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BERNSTEIN-GELFAND-GELFAND COMPLEXES 
AND COHOMOLOGY OF NILPOTENT GROUPS OVER Z(p) 

FOR REPRESENTATIONS WITH p-SMALL WEIGHTS 

by 

Patrick Polo & Jacques Tilouine 

Abstract. — Given a connected reductive group defined and split over we 
study Bernstein-Gelfand-Gelfand complexes over Z(p) and prove a Z (p)-analogue of 
Kostant's theorem computing the n-homology of the Weyl module V(A), when À 
belongs to the closure of the fundamental p-alcove. 
Résumé (Complexes de Bernstein-Gelfand-Gelfand et cohomologie de groupes nilpotents sur 
Z (p) pour les représentations de poids p-petits) 

Étant donné un groupe réductif connexe défini et déployé sur Z, nous étudions 
certains complexes de Bernstein-Gelfand-Gelfand sur Z(p) et établissons un analogue 
sur Z(p) d'un théorème de Kostant, en calculant la n-homologie du module de Weyl 
V{\) lorsque À appartient à l'adhérence de la p-alcôve fondamentale. 

Introduction 
Let G be a connected reductive linear algebraic group denned and split over Z, let 

T be a maximal torus, W the Weyl group, R the root system, Ry the set of coroots, 
i?+ a set of positive roots, and p the half-sum of the elements of R+. Let X = X(T) 
be the character group of T and let X+ be the set of those A G X such that (A, av) ^ 0 
for all a e R+. 

For any A G X+, let Vz(A) be the Weyl module for G over Z with highest weight 
A (see 1.3) and, for any commutative ring A, let VA(A) = Vz(A) ®z A. 

Let p be a prime integer and let 

Cp:={i /GX|0^( i / + p,/?vKp, V/?Gi?+}, 

the closure of the fundamental p-alcove. 
The aim of this paper is to prove that several results about VQ(A), due to Kostant 

[33], Bernstein-Gelfand-Gelfand [3], Lepowsky [37], Rocha [46], and Pickel [43], hold 
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98 P. POLO & J. TILOUINE 

true over Z(p) when A G X+ D Cp : this is the precise meaning of the notion of 
p-smallness mentioned in the title. 

In more details, let B be the Borel subgroup corresponding to R+, let P be a 
standard parabolic subgroup containing B, let P~ be the opposed parabolic subgroup 
containing T, let Up be its unipotent radical, and let L = P n P~, a Levi subgroup. 
Let RL be the root system of L, let P j = RLc\ P+, and 

X + I <£,aV)>0, Va € 

For any £ G and any commutative ring A, let V^(£) be the Weyl module for L 
over A with highest weight £. 

Let 0,p,Up be the Lie algebras ove.- Z of G,P,Up, respectively, and let U(g) and 
U(p) be the enveloping algebras of 9 and p. For £ G , consider the generalized 
Verma module 

Mpz(£) := U(g) ®u(p)Vf{Ç) 

For any commutative ring A, let Mj^(£) = Mjf (£) ®z A 
Let A/" - |P+| and, for i = 0 , 1 , . . . , N, let W(i) := {w e W \ £(w) = i}, where ^ 

denotes the length function on W relative to B. Further, let 

WL = {weW\wX+ ÇX+} and WL(i) :=WLnW(i). 

After several recollections in Section 1, we prove in Section 2 the following Theorem 
(under certain restrictions on G and p, see 2.8). 

Theorem A. — Let A G X+ n CP. T/iere e:ns£s an exact sequence of U{g)-modules: 

0 — £>N(A) — > D0(X) —+ VZ(p)(\) — 0, 

w/iere eac/i ^ ( A ) admits a finite filtration of U(g)-submodules with associated graded 

g r A ( A ) ^ 
w€WL(i) 

M:W(W(X + P)-O). 

That is, following the terminology introduced in [46], Vz{p)(\) admits a weak gen­
eralized Bernstein-Gelfand-Gelfand resolution. From this, one obtains immediately 
the following (see 2.1 and 2.9). 

Theorem B (Kostant's theorem over Z(p)). — Let A G X4" n Cp. For each i, there is 
an isomorphism of L-modules: 

Hi(Up,VZw(X)) ^ 
>i>ewL(i) 

vLAw(x + p)-P). 

Let T := Up(Z) be the group of Z-points of Up, it is a finitely generated, torsion 
free, nilpotent group. By a result of Pickel [43], there is a natural isomorphism 
H*(xip, VQ(A)) = iJ*(r, VQ(A)). In Section 3, we prove a slightly weaker version of 
this result over Z(p) when A is p-small (see 3.8). 
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BERNSTEIN-GELFAND-GELFAND COMPLEXES 99 

Theorem C. — Let A G X+ n Cp. For each n^O, Hn(Up (Z), Vz(p) (A)) has a natural 
LCL)-module filtration such that 

grHn(U^(Z),Vz. ,(A))S 
1l)(^WL(rìì 

V? (w(\ + o)-ó). 

The proof of this result has two parts. In the first, we develop certain general results 
valid for any finitely generated, torsion free, nilpotent group T. In particular, using 
a beautiful theorem of Hartley [22], we obtain in an algebraic manner a spectral 
sequence relating the homology of a certain graded, torsion-free, Lie ring grisolr 
associated with T to the homology of T itself, the coefficients being a T-module with 
a "nilpotent" filtration and its associated graded (see Theorem 3.5). This gives a 
purely algebraic, homological version (with coefficients) of a cohomological spectral 
sequence obtained, using methods of algebraic topology, by Cenkl and Porter [9]. In 
fact, our methods also have a cohomological counterpart. This will be developped in 
a subsequent paper [44]. 

In the second part of the proof, we first show that in our case where T = Up (Z), 
one has grisol T = Up, and then deduce from the truth of Kostant's theorem over Z(p) 
that the spectral sequence mentioned above degenerates at E\. 

Next, in Section 4, we obtain a result a la Bernstein-Gelfand-Gelfand concern­
ing now the distribution algebras Dist(G) and Dist(P). In this case, there exists a 
standard complex (not a resolution!) 

S.(G, P, A) = Dist(G) ®Dist(P) (A-(0/p) <8> VZ(X)). 

For £ G X£, consider the generalized Verma module (for Dist(G) and Dist(P)) 

MZP(0 := Dist(G) ®Di8t(P) ViL(0, 

and, for any commutative ring A, set S^(G, P, A) = *S#(G, P, A) ®z A and Mp{£) = 
Ml(£) ®z A. 

Under the assumption that Up is abelian, we obtain, by using an idea borrowed 
from [16, §VI.5] plus arguments from Section 2, the following result (see 4.3). Let 
VG denote the derived subgroup of G. 

Theorem D. — Assume thatVG is simply-connected, that X(T)/ZR has no p-torsion 

and that Up is abelian. Let A G X+ fl Cp. Then the standard complex S.(p) (G, P, A) 
contains as a direct summand a subcomplex C.(p) (G, P, A) such that, for every i > 0, 

cf(p)(G,P,A)S 
wewL{i) 

Mp(p)(w(A + p)-/>). 

Presumably, the hypothesis that Up be abelian can be removed, but the proof 
would then require considerably more work. Since the abelian case is sufficient for the 
applications in the companion paper by A. Mokrane and J. Tilouine [39], we content 
ourselves with this result. We hope to come back to the general case later. 
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100 P. POLO & J. TILOUINE 

To conclude this introduction, let us mention that the results of this text are used 
in [39] in the case where G is the group of symplectic similitudes. In this case, 
VG is simply-connected and ZR is a direct summand of X(T). When P is the Siegel 
parabolic, Theorem D occurs in [39, § 5.4] as an important step to establish a modulo p 
analogue of the Bernstein-Gelfand-Gelfand complex of [16, Chap.VI, Th. 5.5], while 
Theorem C (in its cohomological form) is used in [39, §8.3] to study mod.p versions 
of Pink's theorem on higher direct images of automorphic bundles. 

The notations of [39] follow those of [16] and are therefore different from the ones 
used in the present paper, which are standard in the theory of reductive groups. A 
dictionary is provided in the final section of this text. 

Acknowledgements. — We thank the referee for his/her thoughtful reading of the 
manuscript and for several valuable suggestions (including references [4] and [29]). 
We also thank Jens Carsten Jantzen for providing us with a copy of his article [29]. 

1. Notation and preliminaries 

1.1. Let G be a connected reductive linear algebraic group, defined and split over 
Z. Let T be a maximal torus, W the Weyl group, R the root system and Rv the set 
of coroots. Fix a set A of simple roots, let R+ and R~ be the corresponding sets of 
positive and negative roots, and let B, B~ denote the associated Borel subgroups and 
[/, U~ their unipotent radicals. (For all this, see, for example, [11] or [28, § II. 1]). 

Let X — X(T) (resp. Xv = XV(T)) be the group of characters (resp. cocharacters) 
of T, and denote by ( , ) the natural pairing between them. Elements of X will be 
called weights, in accordance with the terminology in Lie theory. Let ^ denote the 
partial order on X defined by the positive cone that is, p ^ A if and only if 
A — p G NR+. Let ZR c X be the root lattice and let p be the half-sum of the positive 
roots; it belongs to X 0 Z[l/2]. Define, as usual, the dot action of W on X by 

w - A = w(X -f p) — p, 

for A G X, w e W. It is easy to see that wp — p G ZR: applying w to the equality 
2p = J2BGR+ ^ and substracting, one obtains the well-known formula 

(*) o — wo = 
peR+,w-1/3eR-

Therefore, denoting by N(w) the term on the right hand-side of (*), one may also 
define the dot action by the formula 

w • A = wX — N(w), 
from which it is clear that w • A does indeed belong to X. 

