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Dans cet article, nous présentons une théorie concernant l’uniformisation
et les espaces de modules des courbes hyperboliques p-adiques. D’une part, cette
théorie étend aux places non archimédiennes les uniformisations de Fuchs et
Bers et les espaces de modules des courbes hyperboliques complexes. Pour
cette raison, nous désignerons souvent cette théorie sous le nom de théorie
de Teichmüller p-adique. D’autre part, cette théorie peut être vue comme un
analogue hyperbolique de la théorie de Serre-Tate pour les variétés abéliennes
ordinaires et leurs espaces de modules.

L’objet au centre de la théorie de Teichmüller p-adique est le champ des mo-
dules des « nilcurves ». Ce champ est un recouvrement plat du champ des mo-
dules de courbes hyperboliques en caractéristique p. Il paramètre les courbes hy-
perboliques munies de « données auxiliaires d’uniformisation en caractéristique
p ». La géométrie de ce champ de modules peut s’analyser de manière com-
binatoire au voisinage de l’infini. D’autre part, une analyse globale de sa géo-
métrie mène à une démonstration de l’irréductibilité du champ des modules de
courbes hyperboliques via des méthodes de caractéristique p. Diverses parties de
ce champ des « nilcurves » admettent des relèvements canoniques au-dessus des-
quels on obtient des coordonnées canoniques et des représentations galoisiennes
canoniques. Ces coordonnées canoniques sont l’analogue, pour les courbes hy-
perboliques, des coordonnées canoniques dans la théorie de Serre-Tate et l’ana-
logue p-adique des coordonnées de Bers dans la théorie de Teichmüller. De
plus, les représentations galoisiennes qui apparaissent éclairent d’un jour nou-
veau l’action extérieure du groupe de Galois d’un corps local sur le complété
profini du groupe de Teichmüller.
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p-adic boundary values
Peter Schneider & Jeremy Teitelbaum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Nous faisons une étude détaillée de certaines représentations continues na-
turelles de G = GL(n, K) dans les espaces vectoriels localement convexes sur un
corps non archimédien localement compact de caractéristique 0. Nous construi-
sons des applications “transformées intégrales” entre des sous-quotients de la
duale d’une représentation “holomorphe” provenant d’un espace symétrique p-
adique, et des représentations “de la série principale” construites à partir de
fonctions localement analytiques sur G. Nous caractérisons l’image de chacune
de nos transformées intégrales comme un espace de fonctions sur G jouissant
de certaines propriétés par rapport aux transformations et vérifiant un système
d’équations aux dérivées partielles de type hypergéométrique.

Ce travail constitue une généralisation d’un travail de Morita, qui a étudié
ce genre de représentations pour le groupe SL(2, K). Notre travail étend éga-
lement celui de Schneider-Stuhler sur la cohomologie de de Rham des espaces
symétriques p-adiques. Nous le voyons comme faisant partie d’un programme
général visant à développer la théorie de ce type de représentations.

The Display of a Formal p-Divisible Group
Thomas Zink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Nous proposons une nouvelle théorie de Dieudonné qui associe à un groupe
formel p-divisible X sur un anneau p-adique excellent R un objet d’algèbre
linéaire appelé « display ». A partir du « display » on peut exhiber des équa-
tions structurelles pour le module de Cartier de X et retrouver son cristal de
Grothendieck-Messing. Nous donnons des applications à la théorie des défor-
mations des groupes formels p-divisibles.
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An Introduction to p-adic Teichmüller Theory
Shinichi Mochizuki . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

In this article, we survey a theory, developed by the author, concerning
the uniformization of p-adic hyperbolic curves and their moduli. On the one
hand, this theory generalizes the Fuchsian and Bers uniformizations of complex
hyperbolic curves and their moduli to nonarchimedean places. It is for this
reason that we shall often refer to this theory as p-adic Teichmüller theory,
for short. On the other hand, this theory may be regarded as a fairly precise
hyperbolic analogue of the Serre-Tate theory of ordinary abelian varieties and
their moduli.

The central object of p-adic Teichmüller theory is the moduli stack of nil-
curves. This moduli stack forms a finite flat covering of the moduli stack of
hyperbolic curves in positive characteristic. It parametrizes hyperbolic curves
equipped with auxiliary “uniformization data in positive characteristic.” The
geometry of this moduli stack may be analyzed combinatorially locally near
infinity. On the other hand, a global analysis of its geometry gives rise to a
proof of the irreducibility of the moduli stack of hyperbolic curves using positive
characteristic methods. Various portions of this stack of nilcurves admit cano-
nical p-adic liftings, over which one obtains canonical coordinates and canonical
p-adic Galois representations. These canonical coordinates form the analogue
for hyperbolic curves of the canonical coordinates of Serre-Tate theory and the
p-adic analogue of the Bers coordinates of Teichmüller theory. Moreover, the
resulting Galois representations shed new light on the outer action of the Galois
group of a local field on the profinite completion of the Teichmüller group.
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p-adic boundary values
Peter Schneider & Jeremy Teitelbaum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

We study in detail certain natural continuous representations of G =
GLn(K) in locally convex vector spaces over a locally compact, non-
archimedean field K of characteristic zero. We construct boundary value
maps, or integral transforms, between subquotients of the dual of a “holomor-
phic” representation coming from a p-adic symmetric space, and “principal
series” representations constructed from locally analytic functions on G. We
characterize the image of each of our integral transforms as a space of func-
tions on G having certain transformation properties and satisfying a system of
partial differential equations of hypergeometric type.

This work generalizes earlier work of Morita, who studied this type of repre-
sentation of the group SL2(K). It also extends the work of Schneider-Stuhler
on the De Rham cohomology of p-adic symmetric spaces. We view this work
as part of a general program of developing the theory of such representations.

The Display of a Formal p-Divisible Group
Thomas Zink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

We give a new Dieudonné theory which associates to a formal p-divisible
group X over an excellent p-adic ring R an object of linear algebra called
a display. On the display one can read off the structural equations for the
Cartier module of X , and find the crystal of Grothendieck-Messing. We give
applications to deformations of formal p-divisible groups.
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INTRODUCTION

Un semestre spécial, consacré aux cohomologies p-adiques et à leurs applications
arithmétiques, a eu lieu, du 17 février au 11 juillet 1997, dans le cadre du centre Émile
Borel, situé à Paris dans les locaux de l’institut Henri Poincaré.

Les principaux thèmes abordés ont été :
– les théorèmes de comparaison entre différentes cohomologies p-adiques des varié-

tés algébriques sur les corps locaux, les représentations p-adiques du groupe de
Galois absolu d’un tel corps,

– les groupes p-divisibles et la théorie de Dieudonné cristalline, la cohomologie des
D-modules arithmétiques, les équations différentielles p-adiques,

– l’uniformisation p-adique, l’étude des espaces symétriques p-adiques, des courbes
hyperboliques p-adiques, de la cohomologie des variétés de Shimura,

– la géométrie et la cohomologie logarithmiques,
– les fonctions L p-adiques, leurs relations avec les systèmes d’Euler, en particulier

dans le cas des formes modulaires.

Les activités structurées ont consisté en

a) Douze cours :
– P. Berthelot (Rennes) : D-modules arithmétiques,
– C. Breuil (CNRS, Orsay) : Cohomologie log cristalline et cohomologie étale de

torsion (Cours Peccot du Collège de France),
– G. Christol (Paris VI) : Equations différentielles p-adiques,
– G. Faltings (MPI, Bonn) : Almost étale extensions,
– J.-M. Fontaine (Orsay) : Arithmétique des représentations galoisiennes p-adiques,
– L. Illusie (Orsay) et A. Ogus (Berkeley) : Géométrie logarithmique,
– K. Kato (Tokyo) : Euler systems and p-adic L-functions,
– W. Messing (Minneapolis) : Topologie et cohomologie syntomiques et log synto-

miques,



xii INTRODUCTION

– S. Mochizuki (RIMS, Kyoto) : The Ordinary and Generalized Ordinary Moduli
of Hyperbolic Curves,

– M. Rapoport (Cologne) : Aspects p-adiques des variétés de Shimura,
– P. Schneider (Münster) : Analysis on p-adic symmetric spaces,
– T. Zink (Bielefeld) : Cartier theory and its connection to crystalline Dieudonné

theory.

b) Un séminaire avec un ou deux exposés chaque semaine.

c) Deux colloques :
– Problèmes de coefficients en cohomologie cristalline et en cohomologie rigide, du

28 au 30 avril,
– Arithmétique des fonctions L et méthodes p-adiques, du 30 juin au 4 juillet.

d) Un groupe de travail sur le théorème de comparaison de Tsuji, du 20 au 29 mai.

Les organisateurs ont demandé à tous ceux qui avaient fait un cours de le rédiger
ou de nous faire parvenir un texte sur un sujet voisin. Nous avons également invité
Takeshi Tsuji à écrire un résumé de sa démonstration, maintenant publiée(1), de la
conjecture Cst.

Nous tenons à remercier les auteurs non seulement pour leur contribution mais
aussi pour leur patience ; nous espérons qu’ils voudront bien nous excuser du retard
avec lequel ces volumes paraissent.

Les articles ont été examinés par des rapporteurs que nous remercions pour leur
aide aussi désintéressée qu’utile.

Enfin, nous pensons que tous ceux qui ont participé à ce semestre seront d’ac-
cord avec nous pour saluer l’atmosphère agréable dans laquelle il s’est déroulé. Nous
remercions chaleureusement Joseph Oesterlé, alors directeur du Centre Émile Borel,
son équipe et tout le personnel de l’Institut Henri Poincaré pour leur gentillesse, leur
compétence, leur efficacité et leur dévouement. Ils se joindront sûrement à nous pour
accorder une mention spéciale à Madame Nocton, notre bibliothécaire — tous les
mathématiciens qui ont travaillé à Paris la connaissent et savent combien son rôle a
été précieux ; et une autre à notre secrétaire — Florence Damay — qui a quitté le
Centre Émile Borel juste à la fin de notre semestre ; elle en fut la cheville ouvrière mais
aussi le sourire, avec une formidable aptitude à comprendre et résoudre les problèmes
extra-mathématiques rencontrés par les très nombreux participants.

Les éditeurs

(1)p-adic étale cohomology and crystalline cohomology in the semi-stable reduction case, Invent.

math. 137 (1999), 233–411
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AN INTRODUCTION TO p-ADIC TEICHMÜLLER THEORY

by

Shinichi Mochizuki

Abstract. — In this article, we survey a theory, developed by the author, concerning
the uniformization of p-adic hyperbolic curves and their moduli. On the one hand,
this theory generalizes the Fuchsian and Bers uniformizations of complex hyperbolic
curves and their moduli to nonarchimedean places. It is for this reason that we shall
often refer to this theory as p-adic Teichmüller theory, for short. On the other hand,
this theory may be regarded as a fairly precise hyperbolic analogue of the Serre-Tate
theory of ordinary abelian varieties and their moduli.

The central object of p-adic Teichmüller theory is the moduli stack of nilcurves.
This moduli stack forms a finite flat covering of the moduli stack of hyperbolic curves
in positive characteristic. It parametrizes hyperbolic curves equipped with auxiliary
“uniformization data in positive characteristic.” The geometry of this moduli stack
may be analyzed combinatorially locally near infinity. On the other hand, a global
analysis of its geometry gives rise to a proof of the irreducibility of the moduli stack of
hyperbolic curves using positive characteristic methods. Various portions of this stack
of nilcurves admit canonical p-adic liftings, over which one obtains canonical coordi-
nates and canonical p-adic Galois representations. These canonical coordinates form
the analogue for hyperbolic curves of the canonical coordinates of Serre-Tate theory
and the p-adic analogue of the Bers coordinates of Teichmüller theory. Moreover,
the resulting Galois representations shed new light on the outer action of the Galois
group of a local field on the profinite completion of the Teichmüller group.

1. From the Complex Theory to the “Classical Ordinary” p-adic Theory

In this §, we attempt to bridge the gap for the reader between the classical uni-
formization of a hyperbolic Riemann surface that one studies in an undergraduate
complex analysis course and the point of view espoused in [21, 22].

2000 Mathematics Subject Classification. — 14H10, 14F30.
Key words and phrases. — Hyperbolic curve, moduli stack, uniformization theory, Fuchsian uniformiza-
tion, Bers uniformization, p-adic, Serre-Tate theory, canonical liftings, Galois representations, outer
Galois actions, Teichmüller group .

c© Astérisque 278, SMF 2002



2 S. MOCHIZUKI

1.1. The Fuchsian Uniformization. — Let X be a hyperbolic algebraic curve over
C, the field of complex numbers. By this, we mean that X is obtained by removing r

points from a smooth, proper, connected algebraic curve of genus g (over C), where
2g− 2+ r > 0. We shall refer to (g, r) as the type of X . Then it is well-known that to
X , one can associate in a natural way a Riemann surface X whose underlying point
set is X(C). We shall refer to Riemann surfaces X obtained in this way as “hyperbolic
of finite type.”

Now perhaps the most fundamental arithmetic – read “arithmetic at the infinite
prime” – fact known about the algebraic curve X is that X admits a uniformization
by the upper half plane H:

H → X

For convenience, we shall refer to this uniformization of X in the following as the
Fuchsian uniformization of X. Put another way, the uniformization theorem quoted
above asserts that the universal covering space X̃ of X (which itself has the natural
structure of a Riemann surface) is holomorphically isomorphic to the upper half plane
H = {z ∈ C | Im(z) > 0}. This fact was “familiar” to many mathematicians as early
as the last quarter of the nineteenth century, but was only proven rigorously much
later by Koebe.

The fundamental thrust of [21, 22] is to generalize the Fuchsian
uniformization to the p-adic context.

At this point, the reader might be moved to interject: But hasn’t this already been
achieved decades ago by Mumford in [25]? In fact, however, Mumford’s construction
gives rise to a p-adic analogue not of the Fuchsian uniformization, but rather of the
Schottky uniformization of a complex hyperbolic curve. Even in the complex case,
the Schottky uniformization is an entirely different sort of uniformization – both ge-
ometrically and arithmetically – from the Fuchsian uniformization: for instance, its
periods are holomorphic, whereas the periods that occur for the Fuchsian uniformiza-
tion are only real analytic. This phenomenon manifests itself in the nonarchimedean
context in the fact that the construction of [25] really has nothing to do with a fixed
prime number “p,” and in fact, takes place entirely in the formal analytic category.
In particular, the theory of [25] has nothing to do with “Frobenius.” By contrast,
the theory of [21, 22] depends very much on the choice of a prime “p,” and makes
essential use of the “action of Frobenius.” Another difference between the theory of
[25] and the theory of [21, 22] is that [25] only addresses the case of curves whose
“reduction modulo p” is totally degenerate, whereas the theory of [21, 22] applies to
curves whose reduction modulo p is only assumed to be “sufficiently generic.” Thus,
at any rate, the theory of [21, 22] is entirely different from and has little directly to
do with the theory of [25].

ASTÉRISQUE 278
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Upper Half Plane Riemann Surface

Figure 1. The Fuchsian Uniformization

1.2. Reformulation in Terms of Metrics. — Unfortunately, if one sets about
trying to generalize the Fuchsian uniformization H → X to the p-adic case in any
sort of naive, literal sense, one immediately sees that one runs into a multitude of
apparently insurmountable difficulties. Thus, it is natural to attempt to recast the
Fuchsian uniformization in a more universal form, a form more amenable to relocation
from the archimedean to the nonarchimedean world.

One natural candidate that arises in this context is the notion of a metric – more
precisely, the notion of a real analytic Kähler metric. For instance, the upper half
plane admits a natural such metric, namely, the metric given by

dx2 + dy2

y2

(where z = x + iy is the standard coordinate on H). Since this metric is invariant
with respect to all holomorphic automorphisms of H, it induces a natural metric on
X̃ ∼= H which is independent of the choice of isomorphism X̃ ∼= H and which descends
to a metric µX on X.

Having constructed the canonical metric µX on X, we first make the following
observation:

There is a general theory of canonical coordinates associated to a
real analytic Kähler metric on a complex manifold.

(See, e.g., [21], Introduction, §2, for more technical details.) Moreover, the canonical
coordinate associated to the metric µX is precisely the coordinate obtained by pulling
back the standard coordinate “z” on the unit disc via any holomorphic isomorphism
of X̃ ∼= H with the unit disc. Thus, in other words, passing from H → X̃ to µX is a
“faithful operation,” i.e., one doesn’t really lose any information.
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Next, let us make the following observation: Let Mg,r denote the moduli stack of
smooth r-pointed algebraic curves of genus g over C. If we order the points that were
removed from the compactification of X to form X , then we see that X defines a
point [X ] ∈ Mg,r(C). Moreover, it is elementary and well-known that the cotangent
space to Mg,r at [X ] can be written in terms of square differentials on X . Indeed,
if, for simplicity, we restrict ourselves to the case r = 0, then this cotangent space
is naturally isomorphic to Q

def= H 0(X, ω⊗2
X/C) (where ωX/C is the algebraic coherent

sheaf of differentials on X). Then the observation we would like to make is the
following: Reformulating the Fuchsian uniformization in terms of the metric µX allows
us to “push-forward”µX to obtain a canonical real analytic Kähler metric µM on the
complex analytic stack Mg,r associated to Mg,r by the following formula: if θ, ψ ∈ Q,
then

〈θ, ψ〉 def=
∫
X

θ · ψ
µX

(Here, ψ is the complex conjugate differential to ψ, and the integral is well-defined be-
cause the integrand is the quotient of a (2, 2)-form by a (1, 1)-form, i.e., the integrand
is itself a (1, 1)-form.)

This metric on Mg,r is called the Weil-Petersson metric. It is known that

The canonical coordinates associated to the Weil-Petersson metric
coincide with the so-called Bers coordinates on M̃g,r (the universal
covering space of Mg,r).

The Bers coordinates define an anti-holomorphic embedding of M̃g,r into the complex
affine space associated to Q. We refer to the Introduction of [21] for more details on
this circle of ideas.

At any rate, in summary, we see that much that is useful can be obtained from
this reformulation in terms of metrics. However, although we shall see later that
the reformulation in terms of metrics is not entirely irrelevant to the theory that
one ultimately obtains in the p-adic case, nevertheless this reformulation is still not
sufficient to allow one to effect the desired translation of the Fuchsian uniformization
into an analogous p-adic theory.

1.3. Reformulation in Terms of Indigenous Bundles. — It turns out that the
“missing link”necessary to translate the Fuchsian uniformization into an analogous p-
adic theory was provided by Gunning ([13]) in the form of the notion of an indigenous
bundle. The basic idea is as follows: First recall that the group Aut(H) of holomorphic
automorphisms of the upper half plane may be identified (by thinking about linear
fractional transformations) with PSL2(R)0 (where the superscripted “0” denotes the
connected component of the identity). Moreover, PSL2(R)0 is naturally contained
inside PGL2(C) = Aut(P1

C). Let ΠX denote the (topological) fundamental group of
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X (where we ignore the issue of choosing a base-point since this will be irrelevant for
what we do). Then since ΠX acts naturally on X̃ ∼= H, we get a natural representation

ρX : ΠX → PGL2(C) = Aut(P1
C)

which is well-defined up to conjugation by an element of Aut(H) ⊆ Aut(P1
C). We

shall henceforth refer to ρX as the canonical representation associated to X. Thus,
ρX gives us an action of ΠX on P1

C, hence a diagonal action on X̃×P1
C. If we form the

quotient of this action of ΠX on X̃×P1
C, we obtain a P1-bundle over X̃/ΠX = X which

automatically algebraizes to an algebraic P1-bundle P → X over X . (For simplicity,
think of the case r = 0!)

In fact, P → X comes equipped with more structure. First of all, note that the
trivial P1-bundle X̃ × P1

C → X̃ is equipped with the trivial connection. (Note: here
we use the “Grothendieck definition” of the notion of a connection on a P1-bundle:
i.e., an isomorphism of the two pull-backs of the P1-bundle to the first infinitesimal
neighborhood of the diagonal in X̃× X̃ which restricts to the identity on the diagonal
X̃ ⊆ X̃ × X̃.) Moreover, this trivial connection is clearly fixed by the action of ΠX,
hence descends and algebraizes to a connection ∇P on P → X . Finally, let us observe
that we also have a section σ : X → P given by descending and algebraizing the
section X̃ → X̃× P1

C whose projection to the second factor is given by X̃ ∼= H ⊆ P1
C.

This section is referred to as the Hodge section. If we differentiate σ by means of
∇P , we obtain a Kodaira-Spencer morphism τX/C → σ∗τP/X (where “τA/B” denotes
the relative tangent bundle of A over B). It is easy to see that this Kodaira-Spencer
morphism is necessarily an isomorphism.

This triple of data (P → X,∇P , σ) is the prototype of what Gunning refers to as
an indigenous bundle. We shall refer to this specific (P → X,∇P ) (one doesn’t need
to specify σ since σ is uniquely determined by the property that its Kodaira-Spencer
morphism is an isomorphism) as the canonical indigenous bundle. More generally,
an indigenous bundle on X (at least in the case r = 0) is any P1-bundle P → X

with connection ∇P such that P → X admits a section (necessarily unique) whose
Kodaira-Spencer morphism is an isomorphism. (In the case r > 0, it is natural to
introduce log structures in order to make a precise definition.)

Note that the notion of an indigenous bundle has the virtue of being entirely
algebraic in the sense that at least as an object, the canonical indigenous bundle
(P → X,∇P ) exists in the algebraic category. In fact, the space of indigenous bundles
forms a torsor over the vector space Q of quadratic differentials on X (at least for
r = 0). Thus,

The issue of which point in this affine space of indigenous bundles on
X corresponds to the canonical indigenous bundle is a deep arithmetic
issue, but the affine space itself can be defined entirely algebraically.
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Figure 2. The Construction of the Canonical Indigenous Bundle

One aspect of the fact that the notion of an indigenous bundle is entirely algebraic
is that indigenous bundles can, in fact, be defined over Z[12 ], and in particular, over
Zp (for p odd). In [21], Chapter I, a fairly complete theory of indigenous bundles in
the p-adic case (analogous to the complex theory of [13]) is worked out. To summa-
rize, indigenous bundles are closely related to projective structures and Schwarzian
derivatives on X . Moreover, the underlying P1-bundle P → X is always the same
(for all indigenous bundles on X), i.e., the choice of connection ∇P determines the
isomorphism class of the indigenous bundle. We refer the reader to [21], Chapter I,
for more details. (Note: Although the detailed theory of [21], Chapter I, is philo-
sophically very relevant to the theory of [22], most of this theory is technically and
logically unnecessary for reading [22].)

At any rate, to summarize, the introduction of indigenous bundles allows one to
consider the Fuchsian uniformization as being embodied by an object – the canonical
indigenous bundle – which exists in the algebraic category, but which, compared to
other indigenous bundles, is somehow “special.” In the following, we would like to
analyze the sense in which the canonical indigenous bundle is special, and to show
how this sense can be translated immediately into the p-adic context. Thus, we see
that

The search for a p-adic theory analogous to the theory of the Fuch-
sian uniformization can be reinterpreted as the search for a notion
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of “canonical p-adic indigenous bundle” which is special in a sense
precisely analogous to the sense in which the canonical indigenous
bundle arising from the Fuchsian uniformization is special.

1.4. Frobenius Invariance and Integrality. — In this subsection, we explore in
greater detail the issue of what precisely makes the canonical indigenous bundle (in
the complex case) so special, and note in particular that a properly phrased charac-
terization of the canonical indigenous bundle (in the complex case) translates very
naturally into the p-adic case.

First, let us observe that in global discussions of motives over a number field, it is
natural to think of the operation of complex conjugation as a sort of “Frobenius at
the infinite prime.” In fact, in such discussions, complex conjugation is often denoted
by “Fr∞.” Next, let us observe that one special property of the canonical indigenous
bundle is that its monodromy representation (i.e., the “canonical representation”ρX :
ΠX → PGL2(C)) is real-valued, i.e., takes its values in PGL2(R). Another way to put
this is to say that the canonical indigenous bundle is Fr∞-invariant, i.e.,

The canonical indigenous bundle on a hyperbolic curve is invariant
with respect to the Frobenius at the infinite prime.

Unfortunately, as is observed in [5], this property of having real monodromy is not
sufficient to characterize the canonical indigenous bundle completely. That is to say,
the indigenous bundles with real monodromy form a discrete subset of the space of
indigenous bundles on the given curve X , but this discrete subset consists (in general)
of more than one element.

Let us introduce some notation. Let Mg,r be the stack of r-pointed smooth curves
of genus g over C. Let Sg,r be the stack of such curves equipped with an indigenous
bundle. Then there is a natural projection morphism Sg,r →Mg,r (given by forgetting
the indigenous bundle) which exhibits Sg,r as an affine torsor on Mg,r over the vector
bundle ΩMg,r/C of differentials on Mg,r. We shall refer to this torsor Sg,r →Mg,r as
the Schwarz torsor.

Let us write SX for the restriction of the Schwarz torsor Sg,r →Mg,r to the point
[X ] ∈ Mg,r(C) defined by X . Thus, SX is an affine complex space of dimension
3g − 3 + r. Let RX ⊆ SX be the set of indigenous bundles with real monodromy. As
observed in [5], RX is a discrete subset of SX . Now let S′

X ⊆ SX be the subset of
indigenous bundles (P → X,∇P ) with the following property:

(*) The associated monodromy representation ρ : ΠX → PGL2(C)
is injective and its image Γ is a quasi-Fuchsian group. Moreover, if
Ω ⊆ P1(C) is the domain of discontinuity of Γ, then Ω/Γ is a disjoint
union of two Riemann surfaces of type (g, r).
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(Roughly speaking, a“quasi-Fuchsian group”is a discrete subgroup of PGL2(C) whose
domain of discontinuity Ω (i.e., the set of points of P1(C) at which Γ acts discontin-
uously) is a disjoint union of two topological open discs, separated by a topological
circle. We refer to [10, 27] for more details on the theory of quasi-Fuchsian groups.)

It is known that S′
X is a bounded ([10], p. 99, Lemma 6), open (cf. the discussion of

§5 of [27]) subset of SX (in the complex analytic topology). Moreover, since a quasi-
Fuchsian group with real monodromy acts discretely on the upper half plane (see, e.g.,
[26], Chapter I, Proposition 1.8), it follows immediately that such a quasi-Fuchsian
group is Fuchsian. Put another way, we have that:

The intersection RX

⋂
S′

X ⊆ SX is the set consisting of the single
point corresponding to the canonical indigenous bundle.

It is this characterization of the canonical indigenous bundle that we will seek to
translate into the p-adic case.

To translate the above characterization, let us first recall the point of view of
Arakelov theory which states, in effect, that Zp-integral structures (on say, an affine
space over Qp) correspond to closures of bounded open subsets (of, say, an affine space
over C). Thus, from this point of view, one may think of S′

X as defining a natural
integral structure (in the sense of Arakelov theory) on the complex affine space SX .
Thus, from this point of view, one arrives at the following characterization of the
canonical indigenous bundle:

The canonical indigenous bundle is the unique indigenous bundle
which is integral (in the Arakelov sense) and Frobenius invariant (i.e.,
has monodromy which is invariant with respect to complex conjuga-
tion).

This gives us at last an answer to the question posed earlier: How can one charac-
terize the canonical indigenous bundle in the complex case in such a way that the
characterization carries over word for word to the p-adic context? In particular, it
gives rise to the following conclusion:

The proper p-adic analogue of the theory of the Fuchsian and Bers
uniformizations should be a theory of Zp-integral indigenous bundles
that are invariant with respect to some natural action of the Frobenius
at the prime p.

This conclusion constitutes the fundamental philosophical basis underlying the theory
of [22]. In [21], this philosophy was partially realized in the sense that certain Zp-
integral Frobenius indigenous bundles were constructed. The theory of [21] will be
reviewed later (in §1.6). The goal of [22], by contrast, is to lay the foundations for a
general theory of all Zp-integral Frobenius indigenous bundles and to say as much as
is possible in as much generality as is possible concerning such bundles.
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1.5. The Canonical Real Analytic Trivialization of the Schwarz Torsor

In this subsection, we would like to take a closer look at the Schwarz torsor
Sg,r → Mg,r. For general g and r, this affine torsor Sg,r → Mg,r does not ad-
mit any algebraic or holomorphic sections. Indeed, this affine torsor defines a class in
H 1(Mg,r, ΩMg,r/C) which is the Hodge-theoretic first Chern class of a certain ample
line bundle L on Mg,r. (See [21], Chapter I, §3, especially Theorem 3.4, for more
details on this Hodge-theoretic Chern class and Chapter III, Proposition 2.2, of [22]
for a proof of ampleness.) Put another way, Sg,r →Mg,r is the torsor of (algebraic)
connections on the line bundle L. However, the map that assigns to X the canonical
indigenous bundle on X defines a real analytic section

sH : Mg,r(C) → Sg,r(C)

of this torsor.
The first and most important goal of the present subsection is to remark that

The single object sH essentially embodies the entire uniformization
theory of complex hyperbolic curves and their moduli.

Indeed, sH by its very definition contains the data of “which indigenous bundle is
canonical,” hence already may be said to embody the Fuchsian uniformization. Next,
we observe that ∂sH is equal to the Weil-Petersson metric onMg,r (see [21], Introduc-
tion, Theorem 2.3 for more details). Moreover, (as is remarked in Example 2 following
Definition 2.1 in [21], Introduction, §2) since the canonical coordinates associated to
a real analytic Kähler metric are obtained by essentially integrating (in the “sense of
anti-∂-ing”) the metric, it follows that (a certain appropriate restriction of) sH “is”
essentially the Bers uniformization of Teichmüller space. Thus, as advertised above,
the single object sH stands at the very center of the uniformization theory of complex
hyperbolic curves and their moduli.

In particular, it follows that we can once again reinterpret the fundamental issue of
trying to find a p-adic analogue of the Fuchsian uniformization as the issue of trying
to find a p-adic analogue of the section sH. That is to say, the torsor Sg,r →Mg,r is,
in fact, defined over Z[12 ], hence over Zp (for p odd). Thus, forgetting for the moment
that it is not clear precisely what p-adic category of functions corresponds to the real
analytic category at the infinite prime, one sees that

One way to regard the search for a p-adic Fuchsian uniformization
is to regard it as the search for some sort of canonical p-adic analytic
section of the torsor Sg,r →Mg,r.

In this context, it is thus natural to refer to sH as the canonical arithmetic trivializa-
tion of the torsor Sg,r →Mg,r at the infinite prime.

Finally, let us observe that this situation of a torsor corresponding to the Hodge-
theoretic first Chern class of an ample line bundle, equipped with a canonical real
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analytic section occurs not only over Mg,r, but over any individual hyperbolic curve
X (say, over C), as well. Indeed, let (P → X,∇P ) be the canonical indigenous bundle
on X . Let σ : X → P be its Hodge section. Then by [21], Chapter I, Proposition
2.5, it follows that the T

def= P − σ(X) has the structure of an ωX/C-torsor over X .
In fact, one can say more: namely, this torsor is the Hodge-theoretic first Chern class
corresponding to the ample line bundle ωX/C. Moreover, if we compose the morphism
X̃ ∼= H ⊆ P1

C used to define σ with the standard complex conjugation morphism
on P1

C, we obtain a new ΠX-equivariant X̃ → P1
C which descends to a real analytic

section sX : X(C) → T (C). Just as in the case of Mg,r, it is easy to compute (cf.
the argument of [21], Introduction, Theorem 2.3) that ∂sX is equal to the canonical
hyperbolic metric µX. Thus, just as in the case of the real analytic section sH of the
Schwarz torsor over Mg,r, sX essentially “is” the Fuchsian uniformization of X.

1.6. The Classical Ordinary Theory. — As stated earlier, the purpose of [22]
is to study all integral Frobenius invariant indigenous bundles. On the other hand,
in [21], a very important special type of Frobenius invariant indigenous bundle was
constructed. This type of bundle will henceforth be referred to as classical ordinary.
(Such bundles were called“ordinary”in [21]. Here we use the term“classical ordinary”
to refer to objects called “ordinary” in [21] in order to avoid confusion with the more
general notions of ordinarity discussed in [22].) Before discussing the theory of the
[22] (which is the goal of §2), it is thus natural to review the classical ordinary theory.
In this subsection, we let p be an odd prime.

If one is to construct p-adic Frobenius invariant indigenous bundles for arbitrary
hyperbolic curves, the first order of business is to make precise the notion of Frobenius
invariance that one is to use. For this, it is useful to have a prototype. The prototype
that gave rise to the classical ordinary theory is the following:

Let M def= (M1,0)Zp be the moduli stack of elliptic curves over Zp.
Let G → M be the universal elliptic curve. Let E be its first de
Rham cohomology module. Thus, E is a rank two vector bundle on
M, equipped with a Hodge subbundle F ⊆ E , and a connection ∇E
(i.e., the “Gauss-Manin connection”). Taking the projectivization of
E defines a P1-bundle with connection (P →M,∇P ), together with
a Hodge section σ : M → P . It turns out that (the natural exten-
sion over the compactification of M obtained by using log structures
of) the bundle (P,∇P ) is an indigenous bundle on M. In particu-
lar, (P,∇P ) defines a crystal in P1-bundles on Crys(M⊗ Fp/Zp).
Thus, one can form the pull-back Φ∗(P,∇P ) via the Frobenius mor-
phism of this crystal. If one then adjusts the integral structure of
Φ∗(P,∇P ) (cf. Definition 1.18 of Chapter VI of [22]; [21], Chapter
III, Definition 2.4), one obtains the renormalized Frobenius pull-back
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F∗(P,∇P ). Then (P,∇P ) is Frobenius invariant in the sense that
(P,∇P ) ∼= F∗(P,∇P ).

Thus, the basic idea behind [21] was to consider to what extent one could construct
indigenous bundles on arbitrary hyperbolic curves that are equal to their own renor-
malized Frobenius pull-backs, i.e., satisfying

F∗(P,∇P ) ∼= (P,∇P )

In particular, it is natural to try to consider moduli of indigenous bundles satisfying
this condition. Since it is not at all obvious how to do this over Zp, a natural first
step was to make the following key observation:

If (P,∇P ) is an indigenous bundle over Zp preserved by F∗, then
the reduction modulo p of (P,∇P ) has square nilpotent p-curvature.

(The “p-curvature” of an indigenous bundle in characteristic p is a natural invariant
of such a bundle. We refer to [21], Chapter II, as well as §1 of Chapter II of [22] for
more details.) Thus, if (Mg,r)Fp is the stack of r-pointed stable curves of genus g (as
in [4, 20]) in characteristic p, one can define the stack N g,r of such curves equipped
with a “nilpotent” indigenous bundle. (Here, “nilpotent” means that its p-curvature
is square nilpotent.) In the following, we shall often find it convenient to refer to
pointed stable curves equipped with nilpotent indigenous bundles as nilcurves, for
short. Thus, N g,r is the moduli stack of nilcurves. We would like to emphasize that

The above observation – which led to the notion of “nilcurves” –
is the key technical breakthrough that led to the development of the
“p-adic Teichmüller theory” of [21, 22].

The first major result of [21] is the following (cf. [22], Chapter II, Proposition 1.7;
[21], Chapter II, Theorem 2.3):

Theorem 1.1 (Stack of Nilcurves). — The natural morphism N g,r → (Mg,r)Fp is a
finite, flat, local complete intersection morphism of degree p3g−3+r.

In particular, up to “isogeny” (i.e., up to the fact that p3g−3+r 	= 1),
the stack of nilcurves N g,r ⊆ Sg,r defines a canonical section of the
Schwarz torsor Sg,r →Mg,r in characteristic p.

Thus, relative to our discussion of complex Teichmüller theory – which we saw could
be regarded as the study of a certain canonical real analytic section of the Schwarz
torsor – it is natural that “p-adic Teichmüller theory” should revolve around the study
of N g,r.

Although the structure of N g,r is now been much better understood, at the time of
writing of [21] (Spring of 1994), it was not so well understood, and so it was natural
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to do the following: Let N ord

g,r ⊆ N g,r be the open substack where N g,r is étale over
(Mg,r)Fp . This open substack will be referred to as the (classical) ordinary locus of
N g,r. If one sets up the theory (as is done in [21, 22]) using stable curves (as we do
here), rather than just smooth curves, and applies the theory of log structures (as in
[18]), then it is easy to show that the ordinary locus of N g,r is nonempty.

It is worth pausing here to note the following: The reason for the use of the term
“ordinary” is that it is standard general practice to refer to as “ordinary” situations
where Frobenius acts on a linear space equipped with a “Hodge subspace” in such a
way that it acts with slope zero on a subspace of the same rank as the rank of the
Hodge subspace. Thus, we use the term “ordinary”here because the Frobenius action
on the cohomology of an ordinary nilcurve satisfies just such a condition. In other
words, ordinary nilcurves are ordinary in their capacity as nilcurves. However, it is
important to remember that:

The issue of whether or not a nilcurve is ordinary is entirely differ-
ent from the issue of whether or not the Jacobian of the underlying
curve is ordinary (in the usual sense). That is to say, there exist
examples of ordinary nilcurves whose underlying curves have nonor-
dinary Jacobians as well as examples of nonordinary nilcurves whose
underlying curves have ordinary Jacobians.

Later, we shall comment further on the issue of the incompatibility of the theory of
[21] with Serre-Tate theory relative to the operation of passing to the Jacobian.

At any rate, since N ord

g,r is étale over (Mg,r)Fp , it lifts naturally to a p-adic formal
stack N which is étale over (Mg,r)Zp . Let C → N denote the tautological stable curve
over N . Then the main result (Theorem 0.1 of the Introduction of [21]) of the theory
of [21] is the following:

Theorem 1.2 (Canonical Frobenius Lifting)
There exists a unique pair (ΦN : N → N ; (P,∇P )) satisfying the following:

(1) The reduction modulo p of the morphism ΦN is the Frobenius morphism on N ,
i.e., ΦN is a Frobenius lifting.

(2) (P,∇P ) is an indigenous bundle on C such that the renormalized Frobenius
pull-back of Φ∗

N (P,∇P ) is isomorphic to (P,∇P ), i.e., (P,∇P ) is Frobenius invariant
with respect to ΦN .

Moreover, this pair also gives rise in a natural way to a Frobenius lifting ΦC : Cord →
Cord on a certain formal p-adic open substack Cord of C (which will be referred to as
the ordinary locus of C).

Thus, this Theorem is a partial realization of the goal of constructing a canonical
integral Frobenius invariant bundle on the universal stable curve.

Again, we observe that
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This canonical Frobenius lifting ΦN is by no means compatible (rel-
ative to the operation of passing to the Jacobian) with the canonical
Frobenius lifting ΦA (on the p-adic stack of ordinary principally po-
larized abelian varieties) arising from Serre-Tate theory (cf., e.g.,
[22], §0.7, for more details).

At first glance, the reader may find this fact to be extremely disappointing and unnat-
ural. In fact, however, when understood properly, this incompatibility is something
which is to be expected. Indeed, relative to the analogy between Frobenius liftings
and Kähler metrics implicit in the discussion of §1.1 ∼ 1.5 (cf., e.g., [22], §0.8, for
more details) such a compatibility would be the p-adic analogue of a compatibility
between the Weil-Petersson metric on (Mg,r)C and the Siegel upper half plane metric
on (Ag)C. On the other hand, it is easy to see in the complex case that these two
metrics are far from compatible. (Indeed, if they were compatible, then the Torelli
map (Mg)C → (Ag)C would be unramified, but one knows that it is ramified at
hyperelliptic curves of high genus.)

Another important difference between ΦN and ΦA is that in the case of ΦA, by
taking the union of ΦA and its transpose, one can compactify ΦA into an entirely
algebraic (i.e., not just p-adic analytic) object, namely a Hecke correspondence on
Ag. In the case of ΦN , however, such a compactification into a correspondence is
impossible. We refer to [23] for a detailed discussion of this phenomenon.

So far, we have been discussing the differences between ΦN and ΦA. In fact,
however, in one very important respect, they are very similar objects. Namely, they
are both (classical) ordinary Frobenius liftings. A (classical) ordinary Frobenius lifting
is defined as follows: Let k be a perfect field of characteristic p. Let A

def= W (k) (the
Witt vectors over k). Let S be a formal p-adic scheme which is formally smooth
over A. Let ΦS : S → S be a morphism whose reduction modulo p is the Frobenius
morphism. Then differentiating ΦS defines a morphism dΦS : Φ∗

SΩS/A → ΩS/A which
is zero in characteristic p. Thus, we may form a morphism

ΩΦ : Φ∗
SΩS/A → ΩS/A

by dividing dΦS by p. Then ΦS is called a (classical) ordinary Frobenius lifting if ΩΦ is
an isomorphism. Just as there is a general theory of canonical coordinates associated
to real analytic Kähler metrics, there is a general theory of canonical coordinates
associated to ordinary Frobenius liftings. This theory is discussed in detail in §1 of
Chapter III of [21]. The main result is as follows (cf. §1 of [21], Chapter III):

Theorem 1.3 (Ordinary Frobenius Liftings). — Let ΦS : S → S be a (classical) ordi-
nary Frobenius lifting. Then taking the invariants of ΩS/A with respect to ΩΦ gives
rise to an étale local system Ωet

Φ on S of free Zp-modules of rank equal to dimA(S).
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The Intregral Portion
of the Schwarz Torsor

The
Canonical

Section

The Moduli
Stack of Curves

p-Adic

p
p

p

p
p

p

p
p

p
p

p

p

p
p

p

p

p
p p

p
p

p
p

p
p

p

p
p

p

The Frobenius Action
is a sort of p-adic flow
towards the canonical section

Figure 3. The Canonical Frobenius Action Underlying Theorem 1.2

Let z ∈ S(k) be a point valued in the algebraic closure of k. Then Ωz
def= Ωet

Φ |z may
be thought of as a free Zp-module of rank dimA(S); write Θz for the Zp-dual of Ωz.
Let Sz be the completion of S at z. Let Ĝm be the completion of the multiplicative
group scheme Gm over W (k) at 1. Then there is a unique isomorphism

Γz : Sz
∼= Ĝm ⊗gp

Zp
Θz

such that:

(i) the derivative of Γz induces the natural inclusion Ωz ↪→ ΩS/A|Sz ;

(ii) the action of ΦS on Sz corresponds to multiplication by p on Ĝm ⊗gp
Zp

Θz.

Here, by “Ĝm ⊗gp
Zp

Θz,” we mean the tensor product in the sense of (formal) group

schemes. Thus, Ĝm⊗gp
Zp

Θz is noncanonically isomorphic to the product of dimA(S) =

rankZp(Θz) copies of Ĝm.

Thus, we obtain canonical multiplicative parameters on N and Cord (from ΦN and
ΦC , respectively). If we apply Theorem 1.3 to the canonical lifting ΦA of Serre-Tate
theory (cf., e.g., [22], §0.7), we obtain the Serre-Tate parameters. Moreover, note
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AN INTRODUCTION TO p-ADIC TEICHMÜLLER THEORY 15

that in Theorem 1.3, the identity element “1” of the formal group scheme Ĝm ⊗Zp Ωz

corresponds under Γz to some point αz ∈ S(W (k)) that lifts z. That is to say,

Theorem 1.3 also gives rise to a notion of canonical liftings of points
in characteristic p.

In the case of ΦA, this notion coincides with the well-known notion of the Serre-Tate
canonical lifting of an ordinary abelian variety. In the case of ΦN , the theory of
canonically lifted curves is discussed in detail in Chapter IV of [21]. In [22], however,
the theory of canonical curves in the style of Chapter IV of [21] does not play a very
important role.

Remark. — Certain special cases of Theorem 1.3 already appear in the work of Ihara
([14, 15, 16, 17]). In fact, more generally, the work of Ihara ([14, 15, 16, 17])
on the Schwarzian equations of Shimura curves and the possibility of constructing an
analogue of Serre-Tate theory for more general hyperbolic curves anticipates, at least
at a philosophical level, many aspects of the theory of [21, 22].

Thus, in summary, although the classical ordinary theory of [21] is not compatible
with Serre-Tate theory relative to the Torelli map, it is in many respects deeply
structurally analogous to Serre-Tate theory. Moreover, this close structural affinity
arises from the fact that in both cases,

The ordinary locus with which the theory deals is defined by the
condition that some canonical Frobenius action have slope zero.

Thus, although some readers may feel unhappy about the use of the term “ordinary”
to describe the theory of [21] (i.e., despite the fact that this theory is incompatible
with Serre-Tate theory), we feel that this close structural affinity arising from the
common condition of a slope zero Frobenius action justifies and even renders natural
the use of this terminology.

Finally, just as in the complex case, where the various indigenous bundles involved
gave rise to monodromy representations of the fundamental group of the hyperbolic
curve involved, in the p-adic case as well, the canonical indigenous bundle of Theorem
1.2 gives rise to a canonical Galois representation, as follows. We continue with the
notation of Theorem 1.2. Let N ′ → N be the morphism ΦN , which we think of as
a covering of N ; let C′ def= C ⊗N N ′. Note that C and N have natural log structures
(obtained by pulling back the natural log structures on Mg,r and its tautological
curve, respectively). Thus, we obtain Clog, N log. Let

ΠN
def= π1(N log ⊗Zp Qp); ΠC

def= π1(Clog ⊗Zp Qp)

Similarly, we have ΠN ′ ; ΠC′ . Then the main result is the following (Theorem 0.4 of
[21], Introduction):
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16 S. MOCHIZUKI

Theorem 1.4 (Canonical Galois Representation). — There is a natural Zp-flat, p-adic-
ally complete “ring of additive periods” DGal

N on which ΠN ′ (hence also ΠC′ via the
natural projection ΠC′ → ΠN ′) acts continuously, together with a twisted homomor-
phism

ρ : ΠC′ → PGL2(DGal
N )

where “twisted” means with respect to the action of ΠC′ on DGal
N . This representation

is obtained by taking Frobenius invariants of (P,∇P ), using a technical tool known as
crystalline induction.

Thus, in summary, the theory of [21] gives one a fairly good understanding of what
happens over the ordinary locus N ord

g,r , complete with analogues of various objects
(monodromy representations, canonical modular coordinates, etc.) that appeared in
the complex case. On the other hand, it begs the following questions:

(1) What does the nonordinary part of N g,r look like? What sorts of nonordinary
nilcurves can occur? In particular, what does the p-curvature of such nonordinary
nilcurves look like?

(2) Does this “classical ordinary theory” admit any sort of compactification? One
sees from [23] that it does not admit any sort of compactification via correspondences.
Still, since the condition of being ordinary is an “open condition,” it is natural to ask
what happens to this classical ordinary theory as one goes to the boundary.

The theory of [22] answers these two questions to a large extent, not by adding on a
few new pieces to [21], but by starting afresh and developing from new foundations a
general theory of integral Frobenius invariant indigenous bundles. The theory of [22]
will be discussed in §2.

2. Beyond the “Classical Ordinary” Theory

2.1. Atoms, Molecules, and Nilcurves. — Let p be an odd prime. Let g and r

be nonnegative integers such that 2g − 2 + r ≥ 1. Let N g,r be the stack of nilcurves
in characteristic p. We denote by Ng,r ⊆ N g,r the open substack consisting of smooth
nilcurves, i.e., nilcurves whose underlying curve is smooth. Then the first step in our
analysis of N g,r is the introduction of the following notions (cf. Definitions 1.1 and
3.1 of [22], Chapter II):

Definition 2.1. — We shall call a nilcurve dormant if its p-curvature (i.e., the p-
curvature of its underlying indigenous bundle) is identically zero. Let d be a non-
negative integer. Then we shall call a smooth nilcurve spiked of strength d if the zero
locus of its p-curvature forms a divisor of degree d.
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AN INTRODUCTION TO p-ADIC TEICHMÜLLER THEORY 17

If d is a nonnegative integer (respectively, the symbol ∞), then we shall denote by

Ng,r[d] ⊆ Ng,r

the locally closed substack of nilcurves that are spiked of strength d (respectively,
dormant). It is immediate that there does indeed exist such a locally closed substack,
and that if k is an algebraically closed field of characteristic p, then

Ng,r(k) =
∞∐

d=0

Ng,r[d] (k)

Moreover, we have the following result (cf. [22], Chapter II, Theorems 1.12, 2.8, and
3.9):

Theorem 2.2 (Stratification of Ng,r). — Any two irreducible components of N g,r inter-
sect. Moreover, for d = 0, 1, . . . ,∞, the stack Ng,r[d] is smooth over Fp of dimension
3g− 3 + r (if it is nonempty). Finally, Ng,r[∞] is irreducible, and its closure in N g,r

is smooth over Fp.

Thus, in summary, we see that

The classification of nilcurves by the size of the zero locus of their
p-curvatures induces a natural decomposition of Ng,r into smooth (lo-
cally closed) strata.

Unfortunately, however, Theorem 2.2 still only gives us a very rough idea of the
structure of Ng,r. For instance, it tells us nothing of the degree of each Ng,r[d] over
Mg,r.

Remark. — Some people may object to the use of the term “stratification” here for
the reason that in certain contexts (e.g., the Ekedahl-Oort stratification of the moduli
stack of principally polarized abelian varieties – cf. [11], §2), this term is only used for
decompositions into locally closed subschemes whose closures satisfy certain (rather
stringent) axioms. Here, we do not mean to imply that we can prove any nontrivial
results concerning the closures of the Ng,r[d]’s. That is to say, in [22], we use the term
“stratification”only in the weak sense (i.e., that Ng,r is the union of the Ng,r[d]). This
usage conforms to the usage of Lecture 8 of [24], where “flattening stratifications” are
discussed.

In order to understand things more explicitly, it is natural to attempt to do the
following:

(1) Understand the structure – especially, what the p-curvature looks like – of all
molecules (i.e., nilcurves whose underlying curve is totally degenerate).

(2) Understand how each molecule deforms, i.e., given a molecule, one can consider
its formal neighborhood N in N g,r. Then one wants to know the degree of each
N
⋂
Ng,r[d] (for all d) over the corresponding formal neighborhood M in Mg,r.
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18 S. MOCHIZUKI

Obtaining a complete answer to these two questions is the topic of [22], Chapters IV
and V.

First, we consider the problem of understanding the structure of molecules. Since
the underlying curve of a molecule is a totally degenerate curve – i.e., a stable curve
obtained by gluing together P1’s with three nodal/marked points – it is natural to
restrict the given nilpotent indigenous bundle on the whole curve to each of these
P1’s with three marked points. Thus, for each irreducible component of the original
curve, we obtain a P1 with three marked points equipped with something very close
to a nilpotent indigenous bundle. The only difference between this bundle and an
indigenous bundle is that its monodromy at some of the marked points (i.e., those
marked points that correspond to nodes on the original curve) might not be nilpotent.
In general, a bundle (with connection) satisfying all the conditions that an indigenous
bundle satisfies except that its monodromy at the marked points might not be nilpo-
tent is called a torally indigenous bundle (cf. [22], Chapter I, Definition 4.1). (When
there is fear of confusion, indigenous bundles in the strict sense (as in [21], Chapter
I) will be called classical indigenous.) For simplicity, we shall refer to any pointed
stable curve (respectively, totally degenerate pointed stable curve) equipped with a
nilpotent torally indigenous bundle as a nilcurve (respectively, molecule) (cf. §0 of
[22], Chapter V). Thus, when it is necessary to avoid confusion with the toral case,
we shall say that “N g,r is the stack of classical nilcurves.” Finally, we shall refer to
a (possibly toral) nilcurve whose underlying curve is P1 with three marked points as
an atom.

At any rate, to summarize, a molecule may be regarded as being made up of atoms.
It turns out that the monodromy at each marked point of an atom (or, in fact, more
generally any nilcurve) has an invariant called the radius. The radius is, strictly
speaking, an element of Fp/{±} (cf. Proposition 1.5 of [22], Chapter II) – i.e., the
quotient set of Fp by the action of ±1 – but, by abuse of notation, we shall often
speak of the radius ρ as an element of Fp. Then we have the following answer to (1)
above (cf. §1 of [22], Chapter V):

Theorem 2.3 (The Structure of Atoms and Molecules). — The structure theory of
atoms (over any field of characteristic p) may be summarized as follows:

(1) The three radii of an atom define a bijection of the set of isomorphism classes
of atoms with the set of ordered triples of elements of Fp/{±1}.

(2) For any triple of elements ρα, ρβ , ργ ∈ Fp, there exist integers a, b, c ∈ [0, p−1]
such that (i) a ≡ ±2ρα, b ≡ ±2ρβ, c ≡ ±2ργ; (ii) a+b+c is odd and < 2p. Moreover,
the atom of radii ρα, ρβ, ργ is dormant if and only if the following three inequalities
are satisfied simultaneously: a + b > c, a + c > b, b + c > a.
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p-curvature of the nilcurves para-
metrized.  Darker components are
farther from being reduced.

The Generic Structure of the Moduli
Stack of Nilcurves can be analyzed by
looking at how Molecules Deform.

Figure 4. The Structure of N g,r

(3) Suppose that the atom of radii ρα, ρβ, ργ is nondormant. Let vα, vβ , vγ be the
degrees of the zero loci of the p-curvature at the three marked points. Then the non-
negative integers vα, vβ , vγ are uniquely determined by the following two conditions:
(i) vα + vβ + vγ is odd and < p; (ii) vα ≡ ±2ρα, vβ ≡ ±2ρβ, vγ ≡ ±2ργ.

Molecules are obtained precisely by gluing together atoms at their marked points in
such a way that the radii at marked points that are glued together coincide (as elements
of Fp/{±1}).

In the last sentence of the theorem, we use the phrase“obtained precisely”to mean that
all molecules are obtained in that way, and, moreover, any result of gluing together
atoms in that fashion forms a molecule. Thus,

Theorem 2.3 reduces the structure theory of atoms and molecules to
a matter of combinatorics.

Theorem 2.3 follows from the theory of [22], Chapter IV.
Before proceeding, we would like to note the analogy with the theory of “pants”

(see [1] for an exposition) in the complex case. In the complex case, the term “pants”
is used to describe a Riemann surface which is topologically isomorphic to a Riemann
sphere minus three points. The holomorphic isomorphism class of such a Riemann
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surface is given precisely by specifying three radii, i.e., the size of its three holes.
Moreover, any hyperbolic Riemann surface can be analyzed by decomposing it into
a union of pants, glued together at the boundaries. Thus, there is a certain analogy
between the theory of pants and the structure theory of atoms and molecules given
in Theorem 2.3.

Next, we turn to the issue of understanding how molecules deform. Let M be a
nondormant classical molecule (i.e., it has nilpotent monodromy at all the marked
points). Let us write ntor for the number of “toral nodes” (i.e., nodes at which the
monodromy is not nilpotent) of M . Let us write ndor for the number of dormant
atoms in M . To describe the deformation theory of M , it is useful to choose a plot
Π for M . A plot is an ordering (satisfying certain conditions) of a certain subset of
the nodes of M (see §1 of [22], Chapter V for more details). This ordering describes
the order in which one deforms the nodes of M . (Despite the similarity in notation,
plots have nothing to do with the “VF-patterns” discussed below.) Once the plot is
fixed, one can contemplate the various scenarios that may occur. Roughly speaking,
a scenario is an assignment (satisfying certain conditions) of one of the three symbols
{0, +,−} to each of the branches of each of the nodes of M (see §1 of [22], Chapter V
for more details). There are 2ndor possible scenarios. The point of all this terminology
is the following:

One wants to deform the nodes of M in a such a way that one can
always keep track of how the p-curvature deforms as one deforms the
nilcurve.

If one deforms the nodes in the fashion stipulated by the plot and scenario, then each
deformation that occurs is one the following four types: classical ordinary, grafted,
philial, aphilial.

The classical ordinary case is the case where the monodromy (at the node in ques-
tion) is nilpotent. It is also by far the most technically simple and is already discussed
implicitly in [21]. The grafted case is the case where a dormant atom is grafted on to
(what after previous deformations is) a nondormant smooth nilcurve. This is the case
where the consequent deformation of the p-curvature is the most technically difficult
to analyze and is the reason for the introduction of “plots” and “scenarios.” In order
to understand how the p-curvature deforms in this case, one must introduce a certain
technical tool called the virtual p-curvature. The theory of virtual p-curvatures is
discussed in §2.2 of [22], Chapter V. The philial case (respectively, aphilial case) is
the case where one glues on a nondormant atom to (what after previous deformations
is) a nondormant smooth nilcurve, and the parities (i.e., whether the number is even
or odd) of the vanishing orders of the p-curvature at the two branches of the node
are opposite to one another (respectively, the same). In the philial case (respectively,
aphilial case), deformation gives rise to a spike (respectively, no spike). An illustration
of these four fundamental types of deformation is given in Fig. 6. The signs in this
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Figure 5. The Step Used to Analyze the Structure of N g,r

illustration are the signs that are assigned to the branches of the nodes by the “sce-
nario.” When the p-curvature is not identically zero (i.e., on the light-colored areas),
this sign is the parity (i.e., plus for even, minus for odd) of the vanishing order of
the p-curvature. For a given scenario Σ, we denote by nphl(Σ) (respectively, naph(Σ))
the number of philial (respectively, aphilial) nodes that occur when the molecule is
deformed according to that scenario.

If U = Spec(A) is a connected noetherian scheme of dimension 0, then we shall
refer to the length of the artinian ring A as the padding degree of U . Then the theory
just discussed gives rise to the following answer to (2) above (cf. Theorem 1.1 of [22],
Chapter V):

Theorem 2.4 (Deformation Theory of Molecules). — Let M be a classical molecule
over an algebraically closed field k of characteristic p. Let N be the completion of
N g,r at M . Let M be the completion of (Mg,r)Fp at the point defined by the curve
underlying M . Let η be the strict henselization of the generic point of M. Then the
natural morphism N →M is finite and flat of degree 2ntor . Moreover:

(1) If M is dormant, then Nred
∼= M, and Nη has padding degree 23g−3+r.

(2) If M is nondormant, fix a plot Π for M . Then for each of the 2ndor scenarios
associated to Π, there exists a natural open substack NΣ ⊆ Nη

def= N ×M η such that:
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(i.) Nη is the disjoint union of the NΣ (as Σ ranges over all the scenarios); (ii.)
every residue field of NΣ is separable over (hence equal to) k(η); (iii) the degree of
(NΣ)red over η is 2naph(Σ); (iv) each connected component of NΣ has padding degree
2nphl(Σ); (v) the smooth nilcurve represented by any point of (NΣ)red is spiked of
strength p · nphl(Σ).

In particular, this Theorem reduces the computation of the degree of any Ng,r[d] over
(Mg,r)Fp to a matter of combinatorics.

0 0
deforms to

Grafted
Node

Aphilial
Node

Philial
Node

Classical
Ordinary Node

deforms to
+

+

+

+

+

deforms to
+ +

deforms to
+

_

_ resulting spike

Figure 6. The Four Types of Nodal Deformation

For instance, let us denote by nord
g,r,p the degree of N ord

g,r (which – as a consequence of
Theorem 2.4! (cf. Corollary 1.2 of [22], Chapter V) – is open and dense inNg,r[0]) over
(Mg,r)Fp . Then following the algorithm implicit in Theorem 2.4, nord

g,r,p is computed
explicitly for low g and r in Corollary 1.3 of [22], Chapter V (e.g., nord

1,1,p = nord
0,4,p = p;

nord
0,5,p = 1

2 (p2 +1); etc.). Moreover, we note the following two interesting phenomena:

(1) Degrees such as nord
g,r,p tend to be well-behaved – even polynomial, with coeffi-

cients equal to various integrals over Euclidean space – as functions of p. Thus, for
instance, the limit, as p goes to infinity, of nord

0,r,p/pr−3 exists and is equal to the vol-
ume of a certain polyhedron in (r − 3)-dimensional Euclidean space. See Corollary
1.3 of [22], Chapter V for more details.
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(2) Theorem 2.4 gives, for every choice of totally degenerate r-pointed stable curve
of genus g, an (a priori) distinct algorithm for computing nord

g,r,p. Since nord
g,r,p, of

course, does not depend on the choice of underlying totally degenerate curve, we
thus obtain equalities between the various sums that occur (to compute nord

g,r,p) in
each case. If one writes out these equalities, one thus obtains various combinatorial
identities. Although the author has yet to achieve a systematic understanding of these
combinatorial identities, already in the cases that have been computed (for low g and
r), these identities reduce to such nontrivial combinatorial facts as Lemmas 3.5 and
3.6 of [22], Chapter V.

Although the author does not have even a conjectural theoretical understanding of
these two phenomena, he nonetheless feels that they are very interesting and deserve
further study.

2.2. The MF∇-Object Point of View. — Before discussing the general theory
of canonical liftings of nilpotent indigenous bundles, it is worth stopping to examine
the general conceptual context in which this theory will be developed. To do this,
let us first recall the theory of MF∇-objects developed in §2 of [6]. Let p be a
prime number, and let S be a smooth Zp-scheme. Then in loc. cit., a certain category
MF∇(S) is defined. Objects of this categoryMF∇(S) consist of: (1) a vector bundle
E on S equipped with an integrable connection ∇E (one may equivalently regard the
pair (E ,∇E) as a crystal on the crystalline site Crys(S ⊗Zp Fp/Zp) valued in the
category of vector bundles); (2) a filtration F ·(E) ⊆ E (called the Hodge filtration) of
subbundles of E ; (3) a Frobenius action ΦE on the crystal (E ,∇E). Moreover, these
objects satisfy certain conditions, which we omit here.

Let ΠS be the fundamental group of S ⊗Zp Qp (for some choice of base-point). In
loc. cit., for each MF∇(S)-object (E ,∇E , F ·(E), ΦE ), a certain natural ΠS-module
V is constructed by taking invariants of (E ,∇E ) with respect to its Frobenius action
ΦE . If E is of rank r, then V is a free Zp-module of rank r. On typical example of
such an MF∇(S)-object is the following:

If X → S is the tautological abelian variety over the moduli stack
of principally polarized abelian varieties, then the relative first de
Rham cohomology module of X → S forms an MF∇(S)-module
whose restriction to the ordinary locus of S is (by Serre-Tate the-
ory) intimately connected to the “p-adic uniformization theory” of
S.

In the context of [22], we would like to consider the case where S = (Mg,r)Zp .
Moreover, just as the first de Rham cohomology module of the universal abelian
variety gives rise to a “fundamental uniformizing MF∇(S)-module” on the moduli
stack of principally polarized abelian varieties, we would like to define and study a
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corresponding“fundamental uniformizing MF∇-object”on (Mg,r)Zp . Unfortunately,
as long as one sticks to the conventional definition of MF∇-object given in [6], it
appears that such a natural “fundamental uniformizing MF∇-object” simply does
not exist on (Mg,r)Zp . This is not so surprising in view of the nonlinear nature of
the Teichmüller group (i.e., the fundamental group of (Mg,r)C). In order to obtain a
natural “fundamental uniformizing MF∇-object” on (Mg,r)Zp , one must generalize
the “classical” linear notion of [6] as follows: Instead of considering crystals (equipped
with filtrations and Frobenius actions) valued in the category of vector bundles, one
must consider crystals (still equipped with filtrations and Frobenius actions in some
appropriate sense) valued in the category of schemes (or more generally, algebraic
spaces). Thus,

One philosophical point of view from which to view [22] is that it is
devoted to the study of a certain canonical uniformizing MF∇-object
on (Mg,r)Zp valued in the category of algebraic spaces.

Just as in the case of abelian varieties, this canonical uniformizing MF∇-object will
be obtained by taking some sort of de Rham cohomology of the universal curve over
(Mg,r)Zp . The rest of this subsection is devoted to describing this MF∇-object in
more detail.

Now let S be the spectrum of an algebraically closed field (of characteristic not
equal to 2), and let X be a smooth, proper, geometrically curve over S of genus ≥ 2.
Let P → X be a P1-bundle equipped with a connection ∇P . If σ : X → P is a section
of this P1-bundle, then we shall refer to the number 1

2deg(σ∗τP/X) (where τP/X is
the relative tangent bundle of P over X) as the canonical height of σ. Moreover, note
that by differentiating σ by means of ∇P , one obtains a morphism τX/S → σ∗τP/X .
We shall say that σ is horizontal if this morphism is identically zero.

(Roughly speaking) we shall call (P,∇P ) crys-stable if it does not admit any hor-
izontal sections of canonical height ≤ 0 (see Definition 1.2 of [22], Chapter I for a
precise definition). (Roughly speaking) we shall call (P,∇P ) crys-stable of level 0 (or
just stable) if it does not admit any sections of canonical height ≤ 0 (see Definition
3.2 of [22], Chapter I for a precise definition). Let l be a positive half-integer (i.e.,
a positive element of 1

2Z). We shall call (P,∇P ) crys-stable of level l if it admits a
section of canonical height −l. If it does admit such a section, then this section is the
unique section of P → X of negative canonical height. This section will be referred
to as the Hodge section (see Definition 3.2 of [22], Chapter I for more details). For
instance, if E is a vector bundle of rank two on X such that Ad(E) is a stable vector
bundle on X (of rank three), and P → X is the projective bundle associated to E ,
then (P,∇P ) will be crys-stable of level 0 (regardless of the choice of ∇P ). On the
other hand, an indigenous bundle on X will be crys-stable of level g − 1. More gen-
erally, these definitions generalize to the case when X is a family of pointed stable
curves over an arbitrary base (on which 2 is invertible).

ASTÉRISQUE 278



AN INTRODUCTION TO p-ADIC TEICHMÜLLER THEORY 25

The nonlinear MF∇-object on (Mg,r)Zp (where p is odd) that is the topic of [22]
is (roughly speaking) the crystal in algebraic spaces given by the considering the fine
moduli space Y → (Mg,r)Zp of crys-stable bundles on the universal curve (cf. Theorem
2.7, Proposition 3.1 of [22], Chapter I for more details). Put another way, this crystal
is a sort of de Rham-theoretic H 1 with coefficients in PGL2 of the universal curve
over Mg,r. The nonlinear analogue of the Hodge filtration on an MF∇-object is the
collection of subspaces given by the fine moduli spaces Y l of crys-stable bundles of
level l (for various l) – cf. [22], Chapter I, Proposition 3.3, Lemmas 3.4 and 3.8, and
Theorem 3.10 for more details.

Remark. — This collection of subspaces is reminiscent of the stratification (on the
moduli stack of smooth nilcurves) of §2.1. This is by no means a mere coincidence.
In fact, in some sense, the stratification of Ng,r which was discussed in §2.1 is the
Frobenius conjugate of the Hodge structure mentioned above. That is to say, the
relationship between these two collections of subspaces is the nonlinear analogue of the
relationship between the filtration on the de Rham cohomology of a variety in positive
characteristic induced by the “conjugate spectral sequence” and the Hodge filtration on
the cohomology. (That is to say, the former filtration is the Frobenius conjugate of
the latter filtration.)

Thus, to summarize, relative to the analogy between the nonlinear objects dealt
with in this paper and the “classical”MF∇-objects of [6], the only other piece of data
that we need is a Frobenius action. It is this issue of defining a natural Frobenius
action which occupies the bulk of [22].

2.3. The Generalized Notion of a Frobenius Invariant Indigenous Bundle.
— In this subsection, we would like to take up the task of describing the Frobenius
action on crys-stable bundles. Just as in the case of the linear MF∇-objects of [6],
and as motivated by comparison with the complex case (see the discussion of §1),
we are interested in Frobenius invariant sections of the MF∇-object, i.e., Frobenius
invariant bundles. Moreover, since ultimately we are interested in uniformization the-
ory, instead of studying general Frobenius invariant crys-stable bundles, we will only
consider Frobenius invariant indigenous bundles. The reason that we must nonethe-
less introduce crys-stable bundles is that in order to obtain canonical lifting theories
that are valid at generic points of Ng,r parametrizing dormant or spiked nilcurves, it
is necessary to consider indigenous bundles that are fixed not (necessarily) after one
application of Frobenius, but after several applications of Frobenius. As one applies
Frobenius over and over again, the bundles that appear at intermediate stages need
not be indigenous. They will, however, be crys-stable. This is why we must introduce
crys-stable bundles.
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In order to keep track of how the bundle transforms after various applications of
Frobenius, it is necessary to introduce a certain combinatorial device called a VF-
pattern (where “VF” stands for “Verschiebung/Frobenius”). VF-patterns may be de-
scribed as follows. Fix nonnegative integers g, r such that 2g − 2 + r > 0. Let
χ

def= 1
2 (2g − 2 + r). Let Lev be the set of l ∈ 1

2Z satisfying 0 ≤ l ≤ χ. We shall call
Lev the set of levels. (That is, Lev is the set of possible levels of crys-stable bundles.)
Let Π : Z → Lev be a map of sets, and let 
 be a positive integer. Then we make
the following definitions:

(i) We shall call (Π, 
) a VF-pattern if Π(n + 
) = Π(n) for all n ∈ Z; Π(0) = χ;
Π(i)−Π(j) ∈ Z for all i, j ∈ Z (cf. Definition 1.1 of [22], Chapter III).

(ii) A VF-pattern (Π, 
) will be called pre-home if Π(Z) = {χ}. A VF-pattern
(Π, 
) will be called the home VF-pattern if it is pre-home and 
 = 1.

(iii) A VF-pattern (Π, 
) will be called binary if Π(Z) ⊆ {0, χ}. A VF-pattern
(Π, 
) will be called the VF-pattern of pure tone 
 if Π(n) = 0 for all n ∈ Z not
divisible by 
.

(iv) Let (Π, 
) be a VF-pattern. Then i ∈ Z will be called indigenous (respectively,
active; dormant) for this VF-pattern if Π(i) = χ (respectively, Π(i) 	= 0; Π(i) = 0).
If i, j ∈ Z, and i < j, then (i, j) will be called ind-adjacent for this VF-pattern if
Π(i) = Π(j) = χ and Π(n) 	= χ for all n ∈ Z such that i < n < j.

At the present time, all of this terminology may seem rather abstruse, but eventually,
we shall see that it corresponds in a natural and evident way to the p-adic geometry
defined by indigenous bundles that are Frobenius invariant in the fashion described
by the VF-pattern in question. Finally, we remark that often, in order to simplify
notation, we shall just write Π for the VF-pattern (even though, strictly speaking, a
VF-pattern is a pair (Π, 
)).

Now fix an odd prime p. Let (Π, 
) be a VF-pattern. Let S be a perfect scheme of
characteristic p. Let X → S be a smooth, proper, geometrically connected curve of
genus g ≥ 2. (Naturally, the theory goes through for arbitrary pointed stable curves,
but for simplicity, we assume in the present discussion that the curve is smooth
and without marked points.) Write W (S) for the (ind-)scheme of Witt vectors with
coefficients in S. Let P be a crystal on Crys(X/W (S)) valued in the category of
P1-bundles. Thus, the restriction P|X of P to Crys(X/S) may be thought of as a
P1-bundle with connection on the curve X → S. Let us assume that P|X defines an
indigenous bundle on X . Now we consider the following procedure (cf. Fig. 7):

Using the Hodge section of P|X , one can form the renormalized
Frobenius pull-back P1

def= F∗(P) of P . Thus, F∗(P) will be a crys-
tal valued in the category of P1-bundles on Crys(X/W (S)). Assume
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that P1|X is crys-stable of level Π(1). Then there are two possibil-
ities: either Π(1) is zero or nonzero. If Π(1) = 0, then let P2 be
the usual (i.e., non-renormalized) Frobenius pull-back Φ∗P1 of the
crystal P1. If Π(1) 	= 0, then P1|X is crys-stable of positive level,
hence admits a Hodge section; thus, using the Hodge section of P1|X ,
we may form the renormalized Frobenius pull-back P2

def= F∗(P1)
of P1. Continuing inductively in this fashion – i.e., always assum-
ing Pi|X to be crys-stable of level Π(i), and forming Pi+1 by taking
the renormalized (respectively, usual) Frobenius pull-back of Pi if
Π(i) 	= 0 (respectively, Π(i) = 0), we obtain a sequence Pi of crystals
on Crys(X/W (S)) valued in the category of P1-bundles.

