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COHOMOLOGY OF SIEGEL VARIETIES

Abdellah Mokrane, Patrick Polo, Jacques Tilouine

Abstract. — This volume deals with the question of torsion in the cohomology of
Shimura varieties, the coefficient system being Z, or, more generally, a certain local
system V) of flat Z,-modules. Its goal is to show, for Siegel varieties, that the localiza-
tion of this cohomology at a non-Eisenstein maximal ideal m of the Hecke algebra T
has no p-torsion (p = char(T/m)), for p greater than an explicit bound ¢()) depending
only on the highest weight A\ of the coefficient system. This localization, moreover,
kills the boundary cohomology.

Two arithmetic applications are presented: one concerns Hida families of Hecke
eigensystems and the other is a step towards the existence of certain Taylor-Wiles
systems for symplectic groups.

An ingredient in the proof is a version over Z, of Bernstein-Gelfand-Gelfand com-
plexes and of Kostant’s theorem computing the n-homology of the Weyl module Vj,
for p greater than the above bound ¢(A) (which implies that A belongs to the closure
of the fundamental p-alcove).

Résumé (Cohomologie des variétés de Siegel). —  Cette monographie traite de la
question de la torsion dans la cohomologie des variétés de Shimura, & coefficients dans
Zy, ou, plus généralement, dans un certain systéme local V) de Z,-modules plats. Son
objet est d’établir, pour les variétés de Siegel, que la localisation de cette cohomologie
en un idéal maximal de type non-Eisenstein m de l'algébre de Hecke T n’a pas de
p-torsion (p = char(T/m)), pour p plus grand qu’une certaine borne explicite c¢(A)
qui ne dépend que du plus haut poids A du systéme de coefficients. En outre, cette
localisation tue la cohomologie du bord.

On donne deux applications arithmétiques de ce résultat. L’une concerne les fa-
milles de Hida de systémes de valeurs propres de Hecke, ’autre constitue une étape
importante dans la construction de certains systémes de Taylor-Wiles pour les groupes
symplectiques.

Un ingrédient de la preuve est une version sur Z, de complexes de Bernstein-
Gelfand-Gelfand et d’un théoréme de Kostant, calculant la n-homologie du module de
Weyl Vy, pour p plus grand que la borne ci-dessus (ce qui implique que A appartient
a 'adhérence de la p-alcove fondamentale).

© Astérisque 280, SMF 2002
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INTRODUCTION

The first paper of this volume deals with the question of torsion in the cohomology
of Siegel varieties Syy with coefficients in a local system V) of finite flat Z,-modules.
Its goal is to show that its localization at a non-Eisenstein maximal ideal m of the
Hecke algebra is torsion-free for p large with respect to the highest weight A of the
coefficient system V). At the same time, as could be expected, besides getting rid of
the torsion, the localization has the effect of killing the boundary cohomology (and
its torsion), so that we show that

H:(Su, Va)m = IH*(Su, Va)m = H? (Su, Va)m = H*(Su, Va)m

and these cohomology modules are concentrated in middle degree d. This question
of absence of torsion is important in the construction of p-ordinary families of cuspi-
dal Hecke eigensystems, and in the verification of the first main condition for having
a Taylor-Wiles system. These applications are given at the end of the paper. The
main assuption is that the p-adic Galois representation associated to a cuspidal co-
homological representation does exist (it is known only in genus < 2) and that those
corresponding to the maximal ideal m have large residual image (it can be verified on
examples for g = 2). Faltings introduced around 1980 the dual Bernstein-Gelfand-
Gelfand complex as a tool for determining the Hodge decomposition of the complex
cohomology of locally symmetric varieties. The rational version of this tool appeared
in Faltings-Chai book, and they incidentally mention that a p-adic integral version
as well exists, but only for so-called p-small weights \. We developed this idea, and
it became our main tool for determining the Fontaine-Laffaille constituents of the
modulo p de Rham cohomology of these Siegel varieties. This, allied with Falting’s
mod. p étale-de Rham comparison theorem together with a Galois-theoretic argument
allows us to show the vanishing of the various modulo p cohomologies of Sy localized
at m in degree ¢ < d. For this, we needed a rather detailed study of the Bernstein-
Gelfand-Gelfand complex over Z, (in p-small weight) and a Zp-integral version of
Kostant theorem decomposing the cohomology of the unipotent radical of a parabolic
as a sum of irreducible modules over the Levi quotient. These results are presented
in great generality in the second paper, which provides also a useful assortment of
results on Z,-representations of a reductive group in p-small weights.
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COHOMOLOGY OF SIEGEL VARIETIES WITH p-ADIC
INTEGRAL COEFFICIENTS AND APPLICATIONS

by

Abdellah Mokrane & Jacques Tilouine

Abstract. — Under the assumption that Galois representations associated to Siegel
modular forms exist (it is known only for genus at most 2), we study the cohomology
with p-adic integral coefficients of Siegel varieties, when localized at a non-Eisenstein
maximal ideal of the Hecke algebra, provided the prime p is large with respect to
the weight of the coefficient system. We show that it is torsion-free, concentrated in
degree d, and that it coincides with the interior cohomology and with the intersection
cohomology. The proof uses p-adic Hodge theory and the dual BGG complex modulo
p in order to compute the “Hodge-Tate weights” for the mod. p cohomology. We apply
this result to the construction of Hida p-adic families for symplectic groups and to
the first step in the construction of a Taylor-Wiles system for these groups.

Résumé (Cohomologie des variétés de Siegel a coefficients entiers p-adiques et applications)

Supposant connue ’existence des représentations galoisiennes associées aux formes
modulaires de Siegel (elle ne est qu’en genre < 2 pour le moment), on étudie la
cohomologie des variétés de Siegel a coefficients entiers p-adiques localisée en un idéal
maximal non-Eisenstein de 'algebre de Hecke, lorsque p est grand par rapport au
poids du systéme de coefficients. Plus précisément, on montre qu’elle est sans torsion,
concentrée en degré médian, et qu’elle coincide avec la cohomologie d’intersection et
avec la cohomologie intérieure. On utilise pour cela la théorie de Hodge p-adique et le
complexe BGG dual modulo p qui calcule «les poids de Hodge-Tate » de la réduction
modulo p de cette cohomologie. On applique ce résultat a la construction de familles
de Hida p-ordinaires pour les groupes symplectiques et a I’ébauche de la construction
d’un systéme de Taylor-Wiles pour ces groupes.

1. Introduction

1.1. Let G be a connected reductive group over Q. Diamond [16] and Fujiwara [29]
(independently) have axiomatized the Taylor-Wiles method which allows to study
some local components Ty, of a Hecke algebra T for G of suitable (minimal) level;
when it applies, this method shows at the same time that T, is complete intersection
and that some cohomology module, viewed as a T-module, is locally free at m. It

2000 Mathematics Subject Classification. — 11F46, 11G15, 14K22, 14F30.
Key words and phrases. — Siegel modular forms, p-adic cohomology, Galois representations.
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2 A. MOKRANE & J. TILOUINE

has been successfully applied to GL(2),q [73], to some quaternionic Hilbert modu-
lar cases [29], and to some inner forms of unitary groups [38]. If one tries to treat
other cases, one can let the Hecke algebra act faithfully on the middle degree Betti
cohomology of an associated Shimura variety; then, one of the problems to overcome
is the possible presence of torsion in the cohomology modules with p-adic integral
coefficients. For G = GSp(2¢g) (g > 1), we want to explain in this paper why this
torsion is not supported by maximal ideals of T which are “non-Eisenstein” and or-
dinary (see below for precise definitions), provided the residual characteristic p is
prime to the level and greater than a natural bound. A drawback of our method
is that it necessitates to assume that the existence and some local properties of the
Galois representations associated to cohomological cuspidal representations on G are
established. For the moment, they are proven for g < 2 (see below). In his recent
preprint [43], Hida explains for the same symplectic groups G how by considering
only coherent cohomology, one can let the Hecke algebra act faithfully too on coho-
mology modules whose torsion-freeness is built-in (without assuming any conjecture).
However for some applications (like the relation, for some groups G, between special
values of adjoint L-functions, congruence numbers, and cardinality of adjoint Selmer
groups), the use of the Betti cohomology seems indispensable.

1.2. Let G = GSp(2g) be the group of symplectic similitudes given by the matrix
J = (95 8), whose entries are g x g-matrices, and s is antidiagonal, with non-zero
coefficients equal to 1; the standard Borel B, resp. torus 7', in G consists in upper
triangular matrices, resp. diagonal matrices in (G. For any dominant weight A for
(G, B, T), we write  for its dual (that is, the dominant weight associated to the Weyl
representation dual of that of A). Let p be the half-sum of the positive roots. Recall
that X is given by a (g + 1)-uple (ay, ..., a1;¢) € Z9™" with ¢ =ay + -+ - + a,mod. 2,
that A = (ag,...,a1;—c) and p = (g,...,1;0) (see section 3.1 below). Throughout
this paper, the following integer will be of great importance:

g g
w=\tpl=\+d=> (a;+i)=d+ ) a;
i=1 i=1

where d = g(g + 1)/2. It can be viewed as a cohomological weight as follows.

Let A = Ay x Q be the ring of rational adeles; let Gy resp. Go be the group
of A-points resp. Quo-points of G. Let U be a “good” open compact subgroup of
G(Ay) (see Introd. of Sect.2); let S resp. Sy be the Shimura variety of infinite level,
resp. of level U associated to G; then d = dim Sy is the middle degree of the Betti
cohomology of Syy. Let V\(C) be the coeflicient system over S resp. Sy with highest
weight A. See Sect. 2.1 for precise definitions.

Let m = 7y ® Too be a cuspidal automorphic representation of G(A) which occurs
in H4(Sy, VA(C)). This means that

ASTERISQUE 280



COHOMOLOGY OF SIEGEL VARIETIES 3

~ the 7-isotypical component W, = H%(ry) of the G-module H*(S,V,y(C)) is
non-zero, and

- ﬂ? # 0.

It is known (see Sect.2.3.1 below) that the first condition is implied by the fact
that 7 belongs to the L-packet II5 4o of Harish-Chandra’s parameter X+ p in the
discrete series. In fact, it is equivalent to this fact if A is regular or if g = 2.

By a Tate twist, we can restrict ourselves to the case where ¢ = a4 +--- +a1. We
do this in the sequel. Then, |A| is the Deligne weight of the coefficient system V)
and w = |\ + p| is the cohomological weight of W, hence the (hypothetical) motivic
weight of 7.

Let p be a prime. Let us fix an embedding ¢, : Q — @p. Let v be the valuation of Q
induced by ¢, normalized by v(p) = 1; let K be the v-adic completion of a number field
containing the Hecke eigenvalues of m. We denote by O the valuation ring of (K, v);
we fix a local parameter w € O. Let N be the level of U, that is, the smallest positive
integer such that the principal congruence subgroup U(N) is contained in U. Let HY
resp. Hy (O) be the abstract Hecke algebra outside N generated over Z, resp. over O
by the standard Hecke operators for all primes ¢ prime to IN; for any such prime ¢,
let P;(X) € HYN[X] be the minimal polynomial of the Hecke-Frobenius element (it
is monic, of degree 29, see [13] page 247). Let 0, : HN(O) — O be the O-algebra
homomorphism associated to 7.

Let G = GSpingg; be the group of spinorial similitudes for the quadratic form

g
Z 2TiTag41—i + $527+1;
i=1
it is a split Chevalley group over Z[1/2] (we won’t consider the prime p = 2 in the
sequel); it can be viewed as the dual reductive group of G (see Sect. 3.2 below); let
E, N , T the standard Borel, its unipotent radical, resp. standard maximal torus
therein. The group G acts faithfully irreducibly on a space V7 of dimension 29, via
the spinorial representation. Let By be the upper triangular Borel of GLy. Note
that B is mapped into By by the spin representation.

1.3. We put I' = Gal(Q/Q). We assume that
(Gal) there exists a continuous homomorphism
prn: ' — GLy(0)
associated to m: that is, unramified outside Np, and such that the characteristic poly-
nomial of the Frobenius element at a prime ¢ not dividing Np is equal to 0, (P,(X)).

We shall make below an assumption on the reduction of p, modulo the maximal
ideal of O which will imply that p, act absolutely irreducibly on V for each geometric
fiber; hence the choice of a stable O-lattice Vo in V ® K is unique up to homothety.

SOCIETE MATHEMATIQUE DE FRANCE 2002



4 A. MOKRANE & J. TILOUINE

Evidences for (Gal). — For g = 2, assuming
(Hol) 7 is in the holomorphic discrete series,

Weissauer [87] (see also [34] and [52]) has shown the existence of a four-dimensional
p-adic Galois representation

pr: L — GLV(@p)
Moreover, his construction, relying on trace formulae, shows actually that
L(Wy,s)* = L(pg,s)™ for some m > 1.

From this relation, one sees easily that the irreducibility of p, ® Id@p implies that the
(Galois) semisimplification of W ,, is isomorphic to n.p, (m = 4n).

Another crucial assumption for us will be that p is prime to N (hence 7 is unramified
at p). Recall that under this assumption, Faltings has shown (Th.6.2 (iii) of [13] and
Th.5.6 of [22]) that for any ¢, the p-adic representation H?(Sy ® @p,V,\(@p)) is
crystalline.

Let Dy, resp. I, be a decomposition subgroup, resp. inertia subgroup of I'. Via
the identification X*(T) = X, (7)), we can view any p € X*(T) as a cocharacter of
f, hence as a homomorphism I, — Z; — f(Zp) — G(Zp) where the first map is
the cyclotomic character x : I, — Z;. We denote by p the character of 7" whose
semisimple part is that of p, but whose central parameter is d. it is the highest
weight of an irreducible representation of G given by p on the derived group G’. The
character A+p has coordinates (ag+g, ..., a1+1;w). Let us introduce the assumption
of Galois ordinarity, denoted in the sequel (GO):

1) The image p(D,) of the decomposition group is contained in é,

2) There exists § € G(O) such that

pr(Dy) C G- B(O) -G,

3) the restriction of the conjugate pg to I, followed by the quotient by the unipo-
tent radical g- N - g~ ! of §- B-g~! factors through —(A\+p) : I, — T(Z,).

Comments

1) Let us introduce the condition of automorphic ordinarity:
(AO) Foreachr=1,...,g,

v(eﬂ(Tp,T)) = Qr41 + .4 ag
where T}, , is the classical Hecke operator associated to the double class of
diag(lhp ’ 129*27“;[)2 : ]-T)

We conjecture that for any g, if p, is residually absolutely irreducible, (AQO) implies
(GO). It is well-known for g = 1 ([89] Th.2.2.2, and [54]). Moreover, for g = 2, it
follows from Proposition 7.1 of [77] together with a recent result of E. Urban [80].

ASTERISQUE 280



COHOMOLOGY OF SIEGEL VARIETIES 5

2) The minus sign in front of (A + p) comes from the definition of Hodge-Tate
weights (for us: the jumps of the Hodge filtration): the weight of the Tate represen-
tation Zy(n) is —n.

Let 0, = 0, mod. @ and m = Kerf,. Our last assumption concerns “non-
Eisenstein-ness” of the maximal ideal m. It says that the image of the residual rep-
resentation p, induced by pr on Vo /wVp is “large enough”. More precisely, let W5
be the Weyl group of G , viewed as a subgroup of G. Recall the standard description
Wg =2 Sy oc {£1}9. Let W’ C G corresponding to {+1}9. The “residually large image
assumption” is as follows:

(RLI) There exists a split (non necessarily connected) reductive Chevalley subgroup
H of é/z with W’ o« T C H, and a subfield ¥’ C k, of order say K| = ¢ = pf
(f' = 1), so that H(k"), C Imp, and p,(I,) C HO(K').

Here, H(k'), denotes the subgroup of H (k') consisting in elements whose v belongs
toImvop,.

It has the consequence that p, and p, are absolutely irreducible, hence the unique-
ness of the stable lattice Vo up to homothety.

1.4. One defines the sheaf V) (O) over Sy using the right action of U, = G(Z,) (see
[77] Sect.2.1). We put Vi (A) = VA(O) ® A for any O-module A; these are locally
constant sheaves on Syy. Our main result is as follows.

Theorem 1. — Let m be cuspidal with 7o in the discrete series and of good level
group U, occuring in
HY (S, VA(C));
let p be a prime not dividing N = level(U), assume (Gal), (GO), (RLI), p > 5 and
that the weight X\ is small with respect to p:
p—=1>[A+p|
Then, one has:
i) H*(Su, Va(k))m = H(Su, Va(k))m
ii) H*(Su, VA(O))m = H(Su, VA(O))m and this O-module is free of finite rank.
Similarly,
iii) H*(Sy, VA(K/O))m = H(Sy, VA(K/O))m and this O-module is cofree of finite
rank.

The same statements hold for the cohomology with compact supports.

Comments

1) By standard arguments, the whole theorem follows if we show that:

HI(Sy,Va(k))m] =0 forg<d

SOCIETE MATHEMATIQUE DE FRANCE 2002



6 A. MOKRANE & J. TILOUINE

where * = ¢, &, and for any Hecke-module M, M[m] stands for its m-torsion. This is
the main result of the text.

2) In several instances in the proof, it is important that the maximal Hodge weights
of the cohomology modules involved are distinct for distinct modules, and are smaller
than p — 1; the condition

p—1>a1+---+ag+d

implies this; at the same time, it is also the condition needed to apply a comparison
theorem of Faltings (Th.5.3 of [22]). We shall refer to this condition throughout the
paper by saying that A\ is p-small. This terminology has not the same meaning here
than in [61], but is in fact stronger than what is called p-smallness there. Hence,
under the present assumption, we can make use of Theorem D of [61]. In brief, this
assumption is unavoidable in our approach. The condition p > 5 comes from the
theory of modular representations of reductive groups and has been pointed out to
us by P.Polo. It is necessary for the validity of Lemma 13 of Section 7.1, as there is
a counterexample to this Lemma for p = 5 and G = GSp(4); hence in our approach,
the minimal possible p is 7 (for ¢ = 2 and a; = a2 = 0) but p = 5 is also acceptable
if Im p, is “very large” : see the remark following Lemma 12. Observe anyway that
our bound on p depends only on A (not on the level group U). This is crucial for the
applications we have in view.

3) The assumption (RLI) is used only in Lemma 13 of Section 7.1, but this lemma
is crucial for our proof of the Theorem.

4) Note that for A regular and for g = 2, by calculations of [72], and results of
Schwermer and Franke (see Theorem 3.2(i) of [77]), one has H?(Sy, VA(C)) = 0 for
any q < 3, while this is not so for the compact support cohomology: the boundary
long exact sequence for Borel-Serre compactification relates H2(Sy, Va(C)) to an H*
of modular curves, which does not vanish. Our vanishing statement concerns the
localization at m and means that there is no mixing of Hodge weights between the
m-part of H2 and that of H3.

