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C O H O M O L O G Y O F S I E G E L V A R I E T I E S WITH p - A D I C 

I N T E G R A L C O E F F I C I E N T S AND A P P L I C A T I O N S 

by 

Abdellah Mokrane & Jacques Tilouine 

Abstract. — Under the assumption that Galois representations associated to Siegel 
modular forms exist (it is known only for genus at most 2), we study the cohomology 
with p-adic integral coefficients of Siegel varieties, when localized at a non-Eisenstein 
maximal ideal of the Hecke algebra, provided the prime p is large with respect to 
the weight of the coefficient system. We show that it is torsion-free, concentrated in 
degree d, and that it coincides with the interior cohomology and with the intersection 
cohomology. The proof uses p-adic Hodge theory and the dual BGG complex modulo 
p in order to compute the "Hodge-Tate weights" for the mod. p cohomology. We apply 
this result to the construction of Hida p-adic families for symplectic groups and to 
the first step in the construction of a Taylor-Wiles system for these groups. 
Résumé (Cohomologie des variétés de Siegel à coefficients entiers p-adiques et applications) 

Supposant connue l'existence des représentations galoisiennes associées aux formes 
modulaires de Siegel (elle ne l'est qu'en genre <C 2 pour le moment), on étudie la 
cohomologie des variétés de Siegel à coefficients entiers p-adiques localisée en un idéal 
maximal non-Eisenstein de l'algèbre de Hecke, lorsque p est grand par rapport au 
poids du système de coefficients. Plus précisément, on montre qu'elle est sans torsion, 
concentrée en degré médian, et qu'elle coïncide avec la cohomologie d'intersection et 
avec la cohomologie intérieure. On utilise pour cela la théorie de Hodge p-adique et le 
complexe BGG dual modulo p qui calcule « les poids de Hodge-Tate » de la réduction 
modulo p de cette cohomologie. On applique ce résultat à la construction de familles 
de Hida p-ordinaires pour les groupes symplectiques et à l'ébauche de la construction 
d'un système de Taylor-Wiles pour ces groupes. 

1. Introduction 

1.1. Let G be a connected reductive group over Q. Diamond [16] and Fujiwara [29] 
(independently) have axiomatized the Taylor-Wiles method which allows to study 
some local components T m of a Hecke algebra T for G of suitable (minimal) level; 
when it applies, this method shows at the same time that T m is complete intersection 
and that some cohomology module, viewed as a T-module, is locally free at m. It 
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2 A. MOKRANE & J. TILOUINE 

has been successfully applied to GL(2)/Q [73], to some quaternionic Hilbert modu­
lar cases [29], and to some inner forms of unitary groups [38]. If one tries to treat 
other cases, one can let the Hecke algebra act faithfully on the middle degree Betti 
cohomology of an associated Shimura variety; then, one of the problems to overcome 
is the possible presence of torsion in the cohomology modules with p-adic integral 
coefficients. For G = GSp(2#) (g > 1), we want to explain in this paper why this 
torsion is not supported by maximal ideals of T which are "non-Eisenstein" and or­
dinary (see below for precise definitions), provided the residual characteristic p is 
prime to the level and greater than a natural bound. A drawback of our method 
is that it necessitates to assume that the existence and some local properties of the 
Galois representations associated to cr homological cuspidal representations on G are 
established. For the moment, they are proven for g ^ 2 (see below). In his recent 
preprint [43], Hida explains for the same symplectic groups G how by considering 
only coherent cohomology, one can let the Hecke algebra act faithfully too on coho­
mology modules whose torsion-freeness is built-in (without assuming any conjecture). 
However for some applications (like the relation, for some groups G, between special 
values of adjoint L-functions, congruence numbers, and cardinality of adjoint Selmer 
groups), the use of the Betti cohomology seems indispensable. 

1.2. Let G = GSp(2g) be the group of symplectic similitudes given by the matrix 
J = (_?s o) ? whose entries are g x ^-matrices, and s is antidiagonal, with non-zero 
coefficients equal to 1; the standard Borel B, resp. torus T, in G consists in upper 
triangular matrices, resp. diagonal matrices in G. For any dominant weight A for 
(G, B, T), we write A for its dual (that is, the dominant weight associated to the Weyl 
representation dual of that of A). Let p be the half-sum of the positive roots. Recall 
that A is given by a {g + l)-uple (a5,. . . , ai; c) G Z^+1 with c = a\ H \- ag mod. 2, 
that A = (ap,..., ai; —c) and p = (#,.. . , 1; 0) (see section 3.1 below). Throughout 
this paper, the following integer will be of great importance: 

w = |A + p| = |A| +d = 
9 

i=l 

(di+ï) = d + 
9 

2=1 

'ai 

where d = g(g + l)/2. It can be viewed as a cohomological weight as follows. 
Let A = Af x Qoo be the ring of rational adèles; let Gf resp. be the group 

of Appoints resp. Qoo-points of G. Let U be a "good" open compact subgroup of 
G(Af) (see Introd. of Sect. 2); let S resp. Su be the Shimura variety of infinite level, 
resp. of level U associated to G; then d = dim Su is the middle degree of the Betti 
cohomology of Su- Let V\(C) be the coefficient system over S resp. Su with highest 
weight À. See Sect. 2.1 for precise definitions. 

Let 7T = 7Tf 0 7TOO be a cuspidal automorphic representation of G (A) which occurs 
in Hd(Su,V\(C)). This means that 
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COHOMOLOGY OF SIEGEL VARIETIES 3 

- the 7r/-isotypical component Wn = Hd(/Kf) of the G/-module H*(S,V\(C)) is 
non-zero, and 

- í o. 

It is known (see Sect. 2.3.1 below) that the first condition is implied by the fact 
that TToo belongs to the L-packet n^+^ of Harish-Chandra's parameter A + p in the 
discrete series. In fact, it is equivalent to this fact if A is regular or if g = 2. 

By a Tate twist, we can restrict ourselves to the case where c = ag H \- a\. We 
do this in the sequel. Then, |A| is the Deligne weight of the coefficient system V\ 
and w = IA + p\ is the cohomological weight of Wn, hence the (hypothetical) motivic 
weight of 7T. 

Let p be a prime. Let us fix an embedding tp : Q <—• Q . Let v be the valuation of Q 
induced by tp normalized by v(p) = 1; let K be the v-adic completion of a number field 
containing the Hecke eigenvalues of TT. We denote by O the valuation ring of {K,v)\ 
we fix a local parameter tuGO. Let N be the level of /7, that is, the smallest positive 
integer such that the principal congruence subgroup U(N) is contained in U. Let HN 
resp. Hu(0) be the abstract Hecke algebra outside N generated over Z, resp. over O 
by the standard Hecke operators for all primes £ prime to AT; for any such prime £, 
let Pe(X) G HN[X] be the minimal polynomial of the Hecke-Frobenius element (it 
is monic, of degree 29, see [13] page 247). Let 0* : HN (O) -> O be the (9-algebra 
homomorphism associated to 717. 

Let G = GSpin2i,+1 be the group of spinorial similitudes for the quadratic form 

9 

s 
2XiX2g+l-i + Xg+l'l 

it is a split Chevalley group over Z[l/2] (we won't consider the prime p = 2 in the 
sequel); it can be viewed as the dual reductive group of G (see Sect. 3.2 below); let 
B, iV, T the standard Borel, its unipotent radical, resp. standard maximal torus 
therein. The group G acts faithfully irreducibly on a space V/% of dimension 29, via 
the spinorial representation. Let By be the upper triangular Borel of GLy. Note 
that B is mapped into By by the spin representation. 

1.3. We put T = GaI(Q/Q). We assume that 

(Gal) there exists a continuous homomorphism 

P« • R GLv(0) 

associated to n: that is, unramified outside Np, and such that the characteristic poly­
nomial of the Frobenius element at a prime q not dividing Np is equal to 0n(Pq(X)). 

We shall make below an assumption on the reduction of pn modulo the maximal 
ideal of O which will imply that pn act absolutely irreducibly on V for each geometric 
fiber; hence the choice of a stable (9-lattice VQ in V 0 K is unique up to homothety. 
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4 A. MOKRANE & J. TILOUINE 

Evidences for (Gal). — For g — 2, assuming 
(Hoi) 7TOO is in the holomorphic discrete series, 
Weissauer [87] (see also [34] and [52]) has shown the existence of a four-dimensional 
p-adic Galois representation 

: r — • GLv,(QP) 

Moreover, his construction, relying on trace formulae, shows actually that 

L(W7r, s)4 = L(p7r, s)m for some m ^ 1. 

From this relation, one sees easily that the irreducibility of pn ® Id^ implies that the 
(Galois) semisimplification of Wn,p is isomorphic to n.pn (m = An). 

Another crucial assumption for us will be that p is prime to N (hence TT is unramified 
at p). Recall that under this assumption, Faltings has shown (Th. 6.2 (iii) of [13] and 
Th.5.6 of [22]) that for any q, the p-adic representation Hq(Su ®QP^A(Qp) ) is 
crystalline. 

Let Dpi resp. Ip be a decomposition subgroup, resp. inertia subgroup of T. Via 
the identification X*{T) = X*(T), we can view any p G X*(T) as a cocharacter of 
T, hence as a homomorphism Ip —» Z* —>• T(ZP) —• G(ZP) where the first map is 
the cyclotomic character x : 7P —> Zp . We denote by p the character of T whose 
semisimple part is that of p, but whose central parameter is d. it is the highest 
weight of an irreducible representation of G given by p on the derived group G'. The 
character A+p has coordinates {ag+g,..., ai + 1; w). Let us introduce the assumption 
of Galois ordinarity, denoted in the sequel (GO): 

1) The image p7r(Dp) of the decomposition group is contained in G, 
2) There exists g G G(0) such that 

p«(Dp)Cg-B(0).g-\ 
3) the restriction of the conjugate p\ to Ip, followed by the quotient by the unipo-

tent radical g • N • g~l ofg-B- g~l factors through — (A + p) : Ip -> T(ZP). 

Comments 
1) Let us introduce the condition of automorphic ordinarity: 

(AO) For each r = 1,. . . , g, 

v(0n(TPir)) = ar+i + ••• + % 

where Tp^r is the classical Hecke operator associated to the double class of 

diag(lr,p- l29-2r,p2 • lr). 

We conjecture that for any g, if pn is residually absolutely irreducible, (AO) implies 
(GO). It is well-known for g = 1 ([89] Th.2.2.2, and [54]). Moreover, for g = 2, it 
follows from Proposition 7.1 of [77] together with a recent result of E. Urban [80]. 
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COHOMOLOGY OF SIEGEL VARIETIES 5 

2) The minus sign in front of (A + p) comes from the definition of Hodge-Tate 
weights (for us: the jumps of the Hodge filtration): the weight of the Tate represen­
tation Zp(n) is — n. 

Let #7,- = On mod. w and m = Ker^ . Our last assumption concerns "non-
Eisenstein-ness" of the maximal ideal m. It says that the image of the residual rep­
resentation pn induced by p^ on VQ/WVO is "large enough". More precisely, let Wq 
be the Weyl group of G, viewed as a subgroup of G. Recall the standard description 

= Sg oc { ± l p . Let W C G corresponding to {±1}5. The "residually large image 
assumption" is as follows: 
(RLI) There exists a split (non necessarily connected) reductive Chevalley subgroup 
H of G/z with W oc f C H, and a subfield k' C k, of order say \k'\ = q' = pf' 
(/' > 1), so that H(k% C Impw and pv(Ip) C H°(k'). 
Here, H{k')u denotes the subgroup of H(k') consisting in elements whose v belongs 
to Im v o p^. 

It has the consequence that p^ and pn are absolutely irreducible, hence the unique­
ness of the stable lattice VQ up to homothety. 

1.4. One defines the sheaf V\(0) over Su using the right action of Up = G(ZP) (see 
[77] Sect. 2.1). We put V\(A) = V\(0) 0 A for any O-module A; these are locally 
constant sheaves on Su- Our main result is as follows. 

Theorem 1. — Let TT be cuspidal with TTOQ in the discrete series and of good level 
group U, occuring in 

Hd(Su,Vx(C)y, 
let p be a prime not dividing N = level(U), assume (Gal), (GO), (RLI), p > 5 and 
that the weight A is small with respect to p: 

p-l>\\ + p\ 

Then, one has: 
i) H*(Su,Vx(k))m = Hd(Su,Vx(k))m 
ii) H*(Su,V\(0))m = Hd(Su,V\(0))m and this O-module is free of finite rank. 

Similarly, 
hi) H9(Su,V\(K/0))m = Hd(Su,Vx(K/0))m and this O-module is cofree of finite 

rank. 

The same statements hold for the cohomology with compact supports. 

Comments 

1) By standard arguments, the whole theorem follows if we show that: 

H*{Su,Vx{k))[m]=0 for q<d 
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6 A. MOKRANE & J. TILOUINE 

where * = c, 0, and for any Hecke-module M, M[m] stands for its m-torsion. This is 
the main result of the text. 

2) In several instances in the proof, it is important that the maximal Hodge weights 
of the cohomology modules involved are distinct for distinct modules, and are smaller 
than p — 1; the condition 

p-l> ai-\ Vag + d 

implies this; at the same time, it is also the condition needed to apply a comparison 
theorem of Faltings (Th. 5.3 of [22]). We shall refer to this condition throughout the 
paper by saying that A is p-small. This terminology has not the same meaning here 
than in [61], but is in fact stronger than what is called p-smallness there. Hence, 
under the present assumption, we can make use of Theorem D of [61]. In brief, this 
assumption is unavoidable in our approach. The condition p > 5 comes from the 
theory of modular representations of reductive groups and has been pointed out to 
us by P. Polo. It is necessary for the validity of Lemma 13 of Section 7.1, as there is 
a counterexample to this Lemma for p — 5 and G = GSp(4); hence in our approach, 
the minimal possible p is 7 (for g = 2 and a\ — a<i — 0) but p — 5 is also acceptable 
if Im is "very large" : see the remark following Lemma 12. Observe anyway that 
our bound on p depends only on A (not on the level group U). This is crucial for the 
applications we have in view. 

3) The assumption (RLI) is used only in Lemma 13 of Section 7.1, but this lemma 
is crucial for our proof of the Theorem. 

4) Note that for A regular and for g = 2, by calculations of [72], and results of 
Schwermer and Franke (see Theorem 3.2(i) of [77]), one has Hq(Su, V\(C)) = 0 for 
any q < 3, while this is not so for the compact support cohomology: the boundary 
long exact sequence for Borel-Serre compactification relates H^(Su^ VA(C)) to an H1 
of modular curves, which does not vanish. Our vanishing statement concerns the 
localization at m and means that there is no mixing of Hodge weights between the 
m-part of H% and that of H%. 

5) For g = 2, E. Urban [79] has found a completely different proof of the absence 
of torsion of H2(Su, V\{0))m under mild assumptions (with m non-Eisenstein). His 
proof is much shorter than ours but relies on the fact that the complement in Su of 
the Igusa divisor is affine, which is particular to the Siegel threefold. Whereas our 
theorem seems to carry over (with the same proof) to various other situations, like 
the Hilbert (or quaternionic) modular case, or unitary groups /7(2, 1)/Q. 

Evidences 
1) If g = 2 and n is neither CAP nor endoscopic, one can conjecture that for p 

sufficiently general, Impn contains the derived group G(ZP). Then (RLI) is trivially 
satisfied; if moreover p is also ordinary, the situation is as desired. Such a conjecture 
is unfortunately presently out of reach. 
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COHOMOLOGY OF SIEGEL VARIETIES 7 

2) A more tractable situation is the following. See the details in Section 7.3. Let 
F be a real quadratic field with Gal(F/Q) = {l,cr}. Let / be a holomorphic Hilbert 
cusp form for GL(2)/F, of weight (ki,ka), k\,ka ^ 2, k\ = ka + 2m (m ^ 1). One 
can show ([90] and [63]) the existence of a holomorphic theta lift from GL(2)/F to 
G — GSp(4)/Q for / . Let 7r be the corresponding automorphic representation of G(A). 
It is cohomological for a suitable coefficient system. Since / is not a base change from 
GL(2)/Q, 7r is cuspidal, neither CAP nor endoscopic. We allow that / is CM of type 
(2,2); that is, is a theta series coming from a CM quadratic extension M — FE of 
F, where E is imaginary quadratic. Moreover, n is stable at oo (see [64]), pn exists 
and is motivie, namely: pn = Ind^ /?/, and it is absolutely irreducible. Moreover, 
for p sufficiently large (and splitting in E in the (2,2)-CM case), the image of the 
associated Galois representation pn : T —> GLK(V) is equal (up to explicit finite 
index) to the group of points over a finite extension of ZP of either the L-group 
L(Res^GL(2)/F) = Gal(F/Q) oc (GL(2) x GL(2))° (if / is not CM), or those of 
L Res f̂ Mx - Gal(M/Q) oc (G^ x G2M)° if / is CM of type (2,2). The subgroup H 
of G whose image by the spin representation is L GL(2)/F resp. LMX, does contain 
W oc T; that is, the assumption (RLI) is satisfied for H. If p is ordinary for / and 
splits in F, pn satisfies (GO); assume finally that p satisfies p — 1 > k\ — 1; then, our 
result applies. See Sect. 7.3 for numerical examples. 

In Section 8, we obtain a refinement of Theorem 1 as follows: 

Theorem 2. — Under the assumptions of Theorem 1, 
1) the finite free O-module H*(Su, V\(0))m coincides with the m-localizations of 

- the middle degree interior cohomology Hf(Su,V\(0)) = lm(Hd —> Hd), 
- the middle degree intersection cohomology IHd(Su,V\(G)). 

2) if X is regular or if g = 2, H?(uS,V\(K))m contains only cuspidal eigenclasses, 
whose infinity type are in the discrete series of HC parameter \ + p. 

The main tool for the proof of the first assertion is the solution by Pink of a conjecture 
of Harder [59], together with a repeated use of our Theorem 1 for GSp(2(g — r)) 
for all integers r = 1,... ,g. To apply this argument, we need a mod. p version of 
Kostant's formula, proven in Theorem B of [61] under the assumption of p-smallness. 
This allows to apply Pink's theorem in a fashion similar to [37] (who worked in 
characteristic zero). The second assertion follows by using a result of Wallach [85], 
resp. direct calculations of [72]. 

We state in Section 9 and 10 several consequences of these results: 
- Control theorem and existence of p-ordinary cuspidal Hida families for G, im­

proving upon [77], 
- Verification of a condition of freeness of a cohomology module occuring in the 

definition of a Taylor-Wiles system. 
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8 A. MOKRANE & J. TILOUINE 

1.5. Let us briefly discuss the proof of Theorem 1. Let V\(FP) resp. V\(k) be the 
etale sheaf over I 0 Q associated to the representation V\ /Fp of Gfp = G0Fp, of 
highest weight A, resp. its extension of scalars to A:. As mentioned in Comment 1) to 
Theorem 1, it is enough to show that 

(*) Wl = Hi(X ®Q,Vx(k))[m] =0 

where * = 0 or c, and for any j < d. 
Let X/Z[I/N] De the moduli scheme classifying ^-dimensional p.p.a.v. with level U 

structure over Z[1/7V]. Let X be a given toroidal compactification over Z[l/N] (see 
Th. 6.7 of Chap. IV [13], or Fujiwara [30]). Let X0 = X 0 Fp, X0 = X 0 Fp. 

To the representation V\ /Fp (with |A + p| < p— 1), one associates also a filtered log-
crystal VA over Xo (see Section 5.2 below); the F-filtration on the dual VA, satisfies 
Fil° = Vx and Fil|A|+1 = 0. Then, the main tools for proving (*) are 

- Faltings's Comparison Theorem ([22], Th.5.3, see Sect.6.1). It says that, since 
p - 1 > w, for any j > 0, the linear dual of Hi(X 0 QP,V\(¥P)) is the image by 
the usual contravariant Fontaine-Laffaille functor V* of the logarithmic de Rham 
cohomology 

M = KG_DR^(X ® Fp, VVX) = W{VI ® % (log oo)). 

- The mod. p generalized Bernstein-Gelfand-Gelfand dual complex (section 5.4) 

K : JC*\ C—> <8> Q4F . 

This is the mod. p analogue of a construction carried in Chapter VI of [13]. The main 
result is that K is a filtered quasi-isomorphism: it provides an explicit description of 
the jumps of the Hodge filtration in terms of group-theoretic data. In particular for 
j < d, w is not a jump. 

- Lemma 1 3 in Section 7.1 shows, assuming (RLI) and (GO), that if ^ 0, its 
restriction to the inertia group Ip admits k ® Z/pZ(—w) as subquotient. 

Thus if Wi / Owe obtain a contradiction since the maximal weight w should not 
occur in WK 

Theorem 2 is equivalent to the fact that the localization at m of the degree d bound­
ary cohomology of V\{k) vanishes. The argument for this is similar to the previous 
one, but makes use of the minimal compactification j : Xq ^ XQ of Xq = I 0 Q 
(instead of the toroidal one). The advantage of this compactification is that Hecke 
correspondences extend naturally. We use crucially a theorem of R. Pink (Th. 4.2.1 of 
[59]) which describes the Galois action on the cohomology of each stratum with co-
efficents in the etale sheaves Rqj*V\(k); by the spectral sequence of the stratification 
it is enough to show the vanishing of the localization at m of the degree d cohomol­
ogy of each individual stratum. For this, we follow the same lines as for the proof 
of Theorem 1: the jumps of the Hodge filtration in the degree d cohomolology with 
compact support Hd(Xr) of the non-open strata Xr cannot contain both w and 0; 
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COHOMOLOGY OF SIEGEL VARIETIES 9 

on the other hand, if the m-torsion of H^(Xr) is not 0, Lemma 13 does imply that 
these weights both occur. Hence, H^(Xr)m = 0. The last two sections contain two 
applications which were the original motivations for this work. 
Acknowledgements. — To start with, the authors have greatly benefitted of the sem­
inar on toroidal compactifications and cohomology of Siegel varieties held at the Uni­
versity of Paris-Nord in 97-98. Without it, this work wouldn't have existed. They 
wish to thank the participants thereof, and in particular, A. Abbes. Part of the writ­
ing was done by the second author at UCLA, at MPI (Bonn) and at Kyoto University; 
the excellent working conditions of these institutions were appreciated. A series of 
lectures on this work at MRI (Allahabad) on the invitation of D. Prasad in the frame 
of CEFIPRA program 150IB was also quite helpful. The first author would like to 
express his gratitude to the Mathematic Department of Padova University, and espe­
cially B. Chiarellotto for an invitation where a part of this work was exposed. During 
the preparation of this text, we had useful discussions or correspondence with many 
persons, in particular, A. Abbes, D.Blasius, M. Dimitrov, A. Genestier, G. Harder, 
J.C. Jantzen, K. Khuri-Makdisi, K. Kuennemann, A. Nair, B.C.Ngo, R. Pink, P. Polo, 
B.Roberts, J. Wildeshaus, H. Yoshida. We thank them heartily for their patience and 
good will. Finally, let the referees be thanked for their impressively careful reading 
and useful comments. 

2. Cohomology of Siegel varieties and automorphic representations 

We keep the notations of the introduction. Let us make precise what we mean by 
a good open compact subgroup of G(Z): U is good if 

1) it is neat: the subgroup of Cx generated by the eigenvalues of elements in 
U - Goo H GQ does not contain any root of unity other than 1, and 

2) v(U) =ZX. 
Let us now recall some properties of the cohomology groups H*(Su, V\(K)), for K 

a field of characteristic zero and * = 0, c or ! (as usual, H* denotes the image of H* 
in HM). In this section, Q = Lie(G) will denote the real Lie algebra. 

2.1. Generalities over C. — Let UQO be the stabilizer in G^ of the map 

h : Cx —>Goo, z = x + iy\— ' X • lg y-Sg 
-V'SgX'lg. 

with sg the g x g antidiagonal matrix, with non-zero entries equal to 1. For any good 
compact open subgroup U C G(Z), let 

Su = G(Q)\G(A)/t/t/00 and S = G(Q)\G(A)/[/00 

be the Siegel varieties of level [7, resp. infinite level. Since U has no torsion, Su is a 
smooth quasi-projective algebraic variety of dimension d = ^te+i) g jg a pro-variety. 
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10 A. MOKRANE & J. TILOUINE 

For any (rational) irreducible representation V\ of G of highest weight A, we define 
the local system V\(C) on Sjj as the locally constant sheaf of sections of 

pri : G(Q)\ (G(A) x Vx ® C) /UU^ — 5^ 

By Prop. 2.7 of [8](which does not require cocompactness), one has 

^•(5t/,VA(C)) = /f-(0,t/oo,Coo(GQ\GA,C)0yA(C)). 

The maps of spaces 

C^sp(GQ\GAX) • C^7center(GQ\GA,C) C (GQ\GA, C) C C°°(GQ\GAX) 

(where the first map denotes a smooth truncation to a large compact mod. center 
subset, and C™sp = C°° Pi L\ and = C°° n L2) give rise to maps 

^ ( W C ) ) — ff-(S,VA(C)) — ff(-2)(S,yA(C)) — ff-(5, VA(C)) 

and a well-known theorem of Borel [5] asserts that their composition is injective: 

tfc-usp(s, vx(C)) — m(s,vx(c)). 

Moreover, as in the proof of Th. 3.2 (or Th. 5.2) of [8], one has a G/-equivariant 
decomposition 

#'usp(S, VX(C)) = H'(B, U^C^p(GQ\GA,C) ® VX(C)) 

7TU^C^p(GQ\GA,C) ® VX(C)) 
where 7R = TTf^iVoo runs over the set of isomorphism classes of cuspidal representations 
and 7r̂ °° is the Harish-Chandra module of TTQO . 

Proposition 1. — If X is regular dominant or if g = 2, the interior, L2 and cuspidal 
cohomology groups coincide and are concentrated in middle degree: 

H'cusp(S,Vx(C)) = H{2)(S,VX(C)) = Hr(S,Vx(C)) = Hf(S,Vx(C)). 

Proof — Recall first that #c*usp = H[2) implies #c#usp = H{2) = H;(S,VX(C)) (see 
also Cor. to Th.9of [21]). 

By Th.4 of [6] (which applies here since rkG = rk/7oo): 

H'(2)(S,VX(C)) = #•(£(, [loo, (GQ\GA,C) ® Vx(C)) 

= 0tt / ® H'(g, U^, ® VX(C)) 

where TT runs over the discrete spectrum of L2{Z^Gq\G^uo) where u is the central 
character of . 

Let 7r = TTf (8)̂ 00 be such an automorphic representation; its local components are 
unitary. Moreover, one must have H0(g, Uoo, ® VA(C)) ^ 0. By [82] Th.5.6, the 
assumption that A is regular implies that Tr^ = AQ(A), is a cohomological induction 
from a parabolic subalgebra q which must be that of the Borel. In that case, this 
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induction provides the discrete series. So, ir^ is one of the unitary representa­
tions of Gqo in the discrete series of HC parameter À + p. By [8] Chap. Ill, Cor. 5.2 
(iii), the tempered unitary TT^S contribute only in middle degree; Moreover, since 
the automorphic representation TT = KfiToo occurs in the global discrete spectrum and 
admits at least one local component which is tempered, it must be cuspidal; indeed, 
a theorem of Wallach ([85], Th.4.3) asserts that if ir^ is tempered, the multiplicity 
of 7T in L̂ isc 1S E°Xual to that in L\. 

If g = 2, the classification of Vogan-Zuckerman [82] as explicited in Section 1 of 
[72] yields the vanishing of H1 and the temperedness of the 7roo occuring in H3. Then 
one concludes as above. 

Remark. — If À is not regular, there may also be non-tempered representations 
which occur as infinity type of TT. However, by Langlands classification ([8], Sect. 4.8, 
Th.4.11) and Th.6.1 of [8], it implies that Hf2)(S,Vx)(nf) ± 0 for some q < d. 
Franke's spectral sequence (below) seems to suggest then that Hq(S, V\)(7Tf) ^ 0 (we 
leave this as a question). 

This proposition will be used in the proof of Theorem 2 (in Section 8 below) to 
rule out the occurence of non-cuspidal representations in the localization of the middle 
degree L2-cohomology H'2^(Su, VA), at a "non-Eisenstein" maximal ideal of the Hecke 
algebra (that is, satisfying (RLI)). 

2.2. Franke's spectral sequence. — This section is not used in the sequel, but 
it provides a motivation for Section 8. By [8] Chap. VII Cor. 2.7, we have 

H'(S, VX(C)) = H'(Q, U^C^iGiQ^GiA)) ® VX(C)) 

By [7], one can replace the space of C°°-functions by those of uniformly moderate 
growth. Franke has shown ([25], Th. 13, or [84] 2.2) that one can even replace this 
space by the space A(G) of automorphic forms on G. He has moreover defined a filtra­
tion onA(G), called the Franke filtration (see [84] 4.7) whose graded pieces interpret 
as L2-cohomology. This yields an hypercohomology spectral sequence associated to a 
filtered complex; more precisely: 

Let 3>+, resp. <I>J, be the positive root system of C, resp. of a standard Levi L of G, 
given by (G, i?,T), resp. (L,B n L,T). The corresponding simple roots are denoted 
by A, resp. Al- For each standard parabolic P = L • U, let dp is the Lie algebra of 
the center of L. Recall then Franke's spectral sequence ([25] Th. 19 or [84] Corollaire 
4.8) 

^ , 9 = # S 9 № ( C ) ) 0 
p wewp(\,P) 

IndG< H^-l{w)(S(L), V(L; w • (\ + p))) 

=^ HP+*(S,VX(C)) 

where 
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12 A. MOKRANE & J. TILOUINE 

- P = L Up runs over the set of proper standard parabolic subgroups, 
- Pf, resp. Gf denotes the group of Appoints of P, resp. G, 
- for each p, Wp(\,p) is a certain subset of 

WL = {weW\ w'^a) > 0, for all a e $L}, 
so that WL = WpWp{\p), 

- the locally constant sheaf V(L; w-(\ + p)) on the provariety S(L) is attached to 
the representation of L of highest weight w • (A + p) = w(X + p) - p (dominant for the 
order given by (L,BC\L,T)), twisted by -W(A + p)|L, that is, by the one-dimensional 
representation of L attached to the (exponential of the) restriction of —w • (A + p) to 
its (co-)center ap. 
This spectral sequence is G/-equivariant. It allows one to represent any G/-irreducible 
constituent of Hp+q(S, VX(C)) as Indp' 717 where TTf is an irreducible admissible rep­
resentation of Lf such that TT = TTf ® Tr^ is automorphic, in the discrete spectrum of 
L2(LQZA\LA, 4>) with P a rational parabolic in G, L its Levi quotient, and <fi some 
unitary Hecke character. 

Moreover, by Th. 19(h) of [25], if A is regular, Franke's spectral sequence degener­
ates at E\'q. So, we have a Hecke-equivariant decomposition for each degree q G [0,2d]: 

H"(S,VX(C)) = IH*(Su,Vx(C))® 

p p=0wewp(\,P) 
IH«-iM{SLf V^x+p)_p(C)(-w • (A + p)L)). 

However, unlike the GLn-case, the question of the rationality of this splitting for 
the group G is open (with a possibly negative answer). We nevertheless expect that 
it should yield, after localization at a "non-Eisenstein" maximal prime ideal of the 
Hecke algebra, an equality of the form 

IHq(Su, Vx(C))m = H*(Su, Vx(C))m 
for A regular. We establish this in Section 8 below for a suitable m, by a Galois-
theoretic argument which in some sense replaces the lacking Jacquet-Shalika theorem. 