Then we make the following

Definition 2.5. — We shall refer to P as Π-indigenous (on X) if all the assumptions
(on the Pi) necessary to carry out the above procedure are satisfied, and, moreover,
P�

∼= P .

Thus, to say that P is Π-indigenous (more properly, (Π, 
)-indigenous) is to say that
it is Frobenius invariant in the fashion specified by the combinatorial data (Π, 
).

Now we are ready to define a certain stack that is of central importance in [22].
The stack QΠ – also called the stack of quasi-analytic self-isogenies of type (Π, 
) –
is defined as follows:

To a perfect scheme S, QΠ(S) assigns the category of pairs (X →
S,P), where X → S is a curve as above and P is a Π-indigenous
bundle on X.

Thus, QΠ is may be regarded as the moduli stack of indigenous bundles that are
Frobenius invariant in the fashion specified by the VF-pattern Π.

We remark that in fact, more generally, one can define QΠ on the category of
epiperfect schemes S. (Whereas a perfect scheme is a scheme on which the Frobenius
morphism is an isomorphism, an epiperfect scheme is one on which the Frobenius
morphism is a closed immersion.) Then instead of using W (S), one works over B(S)
– i.e., the “universal PD-thickening of S.” For instance, the well-known ring Bcrys

introduced by Fontaine (and generalized to the higher-dimensional case in [6]) is a
special case of B(S). The point is that one needs the base spaces that one works with
to be Zp-flat and equipped with a natural Frobenius action. The advantage of working
with arbitrary B(S) (for S epiperfect) is that the theory of crystalline representations
(and the fact that Bcrys is a special case of B(S)) suggest that B(S) is likely to be the
most general natural type of space having these two properties – i.e., Zp-flatness and
being equipped with a natural Frobenius action. The disadvantage of working with
arbitrary B(S) (as opposed to just W (S) for perfect S) is that many properties of
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QΠ are technically more difficult or (at the present time impossible) to prove in the
epiperfect case. For the sake of simplicity, in this Introduction, we shall only consider
the perfect case. For more details, we refer to [22], Chapter VI.
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Crys-Stable
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A Typical Corresponding VF-Pattern (of Period 8):

..., χ, χ−1, 0, 0, χ, χ−2, χ, 0, ...

P   is Frobenius Invariant0

The Indigenous Bundle
The Sense in which

Figure 7. The Sense of Frobenius Invariance Specified by a VF-Pattern

Now, we are ready to discuss the main results concerning QΠ. The general theory
ofQΠ is the topic of [22], Chapter VI. We begin with the following result (cf. Theorem
2.2 of [22], Chapter VI):

Theorem 2.6 (Representability and Affineness). — The stack QΠ is representable by a
perfect algebraic stack whose associated coarse moduli space (as in [7], Chapter 1,
Theorem 4.10) is quasi-affine. If Π is pre-home, then this coarse moduli space is even
affine.

Thus, in the pre-home case, QΠ is perfect and affine. In particular, any sort of de
Rham/crystalline-type cohomology on QΠ must vanish. It is for this reason that we
say (in the pre-home case) that QΠ is crystalline contractible (cf. Fig. 8). Moreover,
(cf. Theorem 2.12 of [22], Chapter III),

Corollary 2.7 (Irreducibility of Moduli). — (The fact that QΠ is crystalline con-
tractible for the home VF-pattern is intimately connected with the fact that) Mg,r is
irreducible.
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Figure 8. Crystalline Contractibility in the Pre-Home Case

The basic idea here is the following: By induction on g, it suffices to prove that
Mg,r does not admit any proper connected components. But if it did admit such a

component J , then one can apply the following analysis to NJ
def= Ng,r×Mg,r J : First

of all, by Theorem 1.1, NJ is finite and flat of degree p3g−3+r over J . Now let I be
an irreducible component of NJ for which the vanishing locus of the p-curvature of
the nilcurve parametrized by the generic point of I is maximal (in other words, an
irreducible component whose generic point lies in Ng,r[d], for d maximal). It is then
a formal consequence of Theorems 1.1 and 2.2 that I is smooth and proper over Fp,
and that the whole of I (i.e., not just the generic point) lies in some Ng,r[d]. Now we
apply the fact that Ng,r[0] is affine (a fact which belongs to the same circle of ideas
as Theorem 2.6). This implies (since I is proper and of positive dimension) that the
d such that I ⊆ Ng,r [d] is nonzero. Thus, since (by [21], Chapter II, Corollary 2.16)
Ng,r is nonreduced at the generic point of Ng,r[d], it follows that the degree of I over
J is < p3g−3+r. On the other hand, by using the fact that the Schwarz torsor may
also be interpreted as the Hodge-theoretic first Chern class of a certain ample line
bundle (cf. [21], Chapter I, §3), it is a formal consequence (of basic facts concerning
Chern classes in crystalline cohomology) that deg(I/J) (which is a positive integer)
is divisible by p3g−3+r . This contradiction (i.e., that deg(I/J) is a positive integer
< p3g−3+r which is nevertheless divisible by p3g−3+r) concludes the proof.

As remarked earlier, this derivation of the irreducibility of the moduli of Mg,r

from the basic theorems of p-adic Teichmüller theory is reminiscent of the proof of
the irreducibility of Mg,r given by using complex Teichmüller theory to show that
Teichmüller space is contractible (cf., e.g., [2, 4]). Moreover, it is also interesting in
that it suggests that perhaps at some future date the theory (or some extension of
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the theory) of [22] may be used to compute other cohomology groups of Mg,r. Other
proofs of the irreducibility of Mg,r include those of [8, 9], but (at least as far the
author knows) the proof given here is the first that relies on essentially characteristic
p methods (i.e., “Frobenius”).

Before proceeding, we must introduce some more notation. If Z is a smooth stack
over Zp, let us write ZW for the stack on the category of perfect schemes of charac-
teristic p that assigns to a perfect S the category Z(W (S)). We shall refer to ZW

as the infinite Weil restriction of Z. It is easy to see that ZW is representable by a
perfect stack (Proposition 1.13 of [22], Chapter VI). Moreover, this construction gen-
eralizes immediately to the logarithmic category. Write MW (respectively, SW ) for
((Mlog

g,r)Zp)W (respectively, ((S log

g,r)Zp)W ). (Here Sg,r → Mg,r is the Schwarz torsor
overMg,r; we equip it with the log structure obtained by pulling back the log structure
of Mlog

g,r.) Now if P is Π-indigenous on X , it follows immediately from the elementary
theory of indigenous bundles that there exists a unique curve XW → W (S) whose re-
striction to S ⊆ W (S) is X → S and such that the restriction of the crystal P to XW

defines an indigenous bundle on XW . The assignment P �→ (XW → W (S),P|XW )
(respectively, P �→ {XW → W (S)}) thus defines a natural morphism QΠ → SW

(respectively, QΠ →MW ). Now we have the following results (cf. Propositions 2.3,
2.9; Corollaries 2.6 and 2.13 of [22], Chapter VI):

Theorem 2.8 (Immersions). — The natural morphism QΠ → SW is an immersion in
general, and a closed immersion if the VF-pattern is pre-home or of pure tone. The
morphism QΠ → MW is a closed immersion if the VF-pattern is the home VF-
pattern.

Theorem 2.9 (Isolatedness in the Pre-Home Case). — In the pre-home case, QΠ is
closed inside SW and disjoint from the closure of any non-pre-home QΠ′

’s.

We remark that in both of these cases, much more general theorems are proved in
[22]. Here, for the sake of simplicity, we just selected representative special cases of
the main theorems in [22] so as to give the reader a general sense of the sorts of results
proved in [22].

The reason that Theorem 2.9 is interesting (or perhaps a bit surprising) is the
following: The reduction modulo p of a Π-indigenous bundle (in the pre-home case) is
an admissible nilpotent indigenous bundle. (Here, the term “admissible” means that
the p-curvature has no zeroes.) Moreover, the admissible locus N adm

g,r of N g,r is by
no means closed in N g,r, nor is its closure disjoint (in general) from the closure of
the dormant or spiked loci of N g,r. On the other hand, the reductions modulo p of
Π′-indigenous bundles (for non-pre-home Π′) may, in general, be dormant or spiked
nilpotent indigenous bundles. Thus,
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Theorem 2.9 states that considering Zp-flat Frobenius invariant lift-
ings of indigenous bundles (as opposed to just nilpotent indigenous
bundles in characteristic p) has the effect of “blowing up” N g,r in
such a way that the genericization/specialization relations that hold
in N g,r do not imply such relations among the various Q’s.

We shall come back to this phenomenon again in the following subsection (cf. Fig. 9).

2.4. The Generalized Ordinary Theory. — In this subsection, we maintain
the notations of the preceding subsection. Unfortunately, it is difficult to say much
more about the explicit structure of the stacks QΠ without making more assumptions.
Thus, just as in the classical ordinary case (reviewed in §1.6), it is natural to define
an open substack – the ordinary locus of QΠ – and to see if more explicit things can
be said concerning this open substack. This is the topic of [22], Chapter VII. We shall
see below that in fact much that is interesting can be said concerning this ordinary
locus.

We begin with the definition of the ordinary locus. First of all, we observe that
there is a natural algebraic stack

NΠ,s

g,r

(of finite type over Fp) that parametrizes “data modulo p for QΠ” (Definition 1.11 of
[22], Chapter III). That is to say, roughly speaking, NΠ,s

g,r parametrizes the reductions
modulo p of the Pi appearing in the discussion preceding Definition 2.5. We refer to
[22], Chapter III for a precise definition of this stack. At any rate, by reducing modulo
p the data parametrized by QΠ, we obtain a natural morphism of stacks

QΠ → NΠ,s

g,r

On the other hand, since NΠ,s

g,r parametrizes curves equipped with certain bundles,

there is a natural morphism NΠ,s

g,r → (Mg,r)Fp . Let N ord ⊆ NΠ,s

g,r denote the open

substack over which the morphism NΠ,s

g,r → (Mg,r)Fp is étale. Let Qord ⊆ QΠ denote

the open substack which is the inverse image of N ord ⊆ NΠ,s

g,r .

Definition 2.10. — We shall refer to Qord as the (Π-)ordinary locus of QΠ.

Just as in the classical ordinary case, there is an equivalent definition of Π-ordinarity
given by looking at the action of Frobenius on the first de Rham cohomology modules
of the Pi (cf. Lemma 1.4 of [22], Chapter VII). Incidentally, the classical ordinary
theory corresponds to the Π-ordinary theory in the case of the home VF-pattern. (In
particular, N ord is simply the ordinary locus N ord

g,r of N g,r.) Thus, in some sense, the
theory of [21] is a special case of the generalized ordinary theory.

Our first result is the following (cf. Theorem 1.6 of [22], Chapter VII):
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Theorem 2.11 (Basic Structure of the Ordinary Locus). — Qord is naturally isomor-
phic to the perfection of N ord.

Thus, already one has a much more explicit understanding of the structure of Qord

than of the whole of QΠ. That is to say, Theorem 2.11 already tells us that Qord is
the perfection of a smooth algebraic stack of finite type over Fp.

Our next result – which is somewhat deeper than Theorem 2.11, and is, in fact,
one of the main results of [22] – is the following (cf. Theorem 2.11 of [22], Chapter
VII):

Theorem 2.12 (ω-Closedness of the Ordinary Locus). — If Π is binary, then Qord is ω-
closed (roughly speaking, “closed as far as the differentials are concerned” – cf. [22],
Chapter VII, § 0, § 2.3 for more details) in QΠ. In particular,

(1) If 3g − 3 + r = 1, then Qord is actually closed in QΠ.
(2) If R ⊆ QΠ is a subobject containing Qord and which is “pro” (cf. [22], Chapter

VI, Definition 1.9) of a fine algebraic log stack which is locally of finite type over Fp,
then Qord is closed in R.

In other words, at least among perfections of fine algebraic log stacks which are locally
of finite type over Fp, Qord is already “complete” inside QΠ.

Thus, if Π is pre-home or of pure tone, then Qord is an ω-closed substack of SW .
If the VF-pattern in question is the home pattern, then Qord is an ω-closed substack
of MW .

This is a rather surprising result in that the definition of Qord was such that Qord is
naturally an open substack of QΠ which has no a priori reason to be closed (in any
sense!) inside QΠ. Moreover, N ord

g,r is most definitely not closed in N g,r. Indeed, one
of the original motivations for trying to generalize the theory of [21] was to try to
compactify it. Thus, Theorem 2.12 states that if, instead of just considering ordinary
nilpotent indigenous bundles modulo p, one considers Zp-flat Frobenius invariant in-
digenous bundles, the theory of [21] is, in some sense, already compact! Put another
way, if one thinks in terms of the Witt vectors parametrizing such Zp-flat Frobenius
invariant indigenous bundles, then although the scheme defined by the first compo-
nent of the Witt vector is not “compact,” if one considers all the components of the
Witt vector, the resulting scheme is, in some sense, “compact” (i.e., ω-closed in the
space SW of all indigenous bundles over the Witt vectors). This phenomenon is sim-
ilar to the phenomenon observed in Theorem 2.9. In fact, if one combines Theorem
2.9 with Theorem 2.12, one obtains that:

In the home (i.e., classical ordinary) case, the stack Qord is ω-closed
in SW and disjoint from the closures of all QΠ′

for all non-pre-home
Π′. Moreover, Qord is naturally an ω-closed substack of QΠ′

for all
pre-home Π′.
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Figure 9. The ω-Closedness and Isolatedness of the Classical Ordinary Theory

This fact is rendered in pictorial form in Fig. 9; cf. also the discussion of §3 below.
The next main result of the generalized ordinary theory is the generalized ordinary

version of Theorem 1.2. First, let us observe that since the natural morphism N ord →
(Mg,r)Fp is étale, it admits a unique lifting to an étale morphism

N ord
Zp

→ (Mg,r)Zp

of smooth p-adic formal stacks over Zp. Unlike in the classical ordinary case, however,
where one obtains a single canonical modular Frobenius lifting, in the generalized case,
one obtains a whole system of Frobenius liftings (cf. Theorem 1.8 of [22], Chapter
VII) on N ord

Zp
:

Theorem 2.13 (Canonical System of Frobenius Liftings). — Over N ord
Zp

, there is a
canonical system of Frobenius liftings and indigenous bundles: i.e., for each indige-
nous i (i.e., such that Π(i) = χ), a lifting

Φlog
i : N ord

Zp
→ N ord

Zp

of a certain power of the Frobenius morphism, together with a collection of indigenous
bundles Pi on the tautological curve (pulled back from (Mg,r)Zp) over N ord

Zp
. Moreover,

these Frobenius liftings and bundles are compatible, in a natural sense (Definition 1.7
of [22], Chapter VII).
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See Fig. 10 for an illustration of the system of Frobenius liftings obtained for the
VF-pattern illustrated in Fig. 7.

At this point, one very important question arises:

To what extent are the stacks N ord nonempty?

Needless to say, this is a very important issue, for if the N ord are empty most of
the time, then the above theory is meaningless. In the classical ordinary case, it was
rather trivial to show the nonemptiness of N ord

g,r . In the present generalized ordinary
setting, however, it is much more difficult to show the nonemptiness of N ord. In
particular, one needs to make use of the extensive theory of [22], Chapters II and IV.
Fortunately, however, one can show the nonemptiness of N ord in a fairly wide variety
of cases (Theorems 3.1 and 3.7 of [22], Chapter VII):

Φ4
A Lifting of

The Space on which the
Frobenius Liftings Live

Φ
A Lifting of

Φ
A Lifting of

2 2

Generalized Ordinary Case
Frobenius Liftings in the

The Corresponding

A Typical Corresponding VF-Pattern (of Period 8):

..., χ, χ−1, 0, 0, χ, χ−2, χ, 0, ...

Figure 10. The Canonical System of Modular Frobenius Liftings

Theorem 2.14 (Binary Existence Result). — Suppose that g ≥ 2; r = 0; and p > 43g−3.
Then for any binary VF-pattern (i.e., VF-pattern such that Π(Z) ⊆ {0, χ}), the stack
N ord is nonempty.
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Theorem 2.15 (Spiked Existence Result). — Suppose that 2g − 2 + r ≥ 3 and p ≥ 5.
Then there exists a “spiked VF-pattern” of period 2 (i.e., 
 = 2 and 0 < Π(1) < χ)
for which N ord is nonempty.

In fact, there is an open substack of N ord called the very ordinary locus (defined by
more stringent conditions than ordinarity); moreover, one can choose the spiked VF-
pattern so that not only N ord, but also the “very ordinary locus of N ord” is nonempty.

These cases are “fairly representative” in the following sense: In general, in the binary
case, the reduction modulo p of a Π-indigenous bundle will be dormant. In the spiked
case (of Theorem 2.15), the reduction modulo p of a Π-indigenous bundle will be
spiked. Thus, in other words,

Roughly speaking, these two existence results show that for each type
(admissible, dormant, spiked) of nilcurve, there exists a theory (in
fact, many theories) of canonical liftings involving that type of nil-
curve.

Showing the existence of such a theory of canonical liftings for each generic point of
N g,r was one of the original motivations for the development of the theory of [22].

Next, we observe that just as in Theorem 1.2 (the classical ordinary case),

In the cases discussed in Theorems 2.14 and 2.15, one can also
construct canonical systems of Frobenius liftings on certain “ordinary
loci” of the universal curve over N ord

Zp
. Moreover, these systems of

canonical Frobenius lifting lie over the canonical system of modular
Frobenius liftings of Theorem 2.13.

We refer to Theorem 3.2 of [22], Chapter VIII and Theorem 3.4 of [22], Chapter IX
for more details.

We end this subsection with a certain philosophical observation. In [22], Chapter
VI,

The stack QΠ is referred to as the stack of quasi-analytic self-
isogenies.

That is to say, in some sense it is natural to regard the Frobenius invariant indigenous
bundles parametrized by QΠ as isogenies of the curve (on which the bundles are
defined) onto itself. Indeed, this is suggested by the fact that over the ordinary
locus (i.e., relative to the Frobenius invariant indigenous bundle in question) of the
curve, the bundle actually does define a literal morphism, i.e., a Frobenius lifting (as
discussed in the preceding paragraph). Thus, one may regard a Frobenius invariant
indigenous bundle as the appropriate way of compactifying such a self-isogeny to
an object defined over the whole curve. This is why we use the adjective “quasi-
analytic” in describing the self-isogenies. (Of course, such self-isogenies can never
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be p-adic analytic over the whole curve, for if they were, they would be algebraic,
which, by the Riemann-Hurwitz formula, is absurd.) Note that this point of view is
in harmony with the situation in the parabolic case (g = 1, r = 0), where there is an
algebraically defined canonical choice of indigenous bundle, and having a Frobenius
invariant indigenous bundle really does correspond to having a lifting of Frobenius
(hence a self-isogeny of the curve in question).

Moreover, note that in the case where the VF-pattern has several χ = 1
2 (2g−2+r)’s

in a period, so that there are various indigenous Pi’s in addition to the original
Frobenius invariant indigenous bundle P , one may regard the situation as follows.
Suppose that P is indigenous over a curve X → W (S), whereas Pi is indigenous over
Xi → W (S). Then one can regard the “quasi-analytic self-isogeny” P : X → X as
the composite of various quasi-analytic isogenies Pi : Xi → Xj (where i and j are
“ind-adjacent” integers). Note that this point of view is consistent with what literally
occurs over the ordinary locus (cf. Theorem 3.2 of [22], Chapter VIII). Finally, we
observe that

The idea that QΠ is a moduli space of some sort of p-adic self-
isogeny which is “quasi-analytic” is also compatible with the analogy
between QΠ and Teichmüller space (cf. the discussion of Corollary
2.7) in that Teichmüller space may be regarded as a moduli space of
quasiconformal maps (cf., e.g., [2]).

2.5. Geometrization. — In the classical ordinary case, once one knows the ex-
istence of the canonical modular Frobenius lifting (Theorem 1.2), one can apply a
general result on ordinary Frobenius liftings (Theorem 1.3) to conclude the exis-
tence of canonical multiplicative coordinates on N ord

Zp
. We shall refer to this process

of passing (as in Theorem 1.3) from a certain type of Frobenius lifting to a local
uniformization/canonical local coordinates associated to the Frobenius lifting as the
geometrization of the Frobenius lifting. In the generalized ordinary context, Theo-
rem 2.13 shows the existence of a canonical system of Frobenius liftings on the N ord

Zp

associated to a VF-pattern (Π, 
). Thus, the following question naturally arises:

Can one geometrize the sort of system of Frobenius liftings that one
obtains in Theorem 2.13 in a fashion analogous to the way in which
ordinary Frobenius liftings were geometrized in Theorem 1.3?

Unfortunately, we are not able to answer this question in general. Nevertheless, in the
cases discussed in Theorems 2.14 and 2.15, i.e., the binary and very ordinary spiked
cases, we succeed (in [22], Chapters VIII and IX) in geometrizing the canonical system
of modular Frobenius liftings. The result is uniformizations/geometries based not on
Ĝm as in the classical ordinary case, but rather on more general types of Lubin-Tate
groups, twisted products of Lubin-Tate groups, and fibrations whose bases are Lubin-
Tate groups and whose fibers are such twisted products. In the rest of this subsection,
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we would like to try to give the reader an idea of what sorts of geometries occur in
the two cases studied.

In the following, we let k be a perfect field of characteristic p, A its ring of Witt
vectors W (k), and S a smooth p-adic formal scheme over A. Let λ be a positive
integer, and let Oλ

def= W (Fpλ). For simplicity, we assume that Oλ ⊆ A. Let Gλ be
the Lubin-Tate formal group associated to Oλ. (See [3] for a discussion of Lubin-Tate
formal groups.) Then Gλ is a formal group over Oλ, equipped with a natural action
by Oλ (i.e., a ring morphism Oλ ↪→ EndOλ

(Gλ)). Moreover, it is known that the
space of invariant differentials on Gλ is canonically isomorphic to Oλ. Thus, in the
following, we shall identify this space of differentials with Oλ.

We begin with the simplest case, namely, that of a Lubin-Tate Frobenius lifting. Let
Φ : S → S be a morphism whose reduction modulo p is the λth power of the Frobenius
morphism. Then differentiating ΦS defines a morphism dΦS : Φ∗

SΩS/A → ΩS/A which
is zero in characteristic p. Thus, we may form a morphism

ΩΦ : Φ∗
SΩS/A → ΩS/A

by dividing dΦS by p. Then ΦS is called a Lubin-Tate Frobenius lifting (of order λ)
if ΩΦ is an isomorphism. If ΦS is a Lubin-Tate Frobenius lifting, then it induces a
“Lubin-Tate geometry” – i.e., a geometry based on Gλ – on S. That is to say, one has
the following analogue of Theorem 1.3 (cf. Theorem 2.17 of [22], Chapter VIII):

Theorem 2.16 (Lubin-Tate Frobenius Liftings). — Let ΦS : S → S be a Lubin-Tate
Frobenius lifting of order λ. Then taking the invariants of ΩS/A with respect to
ΩΦ gives rise to an étale local system Ωet

Φ on S of free Oλ-modules of rank equal
to dimA(S).

Let z ∈ S(k) be a point valued in the algebraic closure of k. Then Ωz
def= Ωet

Φ |z may
be thought of as a free Oλ-module of rank dimA(S); write Θz for the Oλ-dual of Ωz.
Let Sz be the completion of S at z. Then there is a unique isomorphism

Γz : Sz
∼= Gλ ⊗gp

Oλ
Θz

such that:

(i) the derivative of Γz induces the natural inclusion Ωz ↪→ ΩS/A|Sz ;

(ii) the action of ΦS on Sz corresponds to multiplication by p on Gλ ⊗gp
Oλ

Θz.

Here, by “Gλ⊗gp
Oλ

Θz,” we mean the tensor product over Oλ of (formal) group schemes
with Oλ-action. Thus, Gλ ⊗gp

Oλ
Θz is noncanonically isomorphic to the product of

dimA(S) = rankOλ
(Θz) copies of Gλ.

Of course, this result has nothing to do with the moduli of curves. In terms of VF-
patterns, Theorem 2.13 gives rise to a Lubin-Tate Frobenius lifting of order 
 when
the VF-pattern is of pure tone 
.
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The next simplest case is the case of an anabelian system of Frobenius liftings.
Let n be a positive integer. Then an anabelian system of Frobenius liftings of length
n and order λ is a collection of n Lubin-Tate Frobenius liftings

Φ1, . . . , Φn : S → S

each of order λ. Of course, in general such Frobenius liftings will not commute with
one another. In fact, it can be shown that two Lubin-Tate Frobenius liftings of order
λ commute with each other if and only if they are equal (Lemma 2.24 of [22], Chapter
VIII). This is the reason for the term“anabelian.” Historically, this term has been used
mainly in connection with Grothendieck’s Conjecture of Anabelian Geometry ([12]).
The reason why we thought it appropriate to use the term here (despite the fact that
anabelian geometries as discussed here have nothing to do with the Grothendieck
Conjecture) is the following: (Just as for the noncommutative fundamental groups of
Grothendieck’s anabelian geometry) the sort of noncommutativity that occurs among
the Φi’s (at least in the modular case – cf. Theorem 2.13) arises precisely as a result
of the hyperbolicity of the curves on whose moduli the Φi’s act.

Let δi
def= 1

pdΦi. Let ∆ def= δn◦· · ·◦δ1. Then taking invariants of ΩS/A with respect to
∆ gives rise to an étale local system Ωet

Φ on S in free Onλ-modules of rank dimA(S).
Next let SPD denote the p-adic completion of the PD-envelope of the diagonal in
the product (over A) of n copies of S; let SFM denote the p-adic completion of the
completion at the diagonal of the product (over A) of n copies of S. Thus, we have a
natural morphism

SPD → SFM

Moreover, one may think of SPD as a sort of localization of SFM. Write ΦPD : SPD →
SPD for the morphism induced by sending

(s1, . . . , sn) �→ (Φ1(s2), Φ2(s3), . . . , Φn(s1))

(where (s1, . . . , sn) represents a point in the product of n copies of S). Then we have
the following result (cf. Theorem 2.17 of [22], Chapter VIII):

Theorem 2.17 (Anabelian System of Frobenius Liftings). — Let Φ1, . . . , Φn : S → S be
a system of anabelian Frobenius liftings of length n and order λ. Let z ∈ S(k) be a
point valued in the algebraic closure of k. Then Ωz

def= Ωet
Φ |z may be thought of as a

free Onλ-module of rank dimA(S); write Θz for the Onλ-dual of Ωz. Let (SPD)z be
the completion of SPD at z. Then there is a unique morphism

Γz : (SPD)z → Gλ ⊗gp
Oλ

Θz

such that:

(i) the derivative of Γz induces a certain (see Theorem 2.15 of [22], Chapter VIII
for more details) natural inclusion of Ωz into the restriction to (SPD)|z of the differ-
entials of

∏n
i=1 S over A;
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(ii) the action of ΦPD on (SPD)z is compatible with multiplication by p on Gλ ⊗gp
Oλ

Θz.

Here, by “Gλ⊗gp
Oλ

Θz,” we mean the tensor product over Oλ of (formal) group schemes
with Oλ-action. Thus, Gλ ⊗gp

Oλ
Θz is noncanonically isomorphic to the product of

n · dimA(S) = rankOλ
(Θz) copies of Gλ.

Moreover, in general, Γz does not descend to (SFM)z (cf. [22], Chapter VIII, §2.6,
3.1).

One way to envision anabelian geometries is as follows: The various Φi’s induce
various linear Lubin-Tate geometries on the space S that (in general) do not commute
with one another. Thus, the anabelian geometry consists of various linear geometries
on S all tangled up inside each other. If one localizes in a sufficiently drastic fashion –
i.e., all the way to (SPD)z – then one can untangle these tangled up linear geometries
into a single Onλ-linear geometry (via Γz). However, the order λ Lubin-Tate geome-
tries are so tangled up that even localization to a relatively localized object such as
(SFM)z is not sufficient to untangle these geometries.

Finally, to make the connection with Theorem 2.13, we remark that the system of
Theorem 2.13 gives rise to an anabelian system of length n and order λ in the case
of a VF-pattern (Π, 
) for which 
 = n · λ, and Π(i) = χ (respectively, Π(i) = 0) if
and only if i is divisible (respectively, not divisible) by λ.

In fact, both Lubin-Tate geometries and anabelian geometries are special cases of
binary ordinary geometries (the sorts of geometries that occur for binary VF-patterns,
i.e., Π whose image ⊆ {0, χ}). A general geometrization result for binary ordinary
geometries is given in Theorem 2.17 of [22], Chapter VIII. Here, we chose to concen-
trate on the Lubin-Tate and anabelian cases (in fact, of course, Lubin-Tate geometries
are a special case of anabelian geometries) since they are relatively representative and
relatively easy to envision.

The other main type of geometry that is studied in [22] is the geometry associated
to a very ordinary spiked Frobenius lifting Φ : S → S. Such a Frobenius lifting
reduces modulo p to the square of the Frobenius morphism and satisfies various other
properties which we omit here (see Definition 1.1 of [22], Chapter IX for more details).
In particular, such a Frobenius lifting comes equipped with an invariant called the
colevel. The colevel is a nonnegative integer c. Roughly speaking,

A very ordinary spiked Frobenius lifting is a Frobenius lifting which
is “part Lubin-Tate of order 2” and “part anabelian of length 2 and
order 1.”

The colevel c is the number of dimensions of S on which Φ is Lubin-Tate of order 2.
The main geometrization theorem (roughly stated) on this sort of Frobenius lifting is
as follows (cf. Theorems 1.5 and 2.3 of [22], Chapter IX):
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Classical
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Major Types of Geometries

VF-Pattern:
..., χ, ...

(period 1)

The Fibers Get
an Anabelian Geometry

The Spiked Case

VF-Pattern:

(period 2)

..., χ,  0, χ, ...
VF-Pattern:

(period 2)

..., χ, χ, ...
VF-Pattern:

(period 2)

..., χ,  χ−1, χ, ...

Pure Tone
Anabelian

(regarded as
a geometry on
the diagonal)

the Strong Coordinates
Lubin-Tate Geometry on

(which form the base)

Figure 11. Major Types of p-adic Geometries

Theorem 2.18 (Very Ordinary Spiked Frobenius Liftings). — Let Φ : S → S be a very
ordinary spiked Frobenius lifting of colevel c. Then Φ defines an étale local system Ωst

Φ

on S of free O2-modules of rank c equipped with a natural inclusion Ωst
Φ ↪→ ΩS/A.

Let z ∈ S(k) be a point valued in the algebraic closure of k. Then Ωst
z

def= Ωst
Φ |z may

be thought of as a free O2-module of rank c; write Θst
z for the O2-dual of Ωst

z . Let Sz

be the completion of S at z. Then there is a unique morphism

Γz : Sz → G2 ⊗gp
O2

Θst
z

such that:

(i) the derivative of Γz induces the natural inclusion of Ωst
z into ΩS/A;

(ii) the action of Φ on Sz is compatible with multiplication by p on G2 ⊗gp
O2

Θst
z .

Here, the variables on Sz obtained by pull-back via Γz carry a Lubin-Tate geometry
of order 2, and are called the strong variables on Sz. Finally, the fiber of Γz over the
identity element of the group object G2⊗gp

O2
Θst

z admits an anabelian geometry of length
2 and order 1 determined by Φ (plus a “Hodge subspace” for Φ – cf. [22], Chapter IX,
§ 1.5, for more details). The variables in these fibers are called the weak variables.

Thus, in summary, Φ defines a virtual fibration on S to a base space (of dimension
c) naturally equipped with a Lubin-Tate geometry of order 2; moreover, (roughly
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speaking) the fibers of this fibration are naturally equipped with an anabelian geom-
etry of length 2 and order 1. In terms of VF-patterns, this sort of Frobenius lifting
occurs in the case 
 = 2, Π(1) 	= 0 (cf. Theorem 2.15). The colevel is then given by
2(χ−Π(1)).

Next, we note that as remarked toward the end of §2.4, in the binary ordinary and
very ordinary spiked cases one obtains geometrizable systems of Frobenius liftings not
only over N ord

Zp
(which is étale over (Mg,r)Zp) but also on the ordinary locus of the

universal curve over N ord
Zp

. (More precisely, in the very ordinary spiked case, one must
replace N ord

Zp
by the formal open substack defined by the very ordinary locus.) Thus,

in particular,

In the binary ordinary and very ordinary spiked cases, one obtains
geometries as discussed in the above theorems not only on the moduli
of the curves in question, but also on the ordinary loci of the universal
curves themselves.

See Fig. 11 for a pictorial representation of the major types of geometries discussed.
Finally, we observe that one way to understand these generalized ordinary geome-

tries is the following:

The “Lubin-Tate-ness” of the resulting geometry on the moduli stack
is a reflection of the extent to which the p-curvature (of the indigenous
bundles that the moduli stack parametrizes) vanishes.

That is to say, the more the p-curvature vanishes, the more Lubin-Tate the resulting
geometry becomes. For instance, in the case of a Lubin-Tate geometry, the order of
the Lubin-Tate geometry (cf. Theorem 2.16) corresponds precisely to the number of
dormant crys-stable bundles in a period (minus one). In the case of a spiked geometry,
the number of “Lubin-Tate dimensions” is measured by the colevel. Moreover, this
colevel is proportional to the degree of vanishing of the p-curvature of the indigenous
bundle in question.

2.6. The Canonical Galois Representation. — Finally, since we have been con-
sidering Frobenius invariant indigenous bundles,

We would like to construct representations of the fundamental group
of the curve in question into PGL2 by looking at the Frobenius in-
variant sections of these indigenous bundles.

Such representations will then be the p-adic analogue of the canonical representation
in the complex case of the topological fundamental group of a hyperbolic Riemann
surface into PSL2(R) ⊆ PGL2(C) (cf. the discussion at the beginning of §1.3). Un-
fortunately, things are not so easy in the p-adic (generalized ordinary) case because
a priori the canonical indigenous bundles constructed in Theorem 2.13 only have
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connections and Frobenius actions with respect to the relative coordinates of the tau-
tological curve over N ord

Zp
. This means, in particular, that we cannot immediately

apply the theory of [6], §2, to pass to representations of the fundamental group. To
overcome this difficulty, we must employ the technique of crystalline induction devel-
oped in [21]. Unfortunately, in order to carry out crystalline induction, one needs to
introduce an object called the Galois mantle which can only be constructed when the
system of Frobenius liftings on N ord

Zp
is geometrizable. Thus, in particular, we succeed

(in [22], Chapter X) in constructing representations of the sort desired only in the
binary ordinary and very ordinary spiked cases.

First, we sketch what we mean by the Galois mantle. The Galois mantle can
be constructed for any geometrizable system of Frobenius liftings (e.g., any of the
types discussed in §2.5). In particular, the notion of the Galois mantle has nothing
to do with curves or their moduli. For simplicity, we describe the Galois mantle
in the classical ordinary case. Thus, let S and A be as in §2.5. Let ΠS be the
fundamental group of S ⊗Zp Qp (for some choice of base-point). Let Φ be a classical
ordinary Frobenius lifting (in other words, Lubin-Tate of order 1) on S. Then by
taking Frobenius invariant sections of the tangent bundle, one obtains an étale local
system Θet

Φ on S of free Zp-modules of rank dimA(S). Moreover, Φ defines a natural
exact sequence of continuous ΠS-modules

0 → Θet
Φ (1) → EΦ → Zp → 0

where the “(1)” denotes a Tate twist, and “Zp” is equipped with the trivial ΠS-action.
Roughly speaking, this extension of ΠS-modules is given by taking the pth power
roots of the canonical multiplicative coordinates of Theorem 1.3 (cf. §2.2 of [22],
Chapter VIII for a detailed discussion of the p-divisible group whose Tate module
may be identified with EΦ). Let B′ be the affine space of dimension dimA(S) over Zp

parametrizing splittings of the above exact sequence. Then the action of ΠS on the
above exact sequence induces a natural action of ΠS on B′. Roughly speaking, the
Galois mantle B associated to Φ is the p-adic completion of a certain kind of p-adic
localization of B.

More generally, to any geometrizable system of Frobenius liftings
(as in § 2.5) on S, one can associate a natural p-adic space B – the
Galois mantle associated to the system of Frobenius liftings – with
a continuous ΠS-action. In the binary ordinary case, B will have a
natural affine structure over some finite étale extension of Zp. In the
very ordinary spiked case, B will be fibred over an affine space over
O2 with fibers that are also equipped with an affine structure over O2.

In fact, to be more precise, B is only equipped with an action by a certain open
subgroup of ΠS , but we shall ignore this issue here since it is rather technical and not
so important. We refer to §2.3 and §2.5 of [22], Chapter IX for more details on the
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Galois mantle. So far, for simplicity, we have been ignoring the logarithmic case, but
everything is compatible with log structures.

We are now ready to state the main result on the canonical Galois representation
in the generalized ordinary case, i.e., the generalized ordinary analogue of Theorem
1.4 (cf. Theorems 1.2 and 2.2 of [22], Chapter X). See Fig. 12 for a graphic depiction
of this theorem.

Theorem 2.19 (Canonical Galois Representation). — Let p be an odd prime. Let g and
r be nonnegative integers such that 2g − 2 + r ≥ 1. Fix a VF-pattern (Π, 
) which is
either binary ordinary or spiked of order 2. Let S

def= N ord
Zp

in the binary ordinary case,
and let S be the very ordinary locus of N ord

Zp
in the spiked case. Let Z → S be a certain

appropriate finite covering which is log étale in characteristic zero (cf. the discussion
preceding Theorems 1.2 and 2.2 of [22], Chapter X for more details). Let X log

Z → Z log

be the tautological log-curve over Z log. Let ΠXZ (respectively, ΠZ) be the fundamental
group of X log

Z ⊗Zp Qp (respectively, Z log ⊗Zp Qp) for some choice of base-point. (Of
course, despite the similarity in notation, these fundamental groups have no direct
relation to the VF-pattern “Π.”) Thus, there is a natural morphism ΠXZ → ΠZ .
Let B be the Galois mantle associated to the canonical system of Frobenius liftings of
Theorem 2.13. The morphism ΠXZ → ΠZ allows us to regard B as being equipped
with a ΠXZ -action.

Let P be the tautological Π-indigenous bundle on X. Then by taking Frobenius
invariants of P, one obtains a P1-bundle

PB → B

equipped with a natural continuous ΠXZ -action compatible with the above-mentioned
action of ΠXZ on the Galois mantle B.

Put another way, one obtains a twisted homomorphism of ΠXZ into PGL2 of the
functions on B. (Here, “twisted” refers to the fact that the multiplication rule obeyed
by the homomorphism takes into account the action of ΠXZ on the functions on B.)
Finally, note that for any point of Z⊗Zp Qp (at which the log structure is trivial), one
also obtains similar representations by restriction. This gives one canonical Galois
representations even in the non-universal case.

Finally, in [22], Chapter X, §1.4, 2.3, we show that:

The Galois representation of Theorem 2.19 allows one to relate the
various p-adic analytic structures constructed throughout [22] (i.e.,
canonical Frobenius liftings, canonical Frobenius invariant indigenous
bundles, etc.) to the algebraic/arithmetic Galois action on the profi-
nite Teichmüller group (cf. [22], Chapter X, Theorems 1.4, 2.3).
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Figure 12. The Canonical Galois Representation

More precisely: By iterating the canonical Frobenius liftings on N def= N ord
Zp

, we obtain
a certain natural infinite covering

N [∞] → N

(i.e., projective limit of finite coverings which are log étale in characteristic zero). On
the other hand, if we denote by

CZp →MZp

def= (Mlog

g,r)Zp

the universal log-curve over the moduli stack, and by Cη the geometric generic fiber of
this morphism, then the natural outer action π1(MQp) (i.e., action on a group defined
modulo inner automorphisms of the group) on π1(Cη) defines an action of π1(MQp)
on

RepQp

def= Rep(πtop
1 (X ), PGL2(O�))

(where O� is defined to be the ring of Witt vectors with coefficients in the finite field
of p� elements, and “Rep” denotes the set of isomorphism classes of homomorphisms
πtop

1 (X ) → PGL2(O�); two such homomorphisms are regarded as isomorphic if they
differ by composition with an inner automorphism of PGL2(O�)). Moreover, this
action defines (by the “definition of π1”) an infinite étale covering RQp →MQp . We
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denote the normalization of MZp in RQp by RZp . Let M̂ be the p-adic completion

of MZp , and R̂ def= RZp ×MZp
M̂Zp . Then the main results on this topic (i.e., [22],

Chapter X, Theorems 1.4, 2.3) state that the Galois of representation of Theorem
2.19 induces a commutative diagram

N [∞] �κ−−−−→ R̂
 

N −−−−→ M̂

in which the horizontal morphism (which is denoted κ̂ in [22], Chapter X) on top is
an open immersion.

The proof that κ̂ is an open immersion divides naturally into three parts, corre-
sponding to the three “layers” of the morphism N [∞] → M̂. The first layer is the
quasi-finite (but not necessarily finite) étale morphism N → M̂. Because the mor-
phism N → M̂ is étale even in characteristic p, this layer is rather easy to understand.
The second layer corresponds to the finite covering Z → S of Theorem 2.19. Together,
the first and second layers correspond to the “mod p portion” of the Galois represen-
tation of Theorem 2.19 – i.e., the first layer corresponds to the “slope zero portion”
of this representation modulo p, while the second layer corresponds to the “positive
slope portion” of this representation modulo p. From the point of view of the “MF∇-
objects” over B(N ) (cf. the discussion following Definition 2.5 in §2.3) corresponding
to the representation of Theorem 2.19, this slope zero portion (i.e., the first layer)
parametrizes the isomorphism class of these MF∇-objects over (B(N )Fp )red, while
the positive slope portion (i.e., the second layer) parametrizes the isomorphism class
of the deformations of these MF∇-objects from bundles on curves over (B(N )Fp)red
to bundles on curves over B(N )Fp .

Finally, the third layer of the covering is what remains between N [∞] and the
“Z” of Theorem 2.19. This portion is the analytic portion of the covering (i.e., the
portion of the covering equipped with a natural “analytic structure”). Put another
way, this portion is the portion of the covering which is dealt with by the technique of
crystalline induction (which is concerned precisely with equipping this portion of the
covering with a natural “crystalline” analytic structure – cf. [22], Chapter IX, §2.3 –
especially the Remark following Theorem 2.11 – for more details).

Thus, the fact that the morphism κ̂ “does not omit any information” at all three
layers is essentially a tautological consequence of the various aspects of the extensive
theory developed throughout [22]. From another point of view, by analyzing this
morphism κ̂, we obtain a rather detailed understanding of a certain portion of the
canonical tower of coverings of MQp

def= (Mlog

g,r)Qp given by

RQp →MQp
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analogous to the analysis given in [19] of coverings of the moduli stack of elliptic curves
over Zp obtained by considering p-power torsion points (cf. the Remark following [22],
Chapter X, Theorem 1.4, for more details).

Thus, in summary, Theorem 2.19 concludes our discussion of “p-adic Teichmüller
theory” as exposed in [22] by constructing a p-adic analogue of the canonical rep-
resentation discussed at the beginning of §1.3, that is to say, a p-adic analogue of
something very close to the Fuchsian uniformization itself – which was where our
discussion began (§1.1).

3. Conclusion

Finally, we pause to take a look at what we have achieved. Just as in §1, we would
like to describe the p-adic theory by comparing it to the classical theory at the infinite
prime. Thus, let us write

CC →MC
def= (Mlog

g,r)C

for the universal log-curve over the moduli stack (Mlog

g,r)C of r-pointed stable log-
curves of genus g over the complex numbers. Let us fix a “base-point” (say, in the
interior – i.e., the open substack parametrizing smooth curves – of MC) [X ] ∈MC(C)
corresponding to some hyperbolic algebraic curve X over C. Let us write X def= X(C)
for the corresponding hyperbolic Riemann surface. Next, let us consider the space

RepC
def= Rep(πtop

1 (X ), PGL2(C))

of isomorphism classes of representations of the topological fundamental group πtop
1 (X )

into PGL2(C). This space has the structure of an algebraic variety over C, induced
by the algebraic structure of PGL2(C) by choosing generators of πtop

1 (X ). Note,
moreover, that as [X ] varies, the resulting spaces Rep(π1(X ), PGL2(C)) form a local
system on MC (valued in the category of algebraic varieties over C) which we denote
by

RC →MC

One can also think of RC as the local system defined by the natural action of
πtop

1 (MC(C)) on RepC
def= Rep(πtop

1 (X ), PGL2(C)) which is induced by the natu-
ral outer action of πtop

1 (MC(C)) on πtop
1 (X ) – cf. the discussion of the p-adic case at

the end of §2.6 above (for more details, see [22], Chapter X, §1.4, 2.3).
Next, let us denote by

QF ⊆ RC

the subspace whose fiber over a point [Y ] ∈ MC(C) is given by the representations
πtop

1 (Y) → PGL2(C) that define quasi-Fuchsian groups (cf. §1.4), i.e., simultaneous
uniformizations of pairs of Riemann surfaces (of the same type (g, r)), for which one

ASTÉRISQUE 278



AN INTRODUCTION TO p-ADIC TEICHMÜLLER THEORY 47

(say, the “first” one) of the pair of Riemann surfaces uniformized is the Riemann sur-
face Y corresponding to [Y ]. Thus, whereas the fibers of RC →MC are of dimension
2(3g − 3 + r) over C, the fibers of QF →MC are of dimension 3g − 3 + r over C.

Hyperbolic Curves
Moduli Stack of

Local System of
Representations

into PGL 2

System

Integral Subspaces
of Fibers of Local

Figure 13. Integral Subspaces of the Local System of Representations

Then, relative to the notation of [22], Chapter X, §1.4, 2.3, the analogy between
the complex and p-adic cases may be summarized by the following diagram:

QF ⇐⇒ N [∞]⋂ ⋂
(RC →MC) ⇐⇒ (R̂ → M̂)

(where the vertical inclusion on the left is the natural one; and the vertical inclusion
on the right is the morphism κ̂ of [22], Chapter X, Theorems 1.4, 2.3). We also give
an illustration (Fig. 13) of this sort of situation. Relative to this illustration, the
“integral (or bounded) subspaces” of the local system are QF and N [∞] (cf. §1.4
for an explanation of the term “integral”). Note that just as in the complex case, the
fibers of the coveringN [∞] → M̂ have, so to speak, “Galois dimension”3g−3+r over
O� (cf. the crystalline induction portion of the proof of [22], Chapter X, Theorem
1.4), whereas the fibers of the covering R̂ → M̂ are of “Galois dimension”2(3g−3+r)
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over O�. In the p-adic case, N [∞] denotes the “crystalline” or “Frobenius invariant
indigenous bundle” locus of R̂ – cf. the discussion of §1.4.

In the complex case, the “Frobenius” (i.e., complex conjugation) invariant portion
of QF is the space of Fuchsian groups, hence defines the Bers uniformization of
Teichmüller space (cf. §1.5). On the other hand, in the p-adic case, the covering
N [∞] → M̂ is “made up of” composites of Frobenius liftings, by forgetting that these
Frobenius liftings are morphisms from a single space to itself, and just thinking of
them as coverings. If one then invokes the structure of Frobenius liftings as morphisms
from a single space to itself, one so-to-speak recovers the original Frobenius liftings,
which (by the theory of [22], Chapters VIII and IX) define p-adic uniformizations of
(Mlog

g,r)Zp .
In the complex case, the space of quasi-Fuchsian groups QF may also be inter-

preted in terms of quasi-conformal maps. Similarly, in the p-adic case, one may inter-
pret integral Frobenius invariant indigenous bundles as quasi-analytic self-isogenies
of hyperbolic curves (cf. the end of §2.4).

Finally, in the complex case, although QF is not closed in RC, the space QF (when
regarded as a space of representations) is complete relative to the condition that the
representations always define indigenous bundles for some conformal structures on
the two surfaces being uniformized. Note that one may think of these two surfaces as
reflections of another, i.e., translates of one another by some action of Frobenius at
the infinite prime (i.e., complex conjugation). Similarly, although N [∞] is not closed
in R̂, it is complete (at least for binary VF-patterns Π) in the sense discussed at the
end of [22], Chapter X, §1.4, i.e., relative to the condition that the representation
always defines an indigenous bundle on the universal thickening B+(−) of the base.
Note that this thickening B+(−) is in some sense the minimal thickening of (the
normalization of the maximal log étale in characteristic zero extension of) “(−)” that
admits an action of Frobenius (cf. the theory of [22], Chapter VI, §1; B+(−) is the
PD-completion of the rings B(−) discussed in [22], Chapter VI, §1; in fact, instead
of using B+(−) here, it would also be quite sufficient to use the rings B(−) of [22],
Chapter VI, §1). In other words, just as in the complex case,

N [∞] is already complete relative to the condition that the represen-
tations it parametrizes always define indigenous bundles on the given
curve and all of its Frobenius conjugates.
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Abstract. — We study in detail certain natural continuous representations of G =
GLn(K) in locally convex vector spaces over a locally compact, non-archimedean field
K of characteristic zero. We construct boundary value maps, or integral transforms,
between subquotients of the dual of a “holomorphic” representation coming from
a p-adic symmetric space, and “principal series” representations constructed from
locally analytic functions on G. We characterize the image of each of our integral
transforms as a space of functions on G having certain transformation properties and
satisfying a system of partial differential equations of hypergeometric type.

This work generalizes earlier work of Morita, who studied this type of represen-
tation of the group SL2(K). It also extends the work of Schneider-Stuhler on the
De Rham cohomology of p-adic symmetric spaces. We view this work as part of a
general program of developing the theory of such representations.

Introduction

In this paper, we study in detail certain natural continuous representations of G =
GLn(K) in locally convex vector spaces over a locally compact, non-archimedean field
K of characteristic zero. We construct boundary value maps, or integral transforms,
between subquotients of the dual of a “holomorphic” representation coming from a p-
adic symmetric space, and “principal series” representations constructed from locally
analytic functions on G. We characterize the image of each of our integral transforms
as a space of functions on G having certain transformation properties and satisfying
a system of partial differential equations of hypergeometric type.

This work generalizes earlier work of Morita, who studied this type of representation
of the group SL2(K). It also extends the work of Schneider-Stuhler on the De Rham
cohomology of p-adic symmetric spaces. We view this work as part of a general
program of developing the theory of such representations.
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A major motivation for studying continuous representations of p-adic groups comes
from the observation that, in traditional approaches to the representation theory of
p-adic groups, one separates representations into two essentially disjoint classes – the
smooth representations (in the sense of Langlands theory) and the finite dimensional
rational representations. Such a dichotomy does not exist for real Lie groups, where
the finite dimensional representations are “smooth.” The category of continuous rep-
resentations which we study is broad enough to unify both smooth and rational rep-
resentations, and one of the most interesting features of our results is the interaction
between these two types of representations.

The principal tools of this paper are non-archimedean functional analysis, rigid
geometry, and the “residue”theory developed in the paper [ST]. Indeed, the boundary
value maps we study are derived from the residue map of [ST].

Before summarizing the structure of our paper and discussing our main results, we
will review briefly some earlier, related results.

The pioneering work in this area is due to Morita ([Mo1-Mo6]). He intensively stud-
ied two types of representations of SL2(K). The first class of representations comes
from the action of SL2(K) on sections of rigid line bundles on the one-dimensional
rigid analytic space X obtained by deleting the K-rational points from P1

/K ; this
space is often called the p-adic upper half plane. The second class of representations
is constructed from locally analytic functions on SL2(K) which transform by a locally
analytic character under the right action by a Borel subgroup P of SL2(K). This
latter class make up what Morita called the (p-adic) principal series.

Morita showed that the duals of the “holomorphic” representations coming from
the p-adic upper half plane occur as constituents of the principal series. The simplest
example of this is Morita’s pairing

(∗) Ω1(X)× Can(P1(K), K)/K −→ K

between the locally analytic functions on P1(K) modulo constants (a“principal series”
representation, obtained by induction from the trivial character) and the 1-forms on
the one-dimensional symmetric space (a holomorphic representation.)

Morita’s results illustrate how continuous representation theory extends the the-
ory of smooth representations. Under the pairing (*), the locally constant functions
on P1(K) modulo constants (a smooth representation known as the Steinberg repre-
sentation) are a G-invariant subspace which is orthogonal to the subspace of Ω1(X)
consisting of exact forms. In particular, this identifies the first De Rham cohomology
group of the p-adic upper half plane over K with the K-linear dual of the Steinberg
representation.

The two types of representations considered by Morita (holomorphic discrete series
and principal series) have been generalized to GLn.

The “holomorphic” representations defined in [Sch] use Drinfeld’s d-dimensional p-
adic symmetric space X. The space X is the complement in Pd

/K of the K-rational
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hyperplanes. The action of the group G := GLd+1(K) on Pd preserves the missing
hyperplanes, and therefore gives an action of G on X and a continuous action of
G on the infinite dimensional locally convex K-vector space O(X) of rigid functions
on X. The (p-adic) holomorphic discrete series representations are modelled on this
example, and come from the action of G on the global sections of homogeneous vector
bundles on Pd restricted to X. There is a close relationship between these holomorphic
representations and classical automorphic forms, coming from the theory of p-adic
uniformization of Shimura varieties ([RZ], [Var]).

The second type of representation we will study are the “locally analytic” represen-
tations. Such representations are developed systematically in a recent thesis of Féaux
de Lacroix ([Fea]). He defines a class of representations (which he calls “weakly ana-
lytic”) in locally convex vector spaces V over K, relying on a general definition of a
V -valued locally analytic function. Such a representation is a continuous linear action
of G on V with the property that, for each v, the orbit maps fv(g) = g · v are locally
analytic V -valued functions on G. Notice that locally analytic representations include
both smooth representations and rational ones.

Féaux de Lacroix’s thesis develops some of the foundational properties of this type
of representation. In particular, he establishes the basic properties of an induction
functor (analytic coinduction). If we apply his induction to a one-dimensional locally
analytic representation of a Borel subgroup of G, we obtain the p-adic principal series.

In this paper, we focus on one holomorphic representation and analyze it in terms of
locally analytic principal series representations. Specifically, we study the representa-
tion of G = GLd+1(K) on the space Ωd(X) of d-forms on the d-dimensional symmetric
space X. Our results generalize Morita, because we work in arbitrary dimensions, and
Schneider-Stuhler, because we analyze all of Ωd(X), not just its cohomology. Despite
our narrow focus, we uncover new phenomena not apparent in either of the other
works, and we believe that our results are representative of the general structure of
holomorphic discrete series representations.

Our main results describe a d-step, G-invariant filtration on Ωd(X) and a corre-
sponding filtration on its continuous linear dual Ωd(X)′. We establish topological
isomorphisms between the d + 1 subquotients of the dual filtration and subquotients
of members of the principal series. The j-th such isomorphism is given by a“boundary
value map” I [j].

The filtration on Ωd(X) comes from geometry and reflects the fact that X is a
hyperplane complement. The first proper subspace Ωd(X)1 in the filtration on Ωd(X)
is the space of exact forms, and the first subquotient is the d-th De Rham cohomology
group.

The principal series representation which occurs as the j-th subquotient of the dual
of Ωd(X) is a hybrid object blending rational representations, smooth representations,
and differential equations. The construction of these principal series representations
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is a three step process. For each j = 0, . . . , d, we first construct a representation
Vj of the maximal parabolic subgroup Pj of G having a Levi subgroup of shape
GLj(K) × GLd+1−j(K). The representation Vj (which factors through this Levi
subgroup) is the tensor product of a simple rational representation with the Steinberg
representation of one of the Levi factors. In the second step, we apply analytic
coinduction to Vj to obtain a representation of G.

The third step is probably the most striking new aspect of our work. For each
j, we describe a pairing between a generalized Verma module and the representation
induced from Vj . We describe a submodule dj of this Verma module such that I [j] is a
topological isomorphism onto the subspace of the induced representation annihilated
by dj :

I [j] : [Ωd(X)j/Ωd(X)j+1]′ ∼−→ Can(G, Pj ; Vj)dj=0

The generators of the submodules dj make up a system of partial differential equa-
tions. Interestingly, these differential equations are hypergeometric equations of the
type studied by Gelfand and his collaborators (see [GKZ] for example). Specifically,
the equations which arise here come from the adjoint action of the maximal torus of
G on the (transpose of) the unipotent radical of Pj .

For the sake of comparison with earlier work, consider the two extreme cases when
j = 0 and j = d. When j = 0, the group Pj is all of G, the representation Vj is
the Steinberg representation of G, and the induction is trivial. The submodule d0 is
the augmentation ideal of U(g), which automatically kills Vj because Steinberg is a
smooth representation.

When j = d, Vd is an one-dimensional rational representation of Pd, and the
module dd is zero, so that there are no differential equations. In this case we obtain
an isomorphism between the bottom step in the filtration and the locally analytic
sections of an explicit homogeneous line bundle on the projective space G/Pd. When
d = 1, these two special cases (j = 0 and j = 1) together for SL2(K) are equivalent
to Morita’s theory applied to Ω1(X).

We conclude this introduction with an outline of the sections of this paper. In
sections one and two, we establish fundamental properties of Ωd(X) as a topological
vector space and as a G-representation. For example, we show that Ωd(X) is a reflexive
Fréchet space.

We introduce our first integral transform in section 2. Let ξ be the logarithmic
d-form on Pd with first order poles along the coordinate hyperplanes. We study the
map

I : Ωd(X)′ −→ Can(G, K)
λ �−→ [g �→ λ(g∗ξ)].

We show that functions in the image of I satisfy both discrete relations and differential
equations, although we are unable to precisely characterize the image of the map I.
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In section 3, we study the map I in more detail. We make use of the kernel function
introduced in [ST], and attempt to clarify the relationship between the transform I

and the results of that paper. Properties of the kernel function established in [ST],
augmented by some new results, yield a map

Io : Ωd(X)′ −→ C(G/P, K)/Cinv(G/P, K)

where C(G/P, K) denotes the continuous functions on G/P and Cinv(G/P, K) denotes
the subspace generated by those continuous functions invariant by a larger parabolic
subgroup. Using the “symmetrization map” of Borel and Serre, we show that the
map Io contains the same information as the original transform I. The map Io has
the advantage of targeting the possibly simpler space of functions on the compact
space G/P . However, as was shown in [ST], the kernel function is locally analytic
only on the big cell; it is continuous on all of G/P , but has complicated singularities
at infinity. For this reason, the image of the map Io does not lie inside the space of
locally analytic functions. Introducing a notion of “analytic vectors” in a continuous
representation, we prove that the image of Io lies inside the subspace of analytic
vectors, and so we can make sense of what it means for a function in the image of Io

to satisfy differential equations. However, as with I, we cannot completely describe
the image of this “complete” integral transform, and to obtain precise results we must
pass to subquotients of Ωd(X)′.

In the course of our analysis in section 3, we obtain the important result that the
space of logarithmic forms (generated over K by the g∗ξ) is dense in Ωd(X), and
consequently our maps I and Io are injective.

In section 4, we focus our attention on the differential equations satisfied by the
functions in the image of the transform I. More precisely, let b be the annihilator in
U(g) of the special logarithmic form ξ. Any function in the image of I is killed by b.
The key result in this section is the fact that the left U(g)-module U(g)/b = U(g)ξ
has one-dimensional weight spaces for each weight in the root lattice of G. In some
weak sense, the U(g)-module U(g)ξ plays the role of a Harish-Chandra (g, K)-module
in our p-adic setting.

The filtration on Ωd(X) is closely related to a descending filtration of U(g) by left
ideals

U(g) = b0 ⊃ b1 ⊃ · · · ⊃ bd+1 = b.

By combinatorial arguments using weights, we show that the subquotients of this
filtration are finite direct sums of irreducible highest weight U(g)-modules. Each of
these modules has a presentation as a quotient of a generalized Verma module by
a certain submodule. These submodules are the modules dj which enter into the
statement of the main theorem.

In section 5, we obtain a “local duality” result. Let Ωd
b(U

0) be the Banach space
of bounded differential forms on the admissible open set U0 in X which is the inverse
image, under the reduction map, of an open standard chamber in the Bruhat-Tits
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building of G. Let B be the Iwahori group stabilizing this chamber, and let O(B)b=0

be the (globally) analytic functions on B annihilated by the (left invariant) differential
operators in b. We construct a pairing which induces a topological isomorphism
between the dual space (O(B)b=0)′ and Ωd

b(U
0).

We go on in section 5 to study the filtration of O(B)b=0 whose terms are the
subspaces killed by the successively larger ideals bi. We compute the subquotients of
this local filtration, and interpret them as spaces of functions satisfying systems of
partial differential equations. These local computations are used in a crucial way in
the proof of the main theorem.

In section 6, we return to global considerations and define our G-invariant filtration
on Ωd(X). We define this filtration first on the algebraic differential forms on X. These
are the rational d-forms having poles along an arbitrary arrangement of K-rational
hyperplanes. The algebraic forms are dense in the rigid forms, and we define the
filtration on the full space of rigid forms by taking closures. A “partial fractions”
decomposition due to Gelfand-Varchenko ([GV]) plays a key role in the definition of
the filtration and the proof of its main properties.

In section 7, we use rigid analysis to prove that the first step in the global filtration
coincides with the space of exact forms; this implies in particular that the exact
forms are closed in Ωd(X). The desired results follow from a “convergent partial
fractions” decomposition for global rigid forms on Ωd(X). One major application of
this characterization of the first stage of the filtration is that it allows us to relate
the other stages with subspaces of forms coming by pull-back from lower dimensional
p-adic symmetric spaces. Another consequence of the results of this section is an
analytic proof of that part of the main theorem of [SS] describing Hd

DR(X) in terms
of the Steinberg representation.

In section 8, we prove the main theorem, identifying the subquotients of the fil-
tration on the dual of Ωd(X) with the subspaces of induced representations killed by
the correct differential operators. All of the prior results are brought to bear on the
problem. We show that the integral transform is bijective by showing that an ele-
ment of the induced representation satisfying the differential equations can be written
as a finite sum of G-translates of elements of a very special form, and then explic-
itly exhibiting an inverse image of such a special element. The fact that the map
is a topological isomorphism follows from continuity and a careful application of an
open-mapping theorem.

Part of this work was presented in a course at the Institut Henri Poincaré during
the “p-adic semester” in 1997 . We are very grateful for this opportunity as well as for
the stimulating atmosphere during this activity. The second author was supported
by grants from the National Science Foundation.
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0. Notations and conventions

For the reader’s convenience, we will begin by summarizing some of the notation
we use in this paper. In general, we have followed the notational conventions of [ST].

Let K denote a fixed, non-archimedean locally compact field of characteristic zero,
residue characteristic p > 0 and ring of integers o. Let | · | be the absolute value on
K, let ω : K → Z be the normalized additive valuation, and let π be a uniformizing
parameter. We will use Cp for the completion of an algebraic closure of K.

Fix an integer d ≥ 1 and let Pd be the projective space over K of dimension d.
We let G := GLd+1(K), and adopt the convention that G acts on Pd through the left
action g([q0 : · · · : qd]) = [q0 : · · · : qd]g−1. We let T be the diagonal torus in G, and
T the image of T in PGLd+1(K). We use ε0, . . . , εd for the characters of T , where, if
t = (tii)d

i=0 is a diagonal matrix, then εi(t) = tii.
The character group X∗(T ) is the root lattice of G. It is spanned by the set

Φ := {εi − εj : 0 ≤ i 	= j ≤ d} of roots of G. Let Ξ0, . . . , Ξd be homogeneous
coordinates for Pd. Suppose that µ ∈ X∗(T ), and write µ =

∑d
i=0 miεi. We let

Ξµ =
d∏

i=0

Ξmi

i .

Since µ belongs to the root lattice, we know that
∑d

i=0 mi = 0, and therefore Ξµ is a
well-defined rational function on Pd.

Certain choices of µ arise frequently and so we give them special names. For
i = 0, . . . , d−1 we let βi = εi− εd and β = β0 + · · ·+βd−1. We also let αi = εi+1− εi,
for i = 0, . . . , d − 1. The set {αi}d−1

i=0 is a set of simple roots. We also adopt the
convention that αd = ε0 − εd. Any weight µ in X∗(T ) may be written uniquely as a
sum µ =

∑d
i=0 miαi with integers mi ≥ 0 of which at least one is equal to 0. If µ is

written in this way, we let �(µ) := md.

As mentioned in the introduction, we let X denote Drinfeld’s d-dimensional p-adic
symmetric space. The space X is the complement in Pd of the K-rational hyper-
planes. The G-action on Pd preserves X. The structure of X as a rigid analytic space
comes from an admissible covering of X by an increasing family of open K-affinoid
subvarieties Xn. To define the subdomains Xn, let H denote the set of hyperplanes
in Pd which are defined over K. For any H ∈ H let �H be a unimodular linear form
in Ξ0, . . . , Ξd such that H is the zero set of �H . (Here, and throughout this paper, a
linear form �H is called unimodular if it has coefficients in o and at least one coefficient
is a unit.)

The set Xn consists of the set of points q ∈ Pd such that

ω(�H([q0 : · · · : qd])) ≤ n

for any H ∈ H whenever [q0 : q1 : · · · : qd] is a unimodular representative for the
homogeneous coordinates of q. We denote by O(X) the ring of global rigid analytic
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functions on X, and by Ωi(X) the global i-forms. By H∗
DR(X) we mean the rigid-

analytic De Rham cohomology of X.
The space X has a natural G-equivariant map (the reduction map) r : X → X

to the Bruhat-Tits building X of PGLd+1(K). For the definition of this map, see
Definition 2 of [ST].

The torus T stabilizes a standard apartment A in X . The Iwahori group

B := {g ∈ GLd+1(o) : g is lower triangular mod π}

is the pointwise stabilizer of a certain closed chamber C in A ⊂ X . Following the
conventions of [ST], we mean by (C, 0) the chamber C together with the vertex 0
stabilized by GLd+1(o). We will frequently denote a random closed chamber in X with
the letter ∆, while ∆0 will denote the interior of ∆. The inverse image U0 = r−1(C

0
)

of the open standard chamber C
0

under the reduction map is an admissible open
subset in X.

In addition to these conventions regarding roots and weights of G, we use the
following letters for various objects associated with G:

P := the lower triangular Borel subgroup of G

U := the lower triangular unipotent group of G

N := the normalizer of T in G

W := the Weyl group N/T of G

wd+1 := the longest element in W

Ps := P ∪ PsP for any simple reflection s ∈ W

For an element g ∈ Uwd+1P in the big cell we define ug ∈ U by the identity g =
ugwd+1h with h ∈ P .

Corresponding to a root α = εi−εj we have a homomorphism α̃ : K+ → G sending
u ∈ K+ to the matrix (urs) with:

urs =


1 if r = s

u if r = i and s = j

0 otherwise.

The image Uα of α̃ in G is the root subgroup associated to α. It is filtered by the
subgroups Uα,r := α̃({u ∈ K : ω(u) ≥ r}) for r ∈ R. For a point x ∈ A we define Ux

to be the subgroup of G generated by all Uα,−α(x) for α ∈ Φ.

1. Ωd(X) as a locally convex vector space

We begin by establishing two fundamental topological properties of Ωd(X). We
construct a family of norms on Ωd(X), parameterized by chambers of the building X ,
which defines the natural Fréchet topology (coming from its structure as a projective
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limit of Banach spaces) on Ωd(X). We further show the fundamental result that Ωd(X)
is a reflexive Fréchet space.

We first look at the space O(X). For any open K-affinoid subvariety Y ⊆ X its ring
O(Y) of analytic functions is a K-Banach algebra with respect to the spectral norm.
We equip O(X) with the initial topology with respect to the family of restriction maps
O(X) → O(Y). Since the increasing family of open K-affinoid subvarieties Xn forms
an admissible covering of X ([SS] Sect. 1) we have

O(X) = lim←−
n

O(Xn)

in the sense of locally convex K-vector spaces. It follows in particular that O(X) is a
Fréchet space. Using a basis η0 of the free O(X)-module Ωd(X) of rank 1 we topologize
Ωd(X) by declaring the linear map

O(X) ∼−→ Ωd(X)
F �−→ Fη0

to be a topological isomorphism; the resulting topology is independent of the choice of
η0. In this way Ωd(X) becomes a Fréchet space, too. Similarly each Ωd(Xn) becomes
a Banach space. In the following we need a certain G-invariant family of continuous
norms on Ωd(X). First recall the definition of the weights

βi := εi − εd for 0 ≤ i ≤ d− 1.

We have
Ωd(X) = O(X) dΞβ0 ∧ · · · ∧ dΞβd−1 .

The torus T acts on the form dΞβ0 ∧ · · · ∧ dΞβd−1 through the weight

β := β0 + · · ·+ βd−1.

For any point q ∈ X such that z := r(q) ∈ A we define a continuous (additive)
semi-norm γq on Ωd(X) by

γq(η) := ω(F (q)) + β(z) if η = FdΞβ0 ∧ · · · ∧ dΞβd−1 .

Lemma 1.1. — Let q ∈ X such that x := r(q) ∈ A; we then have

γgq = γq ◦ g−1 for any g ∈ N ∪ Ux.

Proof. — First let g ∈ G be any element such that gx ∈ A. Using [ST] Cor. 4 and the
characterizing property of the function µ(g−1, .) ([ST] Def. 28) one easily computes

γgq − γq ◦ g−1 = ω

g−1
∗ Ξ0

Ξ0
(q) · · · g

−1
∗ Ξd

Ξd
(q)

+ ω(det g).

Obviously the right hand side vanishes if g is a diagonal or permutation matrix and
hence for any g ∈ N . It remains to consider a g = α̃(u) ∈ Uα,−α(x) for some root
α ∈ Φ. Then the right hand side simplifies to ω(1−uΞα(q)) = ω(Ξα(gq))−ω(Ξα(q)).
According to [ST] Cor. 4 this is equal to α(r(gq)) − α(r(q)) = α(x)− α(x) = 0.
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This allows us to define, for any point q ∈ X, a continuous semi-norm γq on Ωd(X)
by

γq := γgq ◦ g

where g ∈ G is chosen in such a way that r(gq) ∈ A. Moreover, for any chamber ∆
in X, we put

γ∆ := inf
r(q)∈∆0

γq.

Since r−1(∆) is an affinoid ([ST] Prop. 13) this is a continuous semi-norm. To see
that it actually is a norm let us look at the case of the standard chamber C. Let
η = F · dΞαd−1 ∧ · · · ∧ dΞα0 ∈ Ωd(X). Since F |U0 is bounded we have the expansion

F |U0 =
∑

µ∈X∗(T )

a(µ)Ξµ

with a(µ) ∈ K and {ω(a(µ)) − l(µ)}µ bounded below. Since the restriction map
Ωd(X) −→ Ωd(U0) is injective we have the norm

ωC(η) := inf
µ
{ω(a(µ))− l(µ)} = inf

q∈U0
ω(F (q))

on Ωd(X).

Lemma 1.2. — ωC ≤ γC ≤ ωC + 1.

Proof. — Let η := F · dΞαd−1 ∧ · · · ∧ dΞα0 . The identity

dΞαd−1 ∧ · · · ∧ dΞα0 = ±Ξ−β−αd
dΞβ0 ∧ · · · ∧ dΞβd−1

together with [ST] Cor. 4 implies

γq(η) = ω(F (q)) + ω(Ξ−β−αd
(q)) + β(z) = ω(F (q))− αd(z)

for r(q) = z ∈ C
0
. Because of −1 ≤ αd|C ≤ 0 we obtain

ω(F (q)) ≤ γq(η) ≤ ω(F (q)) + 1

for any q ∈ U0. It remains to recall that ωC(η) = inf
q∈U0

ω(F (q)).

This shows that all the γ∆ are continuous norms on Ωd(X). In fact the family of
norms {γ∆}∆ defines the Fréchet topology of Ωd(X). In order to see this it suffices to
check that the additively written spectral norm ω∆ for the affinoid r−1(∆) satisfies

ω∆(F ) = inf
r(q)∈∆0

ω(F (q)) for F ∈ O(X).