Let X+ be the set of dominant weights: 

X+ := {A G X | Va G #+, (A,av) ^ 0}, 
where av denotes the coroot associated with a. 
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1.2. Enveloping and distribution algebras.— Let g = Lie(G) (resp. t = Lie(T)) 
be the Lie algebra of G (resp. T); they are finite free Z-modules. Let U(g) denote the 
enveloping algebra of g over Z, and let Dist(G) denote the algebra of distributions of 
G (see [28, Chap. 1.7]). If G is semi-simple and simply-connected, Dist(G) coincides 
with the Kostant Z-form of U(g) ([34]), see [28, §11.1.12] or [5, VIII, §§ 12.6-8]. We 
shall denote it by Uz{g) or simply U(g); sometimes it will also be convenient to denote 
i tby%(G). 

Similarly, if H is a closed subgroup of G defined over Z, we shall denote Dist(i7) 
also by Uz(H). 

By an if-module we shall mean a rational if-module, that is, a Z[ff]-comodule. 
More generally, for any commutative ring A, an if^-module means an A-module with 
a structure of A[H]-comodu\e. If V is an ii-module, then, as is well-known, V is also 
an Uz(H)-modu\e and a fortiori an U(Lie(H))-modu\e. 

If M is a T-module, it is the direct sum of its weight spaces MA, for A G X, see, 
for example, [28, §1.2.11]. 

For future use, let us record here the following 

Proposition. — Let P be a standard parabolic subgroup of G, let V be a finite dimen­
sional Pq-module and let M be a Z-lattice in V. Then M is a P-submodule if and 
only if it is an Uz(P)-submodule. 

Proof. — Without loss of generality we may assume that P contains B. Let P~ be 
the opposed standard parabolic subgroup and let Up be its unipotent radical. By the 
Bruhat decomposition, the multiplication map induces an isomorphism of Up x B 
onto an open subset of P, see, for example, [28, §11.1.10]. This implies that the 
arguments in [28, II.8.1] are valid for P, and the proposition then follows from [28, 
1.10.13]. 

1.3. Weyl modules.— For A G X + , let VQ(A) denote the irreducible GQ-module 
with highest weight A, and let Vz(\) be the corresponding Weyl module over Z; that 
is, 

VZ(A) :=Uz{G)vx 

is the £Yz(G)-submodule generated by a fixed vector v\ ^ 0 of weight A. It is a 
G-module by Proposition 1.2 above. Of course, up to isomorphism, Vz(A) does not 
depend on the choice of v\. For future use, let us also record the following (obvious) 
lemma. 

Lemma. — Let M be a Z-free, G-module and v G M an element fixed by U and of 
weight A. Then the submodule Uz{G)v is isomorphic to Vz(A). 

Proof. — The Z//Q(G)-submodule of M 0 Q generated by v is isomorphic to VQ(A). 
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102 P. POLO & J. TILOUINE 

1.4. Contravariant duals.— Let us fix an anti-involution r of G which is the 
identity on T and exchanges B and B~ (see [28, II.1.16]). Then r induces anti-
involutions on Ui{G), on q and on £/z(fl)> which we denote by the same letter r. 

For any ring A and G^-module V, let us denote by VT the A-dual Hom^(V, A), 
regarded as a GA-module via r. It may be called the "contravariant dual" of V, as 
for V = Vz(X) this is closely related to the so-called "contravariant form" on Vz(A); 
see [28, II.8.17] and the discussion in the next subsection 1.5. 

Note that if V is a free A-module, the weights of T in V and Vr are the same. In 
particular, the irreducible GQ-modules VQ(A) and VQ(X)T are isomorphic. 

1.5. Admissible lattices.— For use in the companion article by Mokrane and 
Tilouine [39] and also in the next subsection, let us discuss some properties of admis­
sible lattices. Of course, this is fairly well-known to representation theorists, but we 
spell out the details for the convenience of readers with a different background. 

As noted above, we may identify VQ(X) — VQ(A)t. Under this identification, Vq(X) 
becomes equipped with a non-degenerate, G-invariant bilinear form ( , ) such that 

(*) (gv,v') = (v1T(g)vf) and (Xv,v') = {V,T{X)V'), 

for v,v' G VQ(A), g G G, X G Uz(G). (This is the contravariant form mentioned in 
the previous subsection). 

Let us fix, once for all, a non-zero vector v\ G VQ(A)A- The identification Vq(X) = 
VQ(A)t may be chosen so that (v\,v\) — 1. 

Recall that a Z-lattice C C VQ(A) is called an admissible lattice if it is stable under 
Uz(G). By Proposition 1.2, this implies that £ is a G-module and is therefore the 
direct sum of its T-weight spaces. 

Let £ (A) denote the set of admissible lattices £ C VQ(A) such that C Pi VQ(A)A = 

7Lv\. Clearly, Vz(X) := Uz{G)v\ is the unique minimal element of E(A). 
For any C G £(A), the dual G-module Cr identifies with 

{x G VQ(A) I (x,C) C Z } . 

It follows from (*) that Cr is an admissible lattice, and since {v\,v\) = 1 it belongs 
to £(A). Therefore, Cr D Vz(\) and hence C C Vz(X)T. Let us record this as the next 

Lemma. — The set of admissible lattices C C Vq{\) such that C D VQ(A)A = Z^A 

contains a unique minimal element, Vz(X), and a unique maximal element, Vz(X)R. 

The above minimal and maximal lattices are denoted by V(A)min and V(X)MAX in 
[39] and in Section 5 below. 

1.6. Weyl modules and induced modules.— Let us recall the definition of the 
induction functor Ind^L. For any B"-module M, 

Indg-(M) := (Z[G]0M)B_, 
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where Z[G] is regarded as a GxB~-module via ((#, 6)0) (gf) = </>(#-1</&), for € G, 
b G i?~ and where the invariants are taken with respect to the diagonal action of B~; 
it is a left exact functor, see [28, §1.3.3]. As in [28, §11.2.1], we shall denote simply 
by Hl( ) the right derived functors RlInd(£-( ) . 

Let \ e X; it may be regarded in a natural manner as a character of either B~ 
or B. Moreover, since r is the identity on T, one has X(r(b)) = X(b) for any b G B~. 

For any ring A, let us denote by A\ the free ^-module of rank one on which B~ 
acts via the character A. Then, 

H°(AX) = {<t> G A[G] | cf>(gb) = A ^ " 1 ) ^ ) , V g e G . b e B~}. 

Proposition. — Let A G X+. 
a) H°(Zx)^Vz(\y. 
b) If k is a field, H°{kx) = #°(ZA) 0 fc ^ Vfc(A)R. Thus, in particular, VK(X) is 

irreducible if and only if H°(k\) is so. 

Proof. — First, by flat base change ([28, 1.3.5]), one has H°(ZX) <g> Q = # ° ( Q A ) . 

Moreover, JT°(QA) — Vq(X), by the theorem of Borel-Weil-Bott (see, for example, 
[28, II.5.6]). 

Further, since Z[G] is a free Z-module (being a subring of Z[U] ® Z[P-]), so is 
H°(Z\). Therefore, H°(ZX) may be identified with a G-submodule of VQ(A), and the 
identification may be chosen so that H°(ZX) D VQ(X)\ = ZvXl i.e., so that H°(ZX) 
belongs to £ (A). 

Now, there is a natural G-module map 4>: Vz(A)R —• H°(Z\) defined by 

Xl—> (^^ (^r^-1)^)) . 

Moreover, since V%(X) is generated by vx as a G-module, (j) is injective. Since V^(A)R 

is the largest element of £(A), this implies that (j) induces an isomorphism Vz(X)T = 
H°(Z\). This proves assertion a). 

Let us prove assertion b). For each i ^ 0, there is an exact sequence 

0 —-> Hi(Z\) ® k —• H\kx) —+ Toiz(Hi+1(Zx),k) —+ 0, 

see [28,1.4.18]. Next, by Kempf's vanishing theorem ([28, II.4.6]), one has Hl{Zx) = 0 
for i ^ 1. The first isomorphism of assertion b) follows. Finally, the second is a 
consequence of assertion a) and the natural isomorphisms 

Homz(Fz(A),Z)0k~ Homz(Fz(A),k) = RomK(VK(X),k). 

This completes the proof of the proposition. 

1.7. Parabolic subgroups and unipotent radicals.— Now, let P be a standard 
parabolic subgroup of G containing P, let L be the Levi subgroup of P containing T, 
and let P~ be the standard parabolic subgroup opposed to P, that is, P~ is the 
unique parabolic subgroup containing B~ such that P~ DP = L. 
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Let Up (resp. Up) denote the unipotent radical of P~ (resp. P) and let Up = 
Lie(JTp), Up = Lie(Up) and p = Lie(P). Then Up, up and p are free Z-modules and 
0 = p ® Up. Thus, in particular, g/p is a free Z-module. 

Further, if V is a P-module then, by standard arguments, the homology groups 

Hi(vLp,V) :=Tov^\z,V) 

carry a natural structure of L-modules. For example, they can be computed as the 
homology of the standard Chevalley-Eilenberg complex A*(Up) <g) V, which carries a 
natural action of L. 

For any commutative ring A, we set VA(A) := Vz(\) ® A and QA := 9 0 A The 
enveloping algebra of £u identifies with t/"z(fl) 0 4̂ and is denoted by UA(&)- One 
defines similarly UA(U~P) and UA(Q), etc... 

Since C/z(Up) is a free Z-module, one has, for every i ^ 0, 

TorfA(u;)(A,yA(A)) s 1brfz(u?)(Z, Vk(A)). 

We shall denote these groups simply by i^(up, VA(A)); as noted above they are LA-
modules. 

Our goal in Section 2 is to show that celebrated results of Kostant ([33, Cor. 8.1]) 
and Bernstein-Gelfand-Gelfand ([3, Th. 9.9]), which describe respectively, for any A G 
X+, the L-module structure of if#(Up, VQ(A)) and a minimal t/Q(Up)-resolution of 
VQ(A), hold true when Q is replaced by Z(p), for any prime integer p such that 

p^ (A + p,av), VaGP+. 