2.3. Hodge filtration in characteristic zero. — Recall we assumed that U is 
good, so that its projection to any Levi quotient of G is torsion-free and v(U) = Zx. 
By the first condition, Su is smooth; the second condition implies that Su admits a 
geometrically connected canonical model over Q. Let X be this canonical model; it is 
a geometrically connected smooth quasi-projective scheme over Q. Let X a toroidal 
compactification of X defined by an admissible polyhedral cone decomposition of 
Sym2X*(T) ([1] Chap.3 and [13] Chap.IV, Th.5.7). Let oox = X - X be the 
divisor with normal crossings at infinity. Let / : A —• X be the universal principally 
polarized abelian variety with level [/-structure over X (it exists over Q) . Let Q be 
the Siegel parabolic of G, that is, the maximal parabolic associated to the longest 
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simple root for (G, B,T)\ let M its Levi subgroup. For any £?M-dominant weight 
let W(/x) resp. W(/i), be the corresponding automorphic vector bundle on X, resp. its 
canonical Mumford extension to X (see Th. 4.2, Chap. VI of [13]). These are coherent 
sheaves. As observed by Harris [36], the coherent cohomology H*{X, W(/x)) has a 
natural action of the Hecke algebra. Let A = (ag,..., a\\ c) as above (recall that for 
simplicity we assume c — ag H H a\). Let H = diag(0,..., 0, — 1 , . . . , —1) € Q. 

2.3.1. Complex Hodge Filtration. — It results from Deligne's mixed Hodge theory 
that the complex cohomology ifm(X, V\(C)) carries a mixed Hodge structure with 
Hodge weights greater than, or equal to m + |A| and that the interior cohomology 
(image of —• Hm) is pure of Hodge weight ra+ |A|. It is studied in greater details 
in Sect. 6.5 of [13]. We won't need any information about its W-filtration, so we 
concentrate on its F-filtration (Hodge filtration). With the notation of 6.4 of [13], 
de Rham comparison theorem reads: 

Hm(X(C),Vx(C)) = H?R(X(C),VX) 

where VA denotes the coherent sheaf associated to the Q-representation restriction to 
the Siegel parabolic Q of the G-representation of highest weight A. The reason for the 
dual (denoted v) is the following. The de Rham comparison theorem sends the local 
system R}f*C on R1 f*Q'A/x; however, as explained on top of page 224 of [13], the 
construction of coherent sheaves from Q-representations associates to the standard 
representation the dual of R1 f*£l*A/X, while the locally constant sheaf associated to 
the standard representation is JR1/*C. 

Let resp. t, be the Lie algebra of G, resp. T. Let 

= d iag(0 , . . . ,0 , - l , . . . , - l )e t 

Let WM be the set of Kostant representatives of the quotient WM\WG of the Weyl 
groups; for each w G WM, let p(w) = — (w(X + p) — p) (iJ); it is a non-negative 
integer. The main result of Sect. 6.5 (Theorem 5.5(i), Chap. VI) of [13] gives a Hecke-
equivariant description of the graded pieces of the F-filtration in terms of coherent 
cohomology of automorphic vector bundles extended to a toroidal compactification 
X of X, as follows: 

(BGG) grpFH-(X,Vx(C))= 0 ^ ( I ^ W A + p ) - ^ ) 
w6WM 
p(w)=p 

Because of our comment on de Rham comparison theorem, we see that contrary to 
what is mentioned in R. Taylor's paper ([72] p. 295,1.14 from bottom), the statement 
of Th. 5.5, 1.6 in [13] is correct, because the local system denoted V\ in Faltings-
Chai is actually dual to the one denoted VA in Taylor's and in the present paper. 
Our statement, in accordance to Faltings', is that the sum runs over the w such that 
w(X + p)(H) +p = p(H). We think therefore that Taylor's statement cited above is 
incorrect (but correct after a Tate twist, anyway). 
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14 A. MOKRANE & J. TILOUINE 

For any subset B of A = { 1 , . . . , g}, let (B,B) the corresponding partition of A. 
We define WB G WG by its action on (£; v) G T: for £ = (£#, %) , one puts I/) = 
(£#\ %; i/). An easy calculation shows that for any w G WG> if W = (a, WB) for some 
permutation cr of A and some subset of A, one has: 

v(w) = -(w(X + o)- o)(H) = —(WR(\ + DÌ - o)(H) = 

ieB 
(di -fi) 

We put js = YlieB(ai + 0> so .M = ii? is the motivic weight defined in the 
introduction. The j ^ ' s belong to the closed interval [0,tu]. They are indexed by a 
set of cardinality 2^, but need not be mutually distinct, from g = 3 on. Note that for 
any degree m of the cohomology, the jumps of the Hodge filtration occuring in Hm 
always form a subset of {JB \ B C A}. 

Let 7r = 7Tf 0 TToo be a cuspidal representation of G(A), with TT^ holomorphic in 
the discrete series of HC parameter A + p; let 6^ : HN —> C be the character of 
the (prime-to-N) Hecke algebra, associated to ir and pn = Ker^ . By [8] Chap. Ill 
Th. 3.3(h), the (g, L^-cohomology of ir^ 0 V\ is concentrated in degree d. we put 

Ww=Hd(X,Vx(C))[pv] 

By cuspidality of 7r, Wn has a Hodge structure pure of weight w = d + |A|: 

Wn = 
p+q=w 

sddsx 

Let us show that W™>° and W^w are both non-zero. More precisely, let w' G WM be 
the Kostant representative of largest length, namely d (it is unique, and if w" G WM 
is the unique element of largest length, then w'w" is the unique element of largest 
length mWG). Then, 

Proposition 2. — There is a HN -linear embedding 

cHw>0 = H°(X,Ww,{x+p)_p), nu cH°'w =Hd(X,Wx). 

Proof. — Let q be the Lie algebra of the Siegel parabolic. Since TT is cuspidal, a 
calculation of M. Harris, Prop. 3.6 of [36] shows that for any q and ¡1 M-dominant, 
itf 0 Hq(q, f/oo, TToo 0 Wfj,) embeds W^-linearly into Hq(X, WM). Moreover by Theo­
rem 3.2.1 of [9], Hq(q, £/00? fl"oo ® W^) does not vanish in only two cases: [x = A and 
q = d, or ¡1 = w'(\ + p) — p and q = 0. 

Remark. — If n is stable at infinity, that is, if all the possible infinity types in the 
discrete series of HC parameter A + p give rise to automorphic cuspidal representations 
7r; = 7Tf 0 7r' , then all the possible Hodge weights do occur in Wn: 

For any jB, B C A, A = B]\B W^BJB ^ 0. 
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2.3.2. p-adic Hodge filtration. — The Hodge-to-de Rham spectral sequence 

(BGG)Q E™= © J P + ^ W ^ w f ^ A + p l -p ) ) 
wewM 
p(w)=p 

=* H^(X,VX 0 f%/Q(logoox)) 

makes sense over Q and degenerates in E\'Q ([13] Sect.VI.6, middle of page 238). 
Here, VA denotes the flat vector bundle defined over Q associated to the rational 
representation V\ of G. More explanations on the rational structures involved, as 
well as integral versions thereof will be given in Sections 5.2 and 5.3. 

Actually, let C be the completion of an algebraic closure of Qp; by Th. 6.2 of [13], 
there is a Hodge-Tate decomposition theorem inducing the splitting of (BGG)c', More 
precisely: 

(BGG)HT H*>+q(X,Vx(®p))®C^ 0 ffP+«-^)(X,W(ii;(A+p)-p))®C(pH). 
wewM 
p(w)=p 

By a theorem of Harris [9], the Hecke algebra HN acts naturally on each sum-
mand of the LHS of this splitting. Now, the main feature of the above splitting is 
its naturality for algebraic correspondences on X. It implies the compatibility of the 
decomposition (BGG)HT with the action of HN. Let K0 C C be a number field con­
taining the image of 0n. Let WNJK0 = Hd(X, Vx(Ko))[pn]. We fix a p-adic embedding 
Q ^ QP- Let K be the corresponding completion of KQ ; put WN,P = W^^K0 ®K0 K. 
The restriction of (BGG)HT to the part killed by is still a W^-equivariant de­
composition of Wn,p ®K C. If we assume (Hoi), we see from Prop. 1 above that the 
Hodge-Tate weights w and 0 do occur; indeed, 

W Od= H°(X, Ww.{x+P)-P)[p„] AND W2£ = Hd(X, WA)[P3R] 

by comparing to complex cohomology, we see from Prop. 1 that these two spaces are 
non-zero. 

Let us remark that if n is stable at infinity, the analogue of Prop. 2 for all possible 
infinity types in the discrete series of HC parameter A -f p (in number 2^, but iso­
morphic two by two) implies that all the possible Hodge-Tate weights js (B C A) do 
occur in the Hodge-Tate decomposition of Wn,p. 

3. Galois representations 

3.1. Relation between pn and Wn^p. — The absolute Galois group T acts on 
Wn,p. Let us first recall, for later use, the following well-known fact. 

Lemma 1. — Wn,p is pure of weight w. That is, for any £ prime to Np, all the 
eigenvalues of the geometric Frobenius at £ have archimedean absolute value £w/2. 
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Proof. — Since 7r is cuspidal, we know by a theorem of Borel (see Sect. 2.1) that WnrP 
is contained in the interior cohomology Hf(X^V\). By Th. 1.1 of Chap.VI of [13], 
there is a toroidal compactification Y C Y of the |A|-times fiber product Y = A'A' of 
the universal abelian variety A above a toroidal compactification of the Siegel variety 
X C X, all these schemes being flat over Z[1/7V]; over this base, Y is smooth and 
Y — Y is a divisor with normal crossings. One can interpret the etale sheaf as cut 
by algebraic correspondences in (i?17r*Qp)<8)d (see [13] p. 235, and 238, or this text, 
Sect. 5.2), hence Hd(X,Vx) C H™(Y,QP) (* = 0,c). By the classical commutative 
diagram (coming from the degeneracy of the Leray spectral sequence): 

H?(Y, Qp) • HW(Y, QP) > HW(Y, Qp) 

H*{X, Vx) > Hd(X, Vx) 

We conclude that H?{X,VX) is pure of weight w; recall that this can be interpreted 
either in the sense of Deligne (take £ unramified and different from p, then the eigen­
values of geometric Fr̂  have archimedean absolute values £w/2) or in a p-adic sense 
(in the crystalline case, say: that the eigenvalues of the crystalline Frobenius have 
archimedean absolute values pw/2). 

Assume now that 7r admits an associated p-adic Galois representation pn : T —> 
GLy(Qp); we assume that pw is irreducible. We don't know a priori whether pn is 
a Galois constituent of Wn,p although, by [13] Chapter VII Th. 6.2, we know that 
the characteristic polynomial of pn annihilates the global p-adic representation WnyP. 
If moreover p does not divide A/", we know by Faltings [22] Th. 5.2 that W^iP is 
crystalline but we don't know this a priori for pn. However, for g < 2, if pn is 
absolutely irreducible, we do know that it is a constituent of M^^ (by [72] and [53] 
or [87]). Indeed, for g = 2, Laumon [53] and also Weissauer (completing works 
of [34], [72] and [52]) has shown the existence of a four-dimensional p-adic Galois 
representation 

p„ : r —• GLy(Qp) 

such that 

L(Wir,8)i = Lipir,8)m 

thus, the assumption of irreducibility for pn implies that the Galois semisimplification 
W^p of W^tf is isomorphic to n.pn, for m = An. In turn, it also implies that pn is 
pure of weight w and is crystalline at p if p is prime to N. 

There are other situations, namely when n is a base change of a Hilbert modular 
eigenform, where one knows that pn is crystalline, although one may not know that 
it is a constituent of Wn,p; see Sect. 7.3 below. One of the uses of our assumption 
(RLI) will be to relate (residually only) and p^ (see Sect. 7.1). 
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3.2. Spin groups and duality 
3.2.1. description. — For the general definitions on spinors, we follow [32] Sect. 20.2, 
and [18] VIII.8 and IX.2; however by lack of references for our precise need, we 
give some details in this section. Although these groups exist over Z, we'll re­
strict ourselves to Z[l/2], (p = 2 is excluded of our study). Let V = A ĵyij] en~ 
dowed with the quadratic form q(x) = Yli=i %xixi + xo f°r x = Sf=i x%e% + ^o^o + 
Yli=ixiei'i tne scalar product is denoted by (x,y). The canonical basis is ordered 
as (eg,... ,ei,e0,ei,... ,e^), so that (e»,e^) = 6i¿, e0 is unitary, W = (ep,...,ei) 
and W — (e/11...,e/g) are totally isotropic, and the sum V = W 0 W 0 (eo) is 
orthogonal. The Clifford algebra C(V,q) over Z[l/2] is the quotient of the tensor 
algebra by the two-sided ideal generated by x 0 x — q(x), (x G V)\ it is Z/2Z-graded: 
C(V, q) = C+ 0C~. The main involutive automorphism II is defined as Id on C+ and 
— Id on C~\ the main antiinvolution x i-» x* is defined by v\ • • • vr i-> (—l)rvr • • • v\. 
We write N(x) = x - x* = x* • x for the spinor norm. The Z[l/2]-group scheme 
GSpin^ = GSpin2^+1 (called the regular Clifford group in [18] IX.2) is defined as the 
group of invertible elements g of C(V,q) such that g V - g~x = V. The group of 
orthogonal similitudes GO^ = GO20+1 is defined as the group of h G GLy such that 
q o h = c(h) - q. Consider the group-scheme morphism 

v : G02i7+i —> Gm, ft 1—• det ft • c(h)~9. 

One has c(ft) = i/2(ft). Moreover, the homomorphism of Z[l/2]-group schemes 

Í) : GSpin^ —• GOy, g\—• (x i-> U(g) - x - g*) 

is an isogeny of degree two (using [18] VIII.8) which satisfies v o i/j = N. The spin 
representation spin is a representation of GSpin^ on V = AW; it can be defined via 
the universal property of the Clifford algebra, as in [32] Lemmata 20.9 and 20.16. 
We have dimF = 29. We write G for GSpin^.. It is a Chevalley group over Z[l/2]; 
the standard maximal torus T, resp. Borel B, of G is the inverse image by i/> of the 
diagonal torus, resp. upper triangular subgroup in GO22+1. 

3.2.2. Dual root data. — We want to recall first the notion of a (reduced) based root 
datum 

(M,R,A,M*,R\AV), 

consisting of two free Z-modules M, M* of rank, say, n with a perfect pairing 
M x M* —> Z and finite subsets R D A in M, resp. Rv D Av of M*, together 
with a bijection R —> Rv; R is the set of roots, and A the simple roots; these data 
should satisfy two conditions RD I and RD II: cf. [70] 1.9 or rather, for the degree of 
generality that we need, Exp. XXI Sect. 1.1 and 2.1.3; here, "reduced" means that in 
the set of roots R, we allow no multiple of any given root except its opposite. 
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In order to make some calculations, let us recall briefly the classification given by 
these data. The main reference is [17], whose Exposés are quoted by their roman 
numbering. 

Definition 1. — For any scheme S ^ 0, a split reductive group with "épinglage" 
over 5, is a t-uple (G, J5, T, (Xa)ae&)s consisting in a connected reductive group 
scheme G s of rank n, together with a Borel Bs and split maximal torus Ts C Bs-
T = G7^. Let R, resp. A c R, be the root system, resp. set of simple roots, at­
tached to (G,B,T) (Exp.XIX Sect.3). The "épinglage" (Xa)aeA is the datum for 
each a G A, of a section Xa G T(S, ga) which is a basis of ga at each point s G S. 

For details on "épinglages", see [17] XXII 1.13 and XXIII 1.1. Any such split 
reductive group defines a reduced based root datum 

(M,#,A,M*,#V Av). 

Note that the "épinglage" is not needed in the construction, it comes in only for the 
fidelity of the functor. The definition runs as follows. Put M = X*(T), M* = X*(T); 
the duality (, ) between these modules is the composition (À, /x) »—• À o R, resp. A 
is the set of roots, resp. simple roots attached to (G, i?,T), and av is defined for 
each a G A as follows: let Ta be the connected component of Kera, let Za be its 
centralizer in G. It is reductive of semisimple rank one, hence its derived group Z'a 
is isomorphic to SL(2) or PGL(2), and its character group is generated by a; then, 
av : Gm —• Z'a n T is defined as the unique cocharacter of such that a o av = 2. 
For details, see Exp. XX, Th. 2.1. As checked in Exp. XXII 1.13, these data satisfy 
the two conditions (DR I) and (DR II) of Exp. XXI 1.1, hence do form a based root 
datum (données radicielles épinglées). The system thus obtained is reduced. 

Theorem 3. — There is an equivalence of categories between reduced based root data 
and split reductive groups with "épinglage". 

This is the main theorem of [17], it consists in 4.1 of Exp. XXIII Sect. 4 and Th. 1.1 
of Exp. XXV Sect.l. 

Now, given a reduced based root datum, one can form its dual by exchanging 
(M, R, A) and (M*,Ry, Av). This induces a duality of split reductive group schemes 
with épinglages, over a base S. Let us apply this to our situation. We take G = GSp2 ,̂ 
(G,-B,T)/Z[i/2]î M = X*(T) and M* = X*(T), naturally paired by the composition. 
By using the standard basis of X*(T), one identifies M to the subgroup of Z9 x Z, 
consisting in fi = (pss',He) such that = /xcmod. 2. This lattice is endowed with 
the standard scalar product; here Z9 corresponds to the characters of the semisimple 
part of T, and the last component to the central variable. In this identification, R C 
Z9 x {0} and one can write av = 2 • ^ in the space Q9 x {0}. The simple roots of G 
are OLg = tg/tg-i,... ,Qi = t\v~x, for t = diag(^,... . . . ,tgv~l) G T; hence 
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their coordinates in M = Z9 xZ are (1, —1,0,...; 0) , . . . , (0, . . . , 2; 0). The correspond­
ing coroots have therefore coordinates = (1, — 1,...; 0) , . . . , = (0,. . . , 1; 0). 
Then, X>(T) is identified to IF x Z + \ • diag(Z*+1). 

The resulting dual of (G, B, T)z[i/2] is precisely (G,B,T)z[i/2] (it is true as well 
over Z, but we don't need, and don't want to consider characteristic 2 spin groups). 

Let zu be the minuscule weight of G; it belongs to X*(T) = X*(T). It satisfies 
the formulae: w • a^v = 5±j for i — 1,...,#. Hence, in the basis we have fixed, 
its coordinates are (1/2,.. . , 1/2; x). The central parameter x must equal 1/2 as 
well, because the homomorphism -0 is etale of degree two, and induces the standard 
representation, whose highest weight is therefore 2zu, but whose central character is 
z H-+ z. Now, any character /x e X*(T) is identified to a cocharacter of T. Then, 

Lemma2. — In X*(Gm) = Z, for any \i = (/xss;//c) £ X*(T), one has: 

(3.2.2.1) ou = /̂ SS I , /̂ C 

2 2 
Note that the right-hand side is an integer. 

Proof. — Clear. 
Let us make simple remarks: 

1) Let By be the upper triangular Borel of GLy. Then B is mapped into By by 
the spin representation. 

2) In the identification X*(T) = X*(T), the central cocharacter Gm —> T, z i—> 
diag(z, ...,z) becomes the multiplier N : T —> Gm of our regular Clifford group G; it 
is clear on the level of tangent maps. 

3) If we describe TQO^ (C) as the torus Gm x To- of matrices 

diagO 'tg,...,Z't!,z,Z' tjf1,.. . , z • tg1) 

then, T(C) can be described as the set of t-uples (tg,..., ¿1, [w, £]) where u2 = tg • • • t\ 
and C2 = z, the couple (i/, £) being taken modulo the group generated by (—1,-1). 
The map ^ : f(C) -+ TGO(C) is then given by U U, [w,C] C2- All this follows 
easilv from the fact that ib is dual of the degree two isosenv T«« x Zn —> T given bv 

V̂ SS5 Z) I • 6SS • Z. 
Let us apply these considerations to compute the local Langlands correspondence 

for a representation 7TP of G(QP) in the principal series. Let us assume TTP — Ind^|^p j </> 
(unitary induction). If (j) is unramified, it can be viewed as 

(3.2.2.2) </> = ( a p , . . . , a i ; 7 ) e O ? x C , 

the parametrization being given by: 

diag(i5,..., tlt v • t " 1 , . . . ,„ • t~l) —> \tg\? • •WDD \ v \ ^ - " ^ 

Even if it is ramified, we can make the following identifications 

(3.2.2.3) Hom(T(Qp),Cx) = Hom(Xjr) »Orx.Cx) = 
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Hom(X.(T),Hom(Qx , Cx)) = X*(T) ® Hom(Qx , Cx) 

= Hom(Qp ,Cx ® X*(T)) = Hom(Qx, f (C)). 

So that we can view ^ as a cocharacter Qx —> T(C). We introduce a twist of 
this character by d on the central component (7 1—• 7 — d), in order to get rid of the 
irrationality inherent to Langlands parameters: <j> = <j> • \v\pd, it corresponds to the 
cocharacter <p obtained by twisting <j) by the unramified cocharacter GTO —> Zq(C), 11—> 
\t\~d. In the unramified case, 6 is given by the formula 

(3.2.2.4) (|t |°»,..., | t |° ' ds ig+-- + a1 
2 \t\{rd),2\)-

Consider the canonical map a : Wqp —> Q* given by class-field theory (sending 
arithmetic Frobenius to p). The composition 0 o a is denoted cr(7rp) and is called the 
image by Langlands local correspondence of TTP. 

Let us return now to our Galois representations. Note first that the question 
whether pn, if absolutely irreducible, factors through the spin representation 

G(Q„) <—• GLvíQo) 

is open. 
However, for g = 2, if TT is stable at oo and if 7r satisfies multiplicity one: ra(7r) = 1, 

then it can be shown that pn takes values in G (see [72] p. 295-296). This remark, 
due to E. Urban (to appear) results from Poincaré duality and the autoduality of TT 
(which is well known, at least, at almost all places). 

3.3. Ordinarity. — Let Dp, resp. Ip be a decomposition subgroup, resp. inertia 
subgroup of T. Via the identification X*(T) = X*(T), we can view any \i e X*(T) as 
a cocharacter of T, hence as a homomorphism Ip —* Z£ —• T(ZP) —> GLzp(V) where 
the first map is the cyclotomic character % : Ip ~* • Let p = (g,..., 1; d). Thus, p 
is the sum of the fundamental weights of G\ it is the highest weight of an irreducible 
representation of G contained in St®d. The assumption of Galois ordinarity, denoted 
(GO) in the sequel, is: 

- The image pn(Dp) of the decomposition group is contained in G, 
- there exists g € G(0) such that 

pJDp)cg'B(0)-g-\ 

- the restriction of the conjugate p | to 7P, followed by the quotient by the unipotent 
radical g • N • g~l oîg-B- g~l factors through — (À -h p) o \ : Ip —• T(ZP). 

Example. — For g = 1, À = (n;n) corresponds to the representation Symn(St) of 
GL(2), and p = (1;1) corresponds to St. Then the weights of the (2-dim.) spin 
representation of GSpin3 are w = ( |; | ) and ww° = (— | ; | ) ; hence the composition 
of x> "-(A + ¡5) and the spin representation (modulo unipotent radical) gives the 
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diagonal matrix diag(x (n+1\ 1) (modulo Weyl group), which is the usual formula for 
an ordinary representation coming from an ordinary cusp form of weight k = n -f 2: 

Pf\Dp = 1sd 
O x~n~l 

Convention. — In the rest of the paper, we make the abuse of notation to write B, 
resp. N, T, instead of their respective conjugates by g: g • B -g~x and so on. With 
this convention, we have p^ilp) C B(k). 

Relative to the triple (G,B,T), we have the notion of dominant characters p G 
X*(T) and Weyl classification of highest weight ©-representations of Ö, provided 
p — 1 > \p + p\ (see Polo-T. [61]). Let w be the minuscule weight of G. As already 
calculated, its coordinates are: 

1 1 1 
,2' " ' 2 ' 2 > 

Lemma 3. — For any a G Ip, 
(3.3.1) wfpJa)) mod. N(k)) = uj-w((j) 
and similarly, for the lowest weight zuw° 
(3.3.2) mW0(pv(cr)) mod. N(k)) = 1. 

Proof. — By (GO), the left-hand side is given by w o [—(A + p)] o CJ(CT); therefore, 
the desired relation follows from Lemma 2, with p = X + p. Indeed, the coordinates 
of A + p in Z9 x Z are (aQ + a,..., a\ + 1; aq H h a\ + d), hence the scalar product 

A + p) is equal to a,i+i , (Ei 
2 "r 2 that is, f + f z.e. Similarly for (3.3.2). 

Comments 
1) Let us introduce the condition of automorphic ordinarity: 

(AO) For each r = 1,... ,p, v(07r(TPir)) = ar+\ H h ai, 
where Tp?r is the classical Hecke operator associated to the double class of 

diag(lr,p- l2<?-2r,p2 • lr). 
We conjecture that for any g, if pn is a subquotient of W^p, then (AO) implies (GO). 
It is well-known for g = 1 ([89] Th. 2.2.2, [41] and [54]). 

Consider the statement 

KMg(7T/,p). — Ifp is prime to N, the slopes of the crystalline Frobenius on the iso-
typical component Dcrys(W7r)P) are thep-adic valuations of the roots of the polynomial 
07r(Pp(X)), reciprocal of the p-Euler factor of the automorphic L-function ofir. 

For g = 2, we have seen in 3.1 that W^p is pTr-isotypical (assuming its absolute 
irreducibility). We have observed (Proposition 7.1 of [77]) that if KM2(7r,p) holds 
and if 7r is stable at infinity, the condition (AO) for n implies (GO). In a recent 
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preprint, E. Urban [80] has proven KM2(7r,p); thus, for g = 2, if TT is stable at oo, 
(AO) implies (GO). 

2) If 7TP is in the principal series (for instance, if TT is unramified at p), and if the 
p-adic representation pn is, say, potentially crystalline at p (for instance, crystalline), 
one can ask in general the following question. 

On one hand, the local component TTP of TT at p is unitarily induced from 0 for a 
character 0 : T(QP) —> Cx; we defined in Sect. 3.2.2 the local Galois representation 
cj(TTP) of the Weil group WQP given by 

WQp — Qpx — f (C) c G(C) 

where Q* -> f (C) is given by the twist 0 through the identification (3.2.2.2). This 
representation is rational (the traces belong to some number field). 

Let us consider on the other hand the restriction to DP of p^. By applying the 
(covariant) Fontaine's functor DPCRYS (cf. Fontaine, Exposé III, Astérisque 223), we 
obtain a representation ' p^iP of the Weil group WQ : 

fPir,P ' Wqp —> GLy . 

One can conjecture a compatibility at (p, p) between the local and global Langlands 
correspondences, namely that the F-semisimplification of the two rational represen­
tations fp7v,p and O~(TTP) are isomorphic (where a : Wqp —> Q* is the map induced by 
class-field theory, sending arithmetic Frobenius to p, and the twist is to pass from 
Langlands parameters to "Hecke" parameters). This fact is known in the following 
cases: 

- for g = 1, by well-known theorems of Scholl and Katz-Messing, 
- for g = 2, for a representation TT on GSp(4) which is the base change from 

GL(2, F) (F real quadratic) of a Hilbert modular form which is in the discrete series 
at some finite place, and which is unramified at places above p (in which case p/,p, 
hence pn,P is crystalline at p by Breuil's theorem [11]). This is a particular case of a 
theorem of T. Saito [66]. 

Note however that this statement does not allow one to recover the representation 
pnp = pn\r)p (because it says nothing about the Hodge filtration) unless we assume 
it is ordinary (in the usual geometric sense, see [60]). More precisely, we have two 
parallel observations: 

- Let us assume that pniP is crystalline; then the assumption of geometric ordinarity 
means that the eigenvalues (CB1)BC{I,.-^} °^tne crystaHme Frobenius are such that 
the ordp(^B) (B C {1,...,^}) coincide (with multiplicities) with the Hodge-Tate 
weights; these numbers, if ix is stable at infinity, should be (as mentioned at the end 
of Sect. 2.3.2) JB = Y^ieB^ + 0 (B C A = {1,... ,g}). These quantities can also be 
written 

(wWBA\ + p))=wWB o(\ + p) 
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where WB G WQ is the element of the Weyl group such that for t = (tg, . . . , ¿1, [-u, (]) G 
T and WB(£) = 0, Oi — t~l if and only if i G B and all its other components are those 
of t. Therefore, it implies by Fontaine-LafTaille theory that p^ is ordinary at p in the 
precise sense of (GO). Thus the conjunction of geometric ordinarity, and of stability 
of 7r at oo (together with the complete determination of Hodge-Tate weights of pn) 
implies (GO). 

- Let us assume TT is unramified at p; let us introduce complex numbers O^s and 
C, such that for any t G T (C) mod. Wg, 

\U\°* =67OTdpiti) and \z\; = cOIdp(z), 

we can rewrite (3.2.2.4) as 

d>(P) = {e-\.. .,e;\ [{eg • -e^r1'2^'2 • C1]) 

The composition with spin gives a complex diagonal matrix whose entries are inverse 
to the 29 algebraic integers 

s = 
sdd 

OT1 
dd 

s 1/2 
C-

The Automorphic Ordinarity Conjecture for the »-adic embedding tp states 

ordp(^(0)) = 
ieJ 

(cti + i), for any J. 

Therefore, the quantities Xi — — OYdp(ip(0i)) and y = ovdp(tp(C)) satisfy the linear 
system in (xg,..., X\\ y) G Zp+1: 

y + d+J2ieJxi-J2i^jxi 
2 ieJ 

x + ks2 

It contains a Cramer system. Therefore, assumption (AO) implies 

ordp Oi = -(a» + z), ordp(C) = ag H h ai 
up to permutation of the coordinates. This can be rewritten as an equality in 
Rom(Q^f(K)/f(0)): 

ipo(j) = -(A + p). 

We conclude that (AO) together with KMg(7r,p) implies (part of) the compatibility 
conjecture at (p,p): the (p-adic orders of) the eigenvalues counted with multiplicities 
of jDcrys(p7r)(Frobp) coincide with those of cr(7rp)(Frobp). 

4. Crystals and connections 

4.1. de Rham and crystalline cohomology of open varieties. — Let 
/ : X —• S be a smooth proper morphism of schemes; X C X be an open immersion 
above S, with complement a relative Cartier divisor D —• S with normal crossings 
and smooth irreducible components. Let V be a coherent sheaf over X endowed with 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2002 



24 A. MOKRANE & J. TILOUINE 

an integrable connection V with logarithmic poles along D\ let V its restriction to X. 
Let X(D) be the sheaf of ideals defining D. Then the relative de Rham cohomology 
sheaves H3dR(X/S, V) are defined as 

(2.1)0 RV.(V®cv%/5(logI?)). 

Let us now introduce a complex 

S%/S(- log!?) = %/s(logD) 

We define the cohomology sheaves with compact support H3dR C(X/S, V) by: 

(2.1)c RJ7.(V ®ox % / 5 ( - log£>)). 

If 5 = Specfc is the spectrum of a field fc, we write iï̂ R instead of W^R. A priori, 
these definitions depend on the compactification X of X. One can show for S = 
Spec k and V trivial that the resolution of singularities implies the independence of 
the compactification (Théorème 2.11 of [57]). 