5) For g = 2, E.Urban [79] has found a completely different proof of the absence
of torsion of H?(Sy, Va(O))m under mild assumptions (with m non-Eisenstein). His
proof is much shorter than ours but relies on the fact that the complement in Sy of
the Igusa divisor is affine, which is particular to the Siegel threefold. Whereas our
theorem seems to carry over (with the same proof) to various other situations, like
the Hilbert (or quaternionic) modular case, or unitary groups U(2,1) /q.

FEvidences

1) If g = 2 and 7 is neither CAP nor endoscopic, one can conjecture that for p
sufficiently general, Im p. contains the derived group @(Zp). Then (RLI) is trivially
satisfied; if moreover p is also ordinary, the situation is as desired. Such a conjecture
is unfortunately presently out of reach.

ASTERISQUE 280



COHOMOLOGY OF SIEGEL VARIETIES 7

2) A more tractable situation is the following. See the details in Section 7.3. Let
F be a real quadratic field with Gal(F/Q) = {1,0}. Let f be a holomorphic Hilbert
cusp form for GL(2),p, of weight (ki,ks), k1,ks = 2, k1 = ko +2m (m > 1). One
can show ([90] and [63]) the existence of a holomorphic theta lift from GL(2),p to
G = GSp(4) q for f. Let m be the corresponding automorphic representation of G(A).
It is cohomological for a suitable coefficient system. Since f is not a base change from
GL(2) /g, m is cuspidal, neither CAP nor endoscopic. We allow that f is CM of type
(2,2); that is, is a theta series coming from a CM quadratic extension M = FE of
F, where E is imaginary quadratic. Moreover, 7 is stable at co (see [64]), p, exists
and is motivic, namely: p, = Ind?,i pf, and it is absolutely irreducible. Moreover,
for p sufficiently large (and splitting in E in the (2,2)-CM case), the image of the
associated Galois representation p, : I' — GLg (V) is equal (up to explicit finite
index) to the group of points over a finite extension of Z, of either the L-group
L(Res(g GL(2),r) = Gal(F/Q) x (GL(2) x GL(2))" (if f is not CM), or those of
L Resg[ M* = Gal(M/Q) x (G2, x G2))° if f is CM of type (2,2). The subgroup H
of G whose image by the spin representation is * GL(2),F resp. LM, does contain
W' f; that is, the assumption (RLI) is satisfied for H. If p is ordinary for f and
splits in F, p, satisfies (GO); assume finally that p satisfies p—1 > k; — 1; then, our
result applies. See Sect. 7.3 for numerical examples.

In Section 8, we obtain a refinement of Theorem 1 as follows:

Theorem 2. — Under the assumptions of Theorem 1,

1) the finite free O-module H*(Sy, VA(O))m coincides with the m-localizations of
— the middle degree interior cohomology H(Sy, VA(O)) = Im(HE — HY),
— the middle degree intersection cohomology IH®(Syr, Va(O)).
2) if A is reqular or if g = 2, H (S, VA(K))m contains onlyAcuspidal eigenclasses,
whose infinity type are in the discrete series of HC parameter \ + p.

The main tool for the proof of the first assertion is the solution by Pink of a conjecture
of Harder [59], together with a repeated use of our Theorem 1 for GSp(2(g — r))
for all integers r = 1,...,g. To apply this argument, we need a mod. p version of
Kostant’s formula, proven in Theorem B of [61] under the assumption of p-smallness.
This allows to apply Pink’s theorem in a fashion similar to [37] (who worked in
characteristic zero). The second assertion follows by using a result of Wallach [85],
resp. direct calculations of [72].

We state in Section 9 and 10 several consequences of these results:

— Control theorem and existence of p-ordinary cuspidal Hida families for G, im-
proving upon [77],

— Verification of a condition of freeness of a cohomology module occuring in the
definition of a Taylor-Wiles system.

SOCIETE MATHEMATIQUE DE FRANCE 2002



8 A. MOKRANE & J. TILOUINE

1.5. Let us briefly discuss the proof of Theorem 1. Let Vi(F,) resp. Va(k) be the
etale sheaf over X ® Q associated to the representation V) jp, of Gr, = G ® Fp, of
highest weight A, resp. its extension of scalars to k. As mentioned in Comment 1) to
Theorem 1, it is enough to show that

(+) Wi = HI(X ®Q, Vi(k))[m] = 0

where * = @ or ¢, and for any j < d.

Let X/z[1/n7 be the moduli scheme classifying g-dimensional p.p.a.v. with level U
structure over Z[1/N]. Let X be a given toroidal compactification over Z[1/N] (see
Th. 6.7 of Chap.IV [13], or Fujiwara [30]). Let Xg = X ® Fp, Xg = X @ F,,.

To the representation V /r, (with [A+p| < p—1), one associates also a filtered log-
crystal Vy over X (see Section 5.2 below); the F-filtration on the dual VX, satisfies
Fil' = VX and Fil*+ = 0. Then, the main tools for proving (x) are

— Faltings’s Comparison Theorem ([22], Th.5.3, see Sect.6.1). It says that, since
p—1> w, for any j > 0, the linear dual of Hﬂ(X ® @p,VA(IFp)) is the image by
the usual contravariant Fontaine-Laffaille functor V* of the logarithmic de Rham
cohomology

; — =V v
M = Hljog—dR,*(X ®Fp, V/\) = H’ (V)\ ® Q.YO (log 00)).
— The mod. p generalized Bernstein-Gelfand-Gelfand dual complex (section 5.4)
KKy <_)V;\/®Q.YO'

This is the mod. p analogue of a construction carried in Chapter VI of [13]. The main
result is that x is a filtered quasi-isomorphism: it provides an explicit description of
the jumps of the Hodge filtration in terms of group-theoretic data. In particular for
J <d, w is not a jump.

— Lemma 13 in Section 7.1 shows, assuming (RLI) and (GO), that if W7 # 0, its
restriction to the inertia group I, admits k ® Z/pZ(—w) as subquotient.

Thus if W7 # 0 we obtain a contradiction since the maximal weight w should not
occur in W,

Theorem 2 is equivalent to the fact that the localization at m of the degree d bound-
ary cohomology of V) (k) vanishes. The argument for this is similar to the previous
one, but makes use of the minimal compactification j : Xg — X0 of Xg=X®Q
(instead of the toroidal one). The advantage of this compactification is that Hecke
correspondences extend naturally. We use crucially a theorem of R. Pink (Th.4.2.1 of
[59]) which describes the Galois action on the cohomology of each stratum with co-
efficents in the étale sheaves R95, V) (k); by the spectral sequence of the stratification
it is enough to show the vanishing of the localization at m of the degree d cohomol-
ogy of each individual stratum. For this, we follow the same lines as for the proof
of Theorem 1: the jumps of the Hodge filtration in the degree d cohomolology with
compact support H?(X,.) of the non-open strata X, cannot contain both w and 0;
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on the other hand, if the m-torsion of H4(X,.) is not 0, Lemma 13 does imply that
these weights both occur. Hence, HY(X, ) = 0. The last two sections contain two
applications which were the original motivations for this work.
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inar on toroidal compactifications and cohomology of Siegel varieties held at the Uni-
versity of Paris-Nord in 97-98. Without it, this work wouldn’t have existed. They
wish to thank the participants thereof, and in particular, A. Abbeés. Part of the writ-
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the excellent working conditions of these institutions were appreciated. A series of
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of CEFIPRA program 1501B was also quite helpful. The first author would like to
express his gratitude to the Mathematic Department of Padova University, and espe-
cially B. Chiarellotto for an invitation where a part of this work was exposed. During
the preparation of this text, we had useful discussions or correspondence with many
persons, in particular, A.Abbes, D.Blasius, M. Dimitrov, A.Genestier, G.Harder,
J.C. Jantzen, K. Khuri-Makdisi, K. Kuennemann, A.Nair, B.C. Ngo, R. Pink, P.Polo,
B. Roberts, J. Wildeshaus, H. Yoshida. We thank them heartily for their patience and
good will. Finally, let the referees be thanked for their impressively careful reading
and useful comments.

2. Cohomology of Siegel varieties and automorphic representations

We keep the notations of the introduction. Let us make precise what we mean by
a good open compact subgroup of G(z): U is good if

1) it is neat: the subgroup of C* generated by the eigenvalues of elements in
U - Go NGg does not contain any root of unity other than 1, and

2) v(U) = Z*.

Let us now recall some properties of the cohomology groups H:(Sy, Va(K)), for K
a field of characteristic zero and * = &, ¢ or ! (as usual, H? denotes the image of H?
in H*). In this section, g = Lie(G) will denote the real Lie algebra.

2.1. Generalities over C. — Let U, be the stabilizer in G, of the map
1 :
h:C* — Goo, z=z+iy+— ( Tle Y Sg)
—y-8q 714
with s4 the g X g antidiagonal matrix, with non-zero entries equal to 1. For any good
compact open subgroup U C G(Z), let

Su =GQN\G(A)/UUs andS = G(Q\G(A)/Us

be the Siegel varieties of level U, resp. infinite level. Since U has no torsion, Sy is a

g(g+1)
2

smooth quasi-projective algebraic variety of dimension d = . S is a pro-variety.
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10 A. MOKRANE & J. TILOUINE

For any (rational) irreducible representation V) of G of highest weight A, we define
the local system V3 (C) on Sy as the locally constant sheaf of sections of

pr1: GQ\(GA) x VA ® C) JUUs — Su
By Prop. 2.7 of [8](which does not require cocompactness), one has
H*(Su, VA(C)) = H*(g, Uxs,C™(Gg\Ga, C) ® VA(C)).
The maps of spaces

Cx (GQ\GA,(C) —C% (GQ\GA, (C) - CFQO)(GQ\GA,(C) - COO(GQ\GA, (C)

cusp c/center

(where the first map denotes a smooth truncation to a large compact mod. center
subset, and CZ5,, = C> N L and Cp=¢C>n L?) give rise to maps
H o (S, VA(C)) — HX(S, VA(C)) — H{yy (S, Va(C)) — H*(S,VA(C))
and a well-known theorem of Borel [5] asserts that their composition is injective:
Heyop (S, VA(C)) — Hy (S, Va(C)).

Moreover, as in the proof of Th.3.2 (or Th.5.2) of [8], one has a Gj-equivariant
decomposition

H(:usp(Sa V/\(C)) =H* (ga UoochSSp(GQ\GAv (C) ® V/\(C))
= @7 @ H*(g,Uso, 75 @ VA(C))

where m = 7 ®7o runs over the set of isomorphism classes of cuspidal representations
and 7> is the Harish-Chandra module of 7.

Proposition 1. — If X\ is reqular dominant or if g = 2, the interior, L? and cuspidal
cohomology groups coincide and are concentrated in middle degree:

H2, (S, VA(C)) = Hiy (5. VA(C)) = H} (5, VA(C)) = H{(5,VA(C)).
Proof. — Recall first that H¢,., = H(,) implies H,, = H

cusp ( cusp (2
also Cor.to Th.9 of [21]).
By Th.4 of [6] (which applies here since rk G = rk Us):

Hy) (S, VA(C)) = H* (9, Uss, C3) (Go\Ga, C) @ VA (C))
=@ @ H (9, U, 75° @ VA(C))

y = H (5, VA(C)) (see

where 7 runs over the discrete spectrum of L?(ZyGg\Ga,w) where w is the central
character of V.

Let m = m§ ® T be such an automorphic representation; its local components are
unitary. Moreover, one must have H*(g, Uso, 7%= @ V(C)) # 0. By [82] Th.5.6, the
assumption that A is regular implies that 7, = A4(A), is a cohomological induction
from a parabolic subalgebra q which must be that of the Borel. In that case, this
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induction provides the discrete series. So, 7o is one of the 29! unitary representa-
tions of G in the discrete series of HC parameter X+ p. By [8] Chap.III, Cor.5.2
(iii), the tempered unitary m.’s contribute only in middle degree; Moreover, since
the automorphic representation m = mym,, occurs in the global discrete spectrum and
admits at least one local component which is tempered, it must be cuspidal; indeed,
a theorem of Wallach ([85], Th.4.3) asserts that if 7o, is tempered, the multiplicity
of min L3, is equal to that in L.

If ¢ = 2, the classification of Vogan-Zuckerman [82] as explicited in Section 1 of
[72] yields the vanishing of H' and the temperedness of the 7+, occuring in H3. Then
one concludes as above.

Remark. — If X is not regular, there may also be non-tempered representations 7.,
which occur as infinity type of 7. However, by Langlands classification ([8], Sect. 4.8,
Th.4.11) and Th.6.1 of [8], it implies that H(qQ)(S, Va)(mg) # 0 for some ¢ < d.
Franke’s spectral sequence (below) seems to suggest then that HI(S, Vy)(ms) # 0 (we

leave this as a question).

This proposition will be used in the proof of Theorem 2 (in Section 8 below) to
rule out the occurence of non-cuspidal representations in the localization of the middle
degree L?-cohomology H, ) (Su, Vi), at a “non-Eisenstein” maximal ideal of the Hecke
algebra (that is, satisfying (RLI)).

2.2. Franke’s spectral sequence. — This section is not used in the sequel, but
it provides a motivation for Section 8. By [8] Chap. VII Cor. 2.7, we have

H*(5,VA(C)) = H*(g, Uso; C=(G(Q\G(A)) @ VA(C))

By [7], one can replace the space of C*°-functions by those of uniformly moderate
growth. Franke has shown ([25], Th. 13, or [84] 2.2) that one can even replace this
space by the space A(G) of automorphic forms on G. He has moreover defined a filtra-
tion onA(G), called the Franke filtration (see [84] 4.7) whose graded pieces interpret
as L?-cohomology. This yields an hypercohomology spectral sequence associated to a
filtered complex; more precisely:

Let ®T, resp. CIDJLF, be the positive root system of G, resp. of a standard Levi L of G,
given by (G, B,T), resp. (L, BN L,T). The corresponding simple roots are denoted
by A, resp. Ay. For each standard parabolic P = L - U, let ap is the Lie algebra of
the center of L. Recall then Franke’s spectral sequence ([25] Th. 19 or [84] Corollaire
4.8)

G —Ll(w
EPT = HE (S, W(C) @ 69( )IndP; HE T (S(L), V(Liw - (A + p)))
weWF(\p

= HP'9(S, V) (C))

where
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12 A. MOKRANE & J. TILOUINE

— P =L -Up runs over the set of proper standard parabolic subgroups,
— Py, resp. Gy denotes the group of Ay-points of P, resp. G,
— for each p, WP (), p) is a certain subset of

WE={weW|w(a)>0, forall a € &},

so that Wl = I, WP (), p),

— the locally constant sheaf V/(L;w - (A + p)) on the provariety S(L) is attached to

the representation of L of highest weight w - (A + p) = w(A + p) — p (dominant for the
order given by (L, BNL,T)), twisted by —w(A+ p)|L, that is, by the one-dimensional
representation of L attached to the (exponential of the) restriction of —w - (A + p) to
its (co-)center ap.
This spectral sequence is G y-equivariant. It allows one to represent any Gs-irreducible
constituent of HPT4(S,V,(C)) as IndIGgf 7y where 7y is an irreducible admissible rep-
resentation of Ly such that m = 7§ ® m, is automorphic, in the discrete spectrum of
L?(LgZa\La, ¢) with P a rational parabolic in G, L its Levi quotient, and ¢ some
unitary Hecke character.

Moreover, by Th. 19(ii) of [25], if A is regular, Franke’s spectral sequence degener-
ates at EY"?. So, we have a Hecke-equivariant decomposition for each degree g € [0, 2d]:

H(S,VA(C)) = IH(Su, VA(C))®

q
@ EBO WEB(A )IH"’“”)(SL7V$<A+p>_p(<c)(—w ~(A+p)L))-
p=0weWP(\p

However, unlike the GL,,-case, the question of the rationality of this splitting for
the group G is open (with a possibly negative answer). We nevertheless expect that
it should yield, after localization at a “non-Eisenstein” maximal prime ideal of the
Hecke algebra, an equality of the form

IH(Sy, VA(C))m = H*(Syr, VA(C))m

for A regular. We establish this in Section 8 below for a suitable m, by a Galois-
theoretic argument which in some sense replaces the lacking Jacquet-Shalika theorem.

2.3. Hodge filtration in characteristic zero. — Recall we assumed that U is
good, so that its projection to any Levi quotient of G is torsion-free and v(U) = A
By the first condition, Sy is smooth; the second condition implies that Sy admits a
geometrically connected canonical model over Q. Let X be this canonical model; it is
a geometrically connected smooth quasi-projective scheme over Q. Let X a toroidal
compactification of X defined by an admissible polyhedral cone decomposition of
Sym? X*(T) ([1] Chap.3 and [13] Chap.IV, Th.5.7). Let cox = X — X be the
divisor with normal crossings at infinity. Let f : A — X be the universal principally
polarized abelian variety with level U-structure over X (it exists over Q). Let @ be
the Siegel parabolic of GG, that is, the maximal parabolic associated to the longest
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simple root for (G, B,T); let M its Levi subgroup. For any Bj/-dominant weight p,
let W(u) resp. W(u), be the corresponding automorphic vector bundle on X, resp. its
canonical Mumford extension to X (see Th.4.2, Chap. VI of [13]). These are coherent
sheaves. As observed by Harris [36], the coherent cohomology H*(X,W(u)) has a
natural action of the Hecke algebra. Let A = (ag,...,a1;¢) as above (recall that for
simplicity we assume ¢ = ag + - -+ a1). Let H = diag(0,...,0,—-1,...,—1) € g.

