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Résumé. —  Ce volume est le premier d’une série de trois consacrés aux méthodes
p-adiques en géométrie arithmétique. Les thémes abordés dans ce volume touchent &
la théorie des groupes formels et de leurs déformations, au programme de Langlands
p-adique, et & la géométrie hyperbolique p-adique.

Abstract (p-adic cohomologiesand arithmetic applications (1))

This volume is the first of three dealing with p-adic methods in arithmetic geometry.
The themes appearing in this volume include the theory of formal groups and their
deformations, the p-adic Langlands program, and the p-adic hyperbolic geometry.

© Astérisque 278, SMF 2002






TABLE DES MATIERES

Résumés des articles ............ i vii
ADStracts . ... ix
Introduction .. ... ... ... xi
S. MOCHIZUKI — An Introduction to p-adic Teichmiiller Theory .............. 1
1. From the Complex Theory to the “Classical Ordinary” p-adic Theory ... . 1
2. Beyond the “Classical Ordinary” Theory ........... ..., 16
3. Conclusion . ... 46
References .. ... 48
P. SCHNEIDER & J. TEITELBAUM — p-adic boundary values ................ 51
Introduction .. .......c.. i 51
0. Notations and conventions . ...............iiiiiiiiiniiniiiineninenne.. 57
1. Q4(X) as a locally cONVeX VECEOT SPACE . . ... vvvtreeeeeiiiieeaaaannnns 58
2. Q4(X) as a locally analytic G-representation .. ............................ 62
3. The kernel map .. ..o 67
4. The ideal b .. ... 77
5. Local duality . ......o.oii 84
6. The global filtration ......... .. . 92
7. The top filtration Step .. ...t e 97
8. The partial boundary value maps .......... ... i i 108
References .. ... 123
T. ZINK — The Display of a Formal p-Divisible Group ........................ 127
Introduction .. ...... ... 127
L DISplays .o 134
2. Lifting DISplays .. ...ouu ot 162
3. The p-divisible group of a display .......... ..ol 203
4. Duality ..o 223

References . .o 247






RESUMES DES ARTICLES

An Introduction to p-adic Teichmiiller Theory
SHINICHI MOCHIZUKI ...ttt ettt et et et e et e e 1

Dans cet article, nous présentons une théorie concernant [’uniformisation
et les espaces de modules des courbes hyperboliques p-adiques. D’une part, cette
théorie étend aux places non archimédiennes les uniformisations de Fuchs et
Bers et les espaces de modules des courbes hyperboliques complexes. Pour
cette raison, nous désignerons souvent cette théorie sous le nom de théorie
de Teichmiiller p-adique. D’autre part, cette théorie peut étre vue comme un
analogue hyperbolique de la théorie de Serre-Tate pour les variétés abéliennes
ordinaires et leurs espaces de modules.

L’objet au centre de la théorie de Teichmiiller p-adique est le champ des mo-
dules des « nilcurves ». Ce champ est un recouvrement plat du champ des mo-
dules de courbes hyperboliques en caractéristique p. Il parametre les courbes hy-
perboliques munies de « données auxiliaires d’uniformisation en caractéristique
p ». La géométrie de ce champ de modules peut s’analyser de maniére com-
binatoire au voisinage de I'infini. D’autre part, une analyse globale de sa géo-
métrie mene a une démonstration de l'irréductibilité du champ des modules de
courbes hyperboliques via des méthodes de caractéristique p. Diverses parties de
ce champ des «nilcurves » admettent des relévements canoniques au-dessus des-
quels on obtient des coordonnées canoniques et des représentations galoisiennes
canoniques. Ces coordonnées canoniques sont l’analogue, pour les courbes hy-
perboliques, des coordonnées canoniques dans la théorie de Serre-Tate et I’ana-
logue p-adique des coordonnées de Bers dans la théorie de Teichmiiller. De
plus, les représentations galoisiennes qui apparaissent éclairent d’un jour nou-
veau ’action extérieure du groupe de Galois d’un corps local sur le complété
profini du groupe de Teichmiiller.



viii RESUMES DES ARTICLES

p-adic boundary values
PETER SCHNEIDER & JEREMY TEITELBAUM .. .\'uuutteeeeeeeeeaannnns 51

Nous faisons une étude détaillée de certaines représentations continues na-
turelles de G = GL(n, K) dans les espaces vectoriels localement convexes sur un
corps non archimédien localement compact de caractéristique 0. Nous construi-
sons des applications “transformées intégrales” entre des sous-quotients de la
duale d’une représentation “holomorphe” provenant d’un espace symétrique p-
adique, et des représentations “de la série principale” construites a partir de
fonctions localement analytiques sur GG. Nous caractérisons I'image de chacune
de nos transformées intégrales comme un espace de fonctions sur G jouissant
de certaines propriétés par rapport aux transformations et vérifiant un systeme
d’équations aux dérivées partielles de type hypergéométrique.

Ce travail constitue une généralisation d’un travail de Morita, qui a étudié
ce genre de représentations pour le groupe SL(2, K). Notre travail étend éga-
lement celui de Schneider-Stuhler sur la cohomologie de de Rham des espaces
symétriques p-adiques. Nous le voyons comme faisant partie d’'un programme
général visant a développer la théorie de ce type de représentations.

The Display of a Formal p-Divisible Group
THOMAS ZIINK ..ttt ettt ettt et e e e e e e e e 127

Nous proposons une nouvelle théorie de Dieudonné qui associe a un groupe
formel p-divisible X sur un anneau p-adique excellent R un objet d’algebre
linéaire appelé « display ». A partir du « display » on peut exhiber des équa-
tions structurelles pour le module de Cartier de X et retrouver son cristal de
Grothendieck-Messing. Nous donnons des applications a la théorie des défor-
mations des groupes formels p-divisibles.
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ABSTRACTS

An Introduction to p-adic Teichmiiller Theory
SHINICHT MOCHIZUKI ..ottt ettt et e et et e e et et et et e e 1

In this article, we survey a theory, developed by the author, concerning
the uniformization of p-adic hyperbolic curves and their moduli. On the one
hand, this theory generalizes the Fuchsian and Bers uniformizations of complex
hyperbolic curves and their moduli to nonarchimedean places. It is for this
reason that we shall often refer to this theory as p-adic Teichmiiller theory,
for short. On the other hand, this theory may be regarded as a fairly precise
hyperbolic analogue of the Serre-Tate theory of ordinary abelian varieties and
their moduli.

The central object of p-adic Teichmiiller theory is the moduli stack of nil-
curves. This moduli stack forms a finite flat covering of the moduli stack of
hyperbolic curves in positive characteristic. It parametrizes hyperbolic curves
equipped with auxiliary “uniformization data in positive characteristic.” The
geometry of this moduli stack may be analyzed combinatorially locally near
infinity. On the other hand, a global analysis of its geometry gives rise to a
proof of the irreducibility of the moduli stack of hyperbolic curves using positive
characteristic methods. Various portions of this stack of nilcurves admit cano-
nical p-adic liftings, over which one obtains canonical coordinates and canonical
p-adic Galois representations. These canonical coordinates form the analogue
for hyperbolic curves of the canonical coordinates of Serre-Tate theory and the
p-adic analogue of the Bers coordinates of Teichmiiller theory. Moreover, the
resulting Galois representations shed new light on the outer action of the Galois
group of a local field on the profinite completion of the Teichmiiller group.
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p-adic boundary values
PETER SCHNEIDER & JEREMY TEITELBAUM .. .\'uuutteeeeeeeeeaannnns 51

We study in detail certain natural continuous representations of G =
GL,(K) in locally convex vector spaces over a locally compact, non-
archimedean field K of characteristic zero. We construct boundary value
maps, or integral transforms, between subquotients of the dual of a “holomor-
phic” representation coming from a p-adic symmetric space, and “principal
series” representations constructed from locally analytic functions on G. We
characterize the image of each of our integral transforms as a space of func-
tions on G having certain transformation properties and satisfying a system of
partial differential equations of hypergeometric type.

This work generalizes earlier work of Morita, who studied this type of repre-
sentation of the group SLo(K). It also extends the work of Schneider-Stuhler
on the De Rham cohomology of p-adic symmetric spaces. We view this work
as part of a general program of developing the theory of such representations.

The Display of a Formal p-Divisible Group
THOMAS ZINK ..ttt et et e e e e e e 127
We give a new Dieudonné theory which associates to a formal p-divisible
group X over an excellent p-adic ring R an object of linear algebra called
a display. On the display one can read off the structural equations for the
Cartier module of X, and find the crystal of Grothendieck-Messing. We give
applications to deformations of formal p-divisible groups.
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INTRODUCTION

Un semestre spécial, consacré aux cohomologies p-adiques et a leurs applications
arithmétiques, a eu lieu, du 17 février au 11 juillet 1997, dans le cadre du centre Emile
Borel, situé a Paris dans les locaux de 'institut Henri Poincaré.

Les principaux thémes abordés ont été :

— les théoremes de comparaison entre différentes cohomologies p-adiques des varié-
tés algébriques sur les corps locaux, les représentations p-adiques du groupe de
Galois absolu d’un tel corps,

— les groupes p-divisibles et la théorie de Dieudonné cristalline, la cohomologie des
D-modules arithmétiques, les équations différentielles p-adiques,

— T'uniformisation p-adique, ’étude des espaces symétriques p-adiques, des courbes
hyperboliques p-adiques, de la cohomologie des variétés de Shimura,

— la géométrie et la cohomologie logarithmiques,

— les fonctions L p-adiques, leurs relations avec les systemes d’Euler, en particulier
dans le cas des formes modulaires.

Les activités structurées ont consisté en

a) Douze cours :

— P. Berthelot (Rennes) : D-modules arithmétiques,

C. Breuil (CNRS, Orsay) : Cohomologie log cristalline et cohomologie étale de
torsion (Cours Peccot du College de France),

— G. Christol (Paris VI) : Equations différentielles p-adiques,

— G. Faltings (MPI, Bonn) : Almost étale extensions,

— J.-M. Fontaine (Orsay) : Arithmétique des représentations galoisiennes p-adiques,
— L. Tllusie (Orsay) et A. Ogus (Berkeley) : Géométrie logarithmique,

— K. Kato (Tokyo) : Euler systems and p-adic L-functions,
— W. Messing (Minneapolis) : Topologie et cohomologie syntomiques et log synto-
miques,



xii INTRODUCTION

— S. Mochizuki (RIMS, Kyoto) : The Ordinary and Generalized Ordinary Moduli
of Hyperbolic Curves,

M. Rapoport (Cologne) : Aspects p-adiques des variétés de Shimura,

— P. Schneider (Miinster) : Analysis on p-adic symmetric spaces,

— T. Zink (Bielefeld) : Cartier theory and its connection to crystalline Dieudonné
theory.

b) Un séminaire avec un ou deux exposés chaque semaine.

¢) Deuz colloques :

— Problémes de coefficients en cohomologie cristalline et en cohomologie rigide, du
28 au 30 avril,

— Arithmétique des fonctions L et méthodes p-adiques, du 30 juin au 4 juillet.

d) Un groupe de travail sur le théoréme de comparaison de Tsuji, du 20 au 29 mai.

Les organisateurs ont demandé a tous ceux qui avaient fait un cours de le rédiger
ou de nous faire parvenir un texte sur un sujet voisin. Nous avons également invité
Takeshi Tsuji & écrire un résumé de sa démonstration, maintenant publiée), de la
conjecture Clg;.

Nous tenons a remercier les auteurs non seulement pour leur contribution mais
aussi pour leur patience ; nous espérons qu’ils voudront bien nous excuser du retard
avec lequel ces volumes paraissent.

Les articles ont été examinés par des rapporteurs que nous remercions pour leur
aide aussi désintéressée qu’utile.

Enfin, nous pensons que tous ceux qui ont participé a ce semestre seront d’ac-
cord avec nous pour saluer 'atmospheére agréable dans laquelle il s’est déroulé. Nous
remercions chaleureusement Joseph Oesterlé, alors directeur du Centre Emile Borel,
son équipe et tout le personnel de I'Institut Henri Poincaré pour leur gentillesse, leur
compétence, leur efficacité et leur dévouement. Ils se joindront siirement a nous pour
accorder une mention spéciale a Madame Nocton, notre bibliothécaire — tous les
mathématiciens qui ont travaillé a Paris la connaissent et savent combien son role a
été précieux; et une autre a notre secrétaire — Florence Damay — qui a quitté le
Centre Emile Borel juste a la fin de notre semestre ; elle en fut la cheville ouvriere mais
aussi le sourire, avec une formidable aptitude a comprendre et résoudre les problemes
extra-mathématiques rencontrés par les trés nombreux participants.

Les éditeurs

D p-adic étale cohomology and crystalline cohomology in the semi-stable reduction case, Invent.
math. 137 (1999), 233-411
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AN INTRODUCTION TO p-ADIC TEICHMULLER THEORY

by

Shinichi Mochizuki

Abstract. — In this article, we survey a theory, developed by the author, concerning
the uniformization of p-adic hyperbolic curves and their moduli. On the one hand,
this theory generalizes the Fuchsian and Bers uniformizations of complex hyperbolic
curves and their moduli to nonarchimedean places. It is for this reason that we shall
often refer to this theory as p-adic Teichmiiller theory, for short. On the other hand,
this theory may be regarded as a fairly precise hyperbolic analogue of the Serre-Tate
theory of ordinary abelian varieties and their moduli.

The central object of p-adic Teichmiiller theory is the moduli stack of nilcurves.
This moduli stack forms a finite flat covering of the moduli stack of hyperbolic curves
in positive characteristic. It parametrizes hyperbolic curves equipped with auxiliary
“uniformization data in positive characteristic.” The geometry of this moduli stack
may be analyzed combinatorially locally near infinity. On the other hand, a global
analysis of its geometry gives rise to a proof of the irreducibility of the moduli stack of
hyperbolic curves using positive characteristic methods. Various portions of this stack
of nilcurves admit canonical p-adic liftings, over which one obtains canonical coordi-
nates and canonical p-adic Galois representations. These canonical coordinates form
the analogue for hyperbolic curves of the canonical coordinates of Serre-Tate theory
and the p-adic analogue of the Bers coordinates of Teichmiiller theory. Moreover,
the resulting Galois representations shed new light on the outer action of the Galois
group of a local field on the profinite completion of the Teichmiiller group.

1. From the Complex Theory to the “Classical Ordinary” p-adic Theory

In this §, we attempt to bridge the gap for the reader between the classical uni-
formization of a hyperbolic Riemann surface that one studies in an undergraduate
complex analysis course and the point of view espoused in [21, 22].

2000 Mathematics Subject Classification. — 14H10, 14F30.

Keywordsand phrases. — Hyperbolic curve, moduli stack, uniformization theory, Fuchsian uniformiza-
tion, Bers uniformization, p-adic, Serre-Tate theory, canonical liftings, Galois representations, outer
Galois actions, Teichmiiller group .

© Astérisque 278, SMF 2002



2 S. MOCHIZUKI

1.1. The Fuchsian Uniformization. — Let X be a hyperbolic algebraic curve over
C, the field of complex numbers. By this, we mean that X is obtained by removing r
points from a smooth, proper, connected algebraic curve of genus g (over C), where
2g—2+r > 0. We shall refer to (g, r) as the type of X. Then it is well-known that to
X, one can associate in a natural way a Riemann surface X whose underlying point
set is X (C). We shall refer to Riemann surfaces X obtained in this way as “hyperbolic
of finite type.”

Now perhaps the most fundamental arithmetic — read “arithmetic at the infinite
prime” — fact known about the algebraic curve X is that X admits a uniformization
by the upper half plane H:

H—-X

For convenience, we shall refer to this uniformization of X in the following as the
Fuchsian uniformization of X. Put another way, the uniformization theorem quoted
above asserts that the universal covering space X of X (which itself has the natural
structure of a Riemann surface) is holomorphically isomorphic to the upper half plane
H = {z € C | Im(z) > 0}. This fact was “familiar” to many mathematicians as early
as the last quarter of the nineteenth century, but was only proven rigorously much
later by Koebe.

The fundamental thrust of [21, 22] is to generalize the Fuchsian
uniformization to the p-adic context.

At this point, the reader might be moved to interject: But hasn’t this already been
achieved decades ago by Mumford in [25]? In fact, however, Mumford’s construction
gives rise to a p-adic analogue not of the Fuchsian uniformization, but rather of the
Schottky uniformization of a complex hyperbolic curve. Even in the complex case,
the Schottky uniformization is an entirely different sort of uniformization — both ge-
ometrically and arithmetically — from the Fuchsian uniformization: for instance, its
periods are holomorphic, whereas the periods that occur for the Fuchsian uniformiza-
tion are only real analytic. This phenomenon manifests itself in the nonarchimedean
context in the fact that the construction of [25] really has nothing to do with a fixed
prime number “p,” and in fact, takes place entirely in the formal analytic category.
In particular, the theory of [25] has nothing to do with “Frobenius.” By contrast,
the theory of [21, 22] depends very much on the choice of a prime “p,” and makes
essential use of the “action of Frobenius.” Another difference between the theory of
[25] and the theory of [21, 22] is that [25] only addresses the case of curves whose
“reduction modulo p” is totally degenerate, whereas the theory of [21, 22] applies to
curves whose reduction modulo p is only assumed to be “sufficiently generic.” Thus,
at any rate, the theory of [21, 22] is entirely different from and has little directly to
do with the theory of [25].

ASTERISQUE 278
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e

Upper Half Plane Riemann Surface

FIGURE 1. The Fuchsian Uniformization

1.2. Reformulation in Terms of Metrics. — Unfortunately, if one sets about
trying to generalize the Fuchsian uniformization H — X to the p-adic case in any
sort of naive, literal sense, one immediately sees that one runs into a multitude of
apparently insurmountable difficulties. Thus, it is natural to attempt to recast the
Fuchsian uniformization in a more universal form, a form more amenable to relocation
from the archimedean to the nonarchimedean world.

One natural candidate that arises in this context is the notion of a metric — more
precisely, the notion of a real analytic Kdhler metric. For instance, the upper half
plane admits a natural such metric, namely, the metric given by

dz? + dy?
2
(where z = x + 4y is the standard coordinate on H). Since this metric is invariant
with respect to all holomorphic automorphisms of H, it induces a natural metric on
X = H which is independent of the choice of isomorphism X = H and which descends
to a metric ux on X.

Having constructed the canonical metric ux on X, we first make the following
observation:

There is a general theory of canonical coordinates associated to a
real analytic Kdhler metric on a complex manifold.

(See, e.g., [21], Introduction, §2, for more technical details.) Moreover, the canonical
coordinate associated to the metric ux is precisely the coordinate obtained by pulling
back the standard coordinate “z” on the unit disc via any holomorphic isomorphism
of X = H with the unit disc. Thus, in other words, passing from H — X to ux is a
“faithful operation,” i.e., one doesn’t really lose any information.

SOCIETE MATHEMATIQUE DE FRANCE 2002



4 S. MOCHIZUKI

Next, let us make the following observation: Let Mg, denote the moduli stack of
smooth r-pointed algebraic curves of genus g over C. If we order the points that were
removed from the compactification of X to form X, then we see that X defines a
point [X] € M, (C). Moreover, it is elementary and well-known that the cotangent
space to M, , at [X] can be written in terms of square differentials on X. Indeed,
if, for simplicity, we restrict ourselves to the case r = 0, then this cotangent space
is naturally isomorphic to Q df o(x, w?ﬁc) (where wx /¢ is the algebraic coherent
sheaf of differentials on X). Then the observation we would like to make is the
following: Reformulating the Fuchsian uniformization in terms of the metric pux allows
us to “push-forward” pux to obtain a canonical real analytic Kéhler metric pung on the
complex analytic stack Mg , associated to M, ,. by the following formula: if 8, € @,

then _
gyt [ 0¥
o) [

(Here, v is the complex conjugate differential to ¢, and the integral is well-defined be-
cause the integrand is the quotient of a (2, 2)-form by a (1, 1)-form, i.e., the integrand
is itself a (1, 1)-form.)

This metric on Mg . is called the Weil-Petersson metric. It is known that

The canonical coordinates associated to the Weil-Petersson metric
coincide with the so-called Bers coordinates on Mg, (the universal
covering space of Mgy ).

The Bers coordinates define an anti-holomorphic embedding of Mg,,. into the complex
affine space associated to ). We refer to the Introduction of [21] for more details on
this circle of ideas.

At any rate, in summary, we see that much that is useful can be obtained from
this reformulation in terms of metrics. However, although we shall see later that
the reformulation in terms of metrics is not entirely irrelevant to the theory that
one ultimately obtains in the p-adic case, nevertheless this reformulation is still not
sufficient to allow one to effect the desired translation of the Fuchsian uniformization
into an analogous p-adic theory.

1.3. Reformulation in Terms of Indigenous Bundles. — It turns out that the
“missing link” necessary to translate the Fuchsian uniformization into an analogous p-
adic theory was provided by Gunning ([13]) in the form of the notion of an indigenous
bundle. The basic idea is as follows: First recall that the group Aut(H) of holomorphic
automorphisms of the upper half plane may be identified (by thinking about linear
fractional transformations) with PSLa(R)? (where the superscripted “0” denotes the
connected component of the identity). Moreover, PSLy(R)? is naturally contained
inside PGL2(C) = Aut(P{). Let IIx denote the (topological) fundamental group of

ASTERISQUE 278



AN INTRODUCTION TO p-ADIC TEICHMULLER THEORY 5

X (where we ignore the issue of choosing a base-point since this will be irrelevant for
what we do). Then since IIx acts naturally on X = H, we get a natural representation

pPxX HX — PGLQ((C) = Aut(P(lc)

which is well-defined up to conjugation by an element of Aut(H) C Aut(P{). We
shall henceforth refer to px as the canonical representation associated to X. Thus,
px gives us an action of IIx on P, hence a diagonal action on X x PL. If we form the
quotient of this action of IIx on X x P§, we obtain a P!-bundle over )~(/Hx = X which
automatically algebraizes to an algebraic P-bundle P — X over X. (For simplicity,
think of the case r = 0!)

In fact, P — X comes equipped with more structure. First of all, note that the
trivial P-bundle X x Pt — X is equipped with the trivial connection. (Note: here
we use the “Grothendieck definition” of the notion of a connection on a P!-bundle:
i.e., an isomorphism of the two pull-backs of the P'-bundle to the first infinitesimal
neighborhood of the diagonal in X x X which restricts to the identity on the diagonal
X C X x )Ai) Moreover, this trivial connection is clearly fixed by the action of Ilx,
hence descends and algebraizes to a connection Vp on P — X. Finally, let us observe
that we also have a section ¢ : X — P given by descending and algebraizing the
section X — X x P{ whose projection to the second factor is given by X~HC PL.
This section is referred to as the Hodge section. If we differentiate ¢ by means of
Vp, we obtain a Kodaira-Spencer morphism 7x,c — 0*7p;x (where “74,p” denotes
the relative tangent bundle of A over B). It is easy to see that this Kodaira-Spencer
morphism is necessarily an isomorphism.

This triple of data (P — X,V p,0) is the prototype of what Gunning refers to as
an indigenous bundle. We shall refer to this specific (P — X,V p) (one doesn’t need
to specify o since o is uniquely determined by the property that its Kodaira-Spencer
morphism is an isomorphism) as the canonical indigenous bundle. More generally,
an indigenous bundle on X (at least in the case 7 = 0) is any P'-bundle P — X
with connection Vp such that P — X admits a section (necessarily unique) whose
Kodaira-Spencer morphism is an isomorphism. (In the case r > 0, it is natural to
introduce log structures in order to make a precise definition.)

Note that the notion of an indigenous bundle has the virtue of being entirely
algebraic in the sense that at least as an object, the canonical indigenous bundle
(P — X, Vp) exists in the algebraic category. In fact, the space of indigenous bundles
forms a torsor over the vector space @ of quadratic differentials on X (at least for
r = 0). Thus,

The issue of which point in this affine space of indigenous bundles on
X corresponds to the canonical indigenous bundle is a deep arithmetic
issue, but the affine space itself can be defined entirely algebraically.

SOCIETE MATHEMATIQUE DE FRANCE 2002



6 S. MOCHIZUKI

Upper Half Plane Riemann Sphere

Upper Half Plane >< ‘
— P

(identity,
natural inclusion) ‘

/\/ Quotient by the Action W

of the Fundamental Grol . )
Y up The Resulting Indigenous Bundle

ITaTaiara
= P

FIGURE 2. The Construction of the Canonical Indigenous Bundle

One aspect of the fact that the notion of an indigenous bundle is entirely algebraic
is that indigenous bundles can, in fact, be defined over Z[%], and in particular, over
Z, (for p odd). In [21], Chapter I, a fairly complete theory of indigenous bundles in
the p-adic case (analogous to the complex theory of [13]) is worked out. To summa-
rize, indigenous bundles are closely related to projective structures and Schwarzian
derivatives on X. Moreover, the underlying P!-bundle P — X is always the same
(for all indigenous bundles on X), i.e., the choice of connection Vp determines the
isomorphism class of the indigenous bundle. We refer the reader to [21], Chapter I,
for more details. (Note: Although the detailed theory of [21], Chapter I, is philo-
sophically very relevant to the theory of [22], most of this theory is technically and
logically unnecessary for reading [22].)

At any rate, to summarize, the introduction of indigenous bundles allows one to
consider the Fuchsian uniformization as being embodied by an object — the canonical
indigenous bundle — which exists in the algebraic category, but which, compared to
other indigenous bundles, is somehow “special.” In the following, we would like to
analyze the sense in which the canonical indigenous bundle is special, and to show
how this sense can be translated immediately into the p-adic context. Thus, we see
that

The search for a p-adic theory analogous to the theory of the Fuch-
stan uniformization can be reinterpreted as the search for a notion
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of “canonical p-adic indigenous bundle” which is special in a sense
precisely analogous to the sense in which the canonical indigenous
bundle arising from the Fuchsian uniformization is special.

1.4. Frobenius Invariance and Integrality. — In this subsection, we explore in
greater detail the issue of what precisely makes the canonical indigenous bundle (in
the complex case) so special, and note in particular that a properly phrased charac-
terization of the canonical indigenous bundle (in the complex case) translates very
naturally into the p-adic case.

First, let us observe that in global discussions of motives over a number field, it is
natural to think of the operation of complex conjugation as a sort of “Frobenius at
the infinite prime.” In fact, in such discussions, complex conjugation is often denoted
by “Frs.” Next, let us observe that one special property of the canonical indigenous
bundle is that its monodromy representation (i.e., the “canonical representation” px :
IIx — PGLy(C)) is real-valued, i.e., takes its values in PGL3(R). Another way to put
this is to say that the canonical indigenous bundle is F'ry-invariant, i.e.,

The canonical indigenous bundle on a hyperbolic curve is invariant
with respect to the Frobenius at the infinite prime.

Unfortunately, as is observed in [5], this property of having real monodromy is not
sufficient to characterize the canonical indigenous bundle completely. That is to say,
the indigenous bundles with real monodromy form a discrete subset of the space of
indigenous bundles on the given curve X, but this discrete subset consists (in general)
of more than one element.

Let us introduce some notation. Let M, , be the stack of r-pointed smooth curves
of genus g over C. Let Sy, be the stack of such curves equipped with an indigenous
bundle. Then there is a natural projection morphism S, , — My, (given by forgetting
the indigenous bundle) which exhibits S, as an affine torsor on M, , over the vector
bundle Q 4, /¢ of differentials on M, .. We shall refer to this torsor Sy, — My, as
the Schwarz torsor.

Let us write Sx for the restriction of the Schwarz torsor S, , — M, . to the point
[X] € My -(C) defined by X. Thus, Sx is an affine complex space of dimension
3g—3+r. Let Rx C Sx be the set of indigenous bundles with real monodromy. As
observed in [5], Rx is a discrete subset of Sx. Now let 8% C Sx be the subset of
indigenous bundles (P — X, Vp) with the following property:

(*) The associated monodromy representation p : IIx — PGLy(C)
is injective and its image I' is a quasi-Fuchsian group. Moreover, if
Q C P}(C) is the domain of discontinuity of I', then Q/T" is a disjoint
union of two Riemann surfaces of type (g,r).
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(Roughly speaking, a “quasi-Fuchsian group” is a discrete subgroup of PGL2(C) whose
domain of discontinuity © (i.e., the set of points of P}(C) at which I' acts discontin-
uously) is a disjoint union of two topological open discs, separated by a topological
circle. We refer to [10, 27] for more details on the theory of quasi-Fuchsian groups.)

It is known that S% is a bounded ([10], p. 99, Lemma 6), open (cf. the discussion of
§5 of [27]) subset of Sx (in the complex analytic topology). Moreover, since a quasi-
Fuchsian group with real monodromy acts discretely on the upper half plane (see, e.g.,
[26], Chapter I, Proposition 1.8), it follows immediately that such a quasi-Fuchsian
group is Fuchsian. Put another way, we have that:

The intersection Rx (|S% C Sx is the set consisting of the single
point corresponding to the canonical indigenous bundle.

It is this characterization of the canonical indigenous bundle that we will seek to
translate into the p-adic case.

To translate the above characterization, let us first recall the point of view of
Arakelov theory which states, in effect, that Z,-integral structures (on say, an affine
space over Q) correspond to closures of bounded open subsets (of, say, an affine space
over C). Thus, from this point of view, one may think of S% as defining a natural
integral structure (in the sense of Arakelov theory) on the complex affine space Sx.
Thus, from this point of view, one arrives at the following characterization of the
canonical indigenous bundle:

The canonical indigenous bundle is the unique indigenous bundle
which is integral (in the Arakelov sense) and Frobenius invariant (i.e.,
has monodromy which is invariant with respect to complex conjuga-
tion,).

This gives us at last an answer to the question posed earlier: How can one charac-
terize the canonical indigenous bundle in the complex case in such a way that the
characterization carries over word for word to the p-adic context? In particular, it
gives rise to the following conclusion:

The proper p-adic analogue of the theory of the Fuchsian and Bers
uniformizations should be a theory of Zy-integral indigenous bundles
that are invariant with respect to some natural action of the Frobenius
at the prime p.

This conclusion constitutes the fundamental philosophical basis underlying the theory
of [22]. In [21], this philosophy was partially realized in the sense that certain Z,-
integral Frobenius indigenous bundles were constructed. The theory of [21] will be
reviewed later (in §1.6). The goal of [22], by contrast, is to lay the foundations for a
general theory of all Z,-integral Frobenius indigenous bundles and to say as much as
is possible in as much generality as is possible concerning such bundles.
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1.5. The Canonical Real Analytic Trivialization of the Schwarz Torsor

In this subsection, we would like to take a closer look at the Schwarz torsor
Sy — My,. For general g and r, this affine torsor Sy, — M,, does not ad-
mit any algebraic or holomorphic sections. Indeed, this affine torsor defines a class in
H' (Mg, Qpm, ., /c) which is the Hodge-theoretic first Chern class of a certain ample
line bundle £ on M. (See [21], Chapter I, §3, especially Theorem 3.4, for more
details on this Hodge-theoretic Chern class and Chapter III, Proposition 2.2, of [22]
for a proof of ampleness.) Put another way, Sy, — M, , is the torsor of (algebraic)
connections on the line bundle £. However, the map that assigns to X the canonical
indigenous bundle on X defines a real analytic section

su : Mg,r(C) — 8y.(C)

of this torsor.
The first and most important goal of the present subsection is to remark that

The single object sy essentially embodies the entire uniformization
theory of complex hyperbolic curves and their moduli.

Indeed, sg by its very definition contains the data of “which indigenous bundle is
canonical,” hence already may be said to embody the Fuchsian uniformization. Next,
we observe that sy is equal to the Weil-Petersson metric on M, . (see [21], Introduc-
tion, Theorem 2.3 for more details). Moreover, (as is remarked in Example 2 following
Definition 2.1 in [21], Introduction, §2) since the canonical coordinates associated to
a real analytic Kéhler metric are obtained by essentially integrating (in the “sense of
anti-0-ing”) the metric, it follows that (a certain appropriate restriction of) sy “is”
essentially the Bers uniformization of Teichmiiller space. Thus, as advertised above,
the single object sy stands at the very center of the uniformization theory of complex
hyperbolic curves and their moduli.

In particular, it follows that we can once again reinterpret the fundamental issue of
trying to find a p-adic analogue of the Fuchsian uniformization as the issue of trying
to find a p-adic analogue of the section sy. That is to say, the torsor Sy, — Mg, is,
in fact, defined over Z[3], hence over Z, (for p odd). Thus, forgetting for the moment
that it is not clear precisely what p-adic category of functions corresponds to the real
analytic category at the infinite prime, one sees that

One way to regard the search for a p-adic Fuchsian uniformization
is to regard it as the search for some sort of canonical p-adic analytic
section of the torsor S, — Mg .

In this context, it is thus natural to refer to sy as the canonical arithmetic trivializa-
tion of the torsor Sy, — Mg, at the infinite prime.

Finally, let us observe that this situation of a torsor corresponding to the Hodge-
theoretic first Chern class of an ample line bundle, equipped with a canonical real
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analytic section occurs not only over M, .., but over any individual hyperbolic curve
X (say, over C), as well. Indeed, let (P — X, Vp) be the canonical indigenous bundle

on X. Let 0 : X — P be its Hodge section. Then by [21], Chapter I, Proposition

2.5, it follows that the T’ Lp_ o(X) has the structure of an wx /c-torsor over X.

In fact, one can say more: namely, this torsor is the Hodge-theoretic first Chern class
corresponding to the ample line bundle wx c. Moreover, if we compose the morphism
X~H C P{ used to define o with the standard complex conjugation morphism
on P}C, we obtain a new Ilx-equivariant X — IP’%: which descends to a real analytic
section sx : X(C) — T(C). Just as in the case of Mg, it is easy to compute (cf.
the argument of [21], Introduction, Theorem 2.3) that dsx is equal to the canonical
hyperbolic metric px. Thus, just as in the case of the real analytic section sy of the
Schwarz torsor over M ., sx essentially “is” the Fuchsian uniformization of X.

1.6. The Classical Ordinary Theory. — As stated earlier, the purpose of [22]
is to study all integral Frobenius invariant indigenous bundles. On the other hand,
in [21], a very important special type of Frobenius invariant indigenous bundle was
constructed. This type of bundle will henceforth be referred to as classical ordinary.
(Such bundles were called “ordinary” in [21]. Here we use the term “classical ordinary”
to refer to objects called “ordinary” in [21] in order to avoid confusion with the more
general notions of ordinarity discussed in [22].) Before discussing the theory of the
[22] (which is the goal of §2), it is thus natural to review the classical ordinary theory.
In this subsection, we let p be an odd prime.

If one is to construct p-adic Frobenius invariant indigenous bundles for arbitrary
hyperbolic curves, the first order of business is to make precise the notion of Frobenius
invariance that one is to use. For this, it is useful to have a prototype. The prototype
that gave rise to the classical ordinary theory is the following:

Let M %' (M1,0)z, be the moduli stack of elliptic curves over Z,.

Let G — M Dbe the universal elliptic curve. Let &£ be its first de
Rham cohomology module. Thus, £ is a rank two vector bundle on
M, equipped with a Hodge subbundle F C &, and a connection V¢
(i.e., the “Gauss-Manin connection”). Taking the projectivization of
€ defines a P!-bundle with connection (P — M, Vp), together with
a Hodge section o : M — P. It turns out that (the natural exten-
sion over the compactification of M obtained by using log structures
of) the bundle (P,Vp) is an indigenous bundle on M. In particu-
lar, (P,Vp) defines a crystal in P!-bundles on Crys(M @ F,/Z,).
Thus, one can form the pull-back ®*(P, Vp) via the Frobenius mor-
phism of this crystal. If one then adjusts the integral structure of
®*(P,Vp) (cf. Definition 1.18 of Chapter VI of [22]; [21], Chapter
III, Definition 2.4), one obtains the renormalized Frobenius pull-back
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F*(P,Vp). Then (P,Vp) is Frobenius invariant in the sense that
(P, Vp) =F*(P,Vp).

Thus, the basic idea behind [21] was to consider to what extent one could construct
indigenous bundles on arbitrary hyperbolic curves that are equal to their own renor-
malized Frobenius pull-backs, i.e., satisfying

F*(P,Vp) = (P,Vp)

In particular, it is natural to try to consider moduli of indigenous bundles satisfying
this condition. Since it is not at all obvious how to do this over Z,, a natural first
step was to make the following key observation:

If (P,Vp) is an indigenous bundle over Z, preserved by F*, then
the reduction modulo p of (P,V p) has square nilpotent p-curvature.

(The “p-curvature” of an indigenous bundle in characteristic p is a natural invariant
of such a bundle. We refer to [21], Chapter II, as well as §1 of Chapter II of [22] for
more details.) Thus, if (ﬂg,T)Fp is the stack of r-pointed stable curves of genus g (as
in [4, 20]) in characteristic p, one can define the stack N g,r of such curves equipped
with a “nilpotent” indigenous bundle. (Here, “nilpotent” means that its p-curvature
is square nilpotent.) In the following, we shall often find it convenient to refer to
pointed stable curves equipped with nilpotent indigenous bundles as nilcurves, for

short. Thus, N g,r is the moduli stack of nilcurves. We would like to emphasize that

The above observation — which led to the notion of “nilcurves” —
is the key technical breakthrough that led to the development of the
“p-adic Teichmiiller theory” of [21, 22].

The first major result of [21] is the following (cf. [22], Chapter II, Proposition 1.7;
[21], Chapter II, Theorem 2.3):

Theorem 1.1 (Stack of Nilcurves). — The natural morphism N, , — (ﬂg,T)Fp s a
finite, flat, local complete intersection morphism of degree p39—3+T.

In particular, up to “isogeny” (i.e., up to the fact that p>9=3+" #£ 1),
the stack of nilcurves Ny, C Sy, defines a canonical section of the
Schwarz torsor Sy, — Mg, in characteristic p.

Thus, relative to our discussion of complex Teichmiiller theory — which we saw could
be regarded as the study of a certain canonical real analytic section of the Schwarz
torsor — it is natural that “p-adic Teichmiiller theory” should revolve around the study
of N g,r-

Although the structure of NV g,r 18 now been much better understood, at the time of
writing of [21] (Spring of 1994), it was not so well understood, and so it was natural
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ord

to do the following: Let Ng,,.
(My,r)F,. This open substack will be referred to as the (classical) ordinary locus of
Ny . If one sets up the theory (as is done in [21, 22]) using stable curves (as we do
here), rather than just smooth curves, and applies the theory of log structures (as in
[18]), then it is easy to show that the ordinary locus of Ny, is nonempty.

It is worth pausing here to note the following: The reason for the use of the term

- ./T/'gm be the open substack where Ng,r is étale over

“ordinary” is that it is standard general practice to refer to as “ordinary” situations
where Frobenius acts on a linear space equipped with a “Hodge subspace” in such a
way that it acts with slope zero on a subspace of the same rank as the rank of the
Hodge subspace. Thus, we use the term “ordinary” here because the Frobenius action
on the cohomology of an ordinary nilcurve satisfies just such a condition. In other
words, ordinary nilcurves are ordinary in their capacity as nilcurves. However, it is
important to remember that:

The issue of whether or not a nilcurve is ordinary is entirely differ-
ent from the issue of whether or not the Jacobian of the underlying
curve is ordinary (in the usual sense). That is to say, there exist
examples of ordinary nilcurves whose underlying curves have nonor-
dinary Jacobians as well as examples of nonordinary nilcurves whose
underlying curves have ordinary Jacobians.

Later, we shall comment further on the issue of the incompatibility of the theory of
[21] with Serre-Tate theory relative to the operation of passing to the Jacobian.

At any rate, since A Z’rf isﬁcale over (Mg, )F,, it lifts naturally to a p-adic formal
stack N which is étale over (Mg ,.)z,. Let C — N denote the tautological stable curve
over N/. Then the main result (Theorem 0.1 of the Introduction of [21]) of the theory

of [21] is the following:

Theorem 1.2 (Canonical Frobenius Lifting)

There exists a unique pair (Pn : N — N5 (P, Vp)) satisfying the following:

(1) The reduction modulo p of the morphism ® s is the Frobenius morphism on N,
i.e., ®ar is a Frobenius lifting.

(2) (P,Vp) is an indigenous bundle on C such that the renormalized Frobenius
pull-back of @3, (P, Vp) is isomorphic to (P,Vp), i.e., (P,Vp) is Frobenius invariant
with respect to ®xr.

Moreover, this pair also gives rise in a natural way to a Frobenius lifting ®¢ : C°™d —
C°* on a certain formal p-adic open substack C*Y of C (which will be referred to as
the ordinary locus of C).

Thus, this Theorem is a partial realization of the goal of constructing a canonical
integral Frobenius invariant bundle on the universal stable curve.
Again, we observe that
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This canonical Frobenius lifting ®nr is by no means compatible (rel-
ative to the operation of passing to the Jacobian) with the canonical
Frobenius lifting ® o (on the p-adic stack of ordinary principally po-
larized abelian varieties) arising from Serre-Tate theory (cf., e.g.,
[22], §0.7, for more details).

At first glance, the reader may find this fact to be extremely disappointing and unnat-
ural. In fact, however, when understood properly, this incompatibility is something
which is to be expected. Indeed, relative to the analogy between Frobenius liftings
and Ké&hler metrics implicit in the discussion of §1.1 ~ 1.5 (cf., e.g., [22], §0.8, for
more details) such a compatibility would be the p-adic analogue of a compatibility
between the Weil-Petersson metric on (M, )¢ and the Siegel upper half plane metric
on (Ag)c. On the other hand, it is easy to see in the complex case that these two
metrics are far from compatible. (Indeed, if they were compatible, then the Torelli
map (Mgy)c — (Ag)c would be unramified, but one knows that it is ramified at
hyperelliptic curves of high genus.)

Another important difference between ®,r and ® 4 is that in the case of ® 4, by
taking the union of ® 4 and its transpose, one can compactify ® 4 into an entirely
algebraic (i.e., not just p-adic analytic) object, namely a Hecke correspondence on
Ag. In the case of ®,r, however, such a compactification into a correspondence is
impossible. We refer to [23] for a detailed discussion of this phenomenon.

So far, we have been discussing the differences between ®, and ® 4. In fact,
however, in one very important respect, they are very similar objects. Namely, they

are both (classical) ordinary Frobenius liftings. A (classical) ordinary Frobenius lifting

is defined as follows: Let k be a perfect field of characteristic p. Let A &t W (k) (the

Witt vectors over k). Let S be a formal p-adic scheme which is formally smooth
over A. Let &g : S — S be a morphism whose reduction modulo p is the Frobenius
morphism. Then differentiating ®5 defines a morphism d®g : ®5€25/4 — (25,4 which
is zero in characteristic p. Thus, we may form a morphism

Qq> : (I)EQS/A — QS/A

by dividing d®g by p. Then ®g is called a (classical) ordinary Frobenius lifting if Qg is
an isomorphism. Just as there is a general theory of canonical coordinates associated
to real analytic K&hler metrics, there is a general theory of canonical coordinates
associated to ordinary Frobenius liftings. This theory is discussed in detail in §1 of
Chapter IIT of [21]. The main result is as follows (cf. §1 of [21], Chapter III):

Theorem 1.3 (Ordinary FrobeniusLiftings). — Let ®5 : S — S be a (classical) ordi-
nary Frobenius lifting. Then taking the invariants of {ls/a with respect to Q¢ gives
rise to an étale local system Q% on S of free Z,-modules of rank equal to dim4(S).
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FIGURE 3. The Canonical Frobenius Action Underlying Theorem 1.2

Let z € S(k) be a point valued in the algebraic closure of k. Then def Q). may

be thought of as a free Zy-module of rank dim 4 (S); write ©, for the Z,-dual of Q..
Let S, be the completion of S at z. Let Gy, be the completion of the multiplicative
group scheme Gy, over W (k) at 1. Then there is a unique isomorphism
I',:5, = CA;m ®%p O,
P

such that:

(i) the derivative of ', induces the natural inclusion Q. — Qg/als. ;

(ii) the action of ®g on S, corresponds to multiplication by p on CA}m ®%z O,.
Here, by “Gpn ®%pp O.,” we mean the tensor product in the sense of (formal) group
schemes. Thus, ém ®%I; © . is noncanonically isomorphic to the product of dim4(S) =

rankz, (©.) copies of (A}m.

Thus, we obtain canonical multiplicative parameters on A and C°'d (from ®pr and
e, respectively). If we apply Theorem 1.3 to the canonical lifting ® 4 of Serre-Tate
theory (cf., e.g., [22], §0.7), we obtain the Serre-Tate parameters. Moreover, note
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that in Theorem 1.3, the identity element “1” of the formal group scheme ém ®z, L.

corresponds under I', to some point o, € S(W(k)) that lifts z. That is to say,

Theorem 1.3 also gives rise to a motion of canonical liftings of points
in characteristic p.

In the case of ® 4, this notion coincides with the well-known notion of the Serre-Tate
canonical lifting of an ordinary abelian variety. In the case of ®,s, the theory of
canonically lifted curves is discussed in detail in Chapter IV of [21]. In [22], however,
the theory of canonical curves in the style of Chapter IV of [21] does not play a very
important role.

Remark. — Certain special cases of Theorem 1.3 already appear in the work of Thara
([14, 15, 16, 17]). In fact, more generally, the work of Thara ([14, 15, 16, 17])
on the Schwarzian equations of Shimura curves and the possibility of constructing an
analogue of Serre-Tate theory for more general hyperbolic curves anticipates, at least
at a philosophical level, many aspects of the theory of [21, 22].

Thus, in summary, although the classical ordinary theory of [21] is not compatible
with Serre-Tate theory relative to the Torelli map, it is in many respects deeply
structurally analogous to Serre-Tate theory. Moreover, this close structural affinity
arises from the fact that in both cases,

The ordinary locus with which the theory deals is defined by the
condition that some canonical Frobenius action have slope zero.

Thus, although some readers may feel unhappy about the use of the term “ordinary”
to describe the theory of [21] (i.e., despite the fact that this theory is incompatible
with Serre-Tate theory), we feel that this close structural affinity arising from the
common condition of a slope zero Frobenius action justifies and even renders natural
the use of this terminology.

Finally, just as in the complex case, where the various indigenous bundles involved
gave rise to monodromy representations of the fundamental group of the hyperbolic
curve involved, in the p-adic case as well, the canonical indigenous bundle of Theorem
1.2 gives rise to a canonical Galois representation, as follows. We continue with the
notation of Theorem 1.2. Let N — N be the morphism ®,, which we think of as
a covering of N let C’ e @n N’. Note that C and N have natural log structures
(obtained by pulling back the natural log structures on Mgm and its tautological
curve, respectively). Thus, we obtain Clos N2 Let

My < m(N8 8z, Qp);  Tle = m(C @z, Q)

Similarly, we have IIx~; e, Then the main result is the following (Theorem 0.4 of
[21], Introduction):
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Theorem 1.4 (Canonical Galois Representation). — There is a natural Z,-flat, p-adic-
ally complete “ring of additive periods” Df/al on which Mx (hence also Mer via the
natural projection Ile: — Iz ) acts continuously, together with a twisted homomor-
phism

p: e — PGLy(DSM)

where “twisted” means with respect to the action of Il on Dj(\;/al. This representation
is obtained by taking Frobenius invariants of (P,V p), using a technical tool known as
crystalline induction.

Thus, in summary, the theory of [21] gives one a fairly good understanding of what

. —ord
happens over the ordinary locus N Z’TT,

(monodromy representations, canonical modular coordinates, etc.) that appeared in
the complex case. On the other hand, it begs the following questions:

complete with analogues of various objects

(1) What does the nonordinary part of N, look like? What sorts of nonordinary
nilcurves can occur? In particular, what does the p-curvature of such nonordinary
nilcurves look like?

(2) Does this “classical ordinary theory” admit any sort of compactification? One
sees from [23] that it does not admit any sort of compactification via correspondences.
Still, since the condition of being ordinary is an “open condition,” it is natural to ask
what happens to this classical ordinary theory as one goes to the boundary.

The theory of [22] answers these two questions to a large extent, not by adding on a
few new pieces to [21], but by starting afresh and developing from new foundations a
general theory of integral Frobenius invariant indigenous bundles. The theory of [22]
will be discussed in § 2.

2. Beyond the “Classical Ordinary” Theory

2.1. Atoms, Molecules, and Nilcurves. — Let p be an odd prime. Let g and r
be nonnegative integers such that 2g — 2 +r > 1. Let N, be the stack of nilcurves
in characteristic p. We denote by Ny, C N ¢, the open substack consisting of smooth
nilcurves, i.e., nilcurves whose underlying curve is smooth. Then the first step in our
analysis of A/ g, is the introduction of the following notions (cf. Definitions 1.1 and
3.1 of [22], Chapter II):

Definition 2.1. — We shall call a nilcurve dormant if its p-curvature (i.e., the p-
curvature of its underlying indigenous bundle) is identically zero. Let d be a non-
negative integer. Then we shall call a smooth nilcurve spiked of strength d if the zero
locus of its p-curvature forms a divisor of degree d.
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If d is a nonnegative integer (respectively, the symbol co), then we shall denote by
Norld] € Ny

the locally closed substack of nilcurves that are spiked of strength d (respectively,
dormant). It is immediate that there does indeed exist such a locally closed substack,
and that if k£ is an algebraically closed field of characteristic p, then

Ngﬂ‘(k) = H Ng,r[d] (k)
d=0

Moreover, we have the following result (cf. [22], Chapter II, Theorems 1.12, 2.8, and
3.9):

Theorem 2.2 (Stratification of N, ). — Any two irreducible components of Ny, inter-
sect. Moreover, for d =0,1,...,00, the stack Ny [d] is smooth over F), of dimension
39 —3+r (if it is nonempty). Finally, Ny ,[0o] is irreducible, and its closure in Ny,
is smooth over F,,.

Thus, in summary, we see that

The classification of nilcurves by the size of the zero locus of their
p-curvatures induces a natural decomposition of Ny, into smooth (lo-
cally closed) strata.

Unfortunately, however, Theorem 2.2 still only gives us a very rough idea of the
structure of Ny ,. For instance, it tells us nothing of the degree of each N ,[d] over

Mg,

Remark. — Some people may object to the use of the term “stratification” here for
the reason that in certain contexts (e.g., the Ekedahl-Oort stratification of the moduli
stack of principally polarized abelian varieties — cf. [11], §2), this term is only used for
decompositions into locally closed subschemes whose closures satisfy certain (rather
stringent) axioms. Here, we do not mean to imply that we can prove any nontrivial
results concerning the closures of the Ny ,.[d]’s. That is to say, in [22], we use the term
“stratification” only in the weak sense (i.e., that NV, , is the union of the N, ,.[d]). This
usage conforms to the usage of Lecture 8 of [24], where “flattening stratifications” are
discussed.

In order to understand things more explicitly, it is natural to attempt to do the
following:

(1) Understand the structure — especially, what the p-curvature looks like — of all
molecules (i.e., nilcurves whose underlying curve is totally degenerate).

(2) Understand how each molecule deforms, i.e., given a molecule, one can consider
its formal neighborhood N in ./T/'gyr. Then one wants to know the degree of each
NONy.-[d] (for all d) over the corresponding formal neighborhood M in Mg .
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Obtaining a complete answer to these two questions is the topic of [22], Chapters IV
and V.

First, we consider the problem of understanding the structure of molecules. Since
the underlying curve of a molecule is a totally degenerate curve — i.e., a stable curve
obtained by gluing together P!’s with three nodal/marked points — it is natural to
restrict the given nilpotent indigenous bundle on the whole curve to each of these
Pl’s with three marked points. Thus, for each irreducible component of the original
curve, we obtain a P! with three marked points equipped with something very close
to a nilpotent indigenous bundle. The only difference between this bundle and an
indigenous bundle is that its monodromy at some of the marked points (i.e., those
marked points that correspond to nodes on the original curve) might not be nilpotent.
In general, a bundle (with connection) satisfying all the conditions that an indigenous
bundle satisfies except that its monodromy at the marked points might not be nilpo-
tent is called a torally indigenous bundle (cf. [22], Chapter I, Definition 4.1). (When
there is fear of confusion, indigenous bundles in the strict sense (as in [21], Chapter
I) will be called classical indigenous.) For simplicity, we shall refer to any pointed
stable curve (respectively, totally degenerate pointed stable curve) equipped with a
nilpotent torally indigenous bundle as a nilcurve (respectively, molecule) (cf. §0 of
[22], Chapter V). Thus, when it is necessary to avoid confusion with the toral case,
we shall say that “A\/ g.r 1 the stack of classical nilcurves.” Finally, we shall refer to
a (possibly toral) nilcurve whose underlying curve is P! with three marked points as
an atom.

At any rate, to summarize, a molecule may be regarded as being made up of atoms.
It turns out that the monodromy at each marked point of an atom (or, in fact, more
generally any nilcurve) has an invariant called the radius. The radius is, strictly
speaking, an element of F,/{£} (cf. Proposition 1.5 of [22], Chapter II) - i.e., the
quotient set of F\, by the action of &1 — but, by abuse of notation, we shall often
speak of the radius p as an element of F),. Then we have the following answer to (1)
above (cf. §1 of [22], Chapter V):

Theorem 2.3 (The Structure of Atomsand Molecules). — The structure theory of
atoms (over any field of characteristic p) may be summarized as follows:

(1) The three radii of an atom define a bijection of the set of isomorphism classes
of atoms with the set of ordered triples of elements of Fp,/{£1}.

(2) For any triple of elements pq, pg, pv € Fp, there exist integers a,b,c € [0,p—1]
such that (i) a = £2pq, b = £2pg, ¢ = £2p,; (i) a+b+c is odd and < 2p. Moreover,
the atom of radii pa, pg, py s dormant if and only if the following three inequalities
are satisfied simultaneously: a+b>c, a+c>b, b+c > a.
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G|

Ordinary

The Moduli Stack of Nilcurves has
(in general) many different irredu-
cible components corresponding to
the degree of vanishing of the
p-curvature of the nilcurves para-
metrized. Darker components are
farther from being reduced.

The Generic Structure of the Moduli
Stack of Nilcurves can be analyzed by
looking at how Molecules Deform.

FIGURE 4. The Structure of Ny,

(3) Suppose that the atom of radii pa,pg, p is nondormant. Let vy, vg, vy be the
degrees of the zero loci of the p-curvature at the three marked points. Then the non-
negative integers vqo,vg, v, are uniquely determined by the following two conditions:
(1) vo +vg + vy is odd and < p; (ii) vo = £2pa, v3 = £2p5, vy = £2p,.

Molecules are obtained precisely by gluing together atoms at their marked points in
such a way that the radii at marked points that are glued together coincide (as elements

of Fp/{£1}).

In the last sentence of the theorem, we use the phrase “obtained precisely” to mean that
all molecules are obtained in that way, and, moreover, any result of gluing together
atoms in that fashion forms a molecule. Thus,

Theorem 2.3 reduces the structure theory of atoms and molecules to
a matter of combinatorics.

Theorem 2.3 follows from the theory of [22], Chapter IV.

Before proceeding, we would like to note the analogy with the theory of “pants”
(see [1] for an exposition) in the complex case. In the complex case, the term “pants”
is used to describe a Riemann surface which is topologically isomorphic to a Riemann
sphere minus three points. The holomorphic isomorphism class of such a Riemann
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surface is given precisely by specifying three radii, i.e., the size of its three holes.
Moreover, any hyperbolic Riemann surface can be analyzed by decomposing it into
a union of pants, glued together at the boundaries. Thus, there is a certain analogy
between the theory of pants and the structure theory of atoms and molecules given
in Theorem 2.3.

Next, we turn to the issue of understanding how molecules deform. Let M be a
nondormant classical molecule (i.e., it has nilpotent monodromy at all the marked
points). Let us write ngo, for the number of “toral nodes” (i.e., nodes at which the
monodromy is not nilpotent) of M. Let us write nqor for the number of dormant
atoms in M. To describe the deformation theory of M, it is useful to choose a plot
IT for M. A plot is an ordering (satisfying certain conditions) of a certain subset of
the nodes of M (see §1 of [22], Chapter V for more details). This ordering describes
the order in which one deforms the nodes of M. (Despite the similarity in notation,
plots have nothing to do with the “VF-patterns” discussed below.) Once the plot is
fixed, one can contemplate the various scenarios that may occur. Roughly speaking,
a scenario is an assignment (satisfying certain conditions) of one of the three symbols
{0, +, —} to each of the branches of each of the nodes of M (see §1 of [22], Chapter V
for more details). There are 2™der possible scenarios. The point of all this terminology
is the following:

One wants to deform the nodes of M in a such a way that one can
always keep track of how the p-curvature deforms as one deforms the
nilcurve.

If one deforms the nodes in the fashion stipulated by the plot and scenario, then each
deformation that occurs is one the following four types: classical ordinary, grafted,
philial, aphilial.

The classical ordinary case is the case where the monodromy (at the node in ques-
tion) is nilpotent. It is also by far the most technically simple and is already discussed
implicitly in [21]. The grafted case is the case where a dormant atom is grafted on to
(what after previous deformations is) a nondormant smooth nilcurve. This is the case
where the consequent deformation of the p-curvature is the most technically difficult
to analyze and is the reason for the introduction of “plots” and “scenarios.” In order
to understand how the p-curvature deforms in this case, one must introduce a certain
technical tool called the wvirtual p-curvature. The theory of virtual p-curvatures is
discussed in §2.2 of [22], Chapter V. The philial case (respectively, aphilial case) is
the case where one glues on a nondormant atom to (what after previous deformations
is) a nondormant smooth nilcurve, and the parities (i.e., whether the number is even
or odd) of the vanishing orders of the p-curvature at the two branches of the node
are opposite to one another (respectively, the same). In the philial case (respectively,
aphilial case), deformation gives rise to a spike (respectively, no spike). An illustration
of these four fundamental types of deformation is given in Fig. 6. The signs in this
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FIGURE 5. The Step Used to Analyze the Structure of A/,

illustration are the signs that are assigned to the branches of the nodes by the “sce-
nario.” When the p-curvature is not identically zero (i.e., on the light-colored areas),
this sign is the parity (i.e., plus for even, minus for odd) of the vanishing order of
the p-curvature. For a given scenario X, we denote by npni(X) (respectively, naph(X))
the number of philial (respectively, aphilial) nodes that occur when the molecule is
deformed according to that scenario.

If U = Spec(A) is a connected noetherian scheme of dimension 0, then we shall
refer to the length of the artinian ring A as the padding degree of U. Then the theory
just discussed gives rise to the following answer to (2) above (cf. Theorem 1.1 of [22],
Chapter V):

Theorem 2.4 (Deformation Theory of Molecules). — Let M be a classical molecule
over an algebraically closed field k of characteristic p. Let N be the completion of
Ny at M. Let M be the completion of (M, )¥, at the point defined by the curve
underlying M. Letn be the strict henselization of the generic point of M. Then the
natural morphism N'— M s finite and flat of degree 2™°r. Moreover:

(1) If M is dormant, then Nyea = M, and N5 has padding degree 2397317,

(2) If M is nondormant, fix a plot II for M. Then for each of the 2" scenarios

associated to I1, there exists a natural open substack Ny, C N= Lf v X m M such that:
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(i.) Ny is the disjoint union of the Ns (as ¥ ranges over all the scenarios); (ii.)
every residue field of Ns is separable over (hence equal to) k(7); (iii) the degree of
(N)rea over 7 is 2™a»(3) - (iv) each connected component of N has padding degree
2mem(®) () the smooth mnilcurve represented by any point of (Nx)rea is spiked of
strength p - npn(X).

In particular, this Theorem reduces the computation of the degree of any Ny [d] over
(/\/lg,,.)pp to a matter of combinatorics.

) deforms to v
Classical
—_—
Ordinary Node ><

deformsto

Grafted

Node

Philial deformsto v - -
)/ _— o= resulting spike

Node
deforms to v

Aphilial YA _—

Node

FIGURE 6. The Four Types of Nodal Deformation

For instance, let us denote by ngrﬂ » the degree of N gof,?i (which — as a consequence of

Theorem 2.4! (cf. Corollary 1.2 of [22], Chapter V) —is open and dense in N ,.[0]) over

(My,r)F,. Then following the algorithm implicit in Theorem 2.4, ngff, p 1s computed

explicitly for low g and r in Corollary 1.3 of [22], Chapter V (e.g., n{"{ ) = ng's , = p;

ng's , = $(p*+1); etc.). Moreover, we note the following two interesting phenomena:

(1) Degrees such as ngfﬂ’p tend to be well-behaved — even polynomial, with coeffi-

cients equal to various integrals over Euclidean space — as functions of p. Thus, for
instance, the limit, as p goes to infinity, of ngr,dp /p" 3 exists and is equal to the vol-
ume of a certain polyhedron in (r — 3)-dimensional Euclidean space. See Corollary

1.3 of [22], Chapter V for more details.
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(2) Theorem 2.4 gives, for every choice of totally degenerate r-pointed stable curve
of genus g, an (a priori) distinct algorithm for computing ngfﬂp. Since ngff}’p, of
course, does not depend on the choice of underlying totally degenerate curve, we

ord
g,7,p

each case. If one writes out these equalities, one thus obtains various combinatorial
identities. Although the author has yet to achieve a systematic understanding of these
combinatorial identities, already in the cases that have been computed (for low g and
r), these identities reduce to such nontrivial combinatorial facts as Lemmas 3.5 and
3.6 of [22], Chapter V.

thus obtain equalities between the various sums that occur (to compute nd'< ) in

Although the author does mot have even a conjectural theoretical understanding of
these two phenomena, he nonetheless feels that they are very interesting and deserve
further study.

2.2. The MFV-Object Point of View. — Before discussing the general theory
of canonical liftings of nilpotent indigenous bundles, it is worth stopping to examine
the general conceptual context in which this theory will be developed. To do this,
let us first recall the theory of MFV -objects developed in §2 of [6]. Let p be a
prime number, and let S be a smooth Z,-scheme. Then in loc. cit., a certain category
MEFV(S) is defined. Objects of this category MFV (S) consist of: (1) a vector bundle
E on S equipped with an integrable connection Vg (one may equivalently regard the
pair (£,Veg) as a crystal on the crystalline site Crys(S ®z, Fp/Zy,) valued in the
category of vector bundles); (2) a filtration F'(£) C & (called the Hodge filtration) of
subbundles of &€; (3) a Frobenius action ®g on the crystal (£,Ve). Moreover, these
objects satisfy certain conditions, which we omit here.

Let IIs be the fundamental group of S ®z, Q, (for some choice of base-point). In
loc. cit., for each MFV (S)-object (£,Ve, F'(£),®e), a certain natural Ilg-module
V is constructed by taking invariants of (€, Vg) with respect to its Frobenius action
®g. If £ is of rank 7, then V is a free Zy-module of rank 7. On typical example of
such an MFV (S)-object is the following:

If X — S is the tautological abelian variety over the moduli stack

of principally polarized abelian varieties, then the relative first de

Rham cohomology module of X — S forms an MFV(S)-module

whose restriction to the ordinary locus of S is (by Serre-Tate the-

ory) intimately connected to the “p-adic uniformization theory” of

S.
In the context of [22], we would like to consider the case where S = (Mg )z, .
Moreover, just as the first de Rham cohomology module of the universal abelian
variety gives rise to a “fundamental uniformizing MFV (S)-module” on the moduli
stack of principally polarized abelian varieties, we would like to define and study a
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corresponding “fundamental uniformizing MFY-object” on (My,r)z,- Unfortunately,
as long as one sticks to the conventional definition of MFV-object given in [6], it
appears that such a natural “fundamental uniformizing MFY-object” simply does
not exist on (Mg,,)z,. This is not so surprising in view of the nonlinear nature of
the Teichmiiller group (i.e., the fundamental group of (M, ,)c). In order to obtain a
natural “fundamental uniformizing MFY-object” on (My.r)z,,
the “classical” linear notion of [6] as follows: Instead of considering crystals (equipped
with filtrations and Frobenius actions) valued in the category of vector bundles, one

one must generalize

must consider crystals (still equipped with filtrations and Frobenius actions in some
appropriate sense) valued in the category of schemes (or more generally, algebraic
spaces). Thus,

One philosophical point of view from which to view [22] is that it is
devoted to the study of a certain canonical uniformizing MFY -object
on (My,r)z, valued in the category of algebraic spaces.