1.8. Weyl modules for a Levi subgroup.— We need to introduce more notation. 
Let WL and RL denote the Weyl group and root system of L, and let := RL^R±-

Let X£ denote the set of L-dominant weights: 

Xl := {A G X | Va G P j , (A, av) > 0}. 

Let WL := {w eW \ wX+ C X^}. It is well-known, and easy to check, that WL 
is also equal to {w G W | u>_1Pj C P+}. 

Let ^ and ^ denote the length function and Bruhat-Chevalley order on W associ­
ated with the set A of simple roots. Then, for i > 0, set 

W{i):={weW\£(w)=i} and WL(i) := WL HW(i). 

For any £ G , let VQ'(^) denote the irreducible LQ-module with highest weight £ 
and let V^(£) be the corresponding Weyl module for L. Observe that VQ^) (and 
then V^L(£)) identifies with the I/Q-submodule of VQ(£) (resp. L-submodule of Vz(0) 
generated by v%. 

More generally, one has the following 
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Lemma. — Let M be a P-module which is Z-free and letv G M be a non-zero element 
of weight £. Assume that v is U-invariant (this is the case, for instance, if £ is a 
maximal weight of M). Then the Uz(P)-submodule of M generated by v is isomorphic 
to VZL(£). 

Proof — Recall that UZ(P) = UZ(L) ®UZ(UP) (see [28, §11.1.12]). Since v is fixed 
by £/, it is annihilated by the augmentation ideal of Uz{Up). Therefore, Uz(P)v = 
Uz(L)v and, since M is Z-free, the result follows from Lemma 1.3. 

1.9. The fundamental p-alcove.— In this subsection and the next one, let p be 
a prime integer. The notion of p-smallness mentioned in the title of this article is 
defined as follows. We shall say that A G X is p-small if it satisfies the condition: 

(f) (A + p,c*vKp, \/a € R. 

An equivalent definition of p-smallness is as follows. Let Wp denote the affine Weyl 
group with respect to p. Recall that Wp is the subgroup of automorphisms of X(T)(g)R 
generated by the reflections spjnp, for (3 G n G Z, where, for A G X(T) <S> R, 

s(3,np(\) = \-((\,pv)-np)(3, 

and that Wp is the semi-direct product of W and the group pZR acting by translations. 
We consider the dot action of Wp on X(T) 0 R, defined by w • A = w(X + p) — p. 

The fundamental p-alcove Cp is defined by 

Cp := {A G X(T) 0 R | 0 < (A + p, /3V) < p, \f P G R+}. 

Its closure 

Cp := {A G X(T) ® R | 0 ^ (A + p, /̂ v) < p, V/5 G 

is a fundamental domain for the dot action of Wp on X(T) (g) R (for all this, see for 
example [28, §11.6.1]). 

Then, for A G X+, the condition of p-smallness is equivalent to the requirement 
that A belongs to Cp. Thus, an arbitrary A G X is p-small if and only if it belongs to 
WCP. 

Let PL be the half-sum of the elements of Note that (pL,av) = 1 for any 
a G An RL and hence p — PL vanishes on RL. Therefore, if a weight £ G is 
p-small, it is a fortiori p-small for L. 

The fact that Vfrp (A) is irreducible when A is p-small is of course very well-known to 
representation-theorists; for the convenience of readers with a different background, 
we record this here as the next 

Lemma. — Let A G X+ and £ G X^. If X (resp. £) is p-small, VJrp(A) (resp. Vj^(O) 
is irreducible and self-dual for the contravariant duality. 
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Proof. — The first assertion is a consequence of [28, IL8.3], combined with Propo­
sition 1.6. Further, since irreducible GFp-modules are determined by their highest 
weight, the second assertion follows from the first. 

Corollary. — J / A G X+ n Cp then, for any A G £(A), one has 

VZ(p)(A) = A®Z(l,) = rz(p)(A)T. 

Proof. — By the previous lemma, one has VFP(A) = VFP(A)t. The result then follows 
by Nakayama's lemma. 

1.10. A vanishing result.— Let us record the following 

Lemma. — For all A,/i G X+, one has Ext^(VFP(A), VFP(//)T) = 0 and also 

ExtlG(Vz(\),Vz(vy) = 0 = Ext^Z(p)(A), VZ(p)(tf). 

Proof. — Since Vfp(fi)T = by Proposition 1.6, the assertion over Fp is a 
consequence of [28, Prop. 11.4.13]. The assertions over Z or Z(p) then follow from a 
theorem of universal coefficients [28, Prop. 1.4.18]. 

Corollary. — Suppose that A,/i G X+ D Cp. Then 

E x t ^ ^ A ) , V F » ) = 0 = Ext^Z(p)(A), VZ(p»). 

Proof. — By the results in 1.9, VFp(p) and Vz(p)(p) are self-dual. Thus, the corollary 
follows from the previous lemma. 

1.11. We shall need later the following lemma. Recall that Up denotes the unipotent 
radical of P and that one has P = L K Up. 

Lemma. — Let M be a P-module, finite free over Z(p). Assume that each weight v of 
M satisfies {v + p,ay) ^ p, for any a G RL-

a) There exists a sequence of P-submodules 0 = Mo C • • • C MT = M such that 

Mi/Mi-i ^ V£(p) (&), where & G X% and ̂  ^ & if j ^ i. 

The set {£i,.. . , £r} is uniquely determined by M; in fact the VQ'(^) are the irreducible 
composition factors of the Lq-module Mq. 

b) Moreover, there is an isomorphism of L-modules M\L = ®[= i^p ) t e ) - ^n 
particular, if Up acts trivially on M, then M = ®[=1 ^ (£*). 
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Proof. — Let us prove assertion a) by induction on the rank of M, following [15, 
Lemma 11.5.3]. There is nothing to prove if M = 0. If M ^ 0, let £i be a maxi­
mal weight of M, let v G M be a primitive element of weight £i and denote by N 
the UZ(P) (P)-submodule generated by v. Then N = (fi), by Lemma 1.8. By 
assumption, £i G Cp and hence 7VFP := N ® Fp is irreducible. 

On the other hand, since M is free over Z(p), one obtains an exact sequence of 
P-modules 

0 _ > Tor?(p)(M/JV,Fp) —> 7VFp MFp, 
and 7̂  0, as t; is a primitive element. Since N$p is irreducible, 0 is injective. Thus, 
Torf(p)(M/7V,Fp) = 0 and this implies that M/N is free over Z(p). Since M/AT has 
smaller rank than M, the first part of assertion a) follows by the inductive hypothesis. 
The second part is then clear. 

Finally, the first part of assertion b) follows from Corollary 1.10, applied to L, and 
the last part is clear. 

2. Kostant's theorem over Z(p) 

2.1. Our goal in this section is to prove the following theorem. Recall from 1.9 the 
definition of Cp, the closure of the fundamental p-alcove. 

Theorem. — Let A G X+ and let p be a prime integer such that A G Cp. Then, for 
each i, there is an isomorphism of L-modules 

ff<(up,t4(p)(A))^ 0 VZL (wX). 
wewL{i) 

By standard arguments, it suffices to prove the theorem in the case where G is 
semi-simple; one can further assume that G is simply-connected and, then, that the 
root system R is irreducible. Similarly, the result for SLn is easily derived from the 
result for GLn (for technical reasons, the latter is easier to handle, see below). 

Therefore, while in 2.2-2.8 G still denotes an arbitrary connected reductive linear 
algebraic group, defined and split over Z, we shall assume in subsection 2.9, where we 
prove Theorem 2.1, that G is either GLn or almost simple and simply-connected of 
type ^ A. 

Remark. — The hypothesis A G X+ fi Cp implies that 

(t) P> (A + p,av) ^ (p,av), Vc*GP+. 

Recall also that it is customary, in representation theory, to introduce the so-called 
Coxeter number of G, defined by 

h := 1 + Max{(p, av), a G P+}. 

Therefore, the condition (f) above implies that p ^ h— 1, and reduces to this inequality 
when A = 0. 
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2.2. Standard resolutions for U(g).— Recall first the standard Koszul resolution 
of the trivial module: 

• U(g) ® A2(g) I7(fl) ® fl (7(g) ^ Z — 0, 

where each differential dk is defined by the formula 

dk(u 0 Xi A•• • A x&) := 
fc 

¿=1 
(—l)2 -ux̂  0 xi A • • • A Xi A • • • A Xk 

+ 
sd < dld< ed 

( — M 0 [x̂ , Xj] A Xi A • • • A xi A • • • £j A • • • A x&. 

Let 7TP denote the natural projection A*(g) —• A*(g/p); it is a morphism of P-modules. 
Then, there is a surjective morphism of U(g)-modules: 

(t>P : U(g) ® A*(fl) — C/(fl) 0m.) A-(g/p) 
I > U 0£/(p) 7Tp(x). 

It is well-known, and easy to check, that each dk induces a map dpk such that (j)podk = 
dpk o Thus, one obtains a complex of Lr(g)-modules 

• U(g) ®u(p) A2(0/p) U(g) ®u(p) (g/p) [7(g) 0 ^ ) Z Z — 0, 

which is still exact, for it is easily seen that the proof of [3, Th.9.1] is valid over Z. 
This complex is called the standard resolution of the trivial module Z relative to U(g) 
and U(p). We shall denote it by 5#(g,p,Z) or simply S.(g, p). 

Let V be a Z-free U(g)-module. Then 5.(g,p) 0 V, with the diagonal action of g, 
is an (g)-resolution of V by modules which are free over U(\ip). 