2.3.1. Complex Hodge Filtration. — It results from Deligne’s mixed Hodge theory
that the complex cohomology H™ (X, Vy(C)) carries a mixed Hodge structure with
Hodge weights greater than, or equal to m + |A| and that the interior cohomology
(image of H* — H™) is pure of Hodge weight m + |A|. It is studied in greater details
in Sect.6.5 of [13]. We won’t need any information about its W-filtration, so we
concentrate on its F-filtration (Hodge filtration). With the notation of 6.4 of [13],
de Rham comparison theorem reads:

H™(X(C),VA(C)) = Hir(X(C),VY)

where V) denotes the coherent sheaf associated to the Q-representation restriction to
the Siegel parabolic @ of the G-representation of highest weight A\. The reason for the
dual (denoted ) is the following. The de Rham comparison theorem sends the local
system R!'f,C on le*Q;‘/X; however, as explained on top of page 224 of [13], the
construction of coherent sheaves from Q)-representations associates to the standard
representation the dual of R! Q% /X while the locally constant sheaf associated to
the standard representation is R! f,C.
Let g, resp. t, be the Lie algebra of G, resp. T'. Let

H = diag(0,...,0,—1,...,—-1) €t

Let WM be the set of Kostant representatives of the quotient Wy, \Wg of the Weyl
groups; for each w € WM let p(w) = — (w(\+ p) — p) (H); it is a non-negative
integer. The main result of Sect. 6.5 (Theorem 5.5(i), Chap. VI) of [13] gives a Hecke-
equivariant description of the graded pieces of the F-filtration in terms of coherent

cohomology of automorphic vector bundles extended to a toroidal compactification
X of X, as follows:

(BGG) g H' (X, A(C) = @ H "X Wwh+p)-p)")
wewM
p(w)=p

Because of our comment on de Rham comparison theorem, we see that contrary to
what is mentioned in R. Taylor’s paper ([72] p.295, 1. 14 from bottom), the statement
of Th.5.5, 1.6 in [13] is correct, because the local system denoted V) in Faltings-
Chai is actually dual to the one denoted V) in Taylor’s and in the present paper.
Our statement, in accordance to Faltings’, is that the sum runs over the w such that
wA+ p)(H) +p = p(H). We think therefore that Taylor’s statement cited above is
incorrect (but correct after a Tate twist, anyway).
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14 A. MOKRANE & J. TILOUINE

For any subset B of A = {1,...,g}, let (B, B) the corresponding partition of A.
We define wg € Wg by its action on (t;v) € T: for t = (tp,t5), one puts wg(t;v) =
(t',tg;v). An easy calculation shows that for any w € Wg, if w = (0, wp) for some
permutation o of A and B some subset of A, one has:

p(w) = —(w(\ + p) = p)(H) = —(wp(A+p) — p)(H) =Y _(ai + 1)
i€B

We put jp = > ,cplai +1i), so ja = w is the motivic weight defined in the
introduction. The jg’s belong to the closed interval [0, w]. They are indexed by a
set of cardinality 29, but need not be mutually distinct, from g = 3 on. Note that for
any degree m of the cohomology, the jumps of the Hodge filtration occuring in H™
always form a subset of {jp | B C A}.

Let m = my ® o be a cuspidal representation of G(A), with 7, holomorphic in
the discrete series of HC parameter X+ p; let 0, : HV — C be the character of
the (prime-to-N) Hecke algebra, associated to = and p, = Ker8,. By [8] Chap.III
Th. 3.3(ii), the (g, Usx )-cohomology of 7 ® V) is concentrated in degree d. we put

Wy = H(X, VA(C))[px]
By cuspidality of 7, W, has a Hodge structure pure of weight w = d + |\[:
We= & Wp4

prg=w
Let us show that W*: and W2% are both non-zero. More precisely, let w’ € WM be
the Kostant representative of largest length, namely d (it is unique, and if w” € W)y

is the unique element of largest length, then w'w” is the unique element of largest
length in W¢). Then,

Proposition 2. — There is a H™ -linear embedding

77 CHY? = HY (X, Wuwrip—p), mF CHY™ = H X, W,).

Proof. — Let q be the Lie algebra of the Siegel parabolic. Since 7 is cuspidal, a
calculation of M. Harris, Prop. 3.6 of [36] shows that for any ¢ and p M-dominant,
7TfU ® H1(q, Uso, Too ® W,,) embeds HN-linearly into H4(X,W,,). Moreover by Theo-
rem 3.2.1 of [9], H(q, Usc, Moo ® W,,) does not vanish in only two cases: u = A and
g=d,or p=w'(A+p)—pand ¢g=0.

Remark. — If 7 is stable at infinity, that is, if all the possible infinity types 7’ in the
discrete series of HC parameter A+ p give rise to automorphic cuspidal representations
' =7y @ wl, then all the possible Hodge weights do occur in W:

For any jp, BC A, A=B][B WiEIE #0.
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2.3.2. p-adic Hodge filtration. — The Hodge-to-de Rham spectral sequence

(BGG)g EP'= @ HPM'N(X, W(w\+p) - p))
wewM
p(w)=p

= H"TI(X,V) ® Q’?/Q(logoox))

makes sense over Q and degenerates in E}*? ([13] Sect. VL6, middle of page 238).
Here, V) denotes the flat vector bundle defined over QQ associated to the rational
representation V) of G. More explanations on the rational structures involved, as
well as integral versions thereof will be given in Sections 5.2 and 5.3.

Actually, let C' be the completion of an algebraic closure of Qp; by Th.6.2 of [13],
there is a Hodge-Tate decomposition theorem inducing the splitting of (BGG)c; More

precisely:

(BGG)r HPMI(X,VA(Qp)@C = @ HP' (X W(w(Atp)—p))@C(p(w)).
wewM
p(w)=p

By a theorem of Harris [9], the Hecke algebra H™V acts naturally on each sum-
mand of the LHS of this splitting. Now, the main feature of the above splitting is
its naturality for algebraic correspondences on X. It implies the compatibility of the
decomposition (BGG) g with the action of HY. Let Ky C C be a number field con-
taining the image of 6. Let Wy x, = HY(X, Va(Ko))[px]. We fix a p-adic embedding
Q— @p. Let K be the corresponding completion of K¢ ; put Wy , = Wr k, ®k, K.
The restriction of (BGG)yr to the part killed by p, is still a HN-equivariant de-
composition of Wy , ® g C. If we assume (Hol), we see from Prop. 1 above that the
Hodge-Tate weights w and 0 do occur; indeed,

W0 = H (X, Waraip)—p)lpx]  and W2 = HY(X, W) [px]

by comparing to complex cohomology, we see from Prop. 1 that these two spaces are
non-zero.

Let us remark that if 7 is stable at infinity, the analogue of Prop. 2 for all possible
infinity types in the discrete series of HC parameter X+ p (in number 29, but iso-
morphic two by two) implies that all the possible Hodge-Tate weights jp (B C A) do
occur in the Hodge-Tate decomposition of W .

3. Galois representations

3.1. Relation between p. and W;,. — The absolute Galois group I' acts on
Wr p. Let us first recall, for later use, the following well-known fact.

Lemmal. — Wy, is pure of weight w. That is, for any ¢ prime to Np, all the
eigenvalues of the geometric Frobenius at ¢ have archimedean absolute value (*/2.
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Proof. — Since 7 is cuspidal, we know by a theorem of Borel (see Sect. 2.1) that Wi p,
is contained in the interior cohomology H{(X,Vy). By Th.1.1 of Chap. VI of [13],
there is a toroidal compactification Y C Y of the |A|-times fiber product Y = A of
the universal abelian variety A above a toroidal compactification of the Siegel variety
X C X, all these schemes being flat over Z[1/N]; over this base, Y is smooth and
Y — Y is a divisor with normal crossings. One can interpret the etale sheaf as cut
by algebraic correspondences in (R!'7.Q,)®¢ (see [13] p.235, and 238, or this text,
Sect.5.2), hence HY(X,Vy) C H¥(Y,Q,) (x = @,¢). By the classical commutative
diagram (coming from the degeneracy of the Leray spectral sequence):

HE(Y,Qp) —— H¥(Y,Q,) —— H™(Y,Qp)

J J

HY(X, V) HYX,Vy)

We conclude that H!d(X , V\) is pure of weight w; recall that this can be interpreted
either in the sense of Deligne (take ¢ unramified and different from p, then the eigen-
values of geometric Fry have archimedean absolute values £*/ 2) or in a p-adic sense
(in the crystalline case, say: that the eigenvalues of the crystalline Frobenius have
archimedean absolute values p®/?).

Assume now that 7 admits an associated p-adic Galois representation p, : I' —
GLy (@p); we assume that p, is irreducible. We don’t know a priori whether p, is
a Galois constituent of Wy, although, by [13] Chapter VII Th.6.2, we know that
the characteristic polynomial of p, annihilates the global p-adic representation Wr .
If moreover p does not divide N, we know by Faltings [22] Th.5.2 that W, is
crystalline but we don’t know this a priori for p,. However, for g < 2, if p; is
absolutely irreducible, we do know that it is a constituent of Wy, (by [72] and [53]
or [87]). Indeed, for ¢ = 2, Laumon [53] and also Weissauer (completing works
of [34], [72] and [52]) has shown the existence of a four-dimensional p-adic Galois
representation

pr: [ — GLV(@p)
such that
L(Wm 5)4 = L(pﬂv S)m

thus, the assumption of irreducibility for p, implies that the Galois semisimplification
Wi of Wrp is isomorphic to n.pr, for m = 4n. In turn, it also implies that pr is
pure of weight w and is crystalline at p if p is prime to V.

There are other situations, namely when 7 is a base change of a Hilbert modular
eigenform, where one knows that p, is crystalline, although one may not know that
it is a constituent of Wy p; see Sect.7.3 below. One of the uses of our assumption
(RLI) will be to relate (residually only) Wy , and pr (see Sect.7.1).
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3.2. Spin groups and duality

3.2.1. description. — For the general definitions on spinors, we follow [32] Sect. 20.2,
and [18] VIIL.8 and IX.2; however by lack of references for our precise need, we
give some details in this section. Although these groups exist over Z, we’ll re-
strict ourselves to Z[1/2], (p = 2 is excluded of our study). Let V = A;‘mg] en-
dowed with the quadratic form ¢(z) = Y7, 2z} + 2 for x = Y 9_ | z,e; + woeo +

¢_, xlel; the scalar product is denoted by (z,y). The canonical basis is ordered

as (€g,...,€1,€0,€],...,€y), so that (e;,€’) = 0;;, eo is unitary, W = (eg,...,e1)
and W’ = (e},...,e;) are totally isotropic, and the sum V = W & W' @ (eo) is

orthogonal. The Clifford algebra C(V,q) over Z[1/2] is the quotient of the tensor
algebra by the two-sided ideal generated by x ® x — ¢(x), (z € ‘7), it is Z/2Z-graded:
0(17, q) = CT@®C~. The main involutive automorphism IT is defined as Id on C* and
—1Id on C~; the main antiinvolution x — z* is defined by vy - - - v, — (=1)"v, - - - v1.
We write N(z) = x - 2* = z* - z for the spinor norm. The Z[1/2]-group scheme
GSping = GSpiny, 4 (called the regular Clifford group in [18] IX.2) is defined as the
group of invertible elements g of C(V,q) such that g - V. gl = V. The group of
orthogonal similitudes GO‘7 = GOg441 is defined as the group of h € GL‘7 such that
goh =c(h)-q. Consider the group-scheme morphism

v:GOg41 — Gy, hr—deth-c(h) 9.
One has c(h) = v%(h). Moreover, the homomorphism of Z[1/2]-group schemes
¢ : GSping — GOy, gr— (z+—1Il(g) -2 -g")

is an isogeny of degree two (using [18] VIII.8) which satisfies v o ) = N. The spin
representation spin is a representation of GSping on V' = AW; it can be defined via
the universal property of the Clifford algebra, as in [32] Lemmata 20.9 and 20.16.
We have dim V = 29. We write G for GSping. It is a Chevalley group over Z[1/2];
the standard maximal torus f, resp. Borel B , of G is the inverse image by 1 of the
diagonal torus, resp. upper triangular subgroup in GOgg41.

3.2.2. Dual root data. — We want to recall first the notion of a (reduced) based root
datum

(M7 R’ A’M*7RV’ AV)?

consisting of two free Z-modules M, M™* of rank, say, n with a perfect pairing
M x M* — Z and finite subsets R D A in M, resp. RV D AV of M*, together
with a bijection R — RY; R is the set of roots, and A the simple roots; these data
should satisfy two conditions RD I and RD II: ¢f. [70] 1.9 or rather, for the degree of
generality that we need, Exp. XXI Sect. 1.1 and 2.1.3; here, “reduced” means that in
the set of roots R, we allow no multiple of any given root except its opposite.
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In order to make some calculations, let us recall briefly the classification given by
these data. The main reference is [17], whose Exposés are quoted by their roman
numbering.

)

Definition 1. — For any scheme S # @, a split reductive group with “épinglage’
over S, is a t-uple (G, B, T, (Xa)aca)s consisting in a connected reductive group
scheme Gg of rank n, together with a Borel Bg and split maximal torus Ts C Bg:
T = G},. Let R, resp. A C R, be the root system, resp. set of simple roots, at-
tached to (G, B,T) (Exp.XIX Sect.3). The “épinglage” (X4 )aca is the datum for
each a € A, of a section X,, € I'(S, g,) which is a basis of g, at each point s € S.

For details on “épinglages”, see [17] XXII 1.13 and XXIIT 1.1. Any such split
reductive group defines a reduced based root datum

(M, R, A, M* RY AY).

Note that the “épinglage” is not needed in the construction, it comes in only for the
fidelity of the functor. The definition runs as follows. Put M = X*(T), M* = X.(T);
the duality (, ) between these modules is the composition (A, u) — Ao u, R, resp. A
is the set of roots, resp. simple roots attached to (G, B,T), and " is defined for
each a € A as follows: let T, be the connected component of Kera, let Z, be its
centralizer in G. Tt is reductive of semisimple rank one, hence its derived group Z/,
is isomorphic to SL(2) or PGL(2), and its character group is generated by «; then,
a : Gy, — Z, NT is defined as the unique cocharacter of Z/, such that oo " = 2.
For details, see Exp. XX, Th.2.1. As checked in Exp. XXII 1.13, these data satisfy
the two conditions (DR I) and (DR II) of Exp.XXI 1.1, hence do form a based root
datum (données radicielles épinglées). The system thus obtained is reduced.

Theorem 3. — There is an equivalence of categories between reduced based root data
and split reductive groups with “€pinglage”.

This is the main theorem of [17], it consists in 4.1 of Exp. XXIII Sect.4 and Th. 1.1
of Exp. XXV Sect. 1.

Now, given a reduced based root datum, one can form its dual by exchanging
(M, R,A) and (M*, RV, AY). This induces a duality of split reductive group schemes
with épinglages, over a base S. Let us apply this to our situation. We take G = GSp,,,,
(G,B,T)zp1/2); M = X*(T) and M* = X, (T'), naturally paired by the composition.
By using the standard basis of X*(T'), one identifies M to the subgroup of Z9 x Z,
consisting in u = (uss; pie) such that |u| = p.mod. 2. This lattice is endowed with
the standard scalar product; here Z9 corresponds to the characters of the semisimple
part of T, and the last component to the central variable. In this identification, R C
79 x {0} and one can write o = 2- -2 in the space QY x {0}. The simple roots of G
are ag =ty /tg_1,...,a1 = tiv~1, for t = diag(ty,. .., t1,tav =1, ... ty;v~t) € T; hence
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their coordinates in M = Z9xZ are (1,—1,0,...;0),...,(0,...,2;0). The correspond-
ing coroots have therefore coordinates a\g’ = (1,-1,...50),...,ay = (0,...,1;0).
Then, X,(T) is identified to Z9 x Z + 1 - diag(Z9*!).

The resulting dual of (G, B, T)z(1 /2 is precisely (@, E, f)z[l/g] (it is true as well
over Z, but we don’t need, and don’t want to consider characteristic 2 spin groups).

Let @ be the minuscule weight of G; it belongs to X*(T) = X, (T). It satisfies
the formulae: @ - oY = d1, for i = 1,...,g. Hence, in the basis we have fixed,
its coordinates are (1/2,...,1/2;z). The central parameter x must equal 1/2 as
well, because the homomorphism 1) is etale of degree two, and induces the standard
representation, whose highest weight is therefore 2, but whose central character is

z — z. Now, any character u € X*(T') is identified to a cocharacter of T. Then,

Lemma2. — In X*(Gy,) =Z, for any pp = (piss; pte) € X*(T), one has:

|:uss| He
2 * 2

Note that the right-hand side is an integer.

Proof. — Clear.
Let us make simple remarks:

(3.2.2.1) wou=

1) Let By be the upper triangular Borel of GLy. Then B is mapped into By by
the spin representation.

2) In the identification X, (T) = X*(T), the central cocharacter G,, — T, z
diag(z, ..., z) becomes the multiplier N : T — G, of our regular Clifford group é; it
is clear on the level of tangent maps.

3) If we describe Tcog, (C) as the torus G, x To,, of matrices

diag(z~tg,...,z~t1,z,z~tf1,...,z~t;1)

then, ZA“((C) can be described as the set of t-uples (4, ..., t1, [u,(]) where u? =t,---t;
and ¢% = 2, the couple (u, () being taken modulo the group generated by (—1,—1).
The map ¢ : T(C) — Tgo(C) is then given by t; — t;, [u,(] — ¢2. All this follows
easily from the fact that ¢ is dual of the degree two isogeny Tss X Zg — T given by
(tss,2) = tss * 2.

Let us apply these considerations to compute the local Langlands correspondence
for a representation 7, of G(Q,) in the principal series. Let us assume 7, = Indggg”; 1)

p
(unitary induction). If ¢ is unramified, it can be viewed as
(3.2.2.2) ¢ = (ag,...,01;7) € CI x C,
the parametrization being given by:
diag(ty, ... t1, v 7. vty ) e g[S - [0 p] (T e ) /2
Even if it is ramified, we can make the following identifications

(3.2.2.3) Hom(T(Q,), C*) = Hom(X.(T) ® Q},C*) =
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Hom(X.(T), Hom(Q},C*)) = X*(T') ® Hom(Q}, C*)
= Hom(Qy, C* ® X*(T)) = Hom(Q;, T(C)).

So that we can view ¢ as a cocharacter Q; — ZA“((C) We introduce a twist of

this character by d on the central component (v +— 7 — d), in order to get rid of the
@ —d

~ p ’

cocharacter ¢ obtained by twisting ¢ by the unramified cocharacter G,, — Z5(C),t —

irrationality inherent to Langlands parameters: ¢ = ¢ - |v| it corresponds to the

[t], 4. In the unramified case, ¢ is given by the formula

ag+otag B
(3.2.2.4) e (LT 17 [ e |t|z(;y 9/2)),

Consider the canonical map a : Wy, — Q) given by class-field theory (sending
arithmetic Frobenius to p). The composition ¢ o a is denoted o(mp) and is called the
image by Langlands local correspondence of 7.

Let us return now to our Galois representations. Note first that the question
whether p,, if absolutely irreducible, factors through the spin representation

G(@,) — GLv(TQ,)

is open.

However, for g = 2, if 7 is stable at co and if 7 satisfies multiplicity one: m(7w) = 1,
then it can be shown that p, takes values in G (see [72] p.295-296). This remark,
due to E.Urban (to appear) results from Poincaré duality and the autoduality of 7
(which is well known, at least, at almost all places).

