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INTRODUCTION

The first paper of this volume deals with the question of torsion in the cohomology
of Siegel varieties SU with coefficients in a local system Vλ of finite flat Zp-modules.
Its goal is to show that its localization at a non-Eisenstein maximal ideal m of the
Hecke algebra is torsion-free for p large with respect to the highest weight λ of the
coefficient system Vλ. At the same time, as could be expected, besides getting rid of
the torsion, the localization has the effect of killing the boundary cohomology (and
its torsion), so that we show that

H•
c (SU , Vλ)m = IH •(SU , Vλ)m = H•

! (SU , Vλ)m = H•(SU , Vλ)m

and these cohomology modules are concentrated in middle degree d. This question
of absence of torsion is important in the construction of p-ordinary families of cuspi-
dal Hecke eigensystems, and in the verification of the first main condition for having
a Taylor-Wiles system. These applications are given at the end of the paper. The
main assuption is that the p-adic Galois representation associated to a cuspidal co-
homological representation does exist (it is known only in genus � 2) and that those
corresponding to the maximal ideal m have large residual image (it can be verified on
examples for g = 2). Faltings introduced around 1980 the dual Bernstein-Gelfand-
Gelfand complex as a tool for determining the Hodge decomposition of the complex
cohomology of locally symmetric varieties. The rational version of this tool appeared
in Faltings-Chai book, and they incidentally mention that a p-adic integral version
as well exists, but only for so-called p-small weights λ. We developed this idea, and
it became our main tool for determining the Fontaine-Laffaille constituents of the
modulo p de Rham cohomology of these Siegel varieties. This, allied with Falting’s
mod. p étale-de Rham comparison theorem together with a Galois-theoretic argument
allows us to show the vanishing of the various modulo p cohomologies of SU localized
at m in degree q < d. For this, we needed a rather detailed study of the Bernstein-
Gelfand-Gelfand complex over Zp (in p-small weight) and a Zp-integral version of
Kostant theorem decomposing the cohomology of the unipotent radical of a parabolic
as a sum of irreducible modules over the Levi quotient. These results are presented
in great generality in the second paper, which provides also a useful assortment of
results on Zp-representations of a reductive group in p-small weights.
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COHOMOLOGY OF SIEGEL VARIETIES WITH p-ADIC
INTEGRAL COEFFICIENTS AND APPLICATIONS

by

Abdellah Mokrane & Jacques Tilouine

Abstract. — Under the assumption that Galois representations associated to Siegel
modular forms exist (it is known only for genus at most 2), we study the cohomology
with p-adic integral coefficients of Siegel varieties, when localized at a non-Eisenstein
maximal ideal of the Hecke algebra, provided the prime p is large with respect to
the weight of the coefficient system. We show that it is torsion-free, concentrated in
degree d, and that it coincides with the interior cohomology and with the intersection
cohomology. The proof uses p-adic Hodge theory and the dual BGG complex modulo
p in order to compute the “Hodge-Tate weights” for the mod. p cohomology. We apply
this result to the construction of Hida p-adic families for symplectic groups and to
the first step in the construction of a Taylor-Wiles system for these groups.

Résumé (Cohomologie des variétés de Siegel à coefficients entiers p-adiques et applications)
Supposant connue l’existence des représentations galoisiennes associées aux formes

modulaires de Siegel (elle ne l’est qu’en genre � 2 pour le moment), on étudie la
cohomologie des variétés de Siegel à coefficients entiers p-adiques localisée en un idéal
maximal non-Eisenstein de l’algèbre de Hecke, lorsque p est grand par rapport au
poids du système de coefficients. Plus précisément, on montre qu’elle est sans torsion,
concentrée en degré médian, et qu’elle cöıncide avec la cohomologie d’intersection et
avec la cohomologie intérieure. On utilise pour cela la théorie de Hodge p-adique et le
complexe BGG dual modulo p qui calcule « les poids de Hodge-Tate » de la réduction
modulo p de cette cohomologie. On applique ce résultat à la construction de familles
de Hida p-ordinaires pour les groupes symplectiques et à l’ébauche de la construction
d’un système de Taylor-Wiles pour ces groupes.

1. Introduction

1.1. Let G be a connected reductive group over Q. Diamond [16] and Fujiwara [29]
(independently) have axiomatized the Taylor-Wiles method which allows to study
some local components Tm of a Hecke algebra T for G of suitable (minimal) level;
when it applies, this method shows at the same time that Tm is complete intersection
and that some cohomology module, viewed as a T-module, is locally free at m. It

2000 Mathematics Subject Classification. — 11F46, 11G15, 14K22, 14F30.
Key words and phrases. — Siegel modular forms, p-adic cohomology, Galois representations.
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2 A. MOKRANE & J. TILOUINE

has been successfully applied to GL(2)/Q [73], to some quaternionic Hilbert modu-
lar cases [29], and to some inner forms of unitary groups [38]. If one tries to treat
other cases, one can let the Hecke algebra act faithfully on the middle degree Betti
cohomology of an associated Shimura variety; then, one of the problems to overcome
is the possible presence of torsion in the cohomology modules with p-adic integral
coefficients. For G = GSp(2g) (g � 1), we want to explain in this paper why this
torsion is not supported by maximal ideals of T which are “non-Eisenstein” and or-
dinary (see below for precise definitions), provided the residual characteristic p is
prime to the level and greater than a natural bound. A drawback of our method
is that it necessitates to assume that the existence and some local properties of the
Galois representations associated to cohomological cuspidal representations on G are
established. For the moment, they are proven for g � 2 (see below). In his recent
preprint [43], Hida explains for the same symplectic groups G how by considering
only coherent cohomology, one can let the Hecke algebra act faithfully too on coho-
mology modules whose torsion-freeness is built-in (without assuming any conjecture).
However for some applications (like the relation, for some groups G, between special
values of adjoint L-functions, congruence numbers, and cardinality of adjoint Selmer
groups), the use of the Betti cohomology seems indispensable.

1.2. Let G = GSp(2g) be the group of symplectic similitudes given by the matrix
J =

(
0 s
−s 0

)
, whose entries are g × g-matrices, and s is antidiagonal, with non-zero

coefficients equal to 1; the standard Borel B, resp. torus T , in G consists in upper
triangular matrices, resp. diagonal matrices in G. For any dominant weight λ for
(G, B, T ), we write λ̂ for its dual (that is, the dominant weight associated to the Weyl
representation dual of that of λ). Let ρ be the half-sum of the positive roots. Recall
that λ is given by a (g + 1)-uple (ag, . . . , a1; c) ∈ Zg+1 with c ≡ a1 + · · · + ag mod. 2,
that λ̂ = (ag, . . . , a1;−c) and ρ = (g, . . . , 1; 0) (see section 3.1 below). Throughout
this paper, the following integer will be of great importance:

w = |λ + ρ| = |λ| + d =
g∑

i=1

(ai + i) = d +
g∑

i=1

ai

where d = g(g + 1)/2. It can be viewed as a cohomological weight as follows.
Let A = Af × Q∞ be the ring of rational adèles; let Gf resp. G∞ be the group

of Af -points resp. Q∞-points of G. Let U be a “good” open compact subgroup of
G(Af ) (see Introd. of Sect. 2); let S resp. SU be the Shimura variety of infinite level,
resp. of level U associated to G; then d = dim SU is the middle degree of the Betti
cohomology of SU . Let Vλ(C) be the coefficient system over S resp. SU with highest
weight λ. See Sect. 2.1 for precise definitions.

Let π = πf ⊗ π∞ be a cuspidal automorphic representation of G(A) which occurs
in Hd(SU , Vλ(C)). This means that

ASTÉRISQUE 280



COHOMOLOGY OF SIEGEL VARIETIES 3

– the πf -isotypical component Wπ = Hd(πf ) of the Gf -module H•(S, Vλ(C)) is
non-zero, and

– πU
f �= 0.

It is known (see Sect. 2.3.1 below) that the first condition is implied by the fact
that π∞ belongs to the L-packet Π�λ+ρ of Harish-Chandra’s parameter λ̂ + ρ in the
discrete series. In fact, it is equivalent to this fact if λ is regular or if g = 2.

By a Tate twist, we can restrict ourselves to the case where c = ag + · · · + a1. We
do this in the sequel. Then, |λ| is the Deligne weight of the coefficient system Vλ

and w = |λ + ρ| is the cohomological weight of Wπ, hence the (hypothetical) motivic
weight of π.

Let p be a prime. Let us fix an embedding ιp : Q ↪→ Qp. Let v be the valuation of Q
induced by ιp normalized by v(p) = 1; let K be the v-adic completion of a number field
containing the Hecke eigenvalues of π. We denote by O the valuation ring of (K, v);
we fix a local parameter � ∈ O. Let N be the level of U , that is, the smallest positive
integer such that the principal congruence subgroup U(N) is contained in U . Let HN

resp. HU (O) be the abstract Hecke algebra outside N generated over Z, resp. over O
by the standard Hecke operators for all primes � prime to N ; for any such prime �,
let P�(X) ∈ HN [X ] be the minimal polynomial of the Hecke-Frobenius element (it
is monic, of degree 2g, see [13] page 247). Let θπ : HN (O) → O be the O-algebra
homomorphism associated to πf .

Let Ĝ = GSpin2g+1 be the group of spinorial similitudes for the quadratic form
g∑

i=1

2xix2g+1−i + x2
g+1;

it is a split Chevalley group over Z[1/2] (we won’t consider the prime p = 2 in the
sequel); it can be viewed as the dual reductive group of G (see Sect. 3.2 below); let
B̂, N̂ , T̂ the standard Borel, its unipotent radical, resp. standard maximal torus
therein. The group Ĝ acts faithfully irreducibly on a space V/Z of dimension 2g, via
the spinorial representation. Let BV be the upper triangular Borel of GLV . Note
that B̂ is mapped into BV by the spin representation.

1.3. We put Γ = Gal(Q/Q). We assume that

(Gal) there exists a continuous homomorphism

ρπ : Γ −→ GLV (O)

associated to π: that is, unramified outside Np, and such that the characteristic poly-
nomial of the Frobenius element at a prime q not dividing Np is equal to θπ(Pq(X)).

We shall make below an assumption on the reduction of ρπ modulo the maximal
ideal of O which will imply that ρπ act absolutely irreducibly on V for each geometric
fiber; hence the choice of a stable O-lattice VO in V ⊗ K is unique up to homothety.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2002



4 A. MOKRANE & J. TILOUINE

Evidences for (Gal). — For g = 2, assuming

(Hol) π∞ is in the holomorphic discrete series,

Weissauer [87] (see also [34] and [52]) has shown the existence of a four-dimensional
p-adic Galois representation

ρπ : Γ −→ GLV (Qp)

Moreover, his construction, relying on trace formulae, shows actually that

L(Wπ, s)4 = L(ρπ, s)m for some m � 1.

From this relation, one sees easily that the irreducibility of ρπ ⊗ IdQp
implies that the

(Galois) semisimplification of Wπ,p is isomorphic to n.ρπ (m = 4n).
Another crucial assumption for us will be that p is prime to N (hence π is unramified

at p). Recall that under this assumption, Faltings has shown (Th. 6.2 (iii) of [13] and
Th. 5.6 of [22]) that for any q, the p-adic representation Hq(SU ⊗ Qp, Vλ(Qp)) is
crystalline.

Let Dp, resp. Ip be a decomposition subgroup, resp. inertia subgroup of Γ. Via
the identification X∗(T ) = X∗(T̂ ), we can view any µ ∈ X∗(T ) as a cocharacter of
T̂ , hence as a homomorphism Ip → Z×

p → T̂ (Zp) → Ĝ(Zp) where the first map is
the cyclotomic character χ : Ip → Z×

p . We denote by ρ̃ the character of T whose
semisimple part is that of ρ, but whose central parameter is d. it is the highest
weight of an irreducible representation of G given by ρ on the derived group G′. The
character λ+ρ̃ has coordinates (ag+g, . . . , a1+1; w). Let us introduce the assumption
of Galois ordinarity, denoted in the sequel (GO):

1) The image ρπ(Dp) of the decomposition group is contained in Ĝ,
2) There exists ĝ ∈ Ĝ(O) such that

ρπ(Dp) ⊂ ĝ · B̂(O) · ĝ−1,

3) the restriction of the conjugate ρ�gπ to Ip, followed by the quotient by the unipo-
tent radical ĝ · N̂ · ĝ−1 of ĝ · B̂ · ĝ−1 factors through −(λ + ρ̃) : Ip → T̂ (Zp).

Comments

1) Let us introduce the condition of automorphic ordinarity:

(AO) For each r = 1, . . . , g,

v(θπ(Tp,r)) = ar+1 + · · · + ag

where Tp,r is the classical Hecke operator associated to the double class of

diag(1r, p · 12g−2r, p
2 · 1r).

We conjecture that for any g, if ρπ is residually absolutely irreducible, (AO) implies
(GO). It is well-known for g = 1 ([89] Th. 2.2.2, and [54]). Moreover, for g = 2, it
follows from Proposition 7.1 of [77] together with a recent result of E.Urban [80].
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COHOMOLOGY OF SIEGEL VARIETIES 5

2) The minus sign in front of (λ + ρ̃) comes from the definition of Hodge-Tate
weights (for us: the jumps of the Hodge filtration): the weight of the Tate represen-
tation Zp(n) is −n.

Let θπ = θπ mod. � and m = Ker θπ. Our last assumption concerns “non-
Eisenstein-ness” of the maximal ideal m. It says that the image of the residual rep-
resentation ρπ induced by ρπ on VO/�VO is “large enough”. More precisely, let W �G
be the Weyl group of Ĝ, viewed as a subgroup of Ĝ. Recall the standard description
W �G ∼= Sg ∝ {±1}g. Let W ′ ⊂ Ĝ corresponding to {±1}g. The “residually large image
assumption” is as follows:

(RLI) There exists a split (non necessarily connected) reductive Chevalley subgroup
H of Ĝ/Z with W ′ ∝ T̂ ⊂ H , and a subfield k′ ⊂ k, of order say |k′| = q′ = pf ′

(f ′ � 1), so that H(k′)ν ⊂ Im ρπ and ρπ(Ip) ⊂ H0(k′).

Here, H(k′)ν denotes the subgroup of H(k′) consisting in elements whose ν belongs
to Im ν ◦ ρπ.

It has the consequence that ρπ and ρπ are absolutely irreducible, hence the unique-
ness of the stable lattice VO up to homothety.

1.4. One defines the sheaf Vλ(O) over SU using the right action of Up = G(Zp) (see
[77] Sect. 2.1). We put Vλ(A) = Vλ(O) ⊗ A for any O-module A; these are locally
constant sheaves on SU . Our main result is as follows.

Theorem 1. — Let π be cuspidal with π∞ in the discrete series and of good level
group U , occuring in

Hd(SU , Vλ(C));

let p be a prime not dividing N = level(U), assume (Gal), (GO), (RLI), p > 5 and
that the weight λ is small with respect to p:

p − 1 > |λ + ρ|

Then, one has:

i) H•(SU , Vλ(k))m = Hd(SU , Vλ(k))m

ii) H•(SU , Vλ(O))m = Hd(SU , Vλ(O))m and this O-module is free of finite rank.
Similarly,

iii) H•(SU , Vλ(K/O))m = Hd(SU , Vλ(K/O))m and this O-module is cofree of finite
rank.

The same statements hold for the cohomology with compact supports.

Comments

1) By standard arguments, the whole theorem follows if we show that:

Hq
∗(SU , Vλ(k))[m] = 0 for q < d
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where ∗ = c, ∅, and for any Hecke-module M , M [m] stands for its m-torsion. This is
the main result of the text.

2) In several instances in the proof, it is important that the maximal Hodge weights
of the cohomology modules involved are distinct for distinct modules, and are smaller
than p − 1; the condition

p − 1 > a1 + · · · + ag + d

implies this; at the same time, it is also the condition needed to apply a comparison
theorem of Faltings (Th. 5.3 of [22]). We shall refer to this condition throughout the
paper by saying that λ is p-small. This terminology has not the same meaning here
than in [61], but is in fact stronger than what is called p-smallness there. Hence,
under the present assumption, we can make use of Theorem D of [61]. In brief, this
assumption is unavoidable in our approach. The condition p > 5 comes from the
theory of modular representations of reductive groups and has been pointed out to
us by P.Polo. It is necessary for the validity of Lemma 13 of Section 7.1, as there is
a counterexample to this Lemma for p = 5 and G = GSp(4); hence in our approach,
the minimal possible p is 7 (for g = 2 and a1 = a2 = 0) but p = 5 is also acceptable
if Im ρπ is “very large” : see the remark following Lemma 12. Observe anyway that
our bound on p depends only on λ (not on the level group U). This is crucial for the
applications we have in view.

3) The assumption (RLI) is used only in Lemma 13 of Section 7.1, but this lemma
is crucial for our proof of the Theorem.

4) Note that for λ regular and for g = 2, by calculations of [72], and results of
Schwermer and Franke (see Theorem 3.2(i) of [77]), one has Hq(SU , Vλ(C)) = 0 for
any q < 3, while this is not so for the compact support cohomology: the boundary
long exact sequence for Borel-Serre compactification relates H2

c (SU , Vλ(C)) to an H1

of modular curves, which does not vanish. Our vanishing statement concerns the
localization at m and means that there is no mixing of Hodge weights between the
m-part of H2

c and that of H3
c .

5) For g = 2, E.Urban [79] has found a completely different proof of the absence
of torsion of H2(SU , Vλ(O))m under mild assumptions (with m non-Eisenstein). His
proof is much shorter than ours but relies on the fact that the complement in SU of
the Igusa divisor is affine, which is particular to the Siegel threefold. Whereas our
theorem seems to carry over (with the same proof) to various other situations, like
the Hilbert (or quaternionic) modular case, or unitary groups U(2, 1)/Q.

Evidences

1) If g = 2 and π is neither CAP nor endoscopic, one can conjecture that for p

sufficiently general, Im ρπ contains the derived group Ĝ(Zp). Then (RLI) is trivially
satisfied; if moreover p is also ordinary, the situation is as desired. Such a conjecture
is unfortunately presently out of reach.
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2) A more tractable situation is the following. See the details in Section 7.3. Let
F be a real quadratic field with Gal(F/Q) = {1, σ}. Let f be a holomorphic Hilbert
cusp form for GL(2)/F , of weight (k1, kσ), k1, kσ � 2, k1 = kσ + 2m (m � 1). One
can show ([90] and [63]) the existence of a holomorphic theta lift from GL(2)/F to
G = GSp(4)/Q for f . Let π be the corresponding automorphic representation of G(A).
It is cohomological for a suitable coefficient system. Since f is not a base change from
GL(2)/Q, π is cuspidal, neither CAP nor endoscopic. We allow that f is CM of type
(2, 2); that is, is a theta series coming from a CM quadratic extension M = FE of
F , where E is imaginary quadratic. Moreover, π is stable at ∞ (see [64]), ρπ exists
and is motivic, namely: ρπ = IndQ

F ρf , and it is absolutely irreducible. Moreover,
for p sufficiently large (and splitting in E in the (2, 2)-CM case), the image of the
associated Galois representation ρπ : Γ → GLK(V ) is equal (up to explicit finite
index) to the group of points over a finite extension of Zp of either the L-group
L(ResF

Q GL(2)/F ) = Gal(F/Q) ∝ (GL(2) × GL(2))0 (if f is not CM), or those of
L ResM

Q M× = Gal(M/Q) ∝ (G2
m × G2

m)0 if f is CM of type (2, 2). The subgroup H

of Ĝ whose image by the spin representation is L GL(2)/F resp. LM×, does contain
W ′ ∝ T̂ ; that is, the assumption (RLI) is satisfied for H . If p is ordinary for f and
splits in F , ρπ satisfies (GO); assume finally that p satisfies p− 1 > k1 − 1; then, our
result applies. See Sect. 7.3 for numerical examples.

In Section 8, we obtain a refinement of Theorem 1 as follows:

Theorem 2. — Under the assumptions of Theorem 1,

1) the finite free O-module H•(SU , Vλ(O))m coincides with the m-localizations of

– the middle degree interior cohomology Hd
! (SU , Vλ(O)) = Im(Hd

c → Hd),
– the middle degree intersection cohomology IH d(SU , Vλ(O)).

2) if λ is regular or if g = 2, Hd
! (US, Vλ(K))m contains only cuspidal eigenclasses,

whose infinity type are in the discrete series of HC parameter λ̂ + ρ.

The main tool for the proof of the first assertion is the solution by Pink of a conjecture
of Harder [59], together with a repeated use of our Theorem 1 for GSp(2(g − r))
for all integers r = 1, . . . , g. To apply this argument, we need a mod. p version of
Kostant’s formula, proven in Theorem B of [61] under the assumption of p-smallness.
This allows to apply Pink’s theorem in a fashion similar to [37] (who worked in
characteristic zero). The second assertion follows by using a result of Wallach [85],
resp. direct calculations of [72].

We state in Section 9 and 10 several consequences of these results:

– Control theorem and existence of p-ordinary cuspidal Hida families for G, im-
proving upon [77],

– Verification of a condition of freeness of a cohomology module occuring in the
definition of a Taylor-Wiles system.
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8 A. MOKRANE & J. TILOUINE

1.5. Let us briefly discuss the proof of Theorem 1. Let Vλ(Fp) resp. Vλ(k) be the
etale sheaf over X ⊗ Q associated to the representation Vλ /Fp

of GFp = G ⊗ Fp, of
highest weight λ, resp. its extension of scalars to k. As mentioned in Comment 1) to
Theorem 1, it is enough to show that

(∗) W j
∗ = Hj

∗(X ⊗ Q, Vλ(k))[m] = 0

where ∗ = ∅ or c, and for any j < d.
Let X/Z[1/N ] be the moduli scheme classifying g-dimensional p.p.a.v. with level U

structure over Z[1/N ]. Let X be a given toroidal compactification over Z[1/N ] (see
Th. 6.7 of Chap. IV [13], or Fujiwara [30]). Let X0 = X ⊗ Fp, X0 = X ⊗ Fp.

To the representation Vλ /Fp
(with |λ+ρ| < p−1), one associates also a filtered log-

crystal Vλ over X0 (see Section 5.2 below); the F -filtration on the dual V∨
λ , satisfies

Fil0 = V∨
λ and Fil|λ|+1 = 0. Then, the main tools for proving (∗) are

– Faltings’s Comparison Theorem ([22], Th. 5.3, see Sect. 6.1). It says that, since
p − 1 > w, for any j � 0, the linear dual of Hj

∗(X ⊗ Qp, Vλ(Fp)) is the image by
the usual contravariant Fontaine-Laffaille functor V∗ of the logarithmic de Rham
cohomology

M = Hj
log-dR,∗(X ⊗ Fp,V

∨
λ) = Hj(V∨

λ ⊗ Ω•
X0

(log∞)).

– The mod. p generalized Bernstein-Gelfand-Gelfand dual complex (section 5.4)

κ : K•
λ ↪−→ V∨

λ ⊗ Ω•
X0

.

This is the mod. p analogue of a construction carried in Chapter VI of [13]. The main
result is that κ is a filtered quasi-isomorphism: it provides an explicit description of
the jumps of the Hodge filtration in terms of group-theoretic data. In particular for
j < d, w is not a jump.

– Lemma 13 in Section 7.1 shows, assuming (RLI) and (GO), that if W j �= 0, its
restriction to the inertia group Ip admits k ⊗ Z/pZ(−w) as subquotient.

Thus if W j �= 0 we obtain a contradiction since the maximal weight w should not
occur in W j .

Theorem 2 is equivalent to the fact that the localization at m of the degree d bound-
ary cohomology of Vλ(k) vanishes. The argument for this is similar to the previous
one, but makes use of the minimal compactification j : XQ ↪→ X∗

Q of XQ = X ⊗ Q
(instead of the toroidal one). The advantage of this compactification is that Hecke
correspondences extend naturally. We use crucially a theorem of R. Pink (Th. 4.2.1 of
[59]) which describes the Galois action on the cohomology of each stratum with co-
efficents in the étale sheaves Rqj∗Vλ(k); by the spectral sequence of the stratification
it is enough to show the vanishing of the localization at m of the degree d cohomol-
ogy of each individual stratum. For this, we follow the same lines as for the proof
of Theorem 1: the jumps of the Hodge filtration in the degree d cohomolology with
compact support Hd

c (Xr) of the non-open strata Xr cannot contain both w and 0;
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on the other hand, if the m-torsion of Hd
c (Xr) is not 0, Lemma 13 does imply that

these weights both occur. Hence, Hd
c (Xr)m = 0. The last two sections contain two

applications which were the original motivations for this work.
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2. Cohomology of Siegel varieties and automorphic representations

We keep the notations of the introduction. Let us make precise what we mean by
a good open compact subgroup of G(Ẑ): U is good if

1) it is neat: the subgroup of C× generated by the eigenvalues of elements in
U · G∞ ∩ GQ does not contain any root of unity other than 1, and

2) ν(U) = Ẑ×.

Let us now recall some properties of the cohomology groups H•
∗(SU , Vλ(K)), for K

a field of characteristic zero and ∗ = ∅, c or ! (as usual, H•
! denotes the image of H•

c

in H•). In this section, g = Lie(G) will denote the real Lie algebra.

2.1. Generalities over C. — Let U∞ be the stabilizer in G∞ of the map

h : C× −→ G∞, z = x + iy −→
(

x · 1g y · sg

−y · sg x · 1g

)
with sg the g× g antidiagonal matrix, with non-zero entries equal to 1. For any good
compact open subgroup U ⊂ G(Ẑ), let

SU = G(Q)\G(A)/UU∞ and S = G(Q)\G(A)/U∞

be the Siegel varieties of level U , resp. infinite level. Since U has no torsion, SU is a
smooth quasi-projective algebraic variety of dimension d = g(g+1)

2 . S is a pro-variety.
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For any (rational) irreducible representation Vλ of G of highest weight λ, we define
the local system Vλ(C) on SU as the locally constant sheaf of sections of

pr1 : G(Q)\ (G(A) × Vλ ⊗ C) /UU∞ −→ SU

By Prop. 2.7 of [8](which does not require cocompactness), one has

H•(SU , Vλ(C)) = H•(g, U∞, C∞(GQ\GA, C) ⊗ Vλ(C)).

The maps of spaces

C∞
cusp(GQ\GA, C) −→ C∞

c/center(GQ\GA, C) ⊂ C∞
(2)(GQ\GA, C) ⊂ C∞(GQ\GA, C)

(where the first map denotes a smooth truncation to a large compact mod. center
subset, and C∞

cusp = C∞ ∩ L2
0 and C∞

(2) = C∞ ∩ L2) give rise to maps

H•
cusp(S, Vλ(C)) −→ H•

c (S, Vλ(C)) −→ H•
(2)(S, Vλ(C)) −→ H•(S, Vλ(C))

and a well-known theorem of Borel [5] asserts that their composition is injective:

H•
cusp(S, Vλ(C)) ↪−→ H•

! (S, Vλ(C)).

Moreover, as in the proof of Th. 3.2 (or Th. 5.2) of [8], one has a Gf -equivariant
decomposition

H•
cusp(S, Vλ(C)) = H•(g, U∞, C∞

cusp(GQ\GA, C) ⊗ Vλ(C))

=
⊕
π

πf ⊗ H•(g, U∞, πU∞
∞ ⊗ Vλ(C))

where π = πf⊗π∞ runs over the set of isomorphism classes of cuspidal representations
and πU∞

∞ is the Harish-Chandra module of π∞.

Proposition 1. — If λ is regular dominant or if g = 2, the interior, L2 and cuspidal
cohomology groups coincide and are concentrated in middle degree:

H•
cusp(S, Vλ(C)) = H•

(2)(S, Vλ(C)) = H•
! (S, Vλ(C)) = Hd

! (S, Vλ(C)).

Proof. — Recall first that H•
cusp = H•

(2) implies H•
cusp = H•

(2) = H•
! (S, Vλ(C)) (see

also Cor. to Th. 9 of [21]).
By Th. 4 of [6] (which applies here since rkG = rkU∞):

H•
(2)(S, Vλ(C)) = H•(g, U∞, C∞

(2)(GQ\GA, C) ⊗ Vλ(C))

=
⊕
π

πf ⊗ H•(g, U∞, πU∞
∞ ⊗ Vλ(C))

where π runs over the discrete spectrum of L2(ZAGQ\GA, ω) where ω is the central
character of V ∨

λ .
Let π = πf ⊗ π∞ be such an automorphic representation; its local components are

unitary. Moreover, one must have H•(g, U∞, πU∞
∞ ⊗ Vλ(C)) �= 0. By [82] Th. 5.6, the

assumption that λ is regular implies that π∞ = Aq(λ), is a cohomological induction
from a parabolic subalgebra q which must be that of the Borel. In that case, this
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induction provides the discrete series. So, π∞ is one of the 2g−1 unitary representa-
tions of G∞ in the discrete series of HC parameter λ̂ + ρ. By [8] Chap. III, Cor. 5.2
(iii), the tempered unitary π∞’s contribute only in middle degree; Moreover, since
the automorphic representation π = πfπ∞ occurs in the global discrete spectrum and
admits at least one local component which is tempered, it must be cuspidal; indeed,
a theorem of Wallach ([85], Th. 4.3) asserts that if π∞ is tempered, the multiplicity
of π in L2

disc is equal to that in L2
0.

If g = 2, the classification of Vogan-Zuckerman [82] as explicited in Section 1 of
[72] yields the vanishing of H1 and the temperedness of the π∞ occuring in H3. Then
one concludes as above.

Remark. — If λ is not regular, there may also be non-tempered representations π∞
which occur as infinity type of π. However, by Langlands classification ([8], Sect. 4.8,
Th. 4.11) and Th. 6.1 of [8], it implies that Hq

(2)(S, Vλ)(πf ) �= 0 for some q < d.
Franke’s spectral sequence (below) seems to suggest then that Hq(S, Vλ)(πf ) �= 0 (we
leave this as a question).

This proposition will be used in the proof of Theorem 2 (in Section 8 below) to
rule out the occurence of non-cuspidal representations in the localization of the middle
degree L2-cohomology H•

(2)(SU , Vλ), at a “non-Eisenstein”maximal ideal of the Hecke
algebra (that is, satisfying (RLI)).

2.2. Franke’s spectral sequence. — This section is not used in the sequel, but
it provides a motivation for Section 8. By [8] Chap.VII Cor. 2.7, we have

H•(S, Vλ(C)) = H•(g, U∞; C∞(G(Q)\G(A)) ⊗ Vλ(C))

By [7], one can replace the space of C∞-functions by those of uniformly moderate
growth. Franke has shown ([25], Th. 13, or [84] 2.2) that one can even replace this
space by the space A(G) of automorphic forms on G. He has moreover defined a filtra-
tion onA(G), called the Franke filtration (see [84] 4.7) whose graded pieces interpret
as L2-cohomology. This yields an hypercohomology spectral sequence associated to a
filtered complex; more precisely:

Let Φ+, resp. Φ+
L , be the positive root system of G, resp. of a standard Levi L of G,

given by (G, B, T ), resp. (L, B ∩ L, T ). The corresponding simple roots are denoted
by ∆, resp. ∆L. For each standard parabolic P = L · U , let aP is the Lie algebra of
the center of L. Recall then Franke’s spectral sequence ([25] Th. 19 or [84] Corollaire
4.8)

Ep,q
1 = Hp+q

(2) (S, Vλ(C))
⊕
P

⊕
w∈W P (λ,p)

IndGf

Pf
H

p+q−�(w)
(2) (S(L), V (L; w · (λ + ρ)))

=⇒ Hp+q(S, Vλ(C))

where
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– P = L · UP runs over the set of proper standard parabolic subgroups,
– Pf , resp. Gf denotes the group of Af -points of P , resp. G,
– for each p, WP (λ, p) is a certain subset of

WL = {w ∈ W | w−1(α) > 0, for all α ∈ ΦL},

so that WL =
∐

p WP (λ, p),
– the locally constant sheaf V (L; w · (λ + ρ)) on the provariety S(L) is attached to

the representation of L of highest weight w · (λ+ ρ) = w(λ+ ρ)− ρ (dominant for the
order given by (L, B∩L, T )), twisted by −w(λ+ρ)|L, that is, by the one-dimensional
representation of L attached to the (exponential of the) restriction of −w · (λ + ρ) to
its (co-)center aP .

This spectral sequence is Gf -equivariant. It allows one to represent any Gf -irreducible
constituent of Hp+q(S, Vλ(C)) as IndGf

Pf
πf where πf is an irreducible admissible rep-

resentation of Lf such that π = πf ⊗ π∞ is automorphic, in the discrete spectrum of
L2(LQZA\LA, φ) with P a rational parabolic in G, L its Levi quotient, and φ some
unitary Hecke character.

Moreover, by Th. 19(ii) of [25], if λ is regular, Franke’s spectral sequence degener-
ates at Ep,q

1 . So, we have a Hecke-equivariant decomposition for each degree q ∈ [0, 2d]:

Hq(S, Vλ(C)) = IH q(SU , Vλ(C))⊕⊕
P

q⊕
p=0

⊕
w∈W P (λ,p)

IH q−�(w)(SL, V L
w(λ+ρ)−ρ(C)(−w · (λ + ρ)L)).

However, unlike the GLn-case, the question of the rationality of this splitting for
the group G is open (with a possibly negative answer). We nevertheless expect that
it should yield, after localization at a “non-Eisenstein” maximal prime ideal of the
Hecke algebra, an equality of the form

IH q(SU , Vλ(C))m = Hq(SU , Vλ(C))m

for λ regular. We establish this in Section 8 below for a suitable m, by a Galois-
theoretic argument which in some sense replaces the lacking Jacquet-Shalika theorem.

2.3. Hodge filtration in characteristic zero. — Recall we assumed that U is
good, so that its projection to any Levi quotient of G is torsion-free and ν(U) = Ẑ×.
By the first condition, SU is smooth; the second condition implies that SU admits a
geometrically connected canonical model over Q. Let X be this canonical model; it is
a geometrically connected smooth quasi-projective scheme over Q. Let X a toroidal
compactification of X defined by an admissible polyhedral cone decomposition of
Sym2 X∗(T ) ([1] Chap. 3 and [13] Chap. IV, Th. 5.7). Let ∞X = X − X be the
divisor with normal crossings at infinity. Let f : A → X be the universal principally
polarized abelian variety with level U -structure over X (it exists over Q). Let Q be
the Siegel parabolic of G, that is, the maximal parabolic associated to the longest
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simple root for (G, B, T ); let M its Levi subgroup. For any BM -dominant weight µ,
let W(µ) resp. W(µ), be the corresponding automorphic vector bundle on X , resp. its
canonical Mumford extension to X (see Th. 4.2, Chap.VI of [13]). These are coherent
sheaves. As observed by Harris [36], the coherent cohomology H•(X,W(µ)) has a
natural action of the Hecke algebra. Let λ = (ag, . . . , a1; c) as above (recall that for
simplicity we assume c = ag + · · · + a1). Let H = diag(0, . . . , 0,−1, . . . ,−1) ∈ g.

2.3.1. Complex Hodge Filtration. — It results from Deligne’s mixed Hodge theory
that the complex cohomology Hm(X, Vλ(C)) carries a mixed Hodge structure with
Hodge weights greater than, or equal to m + |λ| and that the interior cohomology
(image of Hm

c → Hm) is pure of Hodge weight m+ |λ|. It is studied in greater details
in Sect. 6.5 of [13]. We won’t need any information about its W -filtration, so we
concentrate on its F -filtration (Hodge filtration). With the notation of 6.4 of [13],
de Rham comparison theorem reads:

Hm(X(C), Vλ(C)) = Hm
dR(X(C),V∨

λ )

where Vλ denotes the coherent sheaf associated to the Q-representation restriction to
the Siegel parabolic Q of the G-representation of highest weight λ. The reason for the
dual (denoted ∨) is the following. The de Rham comparison theorem sends the local
system R1f∗C on R1f∗Ω•

A/X ; however, as explained on top of page 224 of [13], the
construction of coherent sheaves from Q-representations associates to the standard
representation the dual of R1f∗Ω•

A/X , while the locally constant sheaf associated to
the standard representation is R1f∗C.

Let g, resp. t, be the Lie algebra of G, resp. T . Let

H = diag(0, . . . , 0,−1, . . . ,−1) ∈ t

Let WM be the set of Kostant representatives of the quotient WM\WG of the Weyl
groups; for each w ∈ WM , let p(w) = − (w(λ + ρ) − ρ) (H); it is a non-negative
integer. The main result of Sect. 6.5 (Theorem 5.5(i), Chap.VI) of [13] gives a Hecke-
equivariant description of the graded pieces of the F -filtration in terms of coherent
cohomology of automorphic vector bundles extended to a toroidal compactification
X of X , as follows:

(BGG) grp
F H•(X, Vλ(C)) =

⊕
w∈W M

p(w)=p

H•−�(w)(X,W(w(λ + ρ) − ρ)∨)

Because of our comment on de Rham comparison theorem, we see that contrary to
what is mentioned in R. Taylor’s paper ([72] p. 295, l. 14 from bottom), the statement
of Th. 5.5, l. 6 in [13] is correct, because the local system denoted Vλ in Faltings-
Chai is actually dual to the one denoted Vλ in Taylor’s and in the present paper.
Our statement, in accordance to Faltings’, is that the sum runs over the w such that
w(λ + ρ)(H) + p = ρ(H). We think therefore that Taylor’s statement cited above is
incorrect (but correct after a Tate twist, anyway).

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2002



14 A. MOKRANE & J. TILOUINE

For any subset B of A = {1, . . . , g}, let (B, B) the corresponding partition of A.
We define wB ∈ WG by its action on (t; ν) ∈ T : for t = (tB , tB), one puts wB(t; ν) =
(t−1

B , tB; ν). An easy calculation shows that for any w ∈ WG, if w = (σ, wB) for some
permutation σ of A and B some subset of A, one has:

p(w) = −(w(λ + ρ) − ρ)(H) = −(wB(λ + ρ) − ρ)(H) =
∑
i∈B

(ai + i)

We put jB =
∑

i∈B(ai + i), so jA = w is the motivic weight defined in the
introduction. The jB ’s belong to the closed interval [0, w]. They are indexed by a
set of cardinality 2g, but need not be mutually distinct, from g = 3 on. Note that for
any degree m of the cohomology, the jumps of the Hodge filtration occuring in Hm

always form a subset of {jB | B ⊂ A}.
Let π = πf ⊗ π∞ be a cuspidal representation of G(A), with π∞ holomorphic in

the discrete series of HC parameter λ̂ + ρ; let θπ : HN → C be the character of
the (prime-to-N) Hecke algebra, associated to π and pπ = Ker θπ. By [8] Chap. III
Th. 3.3(ii), the (g, U∞)-cohomology of π∞ ⊗ Vλ is concentrated in degree d. we put

Wπ = Hd(X, Vλ(C))[pπ]

By cuspidality of π, Wπ has a Hodge structure pure of weight w = d + |λ|:

Wπ =
⊕

p+q=w
W p,q

π

Let us show that Ww,0
π and W 0,w

π are both non-zero. More precisely, let w′ ∈ WM be
the Kostant representative of largest length, namely d (it is unique, and if w′′ ∈ WM

is the unique element of largest length, then w′w′′ is the unique element of largest
length in WG). Then,

Proposition 2. — There is a HN -linear embedding

πU
f ⊂ Hw,0 = H0(X,Ww′(λ+ρ)−ρ), πU

f ⊂ H0,w = Hd(X,Wλ).

Proof. — Let q be the Lie algebra of the Siegel parabolic. Since π is cuspidal, a
calculation of M. Harris, Prop. 3.6 of [36] shows that for any q and µ M -dominant,
πU

f ⊗Hq(q, U∞, π∞ ⊗Wµ) embeds HN -linearly into Hq(X,Wµ). Moreover by Theo-
rem 3.2.1 of [9], Hq(q, U∞, π∞ ⊗ Wµ) does not vanish in only two cases: µ = λ and
q = d, or µ = w′(λ + ρ) − ρ and q = 0.

Remark. — If π is stable at infinity, that is, if all the possible infinity types π′
∞ in the

discrete series of HC parameter λ̂+ρ give rise to automorphic cuspidal representations
π′ = πf ⊗ π′

∞, then all the possible Hodge weights do occur in Wπ :

For any jB , B ⊂ A, A = B
∐

B W
jB ,jB
π �= 0.
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2.3.2. p-adic Hodge filtration. — The Hodge-to-de Rham spectral sequence

(BGG)Q Ep,q
1 =

⊕
w∈W M

p(w)=p

Hp+q−�(w)(X,W(w(λ + ρ) − ρ))

=⇒ Hp+q(X,Vλ ⊗ Ω•
X/Q(log∞X))

makes sense over Q and degenerates in Ep,q
1 ([13] Sect.VI.6, middle of page 238).

Here, Vλ denotes the flat vector bundle defined over Q associated to the rational
representation Vλ of G. More explanations on the rational structures involved, as
well as integral versions thereof will be given in Sections 5.2 and 5.3.

Actually, let C be the completion of an algebraic closure of Qp; by Th. 6.2 of [13],
there is a Hodge-Tate decomposition theorem inducing the splitting of (BGG)C; More
precisely:

(BGG)HT Hp+q(X, Vλ(Qp))⊗C ∼=
⊕

w∈W M

p(w)=p

Hp+q−�(w)(X,W(w(λ+ρ)−ρ))⊗C(p(w)).

By a theorem of Harris [9], the Hecke algebra HN acts naturally on each sum-
mand of the LHS of this splitting. Now, the main feature of the above splitting is
its naturality for algebraic correspondences on X. It implies the compatibility of the
decomposition (BGG)HT with the action of HN . Let K0 ⊂ C be a number field con-
taining the image of θπ. Let Wπ,K0 = Hd(X, Vλ(K0))[pπ]. We fix a p-adic embedding
Q ↪→ Qp. Let K be the corresponding completion of K0 ; put Wπ,p = Wπ,K0 ⊗K0 K.
The restriction of (BGG)HT to the part killed by pπ is still a HN -equivariant de-
composition of Wπ,p ⊗K C. If we assume (Hol), we see from Prop. 1 above that the
Hodge-Tate weights w and 0 do occur; indeed,

Ww,0
π,p = H0(X,Ww′(λ+ρ)−ρ)[pπ] and W 0,w

π,p = Hd(X,Wλ)[pπ]

by comparing to complex cohomology, we see from Prop. 1 that these two spaces are
non-zero.

Let us remark that if π is stable at infinity, the analogue of Prop. 2 for all possible
infinity types in the discrete series of HC parameter λ̂ + ρ (in number 2g, but iso-
morphic two by two) implies that all the possible Hodge-Tate weights jB (B ⊂ A) do
occur in the Hodge-Tate decomposition of Wπ,p.

3. Galois representations

3.1. Relation between ρπ and Wπ,p. — The absolute Galois group Γ acts on
Wπ,p. Let us first recall, for later use, the following well-known fact.

Lemma 1. — Wπ,p is pure of weight w. That is, for any � prime to Np, all the
eigenvalues of the geometric Frobenius at � have archimedean absolute value �w/2.
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16 A. MOKRANE & J. TILOUINE

Proof. — Since π is cuspidal, we know by a theorem of Borel (see Sect. 2.1) that Wπ,p

is contained in the interior cohomology Hd
! (X, Vλ). By Th. 1.1 of Chap.VI of [13],

there is a toroidal compactification Y ⊂ Y of the |λ|-times fiber product Y = A|λ| of
the universal abelian variety A above a toroidal compactification of the Siegel variety
X ⊂ X, all these schemes being flat over Z[1/N ]; over this base, Y is smooth and
Y − Y is a divisor with normal crossings. One can interpret the etale sheaf as cut
by algebraic correspondences in (R1π∗Qp)⊗d (see [13] p. 235, and 238, or this text,
Sect. 5.2), hence Hd

∗ (X, Vλ) ⊂ Hw
∗ (Y, Qp) (∗ = ∅, c). By the classical commutative

diagram (coming from the degeneracy of the Leray spectral sequence):

Hw
c (Y, Qp) Hw(Y , Qp) Hw(Y, Qp)

Hd
c (X, Vλ) Hd(X, Vλ)

We conclude that Hd
! (X, Vλ) is pure of weight w; recall that this can be interpreted

either in the sense of Deligne (take � unramified and different from p, then the eigen-
values of geometric Fr� have archimedean absolute values �w/2) or in a p-adic sense
(in the crystalline case, say: that the eigenvalues of the crystalline Frobenius have
archimedean absolute values pw/2).