For the crystalline cohomology there is a similar definition. Our reference is [48], 
section 5, 6. We use the language of logarithmic schemes; as noted by Kato in Com­
plement 1 of his paper, his results are compatible with Faltings theory of crystalline 
cohomology of open varieties [23]: in Faltings approach, a logarithmic structure on 
X is a family (A,#0i<^r where d is an invertible sheaf and xi a global section 
thereof, these data always define a logarithmic scheme in Kato's sense (while the 
converse is false). Let (5,7,7) a triple where 5 is a scheme, J is a quasi-coherent 
nilpotent ideal of Os and 7 is a divided power structure on X (PD-structure, for 
short). Let So the closed subscheme defined by X; we consider a smooth morphism 
Xo -y So and Do a relative Cartier divisor with normal crossings. It defines a loga­
rithmic structure M = {g € 0-%Q I 9 invertible outside Do} C 0^q. One defines the 
logarithmic crystalline site of (Xo/S)J.°|s as in Kato [48] Sect. 5.2. The objects are 
5-uples (U,T,MT,Î,S) where U —> Xo is étale, (T, Mr) is a scheme with fine loga­
rithmic structure over S, i : (U,M\u) (T, Mr) is an exact closed immersion over S 
and ô is a divided power structure compatible with 7. Recall that a closed immersion 
of log-schemes / : (X,M) —> (T, N) is called exact if f*N —> M is an isomorphism. 
Morphisms are the natural ones. On this site, the structural sheaf O~x0/s 1S defined by 

Ox0/s(U,T,MT,i,ô) = T(T,OT). 

Definition 2. — A crystal on (Xo/S)l^s is a sheaf V of ^-modules satisfying the 
following condition: for any morphism g : V —> T in (X0/S)^|s, g*Vr —• VT' is an 
isomorphism. Here VT and VT' denote the sheaves on and Té't defined by V. 

Let (X, D) be a lifting of (Xo, -Do) to S, that is, a smooth S-scheme together with 
a divisor with normal crossings flat over S such that (X X5 So, D X5 So) = (Xo, Do). 
Note that since X is nilpotent, the étale sites of X and Xo, resp. of S and So are 

ASTÉRISQUE 280 



COHOMOLOGY OF SIEGEL VARIETIES 25 

equivalent by U H-> U XS SQ. By Th.6.2 of [48] (see Sect.4.2 for more details), the 
data of a crystal on (Xo/S)l°Tfa is equivalent to that of an O^-module M endowed 
with a quasi-nilpotent integrable connection with logarithmic singularities 

V : M —• M 0ox i%/s(log£>). 

For any sheaf V on (X0/S)c°|s, we denote by /crys,*V its direct image by 
/ : XQ —> S; it is a sheaf on S. We write /ét,*V for the etale sheaf on Set which is the 
direct image of the etale sheaf V on lo- To compute the cohomology sheaves of a 
crystal, we apply the spectral sequence 

Rfcrys,*V = Rfét,*(Ru*V) 

where u is the canonical projection from the site {XQ/S)1^S to Xoét- It is defined, 
for a sheaf V on (Xo/5)^|s, and for any étale morphism U —• XQ, by 

{u*V)(U)=T{U,Vu). 

Moreover, if V is a crystal, we have 

Ru*V = M 0% %/5(logZ?). 

Again, by Th. 2.11 of [57], one can show, assuming the resolution of singularities 
that for S = Z/pnZ, SQ — Z/pZ this definition does not depend on the compactifica­
tion. 

Remark. — In our case, one even does not need the resolution of singularities. It will 
be a consequence of the comparison theorem! 

These definitions transfer to the compact support case; it is mentioned in [22] 
p. 58. We explain this in Kato's setting. For a log-scheme (T, AT), we denote by T(N) 
the sheaf of ideals in OT generated by N. We define a sheaf of ideals X(DQ) on 
(Xo/S)**, as: 

I(D0)(U,T,MT,i,6) = F(T,X(MT)). 

I(£>o) is a crystal of C^^-modules. By definition, the cohomology with compact 
support of a crystal V is the cohomology of the crystal 

{u*V)(U)=T{U,V 

The cohomology sheaves 

fl/crys,*,cV = fl/crys,*(V /S 2(DQ)) 

are computed by a similar spectral sequence 

ñ/crys,*,cV = i?/ét,*(iîu*?cV) 

where i¿* c is defined, for a sheaf V on (XQ/S)]?^ and an étale morphism g : U —> XQ, 

by 
(u.,c(V)(E0 = T(U,Vu ®0u 9*I{Do)). 
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One has also: 
#/crys,*,cV - RfetAM ®Or OW s I slogD)). 

This result can be proven as in the case without support; it will be explained in the 
next section. 

4.2. L-construction. — In the proof of Theorem 6 below, we will apply the crys­
talline L-construction in the logarithmic setting (in the classical crystalline setting, 
cf. Chap. 6 of [4]); we want to explain the definitions and results here. 

Let (S, J, 7) a triple where S is a scheme, J is a quasi-coherent ideal of Os and 
7 is a PD-structure on X. Let So the closed subscheme defined by X; we consider a 
smooth morphism X$ —> So and YQ a relative Cartier divisor with normal crossings. 
Let (X, Y) be a lifting of (XQ, YQ) to S; we suppose that there exists an integer m > 0 
such that pmO-x = 0. Let Zi,..., Za be the irreducible components of Y. Let 3 be 
the blowing-up of I X 5 I along the subscheme Ylii^i *s Zi). Let XxsX be the 
complement in 3 of the strict transforms of X x Zi and Z J X I , 1 ^ i < r and let Y 

be the exceptional divisor in XxsX; it is a divisor with normal crossings. The couple 
(XxsX, Y) is the categorical fiber product of (X, Y) by itself over S, in the category 
of logarithmic schemes (cf. [22] IV, c). Locally, if # i , . . . are local coordinates of 
X over S such that Y is defined by the equation x\- -xa = 0, then XxsX is the 
relative affine scheme given as spectrum of 

S[xi®l, l®Xi]i^i^d[w^:1]i^j^a/(a;j(8>l • Uj - bxj)i^^fl 

and Y is defined by the equation xi<g>l • • • xa®l = 0 (or \®x\ • • • \®xa = 0). 
The product XxsX is the "exactification" of the diagonal embedding of log-

schemes I ^ X x I and Y is the inverse image of Y x 5 Y" in this exactification. 
Recall that if / : (X, M) —> (T, A/") is a closed immersion, there exists locally a unique 
exact closed immersion / : (X,M) —» (T,N) which is universal in the following 
obvious meaning: 
For any commutative triangle 

(X, M) - - > (Z, P) 

(T,N) 

such that g is an exact closed immersion, there exists a unique morphism (Z,P) —> 
(f ,iV) which liftsjZ,P) (T, AO-
The log-scheme (T,N) is the "exactification" of (T,N). 
We endow XxsX with a PD-structure as follows. Let V-^ be the PD-envelope of 
the diagonal immersion X —• XxsX. In the local coordinates above, V-^ is the PD-
polynomial algebra 0-x(vi, •.. ,^a>£a+i> •.. ,£d) where V{ — Ui — \ and & = x^l —sq 
jslr 
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We denote by the nth order divided power neighborhood: = V^-fX^ 
where JA is the ideal of the diagonal immersion and the exponent with brackets 
denotes the (n + l)th PD power of TA-

Let M be a sheaf of C^-modules. We recall the interpretation of a connection 
on M in terms of an HPD-stratification in our context. For us, the notion of an 
HPD stratification on M is defined word for word as in [4] Sect. 4.3 (which treats the 
crystalline situation on X0, without the divisor Y0). It consists namely in the datum 
of a P^-linear isomorphism 

e : V~x ®0- M —> M®OxVx 

such that e reduces to identity modulo 2A and the natural cocycle condition on 
XxsXxsX holds ([4] def. 2.10). In the case M = V-^, we have two canonical 
HPD stratifications. The first is induced by extending by (left) D^linearity the map 
6 : c<g>d i • ((l<g>d)<g>(l®c) 

for c and d in 0-^\ it makes use of the right module structure of V-g over O^. The 
second is given similarly by tensoring on the left by V-^ over O-^ the left-hand side 
of i : c®d ' * ((c®l)®(l®d); 

it uses the structure of left (9^-module of V-^. 
Also, as in [4] 4.4, one recalls the notion of PD-differential operator. Let M and N 

be two C^-modules. 
A PD-differential operator M —• N of order ^ n (resp. HPD-differential operator) 

is a O^-linear map ® M —> N (resp. 0 M —> A/"). Every PD-differential 
operator J : 0 M —• A/" induces a classical differential operator <56 : —• A/" of 
order n with "cologarithmic zeroes" along Y. 

The importance of these notions for us stems from the following theorem whose 
proof runs exactly as in the "classical" case ([4] Theorem 4.12). For that, we introduce 
the notion of a quasi-nilpotent connection in the sense of [4] 4.10 (but in our log 
setting, again): 

Definition 3. — A connection V on M is quasi-nilpotent if for any local section s of 
M. with local coordinates x i , . . . , #d on X such that Y is defined by the equation 
x^ - • • Xn =0 , there exists a positive integer k such that 
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OCK/c-l 
(V(xid/dxi)-j)k(s) = 0 

for 1 < i ^ a and (V(d/dxi))k(s) = 0 for a + 1 ̂  i ^ d). 

Theorem 4. — The data of an HPD stratification on M is equivalent to the data of a 
logarithmic integrable connection V on M. wich is quasi-nilpotent. 

Then, Grothendieck's linearization functor L is defined as follows. Let H be the 
category of C^-modules w^n niorphisms given by HPD-differential operators and C 
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to the category of crystals over (Xo/S)l^s. For any sheaf M of £>^-modules, we 
endow the O^-module T^x ®°x~ ^ wu^ ^e HPD-stratification e^M) 

0 M. 0 TJ~Y 
¿®Id SA 

0 M. 0 TJ~Y 
id©— ®/ 

0 M. 0 TJ~Y 

where / : M. <S> —• ® interchanges the factors. In other words, the HPD-
stratification is given by: 

(a<g>6)<g>(C<g>d)<g>ra I—• (ac<g)&)<g>ra<g>(l<g>d) 

Definition 4. — The covariant functor L :H —> C is defined by: 

- For any sheaf M of C^-modules, £(.M) is the crystal corresponding to the O^-
module with HPD-stratification (Dj<g>o_X,ei(^)). 

- For an HPD-differential operator <p : M —• N (that is, an O^-linear maP 
</? : 2>Y 0 A i A/*), L(y?) : L(.M) —> £(A/") is the morphism of crystals corre­
sponding to the (9^-linear morphism compatible with HPD-stratifications, given by 
the composition: 

0 M. 0 TJ~Y ¿®Id.M 0 M. 0 TJ~YEO 0 M. 0 TJ~Y 
0 M. 0 TJ~YN 

We refer to [4] Sect. 2, Sect. 6 for more details. Note that since is locally free, 
the functor L is exact. 

The correspondence between crystals on (XQ/S)1£*S and O^-module M endowed 
with a quasi-nilpotent integrable connection with logarithmic singularities, is then 
given by the following rule: Let pr\,pr<2 : T>x —» X be the two canonical projections. 
If V is a crystal on (XQ/S)X°V&S, let M = be the evaluation of V on X. The defining 
condition of a crystal produces an isomorphism: 

e : pr*2.M — pr{M 

This induces an integrable quasi-nilpotent logarithmic connection on M. as explained 
above. Conversely, by theorem 4, every logarithmic integrable connection on M. 
wich is quasi-nilpotent induces an HPD stratification on M. If (U,T,MT,Í,6) is an 
object of the crystalline site, then by smoothness, etale locally on T, the morphism 
(X0, A)) -> (X,D) extend to a morphism h : (T,MT) -» (X,D). We define VT to 
be /i*.M. If we have two such hi : (T, Mr) —> (-X",.D) (i = 1,2), then there exists 
h! : (T, MT) —> (Pj^, Mp_) such that /i¿ = ^ № and 6 induces an isomorphism 
/^.M ~ Thus V is well-defined. 

It is not hard from the classical case (Theorem 6.12 of [4]), to deduce the following 
crystalline Poincaré lemma. 

Lemma 4. — Let V be a crystal on {XQ/S)1£*s and M the associated O-^-module 
with its integrable connection. Then the complex of crystals L(M <S> f^r(logy)) is a 
resolution ofV. 
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Example. — For S = Spec/c, X0 = Spec/c[£], D0 = {0}, the L-construction applied 
to the logarithmic de Rham complex gives the following Poincaré resolution: 

0 — Oxo —> Oxo (v) — Oxo (v)dv — 0 

where d : Ox0(v) —> Ox0(v)dv is 0xo-unear and maps v to df. Here, L(Ox0) — 
Ox0{v) and L(í7x0/fc(logizo)) = Ox0(v)dv where v should be thought of as logt. 

Finally, the same argument as in the classical theory ([4] Sect. 5.27) shows also the 
following useful lemma: 

Lemma 5. — Let M be a sheaf of O-^-modules and T(Y) the ideal of definition ofY. 
Then: 

Ru*L(M) = M and Ru*,cL(M) = M®I(Y). 

Combining Lemma 4 and 5 above, we deduce: 

Ru*V = M (g>ox %/5(log D) and Ru^cV ^ M ®ox ^jc/s(- loSD)-

4.3. The Gauss-Manin connection. — As in section 4.1, X is a smooth 5-scheme 
(not necessarily proper), X an 5-open scheme of X such that D = X — X is a divisor 
with normal crossings over S. Let / : X —> X be a proper morphism such that X 
is smooth over S, f is smooth over X and V = X D is & relative divisor with 
normal crossings (such / is called semi-stable, see [44]). We have a relative de Rham 
complex with logarithmic poles 

n^^(\ogV/D) = í%/s(log©)/rí%/s(logD). 

As explained in [49] (see also [44]), we have a Gauss-Manin connection with logarith­
mic poles along JD, on the coherent O^-module: 

Sa = RaU{^^{\ogV/D)). 

In fact, this sheaf is locally free either if S is over Q or if S is over a field of charac­
teristic p greater than a. The restriction of £a to X is the usual Gauss-Manin sheaf 
Raf\x*®>x/x ano- £a is tne Deligne's canonical extension to X. The Gauss-Manin 
connection on S is integrable and if Os is killed by a power of p, then this connection 
is quasi-nilpotent ([49]). 

5. BGG resolutions for crystals 

Let B = T.N resp. Q = M • U be the Levi decomposition of the upper triangular 
subgroup of G, resp. of the Siegel parabolic, viewed as group schemes over Z. We keep 
the notations of the introduction for the weights of G. Let V = {e9,..., ei, e j , . . . , e*) 
be the standard Z-lattice on which G acts; given two vectors v,w G V, we write 
(v, w) — tvJw for their symplectic product. Q is the stabilizer of the standard la-
grangian lattice W = (e9,..., ei); we have V = W © W*; M = Lj is the stabilizer 
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of the decomposition (W, W*); one has M = GL(g) x Gm. Let BM = B n M be the 
standard Borel of M. Let resp. 3>M be the set of roots of (G,B), resp. (M,BM) 

and let 3>M = <!>-<I>M- We denote by resp. <J>^, $M±, the set of positive/negative 
roots in <£, resp. $M, $M-

5.1. Weyl modules over Zp. — From this section on, the notations g, q, (and 
m but there should not be confusion with the maximal ideal of the Hecke algebra) 
stand for the Lie algebras over Z of the corresponding group schemes. The Kostant-
Chevalley algebra U = U(#) (resp. W(q), W(m)) is the subring of the rational en­
veloping algebra U(qq) (resp. J7(qQ), resp. U(mq)) generated over Z by Xn/n\ with 
I G ga, a G $ (resp. a G $ - $M~, <3>M), n ^ 0 an integer. There is a natural 
ring epimorphism W(q) W(m). A g-stable lattice of a GQ-representation which is U-
stable is called ^-admissible (see [12], Sect. VIII. 12.7 and 8) same thing for a m-lattice 
which is W(q)-stable. 

5.1.1. Admissible lattices. — In this section, we explain how one can construct Weyl 
modules over Z(p) by plethysms when the highest weight is p-small: |A| < p. This 
construction is used in Appendix II to give a construction by plethysms of the crystals 
(resp. filtered vector bundles) over a toroidal compactification of the Siegel variety over 
Zp, associated to irreducible representations whose highest weights are p-small. 

If A is a fundamental weight, then the irreducible representation V\ of G has a 
canonical admissible lattice V(X)z for the Chevalley order g [12] p. 206. For another 
dominant weight A G X+, several admissible lattices exist over Z. However, given 
an prime p, we have shown in [61], Sect. 1.2, that for A = (ag,..., a\\ c) such that 
ag + ag-i -\-g + (g — l) < p, these lattices all coincide after tensoring by the localization 
Z(p) of Z at p. Note that our condition |\+p\ < p—1 implies ag+ag-i-\-g-\-(g — l) < p. 

For such a weight, let us recall the construction by plethysms of this unique ad­
missible Zp-lattice Vx5zp- It will be used systematically in the sequel as it fits well in 
the construction of sheaves over the Siegel modular variety. 

Let s = |A|; hence s < p. For any with 1 < i < j < n, let faj : V05 
y®(s-2) tne contraction given by 

vi 0 • • • 0 vs i—> (vi, Vj)vi 0 - - - 0 Vi 0 • • • 0 Vj 0 - • • 0 vs] 

Let ip G V®2 be the image of the symplectic form (, ) G (V 0 V)* via the identifica­
tions 

(V 0 V)* 9* V* 0 V* ^ V 0 V 

the last one being given by V = V*, v (v, •). 
We consider for any s ^ 2 the maps : V05-2 —• V®s obtained by inserting 

•0 at ith and jth components. Observe that ipij is injective. Let 6ij = ipij o faj G 
End(V®s). Let be the submodule of V®s defined as intersection of the kernels 
of the Oijs (note that Ker^,j = Ker^^). 
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As we shall see below, for p > 2 •W d d is the image of V®s by an idempotent 
in the Zp-algebra generated by the Oij's inside Endz(p)(V®5). Finally, by applying 
the Young symmetrizer c\ = a\ • b\ (see [32] 15.3 and 17.3), whose coefficients are in 
Z(p), to <g) Z(p), one obtains the sought-for lattice V\,z(p)-

Lemma 6. — There exists an idempotent es in the Z[~]-subalgebra of EndZjij(V0s) 
generated by the Oij's (1 ^ i < j ^ g), such that 

y(s) _ . Y<8>S 

Proof. — Let 
0 M. 0 TJ~Y VOR 

d < k <js 

Y<g>(S-2) 

Thus, 
V<S> = Ker$. 

Similarly, put 
sd 

i<7 
fad : 

q = 1d 
Y(g>(S-2) >. Y®S 

and 
Y(g>(S-2) >. 

>(S-2) >. 

ed 

Since 
WI = (xo), 

we see that - • 6 is an idempotent. It belongs to the Z[^]-algebra generated by the 
Oi/s. 

Thus, 

V0S = V<s) elmtf, x = x-
1 

9 
e(xj) + 

l 

0 
x + lmd 

This decomposition of Z(p)-modules is G-stable. We put es = Id— ̂  • 9. This is 
the desired projector to . 

To conclude: 

Corollary 1. — For any prime p which does not divide 2 • g and such that p > s = \\\, 
the module VA5Z(P) obtained by Construction 5.1 is the image ofV®s by an idempotent 
in the Z(pysubalgebra o/Endz(p) (V®S) generated by permutations and the 6ij's. This 
algebra commutes to the G-action. 

We apply a similar construction for a #M-dominant weight \x of M with < p. 
We denote by W^^z{p) the canonical admissible lattice of WM over Z(p) given by the 
Young symmetrizer. It can be regarded as a £/(q)-module via U(q) —> W(m). 

Lemma 7. — The subcategory of the category of M -representations, free and of finite 
rank over Zp, consisting of representations of highest weight < p is semisimple. 
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Proof. — We have to show that there is no nontrivial extensions in this subcategory. 
Let A and /x be two M-dominant weights such that |A| < p and |/x| < p. A and 
fi are not in the same orbit for the action of the affine Weyl group ([46], Part II, 
6.1). Let W\ and be the corresponding canonical admissible lattices over Zp, 
then Ext^V^x, Wfj) = 0 by the linkage principle ([46], Part II, 6.17, see also [61], 
Sect. 1.10, Lemma). 

5.1.2. The BGG complex. — We are interested in a variant of the "BGG complex" 
constructed in [3] where one replaces the Borel subgroup by the parabolic Q. Over the 
field Q, it is defined in [13] Chapter VI, Prop. 5.3 as the eigenspace for the infinitesimal 
character x\+p inside the standard bar resolution of V\,Q: 

D(X)q := UQ ®u(q)Q (A#(g/q) <8> Vx,q). 

Following [3], we show in [61] that this BGG complex admits a natural Z(p)-
structure in terms of integral Verma modules: 

C(A)Z(P) = © U <8>W(q) Ww(X+p)-p,Zip) 
wewM 

and we prove in Theorem D and Sect. 4 of [61] the following result. Let D(\)z(p) '= 
Mz(P) ®w(q)z( } (A*(fl/<l)® V\,z(p)) be the standard Z(p)-complex, a natural Z(p)-version 
of the standard bar resolution over Q of V\,Q. 

Theorem 5. — Let A E X+ and let p > |A + p\. Then there is a canonical morphism 
of complexes j : C(A)z(p) ^ D(X)z(p) such that 

- it is infective and it admits a retraction of Z(p)-complexes (i.e. Imj is direct 
factor as a Z(p) -subcomplex), 

- Im(j'Q) is the BGG complex over Q. 

Remarks 
1) The BGG complex mentioned here is a variant for the parabolic Q of the one 

defined in lemma 9.8 of [3] in the Borel case. For details concerning the differential 
maps, see Sect. 2 of [61]. 

2) The bound on A needed for proving this theorem is actually looser than 
(Sf=i ai) + d < P: it *s enough that ag + ag-\ + g + (g — 1) < p. 

3) We do not claim that these complexes are exact, as they are not. However, as 
we will see in Sect. 5.4, after applying the functor L to a sheaf construction (Sect. 4.2), 
we will transform the dual of C(A). into a resolution of the sheafification of the dual 
OF Va,z(p). 

5.1.3. Kostant-Chevalley algebra and universal enveloping algebra. — We fix the 
same notations as in 5.1. In particular, U is the Kostant-Chevalley algebra of g 
over Z. U can be identified with the algebra Dist(G) of distributions of G ([46], 
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Part II, 1.12). Recall that 
Dist(G) = u №\/Mn+1y 

s <0 
where M. is the maximal ideal of regular functions vanishing at the unit element. Let 
hi be the universal enveloping algebra of g. By the universal property of U, we have a 
natural homomorphism 7 \U —>U = Dist(G) which is injective. It is surjective over 
Zp when restricted to the < p-step of the nitrations of U resp. U = Dist(G): 

7 : U<p = U<p. 
It will imply the following lemma: 

Lemma 8. — Let U and U be the Kostant-Chevalley algebra and universal envelop­
ing algebra over Zp respectively and Vp, Wp be two Q-representations over Zp whose 
semisimplifications have p-small highest weights (a sufficient condition on the highest 
weights is \Xi\ < p), then the canonical map 

Homq(V ,̂W <g>£(q) Wp) —• Romq(Vp,U ®u{q) Wp) 

induced by 7, is an isomorphism. 

Proof. — By Poincare-Birkhoff-Witt over Zp, we have 

U ®S(q) Wp = UvT <g>Zp Wp 

where u~ is the unipotent radical of the parabolic Lie algebra opposite of q. It is 
enough to show 

Homq(Vp,£(ir) ®Zp Wp) = Uomq(VPMu~)<P ®zp Wp) 

Recall that the decomposition of Wp as a direct sum of t-eigenmodules Wa is valid 
over Zp by diagonalizability of tori over any base. 

For any H G t, 2L~ £ M(u~) (u — (na)ae$M+) and w G Wa, we have 

Y(g>(S-2) >. DLSLS 
x + ^ds 

naa)(ff)-C£a®«;) 

ror any q-equivariant <j> : Vp —• U(u ) <S)zp Wp, the image of a highest weight vector 
> G Vp is of the form 

6(v) = 
i 

Xf* <g> Wi with Wi G WGi 

Comparing the weights we have relations of the type 

\ = (TA -

s +s oe 

s+ dls 

by increasing the coordinates of rSl\ we can assume that ai is the highest weight 
of Wp, hence is p-small. Solving a linear system of inequations, we see that for any 
a G 3>M+, n$ < p as desired. 
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5.2. p-adic integral automorphic vector bundles. — Let / : A —> X be the 
universal principally polarized abelian variety over X (with a [/-level structure). Re­
call that í ^ / ^ A / X *s endowed with the Gauss-Manin connection, which is integrable 
and quasi-nilpotent (see Section 4.3). Let X be a toroidal compactification of X 
over Zp. Let Xn = X®Z/pnZ; let (X 0 Fp/(Z/pnZ))£|s be the logarithmic crys­
talline site associated to the scheme X 0 ¥p and its divisor at infinity. Note that 
X 0 Fp is a toroidal compactification of X 0 Fp. As recalled in Sect. 4.1 above, 
there is an equivalence of category between crystals on this site and locally free 0~x -
modules endowed with an integrable and "quasi-nilpotent" logarithmic connection. 
Let RepZp(G), resp. RepZp(Q), be the category of algebraic representations of G, 
resp. Q, on finitely generated free modales. Consider the respective full subcategories 
Rep^-1 (G) and Rep^-1 (Q) consisting in objects whose highest weights are p-small 
(in fact, whose highest weights p satisfy \p\ < p — 1). 

For each n > 1, let Vj , resp. Vn be the category of locally free Oxn-
modules, resp. O-^ -modules, endowed with an integrable and "quasi-nilpotent", 
resp. integrable, "quasi-nilpotent" logarithmic connection, and Tn, resp. Tn that of 
locally free Oxn-modules, resp. -modules endowed with a filtration with locally 
free graded pieces. 

The goal of this section is to define for each n > 1 two functors 

FZ/PNZRLTEPG ' - ^G)— 

and another 

FZ/PnZ:Itepg,-1(Q)—^ J n 

We first define functors on RepZp(G), resp. RepZp(Q) with values in vector bun­
dles over Xn. Then we proceed to show that these vector bundles extend to Xn 
provided they come from representations in Repz^_1(G) resp. Hep^~1(Q). 

5.2.1. "Flat vector bundles" on X. — Let us define 

Fz/pnZ:RepZp(G)^Vj 

Let Óx be the trivial vector bundle of rank 2g on X endowed with the canonical 
symplectic pairing (see section 5.1) and its natural action of G on the left. Let us put 

T = ]ssmx(c^,(R1f^A/xr) 

where the isomorphisms are symplectic similitudes. It is an algebraic G-torsor over 
X for the right action 

T x G —• T, (&g)^$og. 

For any V G RepZp(G), we define V as the contracted product 

G 
V = T x V 
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that is, the quotient of the cartesian product by the relation (0, g • v) ~ (4> o g, v). It 
is a vector bundle on X hence over Xn for any n ^ 1. 

Fact 
1) V is equipped with a connection of the desired type. 
2) The image of the standard representation is (R1 f*&\jxY • 
3) The correspondence V »-» V is functorial. 

Proof 

1) Let A = (R1 f^AjxT''-> we consider the (dual) Gauss-Manin connection: 

V : A —> A ®ox ftx 

It is symplectic in the sense that for two sections /, g of A, we have 

<V/,5> + (/,VFF)=D</,FL> 

where the symplectic product is extended to 

A 0 A 0 ftx —• 

Therefore, given a point 0 of T over an X-scheme Y, we can transport V to an 
element V</> of g 0 C Ende>r (Oy ) 0ox defined by the diagram 

.AY 
V Y(g>(S-2) 

0 

s Od 
V<6 

Ol9 0 fi^ 

Given (V, py) € RepZp(G), the representation py viewed on the Lie algebra g enables 
us to define 

= {py <g> Id(9r ®ox) Idnx °V ^ End(V) (8) CV ®ox iî* 

It is a connection on V <g> Oy. For Y = T, and 0 the canonical point of T, we can 
descend this connection to the contracted product because 

V ô/i = h 1 o V<¿ o h 

The resulting Vv is integrable and quasi-nilpotent because it is so for the Gauss-Manin 
connection. 

2) Consider the morphism of X-schemes 

T x 6>is —» Л (ó. v) i—> ó(v) 
It descends to the contracted product since <j> o = • v). It defines therefore 
a morphism of vector bundles over X: Vst ~> A. This morphism is an isomorphism 
over T and T —> X is faithfully flat, therefore it is an isomorphism over X. 

3) is obvious. 
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5.2.2. Comparison with the transcendental definitions. — Let T = G(Q)\G(A) x 
G(C)/UUoo, the left action of G(Q) on G(A) xG(C) being diagonal, while the right one 
of UUQO being only on the G(A)-factor; the first projection pr\ : G(A) x G(C) —> G(A) 
induces a structure of principal G(C)-bundle over the analytic Siegel variety Su by 

WT:T —>Sn 
Moreover, let Z be the compact dual domain of the Siegel half-space Z. Let 

c = ' 1 -i 
1 I 

G GSp2p(C) be the standard Cayley matrix which defines the Cayley 
transform (3 : Z e—• Z. Consider the twisted multiplication 

M : G (A) x G(C) — G(C), (g, g') ^- g'c • 9oo • c~l 
for g = (#/, #oo) G G(A); it induces a morphism JL :T —> Z. 

Recall the transcendental definition of the automorphic vector bundle associated 
to V G Repc((5): one forms the contracted product 

V = G(C) Q(C) _ 
x V 

which is a vector bundle over Z. Then one forms its pull-back /3*(V) to Z by the 
Cayley transform (5 : Z ^ Z. One takes the product /?*(V) x Gf/U, and one defines 
the holomorphic vector bundle V —• bv 

V = G(Q)\(/F(V) x —, G(Q)\(Z x G//J7) = Su. 
We refer to F ^ V as the transcendental construction. It is valid for V G Repc(G) 
as well. 

Note that we could avoid the use of the Cayley transform, and use instead the 
more direct (but equivalent) Borel transform, at the expense of replacing the Siegel 
parabolic Q by its conjugate c~1Qc in the definition of the compact dual of Z. 

Lemma 9. — Over C, the functor Vc is canonically isomorphic to the one defined by 
the standard transcendental construction. 

Proof. — We prove two statements 
1) There is a canonical isomorphism of G(C)-principal bundles T —* T. 
2) The transcendental construction can be described as 

У = pvi* o ¡j, V = 1 
G(C 

x V. 

1) Recall that the description of the Siegel variety for a level subgroup U C G(Z) 
can be done integrally: Note that G = GSp(2#) and G' = Sp(2#) are defined over Z. 
It is a simple exercise to see that 

Su = G(Q)+\(G(A/)/t/ xZ) = G'(Z)\(G(Z)/£/ x Z). 