3.3. Ordinarity. — Let D, resp. I, be a decomposition subgroup, resp. inertia
subgroup of I'. Via the identification X*(T') = X, (T)), we can view any p € X*(T) as
a cocharacter of T', hence as a homomorphism L, = Z) — ZA“(ZP) — GLgz, (V) where
the first map is the cyclotomic character x : I, — Z;. Let p = (g,...,1;d). Thus, p
is the sum of the fundamental weights of Gj it is the highest weight of an irreducible

t®d

representation of G contained in St®“. The assumption of Galois ordinarity, denoted

(GO) in the sequel, is:
— The image p-(D,) of the decomposition group is contained in @,
— there exists g € G(O) such that

px(Dp) CG-B(O) -7,
— the restriction of the conjugate pg to I, followed by the quotient by the unipotent
radical g- N - g~ of g- B- g~ factors through —(A+p)ox : I, — T(Z,).

Example. — For ¢ = 1, A = (n;n) corresponds to the representation Sym"(St) of
GL(2), and p = (1;1) corresponds to St. Then the weights of the (2-dim.) spin
representation of GSping are @ = (%, %) and w0 = (f%; %), hence the composition
of x, —(A 4+ p) and the spin representation (modulo unipotent radical) gives the
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diagonal matrix diag(y~ ", 1) (modulo Weyl group), which is the usual formula for
an ordinary representation coming from an ordinary cusp form of weight k = n + 2:

| ~ 1 *
pf D, = 0X7n71 .

Convention. — In the rest of the paper, we make the abuse of notation to write E,
resp. N, T, instead of their respective conjugates by g: §- B -g~! and so on. With
this convention, we have g (I,) C B(k).

Relative to the triple (@, E,f), we have the notion of dominant characters pu €
X*(T) and Weyl classification of highest weight O-representations of G, provided
p—1> |u+ p| (see Polo-T. [61]). Let @ be the minuscule weight of G. As already

calculated, its coordinates are:
( 1 11 )
51505
Lemma3. — For any o € I,
(3.3.1) &(p,.(0)) mod. N(k)) = w™ (o)
and similarly, for the lowest weight w™°

(3.3.2) & (5, (o)) mod. N(k)) = 1.

Proof. — By (GO), the left-hand side is given by @ o [—(\ + p)] o w(o); therefore,
the desired relation follows from Lemma 2, with u = X + p. Indeed, the coordinates
of \+pinZ9 xZ are (ag+¢,...,a1 +1;a4 + - -+ a1 + d), hence the scalar product
(%, A+ p) is equal to >, %t + (Z';i)er, that is, 2 + % i.e. w. Similarly for (3.3.2).

Comments
1) Let us introduce the condition of automorphic ordinarity:
(AO) Foreachr=1,...,9, v(0(Tpr)) = ary1 + -+ a1,

where T}, , is the classical Hecke operator associated to the double class of
diag(l,«,p : 12g—27‘;p2 : 17“)-

We conjecture that for any g, if p, is a subquotient of W ,,, then (AO) implies (GO).
It is well-known for g = 1 ([89] Th.2.2.2, [41] and [54]).
Consider the statement

KMg (7, p). — If p is prime to N, the slopes of the crystalline Frobenius on the iso-
typical component Devys(Wr ) are the p-adic valuations of the roots of the polynomial
0 (Pp(X)), reciprocal of the p-Euler factor of the automorphic L-function of .

For g = 2, we have seen in 3.1 that W27 is pr-isotypical (assuming its absolute
irreducibility). We have observed (Proposition 7.1 of [77]) that if KMa(7,p) holds
and if 7 is stable at infinity, the condition (AO) for 7 implies (GO). In a recent
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preprint, E. Urban [80] has proven KMa(7, p); thus, for g = 2, if 7 is stable at oo,
(AO) implies (GO).

2) If m, is in the principal series (for instance, if 7 is unramified at p), and if the
p-adic representation p; is, say, potentially crystalline at p (for instance, crystalline),
one can ask in general the following question.

On one hand, the local component 7, of 7 at p is unitarily induced from ¢ for a
character ¢ : T(Qp) — C*; we defined in Sect. 3.2.2 the local Galois representation
o(mp) of the Weil group Wo, given by

W, — QX — T(C) c G(C)

'

where Q¢ — f((C) is given by the twist ¢ through the identification (3.2.2.2). This
representation is rational (the traces belong to some number field).

Let us consider on the other hand the restriction to D, of p.. By applying the
(covariant) Fontaine’s functor Dperys (cf. Fontaine, Exposé III, Astérisque 223), we
obtain a representation 'pr ,, of the Weil group W, :

Ipﬂ,p : WQp I GLv.

One can conjecture a compatibility at (p, p) between the local and global Langlands
correspondences, namely that the F-semisimplification of the two rational represen-
tations 'pr , and o(m,) are isomorphic (where a : Wg, — @, is the map induced by
class-field theory, sending arithmetic Frobenius to p, and the twist is to pass from
Langlands parameters to “Hecke” parameters). This fact is known in the following
cases:

— for g = 1, by well-known theorems of Scholl and Katz-Messing,

— for ¢ = 2, for a representation m on GSp(4) which is the base change from
GL(2, F) (F real quadratic) of a Hilbert modular form which is in the discrete series
at some finite place, and which is unramified at places above p (in which case pyp,
hence p p is crystalline at p by Breuil’s theorem [11]). This is a particular case of a
theorem of T. Saito [66].

Note however that this statement does not allow one to recover the representation
prp = Px|D, (because it says nothing about the Hodge filtration) unless we assume
it is ordinary (in the usual geometric sense, see [60]). More precisely, we have two
parallel observations:

— Let us assume that p; , is crystalline; then the assumption of geometric ordinarity
means that the eigenvalues (fgl) Bc{l,....g} of the crystalline Frobenius are such that
the ord,(¢g) (B C {1,...,g}) coincide (with multiplicities) with the Hodge-Tate
weights; these numbers, if 7 is stable at infinity, should be (as mentioned at the end
of Sect.2.3.2) jp = ,cp(a;i+1i) (B C A={l,...,9}). These quantities can also be
written

(&5, (A+7)) = 8" o (A + )
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where wp € W is the element of the Weyl group such that for t=(tg,... t1,[u,(]) €
T and wg (tA) = A, 0; = ti_1 if and only if ¢ € B and all its other components are those
of t. Therefore, it implies by Fontaine-Laffaille theory that pr is ordinary at p in the
precise sense of (GO). Thus the conjunction of geometric ordinarity, and of stability
of m at co (together with the complete determination of Hodge-Tate weights of p,)
implies (GO).

— Let us assume 7 is unramified at p; let us introduce complex numbers 6;’s and
¢, such that for any ¢ € ZA“((C) mod. Wg,

|ti|g% _ oi—ordp(tq,) and |Z|; _ C—ordp(z)’
we can rewrite (3.2.2.4) as

d)(p) = (Gg_la s 79;17 [(99 o '91)_1/2apd/2 ' 4_1])
The composition with spin gives a complex diagonal matrix whose entries are inverse
to the 29 algebraic integers

. 1/2
&=(T6 T16) ¢
icd igJ
The Automorphic Ordinarity Conjecture for the p-adic embedding ¢, states
ord, (1p(€)) = S (@i +4). for amy
icJ
Therefore, the quantities x; = — ordy (4 (8;)) and y = ord,(¢,(()) satisfy the linear
system in (zg,...,z1;y) € Z9Th:

+d+> =D
_Y ZzeJ2 L Zng L Z(ai +1).
ieJ
It contains a Cramer system. Therefore, assumption (AO) implies
Ordpei:—(ai+i)7 0rdp(<):ag+...+a1

up to permutation of the coordinates. This can be rewritten as an equality in
Hom(Q,, T(K)/T(0)):

tpop=—(A+Dp).
We conclude that (AO) together with KM (7, p) implies (part of) the compatibility
conjecture at (p,p): the (p-adic orders of) the eigenvalues counted with multiplicities

of Derys(pr)(Frob,,) coincide with those of o(m,)(Frob,).

4. Crystals and connections

4.1. de Rham and crystalline cohomology of open varieties. — Let
f: X — S be a smooth proper morphism of schemes; X C X be an open immersion
above S, with complement a relative Cartier divisor D — S with normal crossings
and smooth irreducible components. Let V be a coherent sheaf over X endowed with
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an integrable connection V with logarithmic poles along D; let V its restriction to X.
Let Z(D) be the sheaf of ideals defining D. Then the relative de Rham cohomology
sheaves H) (X/S,V) are defined as

(2.1)g R f.(V ®ox 0% 4(log D)).
Let us now introduce a complex

Q% (—logD) = Qs

%/s ?/S(logD) ®o+Z(D)

We define the cohomology sheaves with compact support ’HﬂR, J[X/S,V) by:

(2.1), R/ f.(V ®oy 0%, (—log D)).

%5
If S = Speck is the spectrum of a field k, we write H({R instead of ’HﬂR. A priori,
these definitions depend on the compactification X of X. One can show for S =
Speck and V trivial that the resolution of singularities implies the independence of
the compactification (Théoréme 2.11 of [57]).

For the crystalline cohomology there is a similar definition. Our reference is [48],
section 5, 6. We use the language of logarithmic schemes; as noted by Kato in Com-
plement 1 of his paper, his results are compatible with Faltings theory of crystalline
cohomology of open varieties [23]: in Faltings approach, a logarithmic structure on
X is a family (Li,zi)1<icr Where L; is an invertible sheaf and z; a global section
thereof, these data always define a logarithmic scheme in Kato’s sense (while the
converse is false). Let (S,I,v) a triple where S is a scheme, Z is a quasi-coherent
nilpotent ideal of Og and v is a divided power structure on Z (PD-structure, for
short). Let Sp the closed subscheme defined by Z; we consider a smooth morphism
Xy — So and Dy a relative Cartier divisor with normal crossings. It defines a loga-
rithmic structure M = {g € O, | g invertible outside Do} C Ox, . One defines the
logarithmic crystalline site of (Xo/5)i98, as in Kato [48] Sect.5.2. The objects are
5-uples (U, T, Mr,i,d) where U — X is étale, (T, Mr) is a scheme with fine loga-
rithmic structure over S, i : (U, M|y) — (T, M) is an exact closed immersion over S
and ¢ is a divided power structure compatible with . Recall that a closed immersion
of log-schemes f : (X, M) — (T, N) is called exact if f*N — M is an isomorphism.
Morphisms are the natural ones. On this site, the structural sheaf O, /g s defined by

O%,,s(U, T, Mr,i,6) = (T, Or).
Definition 2. — A crystal on (X/5)i8, is a sheaf V of Ox,s-modules satisfying the
following condition: for any morphism g : 77 — T in (X,/S )&, 9"V — Vpi is an

isomorphism. Here Vr and Vrr denote the sheaves on Ty and Té’t defined by V.

Let (X, D) be a lifting of (Xg, Do) to S, that is, a smooth S-scheme together with
a divisor with normal crossings flat over S such that (X xg So, D xg.S0) = (Xo, Do).
Note that since Z is nilpotent, the étale sites of X and Xy, resp. of S and Sy are
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equivalent by U +— U xg Syp. By Th.6.2 of [48] (see Sect.4.2 for more details), the
data of a crystal on (Xo/9)8, is equivalent to that of an Os-module M endowed

crys
with a quasi-nilpotent integrable connection with logarithmic singularities

V:M-— M®o, Qlf/s(logD).

For any sheaf V on (Xo/S )L‘;%,S, we denote by ferys«V its direct image by
f:Xo— S;itis asheaf on S. We write f¢. .V for the etale sheaf on S¢ which is the
direct image of the etale sheaf V on Xy. To compute the cohomology sheaves of a

crystal, we apply the spectral sequence
RferyssV = Rfs«(RusV)

where u is the canonical projection from the site (X/S )28, to Xoet. It is defined,

for a sheaf V on (X/5)98,, and for any étale morphism U — X, by
(wV)(U) =T(U, Vy).
Moreover, if V is a crystal, we have

Ru, YV = M@0, log D).

%/s(
Again, by Th.2.11 of [57], one can show, assuming the resolution of singularities
that for S = Z/p"Z, Sy = Z/pZ this definition does not depend on the compactifica-

tion.

Remark. — In our case, one even does not need the resolution of singularities. It will
be a consequence of the comparison theorem!

These definitions transfer to the compact support case; it is mentioned in [22]
p.58. We explain this in Kato’s setting. For a log-scheme (T, N), we denote by Z(N)
the sheaf of ideals in Op generated by N. We define a sheaf of ideals Z(Dy) on
(X0/S)5s as:

I(Do)(U, T, Mr,i,6) = T(T,Z(Mr)).
Z(Dy) is a crystal of Ox, / g-modules. By definition, the cohomology with compact
support of a crystal V is the cohomology of the crystal

YV Q@0~ ,. Z(Dy).

Xo/8

The cohomology sheaves

Rfcrys,*,cV = Rfcrys,*(v Qo+

Xo/8

Z(Do))
are computed by a similar spectral sequence
Rfcrys,*,cV = Rfét,*(RU*,cV)

where u, .. is defined, for a sheaf V on (X¢/S )28 and an étale morphism g : U — Xo,
by
(s, (V)U) = T(U,Vu @0y 9"I(Do))-
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One has also:

Rferys«.cV = Rfst «(M @0 Q'Y/S(f log D)).
This result can be proven as in the case without support; it will be explained in the
next section.

4.2. L-construction. — In the proof of Theorem 6 below, we will apply the crys-
talline L-construction in the logarithmic setting (in the classical crystalline setting,
¢f. Chap. 6 of [4]); we want to explain the definitions and results here.

Let (S,Z,v) a triple where S is a scheme, 7 is a quasi-coherent ideal of Og and
v is a PD-structure on Z. Let Sy the closed subscheme defined by Z; we consider a
smooth morphism X¢ — Sy and Y} a relative Cartier divisor with normal crossings.
Let (X,Y) be a lifting of (X, Yp) to S; we suppose that there exists an integer m > 0
such that p" O« = 0. Let Zy,...,Z, be the irreducible components of Y. Let = be
the blowing-up of X xg X along the subscheme >:(Zi xs Z;). Let X XsX be the
complement in = of the strict transforms of X x Z; and Z; x Y, 1<i<randlet Y
be the exceptional divisor in X X X ; it is a divisor with normal crossings. The couple
(Y;Z sX, }7) is the categorical fiber product of (X,Y’) by itself over S, in the category
of logarithmic schemes (cf. [22] IV, ¢). Locally, if x1,...,24 are local coordinates of
X over S such that Y is defined by the equation z -- -z, = 0, then X xgX is the
relative affine scheme given as spectrum of

Slziol, lozilicicalts Ticjca/ (@01 - uj — 1675) 1< <a

and Y is defined by the equation z1@1---z,01 =0 (or legz; - - - lex, = 0).

The product X xgX is the “exactification” of the diagonal embedding of log-
schemes X < X x X and Y is the inverse image of Y xg Y in this exactification.
Recall that if f : (X, M) — (T, N) is a closed immersion, there exists locally a unique
exact closed immersion f : (X, M) — (T, N) which is universal in the following
obvious meaning;:

For any commutative triangle

(X, M) g (Z, P)

~,

(T, N)

such that g is an exact closed immersion, there exists a unique morphism (Z, P) —
(T, N)) which lifts (Z, P) — (T, N).

The log-scheme (T, N) is the “exactification” of (T, N).

We endow X xgX with a PD-structure as follows. Let D+ be the PD-envelope of
the diagonal immersion X — X xgX. In the local coordinates above, D is the PD-
polynomial algebra O(v1,...,va,&at1,--.,&s) Where v; = u; — 1 and & = x;0l —
1®l‘i.
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We denote by D”Y the n'h order divided power neighborhood: D% = DY/I[A"H]
where Za is the ideal of the diagonal immersion and the exponent with brackets
denotes the (n + 1)*® PD power of Zx.

Let M be a sheaf of Ox-modules. We recall the interpretation of a connection
on M in terms of an HPD-stratification in our context. For us, the notion of an
HPD stratification on M is defined word for word as in [4] Sect.4.3 (which treats the
crystalline situation on X, without the divisor Yp). It consists namely in the datum
of a D-linear isomorphism

€: Dy ®ox M — MRo.p+

such that e reduces to identity modulo Zan and the natural cocycle condition on
XxsXxsX holds ([4] def. 2.10). In the case M = D, we have two canonical
HPD stratifications. The first is induced by extending by (left) D-linearity the map
0 : cad — ((1ed)e(1ec)

for c and d in O; it makes use of the right module structure of D over O. The
second is given similarly by tensoring on the left by D+ over O the left-hand side
of 1 : cad — ((cel)e(led);

it uses the structure of left Ox-module of D.

Also, as in [4] 4.4, one recalls the notion of PD-differential operator. Let M and N
be two Ox-modules.

A PD-differential operator M — N of order < n (resp. HPD-differential operator)
is a Og-linear map DL @ M — N (resp. Dy @ M — N). Every PD-differential
operator ¢ : D"Y ® M — N induces a classical differential operator 6° : M — N of
order n with “cologarithmic zeroes” along Y.

The importance of these notions for us stems from the following theorem whose
proof runs exactly as in the “classical” case ([4] Theorem 4.12). For that, we introduce
the notion of a quasi-nilpotent connection in the sense of [4] 4.10 (but in our log
setting, again):

Definition 3. — A connection V on M is quasi-nilpotent if for any local section s of
M with local coordinates x1,...,x4 on X such that Y is defined by the equation
x1 - xq = 0, there exists a positive integer k£ such that

[1 (V(id/0w:) — j)*(s) =0

0<j<k—1

for 1 <i < aand (V(9/0z;))k(s) =0 for a+1 < i <d).

Theorem 4. — The data of an HPD stratification on M is equivalent to the data of a
logarithmic integrable connection V on M wich is quasi-nilpotent.

Then, Grothendieck’s linearization functor L is defined as follows. Let H be the
category of Ox-modules with morphisms given by HPD-differential operators and C
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to the category of crystals over (Xo/S)%,. For any sheaf M of Ox-modules, we

crys*

endow the Ox-module Dy @o M with the HPD-stratification er )

ldp ®f

'Dy®py®/\/l ﬂDyQ?'Dy@M

Dx oM@ Dx

where f : M ® Dy — D% ® M interchanges the factors. In other words, the HPD-
stratification is given by:

(awb)e(ced)om — (acab)eme(led)

Definition 4. — The covariant functor L : H — C is defined by:

— For any sheaf M of Ox-modules, L(M) is the crystal corresponding to the O-
module with HPD-stratification (D ®ox M, erm))-

— For an HPD-differential operator ¢ : M — N (that is, an Ox-linear map
¢ : Dy @M — N), L(p) : L(M) — L(N) is the morphism of crystals corre-
sponding to the O-linear morphism compatible with HPD-stratifications, given by
the composition:

Idp— ®¢
Dy M —EM . D gD g M —X "D aN.

We refer to [4] Sect.2, Sect.6 for more details. Note that since D is locally free,
the functor L is exact.