Further, recall the "tensor identity" [19, Prop. 1.7] : for any t/(p)-module E, there 
is a natural isomorphism of U(g)-modules 

(U(g) ®uip) E)®V^ U(g) ®u(p) (E 0 Vj„), 

where V\p denotes V regarded as an U(p)-module. Applying these isomorphisms to 
the terms of the resolution S.(g,p) 0 V, one obtains an [/(g)-resolution 

• U(g) ®u{p) (A2(0/p) ® V\9) U(g) ®u{p) {g/p ® V\p) 

GO ®t/(P) H v — o, 
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where the differentials dk are now given by 

dk(l 0 xi A • • • A xk 0 v) := 
k 

i=i 

[-If 1 Xi 0 xi A • • • A Xi A • • • A xk 0 v 

H-

1 < x <j<k 
1 (8) ^([xfjXj]) Axi A • • • AX{ A •- Xj A - - AXk <8>v 

k 
+ 

2=1 
^(-l)2 1 (8 #i A • • • A Xi A • • • A Xk 0 XIV, 

for XI , . . . , XFC G g and (we have denoted 7rp(xi) by a?*). We shall call it the 
standard resolution of V relative to the pair (U(g), U(p)), and denote it by p, V). 
When V = Vz(\), we shall denote it by S.(fl,p, A). 

2.3. Let p be a prime integer and recall the notation of 1.9. 

Lemma. — Let A e X+ Pi Cp. Then all weights of Vz(A) 0 A(g/p) are small 

Proof. — As T-module, A(g/p) identifies with A(Up) and hence is a submodule of 
A(u~), where u~ is the Lie algebra of U~. 

By a result of Kostant ([33, Lemma 5.9]), there is a T-isomorphism 

p®A(u")^ Vz(p). 

Therefore, if v is a weight of Vz(A) (8 A(g/p), then v + p is a weight of Vz(A) 0 Vz(p). 
This implies that (i/ + p, av) ^ p, for all a £ R. 

Indeed, let p be the dominant W-conjugate of v + p, it is also a weight of Vz(A) 0 
Vz(p). Clearly, it suffices to prove that (p, ay) < p, for all a G R+. Further, since p 
is dominant, it suffices to prove that (p, 7V) ^ p when 7V is a maximal coroot. But it 
is well-known that a maximal coroot is a dominant coweight, i.e. satisfies (/3,7V) > 0 
for all /3eR+, see e.g. [5, VI,§ 1, Prop.8]. Finally, since p = \ + p-0 with 0 e Ni?+, 
it follows that 

(M,7VK(A + P , 7 V X P 
This proves the lemma. 

2.4. Verma modules and filtrations.— For any £ £ , define the generalized 
Verma module (for U(g) and E/(p)) 

MP(0 := f/(s) ®u(p) # ( 0 -

For any commutative ring A, set M^(£) := Mp(£) <8>z J4 and observe that it identifies 
with UA(q) ®Ua(p) Vjt(0-

For A € X+, we set also 

S.A(fl,P,A) :=5.(fl,p,A) ®ZA 
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Let us assume that A G X+ fi Cp. Then, by Lemma 2.3, all weights of Vz(\) 0 
A*(g/p) are p-small. Therefore, by Lemma 1.11, there exists, for each z, a P-module 
filtration 

0 = F0 C • • • C Fr = A*(g/p) ® Vfc (A) 

such that each Fj/Fj-i is isomorphic to V^p)(£j), for some £j G (not necessarily 
distinct). Let us denote by £2* (A) the multiset of those £j (each £ G occuring as 
many times as V% (£) occurs in the filtration). 

Moreover, as U(g) is free over U(p), the functor U(g) ®u(p) ~ is exact. Therefore, 
one obtains the 

Lemma. — Let A G X+ n Cp. Then each S{ (p)(g,p, A) admits a finite filtration by 
UZ{P)(Q)-modules such that the successive quotients are the Mp(p)(£), for £ G ftp (A). 

2.5. A conjugacy result in g*.— We will need in the next subsection the following 
lemma. It is proved in [29, Lemma 6.6] under the assumption that ĝ  = g| as 
G-modules, and in [31, Lemma 3.3] under the assumption that G is almost simple 
and distinct from S02n+i if p = 2. Let u be the Lie algebra over Z of U and let 
Up =u(g)zFp. 

Lemma. — Each \ £ $k is conjugate under G to an element \' such that x'(% ) = 0-

Proof. — Let B denote the variety of Borel subgroups of G, let Z be the closed 
subvariety of B x g± consisting of pairs (P',x) sucn that \ vanishes on the derived 
subalgebra of LieP', and let TT denote the projection Z —> g£ . Then, the lemma is 
equivalent to the surjectivity of TT. 

But, B being projective, 7r(Z) is a closed subvariety and, since dimZ = dimg| , 

the surjectivity of TT will follow if we show that the set of those x G ĝ  such that 
7T~1(x) is finite, is not empty. But this follows from an argument of Steinberg [50, 
Lemma 3.2] (one may also consult [25, Prop. 4.1]). Namely, for each ß G P, let Xß 
be a generator of $ß. We claim that if x G g| satisfies x(bf ) = 0 and \(X-a) 0> 

for every a G A, then TT-1(X) = {P}-
Indeed, let B' be a Borel subgroup such that x vanishes on u', the derived subalge­

bra of LieP'. Then B' = g(B) for some g G G and, using the Bruhat decomposition, 
one may write g = im f̂r for some w e W, b e B and G £7 fl n~1([/). If w ^ 1, 
there exists a simple root a G A such that u?_1a G P~. Let ß = —w~1a, then 

= cX-a for some non-zero c G Fp. Set x = b~1c~1Xß. Then x G u^ and, by 
hypothesis, 

0 = X ( ^ ) = x(uX_a). 
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But uX-a—X-a belongs to and hence the assumptions on x imply that x(v>X-a) 
= x(X-a) 7̂  0, a contradiction. This contradiction shows that w — 1, whence g E B 
and B' — B. This completes the proof of the lemma. 

2.6. The Harish-Chandra homomorphism 
2.6.1. Let u~ = Lie U~ and let A be a commutative ring. By the PBW theorem, one 
has 

uA(g) = uA(t) e (u-UA(g) + UA(g)u). 

Let 5A denote the A-linear projection from UA{$) to 17A (t) defined by this decompo­
sition. 

Let UA{g)G C UA(g)T be the subrings of G-invariant and T-invariant elements for 
the adjoint action. Observe that, since elements of {7A(s)t have weight zero, 

uA(o)TQ uA(t)®u-uA(B)u. 

The restriction of 5A to UA(g)T is a ring homomorphism; indeed one sees easily that 
the arguments in the proof of [13, Lemme 7.4.2] or [31, Lemma 5.1] carry over in our 
case. Let 0A denote the restriction of 5A to UA(g)G. 

Lemma. — Of : Uf (g)G —> Uf (t) is injective. 

Proof. — Taking into account Lemma 2.5, the proof is exactly the same as the one 
of [29, Lemma 9.1]. For the convenience of the reader, we record it briefly. Let 
JJ = £/- (n) let x i—• x№ denotes the p-th power map of g^ and, for x E ft£ , 
let Ux denote the quotient of U by the two-sided ideal generated by the elements 
xp _ x[p] _ x(x), for x G gf . 

Let u G UG with % (г¿) = 0. Then, u G \x~Uu and, being G-invariant, u = g(u) 
belongs to g(u~)Ug(u), for every g G G. Let L be a simple /7-module. By Lemma 
2.5 and, say, [29, 2.4], L is a [/^-module, for some g G G and x E such that 

x(u) = 0. Then, one deduces from [29, §6.7] or [17, Prop. 1.5] that L is generated 
by a vector v annihilated by #(u) (in [17], it is assumed that G is semi-simple and 
simply-connected but this hypothesis is not used in the proof of Prop. 1.5). Thus, 
uv — g(u)v = 0 and hence uL = 0. Therefore, u annihilates every simple J7-module, 
that is, belongs to every maximal left ideal of U. Hence, 1 4- u is a unit in U; but the 
only units in U are the non-zero scalars, and it follows that u = 0. (The last part of 
the argument is due to Curtis [10]). 

Remark. — In [31, 9.4.d)], it is mistakenly asserted that Of is not injective in the 
case where G = SO(2n + 1) and p = 2; but in fact the element q considered in [31, 
9.1] is not G-invariant. 
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2.6.2. Note that Uf (t) = S$ (t) identifies with V(i± ), the algebra of regular func­
tions on 

& :=Homz(t,Fp) ^ I ( T ) ® F p . 

The dot action of W on Uf (t) is defined, therefore, by (w • P){\) = P(w~L • A), for 
w £ W, P £ Uf (t), A £ . For typographical reasons, let us denote by Uf (t)w* 
the subalgebra of invariants for this action. Then, as in [31, Lemma 5.2] or [29, 9.5], 
one obtains that Of (Uf (Q)G) C Uf (t)w*. Moreover, under certain assumptions on 
G and p, this inclusion is an equality. Recall that a prime p is called good for R if it 
satisfies the following: for every 7V £ Rw expressed in terms of the simple coroots as 

7V = 

qsddsg 
na{<yy)ay, 

one has p > na(7v) for all a. Then, one has the following mod.p analogue of Harish-
Chandra's isomorphism. Let VG denote the derived subgroup of G, see [28, 11.1.18]. 

Theorem ([29]). — Assume that VG is simply-connected, that p is good for R, and 
that X(T)/1JR has no p-torsion. Then Of induces an isomorphim of algebras 

5Z(P)(G,P,AW FD 

Proof. — Under the stated assumptions, this is proved in [29, §9.6]. For the conve­
nience of the reader, let us outline the steps of the proof. Firstly, it is proved in [29. 
§ 9.6] that it suffices to prove that the natural map 

1 < x <j<k xw w< •Uf(t)w' 

is surjective. Secondly, since VG is simply-connected, {av, a £ A} is part of a basis of 
XV(T); see [28, II.1.18] or [48, Prop. 8.1.8.(iii)], and it follows that the previous map 
is surjective if and only if the analogous map Uz(p) (t)̂ <8>Fp —> Uf (i)w is so. Finally, 
this surjectivity result follows, under the assumption that p is good and does not divide 
\X(T)/ZR\, from [12], Cor. of Th. 2 (applied to the lattice M = Xy(T) ^ LieT and 
the root system Ry). 