Let XB denote Berkovich’s version of the rigid analytic variety X. Each point q ∈ XB

gives rise to the multiplicative semi-norm F �→ ω(F (q)) on O(X). If one fixes F ∈
O(X) then the function q �→ ω(F (q)) is continuous on XB. We need the following
facts from [Be2]:

– The reduction map r : X → X extends naturally to a continuous map rB :
XB → X .
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– The map rB has a natural continuous section sB : X → XB such that F �→
ω(F (sB(z))), for z ∈ r(X), is the spectral norm ωr−1(z) for the affinoid r−1(z).

In particular, for a fixed F ∈ O(X), the map z ← ω(F (sB(z))) is continuous on X .
Since r(X) is dense in X it follows that

inf
r(q)∈∆0

ω(F (q)) = inf
z∈r(X)∩∆0

ωr−1(z)(F ) = inf
z∈r(X)∩∆

ωr−1(z)(F )

= inf
r(q)∈∆

ω(F (q)) = ω∆(F ).

Lemma 1.3. — The G-action G× Ωd(X) → Ωd(X) is continuous.

Proof. — Clearly each individual element g ∈ G induces a continuous automorphism
of Ωd(X). As a Fréchet space Ωd(X) is barrelled ([Tie] Thm. 3.15). Hence the Banach-
Steinhaus theorem ([Tie] Thm. 4.1) holds for Ωd(X) and we only have to check that
the maps

G −→ Ωd(X) for η ∈ Ωd(X)
g �−→ gη

are continuous (compare the reasoning in [War] p. 219). By the universal property
of the projective limit topology this is a consequence of the much stronger local
analyticity property which we will establish in Prop. 1’ of the next section.

Proposition 1.4. — O(X) is reflexive and its strong dual O(X)′ is the locally convex
inductive limit

O(X)′ = lim−→
n

O(Xn)′

of the dual Banach spaces O(Xn)′.

The proof is based on the following concepts.

Definition. — A homomorphism ψ : A −→ B between K-Banach spaces is called
compact if the image under ψ of the unit ball {f ∈ A : |f |A ≤ 1} in A is relatively
compact in B.

We want to give a general criterion for a homomorphism of affinoid K-algebras to
be compact. Recall that an affinoid K-algebra A is a Banach algebra with respect to
the residue norm | |a induced by a presentation

a : K〈T1, . . . , Tm〉 →→ A
as a quotient of a Tate algebra. All these norms | |a are equivalent.

Definition ([Ber] 2.5.1). — A homomorphism ψ : A −→ B of affinoid K-algebras is
called inner if there is a presentation a : K〈T1, . . . , Tm〉 →→ A such that

inf{ω(ψa(Ti)(y)) : y ∈ Sp(B), 1 ≤ i ≤ m} > 0.

Lemma 1.5. — Any inner homomorphism ψ : A → B of affinoid K-algebras is com-
pact.
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Proof. — First of all we note that if the assertion holds for one residue norm on
A then it holds for all of them. If ψ is inner we find, according to [Ber] 2.5.2, a
presentation a : K〈T1, . . . , Tm〉 →→ A such that

inf{ω(ψa(Ti)(y)) : y ∈ Sp(B), 1 ≤ i ≤ m} > 1.

This means that we actually have a commutative diagram of affinoid K-algebras

K〈T1, . . . , Tm〉 ı ��

a
��

K〈π−1T1, . . . , π
−1Tm〉

��

A
ψ

�� B
where ı is the obvious inclusion of Tate algebras. Since the valuation of K is dis-
crete the unit ball in K〈T1, . . . , Tm〉 (with respect to the Gauss norm) is mapped
surjectively, by a, onto the unit ball in A (with respect to | |a). Hence it suffices
to prove that the inner monomorphism ı is compact. But this is a straightforward
generalization of the argument in the proof of [Mo1] 3.5.

Proof of Proposition 4. — In the proof of [SS] §1 Prop. 4 the following two facts are
established:

– The restriction maps O(Xn+1) → O(Xn) are inner;
– Xn is a Weierstraß domain in Xn+1 for each n.

The second fact implies that the restriction map O(Xn+1) → O(Xn) has a dense
image. It then follows from Mittag-Leffler ([B-TG3] II §3.5 Thm. 1) that the re-
striction maps O(X) → O(Xn) have dense images. Using Lemma 5 we see that the
assumptions in [Mo1] 3.3(i) and 3.4(i) are satisfied for the sequence of Banach spaces
O(Xn). Our assertion results.

Of course then also Ωd(X) is reflexive with Ωd(X)′ = lim−→n
Ωd(Xn)′.

2. Ωd(X) as a locally analytic G-representation

In this section, we study the G-action on Ωd(X) and investigate in which sense it is
locally analytic. Using this property of the G-action, we construct a continuous map
I from Ωd(X)′ to the space of locally analytic K-valued functions on G. It follows
from the construction of this map that its image consists of functions annihilated by
a certain ideal a in the algebra of punctual distributions on G. In particular, this
means that functions in the image of I satisfy both discrete relations (meaning that
their values at certain related points of G cannot be independently specified) and
differential equations. We will study these relations in more detail in later sections.

We will use the notion of a locally analytic map from a locally K-analytic manifold
into a Hausdorff locally convex K-vector space as it is defined in [B-VAR] 5.3.1. But
we add the attribute “locally” in order to make clearer the distinction from rigid
analytic objects.
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Proposition 2.1. — For any η ∈ Ωd(X) and any λ ∈ Ωd(X)′ the function g �→ λ(g∗η)
on G is locally analytic.

Since, by Prop. 1.4, λ comes from a continuous linear form on some Ωd(Xn) this is
an immediate consequence of the following apparently stronger fact.

Proposition 2.1’. — Whenever Ωd(X) is equipped with the coarser topology coming
from the spectral norm on Xn for some fixed but arbitrary n ∈ N then the map g �→ g∗η,
for any η ∈ Ωd(X), is locally analytic.

Proof. — For the moment being we fix a natural number n ∈ N. In the algebraic,
and hence rigid analytic, K-group GLd+1 we have the open K-affinoid subgroup

Hn := {h ∈ GLd+1(oCp) : h ≡ g mod πn+1 for some g ∈ GLd+1(o)}

which contains the open K-affinoid subgroup

Dn := 1 + πn+1Md+1(oCp);

here o, resp. oCp , denotes the ring of integers in K, resp. Cp. As a rigid variety over
K the latter group Dn is a polydisk of dimension r := (d + 1)2. Since Hn preserves
the K-affinoid subdomain Xn of Pd the algebraic action of GLd+1 on Pd restricts to
a rigid analytic action m : Hn × Xn → Xn which corresponds to a homomorphism of
K-affinoid algebras

O(Xn) −→ O(Hn × Xn) = O(Hn)⊗̂
K
O(Xn)

F �−→ m∗F.

For any h ∈ Hn we clearly have

[(evaluation in h) ⊗ id] ◦m∗F = hF .

For a fixed g ∈ GLd+1(o) we consider the rigid analytic “chart”

ıg : Dn −→ Hn

h �−→ gh .

Fixing coordinates T1, . . . , Tr on the polydisk Dn we have

O(Dn)⊗̂
K
O(Xn) ∼= O(Xn)〈T1, . . . , Tr〉.

The power series

Fg(T1, . . . , Tr) := (ı∗g ⊗ id)m∗F ∈ O(Xn)〈T1, . . . , Tr〉

has the property that ghF = Fg(T1(h), . . . , Tr(h)) for any h ∈ Dn. This shows that,
for any F ∈ O(Xn), the map

GLd+1(o) −→ O(Xn)
g �−→ gF

is locally analytic.
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This construction varies in an obvious way with the natural number n. In particular
if we start with a function F ∈ O(X) ⊆ O(Xn) then the coefficients of the power series
Fg also lie in O(X). It follows that actually, for any F ∈ O(X), the map

GLd+1(o) −→ O(X)
g �−→ gF

is locally analytic provided the right hand side is equipped with the sup-norm on Xn

for a fixed but arbitrary n ∈ N. Since F was arbitrary and GLd+1(o) is open in G

the full map
G −→ O(X)
g �−→ gF

has to have the same local analyticity property.
This kind of reasoning extends readily to any GLd+1-equivariant algebraic vector

bundle V on Pd. Then the space of rigid analytic sections V(X) is a Fréchet space as
before on which G acts continuously and such that the maps

G −→ V(X)
g �−→ gs

for any s ∈ V(X) have the analogous local analyticity property. The reason is that
the algebraic action induces a rigid analytic action

Hn × V/Xn
−→ V/Xn

which is compatible with the action of Hn on Xn via m. But this amounts to the
existence of a vector bundle isomorphism

m∗(V/Xn
)

∼=−→ pr∗2(V/Xn
)

satisfying a certain cocycle condition (compare [Mum] 1.3); here pr2 : Hn×Xn → Xn

is the projection map. Hence similarly as above the Hn-action on the sections V(Xn)
is given by a homomorphism

V(Xn) −→ m∗(V/Xn
)(Hn × Xn)

∼=−→ pr∗2(V/Xn
)(Hn × Xn) = O(Xn)⊗̂

K
V(Xn) .

The rest of the argument then is the same as above.

That result has two important consequences for our further investigation. In the
first place it allows us to introduce the basic map for our computation of the dual
space Ωd(X)′. Let

Can(G, K) := space of locally K-analytic functions on G.

We always consider this space as the locally convex inductive limit

Can(G, K) = lim−→
U

Can
U (G, K).
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Here U = {Ui}i∈I is a disjoint covering of the locally K-analytic manifold G by closed
balls (in the sense of charts) and

Can
U (G, K) := {f ∈ Can(G, K) : f |Ui is analytic for any i ∈ I}

is the direct product of the Banach spaces of analytic functions on each Ui (where the
Banach norm is the spectral norm on Ui). The group G acts by left translations on
Can(G, K).

Lemma 2.2. — The G-action G× Can(G, K) → Can(G, K) is continuous.

Proof. — Clearly, each group element g ∈ G acts continuously on Can(G, K). Being
the locally convex inductive limit of a direct product of Banach spaces, Can(G, K) is
barrelled. Hence it suffices (as in the proof of Lemma 1.3) to check that the maps

G −→ Can(G, K) for f ∈ Can(G, K)
g �−→ gf

are continuous. But those maps actually are differentiable ([Fea] 3.3.4).

In all that follows, the d-form

ξ :=
dΞβ0 ∧ · · · ∧ dΞβd−1

Ξβ0 · · ·Ξβd−1

on X is the basic object. Because of Prop. 1 we have the G-equivariant map

I : Ωd(X)′ −→ Can(G, K)
λ �−→ [g �→ λ(g∗ξ)].

Lemma 2.3. — The map I is continuous.

Proof. — Since Ωd(X)′ is the locally convex inductive limit of the Banach spaces
Ωd(Xn)′ it suffices to establish the corresponding fact for Ωd(Xn). In the proof of
Prop. 1’ we have seen that the map

G −→ Ωd(Xn)
g �−→ g∗ξ

is analytic on the right cosets of G ∩Dn in G. We obtain that, for λ ∈ Ωd(Xn)′, the
function g �→ λ(g∗ξ) lies in Can

U (G, K) with U := {(G∩Dn)g}g∈G and that on a fixed
coset (G ∩Dn)g the spectral norms satisfy the inequality

‖λ(.∗ξ)‖ ≤ ‖λ‖ · ‖.∗ξ‖.

We also have the right translation action of G on Can(G, K) which we write as

δgf(h) = f(hg).

In addition we have the action of the Lie algebra g of G by left invariant differential
operators; for any x ∈ g the corresponding operator on Can(G, K) is given by

(xf)(g) :=
d

dt
f(g exp(tx))|t=0 ;
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here exp : g �� G denotes the exponential map which is defined locally around
0. This extends by the universal property to a left action of the universal enveloping
algebra U(g) on Can(G, K). For any f ∈ Can(G, K), any g ∈ G, and any x ∈ g

sufficiently close to 0 (depending on g) we have Taylor’s formula

f(g exp(x)) =
∞∑

n=0

1
n!

(xnf)(g)

(compare, for example, the proof in [Hel] II.1.4 which goes through word for word for
p-adic Lie groups). We actually find for any h ∈ G a neighbourhood N0 of h in G and
a neighbourhood n of 0 in g such that the above formula holds for all (g, x) ∈ N0 × n.

The right translation action of G and the U(g)-action on Can(G, K) combine into
an action of the algebra D(G) of punctual distributions on G ([B-GAL] III §3.1). Any
D ∈ D(G) can be written in a unique way as a finite sum D = z1δg1 + · · ·+ zrδgr with
zi ∈ U(g) and gi ∈ G, δg denoting the Dirac distribution supported at g ∈ G. Then
one has Df =

∑
i

zi(f(.gi)) for f ∈ Can(G, K); observe that

δg(z(f)) = (ad(g)z)(δg(f)).

This D(G)-action commutes with the left translation action of G on Can(G, K). More-
over D(G) acts by continuous endomorphisms on Can(G, K); this is again a simple
application of the Banach-Steinhaus theorem (compare [Fea] 3.1.2).

The second consequence of Prop. 1’ is that the map g �→ g∗η from G into Ωd(X)
is differentiable ([B-VAR] 1.1.2) for any η ∈ Ωd(X). It follows that g and hence U(g)
act on Ωd(X) from the left by

xη :=
d

dt
exp(tx)∗η|t=0.

Obviously the G-action and the U(g)-action again combine into a left D(G)-action by
continuous endomorphisms on Ωd(X). Note that Ωd(X) as a Fréchet space is barrelled,
too. We define now

a := {D ∈ D(G) : Dξ = 0}

to be the annihilator ideal of ξ in D(G); it is a left ideal. On the other hand

Can(G, K)a=0 := {f ∈ Can(G, K) : af = 0}

then is a G-invariant closed subspace of Can(G, K). The formula

[D(I(λ))](g) = λ(g∗(Dξ)) for D ∈ D(G), λ ∈ Ωd(X)′ and g ∈ G

implies that that subspace contains the image of the map I, i.e., that I induces a
G-equivariant continuous linear map

Ωd(X)′ −→ Can(G, K)a=0.
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3. The kernel map

In the previous section we constructed a map I from Ωd(X)′ to a certain space of
locally analytic functions on G. We see this map as a “boundary value” map, but this
interpretation needs clarification. In particular, the results of [SS] and [ST] suggest
that a more natural “boundary” for the symmetric space X is the compact space G/P .
In this section, we study a different boundary value map Io, which carries Ωd(X)′ to
(a quotient of) a space of functions on G/P . Our objective is to relate Io to I. The
major complications come from the fact that the image of Io does not consist of
locally analytic functions, a phenomenon essentially due to the fact that the kernel
function on G/P studied in [ST] is locally analytic on the big cell with continuous,
not locally analytic, extension to G/P . We relate Io to I using a “symmetrization
map,” due to Borel and Serre, which carries functions on G/P into functions on G,
together with a theory of “analytic vectors” in a continuous G-representation. One
crucial consequence of our work in this section is the fact that the integral transform
Io (and I) is injective.

Recall the definition, in [ST] Def. 27, of the integral kernel function k(g, q) on
G/P × X. This function is given by

k(g, .) =

(ug)∗
1

Ξβ0 · · ·Ξβd−1

if g = ugwd+1p is in the big cell,

0 otherwise.

Here we rather want to consider the map

k : G/P −→ Ωd(X)
g �−→ k(g, .) dΞβ0 ∧ · · · ∧ dΞβd−1 .

Since the numerator of the form ξ is invariant under lower triangular unipotent ma-
trices (compare the formula after Def. 28 in [ST]) we can rewrite our new map as

k(g) =

{
(ug)∗ξ if g = ugwd+1p is in the big cell,

0 otherwise.

Proposition 3.1. — The map k is continuous and vanishes outside the big cell. More-
over whenever Ωd(X) is equipped with the coarser topology coming from the spectral
norm on Xn for some fixed but arbitrary n ∈ N then k is locally analytic on the big
cell.

Proof. — The vanishing assertion holds by definition. The assertion about local an-
alyticity of course is a consequence of Prop. 2.1’. But we will give another argument
which actually produces explicitly the local series expansions. This will be needed in
the subsequent considerations.

Let U denote the unipotent radical of P . According to [ST] Lemma 12 the sets
B(u, r) = uwd+1t

rBP/P , for a fixed u ∈ U , t the diagonal matrix with entries
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(πd, . . . , π, 1), and varying r ∈ N, form a fundamental system of open neighbourhoods
of the point uwd+1P/P in the big cell. One easily checks that

D(u, r) := {v ∈ U : vwd+1P/P ∈ B(u, r)}
is a polydisk in the affine space U . Hence the maps

D(u, r) ∼−→ B(u, r) ⊆ big cell
v �−→ vwd+1P/P

constitute an atlas for the big cell as a locally analytic manifold. Fix n ∈ N. We have
to show that given a u ∈ U we find an r ∈ N such that the map

D(u, r) −→ Ωd(X)
v �−→ k(vwd+1)

is analytic with respect to the coarser topology on the right hand side corresponding
to n. Recall that this amounts to the following ([B-VAR]). Let vji for 0 ≤ i < j ≤ d

denote the matrix entries of the matrix v ∈ U . Moreover we use the usual abbreviation

(v − u)m :=
∏

0≤i<j≤d

(vji − uji)mji

for any multi-index m = (m10, . . . , mdd−1) ∈ Nd(d+1)/2
0 . We have to find an r ∈ N

such that there is a power series expansion

k(vwd+1, q) =
∑
m

(v − u)m · Fm(q)

with Fm ∈ O(X) which is uniformly convergent on D(u, r)×Xn. From now on we fix
u ∈ U . We choose r ∈ N such that

ω(vji − uji) > 2n for all v ∈ D(u, r) and 0 ≤ i < j ≤ d.

We write

k(vwd+1, q) =
d−1∏
i=0

1
fi(v, q)

where

fi(v, q) :=
d−1∑
j=i

aji(v)Ξβj (q) + adi(v)

with

aji(v) :=

{
vji for j > i,

1 for j = i.

We also write

fi(v, q) = fi(u, q) +
d−1∑

j=i+1

bji(v)Ξβj (q) + bdi(v)

with
bji(v) := aji(v)− uji = vji − uji.
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Observe that
ω(bji(.)) > 2n on D(u, r).

As was already discussed in the proof of [ST] Prop. 47 we have

ω(fi(u, q)) ≤ n for q ∈ Xn, and

ω

 d−1∑
j=i+1

bji(v)Ξβj (q) + bdi(v)
 > n for (v, q) ∈ D(u, r)× Xn.

Consequently

1
fi(v, q)

=
1

fi(u, q)

∑
m≥0

(−1)m


d−1∑

j=i+1

bji(v)Ξβj (q) + bdi(v)

fi(u, q)

m

is an expansion into a series uniformly convergent on D(u, r) × Xn. We rewrite this
as

1
fi(v, q)

=
∑

mi+1i,...,mdi≥0

cm(i)

Ξmi+1iβi+1+···+md−1iβd−1(q)
fi(u, q)1+mi+1i+···+mdi

·
∏

i<j≤d

(vji − uji)mji

where m(i) := (mi+1i, . . . , mdi) and the cm(i) are certain nonzero integer coefficients.
By multiplying together we obtain the expansion

(∗) k(vwd+1, q) =
∑
m

cmΞµ(m)(q)
f0(u, q)s0(m) · · · fd−1(u, q)sd−1(m)

· (v − u)m

which is uniformly convergent on D(u, r)× Xn; here we have set

µ(m) := m10β1 + (m20 + m21)β2 + · · ·+ (md−10 + · · ·+ md−1d−2)βd−1

if d > 1, resp. µ(m) := 0 if d = 1, and

si(m) := 1 + mi+1i + · · ·+ mdi for 0 ≤ i ≤ d− 1;

again the cm are appropriate nonzero integer coefficients. This establishes the asserted
local analyticity on the big cell. It follows immediately that k is continuous on the
big cell (with respect to the original Fréchet topology on Ωd(X)). It therefore remains
to prove, for all n ∈ N, the continuity of k viewed as a map from G into O(Xn) in all
points outside the big cell. But this is the content of [ST] Lemma 45.

Corollary 3.2. — The function λ ◦ k : G/P → K, for any continuous linear form λ

on Ωd(X), is continuous, vanishes outside the big cell, and is locally analytic on the
big cell.

Proof. — The continuity and the vanishing are immediately clear. The local analyt-
icity follows by using [B-VAR] 4.2.3 and by observing that, according to Prop. 1.4, λ

comes from a continuous linear form on some Ωd(Xn).

Proposition 3.3. — The image of k generates Ωd(X) as a topological K-vector space.
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Proof. — We first consider the map k : G → O(X). Let K ⊆ O(X) be the vector
subspace generated by the image of k and let K denote its closure. The formula (∗) in
the proof of Proposition 1 for the matrix u = 1 says that, given the natural number
n ∈ N, we find an r ∈ N such that the expansion

k(vwd+1, q) =
∑
m

cmΞµ(m)(q)
Ξβ0(q)s0(m) · · ·Ξβd−1(q)sd−1(m)

· (v − 1)m

holds uniformly for (v, q) ∈ D(1, r) × Xn. The coefficients of this expansion up to
a constant are the value at u = 1 of iterated partial derivatives of the function
k(.wd+1, .) : D(1, r) → K (momentarily viewed in O(Xn)). Since increasing n just
means decreasing r it follows that all the functions Ξµ with µ = µ(m) − s0(m)β0 −
· · · − sd−1(m)βd−1 lie in K. This includes, for those m for which only the mi+1i may
be nonzero, all the functions

Ξm0
β1
· · ·Ξmd−2

βd−1

Ξ1+m0
β0

· · ·Ξ1+md−1
βd−1

= Ξm0
α0
· · ·Ξmd−1

αd−1
· 1
Ξβ0 · · ·Ξβd−1

with m0, . . . , md−1 ≥ 0.

Passing now to d-forms we therefore know that the closed K-vector subspace Ω of
Ωd(X) generated by the image of k contains all forms Ξµξ where µ = m0α0 + · · · +
md−1αd−1 with m0, . . . , md−1 ≥ 0. As a consequence of [ST] Cor. 40 the subspace
Ω is G-invariant. By applying Weyl group elements w and noting that w∗ξ = ±ξ we
obtain Ξµξ, for any µ ∈ X∗(T ), in Ω. Using the G-invariance of Ω again we then have
the subset

{u∗(Ξµξ) : µ ∈ X∗(T ), u ∈ U} = {(u∗Ξµ)dΞβ0∧· · ·∧dΞβd−1 : µ ∈ X∗(T ), u ∈ U} ⊆ Ω.

According to the partial fraction expansion argument in [GV] Thm. 21 the u∗ΞµK-
linearly span all rational functions of Ξβ0 , . . . , Ξβd−1 whose denominator is a product
of polynomials of degree 1. Moreover the proof of §1 Prop. 4 in [SS] shows that those
latter functions are dense in O(X). It follows that Ω = Ωd(X).

Put

C(G/P, K) := space of continuous K-valued functions on G/P ;

it is a Banach space with respect to the supremum norm on which G acts continuously
by left translations. The subspace

Cinv(G/P, K) :=
∑

s

C(G/Ps, K) ⊆ C(G/P, K)

is closed; actually one has the topological direct sum decomposition

C(G/P, K) = Cinv(G/P, K)⊕ Co(Pwd+1P/P, K)

where the second summand on the right hand side is the space of K-valued continuous
functions vanishing at infinity on the big cell ([BS] §3). We recall that a continuous
function on a locally compact space Y is said to vanish at infinity if its extension
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by zero to the one-point compactification of Y is continuous. We equip the quotient
space C(G/P, K)/Cinv(G/P, K) with the quotient topology. By Proposition 1 the
map

I ′o : Ωd(X)′ −→ C(G/P, K)
λ �−→ [g �→ λ(k(g))]

is well defined; by [ST] Cor. 30 it is P -equivariant. Moreover it follows from [ST]
Prop. 29.3 and the Bruhat decomposition that the induced map

Io : Ωd(X)′ −→ C(G/P, K)/Cinv(G/P, K)

is G-equivariant.

Lemma 3.4. — The maps I ′
o and Io are continuous.

Proof. — We only need to discuss the map I ′o. Because of Prop. 1.4 we have to check
that, for each n ∈ N, the map

O(Xn)′ −→ C(G/P, K)
λ �−→ [g �→ λ(k(g, .))]

is continuous. The norm of λ is equal to

c1 := inf{ω(λ(F )) : F ∈ O(Xn), inf
q∈Xn

ω(F (q)) ≥ 0}.

On the other hand the norm of the image of λ under the above map is equal to

c2 := inf
g∈G

ω(λ(k(g, .))) = inf
u∈U

ω(λ(k(uwd+1, .)))

where U denotes, as before, the unipotent radical of P . But we have

inf
u∈U
q∈Xn

ω(k(uwd+1, q)) ≥ −dn

(compare the proof of [ST] Prop. 47). It follows that c2 ≥ c1 − dn.

Lemma 3.5. — The maps I ′
o and Io are injective.

Proof. — For I ′o this is an immediate consequence of Prop. 3. According to Cor. 2
the image of I ′o is contained in Co(Pwd+1P/P, K) which is complementary to
Cinv(G/P, K). Hence Io is injective, too.

In order to see the relation between Io and the map I in the previous section we
first recall part of the content of [BS] §3:

Fact 1. — The “symmetrization”

(Σφ)(g) :=
∑

w∈W

(−1)�(w)φ(gwwd+1)

induces a G-equivariant injective map

C(G/P, K)/Cinv(G/P, K)
Σ

↪−→ C(G, K).
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Here and in the following we let C(Y, K), resp. Co(Y, K), denote, for any locally
compact space Y , the K-vector space of K-valued continuous functions, resp. of K-
valued continuous functions vanishing at infinity, on Y ; the second space is a Banach
space with respect to the supremum norm.
We also let

C(G, K) res−→ C(U, K)
φ �−→ φ|U

and
Co(U, K) −→ C(G/P, K)/Cinv(G/P, K)

φ �−→ φ#(g) :=

{
φ(u) if g = uwd+1p ∈ Uwd+1P,

0 otherwise .

Fact 2. — # is an isomorphism whose inverse is res ◦Σ.

It follows in particular that # is an isometry.
Consider now the diagram

Can(G, K)
⊆

�� C(G, K)

Ωd(X)′
Io ��

I

��

C(G/P, K)/Cinv(G/P, K)

Σ

��

in which all maps are G-equivariant and injective. We claim that the diagram is
commutative; for that it suffices to prove the identity

(∗∗) g∗ξ =
∑

w∈W

(−1)�(w)ugwwd+1∗ξ.

From Prop. 1 we know that each summand on the right hand side is a continuous
function in g ∈ G (where ugw∗ξ := 0 if gw is not in the big cell). Hence it suffices
to check the identity for g in the dense open subset

⋂
w∈W Pwd+1Pw. On the other

hand it is an identity between logarithmic d-forms which can be checked after having
applied the G-equivariant map “dis” into distributions on G/P ; according to [ST]
Remark on top of p. 423 the left hand side becomes∑

w∈W

(−1)�(w)δgw =
∑

w∈W

(−1)�(w)δugwwd+1

whereas the right hand side becomes∑
w∈W

(−1)�(w) ·
∑
v∈W

(−1)�(v)δugwwd+1v =
∑

w∈W

(−1)�(w) ·
∑
v∈W

(−1)�(v)δugwwd+1v.

The image of “dis” actually consists of linear forms on the Steinberg representation
(see [ST]) and so any identity in that image can be checked by evaluation on locally
constant and compactly supported functions on the big cell. But for those, all terms
on the right hand side with v 	= 1 obviously vanish.

ASTÉRISQUE 278



p-ADIC BOUNDARY VALUES 73

We view the above diagram as saying that any locally analytic function in the
image of I is the symmetrization of a continuous “boundary value function” on G/P .
In order to make this more precise we first have to discuss the concept of an “analytic
vector”. Let V be a K-Banach space on which G acts continuously (by which we
always mean that the map G × V → V describing the action is continuous). As in
the case V = K we have the Hausdorff locally convex vector space Can(G, V ) of all
V -valued locally K-analytic functions on G (apart from replacing K by V everywhere
the definition is literally the same). It is barrelled, so that the same argument as in
the proof of Lemma 2.2 shows that the left translation action of G on Can(G, V ) is
continuous.

Definition. — A vector v ∈ V is called analytic if the V -valued function g �→ gv on
G is locally analytic.

We denote by Van the vector subspace of all analytic vectors in V . It is clearly
G-invariant. Moreover the G-equivariant linear map

Van −→ Can(G, V )
v �−→ [g �→ g−1v]

is injective. We always equip Van with the subspace topology with respect to this
embedding. (Warning: That topology in general is finer than the topology which the
Banach norm of V would induce on Van. Evaluating a function at 1 ∈ G defines a
continuous map Can(G, V ) → V .) Of course the G-action on Van is continuous. By
functoriality any G-equivariant continuous linear map L : V → Ṽ between Banach
spaces with continuous G-action induces a G-equivariant continuous linear map Lan :
Van → Ṽan. A useful technical observation is that the locally convex vector space Van

does not change if we pass to an open subgroup H ⊆ G. First of all it follows from
the continuity of the G-action on V that the function g �→ g−1v is locally analytic on
G if and only if its restriction to H is locally analytic. Fixing a set of representatives
R for the cosets in H \G we have the isomorphism of locally convex vector spaces

Can(G, V ) =
∏
g∈R

Can(Hg, V )

([Fea] 2.2.4). Hence the embedding Van ↪→ Can(G, V ) coincides with the composite
of the embedding Van ↪→ Can(H, V ) and the “diagonal embedding”

Can(H, V ) −→
∏
g∈R

Can(Hg, V )

f �−→ (g−1(f(.g−1)))g∈R.

Remark 3.6. — Van is closed in Can(G, V ).

Proof. — Let (vi)i∈I be a Cauchy net in Van which in Can(G, V ) converges to the
function f . By evaluating at h ∈ G we see that the net (h−1vi)i∈I converges to f(h)
in V . Put v := f(1). Since h is a continuous endomorphism of V it follows on the
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other hand that (h−1vi)i∈I converges to h−1v. Hence f(h) = h−1v which means that
f comes from v ∈ Van.

Lemma 3.7. — If each vector in V is analytic then Van = V as topological vector
spaces.

Proof. — We have to show that the map

V −→ Can(G, V )
v �−→ [g �→ g−1v]

is continuous. According to our earlier discussion we are allowed to replace G by
whatever open subgroup H is convenient. By [Fea] 3.1.9 our assumption implies that
the G-action on V defines a homomorphism of Lie groups ρ : G → GL(V ) (with the
operator norm topology on the right hand side). On a sufficiently small compact open
subgroup H ⊆ G this homomorphism is given by a power series

ρ(g) =
∑

n

An · x(g)n for g ∈ H

which is convergent in the operator norm topology on EndK(V ); here x is a vector of
coordinate functions from H onto some polydisk of radius 1, the n are corresponding
multi-indices, and the An lie in EndK(V ). In particular the operator norm of the An

is bounded above by some constant c > 0. If we insert a fixed vector v ∈ V into this
power series then we obtain the expansion

gv =
∑

n

An(v) · x(g)n

as a function of g ∈ H and the spectral norm of the right hand side is bounded above
by c · ‖v‖.

Proposition 3.8. — The map Io induces a G-equivariant injective continuous linear
map

Ωd(X)′ −→ [C(G/P, K)/Cinv(G/P, K)]an.

Proof. — For the purposes of this proof we use the abbreviation V := C(G/P, K)/
Cinv(G/P, K). We have to show that the image of Io is contained in Van and that the
induced map into Van is continuous. As before it suffices to discuss the corresponding
map Ωd(Xn)′ → Van for a fixed but arbitrary n ∈ N. Both spaces, V as well as
Ωd(Xn)′, are Banach spaces with an action of the group GLd+1(o); the map between
them induced by Io is equivariant and continuous by Lemma 4. Since GLd+1(o) is
open in G it can be used, by the above observation, instead of G to compute the locally
convex vector space Van. If we show that GLd+1(o) acts continuously on Ωd(Xn)′ then
Io certainly induces a continuous map [Ωd(Xn)′]an → Van. What we therefore have to
show in addition is that the identity

[Ωd(Xn)′]an = Ωd(Xn)′
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holds as topological vector spaces.
We know already from the proof of Prop. 2.1’ that every vector in Ωd(Xn) is

analytic. By [Fea] 3.1.9 this means that the GLd+1(o)-action on Ωd(Xn) is given by
a homomorphism of Lie groups

GLd+1(o) −→ GL(Ωd(Xn))

(recall that the right hand side carries the operator norm topology). Since passing to
the adjoint linear map is a continuous linear map between Banach spaces it follows
that also the GLd+1(o)-action on Ωd(Xn)′ is given by a corresponding homomorphism
of Lie groups. This means in particular that the latter action is continuous and that
every vector in Ωd(Xn)′ is analytic. We therefore may apply the previous lemma.

Corollary 3.9. — The G-action G × Ωd(X)′ → Ωd(X)′ is continuous and, for any
λ ∈ Ωd(X)′, the map g �→ gλ on G is locally analytic.

Proof. — Since Ωd(X)′ is barrelled as a locally convex inductive limit of Banach
spaces the first assertion follows from the second by the same argument which we
have used already twice. In the proof of the previous proposition we have seen that
each function g �→ gλ is locally analytic on GLd+1(o). But this is sufficient for the
full assertion.

Since G/P is compact we may view the symmetrization map as a map

C(G/P, K)/Cinv(G/P, K) Σ−→ BC(G, K)

into the Banach space BC(G, K) of bounded continuous functions on G. It is then
an isometry as can be seen as follows. By its very definition Σ is norm decreasing.
On the other hand φ can be reconstructed from Σφ by restriction to U followed by #

which again is norm decreasing. Hence Σ must be norm preserving.
We obtain the induced continuous injective map

[C(G/P, K)/Cinv(G/P, K)]an
Σan
↪−→ BC(G, K)an.

Since any f ∈ BC(G, K)an is obtained from the locally analytic map g �→ g−1f

by composition with the evaluation map at 1 ∈ G and hence is locally analytic we
see that BC(G, K)an in fact is contained in Can(G, K). We therefore can rewrite the
commutative diagram which relates Io and I in the form

Ωd(X)′
Io ��

I ������������������ [C(G/P, K)/Cinv(G/P, K)]an

Σan
��

Can(G, K).

So far we have explained how to understand on G/P the fact that the functions in
the image of I are locally analytic. But the latter also satisfy the differential equations
from the ideal a in D(G). How can those be viewed on G/P?
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For any Banach space V the right translation action by G on Can(G, V ) induces a
corresponding action of the algebra D(G) by continuous endomorphisms. Any x ∈ g

acts via the usual formula

(xf)(g) =
d

dt
f(g exp(tx))∣∣t=0

.

(Compare [Fea] 3.3.4.) This clearly is functorial in V . If we now look at the case
BC(G, K) we have two embeddings

BC(G, K)an

���������������

�������������

Can(G, BC(G, K)) ε �� Can(G, K)

which are connected through the map ε which comes by functoriality from the map
ev1 : BC(G, K) → K evaluating a function at 1 ∈ G. This latter map is D(G)-
equivariant. Hence, for any left ideal d ⊆ D(G), we obtain the identity

BC(G, K)an ∩ Can(G, K)d=0

= BC(G, K)an ∩ {f ∈ Can(G, BC(G, K)) : df ⊆ ker(ε)}.

Using the abbreviation V := C(G/P, K)/Cinv(G/P, K) we know from Prop. 8 that
im(Io) ⊆ Van; on the other hand im(I) ⊆ Can(G, K)a=0. Those images correspond to
each other under the map Σan. It follows that im(Io) is contained in the subspace

V σa=0
an := Van ∩ {f ∈ Can(G, V ) : af ⊆ ker(σ)}

where σ : Can(G, V ) → Can(G, K) is the map induced by ev1◦Σ : V → K which sends
φ ∈ C(G/P, K) to

∑
w∈W (−1)�(w)φ(wwd+1). We arrive at the following conclusion.

Theorem 3.10. — We have the commutative diagram of injective continuous linear
maps

Ωd(X)′
Io ��

I ������������������� [C(G/P, K)/Cinv(G/P, K)]σa=0
an

Σan
��

Can(G, K)a=0 .

We think of Io in this form as being “the” boundary value map. We point out that
the ideal a contains the following Dirac distributions. For any g ∈ G put W (g) :=
{w ∈ W : gwwd+1 ∈ Pwd+1P} and consider the element

δ(g) := δg −
∑

w∈W (g)

(−1)�(w)δugwwd+1

in the algebra D(G). By interpreting δh as the right translation action by h those
elements act on C(G, K) and BC(G, K). We claim that any function φ in the image
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of Σ satisfies
φ(g) =

∑
w∈W (g)

(−1)�(w)φ(ugwwd+1) for any g ∈ G.

We may write φ = Σψ# and then compute∑
w∈W (g)

(−1)�(w)(Σψ#)(ugwwd+1) =
∑

w∈W (g)

(−1)�(w)
∑
v∈W

(−1)�(v)ψ#(ugwwd+1vwd+1)

=
∑

w∈W (g)

(−1)�(w)ψ(ugwwd+1) =
∑

w∈W

(−1)�(w)ψ#(gwwd+1) = (Σψ#)(g).

Since Σ is G-equivariant the same identities hold for the functions φ(h.) for any h ∈ G.
In other words any function φ in the image of Σ actually satisfies

δ(g)φ = 0 for any g ∈ G.

The relation (∗∗) established after Fact 2 implies that a contains the left ideal gener-
ated by the δ(g) for g ∈ G.

4. The ideal b

As we have learned, the integral transform I carries continuous linear forms on
Ωd(X) to locally analytic functions on G. Functions in the image of this map are
annihilated by an ideal a in the algebra of punctual distributions D(G). This annihi-
lation condition means that functions in the image of I satisfy a mixture of discrete
relations and differential equations.

In this section, we focus our attention on the differential equations satisfied by
functions in the image of I. By this, we mean that we will study in detail the structure
of the ideal b := a∩U(g). By definition, b is the annihilator ideal in U(g) of the special
differential form ξ. We will describe a set of generators for b and use this to prove
the fundamental result that the weight spaces in U(g)/b (under the adjoint action of
the torus T ) are one-dimensional. We will then analyze the left U(g)-module U(g)/b,
identifying a filtration of this module by submodules and exhibiting the subquotients
of this filtration as certain explicit irreducible highest weight U(g)-modules. At the
end of the section we prove some additional technical structural results which we will
need later.

The results in this section are fundamental preparation for the rest of the paper.
We begin by recalling the decomposition

U(g) = ⊕µ∈X∗(T )U(g)µ

of U(g) into the weight spaces U(g)µ with respect to the adjoint action of the torus T .
For a root α = εi−εj the weight space gα is the 1-dimensional space generated by the
element Lα ∈ g which corresponds to the matrix with a 1 in position (i, j) and zeros
elsewhere; sometimes we also write Lij := Lα. Clearly a monomial Lm1

α1
· · ·Lmr

αr
∈
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U(g) has weight m1α1 + · · ·+ mrαr. The Poincaré-Birkhoff-Witt theorem says that
once we have fixed a total ordering of the roots α any element in U(g)/U(g)go can be
written in a unique way as a polynomial in the Lα. We will also need the filtration
Un(g) of U(g) by degree; we write deg(z) := n if z ∈ Un(g)\Un−1(g).

The form ξ is invariant under T . This implies that the ideal b is homogeneous and
contains U(g)go. An elementary calculation shows that Lα acts on Ωd(X) by

Lα(Fξ) =
(
Ξi

∂F

∂Ξj

)
ξ − ΞαFξ.

In particular we obtain Lαξ = −Ξαξ. By iteration that formula implies that the ideal
b contains the following relations:

cancellation : LijLjl for any indices i 	= j 	= l,
sorting : LijLk� − Li�Lkj for any distinct indices (i, j, k, l).

Our goal is to show that the weight spaces of U(g)/b are 1-dimensional. For that we
need to introduce one more notation. For a weight µ we put

d(µ) :=
∑

mi>0

mi

where the mi are the coefficients of µ in the linear combination

µ =
d∑

i=0

miεi.

Lemma 4.1. — Let z ∈ U(g) be a monomial in the Lα of weight µ; we then have:

i. deg(z) ≥ d(µ);
ii. write z =

∏
i,j L

nij

ij and put

A(z) := {i : nij > 0 for some j} and B(z) := {j : nij > 0 for some i};

then deg(z) = d(µ) if and only if A(z) and B(z) are disjoint.

Proof. — (Recall that we have fixed a total ordering of the roots α.) Since z has
weight µ we must have

µ =
∑
i,j

nij(εi − εj).

If on the other hand we write µ =
∑

k mkεk we see that

(∗) mk =
∑

j

nkj −
∑

i

nik.

As a result of this expression it follows that mk ≤
∑

j nkj , so that

d(µ) =
∑

mk>0

mk ≤
∑

k

∑
j

nkj = deg(z).
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We suppose now that A(z) and B(z) are disjoint. Then (∗) implies that mk is positive
if and only if k ∈ A(z) and for positive mk we must have

mk =
∑

j

nkj .

Therefore
d(µ) =

∑
k∈A(z)

mk =
∑

k∈A(z)

∑
j

nkj =
∑
k,j

nkj = deg(z).

Conversely, we suppose that k ∈ A(z) ∩ B(z). Then mk <
∑

j nkj . Therefore, if
mk ≥ 0, we obtain

d(µ) =
∑

mk>0

mk <
∑

k

∑
j

nkj = deg(z).

If mk ≤ 0 a similar argument, using the fact that d(µ) may be computed from the
mk with mk < 0, gives the desired result.

Lemma 4.2. — Let z ∈ U(g) be a nonzero polynomial in the Lα of weight µ; then
the coset z + b contains a representative of weight µ which is a linear combination of
monomials in the Lα of degree d(µ).

Proof. — Among all elements of z + bµ which are polynomials in the Lα let x be one
of minimal degree. By the preceeding lemma the degree of x is greater than or equal
to d(µ). Let y be a monomial in the Lα of degree deg(x) which occurs with a nonzero
coefficient in x. Assume that the sets A(y) and B(y) as defined in the preceeding
lemma are not disjoint. Then there exist three indices i 	= j 	= l such that Lij and Ljl

each occur to nonzero powers in the monomial y. By the commutation rules in U(g)
we have

y ∈ U(g)LijLjl + Un−1(g) with n := deg(x).

Hence the cancellation relations imply that y ∈ b+Un−1(g). This means that modulo
b we may remove an appropriate scalar multiple of y from x and pick up only a
polynomial of lower degree. But by our minimality assumption on deg(x) there has
to be at least one such y such that A(y) and B(y) are disjoint. The previous lemma
then implies that d(µ) = deg(y) = deg(x). If we express x as a linear combination
of monomials in the Lα then each such monomial has weight µ and hence, by the
previous lemma again, degree ≥ d(µ).

A monomial
Li0j0Li1j1 · · ·Limjm

will be called sorted if i0 ≤ · · · ≤ im and j0 ≤ · · · ≤ jm and if those two sequences do
not overlap (i.e. no ik is a jl). For example, the monomial L10L10L32L32 is sorted
with sequences 1,1,3,3, and 0,0,2,2 whereas the monomial L32L31 with sequences 3,3
and 2,1 is not sorted.
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Lemma 4.3. — Among all the monomials in the Lα of weight µ there is exactly one,
denoted by L(µ), which is sorted.

Proof. — The non-overlapping condition means that any sorted monomial must have
degree d(µ). Write µ =

∑
mkεk. Those k for which mk is positive must occur as

the first index in some Lij , and therefore (by the non-overlapping condition) can only
occur as first indices. Similarly, those k for which mk is negative can only occur as
second indices. This determines the lists of first and second indices – for example, the
list of first indices consists of precisely those k for which mk > 0, each repeated mk

times, listed in ascending order. Once these two lists are determined the corresponding
monomial is determined.

Proposition 4.4. — Let z ∈ U(g) be a polynomial in the Lα of weight µ; we then have
z + b = aL(µ) + b for some a ∈ K.

Proof. — By Lemma 2 we may assume that z is a monomial of degree d(µ). The sets
A(z) and B(z), as defined in Lemma 1, then are disjoint, and therefore the individual
Lij which occur in z commute with one another. Consequently we may rearrange
these Lij freely. Using this fact it is easy to see that we may use the sorting relations
to transform z into L(µ).

Corollary 4.5. — The weight space (U(g)/b)µ in the left U(g)-module U(g)/b, for any
µ ∈ X∗(T ), has dimension one.

Proof. — The preceeding proposition says that the weight space in question is gen-
erated by the coset L(µ) + b. On the other hand an explicit computation shows that
L(µ)ξ = e2cΞµξ with some integer c ≥ 0 and some sign e = ±1 (both depending on
µ); hence L(µ) /∈ b.

Later on it will be more convenient to use a renormalized L(µ). We let Lµ denote
the unique scalar multiple of L(µ) which has the property that Lµξ = −Ξµξ.

Although we now have a completely explicit description of U(g)/b its structure as a
g-module is not yet clear. For a root α = εi− εj and a weight µ =

∑
k mkεk ∈ X∗(T )

our earlier formula implies

Lα(Ξµξ) = (mj − 1)Ξµ+αξ

and hence

(+) LαLµ ≡ (mj − 1)Lµ+α mod b.

If we put J(µ) := {0 ≤ k ≤ d : mk > 0} then J(µ) ⊆ J(µ + α) provided mj 	= 1. It
follows that

bJ := b +
∑

J⊆J(µ)

KLµ

is, for any subset J ⊆ {0, . . . , d}, a left ideal in U(g). We have:
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– b{0,...,d} = b and b∅ = U(g);
– bJ ⊆ bJ′ if and only if J ′ ⊆ J .

For J 	= {0, . . . , d} we set
b>

J :=
∑

J ⊂
�=

J′

bJ′ .

Moreover we introduce the descending filtration by left ideals

U(g) = b0 ⊇ b1 ⊇ · · · ⊇ bd+1 = b

defined by
bj :=

∑
#J≥j

bJ .

The subquotients of that filtration decompose as g-modules into

bj/bj+1 = ⊕
#J=j

(bJ + bj+1)/bj+1 = ⊕
#J=j

bJ/b>
J .

Our aim in the following therefore is to understand the g-modules bJ/b>
J . A trivial

case is
b0/b1 = b∅/b>

∅ = K .

We therefore assume, for the rest of this section, that J is a nonempty proper subset
of {0, . . . , d}. First of all we need the maximal parabolic subalgebra of g given by

pJ := all matrices in g with a zero entry
in position (i, j) for i ∈ J and j /∈ J.

It follows from the above formula (+) that the subalgebra pJ leaves invariant the
finite dimensional subspace

MJ :=
∑

µ∈B(J)

KLµ

of bJ/b>
J where

B(J) := set of all weights µ =
∑

k mkεk such that
J(µ) = J and mk = 1 for k ∈ J.

Using again the formula (+) the subsequent facts are straightforward. The unipotent
radical

nJ := all matrices with zero entries in
position (i, j) with i ∈ J or j /∈ J

of pJ acts trivially on MJ . We have the Levi decomposition pJ = lJ + nJ with
lJ = l′(J) + l(J) where

l′(J) := all matrices with zero entries in
position (i, j) with i and j not both in J

and
l(J) := all matrices with zero entries in

position (i, j) with i or j ∈ J.
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The structure of MJ as a module for the quotient pJ/nJ = lJ is as follows:

– The first factor l′(J) ∼= gl#J acts on MJ through the trace character;
– as a module for the second factor l(J) ∼= gld+1−#J our MJ is isomorphic to the

#J-th symmetric power of the contragredient of the standard representation of
gld+1−#J on the (d + 1−#J)-dimensional K-vector space.

In particular, MJ is an irreducible pJ/nJ -module. The map

U(g) ⊗
U(pJ )

MJ −→ bJ/b>
J

(z, m) �−→ zm

is surjective. In fact, bJ/b>
J is an irreducible highest weight U(g)-module: If we

put ν := (
∑

k∈J εk) −#J · ε� for some fixed � /∈ J , then one deduces from (+) that
U(g)·Lµ+b, for any µ with J(µ) = J , contains Lν+b. For the subset J = {0, . . . , j−1}
the parabolic subalgebra pJ is in standard form with respect to our choice of positive
roots and the highest weight of bJ/b>

J is ε0 + · · ·+ εj−1 − j · εj.
We finish this section by establishing several facts to be used later on about the

relation between the left ideals b>
J and the subalgebras U(n+

J ) for

n
+
J : = transpose of nJ .

First of all, note that n
+
J and hence each U(n+

J ) is commutative and ad(lJ )-invariant.

Proposition 4.6

i. U(n+
J )∩b is the ideal in U(n+

J ) generated by the sorting relations LijLk�−Li�Lkj

for i, k ∈ J and j, l /∈ J ,
ii. the cosets of the sorted monomials Lµ for J(µ) ⊆ J and J(−µ)∩ J = ∅ form a

basis of U(n+
J )/U(n+

J ) ∩ b as a K-vector space;
iii. U(n+

J ) ∩ b>
J = U(n+

J ) ∩ b;
iv. (U(n+

J ) ∩ b) · l(J) ⊆ b;
v. U(n+

J ) ∩ b is ad(l(J))-invariant.

Proof. — i. Let s ⊆ U(n+
J ) denote the ideal generated by those sorting relations.

Using the commutativity of U(n+
J ) it is easy to see that any monomial in the Lij in

U(n+
J ) can be transformed into a sorted monomial by relations in s. In particular

any coset in U(n+
J )∩ b/s has a representative which is a linear combination of sorted

monomials. But we know that the sorted monomials are linearly independent modulo
b. We therefore must have U(n+

J ) ∩ b = s.
ii. The argument just given also shows that the cosets of all sorted monomials

contained in U(n+
J ) form a basis of the quotient in question. But they are exactly

those which we have listed in the assertion.
iii. The sorted monomials listed in the assertion ii. are linearly independent modulo

b>
J .
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iv. We have to check that zLrs ∈ b for any of the sorting relations z = LijLk� −
Li�Lkj from i. and for any Lrs such that r, s /∈ J . If r 	= j, � then zLrs = Lrsz ∈ b.
If r = � then we may use the cancellation relations to obtain zLrs = LijLk�L�s −
LkjLi�L�s ∈ b. Similarly if r = j we have zLrs = Lk�LijLjs − Li�LkjLjs ∈ b.

v. Because ad(x)(z) = xz = −zx it follows from iv. that ad(l(J))(U(n+
J ) ∩ b) ⊆ b.

But U(n+
J ) is ad(l(J))-invariant. Hence U(n+

J ) ∩ b is ad(l(J))-invariant, too.

We have MJ ⊆ bJ/b>
J ⊆ U(n+

J ) + b>
J /b>

J . In fact Lµ ∈ U(n+
J ) for µ ∈ B(J).

Let Mo
J ⊆ U(n+

J ) denote the preimage of MJ under the projection map U(n+
J ) −→

U(g)/b>
J .

Lemma 4.7

i. Mo
J · l(J) ⊆ b>

J ;
ii. Mo

J and Mo
J ∩ b>

J = Mo
J ∩ b are ad(l(J))-invariant;

iii. ad(x)(z) = xz mod b>
J for x ∈ l(J) and z ∈ Mo

J .

Proof. — i. Because of Prop. 6 iii. and iv. it suffices to show that LµLk� ∈ b>
J

whenever µ ∈ B(J) and k, � /∈ J . If k /∈ J(−µ) then LµLk� after sorting coincides
up to a constant with some Lν such that J = J(µ)⊂


=
J(ν); hence LµLk� ∈ b>

J in this

case. If k ∈ J(−µ) then Lµ has a factor Lik and since the factors of the monomial
Lµ commute with one another we may use a cancellation relation to conclude that
LµLk� ∈ b.

ii. Using Prop. 6 iii. and v. we are reduced to showing that ad(Lk�)(Lµ) ∈ Mo
J

whenever µ ∈ B(J) and k, � /∈ J . The monomial Lµ is of the form Lµ = c ·
∏
i∈J

Lisi

with si /∈ J and some nonzero integer c. We have

[Lk�, Lisi ] =

{
−Li� if k = si,

0 if k 	= si.

Since ad(Lk�) is a derivation it follows that

ad(Lk�)(Lµ) = −c ·
∑
i∈J
si=k

Li�

∏
j∈J
j 
=i

Ljsj

which clearly lies in Mo
J .

iii. This is an immediate consequence of the first assertion.

The last lemma shows that the structure of MJ as an l(J)-module is induced by
the adjoint action of l(J) on Mo

J . Whenever convenient we will use all the notations
introduced above also for the empty set J = ∅; all the above assertions become
trivially true in this case.
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5. Local duality

In this section, we study linear forms on the Banach space Ωd
b (U

0) of bounded
differential forms on the admissible open set U0 = r−1(C

0
) which is the inverse image

of the open standard chamber in X under the reduction map. The restriction map
gives a continuous injection from Ωd(X) into this Banach space, and therefore linear
forms on Ωd

b (U
0) are also elements of Ωd(X)′.

Our first principal result of this section identifies Ωd
b (U

0) with the dual of the space
O(B)b=0 of (globally) analytic functions on B which are annihilated by the ideal b

studied in the preceeding section.The filtration which we introduced on U(g)/b then
yields filtrations of O(B)b=0 and Ωd

b(U
0). Applying our analysis of the subquotients

of the filtration on U(g)/b from the preceeding section, we describe each subquotient
of the filtration on O(B)b=0 as a space of analytic vector-valued functions on the
unipotent radical of a specific maximal parabolic subgroup in G satisfying certain
explicit differential equations.

Of fundamental importance to this analysis are the linear forms arising from the
residue map on the standard chamber.

The space Ωd
b(U

0) of bounded d-forms η on U0 are those which have an expansion

η =
∑

ν∈X∗(T )

a(ν)ΞνdΞαd−1 ∧ · · · ∧ dΞα0

such that
ωC(η) := inf

ν
{ω(a(ν))− �(ν)} > −∞.

We may and will always view Ωd
b (U

0) as a Banach space with respect to the norm
ωC (compare [ST] Remark after Lemma 17). According to Lemma 1.2 the restriction
map induces a continuous injective map Ωd(X) → Ωd

b (U
0). In [ST] Def. 19 we defined

the residue of η ∈ Ωd
b(U

0) at the pointed chamber (C, 0) by

Res(C,0)η := a(αd).

It is then clear that, for any weight µ ∈ X∗(T ),

η �−→ Res(C,0)Ξ−µη = a(αd + µ)

is a continuous linear form on Ωd
b (U

0) and a fortiori on Ωd(X). Applying the map I

we obtain the locally analytic function

fµ(g) := Res(C,0)(Ξ−µ · g∗ξ)

on G. We collect the basic properties of these functions.

Property 1. — Under the adjoint action of B ∩ T the function fµ has weight −µ, i.e.,

fµ(t−1gt) = µ(t−1) · fµ(g) for g ∈ G and t ∈ B ∩ T.

This is straightforward from [ST] Lemma 20.
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Property 2. — The restriction fµ|B of fµ to the Iwahori subgroup B ⊆ G is analytic
on B.

First of all recall that B is a product of disks and annuli where the matrix entries
gij of g ∈ B can be used as coordinates (the diagonal entries correspond to the annuli).
By construction as well as by the formula

dΞαd−1 ∧ · · · ∧ dΞα0 = (−1)d(d+1)/2Ξ−β−αd
dΞβ0 ∧ · · · ∧ dΞβd−1

we have, for a fixed g ∈ G, the expression

(a) (g∗ξ)|U0 = (−1)d(d+1)/2
∑

µ∈X∗(T )

fµ(g)Ξµξ

in Ωd
b (U

0). This is, of course, not a convergent expansion with respect to the norm
ωC . But if we write g∗ξ|U0 = F (g)ξ|U0 then the series

F (g) = (−1)d(d+1)/2
∑

µ∈X∗(T )

fµ(g)Ξµ

is uniformly convergent on each affinoid subdomain of U0.
On the other hand a direct calculation shows that

g∗ξ = det(g)
 d∏

j=0

1
fj(g, .)

dΞβ0 ∧ · · · ∧ dΞβd−1

where

fj(g, q) :=
d−1∑
i=0

gijΞβi + gdj.

Recall that U0 is given by the inequalities

ω(Ξ0(q)) < · · · < ω(Ξd(q)) < 1 + ω(Ξ0(q)).

It follows that for g ∈ B the term gjjΞβj in the sum fj(g, q) is strictly larger in
valuation than the other terms (we temporarily put βd := 0). We therefore have, for
g ∈ B and q ∈ U0, the geometric series expansion

1
fj(g, q)

=
1

gjjΞβj

∑
m≥0

− d∑
i=0
i
=j

gij

gjj
Ξεi−εj

m

.

If we multiply those expansions together and compare the result to (a) we obtain the
expansion

(b) fµ(g) =
det(g)

g00 · · · gdd
·
∑

m∈I(µ)

cm ·
∏
i
=j

 gij

gjj

mij
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where the cm are certain nonzero integers (given as a sign times a product of polyno-
mial coefficients) and

I(µ) := set of all tuples m = (mij)i
=j consisting
of integers mij ≥ 0 such that

µ =
∑

i
=j mij(εi − εj).

In order to see that this expansion actually is uniformly convergent in g ∈ B let

π(m) :=
∑
i<j

mij .

It is clear that if we fix µ and an n ≥ 0 then the number of m ∈ I(µ) such that
π(m) = n is finite. But on the other hand, for g ∈ B, the matrix entries gij for i < j

are divisible by π. Hence the valuation of the summand corresponding to the tuple
m in the expansion (b) is at least π(m).

Property 3. — The restriction of fµ to B does not vanish identically.

In order to see this we make a choice of simple roots α′
0, . . . , α

′
d−1 with respect to

which µ is positive, i.e., µ = n0α
′
0 + · · ·+ nd−1α

′
d−1 with ni ≥ 0. Consider the matrix

g0 ∈ B which has a 1 on all diagonal positions, a π on the positions α′
0, . . . , α

′
d−1, and

0 elsewhere. Then

fµ(g0) = cπn0+···+nd−1 with some nonzero c ∈ Z.

Let ωB denote the spectral norm on the affinoid algebra O(B) of K-analytic functions
on B. We have to determine the precise value of ωB(fµ|B).

Lemma 5.1. — For any m ∈ I(µ) we have π(m) ≥ �(µ).

Proof. — Recall ([ST] p. 405) that

�(µ) = − inf
z∈C

µ(z).

It follows that �(µ + ν) ≤ �(µ) + �(ν) holds for any µ, ν ∈ X∗(T ). Hence if µ =∑
i
=j mij(εi − εj) then we have

�(µ) ≤
∑
i
=j

mij�(εi − εj).

It therefore suffices to check that

�(εi − εj) ≤
{

1 if i < j,

0 if i > j.

But that is obvious from the definition of the chamber C.

Property 4. — We have the identity

ωB(fµ|B) = �(µ).

ASTÉRISQUE 278



p-ADIC BOUNDARY VALUES 87

The norm ωB on O(B) is multiplicative and the first factor det(g) · (g00 · · · gdd)−1

in the expansion (b) is a unit in O(B). It therefore follows from the lemma that
ωB(fµ|B) ≥ �(µ) and that it suffices to find an m ∈ I(µ) such that

ω(cm) +
∑
i<j

mij = �(µ).

Let us first consider the special case where �(µ) = 0. Then µ = n0α0 + · · ·+nd−1αd−1

with all ni ≥ 0. Consider the element h = (hij) ∈ B where hii = 1 for 0 ≤ i ≤ d and
hi+1,i = −1 for 0 ≤ i ≤ d− 1, with all other hij = 0. For this matrix, we compute

h∗ξ = (1− Ξ1
Ξ0

)−1 · · · (1− Ξd

Ξd−1
)−1ξ

=
∑

(i0,...,id)(
Ξ1
Ξ0

)i0 · · · ( Ξd

Ξd−1
)idξ

in Ωd
b (U

0). Using (a) this shows that fµ(h) = ±1. On the other hand substituting
g = h in the series expansion (b) we see that 1 = ±fµ(h) = ±cm for the particular
m ∈ I(µ) corresponding to the representation µ =

∑d−1
i=0 niαi – that is, the m with

mi+1,i = ni and other mij = 0. This implies that

�(µ) = 0 = ω(cm) +
∑
i<j

mij

in this case. In order to treat the general case we first make the following observations.
Let si ∈ G denote the permutation matrix which represents the reflection in the
Weyl group corresponding to the simple root αi. The Coxeter element s = s0 · · · sd−1

permutes the roots α0, . . . , αd cyclically. The same then is true for the element ρ := ys

where y denotes the diagonal matrix in G with entries π, 1, . . . , 1. But ρ normalizes
the subgroup B and in particular changes the residue of a d-form only by a sign ([ST]
Thm. 24). Let now

ν = n0α0 + · · ·+ ndαd with all ni ≥ 0 and na = 0 for some 0 ≤ a ≤ d

be any weight; in particular �(ν) = nd. The weight µ := ρd−a(ν) then satisfies
�(µ) = 0. Defining h ∈ B as before we have fµ(h) = ±1. The matrix (h′

ij) = h′ :=
ρa−dhρd−a ∈ B is given by

h′
ii = 1, h′

i+1,i = −1 for i 	= a, h′
0d = −π, and all other h′

ij = 0.

Substituting g = h′ in (b) we obtain

fν(h′) = ±cn · πn0d

where n ∈ I(ν) corresponds to the above representation of ν (in particular, n0d = nd).
On the other hand we compute

ω(fν(h′)) = ω(Res(C,0)Ξ−ν · (ρa−dhρd−a)∗ξ)
= ω(Res(C,0)Ξ−ν · (ρa−dh)∗ξ)
= ω(Res(C,0)(ρ

d−a)∗Ξ−ν · h∗ξ)
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= ω
( d−a∏

i=1

si(ν)(y−1) · Res(C,0)Ξ−µ · h∗ξ
)

= −
d−a∑
i=1

ω(si(ν)(y)) + ω(fµ(h))

= −(nd−1 − nd)− (nd−2 − nd−1)− · · · − (na − na+1)
= nd = �(ν).

Property 5. — Since B is open in G the enveloping algebra U(g) also acts by left
invariant differential operators on O(B). It is an immediate consequence of the defi-
nition that

fµ|B ∈ O(B)b=0.

Proposition 5.2. — For any µ ∈ X∗(T ) the weight space of weight −µ in O(B)b=0

with respect to the adjoint action of B ∩T is the 1-dimensional subspace generated by
fµ|B.

Proof. — We consider the pairing

U(g)/b×O(B)b=0 −→ K

(z, f) �−→ (zf)(1).

It is nondegenerate on the right by Taylor’s formula. It also is invariant with respect
to the adjoint action of B ∩ T on both sides. Hence the induced map

O(B)b=0 ↪−→ HomK(U(g)/b, K)

is injective and respects weight spaces. It then follows from Corollary 4.5 that the
weight spaces on the left hand side are at most 1-dimensional. But we know that
fµ|B is nonvanishing.

The meaning of that proposition is that any function f ∈ O(B)b=0 has an expansion
of the form

f =
∑

µ∈X∗(T )

b(µ)(fµ|B)

with b(µ) ∈ K such that ω(b(µ)) + �(µ) → ∞ with respect to the Fréchet filter of
complements of finite subsets in X∗(T ). First expand f into a series in the matrix
entries and then collect all terms of a specific weight −µ. We obtain in this way an
expansion

f =
∑

µ

f̃µ with ωB(f̃µ) −→∞.

Since the U(g)-action on O(B) is by continuous endomorphisms and since the ideal
b is homogeneous in the weight space decomposition the equation bf = 0 implies
bf̃µ = 0 for any µ. It therefore follows from the proposition that f̃µ = b(µ)(fµ|B) for
some b(µ) ∈ K.
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If we now consider a d-form

η =
∑

µ∈X∗(T )

a(µ)Ξµξ ∈ Ωd
b (U

0)

then we see that
〈η, f〉 :=

∑
µ

a(µ)b(µ)

converges in K. In this way we obtain a bilinear pairing

〈, 〉 : Ωd
b (U

0)×O(B)b=0 −→ K.

Actually the following stronger statement is immediately clear.

Proposition 5.3. — The pairing 〈, 〉 induces a topological isomorphism

[O(B)b=0]′ = Ωd
b(U

0).

The connection between this local duality and the map I from the second section
is provided by the diagram

Ωd(X)′ I �� Can(G, K)a=0

restriction
��

Can(B, K)b=0

Ωd
b (U

0)′

restriction′

��

O(B)b=0
〈 , 〉

��

⊆
��

which, by the very construction of the above pairing, is commutative up to sign.
The ideal filtration b ⊆ · · · ⊆ bj ⊆ · · · ⊆ U(g) gives rise to a filtration

O(B)b=0 ⊇ · · · ⊇ O(B)bj+1=0 ⊇ O(B)bj=0 ⊇ · · · ⊇ O(B)b0=0 = {0}

as well as, by duality, to a “local” filtration

Ωd
b (U

0) = Ωd
b (U

0)0 ⊇ · · · ⊇ Ωd
b(U

0)j ⊇ · · · ⊇ Ωd
b (U

0)d+1 = {0}

with

Ωd
b (U

0)j := [O(B)b=0/O(B)bj=0]′.

We need to understand how the properties of the ideal filtration which we have estab-
lished in the previous section translate into properties of the other filtrations. Recall
that the “bases”{fµ} of O(B)b=0 and {Lµ} of U(g)/b, respectively, are “dual” to each
other in the sense that

Lνfµ(1) =

{
±1 for ν = µ,

0 for ν 	= µ.
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If f ∈ O(B)b=0 has the expansion f =
∑
µ

b(µ)(fµ|B) we therefore have

(Lνf)(1) =
∑

µ

b(µ)(Lνfµ)(1) = ±b(ν).

From this one easily deduces that

– O(B)bJ=0 = {f ∈ O(B)b=0 : f =
∑

J 
⊆J(µ) b(µ)(fµ|B)};
– any coset in O(B)b

>
J =0/O(B)bJ=0 has a unique representative of the form

f =
∑

J(µ)=J

b(µ)(fµ|B).

This leads to the fact that the map

O(B)bj+1=0/O(B)bj=0
∼=−→ ⊕

#J=j
O(B)b

>
J =0/O(B)bJ=0

f =
∑

#J(µ)=j

b(µ)(fµ|B) �−→
( ∑

J(µ)=J

b(µ)(fµ|B)
)

J

is a continuous linear isomorphism. We will give a reinterpretation of the right hand
side which reflects the fact that bJ/b>

J is a quotient of the generalized Verma module
U(g)⊗U(pJ ) MJ via the map which sends z⊗m to zm. Set

dJ := ker(U(g) ⊗
U(pJ )

MJ −→ bJ/b>
J ).

By the Poincaré-Birkhoff-Witt theorem the inclusion U(n+
J ) ⊆ U(g) induces an iso-

morphism U(n+
J ) ⊗K MJ

∼=−→U(g) ⊗U(pJ ) MJ . In this section we always will view dJ

as a subspace of U(n+
J )⊗K MJ .

Let U+
J be the unipotent subgroup in G whose Lie algebra is n

+
J , and let O(U+

J ∩B)
denote the K-affinoid algebra of K-analytic functions on the polydisk U+

J ∩B. Con-
sider the pairing

〈 , 〉 : (U(n+
J )⊗

K
MJ)× (O(U+

J ∩B)⊗
K

M ′
J) −→ O(U+

J ∩B)

(z⊗m, e⊗ E) �−→ E(m) · ze

and define the Banach space

O(U+
J ∩B, M ′

J)dJ=0 := {ε ∈ O(U+
J ∩B)⊗

K
M ′

J : 〈dJ , ε〉 = 0}.

Let also {L∗
µ}µ∈B(J) denote the basis of M ′

J dual to the basis {Lµ}µ of MJ .

Proposition 5.4. — The map

∇J : O(B)b
>
J =0/O(B)bJ=0

∼=−→ O(U+
J ∩B, M ′

J)dJ=0

f �−→
∑

µ∈B(J)

[(Lµf)|U+
J ∩B]⊗ L∗

µ

is an isomorphism of Banach spaces.
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Proof. — For Z =
∑

ν z(ν) ⊗ Lν ∈ dJ ⊆ U(n+
J )⊗K MJ we have

〈Z,
∑
µ

[(Lµf)|U+
J ∩B]⊗ L∗

µ〉 =
∑
µ,ν

L∗
µ(Lν) · (z(ν)Lµf)|U+

J ∩B

= (
∑
ν

z(ν)Lν)f |U+
J ∩B = 0

since
∑

ν z(ν)Lν ∈ U(n+
J ) ∩ b>

J . Morover for µ ∈ B(J) we have Lµ ∈ bJ . Hence the
map ∇J is well defined. It clearly is continuous. The Banach space on the left hand
side of the assertion has the orthonormal basis π−�(ν)fν |B for J(ν) = J . Concerning
the right hand side we observe that the above pairing composed with the evaluation
in 1 induces an injection

O(U+
J ∩B)⊗

K
M ′

J ↪−→ HomK(U(n+
J )⊗

K
MJ , K)

which restricts to an injection

O(U+
J ∩B, M ′

J)dJ=0 ↪−→ HomK(bJ/b>
J , K).

Hence the only weights which can occur in the right hand side are those ν with
J(−ν) = J and the corresponding weight spaces are at most 1-dimensional. Moreover
the same argument as after Prop. 2 shows that the occurring weight vectors (scaled
appropriately) form an orthonormal basis. Since ∇J visibly preserves weights the
assertion follows once we show that

∇J (fν |B) 	= 0 for any ν with J(ν) = J.

All that remains to be checked therefore is the existence, for a given ν with J(ν) = J ,
of a µ ∈ B(J) such that Lµfν does not vanish identically on U+

J ∩B.

The weight ν is of the form ν =
d∑

j=0

njεj with nj > 0 for j ∈ J and nj ≤ 0 for

j /∈ J . We have
#J ≤

∑
j∈J

nj = −
∑
j /∈J

nj .

Choose integers nj ≤ mj ≤ 0 for j /∈ J such that #J = −
∑

j /∈J mj and define

µ :=
∑
j∈J

εj +
∑
j /∈J

mjεj ∈ B(J).

Observe that J(ν − µ) ⊆ J and J(µ − ν) ∩ J = ∅. This means that Lν−µ ∈ U(n+
J ).

It suffices to check that Lν−µLµfν(1) 	= 0. We compute

Lν−µLµfν(1) = Res(C,0)Ξ−ν · Lν−µLµξ

= −Res(C,0)Ξ−ν · Lν−µ(Ξµξ).

As a consequence of the formula (+) in section 4 we have Lν−µ(Ξµξ) = m · Ξνξ for
some nonzero integer m. Hence we obtain

Lν−µLµfν(1) = −m · Res(C,0)ξ = ±m 	= 0.

As a consequence of this discussion we in particular have the following map.
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Lemma 5.5. — There is a unique continuous linear map

DJ : O(U+
J ∩B, M ′

J)dJ=0 −→ [Ωd
b (U

0)j/Ωd
b(U

0)j+1]′,

where j := #J , which sends the weight vector
∑

µ∈B(J)[(Lµfν)|U+
J ∩ B] ⊗ L∗

µ, for ν

with J(ν) = J , to the linear form λν(η) := Res(C,0)Ξ−νη.

6. The global filtration

In this section, we find a G-invariant filtration on the full space Ωd(X) that is
compatible with the local filtration discussed in the previous section. This “global”
filtration is defined first on the subspace of Ωd(X) consisting of algebraic d-forms
having poles along a finite set of K-rational hyperplanes; the filtration on the full
space is obtained by passing to the closure. We obtain at the same time a filtration
on the dual space Ωd(X)′. A key tool in our description of this filtration is a “partial
fractions decomposition” due to Gelfand and Varchenko.