Assume now that π admits an associated p-adic Galois representation ρπ : Γ →
GLV (Qp); we assume that ρπ is irreducible. We don’t know a priori whether ρπ is
a Galois constituent of Wπ,p although, by [13] Chapter VII Th. 6.2, we know that
the characteristic polynomial of ρπ annihilates the global p-adic representation Wπ,p.
If moreover p does not divide N , we know by Faltings [22] Th. 5.2 that Wπ,p is
crystalline but we don’t know this a priori for ρπ. However, for g � 2, if ρπ is
absolutely irreducible, we do know that it is a constituent of Wπ,p (by [72] and [53]
or [87]). Indeed, for g = 2, Laumon [53] and also Weissauer (completing works
of [34], [72] and [52]) has shown the existence of a four-dimensional p-adic Galois
representation

ρπ : Γ −→ GLV (Qp)

such that

L(Wπ, s)4 = L(ρπ, s)m

thus, the assumption of irreducibility for ρπ implies that the Galois semisimplification
W s.s.

π,p of Wπ,p is isomorphic to n.ρπ, for m = 4n. In turn, it also implies that ρπ is
pure of weight w and is crystalline at p if p is prime to N .

There are other situations, namely when π is a base change of a Hilbert modular
eigenform, where one knows that ρπ is crystalline, although one may not know that
it is a constituent of Wπ,p; see Sect. 7.3 below. One of the uses of our assumption
(RLI) will be to relate (residually only) Wπ,p and ρπ (see Sect. 7.1).
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3.2. Spin groups and duality

3.2.1. description. — For the general definitions on spinors, we follow [32] Sect. 20.2,
and [18] VIII.8 and IX.2; however by lack of references for our precise need, we
give some details in this section. Although these groups exist over Z, we’ll re-
strict ourselves to Z[1/2], (p = 2 is excluded of our study). Let Ṽ = A2g+1

Z[1/2] en-
dowed with the quadratic form q(x) =

∑g
i=1 2xix

′
i + x2

0 for x =
∑g

i=1 xiei + x0e0 +∑g
i=1 x′

ie
′
i; the scalar product is denoted by 〈x, y〉. The canonical basis is ordered

as (eg, . . . , e1, e0, e
′
1, . . . , e

′
g), so that 〈ei, e

′
j〉 = δi,j , e0 is unitary, W = 〈eg, . . . , e1〉

and W ′ = 〈e′1, . . . , e′g〉 are totally isotropic, and the sum Ṽ = W ⊕ W ′ ⊕ 〈e0〉 is
orthogonal. The Clifford algebra C(Ṽ , q) over Z[1/2] is the quotient of the tensor
algebra by the two-sided ideal generated by x⊗ x− q(x), (x ∈ Ṽ ); it is Z/2Z-graded:
C(Ṽ , q) = C+⊕C−. The main involutive automorphism Π is defined as Id on C+ and
− Id on C−; the main antiinvolution x → x∗ is defined by v1 · · · vr → (−1)rvr · · · v1.
We write N(x) = x · x∗ = x∗ · x for the spinor norm. The Z[1/2]-group scheme
GSpin�V = GSpin2g+1 (called the regular Clifford group in [18] IX.2) is defined as the
group of invertible elements g of C(V, q) such that g · Ṽ · g−1 = Ṽ . The group of
orthogonal similitudes GO�V = GO2g+1 is defined as the group of h ∈ GL�V such that
q ◦ h = c(h) · q. Consider the group-scheme morphism

ν : GO2g+1 −→ Gm, h −→ deth · c(h)−g.

One has c(h) = ν2(h). Moreover, the homomorphism of Z[1/2]-group schemes

ψ : GSpin�V −→ GO�V , g −→ (x → Π(g) · x · g∗)

is an isogeny of degree two (using [18] VIII.8) which satisfies ν ◦ ψ = N . The spin
representation spin is a representation of GSpin�V on V = ∧W ; it can be defined via
the universal property of the Clifford algebra, as in [32] Lemmata 20.9 and 20.16.
We have dim V = 2g. We write Ĝ for GSpin�V . It is a Chevalley group over Z[1/2];
the standard maximal torus T̂ , resp. Borel B̂, of Ĝ is the inverse image by ψ of the
diagonal torus, resp. upper triangular subgroup in GO2g+1.

3.2.2. Dual root data. — We want to recall first the notion of a (reduced) based root
datum

(M, R, ∆, M∗, R∨, ∆∨),

consisting of two free Z-modules M , M∗ of rank, say, n with a perfect pairing
M × M∗ → Z and finite subsets R ⊃ ∆ in M , resp. R∨ ⊃ ∆∨ of M∗, together
with a bijection R → R∨; R is the set of roots, and ∆ the simple roots; these data
should satisfy two conditions RD I and RD II: cf. [70] 1.9 or rather, for the degree of
generality that we need, Exp.XXI Sect. 1.1 and 2.1.3; here, “reduced” means that in
the set of roots R, we allow no multiple of any given root except its opposite.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2002



18 A. MOKRANE & J. TILOUINE

In order to make some calculations, let us recall briefly the classification given by
these data. The main reference is [17], whose Exposés are quoted by their roman
numbering.

Definition 1. — For any scheme S �= ∅, a split reductive group with “épinglage”
over S, is a t-uple (G, B, T, (Xα)α∈∆)S consisting in a connected reductive group
scheme GS of rank n, together with a Borel BS and split maximal torus TS ⊂ BS :
T ∼= Gn

m. Let R, resp. ∆ ⊂ R, be the root system, resp. set of simple roots, at-
tached to (G, B, T ) (Exp.XIX Sect. 3). The “épinglage” (Xα)α∈∆ is the datum for
each α ∈ ∆, of a section Xα ∈ Γ(S, gα) which is a basis of gα at each point s ∈ S.

For details on “épinglages”, see [17] XXII 1.13 and XXIII 1.1. Any such split
reductive group defines a reduced based root datum

(M, R, ∆, M∗, R∨ ∆∨).

Note that the “épinglage” is not needed in the construction, it comes in only for the
fidelity of the functor. The definition runs as follows. Put M = X∗(T ), M∗ = X∗(T );
the duality 〈 , 〉 between these modules is the composition (λ, µ) → λ ◦ µ, R, resp. ∆
is the set of roots, resp. simple roots attached to (G, B, T ), and α∨ is defined for
each α ∈ ∆ as follows: let Tα be the connected component of Kerα, let Zα be its
centralizer in G. It is reductive of semisimple rank one, hence its derived group Z ′

α

is isomorphic to SL(2) or PGL(2), and its character group is generated by α; then,
α∨ : Gm → Z ′

α ∩ T is defined as the unique cocharacter of Z ′
α such that α ◦ α∨ = 2.

For details, see Exp.XX, Th. 2.1. As checked in Exp.XXII 1.13, these data satisfy
the two conditions (DR I) and (DR II) of Exp.XXI 1.1, hence do form a based root
datum (données radicielles épinglées). The system thus obtained is reduced.

Theorem 3. — There is an equivalence of categories between reduced based root data
and split reductive groups with “épinglage”.

This is the main theorem of [17], it consists in 4.1 of Exp.XXIII Sect. 4 and Th. 1.1
of Exp.XXV Sect. 1.

Now, given a reduced based root datum, one can form its dual by exchanging
(M, R, ∆) and (M∗, R∨, ∆∨). This induces a duality of split reductive group schemes
with épinglages, over a base S. Let us apply this to our situation. We take G = GSp2g,
(G, B, T )/Z[1/2]; M = X∗(T ) and M∗ = X∗(T ), naturally paired by the composition.
By using the standard basis of X∗(T ), one identifies M to the subgroup of Zg × Z,
consisting in µ = (µss; µc) such that |µ| ≡ µc mod. 2. This lattice is endowed with
the standard scalar product; here Zg corresponds to the characters of the semisimple
part of T , and the last component to the central variable. In this identification, R ⊂
Zg ×{0} and one can write α∨ = 2 · α

α·α in the space Qg ×{0}. The simple roots of G

are αg = tg/tg−1, . . . , α1 = t21ν
−1, for t = diag(tg, . . . , t1, t1ν−1, . . . , tgν

−1) ∈ T ; hence
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their coordinates in M = Zg×Z are (1,−1, 0, . . . ; 0), . . . , (0, . . . , 2; 0). The correspond-
ing coroots have therefore coordinates α∨

g = (1,−1, . . . ; 0), . . . , α∨
1 = (0, . . . , 1; 0).

Then, X∗(T ) is identified to Zg × Z + 1
2 · diag(Zg+1).

The resulting dual of (G, B, T )Z[1/2] is precisely (Ĝ, B̂, T̂ )Z[1/2] (it is true as well
over Z, but we don’t need, and don’t want to consider characteristic 2 spin groups).

Let �̂ be the minuscule weight of Ĝ; it belongs to X∗(T̂ ) = X∗(T ). It satisfies
the formulae: �̂ · α∨∨

i = δ1,i for i = 1, . . . , g. Hence, in the basis we have fixed,
its coordinates are (1/2, . . . , 1/2; x). The central parameter x must equal 1/2 as
well, because the homomorphism ψ is etale of degree two, and induces the standard
representation, whose highest weight is therefore 2�̂, but whose central character is
z → z. Now, any character µ ∈ X∗(T ) is identified to a cocharacter of T̂ . Then,

Lemma 2. — In X∗(Gm) = Z, for any µ = (µss; µc) ∈ X∗(T ), one has:

(3.2.2.1) �̂ ◦ µ =
|µss|

2
+

µc

2
.

Note that the right-hand side is an integer.

Proof. — Clear.
Let us make simple remarks:

1) Let BV be the upper triangular Borel of GLV . Then B̂ is mapped into BV by
the spin representation.

2) In the identification X∗(T ) = X∗(T̂ ), the central cocharacter Gm → T , z →
diag(z, . . . , z) becomes the multiplier N : T̂ → Gm of our regular Clifford group Ĝ; it
is clear on the level of tangent maps.

3) If we describe TGO
�V
(C) as the torus Gm × TO

�V
of matrices

diag(z · tg, . . . , z · t1, z, z · t−1
1 , . . . , z · t−1

g )

then, T̂ (C) can be described as the set of t-uples (tg, . . . , t1, [u, ζ]) where u2 = tg · · · t1
and ζ2 = z, the couple (u, ζ) being taken modulo the group generated by (−1,−1).
The map ψ : T̂ (C) → TGO(C) is then given by ti → ti, [u, ζ] → ζ2. All this follows
easily from the fact that ψ is dual of the degree two isogeny Tss × ZG → T given by
(tss, z) → tss · z.

Let us apply these considerations to compute the local Langlands correspondence
for a representation πp of G(Qp) in the principal series. Let us assume πp = IndG(Qp)

B(Qp) φ

(unitary induction). If φ is unramified, it can be viewed as

(3.2.2.2) φ = (αg, . . . , α1; γ) ∈ Cg × C,

the parametrization being given by:

diag(tg, . . . , t1, ν · t−1
1 , . . . , ν · t−1

g ) −→ |tg|αg
p · · · |t1|α1

p |ν|(γ−αg−···α1)/2
p

Even if it is ramified, we can make the following identifications

(3.2.2.3) Hom(T (Qp), C×) = Hom(X∗(T ) ⊗ Q×
p , C×) =
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Hom(X∗(T ), Hom(Q×
p , C×)) = X∗(T ) ⊗ Hom(Q×

p , C×)

= Hom(Q×
p , C× ⊗ X∗(T )) = Hom(Q×

p , T̂ (C)).

So that we can view φ as a cocharacter Q×
p → T̂ (C). We introduce a twist of

this character by d on the central component (γ → γ − d), in order to get rid of the
irrationality inherent to Langlands parameters: φ̃ = φ · |ν|−d

p , it corresponds to the
cocharacter φ̃ obtained by twisting φ by the unramified cocharacter Gm → Z �G(C), t →
|t|−d

p . In the unramified case, φ̃ is given by the formula

(3.2.2.4) t −→ (|t|αg
p , . . . , |t|α1

p , [|t|
αg+···+α1

2
p , |t|(γ−d)/2

p ]).

Consider the canonical map a : WQp → Q×
p given by class-field theory (sending

arithmetic Frobenius to p). The composition φ̃ ◦ a is denoted σ(πp) and is called the
image by Langlands local correspondence of πp.

Let us return now to our Galois representations. Note first that the question
whether ρπ, if absolutely irreducible, factors through the spin representation

Ĝ(Qp) ↪−→ GLV (Qp)

is open.
However, for g = 2, if π is stable at ∞ and if π satisfies multiplicity one: m(π) = 1,

then it can be shown that ρπ takes values in Ĝ (see [72] p. 295-296). This remark,
due to E.Urban (to appear) results from Poincaré duality and the autoduality of π

(which is well known, at least, at almost all places).

3.3. Ordinarity. — Let Dp, resp. Ip be a decomposition subgroup, resp. inertia
subgroup of Γ. Via the identification X∗(T ) = X∗(T̂ ), we can view any µ ∈ X∗(T ) as
a cocharacter of T̂ , hence as a homomorphism Ip → Z×

p → T̂ (Zp) → GLZp(V ) where
the first map is the cyclotomic character χ : Ip → Z×

p . Let ρ̃ = (g, . . . , 1; d). Thus, ρ̃

is the sum of the fundamental weights of G; it is the highest weight of an irreducible
representation of G contained in St⊗d. The assumption of Galois ordinarity, denoted
(GO) in the sequel, is:

– The image ρπ(Dp) of the decomposition group is contained in Ĝ,
– there exists ĝ ∈ Ĝ(O) such that

ρπ(Dp) ⊂ ĝ · B̂(O) · ĝ−1,

– the restriction of the conjugate ρ�gπ to Ip, followed by the quotient by the unipotent
radical ĝ · N̂ · ĝ−1 of ĝ · B̂ · ĝ−1 factors through −(λ + ρ̃) ◦ χ : Ip → T̂ (Zp).

Example. — For g = 1, λ = (n; n) corresponds to the representation Symn(St) of
GL(2), and ρ̃ = (1; 1) corresponds to St. Then the weights of the (2-dim.) spin
representation of GSpin3 are �̂ = (1

2 ; 1
2 ) and �̂w0 = (− 1

2 ; 1
2 ); hence the composition

of χ, −(λ + ρ̃) and the spin representation (modulo unipotent radical) gives the
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diagonal matrix diag(χ−(n+1), 1) (modulo Weyl group), which is the usual formula for
an ordinary representation coming from an ordinary cusp form of weight k = n + 2:

ρf |Dp
∼=

(
1 ∗
0 χ−n−1

)
.

Convention. — In the rest of the paper, we make the abuse of notation to write B̂,
resp. N̂ , T̂ , instead of their respective conjugates by ĝ: ĝ · B̂ · ĝ−1 and so on. With
this convention, we have ρπ(Ip) ⊂ B̂(k).

Relative to the triple (Ĝ, B̂, T̂ ), we have the notion of dominant characters µ ∈
X∗(T̂ ) and Weyl classification of highest weight O-representations of Ĝ, provided
p − 1 > |µ + ρ| (see Polo-T. [61]). Let �̂ be the minuscule weight of Ĝ. As already
calculated, its coordinates are: (1

2
, . . . ,

1
2
;
1
2

)
Lemma 3. — For any σ ∈ Ip,

(3.3.1) �̂(ρπ(σ)) mod. N̂(k)) = ω−w(σ)

and similarly, for the lowest weight �̂w0

(3.3.2) �̂w0(ρπ(σ)) mod. N̂(k)) = 1.

Proof. — By (GO), the left-hand side is given by �̂ ◦ [−(λ + ρ̃)] ◦ ω(σ); therefore,
the desired relation follows from Lemma 2, with µ = λ + ρ̃. Indeed, the coordinates
of λ + ρ̃ in Zg ×Z are (ag + g, . . . , a1 + 1; ag + · · ·+ a1 + d), hence the scalar product
〈�̂, λ+ ρ̃〉 is equal to

∑
i

ai+i
2 + (

�
i ai)+d

2 , that is, w
2 + w

2 i.e. w. Similarly for (3.3.2).

Comments

1) Let us introduce the condition of automorphic ordinarity:

(AO) For each r = 1, . . . , g, v(θπ(Tp,r)) = ar+1 + · · · + a1,

where Tp,r is the classical Hecke operator associated to the double class of

diag(1r, p · 12g−2r, p
2 · 1r).

We conjecture that for any g, if ρπ is a subquotient of Wπ,p, then (AO) implies (GO).
It is well-known for g = 1 ([89] Th. 2.2.2, [41] and [54]).

Consider the statement

KMg(πf , p). — If p is prime to N , the slopes of the crystalline Frobenius on the iso-
typical component Dcrys(Wπ,p) are the p-adic valuations of the roots of the polynomial
θπ(Pp(X)), reciprocal of the p-Euler factor of the automorphic L-function of π.

For g = 2, we have seen in 3.1 that W s.s.
π,p is ρπ-isotypical (assuming its absolute

irreducibility). We have observed (Proposition 7.1 of [77]) that if KM2(π, p) holds
and if π is stable at infinity, the condition (AO) for π implies (GO). In a recent
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preprint, E.Urban [80] has proven KM2(π, p); thus, for g = 2, if π is stable at ∞,
(AO) implies (GO).

2) If πp is in the principal series (for instance, if π is unramified at p), and if the
p-adic representation ρπ is, say, potentially crystalline at p (for instance, crystalline),
one can ask in general the following question.

On one hand, the local component πp of π at p is unitarily induced from φ for a
character φ : T (Qp) → C×; we defined in Sect. 3.2.2 the local Galois representation
σ(πp) of the Weil group WQp given by

WQp −→ Q×
p −→ T̂ (C) ⊂ Ĝ(C)

where Q×
p → T̂ (C) is given by the twist φ̃ through the identification (3.2.2.2). This

representation is rational (the traces belong to some number field).
Let us consider on the other hand the restriction to Dp of ρπ. By applying the

(covariant) Fontaine’s functor Dpcrys (cf. Fontaine, Exposé III, Astérisque 223), we
obtain a representation ′ρπ,p of the Weil group WQp :

′ρπ,p : WQp −→ GLV .

One can conjecture a compatibility at (p, p) between the local and global Langlands
correspondences, namely that the F -semisimplification of the two rational represen-
tations ′ρπ,p and σ(πp) are isomorphic (where a : WQp → Q×

p is the map induced by
class-field theory, sending arithmetic Frobenius to p, and the twist is to pass from
Langlands parameters to “Hecke” parameters). This fact is known in the following
cases:

– for g = 1, by well-known theorems of Scholl and Katz-Messing,
– for g = 2, for a representation π on GSp(4) which is the base change from

GL(2, F ) (F real quadratic) of a Hilbert modular form which is in the discrete series
at some finite place, and which is unramified at places above p (in which case ρf,p,
hence ρπ,p is crystalline at p by Breuil’s theorem [11]). This is a particular case of a
theorem of T. Saito [66].

Note however that this statement does not allow one to recover the representation
ρπ,p = ρπ|Dp (because it says nothing about the Hodge filtration) unless we assume
it is ordinary (in the usual geometric sense, see [60]). More precisely, we have two
parallel observations:

– Let us assume that ρπ,p is crystalline; then the assumption of geometric ordinarity
means that the eigenvalues (ξ−1

B )B⊂{1,...,g} of the crystalline Frobenius are such that
the ordp(ξB) (B ⊂ {1, . . . , g}) coincide (with multiplicities) with the Hodge-Tate
weights; these numbers, if π is stable at infinity, should be (as mentioned at the end
of Sect. 2.3.2) jB =

∑
i∈B(ai + i) (B ⊂ A = {1, . . . , g}). These quantities can also be

written

〈�̂wB , (λ + ρ̃)〉 = �̂wB ◦ (λ + ρ̃)
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where wB ∈ W �G is the element of the Weyl group such that for t̂ = (tg, . . . , t1, [u, ζ]) ∈
T̂ and wB(t̂) = θ̂, θi = t−1

i if and only if i ∈ B and all its other components are those
of t̂. Therefore, it implies by Fontaine-Laffaille theory that ρπ is ordinary at p in the
precise sense of (GO). Thus the conjunction of geometric ordinarity, and of stability
of π at ∞ (together with the complete determination of Hodge-Tate weights of ρπ)
implies (GO).

– Let us assume π is unramified at p; let us introduce complex numbers θi’s and
ζ, such that for any t ∈ T̂ (C) mod. W �G,

|ti|αi
p = θ

− ordp(ti)
i and |z|γp = ζ− ordp(z),

we can rewrite (3.2.2.4) as

φ̃(p) = (θ−1
g , . . . , θ−1

1 , [(θg · · · θ1)−1/2, pd/2 · ζ−1])

The composition with spin gives a complex diagonal matrix whose entries are inverse
to the 2g algebraic integers

ξJ =
( ∏

i∈J

θ−1
i ·

∏
i/∈J

θi

)1/2

· ζ.

The Automorphic Ordinarity Conjecture for the p-adic embedding ιp states

ordp(ιp(ξJ )) =
∑
i∈J

(ai + i), for any J.

Therefore, the quantities xi = − ordp(ιp(θi)) and y = ordp(ιp(ζ)) satisfy the linear
system in (xg, . . . , x1; y) ∈ Zg+1:

−
y + d +

∑
i∈J xi −

∑
i/∈J xi

2
=
∑
i∈J

(ai + i).

It contains a Cramer system. Therefore, assumption (AO) implies

ordp θi = −(ai + i), ordp(ζ) = ag + · · · + a1

up to permutation of the coordinates. This can be rewritten as an equality in
Hom(Q×

p , T̂ (K)/T̂ (O)):
ιp ◦ φ̃ = −(λ + ρ̃).

We conclude that (AO) together with KMg(π, p) implies (part of) the compatibility
conjecture at (p, p): the (p-adic orders of) the eigenvalues counted with multiplicities
of Dcrys(ρπ)(Frobp) coincide with those of σ(πp)(Frobp).

4. Crystals and connections

4.1. de Rham and crystalline cohomology of open varieties. — Let
f : X → S be a smooth proper morphism of schemes; X ⊂ X be an open immersion
above S, with complement a relative Cartier divisor D → S with normal crossings
and smooth irreducible components. Let V be a coherent sheaf over X endowed with
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an integrable connection ∇ with logarithmic poles along D; let V its restriction to X .
Let I(D) be the sheaf of ideals defining D. Then the relative de Rham cohomology
sheaves Hj

dR(X/S,V) are defined as

(2.1)∅ Rjf∗(V ⊗OX
Ω•

X/S
(log D)).

Let us now introduce a complex

Ω•
X/S

(− logD) = Ω•
X/S

(log D) ⊗OX
I(D)

We define the cohomology sheaves with compact support Hj
dR,c(X/S,V) by:

(2.1)c Rjf∗(V ⊗OX
Ω•

X/S
(− log D)).

If S = Spec k is the spectrum of a field k, we write Hj
dR instead of Hj

dR. A priori,
these definitions depend on the compactification X of X . One can show for S =
Spec k and V trivial that the resolution of singularities implies the independence of
the compactification (Théorème 2.11 of [57]).

For the crystalline cohomology there is a similar definition. Our reference is [48],
section 5, 6. We use the language of logarithmic schemes; as noted by Kato in Com-
plement 1 of his paper, his results are compatible with Faltings theory of crystalline
cohomology of open varieties [23]: in Faltings approach, a logarithmic structure on
X is a family (Li, xi)1�i�r where Li is an invertible sheaf and xi a global section
thereof, these data always define a logarithmic scheme in Kato’s sense (while the
converse is false). Let (S, I, γ) a triple where S is a scheme, I is a quasi-coherent
nilpotent ideal of OS and γ is a divided power structure on I (PD-structure, for
short). Let S0 the closed subscheme defined by I; we consider a smooth morphism
X0 → S0 and D0 a relative Cartier divisor with normal crossings. It defines a loga-
rithmic structure M = {g ∈ OX0

| g invertible outside D0} ⊂ OX0
. One defines the

logarithmic crystalline site of (X0/S)logcrys as in Kato [48] Sect. 5.2. The objects are
5-uples (U, T, MT , i, δ) where U → X0 is étale, (T, MT ) is a scheme with fine loga-
rithmic structure over S, i : (U, M |U ) → (T, MT ) is an exact closed immersion over S

and δ is a divided power structure compatible with γ. Recall that a closed immersion
of log-schemes f : (X, M) → (T, N) is called exact if f∗N → M is an isomorphism.
Morphisms are the natural ones. On this site, the structural sheaf OX0/S is defined by

OX0/S(U, T, MT , i, δ) = Γ(T,OT ).

Definition 2. — A crystal on (X0/S)logcrys is a sheaf V of OX0/S-modules satisfying the
following condition: for any morphism g : T ′ → T in (X0/S)logcrys, g∗VT → VT ′ is an
isomorphism. Here VT and VT ′ denote the sheaves on Tét and T ′

ét defined by V .

Let (X, D) be a lifting of (X0, D0) to S, that is, a smooth S-scheme together with
a divisor with normal crossings flat over S such that (X ×S S0, D×S S0) = (X0, D0).
Note that since I is nilpotent, the étale sites of X and X0, resp. of S and S0 are
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equivalent by U → U ×S S0. By Th. 6.2 of [48] (see Sect. 4.2 for more details), the
data of a crystal on (X0/S)logcrys is equivalent to that of an OX -module M endowed
with a quasi-nilpotent integrable connection with logarithmic singularities

∇ : M −→ M⊗OX
Ω1

X/S
(log D).

For any sheaf V on (X0/S)logcrys, we denote by fcrys,∗V its direct image by
f : X0 → S; it is a sheaf on S. We write fét,∗V for the etale sheaf on Sét which is the
direct image of the etale sheaf V on X0. To compute the cohomology sheaves of a
crystal, we apply the spectral sequence

Rfcrys,∗V = Rfét,∗(Ru∗V)

where u is the canonical projection from the site (X0/S)logcrys to X0 ét. It is defined,
for a sheaf V on (X0/S)logcrys, and for any étale morphism U → X0, by

(u∗V)(U) = Γ(U,VU ).

Moreover, if V is a crystal, we have

Ru∗V ∼= M⊗OX
Ω•

X/S
(log D).

Again, by Th. 2.11 of [57], one can show, assuming the resolution of singularities
that for S = Z/pnZ, S0 = Z/pZ this definition does not depend on the compactifica-
tion.

Remark. — In our case, one even does not need the resolution of singularities. It will
be a consequence of the comparison theorem!

These definitions transfer to the compact support case; it is mentioned in [22]
p. 58. We explain this in Kato’s setting. For a log-scheme (T, N), we denote by I(N)
the sheaf of ideals in OT generated by N . We define a sheaf of ideals I(D0) on
(X0/S)logcrys as:

I(D0)(U, T, MT , i, δ) = Γ(T, I(MT )).

I(D0) is a crystal of OX0/S-modules. By definition, the cohomology with compact
support of a crystal V is the cohomology of the crystal

V ⊗OX0/S
I(D0).

The cohomology sheaves

Rfcrys,∗,cV = Rfcrys,∗(V ⊗OX0/S
I(D0))

are computed by a similar spectral sequence

Rfcrys,∗,cV = Rfét,∗(Ru∗,cV)

where u∗,c is defined, for a sheaf V on (X0/S)logcrys and an étale morphism g : U → X0,
by

(u∗,c(V)(U) = Γ(U,VU ⊗OU g∗I(D0)).

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2002



26 A. MOKRANE & J. TILOUINE

One has also:
Rfcrys,∗,cV = Rfét,∗(M⊗OX

Ω•
X/S

(− logD)).

This result can be proven as in the case without support; it will be explained in the
next section.

4.2. L-construction. — In the proof of Theorem 6 below, we will apply the crys-
talline L-construction in the logarithmic setting (in the classical crystalline setting,
cf. Chap. 6 of [4]); we want to explain the definitions and results here.

Let (S, I, γ) a triple where S is a scheme, I is a quasi-coherent ideal of OS and
γ is a PD-structure on I. Let S0 the closed subscheme defined by I; we consider a
smooth morphism X0 → S0 and Y0 a relative Cartier divisor with normal crossings.
Let (X, Y ) be a lifting of (X0, Y0) to S; we suppose that there exists an integer m > 0
such that pmOX = 0. Let Z1, . . . , Za be the irreducible components of Y . Let Ξ be
the blowing-up of X ×S X along the subscheme

∑
i(Zi ×S Zi). Let X×̂SX be the

complement in Ξ of the strict transforms of X × Zi and Zi × X, 1 � i � r and let Ỹ

be the exceptional divisor in X×̂SX; it is a divisor with normal crossings. The couple
(X×̂SX, Ỹ ) is the categorical fiber product of (X, Y ) by itself over S, in the category
of logarithmic schemes (cf. [22] IV, c). Locally, if x1, . . . , xd are local coordinates of
X over S such that Y is defined by the equation x1 · · ·xa = 0, then X×̂SX is the
relative affine scheme given as spectrum of

S[xi⊗1, 1⊗xi]1�i�d[u±1
j ]1�j�a/(xj⊗1 · uj − 1⊗xj)1�j�a

and Ỹ is defined by the equation x1⊗1 · · ·xa⊗1 = 0 (or 1⊗x1 · · · 1⊗xa = 0).
The product X×̂SX is the “exactification” of the diagonal embedding of log-

schemes X ↪→ X × X and Ỹ is the inverse image of Y ×S Y in this exactification.
Recall that if f : (X, M) → (T, N) is a closed immersion, there exists locally a unique
exact closed immersion f̃ : (X, M) → (T̃ , Ñ) which is universal in the following
obvious meaning:
For any commutative triangle

(X, M)
g

(Z, P )

(T, N)

such that g is an exact closed immersion, there exists a unique morphism (Z, P ) →
(T̃ , Ñ) which lifts (Z, P ) → (T, N).
The log-scheme (T̃ , Ñ) is the “exactification” of (T, N).
We endow X×̂SX with a PD-structure as follows. Let DX be the PD-envelope of
the diagonal immersion X → X×̂SX. In the local coordinates above, DX is the PD-
polynomial algebra OX〈v1, . . . , va, ξa+1, . . . , ξd〉 where vi = ui − 1 and ξi = xi⊗1 −
1⊗xi.
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We denote by Dn
X

the nth order divided power neighborhood: Dn
X

= DX/I [n+1]
∆

where I∆ is the ideal of the diagonal immersion and the exponent with brackets
denotes the (n + 1)th PD power of I∆.

Let M be a sheaf of OX -modules. We recall the interpretation of a connection
on M in terms of an HPD-stratification in our context. For us, the notion of an
HPD stratification on M is defined word for word as in [4] Sect. 4.3 (which treats the
crystalline situation on X0, without the divisor Y0). It consists namely in the datum
of a DX -linear isomorphism

ε : DX ⊗OX
M −→ M⊗OXDX

such that ε reduces to identity modulo I∆ and the natural cocycle condition on
X×̂SX×̂SX holds ([4] def. 2.10). In the case M = DX , we have two canonical
HPD stratifications. The first is induced by extending by (left) DX -linearity the map
θ : c⊗d → ((1⊗d)⊗(1⊗c)

for c and d in OX ; it makes use of the right module structure of DX over OX . The
second is given similarly by tensoring on the left by DX over OX the left-hand side
of ι : c⊗d → ((c⊗1)⊗(1⊗d);

it uses the structure of left OX -module of DX .
Also, as in [4] 4.4, one recalls the notion of PD-differential operator. Let M and N

be two OX -modules.
A PD-differential operator M → N of order � n (resp. HPD-differential operator)

is a OX -linear map Dn
X

⊗ M → N (resp. DX ⊗ M → N ). Every PD-differential
operator δ : Dn

X
⊗ M → N induces a classical differential operator δb : M → N of

order n with “cologarithmic zeroes” along Y .
The importance of these notions for us stems from the following theorem whose

proof runs exactly as in the “classical”case ([4] Theorem 4.12). For that, we introduce
the notion of a quasi-nilpotent connection in the sense of [4] 4.10 (but in our log
setting, again):

Definition 3. — A connection ∇ on M is quasi-nilpotent if for any local section s of
M with local coordinates x1, . . . , xd on X such that Y is defined by the equation
x1 · · ·xa = 0, there exists a positive integer k such that∏

0�j�k−1

(∇(xi∂/∂xi) − j)k(s) = 0

for 1 � i � a and (∇(∂/∂xi))k(s) = 0 for a + 1 � i � d).

Theorem 4. — The data of an HPD stratification on M is equivalent to the data of a
logarithmic integrable connection ∇ on M wich is quasi-nilpotent.

Then, Grothendieck’s linearization functor L is defined as follows. Let H be the
category of OX -modules with morphisms given by HPD-differential operators and C
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to the category of crystals over (X0/S)logcrys. For any sheaf M of OX -modules, we
endow the OX -module DX ⊗OX

M with the HPD-stratification εL(M)

DX ⊗DX ⊗M ι⊗IdM−−−−−−→ DX ⊗DX ⊗M
IdD

X
⊗f

−−−−−−−→ DX ⊗M⊗DX

where f : M⊗DX → DX ⊗M interchanges the factors. In other words, the HPD-
stratification is given by:

(a⊗b)⊗(c⊗d)⊗m −→ (ac⊗b)⊗m⊗(1⊗d)

Definition 4. — The covariant functor L : H → C is defined by:

– For any sheaf M of OX -modules, L(M) is the crystal corresponding to the OX -
module with HPD-stratification (DX ⊗OX

M, εL(M)).
– For an HPD-differential operator ϕ : M → N (that is, an OX -linear map

ϕ : DX ⊗ M → N ), L(ϕ) : L(M) → L(N ) is the morphism of crystals corre-
sponding to the OX -linear morphism compatible with HPD-stratifications, given by
the composition:

DX ⊗M ι⊗IdM−−−−−−→ DX ⊗DX ⊗M
IdD

X
⊗ϕ

−−−−−−−−→ DX ⊗N .

We refer to [4] Sect. 2, Sect. 6 for more details. Note that since DX is locally free,
the functor L is exact.

The correspondence between crystals on (X0/S)logcrys and OX -module M endowed
with a quasi-nilpotent integrable connection with logarithmic singularities, is then
given by the following rule: Let pr1, pr2 : DX → X be the two canonical projections.
If V is a crystal on (X0/S)logcrys, let M = VX be the evaluation of V on X. The defining
condition of a crystal produces an isomorphism:

ε : pr∗2M � pr∗1M

This induces an integrable quasi-nilpotent logarithmic connection on M as explained
above. Conversely, by theorem 4, every logarithmic integrable connection on M
wich is quasi-nilpotent induces an HPD stratification on M. If (U, T, MT , i, δ) is an
object of the crystalline site, then by smoothness, etale locally on T , the morphism
(X0, D0) → (X, D) extend to a morphism h : (T, MT ) → (X, D). We define VT to
be h∗M. If we have two such hi : (T, MT ) → (X, D) (i = 1, 2), then there exists
h′ : (T, MT ) → (DX , MDX

) such that hi = h′pri and ε induces an isomorphism
h∗

1M � h∗
2M. Thus V is well-defined.

It is not hard from the classical case (Theorem 6.12 of [4]), to deduce the following
crystalline Poincaré lemma.

Lemma 4. — Let V be a crystal on (X0/S)logcrys and M the associated OX-module
with its integrable connection. Then the complex of crystals L(M⊗ Ω•

X
(log Y )) is a

resolution of V.
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Example. — For S = Spec k, X0 = Spec k[t], D0 = {0}, the L-construction applied
to the logarithmic de Rham complex gives the following Poincaré resolution:

0 −→ OX0 −→ OX0〈v〉 −→ OX0〈v〉dv −→ 0

where d : OX0〈v〉 → OX0〈v〉dv is OX0 -linear and maps v to dv. Here, L(OX0) =
OX0〈v〉 and L(ΩX0/k(log D0)) = OX0〈v〉dv where v should be thought of as log t.

Finally, the same argument as in the classical theory ([4] Sect. 5.27) shows also the
following useful lemma:

Lemma 5. — Let M be a sheaf of OX -modules and I(Y ) the ideal of definition of Y .
Then:

Ru∗L(M) = M and Ru∗,cL(M) = M⊗I(Y ).

Combining Lemma 4 and 5 above, we deduce:

Ru∗V ∼= M⊗OX
Ω•

X/S
(log D) and Ru∗,cV ∼= M⊗OX

Ω•
X/S

(− log D).

4.3. The Gauss-Manin connection. — As in section 4.1, X is a smooth S-scheme
(not necessarily proper), X an S-open scheme of X such that D = X −X is a divisor
with normal crossings over S. Let f : X → X be a proper morphism such that X
is smooth over S, f is smooth over X and D = X ×X D is a relative divisor with
normal crossings (such f is called semi-stable, see [44]). We have a relative de Rham
complex with logarithmic poles

Ω•
X/X

(logD/D) = Ω•
X/S

(logD)/f∗Ω•
X/S

(log D).

As explained in [49] (see also [44]), we have a Gauss-Manin connection with logarith-
mic poles along D, on the coherent OX -module:

Eα = Rαf∗(Ω•
X/X

(logD/D)).

In fact, this sheaf is locally free either if S is over Q or if S is over a field of charac-
teristic p greater than α. The restriction of Eα to X is the usual Gauss-Manin sheaf
Rαf|X∗Ω•

X/X and Eα is the Deligne’s canonical extension to X. The Gauss-Manin
connection on E is integrable and if OS is killed by a power of p, then this connection
is quasi-nilpotent ([49]).

5. BGG resolutions for crystals

Let B = T.N resp. Q = M · U be the Levi decomposition of the upper triangular
subgroup of G, resp. of the Siegel parabolic, viewed as group schemes over Z. We keep
the notations of the introduction for the weights of G. Let V = 〈eg, . . . , e1, e

∗
1, . . . , e

∗
g〉

be the standard Z-lattice on which G acts; given two vectors v, w ∈ V, we write
〈v, w〉 = tvJw for their symplectic product. Q is the stabilizer of the standard la-
grangian lattice W = 〈eg, . . . , e1〉; we have V = W ⊕ W∗; M = LI is the stabilizer
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of the decomposition (W,W∗); one has M ∼= GL(g)×Gm. Let BM = B ∩M be the
standard Borel of M . Let Φ, resp. ΦM be the set of roots of (G, B), resp. (M, BM )
and let ΦM = Φ−ΦM . We denote by Φ±, resp. Φ±

M , ΦM±, the set of positive/negative
roots in Φ, resp. ΦM , ΦM .

5.1. Weyl modules over Zp. — From this section on, the notations g, q, (and
m but there should not be confusion with the maximal ideal of the Hecke algebra)
stand for the Lie algebras over Z of the corresponding group schemes. The Kostant-
Chevalley algebra U = U(g) (resp. U(q), U(m)) is the subring of the rational en-
veloping algebra U(gQ) (resp. U(qQ), resp. U(mQ)) generated over Z by Xn/n! with
X ∈ gα, α ∈ Φ (resp. α ∈ Φ − ΦM−, ΦM ), n � 0 an integer. There is a natural
ring epimorphism U(q) → U(m). A g-stable lattice of a GQ-representation which is U-
stable is called g-admissible (see [12], Sect.VIII.12.7 and 8) same thing for a m-lattice
which is U(q)-stable.

5.1.1. Admissible lattices. — In this section, we explain how one can construct Weyl
modules over Z(p) by plethysms when the highest weight is p-small: |λ| < p. This
construction is used in Appendix II to give a construction by plethysms of the crystals
(resp. filtered vector bundles) over a toroidal compactification of the Siegel variety over
Zp, associated to irreducible representations whose highest weights are p-small.

If λ is a fundamental weight, then the irreducible representation Vλ of G has a
canonical admissible lattice V (λ)Z for the Chevalley order g [12] p. 206. For another
dominant weight λ ∈ X+, several admissible lattices exist over Z. However, given
an prime p, we have shown in [61], Sect. 1.2, that for λ = (ag, . . . , a1; c) such that
ag +ag−1+g+(g−1) < p, these lattices all coincide after tensoring by the localization
Z(p) of Z at p. Note that our condition |λ+ρ| < p−1 implies ag+ag−1+g+(g−1) < p.

For such a weight, let us recall the construction by plethysms of this unique ad-
missible Zp-lattice Vλ,Zp . It will be used systematically in the sequel as it fits well in
the construction of sheaves over the Siegel modular variety.

Let s = |λ|; hence s < p. For any (i, j) with 1 � i < j � n, let φi,j : V⊗s →
V⊗(s−2) the contraction given by

v1 ⊗ · · · ⊗ vs −→ 〈vi, vj〉v1 ⊗ · · · ⊗ v̂i ⊗ · · · ⊗ v̂j ⊗ · · · ⊗ vs;

Let ψ ∈ V⊗2 be the image of the symplectic form 〈 , 〉 ∈ (V ⊗V)∗ via the identifica-
tions

(V ⊗ V)∗ ∼= V∗ ⊗ V∗ ∼= V ⊗ V

the last one being given by V ∼= V∗, v → 〈v, •〉.
We consider for any s � 2 the maps ψi,j : V⊗s−2 → V⊗s obtained by inserting

ψ at ith and jth components. Observe that ψi,j is injective. Let θi,j = ψi,j ◦ φi,j ∈
End(V⊗s). Let V〈s〉 be the submodule of V⊗s defined as intersection of the kernels
of the θi,j ’s (note that Ker θi,j = Kerφi,j).
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As we shall see below, for p > 2 · g, V〈s〉
Z(p)

is the image of V⊗s by an idempotent
in the Zp-algebra generated by the θi,j ’s inside EndZ(p)(V

⊗s). Finally, by applying
the Young symmetrizer cλ = aλ · bλ (see [32] 15.3 and 17.3), whose coefficients are in
Z(p), to V〈s〉 ⊗ Z(p), one obtains the sought-for lattice Vλ,Z(p) .

Lemma 6. — There exists an idempotent es in the Z[ 1g ]-subalgebra of EndZ[ 1g ](V
⊗s)

generated by the θi,j’s (1 � i < j � g), such that

V〈s〉 = es ·V⊗s.

Proof. — Let
Φ =

⊕
φi,j : V⊗s −→

⊕
1�i<j�s

V⊗(s−2)

Thus,
V〈s〉 = KerΦ.

Similarly, put
Ψ :

∑
i<j

ψi,j :
⊕

1�i<j�s

V⊗(s−2) −→ V⊗s.

and
Θ = Ψ ◦ Φ =

∑
1�i<j�s

θi,j .

Since
Φ ◦ Ψ = (×g),

we see that 1
g · Θ is an idempotent. It belongs to the Z[ 1g ]-algebra generated by the

θi,j ’s.
Thus,

V⊗s = V〈s〉 ⊕ Im Ψ, x =
(
x − 1

g
· Θ(x)

)
+

1
g
· Θ(x).

This decomposition of Z(p)-modules is G-stable. We put es = Id− 1
g · Θ. This is

the desired projector to V〈s〉.
To conclude:

Corollary 1. — For any prime p which does not divide 2 · g and such that p > s = |λ|,
the module Vλ,Z(p) obtained by Construction 5.1 is the image of V⊗s

Z(p)
by an idempotent

in the Z(p)-subalgebra of EndZ(p)(V
⊗s) generated by permutations and the θi,j’s. This

algebra commutes to the G-action.

We apply a similar construction for a BM -dominant weight µ of M with |µ| < p.
We denote by Wµ,Z(p) the canonical admissible lattice of Wµ over Z(p) given by the
Young symmetrizer. It can be regarded as a U(q)-module via U(q) → U(m).

Lemma 7. — The subcategory of the category of M -representations, free and of finite
rank over Zp, consisting of representations of highest weight < p is semisimple.
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Proof. — We have to show that there is no nontrivial extensions in this subcategory.
Let λ and µ be two M -dominant weights such that |λ| < p and |µ| < p. λ and
µ are not in the same orbit for the action of the affine Weyl group ([46], Part II,
6.1). Let Wλ and Wµ be the corresponding canonical admissible lattices over Zp,
then Ext1(Wλ, Wµ) = 0 by the linkage principle ([46], Part II, 6.17, see also [61],
Sect. 1.10, Lemma).

5.1.2. The BGG complex. — We are interested in a variant of the “BGG complex”
constructed in [3] where one replaces the Borel subgroup by the parabolic Q. Over the
field Q, it is defined in [13] Chapter VI, Prop. 5.3 as the eigenspace for the infinitesimal
character χλ+ρ inside the standard bar resolution of Vλ,Q:

D(λ)Q := UQ ⊗U(q)Q (Λ•(g/q) ⊗ Vλ,Q).