Remark. — The theorem is proved by completely different methods in [31] in the case 
where G is almost simple and p ^ 2 if G = SO(2n+1); these methods can be extended 
to the case where G is reductive under the assumption that p ^ 2 if av/2 £ XV(T), 
for some a £ R. However, the version of the theorem given above is sufficient for our 
purposes. 

2.6.3. Central characters. — For any fi £ X(T), its differential dfi induces an A -
linear map tA —> A and hence an A-algebra morphism UA($) —* A , still denoted by 
dfi. Thus, \i gives rise to an A-algebra morphism XH,A := dfioOA, from UA(S)G to A. 
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For any morphism of commutative rings / : A —» P, it is easily seen that the 
following diagram is commutative: 

UA(Ô)G 
OA 

UA(t) 
du 

s 

f f f 

UB(9)G 
6B 

> uB(t) 
dp 

- B. 

Thus, one has \»,B O / = / O x»,A< 

Recall that UA(S)G ^ ^ (* ) (BU~UA(Q)U. Thus, if M is a [/^(g)-module generated 
by an element v of weight u annihilated by u, then UA($)G acts on M by the character 
X^A (see [13, Prop.7.4.4]). 

Let 7r denote the morphism Z(p) -> Fp, let X/*,p X/x,z(p) and x^P := n ° Xv,P = 
X^f , and set JM?P := Kerx^p- Then, one deduces immediately from the previous 
theorem the following 

Corollary. — Keep the hypotheses of the previous theorem. Let A,/i G X(T). If 
Xxf = Xn F > th>ere exists w eW such that \x — w • A G pX(T). 

2.7. Decomposition w.r.t. central characters mod. p.— Let A G X+ and let 
p be a prime integer such that A G Cp. Recall the multisets Hp (A) from 2.4 and let 
QJ(A) denote their disjoint union. 

By Lemma 2.4, each sf(p)(g,p, A) admits a finite Uzip) (g)-filtration, whose quo-

tients are the Mp(p)(£), where £ runs through fij(A). It follows that 5. (p)(g,p,A) is 
annihilated bv the ideal 

dsx 
sdv+ 1 

dssd 

(each £ being counted with its multiplicity). 

The following lemma is straightforward. 

Lemma. — Let A be a commutative ring and let P i , . . . , Pr be ideals of A such that 
P1 • • • Pr = 0 and Pi + Pj = A if j 7̂  i. Then, for any A-module M, one has 

M = 
i=l 

r M.Pi, where MPi = {m e M \ Plm = 0}. 

Further, the assignment M i—> MPi is an exact functor. 

We shall apply the lemma to A := U%(p) ($)G/I. Note that A is a finite Z(p)-module. 
Moreover, it is easily seen that the maximal ideals of A are the pA + — Ker p, 
for £ G fij(A). (By abuse of notation, we still denote by J^p the image of J^p in A). 
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Let Xi5 • • • ,Xr be the distinct algebra homomorphisms A —> Fp, numbered so that 
Xi = XA,P> an<3> for z = 1,. . . , r, let 

n := 
sl1 < x <j<k 
1 < x <j<k 

jkdx 

Clearly, Pi • • • Pr = 0 and pA + Pi + Pj = A if j ^ z. Since A is a finite Z(p)-module, 
the latter implies, by Nakayama lemma, that Pi + Pj = A if j ^ i. 

Then, one deduces from the previous lemma that sf(p) (g, p, A) is the direct sum of 
the Uz(p)(g)-submodules corresponding to the characters Xi> • • • >Xr> that is, 

(*) S^(Q,p,X) = 
r 

i=l 
S^(0,p,X)Pi. 

Moreover, since the differentials in the complex S?(p)(g,p, A) are L^(p)(g)-equivariant, 

each 5.(p) (g, p, X)Pi is a direct summand subcomplex. In particular, since Xi — XA,P> 

this is true for 

Sf(p)(fl,1>,AWv_:=Sf<"(a,M)*. 
Further, since M i—• M̂ A is an exact functor and since 

< ( P ) ( 0 5 ? , „ = 
Af?(p)m ifv, =v> • 

10 otherwise, 

one obtains, as in [3, Lemma 9.7], the following 

Corollary. — 5?(p)(g,p, A) contains the subcomplex sf(p)(g, p, A)̂ A p as a direct sum­

mand. Moreover, for i ^ 0, each sf(p)(g,p, A)̂ A has a filtration whose quotients are 

the Mp{p)(£), for those £ G ^p(A) (counted with multiplicities) such that = Xx,P-

2.8. The main step towards the description of sf(p) (g, p, A)̂ A is the following propo­
sition. 

Proposition. — Assume that VG is simply-connected and X(T)/ZR has no p-torsion. 
Let A G X+ n Cp and £ G ftJ(A). //x^,P = XA,P> ^EN £ = w • \ for some w G VFL. 

Proof. — Let £ be as in the proposition. Observe that, by 2.1(f), the assumption 
X+DCp 7̂  0 implies that p is good for R. Therefore, the hypotheses of Theorem 2.6.2 
are satisfied. Thus, by Corollary 2.6.3, x^ p — X\,v implies that there exist y G W and 
v G X(T) such that y-£ = \ + pv. Moreover, since y • £ is a weight of A(g/p) ® Vz(A), 
then y • £ - A G ZP and hence pi/ G ZRDpX(T). Since X(T)/ZR has no p-torsion, 
it follows that G ZP and hence £ G Wp • A. 

Now, let w G W such that w_1(£ + p) is dominant and let £+ := u?-1 • £. Then, 
by Lemma 2.3, £+ G Cp. But £+ G Wp • A; since Cp is a fundamental domain for the 
dot action of Wp, it follows that £+ = A, and hence £ = w • A. 
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Further, since £ G ftj(A) C X^", for any a G P j one has (w • A, av) > 0 and hence 

(A + p,™"1^} ^ (p,av) > 0 . 

This implies that w G VFL. The proposition is proved. 

Remark. — In the first version of this paper, the previous proposition was stated 
under the assumption that G is either GLn or almost simple and simply connected 
of type 7̂  A and the proof relied on [31, Th. 1] in the second case and on results 
of Carter and Lusztig ([8], proof of Theorems 3.8 and 4.1) in the first case. We are 
indebted to the referee for pointing out that the result could be stated and proved 
in a uniform manner by using the version of Harish-Chandra's isomorphism given in 
[29, §9]. 

We can now prove the following analogue of [3, Th.9.9] and [37, Th.3.10], [46, 
Th. 7.11]. 

Theorem. — Assume that VG is simply-connected, that X(T)/ZR has no p-torsion, 

and that A G X+ DCp. Then sfip)(g,p,\)xXp is an Uz(p)(g)-resolution ofVz{P)(X) 

and each Si (p)(g,p, A)̂ A with i > 0 has a filtration whose quotients are exactly the 

Mp(p)(w • A), for w G WL(i), each occuring once. 

Proof. — By Corollary 2.7 and the previous proposition, each 5i (p) (g, p, A)̂ A p with 

i^O has a filtration whose quotients are the M^(p)(£), for those £ G £2p(A) (counted 
with multiplicities) such that £ = w • A for some w G WL. 

Conversely, for w G WL, Kostant has showed that VQ(W-X) occurs with multiplicity 
one in A*(g/p) ® Vz(A), in degree equal to £(w), see [Kol], Lemma 5.12 and end of 
proof of Th. 5.14. This completes the proof of the theorem. 

2.9. Proof of theorem 2.1.— In this subsection, we assume that G is either GLn or 
almost simple and simply-connected of type ^ A. As observed in 2.1, this assumption 
entails no loss of generality in the proof of Kostant's theorem over Z(p). Keep the 
notation of 2.7-2.8. Note that ZR is a direct summand of X(T) if G = GLn, while if 
G is almost simple of type ^ A, the assumption X+ f l C p ^ 0 implies that X{T)/ZR 
has no p-torsion. Therefore, the hypotheses of Theorem 2.8 are satisfied. 

Observe next that, as Uz{p) (up)-module, any Mp (p) (£) is isomorphic to Uz(p) (up) ® 

V^p)(0, hence free. Thus, by Theorem 2.8, sf(p)(fl,p,%A p is a free UZ(p)(Up)-
module, for each i ^ 0. 

Therefore, iJ#(iip, Vz(p) (A)) is the homology of the complex 

C. %p)(u-)^(P)(fl>P,%Ap. 

Further, by Theorem 2.8, again, for % > 0 each d has an L-module filtration whose 
successive quotients are the V£ (w • A), for w G WL(i). 
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By Corollary 1.10, applied to L, one obtains that these nitrations split, that is, for 
each i ^ 0 one has isomorphisms of L-modules 

Ci= e vf {w.\). 
wewL(i) 

Further, we claim that the differentials di : Ci —> C%-\ are zero. Indeed, one has 
Hi(C.)®Q ^ Hi(up, VQ(A)) and, by Kostant's theorem ([33, Cor. 8.1] or [3], Cor. of 
Th. 9.9), the latter is isomorphic to d 0 Q. It follows, for a reason of dimension, that 
di 0 1 = 0. Since Ci-i is torsion-free, this implies that d{ = 0. 

Thus, we have obtained, for each i ^ 0, an isomorphism of L-modules 

Hi{up,VZ(p)(X))^ 0 Vi {w\). 
wewL(i) 

This completes the proof of Theorem 2.1. 

2.10. Analogue in cohomology.— Recall the anti-involution r from 1.4; it ex­
changes P~ and P and stabilizes L. Let A G X+ D Cp. Since H.(\ip,V) is a free 
Z(p)-module, one obtains, by standard arguments, an isomorphism of L-modules 

H.(up,VZ(p)(\))T = ff-(up,VZ(p)(A)T). 