Just as in the case of abelian varieties, this canonical uniformizing MFY-object will
be obtained by taking some sort of de Rham cohomology of the universal curve over
(Mg.r)z,. The rest of this subsection is devoted to describing this MFV-object in
more detail.

Now let S be the spectrum of an algebraically closed field (of characteristic not
equal to 2), and let X be a smooth, proper, geometrically curve over S of genus > 2.
Let P — X be a P!'-bundle equipped with a connection Vp. If 0 : X — P is a section
of this P'-bundle, then we shall refer to the number %deg(a*rp/x) (where Tp/x 18
the relative tangent bundle of P over X) as the canonical height of o. Moreover, note
that by differentiating o by means of Vp, one obtains a morphism 7y, — 0*7p/x.
We shall say that o is horizontal if this morphism is identically zero.

(Roughly speaking) we shall call (P, Vp) crys-stable if it does not admit any hor-
izontal sections of canonical height < 0 (see Definition 1.2 of [22], Chapter I for a
precise definition). (Roughly speaking) we shall call (P, Vp) crys-stable of level 0 (or
just stable) if it does not admit any sections of canonical height < 0 (see Definition
3.2 of [22], Chapter I for a precise definition). Let I be a positive half-integer (i.e.,
a positive element of %Z) We shall call (P,Vp) crys-stable of level [ if it admits a
section of canonical height —I. If it does admit such a section, then this section is the
unique section of P — X of negative canonical height. This section will be referred
to as the Hodge section (see Definition 3.2 of [22], Chapter I for more details). For
instance, if £ is a vector bundle of rank two on X such that Ad(£) is a stable vector
bundle on X (of rank three), and P — X is the projective bundle associated to &,
then (P, Vp) will be crys-stable of level 0 (regardless of the choice of Vp). On the
other hand, an indigenous bundle on X will be crys-stable of level ¢ — 1. More gen-
erally, these definitions generalize to the case when X is a family of pointed stable
curves over an arbitrary base (on which 2 is invertible).
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The nonlinear MFY-object on (Mg, )z, (where p is odd) that is the topic of [22]
is (roughly speaking) the crystal in algebraic spaces given by the considering the fine
moduli space Y — (Mg )z, of crys-stable bundles on the universal curve (cf. Theorem
2.7, Proposition 3.1 of [22], Chapter I for more details). Put another way, this crystal
is a sort of de Rham-theoretic H' with coefficients in PGLy of the universal curve
over M . The nonlinear analogue of the Hodge filtration on an MFV-object is the
collection of subspaces given by the fine moduli spaces V' of crys-stable bundles of
level I (for various [) — cf. [22], Chapter I, Proposition 3.3, Lemmas 3.4 and 3.8, and
Theorem 3.10 for more details.

Remark. — This collection of subspaces is reminiscent of the stratification (on the
moduli stack of smooth nilcurves) of §2.1. This is by no means a mere coincidence.
In fact, in some sense, the stratification of N, which was discussed in §2.1 is the
Frobenius conjugate of the Hodge structure mentioned above. That is to say, the
relationship between these two collections of subspaces is the nonlinear analogue of the
relationship between the filtration on the de Rham cohomology of a variety in positive
characteristic induced by the “conjugate spectral sequence” and the Hodge filtration on
the cohomology. (That is to say, the former filtration is the Frobenius conjugate of
the latter filtration.)

Thus, to summarize, relative to the analogy between the nonlinear objects dealt
with in this paper and the “classical” MFV-objects of [6], the only other piece of data
that we need is a Frobenius action. It is this issue of defining a natural Frobenius
action which occupies the bulk of [22].

2.3. The Generalized Notion of a Frobenius Invariant Indigenous Bundle.
— In this subsection, we would like to take up the task of describing the Frobenius
action on crys-stable bundles. Just as in the case of the linear MFV-objects of [6],
and as motivated by comparison with the complex case (see the discussion of §1),
we are interested in Frobenius invariant sections of the MFY -object, i.e., Frobenius
invariant bundles. Moreover, since ultimately we are interested in uniformization the-
ory, instead of studying general Frobenius invariant crys-stable bundles, we will only
consider Frobenius invariant indigenous bundles. The reason that we must nonethe-
less introduce crys-stable bundles is that in order to obtain canonical lifting theories
that are valid at generic points of Ny, parametrizing dormant or spiked nilcurves, it
is necessary to consider indigenous bundles that are fixed not (necessarily) after one
application of Frobenius, but after several applications of Frobenius. As one applies
Frobenius over and over again, the bundles that appear at intermediate stages need
not be indigenous. They will, however, be crys-stable. This is why we must introduce
crys-stable bundles.
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In order to keep track of how the bundle transforms after various applications of
Frobenius, it is necessary to introduce a certain combinatorial device called a VF-
pattern (where “VF” stands for “Verschiebung/Frobenius”). VF-patterns may be de-
scribed as follows. Fix nonnegative integers g,r such that 29 — 2 +r > 0. Let
X def %(29 — 2+ 7). Let Lev be the set of | € %Z satisfying 0 < [ < x. We shall call
Lev the set of levels. (That is, Lev is the set of possible levels of crys-stable bundles.)
Let IT : Z — Lev be a map of sets, and let w be a positive integer. Then we make
the following definitions:

(i) We shall call (II, w) a VF-pattern if II(n + w) = I(n) for all n € Z; T1(0) = x;
II(:) — I(j) € Z for all 4, j € Z (cf. Definition 1.1 of [22], Chapter III).

(ii) A VF-pattern (II, ) will be called pre-home if II(Z) = {x}. A VF-pattern
(I, w) will be called the home VF-pattern if it is pre-home and w = 1.

(iii) A VF-pattern (II, w) will be called binary if II(Z) C {0,x}. A VF-pattern
(II, w) will be called the VF-pattern of pure tone w if II(n) = 0 for all n € Z not
divisible by w.

(iv) Let (II, ) be a VF-pattern. Then ¢ € Z will be called indigenous (respectively,
active; dormant) for this VF-pattern if TI(i) = x (respectively, I1(i) # 0; II(¢) = 0).
If i,j € Z, and i < j, then (i,5) will be called ind-adjacent for this VF-pattern if
II(z) = II(j) = x and II(n) # x for all n € Z such that i < n < j.

At the present time, all of this terminology may seem rather abstruse, but eventually,
we shall see that it corresponds in a natural and evident way to the p-adic geometry
defined by indigenous bundles that are Frobenius invariant in the fashion described
by the VF-pattern in question. Finally, we remark that often, in order to simplify
notation, we shall just write II for the VF-pattern (even though, strictly speaking, a
VF-pattern is a pair (II, w)).

Now fix an odd prime p. Let (I, @) be a VF-pattern. Let S be a perfect scheme of
characteristic p. Let X — S be a smooth, proper, geometrically connected curve of
genus g > 2. (Naturally, the theory goes through for arbitrary pointed stable curves,
but for simplicity, we assume in the present discussion that the curve is smooth
and without marked points.) Write W (S) for the (ind-)scheme of Witt vectors with
coefficients in S. Let P be a crystal on Crys(X/W(S)) valued in the category of
Pl-bundles. Thus, the restriction P|x of P to Crys(X/S) may be thought of as a
P-bundle with connection on the curve X — S. Let us assume that P|x defines an
indigenous bundle on X. Now we consider the following procedure (cf. Fig. 7):

Using the Hodge section of P|x, one can form the renormalized

Probenius pull-back P; < F* (P) of P. Thus, F*(P) will be a crys-

tal valued in the category of P!-bundles on Crys(X/W(S)). Assume
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that P1|x is crys-stable of level TI(1). Then there are two possibil-
ities: either II(1) is zero or nonzero. If II(1) = 0, then let Py be
the usual (i.e., non-renormalized) Frobenius pull-back ®*P; of the
crystal Py. If TI(1) # 0, then Pi|x is crys-stable of positive level,

hence admits a Hodge section; thus, using the Hodge section of P;|x,

we may form the renormalized Frobenius pull-back Ps def F*(P1)

of P;. Continuing inductively in this fashion — i.e., always assum-
ing P;|x to be crys-stable of level II(¢), and forming P;y; by taking
the renormalized (respectively, usual) Frobenius pull-back of P; if
TI(7) # 0 (respectively, II(i) = 0), we obtain a sequence P; of crystals
on Crys(X/W(S)) valued in the category of P*-bundles.

Then we make the following

Definition 2.5. — We shall refer to P as II-indigenous (on X) if all the assumptions
(on the P;) necessary to carry out the above procedure are satisfied, and, moreover,

Pw = P.

Thus, to say that P is II-indigenous (more properly, (II, w)-indigenous) is to say that
it is Frobenius invariant in the fashion specified by the combinatorial data (II, @).

Now we are ready to define a certain stack that is of central importance in [22].
The stack Q! — also called the stack of quasi-analytic self-isogenies of type (II, ) —
is defined as follows:

To a perfect scheme S, QU(S) assigns the category of pairs (X —
S, P), where X — S is a curve as above and P is a I-indigenous
bundle on X.

Thus, QM is may be regarded as the moduli stack of indigenous bundles that are
Frobenius invariant in the fashion specified by the VF-pattern II.

We remark that in fact, more generally, one can define QU on the category of
epiperfect schemes S. (Whereas a perfect scheme is a scheme on which the Frobenius
morphism is an isomorphism, an epiperfect scheme is one on which the Frobenius
morphism is a closed immersion.) Then instead of using W(.S), one works over B(.S)
— i.e., the “universal PD-thickening of S.” For instance, the well-known ring Be;ys
introduced by Fontaine (and generalized to the higher-dimensional case in [6]) is a
special case of B(S). The point is that one needs the base spaces that one works with
to be Zp-flat and equipped with a natural Frobenius action. The advantage of working
with arbitrary B(S) (for S epiperfect) is that the theory of crystalline representations
(and the fact that Be,ys is a special case of B(S)) suggest that B(S) is likely to be the
most general natural type of space having these two properties — i.e., Z,-flatness and
being equipped with a natural Frobenius action. The disadvantage of working with
arbitrary B(S) (as opposed to just W(S) for perfect S) is that many properties of
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QU are technically more difficult or (at the present time impossible) to prove in the
epiperfect case. For the sake of simplicity, in this Introduction, we shall only consider
the perfect case. For more details, we refer to [22], Chapter VI.

o* *
i P2 las]| B3| ®
/ Stable Stable [ TTTrreeell >
Ps
P1 Indigenous
Crys-Stable
of Positive Level The Sense in which E*
The Indigenous Bundle
P, is Frobenius Invariant
F * 0 P5
Crys-Stable
P of Positive Level
0
Indigenous
XL, . P7 P6 = *
o | sable | < R Indigenous
F
A Typical Corresponding VF-Pattern (of Period 8):
o % %=1, 0,0, % %2, %, 0, ...

FI1GURE 7. The Sense of Frobenius Invariance Specified by a VF-Pattern

Now, we are ready to discuss the main results concerning Q'. The general theory
of QM is the topic of [22], Chapter VI. We begin with the following result (cf. Theorem
2.2 of [22], Chapter VI):

Theorem 2.6 (Representability and Affineness). — The stack Q" is representable by a
perfect algebraic stack whose associated coarse moduli space (as in [7], Chapter 1,
Theorem 4.10) is quasi-affine. If 1 is pre-home, then this coarse moduli space is even

affine.

Thus, in the pre-home case, QU is perfect and affine. In particular, any sort of de
Rham/crystalline-type cohomology on Q' must vanish. It is for this reason that we
say (in the pre-home case) that Q' is crystalline contractible (cf. Fig. 8). Moreover,
(cf. Theorem 2.12 of [22], Chapter III),

Corollary 2.7 (Irreducibility of Moduli). — (The fact that QY s crystalline con-
tractible for the home VF-pattern is intimately connected with the fact that) Mg, is
irreducible.
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In the Case of a Pre-Home VF-Pattern,
the Stack of Quesi-Analytic Self- The Moduli Stack of Curves
Isogeniesis Crystalline Contractible
(perfect and affine). Thisimpliesthe
connectedness of the moduli stack of curves.

FIGURE 8. Crystalline Contractibility in the Pre-Home Case

The basic idea here is the following: By induction on g, it suffices to prove that
My does not admit any proper connected components. But if it did admit such a

component J, then one can apply the following analysis to N LYy g XM, J: First
of all, by Theorem 1.1, A is finite and flat of degree p9=3+" over J. Now let I be
an irreducible component of Ny for which the vanishing locus of the p-curvature of
the nilcurve parametrized by the generic point of I is mazimal (in other words, an
irreducible component whose generic point lies in N, ,.[d], for d maximal). It is then
a formal consequence of Theorems 1.1 and 2.2 that I is smooth and proper over Fy,
and that the whole of I (i.e., not just the generic point) lies in some Ny ,[d]. Now we
apply the fact that N ,[0] is affine (a fact which belongs to the same circle of ideas
as Theorem 2.6). This implies (since I is proper and of positive dimension) that the
d such that I C N, [d] is nonzero. Thus, since (by [21], Chapter II, Corollary 2.16)
Ny.» is nonreduced at the generic point of N ,[d], it follows that the degree of I over
J is < p?973%". On the other hand, by using the fact that the Schwarz torsor may
also be interpreted as the Hodge-theoretic first Chern class of a certain ample line
bundle (cf. [21], Chapter I, §3), it is a formal consequence (of basic facts concerning
Chern classes in crystalline cohomology) that deg(I/J) (which is a positive integer)
is divisible by p?9=3*". This contradiction (i.e., that deg(I/.J) is a positive integer
< p3973+" which is nevertheless divisible by p?9=3+") concludes the proof.

As remarked earlier, this derivation of the irreducibility of the moduli of Mg,
from the basic theorems of p-adic Teichmiiller theory is reminiscent of the proof of
the irreducibility of M, , given by using complex Teichmiiller theory to show that
Teichmiiller space is contractible (cf., e.g., [2, 4]). Moreover, it is also interesting in
that it suggests that perhaps at some future date the theory (or some extension of
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the theory) of [22] may be used to compute other cohomology groups of M, . Other
proofs of the irreducibility of M, , include those of [8, 9], but (at least as far the
author knows) the proof given here is the first that relies on essentially characteristic
p methods (i.e., “Frobenius”).

Before proceeding, we must introduce some more notation. If Z is a smooth stack
over Zy, let us write Zy for the stack on the category of perfect schemes of charac-
teristic p that assigns to a perfect S the category Z(W(S)). We shall refer to Zw
as the infinite Weil restriction of Z. It is easy to see that Zy, is representable by a
perfect stack (Proposition 1.13 of [22], Chapter VI). Moreover, this construction gen-
eralizes immediately to the logarithmic category. Write My (respectively, Sy) for
((M;‘jf)zp)w (respectively, ((E;E)ZP)W). (Here S, — M, is the Schwarz torsor
over ngr; we equip it with the log structure obtained by pulling back the log structure
of ﬂlgof) Now if P is II-indigenous on X, it follows immediately from the elementary
theory of indigenous bundles that there exists a unique curve Xy — W(.S) whose re-
striction to S C W(S) is X — S and such that the restriction of the crystal P to Xy
defines an indigenous bundle on Xy . The assignment P — (Xyw — W(S),P|xw)
(respectively, P +— {Xw — W(S)}) thus defines a natural morphism Q" — Sy
(respectively, Q' — My ). Now we have the following results (cf. Propositions 2.3,
2.9; Corollaries 2.6 and 2.13 of [22], Chapter VI):

Theorem 2.8 (Immersions). — The natural morphism Q% — Sy is an immersion in
general, and a closed immersion if the VF-pattern is pre-home or of pure tone. The
morphism QW — My is a closed immersion if the VF-pattern is the home VF-
pattern.

Theorem 2.9 (Isolatednessin the Pre-Home Case). — In the pre-home case, QU is
closed inside Sy and disjoint from the closure of any non-pre-home o',

We remark that in both of these cases, much more general theorems are proved in
[22]. Here, for the sake of simplicity, we just selected representative special cases of
the main theorems in [22] so as to give the reader a general sense of the sorts of results
proved in [22].

The reason that Theorem 2.9 is interesting (or perhaps a bit surprising) is the
following: The reduction modulo p of a IT-indigenous bundle (in the pre-home case) is
an admissible nilpotent indigenous bundle. (Here, the term “admissible” means that
the p-curvature has no zeroes.) Moreover, the admissible locus A Zi].m of N, is by
no means closed in N g,r, DOT s its closure disjoint (in general) from the closure of
the dormant or spiked loci of N g,r- On the other hand, the reductions modulo p of
IT'-indigenous bundles (for non-pre-home IT') may, in general, be dormant or spiked
nilpotent indigenous bundles. Thus,

ASTERISQUE 278



AN INTRODUCTION TO p-ADIC TEICHMULLER THEORY 31

Theorem 2.9 states that considering Zy,-flat Frobenius invariant lift-
ings of indigenous bundles (as opposed to just nilpotent indigenous
bundles in characteristic p) has the effect of “blowing up” Ny, in
such a way that the genericization/specialization relations that hold
in N g, do not imply such relations among the various Q’s.

We shall come back to this phenomenon again in the following subsection (cf. Fig. 9).

2.4. The Generalized Ordinary Theory. — In this subsection, we maintain
the notations of the preceding subsection. Unfortunately, it is difficult to say much
more about the explicit structure of the stacks QU without making more assumptions.
Thus, just as in the classical ordinary case (reviewed in §1.6), it is natural to define
an open substack — the ordinary locus of QM — and to see if more explicit things can
be said concerning this open substack. This is the topic of [22], Chapter VII. We shall
see below that in fact much that is interesting can be said concerning this ordinary
locus.

We begin with the definition of the ordinary locus. First of all, we observe that

there is a natural algebraic stack
—II,s

N,

g,r

(of finite type over F,,) that parametrizes “data modulo p for Q" (Definition 1.11 of
[22], Chapter IIT). That is to say, roughly speaking, N 576 parametrizes the reductions
modulo p of the P; appearing in the discussion preceding Definition 2.5. We refer to
[22], Chapter III for a precise definition of this stack. At any rate, by reducing modulo

p the data parametrized by QU, we obtain a natural morphism of stacks
11 —H,S
Q=N

sS

. 11 . . . .
On the other hand, since N/ ¢ barametrizes curves equipped with certain bundles,

K
. . “7ALs Vi “ALs
there is a natural morphism Ng’: — (Mg,)F,. Let Nod C ./\/'577;s denote the open

—II —
substack over which the morphism A g,’,.s — (Mg, ), is étale. Let Q°rd C QM denote

P

the open substack which is the inverse image of N°*4 C N/ gf.
Definition 2.10. — We shall refer to Q° as the (II-)ordinary locus of Q™.

Just as in the classical ordinary case, there is an equivalent definition of II-ordinarity
given by looking at the action of Frobenius on the first de Rham cohomology modules
of the P; (cf. Lemma 1.4 of [22], Chapter VII). Incidentally, the classical ordinary
theory corresponds to the IT-ordinary theory in the case of the home VF-pattern. (In

. . . : Frord
particular, N°*¢ is simply the ordinary locus N Z,r,.

theory of [21] is a special case of the generalized ordinary theory.
Our first result is the following (cf. Theorem 1.6 of [22], Chapter VII):

of Ny..) Thus, in some sense, the
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Theorem 2.11 (Basic Structure of the Ordinary Locus). — Q° is naturally isomor-
phic to the perfection of N,

Thus, already one has a much more explicit understanding of the structure of Q°'d
than of the whole of Q. That is to say, Theorem 2.11 already tells us that Q°™ is
the perfection of a smooth algebraic stack of finite type over F,.

Our next result — which is somewhat deeper than Theorem 2.11, and is, in fact,
one of the main results of [22] — is the following (cf. Theorem 2.11 of [22], Chapter
VII):

Theorem 2.12 (w-Closedness of the Ordinary Locus). — IfII is binary, then Q°™ is w-
closed (roughly speaking, “closed as far as the differentials are concerned” — cf. [22],
Chapter VII, § 0, § 2.8 for more details) in Q™. In particular,

(1) If 3¢g — 3+ = 1, then Q°Y is actually closed in Q.

(2) If R C QY is a subobject containing Q°* and which is “pro” (cf. [22], Chapter
VI, Definition 1.9) of a fine algebraic log stack which is locally of finite type over Fp,
then Q°*4 js closed in R.

In other words, at least among perfections of fine algebraic log stacks which are locally
of finite type over F,, Q° is already “complete” inside Q.

Thus, if I1 is pre-home or of pure tone, then Q% is an w-closed substack of Sy .
If the VF-pattern in question is the home pattern, then Q%4 is an w-closed substack

Of./\/lW

This is a rather surprising result in that the definition of Q°rd was such that Q°'d is
naturally an open substack of Q' which has no a priori reason to be closed (in any
sense!) inside Q. Moreover, ./T/;rf is most definitely not closed in N, g,r- Indeed, one
of the original motivations for trying to generalize the theory of [21] was to try to
compactify it. Thus, Theorem 2.12 states that if, instead of just considering ordinary
nilpotent indigenous bundles modulo p, one considers Z,-flat Frobenius invariant in-
digenous bundles, the theory of [21] is, in some sense, already compact! Put another
way, if one thinks in terms of the Witt vectors parametrizing such Z,-flat Frobenius
invariant indigenous bundles, then although the scheme defined by the first compo-
nent of the Witt vector is not “compact,” if one considers all the components of the
Witt vector, the resulting scheme is, in some sense, “compact” (i.e., w-closed in the
space Sy of all indigenous bundles over the Witt vectors). This phenomenon is sim-
ilar to the phenomenon observed in Theorem 2.9. In fact, if one combines Theorem
2.9 with Theorem 2.12, one obtains that:

In the home (i.e., classical ordinary) case, the stack Q°™ is w-closed
in Sy and disjoint from the closures of all o for all non-pre-home
II'. Moreover, Q™% is naturally an w-closed substack of o for all
pre-home II'.
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Ordinary Locus
of the Home VF-
Pattern

Nonordinary
Portion of the
Home VF-Pattern

MWL ‘

Non-Pre-Home
VF-Patterns

The Infinite Weil Restriction The Schwarz Torsor
of the Schwarz Torsor in Characteristic p

FIGURE 9. The w-Closedness and Isolatedness of the Classical Ordinary Theory

This fact is rendered in pictorial form in Fig. 9; cf. also the discussion of §3 below.

The next main result of the generalized ordinary theory is the generalized ordinary
version of Theorem 1.2. First, let us observe that since the natural morphism N°™ —
(Mg,r)Fp is étale, it admits a unique lifting to an étale morphism

Ni);d - (mgﬂ')zp

of smooth p-adic formal stacks over Z,. Unlike in the classical ordinary case, however,
where one obtains a single canonical modular Frobenius lifting, in the generalized case,
one obtains a whole system of Frobenius liftings (cf. Theorem 1.8 of [22], Chapter
VII) on N3

Theorem 2.13 (Canonical System of Frobenius Liftings). — Owver ./\/Z";d, there s a
canonical system of Frobenius liftings and indigenous bundles: i.e., for each indige-
nous i (i.e., such that I1(i) = x), a lifting

log ord ord
(I)i . NZP — NZP

of a certain power of the Frobenius morphism, together with a collection of indigenous
bundles P; on the tautological curve (pulled back from (Mg, )z, ) over ./\/’g;d. Moreover,
these Frobenius liftings and bundles are compatible, in a natural sense (Definition 1.7
of [22], Chapter VII).
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See Fig. 10 for an illustration of the system of Frobenius liftings obtained for the
VF-pattern illustrated in Fig. 7.
At this point, one very important question arises:

To what extent are the stacks N°™ nonempty?

Needless to say, this is a very important issue, for if the N°'d are empty most of
the time, then the above theory is meaningless. In the classical ordinary case, it was
rather trivial to show the nonemptiness of N/ ;r;l . In the present generalized ordinary
setting, however, it is much more difficult to show the nonemptiness of A°™. In
particular, one needs to make use of the extensive theory of [22], Chapters II and IV.
Fortunately, however, one can show the nonemptiness of N°™ in a fairly wide variety
of cases (Theorems 3.1 and 3.7 of [22], Chapter VII):

A Lifting of |-~ A

o4 \

The Corresponding A@

Frobenius Liftingsin the
Generalized Ordinary Case

'd N\
p \ _ - ?\
-——" \
The Spaceonwhichthe |-~ =\ \
Frobenius Liftings Live \ ,’
\ '
7/
— A Lifting of
A Lifting of @
@2 S~ A @2

A Typical Corresponding V F-Pattern (of Period 8):
oo % %=1, 0,0, %, %2, %, 0, ...

FIGURE 10. The Canonical System of Modular Frobenius Liftings

Theorem 2.14 (Binary Existence Result). — Suppose that g > 2; 7 = 0; and p > 43973,
Then for any binary VF-pattern (i.e., VF-pattern such that II(Z) C {0, x}), the stack
Nt s nonempty.
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Theorem 2.15 (Spiked Existence Result). — Suppose that 29 — 2+ r > 3 and p > 5.
Then there exists a “spiked VF-pattern” of period 2 (i.e., w =2 and 0 < II(1) < x)
for which N°*¢ is nonempty.

In fact, there is an open substack of N°*¢ called the very ordinary locus (defined by
more stringent conditions than ordinarity); moreover, one can choose the spiked VF-
pattern so that not only N°%, but also the “very ordinary locus of N°*47 is nonempty.

These cases are “fairly representative” in the following sense: In general, in the binary
case, the reduction modulo p of a II-indigenous bundle will be dormant. In the spiked
case (of Theorem 2.15), the reduction modulo p of a II-indigenous bundle will be
spiked. Thus, in other words,

Roughly speaking, these two existence results show that for each type
(admissible, dormant, spiked) of nilcurve, there exists a theory (in
fact, many theories) of canonical liftings involving that type of nil-
curve.

Showing the existence of such a theory of canonical liftings for each generic point of
Ny was one of the original motivations for the development of the theory of [22].
Next, we observe that just as in Theorem 1.2 (the classical ordinary case),

In the cases discussed in Theorems 2.1/ and 2.15, one can also
construct canonical systems of Frobenius liftings on certain “ordinary
loci” of the universal curve over Ni’;d. Moreover, these systems of
canonical Frobenius lifting lie over the canonical system of modular
Frobenius liftings of Theorem 2.13.

We refer to Theorem 3.2 of [22], Chapter VIII and Theorem 3.4 of [22], Chapter IX
for more details.

We end this subsection with a certain philosophical observation. In [22], Chapter
VI,

The stack QW is referred to as the stack of quasi-analytic self-
isogenies.

That is to say, in some sense it is natural to regard the Frobenius invariant indigenous
bundles parametrized by QU as isogenies of the curve (on which the bundles are
defined) onto itself. Indeed, this is suggested by the fact that over the ordinary
locus (i.e., relative to the Frobenius invariant indigenous bundle in question) of the
curve, the bundle actually does define a literal morphism, i.e., a Frobenius lifting (as
discussed in the preceding paragraph). Thus, one may regard a Frobenius invariant
indigenous bundle as the appropriate way of compactifying such a self-isogeny to
an object defined over the whole curve. This is why we use the adjective “quasi-
analytic” in describing the self-isogenies. (Of course, such self-isogenies can never
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be p-adic analytic over the whole curve, for if they were, they would be algebraic,
which, by the Riemann-Hurwitz formula, is absurd.) Note that this point of view is
in harmony with the situation in the parabolic case (g = 1, r = 0), where there is an
algebraically defined canonical choice of indigenous bundle, and having a Frobenius
invariant indigenous bundle really does correspond to having a lifting of Frobenius
(hence a self-isogeny of the curve in question).

Moreover, note that in the case where the VF-pattern has several xy = %(2gf2+7’)’s
in a period, so that there are various indigenous P;’s in addition to the original
Frobenius invariant indigenous bundle P, one may regard the situation as follows.
Suppose that P is indigenous over a curve X — W (S), whereas P; is indigenous over
X; — W(S). Then one can regard the “quasi-analytic self-isogeny” P : X — X as
the composite of various quasi-analytic isogenies P; : X; — X, (where ¢ and j are
“ind-adjacent” integers). Note that this point of view is consistent with what literally
occurs over the ordinary locus (cf. Theorem 3.2 of [22], Chapter VIII). Finally, we
observe that

The idea that QW is a moduli space of some sort of p-adic self-
isogeny which is “quasi-analytic” is also compatible with the analogy
between QM and Teichmiiller space (cf. the discussion of Corollary
2.7) in that Teichmiiller space may be regarded as a moduli space of
quasiconformal maps (cf., e.g., [2]).

2.5. Geometrization. — In the classical ordinary case, once one knows the ex-
istence of the canonical modular Frobenius lifting (Theorem 1.2), one can apply a
general result on ordinary Frobenius liftings (Theorem 1.3) to conclude the exis-
tence of canonical multiplicative coordinates on Ni’;d. We shall refer to this process
of passing (as in Theorem 1.3) from a certain type of Frobenius lifting to a local
uniformization/canonical local coordinates associated to the Frobenius lifting as the
geometrization of the Frobemius lifting. In the generalized ordinary context, Theo-
rem 2.13 shows the existence of a canonical system of Frobenius liftings on the Ni’;d
associated to a VF-pattern (II, w). Thus, the following question naturally arises:

Can one geometrize the sort of system of Frobenius liftings that one
obtains in Theorem 2.13 in a fashion analogous to the way in which
ordinary Frobenius liftings were geometrized in Theorem 1.37

Unfortunately, we are not able to answer this question in general. Nevertheless, in the
cases discussed in Theorems 2.14 and 2.15, i.e., the binary and very ordinary spiked
cases, we succeed (in [22], Chapters VIII and IX) in geometrizing the canonical system
of modular Frobenius liftings. The result is uniformizations/geometries based not on
ém as in the classical ordinary case, but rather on more general types of Lubin-Tate
groups, twisted products of Lubin-Tate groups, and fibrations whose bases are Lubin-
Tate groups and whose fibers are such twisted products. In the rest of this subsection,
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we would like to try to give the reader an idea of what sorts of geometries occur in
the two cases studied.
In the following, we let k be a perfect field of characteristic p, A its ring of Witt

vectors W (k), and S a smooth p-adic formal scheme over A. Let A be a positive

integer, and let Oy et W(F,x). For simplicity, we assume that Oy C A. Let Gy be

the Lubin-Tate formal group associated to Oy. (See [3] for a discussion of Lubin-Tate
formal groups.) Then Gy is a formal group over Oy, equipped with a natural action
by O, (i.e., a ring morphism Oy — Ende, (Gx)). Moreover, it is known that the
space of invariant differentials on Gy is canonically isomorphic to Oy. Thus, in the
following, we shall identify this space of differentials with O,.

We begin with the simplest case, namely, that of a Lubin-Tate Frobenius lifting. Let
® : S — S be a morphism whose reduction modulo p is the A* power of the Frobenius
morphism. Then differentiating ®5 defines a morphism d®g : ®5€25/4 — 25,4 which
is zero in characteristic p. Thus, we may form a morphism

Qq> : (I)EQS/A — QS/A

by dividing d®g by p. Then ®g is called a Lubin-Tate Frobenius lifting (of order \)
if Qg is an isomorphism. If &g is a Lubin-Tate Frobenius lifting, then it induces a
“Lubin-Tate geometry” — i.e., a geometry based on Gy — on S. That is to say, one has
the following analogue of Theorem 1.3 (cf. Theorem 2.17 of [22], Chapter VIII):

Theorem 2.16 (Lubin-Tate FrobeniusLiftings). — Let &g : S — S be a Lubin-Tate
Frobenius lifting of order \. Then taking the invariants of $dg/a with respect to

Qg gives rise to an étale local system Q% on S of free Ox-modules of rank equal
to dim4(S).

Let z € S(k) be a point valued in the algebraic closure of k. Then €2, def Q). may
be thought of as a free Ox-module of rank dima(S); write ©, for the Ox-dual of €.
Let S, be the completion of S at z. Then there is a unique isomorphism

T,:S5, 24, ®§9p)\ 0,
such that:

(i) the derivative of I', induces the natural inclusion Q. — Qg/als, ;
(ii) the action of ®g on S, corresponds to multiplication by p on Gy ®%’A O,.
Here, by “Gx ®%‘1 O.,” we mean the tensor product over Oy of (formal) group schemes

with Ox-action. Thus, Gx ®§59pA O, is noncanonically isomorphic to the product of
dim4(S) = ranke, (©,) copies of Gx.

Of course, this result has nothing to do with the moduli of curves. In terms of VF-
patterns, Theorem 2.13 gives rise to a Lubin-Tate Frobenius lifting of order w when
the VF-pattern is of pure tone w.
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The next simplest case is the case of an anabelian system of Frobenius liftings.
Let n be a positive integer. Then an anabelian system of Frobenius liftings of length
n and order X is a collection of n Lubin-Tate Frobenius liftings

Py,...,P,: 85— 8

each of order A. Of course, in general such Frobenius liftings will not commute with
one another. In fact, it can be shown that two Lubin-Tate Frobenius liftings of order
A commute with each other if and only if they are equal (Lemma 2.24 of [22], Chapter
VIII). This is the reason for the term “anabelian.” Historically, this term has been used
mainly in connection with Grothendieck’s Conjecture of Anabelian Geometry ([12]).
The reason why we thought it appropriate to use the term here (despite the fact that
anabelian geometries as discussed here have nothing to do with the Grothendieck
Conjecture) is the following: (Just as for the noncommutative fundamental groups of
Grothendieck’s anabelian geometry) the sort of noncommutativity that occurs among
the ®;’s (at least in the modular case — cf. Theorem 2.13) arises precisely as a result
of the hyperbolicity of the curves on whose moduli the ®;’s act.

Let 0; def %d(I)i. Let A % 0po---0d1. Then taking invariants of (g, 4 with respect to
A gives rise to an étale local system Q% on S in free O,y -modules of rank dim4(S).
Next let Spp denote the p-adic completion of the PD-envelope of the diagonal in
the product (over A) of n copies of S; let Spm denote the p-adic completion of the
completion at the diagonal of the product (over A) of n copies of S. Thus, we have a
natural morphism

Spp — SFMm

Moreover, one may think of Spp as a sort of localization of Sgy. Write ®pp @ Spp —
Spp for the morphism induced by sending

(815 8n) = (P1(s2), P2(s3), - - -, Pu(s1))

(where (s1,...,8y,) represents a point in the product of n copies of S). Then we have
the following result (cf. Theorem 2.17 of [22], Chapter VIII):

Theorem 2.17 (Anabelian System of FrobeniusLiftings). — Let ®1,..., 9, : 5 — S be

a system of anabelian Frobenius liftings of length n and order A. Let z € S(k) be a

point valued in the algebraic closure of k. Then €, def Q1. may be thought of as a

free Opx-module of rank dimy(S); write ©, for the Opx-dual of Q.. Let (Spp). be
the completion of Spp at z. Then there is a unique morphism

Fz : (SPD)Z i gA ®%9I1 @z
such that:

(i) the derivative of T, induces a certain (see Theorem 2.15 of [22], Chapter VIII
for more details) natural inclusion of Q. into the restriction to (Spp)l|. of the differ-
entials of [[;—, S over A;
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(ii) the action of ®pp on (Spp). is compatible with multiplication by p on Gy @,
O,.

Here, by “Gx ®§59pk ©.,” we mean the tensor product over Oy of (formal) group schemes
with Ox-action. Thus, Gx ®%’A O, is noncanonically isomorphic to the product of
n - dimy (S) = ranke, (0,) copies of Gy.

Moreover, in general, ', does not descend to (Sym). (cf. [22], Chapter VIII, §2.6,
3.1).

One way to envision anabelian geometries is as follows: The various ®;’s induce
various linear Lubin-Tate geometries on the space S that (in general) do not commute
with one another. Thus, the anabelian geometry consists of various linear geometries
on S all tangled up inside each other. If one localizes in a sufficiently drastic fashion —
i.e., all the way to (Spp), — then one can untangle these tangled up linear geometries
into a single Oy, )-linear geometry (via I',). However, the order A Lubin-Tate geome-
tries are so tangled up that even localization to a relatively localized object such as
(Srm)- is not sufficient to untangle these geometries.

Finally, to make the connection with Theorem 2.13, we remark that the system of
Theorem 2.13 gives rise to an anabelian system of length n and order A in the case
of a VF-pattern (I, w) for which w = n - A, and II(i) = x (respectively, II(i) = 0) if
and only if ¢ is divisible (respectively, not divisible) by A.

In fact, both Lubin-Tate geometries and anabelian geometries are special cases of
binary ordinary geometries (the sorts of geometries that occur for binary VF-patterns,
i.e., IT whose image C {0, x}). A general geometrization result for binary ordinary
geometries is given in Theorem 2.17 of [22], Chapter VIII. Here, we chose to concen-
trate on the Lubin-Tate and anabelian cases (in fact, of course, Lubin-Tate geometries
are a special case of anabelian geometries) since they are relatively representative and
relatively easy to envision.

The other main type of geometry that is studied in [22] is the geometry associated
to a wvery ordinary spiked Frobenius lifting ® : S — S. Such a Frobenius lifting
reduces modulo p to the square of the Frobenius morphism and satisfies various other
properties which we omit here (see Definition 1.1 of [22], Chapter IX for more details).
In particular, such a Frobenius lifting comes equipped with an invariant called the
colevel. The colevel is a nonnegative integer c. Roughly speaking,

A very ordinary spiked Frobenius lifting is a Frobenius lifting which
is “part Lubin-Tate of order 2”7 and “part anabelian of length 2 and
order 1.”

The colevel c¢ is the number of dimensions of S on which @ is Lubin-Tate of order 2.
The main geometrization theorem (roughly stated) on this sort of Frobenius lifting is
as follows (cf. Theorems 1.5 and 2.3 of [22], Chapter IX):
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[
Major Types of Geometries

Lubin-Tate Geometry on
the Strong Coordinates
| (which form the base)

- The Fibers Get
Anabelian an Anabelian Geometry

Classical (regarded as
Ordinary ageometry on
the diagonal) The Spiked Case

VF-Pattern: VF-Pattern: VF-Pattern: VF-Pattern:
weer X oo o %o 0% - A s %o XL Ko oo
(period 1) (period 2) (period 2) (period 2)

FIGURE 11. Major Types of p-adic Geometries

Theorem 2.18 (Very Ordinary Spiked FrobeniusLiftings). — Let ® : S — S be a very
ordinary spiked Frobenius lifting of colevel c. Then ® defines an étale local system Q5
on S of free Oz-modules of rank ¢ equipped with a natural inclusion Q5 — Qs/a-

Let z € S(k) be a point valued in the algebraic closure of k. Then Q5 def Q. may
be thought of as a free Os-module of rank c; write O for the Og-dual of Q5. Let S,
be the completion of S at z. Then there is a unique morphism

Fz : Sz - g2 ®%p2 @;t
such that:

(i) the derivative of T, induces the natural inclusion of Q5 into Qg/a;

(ii) the action of ® on S, is compatible with multiplication by p on Ga ®%9p2 est.

Here, the variables on S, obtained by pull-back via T', carry a Lubin-Tate geometry
of order 2, and are called the strong variables on S,. Finally, the fiber of T, over the
identity element of the group object Go ®§9p2 ©%' admits an anabelian geometry of length
2 and order 1 determined by ® (plus a “Hodge subspace” for ® — cf. [22], Chapter IX,

§ 1.5, for more details). The variables in these fibers are called the weak variables.

Thus, in summary, ¢ defines a virtual fibration on S to a base space (of dimension
¢) naturally equipped with a Lubin-Tate geometry of order 2; moreover, (roughly
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speaking) the fibers of this fibration are naturally equipped with an anabelian geom-
etry of length 2 and order 1. In terms of VF-patterns, this sort of Frobenius lifting
occurs in the case w = 2, TI(1) # 0 (cf. Theorem 2.15). The colevel is then given by
2(x — II(1)).

Next, we note that as remarked toward the end of §2.4, in the binary ordinary and
very ordinary spiked cases one obtains geometrizable systems of Frobenius liftings not
only over Ni’;d (which is étale over (Mg,r)zp) but also on the ordinary locus of the
universal curve over Ni’;d. (More precisely, in the very ordinary spiked case, one must
replace Ni’;d by the formal open substack defined by the very ordinary locus.) Thus,
in particular,

In the binary ordinary and very ordinary spiked cases, one obtains
geometries as discussed in the above theorems not only on the moduli
of the curves in question, but also on the ordinary loci of the universal
curves themselves.

See Fig. 11 for a pictorial representation of the major types of geometries discussed.
Finally, we observe that one way to understand these generalized ordinary geome-
tries is the following:

The “Lubin-Tate-ness” of the resulting geometry on the moduli stack
is a reflection of the extent to which the p-curvature (of the indigenous
bundles that the moduli stack parametrizes) vanishes.

That is to say, the more the p-curvature vanishes, the more Lubin-Tate the resulting
geometry becomes. For instance, in the case of a Lubin-Tate geometry, the order of
the Lubin-Tate geometry (cf. Theorem 2.16) corresponds precisely to the number of
dormant crys-stable bundles in a period (minus one). In the case of a spiked geometry,
the number of “Lubin-Tate dimensions” is measured by the colevel. Moreover, this
colevel is proportional to the degree of vanishing of the p-curvature of the indigenous
bundle in question.

2.6. The Canonical Galois Representation. — Finally, since we have been con-
sidering Frobenius invariant indigenous bundles,

We would like to construct representations of the fundamental group
of the curve in question into PGLsy by looking at the Frobemius in-
variant sections of these indigenous bundles.

Such representations will then be the p-adic analogue of the canonical representation
in the complex case of the topological fundamental group of a hyperbolic Riemann
surface into PSLy(R) C PGLy(C) (cf. the discussion at the beginning of §1.3). Un-
fortunately, things are not so easy in the p-adic (generalized ordinary) case because
a priort the canonical indigenous bundles constructed in Theorem 2.13 only have
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connections and Frobenius actions with respect to the relative coordinates of the tau-
tological curve over Ni’;d. This means, in particular, that we cannot immediately
apply the theory of [6], §2, to pass to representations of the fundamental group. To
overcome this difficulty, we must employ the technique of crystalline induction devel-
oped in [21]. Unfortunately, in order to carry out crystalline induction, one needs to
introduce an object called the Galois mantle which can only be constructed when the
system of Frobenius liftings on Ni’;d is geometrizable. Thus, in particular, we succeed
(in [22], Chapter X) in constructing representations of the sort desired only in the
binary ordinary and very ordinary spiked cases.

First, we sketch what we mean by the Galois mantle. The Galois mantle can
be constructed for any geometrizable system of Frobenius liftings (e.g., any of the
types discussed in §2.5). In particular, the notion of the Galois mantle has nothing
to do with curves or their moduli. For simplicity, we describe the Galois mantle
in the classical ordinary case. Thus, let S and A be as in §2.5. Let IIg be the
fundamental group of S ®z, Q, (for some choice of base-point). Let ® be a classical
ordinary Frobenius lifting (in other words, Lubin-Tate of order 1) on S. Then by
taking Frobenius invariant sections of the tangent bundle, one obtains an étale local
system ©% on S of free Z,-modules of rank dim 4(S). Moreover, ® defines a natural
exact sequence of continuous IIg-modules

0—05(1)— Es —>Z, —0

where the “(1)” denotes a Tate twist, and “Z,,” is equipped with the trivial IIg-action.
Roughly speaking, this extension of IIg-modules is given by taking the p'* power
roots of the canonical multiplicative coordinates of Theorem 1.3 (cf. §2.2 of [22],
Chapter VIII for a detailed discussion of the p-divisible group whose Tate module
may be identified with Eg). Let B’ be the affine space of dimension dim 4(S) over Z,,
parametrizing splittings of the above exact sequence. Then the action of IIg on the
above exact sequence induces a natural action of IIg on B’. Roughly speaking, the
Galois mantle B associated to ® is the p-adic completion of a certain kind of p-adic
localization of B.

More generally, to any geometrizable system of Frobenius liftings
(as in §2.5) on S, one can associate a natural p-adic space B — the
Galois mantle associated to the system of Frobenius liftings — with
a continuous Ilg-action. In the binary ordinary case, B will have a
natural affine structure over some finite étale extension of Z,. In the
very ordinary spiked case, B will be fibred over an affine space over
Os with fibers that are also equipped with an affine structure over Os.

In fact, to be more precise, B is only equipped with an action by a certain open
subgroup of Ilg, but we shall ignore this issue here since it is rather technical and not
so important. We refer to §2.3 and §2.5 of [22], Chapter IX for more details on the
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Galois mantle. So far, for simplicity, we have been ignoring the logarithmic case, but
everything is compatible with log structures.

We are now ready to state the main result on the canonical Galois representation
in the generalized ordinary case, i.e., the generalized ordinary analogue of Theorem
1.4 (cf. Theorems 1.2 and 2.2 of [22], Chapter X). See Fig. 12 for a graphic depiction
of this theorem.

Theorem 2.19 (Canonical Galois Representation). — Let p be an odd prime. Let g and
r be nonnegative integers such that 29 —2+r > 1. Fiz a VF-pattern (11, w) which is
either binary ordinary or spiked of order 2. Let S def Ni’;d in the binary ordinary case,
and let S be the very ordinary locus of./\/'i’:d in the spiked case. Let Z — S be a certain
appropriate finite covering which is log étale in characteristic zero (cf. the discussion
preceding Theorems 1.2 and 2.2 of [22], Chapter X for more details). Let X;g — Zlos
be the tautological log-curve over Z'°¢. Let Ilx, (respectively, 11z ) be the fundamental
group of X?g ®z, Qp (respectively, VA ®z, Qp) for some choice of base-point. (Of
course, despite the similarity in notation, these fundamental groups have no direct
relation to the VF-pattern “11.7) Thus, there is a natural morphism Ilx, — Ilz.
Let B be the Galois mantle associated to the canonical system of Frobenius liftings of
Theorem 2.13. The morphism llx, — Ilz allows us to regard B as being equipped
with a llx, -action.

Let P be the tautological I-indigenous bundle on X. Then by taking Frobenius
invariants of P, one obtains a P'-bundle

PB—>B

equipped with a natural continuous Ilx, -action compatible with the above-mentioned
action of Illx, on the Galois mantle B.

Put another way, one obtains a twisted homomorphism of IIx, into PGL2 of the
functions on B. (Here, “twisted” refers to the fact that the multiplication rule obeyed
by the homomorphism takes into account the action of IIx, on the functions on B.)
Finally, note that for any point of Z®z, Q, (at which the log structure is trivial), one
also obtains similar representations by restriction. This gives one canonical Galois
representations even in the non-universal case.

Finally, in [22], Chapter X, §1.4, 2.3, we show that:

The Galois representation of Theorem 2.19 allows one to relate the
various p-adic analytic structures constructed throughout [22] (i.e.,
canonical Frobenius liftings, canonical Frobenius invariant indigenous
bundles, etc.) to the algebraic/arithmetic Galois action on the profi-
nite Teichmiiller group (cf. [22], Chapter X, Theorems 1.4, 2.3).
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More precisely: By iterating the canonical Frobenius liftings on N def Ni’:d, we obtain
a certain natural infinite covering

Nloo] = N

(i.e., projective limit of finite coverings which are log étale in characteristic zero). On
the other hand, if we denote by
def ,7—~log
Cz, = Mz, = (M, )z,

the universal log-curve over the moduli stack, and by Cy the geometric generic fiber of
this morphism, then the natural outer action w1 (Mg, ) (i.e., action on a group defined
modulo inner automorphisms of the group) on 71 (Cy) defines an action of (Mg, )
on

Repg, ' Rep(ni*(X), PGL2(0.,))

(where O is defined to be the ring of Witt vectors with coefficients in the finite field
of p@ elements, and “Rep” denotes the set of isomorphism classes of homomorphisms
m°P(X) — PGLy(O4); two such homomorphisms are regarded as isomorphic if they
differ by composition with an inner automorphism of PGL3(O4)). Moreover, this

action defines (by the “definition of 71”) an infinite étale covering Rg, — Mg,. We
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denote the normalization of MZP in Rg, by Rz,. Let M\ be the p-adic completion
of Mz,, and R & Rz, X Ms, M\ZP. Then the main results on this topic (i.e., [22],
Chapter X, Theorems 1.4, 2.3) state that the Galois of representation of Theorem
2.19 induces a commutative diagram

Noo] —— R

N —— M
in which the horizontal morphism (which is denoted % in [22], Chapter X) on top is
an open 1mMmersion.

The proof that % is an open immersion divides naturally into three parts, corre-
sponding to the three “layers” of the morphism N[oo] — M. The first layer is the
quasi-finite (but not necessarily finite) étale morphism N — M. Because the mor-
phism N' — M is étale even in characteristic p, this layer is rather easy to understand.
The second layer corresponds to the finite covering Z — S of Theorem 2.19. Together,
the first and second layers correspond to the “mod p portion” of the Galois represen-
tation of Theorem 2.19 — i.e., the first layer corresponds to the “slope zero portion”
of this representation modulo p, while the second layer corresponds to the “positive
slope portion” of this representation modulo p. From the point of view of the “MFV-
objects” over B(N) (cf. the discussion following Definition 2.5 in §2.3) corresponding
to the representation of Theorem 2.19, this slope zero portion (i.e., the first layer)
parametrizes the isomorphism class of these MY -objects over (B(N )F, Jred, While
the positive slope portion (i.e., the second layer) parametrizes the isomorphism class
of the deformations of these MFY-objects from bundles on curves over (B(N)r, )red
to bundles on curves over B(N)p, .

Finally, the third layer of the covering is what remains between N[oc] and the
“Z” of Theorem 2.19. This portion is the analytic portion of the covering (i.e., the
portion of the covering equipped with a natural “analytic structure”). Put another
way, this portion is the portion of the covering which is dealt with by the technique of
crystalline induction (which is concerned precisely with equipping this portion of the
covering with a natural “crystalline” analytic structure — cf. [22], Chapter IX, §2.3 —
especially the Remark following Theorem 2.11 — for more details).

Thus, the fact that the morphism K “does not omit any information” at all three
layers is essentially a tautological consequence of the various aspects of the extensive
theory developed throughout [22]. From another point of view, by analyzing this
morphism &, we obtain a rather detailed understanding of a certain portion of the

—1 .
canonical tower of coverings of Mg, def (M goi)Qp given by

Rq, — Mq,
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analogous to the analysis given in [19] of coverings of the moduli stack of elliptic curves
over Zj, obtained by considering p-power torsion points (cf. the Remark following [22],
Chapter X, Theorem 1.4, for more details).

Thus, in summary, Theorem 2.19 concludes our discussion of “p-adic Teichmiiller
theory” as exposed in [22] by constructing a p-adic analogue of the canonical rep-
resentation discussed at the beginning of §1.3, that is to say, a p-adic analogue of
something very close to the Fuchsian uniformization itself — which was where our
discussion began (§1.1).

3. Conclusion

Finally, we pause to take a look at what we have achieved. Just as in § 1, we would
like to describe the p-adic theory by comparing it to the classical theory at the infinite
prime. Thus, let us write

Cc — Mc def (Mlog)c

g,r

for the wuniversal log-curve over the moduli stack (m;i)c of r-pointed stable log-
curves of genus g over the complex numbers. Let us fix a “base-point” (say, in the
interior — i.e., the open substack parametrizing smooth curves — of M¢) [X] € M¢(C)
corresponding to some hyperbolic algebraic curve X over C. Let us write X’ dof ¥ ©)
for the corresponding hyperbolic Riemann surface. Next, let us consider the space

Repc & Rep(mi(X), PGLy(C))

of isomorphism classes of representations of the topological fundamental group 7r§°p (X)
into PGLo(C). This space has the structure of an algebraic variety over C, induced
by the algebraic structure of PGLo(C) by choosing generators of ﬂ;OP(X ). Note,
moreover, that as [X] varies, the resulting spaces Rep(w1(X'), PGL2(C)) form a local
system on Mc (valued in the category of algebraic varieties over C) which we denote
by

R(c — M(C

One can also think of R¢ as the local system defined by the natural action of
7P (Mc(C)) on Repc Lof Rep(m;°P(X), PGLy(C)) which is induced by the natu-
ral outer action of w;°®(M¢c(C)) on w°P(X) — cf. the discussion of the p-adic case at
the end of §2.6 above (for more details, see [22], Chapter X, §1.4, 2.3).

Next, let us denote by
QF CRc

the subspace whose fiber over a point [Y] € M¢(C) is given by the representations
inp(J}) — PGLy(C) that define quasi-Fuchsian groups (cf. §1.4), i.e., simultaneous
uniformizations of pairs of Riemann surfaces (of the same type (g,7)), for which one
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(say, the “first” one) of the pair of Riemann surfaces uniformized is the Riemann sur-
face ) corresponding to [Y]. Thus, whereas the fibers of R¢ — M are of dimension
2(3g — 3+ r) over C, the fibers of QF — Mc are of dimension 3g — 3 + r over C.

Local System of
——— | Representations

<
’/O\ [. A intOPGL2
L ~ 7 AT 4 't ’
,/ Sls 7 \
/: /:
1 1
1 1
1 1
1 1
1
1 1
1
1
)
1
1
v

Integral Subspaces
of Fibersof Local
System

-
[V
.

Moduli Stack of
Hyperboalic Curves

v

FIGURE 13. Integral Subspaces of the Local System of Representations

Then, relative to the notation of [22], Chapter X, §1.4, 2.3, the analogy between
the complex and p-adic cases may be summarized by the following diagram:

QF = N[oc]

N N
(Rc = Mc) <= (R—M)
(where the vertical inclusion on the left is the natural one; and the vertical inclusion
on the right is the morphism % of [22], Chapter X, Theorems 1.4, 2.3). We also give
an dllustration (Fig. 13) of this sort of situation. Relative to this illustration, the
“integral (or bounded) subspaces” of the local system are QF and N[oc] (cf. §1.4
for an explanation of the term “integral”). Note that just as in the complex case, the
fibers of the covering N [oco] — M have, so to speak, “Galois dimension” 3g—3+r over
Oy (cf. the crystalline induction portion of the proof of [22], Chapter X, Theorem
1.4), whereas the fibers of the covering R — M are of “Galois dimension” 2(3g—3+r)
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over O. In the p-adic case, N[oo] denotes the “crystalline” or “Frobenius invariant
indigenous bundle” locus of R — cf. the discussion of §1.4.

In the complex case, the “Frobenius” (i.e., complex conjugation) invariant portion
of QF is the space of Fuchsian groups, hence defines the Bers uniformization of
Teichmiiller space (cf. §1.5). On the other hand, in the p-adic case, the covering
Noo] — M is “made up of” composites of Frobenius liftings, by forgetting that these
Frobenius liftings are morphisms from a single space to itself, and just thinking of
them as coverings. If one then invokes the structure of Frobenius liftings as morphisms
from a single space to itself, one so-to-speak recovers the original Frobenius liftings,
which (by the theory of [22], Chapters VIII and IX) define p-adic uniformizations of

(MIQO,E )Zp .

In the complex case, the space of quasi-Fuchsian groups QF may also be inter-
preted in terms of quasi-conformal maps. Similarly, in the p-adic case, one may inter-
pret integral Frobenius invariant indigenous bundles as quasi-analytic self-isogenies
of hyperbolic curves (cf. the end of §2.4).

Finally, in the complex case, although QF is not closed in R¢, the space QF (when
regarded as a space of representations) is complete relative to the condition that the
representations always define indigenous bundles for some conformal structures on
the two surfaces being uniformized. Note that one may think of these two surfaces as
reflections of another, i.e., translates of one another by some action of Frobenius at
the infinite prime (i.e., complex conjugation). Similarly, although N[o0] is not closed
in ﬁ, it is complete (at least for binary VF-patterns II) in the sense discussed at the
end of [22], Chapter X, §1.4, i.e., relative to the condition that the representation
always defines an indigenous bundle on the universal thickening B (—) of the base.
Note that this thickening BT (—) is in some sense the minimal thickening of (the
normalization of the maximal log étale in characteristic zero extension of) “(—)” that
admits an action of Frobenius (cf. the theory of [22], Chapter VI, §1; BT (—) is the
PD-completion of the rings B(—) discussed in [22], Chapter VI, §1; in fact, instead
of using BT (—) here, it would also be quite sufficient to use the rings B(—) of [22],
Chapter VI, §1). In other words, just as in the complex case,

N[o<] is already complete relative to the condition that the represen-
tations it parametrizes always define indigenous bundles on the given
curve and all of its Frobenius conjugates.
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p-ADIC BOUNDARY VALUES
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Abstract. — We study in detail certain natural continuous representations of G =
G Ly (K) in locally convex vector spaces over a locally compact, non-archimedean field
K of characteristic zero. We construct boundary value maps, or integral transforms,
between subquotients of the dual of a “holomorphic” representation coming from
a p-adic symmetric space, and “principal series” representations constructed from
locally analytic functions on G. We characterize the image of each of our integral
transforms as a space of functions on G having certain transformation properties and
satisfying a system of partial differential equations of hypergeometric type.

This work generalizes earlier work of Morita, who studied this type of represen-
tation of the group SLo(K). It also extends the work of Schneider-Stuhler on the
De Rham cohomology of p-adic symmetric spaces. We view this work as part of a
general program of developing the theory of such representations.

Introduction

In this paper, we study in detail certain natural continuous representations of G =
GL,(K) in locally convex vector spaces over a locally compact, non-archimedean field
K of characteristic zero. We construct boundary value maps, or integral transforms,
between subquotients of the dual of a “holomorphic” representation coming from a p-
adic symmetric space, and “principal series” representations constructed from locally
analytic functions on G. We characterize the image of each of our integral transforms
as a space of functions on G having certain transformation properties and satisfying
a system of partial differential equations of hypergeometric type.

This work generalizes earlier work of Morita, who studied this type of representation
of the group SL2(K). It also extends the work of Schneider-Stuhler on the De Rham
cohomology of p-adic symmetric spaces. We view this work as part of a general
program of developing the theory of such representations.
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A major motivation for studying continuous representations of p-adic groups comes
from the observation that, in traditional approaches to the representation theory of
p-adic groups, one separates representations into two essentially disjoint classes — the
smooth representations (in the sense of Langlands theory) and the finite dimensional
rational representations. Such a dichotomy does not exist for real Lie groups, where
the finite dimensional representations are “smooth.” The category of continuous rep-
resentations which we study is broad enough to unify both smooth and rational rep-
resentations, and one of the most interesting features of our results is the interaction
between these two types of representations.

The principal tools of this paper are non-archimedean functional analysis, rigid
geometry, and the “residue” theory developed in the paper [ST]. Indeed, the boundary
value maps we study are derived from the residue map of [ST].

Before summarizing the structure of our paper and discussing our main results, we
will review briefly some earlier, related results.

The pioneering work in this area is due to Morita ([Mo1-Mo6]). He intensively stud-
ied two types of representations of SLy(K). The first class of representations comes
from the action of SL2(K) on sections of rigid line bundles on the one-dimensional
rigid analytic space X obtained by deleting the K-rational points from P} i3 this
space is often called the p-adic upper half plane. The second class of representations
is constructed from locally analytic functions on S Ly (K) which transform by a locally
analytic character under the right action by a Borel subgroup P of SLo(K). This
latter class make up what Morita called the (p-adic) principal series.

Morita showed that the duals of the “holomorphic” representations coming from
the p-adic upper half plane occur as constituents of the principal series. The simplest
example of this is Morita’s pairing

(%) Q' (X) x C*(PY(K),K)/K — K

between the locally analytic functions on P!(K) modulo constants (a “principal series”
representation, obtained by induction from the trivial character) and the 1-forms on
the one-dimensional symmetric space (a holomorphic representation.)

Morita’s results illustrate how continuous representation theory extends the the-
ory of smooth representations. Under the pairing (*), the locally constant functions
on P!(K) modulo constants (a smooth representation known as the Steinberg repre-
sentation) are a G-invariant subspace which is orthogonal to the subspace of Q(X)
consisting of exact forms. In particular, this identifies the first De Rham cohomology
group of the p-adic upper half plane over K with the K-linear dual of the Steinberg
representation.

The two types of representations considered by Morita (holomorphic discrete series
and principal series) have been generalized to GL,,.

The “holomorphic” representations defined in [Sch] use Drinfeld’s d-dimensional p-
adic symmetric space X. The space X is the complement in P;IK of the K-rational
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hyperplanes. The action of the group G := GLgy1(K) on P? preserves the missing
hyperplanes, and therefore gives an action of G on X and a continuous action of
G on the infinite dimensional locally convex K-vector space O(X) of rigid functions
on X. The (p-adic) holomorphic discrete series representations are modelled on this
example, and come from the action of G on the global sections of homogeneous vector
bundles on P? restricted to X. There is a close relationship between these holomorphic
representations and classical automorphic forms, coming from the theory of p-adic
uniformization of Shimura varieties ([RZ], [Var]).

The second type of representation we will study are the “locally analytic” represen-
tations. Such representations are developed systematically in a recent thesis of Féaux
de Lacroix ([Fea]). He defines a class of representations (which he calls “weakly ana-
lytic”) in locally convex vector spaces V' over K, relying on a general definition of a
V-valued locally analytic function. Such a representation is a continuous linear action
of G on V with the property that, for each v, the orbit maps f,(g) = g - v are locally
analytic V-valued functions on G. Notice that locally analytic representations include
both smooth representations and rational ones.

Féaux de Lacroix’s thesis develops some of the foundational properties of this type
of representation. In particular, he establishes the basic properties of an induction
functor (analytic coinduction). If we apply his induction to a one-dimensional locally
analytic representation of a Borel subgroup of G, we obtain the p-adic principal series.

In this paper, we focus on one holomorphic representation and analyze it in terms of
locally analytic principal series representations. Specifically, we study the representa-
tion of G = G'L4y1(K) on the space Q%(X) of d-forms on the d-dimensional symmetric
space X. Our results generalize Morita, because we work in arbitrary dimensions, and
Schneider-Stuhler, because we analyze all of Q4(X), not just its cohomology. Despite
our narrow focus, we uncover new phenomena not apparent in either of the other
works, and we believe that our results are representative of the general structure of
holomorphic discrete series representations.

Our main results describe a d-step, G-invariant filtration on Q¢(X) and a corre-
sponding filtration on its continuous linear dual Q4(X)’. We establish topological
isomorphisms between the d + 1 subquotients of the dual filtration and subquotients
of members of the principal series. The j-th such isomorphism is given by a “boundary
value map” I,

The filtration on Q%(X) comes from geometry and reflects the fact that X is a
hyperplane complement. The first proper subspace Q4(X)! in the filtration on Q4(X)
is the space of exact forms, and the first subquotient is the d-th De Rham cohomology
group.

The principal series representation which occurs as the j-th subquotient of the dual
of 24(X) is a hybrid object blending rational representations, smooth representations,
and differential equations. The construction of these principal series representations
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is a three step process. For each j = 0,...,d, we first construct a representation
V; of the maximal parabolic subgroup P; of G having a Levi subgroup of shape
GL;(K) x GLgy1_;(K). The representation V; (which factors through this Levi
subgroup) is the tensor product of a simple rational representation with the Steinberg
representation of one of the Levi factors. In the second step, we apply analytic
coinduction to Vj to obtain a representation of G.

The third step is probably the most striking new aspect of our work. For each
j, we describe a pairing between a generalized Verma module and the representation
induced from V;. We describe a submodule 9; of this Verma module such that 1 Ul'is a
topological isomorphism onto the subspace of the induced representation annihilated

by 0;:
I[]] . [Qd(x)]/ﬂd(x)_]"l‘l]/ L) Can(G’Pl’ ‘/}_)3120

The generators of the submodules 0; make up a system of partial differential equa-
tions. Interestingly, these differential equations are hypergeometric equations of the
type studied by Gelfand and his collaborators (see [GKZ] for example). Specifically,
the equations which arise here come from the adjoint action of the maximal torus of
G on the (transpose of) the unipotent radical of P;.