Following [3], we show in [61] that this BGG complex admits a natural Z(p)-
structure in terms of integral Verma modules:

C(λ)Z(p) =
⊕

w∈W M

U ⊗U(q) Ww(λ+ρ)−ρ,Z(p)

and we prove in Theorem D and Sect. 4 of [61] the following result. Let D(λ)Z(p) :=
UZ(p) ⊗U(q)Z(p)

(Λ•(g/q)⊗Vλ,Z(p)) be the standard Z(p)-complex, a natural Z(p)-version
of the standard bar resolution over Q of Vλ,Q.

Theorem 5. — Let λ ∈ X+ and let p > |λ + ρ|. Then there is a canonical morphism
of complexes j : C(λ)Z(p) ↪→ D(λ)Z(p) such that

– it is injective and it admits a retraction of Z(p)-complexes (i.e. Im j is direct
factor as a Z(p)-subcomplex),

– Im(jQ) is the BGG complex over Q.

Remarks

1) The BGG complex mentioned here is a variant for the parabolic Q of the one
defined in lemma 9.8 of [3] in the Borel case. For details concerning the differential
maps, see Sect. 2 of [61].

2) The bound on λ needed for proving this theorem is actually looser than
(
∑g

i=1 ai) + d < p: it is enough that ag + ag−1 + g + (g − 1) < p.
3) We do not claim that these complexes are exact, as they are not. However, as

we will see in Sect. 5.4, after applying the functor L to a sheaf construction (Sect. 4.2),
we will transform the dual of C(λ)• into a resolution of the sheafification of the dual
of Vλ,Z(p) .

5.1.3. Kostant-Chevalley algebra and universal enveloping algebra. — We fix the
same notations as in 5.1. In particular, U is the Kostant-Chevalley algebra of g

over Z. U can be identified with the algebra Dist(G) of distributions of G ([46],
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Part II, 1.12). Recall that

Dist(G) =
⋃

n�0

(Z[G]/Mn+1)∗

where M is the maximal ideal of regular functions vanishing at the unit element. Let
Ũ be the universal enveloping algebra of g. By the universal property of Ũ , we have a
natural homomorphism γ : Ũ → U = Dist(G) which is injective. It is surjective over
Zp when restricted to the < p-step of the filtrations of Ũ resp. U = Dist(G):

γ : Ũ<p ∼= U<p.

It will imply the following lemma:

Lemma 8. — Let U and Ũ be the Kostant-Chevalley algebra and universal envelop-
ing algebra over Zp respectively and Vp, Wp be two Q-representations over Zp whose
semisimplifications have p-small highest weights (a sufficient condition on the highest
weights is |λi| < p), then the canonical map

Homq(Vp, Ũ ⊗�U(q) Wp) −→ Homq(Vp,U ⊗U(q) Wp)

induced by γ, is an isomorphism.

Proof. — By Poincaré-Birkhoff-Witt over Zp, we have

Ũ ⊗�U(q) Wp = Ũu− ⊗Zp Wp

where u− is the unipotent radical of the parabolic Lie algebra opposite of q. It is
enough to show

Homq(Vp, Ũ(u−) ⊗Zp Wp) = Homq(Vp, Ũ(u−)<p ⊗Zp Wp)

Recall that the decomposition of Wp as a direct sum of t-eigenmodules Wσ is valid
over Zp by diagonalizability of tori over any base.

For any H ∈ t, Xn ∈ Ũ(u−) (n = (nα)α∈ΦM+) and w ∈ Wσ, we have

H · (Xn ⊗ w) =
(
σ −

∑
α∈ΦM+

nαα
)
(H) · (Xn ⊗ w)

For any q-equivariant φ : Vp → Ũ(u−) ⊗Zp Wp, the image of a highest weight vector
v ∈ Vp is of the form

φ(v) =
∑

i

X
ni

i ⊗ wi with wi ∈ Wσi

Comparing the weights we have relations of the type

λ = σi −
∑

α∈ΦM+

n(i)
α α

by increasing the coordinates of n(i), we can assume that σi is the highest weight
of Wp, hence is p-small. Solving a linear system of inequations, we see that for any
α ∈ ΦM+, n

(i)
α < p as desired.
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5.2. p-adic integral automorphic vector bundles. — Let f : A → X be the
universal principally polarized abelian variety over X (with a U -level structure). Re-
call that R1f∗Ω•

A/X is endowed with the Gauss-Manin connection, which is integrable
and quasi-nilpotent (see Section 4.3). Let X be a toroidal compactification of X

over Zp. Let Xn = X ⊗ Z/pnZ; let (X ⊗ Fp/(Z/pnZ))logcrys be the logarithmic crys-
talline site associated to the scheme X ⊗ Fp and its divisor at infinity. Note that
X ⊗ Fp is a toroidal compactification of X ⊗ Fp. As recalled in Sect. 4.1 above,
there is an equivalence of category between crystals on this site and locally free OXn

-
modules endowed with an integrable and “quasi-nilpotent” logarithmic connection.
Let RepZp

(G), resp. RepZp
(Q), be the category of algebraic representations of G,

resp. Q, on finitely generated free modules. Consider the respective full subcategories
Rep�p−1

Zp
(G) and Rep�p−1

Zp
(Q) consisting in objects whose highest weights are p-small

(in fact, whose highest weights µ satisfy |µ| � p − 1).
For each n � 1, let V∇

n , resp. V∇
n be the category of locally free OXn -

modules, resp. OXn
-modules, endowed with an integrable and “quasi-nilpotent”,

resp. integrable, “quasi-nilpotent” logarithmic connection, and Fn, resp. Fn that of
locally free OXn -modules, resp. OXn

-modules endowed with a filtration with locally
free graded pieces.

The goal of this section is to define for each n � 1 two functors

V Z/pnZ : Rep�p−1
Zp

(G) −→ V∇
n

and another
FZ/pnZ : Rep�p−1

Zp
(Q) −→ Fn

We first define functors on RepZp
(G), resp. RepZp

(Q) with values in vector bun-
dles over Xn. Then we proceed to show that these vector bundles extend to Xn

provided they come from representations in Rep�p−1
Zp

(G) resp. Rep�p−1
Zp

(Q).

5.2.1. “Flat vector bundles” on X . — Let us define

VZ/pnZ : RepZp
(G) −→ V∇

n

Let O2g
X be the trivial vector bundle of rank 2g on X endowed with the canonical

symplectic pairing (see section 5.1) and its natural action of G on the left. Let us put

T = IsomX(O2g
X , (R1f∗Ω•

A/X)∨)

where the isomorphisms are symplectic similitudes. It is an algebraic G-torsor over
X for the right action

T × G −→ T , (φ, g) −→ φ ◦ g.

For any V ∈ RepZp
(G), we define V as the contracted product

V = T
G
× V
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that is, the quotient of the cartesian product by the relation (φ, g · v) ∼ (φ ◦ g, v). It
is a vector bundle on X hence over Xn for any n � 1.

Fact

1) V is equipped with a connection of the desired type.
2) The image of the standard representation is (R1f∗Ω•

A/X)∨.
3) The correspondence V → V is functorial.

Proof

1) Let A = (R1f∗Ω•
A/X)∨; we consider the (dual) Gauss-Manin connection:

∇ : A −→ A⊗OX ΩX

It is symplectic in the sense that for two sections f, g of A, we have

〈∇f, g〉 + 〈f,∇g〉 = d〈f, g〉

where the symplectic product is extended to

A⊗A⊗ ΩX −→ ΩX

Therefore, given a point φ of T over an X-scheme Y , we can transport ∇ to an
element ∇φ of g ⊗ ΩX ⊂ EndOY (O2g

Y ) ⊗OX ΩX defined by the diagram

AY
∇ AY ⊗ ΩX

O2g
Y

∇φ

φ

O2g
Y ⊗ Ω1

X

Given (V, ρV ) ∈ RepZp
(G), the representation ρV viewed on the Lie algebra g enables

us to define

∇V,φ = (ρV ⊗ IdOY ⊗OX ) IdΩX ◦∇ ∈ End(V ) ⊗OY ⊗OX ΩX

It is a connection on V ⊗ OY . For Y = T , and φ the canonical point of T , we can
descend this connection to the contracted product because

∇φ◦h = h−1 ◦ ∇φ ◦ h

The resulting ∇V is integrable and quasi-nilpotent because it is so for the Gauss-Manin
connection.

2) Consider the morphism of X-schemes

T × O2g
X −→ A, (φ, v) −→ φ(v)

It descends to the contracted product since φ ◦ g(v) = φ(g · v). It defines therefore
a morphism of vector bundles over X : Vst → A. This morphism is an isomorphism
over T and T → X is faithfully flat, therefore it is an isomorphism over X .

3) is obvious.
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5.2.2. Comparison with the transcendental definitions. — Let T̃ = G(Q)\G(A) ×
G(C)/UU∞, the left action of G(Q) on G(A)×G(C) being diagonal, while the right one
of UU∞ being only on the G(A)-factor; the first projection pr1 : G(A)×G(C) → G(A)
induces a structure of principal G(C)-bundle over the analytic Siegel variety SU by

pr1 : T̃ −→ SU

Moreover, let Ž be the compact dual domain of the Siegel half-space Z. Let
c =

(
1 −i
1 i

)
∈ GSp2g(C) be the standard Cayley matrix which defines the Cayley

transform β : Z ↪→ Ž. Consider the twisted multiplication

µ : G(A) × G(C) −→ G(C), (g, g′) −→ g′c · g∞ · c−1

for g = (gf , g∞) ∈ G(A); it induces a morphism µ : T̃ → Ž.
Recall the transcendental definition of the automorphic vector bundle associated

to V ∈ RepC(Q): one forms the contracted product

V̌ = G(C)
Q(C)
× V

which is a vector bundle over Ž. Then one forms its pull-back β∗(V̌) to Z by the
Cayley transform β : Z ↪→ Ž. One takes the product β∗(V̌)×Gf/U , and one defines
the holomorphic vector bundle Ṽ → SU by

Ṽ = G(Q)\(β∗(V̌) × Gf/U) −→ G(Q)\(Z × Gf/U) = SU .

We refer to V → Ṽ as the transcendental construction. It is valid for V ∈ RepC(G)
as well.

Note that we could avoid the use of the Cayley transform, and use instead the
more direct (but equivalent) Borel transform, at the expense of replacing the Siegel
parabolic Q by its conjugate c−1Qc in the definition of the compact dual of Z.

Lemma 9. — Over C, the functor VC is canonically isomorphic to the one defined by
the standard transcendental construction.

Proof. — We prove two statements

1) There is a canonical isomorphism of G(C)-principal bundles T̃ → T .
2) The transcendental construction can be described as

Ṽ = pr1∗ ◦ µ∗V̌ = T̃
G(C)
× V.

1) Recall that the description of the Siegel variety for a level subgroup U ⊂ G(Ẑ)
can be done integrally: Note that G = GSp(2g) and G′ = Sp(2g) are defined over Z.
It is a simple exercise to see that

SU = G(Q)+\(G(Af )/U ×Z) = G′(Z)\(G(Ẑ)/U ×Z).

Let Z ′ = G(Ẑ)/U ×Z Let Vst be the (complex) standard representation of G. We
recall first that the pull-back by Z ′ → SU of the vector bundle A endowed with the
dual Gauss-Manin connection is isomorphic to the vector bundle of the local system
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Z ′ × Vst endowed with its obvious flat connection. By lack of an adequate reference,
we recall the proof. The description of the universal abelian variety over the Siegel
variety of level a congruence subgroup U ⊂ G(Ẑ) is as follows. Let G̃(Z) = Z2g �G′(Z)
be the Jacobi group, that is, the semidirect product of the symplectic lattice (Z2g , J)
by G′(Z) for the action γ · v denoting the usual product of matrices. It acts on the
left on G(Ẑ)/U ×Z × Cg by

(0, γ) · (g, z, w) = (γg, γ(z), tj(γ, z)−1w), (v, 1) · (g, z, w) = (g, z, (z, 1) · J · v)

it is indeed an action because for any γ ∈ G′(Z), we have tγ · J · γ = J .
Consider the first projection

Z ′ × Cg −→ Z ′

and take the quotient for the left action of G̃(Z) resp. G(Z). We obtain the analytic
description of the universal abelian variety A over SU . For f : A → SU , the locally
constant sheaf (R1f∗Z)∨ which identifies to the relative homology inside Lie(A/SU )
can be viewed as

G′(Z)\Z2g · (Z ′ × {0}) inside G′(Z)\(Z ′ × Cg)

Therefore, its sections identify to the sections s of the trivial covering

Z ′ × Z2g −→ Z ′

satisfying s(γ(g, z)) = γ · s(g, z).
Therefore, the pull-back of T̃ is isomorphic to IsomZ′(Z ′ × Vst,Z ′ × Vst) = Z ′ ×

G(C), with action of G(Q) diagonally on the left. Hence, by quotienting by G(Q), we
obtain a canonical isomorphism T̃ ∼= T .

2) Let V ∈ RepC(G). In this situation, only the C∞-structure of Ṽ matters (in-
deed, only the structure of the underlying locally constant sheaf). On one hand, it is
well-known that Ṽ is the vector bundle, associated to the V -covering G(Q)\(Z ′×V ) →

SU . On the other hand, the pull-back by G(C) × Z ′ → T̃ of T̃
G(C)
× V identifies to

Z ′ × V ; it is endowed with a free action of G(Q) (diagonally on the left), and of U

on the right. The resulting quotient is again the vector bundle associated to the
V -covering G(Q)\(Z ′ × V ) → SU as desired.

5.2.3. Zp-Integral extension to X for p-small weights. — Let us finally define the
functor

V Zp : Rep�p−1
Zp

(G) −→ V∇

which induces the functors V Z/pnZ mentioned at the beginning of this section.
We have the diagram

(5.2.1)

XQp

j
k

XZp

XQp

i
XZp
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On one hand, for any Q-representation W , we have constructed a vector bundle
W over XZp ; on the other hand, M. Harris ([37]) has defined a functor from Q-
representations defined over Q to vector bundles over XQ coinciding with ours on
XQp . We first glue the vector bundles WQp with WZp into a vector bundle W̃Zp over
the cofibered product X̃Zp = XQp ∪XQp

XZp .

Then, we observe that X̃Zp = XZp − DFp is an open subset with complement of
codimension 2 in XZp . Therefore, by [33] Cor. 5.11.4, the direct image of W̃Zp is a
coherent sheaf on XZp . Let us see it is locally free, at least if V has p-small highest
weight. By dévissage, it is enough to consider irreducible M -representations with
such p-small highest weight. By Appendix II, it is enough to consider the standard
representation. In that case, the coherent sheaf on XZp is Lie(G/X)∨, which is locally
free. This concludes the proof.

In particular, for any dominant weight λ, we have attached to the representa-
tion Vλ of G of highest weight λ a vector bundle OXn

-module Vλ,n on Xn together
with a connection with logarithmic poles along Dn, hence a logarithmic crystal Vλ,n

on (X/(Z/pnZ))logcrys. Moreover, it carries a natural filtration since Vλ is also a Q-
representation.

5.2.4. Differential operators over Z(p). — Let V and W be two rational represen-
tations of Q, and V/Q, W/Q the corresponding automorphic vector bundles over XQ
(see previous subsection) and V/Q, W/Q their canonical extension to the toroidal
compactification X. According to Proposition 5.1 of [13] VI.5, we have a functorial
homomorphism

Ψ : HomU(gQ)(U(gQ) ⊗U(qQ) V, U(gQ) ⊗U(qQ) W ) −→ Diff.Operators(W∨
/Q,V∨

/Q).

Actually, in Proposition 5.1 of Chap.VI, the construction of Ψ is explained over
C. The Q-rationality statement is explained in Remark 5.2 following the proof of
Proposition 5.1 of Sect.VI.5. We now prove a variant thereof over Z(p).

We treat first the case of degree 0 differential operators by referring to 5.2.2:

Lemma 10. — Let V , W be two Q-representations of p-small highest weights (in fact,
|λV | and |λW | < p is enough), Vp and Wp their canonical U-stable lattices and Vn, Wn

the corresponding automorphic vector bundles over Xn, n > 0. There is a functorial
injective homomorphism

Homq(Vp, Wp) −→ HomOXn
(W∨

n ,V∨
n)

compatible with the transcendental construction.

Then, the case of general differential operators can be treated as follows:

Lemma 11. — Let V , W be two irreducible Q-representations of p-small highest
weights, Vp and Wp their canonical U-stable lattices and Vn, Wn the corresponding
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automorphic vector bundles over Xn, n > 0. Then Ψ induces for each n > 0, a
homomorphism

HomU(U ⊗U(q) Vp,U ⊗U(q) Wp) −→ P.D.Diff.Operators(W∨
n ,V∨

n)

Remark. — By p-smallness of the highest weights, the only possible degrees of mor-
phisms in HomU (U ⊗U(q) Vp,U ⊗U(q) Wp) are < p, hence, the corresponding PD
differential operators, are in fact usual differential operators.

Proof. — We start with operators of order one. Note that the de Rham differential
d : OXn

→ Ω1
Xn

is the image by Ψ of the obvious map

δ : U ⊗U(q) gZp/qZp −→ U ⊗U(q) Zp, 1 ⊗ X −→ X ⊗ 1

(compare with [13] VI, remark 5.2). By Lemma 10, this implies that each homomor-
phism φ : Vp → U ⊗U(q) Wp of degree one is mapped by Ψ to a Zp-integral differential
operator of order one. Indeed any φ as above factors as φ = δ ⊗ IdWp ◦(Id�U ⊗ψ) for
a ψ ∈ Homq(Vp, g/q ⊗ Wp).

Recall that Ũ denotes the universal enveloping algebra of g. We have seen
in Lemma 8 that by p-smallness of the highest weights, the natural algebra ho-
momorphism γ : Ũ → U induces a bijection between Homg(Vp,U ⊗U(q) Wp) and
Homg(Vp, Ũ ⊗�U(q) Wp). Now, as a corollary of PBW over Zp for Ũ , we see that every

element φ ∈ Homg(Vp, Ũ ⊗�U(q)Wp) of degree m > 1 factors as φ = (δ⊗IdWp)◦ψ where

ψ has degree m−1: fix a basis (Xα)α∈ΦM− of u−; for v ∈ Vp and φ(v) =
∑

i Xn(i)
⊗wi,

put ψ(v) =
∑

i

∑
α∈ΦM− Xn(i)−1α ⊗ Xα ⊗ wi where 1α is the family (δα,β)β∈ΦM− .

The conclusion follows by induction on m.

5.3. The Hodge filtration on automorphic sheaves

5.3.1. The geometric aspect. — This paragraph is a recollection of well-known facts
about the Hodge filtration in the automorphic setting (see [15] Sect. 5).

Let S = RC/RGm and h0 : S(R) → G(R) the homomorphism defined by

z = x + iy ∈ C× −→
(

xIg yIg

−yIg xIg

)
= xI2g + yJ2g ∈ G(R)

The G(R)-orbit Z of h0 is analytically isomorphic to a double copy of the Siegel
upper half-plane of genus g. The pair (G,Z) defines a family of Shimura varieties “à
la Deligne”, isomorphic to our Shimura varieties SU for various level structures U . If
V is a real representation of G and h ∈ X , then the composition h : S(R) → G(R) →
GL(V ) defines a real Hodge structure hV on V ([15]). Let Fh be the filtration on
VC = VR ⊗ C deduced from hV . For V = g the adjoint representation, F 0

h (gC) is a
Lie algebra of a parabolic subgroup P (h) of GC. The mapping h → P (h) identifie
Z as an open subset of its compact dual Z̆ = G(C)/Q(C). Now, for general V , the
mapping h → Fh define a G(R)-equivariant filtration (the Hodge filtration) on the
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constant fibre bundle Z × VC. Dividing by G(Q) and U , we get a filtration on the
coherent sheaf V over SU , associated to the representation V . Moreover, if V is the
canonical extension of V to some toroidal compactification of SU , then this filtration
has a canonical extension to V . This results from Harris’ functoriality [37] of the
canonical extension (Sect. 5.2.3). In the case where V is the standard representation
of G, then, by definition of the functor VC (see Sect. 5.2.1), we have V∨ = R1f∗Ω•

A/X ;

by Deligne’s unicity of the canonical extension, we have V∨
= R1f∗Ω•

A/X
(log∞A/X)

and the Hodge filtration on the dual is the classical one given by

(5.3.1) F 2(V∨
) = 0 ⊂ F 1(V∨

) = f∗Ω
1
A/X

(log∞A/X) ⊂ F 0(V∨
) = V∨

.

Then, for a represention Vλ associated to a dominant weight λ of G, we can use
Weyl’s invariant theory as in Appendix II, to describe the Hodge filtration on V∨

λ .
Actually, Appendix II allows to describe this filtration explicitely over Zp as well, for
λ p-small. Indeed, we show there that, for λ p-small, each V∨

λ on X/Zp
is a direct

summand of some higher direct image of the logarithmic de Rham complex over a
toroidal compactification of the s-fold product of the universal abelian variety (see
[13] p. 234).

Recall that for a complex K•, the notation K•�i denotes the subcomplex of K•

equal to K• in degre � i and zero elsewhere.
If fs : Y → X is such a toroidal compactification over Zp, then the coherent sheaf

F = Rwfs,∗Ω
•
Y /X

(log∞)

is locally free if w is an integer < p (see Illusie, [44] Cor. 2.4). It is endowed with the
Hodge filtration

FiliF = Im
(
Rwfs ∗Ω

•,�i

Y /X
(log∞) −→ Rwfs,∗Ω

•
Y /X

(log∞)
)

.

For a dominant weight λ such that |λ| = s, we take w = d+s; recall that w < p−1.
We endow the sheaf V∨

λ with the filtration:

FiliV∨
λ = V∨

λ ∩ FiliF .

Let V∨
λ,n be the OXn

-module obtained by reduction mod. pn of the module V∨
λ .

Definition 5. — The Hodge filtration on the de Rham complex

V∨
λ,n ⊗OXn

Ω•
Xn/Z/pn(log∞)

is defined by:

F i(V∨
λ,n ⊗OXn

Ω•
Xn/Z/pn(log∞)) =

∑
j

F j(V∨
λ,n) ⊗OXn

Ω•
Xn/Z/pn(log∞)�i−j .
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5.3.2. The group-theoretic aspect. — Let H = diag(0, . . . , 0,−1, . . . ,−1) ∈ LieT ⊂ g

(with g 0’s and g −1’s). H is a generator of the center of q = Lie Q (modulo the
center of Lie G). For any rational Q-representation V , for any i ∈ Z, let V i be the
sum of the generalized H-eigenspaces with eigenvalues � i. This defines a decreasing
filtration {V i} on V . We shall call this filtration the H-filtration. Note that this
filtration is Q-stable.

Two cases are of particular interest for us:

– V is an irreducible M -representation with highest weight µ; the filtration is given
by V µ(H)+1 = 0 ⊂ V µ(H) = V . For instance, the standard representation V0 of M is
filtered by 0 = V 1

0 ⊂ V 0
0 = V0 while its twisted contragredient V1 = V ∨

0 ⊗ ν is filtered
by 0 = V 0

1 ⊂ V −1
1 = V1.

– V = Vλ is an irreducible representation of G associated to the dominant weight λ.
Then the filtration given by H can also be defined by plethysms from the 2-step
filtration of the standard representation Vst: F−1 = Vst, F 0 = V0 is its unique simple
Q-submodule (in fact, an M -module), and F 1 = 0.

We can still define the H-filtration as above for a Q-representation V defined over
Zp instead of C. If V is p-small, the eigen values of H are invertible and so the V i’s
are Zp-summands in V .

In particular, we endow the standard bar resolution of Vλ, Zp (say, for |λ+ρ| < p−1)

D(λ) := (UZp ⊗U(q)Zp
(Λ•(g/q) ⊗ V (λ)Zp))

with the H-filtration.
Let

C(λ)Zp =
⊕

w∈W M

U ⊗U(q) Ww(λ+ρ)−ρ, Zp

be the BGG complex introduced in Sect. 5.1.2 attached to Vλ, Zp . The H-filtration is
given by

F iC(λ)Zp =
⊕

w∈W M

w(λ+ρ)(H)−ρ(H)�i

U ⊗U(q) Ww(λ+ρ)−ρ,Zp
.

Then the injection j : C(λ)Zp ↪→ D(λ)Zp is a filtered direct factor of D(λ)Zp by [61].

5.3.3. Filtered vector bundles on X . — As in section 5.2.1, we define a second functor

FZ/pnZ : RepZp
(Q) −→ Fn

wich gives the Hodge filtration, as follows. We endow O2g
X = OX ⊗ Vst with the

standard symplectic pairing and the H- filtration (0 ⊂ F 0 ⊂ F−1) and we put:

TH = IsomH,X(O2g
X , (R1f∗Ω•

A/X)∨)

where the isomorphisms are symplectic similitudes respecting the Hodge filtrations.
TH is an algebraic Q-torsor over X . For any W ∈ RepZp

(Q), let

W = TH

Q
× W
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It is a vector bundle on X hence over Xn for any n � 1. This construction is
functorial. As W is filtered by submodules which are Q-stable (by the H-filtration),
the vector bundle W comes equipped with a filtration. If the representation W is
p-small, we show by 5.3.2, that its successive quotients are locally free. Moreover,
every morphism W → W ′ of Q-representations induces a strict morphism of filtered
vector bundles. Following the lines of Lemma 9, one shows that the image of the
standard representation is (R1f∗Ω•

A/X)∨ with its standard filtration. The proof of
these assertions is similar to the one in the previous section.

Remarks
1) In fact, by the same construction, one can define functors VZ[1/N ] and FZ[1/N ]

such that VZ/pnZ = VZ[1/N ] ⊗ Z/pnZ and similarly for F .
2) Every M -representation gives rise to a Q-representation by letting the unipotent

radical act trivially on W .

Similar tho the complex analytic G(C)-torsor T̃ = G(Q)\G(A) × G(C)/UU∞ (see
Sect. 5.2.2), one can construct a complex analytic Q(C)-torsor T̃H as follows. We start
from the Q(C)-bundle Q : G(C) → Ž. We form its pull-back β∗(Q) → Z by β. It
still carries an equivariant action of G(Q) on the left. Then, our Q(C)-torsor over SU

is given by

T̃H = G(Q)\β∗(Q) × Gf/U.

Let us compare the functor FC with the transcendental construction: From the
definition of T̃H , it is clear that for any V ∈ RepC(Q),

Ṽ = T̃H

Q(C)

× V.

Moreover, there is a canonical isomorphism T̃H
∼= TH of holomorphic Q(C)-bundles.

Indeed, the pull-back by Z ′ → SU of TH

IsomZ′(β∗Vst, β
∗Vst) = β∗Q× Gf

hence, by quotienting, the desired isomorphism.

Fact. — In the construction V → V of the coherent sheaf attached to a Q-
representation, the H-filtration defined above gives rise to a decreasing filtration
on V. When V is a G-representation, it coincides with the Hodge filtration given
by Fh0 .

Proof. — Consider the dual filtration

(5.3.2.1) Fili V∨ = {ϕ : V −→ OX | ϕ(FiljV) ⊂ Fili+jOX}

where the unit object OX is endowed with the trivial filtration: Fil0OX = OX and
FiljOX = 0 for any j > 0; When V is the complex standard representation Vst ⊗ C
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of GC, the dual of the H-filtration coincides with the Hodge filtration (given by Fh0)
on V∨, indeed, the dual of the H-filtration reads:

Fil0V∨ = {ϕ | ϕ(Fil1V) = 0} = V∨,

Fil1V∨ = {ϕ | ϕ(Fil0V) = 0} = V∨
1 , and

Fil2V∨ = 0.

(5.3.2.2)

This is the Hodge filtration (5.3.1).
Finally, we note that this filtration is compatible with tensor product, duality, etc.

5.3.4. Filtered dual BGG complex. — Let us define the dual BGG complexes K•
λ,n

and K•,sub

λ,n . Their graded pieces are the coherent sheaves over Xn:

Ki

λ,n =
⊕

w∈W M

l(w)=i

W∨
w(λ+ρ)−ρ,n resp. Ki,sub

λ,n =
⊕

w∈W M

l(w)=i

Wsub,∨
w(λ+ρ)−ρ,n

with wsub = w ⊗ I(∞) where I(∞) ⊂ OX denotes the ideal of definition of the
divisor at infinity of X, and the differentials are deduced by lemma 11 (Sect. 5.2.5)
from the BGG complex of Sect. 5.1.2. By dualizing the H-filtration, we obtain a
natural decreasing filtration on K•

λ,n, stable by the differentials, given by

F iK•
λ,n =

⊕
w∈W M

w(λ+ρ)(H)+i�ρ(H)

W∨
w(λ+ρ)−ρ,n

Recall that by the Theorem of [61], the map j has a retraction of filtered complexes,
hence the dual j∨ has a natural section; its sheafification defines an injection of
complexes of coherent OXn

-modules:

κ : K•
λ,n =

⊕
w∈W M

W∨
w(λ+ρ)−ρ,n ↪−→ V∨

λ,n ⊗OXn
Ω•

Xn/Z/pn(log∞)

κ : K•,sub

λ,n =
⊕

w∈W M

W∨,sub

w(λ+ρ)−ρ,n ↪−→ V∨
λ,n ⊗OXn

Ω•
Xn/Z/pn(− log∞)

We summarize the considerations of this section in the proposition

Proposition 3. — The morphism κ of complexes of vector bundles over Xn (n � 1) is
filtered.

5.4. BGG resolution. — We denote by Dn the logarithmic divided power enve-
lope of the diagonal immersion Xn → Xn×̂Z/pnXn where Xn×̂Z/pnXn is the fiber
product in the category of logarithmic schemes. Let p1 and p2 be the two canoni-
cal projections Dn → Xn. Finally, for any BM -dominant weight µ of M , such that
|µ| < p, let L(Wµ,n) be the logarithmic crystal on (X/Z/pn)logcrys corresponding to
p∗1Wµ,n (Sect. 4.2 for L and 5.2 for Wµ,n). For simplicity, in the sequel, we drop
the index n in the notations of the sheaves, thus we write Wµ for Wµ,n. Note that
we cannot consider the situation over Zp because we need a nilpotent base for our
crystalline arguments.
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Proposition 4. — Let λ be a B-dominant weight of G, such that |λ + ρ| < p;

(i) There is a resolution in the category of logarithmic crystals on (X0/(Z/pnZ))logcrys:

0 −→ V∨
λ −→ L(K0

λ) −→ L(K1

λ) −→ · · ·
where

Ki

λ =
⊕

w∈W M

l(w)=i

W∨
w(λ+ρ)−ρ.

(ii) There is a canonical filtered quasi-isomorphism of complexes of logarithmic
crystals

L(K•
λ) −→ L(V∨

λ ⊗OXn
Ω•

Xn/Z/pn(log∞)).

Proof. — We transpose the proof given in [13], VI, Sect. 5 for the complex case in a
Zp-setting. By Lemma 11, each gZ(p) -morphism of order 1:

U ⊗U(q) W1 −→ U ⊗U(q) W2

induces a logarithmic differential operator of order 1, W∨
2 → W∨

1 for the corresponding
locally free OXn

-module; therefore, it induces a morphism of crystals L(W∨
2 ) →

L(W∨
1 ). We deduce from theorem 5 (section 5.1.2), that there is a complex of crystals

0 −→ V∨
λ −→ L(K0

λ) −→ L(K1

λ) −→ · · · .

On the other hand, we know that

0 −→ V∨
λ −→ L(V∨

λ ⊗OXn
Ω•

Xn/Z/pn(log∞))

is a resolution of V∨
λ . Indeed, the exactness of the complex is the crystalline

Poincaré’s lemma (actually, its logarithmic version: bottom of p. 221 of [48], see
our section 4.2, lemma 4 above).

By Theorem D of [61] (Theorem 5 of section 5.1.2 here), L(K•
λ) is a direct sum-

mand, as subcomplex, of L(V∨
λ ⊗OXn

Ω•
Xn/Z/pn

(log∞)).

Therefore, L(K•
λ) is a resolution of V∨

λ . This proves statement (i) of the theorem.
The second assertion follows from the fact that H commutes with Zg. As explained
in Section 5.1.2 above.

Theorem 6. — The natural morphisms

K•
λ −→ V∨

λ ⊗OXn
Ω•

Xn/Z/pn(log∞)

and
K•,sub

λ −→ V∨
λ ⊗OXn

Ω•
Xn/Z/pn(− log∞)

are filtered quasi-isomorphisms of complexes of coherent sheaves on Xn.

Proof. — One applies Ru∗ resp. Ru∗,c to both members of the quasi-isomorphism (ii)
of Prop. 4; then one makes use of the fact that Ru∗L(V) ∼= V for any OXn

-module V
and the properties of the L-construction recalled in Section 4.2.
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6. Modulo p crystalline representations

6.1. Etale sheaves associated to crystals. — Let k be a perfect field of char.p >

0, W = W (k) the ring of Witt vectors with coefficients in k and K the fraction field
of W . Kac is a fixed algebraic closure of K and GK = Gal(Kac/K) is the associated
Galois group. Let RepZp

(GK) be the category of GK-modules of finite type over Zp

and MF
[0,p−2]
W that of finitely generated W-modules M endowed with a filtration

(FilrM)r such that FilrM is a direct factor, Fil0M = M and Filp−1 = 0 together
with semi-linear maps ϕr : FilrM → M such that the restriction of ϕr to Filr+1M is
equal to pϕr+1 and satisfying the strong divisibility condition: M =

∑
i∈Z ϕr(FilrM).

Recall that by the theory of Fontaine-Laffaille [24], we have a fully faithful covariant
functor

Vcrys : MF
[0,p−2]
W −→ RepZp

(GK)

This functor has the property that it sends the filtered Tate object of unique Hodge-
Tate weight −i (meaning the jumps of the Hodge-filtration) to the Tate module Zp(i)
and for any abelian variety defined over Qp,

H1
ét(A × Qp, Zp)

has weights 0 and 1.
The contravariant functor V ∗

crys obtained by composing Vcrys with duality is the
nice inverse of a not so nice contravariant Dieudonné functor D∗: see [83] p. 219-223.

A p-adic representation is called of Fontaine-Laffaille type (or crystalline, by abuse
of language) if it is in the essential image of V ∗

crys.

In our setting, we are interested in the subcategory MF
[0,p−2]
k of filtered modules M

such that pM = 0. MF
[0,p−2]
k is an abelian category and the objects are in particular

k-vector spaces. The restriction of the functor V ∗
crys to MF

[0,p−2]
k can be describe as

follows: Let S = OKac/pOKac , choose β ∈ Kac such that βp = −p and for i < p,
define a filtration FiliS = βiS and Frobenius ϕi(βix) = xp, then as explained in [83],
Prop. 2.3.1.2’, we have an isomorphism

V ∗
crys(M) � Hom

MF
[0,p−2]
k

(M, S)

Moreover, V ∗
crys(M) is a finite dimension Fp-vector space and dimFp V ∗

crys(M) =
dimk M .

Let X be a smooth and proper scheme over W of relative dimension d and D a
relative divisor with normal crossings of X, we put X = X−D. Faltings introduced in
[22] relative versions of the categories mentioned above: the category RepZp(X ⊗K)
of étales Zp-sheaves over the generic fiber X⊗K and the category MF∇(X) of filtered
transversal logarithmic crystals over X . Moreover, we have a notion of “associated”
between objects of RepZp(X ⊗K) and those of MF∇(X). To get a good theory over
Zp, we need to consider only the full subcategory MF∇,[0,p−2](X) of MF∇(X) of
filtered crystals F such that Fil0F = F and Filp−1F = 0 and we have to add some
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other technical hypothesis (cf. Sect. 6.2). Faltings [22] (see also [78]) has defined a
relative contravariant Fontaine functor

V∗ : MF∇,[0,p−2](X) −→ RepZp(X ⊗ K)

In section 6.2 below, we will recall its definition on the objects of p-torsion.

Definition 6. — For any F ∈ MF∇,[0,p−2](X), we say that F and V∗(F) are associ-
ated.

We have the following theorem of Faltings ([22] Th. 5.3):

Theorem 7. — Let F ∈ MF∇,[0,p−2](X). Let a ∈ [0, p − 2] such that Fila+1F = 0.
Then, for any i � 0, such that i + a � p − 2, there is a natural and functorial
isomorphism of GK-modules:(

Hi
et(X ⊗ Kac,V∗(F))

)∗ ∼= V ∗
crys(H

i
log-crys(X,F))

6.2. The mod. p case. — As we use only the mod. p version of the previous com-
parison theorem, we only recall the notion of associated sheaves and the comparison
theorem in their mod. p version, following [22] and [78].

6.2.1. Filtered modules. — Let k be a perfect field of char.p > 0, W = W (k) the
ring of Witt vectors with coefficients in k and K the fraction field of W . Kac is a
fixed algebraic closure of K and GK = Gal(Kac/K) is the associated Galois group.

Let X be a smooth and proper scheme over W of relative dimension d and D a
relative divisor with normal crossings of X, we put X = X − D. Let X0 = X ⊗W k

be the special fiber of X and D0 the induced divisor. If FX0 : OX0
→ OX0

is the
absolute Frobenius, we denote by

ϕX0
: F−1

X0
(OX0

) −→ OX0

the OX0
-linear homomorphism induced by FX0

.
We fix a global lifting ϕ̃X0

of ϕX0
on X ×W W2. The differential

dϕ̃X0
: OX0

−→ Ω1
X0

(log D0)

is divisible by p. We denote by dϕX0
/p the reduction mod. p of dϕ̃X0

/p.

Definition 7. — We define the category MF
∇,[0,p−2]
k (X0) of strongly divisible filtered

logarithmic modules over X0 with Hodge-Tate weights between 0 and p−2 as follows:
an object is a quadruple (F ,F i, ϕi

F ,∇F) where

– F is a quasi-coherent OX0
-module.

– F i, i = 0, . . . , p−1, is a decreasing filtration of F by quasi-coherent OX0
-modules

such that F0 = F and Fp−1 = 0.
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– ϕi
F : F i → F is a ϕX0

-linear homomorphism such that the restriction of ϕi
F to

F i+1 is zero and such that the induced map

⊕iϕ
i
F : ⊕F i/F i+1 −→ F

is an isomorphism (condition of strong divisibility).
– ∇F : F → F ⊗OX0

Ω1
X0

(log D0) is a quasi-nilpotent integrable connection satis-
fying

1) Griffiths transversality: ∇F(F i) ⊂ F i−1 ⊗OX0
Ω1

X0
(log D0) for i =

0, . . . , p − 1.

2) Compatibility with Frobenius: ∇F ◦ ϕi
F = ϕi−1

F ⊗
dϕX0

p
◦ ∇F |F i.

– F is uniform: there is an étale covering (Uα) of X0 together with a log-immersion
Uα → Zα with Zα log-smooth and such that the evaluation of the filtered crystal
associated to (F ,F i) on the thickenings Uα ↪→ Z

DP

α is isomorphic to⊕
λ∈Λ

(O
Z

DP
α

, J
[i−eλ]

Z
DP
α

) with eλ � 0, |Λ| < ∞

where Z
DP

α is the log-divided power envelope of the immersion Uα → Zα and J
Z

DP
α

is the corresponding PD-ideal.

Remark. — The uniformity condition is introduced in Sect. 4.f of [23]. It is needed
to check that the category is abelian.

A morphism of MF
∇,[0,p−2]
k (X0) is an OX0

-linear homomorphism compatible with
filtrations and commuting with Frobenius and connections.

By [22], Th. 2.1, each F i is locally free and locally (for the Zariski topology) a direct
factor of F . Moreover, any morphism of MF

∇,[0,p−2]
k (X0) is strict with respect the

filtrations. We deduce from this that MF
∇,[0,p−2]
k (X0) is an abelian category.

6.2.2. The functor V∗. — To a filtered module F as above, we associate an étale
sheaf V(F) over X ⊗ K as follows:
Let U = Spec(R) be an affine open irreducible subset of X , U = U×XX , U0 = U⊗W k.
Recall that R is flat, of finite type over W (since X is smooth over W ); assume
that R/pR �= 0. Let R̂ be the p-adic completion of R and R̂′ be the union of all
normalizations of R̂ in finite sub-Galois extensions of an algebraic closure Fr(R̂)

ac
of

the field of fractions Fr(R̂) of R̂ such that the normalization of R̂[1/p] in such finite
extension is unramified outside D (cf. [22], II, i)). On U

′
0 = Spec(R̂′/pR̂′), we have a

canonical log-structure defined as follows. Let S be the normalization of R̂ in a finite
Galois extension of Fr(R̂) in Fr(R̂)ac. The inverse image of the divisor D0 defines a
log-structure on Spec S/pS. By passing to the inverse limit, we obtain a log-structure
on U

′
0.
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Let (F ,F i, ϕi
F ,∇F ) be an object of MF

∇,[0,p−2]
k (X0). As a crystal, we can eval-

uate F on the trivial thickening U
′
0 ↪→ U

′
0. We obtain an OU

′
0
-module FU

′
0

endowed
with a decreasing filtration F i

U
′
0
.

For i < p, we define the Gal(R̂′/R̂)-module VU (F , i) as the kernel of

1 − ϕi : H0(U
′
0,F i

U
′
0
) −→ H0(U

′
0,FU

′
0
)

Let E = R̂′/pR̂′; choose β ∈ Kac such that βp = −p and for i < p, define a
filtration FiliE = βiE and Frobenius ϕi(βix) = xp, then as explained in [78] proof of
prop. 4.3.4 or [22], II, f), we have an isomorphism

VU (F , i)∗ � Homfil,ϕ(F [i], E),

where:

– Homfil,ϕ denotes the group of homomorphisms preserving the filtrations and
commuting to Frobenius,

– F [i] is the twisted module defined by F [i]j = F i+j and ϕj
F [i] = ϕi+j

F .

Using this description, we deduce that VU (F , i) is finite of order ph ([22], Th. 2.4)
where h = |Λ| and Λ is the index set in the definition of a uniform filtered module.

By [22], II, g) or [78](4.4), if we regard VU (F , i) as a finite locally constant sheaf
on (U ⊗W K)ét, we can glue the local data VU (F , i), for various “small” U (cf. [78]
3.3.2). There is a unique finite locally constant sheaf VX(F , i) on X ⊗W K such that
the restriction to “small” U is VU (F , i). Finally, we define the covariant comparison
functor V by V(F) = VX(F , p − 2)(2 − p), and its contravariant version V∗ by
V∗(F) = V(F)∗.

6.3. Association modulo p for Siegel varieties. — Let us come back to the
case of Siegel varieties. Let X/Z[1/N ] be the moduli scheme classifying p.p.a.v. with
level U -structure over Z[1/N ]. Its toroidal compactification over Z[1/N ] is denoted
by X (for some choice of a smooth GL(Zg)-admissible polyhedral cone decomposition
of the convex cone of all positive semi-definite symetric bilinear forms on Rg). We
have SU = X ⊗Z[1/N ] C. Recall that, to the representation Vλ /Fp

of GFp = G ⊗ Fp

of highest weight λ, one can associate an etale sheaf Vλ(Fp) resp. Vλ(k) over X ⊗ Q
resp. its extension of scalars to k. One possible construction of this etale sheaf is
by the theory of the fundamental group: any representation of the arithmetic funda-
mental group π1(X ⊗ Q, x) on a finite abelian group V gives rise to an etale sheaf
whose fiber at x is V . Let us consider the structural map f : A → X ⊗ Q given by
the universal principally polarized abelian surface with level structure of type U (we
assume here U sufficiently deep). The sheaf R1f∗Z/pZ is étale. It corresponds to an
antirepresentation of the fundamental group taking values in G(Z/pZ). Then, com-
posing with the representation GFp → GL(Vλ /Fp

), we obtain an étale sheaf denoted
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by Vλ(Fp). Similarly for Vλ(k), by considering the extension of scalars from Fp to k:
Gk → GLk(Vλ(k)).

For any dominant weight λ of G, we have thus obtained a Vλ(Fp) of RepFp(X⊗K).
On the other hand, if moreover |λ+ρ| < p−1, the crystal V∨

λ constructed in Section 5.2
satisfies the conditions of Definition 7 which turn it into an object of MF∇,[0,p−2](X0).
To verify this, one starts with the standard representation. Consider

V∨
1 = R1f∗Ω

•
A/X

(log∞A/X),

On V∨
1 ⊗OX

OX0
, the Gauss-Manin connection satisfies Griffiths transversality for the

Hodge filtration, compatibility to Frobenius and uniformity. A delicate point is to
verify the strong divisibility condition (section 6.2, definition 7). It follows from the
degeneracy of the Hodge spectral sequence which is proven in [22], Th. 6.2. As for the
uniformity condition, it amounts to saying that R1f∗Ω

•
A0/X0

(log∞A0/X0
) is indeed

a vector bundle over X0.
For general λ, we use that V∨

λ is a sub-object (and quotient) of a first direct image
for some Kuga-Sato variety and the fact that MF∇,[0,p−2](X0) is an abelian category.
Note that the objects Vλ⊗OX

OX0
(without dualizing) do not belong to this category,

as their weights don’t fit the bound.