Further, since VZ(p)(X) = VZ{p){\y and V^Jw • A) = V%p)(w • A)r, for w G WL, by 
Corollary 1.9, applied to G and L, one obtains the 

Corollary. — Let A G X+ D Cp. For each i ^ 0, there is an isomorphism of LZ(p)-
modules 

^(up,VZ(p)(A))^ © V£ 
wewL(i) 

3. Cohomology of the groups Up(Z) 

3.1. Let us recall several definitions and facts about finitely generated, torsion free, 
nilpotent groups. Let T be such a group, say of class c. Let J7 be & finite series 

r = i ^ r D F2T D • • • D Fd+1r = {1} 

of normal subgroups of T. Following the terminology in Passman's book [42, p.85], let 
us say that T is an AT-series if (Fir, FJT) C FZ+JT for all i,j. Since every subgroup 
of T is finitely generated (see [21, Lemma 1.9] or [42, Chap. 3, Lemma 4.2]), each 
FT/FZ+1T is then a finitely generated abelian group. 

Let us denote temporarily by r(T) the rank of ©f=1 FT/FZ+1T. This rank is in 
fact an invariant of V. Indeed, T can be refined to a sequence of normal subgroups 

r = H1 D H2 D • • • D Hn+l = {1} 

such that each Hl/H%Jtl is cyclic, and for any such refinement the number of infinite 
cyclic quotients equals r(F). But, for any subnormal series T — S1 > S2 t> • • • > 
gm+i = {1} such that each quotient Sl/Sl+1 is cyclic, the number of infinite cyclic 
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quotients is an invariant called the rank, or Hirsch number, of T and denoted by h(F); 
see the discussion before Lemma 10.2.10 in [42] or [51, Chap. 2, Th. 3.20]. Together, 
these arguments show that r(T) = h(T). 

If T is an iV-series, the associated graded abelian group 

gr^T:= 
x <d 

^r/Fi+1r 

has a natural structure of Lie algebra over Z (see, for example, [36, Chap. I, Th. 2.1]). 
Further, T is called an iVo-series if it is an TV-series and each FlT/Fl+1T is torsion-

free. Such series exist, see [30, Th. 2.2] or [42, Chap. 11, Lemma 1.8], and in this case 
gr^T is a free Z-module of rank h(T). 

Let {Cl(T)}i^i denote the lower central series; as is well-known, it is the fastest 
descending TV-series. We shall denote the corresponding graded Lie algebra simply by 
grT. Further, for each z, set 

C(i)(r) :={xeT\xn e C*(r) for some n > 0}. 

By [42, Lemma 11.1.8] (see also [21, §4]), {Cw(r)}^i is an AT0-series. It is clearly 
the fastest descending iVo-series. Following [21, §4], we will call it the isolated lower 
central series. We will denote by grisol T the associated Lie algebra over Z 

1 < x <j<k 
sc<fr 

C(i)(r)/C(i+1)(r); 

it is a free Z-module of rank h(F). Clearly, there is an isomorphism of graded Lie 
algebras gr T <g> Q ^ grisol T®Q. 

Let I denote the augmentation ideal of the group ring Zr and, for n ^ 0, let 1^ 
denote the isolator of 7n, that is, 

J(n) := {x e Zr | mx 6 In for some m > 0}. 

Equivalently, if Iq denotes the augmentation ideal of QT, then 1^ = ZT fl Iq. 
Let us consider the graded rings 

1 < x <j<k 
N^0 

j(n) /J(N+L) and GRQR := 
N^0 

RN / RN+1 
IQ/IQ • 

The former is a subring of the latter and, by a result of Quillen ([45]), there is an 
isomorphism of graded Hopf algebras UQ^YT ® Q) = grQT. Further, one has the 
following more precise result of Hartley : 

Theorem ([23, Th. 2.3.3/]). — There is an isomorphism of graded Hopf algebras 

%(grisolr)^grisolZr. 
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3.2. Let A be a finitely generated subring of Q (thus, A = Z[l/m] for some m and 
A is a PID). Let u be a nilpotent Lie algebra of class c over A, which is a finite free 
A-module, say of rank r. Let UQ = u (gu Q, then UQ(VLQ) = UA{U) <SU Q; we shall 
denote it by Uq(u). By the PBW theorem, C/̂ (u) is a subalgebra of Uq(u). 

Let T be a finite sequence 

u = Fxu D F2u D • • • D Fd+1u = {0} 

of Lie ideals of u. As in the previous paragraph, let us say that T is an AT-series if 
[F2u, Fju] C F2+Ju, and is an No-series if further each Fiu/F2+1u (which is a finitely 
generated module over the PID A) is torsion free, and hence a free ^4-module. 

Let {Cl(u)}i^i denote the lower central series of u and define the isolated lower 
central series {C^(u)}i>i by 

C(i)(u) := {x E u I nx e C\(u) for some n > 0}. 

This is, clearly, the fastest descending iVo-series of u. Consider the graded Lie algebras 

№«,111:= i 
x<l1 

>C(i)(u)/C(i+1)(u) and gruQ:= 
dd> 

Ci(uQ)/C'+1(iiQ). 

Then grisol u is a free ^4-module of rank r and there is an isomorphism of graded Lie 
algebras (grisol u) <g>A Q = gr UQ. 

Let JQ denote the augmentation ideal of UQ(U). Then the graded algebra 

grLWu) := 
w< c 

rn I tti+1 

is a primitively generated, graded Hopf algebra; it is isomorphic to £/Q(gru<Q), by [32] 
or [52, Prop. 1]. In fact, as in the case of group rings, a little more is true. For n ^ 1, 
let = UA(u) H Jg. Then the graded ring 

grisoi UA{v) := 
N>0 

j(N) / j(N+L) 

identifies with a subring of grUq(u). Further, one deduces from the proof of [52, 
Prop. 1] the following result. Let X\,..., Xr be an A-basis of u compatible with the 
filtration {C,W(u)}^=1, i.e., such that for s = 1,. . . , c, the Xj with j > r — dimCs(uQ) 
form an yl-basis of C^s\u), and, for each i, let fi(i) be the largest integer k such that 
Xi e cW(u). 

Proposition 
a) The ordered monomials X™1 • -X™r with Y^i=iniMO ^ n form an A-basis 

of J^n\ for any n ^ 0. 

b) There is an isomorphism of graded Hopf algebras i7.A(grisolu) — §risoi ^A(U). 
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3.3. Let T be, as in 3.1, a finitely generated, torsion free, nilpotent group of class 
c and let T = H1 D • • • D Hr+1 = {1} be a refinement of the isolated lower central 
series such that each Hl/Hl+1 is an infinite cyclic group,'generated by the image of 
an element gi of Hl. Then, r = h(T) and .. . ,#r} is called a system of canon­
ical parameters (or canonical basis) of T; it induces a bijection IT = T, given by 
(ni,...,nr) i—• g™1 - • • #™r; we will denote the R.H.S. simply by g{n\,...,nr). Let 
{ei, . . . , er} be the standard basis of Zr; then g(ei) = gi. 

Let Vr,r denote the subring of the polynomial ring Q[£i,..., £r, 771,..., r]r] consist­
ing of those polynomials which take integral values on IT x Zr. By a result of Ph. Hall 
[21, Th. 6.5], there exist polynomials P i , . . . , Pr G Vr,r such that 

(*) #0 i , • • •,xr) g{yi,...,yr) = g(Pi(x,y),..., Pr(x,y)), 

for any x, y G Zr. 
Therefore, there exists an algebraic unipotent group scheme U, defined over a 

finitely generated subring A of the rationals, and whose underlying scheme is affine 
space ArA, such that T identifies with the subgroup Zr of U(A) = Ar'. 

Remark. — If T is of class c, one may take A = Z[l/d]; this can be deduced, for 
example, from the Campbell-Hausdorff formula. 

Let k G {1 , . . . , r}. Since Pfc(x, 0) = Xk and Pfc(0, y) = y^ for every x, y G Zr, the 
part of degree < 1 of Pk is -I- 77̂  and its part of degree 2, call it is bilinear in 
the & and the Thus, one has 

&fc(ez, e7-) + kd 
r 

sdx=1 
&fc(ez, e7-) £î 7 + terms of degree > 2. 

Let m denote the ideal ( £ 1 , . . . , £r) of A[U] = A[£i,..., £r], let 

u := Hom^(m/m2, A) 

be the Lie algebra of U over A, and let {vi,... ,vr} be the A-basis of u dual to the 
basis . . . , £r}. Then, the Lie brackets are given by 

(i) [Vi,Vj] = 
r 

dx= 
&fc(ez, e7-) + djkd epo +x 

see, for example, [35, § 1] or [9, § 1]. 

Proposition. — There is an isomorphism of graded Lie algebras over A 

gTisol r ®Z A ~ grisol U> 

under which each g{ corresponds to Vi. 
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Proof. — First, for each i, let v(i) denote the largest integer n such that gi G C^n\T). 
Denote by gi the image of gi in g r ^ T; then {<7l5..., #r} is a Z-basis of grisol T. 

For k = 1,... , r, let Qk '•= Pk — £fc — rjk be the part of Pk of degree > 1. Recall 
that, for # i , . . . , xr G Z, g(YH=i x% e%) denotes the element g\1 • • • g*r of T. 

Let i, j G {1 , . . . ,r} be arbitrary with i < j . Then, for every x,y G Zr, one has 
g(xei)g(yej) = g(xei + ye^) and hence Qk(xei,yej) = 0 = bk(xei,yej) for any /c. In 
particular, bk(ei,ej) = 0. 

On the other hand, since G C^'»(r) and #f G C^\T) one has, 

-xybk(ej,ei)e 

i/(fc)=i/(0+i/(.7) 
Further, since the commutator induces a bilinear map on grisolr, one has, when 

Qk(xej,yei) = xyQki 

Qk(x,y)ek mod. C^W+,/«)+1>(r). 