At the end of the section, we apply general results from the theory of topological
vector spaces (in the non-archimedean situation) to show that the subquotients of the
global filtration on Ωd(X) are reflexive Fréchet spaces whose duals can be computed
by the subquotients of the dual filtration.

Let us first recall some general notions from algebraic geometry. Let L be an
invertible sheaf on Pd

/K . With any regular meromorphic section s of L over Pd
/K we

may associate a divisor div(s) (compare EGA IV.21.1.4). One has div(s′) = div(s)
if and only if s′ = ts for some invertible regular (= constant) function t on Pd. Let
{Yi}i∈I be the collection of prime divisors on Pd

/K and write

div(s) =
∑
i∈I

niYi

where almost all of the integers ni are zero. One has∑
i

nideg(Yi) = n if L ∼= O(n)

([Har] II.6.4). We put

div(s)∞ := −
∑

i
ni<0

niYi

and

ıo(s) := #{i ∈ I : ni < 0} .

By convention let div(0)∞ := 0 and ıo(0) = 0. We want to apply these notions in
the case of the canonical invertible sheaf L = Ωd ∼= O(−d − 1) on Pd

/K . A regular
meromorphic global section η in this case is a d-form η = Fξ such that F is a nonzero
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rational function on Pd
/K . We will study the subspace

Ωd
alg(X) := all regular meromorphic global sections

η of Ωd such that div(η)∞ is supported on
a union of K-rational hyperplanes in Pd

together with the zero section

of “algebraic forms” in Ωd(X). For any η ∈ Ωd
alg(X) we introduce its index as being

the nonnegative integer
ı(η) := min max

k
ıo(ηk)

where the minimum is taken over all representations η =
∑
k

ηk of η as a finite sum of

other ηk ∈ Ωd
alg(X). By definition we have

ı(η + η′) ≤ max(ı(η), ı(η′)).

Hence Ωd
alg(X) is equipped with the filtration

· · · ⊇ Ωd
alg(X)0 ⊇ · · · ⊇ Ωd

alg(X)d ⊇ Ωd
alg(X)d+1 = {0}

by the subspaces

Ωd
alg(X)j := {η ∈ Ωd

alg(X) : ı(η) ≤ d + 1− j}.

Lemma 6.1. — The index ı(η) is G-invariant and takes values between 1 and d + 1
for all nonzero η ∈ Ωd

alg(X).

Proof. — The G-invariance is clear since G preserves K-rational hyperplanes. The
upper bound for the index follows from the existence of a partial fraction decompo-
sition ([GV] Thm. 21) which says that Ωd

alg(X) as a vector space is spanned by the
forms u∗(Ξµξ) = (u∗Ξµ−β)dΞβ0 ∧ · · · ∧ dΞβd−1 with µ ∈ X∗(T ) and u ∈ P unipotent.
Each Ξµξ has poles along at most the d + 1 coordinate hyperplanes defined by the
equations Ξi = 0 for i = 0, . . . , d.

It follows that the subspace Ωd
alg(X) together with its filtration is G-invariant.

Moreover the filtration is finite with Ωd
alg(X) = Ωd

alg(X)0. In order to obtain finer
information we need to take a closer look at that partial fraction decomposition.
First we introduce, for any subset J ⊆ {0, . . . , d}, the subgroup

U(J) := all lower triangular unipotent matrices u = (uij)
such that uij = 0 whenever i > j and j ∈ J

of U . In particular U({0, . . . , d}) = U({0, . . . , d−1}) = {1} and U(∅) = U({d}) = U .

Proposition 6.2. — Every differential form η ∈ Ωd
alg(X) may be written as a sum

η =
∑

J⊆{0,...,d}

∑
µ∈X∗(T )
J(µ)=J

∑
u∈U(J)

A(µ, u)u∗(Ξµξ)
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where the coefficients A(µ, u) ∈ K are zero for all but finitely many pairs (µ, u);
furthermore, such an expression is unique.

Proof. — We write η = FdΞβ0 ∧ · · · ∧ dΞβd−1 and apply that partial fraction decom-
position to F obtaining an expression

F =
∑

µ∈X∗(T )

∑
u∈U

B(µ, u)u∗Ξµ.

The uniqueness part of that Thm. 21 in [GV] says that such an expression even exists
and is unique under the following additional requirement: If µ =

∑
k mkεk then

we sum only over those u ∈ U whose k-th column consists of zeroes except for the
diagonal entry ukk = 1 for every k such that mk ≥ 0. But

{0 ≤ k < d : mk ≥ 0} = J(µ + β)\{d}

so that the condition on u becomes exactly that u ∈ U(J(µ + β)). Because of
(u∗Ξµ)dΞβ0 ∧ · · · ∧ dΞβd−1 = u∗(Ξµ+βξ) we obtain the desired unique expression
if we put A(µ, u) := B(µ− β, u).

Let us temporarily introduce as another invariant of a form η ∈ Ωd
alg(X) the linear

subvariety
Z(η) := the intersection of all hyperplanes

contained in the support of div(η)∞

in Pd
/K . One obviously has:

– codim Z(η) ≤ ıo(η);
– codim Z(g∗(Ξµξ)) = ıo(g∗(Ξµξ)) for any g ∈ G and µ ∈ X∗(T ).

Write

η = Fhom(Ξ0, . . . , Ξd) ·
d∑

i=0

(−1)iΞidΞ0 ∧ · · · ∧ d̂Ξi ∧ · · · ∧ dΞd

as a homogeneous form on affine space Ad+1 and apply the partial fraction decompo-
sition in [GV] to Fhom. Then, at each stage of the construction of the partial fraction
decomposition of Fhom, the linear forms occurring in the denominator of any term are
linear combinations of those in the denominator of Fhom. This means that

– Z(η) ⊆ Z(A(µ, u)u∗(Ξµξ)).

Together these three observations imply that

ıo(η) ≥ ıo(A(µ, u)u∗(Ξµξ)) .

It then follows from the unicity of the partial fraction decomposition that we actually
have

ı(η) = max
µ,u

ıo(A(µ, u)u∗(Ξµξ)) .

ASTÉRISQUE 278



p-ADIC BOUNDARY VALUES 95

But div(ξ)∞ =
∑d

i=0{Ξi = 0} and therefore ıo(Ξµξ) = d + 1−#J(µ). We obtain the
following explicit formula

ı(η) = max{d + 1−#J(µ) : µ such that A(µ, u) 	= 0 for some u ∈ U(J(µ))}

for the index of any d-form η 	= 0. Another consequence of this discussion that we
will need later is the inequality

ı(η) ≤ codimZ(η) .

Corollary 6.3. — Ωd
alg(X)j as a K-vector space is spanned by the forms u∗(Ξµξ) where

(µ, u) ∈ X∗(T ) × U runs over those pairs for which u ∈ U(J(µ)) and #J(µ) ≥ j; in
particular

Ωd
alg(X)j =

∑
g∈G

g∗(bjξ).

Our “global” G-equivariant filtration

Ωd(X) = Ωd(X)0 ⊇ · · · ⊇ Ωd(X)d ⊇ Ωd(X)d+1 = {0}

of Ωd(X) now is defined in the following way by taking closures.

Definition. — Ωd(X)j := closure of Ωd
alg(X)j in Ωd(X). The dual filtration

{0} = Ωd(X)′0 ⊆ Ωd(X)′1 ⊆ · · · ⊆ Ωd(X)′d+1 = Ωd(X)′

is given by
Ωd(X)′j := [Ωd(X)/Ωd(X)j ]′.

The second statement in Corollary 3 immediately implies that the latter filtration
corresponds under our map I to the filtration of Can(G, K) defined through annihi-
lation conditions with respect to the left invariant differential operators in the ideal
sequence b0 ⊇ · · · ⊇ bd+1 = b, i.e.,

I(Ωd(X)′j) ⊆ Can(G, K)bj=0 for 0 ≤ j ≤ d + 1.

The compatibility between the local and the global filtration is established in the
subsequent lemma.

Lemma 6.4. — Ωd(X)j ⊆ Ωd(X) ∩Ωd
b (U

0)j .

Proof. — Consider any d-form u∗(Ξµξ) with u ∈ U(J(µ)) and write

u∗(Ξµξ)|U0 =
∑

ν∈X∗(T )

a(ν)Ξνξ.

We claim that a(ν) 	= 0 implies that #J(ν) ≥ #J(µ). In order to see this let
µ =

∑
k mkεk. Because of the condition on u we have

u∗(Ξµξ) =
 ∏

k/∈J(µ)

Ξk

 ∏
k∈J(µ)

Ξmk

k

 ∏
k/∈J(µ)

u∗Ξmk−1
k

ξ.
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The first two products together contain each Ξk with a positive exponent. In the
third product the exponents are negative. On U0 the summands of the linear form
u∗Ξk = Ξk+uk+1kΞk+1+· · ·+udkΞd differ pairwise in valuation. Hence after factoring
out the largest summand we can develop (u∗Ξk)−1, on U0, into a geometric series. The
terms of the resulting series have powers of a single Ξk′ in the denominator. It follows
that each of the d+1−#J(µ) factors in the third product can cancel out at most one
of the Ξk’s in the first two products so that at least d + 1− (d + 1−#J(µ)) = #J(µ)
others remain. This establishes our claim which was that

u∗(Ξµξ)|U0 ∈ Ωd
b(U

0)#J(µ) for u ∈ U(J(µ)).

(For this slight reformulation one only has to observe that Ωd
b(U

0)j has a nonvanishing
weight space exactly for those ν with #J(ν) ≥ j.) It is then a consequence of Cor. 3
that

Ωd
alg(X)j ⊆ Ωd

b (U
0)j .

As a simultaneous kernel of certain of the continuous linear forms η �→ Res(C,0)Ξ−µη

on Ωd
b (U

0) the right hand side is closed in Ωd
b (U

0). It therefore follows that

Ωd(X)j ⊆ Ωd
b (U

0)j .

As a consequence of this fact we may view the map DJ from Lemma 5.5 as a
continuous linear map

DJ : O(U+
J ∩B, M ′

J)dJ=0 −→ [Ωd(X)j/Ωd(X)j+1]′ ,

where j := #J , which sends the weight vector
∑

µ∈B(J)[(Lµfν)|U+
J ∩ B]⊗ L∗

µ, for ν

with J(ν) = J , to the linear form λν(η) := Res(C,0)Ξ−νη.
We finish this section by collecting the basic properties which the subquotients of

our global filtration have as locally convex vector spaces.

Proposition 6.5. — Each subquotient Ωd(X)i/Ωd(X)j for 0 ≤ i ≤ j ≤ d + 1 is a
reflexive Fréchet space; in particular its strong dual is barrelled and complete.

Proof. — In section 1 we deduced the reflexivity of Ωd(X) from the fact that it is the
projective limit of a sequence of Banach spaces with compact transition maps. It is
a general fact (the proofs of Theorems 2 and 3 in [Kom] carry over literally to the
nonarchimedean situation) that in such a Fréchet space every closed subspace along
with its corresponding quotient space are projective limits of this type, too.

Lemma 6.6. — Let A : V → Ṽ be a strict continuous linear map between the K-
Fréchet spaces V and Ṽ ; if Ṽ is reflexive then the dual map A′ : Ṽ ′ → V ′ between the
strong duals is strict as well.

Proof. — (Recall that A is strict if on im(A) the quotient topology from V coincides
with the subspace topology from Ṽ .) The subspace im(A) of Ṽ being a quotient of
the Fréchet space V is complete by the open mapping theorem and hence is closed.
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Let now Σ̃ ⊆ Ṽ ′ be any open o-submodule. We have to find an open o-submodule
Σ ⊆ V ′ such that A′(Σ̃) ⊇ im(A′) ∩ Σ. We may assume that ker(A′) ⊆ Σ̃. By the
definition of the strong dual we also may assume that

Σ̃ = Γ̃o := {λ ∈ Ṽ ′ : |λ(ṽ)| ≤ 1 for any ṽ ∈ Γ̃}
for some closed and bounded o-submodule Γ̃ ⊆ Ṽ . Since Ṽ is reflexive Γ̃ is weakly
compact ([Tie] Thms 4.20.b, 4.21, and 4.25.2) and hence compact ([DeG] Prop. 3.b).
Since im(A) is closed in Ṽ the Hahn-Banach theorem ([Tie] Thm. 3.5) implies that
ker(A′)o = im(A). Using [Tie] Thm. 4.14 we deduce form the inclusion ker(A′) ⊆ Σ̃
that

Γ̃ = Γ̃oo = Σ̃o ⊆ ker(A′)o = im(A).

In fact, Γ̃ is a compact subset of im(A). According to [B-GT] IX 2.10, Prop. 18 we find
a compact subset Γ ⊆ V such that A(Γ) = Γ̃. Then Σ := Γo is an open o-submodule
in V ′ such that im(A′) ∩ Σ = A′(Σ̃).

Proposition 6.7

i. For 0 ≤ j ≤ d + 1 the natural map Ωd(X)′j ↪→ Ωd(X)′ is a topological embedding
as a closed subspace;

ii. for 0 ≤ i ≤ j ≤ d + 1 the natural map Ωd(X)′j/Ωd(X)′i
∼=−→ [Ωd(X)i/Ωd(X)j ]′ is

a topological isomorphism.

Proof. — i. This follows immediately from Prop. 5 and Lemma 6. ii. The natural
exact sequence

0 −→ Ωd(X)i/Ωd(X)j −→ Ωd(X)/Ωd(X)j −→ Ωd(X)/Ωd(X)i −→ 0

consists of strict linear maps between Fréchet spaces which are reflexive by Prop. 5.
The dual sequence is exact by Hahn-Banach and consists of strict linear maps by
Lemma 6.

Corollary 6.8. — If V denotes one of the locally convex vector spaces appearing in the
previous Proposition then the G-action G×V → V is continuous and the map g �→ gλ

on G, for any λ ∈ V , is locally analytic.

Proof. — Because of Prop. 7 this is a consequence of Cor. 3.9.

7. The top filtration step

The purpose of this section is to describe the first stage of the global filtration
in various different ways. This information (for all the p-adic symmetric spaces of
dimension ≤ d) will be used in an essential way in our computation of all the stages
of the global filtration in the last section.

Theorem 7.1. — The following three subspaces of Ωd(X) are the same:

1. The subspace d(Ωd−1(X)) of exact forms in Ωd(X);
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2. The first stage Ωd(X)1 in the global filtration;
3. The subspace of forms η such that Res(C,0)g∗η = 0 for any g ∈ G.

In particular all three are closed subspaces.

The proof requires a series of preparatory statements which partly are of interest
in their own right. We recall right away that any exact form of course has vanishing
residues. The subspace Ωd(X)1 is closed by construction. The subspace in 3. is closed
as the simultaneous kernel of a family of continuous linear forms.

Lemma 7.2. — An algebraic differential form η ∈ Ωd
alg(X) is exact if and only if η

belongs to Ωd
alg(X)1.

Proof. — Suppose first that η is exact. Expand η in its partial fractions decom-
position (Prop. 6.2). From Cor. 6.3 we see that η is congruent to a finite sum of
logarithmic forms u∗ξ modulo Ωd

alg(X)1, where u is in the subgroup U of lower tri-
angular unipotent matrices. However, by [ST] Thm. 24, Cor. 40, and Cor. 50 the
forms u∗ξ are linearly independent modulo exact forms. Since η is exact, therefore,
no logarithmic terms can appear in its partial fractions expansion and η belongs to
Ωd

alg(X)1. Conversely it suffices, by Cor. 6.3 and G-invariance, to consider a form
Ξµξ with µ 	= 0. Since the Weyl group acts through the sign character on ξ we may
use G-equivariance again and assume that ε0 occurs in µ with a positive coefficient
m0 > 0. Then Ξµξ = dθ with θ := 1

m0
Ξβ0Ξµ−βdΞβ1 ∧ · · · ∧ dΞβd−1 .

In the following we let Ωd(Xn)j , for n ∈ N, denote the closure of Ωd
alg(Xn)j in the

Banach space Ωd(Xn).

Lemma 7.3. — For a form η ∈ Ωd(X) we have:

i. η is exact if and only if η|Xn is exact for any n ∈ N;
ii. η ∈ Ωd(X)1 if and only if η|Xn ∈ Ωd(Xn)1 for any n ∈ N.

Proof. — i. By the formula on the bottom of p. 64 in [SS] we have

H∗
DR(X) = lim←−

n

H∗
DR(Xo

n)

where the Xo
n ⊆ X are certain admissible open subvarieties such that

– X =
⋃

n Xo
n is an admissible covering, and

– Xn−1 ⊆ Xo
n ⊆ Xn.

The second property of course implies that

lim←−
n

H∗
DR(Xo

n) = lim←−
n

H∗
DR(Xn) .

ii. This follows by a standard argument about closed subspaces of projective limits of
Banach spaces (compare the proof of Thm. 2 in [Kom]).
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The main technique for the proof of Theorem 1 will be a “convergent partial frac-
tions” decomposition for rigid d-forms on X. We begin by recalling the explicit de-
scription of rigid forms on Xn given in [SS] p. 53. Fix a set H = {�0, . . . , �s} of
unimodular representatives for the hyperplanes modulo πn+1 in such a way that it
contains the coordinate hyperplanes {Ξi = 0} for 0 ≤ i ≤ d. A rigid d-form η on the
affinoid Xn is represented by a convergent expansion

(∗) η =
∑
I,J

aI,J
Ξj0

0 · · ·Ξjd

d

�i0
0 · · · �is

s

Θ

in homogeneous coordinates where I and J run over all (s + 1)-tuples (i0, . . . , is) and
(d+1)-tuples (j0, . . . , jd) of non-negative integers respectively with

∑
ik−

∑
jk = d+1

and where

Θ :=
d∑

i=0

(−1)iΞidΞ0 ∧ · · · ∧ d̂Ξi ∧ · · · ∧ dΞd .

The convergence means that the coefficients aI,J satisfy ω(aI,J) − n(
∑d

k=0 jk) → ∞
as

∑d
k=0 jk →∞.

Lemma 7.4. — In the expansion (∗) we may assume aI,J = 0 unless the corresponding
set of “denominator forms” {�k : ik ≥ 1} is linearly independent.

Proof. — Suppose that �0, . . . , �r are linearly dependent, and that ik ≥ 1 for
0 ≤ k ≤ r. Write

r∑
k=0

bk�k = 0

with the bk ∈ o and at least one bk = 1. Suppose for example that b0 = 1. Then

�0 = −
r∑

k=1

bk�k

and
Ξj0

0 · · ·Ξjd

d

�i0
0 · · · �ir

r

Θ = −
r∑

k=1

bkΞj0
0 · · ·Ξjd

d

�i0+1
0 · · · �ik−1

k · · · �ir
r

Θ .

The individual terms on the right side of this sum have the same degree as the term
on the left. This, together with the fact that the bk belong to o, implies that the
expression on the right may be substituted into the series expansion for η and the sum
re-arranged. Further, this process may be iterated until the denominators occurring
on the right side are linearly independent.

Using this Lemma, we see that any η ∈ Ωd(Xn) can be written as a finite sum of
forms

(∗∗) ηL =
∑
I,J

aI,J
Ξj0

0 · · ·Ξjd

d

�i0
0 · · · �ir

r

Θ
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where L = {�0, . . . , �r} is a fixed linearly independent set chosen from H, I runs
through the (r + 1)-tuples of positive integers, and ω(aI,J) − n(

∑d
k=0 jk) → ∞ as∑d

k=0 jk →∞.

Lemma 7.5. — A form ηL as in (∗∗) belongs to Ωd(Xn)d+1−#L.

Proof. — This is clear from the inequality ı(η) ≤ codimZ(η) in section 6.

Definition. — A form η ∈ Ωd(Xn) is called decomposable if it has a convergent expan-
sion of the form

η =
∑
g∈G

∑
µ∈X∗(T )

c(g, µ)(g∗(Ξµξ)|Xn)

where

1. c(g, µ) ∈ K and = 0 for all but finitely many g ∈ G which are independent of µ,
2. if c(g, µ) 	= 0 for some µ then the columns of the matrix g are unimodular,
3. ω(c(g, µ))−nd(µ) →∞ as d(µ) →∞ (d(µ) was defined in section 4, just before

the statement of Lemma 4.1).

Lemma 7.6. — Suppose that ηL is given by a series as in (∗∗) on X2n. Then the
restriction of ηL to Xn−1 is either decomposable or may be written as a (finite) sum
of series ηL′ converging on Xn−1 and with #L′ < #L.

Proof. — The dichotomy in the statement of the Lemma arises out of the following
two possibilities:
Case I. There is a unimodular relation

r∑
k=0

bk�k ≡ 0 (modπn) .

Case II. Whenever there is a relation
r∑

k=0

bk�k ≡ 0 (modπn) , with bk ∈ o ,

we must have all bk divisible by π.
Let us treat Case I first. Suppose that b0 is a unit in the unimodular relation, and

write

�0 = −
r∑

k=1

(bk/b0)�k + πnh .

To simplify the notation, set

� := −
r∑

k=1

(bk/b0)�k .

The fact that �0 is unimodular means that � is unimodular as well. We have
1
�0

=
1
�

(1 + πnh/�)−1 ,
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and, since πnh/� has sup-norm ≤ |π| < 1 on Xn−1, using the geometric series we see
that we may rewrite the series expansion for ηL so that it converges on Xn−1:

ηL|Xn−1 =
∑

a′
I,J

Ξj0
0 · · ·Ξjd

d

�i�i1
1 · · · �ir

r

Θ

But since � is a linear combination of �k for k 	= 0, the proof of Lemma 4 shows
that ηL|Xn−1 is a sum of series ηL′ where L′ is a linearly independent subset of the
dependent set {�, �1, . . . , �r}; such a set has fewer than r + 1 elements.

For Case II we take a different approach. Apply elementary divisors to find linear
forms f0, . . . , fd which form a basis for the o-lattice spanned by Ξ0, . . . , Ξd and such
that πe0f0, . . . , π

er fr form a basis for the span of �0, . . . , �r. Since any monomial in
the Ξi is an integral linear combination of monomials in the fi, we may rewrite ηL

using the fi for coordinates:

ηL =
∑

a′′
I,J

f j0
0 · · · f jd

d

�i0
0 · · · �ir

r

Θ .

Using our Case II hypothesis, we know that ek < n for 0 ≤ k ≤ r. Therefore πn−1fk,
for each 0 ≤ k ≤ r, is an integral linear combination of �0, . . . , �r. Let g ∈ G be
the matrix such that g∗Ξi = �i for 0 ≤ i ≤ r and g∗Ξi = fi for r + 1 ≤ i ≤ d. By
construction the columns of g are unimodular. Rewriting the series for ηL in terms
of the π1−n�0, . . . , π

1−n�r, fr+1, . . . , fd we see that

(∗ ∗ ∗) ηL =
∑

a′′
I,J det(g)−1π(1−n)(

�r
k=0 jk)

∑
µ

cµ,I,Jg∗(Ξµξ)

where each of the inner sums is finite and the coefficients cµ,I,J are integral. Since
the original sum for ηL converges on X2n, we have

ω(a′′
I,J) = H

( d∑
k=0

jk

)
+ 2n

( d∑
k=0

jk

)
where H(m) is a function which goes to infinity as m goes to infinity. But then

ω
(
a′′

I,J det(g)−1π(1−n)(
�r

k=0 jk)
)
≥ H

( d∑
k=0

jk

)
+ 2n

( d∑
k=0

jk

)
+ (1− n)

( d∑
k=0

jk

)
+ C

which shows that, after rearrangement according to µ, the series (∗ ∗ ∗) converges on
Xn+1 (if cµ,I,J 	= 0 then

∑d
k=0 jk ≥ d(µ)). Thus in Case II ηL is decomposable on

Xn+1.

Proposition 7.7. — Let η be a rigid d-form on X; then η|Xn, for any n > 0, is decom-
posable.

Proof. — This follows by induction from Lemma 6. Indeed, any rigid form η on Xm

with m := 2d+1(n + 2) is decomposable on Xn.
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Definition. — A form η ∈ Ωd
alg(X) is called logarithmic if it lies in the smallest G-

invariant vector subspace containing ξ.

Corollary 7.8. — Let η be a rigid d-form on X. Then, for any n > 0, the restriction
of η to Xn has a decomposition

η = η0 + η1

where η0 is the restriction of a logarithmic form and η1 is an exact form in Ωd(Xn)1.

Proof. — Applying the convergent partial fractions decomposition of Prop. 7, write
η on Xn+1 as

η|Xn+1 =
∑

g

c(g, 0)(g∗ξ|Xn+1) +
∑

g

∑
µ
=0

c(g, µ)(g∗(Ξµξ)|Xn+1) .

Let η0 be the first of these sums, and η1 the second. Clearly η0 is logarithmic and η1,
by Cor. 6.3, belongs to Ωd(Xn+1)1. Thus we need only show that η1 is exact on Xn.
However, one sees easily that the series for η1 may be integrated term-by-term to
obtain a rigid (d−1)-form θ on Xn with dθ = η1 (compare the proof of Lemma 2).

As a last preparation we need the following result on logarithmic forms.

Proposition 7.9. — For any n > 0 we have:

i. There is a compact open set Vn ⊂ U such that

u∗ξ ∈ Ωd(Xn)1 ∩ d(Ωd−1(Xn))

for all u ∈ U\Vn;
ii. there is a finite set u(1), . . . , u(k) of elements of U and a disjoint covering of Vn

by sets {D(u(�), r)}k
�=1 such that

v∗ξ ≡ u
(�)
∗ ξ (mod Ωd(Xn)1 ∩ d(Ωd−1(Xn)))

if v ∈ D(u(�), r);
iii. the image of

Ωd(X) −→ Ωd(Xn)/(Ωd(Xn)1 ∩ d(Ωd−1(Xn)))

and the space Ωd(Xn)/Ωd(Xn)1 both are finite dimensional; more precisely, the
classes of the forms u

(1)
∗ ξ, . . . , u

(k)
∗ ξ span both spaces.

Proof. — i. In homogeneous coordinates, we write

u∗ξ =
Θ

�0 · · · �d

where �j =
∑d

i=j uijΞi and the uij are the matrix entries of the lower triangular
unipotent matrix u. Let

Vn := {u ∈ U : ω(ulk) ≥ −(n + 1)d for all d ≥ l ≥ k ≥ 0}.
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We claim Vn has the desired property. Suppose that u 	∈ Vn, so that, for some pair
d ≥ l > k ≥ 0 we have ω(ulk) < −(n + 1)d. Focus attention for the moment on the
linear form �k. Since ukk = 1, we may split the set of row indices k, . . . , d into two
nonempty sets A and B such that

inf
l∈A

ω(ulk) > sup
l∈B

ω(ulk) + n + 1.

We point out two facts for later use. First, the index k automatically belongs to the
set A, and so �B

k is a linear combination of the Ξi with i > k. Second, and for the
same reason, the set of linear forms {�j}j 
=k ∪ {�A

k } is a triangular basis for the full
space of K-linear forms in the Ξi. Continuing with the main line of argument, write

�k = �A
k + �B

k =
(∑

l∈A

ulkΞl

)
+
(∑

l∈B

ulkΞl

)
.

Then
1
�k

=
1
�B
k

(
1

1 + (�A
k /�B

k )

)
.

The linear forms π− infl∈A ω(ulk)�A
k and π− infl∈B ω(ulk)�B

k are unimodular. From this,
we obtain the following estimate on Xn:

(1)
ω(�A

k /�B
k ) ≥ inf l∈A ω(ulk)− inf l∈B ω(ulk)− n

≥ inf l∈A ω(ulk)− supl∈B ω(ulk)− n

> 1 .

At this point, it will be convenient to change from homogeneous to inhomogeneous
coordinates. Let

�j := �j/Ξd =
d−1∑
i=0

uijΞβi + udj,

and similarly let �
A

k := �A
k /Ξd and �

B

k := �B
k /Ξd. Then we may expand the form u∗ξ

as a convergent series on Xn:

(2) u∗ξ =
∞∑

m=0

cmFmdΞβ0 ∧ · · · ∧ dΞβd−1

where the coefficients cm ∈ Z,

Fm =
(�

A

k )m

�0 · · · (�
B

k )m+1 · · · �d−1

and �
B

k has taken the place of �k in the denominators of these forms (observe that
Θ = (−1)dΞd+1

d dΞβ0 ∧· · · ∧dΞβd−1). Our estimate (1) tells us that there is a constant
C so that the functions Fm satisfy inf

q∈Xn

ω(Fm(q)) ≥ m− C in the sup norm on Xn.

To finish the proof, we will show that the expansion (2) may be integrated term
by term on Xn. This shows that u∗ξ is exact on Xn. In addition, since it proves that
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each algebraic form in the expansion (2) is exact, we see from Lemma 2 that these
forms belong to Ωd

alg(Xn)1 and so u∗ξ belongs to Ωd(Xn)1 as well.
As we remarked earlier, the forms �0, . . . , �

A
k , . . . , �d are a triangular basis for the

space of all linear forms. Therefore, we may choose v ∈ U so that v∗Ξj = �j for all
0 ≤ j ≤ d except for j = k, and v∗Ξk = �A

k . Let f := v−1
∗ (�B

k /Ξd). The form f does
not involve Ξβk

. Then we compute

Fm = v∗

( Ξm
βk

Ξβ0 · · ·Ξβk−1f
m+1Ξβk+1 · · ·Ξβd−1

)
.

Using this and the estimate for the Fm, we see that

θ =

( ∞∑
m=0

cm

m + 1
Fm

)
v∗((−1)kΞβk

dΞβ0 ∧ · · · ∧ d̂Ξβk
∧ · · · ∧ dΞβd−1)

is a convergent expansion for a rigid (d− 1)-form θ on Xn, and that dθ = u∗ξ.
ii. In the notation of Prop. 3.1, let u(1), . . . , u(k) be finitely many elements of U so

that the open sets {D(u(�), r)}k
�=1 form a disjoint covering of Vn and so that, for each

� = 1, . . . , k,

(3) ω(vji − u
(�)
ji ) > 2(n + 1) for all v ∈ D(u(�), r) and all 0 ≤ i < j ≤ d.

Then, for v ∈ D(u(�), r), we have the uniformly convergent expansion (*) on Xn from
the proof of Prop. 3.1, where, to simplify the notation, we write u = u(�):

v∗ξ = k(vwd+1, ·)dΞβ0 ∧ · · · ∧ dΞβd−1

with

k(vwd+1, q) =
∑
m

cmhm · (v − u)m ,

hm =
Ξµ(m)(q)

f0(u, q)s0(m) · · · fd−1(u, q)sd−1(m)
,

and cm ∈ Z. In this expansion, the term with m = (0, . . . , 0) is u∗ξ = u
(�)
∗ ξ. Also,

comparing the estimate in (3) with those used in Prop. 3.1, we see that we have

inf
q∈Xn

ω(hm(q) · (v − u)m) ≥
( ∑

0≤i<j≤d

mji

)
− nd.

We claim that, except for the term with m = (0, . . . , 0), this series may be integrated
term by term to yield a convergent (d−1)-form on Xn. This means that (v∗ξ−u∗ξ)|Xn

is an exact form, and further that (just as in the proof of the first assertion) each term
in the expansion of v∗ξ− u∗ξ is an exact algebraic form, so that v∗ξ− u∗ξ belongs to
Ωd(Xn)1. In other words,

v∗ξ ≡ u
(�)
∗ ξ (mod Ωd(Xn)1 ∩ d(Ωd−1(Xn))).
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To prove our claim, let Sj be the set of m such that si(m) = 1 for i = 0, . . . , j− 1 but
sj(m) > 1. Let

Fj :=
∑

m∈Sj

hm · (v − u)m

and
ηj := FjdΞβ0 ∧ · · · ∧ dΞβd−1 .

Because
v∗ξ = η0 + · · ·+ ηd−1 + u

(�)
∗ ξ ,

it suffices to integrate each ηj term by term. Notice that if m ∈ Sj , then Ξµ(m)

does not involve any of Ξβi for i = 0, . . . , j. We may choose a matrix g ∈ U so that
g∗Ξβi = fi(u, ·) for i = 0, . . . , j and g∗Ξβi = Ξβi for i = j + 1, . . . , d− 1. Now set

Gj :=
∑

m∈Sj

cm

1− sj(m)
hm(v − u)m .

The estimate on the sup norm for hm implies that this is the convergent expansion
of a rigid function on Xn. Therefore

θj := (−1)jGjg∗(Ξβj dΞβ0 ∧ · · · ∧ d̂Ξβj ∧ · · · ∧ dΞβd−1)

is a rigid (d−1)-form on Xn. Furthermore, a simple computation shows that dθj = ηj .
Indeed, a typical term in the series for θj is

(4)
cm

1− sj(m)
hm(v − u)mg∗((−1)jΞβj dΞβ0 ∧ · · · ∧ d̂Ξβj ∧ · · · ∧ dΞβd−1) .

Let

Hm :=
(

Ξµ(m)

Ξβ0 · · ·Ξβj−1Ξ
sj(m)
βj

fj+1(u, ·)sj+1(m) · · · fd−1(u, ·)sd−1(m)

)
,

so that hm = g∗Hm. Then the term in (4) is

(−1)j cm

1− sj(m)
(v − u)mg∗(HmΞβj dΞβ0 ∧ · · · ∧ d̂Ξβj ∧ · · · ∧ dΞβd−1) .

We leave it as an exercise to verify that applying d to this expression one obtains the
term

cmhm(v − u)mdΞβ0 ∧ · · · ∧ dΞβd−1 .

iii. By Cor. 8 and [ST] Cor. 40, a form η ∈ Ωd(X), restricted to Xn, may be written

(η|Xn) = η0 + η1

where
η1 ∈ Ωd(Xn)1 ∩ d(Ωd−1(Xn))

and η0 is (the restriction of) a finite sum of logarithmic forms u∗ξ. Thus the image of

Ωd(X) → Ωd(Xn)/(Ωd(Xn)1 ∩ d(Ωd−1(Xn)))

is spanned by logarithmic forms u∗ξ. Similarly, from Prop. 3.3 we know that the
logarithmic forms u∗ξ generate Ωd(X) as a topological vector space. Since the image
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of Ωd(X) in Ωd(Xn) under restriction is dense the same forms u∗ξ generate the quotient
Ωd(Xn)/Ωd(Xn)1 as a Banach space. In both cases we hence may conclude that, using
the first assertion, the u∗ξ for u ∈ Vn and then, using the second assertion, even the
u

(1)
∗ ξ, . . . , u

(k)
∗ ξ span the two vector spaces in question.

Proof of Theorem 1. — We show that each η in the third space also lies in the inter-
section of the first two spaces. By Lemma 3, it suffices to show that the restriction
of η to Xn belongs to En := Ωd(Xn)1 ∩ d(Ωd−1(Xn))) for all n > 0. We fix an n and
choose a finite set u(1), . . . , u(k) of elements of Vn as in Prop. 9. We also choose m ≥ n

so that the image of Xm in the building contains the chambers u(�)(C, 0).
Apply Cor. 8 to write η|Xm = η0 + η1 on Xm, with η0 logarithmic and η1 ∈ Em ⊂

En. Our hypothesis on m implies that the linear form Resu(�)(C,0) is continuous on
Ωd(Xm), and since η1 is exact on Xm we must have

Resu(�)(C,0)(η1) = 0 for � = 0, . . . , k.

Since all residues of η are zero, we conclude that

Resu(�)(C,0)(η0) = 0 for � = 0, . . . , k.

We now need to show that, under our residue hypothesis, the restriction to Xn of the
logarithmic form η0 belongs to En. Since η0 is a logarithmic form, we may write it
as a sum of forms u∗ξ with u ∈ U ([ST] Cor. 40), and for our purposes we may (by
Prop. 9.i) assume that all u ∈ Vn. Thus, for each �, we have finitely many distinct
v�j ∈ Vn and constants c�j so that

η0 =
k∑

�=1

s�∑
j=0

c�j((v�j)∗ξ)

where, for j = 0, . . . , s�, we have v�j ∈ D(u(�), r). By the proofs of Facts A and B of
[ST], page 430-431, we see that

Resu(�)(C,0)(η0) =
s�∑

j=0

Resu(�)(C,0)c�j((v�j)∗ξ) =
s�∑

j=0

c�j = 0.

It then follows from Prop. 9.ii that

η0|Xn ≡
k∑

�=1

s�∑
j=0

c�ju
(�)
∗ ξ (mod En)

≡ 0 (mod En)

as claimed.

From section 3, in particular Lemma 3.5 and Fact 2, we have the injective G-
equivariant map

Io : Ωd(X)′ ↪−→ Co(U, K) ∼= C(G/P, K)/Cinv(G/P, K)
λ �−→ [u �→ λ(u∗ξ)] .
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Let C∞(G/P, K) ⊆ C(G/P, K) denote the subspace of all locally constant functions
and put C∞

inv(G/P, K) := C∞(G/P, K)∩Cinv(G/P, K) and C∞
o (U, K) := C∞(U, K)∩

Co(U, K). The quotient

St := C∞(G/P, K)/C∞
inv(G/P, K)

is an irreducible smooth G-representation known as the Steinberg representation of
the group G. The above isomorphism for the target of Io restricts to an isomorphism

C∞
o (U, K) ∼= St .

Proposition 7.10. — If λ ∈ Ωd(X)′ vanishes on exact forms then the function Io(λ) on
U is locally constant with compact support.

Proof. — Such a linear form λ extends continuously to Ωd(Xn) for some n. Since, by
Thm. 1, it vanishes on Ωd(X)1, it vanishes on Ωd(Xn)1. Then from Prop. 9.i it vanishes
on u∗ξ outside of Vn, and therefore the function in question is compactly supported.
Prop. 9.ii shows that there is a finite disjoint covering of Vn by sets D(u(�), r) such
that λ(v∗ξ) = λ(u(�)

∗ ξ) for v ∈ D(u(�), r). Therefore the function in question is locally
constant.

It follows that Io induces an injective G-equivariant map

[Ωd(X)/exact
forms ]

′ ↪−→ C∞
o (U, K) ∼= St .

Since Res(C,0)ξ is nonzero the left hand side contains a nonzero vector. But the right
hand side is algebraically irreducible as a G-representation. Hence we see that this
map must be bijective.

From our Theorem 1 and from the nonarchimedean version of [Kom] Thm. 3 we
have the identifications of locally convex vector spaces

Ωd(X)/exact
forms = Ωd(X)/Ωd(X)1 = lim←−

n

Ωd(Xn)/Ωd(Xn)1 .

On the other hand, Prop. 9 says that, for any n > 0, the space Ωd(Xn)/Ωd(Xn)1 is
finite dimensional. We conclude that Ωd(X)/exact

forms , resp. its dual space, is a projective,
resp. injective, limit of finite dimensional Hausdorff spaces. In particular the topology
on [Ωd(X)/exact

forms ]
′ is the finest locally convex topology. In this way we have computed

the top step of our filtration as a topological vector space.

Theorem 7.11. — The G-equivariant map

[Ωd(X)/exact
forms ]

′ ∼=−→ St
λ �−→ [u �→ λ(u∗ξ)]

is an isomorphism; morover, the topology of the strong dual on the left hand side is
the finest locally convex topology.
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8. The partial boundary value maps

In this section we will introduce and study, for any 0 ≤ j ≤ d, a “partial boundary
value map” I [j] from [Ωd(X)j/Ωd(X)j+1]′ into a space of functions on G. Recall that
we denoted by pJ , for any subset J ⊆ {0, . . . , d}, the parabolic subalgebra in g of
all matrices which have a zero entry in position (i, j) for i ∈ J and j /∈ J ; moreover
nJ ⊆ pJ denoted the unipotent radical. Let PJ ⊆ G be the parabolic subgroup
whose Lie algebra is pJ and let UJ ⊆ PJ be its unipotent radical. We have the Levi
decomposition PJ = UJLJ with LJ := L′(J)× L(J) and

L′(J) := all matrices in G with
– a zero entry in position (i, j)

for i 	= j and not both in J, and
– an entry 1 in position (i, i) for i /∈ J

and

L(J) := all matrices in G with
– a zero entry in position (i, j)

for i 	= j and i or j ∈ J, and
– an entry 1 in position (i, i) for i ∈ J.

Clearly, L′(J) ∼= GL#J(K) and L(J) ∼= GLd+1−#J(K). With these new notations,
the subgroup U(J) from section 6 is the subgroup U(J) = U∩L(J) of lower triangular
unipotent matrices in L(J), and lJ , l′(J), and l(J) are the Lie algebras of LJ , L′(J),
and L(J) respectively. In the following we are mostly interested in the subsets j :=
{0, . . . , j − 1} for 0 ≤ j ≤ d. Let

Vj := closed subspace of Ωd(X)j/Ωd(X)j+1 spanned by
the forms g∗(Ξµξ) for µ ∈ B(j) and g ∈ L(j)

viewed as a locally convex vector space with respect to the subspace topology.

Lemma 8.1

i. The subgroup Pj preserves Vj;
ii. UjL

′(j) acts through the determinant character on Vj.

Proof. — Only the second assertion requires a proof. We have Ξµξ = Ξµ−βdΞβ0 ∧
· · · ∧ dΞβd−1 . For µ ∈ B(j) the product Ξµ−β does not contain any Ξi for i ∈ j. On
the other hand the elements h ∈ UjL

′(j) have columns i for i /∈ j consisting of zeroes
except the entry 1 in position (i, i). It follows that h∗Ξµ−β = Ξµ−β for those h and
µ. And on dΞβ0 ∧ · · · ∧ dΞβd−1 such an h acts through multiplication by det(h) (see
the last formula on p. 416 in [ST]). Since U(j) normalizes UjL

′(j) we more generally
obtain h∗(u∗(Ξµξ)) = det(h) · u∗(Ξµξ) for h ∈ UjL

′(j), u ∈ U(j), and µ ∈ B(j).
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In order to compute the space Vj we use the rigid analytic morphism

prj : X −→ Xd+1−j

q = [q0 : · · · : qd] �−→ [qj : · · · : qd];

here Xd+1−j denotes the p-adic symmetric space of the group GLd+1−j(K). This
morphism is Pj-equivariant if Pj acts on X, resp. on Xd+1−j, through the inclusion
Pj ⊆ G, resp. the projection Pj →→ L(j) ∼= GLd+1−j(K). In section 4 we introduced
the irreducible pj-submodule Mj of bj/b>

j . For general reasons, it integrates to a
rational representation of Pj . We will work with the following explicit model for this
representation. Consider an element g = (grs) ∈ L(j). The adjoint action of g−1 on
any Li� ∈ n

+
j , i.e., with 0 ≤ i < j ≤ � ≤ d, is given by

ad(g−1)Li� = g�jLij + · · ·+ g�dLid.

We may deduce from this that the adjoint action of L(j) on U(g) preserves Mo
j as

well as Mo
j ∩ b>

j = U(n+
j )∩ b. Indeed, the sorting relations LikLi′�−Li�Li′k generate

U(n+
j ) ∩ b>

j = U(n+
j ) ∩ b according to Prop. 4.6, and the image of such a relation

ad(g−1)(LikLi′�−Li�Li′k) is a linear combination of sorting relations of the same type
involving only i and i′ as first indices. It follows that

g(z + b
>
j ) := ad(g)(z) + b

>
j for z ∈ Mo

j

is a well defined action of the group L(j) on the space Mj . We extend this to a rational
representation of Pj by letting UjL

′(j) act through the determinant character. The
corresponding derived action of the Lie algebra pj on Mj is trivial on nj , is through
the trace character on l′(j), and on l(j) is induced by the adjoint action. But in
Lemma 4.7 we have seen that this latter action coincides with the left multiplication
action.
We now consider the continuous linear map

Aj : Ωd−j(Xd+1−j)⊗
K

Mj −→ Ωd(X)/Ωd(X)j+1

η ⊗ (Lµ + b>
j ) �−→ Lµ

dΞβ0
Ξβ0

∧ · · · ∧ dΞβj−1
Ξβj−1

∧ pr∗j (η)
.

According to Lemma 1.3 the Pj -action on both sides (diagonally on the left side) is
continuous. In the following we will use the abbreviations

ξd−j :=
dΞβj

Ξβj

∧ · · · ∧
dΞβd−1

Ξβd−1

as a (d− j)-form on Xd+1−j

and

ξ(j) :=
dΞβ0

Ξβ0

∧ · · · ∧
dΞβj−1

Ξβj−1

as a j-form on X.

For g ∈ G we have

g∗ξ = det(g) ·
 d∏

i=0

Ξi

g∗Ξi

 · ξ.
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For g ∈ L(j) there is a corresponding formula for g∗ξd−j and the two together imply

g∗ξ = ξ(j) ∧ pr∗j (g∗ξd−j).

By Prop. 3.3 the u∗ξd−j for u ∈ U(j) generate a dense subspace in Ωd−j(Xd+1−j).
After we establish various properties of the map Aj , this fact will allow us to assume
that η = u∗ξd−j for some u ∈ U(j). First of all we note that the definition of Aj is
independent of the particular representative Lµ for the coset Lµ + b>

j as long as this

representative is chosen in Mo
j : For z ∈ Mo

j ∩ b>
j = U(n+

j ) ∩ b and u ∈ U(j) we have
ad(u−1)(z) ∈ b and consequently

z(ξ(j) ∧ pr∗j (u∗ξd−j)) = z(u∗ξ) = u∗([ad(u−1)(z)]ξ) = 0.

Next we compute

Aj(g∗h∗ξd−j ⊗ ad(g)(Lµ)) = [ad(g)(Lµ)](ξ(j) ∧ pr∗j (g∗h∗ξd−j))

= [ad(g)(Lµ)](g∗h∗ξ)

= g∗(Lµ(h∗ξ))

= g∗(Lµ(ξ(j) ∧ pr∗j (h∗ξd−j)))

= g∗(Aj(h∗ξd−j ⊗ Lµ))

for g, h ∈ L(j). This shows that the map Aj is L(j)-equivariant. As special cases of
the above identity we have

Aj(g∗ξd−j ⊗ Lµ) = g∗([ad(g−1)(Lµ)]ξ)

and
Aj(g∗ξd−j ⊗ ad(g)(Lµ)) = g∗(Lµξ) = −g∗(Ξµξ)

for g ∈ L(j) and µ ∈ B(j). The former, together with the fact that Mo
j · ξ ⊆∑

µ∈B(j) K · Ξµξ, shows that the image of Aj is contained in Vj . The latter shows
that this image is dense in Vj . By Lemma 1.ii, the group UjL

′(j) acts on the domain
of Aj , as well as on Vj , through the determinant character. Hence Aj in fact is
Pj-equivariant.

By Thm. 7.1 the exact (d − j)-forms on Xd+1−j coincide with the sub-
space Ωd−j(Xd+1−j)1. According to Cor. 6.3, this latter space is topologi-
cally generated, as an L(j)-representation, by the forms Ξνξd−j for the weights
0 	= ν =

∑d
k=j nkεk ∈ X∗(T ). We have Aj(Ξνξd−j ⊗ Lµ) = Lµ(Ξνξ). Let

µ = ε0 + · · ·+ εj−1 −
∑d

k=j mkεk with mk ≥ 0. By an iteration of the formula (+)
in section 4 one has

Lµ(Ξνξ) = c(µ) ·
( d∏

k=j

mk∏
m=1

(nk −m)
)
· Ξµ+νξ

for some constant c(µ) ∈ K×. There are two cases to distinguish. If nk ≤ mk for
all j ≤ k ≤ d then we choose a j ≤ � ≤ d such that n� ≥ 1 and see that the
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product on the right hand side of the above identity contains the factor 0. Hence
Lµ(Ξνξ) = 0 in this case. Otherwise there is some j ≤ � ≤ d such that m� < n�.
Then J(µ + ν) ⊇ {0, . . . , j − 1, �} so that, by Cor. 6.3, Ξµ+νξ and hence Lµ(Ξνξ) lies
in Ωd(X)j+1. This shows that exact

forms ⊗Mj lies in the kernel of Aj .

Remark 8.2. — Vj is topologically generated by the forms u∗(Ξµξ) for u ∈ U(j) and
µ ∈ B(j).

Proof. — We in fact will show that in Ωd(X) any form g∗(Ξµξ) with g ∈ L(j) and
µ ∈ B(j) is a (finite) linear combination of forms u∗(Ξνξ) with u ∈ U(j) and ν ∈ B(j).
First of all we have

g∗(Ξµξ) = −g∗(Lµξ) = −[ad(g)(Lµ)](g∗ξ).

From the discussion after Lemma 3.5 we know that g∗ξd−j is an alternating sum of
forms u∗ξd−j with u ∈ U(j). Using the identity g∗ξ = ξ(j) ∧ pr∗j (g∗ξd−j) again we see
that g∗ξ is an alternating sum of forms u∗ξ with u ∈ U(j). Inserting this into the above
equation we are reduced to treating a form [ad(g)(Lµ)](u∗ξ) = u∗([ad(u−1g)(Lµ)]ξ).
But ad(u−1g)(Lµ) lies in

∑
ν∈B(j) K · Lν + b.

Proposition 8.3. — The linear map Aj induces a Pj-equivariant topological isomor-
phism

[Ωd−j(Xd+1−j)/exact
forms ]⊗

K
Mj

∼=−→ Vj .

Proof. — So far we know that Aj induces a continuous Pj -equivariant map with dense
image between the two sides in the assertion. For simplicity we denote this latter map
again by Aj . Both sides are Fréchet spaces (the left hand side as a consequence of
Thm. 7.1). We claim that it suffices to show that the dual map A′

j is surjective.
We only sketch the argument since it is a straightforward nonarchimedean analog of
[B-TVS] IV.28, Prop. 3. Let us assume A′

j to be surjective for the moment being.
The Hahn-Banach theorem ([Tie] Thm. 3.6) then immediately implies that Aj is
injective. Actually A′

j : V ′
j = im(Aj)′

∼=−→ V ′ then is a linear bijection where we
abbreviate by V the space on the left hand side of the assertion. This means that
A′

j induces a topological isomorphism im(Aj)′s → V ′
s between the weak dual spaces.

Since the Mackey topology ([Tie] p. 282) is defined in terms of the weak dual it
follows that Aj : V → im(Aj) is a homeomorphism for the Mackey topologies. But
on metrizable spaces the Mackey topology coincides with the initial topology ([Tie]
Thm. 4.22). Therefore Aj : V

∼=−→ im(Aj) is a topological isomorphism for the initial
topologies. With V also im(Aj) then is complete. Because of the density we have to
have im(Aj) = Vj .

Before we establish the surjectivity of A′
j we interrupt the present proof in order

to discuss the strong dual of the left hand side in our assertion.
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Let

Std+1−j := C∞(L(j)/L(j) ∩ P, K)/C∞
inv(L(j)/L(j) ∩ P, K)

denote the Steinberg representation of the group L(j) equipped with the finest locally
convex topology (in particular, St1 is the trivial character of the group K×). Recall
that identifying U(j) with the big cell in L(j)/L(j) ∩ P induces an isomorphism
Std+1−j

∼= C∞
o (U(j), K). We know from Thm. 7.11 that

[Ωd−j(Xd+1−j)/exact
forms ]

′ ∼=−→ C∞
o (U(j), K) ∼= Std+1−j

λ �−→ [u �→ λ(u∗ξd−j)]

is a L(j)-equivariant topological isomorphism. In particular, the strong dual of the left
hand side in Prop. 3 carries the finest locally convex topology and may be identified
with the space HomK(Mj , Std+1−j) of all K-linear maps from Mj into Std+1−j . With
this identification, the map A′

j becomes the map

I
[j]
o : V ′

j −→ HomK(Mj , Std+1−j)
λ �−→ {Lµ �→ [u �→ λ(Lµ(u∗ξ))]}

and ist surjectivity will be proved in the course of the proof of Prop. 4 below.
Recall that Mj is isomorphic to the contragredient of the j-th symmetric power

Symj(Kd+1−j) of the standard representation of L(j) ∼= GLd+1−j(K) on Kd+1−j.

Proposition 8.4

i. Vj is a reflexive Fréchet space;
ii. the linear map

I
[j]
o : V ′

j

∼=−→ HomK(Mj , Std+1−j)
λ �−→ {Lµ �−→ [u �→ λ(Lµ(u∗ξ))]}

is a Pj-equivariant isomorphism;
iii. the topology of V ′

j is the finest locally convex one;
iv. V ′

j
∼= Std+1−j ⊗

K
Symj(Kd+1−j) (with UjL

′(j) acting on the right hand side

through the inverse of the determinant character);
v. Vj

∼= HomK(Std+1−j , Mj) (with the weak topology on the right hand side).

Proof. — The first assertion follows by the same argument as for Prop. 6.5. The only
other point to establish is the surjectivity of I

[j]
o . This then settles Prop. 3 which in

turn implies the rest of the present assertions by dualizing.
Let ϕ ∈ C∞

o (U(j), K) ∼= Std+1−j denote the characteristic function of the compact
open subgroup U(j) ∩ B in U(j). Since Std+1−j is an irreducible (in the algebraic
sense) L(j)-representation it is generated by ϕ as a L(j)-representation. Hence the
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finitely many linear maps

Eµ : Mj −→ Std+1−j

Lν �−→
{

ϕ if ν = µ,

0 otherwise

for µ ∈ B(j) generate HomK(Mj, Std+1−j) as a L(j)-representation. For the surjec-

tivity of I
[j]
o it therefore suffices, by L(j)-equivariance, to find a preimage for each Eµ.

At the beginning of section 5, we introduced the continuous linear forms

η �−→ Res(C,0)Ξ−µη

on Ωd(X) for any µ ∈ X∗(T ). In terms of the pairing 〈, 〉 defined before Prop. 5.3 this
linear form is given as

η �−→ 〈η|Uo, fµ|B〉.
We now fix a µ ∈ B(j). Since fµ|B has weight −µ we have (Lν(fµ|B))(1) = 0 for
all ν 	= µ (compare the proof of Prop. 5.2); in particular (z(fµ|B))(1) = 0 for any
z ∈ bj+1. Taylor’s formula then implies that

fµ|B ∈ O(B)bj+1=0.

By Lemma 6.4, the above linear form vanishes on Ωd(X)j+1 and consequently induces
a continuous linear form λµ on Vj . We compute

I [j]
o (λµ)(Lν)(u) = Res(C,0)Ξ−µ · Lν(u∗ξ) = Resu−1(C,0)θ

with
θ := (u−1Ξ−µ) · (ad(u−1)(Lν))(ξ).

Since, by Thm. 7.1, forms in Ωd(X)1 have no residues it suffices to determine θ modulo
Ωd(X)1. The subspace M∗

j :=
∑

µ∈B(j) K · Ξ−µ of O(X) is L(j)-invariant. In fact,
one easily computes that, for g = (grs) ∈ L(j) and 0 ≤ i < j ≤ � ≤ d, one has

g∗Ξ−(εi−ε�) = gj�Ξ−(εi−εj) + · · ·+ gd�Ξ−(εi−εd).

This formula and our previous formula for ad(g−1)Li� together show that the pairing

Mj ×M∗
j −→ K

(Lµ + b>
j , Ξ−ν) �−→

{
1 if µ = ν,

0 otherwise

is L(j)-equivariant. It therefore exhibits M∗
j as the L(j)-representation dual to Mj .

The point of this pairing is that, by Cor. 6.3, we have Ξ−µ ·(Lνξ) = −Ξν−µξ ∈ Ωd(X)1

for µ 	= ν. Applying this together with the equivariance to the above form θ we obtain
that

θ ∈
{
−ξ + Ωd(X)1 if µ = ν,

Ωd(X)1 if µ 	= ν
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and consequently that

I [j]
o (λµ)(Lν)(u) =

{
−Resu−1(C,0)ξ if µ = ν,

0 if µ 	= ν.

By [ST] Lemma 23 the form ξ has residues only on the standard apartment and those
are equal to ±1. The chamber u−1C lies in the standard apartment if and only if u

fixes C. It follows that I
[j]
o (λµ)(Lµ) is supported on U(j) ∩ B where it is a constant

function with value ±1. All in all we see that

I [j]
o (λµ) = ±Eµ

(the sign depending on the parity of d).

The natural Pj-equivariant linear map

[Ωd(X)j/Ωd(X)j+1]′ −→ V ′
j

is surjective (by Hahn-Banach) and is strict (by the same argument as for Prop. 6.7).
Moreover both sides are inductive limits of sequences of Banach spaces (see the proof
of Prop. 6.5) and are locally analytic Pj -representations in the sense of Cor. 6.8.
Therefore the assumptions of the Frobenius reciprocity theorem 4.2.6 in [Fea] are
satisfied and we obtain the G-equivariant continuous linear map

I [j] : [Ωd(X)j/Ωd(X)j+1]′ −→ Can(G, Pj ; V ′
j )

λ �−→ [g �→ (g−1λ)|Vj ].

Here Can(G, Pj ; V ′
j ) – the “induced representation in the locally analytic sense” –

denotes the vector space of all locally analytic maps f : G → V ′
j such that f(gh) =

h−1(f(g)) for any g ∈ G and h ∈ Pj on which G acts by left translations. Its natural
locally convex topology is constructed in [Fea] 4.1.3 (to avoid confusion we should
point out that [Fea] uses a more restrictive notion of a V -valued locally analytic map
but which coincides with the notion from Bourbaki provided V is quasi-complete –
see loc.cit. 2.1.4 and 2.1.7).

Definition. — The above map I [j] : [Ωd(X)j/Ωd(X)j+1]′ → Can(G, Pj ; V ′
j ) is called

the j-th partial boundary value map.

Lemma 8.5. — I [j] is injective.

Proof. — It is an immediate consequence of Cor. 6.3 that
∑

g∈G g(Vj) is dense in
Ωd(X)j/Ωd(X)j+1.

In order to describe the image of I [j] we first need to understand in which sense we
can impose left invariant differential equations on vectors in an induced representation.
For any Hausdorff locally convex K-vector space V the right translation action of G

on Can(G, V ) := Can(G, {1}; V ) is differentiable and induces an action of U(g) by left
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invariant and continuous operators ([Fea] 3.3.4). For V := V ′
j
∼= HomK(Mj , Std+1−j)

we therefore may consider the K-bilinear map

〈, 〉 : (U(g)⊗
K

Mj)× Can(G, HomK(Mj , Std+1−j)) −→ Can(G, Std+1−j)

(z⊗m, f) �−→ [g �→ (zf)(g)(m)].

Note that, for a fixed Z ∈ U(g)⊗
K

Mj , the “differential operator”

〈Z, 〉 : Can(G, HomK(Mj , Std+1−j)) −→ Can(G, Std+1−j)

is continuous and G-equivariant (for the left translation actions). The action of Pj on
HomK(Mj , Std+1−j) = M ′

j ⊗
K

Std+1−j is differentiable and the derived action of pj is

given by

(1) (xE)(m) = −E(xm)

for x ∈ pj , E ∈ HomK(Mj , Std+1−j), and m ∈ Mj. This is immediate from the fact
that any vector in Std+1−j is fixed by an open subgroup of Pj so that the derived
action of pj on Std+1−j is trivial.

Now recall that the induced representation Can(G, Pj ; HomK(Mj , Std+1−j)) is the
closed subspace of Can(G, HomK(Mj , Std+1−j)) of all those maps f which satisfy
f(gh) = h−1(f(g)) for g ∈ G and h ∈ Pj . For such an f we therefore have

(xf)(g) =
d

dt
f(g exp(tx))∣∣t=0

=
d

dt
exp(tx)−1(f(g))∣∣t=0

= −x(f(g))

for x ∈ pj and slightly more generally

(2)

(z(xf))(g) =
d

dt
(xf)(g exp(tz))∣∣t=0

= − d

dt
x(f(g exp(tz)))∣∣t=0

= −x(
d

dt
f(g exp(tz))∣∣t=0

)

= −x((zf)(g))

for x ∈ pj and z ∈ g; the third equality is a consequence of the continuity of the
operator x. Combining (1) and (2) we obtain

(z(xf))(g)(m) = (−x((zf)(g)))(m) = ((zf)(g))(xm)

or equivalently

〈zx⊗m, f〉 = 〈z⊗ xm, f〉
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for f ∈ Can(G, Pj ; HomK(Mj , Std+1−j)), m ∈ Mj, x ∈ pj, and z ∈ g. This means that
the above pairing restricts to a pairing

〈 , 〉 : (U(g) ⊗
U(pj)

Mj)× Can(G, Pj ; HomK(Mj , Std+1−j)) −→ Can(G, Std+1−j)

and enables us to consider, for any subset d ⊆ U(g)⊗U(pj) Mj , the G-invariant closed
subspace

Can(G, Pj ; HomK(Mj , Std+1−j))d=0 :=

{f ∈ Can(G, Pj ; HomK(Mj , Std+1−j)) : 〈Z, f〉 = 0 for any Z ∈ d}.

The relevant subset for our purposes is the kernel

dj = ker(U(g) ⊗
U(pj)

Mj −→ bj/b
>
j )

of the natural surjection sending z⊗m to zm. By the Poincaré-Birkhoff-Witt theorem
the inclusion U(n+

j ) ⊆ U(g) induces an isomorphism U(nj)+⊗
K

Mj

∼=−→ U(g) ⊗
U(pj)

Mj .

We mostly will view dj as a subspace of U(n+
j )⊗

K
Mj.

Theorem 8.6. — The map I [j] (together with I
[j]
o ) induces a G-equivariant topological

isomorphism

I [j] : [Ωd(X)j/Ωd(X)j+1]′
∼=−→ Can(G, Pj ; HomK(Mj , Std+1−j))dj=0

λ �−→ [g �→ I
[j]
o ((g−1λ)|Vj)].

Proof. — We start by showing that the image of I [j] satisfies the relations dj = 0.
Let Z =

∑
µ∈B(j) z(µ)⊗Lµ ∈ dj ⊆ U(n+

j )⊗K Mj; then z =
∑

µ z(µ)Lµ ∈ U(n+
j )∩b>

j =

U(n+
j ) ∩ b (Prop. 4.6.iii). Note that

[I [j](λ)(g)](Lµ)(u) = (g−1λ)(Lµ(u∗ξ)) = λ(g∗(Lµ(u∗ξ)))

for g ∈ G, µ ∈ B(j), and u ∈ U(j). We compute

〈Z, I [j](λ)〉(g)(u) =
∑

µ

[(z(µ)(I [j](λ)))(g)](Lµ)(u)

=
∑

µ

λ(g∗(z(µ)Lµ(u∗ξ)))

= λ(g∗(z(u∗ξ)))

= λ(g∗u∗((ad(u−1)(z))ξ))

which is zero because U(n+
j ) ∩ b is ad(U(j))-invariant as we have seen earlier in this

section.
We know already that I [j] is continuous, G-equivariant, and injective. Next we

establish surjectivity. Let f be a map in the right hand side of the assertion. By
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a series of simplifications we will show that it suffices to consider an f of a very
particular form for which we then will exhibit an explicit preimage under I [j].

We show first that we may assume that

– f is supported on BPj and
– f |U+

j ∩B is analytic (not merely locally analytic).

By the Iwasawa decomposition we have the finite disjoint open covering

G/Pj =
.⋃
g

gBPj/Pj

where g runs through a set of representatives for the cosets in GLd+1(o)/B. As before
let U+

j denote the transpose of Uj . Then U
(0)
j := U+

j ∩B is the congruence subgroup

of all matrices in U+
j whose non-diagonal entries are integral multiples of π. Consider

the higher congruence subgroups U
(n)
j , for n ≥ 0, of all matrices in U+

j whose non-

diagonal entries are integral multiples of πn. These U
(n)
j are polydisks in an obvious

way, and we have U
(n)
j = yn(U+

j ∩ B)y−n where y ∈ G is the diagonal matrix with
entries (π, . . . , π, 1, . . . , 1). The Iwahori decomposition for B implies that the map

gU
(0)
j

∼−→ gBPj/Pj

gu �−→ guPj

is a homeomorphism. Our map f restricted to gU
(0)
j still only is locally analytic. But

we find a sufficiently big n ∈ N such that f |ghU
(n)
j is analytic for all g as above and

all h in a system of representatives for the cosets in U
(0)
j /U

(n)
j . If we put

fg,h := ((gh)−1f)|U (n)
j Pj extended by zero to G

then these maps lie in the right hand side of our assertion and we have

f =
∑
g,h

(gh)fg,h.

The reason for this of course is that

G =
.⋃

g,h

ghU
(n)
j Pj

is a disjoint finite open covering. By linearity and G-equivariance of I [j] it therefore
suffices to find a preimage for each fg,h. This means we may assume that our map f

is supported on U
(n)
j Pj and is analytic on U

(n)
j . Using G-equivariance again, we may

translate f by y−n so that it has the desired properties.
For our next reduction, we will show that we may further assume that

– f is supported on BPj with f |U+
j ∩ B = ε ⊗ ϕ for some ε ∈ O(U+

j ∩ B, M ′
j)

dj=0

and ϕ ∈ Std+1−j .
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If we consider an analytic map on U+
j ∩B with values in the locally convex vector

space HomK(Mj, Std+1−j) then the coefficients in its power series expansion multi-
plied by appropriate powers of π form a bounded subset of HomK(Mj , Std+1−j). The
topology of that vector space is the finest locally convex one. Hence any bounded
subset and therefore the set of coefficients lies in a finite dimensional subspace. This
means that our f |U+

j ∩B is an element of O(U+
j ∩B)⊗K HomK(Mj , Std+1−j). More-

over, viewing dj as a subspace of U(n+
j ) ⊗K Mj it is clear that with respect to the

obvious pairing

〈 , 〉 : (U(n+
j )⊗

K
Mj)× (O(U+

j ∩B)⊗
K

HomK(Mj , Std+1−j)) −→ O(U+
j ∩B)⊗

K
Std+1−j

(z⊗m, e⊗ E) �−→ ze⊗ E(m)

we have 〈dj , f |U+
j ∩B〉 = 0. We now decompose

f |U+
j ∩B =

∑
i

ei ⊗ Ei

into a finite sum with ei ∈ O(U+
j ∩ B) and Ei ∈ HomK(Mj , Std+1−j) such that the

images Ei(Mj) are linearly independent 1-dimensional subspaces of Std+1−j. Then
each ei ⊗ Ei satisfies the relations 〈dj , ei ⊗ Ei〉 = 0. We define maps fi on G with
values in HomK(Mj, Std+1−j) by setting

fi(uh) := ei(u) · h−1(Ei) for u ∈ U+
j ∩B and h ∈ Pj

and extending this by zero to G. Since the map h �→ h−1(Ei) is locally analytic on
Pj it easily follows that fi ∈ Can(G, Pj ; HomK(Mj, Std+1−j)). By construction fi is
supported on BPj with fi|U+

j ∩B = ei ⊗ Ei. Clearly

f =
∑

i

fi.

We claim that each fi satisfies the relations dj = 0. This will be a consequence of the
following observation. The group Pj acts diagonally on U(g)⊗U(pj)Mj via h(z⊗m) :=
ad(h)z⊗ hm. The point to observe is that the subspace dj is Pj-invariant. Note first
that because U(n+

j )∩b>
j ⊆ b (Prop. 4.6. iii) an element

∑
µ z(µ)⊗Lµ ∈ U(n+

j )⊗K Mj

lies in dj if and only if
∑

µ z(µ)Lµξ = 0. Let now
∑

µ z(µ) ⊗ Lµ ∈ dj ⊆ U(n+
j )⊗K Mj

and h ∈ Pj . We distinguish two cases. If h ∈ L(j) then using the ad(L(j))-invariance
of U(n+

j ) ∩ b we obtain(∑
µ

ad(h)(z(µ)) · hLµ

)
ξ =

(
ad(h)

(∑
µ

z(µ)Lµ

))
ξ = 0.
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If h ∈ L′(j)Uj then using Lemma 1.ii we obtain(∑
µ

ad(h)(z(µ)) · hLµ

)
ξ = det(h) · h∗

(∑
µ

z(µ)h
−1
∗ Lµξ

)
= h∗

(∑
µ

z(µ)Lµξ
)

= 0.

Going back to our maps fi and letting again
∑

µ z(µ) ⊗ Lµ ∈ dj ⊆ U(n+
j ) ⊗K Mj we

now compute((∑
µ

z(µ) ⊗ Lµ

)
fi

)
(uh) =

∑
µ

(z(µ)fi)(uh)(Lµ)

=
∑

µ

((ad(h)z(µ))ei)(u) · h−1(Ei)(Lµ)

= h−1
(∑

µ

((ad(h)z(µ))ei)(u) ·Ei(hLµ)
)

= h−1
(〈∑

µ

ad(h)z(µ) ⊗ hLµ, ei ⊗ Ei

〉
(u)

)
= h−1

(〈
h(
∑

µ

z(µ) ⊗ Lµ), ei ⊗ Ei

〉
(u))

= 0.

This establishes our claim.
We want to further normalize the component ϕ in this last expression. Let ϕo ∈

C∞
o (U(j), K) ∼= Std+1−j denote the characteristic function of U(j) ∩B. Then ϕ can

be written as a linear combination of vectors of the form g−1ϕo with g ∈ L(j). A
straightforward argument shows that f can be decomposed accordingly so that we
may assume ϕ = g−1ϕo for some g ∈ L(j). We now find a finite disjoint open covering

g(U+
j ∩B)Pj =

.⋃
i

uiy
n(U+

j ∩B)Pj

with appropriate n ∈ N and ui ∈ U+
j . The map gf is supported on gBPj and its

restriction gf |g(U+
j ∩B)g−1 is analytic with values in M ′

j ⊗Kϕo. If we put

fi := ((uiy
n)−1gf)|BPj extended by zero to G

then these maps lie in the induced representation on the right hand side of our asser-
tion and we have

f =
∑

i

g−1uiy
nfi.

The restriction of fi to U+
j ∩B satisfies

fi(u) = (gf)(uiy
nu) = π−jn · (gf)(uiy

nuy−n).
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But uiy
nuy−n ∈ gBPj ∩ U+

j ⊆ g(U+
j ∩ B)g−1. It follows that fi|U+

j ∩ B is analytic
with values in M ′

j ⊗ Kϕo. At this point we have arrived at the conclusion that we
may assume that
– f is supported on BPj with f |U+

j ∩B = ε⊗ ϕo for some ε ∈ O(U+
j ∩B, M ′

j)
dj=0.

We rephrase the above discussion in the following way. We have the linear map

Extj : O(U+
j ∩B, M ′

j)
dj=0 −→ Can(G, Pj ; HomK(Mj , Std+1−j))dj=0

defined by

Extj(ε)(g) :=

{
h−1(ε(u)⊗ ϕo) for g = uh with u ∈ U+

j ∩B, h ∈ Pj ,

0 otherwise .

Its image generates the right hand side (algebraically) as a G-representation. An
argument analogous to the proof of [Fea] 4.3.1 shows that Extj is continuous. On the
other hand, in section 6 after Lemma 4 we had constructed a continuous linear map

Dj : O(U+
j ∩B, M ′

j)
dj=0 −→ [Ωd(X)j/Ωd(X)j+1]′.

The surjectivity of I [j] therefore will follow from the identity

Extj = I [j] ◦Dj .

By the continuity of all three maps involved it suffices to check this identity on weight
vectors. Fix a weight ν with J(ν) = {0, . . . , j − 1}. By construction the map Dj

sends the weight vector
∑

µ∈B(j)[(Lµfν)|U+
j ∩ B] ⊗ L∗

µ to the linear form λν(η) =

Res(C,0)Ξ−νη. What we therefore have to check is that I [j](λν) is supported on BPj

with

I [j](λν)|U+
j ∩B =

∑
µ∈B(j)

[(Lµfν)|U+
j ∩B]⊗ L∗

µ ⊗ ϕo.