For the sake of comparison with earlier work, consider the two extreme cases when
j=0and j =d When j = 0, the group P; is all of G, the representation V; is
the Steinberg representation of &, and the induction is trivial. The submodule d is
the augmentation ideal of U(g), which automatically kills V; because Steinberg is a
smooth representation.

When j = d, V; is an one-dimensional rational representation of Py, and the
module 04 is zero, so that there are no differential equations. In this case we obtain
an isomorphism between the bottom step in the filtration and the locally analytic
sections of an explicit homogeneous line bundle on the projective space G/P;. When
d = 1, these two special cases (j = 0 and j = 1) together for SLs(K) are equivalent
to Morita’s theory applied to Q*(X).

We conclude this introduction with an outline of the sections of this paper. In
sections one and two, we establish fundamental properties of Q¢(X) as a topological
vector space and as a G-representation. For example, we show that 2%(X) is a reflexive
Fréchet space.

We introduce our first integral transform in section 2. Let £ be the logarithmic
d-form on P? with first order poles along the coordinate hyperplanes. We study the
map

I1:94X)y — C™(G,K)
A g = A€

We show that functions in the image of I satisfy both discrete relations and differential
equations, although we are unable to precisely characterize the image of the map I.
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In section 3, we study the map I in more detail. We make use of the kernel function
introduced in [ST], and attempt to clarify the relationship between the transform I
and the results of that paper. Properties of the kernel function established in [ST],
augmented by some new results, yield a map

I, : Q4X) — C(G/P,K)/Ciny(G/P,K)

where C(G/ P, K) denotes the continuous functions on G/ P and Ci,y (G/ P, K) denotes
the subspace generated by those continuous functions invariant by a larger parabolic
subgroup. Using the “symmetrization map” of Borel and Serre, we show that the
map I, contains the same information as the original transform I. The map I, has
the advantage of targeting the possibly simpler space of functions on the compact
space G/P. However, as was shown in [ST], the kernel function is locally analytic
only on the big cell; it is continuous on all of G/P, but has complicated singularities
at infinity. For this reason, the image of the map I, does not lie inside the space of
locally analytic functions. Introducing a notion of “analytic vectors” in a continuous
representation, we prove that the image of I, lies inside the subspace of analytic
vectors, and so we can make sense of what it means for a function in the image of I,
to satisfy differential equations. However, as with I, we cannot completely describe
the image of this “complete” integral transform, and to obtain precise results we must
pass to subquotients of Q4(X)’.

In the course of our analysis in section 3, we obtain the important result that the
space of logarithmic forms (generated over K by the g.£) is dense in Q4(X), and
consequently our maps I and I, are injective.

In section 4, we focus our attention on the differential equations satisfied by the
functions in the image of the transform I. More precisely, let b be the annihilator in
U(g) of the special logarithmic form £. Any function in the image of I is killed by b.
The key result in this section is the fact that the left U(g)-module U(g)/b = U(g)¢
has one-dimensional weight spaces for each weight in the root lattice of G. In some
weak sense, the U(g)-module U(g)¢ plays the role of a Harish-Chandra (g, K')-module
in our p-adic setting.

The filtration on Q4(X) is closely related to a descending filtration of U(g) by left
ideals

U(g):b():) b1 D--- :)bd+1:b.
By combinatorial arguments using weights, we show that the subquotients of this
filtration are finite direct sums of irreducible highest weight U(g)-modules. Each of
these modules has a presentation as a quotient of a generalized Verma module by
a certain submodule. These submodules are the modules 9; which enter into the
statement of the main theorem. -

In section 5, we obtain a “local duality” result. Let Qg(UO) be the Banach space
of bounded differential forms on the admissible open set U in X which is the inverse
image, under the reduction map, of an open standard chamber in the Bruhat-Tits
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building of G. Let B be the Iwahori group stabilizing this chamber, and let O(B)*=°
be the (globally) analytic functions on B annihilated by the (left invariant) differential
operators in b. We construct a pairing which induces a topological isomorphism
between the dual space (O(B)*=Y) and QZ(U°).

We go on in section 5 to study the filtration of O(B)*=" whose terms are the
subspaces killed by the successively larger ideals b;. We compute the subquotients of
this local filtration, and interpret them as spaces of functions satisfying systems of
partial differential equations. These local computations are used in a crucial way in
the proof of the main theorem.

In section 6, we return to global considerations and define our G-invariant filtration
on Q4(X). We define this filtration first on the algebraic differential forms on X. These
are the rational d-forms having poles along an arbitrary arrangement of K-rational
hyperplanes. The algebraic forms are dense in the rigid forms, and we define the
filtration on the full space of rigid forms by taking closures. A “partial fractions”
decomposition due to Gelfand-Varchenko ([GV]) plays a key role in the definition of
the filtration and the proof of its main properties.

In section 7, we use rigid analysis to prove that the first step in the global filtration
coincides with the space of exact forms; this implies in particular that the exact
forms are closed in Q¢(X). The desired results follow from a “convergent partial
fractions” decomposition for global rigid forms on Q¢(X). One major application of
this characterization of the first stage of the filtration is that it allows us to relate
the other stages with subspaces of forms coming by pull-back from lower dimensional
p-adic symmetric spaces. Another consequence of the results of this section is an
analytic proof of that part of the main theorem of [SS] describing Hey (X) in terms
of the Steinberg representation.

In section 8, we prove the main theorem, identifying the subquotients of the fil-
tration on the dual of Q¢(X) with the subspaces of induced representations killed by
the correct differential operators. All of the prior results are brought to bear on the
problem. We show that the integral transform is bijective by showing that an ele-
ment of the induced representation satisfying the differential equations can be written
as a finite sum of G-translates of elements of a very special form, and then explic-
itly exhibiting an inverse image of such a special element. The fact that the map
is a topological isomorphism follows from continuity and a careful application of an
open-mapping theorem.

Part of this work was presented in a course at the Institut Henri Poincaré during
the “p-adic semester” in 1997 . We are very grateful for this opportunity as well as for
the stimulating atmosphere during this activity. The second author was supported
by grants from the National Science Foundation.

ASTERISQUE 278



p-ADIC BOUNDARY VALUES 57

0. Notations and conventions

For the reader’s convenience, we will begin by summarizing some of the notation
we use in this paper. In general, we have followed the notational conventions of [ST].

Let K denote a fixed, non-archimedean locally compact field of characteristic zero,
residue characteristic p > 0 and ring of integers o. Let |- | be the absolute value on
K, let w: K — Z be the normalized additive valuation, and let = be a uniformizing
parameter. We will use C,, for the completion of an algebraic closure of K.

Fix an integer d > 1 and let P¢ be the projective space over K of dimension d.
We let G := GLg.1(K), and adopt the convention that G acts on P through the left
action g([qo : ---: qa]) = [qo : --+ : qalg™. We let T be the diagonal torus in G, and
T the image of T in PGLgy1(K). We use €, ..., eq for the characters of T, where, if
t= (t“-)glzo is a diagonal matrix, then €;(t) = t;;.

The character group X*(T) is the root lattice of G. It is spanned by the set
® = {e —¢ : 0 <i#j<d} ofroots of G. Let Zo,...,Eq be homogeneous
coordinates for P4. Suppose that u € X*(T), and write y = Zg:o m;€;. We let

d
—— =g
S = =

=0

Since p belongs to the root lattice, we know that ijo m; = 0, and therefore =, is a
well-defined rational function on P¢.

Certain choices of p arise frequently and so we give them special names. For
1=0,...,d—1welet §; =¢;,—€egand 8 = [o+-- -+ Bq—1. We also let o; = €;41 — ¢,
for i = 0,...,d — 1. The set {a; ?;01 is a set of simple roots. We also adopt the
convention that ag = €y — €4. Any weight x in X*(T) may be written uniquely as a
sum p = Z?:o m;a; with integers m; > 0 of which at least one is equal to 0. If u is
written in this way, we let £(u) := mq.

As mentioned in the introduction, we let X denote Drinfeld’s d-dimensional p-adic
symmetric space. The space X is the complement in P¢ of the K-rational hyper-
planes. The G-action on P? preserves X. The structure of X as a rigid analytic space
comes from an admissible covering of X by an increasing family of open K-affinoid
subvarieties X,,. To define the subdomains X,,, let H denote the set of hyperplanes
in P?% which are defined over K. For any H € H let /i be a unimodular linear form
in Eo,...,Eq such that H is the zero set of £5. (Here, and throughout this paper, a
linear form ¢ is called unimodular if it has coefficients in o and at least one coefficient
is a unit.)

The set X,, consists of the set of points ¢ € P% such that

w(lr(lgo:---:qa])) <n

for any H € H whenever [go : g1 : -+ : q4] is a unimodular representative for the
homogeneous coordinates of g. We denote by O(X) the ring of global rigid analytic
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functions on X, and by Q¢(X) the global i-forms. By Hjg(X) we mean the rigid-
analytic De Rham cohomology of X.

The space X has a natural G-equivariant map (the reduction map) r : X — X
to the Bruhat-Tits building X of PGL441(K). For the definition of this map, see
Definition 2 of [ST].

The torus T stabilizes a standard apartment A in X. The Iwahori group

B :={g € GL4q4+1(0) : g is lower triangular mod 7}

is the pointwise stabilizer of a certain closed chamber C' in A C X. Following the
conventions of [ST], we mean by (C,0) the chamber C together with the vertex 0

stabilized by GLg41(0). We will frequently denote a random closed chamber in X with

the letter A, while A° will denote the interior of A. The inverse image U°? = r~1 (60)

of the open standard chamber 60 under the reduction map is an admissible open
subset in X.
In addition to these conventions regarding roots and weights of G, we use the
following letters for various objects associated with G:
P := the lower triangular Borel subgroup of G
U := the lower triangular unipotent group of G
N := the normalizer of T in G
W := the Weyl group N/T of G
wq41 = the longest element in W
P, := P U PsP for any simple reflection s € W
For an element g € Uwqy1 P in the big cell we define u, € U by the identity g =
UgWq1h with h € P.
Corresponding to a root o = €; —¢; we have a homomorphism & : K — G sending
u € K to the matrix (u,s) with:
1 ifr=s
Urs =< u ifr=1and s=j
0 otherwise.
The image U, of & in G is the root subgroup associated to «. It is filtered by the

subgroups Uy, := a({u € K : w(u) > r}) for r € R. For a point x € A we define U,
to be the subgroup of G' generated by all U, _o(,) for a € .

1. Q4(X) as a locally convex vector space

We begin by establishing two fundamental topological properties of Q4(X). We
construct a family of norms on Q%(X), parameterized by chambers of the building X,
which defines the natural Fréchet topology (coming from its structure as a projective
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limit of Banach spaces) on Q%(X). We further show the fundamental result that Q%(X)
is a reflexive Fréchet space.

We first look at the space O(X). For any open K-affinoid subvariety ) C X its ring
O(Y) of analytic functions is a K-Banach algebra with respect to the spectral norm.
We equip O(X) with the initial topology with respect to the family of restriction maps
O(X) — O(Y). Since the increasing family of open K-affinoid subvarieties X,, forms
an admissible covering of X ([SS] Sect. 1) we have

oX) = 1%11 O(X,)
in the sense of locally convex K-vector spaces. It follows in particular that O(X) is a
Fréchet space. Using a basis 1 of the free O(X)-module Q2¢(X) of rank 1 we topologize
Q4(X) by declaring the linear map

o) = Q4X)
F +— F770

to be a topological isomorphism; the resulting topology is independent of the choice of
no- In this way Q¢(X) becomes a Fréchet space, too. Similarly each Q¢(X,,) becomes
a Banach space. In the following we need a certain G-invariant family of continuous
norms on Q4(X). First recall the definition of the weights

Bii=¢;i—¢eq for0<i<d-—1.
We have
QUX) = O(X)dZg, A+~ NdZg,_, .
The torus T acts on the form d=g, A -+ A d=g, , through the weight
Bi= o+ + Bar.

For any point ¢ € X such that z := 7(q) € A we define a continuous (additive)
semi-norm 7, on Q4(X) by

Yq(n) = w(F(q)) + B(z) if n = FdZg, A+~ NdZg,_,.
Lemmall — Let ¢ € X such that T := r(q) € A; we then have
Yoqa = Vq og~t for any g € N UU,.

Proof — First let g € G be any element such that g7 € A. Using [ST] Cor. 4 and the
characterizing property of the function u(g=!,.) ([ST] Def. 28) one easily computes

1= 1=
- gx =0 9y =d
Yoa =Yg =w|Z=—(q) - Z=—(q)

—0 —d

+ w(det g).

Obviously the right hand side vanishes if g is a diagonal or permutation matrix and
hence for any g € N. It remains to consider a g = a(u) € U, _q(y) for some root
a € ®. Then the right hand side simplifies to w(1 —uZ4(q)) = w(E4(99)) — w(Ea(q)).
According to [ST] Cor. 4 this is equal to a(r(gq)) — a(r(q)) = a(ZT) —a(T) =0. O
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This allows us to define, for any point ¢ € X, a continuous semi-norm -, on Q4(X)
by
Yq = VYgq © 9
where g € G is chosen in such a way that r(gq) € A. Moreover, for any chamber A
in X, we put

= inf .
A (@) €A Yq

Since 771(A) is an affinoid ([ST] Prop. 13) this is a continuous semi-norm. To see
that it actually is a norm let us look at the case of the standard chamber C. Let
N=F -dZ., , A ANd=s, € Q4X). Since F|U is bounded we have the expansion

A=Y s,
neX*(T)

with a(p) € K and {w(a(p)) — I(p)}, bounded below. Since the restriction map
Q4(X) — Q4U") is injective we have the norm

we (n) = mf{wla(w)) — ()} = ot w(F(q))
on Q4(X).
Lemmal2 — we <vg <wc + 1.
Proof. — Let n:=F -d=a, , N+ NdZq4,. The identity
A, A+ AdBay = £5_g_a,dZg, A+ AdZg,
together with [ST] Cor. 4 implies
Ya(1) = W(F(2) + w(E-p-as(q) + B(2) = w(F(q)) — aa(2)
forr(q) =z € C". Because of —1 < a4|C < 0 we obtain

w(F(q)) < 79(n) < w(F(g)) +1
for any ¢ € U°. It remains to recall that wc(n) = ingow(F(q)). O
S

This shows that all the yo are continuous norms on Q%4(X). In fact the family of
norms {ya}a defines the Fréchet topology of Q4(X). In order to see this it suffices to
check that the additively written spectral norm wa for the affinoid r—1(A) satisfies

wa(F) = T(qi)nEonw(F(q)) for F € O(X).

Let X5 denote Berkovich’s version of the rigid analytic variety X. Each point ¢ € Xp
gives rise to the multiplicative semi-norm F' — w(F(q)) on O(X). If one fixes F €
O(X) then the function ¢ — w(F(q)) is continuous on Xp. We need the following
facts from [Be2]:

— The reduction map r : X — X extends naturally to a continuous map 75 :
I)CB — Y
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— The map rp has a natural continuous section sg : X — Xp such that F —

w(F(sp(2))), for z € r(X), is the spectral norm w,-1(,) for the affinoid r~*(z).

In particular, for a fixed F' € O(X), the map z «+w(F(sp(z))) is continuous on X.
Since r(X) is dense in X it follows that

inf F = inf —1((F)= inf —1(F
,-<§>nerw( (9)) ceriml o (=)(F) ol e (= (F)
= inf w(F(q)) =wa(F).

r(g)eA

Lemmal3. — The G-action G x QX)) — Q4(X) is continuous.

Proof. — Clearly each individual element g € G induces a continuous automorphism
of Q4(X). As a Fréchet space Q%(X) is barrelled ([Tie] Thm. 3.15). Hence the Banach-
Steinhaus theorem ([Tie] Thm. 4.1) holds for Q4(X) and we only have to check that
the maps

G — Q4X) forneQ4X)

g == 4gn
are continuous (compare the reasoning in [War] p. 219). By the universal property
of the projective limit topology this is a consequence of the much stronger local
analyticity property which we will establish in Prop. 1’ of the next section. O

Proposition 1.4. — O(X) is reflexive and its strong dual O(X)' is the locally convex
inductive limit
OX) =1lim0O(X,)

—
n

of the dual Banach spaces O(X,,) .
The proof is based on the following concepts.

Definition. — A homomorphism v : A — B between K-Banach spaces is called
compact if the image under ¥ of the unit ball {f € A: |f|la < 1} in A is relatively
compact in B.

We want to give a general criterion for a homomorphism of affinoid K-algebras to
be compact. Recall that an affinoid K-algebra A is a Banach algebra with respect to
the residue norm | |, induced by a presentation

a K(T,...,Ty) —> A
as a quotient of a Tate algebra. All these norms | |, are equivalent.

Definition ([Ber] 2.5.1). — A homomorphism ¢ : A — B of affinoid K-algebras is
called inner if there is a presentation a : K(T1,...,Tm) — A such that

inf{w(va(T;)(y)) : y € Sp(B),1 <i < m} > 0.

Lemmal5. — Any inner homomorphism v : A — B of affinoid K-algebras is com-
pact.
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Proof. — First of all we note that if the assertion holds for one residue norm on
A then it holds for all of them. If ¢ is inner we find, according to [Ber| 2.5.2, a
presentation a : K(T1,...,T,,) — A such that

inf{w(Wa(T;)(y)) : y € Sp(B),1 <i<m} > 1.
This means that we actually have a commutative diagram of affinoid K-algebras

K(Ty,...,Ty) —— K{x \T\, ..., 77 'T,)

|,

A B

where 7 is the obvious inclusion of Tate algebras. Since the valuation of K is dis-
crete the unit ball in K(Ty,...,T,,) (with respect to the Gauss norm) is mapped
surjectively, by a, onto the unit ball in A (with respect to | |,). Hence it suffices
to prove that the inner monomorphism 2 is compact. But this is a straightforward

generalization of the argument in the proof of [Mol] 3.5. O

Proof of Proposition 4. — In the proof of [SS] §1 Prop. 4 the following two facts are
established:

— The restriction maps O(X,41) — O(X,,) are inner;

— X,, is a Weierstrafl domain in X,, 1 for each n.

The second fact implies that the restriction map O(X,4+1) — O(X,) has a dense
image. It then follows from Mittag-Leffler ([B-TG3] II §3.5 Thm. 1) that the re-
striction maps O(X) — O(X,,) have dense images. Using Lemma 5 we see that the
assumptions in [Mol] 3.3(i) and 3.4(i) are satisfied for the sequence of Banach spaces

O(X,,). Our assertion results.
Of course then also Q%(X) is reflexive with Q4(X)" = lim | Q4(,). O

2. Q4(X) as a locally analytic G-representation

In this section, we study the G-action on Q%¢(X) and investigate in which sense it is
locally analytic. Using this property of the G-action, we construct a continuous map
I from Q4(X) to the space of locally analytic K-valued functions on G. It follows
from the construction of this map that its image consists of functions annihilated by
a certain ideal a in the algebra of punctual distributions on G. In particular, this
means that functions in the image of I satisfy both discrete relations (meaning that
their values at certain related points of G cannot be independently specified) and
differential equations. We will study these relations in more detail in later sections.

We will use the notion of a locally analytic map from a locally K-analytic manifold
into a Hausdorff locally convex K-vector space as it is defined in [B-VAR] 5.3.1. But
we add the attribute “locally” in order to make clearer the distinction from rigid
analytic objects.
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Proposition 2.1. — For any n € Q4(X) and any A € Q4(X)’ the function g — X(g«n)
on G s locally analytic.

Since, by Prop. 1.4, A comes from a continuous linear form on some Q%(X,,) this is
an immediate consequence of the following apparently stronger fact.

Proposition 2.1'. — Whenever Q4(X) is equipped with the coarser topology coming
from the spectral norm on X,, for some fixed but arbitrary n € N then the map g — g.7,
for any n € QUX), is locally analytic.

Proof. — For the moment being we fix a natural number n € N. In the algebraic,
and hence rigid analytic, K-group GLgt; we have the open K-affinoid subgroup
H, :={h € GLgs1(0oc,) : h =g mod 7" "' for some g € GLat1(0)}
which contains the open K-affinoid subgroup
D, =1+ 7r"+1Md+1(ocp);

here o, resp. oc,, denotes the ring of integers in K, resp. C,. As a rigid variety over
K the latter group D,, is a polydisk of dimension r := (d + 1)2. Since H,, preserves
the K-affinoid subdomain X,, of P? the algebraic action of GLg441 on P restricts to
a rigid analytic action m : H,, x X,, — X,, which corresponds to a homomorphism of
K-affinoid algebras

oX,) — O(H,xX,) = O(Hn)%O(xn)
F — m*F.
For any h € H,, we clearly have
[(evaluation in h) ® id]om™F = hF .
For a fixed g € GL44+1(0) we consider the rigid analytic “chart”

g: Dy — H,
h — gh .

Fixing coordinates 71, ..., T; on the polydisk D, we have
O(Dn)§0(:xn) > O(X,)(Th,. .., T)).
The power series
Fo(Ty, ..., Ty) = (1, @id)m* F € O(X, (T, ..., T)

has the property that ghF = Fy(T1(h),...,T-(h)) for any h € D,,. This shows that,
for any F' € O(X,,), the map

GLay1(0) — O(X,)
g +— gF

is locally analytic.
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This construction varies in an obvious way with the natural number n. In particular
if we start with a function F' € O(X) C O(X,,) then the coefficients of the power series
Fy also lie in O(X). It follows that actually, for any F' € O(X), the map

GLgr1(0) — OX)
g — gF

is locally analytic provided the right hand side is equipped with the sup-norm on X,
for a fixed but arbitrary n € N. Since F was arbitrary and GLg441(0) is open in G
the full map

G — 0O

g — gF
has to have the same local analyticity property.

This kind of reasoning extends readily to any GLg441-equivariant algebraic vector
bundle V on P¢. Then the space of rigid analytic sections V(X) is a Fréchet space as
before on which G acts continuously and such that the maps

G — VX))

g — gs
for any s € V(X) have the analogous local analyticity property. The reason is that
the algebraic action induces a rigid analytic action

Hn XV/xn — V/xn
which is compatible with the action of H, on X, via m. But this amounts to the
existence of a vector bundle isomorphism
m*(Vx,) — pr3(Vx,)

satisfying a certain cocycle condition (compare [Mum]| 1.3); here pro : H, x X,, — X,
is the projection map. Hence similarly as above the H,-action on the sections V(X,,)
is given by a homomorphism

V(X)) — m*(V)x, ) (Hn x Xp) =, prs(Vx, )(Hp x Xp) = O(JC,J%V(DC”) .

The rest of the argument then is the same as above. O

That result has two important consequences for our further investigation. In the
first place it allows us to introduce the basic map for our computation of the dual
space Q4(X)". Let

C*"(G, K) := space of locally K-analytic functions on G.
We always consider this space as the locally convex inductive limit

C*(G, K) = lim G (G, K).
u
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Here U = {U, }ic1 is a disjoint covering of the locally K-analytic manifold G by closed
balls (in the sense of charts) and

Cil'(G,K) :={f € C*"(G,K) : f|U; is analytic for any i € I}

is the direct product of the Banach spaces of analytic functions on each U; (where the
Banach norm is the spectral norm on U;). The group G acts by left translations on
Cc*(G, K).

Lemma2.2. — The G-action G x C**(G,K) — C*(G, K) is continuous.
Proof. — Clearly, each group element g € G acts continuously on C**(G, K). Being

the locally convex inductive limit of a direct product of Banach spaces, C**(G, K) is
barrelled. Hence it suffices (as in the proof of Lemma 1.3) to check that the maps

G — C*(G,K) for feC™G,K)
g — gf

are continuous. But those maps actually are differentiable ([Fea] 3.3.4). O

In all that follows, the d-form

¢ dEgO /\H'/\dEguF1

Epo - EBas
on X is the basic object. Because of Prop. 1 we have the G-equivariant map
I:04X) — C*(G,K)
A g = Mg
Lemma2.3. — The map I is continuous.
Proof. — Since Q4(X) is the locally convex inductive limit of the Banach spaces

Q4(X,,)" it suffices to establish the corresponding fact for Q4(X,). In the proof of
Prop. 1’ we have seen that the map

G — Q4X,)
g g«

is analytic on the right cosets of G N D,, in G. We obtain that, for A € Q4(X,,)’, the
function g — A(g«&) lies in C3* (G, K) with U := {(GN D,)g}gec and that on a fixed
coset (G N D,,)g the spectral norms satisfy the inequality

AN < - €]l O
We also have the right translation action of G on C*"(G, K) which we write as

dgf(h) = f(hg).
In addition we have the action of the Lie algebra g of G by left invariant differential
operators; for any r € g the corresponding operator on C**(G, K) is given by

(£)(9) 1= 57 g exp(r0)jeco:
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here exp : g » G denotes the exponential map which is defined locally around
0. This extends by the universal property to a left action of the universal enveloping
algebra U(g) on C**(G,K). For any f € C**(G,K), any g € G, and any ¢ € g
sufficiently close to 0 (depending on g) we have Taylor’s formula

oo

flgexp(®) =

n=0

1
n!

" f)9)

(compare, for example, the proof in [Hel] I1.1.4 which goes through word for word for
p-adic Lie groups). We actually find for any h € G a neighbourhood Ny of h in G and
a neighbourhood n of 0 in g such that the above formula holds for all (g,r) € Ny x n.

The right translation action of G and the U(g)-action on C**(G, K') combine into
an action of the algebra D(G) of punctual distributions on G ([B-GAL] III §3.1). Any
D € D(G) can be written in a unique way as a finite sum D = 31d4, + - - - +3-d,, With
3 € U(g) and g; € G, §, denoting the Dirac distribution supported at g € G. Then
one has Df =>"3:,(f(.g;)) for f € C**(G, K); observe that

3g(3(f)) = (ad(9)3)(94(f))-

This D(G)-action commutes with the left translation action of G on C**(G, K). More-
over D(G) acts by continuous endomorphisms on C**(G, K); this is again a simple
application of the Banach-Steinhaus theorem (compare [Fea] 3.1.2).

The second consequence of Prop. 17 is that the map g ~— g.n from G into Q%(X)
is differentiable ([B-VAR] 1.1.2) for any n € Q4(X). It follows that g and hence U (g)
act on Q4(X) from the left by

d
v = — exp(t)je=o-

Obviously the G-action and the U(g)-action again combine into a left D(G)-action by
continuous endomorphisms on Q%(X). Note that Q9(X) as a Fréchet space is barrelled,
too. We define now

a:={D € D(G) : D¢ =0}
to be the annihilator ideal of £ in D(G); it is a left ideal. On the other hand
C™(G,K)*=" .= {f € C*"(G,K) : af =0}
then is a G-invariant closed subspace of C**(G, K). The formula
[D(I(A)](g9) = Mg=(D€)) for D € D(G), A € Q4X)" and g € G

implies that that subspace contains the image of the map I, i.e., that I induces a
G-equivariant continuous linear map

Qd(x)/ N Can(G, K)a:O.
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3. The kernel map

In the previous section we constructed a map I from Q%(X)’ to a certain space of
locally analytic functions on G. We see this map as a “boundary value” map, but this
interpretation needs clarification. In particular, the results of [SS] and [ST] suggest
that a more natural “boundary” for the symmetric space X is the compact space G/P.
In this section, we study a different boundary value map I, which carries Q¢(X)’ to
(a quotient of) a space of functions on G/P. Our objective is to relate I, to I. The
major complications come from the fact that the image of I, does not consist of
locally analytic functions, a phenomenon essentially due to the fact that the kernel
function on G/P studied in [ST] is locally analytic on the big cell with continuous,
not locally analytic, extension to G/P. We relate I, to I using a “symmetrization
map,” due to Borel and Serre, which carries functions on G/ P into functions on G,
together with a theory of “analytic vectors” in a continuous G-representation. One
crucial consequence of our work in this section is the fact that the integral transform
I, (and I) is injective.

Recall the definition, in [ST] Def. 27, of the integral kernel function k(g,q) on
G/P x X. This function is given by

(ug) :

k’(g,.) = *Eﬁo..':‘ﬁd—l
0 otherwise.

if g = ugwq41p is in the big cell,

Here we rather want to consider the map

k:G/P — Q4(X)
g —  k(g,.)d=g, N--- NdEg, ;.

Since the numerator of the form ¢ is invariant under lower triangular unipotent ma-
trices (compare the formula after Def. 28 in [ST]) we can rewrite our new map as

(ug)«& if g = ugwqs1p is in the big cell,
k(g) = .
0 otherwise.

Proposition 3.1. — The map k is continuous and vanishes outside the big cell. More-
over whenever Q4(X) is equipped with the coarser topology coming from the spectral
norm on X,, for some fixed but arbitrary n € N then k is locally analytic on the big
cell.

Proof. — The vanishing assertion holds by definition. The assertion about local an-
alyticity of course is a consequence of Prop. 2.1°. But we will give another argument
which actually produces explicitly the local series expansions. This will be needed in
the subsequent considerations.

Let U denote the unipotent radical of P. According to [ST] Lemma 12 the sets
B(u,r) = uwg41t"BP/P, for a fixed u € U, t the diagonal matrix with entries
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(m¢,...,m,1), and varying r € N, form a fundamental system of open neighbourhoods
of the point uwg41P/P in the big cell. One easily checks that

D(u,r) :={v e U :vwg41P/P € B(u,r)}
is a polydisk in the affine space U. Hence the maps
D(u,r) - B(u,r) C big cell
v — vwg41 P/ P

constitute an atlas for the big cell as a locally analytic manifold. Fix n € N. We have
to show that given a u € U we find an r € N such that the map

D(u,r) —  Q4X)
v — k(vwiir)
is analytic with respect to the coarser topology on the right hand side corresponding

to n. Recall that this amounts to the following ([B-VAR]). Let vj; for 0 <i < j <d
denote the matrix entries of the matrix v € U. Moreover we use the usual abbreviation

w-w= [ (i—w)™
0<i<j<d
i _ d(d+1)/2
for any multi-index m = (m1o,...,Mda-1) € Ny . We have to find an r € N
such that there is a power series expansion

k(vwatt, q) = Z(U —u)™ - Fin(q)

m

with Fy;, € O(X) which is uniformly convergent on D(u,r) x X,,. From now on we fix
u € U. We choose r € N such that

w(vj; —uji) > 2n for allv € D(u,r) and 0 <i < j <d.

We write
-1
k(vwgy1,q) =
( i ) zzl_[O f’L (’U, Q)

where

d—1

Fiv,q) == aji(v)Zg,(q) + ai(v)

j=i

with

vj; for j >1
aji(v) = {1” for j i’

We also write

with
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Observe that
w(bji(.)) > 2n on D(u,r).
As was already discussed in the proof of [ST] Prop. 47 we have
w(fi(u,q)) <nfor ¢ € X,, and

d—1
w [ ':ZH bji(v)Zs,(q) + bdi(v)] > n for (v,q) € D(u,r) x Xp.

Consequently

1 1 Zzil bji(v)Zs,(q) + bai(v) _ .
filv,q) ~ Jilu,q) 2. () ( filu,q) ]

m>0

is an expansion into a series uniformly convergent on D(u,r) x X,. We rewrite this
as

1 o Emit1iBitr o tma—1:Ba—1 (Q) mj;
Ty = Cm(i) — : (vji — uji)
fi(v,q) fi(u, g)tHmisit o tma:

Mg 1o Mdi 20 i<j<d
where m(i) := (Miy14,...,Mqi) and the cy(;) are certain nonzero integer coefficients.

By multiplying together we obtain the expansion

_ CmE;t(m) (Q)
(*) k(ledJrl’ Q) B Z fO(ua Q)So(m) e fdfl(ua Q)Sdil(m) .

which is uniformly convergent on D(u,r) x X,,; here we have set

(v—u)™

p(m) :=mioB1 + (ma2o +ma1)B2 + -+ + (Ma—10 + - +Ma—14-2) 81
if d> 1, resp. p(m):=01if d =1, and
Sz(m) = 1+m1+11++md1 fOI'OSng*].,
again the ¢, are appropriate nonzero integer coefficients. This establishes the asserted
local analyticity on the big cell. It follows immediately that k is continuous on the
big cell (with respect to the original Fréchet topology on Q¢(X)). It therefore remains

to prove, for all n € N, the continuity of k& viewed as a map from G into O(X,,) in all
points outside the big cell. But this is the content of [ST] Lemma 45. O

Corollary 3.2. — The function Aok : G/P — K, for any continuous linear form X
on Q4(X), is continuous, vanishes outside the big cell, and is locally analytic on the
big cell.

Proof. — The continuity and the vanishing are immediately clear. The local analyt-
icity follows by using [B-VAR] 4.2.3 and by observing that, according to Prop. 1.4, A
comes from a continuous linear form on some Q%(X,,). O

Proposition 3.3. — The image of k generates Q%(X) as a topological K -vector space.
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Proof. — We first consider the map k : G — O(X). Let £ C O(X) be the vector
subspace generated by the image of k and let K denote its closure. The formula (*) in
the proof of Proposition 1 for the matrix u = 1 says that, given the natural number
n € N, we find an 7 € N such that the expansion

_ cmZpu(m) (2) m
k(vway1,q) = Z = (q)s()(m) .. .Eﬁdil(q)sdfl(m) (v=1)

holds uniformly for (v,q) € D(1,r) x X,,. The coefficients of this expansion up to
a constant are the value at u = 1 of iterated partial derivatives of the function
kE(wgt1,.) : D(1,7) — K (momentarily viewed in O(X,)). Since increasing n just
means decreasing r it follows that all the functions E, with p = p(m) — so(m)Bo —
<o+ —84-1(m)Bq_1 lie in K. This includes, for those m for which only the m,;;1; may
be nonzero, all the functions

=mo , gMd-2

—B “Ba-1 — =mo ,,  =Md-1 , ]‘ th m m > 0
—14+mo —1l4+mg_1 = Too —ag1 = .= Wi 05y Md—1 = V.
:4[30 e :ﬁd71 =Bo —=Ba—1

Passing now to d-forms we therefore know that the closed K-vector subspace ) of
Q4(X) generated by the image of k contains all forms =& where u = moog + -+ +
Ma—10q—1 with mg,...,mg—1 > 0. As a consequence of [ST] Cor. 40 the subspace
) is G-invariant. By applying Weyl group elements w and noting that w.& = +£ we
obtain Z,¢, for any p € X *(T), in . Using the G-invariance of  again we then have
the subset

(0 (2,8) € X*(T),u € U} = {(wZ)dZp, A AdZs, , - € X*(T),u e U} C Q.

According to the partial fraction expansion argument in [GV] Thm. 21 the u.=, K-
linearly span all rational functions of Zg,,...,Z3, , whose denominator is a product
of polynomials of degree 1. Moreover the proof of § 1 Prop. 4 in [SS] shows that those
latter functions are dense in O(X). It follows that = Q%(X). O

Put
C(G/P,K) := space of continuous K-valued functions on G/P;

it is a Banach space with respect to the supremum norm on which G acts continuously
by left translations. The subspace

Cinv(G/P,K) :=> C(G/P,,K) C C(G/P,K)

is closed; actually one has the topological direct sum decomposition
C(G/P,K) = Cinv(G/P,K) ® Co(Pwg4+1P/P, K)

where the second summand on the right hand side is the space of K-valued continuous
functions vanishing at infinity on the big cell ([BS] §3). We recall that a continuous
function on a locally compact space Y is said to vanish at infinity if its extension
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by zero to the one-point compactification of Y is continuous. We equip the quotient
space C(G/P,K)/Ciny(G/P, K) with the quotient topology. By Proposition 1 the
map
I 4y — CO(G/P,K)
A — g Ak(9))]
is well defined; by [ST] Cor. 30 it is P-equivariant. Moreover it follows from [ST]
Prop. 29.3 and the Bruhat decomposition that the induced map
I, : QYX) — C(G/P,K)/Ciny(G/P, K)
is G-equivariant.

Lemma3.4. — The maps I and I, are continuous.

Proof. — We only need to discuss the map I/. Because of Prop. 1.4 we have to check
that, for each n € N, the map
o, —  C(G/PK)
A g MKy, )]

is continuous. The norm of A is equal to

c1 = inf{w(A\(F)): F € (’)(xn),qier%cf w(F(q)) > 0}.

n

On the other hand the norm of the image of A under the above map is equal to
:= inf J))) = inf .
c2 = Inf w(A(k(g, ) = inf wA(k(uwars,.)))
where U denotes, as before, the unipotent radical of P. But we have

inf w(k(uwaii,q) > —dn

qeX,;,
(compare the proof of [ST] Prop. 47). It follows that co > ¢; — dn. O
Lemma3.5. — The maps I and I, are injective.
Proof. — For I! this is an immediate consequence of Prop. 3. According to Cor. 2
the image of I/ is contained in C,(Pwgy1P/P,K) which is complementary to
Cinv(G/P, K). Hence I, is injective, too. O

In order to see the relation between I, and the map I in the previous section we
first recall part of the content of [BS] § 3:

Fact 1. — The “symmetrization”

(Z0)(9) == D (=)™ p(guwwasr)

weWw
induces a G-equivariant injective map

C(G/P,K)/Cinn(G/P, K) — C(G, K).
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Here and in the following we let C(Y, K), resp. Co(Y, K), denote, for any locally
compact space Y, the K-vector space of K-valued continuous functions, resp. of K-
valued continuous functions vanishing at infinity, on Y’; the second space is a Banach
space with respect to the supremum norm.

We also let
C(G,K) AN C(U,K)
and
C(U,K) — C(G/P,K)/Cinw(G/P,K)
o(u) if g = vwyy1p € Uwgi1 P,
6 — o*(g) = o i
0 otherwise .
Fact 2. — # is an isomorphism whose inverse is resoX.

It follows in particular that # is an isometry.
Consider now the diagram

C
Ccan(G,K) ———=— O(G, K)

IT Tz
Qd(x) Lo, ctarp k)G (G P K

in which all maps are G-equivariant and injective. We claim that the diagram is
commutative; for that it suffices to prove the identity

(%) g6 = D (1) uguuy,,uE

weWw
From Prop. 1 we know that each summand on the right hand side is a continuous
function in g € G (where ugy+§ := 0 if gw is not in the big cell). Hence it suffices
to check the identity for g in the dense open subset [,y Pway1Pw. On the other
hand it is an identity between logarithmic d-forms which can be checked after having
applied the G-equivariant map “dis” into distributions on G/P; according to [ST]
Remark on top of p. 423 the left hand side becomes
Z (*1)2(74))5974) = Z (*1)Z(w)5u9wwd+1
weW weWw
whereas the right hand side becomes
Z (_1)l(w) ) Z (_1)l(v)5ugwd+lv - Z (_1)4(1”) ) Z (_1)l(v)5ugwwd+w.
weWw veW weW veW
The image of “dis” actually consists of linear forms on the Steinberg representation
(see [ST]) and so any identity in that image can be checked by evaluation on locally
constant and compactly supported functions on the big cell. But for those, all terms
on the right hand side with v # 1 obviously vanish.
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We view the above diagram as saying that any locally analytic function in the
image of I is the symmetrization of a continuous “boundary value function” on G/P.
In order to make this more precise we first have to discuss the concept of an “analytic
vector”. Let V be a K-Banach space on which G acts continuously (by which we
always mean that the map G x V' — V describing the action is continuous). As in
the case V = K we have the Hausdorff locally convex vector space C**(G, V') of all
V-valued locally K-analytic functions on G (apart from replacing K by V everywhere
the definition is literally the same). It is barrelled, so that the same argument as in
the proof of Lemma 2.2 shows that the left translation action of G on C**(G,V) is
continuous.

Definition. — A wector v € V' is called analytic if the V-valued function g — gv on
G s locally analytic.

We denote by V,, the vector subspace of all analytic vectors in V. It is clearly
G-invariant. Moreover the G-equivariant linear map
Von — Can(G, V)
voo— [g—gly
is injective. We always equip V,, with the subspace topology with respect to this
embedding. (Warning: That topology in general is finer than the topology which the
Banach norm of V' would induce on V,,. Evaluating a function at 1 € G defines a
continuous map C**(G,V) — V.) Of course the G-action on V,, is continuous. By
functoriality any G-equivariant continuous linear map L : V — V between Banach
spaces with continuous G-action induces a G-equivariant continuous linear map L.y, :
Van — Van. A useful technical observation is that the locally convex vector space Vyy,
does not change if we pass to an open subgroup H C G. First of all it follows from
the continuity of the G-action on V that the function g — ¢!
G if and only if its restriction to H is locally analytic. Fixing a set of representatives
R for the cosets in H \ G we have the isomorphism of locally convex vector spaces

c™(G, V) =[] c™(Hg, V)
geER

([Fea] 2.2.4). Hence the embedding Vo, — C?*"(G,V) coincides with the composite
of the embedding V,,, — C?**(H, V) and the “diagonal embedding”

cm(H,V) — []c™(Hg. V)
gER

f — (g7 (f(97"))ger-
Remark 3.6. — Vj,, is closed in C?**(G, V).

v is locally analytic on

a

Proof. — Let (v;)ier be a Cauchy net in V,, which in C**(G,V) converges to the
function f. By evaluating at h € G we see that the net (h~'v;);e; converges to f(h)
in V. Put v := f(1). Since h is a continuous endomorphism of V' it follows on the
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other hand that (h=1v;);e; converges to h~tv. Hence f(h) = h~'v which means that

f comes from v € V. O
Lemma3.7. — If each vector in V is analytic then V,, = V as topological vector
spaces.

Proof. — We have to show that the map

vV — C*™G,V)
v g g

is continuous. According to our earlier discussion we are allowed to replace G by
whatever open subgroup H is convenient. By [Fea] 3.1.9 our assumption implies that
the G-action on V defines a homomorphism of Lie groups p : G — GL(V) (with the
operator norm topology on the right hand side). On a sufficiently small compact open

subgroup H C G this homomorphism is given by a power series

p(g) =D An-z(g)*forge H

which is convergent in the operator norm topology on Endk (V'); here z is a vector of
coordinate functions from H onto some polydisk of radius 1, the n are corresponding
multi-indices, and the A4, lie in Endg (V). In particular the operator norm of the A,,
is bounded above by some constant ¢ > 0. If we insert a fixed vector v € V into this
power series then we obtain the expansion

go=" Au(v) (g

as a function of g € H and the spectral norm of the right hand side is bounded above

by ¢ ||v]|. O
Proposition 3.8. — The map I, induces a G-equivariant injective continuous linear
map

Qd(x)/ — [C(G/ P, K)/Ciny(G/ P, K)]an-

Proof. — For the purposes of this proof we use the abbreviation V := C(G/P, K)/
Cinv(G/P, K). We have to show that the image of I, is contained in V,, and that the
induced map into Vi, is continuous. As before it suffices to discuss the corresponding
map Q4(X,,) — Van for a fixed but arbitrary n € N. Both spaces, V as well as
Q4(X,,), are Banach spaces with an action of the group GLq1(0); the map between
them induced by I, is equivariant and continuous by Lemma 4. Since GLg41(0) is
open in G it can be used, by the above observation, instead of G to compute the locally
convex vector space Vay. If we show that G Ly (o) acts continuously on Q%(X,,)" then
I, certainly induces a continuous map [Q%(X,,)]an — Van. What we therefore have to
show in addition is that the identity

[Qd(xn)/]an - Qd(xn)/
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holds as topological vector spaces.

We know already from the proof of Prop. 2.1’ that every vector in Q%4(X,,) is
analytic. By [Fea] 3.1.9 this means that the G Lg1(0)-action on Q%(X,,) is given by
a homomorphism of Lie groups

GLd+1 (O) I GL(Qd(xn))

(recall that the right hand side carries the operator norm topology). Since passing to
the adjoint linear map is a continuous linear map between Banach spaces it follows
that also the GL441(0)-action on Q¢(X,,)" is given by a corresponding homomorphism
of Lie groups. This means in particular that the latter action is continuous and that
every vector in Q4(X,,)’ is analytic. We therefore may apply the previous lemma. O

Corollary 3.9. — The G-action G x Q4X) — QUX)" is continuous and, for any
A € QXY , the map g — g\ on G is locally analytic.

Proof. — Since Q¢(X)’ is barrelled as a locally convex inductive limit of Banach
spaces the first assertion follows from the second by the same argument which we
have used already twice. In the proof of the previous proposition we have seen that
each function g — gA is locally analytic on GLg4+1(0). But this is sufficient for the
full assertion. O

Since G/ P is compact we may view the symmetrization map as a map
C(G/P.K)/Cin(G/P.K) = BC(G. K)

into the Banach space BC(G, K) of bounded continuous functions on G. It is then
an isometry as can be seen as follows. By its very definition ¥ is norm decreasing.
On the other hand ¢ can be reconstructed from ¥¢ by restriction to U followed by #
which again is norm decreasing. Hence ¥ must be norm preserving.

We obtain the induced continuous injective map

[C(G/P, K)/Cin (G/P, K )|an =2 BO(G, K )an-

Since any f € BC(G, K)ay is obtained from the locally analytic map g — g~ f
by composition with the evaluation map at 1 € G and hence is locally analytic we
see that BC(G, K )an in fact is contained in C**(G, K'). We therefore can rewrite the
commutative diagram which relates I, and I in the form

Qd(xy L) [C(G/P,K)/Cin(G/P,K))an

|
Ccan (G, K).

So far we have explained how to understand on G/ P the fact that the functions in
the image of I are locally analytic. But the latter also satisfy the differential equations
from the ideal a in D(G). How can those be viewed on G/P?
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For any Banach space V' the right translation action by G on C**(G, V') induces a
corresponding action of the algebra D(G) by continuous endomorphisms. Any r € g
acts via the usual formula

(€1)(0) = 2 Flgexplte))

(Compare [Fea] 3.3.4.) This clearly is functorial in V. If we now look at the case
BC(G, K) we have two embeddings

BC(G, K)an

Cc*(G,BC(G,K)) 2 C*(G,K)

which are connected through the map € which comes by functoriality from the map
evy : BC(G,K) — K evaluating a function at 1 € G. This latter map is D(G)-
equivariant. Hence, for any left ideal 8 C D(G), we obtain the identity

BO(G, K)an N C*(G, K)°=°
= BC(G,K)an N{f € C*(G,BC(G,K)) : 0f Cker(e)}.
Using the abbreviation V := C(G/P, K)/Ciny(G/P, K) we know from Prop. 8 that
im(I,) C Van; on the other hand im(I) C C**(G, K)*=°. Those images correspond to
each other under the map X,,. It follows that im(1,) is contained in the subspace
Vo=l =V N {f € C*™(G,V) : af C ker(o)}

where o : C**(G,V) — C**(G, K) is the map induced by ev;0X : V' — K which sends
¢ € C(G/P,K) to > e (1) ™ ¢(wway1). We arrive at the following conclusion.

Theorem 3.10. — We have the commutative diagram of injective continuous linear
maps

Qd(xy L [C(G/P,K)/Cinv(G/P,K)|78=°

an
X‘ lzan

™ (G, K)*=0 .

We think of I, in this form as being “the” boundary value map. We point out that
the ideal a contains the following Dirac distributions. For any g € G put W(g) :=
{w € W : gwwgs1 € Pwgs1 P} and consider the element

5(g) =08, — Z (_1)5(111)(5ugwd+1
weW (g)

in the algebra D(G). By interpreting J;, as the right translation action by h those
elements act on C(G, K) and BC(G, K). We claim that any function ¢ in the image
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of ¥ satisfies
o(g) = Z (—1)2(w)¢(ugwwd+l) for any g € G.

weW (g)

We may write ¢ = ¥1)# and then compute

Z (_1)€(w)(z¢#)(“gwwd+1) = Z (_1)6(10) Z (_1)€(U)w#(ugwwd+1vwd+l)

weW (g) weW(g) veWw
= > D (uguwg,,) = Y, (D F (guwayr) = (S9F)(g).
weW (g) weWw

Since ¥ is G-equivariant the same identities hold for the functions ¢(h.) for any h € G.
In other words any function ¢ in the image of ¥ actually satisfies

d(g)¢ =0 for any g € G.

The relation (*%) established after Fact 2 implies that a contains the left ideal gener-
ated by the 0(g) for g € G.

4. The ideal b

As we have learned, the integral transform I carries continuous linear forms on
Q4(X) to locally analytic functions on G. Functions in the image of this map are
annihilated by an ideal a in the algebra of punctual distributions D(G). This annihi-
lation condition means that functions in the image of I satisfy a mixture of discrete
relations and differential equations.

In this section, we focus our attention on the differential equations satisfied by
functions in the image of I. By this, we mean that we will study in detail the structure
of the ideal b := anU(g). By definition, b is the annihilator ideal in U(g) of the special
differential form &. We will describe a set of generators for b and use this to prove
the fundamental result that the weight spaces in U(g)/b (under the adjoint action of
the torus T') are one-dimensional. We will then analyze the left U(g)-module U(g)/b,
identifying a filtration of this module by submodules and exhibiting the subquotients
of this filtration as certain explicit irreducible highest weight U(g)-modules. At the
end of the section we prove some additional technical structural results which we will
need later.

The results in this section are fundamental preparation for the rest of the paper.

We begin by recalling the decomposition

U(9) = ®ex-mU(0)u

of U(g) into the weight spaces U(g),, with respect to the adjoint action of the torus 7.
For a root a = ¢; —¢; the weight space g, is the 1-dimensional space generated by the
element L, € g which corresponds to the matrix with a 1 in position (¢, 7) and zeros
elsewhere; sometimes we also write L;; := Lo. Clearly a monomial L't .- Lyl €
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U(g) has weight miag + - - - + myc,.. The Poincaré-Birkhoff-Witt theorem says that
once we have fixed a total ordering of the roots o any element in U(g)/U(g)go can be
written in a unique way as a polynomial in the L,. We will also need the filtration
U, (g) of U(g) by degree; we write deg(3) :=n if 3 € Up,(9)\Un—1(9).

The form ¢ is invariant under 7. This implies that the ideal b is homogeneous and
contains U(g)go. An elementary calculation shows that L, acts on Q¢(X) by

- OF -
La(F¢) = (:iﬁ>§ — EoF€.
=j
In particular we obtain L,& = —E,£. By iteration that formula implies that the ideal

b contains the following relations:

cancellation : L;;Lj for any indices i # j # I,
sorting : L;;Ly¢ — Ly Ly; for any distinct indices (4, j, k, ).

Our goal is to show that the weight spaces of U(g)/b are 1-dimensional. For that we
need to introduce one more notation. For a weight p we put

d(p) :== Z m;

m;>0

where the m; are the coefficients of p in the linear combination

d
n = E mi&;.
i=0

Lemmad4.l. — Let 3 € U(g) be a monomial in the L, of weight u; we then have:

i dea(s) > d(u);
ii. write 3 =[], LZ“ and put

A(3) :={i:ny; >0 for some j} and B(3) :={j:ni >0 for some i};
then deg(3) = d(u) if and only if A(3) and B(3) are disjoint.

Proof. — (Recall that we have fixed a total ordering of the roots «.) Since 3 has
weight 1 we must have

p="> nile — &)
,J
If on the other hand we write u = Zk mi€r we see that
(%) my = anj - Znik-
j i
As a result of this expression it follows that mj < Zj nkj, so that

d(p) = > mi <Y Y gy = deg(3).
ko J

mg >0
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We suppose now that A(3) and B(3) are disjoint. Then (x) implies that my, is positive
if and only if k¥ € A(3) and for positive mj we must have

mg = anj.
J
Therefore
d(p) = Z mp = Z anj = anj = deg(3).
k,j

keA(3) keAG) J
Conversely, we suppose that k& € A(3) N B(3). Then my < Zj ng;. Therefore, if

my > 0, we obtain
d(p) = D me <Y > ng; = deg(3).
ko J

mg >0

If my < 0 a similar argument, using the fact that d(u) may be computed from the
my, with my < 0, gives the desired result. O

Lemmad.2. — Let 3 € U(g) be a nonzero polynomial in the L, of weight p; then
the coset 3 + b contains a representative of weight p which is a linear combination of
monomials in the Lo of degree d(u).

Proof. — Among all elements of 3 + b, which are polynomials in the L, let r be one
of minimal degree. By the preceeding lemma the degree of ¢ is greater than or equal
to d(u). Let y be a monomial in the L, of degree deg(r) which occurs with a nonzero
coefficient in p. Assume that the sets A(y) and B(y) as defined in the preceeding
lemma are not disjoint. Then there exist three indices i # j # [ such that L;; and Ly
each occur to nonzero powers in the monomial y. By the commutation rules in U(g)
we have
n € U(g)LijLji + Un—1(g) with n := deg(x).

Hence the cancellation relations imply that ty € b+U,_1(g). This means that modulo
b we may remove an appropriate scalar multiple of y from r and pick up only a
polynomial of lower degree. But by our minimality assumption on deg(x) there has
to be at least one such n such that A(y) and B(y) are disjoint. The previous lemma
then implies that d(u) = deg(y) = deg(r). If we express r as a linear combination
of monomials in the L, then each such monomial has weight p and hence, by the
previous lemma again, degree > d(u). O

A monomial
LiojoLiljl <o L

will be called sorted if ig < -+ < i, and jg < -+ < j,,, and if those two sequences do

imJm
not overlap (i.e. no i is a j;). For example, the monomial LigL10L32L32 is sorted

with sequences 1,1,3,3, and 0,0,2,2 whereas the monomial L3z L3; with sequences 3,3
and 2,1 is not sorted.
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Lemma4.3. — Among all the monomials in the L, of weight p there is exactly one,
denoted by L, which is sorted.

Proof. — The non-overlapping condition means that any sorted monomial must have
degree d(p). Write p = > myeg. Those k for which my, is positive must occur as
the first index in some L;;, and therefore (by the non-overlapping condition) can only
occur as first indices. Similarly, those k for which my is negative can only occur as
second indices. This determines the lists of first and second indices — for example, the
list of first indices consists of precisely those k for which my > 0, each repeated my
times, listed in ascending order. Once these two lists are determined the corresponding
monomial is determined. O

Proposition 4.4. — Let 3 € U(g) be a polynomial in the L., of weight p; we then have
3+b=aly +b for someac K.

Proof. — By Lemma 2 we may assume that 3 is a monomial of degree d(u). The sets
A(3) and B(3), as defined in Lemma 1, then are disjoint, and therefore the individual
L;; which occur in 3 commute with one another. Consequently we may rearrange
these L;; freely. Using this fact it is easy to see that we may use the sorting relations
to transform 3 into L. O
Corollary 4.5. — The weight space (U(g)/b), in the left U(g)-module U(g)/b, for any

p € X*(T), has dimension one.

Proof. — The preceeding proposition says that the weight space in question is gen-
erated by the coset L(,) + b. On the other hand an explicit computation shows that
L)€ = e2°2,§ with some integer ¢ > 0 and some sign e = +1 (both depending on
p); hence L, ¢ b. O

Later on it will be more convenient to use a renormalized L. We let L, denote
the unique scalar multiple of L(,) which has the property that L, = —Z,¢.

Although we now have a completely explicit description of U(g)/b its structure as a
g-module is not yet clear. For a root a = ; —¢; and a weight u = )", mpey € X*(T)
our earlier formula implies

La(Euf) = (mj - 1)Eu+a§
and hence
(+) LoL, = (mj — 1)L, mod b.

If we put J(p) := {0 <k <d:my >0} then J(u) C J(u + «) provided m; # 1. It
follows that
byi=b+ Y KL,
JCI (1)
is, for any subset J C {0,...,d}, a left ideal in U(g). We have:
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- b{O,...,d} = b and bg = U(g),
— by Cby if and only if J/ C J.

For J #{0,...,d} we set
b? = Z le.

I
Moreover we introduce the descending filtration by left ideals

U(g)=bp2b12---Dbgy1 =0

bj = Z bJ.
#J>j
The subquotients of that filtration decompose as g-modules into

bj/bjs1 = L8 (b +bj41)/bj1 = L& bs/b7.

=J

defined by

Our aim in the following therefore is to understand the g-modules b;/b7. A trivial
case is

bo/b1 = by /b, =K .
We therefore assume, for the rest of this section, that J is a nonempty proper subset
of {0,...,d}. First of all we need the maximal parabolic subalgebra of g given by

ps:= all matrices in g with a zero entry
in position (¢, ) for i € J and j ¢ J.
It follows from the above formula (+) that the subalgebra p; leaves invariant the
finite dimensional subspace
My:= Y KL,
neEB(J)
of b;/b7 where

B(J) := set of all weights u =, mye), such that
J(u) =J and my, =1 for k € J.

Using again the formula (+) the subsequent facts are straightforward. The unipotent

radical
ny:= all matrices with zero entries in

position (4,7) with ¢ € Jor j ¢ J
of ps acts trivially on M;. We have the Levi decomposition p; = [; + n; with
l; =1U(J)+(J) where
U(J):= all matrices with zero entries in
position (4, 7) with ¢ and j not both in J
and
[(J):= all matrices with zero entries in
position (4,7) with ¢ or j € J.
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The structure of M; as a module for the quotient p;/ny = [; is as follows:

— The first factor I'(J) = glys acts on M through the trace character;

— as a module for the second factor [(J) = glgt1_4 our M is isomorphic to the
#J-th symmetric power of the contragredient of the standard representation of
glg+1-#7 on the (d+ 1 — #J)-dimensional K-vector space.

In particular, M is an irreducible p;/nj-module. The map

Ul ® My — by/b5
U(ps)
(3,m) —  3m

is surjective. In fact, b;/b7 is an irreducible highest weight U(g)-module: If we
put v = (3 cs€k) — #J - £¢ for some fixed £ ¢ J, then one deduces from (+) that
U(g)-L,+b, for any p with J(p) = J, contains L, +b. For the subset J = {0,...,j—1}
the parabolic subalgebra p; is in standard form with respect to our choice of positive
roots and the highest weight of b;/b7 is g+ -+ + &1 — j - &;.

We finish this section by establishing several facts to be used later on about the
relation between the left ideals b7 and the subalgebras U (nj‘) for

+ . _
nj := transpose of nj.

First of all, note that n and hence each U(n7) is commutative and ad([;)-invariant.

Proposition 4.6

i. U(nF)Nb is the ideal in U(n) generated by the sorting relations L;jLxe— Lig¢Ly;
fori ke J and j,l ¢ J,
ii. the cosets of the sorted monomials L,, for J(u) C J and J(—p)NJ = & form a
basis of U(nT)/U(m¥)Nb as a K-vector space;
iii. UmF)nb; =UMmT)Nb;
iv. (Um¥)Nb)-I1(J)Cb;
v. U(nF)Nb is ad(I(J))-invariant.

Proof. — i. Let s C U (nJ,r) denote the ideal generated by those sorting relations.
Using the commutativity of U (nJ,r) it is easy to see that any monomial in the L;; in
U (nJ,r) can be transformed into a sorted monomial by relations in s. In particular
any coset in U(n}) N b/s has a representative which is a linear combination of sorted
monomials. But we know that the sorted monomials are linearly independent modulo
b. We therefore must have U(n¥) Nb = s.

ii. The argument just given also shows that the cosets of all sorted monomials
contained in U(n7) form a basis of the quotient in question. But they are exactly
those which we have listed in the assertion.

iii. The sorted monomials listed in the assertion ii. are linearly independent modulo
b7.
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iv. We have to check that 3L,, € b for any of the sorting relations 3 = L;; Ly, —
Li¢Ly; from i. and for any L,s such that r,s ¢ J. If r # j,£ then 3L, = L,s3 € b.
If r = ¢ then we may use the cancellation relations to obtain 3L,s = L;;LreLes —
LyjLieLes € b. Similarly if r = j we have 3L,s = LreL;jLjs — LigLy;Ljs € b.

v. Because ad(r)(3) = 13 = —3t it follows from iv. that ad({(J))(U(n}) Nb) C b.
But U(n7) is ad(I(J))-invariant. Hence U(n}) N b is ad(I(.J))-invariant, too. O

We have M; C b;/b5 C U(n}) +b7/b7. In fact L, € U(n}) for p € B(J).
Let M$ C U(n}) denote the preimage of M, under the projection map U(n?¥) —
U(g)/b7.

Lemma4.7
i M- 1(J) C b7
ii. M9 and MSNb; = M9Nb are ad(I(J))-invariant;
iii. ad(r)(3) = r3 mod b7 for r € [(J) and 3 € M.

Proof. — i. Because of Prop. 6 iii. and iv. it suffices to show that L, Ly, € b?
whenever p € B(J) and k, ¢ ¢ J. If kK ¢ J(—p) then L, Ly, after sorting coincides
up to a constant with some L, such that J = J(u) g J(v); hence L, Ly € b7 in this

case. If k € J(—p) then L, has a factor L;; and since the factors of the monomial
L,, commute with one another we may use a cancellation relation to conclude that
L;LLM € b.
ii. Using Prop. 6 ili. and v. we are reduced to showing that ad(Lxe)(L,) € M§
whenever 1 € B(J) and k,¢ ¢ J. The monomial L, is of the form L, = ¢- [] Ly,
icJ
with s; ¢ J and some nonzero integer c. We have
—L'g ifk = Siy
[Lie, Lis,) = v

Since ad(Ly) is a derivation it follows that

ad(Lie)(Ly) = =+ 37 Lie [] Lss,

icJ jed
si=k i
which clearly lies in M.
iii. This is an immediate consequence of the first assertion. O

The last lemma shows that the structure of M; as an [(J)-module is induced by
the adjoint action of [(J) on M$. Whenever convenient we will use all the notations
introduced above also for the empty set J = &; all the above assertions become
trivially true in this case.

SOCIETE MATHEMATIQUE DE FRANCE 2002



84 P. SCHNEIDER & J. TEITELBAUM

5. Local duality

In this section, we study linear forms on the Banach space Qf(U°) of bounded
differential forms on the admissible open set U°? = 7’*1(60) which is the inverse image
of the open standard chamber in X under the reduction map. The restriction map
gives a continuous injection from Q%(X) into this Banach space, and therefore linear
forms on Q¢(U°) are also elements of Q4(X)’.

Our first principal result of this section identifies Qg(U 9) with the dual of the space
O(B)*=0 of (globally) analytic functions on B which are annihilated by the ideal b
studied in the preceeding section.The filtration which we introduced on U(g)/b then
yields filtrations of O(B)*= and Q¢(U?). Applying our analysis of the subquotients
of the filtration on U(g)/b from the preceeding section, we describe each subquotient
of the filtration on O(B)®=" as a space of analytic vector-valued functions on the
unipotent radical of a specific maximal parabolic subgroup in G satisfying certain
explicit differential equations.

Of fundamental importance to this analysis are the linear forms arising from the
residue map on the standard chamber.

The space QZ(U°) of bounded d-forms 1 on U are those which have an expansion

n= Y a(V)E,dZa, , A+ AdE,,
veX*(T)

such that
we(n) = irylf{w(a(y)) —{(v)} > —o0.

We may and will always view Qg(U 9) as a Banach space with respect to the norm
we (compare [ST] Remark after Lemma 17). According to Lemma 1.2 the restriction
map induces a continuous injective map Q4(X) — Q¢(U?). In [ST] Def. 19 we defined
the residue of n € QZ(U°) at the pointed chamber (C,0) by

Res g )1 = a(aq).
It is then clear that, for any weight u € X*(T),
1+ Resz ) Z-un = a(aa + )

is a continuous linear form on Q¢(U°) and a fortiori on Q%¢(X). Applying the map I
we obtain the locally analytic function

ful9) == Res g ) (B - 946)

on GG. We collect the basic properties of these functions.

Property 1. — Under the adjoint action of BNT the function f, has weight —pu, i.e.,
fut™tgt) = u(t™) - fu(g) for g€ G and t € BNT.

This is straightforward from [ST] Lemma 20.

ASTERISQUE 278



p-ADIC BOUNDARY VALUES 85

Property 2. — The restriction f,|B of f, to the Iwahori subgroup B C G is analytic
on B.