Let Z' = G(Z)/U x Z Let Vst be the (complex) standard representation of G. We 
recall first that the pull-back by Z' —> Su of the vector bundle A endowed with the 
dual Gauss-Manin connection is isomorphic to the vector bundle of the local system 
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Z' x V8t endowed with its obvious flat connection. By lack of an adequate reference, 
we recall the proof. The description of the universal abelian variety over the Siegel 
variety of level a congruence subgroup U C G(Z) is as follows. Let G(Z) = Z2g<G'(Z) 
be the Jacobi group, that is, the semidirect product of the symplectic lattice (Z2g, J) 
by Gf(Z) for the action 7 • v denoting the usual product of matrices. It acts on the 
left on G(Z)/U x Z xCg by 

(0,7) * (9, z, w) = (70,7(2), *j(7> z)~lw), (v, 1) • (0, z, w) = (g, z, (z, 1) • J • v) 

it is indeed an action because for any 7 G G'(Z), we have *7 • J • 7 = J. 
Consider the first projection 

Z' xC9 —• Z' 

and take the quotient for the left action of G(Z) resp. G(Z). We obtain the analytic 
description of the universal abelian variety A over Su- For / : A —> Su, the locally 
constant sheaf (Rlf*ZY which identifies to the relative homology inside lAe{A/Su) 
can be viewed as 

G'(Z)\Z2g • (Zf x {0}) inside G'(Z)\(Z' x C9) 

Therefore, its sections identify to the sections s of the trivial covering 

Z' x Z2g Z' 

satisfying 5(7(0, z)) = 7 • s(g, z\ 
Therefore, the pull-back of T is isomorphic to Isomz,{Zf x Vst,Z' x V8t) — Z' x 

G(C), with action of G(Q) diagonally on the left. Hence, by quotienting by G(Q), we 
obtain a canonical isomorphism T = T. 

2) Let V G Repc(G). In this situation, only the C°°-structure of V matters (in­
deed, only the structure of the underlying locally constant sheaf). On one hand, it is 
well-known that V is the vector bundle, associated to the V-covering G(Q)\(Z' x V) —> 

~ G(C) 
Su- On the other hand, the pull-back by G(C) x Z' -± 1 of T x V identifies to 
Z' x V; it is endowed with a free action of G(Q) (diagonally on the left), and of U 
on the right. The resulting quotient is again the vector bundle associated to the 
V-covering G(Q)\(Z' xV) -> Sv as desired. 
5.2.3. Zp-Integral extension to X for p-small weights. — Let us finally define the 
functor 

VJ.. : ReD» (G) —> V 
which induces the functors V%jvn% mentioned at the beginning of this section. 

We have the diagram 

(5.2.1) 

XQP kz 

3 
k 

XQP 
i fa 
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On one hand, for any Q-representation W, we have constructed a vector bundle 
W over Xzp\ on the other hand, M. Harris ([37]) has defined a functor from Q-
representations defined over Q to vector bundles over Xq coinciding with ours on 
XQP . We first glue the vector bundles >VQp with Wzp into a vector bundle Wzp over 
the cofibered product XZp = Xqp UXqp XZp-

Then, we observe that Xzp = Xzp — D^p is an open subset with complement of 
codimension 2 in Xzp- Therefore, by [33] Cor.5.11.4, the direct image of Wzp is a 
coherent sheaf on Xzp • Let us see it is locally free, at least if V has p-small highest 
weight. By dévissage, it is enough to consider irreducible M-representations with 
such p-small highest weight. By Appendix II, it is enough to consider the standard 
representation. In that case, the coherent sheaf on Xzp is Lie(£/X)V, which is locally 
free. This concludes the proof. 

In particular, for any dominant weight A, we have attached to the representa­
tion VA of G of highest weight A a vector bundle Oxn-module V\,n on Xn together 
with a connection with logarithmic poles along DN, hence a logarithmic crystal V\,n 
on (X/(Z/pnZ))J,°|s. Moreover, it carries a natural filtration since VA is also a Q-
representation. 

5.2.4- Differential operators over Z(p). — Let V and W be two rational represen­
tations of Q, and V/Q, W/Q the corresponding automorphic vector bundles over XQ 
(see previous subsection) and V/Q, W/Q their canonical extension to the toroidal 
compactification X. According to Proposition 5.1 of [13] VI.5, we have a functorial 
homomorphism 

* : HomU(M){U{Q®) ®U(QQ) V,U(bq) ®U(qq) W) —• Diff. Operator s (WjQ, V)Q). 

Actually, in Proposition 5.1 of Chap. VI, the construction of \I> is explained over 
C. The Q-rationality statement is explained in Remark 5.2 following the proof of 
Proposition 5.1 of Sect. VI.5. We now prove a variant thereof over Z(p). 

We treat first the case of degree 0 differential operators by referring to 5.2.2: 

Lemma 10. — Let V, W be two Q-representations of p-small highest weights (in fact, 
I Ay I and \\w\ < p is enough), Vp and Wp their canonical U-stable lattices and Vn, Wn 
the corresponding automorphic vector bundles over Xn, n > 0. There is a functorial 
infective homomorphism 

Homq(Vi, Wp) —4 Hom0_n (W^X) 

compatible with the transcendental construction. 

Then, the case of general differential operators can be treated as follows: 

Lemma 11. — Let V, W be two irreducible Q-representations of p-small highest 
weights, Vp and Wp their canonical U-stable lattices and Vn, Wn the corresponding 
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automorphic vector bundles over Xn, n > 0. Then \£ induces for each n > 0, a 
homomorphism 

Romu(U <8>w(q) VP,tt<g>w(q) Wp) —-> P.D.Diff.Operators(W^, V^) 

Remark. — By p-smallness of the highest weights, the only possible degrees of mor-
phisms in Romu(U ®w(q) VP,U 0w(q) Wp) are < P> hence, the corresponding PD 
differential operators, are in fact usual differential operators. 

Proof. — We start with operators of order one. Note that the de Rham differential 
d : O^F —• is the image by \I> of the obvious map 

5 ' U <8)w(q) 0zp/qzp —> U 0W(q) zp> 1 0 X i—> X 0 1 

(compare with [13] VI, remark 5.2). By Lemma 10, this implies that each homomor­
phism </> : Vp —+ U ®w(q) Wp of degree one is mapped by ^ to a Zp-integral differential 
operator of order one. Indeed any <j) as above factors as 0 = 5 0 Idjyp °(Id^ 0^) for 
a xf; e Homq(Vp,g/q 0 Wp). 

Recall that U denotes the universal enveloping algebra of g. We have seen 
in Lemma 8 that by p-smallness of the highest weights, the natural algebra ho­
momorphism 7 : U —> U induces a bijection between Hom0(Vp,ZY ®u(q) Wp) and 
Hom0(V ,̂£Y 0^(q) Wp). Now, as a corollary of PBW over Zp for hi, we see that every 
element (/> E Hom0(Vp,ZY0^q) Wp) of degree m > 1 factors as 0 = (d(3ldwp)°iJ where 
ip has degree m — 1: fix a basis (-^a)ae$M- °f u~; for i> E Vp and (j>{v) = J2i ®wii 
put i)(v) = J2ae$M- X- )_1q 0 Xa 0 Wi where la is the family (Sa,{3)(3e<f>M-• 
The conclusion follows by induction on m. 

5.3. The Hodge filtration on automorphic sheaves 

5.3.1. The geometric aspect. — This paragraph is a recollection of well-known facts 
about the Hodge filtration in the automorphic setting (see [15] Sect. 5). 

Let S_ = Rc/R^m and ho : 5(R) —» G(R) the homomorphism defined by 

Z = £ + iv G CX i 
Vsdia} 

-ytg xIg, 
= xl2g + 2 / ^ G G(R) 

The G(R)-orbit Z of ho is analytically isomorphic to a double copy of the Siegel 
upper half-plane of genus g. The pair (G, Z) defines a family of Shimura varieties "a 
la Deligne", isomorphic to our Shimura varieties Su for various level structures U. If 
V is a real representation of G and h e X, then the composition h : 5(R) —• G(R) —> 
GL(V )̂ defines a real Hodge structure hy on F ([15]). Let Fh be the filtration on 
Vfc = Vr 0 C deduced from fry. For V = g the adjoint representation, F®(gc) is a 
Lie algebra of a parabolic subgroup P(h) of Gc- The mapping ft —> P(ft) identifie 
Z as an open subset of its compact dual Z = G(C)/Q(C). Now, for general V, the 
mapping h -+ Fh define a G(R)-equivariant filtration (the Hodge filtration) on the 
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constant fibre bundle Z x Vfc. Dividing by G(Q) and [/, we get a filtration on the 
coherent sheaf V over 5cr, associated to the representation V. Moreover, if V is the 
canonical extension of V to some toroidal compactification of Su, then this filtration 
has a canonical extension to V. This results from Harris' functoriality [37] of the 
canonical extension (Sect. 5.2.3). In the case where V is the standard representation 
of G, then, by definition of the functor Vfc (see Sect. 5.2.1), we have Vv = i ? 1 / * ^ / * ' 
by Deligne's unicity of the canonical extension, we have VV = R1 f^Q^^—(\ogoo-j^) 
and the Hodge filtration on the dual is the classical one given by 

(5.3.1) F2(VV) = 0 C Fl(y^) = / . f i ^ f l o g o o ^ ) C F°(VV) = P \ 

Then, for a represention V\ associated to a dominant weight A of G, we can use 
Weyl's invariant theory as in Appendix II, to describe the Hodge filtration on Vx. 
Actually, Appendix II allows to describe this filtration explicitely over Zp as well, for 
A p-small. Indeed, we show there that, for A p-small, each v\ on X/%p is a direct 
summand of some higher direct image of the logarithmic de Rham complex over a 
toroidal compactification of the 5-fold product of the universal abelian variety (see 
[13] p. 234). 

Recall that for a complex if*, the notation K*^1 denotes the subcomplex of K* 
equal to K* in degre ^ i and zero elsewhere. 

If fs : Y —» X is such a toroidal compactification over Zp, then the coherent sheaf 

.F = ffVai.fiWlog<x 

is locally free if w is an integer < p (see Illusie, [44] Cor. 2.4). It is endowed with the 
Hodge filtration 

F i l ^ = Im ( f l « /„ f i^ ( logoo) — TT /^f iWlogoo)) 

For a dominant weight A such that |A| = s, we take w = d+s; recall that w < p— 1. 
We endow the sheaf Vx with the filtration: 

Fil* Vx =VVXD F i l ^ . 
—v —v Let VA n be the O^^-module obtained by reduction mod. pn of the module VA. 

Definition 5. — The Hodge filtration on the de Rham complex 

Vln ®Oxn Î%n/z/pn(l0g00) 

is defined by: 

F4Vx,n®o^ Щ? ,7,„ » (log оо)) = YFÌ(VXJ ®0y„ ífe „.„(logoo)^"'. 
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5.3.2. The group-theoretic aspect. — Let H — diag(0,..., 0, — 1 , . . . , —1) G LieT C Q 
(with g 0's and g — l's). H is a generator of the center of q = LieQ (modulo the 
center of LieG). For any rational Q-representation V, for any i G Z, let V% be the 
sum of the generalized ii-eigenspaces with eigenvalues > i. This defines a decreasing 
filtration {V1} on V. We shall call this filtration the üT-filtration. Note that this 
filtration is Q-stable. 

Two cases are of particular interest for us: 
- V is an irreducible M-representation with highest weight \i\ the filtration is given 

byVh H + 1= o c V^H) = V. For instance, the standard representation V0 of M is 
filtered by 0 = VQ C V0° = VQ while its twisted contragredient V\ = VQ ® v is filtered 
b y O ^ V f c V T ^ V i . 

- V = V\ is an irreducible representation of G associated to the dominant weight A. 
Then the filtration given by H can also be defined by plethysms from the 2-step 
filtration of the standard representation Vst: F~l = Vst, F° = Vo is its unique simple 
Q-submodule (in fact, an M-module), and F1 = 0. 

We can still define the infiltration as above for a Q-representation V defined over 
Zp instead of C. If V is p-small, the eigen values of H are invertible and so the V*'s 
are Zp-summands in V. 

In particular, we endow the standard bar resolution of V\, zp (say, for | A+p| < p— 1) 

D(X) := (lb, ®w(q)lp (A«(fl/q) ® V(X)Zp)) 
with the ii-filtration. 

Let 
C(A)ZP = 0 U®U(q)Ww{X+p)-PiZp 

w€WM 
be the BGG complex introduced in Sect. 5.1.2 attached to V\tzp- The i^-filtration is 
given by 

FiC(X)zp 0 U ®W(Q) ^(A+PJ-P.Zp. 
wewM 

w(\+p)(H)-p(H)^i 
Then the injection j : C(X)zp ^ D(X)zp is a filtered direct factor of D(X)zp by [61]. 
5.3.3. Filtered vector bundles on X. — As in section 5.2.1, we define a second functor 

Fz/p^z : RePzp(Q) —> 
wich gives the Hodge filtration, as follows. We endow O2^ = Ox ® Vst with the 
standard symplectic pairing and the H- filtration (0 C F° C F-1) and we put: 

TH =homHtX(02x3,(R1f*Cl'A/xy) 
where the isomorphisms are symplectic similitudes respecting the Hodge nitrations. 
TH is an algebraic Q-torsor over X. For any W G RepZp(Q), let 

W = THxW 
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It is a vector bundle on X hence over Xn for any n ^ 1. This construction is 
functorial. As W is filtered by submodules which are Q-stable (by the i/-filtration), 
the vector bundle >V comes equipped with a filtration. If the representation W is 
p-small, we show by 5.3.2, that its successive quotients are locally free. Moreover, 
every morphism W —• W of Q-representations induces a strict morphism of filtered 
vector bundles. Following the lines of Lemma 9, one shows that the image of the 
standard representation is (R1f^Q*A^x)v with its standard filtration. The proof of 
these assertions is similar to the one in the previous section. 

Remarks 
1) In fact, by the same construction, one can define functors VZ[I/N] and FZ[I/N] 

such that Vz/pnZ = VZ[I/N] ® Z/pNZ and similarly for F. 
2) Every M-representation gives rise to a Q-representation by letting the unipotent 

radical act trivially on W. 

Similar tho the complex analytic G(C)-torsor f = G(Q)\G(A) x G(C)/C/C/00 (see 
Sect. 5.2.2), one can construct a complex analytic <2(C)-torsor TH as follows. We start 
from the Q(C)-bundle Q : G(C) Z. We form its pull-back /?*(Q) Z by (3. It 
still carries an equivariant action of G(Q) on the left. Then, our Q(C)-torsor over Su 
is given by 

TH = G(®)\0*(Q)xGf/U. 

Let us compare the functor Fc with the transcendental construction: From the 
definition of TH, it is clear that for any V G Repc(Q), 

~ ^ Q(C) 
V = TH x V. 

Moreover, there is a canonical isomorphism TH =TH of holomorphic (5(C)-bundles. 
Indeed, the pull-back by Z' Su oiTn 

Isom^(^*Vst^*Vst) =(3*Q x Gf 

hence, by quotienting, the desired isomorphism. 

Fact. — In the construction V i—> V of the coherent sheaf attached to a Q-
representation, the H-filtration defined above gives rise to a decreasing filtration 
on V. When V is a G-representation, it coincides with the Hodge filtration given 
byFho. 

Proof. — Consider the dual filtration 

(5.3.2.1) FiP Vv = {<p : V —> Ox \ ^(FiPV) C ¥i\i+jOx} 

where the unit object Ox is endowed with the trivial filtration: Fil°Ox = Ox and 
FiVOx = 0 for any j > 0; When V is the complex standard representation Vst <S>C 
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of Gc, the dual of the infiltration coincides with the Hodge filtration (given by Fho) 
on Vv, indeed, the dual of the H-filtration reads: 

Fil°Vv = {tp | y>(FU1V) = 0} = Vv, 
(5.3.2.2) Fil1Vv = {if | <p(Fil°V) = 0} = V ,̂ and 

Fil2Vv = 0. 
This is the Hodge filtration (5.3.1). 

Finally, we note that this filtration is compatible with tensor product, duality, etc. 
5.3.4- Filtered dual BGG complex. — Let us define the dual BGG complexes JC*Xn 
and /CA' n . Their graded pieces are the coherent sheaves over Xni 

^A,n= © Ww(\+p)-p,n resp. K%™h = © ^w(\lp)-p,n 
wewM wewM 
l{w)=i l(w)=i 

with ufuh = w ® T(oo) where J(oo) C O-^ denotes the ideal of definition of the 
divisor at infinity of X, and the differentials are deduced by lemma 11 (Sect. 5.2.5) 
from the BGG complex of Sect. 5.1.2. By dualizing the ii-filtration, we obtain a 
natural decreasing filtration on )C*Xn1 stable by the differentials, given by 

Flfc\,n = © ^w(X-\-p)-p,n 
wewM 

w(\+p)(H)+i^p(H) Recall that by the Theorem of [61], the map j has a retraction of filtered complexes, 
hence the dual jv has a natural section; its sheafification defines an injection of 
complexes of coherent OY -modules: 

ft : JC\ n — 
wGWM 

w(\-\-p) — p,n •* VA_ ®e>, Щ?_ ,„ „(logoo) 

-p:«,sub 
ft : /Cx n = wGWM 

w{\+p)— p,n - VA,™ ®o fi^ (-logoo) 

We summarize the considerations of this section in the proposition 

Proposition 3. — The morphism k of complexes of vector bundles over Xn (n > 1) is 
filtered. 

5.4. BGG resolution. — We denote by Vn the logarithmic divided power enve­
lope of the diagonal immersion Xn —> Xnx.jj/vn Xn where Inxz/p"^n is the fiber 
product in the category of logarithmic schemes. Let p\ and p2 be the two canoni­
cal projections Vn —> Xn. Finally, for any ^M-dominant weight fi of M, such that 

< p, let L(WAljrl) be the logarithmic crystal on (X/Z/pn)j.°|s corresponding to 
PÏVVM?n (Sect.4.2 for L and 5.2 for WM,n). For simplicity, in the sequel, we drop 
the index n in the notations of the sheaves, thus we write for WM?n. Note that 
we cannot consider the situation over Zp because we need a nilpotent base for our 
crystalline arguments. 
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Proposition 4. — Let X be a B-dominant weight of G, such that \X + p\ < p; 
(i) There is a resolution in the category of logarithmic crystals on (X $ / (Z / pnZ))l°r%s: 

0 — VV — L(ti) —> L(K\) —> 

where 
K = 

wewM 
l(w)=i 

V\7V 
KV̂ (A+p)_p. 

(ii) There is a canonical filtered quasi-isomorphism of complexes of logarithmic 
crystals 

L(JC\) — L{v\ ®o^n 0^/z/p„(logoo)), 

Proof — We transpose the proof given in [13], VI, Sect. 5 for the complex case in a 
Zp-setting. By Lemma 11, each Q%{P) -morphism of order 1: 

U ®W(q) Wx—^U ®w(q) W2 
induces a logarithmic differential operator of order 1, W2 —> for the corresponding 
locally free 0^-module; therefore, it induces a morphism of crystals Ẑ VV )̂ —• 
L(Wi). We deduce from theorem 5 (section 5.1.2), that there is a complex of crystals 

О V, — L(ÌC,) —> LOC.) —> • • • 

On the other hand, we know that 

О —> —> ЦУЛ SDD O I fiV „/„„(logоо)) 
—V 

is a resolution of VA. Indeed, the exactness of the complex is the crystalline 
Poincare's lemma (actually, its logarithmic version: bottom of p. 221 of [48], see 
our section 4.2, lemma 4 above). 

By Theorem D of [61] (Theorem 5 of section 5.1.2 here), L(K*X) is a direct sum-
mand, as subcomplex, of L(VA ®Oy O drlsld dln? i nO°S°°))-

Therefore, L(K*X) is a resolution of VA. This proves statement (i) of the theorem. 
The second assertion follows from the fact that H commutes with ZQ. AS explained 
in Section 5.1.2 above. 
Theorem 6. — The natural morphisms 

ds VA ®Oxn %n/Z/pn(l0g00) 
and 

K-T —> VA ®Oxn ^xn/z/pr> (~ log oo) 
are filtered quasi-isomorphisms of complexes of coherent sheaves on Xn. 

Proof — One applies Ru* resp. Ru*iC to both members of the quasi-isomorphism (ii) 
of Prop. 4; then one makes use of the fact that Ru*L(V) = V for any 0-% -module V 
and the properties of the L-construction recalled in Section 4.2. 
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6. Modulo p crystalline representations 

6.1. Etale sheaves associated to crystals. — Let A; be a perfect field of char, p > 
0, W = W(k) the ring of Witt vectors with coefficients in k and K the fraction field 
of W. KAC is a fixed algebraic closure of K and GK = Gal(Kac/if) is the associated 
Galois group. Let RepZp(Gx) be the category of G^-modules of finite type over Zp 
and MF^/P~2^ that of finitely generated W-modules M endowed with a filtration 
(FilrM)r such that FilrM is a direct factor, Fil°M = M and FiP"1 = 0 together 
with semi-linear maps (pr : FilrM —> M such that the restriction of </?r to Filr+1M is 
equal to p(fr+1 and satisfying the strong divisibility condition: M = J2ieZ (fr (FilrM). 
Recall that by the theory of Fontaine-Laffaille [24], we have a fully faithful covariant 
functor 

VCTVS : MF%"^ — Repz„ (GK) 

This functor has the property that it sends the filtered Tate object of unique Hodge-
Tate weight — i (meaning the jumps of the Hodge-filtration) to the Tate module Zp(i) 
and for any abelian variety defined over Qp, 

HJt(Ax®p,Zp) 

has weights 0 and 1. 
The contravariant functor V*Tys obtained by composing Vcrys with duality is the 

nice inverse of a not so nice contravariant Dieudonne functor D*: see [83] p. 219-223. 
A p-adic representation is called of Fontaine-Laffaille type (or crystalline, by abuse 

of language) if it is in the essential image of V̂ .*ys. 
In our setting, we are interested in the subcategory MF]0,p~2' of filtered modules M 

such that pM = 0. MF]°'p~2' is an abelian category and the objects are in particular 
k-vector spaces. The restriction of the functor V̂ *ys to MF|0,p~2' can be describe as 
follows: Let S — OK*C /POK*C , choose (3 G Kac such that /3P = —p and for i < p, 
define a filtration FiVS = /3lS and Frobenius ipl((3lx) = xp', then as explained in [83], 
Prop. 2.3.1.2', we have an isomorphism 

KrysW - HomMF[o,P-21 (M, S) 

Moreover, V*Ty8(M) is a finite dimension ¥p-vector space and dimFp V*Tys(M) = 
dimk M. 

Let X be a smooth and proper scheme over W of relative dimension d and D a 
relative divisor with normal crossings of X, we put X = X — D. Faltings introduced in 
[22] relative versions of the categories mentioned above: the category 1Zepzp {X 0 K) 
of etales Zp-sheaves over the generic fiber X®K and the category MFV (X) of filtered 
transversal logarithmic crystals over X. Moreover, we have a notion of "associated" 
between objects of Kepzp(X 0K) and those of MFV(X). To get a good theory over 
Zp, we need to consider only the full subcategory MFV^^~2]{X) of MFV (X) of 
filtered crystals T such that Fil0̂ 7 = T and FSSP~XT = 0 and we have to add some 
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other technical hypothesis (cf. Sect. 6.2). Faltings [22] (see also [78]) has defined a 
relative contravariant Fontaine functor 

V* : MFv'(°'p-2l(I) —• UepzJX ® K) 

In section 6.2 below, we will recall its definition on the objects of p-torsion. 

Definition 6. — For any T e MFV^P~2](X), we say that T and V*(.F) are associ­
ated. 

We have the following theorem of Faltings ([22] Th.5.3): 

Theorem 7. — Let T e MFv^p~2\x). Let a e [0,p - 2] such that Fila+1JT = o. 
Then, for any i > 0, such that i + a < p — 2, there is a natural and functorial 
isomorphism of GK-modules: 

(них ® к™, v* (Я)) = v*(H*Jx< я : 

6.2. The mod. p case. — As we use only the mod. p version of the previous com­
parison theorem, we only recall the notion of associated sheaves and the comparison 
theorem in their mod. p version, following [22] and [78]. 

6.2.1. Filtered modules. — Let k be a perfect field of char.p > 0, W — W(k) the 
ring of Witt vectors with coefficients in k and K the fraction field of W. Kac is a 
fixed algebraic closure of K and GK = Gal(Kac/K) is the associated Galois group. 

Let X be a smooth and proper scheme over W of relative dimension d and D a 
relative divisor with normal crossings of X, we put X = X — D. Let XQ = X ®w k 
be the special fiber of X and D0 the induced divisor. If FXo : —• is the 
absolute Frobenius, we denote by 

(них ® к™, v* (Я)) = v* 

the O-^-linear homomorphism induced by F^Q. 
We fix a global lifting (p^ of ip^ 011 X x w W2. The differential 

(них ® к™, v* (Я)) = v*dd 

is divisible by p. We denote by d^Q/p the reduction mod. p of dip^o/p. 

Definition 7. — We define the category MFJ^0,P~2\X0) of strongly divisible filtered 
logarithmic modules over Xo with Hodge-Tate weights between 0 and p — 2 as follows: 
an object is a quadruple (F, T%, tp^, VJF) where 

- T is a quasi-coherent -module. 
- J71, i = 0,... ,p— 1, is a decreasing filtration of T by quasi-coherent O^0-modules 

such that — T and J ^ " 1 = 0. 
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- (fi-p : T1 —> T is a ^ -linear homomorphism such that the restriction of ipp to 
is zero and such that the induced map 

®Ì<PT • FSX SD r—• T 

is an isomorphism (condition of strong divisibility). 
- V f : F T <g>o— (log A)) is a quasi-nilpotent integrable connection satis-

fying 
1) Griffiths transversality: V^-(^) C F'1 ®Q-Q í í^ (logA)) for i = 

0 , . . . , p - l . 

2) Compatibility with Frobenius: V;F o <¿>̂- = (p^ 1 fe 
sd 

dd+ ds 

- *̂ is uniform: there is an etale covering (UA) of XQ together with a log-immersion 
Ua —> Za with Za log-smooth and such that the evaluation of the filtered crystal 

— —DP 

associated to (J7, J1"1) on the thickenings Ua Za is isomorphic to 

AGA 
(<V* ddv 

sd 
with eA ̂  0, |A| < oo 

—DP — — where Z is the log-divided power envelope of the immersion Ua —* ZQ, and J^DP a 
is the corresponding PD-ideal. 

Remark. — The uniformity condition is introduced in Sect. 4.f of [23]. It is needed 
to check that the category is abelian. 

A morphism of AiF^^0,p~2\Xo) is an C^o-linear homomorphism compatible with 
flit rat ions and commuting with Frobenius and connections. 

By [22], Th. 2.1, each T{ is locally free and locally (for the Zariski topology) a direct 
factor of T. Moreover, any morphism of MF^^0,p~2\Xo) is strict with respect the 
nitrations. We deduce from this that MF^^°'p~2\x0) is an abelian category. 

6.2.2. The functor V*. — To a filtered module T as above, we associate an etale 
sheaf V(̂ r) over X 0 K as follows: 
Let U = Spec(i?) be an affine open irreducible subset of X, U = U x^X, = U®wk. 
Recall that it! is flat, of finite type over W (since X is smooth over W); assume 
that R/pR ^ 0. Let R be the p-adic completion of R and R! be the union of all 
normalizations of R in finite sub-Galois extensions of an algebraic closure Fr(iJ) of 
the field of fractions Fr(.R) of R such that the normalization of fl[l/p] in such finite 
extension is unramified outside D (cf. [22], II, i)). On U0 = Spec(Rf /pRf), we have a 
canonical log-structure defined as follows. Let S be the normalization of R in a finite 
Galois extension of Fr(R) in Fr(i?)ac. The inverse image of the divisor Do defines a 
log-structure on Spec S/pS. By passing to the inverse limit, we obtain a log-structure 
on U0. 
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Let {T,T%,yl:F, VV) be an object of MF^^0,P~2\XQ). AS a crystal, we can eval­
uate T on the trivial thickening U0 U0. We obtain an Oy -module Tjj> endowed 
with a decreasing filtration . 

For i < we define the Gal(#7^)-mocuile "VV^, i) as the kernel of 

1-^:H\U'Q,FV,)^H\U'Q,TV,Q) QLSL 

Let £ = R'/pRf; choose /3 G ifac such that j3p = -p and for i < p, define a 
filtration FiP£ = PlE and Frobenius ipl{(3ix) = xp, then as explained in [78] proof of 
prop.4.3.4 or [22], II, f), we have an isomorphism 

Vu(F,i)* ~Homm^(.F[i],£), 

where: 

- Homfii?V9 denotes the group of homomorphisms preserving the filtrations and 
commuting to Frobenius, 

- is the twisted module denned by F[iY = J71^ and (/^.^ — (f1^3 • 

Using this description, we deduce that Vt/(^r, i) is finite of order ph ([22], Th. 2.4) 
where h = |A| and A is the index set in the definition of a uniform filtered module. 

By [22], II, g) or [78](4.4), if we regard Vu(F,i) as a finite locally constant sheaf 
on (U ®w K)&ti we can glue the local data Vf/(^r, i), for various "small" U (cf. [78] 
3.3.2). There is a unique finite locally constant sheaf V x ^ , i) on X 0w K such that 
the restriction to "small" U is Vu(F, 0- Finally, we define the covariant comparison 
functor V by V(^r) = Vx(F,p — 2) (2 — p), and its contravariant version V* by 
V*(J^) = V(JT)*. 

6.3. Association modulo p for Siegel varieties. — Let us come back to the 
case of Siegel varieties. Let X/z[i/N] be the moduli scheme classifying p.p.a.v. with 
level {/-structure over Z[l/N]. Its toroidal compactification over Z[l/N] is denoted 
by X (for some choice of a smooth GL(Z^)-admissible polyhedral cone decomposition 
of the convex cone of all positive semi-definite symétrie bilinear forms on R9). We 
have Su = X 0Z[I/A/] C. Recall that, to the representation V\/¥p of GFP = G 0 Fp 
of highest weight A, one can associate an etale sheaf V\(FP) resp. V\(k) over X 0 Q 
resp. its extension of scalars to k. One possible construction of this etale sheaf is 
by the theory of the fundamental group: any representation of the arithmetic funda­
mental group 7Ti(X 0 Q,x) on a finite abelian group V gives rise to an etale sheaf 
whose fiber at x is V. Let us consider the structural map / : A —• X 0 Q given by 
the universal principally polarized abelian surface with level structure of type U (we 
assume here U sufficiently deep). The sheaf R}f*ZjpZ is étale. It corresponds to an 
antirepresentation of the fundamental group taking values in G{Z/pZ). Then, com­
posing with the representation Gfp —• GL(V^/pp), we obtain an étale sheaf denoted 
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by V\(FP). Similarly for V\(k), by considering the extension of scalars from ¥p to k: 
Gk - GLk(Vx(k)). 

For any dominant weight A of G, we have thus obtained a V\(FP) of 7lepwp(X<g>K). 
On the other hand, if moreover |A+p| < p— 1, the crystal VA constructed in Section 5.2 
satisfies the conditions of Definition 7 which turn it into an object of MFV^0,P~2^ (X0). 
To verify this, one starts with the standard representation. Consider 

Vx =iî1/.«ï[/X(l0g003/*) 

On Vx (g)e>_(!>x05 the Gauss-Manin connection satisfies Griffiths transversality for the 
Hodge filtration, compatibility to Frobenius and uniformity. A delicate point is to 
verify the strong divisibility condition (section 6.2, definition 7). It follows from the 
degeneracy of the Hodge spectral sequence which is proven in [22], Th. 6.2. As for the 
uniformity condition, it amounts to saying that .R1/^^—o(logoo^o^0) is indeed 
a vector bundle over XQ. 