The correspondence between crystals on (Xo/.9 )IC‘;%S and Ox-module M endowed
with a quasi-nilpotent integrable connection with logarithmic singularities, is then
given by the following rule: Let pry,pry : Dy — X be the two canonical projections.
If V is a crystal on (Xo/5)98,, let M = V¢ be the evaluation of V on X. The defining
condition of a crystal produces an isomorphism:

€:praM ~ priM

This induces an integrable quasi-nilpotent logarithmic connection on M as explained
above. Conversely, by theorem 4, every logarithmic integrable connection on M
wich is quasi-nilpotent induces an HPD stratification on M. If (U, T, Mr,i,4) is an
object of the crystalline site, then by smoothness, etale locally on T', the morphism
(X0, Do) — (X, D) extend to a morphism h : (T, Mr) — (X, D). We define Vr to
be h*M. If we have two such h; : (T, Mr) — (X, D) (i = 1,2), then there exists
h' . (T,Mr) — (D, Mp.) such that h; = h'pr; and e induces an isomorphism
hiM ~ hiM. Thus V is well-defined.

It is not hard from the classical case (Theorem 6.12 of [4]), to deduce the following
crystalline Poincaré lemma.
Lemma4d. — Let V be a crystal on (Xo/S)98, and M the associated Ox-module
with its integrable connection. Then the complex of crystals LM & Q'Y(log Y)) is a
resolution of V.
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Example. — For S = Speck, Xo = Speck[t], Do = {0}, the L-construction applied
to the logarithmic de Rham complex gives the following Poincaré resolution:

0 — Ox, — Ox,{v) — Ox,{(v)dv — 0

where d : Ox,(v) — Ox,{v)dv is Ox,-linear and maps v to dv. Here, L(Ox,) =
Ox,(v) and L(Q2x, i (log Dg)) = Ox,(v)dv where v should be thought of as log .

Finally, the same argument as in the classical theory ([4] Sect. 5.27) shows also the
following useful lemma:

Lemma5. — Let M be a sheaf of Ox-modules and Z(Y') the ideal of definition of Y.
Then:
Ru,L(M) =M and Ru, .L(M)=MI(Y).

Combining Lemma 4 and 5 above, we deduce:

Ru,V = M ®0¢ Q% s(log D) and  Ru..V = M @og O g(~log D).

%5
4.3. The Gauss-Manin connection. — As in section 4.1, X is a smooth S-scheme
(not necessarily proper), X an S-open scheme of X such that D = X — X is a divisor
with normal crossings over S. Let f : X — X be a proper morphism such that X’
is smooth over S, f is smooth over X and D = X X+ D is a relative divisor with
normal crossings (such f is called semi-stable, see [44]). We have a relative de Rham
complex with logarithmic poles

Q logD/D) =Q logD)/ f*Q% . (log D).

'?/Y( .T/s( X/5
As explained in [49] (see also [44]), we have a Gauss-Manin connection with logarith-

mic poles along D, on the coherent Ox-module:

£% = R*f.(2% x (log D/ D)).

In fact, this sheaf is locally free either if S is over Q or if S is over a field of charac-
teristic p greater than . The restriction of £ to X is the usual Gauss-Manin sheaf
Raf‘X*Q;(/X and £% is the Deligne’s canonical extension to X. The Gauss-Manin
connection on & is integrable and if Og is killed by a power of p, then this connection
is quasi-nilpotent ([49]).

5. BGG resolutions for crystals

Let B=T.N resp. Q@ = M - U be the Levi decomposition of the upper triangular
subgroup of G, resp. of the Siegel parabolic, viewed as group schemes over Z. We keep
the notations of the introduction for the weights of G. Let V = (eg, ..., e1,€],. .., ez>
be the standard Z-lattice on which G acts; given two vectors v,w € V, we write
(v,w) = tvJw for their symplectic product. @ is the stabilizer of the standard la-
grangian lattice W = (eg,...,e1); we have V=W @& W*; M = Ly is the stabilizer
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of the decomposition (W, W*); one has M = GL(g) X Gy,,. Let By = BN M be the
standard Borel of M. Let @, resp. ®,; be the set of roots of (G, B), resp. (M, By)
and let ®M = &—d,,. We denote by ®*, resp. <I>iM, dM=E the set of positive/negative
roots in ®, resp. ®,;, @M

5.1. Weyl modules over Z,. — From this section on, the notations g, g, (and
m but there should not be confusion with the maximal ideal of the Hecke algebra)
stand for the Lie algebras over Z of the corresponding group schemes. The Kostant-
Chevalley algebra U = U(g) (resp. U(q), U(m)) is the subring of the rational en-
veloping algebra U(gg) (resp. U(qg), resp. U(mg)) generated over Z by X" /n! with
X €gu,a€® (tesp.a € ®— &M= dy), n > 0 an integer. There is a natural
ring epimorphism U (q) — U(m). A g-stable lattice of a Gg-representation which is U-
stable is called g-admissible (see [12], Sect. VIII.12.7 and 8) same thing for a m-lattice
which is U(q)-stable.

5.1.1. Admissible lattices. — In this section, we explain how one can construct Weyl
modules over Z, by plethysms when the highest weight is p-small: |A\| < p. This
construction is used in Appendix II to give a construction by plethysms of the crystals
(resp. filtered vector bundles) over a toroidal compactification of the Siegel variety over
Z,, associated to irreducible representations whose highest weights are p-small.

If A is a fundamental weight, then the irreducible representation V) of G has a
canonical admissible lattice V/(\)z for the Chevalley order g [12] p.206. For another
dominant weight A € X, several admissible lattices exist over Z. However, given
an prime p, we have shown in [61], Sect.1.2, that for A = (ag,...,a1;¢) such that
ag+ag_1+g+(g—1) < p, these lattices all coincide after tensoring by the localization
Zypy of Z at p. Note that our condition |Ap| < p—1 implies ag+ay_1+g+(9—1) < p.

For such a weight, let us recall the construction by plethysms of this unique ad-
missible Zy-lattice V) z,. It will be used systematically in the sequel as it fits well in
the construction of sheaves over the Siegel modular variety.

Let s = |\|; hence s < p. For any (i,j) with 1 < i < j < n, let ¢;; : VO —
V®(=2) the contraction given by

VR Qv — (U, V)V QR R RV} R+ ® g;
Let ¢ € V®2 be the image of the symplectic form (, ) € (V ® V)* via the identifica-
tions
(VeV) VeV 2VeV
the last one being given by V=2 V* v — (v, ).

We consider for any s > 2 the maps v; ; : V®¥72 — V®$ obtained by inserting

¥ at ith and jth components. Observe that v; ; is injective. Let 0; ; = ;0 ¢ ; €

End(V®®). Let V) be the submodule of V®* defined as intersection of the kernels
of the 6; ;’s (note that Ker#6; ; = Ker¢; ;).
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)

P)

in the Z,-algebra generated by the 0; ;’s inside Endgz, (V®#). Finally, by applying
the Young symmetrizer cx = ay - by (see [32] 15.3 and 17.3), whose coefficients are in
Zpy, to V) @ Z(p), one obtains the sought-for lattice Vxz, .

As we shall see below, for p > 2 ¢, Vg is the image of V®¢ by an idempotent

Lemma6. — There exists an idempotent es in the Z[%]—subalgebm of Endg1)(V#?)
g9
generated by the 8; ;s (1 <1i < j < g), such that

V& =, VO
Proof. — Let
P=P¢i;: V> — @ Vo2
1<i<j<s
Thus,
V& = Ker ®.

Similarly, put
v @ VD ves

i<j 1<i<j<s
and
O=TVod= > 0
1<i<j<s
Since
B oW = (xg),
we see that é - © is an idempotent. It belongs to the Z[%]—algebra generated by the
91',]"8.
Thus,

1 1
V® =VE gIm¥, 2= (:c - @(:E)) +—-O(x).
g g
This decomposition of Z,)-modules is G-stable. We put e; = Id —% - ©. This is
the desired projector to V{5,
To conclude:

Corollary 1. — For any prime p which does not divide 2-g and such that p > s = ||,
the module Vy 7, obtained by Construction 5.1 is the image ofV%@;) by an idempotent
in the Zy,)-subalgebra of Endz, (V®5) generated by permutations and the 0; ;’s. This
algebra commutes to the G-action.

We apply a similar construction for a Bp;-dominant weight p of M with |u| < p.
We denote by W), 7, the canonical admissible lattice of W), over Z,) given by the
Young symmetrizer. It can be regarded as a U(q)-module via U(q) — U(m).

Lemma7. — The subcategory of the category of M -representations, free and of finite
rank over Z,, consisting of representations of highest weight < p is semisimple.
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Proof. — We have to show that there is no nontrivial extensions in this subcategory.
Let A and g be two M-dominant weights such that |A\| < p and |u| < p. A and
p are not in the same orbit for the action of the affine Weyl group ([46], Part II,
6.1). Let Wy and W, be the corresponding canonical admissible lattices over Z,,
then Extl(W,\,WM) = 0 by the linkage principle ([46], Part II, 6.17, see also [61],
Sect. 1.10, Lemma).

5.1.2. The BGG complex. — We are interested in a variant of the “BGG complex”
constructed in [3] where one replaces the Borel subgroup by the parabolic Q). Over the
field Q, it is defined in [13] Chapter VI, Prop. 5.3 as the eigenspace for the infinitesimal
character x4, inside the standard bar resolution of V) g:

D(N)q = Uy Ru(q)y (A*(8/9) @ Va0)-

Following [3], we show in [61] that this BGG complex admits a natural Z,-
structure in terms of integral Verma modules:

CNz, = GEV%MU ®u(q) War+p)—p, 2

and we prove in Theorem D and Sect.4 of [61] the following result. Let D())z,, =
Uz, Du(a)z,,, (A*(g/q)®Vxz,,,) be the standard Z,)-complex, a natural Z,)-version
of the standard bar resolution over Q of V} q.

Theorem5. — Let A € X and let p > |\ + p|. Then there is a canonical morphism
of complezes j : C(N)z,, — D(N)z,,, such that

— it is injective and it admits a retraction of Zy)-complexes (i.e. Imj is direct
factor as a Z,)-subcomplex),
— Im(jg) is the BGG complex over Q.

Remarks

1) The BGG complex mentioned here is a variant for the parabolic @ of the one
defined in lemma 9.8 of [3] in the Borel case. For details concerning the differential
maps, see Sect. 2 of [61].

2) The bound on A needed for proving this theorem is actually looser than
(39, a;) +d < p: it is enough that ag +ag—1 + g+ (g —1) < p.

3) We do not claim that these complexes are exact, as they are not. However, as
we will see in Sect. 5.4, after applying the functor L to a sheaf construction (Sect. 4.2),
we will transform the dual of C'()\), into a resolution of the sheafification of the dual
of V,\Z(p) .

5.1.3. Kostant-Chevalley algebra and universal enveloping algebra. — We fix the
same notations as in 5.1. In particular, U/ is the Kostant-Chevalley algebra of g
over Z. U can be identified with the algebra Dist(G) of distributions of G ([46],
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Part II, 1.12). Recall that
Dist(G) = U (Z[G]/M" )"

n=0
where M is the maximal ideal of regular functions vanishing at the unit element. Let
U be the universal enveloping algebra of g. By the universal property of u , we have a
natural homomorphism = : U—u= Dist(G) which is injective. It is surjective over
Z,, when restricted to the < p-step of the filtrations of u resp. U = Dist(G):

v USSP 2 Y,
It will imply the following lemma:

Lemma8. — Let U and U be the Kostant-Chevalley algebra and universal envelop-
ing algebra over Z, respectively and V,, Wy be two Q-representations over Z, whose
semisimplifications have p-small highest weights (a sufficient condition on the highest
weights is |\;| < p), then the canonical map

Homq(V;;,Zj{ Dii(q) W) — Homg(Vp, U ©1y(q) Wp)
induced by v, is an isomorphism.
Proof. — By Poincaré-Birkhoff-Witt over Z,, we have
U Ry Wy = U™ @7, W,
where u™ is the unipotent radical of the parabolic Lie algebra opposite of q. It is
enough to show
Hom, (‘/},,Zj{(u_) @z, Wp) = Homg (V},,Zj{(u_)q’ ®z, Wp)

Recall that the decomposition of W), as a direct sum of t-eigenmodules W, is valid
over Zj, by diagonalizability of tori over any base.
Forany H € t, X" € U(u™) (n = (na)acom+) and w € W,, we have
H (X" ®w) = (a_ 3 naa)(H) (X ® w)
ae@]%«#
For any g-equivariant ¢ : V}, — u (u7) ®z, Wp, the image of a highest weight vector
v € V}, is of the form

(ZS(’U) = ZX?’ ® w; with w; € ng

Comparing the weights we have relations of the type
A=o0; — Z nPa
acedM+

by increasing the coordinates of n(Y), we can assume that o; is the highest weight
of Wy, hence is p-small. Solving a linear system of inequations, we see that for any
a € M+ ) < p as desired.
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5.2. p-adic integral automorphic vector bundles. — Let f : A — X be the
universal principally polarized abelian variety over X (with a U-level structure). Re-
call that R! Q% /X is endowed with the Gauss-Manin connection, which is integrable
and quasi-nilpotent (see Section 4.3). Let X be a toroidal compactification of X
over Z,. Let X,, = X ® Z/p"Z; let (X ® Fy/(Z/p"Z))58, be the logarithmic crys-
talline site associated to the scheme X ® IF), and its divisor at infinity. Note that
X ® F, is a toroidal compactification of X ® F,. As recalled in Sect.4.1 above,
there is an equivalence of category between crystals on this site and locally free O -
modules endowed with an integrable and “quasi-nilpotent” logarithmic connection.
Let RepZP(G), resp. Repy, (@), be the category of algebraic representations of G,
resp. Q, on finitely generated free modules. Consider the respective full subcategories
Repz\pp “HG) and Rep%f ~H(Q) consisting in objects whose highest weights are p-small
(in fact, whose highest weights p satisfy |u] < p —1).

For each m > 1, let VY, resp. VZ be the category of locally free Ox, -
modules, resp. Og -modules, endowed with an integrable and “quasi-nilpotent”,
resp. integrable, “quasi-nilpotent” logarithmic connection, and F,, resp. F, that of
locally free Ox,,-modules, resp. Ox -modules endowed with a filtration with locally
free graded pieces.

The goal of this section is to define for each n > 1 two functors
v

n

Vapmz : RepZi”_l(G) —V
and another
Frpmz Rep%ffl(Q) — Fn
We first define functors on Repy, (G), resp. Repy, (Q) with values in vector bun-

dles over X,,. Then we proceed to show that these vector bundles extend to X,
provided they come from representations in Repépp “HG) resp. Repif’ Q).

5.2.1. “Flat vector bundles” on X. — Let us define
Vzjpnz : Repy, (G) — VY

Let O3 be the trivial vector bundle of rank 2g on X endowed with the canonical
symplectic pairing (see section 5.1) and its natural action of G on the left. Let us put

T = ISﬂX(Oi(ga (le*ﬂrq/x)v)

where the isomorphisms are symplectic similitudes. It is an algebraic G-torsor over
X for the right action

TxG—T, (bg)r dog.

For any V € Repr(G), we define V as the contracted product

G
V=TxV
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that is, the quotient of the cartesian product by the relation (¢, g - v) ~ (¢ o g,v). It
is a vector bundle on X hence over X,, for any n > 1.
Fact

1) V is equipped with a connection of the desired type.
2) The image of the standard representation is (le*QA/X)V.
3) The correspondence V — V is functorial.

Proof
1) Let A= (le*Q;‘/X)V; we consider the (dual) Gauss-Manin connection:
V:A— A®oy Qx
It is symplectic in the sense that for two sections f, g of A, we have
(Vfg)+(f,Vg) =d(f.g)
where the symplectic product is extended to
AR A®Qx — Ox

Therefore, given a point ¢ of 7 over an X-scheme Y, we can transport V to an
element V4 of g ® Qx C Endo, (Of,g) ®0y 2x defined by the diagram

AyLAy@QX

T

@
0¥ —= 0¥ @ 0k
Given (V, pv) € Repy (G), the representation py viewed on the Lie algebra g enables
us to define

Ve = (pvy ® Ido, ®oy)Iday oV € End(V) ® Oy ®o, Qx

It is a connection on V' ® Oy. For Y = 7, and ¢ the canonical point of 7, we can
descend this connection to the contracted product because

Vgoh = ht oVgoh

The resulting Vy, is integrable and quasi-nilpotent because it is so for the Gauss-Manin
connection.
2) Consider the morphism of X-schemes

T x (9?(9 — A, (¢,v) — &(v)

It descends to the contracted product since ¢ o g(v) = ¢(g - v). It defines therefore
a morphism of vector bundles over X: Vs — A. This morphism is an isomorphism
over 7 and 7 — X is faithfully flat, therefore it is an isomorphism over X.

3) is obvious.
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5.2.2. Comparison with the transcendental definitions. — Let T = G(Q)\G(A) x
G(C)/UUx, the left action of G(Q) on G(A)x G(C) being diagonal, while the right one
of UU being only on the G(A)-factor; the first projection prq : G(A) x G(C) — G(A)
induces a structure of principal G(C)-bundle over the analytic Siegel variety Sy by
T — Su

Moreover, let Z be the compact dual domain of the Siegel half-space Z. Let
c = (} 7) € GSpy,(C) be the standard Cayley matrix which defines the Cayley
transform 3 : Z — Z. Consider the twisted multiplication

p:G(A) x G(C) — G(C), (9,9") — g'c-goo-c*
for g = (95, 90) € G(A); it induces a morphism 7 : T Z.
Recall the transcendental definition of the automorphic vector bundle associated
to V € Repg(Q): one forms the contracted product

. Q0
V=GIC) x V
which is a vector bundle over Z. Then one forms its pull-back 3* (f)) to Z by the
Cayley transform 3 : Z < Z. One takes the product §*(V) x Gy /U, and one defines
the holomorphic vector bundle V — Sy by
V= GQ\B* (V) x G5 /U) — GQN(Z x G5/U) = Su.
We refer to V — V as the transcendental construction. It is valid for V € Repc(G)
as well.
Note that we could avoid the use of the Cayley transform, and use instead the

more direct (but equivalent) Borel transform, at the expense of replacing the Siegel
parabolic ) by its conjugate ¢ 'Qc in the definition of the compact dual of Z.

Lemma9. — Over C, the functor V¢ is canonically isomorphic to the one defined by
the standard transcendental construction.

Proof. — We prove two statements
1) There is a canonical isomorphism of G(C)-principal bundles T -1T.
2) The transcendental construction can be described as
~ . GO
V=pr,og V=T x V.

1) Recall that the description of the Siegel variety for a level subgroup U C G(Z)
can be done integrally: Note that G = GSp(2g) and G’ = Sp(2g) are defined over Z.
It is a simple exercise to see that

Sv = GQM\(G(4)/U x 2) = G'(Z\G(@)/U x 2).

