. Adler and P. van Moerbeke: The spectrum of coupled random matrices, Annals of Mathematics, 149, 921-976 (1999).
[3] M. Adler and P. van Moerbeke: Integrals over classical groups, random permutations, Toda and Toeplitz lattices, Comm. Pure Appl. Math. (2000) (math.CO/9912143).
[4] M. Adler, T. Shiota and P. van Moerbeke: Random matrices, vertex operators and the Virasoro algebra, Phys. Lett. A 208, 101-112, (1995). And Random matrices, Virasoro algebras and non-commutative KP, Duke Math. J. 94, 379-431 (1998).
[5] D. Aldous and P. Diaconis: Longest increasing subsequences: From patience sorting to the Baik-Deift-Johansson theorem, Bull. Am. Math. Soc. (new series) 36 (4), 413-432 (1999).
[6] J. Baik, P. Deift and K. Johansson: On the distribution of the length of the longest increasing subsequence of random permutations, Math. Archive, Journal Amer. Math. Soc. 12, 1119-1178 (1999) (math. C0/9810105).
[7] J. Baik and E. Rains: Algebraic aspects of increasing subsequences, (1999), math.CO/9905083
[8] D. Bessis, Cl. Itzykson and J.-B. Zuber : Quantum field theory techniques in graphical enumeration, Adv. Appl. Math. 1, 109-157 (1980).
[9] P. Biane: Representations of symmetric groups and free probability, preprint (1998).
[10] M. Bowick and E. Brézin: Universal scaling of the tail of the density of eigenvalues in random matrix models, Phys. Letters B 268, 21-28 (1991).
[11] S. Chadha, G. Mahoux, M.L. Mehta : A method of integration over matrix variables : II, J. Phys. A: Math. Gen. 14, 579-586 (1981).
[12] C.M. Cosgrove: Chazy classes IX-XII of third-order differential equations, Stud. Appl. Math. 104, 3, 171-228 (2000).
[13] P. Diaconis, M. Shashahani: On the eigenvalues of random matrices J. Appl. Prob., suppl. in honour of Takàcs 31A, 49-61 (1994).
[14] P. Erdös and G. Szekeres: A combinatorial theorem in geometry, Compositio Math., 2, 463-470 (1935).
[15] A.S. Fokas, A.R. Its, A.V. Kitaev: The isomonodromy approach to matrix models in 2d quantum gravity, Comm. Math. Phys., 147, 395-430 (1992).
[16] P.J. Forrester: The spectrum edge of random matrix ensembles, Nucl. Phys. B, (1993).
[17] I. M. Gessel: Symmetric functions and P-recursiveness, J. of Comb. Theory, Ser A, 53, 257-285 (1990).
[18] J.M. Hammersley: A few seedlings of research, Proc. Sixth. Berkeley Symp. Math. Statist. and Probability, Vol. 1, 345-394, University of California Press (1972).
[19] M. Hisakado: Unitary matrix models and Painlevé III, Mod. Phys. Letters, A 11 3001-3010 (1996).
[20] Cl. Itzykson, J.-B. Zuber: The planar approximation, J. Math. Phys. 21, 411-421 (1980).
[21] M. Jimbo, T. Miwa, Y. Mori and M. Sato: Density matrix of an impenetrable Bose gas and the fifth Painlevé transcendent, Physica 1D, 80-158 (1980).
[22] K. Johansson: The Longest Increasing Subsequence in a Random Permutation and a Unitary Random Matrix Model, Math. Res. Lett., 5, no. 1-2, 63-82 (1998).
[23] B.F. Logan and L.A. Shepp: A variational problem for random Young tableaux, Advances in Math., 26, 206-222 (1977).
[24] R.D. Kamien, H.D. Politzer, M.B. Wise: Universality of random-matrix predictions for the statistics of energy levels Phys. rev. letters 60, 1995-1998 (1988).
[25] M. Kontsevich: Intersection theory on the moduli space of curves and the matrix Airy function, Comm. Math. Phys. 147, 1-23 (1992).
[26] D. Knuth: "The Art of Computer programming, Vol III: Searching and Sorting", Addison-Wesley, Reading, MA, 1973.
[27] G. Mahoux, M.L. Mehta: A method of integration over matrix variables: IV, J. Phys. I (France) 1, 1093-1108 (1991).
[28] M.L. Mehta: Random matrices, 2nd ed. Boston: Acad. Press, 1991.
[29] T. Nagao, M. Wadati: Correlation functions of random matrix ensembles related to classical orthogonal polynomials, J. Phys. Soc of Japan, 60 3298-3322 (1991).
[30] A.M. Odlyzko: On the distribution of spacings between the zeros of the zeta function 48, 273-308 (1987).
[31] A. Okounkov: Random matrices and random permutations (1999), math.C0/ 9903176
[32] L.A. Pastur: On the universality of the level spacing distribution for some ensembles of random matrices, Letters Math. Phys., 25 259-265 (1992).
[33] E. M. Rains: Topics in Probability on compact Lie groups, Harvard University doctoral dissertation, (1995).

5B
[34] E. M. Rains: Increasing subsequences and the classical groups, Elect. J. of Combinatorics, 5, R12 (1998).
[35] C.A. Tracy and H. Widom: Level-Spacings distribution and the Airy kernel, Commun. Math. Phys., 159, 151-174 (1994).
[36] C.A. Tracy and H. Widom: Random unitary matrices, permutations and Painlevé (1999), math.C0/9811154
[37] C.A. Tracy and H. Widom: On the distribution of the lengths of the longest monotone subsequences in random words (1999), math.CO/9904042
[38] S.M. Ulam: Monte Carlo calculations in problems of mathematical physics, in Modern Mathematics for the Engineers, E.F. Beckenbach ed., McGraw-Hill, 261281 (1961).
[39] P. van Moerbeke: Integrable lattices: random matrices and permutations, MSRI-volume on Random matrices and exactly solvable models, Eds.: P. Bleher, A. Its, Oxford University press, 2000 (math. CO/00-10).
[40] A.M. Vershik and S.V. Kerov: Asymptotics of the Plancherel measure of the symmetric group and the limiting form of Young tableaux, Soviet Math. Dokl., 18, 527-531 (1977).

Pierre VAN MOERBEKE
Département de Mathématiques
Université de Louvain
B-1348 Louvain-la-Neuve (Belgium)
E-mail: vanmoerbeke@geom.ucl.ac.be
and
Brandeis University
Waltham, Mass 02454, USA
E-mail: vanmoerbeke@math.brandeis.edu

[^0]: The support of a National Science Foundation grant \# DMS-98-4-50790, a Nato, a FNRS and a Francqui Foundation grant is gratefully acknowledged.

[^1]: ${ }^{(2)}$ Remember, from the definition of the dual Young diagram, that $\hat{\lambda}_{1}$ is the length of the first column of λ.

[^2]: ${ }^{(3)}$ where Λ is the shift matrix $(\Lambda v)_{n}=v_{n+1}, n \geq 0$, i.e., Λ is the semi-infinite matrix with all 0 entries, except for 1's just above the diagonal.

[^3]: ${ }^{(4)}()_{+}$denotes the upper-triangular part of (), including the diagonal, whereas ($)_{-}$denotes the strictly lower-triangular part of ().

[^4]: ${ }^{(5)}$ When E equals the whole range F, then the $\partial / \partial x_{i}$'s are absent in the formulae (2.1.7).