Qk(xej,yei) = xyQkie^ei) = xybk{ej,e%). 

Then, an easy computation shows that 

я!яуя7хя7у = я 

i/(fe)=i/(¿)+ ü̂) 

-xybk(ej,ei)ek mod. C(^)+^')+1)(r). 

Using the fact that ^(e*, ê ) = 0, one deduces that the Lie bracket on grisol T is given 
by 

(2) \9i>9j] = 
k 

v(k)=v{i)+v(j) 

(bk{ei,ej) - bk(ej,ei))gk. 

The proposition is then a consequence of the following claim. 

Claim. — For £ = 1, . . . , c, C^\\x) is the A-span of those Vk such that u(k) ^ £. 

Indeed, using (1), the claim implies that grisol u is the Lie algebra having an .A-basis 
{vi,..., vr} and brackets given by 

(3) [Vi,Vj] = 

k 
v(k)=v(i)+v(j) 

(&fc(e»>ej) - bk(ej,ei))vk-

Comparing with (2), one obtains that grisol T ®z A = grisol u. 

Let us now prove the claim by induction on r + L Recall that c denotes the class 
of T. By induction, we may reduce to the case where C^(T) =Zgr. 

Since grisol T ®z Q — gr r ®z Q is generated in degree 1, there exist s <t < r such 
that u(t) = c — 1 and [gs,gt] — ngr, for some non-zero integer n. Then, (gs,gt) = 9r 
and hence, by the previous calculations, one has br(et, e8) = —n, while br(es, et) = 0. 
Therefore, by (1), = nvr. 
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For any k < r, the image of vk in u/Avr belongs to C^k^(u/Avr), by induction 
hypothesis. Thus, there exist a positive integer mk and O J ^ G I such that 

(4) mkvk-akvreC^k\u). 

Applying this to k = t and using the fact that vr is central, one obtains that 

mtnvr = [vs,mtvt - atvr] 

belongs to Cc(u), and hence vr G C^c\u). In turn, this implies, by (4), that vk G 
C*(K*0)(u)5 for eacn k < r. This proves the claim and completes the proof of the 
proposition. 

3.4. Filtered Noetherian rings with the AR-property.— Let us recall several 
results about the homology of filtered Noetherian rings with the Artin-Rees property. 
Some basic references for this material are [47], [6], [20]; see also [40, Chap. I] and 
[14, § 1]. (Note, however, that in [20] the assertions in lines 8-12 of 2.8 and assertion 
(ii) of Theorem 3.3 are not correct; it is not difficult to provide counter-examples). 

Let S be a left Noetherian ring. A sequence X := {Ji, I2,.. •} of two-sided ideals 
is said to be admissible if I\ 2 h 2 • • • and Ijlk C Ij+k for j , k ^ 0 (where one sets 
Io = S). Given such a sequence, let 

giS:= 
x < ss 

In/In+i and S := proi.lim. S/In 
n>0 

be the associated graded ring and completion, respectively. 
Let S-filt denote the category of N-filtered left S-modules: objects are left S-

modules M equipped with a decreasing filtration M = F°M D FlM 2 • • • such 
that InFkM C Fn+fcM, and a morphism f : M —> N between two such objects is 
an 5-morphism which preserves the nitrations. Then / induces a morphism of gr S-
modules gr / : gr M —> gr TV and this defines a functor gr from 5-filt to the category of 
N-graded gr S-modules. Further, / is called strict if one has f(M)nFhN = f(FhM) 
for any k. 

An object M of .S-filt is called separated if P|n>0FnM = {0}, and discrete if 
FnM = {0} for some n ^ 0. 

The category S-filt is equipped with shift functors sn, for n ^ 0, defined as follows. 
If M is an object of S-filt, snM = M as S-module but FP(snM) = Fp~nM for p ^ 0, 
with the convention that FkM = M if k < 0. If M is an N-graded 5-module, the 
shifted module snM is defined in an analogous manner. 

An object L of S-filt is called filt-free if it a direct sum of shifted modules sd^S, 
for A running in some index set A. Then, gr L = 0AeA sd^ gr S. 

Let M be an object of S-filt. Then a strict filt-free resolution of M is an S-module 
resolution 

(x) » I i A L 0 ^ M —> 0 
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such that every Ln is hit-free and every fn is a strict morphism in S-filt. By [47, 
Lemmas 1,2], the associated graded complex (gr£) is then a free gr S-resolution of 
gr M and, conversely, if S is complete with respect to X, any free gr S-resolution of 
gr M can be obtained in this manner. 

Let us consider also the category filt-S of N-filtered right S-modules. All notions 
introduced previously for S-filt have, of course, their right-handed analogues. Now, 
if N (resp. M) is an object of filt-S' (resp. S-filt), the abelian group N 05 M has a 
natural N-filtration, defined by 

Fn(N 05 M) := Im 
Jp-\-q=n 

FPN 05 FqM — > N ® s m ) . 

Moreover, it is easily seen that if either of N or M is a Alt-free object, then the natural 
map griV 0gr5 grM —> gr(iV 05 M) is an isomorphism. 

Therefore, if one considers a strict filt-free resolution L. of, say, M, the filtration on 
N®sLm induces a natural spectral sequence with ^i-term (in cohomological notation) 

Ef'~q = Ht>-o(grN®s grL.)p = Tbrf4(gr JV.gr M)„. 

Moreover, certain finiteness conditions ensure that this spectral sequence converges 
finitely to Torf (TV,M). Firstly, by [47, Lemma 2.(g)] or [20, Th.2.9], one has the 
following 

Proposition (C). — Assume that S is complete with respect to the filtration X and that 
gr S is left Noetherian. Let M,N be objects of S-filt and filt-S, respectively, such that 
M is separated and gr M finitely generated over gr S, while N is discrete. Then the 
spectral sequence above converges finitely to Torf (AT, M ) . 

Proof — By the references cited above, any resolution of gr M by free gr S'-modules 
can be lifted to a strict filt-free resolution of M. Since grM is finitely generated over 
gr S, which is left Noetherian, one deduces that M admits a strict filt-free resolution 
Lm —• M —• 0 such that each Ln is finitely generated. As is assumed to be discrete, 
the filtration on 05 L. is then discrete (and exhaustive) in each degree, and the 
proposition follows. 

Secondly, the assumption that S be complete can be relaxed if one assumes that 
the sequence T — {I — I\ D I2 2 • * *} has the left Artin-Rees property, i.e., that J 
satisfies the following : for any finitely generated left S-module M, any submodule 
N C M and any n ^ 0, there exists nf ^ n such that N D In'M C InN. 

For any left S-module M, let us denote by M its completion with respect to the 
filtration {InM}; it is an S-module and there is a natural morphism of S-modules 
TM ' S 05 M —> M. As observed in [6, Prop. 3], one has the following proposition, 
which is proved exactly as in the commutative 7-adic case (see [2, Chap. 10]). 
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Proposition (AR). — Assume that S is left Noetherian and that! satisfies the left AR-
property. Then, TM is an isomorphism for any finitely generated left S-module M and, 
therefore, 

a) S is flat as right S-module, 
b) for each n, SIn = Ker(5 —• S/In) is a two-sided ideal and hence {SIn} is an 

admissible sequence in S, 
c) the associated graded grS is isomorphic to grS. 

Thus, in particular, if P. —> S/I —• 0 is a resolution of S/I by free .^-modules, then 
S ®s P* is a free 5-resomtion of 

S®s (S/I) = sTl = S/L 

Thus, for any right 5-module AT, there is a natural isomorphism 

Torf (AT, S/I) 2* Torf (AT, S/I). 

This is the case, in particular, if N is a right 5-module with a discrete filtration. 
Therefore, one obtains the following theorem, which is essentially contained in [20, 
Th.3.3'.(i)]. 

Theorem 3.4.1. — Let S be a left Noetherian ring, X an admissible sequence of ideals. 
Suppose that T satisfies the left AR property and that gr S is left Noetherian. Let N be 
a right S-module with a discrete filtration. Then there is a finitely convergent spectral 
sequence 

El'-q = Tbrf4(grN, S/I)p => Torf_p(AT, 5//) S Tor£_p(JV, S/I). 

For future use, let us derive the following equivariant version of the theorem. Let 
A be a group of automorphisms of S preserving the sequence X. Let SA denote the 
smash product S#ZA, that is, SA = S^^LA as (5, ZA)-bimodule, the multiplication 
being defined by 

(s(g)A)(5/0A,)-5A(5,)(8)AA,. 

Similarly, denote by SA the smash product S#ZA. Observe that an SA-module is the 
same thing as an 5-module M equipped with an action of A such that Asm = A(s)Am, 
for m e M, s e S, A e A. 

For every n ^ 0, let I'n (resp. I'n) denote the left ideal of SA (resp. .SA) generated 
by In\ they are two-sided ideals and form an admissible sequence in 5A (resp. SA). 
In both cases, the associated graded is isomorphic to (gr5)A := (gr5)#A. 

Theorem 3.4.2. — With notation as above, let N be a discrete object of SA-filt. There 
is a finitely convergent spectral sequence of A-modules 

Erq = Torf4(gr JV,S//)P Tovsq_p(N,S/I). 
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Proof. — First, I' := (SA)I is a two-sided ideal of SA, and SA ®s (S/I) =i SA//'. 
Then, by standard arguments, it suffices to prove that: i) SA is flat as right SA-
module, and: ii) SA ®s (S/I) =i SA/V. 

But SA is isomorphic to S®s SA as (S,SA)-bimodule, and to SA®s S as (SA, S)~ 
bimodule. This implies i) and ii). 

3.5. Let us return to the finitely generated, torsion free, nilpotent group T and the 
associated unipotent algebraic group UA> Recall the notation of subsections 3.1-3.3. 