By definition we have

[I [j](λν)(g)](Lµ)(u) = [(g−1λν)|Vj ](Lµ(u∗ξ))

= λν(g(Lµ(u∗ξ)))

= Res(C,0)Ξ−ν · g∗(Lµ(u∗ξ))

= Res(C,0)Ξ−ν · g∗u∗((ad(u−1)(Lµ))ξ)

for µ ∈ B(j) and u ∈ U(j) ⊆ Pj . First we deal with the vanishing of this expression
for g /∈ BPj . Observe that

– g /∈ BPj if and only if gu /∈ BPj , and
– ad(u−1)(Lµ)ξ ∈

∑
µ′∈B(j) K · Ξµ′ξ.

Hence it suffices to show that

Res(C,0)Ξ−ν · g∗(Ξµξ) = 0 for g /∈ BPj .
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We distinguish two cases. First we assume that g /∈ U+
j Pj . Then the divisor

div(Ξ−ν · g∗(Ξµξ))∞ is supported among the hyperplanes Ξ0 = 0, . . . , Ξj−1 = 0 and
g∗Ξj = 0, . . . , g∗Ξd = 0. Those are linearly dependent if g /∈ U+

j Pj and hence
have a nonempty intersection, i.e., Z(Ξ−ν · g∗(Ξµξ)) 	= ∅. According to the dis-
cussion after Prop. 6.2 the form Ξ−ν · g∗(Ξµξ) therefore lies in Ωd

alg(X)1, hence is
exact by Lemma 7.2, and consequently has zero residue. Second we consider the case
g ∈ U+

j \ (U+
j ∩B). Then g fixes Ξ0, . . . , Ξj−1 so that g−1Ξ−ν is a linear combination

of Ξ−ν′ with J(ν′) ⊆ {0, . . . , j− 1}. It follows that Ξ−ν · g∗(Ξµξ) is a linear combina-
tion of forms Ξν′′ξ among which the only possible non-exact one is ξ! (compare the
proof of Lemma 7.2). We obtain

Res(C,0)Ξ−ν · g∗(Ξµξ) = Resg−1(C,0)(g
−1Ξ−ν)Ξµξ = c ·Resg−1(C,0)ξ

with some constant c ∈ K. But ξ has residues only on the standard apartment and
g−1(C, 0) lies in the standard apartment only if g ∈ U+

j ∩ B. This establishes the

assertion about the support of I [j](λν).
Fix now a g ∈ U+

j ∩B and let u ∈ U(j). Repeating the last argument for gu instead of

g we obtain that Res(C,0)Ξ−ν ·g∗u∗(Ξµξ) = 0 unless gu and hence u fixes (C, 0). This
means that, for g ∈ U+

j ∩ B, the function [I [j](λν)(g)](Lµ) ∈ C∞
o (U(j), K) vanishes

outside U(j) ∩B. For u ∈ U(j) ∩B we have

[I [j](λν)(g)](Lµ)(u) = Res(C,0)(u
−1g−1Ξ−ν)((ad(u−1)(Lµ))ξ)

=
∑

J(ν′)⊆j

c(ν′)Res(C,0)(u
−1Ξ−ν′)((ad(u−1)(Lµ))ξ)

where

g−1Ξ−ν =
∑

J(ν′)⊆j

c(ν′)Ξ−ν′ .

If ν′ ∈ B(j) then we computed the corresponding summand already in the proof of
Prop. 8.4 and, in particular, showed that it is independent of u ∈ U(j) ∩ B. On the
other hand the subspace ∑

J(ν′)⊆j

ν′ /∈B(j)

K · Ξ−ν′

of O(X) is preserved by the action of U(j). This means that, for ν′ /∈ B(j), the form
(u−1Ξ−ν′)((ad(u−1)(Lµ))ξ) cannot contain ξ and therefore must have zero residue.
This computation says that, for fixed g ∈ U+

j ∩ B and fixed µ ∈ B(j), the function

[I [j](λν)(g)](Lµ)(u) is constant in u ∈ U(j) ∩B. In other words we have

I [j](λν)(g) =
∑

µ∈B(j)

[I [j](λν)(g)](Lµ)(1)⊗ L∗
µ ⊗ ϕo
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for g ∈ U+
j ∩B. But using the various definitions we compute

[I [j](λν)(g)](Lµ)(1) = Res(C,0)Ξ−ν · g∗(Lµξ) = (Lµfν)(g).

This establishes the surjectivity and hence bijectivity of the map I [j]. Finally, that I [j]

is open and hence a topological isomorphism is a consequence of the open mapping
theorem in the form given in [GK] Thm. 3.1(A3) provided we show that both sides
of I [j] are (LB)-spaces, i.e., a locally convex inductive limit of a sequence of Banach
spaces. For the left hand side this fact is implicitly contained in our earlier arguments:
In the proof of Prop. 6.5 we had noted that Ωd(X)j/Ωd(X)j+1 is the projective limit of
a sequence of Banach spaces with compact transition maps. We certainly may assume
in addition that these transition maps have dense images. By the same argument as
in the proof of Prop. 2.4 it then follows that the strong dual [Ωd(X)j/Ωd(X)j+1]′ is an
(LB)-space. We now turn to the right hand side. Using [GKPS] Thm. 3.1.16 (compare
also [Kom] Thm. 7’) it suffices to show that Can(G, Pj ; HomK(Mj , Std+1−j)) is the
locally convex inductive limit of a sequence of Banach spaces with compact transition
maps. To see this it is convenient to identify this space, as a locally convex vector
space (without the G-action), with the space Can(G/Pj , HomK(Mj , Std+1−j)) of all
locally analytic functions on G/Pj with values in HomK(Mj , Std+1−j). The recipe
how to do this is given in [Fea] 4.3.1. One fixes a section ı of the projection map
G →→ G/Pj such that

G/Pj × Pj
∼−→ G

(gPj , h) �−→ ı(gPj)h

is an isomorphism of locally analytic manifolds ([Fea] 4.1.1). We then have the con-
tinuous injection

Can(G, Pj ; V ) −→ Can(G/Pj , V )
f �−→ [gPj �→ f(ı(gPj))]

writing V := HomK(Mj , Std+1−j) for short. In fact we will need that V is of the form
V = Vfin⊗K Vsm for two Pj -representations Vfin and Vsm which are finite dimensional
algebraic and smooth, respectively. If Vf runs over the finite dimensional subspaces
of Vsm then

V = lim
−→
Vf

Vfin⊗
K

Vf

and each Vfin⊗
K

Vf is invariant under some open subgroup of Pj . A possible inverse

of the above map has to be given by

φ �−→ fφ(g) := (g−1ı(gPj))(φ(gPj)).

Since

Can(G/Pj , V ) = lim
−→
Vf

Can(G/Pj ; Vfin⊗
K

Vf )
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it suffices to check that
Can(G/Pj ; Vfin⊗

K
Vf ) −→ Can(G, Pj ; V )

φ �−→ fφ

is well defined and continuous. Consider the obvious bilinear map

β : [Vfin⊗
K

Vf ]× [EndK(Vfin)⊗
K

HomK(Vf , Vsm)] −→ V

between vector spaces equipped with the finest locally convex topology. By [Fea] 2.4.3
(the condition BIL is trivially satisfied) it induces a continuous bilinear map

Can(G/Pj ; Vfin ⊗ Vf )× Can(Pj , End(Vfin)⊗Hom(Vf , Vsm)) −→ Can(G/Pj × Pj , V ).

(φ, Ψ) �−→ β ◦ (φ×Ψ)

Using the section ı we obtain the continuous bilinear map

β̂ : Can(G/Pj ; Vfin ⊗ Vf )× Can(Pj , End(Vfin)⊗Hom(Vf , Vsm)) −→ Can(G, V )

defined by β̂(φ, Ψ)(g) := β(φ(gPj), Ψ(ı(gPj)−1g)). It remains to observe that

Ψo(h) := h−1.⊗h−1. lies in Can(Pj , End(Vfin)⊗Hom(Vf , Vsm)) and that β̂(φ, Ψo) = fφ.
We now are reduced to show that Can(G/Pj , V ) is the locally convex inductive

limit of a sequence of Banach spaces with compact transition maps. Since G/Pj is
compact this is a special case of [Fea] 2.3.2.

To finish let us reconsider the bottom filtration step. By definition St1 = K is
the trivial representation, and L(d) = K× acts on the one dimensional space Md

through the character a �→ a−d. Let therefore Kχ denote the one dimensional Pd-
representation given by the locally analytic character

χ : Pd −→ K×

g �−→ (gdd)d+1

det(g)
.

By comparing weights one easily checks that the natural map U(n+
d )⊗

K
Md −→ bd/b

is bijective which means that dd = 0. Our theorem therefore specializes in this case
to the assertion that the map

I [d] : [Ωd(X)d]′
∼=−→ Can(G, Pd; Kχ)

λ �−→ [g �→ −λ(g∗(dΞβ0 ∧ · · · ∧ dΞβd−1))]

is a G-equivariant topological isomorphism.
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THE DISPLAY OF A FORMAL p-DIVISIBLE GROUP

by

Thomas Zink

Abstract. — We give a new Dieudonné theory which associates to a formal p-divisible
group X over an excellent p-adic ring R an object of linear algebra called a display.
On the display one can read off the structural equations for the Cartier module of X,
and find the crystal of Grothendieck-Messing. We give applications to deformations
of formal p-divisible groups.

Introduction

We fix throughout a prime number p. Let R be a commutative unitary ring. Let
W (R) be the ring of Witt vectors. The ring structure on W (R) is functorial in R and
has the property that the Witt polynomials are ring homomorphisms:

wn : W (R) −→ R

(x0, . . . xi, . . . ) �−→ xpn

0 + pxpn−1

1 + · · ·+ pnxn

Let us denote the kernel of the homomorphism w0 by IR. The Verschiebung is a
homomorphism of additive groups:

V : W (R) −→ W (R)

(x0, . . . xi, . . . ) �−→ (0, x0, . . . xi, . . . )

The Frobenius endomorphism F : W (R) → W (R) is a ring homomorphism. The
Verschiebung and the Frobenius are functorial and satisfy the defining relations:

wn(Fx) = wn+1(x), for n ≥ 0
wn(Vx) = pwn−1(x), for n > 0, w0(Vx) = 0.

2000 Mathematics Subject Classification. — 14L05, 14F30.
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Moreover the following relations are satisfied:

FV = p, V(Fxy) = xVy, x, y ∈ W (R)

We note that IR = VW (R).
Let P1 and P2 be W (R)-modules. An F-linear homomorphism φ : P1 → P2 is a

homomorphism of abelian group which satisfies the relation φ(wm) = Fwφ(m), where
m ∈ P , w ∈ W (R). Let

φ� : W (R)⊗F,W (R) P1 −→ P2

be the linearization of φ. We will call φ an F-linear epimorphism respectively an
F-linear isomorphism if φ� is an epimorphism respectively an isomorphism.

The central notion of these notes is that of a display. The name was suggested
by the displayed structural equations for a reduced Cartier module introduced by
Norman [N]. In this introduction we will assume that p is nilpotent in R.

Definition 1. — A 3n-display over R is a quadruple (P, Q, F, V −1), where P is a
finitely generated projective W (R)-module, Q ⊂ P is a submodule and F and V −1

are F-linear maps F : P → P, V −1 : Q → P .
The following properties are satisfied:

(i) IRP ⊂ Q ⊂ P and P/Q is a direct summand of the W (R)-module P/IRP .
(ii) V −1 : Q −→ P is a F-linear epimorphism.
(iii) For x ∈ P and w ∈ W (R), we have

V −1(V wx) = wFx.

If we set w = 1 in the relation (iii) we obtain:

Fx = V −1(V1x)

One could remove F from the definition of a 3n-display. But one has to require that
the F-linear map defined by the last equation satisfies (iii).

For y ∈ Q one obtains:
Fy = p · V −1y

We note that there is no operator V . The reason why we started with V −1 is the
following example of a 3n-display. Let R = k be a perfect field and let M be a
Dieudonné module. It is a finitely generated free W (k)-module which is equipped with
operators F and V . Since V is injective, there is an inverse operator V −1 : V M → M .
Hence one obtains a display (M, V M, F, V −1). In fact this defines an equivalence of
the category of Dieudonné modules with the category of 3n-displays over k.

Let us return to the general situation. The W (R)-module P always admits a direct
decomposition

P = L⊕ T,
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such that Q = L⊕ IRT . We call it a normal decomposition. For a normal decompo-
sition the following map is a F-linear isomorphism:

V −1 ⊕ F : L⊕ T −→ P

Locally on Spec R the W (R)-modules L and T are free. Let us assume that T has
a basis e1, . . . , ed and L has a basis ed+1, . . . , eh. Then there is an invertible matrix
(αij) with coefficients in W (R), such that the following relations hold:

Fej =
h∑

i=1

αijei, for j = 1, . . . , d

V −1ej =
h∑

i=1

αijei for j = d + 1, . . . , h

Conversely for any invertible matrix (αij) these relations define a 3n-display.
Let (βkl) the inverse matrix of (αij). We consider the following matrix of type

(h− d)× (h− d) with coefficients in R/pR:

B = (w0(βkl) modulo p)k,l=d+1,...,h

Let us denote by B(p) be the matrix obtained from B by raising all coefficients of B

to the power p. We say that the 3n-display defined by (αij) satisfies the V -nilpotence
condition if there is a number N such that

B(pN−1) · · ·B(p) ·B = 0.

The condition depends only on the display but not on the choice of the matrix.

Definition 2. — A 3n-display which locally on Spec R satisfies the V -nilpotence con-
dition is called a display.

The 3n-display which corresponds to a Dieudonné module M over a perfect field
k is a display, iff V is topologically nilpotent on M for the p-adic topology. In the
covariant Dieudonné theory this is also equivalent to the fact that the p-divisible group
associated to M has no étale part.

Let S be a ring such that p is nilpotent in S. Let a ⊂ S be an ideal which is
equipped with divided powers. Then it makes sense to divide the Witt polynomial
wm by pm. These divided Witt polynomials define an isomorphism of additive groups:

W (a) −→ aN

Let a ⊂ aN be the embedding via the first component. Composing this with the
isomorphism above we obtain an embedding a ⊂ W (a). In fact a is a W (S)-submodule
of W (a), if a is considered as a W (S)-module via w0. Let R = S/a be the factor
ring. We consider a display P̃ = (P̃ , Q̃, F̃ , Ṽ −1) over S. By base change we obtain a
display over R:

P̃R = P = (P, Q, F, V −1)
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By definition one has P = W (R)⊗W (S) P̃ . Let us denote by Q̂ = W (a)P̃ +Q̃ ⊂ P̃ the
inverse image of Q. Then we may extend the operator Ṽ −1 uniquely to the domain
of definition Q̂, such that the condition Ṽ −1aP̃ = 0 is fulfilled.

Theorem 3. — With the notations above let P̃ ′ = (P̃ ′, Q̃′, F̃ , Ṽ −1) be a second display
over S, and P ′ = (P ′, Q′, F, V −1) the display over R obtained by base change. Assume
we are given a morphism of displays u : P → P ′ over R. Then u has a unique lifting
ũ to a morphism of quadruples:

ũ : (P̃ , Q̂, F̃ , Ṽ −1) −→ (P̃ ′, Q̂′, F̃ , Ṽ −1).

This allows us to associate a crystal to a display: Let R be a ring, such that p is
nilpotent in R. Let P = (P, Q, F, V −1) be a display over R. Consider a surjection
S → R whose kernel a is equipped with a divided power structure. If p is nilpotent
in S we call such a surjection a pd-thickening of R. Let P̃ = (P̃ , Q̃, F̃ , Ṽ −1) be any
lifting of the display P to S. By the theorem the module P̃ is determined up to
canonical isomorphism by P . Hence we may define:

DP(S) = S ⊗W (S) P̃

This gives a crystal on Spec R if we sheafify the construction.
Next we construct a functor BT from the category of 3n-displays over R to the

category of formal groups over R. A nilpotent R-algebra N is an R-algebra (without
unit), such that NN = 0 for a sufficiently big number N . Let NilR denote the
category of nilpotent R-algebras. We will consider formal groups as functors from the
category NilR to the category of abelian groups. Let us denote by Ŵ (N ) ⊂ W (N )
the subgroup of all Witt vectors with finitely many nonzero components. This is a
W (R)-submodule. We consider the functor G0

P(N ) = Ŵ (N ) ⊗W (R) P on NilR with
values in the category of abelian groups. Let G−1

P be the subgroup functor which is
generated by all elements in Ŵ (N ) ⊗W (R) P of the following form:

Vξ ⊗ x, ξ ⊗ y, ξ ∈ Ŵ (N ), y ∈ Q, x ∈ P.

Then we define a map:

(1) V −1 − id : G−1
P −→ G0

P

On the generators above the map V −1 − id acts as follows:

(V −1 − id)(Vξ ⊗ x) = ξ ⊗ Fx− Vξ ⊗ x

(V −1 − id)(ξ ⊗ y) = Fξ ⊗ V −1y − ξ ⊗ y

Theorem 4. — Let P = (P, Q, F, V −1) be a 3n-display over R. The cokernel of the
map (1) is a formal group BTP . Moreover one has an exact sequence of functors on
NilR:

0 −→ G−1
P

V −1 − id−−−−−−−→ G0
P −→ BTP −→ 0
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If N is equipped with nilpotent divided powers we define an isomorphism:

expP : N ⊗R P/Q −→ BTP(N ),

which is called the exponential map. In particular the tangent space of the formal
group BTP is canonically identified with P/Q.

Let ER be the local Cartier ring with respect to the prime p. Then BTP has the
following Cartier module:

M(P) = ER ⊗W (R) P/(F ⊗ x− 1⊗ Fx, V ⊗ V −1y − 1⊗ y)ER ,

where x runs through all elements of P and y runs through all elements of Q, and
( )ER indicates the submodule generated by all these elements.

Theorem 5. — Let P be a display over R. Then BTP is a formal p-divisible group of
height equal to rankW (R) P .

The restriction of the functor BT to the category of displays is faithful. It is fully
faithful, if the ideal of nilpotent elements in R is a nilpotent ideal.

The following main theorem gives the comparison of our theory and the crystalline
Dieudonné theory of Grothendieck and Messing.

Theorem 6. — Let P = (P, Q, F, V −1) be a display over a ring R. Then there is a
canonical isomorphism of crystals over R:

DP
∼−−−−→ DBTP

Here the right hand side is the crystal from Messing’s book [Me]. If W (R) → S is a
morphism of pd-thickenings of R, we have a canonical isomorphism

S ⊗W (R) P ∼= DBTP (S).

In this theorem we work with the crystalline site whose objects are pd-thickenings
S → R, such that the kernel is a nilpotent ideal. We remark that the crystal DBTP

is defined in [Me] only for pd-thickenings with nilpotent divided powers. But if one
deals with p-divisible groups without an étale part this restriction is not necessary
(see corollary 97 below). In particular this shows, that the formal p-divisible group
BTP lifts to a pd-thickening S → R with a nilpotent kernel, iff the Hodge filtration
of the crystal lifts (compare [Gr] p.106).

The functor BT is compatible with duality in the following sense. Assume we are
given 3n-displays P1 and P2 over a ring R, where p is nilpotent.

Definition 7. — A bilinear form ( , ) on the pair of 3n-displays P1,P2 is a bilinear
form of W (R)-modules:

P1 × P2 −→ W (R),

which satisfies
V(V −1y1, V

−1y2) = (y1, y2) for y1 ∈ Q1, y2 ∈ Q2.
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Let us denote by Bil(P1,P2) the abelian group of these bilinear forms. Then we
will define a homomorphism:

(2) Bil(P1,P2) −→ Biext1(BTP1 ×BTP2 , Ĝm)

Here the right hand side denotes the group of biextensions of formal groups in the
sense of Mumford [Mu].

To do this we consider the exact sequences for i = 1, 2:

0 −→ G−1
Pi

V −1 − id−−−−−−−→ G0
Pi
−→ BTPi −→ 0

To define a biextension in Biext1(BTP1 ×BTP2 , Ĝm), it is enough to give a pair of
bihomomorphisms (compare [Mu]):

α1 : G−1
P1

(N )×G0
P2

(N ) −→ Ĝm(N ),
α2 : G0

P1
(N )×G−1

P2
(N ) −→ Ĝm(N ),

which agree on G−1
P1

(N ) × G−1
P2

(N ), if we consider G−1
Pi

as a subgroup of G0
Pi

via
the embedding V −1 − id, for i = 1, 2. To define α1 and α2 explicitly we use the
Artin-Hasse exponential hex : Ŵ (N ) → Ĝm(N ):

α1(y1, x2) = hex(V −1y1, x2) for y1 ∈ G−1
P1

(N ), x2 ∈ G0
P2

(N )

α2(x1, y2) = − hex(x1, y2) for x1 ∈ G0
P1

(N ), y2 ∈ G−1
P2

(N )

This completes the definition of the map (2).

Theorem 8. — Let R be a ring, such that p is nilpotent in R, and such that the ideal
of its nilpotent elements is nilpotent. Let P1 and P2 be displays over R. Assume that
the display P2 is F -nilpotent, i.e. there is a number r such that F rP2 ⊂ IRP2. Then
the map (2) is an isomorphism.

I would expect that BT induces an equivalence of categories over any noetherian
ring. We have the following result:

Theorem 9. — Let R be an excellent local ring or a ring such that R/pR is an algebra
of finite type over a field k. Assume that p is nilpotent in R. Then the functor BT is
an equivalence from the category of displays over R to the category of formal p-divisible
groups over R.

We will now define the obstruction to lift a homomorphism of displays. Let S → R

be a pd-thickening. Let P1 and P2 be displays over S, and let P1 and P2 be their
reductions over R. We consider a morphism of displays ϕ : P1 → P2. Let ϕ : P1 → P2

the unique map which exists by theorem 3. It induces a map, which we call the
obstruction to lift ϕ:

Obstϕ : Q1/ISP1 −→ a⊗S P2/Q2

This morphism vanishes iff ϕ lifts to a homomorphism of displays ϕ : P1 → P2.
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We will now assume that pS = 0 and that ap = 0. We equip S → R with the
trivial divided powers. Then p Obstϕ = 0. Therefore pϕ lifts to a homomorphism of
displays ψ : P1 → P2. Let us assume moreover that we are given a second surjection
T → S with kernel b, such that bp = 0, and such that pT = 0. Let P̃1 and P̃2 be
two displays, which lift P1 and P2. Then we give an easy formula (proposition 73),
which computes Obstψ directly in terms of Obstϕ. This formula was suggested by
the work of Gross and Keating [GK], who considered one-dimensional formal groups.
We demonstrate how some of the results in [G] and [K] may be obtained from our
formula.

Finally we indicate how p-divisible groups with an étale part may be treated us-
ing displays. Let R be an artinian local ring with perfect residue class field k of
characteristic p > 0. We assume moreover that 2R = 0 if p = 2. The exact sequence

0 −−−−→ W (m) −−−−→ W (R) π−−−−→ W (k) −−−−→ 0,

admits a unique section δ : W (k) → W (R), which is a ring homomorphism commuting
with F.

We define as above:

Ŵ (m) = {(x0, x1, . . . ) ∈ W (m) | xi = 0 for almost all i}

Since m is a nilpotent algebra, Ŵ (m) is a subalgebra stable by F and V . Moreover
Ŵ (m) is an ideal in W (R).

We define a subring Ŵ (R) ⊂ W (R):

Ŵ (R) = {ξ ∈ W (R) | ξ − δπ(ξ) ∈ Ŵ (m)}.
Again we have a split exact sequence

0 −−−−→ Ŵ (m) −−−−→ Ŵ (R) π−−−−→ W (k) −−−−→ 0,

with a canonical section δ of π. Under the assumptions made on R the subring
Ŵ (R) ⊂ W (R) is stable by F and V. Therefore we may replace in the definition of a
3n-display the ring W (R) by Ŵ (R). The resulting object will be called a Dieudonné
display over R. In a forthcoming publication we shall prove:

Theorem. — Let R be an artinian local ring with perfect residue field k of charac-
teristic p > 0. We assume moreover that 2R = 0 if p = 2. Then the category of
Dieudonné displays over R is equivalent to the category of p-divisible groups over R.

I introduced displays after discussions with M. Rapoport on the work of Gross
and Keating [GK]. I thank Rapoport for his questions and comments and also for
his constant encouragement, which made this work possible. I also thank J. de Jong,
G.Faltings, and B.Messing for helpful remarks, and O.Gabber for his helpful questions,
which he asked during lectures. The remarks of the referee helped me to correct an
error in the first version of this paper. I forgot that Messing [Me] assumes nilpotent
divided powers, which is necessary in the presence of an étale part (see the remarks
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above). I am very grateful to him. Finally I thank the organizers of the “P-adic
Semester” in Paris 1997 for giving me the possibility to present my results there. At
this time a preliminary version of this work entitled “Cartier Theory and Crystalline
Dieudonné Theory” was distributed.

Note added in March 2001: A proof of the last theorem above is given in [Z3]. The
relation of the theory of Ch. Breuil [Br] to the theory given here is explained in [Z4].
A construction of the display associated to an abelian scheme over R is given in [LZ],
by means of a de Rham-Witt complex relative to R.

1. Displays

1.1. Generalities. — Let A and B be commutative rings and ρ : A → B be a
homomorphism. If N is a B-module, we denote by N[ρ] the A-module obtained by
restriction of scalars. Let M be a A-module. A ρ-linear map α : M → N is an A-
linear map α : M → N[ρ]. It induces a B-linear map α# : B⊗ρ,AM → N . We will say
that α is a ρ-linear isomorphism (respectively epimorphism), if α# is an isomorphism
(respectively epimorphism).

Let R be a unitary commutative ring, which is a Z(p)-algebra. Let W (R) be the
Witt ring with respect to the prime number p. We apply the definitions above to the
case where A = B = W (R), and where ρ is the Frobenius endomorphism F : W (R) →
W (R). (For notations concerning the Witt ring we refer to the introduction.) As an
example we consider the Verschiebung V : W (R) → W (R). It induces a W (R)-linear
isomorphism

V : W (R)[F ] −→ IR.

Its inverse is a F-linear map:

V −1
: IR −→ W (R)

This map is a F-linear epimorphism, but it is not a F-linear isomorphism (!) unless
R is a perfect ring.

We define base change for F-linear maps as follows. Let S → R be a homomorphism
of commutative rings. Assume α : Q → P is a F-linear homomorphism of W (S)-
modules. Then the base change αR is

αR : W (R)⊗W (S) Q −→ W (R)⊗W (S) P.

w ⊗ x �−→ Fw ⊗ α(x)

We have

(α#)W (R) = (αR)#,

where the index W (R) is base change for linear maps.
We are now ready to define the notion of a display.
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Definition 1. — A 3n-display over R is a quadrupel (P, Q, F, V −1), where P is a
finitely generated projective W (R)-module, Q ⊂ P is a submodule and F and V −1

are F-linear maps F : P → P , V −1 : Q → P .
The following properties are satisfied:

(i) IRP ⊂ Q ⊂ P and there exists a decomposition of P into a direct sum of
W (R)-modules P = L⊕ T , such that Q = L⊕ IRT .

(ii) V −1 : Q → P is a F-linear epimorphism.
(iii) For x ∈ P and w ∈ W (R), we have

(1) V −1(V wx) = wFx.

We make some formal remarks on this definition. The 3n-displays form an additive
category. We are mainly interested in the case, where R is a Zp-algebra. Then we
have Zp ⊂ W (R) and hence the category is Zp-linear.

The operator F is uniquely determined by V −1 because of the relation:

V −1(V1x) = Fx, for x ∈ P.

If we apply this to the case x = y ∈ Q and apply the F-linearity of V −1, we obtain
the relation:

(2) Fy = p · V −1y.

A decomposition P = L ⊕ T as required in (i), we will call a normal decomposition.
We set P = P/IRP and Q = Q/IRP . Then we get a filtration of R-modules

(3) 0 ⊂ Q ⊂ P,

whose graded pieces are projective finitely generated R-modules. This is the Hodge
filtration associated to a display.

Lemma 2. — Let R be a p-adically complete and separated ring. Let us replace in the
definition 1 the condition (i) by the weaker condition that IRP ⊂ Q ⊂ P and that
the filtration (3) has finitely generated projective R-modules as graded pieces. Then
(P, Q, F, V −1) is a 3n-display.

Before proving the lemma we need a general fact about the Witt ring.

Proposition 3. — Let R be a p-adic ring, i.e. complete and separated in the p-adic
topology. Then the ring W (R) is p-adic. Moreover it is complete and separated in the
IR-adic topology.

Proof. — We begin to show that W (R) is separated in the p-adic topology. Since
W (R) is the projective limit of the rings Wn(R/pmR) for varying n and m it is
enough to show that that p is nilpotent in each of the rings Wn(R/pmR). To see this
we consider a ring a without unit such that pma = 0. An easy induction on m shows
that p is nilpotent in Wn(a).
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It is enough to prove our assertion for a ring R which has no p-torsion. Indeed in
the general case we may choose a surjection S → R where S is a torsion free p-adic
ring. But then we obtain a surjection W (S) → W (R) from the p-adic ring W (S) to
the p-adically separated ring W (R). This implies that W (R) is a p-adic ring.

To treat the case of a p-adic ring we need a few lemmas:

Lemma 4. — Let S be a ring without p-torsion. Let x = (x0, . . . , xm) ∈ Wm+1(S) be a
Witt vector. Then for any fixed number s ≥ 1 the following conditions are equivalent:

(i) ps
∣∣ xi for i = 0, . . . , m

(ii) pn+s
∣∣ wn(x) for n = 0, . . . , m.

Proof. — The first condition clearly implies the second. Assume the second condition
holds. By induction we may assume ps

∣∣ xi for i = 0, . . . , n− 1. Then we write

wn(x) = wn−1(x
p
0 . . . xp

n−1) + pnxn.

By the obvious implication and by induction the first term on the right hand side is≡ 0
mod p(n−1)+ps. Since (n− 1) + ps ≥ n + s, we conclude pnxn ≡ 0 mod pn+sS.

Lemma 5. — Let R be a p-torsion free ring. Let a ∈ Wm(R) be a given Witt vector.
Let u be a number. We assume that the equation

pux = a(4)

has for each s a solution in the ring Wm(R/psR). Then the equation (4) has a solution
in Wm(R).

Proof. — Let us consider a fixed s. By assumption there is a z ∈ Wm(R), such that
puz = a holds in the ring Wm(R/ps+uR). We let xs be the image of z in the ring
Wm(R/psR). Then we claim that xs is independent of the choice of z.

Indeed, let z′ be a second choice and set ξ = z − z′. The Witt components of puξ

are elements of ps+uR. Hence the lemma implies

pn+s+u
∣∣ wn(puξ) for n = 0 . . .m− 1.

It follows that pn+s
∣∣ wn(ξ). But applying the lemma again we obtain the ps

∣∣ ξi for
all Witt components of ξ.

This shows the uniqueness of xs. We set x = lim←−xs ∈ W (R) and obtain the desired
solution of (4).

Lemma 6. — Let S be without p-torsion. We will denote by Ir the ideal V r

W (S) ⊂
W (S). Let T be the linear topology on W (S), such that the following ideals form a
fundamental set of open neighbourhoods of zero:

Ir + W (psS)(5)

Here, r, s runs through all pairs of numbers.
Then puW (S) is for each number u closed in the topology T .
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Proof. — We have to show⋂
r,s∈N

puW (S) + Ir + W (psS) = puW (S)(6)

Let x be an element from the left hand side.
We denote for a fixed number r by x the image of x in Wr(S). Then the equation

puz = x

has a solution z in the ring Wr(S/psS) for each number s. By the last lemma we have
a solution in Wr(S) too. This shows x ∈ puW (S) + Ir .

We take the unique solution zr ∈ Wr(S) of puzr = x in Wr(S), and we set z =
lim←− zr. Hence x = puz ∈ puW (S).

Let S be a torsion free p-adic ring. Clearly the Witt ring W (S) is complete and
separated in the topology T . The assertion that W (S) is p-adic is a consequence of
the last lemma and the following elementary topological fact (see Bourbaki Topologie
III §3 Cor 1):

Lemma 7. — Let G be an abelian group. Let A resp. B be linear topologies on G, which
are given by the fundamental systems of neighbourhood of zero {An} resp. {Bn}, where
An and Bn are subgroups.

We make the following assumptions:

a) Each An is open in the B-topology, i.e. the B topology is finer.
b) Each Bn is closed in the A-topology.
c) G is complete and separated in the A-topology.

Then G is complete and separated in the B-topology.

We omit the easy proof.
We note that in the Witt ring W (R) of any ring we have an equality of ideals for

any natural number n:

(7) In
R = pn−1IR

If R is a p-adic ring the additive group IR is p-adically complete and separated, because
it is by the Verschiebung isomorphic to W (R). This shows that W (R) is then also
complete in the IR-adic topology. This completes the proof of proposition 3.

Corollary 8. — Assume that p is nilpotent in R. Then the p-adic and the IR-adic
topology on W (R) coincide. This topology is finer than the V -adic topology, which
has the ideals In = V n

W (R) as a fundamental system of neighbourhoods of zero.

Proof. — This is clear.

We turn now to the proof of lemma 2. The proposition 3 implies in particular that
W (R) is complete and separated in the IR-adic topology. We set An = W (R)/In

R. We
start with a decomposition P = L⊕ T such that Q/IRP = L over A1 = R and lift it
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step by step to a decomposition An⊗W (R) P = Ln⊕Tn over An using the surjections
with nilpotent kernel An → An−1. Then we obtain the desired decomposition by
taking the projective limit.

Lemma 9. — Let (P, Q, F, V −1) be a 3n-display over a ring R, and P = L ⊕ T be a
normal decomposition. Then the map

(8) V −1 ⊕ F : L⊕ T −→ P

is a F-linear isomorphism.

Proof. — Since source and target of V −1 ⊕ F are projective modules of the same
rank, it is enough to show, that we have a F-linear epimorphism. Indeed, by the
property (ii) of the definition 1 the W (R)-module P is generated by V −1l, for l ∈ L

and V −1(V wt) for t ∈ T and w ∈ W . The lemma follows, since V −1(V wt) = wFt.

Using this lemma we can define structural equations for a 3n-display, whose Hodge
filtration (3) has free graded pieces. Let (P, Q, F, V −1) be a 3n-display over R with
this property. Then the modules L and T in a normal decomposition P = L⊕ T , are
free. We choose a basis e1, . . . , ed of T , and basis ed+1 . . . eh of L. Then there are
elements αij ∈ W (R), i, j = 1, . . . , h, such that the following relations hold.

Fej =
h∑

i=1

αijei, for j = 1, . . . , d

V −1ej =
h∑

i=1

αijei for j = d + 1, . . . , h

(9)

By the lemma 9 the matrix (αij) is invertible.
Conversely assume we are given an invertible h×h-matrix (αij) over the ring W (R)

and a number d, such that 0 ≤ d ≤ h. Let T be the free W (R)-module with basis
e1, . . . ed and L be the free W (R)-module with basis ed+1, . . . , eh. We set P = L⊕ T

and Q = L⊕ IRT , and we define the F -linear operators F and V −1 by the equations
(9) and the following equations

Fej =
h∑

i=1

pαijei, j = d + 1, . . . , h

V −1(V wej) =
h∑

i=1

wαijei, j = 1, . . . , d

One verifies easily, that this defines a 3n-display over R.
For a 3n-display (P, Q, F, V −1) we do not have an operator V as in Dieudonné or

Cartier theory. Instead we have a W (R)-linear operator:

(10) V � : P −→ W (R)⊗F,W (R) P
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Lemma 10. — There exists a unique W (R)-linear map (10), which satisfies the fol-
lowing equations:

V �(wFx) = p · w ⊗ x, for w ∈ W (R), x ∈ P

V �(wV −1y) = w ⊗ y, for y ∈ Q
(11)

Moreover we have the identities

(12) F �V � = p idP , V �F � = p idW (R)⊗F,W (R)P
.

Proof. — Clearly V � is uniquely determined, if it exists. We define the map V � by
the following commutative diagram, where W = W (R):

(13)

W ⊗F,W L⊕W ⊗F,W T
(V −1 + F )�

��

id +p id
��

P

V �

��

W ⊗F,W L⊕W ⊗F,W T �� W ⊗F,W P

Here the lower horizontal map is the identity.
We need to verify (11) with this definition. We write x = l+ t, for l ∈ L and t ∈ T .

V �(wFx) = V �(wFl) + V �(wFt) = V �(V −1(Vwl)) + V �(wFt)

= 1⊗ Vwl + pw ⊗ t = pw ⊗ (l + t) = pw ⊗ x.

Next take y to be of the form y = l + Vut.

V �(wV −1y) = V �(wV −1l) + V �(wuFt)

= w ⊗ l + pwu ⊗ t = w ⊗ l + wFV u⊗ t

= w ⊗ (l + Vut) = w ⊗ y.

The verification of (12) is left to the reader.

Remark. — The cokernel of V � is a projective W (R)/pW (R)-module of the same
rank as the R-module P/Q.

Let us denote by F i

V � the W (R)-linear map

id⊗F i,W (R)V
� : W ⊗F i,W P −→ W ⊗F i+1,W P,

and by V n� the composite F n−1
V � ◦ · · · ◦F V � ◦ V �.

We say that a 3n-display satisfies the nilpotence (or V-nilpotence) condition, if
there is a number N , such that the map

V N� : P −→ W (R)⊗F N ,W (R) P

is zero modulo IR + pW (R). Differently said, the map

(14) R/pR⊗w0,W (R) P −→ R/pR⊗wN ,W (R) P

induced by V N� is zero.
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Definition 11. — Let p be nilpotent in R. A display (P, Q, F, V −1) is a 3n-display,
which satisfies the nilpotence condition above.

Let us choose a normal decomposition P = L⊕ T . It is obvious from the diagram
(13) that the map

R/pR⊗w◦,W (R) P
V �

−−−−→ R/pR⊗w1,W (R) P
pr−−−−→ R/pR⊗w1,W (R) T

is zero. Therefore it is equivalent to require the nilpotence condition for the following
map:

U � : L ↪→ L⊕ T = P
V �

−−−−→ W ⊗F,W P
pr−−−−→ W ⊗F,W L

Less invariantly but more elementary the nilpotence condition may be expressed if
we choose a basis as in (9). Let (βk,l) be the inverse matrix to (αi,j). Consider the
following (h− d)× (h− d)-matrix with coefficients in R/pR:

B = (w0(βkl) modulo p)k,l=d+1,...,h

Let B(pi) be the matrix obtained by raising the coefficients to the pi-th power. Then
the nilpotence condition says exactly that for a suitable number N :

(15) B(pN−1) · · ·B(p) · B = 0

Corollary 12. — Assume that p is nilpotent in R. Let (P, Q, F, V −1) be a display over
R. Then for any given number n there exists a number N , such that the following
map induced by V N� is zero:

Wn(R)⊗W (R) P −→ Wn(R)⊗F N ,W (R) P

Proof. — Indeed, by the proof of proposition 3 the ideal IR + pWn(R) in Wn(R) is
nilpotent.

We will also consider displays over linear topological rings R of the following type.
The topology on R is given by a filtration by ideals:

(16) R = a0 ⊃ a1 ⊃ · · · ⊃ an . . . ,

such that aiaj ⊂ ai+j . We assume that p is nilpotent in R/a1 and hence in any ring
R/ai. We also assume that R is complete and separated with respect to this filtration.
In the context of such rings we will use the word display in the following sense:

Definition 13. — Let R be as above. A 3n-display P = (P, Q, F, V −1) over R is called
a display, if the 3n-display obtained by base change over R/a1 is a display in sense of
definition 11.

Let P be a display over R. We denote by Pi the 3n-display over R/ai induced by
base change. Then Pi is a display in the sense of definition 11. There are the obvious
transition isomorphisms

(17) φi : (Pi+1)R/ai
−→ Pi
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Conversely assume we are given for each index i a display Pi over the discrete ring
R/ai, and transition isomorphisms φi as above. Then the system (Pi, φi) is obtained
from a display P over R. In fact this is an equivalence of the category of systems of
displays (Pi, φi) and the category of displays over R.

If R is for example complete local ring with maximal ideal m, such that pR = 0,
we can consider the category of displays over R in the sense of definition 11 but we
can also consider the category of displays over the topological ring R, with its m-adic
topology. The last category is in general strictly bigger.

1.2. Examples

Example 14. — Let R = k be a perfect field. A Dieudonné module over k is a finitely
generated free W (k)-module M , which is equipped with a F-linear map F : M → M ,
and a F−1

-linear map V : M → M , such that:

FV = V F = p

We obtain a 3n-display by setting P = M, Q = V M with the obvious operators
F : M → M and V −1 : V M → M . Moreover (P, Q, F, V −1) is a display if the map
V : M/pM → M/pM is nilpotent. The map V � is given by

V � : M −→ W (k)⊗F,W (k) M.

m �−→ 1⊗ V m

In the other direction starting with a display (P, Q, F, V −1) we obtain a Dieudonné
module structure on P if we define V as the composite:

(18) V : P
V �

−−→ W (k)⊗F,W (k) P −→ P

w ⊗ x �−→ F−1
w · x

This makes sense because the Frobenius endomorphism F is an automorphism of
W (k). We see that the category of 3n-displays over a perfect field is naturally equiv-
alent to the category of Dieudonné modules.

More generally let k be a perfect ring of characteristic p. Then F is an automorphism
on W (k) and pW (k) = Ik. We call a Dieudonné module k a finitely generated
projective W (k)-module M equipped with two Z-linear operators

F : M −→ M,

V : M −→ M,

which satisfy the relation F (wx) = FwFx, V (Fwx) = wV x, FV = V F = p.
If we are given a homomorphism of k → k′ of perfect rings, we obtain the structure

of a Dieudonné module on M ′ = W (k′)⊗W (k) M .
Since p is injective on W (k), there is an exact sequence of k-modules:

0 −→ M/FM
V−−→ M/pM −→ M/V M −→ 0
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If we tensorize this sequence with k′ we obtain the corresponding sequence for M ′. In
particular this sequence remains exact. We also see from the sequence that M/V M

is of finite presentation. Hence we conclude that M/V M is a finitely generated pro-
jective k-module. Therefore we obtain a 3n-display (M, V M, F, V −1).

Proposition 15. — The category of 3n-displays over a perfect ring k is equivalent to
the category of Dieudonné modules over k. Moreover the displays correspond exactly
to the Dieudonné modules, such that V is topologically nilpotent for the p-adic topology
on M .

The proof is obvious. We remark that a Dieudonné module M , such that V is
topologically nilpotent is a reduced Cartier module. The converse is also true by [Z1]
Korollar 5.43.

We note that Berthelot [B] associates to any p-divisible group over a perfect ring
a Dieudonné module. In the case of a formal p-divisible group his construction gives
the Cartier module (compare [Z2] Satz 4.15).

Example 16. — The multiplicative display Gm = (P, Q, F, V −1) over a ring R is de-
fined as follows. We set P = W (R), Q = IR and define the maps F : P → P ,
V −1 : Q → P by:

Fw = Fw for w ∈ W (R)

V −1(V w) = w

We note that in this case the map V � is given by:

V � : W (R) −→ W (R)⊗F,W (R) W (R)
κ∼= W (R)

V �w = 1⊗ Vw = pw ⊗ 1

Hence using the canonical isomorphism κ the map V � is simply multiplication by p.
Therefore we have a display, if p is nilpotent in R, or more generally in the situation
of definition 13.

Example 17. — To any 3n-display we can associate a dual 3n-display. Assume we are
given two 3n-displays P1 and P2 over R.

Definition 18. — A bilinear form of 3n-displays

( , ) : P1 × P2 −→ Gm

is a bilinear form of W (R)-modules

( , ) : P1 × P2 −→ W (R),

which satisfies the following relation:

(19) V(V −1y1, V
−1y2) = (y1, y2), for y1 ∈ Q1, y2 ∈ Q2

We will denote the abelian group of bilinear forms by Bil(P1 × P2,Gm).

ASTÉRISQUE 278



THE DISPLAY OF A FORMAL p-DIVISIBLE GROUP 143

The last relation implies the following:

(20)

(V −1y1, Fx2) = F(y1, x2) for y1 ∈ Q1, x2 ∈ P2

(Fx1, Fx2) = pF(x1, x2) for x1 ∈ P1,

(Fx1, V
−1y2) = F(x1, y2) for y2 ∈ Q2,

Indeed,

V(V −1y1, Fx2) = V(V −1y1, V
−1(V1x2)) = (y1,

V1x2) = V1(y1, x2) = V F(y1, x2)

implies the first relation of (20) because V is injective. The other relations are verified
in the same way. We note that (Q1, Q2) ⊂ IR by (19). Assume we are given a finitely
generated projective W (R)-module P . Then we define the dual module:

P ∗ = HomW (R)(P, W (R))

Let us denote the resulting perfect pairing by ( , ):

(21)
P × P ∗ −→ W (R)
x× z �−→ (x, z)

There is also an induced pairing

( , ) : W (R)⊗F,W (R) P ×W (R)⊗F,W (R) P ∗ −→ W (R),

which is given by the formula:

(w ⊗ x, v ⊗ z) = wvF(x, z), x ∈ P, z ∈ P ∗, w, v ∈ W (R)

Let us consider a 3n-display P = (P, Q, F, V −1) over R. We set Q̂ = {φ ∈
P ∗ | φ(Q) ⊂ IR}. Then Q̂/IRP ∗ is the orthogonal complement of Q/IRP by the
induced perfect pairing:

P/IRP × P ∗/IRP ∗ −→ R

Definition 19. — There is a unique 3n-display P t = (P ∗, Q̂, F, V −1), such that the
operators F and V −1 satisfy the following relations with respect to the pairing (21):

(22)

(V −1x, Fz) = F(x, z) for x ∈ Q, z ∈ P ∗

(Fx, Fz) = pF(x, z) for x ∈ P, z ∈ P ∗

(Fx, V −1z) = F(x, z) for x ∈ P, z ∈ Q̂

V(V −1x, V −1z) = (x, z) for x ∈ Q, z ∈ Q̂

Hence we have a bilinear form of displays

P × Pt −→ Gm

We call Pt the dual 3n-display.
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As for ordinary bilinear forms one has a canonical isomorphism:

(23) Bil(P1 × P2,Gm) −→ Hom(P2,Pt
1)

From the relations of definition 19 we easily deduce that the W (R)-linear maps F �

and V � for P respectively Pt are dual to each other:

(24)
(V �x, v ⊗ z) = (x, F �(v ⊗ z))

(F �(w ⊗ x), z) = (w ⊗ x, V �z)

Let us assume that p is nilpotent in R. In terms of the dual 3n-display we may
rephrase the nilpotence condition as follows. Iterating the homomorphism F � for the
dual 3n- display we obtain a map:

(25) FN � : W (R)⊗F N ,W (R) P ∗ −→ P ∗

Then the 3n-display P satisfies the V-nilpotence condition, iff for any number n there
exists a number N , such that the following map induced by (25) is zero:

FN � : Wn(R)⊗F N ,W (R) P ∗ −→ Wn(R)⊗W (R) P ∗

In this case we will also say that Pt satisfies the F -nilpotence condition.

Next we define base change for a 3n-display. Suppose we are given a ring homo-
morphism ϕ : S → R. Let P be a W (S)-module. If ϕ : P → P ′ is a F-linear map of
W (S)-modules, we define the base change ϕW (R) as follows:

ϕW (R) : W (R)⊗W (S) P −→ W (R)⊗W (S) P ′

w ⊗ x �−→ Fw ⊗ ϕ(x)

Then we have (ϕW (S))� = idW (R)⊗W (S)ϕ
� for the linearizations.

Let P = (P, Q, F, V −1) be a 3n-display over S. Let ϕ : S → R be any ring
morphism. We will now define the 3n-display obtained by base change with respect
to ϕ.

Definition 20. — We define PR = (PR, QR, FR, V −1
R ) to be the following quadruple:

We set PR = W (R)⊗W (S) P .
We define QR to be the kernel of the morphism W (R)⊗W (S) P → R⊗S P/Q.
We set FR = F⊗ F .
Finally we let V −1

R : QR → PR be the unique W (R)-linear homomorphism, which
satisfies the following relations:

V −1
R (w ⊗ y) = Fw ⊗ V −1y, for w ∈ W (R), y ∈ Q

V −1
R (Vw ⊗ x) = w ⊗ Fx, for x ∈ P

(26)

Then PR is a 3n-display over R, which is called the 3n-display obtained by base
change.
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To show that this definition makes sense we have only to prove the existence and
uniqueness of V −1

R ,. The uniqueness is clear. For the existence we choose a normal
decomposition P = L⊕ T . Then we have an isomorphism:

QR � W (R)⊗W (S) L⊕ IR ⊗W (S) T

We define V −1
R on the first summand by the first equation of (26) and on the second

direct summand by the second equation. We leave the verification that (26) holds
with this definition to the reader.

In the case where ϕ is surjective the image of the morphism W (R) ⊗W (S) Q →
W (R)⊗W (S) P = PR, is simply QR, but in general this image is strictly smaller than
QR.

By looking for example at (15) it is clear that PR is a display if P was a display.
There is also an obvious converse statement.

Lemma 21. — Let φ : S → R be a ring homomorphism, such that any element in the
kernel of φ is nilpotent. Then P is a display if PR is a display.

Remark. — Before we turn to the next example, we collect some general facts about
the liftings of projective modules. Let S → R be a surjective ring homomorphism,
such that any element in the kernel is nilpotent, or such that S is complete and
separated in the adic topology defined by this kernel. Assume we are given a finitely
generated projective module P over R. Then P lifts to S, i.e. there is a finitely
generated projective S-module P̃ together with an isomorphism φ : R⊗S P̃ → P . By
the lemma of Nakayama the pair (P̃ , φ) is uniquely determined up to isomorphism.
The existence follows from the well-known fact that idempotent elements lift with
respect the surjection of matrix algebras EndS(Su) → EndR(Ru), where u is some
number (e.g. H.Bass, Algebraic K-Theory, W.A. Benjamin 1968, Chapt. III Prop.
2.10).

Let L be a direct summand of P . A lifting of L to a direct summand of P is obtained
as follows. Let L̃ be any lifting of L to S. Let L̃ → P̃ be any lifting of L → P , whose
existence is guaranteed by the universal property of projective modules. In this way
L̃ becomes a direct summand of P̃ . This is easily seen, if one lifts in the same way
a complement T of L in P . Indeed the natural map L̃ ⊕ T̃ → P̃ is by Nakayama an
isomorphism.

Let us now assume that the kernel of S → R consists of nilpotent elements. We
also assume that p is nilpotent in S. Let now P denote a projective W (R)-module.
We set PR = R ⊗w0,W (R) P . We have seen that PR may be lifted to a finitely
generated projective S-module P̃S . Since W (S) is complete and separated in the
IS-adic topology by proposition 3, we can lift P̃S to a projective finitely generated
W (S)-module P̃ . We find an isomorphism W (R) ⊗W (S) P̃ → P , because liftings of
PR to W (R) are uniquely determined up to isomorphism. Hence finitely generated
projective modules lift with respect to W (S) → W (R). Since the kernel of the last
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morphism lies in the radical of W (S), this lifting is again unique up to isomorphism.
We also may lift direct summands as described above.

Let (P̃ , Q̃, F, V −1) be a 3n-display over S and (P, Q, F, V −1) be the 3n-display
obtained by base change over R. Then any normal decomposition P = L ⊕ T may
be lifted to a normal decomposition P̃ = L̃⊕ T̃ . Indeed choose any finitely generated
projective W (S)-modules L̃ and T̃ , which lift L and T . Because Q̃ → Q is surjective,
we may lift the inclusion L → Q to a W (S)-module homomorphism L̃ → Q̃. Moreover
we find a W (S)-module homomorphism T̃ → P̃ , which lifts T → P . Clearly this gives
the desired normal decomposition P̃ = L̃⊕ T̃ .

Example 22. — Let S → R be a surjection of rings with kernel a. We assume that p

is nilpotent in S, and that each element a ∈ a is nilpotent.
Let P0 = (P0, Q0, F, V −1) be a 3n-display over R. A deformation (or synonymously

a lifting) of P0 to S is a 3n-display P = (P, Q, F, V −1) over S together with an
isomorphism:

PR
∼= P0.

Let us fix a deformation P . To any homomorphism

α ∈ HomW (S)(P, W (a)⊗W (S) P ),

we associate another deformation Pα = (Pα, Qα, Fα, V −1
α ) as follows:

We set Pα = P , Qα = Q, and

(27)
Fαx = Fx− α(Fx), for x ∈ P

V −1
α y = V −1y − α(V −1y), for y ∈ Q.

The surjectivity of (V −1
α )� follows the kernel of W (S) → W (R) is in the radical of

W (S) and therefore Nakayama’s lemma is applicable.
Since F and Fα respectively V −1 and V −1

α are congruent modulo W (a) the 3n-
display Pα,R obtained by base change is canonically isomorphic to P0.

We note that any deformation is isomorphic to Pα for a suitable homomorphism
α. Indeed, let P1 = (P1, Q1, F1, V

−1
1 ) be any other deformation of P0. We find

an isomorphism of the pairs (P, Q) and (P1, Q1), which reduces to the identity on
(P0, Q0). Indeed, we fix a normal decomposition P0 = L0⊕ T0 and lift it to a normal
decomposition of P respectively of P1. Then any isomorphism between the lifted
normal decompositions is suitable. Hence we may assume that (P, Q) = (P1, Q1).
Then we define F -linear homomorphisms

ξ : P −→ W (a)⊗W (S) P, η : Q −→ W (a)⊗W (S) P,

by the equations:

(28)
F1x = Fx− ξ(x) for x ∈ P

V −1
1 y = V −1y − η(y) for y ∈ Q.
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Then ξ and η must satisfy the relation:

η(Vwx) = wξ(x), for x ∈ P.

It is then easily checked that there is a unique homomorphism α as above, which
satisfies the relations:

α(V −1y) = η(y), for y ∈ Q

α(Fx) = ξ(x), for x ∈ P

Then the deformations Pα and P1 are isomorphic.

Example 23. — Let R be a ring such that p ·R = 0. Let us denote by Frob : R → R

the absolute Frobenius endomorphism, i.e. Frob(r) = rp for r ∈ R.
Let P = (P, Q, F, V −1) be a 3n-display over R. We denote the 3n-display obtained

by base change with respect to Frob by P(p) = (P (p), Q(p), F, V −1). More explicitly
we have

P (p) = W (R)⊗F,W (R) P

Q(p) = IR ⊗F,W (R) P + Image (W (R)⊗F,W (R) Q)

The operators F and V −1 are uniquely determined by the relations:

F (w ⊗ x) = Fw ⊗ Fx, for w ∈ W (R), x ∈ P

V −1(V w ⊗ x) = w ⊗ Fx,

V −1(w ⊗ y) = Fw ⊗ V −1y, for y ∈ Q.

(At the first glance it might appear that this explicit definition does not use p ·
R = 0. But without this condition Q(p)/IRP (p) would not be a direct summand of
P (p)/IRP (p). The elements 1⊗ Vwx = pw ⊗ x would cause trouble, if F and V do not
commute.)

The map V # : P → W (R)⊗F,W (R) P of lemma 1.5 satisfies V #(P ) ⊂ Q(p). Using
the fact that P is generated as a W (R)-module by the elements V −1y for y ∈ Q a
routine calculation shows that V # commutes with F and V −1. Hence V # induces a
homomorphism of 3n-displays

(29) FrP : P −→ P(p),

which is called the Frobenius homomorphism of P .
Similarly the map F# : W (R)⊗F,W (R) P → P satisfies F#(Q(p)) ⊂ IRP . One can

check that F# commutes with the operators F and V −1. Therefore F# induces a
map of 3n-displays, which is called the Verschiebung.

(30) VerP : P(p) −→ P .

From the lemma 1.5 we obtain the relations:

(31) FrP ·VerP = p · idP(p) , VerP FrP = p · idP .
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Example 24. — We will define displays, which correspond to the Lubin-Tate groups.
Let OK be a complete discrete valuation ring with finite residue class field k, and
field of fractions K of characteristic 0. We fix a prime element π ∈ OK . Let R be a
p-adic ring, which is equipped with a structure φ : OK → R of a OK -algebra. We set
u = φ(π).

The displays we are going to construct are displays P over the topological ring R

with its p-adic topology. Moreover they will be equipped with an action ι : OK →
EndP of OK . This implies an action of the ring OK ⊗Zp W (R) on P . Let us extend
the operators F and V on the ring W (R) OK-linearly to the ring OK ⊗W (R). We
need the following easy lemma:

Lemma 25. — Consider the ring homomorphism:

(32) OK ⊗Zp W (R) −→ OK/πOK ⊗R/uR.

It is the residue class map on the first factor, and it is the composite of w0 with the
natural projection R → R/uR on the second factor.

Then an element in OK ⊗W (R) is a unit, iff its image by (32) is a unit.

Proof. — By proposition 3 the ring OK⊗ZpW (R) is complete in the IR -adic topology.
Hence an element in this ring is a unit, iff its image in OK ⊗Zp R is a unit. Since this
last ring is complete in the p-adic topology, we get easily our result.

Let us first do the construction of the Lubin-Tate display in a special case:

Proposition 26. — Let us assume that OK/πOK = Fp. Let R be a p-torsion free p-
adic ring, with an OK-algebra structure φ : OK → R. Then there is a unique display
PR = (PR, QR, F, V −1) over the topological ring R, with the following properties:

(i) PR = OK ⊗Zp W (R).
(ii) QR is the kernel of the map φ⊗w0 : OK ⊗Zp W (R) → R.
(iii) The operators F and V −1 are OK-linear.
(iv) V −1(π ⊗ 1− 1⊗ [u]) = 1.

To prove this proposition we need two lemmas:

Lemma 27. — With the assumptions of proposition 26 we set e = [OK : Zp]. Then
the element:

τ =
1
p
(πe ⊗ 1− 1⊗ [uep]) ∈ K ⊗Zp W (R)

is a unit in OK ⊗Zp W (R).

Proof. — The statement makes sense because OK ⊗Zp W (R) has no p-torsion. First
we prove that the element πe ⊗ 1 − 1 ⊗ [uep] is divisible by p. We have πe = εp for
some unit ε ∈ O∗

K . Therefore it is enough to show that p divides 1 ⊗ [uep]. Since
uep = φ(ε)ppp, it is enough to show that p divides [pp] in W (R). This will follow from
the lemma below.
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To show that τ is a unit we consider its image by the map φ⊗w0 : OK⊗Zp W (R) →
R. It is equal to 1

p (ue−uep), which is a unit in R. It follows immediately from lemma
25 that τ must be a unit too.

Lemma 28. — The element [pp] ∈ W (Zp) is divisible by p.

Proof. — Let gm ∈ Zp for m ≥ 0 be p-adic integers. By a well–known lemma [BAC]
IX.3 Proposition 2 there exists a Witt vector x ∈ W (Zp) with wm(x) = gm, for all
m ≥ 0, if and only if the following congruences are satisfied:

gm+1 ≡ gm mod pm+1

Hence our assertion follows if we verify the congruences:

(pp)pm+1

p
≡ (pp)pm

p
mod pm+1 m = 0, 1, . . .

But both sides of these congruences are zero.

Proof of proposition 26. — Let LR ⊂ PR be the free W (R)-submodule of PR with
the following basis

πi ⊗ 1− 1⊗ [ui], i = 1, . . . , e− 1.

Let us denote by TR ⊂ PR the W (R)-submodule W (R)(1⊗ 1). Then PR = TR ⊕ LR

is a normal decomposition.
To define a display we need to define F-linear maps

V −1 : LR −→ PR

F : TR −→ PR,

such that the map V −1 ⊕ F is an F-linear epimorphism.
Since we want V −1 to be OK-linear we find by condition (iv) that for i = 1, . . . , e− 1:

(33) V −1(πi ⊗ 1− 1⊗ [ui]) =
πi ⊗ 1− 1⊗ [uip]
π ⊗ 1− 1⊗ [up]

=
∑

k+l=i−1

πk ⊗ [ulp].

Here k and l run through nonnegative integers and the fraction in the middle is by
definition the last sum. The equation makes sense because by lemma 27 the element
π ⊗ 1− 1⊗ [up] is not a zero divisor in OK ⊗W (R).

If we multiply the equation (iv) by p we find

F (π ⊗ 1− 1⊗ [u]) = p,

and by the required OK -linearity of F :

(π ⊗ 1− 1⊗ [up]) · F1 = p.

Therefore we are forced to set:

(34) F1 = τ−1 πe ⊗ 1− 1⊗ [uep]
π ⊗ 1− 1⊗ [up]
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The F-linear operators V −1 : LR → PR and F : TR → PR defined by the equations
(33) and (34) may be extended to F-linear operators

V −1 : QR −→ PR, F : PR −→ PR

using the equations (1) and (2). Then V −1 is the restriction of the operator V −1 :
PR[ 1p ] → PR[ 1p ] defined by V −1x =

Fx
π⊗1−1⊗[up] and F is the restriction of pV −1 :

PR[ 1p ] → PR[ 1p ]. This shows that the operators F and V −1 are OK -linear. Since 1 is
in the image of (V −1)# : W (R)⊗W (R) QR → PR, and since this map is OK ⊗W (R)-
linear, we conclude that (V −1)# is an epimorphism. It follows that (PR, QR, F, V −1)
is a 3n-display, which satisfies the conditions of the proposition. The uniqueness is
clear by what we have said.

It remains to be shown that we obtained a display in the topological sense. By
base change it is enough to do this for R = OK . Let us denote by P = (P , Q, F, V −1)
the 3n-display over Fp obtained by base change OK → Fp. Then P = OK and F

is the OK-linear map defined by Fπ = p. Hence the map V is multiplication by π.
Hence P is a display.

Finally we generalize our construction to the case where the residue class field
k of OK is bigger than Fp. In this case we define for any torsionfree OK-algebra
φ : OK → R a display

PR = (PR, QR, F, V −1).

Again we set
PR = OK ⊗Zp W (R),

and we define QR to be the kernel of the natural map

(35) φ⊗w0 : OK ⊗Zp W (R) −→ R.

We identify W (k) with a subring of OK . The restriction of φ to W (k) will be
denoted by the same letter:

φ : W (k) −→ R.

Applying the functor W to this last map we find a map (compare (89) )

(36) ρ : W (k) −→ W (W (k)) −→ W (R),

which commutes with the Frobenius morphism defined on the first and the third ring
of (36) (for a detailed discussion see [Gr] Chapt IV Proposition 4.3).

Let us denote the Frobenius endomorphism on W (k) also by σ. We have the
following decomposition in a direct product of rings

(37) OK ⊗Zp W (R) =
∏

i∈Z/fZ

OK ⊗σi,W (k) W (R).

Here f denotes the degree f = [k : Fp] and the tensor product is taken with respect
to ρ.
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The operators F and V on W (R) act via the second factor on the left hand side of
(37). On the right–hand side they are operators of degree −1 and +1 respectively:

F : OK ⊗σi,W (k) W (R) −→ OK ⊗σi−1,W (k) W (R)
V : OK ⊗σi,W (k) W (R) −→ OK ⊗σi+1,W (k) W (R).

We obtain from (37) a decomposition of the OK ⊗Zp W (R)-module PR:

PR = ⊕
i∈Z/fZ

Pi, Pi = OK ⊗σi,W (k) W (R)

Therefore we obtain also a decomposition

QR = Q0 ⊕ P1 ⊕ · · · ⊕ Pf−1.

The map (35) factors through

(38) OK ⊗W (k) W (R) −→ R,

and Q0 is the kernel of (38). The following elements form a basis of P0 as W (R)-
module

ωi = πi ⊗ 1− 1⊗ [ui], i = 1, . . . , e− 1

e0 = 1⊗ 1.

Here u denotes as before the image of π by the map OK → R, and e is the ramification
index e = [OK : W (k)]. Let T = W (R)e0 ⊂ P0, and let L0 ⊂ Q0 the free W (R)
submodule generated by ω1, . . . , ωe−1. We have a normal decomposition

PR = T ⊕ L,

where L = L0 ⊕ P1 ⊕ · · · ⊕ Pf−1.
Now we may define the OK -linear operators F and V −1. We set ei = 1 ⊗ 1 ∈ Pi.

Then V −1 is uniquely defined by the following properties:

V −1ω1 = ef−1,

V −1ei = ei−1 for i 	= 0 i ∈ Z/fZ,

V −1 is OK -linear.

(39)

Multiplying the first of these equations by p we obtain the following equation in the
ring OK ⊗σf−1,W (k) W (R):

Fω1Fe0 = pef−1

To see that this equation has a unique solution Fe0 it suffices to show that:

1
p
(πe ⊗ 1− 1⊗ [uep]) ∈ OK ⊗σf−1,W (k) W (R)

is a unit. This is seen exactly as before, using that 1
p (1⊗ [upe]) is mapped to zero by

the map W (R) → R/u.
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Hence we have defined the desired F-linear operators F : PR → PR and V −1 :
QR → PR. Again V −1 extends to a F-linear endomorphism of K ⊗Zp W (R), which is
given by the formula:

V −1x = F
(x

θ

)
,

where θ ∈ OK ⊗Zp W (R) is the element, which has with respect to the decomposition
(37) the component ω1 for i = 0 and the component ei for i 	= 0.

As before this proves the following proposition:

Proposition 29. — Let K be a finite extension of Qp with ramification index e and
index of inertia f . Let OK , π, k have the same meaning as before.

Let R be torsion free OK-algebra, such that R is p-adically complete and separated.
Denote by u the image of π by the structure morphism φ : OK → R. Let ρ : W (k) →
W (R) be the homomorphism induced by the structure morphism. Then we have a
decomposition

OK ⊗Zp W (R) ∼−−−→
∏

i∈Z/fZ

OK ⊗σi,W (k) W (R)

Let θ ∈ OK ⊗Zp W (R) be the element, which has the component 1 for i 	= 0 and the
component π ⊗ 1− 1⊗ [u] for i = 0.

Then there is a uniquely defined display PR = (PR, QR, F, V −1) over the topological
ring R, which satisfies the following conditions:

(i) PR = OK ⊗Zp W (R).
(ii) QR is the kernel of the map φ⊗w0 : OK ⊗Zp W (R) → R.
(iii) The operators F and V −1 are OK-linear.
(iv) V −1θ = 1.

1.3. Descent. — We will now study the faithfully flat descent for displays.

Lemma 30. — Let M be a flat W (S)-module, and let S → R be a faithfully flat ring
extension. Then there is an exact sequence

0→M → W (R)⊗W (S) M ⇒W (R ⊗R)⊗W (S) M
→
→
→W (R ⊗R⊗R)⊗W (S) M

. . .
(40)

Here the ⊗ without index means ⊗S.

Proof. — The arrows are induced by applying the functor W to the usual exact
sequence for descent:

0 → S → R ⇒ R⊗S R
→
→
→ · · ·

Since M is a direct limit of free modules, we are reduced to the case M = W (S).
In this case any term of the sequence (40) comes with the filtration by the ideals
IR⊗S ···⊗SR,n ⊂ W (R ⊗S · · · ⊗S R). We obtain by the usual f.p.q.c. descent an exact
sequence, if we go to the graded objects.
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Let P = (P, Q, F, V −1) be a display over S. Then the modules PR and QR obtained
by base change fit into an exact sequence

0 −→ QR −→ PR −→ R⊗S P/Q −→ 0

Proposition 31. — Let S → R be a faithfully flat ring morphism. Consider a display
(P, Q, F, V −1) over S. Then we have a commutative diagram with exact rows

0 → P → PR ⇒ PR⊗SR
→
→
→ PR⊗SR⊗SR

→
→
→
→
· · ·

∪ ∪ ∪ ∪
0 → Q → QR ⇒ QR⊗SR

→
→
→ QR⊗SR⊗SR

→
→
→
→
· · ·

Proof. — Indeed, the first row is exact by the lemma. The second row is the kernel
of the canonical epimorphism from the first row to:

0 → P/Q → R ⊗S P/Q ⇒ R⊗S R ⊗S P/Q
→
→
→R⊗S R⊗S R⊗ P/Q

→
→
→
→
· · ·

This proves the proposition and more:

Theorem 32 (descent for displays). — Let S → R be a faithfully flat ring extension.
Let P = (P, Q, F, V −1) and P ′ = (P ′, Q′, F, V −1) be two displays over S. Then we
have an exact sequence

0 → Hom(P ,P ′) → Hom(PR,P ′
R) ⇒ Hom(PR⊗SR,P ′

R⊗SR).

Let N be a W (R)-module. Then we may define a variant of the usual descent datum
relative to S → R.

Let us give names to the morphisms in the exact sequence (40):

(41) W (S) → W (R)
p1
−→
−→
p2

W (R ⊗S R)

p12−→
p23
−→
p13
−→

W (R ⊗S R⊗S R).

Here the index of pij indicates, that the first factor of R⊗S R is mapped to the factor
i, and the second is mapped to the factor j. The notation pi is similar. In the context
of descent we will often write ⊗ instead of ⊗S We also use the notation

p∗i N = W (R⊗R)⊗pi,W (R) N.

We define a W -descent datum on N to be a W (R⊗R)-isomorphism

α : p∗1N −→ p∗2N,
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such that the following diagram is commutative (cocycle condition):

(42)

p∗12p
∗
1N

p∗12α−−−−→ p∗12p
∗
2N∥∥∥ ∥∥∥

p∗13p
∗
1N p∗23p

∗
1N

p∗13α

 
p∗23α

p∗13p
∗
2N p∗23p

∗
2N

To any descent datum we may associate a sequence of morphisms

W (R)⊗W (R) N
∂0

−→
−→
∂1

W (R ⊗R)⊗W (R) N

∂0

−→
∂1

−→
−→
∂2

W (R⊗R ⊗R)⊗W (R) N · · · ,

where the tensor product is always taken with respect to the map

W (R) −→ W (R⊗ · · · ⊗R) induced by a ∈ R �−→ 1⊗ · · · ⊗ 1⊗ a ∈ R⊗ · · · ⊗R.

The maps ∂i : W (R⊗n)⊗W (R) N −→ W (R⊗(n+1))⊗W (R) N , for i < n are simply the
tensorproduct with N of the map W (R⊗n) −→ W (R⊗(n+1)) induced by

a1 ⊗ · · · ⊗ an �−→ a1 ⊗ · · · ⊗ ai ⊗ 1⊗ ai+1 ⊗ · · · an.

Finally the map ∂n : W (R⊗n)⊗W (R) N → W (R⊗n+1)⊗W (R) N is obtained as follows.
The descent datum α induces a map u(x) = α(1 ⊗ x) :

u : N −→ W (R⊗R)⊗W (R) N,

which satisfies u(rx) = p1(r)u(x). Consider the commutative diagram

R −−−−→ R⊗R
 

R⊗n −−−−→ R⊗n+1

The upper horizontal map is r �→ r⊗1 and the lower horizontal map is r1⊗· · ·⊗rn �→
r1 ⊗ · · · ⊗ rn ⊗ 1. The left vertical map is r �→ 1 ⊗ · · · ⊗ 1 ⊗ r and finally the right
vertical map is r1 ⊗ r2 �→ 1⊗ · · · ⊗ 1⊗ r1 ⊗ r2.

If we apply the functor W we obtain:

W (R) −−−−→ W (R ⊗R)

q

 
q2

W (R⊗n) −−−−→ W (R⊗(n+1))

Since u is equivariant with respect to the upper horizontal arrow, we may tensorize
u by this diagram to obtain

W (R⊗n)⊗q,W (R) N −→ W (R⊗n+1)⊗q2,W (R⊗R) W (R⊗R)⊗W (R) N.

This is the map we wanted to define.
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We set

δn =
n∑

i=0

(−1)iδi : W (R⊗n)⊗N −→ W (R⊗(n+1))⊗N.

The cocycle condition assures that we get a complex:

(43) W (R)⊗W (R) N
δ1−−−→ W (R ⊗R)⊗W (R) N

δ2−−−→ W (R ⊗R⊗R)⊗W (R) N · · ·

Proposition 33. — Let S → R be a faithfully flat ring homomorphism. Assume that
p is nilpotent in S. Let P be a finitely generated projective W (R)-module with a W -
descent datum α relative to R → S. Then the complex (43) for N = P is exact. The
kernel P0 of δ1 is a projective finitely generated W (S)-module and the natural map

W (R)⊗W (S) P0 −→ P

is an isomorphism.