For general A, we use that VA is a sub-object (and quotient) of a first direct image 
for some Kuga-Sato variety and the fact that MFv^°'p~2\Xo) is an abelian category. 
Note that the objects VA ®e>x (without dualizing) do not belong to this category, 
as their weights don't fit the bound. 

Theorem 8 ([13] Th.6.2(iii)). — V*(VA ®ox 0Xq) = VA(FP), that is, VA(FP) and 
—v 
Vx ®e>x Ox0 are associated 

The proof is given in [13] Th. 6.2(iii). In fact, there, the result is proven only in 
the Qp-coefficients case, but for | A -f p\ < p — 1 the proof is valid word for word in the 
integral context. The key argument is the existence of the minimal compactification 
whose boundary has relative codimension ^ 2. The next section gives more details 
about this. 

6.4. The Comparison Theorem. — We will explain the relative comparison the­
orem Th. 6.2 of Faltings [22] in our particular setting. In fact we merely extend the 
arguments sketched in [13], p. 241. Before going into our situation, we recall the 
method of [22] (we hope that more details will be given by the experts in the future). 

6.4-1- General setting. — Let R be a p-adically complete smooth domain over Zp. 

Let Ro = R®zp Z/pZ its reduction mod. p\ let F be the field of fractions of R\ choose 
an algebraic closure F of F and form R, union of all the normalizations of R in finite 
sub-Galois extensions of F. Put S = R/pR. 

Let / : Y —> Spec(R) be a smooth and proper morphism of schemes of relative 

dimension d < p — 1, Y0 = Y ®zp Z/pZ the special fiber, Y = Y R,YTJ = Y <8>R F, 

Yo = Jo ®R0 S and f0 : Y0 Spec(i?0), 7 : Y Spec(I), Jv : 1% Spec(F), 
/o : YQ —> Spec(S) the corresponding morphisms. We have the following standard 
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diagram: 

dv 3 sd i 

rd f fo 

Yo 

Spec(F) c Spec(#) Spec(S) 

Let Rty(S(l)) = i*Rj*(S(l)) be the "relative complex of p-adic vanishing cycles" 
for the constant sheaf 5(1) = Z/_pZ(l)®5. This object is not explicitely introduced in 
[22], but as explained in [45], we can rewrite the complex computing étale cohomology 
as a complex of vanishing cycles. Then we have a "Kummer" map: 

R*(S(i)) "Yo/Spec( SY 
Taking direct images, we obtain natural maps: 

^70*(^o/Spec(*o)) ®* S — **7o.(«Fo/Spec(S)) < ~ R*7o*,ét№) * R*7n*,ét(S) 

fl*/o.,ét(«*) - R*fv.&(S) — «*/„,et(Z/pZ(l)) ®R s. 
Faltings ([22], page 72, see also recent corrections of the corresponding proof in in­

formal notes by the author) shows that the second arrow is an "almost-isomorphism"; 
wich implies that the modules R* fo*(^Yo/ Spec(R0)) anc* ^*/r/*,et(^/P^(1)) are asso_ 
ciated. 

6.4-2. Setting for Siegel varieties. — The notations are those of section 6.3. Let 
U = Spec(i^) C X be an affine open subset and / : YJJ —• U be the restriction of 
fs : Y = A Xx " - Xx A —> X, where A is the universal abelian variety, we assume 
s < p—1. Let X be the formal completion of X along the special fiber. Let / :Yu —• U 
be the base change of / to the affine formal scheme U = Spf(i?). Over Spec(i?® Qp), 
we have two etales sheaves Rs/*Z/pZ(l) and V*(Rs :/*(̂ y't/®Fp/E/<g>Fp))- As explained 
in the general setting subsection, there is a functorial isomorphism of etales sheaves: 

70*(^o/Spec(*o)) ®* S — **7o.(«Fo/Sp 

over U. By functoriality, these local isomorphisms glue to a global one over X. 
Let X* be the minimal compactification of X over Zp. It is defined in [13] Th. 2.5 

Chapter V. It is projective, normal of finite type; its boundary admits a natural 
stratification whose strata have codimension at least 2 (since we assume g ̂  2). We 
apply Grothendieck's GAGA theorem to deduce that the isomorphism over X between 
the sheaves Rs/*Z/pZ(l) and V*{Rsf*(QYu®¥p/u®Yp)) *s algebraic. More precisely, 
every étale covering of the formal scheme X is defined by an étale finite Oj^-algebra A. 
Since the minimal compactification is normal and has boundary of codimension ^ 2, 
this algebra extends to X* ([33], Cor 5.11.4) and so defines an algebraic étale covering 
of X whose base change to X is A, we deduce an equivalence of sites Xêt — Xét- As 
the morphism / is proper and smooth, the sheaf Rs f*Z/pZ(l) on X is locally constant 
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and so descends to X and gives the sheaf Rsf*Z/pZ(l). By construction, the sheaf 
V*(Rsf*(fi'Yu®Fp/U®Fp)) is also locally constant and also descend to X and gives the 
sheaf V%R°%(&YuJp/u^p)). 

Moreover, as X& — X&t, every formal morphism between Rsf*Z/pZ(l) and 
V*(i?s/*(Hyt/(g)FpyLr(g)Fp)) is algebraic. This shows that Rsf*Z/pZ(l) is associated to 
-R5/*(̂ y®Fp/x<g>Fp) f°r tne association without divisor at infinity and Rsf*Z/pZ(l) is 
associated to Rs f^Q^^ /^c^w 0-°&°°)) f°r the association with divisor at infinity. 

7. Proof of Theorem 1 

7.1. A lemma on modular representations. — Our reference for results used 
in this Section are [12] VIII. 13.2 and [46], II.3. Let T be the standard maximal torus 
in G. One has 

T= {(tl,...,tg,U\X) \U2 =t!---tg} 

The degree 2 covering G —> G025+i induces on T the projection 

(¿1,... , tg, u; x) i—> diag(£i,..., tg^xt'1,..., xt^1, x) 

We view the Weyl group WQ as a subgroup of Gby using permutation matrices in 
a standard way. Let W be the subgroup of WQ consisting in the permutations WB 
(B C [1,#]) acting by tWB — t' where t — (t\,... ,tg,u;x) and t' — (t[,... ,tg,uf;x) 
with t\ — t~x if i G B, t\ — U if i £ B, and u' = u • t^1 where ts = Y\IEB 

Let B = T.N be the Levi decomposition of the standard Borel subgroup B. Recall 
we assumed GO(OJ) for pn. We can assume that pn(Dp) c B(k). Throughout this 
section, we assume that 

(RLI) there exists a split (non necessarily connected) reductive Chevalley subgroup 
H of G/z with W oc f C H, and a subfield k' C k, of order say |fc;| = qf = pf' 
(f ^ 1), so that H{k')u C I m ^ and ~pn{Ip) C H°(k'). Where H{k')u is the subgroup 
of #(£/) consisting in elements whose v belongs to Im^op^. 

Comment. — It has been pointed to us by R. Pink that if H is connected and 
W' ocT C H, then H should contain the derived group of G; then, (RLI) becomes 
in some sense an assumption of genericity for TT and p, but it cannot be verified in a 
single example for g ^ 2, hence our insistance on the possible disconnectedness of H: 
it allows us to show the existence of concrete examples for the theorem. 

Let H° be the neutral component of H over Z. Its semisimple rank is g. Recall 
that in the condition of Galois ordinarity ( G O ) , we introduced an element g G G so 
that 

Pn(Dp) Cg-B{0)-g-1 
Recall the convention (valid since Sect. 3.3) that we omit the conjugation by g, 

thus writing B, N,T instead of g • B • g~l and so on. 
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The subdata (#°, T^BD H°) in (G, T, B) induce an inclusion of the set of roots of 
H° into that of G: C Let = $ Pi Vec£Q(<I>#o) and A' a system of basis 
made of positive simple roots for By [12] VI, n° 1.7, Prop. 24, it can be completed 
into a basis A of $ contained in 3>+. Note that 3>#o is a subsystem of maximal rank 
in Let A ho be the basis of $h? contained in $Jo- A priori, it could be different 
from A' (not in the examples we have in view though). Let 

$ ¿ 0 = { A e I | (A,/3V) = 0 for /3 G $Ho} 

where av denotes the coroot corresponding to a root /3. 
Observe that $ ¿ 0 contains Z • 1/ as a direct summand: 

$ ¿ 0 = © Z • 1/. 

Let X' be the Z-module generated by A7. One has 

X = X'®QJio. 

The irreducible representations of H° over k' (or over any perfect extension of Fp) 
are classified by X'+ x 3>^0. We shall consider certain (absolutely) irreducible repre­
sentations over kf of the abstract group H°(k'). 

Note that by the formula v o pn = • the image of z/ o contains kfxw. 
Let e = (k'x : Im(i/ o p j ) , Note that e is a multiple of sx + 41 

qkls +1 
= (A:,x : k'xw). 

Let 
$ ¿ 0 = (qf - 1) • $¿5? 0 e • Z • v 

It is a finite index lattice in 3>i0 and the kernel of the homomorphism 

X —• Hom(f (*:')«/,k'x), X 1—> A 

coincides with 
(qf - 1) • X' 0 $ ¿ 0 

It results easily from Steinberg's theorem (see Chapter II, Prop. 3.15 and Cor. 3.17 
of [46]) that the irreducible representations of the abstract group H°{k')v are classified 
by 

XHta> = {(v,a) G X'+ x $ i o / * i o I 0 < (v,pw) < q' - 1 for all /3 G A#o} 

For brevity, we call such weights (/-reduced, although the terminology is not con-
formal to that of Jantzen's book Chapter II, Section 3. For \x G Xn,qf, we write W(/jl) 
for the corresponding iJ°-representation and TlHo(fj) C X for its set of weights, 
resp. II#o(/z) C Hom(T(fc/),/c/x) the set of their restrictions to T{k')v. 

Let Wi be the fundamental weights in X of G. We write w = wg for the minuscule 
weight of G; it is the highest weight of the spin representation V/YP of G. Let HQ(ZU) 

resp. UQ(W) the set of weights (resp. of the functions on T(kr) that they induce) 
associated to the spin representation V/fc/ of G. 

Recall that UQ(W) = {ww> \ w' G W'} and that we assumed W oc f C H. 
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Lemma 12. — For p > 5, if W(p) is a simple H®,-module with highest weight ¡1 G 
Xn,qf with w =JL and II#O(//) c HQ(W), then \i — w. 

Remark. — For p = 5, G = Spin(5) and H c G, isomorphic to SL(2) x SL(2) via 
G = Sp(4), ¡1 = 3^2, the lemma is false, hence the necessity of the assumption p > 5. 

Proof. — Since ~p = m, one has [i — w G (qf — 1)X. 
1) Let us first check that ¡1 - w G N fl $ ¿ 0 = $ ¿ 0 . 
Let a e Afjo. We want (p, — w, av) = 0. We start with a preliminary observation: 
For any simple root a G A#O, (zz7,av) G {—1,0,1}. Indeed, this is true for any 

fundamental weight w of G. In particular for our minuscule weight w. 
Then, we distinguish three cases 

- If (TI7,av) = 1, we have (//, av) = 1 because p, is (/'-reduced. 
- If (zu,aw) = 0; let us exclude the possibility (p, av) = </' — 1. Since q' — 1 ^ 1 

we would have /x — a G II#O(/x) as the a-string of /x has length q' — 1. Hence by the 
assumption, we could write p — a = wy + (q' — l)\ iox some y G W and A G X. 

But (my, av) G {-1,0,1}, and (p - a, av) = g' - 3 hence q' - 1 should divide 1,2 
or 3 impossible since q' — 1 > 3. 

- Similarly, if (w, av) = —1, we must exclude (/x, av) = qf — 2. Again p — a e 
NHO(/x),hence/x-a = Sy mod. (<?'-l)X. But (wy,ay) G {-1,0,1} and (p-a,ay) = 
—3mod(^ — 1), hence (#' — 1) should divide 2,3 or 4; impossible since q' — 1 > 4. 

2) Thus, p — zue $ ¿ 0 H AT (actually, it shows that av) ^ 0 for any a G A#O). 
Since the components of w and along ^^Q1 resp. TLv are reduced (mod. q1 — 1) 
resp. mod. e, and that p — zu G $ ¿ 0 , we conclude p — w. The lemma is proven. 

It is the main ingredient in the proof of the following result. 

Lemma 13. — Let a : V = Gal(Q/Q) —• GL^(W) 6e a continuous Galois representa­
tion such that for any g G T, the characteristic polynomial ofpn(g) annihilates o~(g). 
Assume that p — 1 > max(4,tt;); that pn satisfies GO(w) and (RLI), 

then, either W = 0, or the two characters 1 and uj~w restricted to Ip occur as 
subquotients ofW viewed as an Ip-module. 

Comment. — One could naturally ask whether the simpler assumptions that pn is 
absolutely irreducible and for any g G T the characteristic polynomial of pn(g) anni­
hilates a(g) are sufficient to conclude that all constitutents of a are copies of pn. This 
statement is true for g = 1, but, it is false for g = 2. A counterexample has been found 
by J.-P. Serre. He lets T act on through the so-called cuspidal representation of 
the non-split central extension 2^5 of the icosaedral group A§. It is four-dimensional, 
symplectic and absolutely irreducible. Then, (W, a) is one of the two irreducible 2-
dimensional of this group. This is why we introduced (RLI). This assumption is not 
satisfied in the example there. Also, thanks to the ordinarity assumption (GO), we 
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focused our attention on the highest weight of pn (which is a local information at p) 
rather than the global representation pn itself. 

Proof. — Assume W ^ 0; let V be the inverse image by p^ of H(k') in V and T" 
the kernel of pn restricted to V. Then o-(T") is a nilpotent p-group. Thus, replacing 
W by its submodule fixed by cr(r/;), still denoted by W, one can assume that W is a 
non-zero module on which V acts through H(k')v: 

sd 

Pn 

H(k') 

>GLk(W) 

We first treat the case of lj w. Let H° be the neutral component of H. Let 
W = Ind^o^/j^ W. It is an H°(k'r)-module, and for any t E T(k')u, the action of t on 

W is annihilated by \[wew,{X - ww(t)). By Steinberg theorem ([46] Sect II.3.15), 
the space W viewed as H° (k')-module has a subquotient W(p) which comes from 
an algebraic simple H®,-module corresponding to a g'-reduced highest weight p. We 
associate to this representation the sets resp. nM as above. By the assumption 

W C if, one can assume that IiHo(p) C Hq(tzj) and w — ~p (if ~p = for some 
w' £ W, simply replace W(p) by W(pw' 1) which also occurs as -subquotient 
of W). By the previous lemma, for p > 5, we have w = p. Let x be a highest 
weight vector in W(p) for H$p. It is fixed by H n N(k). Since 7P C p~1(i7°(A;)), 
the action of 7P on x is through its image by wg o (p^ mod. A/"). By the assumption 
(GO), and Lemma 3, this character is equal to u"™ on Ip which therefore occurs as a 
subquotient of W|/p. To treat the case of the trivial character, we consider instead of 
the highest weight p by the lowest weight p! of W(p); we can assume that ~p' — 'wW° 
where w$ is the longest element of Wq. Let NHo be the unipotent radical of a Borel 
of H° adapted to (GO). On the lowest weight quotient W(P)nh0 (the vector space 
of Af#o-coinvariants), pn acts by wWo o (pn mod. TV), which is trivial by (3.3.2). QED 

7.2. Deducing Theorem 1 from Theorem 6. — Recall we have fixed A = 
(ap,..., ai; c) with c = ag + • • • 4- CL\ and |A + p\ < p — 1. We have the following 
reduction steps: 

1) By Poincaré duality, and self-duality of the Hecke operators for £ prime to N, 
Statement (i) of Theorem 1 is equivalent to the vanishing of 

Hi(Su,Vx{k))m=0 for q<d 

where • = c, 0. These modules are artinian over Hm, so by Nakayama's lemma, it is 
enough to show that their m-torsion vanishes: 

(7.2.1) Hl(Su, Vx(k))[m] =0 for * = 0 or c and q < d 
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which we will prove below. 
2) Then, Statements ii) and iii) are easy consequences of i) as can be seen by 

induction on q < d using the long exact sequences 

0 — Vx(O) — VxlO) — VxlOlwO) —- 0 

and 
0 — Vxiw-'O/O) —» Vx{K/0) — Vk(if/0) — 0. 

For instance, from the latter, one obtains, with obvious notations: if H%~1(K/(D)m = 0, 
then Hl{w~xO/0)m —> Hq{K/0)m[w] is an isomorphism; hence by Nakayama's 
lemma, assertion one implies that H%(K/(D)m vanishes for q < d. 

Note that since p > JA > ag • • • ^ a\ ^ 0, one knows that V\Fp is absolutely 
irreducible (see for instance Proposition II.3.15, p. 222, of [46]). 

3) As in section 6.3, X/Z[\/N\ LS the moduli scheme classifying p.p.a.v. with level 
N structure over Z[l/N). Its toroidal compactification over Z[l/N] is denoted by X. 
Let V\(Fp) resp. V\(k) be the étale sheaf over X®Q in Fp- resp. k-vector space corre­
sponding to VA Fp • Using the etale-Betti comparison isomorphism (and its equivariance 
for algebraic correspondences), Theorem 1 will be proven if we show the vanishing of 
the etale cohomology groups corresponding to (7.2.1). 

This interpretation as étale cohomology allows us to view Hi(Su,V\(Fp)) as a 
Fp[Gal(Q/Q)] x WK-module: 

H>(X, Vx(Fp)) *é Hl^X ® Q, Vx{Fp)). 

Remark. — The Fp-coefficients are useful to apply Fontaine-Laffaille and Faltings 
theory, while the ^-coefficients will come in when we localize at the maximal ideal m 
olHK{P). 

Let v\ be the object of MF^t^0,P~2\XQ) associated to A as in Section 6.3. Recall 
that Vx has a filtration of length |A|; since d + |A| < p — 1 and since VA and VA(FP)V 

are associated (Theorem 8 above, section 6.3), we can apply Th. 5.3 of [22] (see 
Theorem 7, Section 6.1), so that for any j ^ 0: 

HÌt(X®Qp,Vx(Fp)f 

is the image by the Fontaine functor V* of 

70*(^o/Spec(*o)) ®* S 

Note that since we work mod. p instead of mod. pn, we have 

#L-crvs,*(* ® *V> VAV) = H*JX ® F„, VAV) 

We have constructed in Section 5.3.4 a filtered complex of coherent sheaves tC\ on 
X ® Fp by functoriality from the B G G resolution of the GFp-module Vx¥p. It follows 
from Theorem 6 that there are isomorphisms of filtered Fp-vector spaces: 

Hl.. (X <» F„. vy i s я-7 i l w F « . /с; Ì 
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and 
KK-<m,c(X ® FP, Va) ^ H'(X ® Fp, /CAsub) 

where /Ĉ  resp. /Ĉ sub denotes the canonical, resp. subcanonical Mumford extension 
of the filtered complex of sheaves K\. The resulting filtration on the right-hand side is 
called the F-filtration; it corresponds via these isomorphisms to the Hodge filtration 
on the left-hand side. The weights of this filtration can be computed as in [72] (who 
treats the case g = 2): Let us consider the map 

WG —• Z, w .—• p(w) = -(w(\ + p)(H) - p(H)) 

where H = diag(0,..., 0, - 1 , . . . , -1) . Let WM be the Weyl group of the Levi sub­
group M of the Siegel parabolic. Observe that this map factors through the quotient 
WM\WG; this quotient is in bijection with the set WM (cf. p. 229 of [13]). By Theo­
rem 6, Sect. 5.4, we have 

w-^\x®wp,w 
wewM 
p(w)=p 

£(w)<j-p 

w-^\x®wp,wl{x+p)_p) 

Note that, unfortunately, p is not a good notation for the degre of our Hodge filtration. 
The image p(Wc) of p is therefore the set of possible weights occuring in î rys,* for 
j < d. Moreover, p is injective on WM\WG, and its values are exactly the js (B C A). 
The set of possible lengthes £(w), w e WM is [0,d]. For each j < d, let us consider 
the set WM(j) = {w e WM \ £(w) ^ j}; the key observation is that for j < d, 
WM(j) does not contain the unique element w G WM such that £(w) — d, namely 
the one acting by (ag,..., oi; c) (—ag,..., —a\\c). But this element is the unique 
one for which p(w) takes on its maximal value: JA- Hence, this maximal weight does 
not occur in H? dR^(X (8) Fp, V%) for j < d. 

On the other hand, under assumptions (Gal) and (GO), pn is ordinary with 
weights given by JB for all subsets B C A] in particular JA and 0 indeed occur with 
multiplicity one; actually, even if we replaced (GO) by geometric ordinarity, it would 
result from lemma 3, Sect. 3.3, that 0 and JA do occur in pn). Now, consider the global 
Galois representation crJ on Wj = i/*(X(g)Q, V\(A;))[m], the kernel of m in the module 
Hi(X ®Q,V\(k)). The Eichler-Shimura relations imply for any g G Gal(Q/Q), the 
characteristic polynomial oip7r(g) annihilates cr^(g). Our lemma 13 Sect. 7.1, shows, 
assuming (RLI), that this implies that Wj admits p^ as subquotient. This is a 
contradiction since the maximal weight JA occurs in pn\ip but not in W |̂jp. 

7.3. Examples. — Let F be a real quadratic field with Galois group {l,cr}. Let 
Tp = Gal(Q/F). Let / be a holomorphic Hilbert cusp form for GL(2)/Jp of weight 
(fci,fca), ki,ka ^ 2, k\ = kG -j- 2m for an integer m > 1. Assume it is a new form 
of conductor n which is eigen for Hecke operators Tv (v prime to n); denote by av 
the corresponding eigenvalues. Since the weight of / is not parallel, / does not come 
from Q. Let fa be the inner conjugate of / by a. Let e be the finite order part of its 
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central character. We assume that e factors through the norm map. Starting from 
[90], a series of works have established that / admits a holomorphic theta lift n to 
G(A) where G = GSp(4) (see [63] and [64]). Since / does not come from Q, n is 
cuspidal; moreover, in [64], B. Roberts explained to us that in particular such a theta 
lift 7r is stable at oo. The published reference for this fact is [65]. It occurs in the 
H3 of a Siegel variety of some level, say TV, with coefficient system of highest weight 
A = (a, 6; c) where a = ka m — 3, b = m — 1, and c = a + b. At the moment, the 
level N of IT can only be said to be multiple of N(xi)DF where Dp is the discriminant 
of F; N(xx)DF should be the conductor of 7r, but this can not yet be established in 
general. 

Let Q(/) = Q[av]v be the number field generated by the eigenvalues of / ; one can 
take Q(/) as field of definition of TT (although this may not be the smallest possible 
one, as pointed out by Prof. Yoshida). For any prime p/ of Q(/) prime to n, the 
p/-adic Galois representation associated to ir exists; it is given by 

(7.3.1) Ptt = Ind0 pf 

it is absolutely irreducible. The conductor of pn is Norm(n) • Dp', this results from the 
fact that n is also the (prime-to-p part of the) conductor of pf by Carayol's theorem. 

Indeed, TT is motivic: by Theorem 2.5.1 of [10], for any imaginary quadratic field FF, 
there exists a motive M^F> defined over F-F', of rank 2 over some extension Q(/, F') 
of F' - Q(/); the motives Mf^p' are "associated to /": they give rise to a compatible 
system of A-adic representations of IV, which is associated to / . Its Hodge-Tate 
weights are 0 and k\ — 1 above Id^/, and m and m + ka — 1 above a ® Idp'> 

Remark. — In fact there should exist Mf defined over Q, of rank 2 over Q(/), asso­
ciated to / in the above sense. 

Then we consider for each imaginary quadratic F' 

(7.3.2) M*- f/ = Res™F Mf T?> 

MK,F' is defined over F\ of rank 4 over Q(/, F ' ) ; it is pure of weight w = k\ — 1 and 
the four Hodge-Tate weights 0<m<m-\-ka — 1 < ki — 1 do occur. These motives 
define a compatible system of degree 4 A-adic representations of T, associated to TT. 

Remark. — Similarly, there should exist MN defined over Q, of rank 4 over Q(/) with 
those Hodge-Tate weights, associated to n. 

In the CM case, we restrict our attention to the situation where / is a theta 
series coming from a biquadratic extension M = EF/F, E imaginary quadratic. Let 
Gal(£/Q) = {l ,r}, Gal(F/Q) = {1,<J} and Gal(M/Q) = {l ,a , r ,ar} . We write 
/ = 6(4>) where 0 is a Hecke character of infinity type n\ + naa + naTar + nTr G 
N[Gal(EF/Q)], such that 

(*) ni +nT =na + nar and ni > na > naT > nT 
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and of conductor f prime to p in M. In that case, one has a = na—nr—2, b — u\—nG—\ 
and с = ri\ + пт — 3; indeed, since nT = (с — a — b)/2, we see that the condition nT = 0 
is equivalent to с = a + 6, in which case one has ni = tu, na = fe^ — 1 + ra, nar = ra 
(and nr = 0). We assume in fact in the sequel a condition slightly stronger than (*), 
namely: 

(**) ф(1+тН1-а) = г and ni > па > пат > пт 

Under these assumptions, we say that / is of (2,2)-CM type. 

Remark. — If (*) is satisfied for a character 0, then (**) is satisfied for <j>hi where hf 
denotes the ray-class number of EF of conductor f. 

Let Of be the ring of integers of Q(/). For a suitable finite set of primes S of 
Of disjoint of the prime divisors of n, the localization S~xOf is principal. In this 
principal ring, we choose for each prime v prime to n a generator {v}. Let I — If be 
the ring generated by the normalized eigenvalues a® = {v}~m'<T -av (v prime to n) of / 
in Q(/). The a^'s are eigenvalues for the divided Hecke operators To(v) = {v}-™'* - Tv 
as introduced by Hida in the beginning of Sect.3 of [40]. By Th. 4.11 of [40], these 
eigenvalues are still integral. 

Let p be a rational prime. We assume hereafter that p splits in F, say, P-OF = Q-QA, 
Q / QCT, and that {Q, QC} H S = 0. We fix ip : Q(f) <̂> K c Qp, a p-adic embedding, 
and pf the prime of I associated to LP. 

Recall that by a Theorem of Wiles (Th. 2.2.2 of [88]) and a Proposition of Hida 
(Prop. 2.3 of [41]), if 

oràp(tp(a0)) = 0 resp. огар(ср(а0*)) = 0 
(that is, ordp(¿p(aq)) = 0 resp. ordp(¿p(aq<7)) = ra), then, the decomposition group 
DQ c TF at Q preserving ip is sent by p/,p/? resp. Pfaipf to a Borel subgroup of GL(2); 
moreover, p/,p/ resp. p/<r,p/ restricted to the inertia subgroup Iq has a 1-dimensional 
unramified quotient. 

We put kf = I/pf. Let J be the subring generated by the (av,av<r) in Q(/) x Q(/). 
For p prime to the index of I in its normalization, and of J in its normalisation, we 
can view p^^f \F = (pf,Pfa) as taking values in GL(2,IPf) x GL(2,IPf). Let X C k,x 
be the subgroup generated by the reduction of Nvhl_1 • e(v) for all finite places v 
prime to np. Let 

П° = {(g,gf) e GL2(k') x GL2(A/) | det^ = detg' G X} 

the two factors being exchanged by <r, and 

H = il,cr) oc H 
Similarly, let HCM be the image by the spin representation of 

{g e f(kf) oc W I via) e x}. 
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Proposition 5. — For f as above and k\ > ka > 2, with Nebentypus of order at 
most 2, there exists a (non-effective) finite set S of finite places in Q(f) such that, 
for any p ф S, splitting in F, for which a pf\p is ordinary for f and fa, the image of 
p7r?P/ : Г —• GLfc/(V) is equal to: 

-ft, if f ^ not CM, 
- contains a subgroup of Нем of index at most gcd(p—l,ni-na) if f is of (2,2)-CM 

type. 
Comment. — Let H the subgroup of G whose image by the spin representation is 
L(Res^ GL(2)) (in the non-CM case) resp. L(ResQ Mx) in the (2,2)-CM case. Then, 
in both cases, the image of W is the group of type (2,2) generated by 

1 
- 1 

1 
- 1 

and 

1\ 
1 

- 1 
, - 1 

Thus, by the previous proposition, the assumption (RLI) of sect 7.1, is satisfied for H. 
Proof. — Assume first that / has no CM. We follow the method of proof of Ribet's 
thesis [62]. More precisely, we apply Th. 3.1 of [62]. We change its statement by 
replacing Fp-1 there by our subgroup X; since X C F*, the proof of Th. 3.1 runs 
identically. Let G = Imp^ p/|jp. In order to apply Th. 3.1 as in Th. 5.1 and 6.1 of 
[62], we have to check 

(a) For almost all p splitting in F and ordinary as above, PfiPf and PfaiPf act 
irreducibly on k'2 and their images have order divisible by p, 

(b) For almost all p as above, there exists 7 G G such that (TV 7)2 generates k' xk'. 
(a) If pf is reducible, we have 

qd = Xi * 
О у о . 

mod. p. 

Let us define a global character ф of conductor dividing n • p by 
70*(^o/Spec(*o)) ®* S 

Let resp. be the restriction of to Iq resp. to Iq<r. By the ordinarity of pf at 
q and qa, we see that tpq = 1 or u;2(fcl-1) and q̂<r = u2rn or a;2(fei-i)-2m> ^et e be a 
fundamental unit of F. Consider the numbers 

62m-<r _ ^ 6[2(fci-l)-2m]-<r _ ^ €2(fci-l)+2m-<r _ ^ e2(fci-l)+[2(fei-l)-2m]-a _ ̂ , 

If q is prime to these numbers, we see by global class-field theory that the global 
character ip cannot exist. 

Remark. — This reflects the fact that no congruence between / and an Eisenstein 
series can occur, as there are no non-zero Eisenstein series with non-parallel weight. 
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To assure that p divides the order of Impy, one proceeds as in Lemma 5.3 of [62] 
to exclude all entries of the list of prime-to-p order subgroups in GL2(A/). The cases 
to exclude are 

- Case (i) is when the image in PGL(2) is abelian, 
- Case (ii) is when it is dihedral, 
- Case (iii) means the projective image is A4, S4 or A5. 
We have to modify the proof in case (ii) as follows. Since pf is totally odd, we 

would obtain a totally imaginary quadratic extension M/F, of relative Galois group 
say, {l , r} , and a ray-class group character A : OMJ-P —• F* (for some ideal f of 

M) such that Pf = lndF Agal, with NormM/F(f)Z)M/F|n • p. One can lift A into a 
Hecke character A of M of type adapted to k, so that the theta series 0(A) belongs to 
Mfc(r0(n- .p,e) and 

(C) / = 0(A) mod. p 

here again, we use the ordinarity of / at p: 

- first, if DMfF is divisible by q or q°", 0(A) cannot be ordinary at q (because k\ 
and ka are greater than 1); therefore the field M can only ramify above n: this leaves 
a finite set of possibilities for M. 

- Moreover, by Hida's p-stabilization lemma (Lemma 7.1 of Bull. SMF 1995), since 
hi and ka are greater than 2 (that is, the cohomological weight (k\ — 2, ka — 2) is 
regular), the congruence (C) can only occur if A has conductor prime to p. 