Theorem 8 ([13] Th. 6.2(iii)). — V∗(V∨
λ ⊗OX

OX0
) = Vλ(Fp), that is, Vλ(Fp) and

V∨
λ ⊗OX

OX0
are associated

The proof is given in [13] Th. 6.2(iii). In fact, there, the result is proven only in
the Qp-coefficients case, but for |λ+ ρ| < p− 1 the proof is valid word for word in the
integral context. The key argument is the existence of the minimal compactification
whose boundary has relative codimension � 2. The next section gives more details
about this.

6.4. The Comparison Theorem. — We will explain the relative comparison the-
orem Th. 6.2 of Faltings [22] in our particular setting. In fact we merely extend the
arguments sketched in [13], p. 241. Before going into our situation, we recall the
method of [22] (we hope that more details will be given by the experts in the future).

6.4.1. General setting. — Let R̂ be a p-adically complete smooth domain over Zp.
Let R0 = R̂⊗Zp Z/pZ its reduction mod. p; let F be the field of fractions of R̂; choose

an algebraic closure F of F and form R̂, union of all the normalizations of R̂ in finite
sub-Galois extensions of F . Put S = R̂/pR̂.

Let f : Y → Spec(R̂) be a smooth and proper morphism of schemes of relative

dimension d < p− 1, Y0 = Y ⊗Zp Z/pZ the special fiber, Y = Y ⊗R R̂, Y η = Y ⊗R F ,

Y 0 = Y0 ⊗R0 S and f0 : Y0 → Spec(R0), f : Y → Spec(R̂), fη : Y η → Spec(F ),
f0 : Y 0 → Spec(S) the corresponding morphisms. We have the following standard
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diagram:

Y η

j

fη

Y

f

Y 0
i

f0

Spec(F ) Spec(R̂) Spec(S)

Let RΨ(S(1)) = i
∗
Rj∗(S(1)) be the “relative complex of p-adic vanishing cycles”

for the constant sheaf S(1) = Z/pZ(1)⊗S. This object is not explicitely introduced in
[22], but as explained in [45], we can rewrite the complex computing étale cohomology
as a complex of vanishing cycles. Then we have a “Kummer” map:

RΨ(S(1)) −→ Ω•
Y 0/ Spec(S)

.

Taking direct images, we obtain natural maps:

R∗f0∗(Ω•
Y0/ Spec(R0)

) ⊗R S −→ R∗f0∗(Ω
•
Y 0/ Spec(S)

) ←− R∗f0∗,ét(RΨ) � R∗fη∗,ét(S)

R∗f0∗,ét(RΨ) � R∗fη∗,ét(S) ←− R∗fη∗,ét(Z/pZ(1)) ⊗R S.

Faltings ([22], page 72, see also recent corrections of the corresponding proof in in-
formal notes by the author) shows that the second arrow is an “almost-isomorphism”;
wich implies that the modules R∗f0∗(Ω•

Y0/ Spec(R0)
) and R∗fη∗,ét(Z/pZ(1)) are asso-

ciated.

6.4.2. Setting for Siegel varieties. — The notations are those of section 6.3. Let
U = Spec(R) ⊂ X be an affine open subset and f : YU → U be the restriction of
fs : Y = A ×X · · · ×X A → X , where A is the universal abelian variety, we assume
s < p−1. Let X̂ be the formal completion of X along the special fiber. Let f̂ : ŶU → Û

be the base change of f to the affine formal scheme Û = Spf(R̂). Over Spec(R̂⊗Qp),
we have two étales sheaves Rsf̂∗Z/pZ(1) and V∗(Rsf̂∗(Ω•

YU⊗Fp/U⊗Fp
)). As explained

in the general setting subsection, there is a functorial isomorphism of étales sheaves:

Rsf̂∗Z/pZ(1) � V∗(Rsf̂∗(Ω•
YU⊗Fp/U⊗Fp

))

over Û . By functoriality, these local isomorphisms glue to a global one over X̂ .
Let X∗ be the minimal compactification of X over Zp. It is defined in [13] Th. 2.5

Chapter V. It is projective, normal of finite type; its boundary admits a natural
stratification whose strata have codimension at least 2 (since we assume g � 2). We
apply Grothendieck’s GAGA theorem to deduce that the isomorphism over X̂ between
the sheaves Rsf̂∗Z/pZ(1) and V∗(Rsf̂∗(Ω•

YU⊗Fp/U⊗Fp
)) is algebraic. More precisely,

every étale covering of the formal scheme X̂ is defined by an étale finite O �X -algebra A.
Since the minimal compactification is normal and has boundary of codimension � 2,
this algebra extends to X̂∗ ([33], Cor 5.11.4) and so defines an algebraic étale covering
of X whose base change to X̂ is A, we deduce an equivalence of sites Xét � X̂ét. As
the morphism f is proper and smooth, the sheaf Rsf̂∗Z/pZ(1) on X̂ is locally constant
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and so descends to X and gives the sheaf Rsf∗Z/pZ(1). By construction, the sheaf
V∗(Rsf̂∗(Ω•

YU⊗Fp/U⊗Fp
)) is also locally constant and also descend to X and gives the

sheaf V∗(Rsf∗(Ω•
YU⊗Fp/U⊗Fp

)).

Moreover, as Xét � X̂ét, every formal morphism between Rsf̂∗Z/pZ(1) and
V∗(Rsf̂∗(Ω•

YU⊗Fp/U⊗Fp
)) is algebraic. This shows that Rsf∗Z/pZ(1) is associated to

Rsf∗(Ω•
Y ⊗Fp/X⊗Fp

) for the asociation without divisor at infinity and Rsf∗Z/pZ(1) is
associated to Rsf∗(Ω

•
Y ⊗Fp/X⊗Fp

(log∞)) for the association with divisor at infinity.

7. Proof of Theorem 1

7.1. A lemma on modular representations. — Our reference for results used
in this Section are [12] VIII.13.2 and [46], II.3. Let T̂ be the standard maximal torus
in Ĝ. One has

T̂ = {(t1, . . . , tg, u; x) | u2 = t1 · · · tg}
The degree 2 covering Ĝ → GO2g+1 induces on T̂ the projection

(t1, . . . , tg, u; x) −→ diag(t1, . . . , tg, xt−1
g , . . . , xt−1

1 , x)

We view the Weyl group W �G as a subgroup of Ĝ/Z by using permutation matrices in
a standard way. Let W ′ be the subgroup of W �G consisting in the permutations wB

(B ⊂ [1, g]) acting by twB = t′ where t = (t1, . . . , tg, u; x) and t′ = (t′1, . . . , t
′
g, u

′; x)
with t′i = t−1

i if i ∈ B, t′i = ti if i /∈ B, and u′ = u · t−1
B where tB =

∏
i∈B ti.

Let B̂ = T̂ .N̂ be the Levi decomposition of the standard Borel subgroup B̂. Recall
we assumed GO(ω) for ρπ. We can assume that ρπ(Dp) ⊂ B̂(k). Throughout this
section, we assume that

(RLI) there exists a split (non necessarily connected) reductive Chevalley subgroup
H of Ĝ/Z with W ′ ∝ T̂ ⊂ H , and a subfield k′ ⊂ k, of order say |k′| = q′ = pf ′

(f ′ � 1), so that H(k′)ν ⊂ Im ρπ and ρπ(Ip) ⊂ H0(k′). Where H(k′)ν is the subgroup
of H(k′) consisting in elements whose ν belongs to Im ν ◦ ρπ.

Comment. — It has been pointed to us by R. Pink that if H is connected and
W ′ ∝ T̂ ⊂ H , then H should contain the derived group of Ĝ; then, (RLI) becomes
in some sense an assumption of genericity for π and p, but it cannot be verified in a
single example for g � 2, hence our insistance on the possible disconnectedness of H :
it allows us to show the existence of concrete examples for the theorem.

Let H0 be the neutral component of H over Z. Its semisimple rank is g. Recall
that in the condition of Galois ordinarity (GO), we introduced an element ĝ ∈ Ĝ so
that

ρπ(Dp) ⊂ ĝ · B̂(O) · ĝ−1

Recall the convention (valid since Sect. 3.3) that we omit the conjugation by ĝ,
thus writing B̂, N̂ , T̂ instead of ĝ · B̂ · ĝ−1 and so on.
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The subdata (H0, T̂ , B̂ ∩H0) in (Ĝ, T̂ , B̂) induce an inclusion of the set of roots of
H0 into that of Ĝ: Φ±

H0 ⊂ Φ±. Let Φ′ = Φ ∩ V ectQ(ΦH0) and ∆′ a system of basis
made of positive simple roots for Φ′. By [12] VI, no 1.7, Prop. 24, it can be completed
into a basis ∆ of Φ contained in Φ+. Note that ΦH0 is a subsystem of maximal rank
in Φ′. Let ∆H0 be the basis of ΦH0 contained in Φ+

H0 . A priori, it could be different
from ∆′ (not in the examples we have in view though). Let

Φ⊥
H0 = {λ ∈ X | 〈λ, β∨〉 = 0 for β ∈ ΦH0}

where α∨ denotes the coroot corresponding to a root β.
Observe that Φ⊥

H0 contains Z · ν as a direct summand:

Φ⊥
H0 = Φ⊥,1

H0 ⊕ Z · ν.

Let X ′ be the Z-module generated by ∆′. One has

X = X ′ ⊕ Φ⊥
H0 .

The irreducible representations of H0 over k′ (or over any perfect extension of Fp)
are classified by X ′+ ×Φ⊥

H0 . We shall consider certain (absolutely) irreducible repre-
sentations over k′ of the abstract group H0(k′).

Note that by the formula ν ◦ ρπ = χ−w · ωπ, the image of ν ◦ ρπ contains k′×w.
Let e = (k′× : Im(ν ◦ ρπ)). Note that e is a multiple of q′−1

(w,q′−1) = (k′× : k′×w).
Let

Φ̃⊥
H0 = (q′ − 1) · Φ⊥,1

H0 ⊕ e · Z · ν
It is a finite index lattice in Φ⊥

H0 and the kernel of the homomorphism

X −→ Hom(T̂ (k′)ν , k′×), λ −→ λ

coincides with
(q′ − 1) · X ′ ⊕ Φ̃⊥

H0

It results easily from Steinberg’s theorem (see Chapter II, Prop. 3.15 and Cor. 3.17
of [46]) that the irreducible representations of the abstract group H0(k′)ν are classified
by

XH,q′ = {(v, a) ∈ X ′+ × Φ⊥
H0/Φ̃⊥

H0 | 0 � 〈v, β∨〉 � q′ − 1 for all β ∈ ∆H0}

For brevity, we call such weights q′-reduced, although the terminology is not con-
formal to that of Jantzen’s book Chapter II, Section 3. For µ ∈ XH,q′ , we write W (µ)
for the corresponding H0-representation and ΠH0(µ) ⊂ X for its set of weights,
resp. ΠH0 (µ) ⊂ Hom(T̂ (k′), k′×) the set of their restrictions to T̂ (k′)ν .

Let �̂i be the fundamental weights in X of Ĝ. We write �̂ = �̂g for the minuscule
weight of Ĝ; it is the highest weight of the spin representation V/Fp

of Ĝ. Let Π �G(�̂)
resp. Π �G(�̂) the set of weights (resp. of the functions on T̂ (k′) that they induce)
associated to the spin representation V/k′ of Ĝ.

Recall that Π �G(�̂) = {�̂w′ | w′ ∈ W ′} and that we assumed W ′ ∝ T̂ ⊂ H .
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Lemma 12. — For p > 5, if W (µ) is a simple H0
k′-module with highest weight µ ∈

XH,q′ with �̂ = µ and ΠH0 (µ) ⊂ Π �G(�̂), then µ = �̂.

Remark. — For p = 5, Ĝ = Spin(5) and H ⊂ Ĝ, isomorphic to SL(2) × SL(2) via
Ĝ ∼= Sp(4), µ = 3�̂2, the lemma is false, hence the necessity of the assumption p > 5.

Proof. — Since µ = �̂, one has µ − �̂ ∈ (q′ − 1)X .
1) Let us first check that µ − �̂ ∈ N ∩ Φ⊥

H0 = Φ̃⊥
H0 .

Let α ∈ ∆H0 . We want 〈µ− �̂, α∨〉 = 0. We start with a preliminary observation:
For any simple root α ∈ ∆H0 , 〈�̂, α∨〉 ∈ {−1, 0, 1}. Indeed, this is true for any

fundamental weight �̂ of Ĝ. In particular for our minuscule weight �̂.
Then, we distinguish three cases

– If 〈�̂, α∨〉 = 1, we have 〈µ, α∨〉 = 1 because µ is q′-reduced.
– If 〈�̂, α∨〉 = 0; let us exclude the possibility 〈µ, α∨〉 = q′ − 1. Since q′ − 1 � 1

we would have µ − α ∈ ΠH0(µ) as the α-string of µ has length q′ − 1. Hence by the
assumption, we could write µ − α = �̂y + (q′ − 1)λ for some y ∈ W ′ and λ ∈ X .

But 〈�̂y , α∨〉 ∈ {−1, 0, 1}, and 〈µ − α, α∨〉 = q′ − 3 hence q′ − 1 should divide 1, 2
or 3 impossible since q′ − 1 > 3.

– Similarly, if 〈�̂, α∨〉 = −1, we must exclude 〈µ, α∨〉 = q′ − 2. Again µ − α ∈
ΠH0 (µ), hence µ−α ≡ �̂y mod. (q′−1)X . But 〈�̂y, α∨〉 ∈ {−1, 0, 1} and 〈µ−α, α∨〉 ≡
−3 mod (q′ − 1), hence (q′ − 1) should divide 2, 3 or 4; impossible since q′ − 1 > 4.

2) Thus, µ− �̂ ∈ Φ⊥
H0 ∩N (actually, it shows that 〈�̂, α∨〉 � 0 for any α ∈ ∆H0 ).

Since the components of �̂ and µ along Φ⊥,1
H0 resp. Zν are reduced (mod. q′ − 1)

resp. mod. e, and that µ − �̂ ∈ Φ̃⊥
H0 , we conclude µ = �̂. The lemma is proven.

It is the main ingredient in the proof of the following result.

Lemma 13. — Let σ : Γ = Gal(Q/Q) → GLk(W ) be a continuous Galois representa-
tion such that for any g ∈ Γ, the characteristic polynomial of ρπ(g) annihilates σ(g).
Assume that p − 1 > max(4, w), that ρπ satisfies GO(ω) and (RLI),

then, either W = 0, or the two characters 1 and ω−w restricted to Ip occur as
subquotients of W viewed as an Ip-module.

Comment. — One could naturally ask whether the simpler assumptions that ρπ is
absolutely irreducible and for any g ∈ Γ the characteristic polynomial of ρπ(g) anni-
hilates σ(g) are sufficient to conclude that all constitutents of σ are copies of ρπ. This
statement is true for g = 1, but, it is false for g = 2. A counterexample has been found
by J.-P. Serre. He lets Γ act on F4

p through the so-called cuspidal representation of
the non-split central extension 2A5 of the icosaedral group A5. It is four-dimensional,
symplectic and absolutely irreducible. Then, (W, σ) is one of the two irreducible 2-
dimensional of this group. This is why we introduced (RLI). This assumption is not
satisfied in the example there. Also, thanks to the ordinarity assumption (GO), we
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focused our attention on the highest weight of ρπ (which is a local information at p)
rather than the global representation ρπ itself.

Proof. — Assume W �= 0; let Γ′ be the inverse image by ρπ of H(k′) in Γ and Γ′′

the kernel of ρπ restricted to Γ′. Then σ(Γ′′) is a nilpotent p-group. Thus, replacing
W by its submodule fixed by σ(Γ′′), still denoted by W , one can assume that W is a
non-zero module on which Γ′ acts through H(k′)ν :

Γ′

ρπ

GLk(W )

H(k′)

We first treat the case of ω−w. Let H0 be the neutral component of H . Let
W̃ = IndH0(k′)

H0(k′)ν
W . It is an H0(k′)-module, and for any t ∈ T̂ (k′)ν , the action of t on

W̃ is annihilated by
∏

w∈W ′(X − �̂w(t)). By Steinberg theorem ([46] Sect II.3.15),
the space W viewed as H0(k′)-module has a subquotient W (µ) which comes from
an algebraic simple H0

k′ -module corresponding to a q′-reduced highest weight µ. We
associate to this representation the sets Πµ resp. Πµ as above. By the assumption

W ′ ⊂ H , one can assume that ΠH0(µ) ⊂ Π �G(�̂) and �̂ = µ (if µ = �̂
w′

for some
w′ ∈ W ′, simply replace W (µ) by W (µw′−1

) which also occurs as H0
k′ -subquotient

of W ). By the previous lemma, for p > 5, we have �̂ = µ. Let x be a highest
weight vector in W (µ) for H0

Fp
. It is fixed by H ∩ N̂(k). Since Ip ⊂ ρ−1

π (H0(k)),

the action of Ip on x is through its image by �̂g ◦ (ρπ mod. N̂). By the assumption
(GO), and Lemma 3, this character is equal to ω−w on Ip which therefore occurs as a
subquotient of W |Ip . To treat the case of the trivial character, we consider instead of
the highest weight µ by the lowest weight µ′ of W (µ); we can assume that µ′ = �̂

w0

where w0 is the longest element of W �G. Let NH0 be the unipotent radical of a Borel
of H0 adapted to (GO). On the lowest weight quotient W (µ)NH0 (the vector space
of NH0 -coinvariants), ρπ acts by �̂w0 ◦ (ρπ mod. N̂), which is trivial by (3.3.2). QED

7.2. Deducing Theorem 1 from Theorem 6. — Recall we have fixed λ =
(ag, . . . , a1; c) with c = ag + · · · + a1 and |λ + ρ| < p − 1. We have the following
reduction steps:

1) By Poincaré duality, and self-duality of the Hecke operators for � prime to N ,
Statement (i) of Theorem 1 is equivalent to the vanishing of

Hj
∗(SU , Vλ(k))m = 0 for q < d

where � = c, ∅. These modules are artinian over Hm, so by Nakayama’s lemma, it is
enough to show that their m-torsion vanishes:

(7.2.1) Hj
∗(SU , Vλ(k))[m] = 0 for ∗ = ∅ or c and q < d
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which we will prove below.
2) Then, Statements ii) and iii) are easy consequences of i) as can be seen by

induction on q < d using the long exact sequences

0 −→ Vλ(O) −→ Vλ(O) −→ Vλ(O/�O) −→ 0

and
0 −→ Vλ(�−1O/O) −→ Vλ(K/O) −→ Vλ(K/O) −→ 0.

For instance, from the latter, one obtains, with obvious notations: if Hq−1
∗ (K/O)m = 0,

then Hq
∗(�−1O/O)m → Hq(K/O)m[�] is an isomorphism; hence by Nakayama’s

lemma, assertion one implies that Hq
∗ (K/O)m vanishes for q < d.

Note that since p > jA > ag · · · � a1 � 0, one knows that Vλ Fp is absolutely
irreducible (see for instance Proposition II.3.15, p. 222, of [46]).

3) As in section 6.3, X/Z[1/N ] is the moduli scheme classifying p.p.a.v. with level
N structure over Z[1/N ]. Its toroidal compactification over Z[1/N ] is denoted by X .
Let Vλ(Fp) resp. Vλ(k) be the étale sheaf over X⊗Q in Fp- resp. k-vector space corre-
sponding to Vλ Fp . Using the etale-Betti comparison isomorphism (and its equivariance
for algebraic correspondences), Theorem 1 will be proven if we show the vanishing of
the etale cohomology groups corresponding to (7.2.1).

This interpretation as étale cohomology allows us to view Hj
∗(SU , Vλ(Fp)) as a

Fp[Gal(Q/Q)] ×HK-module:

Hj
∗(X, Vλ(Fp)) ∼= Hj

ét,∗(X ⊗ Q, Vλ(Fp)).

Remark. — The Fp-coefficients are useful to apply Fontaine-Laffaille and Faltings
theory, while the k-coefficients will come in when we localize at the maximal ideal m

of HK(O).

Let V∨
λ be the object of MF∇,[0,p−2](X0) associated to λ as in Section 6.3. Recall

that V∨
λ has a filtration of length |λ|; since d + |λ| < p− 1 and since V∨

λ and Vλ(Fp)∨

are associated (Theorem 8 above, section 6.3), we can apply Th. 5.3 of [22] (see
Theorem 7, Section 6.1), so that for any j � 0:

Hj
ét,∗(X ⊗ Qp, Vλ(Fp))∨

is the image by the Fontaine functor V∗ of

Hj
log-crys,∗(X ⊗ Fp,V∨

λ ).

Note that since we work mod. p instead of mod. pn, we have

Hj
log-crys,∗(X ⊗ Fp,V∨

λ ) = Hj
log-dR,∗(X ⊗ Fp,V∨

λ )

We have constructed in Section 5.3.4 a filtered complex of coherent sheaves K•
λ on

X ⊗ Fp by functoriality from the BGG resolution of the GFp-module VλFp
. It follows

from Theorem 6 that there are isomorphisms of filtered Fp-vector spaces:

Hj
log-dR(X ⊗ Fp,V∨

λ ) ∼= Hj(X ⊗ Fp,K
•
λ)

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2002



56 A. MOKRANE & J. TILOUINE

and
Hj

log-dR,c(X ⊗ Fp,Vλ) ∼= Hj(X ⊗ Fp,K
•
λ
sub)

where K•
λ resp. K•

λ
sub denotes the canonical, resp. subcanonical Mumford extension

of the filtered complex of sheaves K•
λ. The resulting filtration on the right-hand side is

called the F -filtration; it corresponds via these isomorphisms to the Hodge filtration
on the left-hand side. The weights of this filtration can be computed as in [72] (who
treats the case g = 2): Let us consider the map

WG −→ Z, w −→ p(w) = −(w(λ + ρ)(H) − ρ(H))

where H = diag(0, . . . , 0,−1, . . . ,−1). Let WM be the Weyl group of the Levi sub-
group M of the Siegel parabolic. Observe that this map factors through the quotient
WM\WG; this quotient is in bijection with the set WM (cf. p. 229 of [13]). By Theo-
rem 6, Sect. 5.4, we have

grpHj
log-dR,∗ =

⊕
w∈W M

p(w)=p
�(w)�j−p

Hj−�(w)(X ⊗ Fp,W
∨
w(λ+ρ)−ρ)

Note that, unfortunately, p is not a good notation for the degre of our Hodge filtration.
The image p(WG) of p is therefore the set of possible weights occuring in Hj

crys,∗ for
j � d. Moreover, p is injective on WM\WG, and its values are exactly the jB (B ⊂ A).
The set of possible lengthes �(w), w ∈ WM is [0, d]. For each j < d, let us consider
the set WM (j) = {w ∈ WM | �(w) � j}; the key observation is that for j < d,
WM (j) does not contain the unique element w ∈ WM such that �(w) = d, namely
the one acting by (ag, . . . , a1; c) → (−ag, . . . ,−a1; c). But this element is the unique
one for which p(w) takes on its maximal value: jA. Hence, this maximal weight does
not occur in Hj

log-dR,∗(X ⊗ Fp,V∨
λ ) for j < d.

On the other hand, under assumptions (Gal) and (GO), ρπ is ordinary with
weights given by jB for all subsets B ⊂ A; in particular jA and 0 indeed occur with
multiplicity one; actually, even if we replaced (GO) by geometric ordinarity, it would
result from lemma 3, Sect. 3.3, that 0 and jA do occur in ρπ). Now, consider the global
Galois representation σj on Wj = Hj

∗(X⊗Q, Vλ(k))[m], the kernel of m in the module
Hj

∗(X ⊗ Q, Vλ(k)). The Eichler-Shimura relations imply for any g ∈ Gal(Q/Q), the
characteristic polynomial of ρπ(g) annihilates σj(g). Our lemma 13 Sect. 7.1, shows,
assuming (RLI), that this implies that Wj admits ρπ as subquotient. This is a
contradiction since the maximal weight jA occurs in ρπ|Ip but not in Wj |Ip .

7.3. Examples. — Let F be a real quadratic field with Galois group {1, σ}. Let
ΓF = Gal(Q/F ). Let f be a holomorphic Hilbert cusp form for GL(2)/F of weight
(k1, kσ), k1, kσ � 2, k1 = kσ + 2m for an integer m � 1. Assume it is a new form
of conductor n which is eigen for Hecke operators Tv (v prime to n); denote by av

the corresponding eigenvalues. Since the weight of f is not parallel, f does not come
from Q. Let fσ be the inner conjugate of f by σ. Let ε be the finite order part of its
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central character. We assume that ε factors through the norm map. Starting from
[90], a series of works have established that f admits a holomorphic theta lift π to
G(A) where G = GSp(4) (see [63] and [64]). Since f does not come from Q, π is
cuspidal; moreover, in [64], B.Roberts explained to us that in particular such a theta
lift π is stable at ∞. The published reference for this fact is [65]. It occurs in the
H3 of a Siegel variety of some level, say N , with coefficient system of highest weight
λ = (a, b; c) where a = kσ + m − 3, b = m − 1, and c = a + b. At the moment, the
level N of π can only be said to be multiple of N(n)DF where DF is the discriminant
of F ; N(n)DF should be the conductor of π, but this can not yet be established in
general.

Let Q(f) = Q[av]v be the number field generated by the eigenvalues of f ; one can
take Q(f) as field of definition of π (although this may not be the smallest possible
one, as pointed out by Prof.Yoshida). For any prime pf of Q(f) prime to n, the
pf -adic Galois representation associated to π exists; it is given by

(7.3.1) ρπ = IndF
Q ρf

it is absolutely irreducible. The conductor of ρπ is Norm(n) ·DF ; this results from the
fact that n is also the (prime-to-p part of the) conductor of ρf by Carayol’s theorem.

Indeed, π is motivic: by Theorem 2.5.1 of [10], for any imaginary quadratic field F ′,
there exists a motive Mf,F ′ defined over F ·F ′, of rank 2 over some extension Q(f, F ′)
of F ′ · Q(f); the motives Mf,F ′ are “associated to f”: they give rise to a compatible
system of λ-adic representations of ΓF , which is associated to f . Its Hodge-Tate
weights are 0 and k1 − 1 above IdF ′ , and m and m + kσ − 1 above σ ⊗ IdF ′ .

Remark. — In fact there should exist Mf defined over Q, of rank 2 over Q(f), asso-
ciated to f in the above sense.

Then we consider for each imaginary quadratic F ′

(7.3.2) Mπ,F ′ = ResF ·F ′

F ′ Mf,F ′

Mπ,F ′ is defined over F ′, of rank 4 over Q(f, F ′); it is pure of weight w = k1 − 1 and
the four Hodge-Tate weights 0 < m < m + kσ − 1 < k1 − 1 do occur. These motives
define a compatible system of degree 4 λ-adic representations of Γ, associated to π.

Remark. — Similarly, there should exist Mπ defined over Q, of rank 4 over Q(f) with
those Hodge-Tate weights, associated to π.

In the CM case, we restrict our attention to the situation where f is a theta
series coming from a biquadratic extension M = EF/F , E imaginary quadratic. Let
Gal(E/Q) = {1, τ}, Gal(F/Q) = {1, σ} and Gal(M/Q) = {1, σ, τ, στ}. We write
f = θ(φ) where φ is a Hecke character of infinity type n1 + nσσ + nστστ + nττ ∈
N[Gal(EF/Q)], such that

(∗) n1 + nτ = nσ + nστ and n1 > nσ > nστ > nτ
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and of conductor f prime to p in M . In that case, one has a = nσ−nτ−2, b = n1−nσ−1
and c = n1 +nτ −3; indeed, since nτ = (c−a−b)/2, we see that the condition nτ = 0
is equivalent to c = a + b, in which case one has n1 = w, nσ = kσ − 1 + m, nστ = m

(and nτ = 0). We assume in fact in the sequel a condition slightly stronger than (∗),
namely:

(∗∗) φ(1+τ)·(1−σ) = 1 and n1 > nσ > nστ > nτ

Under these assumptions, we say that f is of (2, 2)-CM type.

Remark. — If (∗) is satisfied for a character φ, then (∗∗) is satisfied for φhf where hf

denotes the ray-class number of EF of conductor f.

Let Of be the ring of integers of Q(f). For a suitable finite set of primes S of
Of disjoint of the prime divisors of n, the localization S−1Of is principal. In this
principal ring, we choose for each prime v prime to n a generator {v}. Let I = If be
the ring generated by the normalized eigenvalues a0

v = {v}−m·σ ·av (v prime to n) of f

in Q(f). The a0
v’s are eigenvalues for the divided Hecke operators T0(v) = {v}−m·σ ·Tv

as introduced by Hida in the beginning of Sect. 3 of [40]. By Th. 4.11 of [40], these
eigenvalues are still integral.

Let p be a rational prime. We assume hereafter that p splits in F , say, p·OF = q·qσ,
q �= qσ, and that {q, qc} ∩ S = ∅. We fix ιp : Q(f) ↪→ K ⊂ Qp, a p-adic embedding,
and pf the prime of I associated to ιp.

Recall that by a Theorem of Wiles (Th. 2.2.2 of [88]) and a Proposition of Hida
(Prop. 2.3 of [41]), if

ordp(ιp(a0
q)) = 0 resp. ordp(ιp(a0

qσ )) = 0

(that is, ordp(ιp(aq)) = 0 resp. ordp(ιp(aqσ )) = m), then, the decomposition group
Dq ⊂ ΓF at q preserving ιp is sent by ρf,pf

, resp. ρfσ,pf
to a Borel subgroup of GL(2);

moreover, ρf,pf
resp. ρfσ,pf

restricted to the inertia subgroup Iq has a 1-dimensional
unramified quotient.

We put k′ = I/pf . Let J be the subring generated by the (av, avσ ) in Q(f)×Q(f).
For p prime to the index of I in its normalization, and of J in its normalisation, we
can view ρπ,pf

|F = (ρf , ρfσ ) as taking values in GL(2, Ipf
)×GL(2, Ipf

). Let X ⊂ k′×

be the subgroup generated by the reduction of Nvk1−1 · ε(v) for all finite places v

prime to np. Let

H0
= {(g, g′) ∈ GL2(k′) × GL2(k′) | det g = det g′ ∈ X}

the two factors being exchanged by σ, and

H = {1, σ} ∝ H0
.

Similarly, let HCM be the image by the spin representation of

{g ∈ T̂ (k′) ∝ W ′ | ν(g) ∈ X}.
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Proposition 5. — For f as above and k1 > kσ > 2, with Nebentypus of order at
most 2, there exists a (non-effective) finite set S of finite places in Q(f) such that,
for any p /∈ S, splitting in F , for which a pf |p is ordinary for f and fσ, the image of
ρπ,pf

: Γ → GLk′(V ) is equal to:

– H, if f is not CM,
– contains a subgroup of HCM of index at most gcd(p−1, n1·nσ) if f is of (2, 2)-CM

type.

Comment. — Let H the subgroup of Ĝ whose image by the spin representation is
L(ResF

Q GL(2)) (in the non-CM case) resp. L(ResM
Q M×) in the (2, 2)-CM case. Then,

in both cases, the image of W ′ is the group of type (2, 2) generated by
1

−1
1

−1

 and


1

1
−1

−1

 .

Thus, by the previous proposition, the assumption (RLI) of sect 7.1, is satisfied for H .

Proof. — Assume first that f has no CM. We follow the method of proof of Ribet’s
thesis [62]. More precisely, we apply Th. 3.1 of [62]. We change its statement by
replacing Fk−1

p there by our subgroup X ; since X ⊂ F×
p , the proof of Th. 3.1 runs

identically. Let G = Im ρπ,pf
|F . In order to apply Th. 3.1 as in Th. 5.1 and 6.1 of

[62], we have to check

(a) For almost all p splitting in F and ordinary as above, ρf,pf
and ρfσ ,pf

act
irreducibly on k′2 and their images have order divisible by p,

(b) For almost all p as above, there exists γ ∈ G such that (Tr γ)2 generates k′×k′.

(a) If ρf is reducible, we have

ρf ≡
(

χ1 ∗
0 χ2

)
mod. p.

Let us define a global character ψ of conductor dividing n · p by

ψgal · ω1−k1 = χ1/χ2.

Let ψq, resp. ψqσ be the restriction of ψ to Iq resp. to Iqσ . By the ordinarity of ρf at
q and qσ, we see that ψq = 1 or ω2(k1−1) and ψqσ = ω2m or ω2(k1−1)−2m. Let ε be a
fundamental unit of F . Consider the numbers

ε2m·σ − 1, ε[2(k1−1)−2m]·σ − 1, ε2(k1−1)+2m·σ − 1, ε2(k1−1)+[2(k1−1)−2m]·σ − 1;

If q is prime to these numbers, we see by global class-field theory that the global
character ψ cannot exist.

Remark. — This reflects the fact that no congruence between f and an Eisenstein
series can occur, as there are no non-zero Eisenstein series with non-parallel weight.
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To assure that p divides the order of Im ρf , one proceeds as in Lemma 5.3 of [62]
to exclude all entries of the list of prime-to-p order subgroups in GL2(k′). The cases
to exclude are

– Case (i) is when the image in PGL(2) is abelian,
– Case (ii) is when it is dihedral,
– Case (iii) means the projective image is A4, S4 or A5.

We have to modify the proof in case (ii) as follows. Since ρf is totally odd, we
would obtain a totally imaginary quadratic extension M/F , of relative Galois group
say, {1, τ}, and a ray-class group character λ : ClM,f·p → F×

p (for some ideal f of

M) such that ρf = IndM
F λ

gal
, with NormM/F (f)DM/F |n · p. One can lift λ into a

Hecke character λ of M of type adapted to k, so that the theta series θ(λ) belongs to
Mk(Γ0(n · .p, ε) and

(C) f ≡ θ(λ) mod. p

here again, we use the ordinarity of f at p:

– first, if DM/F is divisible by q or qσ, θ(λ) cannot be ordinary at q (because k1

and kσ are greater than 1); therefore the field M can only ramify above n: this leaves
a finite set of possibilities for M .

– Moreover, by Hida’s p-stabilization lemma (Lemma 7.1 of Bull. SMF 1995), since
k1 and kσ are greater than 2 (that is, the cohomological weight (k1 − 2, kσ − 2) is
regular), the congruence (C) can only occur if λ has conductor prime to p.

In conclusion, consider the finite set Θ of rational primes p dividing one of the con-
gruence numbers C(θ(λ′)) for some Hecke character λ′ of a CM field M , such that
λ′ has the right infinity type, and the conductor f of λ′ and the discriminant DM/F

satisfy
Norm(f)DM/F divides n.

Then for p /∈ Θ, case (ii) does not occur.

Remark. — Note that these congruence numbers should be given as the algebraic part
of the special value of the Hecke L-function LM (λ′λ′[τ ], k). This is the hypothetical
converse of a general divisibility result of Hida-T. (Ann. Sci. ENS 1993). It is known
at the moment only for F = Q (Hida Inv. 64, 1981), but it is conjectured for any
totally real field F .

To treat case (iii), we follow closely the argument on p. 264 of [62]: if there were
infinitely many p satisfying case (iii), then by using Cebotarev density theorem, one
would find a set of positive density of v’s satisfying a2

v = 4 ·Nvk1−1. Since k1 is odd,
this condition implies that v ramifies in Q(f) or is degree 2 over Q. This set has
density zero in F . This is a contradiction. Thus, the set of p’s in case (iii) must be
finite.
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(b) As in [62], we proceed in two steps:

1) We establish the equality G = H0 for some prime pf ,
2) We deduce from 1) the existence of γ ∈ G as desired for almost all ordinary p’s

splitting in F .

Let p a rational prime, p|p in Q dividing pf and q. We assume that it satisfies (a),
that it splits completely in Q(f) and that f and fσ are ordinary at q. We assume
furthermore that for any quadratic Dirichlet character χ mod. n, there exists v prime
to Norm(n) such that av �≡ χ(v) · avσ mod. pf .

These conditions are satisfied if pf is prime to all congruence numbers for all pairs
f, fσ ⊗ χ (for the Hecke algebra of level Norm(n)2, generated by Hecke operators
outside Norm(n)); indeed the eigensystems of f and the fσ ⊗χ, for any χ mod. n are
mutually distinct. Indeed, if av = avσχ(v), for almost all vs, then χ descends to Q.
It defines a quadratic extension F ′/Q. Let E = F · F ′. Let fE be the base change of
f to E. If τ generates Gal(F ′/Q), the weight of fE is k1(1 + τ) + kσ(σ + στ). The
assumption implies that fE = (fσ)E = (fE)σ; hence fE should descend to F ′. This is
absurd since its weight is not invariant by Gal(E/F ) = {1, σ}. So these congruence
numbers are not zero, and thus can be avoided.

Claim. — For such p, G = H0
.

Proof. — If, not, Th. 3.8 of [62] (or rather, its proof) implies that there exists a
quadratic character χ of conductor dividing n · p such that

ρf ∼ ρfσ
⊗ χ.

This implies first av ≡ χ(v)·avσ mod. p for all v’s prime to Norm(n)p. Moreover, by
ordinarity of the Galois representations at p (existence of an unramified line), it also
implies that χ is unramified at p. Since χ is unramified at p, this is a contradiction
by the choice of p.

In fact, for p as above and splitting totally in Q(f), we even have as in Lemma 5.4
of [62], a stronger result:

Let
H0

= {(g, g′) ∈ GL2(I/pI) × GL2(I/pI); det(g) = det(g′) ∈ X}
and

G = Im(Gal(F/F ) −→ H0

Then,

(∗) G = H0
.

2) Let p0 be a prime satisfying the conditions of 1 and splitting totally in Q(f), so
that (∗) holds. There exists x ∈ H0

such that Tr(x)2 generates I/p0I × I/p0I over
Fp0 . Therefore, by Cebotarev density theorem, there are infinitely many finite places
v such that the image of (a2

v, a2
vσ ) ∈ I × I in I/p0I × I/p0I generates this ring. For

any such v, by Nakayama’s lemma, (a2
v, a

2
vσ ) generates the ring I(p0)×I(p0) over Z(p0),

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2002



62 A. MOKRANE & J. TILOUINE

hence Q(f) × Q(f) over Q. Fix such a v; let J = I[(a2
v, a2

vσ )]; it is of finite index in
I × I. for any prime p not dividing the index of J in I × I, we put γ = ρπ,p(Frv); it
belongs to G and Tr(γ)2 generates k′ × k′ over Fp (for k′ = I/p). For those p’s, we
conclude that G = H0. QED.

Remark. — Simplifications of this proof and sharper bounds for the prime p can be
found in Dimitrov’s thesis [19].

In the (2, 2)-CM case, let f = θ(φ). For any p and any p-adic field K (with valuation
ring O and residue field k) containing the field Q(φ) of values of φ, we still denote
by φ = φgal : Gal(M/M) → K× the p-adic Galois avatar of the Hecke character φ.
Thus, we have

ρπ = IndM
Q (φ).

Let T ⊂ G = GSp4 ⊂ GL(4) be the standard torus of G; the homomorphism ψ :
Gal(M/M) → GL4(O) given by ψ = diag(φ, φσ , φστ , φτ ) takes values in T (O) by
(∗∗). We have ρπ|M ∼= ψ. Let Iφ be the ring of integers of Q(φ); denote by k′ the
subfield of k = O/(�) image of Iφ by the reduction map O → k.

We claim that for almost all p’s which split totally in M , the image Ψ of ψ contains
a subgroup of index � n1 · nσ of A = {t ∈ T (k′) | ν(t) ∈ X}.

Observe that Ψ ⊂ A and ν(Ψ) = ν(A). Moreover, since the conductor f of φ is
prime to p, we see by class-field theory that the restriction of ψ to the compositum
of inertia subgroups above p contains all diag(an1 , bnσ , an1 · b−nσ , 1) with a, b ∈ k′×.
Since k′× is cyclic, we conclude. QED

Remark. — Note that in the (2, 2)-CM case, p is ordinary for f and fσ at p if and
only if p splits in M = E · F .

Corollary 2. — If p /∈ S, splits in F , is ordinary for f and fσ (at some pf |p), and is
greater than max(5, w + 1), (π, p) satisfies all the assumptions of Theorems 1 and 2.

Calculations communicated to us by H. Yoshida [91] establish that the unique
level one Hilbert cusp form over F = Q(

√
5) of weight (14, 2) (hence m = 6) admits

a non-zero cuspidal theta lift π which is a classical holomorphic Siegel cusp form of
level 5 and weight 8 (that is, a = b = 5, c = 10). The motive associated to π is rank
four with Hodge weights 0, 6, 7, 13.

– The field Q(f) is equal to F and the order If is maximal.
– The prime 31 is greater than the motivic weight w = 13;
– it splits in F :

(31) = pp
σ, p =

(13 + 3
√

5
2

)
,

– p is ordinary for f and fσ,
– the image Ψ of ρπ is equal to

{1, σ} ∝ {(g, g′) ∈ GL2(F31) × GL2(F31) | det g = det g′ ∈ (F×
31)

13}.
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The verification of this last point uses Th. 3.1 of [62]; the main points are

– to show, for F31 = If/p that:

Ψf = Im ρf = {g ∈ GL(2, F31) | det g ∈ (F×
31)

13}.

Indeed, Ψf contains a unipotent element: consider the degree 2 prime λ = (3)
in F ; the number a2

λ − 4N(λ)2 has order one at p. By [68] Lemma 1, this ensures the
existence of a unipotent element. Ψf is not contained in a Borel: there is a prime q

above 11 such that ρf (Frq) is elliptic.
– To find a γ ∈ Ψ such that Tr(γ)2 generates If/(31) over F31. Take for that the

prime q above 11 as above and

γ = (ρf (Frq), ρf (Frqσ ) ∈ GL2(F31) × GL2(F31).

One has Tr(γ)2 = (28, 1) ∈ F31 × F31, which generates F31 × F31 over F31.

This provides therefore an explicit example of a couple (π, p) satisfying all our
assumptions. Other potential examples for the same F and f are p = 19, 29; indeed,
they satisfy all the conditions above, except that non-trivial unipotent elements have
not been found in the limit of the calculations of a2

λ − 4N(λ)2 (namely, λ dividing at
most 31).

Yoshida [91] also found that for F = Q(
√

13), the unique level one Hilbert cusp
form of weight (10, 2) lifts to a nonzero holomorphic scalar-valued Siegel cuspform
of level 13, weight (6, 6) (a = b = 3) with Q(f) = F , and If maximal. The rank 4
motive associated to π has Hodge weights 0, 4, 5, 9. The primes p = 17 and 29 are
greater than w = 9, split in F ; they are ordinary for f and fσ. The image of Galois
contains {(x, y) ∈ Fp2 × Fp2 | N(x) = N(y) ∈ F9

p} ∝ {1, σ}. However, in the limit of
the calculations (λ dividing at most 61) no unipotent has been found in the image for
those primes. It would be interesting to find examples of cusp forms f of the minimal
possible weight, namely (4, 2). The theta lift π would then occur in middle degree
cohomology with constant coefficients: a = b = 0, and the Hodge-Tate weights of ρπ

would be 0, 1, 2, 3.

8. Proof of Theorem 2

The main tool in the proof of Th. 2 is the minimal compactification j : X ↪→ X∗

(see 8.1 below). This compactification is far from being smooth (for g > 1), but
it has some advantages over toroidal compactifications; namely, the strata have a
very simple combinatoric and, as a consequence, the Hecke correspondences extend
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canonically to the boundary. Let us consider the long exact sequence of the boundary:

· · · Hd
c (SU , Vλ(O)) Hd(SU , Vλ(O)) Hd

∂(SU , Vλ(O)) · · ·

· · · Hd
ét(X

∗
Q, j!Vλ(O)) Hd

ét(X
∗
Q, Rj∗Vλ(O)) Hd

ét(∂X∗
Q, Rj∗Vλ(O)) · · ·

In this section, we shall repeatedly use the standard spectral sequence for an étale
sheaf F on X∗, and a diagram j : X ↪→ X∗ ←↩ Y : i

H•(Y, i∗R•j∗F) =⇒ H•(Y, i∗Rj∗F).