Let 2’ = G(Z)/U x Z Let Vi be the (complex) standard representation of G. We
recall first that the pull-back by Z/ — Sy of the vector bundle A endowed with the
dual Gauss-Manin connection is isomorphic to the vector bundle of the local system
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Z’ x Vi endowed with its obvious flat connection. By lack of an adequate reference,
we recall the proof. The description of the universal abelian variety over the Siegel
variety of level a congruence subgroup U C G(Z) is as follows. Let G(Z) = Z*9<G'(Z)
be the Jacobi group, that is, the semidirect product of the symplectic lattice (Z29,.J)
by G'(Z) for the action ~ - v denoting the usual product of matrices. It acts on the

~

left on G(Z)/U x Z x CY9 by

(077) ’ (g,z,w) - (f}/gaf}/(z)atj(’%z)ilw)v (Uv 1) ’ (g,z,w) - (gaza (Zv 1) - 1})

it is indeed an action because for any v € G'(Z), we have vy - J -y = J.
Consider the first projection

Z'xC9— Z

and take the quotient for the left action of G(Z) resp. G(Z). We obtain the analytic
description of the universal abelian variety A over Sy. For f: A — Sy, the locally
constant sheaf (R!f.Z)Y which identifies to the relative homology inside Lie(A/Sy)
can be viewed as

G'(Z)\Z?9 - (2’ x {0}) inside G'(Z)\(Z' x CI)

Therefore, its sections identify to the sections s of the trivial covering

Z2'x7* — Z'
satisfying s(v(g,2)) =7 - s(g, 2).

Therefore, the pull-back of 7 is isomorphic to Isom, (2’ x Vi, 2’ X Vi) = 2/ x
G(C), with action of G(Q) diagonally on the left. Hence, by quotienting by G(Q), we
obtain a canonical isomorphism 7 = 7.

2) Let V € Repe(G). In this situation, only the C*°-structure of V matters (in-

deed, only the structure of the underlying locally constant sheaf). On one hand, it is
well-known that V is the vector bundle, associated to the V-covering G(Q)\(Z2'xV) —

Sy. On the other hand, the pull-back by G(C) x 2" — T of T G;C) V' identifies to
Z' x V; it is endowed with a free action of G(Q) (diagonally on the left), and of U
on the right. The resulting quotient is again the vector bundle associated to the
V-covering G(Q)\(Z2' x V) — Sy as desired.

5.2.8. Zyp-Integral extension to X for p-small weights. — Let us finally define the

functor

Vz, Repif’*l(G) Y

which induces the functors V', /pnz, mentioned at the beginning of this section.
We have the diagram

XQP (—> XZp

N

YQP CZ—> YZP
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On one hand, for any Q-representation W, we have constructed a vector bundle
W over Xz ; on the other hand, M. Harris ([37]) has defined a functor from Q-
representations defined over Q to vector bundles over X¢ coinciding with ours on
Xg,. We first glue the vector bundles Wg, with W, into a vector bundle WZP over
the cofibered product Xz, = YQP Uxg, Xz,

Then, we observe that )~(Zp = sz — Dy, is an open subset with complement of
codimension 2 in YZ,,- Therefore, by [33] Cor.5.11.4, the direct image of WZP is a
coherent sheaf on YZP. Let us see it is locally free, at least if V' has p-small highest
weight. By dévissage, it is enough to consider irreducible M-representations with
such p-small highest weight. By Appendix II, it is enough to consider the standard
representation. In that case, the coherent sheaf on YZP is Lie(G/X)V, which is locally
free. This concludes the proof.

In particular, for any dominant weight A, we have attached to the representa-

tion V) of G of highest weight \ a vector bundle (’)yn—module V/\,n on X, together
with a connection with logarithmic poles along D,,, hence a logarithmic crystal V ,
on (X/ (Z/p"Z))8.. Moreover, it carries a natural filtration since Vy is also a Q-
representation.
5.2.4. Differential operators over Z,). — Let V and W be two rational represen-
tations of @, and V,g, W/q the corresponding automorphic vector bundles over Xq
(see previous subsection) and V,q, W /g their canonical extension to the toroidal
compactification X. According to Proposition 5.1 of [13] VL5, we have a functorial
homomorphism

, —V =V
U : Homy(g) (U(80) ®u(aq) Vs U(80) ®@u(qe) W) — Diff. Operators(W g, V q).-

Actually, in Proposition 5.1 of Chap. VI, the construction of ¥ is explained over
C. The Q-rationality statement is explained in Remark 5.2 following the proof of
Proposition 5.1 of Sect. VI.5. We now prove a variant thereof over Z,).

We treat first the case of degree 0 differential operators by referring to 5.2.2:

Lemmal0. — Let V., W be two Q-representations of p-small highest weights (in fact,
|A\v| and |A\w | < p is enough), V,, and W, their canonical U-stable lattices and V,,, Wy,
the corresponding automorphic vector bundles over X,, n > 0. There is a functorial
injective homomorphism

Vo=V

Homg (V;, W) — Homoy W,.,V,)

compatible with the transcendental construction.
Then, the case of general differential operators can be treated as follows:

Lemmall. — Let V, W be two irreducible Q-representations of p-small highest
weights, V, and W), their canonical U-stable lattices and Vo, W,, the corresponding
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automorphic vector bundles over X,, n > 0. Then ¥ induces for each n > 0, a
homomorphism

Homy (U @y(q) Vs U u4(q) Wyy) — P.D. Diff. Operators(W,,, V. )

Remark. — By p-smallness of the highest weights, the only possible degrees of mor-
phisms in Homy (U ®y(q) Vo, U @u(q) Wp) are < p, hence, the corresponding PD
differential operators, are in fact usual differential operators.

Proof. — We start with operators of order one. Note that the de Rham differential
d: 0% — QlY is the image by W of the obvious map

5:U®u(q) gzp/qu — URuq) Lp, 13X rH— X1

(compare with [13] VI, remark 5.2). By Lemma 10, this implies that each homomor-
phism ¢ : V, — U &yy(q) W), of degree one is mapped by ¥ to a Z-integral differential
operator of order one. Indeed any ¢ as above factors as ¢ = ¢ ® Idw, o(Id;; ®¢) for
a ¢ € Homg(V;, 8/q9 @ Wp).

Recall that U/ denotes the universal enveloping algebra of g. We have seen
in Lemma 8 that by p-smallness of the highest weights, the natural algebra ho-
momorphism vy : U — U induces a bijection between Homg(V,, U ®yq) Wp) and
Homygy(V,, u Di(a) W,). Now, as a corollary of PBW over Z,, for U, we see that every

element ¢ € Homyg (V};,Z]@a(q) W) of degree m > 1 factors as ¢ = (d®Idyw, ) ot where
1) has degree m—1: fix a basis (X4 )qpecom—- of u™; forv € V, and ¢(v) = >, Xﬂm Rwy,

put P(v) = D ;> com— Xﬂm*l‘* ® Xo ® w; where 1, is the family (0a,8)gconm--
The conclusion follows by induction on m.

5.3. The Hodge filtration on automorphic sheaves

5.8.1. The geometric aspect. — This paragraph is a recollection of well-known facts
about the Hodge filtration in the automorphic setting (see [15] Sect.5).
Let S = Rc/rGyn and ho : S(R) — G(R) the homomorphism defined by

xly ylg

= ; Cx
Z=T+y € r—><ngng

> =xlyg +yJog € G(R)

The G(R)-orbit Z of hg is analytically isomorphic to a double copy of the Siegel
upper half-plane of genus g. The pair (G, Z£) defines a family of Shimura varieties “a
la Deligne”, isomorphic to our Shimura varieties Sy for various level structures U. If
V is a real representation of G and h € X, then the composition h : S(R) — G(R) —
GL(V) defines a real Hodge structure hy on V ([15]). Let Fj, be the filtration on
Ve = Ve ® C deduced from hy. For V = g the adjoint representation, Fy(gc) is a
Lie algebra of a parabolic subgroup P(h) of G¢. The mapping h — P(h) identifie
Z as an open subset of its compact dual Z = G(C)/Q(C). Now, for general V, the
mapping h — Fj, define a G(R)-equivariant filtration (the Hodge filtration) on the
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constant fibre bundle Z x V. Dividing by G(Q) and U, we get a filtration on the
coherent sheaf V over Sy, associated to the representation V. Moreover, if V is the
canonical extension of V to some toroidal compactification of Sy, then this filtration
has a canonical extension to V. This results from Harris’ functoriality [37] of the
canonical extension (Sect.5.2.3). In the case where V is the standard representation
of G, then, by definition of the functor V¢ (see Sect.5.2.1), we have V¥ = le*Q;‘/X;
by Deligne’s unicity of the canonical extension, we have V' = RI?*Q'Z /Y(log 007 /Y)
and the Hodge filtration on the dual is the classical one given by

(5.3.1) F2(V') =0 C F'(V") = 7,04 x(log ooy x) C FO (V) =V".

Then, for a represention V) associated to a dominant weight \ of G, we can use
Weyl’s invariant theory as in Appendix II, to describe the Hodge filtration on VX.
Actually, Appendix II allows to describe this filtration explicitely over Z, as well, for
A p-small. Indeed, we show there that, for A p-small, each VX on Xz is a direct
summand of some higher direct image of the logarithmic de Rham complex over a
toroidal compactification of the s-fold product of the universal abelian variety (see
[13] p.234).

Recall that for a complex K*, the notation K*>* denotes the subcomplex of K*
equal to K* in degre > ¢ and zero elsewhere.

If ?S :Y — X is such a toroidal compactification over Zy, then the coherent sheaf

F = RwTS’*Q (log 00)

/X
is locally free if w is an integer < p (see Illusie, [44] Cor.2.4). It is endowed with the
Hodge filtration

-1 wF >0 wF .
Fil' 7 = Im (R T 57 (log 00) — R™T, Q4 5 (log oo)) .

For a dominant weight A such that |A| = s, we take w = d+s; recall that w < p—1.
We endow the sheaf VK with the filtration:

Fil'V, =V, NFil'F.
Let Vxn be the Ox -module obtained by reduction mod. p™ of the module VX.
Definition 5. — The Hodge filtration on the de Rham complex

VY G R, (lozso)

[ ]
Xn/Z/p™

is defined by:

i Y . iV . 1—7
F (Vk,n ®07W’ wa,/Z/p" (log OO)) = Z FY (V)\,n) ®07W’ wa,/Z/p" (log OO)> 7.
J
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5.3.2. The group-theoretic aspect. — Let H = diag(0,...,0,—1,...,—1) € LieT C g
(with g 0’s and g —1’s). H is a generator of the center of ¢ = Lie@ (modulo the
center of LieG). For any rational Q-representation V, for any i € Z, let V' be the
sum of the generalized H-eigenspaces with eigenvalues > i. This defines a decreasing
filtration {V?} on V. We shall call this filtration the H-filtration. Note that this
filtration is @-stable.

Two cases are of particular interest for us:

— V is an irreducible M-representation with highest weight p; the filtration is given
by VHH)+L — o c V#H) = V. For instance, the standard representation Vg of M is
filtered by 0 = Vi C V¥ = V} while its twisted contragredient V; = VY ® v is filtered
by 0=V cV ' =W.

— V =V, is an irreducible representation of GG associated to the dominant weight .
Then the filtration given by H can also be defined by plethysms from the 2-step
filtration of the standard representation Vy: F~! = Vi, FO =V} is its unique simple
Q-submodule (in fact, an M-module), and F'' = 0.

We can still define the H-filtration as above for a @-representation V' defined over
Z, instead of C. If V is p-small, the eigen values of H are invertible and so the V*’s
are Zy-summands in V.

In particular, we endow the standard bar resolution of Vy z, (say, for [A\+p| < p—1)

D(A) = Uz, ®u(q),, (A*(8/a) @V (N)z,))
with the H-filtration.
Let

CNz, = D Uu@ Wuirip)—p 7z,
weWwM

be the BGG complex introduced in Sect.5.1.2 attached to V) z,. The H-filtration is
given by
F'C(N)z, = D U Su(a) Wortp)-p,2,-
wewM
w(A+p)(H)—p(H)>i
Then the injection j : C(X\)z, — D()\)z, is a filtered direct factor of D(\)z, by [61].

5.8.8. Filtered vector bundles on X. — As in section 5.2.1, we define a second functor
Fz/an : Repr (Q) a— .7:71

wich gives the Hodge filtration, as follows. We endow Oi(g = Ox ® Vg with the
standard symplectic pairing and the H- filtration (0 C F¥ C F~1) and we put:

Ty = @H,X(Oi(gv (le*Q;!/X)V)

where the isomorphisms are symplectic similitudes respecting the Hodge filtrations.
Ty is an algebraic Q-torsor over X. For any W € Repy, (Q), let

Q
W:THXW
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It is a vector bundle on X hence over X,, for any n > 1. This construction is
functorial. As W is filtered by submodules which are @Q-stable (by the H-filtration),
the vector bundle W comes equipped with a filtration. If the representation W is
p-small, we show by 5.3.2, that its successive quotients are locally free. Moreover,
every morphism W — W’ of Q-representations induces a strict morphism of filtered
vector bundles. Following the lines of Lemma 9, one shows that the image of the
standard representation is (R! 1+ / +)" with its standard filtration. The proof of
these assertions is similar to the one in the previous section.

Remarks

1) In fact, by the same construction, one can define functors V71 /ny and Fzp /ny
such that Vz,nz = Vg /N ® Z/p"Z and similarly for F.

2) Every M-representation gives rise to a Q-representation by letting the unipotent
radical act trivially on W.

Similar tho the complex analytic G(C)-torsor 7 = G(Q)\G(A) x G(C)/UUs (see

Sect.5.2.2), one can construct a complex analytic Q(C)-torsor Ty as follows. We start
from the Q(C)-bundle Q : G(C) — Z. We form its pull-back £*(Q) — Z by 8. Tt
still carries an equivariant action of G(Q) on the left. Then, our Q(C)-torsor over Sy
is given by

Tu = G(Q)\B"(Q) x G4/U.

Let us compare the functor Fr with the transcendental construction: From the
definition of 7y, it is clear that for any V € Rep¢(Q),

~ ~ Q@
V:TH x V.

Moreover, there is a canonical isomorphism Ty = Ty of holomorphic Q(C)-bundles.
Indeed, the pull-back by Z" — Sy of Ty

ISOmZ/(ﬂ*Vst7ﬂ*VSt) = B*Q X Gf

hence, by quotienting, the desired isomorphism.

Fact. — In the construction V. +— V of the coherent sheaf attached to a Q-
representation, the H-filtration defined above gives rise to a decreasing filtration
on V. When V is a G-representation, it coincides with the Hodge filtration given
by Fho-

Proof. — Consider the dual filtration

(5.3.2.1) Fil' VW = {p:V — Ox | ¢(FiVV) C Fil'" Oy}

where the unit object Ox is endowed with the trivial filtration: FilOOX = Ox and
FilVOx = 0 for any j > 0; When V is the complex standard representation Vg ® C
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of G¢, the dual of the H-filtration coincides with the Hodge filtration (given by Fj,)
on V"V, indeed, the dual of the H-filtration reads:

Fil'VY = {¢ | (Fil'V) = 0} = VY,
(5.32.2) Fil'VY = {p | o(FilV) = 0} =y, and
Fil’VY = 0.

This is the Hodge filtration (5.3.1).
Finally, we note that this filtration is compatible with tensor product, duality, etc.

5.8.4. Filtered dual BGG complex. — Let us define the dual BGG complexes K:\,n

and K;’;?b. Their graded pieces are the coherent sheaves over X ,,:
—i ——V —i,sub ——sub,V
,CA,n - @ Ww()\er)fp,n resp. IC)\,n = @ Ww()\er)fp,n
wewM wewM
(w)=1 (w)=1
with W"" = W ® Z(00) where Z(c0) C O denotes the ideal of definition of the
divisor at infinity of X, and the differentials are deduced by lemma 11 (Sect.5.2.5)
from the BGG complex of Sect.5.1.2. By dualizing the H-filtration, we obtain a
natural decreasing filtration on K;\,n, stable by the differentials, given by
—V

FZE.A,n - @ Ww(Aer)fp,n

M
w(A+p) (H)+i<p(H)
Recall that by the Theorem of [61], the map j has a retraction of filtered complexes,
hence the dual 7V has a natural section; its sheafification defines an injection of
complexes of coherent O -modules:

. v iy .
Rikan= @ Wunip-pn — Van ®0x, x50 (l0g0)
weWﬂf
—=e,sub —=V,sub —V R
iR = @D Watep—pn = Van ®ox, QY,L/Z/ID"(i log c0)
wEW]\/[

We summarize the considerations of this section in the proposition

Proposition 3. — The morphism k of complexes of vector bundles over X, (n > 1) is
filtered.

5.4. BGG resolution. — We denote by D,, the logarithmic divided power enve-
lope of the diagonal immersion X, — X, Xz /pnyn where X, X7 /pnyn is the fiber
product in the category of logarithmic schemes. Let p; and ps be the two canoni-
cal projections D,, — X,,. Finally, for any Bj;-dominant weight u of M, such that
lul < p, let LOW,n) be the logarithmic crystal on (X /Z/p™)i$8, corresponding to
PiWun (Sect.4.2 for L and 5.2 for W, ;). For simplicity, in the sequel, we drop
the index n in the notations of the sheaves, thus we write W, for W, ,,. Note that
we cannot consider the situation over Z, because we need a nilpotent base for our

crystalline arguments.
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Proposition 4. — Let A be a B-dominant weight of G, such that |\ + p| < p;
(i) There is a resolution in the category of logarithmic crystals on (Xo/(Z/p"7))\8 . :

crys
—v -0 —1
0—V\ —’L(’CA) —’L(’CA) -

where
v

—i -
Kx= @ Wuiip—p
wewM
l(w)=t
(ii) There is a canonical filtered quasi-isomorphism of complexes of logarithmic
crystals

—=e -V
L(K:)\) - L(V/\ ®07n Q.Y,L/Z/p” (IOg 00)).

Proof. — We transpose the proof given in [13], VI, Sect.5 for the complex case in a
Zp-setting. By Lemma 11, each gz, -morphism of order 1:

U Bu(q) Wi — U @uq) W2

induces a logarithmic differential operator of order 1, W;/ — WY for the corresponding
locally free O -module; therefore, it induces a morphism of crystals L(W;) —

L(WY) We deduce from theorem 5 (section 5.1.2), that there is a complex of crystals
0—Vy — LK) — L(Ky) — .
On the other hand, we know that
0— V) — L(V; @0, Q

oy (10200))

is a resolution of VX. Indeed, the exactness of the complex is the crystalline
Poincaré’s lemma (actually, its logarithmic version: bottom of p.221 of [48], see
our section 4.2, lemma 4 above).