First of all recall that B is a product of disks and annuli where the matrix entries
gij of g € B can be used as coordinates (the diagonal entries correspond to the annuli).
By construction as well as by the formula

A2y s N NdZqy = (—1)MHD22_5 | d=g A---NdEg, ,
we have, for a fixed g € G, the expression
(a) e O D D ()
neX*(T)

in QZ(U Y). This is, of course, not a convergent expansion with respect to the norm
we. But if we write g.£|U° = F(g)€|U° then the series

F(g) = (=102 3" f(9)E,

neX*(T)

is uniformly convergent on each affinoid subdomain of U°.
On the other hand a direct calculation shows that

9. = det(g {Hfg ]dEgO/\---/\dEgdl
J "

where
d—1

f](97Q) = Zgleﬁl +gdj-

=0

Recall that U° is given by the inequalities

w(Eo(q)) <+ <w(Ea(q)) <1+ w(Eo(q)).

(q
It follows that for g € B the term g;;Z5, in the sum f;(g,q) is strictly larger in
valuation than the other terms (we temporarily put Gy := 0). W
g € B and ¢ € U, the geometric series expansion

e therefore have, for

d

m
1 _ 1 Z [ gz] - ]
= — — Sei—e
fj(97Q) gjj‘:‘ﬁj m>0 1=0 g]] '

1#]

If we multiply those expansions together and compare the result to (a) we obtain the
expansion

) o) = M . H[“’“]

mel(p) i#] 937
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where the ¢, are certain nonzero integers (given as a sign times a product of polyno-
mial coefficients) and
I(p) == set of all tuples m = (m;;)ix; consisting
of integers m;; > 0 such that
= Zi;éj mij(ei — €5).-
In order to see that this expansion actually is uniformly convergent in g € B let
w(m) = Z mij.
i<j

It is clear that if we fix g and an n > 0 then the number of m € I(u) such that
m(m) = n is finite. But on the other hand, for g € B, the matrix entries g;; for ¢ < j

are divisible by 7. Hence the valuation of the summand corresponding to the tuple
m in the expansion (b) is at least m(m).

Property 3. — The restriction of f, to B does not vanish identically.

In order to see this we make a choice of simple roots «j, ..., a/;_, with respect to
which g is positive, i.e., p = noagy + - - - +ng—10/;,_; with n; > 0. Consider the matrix
go € B which has a 1 on all diagonal positions, a 7 on the positions o, ..., a/,_;, and
0 elsewhere. Then

fu(go) = ex™ M1 with some nonzero c € Z.

Let wp denote the spectral norm on the affinoid algebra O(B) of K-analytic functions
on B. We have to determine the precise value of wg(f,|B).

Lemma5.1. — For any m € I(u) we have w(m) > £(u).
Proof. — Recall ([ST] p. 405) that
€(p) = — inf p(z).
2€C

It follows that ((u + v) < (u) + £(v) holds for any p,v € X*(T). Hence if p =
Zi;ﬁj m;j(e; — ;) then we have

u) < mijles — ).
i#]
It therefore suffices to check that

E(Ei — Ej) < {

But that is obvious from the definition of the chamber C. O

1 ifi<j,
0 ifi>j.

Property 4. — We have the identity
wp(fulB) = £(n)-
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The norm wp on O(B) is multiplicative and the first factor det(g) - (goo - - gaa) "
in the expansion (b) is a unit in O(B). It therefore follows from the lemma that
wp(fu|B) > £(u) and that it suffices to find an m € I(p) such that

w(em) + Y mij = L(p).
i<j
Let us first consider the special case where ¢(p) = 0. Then g = noag+- - +ng—14-1

with all n; > 0. Consider the element h = (h;;) € B where h;; =1 for 0 <4 < d and
hiy1,:=—1for 0 <i < d— 1, with all other h;; = 0. For this matrix, we compute

h*f :(175_3)71:,..(1,%)7l1£
= D i0nin) (B0 (555)"€
in Q¢(U°). Using (a) this shows that f,(h) = £1. On the other hand substituting
g = h in the series expansion (b) we see that 1 = +f,(h) = £¢,, for the particular
m € I(u) corresponding to the representation yu = Zf;ol n;o; — that is, the m with
M4+1,; = n; and other m;; = 0. This implies that
() =0=w(em) + Y mi
i<j

in this case. In order to treat the general case we first make the following observations.
Let s; € G denote the permutation matrix which represents the reflection in the
Weyl group corresponding to the simple root ;. The Coxeter element s = sg - s4-1
permutes the roots ay, . . . , a4 cyclically. The same then is true for the element p := ys
where y denotes the diagonal matrix in G with entries 7, 1,...,1. But p normalizes
the subgroup B and in particular changes the residue of a d-form only by a sign ([ST]
Thm. 24). Let now

vV =ngag+ -+ ngag with all n; > 0 and n, =0 for some 0 < a <d
be any weight; in particular £(v) = ng. The weight pu := p?=%(v) then satisfies
£(n) = 0. Defining h € B as before we have f,(h) = £1. The matrix (h{;) = h' :=
p®~?hp?=® € B is given by
hiy = 1,hiy, ;= —1 for i # a, hyy = —m, and all other hj; = 0.
Substituting g = A’ in (b) we obtain
fo(h') = £cp, - w"0¢

where n € I(v) corresponds to the above representation of v (in particular, nog = nq).
On the other hand we compute

w(fu(h)) = W(Res(é,o) —v" (paidhpdia)*f)
= w(Resg B0 (0" h).€)
= w(Resz (PP N)E_, - h.)

(1] [1]
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d—a
= w( H st (v Res(c 0) S -h f)
= S0 + )
= (a1 —na) — (a2 — 1) =+ — (Na — Nat1)
= Ng = f(l/)

Property 5. — Since B is open in G the enveloping algebra U(g) also acts by left
invariant differential operators on O(B). It is an immediate consequence of the defi-
nition that

fulB € O(B)*=°

Proposition 5.2. — For any u € X*(T) the weight space of weight —u in O(B)°*=°
with respect to the adjoint action of BNT is the 1-dimensional subspace generated by
fulB.

Proof. — We consider the pairing
U(g)/bx O(B)*=" — K
3 .f) — @EHA).

It is nondegenerate on the right by Taylor’s formula. It also is invariant with respect
to the adjoint action of BN T on both sides. Hence the induced map

O(B)"=" — Homg (U(g)/b, K)

is injective and respects weight spaces. It then follows from Corollary 4.5 that the
weight spaces on the left hand side are at most 1-dimensional. But we know that
fu|B is nonvanishing. O

The meaning of that proposition is that any function f € O(B)"=° has an expansion

of the form
f= 2 bwfulB)
neX*(T)

with b(u) € K such that w(b(p)) + €(p) — oo with respect to the Fréchet filter of
complements of finite subsets in X*(T'). First expand f into a series in the matrix
entries and then collect all terms of a specific weight —p. We obtain in this way an
expansion

f=>"fu with wp(f,) —

Since the U(g)-action on O(B) is by continuous endomorphisms and since the ideal
b is homogeneous in the weight space decomposition the equation bf = 0 implies
bﬁ = 0 for any p. It therefore follows from the proposition that ﬁ = b(u)(fu|B) for
some b(u) € K.
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If we now consider a d-form
n= Y a(wE.f U
peX*(T)
then we see that

(n, )= alu)b()
"
converges in K. In this way we obtain a bilinear pairing

() QU% x O(B)*=° — K.
Actually the following stronger statement is immediately clear.
Proposition 5.3. — The pairing (,) induces a topological isomorphism
[O(B)*=") = Qf(U°).

The connection between this local duality and the map I from the second section
is provided by the diagram

Qd(x)/ I ; Can(G, K)a:O
Jrestriction
restriction’ C*(B,K)*="

() I

Q) = O(B)

which, by the very construction of the above pairing, is commutative up to sign.
The ideal filtration b C --- C b; C --- C U(g) gives rise to a filtration

O(B)*=0 2+ 2 O(B)"+=0 2 O(B)*=0 2 -~ 2 O(B)*= = {0}
as well as, by duality, to a “local” filtration
Q(U°) = QU 2+ 205U 2+ 2 QUY)T = {0}
with
(U0) = [O(B)= /OB =]
We need to understand how the properties of the ideal filtration which we have estab-
lished in the previous section translate into properties of the other filtrations. Recall

that the “bases” { f,,} of O(B)*=" and {L,} of U(g)/b, respectively, are “dual” to each
other in the sense that

+1 for v =p,

Lufull)= {0 for v # p.
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If f € O(B)*=° has the expansion f =Y b(u)(f.|B) we therefore have
o

(Lo f)(1) =Y b(p) (Lo fu)(1) = £b(v).

From this one easily deduces that
- 0B)=={feo(B): f= sz V) (fulB) Y
— any coset in O(B)?7=2/O(B)®’=° has a unique representative of the form
f=2 b)(fulB).
J(w)=J

This leads to the fact that the map

o

O(B)*»+=0/0(B)*=" — & O(B)"7=°/0(B)*'=°
#J=j
f= % 0B — (X b))
#J (n)=j J()=J 7
is a continuous linear isomorphism. We will give a reinterpretation of the right hand

side which reflects the fact that b;/b7 is a quotient of the generalized Verma module
U(g) ®u(p,) My via the map which sends 3 ® m to 3m. Set

0y = ker(U(g) ® My — b]/bi)
U(ps)

By the Poincaré-Birkhoff-Witt theorem the inclusion U(nF) C U(g) induces an iso-
morphism U(n‘}) QK MJiU(g) ®u(p,) M. In this section we always will view 0;
as a subspace of U(n}) @ M.

Let Ujr be the unipotent subgroup in G whose Lie algebra is n}r, and let (9(Ujr N B)
denote the K-affinoid algebra of K-analytic functions on the polydisk Uj N B. Con-
sider the pairing

() (Ug)@ M) x (OUF nB)@ M) — O(U] NB)
(G®m,e® E) —  E(m)-je
and define the Banach space
OUFNB,M)7=":={ccOUS NB) %Mf, :(05,6) =0}.
Let also {L},},cp(s) denote the basis of M, dual to the basis {L,}, of M.

Proposition 5.4. — The map

V,:O(B)*7=0/0(B)*=0 =, OUF N B, M})?7=0
—

f > [(LuhIlUf nBle L,
nEB(J)

is an isomorphism of Banach spaces.
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Proof. — For 3 =3, 30)® L, €05 C U(n'}) QK My we have
(3. NLuNUF NBl@ L) = 3 Li(Ly) - G LuHIUF N B
I JTR%
= (ZZ(V)LV)f|U;r NB=0

since °, 3)Ly € U(nF) Nb7. Morover for u € B(J) we have L, € b;. Hence the
map Vs is well defined. It clearly is continuous. The Banach space on the left hand
side of the assertion has the orthonormal basis 7=¢) f,| B for J(v) = J. Concerning
the right hand side we observe that the above pairing composed with the evaluation
in 1 induces an injection

O(UF N B)® My — Homg (U(n})® My, K)
K K
which restricts to an injection
O(UF NB,M})°’=" — Homg (b, /b7, K).
Hence the only weights which can occur in the right hand side are those v with
J(—v) = J and the corresponding weight spaces are at most 1-dimensional. Moreover
the same argument as after Prop. 2 shows that the occurring weight vectors (scaled

appropriately) form an orthonormal basis. Since V; visibly preserves weights the
assertion follows once we show that

Vi(fv|B) # 0 for any v with J(v) = J.

All that remains to be checked therefore is the existence, for a given v with J(v) = J,
of a u € B(J) such that L, f, does not vanish identically on U} N B.

d
The weight v is of the form v = > nje; with n; > 0 for j € J and n; < 0 for

7=0
j ¢ J. We have
#J < an = —an.
= jgJ

Choose integers n; < m; < 0 for j ¢ J such that #.J = — 3", ;m; and define
W= Zsj + ijsj € B(J).
jeJ jgJ
Observe that J(v — u) C J and J(u — v) N.J = @. This means that L,_, € U(n}).
It suffices to check that L,_,L, f,(1) # 0. We compute

Ly—yLufs(1) = Resg S Lu—uLyé
= —Resg g E—v - Lu—u(Eué).
As a consequence of the formula (+) in section 4 we have L,_,(Z,&) = m - E,¢ for
some nonzero integer m. Hence we obtain

L, ,L,f,(1)=—-m- Res @ 0)§ = £m #0. O

As a consequence of this discussion we in particular have the following map.
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Lemmab5.5. — There is a unique continuous linear map
Dy O 0B, M))=0 — [04(U°) /94 U°)71)

where j := #J, which sends the weight vector ZMGB(J)[(LMfV”Uj NBl® Ly, forv
with J(v) = J, to the linear form A, (n) := Res g g E—u1.

6. The global filtration

In this section, we find a G-invariant filtration on the full space Q¢(X) that is
compatible with the local filtration discussed in the previous section. This “global”
filtration is defined first on the subspace of Q¢(X) consisting of algebraic d-forms
having poles along a finite set of K-rational hyperplanes; the filtration on the full
space is obtained by passing to the closure. We obtain at the same time a filtration
on the dual space Q4(X)". A key tool in our description of this filtration is a “partial
fractions decomposition” due to Gelfand and Varchenko.

At the end of the section, we apply general results from the theory of topological
vector spaces (in the non-archimedean situation) to show that the subquotients of the
global filtration on Q4(X) are reflexive Fréchet spaces whose duals can be computed
by the subquotients of the dual filtration.

Let us first recall some general notions from algebraic geometry. Let £ be an
invertible sheaf on P?K. With any regular meromorphic section s of £ over PdK we
may associate a divisor div(s) (compare EGA IV.21.1.4). One has div(s’) = div(s)
if and only if s’ = ts for some invertible regular (= constant) function ¢ on P?. Let
{Y:}ier be the collection of prime divisors on P‘/i . and write

div(s) = Z n;Y;
iel
where almost all of the integers n; are zero. One has

Z n;deg(Y;) =n if L= O(n)

([Har] 11.6.4). We put
div($)eo := — Z n;Y;
ni<0
and
to(s) :=#{i € I:n; <0}.

By convention let div(0)s := 0 and 1,(0) = 0. We want to apply these notions in
the case of the canonical invertible sheaf £ = Q¢ = O(—d — 1) on P;IK. A regular
meromorphic global section 7 in this case is a d-form n = F¢ such that F' is a nonzero
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rational function on P‘/i - We will study the subspace

Qd

alg(X) :==  all regular meromorphic global sections

n of Q¢ such that div(n)s is supported on
a union of K-rational hyperplanes in P¢
together with the zero section

d

a1z(X) we introduce its index as being

of “algebraic forms” in Q4(X). For any n € Q
the nonnegative integer

1(n) := min max t0(Nk:)
where the minimum is taken over all representations = > n; of 1 as a finite sum of
other 7y € leg(f)C). By definition we have '
u(n +n') < max(a(n), o(n)).
(X) is equipped with the filtration
200, ()7 2 - 2 (07 2 (0 = {0}

alg

d
Hence €27,

by the subspaces
Qe(X) = {n € QG (X) :o(n) < d+1—j}.

Lemma6.l. — The index 1(n) is G-invariant and takes values between 1 and d + 1
for all nonzeron € leg(DC).
Proof. — The G-invariance is clear since G preserves K-rational hyperplanes. The

upper bound for the index follows from the existence of a partial fraction decompo-
sition ([GV] Thm. 21) which says that leg(DC) as a vector space is spanned by the

forms u.(2,8) = (usZ,—p)d=p, A --- ANdEg, , with p € X*(T) and v € P unipotent.
Each =& has poles along at most the d + 1 coordinate hyperplanes defined by the

equations =; =0 for ¢ =0,...,d. O
It follows that the subspace leg(DC) together with its filtration is G-invariant.
Moreover the filtration is finite with 9%, (X) = Q% (X)°. In order to obtain finer

information we need to take a closer look at that partial fraction decomposition.
First we introduce, for any subset J C {0, ..., d}, the subgroup

U(J) := all lower triangular unipotent matrices u = (u;;)
such that u;; = 0 whenever i > j and j € J

of U. In particular U({0,...,d}) =U({0,...,d—1}) ={1}and U(@) = U({d}) = U.

Proposition 6.2. — FEvery differential form n € leg(fm may be written as a sum

n= > > Y Al w)ua(E,8)

JC{0,....d} pe X *(T) weU(J)
J(p)=J
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where the coefficients A(u,u) € K are zero for all but finitely many pairs (p,u);
furthermore, such an expression is unique.

Proof. — We write n = Fd=g, N--- ANd=Zg, , and apply that partial fraction decom-
position to F' obtaining an expression

F = Z ZB(u,u)u*EM.

peX*(T) uelU
The uniqueness part of that Thm. 21 in [GV] says that such an expression even exists
and is unique under the following additional requirement: If p = >, myey then
we sum only over those u € U whose k-th column consists of zeroes except for the
diagonal entry ugr = 1 for every k such that m; > 0. But

{0<k<d:my>0}=J(u+HB)\{d}

so that the condition on u becomes exactly that u € U(J(u + ). Because of
(usZp)dEgy A -+ ANd=g, , = u«(Eu4+8E) we obtain the desired unique expression
if we put A(u,u) := B(u — B, u). O

Let us temporarily introduce as another invariant of a form 7 € leg(DC) the linear
subvariety

Z(n) := the intersection of all hyperplanes
contained in the support of div(n)eo
in P?K. One obviously has:
— codim Z(n) < 1,(n);
— codim Z(g«(2,€)) = 16(9+(E,€)) for any g € G and p € X*(T).
Write

d
1= Fhom (S0, Za) - Y _(~1)'ZidZg A+ NdZ; A+ A dEg
i=0
as a homogeneous form on affine space A?*! and apply the partial fraction decompo-
sition in [GV] to Fhom. Then, at each stage of the construction of the partial fraction
decomposition of Fjon, the linear forms occurring in the denominator of any term are
linear combinations of those in the denominator of F}om. This means that

= Z(n) € Z(A(p, u)ux(E,8))-
Together these three observations imply that
10(1) = 10(A(p, u)us(E,8)) -

It then follows from the unicity of the partial fraction decomposition that we actually
have

() = max 10 (A(p, u)us(2,6))

R
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But div(€)e = Z?:O{Ei = 0} and therefore 1,(2,8) = d+1 — #J (). We obtain the
following explicit formula

1(n) = max{d+ 1 — #J(u) : pn such that A(u,u) # 0 for some v € U(J(p))}

for the index of any d-form 7 # 0. Another consequence of this discussion that we
will need later is the inequality

1(n) < codim Z(n) .

Corollary 6.3. — leg(DC)j as a K -vector space is spanned by the forms u.(Z,€) where

(p,u) € X*(T) x U runs over those pairs for which v € U(J(un)) and #J(u) > j; in
particular

leg(x)j = Z 9*(51"5)-

geq
Our “global” G-equivariant filtration
() = Q1) 2 -+ 2 Q) 2 27 = {0}
of Q4(X) now is defined in the following way by taking closures.
Definition. — Q4(X)7 := closure of Q4 (X)? in Q4X). The dual filtration

alg
{0} = QI(X)y € QUXY, C -+ C XY, = QLX)
is given by
Q)5 = [Q4(X)/Q4X)7Y

The second statement in Corollary 3 immediately implies that the latter filtration
corresponds under our map I to the filtration of C**(G, K) defined through annihi-
lation conditions with respect to the left invariant differential operators in the ideal
sequence bg D --- D bgy; = b, ie,

QX)) € C*™ (G, K)* = for 0< j <d+1.
The compatibility between the local and the global filtration is established in the
subsequent lemma.

Lemma6.4. — Q4(X)7 C QX)) N QU
Proof. — Consider any d-form u,(Z,£) with v € U(J(n)) and write
u*(Eu€)|UO = Z a(”)Euf-

veX*(T)

We claim that a(v) # 0 implies that #J(v) > #J(u). In order to see this let
w= Zk mgek. Because of the condition on © we have

v (=) (11 =) (1 w2

ke J (1) kEJ (1) ke T (1)
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The first two products together contain each Zj with a positive exponent. In the
third product the exponents are negative. On U the summands of the linear form
UsZk = S+ Ukt1kk+1+- - Fugr=q differ pairwise in valuation. Hence after factoring

1 on U, into a geometric series. The

out the largest summand we can develop (u+Zx)~
terms of the resulting series have powers of a single =+ in the denominator. It follows
that each of the d+ 1 —#J(u) factors in the third product can cancel out at most one
of the Ej’s in the first two products so that at least d+1— (d+1—#J(u)) = #J (1)

others remain. This establishes our claim which was that
u. (2,8)|U° € QAU W for u € U(J ().

(For this slight reformulation one only has to observe that Q¢(U°)7 has a nonvanishing
weight space exactly for those v with #J(v) > j.) It is then a consequence of Cor. 3
that

Qe (X)) € QU°Y.
As a simultaneous kernel of certain of the continuous linear forms n +— Res@ 0)Z-u

on QJ(UY) the right hand side is closed in Q¢(U?). It therefore follows that
Qi (x) C Qd(U°y. O

As a consequence of this fact we may view the map D; from Lemma 5.5 as a
continuous linear map

Dy : O(Uf N B, Mj)* =" — [Q4(X) /(X))
where j := #J, which sends the weight vector ZMGB(J)[(LHfV”Uj NB]® Ly, for v
with J(v) = J, to the linear form A, (n) := Resg o, Z-u1.
We finish this section by collecting the basic properties which the subquotients of
our global filtration have as locally convex vector spaces.

Proposition 6.5. — Each subquotient Q4(X)!/Q4(X)7 for 0 < i < j < d+1isa
reflexive Fréchet space; in particular its strong dual is barrelled and complete.

Proof. — In section 1 we deduced the reflexivity of Q¢(X) from the fact that it is the
projective limit of a sequence of Banach spaces with compact transition maps. It is
a general fact (the proofs of Theorems 2 and 3 in [Kom] carry over literally to the
nonarchimedean situation) that in such a Fréchet space every closed subspace along
with its corresponding quotient space are projective limits of this type, too. o

Lemma6.6. — Let A : V — V be a strict continuous linear map between the K-
Fréchet spaces V and V; if V is reflexive then the dual map A’ : V' — V' between the
strong duals is strict as well.

Proof. — (Recall that A is strict if on im(A) the quotient topology from V' coincides
with the subspace topology from V.) The subspace im(A4) of V being a quotient of
the Fréchet space V is complete by the open mapping theorem and hence is closed.

ASTERISQUE 278



p-ADIC BOUNDARY VALUES 97

Let now & - V' be any open o-submodule. We have to find an open o-submodule
% C V' such that A'(X) D im(A’) N E. We may assume that ker(4’) C . By the
definition of the strong dual we also may assume that
S=T°:={ eV :|A\®)| <1 for any 7 € '}
for some closed and bounded o-submodule T' C V. Since V is reflexive T is weakly
compact ([Tie] Thms 4.20.b, 4.21, and 4.25.2) and hence compact ([DeG] Prop. 3.b).
Since im(A) is closed in V the Hahn-Banach theorem ([Tie] Thm. 3.5) implies that
ker(A')° = im(A). Using [Tie] Thm. 4.14 we deduce form the inclusion ker(4’) C &
that
[ =19 = %° C ker(4")° = im(A).

In fact, I is a compact subset of im(A). According to [B-GT] IX 2.10, Prop. 18 we find
a compact subset I' C V such that A(T) = . Then X := I is an open o-submodule
in V' such that im(4’) N Y = 4'(2). O

Proposition 6.7
i. For0<j<d+1 the natural map Q%(X); — Q*(X)' is a topological embedding
as a closed subspace;
ii. for 0 <i<j<d+1 the natural map Q*(X);/Q*X); =5 [Q4X) QX)) s
a topological isomorphism.
Proof. — i. This follows immediately from Prop. 5 and Lemma 6. ii. The natural
exact sequence
0 — Q4X)"/Q%X)T — QHX)/Q4UX)T — Q4X)/QNX)" — 0
consists of strict linear maps between Fréchet spaces which are reflexive by Prop. 5.

The dual sequence is exact by Hahn-Banach and consists of strict linear maps by
Lemma 6. O

Corollary 6.8. — IfV denotes one of the locally convex vector spaces appearing in the
previous Proposition then the G-action G xV — V is continuous and the map g — gA
on G, for any A € V, is locally analytic.

Proof. — Because of Prop. 7 this is a consequence of Cor. 3.9. O

7. The top filtration step

The purpose of this section is to describe the first stage of the global filtration
in various different ways. This information (for all the p-adic symmetric spaces of
dimension < d) will be used in an essential way in our computation of all the stages
of the global filtration in the last section.

Theorem7.1. — The following three subspaces of Q%(X) are the same:
1. The subspace d(Q241(X)) of exact forms in Q4(X);
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2. The first stage Q4 (X) in the global filtration;
3. The subspace of forms n such that Res(ao)g*n =0 for any g € G.

In particular all three are closed subspaces.
The proof requires a series of preparatory statements which partly are of interest
in their own right. We recall right away that any exact form of course has vanishing

residues. The subspace Q¢(X)! is closed by construction. The subspace in 3. is closed
as the simultaneous kernel of a family of continuous linear forms.

Lemma7.2. — An algebraic differential form n € Q% (X) is ezact if and only if

alg
belongs to Qg (X)*.
Proof. — Suppose first that n is exact. Expand 7 in its partial fractions decom-

position (Prop. 6.2). From Cor. 6.3 we see that n is congruent to a finite sum of
logarithmic forms u.£ modulo leg(f)C)l, where v is in the subgroup U of lower tri-
angular unipotent matrices. However, by [ST] Thm. 24, Cor. 40, and Cor. 50 the
forms u.¢ are linearly independent modulo exact forms. Since 7 is exact, therefore,
no logarithmic terms can appear in its partial fractions expansion and 7 belongs to
s,
E,& with p # 0. Since the Weyl group acts through the sign character on £ we may
use G-equivariance again and assume that €9 occurs in g with a positive coefficient

mo > 0. Then E,§ = df with 0 := -E3,5, d=Zp, A--- Ad=p,_, . a

(X)!. Conversely it suffices, by Cor. 6.3 and G-invariance, to consider a form

In the following we let Q4(X,,)7, for n € N, denote the closure of Qg (X,)7 in the
Banach space Q4(X,,).

Lemma7.3. — For a form n € Q4(X) we have:
i. m is exact if and only if n|X,, is exact for any n € N;
ii. 7€ QUX)! if and only if n|X,, € Q4(X,)! for any n € N.
Proof. — i. By the formula on the bottom of p. 64 in [SS] we have
Hpr(X) = lim Hpg(X5)
n

where the X2 C X are certain admissible open subvarieties such that

- X =U, Xy, is an admissible covering, and
- :X:n—l g :X:% g xn
The second property of course implies that
lim Hpyp (X7) = lim Hpg(X,) -
n n

ii. This follows by a standard argument about closed subspaces of projective limits of
Banach spaces (compare the proof of Thm. 2 in [Kom)). O
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The main technique for the proof of Theorem 1 will be a “convergent partial frac-
tions” decomposition for rigid d-forms on X. We begin by recalling the explicit de-
scription of rigid forms on X,, given in [SS] p. 53. Fix a set H = {{y,...,Ls} of
unimodular representatives for the hyperplanes modulo 77*! in such a way that it
contains the coordinate hyperplanes {E; = 0} for 0 < i < d. A rigid d-form 7 on the
affinoid X,, is represented by a convergent expansion

5%0 .. Ef'id
(*) n = Z a]’J W @
7 0 s
in homogeneous coordinates where I and J run over all (s + 1)-tuples (i, ..., %s) and

(d+1)-tuples (jo,. . ., ja) of non-negative integers respectively with > i —>_ jr = d+1
and where

d
©:=> (~1)'EidZg A+ NdE; A -+ NdEqg .
=0

The convergence means that the coefficients a; ; satisfy w(ar, ;) — n(> Z:o Ji) — 00
d .
as Y y_oJjk — 00.

Lemma7.4. — In the expansion (x) we may assume ay,y = 0 unless the corresponding
set of “denominator forms” {ly : iy, > 1} is linearly independent.

Proof. — Suppose that ¢y,...,¢,. are linearly dependent, and that i, > 1 for

0 <k <r. Write
i
> bl =0
k=0

with the by € 0 and at least one b, = 1. Suppose for example that by = 1. Then

by = 72 bl
k=1

and
=Jjo .. .=Jd r =Jjo .. .=Jd
gl bEl - 2
) d o = — . . — O
EZO . ez,. engrl . .Ezkfl . .Ezr
0 T k=1 %0 k T

The individual terms on the right side of this sum have the same degree as the term
on the left. This, together with the fact that the by belong to o, implies that the
expression on the right may be substituted into the series expansion for n and the sum
re-arranged. Further, this process may be iterated until the denominators occurring
on the right side are linearly independent. o

Using this Lemma, we see that any n € Q¢(X,,) can be written as a finite sum of
forms

=Jjo .. .=Jd
E =0 —d
(**) nL = alv‘] gio gi,. @
T o - Ly
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where L = {{o,...,¢.} is a fixed linearly independent set chosen from H, I runs
through the (r + 1)-tuples of positive integers, and w(as,y) — n(zzzo Jik) — oo as
ZZ:O Jk = 0.

Lemma7.5. — A form ng as in (¥%) belongs to Q4 (X,,)4T1=#L.

Proof. — This is clear from the inequality (1) < codim Z(n) in section 6. O

Definition. — A form n € Q4(X,,) is called decomposable if it has a convergent expan-
sion of the form
=3 g (9. EuO)I%n)
9€G pex+(T)

where

1. ¢(g,p) € K and = 0 for all but finitely many g € G which are independent of u,

2. if e(g, ) # 0 for some p then the columns of the matriz g are unimodular,

3. w(e(g, p)) —nd(p) — oo as d(p) — oo (d(p) was defined in section 4, just before

the statement of Lemma 4.1).

Lemma7.6. — Suppose that 1y, is given by a series as in (xx) on Xa,. Then the
restriction of n, to X,_1 is either decomposable or may be written as a (finite) sum
of series nr converging on X,_1 and with #L' < #L.

Proof. — The dichotomy in the statement of the Lemma arises out of the following
two possibilities:
Case I. There is a unimodular relation

-
Z bil, = 0 (modn™) .
k=0

Case II. Whenever there is a relation

i
Z bl = 0 (modn"), with by € o,
k=0

we must have all by divisible by 7.
Let us treat Case I first. Suppose that by is a unit in the unimodular relation, and

write
T

o = =Y (be/bo)lx + "N
k=1
To simplify the notation, set
-
0= =" (bi/bo)l -
k=1

The fact that ¢y is unimodular means that ¢ is unimodular as well. We have

1

1
— = 2 (1+4+7"h/0)""
% €(+7r /07,
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and, since 7"h/¢ has sup-norm < || < 1 on X,,_1, using the geometric series we see
that we may rewrite the series expansion for 7y, so that it converges on X, _1:

_.’—‘]d

X, 0 7d g
nL| 1 Z I‘] [L[Ll . EZT

But since /¢ is a linear combination of ¢ for k& # 0, the proof of Lemma 4 shows
that np|X,,—1 is a sum of series 17, where L’ is a linearly independent subset of the
dependent set {¢,¢1,...,£,}; such a set has fewer than r + 1 elements.

For Case II we take a different approach. Apply elementary divisors to find linear
forms fo, ..., fq which form a basis for the o-lattice spanned by Zg,...,Z4 and such
that 7 fy, ..., 7 f,. form a basis for the span of /g, ...,¢,.. Since any monomial in
the Z; is an integral linear combination of monomials in the f;, we may rewrite 1
using the f; for coordinates:

jo ... £Jd

" 0 d
o=y af; o——d 0
s 6’60.“627'

Using our Case II hypothesis, we know that e < n for 0 < k < r. Therefore 7" f;,
for each 0 < k < r, is an integral linear combination of {y,..., .. Let g € G be
the matrix such that ¢.=; = ¢, for 0 < i < r and g,.=; = f; forr+1 < i < d. By
construction the columns of g are unimodular. Rewriting the series for 1z in terms
of the 7t="4y, ..., ™ "™y, fri1,..., fa We see that

(i % ) e = »_df ydet(g) eI Ei=0 )N "¢, 1 1g.(2,6)

m

where each of the inner sums is finite and the coefficients ¢, ; ; are integral. Since
the original sum for 7y, converges on Xs,, we have

d d
w(ay ;) = H(ij) + 271(ij)
k=0 k=0
where H(m) is a function which goes to infinity as m goes to infinity. But then

w(a}’y‘]det( )~ Lo (=n)(3h OJk)) >H<Z]k) +2H<Z]k) (1-mn) (ij) +C

which shows that, after rearrangement according to p, the series (x * x) converges on
Xny1 (f cur,5 # 0 then Zi:o jk > d(p)). Thus in Case II 7y, is decomposable on
Xng1- O

Proposition 7.7. — Let n be a rigid d-form on X; then n|X,, for any n > 0, is decom-
posable.

Proof. — This follows by induction from Lemma 6. Indeed, any rigid form 1 on X,,
with m := 29+ (n 4 2) is decomposable on X,,. O
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Definition. — A form n € leg(DC) is called logarithmic if it lies in the smallest G-

invariant vector subspace containing &.

Corollary 7.8. — Let n be a rigid d-form on X. Then, for any n > 0, the restriction
of n to X,, has a decomposition

n =" +m
where 1 is the restriction of a logarithmic form and n1 is an exact form in Q4(X,)L.

Proof. — Applying the convergent partial fractions decomposition of Prop. 7, write
non X, 41 as

MXnrr = Y e(9:0)(9:E[Xn11) + D> (g, 1)(g+(Eu)|Xnt1) -

g g p#0
Let 7o be the first of these sums, and 7; the second. Clearly 7o is logarithmic and 7,
by Cor. 6.3, belongs to Q4(X,,;+1)!. Thus we need only show that 7, is exact on X,,.
However, one sees easily that the series for 7; may be integrated term-by-term to
obtain a rigid (d—1)-form 6 on X,, with df = 1, (compare the proof of Lemma 2). O

As a last preparation we need the following result on logarithmic forms.
Proposition 7.9. — For any n > 0 we have:
i. There is a compact open set V,, C U such that
u € € QN Nd(QH (X))

for all w € U\Vy,;
ii. there is a finite set u™ ... u®) of elements of U and a disjoint covering of Vi,
by sets {D(u®),r)}r_, such that

v.& =uP¢ (mod QX)) N d(QIH(X,)))

ifve Du®,r);
iii. the image of

QX)) — Q4(X,)/(Q4(X0)' Nd(QIH(X,)))
and the space Q4(X,,)/Q4X,)! both are finite dimensional; more precisely, the

classes of the forms ug)f, ey uik)f span both spaces.
Proof. — i. In homogeneous coordinates, we write
(C]
Ul = ———
< by 0y

where ; = Zf:j u;;Z; and the u;; are the matrix entries of the lower triangular
unipotent matrix u. Let

Vii={ueU:wuyg)>—-(n+1)dforalld>1>k>0}.
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We claim V,, has the desired property. Suppose that u & V;,, so that, for some pair
d>1>k >0 we have w(ujx) < —(n + 1)d. Focus attention for the moment on the
linear form ¢j. Since ugr = 1, we may split the set of row indices k, ..., d into two
nonempty sets A and B such that

inf w(wy) > supw(uy) +n+ 1.

leA eB
We point out two facts for later use. First, the index k automatically belongs to the
set A, and so KE is a linear combination of the Z; with ¢ > k. Second, and for the
same reason, the set of linear forms {/;};2, U {¢4} is a triangular basis for the full
space of K-linear forms in the Z;. Continuing with the main line of argument, write

Oy = 03 408 = (ZulkEl) + (sz@z)-
leA leB

Then

11 1
o\t )
The linear forms 7~ fiea @) gd and g—infies w(win)¢B are unimodular. From this,

we obtain the following estimate on X,,:
w(lp/eg) > infieaw(u) — infiep w(ug) —n
(1) > infieq w(uk) — sup;ep w(wx) —n
> 1.

At this point, it will be convenient to change from homogeneous to inhomogeneous

coordinates. Let
d—1

0= 4;/Za =Y uiEp + ug,
=0
—A —B
and similarly let ¢, := ¢{}/Z4 and ¢, := (2 /Z,. Then we may expand the form wu.¢&
as a convergent series on Xp:

(2) Ul = Y emFndZp, Ao ANdZg,

m=0
where the coefficients ¢, € Z,
—A
(6)™

— _B —_
T (0 )™+l Ty

_B —

and £, has taken the place of ¢; in the denominators of these forms (observe that

0 = (124 d=5, A+ - AdZ5, ). Our estimate (1) tells us that there is a constant

C' so that the functions F},, satisfy inxlf w(Fn(q)) > m — C in the sup norm on X,.
qEXn

To finish the proof, we will show that the expansion (2) may be integrated term
by term on X,. This shows that u.£ is exact on X,,. In addition, since it proves that
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each algebraic form in the expansion (2) is exact, we see from Lemma 2 that these
forms belong to Q). (X,)" and so u.¢ belongs to Q%(X,)! as well.

As we remarked earlier, the forms (g, ... ,é;?, ..., 4 are a triangular basis for the
space of all linear forms. Therefore, we may choose v € U so that v,=; = ¢; for all
0 < j < d except for j =k, and v.Z = £2. Let f := v (¢8/Z;). The form f does
not involve Zg,. Then we compute

=5,
Fm = Ux ( k ) .
= o= 1= o=
—Bo —Br—_1 fer =Br+1 —Ba—1

Using this and the estimate for the F,, we see that

— - = -
" (Z mt 1Fm) ve((=1)*Ep,dZg, A+ N dZg, A+ NdEg, )

is a convergent expansion for a rigid (d — 1)-form 6 on X,,, and that df = u.£.

ii. In the notation of Prop. 3.1, let u), ... u® be finitely many elements of U so
that the open sets {D(u®, 7)}5_, form a disjoint covering of V;, and so that, for each
L=1,... k,

(3) w(vj; — u%)) >2(n+1) forall v e D(u®,r)and all 0 < i < j < d.
Then, for v € D(u®),r), we have the uniformly convergent expansion (*) on X,, from
the proof of Prop. 3.1, where, to simplify the notation, we write u = u®:

’U*€ = k’(U’u}dJ,_l, -)dEgo JANEERIVA dEBd—l
with
k(vwgy1,q) = Z Cmhm - (v —u)™
m

S (@)
fo(u, @)% . fu 1 (u, q)sa—1(m)
and ¢, € Z. In this expansion, the term with m = (0,...,0) is u.§ = qu)g. Also,
comparing the estimate in (3) with those used in Prop. 3.1, we see that we have

hp =

Y

inf w(hm(q) - (v —u)™)

uf ( Z mji)fnd.

0<i<j<d

Y

We claim that, except for the term with m = (0,...,0), this series may be integrated
term by term to yield a convergent (d—1)-form on X,,. This means that (v.&—u.&)|X,
is an exact form, and further that (just as in the proof of the first assertion) each term
in the expansion of v.& — u.& is an exact algebraic form, so that v.£ — u.£ belongs to
Q4(X,,)!. In other words,

v, = ul¢  (mod Q4UX,) Nd(QI1(X,))).
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To prove our claim, let S; be the set of m such that s;(m) =1fori=0,...,j—1but
sj(m) > 1. Let
F; = Z P - (v — u)™
meS;

and

T]]' = FjdEﬁO FANRRRIVAN dEﬁd71 .
Because

v =10+ +na-r +ulle
it suffices to integrate each n; term by term. Notice that if m € S;, then Z,.y)
does not involve any of =g, for i = 0,...,j. We may choose a matrix g € U so that
9+2p, = fi(u,-) for i =0,...,j and .2, =Eg, fori =j+1,...,d — 1. Now set

— Cm m

G, : m%;j s, (m) B (v — u)™ .

The estimate on the sup norm for h,, implies that this is the convergent expansion
of a rigid function on X,,. Therefore

0; = (=1Y Gj9«(Ep,dZp, N --- NdZp, A+ NdEp, )
is a rigid (d—1)-form on X,,. Furthermore, a simple computation shows that df; = 7;.

Indeed, a typical term in the series for 8; is

Cm m = = = =
(4) mhm(v - U)ig*((_l)j:ﬁj =60 N A diﬁj ARRERA d':‘ﬁd—l) :
J\=
Let _
o - < Sp(m) )
o Eﬁo T Eﬁj—lEZ'(m)fjJrl(ua ')sj+1(m) T fdfl(uv ')sdil(m)

so that hy,, = g«Hy,. Then the term in (4) is

. m R — _
g \Un

We leave it as an exercise to verify that applying d to this expression one obtains the
term
emhm (v —u)™dZg, A--- ANdEg, _, .
iii. By Cor. 8 and [ST] Cor. 40, a form € Q%(X), restricted to X,,, may be written
(1lXn) =m0 +m
where
m € QHX,) N d(Q1(X,))
and 7 is (the restriction of) a finite sum of logarithmic forms u.€. Thus the image of
Q4X) — Q4X,) /(Q4(Xn)' N A(QIH (X))

is spanned by logarithmic forms w.&. Similarly, from Prop. 3.3 we know that the
logarithmic forms u.¢ generate Q4(X) as a topological vector space. Since the image
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of Q4(X) in Q4(X,,) under restriction is dense the same forms u.£ generate the quotient

Q4(X,,)/Q%X,,)! as a Banach space. In both cases we hence may conclude that, using

the first assertion, the u.£ for u € V,, and then, using the second assertion, even the
O] ul®

(T & span the two vector spaces in question. O

Proof of Theorem 1. — We show that each 7 in the third space also lies in the inter-
section of the first two spaces. By Lemma 3, it suffices to show that the restriction
of n to X,, belongs to E,, := Q4(X,,)! N d(Q¢1(X,,))) for all n > 0. We fix an n and
choose a finite set u(Y, ..., u® of elements of V, as in Prop. 9. We also choose m > n
so that the image of X, in the building contains the chambers u(z)(é, 0).

Apply Cor. 8 to write |X,,, = 19 + m on X,,, with g logarithmic and m, € E,,, C
FE,. Our hypothesis on m implies that the linear form ReSuM)(EO) is continuous on

Q4(X,,), and since 7, is exact on X,, we must have
Res ) (@0 (m) =0for £=0,... k.

Since all residues of n are zero, we conclude that
Res ) (@0 (n0) =0 for £=0,... k.

We now need to show that, under our residue hypothesis, the restriction to X,, of the
logarithmic form 7y belongs to E,. Since 7 is a logarithmic form, we may write it
as a sum of forms u.§ with v € U ([ST] Cor. 40), and for our purposes we may (by
Prop. 9.i) assume that all u € V;,. Thus, for each ¢, we have finitely many distinct
vgj € V,, and constants cg; so that

k  se
mo= Y Y cej((ve)sE)

£=1 j=0

where, for j =0, ..., s, we have vg; € D(u'®,r). By the proofs of Facts A and B of
[ST], page 430-431, we see that

Se

Res, 0 (e.0) (Mo) ZRes o, O)c@ (vej)« Zcej =0.
j=0

It then follows from Prop. 9.ii that

k Sy
m0|Xy = Z Z%uff)g (mod E,)

(=1 j=0
=0 (mod E,)

as claimed. O

From section 3, in particular Lemma 3.5 and Fact 2, we have the injective G-
equivariant map

L : QXY —— Co(U,K)=C(G/P,K)/Cin(G/P,K)
A Jue Au *5)]-

ASTERISQUE 278



p-ADIC BOUNDARY VALUES 107

Let C*(G/P,K) C C(G/P, K) denote the subspace of all locally constant functions
and put C2,(G/P,K) :== C>*(G/P, K)NCiny(G/P, K) and C* (U, K) := C=(U, K)N
Co(U, K). The quotient

St := O (G/P,K)/C,(G/P,K)

mnv

is an irreducible smooth G-representation known as the Steinberg representation of
the group G. The above isomorphism for the target of I, restricts to an isomorphism

C2(U,K) = St.

Proposition 7.10. — If A € Q4(X)’ vanishes on exact forms then the function I,(\) on
U is locally constant with compact support.

Proof. — Such a linear form ) extends continuously to Q¢(X,,) for some n. Since, by
Thm. 1, it vanishes on Q%¢(X)!, it vanishes on Q¢(X,,)!. Then from Prop. 9.i it vanishes
on u.& outside of V,,, and therefore the function in question is compactly supported.
Prop. 9.ii shows that there is a finite disjoint covering of V,, by sets D(u(e),r) such
that A(vi€) = )\(uff)f) for v € D(ul®) 7). Therefore the function in question is locally
constant. O

It follows that I, induces an injective G-equivariant map

[QHX)/gact) — C(U,K) = St .

forms

Since Res(ao)g is nonzero the left hand side contains a nonzero vector. But the right
hand side is algebraically irreducible as a G-representation. Hence we see that this
map must be bijective.

From our Theorem 1 and from the nonarchimedean version of [Kom] Thm. 3 we
have the identifications of locally convex vector spaces

QI0X) fpmet = QI0)/QU0) = lmQI(X,)/Q0(X,)" .

forms
n

On the other hand, Prop. 9 says that, for any n > 0, the space Q¢(X,,)/Q%(X,,)! is
finite dimensional. We conclude that Q%(X) /X3t | resp. its dual space, is a projective,
resp. injective, limit of finite dimensional Hausdorff spaces. In particular the topology
on [Q4(X)/gx2ct ] is the finest locally convex topology. In this way we have computed

the top step of our filtration as a topological vector space.

Theorem 7.11. — The G-equivariant map

[Qd(x) exact ]/ i St

forms

A e Ausd)]

is an isomorphism; morover, the topology of the strong dual on the left hand side is
the finest locally convex topology.
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8. The partial boundary value maps

In this section we will introduce and study, for any 0 < j < d, a “partial boundary
value map” TV from [Q4(X)7 /Q%(X)7+!] into a space of functions on G. Recall that
we denoted by p, for any subset J C {0,...,d}, the parabolic subalgebra in g of
all matrices which have a zero entry in position (4, 5) for i € J and j ¢ J; moreover
ny; C py denoted the unipotent radical. Let P; C G be the parabolic subgroup
whose Lie algebra is p; and let U; C Pjy be its unipotent radical. We have the Levi
decomposition Py = UyL; with Ly := L'(J) x L(J) and

L'(J) := all matrices in G with
— a zero entry in position (i, j)
for i # j and not both in J, and
— an entry 1 in position (i,4) for i ¢ J

and
L(J) := all matrices in G with
— a zero entry in position (4, j)
for i # j and i or j € J, and
— an entry 1 in position (¢,¢) for i € J.

Clearly, L'(J) &2 GLyy(K) and L(J) &2 GLgt1-#s(K). With these new notations,
the subgroup U (J) from section 6 is the subgroup U(J) = UNL(J) of lower triangular
unipotent matrices in L(J), and [;,I'(J), and [(J) are the Lie algebras of Ly, L'(.J),
and L(J) respectively. In the following we are mostly interested in the subsets j :=
{0,...,j— 1} for 0 < j < d. Let -

V; := closed subspace of Q¢(X)7/Q4(X)7*! spanned by
the forms g.(Z,¢) for p € B(j) and g € L(j)

viewed as a locally convex vector space with respect to the subspace topology.

Lemma 8.1

i. The subgroup Pl preserves Vj;
ii. U;L'(j) acts through the determinant character on V;.

Proof. — Only the second assertion requires a proof. We have Z,§ = Z,_gdZg, A
-+ ANdZg,_,. For p € B(j) the product Z, 5 does not contain any Z; for i € j. On
the other hand the elements h € U;L’(j) have columns i for i ¢ j consisting of zeroes
except the entry 1 in position (3, z)_ It follows that heZu—p = E_ufﬁ for those h and
p. And on d=g, A --- Ad=g, , such an h acts through multiplication by det(h) (see
the last formula on p. 416 in [ST]). Since U(j) normalizes U; L’(j) we more generally
obtain A (u«(Z,8)) = det(h) - u«(E,8) for h € U;L'(j),u € ﬁ(l), and p € B(j). O
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In order to compute the space V; we use the rigid analytic morphism
pr; : X — xd+1-3
q=1lgq0:-:qd — [gj: :qal;

here X%t1=J denotes the p-adic symmetric space of the group GLg41—-;(K). This
morphism is Pj-equivariant if P; acts on X, resp. on X4*1=J through the inclusion
P; C G, resp. the projection P; — L(j) =2 GL4y1-j(K). In section 4 we introduced
the irreducible p;-submodule Z_Wi of b, / bj>. For general reasons, it integrates to a
rational representation of P;. We will work with the following explicit model for this
representation. Consider an element g = (grs) € L(j). The adjoint action of ¢ ! on
any Ly € nj', ie, with 0 <7< j </ <d,is given by

ad(g™ ") Lie = gejLij + - - + geaLia.
We may deduce from this that the adjoint action of L(j) on U(g) preserves MY as
well as M7 N bj> = U(nj') Nb. Indeed, the sorting relations L;pL; ¢ — L;yL;/ generate
U(nj‘) nb; = U(nj) N b according to Prop. 4.6, and the image of such a relation

ad(g__l)(L;kLi/g — L;gLi/ k) is a linear combination of sorting relations of the same type
involving only 4 and ¢ as first indices. It follows that

93+ b;) :=ad(g)(3) + bf for 3 € M;

is a well defined action of the group L( J) on the space M;. We extend this to a rational
representation of P; by letting U;L/(j) act through the determinant character. The
corresponding derived action of the Lie algebra p; on M; is trivial on nj, is through
the trace character on ['(j), and on [(j) is induced by the adjoint action. But in
Lemma 4.7 we have seen that this latter action coincides with the left multiplication
action.

We now consider the continuous linear map

Aj Qd*j(xd“*j);}?Ml — QUX)/Q4(X)IHL

Ep

Eﬁo

7’®(L“+[’1‘>) — L#(daﬁo/\u»/\ J:Apr;(n)].

According to Lemma 1.3 the Pj-action on both sides (diagonally on the left side) is
continuous. In the following we will use the abbreviations

dZg3. d= .
Ca—j = = Bi poiin # as a (d — j)-form on X417
=B SBa—1
and = .
«f(j) = :—BO/\---/\# as a j-form on X.
=B =851
For g € G we have
d -
g.& = det(g)- ([] %) -¢
i=o 9x=i
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For g € L(j) there is a corresponding formula for g.{4s—; and the two together imply

g+6 = €9 A pri(g.€a—y).
By Prop. 3.3 the u,&q—; for u € U(j) generate a dense subspace in Q47(X4H1=7).
After we establish various properties of the map A;, this fact will allow us to assume
that n = u.§q—; for some u € U(j). First of all we note that the definition of A; is
independent of the particular representative L, for the coset L, + bj> as long as this

representative is chosen in M$: For 3 € M9 Nb; = U(n;r) Nband u € U(j) we have
ad(u~')(3) € b and consequently

369 A prs (u.bay)) = 3(u.€) = e (fad(u ) ())E) = 0.

Next we compute

—~

€9 Apri(gehia—y))
g+h&)

—~

€9 A prj(haga-j)))

= g:(A4;j(hba—j ® Ly))
for g,h € L(j). This shows that the map Aj; is L(j)-equivariant. As special cases of
the above identity we have

Aj(9+€a—; ® Ly) = g«([ad(g™ ") (Lu)]E)
and
Aj(g+€a—j @ ad(g)(Ly)) = g«(Lp€) = —g«(Ep8)

for g € L(j) and p € B(j). The former, together with the fact that My - § C
ZMEB(j) K - Z,&, shows that the image of A; is contained in Vj. The latter shows
that this image is dense in V;. By Lemma 1.ii, the group U;L’(j) acts on the domain
of A;, as well as on Vj, through the determinant character. Hence A; in fact is
Pj-equivariant.

7By Thm. 7.1 the exact (d — j)-forms on X9+'=J coincide with the sub-
space Q4=J(X4+1=0)1 According to Cor. 6.3, this latter space is topologi-
cally generated, as an L(j)-representation, by the forms =,{q_; for the weights
0 # v =71 me € X*(T). We have A;(Z,€q—; ® L) = Lu(S,€). Let
p=co+-+ej_1— ZZ:;‘ mger with my > 0. By an iteration of the formula (4)

in section 4 one has

d mg

Lu(Z8) = e+ (T] TT (= m) - Zpsug

k=j m=1
for some constant c¢(u) € K*. There are two cases to distinguish. If ny < my for
all j < k < d then we choose a j < ¢ < d such that ny > 1 and see that the
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product on the right hand side of the above identity contains the factor 0. Hence
L,(E,€) = 0 in this case. Otherwise there is some j < ¢ < d such that m, < n.
Then J(p+v) 2 {0,...,j —1,¢} so that, by Cor. 6.3, Z,,4,& and hence L,(Z,¢) lies
in Q4(X)7*1. This shows that §£X2¢ ® M, lies in the kernel of A;.

forms

Remark 8.2. — Vj is topologically generated by the forms u.(Z,£) for v € U(j) and
p € B(j).

Proof. — We in fact will show that in Q4(X) any form g.(2,£) with g € L(j) and
p € B(j) is a (finite) linear combination of forms u.(Z,§) with u € U(j) and v € B(j).
First of all we have

9+(Eu8) = =g (L&) = —[ad(g)(L))(9+€)-

From the discussion after Lemma 3.5 we know that g.£q—; is an alternating sum of
forms u.&y—; with v € U(j). Using the identity g.§ = O A pr;(g«§a—;) again we see
that g.¢ is an alternating sum of forms u.£ with u € U(j). Inserting this into the above
equation we are reduced to treating a form [ad(g)(L,)](u«é) = u.([ad(u™tg)(L,)]E).

But ad(u~'g)(Ly) lies in 3 ¢ p(;) K - Ly +b. O
Proposition 8.3. — The linear map A; induces a Pj-equivariant topological isomor-
phism

[ () k] @ My = V.
Proof. — So far we know that A; induces a continuous P;-equivariant map with dense
image between the two sides in the assertion. For simplic_ity we denote this latter map
again by A;. Both sides are Fréchet spaces (the left hand side as a consequence of
Thm. 7.1). We claim that it suffices to show that the dual map A} is surjective.
We only sketch the argument since it is a straightforward nonarchimedean analog of
[B-TVS] IV.28, Prop. 3. Let us assume A to be surjective for the moment being.
The Hahn-Banach theorem ([Tie] Thm. 3.6) then immediately implies that A; is
injective. Actually A} : V] = im(A;)’ =, V' then is a linear bijection where we
abbreviate by V' the space on the left hand side of the assertion. This means that
A’ induces a topological isomorphism im(A4;); — V; between the weak dual spaces.
Since the Mackey topology ([Tie] p. 282) is defined in terms of the weak dual it
follows that A; : V' — im(A;) is a homeomorphism for the Mackey topologies. But
on metrizable spaces the Mackey topology coincides with the initial topology ([Tie]
Thm. 4.22). Therefore A, : V =, im(A;) is a topological isomorphism for the initial
topologies. With V also im(A;) then is complete. Because of the density we have to
have im(A4;) = V. O

Before we establish the surjectivity of A;- we interrupt the present proof in order
to discuss the strong dual of the left hand side in our assertion.
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Let
Stat1-5 := C*(L(§)/L(j) N P, K)/Ca (L(5)/L(j) N P, K)

denote the Steinberg representation of the group L(j) equipped with the finest locally
convex topology (in particular, Sty is the trivial character of the group K*). Recall
that identifying U(j) with the big cell in L(j)/L(j) N P induces an isomorphism
Stay1-; = CF(U(j), K). We know from Thm. 7.11 that

Q47 (X gt = C5(U()), K) & Stas—

forms

A ue Auada—j)]

is a L(j)-equivariant topological isomorphism. In particular, the strong dual of the left
hand side in Prop. 3 carries the finest locally convex topology and may be identified
with the space Homg (M), Stg41—;) of all K-linear maps from M into Stgyq1—;. With
this identification, the mzxp A;- becomes the map -

I([)j] : V}I e HomK(Ml, Std+1_j)
A= ALy = fu = ALy (uaf))]}

and ist surjectivity will be proved in the course of the proof of Prop. 4 below.
Recall that M; is isomorphic to the contragredient of the j-th symmetric power
Sym’ (K%*177) of the standard representation of L(j) 2 GLg41—;(K) on Ka+1=7.

Proposition 8.4

i. V; is a reflexive Fréchet space;
ii. the linear map

H v = Homg (M, Stai—;)
A — {LM%[UHA(LM(U*E))]}

is a Pj-equivariant isomorphism;
iii. the topology of Vj’ is the finest locally convex one;
iv. V! & Stap1—; ® Sym! (K9+1=9) (with U;L'(j) acting on the right hand side
K iU
through the inverse of the determinant character);
v. V; = Hompg (Stat1—j5, Mj) (with the weak topology on the right hand side).

Proof. — The first assertion follows by the same argument as for Prop. 6.5. The only
other point to establish is the surjectivity of L[)j I, This then settles Prop. 3 which in
turn implies the rest of the present assertions by dualizing.

Let o € C*(U(j), K) = Stay1—; denote the characteristic function of the compact

open subgroup U(j) N B in U(j). Since Stqy;—; is an irreducible (in the algebraic
sense) L(j)-representation it is generated by ¢ as a L(j)-representation. Hence the
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finitely many linear maps
E,: Ml —  Stg41—;

¢ ifv=y,
L, —
0  otherwise

for p1 € B(j) generate Hompg (Mj, Sta+1-;) as a L(j)-representation. For the surjec-
tivity of I([)j l'it therefore suffices, by L(j)-equivariance, to find a preimage for each E,,.
At the beginning of section 5, we introduced the continuous linear forms

nr— Res(aO)E,#n

on Q4(X) for any € X*(T). In terms of the pairing (,) defined before Prop. 5.3 this
linear form is given as

n— U, ful B).
We now fix a u € B(j). Since f,|B has weight —u we have (L, (f.|B))(1) = 0 for
all v # p (compare the proof of Prop. 5.2); in particular (3(f.|B))(1) = 0 for any
3 € bj1. Taylor’s formula then implies that

fulB € O(B)b+1=0,

By Lemma 6.4, the above linear form vanishes on Q2¢(X)7*! and consequently induces
a continuous linear form A, on V;. We compute

TP ) (L) (1) = Res g ) Z—p - Lo (u.8) = Res,, 1 g )0

with

0= (u"'2,) - (ad(u™")(Ly))(€)-
Since, by Thm. 7.1, forms in Q4(X)! have no residues it suffices to determine § modulo
Q4(X)L. The subspace M; = Z#GB@ K -Z_, of O(X) is L(j)-invariant. In fact,
one easily computes that, for g = (grs) € L(j) and 0 <i < j < £ < d, one has

9B (ei—ey) = Git=(e;—e) T F 9aE_(c;—ey)-

This formula and our previous formula for ad(g~!)L;, together show that the pairing
1 if p=v,

L,+b7,2_,)) —
( " L ) {0 otherwise

is L(j)-equivariant. It therefore exhibits M} as the L(j)-representation dual to M;.
The point of this pairing is that, by Cor. 6.3, we have Z_,,- (L,§) = —&,_,£ € Q4(X)!
for u # v. Applying this together with the equivariance to the above form 6 we obtain
that

£+ Q4N ifu=y,
0 e
Q4(0)! ifp#v
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and consequently that

IO (L)) = § RS @os Tr=v,
0 if p#wv.

By [ST] Lemma 23 the form £ has residues only on the standard apartment and those
are equal to +1. The chamber u~*C lies in the standard apartment if and only if
fixes C. Tt follows that I (Au)(Ly) is supported on U(j) N B where it is a constant
function with value +1. All in all we see that -

IP(\) = £B,
the sign depending on the parity o .
(the sign depending he parity of d) O
The natural Pi—equivariant linear map
Q10 /A0 — V]

is surjective (by Hahn-Banach) and is strict (by the same argument as for Prop. 6.7).
Moreover both sides are inductive limits of sequences of Banach spaces (see the proof
of Prop. 6.5) and are locally analytic Pj-representations in the sense of Cor. 6.8.
Therefore the assumptions of the Frobenius reciprocity theorem 4.2.6 in [Fea] are
satisfied and we obtain the G-equivariant continuous linear map

101 [Q4(X) /Q4X)H)  — oG, P;; V)

I

A — g (gVIV]

Here Can(G,Pl ; Vj' ) — the “induced representation in the locally analytic sense” —
denotes the vector space of all locally analytic maps f : G — V] such that f(gh) =
h=(f(g)) for any g € G and h € P; on which G acts by left translations. Its natural
locally convex topology is constructed in [Fea] 4.1.3 (to avoid confusion we should
point out that [Fea] uses a more restrictive notion of a V-valued locally analytic map
but which coincides with the notion from Bourbaki provided V is quasi-complete —
see loc.cit. 2.1.4 and 2.1.7).

Definition. — The above map 1Y : [Q4(X)7/Q4(X)I+1] — C*™(G, Py;V)) is called
the j-th partial boundary value map.

Lemma8.5. — IU! is injective.

Proof. — It is an immediate consequence of Cor. 6.3 that dec g(V;) is dense in
Q4(X0)7 /Q(X)I+L. O

In order to describe the image of IU we first need to understand in which sense we
can impose left invariant differential equations on vectors in an induced representation.
For any Hausdorff locally convex K-vector space V the right translation action of G
on C*™(G,V) := C*(G, {1}, V) is differentiable and induces an action of U(g) by left
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invariant and continuous operators ([Feal 3.3.4). For V := V] = Hom (M}, St4+1-;)
we therefore may consider the K-bilinear map

() (Ule) @ M) x C(G, Home (M, Stat1—;))  — C%(G, Stara—)
Gem, f) — [g— (3f)(g)(m)].
Note that, for a fixed 3 € U(g) % Mj, the “differential operator”

<3,> : Can(G, HomK(Ml-, Sthrlfj)) — Can(G, Std+17j)
is continuous and G-equivariant (for the left translation actions). The action of P; on
Hompg (M;, Stay1—;5) = M]’ ® Sta41—; is differentiable and the derived action of p; is
J iy J
given by

(1) (tE)(m) = —E(xm)

for r € p;, E € Homg (M;,Star1—;), and m € M;. This is immediate from the fact
that anyivector in Sth:j is fixed by an open sllbgroup of P; so that the derived
action of p; on Stgi1_; is trivial. -

Now recall that the induced representation C**(G, Pj; Hom (M;, Stay1-4)) is the

closed subspace of C*"(G,Hompg (Mj,Stq11-5)) of all those maps f which satisfy
f(gh) =h="(f(g)) for g € G and h € P;. For such an f we therefore have

(¢1)(a) = Floexplts))_,

= et (),

= —(f(9))
for ¢ € p; and slightly more generally

GED9) = 6 gexplts)),_,

o) —— S ges)

— (G e,
L)

for r € p; and 3 € g; the third equality is a consequence of the continuity of the
operator r. Combining (1) and (2) we obtain

(G@f))9)(m) = (—x((S)(9)(m) = ((f)(9))(xm)

or equivalently

Gr@m, f) =G em,f)
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for f € C*"(G, Pj; Homp (M, Stay1-5)),m € Mj,r € p;, and 3 € g. This means that
the above palrmg restricts to a pairing

(,):(U(9) U%)Ml) x C*™(G, Pj; Homg (Mj, Sta1-5)) — C*™(G, Stat+1-;)

and enables us to consider, for any subset 9 C U(g) Qu(p;) M. 5> the G-invariant closed
subspace

C*(G, Pj; Hompg (M, Stay1-5))°=0 :=
{f € C™(G, Pj;Homp (Mj, Sta1-5)) = (3, f) = 0 for any 3 € 2}.
The relevant subset for our purposes is the kernel

of the natural surjection sending 3 ® m to 3m. By the Poincaré-Birkhoff-Witt theorem
the inclusion U (n] ) C U(g) induces an isomorphism U(n;)* ® M; — U(g) ® M;.
] U(p

J

We mostly will view 0; as a subspace of U(nj) ® M;.
J 175

Theorem 8.6. — The map IU] (together with L[)j]) induces a G-equivariant topological
isomorphism
TU1 5[4 /10T = O (G, Py Homp (M, Stas )"
A o= )L

Proof. — We start by showing that the image of IU! satisfies the relations 9; = 0.
LetB:ZMGB(l)a(M)(@LHEalgU(ﬂz)(@KM theng—z 3(M)LH€U( )ﬂb>
U(n}f)Nb (Prop. 4.6.iii). Note that

I (@)L () = (g7 N (Lyu(wi8)) = Mga (L (us£))
for g € G, € B(j), and u € U(j). We compute
(3, 1V 0) (9) (@) = > (G TV D@Ly (w)

m

= Z A(Gs (3 L (usf)))

w
= Mg« (3(uf)))
= Mgsus((ad(u™1)(3))8))
which is zero because U (n] ) N b is ad(U(j))-invariant as we have seen earlier in this
section.