It will allow us to study (localization at m of) H•(Y, i∗R•j∗F), rather than the hy-
percohomology of the complex i∗Rj∗F).

We will thus be left with the study of the Galois action on the boundary cohomology
group

H•
ét(∂X∗

Q, R•j∗Vλ(O))

in order to show that its localization at m vanishes. First, let us recall the description
of X∗

Q and the form of the spectral sequence attached to its stratification.

8.1. The minimal compactification. — The arithmetical minimal compactifica-
tion X∗ = X∗

g of X = Xg is defined in non-adelic terms in Th. 2.3 of Chapter V of
[13]. It is a normal projective scheme over Z[1/N ]. We are only interested in the
generic fiber X∗

Q = X∗ ⊗ Q. In this setting, an adelic definition can be found in [58]
or [59] Sect. 3 for a general reductive group G; let us describe the strata adelically for
G = GSp(2g). We need some notations. For r = 1, . . . , g, let Pr = Mr · UPr be the
standard maximal parabolic of G associated to the simple root αg−r+1 (see Sect. 3.2.2).
Its Levi group Mr is isomorphic to GL(r) × GSp(2g − 2r) (recall that GSp(0) = Gm

by convention). We decompose it accordingly into a product of group schemes over Z:
Mr = Mr,�×Mr,h, where the index �, resp. h, denotes the linear, resp. hermitian part
of Mr. Thus, Mr,h

∼= GSp(2g−2r) admits a Shimura variety, which is a Siegel variety
of genus g − r, while Mr,� does not. Let κr : Pr → Mr = Pr/UPr and let Pr,h be
the inverse image of Mr,h by κr. Let Kr,h be the standard maximal compact times
center in Mr,h(R), and Zg−r = Mr,h(R)/Kr,h be the Siegel space of genus g − r (it
has two connected components Z±

g−r); then the compactified symmetric space Z∗
g can

be described set-theoretically as:

Z∗
g =

g⊔
r=0

G(Q) ×Pr(Q) Zg−r

therefore,

S∗
U = G(Q)\Z∗

g × G(Af )/U.

ASTÉRISQUE 280



COHOMOLOGY OF SIEGEL VARIETIES 65

For any subgroup Vr ⊂ Pr(A), let us denote by Vr,h its projection to Mr,h(A) =
Pr(A)/Mr,�(A) · UPr (A). Then, by simple manipulations we obtain

(8.1.1) S∗
U =

g⊔
r=0

⊔
ẋ

Sg−r,xUr,h

where

– ẋ runs over the finite set Pr(Q)Pr,h(Af )\G(Af )/U , and x denotes an arbitrary
representative of ẋ in G(Af ); for later use, we may and do choose x so that its p-
component xp is trivial;

– we have put xUr = x · U · x−1 ∩ Pr(A),
– we have

Sg−r,xUr = Mr,h(Q)\Mr,h(A)/xUr,h = Mr,h(Q)\Zg−r × Mr,h(Af )/xUr,h.

Note that the disjoint union is set-theoretic, not topological; see below though.
For each ẋ, a standard application of ths Strong Approximation Theorem shows

that the connected components of Sg−r,xUr,h
are indexed by a system {mf,h} of rep-

resentatives in Mr,h(Af ) of the (finite) set of double cosets Mr,h(Q)\Mr,h(A)/xUr,h ·
Mr,h(R)+, where Mr,h(R)+ denotes the subgroup of Mr,h(R) of elements with pos-
itive similitude factor. Recall that we have assumed that U is good; the condition
ν(U) = Ẑ× implies that for any r � 1, the set Mr,h(Q)\Mr,h(A)/xUr,h ·Mr,h(R)+ has
only one element. That is, Sg−r,xUr,h

is connected.
Let

ΓMr,h
(x) = Mr,h(Q) ∩ (xUr,h × Mr,h(R)+),

then, we have a canonical identification

Sg−r,xUr,h
= ΓMr,h

(x)\Z+
g−r

this is a Siegel variety of genus g − r.
By [58] Sect. 12.3, the decomposition (8.1.1) of S∗

U into locally closed subsets canon-
ically descends to Q into a stratification of X∗

Q. We have

∂X∗
Q = X1 � · · · � Xg

where the stratum Xr is defined over Q. Actually,

(8.1.2) Xr =
⊔
ẋ

Xr,x

with ẋ ∈ P (Q)Pr,h(Af )\G(Af )/U and where Xr,x is the canonical descent to Q of
Sg−r,xUr,h

. (8.1.2) is a disjoint union in the Zariski topology.
Recall For the Zariski topology of X∗, one has Xi ⊃ Xj for i < j and

Xi − Xi+1 = Xi.
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8.2. Spectral sequence associated to the stratification. — To the stratifica-
tion ∂X∗

Q = X1 ⊃ · · ·Xg ⊃ Xg+1 = ∅ is associated a spectral sequence in Betti or
étale cohomology

(8.2.1) Ep−1,q
1 = Hp−1+q

c (Xp − Xp+1, k
∗
pRj∗Vλ(k)) =⇒ Hp−1+q(∂X∗

Q, Rj∗Vλ(k))

where kr : Xr ↪→ ∂X∗ denotes the locally closed embedding of Xr = Xr − Xr+1.
It is compatible with algebraic correspondences preserving the stratification. It is
mentioned as a remark in Milne, Etale Coh. Chap. III, Remark 1.30. We don’t know
a complete reference for it, hence we sketch the proof: Given a stratification on a
scheme Y , by closed subsets Y = Y0 ⊃ Y1 ⊃ · · · ⊃ Yn+1 = ∅, given a complex
of etale sheaves V on Y with constructible cohomology, we consider for p < q the
open immersion jpq : Yp − Yq ↪→ Yp and the closed immersion ipq : Yq ↪→ Yp. Let
Vp = i∗0pV; we have Vq = i∗pqVp for any p < q. We have short exact sequences

0 −→ jpq,!Vp|Yp−Yq −→ Vp −→ ipq,∗i
∗
pqVp −→ 0

This yields a stratification on the complex V:

0 ⊂ j01 !(V|Y −Y1) ⊂ j02 !(V|Y −Y2) ⊂ · · · ⊂ j0p !(V|Y −Yp) ⊂ · · ·V.

Note that for any p � 1:

j0p !(V|Y −Yp)/j0,p−1 !(V|Y −Yp−1) ∼= i0,p−1 ∗jp−1,p !Vp−1|Yp−1−Yp ,

hence,
Ep−1,q

1 = Hp−1+q
c (Yp−1 − Yp, (i∗0,p−1V)|Yp−1−Yp)

as desired.
Let us apply this sequence to our stratification. We have for any r � 1:

Xr − Xr+1 =
⊔
ẋ

Xr,x.

So,

(8.2.2) Er−1,s
1 =

⊕̇
x

Hr−1+s
c (Xr,x, Rj∗Vλ(k)|Xr,x).

By the standard spectral sequence

H•
c (Xr,x, R•j∗Vλ(k)|Xr,x) =⇒ H•

c (Xr,x, Rj∗Vλ(k)|Xr,x).

We are left with the study of R•j∗Vλ(k) = gr• Rj∗Vλ(k).

8.3. The restriction of the higher direct image sheaf to the strata. — It
is easy to determine the restriction mentioned above on the analytic site (in Betti
cohomology). The details are in [35] Sect. 2.2.5. One finds that the sheaf R•j∗Vλ(k)
restricted to the stratum Sg−r,xUr,h

is the locally constant sheaf on Sg−r,xUr,h
associ-

ated to the ΓMr,h
(x)-module:

H•(ΓMr,�
(x), H•(ΓUPr

(x), Vλ(k)))
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where

ΓMr,�
(x) = Mr,�(Q) ∩ (xUr,� × Mr,�(R)), for xUr,� = κr(xU) ∩ Mr,�(Af )

and
ΓUPr

(x) = UPr (Q) ∩ (xU ∩ UPr (Af ) × UPr(R)).

The main result of [59] is that, replacing the Betti site by the étale site, this result
remains true. More precisely, by Th. (5.3.1) of [59], the sheaf R•j∗Vλ(Fp) over X∗

/Q
restricted to Xr,x /Q is obtained by canonical construction from the representation of
Mr,h ⊗ Fp on

H•(ΓMr,�
(x), H•(ΓUPr

(x), Vλ(Fp))).

(and similarly for k instead of Fp). We then mention a mod. p version of Kostant
decomposition theorem. Recall we have chosen the representatives x ∈ G(Af ) so that
xp = 1. This implies in particular that ΓUPr

(x) is dense in UPr(Zp). For any reductive
subgroup M ⊂ G, and any (M, B ∩M)-dominant weight µ of T ∩M , let VM,µ be the
Weyl Zp-module of highest weight µ for M .

Lemma 14. — Assuming p − 1 > |λ + ρ|, then, for any r � 1, the semisimplification
of the FpΓMr (x)-module

Hq(ΓUPr
(x), Vλ(Fp))

is an Mr(Fp)-module whose decomposition into irreducible Mr-modules is given by:

Hq(ΓUPr
(x), Vλ(Fp))ss =

⊕
w”∈W Pr

�(w”)=q

VMr ,w”(λ+ρ)−ρ

Proof. — Over Qp, the module itself is semisimple and the decomposition is given by
Kostant’s theorem. By Theorem C of [61], for p as stated,

H•(ΓUPr
(x), Vλ(Zp))

is torsion-free. Therefore H•(ΓUPr
(x), Vλ(Zp)) is a stable lattice in

H•(ΓUPr
(x), Vλ(Qp))

Then, the determination of its composition factors as Zp[Mr(Fp)]-module, for p as
stated, is the content of Cor. 3.8 of [61].

Recall that Mr = Mr,� ×Mr,h. Let T� = T ∩Mr,� and Th = T ∩Mr,h; note that T�

consists in the t ∈ T of the form

diag(tg, . . . , tg−r+1, 1 . . . , 1, t−1
g−r+1, . . . , t

−1
1 ),

while the maximal torus Th of Mr,h consists in the elements

t = diag(tg, . . . , t1, ν · t−1
1 , · · · , ν · t−1

g )) ∈ T

such that tg = · · · = tg−r+1 = 1. For µw” = w”(λ+ρ)−ρ ∈ X∗(T ), we denote the re-
strictions to T� resp. Th by µw”,� = µw”|T�

, and µw”,h = µw”|Th
; since µw” is dominant

for (M, B ∩M), µw”,�, resp. µw”,h, is dominant for (M�, B∩M�), resp. (Mh, B∩Mh).
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By Theorem 1 of [61], it follows from p − 1 > |λ + ρ|, that the irreducible Mr/Zp
-

module VMr ,µw” can be decomposed as a tensor product of irreducible Zp-modules
over Mr,� resp. Mr,h:

VMr ,µw” = VMr,h,µw”,h
⊗ VMr,�,µw”,�

.

Therefore, as Mr,h-module, we have

(8.3.1) H•(ΓMr,�
(x), H•(ΓUPr

(x), Vλ(Fp))

=
⊕

w′′∈W Pr

H•(ΓMr,�
(x), VMr,�,µw′′,�

) ⊗ VMr,h,µw′′,h
.

Thus, the étale sheaf on Xr,x /Q associated to this representation of Mr,h is

(8.3.2)
⊕

w′′∈W Pr

H•(ΓMr,�
(x), VMr,�,µ

w′′,�
) ⊗ VMr,h,µw′′,h

(Fp).

In particular, the Galois action on the étale cohomology over Xr,x ⊗ Q of this sheaf
arises only from the second factors of each summand.

8.4. “Hodge-Tate weights” of the E1-terms. — Recall that xp = 1, hence xUr,h

is of level prime to p, so that Xr,x has good reduction at p. For each r � 1, and each
w′′ ∈ WPr , let us determine the Hodge filtration of the crystalline representations

H•
c (Xr,x ⊗ Qp, VMr,h,µw′′,h(Fp)).

We have dim Xr,x = dr = (g − r)(g − r + 1)/2. Since dr + |µw′′,h| < p − 1, Faltings’
comparison Th. 5.3 of [22] applies. Again, as in Sect. 7.2, one determines the weights
using the modulo p BGG complex (quasi-isomorphic to de Rham by Cor. 1 to Th. 6).
Let Q(Gg−r) be the Siegel parabolic of Gg−r = Mr,h and M(Gg−r) its standard Levi
subgroup. The weights are given by

−(w′(µw′′ + ρh) − ρh)(Hh) = −w′(w′′(λ + ρ) − ρ + ρh) − ρh)(Hh)

where w′ ∈ W
M(Gg−r)
Gg−r

. By the description of Th given above, we see that Hh = H

and w′(−ρ + ρh) = −ρ + ρh, hence, the weights are

(8.3.1) p(w) = −(w(λ + ρ) − ρ)(H) forw = w′ ◦ w′′

Claim. — For r � 1 and w′′ ∈ WPr , let

WG(w′′) = {w ∈ WG | w = w′ ◦ w′′, for w′ ∈ W
M(Gg−r)
Gg−r

}.

Then, the function WG(w′′) → N, w → p(w) cannot take both values 0 and w.
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Proof. — As already observed, the function w → p(w) factors through WM\WG. We
see that p(w) = 0 if and only if w ∈ WM and p(w) = w if and only if w ∈ WMw0

where w0 is the longest length element of WG. Recall that p(w) = jB =
∑

i∈B(ai + i)
where B denotes the subset of [1, g] corresponding to the {±1}g-component of the
Weyl group as in Sect. 2.3.1. The point is to verify that |p(w′w) − p(w)| < w for
w′ ∈ W

M(Gg−r)
Gg−r

. We have the compatible identifications

WG
∼= Sg ∝ {±1}g

WM
∼= Sg

WPr
∼= Sr × (Sg−r ∝ {±1}g−r)

WGg−r
∼= Sg−r ∝ {±1}g−r

By definition of the semidirect product, we have:

w′w = (σ, wB)(σ′, wB′) = (σσ′, σ′−1(B)∆B′)

where C∆C′ denotes the symmetric difference of subsets C, C′ of [1, g]. Since the
elements w′ being in WGg−r , the cardinality of B is at most g−r, hence the same holds
for σ′−1(B). In particular, if w ∈ WM , i.e. B′ = ∅, then for any B, σ′−1(B)∆B′ �=
[1, g] and similarly if w ∈ WMw0, i.e. B′ = [1, g], then for any B, σ′−1(B)∆B′ �= ∅,
as desired.

8.5. Hecke algebras for strata. — Let S be a finite set of primes contain-
ing the level of all strata but not containing p. Let H(Gg)S =

⊗
�/∈S H(Gg)�,

resp. H(M(Gg))S =
⊗

�/∈S H(M(Gg))� be the abstract Hecke algebras generated
over Z by double classes at all primes � /∈ S, for Gg = G resp. the Levi M(Gg) of the
Siegel parabolic Q(Gg). For each r � 1, we fix Mr = GL(r) × Gg−r, diag(A, B, ν ·
tA−1) → (A, B), where ν = ν(B). By this identification, we can decompose H(Mr) =
H(GL(r)) ⊗ H(Gg−r); we introduce also H(M(Gg−r)). For each prime q /∈ S, by
Satake isomorphism, we see that the fraction fields of the q-local Hecke algebras over
R fit in a diagram of finite field extensions:

Fr(H(M(Gg))q)R Fr(H(GL(r))q ⊗H(M(Gg−r))q)R

Fr(H(Gg)q)R Fr(H(GL(r))q ⊗H(Gg−r)q)R

It corresponds (see [13] Sect.VII.1 p. 246) by Galois correspondence to the diagram
of subgroups of Sg ∝ {±1}g:

Sr × Sg−r

Sg Sr × (Sg−r ∝ {±1}g−r)

Sg ∝ {±1}g
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The diagram of fields can be descended from R to Q by using twisted action
of the Weyl groups as in Sect.VII.1 p. 246 of [13]. In particular, H(M(Gg))q and
H(GL(r))q ⊗H(Gg−r)q are linearly disjoint over H(Gg)q:

(8.5.1) Fr(H(GL(r))q ⊗H(M(Gg−r))q)

= Fr(H(GL(r))q ⊗H(Gg−r)q) · Fr(H(M(Gg))q).

On the other hand, as a consequence of Satake isomorphism, the Hecke-Frobenius
element

Uq,G = Kg diag(q · 1g, 1g)Kg

where Kg denotes the standard hyperspecial maximal compact subgroup of M(Gg),
resp.

Uq,Gg−r = Kg−r diag(q · 1g−r, 1g−r)Kg−r

(with a similar definition for Kg−r), generates Fr(H(M(Gg))q) over Fr(H(Gg)q),
resp. Fr(H(M(Gg−r))q) over Fr(H(Gg−r)q) (see Sect.VII.1 of [13]). For r = g, note
that we define G0 as Gm and Uq = [q]. Then, for any r = 1, . . . , g, we have

Uq,G = 1H(GL(r) ⊗ Uq,Gg−r

From (8.5.1), we see that the minimal polynomial Irr(X, Uq,G,H(Gg)) is divisible by
Irr(X, 1H(GL(r)) ⊗ Uq,Gg−r ,H(GL(r))q ⊗H(Gg−r)q).

The Hecke algebra H(Gg)S acts on each stratum Xr =
⊔

ẋ Xr,x by Q-rational
algebraic correspondences. Indeed, there is a surjective homomorphism of Z-algebras

φg−r : H(M(Gg))S −→ H(M(Gg−r))S ,

[Gg(Zq) · diag(ar, b2g−2r, cr) · Gg(Zq)] −→{
[Gg−r(Zq) · diag(b2g−2r) · Gg−r(Zq)] if ar ∈ TGL(r)(Zq)

0 if not.

See [26], Sect. IV.3.
On Sg−r,

xUr,h, we let the double class [UαU ] act by the algebraic correspondence
associated to φg−r([UαU ]). By the theory of canonical models, since ν(U) = Ẑ×,
these correspondences are defined over Q.

Let m be the maximal ideal of H(Gg) associated to θπ. Let

W r,s = Er−1,s
1 m = (

⊕̇
x

Hr−1+s
c (Xr,x ⊗ Q, R•j∗Vλ(k)|Xr,x)[m]

Lemma 15. — For any q /∈ S, the characteristic polynomial of ρπ annihilates the
action of the geometric Frobenius Frq on W r,s.
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Proof. — By Theorem 4.2, Chap.VIII of [13], we know that

Irr(X, Uq,Gg−r ,H(Gg−r)q)

annihilates Frq on W r,s. By the divisibility relation obtained above, we also have
Irr(X, Uq,G,H(Gg))|X=Frq = 0 on W r,s. By definition of ρπ, we have char(ρπ(Frq)) =
Irr(X, Uq,G,H(Gg)), as desired.

8.6. End of the proof. — By the previous lemma, we can apply Lemma 13 to W r,s

(for r � 1): if W r,s �= 0, both characters 1 and ω−w occur in W r,s|Ip . This contradicts
the Claim in Sect. 8.4. Thus, we have for any s � 0, Er−1,s

1 m = 0. By (8.2.1) and (8.2.2),
we conclude that for any r � 1 and any s � 0, Hr−1+s(∂X∗, R•j∗Vλ(k))m = 0
as desired. By the long exact sequence of cohomology of the boundary, we obtain
Hd

c (X, Vλ(O))m = Hd(X, Vλ(O))m. We deduce the corollary:

Corollary 3. — For (π, p) as in Th. 1, the natural maps induce an isomorphism

Hd
c (X, Vλ(O))m = Hd(X, Vλ(O))m.

This is the first part of theorem 2.

8.7. Intersection cohomology. — For the minimal compactification j : X ↪→ X∗

and an etale sheaf F over X , we consider the intermediate extension j!,∗F . By [2],
prop. 2.1.11, we have the following description of this complex:

j!,∗F = τ<cgRjg,∗τ<cg−1Rjg−1,∗ · · · τ<c1Rj1,∗F

where for Ur =
∐

0�i�r Xi, we put jr : Ur−1 ↪→ Ur, r = 1, . . . , g, cr is the codimension
of the stratum Xr in Xr−1, and the truncation τ<c is the canonical truncation; it is
characterized by Hj(τ<cK) = Hj(K) if j < c, and Hj(τ<cK) = 0 if j � c.

We have

· · · Hd
c (SU , Vλ(O)) IH d(SU , Vλ(O)) IH d

∂(SU , Vλ(O)) · · ·

· · · Hd
ét(X

∗
Q, j!Vλ(O)) Hd

ét(X
∗
Q, j!,∗Vλ(O)) Hd

ét(∂X∗
Q, j!,∗Vλ(O)) · · ·

Proposition 6. — IH •
∂(SU , Vλ(O))m = 0.

The proof will be similar to the usual cohomology case: it relies on Pink’s theorem,
lemma 13 and a variant of Claim 8.4. Some more induction is needed though, due to
the successive truncations involved in defining j!,∗Vλ.

By the spectral sequence (Sect. 8.2) associated to our stratification, we are reduced
to show

H•
c,ét(Xr,x, j!,∗Vλ(k))m = 0.
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Lemma 16. — H •
c,ét(Xr,x, j!,∗Vλ(Fp)) admits a filtration stable by Galois and Hecke

actions and whose successive quotients are Galois and Hecke subquotients of

H•(Xr,x, R•jg,∗ ◦ R•jg−1,∗ ◦ · · · ◦ R•j1,∗Vλ(Fp))

where the • denote unspecified given integers.

Proof. — We write the argument for g = 1 and 2. For g = 1, it follows directly from
the second spectral sequence associated to the complex τ<c1Rj1,∗Vλ(Fp):

H•
c (Xr, τ<c1R

•j1,∗Vλ(Fp)) =⇒ H•
c (Xr, τ<c1Rj1,∗Vλ(Fp)).

In this notation, τ<c1R
•j1,∗Vλ(Fp) denotes R•j1,∗Vλ(Fp) if the unspecified integer •

is < c1, and is zero if not.
For g = 2, applying this “second spectral sequence” to

τ<c2Rj2,∗(τ<c1Rj1,∗Vλ(Fp))),

The group Hd
c,ét(Xr,x, j!,∗Vλ(Fp)) admits a dévissage by subquotients of

H•
c (Xr, τ<c2R

•j2,∗τ<c1Rj1,∗Vλ(Fp)).

(with similar convention concerning τ<c2R
•j2,∗(. . . )). The complex inside the coho-

mology is filtered, hence the cohomology itself is filtered and its graded pieces are
subquotients of

H•
c (Xr, τ<c2R

•j2,∗τ<c1R
•j1,∗Vλ(Fp))

by the formalism of spectral sequences.
Let

W (r) =
r∏

s=0
WPs

Gg−s

(so, W (0) = {1}). For w(r) = (wr , . . . , w1) ∈ W (r), the symbol w(r) · (λ + ρ(r)) is
defined by induction by

w(r + 1) · (λ + ρ(r + 1)) = wr+1 · (w(r) · (λ + ρ(r)) + ρr+1).

(recall that ρr denotes the half-sum of positive roots of Gg−r for the order deduced
from (Gg , Bg, Tg)) and wr · (λ + ρr) = wr(λ + ρr) − ρr. One sees by induction on r

that |λ + ρ| < p − 1 implies |w(r) · (λ + ρ(r))|r < p − 1 for any r � 0.

Definition 8. — Let λ be a p-small dominant weight of G = Gg. For any integer
r ∈ [1, g], we say that a locally constant sheaf on the stratum Xr is a Kostant sheaf
of type λ if it comes by the canonical construction from a FpΓMr (x)-module whose
semisimplification is a direct sum of irreducible Mr(Fp)-modules Vw(r)·(λ+ρ(r)) for
some w(r)’s of W (r).

Remark. — The category of Kostant sheaves of type λ on Xr is abelian and stable
by extension. However, it is probably not be semisimple.
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Lemma 17. — The sheaf Rαgjg,∗ ◦ · · · ◦Rα1j1,∗Vλ(Fp) is constructible finite étale; for
r = 0, . . . , g, its restriction to the stratum Xr is a Kostant sheaf of type λ which is 0
unless αr+1 = · · · = αg = 0.

Proof. — For this proof, some more notations are needed. Let jpq : Up ↪→ Uq for
p < q; thus, j = j0,g = · · · = jr ◦ j0,r. Let ip,q : Xp ↪→ Uq denotes the locally closed
immersion of Xp in Uq (composition of the closed immersion ip : Xp ↪→ Up followed
by jp,q). Note that j0,r = i0,r.

For each r, we consider the abelian category Cr of constructible étale sheaves in
Fp-vector spaces over Ur; let Ar be the (full) abelian subcategory of Cr generated by
the js,r,!is,s,∗Fs (0 � s � r) where Fs is a Kostant sheaf of type λ on Xs. Since these
sheaves are supported by the strata Xs and since there are no non-zero morphisms
between sheaves with disjoint support, Ar consists exactly in the objects mentioned.

Let Br be the (full) abelian subcategory of Cr stable by extension generated by Ar.
It coincides with the subcategory of Cr of sheaves whose restriction to each stratum
Xr is Kostant of type λ.

Let us first prove that the sheaves of the form G = jr−i,r,!is,r−i,∗Fs, 0 � s � r − i

are objects of Br.
Indeed, we have the short exact sequence:

0 −→ jr−i−1,r,!is,r−i−1,∗Fs −→ G −→ jr−i,r,!ir−i,r−i,∗i
∗
r−i,r−iG −→ 0

We show first that the right member of this short exact sequence belongs to Ar.
We recall that the closure of Xs in X∗ coincides with the minimal compactification
X∗

s of Xs. So, we can apply the main result of [59] to the open (in X∗
s ) immersion

is,r−i in order to compute the restrictions to the stratum Xr−i of the sheaf is,r−i,∗Fs.
This yields the formula

i∗r−i,r−iG = i∗r−i,r−iis,r−i,∗Fs = Fr−i

for a locally constant sheaf Fr−i. Therefore,

jr−i,r,!ir−i,r−i,∗i
∗
r−i,r−iG = jr−i,r,!ir−i,r−i,∗Fr−i

is in Br.
On the other hand, by decreasing induction on i, the sheaf jr−i−1,r,!is,r−i−1,∗Fs on
the left is in Br (the first step of the induction is true since for i = r − s, we have
js,r,!is,s,∗Fs ∈ Br). In particular, the sheaves is,r,∗Fs are objects of Br.

Remark. — If any finite FpΓMr (x)-module with p-small highest weight (in the set-
theoretic sense: that is, for the action of T (Z/pZ)) were algebraic with p-small weight
in the schematic sense, it would follow from [61] Lemma 1.11 that it would be semisim-
ple. This statement however, is false as shown by the example V = Symp F2

p for GL2

and Γ = SL2(Z). Thus, Ar and Br|Xr are not semisimple. Fortunately, this semisim-
plicity won’t be used in the sequel.
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Let us return to the proof of Lemma 17. We proceed by induction on g. It is clear
for g = 1. Assume the result is true for g − 1.

It is enough to show by induction on r � 0 the following statement

(Pr) Rαrjr−1,r,∗ ◦ · · · ◦ Rα1j0,1,∗Vλ(Fp) ∈ Br.

(Pr) is obvious for r = 0. For r = 1, let R1 = Rα1j0,1,∗Vλ; we know that R1|X1 is
a Kostant sheaf by Lemma 14. Therefore, we have an exact sequence on U1:

0 −→ j0,1,!Vλ ⊗ T0 −→ R1 −→ i1,1,∗i
∗
1,1R1 −→ 0

for some multiplicity vector space T0 (with T0 = Fp if α1 = 0 and 0 otherwise).

Induction step. — Assume that (Pr−1) holds. Note that R•jr−1,r,∗ preserves Cr. Let

Rr−1 = Rαr−1jr−2,r−1,∗ ◦ · · · ◦ Rα1j0,1,∗Vλ(Fp).

By assumption there is a filtration F •Rr−1 whose graded pieces are in Ar−1.
Hence, since Br is abelian, R•jr−1,r,∗Rr−1 will be in Br if for each s between 0 and

r − 1:

(8.6.1) R•jr−1,r,∗js,r−1,!is,s,∗Fs is in Br

for any Kostant sheaf Fs of type λ.
We can assume s = 0 (by replacing X by the Siegel variety Xs), and we have to

prove that R•jr−1,r,∗j0,r−1,!F0 ∈ Br. We prove in the Appendix that such a sheaf is
constructible with respect to the natural stratification of X∗. Therefore, it remains
only to show that for each s � r, the locally constant sheaf

R•jr−1,r,∗j0,r−1,!F0|Xs

is Kostant of type λ.
For this purpose, it will be enough to show that R•jr−1,r,∗j0,r−1,∗F0 is constructible

and Kostant on each stratum Xs (s � r). Indeed, let us consider the short exact
sequences

0 −→ jt,r−1,!j0,t,∗F0 −→ jt+1,r−1,!j0,t+1,∗F0 −→ jt+1,r−1,!it+1,t+1,∗Ft+1 −→ 0

where t = 0, . . . , r−2 and Ft = i∗t (j0,t,∗F0). Note that by the induction hypothesis (for
the Siegel variety Xt+1) R•jr−1,r,∗jt+1,r−1,!it+1,t+1,∗Ft+1 ∈ Br. Therefore, by consid-
ering long exact sequences for Rjr−1,r,∗ associated to these short exact sequences, we
see that R•jr−1,r,∗j0,r−1,!F0 ∈ Br if and only if R•jr−1,r,∗j0,r−1,∗F0 ∈ Br.

This sheaf is the E•,0
2 -term in the spectral sequence of composition of two functors

abutting at
R•j0,r,∗F0

By Sublemma 1 below, this abutment is of type Br. Let us check that for q > 0,

Ep,q
2 = Rpjr−1,r,∗R

qj0,r−1,∗F0

belongs to Br.
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We notice that for any q > 0, Rqj0,r−1,∗F0 is supported on X1 ∪ · · · ∪Xr−1, hence
we can apply the induction assumption to X∗

1 which has a stratification of length
g − 1; we obtain

If q > 0, Ep,q
2 ∈ Br.

The conclusion follows then from sublemma 2.

Sublemma 1. — Let X∗ be a space with a stratification Σ of length g. For each r =
0, . . . , g, let Ar be an abelian subcategory of locally constant sheaves on Xr; assume
that for any s � r � g, i∗rR

•is,∗ sends As to Ar. Let B be the smallest abelian category
of Σ-constructible étale sheaves on X∗ which is stable by extensions (that is, which is
thick) and contains js,!is,s,∗Fs (for s = 0, . . . , g). Then R•j∗ sends A0 to B.

Proof. — Let V0 ∈ A0 and F = R•j∗V0. Consider the filtration

Fg = j!F |U0 ⊂ · · · ⊂ Fr = jr,!F |Ug−r ⊂ · · · ⊂ F0 = F

The successive quotients are given by

Fi−1/Fi
∼= jg−i+1,!ig−i+1,∗i

∗
g−i+1Fi−1.

Note that i∗g−i+1Fi−1 = i∗g−i+1F belongs to B by assumption.
We conclude by the following trivial lemma.

Sublemma 2. — Let B be a full thick abelian subcategory of an abelian category C which
is stable by subobjects and quotients. Let Ep,q

2 ⇒ Hp+q in C be a spectral sequence
concentrated in p, q � 0. Assume that Ep,q

2 ∈ B for any Ep,q
2 , q �= q0, and Ep,q

∞ ∈ B
for any p, q, then Ep,q0

2 ∈ B.

Proof. — By decreasing induction on the r of the spectral sequence Ep,q
r .

From these two lemmata, th. 2.(ii) will follow if we show

Lemma 18. — For any s = 1, . . . , g, we have

H = H•
c (Xs, Vw(s)·(λ+ρ(s)))m = 0.

Proof. — As in Section 8.4, we see that the Hodge-Tate weights occuring in H are

−w′
s · w′′

s · · ·w′
1 · w′′

1 · (λ + ρ(s))(H)

that is,
p(w) = −(w(λ + ρ) − ρ)(H) forw = w′

s ◦ w′′
s ◦ · · ·w′

1 ◦ w′′
1

As in 8.4, since s � 1, 0 and w cannot occur simultaneously as weights for this
cohomology group. On the other hand, by the Galois-theoretic argument 8.6 they
should, if H �= 0 by Lemma 13. We conclude H = 0.

It is maybe useful to state in a single result an outcome of our proof of Theorems
1 and 2:
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Corollary 4. — Under the assumptions for π, p, m as before, we have:

H•
c (SU , Vλ(O))m = IH •(SU , Vλ(O))m = H•(SU , Vλ(O))m = Hd(SU , Vλ(O))m.

Comment. — This corollary requires (RLI), but does not require the regularity of λ.
When λ is regular, we have already mentioned that

H•
cusp(SU , Vλ(C)) = IH •(SU , Vλ(C)) = H•

! (SU , Vλ(C)) = Hd
! (SU , Vλ(C)).

moreover, it seems plausible that for such a λ, for any q < d, Hq(SU , Vλ(C)) = 0. It
might result from Franke spectral sequence. It does indeed for g = 2 (see Appendix
A of [77]). If it were true, harmonic analysis would provide a complex version of our
theorem, without localization:

For, q < d,

Hq
cusp(SU , Vλ(C)) = IH q(SU , Vλ(C)) = Hq

! (SU , Vλ(C)) = Hq(SU , Vλ(C)) = 0

and
Hd

cusp(SU , Vλ(C)) = IH d(SU , Vλ(C)) = Hd
! (SU , Vλ(C)).

But of course
Hd

! (SU , Vλ(C)) �= Hd(SU , Vλ(C)).

9. Application to a control theorem

In this section, we want to apply Theorem 1 for improving upon Theorem 6.2 of
[77]. More precisely, we want to replace the non effective assumption on the prime
p there, (namely, p prime to the order of the torsion subgroups of Hq(SU , Vλ(Z)) for
q = 1, 2, 3) by an“effective”assumption p−1 > max(a2+a1+3, 4) which in particular
is independent of the level (however, we need to assume the mod. p non-Eisensteiness
condition (RLI) which is far from being effective, but depends only on ρπ). Note
however that we need to localize the Hecke algebra at the maximal ideal given by θπ

modulo �. This is innocuous for questions of congruences between θπ and characters
coming from other representations occuring in H3.

We prefer to treat axiomatically the general case G = GSp(2g)Q of an arbitrary
genus g, assuming conjectures (which are proven for g = 2). Most notations in this
section follow those of Section 7 of [77]. Let λ = (ag, . . . , a1; c) be a dominant regular
weight (i.e. ag > · · · > a1 > 0) and π a cuspidal representation of level U occuring in
Hd(SU , Vλ(C)). Recall that B denotes the standard Borel subgroup B of G and B+

its unipotent radical. Let p be a prime not dividing N . for any n � 1, let

U0(pn) = {g ∈ U | g mod. pn ∈ B(Z/pnZ)}

resp.
U1(pn) = {g ∈ U | g mod. pn ∈ B+(Z/pnZ)}
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The p-component of U0(pn) resp. U1(pn) is the Iwahori subgroup (resp. strict Iwahori
subgroup) of level pn; it is denoted by In ⊂ G(Zp), resp. Jn ⊂ G(Zp). Let S1(pn)
resp. S0(pn) be the Siegel variety associated to U1(pn) resp. to U0(pn). For each n � 1,
let

Wq
λ,n = Hq(S1(pn), V ′

λ(K/O))

where V ′
λ denotes the Iwahoric induction of λ that is the lattice in Vλ(K) consisting in

λ−1-equivariant rational functions f on G/B+ taking integral values on the Iwahori
subgroup I1 of G(Zp). Thus V ′

λ is I1-stable (hence Jn-stable for any n � 1). Note
that it contains the G(Zp)-stable lattice Vλ defined similarly, but with the stronger
condition f(G(Zp)) ⊂ O. Let Wq

λ be the inductive limit over n � 1 of the Wq
λ,n.

Let W•
λ,n =

⊕
Wq

λ,n, resp. W•
λ =

⊕
Wq

λ. We introduce several abstract Hecke
algebras: Let

Dp = {d ∈ T (Qp) ∩ M2g(Zp)prim | ordp(α(d)) � 0 for any positive root α}

where M2g(Zp)prim denotes the set of integral matrices with relatively prime entries.
Dp is a semigroup. Let HN , resp. HN,In , resp. HN,Jn be the abstract Hecke O-algebra
outside N and integral at p, resp. integral at p of type In, resp. integral at p of type Jn:

HN =
⊗

� prime to Np

O[G(Q�)//G(Z�)] ⊗O[UpDpUp//Up],

HN,In =
⊗

� prime to Np

O[G(Q�)//G(Z�)] ⊗O[InDpIn//In],

HN,Jn =
⊗

� prime to Np

O[G(Q�)//G(Z�)] ⊗O[JnDpJn//Jn].

For any n � 1, there is a natural surjective homomorphism HN,Jn → HN,In , but that
there is no homomorphism HN,I1(O) → HN . Assume that π satisfies the condition
(AO) of automorphic ordinarity at p (see introduction). Let us recall how one can
transfer the character θπ : HN → O to a character θ′π : HN,I1 → O. The inclusion of
lattices Vλ ⊂ V ′

λ, together with the finite morphis S0(p) → SU give rise to a morphism
of sheaves (SU , Vλ(O)) → (S0(p), V ′

λ), hence a morphism on cohomology

ι : H•
∗(SU , Vλ(O)) −→ H•

∗(S0(p), V ′
λ(O)).

Moreover, the Hecke operators Tp,i, i = 1, . . . , g, defining the condition (AO) act
on these cohomology groups. Observe however that for each i, Tp,i act differently in
prime-to-p level (e. g. on SU ), and in level p (e. g. on S0(p)). They define idempotents
on these cohomology groups; let e0 = limn→∞(

∏g
i=1 Tp,i)n! be the idempotent defined

on H•
∗(SU , Vλ(O)), and e = limn→∞(

∏g
i=1 Tp,i)n! defined on H•

∗(S0(p), V ′
λ(O)) by the

same formula (with a different meaning though).

Lemma 19 (Hida’s stabilization lemma). — If λ is regular, the homomorphism

H•
∗(SU , Vλ(O)) −→ H•

∗(S0(p), V ′
λ(O)), x −→ e · ι(x)
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induced by the diagram

H•
∗(SU , Vλ(O)) −→ H•

∗(S0(p), V ′
λ(O))⋃

e
�

e0 · H•
∗(SU , Vλ(O)) e · H•

∗(S0(p), V ′
λ(O))

is an isomorphism sending an eigenclass for HN to an eigenclass for HN,I1 .

Proof. — See Prop. 3.2 of [77] (proven there for GSp(4) over a totally real field: it
generalizes directly to arbitrary g).

Denote by hλ(U ;O), resp. hλ(U1(pn);O), resp. hλ(U0(pn);O), the image of
HN in EndO(H•(SU , Vλ(O))), resp. of HN,Jn in EndO(W•

n), resp. HN,Jn in
EndO(H•(S0(pn), V ′

λ(O))). By the lemma above for ∗ = ∅, the character
θπ : hλ(U ;O) → O induces a character θ′π : hλ(U0(p);O) → O; hence (com-
patible) characters of hλ(U1(pn);O) for any n � 1. Let

hλ = lim←−
n

hλ(U1(pn);O).

Note that hλ acts faithfully on W•. Let m′ = Ker θ
′
π be the maximal ideal of hλ

associated to π. The localization Wq
λ(m′) of Wq

λ, resp. Vq
λ at m′ is contained in the

ordinary part e · Wq
λ and is therefore a localization of this ordinary part. Note that

T (Zp) ⊂ Dp; by action on Wq
λ,n, we obtain (compatible) group homomorphisms

〈 〉λ : T (Zp) −→ hλ(U1(pn);O).

By linearization, we obtain a continuous O-algebra homomorphism from the com-
pleted group algebra O[[T (Zp)]] to hλ. For any discrete O[[T (Zp)]]-module W , the
Pontryagin dual W� = Hom(W , K/O) is a compact topological O[[T (Zp)]]-module.
Let

T1 = Ker(T (Zp) −→ T (Fp)) and Λ = O[[T1]]

Λ is an Iwasawa algebra in (g + 1)-variables. Recall that an arithmetic character
χ : T (Zp) → O× is a product χ = εµ where ε is of finite order, factoring through,
say, T (Z/pnZ) and µ ∈ X�(T ) is algebraic. If χ ≡ 1 mod. �, it can be identified to
a character of T1. It induces canonically an O-algebra homomorphism χ : Λ → O.
Its kernel Pχ is a prime ideal of Λ called an arithmetic prime. We say that χ = µε is
dominant regular if µ is.

Theorem 9. — Given a π cuspidal of level N ; let p be a prime not dividing
N such that the conditions (Gal), (RLI), (AO) and (GO) hold, and that
p − 1 > max(a1 + · · · + ag + d, 4); then

(i) W•
λ(m′) = Wd

λ(m′) and Wd
λ(m′)� satisfies the exact control theorem: for any

regular dominant arithmetic χ, there is a canonical isomorphism

Hd(S0(pn), V ′
λ⊗χ(K/O))m′ −→ Wd

λ(m′)[χ]
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Same result for the compactly supported version CWλ(m′) of Wλ(m′) and for its image
Wd

!,λ(m′) in Wλ(m′).
(ii) The inclusion Wd

!,λ(m′) ⊂ Wd
λ(m′) is an equality.

(iii) Wd
λ(m′)� is free of finite rank over Λ.

Proof

(i) The proof makes use of Hida’s Exact Control criterion (Lemma 7.1 of [42])
together with the calculations of Section 3 of [77] which generalize readily to
GSp(2g)Q. We prove Wq

λ(m′) = 0 and CWq
λ(m′) = 0 by induction on q < d. For

that, by Theorem 3.2(ii) and isomorphism (3.16) of [77], it is enough to show that
Hq(S0(p), V ′

λ(K/O))m′ = 0. By Proposition 3.2 of [77] and its proof (relating m′ and
m), this amounts to see Hq(SU , Vλ(K/O))m = 0. This is precisely what is stated in
Theorem 1 in the introduction, under our assumptions. Thus, exactly as in the proof
of Theorem 3.2 of [77], we obtain (i) for Wq. In an exactly similar manner, we show
the control for the compact support analogue, based on the Exact Control criterion
for compactly supported cohomology.

(ii) Similarly, the degree d boundary cohomology is controlled, and vanishes in
weight λ (i.e. χ = 1) by our Main Th. 2. Therefore, by Nakayama’s lemma, it vanishes
Λ-adically, and Wd

!,λ(m′) = Wd
λ(m′).

(iii) We use the following criterion: a discrete Λ-module W is Λ-cofree of corank
r < ∞ if and only if there exists an infinite set of arithmetic characters χ such that⋂

χ Pχ = 0 in Λ, and for which W [χ] is O-divisible, cofree of constant corank r. We
take the set of algebraic dominant characters χ = µλ−1 with µ regular dominant and
congruent to λ mod. p, and apply the control formula stated in (i). We need to see
that Hd(S0(p), V ′

µ(K/O))m′ is p-divisible (and furthermore, of constant corank). The
long exact sequence

Hd(S0(p), V ′
µ(K))m′ −→ Hd(S0(p), V ′

µ(K/O))m′ −→ Hd+1
c (S0(p), V ′

µ(O))m′

shows it is enough to verify that the Hd+1 is torsion-free. By Poincaré-duality (Th. 6.4
of [77]), it amounts to see that Hd−1

c (S0(p), V ′
�µ(K/O))m′ is divisible; in fact it is null

because by (i), since µ̂ is regular dominant, one knows that CWd−1
�λ (m′) is zero and

that it is controlled:

Hd−1
c (S0(p), V ′

�µ(K/O))m′ = CWd−1
�λ (m′)[χ̂] = 0.

This shows the divisibility of Wd
λ(m′)[χ] for all µ’s as above. The corank r(χ) can

be read off from the dimension over the residue field k of the �-torsion. Note that
in Λ, Pχ + (�) is the maximal ideal, hence does not depend on χ. Thus r(χ) =
dimk Wd

λ(m′)[mΛ] is independent of χ. QED.
Let hm = hλ(U ;O)(m′) be the localization of hλ at m′. It acts faithfully on

W•
λ(m′) = Wd

λ(m′).
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Theorem 10. — Under the same assumptions,

(i) hm is a finite torsion-free Λ-algebra,
(ii) there exists a finite integrally closed extension I of Λ and a Λ-algebra homomor-

phism Θ : hm → I such that for any µ ∈ X such that µ ≡ λ mod. p and φ = µλ−1 is
dominant regular, for P a prime in I above Pφ and O′ = I/P , there is a commutative
diagram

hm/Pφhm O′

hµ(U ;O)m

where the horizontal arrow is Θ⊗IdI/P and the oblique arrow is θπP for some cuspidal
automorphic representation πP occuring in Hd(SU , Vµ(C)). For µ = λ, one has
θπP = θπ on HN .