We prove this a little later.

Corollary 34. — The functor which associates to a finitely generated projective W (S)-
module P0 the W (R)-module P = W (R) ⊗W (S) P0 with its canonical descent datum
is an equivalence of categories.

Proposition 35. — The following conditions for a W(R)-module P are equivalent:

(i) P is finitely generated and projective.
(ii) P is separated in the topology defined by the filtration InP for n ∈ N (same

notation as in the proof of proposition 3), and for each n the Wn(R)-module
P/InP is projective and finitely generated.

(iii) P is separated as above, and there exist elements f1, . . . , fm ∈ R, which
generate the unit ideal, and such that for each i = 1, . . . , m W (Rfi)-module
W (Rfi)⊗W (R) P is free and finitely generated.

Proof. — For any number n and any f ∈ R we have a natural isomorphism Wn(Rf ) ∼=
Wn(R)[f ]. This fact shows, that (iii) implies (ii). Next we assume (ii) and show that
(i) holds. We find elements u1, . . . , uh, which generate P/IP as an R-module. They
define a map L = W (R)h → P . Since L is complete in the topology defined by the
ideals In this map is surjective and P is complete. By the lemma below we find for
each number n a section σn of L/InL → P/InP , such that σn+1 reduces to σn. The
projective limit of these sections is a section of the W (R)-module homomorphism L →
P . For the proof of the implication (i) implies (iii), we may assume that R ⊗W (R) P

is free. But then the same argument as above shows that any basis of R⊗W (R) P lifts
to a basis of P .

Lemma 36. — Let S → R be a surjective ring homomorphism. Let π : P1 → P2 be
a surjective S-module homomorphism. Suppose that P2 is a projective S-module. Let
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π : P1 → P2 be the R-module homomorphism obtained by tensoring π by R⊗S. Then
any section σ : P2 → P1 lifts to a section σ : P1 → P2.

Proof. — Let us denote by K the kernel of π, and set K = R ⊗S K. Let τ be any
section of π. Consider the morphism σ − τ : P2 → K. This lifts to a S-module
homomorphism ρ : P2 → K, because P2 is projective. We set σ = τ + ρ.

Proof. — (of proposition 33): We begin to prove the statement on the exactness of
(43) under the additional assumption that p · S = 0. On each term of the sequence
(43) we consider the filtration by IR⊗n,m⊗W (R)P . Since P is projective the associated
graded object is

IR,m/IR,m+1 ⊗W (R) P −→ (IR⊗R,m/IR⊗R,m+1)⊗W (R) P −→ · · ·

Applying the assumption p ·R = 0 we may rewrite this as

R⊗pm,R P/IRP →
→R⊗S R⊗pm,R P/IRP

→
→
→ · · ·

The symbol pm indicates, that the tensor product is taken with respect to the m-th
power of the Frobenius endomorphism. The last sequence comes from a usual descent
datum on R ⊗pm,R P/IRP and is therefore exact, except for the first place. Now
we will get rid of the assumption p · S = 0. We consider any ideal a ⊂ S such that
p · a = 0. Let us denote by a bar the reduction modulo p (i.e. R = R/pR etc.), and
by a dash the reduction modulo a.

We have an exact sequence

0 → a⊗R⊗R · · · ⊗R −→ R⊗R⊗ · · · ⊗R → R′ ⊗S′ R′ ⊗ · · ·S′ ⊗ R′ → 0

a⊗ r1 ⊗ · · · ⊗ rn �−→ ar1 ⊗ · · · ⊗ rn

An obvious modification of the complex (43) yields a complex

(44) W (a⊗R)⊗W (R) P
δ1−−−−→ W (a⊗R⊗R)⊗W (R) P

δ2−−−−→ · · · ,

where the factor a is untouched in the definition of δi.
We set P = W (R)⊗W (R) P . Then the complex (44) identifies with the complex

(45) W (a⊗S R)⊗W (R) P
δ1−−−−→ W (a⊗S R⊗S R)⊗W (R) P

δ2−−−−→ · · ·

given by the induced descent datum on P . Since p ·a = p ·S = p ·R = 0 the argument
before applies to show that (45) is exact except for the first place. Now an easy
induction argument using the exact sequence of complexes

0 → W (a⊗S R
⊗n

)⊗W (R) P → W (R⊗n)⊗W (R) P → W (R′⊗n)⊗W (R′) P ′ → 0

proves the exactness statement for the complex in the middle.
In fact our method gives slightly more, namely that we have also, for each m,

exactness of the complex of the augmentation ideals

IR⊗n,m ⊗W (R) P.
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Now we set P0 = ker δ1 : (P → W (R ⊗ R)⊗W (R) P ) and P 1
0 = P0 ∩ IRP . By the

exact cohomology sequence we have a diagram with exact rows and columns.

0 0 0 0
 
 
 

0 → P 1

0 −→ IR ⊗
W (R)

P −→ IR⊗R ⊗
W (R)

P −→ IR⊗R⊗R ⊗
W (R)

P
 
 
 

0 → P0 −→W (R) ⊗

W (R)
P −→W (R⊗R) ⊗

W (R)
P −→W (R⊗R ⊗R) ⊗

W (R)
P
 
 
 


0 → P0/P 1
0 −→ P/IRP −→ R⊗R⊗

R
P/IRP −→ R ⊗R⊗R⊗

R
P/IRP
 
 
 


0 0 0 0

By the usual descent P0/P 1
0 is a finitely generated projective S-module. We may

lift it to a projective W (S)-module F , by lifting it step by step with respect to
the surjections Wn+1(S) → Wn(S) and then taking the projective limit. By the
projectivity of F we obtain a commutative diagram

F

�� ����������
�� P0

				����
����

P0/P 1
0

From the upper horizontal arrow we obtain a map W (R) ⊗W (S) F → P , which may
be inserted into a commutative diagram

W (R)⊗W (S) F −−−−→ P
 

R⊗S P0/P 1

0
∼−−−−→ P/IP

Since the lower horizontal arrow is an isomorphism by usual descent theory we con-
clude by Nakayama that the upper horizontal arrow is an isomorphism. Comparing
the exact sequence (40) for M = F with the exact sequence (43) for N = P , we obtain
that F → P0 is an isomorphism. Since also the graded sequence associated to (40) is
exact, we obtain moreover that P 1

0 = IP0. Hence the proof of the proposition 33 is
complete.

We may define a descent datum for 3n-displays. Let S be a ring, such that p is
nilpotent in S and let S → R be a faithfully flat morphism of rings. We consider the
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usual diagram (compare (41)):

R
q1
−→
−→
q2

R⊗S R

q12
−→
q13
−→
q23
−→

R⊗S R⊗S R

Let P = (P, Q, F, V −1) be a 3n-display over R. We denote the 3n-displays obtained
by base change by q∗1P etc.. Then a descent datum on P relative to R → S is an
isomorphism of 3n-displays

α : q∗1P −→ q∗2P ,

such that the cocycle condition holds, i.e. the diagram (42) is commutative if the
letter p is replaced by q and the letter N is replaced by P . Clearly for any 3n-display
P0 over S we have a canonical descent datum αP0 on the base change P0,R over R.

Theorem 37. — The functor P0 �→ (P0,R, αP0) from the category of displays over S to
the category of displays over R equipped with a descent datum relative to S → R is an
equivalence of categories. The same assertion holds for the category of 3n-displays.

Proof. — Let (P , α) be a display over R with a descent datum relative to S → R.
We define a W (S)-module P0 and a S-module K0, such that the rows in the following
diagram are exact

(46)

0 �� P0
��

��

P
δ ��

��

W (R ⊗S R)⊗W (R) P

��

0 �� K0
�� P/Q

δ �� R⊗S R⊗R P/Q

Here the maps δ are given by the descent datum α as explained above. That we
have also a descent datum on P/Q follows just from our assumption that α is an
isomorphism of displays and therefore preserves Q. We claim that the map P0 →
K0 is surjective. Indeed, since R → S is faithfully flat, it suffices to show that
R⊗S P0/ISP0 → R⊗S K0 is surjective. But this can be read of from the commutative
diagram:

W (R)⊗W (S) P0 �� ��

��

R⊗S P0/IP0
��

��

R⊗S K0

��

P �� �� P/IP �� �� P/Q

Note that the vertical arrows are isomorphisms by proposition 33 or the usual descent
theory.
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Let us denote by Q0 the kernel of the surjection P0 → K0. Then we obtain a
commutative diagram with exact rows and columns:

0

��

0

��

0

��

0 �� Q0

��

�� Q

��

�� Q2

��

0 �� P0

��

�� P

��

�� W (R ⊗S R)⊗W (R) P = p∗2P

��

0 �� P0/Q0

��

�� P/Q

��

�� R⊗S R⊗R (P/Q) = q∗2(P/Q)

��

0 0 0

Here Q2 and p∗2P are parts of the display q∗2P = (p∗2P, Q2, F, V −1) which is obtained
by base change.

To get a display P0 = (P0, Q0, F, V −1) we still have to define the operators F and
V −1. First since α commutes with F by assumption we have a commutative diagram

P
δ−−−−→ p∗2P

F


 
F

P
δ−−−−→ p∗2P

This shows that F induces a map on the kernel of δ:

F : P0 −→ P0

Secondly α commutes with V −1, i.e. we have a commutative diagram

Q1

α∼−−−−→ Q2

V −1


 
V −1

p∗1P
α−−−−→ p∗2P

Recalling the definition of δ one obtains a commutative diagram

Q
δ ��

V −1

��

Q2

V −1

��

P
δ �� p∗2P = W (R⊗S R)⊗W (R) P.
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Hence we obtain V −1 : Q0 −→ P0 as desired. Finally we need to check the nilpotence
condition. Since the maps V −1 and F are compatible with P0 ↪→ P , the same is true
for V # by the characterization of lemma 10. Hence we have a commutative diagram

P0
��

V #

��

P

V #

��

W (S)⊗F,W (S) P0 �� W (R)⊗F,W (R) P

The nilpotence follows now from the injectivity of the map

S/pS ⊗wn,W (S) P0 −→ R/pR⊗wn,W (R) P

and the form (14) of the nilpotence condition.

1.4. Rigidity. — Our next aim is a rigidity theorem for displays in the sense of
rigidity for p-divisible groups. Let S be a ring, such that p is nilpotent in S. Assume
we are given an ideal a ⊂ S with a divided power structure γn ([BO] 3.1). We set
αpn(a) = (pn−1)!γpn(a). We may“divide”the n−th Witt polynomial wn(X0, . . . , Xn)
by pn :

(47) w′
n(X0, . . . , Xn) = αpn(X0) + αpn−1(X1) + · · ·+ Xn.

Let us denote by aN the additive group
∏

i∈N a. We define a W (S)-module structure
on aN :

ξ[a0, a1 · · · ] = [w0(ξ)a0,w1(ξ)a1, . . . ], where ξ ∈ W (S), [a0, a1, . . . ] ∈ aN.

The w′
n define an isomorphism of W (S)-modules:

log : W (a) −→ aN

a = (a0, a1, a2 · · · ) �−→ [w′
0(a),w′

1(a), . . . ]
(48)

We denote the inverse image log−1[a, 0, . . . , 0, . . . ] simply by a ⊂ W (a). Then a is an
ideal of W (S).

By going to a universal situation it is not difficult to compute what multiplication,
Frobenius homomorphism, and Verschiebung on the Witt ring induce on the right
hand side of (48):

[a0, a1, . . . ][b0, b1, . . . ] = [a0b0, pa1b1, . . . , p
iaibi, . . . ]

F[a0, a1, . . . ] = [pa1, pa2, . . . .pai, . . . ]
V[a0, a1, . . . ] = [0, a0, a1, . . . , ai, . . . ]

The following fact is basic:

Lemma 38. — Let (P, Q, F, V −1) be a display over S. Then there is a unique exten-
sion of the operator V −1:

V −1 : W (a)P + Q −→ P,

such that V −1aP = 0.
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Proof. — Choose a normal decomposition

P = L⊕ T.

Then W (a)P + Q = aT ⊕ L ⊕ IST . We define V −1 using this decomposition. To
finish the proof we need to verify that V −1aL = 0. But Fa = 0, since the Frobenius
map on the right hand side of (48) is

F[u0, u1, . . . ] = [pu1, pu2, . . . ].

Lemma 39. — Let S be a ring, such that p is nilpotent in S. Let a ⊂ S be an
ideal with divided powers. We consider two displays P = (P, Q, F, V −1) and P ′ =
(P ′, Q′, F, V −1) over S. Then the natural map

(49) Hom(P ,P ′) −→ Hom(PS/a,P ′
S/a)

is injective. Moreover let M be a natural number, such that apM

= 0 for any a ∈ a.
Then the group pM Hom(PS/a,P ′

S/a
) lies in the image of (49).

Proof. — As explained above the map V −1 : Q′ → P ′ extends to the map V −1 :
W (a)P ′ + Q′ → P ′, which maps W (a)P ′ to W (a)P ′. Let u : P → P ′ be a map of
displays, which is zero modulo a, i.e. u(P ) ⊂ W (a)P ′. We claim that the following
diagram is commutative:

(50)

P
u ��

V #

��

W (a)P ′

W (S)⊗F,W (S) P
1⊗ u

�� W (S)⊗F,W (S) W (a)P ′

(V −1)#
��

Indeed, since P = W (S)V −1Q, it is enough to check the commutativity on elements of
the form wV −1l, where l ∈ Q. Since V #(wV −1l) = w⊗l. the commutativity is readily
checked. Let us denote by 1⊗F N u : W (R)⊗F N ,W (R) P → W (R)⊗F N ,W (R) W (a)P ′

the map obtained by tensoring. Iterating the diagram (50) we obtain

(51) (V −N)#(1 ⊗F N u)(V N#) = u

By the nilpotence condition for each numberM , there exists a number N , such that

V N#(P ) ⊂ IS,M ⊗F N ,W (S) P.

But since IS,M ·W (a) = 0 for big M , we obtain that the left hand side of (51) is zero.
This proves the injectivity.

The last assertion is even true without the existence of divided powers. Indeed,
it follows from the assumption that pMW (a) = 0. Let now u : PS/a → P ′

S/a
be a

morphism of displays.
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For x ∈ P let us denote by x ∈ W (S/a) ⊗W (S) P its reduction modulo a. Let
y ∈ P ′ be any lifting of u(x). Then we define

v(x) = pM · y.

Since pMW (a) = 0 this is well–defined. One checks that v is a morphism of displays
P → P ′, and that v = pMu.

Proposition 40. — Let S be a ring such that p is nilpotent in S. Let a ⊂ S be a
nilpotent ideal, i.e. aN = 0 for some integer N . Let P and P ′ be displays over S. The
the natural map

Hom(P ,P ′) −→ Hom(PS/a,P ′
S/a)

is injective, and the cokernel is a p-torsion group.

Proof. — By induction one restricts to the case, where ap = 0. Then we have a
unique divided power structure on a, such that γp(a) = 0 for a ∈ a. One concludes
by the lemma.

Corollary 41. — Assume again that p is nilpotent in S and that the ideal generated
by nilpotent elements is nilpotent. Then the group Hom(P ,P ′) is torsionfree.

Proof. — By the proposition we may restrict to the case where the ring S is reduced.
Then the multiplication by p on W (S) is the injective map:

(s0, s1, s2 . . . ) �−→ (0, sp
0, s

p
1 . . . )

Therefore the multiplication by p on P ′ is also injective, which proves the corollary.

2. Lifting Displays

In this chapter we will consider a surjective homomorphism of rings S → R. The
kernel will be denoted by a. We assume that the fixed prime number p is nilpotent
in S.

To a display over R we will associate the crystal, which controls the deformation
theory of this display in a way which is entirely similar to the deformation theory of
Grothendieck and Messing for p-divisible groups.

2.1. The main theorem. — We begin by a lemma which demonstrates what we
are doing in a simple situation.

Lemma 42. — Let S → R be as above and assume that there is a number N , such that
aN = 0 for any a ∈ a. Let (Pi, Fi) for i = 1, 2 be projective finitely generated W (S)-
modules Pi, which are equipped with F-linear isomorphisms Fi : Pi → Pi. We set
P i = W (R)⊗W (S) Pi and define F-linear isomorphisms F i : P i → P i, by F i(ξ⊗x) =
Fξ ⊗ Fix, for ξ ∈ W (R), x ∈ Pi.
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Then any homomorphism α : (P 1, F 1) → (P 2, F 2) admits a unique lifting α :
(P1, F1) → (P2, F2).

Proof. — First we choose a lifting α0 : P1 → P2, which does not necessarily commute
with the Fi. We look for a W (S)-linear homomorphism ω ∈ HomW (S)(P1, W (a)P2),
such that

(52) F2(α0 + ω) = (α0 + ω)F1.

Since α commutes with F 1 the F-linear map η = F2α0 − α0F1 maps P1 to W (a)P2.
The equation (52) becomes

ωF1 − F2ω = η,

or equivalently

(53) ω − F#
2 (W (S)⊗F,W (S) ω)(F#

1 )−1 = η#(F#
1 )−1.

We define now a Zp-linear endomorphism U of HomW (S)(P1, W (a)P2) by

Uω = F#
2 (W (S)⊗F,W (S) ω)(F#

1 )−1.

Then U is nilpotent. Indeed for this it suffices to show that F2 is nilpotent on W (a)P2.
Clearly we need only to show that the Frobenius F is nilpotent on W (a). Since p is
nilpotent an easy reduction reduces this statement to the case, where p · a = 0. It is
well–known that in this case the Frobenius on W (a) takes the form

F(a0, a1, . . . , ai, . . . ) = (ap
0, a

p
1, . . . , a

p
i , . . . ).

Since this is nilpotent by assumption the operator U is nilpotent, too.
Then the operator 1− U is invertible, and therefore the equation (53)

(1− U)ω = η#(F#
1 )−1

has a unique solution.

Corollary 43. — Assume that we are given an ideal c ⊂ W (a), which satisfies Fc ⊂ c

and a W (S)-module homomorphism α0 : P1 → P2, which satisfies the congruence

F2α0(x) ≡ α0(F1x) mod cP2.

Then we have α ≡ α0 mod cP2.

Proof. — One starts the proof of the lemma with α0 given by the assumption of the
corollary and looks for a solution ω ∈ HomW (S)(P1, cP2) of the equation (52).

Theorem 44. — Let S → R be a surjective homomorphism of rings, such that p is
nilpotent in S. Assume the kernel a of this homomorphism is equipped with divided
powers. Let P be a display over R and let P1 and P2 be liftings to S. Let us denote
by Q̂i the inverse image of Q by the map Pi → P for i = 1, 2. Let V −1 : Q̂i → Pi

be the extension of the operator V −1 : Qi → Pi given by the divided powers. Then
there is a unique isomorphism α : (P1, Q̂1, F, V −1) → (P2, Q̂2, F, V −1), which lifts the
identity of P.
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Proof. — The uniqueness follows from the proof of lemma 39. Indeed one has only
to observe that the commutative diagram (50) still makes sense. By assumption we
have pM · a = 0 for some number M . We make an induction on the number N to
show the following assertion:

There exists a W (S)-linear lifting α : P1 → P2 of the identity such that

Fα(x) = α(Fx) mod pNW (a) for x ∈ P1

V −1α(y) = α(V −1y) mod pNW (a) for y ∈ Q̂1.
(54)

We note that the divided powers give us an isomorphism
∏

n w′
n : W (a) � aN. From

this we see that
FW (a) ⊂ pW (a), IS ·W (a) ⊂ pW (a).

In order to have a start for our induction, we consider the equations (54) to be fulfilled
in the case N = 0 for any W (S)-linear lifting α. Hence we may assume that we have
already constructed a W (S)-linear homomorphism αN , which lifts the identity and
satisfies (54). To prove the theorem we have to construct a W (S)-linear lifting α′

of the identity, which satisfies (54) with N replaced by N + 1. We choose a normal
decomposition P1 = L1 ⊕ T1 and we put L2 = αN (L1) and T2 = αN (T1). Then
P2 = L2 ⊕ T2 will in general not be a normal decomposition for the display P2. But
we can replace the display P2 by the display (P2, L2 + IST1, F, V −1), which is defined
because L2 + IST1 ⊂ Q̂2. Hence we may assume without loss of generality that
P2 = L2 + T2 is a normal decomposition.

For i = 1, 2 we consider the F-linear isomorphisms

Ui = V −1
i + Fi : Li ⊕ Ti −→ Pi.

Then we define α to be the unique W (S)-linear map P1 → P2, lifting the identity
which satisfies

(55) α(U1x) = U2α(x), for x ∈ P1.

One readily verifies that αN satisfies this equation modulo pNW (a). By the corollary
to the lemma 42 we obtain:

(56) α ≡ αN mod pNW (a)

We will verify that α commutes with F modulo pN+1W (a). We verify this for elements
l1 ∈ L1 and t1 ∈ T1 separately. We write α(l1) = l2 + t2, where l2 ∈ L2 and t2 ∈ T2.
Since αN (l1) ∈ L2 we conclude from the congruence (56) that t2 ≡ 0 mod pNW (a).
Therefore we obtain

Ft2 ≡ 0 mod pN+1W (a).

Also since V −1(W (a)P2) ⊂ W (a)P2, we find

V −1t2 ≡ 0 mod pNW (a).
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Now we can compute:

α(V −1l1) = α(U1l1) = U2α(l1) = V −1l2 + Ft2

≡ V −1l2 = V −1α(l1)− V −1t2 mod pN+1W (a).
(57)

If we multiply the last equation by p, we obtain

α(Fl1) ≡ Fα(l1) modulo pN+1W (a), for l1 ∈ L1.

To treat the elements in T1 we write α(t1) = l′2 + t′2. The same argument as before
now yields l′2 ≡ 0 mod pNW (a). Since our operator V −1 is F-linear on Q̂2 and since
l′2 is a sum of elements of the form ξ · y, where ξ ∈ pNW (a) and y ∈ L′

2, we obtain

V −1l′2 ≡ 0 mod pN+1W (a).

Now we compute as above:

α(Ft1) = α(U1t1) = U2α(t1) = V −1l′2 + Ft′2

≡ Ft′2 = Fα(t1)− Fl′2 ≡ Fα(t1) mod pN+1W (a).

Altogether we have proved

(58) α(Fx) ≡ Fα(x) mod pN+1W (a), for x ∈ P1.

From this equation we conclude formally

(59) α(V −1y) ≡ V −1α(y) mod pN+1W (a) for y ∈ ISP1.

Indeed, it is enough to check this congruence for y of the form Vξ·x. Since V −1(V ξx) =
ξFx, we conclude easily by (58). The following equation holds because both sides are
zero:

(60) α(V −1y) = V −1α(y) for y ∈ a · P1.

The equation (57) shows that α does not necessarily commute with V −1 on L1 mod-
ulo pN+1W (a). Indeed, the map L1

α−→ L2 ⊕ T2
pr−→ T2 factors through pNW (a)T2.

Let us denote by η the composite:

η : L1 −→ pNW (a)T2
V −1

−−−→ pNW (a)P2

Then we may rewrite the formula (57) as

(61) α(V −1l1) ≡ V −1α(l1)− η(l1) mod pN+1W (a).

We look for a solution α′ of our problem, which has the form

α′ = α + ω,

where ω is a W (S)-linear map

(62) ω : P1 −→ pNW (a)P2.
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First of all we want to ensure that the equation (58) remains valid for α′. This is
equivalent with

ω(Fx) = Fω(x) mod pN+1W (a) for x ∈ P1.

But the right hand side of this equation is zero mod pN+1W (a). Hence α′ satisfies
(58), if

ω(Fx) ≡ 0 mod pN+1W (a).

We note that any W (S)-linear map (62) satisfies trivially ω(FL1) = ω(pV −1L1) =
pω(V −1L1) ≡ 0 mod pN+1W (a). Hence α′ commutes with F mod pN+1W (a), if ω

mod pN+1W (a) belongs to the W (S)-module

(63) Hom(P1/W (S)FT1, pNW (a)/pN+1W (a)⊗W (S) P2).

Moreover α′ commutes with V −1 mod pN+1W (a), if ω satisfies the following congru-
ence

(64) ω(V −1l1)− V −1ω(l1) = η(l1) mod pN+1W (a), for l1 ∈ L1.

Indeed, we obtain from (64)

α′(V −1y) = V −1α′(y) mod pN+1W (a), for y ∈ Q̂1,

because of (61) for y ∈ L1 and because of (59) and (60) for y ∈ ISP1 +aP1. Hence our
theorem is proved if we find a solution ω of the congruence (64) in the W (S)-module
(63).

The map V −1 induces an F-linear isomorphism

V −1 : L1 −→ P1/W (S)FT1.

Hence we may identify the W (S)-module (63) with

(65) HomF−linear(L1, pNW (a)/pN+1W (a)⊗W (S) P2),

by the map ω �→ ωV −1.
We rewrite now the congruence (64) in terms of ω̃ = ωV −1. The map V −1ω is in

terms of ω̃ the composite of the following maps:

(66)

L1
ι

↪−→ P1
pr−−−→ W (S)V −1L1

V #
�� W (S)⊗F,W (S) L1

ω̃#

��

pNW (a)/pN+1W (a)⊗W (S) P2 pNW (a)/pN+1W (a)⊗W (S) P2
V −1

��

The map ι in this diagram is the canonical injection. The map pr is the projection
with respect to the following direct decomposition

P1 = W (S)V −1L1 ⊕W (S)FT1.
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Finally the lower horizontal F-linear map V −1 is obtained as follows. The divided
powers provide an isomorphism (compare (48)):

pNW (a)/pN+1W (a) ∼−−→ (pNa/pN+1a)N.

Using the notation [a0, a1, . . . , an, . . . ] for a vector of (pNa/pN+1a)N, the map V −1 is
given by:

V −1[a0, a1, . . . ]⊗ x = [a1, a2, . . . ]⊗ Fx.

Let us denote by B = V # ◦ pr ◦ ι the composite of the upper horizontal maps in the
diagram (66). Then we may write

V −1ω = V −1ω̃#B.

We define a Z-linear operator U on the space

(67) HomF−linear(L1, p
NW (a)/pN+1W (a)⊗W (S)P2),

by

(68) Uω̃ = V −1ω̃#B.

Hence the equation (64) which we have to solve now reads as follows:

(1− U)ω̃ = η mod pN+1W (a).

Here 1 denotes the identity operator on the group (67) and ω̃ and η are considered as
elements of this group. Clearly this equation has a solution ω̃ for any given η, if the
operator U is nilpotent on (67).

To see the nilpotency we rewrite the space (67). We set Di = Pi/ISPi + pPi =
S/pS ⊗w0,W (S) Pi, and we denote the image of Qi in this space by D1

i . Then our
group (67) is isomorphic to

HomFrobenius(D1
1 , p

NW (a)/pN+1W (a)⊗S/pS D2),

where Hom denotes the Frobenius linear maps of S/pS-modules. Now the operator
U is given by the formula (68) modulo pW (S) + IS . But then locally on Spec S/pS,
the operator B, is just given by the matrix B of (15). Hence the nilpotency follows
from (15).

2.2. Triples and crystals. — Let R be a ring such that p is nilpotent in R, and
let P = (P, Q, F, V −1) be a display over R. Consider a pd-thickening S → R with
kernel a, i.e. by definition that p is nilpotent in S and that the ideal a is equipped with
divided powers. In particular this implies that all elements in a are nilpotent. We
will now moreover assume that the divided powers are compatible with the canonical
divided powers on pZp ⊂ Zp.

A P-triple T = (P̃ , F, V −1) over S consists of a projective finitely generated W (S)-
module P̃ , which lifts P , i.e. is equipped with an isomorphism W (R) ⊗W (S) P̃ � P .
Hence we have a canonical surjection P̃ → P with kernel W (a)P̃ . Let us denote
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by Q̂ the inverse image of Q. Moreover a triple consists of two F-linear operators of
W (S)-modules F : P̃ → P̃ and V −1 : Q̂ → P̃ . The following relations are required:

V −1(V wx) = wFx, for w ∈ W (S), w ∈ P̃ .

V −1(aP̃ ) = 0

Here a ⊂ W (S) is the ideal given by the divided powers (48).
There is an obvious notion of a morphism of triples. Let α : P1 → P2 be a

morphism of displays. Let T1 respectively T2 be a P1-triple respectively a P2-triple
over S. An α-morphism α̃ : P̃1 → P̃2 is a homomorphism of W (S)-modules which
lifts α and which commutes with F and V −1. We note that α̃(Q̂1) ⊂ Q̂2. Therefore
the requirement that α̃ commutes with V −1 makes sense. With this definition the
P-triples over S form a category, where P is allowed to vary in the category of displays
over R. We call it the category of triples relative to S → R.

Let us now define base change for triples. Let ϕ : R → R′ be a ring homomorphism.
Let S → R respectively S′ → R′ be pd-thickenings. Assume that we are given a
homomorphism of pd-thickenings:

(69)

S
ψ−−−−→ S′
 


R
ϕ−−−−→ R′

Let T be a P-triple over S as before. Let PR′ be the display obtained by base
change from P . Then we define a PR′ -triple TS′ over S′ as follows. We set TS′ =
(W (S′) ⊗W (S) P̃ , F, V −1) with the following definition of F and V −1. The operator
F is simply the F-linear extension of F : P̃ → P̃ . The operator V −1 on Q̂′ is uniquely
determined by the equations:

V −1(w ⊗ y) = Fw ⊗ V −1y, for y ∈ Q̂, w ∈ W (S′)

V −1(V w ⊗ x) = w ⊗ Fx, for x ∈ P̃

V −1(a⊗ x) = 0, for a ∈ a′ ⊂ W (a′).

Here a′ is the kernel of S′ → R′ with its pd-structure.
Let S → R be a pd-thickening and P be a display over R. Let T be a P-triple

over S. By theorem 44 it is determined up to unique isomorphism. We can construct
all liftings of P to a display over S as follows. We consider the Hodge filtration of P .

(70) Q/IRP ⊂ P/IRP

Let L be a direct summand of P̃ /IS P̃ , such that the filtration of S-modules

(71) L ⊂ P̃ /ISP̃
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lifts the filtration (70). We call this a lifting of the Hodge filtration to T . If we denote
by Q̃L ⊂ P̃ the inverse image of L by the projection P̃ → P̃ /ISP̃ we obtain a display
(P̃ , Q̃L, F, V −1). By theorem 44 we conclude:

Proposition 45. — The construction above gives a bijection between the liftings of the
display P to S and the liftings of the Hodge filtration to T .

We will now formulate an enriched version of theorem 44.

Theorem 46. — Let α : P1 → P2 be a morphism of displays over R. Let S → R be a
pd-thickening and consider for i = 1, 2 a Pi-triple Ti over S. Then there is a unique
α-morphism of triples α̃ : T1 → T2.

Proof. — To prove the uniqueness we may assume α = 0. Then we consider the
diagram 50 with P respectively P ′ replaced by P̃1 respectively P̃2 and u replaced by
α̃. There is a map V # on P̃ which is uniquely determined by

V #(wV −1y) = w ⊗ y, for w ∈ W (S), y ∈ Q̂.

Its existence follows by choosing a lifting of the Hodge filtration of P to T . With
these remarks the arguments of lemma 39 apply, and show the uniqueness. To show
the existence we first consider the case where α is an isomorphism. By choosing liftings
P̃1 respectively P̃2 of P1 respectively P2 to S this case is easily reduced to theorem
44. The general case is reduced to the first case by considering the isomorphism of
displays:

P1 ⊕ P2 −→ P1 ⊕ P2 ,

(x, y) �−→ (x, α(x) + y)

where x ∈ P1 and y ∈ P2.

Remark. — This theorem extends trivially to the case where S is a topological ring
as in definition 13. More precisely let R be as in the last theorem, and let S → R

be any surjection, such that the kernel a is equipped with divided powers. If p is not
nilpotent in S this is not a pd-thickening in our sense (compare section 2.2). Assume
that there is a sequence of sub pd-ideals . . . an ⊃ an+1 . . . , such that p is nilpotent in
S/an and such that S in complete and separated in the linear topology defined by the
ideals an. Then the theorem above is true for the surjection S → R. We note that S

is a p-adic ring. We will call S → R a topological pd-thickening. We are particularly
interested in the case where S has no p-torsion.

Let us fix S → R as before. To any display P we may choose a P-triple TP(S). By
the theorem P �→ TP (S) is a functor from the category of displays to the category of
triples. It commutes with arbitrary base change in the sense of (69). If we fix P we
may view S �→ TP(S) as a crystal with values in the category of triples. We deduce
from it two other crystals.
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Let X be a scheme, such that p is locally nilpotent in OX . Then we will consider
the crystalline site, whose objects are triples (U, T, δ), where U ⊂ X is an open
subscheme, U → T is a closed immersion defined by an ideal J ⊂ OT , and δ is a
divided power structure on J . We assume that p is locally nilpotent on T , and that
the divided powers δ are compatible with the canonical divided power structure on
the ideal pZp ⊂ Zp. The reason for this last condition, which was not necessary in
theorem 46 will become apparent later. Let W (Ocrys

X ) be the sheaf on the crystalline
site, which associates to a pd-thickening U → T the ring W (Γ(T,OT )). A crystal in
W (Ocrys

X )-modules will be called a Witt crystal.
Sometimes we will restrict our attention to the crystalline site which consists of

pd-thickenings (U, T, δ), such that the divided power structure is locally nilpotent in
the sense of [Me] Chapt. III definition 1.1. We call this the nilpotent crystalline site.

Let P be a display over R. Then we define a Witt crystal KP on Spec R as
follows. It is enough to give the value of KP on pd-thickenings of the form Spec R′ →
Spec S′, where Spec R′ ↪→ Spec R is an affine open neighbourhood. The triple over S′

associated to P ′
R is of the form

TPR′ (S′) = (P̃ , F, V −1).

We define

(72) KP (Spec R′ → Spec S′) = P̃ .

For the left hand side we will also write KP(S′).

Definition 47. — The sheaf KP on the crystalline situs of Spec R is called the Witt
crystal associated to P . We also define a crystal of Ocrys-modules on Spec R by

DP(S′) = KP (S′)/IS′K(S′).

DP is called the (covariant) Dieudonné crystal.

More generally we may evaluate these crystals for any topological pd-thickening in
the sense of the last remark. If (S, an) is a topological pd-thickening we set:

KP(S) = lim←−
n

KP(R/an)

DP(S) = lim←−
n

DP(R/an)
(73)

The Witt crystal and the Dieudonné crystal are compatible with base change. This
means that for an arbitrary homomorphism of pd-thickenings (69) we have canonical
isomorphisms:

KPR′ (S′) � W (S′)⊗W (S) KP(S)

DPR′ (S′) � S′ ⊗S DP(S).
(74)
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This follows from the definition of the PR′ -triple TS′ . The R-module DP(R) is iden-
tified with P/IRP and therefore inherits the Hodge filtration

(75) D1
P(R) ⊂ DP(R).

The proposition 45 may be reformulated in terms of the Dieudonné crystal.

Theorem 48. — Let S → R be a pd-thickening. Consider the category C whose objects
are pairs (P , E), where P is a display over R, and E is a direct summand of the
S-module DP(S), which lifts the Hodge filtration (75). A morphism φ : (P , E) →
(P ′, E′) in the category C is a morphism of displays φ : P → P ′, such that the induced
morphism of the associated Dieudonné crystals (definition 47) maps E to E′. Then
the category C is canonically equivalent to the category of displays over S.

The description of liftings of a display P over R is especially nice in the following
case: Let S → R be surjection with kernel a, such that a2 = 0. Then we consider the
abelian group:

(76) Hom(D1
P(R), a⊗R (DP(R)/D1

P(R)))

We define an action of this group on the set of liftings of P to S as follows. Two
liftings correspond by theorem 48 to two liftings E1 and E2 of the Hodge filtration. We
need to define their difference in the group (76). Consider the natural homomorphism:

E1 ⊂ DP(S) −→ DP(S)/E2

Since E1 and E2 lift the same module D1
P (R) the last map factors through

(77) E1 −→ a(DP(S)/E2).

The right hand side is canonically isomorphic to a⊗R (DP (R)/D1
P(R)), since a2 = 0.

Hence the map (77) may be identified with a map:

u : D1
P(R) −→ a⊗R DP (R)/D1

P(R)

We define E1 − E2 = u. It follows immediately that:

(78) E2 = {e− ũ(e) | e ∈ E1},

where ũ(e) ∈ aDP(S) denotes any lifting of u(e). This proves the following

Corollary 49. — Let P be a display over R. Let S → R be a surjective ring homo-
morphism with kernel a, such that a2 = 0. The action of the group (76) on the set of
liftings of P to a display over S just defined is simply transitive. If P0 is a lifting of
P and u an element in (76) we denote the action by P0 + u.

Using example 1.17 it is easy to give a description of P0 + u in the situation of
the last corollary. Let a ⊂ W (a) be the subset of all Teichmüller representatives of
elements of a. If we equip a with the divided powers αp(a) = 0 this agrees with our
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definition after equation (48). We restrict our attention to homomorphisms α : P0 →
aP0 ⊂ W (a)P0 and consider the display defined by (27):

(79)
Fαx = Fx− α(Fx), for x ∈ P0

V −1
α y = V −1y − α(V −1y), for y ∈ Q0.

Then there is an element u in the group (76) such that:

(80) Pα = P0 + u

It is easily described: There is a natural isomorphism aP0
∼= a ⊗R P/IRP . Hence α

factors uniquely through a map:

α : P/IRP −→ a⊗R P/IRP.

Conversely any R-module homomorphism α determines uniquely a map α. Let u be
the composite of the following maps:

(81) u : Q/IRP ⊂ P/IRP
α−−→ a⊗R P/IRP −→ a⊗R P/Q.

Then the equation (80) holds. To see this consider the isomorphism :

τ : (P0, Q̂0, Fα, V −1
α ) −→ (P0, Q̂0, F, V −1),

which exists by theorem 46 . Using the relations:

FaP0 = V −1
aP0 = 0, α2 = 0,

it is easily verified that τ(x) = x + α(x) for x ∈ P0. It follows that Pα is isomorphic
to the display (P0, τ(Q0), F, V −1). Since

τ(Q0) = {x + α(x)|x ∈ Q0}

the equation (80) follows with the u defined above (81).
Next we define the universal deformation of a display. Let S → R be a surjection

of rings, such that the kernel is a nilpotent ideal a. For a display P over R, we define
the functor of deformations of P :

DefP(S)

as the set of isomorphism classes of pairs (P̃ , ι), where P̃ is a display over S and
ι : P → P̃R is an isomorphism with the display obtained by base change.

We will consider the deformation functor on the following categories AugΛ→R. Let
Λ be a topological ring of type (16). The ring R is equipped with the discrete topology.
Suppose we are given a continuous surjective homomorphism ϕ : Λ → R.

Definition 50. — Let AugΛ→R be the category of morphisms of discrete Λ-algebras
ψS : S → R, such that ψS is surjective and has a nilpotent kernel. If Λ = R, we will
denote this category simply by AugR.
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A nilpotent R-algebra N is an R-algebra (without unit), such that NN = 0 for a
sufficiently big number N . Let NilR denote the category of nilpotent R-algebras. To
a nilpotent R-algebra N we associate an object R|N | in AugR. As an R-module we
set R|N | = R⊕N . The ring structure on R|N | is given by the rule:

(r1 ⊕ n1)(r2 ⊕ n2) = (r1r2 ⊕ r1n2 + r2n1 + n1n2) for ni ∈ N , ri ∈ R.

It is clear that this defines an equivalence of the categories NilR and AugR. An R-
module M is considered as an element of NilR by the multiplication rule: M2 = 0.
The corresponding object in AugR is denoted by R|M |. We have natural fully faithful
embeddings of categories

(R−modules) ⊂ AugR ⊂ AugΛ→R

Let F be a set-valued functor on AugΛ→R. The restriction of this functor to the
category of R-modules is denoted by tF and is called the tangent functor. If the
functor tF is isomorphic to a functor M �→ M ⊗R tF for some R-module tF , we call
tF the tangent space of the functor F (compare [Z1] 2.21).

Let T be a topological Λ-algebra of type (16) and ψT : T → R be a surjective
homomorphism of topological Λ-algebras. For an object S ∈ AugΛ→R, we denote by
Hom(T, S) the set of continuous Λ-algebra homomorphisms, which commute with the
augmentations ψT and ψS . We obtain a set-valued functor on AugΛ→R:

(82) Spf T (S) = Hom(T, S)

If a functor is isomorphic to a functor of the type Spf T it is called prorepresentable.
We will now explain the prorepresentability of the functor DefP . Let us first

compute the tangent functor. Let M be an R-module. We have to study liftings
of our fixed display P over R with respect to the homomorphism R|M | → R. The
corollary 49 applies to this situation. We have a canonical choice for P0:

P0 = PR|M|.

Let us denote by DefP(R|M |) the set of isomorphism classes of liftings of P to R|M |.
Then we have an isomorphism :

(83) HomR(Q/IRP, M ⊗R P/Q) −→ DefP(R|M |),

which maps a homomorphism u to the display P0 + u. Hence the functor DefP has a
tangent space, which is canonically isomorphic to the finitely generated projective R-
module HomR(Q/IRP, P/Q). Consider the dual R-module ω = HomR(P/Q, Q/IRP ).
Then we may rewrite the isomorphism (83):

HomR(ω, M) −→ DefP(R|M |)

Hence the identical endomorphism of ω defines a morphism of functors:

(84) Spf R|ω| −→ DefP

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2002



174 T. ZINK

We lift ω to a projective finitely generated Λ-module ω̃. We consider the symmetric
algebra SΛ(ω̃). Its completion A with respect to the augmentation ideal is a topo-
logical Λ-algebra of type (16), which has a natural augmentation A → Λ → R. Since
the deformation functor is smooth, i.e. takes surjections S1 → S2 to surjective maps
of sets, the morphism (84) may be lifted to a morphism:

(85) Spf A −→ DefP

It is not difficult to show, that this is an isomorphism using the fact that it induces
by construction an isomorphism on the tangent spaces (compare [CFG]). It is easy to
describe the universal display over Puniv over A. Let u : Q/IRP → ω ⊗R P/Q the
map induced by the identical endomorphism of ω. Let α : P → ω ⊗R P/Q be any
map, which induces u as described by (81). The we obtain a display Pα over R|ω|.
For Puniv we may take any lifting of Pα to A.

Let us assume that the display P is given by the equations (9). In this case the
universal deformation is as follows. We choose an arbitrary lifting (α̃ij) ∈ Glh(W (Λ))
of the matrix (αij). We choose indeterminates (tkl) for k = 1, . . . d, l = d + 1, . . . h.
We set A = Λ[[tkl]]. For any number n we denote by En the unit matrix. Consider
the following invertible matrix over Glh(A):

(86)
(

Ed [tkl]
0 Eh−d

)
(αij)

As usual [tkl] ∈ W (A) denotes the Teichmüller representative. This matrix defines by
(9) display Puniv over the topological ring A. The the pair (A,Puniv) prorepresents
the functor DefP on the category AugΛ→R.

2.3. Witt and Dieudonné crystals. — Our next aim is to explain how the Witt
crystal may be reconstructed from the Dieudonné crystal.

The ideal IR ⊂ W (R) will be equipped with the divided powers (see [Gr] Chapt.
IV 3.1):

(87) αp(V w) = pp−2V(wp), for w ∈ W (R).

The morphism w0 : W (R) → R is a topological pd-thickening, in the sense of the
remark after theorem 46, because (87) defines a pd-thickenings w0 : Wn(R) → R. We
note that the last pd-thickenings are nilpotent, if p 	= 2.

If we evaluate a crystal on Spec R in W (R) we have the topological pd-structure
above in mind (compare (73)).

More generally we may consider a pd-thickening S → R, where we assume p to be
nilpotent in S. Let a ⊂ S be the kernel. The divided powers define an embedding
a ⊂ W (S), which is an ideal of W (S) equipped with the same divided powers as
a ⊂ S. The kernel of the composite W (S) w0→ S → R is the orthogonal direct sum
IS ⊕ a. Since we have defined divided powers on each direct summand, we obtain a
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pd-structure on the kernel of:

(88) W (S) −→ R.

Again this induces pd-thickenings Wm(S) → R. Therefore me may consider (88) as
a topological pd-thickening, and evaluate crystals in W (S).

In the case p 	= 2 the divided powers on the kernel of Wm(S) → R are nilpotent, if
the divided powers on the ideal a were nilpotent.

Proposition 51. — Let S → R be a pd-thickening. There is a canonical isomorphism

KP (S) ∼= DP (W (S)).

This will follow from the more precise statement in proposition 53.
For later purposes it is useful to note that this proposition makes perfect sense if

we work inside the nilpotent crystalline site.
To define the isomorphism of proposition 51 we need the following ring homomor-

phism defined by Cartier:

(89) � : W (R) −→ W (W (R)).

It is defined for any commutative ring R. In order to be less confusing we use a hat
in the notation, if we deal with the ring W (W (R)).

The homomorphism � is functorial in R and satisfies

(90) ŵn(�(ξ)) = F n

ξ, ξ ∈ W (R).

As usual these properties determine � uniquely. We leave the reader to verify that
the equation:

(91) W (wn)(�(ξ)) = F n

ξ,

holds too.

Lemma 52. — The following relations hold:

�(F ξ) = �F(�(ξ)) = W (F )(�(ξ)),

�(V ξ)−�V (�(ξ)) =
[
V ξ, 0, 0, . . .

]
∈ W (IR)

Here on the right hand side we have used logarithmic coordinates with respect to the
divided powers on IR.

Proof. — We use the standard argument. By functoriality we may restrict to the
case where R is torsion free (as Z-module). Then W (R) is torsion free too. Hence it
is enough to show that for each integer n ≥ 0 the equations of the lemma hold after
applying ŵn. This is readily verified.
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Proposition 53. — Let S → R be a pd-thickening with kernel a, and let P =
(P, Q, F, V −1) be a display over R. Let T = (P̃ , F, V −1) be the unique (up to
canonical isomorphism) P-triple over S. Consider the pd-thickening W (S) → R with
kernel IS ⊕ a. Let T denote the unique P-triple related to this pd-thickening. Then
T is of the form

T = (W (W (S))⊗�,W (S) P̃ , F, V −1),

where the operators F and V −1 are uniquely determined by the following properties:

F (ξ̂ ⊗ x) = �Fξ̂ ⊗ Fx, ξ̂ ∈ W (W (S)), x ∈ P̃(92)

V −1(ξ̂ ⊗ y) = �Fξ̂ ⊗ V −1y, y ∈ Q̂

V −1(�V ξ̂ ⊗ x) = ξ̂ ⊗ Fx.

Here as usual Q̂ denotes the inverse image of Q by the morphism P̃ → P .
The triple T provides the isomorphism of proposition 51:

(93) KP(S) = P̃ = W (S)⊗�w0 (W (W (S))⊗�,W (S) P̃ ) = DP(W (S))

Proof. — Let α : W (S) → R be the pd-thickening (88). It follows that from (91) that
W (W (S))⊗�,W (S) P̃ = P is a lifting of P relative to α. We have homomorphisms

P
π−→ P̃ −→ P,

where the first arrow is induced by W (w0) : W (W (S)) → W (S). Let Q̂ be the inverse
image of Q in P̃ .

We choose a normal decomposition P = L ⊕ T , and we lift it to a decomposition
P̃ = L̃⊕ T̃ . Then we have the decomposition

(94) Q̂ = L̃⊕ IS T̃ ⊕ aT̃ .

The divided power structure on the ideal IS⊕a ⊂ W (S) induces an embedding of this
ideal in W (W (S)). We will denote the images of IS respectively a by ÎS respectively
â. The analogue of the decomposition (94) for the pd-thickening W (S) → R gives for
the inverse image of Q:

(95) π−1(Q̂) = W (W (S)) ⊗
�,W (S)

L̃⊕ IW (S) ⊗
�,W (S)

T̃ ⊕ ÎS ⊗
�,W (S)

T̃ ⊕ â ⊗
�,W (S)

T̃ .

By the definition of T the operator V −1 must be defined on π−1(Q̂) and it must be
a lifting of V −1 on P̃ .

Let us assume for a moment that V −1 exists as required in the proposition. We
claim that this implies that V −1 vanishes on the last two direct summands on (95).
To see that V −1 vanishes on ÎS ⊗�,W (S) T̃ , we remark that by lemma 52 any element
of ÎS may be written in the form �(V ξ)−�V �(ξ), for ξ ∈ W (S). Hence it suffices to
show that for t ∈ T̃

V −1(�(V ξ)− �V�(ξ)⊗ t) = 0.

But this follows from the equation (92).
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Let a ∈ a ⊂ W (S) be an element. The same element considered as element of
â ⊂ W (W (S)) will be denoted by â. We have the following lemma, which we prove
later.

Lemma 54. — We have �(a) = â.

Hence V −1(â⊗ t) = V −1(1⊗ at) = 1⊗ V −1at = 0, by the second equation of (92)
for y = at. Now we see from the decomposition (95) that the operator V −1 from the
triple T is uniquely determined by the requirements (92). Moreover we can check now
that V −1 (if it exists) is a lift of V −1 : Q̂ → P̃ relative to W (w0) : W (W (S)) → W (S).
In fact our proof of the uniqueness shows that π−1(Q̂) is generated by all elements
of the form ξ̂ ⊗ y, for ξ̂ ∈ W (W (S)) and y ∈ Q̂ and of the form �Vξ̂ ⊗ x, for x ∈ P̃ .
Since W (w0) commutes with F and V, we see from (92) that V −1 is indeed a lift. It
remains to show the existence of a V −1 as asserted in the proposition.

To prove the existence of V −1, we define an F-linear operator V −1 on π−1(Q̂). On
the first direct summand of (95) it will be defined by the second equation of (92), and
on the second direct summand by the third equation of (92). On the last two direct
summands of (95) we set V −1 equal to zero. We only have to check, that the last two
equations of (92) hold with this definition. We will write down here only some parts
of this routine calculation. Let us verify for example that the second equation of (92)
holds for y ∈ IST̃ . We may assume that y is of the form y = Vηt, where η ∈ W (S)
and t ∈ T̃ . Then we have to decompose ξ̂⊗V ηt according to the decomposition (92):

ξ̂ ⊗V ηt = �(V η) · ξ̂ ⊗ t =
(
�
(
V η

)
− �V�(η)

)
· ξ̂ ⊗ t + �V�(η)ξ̂ ⊗ t

Here the first summand is in the third direct summand of (95) and the second sum-
mand is in the second direct summand of the decomposition (95). The definition of
V −1 therefore gives:

V −1

(̂̂
ξ ⊗ y

)
= V −1

(�V �(η) · ξ̂ ⊗ t
)

= V −1
(�V (

� (η)
�F ξ̂
)
⊗ t

)
= � (η)

�F ξ̂ ⊗ Ft

= �F ξ̂ ⊗ ηF t = �Fξ̂ ⊗ V −1
(
V ηt

)
= �Fξ̂ ⊗ V −1y

Hence the second equation of (92) holds with the given definition of V −1 for y ∈ IS T̃ .
For y ∈ L̃ this second equation is the definition of V −1 and for y ∈ aT̃ the lemma 54
shows that both sides of the equation

V −1
( �F ξ̂ ⊗ y

)
= ξ̂ ⊗ Fy

are zero. Because we leave the verification of the third equation (92) to the reader we
may write modulo the lemma 54:

Let us now prove the lemma 54. The ideal W (a) ⊂ W (S) is a pd-ideal, since it
is contained in the kernel a⊕ IS of (88). One sees that W (a) inherits a pd-structure
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from this ideal. One checks that in logarithmic coordinates on W (a) this pd-structure
has the form:

αp[a0, a1, . . . ] = [αp(a0), p(p−1)αp(a1), . . . , pi(p−1)αp(ai), . . . ]

where αp(ai) for ai ∈ a denotes the given pd-structure on a.
On W (a) the operator Fn becomes divisible by pn. We define an operator 1

pn Fn

on W (a) as follows:
1

pn Fn : W (a) −→ W (a)
[a0, a1, a2 . . . ] �−→ [an, an+1, an+2, . . . ]

Since W (a) ⊂ W (S) is a pd-ideal, we have the divided Witt polynomials

ŵ′
n : W (W (a)) −→ W (a)

If a ∈ a ⊂ W (a) the element â ∈ â ⊂ W (W (a)) used in the lemma 54 is characterized
by the following properties

ŵ′
0(â) = a, ŵ′

n(â) = 0 for n > 0.

Therefore the lemma 54 follows from the more general fact:

Lemma 55. — Let S be a Zp-algebra and a ⊂ S be a pd-ideal. Then the canonical
homomorphism

� : W (a) −→ W (W (a))

satisfies

ŵ′
n (� (a)) =

1
pn

F n

a, for a ∈ W (a), n ≥ 0.

Proof. — One may assume that S is the pd-polynomial algebra in variables a0, a1, . . .

over Zp. Since this ring has no p-torsion the formula is clear from (90)

Corollary 56. — Under the assumptions of proposition 53 let ϕ : W (R) → S be a
homomorphism of pd-thickenings. Then the triple T = (P̃ , F, V −1) may be described
as follows: Let δ be the composite of the homomorphisms

(96) δ : W (R)
�−−−→ W (W (R))

W (ϕ)
−−−−−−→ W (S)

This is a ring homomorphism, which commutes with F.
We define P̃ = W (S) ⊗δ,W (R) P . Then P̃ is a lifting of P with respect to the

morphism S → R. For the operator F on P̃ we take the F-linear extension of the
operator F on P . Let Q̂ ⊂ P̃ be the inverse image of Q. Finally we define V −1 : Q̂ →
P̃ to be the unique F-linear homomorphism, which satisfies the following relations.

(97)
V −1(w ⊗ y) = Fw ⊗ V −1y, w ∈ W (S), y ∈ Q

V −1(V w ⊗ x) = w ⊗ Fx, w ∈ W (S), x ∈ P

V −1(a⊗ x) = 0 a ∈ a ⊂ W (S).
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In particular we obtain the following isomorphisms:

KP (S) ∼= W (S)⊗W (R) KP(R)

DP (S) ∼= S ⊗W (R) KP(R).

Proof. — We apply proposition 53 to the trivial pd-thickening R → R, to obtain the
triple T . Then we make base change with respect to ϕ : W (R) → S.

We will now see that the isomorphism of proposition 51 (compare (93)) is compat-
ible with Frobenius and Verschiebung.

Let R be a ring such that p · R = 0. For a display P over R we have defined
Frobenius and Verschiebung.

FrP : P −→ P(p) VerP : P(p) −→ P
They induce morphisms of the corresponding Witt and Dieudonné crystals:

(98) FrDP : DP −→ DP(p) , F rKP : KP −→ KP(p)

(99) VerDP : DP(p) −→ DP , VerKP : KP(p) −→ KP

Let us make the morphisms more explicit. We set P = (P, Q, F, V −1). Let S → R

be a pd-thickening, such that p is nilpotent in S. We denote by T = (P̃ , F, V −1) the
unique P-triple over S. The unique P(p)-triple over S is given as follows

T (p) =
(
W (S)⊗F,W (S) P̃ , F, V −1

)
,

where F and V −1 will now be defined:

F (ξ ⊗ x) = Fξ ⊗ Fx, for ξ ∈ W (S), x ∈ P̃ .

The domain of definition of V −1 is the kernel Q̂(p) of the canonical map

W (S)⊗F,W (S) P̃ −→ R⊗Frob,R P/Q,

which is induced by W (S) w0−→ S −→ R. The operator V −1 on Q̂(p) is uniquely
determined by the following formulas

(100)

V −1 (ξ ⊗ y) = Fξ ⊗ V −1y, for ξ ∈ W (S), y ∈ Q̂

V −1
(
Vξ ⊗ x

)
= ξ ⊗ Fx, x ∈ P̃

V −1
(
a⊗F,W (S) P̃

)
= 0.

Even though it makes the text long, we do not leave the verification of the existence
of V −1 to the reader: We take a normal decomposition P̃ = L̃ ⊕ T̃ . Then we obtain
the decompositions

Q̂ = L̃⊕ IST̃ ⊕ aT̃

Q̂(p) = W (S)⊗F,W (S) L̃⊕ IS ⊗F,W (S) T̃ ⊕ a⊗F,W (S) T̃

We define the operator V −1 on Q̂(p) by taking the first formula of (100) as a formula
on the first direct summand, the second formula on the second direct summand and
so on. Then we have to verify that V −1 defined on this way satisfies (100). To verify
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the first formula (100) it is enough to check the cases y ∈ L̃, y ∈ IS T̃ and y ∈ aT̃

separately. For y ∈ L̃ the assertion is the definition of V −1 and for y ∈ aT̃ both sides
of the equation become zero. Therefore we may assume y = Vηx, for η ∈ W (S) and
x ∈ T̃ . We have

ξ ⊗ Vηx = pξη ⊗ x.

Now in the ring W (Zp) = W (W (Fp)) we have the equation

p− [p, 0, 0 · · · ] = �(V 1)− [V 1, 0 · · ·0] = V�1 = V1.

Since Zp → S is a pd-morphism the same equation holds in W (S). We obtain

pξη ⊗ x =
(
[p, 0 · · ·0] + V1

)
ξη ⊗ x.

Since [p, 0 · · · 0]ξη ⊗ x ∈ a⊗ T̃ we obtain by the definition of V −1

V −1 (pξη ⊗ x) = V −1
(
V1 · ξη ⊗ x

)
= V −1

(
V F (ξη)⊗ x

)
= F (ξη)⊗ Fx

= Fξ ⊗ ηFx = Fξ ⊗ V −1
(
V ηx

)
.

This proves the assertion. The verification of the last two equations of (100) is
done in the same way, but much easier.

Hence we have proved the existence of V −1. It follows that T (p) is a P(p)-triple.
To the triple T = (P̃ , F, V −1) there is by lemma 1.5 an associated W (S)-linear

map

(101) V # : P̃ −→ W (S)⊗F,W (S) P̃ ,

which satisfies the relations

V #(wV −1y) = w ⊗ y, for y ∈ Q̂, w ∈ W (S)

V #(wFx) = p · w ⊗ x.

Indeed, to conclude this from lemma 1.5 we complete T to a display (P̃ , Q̃,

F, V −1) and note that Q̂ = Q̃ + aP̃ .
Then we claim that (101) induces a map of triples:

(102) FrT : T −→ T (p)

We have to verify that the morphism (101) commutes with F and V −1. Let us do the
verification for V −1. The assertion is the commutativity of the following diagram:

Q̂
V #

��

V −1

��

Q̂(p) ⊂ W (S)⊗F,W (S) P̃

V −1

��

P̃
V #

�� W (S)⊗F,W (S) P̃
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We take any y ∈ Q̂ and we write it in the form

y =
m∑

i=1

ξiV
−1zi,

for ξi ∈ W (S) and zi ∈ Q̂. Then we compute

V #(V −1y) = 1⊗ y

V −1(V #y) = V −1
( m∑

i=1

ξi ⊗ zi

)
=

m∑
i=1

Fξi ⊗ V −1zi = 1⊗ y

We leave to the reader the verification that

F# : W (S)⊗F,W (S) P̃ −→ P̃

induces a morphism of triples

VerT : T (p) −→ T

Then FrT and VerT are liftings of FrP and VerP and may therefore be used to
compute the Frobenius and the Verschiebung on the Witt crystal and the Dieudonné
crystal:

Proposition 57. — Let R be a ring, such that p · R = 0. Let P be a display over R.
We consider a P-triple T = (P̃ , F, V −1) relative to a pd-thickening S → R. Then
the Frobenius morphism on the Witt crystal FrKP (S) : KP → KP(p)(S) is canonically
identified with the map V # : P̃ → W (S)⊗F,W (S) P̃ , and the Verschiebung morphism
VerKP (S) : KP(p)(S) → KP(S) is canonically identified with F# : W (S)⊗F,W (S) P̃ →
P̃ . The Frobenius and Verschiebung on the Dieudonné crystal are obtained by taking
the tensor product with S⊗w0,W (S).

This being said we formulate a complement to the proposition 53.

Corollary 58. — Let us assume that p ·R = 0. Then for any pd-extension S → R the
isomorphism of the proposition 53:

KP(S) ∼−→ DP(W (S))

is compatible with the Frobenius and the Verschiebung on these crystals.

Proof. — We will check this for the Frobenius. The commutativity of the following
diagram is claimed:

KP(S) ��

FrKP
��

DP(W (S))

FrDP
��

KP(p)(S) �� DP(p)(W (S)).
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Now we take a P-triple (P̃ , F, V −1) over S. Taking the proposition 57 into account,
we may rewrite the last diagram as follows:

P̃

V #

��

W (S) ⊗
w0

(W (W (S)) ⊗
�,W (S)

P̃ )��

1⊗ V #

��

W (S) ⊗
w0

(W (W (S)) ⊗
�F,W (W (S))

W (W (S)) ⊗
�,W (S)

P̃ )

W (S) ⊗
F,W (S)

P̃ W (S) ⊗
w0

(W (W (S)) ⊗
�,W (S)

W (S) ⊗
F,W (S)

P̃ )��

It is enough to check the commutativity of this diagram on elements of the form
1⊗ V −1(ξ̂ ⊗ y), ξ̂ ∈ W (W (S))y ∈ Q̂ and V −1(�V ξ̂ ⊗ x), x ∈ P̃ . This is easy.

We will now study the functor which associates to a display its Dieudonné crystal
over a base R of characteristic p. In this case the Dieudonné crystal is equipped with
the structure of a filtered F -crystal. We will prove that the resulting functor from
displays to filtered F -crystals is almost fully faithful.

Let R be a ring, such that p · R = 0, and let P be a display over R. The inverse
image of the Witt crystal KP by the Frobenius morphism Frob : R → R may be
identified with KP(p) . To see this we look at the commutative diagram:

W (S) F ��

��

W (S)

��

R
Frob �� R

The vertical map is a pd-thickening by (88) and F is compatible with the pd-structure.
This diagram tells us ([BO] Exercise 6.5), that

Frob∗KP(W (S)) = W (W (S)) ⊗W (F ),W (W (S)) KP (W (S)).

The pd-morphism w0 : W (S) → S gives an isomorphism

W (S)⊗W (w0),W (W (S)) Frob∗KP(W (S)) = Frob∗KP (S)

Combining the last two equations we get as desired identification:

(103) Frob∗KP (S) = W (S)⊗F,W (S) KP(S) = KP(p)(S).

From this we also deduce:

Frob∗DP (S) = DP(p)(S)
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Remark. — This computation of Frob∗DP may be carried out inside the nilpotent
crystalline site, if p 	= 2. The point is that we need that W (S) → R is a topological
nilpotent pd-thickening, if S is a nilpotent pd-thickening. The result is the same.

Definition 59. — Let X be a scheme, such that p · OX = 0. Let us denote by Frob :
X → X the absolute Frobenius morphism. A filtered F -crystal on X is a triple
(D, G, Fr), where D is a crystal in Ocrys

X -modules G ⊂ DX is an OX -submodule of
the OX -module DX associated to D, such that G is locally a direct summand. Fr is
a morphism of crystals

Fr : D −→ Frob∗D = D(p).

We also define a filtered F -Witt crystal as a triple (K, Q, Fr), where K is a crystal
in W (Ocrys

X )-modules, Q ⊂ KX is a W (OX)-submodule, such that IXKX ⊂ Q and
Q/IXKX ⊂ OX ⊗w0,W (OX ) KX is locally a direct summand as OX -module. Fr is a
morphism of W (Ocrys

X )-crystals

Fr : K −→ K(p) = Frob∗K.

With the same definition we may also consider filtered F -crystals (resp. F -Witt
crystals), if p 	= 2.

The same argument which leads to (103) shows that for any pd-thickening T ←
U ↪→ X there is a a canonical isomorphism:

K(p)(T ) = W (OT )⊗F,W (OT ) K(T )

From a filtered F -Witt crystal we get a filtered F -crystal by taking the tensor product
Ocrys

X ⊗W (Ocrys
X ). Let R be a ring such that p · R = 0 and P = (P, Q, F, V −1) be a

display over R as above. Then we give the Witt crystal KP the structure of a filtered
F -Witt crystal, by taking the obvious Q, and by defining Fr : KP → KP

(p) as the map
(98). By taking the tensor product Ocrys

X ⊗w0,W (Ocrys
X ) we also equip the Dieudonné

crystal DP with the structure of a filtered F crystal.
We will say that a pd-thickening (resp. nilpotent pd-thickening) S → R is liftable,

if there is a morphism of topological pd-thickenings (resp. topological nilpotent pd-
thickenings) S′ → S of the ring R, such that S′ is a torsionfree p-adic ring. We prove
that the functors K and D are “fully faithful” in the following weak sense:

Proposition 60. — Let R be a Fp-algebra. Assume that there exists a topological pd-
thickening S → R, such that S is a torsionfree p-adic ring.

Let P1 and P2 be displays over R. We denote the filtered F -crystal associated to
Pi by (Di, Gi, F ri) for i = 1, 2 and by (Ki, Qi, F ri) the filtered F -Witt crystal.

Let α : (D1, G1, F r1) → (D2, G2, F r2) be a morphism of filtered F -crystals. Then
there is a morphism ϕ : P1 → P2 of displays, such that the morphism of filtered
F -crystals D(ϕ) : (D1, G1, F r1) → (D2, G2, F r2), which is associated to ϕ has the
following property:
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For any liftable pd-thickening S′ → R, we have

(104) αS′ = D(ϕ)S′ .

The similar statement for the filtered F -Witt crystals is also true.

Remark. — The result will later be used to show that the functor BT of the intro-
duction is fully faithful under the assumptions of the proposition. In fact we will use
the following variant of the proposition: Assume that p 	= 2 and that we are given
a topological nilpotent pd-thickening, such that S is a torsionfree p-adic ring. Then
it is enough to have a morphism α on the nilpotent crystalline site to conclude the
existence of ϕ, such that for any liftable nilpotent pd-thickening S′ → R the equality
(104) holds.

Proof. — First we prove the result for the filtered F -Witt crystals. Let (P̃i, F, V −1)
be the Pi-triple over S for i = 1, 2. We may identify Ki(S) with P̃i and Fri(S)
with the morphism V # : P̃i → W (S) ⊗F,W (S) P̃i. Then we may regard αS as a
homomorphism of W (S)-modules

αS : P̃1 −→ P̃2,

which commutes with V #:

(105) V #αS = (1 ⊗ αS)V #.

Since αR respects the filtrations Q1 and Q2, we get

αS(Q̂1) ⊂ Q̂2.

Because the ring S is torsionfree we conclude from the equations F# · V # = p and
V # · F# = p, which hold for any display, that the maps F# : W (S)⊗F,W (S) P̃i → P̃i

and V # : P̃i → W (S)⊗F,W (S) P̃i are injective. Hence the equation

(106) F#(1⊗ αS) = αSF#

is verified by multiplying it from the left by V # and using (105). We conclude that αS

commutes with F . Finally αS also commutes with V −1 because we have pV −1 = F

on Q̂.
We see from the following commutative diagram

P̃1
αS−−−−→ P̃2
 


P1
αR−−−−→ P2

that αR induces a homomorphism of displays and that αS is the unique lifting of αR

to a morphism of triples. This proves the proposition in the case of filtered F -Witt
crystals. Finally a morphism β : D1 → D2 of the filtered F -crystals also provides a
morphism α : K1 → K2 of the Witt crystals by the proposition (53), which commutes
with Fr by the corollary (58). It is clear that α also respects the filtrations. Hence
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the assertion of the theorem concerning filtered F -crystals is reduced to the case of
filtered F -Witt crystals.

2.4. Isodisplays. — Let R be a ring and let a ⊂ R be an ideal, such that p is
nilpotent in R/a. We assume that R is complete and separated in the a-adic topology.
In this section we will consider displays over the topological ring R with its a-adic
topology (see definition 13).

We consider the ring WQ(R) = W (R)⊗Z Q. The Frobenius homomorphism F and
the Verschiebung V extend from W (R) to WQ(R).

Definition 61. — An isodisplay over R is a pair (I, F ), where I is a finitely generated
projective WQ(R)-module and

F : I −→ I
is an F-linear isomorphism.

Let us assume for a moment that R is torsionfree (as an abelian group). Then we
have a commutative diagram with exact rows

0 −−−−→ IR −−−−→ W (R) −−−−→ R −−−−→ 0
 
 

0 −−−−→ IR ⊗Q −−−−→ WQ(R) −−−−→ R⊗Q −−−−→ 0,

where the vertical maps are injective. In particular W (R) ∩ IR ⊗Q = IR.

Definition 62. — Let R be torsionfree. A filtered isodisplay over R is a triple
(I, E, F ), where (I, F ) is an isodisplay over R and E ⊂ I is a WQ(R) submodule,
such that

(i) IRI ⊂ E ⊂ I
(ii) E/IRI ⊂ I/IRI is a direct summand as R⊗Q-module.

Example 63. — Let P = (P, Q, F, V −1) be a 3n-display over R. Obviously F extends
to an F-linear homomorphism F : P ⊗Q → P ⊗ Q.

The pair (P⊗Q, F ) is an isodisplay. Indeed, to see that F is an F-linear isomorphism
we choose a normal decomposition P = L⊕T . We present F : P → P as a composite
of two morphisms

L⊕ T
p idL⊕ idT−−−−−−−−→ L⊕ T

V −1 ⊕ F−−−−−−−→ L⊕ T.

The last morphism is already an F-linear isomorphism and the first morphism becomes
an F-linear isomorphism, if we tensor by Q.

Example 64. — If R is torsionfree, we get a filtered isodisplay (P ⊗Q, Q⊗Q, F ).
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Example 65. — Let a ⊂ R be an ideal, such that R is complete and separated in the
a-adic topology. We assume that pR ⊂ a ⊂ R.

Let k be a perfect field, such that k ⊂ R/a. Then we find by the universality of
Witt vectors a commutative diagram

(107)

W (k)
ρ−−−−→ R
 


k −−−−→ R/a

The map δ : W (k)
�→ W (W (k))

W (ρ)−→ W (R) commutes with F. Hence if we are given
an isodisplay (N, F ) over k, we obtain an isodisplay (I, F ) over R if we set

I = WQ(R)⊗δ,WQ(k) N, F (ξ ⊗ x) = Fξ ⊗ Fx.

We will write (I, F ) = WQ(R)⊗δ,WQ(k) (N, F ).
Let QisgR be the category of displays over R up to isogeny. The objects of this

category are the displays over R and the homomorphisms are HomQisg(P ,P ′) =
Hom(P ,P ′)⊗Q. We note that the natural functor (Displays)R → QisgR is by corol-
lary 41 faithful if the nilradical of R/pR is nilpotent. It is clear that the construction
of example 63 provides a functor:

(108) QisgR −→ (Isodisplays)R

Proposition 66. — If p is nilpotent in R, the functor (108) is fully faithful

Proof. — The faithfulness means that for any morphism of displays α : P → P ′, such
that the induced map αQ : PQ → P ′

Q is zero, there is a number N , such that pNα = 0.
This is obvious. To prove that the functor is full, we start with a homomorphism of
isodisplays α0 : (PQ, F ) → (P ′

Q, F ). Let Im P ′ be the image of the map P ′ → P ′
Q.

Since we are allowed to multiply α0 with a power of p, we may assume that α0 maps
Im P to Im P ′. Since P is projective we find a commutative diagram:

(109) PQ
α0 �� P ′

Q

P

��

α �� P ′

��

Since Fα − αF is by assumption in the kernel of P ′ → P ′
Q, we find a number N ,

such that pN (Fα − αF ) = 0. Multiplying α and α0 by pN , we may assume without
loss of generality that α commutes with F . Moreover, since p is nilpotent in P ′/IRP ′

we may assume that α(P ) ⊂ IRP ′ and hence a fortiori that α(Q) ⊂ Q′. Finally since
pV −1 = F on Q it follows that pα commutes with V −1. Therefore we have obtained
a morphism of displays.