We know already that IV is continuous, G-equivariant, and injective. Next we
establish surjectivity. Let f be a map in the right hand side of the assertion. By
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a series of simplifications we will show that it suffices to consider an f of a very
particular form for which we then will exhibit an explicit preimage under 717,
We show first that we may assume that

— [ is supported on BP; and
- flU ]7" N B is analytic (not merely locally analytic).

By the Iwasawa decomposition we have the finite disjoint open covering

G/P;=|JgBP;/P;
g

where g runs through a set of representatives for the cosets in GL411(0)/B. As before
let Uj+ denote the transpose of U;. Then UJ(O) = UJT" N B is the congruence subgroup
of all matrices in U j+ whose non-diagonal entries are integral multiples of 7. Consider
the higher congrue;lce subgroups U J(n), for n > 0, of all matrices in U j+ whose non-
diagonal entries are integral multipl_es of ™. These U ;n) are polydisks_in an obvious
way, and we have U;n) = y”(U;r N B)y~™ where y EiG is the diagonal matrix with
entries (m,...,m, 1,...,1). The Iwahori decomposition for B implies that the map

gUul” = ¢BP/P;

z]u —  gub;
is a homeomorphism. Our map f restricted to gU ;O) still only is locally analytic. But

we find a sufficiently big n € N such that f |ghU;n) is analytic for all g as above and

all h in a system of representatives for the cosets in U;O) /U ](n). If we put

fon = ((gh)_lf)|U£n)Pl extended by zero to G

then these maps lie in the right hand side of our assertion and we have

F=> (gh) fon.
g,h

The reason for this of course is that

G =JghU"pP;
g,k B
is a disjoint finite open covering. By linearity and G-equivariance of I Ul it therefore
suffices to find a preimage for each f, 5. This means we may assume that our map f

)Pl and is analytic on U;n)

is supported on U;n . Using G-equivariance again, we may
translate f by y*ﬁ so that it has the desired properties.

For our next reduction, we will show that we may further assume that
— [ is supported on BP; with f|UjJr NB =¢e¢® ¢ for some ¢ € O(U;r N B,M;)ai:o

and (RS Std+17j~

SOCIETE MATHEMATIQUE DE FRANCE 2002



118 P. SCHNEIDER & J. TEITELBAUM

If we consider an analytic map on U j+ N B with values in the locally convex vector
space Homg (M. I Std+1_j) then the coefficients in its power series expansion multi-
plied by appropriate powers of 7 form a bounded subset of Hom & (Mj,Stg+1—;). The
topology of that vector space is the finest locally convex one. Hence any bounded
subset and therefore the set of coefficients lies in a finite dimensional subspace. This
means that our f|UJr N B is an element of (Q(UJr NB)®x Homg (M;, Stqr1—;). More-
over, viewing 9; as a subspace of U( ) QK M it is clear that Wlth respect to the
obvious pairing

(,): (U(n;) 2 M) x (O(U; N B) 2 Homg (M;, Stat1-;)) — (’)(U; N B) 2 Stat1;

(3@m,e® E) — 3¢ ® E(m)

we have (0, f|U]-+ N B) = 0. We now decompose

into a finite sum with e; € (9(Ujr N B) and E; € HomK(Ml, Stat1—;) such that the
images F;(M;) are linearly independent 1-dimensional subspaces of Stg+1—j. Then
each e; ® E; satisfies the relations (9j,6; ® E;) = 0. We define maps f; on G with
values in Homg (M, Stayi—;) by setting

fi(uh) := e;i(u) - h™ 1 (E;) for u € U;’ NBandh € P

and extending this by zero to G. Since the map h +— h~1(E;) is locally analytic on
Pj it easily follows that f; € C**(G, Pj; Homg (M;,Stay1-5)). By construction f; is
supported on BP; with fi|U;r N B =¢; ® B;. Clearly

f:Zfi-

We claim that each f; satisfies the relations 0; = 0. This will be a consequence of the
following observation. The group P; acts diagonally on U(g )®U(p )M via h(3®@m) =
ad(h)3 ® hm. The point to observe is that the subspace 0; is Pj-invariant. Note first
that because U (n; )ﬁb> C b (Prop. 4.6. iii) an element 3_  3(,) ®L € U(n] )®KM
lies in 9; if and only if Z 3wy L€ = 0. Let now >° 3¢, ® L, €0 CU(n] ) QK M;j
and h € P;. We distinguish two cases. If h € L(j) then using the ad(L(j))-invariance
of U(n] ) Nb we obtain

(Z ad(h) ) - hy )€ = (ad(B) (D 30 L) )€ = 0.
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If h € L'(j)U; then using Lemma 1.ii we obtain
(Z a‘d(h) (3(#)) hL;t)g det ( Z d(p ILM&)
o
= h*(Zgj(M)L,@) =0.
“w

Going back to our maps f; and letting again > 3(.) ® Ly, € 9; C U(n] ) ®x M; we
now compute

((Zé(u) ® L#) fi) (uh) = Z(Z(u)fi)(Uh)(Lu)
> ((ad(h)z( )ei) (w) - b~ (Ei)(Ly)

:hl( A()3()ei)(u) - Fi(hLy))
ye 1(< AWy © WLy, €1 @ B )(u))

:hl«h 30 © L), i © B ) (w)

This establishes our claim.

We want to further normalize the component ¢ in this last expression. Let ¢, €
Ce(U(j), K) = Stgy1—; denote the characteristic function of U(j) N B. Then ¢ can
be written as a linear combination of vectors of the form g~l¢, with g € L(j). A
straightforward argument shows that f can be decomposed accordingly so that we
may assume ¢ = g~ 'y, for some g € L(j). We now find a finite disjoint open covering

g(Uf NB)P Uuzy U nB)P;

with appropriate n € N and u; € UJT". The map gf is supported on gBP; and its
restriction gf|g(Uj+ N B)g~! is analytic with values in M} ® Kp,. If we put

fi = ((uiy")*lgfﬂBPl extended by zero to G

then these maps lie in the induced representation on the right hand side of our asser-
tion and we have
F=> g twy"f,
i
The restriction of f; to U;’ N B satisfies

fi(u) = (gf) (wiy™u) = 77" - () (wiy™uy™").
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But w;y"uy™" € gBP; N Uj+ C g(UJT|r N B)g~!. It follows that f1-|Uj7|r N B is analytic

with values in MJ' ® K. ~ At this point we have arrived at the conclusion that we

may assume that

— f is supported on BP; with f|U]-+ N B =¢® ¢, for some ¢ € (’)(UJTir N B, MJ’-)OZZO.

We rephrase the above discussion in the following way. We have the linear map

EXti : (Q(leJr N B, Ml{)alzo — Can(G, Pl; I{OHTLK(]\fl7 Std+1_j))alzo

defined by

h=t(e(u) ® po) for g = uh with u € Uz' NB,h € P,

0 otherwise .

Extl-(s)(g) = {

Its image generates the right hand side (algebraically) as a G-representation. An
argument analogous to the proof of [Fea] 4.3.1 shows that Ext; is continuous. On the
other hand, in section 6 after Lemma 4 we had constructed a continuous linear map

D; : O(U; N B, M})%=" — [QY(X)7 /Q4(X)/ .
The surjectivity of IU! therefore will follow from the identity
Ext; = I o D;.
By the continuity of all three maps involved it suffices to check this identity on weight
vectors. Fix a weight v with J(v) = {0,...,j — 1}. By construction the map D;
ueB(j)[(LHfV)lU;_ N B] ® Lj, to the linear form A,(n) =

Res(ao)E_Vn. What we therefore have to check is that I (M) is supported on BP;
with

sends the weight vector >

INO)UF B =" [(Luf,)IUf N Bl ® L, @ ¢o.
- HEB()) -

By definition we have

IO (@)L (1) = [(97 M) V] (L (usb))
= A (g(Lyu(us)))
= Res(aO)E,V * g5 (Lp(uik))
= Res(g,0)Z—v  gutix((ad(u™")(L))E)
for 4 € B(j) and u € U(j) C P;. First we deal with the vanishing of this expression
for g ¢ BP;. Observe that
— g ¢ BP; if and only if gu ¢ BP;, and
— ad(u™ ) (L)€ € X pep K - Sk

Hence it suffices to show that

Res z 0)E—v - 9+(Eu§) = 0 for g ¢ BP;.
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We distinguish two cases. First we assume that g ¢ U;’PZ. Then the divisor
div(Z_, - gx(E,€)) oo is supported among the hyperplanes Zg = 0,...,Z;_; = 0 and
9+:2; = 0,...,9+:2¢ = 0. Those are linearly dependent if g ¢ U]*Pl and hence

- 9.(Eu)) # . According to the dis-
cussion after Prop. 6.2 the form =_, - g.(E,£) therefore lies in leg(X)l, hence is
exact by Lemma 7.2, and consequently has zero residue. Second we consider the case
g€ Uj+ \ (Uj+ N B). Then g fixes Zo,...,=;_1 so that g7'1=_, is a linear combination
of 2_,, with J() C{0,...,j — 1}. It follows that Z_,, - g.(Z,€) is a linear combina-
tion of forms Z,~¢ among which the only possible non-exact one is &! (compare the
proof of Lemma 7.2). We obtain

have a nonempty intersection, i.e., Z(E_

Res @ 0)5—v - 9+(EuE) = Res, 1@ (g_lE,l,)Eﬂf =c-Res,—1@ 0§
with some constant ¢ € K. But ¢ has residues only on the standard apartment and
g~ (C,0) lies in the standard apartment only if g € U j+ N B. This establishes the

assertion about the support of IVI(),).
Fixnowag e U j+ NB and let u € U(j). Repeating the last argument for gu instead of

g we obtain that Res @ 0)E 1 - g us (Z,€) = 0 unless gu and hence u fixes (C,0). This
means that, for g € U;r N B, the function [IU1(\,)(9)](L,) € CZ(U(j), K) vanishes
outside U(j) N B. For u € U(j) N B we have

where

If v € B(j) then we computed the corresponding summand already in the proof of
Prop. 8.4 and, in particular, showed that it is independent of u € U(j) N B. On the
other hand the subspace

IR

J(v')Cj

V'EB(j)
of O(X) is preserved by the action of U(j). This means that, for v/ ¢ B(j), the form
(urZ2_,)((ad(u™1)(L,))E) cannot contain ¢ and therefore must have zero residue.
This computation says that, for fixed g € U;’ N B and fixed p € B(j), the function

[TV (A,)(9)](Ly)(u) is constant in u € U(j) N B. In other words we have

9O (g) = Y [TV @I(EL)(1) @ Ly, @ ¢,
HEB(j)
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for g € U;’ N B. But using the various definitions we compute

TV (@)L (1) = Res g )2y - g (L) = (Luf)(9).

This establishes the surjectivity and hence bijectivity of the map I/, Finally, that IU!
is open and hence a topological isomorphism is a consequence of the open mapping
theorem in the form given in [GK] Thm. 3.1(Aj3) provided we show that both sides
of IV are (LB)-spaces, i.e., a locally convex inductive limit of a sequence of Banach
spaces. For the left hand side this fact is implicitly contained in our earlier arguments:
In the proof of Prop. 6.5 we had noted that Q4(X)? /Q4(X)7*! is the projective limit of
a sequence of Banach spaces with compact transition maps. We certainly may assume
in addition that these transition maps have dense images. By the same argument as
in the proof of Prop. 2.4 it then follows that the strong dual [Q%(X)7/Q%4(X)7+1]" is an
(LB)-space. We now turn to the right hand side. Using [GKPS] Thm. 3.1.16 (compare
also [Kom] Thm. 7°) it suffices to show that C**(G, P;; Homg (M, Stq11—;)) is the
locally convex inductive limit of a sequence of Banach sf)aces with cBmpact transition
maps. To see this it is convenient to identify this space, as a locally convex vector
space (without the G-action), with the space C**(G/P;, Homg (M;, Stq41—;)) of all
locally analytic functions on G/P; with values in Horr;K(M i Sth:l,j). The recipe
how to do this is given in [Fea] 4.3.1. One fixes a section ¢ of the projection map
G — G/ P; such that
G/P] X Pj AN G
(9Pj,h) +—— u(gPj)h
is an isomorphism of locally analytic manifolds ([Fea] 4.1.1). We then have the con-
tinuous injection
Cc*™(G,P; V) — C*™G/F;,V)
;o 9P FalgPy)]

writing V' := Homg (M, Stq11—;) for short. In fact we will need that V' is of the form
V' = Vin ®k Vam for two Pj-representations Vg, and Vi, which are finite dimensional

algebraic and smooth, resf)ectively. If V¢ runs over the finite dimensional subspaces
of Vgm then

V =1lim Vs, ® Vy
and each Vg, ® V¢ is invariant under some open subgroup of P;. A possible inverse
v J

of the above map has to be given by

¢ — fs(9) == (97" u(gP)))(d(gP)))-
Since
c™(G/ P, V) = liLnCan(G/Pl; Van % V¥)
Vi
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it suffices to check that
O G/ Py Van @ Vy)  — OGP V)
¢ +— fd)
is well defined and continuous. Consider the obvious bilinear map

B : [Vin %Vf] x [End g (Van) %HomK(Vf, Vim)] — V

between vector spaces equipped with the finest locally convex topology. By [Fea] 2.4.3
(the condition BIL is trivially satisfied) it induces a continuous bilinear map

C*™ (G Py; Vian ® V) x C* (P, End (Vi) @ Hom(Vy, Vi) — C*(G/P; x Py, V).
(¢, ¥) — Bo (¢ x V)

Using the section ¢ we obtain the continuous bilinear map

B:C™(G/Py; Van @ V) x C**(P;, End (Vi) ® Hom(Vy, Vam)) — C*(G, V)
defined by B((gﬁ, U)(g) = B(d(gP;),¥(:(9P;)"1g)). It remains to observe that
U, (h) := h~L.@h~ 1. lies in C*"(P;j, End(Van)®@Hom(Vy, Vi )) and that B((Z), U,) = fo.

We now are reduced to show that C*(G/P;,V) is the locally convex inductive
limit of a sequence of Banach spaces with comf)act transition maps. Since G/P; is
compact this is a special case of [Fea] 2.3.2. o

To finish let us reconsider the bottom filtration step. By definition St; = K is
the trivial representation, and L(d) = K> acts on the one dimensional space My
through the character a — a~¢. Let therefore K, denote the one dimensional Py-
representation given by the locally analytic character

x:Pg — K*
(9dd
det(g) -

By comparing weights one easily checks that the natural map U (njl') @My —> by/b
d/) e 4

)d+1
g

is bijective which means that 04 = 0. Our theorem therefore specializes in this case
to the assertion that the map

o

I QX)) — C*™(G, Py K,y)
A [g = 7)‘(9*(d5ﬁ0 ARERNAN dEﬁd—l))]

is a G-equivariant topological isomorphism.
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THE DISPLAY OF A FORMAL p-DIVISIBLE GROUP

by

Thomas Zink

Abstract. — We give a new Dieudonné theory which associates to a formal p-divisible
group X over an excellent p-adic ring R an object of linear algebra called a display.
On the display one can read off the structural equations for the Cartier module of X,
and find the crystal of Grothendieck-Messing. We give applications to deformations
of formal p-divisible groups.

Introduction

We fix throughout a prime number p. Let R be a commutative unitary ring. Let
W (R) be the ring of Witt vectors. The ring structure on W (R) is functorial in R and
has the property that the Witt polynomials are ring homomorphisms:

n n—1
(:Eo,...zi,...)»—>xg +p:c’1’ 4,

Let us denote the kernel of the homomorphism wg by Ir. The Verschiebung is a
homomorphism of additive groups:

v, W(R) — W(R)
(o, Xy o) — (0,20, .. 24, ...)

The Frobenius endomorphism ¥ : W(R) — W(R) is a ring homomorphism. The
Verschiebung and the Frobenius are functorial and satisfy the defining relations:

w, (F2) = wpi1(z), forn >0
w,(Vz) = pw,_1(x), forn >0, wo(Vz) = 0.

2000 Mathematics Subject Classification. — 14105, 14F30.
Key words and phrases. — p-divisible groups, crystalline cohomology.
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128 T. ZINK

Moreover the following relations are satisfied:
BV = D, V(F'Z'y) = IVya T,y € W(R)

We note that Ir = YW (R).

Let P, and P> be W(R)-modules. An Flinear homomorphism ¢: P — Pyisa
homomorphism of abelian group which satisfies the relation ¢(wm) = Fweg(m), where
m € P, w e W(R). Let

¢ W(R) @pw(r) Pr — Ps

be the linearization of ¢. We will call ¢ an -linear epimorphism respectively an
Flinear isomorphism if ¢? is an epimorphism respectively an isomorphism.

The central notion of these notes is that of a display. The name was suggested
by the displayed structural equations for a reduced Cartier module introduced by
Norman [N]. In this introduction we will assume that p is nilpotent in R.

Definition 1. — A 3n-display over R is a quadruple (P,Q,F,V~1!), where P is a
finitely generated projective W (R)-module, Q@ C P is a submodule and F and V1
are linear maps F: P — P, V~1:Q — P.
The following properties are satisfied:
(i) IrP C @ C P and P/Q is a direct summand of the W(R)-module P/IrP.
(ii) V~1:Q — P isa linear epimorphism.
(ili) For x € P and w € W(R), we have

V1(Vwz) = wFa.

If we set w = 1 in the relation (iii) we obtain:
Fx=V"1(V1z)

One could remove F' from the definition of a 3n-display. But one has to require that
the flinear map defined by the last equation satisfies (iii).

For y € @) one obtains:

Fy=p-V7ly

We note that there is no operator V. The reason why we started with V1 is the
following example of a 3n-display. Let R = k be a perfect field and let M be a
Dieudonné module. It is a finitely generated free W (k)-module which is equipped with
operators F and V. Since V is injective, there is an inverse operator V=1 : VM — M.
Hence one obtains a display (M, VM, F,V~1). In fact this defines an equivalence of
the category of Dieudonné modules with the category of 3n-displays over k.

Let us return to the general situation. The W(R)-module P always admits a direct
decomposition

P=La&T,
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such that @ = L & IrT. We call it a normal decomposition. For a normal decompo-
sition the following map is a F-linear isomorphism:

V3ieF:LeT — P

Locally on Spec R the W (R)-modules L and T are free. Let us assume that T has
a basis ej,...,eq and L has a basis e441,...,e,. Then there is an invertible matrix
(a;) with coefficients in W(R), such that the following relations hold:

h
Fejzz:aijei, fOI‘jZl,...,d
i=1

h
V_lej = Zaijei forj=d+1,...,h

i=1

Conversely for any invertible matrix (cy;) these relations define a 3n-display.
Let (Bx) the inverse matrix of (a;;). We consider the following matrix of type
(h — d) x (h — d) with coefficients in R/pR:
B = (wo(Brt) modulo p)1—d1,...n

Let us denote by B®) be the matrix obtained from B by raising all coefficients of B

to the power p. We say that the 3n-display defined by («;;) satisfies the V-nilpotence
condition if there is a number N such that

B ..B® . B =0o.

N

The condition depends only on the display but not on the choice of the matrix.

Definition 2. — A 3n-display which locally on Spec R satisfies the V-nilpotence con-
dition is called a display.

The 3n-display which corresponds to a Dieudonné module M over a perfect field
k is a display, iff V' is topologically nilpotent on M for the p-adic topology. In the
covariant Dieudonné theory this is also equivalent to the fact that the p-divisible group
associated to M has no étale part.

Let S be a ring such that p is nilpotent in S. Let a C S be an ideal which is
equipped with divided powers. Then it makes sense to divide the Witt polynomial
W, by p™. These divided Witt polynomials define an isomorphism of additive groups:

Wi(a) — a

Let a C a¥ be the embedding via the first component. Composing this with the
isomorphism above we obtain an embedding a C W (a). In fact ais a W (.S)-submodule
of W(a), if a is considered as a W (S)-module via wy. Let R = S/a be the factor
ring. We consider a display P = (15, @, }~7, 17_1) over S. By base change we obtain a
display over R:

Pr=P=(P,Q,F V"
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By definition one has P = W (R) @y (s) P. Let us denote by @ = W(a)lBJr@ C P the
inverse image of Q). Then we may extend the operator V-1 uniquely to the domain
of definition @, such that the condition V~taP = 0 is fulfilled.

Theorem 3. — With the notations above let P’ = (ﬁ’, Q' F, 17_1) be a second display
over S, and P’ = (P',Q’, F, V1) the display over R obtained by base change. Assume
we are given a morphism of displays u : P — P’ over R. Then u has a unique lifting
u to a morphism of quadruples:

u:(P,Q,F, V7Y — (P,Q,F, V7).

This allows us to associate a crystal to a display: Let R be a ring, such that p is
nilpotent in R. Let P = (P,Q, F,V~1) be a display over R. Consider a surjection
S — R whose kernel a is equipped with a divided power structure. If p is nilpotent
in S we call such a surjection a pd-thickening of R. Let P = (]3, @, f‘, ‘7’1) be any
lifting of the display P to S. By the theorem the module P is determined up to
canonical isomorphism by P. Hence we may define:

Dp(S)=S Qw (s) P

This gives a crystal on Spec R if we sheafify the construction.

Next we construct a functor BT from the category of 3n-displays over R to the
category of formal groups over R. A nilpotent R-algebra A is an R-algebra (without
unit), such that NV = 0 for a sufficiently big number N. Let Nilg denote the
category of nilpotent R-algebras. We will consider formal groups as functors from the
category Nilg to the category of abelian groups. Let us denote by W(N ) C W(N)
the subgroup of all Witt vectors with finitely many nonzero components. This is a
W (R)-submodule. We consider the functor G%(N) = W(N) ®@w (r) P on Nilg with
values in the category of abelian groups. Let G;l be the subgroup functor which is

generated by all elements in W(N ) @w (r) P of the following form:
‘tww, oy EEWWN), yeQ zeP.
Then we define a map:
(1) Vt-id:Gz' — GY%
On the generators above the map V! —id acts as follows:
V7' —id)("eor) =t Fr-Y¢ou
(Vi—id)(Eey) ="caV iy -¢ay
Theorem4. — Let P = (P,Q,F,V 1) be a 9n-display over R. The cokernel of the
map (1) is a formal group BT'p. Moreover one has an exact sequence of functors on

NﬂR N

V=t —id o

0—>G7§1 Gy, — Bl'p — 0
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If \V is equipped with nilpotent divided powers we define an isomorphism:
expp : N ®r P/Q — BIp(N),

which is called the exponential map. In particular the tangent space of the formal
group Bl’p is canonically identified with P/Q.

Let Er be the local Cartier ring with respect to the prime p. Then BI’p has the
following Cartier module:

M(P) =Er @wr) P/(F@®2— 10 Fz, VoV 'y — 1Qy)g,,

where x runs through all elements of P and y runs through all elements of (), and
( )eg indicates the submodule generated by all these elements.

Theorem5. — Let P be a display over R. Then BI'p is a formal p-divisible group of
height equal to rankw gy P.

The restriction of the functor Bl to the category of displays is faithful. It is fully
faithful, if the ideal of nilpotent elements in R is a nilpotent ideal.

The following main theorem gives the comparison of our theory and the crystalline
Dieudonné theory of Grothendieck and Messing.

Theorem6. — Let P = (P,Q, F, V=) be a display over a ring R. Then there is a
canonical isomorphism of crystals over R:

Dp ——— Dgr,

Here the right hand side is the crystal from Messing’s book [Me]. If W(R) — S is a
morphism of pd-thickenings of R, we have a canonical isomorphism

S OWwW (R) P =Dgr, (9).

In this theorem we work with the crystalline site whose objects are pd-thickenings
S — R, such that the kernel is a nilpotent ideal. We remark that the crystal Dgp,
is defined in [Me] only for pd-thickenings with nilpotent divided powers. But if one
deals with p-divisible groups without an étale part this restriction is not necessary
(see corollary 97 below). In particular this shows, that the formal p-divisible group
BTI'’p lifts to a pd-thickening S — R with a nilpotent kernel, iff the Hodge filtration
of the crystal lifts (compare [Gr] p.106).

The functor BT is compatible with duality in the following sense. Assume we are
given 3n-displays P; and P over a ring R, where p is nilpotent.

Definition 7. — A bilinear form ( , ) on the pair of 3n-displays Pi, P2 is a bilinear
form of W(R)-modules:
P1 X P2 — W(R),

which satisfies

VIV, Vlye) = (y1,y2)  for y1 € Q1, ¥ € Qo.
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Let us denote by Bil(Py,Pa) the abelian group of these bilinear forms. Then we
will define a homomorphism:

(2) Bil(Py, Py) — Biext!(BIp, x Blp,,Gy,)

Here the right hand side denotes the group of biextensions of formal groups in the
sense of Mumford [Mul].
To do this we consider the exact sequences for ¢ = 1, 2:

V-1 —id

0— Gp; Gp, — BI'p, — 0
To define a biextension in Bie><‘51(BT7>1 x Bl'p,, @m), it is enough to give a pair of
bihomomorphisms (compare [Mu]):
a1 G;ll (N)

~

G, (V) — Gm(W),
Gl (V) — Bm(W),

which agree on G5! (N) x Gzl (N), if we consider G;ll as a subgroup of G}, via
the embedding V! — id, for i = 1,2. To define a; and as explicitly we use the
Artin-Hasse exponential hex : W(N) — G,,,(N):

a1(y1,x2) = hex(V =1y, 20)  fory; € G;ll(./\/'), zy € GY (N)

az(71,y2) = — hex(21,2) for 11 € G (N), y2 € G;;(N)
This completes the definition of the map (2).

Theorem 8. — Let R be a ring, such that p is nilpotent in R, and such that the ideal
of its milpotent elements is nilpotent. Let Py and Po be displays over R. Assume that
the display Ps is F-nilpotent, i.e. there is a number r such that F" Py C IrP>. Then
the map (2) is an isomorphism.

I would expect that BI' induces an equivalence of categories over any noetherian
ring. We have the following result:

Theorem 9. — Let R be an excellent local ring or a ring such that R/pR is an algebra
of finite type over a field k. Assume that p is nilpotent in R. Then the functor Bl is
an equivalence from the category of displays over R to the category of formal p-divisible
groups over R.

We will now define the obstruction to lift a homomorphism of displays. Let S — R
be a pd-thickening. Let P; and P, be displays over S, and let P; and P, be their
reductions over R. We consider a morphism of displays @ : P — Psy. Let p: P — P
the unique map which exists by theorem 3. It induces a map, which we call the
obstruction to lift ©:

Obst®: Q1/IsP1 — a®gs P2/Q2

This morphism vanishes iff ¥ lifts to a homomorphism of displays ¢ : P; — Ps.
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We will now assume that pS = 0 and that a? = 0. We equip S — R with the
trivial divided powers. Then p Obstp = 0. Therefore pp lifts to a homomorphism of
displays ¥ : P1 — Ps. Let us assume moreover that we are given a second surjection
T — S with kernel b, such that b? = 0, and such that pT" = 0. Let 731 and 732 be
two displays, which lift P; and P;. Then we give an easy formula (proposition 73),
which computes Obst ) directly in terms of Obst®. This formula was suggested by
the work of Gross and Keating [GK], who considered one-dimensional formal groups.
We demonstrate how some of the results in [G] and [K] may be obtained from our
formula.

Finally we indicate how p-divisible groups with an étale part may be treated us-
ing displays. Let R be an artinian local ring with perfect residue class field k of
characteristic p > 0. We assume moreover that 2R = 0 if p = 2. The exact sequence

0 —— W(m) —— W(R) —2— W(k) —— 0,

admits a unique section § : W (k) — W (R), which is a ring homomorphism commuting
with .
We define as above:

ﬁ/\(m) = {(zo,x1,...) €W(m) | x; =0 for almost all i}

Since m is a nilpotent algebra, W(m) is a subalgebra stable by F' and V. Moreover
W(m) is an ideal in W (R).
We define a subring W (R) C W(R):

W(R)={¢€W(R) | &—dm(€) e W(m)}
Again we have a split exact sequence

0 —— W(m) —— W(R) —— W(k) —— 0,

with a canonical section § of w. Under the assumptions made on R the subring
W(R) C W(R) is stable by ¥ and V. Therefore we may replace in the definition of a

3n-display the ring W(R) by W(R). The resulting object will be called a Dieudonné
display over R. In a forthcoming publication we shall prove:

Theorem. — Let R be an artinian local ring with perfect residue field k of charac-
teristic p > 0. We assume moreover that 2R = 0 if p = 2. Then the category of
Dieudonné displays over R is equivalent to the category of p-divisible groups over R.

I introduced displays after discussions with M. Rapoport on the work of Gross
and Keating [GK]. I thank Rapoport for his questions and comments and also for
his constant encouragement, which made this work possible. I also thank J. de Jong,
G.Faltings, and B.Messing for helpful remarks, and O.Gabber for his helpful questions,
which he asked during lectures. The remarks of the referee helped me to correct an
error in the first version of this paper. I forgot that Messing [Me]| assumes nilpotent
divided powers, which is necessary in the presence of an étale part (see the remarks

SOCIETE MATHEMATIQUE DE FRANCE 2002



134 T. ZINK

above). I am very grateful to him. Finally I thank the organizers of the “P-adic
Semester” in Paris 1997 for giving me the possibility to present my results there. At
this time a preliminary version of this work entitled “Cartier Theory and Crystalline
Dieudonné Theory” was distributed.

Note added in March 2001: A proof of the last theorem above is given in [Z3]. The
relation of the theory of Ch. Breuil [Br] to the theory given here is explained in [Z4].
A construction of the display associated to an abelian scheme over R is given in [LZ],
by means of a de Rham-Witt complex relative to R.

1. Displays

1.1. Generalities. — Let A and B be commutative rings and p : A — B be a
homomorphism. If N is a B-module, we denote by N[, the A-module obtained by
restriction of scalars. Let M be a A-module. A p-linear map o : M — N is an A-
linear map o : M — N|,). It induces a B-linear map a¥ B®yaM — N. We will say
that « is a p-linear isomorphism (respectively epimorphism), if a* is an isomorphism
(respectively epimorphism).

Let R be a unitary commutative ring, which is a Z,)-algebra. Let W(R) be the
Witt ring with respect to the prime number p. We apply the definitions above to the
case where A = B = W(R), and where p is the Frobenius endomorphism ' : W(R) —
W(R). (For notations concerning the Witt ring we refer to the introduction.) As an
example we consider the Verschiebung V' : W(R) — W(R). It induces a W (R)-linear
isomorphism

V. W(R)[F] — Ig.
Its inverse is a -linear map:
L Ir — W(R)

This map is a “linear epimorphism, but it is not a ~linear isomorphism (!) unless
R is a perfect ring.

We define base change for “linear maps as follows. Let S — R be a homomorphism
of commutative rings. Assume « : Q — P is a “linear homomorphism of W (S)-
modules. Then the base change arp is

apR . W(R) Qw(S) Q— W(R) Qw(S) P.
we T —  fwealn)

We have
(@) wr) = (ar)?,

where the index W(R) is base change for linear maps.
We are now ready to define the notion of a display.
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Definition 1. — A 3n-display over R is a quadrupel (P,Q,F,V 1), where P is a
finitely generated projective W (R)-module, Q C P is a submodule and F and V1
are f-linear maps F: P — P, V™1 :Q — P.
The following properties are satisfied:
(i) IgkP C @ C P and there exists a decomposition of P into a direct sum of
W(R)-modules P = L@ T, such that Q = L & IrT.
(i) V~=1:Q — P is a -linear epimorphism.
(iii) For x € P and w € W(R), we have

(1) V1(Vwz) = wFa.

We make some formal remarks on this definition. The 3n-displays form an additive
category. We are mainly interested in the case, where R is a Zj-algebra. Then we
have Z,, C W(R) and hence the category is Z,-linear.

The operator F is uniquely determined by V~! because of the relation:

V1(V1z) = Fz, forz € P.

If we apply this to the case z = y € @ and apply the linearity of V!, we obtain
the relation:

(2) Fy=p-V'y.

A decomposition P = L & T as required in (i), we will call a normal decomposition.
We set P = P/IrP and Q = Q/IrP. Then we get a filtration of R-modules

(3) 0CQCP,

whose graded pieces are projective finitely generated R-modules. This is the Hodge
filtration associated to a display.

Lemma2. — Let R be a p-adically complete and separated ring. Let us replace in the
definition 1 the condition (i) by the weaker condition that IrP C Q C P and that
the filtration (3) has finitely generated projective R-modules as graded pieces. Then
(P,Q,F,V~1) is a 3n-display.

Before proving the lemma we need a general fact about the Witt ring.

Proposition 3. — Let R be a p-adic ring, i.e. complete and separated in the p-adic
topology. Then the ring W (R) is p-adic. Moreover it is complete and separated in the
Ir-adic topology.

Proof. — We begin to show that W(R) is separated in the p-adic topology. Since
W(R) is the projective limit of the rings W, (R/p™R) for varying n and m it is
enough to show that that p is nilpotent in each of the rings W,,(R/p™R). To see this
we consider a ring a without unit such that p™a = 0. An easy induction on m shows
that p is nilpotent in W, (a).
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It is enough to prove our assertion for a ring R which has no p-torsion. Indeed in
the general case we may choose a surjection S — R where S is a torsion free p-adic
ring. But then we obtain a surjection W (S) — W(R) from the p-adic ring W(S) to
the p-adically separated ring W (R). This implies that W(R) is a p-adic ring,.

To treat the case of a p-adic ring we need a few lemmas:

Lemmad. — Let S be a ring without p-torsion. Let © = (o, ..., Tm) € Win11(S) be a
Witt vector. Then for any fixed number s > 1 the following conditions are equivalent:

(i) ps‘:ciforz‘:o,...,m

(ii) p** | wa(z) forn=0,...,m.
Proof. — The first condition clearly implies the second. Assume the second condition
holds. By induction we may assume p° | x; for i =0,...,n — 1. Then we write

wy(z) = wy_1(zh ... 2l ) +p a,.

By the obvious implication and by induction the first term on the right hand side is = 0
mod p(~D*Ps_ Since (n — 1) 4 ps > n + s, we conclude p"x,, =0 mod p"*t*S. O

Lemmab5. — Let R be a p-torsion free ring. Let a € Wy, (R) be a given Witt vector.
Let u be a number. We assume that the equation

(4) plr=a
has for each s a solution in the ring W, (R/p*R). Then the equation (4) has a solution
in Wi (R).

Proof. — Let us consider a fixed s. By assumption there is a z € W,,,(R), such that
p¥z = a holds in the ring W,,(R/p*T*R). We let z5 be the image of z in the ring
Wi (R/p*R). Then we claim that x is independent of the choice of z.

Indeed, let 2’ be a second choice and set £ = z — 2z’. The Witt components of p*¢£
are elements of p***“R. Hence the lemma implies

prtstu | w,(p“€) forn=0...m— 1.

It follows that p™** ‘ w,,(§). But applying the lemma again we obtain the p* ‘ &, for
all Witt components of &.

This shows the uniqueness of z;. We set z = limz, € W (R) and obtain the desired
solution of (4). O

Lemma6. — Let S be without p-torsion. We will denote by I, the ideal V" W (S) C
W(S). Let T be the linear topology on W(S), such that the following ideals form a
fundamental set of open neighbourhoods of zero:

(5) L + W (pS)

Here, v, s runs through all pairs of numbers.
Then p"W (S) is for each number u closed in the topology T .
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Proof. — We have to show
(6) () P"W(S) + I + W(p*S) = p"W(S)
r,s€EN
Let z be an element from the left hand side.
We denote for a fixed number r by T the image of z in W,.(S). Then the equation

plz =T
has a solution z in the ring W,.(S/p®S) for each number s. By the last lemma we have
a solution in W,.(S) too. This shows z € p*W (S) + 1.

We take the unique solution z, € W,.(S) of p*z, = z in W,(5), and we set z =
lim z,. Hence z = p"z € p"W(S). O

Let S be a torsion free p-adic ring. Clearly the Witt ring W(S) is complete and
separated in the topology 7. The assertion that W(S) is p-adic is a consequence of
the last lemma and the following elementary topological fact (see Bourbaki Topologie
III §3 Cor 1):

Lemma7. — Let G be an abelian group. Let A resp. B be linear topologies on G, which
are given by the fundamental systems of neighbourhood of zero { A, } resp. { By}, where
A, and B,, are subgroups.

We make the following assumptions:

a) Fach A,, is open in the B-topology, i.e. the B topology is finer.

b) Each B, is closed in the A-topology.

c) G is complete and separated in the A-topology.

Then G is complete and separated in the B-topology.

We omit the easy proof.
We note that in the Witt ring W(R) of any ring we have an equality of ideals for
any natural number n:

(7) I =p"" g
If R is a p-adic ring the additive group I is p-adically complete and separated, because

it is by the Verschiebung isomorphic to W(R). This shows that W(R) is then also
complete in the Ir-adic topology. This completes the proof of proposition 3. o

Corollary 8. — Assume that p is nilpotent in R. Then the p-adic and the Ir-adic
topology on W(R) coincide. This topology is finer than the V-adic topology, which
has the ideals I,, = V"W (R) as a fundamental system of neighbourhoods of zero.

Proof. — This is clear. O

We turn now to the proof of lemma 2. The proposition 3 implies in particular that
W (R) is complete and separated in the Ir-adic topology. We set A,, = W(R)/I}. We
start with a decomposition P = L @& T such that Q/IrP = L over A; = R and lift it
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step by step to a decomposition A, @y (ry P = L, ®T), over A, using the surjections
with nilpotent kernel A,, — A, _1. Then we obtain the desired decomposition by
taking the projective limit.

Lemma9. — Let (P,Q,F, V1) be a 3n-display over a ring R, and P = L& T be a
normal decomposition. Then the map

(8) V3ieF:LeT — P
is a F-linear isomorphism.

Proof. — Since source and target of V! @ F are projective modules of the same
rank, it is enough to show, that we have a f-linear epimorphism. Indeed, by the
property (ii) of the definition 1 the W (R)-module P is generated by V=, for [ € L
and V~1(Ywt) for t € T and w € W. The lemma follows, since V! (Vwt) = wFt. O

Using this lemma we can define structural equations for a 3n-display, whose Hodge
filtration (3) has free graded pieces. Let (P,Q, F,V ') be a 3n-display over R with
this property. Then the modules L and 7" in a normal decomposition P = L & T, are
free. We choose a basis ej,...,eq of T, and basis egy1...ep of L. Then there are
elements a;; € W(R), 14,j=1,...,h, such that the following relations hold.

h
Fe; = Zaijei, forj=1,...,d
i=1
9) N
V_le]- = Zaijei forj=d+1,...,h
i=1
By the lemma 9 the matrix («;;) is invertible.

Conversely assume we are given an invertible h x h-matrix («;;) over the ring W (R)
and a number d, such that 0 < d < h. Let T be the free W(R)-module with basis
e1,...eq and L be the free W(R)-module with basis eg41,...,e,. Weset P=L&T
and Q = L® IrT, and we define the F-linear operators F' and V ~! by the equations
(9) and the following equations

h
Fejzz:paijei, j=d+1,...,h

i=1
h

Vﬁl(vwej) = Zwaijei, ji=1,...,d
i=1

One verifies easily, that this defines a 3n-display over R.
For a 3n-display (P, Q, F, V') we do not have an operator V as in Dieudonné or
Cartier theory. Instead we have a W (R)-linear operator:

(10) Vi P — W(R) ®@pwn P
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Lemma 10. — There exists a unique W (R)-linear map (10), which satisfies the fol-
lowing equations:

Vi (wFz)=p-w®z, forweW(R),z€P
ViwV 'y =wey, foryeQ
Moreover we have the identities

(12) FuVu = pidp, V’iF’i = pidW(R)®F,W(R)P :

(11)

Proof — Clearly V* is uniquely determined, if it exists. We define the map V¥ by
the following commutative diagram, where W = W (R):

(V-1 4+ F)
WerpwLdWepw T ——— P

(13) id +pidJ Jvﬁ
Werw LOWpw T —— W Qpw P

Here the lower horizontal map is the identity.
We need to verify (11) with this definition. We write x =1+¢,forl € Land ¢t € T.

V¥ (wFz) = VH(wFl) + V¥ (wFt) = VAV (Ywl)) + V¥ (wFt)
=1 wl+pwet=pwe (+1t)=pwe .
Next take y to be of the form y = [ + Vut.
VEHwV " ly) = VHwV ) 4+ Vi(wuFt)
=wRl+puut=wel+wVuat
=we(+"ut) =wey.
The verification of (12) is left to the reader. O

Remark. — The cokernel of V¥ is a projective W(R)/pW (R)-module of the same
rank as the R-module P/Q).

Let us denote by £V the W (R)-linear map
id@piwm Vi W @piw P — W @pitiyw P,

and by V™ the composite 7" Vio...of Vo VE.
We say that a 3n-display satisfies the nilpotence (or V-nilpotence) condition, if
there is a number N, such that the map

VNP — W(R) @~ wiry P
is zero modulo Ir + pW (R). Differently said, the map
(14) R/pR @y w(r) P — R/PR ®wy wr) P

induced by VN is zero.
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Definition 11. — Let p be nilpotent in R. A display (P,Q,F,V ~!) is a 3n-display,
which satisfies the nilpotence condition above.

Let us choose a normal decomposition P = L @ T'. It is obvious from the diagram
(13) that the map

R/pR ©w, w(r) P v, R/pR @y, wim) P —L— R/pR @w, wiry T
is zero. Therefore it is equivalent to require the nilpotence condition for the following
map:
Ve pr
Ut:.L>LepT=P —/—— Werpw P —— Weprw L

Less invariantly but more elementary the nilpotence condition may be expressed if
we choose a basis as in (9). Let (8x,;) be the inverse matrix to (e ;). Consider the
following (h — d) x (h — d)-matrix with coefficients in R/pR:

B = (wo(Br) modulo p)ki—dt1,...,n

Let B®) be the matrix obtained by raising the coefficients to the p*-th power. Then
the nilpotence condition says exactly that for a suitable number N :

(15) BWTH ... .=y

Corollary 12. — Assume that p is nilpotent in R. Let (P,Q, F,V 1) be a display over
R. Then for any given number n there exists a number N, such that the following
map induced by VN® is zero:

Wih(R) @w(r) P — Wn(R) @p~ w(r) P

Proof. — Indeed, by the proof of proposition 3 the ideal Iz + pW,,(R) in W, (R) is
nilpotent. O

We will also consider displays over linear topological rings R of the following type.
The topology on R is given by a filtration by ideals:
(16) R=ayDa1D---Day...,

such that a;a; C a;4;. We assume that p is nilpotent in R/a; and hence in any ring
R/a;. We also assume that R is complete and separated with respect to this filtration.
In the context of such rings we will use the word display in the following sense:

Definition 13. — Let R be as above. A 3n-display P = (P,Q, F,V 1) over R is called
a display, if the 3n-display obtained by base change over R/a; is a display in sense of
definition 11.

Let P be a display over R. We denote by P; the 3n-display over R/a; induced by
base change. Then P; is a display in the sense of definition 11. There are the obvious
transition isomorphisms

(17) ¢i : (Piv1)r/a, — Pi
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Conversely assume we are given for each index ¢ a display P; over the discrete ring
R/a;, and transition isomorphisms ¢; as above. Then the system (P;, ¢;) is obtained
from a display P over R. In fact this is an equivalence of the category of systems of
displays (P;, ¢;) and the category of displays over R.

If R is for example complete local ring with maximal ideal m, such that pR = 0,
we can consider the category of displays over R in the sense of definition 11 but we
can also consider the category of displays over the topological ring R, with its m-adic
topology. The last category is in general strictly bigger.

1.2. Examples

Example14. — Let R = k be a perfect field. A Dieudonné module over k is a finitely
generated free W (k)-module M, which is equipped with a flinear map F : M — M,
and a ¥ -linear map V : M — M, such that:

FV=VF=p

We obtain a 3n-display by setting P = M, Q = VM with the obvious operators
F:M — M and V7! : VM — M. Moreover (P,Q, F,V~1) is a display if the map
V : M/pM — M/pM is nilpotent. The map V¥ is given by

mr— 1 Vm

In the other direction starting with a display (P, Q, F, V1) we obtain a Dieudonné
module structure on P if we define V' as the composite:

v
(18) V:P— W(k)Qpwmw P — 1P
wRx —s P

Fis an automorphism of

This makes sense because the Frobenius endomorphism
W (k). We see that the category of 3n-displays over a perfect field is naturally equiv-
alent to the category of Dieudonné modules.

More generally let k be a perfect ring of characteristic p. Then ¥'is an automorphism
on W(k) and pW (k) = I;. We call a Dieudonné module k a finitely generated

projective W (k)-module M equipped with two Z-linear operators
F:M— M,

VM — M,

which satisfy the relation F(wz) = fwFz, V(fwz) = wVax, FV =VF =p.

If we are given a homomorphism of k — k’ of perfect rings, we obtain the structure
of a Dieudonné module on M" = W (k") @y iy M.

Since p is injective on W (k), there is an exact sequence of k-modules:

0 — M/FM — M/pM — M/VM — 0
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If we tensorize this sequence with &’ we obtain the corresponding sequence for M’. In
particular this sequence remains exact. We also see from the sequence that M/V M
is of finite presentation. Hence we conclude that M/V M is a finitely generated pro-
jective k-module. Therefore we obtain a 3n-display (M,V M, F,V~1).

Proposition 15. — The category of 3n-displays over a perfect ring k is equivalent to
the category of Dieudonné modules over k. Moreover the displays correspond exactly
to the Dieudonné modules, such that V is topologically nilpotent for the p-adic topology
on M.

The proof is obvious. We remark that a Dieudonné module M, such that V is
topologically nilpotent is a reduced Cartier module. The converse is also true by [Z1]
Korollar 5.43.

We note that Berthelot [B] associates to any p-divisible group over a perfect ring
a Dieudonné module. In the case of a formal p-divisible group his construction gives
the Cartier module (compare [Z2] Satz 4.15).

Example 16. — The multiplicative display G,, = (P,Q, F, V1) over a ring R is de-
fined as follows. We set P = W(R), Q = Ir and define the maps F' : P — P,
V-1:Q — Pby:
Fw="w forw e W(R)
ViVw) = w
We note that in this case the map V* is given by:
VEW(R) — W(R) ©rwm W(R) = W(R)
Viw=19"w=puw®1l
Hence using the canonical isomorphism & the map V* is simply multiplication by p.

Therefore we have a display, if p is nilpotent in R, or more generally in the situation
of definition 13.

Example 17. — To any 3n-display we can associate a dual 3n-display. Assume we are
given two 3n-displays P; and Ps over R.

Definition 18. — A bilinear form of 3n-displays
(,):P1xP2— G
is a bilinear form of W (R)-modules
(,):PLx Ph— W(R),
which satisfies the following relation:

(19) VIV, Vlye) = (W1, y2),  for yn € Q1, 42 € Q2
We will denote the abelian group of bilinear forms by Bil(P1 X P2, G,).
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The last relation implies the following;:
(V7y1, Fag) = Fyr,22) forys € Qu, x2 € Py
(20) (Fx1, Fag) = pf(x1,22) for 21 € Py,
(Fa1, V= ly2) = H(z1,y2) for yo € Qo,
Indeed,
YV tyn, Fa) = YV y, VL (V) = (u, Vlae) = Yy, @) = Yy, 22)

v

implies the first relation of (20) because ¥ is injective. The other relations are verified

in the same way. We note that (Q1,Q2) C Ir by (19). Assume we are given a finitely
generated projective W(R)-module P. Then we define the dual module:

P* = Homyy (g (P, W(R))
Let us denote the resulting perfect pairing by (, ):

(21) Pxxxi* : I?;,(Ij))
There is also an induced pairing

(,):W(R)®rww) P x W(R) ®@prwr) P* — W(R),
which is given by the formula:

(w®z,v®z) =wv(z,2), z€P, z€P* wovecW(R)

Let us consider a 3n-display P = (P,Q,F,V~!) over R. We set @ = {¢ €
P* | ¢(Q) C Ir}. Then Q/IgP* is the orthogonal complement of Q/IrP by the
induced perfect pairing:

P/IRP X P*/IRP* — R
Definition 19. — There is a unique 3n-display P! = (P*,@,F,V‘l), such that the
operators F' and V ! satisfy the following relations with respect to the pairing (21):
(Vlg, Fz) = H(2,2) forz €Q, z € P*
(Fz,Fz) =
(Fz,V='2) = F(z,2) forzeP, z2€Q

ViV lz,V=lz) = (1,2) forzeQ, z€Q

pf(z, 2) for x € P, z € P*
(22)

Hence we have a bilinear form of displays
Px P — Gn
We call P! the dual 3n-display.
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As for ordinary bilinear forms one has a canonical isomorphism:
(23) Bil(P; x P2, Gm) — Hom(Pa, P)

From the relations of definition 19 we easily deduce that the W (R)-linear maps F*
and V¥ for P respectively P* are dual to each other:

(Viz, 0@ 2) = (2, F*(v @ 2))

(24) (FHw®1),2) = (W, Viz)

Let us assume that p is nilpotent in R. In terms of the dual 3n-display we may
rephrase the nilpotence condition as follows. Iterating the homomorphism F* for the
dual 3n- display we obtain a map:

(25) FNﬁW(R)®FN7w(R) P*—>P*

Then the 3n-display P satisfies the V-nilpotence condition, iff for any number n there
exists a number N, such that the following map induced by (25) is zero:

FN% W, (R) @p~n w(r) P* — Wih(R) @w(r) P~
In this case we will also say that P! satisfies the F-nilpotence condition.

Next we define base change for a 3n-display. Suppose we are given a ring homo-
morphism ¢ : S — R. Let P be a W(S)-module. If ¢ : P — P’ is a -linear map of
W (S)-modules, we define the base change @y () as follows:

ew(r) : W(R) ®@w(s) P — W(R) @ws) P’
W T —  fwe ()

Then we have (gaW(S))ti = idw(r) ®W(S)<p“ for the linearizations.

Let P = (P,Q,F, V1) be a 3n-display over S. Let ¢ : S — R be any ring
morphism. We will now define the 3n-display obtained by base change with respect
to .

Definition 20. — We define Pr = (Pr, Qr, Fr, Vgl) to be the following quadruple:
We set Pr = W(R) @w(g) P.
We define Qg to be the kernel of the morphism W(R) ®@w (s) P — R®s P/Q.
Weset Fr=F® F.
Finally we let V5 1. Qr — Pg be the unique W (R)-linear homomorphism, which
satisfies the following relations:

Vgl(w®y):Fw®V*1y, forw e W(R),y € Q
(26)
Vit("w®z) =we Fz, forz € P

Then Pgr is a 3n-display over R, which is called the 3n-display obtained by base
change.
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To show that this definition makes sense we have only to prove the existence and
uniqueness of Vi 1. The uniqueness is clear. For the existence we choose a normal
decomposition P = L & T. Then we have an isomorphism:

Qr ~ W(R) Aw (s) L®Ip Ow (s) T

We define V; ! on the first summand by the first equation of (26) and on the second
direct summand by the second equation. We leave the verification that (26) holds
with this definition to the reader.

In the case where ¢ is surjective the image of the morphism W (R) ®w ) Q@ —
W(R) @ws) P = Pr, is simply Qg, but in general this image is strictly smaller than
Qr.

By looking for example at (15) it is clear that Pg is a display if P was a display.
There is also an obvious converse statement.

Lemma2l. — Let ¢: S — R be a ring homomorphism, such that any element in the
kernel of ¢ is nilpotent. Then P is a display if Pr is a display.

Remark. — Before we turn to the next example, we collect some general facts about
the liftings of projective modules. Let S — R be a surjective ring homomorphism,
such that any element in the kernel is nilpotent, or such that S is complete and
separated in the adic topology defined by this kernel. Assume we are given a finitely
generated projective module P over R. Then P lifts to S, i.e. there is a finitely
generated projective S-module P together with an isomorphism ¢ : R ®g P P. By
the lemma of Nakayama the pair (]3, @) is uniquely determined up to isomorphism.
The existence follows from the well-known fact that idempotent elements lift with
respect the surjection of matrix algebras Endg(S*) — Endgr(R"), where u is some
number (e.g. H.Bass, Algebraic K-Theory, W.A. Benjamin 1968, Chapt. III Prop.
2.10).

Let L be a direct summand of P. A lifting of L to a direct summand of P is obtained
as follows. Let L be any lifting of L to S. Let L — P be any lifting of L — P, whose
existence is guaranteed by the universal property of projective modules. In this way
L becomes a direct summand of P. This is easily seen, if one lifts in the same way
a complement T of L in P. Indeed the natural map LeT — Pis by Nakayama an
isomorphism.

Let us now assume that the kernel of S — R consists of nilpotent elements. We
also assume that p is nilpotent in S. Let now P denote a projective W (R)-module.
We set Pr = R Qw,w(r) PP- We have seen that Pg may be lifted to a finitely
generated projective S-module Ps. Since W (S) is complete and separated in the
Is-adic topology by proposition 3, we can lift Ps to a projective finitely generated
W (S)-module P. We find an isomorphism W (R) W(S) P — P, because liftings of
Pgr to W(R) are uniquely determined up to isomorphism. Hence finitely generated
projective modules lift with respect to W (S) — W(R). Since the kernel of the last
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morphism lies in the radical of W (.S), this lifting is again unique up to isomorphism.
We also may lift direct summands as described above.

Let (ﬁ Q. F, V~1) be a 3n-display over S and (P,Q,F,V~!) be the 3n-display
obtained by base change over R. Then any normal decomposition P = L & T may
be lifted to a normal decomposmon P =L&T. Indeed choose any finitely generated
projective W (S)-modules L and T which lift L and T'. Because Q Q is surjective,
we may lift the inclusion L — Q to a W(S )-module homomorphism L— Q Moreover
we find a W (S)-module homomorphlsm T — P which lifts T' — P. Clearly this gives
the desired normal decomposition P=LaT.

Example22. — Let S — R be a surjection of rings with kernel a. We assume that p
is nilpotent in S, and that each element a € a is nilpotent.

Let Py = (Po, Qo, F, V1) be a 3n-display over R. A deformation (or synonymously
a lifting) of Py to S is a 3n-display P = (P,Q,F,V 1) over S together with an
isomorphism:

Pr = Py.

Let us fix a deformation P. To any homomorphism
a € Homyy gy (P, W (a) @w(s) P),

we associate another deformation Py, = (P, Qa, Fu, V, 1) as follows:
We set P, = P, Q, = Q, and

Foox=Fz—«o(Fzx), forxzeP

27
27) Vily=Vly—a(Vly), foryeqQ.

The surjectivity of (V7 !)# follows the kernel of W(S) — W(R) is in the radical of
W (S) and therefore Nakayama’s lemma is applicable.

Since F and F,, respectively V1 and V! are congruent modulo W (a) the 3n-
display P, r obtained by base change is canonically isomorphic to Py.

We note that any deformation is isomorphic to P, for a suitable homomorphism
a. Indeed, let P; = (P1,Q1,Fi, Vi ') be any other deformation of Py. We find
an isomorphism of the pairs (P, Q) and (P1,@1), which reduces to the identity on
(Py, Qo). Indeed, we fix a normal decomposition Py = Lo @ Tp and lift it to a normal
decomposition of P respectively of P;. Then any isomorphism between the lifted
normal decompositions is suitable. Hence we may assume that (P, Q) = (P, Q1).
Then we define ¥ -linear homomorphisms

§:P—W(a)@ws) P, 1n:Q— W(a)Qws) P,
by the equations:

Fiz=Fx—¢(x) forzeP

28 : ”
(28) Vitly=V-ly—n(y) foryeqQ.
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Then ¢ and n must satisfy the relation:
n(Ywz) = wé(x), for z € P.

It is then easily checked that there is a unique homomorphism « as above, which
satisfies the relations:

a(V7ly) =nly), foryeq
a(Fx) =¢&(x), forxeP

Then the deformations P, and P; are isomorphic.

Example23. — Let R be a ring such that p- R = 0. Let us denote by Frob: R — R
the absolute Frobenius endomorphism, i.e. Frob(r) = r? for r € R.

Let P = (P,Q, F,V~!) be a 3n-display over R. We denote the 3n-display obtained
by base change with respect to Frob by P®) = (P® Q@) F V~1). More explicitly
we have

pr) — W(R) Qrwr) P
QW) = Ip ®pwr) P+ Image (W(R) ®pwr) Q)

The operators F and V! are uniquely determined by the relations:

Flwor)=Twe Fz, forwcW(R),zcP
V3Vwezr) =we Fr,
V3iwey) =fweVly, foryeq.

(At the first glance it might appear that this explicit definition does not use p -
R = 0. But without this condition Q) /IrP®) would not be a direct summand of
P(p)/IRP(p). The elements 1 ® Ywz = pw @ x would cause trouble, if ¥ and vV do not
commute.)

The map V# : P — W(R) Qpwr) P of lemma 1.5 satisfies V#(P) C Q). Using
the fact that P is generated as a W (R)-module by the elements V~1y for y € Q a

routine calculation shows that V# commutes with F and V1. Hence V# induces a
homomorphism of 3n-displays

(29) Frp:P — PW),

which is called the Frobenius homomorphism of P.

Similarly the map F# : W(R) @ pw (r) P — P satisfies F#(QW) c IxP. One can
check that F# commutes with the operators F' and V~'. Therefore F# induces a
map of 3n-displays, which is called the Verschiebung.

(30) Verp : PP — P,
From the lemma 1.5 we obtain the relations:

(31) Frp - Verp = p-idpe, Verp Frp = p-idp.
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Example 24. — We will define displays, which correspond to the Lubin-Tate groups.
Let O be a complete discrete valuation ring with finite residue class field &k, and
field of fractions K of characteristic 0. We fix a prime element m € Og. Let R be a
p-adic ring, which is equipped with a structure ¢ : O — R of a Ok-algebra. We set
u = ¢(m).

The displays we are going to construct are displays P over the topological ring R
with its p-adic topology. Moreover they will be equipped with an action ¢ : O —
EndP of Og. This implies an action of the ring Ox ®z, W(R) on P. Let us extend
the operators £ and ¥ on the ring W(R) Og-linearly to the ring Ox ® W(R). We
need the following easy lemma:

Lemma25. — Consider the ring homomorphism:
(32) Ok ®z, W(R) —>OK/7TOK®R/UR.

It is the residue class map on the first factor, and it is the composite of wo with the
natural projection R — R/uR on the second factor.
Then an element in Ox @ W(R) is a unit, iff its image by (32) is a unit.

Proof. — By proposition 3 the ring Ox ®z, W (R) is complete in the I -adic topology.
Hence an element in this ring is a unit, iff its image in Ox ®z, R is a unit. Since this
last ring is complete in the p-adic topology, we get easily our result. O

Let us first do the construction of the Lubin-Tate display in a special case:

Proposition 26. — Let us assume that Ox /m1Ox = F,. Let R be a p-torsion free p-
adic ring, with an Ok -algebra structure ¢ : O — R. Then there is a unique display
Pr = (Pr,Qr, F, V1) over the topological ring R, with the following properties:
(i) Pr= Ok ®z, W(R).
(ii) Qg is the kernel of the map ¢ @ wy : Ox ®z, W(R) — R.
(iii) The operators F and V~' are Ok -linear.
(iv) Vir®@l—-1®[u]) =1.

To prove this proposition we need two lemmas:

Lemma27. — With the assumptions of proposition 26 we set e = [Ok : Zp|. Then
the element:

1
=t @l-1e W) € Koz, W(R)

is a unit in Ox ®z, W(R).

Proof. — The statement makes sense because Ox ®z, W (R) has no p-torsion. First
we prove that the element 7¢ ® 1 — 1 ® [u®?] is divisible by p. We have 7¢ = ep for
some unit € € O%. Therefore it is enough to show that p divides 1 ® [u®?]. Since
u®? = ¢()PpP, it is enough to show that p divides [pP] in W (R). This will follow from
the lemma below.
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To show that 7 is a unit we consider its image by the map ¢@wq : Ox @z, W(R) —
R. It is equal to %(ue —u®P), which is a unit in R. It follows immediately from lemma
25 that 7 must be a unit too. O

Lemma28. — The element [pP] € W(Z,) is divisible by p.

Proof. — Let gm € Z, for m > 0 be p-adic integers. By a well-known lemma [BAC]
IX.3 Proposition 2 there exists a Witt vector x € W(Z,) with w,,(x) = g, for all
m > 0, if and only if the following congruences are satisfied:

Im+1 = gm mod pmtl

Hence our assertion follows if we verify the congruences:
Pyt p)p™
() = (p) mod p
p p

But both sides of these congruences are zero. O

m+1

m=20,1,...

Proof of proposition 26. — Let Lr C Pr be the free W(R)-submodule of Pr with
the following basis
Tel-10], i=1,...,e—1.
Let us denote by Tr C Pr the W(R)-submodule W(R)(1®1). Then Pr =Tr & Lg
is a normal decomposition.
To define a display we need to define *linear maps
Vil : LR i PR
F TR i PR,
such that the map V! @ F is an flinear epimorphism.
Since we want V! to be O -linear we find by condition (iv) that fori = 1,...,e — 1:

1 B i Tel-1@ W] k Ip
(33) VIir @l-10[ul]) = Tl 1E o 7k+§f ® [u'P).

Here k and [ run through nonnegative integers and the fraction in the middle is by
definition the last sum. The equation makes sense because by lemma 27 the element
7 ®1—1® [uP] is not a zero divisor in O ® W (R).

If we multiply the equation (iv) by p we find

Firol-18[) =p,
and by the required Og-linearity of F"
(r®l1-1® [uP])-F1=np.

Therefore we are forced to set:
TR 1 -1 [u?]

TR1—1® [up]

(34) Fl=r
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The F-linear operators V~! : Lr — Pr and F : T — Pg defined by the equations
(33) and (34) may be extended to f-linear operators

VﬁllQR—>PR, F:Pr— Pg

using the equations (1) and (2). Then V! is the restriction of the operator V=1 :

PR[%] — PR[%] defined by V~lz = ~o1-igre] and F s the restriction of pV 1L
PR[%] — PR[%]. This shows that the operators F' and V! are Ok-linear. Since 1 is

in the image of (V~1)# : W(R) @w gy Qr — Pr, and since this map is Ox @ W (R)-
linear, we conclude that (V‘l)# is an epimorphism. It follows that (Pr,Qg, F, V1)
is a 3n-display, which satisfies the conditions of the proposition. The uniqueness is
clear by what we have said.

It remains to be shown that we obtained a display in the topological sense. By
base change it is enough to do this for R = Og. Let us denote by P = (ﬁ, Q.F V-1
the 3n-display over F, obtained by base change Ox — F,. Then P = Ok and F
is the Og-linear map defined by Frm = p. Hence the map V is multiplication by .
Hence P is a display. O

Finally we generalize our construction to the case where the residue class field
k of Ok is bigger than F,. In this case we define for any torsionfree Ox-algebra
¢ : Ox — R a display

Pr = (Pr,Qgr, F, V).
Again we set
Pr = Ok ®z, W(R),

and we define Qr to be the kernel of the natural map
(35) ¢ ®wo: Og ®z, W(R) — R.

We identify W (k) with a subring of Og. The restriction of ¢ to W (k) will be
denoted by the same letter:

¢:W(k) — R.
Applying the functor W to this last map we find a map (compare (89) )
(36) p:W(k) — W(W(k) — W(R),

which commutes with the Frobenius morphism defined on the first and the third ring
of (36) (for a detailed discussion see [Gr] Chapt IV Proposition 4.3).