(iii) If π′ is another cuspidal representation occuring in Hd(SU , Vλ(C)), if θπ ≡
θπ′ mod. max(Zp), there exists another finite integrally closed extension I′ of Λ and
a Λ-algebra homomorphism Θ′ : hm → I′ lifting θπ′ and for any µ and any arithmetic
ideal P ′′ in the compositum I · I′; let P = P ′′ ∩ I and P ′ = P ′′ ∩ I′; we have

θπP ≡ θπ′
P ′

mod. max(Zp).

Comments

1) We call Θ a Hida family in (g + 1)-variables lifting θπ. Statement (iii) means
that congruences to θπ (outside N) can be lifted to families of congruences.

2) Statement (i) implies that hm is flat of relative dimension (g + 1) over O; this
was predicted by calculations in Sect. 9, Example 2, and Sect. 10.5.3, Conjecture I, of
[76]; it was already proven g = 2 in [77] under stronger assumptions on p.

3) The representations πP occuring in the family whose existence is stated in (iii)
are cuspidal because hm is cuspidal: by Th. 9(ii), Wd

!,λ(m′) = Wd
λ(m′) for any µ as in

the theorem, Hd(SU , Vµ(O))m ⊂ Hd
cusp(SU , Vµ(C)) by our Th. 2 and the considera-

tions at the end of Sect. 2.1.

Proof. — It results from the previous one as in Corollary 7.5-7.7 of [77].

10. Application to Taylor-Wiles’ systems

In this section, we apply Theorem 1 to show that some cohomology group MQ is
free over a finite group algebra O[∆Q] (this is the non-trivial condition to be verified
for having a Taylor-Wiles’ system: Condition (TW3) of Definition 1.1 in [29], see also
Proposition 1 of [73]. More precisely, let us fix as above a cuspidal stable representa-
tion π whose finite part πf occurs in Hd(SU , Vλ(C)), for a regular dominant weight
λ. Let p be a prime at which the level group K is unramified. Let r � 1. We consider
sets Q = {q1, . . . , qr} consisting of primes q which are congruent to 1 mod. p and such
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that the four roots of θπ(Pq(X) are distinct and belong to k. For each q ∈ Q, we fix
one of these roots and denote it by αq. Let (Z/qZ)× = ∆q × (Z/qZ)(p) where ∆q is
the p-Sylow subgroup and (Z/qZ)(p) the non-p-part of (Z/qZ)×. Let ∆Q =

∏
q∈Q ∆q.

We put

UQ =
{
g ∈ U | for any q ∈ Q, g ≡


u ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 u−1 ∗
0 0 0 ∗

 mod. q, u ∈ (Z/qZ)(p)
}

and
U0(Q) =

{
g ∈ UQ | for any q ∈ Q, g mod. q ∈ B(Z/qZ)

}
Let HQ be the abstract Hecke algebra for UQ generated over O by

– Hecke operators T ’s outside

SQ = Ram(U) ∪ {p} ∪ Q

– the Uq’s for each q ∈ Q:

Uq = UQ · diag(1, . . . , 1, q, . . . , q) · UQ

– and by the normal action of ∆Q = K0(Q)/KQ.

θπ : HQ → O resp. θπ : HQ → k define O-algebra homomorphisms. Let

mQ =
〈
�, T − θπ(T ), (T outsideSQ), Uq − αq, (q ∈ Q)

〉
.

It is a maximal ideal of HQ. Consider the following “d-th homology module”:

MQ = Hd(SUQ , Vλ(K/O))�
mQ

It has a natural action of the ring O[∆Q]. This ring is a complete intersection
noetherian local ring.

Theorem 11. — Assume that (Gal), (RLI), (GO) hold, and p − 1 > max(|λ + ρ|, 4);
then, for any Q as above MQ is free over O[∆Q].

Proof. — By Theorem 1, we know that MQ is free as O-module. Hence, it is enough
to show that MQ = MQ/� · MQ is free over ΛQ = k[∆Q]. By Pontryagin duality,
MQ is the k-dual of the �-torsion submdodule NQ of Hd(SUQ , Vλ(K/O))mQ . By the
long exact sequence for

0 −→ Vλ(�−1O/O) −→ Vλ(K/O) −→ Vλ(K/O) −→ 0

and the vanishing of Hd−1(UQS, Vλ(K/O))mQ , we see that

NQ = Hd(SUQ , Vλ(k))mQ .

Moreover, ΛQ is complete intersection, hence is a Frobenius algebra: the freeness
of MQ is equivalent to that of NQ.

To show that NQ is free, we follow Fujiwara’s approach (Sect. 3 of [28]). Since ΛQ

is artinian local, freeness is equivalent to flatness: TorΛQ

j (NQ, k) = 0 for j > 0. For

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2002



82 A. MOKRANE & J. TILOUINE

any � prime to N , consider the sub-semigroup D′
Q,� of T (Q�)∩M2g(Z�)prim consisting

in t’s such that ord�(α(t) � 0 for any positive root α of (G, B, T ). Let DQ,� =
UQ,� · D′

Q,� · UQ,�. For q ∈ Q, the local Hecke algebra HQ,q = Z[UQ,q\DQ,q/UQ,q] is
generated by

∆q and diag(1, qa2 , . . . , qag , qc−ag , . . . , qc−a2 , qc), for 0 � a2 � · · · � ag � c/2.

Note that
HQ =

⊗
�/∈SQ

Hunr
� ⊗

( ⊗
q∈Q

HQ,q

)
We view Vλ(k) as an étale sheaf over XQ = SUQ ⊗Q. For t ∈ T (AN) and t� ∈ D′

Q,�,
the Hecke correspondence [UQtUQ] acts on (XQ, Vλ(k)) via the diagram

(10.1)

SUQ∩t−1UQt
∼= SUQ∩tUQt−1

π1 π2
SUQ SUQ

where π1 and π2 are the canonical coverings induced by the inclusions of the level
groups, the horizontal isomorphism is induced by right multiplication by t−1. The
action on the sheaf Vλ(k) is via π1,∗ ◦ [t−1] ◦ π∗

2 , where [t−1] : π∗
2Vλ(k) → π∗

1Vλ(k)
is induced by a right action of the p-component t−1 on the representation Vλ which
preserves integrality: see for instance [77] Section 3.5.

We can form a complex C• representing RΓ(X, Vλ(k)) endowed with an action of
Gal(Q/Q) ×HQ. One can take for instance the global sections C•(XQ, Vλ(k)) of the
étale Godement resolution

C•(X, Vλ(k))

of Vλ(k) (see [27] Sect. 12, p. 129, and Section 3.4 [29]) whose terms are acyclic.
More precisely, by functoriality of the construction, the diagrams (10.1) still operate
on (XQ, C•) and induce endomorphisms [UQtUQ] of C•. The diagrams (10.1) are
defined over Q, hence the action of Galois by transport of structure commutes to these
endomorphisms. The main property that we shall use for the Godement resolution
is the following. Let f : X → Y be a finite étale Galois covering with Galois group
G, let G be an étale sheaf on Y , let C•(Y,G)), resp. C•(X, f∗(G) be the Godement
resolution of G resp. f∗G on Y resp. X . G acts on f∗C•(X, f∗(G) and the adjunction
map a : G → f∗f

∗G induces an isomorphism

(f∗C•(X, f∗G))G = C•(Y,G).

In particular for q ∈ Q and G = ∆q, we shall make use of the formula

(10.2) (C•(XQ, Vλ(k)))∆q = C•(XQ/∆q, Vλ(k)).

The hypercohomology spectral sequence applied to C• ⊗ΛQ k gives rise to the Tor-
spectral sequence:

Ei,j
2 = TorΛQ

−i (Hj(C•), k) −→ Hi+j(C• ⊗ k)
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All the maps involved are k[Gal(Q/Q)] × HQ-linear. Let us tensor this spectral se-
quence with the localized Hecke algebra HQ,mQ . We get

Ei,j
2 (mQ) = TorΛQ

−i (Hj(C•)mQ , k) −→ Hi+j(C• ⊗ k)mQ

Fact. — Hj(C•)mQ = 0 for any j �= d.

Proof. — By Theorem 1, we know that

Hj(SUQ ⊗ Q, Vλ(k))mQ = 0 for j > d.

This fact implies that the spectral sequence is concentrated on Ei,d
2 (mQ) =

TorΛQ

−i (NQ, k) and therefore degenerates:

Hi+d(C• ⊗ΛQ k)mQ = Ei,d
2 (mQ).

It remains to see that Hi+d(C• ⊗ΛQ k)mQ = 0 unless i = 0.
For this purpose, we consider the exact sequence of complexes

(10.3) 0 −→
∏

q∈Q

(C•)∆q −→ (C•)⊕Q −→ (C•)⊕Q −→ C• −→ C• ⊗ΛQ k −→ 0

where for each q ∈ Q, the q-th component of the middle arrow is the multiplication by
δq − 1 on C•, for δq a generator of ∆q. By Theorem 1 of this paper and by (10.2), we
see that the first four complexes of (10.3) have no mQ-localized cohomology in degree
> d. By considering long exact sequences, and by exactness of mQ-localization, this
implies that the same holds for the complex of ∆Q-coinvariants C•

∆Q
= C• ⊗ΛQ k.

This concludes the proof.

11. Appendix I: On the constructibility of certain étale sheaves

Let X∗ be the minimal compactification over Q of the Siegel variety X over the
rationals. Let Σ be the standard stratification on X∗; the strata have dimension
cr = r(r + 1)/2, r = g, g − 1, . . . , 0. Let r � 0 and Ur be the union of the strata of
dimension greater than cr; we write Σr for the stratification on Ur induced by Σ. Let
jr : Ur ↪→ X∗ be the natural open immersion. The goal of this appendix is to provide
a proof for the following proposition which is used in Sect. 8.7 for proving Lemma 18.

Proposition 7. — For any Σr-constructible torsion étale sheaf V on Ur, for any i � 0,
Rijr,∗V is Σ-constructible.

Proof. — Since r is fixed, we abbreviate jr = j. We use a smooth toroidal com-
pactification of X . Let U be the level group of our Siegel variety. Let S = (Sξ)ξ

be a U -admissible regular rational polyhedral cone decomposition of S2(Zg) (see [13]
Chap. IV, Th. 6.7 and [58] Sect. 12.4); in the above notation, ξ runs over the set of
rational boundary components in the minimal compactification X∗ and Sξ is a poly-
hedral cone decomposition of S2(Nξ) for a quotient Nξ of Zg of rank rξ, depending
only on ξ (here, rξ is the genus of the Siegel variety ξ). Let XS be the corresponding
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toroidal compactification of X over Q. It is smooth and XS−X is a divisor with nor-
mal crossings, whose irreducible components are smooth; it is endowed with a proper
morphism π : XS → X∗ defined over Q, inducing the identity on X . The toroidal
stratification {Z(σ)}σ∈S/ GL(X) is compatible to (and finer than) the inverse image
π−1(Σ) of the stratification Σ (see Th. 6.7 of [13]). By [13] Chap. IV.3 or [59] 3.10,
the restriction πξ of π above any rational boundary component ξ of X∗ is a proper
morphism with singularities of smooth dnc type: let Fξ = XS ×X∗ ξ, then, locally for
the étale topology, we have OFξ

∼= Oξ[T1, . . . , Tm]/(T1 · · ·Tn). More precisely, Fξ is a
disjoint union

Fξ =
⋃

σ∈Tξ

Z(σ)

where

– Tξ is the set of cones σ ∈ Sξ whose elements are all definite positive on Nξ,
– Z(σ) = Ξξ ×Eξ Zξ(σ) (in the notations of [13] p. 106) are the toroidal strata.

Note that Tξ has the property that any cone of Sξ containing a cone in Tξ is in Tξ;
therefore, Fξ is closed in the toric immersion Ξξ,Sξ

. Moreover, the Z(σ) are smooth
as well as their closures; thus, Fξ is étale-locally the boundary of a toric immersion
of Eξ for Tξ, of smooth dnc type, as desired.

Let Ur,S be the inverse image of Ur by π, and jS : Ur,S ↪→ XS the corresponding
open immersion. We have π◦jS = j◦π. Similarly, let k : X ↪→ Ur resp kS : X ↪→ Ur,S.
By a simple dévissage, one can assume that our étale sheaf is of the form V = k!W

for a locally constant sheaf W on X . Then, we have

k!W = π∗ ◦ kS,!W

Let VS = kS,!W . We have Rqπ∗VS = 0 if q > 0, by proper base change. Hence,
Rij∗ ◦ π∗VS = Ri(j∗ ◦ π∗)VS = Ri(π∗ ◦ jS,∗)VS which is the abutment of a spectral
sequence whose E2-term is Rpπ∗ ◦ RqjS,∗VS.

We show now that the sheaves RqjS,∗VS are constructible for the natural toroidal
stratification. By compatibility of the toroidal stratification of XS with that of the
toric immersion of E = Hom(S2(Zg), Gm), we can view X ↪→ Ur,S ↪→ XS, local-etally
as E ↪→ Er(σ) ↪→ E(σ) where E = GN

m, Er(σ) = G(N−n)
m × An and E(σ) = AN . We

are now in a cartesian product situation, and therefore, by Künneth formula, we are

left with the one-dimensional case Gm
k′

↪→Gm
j′

↪→A1 or Gm
k′

↪→A1 j′

↪→A1. It is easy then
to see that Rij′∗ of k′

!V is constructible.
By Lemma 20 below, the higher direct images Rpπ∗(RqjS,∗VS) are Σ-constructible.

In the spectral sequence

Ep,q
2 = Rpπ∗(RqjS,∗VS) =⇒ Rp+qjr,∗V

all the terms Ep,q
2 are Σ-constructible. Since the full subcategory of Σ-constructible

étale sheaves inside the category of constructible is abelian, it follows that the abut-
ment is Σ-constructible.
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Lemma 20. — Let Y be an integral scheme over Q and f : X → Y be a proper
morphism of smooth dnc type. Let T = (X0, X1, . . . , Xn) be the stratification of X

defined by X0 = Xsmooth, Xi+1 = (Xi−Xi)smooth. Let F be a T -constructible torsion
étale sheaf on X. Then Rif∗F is locally constant.

Proof. — By properness of f , we know that Rif∗F is constructible on Y with finite
fibers. To check it is locally constant we proceed by induction on dimension of X ; the
maps

X0
j

↪−→X
i←−↩X1

provide a dévissage:

0 −→ j!F|X0 −→ F −→ i∗i
∗F −→ 0

By stability of locally constant sheaves by kernels and extensions, we are left with
the case of

Rif∗j!F|X0 .

By a theorem of M. Artin (exposé XII [74], see also Illusie’s Appendix, p. 252-261
in [75]) this sheaf is locally constant (in general, we would need that F|X0 is tamely
ramified along the divisor with normal crossings X0−X0 for a smooth compactification
X0 ↪→ X0 over Y , but it is automatic here, since we are in characteristic 0).

12. Appendix II: An explicit construction of the log crystal Vλ

In this appendix, we use Weyl’s invariant theory to construct automorphic vector
bundles over Zp, associated to dominant weights of the symplectic group G = GSP2g

and of the Levi M of the Siegel parabolic of G. The defect of this method (comparing
with that of section 5.2) is the lack of functoriality. The advantage is to show clearly
how the Hodge structure is obtained by plethysms from that of R1f∗Ω•

A/X .
As before, X is the natural smooth model of SU over Z(p), X is a toroidal compact-

ification over Z(p). It is projective smooth and its divisor at infinity D has normal
crossings. Let f : A → X be the universal principally polarized g-dimensional abelian
variety over X ; let Y = A×X · · ·×X A be the fiber product of A by itself s-times above
X and fs : Y = As → X its structural map. Let us recall some facts on algebraic
correspondences.

II.1. Correspondences over Z(p). — We view f : A → X over Z(p) for a prime
p not dividing N . Let s � 1. Let Z•(Y/X) be the free abelian group generated by
irreducible closed X-subschemes Z ⊂ Y ×X Y , flat over X . It is graded by the relative
codimension of cycles. Its quotient A•(Y ×X Y/X) by the submodule of cycles on
Y ×X Y rationally equivalent to zero is denoted by Corr•(Y/X) and is called the
group of correspondences on Y relative to X ([31] Section 20.1). By smoothness of
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fs : Y → X and of X over Z(p), the group Corr•(Y/X) carries a natural structure of
graded ring (see Ex. 20.1.1 (c) and Ex. 20.2.3 of [31]).

Let C•(Y/X)(p) = C•(Y/X) ⊗ Z(p).
A correspondence Z ∈ Corrr(Y/X)(p) gives rise (because of the smoothness of the

base X over Z(p)) to a cohomology class

Cl(Z) ∈ R2r(fs × fs)∗Ω•
Y ⊗Y/X

defined by the relative cycle map (See [20] Chap. IV). Let δ = g · s = dimY .
We follow [51], Sect 3 in a relative setting: by Künneth formula and Poincaré

duality, we have

R2r(fs × fs)∗Ω•
Y ⊗Y/X =

⊕
0�m�2r

HomOX (Rm+2δ−2rfs,∗Ω•
Y/X , Rmfs,∗Ω•

Y/X)

We can therefore view the m-th component of Cl(Z) as a degree 2r− 2δ endomor-
phism of R•fs,∗Ω•

Y/X . This defines a homomorphism

Corr•(Y/X)(p) −→ EndOX R•fs ∗Ω•
Y/X

which corresponds to letting a cycle Z act by “pr1∗ ◦ pr∗2” on the sheaf R•fs ∗Ω•
Y/X .

More precisely, we have:

Lemma 21. — Let u ∈ R∗(fs × fs)∗Ω•
Y ⊗Y/X , then u(x) = pr1 ∗(pr∗2(x) ∪ u).

Proof. — [51] Sect. 3.
This homomorphism sends cycles Z of relative codimension δ + r (−δ � r � δ) to

degree 2r endomorphisms. We denote by

C(Y/X) =
⊕

−δ�r�δ

C2r(Y/X)

the graded algebra generated by the cycle classes of correspondences; it is a finite free
Z(p)-algebra.

In particular, we can view cycles D of Y as cycles in Y ×X Y via the diagonal
immersion Y ↪→ Y ×X Y (the two resulting projections pri : D → Y are equal). This
yields

Ar(Y/X) −→ Corrr+δ(Y/X)(p) −→ EndOX R•fs ∗Ω•
Y/X .

Write D → [D] for this homomorphism. On the other hand, the action of the cycle
D by − ∪ Cl(D) yields another homomorphism

Ar(Y/X) −→ EndOX R•fs ∗Ω•
Y/X

Lemma 22. — Let ι : Y → Y ×X Y be the diagonal immersion and ∆ its image. Then
for any cycle D of Y , we have

ClY ×Y (ι∗D) = ι∗ ClY (D) = pr∗1(ClY (D)) ∪ ClY ×Y (∆)

= pr∗2(ClY (D)) ∪ ClY ×Y (∆)

ASTÉRISQUE 280



COHOMOLOGY OF SIEGEL VARIETIES 87

Proof. — By the functoriality of the cycle class map we have the following commu-
tative diagram:

Ar(Y/X)

ι∗

R2rfs ∗Ω•
Y/X

ι∗

Corrr+δ(Y/X) R2r+2δfs ∗Ω•
Y ×XY/X

where the horizontal arrows are the cycle maps, the left vertical arrow exists by
properness of ι and the right vertical one is the Poincaré dual of ι∗. It remains to
check that the ι∗ on the right satisfies

ι∗(x) = pr∗1(x) ∪ ClY ×Y (∆) = pr∗2(x) ∪ ClY ×Y (∆).

By definition of the Poincaré duality, it amounts to

TrY ×Y (x ∪ ι∗(y)) = TrY (pr∗1(x) ∪ ClY ×Y (∆) ∪ y)

One has ∆ = ι∗(Y ), therefore by using Poincaré duality, we can rewrite the right
hand side as TrY ×Y (ι∗ ◦pr∗1(x)∪ ι∗(y)), or TrY ×Y (x∪ ι∗(y)), as desired. same for pr2.

Corollary 5. — We have
[D] = − ∪ ClY (D).

Proof. — We apply the two previous lemmata, noticing that

pr∗1(pr∗2(x ∪ ClY (D)) ∪ ClY ×Y (∆)) = pr∗1(pr∗1(x ∪ ClY (D)) ∪ ClY ×Y (∆))

= x ∪ ClY (D).

Another particular correspondences used in the next, are given by cycles of the
form D ×X Y in Y ×X Y where D is a relativ cycle in Y of relative codimension r.
The action of such correspondence is given by the following diagram:

Rmfs,∗Ω•
Y/X

[D × Y ]
Rm−2rfs,∗Ω•

Y/X

R2δ−mfs,∗Ω•
Y/X

− ∪ D
R2δ−m+2rfs,∗Ω•

Y/X

where the vertical maps are given by the polarization of the abelian scheme Y wich
identifie each cohomology space with it’s dual and by Poincaré duality.

II.2. The Z(p)-schematic version of Construction 5.1. — In this section, we
consider dominant weights λ for (G, B, T ) such that s = |λ| satisfies s + d < p − 1.
We attach to such weights λ a vector bundle Vλ with connection. Note that be-
cause of the need of compatibility with the transcendental construction over C (using
the restriction of the G-representation on Vλ to the Siegel parabolic), the definition
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will involve duals. We define first the vector bundle V1 associated to the standard
representation V1 of G as

V∨
1 = R1f∗Ω•

A/X ,

endowed with the Gauss-Manin connection.
We now use the sheaf-theoretic analogue of Construction 5.1 to define the dual of Vλ

over X and Xn as a direct factor in R•fs ∗Ω•
Y/X cut out by algebraic correspondences

over Z(p). More precisely, we find an idempotent eλ in C(Y/X)(p) realizing this cut
out:

V∨
λ = eλ · R•fs ∗Ω•

Y/X

The construction is in four steps:

1) Project R•fs ∗Ω•
Y/X to (V∨

1 )⊗s. This is realized by the Liebermann trick.
Since Y is an abelian scheme, we have

R•fs ∗Ω•
Y/X =

•∧
R1fs ∗Ω•

Y/X

Moreover, by Künneth formula, one has

R1fs ∗Ω•
Y/X = (V∨

1 )⊕s

Therefore,

R•fs ∗Ω•
Y/X =

⊕
0�j1�2g,...,0�js�2g

j1∧
V∨

1 ⊗ · · · ⊗
js∧
V∨

1

The summand corresponding to (j1, . . . , js) in the decomposition above is the ker-
nel of the correspondences on Y given by [m1]∗ × · · · × [ms]∗ − mj1

1 · · ·mjs
s for all

m1, . . . , ms ∈ Z. Recall that we assumed also p > 5, hence max(d, 4) < p − 1 implies
for any g � 1 that 2g < p − 1. Hence for any α = 1, . . . , s, we have jα < p − 1.
Therefore by choosing (m1, . . . , ms) suitably (that is, with coordinates generating
(Z/pZ)×), we can construct an idempotent e1 in C(Y/X)(p) (of degree 0) such that
e1 · R•f∗Ω•

A/X = V∨⊗s
1 .

Then, we realize the contractions φi,j ’s and their duals ψi,j ’s defined in Sect. 5.1.1,
as algebraic correspondences in C(Y/X)(p).

2) The ψi,j ’s:
For any t � 1, let Yt = A×X · · · ×X A, t times, and ft : Yt → X the corresponding

structural map. We abbreviate Ys = Y . Let pi,j : Y → A×A be the projection to the
ith and jth components. Consider the Poincaré divisor P in A ×X A (corresponding
to the Poincaré bundle).

Definition 9. — The de Rham polarisation ΨP ∈ V∨⊗2
1 is defined as the projection of

ClA×A(P ) ∈ R2f2,∗Ω•
A2/X to (Rf∗Ω•

A/X)⊗2 given by the Künneth formula.
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Consider the pull-back of P by pi,j ; it is a divisor Pi,j in Y . By 5.2.1, it defines a
degree 2 endomorphism [Pi,j ] of R•fs ∗Ω•

Y/X . We have a commutative diagram

V∨⊗s−2
1

ΨP,i,j

Rs−2fs−2Ω•
Ys−2/X Rs−2fs,∗Ω•

Y/X

− ∪ Cl(Pi,j)

V∨⊗s
1

Rsfs,∗Ω•
Y/X

where the horizontal arrows are given by Künneth formula, and ΨP,i,j consists in
inserting ΨP at ith and jth indexes. Therefore, the morphism ΨP,i,j is induced by
the divisor Pi,j .

3) The φi,j ’s: Consider the self-intersection 2g − 1 times of P ; it is a 1-cycle on
A × A. Take its pull-back to Y by the projection pi,j : Y → A × A and again to
Y ×X Y by the first projection p1 : Y ×X Y → Y . Then, intersect this with the
pull-back of the diagonal ∆s−2 in the self-product of the remaining s − 2 copies of A

in Y . The resulting cycle ZP,i,j is codimension δ − 1 in Y ×X Y ; therefore, it gives
rise to a degree −2 endomorphism of the cohomology.

Definition 10. — Let ΦP : V∨⊗2
1 → OX be the linear dual of the projection to

(R2g−1f∗Ω•
A/X)⊗2 by Künneth formula of cl(P 2g−1) ∈ R4g−4(f × f)∗Ω•

A×A/X .

Consider the contraction ΦP,i,j : V∨⊗s
1 → V∨⊗s−2

1 by ΦP at indexes i and j. We
have a commutative diagram:

V∨⊗s
1

ΦP,i,j

Rsfs,∗Ω•
Y/X

ZP,i,j

V∨⊗s−2
1

Rs−2fs,∗Ω•
Y/X

Thus, ΦP,i,j is given by the correspondence ZP,i,j.
4) Apply the Young symmetrizer cλ to V∨ 〈s〉

1 . This projector has Z(p)-coefficients
and belongs to a group algebra of automorphisms of fs, hence defines an element of
C(Y/X) as in 5.2.1.

Let us summarize the above constructions. For any dominant weight λ of G such
that |λ| < p, we associate a coherent locally free OX -module Vλ such that

– V∨
1 = R1f∗Ω•

A/X is associated to the standard representation.
– V∨

λ ⊗Z(p) C is the classical complex automorphic bundle associated to λ (see for
example [13] p. 222).

– Let us consider the additive functor V → V∨ from the semisimple category of
G-representations over Z(p) of p-small weights to the category of coherent locally free
OX -modules defined as above for simple objects. It is a functor of abelian categories
which commutes with tensor products and duality. This functor sends the φi,j ’s
resp. ψi,j of Sect. 5.1.1 to the Φi,j ’s resp. Ψi,j of the present section.
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II.3. The Gauss-Manin connection. — Over C, the automorphic vector bundle
Vλ(C) over SU carries a natural integrable connection given by the monodromy action
G(Q) → Aut(Vλ), g → (v → g · v), where Vλ est the irreducible G(C)-representation
of highest weight λ. We call this connection the monodromy connection. To get
an algebraic connection on the algebraic locally free OX -module V∨

λ , we first note
that the sheaves Hm

dR(Y/X) = Rmfs,∗Ω•
Y/X are naturally endowed with the Gauss-

Manin connection ([49]). We claim that this connection induces after analytification,
the monodromy connection. Indeed, we have just to verify this compatibility on
H1

dR(A/X) = R1f∗Ω•
A/X . This implies in particular that the Gauss-Manin connection

commute to the idempotent used to define V(C).

Corollary 6. — Over Z(p), the Gauss-Manin connection on V∨
1 commutes to algebraic

correspondences and therefore induces an integrable connection on Vλ (|λ| < p).

Proof. — Note that Hi
dR is locally free, hence commutes to base-change: Cor. 2

Chap. 2.5 of [55]. We may replace Zp by C and the assertion follows from the discus-
sion above.

II.4. Canonical extension to toroidal compactification over Z(p). — In the
complex setting, Mumford ([56], see also [13], section VI.4) define a canonical ex-
tension Vλ(C) over X(C) of the automorphic vector bundle Vλ(C). As explained by
Harris ([37], (4.2.2)), this canonical extension is the extension provided by Deligne’s
existence theorem. As the toroidal extension is defined over Q, we deduce that the
extension is also defined over Q, we denote by Vλ,Q this extension over Q, viewed
as a coherent locally free module over XQ = X ⊗Zp Q. To extend this automorphic
sheaves to Z(p), we proceed as follows.

First, consider

A

f

A

f

X X

(for the construction of A over Z[1/N ], see Th. 1.1 of IV.1 [13]) then, the canonical
extension V1

∨
of the standard sheaf V1 = R1f∗Ω•

A/X to X is

V∨
1 = R1f∗Ω

•
A/X

(log∞A/X)

(where Ω•
A/X

(log∞A/X) denotes the complex of relative differentials with relative
logarithmic poles as defined in section 4.3).

For s < p, let fs : Y → X be a toroidal compactification of fs : Y → X . Consider
the coherent sheaf Rsfs ∗Ω•

Y /X
(log∞); by [44] Cor. 2.4, the assumption s < p implies

that it is locally free. Moreover, by Step 1 of Section II.2 in this Appendix, its restric-
tion to X is associated to the representation

∧s(V ⊕s
st ). By the unicity of the canonical
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extension, Rsfs ∗Ω
•
Y /X

(log∞) coincides with the image of this representation by the

functor V Zp over Zp defined in section 5.2.3.
Then, for a dominant weight λ such that |λ| = s < p, the representation Vλ is a

direct factor of
∧s(V ⊕s

st ) (see Cor. 1 of Sect. 5.1.1). Therefore its image by the functor
V Zp is a direct factor in Rsfs ∗Ω

•
Y /X

(log∞) which is locally free. This shows that

the canonical extension V∨
λ is locally free.

By the calculations of Section II.2 of this Appendix, we see moreover that V∨
λ can

also be defined as

V∨
λ = j∗V

∨
λ,Q ∩ Rsfs ∗Ω

•
Y /X

(log∞)

where j : XQ → X is the open immersion of the generic fiber XQ in X.
V∨

λ is a coherent locally free OX -module, direct factor of Rsfs ∗Ω
•
Y /X

(log∞) and

V∨
λ ⊗Zp Q = V∨

λ,Q. Moreover the Gauss-Manin connexion induces an integrable con-
nection on V∨

λ . Note that this definition is legitimate by the semisimplicity of the
category of G-representions over Z(p) with p-small weight (Lemma 7 of Sect. 5.1.1
with G instead of M).

Remark. — A better way to extend this automorphic sheaves is to extend the idempo-
tents eλ to the toroidal compactification: if Y is a scheme and Y is an open subscheme,
then there is an exact sequence ([31] I.1.8):

A•(Y − Y ) −→ A•(Y ) −→ A•(Y ) −→ 0

The natural way to extend a cycle of Y to Y is to take it’s closure. In the case of a
toroidal imbedding, Lemma 3.1. of [37] suggest to consider the normalization of the
closure. So we obtain correspondances eλ over Y . Unfortunately, we can not see that
eλ is an idempotent. The problem is that the closure of the intersection of two cycles
is not equal, in general, to the intersection of the closure of this cycles.

II.5. Automorphic bundles for the Levi M . — To every BM -dominant weight
µ, one can also associate Wµ,n, a locally free OXn -module; it is called the automorphic
bundle attached to µ. The construction is similar to the one sketched above. Consider
the semiabelian scheme fG : G → X associated to our fixed toroidal compactification
(see Th. 5.7, Chap. IV of [13]), which extends the universal abelian surface f : A → X .
Then, the automorphic bundle on Xn associated to the standard representation W1 is
Lie(A/Xn)∨, and by part (3) of Theorem 5.7 of [13] mentioned above, its canonical
extension Wµ,n is Lie(G/Xn)∨. Then one uses the same trick as above to construct
Wµ,n from the tensor product of Lie(G/Xn)∨ by itself s-times. We note here that we
can use the result of Harris ([37], Th. 4.2) to recover the rationality of the canonical
extension of such automorphic vector bundles.
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BERNSTEIN-GELFAND-GELFAND COMPLEXES
AND COHOMOLOGY OF NILPOTENT GROUPS OVER Z(p)

FOR REPRESENTATIONS WITH p-SMALL WEIGHTS

by

Patrick Polo & Jacques Tilouine

Abstract. — Given a connected reductive group defined and split over �(p), we
study Bernstein-Gelfand-Gelfand complexes over �(p) and prove a �(p)-analogue of

Kostant’s theorem computing the �-homology of the Weyl module V (λ), when λ
belongs to the closure of the fundamental p-alcove.

Résumé (Complexes de Bernstein-Gelfand-Gelfand et cohomologie de groupes nilpotents sur
�(p) pour les représentations de poids p-petits)

Étant donné un groupe réductif connexe défini et déployé sur �, nous étudions
certains complexes de Bernstein-Gelfand-Gelfand sur �(p) et établissons un analogue
sur �(p) d’un théorème de Kostant, en calculant la �-homologie du module de Weyl

V (λ) lorsque λ appartient à l’adhérence de la p-alcôve fondamentale.

Introduction

Let G be a connected reductive linear algebraic group defined and split over Z, let
T be a maximal torus, W the Weyl group, R the root system, R∨ the set of coroots,
R+ a set of positive roots, and ρ the half-sum of the elements of R+. Let X = X(T )
be the character group of T and let X+ be the set of those λ ∈ X such that 〈λ, α∨〉 � 0
for all α ∈ R+.

For any λ ∈ X+, let VZ(λ) be the Weyl module for G over Z with highest weight
λ (see 1.3) and, for any commutative ring A, let VA(λ) = VZ(λ) ⊗Z A.

Let p be a prime integer and let

Cp := {ν ∈ X | 0 � 〈ν + ρ, β∨〉 � p, ∀β ∈ R+},

the closure of the fundamental p-alcove.
The aim of this paper is to prove that several results about VQ(λ), due to Kostant

[33], Bernstein-Gelfand-Gelfand [3], Lepowsky [37], Rocha [46], and Pickel [43], hold
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Key words and phrases. — BGG complexes, (co)homology of nilpotent groups, Weyl modules.
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true over Z(p) when λ ∈ X+ ∩ Cp : this is the precise meaning of the notion of
p-smallness mentioned in the title.

In more details, let B be the Borel subgroup corresponding to R+, let P be a
standard parabolic subgroup containing B, let P− be the opposed parabolic subgroup
containing T , let U−

P be its unipotent radical, and let L = P ∩ P−, a Levi subgroup.
Let RL be the root system of L, let R+

L = RL ∩ R+, and

X+
L := {ξ ∈ X | 〈ξ, α∨〉 � 0, ∀α ∈ R+

L}.

For any ξ ∈ X+
L and any commutative ring A, let V L

A (ξ) be the Weyl module for L

over A with highest weight ξ.
Let g, p, u−P be the Lie algebras over Z of G, P, U−

P , respectively, and let U(g) and
U(p) be the enveloping algebras of g and p. For ξ ∈ X+

L , consider the generalized
Verma module

MZ
p (ξ) := U(g) ⊗U(p) V L

Z (ξ).

For any commutative ring A, let MA
p (ξ) = MZ

p (ξ) ⊗Z A.
Let N = |R+| and, for i = 0, 1, . . . , N , let W (i) := {w ∈ W | �(w) = i}, where �

denotes the length function on W relative to B. Further, let

WL = {w ∈ W | wX+ ⊆ X+
L } and WL(i) := WL ∩ W (i).

After several recollections in Section 1, we prove in Section 2 the following Theorem
(under certain restrictions on G and p, see 2.8).

Theorem A. — Let λ ∈ X+ ∩ Cp. There exists an exact sequence of U(g)-modules:

0 −→ DN(λ) −→ · · · −→ D0(λ) −→ VZ(p)(λ) −→ 0,

where each Di(λ) admits a finite filtration of U(g)-submodules with associated graded

grDi(λ) ∼=
⊕

w∈W L(i)

M
Z(p)
p (w(λ + ρ) − ρ).

That is, following the terminology introduced in [46], VZ(p)(λ) admits a weak gen-
eralized Bernstein-Gelfand-Gelfand resolution. From this, one obtains immediately
the following (see 2.1 and 2.9).

Theorem B (Kostant’s theorem over Z(p)). — Let λ ∈ X+ ∩ Cp. For each i, there is
an isomorphism of L-modules:

Hi(u−P , VZ(p)(λ)) ∼=
⊕

w∈W L(i)

V L
Z(p)

(w(λ + ρ) − ρ).

Let Γ := U−
P (Z) be the group of Z-points of U−

P , it is a finitely generated, torsion
free, nilpotent group. By a result of Pickel [43], there is a natural isomorphism
H∗(u−P , VQ(λ)) ∼= H∗(Γ, VQ(λ)). In Section 3, we prove a slightly weaker version of
this result over Z(p) when λ is p-small (see 3.8).
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Theorem C. — Let λ ∈ X+ ∩Cp. For each n � 0, Hn(U−
P (Z), VZ(p)(λ)) has a natural

L(Z)-module filtration such that

grHn(U−
P (Z), VZ(p)(λ)) ∼=

⊕
w∈W L(n)

V L
Z(p)

(w(λ + ρ) − ρ).

The proof of this result has two parts. In the first, we develop certain general results
valid for any finitely generated, torsion free, nilpotent group Γ. In particular, using
a beautiful theorem of Hartley [22], we obtain in an algebraic manner a spectral
sequence relating the homology of a certain graded, torsion-free, Lie ring grisol Γ
associated with Γ to the homology of Γ itself, the coefficients being a Γ-module with
a “nilpotent” filtration and its associated graded (see Theorem 3.5). This gives a
purely algebraic, homological version (with coefficients) of a cohomological spectral
sequence obtained, using methods of algebraic topology, by Cenkl and Porter [9]. In
fact, our methods also have a cohomological counterpart. This will be developped in
a subsequent paper [44].

In the second part of the proof, we first show that in our case where Γ = U−
P (Z),

one has grisol Γ ∼= u
−
P , and then deduce from the truth of Kostant’s theorem over Z(p)

that the spectral sequence mentioned above degenerates at E1.
Next, in Section 4, we obtain a result à la Bernstein-Gelfand-Gelfand concern-

ing now the distribution algebras Dist(G) and Dist(P ). In this case, there exists a
standard complex (not a resolution!)

S•(G, P, λ) = Dist(G) ⊗Dist(P ) (Λ•(g/p) ⊗ VZ(λ)) .

For ξ ∈ X+
L , consider the generalized Verma module (for Dist(G) and Dist(P ))

MZ
P (ξ) := Dist(G) ⊗Dist(P ) V L

Z (ξ),

and, for any commutative ring A, set SA
• (G, P, λ) = S•(G, P, λ) ⊗Z A and MA

P (ξ) =
MZ

P (ξ) ⊗Z A.
Under the assumption that u

−
P is abelian, we obtain, by using an idea borrowed

from [16, §VI.5] plus arguments from Section 2, the following result (see 4.3). Let
DG denote the derived subgroup of G.

Theorem D. — Assume that DG is simply-connected, that X(T )/ZR has no p-torsion
and that u

−
P is abelian. Let λ ∈ X+ ∩ Cp. Then the standard complex SZ(p)

• (G, P, λ)
contains as a direct summand a subcomplex CZ(p)

• (G, P, λ) such that, for every i � 0,

CZ(p)
i (G, P, λ) ∼=

⊕
w∈W L(i)

MZ(p)

P (w(λ + ρ) − ρ).

Presumably, the hypothesis that u
−
P be abelian can be removed, but the proof

would then require considerably more work. Since the abelian case is sufficient for the
applications in the companion paper by A. Mokrane and J. Tilouine [39], we content
ourselves with this result. We hope to come back to the general case later.
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To conclude this introduction, let us mention that the results of this text are used
in [39] in the case where G is the group of symplectic similitudes. In this case,
DG is simply-connected and ZR is a direct summand of X(T ). When P is the Siegel
parabolic, Theorem D occurs in [39, § 5.4] as an important step to establish a modulo p

analogue of the Bernstein-Gelfand-Gelfand complex of [16, Chap.VI, Th. 5.5], while
Theorem C (in its cohomological form) is used in [39, § 8.3] to study mod. p versions
of Pink’s theorem on higher direct images of automorphic bundles.

The notations of [39] follow those of [16] and are therefore different from the ones
used in the present paper, which are standard in the theory of reductive groups. A
dictionary is provided in the final section of this text.

Acknowledgements. — We thank the referee for his/her thoughtful reading of the
manuscript and for several valuable suggestions (including references [4] and [29]).
We also thank Jens Carsten Jantzen for providing us with a copy of his article [29].

1. Notation and preliminaries

1.1. Let G be a connected reductive linear algebraic group, defined and split over
Z. Let T be a maximal torus, W the Weyl group, R the root system and R∨ the set
of coroots. Fix a set ∆ of simple roots, let R+ and R− be the corresponding sets of
positive and negative roots, and let B, B− denote the associated Borel subgroups and
U , U− their unipotent radicals. (For all this, see, for example, [11] or [28, § II.1]).

Let X = X(T ) (resp. X∨ = X∨(T )) be the group of characters (resp. cocharacters)
of T , and denote by 〈 , 〉 the natural pairing between them. Elements of X will be
called weights, in accordance with the terminology in Lie theory. Let � denote the
partial order on X defined by the positive cone NR+, that is, µ � λ if and only if
λ−µ ∈ NR+. Let ZR ⊂ X be the root lattice and let ρ be the half-sum of the positive
roots; it belongs to X ⊗ Z[1/2]. Define, as usual, the dot action of W on X by

w · λ = w(λ + ρ) − ρ,

for λ ∈ X, w ∈ W . It is easy to see that wρ − ρ ∈ ZR: applying w to the equality
2ρ =

∑
β∈R+ β and substracting, one obtains the well-known formula

(∗) ρ − wρ =
∑

β∈R+,w−1β∈R−

β.

Therefore, denoting by N(w) the term on the right hand-side of (∗), one may also
define the dot action by the formula

w · λ = wλ − N(w),

from which it is clear that w · λ does indeed belong to X .
Let X+ be the set of dominant weights:

X+ := {λ ∈ X | ∀α ∈ R+, 〈λ, α∨〉 � 0},
where α∨ denotes the coroot associated with α.
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1.2. Enveloping and distribution algebras.— Let g = Lie(G) (resp. t = Lie(T ))
be the Lie algebra of G (resp. T ); they are finite free Z-modules. Let U(g) denote the
enveloping algebra of g over Z, and let Dist(G) denote the algebra of distributions of
G (see [28, Chap. I.7]). If G is semi-simple and simply-connected, Dist(G) coincides
with the Kostant Z-form of U(g) ([34]), see [28, § II.1.12] or [5, VIII, §§ 12.6–8]. We
shall denote it by UZ(g) or simply U(g); sometimes it will also be convenient to denote
it by UZ(G).

Similarly, if H is a closed subgroup of G defined over Z, we shall denote Dist(H)
also by UZ(H).

By an H-module we shall mean a rational H-module, that is, a Z[H ]-comodule.
More generally, for any commutative ring A, an HA-module means an A-module with
a structure of A[H ]-comodule. If V is an H-module, then, as is well-known, V is also
an UZ(H)-module and a fortiori an U(Lie(H))-module.

If M is a T -module, it is the direct sum of its weight spaces Mλ, for λ ∈ X , see,
for example, [28, § I.2.11].

For future use, let us record here the following

Proposition. — Let P be a standard parabolic subgroup of G, let V be a finite dimen-
sional PQ-module and let M be a Z-lattice in V . Then M is a P -submodule if and
only if it is an UZ(P )-submodule.

Proof. — Without loss of generality we may assume that P contains B. Let P− be
the opposed standard parabolic subgroup and let U−

P be its unipotent radical. By the
Bruhat decomposition, the multiplication map induces an isomorphism of U−

P × B

onto an open subset of P , see, for example, [28, § II.1.10]. This implies that the
arguments in [28, II.8.1] are valid for P , and the proposition then follows from [28,
I.10.13].

1.3. Weyl modules.— For λ ∈ X+, let VQ(λ) denote the irreducible GQ-module
with highest weight λ, and let VZ(λ) be the corresponding Weyl module over Z; that
is,

VZ(λ) := UZ(G)vλ

is the UZ(G)-submodule generated by a fixed vector vλ �= 0 of weight λ. It is a
G-module by Proposition 1.2 above. Of course, up to isomorphism, VZ(λ) does not
depend on the choice of vλ. For future use, let us also record the following (obvious)
lemma.