In conclusion, consider the finite set G of rational primes p dividing one of the con­
gruence numbers C(0(A')) for some Hecke character A' of a CM field M, such that 
A' has the right infinity type, and the conductor f of A' and the discriminant DM/F 
satisfy 

Norm(j)DM/F divides n. 
Then for p £ O, case (ii) does not occur. 

Remark. — Note that these congruence numbers should be given as the algebraic part 
of the special value of the Hecke L-function LM{X'\^t\ k). This is the hypothetical 
converse of a general divisibility result of Hida-T. (Ann. Sci. ENS 1993). It is known 
at the moment only for F = Q (Hida Inv. 64, 1981), but it is conjectured for any 
totally real field F. 

To treat case (iii), we follow closely the argument on p. 264 of [62]: if there were 
infinitely many p satisfying case (iii), then by using Cebotarev density theorem, one 
would find a set of positive density of v's satisfying a\ = 4 • Nv1*1'1. Since k\ is odd, 
this condition implies that v ramifies in Q(f) or is degree 2 over Q. This set has 
density zero in F. This is a contradiction. Thus, the set of p's in case (iii) must be 
finite. 

ASTÉRISQUE 280 



COHOMOLOGY OF SIEGEL VARIETIES 61 

(b) As in [62], we proceed in two steps: 
1) We establish the equality G = H° for some prime p/, 
2) We deduce from 1) the existence of 7 G G as desired for almost all ordinary p's 

splitting in F. 

Let p a rational prime, p\p in Q dividing pf and q. We assume that it satisfies (a), 
that it splits completely in Q ( / ) and that / and fa are ordinary at q. We assume 
furthermore that for any quadratic Dirichlet character \ mod. n, there exists v prime 
to Norm(n) such that av ^ x(v) ' av° mod. pf. 

These conditions are satisfied if pf is prime to all congruence numbers for all pairs 
f,fa®X (f°r the Hecke algebra of level Norm(n)2, generated by Hecke operators 
outside Norm(n)); indeed the eigensystems of / and the fa (g) x, for any \ mod. n are 
mutually distinct. Indeed, if av = av<?x(v)i for almost all t>s, then x descends to Q. 
It defines a quadratic extension F'/Q. Let E = F Ff. Let /e be the base change of 
/ to E. If r generates Gal(F'/Q), the weight of fE is h(l + r) + ka(a + err). The 
assumption implies that Je — UO)e = (/E)<T; hence fE should descend to F'. This is 
absurd since its weight is not invariant by G&\(E/F) = {l,cr}. So these congruence 
numbers are not zero, and thus can be avoided. 

Claim. — For such p, G = H°. 

Proof. — If, not, Th. 3.8 of [62] (or rather, its proof) implies that there exists a 
quadratic character x of conductor dividing n • p such that 

Pf ~ Pfa ® X-

This implies first av = x(v)'av° mod. p for all f's prime to Norm(n)p. Moreover, by 
ordinarity of the Galois representations at p (existence of an unramified line), it also 
implies that x ls unramified at p. Since x 1S unramified at p, this is a contradiction 
by the choice of p. 

In fact, for p as above and splitting totally in Q ( / ) , we even have as in Lemma 5.4 
of [62], a stronger result: 

Let 
W° = {(9,9') G GL2(J/p/) x GL2(I/pI);det(g) = det(g') G X} 

and 
G = Im(Gal(F/F) —• H° 

Then, 

(*) G = W°. 

2) Let po be a prime satisfying the conditions of 1 and splitting totally in Q ( / ) , so 
that (*) holds. There exists x G Ti such that Tr(x)2 generates I/pol x I/PQI over 
¥po. Therefore, by Cebotarev density theorem, there are infinitely many finite places 
v such that the image of (a2,a2CT) G / x / in I/pol x I/pol generates this ring. For 
any such v, by Nakayama's lemma, (a2, a2CT) generates the ring 7(Po) x 1^ over Z(Po), 
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hence Q(/) x Q(f) over Q. Fix such a v\ let J = 7[(a^,a^)]; it is of finite index in 
I x I. for any prime p not dividing the index of J in / x J, we put 7 = pnp(Fiv)] it 
belongs to G and Tr(7)2 generates k' x k' over ¥p (for k' = I/p). For those p's, we 
conclude that G = H°. QED. 

Remark. — Simplifications of this proof and sharper bounds for the prime p can be 
found in Dimitrov's thesis [19]. 

In the (2,2)-CM case, let / = #(</>). For any p and any p-adic field K (with valuation 
ring O and residue field k) containing the field Q(0) of values of 0, we still denote 
by (f> = 0gal : Gal(M/M) —> Kx the p-adic Galois avatar of the Hecke character </>. 
Thus, we have 

pw =lnd#(0). 
Let T C G = GSp4 C GL(4) be the standard torus of G; the homomorphism ip : 
Gal(M/M) -> GL4(0) given by ^ = diag(0, </>CT, </>ar, (f)T) takes values in T(0) by 
(**). We have P^\M — ip- Let be the ring of integers of Q(</>); denote by kf the 
subfield of k = 0/(w) image of 1$ by the reduction map 0 —> fc. 

We claim that for almost all p's which split totally in M, the image ^ of ^ contains 
a subgroup of index ^ n\ • na of A = {t £ T(kf) \ v{t) G X}. 

Observe that \I> C A and z^(^) = ^(^4). Moreover, since the conductor f of (j) is 
prime to p, we see by class-field theory that the restriction of xp to the compositum 
of inertia subgroups above p contains all diag(ani, bn<T, ani • b~n<T, 1) with a,b e kfx. 
Since k'x is cyclic, we conclude. QED 

Remark. — Note that in the (2,2)-CM case, p is ordinary for / and fa at p if and 
only if p splits in M = E • F. 

Corollary 2. — If p £ S, splits in F, is ordinary for f and fa (at some p/|p^, and is 
greater than max(5,ii? + 1), (7r,p) satisfies all the assumptions of Theorems 1 and 2. 

Calculations communicated to us by H. Yoshida [91] establish that the unique 
level one Hilbert cusp form over F = Q(y/S) of weight (14,2) (hence m = 6) admits 
a non-zero cuspidal theta lift TT which is a classical holomorphic Siegel cusp form of 
level 5 and weight 8 (that is, a — b = 5, c = 10). The motive associated to TT is rank 
four with Hodge weights 0,6,7,13. 

- The field Q(/) is equal to F and the order / / is maximal. 
- The prime 31 is greater than the motivic weight w = 13; 
- it splits in F: 

(31) = pp', p = 
<13 + 3V5\ 

2 
- p is ordinary for / and /a, 
- the image # of 7L. is equal to 

{1,(7} a {(g,g') G GL2(F3i) x GL2(F3i) | detg = detg' G (F^)13}. 
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The verification of this last point uses Th. 3.1 of [62]; the main points are 

- to show, for F3i = If/p that: 

yf = Impf = {ge GL(2,F3i) | det <? G (Fĝ )13}. 

Indeed, ^ / contains a unipotent element: consider the degree 2 prime A = (3) 
in F; the number a2 — 47V(A)2 has order one at p. By [68] Lemma 1, this ensures the 
existence of a unipotent element. is not contained in a Borel: there is a prime q 
above 11 such that pj(Frq) is elliptic. 

- To find a 7 G # such that Tr(7)2 generates ///(31) over F31. Take for that the 
prime q above 11 as above and 

7 = (pf(Frq),pf(Frq*) G GL2(F3i) x GL2(F3i). 

One has Tr(7)2 = (28,1) G F31 x F31, which generates F31 x F31 over F31. 

This provides therefore an explicit example of a couple (ir,p) satisfying all our 
assumptions. Other potential examples for the same F and / are p = 19,29; indeed, 
they satisfy all the conditions above, except that non-trivial unipotent elements have 
not been found in the limit of the calculations of a2 — 47V(A)2 (namely, A dividing at 
most 31). 

Yoshida [91] also found that for F = Q(>/l3), the unique level one Hilbert cusp 
form of weight (10,2) lifts to a nonzero holomorphic scalar-valued Siegel cuspform 
of level 13, weight (6,6) (a = b = 3) with Q ( / ) = F, and If maximal. The rank 4 
motive associated to TT has Hodge weights 0,4,5,9. The primes p = 17 and 29 are 
greater than iv = 9, split in F\ they are ordinary for / and fa. The image of Galois 
contains {{x,y) G ¥P2 x ¥P2 \ N(x) = N(y) G F^} oc {l,cr}. However, in the limit of 
the calculations (A dividing at most 61) no unipotent has been found in the image for 
those primes. It would be interesting to find examples of cusp forms / of the minimal 
possible weight, namely (4,2). The theta lift n would then occur in middle degree 
cohomology with constant coefficients: a = b = 0, and the Hodge-Tate weights of p^ 
would be 0,1,2,3. 

8. Proof of Theorem 2 

The main tool in the proof of Th. 2 is the minimal compactification j : X ^ X* 
(see 8.1 below). This compactification is far from being smooth (for g > 1), but 
it has some advantages over toroidal compactifications; namely, the strata have a 
very simple combinatoric and, as a consequence, the Hecke correspondences extend 
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canonically to the boundary. Let us consider the long exact sequence of the boundary: 

••• HHSu,Vx(0)) Hd{Su,Vx(0)) H§(Su,Vx(0)) ••• 

... Htt(X*j,Vx(0))- Hit(X±,Rj*Vx(0))- Hft(dX±,Rj*Vx(0)) ... 

In this section, we shall repeatedly use the standard spectral sequence for an etale 
sheaf T on X*, and a diagram j : X ^ X* : i 

H'(YJ*R'nT) =• H'(Y,uRnF). 

It will allow us to study (localization at m of) H*(Y,i*Rmj^J7), rather than the hy­
per cohomology of the complex i^Rj^J7). 

We will thus be left with the study of the Galois action on the boundary cohomology 
group 

Hlt{dXiR-j*Vx{0)) 

in order to show that its localization at m vanishes. First, let us recall the description 
of XQ and the form of the spectral sequence attached to its stratification. 

8.1. The minimal compactification. — The arithmetical minimal compactifica­
tion X* = X* of X = XG is defined in non-adelic terms in Th. 2.3 of Chapter V of 
[13]. It is a normal projective scheme over Z[l/N]. We are only interested in the 
generic fiber XQ = X* <g> Q. In this setting, an adelic definition can be found in [58] 
or [59] Sect. 3 for a general reductive group G; let us describe the strata adelically for 
G = GSp(2#). We need some notations. For r = 1,. . . , let Pr = Mr -Upr be the 
standard maximal parabolic of G associated to the simple root ap_r+i (see Sect. 3.2.2). 
Its Levi group Mr is isomorphic to GL(r) x GSp(2# — 2r) (recall that GSp(O) = Gm 
by convention). We decompose it accordingly into a product of group schemes over Z: 
Mr = Mrt£ x Mr^hi where the index £, resp. ft, denotes the linear, resp. hermitian part 
of Mr. Thus, Mrih — GSp(2g — 2r) admits a Shimura variety, which is a Siegel variety 
of genus g — r, while Mr^ does not. Let Kr : Pr —* Mr = Pr/Upr and let Pr^ be 
the inverse image of Mr^ by nr. Let KT^ be the standard maximal compact times 
center in Mr^(R), and Zg-r = Mrih{№)/Krih be the Siegel space of genus g — r (it 
has two connected components Zf_r)\ then the compactified symmetric space can 
be described set-theoretically as: 

qs= 
9 

r=0 
G(Q) xF"«> Zg-r 

therefore, 
St, = G(Q)\Z; x G(kf)/U. 
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For any subgroup Vr C Pr(A), let us denote by Vrih its projection to Mr^(A) = 
Pr(A)/Mr^(A) • Upr(A). Then, by simple manipulations we obtain 

(8.1.1) S*u = 
9 

r=0 x 
bg-r,xUr,h 

where 

- x runs over the finite set Pr(Q)Pr>/l(A/)\G(A/)/i7, and x denotes an arbitrary 
representative of x in G(A/); for later use, we may and do choose x so that its p-
component xp is trivial; 

- we have put xUr = x • U • x~x fl Pr(A), 
- we have 

Sg-r*ur = Mrìh(Q)\Mrìh(A)/xUrìh = Mr,h(Q)\Zg-r x Mr,h(Af)/xUr,h. 

Note that the disjoint union is set-theoretic, not topological; see below though. 
For each x, a standard application of ths Strong Approximation Theorem shows 

that the connected components of Sg-rxUrh are indexed by a system {ra/?/J of rep­
resentatives in Mr,h(Af) of the (finite) set of double cosets Mr^(Q)\Mrj/l(A)/xUr,h • 
Mr^(R)+, where Mr?^(R)+ denotes the subgroup of Mr^(R) of elements with pos­
itive similitude factor. Recall that we have assumed that U is good; the condition 
v(U) = Zx implies that for any r ^ 1, the set Mr,h(Q)\Mr,h(A)/xUr,h • Mr?/l(M)+ has 
only one element. That is, Sg-rxUrh is connected. 

Let 

TMrh(x) = Mrih(Q) H (xUr,h x Mr JM)+), 

then, we have a canonical identification 

Sg-RXU - ^Mr,h(x)\Z+_r 

this is a Siegel variety of genus g — r. 
By [58] Sect. 12.3, the decomposition (8.1.1) of into locally closed subsets canon-

ically descends to Q into a stratification of XX. We have 

dxx = x1u-.-uxa 

where the stratum Xr is defined over Q. Actually, 

(8.1.2) Xr — 
X 

Xf^x 

with x E P(Q)Pr,h{Af)\G(Af)/U and where Xr^x is the canonical descent to Q of 
Sg-r,xur,h- (8.1.2) is a disjoint union in the Zariski topology. 

Recall For the Zariski topology of X*, one has Xi D Xj for i < j and 

Xi — Xi+i — Xi. 
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8.2. Spectral sequence associated to the stratification. — To the stratifica­
tion 8Xq = X\ D • • • Xg D Xg+i = 0 is associated a spectral sequence in Betti or 
etale cohomology 

(8.2.1) ET1'" = Hr1+q(Xp - Xp+1,k;Rj.Vx(k)) =*• H*-x+*(dX%,Rj*Vx(h)) 

where kr : Xr dX* denotes the locally closed embedding of Xr = Xr — Xr+i. 
It is compatible with algebraic correspondences preserving the stratification. It is 
mentioned as a remark in Milne, Etale Coh. Chap. Ill, Remark 1.30. We don't know 
a complete reference for it, hence we sketch the proof: Given a stratification on a 
scheme F, by closed subsets Y = Yq D Y\ D • • • D Fn+i = 0, given a complex 
of etale sheaves V on Y with constn ctible cohomology, we consider for p < q the 
open immersion jpq : YP — YQ YP and the closed immersion ipq : YQ YP. Let 
Vp = iopV; we have Vq = ipqVp for any p < q. We have short exact sequences 

0 > jpq,\Vp\Yp-Yq > Vp > ipq^lqVp > 0 
This yields a stratification on the complex V: 

0 C j0l!(V|y_yi) C j02!(V|y_y2) C ••• C jop\(V\Y-Yp) C • • • V. 
Note that for any p ^ 1: 

J0p\(y\Y-Yp)/,J0,p-l!(V|y_yp_1) = Z0,p-l*jp-l,p!Vp_i|yp_1_yp, 
hence, 

mr1'9 = HrL+Q{YP-, - YP, (IS.P-iV)|yf)_1-yJ,) 
as desired. 

Let us apply this sequence to our stratification. We have for any r ^ 1: 

xr — xr+\ = | |XRJIC. 
X 

So, 

(8.2.2) E[-u' = ®Hrc-1+s(Xr!X,Rj*Vx(k)\XrJ. 
X 

By the standard spectral sequence 

Hl{Xr^R*3*Vx{k)\Xr,m) =* HXXrtX,Rj*Vx(k)\xrtK). 
We are left with the study of R'j*Vx(k) = gr* Rj*Vx(k). 

8.3. The restriction of the higher direct image sheaf to the strata. — It 
is easy to determine the restriction mentioned above on the analytic site (in Betti 
cohomology). The details are in [35] Sect. 2.2.5. One finds that the sheaf R*j*V\(k) 
restricted to the stratum Sg-rxUrh is the locally constant sheaf on Sg-rxUrh associ­
ated to the RMr)/l(^)-module: 

H'(TMr<t(x),H'(TUPr(x),Vx(k))) 

ASTÉRISQUE 280 



COHOMOLOGY OF SIEGEL VARIETIES 67 

where 
TMre(x) = Mrtt(Q) n (xUr,i x Mr,i(R)), for xUr,i = Kr{xU) H Mr,*(A,) 

and 
TUPr (x) = £/Pr(Q) H (XU H Upr(Af) x £/Pr(R)). 

The main result of [59] is that, replacing the Betti site by the etale site, this result 
remains true. More precisely, by Th. (5.3.1) of [59], the sheaf R*j*V\(Fp) over X*Q 
restricted to Xr^x /Q is obtained by canonical construction from the representation of 
Mr,h ® Fp on 

H\TMr^x),H*(TUPr(x),Vx(Fp))). 
(and similarly for k instead of Fp). We then mention a mod. p version of Kostant 
decomposition theorem. Recall we have chosen the representatives x G G(A/) so that 
xp = 1. This implies in particular that TuPr (x) is dense in Upr(Zp). For any reductive 
subgroup M c G , and any (M, B D M)-dominant weight p of T fi M, let VM,n be the 
Weyl Zp-module of highest weight p for M. 
Lemma 14. — Assuming p — 1 > |A + p\, then, for any r ^ 1, the semisimplification 
of the FPFMR (x)-module 

H\TUpr(x),Vx(¥p)) 
is an Mr(Fp)-module whose decomposition into irreducible Mr-modules is given by: 

H«(TUPr(x),Vx(Fp))ss = 0 VMr,™"(A+P)-p 
w"ewPr 
£(w")=q 

Proof. — Over Qp, the module itself is semisimple and the decomposition is given by 
Kostant's theorem. By Theorem C of [61], for p as stated, 

H'(rUPr(x),Vx(Zp)) 
is torsion-free. Therefore H'(TuPr (x), V\(ZP)) is a stable lattice in 

H'(rUPr(x),Vx(Qp)) 
Then, the determination of its composition factors as Zp[Mr(Fp)]-module, for p as 
stated, is the content of Cor. 3.8 of [61]. 

Recall that Mr = Mrj x Mr,h. Let Tt = TnMrj and Th = TnMry, note that T£ 
consists in the t G T of the form 

diag(£5,... ,^_r+i, 1 . . . , l,£~^r+1,.. • ^i"1), 
while the maximal torus Th of MTih consists in the elements 

t = diag(tp,... ,*i,i/-^1,--- iVtg1)) GT 
such that tg = • • • = tg-r+i = 1. For p,w» = w" (A + p) — p G X* (T), we denote the re­
strictions to Ti resp. Th by /x^v = pw» \T£, and /x^",̂  = pw" \TH\ since /x "̂ is dominant 
for (M,BnM),x + 1 resp.x dms is dominant for (Me,Br)Me), resp. (Mh,BnMh). 
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By Theorem 1 of [61], it follows from p — 1 > |A + p\, that the irreducible Mr/Zp-
module VMr,iiw» can De decomposed as a tensor product of irreducible Zp-modules 
over Mrj resp. MTy. 

VMr,/j,w» — VMr,h,Vw",h ® VMr,e,Vw",e' 

Therefore, as M^-module, we have 

(8.3.1) H'(TMr e (x), ff-(IW (x), V\(FP)) 

sd 
W"ewpr 

H* (YMrA (x), VMrt£ ,»w„tt ) ® VMR,H ILÀW„TH • 

Thus, the étale sheaf on Xr^x /Q associated to this representation of Mr^ is 

(8.3.2) 
w"ewpr 

H*{TMrA{x),VMR^WF>^ 59 VMriK,nv„Arp) 

In particular, the Galois action on the étale cohomology over Xr^x <g> Q of this sheaf 
arises only from the second factors of each summand. 

8.4. "Hodge-Tate weights" of the JS'i-terms. — Recall that xp = 1, hence xUr^ 
is of level prime to p, so that XT}X has good reduction at p. For each r ^ 1, and each 
w" G WPr, let us determine the Hodge filtration of the crystalline representations 

H*c(Xr,x®Qp,VMrM,!h(Fp)). 

We have dimXr^x = dr = (g — r)(g — r + l)/2. Since dr + < V — 1, Faltings' 
comparison Th. 5.3 of [22] applies. Again, as in Sect. 7.2, one determines the weights 
using the modulo p BGG complex (quasi-isomorphic to de Rham by Cor. 1 to Th. 6). 
Let Q{Gg-r) be the Siegel parabolic of Gg-r = Mr^ and M(Gg-r) its standard Levi 
subgroup. The weights are given by 

-(w'([iw» + ph) - ph){Hh) = -w'{w"{\ + p)- p + ph)~ Ph){Hh) 

where w' G WQ^9 R\ By the description of Th given above, we see that Hh = H 
and w'(—p + ph) = —p + ph, hence, the weights are 

(8.3.1) p(w) = —(w(X + p) — p)(H) for= w' o w" 

Claim. — For r > 1 and w" G WPr, let 

Wn(u)") = iw G WQ I w — w' o w", for vJ W M(Gg_r)n 
Gg—r 

Then, the function WG(W") —> N, w i—> p(w) cannot take both values 0 and 

ASTÉRISQUE 280 



COHOMOLOGY OF SIEGEL VARIETIES 69 

Proof. — As already observed, the function w i—• p(w) factors through Wm\Wg- We 
see that p(w) = 0 if and only if w E Wm and p(w) = w if and only if w G Wmwo 
where wo is the longest length element of Wg- Recall that p(w) = jb = YlieB(ai + 0 
where B denotes the subset of [l,g] corresponding to the {±lp-component of the 
Weyl group as in Sect. 2.3.1. The point is to verify that \p(w'w) - p(w)\ < w for 
W' ^ WQ^GR9~R\ We have the compatible identifications 

wG = eg oc { ± i p 
wM = e9 
wPr * er x (6g-r oc {±ip~r) 

WGG_R = &g-r oc { ± 1 } ^ 

By definition of the semidirect product, we have: 

w'w = {<J,wB){a'>b0 = (aa,,a,-1(JB)AB/) 

where CACf denotes the symmetric difference of subsets C, C" of [1,#]. Since the 
elements it/ being in WGg_r, the cardinality of B is at most g — r, hence the same holds 
for cr/_1(£). In particular, if w G WM, ^e. B' = 0, then for any B, a,~1(B)AB' / 
[1,#] and similarly if w G WmWq, i.e. = [1,#], then for any B, a,~1(B)AB' ^ 0, 
as desired. 

8.5. Hecke algebras for strata. — Let S be a finite set of primes contain­
ing the level of all strata but not containing p. Let Tt(Gg)s = W(GP)̂ , 
resp. H(M(Gg))s = 0^5W(M(G?))^ be the abstract Hecke algebras generated 
over Z by double classes at all primes £ ̂  5, for Gg = G resp. the Levi M(Gg) of the 
Siegel parabolic Q{Gg). For each r ^ 1, we fix Mr = GL(r) x Gg-r, diag(A, • 
M-1) i-> (^4,5), where z/ = v{B). By this identification, we can decompose H(Mr) = 
W(GL(r)) ®H{Gg-r)\ we introduce also H(M(Gg-r)). For each prime g ^ S, by 
Satake isomorphism, we see that the fraction fields of the g-local Hecke algebras over 
R fit in a diagram of finite field extensions: 

Fr(H(M(Gg))q)R > Fv(H(GL(r))q <g> H(M(Gg-r))q)R 

T T 
Fr(H(Gg)q)R > Fv(H(GL(r))q ® H(G9-r)q)R 

It corresponds (see [13] Sect. VII. 1 p. 246) by Galois correspondence to the diagram 
of subgroups of &g oc {±1}9: 

(5*7" X &g — T 

6p &r X (60-r OC |±l}9-r) 

6g ex { ± l p 
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The diagram of fields can be descended from R to Q by using twisted action 
of the Weyl groups as in Sect.VII.l p. 246 of [13]. In particular, H(M(Gg))q and 
H{GL{r))q ®?i(Gg-r)q are linearly disjoint over H(Gg)q: 

(8.5.1) Fr(W(GL(r))g ® H(M(Gg-r))q) 

= Fv(H(GL(r))q <g> H{Gg-r)q) • Fr(H(M(Gg))q) 

On the other hand, as a consequence of Satake isomorphism, the Hecke-Frobenius 
element 

UqiG = Kg diag(^ • lg, lg)Kg 

where Kg denotes the standard hyperspecial maximal compact subgroup of M(Gg), 
resp. 

UQ,GG-R = Kg-r dmg(q • lp_r, l^_r)K^_r 

(with a similar definition for K9-r), generates Fr(H(M(Gg))q) over Fr(H(Gg)q), 
resp. Fr(W(M(G^_r))q) over Fr(H(Gg-r)q) (see Sect.VII.l of [13]). For r = g, note 
that we define Go as Gm and Uq = [q]. Then, for any r = 1, . . . , g, we have 

UQ,G = L«(GL(R) ® UQ,Gg-r 

From (8.5.1), we see that the minimal polynomial Irr(X, Uqio, ft(Gg)) is divisible by 
Irr(X, LW(GL(R)) ® t^,Gy_r,W(GL(r))g ® W(G^r)g). 

The Hecke algebra H(Gg)s acts on each stratum Xr = U ^ ^ r r by Q-rational 
algebraic correspondences. Indeed, there is a surjective homomorphism of Z-algebras 

c\>g_r : H(M(Gg))s —> W(M ( G ^ ) ) 5 , 

[Gg(Zq) • diag(ar,62G_2R,cr) • G^(Z9)] i—> 

[G5_r(Zq) • diag(62G-2R) • Gg-r{Zq)\ if ar G rGL(r)(Zq) 

0 if not. 

See [26], Sect.IV.3. 
On Sg-r,xUr,h, we let the double class [UaU] act by the algebraic correspondence 

associated to </>g-r([UaU]). By the theory of canonical models, since v(U) — Zx, 
these correspondences are defined over Q. 

Let m be the maximal ideal of H{Gg) associated to 9^. Let 

W*>> = = (®Hrc-1+s(XrtX®®,R'j*Vx(k)\XrJ{m} 

Lemma 15. — For any q £ S, the characteristic polynomial of pn annihilates the 
action of the geometric Frobenius Frq on WrjS. 
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Proof. — By Theorem 4.2, Chap. VIII of [13], we know that 

bv(X,UqiGg_r,H(Gg-r)q) 
annihilates Frq on Wr's. By the divisibility relation obtained above, we also have 
Irr(X,UqiG,H{Gg))\x=Frq = 0 on Wr's. By definition of pv, we have char(^(Frg)) = 
Irr(X, Uq,G,H(Gg)), as desired. 

8.6. End of the proof. — By the previous lemma, we can apply Lemma 13 to Wr's 
(for r ^ 1): if Wr's ^ 0, both characters 1 and u~w occur in Wr,s\ip. This contradicts 
the Claim in Sect. 8.4. Thus, we have for any s ^ 0, Er^s = 0. By (8.2.1) and (8.2.2), 
we conclude that for any r ^ 1 and any s ^ 0, Hr~1+s(dX\ R*j*Vx{k))m = 0 
as desired. By the long exact sequence of cohomology of the boundary, we obtain 
Hd(X, Vx(0))m = Hd(X, Vx(0))m. We deduce the corollary: 

Corollary 3. — For (7r,p) as in Th. 1, the natural maps induce an isomorphism 

Hdc{X, Vx{0))m = Hd(X, Vx(0))m. 

This is the first part of theorem 2. 

8.7. Intersection cohomology. — For the minimal compactification j : X ^ X* 
and an etale sheaf T over X, we consider the intermediate extension By [2], 
prop. 2.1.11, we have the following description of this complex: 

3\^T = T<CgRig^T<Cg_xR3g-\,* • • -T<ClRji^ 

where for Ur = Uo^^r Xi, we put jr : Ur-\ Ur, r = 1,. . . , g, cr is the codimension 
of the stratum Xr in Xr-±, and the truncation r<c is the canonical truncation; it is 
characterized by W {r<cK) = W (K) if j < c, and W (r<c/C) = 0 if j > c. 

We have 

• • • H*(Su, VX{G)) > IHd{Su, Vx{0)) > IHdd{Sv, Vx(0)) • • • 

H&iXfrjtVxiO)) >Hl(X^j^Vx(0)) ,Hi{dX^j^Vx{G)) ... 

Proposition 6. — IH*d(Su ,Vx(0))m =0. 

The proof will be similar to the usual cohomology case: it relies on Pink's theorem, 
lemma 13 and a variant of Claim 8.4. Some more induction is needed though, due to 
the successive truncations involved in defining j\,*Vx. 

By the spectral sequence (Sect. 8.2) associated to our stratification, we are reduced 
to show 

ffcV*r,*,J!,.VA(fc))m=0. 
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Lemma 16. — H* ét(Xr^xy j\^V\(Fp)) admits a filtration stable by Galois and Hecke 
actions and whose successive quotients are Galois and Hecke subquotients of 

H*(XriX, R'jg,* o BTjg-^ o • • • o R-j^Vx(Fp)) 

where the • denote unspecified given integers. 

Proof. — We write the argument for g = 1 and 2. For g = 1, it follows directly from 
the second spectral sequence associated to the complex r<ClRji,*V\(Fp): 

HZ{XR,T<ClR'jlt*Vx(Vp)) = » H-c{XR,T<ClRj^Vx{¥p)). 

In this notation, r<ClR*ji^V\(Fp) denotes R*ji,*V\(Fp) if the unspecified integer • 
is < ci, and is zero if not. 

For g = 2, applying this "second spectral sequence" to 

RJ2AT<c1Rjl,*VX(Fp))), 

The group Hçét(Xr,x, J!,*V\(Fp)) admits a dévissage by subquotients of 

HZ(XR,T<C2R'j2T*T<ClRjh*Vx(Vp)). 

(with similar convention concerning T<C2R'J2,*{- • • ))• The complex inside the coho-
mology is filtered, hence the cohomology itself is filtered and its graded pieces are 
subquotients of 

H-(XR,T<C2R-j2,*T<ClR*jh*Vx{Fp)) 

by the formalism of spectral sequences. 
Let 

W(r) = ft w£ 

(so, W(0) = {1}). For w(r) = (wr,... ,wi) e W(r), the symbol w(r) • (À + p(r)) is 
defined by induction by 

w(r + 1) • (A + p(r + 1)) = wr+i • (w(r) • (A + p{r)) + pr+1). 

(recall that pr denotes the half-sum of positive roots of Gg-r for the order deduced 
from (Gg,Bg,Tg)) and wr • (A + pr) = wr(X + pr) — Pr- One sees by induction on r 
that |A + p\ < p - 1 implies \w(r) • (A + p{r))\r < p - 1 for any r ^ 0. 

Definition8. — Let A be a p-small dominant weight of G = Gg. For any integer 
r G we say that a locally constant sheaf on the stratum Xr is a Kostant sheaf 
of type A if it comes by the canonical construction from a FpTMr (x)-module whose 
semisimplification is a direct sum of irreducible Mr(Fp)-modules Vw(r).(x+P(r)) for 
some w(r)'s of W(r). 

Remark. — The category of Kostant sheaves of type A on Xr is abelian and stable 
by extension. However, it is probably not be semisimple. 
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Lemma 17. — The sheaf ROLajg^ o • • • o Raiji,*V\(Fp) is constructible finite étale; for 
r = 0, . . . , g, its restriction to the stratum Xr is a Kostant sheaf of type X which is 0 
unless ar+i = • - • = ag = 0. 