Let us denote the Frobenius endomorphism on W (k) also by 0. We have the
following decomposition in a direct product of rings

(37) Ok ®z, W(R) = H Ok ot W (k) W(R).
€] fZ

Here f denotes the degree f = [k : F)] and the tensor product is taken with respect
to p.
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The operators ' and V on W(R) act via the second factor on the left hand side of
(37). On the right-hand side they are operators of degree —1 and +1 respectively:

" Ok @i wmy W(R) — Ok ®qi-1 wry W(R)
v, Ok ot W (k) W(R) — Ok Qi+l W (k) W(R)
We obtain from (37) a decomposition of the Ox ®z, W (R)-module Pg:

Pr= @ P, P =0k®;wamw W(R)
€L/ fT

Therefore we obtain also a decomposition
Qr=Q®P® - Pr_,.

The map (35) factors through

(38) Ok ®wk) W(R) — R,

and Qo is the kernel of (38). The following elements form a basis of Py as W(R)-
module

wi=m'®1 -1 [u, i=1,...,e—1
ep=1®1.
Here u denotes as before the image of = by the map Ox — R, and e is the ramification
index e = [Og : W(k)]. Let T = W(R)eg C Py, and let Ly C Qo the free W(R)
submodule generated by wq,...,we_1. We have a normal decomposition
Pr=T@&L,

WheI‘eLZLo@Pl@---@Pf_l.
Now we may define the Og-linear operators F and V=!. Weset e; =1® 1 € P;.
Then V! is uniquely defined by the following properties:

Vlw = ef—1,
(39) V%lei=ei fori#0 icZ/fZ,
V1 is Og-linear.

Multiplying the first of these equations by p we obtain the following equation in the
ring O @qs-1,w k) W(R):
FuiFeg = pes_y
To see that this equation has a unique solution F'eq it suffices to show that:
1
S @ 1= 18 ) € Ok @orsway W(R)
is a unit. This is seen exactly as before, using that %(1 ® [uP?]) is mapped to zero by

the map W(R) — R/u.

SOCIETE MATHEMATIQUE DE FRANCE 2002



152 T. ZINK

Hence we have defined the desired -linear operators F' : P — Pr and V1! :
Qr — Pgr. Again V! extends to a “linear endomorphism of K ®z, W(R), which is
given by the formula:

x
V—l —_ Fr*
x ( 2] ) ’
where 6 € Og ®z, W(R) is the element, which has with respect to the decomposition
(37) the component w; for ¢ = 0 and the component e; for i # 0.

As before this proves the following proposition:

Proposition 29. — Let K be a finite extension of Q, with ramification index e and
index of inertia f. Let Ok, m, k have the same meaning as before.

Let R be torsion free Ok -algebra, such that R is p-adically complete and separated.
Denote by u the image of m by the structure morphism ¢ : Oxg — R. Let p : W(k) —
W(R) be the homomorphism induced by the structure morphism. Then we have a
decomposition

Ok ®z, W(R) —— H Ok ®qi,w k) W(R)
i€Z/ fZ.
Let 0 € Ox ®z, W(R) be the element, which has the component 1 for i # 0 and the
component 1 ® 1 —1® [u] for i =0.

Then there is a uniquely defined display Pr = (Pr,Qr, F, V1) over the topological
ring R, which satisfies the following conditions:

(i) Pr= Ok ®z, W(R).

(ii) Qg is the kernel of the map ¢ @ wy : Ox ®z, W(R) — R.
(iii) The operators F and V~' are Ok -linear.
(iv) V-1l =1.

1.3. Descent. — We will now study the faithfully flat descent for displays.

Lemma30. — Let M be a flat W(S)-module, and let S — R be a faithfully flat ring
extension. Then there is an exact sequence

w M- W(R) @w(s) M =W (R® R) @ws) M=W(R® R® R@w(s) M

Here the ® without index means ®g.

Proof. — The arrows are induced by applying the functor W to the usual exact
sequence for descent:

OHSHRZKR@)SRE
Since M is a direct limit of free modules, we are reduced to the case M = W(S).
In this case any term of the sequence (40) comes with the filtration by the ideals
Irgs-@shrn C W(R®g -+ ®s R). We obtain by the usual f.p.q.c. descent an exact
sequence, if we go to the graded objects. O
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Let P = (P,Q, F,V~1) be a display over S. Then the modules Pg and @ obtained
by base change fit into an exact sequence

0— Qr— Pr— R®sP/Q —0

Proposition 31. — Let S — R be a faithfully flat ring morphism. Consider a display
(P,Q,F,V~1) over S. Then we have a commutative diagram with exact rows

—

0— P — Pp = Presr— Presrosr—
U U U U

—

-
0—Q— Qr = Qrosr~ QRrRosResR— "
=

Proof. — Indeed, the first row is exact by the lemma. The second row is the kernel
of the canonical epimorphism from the first row to:

0— P/Q— R®s P/Q = R®s R®s P/Q=R®s Ros R® P/Q -

This proves the proposition and more:

Theorem 32 (descent for displays). — Let S — R be a faithfully flat ring extension.
Let P = (P,Q,F, V=Y and P' = (P',Q', F,V~1) be two displays over S. Then we
have an ezact sequence

0 — Hom(P,P’') — Hom(Pg, Pr) = Hom(Presr: Presr)- O

Let N be a W(R)-module. Then we may define a variant of the usual descent datum
relative to S — R.
Let us give names to the morphisms in the exact sequence (40):

P1 pﬁ,
(41) W(S) — W(R) _ W(R®s R)”2W(R®s R®s R).
p2 g

Here the index of p;; indicates, that the first factor of R®g R is mapped to the factor
1, and the second is mapped to the factor j. The notation p; is similar. In the context
of descent we will often write ® instead of ® g We also use the notation

piN =W(R® R) @p, wr) N.
We define a W-descent datum on N to be a W(R ® R)-isomorphism

a:piN — p3N,
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such that the following diagram is commutative (cocycle condition):

Pl
piapi N ——— pilaps N

PispiN P3PIN
p*fsal lp§3a
PispsN == p33paN
To any descent datum we may associate a sequence of morphisms
80
a° —
WI(R) QW (R) N —W(R®R) OWwW (R) NiW(R@ R®R) OWwW (R) N---

o' —
82

where the tensor product is always taken with respect to the map
W(R) — W(R®---®R) inducedby ¢a€R+—1® ---®1®ac R® --®R.
The maps 9': W(R®") @uw gy N — W(R®"D) @z N, for i < n are simply the
tensorproduct with N of the map W (R®") — W (R®("*+1) induced by
WR Qg — Q- ®a; L ® a1 ® - an.
Finally the map 8™ : W(R®") @y gy N — W (R®") @y (g) N is obtained as follows.
The descent datum « induces a map u(z) = a(l ® z):
u: N — W(R® R) @w(r) N,
which satisfies u(rz) = p1(r)u(x). Consider the commutative diagram
R —— R®R

l I

RO, R®n+1
The upper horizontal map is r — r®1 and the lower horizontal map is 1 ®- - -®@r,, —
M ®- - Qr, 1. The left vertical map isr — 1 ® --- ® 1 ® r and finally the right
vertical map is 11 @ ra — 1 Q-+ - ® 1 ® 11 Q ra.
If we apply the functor W we obtain:

W(R) —— W(R®R)
Ql l(h
W(R®”) W(R®(n+1))

Since u is equivariant with respect to the upper horizontal arrow, we may tensorize
u by this diagram to obtain

W(R®™) @qwry N — W(R®" ) @4, wirer) W(R® R) ®w(r) N

This is the map we wanted to define.
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We set

On =Y (~1)'6": W(R®") @ N — W(R®™) @ N.
i=0
The cocycle condition assures that we get a complex:

5 B
(43) W(R) @wmy N —— W(R® R) @wnr N —— W(R®R® R) @y N -

Proposition 33. — Let S — R be a faithfully flat ring homomorphism. Assume that
p is nilpotent in S. Let P be a finitely generated projective W (R)-module with a W -
descent datum « relative to R — S. Then the complex (43) for N = P is exact. The
kernel Py of 01 is a projective finitely generated W (S)-module and the natural map

W(R) Qw(S) Py— P
s an isomorphism.

We prove this a little later.

Corollary 34. — The functor which associates to a finitely generated projective W (S)-
module Py the W (R)-module P = W(R) @w sy Po with its canonical descent datum
is an equivalence of categories.

Proposition 35. — The following conditions for a W(R)-module P are equivalent:

(i) P is finitely generated and projective.

(ii) P is separated in the topology defined by the filtration I, P for n € N (same
notation as in the proof of proposition 3), and for each n the W, (R)-module
P/I,P is projective and finitely generated.

(iil) P is separated as above, and there exist elements fi,...,fm € R, which
generate the unit ideal, and such that for each i = 1,...,m W(Ry,)-module
W(Ry,) @w(r) P is free and finitely generated.

Proof. — For any number n and any f € R we have a natural isomorphism W, (Ry) =
Wn(R)(s)- This fact shows, that (iii) implies (ii). Next we assume (ii) and show that
(i) holds. We find elements uq, ..., up, which generate P/IP as an R-module. They
define a map L = W(R)" — P. Since L is complete in the topology defined by the
ideals I,, this map is surjective and P is complete. By the lemma below we find for
each number n a section o, of L/I,,L — P/I,P, such that o, reduces to o,. The
projective limit of these sections is a section of the W (R)-module homomorphism L —
P. For the proof of the implication (i) implies (iii), we may assume that R @y gy P
is free. But then the same argument as above shows that any basis of R @y (g) P lifts
to a basis of P. O

Lemma36. — Let S — R be a surjective ring homomorphism. Let m: P; — Ps be
a surjective S-module homomorphism. Suppose that P, is a projective S-module. Let
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7 : P, — Py be the R-module homomorphism obtained by tensoring © by R®g. Then
any section 7 : P, — P lifts to a section o : P — Ps.

Proof. — Let us denote by K the kernel of 7, and set K = R®g K. Let 7 be any
section of 7. Consider the morphism @ — 7 : P, — K. This lifts to a S-module
homomorphism p : P, — K, because P, is projective. We set 0 = 7 + p. O

Proof. — (of proposition 33): We begin to prove the statement on the exactness of
(43) under the additional assumption that p-S = 0. On each term of the sequence
(43) we consider the filtration by Iren , @wr)P. Since P is projective the associated
graded object is
IrRm/IRm+1 ®w(r) P — (IRgR,m/IR9Rm+1) @wr) P — -+
Applying the assumption p - R = 0 we may rewrite this as
R®yn g P/IpPZ R®s R ®yn g P/InP = -

The symbol p™ indicates, that the tensor product is taken with respect to the m-th
power of the Frobenius endomorphism. The last sequence comes from a usual descent
datum on R ®pm g P/IgrP and is therefore exact, except for the first place. Now
we will get rid of the assumption p - S = 0. We consider any ideal a C S such that
p-a=0. Let us denote by a bar the reduction modulo p (i.e. R = R/pR etc.), and
by a dash the reduction modulo a.

We have an exact sequence

0—-a®RR - R—RIR® - - 3 R—- R s RR® -5 R —0
ARTIR - Q@TpF—ar1 ® - @1y,

An obvious modification of the complex (43) yields a complex

Y 5
(44) W(CL®R)®W(R)P LA N W(a® R® R) Qw(r) P %2 e

where the factor a is untouched in the definition of §;.
We set P = W (R) @w gy P. Then the complex (44) identifies with the complex

— — % — — 5
(45)  W(a®@gR)®@ym P —— W(a®g R@gR) @ym P —— -

given by the induced descent datum on P. Since p-a = p-S = p- R = 0 the argument
before applies to show that (45) is exact except for the first place. Now an easy
induction argument using the exact sequence of complexes

0= W(aegR ") @y P — WER™) @wr) P — WER") @) P =0

proves the exactness statement for the complex in the middle.
In fact our method gives slightly more, namely that we have also, for each m,
exactness of the complex of the augmentation ideals

IR®n7m ®W(R) P.
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Now we set Py = kerd;: (P — W(R® R) Qw(r) P) and Py = Py N IrP. By the
exact cohomology sequence we have a diagram with exact rows and columns.

0 0 0 0
0— Pol — I ® P — Ipgr ® P — Irgror ® P
W(R) W(R) W(R)

| l

0—- B —W(R) ® P—W(R®R) @ P—WRQR®R) ® P
W (R) W (R) W(R)

| | |

0— P/P}— P/IzP — R®R@P/IP — R©R®RQP/IP

| | | |

0 0 0 0

By the usual descent Py/Pj is a finitely generated projective S-module. We may
lift it to a projective W (S)-module F', by lifting it step by step with respect to
the surjections W;,11(S) — W, (S) and then taking the projective limit. By the
projectivity of F' we obtain a commutative diagram

S

Py/P}

From the upper horizontal arrow we obtain a map W (R) ®w sy F' — P, which may
be inserted into a commutative diagram

W(R) ®W(S) Fr— P

| |

R®sPy/Pl —=— P/IP

Since the lower horizontal arrow is an isomorphism by usual descent theory we con-
clude by Nakayama that the upper horizontal arrow is an isomorphism. Comparing
the exact sequence (40) for M = F with the exact sequence (43) for N = P, we obtain
that F' — P, is an isomorphism. Since also the graded sequence associated to (40) is
exact, we obtain moreover that P} = IPy. Hence the proof of the proposition 33 is
complete. O

We may define a descent datum for 3n-displays. Let S be a ring, such that p is
nilpotent in S and let S — R be a faithfully flat morphism of rings. We consider the
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usual diagram (compare (41)):

q12

q1 —
R—_R®RsR¥3 RRs R®s R
q2 q23

—

Let P = (P,Q, F, V1) be a 3n-display over R. We denote the 3n-displays obtained
by base change by ¢iP etc.. Then a descent datum on P relative to R — S is an
isomorphism of 3n-displays

a: ¢iP— ¢P,

such that the cocycle condition holds, i.e. the diagram (42) is commutative if the
letter p is replaced by g and the letter N is replaced by P. Clearly for any 3n-display
Py over S we have a canonical descent datum ap, on the base change Py g over R.

Theorem 37. — The functor Py — (Po,r,ap,) from the category of displays over S to
the category of displays over R equipped with a descent datum relative to S — R is an
equivalence of categories. The same assertion holds for the category of 3n-displays.

Proof. — Let (P, «) be a display over R with a descent datum relative to S — R.
We define a W(.S)-module Py and a S-module Ky, such that the rows in the following
diagram are exact

0 Py p—2 W(R®s R) @wr) P

w T

O—>K0—>P/QL>R®SR®RP/Q

Here the maps ¢ are given by the descent datum « as explained above. That we
have also a descent datum on P/Q follows just from our assumption that « is an
isomorphism of displays and therefore preserves ). We claim that the map Fy —
Ky is surjective. Indeed, since R — S is faithfully flat, it suffices to show that
R®s Py/IsPy — R®g K| is surjective. But this can be read of from the commutative
diagram:

W(R) ®W(S) Py —» R®sg PO/IPO — R®s K

| l |

p— % P/IP—— % P/Q

Note that the vertical arrows are isomorphisms by proposition 33 or the usual descent
theory.
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Let us denote by Qo the kernel of the surjection Py — Ky. Then we obtain a

commutative diagram with exact rows and columns:

0 0 0
0 Qo Q Q>
0 Py P W(R®s R) @w(ry P = p3P
0—— Po/Qo P/Q R®s Rer (P/Q) = ¢(P/Q)
0 0 0

Here Q2 and p3 P are parts of the display ¢3P = (p5P, Q2, F, V1) which is obtained

by base change.
To get a display Py = (P, Qo, F, V1) we still have to define the operators F and

V~1L. First since & commutes with F by assumption we have a commutative diagram

J

p—2 . pip

g x
P —— piP
This shows that F' induces a map on the kernel of d:

FIPO—>PQ

Secondly a commutes with V!, i.e. we have a commutative diagram

14
Q1 —— Q2

V- 1 l lv— 1
* (83 *
piP —— pP
Recalling the definition of § one obtains a commutative diagram
)
Q Q2

AT
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Hence we obtain V~1: Qg — Py as desired. Finally we need to check the nilpotence
condition. Since the maps V! and F are compatible with Py — P, the same is true
for V# by the characterization of lemma 10. Hence we have a commutative diagram

P P

ve| [v#

W(S) @pws) Po—— W(R) @pwr) P

The nilpotence follows now from the injectivity of the map
S/pS @w, .w(s) Po — B/PR @w, w(r) P
and the form (14) of the nilpotence condition. O

1.4. Rigidity. — Our next aim is a rigidity theorem for displays in the sense of
rigidity for p-divisible groups. Let S be a ring, such that p is nilpotent in S. Assume
we are given an ideal a C S with a divided power structure v, ([BO] 3.1). We set
apn(a) = (p"—1)1ypn (a). We may “divide” the n—th Witt polynomial w,,(Xo, ..., X,)
by p™:
(47) W;L(AXVQ7 ce ,Xn) = Qpn (XQ) + Oépn—l(Xl) + -+ Xn
Let us denote by a" the additive group [],.ya. We define a W (S)-module structure
on a:

€lag,a1---] = [wo(&)ag, wi(&)ay,...], where & € W(S), [ag,a1,...] € a.
The w!, define an isomorphism of W (S)-modules:

log : W(a) — oV

(48) 0= (ap,ar,az- ) — [wh(a), w(a)....]

We denote the inverse image log™*[a,0,...,0,...] simply by a € W(a). Then a is an
ideal of W(.5).

By going to a universal situation it is not difficult to compute what multiplication,
Frobenius homomorphism, and Verschiebung on the Witt ring induce on the right
hand side of (48):

[ag, ay,...][bo, b1,...] = [aobo, parby, ..., p'ab;,...]
Flag, a1, ...] = [pay,pas, ... pai,...]
V[ao,al,...]z [O,ao,al,...,ai,...]

The following fact is basic:

Lemma38. — Let (P,Q,F,V 1) be a display over S. Then there is a unique exten-
sion of the operator V—1:

V7 W(P+Q — P,
such that V~1aP = 0.
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Proof. — Choose a normal decomposition
P=LaT.

Then W(a)P 4+ Q = aT & L @ IsT. We define V! using this decomposition. To
finish the proof we need to verify that V~1aL = 0. But Ya = 0, since the Frobenius
map on the right hand side of (48) is

Flug, uy, . ..] = [puy, pus, . . .].
O
Lemma39. — Let S be a ring, such that p is nilpotent in S. Let a C S be an

ideal with divided powers. We consider two displays P = (P,Q,F,V~1) and P’ =
(P',Q',F,V~—1) over S. Then the natural map

(49) Hom(P,P’) — Hom(Pg/a, Pg/a)

1s injective. Moreover let M be a natural number, such that a?" =0 for any a € a.
Then the group p™ Hom(’PS/u,’P'S/a) lies in the image of (49).

Proof. — As explained above the map V! : ' — P’ extends to the map V! :
W(a)P' + Q" — P’, which maps W(a)P’ to W(a)P’. Let u: P — P’ be a map of
displays, which is zero modulo a, i.e. u(P) C W(a)P’. We claim that the following
diagram is commutative:

P 4 W(a)P'
(50) V#J T(V—l)#
W(S) ®@rws) P M W(S) ®@pw(s) W(a)P’

Indeed, since P = W (S)V ~1(Q, it is enough to check the commutativity on elements of
the form wV =1, where [ € Q. Since V#(wV ~!l) = w®l. the commutativity is readily
checked. Let us denote by 1 ®@p~ u: W(R) Qpn~ wir) P — W(R) @p~ wry W(a)P’
the map obtained by tensoring. Iterating the diagram (50) we obtain

(51) VN# (1L @py u)(VY#) =u
By the nilpotence condition for each numberM , there exists a number N, such that
VN#(P) C ISJ\/[ ®FN’W(S) P.

But since Ig pr- W(a) = 0 for big M, we obtain that the left hand side of (51) is zero.
This proves the injectivity.

The last assertion is even true without the existence of divided powers. Indeed,
it follows from the assumption that p™ W (a) = 0. Let now % : Psja — Pg/a be a
morphism of displays.
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For z € P let us denote by Z € W(S/a) ®y () P its reduction modulo a. Let
y € P’ be any lifting of u(Z). Then we define

v(z) =pM - y.
Since pM W (a) = 0 this is well-defined. One checks that v is a morphism of displays
P — P’, and that 7 = pM7. O

Proposition 40. — Let S be a ring such that p is nilpotent in S. Let a C S be a
nilpotent ideal, i.e. a = 0 for some integer N. Let P and P’ be displays over S. The
the natural map

Hom(P,P") — Hom(PS/a,Pg/a)

s injective, and the cokernel is a p-torsion group.

Proof. — By induction one restricts to the case, where a? = 0. Then we have a
unique divided power structure on a, such that v,(a) = 0 for @ € a. One concludes
by the lemma. O

Corollary 41. — Assume again that p is nilpotent in S and that the ideal generated
by nilpotent elements is nilpotent. Then the group Hom(P,P’) is torsionfree.

Proof. — By the proposition we may restrict to the case where the ring S is reduced.
Then the multiplication by p on W(S) is the injective map:

(50,51,82...)— (0,85, ...)

Therefore the multiplication by p on P’ is also injective, which proves the corollary.
O

2. Lifting Displays

In this chapter we will consider a surjective homomorphism of rings S — R. The
kernel will be denoted by a. We assume that the fixed prime number p is nilpotent
in S.

To a display over R we will associate the crystal, which controls the deformation
theory of this display in a way which is entirely similar to the deformation theory of
Grothendieck and Messing for p-divisible groups.

2.1. The main theorem. — We begin by a lemma which demonstrates what we
are doing in a simple situation.

Lemmad2. — Let S — R be as above and assume that there is a number N, such that
aV =0 for any a € a. Let (P;, F;) for i = 1,2 be projective finitely generated W (S)-
modules P;, which are equipped with T-linear isomorphisms F; : P; — P;. We set
P;=W(R) ®w(s) P and define F_linear isomorphisms F; : P; — Py, by Fi(§ @ 1) =
Fe @ Fix, for € € W(R),x € P;.
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Then any homomorphism @ : (P1,F1) — (P2, F2) admits a unique lifting o :
(P1,F1) - (P2,F2).

Proof. — First we choose a lifting o : P; — P», which does not necessarily commute
with the F;. We look for a W (S)-linear homomorphism w € Homyy (s)(Pr, W (a)P),
such that

(52) FQ(OéO + w) = (Oéo + w)Fl.

Since @ commutes with F'; the linear map 7 = Fhay — apFy maps Py to W(a)Ps.
The equation (52) becomes
wk) — Fow =1,
or equivalently
(53) w—Ff (W(S) @pws) w)(FF) ™ =n*(FF).
We define now a Z,-linear endomorphism U of Homyy (g)(Pr, W (a)P,) by
Uw = Fff (W(S) @pws) w)(FF) ™"

Then U is nilpotent. Indeed for this it suffices to show that F5 is nilpotent on W (a)Ps.
Clearly we need only to show that the Frobenius " is nilpotent on W (a). Since p is
nilpotent an easy reduction reduces this statement to the case, where p-a = 0. It is
well-known that in this case the Frobenius on W (a) takes the form

Hlao, a1, ... ai,...) = (ab,ab, ... ab,...).
Since this is nilpotent by assumption the operator U is nilpotent, too.
Then the operator 1 — U is invertible, and therefore the equation (53)
(1—-U)w = (Ff)~"
has a unique solution. O

Corollary 43. — Assume that we are given an ideal ¢ C W (a), which satisfies fc C ¢
and a W(S)-module homomorphism «g : Py — Pa, which satisfies the congruence

Frap(z) = ag(Fiz) mod cPs.
Then we have o = ag mod ¢Ps.

Proof. — One starts the proof of the lemma with aq given by the assumption of the
corollary and looks for a solution w € Homyy gy (P, cP2) of the equation (52). O

Theorem44. — Let S — R be a surjective homomorphism of rings, such that p is
nilpotent in S. Assume the kernel a of this homomorphism is equipped with divided
powers. Let P be a display over R and let Py and Ps be liftings to S. Let us denote
by @Z the inverse image of Q by the map P; — P fori=1,2. Let V™1 : @i — P
be the extension of the operator V' : Q; — P; given by the divided powers. Then
there is a unique isomorphism o : (P1,Q1, F,V™') — (Py, Qa, F, V1), which lifts the
identity of P.
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Proof. — The uniqueness follows from the proof of lemma 39. Indeed one has only
to observe that the commutative diagram (50) still makes sense. By assumption we
have pM - a = 0 for some number M. We make an induction on the number N to
show the following assertion:

There exists a W (S)-linear lifting o : P; — P, of the identity such that

Fa(z) = a(Fz) mod p"W(a) forze P

54 ~
(59 Vla(y) = a(Vly) mod p"W(a) fory e Q.

We note that the divided powers give us an isomorphism [[, w’,, : W(a) ~ a¥. From
this we see that
W (a) C pW(a), Is-W(a) C pW(a).
In order to have a start for our induction, we consider the equations (54) to be fulfilled
in the case N = 0 for any W (S)-linear lifting . Hence we may assume that we have
already constructed a W (S)-linear homomorphism «p, which lifts the identity and
satisfies (54). To prove the theorem we have to construct a W(S)-linear lifting o’
of the identity, which satisfies (54) with N replaced by N + 1. We choose a normal
decomposition Py = Ly & T1 and we put Ly = ay(Li) and To = ay(T1). Then
Py, = Ly & 15 will in general not be a normal decomposition for the display P». But
we can replace the display Po by the display (Ps, Lo+ IsT1, F, V1), which is defined
because Lo + IgT; C @2. Hence we may assume without loss of generality that
P, = Ly 4+ T, is a normal decomposition.
For i = 1,2 we consider the -linear isomorphisms

Then we define « to be the unique W(S)-linear map P; — Pa, lifting the identity
which satisfies

(55) a(Uyz) = Usa(x), for xz € Py.

One readily verifies that ay satisfies this equation modulo p¥ W (a). By the corollary
to the lemma 42 we obtain:

(56) a=ay mod pVW(a)

We will verify that o commutes with F' modulo pN+1W (a). We verify this for elements
Iy € L1 and t; € Ty separately. We write a(ly) = Iz + to, where lo € Lo and o € Tb.
Since ay(l1) € L2 we conclude from the congruence (56) that to =0 mod p™ W (a).
Therefore we obtain

Fto =0 mod pN'HW(a).
Also since V=YW (a)Py) C W(a)P,, we find
V=l =0 mod pVW(a).
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Now we can compute:
a(V7) = a(Uily) = Usa(ly) = Vg + Fty
(57) =Vl =V lal) -V ' mod pV T W (a).
If we multiply the last equation by p, we obtain
a(Fly) = Fa(l;) modulo pN W (a), forl; € L.

To treat the elements in 77 we write a(t1) = I + t5. The same argument as before
now yields I, =0 mod p¥W (a). Since our operator V1 is f~linear on ()3 and since
15 is a sum of elements of the form & -y, where ¢ € pV W (a) and y € L}, we obtain

V7, =0 mod pN W (a).
Now we compute as above:
a(Fty) = a(Uity) = Usa(ty) = V1, + Ft)
= Ft), = Fa(t)) — Fl, = Fa(t;) mod pV W (a).
Altogether we have proved
(58) a(Fz) = Fa(z) mod pV MW (a), forzec P.
From this equation we conclude formally
(59) a(V Iy =V-la(y) mod pNT'W(a) fory e IsP.

Indeed, it is enough to check this congruence for y of the form V¢-z. Since V=1(Véz) =
¢Fx, we conclude easily by (58). The following equation holds because both sides are
Zero:

(60) a(Viy) =V laly) foryca-Py.

The equation (57) shows that a does not necessarily commute with V=1 on L; mod-
ulo pV 1 W (a). Indeed, the map L; X Ly Ty 25 Ty factors through p™ W (a)Ts.
Let us denote by n the composite:

N VloN
n:Li — p" W(a)Te —— p" W(a)Ps
Then we may rewrite the formula (57) as
(61) (V) =V ta(l) —n(l) mod pN W (a).
We look for a solution o’ of our problem, which has the form
o =a+w,

where w is a W (S)-linear map

(62) w: P — pNW(a)P;.

SOCIETE MATHEMATIQUE DE FRANCE 2002



166 T. ZINK

First of all we want to ensure that the equation (58) remains valid for o/. This is
equivalent with

w(Fz) = Fw(x) mod pN*'W(a) for x € P;.

But the right hand side of this equation is zero mod pN*'W(a). Hence o/ satisfies
(58), if
w(Fz)=0 mod p™M W (a).

We note that any W (S)-linear map (62) satisfies trivially w(FL1) = w(pV~1L1) =
pw(V71L1) =0 mod pN*t1W(a). Hence o/ commutes with ' mod pN+t1W (a), if w
mod pV W (a) belongs to the W (S)-module

(63) Hom(Py /W (S)FT1, pNW(a)/pN W (a) @w(s) P2).

Moreover o/ commutes with V=1 mod pV W (a), if w satisfies the following congru-
ence

(64) w(V) = V() = n(ly) mod pN W (a), forly € L.
Indeed, we obtain from (64)
(V) =Vl (y) mod pNt'W(a), fory e Q,

because of (61) for y € L and because of (59) and (60) for y € IsP; +aP;. Hence our
theorem is proved if we find a solution w of the congruence (64) in the W (S)-module
(63).

The map V! induces an -linear isomorphism

Vil : L1 — Pl/W(S)FTl
Hence we may identify the W (.S)-module (63) with
(65) Homp—jinear (L1, pNW(a)/pNJer(a) Qw(s) ),
by the map w — wV 1.
We rewrite now the congruence (64) in terms of @ = wV . The map V~'w is in
terms of W the composite of the following maps:
L pr V#

Ly =P, 2 W(S)V-iL, ————— W(S) @rws) L1

(66) F#
V71
PV W (a)/pNTIW (a) @ (s) P ¢—— pN W (a)/pV W (a) @wr(s) P

The map ¢ in this diagram is the canonical injection. The map pr is the projection
with respect to the following direct decomposition

P =W(S)V 'Ly @ W(S)FT;.
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Finally the lower horizontal f-linear map V~! is obtained as follows. The divided
powers provide an isomorphism (compare (48)):

W (@) p W (@) < (pafp )"

Using the notation [ag, a1, ..., an,...] for a vector of (pV a/pNHa)N, the map V!
given by:
V~Yao,ai,...]®x = [a1,az,...] ® Fu.

Let us denote by B = V# o pr o ¢ the composite of the upper horizontal maps in the
diagram (66). Then we may write

V-l =V Io#B.

We define a Z-linear operator U on the space

(67) HomF—linear(Ll’pNW( /pNJer( )W(S)P )
by
(68) Ub =V 'a#B.

Hence the equation (64) which we have to solve now reads as follows:
(1-U)o=n mod pNW(a).

Here 1 denotes the identity operator on the group (67) and @ and 7 are considered as
elements of this group. Clearly this equation has a solution w for any given 7, if the
operator U is nilpotent on (67).

To see the nilpotency we rewrite the space (67). We set D; = P;/IsP; + pP;, =
S/pS ®uwo w(s) Pi, and we denote the image of @Q; in this space by D}. Then our
group (67) is isomorphic to

HomFrobenius(D% ) pr(a)/pN-l-lw(a) ®S/pS D2)’

where Hom denotes the Frobenius linear maps of S/pS-modules. Now the operator
U is given by the formula (68) modulo pW (S) + Is. But then locally on SpecS/pS,
the operator B, is just given by the matrix B of (15). Hence the nilpotency follows
from (15). O

2.2. Triples and crystals. — Let R be a ring such that p is nilpotent in R, and
let P = (P,Q,F,V~1) be a display over R. Consider a pd-thickening S — R with
kernel a, i.e. by definition that p is nilpotent in .S and that the ideal a is equipped with
divided powers. In particular this implies that all elements in a are nilpotent. We
will now moreover assume that the divided powers are compatible with the canonical
divided powers on pZ, C Z,.

A P- triple T = (ﬁ F,V~1) over S consists of a projective finitely generated W (S)-
module P which lifts P, i.e. is equ1pped with an isomorphism W(R) ®w(s) P~ Pp.

Hence we have a canonical surjection P — P with kernel W(a )P Let us denote
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by @ the inverse image of . Moreover a triple consists of two f-linear operators of
W (S)-modules F: P — P and V~!:Q — P. The following relations are required:

V1(Vwz) = wFz, forwe W(S),we P.
V-1(aP) =0

Here a C W(S) is the ideal given by the divided powers (48).

There is an obvious notion of a morphism of triples. Let o : P; — Py be a
morphism of displays. Let 77 respectively 73 be a P;-triple respectively a Pa-triple
over S. An o-morphism a : P — Pisa homomorphism of W (S)-modules which
lifts @ and which commutes with F and V~!. We note that &(Q;) C Q. Therefore
the requirement that & commutes with V! makes sense. With this definition the
P-triples over S form a category, where P is allowed to vary in the category of displays
over R. We call it the category of triples relative to S — R.

Let us now define base change for triples. Let ¢ : R — R’ be a ring homomorphism.
Let S — R respectively S’ — R’ be pd-thickenings. Assume that we are given a
homomorphism of pd-thickenings:

Y

S — 9

® |

R—2 . R
Let 7 be a P-triple over S as before. Let Pgr/ be the display obtained by base
change from P. Then we define a Pr/-triple Ts, over S’ as follows. We set Ty =
(W(S") @w(s) P,F, V1) with the following definition of F and V~1. The operator
F is simply the f-linear extension of F : P — P. The operator V1 on @' is uniquely
determined by the equations:

V3iwey) =weVly, foryecQ,weW(S)
VI3Vwer)=we Fr, for z € P
Vi a®x) =0, fora € a’ Cc W(d').

Here o' is the kernel of S’ — R’ with its pd-structure.

Let S — R be a pd-thickening and P be a display over R. Let 7 be a P-triple
over S. By theorem 44 it is determined up to unique isomorphism. We can construct
all liftings of P to a display over S as follows. We consider the Hodge filtration of P.

(70) Q/IrP C P/IRP
Let L be a direct summand of ﬁ/[gﬁ, such that the filtration of S-modules

(71) L CP/IgP
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lifts the filtration (70). We call this a lifting of the Hodge filtration to 7. If we denote
by QL C P the inverse image of L by the projection P P/ISP we obtain a display
(P QL, F,V~1). By theorem 44 we conclude:

Proposition 45. — The construction above gives a bijection between the liftings of the
display P to S and the liftings of the Hodge filtration to T .

We will now formulate an enriched version of theorem 44.

Theorem 46. — Let o : Py — Po be a morphism of displays over R. Let S — R be a
pd-thickening and consider for i = 1,2 a P;-triple T; over S. Then there is a unique
a-morphism of triples a : Ty — 1.

Proof. — To prove the uniqueness we may assume o = 0. Then we consider the
diagram 50 with P respectively P’ replaced by P respectively Py and u replaced by
&. There is a map V# on P which is uniquely determined by

VHFwV ly)=wey, forweW(S),yc Q.

Its existence follows by choosing a lifting of the Hodge filtration of P to 7. With
these remarks the arguments of lemma 39 apply, and show the uniqueness. To show
the existence we first consider the case where « is an isomorphism. By choosing liftings
P, respectively Py of Py respectively P2 to S this case is easily reduced to theorem
44. The general case is reduced to the first case by considering the isomorphism of
displays:

Pi®&Pr— P OP2
(z,y) — (2, a(z) +y)

where z € P, and y € Po. O

Remark. — This theorem extends trivially to the case where S is a topological ring
as in definition 13. More precisely let R be as in the last theorem, and let S — R
be any surjection, such that the kernel a is equipped with divided powers. If p is not
nilpotent in S this is not a pd-thickening in our sense (compare section 2.2). Assume
that there is a sequence of sub pd-ideals ...a, D a1 ..., such that p is nilpotent in
S/a,, and such that S in complete and separated in the linear topology defined by the
ideals a,. Then the theorem above is true for the surjection S — R. We note that S
is a p-adic ring. We will call S — R a topological pd-thickening. We are particularly
interested in the case where S has no p-torsion.

Let us fix S — R as before. To any display P we may choose a P-triple 7p(S). By
the theorem P +— 7p(S) is a functor from the category of displays to the category of
triples. It commutes with arbitrary base change in the sense of (69). If we fix P we
may view S — Tp(S) as a crystal with values in the category of triples. We deduce
from it two other crystals.
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Let X be a scheme, such that p is locally nilpotent in Ox. Then we will consider
the crystalline site, whose objects are triples (U,T,d), where U C X is an open
subscheme, U — T is a closed immersion defined by an ideal J C Or, and 9§ is a
divided power structure on J. We assume that p is locally nilpotent on T', and that
the divided powers d are compatible with the canonical divided power structure on
the ideal pZ, C Z,. The reason for this last condition, which was not necessary in
theorem 46 will become apparent later. Let W(O%”) be the sheaf on the crystalline
site, which associates to a pd-thickening U — T the ring W(I'(T, Or)). A crystal in
W (O%")-modules will be called a Witt crystal.

Sometimes we will restrict our attention to the crystalline site which consists of
pd-thickenings (U, T, d), such that the divided power structure is locally nilpotent in
the sense of [Me] Chapt. III definition 1.1. We call this the nilpotent crystalline site.

Let P be a display over R. Then we define a Witt crystal p on Spec R as
follows. It is enough to give the value of Kp on pd-thickenings of the form Spec R’ —
Spec S’, where Spec R’ — Spec R is an affine open neighbourhood. The triple over S’
associated to Py is of the form

Tp,, (S") = (P,F, VY.
We define
(72) Kp(Spec R' — Spec S') = P.

For the left hand side we will also write p(S”).

Definition 47. — The sheaf p on the crystalline situs of Spec R is called the Witt
crystal associated to P. We also define a crystal of O°"¥*-modules on Spec R by

Dp(S") = Kp(S")/IsK(S").

Dp is called the (covariant) Dieudonné crystal.

More generally we may evaluate these crystals for any topological pd-thickening in
the sense of the last remark. If (S, a,) is a topological pd-thickening we set:
Cp(S) = lim Kp(R/a)
73 "
(73) Dp(S) = lim Dp(R/a,)

n

The Witt crystal and the Dieudonné crystal are compatible with base change. This
means that for an arbitrary homomorphism of pd-thickenings (69) we have canonical
isomorphisms:

- Kpe (8) =2 W(S") @w(s) Kp(S)
(74) D, (S') = §' ©5 Dp(S).
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This follows from the definition of the Pg/-triple 7g.. The R-module Dp(R) is iden-
tified with P/IprP and therefore inherits the Hodge filtration

(75) Dp(R) C Dp(R).
The proposition 45 may be reformulated in terms of the Dieudonné crystal.

Theorem48. — Let S — R be a pd-thickening. Consider the category C whose objects
are pairs (P, E), where P is a display over R, and E is a direct summand of the
S-module Dp(S), which lifts the Hodge filtration (75). A morphism ¢ : (P,E) —
(P, E') in the category C is a morphism of displays ¢ : P — P’, such that the induced
morphism of the associated Dieudonné crystals (definition 47) maps E to E'. Then
the category C is canonically equivalent to the category of displays over S.

The description of liftings of a display P over R is especially nice in the following
case: Let S — R be surjection with kernel a, such that a? = 0. Then we consider the
abelian group:

(76) Hom(Dp(R), a @k (Dp(R)/Dp(R)))

We define an action of this group on the set of liftings of P to S as follows. Two
liftings correspond by theorem 48 to two liftings F7 and Fs of the Hodge filtration. We
need to define their difference in the group (76). Consider the natural homomorphism:

Ey € Dp(S) — Dp(5)/E>
Since E; and E» lift the same module D} (R) the last map factors through
(77) E, — a(Dp(S)/Es).
The right hand side is canonically isomorphic to a ® g (Dp(R)/D5(R)), since a* = 0.
Hence the map (77) may be identified with a map:
u:Dp(R) — a®r Dp(R)/Dp(R)
We define Fy — Ey = u. It follows immediately that:

(78) By ={e—u(e) | e € By},

where u(e) € aDp(S) denotes any lifting of u(e). This proves the following

Corollary49. — Let P be a display over R. Let S — R be a surjective ring homo-
morphism with kernel a, such that a®> = 0. The action of the group (76) on the set of
liftings of P to a display over S just defined is simply transitive. If Py is a lifting of
P and u an element in (76) we denote the action by Py + .

Using example 1.17 it is easy to give a description of Py 4+ u in the situation of
the last corollary. Let a C W(a) be the subset of all Teichmiiller representatives of
elements of a. If we equip a with the divided powers ayp(a) = 0 this agrees with our
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definition after equation (48). We restrict our attention to homomorphisms « : Py —
aPy C W(a)Py and consider the display defined by (27):

Fox = Fx — o(Fz), forzxze P

(79) Vly=V-ty—aV-ly), forye Qo.

Then there is an element « in the group (76) such that:
(80) Po=Po+u

It is easily described: There is a natural isomorphism aPy & a ® g P/IrP. Hence «
factors uniquely through a map:

@: P/IxP — a®p P/IxP.

Conversely any R-module homomorphism @ determines uniquely a map «. Let u be
the composite of the following maps:

(81) w:Q/IgP C P/IgxP == a®@p P/IxP — a®pr P/Q.
Then the equation (80) holds. To see this consider the isomorphism :
7 (P, Qo, Fa, Vb)) — (Po, Qo, F, V1),
which exists by theorem 46 . Using the relations:
FaPy =V~ 'aPy =0, o =0,

it is easily verified that 7(z) = z + a(z) for x € Py. It follows that P, is isomorphic
to the display (P, 7(Qo), F,V~1). Since

7(Qo) = {2 + a(z)|z € Qo}

the equation (80) follows with the u defined above (81).

Next we define the universal deformation of a display. Let S — R be a surjection
of rings, such that the kernel is a nilpotent ideal a. For a display P over R, we define
the functor of deformations of P :

Defp ()

as the set of isomorphism classes of pairs (73, L), where Pis a display over S and
L:P — Pgis an isomorphism with the display obtained by base change.

We will consider the deformation functor on the following categories Aug,_, . Let
A be a topological ring of type (16). The ring R is equipped with the discrete topology.
Suppose we are given a continuous surjective homomorphism ¢ : A — R.

Definition 50. — Let Aug,_,p be the category of morphisms of discrete A-algebras
g : S — R, such that g is surjective and has a nilpotent kernel. If A = R, we will
denote this category simply by Augp.
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A nilpotent R-algebra N is an R-algebra (without unit), such that AV = 0 for a
sufficiently big number N. Let Nilg denote the category of nilpotent R-algebras. To
a nilpotent R-algebra A/ we associate an object R|N| in Augp. As an R-module we
set RIN| = R® N. The ring structure on R|N| is given by the rule:

(r1 ®n1)(ra ®na) = (rire ®ring + rany +ning) forn; e N, 7, € R.

It is clear that this defines an equivalence of the categories Nilp and Augp. An R-
module M is considered as an element of Nilgp by the multiplication rule: M? = 0.
The corresponding object in Augpy, is denoted by R|M|. We have natural fully faithful
embeddings of categories

(R — modules) C Augp C Aug,_.p

Let F' be a set-valued functor on Aug,_,p. The restriction of this functor to the
category of R-modules is denoted by tr and is called the tangent functor. If the
functor tr is isomorphic to a functor M +— M ®pg tr for some R-module tp, we call
tr the tangent space of the functor F' (compare [Z1] 2.21).

Let T be a topological A-algebra of type (16) and ¢y : T — R be a surjective
homomorphism of topological A-algebras. For an object S € Aug,_,p, we denote by
Hom(T, S) the set of continuous A-algebra homomorphisms, which commute with the
augmentations ¢ and 1s. We obtain a set-valued functor on Aug,_, p:

(82) SpfT(S) = Hom(T, S)

If a functor is isomorphic to a functor of the type SpfT it is called prorepresentable.

We will now explain the prorepresentability of the functor Defp. Let us first
compute the tangent functor. Let M be an R-module. We have to study liftings
of our fixed display P over R with respect to the homomorphism R|M| — R. The
corollary 49 applies to this situation. We have a canonical choice for Py:

Po = PR\M|~

Let us denote by Defp(R|M]) the set of isomorphism classes of liftings of P to R|M]|.
Then we have an isomorphism :

(83) Homp(Q/IrP, M ® P/Q) —> Defp(R|M]|),

which maps a homomorphism u to the display Py + u. Hence the functor Defp has a
tangent space, which is canonically isomorphic to the finitely generated projective R-
module Homz(Q/IrP, P/Q). Consider the dual R-module w = Homp(P/Q, Q/IrP).
Then we may rewrite the isomorphism (83):

Homp(w, M) — Defp(R|M]|)
Hence the identical endomorphism of w defines a morphism of functors:

(84) Spf R|w| — Defp
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We lift w to a projective finitely generated A-module w. We consider the symmetric
algebra Sp(w). Its completion A with respect to the augmentation ideal is a topo-
logical A-algebra of type (16), which has a natural augmentation A — A — R. Since
the deformation functor is smooth, i.e. takes surjections S; — So to surjective maps
of sets, the morphism (84) may be lifted to a morphism:

(85) Spf A — Defp

It is not difficult to show, that this is an isomorphism using the fact that it induces
by construction an isomorphism on the tangent spaces (compare [CFG]). It is easy to
describe the universal display over PV over A. Let u : Q/IrP — w ®g P/Q the
map induced by the identical endomorphism of w. Let a : P — w ®g P/Q be any
map, which induces u as described by (81). The we obtain a display P, over R|w].
For P we may take any lifting of P, to A.

Let us assume that the display P is given by the equations (9). In this case the
universal deformation is as follows. We choose an arbitrary lifting (a;;) € Gl (W (A))
of the matrix (cy;). We choose indeterminates (ty;) for k=1,...d, I=d+1,...h.
We set A = Aftii]. For any number n we denote by E,, the unit matrix. Consider
the following invertible matrix over Gl (A):

Eq [tw]
(50 (53 )
As usual [ty] € W(A) denotes the Teichmiiller representative. This matrix defines by

(9) display P"™V over the topological ring A. The the pair (A4, P'") prorepresents
the functor Defp on the category Aug,_, 5.

2.3. Witt and Dieudonné crystals. — Our next aim is to explain how the Witt
crystal may be reconstructed from the Dieudonné crystal.

The ideal I C W(R) will be equipped with the divided powers (see [Gr] Chapt.
IV 3.1):

(87) ap(Vw) = pP2V(wh), for w € W(R).

The morphism wq : W(R) — R is a topological pd-thickening, in the sense of the
remark after theorem 46, because (87) defines a pd-thickenings wq : W, (R) — R. We
note that the last pd-thickenings are nilpotent, if p # 2.

If we evaluate a crystal on Spec R in W(R) we have the topological pd-structure
above in mind (compare (73)).

More generally we may consider a pd-thickening S — R, where we assume p to be
nilpotent in S. Let a C S be the kernel. The divided powers define an embedding
a C W(S), which is an ideal of W(S) equipped with the same divided powers as
a C S. The kernel of the composite W(S) ©% S — R is the orthogonal direct sum
Is & a. Since we have defined divided powers on each direct summand, we obtain a
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pd-structure on the kernel of:
(88) W(S) — R.

Again this induces pd-thickenings W, (S) — R. Therefore me may consider (88) as
a topological pd-thickening, and evaluate crystals in W (S5).

In the case p # 2 the divided powers on the kernel of W,,,(S) — R are nilpotent, if
the divided powers on the ideal a were nilpotent.

Proposition 51. — Let S — R be a pd-thickening. There is a canonical isomorphism
Kp(S) = Dp(W(S)).

This will follow from the more precise statement in proposition 53.

For later purposes it is useful to note that this proposition makes perfect sense if
we work inside the nilpotent crystalline site.

To define the isomorphism of proposition 51 we need the following ring homomor-
phism defined by Cartier:

(89) A W(R) — W(W(R)).

It is defined for any commutative ring R. In order to be less confusing we use a hat
in the notation, if we deal with the ring W(W(R)).
The homomorphism A is functorial in R and satisfies

(90) Wa(AE) =", e W(R).

As usual these properties determine A uniquely. We leave the reader to verify that
the equation:

(91) W(wa)(AE€) =%,
holds too.
Lemma52. — The following relations hold:

AFE) = T(A() = W()(A®©)),
AYVE =V (8(€) = [V€,0,0,...] € W(Ig)
Here on the right hand side we have used logarithmic coordinates with respect to the

divided powers on Ig.

Proof. — We use the standard argument. By functoriality we may restrict to the
case where R is torsion free (as Z-module). Then W (R) is torsion free too. Hence it
is enough to show that for each integer n > 0 the equations of the lemma hold after
applying w,,. This is readily verified. O
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Proposition 53. — Let S — R be a pd-thickening with kernel a, and let P =
(P,Q,F, V=) be a display over R. Let T = (P,F,V~1) be the unique (up to
canonical isomorphism) P-triple over S. Consider the pd-thickening W (S) — R with
kernel Is ® a. Let T denote the unique P-triple related to this pd-thickening. Then
T is of the form
T =(W(W(S)) ©aws) P, F,VH,
where the operators F and V™' are uniquely determined by the following properties:
(92) Foz) =T Fs, EcWW(S)),zeP
ViiEey ="Eevly, yeQ
V1(V€wa) =@ Fu.

Here as usual @ denotes the inverse image of Q by the morphism P— P.

The triple T provides the isomorphism of proposition 51:

(93) Kp(S) = P =W(S) ®w, (W(W(S)) ®a,ws) P) = Dp(W(S))
Proof. — Let a: W(S) — R be the pd-thickening (88). It follows that from (91) that

W(W(S)) ®a,w(s) P = P is a lifting of P relative to . We have homomorphisms
PP — P,
where the first arrow is induced by W (wg) : W(W(S)) — W(S). Let Q be the inverse
image of () in P.
We choose a normal decomposition P = L & T, and we lift it to a decomposition
P =L&T. Then we have the decomposition

(94) Q=LeoIsToal.

The divided power structure on the ideal Is a C W(S) induces an embedding of this
ideal in W(W(S)). We will denote the images of Is respectively a by Is respectively
a. The analogue of the decomposition (94) for the pd-thickening W (S) — R gives for
the inverse image of Q:

95) = HQ) =WW(S) ©® Laolyg © Taols © Tea © T.

2,W(S) 2,W(S) AW(S) 2,W(S)
By the definition of 7 the operator V~! must be defined on ﬂ_l(@) and it must be
a lifting of V—! on P.

Let us assume for a moment that V! exists as required in the proposition. We
claim that this implies that V' ~! vanishes on the last two direct summands on (95).
To see that V! vanishes on fg QAW (S) f, we remark that by lemma 52 any element
of I may be written in the form A(V¢) v A(E), for £ € W(S). Hence it suffices to
show that for t € T ~

vHae - TAE et =0.
But this follows from the equation (92).
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Let @ € a € W(S) be an element. The same element considered as element of
a C W(W(S)) will be denoted by @. We have the following lemma, which we prove
later.

Lemmab4. — We have A(a) = a.

Hence V- 1(@®t) =V 1(1®at) = 1®V~tat = 0, by the second equation of (92)
for y = at. Now we see from the decomposition (95) that the operator V=1 from the
triple 7 is uniquely determined by the requirements (92). Moreover we can check now
that V=1 (if it exists) is a lift of V=1 : Q — P relative to W (wq) : W(W(S)) — W(S).
In fact our proof of the uniqueness shows that ﬂfl(@) is generated by all elements
of the form E@ y, for EE W(W(S)) and y € @ and of the form ‘72@) x, for x € P.
Since W (wyg) commutes with £ and , we see from (92) that V! is indeed a lift. It
remains to show the existence of a V! as asserted in the proposition.

To prove the existence of V1, we define an "linear operator V="' on 7=1(Q). On
the first direct summand of (95) it will be defined by the second equation of (92), and
on the second direct summand by the third equation of (92). On the last two direct
summands of (95) we set V! equal to zero. We only have to check, that the last two
equations of (92) hold with this definition. We will write down here only some parts
of this routine calculation. Let us verify for example that the second equation of (92)
holds for y € Isf. We may assume that y is of the form y = Ynt, where n € W(S)
and t € T. Then we have to decompose §A ®" nt according to the decomposition (92):

§oVnt=A0(n-Eot=(("n-"bm) fot+"DmEat
Here the first summand is in the third direct summand of (95) and the second sum-

mand is in the second direct summand of the decomposition (95). The definition of
V1 therefore gives:

v (?@ y) vt (Vam-Eet)
v ("(amTE) et)=am o Fr
= Feanpt="Ee Vv (Vo) =FEa vy

Hence the second equation of (92) holds with the given definition of V=1 for y € I, oT.
For y € L this second equation is the definition of V! and for y € aT the lemma 54
shows that both sides of the equation

[/ (F§®y> =E@ Fy
are zero. Because we leave the verification of the third equation (92) to the reader we
may write modulo the lemma 54: O

Let us now prove the lemma 54. The ideal W(a) C W(S) is a pd-ideal, since it
is contained in the kernel a @ Is of (88). One sees that W (a) inherits a pd-structure
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from this ideal. One checks that in logarithmic coordinates on W (a) this pd-structure
has the form:

aplao, ar,...] = [op(ao), PP Vay(ar), ..., p" P Vay(a;),...]
where oy (a;) for a; € a denotes the given pd-structure on a.
On W (a) the operator F™ becomes divisible by p™. We define an operator pinF”
on W(a) as follows:
pinF” : W(a) — W(a)
[ag,a1,a2...] — [an, Gnt1, Gnga, - -]
Since W (a) C W(S) is a pd-ideal, we have the divided Witt polynomials

~

¥ W(W(a)) — W(a)

!/
If a € a C W(a) the element @ € @ C W (W (a)) used in the lemma 54 is characterized
by the following properties

wy(a) =a, w,(a)=0 forn>0.
Therefore the lemma 54 follows from the more general fact:

Lemmab55. — Let S be a Zy-algebra and a C S be a pd-ideal. Then the canonical
homomorphism

A W(a) — W(W(a))

satisfies

A~ ]. n

w, (A(a) = I;F a, foraeW(a),n>0.
Proof. — One may assume that S is the pd-polynomial algebra in variables ag, a1, . . .
over Z,. Since this ring has no p-torsion the formula is clear from (90) O

Corollary 56. — Under the assumptions of proposition 58 let ¢ : W(R) — S be a
homomorphism of pd-thickenings. Then the triple T = (P, F,V =) may be described
as follows: Let & be the composite of the homomorphisms

W(p)

(96) 5 W(R) 20 W(W(R)) W(s)

This is a ring homomorphism, which commutes with F.
We define P = W(S) ®@s,wry P. Then P is a lifting of P with respect to the
morphism S — R. For the operator F on P we take the F-linear extension of the

operator F' on P. Let @ C P be the inverse image of Q. Finally we define V=1 : @ —
P to be the unique F-linear homomorphism, which satisfies the following relations.

V3 wey) =fueVly, weW(S),ycqQ
(97) VI3 Vwer) =we Fu, weW(S),zeP
Via®z)=0 a€acCW(S).
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In particular we obtain the following isomorphisms:
Kp(S) = W(S) @w(r) Kp(R)
Dp(S) = S @wr) Kp(R).

Proof. — We apply proposition 53 to the trivial pd-thickening R — R, to obtain the
triple 7. Then we make base change with respect to ¢ : W(R) — S. O

We will now see that the isomorphism of proposition 51 (compare (93)) is compat-
ible with Frobenius and Verschiebung.
Let R be a ring such that p- R = 0. For a display P over R we have defined
Frobenius and Verschiebung.
Frp:P — PP Verp:PP — P
They induce morphisms of the corresponding Witt and Dieudonné crystals:

(98) FTDP : D'p I Dp(p), FTICP : /C'p I /Cp(p)

(99) Verp,, : Dpwy — Dp, Verk, : Kpwy — Kp

Let us make the morphisms more explicit. We set P = (P,Q, F,V~1). Let S — R
be a pd-thickening, such that p is nilpotent in S. We denote by 7 = (P, F,V 1) the
unique P-triple over S. The unique PP)-triple over S is given as follows

T(P) = (W (S) ®F,W(S) ﬁ7 F7 V71> )

where F' and V! will now be defined:
Fé®z)="¢® Fx, for{eW(S),xe€ P.

The domain of definition of V! is the kernel @(p) of the canonical map

W(S) ®F,W(S) ﬁ — R ®Frob,R P/Qa
which is induced by W(S) =% § — R. The operator V' on @(p) is uniquely
determined by the following formulas

Vol (oy) =TEaVly, for{eW(S),y€Q
(100) V1t (Y¢wa) =£(® Fa, zeP
V-1 (Cl QFWw(S) ﬁ) =0.
Even though it makes the text long, we do not leave the verification of the existence
of V=1 to the reader: We take a normal decomposition P = L @ T. Then we obtain
the decompositions
Q=L®IsT ®al
QP =W(S) ®rw) L®Is @pws) T ®a@pws) T

We define the operator V! on @(p) by taking the first formula of (100) as a formula
on the first direct summand, the second formula on the second direct summand and
so on. Then we have to verify that V=1 defined on this way satisfies (100). To verify
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the first formula (100) it is enough to check the cases y € E,y € IsT and Yy € al
separately. For y € L the assertion is the definition of V! and for Yy € aT both sides
of the equation become zero. Therefore we may assume y = Yna, for n € W(S) and
z € T. We have

£® Ve = ptn @ x.
Now in the ring W(Z,) = W (W (F,)) we have the equation
p—1[p,0,0---]=AM1)—[V1,0---0] = VA1 ="1.
Since Z, — S is a pd-morphism the same equation holds in W(S). We obtain
pén@z = ([p,0---0]+ 1) én @ =.

Since [p,0---0)n®@z € a® T we obtain by the definition of V1

Vipnee) =V (T-énex) =V (Y () o) =" () e Fr
= F£®77Fx = F«f@V‘1 (Vmc) .
This proves the assertion. The verification of the last two equations of (100) is
done in the same way, but much easier.
Hence we have proved the existence of V=1, It follows that 7@ is a P®)-triple.

To the triple 7 = (ﬁ,F, V1) there is by lemma 1.5 an associated W (S)-linear
map

(101) V# . P — W(S) @prw(s) P,
which satisfies the relations

VHFwV ly) =wey, fory € Q,w € W (S)
V#(wFz) =p-w® z.

Indeed, to conclude this from lemma 1.5 we complete 7 to a display (]3, @,
F,V~1) and note that Q = Q + aP.
Then we claim that (101) induces a map of triples:

(102) Fro:T — TW
We have to verify that the morphism (101) commutes with F' and V1. Let us do the

verification for V—!. The assertion is the commutativity of the following diagram:

~ V# ~
Q—— QW CcW(S) ®@rws) P

AL

Y V# ~
P———W(S)@rws) P
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We take any y € @ and we write it in the form

y= ifivilzi;
=1

for & € W(S) and z; € Q. Then we compute
VEV Ty =10y

m m
V_I(V#y) = V_l(z& ® Zi) = ZF& & V_lzi =1y
=1 i=1

We leave to the reader the verification that

F# . W(S) ®F,W(S) P—P
induces a morphism of triples
Verr : TW — T

Then Fry and Very are liftings of F'rp and Verp and may therefore be used to
compute the Frobenius and the Verschiebung on the Witt crystal and the Dieudonné
crystal:

Proposition 57. — Let R be a ring, such that p- R = 0. Let P be a display over R.
We consider a P-triple T = (]S,F,V*I) relative to a pd-thickening S — R. Then
the Frobenius morphism on the Witt crystal Fric, (S) : Kp — Kpw) (S) is canonically
identified with the map V7 : P W(S) @pw(s) ]5, and the Verschiebung morphism
Verk, (S) : Kpw (S) — Kp(S) is canonically identified with F# : W (S) @ pw (s) P
P. The Frobenius and Verschiebung on the Dieudonné crystal are obtained by taking
the tensor product with S®w, w(s)-

This being said we formulate a complement to the proposition 53.

Corollary 58. — Let us assume that p- R = 0. Then for any pd-extension S — R the
isomorphism of the proposition 53:

Kp(S) — Dp(W(S))
is compatible with the Frobenius and the Verschiebung on these crystals.

Proof. — We will check this for the Frobenius. The commutativity of the following
diagram is claimed:

Kp(S) ——— Dp(W(5))

FTICP l JF?“D.P

Kpw (8) —— Dpw (W(S)).
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Now we take a P-triple (]3, F, V1) over S. Taking the proposition 57 into account,
we may rewrite the last diagram as follows:

P W(S)®(W(W(S))A§§ P)
wo W (S)
J1®V#
v W(S)@WW(s) @ WW(S) ® P)
wo Fw(w(s)) AW(S)
W) © P W(ES)eWW(S) « W(S) ® P)

F,W(S) wo AW(S) F,W(S)
It is enough to check the commutativity of this diagram on elements of the form

1® V’1(5A® y),Ee W(W(S))y € Q and V*I(‘72® z),z € P. This is easy. O

We will now study the functor which associates to a display its Dieudonné crystal
over a base R of characteristic p. In this case the Dieudonné crystal is equipped with
the structure of a filtered F-crystal. We will prove that the resulting functor from
displays to filtered F-crystals is almost fully faithful.

Let R be a ring, such that p- R = 0, and let P be a display over R. The inverse
image of the Witt crystal Cp by the Frobenius morphism Frob : R — R may be
identified with Kp(»). To see this we look at the commutative diagram:

w(s) —L s w(s)

n Frob i

The vertical map is a pd-thickening by (88) and ¥'is compatible with the pd-structure.
This diagram tells us ([BO] Exercise 6.5), that

Frob® Kp(W(S)) = W(W(5)) @w(r),ww(s)) Kp(W(S)).
The pd-morphism wy : W(S) — S gives an isomorphism
W(S) @w (wo),w(w(s)) Frob™ Kp(W(S)) = Frob®™ Kp(S)
Combining the last two equations we get as desired identification:
(103) Frob™ Kp(S) = W(S) ®@rw (s) Kp(S) = Kpw ().
From this we also deduce:

Frob® Dp(S) = Dpw) (S)
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Remark. — This computation of Frob®™ Dp may be carried out inside the nilpotent
crystalline site, if p # 2. The point is that we need that W(S) — R is a topological
nilpotent pd-thickening, if S is a nilpotent pd-thickening. The result is the same.

Definition 59. — Let X be a scheme, such that p- Ox = 0. Let us denote by Frob :
X — X the absolute Frobenius morphism. A filtered F-crystal on X is a triple
(D, G, Fr), where D is a crystal in O%”"-modules G C Dy is an Ox-submodule of
the Ox-module Dx associated to D, such that G is locally a direct summand. Fr is
a morphism of crystals

Fr:D — Frob* D = DP),

We also define a filtered F-Witt crystal as a triple (IC, @, Fr), where K is a crystal
in W(O%"")-modules, Q@ C Kx is a W(Ox)-submodule, such that IxKx C Q and
Q/IxKx C Ox ®w,,w(0x) Kx is locally a direct summand as Ox-module. Fr is a
morphism of W (O%”®)-crystals

Fr: K — K® = Frob* K.

With the same definition we may also consider filtered F-crystals (resp. F-Witt
crystals), if p # 2.

The same argument which leads to (103) shows that for any pd-thickening 7' «—
U — X there is a a canonical isomorphism:

j o2 (T) = W(OT) QF,w(Or) ’C(T)

From a filtered F-Witt crystal we get a filtered F-crystal by taking the tensor product
0% ®w (o). Let R be a ring such that p- R = 0 and P = (P,Q,F, V') be a
display over R as above. Then we give the Witt crystal Cp the structure of a filtered
F-Witt crystal, by taking the obvious @), and by defining F'r : Kp — ICp(p ) as the map
(98). By taking the tensor product O;yS®WO7W(O§;yS) we also equip the Dieudonné
crystal Dp with the structure of a filtered F crystal.

We will say that a pd-thickening (resp. nilpotent pd-thickening) S — R is liftable,
if there is a morphism of topological pd-thickenings (resp. topological nilpotent pd-
thickenings) S” — S of the ring R, such that S’ is a torsionfree p-adic ring. We prove
that the functors K and D are “fully faithful” in the following weak sense:

Proposition 60. — Let R be a Fy-algebra. Assume that there exists a topological pd-
thickening S — R, such that S is a torsionfree p-adic ring.