ASTÉRISQUE 278



THE DISPLAY OF A FORMAL p-DIVISIBLE GROUP 187

Let us now consider the case of a torsionfree ring R. Then we have an obvious
functor

(110) QisgR −→ (filtered Isodisplays)R.

Proposition 67. — Let R be torsionfree. Then the functor (110) is fully faithful.

Proof. — Again it is obvious that this functor is faithful. We prove that the functor
is full.

Let P and P ′ be displays over R. Assume that we are given a morphism of the
corresponding filtered isodisplays

α0 : (PQ, QQ, F ) −→ (P ′
Q, Q′

Q, F ).

We have to show that α0, if we replace it possibly by pNα0, is induced by a homo-
morphism

α : (P, Q, F, V −1) −→ (P ′, Q′, F, V −1).

The proof of proposition 66 works except for the point where the inclusion α(Q) ⊂ Q′

is proved. But this time we already know that α(Q) ⊂ Q′
Q. We choose finitely many

elements x1, . . . , xM ∈ Q, whose images generate the R-module Q/IRP . Since it
suffices to show that α(xi) ∈ Q′, if we possibly multiply α by pN we are done.

Definition 68. — An isodisplay (resp. filtered isodisplay) is called effective, if it is in
the image of the functor (108) (resp. (110)).

Proposition 69. — Let R be torsionfree. Let a ⊂ R be an ideal, such that there exists
a number N , such that aN ⊂ pR and pN ∈ a. Let (I1, F ) and (I2, F ) be effective
isodisplays over R. Then any homomorphism α0 : (I1, F )R/a → (I2, F )R/a lifts
uniquely to a homomorphism α0 : (I1, F ) → (I2, F ).

Proof. — We choose displays P1 and P2 over R together with isomorphisms of isodis-
plays (Pi,Q, F ) � (Ii, F ) for i = 1, 2. By the proposition 66 we may assume that α0

is induced by a morphism of displays α : P1,R/a → P2,R/a. Indeed, to prove the
proposition it is allowed to multiply α0 by a power of p.

Next we remark, that for the proof we may assume that a = p · R. Indeed, let
S → T be a surjection of rings with nilpotent kernel and such that p is nilpotent in S.
Then the induced map WQ(S) → WQ(T ) is an isomorphism and hence an isodisplay
on S is the same as an isodisplay on T . Applying this remark to the diagram

R/aR −→ R/a + pR ←− R/pR,

we reduce our assertion to the case, where a = pR.
Since pR ⊂ R is equipped canonically with divided powers the morphism of dis-

plays α : P1,R/pR → P2,R/pR lifts by theorem 46 uniquely to a morphism of triples
(P1, F, V −1) → (P2, F, V −1) which gives a morphism of isodisplays α0 : (P1,Q, F ) →
(P2,Q, F ). This shows the existence of α0.
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To prove the uniqueness we start with any lifting α0 : (I1, F ) → (I2, F ) of α0.
Since it is enough to show the uniqueness assertion for pNα0 and some number N ,
we may assume that α0(P1) ⊂ P2. Since P1 and P2 are torsionfree as abelian groups
it follows that α0 commutes with F and with V −1, which is defined on Q̂1 ⊂ P1

resp. Q̂2 ⊂ P2 taken with respect to R → R/pR. Hence α0 is a morphism of triples
(P1, F, V −1) → (P2, F, V −1), which is therefore uniquely determined by the morphism
of displays α : P1,R/pR → P2,R/pR.

We will now explain the period map. Let us fix an effective isodisplay (N, F ) over
a perfect field k. We consider the diagram (107) and make the additional assumption
that at ⊂ pR for some number t. We consider the category M(R) of pairs (P , r),
where P ∈ QisgR and r is an isomorphism r : PR/a,Q → (N, F )R/a in the category of
isodisplays over R/a. By the proposition 69 any homomorphism between pairs (P , r)
is an isomorphism and there is at most one isomorphism between two pairs.

The period map will be injection from the set of isomorphism classes of pairs (P , r)
to the set GrassWQ(k)N(R⊗Q), where GrassWQ(k)N is the Grassmann variety of direct
summands of the WQ(k)-module N .

The definition is as follows. The lemma below will show that the isodisplay
WQ(R) ⊗δ,WQ(k) (N, F ) is effective. Hence by the proposition 69 there is a unique
isomorphism of isodisplays, which lifts r

r̃ : (PQ, F ) −→ WQ(R)⊗δ,WQ(k) (N, F ).

The map

WQ(R)⊗δ,WQ(k) N
r̃−1

−−−−→ PQ −→ PQ/QQ

factors through the map induced by w0

WQ(R)⊗δ,WQ(k) N −→ RQ ⊗δ,WQ(k) N.

Hence we obtain the desired period:

(111) RQ ⊗δ,WQ(k) N � PQ/QQ

Hence if IsoM(R) denotes the set of isomorphism classes in M(R) we have defined
a map

Iso M(R) −→ GrassWQ(k)N(RQ).

This map is injective by the proposition 67.
Now we prove the missing lemma.

Lemma 70. — Let (N, F ) be an effective isodisplay over a perfect field k (i.e. the slopes
are in the interval [0, 1]). Then in the situation of the diagram (107) the isodisplay
WQ(R)⊗δ,WQ(k) (N, F ) is effective.

ASTÉRISQUE 278



THE DISPLAY OF A FORMAL p-DIVISIBLE GROUP 189

Proof. — One can restrict to the case R = W (k) and ρ = id. Indeed, if we know in
the general situation that WQ(W (k)) ⊗�,WQ(k) (N, F ) is the isocrystal of a display
P0, then ρ∗P0 is a display with isodisplay WQ(R) ⊗δ,WQ(k) (N, F ). In the situation
ρ = id let(M, Q, F, V −1) be a display with the isodisplay (N, F ). Then the associated
triple with respect to the pd-thickening W (k) → k is the form (W (W (k)) ⊗�,W (k)

M, F, V −1), where V −1 is given by (92). This triple gives the desired display if we
take some lift of the Hodge-filtration of M/pM to M . The isodisplay of this display
is (WQ(W (k)) ⊗�,WQ(k) N, F ).

Finally we want to give an explicit formula for the map (111). The map r̃−1 is
uniquely determined by the map:

(112) ρ : N −→ PQ,

which is given by ρ(m) = r̃−1(1⊗m), for m ∈ N . This map ρ may be characterized
by the following properties:

(i) ρ is equivariant with respect to the ring homomorphism δ : WQ(k) → WQ(R).
(ii) ρ(Fm) = Fρ(m), for m ∈ N

(iii) The following diagram is commutative:

(113)

PQ �� WQ(R/a)⊗WQ(k) N

N

ρ



��������������

��

We equip PQ with the p-adic topology, i.e. with the linear topology, which has as
a fundamental system of neighbourhoods of zero the subgroups piP . Because W (R)
is a p-adic ring, P is complete for this linear topology.

Proposition 71. — Let ρ0 : N → P be any δ-equivariant homomorphism, which makes
the diagram (113) commutative. Then the map ρ is given by the following p-adic limit:

ρ = lim
i→∞

F iρ0F
−i.

Proof. — We use ρ to identify PQ with WQ(R) ⊗δ,WQ(k) N , i.e. the map ρ becomes
m �→ 1⊗m, for m ∈ N . We write ρ0 = ρ + α. Clearly it is enough to show that:

(114) lim
i→∞

F iαF−i(m) = 0, for m ∈ N.

Since ρ and ρ0 make the diagram (113) commutative, we have α(N) ⊂ WQ(a)⊗δ,WQ(k)

N . We note that WQ(a) = WQ(pR).
We choose a W (k)-lattice M ⊂ N , which has a W (k)-module decomposition M =

⊕Mj, and such that there exists nonnegative integers s, rj ∈ Z with F sMj = prj Mj .
We take an integer a, such that

α(M) ⊂ paW (pR)⊗δ,W (k) M.
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It suffices to prove (114) for elements m ∈ Mj. We compute for any number u:

(115) Fusα(F−usm) ∈ p−urj Fusα(Mj) ⊂ pa−urj Fus(W (pR)⊗δ,W (k) M).

But using the logarithmic coordinates for the pd-ideal pR we find:
FW (pR) = W (p2R) = pW (pR).

This shows that the right hand side of (115) is included in

pa−urj+usW (pR)⊗δ,W (k) M.

Since N is an effective isodisplay we conclude s > rj for each j. This proves that
FusαF−us(m) converges to zero if u goes to ∞.

More generally we can consider the limit (114), where i runs through a sequence
i = us + q for some fixed number q. By the same argument we obtain that this limit
is zero too.

2.5. Lifting homomorphisms. — Consider a pd-thickening S → R with kernel
a. We assume that p is nilpotent in S.

We consider two displays Pi = (Pi, Qi, F, V −1) for i = 1, 2 over S. The base
change to R will be denoted by Pi = Pi,R = (P i, Qi, F, V −1). Let ϕ : P1 → P2 be a
morphism of displays. It lifts to a morphism of triples:

(116) ϕ : (P1, F, V −1) −→ (P2, F, V −1)

We consider the induced homomorphism:

Obstϕ : Q1/ISP1 ↪−→ P1/ISP1
ϕ−−→ P2/ISP2 −→ P2/Q2

This map is zero modulo a, because ϕ(Q1) ⊂ Q2. Hence we obtain a map:

(117) Obstϕ : Q1/ISP1 −→ a⊗S P2/Q2

Clearly this map is zero, iff ϕ lifts to a morphism of displays P1 → P2

Definition 72. — The map Obstϕ above (117) is called the obstruction to lift ϕ to S.

This depends on the divided powers on a by the definition of ϕ.
The obstruction has the following functorial property: Assume we are given a

morphism α : P2 → P3 of displays over S. Let α : P2 → P3 be its reduction over R.
Then Obstαφ is the composite of the following maps:

Q1/ISP1
Obstϕ−−−−−→ a⊗S P2/Q2

1⊗ α−−−−→ a⊗S P3/Q3

We will denote this fact by:

(118) Obstαϕ = α Obstϕ
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In the case a2 = 0 we have an isomorphism a⊗S P2/Q2
∼= a⊗R P 2/Q2. Hence the

obstruction may be considered as a map:

(119) Obstϕ : Q1/IRP 1 −→ a⊗R P 2/Q2

In this case the equation (118) simplifies:

(120) Obstαϕ = α Obstϕ

Let S be a ring, such that p · S = 0 for our fixed prime number p. Let S → R be a
surjective ring homomorphism with kernel a. We assume that ap = 0. In this section
we will use the trivial divided powers on a, i.e. αp(a) = 0 for a ∈ a.

Let us consider a third ring S̃, such that p · S̃ = 0. Let S̃ → S be a surjection with
kernel b, such that bp = 0. Again we equip b with the trivial divided powers.

Assume we are given liftings P̃i over S̃ of the displays Pi over S for i = 1, 2. The
morphism pϕ : P1 → P2 lifts to the morphism pϕ : P1 → P2 of displays. Hence we
obtain an obstruction to lift pϕ to a homomorphism of displays P̃1 → P̃2:

Obst(pϕ) : Q̃1/ISP̃1 −→ P̃2/Q̃2.

We will compute this obstruction in terms of Obstϕ. For this we need to define two
further maps: The operator V −1 on P̃1 induces a surjection

(121) (V −1)# : S̃ ⊗Frob,�S Q̃1/I�SP̃1 −→ P̃1/I�SP̃1 + W (S̃)FP̃1.

Here we denote by Frob the Frobenius endomorphism of S̃. The map (121) is an
isomorphism. To see this it is enough to verify that we have on the right hand side
a projective S̃-module of the same rank as on the left hand side. Let P̃ = L̃ ⊕ T̃

be a normal decomposition. Because pS̃ = 0, we have W (S̃)FL̃ ⊂ pW (S̃)P̃ ⊂ I�S P̃ .
Since we have a decomposition P̃ = W (S̃)V −1L̃ ⊕W (S̃)FT̃ , one sees that the right
hand side of (121) is isomorphic to W (S̃)V −1L̃/I�SV −1L̃. This is indeed a projective
S̃-module of the right rank.

The ideal b is in the kernel of Frob. Therefore the left hand side of (121) may be
written as S̃ ⊗Frob,S Q1/ISP1. We consider the inverse of the map (121)

V # : P̃1/I�SP̃1 + W (S̃)FP̃1 −→ S̃ ⊗Frob,S Q1/ISP1,

which we will also consider as a homomorphism of W (S̃)-modules

(122) V # : P̃1 −→ S̃ ⊗Frob,S Q1/ISP1.

Now we define the second homomorphism. Since bp = 0, the operator F on P̃2/I�SP̃2

factors as follows:

P̃2/I�SP̃2

������������
F �� P̃2/I�SP̃2

P2/ISP2

F b

������������
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The module Q̃2/I�SP̃2 is in the kernel of F . Hence we obtain a Frobenius linear
map

F b : P2/Q2 −→ P̃2/I�SP̃2,

whose restriction to a(P2/Q2) induces

F b : a(P2/Q2) −→ b(P̃2/I�SP̃2).

If we use our embedding b ⊂ W (b), we may identify the target of F b with b · P̃2 ⊂
W (b)P̃2. Let us denote the linearization of F b simply by

(123) F# : S̃ ⊗Frob,S a(P2/Q2) −→ bP̃2

Proposition 73. — The obstruction to lift pϕ : P1 → P2 to a homomorphism of dis-
plays P̃1 → P̃2 is given by the composition of the following maps:

Q̃1/ISP̃1
V #

−−−−→ S̃ ⊗Frob,S Q1/ISP1
S̃ ⊗Obstϕ−−−−−−−−−→ S̃ ⊗Frob,S a(P2/Q2)
F#

b(P̃2/Q̃2)

Here the horizontal map is induced by the restriction of the map (122) to Q̃1/I�SP̃1,
and the map F# is the map (123) followed by the factor map bP̃2 → b(P̃2/Q̃2).

Before giving the proof, we state a more precise result, which implies the proposi-
tion.

Corollary 74. — The morphism of displays pϕ : P1 → P2 lifts by theorem 46 to a
morphism of triples ψ̃ : (P̃1, F, V −1) → (P̃2, F, V −1). This morphism may be explicitly
obtained as follows. We define ω : P̃1 → bP̃2 ⊂ W (b)P̃2 to be the composite of the
following maps

P̃1
V #

−−−−→ S̃ ⊗Frob,S Q1/ISP1
S̃ ⊗Obstϕ−−−−−−−−−→ S̃ ⊗Frob,S a(P2/Q2)

F#

−−−−→ bP̃2.

Then we have the equation
ψ̃ = pϕ̃ + ω,

where ϕ̃ : P̃1 → P̃2 is any W (S̃)-linear map, which lifts ϕ : P1 → P2.

We remark that pϕ̃ depends only on ϕ and not on the particular lifting ϕ̃.

Proof. — It is clear that the proposition follows from the corollary. Let us begin with
the case, where ϕ is an isomorphism. We apply the method of the proof of theorem
44 to pϕ̃.

We find that pϕ̃ commutes with F .

(124) F (pϕ̃) = (pϕ̃)F

Indeed, since ϕ commutes with F , we obtain

Fϕ̃(x) − ϕ̃(Fx) ∈ W (b)P̃2.
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Since p ·W (b) = 0, we obtain (124). We have also that pϕ̃(Q1) ⊂ Q2.
We need to understand how much the commutation of pϕ̃ and V −1 fails. For this

purpose we choose normal decompositions as follows. Let P 1 = L1⊕T 2 be any normal
decomposition. We set L2 = ϕ(L) and T 2 = ϕ(T 1). Since ϕ is an isomorphism we
have the normal decomposition P 2 = L2⊕T 2. We take liftings of these decompositions
to normal decompositions

P1 = L1 ⊕ T1 and P2 = L2 ⊕ T2.

Finally we lift the last decomposition further to normal decompositions

P̃1 = L̃1 ⊕ T̃1 and P̃2 = L̃2 ⊕ T̃2.

We write the restriction of ϕ to L1 as follows:

ϕ(l1) = λ(l1) + µ(l1), λ(l1) ∈ L2, µ(l1) ∈ W (a)T2

Since ap = 0, we have IS · W (a) = 0 and the Witt addition on W (a) is the usual
addition of vectors. Let us denote by an the S-module obtained from a via restriction
of scalars by Frobn : S → S. Then we have a canonical isomorphism of S-modules

W (a)T2 �
∏
n≥0

an ⊗S T2/I2T2

Hence µ is a map
µ : L1/ISL1 −→

∏
n≥0

an ⊗S T2/IST2.

We denote by µn its n− th component. Then

µ0 : L1/ISL1 −→ a⊗S T2/IST2

may be identified with the obstruction η = Obstϕ.
Since ϕ commutes with V −1 we have

(125) ϕ(V −1l1) = V −1λ(l1) + V −1µ(l1).

Let us denote by c the kernel of the map S̃ → R. We choose any lifting τ̃ : L̃1 →
W (c)P̃2 of the Frobenius linear map:

V −1µ : L1 −→ W (a)T2
V −1

−−−−→ W (a)P2.

We write the restriction of ϕ̃ to L̃1 in the form

ϕ̃ = λ̃ + µ̃,

where λ̃ : L̃1 → L̃2 and µ̃ : L̃1 → W (a)T̃2. Then we obtain from the equation (125)
that

ϕ̃(V −1 l̃1)− (V −1λ̃(l̃1) + τ̃ (l̃1)) ∈ W (b)P̃2, for l̃1 ∈ L̃1.

Since pW (b) = 0, we deduce the equation

(126) pϕ̃(V −1 l̃1) = pV −1λ̃(l̃1) + pτ̃(l̃1).
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On the other hand we have obviously

V −1pϕ̃(l̃1) = pV −1λ̃(l̃1) + Fµ̃(l̃1).

If we subtract this form (126), we get an information on the commutation of pϕ̃ and
V −1:

(127) pϕ̃(V −1 l̃1)− V −1pϕ̃(l̃1) = (pτ̃ − Fµ̃)(l̃1).

We set µ′ = µ − µ0, with the map µ0 defined above and consider it as a map µ′ :
L1 → VW (a)T2. We choose any lifting of µ′ to a W (S̃)-linear map

µ̃′ : L̃1 −→ VW (c)T̃2.

Then V −1µ̃′ is defined and is a lifting of V −1µ, since by definition V −1µ0 = 0.
Therefore we may take τ = V −1µ̃′. Hence we may rewrite the right hand side of
(127):

(128) pτ − Fµ̃ = F (µ̃′ − µ̃).

Then µ̃− µ̃′ is a lifting of the map

µ0 : L1 −→ a⊗S (T2/IST2) ⊂ W (a)T2,

to a map
µ̃0 : L̃1 −→ W (c)T̃2.

In fact the expression Fµ̃0 is independent of the particular lifting µ̃0 of µ0. Therefore
we may rewrite the formula (127)

(129) V −1pϕ̃(l̃1)− pϕ̃(V −1 l̃1) = Fµ̃0(l̃1).

Let u ⊂ W (c) be the kernel of the following composite map:

W (c) −→ W (a) =
∏
n≥0

an
pr−−−→

∏
n≥1

an.

u is the ideal consisting of vectors in W (c), whose components at places bigger than
zero are in b. We see that Fu ⊂ b = b0 ⊂ W (b). We find:

Fµ̃0(l̃1) ∈ b(P̃2/I�SP̃2) ⊂ W (b)P̃2.

More invariantly we may express Fµ̃0 as follows.
We have a factorization:

F : P̃2/I�SP̃2



����������
�� P̃2/I�SP̃2

P2/ISP2

F b

������������

Then F b induces by restriction a map

F b : a(P2/ISP2) −→ b(P̃2/I�SP̃2).
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The map Fµ̃0 is the following composite map.

L̃1 −→ L1
µ0−−−→ a(T2/IST2)

F b

−−−→ b(P̃2/I�SP̃2).

By a slight abuse of notation we may write

Fµ̃0 = F bµ0.

We obtain the final form of the commutation rule

(130) V −1pϕ̃(l̃1)− pϕ̃(V −1 l̃1) = F bµ0(l̃1).

We want to know the map of triples

ψ̃ : (P̃1, F, V −1) −→ (P̃2, F, V −1),

which lifts pϕ.
As in the proof of 2.2 we write ψ̃ = pϕ̃+ω, where ω : P̃1 → W (b)P̃2 is a W (S̃)-linear

map. The condition that ψ̃ should commute with F is equivalent to ω(W (S̃)FT̃1) = 0.
We consider only these ω. To ensure that V −1 and ψ̃ commute is enough to ensure

(131) V −1ψ̃(l̃1) = ψ̃(V −1 l̃1) for l̃1 ∈ L̃1.

On I�S T̃1 the commutation follows, because ψ̃ already commutes with F . Using (130)
we see that the equality (131) is equivalent with:

(132) ω(V −1 l̃1)− V −1ω(l̃1) = F bµ0(l̃1)

We look for a solution of this equation in the space of W (S̃)- linear maps

ω : P̃1/W (S̃)FT̃1 −→ b0 ⊗�S P̃2/I�SP̃2 ⊂ W (b)P̃2

Then we have V −1ω(l̃1) = 0, by definition of the extended V −1. Hence we need to
find ω, such that

(133) ω(V −1 l̃1) = F bµ0(l̃1).

We linearize this last equation as follows. The operator V −1 induces an isomorphism

(V −1)# : W (S̃)⊗F,W (�S) L̃1 −→ P̃1/W (S̃)FT̃1,

whose inverse will be denoted by V #.
We will also need the tensor product µ′

0 of µ0 with the map w0 : W (S̃) → S̃:

µ′
0 : W (S̃)⊗F,W (S) L1 −→ S̃ ⊗Frob,S a(T2/IST2).

Finally we denote the linearization of F b simply by F#:

F# : S̃ ⊗Frob,S a(P2/ISP2) −→ b(P̃2/I�SP̃2).

Noting that we have a natural isomorphism W (S̃)⊗F,W (�S) L̃1
∼= W (S̃)⊗W (S) L1, we

obtain the following equivalent linear form of the equation (133):

ω(V −1)# = F#µ′
0.
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It follows that the unique lifting of pϕ to a homomorphism of triples is

ψ̃ = pϕ̃ + F#µ′
0V

#.

In this equation V # denotes the composite map

P̃1 −→ P̃1/W (S̃)FT̃1 −→ W (S̃)⊗F,W (S) L̃1.

This map ϕ̃ induces the obstruction to lift pϕ:

τ : Q̃1/I�SP̃1 ↪−→ P̃1/I�SP̃1
ψ̃−−→ P̃2/I�SP̃2 → P̃2/Q̃2.

Since pϕ̃ maps Q̃1 to Q̃2, we may replace ψ̃ in the definition of the obstruction τ

by F#µ′
0V

#. This proves the assertion of the corollary in the case where ϕ is an
isomorphism.

If ϕ is not an isomorphism we reduce to the case of an isomorphism by the standard
construction: Consider in general a homomorphism ψ : P1 → P2 of displays over S.
Then we associate to it the isomorphism

ψ1 : P1 ⊕ P2 −→ P1 ⊕ P2

x⊕ y �−→ x⊕ y + ψ(x)

If P1 and P2 are liftings to S̃ as in the lemma, we denote by ψ̃ : (P̃1, F, V −1) →
(P̃2, F, V −1) the unique lifting to a homomorphism of triples. Then

ψ̃1(x̃⊕ ỹ) = x̃⊕ (ỹ + ψ̃(x̃)), x̃ ∈ P̃1, ỹ ∈ P̃2.

It follows that Obstψ1 is the map

0⊕Obst ψ̃ : Q̃1/I�SP̃1 ⊕ Q̃2/I�SP̃2 −→ P̃1/Q̃1 ⊕ P̃2/Q̃2.

Applying these remarks the reduction to the case of an isomorphism follows readily.

We will now apply the last proposition to obtain the following result of Keating:

Proposition 75. — Let k be an algebraically closed field of characteristic p > 2. Let
P0 be the display over k of dimension 1 and height 2. The endomorphism ring OD

of P0 is the ring of integers in a quaternion division algebra D with center Qp. Let
α �→ α∗ for α ∈ OD be the main involution. We fix α ∈ OD, such that α /∈ Zp and
we set i = ordOD (α− α∗). We define c(α) ∈ N:

c(α) =

{
pi/2 + 2p(i/2−1) + 2p(i/2−2) + · · ·+ 2 for i even

2p
i−1
2 + 2p( i−1

2 −1) + · · ·+ 2 for i odd

Let P over k[[t]] be the universal deformation of P0 in equal characteristic. Then α

lifts to an endomorphism of P over k[[t]]/tc(α) but does not lift to an endomorphism
of P over k[[t]]/tc(α)+1.
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Proof. — The display P0 = (P0, Q0, F, V −1) is given by the structural equations

Fe1 = e2

V −1e2 = e1.

For any a ∈ W (Fp2) we have an endomorphism ϕa of P0, which is given by

(134) ϕa(e1) = ae1 ϕa(e2) = σ(a)e2

Here σ denotes the Frobenius endomorphism W (Fp2), and a is considered as an ele-
ment of W (k) with respect to a fixed embedding Fp2 ⊂ k.

We denote by Π the endomorphism of P0 defined by

Πe1 = e2 Πe2 = pe1.(135)

The algebra OD is generated by Π and the ϕa. The following relations hold:

Π2 = p , Πϕa = ϕσ(a)Π.

The display Pu = (Pu, Qu, F, V −1) of X over k[[t]] is given by the structural equations

Fe1 = [t]e1 + e2 , V −1e2 = e1.

To prove our assertion on the liftability of α it is enough to consider the following
cases:

α = ϕaps , a 	≡ σ(a) mod p , s ∈ Z, s ≥ 0(136)

α = ϕapsΠ; , a ∈ W (Fp2)∗ , s ∈ Z , s ≥ 0

Let us begin by considering the two endomorphisms α for s = 0. The universal
deformation Pu induces by base change k[[t]] → k[[t]]/tp a display P = (P, Q, F, V −1).
Then α induces an obstruction to the liftability to S = k[[t]]/tp:

Obstα : Q/ISP −→ t(P/Q),(137)

e2 �−→ o(α) · e1

where o(α) ∈ tk[[t]]/tp. To compute the obstruction, we need to find the extension of
α to a morphism of triples

α̃ : (P, F, V −1) −→ (P, F, V −1).

Let ẽ1, ẽ2 ∈ P be defined, by

ẽ1 = e1 and ẽ2 = [t]e1 + e2.

This is a basis of P and the extended operator V −1 is defined on ẽ2. We find the
equations

F ẽ1 = ẽ2, V −1ẽ2 = ẽ1.

Then obviously α̃ is given by the same equations as α:

(138) α̃(ẽ1) = aẽ1, α̃(ẽ2) = σ(a)ẽ2,
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respectively

(139) α̃(ẽ1) = σ(a)ẽ2, α̃(ẽ2) = apẽ1.

For the first endomorphism α of (136) we find

α̃(e2) = α̃(ẽ2 − [t]ẽ1) = σ(a)ẽ2 + [t]aẽ1

= σ(a)e2 + [t](σ(a)− a)e1

Hence the obstruction to lift α to k[[t]]/tp is o(ϕa) = o(α) = (σ(a)− a)t ∈ tk[[t]]/tp.
For the second endomorphism α of (136) we find

α̃(e2) = α̃(ẽ2 − [t]ẽ1) = apẽ1 − [t]σ(a)ẽ2

= ape1 − [t]σ(a) ([t]e1 + e2) .

Hence we obtain the obstruction

o (ϕaΠ) = o(α) = −t2σ(a) ∈ tk[[t]]/tp.

Now we consider the first endomorphism of (136) for s = 1. It lifts to an endomor-
phism over k[[t]]/tp. We compute the obstruction to lift it to k[[t]]/tp

2
. We can apply

the lemma to the situation

k←−k[[t]]/tp←−k[[t]]/tp
2

‖ ‖ ‖

R S S̃

We set ϕ = ϕa and P̃ = Pu
�S . Then we have the following commutative diagram of

obstructions

(140) Q̃/I�S P̃ ��

Obst(pϕa)
��																																												 S̃ ⊗Frob,S Q/ISP

S̃ ⊗Obst(ϕa)
�� S̃ ⊗Frob,S t(P/Q)

F#

��

tp(P̃ /Q̃)

The first horizontal map here is computed as follows:

Q̃/I�SP̃ �� P̃ /I�S P̃ + W (S̃)FP̃ S̃ ⊗Frob,S Q/ISP
(V −1)#

��

e2

 �� e2 = −te1

−te1 −t⊗ e2

��

We obtain that the maps in the diagram (140) are as follows

e2

 �� −t⊗ e2


 �� −t⊗ t (σ(a) − a) e1

 �� −t · tp (−σ(a) + a)Fe1
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Therefore we obtain for Obst(pϕa):

Obst pϕa = tp+1 (σ(a) − a)Fe1 = tp+2(σa− a)e1 ∈ tp
(
P̃ /Q̃

)
.

With the same convention as in (137) we write o(pϕa) = (σ(a)−a)tp+2. Then we prove
by induction that psϕa lifts to k[[t]]/tp

2
+ 2(ps−1 + · · · + 1) and that the obstruction

to lift it to k[[t]]/tp
s+1

is (σ(a) − a) · tps+2(ps−1+·+1). For the induction step we apply
our lemma to the situation

k[[t]]/tp
s+2(ps−1+···+1) ←−−−− k[[t]]/tp

s+1 ←−−−− k[[t]]/tp
s+2∥∥∥ ∥∥∥ ∥∥∥

R S S̃

We set ϕ = psϕa over R and P̃ = Pu
�S . Then the maps in the diagram (140) are as

follows
e2


 �� −t⊗ e2

 �� −t⊗ (σ(a) − a)tp

s+2(ps−1+···+1)e1�

��

−t (a− σ(a)) tp(ps+2(ps−1+···+1))Fe1

This gives the asserted obstruction for ps+1ϕa:

Obst
(
ps+1ϕa

)
= σ(a) − a)tp

s+1+2(ps+···+p)+1 · te1.

Next we consider the case of the endomorphisms psϕaΠ. In the case s = 1 we apply
the lemma to the situation

k ←−−−− k[[t]]/tp ←−−−− k[[t]]/tp
2
,∥∥∥ ∥∥∥ ∥∥∥

R ←−−−− S ←−−−− S̃

and the endomorphism ϕ = ϕaΠ. Then the maps in the diagram (140) are as follows:

e2

 �� −t⊗ e2


 �� −t⊗−t2σ(a)e1�

��

tt2paFe1

This gives Obst(pϕaΠ) = t2p+2a. Now one makes the induction assumption that for
even s the obstruction to lift psϕaΠ from k[[t]]/t2(p

s+···+1) to k[[t]]/tp
s+1

is −t2(p
s+···+1) ·

σ(a) and for odd s is t2(p
s+···+1) · a. We get the induction step immediately from the

lemma applied to the situation

k[[t]]/t2(p
s+···+1) ←− k[[t]]/ps+1 ←− k[[t]]/ps+2.

We finish this section with a result of B. Gross on the endomorphism ring of the
Lubin-Tate groups. Let A be a Zp-algebra. Let S be an A-algebra.
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Definition 76. — An A-display over S is a pair (P̃ , ι), where P̃ is a display over S, and
ι : A → End P̃ is a ring homomorphism, such that the action of A on P̃ /Q̃ deduced
from ι coincides with the action coming from the natural S-module structure on P̃ /Q̃

and the homomorphism A → S giving the A-algebra structure.

Let a ∈ A be a fixed element. We set R = S/a and Ri = S/ai+1. Then we have a
sequence of surjections

S −→ · · · −→ Ri −→ Ri−1 −→ · · · −→ R = R0

Let P̃1 and P̃2 be displays over S. They define by base change displays P(i)
1 and P(i)

2

over Ri. We set P1 = P(0)
1 and P2 = P(0)

2 .
Assume we are given a morphism ϕ : P1 → P2, which lifts to a morphism ϕ(i−1) :

P(i−1)
1 → P(i−1)

2 . The obstruction to lift ϕ(i−1) to a morphism P(i)
1 → P(i)

2 is a
homomorphism:

Obstϕ(i−1) : Q
(i)
1 /IRiP

(i)
1 −→ (ai)/(ai+1)⊗Ri P

(i)
2 /Q

(i)
2 .

Clearly Obstϕ(i−1) factors through a homomorphism:

Obsti ϕ : Q1/IRP1 −→ (ai)/(ai+1)⊗R P2/Q2.

Proposition 77. — Assume that (P̃2, ι) is an A-display over S. Let ϕ : P1 → P2 be a
morphism of displays, which lifts to a morphism P(i−1)

1 → P(i−1)
2 . Then ι(a)ϕ lifts to

a homomorphism P(i)
1 → P(i)

2 and moreover we have a commutative diagram if i ≥ 2
or p > 2:

(141)

Q1/IRP1

Obsti+1(ι(a)ϕ) ��������������������
Obsti ϕ

�� (ai)/(ai+1)⊗R P2/Q2

a⊗ id
��

(ai+1)/(ai+1)⊗R P2/Q2

Loosely said we have Obsti+1(ι(a)ϕ) = a Obsti(ϕ).

Proof. — We consider the surjection Ri+1 → Ri−1. The kernel aiRi+1 has divided
powers if i ≥ 2 or p > 2. Hence the obstruction to lift ϕ(i−1) to R(i+1) is defined:

Obstϕ(i−1) : Q
(i+1)
1 /IRi+1P

(i+1)
1 −→ (ai)/(ai+2)⊗Ri+1 P

(i+1)
2 /Q

(i+1)
2

is defined. Since ι(a) induces on the tangent space P (i+1)/Q(i+1) the multiplication
by a we obtain

Obst ι(a)ϕ(i−1) = a Obstϕ(i−1)

This proves the proposition.

We will now apply this proposition to the case of a Lubin–Tate display. Let K/Qp

be a totally ramified extension of degree e ≥ 2. We consider the ring of integers
A = OK . The rôle of the element a in the proposition will be played by a prime

ASTÉRISQUE 278



THE DISPLAY OF A FORMAL p-DIVISIBLE GROUP 201

element π ∈ OK . For S we take the ring S = OK ⊗Zp W (Fp). Now we take a
notational difference between π and its image in S, which we denote by a.

Let P̃ = (P̃ , Q̃, F, V −1) be the Lubin–Tate display over S. We recall that P̃ =
OK ⊗Zp W (S), Q̃ = kernel (OK ⊗Zp W (S) → S), and V −1(π ⊗ 1− 1⊗ [a]) = 1.

Let P be the display obtained by base change over R = S/aS = Fp. The operator
V −1 of P satisfies

V −1πi = πi−1,

where π = π ⊗ 1 ∈ OK ⊗Zp W (R). (One should not be confused by the fact that this
ring happens to be S). We note that Q = πP .

We consider an endomorphism ϕ : P → P , and compute the obstruction to lift ϕ

to R1 = S/a2S:
Obst1(ϕ) : Q/IRP −→ (a)/(a2)⊗R P/Q.

The endomorphism ϕ induces an endomorphism on P/Q, which is the multiplication
by some element Lie ϕ ∈ Fp. Let us denote by σ the Frobenius endomorphism of Fp.

Lemma 78. — Obst1(ϕ) is the composition of the following maps:

Q/IRP = Q/pP
1/π

�� P/πP = P/Q
σ−1(Lie ϕ)− Lieϕ

�� P/Q

a
��

(a)/(a2)⊗R P/Q

Proof. — We write

ϕ(1) = ξ0 + ξ1π + · · ·+ ξe−1π
e−1, ξi ∈ W (Fp).

Applying the operator V we obtain:

(142) ϕ(πi) = F−i

ξπi

0 + F−i

ξ1π
i+1 + . . . , for i = 0, 1 . . .

By theorem 46 this ϕ admits a unique extension to an endomorphism of the triple
(P (1), F, V −1), where P (1) = OK ⊗Zp W (R1). For the definition of the extension ϕ̃

we use here the obvious divided powers on the ideal aR1 ⊂ R1 = S/a2S given by
αp(a) = 0. Then we have V −1[a]P (1) = 0, for the extended V −1. Hence we find for
the triple (P (1), F, V −1) the equations:

V −1πi = πi−1, for i ≥ 1, F1 =
p

π
.

The last equation follows because the unit τ of lemma 27 specializes in R1 to πe/p.
Hence we can define ϕ̃ on P (1) by the same formulas (142) as ϕ. In other words:

(143) ϕ̃ = ϕ⊗W (FP ) W (R1).

This formula may also be deduced from the fact that ϕ̃ is an endomorphism of the
display PR1 obtained by base change via the natural inclusion R → R1.
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The map ϕ̃ induces an OK ⊗Zp R1-module homomorphism

(144) Q(1)/IR1P
(1) −→ P (1)/Q(1).

By definition the module on the left hand side has the following basis as an R1-module:

π − a, π2 − a2, . . . , πe−1 − ae−1,

where we wrote π for π ⊗ 1 ∈ OK ⊗Zp R1 and a for 1⊗ a. We note that πi ∈ Q(1) for
i ≥ 2, because a2 = 0 in R1 and because Q(1) is an OK -module. By (143) and (142)
we find

ϕ̃(π − a) = F−1
ξ0π + F−1

ξ1π
2 + · · · − a(ξ0 + ξ1π + · · · )

≡
(

F−1
ξ0 − ξ0

)
a mod Q(1)

Since ϕ̃ is an OK ⊗Zp W (R1)-module homomorphism we have ϕ̃(πi) = 0 mod Q(1).
This gives the result for Obst1 ϕ because ξ0 mod p = Lie ϕ.

We can obtain a result of B. Gross [G] in our setting:

Proposition 79. — Let us assume that p > 2. Assume that K is a totally ramified
extension of Qp, which has degree e = [K : Qp]. We fix a prime element π ∈ OK .
Let P̃ be the corresponding Lubin–Tate display over OK . Let P = P̃Fp

the display
obtained by base change via OK → Fp ⊂ Fp. Let OD = EndP be the endomorphism
ring. Let K̆ be the completion of the maximal unramified extension of K with residue
class field Fp. Then we have

End P̃OK̆/(πm+1) = OK + πmOD m ≥ 0.

Proof. — We use the notation of proposition 77, and set Ri = OK̆/(π+1). Let ϕ ∈ OD

be an endomorphism of P . It follows from the formula (2.61) that πmϕ lifts to an
endomorphism of P̃ over OK̆/πm+1. From (77) we obtain by induction:

Obstm+1 πmϕ = πm Obst1 ϕ,

where πm on the right hand side denotes the map

πm : (π)/(π2)⊗R P/Q −→ (πm+1)/(πm+2)⊗R P/Q.

We recall that R = R0 = Fp by definition.
Now assume we are given an endomorphism

ψ ∈ (OK + πmOD)− (OK + πm+1OD).

Since π is a prime element of OD we have the expansion

ψ = [a0] + �a1�π + · · ·+ [am]πm + · · · , where ai ∈ Fpe .

We have ai ∈ Fp for i < m and am 	∈ Fp since ψ 	∈ OK + πm+1OD. Then we find

Obstm+1 ψ = Obstm+1 ([am]πm + · · · ) = πm Obst1 ([am]] + π[am+1] + · · · )
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Since σ(am) 	= am the obstruction Obst1 (�am�+ π�am+1� · · · ) does not vanish.
Hence Obstm+1 ψ does not vanish.

3. The p-divisible group of a display

3.1. The functor BT . — Let R be a unitary commutative ring, such that p is
nilpotent in R. Consider the category NilR introduced after definition 50. We will
consider functors F : NilR → Sets, such that F (0) consists of a singe point denoted
by 0 and such that F commutes with finite products. Let us denote this category by
F . If N 2 = 0, we have homomorphisms in NilR:

N ×N addition−−−−−→ N , N τ−−−−→ N , where τ ∈ R.

The last arrow is multiplied by τ . Applying F we obtain a R-module structure on
F (N ). A R-module M will be considered as an object of NilR by setting M2 = 0.
We write tF (M) for the R-module F (M).

We view a formal group as a functor on NilR (compare [Z1]).

Definition 80. — A (finite dimensional) formal group is a functor F : NilR →
(abelian groups), which satisfies the following conditions.

(i) F(0) =0.
(ii) For any sequence in NilR

0 −→ N1 −→ N2 −→ N3 −→ 0,

which is exact as a sequence of R-modules the corresponding sequence of abelian
groups

0 −→ F (N1) −→ F (N2) −→ F (N3) −→ 0

is exact.
(iii) The functor tF commutes with infinite direct sums.
(iv) tF (R) is a finitely generated projective R-module.

Our aim is to associate a formal group to a 3n-display.

Let us denote by Ŵ (N ) ⊂ W (N ) the subset of Witt vectors with finitely many
non–zero components. This is a W (R)-subalgebra.

Let us fix N and set S = R|N | = R ⊕ N . Then we introduce the following
W (R)-modules

PN = W (N ) ⊗W (R) P ⊂ PS

QN = (W (N ) ⊗W (R) P ) ∩QS

P̂N = Ŵ (N ) ⊗W (R) P ⊂ PS

Q̂N = P̂N ∩QS
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We will denote by IN ⊂ W (N ) resp. ÎN ⊂ Ŵ (N ) the W (R)-submodules V W (N )
and V Ŵ (N ). We note that F and V act also on Ŵ (N ). Hence the restriction of the
operators F : PS → PS and V −1 : QS → PS define operators

F : PN −→ PN V −1 : QN −→ PN

F : P̂N −→ P̂N V −1 : Q̂N −→ P̂N .

If we choose a normal decomposition

P = L⊕ T,

we obtain:

QN = W (N ) ⊗W (R) L⊕ IN ⊗W (R) T(145)

Q̂N = Ŵ (N ) ⊗W (R) L⊕ ÎN ⊗W (R) T

Theorem 81. — Let P = (P, Q, F, V −1) be a 3n-display over R. Then the functor
from NilR to the category of abelian groups, which associates to an object N ∈ NilR
the cokernel of the homomorphism of additive groups:

V −1 − id : Q̂N −→ P̂N ,

is a finite dimensional formal group. Here id is the natural inclusion Q̂N ⊂ P̂N . We
denote this functor be BTP . One has an exact sequence:

(146) 0 −−−−→ Q̂N
V −1 − id−−−−−−−→ P̂N −−−−→ BTP(N ) −−−−→ 0.

We will give the proof of this theorem and of the following corollary later in this
section.

Corollary 82. — Let P be a 3n-display, such that there is a number N with the property
FNP ⊂ IRP . Then we have an exact sequence compatible with (146):

0 −−−−→ QN
V −1 − id−−−−−−−→ PN −−−−→ BTP(N ) −−−−→ 0

Remark. — The F -nilpotence condition F NP ⊂ IRP is equivalent to the condition
that F : P → P induces a nilpotent (Frobenius linear) map R/pR⊗w0P → R/pR⊗w0

P of R/pR-modules.

Assume that N is equipped with divided powers, i.e. the augmentation ideal of the
augmented R-algebra R|N | is equipped with divided powers. Then the divided Witt
polynomials define an isomorphism:

(147)
∏

w′
n : W (N ) −→

∏
i≥0

N

This induces a homomorphism:

Ŵ (N ) −→
⊕
i≥0

N(148)

(n0, n1, n2, . . . ) �−→ [w′
0(n0),w′

1(n0, n1), . . . ].

ASTÉRISQUE 278



THE DISPLAY OF A FORMAL p-DIVISIBLE GROUP 205

To see that the homomorphism (147) takes Ŵ (N ) to the direct sum, it is enough

to check, that for a fixed element n ∈ N the expression αpk(n) = “npk

pk ” becomes
zero, if k is big enough. But in terms of the divided powers γm on N this expression
is (pk)!

pk γpk(n). Since the exponential valuation ordp(pk!
pk ) tends with k to infinity, we

conclude that (148) is defined.
If we assume moreover that the divided powers on N are nilpotent in the sense

that γpk(n) is zero for big k, for a fixed n ∈ N , the homomorphism (148) is an
isomorphism. Indeed, for the surjectivity of (148) it is enough to verify that elements
of the form [x, 0, . . . , 0, . . . ] lie in the image, because the morphism (147) is compatible
with Verschiebung. To prove the surjectivity of (148) we may moreover restrict to
the case where p · N = 0. Indeed pN ⊂ N is a pd-subalgebra, which is an ideal in N .
Hence N/pN is equipped with nilpotent divided powers. Therefore an induction with
the order of nilpotence of p yields the result. If p · N = 0, we see that any expression

“npk

pk ” is zero for k ≥ 2 because (pk)!
pk is divisible by p. But then the assertion, that

[x, 0, 0, . . . 0] is in the image of (148) means that there is (n0, n1, . . . ) ∈ Ŵ (N ) satisfies
the equations

x = n0, αp(n0) + n1 = 0, αp(n1) + n2 = 0, αp(n2) + n3 = 0 · · · .

We have to show that the solutions of these equations:

nk = (−1)1+p+···+pk−1
αp(· · ·αp(x)) · · · ) k ≥ 1,

where αp is iterated k-times, become zero if k is big. It is easy to see from the
definition of divided powers that αp(· · · (αp(x)) · · · ) and γpk(x) differ by a unit in
Z(p). Hence we find a solution in Ŵ (N ), if γpk(x) is zero for big k. Hence (148) is
an isomorphism in the case of nilpotent divided powers. Assume we are given divided
powers on N . They define the embedding

N −→ W (N ),(149)

n �−→ [n, 0 · · · 0 · · · ]

where we have used logarithmic coordinates on the right hand side. If we have nilpo-
tent divided powers the image of the map (149) lies in Ŵ (N ). Then we obtain the
direct decomposition Ŵ (N ) = N ⊕ VŴ (N ).

By lemma 38 the operator V −1 : QS → PS extends to the inverse image of Q, if
N has divided powers. This gives a map

(150) V −1 : W (N )⊗W (R) P −→ W (N )⊗W (R) P.

If the divided powers on N are nilpotent, we obtain a map

(151) V −1 : Ŵ (N )⊗W (R) P −→ Ŵ (N )⊗W (R) P.

In fact the nilpotent divided powers are only needed for the existence of this map.
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Lemma 83. — If N has nilpotent divided powers the map (151) is nilpotent. If N has
only divided powers but if we assume moreover that FNP ⊂ IRP for some number
N , the map (150) is nilpotent.

Proof. — From the isomorphism (145) we get an isomorphism

(152) W (N ) ⊗W (R) P ∼=
∏
i≥0

N ⊗wi,W (R) P

We describe the action of the operator V −1 on the right hand side. Let us denote by
Fi the following map

Fi : N ⊗wi,W (R) P −→ N ⊗wi−1,W (R) P, i ≥ 1.

a⊗ x �−→ a⊗ Fx

If we write an element from the right hand side of (152) in the form [u0, u1, u2, . . . ], ui ∈
N ⊗wi,W (R) P , the operator V −1 looks as follows:

(153) V −1[u0, u1, . . . ] = [F1u1, F2u2, . . . , Fiui · · · ].

In the case where the divided powers on N are nilpotent, we have an isomorphism

(154) Ŵ (N )⊗W (R) P −→
⊕
i≥0

N ⊗wi,W (R) P.

Since V −1 on the right hand side is given by the formula (153), the nilpotency of V −1

is obvious in this case.
To show the nilpotency of V −1 on (152), we choose a number r, such that pr ·R = 0.

Then we find wi(Ir) · N ⊂ prN = 0, for any i ∈ N. By our assumption we find a
number M , such that FMP ⊂ IrP . This implies Fi+1 · . . . · Fi+M = 0 and hence the
nilpotency of V −1.

Corollary 84. — Let P be a 3n-display over R. For any nilpotent algebra N ∈ NilR
the following map is injective

V −1 − id : Q̂N −→ P̂N .

Proof. — We remark that the functors N �→ P̂N and N �→ Q̂N are exact in the sense
of definition (80) (ii). For Q̂N this follows from the decomposition (145).

Since any nilpotent N admits a filtration

0 = N0 ⊂ N1 ⊂ · · · ⊂ Nτ = N ,

such that N 2
i ⊂ Ni−1, we may by induction reduce to the case N 2 = 0. Since in this

case N may be equipped with nilpotent divided powers, we get the injectivity because
by the lemma (83) the map V −1 − id : Ŵ (N ) ⊗ P → Ŵ (N ) ⊗ P is an isomorphism.
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Corollary 85. — Let P be a 3n-display over R, such that F NP ⊂ IRP for some
number N , then the map

V −1 − id : QN −→ PN

is injective.

The proof is the same starting from lemma (83).

Proof of theorem (81) and its corollary. — For any 3n-display P we define a functor
Ĝ on NilR by the exact sequence:

0 −−−−→ Q̂N
V −1 − id−−−−−−−→ P̂N −−−−→ Ĝ(N ) −−−−→ 0.

If P satisfies the assumption of corollary (85) we define a functor G by the exact
sequence:

0 −−−−→ QN
V −1 − id−−−−−−−→ PN −−−−→ G(N ) −−−−→ 0.

We verify that the functors G and Ĝ satisfy the conditions (i) – (iv) of the definition
(80). It is obvious that the conditions (i) and (ii) are fulfilled, since we already
remarked that the functors N �→ QN (resp. Q̂N ) and N �→ PN (resp. P̂N ) are
exact.

All what remains to be done is a computation of the functors tG and t �G. We do
something more general.

Let us assume that N is equipped with nilpotent divided powers. Then we define
an isomorphism, which is called the exponential map

(155) expP : N ⊗R P/Q −→ Ĝ(N ).

It is given by the following commutative diagram.

(156) 0 �� Q̂N
�� P̂N

V −1 − id
��

�� N ⊗R P/Q

exp
��

�� 0

0 �� Q̂N
V −1 − id

�� P̂N
�� Ĝ(N ) �� 0.

If N 2 = 0, we can take the divided powers γk = 0 for i ≥ 2. Then the exponential
map provides an isomorphism of the functor t �G with the functor M �→ M ⊗R P/Q

on the category of R-modules. Hence the conditions (iii) and (iv) of definition 80 are
fulfilled. If the display P satisfies the condition FN · P ⊂ IRP for some number N ,
we may delete the hat in diagram (156), because the middle vertical arrow remains
an isomorphism by lemma (83). In fact in this case we need only to assume that N
has divided powers. We get an isomorphism

(157) exp : N ⊗ P/Q −→ G(N ).

It follows again that G(N ) is a finite dimensional formal group. The obvious
morphism Ĝ(N ) → G(N ) is a homomorphism of formal groups, which is by (155)
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and (157) an isomorphism on the tangent functors t �G → tG. Hence we have an
isomorphism Ĝ ∼= G, which proves the theorem 81 completely.

Corollary 86. — The functor P �→ BTP commutes with base change. More precisely
if α : R → S is a ring homomorphism base change provides us with a display α∗P and
a formal group α∗BTP over S. Then we assert that there is a canonical isomorphism:

α∗BTP ∼= BTα∗P

Proof. — In fact for M ∈ NilS we have the obvious isomorphism:

Ŵ (M)⊗W (R) P ∼= Ŵ (M)⊗W (S) W (S)⊗W (R) P = Ŵ (M)⊗W (S) α∗P

This provides the isomorphism of the corollary.

Proposition 87. — Let R be a ring, such that pR = 0, and let P be a display over R.
Then we have defined a Frobenius endomorphism (29):

(158) FrP : P −→ P(p).

Let G = BTP be the formal group we have associated to P. Because the functor BT

commutes with base change we obtain from (158) a homomorphism of formal groups:

(159) BT (FrP) : G −→ G(p).

Then the last map (159) is the Frobenius homomorphism FrG of the formal group G.

Proof. — Let N ∈ NilR be a nilpotent R-algebra. Let N[p] ∈ NilR be the nilpotent
R-algebra obtained by base change via the absolute Frobenius Frob : R → R. Taking
the p-th power gives an R-algebra homomorphism

(160) FrN : N −→ N[p].

The Frobenius of any functor is obtained by applying it to (160). In particular the
Frobenius for the functor Ŵ is just the usual operator F:

F : Ŵ (N ) −→ Ŵ (N[p]) = Ŵ (N ).

From this remark we obtain a commutative diagram:

(161)

Ŵ (N )⊗W (R) P −−−−→ G(N )

F⊗ idP


 
FrG

Ŵ (N[p])⊗W (R) P −−−−→ G(N[p])

The left lower corner in this diagram may be identified with Ŵ (N ) ⊗F,W (R) P ∼=
Ŵ ⊗W (R) P (p). All we need to verify is that for ξ ∈ Ŵ (N ) and x ∈ P the elements
Fξ ⊗ x ∈ Ŵ (N ) ⊗F,W (R) P and ξ ⊗ V #x ∈ Ŵ (N ) ⊗W (R) P (p) have the same image
by the lower horizontal map of (161). Since P is generated as an abelian group by
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elements of the form uV −1y, where y ∈ Q and u ∈ W (R), it is enough to verify the
equality of the images for x = uV −1y. But in Ŵ (N )⊗F,W (R)P we have the equalities:

Fξ ⊗ uV −1y = F(ξu)⊗ V −1y = V −1(ξu⊗ y)

The last element has the same image in G(N[p]) as ξu ⊗ y, by the exact sequence
(146). Hence our proposition follows from the equality:

ξ ⊗ V #(uV −1y) = ξu⊗ y

We note that here the left hand side is considered as an element of Ŵ ⊗W (R) P (p),
while the right hand side is considered as an element of Ŵ ⊗F,W (R) P .

Proposition 88. — Let R be a ring, such that pR = 0. Let P be a display over R.
Then there is a number N and a morphism of displays γ : P → P(pN ) such that the
following diagram becomes commutative:

P
FrN

P
��

p
�� P

γ
		














P(pN )

Proof. — By (29) FrP is induced by the homomorphism V # : P → W (R)⊗F,W (R)P .
First we show that a power of this map factors through multiplication by p. By the
definition of a display there is a number M , such that V M# factors through:

(162) V M# : P → IR ⊗F M ,W (R) P

Hence the homomorphism V (M+1)# is given by the composite of the following maps:
(163)

P
V #

−−−−→ W (R)⊗F,W (R) P
W (R)⊗ V M#

−−−−−−−−−−−→ W (R)⊗F,W (R) IR ⊗F M ,W (R) P

W (R)⊗F M+1,W (R) P

Here the vertical arrow is induced by the map W (R)⊗F,W (R) IR → W (R) such that
ξ ⊗ ζ �→ ξFζ. We note that this map is divisible by p., because there is also the map
κ : W (R) ⊗F,W (R) IR → W (R) given by ξ ⊗ Vη �→ ξη. Composing the horizontal
maps in the diagram (163) with κ we obtain a map γ0 : P → W (R) ⊗F M+1,W (R) P ,
such that γ0p = V (M+1)#. For any number m we set γm = V m#γ0. Then we have
γmp = V (M+m+1)#.

Secondly we claim that for a big number m the homomorphism γm induces a
homomorphism of displays. It follows from the factorization (162) that γM respects
the Hodge filtration. We have to show that for m ≥ M big enough the following F

-linear maps are zero:

(164) Fγm − γmF, V −1γm − γmV −1
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These maps become 0, if we multiply them by p. But the kernel of multiplication by
p on W (R) ⊗F m,W (R) P is W (a) ⊗F m,W (R) P , where a is the kernel of the absolute
Frobenius homomorphism Frob : R → R. Because W (a)IR = 0, we conclude that the
composite of the following maps induced by (162) is zero:

W (a)⊗F m,W (R) P → W (a)⊗F m,W (R) IR ⊗F M ,W (R) P → W (R)⊗F M+m,W (R) P

Hence γ2M commutes with F and V −1 and is therefore a morphism of displays. This
is the morphism γ we were looking for.

Applying the functor BT to the diagram in the proposition we get immediately that
BTP is a p-divisible group. If p is nilpotent in R a formal group over R is p-divisible,
iff its reduction mod p is p-divisible. Hence we obtain:

Corollary 89. — Let p be nilpotent in R, and let P be a display over R. Then BTP is
a p-divisible group.

We will now compute the Cartier module of the formal group BTP . By definition
the Cartier ring ER is the ring opposite to the ring Hom(Ŵ , Ŵ ). Any element e ∈ ER

has a unique representation:

e =
∑

n,m≥0

V n[an,m]Fm,

where an,m ∈ R and for any fixed n the coefficients an,m = 0 for almost all m. We
write the action e : Ŵ (N ) → Ŵ (N ) as right multiplication. It is defined by the
equation:

(165) ue =
∑

m,n≥0

V m

([an,m](F n

u))

One can show by reducing to the case of a Q-algebra that F n

u = 0 for big n. Hence
this sum is in fact finite.

Let G be a functor from NilR to the category of abelian groups, such that G(0) = 0.
The Cartier module of G is the abelian group:

(166) M(G) = Hom(Ŵ , G),

with the left ER-module structure given by:

(eφ)(u) = φ(ue), φ ∈ M(G), u ∈ Ŵ (N ), e ∈ ER

Let P be a projective finitely generated W (R)-module. Let us denote by GP the
functor N �→ Ŵ (N ) ⊗W (R) P . Then we have a canonical isomorphism :

(167) ER ⊗W (R) P → Hom(Ŵ ,GP ) = M(GP )

An element e ⊗ x from the left hand side is mapped to the homomorphism u �→
ue⊗ x ∈ Ŵ (N ) ⊗W (R) P .
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Proposition 90. — Let P = (P, Q, F, V −1) be a 3n-display over R. By definition (146)
we have a natural surjection of functors GP → BTP . It induces a surjection of Cartier
modules:

(168) ER ⊗W (R) P −→ M(BTP)

The kernel of this map is the ER-submodule generated by the elements F ⊗x−1⊗Fx,
for x ∈ P , and V ⊗ V −1y − 1⊗ y, for y ∈ Q.

Proof. — We set G0
P = GP and we denote by G−1

P the subfunctor N �→ Q̂N . Let
us denote the corresponding Cartier modules by M0

P respectively M−1
P . By the first

main theorem of Cartier theory, we obtain from (146) an exact sequence of Cartier
modules:

(169) 0 −→ M−1
P

ρP−−−→ M0
P −→ M(BTP) −→ 0

We have to compute ρP explicitly. Using a normal decomposition P = L ⊕ T we
may write:

G−1
P (N ) = Ŵ (N )⊗W (R) L⊕ ÎN ⊗W (R) T

The Cartier module of the last direct summand may be written as follows:

(170) ERF ⊗W (R) T −→ Hom(Ŵ , Î ⊗W (R) T )
eF ⊗ t �−→ (u �→ ueF ⊗ t)

From this we easily see that M−1
P ⊂ M0

P is the subgroup generated by all elements
eF ⊗ x, where e ∈ ER and by all elements e⊗ y, where e ∈ ER and y ∈ Q.

The map V −1 : G−1
P → G0

P is defined by the equations:

(171) V −1(u⊗ y) = uV ⊗ V −1y, u ∈ Ŵ , (N ) y ∈ Q

V −1(uF ⊗ x) = u⊗ Fx, x ∈ P

Hence on the Cartier modules V −1 − id induces a map ρP : M−1
P → M0

P , which
satisfies the equations:

(172)
ρP(eF ⊗ x) = e⊗ Fx− eF ⊗ x, x ∈ P

ρP(e⊗ y) = eV ⊗ V −1y − e⊗ y, y ∈ Q

This proves the proposition.

3.2. The universal extension. — Grothendieck and Messing have associated to a
p-divisible group G over R a crystal DG, which we will now compare with the crystal
DP , if P is a display with associated formal p-divisible group G = BT (P).

Let us first recall the theory of the universal extension [Me] in terms of Cartier
theory [Z2].

Let S be a Zp-algebra and L an S-module. We denote by C(L) =
∏∞

i=0 V iL, the
abelian group of all formal power series in the indeterminate V with coefficients in L.
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We define on C(L) the structure of an ES-module by the following equations

ξ
( ∞∑

i=0

V ili

)
=

∞∑
i=0

V iwn(ξ)li, for ξ ∈ W (S), li ∈ L

V
( ∞∑

i=0

V ili

)
=

∞∑
i=0

V i+1li

F
( ∞∑

i=0

V ili

)
=

∞∑
i=1

V i−1pli

The module C(L) may be interpreted as the Cartier module of the additive group
of L:

Let L̂+ be the functor on the category NilS of nilpotent S-algebras to the category
of abelian groups, which is defined by

L̂+(N ) = (N ⊗S L)+.

Then one has a functor isomorphism:

N ⊗S L ∼= Ŵ (N )⊗ES C(L)
n⊗ l �−→ [n]⊗ V 0l

Consider a pd-thickening S → R with kernel a. Let G be a p-divisible formal group
over R and M = MG = M(G) be its Cartier module (166), which we will regard as
an ES-module.

Definition 91. — An extension (L, N) of M by the S-module L is an exact sequence
of ES-modules

(173) 0 −→ C(L) −→ N −→ M −→ 0,

such that N is a reduced ES-module, and aN ⊂ V 0L, where a ⊂ W (S) ⊂ ES is the
ideal in W (S) defined after (48).

Remark. — We will denote V 0L simply by L and call it the submodule of exponentials
of C(L) respectively N . A morphism of extensions (L, N) → (L′, N ′) consists of a
morphism of S-modules ϕ : L → L′ and a homomorphism of ES-modules u : N → N ′

such that the following diagram is commutative

0 −−−−→ C(L) −−−−→ N −−−−→ M −−−−→ 0

C(ϕ)

 
u

∥∥∥
0 −−−−→ C(L′) −−−−→ N ′ −−−−→ M −−−−→ 0

More geometrically an extension as in definition 91 is obtained as follows. Let G̃ be
a lifting of the p-divisible formal group G to a p-divisible formal group over S, which
may be obtained by lifting the display P to S. Let W be the vector group associated
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to a locally free finite S-module W . Consider an extension of f.p.p.f. sheaves over
Spec S:

(174) 0 −→ W −→ E −→ G̃ −→ 0

The formal completion of (174) is an exact sequence of formal groups (i.e. a sequence
of formal groups, such that the corresponding sequence of Lie algebras is exact).
Hence we have an exact sequence of Cartier modules.

0 −→ C(W ) −→ M �E −→ M �G −→ 0,

Ê being the formal completion of E.
We have aM �E � a ⊗S LieE. We let L = W + aLieE as submodule of LieE or

equivalently of M �E . Since L is killed by F we obtain an exact sequence

0 −→ C(L) −→ M �E −→ MG −→ 0,

which is an extension in the sense of definition 91. Conversely we can start with a
sequence (173). We choose a lifting of M/V M to a locally free S-module P . Consider
any map ρ making the following diagram commutative.

(175) N/V N

ρ
�������������

�� M/V M

P

��

Let W = ker ρ. Then L = W + a(N/V N) as a submodule of LieN . The quotient of
N by C(W ) is a reduced ES-module and hence the Cartier module of a formal group
G̃ over S, which lifts G. We obtain an extension of reduced ES-modules

0 −→ C(W ) −→ N −→ M �G −→ 0,

and a corresponding extension of formal groups over S

0 −→ Ŵ+ −→ Ê −→ G̃ −→ 0.

Then the push–out by the natural morphism Ŵ+ → W is an extension of f.p.p.f.
sheaves (174).

These both constructions are inverse to each other. Assume we are given two
extensions (W, E, G̃) and (W1, E1, G̃1) of the form (174). Then a morphism between
the corresponding extensions of Cartier modules in the sense of definition 91 may be
geometrically described as follows. The morphism consists of a pair (u, vR), where
u : E → E1 is a morphism of f.p.p.f. sheaves and vR : WR → W1,R a homomorphism
of vector groups over R. The following conditions are satisfied.
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1) We have a commutative diagram for the reductions over R:

0 −−−−→ WR −−−−→ ER −−−−→ G −−−−→ 0
vR


u
∥∥∥

0 −−−−→ W1,R −−−−→ E1,R −−−−→ G1 −−−−→ 0

2) For any lifting ṽ : W → W1 of vR to a homomorphism of vector groups the map:

ṽ − u|�W : Ŵ. −→ Ê1

factors through a linear map W → a⊗ LieE1 :

Ŵ −→ (a⊗ LieE1)∧
exp−−−−→ Ê1.

Here the second map is given by the natural inclusion of Cartier modules C(aM �E1
) ⊂

M �E1
or equivalently by the procedure in Messing’s book [Me] (see [Z2]). This dictio-

nary between extensions used by Messing and extensions of Cartier modules in the
sense of definition 91, allows us to use a result of Messing in a new formulation:

Theorem 92. — Let S → R be a pd-thickening with nilpotent divided powers. Let
G be a formal p-divisible group over R. Then there exists a universal extension
(Luniv, Nuniv) of G by a S-module Luniv.

Then any other extension (L, N) in sense of definition 91 is obtained by a unique
S-module homomorphism Luniv → L.

Proof. — This is [Me] Chapt. 4 theorem 2.2.

Remark. — The definition of the universal extension over S is based on the exponen-
tial map

exp : (a ⊗ LieE)∧ −→ E∧,

which we simply defined using Cartier theory and the inclusion a ⊂ W (S) given by
the divided powers on a. In the case of a formal p-divisible group it makes therefore
sense to ask whether Messing’s theorem 92 makes sense for any pd-thickening and not
just nilpotent ones. We will return to this question in proposition 96

Since we consider p-divisible groups without an étale part, this theorem should
be true without the assumption that the divided powers are nilpotent. This would
simplify our arguments below. But we don’t know a reference for this.

The crystal of Grothendieck and Messing deduced from this theorem is defined by

DG(S) = LieNuniv.

Lemma 93. — Let S → R be a pd-thickening with nilpotent divided powers. Let P =
(P, Q, F, V −1) be a display over R. By proposition 44 there exist up to canonical
isomorphism a unique triple (P̃ , F, V −1), which lifts (P, F, V −1), such that V −1 is
defined on the inverse image Q̂ ⊂ P̃ of Q.
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Then the universal extension of BT (P) is given by the following exact sequence of
ES-modules

(176) 0 −→ C(Q̂/ISP̃ ) −→ ES ⊗W (S) P̃ /(F ⊗ x− 1⊗ Fx)x∈ �P −→ M(P) −→ 0,

where the second arrow maps y ∈ Q̂ to V ⊗V −1y−1⊗ y, and the third arrow is given
by the canonical map P̃ −→ P .

Proof. — By [Z1] the ES-module N in the middle of the sequence (176) is a reduced
Cartier module, and the canonical map P̃ → ES ⊗W (S) P̃ , x �→ 1 ⊗ x provides an
isomorphism P̃ /ISP̃ � N/V N .

Let us verify that the arrow C(Q̂/ISP̃ ) → N in the sequence (176) is well-defined.
Clearly y �→ V ⊗ V −1y − 1 ⊗ y is a homomorphism of abelian groups Q̂ → N . The
subgroup IS P̃ is in the kernel:

V ⊗ V −1Vwx − 1⊗ Vwx = V ⊗ wFx− 1⊗ Vwx

= V wF ⊗ x− 1⊗ Vwx = Vwx − 1⊗ Vwx = 0,

for w ∈ W (S), x ∈ P̃ .
Moreover one verifies readily that F (V ⊗ V −1y − 1 ⊗ y) = 0 in N . Then the

image of Q̂ −→ N is in a natural way an S-module, Q̂/ISP̃ → N is an S-module
homomorphism, and we have a unique extension of the last map to a ES-module
homomorphism

C(Q̂/ISP̃ ) −→ N.

We see that (176) is a complex of V -reduced ES-modules. Therefore it is enough to
check the exactness of the sequence (176) on the tangent spaces, which is obvious.

We need to check that (176) is an extension in the sense of definition 91, i.e.
a ·N ⊂ Q̂/ISP̃ , where Q̂/ISP̃ is regarded as a subgroup of N by the second map of
(176) and a ⊂ W (S) as an ideal.

Indeed, let a ∈ a, x ∈ P̃ and ξ =
∑

V i[ξij ]F j ∈ ES . Then aξ⊗ x = a
∑

j [ξ0j ]F j ⊗
x = 1⊗ a

∑
[ξ0j ]F jx. Hence it is enough to verify that an element of the form 1⊗ ax

is in the image of Q̂ → N . But we have

V ⊗ V −1ax− 1⊗ ax = −1⊗ ax.

It remains to be shown that the extension (176) is universal. Let

0 −→ C(Luniv) −→ Nuniv −→ M(P) −→ 0

be the universal extension. For any lifting of M(P) to a reduced Cartier module M̃

over S, there is a unique morphism Nuniv −→ M̃ , which maps Luniv to a · M̃ . Let L̃

be the kernel of Luniv −→ aM̃ . Then it is easy to check that

(177) 0 −→ C(L̃) −→ Nuniv −→ M̃ −→ 0
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is the universal extension of M̃ . Hence conversely starting with a universal extension
(177) of M̃ , we obtain the universal extension of M over S as

0 −→ C(L̃ + aNuniv) −→ Nuniv −→ M −→ 0,

where the sum L̃ + aNuniv is taken in LieNuniv.
Now let Q̃ ⊂ Q̂ be an arbitrary W (S)-submodule, such that P̃ = (P̃ , Q̃, F, V −1) is

a display. By the consideration above it suffices to show that

(178) 0 −→ C(Q̃/ISP̃ ) −→ N −→ M(P̃) −→ 0

is the universal extension of M(P̃) over S. In other words, we may assume R = S.
Starting from the universal extension (177) for M̃ = M(P̃), we get a morphism

of finitely generated projective modules L̃ → Q̃/ISP̃ . To verify that this is an iso-
morphism it suffices by the lemma of Nakayama to treat the case, where S = R is a
perfect field. In this case we may identify M(P̃) with P̃ . The map P̃ → ES ⊗W (S) P̃ ,
x �→ 1⊗ x induces the unique W (S)[F ]-linear section σ of

0 �� C(Q̃/IS P̃ ) �� N �� P̃ ��

σ
		

0,

such that V σ(x) − σ(V x) ∈ Q̃/ISP̃ (compare [Z1], 2, 2.5 or [Ra-Zi] 5.26). The
extension is classified up to isomorphism by the induced map σ : P̃ → N/V N . Since
this last map is P̃ → P̃ /ISP̃ the extension is clearly universal.

Our construction of the universal extension (176) makes use of the existence of the
triple (P̃ , F, V −1). If we have a pd-morphism ϕ : W (R) → S, we know how to write
down this triple explicitly (corollary 56). Hence we obtain in this case a complete
description of the universal extension over S only in terms of (P, Q, F, V −1). Indeed,
let Qϕ be the inverse image of Q/IP be the map

S ⊗W (R) P −→ R⊗W (R) P.

Then the universal extension is given by the sequence

(179) 0 −→ C(Qϕ) −→ ES ⊗W (R) P/(F ⊗ x− 1⊗ Fx)x∈P −→ M(P) −→ 0,

where the tensor product with ES is given by δϕ : W (R) → W (S) (compare (96)).
The second arrow is defined as follows. For an element y ∈ Qϕ we choose a lifting
y ∈ Qϕ ⊂ W (S)⊗W (R) P . Then we write:

1⊗ y ∈ ES ⊗W (S) (W (S)⊗W (R) P ) = ES ⊗W (R) P

With this notation the image of y by the second arrow of (179) is V ⊗ V −1
ϕ y − 1⊗ y.

One may specialize this to the case of the pd-thickening S = Wm(R) → R, and
then go to the projective limit W (R) = lim←−m

Wm(R). Then the universal extension
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over W (R) takes the remarkable simple form:

(180)
0 −→ C(Q) −→ EW (R) ⊗W (R) P/(F ⊗ x− 1⊗ Fx)x∈P −→ M(P) −→ 0

y �−→ V ⊗ V −1y − 1⊗ y

3.3. Classification of p-divisible formal groups. — The following main theorem
gives the comparison between Cartier theory and the crystalline Dieudonné theory of
Grothendieck and Messing.