By Theorem D of [61] (Theorem 5 of section 5.1.2 here), L(K}) is a direct sum-

mand, as subcomplex, of L(VI ®o, log 00)).

%, /2o

Therefore, L(K}) is a resolution of V. This proves statement (i) of the theorem.
The second assertion follows from the fact that H commutes with Zg. As explained
in Section 5.1.2 above.

Theorem 6. — The natural morphisms

—e —=V
IC)\ - VA ®07n Q.YW/Z/I)" (log OO)

and

—e,sub

=V
KX — Vi ®og, Q.Y,L/Z/p”(_ log o)

are filtered quasi-isomorphisms of complexes of coherent sheaves on X,,.

Proof. — One applies Ru. resp. Rus . to both members of the quasi-isomorphism (ii)
of Prop. 4; then one makes use of the fact that Ru.L()V) =V for any Ox, -module V
and the properties of the L-construction recalled in Section 4.2.
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6. Modulo p crystalline representations

6.1. Etale sheaves associated to crystals. — Let k be a perfect field of char.p >
0, W = W (k) the ring of Witt vectors with coefficients in k& and K the fraction field
of W. K?° is a fixed algebraic closure of K and Gx = Gal(K?°/K) is the associated
Galois group. Let Repr (GKk) be the category of G g-modules of finite type over Z,

and M F‘Eg’p =2 that of finitely generated W-modules M endowed with a filtration
(Fil” M), such that Fil"M is a direct factor, Fil’M = M and Fil’~' = 0 together
with semi-linear maps ¢ : Fil"M — M such that the restriction of " to Fil"t* M is
equal to pe"t! and satisfying the strong divisibility condition: M = Y icz " (Fil"M).
Recall that by the theory of Fontaine-Laffaille [24], we have a fully faithful covariant
functor
Verys MF‘g[O,’p_m — Repy, (Gk)

This functor has the property that it sends the filtered Tate object of unique Hodge-
Tate weight —¢ (meaning the jumps of the Hodge-filtration) to the Tate module Z, ()
and for any abelian variety defined over Q,,

Hélc(A X QTpv Zp)

has weights 0 and 1.

The contravariant functor Vi,  obtained by composing Verys with duality is the
nice inverse of a not so nice contravariant Dieudonné functor D*: see [83] p.219-223.

A p-adic representation is called of Fontaine-Laffaille type (or crystalline, by abuse
of language) if it is in the essential image of V(},,.

In our setting, we are interested in the subcategory M F; l£0’p ~2 of filtered modules M
such that pM = 0. MF, ,Lo’p ~2lis an abelian category and the objects are in particular
k-vector spaces. The restriction of the functor Vi,  to M F, l£0’p ~2 can be describe as
follows: Let S = Ogac/pOac, choose f € K2 such that P = —p and for i < p,
define a filtration Fil’'S = 3S and Frobenius ¢'(3'z) = 2”, then as explained in [83],

Prop.2.3.1.2°, we have an isomorphism

Vi (M)~ Hom

crys

MFILO,;D—2] (M, S)

Moreover, Vi (M) is a finite dimension Fj-vector space and dimg, Vi (M) =

Let X be a smooth and proper scheme over W of relative dimension d and D a
relative divisor with normal crossings of X, we put X = X —D. Faltings introduced in
[22] relative versions of the categories mentioned above: the category Repz, (X ® K)
of étales Z,-sheaves over the generic fiber X ® K and the category MEFY (X) of filtered
transversal logarithmic crystals over X. Moreover, we have a notion of “associated”
between objects of Repz, (X ® K) and those of MF v(7). To get a good theory over
Zp, we need to consider only the full subcategory MFV0P=2(XY) of MFY(X) of
filtered crystals F such that FilF = F and Fil’ "'F = 0 and we have to add some
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other technical hypothesis (c¢f. Sect.6.2). Faltings [22] (see also [78]) has defined a
relative contravariant Fontaine functor

VvV MEYVOP=A(X) — Repy, (X @ K)

In section 6.2 below, we will recall its definition on the objects of p-torsion.

Definition 6. — For any F € MFYV"?~2(X) we say that F and V*(F) are associ-
ated.

We have the following theorem of Faltings ([22] Th.5.3):

Theorem7. — Let F € MFYVO?=2(X). Let a € [0,p — 2] such that Fil**'F = 0.
Then, for any v > 0, such that i +a < p — 2, there is a natural and functorial
isomorphism of G -modules:

(Hee(X @ K,V (F)))" 2 Vi (Higgerys (X, F))
6.2. The mod. p case. — As we use only the mod. p version of the previous com-
parison theorem, we only recall the notion of associated sheaves and the comparison
theorem in their mod. p version, following [22] and [78].

6.2.1. Filtered modules. — Let k be a perfect field of char.p > 0, W = W (k) the
ring of Witt vectors with coefficients in & and K the fraction field of W. K?° is a
fixed algebraic closure of K and G = Gal(K?°/K) is the associated Galois group.

Let X be a smooth and proper scheme over W of relative dimension d and D a
relative divisor with normal crossings of X, we put X = X — D. Let Xg = X Qw k
be the special fiber of X and Dy the induced divisor. If F X, - OYO — OYO is the
absolute Frobenius, we denote by

vx, 5. (0x,) — Ox,

the O, -linear homomorphism induced by Fy .

We fix a global lifting ¢ of ¢ on X xw Ws. The differential

d(zfo : OYO — Qlfo (10g DO)
is divisible by p. We denote by do+ /p the reduction mod. p of dos, /.
Definition 7. — We define the category MF kv,[o,p -2 (Xo) of strongly divisible filtered

logarithmic modules over Xy with Hodge-Tate weights between 0 and p—2 as follows:
an object is a quadruple (F, F?, o', V) where

— F is a quasi-coherent Oy -module.
—~ Fi,i=0,...,p—1,is a decreasing filtration of F by quasi-coherent Ox,-modules
such that 7% = F and FP~! = 0.
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~ ¢ : F' — F is a px, -linear homomorphism such that the restriction of % to
Fit+l is zero and such that the induced map

il @F JF T — F

is an isomorphism (condition of strong divisibility).
- Vg F—-F ®ox, QlY (log Dy) is a quasi-nilpotent integrable connection satis-
0
fying
1) Griffiths transversality: Vg(F') < Fi! R0, Qlfo (log Dy) for ¢ =
0,...,p—1. p
2) Compatibility with Frobenius: V£ o ¢’ = ¢’ ' ® % o Vx| F.
— F is uniform: there is an étale covering (U,) of X together with a log-immersion
U, — Z, with Z, log-smooth and such that the evaluation of the filtered crystal
associated to (F, F') on the thickenings U, < 7513 is isomorphic to

D (Ozor, J;;;?]) with ey > 0, |A| < o0
AEA * o

—DP — —
where Z, is the log-divided power envelope of the immersion U, — Z, and JzoP
is the corresponding PD-ideal.

Remark. — The uniformity condition is introduced in Sect.4.f of [23]. It is needed
to check that the category is abelian.

A morphism of MF kv,[o,p -2 (Xo) is an O, -linear homomorphism compatible with
filtrations and commuting with Frobenius and connections.

By [22], Th. 2.1, each F is locally free and locally (for the Zariski topology) a direct
factor of F. Moreover, any morphism of MF Z’[O’p -2 (Xy) is strict with respect the

filtrations. We deduce from this that MF Z’[O’p -2 (Xo) is an abelian category.

6.2.2. The functor V*. — To a filtered module F as above, we associate an étale
sheaf V(F) over X ® K as follows:

Let U = Spec(R) be an affine open irreducible subset of X, U = U xX, Uy = Uwk.
Recall that R is flat, of finite type over W (since X is smooth over W); assume
that R/pR # 0. Let R be the p-adic completion of R and R’ be the union of all
normalizations of R in finite sub-Galois extensions of an algebraic closure Fr(ﬁ)ac of
the field of fractions Fr(R) of R such that the normalization of R[1/p] in such finite
extension is unramified outside D (¢f. [22], II, i)). On U/O = Spec(R'/pR), we have a

~

canonical log-structure defined as follows. Let S be the normalization of R in a finite
Galois extension of Fr(R) in Fr(R)®°. The inverse image of the divisor Dy defines a
log-structure on Spec S/pS. By passing to the inverse limit, we obtain a log-structure

=
on U,,.
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Let (F,F', ¢, VF) be an object of MFZ’[O’p_Q] (Xo). As a crystal, we can eval-
uate F on the trivial thickening Ulo — U’O. We obtain an Oﬁg—module .FU:) endowed

with a decreasing filtration .7%, .
0

For i < p, we define the Gal(R'/R)-module Vi (F, i) as the kernel of
i — ; —
1*50 :HO(U07-¢§6)4’HO(UO¢‘¢?6)

Let £ = ﬁ’/pﬁ’; choose § € K?° such that 57 = —p and for i < p, define a
filtration Fil'E = $°E and Frobenius ¢*(3'x) = P, then as explained in [78] proof of
prop.4.3.4 or [22], II, ), we have an isomorphism

Vu(F,i)* ~ Homg o (Fli], E),

where:

— Homgy,, denotes the group of homomorphisms preserving the filtrations and
commuting to Frobenius, _ o
— Fli] is the twisted module defined by F[i]/ = F**/ and Sﬁjf[i] =77

Using this description, we deduce that Vi (F, i) is finite of order p" ([22], Th.2.4)
where h = |A] and A is the index set in the definition of a uniform filtered module.

By [22], II, g) or [78](4.4), if we regard Vy(F,i) as a finite locally constant sheaf
on (U @w K)¢, we can glue the local data Vi (F, i), for various “small” U (cf. [78]
3.3.2). There is a unique finite locally constant sheaf V x(F,7) on X ®w K such that
the restriction to “small” U is Vy (F,4). Finally, we define the covariant comparison
functor V by V(F) = Vx(F,p — 2)(2 — p), and its contravariant version V* by
V*(F) = V(F)*.

6.3. Association modulo p for Siegel varieties. — Let us come back to the
case of Siegel varieties. Let X 71,,n) be the moduli scheme classifying p.p.a.v. with
level U-structure over Z[1/N]. Its toroidal compactification over Z[1/N] is denoted
by X (for some choice of a smooth GL(Z9)-admissible polyhedral cone decomposition
of the convex cone of all positive semi-definite symetric bilinear forms on R9). We
have Sy = X ®z[1/n] C. Recall that, to the representation Vy r, of Gp, = G @ F,
of highest weight A, one can associate an etale sheaf V) (FF,) resp. Vi (k) over X @ Q
resp. its extension of scalars to k. One possible construction of this etale sheaf is
by the theory of the fundamental group: any representation of the arithmetic funda-
mental group 71 (X ® Q,Z) on a finite abelian group V gives rise to an etale sheaf
whose fiber at T is V. Let us consider the structural map f: A — X ® Q given by
the universal principally polarized abelian surface with level structure of type U (we
assume here U sufficiently deep). The sheaf R f.Z/pZ is étale. It corresponds to an
antirepresentation of the fundamental group taking values in G(Z/pZ). Then, com-
posing with the representation G, — GL(V) /r,), we obtain an étale sheaf denoted
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by Va(Fp). Similarly for Vi (k), by considering the extension of scalars from F), to k:
Gk — GLk (V)\ (k’))

For any dominant weight X of G, we have thus obtained a Vi (FF,,) of Repr, (X ® K).
On the other hand, if moreover |[A\+p| < p—1, the crystal VK constructed in Section 5.2
satisfies the conditions of Definition 7 which turn it into an object of MEFY-[0P=2(X ).
To verify this, one starts with the standard representation. Consider

_\/ j— .
Vl = le*QZ/Y(IOg OOZ/?)’

On V\ll ®oy Ox,, the Gauss-Manin connection satisfies Griffiths transversality for the
Hodge filtration, compatibility to Frobenius and uniformity. A delicate point is to
verify the strong divisibility condition (section 6.2, definition 7). It follows from the
degeneracy of the Hodge spectral sequence which is proven in [22], Th.6.2. As for the
uniformity condition, it amounts to saying that R'f, Q.ZO /%o (log 007, /?o) is indeed
a vector bundle over X.

For general A\, we use that VX is a sub-object (and quotient) of a first direct image
for some Kuga-Sato variety and the fact that MF V. [0.p=2] (Xp) is an abelian category.
Note that the objects Vy ®o+0%, (without dualizing) do not belong to this category,
as their weights don’t fit the bound.

Theorem 8 ([13] Th.6.2(iii)). — V*(Vy ®oy Ox,) = Va(Fy), that is, VA(F,) and

=V .
V) ®ox Ox, are associated

The proof is given in [13] Th.6.2(iii). In fact, there, the result is proven only in
the Qp-coeflicients case, but for |[A+ p| < p—1 the proof is valid word for word in the
integral context. The key argument is the existence of the minimal compactification
whose boundary has relative codimension > 2. The next section gives more details
about this.

6.4. The Comparison Theorem. — We will explain the relative comparison the-
orem Th.6.2 of Faltings [22] in our particular setting. In fact we merely extend the
arguments sketched in [13], p.241. Before going into our situation, we recall the
method of [22] (we hope that more details will be given by the experts in the future).

6.4.1. General setting. — Let Rbea p-adically complete smooth domain over Z,,.
Let Ry = R®z, Z/pZ its reduction mod. p; let F be the field of fractions of R; choose

an algebraic closure F of F' and form E, union of all the normalizations of R in finite
sub-Galois extensions of F. Put S = ﬁ/pﬁ

~

Let f : Y — Spec(R) be a smooth and proper morphism of schemes of relative
dimension d < p—1, Yy =Y ®z, Z/pZ the special fiber, Y = Y®R§, Y,=Y®rF,
Yo = Yy ®r, S and fo : Yy — Spec(Ry), f:Y — Spec(ﬁ), ?n .Y, — Spec(F),
fo : Yo — Spec(S) the corresponding morphisms. We have the following standard
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diagram:

<.

Y Yo

Y,¢
j PR
Spec (—> Spec( ) +— Spec(S)

Let RU(S(1)) = 7 Rj,(S(1)) be the “relative complex of p-adic vanishing cycles”
for the constant sheaf S(1) = Z/pZ(1)®S. This object is not explicitely introduced in
[22], but as explained in [45], we can rewrite the complex computing étale cohomology
as a complex of vanishing cycles. Then we have a “Kummer” map:

RU(S(1) — Q% o o

Taking direct images, we obtain natural maps:

R” f0 (%3, spec(ro)) ®R S — R*?o*(Q'?O/spec(s)) — R*fo.(RY) >~ R*f,. (S)

R fouet(RY) = R*fy, 0(S) «— R* fp o(Z/PL(1)) ®R S.

Faltings ([22], page 72, see also recent corrections of the corresponding proof in in-
formal notes by the author) shows that the second arrow is an “almost-isomorphism”;
wich implies that the modules R* fo. (25, /g ec(r,)) and R*f,. &(Z/pZ(1)) are asso-
ciated.

6.4.2. Setting for Siegel varieties. — The notations are those of section 6.3. Let
U = Spec(R) C X be an affine open subset and f : Yy — U be the restriction of
fs: Y =Axx- -+ xx A— X, where A is the universal abelian variety, we assume
s <p—1. Let X be the formal completion of X along the special fiber. Let f 17U —~U
be the base change of f to the affine formal scheme U= Spf(R ) Over Spec(R ®Qp),

we have two étales sheaves R® f,Z/pZ(1) and V*(R* f,(Q Yoer, /uer,))- As explained
in the general setting subsection, there is a functorial isomorphism of étales sheaves:

R*[.Z/pZ(1) ~ V*(R* [y, g jvsr,))

over U. By functoriality, these local isomorphisms glue to a global one over X.

Let X* be the minimal compactification of X over Zj,. It is defined in [13] Th.2.5
Chapter V. It is projective, normal of finite type; its boundary admits a natural
stratification whose strata have codimension at least 2 (since we assume g > 2). We
apply Grothendieck’s GAGA theorem to deduce that the isomorphism over X between
the sheaves RsﬁZ/pZ(l and V*(R? f*( i, /UaF, )) is algebraic. More precisely,
every étale covering of the formal scheme X is defined by an étale finite O ;-algebra A.
Since the minimal compactification is normal and has boundary of codimension > 2,
this algebra extends to X* ([33], Cor 5.11.4) and so defines an algebraic étale covering
of X whose base change to X is A, we deduce an equivalence of sites Xg; ~ )?ét. As
the morphism f is proper and smooth, the sheaf RSﬁZ/ pZ(1) on X is locally constant
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and so descends to X and gives the sheaf R®f.Z/pZ(1). By construction, the sheaf
v* (Rsﬁ(Q;/U &F, /U®]Fp)) is also locally constant and also descend to X and gives the
sheaf V* (Rsf*(Q;/U@FP/U@Fp)).

Moreover, as Xg = Aét, every formal morphism between Rsf;Z/ pZ(1) and
V* (Rsﬁ(Q{vap/U@]F,,)) is algebraic. This shows that R®f.Z/pZ(1) is associated to
R® f*(Q;/@FP / X®]Fp) for the asociation without divisor at infinity and R®f.Z/pZ(1) is

associated to R*f, (922

Y oF, /XOF, (log 00)) for the association with divisor at infinity.

7. Proof of Theorem 1

7.1. A lemma on modular representations. — Our reference for results used
in this Section are [12] VIIL.13.2 and [46], IL3. Let T be the standard maximal torus
in G. One has

T={(tr,..,tgu;x) | u> = t1 -1y}

The degree 2 covering G— GOg2441 induces on T the projection

(t1,....tg,u;x) — diag(tl,...,tg,ztgl,...,:Etfl,ac)

We view the Weyl group W5 as a subgroup of G sz by using permutation matrices in
a standard way. Let W' be the subgroup of Wg consisting in the permutations wp
(B C [1,9]) acting by t2 =t where t = (t1,...,tg,u;z) and ¥’ = (t},..., ¢, u';z)
with ¢, =t; " ifi€ B, t, =t;if i ¢ B, and v = u-t5" where tp = [[;cpti.

Let B = T.N be the Levi decomposition of the standard Borel subgroup B. Recall
we assumed GO(w) for p,. We can assume that 5.(D,) C B(k). Throughout this

section, we assume that

(RLI) there exists a split (non necessarily connected) reductive Chevalley subgroup
H of é/Z with W/ « T C H, and a subfield k' C k, of order say |k'| = ¢ = pf’
(f' > 1), so that H(k'), C Imp, and p,(I,) C H°(k'). Where H(k'), is the subgroup
of H(k") consisting in elements whose v belongs to Imv o p,.

Comment. — It has been pointed to us by R. Pink that if H is connected and
W' xTcH , then H should contain the derived group of é; then, (RLI) becomes
in some sense an assumption of genericity for m and p, but it cannot be verified in a
single example for g > 2, hence our insistance on the possible disconnectedness of H:
it allows us to show the existence of concrete examples for the theorem.