Proof. — For this proof, some more notations are needed. Let jpq : Up Uq for 
p < q; thus, j = jo,g = • — = jr °jo,r- Let ip,q : Xp Uq denotes the locally closed 
immersion of Xp in Uq (composition of the closed immersion ip : Xp ^ Up followed 
by jp,q). Note that j0,r = «o,r-

For each r, we consider the abelian category Cr of constructible étale sheaves in 
Fp-vector spaces over Ur; let Ar be the (full) abelian subcategory of Cr generated by 
the j3iri\is,s,*Fs (0 < 5 ^ r) where Fs is a Kostant sheaf of type À on Xs. Since these 
sheaves are supported by the strata Xs and since there are no non-zero morphisms 
between sheaves with disjoint support, Ar consists exactly in the objects mentioned. 

Let Br be the (full) abelian subcategory of Cr stable by extension generated by Ar. 
It coincides with the subcategory of Cr of sheaves whose restriction to each stratum 
Xr is Kostant of type A. 

Let us first prove that the sheaves of the form G = jr-i,r,\is,r-i,*Fs, 0 ^ s ^ r — i 
are objects of Br. 

Indeed, we have the short exact sequence: 

0 * jr—i—i,r,\'is,r—i—i,*Fs y G > jr—i^r^ir—ir—i^i1—ir_jG > 0 

We show first that the right member of this short exact sequence belongs to Ar. 
We recall that the closure of Xs in X* coincides with the minimal compactification 
X* of Xs. So, we can apply the main result of [59] to the open (in X*) immersion 
is,r-i in order to compute the restrictions to the stratum Xr-i of the sheaf is,r-i^Fs. 
This yields the formula 

?* . G — 7* 7 F — F 

for a locally constant sheaf Fr-i. Therefore, 

jr—i,r,\ir—i,r—i,*ir—i,r—i^* — jr—i,r,\ir—i,r—i,*Fr—i 
is in Br. 
On the other hand, by decreasing induction on i, the sheaf jr-i-i,r,!^s,r-i-i,*^s on 
the left is in Br (the first step of the induction is true since for i = r — 5, we have 
js,r,\is,s,*Fs G Br). In particular, the sheaves is,r,*Fs are objects of Br. 

Remark. — If any finite FprMr (x)-module with p-small highest weight (in the set-
theoretic sense: that is, for the action of T(Z/pZ)) were algebraic with p-small weight 
in the schematic sense, it would follow from [61] Lemma 1.11 that it would be semisim-
ple. This statement however, is false as shown by the example V = Sym^F^ for GL2 
and T = SL2(Z). Thus, Ar and Br\xr are not semisimple. Fortunately, this semisim-
plicity won't be used in the sequel. 
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Let us return to the proof of Lemma 17. We proceed by induction on g. It is clear 
for g = 1. Assume the result is true for g — 1. 

It is enough to show by induction on r > 0 the following statement 

(Pr) Rarjr-i,r,* o ... o Raij0tit*Vx(Fp) e Br. 

(Pr) is obvious for r = 0. For r = 1, let Ri = Raijo,i,*V\', we know that Ri|xi is 
a Kostant sheaf by Lemma 14. Therefore, we have an exact sequence on U\: 

0 —-> ¿0,1,!VA ® T0 —• Ri —+ n,i,*zï?1Ri —• 0 

for some multiplicity vector space To (with To = Fp if ct\ = 0 and 0 otherwise). 

Induction step. — Assume that (Pr-i) holds. Note that R'jr-i,r,* preserves Cr. Let 

Rr_! = iT-1 >-2,r-l,* o • • • o iT1 j0,i,*VA(Fp). 

By assumption there is a filtration F*Mr_i whose graded pieces are in Ar-i-

r- 1: 
Hence, since Br is abelian, R*jr — 1 ,T>,*R-T'— 1 will be in Br if for each s between 0 and 

B ji—l,r,*js,r—l,!^s,s,*-^s is in I3R (8.6.1) 

for any Kostant sheaf Fs of type A. 
We can assume 5 = 0 (by replacing X by the Siegel variety Xs), and we have to 

prove that R*jr-i,r,*jo,r-i,\Fo G Br. We prove in the Appendix that such a sheaf is 
constructible with respect to the natural stratification of X*. Therefore, it remains 
only to show that for each s ^ r, the locally constant sheaf 

R* jr-i,r,*jo,r-i,\Fo\xs 

is Kostant of type À. 
For this purpose, it will be enough to show that R*jr-i,r,*jo,r-i,*^o is constructible 

and Kostant on each stratum Xs (s ^ r). Indeed, let us consider the short exact 
sequences 

0 • jt,r-l,\jo,t,*Fo • jt+l,r-l,!J0,t+l,*^0 • jt+l,r-l,!^+l,t+l,*^+l • 0 

where t = 0,..., r—2 and Ft = it{jo,t,*Fo). Note that by the induction hypothesis (for 
the Siegel variety Xt+i) i?#jV-i,R,*jt+i,R-i,!^+i,t+i,*-Pt+i G Br. Therefore, by consid­
ering long exact sequences for Rjr-i,r,* associated to these short exact sequences, we 
see that R9jr-iir1*jo1r-i,\Fo G Br if and only if i?*jV-i,R,*jo,R-i,*-PB G Br. 

This sheaf is the E^-tevm in the spectral sequence of composition of two functors 
abutting at 

R*jo,r,*Fo 

By Sublemma 1 below, this abutment is of type Br. Let us check that for q > 0, 

E™ = Rpjr-i,r,*Rqjo,r-i,*F0 

belongs to Br. 
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We notice that for any q > 0, Rqjo,r-i,*Fo is supported on X\ U • • • U Xr-i, hence 
we can apply the induction assumption to X{ which has a stratification of length 
g — 1; we obtain 

lf<?>0, E™ eBr. 
The conclusion follows then from sublemma 2. 

Sublemmal. — Let X* be a space with a stratification E of length g. For each r = 
0,.. . ,g, let Ar be an abelian subcategory of locally constant sheaves on Xr; assume 
that for any s ^ r ^ g, i*R'is^ sends As to Ar. Let B be the smallest abelian category 
ofE-constructible étale sheaves on X* which is stable by extensions (that is, which is 
thick) and contains js,\is,s,*Fs (for s = 0,... ,g). Then R*j* sends Ao to B. 

Proof — Let Vo G Ao and F = Rmj*V$. Consider the filtration 

Fg = j{F\Uo C • •. C Fr = jr,\F\Ug_r C • • • C F0 = F 

The successive quotients are given by 

Fi-l/Fi = jg-i+ljig-i+l^ll-i+lFi-l. 

Note that = belongs to B by assumption. 
We conclude by the following trivial lemma. 

Sublemma 2. — Let B be a full thick abelian subcategory of an abelian category C which 
is stable by subobjects and quotients. Let E\'q Hp+q in C be a spectral sequence 
concentrated in p,q > 0. Assume that E^q G B for any E%q, q ^ q0, and E™ e B 
for any p, q, then E™0 G B. 

Proof — By decreasing induction on the r of the spectral sequence E™. 
From these two lemmata, th. 2.(ii) will follow if we show 

Lemma 18. — For any s = 1,. . . , g, we have 

H = H*(XS, Ky(s).(A+p(s)))m = 0. 

Proof — As in Section 8.4, we see that the Hodge-Tate weights occuring in H are 

-w's.w':---w[-w'{-(X + p(S))(H) 

that is, 
p(w) = -(w(X + p) — p)(H) forw = w's o w" o • • • w[ o w'{ 

As in 8.4, since s > 1, 0 and w cannot occur simultaneously as weights for this 
cohomology group. On the other hand, by the Galois-theoretic argument 8.6 they 
should, if H 7̂  0 by Lemma 13. We conclude H = 0. 

It is maybe useful to state in a single result an outcome of our proof of Theorems 
1 and 2: 
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Corollary 4. — Under the assumptions for 7r,p,m as before, we i.^ve: 

H-(Su,Vx(0))m = Hr(Su,Vx(0))m = H-(Su,Vx(0))m = Hd(Su,Vx(0))m. 

Comment. — This corollary requires (RLI), but does not require the regularity of A. 
When A is regular, we have already mentioned that 

ffcusp(5c/,^(C)) = IH*(Su,Vx(C)) = Hr(Su,Vx(C)) = Hf(Su,Vx(C)). 

moreover, it seems plausible that for such a A, for any q < d, Hq(Su, VX(C)) = 0. It 
might result from Pranke spectral sequence. It does indeed for g = 2 (see Appendix 
A of [77]). If it were true, harmonic analysis would provide a complex version of our 
theorem, without localization: 

For, q < d, 

Hqcusp(Su, VX(C)) = IH«{Su, VX(C)) = H*(Su, VX(C)) = H*(Su, VX(C)) = 0 

and 
HLP(Su, VX(C)) = IHd(Su, VX(C)) = Hf(Su, VX(C)). 

But of course 
Hf(Su,Vx(C))^Hd(Su,Vx(C)). 

9. Application to a control theorem 

In this section, we want to apply Theorem 1 for improving upon Theorem 6.2 of 
[77]. More precisely, we want to replace the non effective assumption on the prime 
p there, (namely, p prime to the order of the torsion subgroups of Hq(Su, VX(Z)) for 
q = 1, 2 , 3 ) by an "effective" assumption p— 1 > max(a2 + ai + 3,4) which in particular 
is independent of the level (however, we need to assume the mod. p non-Eisensteiness 
condition (RLI) which is far from being effective, but depends only on ~plv). Note 
however that we need to localize the Hecke algebra at the maximal ideal given by 0n 
modulo zu. This is innocuous for questions of congruences between 0^ and characters 
coming from other representations occuring in H3. 

We prefer to treat axiomatically the general case G = GSP(2#)Q of an arbitrary 
genus assuming conjectures (which are proven for g = 2). Most notations in this 
section follow those of Section 7 of [77]. Let A = (ag,..., a\\ c) be a dominant regular 
weight (i.e. ag > - - > a\ > 0) and TT a cuspidal representation of level U occuring in 
Hd(Su, V\(C)). Recall that B denotes the standard Borel subgroup B of G and B+ 
its unipotent radical. Let p be a prime not dividing N. for any n ^ 1, let 

Uo(pn) = {geu\g mod. pn e B(Z/pnZ)} 

resp. 
Ui(pn) = {geU\g mod. pn G B+(Z/pnZ)} 
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The p-component of Uo(pn) resp. Ui(pn) is the Iwahori subgroup (resp. strict Iwahori 
subgroup) of level pn; it is denoted by In C G(ZP), resp. Jn C G(ZP). Let Si(pn) 
resp. S0(pn) be the Siegel variety associated to Ui(pn) resp. to Uo(pn). For each n ^ 1, 
let 

WXin = H*{S1(pn)M(K/0)) 
where V{ denotes the Iwahoric induction of A that is the lattice in V\{K) consisting in 
A_1-equivariant rational functions / on G/B+ taking integral values on the Iwahori 
subgroup /1 of G(ZP). Thus V{ is I\-stable (hence Jn-stable for any n > 1). Note 
that it contains the G(Zp)-stable lattice V\ defined similarly, but with the stronger 
condition /(G(ZP)) C O. Let Wqx be the inductive limit over n ^ 1 of the WqXn. 

Let WXn = 0W^n, resp. W{ = ®Wj[. We introduce several abstract Hecke 
algebras: Let 

Dp = {de T(QP) fl M2g(Zp)pTiin I ordp(a(d)) < 0 for any positive root a} 

where M2g(Zp)pTlrn denotes the set of integral matrices with relatively prime entries. 
Dp is a semigroup. Let HN, resp. HN,In, resp. HN>Jn be the abstract Hecke O-algebra 
outside AT and integral at p, resp. integral at p of type Jn, resp. integral at p of type Jn: 

HN = ® O[G(0i)//G(ZE)] ® 0[UpDpUp//Up], 
^ prime to Np 

HNJn= ^ O[G(0«)//G(Z/)]®O[/nI>p/n///n], 
^ prime to iVp 

HN,Jn= (g, o[G(Q^)//Gr(z^)]®0[J„I?pJ„//Jn]. 
^ prime to Np 

For any n ^ 1, there is a natural surjective homomorphism 7iN"Jn —> HN,In, but that 
there is no homomorphism HN:Il(0) —> W^. Assume that 7r satisfies the condition 
(AO) of automorphic ordinarity at p (see introduction). Let us recall how one can 
transfer the character 0* : HN ^ O t o a character 0fn : —» (9. The inclusion of 
lattices VA C Va', together with the finite morphis So(p) —» St/ give rise to a morphism 
of sheaves (St/, VA(O)) —> (So(p), V^), hence a morphism on cohomology 

i: H:(Su, Vx{0)) — H:(S0(P), V{(0)). 

Moreover, the Hecke operators Tv^ i = defining the condition (AO) act 
on these cohomology groups. Observe however that for each i, TPii act differently in 
prime-to-p level (e. g. on St/), and in levelp (e. g. on So(p)). They define idempotents 
on these cohomology groups; let eo = limn->oo(nf=i ^p,*)n! tne idempotent defined 
on H:(Su, Vx(0)), and e = lim^iUU W defined on tf;(S0(p), V{(0)) by the 
same formula (with a different meaning though). 

Lemma 19 (HIDA'S STABILIZATION LEMMA). — If X is regular, the homomorphism 

H:(Su,Vx(0)) — H:(S0(P),VI(O)), x ^ e - t{x) 
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induced by the diagram 

H:(SV,VX(O) H:(S0(P),V{(O) 

e0-H:(Su,Vx(O)) e-H;(S0(p),Vl(O)) 

is an isomorphism sending an eigenclass for HN to an eigenclass for H,1*'11. 

Proof. — See Prop. 3.2 of [77] (proven there for GSp(4) over a totally real field: it 
generalizes directly to arbitrary g). 

Denote by hx(U;G), resp. hx(Ui(pn); O), resp. hx(U0(pn); O), the image of 
HN in End0(H*(Su,Vx(0))), resp. of HN>Jn in Endo(W;), resp. ft*"7" in 
Endo(#*(S0(pn), V\(P))). By the lemma above for * = 0, the character 
0n : hx(U;G) —> O induces a character 0fn : hx(Uo(p);G) —• O; hence (com­
patible) characters of hx(U\(pn); O) for any n ^ 1. Let 

hx=\ímhx(U1(pn);0) 

Note that foA acts faithfully on W . Let m' = Ker^ be the maximal ideal of h\ 
associated to n. The localization W^m') of Wj[, resp. Vj[ at m' is contained in the 
ordinary part e • Wx and is therefore a localization of this ordinary part. Note that 
T(ZP) C Dp; by action on Wj[ n, we obtain (compatible) group homomorphisms 

()x:TŒp)-^hx(UApn);0) 

By linearization, we obtain a continuous O-algebra homomorphism from the com­
pleted group algebra 0[[T(Zp)]] to hx. For any discrete 0[[T(Zp)]]-module W, the 
Pontryagin dual W* = Kom(W,K/0) is a compact topological 0[[T(Zp)]]-module. 
Let 

Ti = Ker(T(Zp) —> T(Fp)) and A = 0[[Ti]] 

A is an Iwasawa algebra in (g + 1)-variables. Recall that an arithmetic character 
X : T(ZP) —» (9X is a product % = s[i where e is of finite order, factoring through, 
say, T(Z/pnZ) and fi G X*(T) is algebraic. If x = 1 mod. w, it can be identified to 
a character of T\. It induces canonically an (9-algebra homomorphism x • A —• 0. 
Its kernel Px is a prime ideal of A called an arithmetic prime. We say that x — M£ *s 
dominant regular if ¡1 is. 

Theorem 9. — Given a TT cuspidal of level N; let p be a prime not dividing 
N such that the conditions (Gal), (RLI), (AO) and (GO) hold, and that 
p — 1 > max(ai H h ag -f d, 4); £/ien 

(i) W (̂m') = WA(m') and WA(m')* satisfies the exact control theorem: for any 
regular dominant arithmetic \, there is a canonical isomorphism 

Hd(S0(pn),VLJK/O))m, > Wíím'iv 
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Same result for the compactly supported version CW\(m') ofW\(mf) and for its image 
W,dA(m') in W A K ) . 

(ii) The inclusion Wf*A(m') C WA(m') is an equality. 
(iii) Wx(m')* is free of finite rank over A. 

Proof 
(i) The proof makes use of Hida's Exact Control criterion (Lemma 7.1 of [42]) 

together with the calculations of Section 3 of [77] which generalize readily to 
GSp(2#)Q. We prove Wqx(m') = 0 and CWqx{m') = 0 by induction on q < d. For 
that, by Theorem 3.2(h) and isomorphism (3.16) of [77], it is enough to show that 
Hq(S0(p), V{(K/G))m> = 0. By Proposition 3.2 of [77] and its proof (relating m' and 
m), this amounts to see Hq(Su,V\(K/0))m = 0. This is precisely what is stated in 
Theorem 1 in the introduction, under our assumptions. Thus, exactly as in the proof 
of Theorem 3.2 of [77], we obtain (i) for Wq. In an exactly similar manner, we show 
the control for the compact support analogue, based on the Exact Control criterion 
for compactly supported cohomology. 

(ii) Similarly, the degree d boundary cohomology is controlled, and vanishes in 
weight A {i.e. \ = 1) by our Main Th. 2. Therefore, by Nakayama's lemma, it vanishes 
A-adically, and W?x(m') = V^(m'). 

(iii) We use the following criterion: a discrete A-module W is A-cofree of corank 
r < oo if and only if there exists an infinite set of arithmetic characters \ such that 
P| Px = 0 in A, and for which W[x] is (9-divisible, cofree of constant corank r. We 
take the set of algebraic dominant characters x — /̂ A_1 with /x regular dominant and 
congruent to A mod. p, and apply the control formula stated in (i). We need to see 
that Hd(So(p), V^K/O))^ is p-divisible (and furthermore, of constant corank). The 
long exact sequence 

Hd(S0(p),V'm)m, — Hd(So(p),V'.(K/0))m, — Hi+1(So{p),V'(0))m> 
shows it is enough to verify that the Hd+1 is torsion-free. By Poincare-duality (Th. 6.4 
of [77]), it amounts to see that Hd~1(So(p)1 Vp(K/0))m' is divisible; in fact it is null 
because by (i), since /2 is regular dominant, one knows that CWi~1(mf) is zero and 
that it is controlled: 

Hdc-1{S0{p),Vi{K/O))m,=CWi-\xn')[x]=Q 

This shows the divisibility of WA(m')[x] for all /x's as above. The corank r(x) can 
be read off from the dimension over the residue field k of the tu-torsion. Note that 
in A, Px + (w) is the maximal ideal, hence does not depend on x- Thus r(x) = 
dim*; WA(m')[mA] is independent of x- QED. 

Let hm = h\(U]0)(xn') be the localization of h\ at m'. It acts faithfully on 
№(m') = W?W). 
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Theorem 10. — Under the same assumptions, 

(i) hm is a finite torsion-free A-algebra, 
(ii) there exists a finite integrally closed extension I of A and a A-algebra homomor­

phism © : hm —> I such that for any fi G X such that p = A mod. p and (¡) = /¿A-1 is 
dominant regular, for P a prime in I above P<¿> and O' = I/P, there is a commutative 
diagram 

hm/Póh M •a 
r 

hJU;0)m 

where the horizontal arrow is 0®ldi/p and the oblique arrow is 9np for some cuspidal 
automorphic representation np occuring in Hd(Su, V^(C)). For /2 = A, one has 
enp = ov on nN. 

(iii) If IT' is another cuspidal representation occuring in Hd(Su,V\(C)), if 9n = 
6n> mod. max(Zp), there exists another finite integrally closed extension V of A and 
a A-algebra homomorphism ©' : hm —> V lifting 0^ and for any fi and any arithmetic 
ideal P" in the compositum IV; let P = P" fi I and P' = P" fl I'; we have 

Onp = On>pf mod. max(Zp). 

Comments 

1) We call © a Hida family in (g + l)-variables lifting 6n. Statement (iii) means 
that congruences to 9^ (outside N) can be lifted to families of congruences. 

2) Statement (i) implies that hm is flat of relative dimension (g + 1) over G\ this 
was predicted by calculations in Sect. 9, Example 2, and Sect. 10.5.3, Conjecture I, of 
[76]; it was already proven g = 2 in [77] under stronger assumptions on p. 

3) The representations 7rp occuring in the family whose existence is stated in (iii) 
are cuspidal because hm is cuspidal: by Th. 9(ii), W,dA(m/) = W^(m/) for any ¡1 as in 
the theorem, Hd{Sv, V^{0))m C Hdusp(Su, V^(C)) by our Th.2 and the considera­
tions at the end of Sect. 2.1. 

Proof. — It results from the previous one as in Corollary 7.5-7.7 of [77]. 

10. Application to Taylor-Wiles' systems 

In this section, we apply Theorem 1 to show that some cohomology group MQ is 
free over a finite group algebra C?[AQ] (this is the non-trivial condition to be verified 
for having a Taylor-Wiles' system: Condition (TW3) of Definition 1.1 in [29], see also 
Proposition 1 of [73]. More precisely, let us fix as above a cuspidal stable representa­
tion 7r whose finite part 717 occurs in Hd(Su, V\(C)), for a regular dominant weight 
A. Let p be a prime at which the level group K is unramified. Let r ^ 1. We consider 
sets Q = {#1,..., qr} consisting of primes q which are congruent to 1 mod. p and such 
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that the four roots of 0n(Pq(X) are distinct and belong to k. For each q G Q, we fix 
one of these roots and denote it by aq. Let (Z/qZ)x = AQ x (Z/qZ)^ where AQ is 
the p-Sylow subgroup and (Z/qZ)^ the non-p-part of (Z/qZ)x. Let AQ = YlqeQ 
We put 

= \9 € u I for any q eQ, g = 

f u * * * 
0 * * * 
00w_1* 

^0 0 0 *y 

mod. 9, G (Z/qZ)^ \ 

and 
U0(Q) = {geUQ\ for any qeQ,g mod. q G B(Z/qZ)} 

Let HQ be the abstract Hecke algebra for UQ generated over O by 

- Hecke operators T's outside 

SQ = Ram(£7) U{p}UQ 

- the Uq's for each q G Q: 

Uq = UQ- diag(l,..., 1, q,..., 9) • £/Q 

- and by the normal action of AQ = KO(Q)/KQ. 

On : WQ —> O resp. A?,. : WQ —» fc define 0-algebra homomorphisms. Let 

mQ = (tu,T - 0W(T), (T outside SQ), C/"g - ag, (<? G Q)). 

It is a maximal ideal of HQ. Consider the following "d-th homology module": 

MQ = Hd(SUQ,V,(K/0)ymQ 
It has a natural action of the ring 0[Aq]. This ring is a complete intersection 

noetherian local ring. 

Theorem 11. — Assume that (Gal), (RLI), (GO) hold, andp — 1 > max(|A + p|, 4); 
then, for any Q as above MQ is free over 0[Aq]. 

Proof. — By Theorem 1, we know that MQ is free as (9-module. Hence, it is enough 
to show that MQ = MQ/W • MQ is free over AQ = &[AQ]. By Pontryagin duality, 
MQ is the fc-dual of the tu-torsion submdodule NQ of Hd(SjjQ, V\(K/(D))MQ. By the 
long exact sequence for 

0 — Vxiw^O/O) —> Vx(K/0) — Vx(K/0) —> 0 

and the vanishing of Hd~1(uQS, V\(K/0))mQ, we see that 

NQ = Hd(SUQ,Vx(k))mQ. 

Moreover, AQ is complete intersection, hence is a Frobenius algebra: the freeness 
of MQ is equivalent to that of NQ. 

To show that NQ is free, we follow Fujiwara's approach (Sect. 3 of [28]). Since AQ 
is artinian local, freeness is equivalent to flatness: Tor̂ Q (NQ , k) = 0 for j > 0. For 
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any t prime to TV, consider the sub-semigroup D'Q E of T(Q^) nM2^(Z^)prim consisting 
in £'s such that orde(a(t) ^ 0 for any positive root a of (G,B,T). Let DQJ = 
UQJ • DFQE • UQJ. For q e Q, the local Hecke algebra HQ^ = I^UQ^DQ^/UQ^) is 
generated by 

Aq and diag(l, g°2,..., q^, qc~a°,..., çc"a2, q% for 0 ^ a2 < • • • < ag ^ c/2. 

Note that 
Q = 

sf 
Suqc 

ffd 
dfdss 

We view Va(A;) as an etale sheaf over XQ = SUQ ®Q. For t G T(AN) and ̂  G £>Q^, 
the Hecke correspondence [£/Q££/Q] acts on (XQ, V\(k)) via the diagram 

(10.1) 

Suqcm-WqI — SuQc\tUQt-i 

ddf d 7T2" 
fb 

where 7Ti and 7r2 are the canonical coverings induced by the inclusions of the level 
groups, the horizontal isomorphism is induced by right multiplication by The 
action on the sheaf V\(k) is via 7Ti5* O [t-1] o TT^ where [£_1] : ^V^fe) —• ^tV\(k) 
is induced by a right action of the p-component t~x on the representation Va which 
preserves integrality: see for instance [77] Section 3.5. 

We can form a complex G* representing RT(X, V\(k)) endowed with an action of 
Gal(Q/Q) x HQ. One can take for instance the global sections G#(XQ, V\(k)) of the 
étale Godement resolution 

C*(X,Vx(k)) 

of V\(k) (see [27] Sect. 12, p. 129, and Section 3.4 [29]) whose terms are acyclic. 
More precisely, by functoriality of the construction, the diagrams (10.1) still operate 
on (XQ,C*) and induce endomorphisms [UQH/Q] of G*. The diagrams (10.1) are 
defined over Q, hence the action of Galois by transport of structure commutes to these 
endomorphisms. The main property that we shall use for the Godement resolution 
is the following. Let / : X —• Y be a finite étale Galois covering with Galois group 
G, let G be an étale sheaf on Y, let C#(F,£)), resp. C'{XJ*(G) be the Godement 
resolution of G resp. f*G on Y resp. X. G acts on f*C*(X,f*(G) and the adjunction 
map a : G —> f*f*G induces an isomorphism 

(f*c-(x,f*g)f =C-(Y,Ç). 

In particular for q G Q and G = Aq, we shall make use of the formula 

10.2) (C'(XQ,Vx(k)))A< = C'(XQ/Aq,Vx(k)). 

The hypercohomology spectral sequence applied to G* ®AQ k gives rise to the Tor-
spectral sequence: 

E%j = TorA?(iF(G*), k) —> Hi+j(C- ® jfc) 
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All the maps involved are fc[Gal(Q/Q)] x 7YQ-linear. Let us tensor this spectral se­
quence with the localized Hecke algebra HQ^Q- We get 

E^(mQ) = TDR^?(№(C-)mQ,fe) — fT^(C* ® fe)mQ 

Fact. — Hi(C')mQ = 0 for any j ^ d. 

Proof. — By Theorem 1, we know that 

Hj(SUQ®Q,Vx(k))mQ=0 iovj>d. 
This fact implies that the spectral sequence is concentrated on E^faç) = 

Tor^f (NQ, k) and therefore degenerates: 

H^iC* ®Aq k)mQ = E^d(mQ). 

It remains to see that Hl+d{C* ®AQ k)mQ — 0 unless i = 0. 
For this purpose, we consider the exact sequence of complexes 

(10.3) 0 —• n (c')Aq (C*)eg —-> (C*)eQ —• C* —> C* ®AQ k —>• 0 
qeQ 

where for each q e Q, the q-th component of the middle arrow is the multiplication by 
ôq — 1 on C*, for 5q a generator of Aq. By Theorem 1 of this paper and by (10.2), we 
see that the first four complexes of (10.3) have no mg-localized cohomology in degree 
> d. By considering long exact sequences, and by exactness of mQ-localization, this 
implies that the same holds for the complex of AQ-coinvariants C^Q = C* ®AQ k. 
This concludes the proof. 

11. Appendix I: On the constructibility of certain étale sheaves 

Let X* be the minimal compactification over Q of the Siegel variety X over the 
rationals. Let E be the standard stratification on X*; the strata have dimension 
cr = r(r + l)/2, r = g, g — 1, . . . , 0. Let r ^ 0 and Ur be the union of the strata of 
dimension greater than cr; we write Er for the stratification on Ur induced by E. Let 
jr : Ur ̂  X* be the natural open immersion. The goal of this appendix is to provide 
a proof for the following proposition which is used in Sect. 8.7 for proving Lemma 18. 

Proposition 7. — For any Er-constructible torsion étale sheaf V on Ur, for any i ^ 0, 
Rljr,*y is T>-constructible. 

Proof. — Since r is fixed, we abbreviate jr = j . We use a smooth toroidal com­
pactification of X. Let U be the level group of our Siegel variety. Let S = ( S ^ 
be a {/-admissible regular rational polyhedral cone decomposition of S2(Z9) (see [13] 
Chap.IV, Th. 6.7 and [58] Sect. 12.4); in the above notation, f runs over the set of 
rational boundary components in the minimal compactification X* and is a poly­
hedral cone decomposition of S2(Nç) for a quotient Nç of Z9 of rank r^, depending 
only on £ (here, r^ is the genus of the Siegel variety £). Let Xs be the corresponding 
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toroidal compactification of X over Q. It is smooth and Xs — X is a divisor with nor­
mal crossings, whose irreducible components are smooth; it is endowed with a proper 
morphism 7r : Xs —» X* defined over Q, inducing the identity on X. The toroidal 
stratification {Z(a)}aes/gl(x) is compatible to (and finer than) the inverse image 
7r—* (E) of the stratification E (see Th.6.7 of [13]). By [13] Chap.IV.3 or [59] 3.10, 
the restriction 7T£ of n above any rational boundary component £ of X* is a proper 
morphism with singularities of smooth dnc type: let Fç = Xs Xx* £, then, locally for 
the étale topology, we have 0F(L = £^[Ti,..., Tm]/(Ti • • • Tn). More precisely, F^ is a 
disjoint union 

F£= U Z(a) 

where 

- T?£ is the set of cones a G whose elements are all definite positive on 
- Z(a) = xEz Zç(a) (in the notations of [13] p. 106) are the toroidal strata. 

Note that has the property that any cone of containing a cone in is in ; 
therefore, Fç is closed in the toric immersion S^s^ • Moreover, the Z(a) are smooth 
as well as their closures; thus, Fç is étale-locally the boundary of a toric immersion 
of E% for T ,̂ of smooth dnc type, as desired. 

Let £/r,s be the inverse image of Ur by 7r, and js : Ur,s Xs the corresponding 
open immersion. We have 7rojs = joir. Similarly, let k : X <^-> Ur resp ks : X <—• C/r,s-
By a simple dévissage, one can assume that our étale sheaf is of the form V = k\W 
for a locally constant sheaf W on X. Then, we have 

k\W = 7T* o ks,\W 

Let Vs = ks,\W. We have Rq7r*Vs = 0 if q > 0, by proper base change. Hence, 
R%j* o 7r*Vs = i?2(j* o 7r*)Vs = -R*(7r# o js,*)Vs which is the abutment of a spectral 
sequence whose l^-term is Rp7r* O i?9js,*^s-

We show now that the sheaves Rqjs,*Vs are constructible for the natural toroidal 
stratification. By compatibility of the toroidal stratification of Xs with that of the 
toric immersion of E = Hom(52(Z^), Gm), we can view X <^-> Ur,s ^ Xs, local-etally 
as E ^ Er{a) <-» E{&) where E = G^, Er(cr) = G^~n) x An and E(a) = AN. We 
are now in a cartesian product situation, and therefore, by Kunneth formula, we are 

left with the one-dimensional case Gm^Gm^A1 or Gmc^Alc^A1. It is easy then 
to see that R%j^ of k{V is constructible. 