Let P1 and Ps be displays over R. We denote the filtered F-crystal associated to
P; by (D;, G, Fr;) fori=1,2 and by (K;, Qq, Fr;) the filtered F-Witt crystal.

Let o : (D1,G1, Fr1) — (D2, Ga, Fra) be a morphism of filtered F-crystals. Then
there is a morphism ¢ : Py — Po of displays, such that the morphism of filtered
F-crystals D(p) : (D1,G1,Fr1) — (D2,Ga, Frg), which is associated to ¢ has the
following property:
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For any liftable pd-thickening S — R, we have
(104) agr = D(cp)s/.

The similar statement for the filtered F-Witt crystals is also true.

Remark. — The result will later be used to show that the functor BI" of the intro-
duction is fully faithful under the assumptions of the proposition. In fact we will use
the following variant of the proposition: Assume that p # 2 and that we are given
a topological nilpotent pd-thickening, such that S is a torsionfree p-adic ring. Then
it is enough to have a morphism « on the nilpotent crystalline site to conclude the
existence of ¢, such that for any liftable nilpotent pd-thickening S’ — R the equality
(104) holds.

Proof. — First we prove the result for the filtered F-Witt crystals. Let (]51, F V-1
be the P;-triple over S for i = 1,2. We may identify IC;(S) with P, and Fr;(S)
with the morphism V# : P, — W(S) ®rw(s) Pi- Then we may regard ag as a
homomorphism of W (S)-modules

ag - ]31 — ﬁg,
which commutes with V#:
(105) V#ag = (1® ag)V#,

Since ag respects the filtrations Q1 and @2, we get

as(Q1) € Qa.
Because the ring S is torsionfree we conclude from the equations F# - V# = p and
V# . F# = p, which hold for any display, that the maps F# : W (S) Rrws) P — P
and V# : P, — W(S) @rw(s) P; are injective. Hence the equation

(106) F*(1®ags) = agF*

is verified by multiplying it from the left by V# and using (105). We conclude that ag
commutes with F. Finally ag also commutes with V' ~! because we have pV ! = F
on Q.

We see from the following commutative diagram
p 25, p

Lo

pli)]%

that ar induces a homomorphism of displays and that ag is the unique lifting of ar
to a morphism of triples. This proves the proposition in the case of filtered F-Witt
crystals. Finally a morphism g : D; — Dy of the filtered F-crystals also provides a
morphism « : K1 — Ky of the Witt crystals by the proposition (53), which commutes
with F'r by the corollary (58). It is clear that « also respects the filtrations. Hence
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the assertion of the theorem concerning filtered F-crystals is reduced to the case of
filtered F-Witt crystals. O

2.4. Isodisplays. — Let R be a ring and let a C R be an ideal, such that p is
nilpotent in R/a. We assume that R is complete and separated in the a-adic topology.
In this section we will consider displays over the topological ring R with its a-adic
topology (see definition 13).

We consider the ring W (R) = W(R) ®z Q. The Frobenius homomorphism £ and
the Verschiebung  extend from W (R) to Wy (R).

Definition 61. — An isodisplay over R is a pair (Z, F'), where 7 is a finitely generated
projective Wg(R)-module and
F:7T—7

is an f-linear isomorphism.

Let us assume for a moment that R is torsionfree (as an abelian group). Then we
have a commutative diagram with exact rows

0O—— Iz ——> W{R) —— R —— 0

l l l

0 —— Ip®Q —— Wy(R) —— R®Q —— 0,
where the vertical maps are injective. In particular W(R) N Ir ® Q = Ig.

Definition 62. — Let R be torsionfree. A filtered isodisplay over R is a triple
(Z,E,F), where (Z,F) is an isodisplay over R and E C 7 is a Wg(R) submodule,
such that

(i) IRTICECT

(ii) E/IRT C T/IRT is a direct summand as R ® Q-module.

Example63. — Let P = (P,Q, F,V~!) be a 3n-display over R. Obviously F extends
to an f-linear homomorphism F: P Q — P ® Q.

The pair (PQ, F') is an isodisplay. Indeed, to see that F is an f-linear isomorphism
we choose a normal decomposition P = L $T. We present F': P — P as a composite
of two morphisms

o B
Lopr Pide®idr o VIS F

The last morphism is already an linear isomorphism and the first morphism becomes
an f-linear isomorphism, if we tensor by Q.

Example64. — If R is torsionfree, we get a filtered isodisplay (P ® Q,Q ® Q, F).
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Example65. — Let a C R be an ideal, such that R is complete and separated in the
a-adic topology. We assume that pR C a C R.

Let k be a perfect field, such that k¥ C R/a. Then we find by the universality of
Witt vectors a commutative diagram

wk) —2— R

(107) l l

k —— R/a

The map § : W (k) 3 W (W (k)) ey W(R) commutes with £. Hence if we are given
an isodisplay (N, F') over k, we obtain an isodisplay (Z, F') over R if we set

T =Wo(R) ®@swy) N, F(®@x)="¢® Fu.

We will write (Z, F) = Wg(R) @5, Wo (k) (N, F).

Let Qisgr be the category of displays over R up to isogeny. The objects of this
category are the displays over R and the homomorphisms are Homg;s, (P, P’) =
Hom(P,P’") ® Q. We note that the natural functor (Displays)r — Qisgr is by corol-
lary 41 faithful if the nilradical of R/pR is nilpotent. It is clear that the construction
of example 63 provides a functor:

(108) Qisgr — (Isodisplays) g
Proposition 66. — If p is nilpotent in R, the functor (108) is fully faithful

Proof. — The faithfulness means that for any morphism of displays « : P — P’, such
that the induced map agq : Pp — P@ is zero, there is a number N, such that pNa = 0.
This is obvious. To prove that the functor is full, we start with a homomorphism of
isodisplays ag : (Pg, I') — (P, F'). Let Im P’ be the image of the map P' — F.
Since we are allowed to multiply «p with a power of p, we may assume that oy maps
Im P to Im P’. Since P is projective we find a commutative diagram:

ag
(109) Py —5 P,

|, ]

P—2p
Since F'a — aF' is by assumption in the kernel of P/ — P@, we find a number N,
such that p™ (Fa — aF) = 0. Multiplying @ and ag by pV, we may assume without
loss of generality that o commutes with F. Moreover, since p is nilpotent in P’/ P’
we may assume that a(P) C IgrP’ and hence a fortiori that a(Q) C Q'. Finally since
pV ! = F on Q it follows that pa commutes with V~!. Therefore we have obtained
a morphism of displays. O
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Let us now consider the case of a torsionfree ring R. Then we have an obvious
functor

(110) Qisgr — (filtered Isodisplays)g.
Proposition 67. — Let R be torsionfree. Then the functor (110) is fully faithful.

Proof. — Again it is obvious that this functor is faithful. We prove that the functor
is full.

Let P and P’ be displays over R. Assume that we are given a morphism of the
corresponding filtered isodisplays

Qg (IDQ7 QQ, F) — (]3({27 Q(IQ, F)
We have to show that g, if we replace it possibly by p™ag, is induced by a homo-
morphism
Q: (PaQaF7V71) - (Pva/aFavil)'
The proof of proposition 66 works except for the point where the inclusion «(Q) C Q’
is proved. But this time we already know that a(Q) C Qp. We choose finitely many

elements z1,...,z)y € @, whose images generate the R-module Q/IgP. Since it
suffices to show that a(z;) € Q’, if we possibly multiply a by p’¥ we are done. O

Definition 68. — An isodisplay (resp. filtered isodisplay) is called effective, if it is in
the image of the functor (108) (resp. (110)).

Proposition 69. — Let R be torsionfree. Let a C R be an ideal, such that there exists
a number N, such that a™ C pR and p" € a. Let (I;,F) and (Zz, F) be effective
isodisplays over R. Then any homomorphism @ : (Z1,F)r/a — (T2, F)pja lifts
uniquely to a homomorphism ag : (Z1,F) — (Za, F).

Proof. — We choose displays P; and P, over R together with isomorphisms of isodis-
plays (P;q, F) ~ (Z;, F) fori = 1,2. By the proposition 66 we may assume that @
is induced by a morphism of displays @ : Py r/a — Pa2,r/a- Indeed, to prove the
proposition it is allowed to multiply @y by a power of p.

Next we remark, that for the proof we may assume that a = p- R. Indeed, let
S — T be a surjection of rings with nilpotent kernel and such that p is nilpotent in S.
Then the induced map Wq(S) — Wg(T) is an isomorphism and hence an isodisplay
on S is the same as an isodisplay on 7. Applying this remark to the diagram

R/aR — R/a+pR «— R/pR,

we reduce our assertion to the case, where a = pR.

Since pR C R is equipped canonically with divided powers the morphism of dis-
plays @ : Py r/pr — Pa2,r/pr lifts by theorem 46 uniquely to a morphism of triples
(P, F,V=1) — (P, F, V1) which gives a morphism of isodisplays ag : (P1,g, F) —
(Ps,q, F). This shows the existence of ayg.
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To prove the uniqueness we start with any lifting «g : (Z1, F) — (22, F) of ap.
Since it is enough to show the uniqueness assertion for pN@yy and some number N,
we may assume that ag(Py) C Pe. Since P; and P, are torsionfree as abelian groups
it follows that cg commutes with F' and with V!, which is defined on @1 c P
resp. @2 C P» taken with respect to R — R/pR. Hence «y is a morphism of triples
(P, F, V1) — (P, F, V1), which is therefore uniquely determined by the morphism
of displays @ : Py r/pr — P2,Rr/pR- O

We will now explain the period map. Let us fix an effective isodisplay (N, F') over
a perfect field k. We consider the diagram (107) and make the additional assumption
that a® C pR for some number t. We consider the category M(R) of pairs (P,r),
where P € Qisgr and r is an isomorphism 7 : Pg/q.q — (N, F')g/q in the category of
isodisplays over R/a. By the proposition 69 any homomorphism between pairs (P, r)
is an isomorphism and there is at most one isomorphism between two pairs.

The period map will be injection from the set of isomorphism classes of pairs (P, )
to the set GrassWQ(k)N(R®@), where Grassyy, ()N is the Grassmann variety of direct
summands of the Wg(k)-module N.

The definition is as follows. The lemma below will show that the isodisplay
Wo(R) ®s,wyk) (N, F) is effective. Hence by the proposition 69 there is a unique
isomorphism of isodisplays, which lifts r

7 (P, F) — Wo(R) @5 wym) (N, F).
The map
Wao(R) @s,wy (k) N = Fo — Po/Qq
factors through the map induced by wq
Wo(R) @5, wyk) N — Ro ®s,wy(k) N-
Hence we obtain the desired period:
(111) Ro ®@s,wom N — Po/Qo

Hence if Iso M(R) denotes the set of isomorphism classes in M(R) we have defined
a map

Iso M(R) — Grassy, )N (Rg)
This map is injective by the proposition 67.

Now we prove the missing lemma.

Lemma70. — Let (N, F) be an effective isodisplay over a perfect field k (i.e. the slopes
are in the interval [0,1]). Then in the situation of the diagram (107) the isodisplay
Wo(R) ®5,wq k) (N, F) is effective.

ASTERISQUE 278



THE DISPLAY OF A FORMAL p-DIVISIBLE GROUP 189

Proof. — One can restrict to the case R = W (k) and p = id. Indeed, if we know in
the general situation that Wo(W (k) ®a wyk) (IV, F') is the isocrystal of a display
Po, then p. Py is a display with isodisplay Wo(R) ®s,w,x) (N, F). In the situation
p=idlet(M,Q, F,V~!) be a display with the isodisplay (I, F). Then the associated
triple with respect to the pd-thickening W (k) — k is the form (W(W(k)) @A w (k)
M, F, V1), where V1 is given by (92). This triple gives the desired display if we
take some lift of the Hodge-filtration of M/pM to M. The isodisplay of this display
is (Wo(W(k)) ®@a,wym N, F). O

Finally we want to give an explicit formula for the map (111). The map 7! is

uniquely determined by the map:

(112) p: N — Py,

which is given by p(m) = 7=1(1 ® m), for m € N. This map p may be characterized
by the following properties:

(i) p is equivariant with respect to the ring homomorphism ¢ : Wg(k) — Wo(R).
(ii) p(Fm) = Fp(m), for m € N
(iii) The following diagram is commutative:

Py —— Wo(R/a) @wyxy N

(113) 5 I{

We equip Py with the p-adic topology, i.e. with the linear topology, which has as
a fundamental system of neighbourhoods of zero the subgroups p’P. Because W (R)
is a p-adic ring, P is complete for this linear topology.

Proposition 71. — Let pg : N — P be any -equivariant homomorphism, which makes
the diagram (1138) commutative. Then the map p is given by the following p-adic limit:

p= lim FlpoF".
71— 00

Proof. — We use p to identify Py with Wg(R) ®@s,wo(k) IV, i.e. the map p becomes
m+— 1®m, for m € N. We write pg = p + a. Clearly it is enough to show that:
(114) lim F'aF~“(m) =0, form € N.
71— 00

Since p and pg make the diagram (113) commutative, we have a(N) C Wy (a) ®s,wy (k)
N. We note that Wg(a) = Wo(pR).

We choose a W (k)-lattice M C N, which has a W(k)-module decomposition M =
®M;, and such that there exists nonnegative integers s,r; € Z with F*M; = p™ M;.
We take an integer a, such that

a(M) C p*"W(pR) @s5w k) M.
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It suffices to prove (114) for elements m € M;. We compute for any number u:
(115) F“a(F™"*m) € p~ " F"“a(M;) C p* """ F"*(W(pR) @5,w k) M).
But using the logarithmic coordinates for the pd-ideal pR we find:
"W (pR) = W(p’R) = pW (pR).
This shows that the right hand side of (115) is included in
PP I W (pR) Qs (k) M.

Since N is an effective isodisplay we conclude s > r; for each j. This proves that
FY$aF~%%(m) converges to zero if u goes to co.

More generally we can consider the limit (114), where ¢ runs through a sequence
1 = us + g for some fixed number ¢g. By the same argument we obtain that this limit
is zero too. o

2.5. Lifting homomorphisms. — Consider a pd-thickening S — R with kernel
a. We assume that p is nilpotent in S.

We consider two displays P; = (P;, Q;, F,V~!) for i = 1,2 over S. The base
change to R will be denoted by P; = P; r = (P;,Q;, F,V™1). Let : P;1 — P2 be a
morphism of displays. It lifts to a morphism of triples:

(116) p: (P, VT — (P, KV
We consider the induced homomorphism:

Obstp: Q1/IsP — P1/IsP; 2, Py/IsPy — P2 /Q2
This map is zero modulo a, because $(Q,) C @,. Hence we obtain a map:
(117) Obst@: Q1/IsPy — a®s P2/Q2
Clearly this map is zero, iff @ lifts to a morphism of displays P; — Pa

Definition 72. — The map Obst @ above (117) is called the obstruction to lift  to S.

This depends on the divided powers on a by the definition of ¢.

The obstruction has the following functorial property: Assume we are given a
morphism « : Py — P3 of displays over S. Let @ : Py — P3 be its reduction over R.
Then Obst@g is the composite of the following maps:

Obst o 1
Q1/IsP Y, a®s P2/Q2 LR a®s Ps/Qs3

We will denote this fact by:
(118) Obstap = a Obstp
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In the case a? = 0 we have an isomorphism a ®g Py/Q2 = a®p Fg/@Q. Hence the
obstruction may be considered as a map:

(119) Obst P : Q,/IrP1 — a®g P2/Q,
In this case the equation (118) simplifies:
(120) Obstapg = aObst P

Let S be a ring, such that p- S = 0 for our fixed prime number p. Let S — R be a
surjective ring homomorphism with kernel a. We assume that a? = 0. In this section
we will use the trivial divided powers on a, i.e. ap( a) =0 for a € a.

Let us consider a third ring S, such that p- S = 0. Let S — S be a surjection with
kernel b, such that b? = 0. Again we equip b with the trivial divided powers.

Assume we are given liftings P; over S of the displays P; over S for i = 1,2. The
morphism p@ : P; — Py lifts to the morphism pp : P; — Py of dlsplays Hence we
obtain an obstruction to lift py to a homomorphism of displays Py — P

ObSt(pgD) : Ql/Ispl — PQ/QQ.

We will compute this obstruction in terms of Obst . For this we need to define two
further maps: The operator V! on P, induces a surjection

(121) (V)# 1 S @y 5 Q1/IgPL — Pu/IgP + W(S)FPy.

Here we denote by Frob the Frobenius endomorphism of S. The map (121) is an
isomorphism. To see this it is enough to verify that we have on the rlght hand side
a projective S-module of the same rank as on the left hand side. Let P = L& T
be a normal decomposition. Because pS = 0, we have W (S)FL C pW(S)P C I§P.
Since we have a decomposition P = W(S)V’lz & W(§)F1~“ one sees that the right
hand side of (121) is isomorphic to W (S)V 1L/I sV ~1L. This is indeed a projective
S-module of the right rank.

The ideal b is in the kernel of Frob. Therefore the left hand side of (121) may be
written as S ®Frob,s Q1/IsPi. We consider the inverse of the map (121)

V# : ﬁl/Igﬁl + W(g)F§1 — §®Frob,S QI/ISPh
which we will also consider as a homomorphism of W(§ )-modules
(122) V# Pl — S ®prob,s Q1/IsPr.

Now we define the second homomorphism. Since b? = 0, the operator F' on P, /I 5152
factors as follows:

Py/I5P, By/I5P;

\/

Py/IsPy
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The module @2 /1 5.52 is in the kernel of F. Hence we obtain a Frobenius linear

map
F*: Py/Qy — Py /IgPs,
whose restriction to a(Ps/Q2) induces
Fb : CL(PQ/QQ) —_— b(ﬁg/[gﬁg)

If we use our embedding b C W (b), we may identify the target of F® with b - P, C
W (b)Py. Let us denote the linearization of F* simply by
(123) F# . S ®mobs a(P2/Q2) — bPy

PrOpOSItlon 73. — The obstruction to lift pp : P1 — Po to a homomorphism of dis-
plays 771 — 732 is given by the composition of the following maps:

~ ~ # o~ S ® Obstp ~
Q1/IsP VT S Qrrob,s Q1/IsP1 AL N S Qrrob,s a(P2/Q2)
|
b(P2/Q>)

Here the horizontal map is induced by the restriction of the map (122) to @1/15.51,
and the map F¥ is the map (123) followed by the factor map by — 6(152/@2).

Before giving the proof, we state a more precise result, which implies the proposi-
tion.

Corollary 74. — The morphzsm of dzsplays pp Py — Psy lifts by theorem 46 to a
morphism of triples w (P17 FVH — (Pg7 F, V=Y. This morphism may be explicitly
obtained as follows. We define w P1 ng C W(b)ﬁg to be the composite of the
following maps

= vHE S®Obstp F# =
Pl — 5 ®Frob,S QI/ISPI ‘—i’i’ S ®Frob,S a(PQ/QQ) I— bPQ
Then we have the equation

Y =pp+uw,
where @ : P — Py is any W(S)-linear map, which lifts ¢ : P, — Ps.

We remark that pp depends only on ¢ and not on the particular lifting ©.

Proof. — Tt is clear that the proposition follows from the corollary. Let us begin with
the case, where @ is an isomorphism. We apply the method of the proof of theorem
44 to pep.

We find that pp commutes with F'.
(124) F(pg) = (po)F

Indeed, since ¢ commutes with F', we obtain

F@(z) — §(Fx) € W(b)Py
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Since p - W(b) = 0, we obtain (124). We have also that pp(Q1) C Q2.

We need to understand how much the commutation of pp and V=1 fails. For this
purpose we choose normal decompositions as follows. Let P; = L1 ®T5 be any normal
decomposition. We set Ly = B(L) and Ty = B(T;). Since P is an isomorphism we
have the normal decomposition Py = Lo®T5. We take liftings of these decompositions
to normal decompositions

Pr=L1®T; and P=LydTs5.
Finally we lift the last decomposition further to normal decompositions
E:El@ﬁ and ﬁQZEQ@TQ.
We write the restriction of ¢ to L as follows:
e(l) = Al) +p(la),  A) € L2, u(h) € W(a)T2

Since a? = 0, we have Ig - W(a) = 0 and the Witt addition on W(a) is the usual
addition of vectors. Let us denote by a,, the S-module obtained from a via restriction
of scalars by Frob™ : S — S. Then we have a canonical isomorphism of S-modules

W(CL)TQ ~ H a, g TQ/IQTQ
n>0
Hence p is a map

w:ly/IsLy — H an, ®s To/IsTh.
n>0

We denote by u,, its n — th component. Then
po: L1/IsLy — a®g To/IsTy

may be identified with the obstruction n = Obst @.
Since ¢ commutes with V! we have

(125) (p(V_lll) = V_l)\(ll) + V_l,u(ll).

Let us denote by ¢ the kernel of the map S — R. We choose any lifting 7 : El —
W (¢) P, of the Frobenius linear map:

—1
Volp: Ly — W(a)Ts s W(a)Py.

We write the restriction of ¢ to Ly in the form
=X+,
where X Ly — Ly and I L, — W(a)fg. Then we obtain from the equation (125)
that
(V) — (VTN +7(1)) € W(b)Py, forly € Ly.
Since pW (b) = 0, we deduce the equation
(126) pE(V ) = pV Al + pr(la).

SOCIETE MATHEMATIQUE DE FRANCE 2002



194 T. ZINK

On the other hand we have obviously
Vpp(l) = pVTAD) + FAD).
If we subtract this form (126), we get an information on the commutation of pg and
VL
(127) PV =V ipa(lh) = (07 — FR)(h).
We set p/ = p — pg, with the map po defined above and consider it as a map ' :

Ly — YW (a)Ty. We choose any lifting of y/ to a W (S)-linear map
/_Al:, : El — VW(C)TQ.
Then V17’ is defined and is a lifting of V !y, since by definition V~1uy = 0.

Therefore we may take 7 = V~!i’. Hence we may rewrite the right hand side of
(127):

(128) pr— Fii= F(F — 7).
Then p — i’ is a lifting of the map
po L1 — a®g (Tg/[ng) C VV(CL)TQ7

to a map

fio : L1 — W()Ts.
In fact the expression Fjig is independent of the particular lifting jig of pg. Therefore
we may rewrite the formula (127)

(129) Vi3l) — bRV ) = ol
Let u C W(c) be the kernel of the following composite map:
W(c) — W(a) = H apn N H Uy
n>0 n>1

u is the ideal consisting of vectors in W(c), whose components at places bigger than
zero are in b. We see that fu C b = by C W(b). We find:

Flio(ly) € b(P2/IgPs) C W(b)Ps.

More invariantly we may express Fjiy as follows.
We have a factorization:

F:ﬁg/[gﬁg §2/I§]52

S

P/IsPy

Then F® induces by restriction a map

F: a(Py/IsPy) — b(Py/I5P).
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The map Fpyg is the following composite map.

L1 — Ly 2% o(Ty/I5Ty) B b(Po/I5Py).
By a slight abuse of notation we may write
Flig = F’po.
We obtain the final form of the commutation rule
(130) Vp(h) = pa(V ) = Fopo(ly).
We want to know the map of triples
b (PLE V™Y — (B, F, V7Y,

which lifts pep.

Asin the proof of 2.2 we write zz = pp+w, where w : P — W(b)ﬁg isa W(g)—linear
map. The condition that 1 should commute with F is equivalent to w(W (S)FT}) = 0.
We consider only these w. To ensure that V~! and ’KZ commute is enough to ensure

(131) V() = (V) for by € Ly.

On I §1~“1 the commutation follows, because J already commutes with F'. Using (130)
we see that the equality (131) is equivalent with:
(132) w(Vh) =V w(lh) = Fouo(lh)
We look for a solution of this equation in the space of W(§ )- linear maps
w: Py /W(S)FTi — by @5 Po/IsP C W(b)P

Then we have V~'w(l;) = 0, by definition of the extended V1. Hence we need to
find w, such that

(133) WV = Fuo(ly).
We linearize this last equation as follows. The operator V! induces an isomorphism
(VI W(S) @ gy (5 L1 — P /W(S)FT,

whose inverse will be denoted by V7. N N
We will also need the tensor product py, of po with the map wo : W(S) — S:

o - W(g) Qrws) L1 — §®Frob,s a(Tz/IsT3).
Finally we denote the linearization of F? simply by F#:
F# . S @probs a(Pa/IsPs) — b(Ps/I5P).

Noting that we have a natural isomorphism W () Dpw(d) Ly = W(S) Qw (s) L1, we
obtain the following equivalent linear form of the equation (133):

w(VH# = F# .
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It follows that the unique lifting of py to a homomorphism of triples is
b =p@+ Ftugv,
In this equation V# denotes the composite map
Py — Py /W(S)FTy — W(S) ®pw(s) L.

This map ¢ induces the obstruction to lift pep:

T Qvl/lgﬁl — ﬁl/Igﬁl L ﬁg/[gﬁg — ﬁg/@g.

Since py maps @1 to @g, we may replace zz in the definition of the obstruction 7
by F#u,V#. This proves the assertion of the corollary in the case where % is an
isomorphism.

If % is not an isomorphism we reduce to the case of an isomorphism by the standard
construction: Consider in general a homomorphism 1 : P; — Ps of displays over S.
Then we associate to it the isomorphism

Y1 :P1 Py — P11 P2
rdyr—rdy+ip(x)

If P, and Py are liftings to S as in the lemma, we denote by 1Z : (]Sl,F,V_l) —
(P, F, V1) the unique lifting to a homomorphism of triples. Then

h(E®)) =70 [ +9@), Teb, jeb.
It follows that Obst; is the map
0 Obst{/; : @1/I§]51 &) @2/15.52 — 151/@1 53] 152/@2
Applying these remarks the reduction to the case of an isomorphism follows readily.
O
We will now apply the last proposition to obtain the following result of Keating:

Proposition 75. — Let k be an algebraically closed field of characteristic p > 2. Let
Py be the display over k of dimension 1 and height 2. The endomorphism ring Op
of Py is the ring of integers in a quaternion division algebra D with center Q,. Let
a— a* for o € Op be the main involution. We fir « € Op, such that o ¢ Z,, and
we set i = ordp, (@ — a*). We define c(a) € N:

(a) p/? 4 2pl/270) 4 2pli/272) .. 42 fori even
cla) = i— i—1
QpT1 +2p(_2 -1) +--+2 fori odd

Let P over k[t] be the universal deformation of Py in equal characteristic. Then «
lifts to an endomorphism of P over k[t]/t®) but does not lift to an endomorphism
of P over k[t]/te(®)+1,
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Proof. — The display Py = (Po, Qo, F, V1) is given by the structural equations
Feip =eo
Vleg =e;.
For any a € W (F,2) we have an endomorphism ¢, of Py, which is given by
(134) vqle1) = aey @q(e2) = o(a)es

Here ¢ denotes the Frobenius endomorphism W (F,2), and a is considered as an ele-
ment of W (k) with respect to a fixed embedding F,> C k.
We denote by II the endomorphism of Py defined by

(135) Ile; = ey Iles = pey.
The algebra Op is generated by II and the ¢,. The following relations hold:
IP=p, g = @]l
The display P* = (P%,Q“, F, V1) of X over k[t] is given by the structural equations
Fey = [tle; + e . Vleg =ey.

To prove our assertion on the liftability of a it is enough to consider the following
cases:

(136) a=pp°,a%o(a) modp,s€Z,s>0
0 =g, acW(Fz)", sel.s>0
Let us begin by considering the two endomorphisms « for s = 0. The universal

deformation P“ induces by base change k[t] — k[t]/t? a display P = (P,Q, F,V~1).
Then « induces an obstruction to the liftability to S = k[¢] /tP:

(137) Obsta : Q/IsP — t(P/Q),
€9 — O(Oé) s €1

where o(«) € tk[t]/tP. To compute the obstruction, we need to find the extension of
«a to a morphism of triples

a:(P,EV™YH — (P,EVY.
Let €1, ea € P be defined, by
el =e; and €o = [t]el + eo.

This is a basis of P and the extended operator V! is defined on €. We find the
equations
Fep = ey, Vle, =¢l.

Then obviously « is given by the same equations as «:

(138) &(El) = a'él, &(32) = 0'(0,)52,
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respectively
(139) ale;) =o(a)ea, alez) = ape;.
For the first endomorphism « of (136) we find
ales) = a(ex — [t]e1) = o(a)és + [t]aey
=o(a)ez + [t](o(a) — a)e;
=0

a)
Hence the obstruction to lift « to k[t]/tP is o(p,) = o(a) = (o(a) — a)t € tk[t]/tP.

For the second endomorphism « of (136) we find

ales) = a(ex — [t]e1) = apey — [t]o(a)és
= ape; — [tlo(a) ([t]ler + e2) .
Hence we obtain the obstruction
0 (paIl) = o(a) = —t%0(a) € tk[t]/tP.

Now we consider the first endomorphism of (136) for s = 1. It lifts to an endomor-
phism over k[t]/tP. We compute the obstruction to lift it to k[¢]/t?". We can apply
the lemma to the situation

ke —k[t] /P —Kk[t] /¥
I [ [
R S S

We set ¥ = ¢, and P = Pg. Then we have the following commutative diagram of
obstructions

o~ o~ ~ S @ Obst(¢a) ~
(140)  Q/IgP —— S @rrob,5 Q/IsP ——————— 5 ®@mron,s t(P/Q)
#
Obst(pea) lF
r(P/Q)
The first horizontal map here is computed as follows:
SO IO ~ o (VThHFE
Q/IgP ———— P/IgP + W(S)FP +——— S ®pyob,s Q/IsP
e €2 = —ley
—teq | —t® eg

We obtain that the maps in the diagram (140) are as follows

22— —tQ@e—— —t®t(o(a) —a)eg —— —t - tP (—o(a) + a) Fe;
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Therefore we obtain for Obst(pp,):
Obst pp, = t**1 (0(a) — a) Fey = tPT2(0a — a)e; € 1P (]S/é) .

With the same convention as in (137) we write o(pp,) = (o(a)—a)t?*2. Then we prove
by induction that p®¢, lifts to k:[[?f]]/?fp2 +2(p*~t + .-+ + 1) and that the obstruction
to lift it to k[t]/t*"" is (o(a) — a) - P T2(" "+ For the induction step we apply
our lemma to the situation

I AR A s PR ) 7 e — Y 1 V"

R S S
We set ¥ = p°p, over R and P = ’Pfé. Then the maps in the diagram (140) are as

follows
e2—— —t®ey ——— —t @ (o(a) — a)t? T2 ot ey

|

—t(a — o(a)) P 2P HHA 1)) e,
This gives the asserted obstruction for p*tlyp,:
Obst (ps—i-l(pa) _ O'(a) . a)tps+1+2(p5+...+p)+1 . tel.

Next we consider the case of the endomorphisms p®p,II. In the case s = 1 we apply
the lemma to the situation

ko kil —— kI,

| |
Re— § — S

and the endomorphism @ = ¢,II. Then the maps in the diagram (140) are as follows:

O —tQe—— —t® —tQU(a)el

|

tt*PaFeq

This gives Obst(pp,Il) = t?»*2a. Now one makes the induction assumption that for
even s the obstruction to lift p*p,IT from k[t] /t2¢"+ D to k[t] /tr" is —2("++1).
o(a) and for odd s is 2P+t . 4. We get the induction step immediately from the
lemma applied to the situation

KIQ/EEH D — R[] /p*T — K[e]/p° O

We finish this section with a result of B. Gross on the endomorphism ring of the
Lubin-Tate groups. Let A be a Z,-algebra. Let S be an A-algebra.
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Definition 76. — An A-display over S is a pair (75, L), where Pisa display over S, and
L:A— End?P is a ring homomorphism, such that the action of A on P / @ deduced
from ¢ coincides with the action coming from the natural S-module structure on P / @
and the homomorphism A — S giving the A-algebra structure.

Let a € A be a fixed element. We set R = S/a and R; = S/a*™. Then we have a
sequence of surjections

S—-+—R —Ri_1—-+—R=R,

Let P; and Ps be displays over S. They define by base change displays ’Pfi) and ’PQ(i)
over R;. We set P; = Pfo) and Py = 772(0).

Assume we are given a morphism ¢ : Py — Pa, which lifts to a morphism cp_(i_l) :
7)1(171) — ’PQ(FI). The obstruction to lift 1) to a morphism ’Pfl) — ’PQ(I) is a
homomorphism:

Obst o~V : QY /I, P — (a)/ (') @5, P /Q3.
Clearly Obst ¢(—1) factors through a homomorphism:
Obst; ¢ : Q1/IrPy — (a*)/(a"t") @k P2/Q2.

Proposition 77. — Assume that (752, L) is an A-display over S. Let o : P1 — Pa be a
morphism of displays, which lifts to a morphism ’Pl(lfl) — ’PQ(FI). Then t(a)p lifts to
a homomorphism ’sz) — ’PQ(Z) and moreover we have a commutative diagram if i > 2
orp>2:

Obst; ) )
Q1/IrP1 % (a®)/(a") g P2/Q2

(141) a®i
OW J @i

@)/ (™) ®r P2/Q2
Loosely said we have Obst;11(¢(a)p) = a Obst;(¢).

Proof. — We consider the surjection R;;; — R;_1. The kernel a’R;,; has divided
powers if i > 2 or p > 2. Hence the obstruction to lift ¢~ to RO+ is defined:

Obst o QY /In,, PITY — (a)/ (@) @y Py QYT
is defined. Since ¢(a) induces on the tangent space P(i“)/Q(“‘l) the multiplication
by a we obtain
Obst t(a)p™Y = a Obst 1)
This proves the proposition. O
We will now apply this proposition to the case of a Lubin—Tate display. Let K/Q,

be a totally ramified extension of degree e > 2. We consider the ring of integers
A = Og. The role of the element a in the proposition will be played by a prime
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element 7 € Og. For S we take the ring S = Ok ®z, W(Fp). Now we take a
notational difference between 7 and its image in S, which we denote by a.

Let P = (ﬁ,@,F,V_l) be the Lubin—Tate display over S. We recall that P =
Ok ®z, W(S), @ = kernel (Og ®z, W(S) — S), and Vi r®l-1®][a]) =1.

Let P be the display obtained by base change over R = S/aS = Fp. The operator
V=1 of P satisfies

Vol = il

where m =7 ® 1 € Og ®z, W(R). (One should not be confused by the fact that this
ring happens to be S). We note that Q = wP.

We consider an endomorphism ¢ : P — P, and compute the obstruction to lift ¢
to Ry = S/a%S:

Obsti(¢) : Q/InP — (a)/(a?) ®r P/Q.

The endomorphism ¢ induces an endomorphism on P/@, which is the multiplication
by some element Lie ¢ € Fp. Let us denote by o the Frobenius endomorphism of Fp.

Lemma 78. — Obstq(p) is the composition of the following maps:

Q/IrP =Q/pP L P/nP = P/Q o' (Liey) — Lieg P/Q
(a)/(a®) ®r P/Q

Proof. — We write

() =&+ am++&ar !, & eWE,).
Applying the operator V we obtain:
(142) o(n") = Fﬁi«fgm + gt 4 fori=0,1...

By theorem 46 this ¢ admits a unique extension to an endomorphism of the triple
(PWF, V1), where P = Ok ®z, W(Ry). For the definition of the extension @
we use here the obvious divided powers on the ideal aR; C Ry = S/a?S given by
ap(a) = 0. Then we have V~![a]P(!) = 0, for the extended V. Hence we find for
the triple (P, F, V1) the equations:

Volpi =gl fori>1, F1=2.

™

The last equation follows because the unit 7 of lemma 27 specializes in R; to w¢/p.

Hence we can define $ on P by the same formulas (142) as ¢. In other words:

This formula may also be deduced from the fact that ¢ is an endomorphism of the
display Pgr, obtained by base change via the natural inclusion R — R;j.
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The map ¢ induces an O ®z, Rj-module homomorphism

(144) Q(l)/IRlp(l) N p(l)/Q(l).
By definition the module on the left hand side has the following basis as an R;-module:
T—a, 7w —a?. .., 7 —a"t,

where we wrote 7 for 7 ® 1 € Ox ®z, 1 and a for 1 ® a. We note that 7wt e Q(l) for
i > 2, because a®> = 0 in R; and because Q! is an Ox-module. By (143) and (142)
we find

pr—a) =T "gn+F an? +- —alo+&m+--)
(Filffo - ffo) a  mod QW

Since & is an Ok ®z, W(R1)-module homomorphism we have @(7*) = 0 mod Q).
This gives the result for Obst; ¢ because & mod p = Lie ¢. O

We can obtain a result of B. Gross [G] in our setting:

Proposition 79. — Let us assume that p > 2. Assume that K is a totally ramified
extension of Qp, which has degree e = [K : Qp). We fiz a prime element m € Ok.
Let P be the corresponding Lubin—Tate display over Og. Let P = ’PE the display

obtained by base change via O — T, C Fp. Let Op = End P be the endomorphism
ring. Let K be the completion of the mazximal unramified extension of K with residue
class field F,. Then we have

End'ﬁok/(ﬂm+1) =0Org +7"0Op m>0.

Proof. — We use the notation of proposition 77, and set R; = O /(7). Let ¢ € Op
be an endomorphism of P. It follows from the formula (2.61) that 7™ lifts to an
endomorphism of P over O /7™ . From (77) we obtain by induction:

Obsty+1 7™ = ™ Obsty ¢,
where 7™ on the right hand side denotes the map
7" (1) /(7*) ®@r P/Q — (x ) /(x™?) @R P/Q.

We recall that R = Ry = F,, by definition.
Now assume we are given an endomorphism

Y € (Og +7™0p) — (Og + 7™ 10p).
Since 7 is a prime element of Op we have the expansion
Y =lag)+ [a1]m+ -+ [ap]m™ + -, where a; € Fpe.
We have a; € F,, for i < m and a,, ¢ F,, since ¢ € Og + 7™ +t10Op. Then we find
Obst™ ! 1) = Obstyny1 ([am]7™ + -+ ) = 7™ Obsty ([am]] + T[ami1] + )
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Since o(am) # am the obstruction Obsty (|am| + 7|@m+1]---) does not vanish.
Hence Obst,, 41 % does not vanish. O

3. The p-divisible group of a display

3.1. The functor BI'. — Let R be a unitary commutative ring, such that p is
nilpotent in R. Consider the category Nilg introduced after definition 50. We will
consider functors F' : Nilg — Sets, such that F'(0) consists of a singe point denoted
by 0 and such that F' commutes with finite products. Let us denote this category by
F. If N? = 0, we have homomorphisms in Nilg:

N x N 2ddition nro Ar T L A, where 7€ R.

The last arrow is multiplied by 7. Applying F' we obtain a R-module structure on
F(N). A R-module M will be considered as an object of Nilg by setting M? = 0.
We write tp(M) for the R-module F'(M).

We view a formal group as a functor on Nilg (compare [Z1]).

Definition 80. — A (finite dimensional) formal group is a functor F : Nilg —
(abelian groups), which satisfies the following conditions.

(i) F(0) =0.
(ii) For any sequence in Nilg
0— N — Ny — N3 — 0,
which is exact as a sequence of R-modules the corresponding sequence of abelian
groups

0— F(M) — F(NMy) — F(N3) — 0

is exact.
(iii) The functor tF commutes with infinite direct sums.
(iv) tp(R) is a finitely generated projective R-module.

Our aim is to associate a formal group to a 3n-display.

Let us denote by W(N) C W(N) the subset of Witt vectors with finitely many
non-zero components. This is a W(R)-subalgebra.

Let us fix A and set S = R|N| = R® N. Then we introduce the following
W (R)-modules

Py =W(WN) ®@wry P C Ps
Qv = (WWN) ®@wr) P)NQs
Py = W) @w(r) P C Ps
Qn = PvNQs
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We will denote by Iy C W(N) resp. Iy C W(N) the W (R)-submodules ¥ W ()

o~

and Vﬁ/\(./\/' ). We note that £ and V' act also on W (). Hence the restriction of the
operators F' : Pg — Pg and V™1 : Qg — Pg define operators

F:Py— Py V ':Quv— Py
F:ﬁNHﬁN VﬁlséN—J%\/.
If we choose a normal decomposition
P=LaoT,
we obtain:
(145) Qn =WWN) @wnr) L& Iy Qwry T
Qn = W) ®wr) L& In Qwr) T

Theorem8l. — Let P = (P,Q,F, V1) be a 3n-display over R. Then the functor
from Nilg to the category of abelian groups, which associates to an object N' € Nilg
the cokernel of the homomorphism of additive groups:

Vvl —id: @N — ﬁN,
s a finite dimensional formal group. Here id is the natural inclusion @N C ]3N. We
denote this functor be BTp. One has an exact sequence:

~ =1 _; ~
(146) 0 QN 14 id Py BI'p(N) — 0.

We will give the proof of this theorem and of the following corollary later in this
section.

Corollary 82. — Let P be a 3n-display, such that there is a number N with the property
FNP C IxP. Then we have an evact sequence compatible with (146):

0 On ¥ id p, BTp(N) —— 0

Remark. — The F-nilpotence condition FN P C IxP is equivalent to the condition
that F': P — P induces a nilpotent (Frobenius linear) map R/pR®w, P — R/pR®w,
P of R/pR-modules.

Assume that N is equipped with divided powers, i.e. the augmentation ideal of the
augmented R-algebra R|N/| is equipped with divided powers. Then the divided Witt
polynomials define an isomorphism:

(147) [Iwn:ww) — [NV
i>0
This induces a homomorphism:

(148) WWN) — @ N

i>0

(no,n1,n2,...) — [Wo(ng), w1 (no,n1),...].
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To see that the homomorphism (147) takes /W(N ) to the direct sum, it is enough

«nP

to check, that for a fixed element n € N the expression Qpk (n) = oF ” becomes
zero, if k is big enough. But in terms of the divided powers 7, on N this expression
k k
is (’; k)!vpk(n). Since the exponential valuation ordp(’;—,f) tends with & to infinity, we
conclude that (148) is defined.
If we assume moreover that the divided powers on A are nilpotent in the sense

that v,x(n) is zero for big Fk, for a fixed n € N, the homomorphism (148) is an

isomorphism. Indeed, for the surjectivity of (148) it is enough to verify that elements
of the form [z,0,...,0,...] lie in the image, because the morphism (147) is compatible
with Verschiebung. To prove the surjectivity of (148) we may moreover restrict to
the case where p- N = 0. Indeed pN' C N is a pd-subalgebra, which is an ideal in N.
Hence N/pN is equipped with nilpotent divided powers. Therefore an induction with
the korder of nilpotence of p yields the result. If p- N = 0, we see that any expression

«nP 5

k
o is zero for k > 2 because (’;k)! is divisible by p. But then the assertion, that

[,0,0,...0] is in the image of (148) means that there is (ng,n1,...) € /W(N) satisfies
the equations
r=mn9, oap(no)+n1 =0, ap(n)+n2=0, apny)+n3=0---.
We have to show that the solutions of these equations:
= () (e ap(@) ) k2L

Nk

where oy, is iterated k-times, become zero if k is big. It is easy to see from the
definition of divided powers that ay(--- (ap(x))---) and v,k (x) differ by a unit in

Z(py. Hence we find a solution in W(N), if y,x () is zero for big k. Hence (148) is
an isomorphism in the case of nilpotent divided powers. Assume we are given divided
powers on N. They define the embedding

(149) N —  WW),
n—s[n,0---0--]

where we have used logarithmic coordinates on the right hand side. If we have nilpo-
tent divided powers the image of the map (149) lies in /W(N ). Then we obtain the
direct decomposition W(./\/' ) =N& V/\W(./\/' ).

By lemma 38 the operator V! : Qg — Ps extends to the inverse image of Q, if
N has divided powers. This gives a map

(150) VT WWN) @w(ry P — WN) @w(r) P.
If the divided powers on A are nilpotent, we obtain a map
(151) vl W(N) QW (R) P— W(N) OWwW (R) P.

In fact the nilpotent divided powers are only needed for the existence of this map.
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Lemma83. — If N has nilpotent divided powers the map (151) is nilpotent. If N has
only divided powers but if we assume moreover that FNP C IrP for some number
N, the map (150) is nilpotent.

Proof. — From the isomorphism (145) we get an isomorphism
(152) W(N) @w(ry P [[N @w,wir) P
i>0

We describe the action of the operator V' ~! on the right hand side. Let us denote by
F; the following map

Fi: N ®w, wry P— N @w,_,wr P, i>1

aRQrr— a® Fx

If we write an element from the right hand side of (152) in the form [ug, u1, us,...],u; €
N ®w, w(r) P, the operator V! looks as follows:

(153) Vﬁl[’ll,(),’ul, N ] = [Flul,FQ’uQ, .. ,F,L’U,,L o ]

In the case where the divided powers on A are nilpotent, we have an isomorphism

—

(154) WWN) @wr) P — DN @w, wr) P-
i>0

Since V1 on the right hand side is given by the formula (153), the nilpotency of V1
is obvious in this case.

To show the nilpotency of V! on (152), we choose a number 7, such that p™- R = 0.
Then we find w;([,.) - N C p"N = 0, for any i € N. By our assumption we find a
number M, such that FM P C I.P. This implies Fj 1 - ...- Fy;p = 0 and hence the
nilpotency of V1, O

Corollary 84. — Let P be a 3n-display over R. For any nilpotent algebra N € Nilg
the following map is injective

V-l —id: @N — ﬁN.
Proof. — We remark that the functors N — ﬁN and N +— @ A are exact in the sense

of definition (80) (ii). For @ this follows from the decomposition (145).
Since any nilpotent N admits a filtration

O0=MNMyCMNM C---CN;=N,

such that N2 C N;_1, we may by induction reduce to the case N> = 0. Since in this
case N’ may be equipped with nilpotent divided powers, we get the injectivity because
by the lemma (83) the map V! —id: W(N) @ P — W(N) ® P is an isomorphism.

O
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Corollary 85. — Let P be a 3n-display over R, such that FNP C IgP for some
number N, then the map
V™l —id: Qxy — Py
18 1njective.
The proof is the same starting from lemma (83).

Proof of theorem (81) and its corollary. — For any 3n-display P we define a functor
G on Nilg by the exact sequence:

~  Vl-id

0 —— Qn Py —— GN) — 0.

If P satisfies the assumption of corollary (85) we define a functor G by the exact
sequence:
V-1 —id

0 —— Qy ——— Py ——— GWN) —— 0.

We verify that the functors G and @ satisfy the conditions (i) — (iv) of the definition
(80). It is obvious that the conditions (i) and (ii) are fulfilled, since we already
remarked that the functors N — Qur (resp. Qu ) and N — Py (resp. Py ) are
exact.

All what remains to be done is a computation of the functors tg and t5. We do
something more general.

Let us assume that N is equipped with nilpotent divided powers. Then we define
an isomorphism, which is called the exponential map

(155) expp i N @r P/Q — G(N).
It is given by the following commutative diagram.
(156) 0 On Py N®rP/Q—0
‘ Jv—l —id JeXp
0 AL GIN) ———— 0.

If A2 = 0, we can take the divided powers v, = 0 for ¢ > 2. Then the exponential
map provides an isomorphism of the functor ¢z with the functor M — M ®g P/Q
on the category of R-modules. Hence the conditions (iii) and (iv) of definition 80 are
fulfilled. If the display P satisfies the condition FV . P C IrP for some number N,
we may delete the hat in diagram (156), because the middle vertical arrow remains
an isomorphism by lemma (83). In fact in this case we need only to assume that N
has divided powers. We get an isomorphism

(157) exp: N ® P/Q — G(N).

It follows again that G(N) is a finite dimensional formal group. The obvious
morphism G(N) — G(N) is a homomorphism of formal groups, which is by (155)
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and (157) an isomorphism on the tangent functors {5 — tg. Hence we have an
isomorphism G = G, which proves the theorem 81 completely. O

Corollary 86. — The functor P +— BI'p commutes with base change. More precisely
ifa: R — S is a ring homomorphism base change provides us with a display P and
a formal group o, BI'p over S. Then we assert that there is a canonical isomorphism:

a.Blp = Bl p
Proof. — In fact for M € Nilg we have the obvious isomorphism:
WM) @w(r) P = W(M) @ws) W(S) @wr) P =W(M) @ws) ol

This provides the isomorphism of the corollary. o

Proposition 87. — Let R be a ring, such that pR =0, and let P be a display over R.
Then we have defined a Frobenius endomorphism (29):

(158) Frp:P — PW@,

Let G = BI’p be the formal group we have associated to P. Because the functor BI'
commutes with base change we obtain from (158) a homomorphism of formal groups:

(159) BI'(Frp): G — GV,
Then the last map (159) is the Frobenius homomorphism Frg of the formal group G.

Proof. — Let N € Nilg be a nilpotent R-algebra. Let 'M[p] € Nilg be the nilpotent
R-algebra obtained by base change via the absolute Frobenius Frob : R — R. Taking
the p-th power gives an R-algebra homomorphism

(160) Fry : N — N

The Frobenius of any functor is obtained by applying it to (160). In particular the
Frobenius for the functor W is just the usual operator

T W) — W) = W),
From this remark we obtain a commutative diagram:

W) @wm P —— GW)
(161) e idp | | Pre

W M) @wimy P —— GNip)

The left lower corner in this diagram may be identified with W(N ) @pw(r) P =
W ®w(R) P® _ All we need to verify is that for £ € W(./\/') and z € P the elements
Feoae W(N) @pw(r) P and £ @ V¥#z € W(N) ®w(r) PP have the same image
by the lower horizontal map of (161). Since P is generated as an abelian group by
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elements of the form vV =1y, where y € Q and u € W(R), it is enough to verify the
equality of the images for x = uV ~1y. But in W(N)® Fw(r) P we have the equalities:
Feouly="w) eV ly=V""(uay)

The last element has the same image in G(Mp]) as {u ® y, by the exact sequence
(146). Hence our proposition follows from the equality:

EQVHVly) =tury
We note that here the left hand side is considered as an element of W QW (R) p®),
while the right hand side is considered as an element of W @ w (g P. O

Proposition 88. — Let R be a ring, such that pR = 0. Let P be a display over R.
Then there is a number N and a morphism of displays v : P — P®™) such that the
following diagram becomes commutative:

p
P———7P

o] A

pEY)

Proof. — By (29) Frp is induced by the homomorphism V# : P — W(R)®pw(r)P-
First we show that a power of this map factors through multiplication by p. By the
definition of a display there is a number M, such that VM# factors through:

(162) VM# P — Ig®pu wir) P
Hence the homomorphism VM+D# ig given by the composite of the following maps:

(163)

v W(R) ® VM#
P —— W(R) @rw =) P ®)

W(R) @pw(r) Ir @ pr w(r) P

l

W(R) @pr+1,w(ry P

Here the vertical arrow is induced by the map W (R) Qrw®r) IR — W (R) such that
£ ® ¢ — £F¢. We note that this map is divisible by p., because there is also the map
k: W(R) ®pwr) Ir — W(R) given by £ ® Vi + &n. Composing the horizontal
maps in the diagram (163) with x we obtain a map o : P — W(R) @ pa+1 w(r) P,
such that yop = VM+D# For any number m we set 4, = V™#~,. Then we have
Ap = V(MM

Secondly we claim that for a big number m the homomorphism 7, induces a
homomorphism of displays. It follows from the factorization (162) that vas respects
the Hodge filtration. We have to show that for m > M big enough the following ¥
-linear maps are zero:

(164) Fym — ymF, Vﬁl’Ym - ')’mV71
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These maps become 0, if we multiply them by p. But the kernel of multiplication by
pon W(R) @pm w(r) P is W(a) @ pm w(r) P, where a is the kernel of the absolute
Frobenius homomorphism Frob : R — R. Because W (a)Ir = 0, we conclude that the
composite of the following maps induced by (162) is zero:

W(a) @pm wry P — W(a) @pm w(r) Ir @pm wry P — W(R) @prim w(r) P

Hence 7237 commutes with F' and V~! and is therefore a morphism of displays. This
is the morphism « we were looking for. O

Applying the functor BT to the diagram in the proposition we get immediately that
BTI'’p is a p-divisible group. If p is nilpotent in R a formal group over R is p-divisible,
iff its reduction mod p is p-divisible. Hence we obtain:

Corollary 89. — Let p be nilpotent in R, and let P be a display over R. Then BIl'p is
a p-divisible group.

We will now compute the Cartier module of the formal group BI'». By definition
the Cartier ring Ep is the ring opposite to the ring Hom(W,W). Any element e € Eg
has a unique representation:

e= Z V™ anm|F™,
n,m>0

where a, , € R and for any fixed n the coefficients a, ., = 0 for almost all m. We
write the action e : W(N) — W(N) as right multiplication. It is defined by the
equation:

(165) ue= Y V" (lanm] ("))

m,n>0

One can show by reducing to the case of a Q-algebra that ¥"u = 0 for big n. Hence
this sum is in fact finite.

Let G be a functor from Nilg to the category of abelian groups, such that G(0) = 0.
The Cartier module of G is the abelian group:

(166) M(G) = Hom(W, G),
with the left Eg-module structure given by:
(e)(u) = $(ue), ¢ € M(G), u€ W(N), e € Er

Let P be a projective finitely generated W (R)-module. Let us denote by Gp the
functor N +— W(N) @w gy P. Then we have a canonical isomorphism :

(167) Er @w(r) P — Hom(W,Gp) = M(Gp)

An element e ® x from the left hand side is mapped to the homomorphism u —
ue®x € W(N) OWwW (R) P.
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Proposition 90. — Let P = (P,Q, F,V 1) be a 3n-display over R. By definition (146)
we have a natural surjection of functors Gp — Bl'p. It induces a surjection of Cartier
modules:

(168) Er @wr) P — M(BIp)

The kernel of this map is the Eg-submodule generated by the elements FRx—1Q Fz,
forx€P,and VeV ly—1®y, fory € Q.

Proof. — We set G% = Gp and we denote by G;l the subfunctor N — @N' Let
us denote the corresponding Cartier modules by M% respectively M;l. By the first
main theorem of Cartier theory, we obtain from (146) an exact sequence of Cartier
modules:

(169) 0 — Mp! 22 MY, — M(BIp) — 0

We have to compute pp explicitly. Using a normal decomposition P = L & T we
may write:

G;l(/\/’) = W(N) QW (R) Lo TN QW (R) T
The Cartier module of the last direct summand may be written as follows:

ErF ®W(R) T — HOHI(W,T@W(R) T)

(170)
eF®tr— (ur— ueF ®t)

From this we easily see that M;l C M% is the subgroup generated by all elements
eF ® x, where e € Eg and by all elements e ® y, where e € Eg and y € Q.
The map V! : G;l — G% is defined by the equations:

Vi3uey) =uV o Vi, uew, NyeQ

171
(17) V3l(uF ®z)=u® Fuz, reP

Hence on the Cartier modules V! — id induces a map pp : M;l — M%, which
satisfies the equations:

pp(eF®z) =e® Fx —eF ® x, x€P

172

(172) pple@y)=eVeVly—exy, yeQ@
This proves the proposition. O
3.2. The universal extension. — Grothendieck and Messing have associated to a

p-divisible group G over R a crystal D¢g, which we will now compare with the crystal
Dp, if P is a display with associated formal p-divisible group G = BT'(P).

Let us first recall the theory of the universal extension [Me] in terms of Cartier
theory [Z2].

Let S be a Zy-algebra and L an S-module. We denote by C(L) = [[;2, V'L, the
abelian group of all formal power series in the indeterminate V with coefficients in L.
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We define on C(L) the structure of an Eg-module by the following equations

§<ZVZ) szwn li, foreeW(S),liel
v(
(

F

NgER
<

m) > V’“l

Il
=]

i

MS

Vi) =3 Vz pl;

=1

Il
o

2

The module C(L) may be interpreted as the Cartier module of the additive group
of L:

Let L+ be the functor on the category Nilg of nilpotent S-algebras to the category
of abelian groups, which is defined by

LT(WN) = (N @s L)*.
Then one has a functor isomorphism:
N&sL = WN)®g. C(L)
nRl +— [n] ® VO

Consider a pd-thickening S — R with kernel a. Let G be a p-divisible formal group
over R and M = Mg = M(G) be its Cartier module (166), which we will regard as
an Eg-module.

Definition 91. — An extension (L, N) of M by the S-module L is an exact sequence
of Eg-modules

(173) 0—C(L)— N — M —0,

such that N is a reduced Eg-module, and aN C VL, where a C W(S) C Eg is the
ideal in W (S) defined after (48).

Remark. — We will denote V9L simply by L and call it the submodule of exponentials
of C(L) respectively N. A morphism of extensions (L, N) — (L', N’) consists of a
morphism of S-modules ¢ : L — L' and a homomorphism of Eg-modules u : N — N’
such that the following diagram is commutative

0 —— C(L) N M 0
col ]
0 —— CO(L)) N M 0

More geometrically an extension as in definition 91 is obtained as follows. Let G be
a lifting of the p-divisible formal group G to a p-divisible formal group over .S, which
may be obtained by lifting the display P to S. Let W be the vector group associated
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to a locally free finite S-module W. Consider an extension of f.p.p.f. sheaves over
Spec S:

(174) 0—W-—E—G—0

The formal completion of (174) is an exact sequence of formal groups (i.e. a sequence
of formal groups, such that the corresponding sequence of Lie algebras is exact).
Hence we have an exact sequence of Cartier modules.

0— C(W)— Mg — Mg —0,

E being the formal completion of E.
We have aMp ~ a ®g LieE. We let L = W + aLieE' as submodule of LieE or
equivalently of Mg. Since L is killed by I we obtain an exact sequence

0— C(L) — Mz — Mg — 0,

which is an extension in the sense of definition 91. Conversely we can start with a
sequence (173). We choose a lifting of M/V M to a locally free S-module P. Consider
any map p making the following diagram commutative.

(175) N/VN — M/VM

N

P

Let W =kerp. Then L = W + a(N/V N) as a submodule of LieN. The quotient of
N by C(W) is a reduced Eg-module and hence the Cartier module of a formal group
G over S, which lifts G. We obtain an extension of reduced Eg-modules

0 — C(W)— N — Mg — 0,
and a corresponding extension of formal groups over S
0—Wt—FE—G-—0.

Then the push—out by the natural morphism W+ — W is an extension of f.p.p.f.
sheaves (174).

These both constructions are inverse to each other. Assume we are given two
extensions (W, E, G) and (W, E;,Gy) of the form (174). Then a morphism between
the corresponding extensions of Cartier modules in the sense of definition 91 may be
geometrically described as follows. The morphism consists of a pair (u,vg), where
u: E — E; is a morphism of f.p.p.f. sheaves and vg : Wr — W; ., a homomorphism
of vector groups over R. The following conditions are satisfied.
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1) We have a commutative diagram for the reductions over R:

0 —— Wr —— FEg G 0
[ | H
0 — WLR [N ELR Gy 0

2) For any lifting v : W — W; of vg to a homomorphism of vector groups the map:

v — Uy W. — El
factors through a linear map W — a ® LieF; :

W—> (a®LieE1)A ﬂ) El.

Here the second map is given by the natural inclusion of Cartier modules C'(aM El) C
Mg, or equivalently by the procedure in Messing’s book [Me] (see [22]). This dictio-
nary between extensions used by Messing and extensions of Cartier modules in the
sense of definition 91, allows us to use a result of Messing in a new formulation:

Theorem92. — Let S — R be a pd-thickening with nilpotent divided powers. Let
G be a formal p-divisible group over R. Then there exists a universal extension
(LWY N of G by a S-module LYY,

Then any other extension (L, N) in sense of definition 91 is obtained by a unique
S-module homomorphism L' — L.

Proof. — This is [Me] Chapt. 4 theorem 2.2. O
Remark. — The definition of the universal extension over S is based on the exponen-
tial map

exp : (a ® LieE)" — E,

which we simply defined using Cartier theory and the inclusion a C W(S) given by
the divided powers on a. In the case of a formal p-divisible group it makes therefore
sense to ask whether Messing’s theorem 92 makes sense for any pd-thickening and not
just nilpotent ones. We will return to this question in proposition 96

Since we consider p-divisible groups without an étale part, this theorem should
be true without the assumption that the divided powers are nilpotent. This would
simplify our arguments below. But we don’t know a reference for this.

The crystal of Grothendieck and Messing deduced from this theorem is defined by
Dg(S) = LieN"™.

Lemma93. — Let S — R be a pd-thickening with nilpotent divided powers. Let P =
(P,Q,F, V=) be a display over R. By proposition 44 there exist up to canonical
isomorphism a unique triple (P, F,V=Y), which lifts (P,F,V~1), such that V=1 is
defined on the inverse image @ cP of Q.
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Then the universal extension of BT (P) is given by the following exact sequence of
Eg-modules

(176) 0 — C(Q/IsP) — Es ®w(s) P/(F®z —1® Fz), _5 — M(P) — 0,

QEGI3

where the second arrow maps y € @ to VeV ly—1®y, and the third arrow is given
by the canonical map P — P.

Proof. — By [Z1] the Eg-module N in the middle of the sequence (176) is a reduced
Cartier module, and the canonical map P - Es Qw(s) ﬁ, x — 1 ® x provides an
isomorphism P/IsP ~ N/VN.

Let us verify that the arrow C(Q/IsP) — N in the sequence (176) is well-defined.
Clearly y — V ® V~ly — 1 ® y is a homomorphism of abelian groups @ — N. The
subgroup IS]3 is in the kernel:

VoV Vur—19Ywr =V @wFz -1 Ywz

= VwFoz—12""wr="wr -1 "wz =0,

for w e W(S),z € P.

Moreover one verifies readily that F(V @ V-ly —1®y) = 0 in N. Then the
image of @ — N is in a natural way an S-module, @/Ig.ﬁ — N is an S-module
homomorphism, and we have a unique extension of the last map to a Eg-module
homomorphism

C(Q\/Isﬁ) — N.

We see that (176) is a complex of V-reduced Eg-modules. Therefore it is enough to
check the exactness of the sequence (176) on the tangent spaces, which is obvious.

We need to check that (176) is an extension in the sense of definition 91, i.e.
a-NC @/[5?, where @/ISJB is regarded as a subgroup of N by the second map of
(176) and a C W(S) as an ideal.

Indeed, let a € a, 7 € P and & = Y, VI[§;]FY € Es. Then aé @z = a Y [60;]F7 @
r=1®a) [{o;]F’x. Hence it is enough to verify that an element of the form 1 ® az
is in the image of @ — N. But we have

VeVl -1®awa=—-13ax.
It remains to be shown that the extension (176) is universal. Let
0 — C(Luniv) N Nuniv _ M(P) —50

be the universal extension. For any lifting of M(P) to a reduced Cartier module M
over S, there is a unique morphism N"Y — M, which maps L™V to a- M. Let L
be the kernel of L'V — gM. Then it is easy to check that

(177) 0— C(L) — N"™ — M —0
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is the universal extension of M. Hence conversely starting with a universal extension
(177) of M, we obtain the universal extension of M over S as

0 — C(E + ClNuniV) N Nuniv - M — 0,

where the sum L + aN"V is taken in LieNU0iv,
Now let Q C Q be an arbitrary W (S)-submodule, such that P = (P,Q, F,V~1) is
a display. By the consideration above it suffices to show that

(178) 0— C(Q/IsP) — N — M(P) — 0

is the universal extension of M (73) over S. In other words, we may assume R = 5.
Starting from the universal extension (177) for M = M(P), we get a morphism
of finitely generated projective modules L—Q / IsP. To verify that this is an iso-
morphism it suffices by the lemma of Nakayama to treat the case, where S = Ris a
perfect field. In this case we may identify M(’P) with P. The map P - Eg Qw(s) P
x +— 1 ® z induces the unique W (S)[F|-linear section o of
o

~ ~ TN
0—— C(Q/IsP) N p 0,

such that Vo(z) — o(Vz) € Q/IsP (compare [Z1], 2, 2.5 or [Ra-Zi] 5.26). The
extension is classified up to isomorphism by the induced map o : P — N/V N. Since
this last map is P — P/IgP the extension is clearly universal. O

Our construction of the universal extension (176) makes use of the existence of the
triple (ﬁ, F,V~1). If we have a pd-morphism ¢ : W(R) — S, we know how to write
down this triple explicitly (corollary 56). Hence we obtain in this case a complete
description of the universal extension over S only in terms of (P, Q, F,V ~!). Indeed,
let @w be the inverse image of Q/IP be the map

S®W(R) P— R®W(R) P.
Then the universal extension is given by the sequence
(179) 0— C(@LP) — Es ®@wr) P/(F®z—1® Fzx)sep — M(P) — 0,

where the tensor product with Eg is given by d, : W(R) — W(S) (compare (96)).
The second arrow is defined as follows. For an element 3 € @w we choose a lifting
y € Qp CW(S)@w gy P. Then we write:

l®yeEg Qw(s) (W(S) QW (R) P) =Eg QW (R) P

With this notation the image of § by the second arrow of (179) is V ® Vw_ly - 1®y.
One may specialize this to the case of the pd-thickening S = W,,(R) — R, and
then go to the projective limit W(R) = lim W, (R). Then the universal extension
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over W(R) takes the remarkable simple form:

180
y— VeV ly-1ey
3.3. Classification of p-divisible formal groups. — The following main theorem
gives the comparison between Cartier theory and the crystalline Dieudonné theory of
Grothendieck and Messing.