Lemma. — Let M be a Z-free, G-module and v ∈ M an element fixed by U and of
weight λ. Then the submodule UZ(G)v is isomorphic to VZ(λ).

Proof. — The UQ(G)-submodule of M ⊗ Q generated by v is isomorphic to VQ(λ).
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1.4. Contravariant duals.— Let us fix an anti-involution τ of G which is the
identity on T and exchanges B and B− (see [28, II.1.16]). Then τ induces anti-
involutions on UZ(G), on g and on UZ(g), which we denote by the same letter τ .

For any ring A and GA-module V , let us denote by V τ the A-dual HomA(V, A),
regarded as a GA-module via τ . It may be called the “contravariant dual” of V , as
for V = VZ(λ) this is closely related to the so-called “contravariant form” on VZ(λ);
see [28, II.8.17] and the discussion in the next subsection 1.5.

Note that if V is a free A-module, the weights of T in V and V τ are the same. In
particular, the irreducible GQ-modules VQ(λ) and VQ(λ)τ are isomorphic.

1.5. Admissible lattices.— For use in the companion article by Mokrane and
Tilouine [39] and also in the next subsection, let us discuss some properties of admis-
sible lattices. Of course, this is fairly well-known to representation theorists, but we
spell out the details for the convenience of readers with a different background.

As noted above, we may identify VQ(λ) = VQ(λ)τ . Under this identification, VQ(λ)
becomes equipped with a non-degenerate, G-invariant bilinear form 〈 , 〉 such that

(∗) 〈gv, v′〉 = 〈v, τ(g)v′〉 and 〈Xv, v′〉 = 〈v, τ(X)v′〉,

for v, v′ ∈ VQ(λ), g ∈ G, X ∈ UZ(G). (This is the contravariant form mentioned in
the previous subsection).

Let us fix, once for all, a non-zero vector vλ ∈ VQ(λ)λ. The identification VQ(λ) =
VQ(λ)τ may be chosen so that 〈vλ, vλ〉 = 1.

Recall that a Z-lattice L ⊂ VQ(λ) is called an admissible lattice if it is stable under
UZ(G). By Proposition 1.2, this implies that L is a G-module and is therefore the
direct sum of its T -weight spaces.

Let E(λ) denote the set of admissible lattices L ⊂ VQ(λ) such that L ∩ VQ(λ)λ =
Zvλ. Clearly, VZ(λ) := UZ(G)vλ is the unique minimal element of E(λ).

For any L ∈ E(λ), the dual G-module Lτ identifies with

{x ∈ VQ(λ) | 〈x,L〉 ⊆ Z}.

It follows from (∗) that Lτ is an admissible lattice, and since 〈vλ, vλ〉 = 1 it belongs
to E(λ). Therefore, Lτ ⊇ VZ(λ) and hence L ⊆ VZ(λ)τ . Let us record this as the next

Lemma. — The set of admissible lattices L ⊂ VQ(λ) such that L ∩ VQ(λ)λ = Zvλ

contains a unique minimal element, VZ(λ), and a unique maximal element, VZ(λ)τ .

The above minimal and maximal lattices are denoted by V (λ)min and V (λ)max in
[39] and in Section 5 below.

1.6. Weyl modules and induced modules.— Let us recall the definition of the
induction functor IndG

B− . For any B−-module M ,

IndG
B−(M) := (Z[G] ⊗ M)B−

,
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where Z[G] is regarded as a G×B−-module via ((g, b)φ) (g′) = φ(g−1g′b), for g, g′ ∈ G,
b ∈ B− and where the invariants are taken with respect to the diagonal action of B−;
it is a left exact functor, see [28, § I.3.3]. As in [28, § II.2.1], we shall denote simply
by Hi( ) the right derived functors Ri IndG

B−( ).
Let λ ∈ X ; it may be regarded in a natural manner as a character of either B−

or B. Moreover, since τ is the identity on T , one has λ(τ(b)) = λ(b) for any b ∈ B−.
For any ring A, let us denote by Aλ the free A-module of rank one on which B−

acts via the character λ. Then,

H0(Aλ) ∼= {φ ∈ A[G] | φ(gb) = λ(b−1)φ(g), ∀ g ∈ G, b ∈ B−}.

Proposition. — Let λ ∈ X+.
a) H0(Zλ) ∼= VZ(λ)τ .
b) If k is a field, H0(kλ) ∼= H0(Zλ) ⊗ k ∼= Vk(λ)τ . Thus, in particular, Vk(λ) is

irreducible if and only if H0(kλ) is so.

Proof. — First, by flat base change ([28, I.3.5]), one has H0(Zλ) ⊗ Q ∼= H0(Qλ).
Moreover, H0(Qλ) ∼= VQ(λ), by the theorem of Borel-Weil-Bott (see, for example,
[28, II.5.6]).

Further, since Z[G] is a free Z-module (being a subring of Z[U ] ⊗ Z[B−]), so is
H0(Zλ). Therefore, H0(Zλ) may be identified with a G-submodule of VQ(λ), and the
identification may be chosen so that H0(Zλ) ∩ VQ(λ)λ = Zvλ, i.e., so that H0(Zλ)
belongs to E(λ).

Now, there is a natural G-module map φ : VZ(λ)τ → H0(Zλ) defined by

x −→
(
g → 〈x, τ(g−1)vλ〉

)
.

Moreover, since VZ(λ) is generated by vλ as a G-module, φ is injective. Since VZ(λ)τ

is the largest element of E(λ), this implies that φ induces an isomorphism VZ(λ)τ ∼=
H0(Zλ). This proves assertion a).

Let us prove assertion b). For each i � 0, there is an exact sequence

0 −→ Hi(Zλ) ⊗ k −→ Hi(kλ) −→ TorZ(Hi+1(Zλ), k) −→ 0,

see [28, I.4.18]. Next, by Kempf’s vanishing theorem ([28, II.4.6]), one has Hi(Zλ) = 0
for i � 1. The first isomorphism of assertion b) follows. Finally, the second is a
consequence of assertion a) and the natural isomorphisms

HomZ(VZ(λ), Z) ⊗ k ∼= HomZ(VZ(λ), k) ∼= Homk(Vk(λ), k).

This completes the proof of the proposition.

1.7. Parabolic subgroups and unipotent radicals.— Now, let P be a standard
parabolic subgroup of G containing B, let L be the Levi subgroup of P containing T ,
and let P− be the standard parabolic subgroup opposed to P , that is, P− is the
unique parabolic subgroup containing B− such that P− ∩ P = L.
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Let U−
P (resp.UP ) denote the unipotent radical of P− (resp.P ) and let u

−
P =

Lie(U−
P ), uP = Lie(UP ) and p = Lie(P ). Then u

−
P , uP and p are free Z-modules and

g = p ⊕ u
−
P . Thus, in particular, g/p is a free Z-module.

Further, if V is a P -module then, by standard arguments, the homology groups

Hi(u−P , V ) := TorU(u−
P )

i (Z, V )

carry a natural structure of L-modules. For example, they can be computed as the
homology of the standard Chevalley-Eilenberg complex Λ•(u−P ) ⊗ V , which carries a
natural action of L.

For any commutative ring A, we set VA(λ) := VZ(λ) ⊗ A and gA := g ⊗ A. The
enveloping algebra of gA identifies with UZ(g) ⊗ A and is denoted by UA(g). One
defines similarly UA(u−P ) and UA(g), etc...

Since UZ(u−P ) is a free Z-module, one has, for every i � 0,

TorUA(u−
P )

i (A, VA(λ)) ∼= TorUZ(u−
P )

i (Z, VA(λ)).

We shall denote these groups simply by Hi(u−P , VA(λ)); as noted above they are LA-
modules.

Our goal in Section 2 is to show that celebrated results of Kostant ([33, Cor. 8.1])
and Bernstein-Gelfand-Gelfand ([3, Th. 9.9]), which describe respectively, for any λ ∈
X+, the L-module structure of H•(u−P , VQ(λ)) and a minimal UQ(u−P )-resolution of
VQ(λ), hold true when Q is replaced by Z(p), for any prime integer p such that

p � 〈λ + ρ, α∨〉, ∀α ∈ R+.

1.8. Weyl modules for a Levi subgroup.— We need to introduce more notation.
Let WL and RL denote the Weyl group and root system of L, and let R±

L := RL∩R±.
Let X+

L denote the set of L-dominant weights:

X+
L := {λ ∈ X | ∀α ∈ R+

L , 〈λ, α∨〉 � 0}.

Let WL := {w ∈ W | wX+ ⊆ X+
L }. It is well-known, and easy to check, that WL

is also equal to {w ∈ W | w−1R+
L ⊆ R+}.

Let � and � denote the length function and Bruhat-Chevalley order on W associ-
ated with the set ∆ of simple roots. Then, for i � 0, set

W (i) := {w ∈ W | �(w) = i} and WL(i) := WL ∩ W (i).

For any ξ ∈ X+
L , let V L

Q (ξ) denote the irreducible LQ-module with highest weight ξ

and let V L
Z (ξ) be the corresponding Weyl module for L. Observe that V L

Q (ξ) (and
then V L

Z (ξ)) identifies with the LQ-submodule of VQ(ξ) (resp. L-submodule of VZ(ξ))
generated by vξ.

More generally, one has the following
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Lemma. — Let M be a P -module which is Z-free and let v ∈ M be a non-zero element
of weight ξ. Assume that v is U -invariant (this is the case, for instance, if ξ is a
maximal weight of M). Then the UZ(P )-submodule of M generated by v is isomorphic
to V L

Z (ξ).

Proof. — Recall that UZ(P ) ∼= UZ(L) ⊗ UZ(UP ) (see [28, § II.1.12]). Since v is fixed
by U , it is annihilated by the augmentation ideal of UZ(UP ). Therefore, UZ(P )v =
UZ(L)v and, since M is Z-free, the result follows from Lemma 1.3.

1.9. The fundamental p-alcove.— In this subsection and the next one, let p be
a prime integer. The notion of p-smallness mentioned in the title of this article is
defined as follows. We shall say that λ ∈ X is p-small if it satisfies the condition:

(†) 〈λ + ρ, α∨〉 � p, ∀α ∈ R.

An equivalent definition of p-smallness is as follows. Let Wp denote the affine Weyl
group with respect to p. Recall that Wp is the subgroup of automorphisms of X(T )⊗R
generated by the reflections sβ,np, for β ∈ R+, n ∈ Z, where, for λ ∈ X(T )⊗ R,

sβ,np(λ) = λ − (〈λ, β∨〉 − np)β,

and that Wp is the semi-direct product of W and the group pZR acting by translations.
We consider the dot action of Wp on X(T ) ⊗ R, defined by w · λ = w(λ + ρ) − ρ.

The fundamental p-alcove Cp is defined by

Cp := {λ ∈ X(T ) ⊗ R | 0 < 〈λ + ρ, β∨〉 < p, ∀β ∈ R+}.

Its closure

Cp := {λ ∈ X(T )⊗ R | 0 � 〈λ + ρ, β∨〉 � p, ∀β ∈ R+}

is a fundamental domain for the dot action of Wp on X(T ) ⊗ R (for all this, see for
example [28, § II.6.1]).

Then, for λ ∈ X+, the condition of p-smallness is equivalent to the requirement
that λ belongs to Cp. Thus, an arbitrary λ ∈ X is p-small if and only if it belongs to
W · Cp.

Let ρL be the half-sum of the elements of R+
L . Note that 〈ρL, α∨〉 = 1 for any

α ∈ ∆ ∩ RL and hence ρ − ρL vanishes on RL. Therefore, if a weight ξ ∈ X+
L is

p-small, it is a fortiori p-small for L.

The fact that VFp(λ) is irreducible when λ is p-small is of course very well-known to
representation-theorists; for the convenience of readers with a different background,
we record this here as the next

Lemma. — Let λ ∈ X+ and ξ ∈ X+
L . If λ (resp. ξ) is p-small, VFp(λ) (resp. V L

Fp
(ξ))

is irreducible and self-dual for the contravariant duality.
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Proof. — The first assertion is a consequence of [28, II.8.3], combined with Propo-
sition 1.6. Further, since irreducible GFp-modules are determined by their highest
weight, the second assertion follows from the first.

Corollary. — If λ ∈ X+ ∩ Cp then, for any Λ ∈ E(λ), one has

VZ(p)(λ) = Λ ⊗ Z(p) = VZ(p)(λ)τ .

Proof. — By the previous lemma, one has VFp(λ) = VFp(λ)τ . The result then follows
by Nakayama’s lemma.

1.10. A vanishing result.— Let us record the following

Lemma. — For all λ, µ ∈ X+, one has Ext1G(VFp(λ), VFp(µ)τ ) = 0 and also

Ext1G(VZ(λ), VZ(µ)τ ) = 0 = Ext1G(VZ(p)(λ), VZ(p)(µ)τ ).

Proof. — Since VFp(µ)τ ∼= H0(µ), by Proposition 1.6, the assertion over Fp is a
consequence of [28, Prop. II.4.13]. The assertions over Z or Z(p) then follow from a
theorem of universal coefficients [28, Prop. I.4.18].

Corollary. — Suppose that λ, µ ∈ X+ ∩ Cp. Then

Ext1G(VFp(λ), VFp(µ)) = 0 = Ext1G(VZ(p)(λ), VZ(p)(µ)).

Proof. — By the results in 1.9, VFp(µ) and VZ(p)(µ) are self-dual. Thus, the corollary
follows from the previous lemma.

1.11. We shall need later the following lemma. Recall that UP denotes the unipotent
radical of P and that one has P = L � UP .

Lemma. — Let M be a P -module, finite free over Z(p). Assume that each weight ν of
M satisfies 〈ν + ρ, α∨〉 � p, for any α ∈ RL.

a) There exists a sequence of P -submodules 0 = M0 ⊂ · · · ⊂ Mr = M such that

Mi/Mi−1
∼= V L

Z(p)
(ξi), where ξi ∈ X+

L and ξj � ξi if j � i.

The set {ξ1, . . . , ξr} is uniquely determined by M ; in fact the V L
Q (ξi) are the irreducible

composition factors of the LQ-module MQ.
b) Moreover, there is an isomorphism of L-modules M|L ∼=

⊕r
i=1 V L

Z(p)
(ξi). In

particular, if UP acts trivially on M , then M ∼=
⊕r

i=1 V L
Z(p)

(ξi).
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Proof. — Let us prove assertion a) by induction on the rank of M , following [15,
Lemma 11.5.3]. There is nothing to prove if M = 0. If M �= 0, let ξ1 be a maxi-
mal weight of M , let v ∈ M be a primitive element of weight ξ1 and denote by N

the UZ(p)(P )-submodule generated by v. Then N ∼= V L
Z(p)

(ξ1), by Lemma 1.8. By
assumption, ξ1 ∈ Cp and hence NFp := N ⊗ Fp is irreducible.

On the other hand, since M is free over Z(p), one obtains an exact sequence of
P -modules

0 −→ TorZ(p)
1 (M/N, Fp) −→ NFp

φ−→ MFp ,

and φ(v) �= 0, as v is a primitive element. Since NFp is irreducible, φ is injective. Thus,

TorZ(p)
1 (M/N, Fp) = 0 and this implies that M/N is free over Z(p). Since M/N has

smaller rank than M , the first part of assertion a) follows by the inductive hypothesis.
The second part is then clear.

Finally, the first part of assertion b) follows from Corollary 1.10, applied to L, and
the last part is clear.

2. Kostant’s theorem over Z(p)

2.1. Our goal in this section is to prove the following theorem. Recall from 1.9 the
definition of Cp, the closure of the fundamental p-alcove.

Theorem. — Let λ ∈ X+ and let p be a prime integer such that λ ∈ Cp. Then, for
each i, there is an isomorphism of L-modules

Hi

(
u
−
P , VZ(p)(λ)

) ∼= ⊕
w∈W L(i)

V L
Z(p)

(w · λ).

By standard arguments, it suffices to prove the theorem in the case where G is
semi-simple; one can further assume that G is simply-connected and, then, that the
root system R is irreducible. Similarly, the result for SLn is easily derived from the
result for GLn (for technical reasons, the latter is easier to handle, see below).

Therefore, while in 2.2–2.8 G still denotes an arbitrary connected reductive linear
algebraic group, defined and split over Z, we shall assume in subsection 2.9, where we
prove Theorem 2.1, that G is either GLn or almost simple and simply-connected of
type �= A.

Remark. — The hypothesis λ ∈ X+ ∩ Cp implies that

(†) p � 〈λ + ρ, α∨〉 � 〈ρ, α∨〉, ∀α ∈ R+.

Recall also that it is customary, in representation theory, to introduce the so-called
Coxeter number of G, defined by

h := 1 + Max{〈ρ, α∨〉, α ∈ R+}.
Therefore, the condition (†) above implies that p � h−1, and reduces to this inequality
when λ = 0.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2002



108 P. POLO & J. TILOUINE

2.2. Standard resolutions for U(g).— Recall first the standard Koszul resolution
of the trivial module:

· · · −→ U(g) ⊗ Λ2(g) d2−→ U(g) ⊗ g
d1−→ U(g) ε−→ Z −→ 0,

where each differential dk is defined by the formula

dk(u ⊗ x1 ∧ · · · ∧ xk) :=
k∑

i=1

(−1)i−1 uxi ⊗ x1 ∧ · · · ∧ x̂i ∧ · · · ∧ xk

+
∑

1�i<j�k

(−1)i+j u ⊗ [xi, xj ] ∧ x1 ∧ · · · ∧ x̂i ∧ · · · x̂j ∧ · · · ∧ xk.

Let πp denote the natural projection Λ•(g) → Λ•(g/p); it is a morphism of P -modules.
Then, there is a surjective morphism of U(g)-modules:

φp : U(g) ⊗ Λ•(g) −→ U(g) ⊗U(p) Λ•(g/p)

u ⊗ x −→ u ⊗U(p) πp(x).

It is well-known, and easy to check, that each dk induces a map dp

k such that φp ◦dk =
dp

k ◦ φp. Thus, one obtains a complex of U(g)-modules

· · · −→ U(g) ⊗U(p) Λ2(g/p)
dp

2−→ U(g) ⊗U(p) (g/p)
dp

1−→ U(g) ⊗U(p) Z ε−→ Z −→ 0,

which is still exact, for it is easily seen that the proof of [3, Th.9.1] is valid over Z.
This complex is called the standard resolution of the trivial module Z relative to U(g)
and U(p). We shall denote it by S•(g, p, Z) or simply S•(g, p).

Let V be a Z-free U(g)-module. Then S•(g, p) ⊗ V , with the diagonal action of g,
is an U(g)-resolution of V by modules which are free over U(u−P ).

Further, recall the “tensor identity” [19, Prop. 1.7] : for any U(p)-module E, there
is a natural isomorphism of U(g)-modules

(U(g) ⊗U(p) E) ⊗ V ∼= U(g) ⊗U(p) (E ⊗ V|p),

where V|p denotes V regarded as an U(p)-module. Applying these isomorphisms to
the terms of the resolution S•(g, p) ⊗ V , one obtains an U(g)-resolution

· · · −→ U(g) ⊗U(p) (Λ2(g/p) ⊗ V |p) d2−→ U(g) ⊗U(p) (g/p ⊗ V |p)
d1−→ U(g) ⊗U(p) V |p ε−→ V −→ 0,
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where the differentials dk are now given by

dk(1 ⊗ x1 ∧ · · · ∧ xk ⊗ v) :=
k∑

i=1

(−1)i−1 xi ⊗ x1 ∧ · · · ∧ x̂i ∧ · · · ∧ xk ⊗ v

+
∑

1�i<j�k

(−1)i+j 1 ⊗ πp([xi, xj ]) ∧ x1 ∧ · · · ∧ x̂i ∧ · · · x̂j ∧ · · · ∧ xk ⊗ v

+
k∑

i=1

(−1)i 1 ⊗ x1 ∧ · · · ∧ x̂i ∧ · · · ∧ xk ⊗ xiv,

for x1, . . . , xk ∈ g and v ∈ V (we have denoted πp(xi) by xi). We shall call it the
standard resolution of V relative to the pair (U(g), U(p)), and denote it by S•(g, p, V ).
When V = VZ(λ), we shall denote it by S•(g, p, λ).

2.3. Let p be a prime integer and recall the notation of 1.9.

Lemma. — Let λ ∈ X+ ∩ Cp. Then all weights of VZ(λ) ⊗ Λ(g/p) are p-small.

Proof. — As T -module, Λ(g/p) identifies with Λ(u−P ) and hence is a submodule of
Λ(u−), where u− is the Lie algebra of U−.

By a result of Kostant ([33, Lemma 5.9]), there is a T -isomorphism

ρ ⊗ Λ(u−) ∼= VZ(ρ).

Therefore, if ν is a weight of VZ(λ)⊗Λ(g/p), then ν + ρ is a weight of VZ(λ)⊗ VZ(ρ).
This implies that 〈ν + ρ, α∨〉 � p, for all α ∈ R.

Indeed, let µ be the dominant W -conjugate of ν + ρ, it is also a weight of VZ(λ)⊗
VZ(ρ). Clearly, it suffices to prove that 〈µ, α∨〉 � p, for all α ∈ R+. Further, since µ

is dominant, it suffices to prove that 〈µ, γ∨〉 � p when γ∨ is a maximal coroot. But it
is well-known that a maximal coroot is a dominant coweight, i.e. satisfies 〈β, γ∨〉 � 0
for all β ∈ R+, see e.g. [5, VI,§ 1, Prop.8]. Finally, since µ = λ+ ρ− θ with θ ∈ NR+,
it follows that

〈µ, γ∨〉 � 〈λ + ρ, γ∨〉 � p.

This proves the lemma.

2.4. Verma modules and filtrations.— For any ξ ∈ X+
L , define the generalized

Verma module (for U(g) and U(p))

Mp(ξ) := U(g) ⊗U(p) V L
Z (ξ).

For any commutative ring A, set MA
p (ξ) := Mp(ξ)⊗Z A and observe that it identifies

with UA(g) ⊗UA(p) V L
A (ξ).

For λ ∈ X+, we set also

SA
• (g, p, λ) := S•(g, p, λ) ⊗Z A.
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Let us assume that λ ∈ X+ ∩ Cp. Then, by Lemma 2.3, all weights of VZ(λ) ⊗
Λ•(g/p) are p-small. Therefore, by Lemma 1.11, there exists, for each i, a P -module
filtration

0 = F0 ⊂ · · · ⊂ Fr = Λi(g/p) ⊗ VZ(p)(λ)

such that each Fj/Fj−1 is isomorphic to V L
Z(p)

(ξi
j), for some ξi

j ∈ X+
L (not necessarily

distinct). Let us denote by Ωi
p(λ) the multiset of those ξi

j (each ξ ∈ X+
L occuring as

many times as V L
Z(p)

(ξ) occurs in the filtration).
Moreover, as U(g) is free over U(p), the functor U(g) ⊗U(p) − is exact. Therefore,

one obtains the

Lemma. — Let λ ∈ X+ ∩ Cp. Then each S
Z(p)
i (g, p, λ) admits a finite filtration by

UZ(p)(g)-modules such that the successive quotients are the M
Z(p)
p (ξ), for ξ ∈ Ωi

p(λ).

2.5. A conjugacy result in g∗.— We will need in the next subsection the following
lemma. It is proved in [29, Lemma 6.6] under the assumption that gFp

∼= g∗Fp

as

G-modules, and in [31, Lemma 3.3] under the assumption that G is almost simple
and distinct from SO2n+1 if p = 2. Let u be the Lie algebra over Z of U and let
uFp

= u ⊗Z Fp.

Lemma. — Each χ ∈ g∗
Fp

is conjugate under G to an element χ′ such that χ′(uFp
) = 0.

Proof. — Let B denote the variety of Borel subgroups of G, let Z be the closed
subvariety of B × g∗Fp

consisting of pairs (B′, χ) such that χ vanishes on the derived

subalgebra of Lie B′, and let π denote the projection Z → g∗Fp

. Then, the lemma is

equivalent to the surjectivity of π.
But, B being projective, π(Z) is a closed subvariety and, since dim Z = dim g∗Fp

,

the surjectivity of π will follow if we show that the set of those χ ∈ g∗Fp
such that

π−1(χ) is finite, is not empty. But this follows from an argument of Steinberg [50,
Lemma 3.2] (one may also consult [25, Prop. 4.1]). Namely, for each β ∈ R, let Xβ

be a generator of gβ . We claim that if χ ∈ g∗Fp

satisfies χ(bFp
) = 0 and χ(X−α) �= 0,

for every α ∈ ∆, then π−1(χ) = {B}.
Indeed, let B′ be a Borel subgroup such that χ vanishes on u′, the derived subalge-

bra of Lie B′. Then B′ = g(B) for some g ∈ G and, using the Bruhat decomposition,
one may write g = unwb for some w ∈ W , b ∈ B and u ∈ U ∩ n−1

w (U). If w �= 1,
there exists a simple root α ∈ ∆ such that w−1α ∈ R−. Let β = −w−1α, then
nwXβ = cX−α for some non-zero c ∈ Fp. Set x = b−1c−1Xβ. Then x ∈ uFp

and, by
hypothesis,

0 = χ(gx) = χ(uX−α).
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But uX−α−X−α belongs to bFp
and hence the assumptions on χ imply that χ(uX−α)

= χ(X−α) �= 0, a contradiction. This contradiction shows that w = 1, whence g ∈ B

and B′ = B. This completes the proof of the lemma.

2.6. The Harish-Chandra homomorphism

2.6.1. Let u− = Lie U− and let A be a commutative ring. By the PBW theorem, one
has

UA(g) = UA(t) ⊕
(
u
−UA(g) + UA(g)u

)
.

Let δA denote the A-linear projection from UA(g) to UA(t) defined by this decompo-
sition.

Let UA(g)G ⊂ UA(g)T be the subrings of G-invariant and T -invariant elements for
the adjoint action. Observe that, since elements of UA(g)T have weight zero,

UA(g)T ⊆ UA(t) ⊕ u
−UA(g)u.

The restriction of δA to UA(g)T is a ring homomorphism; indeed one sees easily that
the arguments in the proof of [13, Lemme 7.4.2] or [31, Lemma 5.1] carry over in our
case. Let θA denote the restriction of δA to UA(g)G.

Lemma. — θFp
: UFp

(g)G → UFp
(t) is injective.

Proof. — Taking into account Lemma 2.5, the proof is exactly the same as the one
of [29, Lemma 9.1]. For the convenience of the reader, we record it briefly. Let
U = UFp

(g), let x → x[p] denotes the p-th power map of gFp
and, for χ ∈ g∗Fp

,

let Uχ denote the quotient of U by the two-sided ideal generated by the elements
xp − x[p] − χ(x), for x ∈ gFp

.

Let u ∈ UG with θFp
(u) = 0. Then, u ∈ u−Uu and, being G-invariant, u = g(u)

belongs to g(u−)Ug(u), for every g ∈ G. Let L be a simple U -module. By Lemma
2.5 and, say, [29, 2.4], L is a Ugχ-module, for some g ∈ G and χ ∈ g∗Fp

such that

χ(u) = 0. Then, one deduces from [29, § 6.7] or [17, Prop. 1.5] that L is generated
by a vector v annihilated by g(u) (in [17], it is assumed that G is semi-simple and
simply-connected but this hypothesis is not used in the proof of Prop. 1.5). Thus,
uv = g(u)v = 0 and hence uL = 0. Therefore, u annihilates every simple U -module,
that is, belongs to every maximal left ideal of U . Hence, 1 + u is a unit in U ; but the
only units in U are the non-zero scalars, and it follows that u = 0. (The last part of
the argument is due to Curtis [10]).

Remark. — In [31, 9.4.d)], it is mistakenly asserted that θFp
is not injective in the

case where G = SO(2n + 1) and p = 2; but in fact the element q considered in [31,
9.1] is not G-invariant.
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2.6.2. Note that UFp
(t) = SFp

(t) identifies with P(t∗Fp

), the algebra of regular func-
tions on

t∗Fp
:= HomZ(t, Fp) ∼= X(T )⊗ Fp.

The dot action of W on UFp
(t) is defined, therefore, by (w · P )(λ) = P (w−1 · λ), for

w ∈ W , P ∈ UFp
(t), λ ∈ t∗Fp

. For typographical reasons, let us denote by UFp
(t)W•

the subalgebra of invariants for this action. Then, as in [31, Lemma 5.2] or [29, 9.5],
one obtains that θFp

(UFp
(g)G) ⊆ UFp

(t)W•. Moreover, under certain assumptions on
G and p, this inclusion is an equality. Recall that a prime p is called good for R if it
satisfies the following: for every γ∨ ∈ R∨ expressed in terms of the simple coroots as

γ∨ =
∑
α∈∆

nα(γ∨)α∨,

one has p > nα(γ∨) for all α. Then, one has the following mod. p analogue of Harish-
Chandra’s isomorphism. Let DG denote the derived subgroup of G, see [28, II.1.18].

Theorem ([29]). — Assume that DG is simply-connected, that p is good for R, and
that X(T )/ZR has no p-torsion. Then θFp

induces an isomorphim of algebras

UFp
(g)G ∼= UFp

(t)W•.

Proof. — Under the stated assumptions, this is proved in [29, § 9.6]. For the conve-
nience of the reader, let us outline the steps of the proof. Firstly, it is proved in [29,
§ 9.6] that it suffices to prove that the natural map

UZ(p)(t)
W• ⊗ Fp −→ UFp

(t)W•

is surjective. Secondly, since DG is simply-connected, {α∨, α ∈ ∆} is part of a basis of
X∨(T ); see [28, II.1.18] or [48, Prop. 8.1.8.(iii)], and it follows that the previous map
is surjective if and only if the analogous map UZ(p)(t)

W ⊗Fp → UFp
(t)W is so. Finally,

this surjectivity result follows, under the assumption that p is good and does not divide
|X(T )/ZR|, from [12], Cor. of Th. 2 (applied to the lattice M = X∨(T ) ∼= Lie T and
the root system R∨).

Remark. — The theorem is proved by completely different methods in [31] in the case
where G is almost simple and p �= 2 if G = SO(2n+1); these methods can be extended
to the case where G is reductive under the assumption that p �= 2 if α∨/2 ∈ X∨(T ),
for some α ∈ R. However, the version of the theorem given above is sufficient for our
purposes.

2.6.3. Central characters. — For any µ ∈ X(T ), its differential dµ induces an A-
linear map tA → A and hence an A-algebra morphism UA(t) → A, still denoted by
dµ. Thus, µ gives rise to an A-algebra morphism χµ,A := dµ ◦ θA, from UA(g)G to A.
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For any morphism of commutative rings f : A → B, it is easily seen that the
following diagram is commutative:

UA(g)G
θA ��

f
��

UA(t)
dµ

��

f
��

A

f
��

UB(g)G
θB �� UB(t)

dµ
�� B.

Thus, one has χµ,B ◦ f = f ◦ χµ,A.

Recall that UA(g)G ⊆ UA(t)⊕ u−UA(g)u. Thus, if M is a UA(g)-module generated
by an element v of weight µ annihilated by u, then UA(g)G acts on M by the character
χµ,A (see [13, Prop.7.4.4]).

Let π denote the morphism Z(p) → Fp, let χµ,p := χµ,Z(p) and χµ,p := π ◦ χµ,p =
χµ,Fp

, and set Jµ,p := Kerχµ,p. Then, one deduces immediately from the previous
theorem the following

Corollary. — Keep the hypotheses of the previous theorem. Let λ, µ ∈ X(T ). If
χλ,Fp

= χµ,Fp
, there exists w ∈ W such that µ − w · λ ∈ pX(T ).

2.7. Decomposition w.r.t. central characters mod. p.— Let λ ∈ X+ and let
p be a prime integer such that λ ∈ Cp. Recall the multisets Ωi

p(λ) from 2.4 and let
Ω•

p(λ) denote their disjoint union.

By Lemma 2.4, each S
Z(p)
i (g, p, λ) admits a finite UZ(p)(g)-filtration, whose quo-

tients are the M
Z(p)
p (ξ), where ξ runs through Ωi

p(λ). It follows that S
Z(p)
• (g, p, λ) is

annihilated by the ideal

I :=
∏

ξ∈Ω•
p(λ)

Jξ,p

(each ξ being counted with its multiplicity).

The following lemma is straightforward.

Lemma. — Let A be a commutative ring and let P1, . . . , Pr be ideals of A such that
P1 · · ·Pr = 0 and Pi + Pj = A if j �= i. Then, for any A-module M , one has

M =
r⊕

i=1

MPi , where MPi = {m ∈ M | Pi m = 0}.

Further, the assignment M → MPi is an exact functor.

We shall apply the lemma to A := UZ(p)(g)G/I. Note that A is a finite Z(p)-module.
Moreover, it is easily seen that the maximal ideals of A are the pA + Jξ,p = Kerχξ,p,
for ξ ∈ Ω•

p(λ). (By abuse of notation, we still denote by Jξ,p the image of Jξ,p in A).
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Let χ1, . . . , χr be the distinct algebra homomorphisms A → Fp, numbered so that
χ1 = χλ,p, and, for i = 1, . . . , r, let

Pi :=
∏

ξ∈Ω•
p(λ)

χξ,p=χi

Jξ,p.

Clearly, P1 · · ·Pr = 0 and pA + Pi + Pj = A if j �= i. Since A is a finite Z(p)-module,
the latter implies, by Nakayama lemma, that Pi + Pj = A if j �= i.

Then, one deduces from the previous lemma that S
Z(p)
• (g, p, λ) is the direct sum of

the UZ(p)(g)-submodules corresponding to the characters χ1, . . . , χr, that is,

(∗) S
Z(p)
• (g, p, λ) =

r⊕
i=1

S
Z(p)
• (g, p, λ)Pi .

Moreover, since the differentials in the complex S
Z(p)
• (g, p, λ) are UZ(p)(g)-equivariant,

each S
Z(p)
• (g, p, λ)Pi is a direct summand subcomplex. In particular, since χ1 = χλ,p,

this is true for
S

Z(p)
• (g, p, λ)χλ,p

:= S
Z(p)
• (g, p, λ)P1 .

Further, since M → Mχλ,p
is an exact functor and since

M
Z(p)
p (ξ)χλ,p

=

{
M

Z(p)
p (ξ) if χξ,p = χλ,p ;

0 otherwise,

one obtains, as in [3, Lemma 9.7], the following

Corollary. — S
Z(p)
• (g, p, λ) contains the subcomplex S

Z(p)
• (g, p, λ)χλ,p

as a direct sum-

mand. Moreover, for i � 0, each S
Z(p)
i (g, p, λ)χλ,p

has a filtration whose quotients are

the M
Z(p)
p (ξ), for those ξ ∈ Ωi

p(λ) (counted with multiplicities) such that χξ,p = χλ,p.

2.8. The main step towards the description of S
Z(p)
• (g, p, λ)χλ,p

is the following propo-
sition.

Proposition. — Assume that DG is simply-connected and X(T )/ZR has no p-torsion.
Let λ ∈ X+ ∩ Cp and ξ ∈ Ω•

p(λ). If χξ,p = χλ,p, then ξ = w · λ for some w ∈ WL.

Proof. — Let ξ be as in the proposition. Observe that, by 2.1(†), the assumption
X+∩Cp �= ∅ implies that p is good for R. Therefore, the hypotheses of Theorem 2.6.2
are satisfied. Thus, by Corollary 2.6.3, χξ,p = χλ,p implies that there exist y ∈ W and
ν ∈ X(T ) such that y · ξ = λ+ pν. Moreover, since y · ξ is a weight of Λ(g/p)⊗VZ(λ),
then y · ξ − λ ∈ ZR and hence pν ∈ ZR ∩ pX(T ). Since X(T )/ZR has no p-torsion,
it follows that ν ∈ ZR and hence ξ ∈ Wp · λ.

Now, let w ∈ W such that w−1(ξ + ρ) is dominant and let ξ+ := w−1 · ξ. Then,
by Lemma 2.3, ξ+ ∈ Cp. But ξ+ ∈ Wp · λ; since Cp is a fundamental domain for the
dot action of Wp, it follows that ξ+ = λ, and hence ξ = w · λ.
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Further, since ξ ∈ Ω•
p(λ) ⊆ X+

L , for any α ∈ R+
L one has 〈w · λ, α∨〉 � 0 and hence

〈λ + ρ, w−1α∨〉 � 〈ρ, α∨〉 > 0.

This implies that w ∈ WL. The proposition is proved.

Remark. — In the first version of this paper, the previous proposition was stated
under the assumption that G is either GLn or almost simple and simply connected
of type �= A and the proof relied on [31, Th. 1] in the second case and on results
of Carter and Lusztig ([8], proof of Theorems 3.8 and 4.1) in the first case. We are
indebted to the referee for pointing out that the result could be stated and proved
in a uniform manner by using the version of Harish-Chandra’s isomorphism given in
[29, §9].

We can now prove the following analogue of [3, Th. 9.9] and [37, Th. 3.10], [46,
Th. 7.11].

Theorem. — Assume that DG is simply-connected, that X(T )/ZR has no p-torsion,
and that λ ∈ X+ ∩ Cp. Then S

Z(p)
• (g, p, λ)χλ,p

is an UZ(p)(g)-resolution of VZ(p)(λ)

and each S
Z(p)
i (g, p, λ)χλ,p

with i � 0 has a filtration whose quotients are exactly the

M
Z(p)
p (w · λ), for w ∈ WL(i), each occuring once.

Proof. — By Corollary 2.7 and the previous proposition, each S
Z(p)
i (g, p, λ)χλ,p

with

i � 0 has a filtration whose quotients are the M
Z(p)
p (ξ), for those ξ ∈ Ωi

p(λ) (counted
with multiplicities) such that ξ = w · λ for some w ∈ WL.

Conversely, for w ∈ WL, Kostant has showed that V L
Q (w·λ) occurs with multiplicity

one in Λ•(g/p) ⊗ VZ(λ), in degree equal to �(w), see [Ko1], Lemma 5.12 and end of
proof of Th. 5.14. This completes the proof of the theorem.

2.9. Proof of theorem 2.1.— In this subsection, we assume that G is either GLn or
almost simple and simply-connected of type �= A. As observed in 2.1, this assumption
entails no loss of generality in the proof of Kostant’s theorem over Z(p). Keep the
notation of 2.7-2.8. Note that ZR is a direct summand of X(T ) if G = GLn, while if
G is almost simple of type �= A, the assumption X+ ∩Cp �= ∅ implies that X(T )/ZR

has no p-torsion. Therefore, the hypotheses of Theorem 2.8 are satisfied.
Observe next that, as UZ(p)(u

−
P )-module, any M

Z(p)
p (ξ) is isomorphic to UZ(p)(u

−
P )⊗

V L
Z(p)

(ξ), hence free. Thus, by Theorem 2.8, S
Z(p)
i (g, p, λ)χλ,p

is a free UZ(p)(u
−
P )-

module, for each i � 0.
Therefore, H•(u−P , VZ(p)(λ)) is the homology of the complex

C• := Z(p) ⊗UZ(p)(u
−
P ) S

Z(p)
• (g, p, λ)χλ,p

.

Further, by Theorem 2.8, again, for i � 0 each Ci has an L-module filtration whose
successive quotients are the V L

Z(p)
(w · λ), for w ∈ WL(i).
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By Corollary 1.10, applied to L, one obtains that these filtrations split, that is, for
each i � 0 one has isomorphisms of L-modules

Ci
∼=

⊕
w∈W L(i)

V L
Z(p)

(w · λ).

Further, we claim that the differentials di : Ci → Ci−1 are zero. Indeed, one has
Hi(C•)⊗Q ∼= Hi(u−P , VQ(λ)) and, by Kostant’s theorem ([33, Cor. 8.1] or [3], Cor. of
Th. 9.9), the latter is isomorphic to Ci ⊗Q. It follows, for a reason of dimension, that
di ⊗ 1 = 0. Since Ci−1 is torsion-free, this implies that di = 0.

Thus, we have obtained, for each i � 0, an isomorphism of L-modules

Hi(u−P , VZ(p)(λ)) ∼=
⊕

w∈W L(i)

V L
Z(p)

(w · λ).

This completes the proof of Theorem 2.1.

2.10. Analogue in cohomology.— Recall the anti-involution τ from 1.4; it ex-
changes P− and P and stabilizes L. Let λ ∈ X+ ∩ Cp. Since H•(u−P , V ) is a free
Z(p)-module, one obtains, by standard arguments, an isomorphism of L-modules

H•(u−P , VZ(p)(λ))τ ∼= H•(uP , VZ(p)(λ)τ ).

Further, since VZ(p)(λ) = VZ(p)(λ)τ and V L
Z(p)

(w · λ) = V L
Z(p)

(w · λ)τ , for w ∈ WL, by
Corollary 1.9, applied to G and L, one obtains the

Corollary. — Let λ ∈ X+ ∩ Cp. For each i � 0, there is an isomorphism of LZ(p)-
modules

Hi(uP , VZ(p)(λ)) ∼=
⊕

w∈W L(i)

V L
Z(p)

(w · λ).

3. Cohomology of the groups U−
P (Z)

3.1. Let us recall several definitions and facts about finitely generated, torsion free,
nilpotent groups. Let Γ be such a group, say of class c. Let F be a finite series

Γ = F 1Γ ⊃ F 2Γ ⊃ · · · ⊃ F d+1Γ = {1}
of normal subgroups of Γ. Following the terminology in Passman’s book [42, p.85], let
us say that F is an N -series if (F iΓ, F jΓ) ⊆ F i+jΓ for all i, j. Since every subgroup
of Γ is finitely generated (see [21, Lemma 1.9] or [42, Chap. 3, Lemma 4.2]), each
F iΓ/F i+1Γ is then a finitely generated abelian group.

Let us denote temporarily by r(F) the rank of
⊕d

i=1 F iΓ/F i+1Γ. This rank is in
fact an invariant of Γ. Indeed, F can be refined to a sequence of normal subgroups

Γ = H1 ⊃ H2 ⊃ · · · ⊃ Hn+1 = {1}
such that each Hi/Hi+1 is cyclic, and for any such refinement the number of infinite
cyclic quotients equals r(F). But, for any subnormal series Γ = S1 � S2 � · · · �
Sm+1 = {1} such that each quotient Si/Si+1 is cyclic, the number of infinite cyclic
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quotients is an invariant called the rank, or Hirsch number, of Γ and denoted by h(Γ);
see the discussion before Lemma 10.2.10 in [42] or [51, Chap. 2, Th. 3.20]. Together,
these arguments show that r(F) = h(Γ).

If F is an N -series, the associated graded abelian group

grF Γ :=
⊕
i�1

F iΓ/F i+1Γ

has a natural structure of Lie algebra over Z (see, for example, [36, Chap. I, Th. 2.1]).
Further, F is called an N0-series if it is an N -series and each F iΓ/F i+1Γ is torsion-

free. Such series exist, see [30, Th. 2.2] or [42, Chap. 11, Lemma 1.8], and in this case
grF Γ is a free Z-module of rank h(Γ).

Let {Ci(Γ)}i�1 denote the lower central series; as is well-known, it is the fastest
descending N -series. We shall denote the corresponding graded Lie algebra simply by
gr Γ. Further, for each i, set

C(i)(Γ) := {x ∈ Γ | xn ∈ Ci(Γ) for some n > 0}.

By [42, Lemma 11.1.8] (see also [21, § 4]), {C(i)(Γ)}i�1 is an N0-series. It is clearly
the fastest descending N0-series. Following [21, § 4], we will call it the isolated lower
central series. We will denote by grisol Γ the associated Lie algebra over Z

grisol Γ :=
⊕
i�1

C(i)(Γ)/C(i+1)(Γ);

it is a free Z-module of rank h(Γ). Clearly, there is an isomorphism of graded Lie
algebras gr Γ ⊗ Q ∼= grisol Γ ⊗ Q.

Let I denote the augmentation ideal of the group ring ZΓ and, for n � 0, let I(n)

denote the isolator of In, that is,

I(n) := {x ∈ ZΓ | mx ∈ In for some m > 0}.

Equivalently, if IQ denotes the augmentation ideal of QΓ, then I(n) = ZΓ ∩ In
Q .

Let us consider the graded rings

grisol ZΓ :=
⊕
n�0

I(n)/I(n+1) and gr QΓ :=
⊕
n�0

In
Q/In+1

Q .