Theorem 94. — Let P = (P, Q, F, V −1) be a display over a ring R, such that p is
nilpotent in R. Let G = BT (P) be the associated formal p-divisible group. Then
there is a canonical isomorphism of crystals on the crystalline site of nilpotent pd-
thickenings over Spec R:

DP
∼−−→ DG

It respects the Hodge filtration on DP(R) respectively DG(R).
Let S → R be a pd-thickening with nilpotent divided powers. Assume we are given

a morphism W (R) → S of topological pd-thickenings of R. Then there is a canonical
isomorphism:

S ⊗W (R) P ∼= DG(S).

Remark. — We will remove the restriction to the nilpotent crystalline site below
(corollary 97).

Proof. — In the notation of lemma 93 we find DP(S) = P̃ /ISP̃ and this is also the
Lie algebra of the universal extension of G over S, which is by definition the value of
the crystal DG at S.

Corollary 95. — Let S → R be a surjective ring homomorphism with nilpotent kernel.
Let P be a display over R and let G be the associated formal p-divisible group. Let
G̃ be a formal p-divisible group over S, which lifts G. Then there is a lifting of P
to a display P̃ over S, and an isomorphism BT (P̃) → G̃, which lifts the identity
BT (P) → G.

Moreover let P ′ be a second display over R, and let α : P → P ′ be a morphism.
Assume we are given a lifting P̃ ′ over S of P ′. We denote the associated formal
p-divisible groups by G̃′ respectively G′. Then the morphism α lifts to a morphism of
displays P̃ → P̃ ′, iff BT (α) : G → G′ lifts to a homomorphism of formal p- divisible
groups G̃ → G̃′.

Proof. — Since S → R may be represented as a composition of nilpotent pd-thicke-
nings, we may assume that S → R itself is a nilpotent pd-thickening. Then the left
hand side of the isomorphism of theorem 94 classifies liftings of the display P by
theorem 48 and the right hand side classifies liftings of the formal p-divisible group
G by Messing [Me] Chapt V theorem (1.6). Since the constructions are functorial in
P and G the corollary follows.
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Proposition 96. — Let P be a display over R. Let S → R be a pd-thickening with
nilpotent kernel a. Then the extension of lemma 93 is universal (i.e. in the sense of
the remark after Messing’s theorem 92).

Proof. — We denote by G the formal p-divisible group associated to P . Any lifting
G̃ of G to S gives rise to an extension of MG in the sense of definition 91:

0 −→ C(aM �G) −→ M �G −→ MG −→ 0

With the notation of the proof of lemma 93 we claim that there is a unique morphism
of extensions N → M �G. Indeed, the last corollary shows that G̃ is the p-divisible
group associated to a display P̃(G̃) which lifts the display P . Hence P̃(G̃) is of the
form (P̃ , Q̃, F, V −1), where (P̃ , F, V −1) is the triple in the formulation of lemma 93.
But then the description of the Cartier module M �G in terms of the display gives
immediately a canonical morphism of Cartier modules N → M �G. Its kernel is C(L),
where L is the kernel of the map P̃ /ISP̃ → Lie G̃, i.e. the Hodge filtration determined
by G̃. This shows the uniqueness of N → M �G.

Now let us consider any extension:

0 −→ C(L1) −→ N1 −→ M(P) −→ 0

Using the argument (175), we see that there is a lifting G̃ of G, such that the extension
above is obtained from

0 −→ C(U1) −→ N1 −→ M �G −→ 0.

Let Q̃ ⊂ P̃ be the display which corresponds to G̃ by the last corollary. Then by
lemma 93 the universal extension of M �G is :

0 −→ C(Q̃/ISP̃ ) −→ N −→ M �G −→ 0

This gives the desired morphism N → N1. It remains to show the uniqueness. But
this follows because for any morphism of extensions N → N1 the following diagram
is commutative:

N −−−−→ N1
 

M �G −−−−→ M �G

Indeed we have shown, that the morphism of extensions N → M �G is unique.

Remark. — Let P be the display of a p-divisible formal group G. Then we may
extend the definition of the crystal DG to all pd-thickenings S → R (not necessarily
nilpotent) whose kernel is a nilpotent ideal, by setting:

DG(S) = LieES ,

where ES is the universal extension of G over S, which exist by the proposition above.
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This construction is functorial in the following sense. Let P ′ be another display over
R and denote the associated formal p-divisible group by G′. Then any homomorphism
a : G → G′ induces by the universality of the universal extension a morphism of
crystals:

D(a) : DG −→ DG′ .

Corollary 97. — If we extend DG to the whole crystalline site as above, the theorem
94 continues to hold, i.e. we obtain a canonical isomorphism of crystals:

(181) DP −→ DG

Proof. — This is clear.

Proposition 98. — The functor BT from the category of displays over R to the category
of formal p-divisible groups over R is faithful, i.e. if P and P ′ are displays over R,
the map

Hom(P ,P ′) −→ Hom(BT (P), BT (P ′))

is injective.

Proof. — Let P = (P, Q, F, V −1) and P ′ = (P ′, Q′, F, V −1) be the displays and G

and G′ the associated p-divisible groups. Assume α : P → P ′ is a morphism of
displays. It induces a morphism a : G → G′.

But the last corollary gives α back if we apply to a the functor D:

DG(W (R)) −→ DG′(W (R)).

Proposition 99. — Let p be nilpotent in R and assume that the set of nilpotent elements
in R form a nilpotent ideal. Then the functor BT of proposition 98 is fully faithful.

We need a preparation before we can prove this.

Lemma 100. — Let P and P ′ be displays over R. Let a : G → G′ be a morphism of
the associated p-divisible groups over R. Assume that there is an injection R → S of
rings, such that aS : GS → G′

S is induced by a morphism of displays β : PS → P ′
S.

Then a is induced by a morphism of displays α : P → P ′.

Proof. — The morphism W (R) → R is a pd-thickening. By the corollary 97 a induces
a map α : P → P ′, namely the map induced on the Lie algebras of the universal exten-
sions (180). Therefore α maps Q to Q′. By assumption the map β = W (S)⊗W (R) α :
W (S)⊗W (R) P → W (S)⊗W (R) P ′ commutes with F and V −1. Then the same is true
for α because of the inclusions P ⊂ W (S)⊗W (R) P, P ′ ⊂ W (S) ⊗W (R) P ′. Hence α

is a morphism of displays. By proposition 98 BT (α) is a.

Proof of the proposition. — If R = K is a perfect field, the proposition is true by
classical Dieudonné theory. For any field we consider the perfect hull K ⊂ Kperf and
apply the last lemma. Next assume that R =

∏
i∈I Ki is a product of fields. We

denote the base change R → Ki by an index i. A morphism of p-divisible groups
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G → G′, is the same thing as a family of morphisms of p-divisible groups Gi → G′
i

over each Ki. Indeed, one can think of G in terms of systems of finite locally free
group schemes. Then one needs only to observe that any finitely generated projective
module L over R is of the form

∏
Li, since it is a direct summand of Rn. Next one

observes that the same statements are true for morphisms of displays P → P ′, because
W (R) =

∏
W (Ki) etc. Hence the case where R is a product of fields is established.

Since a reduced ring may be embedded in a product of fields we may apply the lemma
to this case. The general case follows from corollary 95 if we divide out the nilpotent
ideal of nilpotent elements.

We now give another criterion for the fully faithfulness of the functor BT , which
holds under slightly different assumptions.

Proposition 101. — Let R be an Fp-algebra. We assume that there exists a topological
pd-thickening (S, an) of R, such that the kernels of S/an → R are nilpotent, and such
that S is a p-adic torsion free ring.

Then the functor BT from the category of displays over R to the category of p-
divisible formal groups is fully faithful.

Proof. — Let P1 and P2 be displays over R, and let G1 and G2 be the p-divisible
formal groups associated by the functor BT . We show that a given homomorphism of
p-divisible groups a : G1 → G2 is induced by a homomorphism of displays P1 → P2.

The homomorphism a induces a morphism of filtered F-crystals aD : DG1 → DG2 on
the crystalline site. Since we have identified (corollary 97) the crystals D and D on this
site, we may apply proposition 60 to obtain a homomorphism φ : P1 → P2 of displays.
We consider the triples (P̃1, F, V −1) and (P̃2, F, V −1), which are associated to P1 and
P2, and the unique lifting of φ to a homomorphism φ̃ of these triples. Then DGi(S) is
identified with P̃i/ISP̃i for i = 1, 2. Let E1,S and E2,S be the universal extensions of
G1 and G2 over S. By the proposition loc.cit. the homomorphism aD(S) : Lie E1,S →
Lie E2,S coincides with the identifications made, with the homomorphism induced by
φ̃:

φ̃ : P̃1/ISP̃1 −→ P̃2/ISP̃2

Let us denote by b : G1 → G2 the homomorphism BT (φ). Then by theorem 94 b

induces on the crystals the same morphism as φ.
The two maps E1,S → E2,S induced by a and b coincide therefore on the Lie

algebras. But then these maps coincide because the ring S is torsionfree. Hence we
conclude that a and b induce the same map E1,R → E2,R, and finally that a = b.

Proposition 102. — Let k be a field. Then the functor BT from the category of dis-
plays over k to the category of formal p-divisible groups over k is an equivalence of
categories.
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Proof. — By proposition 99 we know that the functor BT is fully faithful. Hence
we have to show that any p-divisible formal group X over k is isomorphic to BT (P)
for some display P over k. Let � be the perfect closure of k. Let X = X� be the
formal p-divisible group obtained by base change. By Cartier theory we know that
X = BT (P) for some display P over �.

Now we apply descent with respect to the inclusion q : k → �. Let q1 and q2 be
the two natural maps � → �⊗k �. Let Xi respectively Pi be the objects obtained by
base change with respect to qi for i = 1, 2. Our result would follow if we knew that
the functor BT is fully faithful over � ⊗k �. Indeed in this case the descent datum
X1

∼= X2 defined by X would provide an isomorphism P1
∼= P2. This isomorphism

would be a descent datum (i.e. satisfy the cocycle condition) because by proposition
98 the functor BT is faithful. Hence by theorem 37 it would give the desired display
P over k.

By proposition 101 it is enough to find a topological pd-thickening S → �⊗k �, such
that S is a torsion free p-adic ring. We choose a Cohen ring C of k and embedding
C → W (�) [AC] IX, §2, 3. Then we consider the natural surjection:

(182) W (�)⊗C W (�) −→ �⊗k �

The ring A = W (�)⊗C W (�) is torsionfree because W (�) is flat over C. The kernel of
(182) is pA. We define S as the p-adic completion:

S = lim←−
n

A/pnA.

Then S is a torsionfree p-adic ring, such that S/pS ∼= �⊗k �. This follows by going to
the projective limit in the following commutative diagram:

0 −−−−→ A/pnA
p−−−−→ A/pn+1A −−−−→ A/pA −−−−→ 0
 
 
=

0 −−−−→ A/pn−1 p−−−−→ A/pnA −−−−→ A/pA −−−−→ 0

But with the canonical divided powers on pS the topological pd-thickening S → �⊗k �

is the desired object.

Theorem 103. — Let R be an excellent local ring or a ring such that R/pR is of finite
type over a field k. Then the functor BT is an equivalence from the category of displays
over R to the category of formal p-divisible groups over R.

Proof. — We begin to prove this for an Artinian ring R. Since BT is a fully faithful
functor, we need to show that any p-divisible group G over R comes from a display
P . Let S → R be a pd-thickening. Since we have proved the theorem for a field, we
may assume by induction that the theorem is true for R. Let G be a p-divisible group
over R with BT (P) = G. The liftings of G respectively of P correspond functorially
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to the liftings of the Hodge filtration to

DP(S) = DG(S).

Hence the theorem is true for S.
More generally if S → R is surjective with nilpotent kernel the same reasoning

shows that the theorem is true for S, if it is true for R.
Next let R be a complete noetherian local ring. We may assume that R is reduced.

Let m be the maximal ideal of R. We denote by Gn the p-divisible group GR/mn

obtained by base change from G. Let Pn be the display over R/mn, which correspond
to Gn. Then P = lim←−Pn is a 3n-display over R. Consider the formal group H

over R which belongs to the reduced Cartier module M(P). Since Pn is obtained
by base change from P and consequently M(Pn) from M(P) too, we have canonical
isomorphisms Hn

∼= Gn. Hence we may identify H and G. Clearly we are done, if
we show the following assertion. Let P = (P, Q, F, V −1) be a 3n-display over R, such
that M(P) is the Cartier module of a p-divisible formal group of height equal to the
rank of P . Then P is nilpotent.

Indeed, it is enough to check the nilpotence of PS over an arbitrary extension
S ⊃ R, such that p · S = 0 (compare (15)). Since R admits an injection into a finite
product of algebraically closed fields, we are reduced to show the assertion above in
the case, where R is an algebraically closed field. In this case we have the standard
decomposition

P = Pnil ⊕ Pet

where Pnil is a display and Pet is a 3n-display with the structural equations

V −1ei = ei, for i = 1, . . . , h.

Then

M(Pet) =
h⊕

i=1

ERei/(V ei − ei),

is zero, because V −1 is a unit in ER. We obtain M(P) = M(Pnil) = P nil. Hence the
height of the p-divisible group G is rankRP nil. Our assumption heightG = rankRP

implies P = P nil. This finishes the case, where R is a complete local ring.
Next we consider the case, where the ring R is an excellent local ring. As above

we may assume R is reduced. Then the completion R̂ is reduced. Since the geometric
fibres of Spec R̂ → Spec R, are regular, for any R-algebra L, which is a field, the ring
R̂⊗R L is reduced. Hence if R is reduced, so is R̂ ⊗R R̂. Consider the diagram:

R
p−−−−→ R̂

p1−−−−→
−−−−→

p2

R̂⊗R R̂

Let G be a p-divisible formal group over R. It gives a descent datum on p∗G = G �R:

a : p∗1G �R −→ p∗2G �R.
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We find a display P̂ over R̂, such that BT (P̂) = G �R. Since the functor BT is fully
faithful over R̂⊗RR̂ by proposition 99 the isomorphism a is induced by an isomorphism

α : p∗1P̂ −→ p∗2P̂
From the corollary 98 it follows that α satisfies the cocycle condition. By theorem
37 there is a display P over R, which induces (P̂ , α). Since the application of the
functor BT gives us the descent datum for G, it follows by the usual descent theory
for p-divisible groups, that BT (P) = G.

Finally we consider the case of a finitely generated W (k)-algebra R. We form the
faithfully flat R-algebra S =

∏
Rm, where m runs through all maximal ideals of R.

Then we will apply the same reasoning as above to the sequence

R −→ S
p1−−−−→

−−−−→
p2

S ⊗R S.

We have seen, that it is enough to treat the case, where R is reduced. Assume further
that Spec R is connected, so that G has constant height.

We see as in the proof of proposition 99, that to give a p-divisible group of heighth

over
∏

Rm is the same thing as to give over each Rm a p-divisible group of heighth.
The same thing is true for displays. (One must show that the order N of nilpotence
in (15) is independent of m. But the usual argument in linear algebra shows also in
p-linear algebra that N = h − d is enough.) Since each ring Rm is excellent with
perfect residue field, we conclude that GS = BT (P̃) for some display P̃ over S. We
may apply descent if we prove that the ring S ⊗R S is reduced. This will finish the
proof. Let us denote by Q(R) the full ring of quotients. Then we have an injection(∏

Rm

)
⊗R

(∏
Rm

)
↪−→

(∏
Q (Rm)

)
⊗Q(R)

(∏
Q (Rm)

)
The idempotent elements in Q(R) allows to write the last tensor product as⊕

p∈Spec R
p minimal

(
(
∏

m
Q (Rm/pRm))⊗Q(R/pR) (

∏
m

Q (Rm/pRm))
)

We set K = Q(R/pR). Then we have to prove that for any index set I they are no
nilpotent elements in the tensor product(∏

i∈I

K
)
⊗K

(∏
i∈I

K
)
.

But any product of separable (= geometrically reduced) K-algebras is separable,
because

∏
commutes with the tensor product by a finite extension E of K.

4. Duality

4.1. Biextensions. — Biextensions of formal group were introduced by Mumford
[Mu]. They may be viewed as a formalization of the concept of the Poincaré bundle in
the theory of abelian varieties. Let us begin by recalling the basic definitions (loc.cit.).
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Let A, B, C be abelian groups. An element in Ext1(B ⊗L C, A) has an interpreta-
tion, which is similar to the usual interpretation of Ext1(B, A) by Yoneda.

Definition 104. — A biextension of the pair B, C by the abelian group A consists of
the following data:

1) A set G and a surjective map

π : G −→ B × C

2) An action of A on G, such that G becomes a principal homogenous space with
group A and base B × C.

3) Two maps
+B : G×B G −→ G +C : G×C G −→ G,

where the map G → B used to define the fibre product, is the composite of π

with the projection B × C → B, and where G → C is defined in the same way.

One requires that the following conditions are verified:

(i) The maps of 3) are equivariant with respect to the morphism A×A → A given
by the group law.

(iiB) The map +B is an abelian group law of G over B, such that the following
sequence is an extension of abelian groups over B:

0 → B ×A −→ G
π−−→ B × C → 0

b× a �−→ a + 0B(b)

Here 0B : B → G denotes the zero section of the group law +B and a + 0B(b)
is the given action of A on G.

(iiC) The same condition as (iiB) but for C.
(iii) The group laws +B and +C are compatible in the obvious sense:

Let xi,j ∈ G, 1 ≤ i, j ≤ 2 be four elements, such that prB(xi,1) = prB(xi,2) and
prC(x1,i) = prC(x2,i) for i = 1, 2. Then

(x11 +B x12) +C (x21 +B x22) = (x11 +C x21) +B (x12 +C x22).

Remark. — The reader should prove the following consequence of these axioms:

0B(b1) +C 0B(b2) = 0B(b1 + b2)

The biextension of the pair B, C by A form a category which will be denoted by
BIEXT1(B ×C, A). If A → A′ respectively B′ → B and C′ → C are homomorphism
of abelian groups, one obtains an obvious functor

BIEXT1(B × C, A) −→ BIEXT1(B′ × C′, A′).

Any homomorphism in the category BIEXT1(B × C, A) is an isomorphism. The
automorphism group of an object G is canonically isomorphic of the set of bilinear
maps

(183) Bihom(B × C, A).
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Indeed if α is a bilinear map in (183), the corresponding automorphism of G is given
by g �→ g + α(π(g)).

If b ∈ B, we denote by Gb or Gb×C the inverse image of b × C by π. Then +B

induces on Gb the structure of an abelian group, such that

0 −→ A −→ Gb −→ C −→ 0

is a group extension. Similarly one defines Gc for c ∈ C.

A trivialization of a biextension G is a ”bilinear” section s : B × C → G, i.e.
π ◦ s = idB×C , and s(b,−) for each b ∈ B is a homomorphism C → Gb, and s(−, c)
for each c ∈ C is a homomorphism B → GC . A section s defines an isomorphism of
G with the trivial biextension A×B × C.

We denote by Biext1(B × C, A) the set of isomorphism classes in the category
BIEXT1(B×C, A). It can be given the structure of an abelian group (using cocycles
or Baer sum). The zero element is the trivial biextension.

An exact sequence 0 → B1 → B → B2 → 0 induces an exact sequence of abelian
groups

0 −→ Bihom(B2 × C, A) −→ Bihom(B × C, A) −→ Bihom(B1 × C, A) δ−−→
Biext1(B2 × C, A) −→ Biext1(B × C, A) −→ Biext1(B1 × C, A)

The connecting homomorphism δ is obtained by taking the push–out of the exact
sequence

0 −→ B1 × C −→ B × C −→ B2 × C −→ 0,

by a bilinear map α : B1×C → A. More explicitly this push-out is the set A×B×C

modulo the equivalence relation:

(a, b1 + b, c) ≡ (a + α(b1, c), b, c), a ∈ A, b ∈ B c ∈ C, b1 ∈ B1

If 0 → A1 → A → A2 → 0 is an exact sequence of abelian groups, one obtains an
exact sequence:

0 −→ Bihom(B × C, A1) −→ Bihom(B × C, A) −→ Bihom(B × C, A2)
δ−−→

Biext1(B × C, A1) −→ Biext1(B × C, A) −→ Biext1(B × C, A2)

We omit the proof of the following elementary lemma:

Lemma 105. — If B and C are free abelian groups, one has

Biext1(B × C, A) = 0.

This lemma gives us the possibility to compute Biext1 by resolutions:
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Proposition 106. — (Mumford) Assume we are given exact sequences 0 → K1 →
K0 → B → 0 and 0 → L1 → L0 → C → 0. Then one has an exact sequence of
abelian groups

Bihom(K0 × L0, A) −→ Bihom(K0 × L1, A)×Bihom(K1×L1,A) Bihom(K1 × L0, A)

−→ Biext1(B × C, A) −→ Biext1(K0 × L0, A)

Proof. — One proves more precisely that to give a biextension G of B × C together
with a trivialization over K0 × L0:

G �� B × C

K0 × L0

s

�����������

��

is the same thing as to give bilinear maps ξ : K0 × L1 → A and µ : K1 × L0 → A,
which have the same restriction on K1 × L1. We denote this common restriction by
ϕ : K1 × L1 → A.

Using the splitting 0B of the group extension

0 −→ A −→ GB×0 −→ B −→ 0,

we may write

(184) s(k0, l1) = 0B(b0) + ξ(k0, l1), for k0 ∈ K0, l1 ∈ L1,

where b0 is the image of k0 in B and ξ(k0, l1) ∈ A. This defines the bilinear map ξ.
Similarly we define µ:

(185) s(k1, l0) = 0C(c0) + µ(k1, l0),

for k1 ∈ K1 and l0 ∈ L0, where c0 ∈ C is the image of l0. Clearly these maps are
bilinear, since s is bilinear. Since 0B(0) = 0C(0) their restrictions to K1 × L1 agree.

Conversely if ξ and µ are given, one considers in the trivial biextension A×K0×L0

the equivalence relation

(a, k0 + k1, l0 + l1) ≡ (a + ξ(k0, l1) + µ(k1, l0) + ξ(k1, l1), k0, l0).

Dividing out we get a biextension G of B × C by A with an obvious trivialization.

The following remark may be helpful. Let l0 ∈ L0 be an element with image c ∈ C.
We embed K1 → A ×K0 by k1 �→ (−µ(k1, l0), k1). Then the quotient (A ×K0)/K1

defines the group extension 0 → A → Gc → B → 0.

Corollary 107. — There is a canonical isomorphism:

Ext1(B ⊗L C, A) −→ Biext1(B × C, A).
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Proof. — If B and C are free abelian groups one can show that any biextension is
trivial (see (105)). One considers complexes K• = · · · 0 → K1 → K0 → 0 · · · and
L• = · · · 0 → L1 → L0 → 0 · · · as in the proposition, where K0 and L0 are free
abelian groups. In this case the proposition provides an isomorphism

(186) H1(Hom(K• ⊗ L•, A)) = Biext1(K × L, A).

Let T• = · · · 0 → T2 → T1 → T0 → 0 · · · be the complex K• ⊗ L•. Then the group
(186) above is simply the cokernel of the map

(187) Hom(T0A) −→ Hom(T1/ Im T2, A).

Let · · ·Pi → · · · → P1 � K1 → 0 be any free resolution. We set P0 = K0 and
consider the complex P• = · · · → Pi → · · ·P1 → P0 → 0. The same process applied
to the L′s yields Q• = · · · → Q1 → · · · → Q1 → Q0 → 0. Let T̃ = P• ⊗Q•. Then the
complex

· · · 0 −→ T̃1/ Im T̃2 −→ T̃0 −→ · · ·
is identical with the complex

· · · 0 −→ T1/ ImT2 −→ T0 −→ · · ·

Therefore the remark (187) yields an isomorphism

H1(Hom(K• ⊗ L•, A)) � H1(Hom(P• ⊗Q•, A)) = Ext1(B ⊗L C, A).

The notion of a biextension has an obvious generalization to any topos. This theory
is developed in SGA7. We will consider the category NilR with the flat topology. To
describe the topology it is convenient to consider the isomorphic category AugR (see
definition 50). Let (B, ε) ∈ AugR be an object, i.e. a morphism ε : B → R of R-
algebras. We write B+ = Ker ε for the augmentation ideal. We will often omit the
augmentation from the notation, and write B instead of (B, ε).

If we are given two morphisms (B, ε) → (Ai, εi) for i = 1, 2, we may form the
tensorproduct:

(A1, ε1)⊗(B,ε) (A2, ε2) = (A1 ⊗B1 A2, ε1 ⊗ ε2).

This gives a fibre product in the opposite category Augopp
R :

Spf A1 ×Spf B Spf A2 = Spf(A1 ⊗B A2).

Via the Yoneda embedding we will also consider Spf B as a functor on NilR:

Spf B(N ) = HomNil R(B+,N ).

We equip Augopp
R with a Grothendieck topology. A covering is simply a morphism

Spf A → Spf B, such that the corresponding ring homomorphism B → A is flat. We
note that in our context flat morphisms are automatically faithfully flat. We may
define a sheaf on Augopp

R as follows.
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Definition 108. — A functor F : AugR → Sets is called a sheaf, if for any flat homo-
morphism B → A in AugR the following sequence is exact.

F (B) → F (A) ⇒ F (A⊗B A).

Recall that a left exact functor G : NilR → (Sets) is a functor, such that G(0)
consists of a single point, and such that each exact sequence in NilR

0 −→ N1 −→ N2 −→ N3 −→ 0

induces an exact sequence of pointed sets

0 −→ G(N1) −→ G(N2) −→ G(N3),

i.e. G(N1) is the fibre over the point G(0) ⊂ G(N3). It can be shown that such a
functor respects fibre products in NilR. We remark that any left exact functor on
NilR is a sheaf.

A basic fact is that an exact abelian functor on NilR has trivial Čech cohomology.

Proposition 109. — Let F : NilR → (Ab) be a functor to the category of abelian groups,
which is exact. Then for any flat morphism B → A in AugR the following complex
of abelian groups is exact

F (B) → F (A) ⇒ F (A⊗B A)
→
→
→F (A⊗B A⊗B A)

→
→
→
→
· · ·

Proof. — Let N be a nilpotent B-algebra and B → C be a homomorphism in AugR.
then we define simplicial complexes:

(188)
(Cn (N , B → A) , θn

i )

(Cn (C, B → A) , θn
i )

for n ≥ 0.
We set

Cn(N , B → A) = N ⊗B A⊗B · · · ⊗B A

Cn(C, B → A) = C ⊗B A⊗B · · · ⊗B A,

where in both equations we have n + 1 factors on the right hand side. The operators
θn

i : Cn−1 → Cn for i = 0, . . . , n are defined by the formulas:

θn
i (x⊗ a0 ⊗ · · · ⊗ an−1) = (x⊗ a0 ⊗ · · · ⊗ ai−1 ⊗ 1⊗ ai · · · ⊗ an−1),

where x ∈ N or x ∈ C.
One knows that the associated chain complexes with differential δn =

∑
(−1)iθn

i

are resolutions of N respectively C, if either B → A is faithfully flat or B → A has a
section s : A → B. In the latter case one defines

sn : Cn −→ Cn−1, sn(x⊗ a0 ⊗ · · · ⊗ an) = xS(a0)⊗ a1 ⊗ · · · ⊗ an.
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If one sets C−1 = N respectively C−1 = C and θ0
0 : C−1 → C0, θ0

0(x) = x ⊗ 1, one
has the formulas:

(189) snθn
i =

{
idCn−1 , for i = 0

θn−1
i−1 sn−1, for i > 0 and n ≥ 1.

Let us extend the chain complex (Cn, δn) by adding zeros on the left:

(190) 0 → · · · → 0 → C−1 θ0
0 = δ0

−−−−−−→ C0 δ1

−−−→ C1 δ2

−−−→ C2 → · · ·

Since by (189) we have snδn + δn−1sn−1 = idCn−1, we have shown that this complex
is homotopic to zero.

If F : NilR → (Ab) is a functor we can apply F to the simplicial complexes (188),
because θn

i are R-algebra homomorphisms. The result are simplicial complexes, whose
associated simple complexes will be denoted by

(191) Cn(N , B → A, F ) respectively Cn(C, B → A, F ).

Let us assume that B → A has a section. Then the extended complexes Cn(F ), n ∈
Z are homotopic to zero by the homotopy F (sn), since we can apply F to the relations
(189).

Let now F be an exact functor and assume that B → A is faithfully flat. If N 2 = 0,
each algebra Cn(N , B → A) has square zero. In this case the δn in (190) are algebra
homomorphisms. Therefore we have the right to apply F to (190). This sequence is
an exact sequence in NilR, which remains exact, if we apply F . Hence the extended
complex Cn(N , B → A, F ), n ∈ Z is acyclic if N 2 = 0.

Any exact sequence 0 → K → M → N → 0 is NilB, gives an exact sequence of
complexes.

0 −→ Cn(K, B → A, F ) −→ Cn(M, B → A, F ) −→ Cn(N , B → A, F ) −→ 0.

Hence Cn(N , B → A, F ) is acyclic for any N ∈ NilB . Finally let a ⊂ B be the kernel
of the augmentation B → R. Then one has an exact sequence of complexes:

(192) 0 → Cn(a, B → A, F ) → Cn(B, B → A, F ) → Cn(B/a, B/a → A/a, F ) → 0

The augmentation of A induces a section of B/a = R → A/a. Hence the last complex
in the sequence (192) is acyclic. Since we have shown Cn(a, B → A, F ) to be acyclic,
we get that Cn(B, B → A, F ) is acyclic. This was our assertion.

We reformulate the result in the language of sheaf theory.

Corollary 110. — An exact functor F : NilR → (Ab) is a sheaf on the Grothendieck
topology T = Augopp

R . For each covering T1 → T2 in T the Čech cohomology groups
Ȟi(T1/T2, F ) are zero for i ≥ 1. In particular an F -torsor over an object of T is
trivial.
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By SGA7 one has the notion of a biextension in the category of sheaves. If F, K, L

are abelian sheaves a biextension in BIEXT1(K × L, F ) is given by an F -torsor G

over K × L and two maps tK : G ×K G → G and tL : G ×L G → G, which satisfy
some conditions, which should now be obvious. If F is moreover an exact functor,
then any F torsor is trivial. Hence in this case we get for any N ∈ NilR, that G(N )
is a biextension of K(N ) and L(N ) is the category of abelian groups. This is the
definition Mumford [Mu] uses.

4.2. Two propositions of Mumford. — We will now update some proofs and
results in Mumford’s article. We start with some general remarks. Let F be an exact
functor. Let G

π→ H be any F -torsor is the category of sheaves on T . If H = Spf A is
representable we know that π is trivial and hence smooth because F is smooth. (The
word smooth is used in the formal sense [Z1] 2.28.) If H is not representable, π is still
smooth since the base change of G by any Spf A → H becomes smooth.

More generally any F -torsor over H is trivial if H is prorepresentable in the fol-
lowing sense:

There is a sequence of surjections in Aug R:

−→ · · · −→ An+1 −→ An · · · −→ A1,

such that

(193) H = lim−→ Spf Ai.

Then π has a section because it has a section over any Spf Ai and therefore over H

as is seen by the formula:

Hom(H, G) = lim−→Hom(Spf Ai, G)

Hence we have shown:

Lemma 111. — Let F : NilR → (Ab) be an exact functor. Then any F -torsor over a
prorepresentable object H is trivial.

For some purposes it is useful to state the first main theorem of Cartier theory in
a relative form. From now on R will be a Z(p)-algebra.

Let B be an augmented nilpotent R-algebra. In order to avoid confusion we will
write SpfR B instead of Spf B in the following. Let G : NilR → (Sets) be a left exact
functor. There is an obvious functor NilB → NilR. The composite of this functor
with G is the base change GB.

Assume we are given a morphism π : G → SpfR B, which has a section σ :
SpfR B → G. Then we associate to the triple (G, π, σ) a left exact functor on NilB:

Let L ∈ NilB and let B|L| = B ⊕ L be the augmented B-algebra associated to it.
Then B|L| is also an augmented R-algebra, with augmentation ideal B+ ⊕ L. Then
we define the restriction ResB G(L) of G to be the fibre over σ of the following map

HomSpfR B(SpfR B|L|, G) −→ HomSpfR B(SpfR B, G).
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The functor G �→ ResB G defines an equivalence of the category of triples (G, π, σ)
with the category of left exact functors on NilB. We will call the triple (G, π, σ) a
pointed left exact functor over SpfB. It is useful to explain this formalism a little
more.

Let us start with a left exact functor F on NilR. Then F × Spf B
pr−→ Spf B is

naturally a pointed functor over Spf B. The restriction of this pointed functor is FB :

ResB(F × Spf B) = FB.

Suppose that the B-algebra structure on L is given by a morphism ϕ : B+ → L.
Then we have also a map of augmented R-algebras B|L| → R|L|, which is on the
augmentation ideals ϕ + idL : B+ ⊕ L → L.

Lemma 112. — Let ϕ : B+ → L be a morphism in NilR. Via ϕ we may consider L
as an element of NilB. Then ResB G(L) may be identified with the subset of elements
of G(L), which are mapped to ϕ by the morphism

πL : G(L) −→ Hom(B+,L).

Proof. — Consider the two embeddings of nilpotent algebras ιL : L → B+ ⊕ L =
B|L|+, ιL(l) = 0⊕ l and ιB+ : B+ → B+ ⊕L = B|L|+, ιB+(b) = b⊕ 0. Let us denote
by Gσ(B+ ⊕ L) ⊂ G(B+ ⊕ L) = Hom(SpfR B|L|, G) the fibre at σ of the map

(194) Hom(SpfR B|L|, G) → Hom(SpfR B, G)

We have an isomorphism in NilR:

(195)
B+

⊕
L ∼−→ B+ × L

b⊕ l �−→ b× (ϕ(b) + l)

Let G(B+ ⊕ L) → G(L) be the map induced by B+ ⊕ L → L, b ⊕ l → ϕ(b) + l.
It follows from the isomorphism (195) and the left exactness of G, that this map
induces a bijection Gσ(B+ ⊕ L) ∼→ G(L). Hence we have identified G(L) with the
fibre of (194) at σ. It remains to determine, which subset of G(L) corresponds to
HomSpf B(Spf B|L|, G). But looking at the following commutative diagram

G(B+ ⊕ L)

πB+⊕L
��

�� G(L)

πL
��

Hom(B+, B+ ⊕ L) �� Hom(B+,L)

ιB+

 �� ϕ

we see that this subset is exactly the fibre of πL at ϕ.

Conversely given a functor H : NilB → (Sets), such that H(0) = {point}. Then
we obtain a functor G : NilR → (Sets) by:

G(N ) =  
ϕ:B+→N

H(Nϕ), N ∈ NilR,
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where Nϕ is N considered as a B-algebra via ϕ. Then we have a natural projection
π : G(N ) → Hom(B+,N ), which maps H(Nϕ) to ϕ. The distinguished point in each
H(Nϕ) defines a section σ of π.

In particular our remark shows that a group object in the category of arrows
G → Spf B, such that G is a left exact functor on NilR is the same thing as a left
exact functor H : NilB → (Ab).

In Cartier theory one considers the following functors on NilR:

D(N ) = N , Λ̂(N ) = (1 + tN [t])×, for N ∈ NilR .

Here t is an indeterminate. The functor D is considered as a set valued functor, while
Λ̂ takes values in the category (Ab) of abelian groups. We embed D into Λ̂ by the
map n �→ (1− nt) for n ∈ N .

Theorem 113 (Cartier). — Let G
π→ H be a morphism of functors on NilR. Assume

that G is left exact and has the structure of an abelian group object over H. The
embedding D ⊂ Λ̂ induces a bijection.

Homgroups/H(Λ̂ ×H, G) −→ Hompointedfunctors/H (D ×H, G) .

Proof. — If H is the functor H(N ) = {point}, N ∈ NilR this is the usual formulation
of Cartier’s theorem [Z1]. To prove the more general formulation above, one first
reduces to the case H = Spf B. Indeed to give a group homomorphism Λ̂ ×H → G

over H is the same thing as to give for any morphism Spf B → H a morphism
Λ̂× Spf B → Spf B ×H G of groups over Spf B.

Secondly the case H = Spf B is reduced to the usual theorem using the equivalence
of pointed left exact functors over Spf B and left exact functors on NilB.

The following map is a homomorphism of abelian functors:

(196) Λ̂(N ) −→ Ŵ (N ),∏
(1− xit

i) �−→ (xp0 , xp1 , . . . , xpk . . . )

If we compose this with D ⊂ Λ̂, we obtain an inclusion D ⊂ Ŵ .
Let R be a Q-algebra. Then the usual power series for the natural logarithm

provides an isomorphism of abelian groups:

log : Λ̂(N ) = (1 + tN [t])+ −→ tN [t]

The formula ε1

(∑
i≥1 nit

i
)

=
∑

npktp
k

. defines a projector ε1 : tN [t] → tN [t].

Then Cartier has shown that ε1 induces an endomorphism of Λ̂ over any Z(p)-algebra.
Moreover the homomorphism (196) induces an isomorphism:

ε1Λ̂ ∼= Ŵ .

We use this to embed Ŵ into Λ̂.
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Mumford remarked that Cartier’s theorem provides a section κ of the natural
inclusion

(197) Homgroups/H(Ŵ ×H, G) −→ Hompointed functors /H(Ŵ ×H, G).

Indeed, let α : Ŵ × H → G be a map of pointed set-valued functors. We define
κ̃(α) : Λ̂×H → G to be the unique group homomorphism, which coincides with α on
D×H (use theorem 113 ). We get κ(α) as the composition of κ̃(α) with the inclusion
Ŵ ×H ⊂ Λ̂×H .

Proposition 114. — Let F : NilR → (Ab) be an exact functor. Then

Ext1(Ŵ , F ) = 0,

where the Ext-group is taken in the category of abelian sheaves on T .

Proof. — By the remark (193) a short exact sequence 0 → F → G → Ŵ → 0 has a
set–theoretical section s : Ŵ → G. Then κ(s) splits the sequence.

Remark. — It is clear that this proposition also has a relative version. Namely in the
category of abelian sheaves over any prorepresentable sheaf H in T . we have:

Ext1groups/H(Ŵ ×H, F ×H) = 0,

if H is prorepresentable. Indeed consider an extension

(198) 0 −→ F ×H −→ G
π−−→ Ŵ ×H −→ 0.

Then G is an F torsor over Ŵ ×H and hence trivial. Let σ be any section of π. Let
us denote by ι : H → Ŵ ×H and sG : H → G the zero sections of the group laws
relative to H . We obtain a morphism sG − σι : H → F . Let pr2 : Ŵ ×H → H be
the projection. Then we define a new section of π by

(199) σnew = σ + (sG − σι) pr2 .

Then σnew is a morphism of pointed functors over H , i.e. it respects the sections sG

and ι. Hence we may apply the section κ of (197) to σnew. This gives the desired
section of (198).

If G : NilR → (Ab) is any functor, we set

(200) G+(N ) = Ker(G(N ) −→ G(0)).

Because of the map 0 → N we obtain a functorial decomposition

G(N ) = G+(N )⊕G(0),

which is then respected by morphisms of functors. If G is in the category of abelian
sheaves we find:

Ext1Ab(Ŵ , G) = Ext1Ab(Ŵ , G+),

which vanishes if G+ is exact.
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Cartier’s theorem applies to an abelian functor G, such that G+ is left exact:

Hom(Λ̂, G) � Hom(Λ̂, G+) � G+(XR[[X ]]),

where the Hom are taken in the category of abelian functors on NilR. If F, G are
abelian sheaves on T , the sheaf of local homomorphisms is defined as follows:

(201)
Hom(F, G)(A+) = Hom(FA, GA), A ∈ Aug R.

Hom(F, G)+(A+) = Ker(Hom(FA, GA) −→ Hom(FR, GR)).

Cartier’s theorem tells us that for a left exact functor G:

(202)
Hom(Λ̂, G)(A+) = G(XA[[X ]])

Hom+(Λ̂, G)(A+) = G(XA+[[X ]])

In particular the last functor Hom+(Λ̂, G) is exact if G is exact. Using the projector
ε1 we see that Hom+(Ŵ , G) is also exact.

Proposition 115 (Mumford). — Let F be an exact functor. Then

Biext1(Ŵ × Ŵ , F ) = 0.

Proof. — We strongly recommend to read Mumford’s proof, but here is his argument
formulated by the machinery of homological algebra. We have an exact sequence
(SGA7):

0 → Ext1(Ŵ , Hom(Ŵ , F )) −→ Biext1(Ŵ × Ŵ , F ) −→ Hom(Ŵ , Ext1(Ŵ , F )).

The outer terms vanish, by proposition (114) and because the functor Hom+(Ŵ , F )
is exact.

Our next aim is the computation of Bihom(Ŵ × Ŵ , Ĝm). Let us start with some
remarks about endomorphisms of the functors W and Ŵ .

Let R be any unitary ring. By definition the local Cartier ring ER relative to p

acts from the right on Ŵ (N ). Explicitly this action is given as follows. The action of
W (R):

(203) Ŵ (N )×W (R) −→ Ŵ (N ),

is induced by the multiplication in the Witt ring W (R|N |). The action of the operators
F, V ∈ ER is as follows

(204) nF = Vn, nV = Fn,

where on the right hand side we have the usual Verschiebung and Frobenius on the
Witt ring. An arbitrary element of ER has the form

∑∞
i=0 V iξi +

∑∞
j=1 µjF

j , ξi, µj ∈
W (R), where lim µj = 0 in the V -adic topology on W (R) (see corollary 8). We may
write such an element (not uniquely) in the form:

∑
V nαn, where αn ∈ W (R)[F ].

By the following lemma we may extend the actions (203) and (203) to a right action
of ER on Ŵ (N ).
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Lemma 116. — For any n ∈ Ŵ (N ) there exists a number r such that F r

n = 0.

Proof. — Since n is a finite sum of elements of the form V s

[n], n ∈ N it suffices to
show the lemma for n = [n]. This is trivial.

We note that in the case, where p is nilpotent in R there is a number r, such that
F r

W (N ) = 0. Hence in this case the Cartier ring acts from the right on W (N ).
We write the opposite ring to ER in the following form:

(205) tER =


∞∑

i=1

V iξi +
∞∑

j=0

µjF
j | ξi, µj ∈ W (R), lim ξi = 0


The limit is taken in the V -adic topology. The addition and multiplication is defined
in the same way as in the Cartier ring, i.e. we have the relations:

(206) FV = p, V ξF = Vξ, Fξ = FξF, ξV = V F ξ.

Then we have the antiisomorphism

t : ER −→ tER,

which is defined by t(F ) = V, t(V ) = F and t(ξ) = ξ for ξ ∈ W (R). The ring tER

acts from the left on Ŵ (N ):

Fn = Fn, V n = Vn.

It is the endomorphism ring of Ŵ by Cartier theory.

We define ER to be the abelian group of formal linear combinations of the form:

(207) ER =


∞∑

i=1

V iξi +
∞∑

j=0

µjF
j .


There is in general no ring structure on ER, which satisfies the relations (206). The
abelian group tER is a subgroup of ER by regarding an element from the right hand
side of (205) as an element from the right hand side of (207). Obviously the left action
of tER on Ŵ (N ) extends to a homomorphism of abelian groups

(208) ER −→ Hom(Ŵ , W ).

We will write this homomorphism as

n �−→ un

since it extends the left action of tER. We could also extend the right action of ER:

n �−→ nu.

Of course we get the formula
nu = tun.
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The first theorem of Cartier theory tells us again that (208) is an isomorphism. By
the remark after lemma (116), it is clear that in the case where p is nilpotent in R

the homomorphism (208) extends to a homomorphism:

(209) ER −→ End(W )

The reader can verify that there exists a ring structure on ER that satisfies (206), if
p is nilpotent in R. In this case the map t : ER → tER extends to an antiinvolution
of the ring ER. Then (209) becomes a homomorphism of rings.

By Cartier theory we have an exact sequence:

(210) 0 −→ Ŵ (N )
·(F − 1)
−−−−−−−→ Ŵ (N ) hex−−−−→ Ĝm(N ) −→ 0

The second arrow is the right multiplication by (F −1) ∈ ER, and hex is the so called
Artin-Hasse exponential. For the following it is enough to take (210) as a definition
of Ĝm. But we include the definition of hex for completeness. It is the composition
of the following maps (compare (196)):

(211) Ŵ (N ) ∼−→ ε1Λ̂(N ) ⊂ Λ̂(N ) = (1 + tN [t])× t = 1−−−−−→ (1 +N )×.

It is easy to produce a formula for hex but still easier if one does not know it. The
verification of the exactness of (210) is done by reduction to the case of a Q-algebra
N . We will skip this.

Proposition 117. — The Artin-Hasse exponential defines an isomorphism of abelian
groups:

(212) κ : W (R) −→ Hom(Ŵ , Ĝm)

An element ξ ∈ W (R) corresponds to the following homomorphism κξ : Ŵ → Ĝm. If
u ∈ Ŵ (N ), we have:

κξ(u) = hex(ξ · u).

Proof. — This is a well–known application of the first main theorem of Cartier theory
of p-typical curves. Let [X ] = (X, 0 . . . 0 . . . ) be the standard p-typical curve in
Ŵ (XK[[X ]]). We have to show that hex(ξ · [X ]) gives exactly all p-typical curves of
Ĝm if ξ runs through W (R). We set γm = hex([X ]). This is the standard p-typical
curve in Ĝm. It satisfies Fγm = γm by (210). By definition of the action of the
Cartier ring on the p-typical curves of Ĝm we have:

hex(ξ�X�) = ξγm.

If ξ =
∑

V i[ξi]F i as elements of ER we obtain:

ξγm =
∞∑

i=0

V i[ξi]γm.

These are exactly the p-typical curves of Ĝm.
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From (200) we deduce the following sheafified version of the proposition:

Corollary 118. — The homomorphism (212) gives rise to an isomorphism of functors
on NilR:

κ : W (N ) −→ Hom(Ŵ , Ĝm)+(N ).

We are now ready to classify the bilinear forms Bihom(Ŵ × Ŵ , Ĝm). To each
u ∈ ER we associate the bilinear form βu:

Ŵ (N )× Ŵ (N ) −→ W (N ) × Ŵ (N ) mult.−−−−−→ Ŵ (N ) hex−−−−→ Ĝm(N )
ξ × η �−→ ξu × η �−→ (ξu)η

Proposition 119. — We have the relations:

βu(ξ, η) = βtu(η, ξ)

hex(ξu)η = hex ξ(uη).

Proof. — Clearly the second relation implies the first one. For u ∈ W (R) we have
(ξu)η = ξ(uη). Hence the assertion is trivial.

First we do the case u = F :

hex(ξF )η = hex Vξη = hex V(ξF η) = hex(ξF η)F = hex ξFη = hex ξ(Fη).

The fourth equation holds because:

hex(Ŵ (N )(F − 1)) = 0

Secondly let u = V :

hex(ξV )η = hex Fξη = hex V(F ξη) = hex ξVη = hex ξ(V η).

Finally we have to treat the general case u =
∞∑

i=1

V iwi +
∞∑

i=0

w−iF
i. For a finite sum

there is no problem. The general case follows from the following statement:
For given ξ, η ∈ Ŵ (N ) there is an integer m0, such that for any w ∈ W (R):

hex(ξwFm)η = 0, hex(ξV mw)η = 0.

Indeed, this is an immediate consequence of lemma 116.

Proposition 120 (Mumford). — The map:

ER −→ Bihom(Ŵ × Ŵ , Ĝm),

u �−→ βu(ξ, η) = hex(ξu)η
(213)

is an isomorphism of abelian groups.

Proof. — One starts with the natural isomorphism.

Bihom(Ŵ × Ŵ , Ĝm) � Hom(Ŵ , Hom+(Ŵ , Gm)).
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The sheaf Hom+(Ŵ , Ĝm) is easily computed by the first main theorem of Cartier
theory: Let A = R ⊕ N be an augmented nilpotent R-algebra. Then one defines a
homomorphism:

(214) W (N ) −→ Hom+(Ŵ , Ĝm)(N ) ⊂ Hom(ŴA, ĜmA),

as follows. For any nilpotent A-algebra M the multiplication N ×M→M induces
on the Witt vectors the multiplication:

W (N ) × Ŵ (M) −→ Ŵ (M).

Hence any ω ∈ W (N ) induces a morphism Ŵ (M) → Ĝm(M), ξ �→ hex ωξ. Since by
the first main theorem of Cartier theory:

W (A) −→ Hom(ŴA, ĜmA),

is an isomorphism. One deduces easily that (214) is an isomorphism. If we reinterpret
the map (213) in terms of the isomorphism (214) just described, we obtain:

ER −→ Hom(Ŵ , W )(215)

u �−→ (ξ �→ ξu)

But this is the isomorphism (208).

4.3. The biextension of a bilinear form of displays. — After this update of
Mumford’s theory we come to the main point of the whole duality theory: Let P and
P ′ be 3n-displays over R. We are going to define a natural homomorphism:

(216) Bil(P × P ′,Gm) −→ Biext1(BTP ×BTP′ .Ĝm)

Let ( , ) : P × P ′ → W (R) be a bilinear form of 3n-displays (18). For N ∈ NilR
this induces a pairing

(217) ( , ) : P̂N × P̂ ′
N −→ Ŵ (N ),

(Compare chapter 3 for the notation). More precisely, if x = ξ ⊗ u ∈ P̂N =
Ŵ (N )⊗W (R) P and x′ = ξ′⊗u′ ∈ P̂ ′

N = Ŵ (N )⊗W (R) P
′, we set (x′, x) = ξξ′(u, u′) ∈

Ŵ (N ), where the product on the right hand side is taken in W (R|N |).
To define the biextension associated to (217), we apply a sheafified version propo-

sition 106 to the exact sequences of functors on NilR:

0 −→ Q̂N
V −1 − id−−−−−−−→ P̂N −→ BTP(N ) −→ 0

0 −→ Q̂′
N

V −1 − id−−−−−−−→ P̂ ′
N −→ BTP′(N ) −→ 0.

The proposition 106 combined with proposition 115, tells us that any element in
Biext1(BTP ×BTP′ , Ĝm) is given by a pair of bihomomorphisms

α1 : Q̂N× P̂ ′
N −→ Ĝm(N )

α2 : P̂N× Q̂′
N −→ Ĝm(N ),
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which agree on Q̂N × Q̂′
N .

In the following formulas an element y ∈ Q̂N is considered as an element of P̂N by
the natural inclusion id. We set

α1(y, x′) = hex(V −1y, x′), for y ∈ Q̂N , x′ ∈ P̂ ′
N .

α2(x, y′) = − hex(x, y′), for x ∈ P̂N , y ∈ Q̂′
N .

(218)

We have to verify that α1 and α2 agree on Q̂N × Q̂′
N , i.e. that the following equation

holds:

α1(y, V −1y′ − y′) = α2(V −1y − y, y′).

This means that:

hex(V −1y, V −1y′ − y′) = − hex(V −1y − y, y′),

which is an immediate consequence of (1.14):

hex(V −1y, V −1y′) = hex V(V −1y, V −1y′) = hex(y, y′).

We define the homomorphism (216) to be the map which associates to the bilinear
form ( , ) ∈ Bil(P × P ′,G) the biextension given by the pair α1, α2.

Remark. — Consider the biextension defined by the pair of maps β1 : Q̂N × P̂ ′
N →

Ŵ (N ) and β2 : P̂N × Q̂′
N → ŴN defined as follows:

β1(y, x′) = hex(y, x′), y ∈ Q̂N , x′ ∈ P̂ ′
N

β2(x, y′) = − hex(x, V −1y′), x ∈ P̂N , y ∈ Q̂′
N .

(219)

We claim that the biextension defined by (219) is isomorphic to the biextension de-
fined by (218). Indeed by the proposition 106 we may add to the pair (β1, β2) the
bihomomorphism

hex( , ) : P̂N × P̂ ′
N −→ Ĝm(N )

obtained from (217). One verifies readily:

β1(y, x′) + hex(V −1y − y, x′) = α1(y, x′)

β2(x, y′) + hex(x, V −1y′ − y′) = α2(y, y′).

Remark. — Let G
π−→ B × C be a biextension by an abelian group A, with the

relative group laws +B and +C . Let s : B×C → C ×B, (b, c) �→ (c, b) be the switch
of factors, and set πs = s◦π. Then (G, πs, +C , +B) is an object in BIEXT(C×B, A).
We will denote this biextension simply by Gs. Let us suppose that B = C. Then we
call a biextension G symmetric if G and Gs are isomorphic.

Let us start with the bilinear form

( , ) : P × P ′ −→ Gm.
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We denote by G the biextension, which corresponds to the pair (218) of bihomomor-
phisms α1 and α2. Clearly the biextension Gs corresponds to the pair of bihomomor-
phisms αs

1 : Q̂′
N × P̂N → Ŵ (N ) and αs

2 : P̂ ′
N × Q̂N → Ŵ (N ), which are defined by

the equations:

(220)
αs

1(y
′, x) = α2(x, y′) = − hex(x, y′)

αs
2(x′, y) = α1(y, x′) = hex(V y, x′)

If we define a bilinear form:

( , )s : P ′ × P −→ Gm,

by (x′, x)s = (x, x′), we see by the previous remark that the biextension defined
by (220) corresponds to the bilinear form −(x′, x)s. We may express this by the
commutative diagram:

Bil(P × P ′,G) −−−−→ Biext1(BTP ×BTP′ , Ĝm)

−s

 
s

Bil(P ′ × P ,G) −−−−→ Biext1(BTP′ ×BTP , Ĝm)

Let P = P ′ and assume that the bilinear form ( , ) is alternating, i.e. the cor-
responding bilinear form of W (R)-modules P × P → W (R) is alternating. Then it
follows that the corresponding biextension G in Biext1(BTP×BTP , Ĝm) is symmetric.

4.4. The duality isomorphism. — Assume we are given a bilinear form ( , ) :
P × P ′ → Gm as in definition 18. Let G = BTP and G′ = BTP′ be the formal
groups associated by theorem 81. The Cartan isomorphism Biext1(G × G′, Ĝm) =
Ext1(G⊗L G′, Ĝm) ∼→ Ext1(G, RHom(G′, Ĝm)) provides a canonical homomorphism

(221) Biext1(G×G′, Ĝm) −→ Hom(G, Ext1(G′, Ĝm)).

Let us describe the element on the right hand side, which corresponds to the biex-
tension defined by the pair of bihomomorphisms α1 and α2 given by (218). For this
purpose we denote the functor N �→ P̂N simply by P̂ , and in the same way we define
functors Q̂, P̂ ′, Q̂′. We obtain a diagram of sheaves:

Hom(P̂ ′, Ĝm)
(V −1 − id)∗

�� Hom(Q̂′, Ĝm) �� Ext1(G′, Ĝm) �� 0

0 �� Q̂

α1

��

(V −1 − id)
�� P̂

α2

��

�� G �� 0

(222)

Hence (V −1−id)∗ is the homomorphism obtained from V −1−id : Q̂′ → P̂ ′ by applying
the functor Hom(−, Ĝm). The horizontal rows are exact. The square is commutative
because the restriction of α1 to Q̂× Q̂′ agrees with the restriction of α2 in the sense of
the inclusions defined by V −1− id. Hence (222) gives the desired G → Ext1(G′, Ĝm).
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The functors in the first row of (221) may be replaced by their +-parts (see (200)).
Then we obtain a diagram with exact rows:

Hom(P̂ ′, Ĝm)+ �� Hom(Q̂′, Ĝm)+ �� Ext1(G′, Ĝm)+ �� 0

0 �� Q̂

��

�� P̂

��

�� G

��

�� 0

(223)

The first horizontal arrow in this diagram is injective, if P ′ is a display. Indeed, the
group G′ is p-divisible and by the rigidity for homomorphisms of p-divisible groups:

(224) Hom(G′, Ĝm)+ = 0.

Remark. — Let P ′ be a display. The following proposition 121 will show that the
functor Ext1(G′, Ĝm)+ is a formal group. We will call it the dual formal group. The
isomorphism (226) relates it to the dual display.

By the corollary 118 one obviously obtains an isomorphism

(225) W (N ) ⊗W (R) P t −→ Hom(P̂ , Ĝm)+(N ).

Here P t = HomW (R)(P, W (R)) is the dual W (R)-module. Therefore the functor
Hom(P̂ ′, Ĝm)+ is exact, and the first row of (223) is by proposition 109 exact in the
sense of presheaves, if P ′ is a display.

Proposition 121. — Let P be a display and P t be the dual 3n-display. By definition
19 we have a natural pairing

〈 , 〉 : Pt × P −→ G,

which defines by (216) a biextension in Biext1(BTPt × BTP , Ĝm). By (221) this
biextension defines a homomorphism of sheaves

(226) BTPt −→ Ext1(BTP , Ĝm)+.

The homomorphism (226) is an isomorphism.

Proof. — In our situation (223) gives a commutative diagram with exact rows in the
sense of presheaves:

(227)

0 �� Hom(P̂ , Ĝm)+ �� Hom(Q̂, Ĝm)+ �� Ext1(G, Ĝm)+ �� 0

0 �� Q̂t

��

�� P̂ t

��

�� Gt

��

�� 0.

Here we use the notation G = BTP , Gt = BTPt . Let us make the first commutative
square in (227) more explicit.
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The bilinear pairing

W (N )⊗W (R) P t× Ŵ (N ) ⊗W (R) P −→ Ĝm(N ),(228)

ξ ⊗ xt × u⊗ x �−→ hex(ξu〈xt, x〉)

provides by the corollary 118 an isomorphism of functors

(229) W (N ) ⊗W (R) P t −→ Hom(P̂ , Ĝm)+(N ).

In order to express Hom(Q̂, Ĝm)+ in a similar way, we choose a normal decomposition
P = L⊕T . Let us denote by L∗ = HomW (R)(L, W (R)) and T ∗ = HomW (R)(T, W (R))
the dual modules. In terms of the chosen normal decomposition the dual 3n-display
Pt = (P t, Qt, F, V −1) may be described as follows.

We set P t = P ∗, Qt = T ∗ ⊕ IRL∗. Then we have a normal decomposition

P t = Lt ⊕ T t,

where Lt = T ∗ and T t = L∗. To define F and V −1 for Pt it is enough to define
F-linear maps:

V −1 : Lt −→ P t F : T t −→ P t.

We do this using the direct decomposition

P = W (R)V −1L⊕W (R)FT.

For xt ∈ Lt = T ∗ we set:

〈V −1xt, wFy〉 = wF 〈xt, y〉, w ∈ W (R), y ∈ T

〈V −1xt, wV −1x〉 = 0, x ∈ L.

For yt ∈ T t = L∗ we set:

〈Fyt, wFy〉 = 0, y ∈ T

〈Fyt, wV −1x〉 = wF 〈ty, x〉, x ∈ L.

The bilinear pairing:

W (N ) ⊗F,W (R) T ∗ × Ŵ (N )⊗F,W (R) T −→ Ĝm(N )
ξ ⊗ xt × u⊗ y �−→ hex(ξuF〈xt, y〉)

defines a morphism

(230) W (N )⊗F,W (R) T ∗ −→ Hom(Ŵ ⊗F,W (R) T, Ĝm)+(N ),

where Ŵ ⊗F,W (R) T denotes the obvious functors on NilR. The right hand side of
(230) may be rewritten by the isomorphism:

ÎN ⊗W (R) T −→ Ŵ (N )⊗F,W (R) T(231)
Vu⊗ y �−→ u⊗ y

The pairing (228) induces an isomorphism:

(232) W (N )⊗W (R) L∗ −→ Hom(Ŵ ⊗W (R) L, Ĝm)+(N )
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Taking the isomorphisms (230), (231) and (232) together, we obtain an isomorphism
of functors

Hom(Q̂, Ĝm)+(N ) ∼= W (N )⊗F,W (R) T ∗ ⊕W (N ) ⊗W (R) L∗

= W (N )⊗F,W (R) Lt ⊕W (N )⊗W (R) T t.
(233)

We use the decomposition P t = W (R)V −1Lt ⊕ W (R)FT t to rewrite the isomor-
phism (229)

Hom(P̂ , Ĝm)+(N ) ∼= W (N )⊗W (R) W (R)V −1Lt ⊕W (N )⊗W (R) W (R)FT t

� W (N )⊗F,W (R) Lt ⊕W (N )⊗F,W (R) T t.
(234)

Here an element ξ⊗xt⊕ η⊗ yt from the last module of (236) is mapped to ξV −1xt⊕
ηFyt from the module in the middle.

We rewrite the first square in (227) using the isomorphism (233) and (234):

(235)

W (N )⊗F, Lt ⊕W (N ) ⊗F, T t
(V −1 − id)∗

�� W (N )⊗F, Lt ⊕W (N )⊗ T t

Ŵ (N )⊗ Lt ⊕ Ŵ (N ) ⊗F, T t
V −1 − id

��

α̃1

��

Ŵ (N )⊗ Lt ⊕ Ŵ (N )⊗ T t

α̃2

��

In this diagram all tensor products are taken over W (R). We have to figure out what
are the arrows in this diagram explicitly. We will first say what the maps are and
then indicate how to verify this.

α̃2 = −
(

F⊗ idLt ⊕ idW (N )⊗W (R)T t

)
(236)

α̃1 = F⊗ idLt ⊕ idW (N )⊗F,W (R)T t

The upper horizontal map in (235) is the map (V −1 − id)∗ = Hom(V −1 − id, Ĝm) :
Hom(P̂ , Ĝm) → Hom(Q̂, Ĝm). We describe the maps (V −1)∗ = Hom(V −1, Ĝm) and
id∗ = Hom(id, Ĝm). Let ξ ⊗ xt ⊕ η ⊗ yt ∈ W (N ) ⊗F,W Lt ⊕W (N ) ⊗F,W T t be an
element. Then we have:

(237) (V −1)∗(ξ ⊗ xt ⊕ η ⊗ yt) = ξ ⊗ xt ⊕ Vη ⊗ yt.

Finally the map id∗ is the composite of the map (V −1)# ⊕F# : W (N )⊗F,W (R) Lt ⊕
W (N )⊗F,W (R)T

t → W (N )⊗W (R)P
t with the extension of −α̃2 to the bigger domain

W (N )⊗W (R) P t = W (N )⊗W (R) Lt ⊕W (N )⊗W (R) T t. We simply write:

(238) id∗ = −α̃2

(
(V −1)# ⊕ F#

)
.

If one likes to be a little imprecise, one could say (V −1)∗ = id and (id)∗ = V −1.
Let us now verify these formulas for the maps in (237). α̃1 is by definition (218)

the composition of V −1 : Q̂t
N → P̂ t

N with the inclusion P̂ t
N ⊂ W (N ) ⊗W (R) P t =
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Hom(P̂ , Gm)+(N ). Hence by the isomorphism (234) which was used to define the
diagram (235) the map α̃1 is:

α̃1 : Q̂t
N

V −1

−−−→ W (N ) ⊗
W (R)

P t (V −1)# ⊕ F#

←−−−−−−−−−−−
∼

W (N ) ⊗
F,W (R)

Lt ⊕W (N ) ⊗
F,W (R)

T t

Clearly this is the map given by (236).
Consider an element u⊗xt ∈ Ŵ (N )⊗W (R) L

t. This is mapped by α̃2 to an element
in Hom(Q̂, Ĝm)+(N ) = Hom(Î ⊗W (R) T, Ĝm)+(N ) ⊕ Hom(Ŵ ⊗W (R) L, Ĝm)+(N ),
whose component in the second direct summand is zero and whose component in the
first direct summand is given by the following bilinear form α2:

α2(u ⊗ xt, Vu′ ⊗ y) = − hex Vu′u〈xt, y〉 = − hexu′FuF〈tx, y〉.

Hence the image in the first direct summand is equal to the image of Fu⊗ xt by the
homomorphism (230).

Next we compute the map:

(V −1)∗ : W (N )⊗W (R) P t � Hom(P̂ , Ĝm)+(N ) −→ Hom(Q̂, Ĝm)+(N ).

Let use denote by ( , )D the bilinear forms induced by the homomorphism (230)
respectively (232). Let θ⊗zt ∈ W (N )⊗W (R) P t be an element, and let θ⊗x⊕v⊗y ∈
Ŵ (N ) ⊗W (R) L ⊕ Ŵ (N ) ⊗F,W (R) T � Ŵ (N ) ⊗W (R) L ⊕ ÎN ⊗W (R) T = Q̂N . Then
we have by definition of (V −1)∗:

(239)
(
(V −1)∗(θ ⊗ zt), u⊗ x + v ⊗ y

)
D

= hex θF u〈zt, V −1x〉+ hex θv〈zt, Fy〉.

Since we use the isomorphism (234) we have to write θ⊗ zt in the form ξ ⊗ V −1xt +
η ⊗ Fyt, where ξ, η ∈ W (N ), xt ∈ Lt, yt ∈ T t. Then we find for the right hand side
of (239):

(240) hex ξF u〈V −1xt, V −1x〉+ hex ξv〈V −1xt, Fy〉
+ hex ηF u〈Fyt, V −1x〉+ hex ηv〈Fyt, Fy〉

By definition of the dual 3n-display the first and the last summand of (240) vanish.
Using (20) we obtain for (240):

hex ξvF〈xty〉+ hex ηFuF〈yt, x〉 = hex ξvF〈xt, y〉+ hex Vηu〈yt, x〉.

Since this is equal to the left hand side of (240), we see that (V −1)∗(ξ⊗V −1xt+η⊗Fyt)
is the element in Hom(Q̂, ĜM )+(N ) induced by:

ξ ⊗ xt + Vη ⊗ yt ∈ Ŵ (N )⊗F,W (R) Lt ⊕ Ŵ (N )⊗W (R) T t

This is the assertion (237).
Finally we compute id∗. By the isomorphisms (229) and (233) the map id∗ identifies

with a map

(241) id∗ : W (N )⊗W (R) P t −→ W (N )⊗F,W (R) Lt ⊕W (N )⊗W (R) T t
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The assertion of (238) is that this map is the extension of −α̃2 , if we identify the
left hand side of (241) with W (N ) ⊗W (R) Lt ⊕ W (N ) ⊗W (R) T t using our normal
decomposition.

Let ξ ⊗ xt ⊕ η ⊗ yt ∈ W (N ) ⊗W (R) Lt ⊕ W (N ) ⊗W (R) T t and u ⊗ x ⊕ Vv ⊗ y ∈
Ŵ (N )⊗W (R) L⊕ ÎM ⊗W (R) T = Q̂M for some N -algebra M. We obtain:

id∗(ξ ⊗ xt ⊕ η ⊗ yt)(u⊗ x⊕ Vv ⊗ y) = hex(ξVv〈xt, y〉+ hex ηu〈yt, x〉
= hex vFξF〈xt, y〉+ hex ηu〈yt, u〉,

which proves that

id∗(ξ ⊗ xt + η ⊗ yt) = Fξ ⊗ xt + η ⊗ yt.

Altogether we have verified that the diagram (235) with the maps described coincides
with the first square in (227). We may now write the first row of the diagram (227)
as follows:

(242)

0 → W ⊗
F,W (R)

Lt ⊕ I ⊗
W (R)

T t
(V −1)∗ − id∗
−−−−−−−−−−→ W ⊗

F,W (R)
Lt ⊕W ⊗

W (R)
T t


Ext1(G, Ĝm)+

0

Here we wrote W and I for the functors N �→ W (N ) and N �→ IN . We also used the
isomorphism (231) to replace W ⊗F,W (R) T t by I ⊗W (R) T t. The map (V −1)∗ is just
the natural inclusion.

We know from (227), that Ext1(G, Ĝm)+ is an exact functor on NilR. We will now
compute the tangent space of this functor.

Let us assume that N is equipped with a pd-structure. Then the logarithmic
coordinates (48) define an isomorphism of W (R)-modules

N ⊕ IN � W (N ).

Hence we have an isomorphism of abelian groups:

N ⊗W (R) T t ⊕ IN ⊗W (R) T t ∼−→ W (N ) ⊗W (R) T t.

We extend id∗ to an endomorphism of W (N )⊗F,W (R)L
t⊕W (N )⊗W (R)T

t by setting:

id∗(N ⊗W (R) T t) = 0.

We claim that id∗ is then a nilpotent endomorphism. First we verify this in the
case, where p · N = 0. Then we have FW (N ) = 0 and therefore the map α̃2 is
zero on the first component. It follows from (238) that the image of id∗ lies in
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0⊕W (N )⊗W (R) T
t ⊂ W (N )⊗F,W (R) L

t⊕W (N )⊗W (R) T
t. Via the natural inclusion

and projection id∗ induces an endomorphism

id∗
22 : W (N )⊗W (R) T t −→ W (N )⊗W (R) T t.

By what we have said it is enough to show that id∗
22 is nilpotent. The endomorphism

F : P t = Lt ⊕ T t −→ P t = Lt ⊕ T t,

induces via inclusion and projection an endomorphism

ϕ : T t −→ T t.

By the formula (238) we find for id∗
22:

id∗
22

(
(n + Vξ)⊗ yt

)
= ξ ⊗ ϕ(yt),

where n ∈ N , ξ ∈ W (N ), and yt ∈ T t. But since P is a display the 3n-display Pt is
F -nilpotent, i.e. there is an integer r, such that ϕr(T t) ⊂ IRT t. Since W (N ) · IR = 0
it follows that (id∗

22)r = 0. In the case where pN is not necessarily zero, we consider
the filtration by pd-ideals

0 = prN ⊂ pr−1N ⊂ · · · ⊂ N .

Since the functors of (242) are exact on NilR an easy induction on r yields the nilpo-
tency of id∗ in the general case. This proves our claim that id∗ is nilpotent if p·N = 0.
Since (V −1)∗ is the restriction of the identity of

W (N ) ⊗F,W (R) Lt ⊕W (N )⊗W (R) T t

it follows that (V −1)∗ − id∗ induces an automorphism of the last group. One sees
easily (compare (156)) that the automorphism (V −1)∗− id∗ provides an isomorphism
of the cokernel of (V −1)∗ with the cokernel of (V −1)∗ − id∗. Therefore we obtain for
a pd-algebra N that the composition of the following maps:

N ⊗W (R) T t ↪−→ W (N )⊗W (R) T t −→ Ext1(G, Ĝm)+(N )

is an isomorphism. This shows that the Ext1(G, Ĝm)+ is a formal group with tangent
space T t/IRT t by definition 80. Moreover

Gt −→ Ext1(G, Ĝm)+

is an isomorphism of formal groups because it induces an isomorphism of the tangent
spaces. This proves the proposition.

Let P be a 3n-display and let P ′ be a display. We set G = BTP , G′ = BTP′ , and
(G′)t = BT(P′)t . If we apply the proposition 121 to (221) we obtain a homomorphism:

(243) Biext1(G×G′, Ĝm) −→ Hom(G, (G′)t)

We note that this map is always injective, because the kernel of (221) is by the
usual spectral sequence Ext1(G, Hom(G′, Ĝm)). But this group is zero, because
Hom(G′, Ĝm)+ = 0 (compare (224)). A bilinear form P × P ′ → G is clearly the
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same thing as a homomorphism P → (P ′)t. It follows easily from the diagram (223)
that the injection (243) inserts into a commutative diagram:

(244)

Bil(P × P ′,G) ∼−−−−→ Hom(P , (P ′)t)
 
BT

Biext1(G×G′, Ĝm) −−−−→ Hom(G, (G′)t)

Theorem 122. — Let R be a ring, such that p is nilpotent in R, and such that the set
of nilpotent elements in R are a nilpotent ideal. Let P and P ′ be displays over R. We
assume that P ′ is F -nilpotent, i.e. the dual 3n-display (P ′)t is a display. Then the
homomorphism (216) is an isomorphism:

Bil(P × P ′,G) −→ Biext1(BTP ×BTP′ , Ĝm).

Proof. — By proposition 99 the right vertical arrow of the diagram (244) becomes an
isomorphism under the assumptions of the theorem. Since we already know that the
lower horizontal map is injective every arrow is this diagram must be an isomorphism.
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