Theorem94. — Let P = (P,Q,F,V 1Y) be a display over a ring R, such that p is
nilpotent in R. Let G = BI'(P) be the associated formal p-divisible group. Then
there is a canonical isomorphism of crystals on the crystalline site of nilpotent pd-
thickenings over Spec R:
Dp — D¢

It respects the Hodge filtration on Dp(R) respectively Dg(R).

Let S — R be a pd-thickening with nilpotent divided powers. Assume we are given
a morphism W(R) — S of topological pd-thickenings of R. Then there is a canonical
isomorphism:

S®W(R) P > Dg(S).

Remark. — We will remove the restriction to the nilpotent crystalline site below
(corollary 97).

Proof. — In the notation of lemma 93 we find Dp(S) = P/IgP and this is also the
Lie algebra of the universal extension of G' over S, which is by definition the value of
the crystal Dg at S. O

Corollary 95. — Let S — R be a surjective ring homomorphism with nilpotent kernel.
Let P be a display over R and let G be the associated formal p-divisible group. Let
G be a formal p-divisible group over S, which lifts G. Then there is a lifting of P
to a display P over S, and an isomorphism BI’(75) — (77, which lifts the identity
BI'(P) — G.

Moreover let P’ be a second display over R, and let o : P — P’ be a morphism.
Assume we are given a lifting P’ over S of P'. We denote the associated formal
p-divisible groups by G’ respectively G'. Then the morphism « lifts to a morphism of
displays P — ﬁ/’, iff BT («) : G — G’ lifts to a homomorphism of formal p- divisible
groups G — G'.

Proof. — Since S — R may be represented as a composition of nilpotent pd-thicke-
nings, we may assume that S — R itself is a nilpotent pd-thickening. Then the left
hand side of the isomorphism of theorem 94 classifies liftings of the display P by
theorem 48 and the right hand side classifies liftings of the formal p-divisible group
G by Messing [Me] Chapt V theorem (1.6). Since the constructions are functorial in
P and G the corollary follows. O
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Proposition 96. — Let P be a display over R. Let S — R be a pd-thickening with
nilpotent kernel a. Then the extension of lemma 93 is universal (i.e. in the sense of
the remark after Messing’s theorem 92).

Proof. — We denote by G the formal p-divisible group associated to P. Any lifting
G of G to S gives rise to an extension of Mg in the sense of definition 91:

OHC(CLMG)HMGHMGHO
With the notation of the proof of lemma 93 we claim that there is a unique morphism
of extensions N — Mg. Indeed, the last corollary shows that G is the p-divisible
group associated to a display 75(@) which lifts the display P. Hence 75(@) is of the
form (P,Q, F,V~1), where (P, F,V~!) is the triple in the formulation of lemma 93.
But then the description of the Cartier module Mg in terms of the display gives
immediately a canonical morphism of Cartier modules N — Mg. Its kernel is C'(L),
where L is the kernel of the map ﬁ/[gﬁ — Lie é, i.e. the Hodge filtration determined
by G. This shows the uniqueness of N — Mg.
Now let us consider any extension:

Using the argument (175), we see that there is a lifting G of G, such that the extension
above is obtained from

O—>C(U1)—>N1—>Mé—>0

Let @ C P be the display which corresponds to G by the last corollary. Then by
lemma 93 the universal extension of Mg is :

O—>C(@/Igﬁ)—>N—>Mé—>O

This gives the desired morphism N — Nj. It remains to show the uniqueness. But
this follows because for any morphism of extensions N — Nj the following diagram
is commutative:

N ——— N
I I
Mg —— Mg

Indeed we have shown, that the morphism of extensions N — Mg is unique. O

Remark. — Let P be the display of a p-divisible formal group G. Then we may
extend the definition of the crystal D¢ to all pd-thickenings S — R (not necessarily
nilpotent) whose kernel is a nilpotent ideal, by setting:

Dg(S) = Lief?s7

where Eg is the universal extension of G over S, which exist by the proposition above.
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This construction is functorial in the following sense. Let P’ be another display over
R and denote the associated formal p-divisible group by G’. Then any homomorphism
a : G — @G induces by the universality of the universal extension a morphism of
crystals:
D(a) : DG I ]D)G/.

Corollary 97. — If we extend D¢ to the whole crystalline site as above, the theorem
94 continues to hold, i.e. we obtain a canonical isomorphism of crystals:

(181) Dp — D¢
Proof. — This is clear. O

Proposition 98. — The functor BT from the category of displays over R to the category
of formal p-divisible groups over R is faithful, i.e. if P and P’ are displays over R,
the map
Hom(P,P") — Hom(BI'(P), BI'(P'))

18 injective.
Proof. — Let P = (P,Q,F,V~!) and P’ = (P',Q', F,V~1!) be the displays and G
and G’ the associated p-divisible groups. Assume « : P — P’ is a morphism of
displays. It induces a morphism a : G — G'.

But the last corollary gives a back if we apply to a the functor D:

Da(W(R)) — Dar (W(R)). O

Proposition 99. — Let p be nilpotent in R and assume that the set of nilpotent elements
in R form a nilpotent ideal. Then the functor BT of proposition 98 is fully faithful.

We need a preparation before we can prove this.

Lemma100. — Let P and P’ be displays over R. Let a : G — G’ be a morphism of
the associated p-divisible groups over R. Assume that there is an injection R — S of
rings, such that as : Gs — Gl is induced by a morphism of displays 5 : Ps — Pg.
Then a is induced by a morphism of displays o : P — P’.

Proof. — The morphism W (R) — R is a pd-thickening. By the corollary 97 a induces
amap « : P — P’, namely the map induced on the Lie algebras of the universal exten-
sions (180). Therefore a maps @Q to Q'. By assumption the map 8 = W (S) @w (g) o :
W (S) @w(r) P — W(S)®wr) P’ commutes with F and V. Then the same is true
for a because of the inclusions P C W(S) @w (g) P, P' C W(S) ®w(gr) P'. Hence a
is a morphism of displays. By proposition 98 BT'(«) is a. O

Proof of the proposition. — If R = K is a perfect field, the proposition is true by
classical Dieudonné theory. For any field we consider the perfect hull K C KPf and
apply the last lemma. Next assume that R = [[,c; K; is a product of fields. We
denote the base change R — K; by an index ¢. A morphism of p-divisible groups
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G — @, is the same thing as a family of morphisms of p-divisible groups G; — G},
over each K;. Indeed, one can think of G in terms of systems of finite locally free
group schemes. Then one needs only to observe that any finitely generated projective
module L over R is of the form [] L;, since it is a direct summand of R". Next one
observes that the same statements are true for morphisms of displays P — P’, because
W(R) = [[W(K;) etc. Hence the case where R is a product of fields is established.
Since a reduced ring may be embedded in a product of fields we may apply the lemma
to this case. The general case follows from corollary 95 if we divide out the nilpotent
ideal of nilpotent elements. O

We now give another criterion for the fully faithfulness of the functor BI', which
holds under slightly different assumptions.

Proposition 101. — Let R be an Fp-algebra. We assume that there exists a topological
pd-thickening (S, a,) of R, such that the kernels of S/a, — R are nilpotent, and such
that S is a p-adic torsion free ring.

Then the functor BT from the category of displays over R to the category of p-
divisible formal groups is fully faithful.

Proof. — Let P; and P, be displays over R, and let G; and G2 be the p-divisible
formal groups associated by the functor BI'. We show that a given homomorphism of
p-divisible groups a : G; — G35 is induced by a homomorphism of displays P; — Ps.

The homomorphism a induces a morphism of filtered F-crystals ap : Dg, — D¢, on
the crystalline site. Since we have identified (corollary 97) the crystals D and D on this
site, we may apply proposition 60 to obtain a homomorphism ¢ : P; — P5 of displays.
We consider the triples (E, F, V1) and (E, F,V~1), which are associated to P; and
P32, and the unique lifting of ¢ to a homomorphism 5 of these triples. Then Dg, (5) is
identified with 151-/[3]31- for it =1,2. Let E; g and Ey 5 be the universal extensions of
G1 and G over S. By the proposition loc.cit. the homomorphism ap(S) : Lie Ey g —
Lie E5 5 coincides with the identifications made, with the homomorphism induced by
¢:

¢ . ﬁl/Isﬁl — ﬁg/[gﬁg

Let us denote by b : G; — G2 the homomorphism BI'(¢). Then by theorem 94 b
induces on the crystals the same morphism as ¢.

The two maps E; s — Es s induced by a and b coincide therefore on the Lie
algebras. But then these maps coincide because the ring S is torsionfree. Hence we
conclude that a and b induce the same map E; p — Es g, and finally that a =b. O

Proposition 102. — Let k be a field. Then the functor BI' from the category of dis-
plays over k to the category of formal p-divisible groups over k is an equivalence of
categories.
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Proof. — By proposition 99 we know that the functor BI' is fully faithful. Hence
we have to show that any p-divisible formal group X over k is isomorphic to BT'(P)
for some display P over k. Let ¢ be the perfect closure of k. Let X = X, be the
formal p-divisible group obtained by base change. By Cartier theory we know that
X = BT (P) for some display P over .

Now we apply descent with respect to the inclusion ¢ : £k — ¢. Let ¢; and g5 be
the two natural maps £ — £ ®j, £. Let X, respectively P; be the objects obtained by
base change with respect to ¢; for i = 1,2. Our result would follow if we knew that
the functor BT is fully faithful over ¢ ®; ¢. Indeed in this case the descent datum
X1 2~ X5 defined by X would provide an isomorphism P, = P,y. This isomorphism
would be a descent datum (i.e. satisfy the cocycle condition) because by proposition
98 the functor BI is faithful. Hence by theorem 37 it would give the desired display
P over k.

By proposition 101 it is enough to find a topological pd-thickening S — ¢®j ¢, such
that S is a torsion free p-adic ring. We choose a Cohen ring C of k and embedding
C — W(¥) [AC] IX, §2, 3. Then we consider the natural surjection:

(182) W) @c W) — L@y £

The ring A = W({) ®c W () is torsionfree because W (¢) is flat over C. The kernel of
(182) is pA. We define S as the p-adic completion:
S=1lmA /p"A.

Then S is a torsionfree p-adic ring, such that S/pS = ¢ ®j, £. This follows by going to
the projective limit in the following commutative diagram:

0 —— A/prA — P Aprtia s ApA — 0

l I -

0 — Ap"t —L s A/prA —— AJpA —— 0

But with the canonical divided powers on pS the topological pd-thickening S — ¢ ®y £
is the desired object. O

Theorem 103. — Let R be an excellent local ring or a ring such that R/pR is of finite
type over a field k. Then the functor BT is an equivalence from the category of displays
over R to the category of formal p-divisible groups over R.

Proof. — We begin to prove this for an Artinian ring R. Since BT is a fully faithful
functor, we need to show that any p-divisible group G over R comes from a display
P. Let S — R be a pd-thickening. Since we have proved the theorem for a field, we
may assume by induction that the theorem is true for R. Let G be a p-divisible group
over R with BT'(P) = G. The liftings of G respectively of P correspond functorially
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to the liftings of the Hodge filtration to
Dp(S) =Dg(9).

Hence the theorem is true for S.

More generally if S — R is surjective with nilpotent kernel the same reasoning
shows that the theorem is true for S, if it is true for R.

Next let R be a complete noetherian local ring. We may assume that R is reduced.
Let m be the maximal ideal of R. We denote by Gy, the p-divisible group Gr/mn»
obtained by base change from G. Let P, be the display over R/m", which correspond
to Gn. Then P = limP, is a 3n-display over R. Consider the formal group H
over R which belongs to the reduced Cartier module M (P). Since P, is obtained
by base change from P and consequently M (P,,) from M (P) too, we have canonical
isomorphisms H,, = G,,. Hence we may identify H and G. Clearly we are done, if
we show the following assertion. Let P = (P, Q, F, V') be a 3n-display over R, such
that M (P) is the Cartier module of a p-divisible formal group of height equal to the
rank of P. Then P is nilpotent.

Indeed, it is enough to check the nilpotence of Pg over an arbitrary extension
S D R, such that p-S =0 (compare (15)). Since R admits an injection into a finite
product of algebraically closed fields, we are reduced to show the assertion above in
the case, where R is an algebraically closed field. In this case we have the standard
decomposition

P — pnil g pet
where Pl is a display and P°* is a 3n-display with the structural equations
Vle, = e, fori=1,...,h.
Then
M(P*) = @ Ere:/(Ve: — ),

i=1
is zero, because V — 1 is a unit in Eg. We obtain M (P) = M (P"!) = Pl Hence the
height of the p-divisible group G is rankp P*!. Our assumption heightG' = rankp P
implies P = P"! This finishes the case, where R is a complete local ring.

Next we consider the case, where the ring R is an excellent local ring. As above
we may assume R is reduced. Then the completion R is reduced. Since the geometric
fibres of Spec R— Spec R, are regular, for any R—algebra L, which is a field, the ring
R® r L is reduced. Hence if R is reduced, so is R® R R. Consider the diagram:

R—"_.R . R®rR

Let G be a p-divisible formal group over R. It gives a descent datum on p*G = G5:

a:piGg — p5Gp.
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We find a display P over E, such that BT’ (73) = Gg. Since the functor BI' is fully
faithful over R® RE by proposition 99 the isomorphism a is induced by an isomorphism
a: p*{’//)\ — p§73
From the corollary 98 it follows that « satisfies the cocycle condition. By theorem
37 there is a display P over R, which induces (73, «). Since the application of the
functor BI' gives us the descent datum for G, it follows by the usual descent theory

for p-divisible groups, that BI'(P) = G.

Finally we consider the case of a finitely generated W (k)-algebra R. We form the
faithfully flat R-algebra S = [] Rm, where m runs through all maximal ideals of R.
Then we will apply the same reasoning as above to the sequence

pP1
-

R—S | S®rS.
p2
We have seen, that it is enough to treat the case, where R is reduced. Assume further
that Spec R is connected, so that G has constant height.

We see as in the proof of proposition 99, that to give a p-divisible group of height h
over [|[ R is the same thing as to give over each Ry, a p-divisible group of height h.
The same thing is true for displays. (One must show that the order N of nilpotence
in (15) is independent of m. But the usual argument in linear algebra shows also in
p-linear algebra that N = h — d is enough.) Since each ring Ry, is excellent with
perfect residue field, we conclude that Gg = BT’ (75) for some display P over S. We
may apply descent if we prove that the ring S ® S is reduced. This will finish the
proof. Let us denote by Q(R) the full ring of quotients. Then we have an injection

(TT#n) @ (TLRw) — (I1@ Bw)) @am (TTQ (Rw)

The idempotent elements in Q(R) allows to write the last tensor product as

D (([1nQ (Bu/pEn)) 2ocrspm) ([Tn Q (Ru/pRn)) )
} Sainimal

We set K = Q(R/pR). Then we have to prove that for any index set I they are no
nilpotent elements in the tensor product

(EK) ®K(EK).

But any product of separable (= geometrically reduced) K-algebras is separable,

because || commutes with the tensor product by a finite extension E of K. O
4. Duality
4.1. Biextensions. — Biextensions of formal group were introduced by Mumford

[Mu]. They may be viewed as a formalization of the concept of the Poincaré bundle in
the theory of abelian varieties. Let us begin by recalling the basic definitions (loc.cit.).
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Let A, B, C be abelian groups. An element in Ext'(B @ C, A) has an interpreta-
tion, which is similar to the usual interpretation of Extl(B, A) by Yoneda.

Definition 104. — A biextension of the pair B, C by the abelian group A consists of
the following data:

1) A set G and a surjective map
m:G— BxC

2) An action of A on G, such that G becomes a principal homogenous space with
group A and base B x C.

3) Two maps

+5:GxgG —G +4¢:GxcG— G,

where the map G — B used to define the fibre product, is the composite of 7
with the projection B x C — B, and where G — C'is defined in the same way.

One requires that the following conditions are verified:

(i) The maps of 3) are equivariant with respect to the morphism A x A — A given
by the group law.

(¢ip) The map +p is an abelian group law of G over B, such that the following

sequence is an extension of abelian groups over B:

0-BxA— G T BxC—0
bxa — a+0g(b)
Here 0p : B — G denotes the zero section of the group law +p and a + 05(b)
is the given action of A on G.
(iic) The same condition as (iig) but for C.
(#4i) The group laws +p and +¢ are compatible in the obvious sense:

Let x;; € G,1 < 4,j < 2 be four elements, such that prg(z;1) = pra(z;z2) and

pro(z;) = pre(ze,) for ¢ =1,2. Then
(x11 +B z12) +¢ (T21 +B ®22) = (T11 +¢ T21) +B (T12 +C T22).
Remark. — The reader should prove the following consequence of these axioms:
0p(b1) +¢c 0B(b2) =0p(b1 + b2)
The biextension of the pair B,C by A form a category which will be denoted by
BIEXT! (B x C, A). If A — A’ respectively B’ — B and C’' — C' are homomorphism
of abelian groups, one obtains an obvious functor
BIEXT!(B x C, A) — BIEXT! (B’ x ", A).

Any homomorphism in the category BIEXT? (B x C,A) is an isomorphism. The
automorphism group of an object G is canonically isomorphic of the set of bilinear
maps

(183) Bihom(B x C, A).
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Indeed if « is a bilinear map in (183), the corresponding automorphism of G is given

by g — g+ a(n(g)).
If b € B, we denote by Gy or Gy« the inverse image of b x C' by w. Then +p
induces on Gy the structure of an abelian group, such that

0—A—G, —C—0

is a group extension. Similarly one defines G, for ¢ € C.
A trivialization of a biextension G is a "bilinear” section s : B x C — @G, i.e.
mos=1idpxc, and s(b, —) for each b € B is a homomorphism C — G, and s(—, ¢)

for each ¢ € C is a homomorphism B — G¢. A section s defines an isomorphism of
G with the trivial biextension A x B x C.

We denote by Biext!(B x C, A) the set of isomorphism classes in the category
BIEXT!(B x C, A). It can be given the structure of an abelian group (using cocycles
or Baer sum). The zero element is the trivial biextension.

An exact sequence 0 — By — B — By — 0 induces an exact sequence of abelian
groups

0 — Bihom(Bs x C, A) — Bihom(B x C, A) — Bihom(B; x C, A) L

Biext!(By x C, A) — Biext!(B x C, A) — Biext!(B; x C, A)

The connecting homomorphism § is obtained by taking the push—out of the exact
sequence

0— B xC—BxC— By x(C —0,

by a bilinear map a : By x C'— A. More explicitly this push-out is the set A x B x C
modulo the equivalence relation:

(a, b1 +b,¢) = (a+ a(by,c),b,c), a€ A beBceC,b € By

Ifo— A — A— Ay — 0 is an exact sequence of abelian groups, one obtains an
exact sequence:

0 — Bihom(B x C, A1) — Bihom(B x C; A) — Bihom(B x C, As) 2,
Biext' (B x C, A;) — Biext'(B x C, A) — Biext'(B x C, Ay)

We omit the proof of the following elementary lemma:

Lemma 105. — If B and C are free abelian groups, one has

Biext'(B x C, A) = 0.

This lemma gives us the possibility to compute Biext! by resolutions:
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Proposition 106. — (Mumford) Assume we are given ezxact sequences 0 — K; —
Ky— B —>0and 0 - L1 — Ly — C — 0. Then one has an exract sequence of
abelian groups
Bihom(Ko X Lo, A) — BlhOHl(KO X Ll, A) X Bihom (K1 xL1,A) B1hom(K1 X Lo, A)
— Biext' (B x C, A) — Biext' (Ko x Lo, A)

Proof. — One proves more precisely that to give a biextension G of B x C together
with a trivialization over Ky X Lyg:

G——BxC
KOXLQ

is the same thing as to give bilinear maps £ : Ko X L1 — A and pu : K1 X Ly — A,
which have the same restriction on K7 x L. We denote this common restriction by
p: K1 x L — A

Using the splitting Op of the group extension

0—A—Gpxg—B—0,
we may write
(184) S(ko,ll) = OB(bo) +§(k0,l1), for ko € Ko, € L,

where by is the image of ko in B and &(ko,l1) € A. This defines the bilinear map &.
Similarly we define pu:

(185) s(k1,lo) = 0c(co) + p(k1,lo),

for k1 € K7 and lg € Ly, where ¢y € C is the image of ly. Clearly these maps are
bilinear, since s is bilinear. Since 0p(0) = 0¢(0) their restrictions to K x L agree.

Conversely if € and p are given, one considers in the trivial biextension A x Ky x Lg
the equivalence relation

(a,ko + ki, lo + 1) = (a+ &(ko, L) + p(ky, lo) + (K1, 1), Ko, lo).

Dividing out we get a biextension G of B x C' by A with an obvious trivialization.
O

The following remark may be helpful. Let Iy € Lo be an element with image c € C.
We embed K1 — A x Ko by k1 — (—u(k1,1p), k1). Then the quotient (A x Ky)/K;
defines the group extension 0 - A — G, — B — 0.

Corollary 107. — There is a canonical isomorphism:

Ext'(B ®" C, A) — Biext' (B x C, A).
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Proof. — If B and C are free abelian groups one can show that any biextension is
trivial (see (105)). One considers complexes K, = ---0 — K; — Ko — 0--- and
L,=---0— Ly — Ly — 0--- as in the proposition, where Ky and Ly are free

abelian groups. In this case the proposition provides an isomorphism

(186) H'(Hom(K, ® L,, A)) = Biext' (K x L, A).

Let T, =---0 > Ty — Ty — Ty — 0--- be the complex K, ® L,. Then the group
(186) above is simply the cokernel of the map

(187) Hom(TpA) — Hom(7Ty/Im Ty, A).

Let ---P, - --- — P, - K7 — 0 be any free resolution. We set Py = Ky and
consider the complex P, =--- — P, — --- P| — Py — 0. The same process applied
to the L'syields Q, =--- — Q1 — - —> Q1 — Qg — 0. Let T = P, ® Q,. Then the
complex

~~0—>f1/1mf2—>f0—>~~
is identical with the complex

0 Ty /I Ty — Ty — -
Therefore the remark (187) yields an isomorphism

H'(Hom(K, ® L., A)) ~ H (Hom(P, ® Q., A)) = Ext' (B @" C, A). O

The notion of a biextension has an obvious generalization to any topos. This theory
is developed in SGA7. We will consider the category Nilg with the flat topology. To
describe the topology it is convenient to consider the isomorphic category Augp (see
definition 50). Let (B,e) € Augp be an object, i.e. a morphism ¢ : B — R of R-
algebras. We write BT = Kere for the augmentation ideal. We will often omit the
augmentation from the notation, and write B instead of (B, ¢).

If we are given two morphisms (B,e) — (A;,&;) for ¢ = 1,2, we may form the
tensorproduct:

(A1,61) ®(B.e) (A2,82) = (A1 @p, A2,61 ® €2).

This gives a fibre product in the opposite category Augh™:

Spf A1 Xspi B Spf Az = Spf(41 ®@p As).
Via the Yoneda embedding we will also consider Spf B as a functor on Nilg:

Spf B(N) = HomNilR(B+,N).

We equip Aug®® with a Grothendieck topology. A covering is simply a morphism

Spf A — Spf B, such that the corresponding ring homomorphism B — A is flat. We
note that in our context flat morphisms are automatically faithfully flat. We may

define a sheaf on Aug®’™® as follows.
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Definition 108. — A functor F': Aug, — Sets is called a sheaf, if for any flat homo-
morphism B — A in Augp the following sequence is exact.

F(B)— F(A) = F(A®p A).

Recall that a left exact functor G : Nilg — (Sets) is a functor, such that G(0)
consists of a single point, and such that each exact sequence in Nilg

0— N — Ny — N3 —0
induces an exact sequence of pointed sets
0 — GN1) — G(N2) — G(N3),

i.e. G(N7) is the fibre over the point G(0) C G(N3). It can be shown that such a
functor respects fibre products in Nilg. We remark that any left exact functor on
Nilg is a sheaf.

A basic fact is that an exact abelian functor on Nilg has trivial Cech cohomology.

Proposition 109. — Let F' : Nilg — (Ab) be a functor to the category of abelian groups,
which is exact. Then for any flat morphism B — A in Augp the following complex
of abelian groups is exact

F(B) — F(A) = F(A®p A) = F(A@p A®p A)= -+

Proof. — Let N be a nilpotent B-algebra and B — C' be a homomorphism in Augp,.
then we define simplicial complexes:

(C™ (N, B — A),0")
(188)
(C™(C,B — A),0")

for n > 0.

We set
C"N,B—A)=N®pAQp---®p A

Cn(C,BﬁA) :C®BA®B---®BA,
where in both equations we have n + 1 factors on the right hand side. The operators
07 : Cn~t — O™ for i = 0,...,n are defined by the formulas:

0 (r®ar® - @ap—1)=(2Qa® - Qai—1 ®1®a;- @ an—_1),

where z € N or z € C.

One knows that the associated chain complexes with differential 6" = >~ (—1)%07
are resolutions of N respectively C, if either B — A is faithfully flat or B — A has a
section s : A — B. In the latter case one defines

s 0" — C" s ®ap® - ®ay) =28(ag) ® a1 @ - @ ay.
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If one sets C~1 = N respectively C~! = C and 69 : C~! — €%, 08(z) = 2 ® 1, one
has the formulas:

idgn-1, fori=20
1 ’no’n — Y
(189) % {9?__115"1, fori >0 and n>1.

Let us extend the chain complex (C™,§™) by adding zeros on the left:

(190) 0ot B=C 0 8 P

Since by (189) we have s"6" + 6"~ 15"~ = idcn-1, we have shown that this complex
is homotopic to zero.

If F: Nilp — (Ab) is a functor we can apply F' to the simplicial complexes (188),
because 0} are R-algebra homomorphisms. The result are simplicial complexes, whose
associated simple complexes will be denoted by

(191) C"(N,B — A,F) respectively C"(C,B — A, F).

Let us assume that B — A has a section. Then the extended complexes C™(F'),n €
Z are homotopic to zero by the homotopy F(s™), since we can apply F to the relations
(189).

Let now F be an exact functor and assume that B — A is faithfully flat. If N2 =0,
each algebra C™(N, B — A) has square zero. In this case the 6" in (190) are algebra
homomorphisms. Therefore we have the right to apply F to (190). This sequence is
an exact sequence in Nilg, which remains exact, if we apply F. Hence the extended
complex C"(N,B — A, F),n € Z is acyclic if N? = 0.

Any exact sequence 0 — K — M — N — 0 is Nilp, gives an exact sequence of
complexes.

0—C"(K,B— A F) — C"(M,B— A F) — C"(N,B— A, F) — 0.

Hence C™"(N, B — A, F) is acyclic for any A/ € Nilg. Finally let a C B be the kernel
of the augmentation B — R. Then one has an exact sequence of complexes:

(192) 0 —»C"(a,B— A,F)—-C"(B,B— A, F)— C"(B/a,B/a— A/a,F)—0

The augmentation of A induces a section of B/a = R — A/a. Hence the last complex
in the sequence (192) is acyclic. Since we have shown C™(a, B — A, F') to be acyclic,
we get that C"(B, B — A, F) is acyclic. This was our assertion. O

We reformulate the result in the language of sheaf theory.

Corollary 110. — An ezact functor F : Nilgp — (Ab) is a sheaf on the Grothendieck
topology T = Augp®. For each covering Ty — To in T the Cech cohomology groups
H(T, /Ty, F) are zero for i > 1. In particular an F-torsor over an object of T is
trivial.
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By SGAT one has the notion of a biextension in the category of sheaves. If F, K, L
are abelian sheaves a biextension in BIEXTl(K x L, F) is given by an F-torsor G
over K x L and two maps tx : G Xg G — G and t, : G x;, G — G, which satisfy
some conditions, which should now be obvious. If F' is moreover an exact functor,
then any F' torsor is trivial. Hence in this case we get for any A/ € Nilg, that G(N)
is a biextension of K(N) and L(N) is the category of abelian groups. This is the
definition Mumford [Mu] uses.

4.2. Two propositions of Mumford. — We will now update some proofs and
results in Mumford’s article. We start with some general remarks. Let F' be an exact
functor. Let G = H be any F-torsor is the category of sheaves on 7. If H = Spf A is
representable we know that 7 is trivial and hence smooth because F' is smooth. (The
word smooth is used in the formal sense [Z1] 2.28.) If H is not representable, 7 is still
smooth since the base change of G by any Spf A — H becomes smooth.

More generally any F-torsor over H is trivial if H is prorepresentable in the fol-
lowing sense:

There is a sequence of surjections in Aug R:

i Apyy — Ay — Ay,
such that
(193) Hzl’i)nSpfAi.

Then 7 has a section because it has a section over any Spf A; and therefore over H
as is seen by the formula:

Hom(H,G) = lim Hom(Spf 4;, G)
Hence we have shown:

Lemmalll. — Let F : Nilg — (Ab) be an exact functor. Then any F-torsor over a
prorepresentable object H is trivial.

For some purposes it is useful to state the first main theorem of Cartier theory in
a relative form. From now on R will be a Z,)-algebra.

Let B be an augmented nilpotent R-algebra. In order to avoid confusion we will
write Spf B instead of Spf B in the following. Let G : Nilgp — (Sets) be a left exact
functor. There is an obvious functor Nilg — Nilg. The composite of this functor
with G is the base change Gp.

Assume we are given a morphism 7 : G — Spfp B, which has a section o :
Spfr B — G. Then we associate to the triple (G, 7, o) a left exact functor on Nilg:

Let £ € Nilp and let B|£| = B @ L be the augmented B-algebra associated to it.
Then BJ|L] is also an augmented R-algebra, with augmentation ideal B™ & £. Then
we define the restriction Resg G(L) of G to be the fibre over o of the following map

Homgyt, B(Spfr B|L|, G) — Homgyt, (Spfr B, G).
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The functor G +— Resp G defines an equivalence of the category of triples (G, ,0)
with the category of left exact functors on Nilg. We will call the triple (G, 7, 0) a
pointed left exact functor over Spfy. It is useful to explain this formalism a little
more.

Let us start with a left exact functor F on Nilz. Then F x Spf B - Spf B is
naturally a pointed functor over Spf B. The restriction of this pointed functor is Fjg:

Resp(F x Spf B) = Fp.

Suppose that the B-algebra structure on £ is given by a morphism ¢ : Bt — L.
Then we have also a map of augmented R-algebras B|L| — R|L|, which is on the
augmentation ideals ¢ 4 id; : BT ® £ — L.

Lemmall2. — Let ¢ : Bt — L be a morphism in Nilg. Via ¢ we may consider £
as an element of Nilg. Then Resp G(L) may be identified with the subset of elements
of G(L), which are mapped to ¢ by the morphism

7z @ G(L) — Hom(B™, L).

Proof. — Consider the two embeddings of nilpotent algebras iy : L — BT ® L =
BIL|t, (1) =0® 1 and tg+ : Bt — Bt & L = B|L|T,15+(b) = b® 0. Let us denote
by G,(BT & L) C G(B* @ L) = Hom(Spf B|L|, G) the fibre at o of the map
(194) Hom(Spf B|L|, G) — Hom(Spf, B, G)
We have an isomorphism in Nilg:
Bt@L = Bt xL

bdl— bx (pb)+1)
Let G(BT @ L) — G(L) be the map induced by Bt & L — L,b& 1 — ¢(b) + L.
It follows from the isomorphism (195) and the left exactness of G, that this map

induces a bijection G,(BT @& £) = G(L£). Hence we have identified G(£) with the
fibre of (194) at o. It remains to determine, which subset of G(L) corresponds to

(195)

Homgpe g(Spf B|L|, G). But looking at the following commutative diagram
GBT L) — G(L)

7TB+@£l lﬂ-ﬁ

Hom(B*,B* @ £) —— Hom(B™, L)

LB+t ¥

we see that this subset is exactly the fibre of 7. at ¢. O

Conversely given a functor H : Nilg — (Sets), such that H(0) = {point}. Then
we obtain a functor G : Nilg — (Sets) by:

G(N) = U H(./\/:p), N € Nilg,

p:B+—N
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where N, is N considered as a B-algebra via ¢. Then we have a natural projection
7 : G(N) — Hom(B*,N), which maps H(N,) to ¢. The distinguished point in each
H(N,) defines a section o of 7.

In particular our remark shows that a group object in the category of arrows
G — Spf B, such that G is a left exact functor on Nilg is the same thing as a left
exact functor H : Nilg — (Ab).

In Cartier theory one considers the following functors on Nilg:
DN) =N, AW)=1+tN[t])*, forN € Nilg.

Here t is an indeterminate. The functor D is considered as a set valued functor, while
A takes values in the category (Ab) of abelian groups. We embed D into A by the
map n +— (1 —nt) for n € N.

Theorem 113 (Cartier). — Let G = H be a morphism of functors on Nilg. Assume
that G is left exact and has the structure of an abelian group object over H. The
embedding D C A induces a bijection.

Homgr'oups/H (K X Ha G) — Hompointedfunctors/H (D X Ha G) .

Proof. — Tf H is the functor H(N) = {point}, N € Nilg this is the usual formulation
of Cartier’s theorem [Z1]. To prove the more general formulation above, one first
reduces to the case H = Spf B. Indeed to give a group homomorphism AxH—G
over H is the same thing as to give for any morphism Spf B — H a morphism
A x Spf B — Spf B x i G of groups over Spf B.

Secondly the case H = Spf B is reduced to the usual theorem using the equivalence
of pointed left exact functors over Spf B and left exact functors on Nilp. O

The following map is a homomorphism of abelian functors:

AWN) — W),

196 ,
(196) [I(1 —zit’) — (zpo, xpr,...,

Pk )
If we compose this with D C K, we obtain an inclusion D C W.

Let R be a Q-algebra. Then the usual power series for the natural logarithm
provides an isomorphism of abelian groups:

log : AN) = (1 + tN[t]) " — tA1]

The formula 51(2i21mt"> = anktpk. defines a projector 1 : tN[t] — tN]t].

Then Cartier has shown that €; induces an endomorphism of A over any Zp)-algebra.
Moreover the homomorphism (196) induces an isomorphism:

~ —~

€1A Ww.

IR

We use this to embed W into A.
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Mumford remarked that Cartier’s theorem provides a section x of the natural
inclusion

(197) HOmgroups/H (/W X H7 G) — Hompointed functors /H (/W X H, G)

Indeed, let « : W xH — G bea map of pointed set-valued functors. We define
k(a) : A x H — G to be the unique group homomorphism, which coincides with a on
D x H (use theorem 113 ). We get () as the composition of K(«) with the inclusion
WxHCAxH.

Proposition 114. — Let F : Nilg — (Ab) be an ezact functor. Then
Ext!(W,F) =0,
where the Ext-group is taken in the category of abelian sheaves on T .

Proof. — By the remark (193) a short exact sequence 0 — F' — G — W — 0 has a
set—theoretical section s : W — G. Then k(s) splits the sequence. (|

Remark. — 1t is clear that this proposition also has a relative version. Namely in the
category of abelian sheaves over any prorepresentable sheaf H in 7. we have:

Extyoups/ s (W x H,F x H) =0,
if H is prorepresentable. Indeed consider an extension
(198) 0— FxH-—G-L5WxH—0.

Then G is an F torsor over W x H and hence trivial. Let ¢ be any section of 7. Let
us denote by ¢ : H — W x H and sg : H — G the zero sections of the group laws
relative to H. We obtain a morphism sg — ot : H — F. Let pr, : W x H — H be
the projection. Then we define a new section of 7 by

(199) Onew = 0 + (SG - UL) pry .

Then opew is a morphism of pointed functors over H, i.e. it respects the sections sg
and ¢. Hence we may apply the section k of (197) to onew. This gives the desired
section of (198).

If G : Nilp — (AD) is any functor, we set
(200) GT(N) = Ker(G(N) — G(0)).
Because of the map 0 — N we obtain a functorial decomposition
GWN) =GT(N) @ G(0),

which is then respected by morphisms of functors. If G is in the category of abelian
sheaves we find:
Ethlélb(Wv G) = Ethlélb(Wv GJF);

which vanishes if Gt is exact.
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Cartier’s theorem applies to an abelian functor G, such that GV is left exact:
Hom(A, G) ~ Hom(A, GT) ~ GT(XR[X]),

where the Hom are taken in the category of abelian functors on Nilg. If F,G are
abelian sheaves on 7, the sheaf of local homomorphisms is defined as follows:
(201) Hom(F,G)(A") = Hom(Fa,Ga), A€ AugR.
201
Hom(F,G)*(A") = Ker(Hom(F4,G4) — Hom(Fg, GR)).

Cartier’s theorem tells us that for a left exact functor G:
Hom(A, G) (A1) = G(X A[X])
(202) R (%]
Hom™ (A, G)(A*) = G(XAT[X])
In particular the last functor Hoer(K7 G) is exact if G is exact. Using the projector
€1 we see that Hom™ (W, G) is also exact.

Proposition 115 (Mumford). — Let F' be an exact functor. Then
Biext!(W x W, F) = 0.

Proof. — We strongly recommend to read Mumford’s proof, but here is his argument

formulated by the machinery of homological algebra. We have an exact sequence
(SGAT):

0 — Ext' (W, Hom(W, F)) — Biext' (W x W, F) — Hom(W,Ext' (W, F)).

The outer terms vanish, by proposition (114) and because the functor Hoer(/W, F)
is exact. O

Our next aim is the computation of Bihom(W X /W, @m) Let us start with some
remarks about endomorphisms of the functors W and W.

Let R be any unitary ring. By definition the local Cartier ring Er relative to p
acts from the right on W (N'). Explicitly this action is given as follows. The action of
W(R):

(203) WWN) x W(R) — W(N),

is induced by the multiplication in the Witt ring W (R|N|). The action of the operators
F,V € Ep is as follows
(204)

where on the right hand side we have the usual Verschiebung and Frobenius on the
Witt ring. An arbitrary element of Ei has the form Z;io Vig; + Z(;il w7, & €
W (R), where lim p1; = 0 in the V-adic topology on W(R) (see corollary 8). We may
write such an element (not uniquely) in the form: > V", where a,, € W(R)[F].

By the following lemma we may extend the actions (203) and (203) to a right action
of Eg on W(N).
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Lemmall6. — For anyn € /W(N) there exists a number r such that ¥ n = 0.

Proof. — Since n is a finite sum of elements of the form V" [n], n € N it suffices to
show the lemma for n = [n]. This is trivial. O

We note that in the case, where p is nilpotent in R there is a number r, such that
F'W(N) = 0. Hence in this case the Cartier ring acts from the right on W (N).
We write the opposite ring to Eg in the following form:

(205) Br= D V&+ D mF | & py € W(R) limg& =0
i=1 j=0

The limit is taken in the V-adic topology. The addition and multiplication is defined
in the same way as in the Cartier ring, i.e. we have the relations:

(206) FV=p, Ver=Y Fe¢=Fr ¢v=vre
Then we have the antiisomorphism
t: ER I tER,

which is defined by ¢(F) =V, t(V) = F and t(§) = £ for £ € W(R). The ring 'Eg

—~

acts from the left on W(N):

Fﬂan, Vﬂzvn.

It is the endomorphism ring of 1% by Cartier theory.

We define Ex to be the abelian group of formal linear combinations of the form:
(207) Er=1{Y Vigi+> uF.
i=1 j=0

There is in general no ring structure on Ex, which satisfies the relations (206). The
abelian group 'Ep is a subgroup of Er by regarding an element from the right hand
side of (205) as an element from the right hand side of (207). Obviously the left action
of tEr on W(N ) extends to a homomorphism of abelian groups

(208) Er — Hom (W, W).

We will write this homomorphism as
n+— un

since it extends the left action of YEr. We could also extend the right action of Eg:
n — nu.

Of course we get the formula
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The first theorem of Cartier theory tells us again that (208) is an isomorphism. By
the remark after lemma (116), it is clear that in the case where p is nilpotent in R
the homomorphism (208) extends to a homomorphism:

(209) Er — End(W)

The reader can verify that there exists a ring structure on Ex that satisfies (206), if
p is nilpotent in R. In this case the map ¢t : Egr — !Eg extends to an antiinvolution
of the ring Ez. Then (209) becomes a homomorphism of rings.

By Cartier theory we have an exact sequence:

(F—1) — ~
SEZD o e g v —o
The second arrow is the right multiplication by (F'—1) € Eg, and hex is the so called
Artin-Hasse exponential. For the following it is enough to take (210) as a definition
of G,,. But we include the definition of hex for completeness. It is the composition
of the following maps (compare (196)):

(210) 0— WWN)

211) W) 5 e AWV) € AN = (1+ V)X L5510 (14 A%,

It is easy to produce a formula for hex but still easier if one does not know it. The
verification of the exactness of (210) is done by reduction to the case of a Q-algebra
N. We will skip this.

Proposition 117. — The Artin-Hasse exponential defines an isomorphism of abelian
groups:
(212) s : W(R) — Hom(W,G,,)

An element £ € W(R) corresponds to the following homomorphism s : W — @m. If
u € W(N), we have:
e (u) = hex(§ - u).

Proof. — This is a well-known application of the first main theorem of Cartier theory
of p-typical curves. Let [X] = (X,0...0...) be the standard p-typical curve in

o~

W(XK[X]). We have to show that hex(¢ - [X]) gives exactly all p-typical curves of

~

G, if € runs through W(R). We set ., = hex([X]). This is the standard p-typical
curve in G,,. It satisfies F'y,, = v, by (210). By definition of the action of the
Cartier ring on the p-typical curves of G,, we have:

hex(§[XT) = &vm.
If £ =Y V& F as elements of Eg we obtain:
&Ym= V'[&ilvm.
=0

These are exactly the p-typical curves of @m. O
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From (200) we deduce the following sheafified version of the proposition:

Corollary 118. — The homomorphism (212) gives rise to an isomorphism of functors
on Nilg:
st W(N) — Hom(W, Gy )™ (N).

We are now ready to classify the bilinear forms Bihom(W X W,Gm). To each
u € ER we associate the bilinear form Bu:

W) x W) — W) x W) 220t 7o) 2oL 6 o)
Exn o fuxn — (§u)n
Proposition 119. — We have the relations:

Bul(§sm) = Bu(n, )
hex(u)n = hex &(un).

Proof. — Clearly the second relation implies the first one. For v € W(R) we have
(&u)n = &(un). Hence the assertion is trivial.
First we do the case u = F"

hex(¢F)n = hex Vén = hex V(¢F'n) = hex(¢Fn)F = hex £y = hex €(Fn).
The fourth equation holds because:
hex(W(N)(F —1)) =0
Secondly let u =V
hex(¢V)n = hex Pén = hex V(¥ ¢n) = hex¢Vn = hex £(Vn).

Finally we have to treat the general case u = Z Viw,; + Z w_;F*. For a finite sum
=0
there is no problem The general case follows from the following statement:

For given &, n € W(N) there is an integer mg, such that for any w € W(R):
hex(EwF™)n = 0, hex(EV™w)n = 0.
Indeed, this is an immediate consequence of lemma 116. O
Proposition 120 (Mumford). — The map:
Er — Bihom(w X W,@m),
ur— Bu(§;n) = hex(§u)n

s an isomorphism of abelian groups.

(213)

Proof. — One starts with the natural isomorphism.

Bihom(W X W,@m) ~ Hom(W, Hom+(W,Gm)).
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The sheaf H0m+(w,@m) is easily computed by the first main theorem of Cartier
theory: Let A = R @® N be an augmented nilpotent R-algebra. Then one defines a
homomorphism:
(214) W(N) — Hom™ (W, G )(N) € Hom(Wa, G ),
as follows. For any nilpotent A-algebra M the multiplication N' x M — M induces
on the Witt vectors the multiplication:

W(N) x W(M) — W(M).
Hence any w € W(N) induces a morphism W(M) — G (M), € — hexwé. Since by
the first main theorem of Cartier theory:

W (A) — Hom(Wa,Gy,),

is an isomorphism. One deduces easily that (214) is an isomorphism. If we reinterpret
the map (213) in terms of the isomorphism (214) just described, we obtain:

(215) Er — Hom(W, W)

ur— (&)
But this is the isomorphism (208). O
4.3. The biextension of a bilinear form of displays. — After this update of

Mumford’s theory we come to the main point of the whole duality theory: Let P and
P’ be 3n-displays over R. We are going to define a natural homomorphism:
(216) Bil(P x P',Gm) — Biext!(BTp x BTp:.Gy)

Let (, ): P x P'— W(R) be a bilinear form of 3n-displays (18). For N/ € Nilg
this induces a pairing
(217) (,): Py x Py — W),
(Compare chapter 3 for the notation). More precisely, if © = £ ® u € ]3N =
W(N)®w g P and 2’ = ' @u’ € Py = W(N)Qw(r) P, weset (2, x) = £ (u,u') €
W (N), where the product on the right hand side is taken in W (R|N).

To define the biextension associated to (217), we apply a sheafified version propo-
sition 106 to the exact sequences of functors on Nilg:

~ Vloid 5
0— Qny ——— Py — BTp(N) —0

~ Vi-id 5,
0— Q) —— Piy — BTp/(N) — 0.
The proposition 106 combined with proposition 115, tells us that any element in
Biext! (BTp x BTp/,G,,) is given by a pair of bihomomorphisms
ar: Qux Pl — Gp(N)
Qo Py x @j\[ — Gm(N),
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which agree on @ AN X @j\/
In the following formulas an element y € Qs is considered as an element of Pxr by
the natural inclusion id. We set
(218) Oél(y’ :L'I) = heX(V_lya 1'/); for /RS @Na 1'/ € ﬁ./l\f
as(z,y’) = —hex(z,y’), forxe Py, ye Q\j\[

We have to verify that oy and oy agree on @ N X Q\j\/, i.e. that the following equation
holds:
a(y, V7 =) = aa(Vly —u,9)).
This means that:
hex(V™hy, V7ly' — o) = —hex(V™ly — y,7/),
which is an immediate consequence of (1.14):
hex(V ™1y, V=) = hex V(V 1y, V1) = hex(y, 7).
We define the homomorphism (216) to be the map which associates to the bilinear
form (, ) € Bil(P x P’,G) the biextension given by the pair oy, as.

Remark. — Consider the biextension defined by the pair of maps f; : @N X ]3/’\/ —
W(N) and S : Py x @j\[ — Wy defined as follows:

Br(y, x") = hex(y,z’), y€Qu, o' € P

Bao(z,y') = —hex(z, V'), z€ Py, ye Q)

We claim that the biextension defined by (219) is isomorphic to the biextension de-
fined by (218). Indeed by the proposition 106 we may add to the pair (51, 52) the
bihomomorphism

(219)

hex(, ) :ﬁN X ﬁ/\[ — @m(/\/)
obtained from (217). One verifies readily:
ﬁl (y7 xl) + heX(V_ly - Y xl) = al(ya II)
Ba(@,y") + hex(z, VY —y') = aa(y,y).
Remark. — Let G —— B x C be a biextension by an abelian group A, with the
relative group laws +p and +¢. Let s: Bx C — C x B, (b,¢) — (¢, b) be the switch
of factors, and set 7° = sow. Then (G, 7°,4+¢,+p) is an object in BIEXT(C x B, A).

We will denote this biextension simply by G°. Let us suppose that B = C. Then we
call a biextension G symmetric if G and G® are isomorphic.

Let us start with the bilinear form

(,):PxP — Gm.
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We denote by G the biextension, which corresponds to the pair (218) of bihomomor-
phisms «; and aq. Clearly the biextension G° corresponds to the pair of bihomomor-
phisms o : Q\r X Py — W(N) and o : Py, x Qn — W(N), which are defined by

the equations:
= / = —h /
(220) ,.f) 062(%9/) ex(x’yl)
,y) = ai(y,z’) = hex(Vy, ')

If we define a bilinear form:
(7 )S:PIXP—)gma

by (¢/,z)s = (x,2'), we see by the previous remark that the biextension defined
by (220) corresponds to the bilinear form —(a’,x)s. We may express this by the
commutative diagram:

Bil(P x P',G) —— Biext!(BTp x BTp:,Gp)

fsl ls
Bil(P' x P,G) —— Biext!(BTp x BTp,G)
Let P = P’ and assume that the bilinear form ( , ) is alternating, i.e. the cor-

responding bilinear form of W(R)-modules P x P — W/(R) is alternating. Then it
follows that the corresponding biextension G in Biext! (BTp x BTp, Gy, is symmetric.

4.4. The duality isomorphism. — Assume we are given a bilinear form ( , ) :
P x P — G, as in definition 18. Let G = BTp and G’ = BTp/ be the formal
groups associated by theorem 81. The Cartan isomorphism Biextl(G x G, @m) =
Ext'(G @ &, Gyn) = BExt! (G, RHom(G, G,y)) provides a canonical homomorphism

(221) Biext! (G x G, Gyn) — Hom(G, Ext' (G, Gp)).

Let us describe the element on the right hand side, which corresponds to the biex-
tension defined by the pair of bihomomorphisms «; and «y given by (218). For this
purpose we denote the functor N +— ]3N simply by ]3, and in the same way we define
functors @, ]3’, @’. We obtain a diagram of sheaves:

. (V7 —id)* PN ~
/7Gm) 4>I_IO_IH(Qla Gm) Hml(GlaGm) —0

v |

~

P G 0

g°)

Hom(
(222) a

Oy ——

0

Hence (V ~1—id)* is the homomorphism obtained from V~!—id : @’ — P by applying
the functor Hom(—, @m) The horizontal rows are exact. The square is commutative
because the restriction of o to @ X @’ agrees with the restriction of as in the sense of
the inclusions defined by V! —id. Hence (222) gives the desired G — Ext'(G’, @m)
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The functors in the first row of (221) may be replaced by their T-parts (see (200)).
Then we obtain a diagram with exact rows:

Hom(P',G,,)" — Hom(Q', G,,)* — Ext'(G',G,,) " —— 0

(223) | T

0 Q G 0

The first horizontal arrow in this diagram is injective, if P’ is a display. Indeed, the
group G’ is p-divisible and by the rigidity for homomorphisms of p-divisible groups:

oy —

(224) Hom(G',G,,)* =0.

Remark. — Let P’ be a display. The following proposition 121 will show that the
functor MI(G' ,G,n,)T is a formal group. We will call it the dual formal group. The
isomorphism (226) relates it to the dual display.

By the corollary 118 one obviously obtains an isomorphism
(225) W (N) @w (r) P* — Hom(P,G,,)"(\).

Here P' = Homyy (g)(P,W(R)) is the dual W(R)-module. Therefore the functor
Hom(ﬁ’, @m)+ is exact, and the first row of (223) is by proposition 109 exact in the
sense of presheaves, if P’ is a display.

Proposition 121. — Let P be a display and P! be the dual Sn-display. By definition
19 we have a natural pairing

(,):P'xP—G,

which defines by (216) a biestension in Biext' (BTp: x BTp,@m). By (221) this
biextension defines a homomorphism of sheaves

(226) BTp: —> Ext'(BTp,G)t.
The homomorphism (226) is an isomorphism.

Proof. — In our situation (223) gives a commutative diagram with exact rows in the
sense of presheaves:

0 — Hom(P, Hom Ext
(227) ] T
0 Qt pt Gt 0.

Here we use the notation G = BTp, Gt = BTp:. Let us make the first commutative
square in (227) more explicit.
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The bilinear pairing
(228) WN) @y P'x WN) @wir) P — GV,
E@at x LR +—— hex(&u(z', z))
provides by the corollary 118 an isomorphism of functors
(229) W(N) @w(r) P* — Hom(P,Gp)t (V).

In order to express Hom(@, @m)+ in a similar way, we choose a normal decomposition
P = L®T. Let us denote by L* = Homyy(g)(L, W(R)) and T* = Homyy gy (T, W(R))
the dual modules. In terms of the chosen normal decomposition the dual 3n-display

Pt = (P, Q% F, V1) may be described as follows.
We set Pt = P* Q! = T* @ IrL*. Then we have a normal decomposition

P =L'gT'
where L' = T* and T* = L*. To define F and V! for P! it is enough to define
Flinear maps:
vt —p F:T"— P
We do this using the direct decomposition
P=W(R)WV 'LeW(R)FT.
For 2t € L' = T* we set:

(V7lzt wFy) = wh(at,y), weW(R), yeT
(V=lat wV—tz) =0, zeL.

For y' € Tt = L* we set:

(Fy',wFy) =0, yerT
(Fyt,wV~1lz) = wl'(y,z), =€ L.

The bilinear pairing:
W(N) QF,W(R) T x /W(N) QF,W(R) T — @m(-/\/)
Eort xuey — hex(Euf(zt, y))
defines a morphism

(230) WWN) @pwm T — Hom(W Qrw(r) T, Gum) T (N),

where W ® rw(r) 1" denotes the obvious functors on Nilg. The right hand side of
(230) may be rewritten by the isomorphism:

(231) Iv@wm T — WWN) @pwr T
Yu@yr—u®y
The pairing (228) induces an isomorphism:

(232) W(N) @w(r) L* — Hom(W @ (g) L, Gm)* (V)
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Taking the isomorphisms (230), (231) and (232) together, we obtain an isomorphism
of functors

Hom(Q, Gr) T (N) 2 W) @pw(ry T* & WN) @urry L*

(233) t t
=WWN)®@prwr) L' @ WN) @wr) T"

We use the decomposition Pt = W(R)V'L* @ W(R)FT" to rewrite the isomor-
phism (229)

Hom(P,Gp) ™ (V) = W(N) @y W(R)V L@ W(N) @y W(R)FT
~WWN) @rwr) L' @ WWN) @pwr T

(234)

Here an element £ @ ¢ &7 @ y! from the last module of (236) is mapped to £V ~1at @
nFy! from the module in the middle.
We rewrite the first square in (227) using the isomorphism (233) and (234):

V71 _ d *
W(WN)Qp L' @ WWN) @p, T %W(N) Qp, L' WWN)@T!

(235) alT Taz
— — v-l_id - —
WM QL' @WWN)@p,T't — WWN) Lo WN) @ T!

In this diagram all tensor products are taken over W (R). We have to figure out what
are the arrows in this diagram explicitly. We will first say what the maps are and
then indicate how to verify this.

(236) g = — (F® idp GBidW(N)@VV(R)T‘)
o = F® idpe @idw(/\/)@F’W(R)Tf

The upper horizontal map in (235) is the map (V! —id)* = Hom(V ! —id, @m) :
Ho_m(ﬁ,@m) — Ho_m(@,@m). We describe the maps (V=1)* = I—I()_m(V*I,@m) and
id* = Hom(id, G,). Let @ 2" @n @yt € WN) @pw Lt @ W(N) @pw T* be an
element. Then we have:

(237) V Y¢edeney)=tes e ney.

Finally the map id* is the composite of the map (V~1)# @ F# : W(N) @ pw (r) L' &
WWN)@rwr T" — W(N)@w g P' with the extension of —d; to the bigger domain
W(N) @wr) P' = W(WN) Qwr) L' ® W(N) Qw(r) T*. We simply write:

(238) id* = —a (V"H* @ F*).

If one likes to be a little imprecise, one could say (V~1)* =id and (id)* = VL.
Let us now verify these formulas for the maps in (237). ay is by definition (218)
the composition of V=1 : Q4 — Pi, with the inclusion P}, C W(N) Qw gy P' =
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Hom(P,G,,)"(N). Hence by the isomorphism (234) which was used to define the
diagram (235) the map ay is:
V*l

~ At t (V_l)# D F# + ¢
a:Qy —— WWN) @ P WWN) @ L'eWW) @ T
W (R) ~ F,W(R) F,W(R)

Clearly this is the map given by (236).

—~

Consider an element u®@x! € W(N) QOW(R) Lt. This is mapped by a to an element
in Hom(Q,G,,)" (V) = Hom(I ®w gy T,Gm) T (N) & Hom(W @w(r) L,Gm) T (N),
whose component in the second direct summand is zero and whose component in the
first direct summand is given by the following bilinear form @s:

ay(u® 2!, V' @ y) = —hex Yu'u(at, y) = — hexu'Fuf (tx, y).

Hence the image in the first direct summand is equal to the image of fu ® xt by the
homomorphism (230).
Next we compute the map:

(V=Y WN) @w(r) Pt ~ Hom(P, G,,) " (V) — Hom(Q, G,)* ().

Let use denote by (, )p the bilinear forms induced by the homomorphism (230)
respectively (232). Let §® 2" € W(N) @ (g) P" be an element, and let § @z vy €
W(N) QW (R) Lo W(N) QF,W(R) T ~ W(N) QW (R) L& Iy QW (R) T = Qn. Then
we have by definition of (V~1)*:

(239) (V)@ uerzt+v® Y)p, = hex 0% u(z', V'2) + hex v (zt, Fy).
Since we use the isomorphism (234) we have to write § ® 2% in the form £ @ V~1zt +
n® Fyt, where £,n € W(N),zt € L', y* € T*. Then we find for the right hand side
of (239):
(240)  hex&Fu(Vrat Vo) + hex éo(V1at, Fy)

+ hex ™ uw(Fy', V') 4+ hexnu(Fy', Fy)

By definition of the dual 3n-display the first and the last summand of (240) vanish.
Using (20) we obtain for (240):

hex év(zty) + hex nfuf(yt, z) = hex &vF (2!, y) + hex Vnu(y', z).

Since this is equal to the left hand side of (240), we see that (V ~1)*((¢@V 1zt +no Fyt)
is the element in Hom(Q, Gs) " (N) induced by:

§®$t +V77®yt S W(/\/') QF,W(R) Lt @/W(N) QW (R) Tt

This is the assertion (237).
Finally we compute id*. By the isomorphisms (229) and (233) the map id* identifies
with a map

(241) id* : W(N) ®W(R) Pt — W(N) ®F,W(R) L D W(N) ®W(R) Tt
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The assertion of (238) is that this map is the extension of —as , if we identify the
left hand side of (241) with W(N) ®w(r) L' @ W(N) @w (g T" using our normal
decomposition.

Let é@azt dney' € WN) @wr L' @ WWN) Qw(r) T" and uRrdvey e
W(N) Qwr) L ® iy Qwr T = Q for some N-algebra M. We obtain:

id" ¢z’ @ney ) (uer e vey) =hex(E v’ y) + hexuly’,z)
— hex e (et y) + hexnuly’, u),
which proves that
d*(¢oz' +ney") ="tz +ney.
Altogether we have verified that the diagram (235) with the maps described coincides

with the first square in (227). We may now write the first row of the diagram (227)
as follows:

(V-1)* —id*
0—-W ® Lol ® T W ® Ltow ® T¢
F,W(R) W(R) F,W(R) W(R)
242 l N
(242) Ext!(G, )"
0

Here we wrote W and I for the functors N +— W(N) and N +— In. We also used the
isomorphism (231) to replace W @ g w gy T" by I Qw gy T*. The map (V—1)* is just
the natural inclusion.

We know from (227), that Ext'(G, G,,)" is an exact functor on Nilg. We will now
compute the tangent space of this functor.

Let us assume that A is equipped with a pd-structure. Then the logarithmic
coordinates (48) define an isomorphism of W (R)-modules

N @ Iy ~W(WN).
Hence we have an isomorphism of abelian groups:
N @wr T'® Iy Qwr) T" —— WWN) @wr) T
We extend id" to an endomorphism of W(N) & pw (r) L'®@ W (N) @w (r) T by setting:
id" (N ®w(r) T*) = 0.

We claim that id* is then a nilpotent endomorphism. First we verify this in the
case, where p - AN/ = 0. Then we have YW (N) = 0 and therefore the map a, is
zero on the first component. It follows from (238) that the image of id* lies in
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0WN)Qw )T C W(N)®@pwr) L' &W(N)®w ) T Via the natural inclusion
and projection id* induces an endomorphism
id3, : W(N) @wr) T — W(N) @wr) T".
By what we have said it is enough to show that id3, is nilpotent. The endomorphism
F:P=L'oT' — P =L'oT,
induces via inclusion and projection an endomorphism
p: Tt — Tt
By the formula (238) we find for id3,:
id3 (n+Y€) @y") = €@ oy"),
where n € N, & € W(N), and y* € T?. But since P is a display the 3n-display P! is
F-nilpotent, i.e. there is an integer r, such that ¢"(T%) C IgT*. Since W(N) -1 =0

it follows that (id3,)" = 0. In the case where pN is not necessarily zero, we consider
the filtration by pd-ideals

O=p NcCp *Nc.-.-CN.

Since the functors of (242) are exact on Nilp an easy induction on r yields the nilpo-
tency of id* in the general case. This proves our claim that id* is nilpotent if p- N = 0.
Since (V~1)* is the restriction of the identity of

W(N) ®@pwr L' @ WWN) @wr) T*

it follows that (V~1)* —id* induces an automorphism of the last group. One sees
easily (compare (156)) that the automorphism (V~1)* —id* provides an isomorphism
of the cokernel of (V~1)* with the cokernel of (V~1)* —id*. Therefore we obtain for
a pd-algebra A/ that the composition of the following maps:

N @wry Tt — W(N) ®w(ry Tt — Ext'(G,Gm) T (N)

is an isomorphism. This shows that the Ext' (G, @m)+ is a formal group with tangent
space T /IgT* by definition 80. Moreover

G' — Ext!(G,Gm)*
is an isomorphism of formal groups because it induces an isomorphism of the tangent

spaces. This proves the proposition. O

Let P be a 3n-display and let P’ be a display. We set G = BTp, G' = BTp/, and
(G')' = BT(py:. If we apply the proposition 121 to (221) we obtain a homomorphism:

(243) Biext! (G x &, G,,) — Hom(G, (G')Y)

We note that this map is always injective, because the kernel of (221) is by the
usual spectral sequence Ext'(G,Hom(G’,G,,)). But this group is zero, because
Hom(G’,G,,)T = 0 (compare (224)). A bilinear form P x P’ — G is clearly the
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same thing as a homomorphism P — (P’)!. It follows easily from the diagram (223)
that the injection (243) inserts into a commutative diagram:

Bil(P xP',G) —=— Hom(P,(P")")
(244) | | BT
Biext!(G x G, G,,) —— Hom(G, (G')")
Theorem 122. — Let R be a ring, such that p is nilpotent in R, and such that the set
of milpotent elements in R are a nilpotent ideal. Let P and P’ be displays over R. We

assume that P’ is F-nilpotent, i.e. the dual Sn-display (P')! is a display. Then the
homomorphism (216) is an isomorphism:

Bil(P x P’,G) — Biext' (BTp x BTp/,Gp).

Proof. — By proposition 99 the right vertical arrow of the diagram (244) becomes an
isomorphism under the assumptions of the theorem. Since we already know that the
lower horizontal map is injective every arrow is this diagram must be an isomorphism.

O
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