By Lemma 20 below, the higher direct images Rp7r*(Rqjs,*Vs) are E-constructible. 
In the spectral sequence 

E™ = Rp7T*(RqJs,*Vs) => Rp+qjr,*V 

all the terms E™ are E-constructible. Since the full subcategory of E-constructible 
étale sheaves inside the category of constructible is abelian, it follows that the abut­
ment is E-constructible. 
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Lemma 20. — Let Y be an integral scheme over Q and f : X —> Y be a proper 
morphism of smooth dnc type. Let T = (Xo, Xi,..., Xn) be the stratification of X 
defined by X0 = Xsmooth, Xi+1 = (X~- Xi)smooth. Let J7 be a T-constructible torsion 
étale sheaf on X. Then R1f*T is locally constant. 

Proof. — By properness of / , we know that R%f*T is constructible on Y with finite 
fibers. To check it is locally constant we proceed by induction on dimension of X\ the 
maps 

Suqc C ddC 

provide a dévissage: 

0 —-> jiF\x0 ui*T —• 0 

By stability of locally constant sheaves by kernels and extensions, we are left with 
the case of 

&f*JiF\x0. 
By a theorem of M. Artin (exposé XII [74], see also Illusie's Appendix, p. 252-261 
in [75]) this sheaf is locally constant (in general, we would need that Flxo is tamely 
ramified along the divisor with normal crossings XQ—XQ for a smooth compactification 
XQ ^ XQ over Y", but it is automatic here, since we are in characteristic 0). 

12. Appendix II: An explicit construction of the log crystal VA 

In this appendix, we use Weyl's invariant theory to construct automorphic vector 
bundles over Zp, associated to dominant weights of the symplectic group G = GSP29 
and of the Levi M of the Siegel parabolic of G. The defect of this method (comparing 
with that of section 5.2) is the lack of functoriality. The advantage is to show clearly 
how the Hodge structure is obtained by plethysms from that of R^f^^/x-

As before, X is the natural smooth model of Su over Z(p), X is a toroidal compact­
ification over Z(p). It is projective smooth and its divisor at infinity D has normal 
crossings. Let / : A —> X be the universal principally polarized ^-dimensional abelian 
variety over X; let Y = A Xx • • • Xx A be the fiber product of A by itself s-times above 
X and fs : Y = As —• X its structural map. Let us recall some facts on algebraic 
correspondences. 

II. 1. Correspondences over Z(p). — We view f : A —* X over Z(p) for a prime 
p not dividing N. Let s ^ 1. Let Z*(Y/X) be the free abelian group generated by 
irreducible closed X-subschemes Z C 7 x ^ 7 , flat over X. It is graded by the relative 
codimension of cycles. Its quotient A*(Y xx Y/X) by the submodule of cycles on 
Y Xx Y rationally equivalent to zero is denoted by Corr*(y/X) and is called the 
group of correspondences on Y relative to X ([31] Section 20.1). By smoothness of 
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fs : Y —• X and of X over Z(p), the group Corr*(F/X) carries a natural structure of 
graded ring (see Ex. 20.1.1 (c) and Ex. 20.2.3 of [31]). 

Let C-(Y/X)(p) = C'(Y/X) ® Z(p). 
A correspondence Z E Corrr(Y'/X)(p) gives rise (because of the smoothness of the 

base X over Z(p) ) to a cohomology class 

C1(Z) e R2r(fs x /.).fi^0y/A-
defined by the relative cycle map (See [20] Chap. IV). Let 6 = g • s = dimF. 

We follow [51], Sect 3 in a relative setting: by Ktinneth formula and Poincaré 
duality, we have 

R2r{fs x fs)*&Y®Y/x = 0 Homox(i?M+2^"2R/S5*R2Y/X, RrnfSi*SlY,x) 
0<m^2r 

We can therefore view the ra-th component of C1(Z) as a degree 2r — 26 endomor-
phism of R*fs,*ftY/x- This defines a homomorphism 

Corr-(y/X)(p) — End0x R-fs&Yix 
which corresponds to letting a cycle Z act by "pri* opr^" on the sheaf Rm fs*QY/X' 
More precisely, we have: 

Lemma21. — Let u E R*(fs x /s)*^y®y/x; ^en = Pri * (2^2 (x) Uu)-

Proo/. — [51] Sect.3. 
This homomorphism sends cycles Z of relative codimension 6 4- r (—S^r^S) to 

degree 2r endomorphisms. We denote by 

C(Y/X)= ffi C2r(Y/X) 
d < dsl 

the graded algebra generated by the cycle classes of correspondences; it is a finite free 
Z(p)-algebra. 

In particular, we can view cycles D of Y as cycles in Y xx Y via the diagonal 
immersion 7 ^ 7 x ^ 7 (the two resulting projections pri : D —> F are equal). This 
yields 

Ar(Y/X) — Corir+ô(Y/X)(v) — End0x R*fs*&v/X. 
Write D h-> [D] for this homomorphism. On the other hand, the action of the cycle 
D by — U Cl(D) yields another homomorphism 

Ar(Y/X) — End0x R-fs*nY/x 

Lemma 22. — Let L:Y -+Y xxY be the diagonal immersion and A its image. Then 
for any cycle D ofY, we have 

CIyxy(l*D) = t* C\Y{D) = prl(C\Y(D)) U Clyxy(A) 
= pr2*(Cly(D))UClyxy(A) 
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Proof. — By the functoriality of the cycle class map we have the following commu­
tative diagram: 

Ar(Y/X) R2v fs *^y/x 

ff df 

Corrr+ò(Y/X)- R2r+25 fs*&>Yx XY/X 

where the horizontal arrows are the cycle maps, the left vertical arrow exists by 
properness of i and the right vertical one is the Poincaré dual of i*. It remains to 
check that the L* on the right satisfies 

L*(X) =pr1*(x)UClyxy(A) = pr* (x)UClYxY(A). 

By definition of the Poincaré duality, it amounts to 

TryxY(X U t,*(y)) = TrY(prl(x) U Clyxy(A) U y) 

One has A = L*(Y), therefore by using Poincaré duality, we can rewrite the right 
hand side as Try xy(^* °pr*(x)LU*(y)), 0r Tryxy (xLU*(y)), as desired, same for pr2. 

Corollary 5. — We have 

[D] = — U Cly(D). 

Proof. — We apply the two previous lemmata, noticing that 

pr\{pr*2{x U Cly(D)) U Clyxy(A)) = pr\{pr\{x U C\y(D)) U Clyxy(A)) 

= xUC\Y(D). 

Another particular correspondences used in the next, are given by cycles of the 
form DxxY in YxxY where D is a relativ cycle in Y of relative codimension r. 
The action of such correspondence is given by the following diagram: 

Suqc FRO [D x Y] 
-rL J S,**ly/X 

TDZd—m f Q» 
•rt J S,*^ly/X 

- U D E>2<5—m+2r F O* 
-rt J S,**ly/X 

where the vertical maps are given by the polarization of the abelian scheme Y wich 
identifie each cohomology space with it's dual and by Poincaré duality. 

II.2. The Z(p)-schematic version of Construction 5.1. — In this section, we 
consider dominant weights A for (G,B,T) such that 5 = |A| satisfies s + d < p — 1. 
We attach to such weights A a vector bundle VA with connection. Note that be­
cause of the need of compatibility with the transcendental construction over C (using 
the restriction of the G-representation on VA to the Siegel parabolic), the definition 
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will involve duals. We define first the vector bundle Vi associated to the standard 
representation V\ of G as 

X=eX'R*dd 

endowed with the Gauss-Manin connection. 
We now use the sheaf-theoretic analogue of Construction 5.1 to define the dual of VA 

over X and Xn as a direct factor in R*fa^fty/x cut out algebraic correspondences 
over Z(p). More precisely, we find an idempotent e\ in C(Y/X)^ realizing this cut 
out: 

VX=eX'R*fs*ni/x 

The construction is in four steps: 

1) Project P#/S*^y/x to (Vi)®s. This is realized by the Liebermann trick. 
Since Y is an abelian scheme, we have 

R* fs *&y/x ~ fK-R1 fs*Qy/x 

Moreover, by Kiinneth formula, one has 

RifsM-Y/x = m®s 

Therefore, 

R*fs*Qy/x ~ 
0£j1<2g,...,0<js<2g 

AV!V(8)--.® AV!V 

The summand corresponding to ( j i , . . . , ja) in the decomposition above is the ker­
nel of the correspondences on Y given by [mi]* x • • • x [ms]* — ra-j1 • • -m ŝ for all 
mi , . . . ,ms G Z. Recall that we assumed also p > 5, hence max(d, 4) < p — 1 implies 
for any g ^ 1 that 2g < p — 1. Hence for any a = 1,..., s, we have ja < p — 1. 
Therefore by choosing (mi,.. . ,ms) suitably (that is, with coordinates generating 
(Z/pZ)x), we can construct an idempotent e\ in C(Y/X)(V\ (of degree 0) such that 

e i . f l * / . n w dssd W= vi • 
Then, we realize the contractions 0Z,/s and their duals V ĵ's denned in Sect. 5.1.1, 

as algebraic correspondences in C(Y/X)(P). 
2) The ipi/s: 
For any t ^ I, let Yt = A x x - - * x A, t times, and ft:Yt—>X the corresponding 

structural map. We abbreviate Ys = Y. Let pij : Y Ax Abe the projection to the 
ith and jth components. Consider the Poincaré divisor P in A xx A (corresponding 
to the Poincaré bundle). 

Definition 9. — The de Rham polarisation \£p G V^®2 is defined as the projection of 
C\AXA{P) G R2f2,*tt*A2/X to (Rf*n*A/x)®2 given by the Runneth formula. 
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Consider the pull-back of P by pij\ it is a divisor Pij in Y. By 5.2.1, it defines a 
degree 2 endomorphism [Pij] of i?*/s*^y/x* We have a commutative diagram 

YV ®s-2 Rs /s-2^v_0/YC RS fs,*^Y/x 

фр.-,-
ï?V <S>s 

-UCKPij) 

• RS fs,*&>Y/X 

where the horizontal arrows are given by Kunneth formula, and ^!p,%j consists in 
inserting f p at ith and jth indexes. Therefore, the morphism ^p,ij is induced by 
the divisor Pij. 

3) The <t>ij^s\ Consider the self-intersection 2g — 1 times of P; it is a 1-cycle on 
A x A. Take its pull-back to Y by the projection pij : Y —» A x A and again to 
Y xx Y by the first projection p\ : Y Xx Y —> Y. Then, intersect this with the 
pull-back of the diagonal As_2 in the self-product of the remaining s — 2 copies of A 
in Y. The resulting cycle Zpjj is codimension 6 — 1 in Y xx Y; therefore, it gives 
rise to a degree —2 endomorphism of the cohomology. 

Definition 10. — Let 3>p : Y^®2 —• £)x be the linear dual of the projection to 

(iJ2^-1/.^/^)®2 by Kunneth formula of cliP^-1) e R^~A{f x f)M9AxA/x-

Consider the contraction $pji><7- : V^®8 -> V^0a"2 by $P at indexes i and j . We 
have a commutative diagram: 

YV 0s 

dddjs 

YV <g>s-2 

P fs,*^Y/X 

sd d s 

y PS 2 fs,*^Y/X 

Thus, ^p,i,.7 is given by the correspondence Zpjj. 
4) Apply the Young symmetrizer c\ to V ^ ^ . This projector has Z(p)-coefficients 

and belongs to a group algebra of automorphisms of f3, hence defines an element of 
C{Y/X) as in 5.2.1. 

Let us summarize the above constructions. For any dominant weight À of G such 
that |A| < p, we associate a coherent locally free Ox-module VA such that 

- Vi = R1f*^\/x 1S associated to the standard representation. 
- V% 0z(p) C is the classical complex automorphic bundle associated to A (see for 

example [13] p. 222). 
- Let us consider the additive functor V —> VV from the semisimple category of 

G-representations over Z(p) of p-small weights to the category of coherent locally free 
Ox-modules defined as above for simple objects. It is a functor of abelian categories 
which commutes with tensor products and duality. This functor sends the ^ j ' s 
resp. ipij of Sect. 5.1.1 to the $i,/s resp. ^ij of the present section. 
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11.3. The Gauss-Manin connection. — Over C, the automorphic vector bundle 
VA(C) over Su carries a natural integrable connection given by the monodromy action 
G(Q) —> Aut(VA), 9 (v *-> g - v), where V\ est the irreducible G(C)-representation 
of highest weight A. We call this connection the monodromy connection. To get 
an algebraic connection on the algebraic locally free Ox-module V^, we first note 
that the sheaves H™K(Y/X) = i?m/s,*Oy/x are naturally endowed with the Gauss-
Manin connection ([49]). We claim that this connection induces after analytification, 
the monodromy connection. Indeed, we have just to verify this compatibility on 
H¿R(A/X) = Rlf*£l\iX. This implies in particular that the Gauss-Manin connection 
commute to the idempotent used to define V(C). 

Corollary 6. — Over Z(P), the Gauss-Manin connection on commutes to algebraic 
correspondences and therefore induces an integrable connection onV\ (\\\ < p). 

Proof — Note that WdR is locally free, hence commutes to base-change: Cor. 2 
Chap. 2.5 of [55]. We may replace ZP by C and the assertion follows from the discus­
sion above. 

11.4. Canonical extension to toroidal compactification over Z(P). — In the 
complex setting, Mumford ([56], see also [13], section VI.4) define a canonical ex­
tension VA(C) over X(C) of the automorphic vector bundle VA(C). AS explained by 
Harris ([37], (4.2.2)), this canonical extension is the extension provided by Deligne's 
existence theorem. As the toroidal extension is defined over Q, we deduce that the 
extension is also defined over Q, we denote by VA,Q this extension over Q, viewed 
as a coherent locally free module over XQ = X <&zp Q- To extend this automorphic 
sheaves to Z(P), we proceed as follows. 

First, consider 

A 
i 

A 

f f 

s d 

(for the construction of A over Z[1/JV], see Th. 1.1 of IV.l [13]) then, the canonical 
extension Vi of the standard sheaf Vi = i î 1 / * ^ / * to X is 

Vi =i?7Ä/v(logOO-r/Y) 

(where fî^-^(logoo^^) denotes the complex of relative differentials with relative 
logarithmic poles as defined in section 4.3). 

For s < p, let fs : Y X be a toroidal compactification of fs : Y —> X. Consider 
the coherent sheaf Rsfs ^ ^ ^ ( l o g oo); by [44] Cor. 2.4, the assumption s < p implies 
that it is locally free. Moreover, by Step 1 of Section II.2 in this Appendix, its restric­
tion to X is associated to the representation f\s{V®s). By the unicity of the canonical 
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extension, Rs f s *Çly^(log oo) coincides with the image of this representation by the 

functor Vzp over Zp defined in section 5.2.3. 
Then, for a dominant weight A such that |A| = s < p, the representation VA is a 

direct factor of f\s{V®s) (see Cor. 1 of Sect. 5.1.1). Therefore its image by the functor 
Vzp is a direct factor in Rs f 3 ^fty ^(log oo) which is locally free. This shows that 

the canonical extension VA is locally free. 
By the calculations of Section II.2 of this Appendix, we see moreover that VA can 

also be defined as 

VA = 3* VA,Q N RS7s ̂ y/x (loS °°) 

where j : XQ —> X is the open immersion of the generic fiber XQ in X. 
VA is a coherent locally free C^-module, direct factor of Rsfs*Qy^— (logoo) and 

VA ®ZP Q = VA,Q. Moreover the Gauss-Manin connexion induces an integrable con­
nection on VA- Note that this definition is legitimate by the semisimplicity of the 
category of G-représentions over Z(p) with p-small weight (Lemma 7 of Sect. 5.1.1 
with G instead of M). 

Remark. — A better way to extend this automorphic sheaves is to extend the idempo-
tents e\ to the toroidal compactification: if y is a scheme and Y is an open subscheme, 
then there is an exact sequence ([31] 1.1.8): 

A.(Y - Y) — A.(Y) — A.(Y) 0 

The natural way to extend a cycle of y to F is to take it's closure. In the case of a 
toroidal imbedding, Lemma 3.1. of [37] suggest to consider the normalization of the 
closure. So we obtain correspondances e~\ over Y. Unfortunately, we can not see that 
e~\ is an idempotent. The problem is that the closure of the intersection of two cycles 
is not equal, in general, to the intersection of the closure of this cycles. 

II.5. Automorphic bundles for the Levi M. — To every ^M-dominant weight 
/x, one can also associate W^N, a locally free Oxn-module; it is called the automorphic 
bundle attached to p. The construction is similar to the one sketched above. Consider 
the semiabelian scheme fg : G —> X associated to our fixed toroidal compactification 
(see Th. 5.7, Chap. IV of [13]), which extends the universal abelian surface f : A—> X. 
Then, the automorphic bundle on XN associated to the standard representation W\ is 
Lie(A/Xn)v, and by part (3) of Theorem 5.7 of [13] mentioned above, its canonical 
extension W ,̂n is Lie(£/Xn)v. Then one uses the same trick as above to construct 
WM)n from the tensor product of Lie(C?/Xn)v by itself s-times. We note here that we 
can use the result of Harris ([37], Th. 4.2) to recover the rationality of the canonical 
extension of such automorphic vector bundles. 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2002 



92 A. MOKRANE & J. TILOUINE 

References 

[1] A. Ash, D. Mumford, M. Rapoport, Y.S. Tai: Smooth compactification of locally sym­
metric varieties, Math. Sci. Press., Brookline, 1975. 

[2] A. A. Beilinson, J. Bernstein, P. Deligne: Faisceaux pervers, Astérisque 100 (1982). 
[3] I.N. Bernstein, I.M. Gelfand, S.I. Gelfand: Differential operators on the base affine space 

and a study of the g-modules, in Lie Groups and their Representations, ed. I.M. Gelfand, 
Proc. Conf. Budapest 1971, Adam Hilger Publ., London, 1975. 

[4] P. Berthelot, A. Ogus: Notes on crystalline cohomology, P.U.P., Princeton, 1978. 
[5] A. Borei: Stable real cohomology of arithmetic groups, Ann. Sci. Éc. Norm. Sup. (4) 7 

(1974) 235-272. 
[6] A. Borei: Stable and L2-cohomology of arithmetic groups, Bull. Am. Math. Soc, (N.S.) 3, 

(1980), 1025-1027. 
[7] A. Borei: Regularization theorems in Lie algebra cohomology, applications, Duke 

Math. J. 50 (1983), 605-623. 
[8] A. Borei, N. Wallach: Continuous cohomology, discrete subgroups, and representations 

of reductive groups, P.U.P. 1980. 
[9] D. Blasius, M. Harris, D. Ramakrishnan: Coherent cohomology, limits of discrete series 

and Galois conjugation, Duke Math. J. 73, 1994, 647-684. 
[10] D. Blasius, J.D. Rogawski: Motives for Hilbert modular forms, Inv. Math. 114, (1993) 

55-87. 
[11] C. Breuil: Une remarque sur les représentations locales p-adiques et les congruences 

entre formes modulaires de Hilbert, Bull. Soc. Math. France 127 (1999), no. 3, 459-472. 
[12] N. Bourbaki: Groupes et Algèbres de Lie, Chap. 7, 8, Hermann 1975. 
[13] C.L. Chai, G. Faltings: Degeneration of Abelian Varieties, Erg. Math. Wiss. 3. folge, 

22, Springer Verlag, 1990. 
[14] L. Clozel: Motifs et formes automorphes: application du principe de fonctorialité, in 

Proc. Ann Arbor Conf. (Automorphic Forms, Shimura Varieties and L-functions, vol. I 
and II, Eds. L. Clozel, J.S. Milne), vol. I, 77-159., Persp. in Math., Acad. Press 1990 

[15] P. Deligne: Travaux de Griffiths, Sém. Bourbaki exp. 376, LN 180, Springer Verlag 1972. 
[16] F. Diamond: The Taylor-Wiles construction and multiplicity one, Inv. Math. 128, (1997) 

379-391. 
[17] M. Demazure, A. Grothendieck: Schémas en groupes III (SGA 3, 1962/64), Springer 

Lect. Notes 153, Springer Verlag, 1970. 
[18] R. Deheuvels: Formes quadratiques et groupes classiques, PUF, Paris 1981. 
[19] M. Dimitrov: Valeur critique de la fonction L adjointe d'une forme modulaire de Hilbert 

et arithmétique du motif correspondant, thèse Paris 13, 2003. 
[20] F. El Zein: Complexe dualisant et applications à la classe fondamentale d'un cycle, 

Mémoire de la SMF 58, 1978. 
[21] G. Faltings: On the cohomology of locally symmetric hermitian spaces, in Séminaire 

d'Algèbre, pp. 349-366, Springer Lecture Notes 1029, 1983. 
[22] G. Faltings: Crystalline cohomology and p-adic Galois representations, in Algebraic 

Analysis, ed. J.-I. Igusa, Proc JAMI inaugural Conference, the Johns Hopkins Univ. 
Press, 1990. 

[23] G. Faltings: F-isocrystals on open varieties. Results and conjectures, in Grothendieck's 
Festschrift, Birkhäuser, 1990, Boston. pp. 219-248. 

ASTÉRISQUE 280 



COHOMOLOGY OF SIEGEL VARIETIES 93 

[24] J.-M. Fontaine, G. Laffaille: Construction de représentations p-adiques, Ann. Sci. Éc. 
Norm. Sup. (4), 15 (1982) 547-608. 

[25] J. Franke: Harmonic analysis in weighted L2-spaces, Ann. Sci. Éc. Norm. Sup. (4), 31 
(1998) 181-279. 

[26] E. Freitag: Siegeische Modulfunktionen, Grundl. Math. Wiss. 254, Springer Verlag 1983. 
[27] E. Freitag, R. Kiehl: Etale cohomology and the Weil Conjecture, Springer Verlag 1988. 
[28] K. Fujiwara: Level optimization in the totally real case, preprint 1999. 
[29] K. Fujiwara: Deformation rings and Hecke algebras in the totally real case, version 2.0, 

preprint 1999. 
[30] K. Fujiwara: Arithmetical compactifications of Shimura varieties, preprint. 
[31] W. Fulton: Intersection Theory, Erg. Math., Springer Verlag 1984. 
[32] W. Fulton, J. Harris: Representation Theory, Springer Verlag 1991. 
[33] A. Grothendieck, J. Dieudonné: Eléments de Géométrie Algébrique IV, Etude locale des 

schémas et des morphismes de schémas (seconde partie), Pub. Math. IHES 24 (1965). 
[34] G. Harder: unpublished notes, 1992. 
[35] G. Harder: Eisensteinkohomologie und die Konstruktion gemischter motive, SLN 1562, 

Springer Verlag 1993. 
[36] M. Harris: Automorphic forms of $-cohomology as coherent cohomology classes, J. Diff. 

Geom. 32, (1990) 1-63. 
[37] M. Harris: Functorial properties of toroidal compactifications of locally symmetric vari­

eties, Proc. London Math. Soc 59, (1989) 1-22. 
[38] M. Harris, R. Taylor: Deformations of automorphic Galois representations, preprint 

1998. 
[39] M. Harris, S. Zucker: Boundary Cohomology of Shimura varieties: Eisenstein classes 

in coherent cohomology, Ann. Sci. Éc. Norm. Sup. (4), 27 (1994), no. 3, 249-344. 
[40] H. Hida: On p-adic Hecke algebras for GL2 over totally real fields, Ann. of Math. 128 

(1988), 295-384. 
[41] H. Hida: Nearly ordinary Hecke algebras and Galois representations of several variables, 

in Algebraic Analysis, ed. J.-I. Igusa, Proc JAMI inaugural Conference, the Johns Hop­
kins Univ. Press, 1990. 

[42] H. Hida: Control Theorems of p-nearly Ordinary Cohomology Groups, Bull. Soc. Math. 
France 123, (1995) 425-475. 

[43] H. Hida: Control theorems for coherent sheaves on Shimura varieties of PEL type, 
preprint. 

[44] L. Illusie: Réduction semi-stable et décomposition de complexes de de Rham à coeffi­
cients, Duke Math. J. 60, (1990) 139-185. 

[45] L. Illusie: Cohomologie de de Rham et cohomologie étale p-adique (d'après G. Faltings, 
J.-M. Fontaine et al.), Séminaire Bourbaki, Exp. N0. 726, vol. 1989/90. Astérisque N0. 
189-190, (1990) 325-374. 

[46] J.C. Jantzen: Representations of algebraic groups, Acad. Press, 1987. 
[47] J.C. Jantzen: letter to the authors, May 11, 1998. 
[48] K. Kato: Logarithmic structures of Fontaine-Illusie, Algebraic Analysis, ed. J.-I. Igusa, 

Proc JAMI inaugural Conference, the Johns Hopkins Univ. Press, 1990. 
[49] N. Katz: Nilpotent connections and the monodromy theorem: applications of a result of 

Turrittin, Publ. Math. I.H.E.S. 39 (1971), 175-232. 
[50] N. Katz, W. Messing: Some consequences of the Riemann hypothesis for varieties over 

finite fields, Inv. Math. 23, (1974) 73-77. 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2002 



94 A. MOKRANE & J. TILOUINE 

[51] S. Kleiman: The Standard Conjectures, p. 3-20, in Motives, vol. I, PSPM 55, AMS 1994. 
[52] G. Laumon: Sur la cohomologie à supports compacts des variétés de Shimura pour 

GSp(4) / Q, Comp. Math. 105, (1996) 267-359. 
[53] G. Laumon: Fonctions zeta des variétés de Siegel de dimension trois, to appear. 
[54] B. Mazur, J. Tilouine: Représentations galoisiennes, différentielles de Kähler et conjec­

tures principales, Publ. Math. IHES 71, 1990. 
[55] D. Mumford: Abelian Varieties, Oxford Univ. Press 1970. 
[56] D. Mumford: Hirzebruch's proportionality theorem in the non-compact case, Inv. Math. 

42 (1977), 239-272. 
[57] A. Mokrane: Cohomologie cristalline des variétés ouvertes, Maghreb Math. Rev., 2, 

(1993) 161-175. 
[58] R. Pink: Arithmetical compactification of mixed Shimura varieties, Dissertation, Bonn 

1989. 
[59] R. Pink: On l-adic sheaves on Shimura varieties and their higher direct images in the 

Baily-Borel compactification, Math. Ann. 292, (1992) 197-240. 
[60] B. Perrin-Riou: Representations p-adiques ordinaires, in Périodes p-adiques, Astérisque 

223, 1994. 
[61] P. Polo, J. Tilouine: Bernstein-Gelfand-Gelfand complexes and cohomology of nilpotent 

groups over Zp, this volume. 
[62] K. Ribet: On l-adic representations attached to modular forms, Inv. Math. 28 (1975) 

245-275. 
[63] B. Roberts: Non-vanishing of global theta-lifts from orthogonal groups, preprint, 1999. 
[64] B. Roberts: letter to the authors, 21/07/99. 
[65] B. Roberts: Global L-packets for GSp(2) and theta lifts, Documenta Mathematica, 6 

(2001), 247-314. 
[66] T. Saito: Hilbert modular forms and p-adic Hodge theory, preprint, April 1999. 
[67] J. Schwermer: On Euler products and residual Eisenstein cohomology classes for Siegel 

modular varieties, Forum Math. 7 (1995), 1-28. 
[68] G. Shimura: A reciprocity law in non-solvable extensions, J. reine ang. Math., 221 

(1966), 209-220. 
[69] G. Shimura: On the Eisenstein series of Hilbert Modular Groups, Rev. Matematica 

Iberoamericana, 1 , (1985 no. 3, 1-42. 
[70] T.A. Springer: Reductive groups, in Automorphic Forms, Representations, and L-

functions, Corvallis, PSPM XXXIII, t. 1, AMS 1979. 
[71] R. Taylor: Galois representations associated to Siegel modular forms of low weight, Duke 

Math. J. 63, (1991) 281-332. 
[72] R. Taylor: On the l-adic cohomology of Siegel threefolds, Inv. Math. 114, (1993) 289-310. 
[73] R. Taylor, A. Wiles: Ring-theoretic properties of certain Hecke algebras, Ann. Math. 

141, (1995) 553-572. 
[74] SGA4: M. Artin, A. Grothendieck, J.-L. Verdier: Théorie des topos et cohomologie 

étale des schémas, Lect. Notes in Math. 305, Springer Verlag 1972-73. 
[75] SGA41/2: P. Deligne et al.: Cohomologie Étale, Lect. Notes in Math. 569, Springer Verlag 

1977. 
[76] J. Tilouine: Deformations of Galois representations and Hecke algebras, Narosa Publ., 

New Delhi 1996. 
[77] J. Tilouine, E. Urban: Several variable p-adic families of Siegel-Hilbert cusp eigensys-

tems and their Galois representations, Ann. Sci. Ec. Norm. Sup. (4), 32, (1999) 499-574. 

ASTÉRISQUE 280 



COHOMOLOGY OF SIEGEL VARIETIES 95 

[78] T. Tsuji: Syntomic complexes and p-adic vanishing cycles, J. reine angew. Math. 472, 
(1996) 69-138. 

[79] E. Urban: On the torsion of the cohomology of the Siegel threefold, preprint 1998. 
[80] E. Urban: Sur les représentations p-adiques associées aux représentations cuspidales de 

GSp(4)Q, preprint 1998. 
[81] M.-F. Vignéras: Correspondances entre représentations automorphes de GL(2)sur une 

extension quadratique et GSp(4) sur Q, Conjecture locale de Langlands pour GSp(4) in 
Proc. Bowdoin Conf. (1984): "The Selberg Trace Formula and Related Topics", eds. D. 
Hejhal, P. Sarnak, A. Terras, Cont. Math. Ser. 53, 1986, AMS Publ., Providence RI. 

[82] D. Vogan, G. Zuckermann: Unitary representations with non-zero cohomology, Comp. 
Math. 53 (1984), 51-90. 

[83] N. Wach: Représentations cristallines de torsion, Comp. Math. 108, (1997) 185-240. 
[84] J.-L. Waldspurger: Cohomologie des espaces de formes automorphes, d'après J. Franke, 

Séminaire Bourbaki, Exp. 809, Astérisque 241, 1997. 
[85] N. R. Wallach: On the constant term of a square integrable automorphic form, in Proc. 

Conf on Operator Algebras and Group Representations, held in Neptun (Romania), 
Eds. Arsene, Stratila, Verona, Voiculescu; Monographs and Studies in Mathematics, 
Pitman Publ., London 1984. 

[86] R. Weissauer: An application of the hard Lefschetz theorem, preprint 1996. 
[87] R. Weissauer: Four dimensional Galois representations, preprint, 1996. 
[88] A. Wiles: On p-adic representations for totally real fields, Ann. Math. 123, (1986), 

407-456. 
[89] A. Wiles: On $-adic representations associated to modular forms, Inv. Math. 94, (1988), 

529-573. 
[90] H. Yoshida: Siegel's modular forms and the arithmetic of quadratic forms, Inv. Math. 

60, (1980) 193-248. 
[91] H. Yoshida: Letter to the authors, August 3, 1999. 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2002 