The former is a subring of the latter and, by a result of Quillen ([45]), there is an
isomorphism of graded Hopf algebras UQ(gr Γ ⊗ Q) ∼= gr QΓ. Further, one has the
following more precise result of Hartley :

Theorem ([23, Th. 2.3.3 ′]). — There is an isomorphism of graded Hopf algebras

UZ(grisol Γ) ∼= grisol ZΓ.
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3.2. Let A be a finitely generated subring of Q (thus, A = Z[1/m] for some m and
A is a PID). Let u be a nilpotent Lie algebra of class c over A, which is a finite free
A-module, say of rank r. Let uQ = u ⊗A Q, then UQ(uQ) ∼= UA(u) ⊗A Q; we shall
denote it by UQ(u). By the PBW theorem, UA(u) is a subalgebra of UQ(u).

Let F be a finite sequence

u = F 1
u ⊃ F 2

u ⊃ · · · ⊃ F d+1
u = {0}

of Lie ideals of u. As in the previous paragraph, let us say that F is an N -series if
[F iu, F ju] ⊆ F i+ju, and is an N0-series if further each F iu/F i+1u (which is a finitely
generated module over the PID A) is torsion free, and hence a free A-module.

Let {Ci(u)}i�1 denote the lower central series of u and define the isolated lower
central series {C(i)(u)}i�1 by

C(i)(u) := {x ∈ u | nx ∈ Ci(u) for some n > 0}.

This is, clearly, the fastest descending N0-series of u. Consider the graded Lie algebras

grisol u :=
⊕
i�1

C(i)(u)/C(i+1)(u) and gr uQ :=
⊕
i�1

Ci(uQ)/Ci+1(uQ).

Then grisol u is a free A-module of rank r and there is an isomorphism of graded Lie
algebras (grisol u) ⊗A Q ∼= gr uQ.

Let JQ denote the augmentation ideal of UQ(u). Then the graded algebra

grUQ(u) :=
⊕
n�0

Jn
Q/Jn+1

Q

is a primitively generated, graded Hopf algebra; it is isomorphic to UQ(gr uQ), by [32]
or [52, Prop. 1]. In fact, as in the case of group rings, a little more is true. For n � 1,
let J (n) = UA(u) ∩ Jn

Q . Then the graded ring

grisol UA(u) :=
⊕
n�0

J (n)/J (n+1)

identifies with a subring of grUQ(u). Further, one deduces from the proof of [52,
Prop. 1] the following result. Let X1, . . . , Xr be an A-basis of u compatible with the
filtration {C(i)(u)}c

i=1, i.e., such that for s = 1, . . . , c, the Xj with j > r−dimCs(uQ)
form an A-basis of C(s)(u), and, for each i, let µ(i) be the largest integer k such that
Xi ∈ C(k)(u).

Proposition
a) The ordered monomials Xn1

1 · · ·Xnr
r with

∑r
i=1 ni µ(i) � n form an A-basis

of J (n), for any n � 0.

b) There is an isomorphism of graded Hopf algebras UA(grisol u) ∼= grisol UA(u).
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3.3. Let Γ be, as in 3.1, a finitely generated, torsion free, nilpotent group of class
c and let Γ = H1 ⊃ · · · ⊃ Hr+1 = {1} be a refinement of the isolated lower central
series such that each Hi/Hi+1 is an infinite cyclic group, generated by the image of
an element gi of Hi. Then, r = h(Γ) and {g1, . . . , gr} is called a system of canon-
ical parameters (or canonical basis) of Γ; it induces a bijection Zr ∼= Γ, given by
(n1, . . . , nr) → gn1

1 · · · gnr
r ; we will denote the R.H.S. simply by g(n1, . . . , nr). Let

{e1, . . . , er} be the standard basis of Zr ; then g(ei) = gi.

Let Pr,r denote the subring of the polynomial ring Q[ξ1, . . . , ξr, η1, . . . , ηr] consist-
ing of those polynomials which take integral values on Zr×Zr. By a result of Ph. Hall
[21, Th. 6.5], there exist polynomials P1, . . . , Pr ∈ Pr,r such that

(�) g(x1, . . . , xr) g(y1, . . . , yr) = g(P1(x, y), . . . , Pr(x, y)),

for any x, y ∈ Zr.
Therefore, there exists an algebraic unipotent group scheme U , defined over a

finitely generated subring A of the rationals, and whose underlying scheme is affine
space Ar

A, such that Γ identifies with the subgroup Zr of U(A) = Ar.

Remark. — If Γ is of class c, one may take A = Z[1/c!]; this can be deduced, for
example, from the Campbell-Hausdorff formula.

Let k ∈ {1, . . . , r}. Since Pk(x, 0) = xk and Pk(0, y) = yk for every x, y ∈ Zr, the
part of degree � 1 of Pk is ξk + ηk and its part of degree 2, call it bk, is bilinear in
the ξi and the ηj . Thus, one has

Pk(ξ, η) = ξk + ηk +
r∑

i,j=1

bk(ei, ej) ξiηj + terms of degree > 2.

Let m denote the ideal (ξ1, . . . , ξr) of A[U ] = A[ξ1, . . . , ξr], let

u := HomA(m/m
2, A)

be the Lie algebra of U over A, and let {v1, . . . , vr} be the A-basis of u dual to the
basis {ξ1, . . . , ξr}. Then, the Lie brackets are given by

(1) [vi, vj ] =
r∑

k=1

(bk(ei, ej) − bk(ej , ei)) vk,

see, for example, [35, § 1] or [9, § 1].

Proposition. — There is an isomorphism of graded Lie algebras over A

grisol Γ ⊗Z A ∼= grisol u,

under which each gi corresponds to vi.
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Proof. — First, for each i, let ν(i) denote the largest integer n such that gi ∈ C(n)(Γ).
Denote by gi the image of gi in grν(i)

isol Γ; then {g1, . . . , gr} is a Z-basis of grisol Γ.
For k = 1, . . . , r, let Qk := Pk − ξk − ηk be the part of Pk of degree > 1. Recall

that, for x1, . . . , xr ∈ Z, g(
∑r

i=1 xi ei) denotes the element gx1
1 · · · gxr

r of Γ.
Let i, j ∈ {1, . . . , r} be arbitrary with i < j. Then, for every x, y ∈ Zr , one has

g(xei)g(yej) = g(xei + yej) and hence Qk(xei, yej) = 0 = bk(xei, yej) for any k. In
particular, bk(ei, ej) = 0.

On the other hand, since gx
j ∈ C(ν(j))(Γ) and gy

i ∈ C(ν(i))(Γ) one has,

gx
j gy

i ≡ gy
i gx

j g

( ∑
k

ν(k)=ν(i)+ν(j)

Qk(x, y)ek

)
mod. C(ν(i)+ν(j)+1)(Γ).

Further, since the commutator induces a bilinear map on grisol Γ, one has, when
ν(k) = ν(i) + ν(j),

Qk(xej , yei) = xyQk(ej , ei) = xybk(ej , ei).

Then, an easy computation shows that

gx
i gy

j g−x
i g−y

j ≡ g

( ∑
k

ν(k)=ν(i)+ν(j)

−xybk(ej , ei) ek

)
mod. C(ν(i)+ν(j)+1)(Γ).

Using the fact that bk(ei, ej) = 0, one deduces that the Lie bracket on grisol Γ is given
by

(2) [gi, gj ] =
∑

k
ν(k)=ν(i)+ν(j)

(bk(ei, ej) − bk(ej , ei)) gk.

The proposition is then a consequence of the following claim.

Claim. — For � = 1, . . . , c, C(�)(u) is the A-span of those vk such that ν(k) � �.

Indeed, using (1), the claim implies that grisol u is the Lie algebra having an A-basis
{v1, . . . , vr} and brackets given by

(3) [vi, vj ] =
∑

k
ν(k)=ν(i)+ν(j)

(bk(ei, ej) − bk(ej , ei)) vk.

Comparing with (2), one obtains that grisol Γ ⊗Z A ∼= grisol u.

Let us now prove the claim by induction on r + �. Recall that c denotes the class
of Γ. By induction, we may reduce to the case where C(c)(Γ) = Zgr.

Since grisol Γ⊗Z Q ∼= grΓ⊗Z Q is generated in degree 1, there exist s < t < r such
that ν(t) = c − 1 and [gs, gt] = ngr, for some non-zero integer n. Then, (gs, gt) = gn

r

and hence, by the previous calculations, one has br(et, es) = −n, while br(es, et) = 0.
Therefore, by (1), [vs, vt] = nvr.
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For any k < r, the image of vk in u/Avr belongs to C(ν(k))(u/Avr), by induction
hypothesis. Thus, there exist a positive integer mk and ak ∈ A such that

(4) mkvk − akvr ∈ Cν(k)(u).

Applying this to k = t and using the fact that vr is central, one obtains that

mt n vr = [vs, mtvt − atvr]

belongs to Cc(u), and hence vr ∈ C(c)(u). In turn, this implies, by (4), that vk ∈
C(ν(k))(u), for each k < r. This proves the claim and completes the proof of the
proposition.

3.4. Filtered Noetherian rings with the AR-property.— Let us recall several
results about the homology of filtered Noetherian rings with the Artin-Rees property.
Some basic references for this material are [47], [6], [20]; see also [40, Chap. I] and
[14, § 1]. (Note, however, that in [20] the assertions in lines 8-12 of 2.8 and assertion
(ii) of Theorem 3.3 are not correct; it is not difficult to provide counter-examples).

Let S be a left Noetherian ring. A sequence I := {I1, I2, . . .} of two-sided ideals
is said to be admissible if I1 ⊇ I2 ⊇ · · · and IjIk ⊆ Ij+k for j, k � 0 (where one sets
I0 = S). Given such a sequence, let

grS :=
⊕
n�0

In/In+1 and Ŝ := proj.lim.
n�0

S/In

be the associated graded ring and completion, respectively.
Let S-filt denote the category of N-filtered left S-modules: objects are left S-

modules M equipped with a decreasing filtration M = F 0M ⊇ F 1M ⊇ · · · such
that InF kM ⊆ Fn+kM , and a morphism f : M → N between two such objects is
an S-morphism which preserves the filtrations. Then f induces a morphism of grS-
modules gr f : grM → grN and this defines a functor gr from S-filt to the category of
N-graded grS-modules. Further, f is called strict if one has f(M)∩F kN = f(F kM)
for any k.

An object M of S-filt is called separated if
⋂

n�0 FnM = {0}, and discrete if
FnM = {0} for some n � 0.

The category S-filt is equipped with shift functors sn, for n � 0, defined as follows.
If M is an object of S-filt, snM = M as S-module but F p(snM) = F p−nM for p � 0,
with the convention that F kM = M if k < 0. If M is an N-graded S-module, the
shifted module snM is defined in an analogous manner.

An object L of S-filt is called filt-free if it a direct sum of shifted modules sd(λ)S,
for λ running in some index set Λ. Then, grL ∼=

⊕
λ∈Λ sd(λ) grS.

Let M be an object of S-filt. Then a strict filt-free resolution of M is an S-module
resolution

(E) · · · −→ L1
f1−→ L0

f0−→ M −→ 0
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such that every Ln is filt-free and every fn is a strict morphism in S-filt. By [47,
Lemmas 1,2], the associated graded complex (gr E) is then a free grS-resolution of
grM and, conversely, if S is complete with respect to I, any free grS-resolution of
grM can be obtained in this manner.

Let us consider also the category filt-S of N-filtered right S-modules. All notions
introduced previously for S-filt have, of course, their right-handed analogues. Now,
if N (resp. M) is an object of filt-S (resp. S-filt), the abelian group N ⊗S M has a
natural N-filtration, defined by

Fn(N ⊗S M) := Im
(∑

p+q=n
F pN ⊗S F qM −→ N ⊗S M

)
.

Moreover, it is easily seen that if either of N or M is a filt-free object, then the natural
map grN ⊗gr S grM → gr(N ⊗S M) is an isomorphism.

Therefore, if one considers a strict filt-free resolution L• of, say, M , the filtration on
N⊗SL• induces a natural spectral sequence with E1-term (in cohomological notation)

Ep,−q
1 = Hp−q(grN ⊗S grL•)p = Torgr S

q−p(gr N, grM)p.

Moreover, certain finiteness conditions ensure that this spectral sequence converges
finitely to TorS

∗ (N, M). Firstly, by [47, Lemma 2.(g)] or [20, Th. 2.9], one has the
following

Proposition (C). — Assume that S is complete with respect to the filtration I and that
grS is left Noetherian. Let M, N be objects of S-filt and filt-S, respectively, such that
M is separated and grM finitely generated over grS, while N is discrete. Then the
spectral sequence above converges finitely to TorS

∗ (N, M).

Proof. — By the references cited above, any resolution of grM by free grS-modules
can be lifted to a strict filt-free resolution of M . Since grM is finitely generated over
grS, which is left Noetherian, one deduces that M admits a strict filt-free resolution
L• → M → 0 such that each Ln is finitely generated. As N is assumed to be discrete,
the filtration on N ⊗S L• is then discrete (and exhaustive) in each degree, and the
proposition follows.

Secondly, the assumption that S be complete can be relaxed if one assumes that
the sequence I = {I = I1 ⊇ I2 ⊇ · · · } has the left Artin-Rees property, i.e., that I
satisfies the following : for any finitely generated left S-module M , any submodule
N ⊆ M and any n � 0, there exists n′ � n such that N ∩ In′M ⊆ InN .

For any left S-module M , let us denote by M̂ its completion with respect to the
filtration {InM}; it is an Ŝ-module and there is a natural morphism of Ŝ-modules
τM : Ŝ ⊗S M → M̂ . As observed in [6, Prop. 3], one has the following proposition,
which is proved exactly as in the commutative I-adic case (see [2, Chap. 10]).
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Proposition (AR). — Assume that S is left Noetherian and that I satisfies the left AR-
property. Then, τM is an isomorphism for any finitely generated left S-module M and,
therefore,

a) Ŝ is flat as right S-module,
b) for each n, ŜIn = Ker(Ŝ → S/In) is a two-sided ideal and hence {ŜIn} is an

admissible sequence in Ŝ,
c) the associated graded gr Ŝ is isomorphic to grS.

Thus, in particular, if P• → S/I → 0 is a resolution of S/I by free S-modules, then
Ŝ ⊗S P• is a free Ŝ-resolution of

Ŝ ⊗S (S/I) = Ŝ/I = S/I.

Thus, for any right Ŝ-module N , there is a natural isomorphism

TorŜ
• (N, S/I) ∼= TorS

• (N, S/I).

This is the case, in particular, if N is a right S-module with a discrete filtration.
Therefore, one obtains the following theorem, which is essentially contained in [20,
Th. 3.3′.(i)].

Theorem 3.4.1. — Let S be a left Noetherian ring, I an admissible sequence of ideals.
Suppose that I satisfies the left AR property and that grS is left Noetherian. Let N be
a right S-module with a discrete filtration. Then there is a finitely convergent spectral
sequence

Ep,−q
1 = Torgr S

q−p(grN, S/I)p =⇒ TorŜ
q−p(N, S/I) ∼= TorS

q−p(N, S/I).

For future use, let us derive the following equivariant version of the theorem. Let
Λ be a group of automorphisms of S preserving the sequence I. Let SΛ denote the
smash product S#ZΛ, that is, SΛ = S⊗Z ZΛ as (S, ZΛ)-bimodule, the multiplication
being defined by

(s ⊗ λ)(s′ ⊗ λ′) = sλ(s′) ⊗ λλ′.

Similarly, denote by ŜΛ the smash product Ŝ#ZΛ. Observe that an SΛ-module is the
same thing as an S-module M equipped with an action of Λ such that λsm = λ(s)λm,
for m ∈ M , s ∈ S, λ ∈ Λ.

For every n � 0, let I ′n (resp. Î ′n) denote the left ideal of SΛ (resp. ŜΛ) generated
by In; they are two-sided ideals and form an admissible sequence in SΛ (resp. ŜΛ).
In both cases, the associated graded is isomorphic to (grS)Λ := (grS)#Λ.

Theorem 3.4.2. — With notation as above, let N be a discrete object of SΛ-filt. There
is a finitely convergent spectral sequence of Λ-modules

Ep,−q
1 = Torgr S

q−p(grN, S/I)p =⇒ TorS
q−p(N, S/I).
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Proof. — First, I ′ := (SΛ)I is a two-sided ideal of SΛ, and SΛ ⊗S (S/I) ∼= SΛ/I ′.
Then, by standard arguments, it suffices to prove that: i ) ŜΛ is flat as right SΛ-
module, and: ii ) ŜΛ ⊗S (S/I) ∼= SΛ/I ′.

But ŜΛ is isomorphic to Ŝ⊗S SΛ as (Ŝ, SΛ)-bimodule, and to SΛ⊗S Ŝ as (SΛ, Ŝ)-
bimodule. This implies i ) and ii ).

3.5. Let us return to the finitely generated, torsion free, nilpotent group Γ and the
associated unipotent algebraic group UA. Recall the notation of subsections 3.1–3.3.

It is known that ZΓ and UA(u) are left and right Noetherian and have the left and
right AR-property with respect to the filtration by the powers of the augmentation
ideal, see, for example, [42, Th. 2.7 & § 11.2], [41] and [6, Th. 1].

Further, by [22, Cor. 3.5], one has I(cn) ⊆ In, where c is the class of Γ (and
also the class of u), and a similar argument, using Proposition 3.2.a) shows that
J (cn) ⊆ Jn. From this one deduces easily that the sequences {I(n)} and {J (n)} also
have the left and right AR-property. In the sequel, we equip ZΓ and UA(u) with these
sequences, which we call I and J respectively. By Theorem 3.1 and Proposition 3.2,
the associated graded rings are left and right Noetherian.

Let V be an UA-module. Then V is in a natural manner a representation of the
Lie algebra u and of the abstract group Γ. Let F be a finite sequence V = F 0V ⊃
· · · ⊃ F s+1V = {0} of UA-submodules. Let us say that F is an admissible filtration
of V if it is an I (resp. J ) filtration of V regarded as ZΓ (resp. UA(u)) module, i.e.,
if for any i, n � 0, both I(n)(F iV ) and J (n)(F iV ) are contained in F i+nV .

Lemma. — If V is an UA-module which is finite free over A, it admits an admissible
filtration.

Proof. — By the theorem of Lie-Kolchin applied to VQ, one obtains that V U , the
submodule of invariants, is non-zero. Since

V U = {x ∈ V | ∆V (x) = x ⊗ ε},
where ∆V is the coaction defining the comodule structure and ε is the augmentation
of A[U ], and since V ⊗A A[U ] is a free A-module, one sees that V/V U is torsion-free,
hence a free A-module.

Therefore, if one sets F0V = 0 and defines inductively FkV as the inverse image
in V of the U -invariants in V/Fk−1V , the sequence {FkV } is increasing strictly, as
long as FkV �= V , and each V/FkV , if non-zero, is a finite free A-module. Since V is a
Noetherian A-module, FNV = V for some N . Setting F iV = FN−iV , it is easily seen
that, for any i, n � 0, both In(F iV ) and Jn(F iV ) are contained in F i+nV . Further,
since every F iV/F i+nV is torsion-free, one obtains that {F iV }N

i=0 is an admissible
filtration of V .

Then, one deduces from the results of 3.4 the following theorem. There are, obvi-
ously, equivariant versions; we leave their formulation to the reader.
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Theorem. — Let V be an UA-module which is finite free over A and let F be any
admissible filtration on V . Then there are two finitely convergent spectral sequences:

Ep,−q
1 = Hq−p(grisol Γ, grF V )p =⇒ Hq−p(Γ, V ),i )

Ep,−q
1 = Hq−p(grisol u, grF V )p =⇒ Hq−p(u, V ).ii )

3.6. Finally, let us return to the setting of Sections 1 and 2. The unipotent group
U−

P is defined over Z. Let Γ := U−
P (Z); it is, clearly, a torsion-free nilpotent group.

For each β ∈ R, let Uβ be the corresponding root subgroup, let Xβ be a generator
of gβ = LieUβ , and let θβ be the isomorphism Ga → Uβ such that dθβ(1) = Xβ . Set
I := ∆ \ R+

L and let fI : ZR → Z be the additive function which coincides on the
basis ∆ with the negative of the characteristic function of I. That is,

fI(α) =
{
−1 if α ∈ I;
0 if α ∈ ∆ ∩ R+

L .

Choose a numbering α1, . . . , αr of the elements of R− \R−
L such that fI(αi) � fI(αj)

if i � j. The multiplication map induces an isomorphism of Z-schemes

Uα1 × · · · × Uαr

∼=−→ U−
P .

Moreover, it follows from the commutation formulas in [49, Lemma 15] or [7, 3.2.3–
3.2.5] that, for any s = 1, . . . , r, Uαs · · ·Uαr is a closed, normal subgroup of U−

P . One
deduces that the gi := θαi(1) generate Γ and, moreover, form a system of canonical
parameters, that U−

P is the algebraic group associated in 3.3 to Γ, and that the basis
{v1, . . . , vr} of u

−
P identifies with {Xα1 , . . . , Xαr}.

Lemma. — One has u
−
P
∼= grisol u

−
P .

Proof. — Since T acts on u
−
P by Lie algebra automorphisms, u

−
P has a structure of

graded Lie algebra given by the function fI . That is, if one sets, for i � 1,

u
−
P (i) :=

⊕
α∈R−

fI(α)=i

gα,

then
u
−
P =

⊕
i�1

u
−
P (i) and [u−P (i), u−P (j)] ⊆ u

−
P (i + j).

Therefore, the lemma will follow if we show that C(i)(u−P ) = u
−
P (� i), where u

−
P (� i)

is defined in the obvious manner. Clearly, Ci(u−P ) ⊆ u
−
P (� i) and, since u

−
P /u

−
P (� i)

is torsion-free, one obtains that C(i)(u−P ) ⊆ u
−
P (� i).

The converse inclusion u
−
P (� i) ⊆ C(i)(u−P ) follows from an argument in the proof

of [4, Prop. 4.7.(iii)]. For the convenience of the reader, let us recall here this short
argument. Using induction on i, it suffices to prove that for any β ∈ R− such that
fI(β) = i � 2, there exists α ∈ R+ such that fI(−α) = 1 and 〈β, α∨〉 < 0, since then
β + α ∈ R− \ R−

L and [X−α, Xβ+α] = mXβ for some non-zero integer m.
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As fI is constant on orbits of W∆\I , we may assume that β belongs to X+
L .

Then, since β ∈ R− whilst dominant roots are positive, there exists α ∈ I such
that 〈β, α∨〉 < 0. This completes the proof of the lemma.

Remark. — Our original proof of the inclusion u
−
P (� i) ⊆ C(i)(u−P ) relied on the fact

that, by [33, Cor. 8.1], H1(u−P,Q, Q) ∼=
⊕

α∈I V L
Q (−α). We are indebted to the referee

for pointing out the simple, direct argument in [4].

Recall the integers ν(i) introduced in the proof of Proposition 3.3. From this
proposition and the previous lemma (and their proofs), one deduces the following

Corollary. — There is an isomorphism of graded Hopf algebras grisol ZΓ ∼= U(u−P ),
under which each gi − 1 corresponds to Xαi . Further, for i = 1, . . . , r, one has ν(i) =
fI(αi).

3.7. For any λ ∈ X+, set

VZ(λ)(i) :=
⊕

µ∈X
fI (µ−λ)=i

VZ(λ)µ,

where the subscript µ denotes the µ-weight space. Then, each VZ(λ)(i) is an L-
submodule and there is an isomorphism of L-modules

VZ(λ) ∼=
⊕
i�0

VZ(λ)(i).

Set F kVZ(λ) :=
⊕

i�k VZ(λ)(i); this defines a filtration F of VZ(λ) by P−-submodules,
such that the associated graded is isomorphic to VZ(λ) as L-module.

Proposition. — One has I(n)F kVZ(λ) ⊆ Fn+kVZ(λ), and grF VZ(λ) ∼= VZ(λ) as rep-
resentations of grisol ZΓ ∼= UZ(u−P ).

Proof. — Following [22], set, for i = 1, . . . , r and n � 0,

u
(n)
i := g

−[(n+1)/2]
i (gi − 1)n,

where [x] denotes the greatest integer not greater than x, and observe that u
(n)
i ≡

(gi − 1)n modulo In. Further, for j ∈ Nr, set

u(j) := u
(j1)
1 · · ·u(jr)

r and ν(j) =
∑

i

ji ν(i).

Then, by [22, Theorem 3.2 (i) and Lemma 3.1], the elements u(j) satisfying ν(j) � n

form a Z-basis of I(n), for every n � 0.
From this one deduces that, in order to prove the proposition, it suffices to prove

that, for any v ∈ F kVZ(λ) and i = 1, . . . , r, one has

(∗) (gi − 1)v − Xαiv ∈ F k+ν(i)+1VZ(λ).

The distribution algebra Dist(U−
P ) has a Z-basis formed by the ordered products

X(m1)
α1

· · ·X(mr)
αr

, for (m1, . . . , mr) ∈ Nr,
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where the elements X
(m)
β satisfy Xm

β = m! X(m)
β for every m � 0. Further, the

structure of Z[G]-comodule on VZ(λ) is such that, for any ring Ω, any t ∈ Ω and
v ∈ VΩ(λ), and any root α, one has

θα(t)v =
∑
m�0

tmX(m)
α v,

where the R.H.S. is in fact a finite sum. Since gi = θαi(1) and since each X
(m)
αi has

weight mαi for the adjoint action of T , this immediately implies formula (∗). The
proposition is proved.

3.8. We can now prove Theorem C of the Introduction. The discrete group Λ = L(Z)
normalizes Γ = U−

P and, hence, preserves the isolated powers of the augmentation
ideal of ZΓ. Therefore, by the equivariant version of Theorem 3.5 i ), combined with
Proposition 3.7, there is a finitely convergent spectral sequence of L(Z)-modules

(1) H∗(u−P , VZ(λ)) ∼= H∗(grisol ZΓ, VZ(λ)) =⇒ H∗(Γ, VZ(λ)).

It is, clearly, compatible with flat base change. Thus, for any prime integer p, one has
a finitely convergent spectral sequence

(2) H∗(u−P , VZ(p)(λ)) ∼= H∗(grisol ZΓ, VZ(p)(λ)) =⇒ H∗(Γ, VZ(p)(λ)).

Moreover, it is not difficult to check, by standard arguments, that the natural structure
of L(Z)-module on H∗(grisol ZΓ, VZ(p)(λ)) considered in Theorem 3.4.2 is the restric-
tion to L(Z) of the natural structure of L-module on H∗(u−P , VZ(p)(λ)). Therefore, if
λ is p-small then, by Theorem 2.1, one obtains an isomorphism of L(Z)-modules

Hi(grisol ZΓ, VZ(p)(λ)) ∼= Hi(u−P , VZ(p)(λ)) ∼=
⊕

w∈W L(i)

V L
Z(p)

(w · λ),

for every i � 0. In particular, H∗(grisol ZΓ, VZ(p)(λ)) is a free Z(p)-module.
Finally, it is well-known that u

−
P ⊗ Q is isomorphic to the Malcev-Jennings Lie

algebra of Γ; this follows, for example, from the proof of [35, Lemma 1.9]. Therefore,
by a result of Pickel [43, Th. 10], there is an isomorphism of graded vector spaces

H•(u−P , VQ(λ)) ∼= H•(Γ, VQ(λ)).

This implies that the abutment of the spectral sequence in (2) has the same rank
over Z(p) as the E1-term. Since the latter is a free Z(p)-module, one deduces that the
spectral sequence degenerates at E1. Therefore, we have obtained the following

Theorem. — Let λ ∈ X+ ∩ Cp. Then, for each n � 0, Hn(U−
P (Z), VZ(p)(λ)) has a

finite, natural L(Z)-module filtration such that

grHn(U−
P (Z), VZ(p)(λ)) ∼=

⊕
w∈W L(n)

V L
Z(p)

(w · λ).
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By the universal coefficient theorem, one then obtains a similar result over Fp.
Finally, by an argument similar to the one in 2.10, one obtains the following analogue
in cohomology.

Corollary. — Let λ ∈ X+ ∩ Cp. Then, for each n � 0, Hn(UP (Z), VFp(λ)) has a
finite, natural L(Z)-module filtration such that

grHn(UP (Z), VFp(λ)) ∼=
⊕

w∈W L(n)

V L
Fp

(w · λ).

3.9. Let us derive in this subsection a corollary about the p-Lie algebra associated
with the p-lower central series of Γ. (This result will not be used in the sequel).

Let F be a decreasing sequence Γ = F 1Γ ⊇ F 2Γ ⊇ · · · of normal subgroups of Γ.
It is called an Np-sequence if it is an N -sequence and x ∈ F iΓ implies that xp ∈ F piΓ.
In this case, grF Γ is a graded p-Lie algebra, see [36, Chap. I, Cor. 6.8] or [5, Chap. II,
§ 5, Ex. 10].

For our purposes, it is convenient to define the p-lower central series {Fn
p Γ}n�1 as

follows. Denoting by IFp the augmentation ideal of FpΓ, set

Fn
p Γ := {x ∈ Γ | x − 1 ∈ In

Fp
}.

This is an Np-sequence (see [42, Lemma 3.3.1]), and we denote the associated graded
p-Lie algebra by gr•p Γ.

The n-th term Fn
p Γ of the p-lower central series is sometimes defined as the sub-

group of Γ generated by all elements xps

satisfying psω(x) � n, where ω(x) denotes
the largest integer i such that x ∈ Ci(Γ). That the two definitions agree is due to
Lazard [36, Chap. I, Th. 5.6 & 6.10] and Quillen [45], see also [42, § 11.1].

Let us denote by LieFp the category of Lie algebras over Fp, by p-LieFp the subcate-
gory of p-Lie algebras, and by gr-LieFp and p-gr-LieFp , respectively, the subcategories
of graded and graded p-Lie algebras over Fp. The forgetful functor p-LieFp → LieFp

has a left adjoint, denoted by p-L; it takes gr-LieFp to p-gr-LieFp .

Corollary. — Let Γ be a finitely generated, torsion-free, nilpotent group, say of class c.
Suppose that

⊕c
i=1 C(i)(Γ)/Ci(Γ) has no p-torsion. Then, there is an isomorphism

of graded p-Lie algebras
gr•p Γ ∼= p-L(gr Γ ⊗ Fp).

Proof. — The hypothesis implies easily that gr Γ ⊗ Fp
∼= grisol Γ ⊗ Fp. Moreover, it

follows from the proof of [22, Th. 3.2 (i)] that every I(n)/In has no p-torsion. This
implies that, inside FpΓ, one has the identifications I(n) ⊗ Fp = In ⊗ Fp = In

Fp
. One

deduces from this, coupled with Theorem 3.1, the isomorphisms

gr FpΓ ∼= (grisol ZΓ) ⊗ Fp
∼= UZ(grisol Γ) ⊗ Fp

∼= UFp(grisol Γ ⊗ Fp) ∼= UFp(gr Γ ⊗ Fp).

On the other hand, by Quillen [45], gr FpΓ is isomorphic as graded Hopf algebra to
U res

Fp
(gr•

p Γ), the restricted enveloping algebra of the p-Lie algebra gr•p Γ.
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Recall that U res
Fp

, the restricted enveloping algebra functor, is left adjoint to the
forgetful functor AsFp → p-LieFp , where AsFp denotes the category of associative
Fp-algebras (with unit), while the usual enveloping algebra functor is left adjoint to
the forgetful functor AsFp → LieFp . Thus, since the adjoint of a composite is the
composite of the adjoints, one has UFp(L) ∼= U res

Fp
(p-L(L)), for any Fp-Lie algebra L.

Therefore, one obtains an isomorphism of graded Hopf algebras

U res
Fp

(p-L(gr Γ ⊗ Fp)) ∼= U res
Fp

(gr•
p Γ).

Taking primitive elements, this gives, by the theorem of Milnor-Moore [38, Th. 6.11],
an isomorphism of graded p-Lie algebras p-L(gr Γ ⊗ Fp) ∼= gr•p Γ. The corollary is
proved.

Remark. — It is easy to see that the torsion primes in
⊕c

i=1 C(i)(Γ)/Ci(Γ) and in
gr Γ are the same. Presumably, it should not be difficult to extract from the proof of
Proposition 3.3 that the torsion primes in gr u are also the same.

4. Standard and BGG complexes for distribution algebras

4.1. As in subsection 2.2, there is defined a complex

· · · −→ U(G) ⊗U(P ) Λ2(g/p)
dp

2−→ U(G) ⊗U(P ) (g/p)
dp

1−→ U(G) ⊗U(P ) Z ε−→ Z −→ 0,

the differentials being defined by the same formula as in 2.2. Note, however, that this
complex is not exact. We shall denote it by S•(G, P ).

More generally, let V be a G-module and let V|P denote V regarded as an U(P )-
module. Then one obtains, as in 2.2, a complex of U(G)-modules

· · · −→ U(G) ⊗U(P ) (Λ2(g/p) ⊗ V |P ) d2−→ U(G) ⊗U(P ) (g/p ⊗ V |P )
d1−→ U(G) ⊗U(P ) V |P ε−→ V −→ 0.

We shall call it the standard complex of V relative to the pair (U(G),U(P )), and
denote it by S•(G, P, V ). When V = VZ(λ), we shall denote it simply by S•(G, P, λ).

Further, as in 2.4, let us define, for any ξ ∈ X+
L , the generalized Verma module

(for U(G) and U(P ))
MP (ξ) := U(G) ⊗U(P ) V L

Z (ξ).

Set MZ(p)

P (ξ) := MP (ξ) ⊗Z Z(p) and SZ(p)
• (G, P, λ) := S•(G, P, λ) ⊗Z Z(p), for any

λ ∈ X+.

4.2. For the rest of this section, let us fix λ ∈ X+ and a prime integer p such that
λ ∈ Cp. Recall from 2.4 that Ωi

p(λ) denotes the multiset of those ξ ∈ X+
L such that

V L
Q (ξ) is a composition factor of Λi(g/p)Q.
Since U(G) is free over U(P ) (see, for example, [28, § II.1.12]), one obtains exactly

as in 2.4 the following
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Lemma. — Let λ ∈ X+ ∩ Cp. Then each SZ(p)
i (G, P, λ) admits a finite filtration by

UZ(p)(G)-modules such that the successive quotients are the MZ(p)

P (ξ), for ξ ∈ Ωi
p(λ).

Next, since UZ(p)(g) ⊂ UZ(p)(G) ⊂ UQ(g), one deduces that UZ(p)(g)G is contained
in the center of UZ(p)(G). Recall the characters χµ,p and χµ,p = π ◦ χµ,p, where π is
the morphism Z(p) → Fp, introduced in 2.6.3. If M is a UZ(p)(G)-module generated by
an element of weight µ annihilated by u, then UZ(p)(g)G acts on M by the character
χµ,p (see 2.6.3).

Let I =
∏

ξ∈Ω•
p(λ) Kerχξ,p (each ξ being counted with its multiplicity). It fol-

lows from the previous lemma that SZ(p)
• (G, P, λ) is a module over the ring A :=

UZ(p)(g)G/I, which is a finite Z(p)-module. Let χ1, . . . , χr be the distinct algebra
homomorphisms A → Fp, numbered so that χ1 = χλ,p, and, for j = 1, . . . , r, set

SZ(p)
• (G, P, λ)χj

:=
{

x ∈ SZ(p)
• (G, P, λ) |

∏
ξ∈Ω•

p(λ)
χξ,p=χj

(Ker χξ,p)x = 0
}

.

These are, clearly, subcomplexes of SZ(p)
• (G, P, λ). Then, exactly as in 2.7(∗), one

obtains the

Corollary. — One has SZ(p)
• (G, P, λ) =

⊕r
j=1 S

Z(p)
• (G, P, λ)χj

, a direct sum of com-
plexes.

4.3. Our aim in this section is to prove the following theorem.

Theorem. — Assume that DG is simply-connected, that X(T )/ZR has no p-torsion
and that u

−
P is abelian. Let λ ∈ X+ ∩ Cp. Consider the direct summand subcomplex

SZ(p)
• (G, P, λ)χλ,p

defined in 4.2. Then, for each i � 0, one has

SZ(p)
i (G, P, λ)χλ,p

∼=
⊕

w∈W L(i)

MZ(p)
P (w · λ).

As in [16, VI.5], we treat first the case λ = 0 and then derive from it the general
case.

4.4. The case λ = 0.— Since u
−
P is abelian, the differentials in the standard Koszul

complex computing H•(u−P ) are all zero and hence H•(u−P ) ∼= Λ•(u−P ). Therefore, by
a result of Kostant [33, § 8.2], the composition factors of Λi(g/p)Q are exactly the
V L

Q (w · 0), for w ∈ WL(i), each occuring with multiplicity one.
Moreover, as easily seen, the assumption that u

−
P is abelian is equivalent to the fact

that if α, β ∈ R+ \ R+
P then α + β �∈ R, which is also equivalent to the fact that UP

acts trivially on g/p. Therefore, by Corollary 1.10.b), each Λi(g/p)Z(p) is the direct
sum of the Weyl modules V L

Z(p)
(w · 0), for w ∈ WL(i). It follows that

(∗) SZ(p)
i (G, P ) ∼=

⊕
w∈W L(i)

MZ(p)
P (w · 0),
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and, therefore, SZ(p)
i (G, P ) = SZ(p)

i (G, P )χλ,p
in this case. This proves the sought-for

result when λ = 0 and p � h − 1. (Note that no further assumption on G and p is
needed in this case).

4.5. The general case.— Now, let λ ∈ X+ ∩ Cp be arbitrary. First, since
SZ(p)

• (G, P, λ) = SZ(p)
• (G, P )⊗ V (λ), one deduces from 4.4 (∗) and the tensor identity

([19, Prop. 1.7]) that, for i � 0,

(1) SZ(p)
i (G, P, λ) ∼=

⊕
w∈W L(i)

UZ(p)(G) ⊗UZ(p)
(P )

(
V L

Z(p)
(wρ − ρ) ⊗ VZ(p)(λ)

)
.

Let SZ(p)
w (G, P, λ) denote the summand corresponding to w on the R.H.S. Then

(2) SZ(p)
• (G, P, λ) =

⊕
w∈W L

SZ(p)
w (G, P, λ),

each SZ(p)
w (G, P, λ) occuring in degree �(w).

Therefore, by 4.2, one obtains that

(3) SZ(p)
• (G, P, λ)χλ,p

∼=
⊕

w∈W L

SZ(p)
w (G, P, λ)χλ,p

.

Lemma. — Assume further that DG is simply-connected and that X(T )/ZR has no
p-torsion. Then, for every w ∈ WL,

SZ(p)
w (G, P, λ)χλ,p

∼= MZ(p)

P (w · λ).

Proof. — First, exactly as in 2.7, one obtains that each SZ(p)
w (G, P, λ)χλ,p

has a filtra-

tion whose quotients are the MZ(p)

P (ξ) for those ξ such that V L
Q (ξ) is a composition

factor of the LQ-module V L
Q (w ·0)⊗VQ(λ) (counted with multiplicities) and such that

χξ,p = χλ,p.
Moreover, under the assumptions of the lemma, one obtains, exactly as in the proof

of Proposition 2.8, that any such ξ has the form y · λ, for some y ∈ WL.
But then the assumption that V L

Q (y ·λ) occurs as a composition factor of V L
Q (w·0)⊗

VQ(λ) implies that y = w and that the multiplicity is one. This may be deduced, for
example, from [27, Satz 2.25]. For the convenience of the reader, let us record a proof.
Firstly, it is well-known that any composition factor of the LQ-module V L

Q (w·0)⊗VQ(λ)
has the form V L

Q (w · 0+ ν), for some weight ν of VQ(λ) and occurs with a multiplicity
at most equal to dimVQ(λ)ν , see, for example, [24, § 24, Ex. 12] or, better, the proof
of Cor. 4.7 in [1]. Secondly, for such a ν, suppose that w · 0 + ν = y · λ, for some
y ∈ W . Then,

y−1wρ − ρ = λ − y−1ν.

Let θ denote this weight. Since y−1wρ (resp. y−1ν) is a weight of VQ(ρ) (resp. VQ(λ)),
one has θ ∈ −NR+ (resp. θ ∈ NR+) and, therefore, θ = 0. Thus, since the stabilizer
of ρ in W is trivial, y = w. Finally, ν = wλ has multiplicity one in VQ(λ). This
completes the proof of the lemma and, therefore, of Theorem 4.3.
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5. Dictionary

Let G = GSp(2g)Z be the split reductive Chevalley group over Z defined by
tXJX = ν · J where J is given by g × g-blocks

J =

 0g

. ..

1
. ..

−1
0g

 .

Let B = TN , resp. Q = MU , be the Levi decomposition of the upper triangular
subgroup of G, resp. of the Siegel parabolic, i.e., the maximal parabolic associated
to α, the longest simple root for (G, B, T ), so M = LI where I = ∆\{α}. Note that
DG = Sp(2g) is simply-connected and that the unipotent radical of Q is abelian.

The group of characters X of T is identified to the sublattice

{(ag, · · · , a1; c) ∈ Zg × Z | c ≡ ag + · · · + a1 mod. 2}
of Zg+1 in the following manner. The character (ag, · · · , a1; c) is defined by

diag(tg, . . . , t1, x · t−1
1 , . . . , x · t−1

g ) −→ tag
g · · · · · ta1

1 · x(c−a1−···−ag)/2.

The weight lattice P (R) coincides with X , and the root lattice ZR is the intersection
of X with the hyperplane {c = 0}. In particular, X/ZR is torsion free. The cone
X+ ⊂ X of dominant weights of G is given by the conditions ag � · · · � a1 � 0. The
half-sum ρ of the positive roots of G is then ρ = (g, . . . , 1; 0).

If (εg, . . . , ε1) is the canonical basis of Zg, the highest coroot γ∨ of G is εg + εg−1.
The condition 〈λ + ρ, γ∨〉 � p reads, therefore,

ag + ag−1 + g + (g − 1) � p.

For a character φ = (ag, . . . , a1; c) we define its degree as |φ| =
∑g

i=1 ai; the dual
character φ̂ = (ag, . . . , a1;−c) of φ has the same degree. Note that |ρ| = g(g + 1)/2.
So,

〈λ + ρ, γ∨〉 � |λ + ρ|
with equality for g � 2.

Let V = 〈eg, . . . , e1, e
∗
1, . . . , e

∗
g〉 be the standard Z-lattice on which G acts; given two

vectors v, w ∈ V, we write 〈v, w〉J = tvJw for their symplectic product. Then Q is the
stabilizer of the standard lagrangian lattice W = 〈eg, . . . , e1〉; we have V = W⊕W∗;
M = LI is the stabilizer of the decomposition (W,W∗); one has M ∼= GL(g) × Gm.
Let BM = B ∩ M be the standard Borel of M .

Recall from 1.5 the definition of admissible lattices and, for λ ∈ X+, the Z-lattices
V (λ)min and V (λ)max.

Let λ ∈ X+ and n = |λ|; for any (i, j) with 1 � i < j � n, let φi,j : V⊗n → V⊗(n−2)

denote the contraction given by

v1 ⊗ · · · ⊗ vn −→ 〈vi, vj〉J v1 ⊗ · · · ⊗ v̂i ⊗ · · · ⊗ v̂j ⊗ · · · ⊗ vn,
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and let V〈n〉 be the submodule of V⊗n defined as intersection of the kernels of the
φi,j . By applying the Young symmetrizer cλ = aλ · bλ (see [18], 15.3 and 17.3) to
V〈n〉, one obtains an admissible Z-lattice V (λ)Young in VQ(λ).

Then, by Corollary 1.9, one has the

Corollary. — For any p-small weight λ ∈ X+, one has canonically

V (λ)min ⊗ Z(p) = V (λ)Young ⊗ Z(p) = V (λ)max ⊗ Z(p).

Moreover, a similar result holds for a weight µ ∈ X+
M of M , provided it is p-small

for M .

References

[1] H.H. Andersen, A new proof of old character formulas, pp.193-207 in: Invariant theory,
Contemporary Math., Vol. 88 (R. Fossum, W. Haboush, M. Hochster, V. Lakshmibai
eds.), Amer. Math. Soc., 1989.

[2] M. Atiyah, I.G. Macdonald, Introduction to commutative algebra, Addison-Wesley,
1969.

[3] I.N. Bernstein, I.M. Gelfand, S. I. Gelfand, Differential operators on the base affine
space and a study of g-modules, in Lie Groups and their Representations, ed. I.M.
Gelfand, Proc. Conf. Budapest 1971, Adam Hilger Publ., 1975.

[4] A. Borel, J. Tits, Homomorphismes “abstraits” de groupes algébriques simples, Annals
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