Let H° be the neutral component of H over Z. Its semisimple rank is g. Recall
that in the condition of Galois ordinarity (GO), we introduced an element g € G so
that

p=(Dy) C§-B(O) -

Recall the convention (valid since Sect.3.3) that we omit the conjugation by g,

thus writing é, ]V, T instead of q- B ¢! and so on.
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The subdata (H°, T, BN H) in (G, T, B) induce an inclusion of the set of roots of
HO into that of G: @EO C ®F. Let & = &N Vecty(Ppo) and A’ a system of basis
made of positive simple roots for ®’. By [12] VI, n® 1.7, Prop. 24, it can be completed
into a basis A of ® contained in ®*. Note that ® o is a subsystem of maximal rank
in ®. Let Ago be the basis of ®zo contained in @JIQO. A priori, it could be different
from A’ (not in the examples we have in view though). Let

dro={reX|(\BY)=0for B e Py}

where oV denotes the coroot corresponding to a root f3.
Observe that @JHO contains Z - v as a direct summand:

Dho =Dy BZ v
Let X’ be the Z-module generated by A’. One has
X=X @ 5.

The irreducible representations of H° over k’ (or over any perfect extension of F,)
are classified by X't x CIDJHO. We shall consider certain (absolutely) irreducible repre-
sentations over &’ of the abstract group H(k').

Note that by the formula v o p, = X% - wx, the image of v o, contains
LetLe = (k' :Im(v o p,)). Note that e is a multiple of % = (K" k'),

et

k,l><'w

Do = (q’71)~<I>JI}’01®e~Z~1/
It is a finite index lattice in @ﬁo and the kernel of the homomorphism
X — Hom(T(K)y, k'), Ar— X

coincides with
(¢ —1) X'& o
It results easily from Steinberg’s theorem (see Chapter II, Prop. 3.15 and Cor. 3.17

of [46]) that the irreducible representations of the abstract group H°(k’), are classified
by

Xpg = {(v,a) € X'+ x @40 /Ph0 | 0< (0,8Y) < ¢ —1forall §€ Ago}

For brevity, we call such weights ¢’-reduced, although the terminology is not con-
formal to that of Jantzen’s book Chapter II, Section 3. For p € Xp 4, we write W (u)
for the corresponding HO-representation and Ilzo(u) C X for its set of weights,
resp. o (i) € Hom(T'(K'), k') the set of their restrictions to T'(k'),,.

Let @; be the fundamental weights in X of G. We write & = @y for the minuscule
weight of G ; it is the highest weight of the spin representation Vg, of G. Let s(@)
resp. I15() the set of weights (resp. of the functions on T(K') that they induce)
associated to the spin representation V . of G.

Recall that I15(@) = {&"" | w' € W'} and that we assumed W’ « T C H.
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Lemmal2. — For p > 5, if W(u) is a simple HY,-module with highest weight i €
Xp,g with @ =T and Mo (p) C IM5(@), then p = @.

Remark. — For p = 5, G = Spin(5) and H C G, isomorphic to SL(2) x SL(2) via
G = Sp(4), p = 3w, the lemma is false, hence the necessity of the assumption p > 5.

Proof. — Since i = @, one has y — @ € (¢/ — 1)X.

1) Let us first check that p —@ € NN @JHO = CBJHO

Let o € Ago. We want {(u— @, ") = 0. We start with a preliminary observation:

For any simple root o € Apo, (@,a"V) € {—1,0,1}. Indeed, this is true for any
fundamental weight @ of G. In particular for our minuscule weight @.

Then, we distinguish three cases

~ If (@, a") =1, we have (i, a") = 1 because p is ¢’-reduced.

— If (@, aV) = 0; let us exclude the possibility (u, @) =¢ — 1. Since ¢ —1 > 1
we would have p — « € Ilgo(p) as the a-string of p has length ¢ — 1. Hence by the
assumption, we could write p — o = @Y + (¢’ — 1)\ for some y € W’ and A € X.

But (@Y, a") € {—1,0,1}, and (1 — a,a") = ¢’ — 3 hence ¢’ — 1 should divide 1,2
or 3 impossible since ¢' — 1 > 3.

— Similarly, if (@,a") = —1, we must exclude (u,aV) = ¢ — 2. Again p —a €
0 (), hence p—a = @Y mod. (¢'—1)X. But (@¥,a") € {—1,0,1} and (p—a, ") =
—3mod (¢’ — 1), hence (¢’ — 1) should divide 2,3 or 4; impossible since ¢ — 1 > 4.

2) Thus, u — @ € @350 NN (actually, it shows that (&,a") > 0 for any o € Ago).
Since the components of @ anglv 1 along CIDJI;’(} resp. Zv are reduced (mod. ¢’ — 1)
resp. mod. e, and that u — @ € ®4,, we conclude = @. The lemma is proven.

It is the main ingredient in the proof of the following result.

Lemmal3. — Let o : T = Gal(Q/Q) — GLx(W) be a continuous Galois representa-
tion such that for any g € ', the characteristic polynomial of p,.(g) annihilates o(g).
Assume that p — 1 > max(4, w), that p, satisfies GO(w) and (RLI),

then, either W = 0, or the two characters 1 and w™"%
subquotients of W viewed as an Ip-module.

restricted to I, occur as

Comment. — One could naturally ask whether the simpler assumptions that p,. is
absolutely irreducible and for any g € T' the characteristic polynomial of p,.(g) anni-
hilates o(g) are sufficient to conclude that all constitutents of o are copies of p,.. This
statement is true for g = 1, but, it is false for g = 2. A counterexample has been found
by J.-P.Serre. He lets I' act on IF;‘, through the so-called cuspidal representation of
the non-split central extension 2 A5 of the icosaedral group As. It is four-dimensional,
symplectic and absolutely irreducible. Then, (W, o) is one of the two irreducible 2-
dimensional of this group. This is why we introduced (RLI). This assumption is not
satisfied in the example there. Also, thanks to the ordinarity assumption (GO), we
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focused our attention on the highest weight of p,. (which is a local information at p)
rather than the global representation p,. itself.

Proof. — Assume W # 0; let I be the inverse image by 5, of H(k') in T and T
the kernel of 7 restricted to IV. Then o(I') is a nilpotent p-group. Thus, replacing
W by its submodule fixed by o(I'""), still denoted by W, one can assume that W is a
non-zero module on which I acts through H(k'),:

I’ — GLi(W)

|

H(K")

We first treat the case of w™%. Let H? be the neutral component of H. Let
—~ 0 ’ A~
W = Indgogz,;u W. It is an H%(k’)-module, and for any ¢ € T'(k’),,, the action of ¢ on
W is annihilated by [Loew: (X —@¥(t)). By Steinberg theorem ([46] Sect 11.3.15),
the space W viewed as HY(k')-module has a subquotient W (u) which comes from
an algebraic simple H,?/—module corresponding to a ¢'-reduced highest weight u. We

associate to this representation the sets 11, resp. ﬁu as above. By the assumption
W’ C H, one can assume that Igo(u) C I5(®) and @ =7 (if i = & for some
w' € W', simply replace W(u) by W(u“’lfl) which also occurs as Hp,-subquotient
of W). By the previous lemma, for p > 5, we have @ = pu. Let x be a highest
weight vector in W (u) for H]}?p. It is fixed by H N N(k). Since I, C p; (HO(k)),
the action of I, on x is through its image by @, o (5, mod. JV) By the assumption
(GO), and Lemma 3, this character is equal to w™* on I, which therefore occurs as a
subquotient of W{z,. To treat the case of the trivial character, we consider instead of
the highest weight p by the lowest weight i’ of W(u); we can assume that @’ = &
where wy is the longest element of W5. Let Npyo be the unipotent radical of a Borel
of H? adapted to (GO). On the lowest weight quotient W (u)n,, (the vector space

of Npo-coinvariants), 7, acts by &% o (5, mod. N), which is trivial by (3.3.2). QED

7.2. Deducing Theorem 1 from Theorem 6. — Recall we have fixed A =
(ag,...,a1;¢) with ¢ = ag + -+ + a1 and [A + p| < p — 1. We have the following
reduction steps:

1) By Poincaré duality, and self-duality of the Hecke operators for ¢ prime to N,
Statement (i) of Theorem 1 is equivalent to the vanishing of

HI(Su,Va(k))m =0 forgq<d

where x = ¢, @. These modules are artinian over H,,, so by Nakayama’s lemma, it is
enough to show that their m-torsion vanishes:

(7.2.1) HI(Sy,Va(k))[m] =0 for x =@ or cand ¢ < d
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which we will prove below.
2) Then, Statements ii) and iii) are easy consequences of i) as can be seen by
induction on g < d using the long exact sequences

0— VA(0) — W\ (0) — V) (O/wO) — 0

and

0 — V(@ t0/0) — Vi\(K/O) — V\(K/O) — 0.
For instance, from the latter, one obtains, with obvious notations: if HZ ' (K/O)y = 0,
then H(w1O/O)m — HIY(K/O)n[w] is an isomorphism; hence by Nakayama’s
lemma, assertion one implies that H{(K/O)y vanishes for ¢ < d.

Note that since p > ja > ay--- 2 a1 > 0, one knows that Vyp, is absolutely
irreducible (see for instance Proposition I1.3.15, p. 222, of [46]).

3) As in section 6.3, X z11/n] is the moduli scheme classifying p.p.a.v. with level
N structure over Z[1/N]. Its toroidal compactification over Z[1/N] is denoted by X.
Let Vi (Fp) resp. Vi(k) be the étale sheaf over X ® Q in F- resp. k-vector space corre-
sponding to Vyr,. Using the etale-Betti comparison isomorphism (and its equivariance
for algebraic correspondences), Theorem 1 will be proven if we show the vanishing of
the etale cohomology groups corresponding to (7.2.1).

This interpretation as étale cohomology allows us to view HZ(Sy,Vi(F,)) as a
F,[Gal(Q/Q)] x Hx-module:

HI(X,VA(F,)) =2 HY, (X ® Q, VaA(Fy)).

ét,x

Remark. — The F,-coefficients are useful to apply Fontaine-Laffaille and Faltings
theory, while the k-coefficients will come in when we localize at the maximal ideal m
of Hk (O).

Let V;\/ be the object of MFY:[0P~2 (X)) associated to A as in Section 6.3. Recall
that Vi\/ has a filtration of length |\[; since d + |A| < p — 1 and since V\; and Vy(F,)"
are associated (Theorem 8 above, section 6.3), we can apply Th.5.3 of [22] (see
Theorem 7, Section 6.1), so that for any j > 0:

H, (X @ Q,, VA(Fp))Y
is the image by the Fontaine functor V* of

H ey (X T ).

log-crys,*

Note that since we work mod. p instead of mod. p™, we have

Hj (X®IFP7VX) = Hl{)g—dR,*(X@vav/\\/)

log-crys,*

We have constructed in Section 5.3.4 a filtered complex of coherent sheaves Ky on
X® IF, by functoriality from the BGG resolution of the Gf,-module VAF,,- It follows
from Theorem 6 that there are isomorphisms of filtered F,-vector spaces:

Hl{)g—dR(X @Fp, VY) = H (X @ F,,K3)
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and

Hl];g—dR,c(X @ Ty, 12V HI (Y ®Fp, E.Asub)

where K;\ resp. K;\S“b denotes the canonical, resp. subcanonical Mumford extension
of the filtered complex of sheaves K3 . The resulting filtration on the right-hand side is
called the F-filtration; it corresponds via these isomorphisms to the Hodge filtration
on the left-hand side. The weights of this filtration can be computed as in [72] (who

treats the case g = 2): Let us consider the map
We —Z, wr— p(w) =—(wA+p)(H) - p(H))

where H = diag(0,...,0,—1,...,—1). Let Wj; be the Weyl group of the Levi sub-
group M of the Siegel parabolic. Observe that this map factors through the quotient
War\Wg; this quotient is in bijection with the set W™ (cf. p.229 of [13]). By Theo-
rem 6, Sect. 5.4, we have
grlejég-dR,* = & Hj_e(w)(y ® FZNW'\M/)(Aer)*p)
weWw™M
p(w)=p
L(w)<j—p

Note that, unfortunately, p is not a good notation for the degre of our Hodge filtration.
The image p(W¢) of p is therefore the set of possible weights occuring in ngys,* for
J < d. Moreover, p is injective on W \We, and its values are exactly the jp (B C A).
The set of possible lengthes ¢(w), w € WM is [0,d]. For each j < d, let us consider
the set WM(j) = {w € WM | f(w) < j}; the key observation is that for j < d,
WM (4) does not contain the unique element w € W™ such that ¢(w) = d, namely
the one acting by (ag,...,a1;¢) — (—ag,...,—ai;c). But this element is the unique
one for which p(w) takes on its maximal value: j4. Hence, this maximal weight does
not occur in Hﬂ)g_dR7*(X @ F,,VY) for j < d.

On the other hand, under assumptions (Gal) and (GO), 5, is ordinary with
weights given by jp for all subsets B C A; in particular j4 and 0 indeed occur with
multiplicity one; actually, even if we replaced (GO) by geometric ordinarity, it would
result from lemma 3, Sect. 3.3, that 0 and j4 do occur in p,). Now, consider the global
Galois representation o/ on W; = HL(X ®Q, Va(k))[m], the kernel of m in the module
H (X ® Q, Vi(k)). The Eichler-Shimura relations imply for any g € Gal(Q/Q), the
characteristic polynomial of 5, (g) annihilates ¢7(g). Our lemma 13 Sect. 7.1, shows,
assuming (RLI), that this implies that W; admits 5, as subquotient. This is a
contradiction since the maximal weight ja occurs in 7|7, but not in Wj|z,.

7.3. Examples. — Let F be a real quadratic field with Galois group {1,0}. Let
I'r = Gal(Q/F). Let f be a holomorphic Hilbert cusp form for GL(2),r of weight
(k1,ko), k1,ke = 2, k1 = ks + 2m for an integer m > 1. Assume it is a new form
of conductor n which is eigen for Hecke operators T;, (v prime to n); denote by a,
the corresponding eigenvalues. Since the weight of f is not parallel, f does not come
from Q. Let f, be the inner conjugate of f by o. Let € be the finite order part of its
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central character. We assume that e factors through the norm map. Starting from
[90], a series of works have established that f admits a holomorphic theta lift = to
G(A) where G = GSp(4) (see [63] and [64]). Since f does not come from Q, 7 is
cuspidal; moreover, in [64], B. Roberts explained to us that in particular such a theta
lift 7 is stable at co. The published reference for this fact is [65]. It occurs in the
H? of a Siegel variety of some level, say N, with coefficient system of highest weight
A= (a,b;c) where a =k, + m—3,b=m —1, and ¢ = a + b. At the moment, the
level N of 7 can only be said to be multiple of N(n)Dp where D is the discriminant
of F; N(n)Dp should be the conductor of 7, but this can not yet be established in
general.

Let Q(f) = Qlay]» be the number field generated by the eigenvalues of f; one can
take Q(f) as field of definition of 7 (although this may not be the smallest possible
one, as pointed out by Prof. Yoshida). For any prime py of Q(f) prime to n, the
ps-adic Galois representation associated to 7 exists; it is given by

(7.3.1) Pr = Indg Pf

it is absolutely irreducible. The conductor of p, is Norm(n)- Dg; this results from the
fact that n is also the (prime-to-p part of the) conductor of ps by Carayol’s theorem.

Indeed, 7 is motivic: by Theorem 2.5.1 of [10], for any imaginary quadratic field F”,
there exists a motive My g defined over F'- F', of rank 2 over some extension Q(f, F”)
of F'- Q(f); the motives My p/ are “associated to f”: they give rise to a compatible
system of A-adic representations of I'p, which is associated to f. Its Hodge-Tate
weights are 0 and k; — 1 above Idg/, and m and m + k, — 1 above 0 ® Idp-.

Remark. — In fact there should exist My defined over Q, of rank 2 over Q(f), asso-
ciated to f in the above sense.

Then we consider for each imaginary quadratic F’
(732) MW,F’ = RGSE;FI Mf’F/
My p is defined over F’, of rank 4 over Q(f, F”); it is pure of weight w = k; — 1 and

the four Hodge-Tate weights 0 < m < m + k, —1 < k1 — 1 do occur. These motives
define a compatible system of degree 4 A-adic representations of I', associated to 7.

Remark. — Similarly, there should exist M, defined over Q, of rank 4 over Q(f) with
those Hodge-Tate weights, associated to .

In the CM case, we restrict our attention to the situation where f is a theta
series coming from a biquadratic extension M = EF/F, E imaginary quadratic. Let
Gal(E/Q) = {1,7}, Gal(F/Q) = {1,0} and Gal(M/Q) = {1,0,7,07}. We write
f = 6(¢) where ¢ is a Hecke character of infinity type ni + nyo + nero7 + n,7 €
N[Gal(EF/Q)], such that

(%) N +Nr =Ny +Ngr and nqg >ng > Ngr > Ny
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and of conductor f prime to pin M. In that case, onehasa = n,—n,—2,b =ny1—n,—1
and ¢ = ny +n, —3; indeed, since n, = (c—a—b)/2, we see that the condition n, =0
is equivalent to ¢ = a 4+ b, in which case one has ny = w, n, =k, —1+m, ngr =m
(and n, = 0). We assume in fact in the sequel a condition slightly stronger than (x),
namely:

(**) ¢(1+'r)-(170) =1 and 1y >N > Nes > N,
Under these assumptions, we say that f is of (2,2)-CM type.

Remark. — If (%) is satisfied for a character ¢, then (xx) is satisfied for ¢"1 where h;
denotes the ray-class number of EF of conductor f.

Let Oy be the ring of integers of Q(f). For a suitable finite set of primes S of
Oy disjoint of the prime divisors of n, the localization S~'Oy is principal. In this
principal ring, we choose for each prime v prime to n a generator {v}. Let I = Iy be
the ring generated by the normalized eigenvalues a = {v} =™ .qa, (v prime to n) of f
in Q(f). The a¥’s are eigenvalues for the divided Hecke operators Tp(v) = {v} =" -T,
as introduced by Hida in the beginning of Sect.3 of [40]. By Th.4.11 of [40], these
eigenvalues are still integral.

Let p be a rational prime. We assume hereafter that p splits in F, say, p-Or = q-q,
q # q°, and that {q,9°} NS = @. We fix ¢, : Q(f) — K C Q,, a p-adic embedding,
and py the prime of I associated to ¢p.

Recall that by a Theorem of Wiles (Th.2.2.2 of [88]) and a Proposition of Hida
(Prop. 2.3 of [41)), if

ord,(1p(ag)) =0 resp. ordy(1p(ag.)) =0

(that is, ordp(tp(aq)) = 0 resp. ordy(ip(aqe)) = m), then, the decomposition group
Dy C I'