It is known that ZT and UA(U) are left and right Noetherian and have the left and 
right AR-property with respect to the filtration by the powers of the augmentation 
ideal, see, for example, [42, Th. 2.7 & § 11.2], [41] and [6, Th. 1]. 

Further, by [22, Cor. 3.5], one has /(CN) C 7n, where c is the class of Y (and 
also the class of u), and a similar argument, using Proposition 3.2.a) shows that 
j(cn) q jn prom thjg one deduces easily that the sequences {/(n)} and {J^} also 
have the left and right AR-property. In the sequel, we equip ZT and £/A(u) with these 
sequences, which we call X and J respectively. By Theorem 3.1 and Proposition 3.2, 
the associated graded rings are left and right Noetherian. 

Let V be an L^-module. Then V is in a natural manner a representation of the 
Lie algebra u and of the abstract group T. Let T be a finite sequence V — F°V D 
• - - D FS+1V = {0} of L^i-submodules. Let us say that T is an admissible filtration 
of V if it is an X (resp. J) filtration of V regarded as ZT (resp. UA(U)) module, i.e., 
if for any i,n ^ 0, both I^^V) and j(n\FlV) are contained in Fi+nV. 

Lemma. — IfVis an UA-module which is finite free over A, it admits an admissible 
filtration. 

Proof. — By the theorem of Lie-Kolchin applied to VQ, one obtains that Vu, the 
submodule of invariants, is non-zero. Since 

Vu = {x eV \ Av(x) = x ® e}, 

where Ay is the coaction defining the comodule structure and e is the augmentation 
of A[U], and since V 0A A[U] is a free A-module, one sees that V/Vu is torsion-free, 
hence a free ^4-module. 

Therefore, if one sets FQV — 0 and defines inductively F^V as the inverse image 
in V of the [/-invariants in V/Fk-iV, the sequence {FkV} is increasing strictly, as 
long as FkV ̂  V, and each V/FkV, if non-zero, is a finite free A-module. Since V is a 
Noetherian A-module, FNV = V for some N. Setting FLV — FN-iV, it is easily seen 
that, for any i,n ^ 0, both /"( i^F) and Jn(FLV) are contained in FI+NV. Further, 
since every FLV/FL+NV is torsion-free, one obtains that {FLV}fL0 is an admissible 
filtration of V. 

Then, one deduces from the results of 3.4 the following theorem. There are, obvi­
ously, equivariant versions; we leave their formulation to the reader. 
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Theorem. — Let V be an UA-module which is finite free over A and let T be any 
admissible filtration on V. Then there are two finitely convergent spectral sequences: 

i) E?-q = Hq.p(grisol r, gr^ V)p => #g-p(r, V), 
ii) E{~q = Hq-.v(gY-lsolu,gYjrV)p => Hq-p{u,V). 

3.6. Finally, let us return to the setting of Sections 1 and 2. The unipotent group 
Up is defined over Z. Let T := Up (Z); it is, clearly, a torsion-free nilpotent group. 

For each /3 G R, let Up be the corresponding root subgroup, let Xp be a generator 
of Qp = Lie/7/3, and let Op be the isomorphism Ga —> Up such that dOp(l) = Xp. Set 
J := A \ R^ and let / / : Zi? —> Z be the additive function which coincides on the 
basis A with the negative of the characteristic function of I. That is, 

//(<*) = 
- 1 if a G /; 

10 if a e An Rt. 

Choose a numbering a i , . . . , ar of the elements of R \ RL such that fi(oti) ^ fi(&j) 
if i ^ j . The multiplication map induces an isomorphism of Z-schemes 

Un, x • • • x C/p. 

Moreover, it follows from the commutation formulas in [49, Lemma 15] or [7, 3.2.3-
3.2.5] that, for any s = 1,...,r, UOCs • • • Uar is a closed, normal subgroup of Up. One 
deduces that the gi := 0ai(l) generate T and, moreover, form a system of canonical 
parameters, that Up is the algebraic group associated in 3.3 to T, and that the basis 
{^i,... ,vr} of Up identifies with {Xai,... ,Xar}. 

Lemma. — One has Up = grisolUp. 

Proof. — Since T acts on Up by Lie algebra automorphisms, Up has a structure of 
graded Lie algebra given by. the function / / . That is, if one sets, for i ^ 1, 

Up г := 
a£R~ 

fi(a)=i 

then 

Sen 

UP = ©Up(i) and [up(i),UpO')] Çup(z + j). 
2^1 

Therefore, the lemma will follow if we show that CW(iip) = Up(> i), where Up(^ i) 
is defined in the obvious manner. Clearly, C2(tip) C Up(^ i) and, since Up/up(^ i) 
is torsion-free, one obtains that C^(iip) C Up(^ i). 

The converse inclusion Up(^ z) C C^(iip) follows from an argument in the proof 
of [4, Prop. 4.7.(hi)]. For the convenience of the reader, let us recall here this short 
argument. Using induction on i, it suffices to prove that for any /3 G R~ such that 
fi((3) = i^2, there exists a G R+ such that fi(—a) = 1 and {f3,ay) < 0, since then 
/3 -f a G R~ \ R~[ and [X_a, X^+a] = m l ^ for some non-zero integer m. 
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As / / is constant on orbits of W&\j, we may assume that /3 belongs to X£. 
Then, since (3 G R~ whilst dominant roots are positive, there exists a G / such 
that (/3, av) < 0. This completes the proof of the lemma. 

Remark. — Our original proof of the inclusion Up(^ i) C C^(iip) relied on the fact 
that, by [33, Cor. 8.1], #i(upQ,Q) =i 0 a € / V^(-a). We are indebted to the referee 
for pointing out the simple, direct argument in [4]. 

Recall the integers v(i) introduced in the proof of Proposition 3.3. From this 
proposition and the previous lemma (and their proofs), one deduces the following 

Corollary. — There is an isomorphism of graded Hopf algebras grisolZr = U(\ip), 
under which each gi — I corresponds to Xai. Further, for i = 1, . . . , r, one has u(i) = 
fl(OLi). 

3.7. For any A G X+, set 

Vj(\)(i) := 

//(M-A)=i 

Vz(X)u, 

where the subscript /n denotes the /x-weight space. Then, each Vz{\)(i) is an L 
submodule and there is an isomorphism of L-modules 

VZ(X) s 
7>n 

-xybk(ej, 

Set FkVz(X) := Vz(X)(i); this defines a filtration T of VZ(X) by P--submodules, 
such that the associated graded is isomorphic to VZ(X) as L-module. 

Proposition. — One has I^FkVz(X) C Fn+kVz(X), and grTVz(X) =i VZ(X) as rep­
resentations o/grisolZr = Uz(up). 

Proof — Following [22], set, for i = 1, . . . , r and n ^ 0, 

(n) 
u\ 9i 

[{n+l)/2 
(9i ~ l)n, 

where [x] denotes the greatest integer not greater than x, and observe that u\n' = 
(gi - l)n modulo In. Further, for j G Nr, set 

u(j) := ur?l) • • • uijr) and = 
i 

Ji KO-

Then, by [22, Theorem 3.2 (i) and Lemma 3.1], the elements u(j) satisfying ^ n 
form a Z-basis of I^n\ for every n ^ 0. 

From this one deduces that, in order to prove the proposition, it suffices to prove 
that, for any v G FkVz(X) and i = 1, . . . , r, one has 

(*) (gi - l)v - Caiv e Fk+»^+1Vz(\). 

The distribution algebra Dist(l7p) has a Z-basis formed by the ordered products 

Xg*)...x£*\ for (m1,. . . ,mr)€Nr, 
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where the elements satisfy X™ = mlXJf1^ for every m ^ 0. Further, the 
structure of Z[G?]-comodule on Vz{\) is such that, for any ring Q, any t G ft and 
v G Vh(A), and any root a, one has 

0a(t)v = 
то^О 

tmXim,v, 

where the R.H.S. is in fact a finite sum. Since gi = 0ai(l) and since each X^l) has 
weight moil for the adjoint action of T, this immediately implies formula (*). The 
proposition is proved. 

3.8. We can now prove Theorem C of the Introduction. The discrete group A = L(Z) 
normalizes V = Up and, hence, preserves the isolated powers of the augmentation 
ideal of ZT. Therefore, by the equivariant version of Theorem 3.5 i), combined with 
Proposition 3.7, there is a finitely convergent spectral sequence of L(Z)-modules 

(1) H*(xir, Vz(\)) ^ tf.(grisolZI\ Vz(X)) => H.(T, Vz(A)). 

It is, clearly, compatible with flat base change. Thus, for any prime integer p, one has 
a finitely convergent spectral sequence 

(2) H,(up, VZip) (A)) s ft(grisol Zr, VZ(p)(A)) => H.(T, VZ(p) (A)). 

Moreover, it is not difficult to check, by standard arguments, that the natural structure 
of L(Z)-module on if*(grisol ZT, Vz(p) (A)) considered in Theorem 3.4.2 is the restric­
tion to L(Z) of the natural structure of L-module on H*(\ip, Vz(p) (A)). Therefore, if 
A is p-small then, by Theorem 2.1, one obtains an isomorphism of L(Z)-modules 

ft (grisol ZT, VZ(p) (A)) ft (up, VZ(P) (A)) * 
w£WL(i) 

Vi (w • A), 

for every % > 0. In particular, #*(grisol Zr, Vz(p) (A)) is a free Z(p)-module. 
Finally, it is well-known that Up (8> Q is isomorphic to the Malcev-Jennings Lie 

algebra of T; this follows, for example, from the proof of [35, Lemma 1.9]. Therefore, 
by a result of Pickel [43, Th. 10], there is an isomorphism of graded vector spaces 

H.(up,VQ(\))*H.(r,VQ(\)). 

This implies that the abutment of the spectral sequence in (2) has the same rank 
over Z(p) as the Ei-term. Since the latter is a free Z(p)-module, one deduces that the 
spectral sequence degenerates at E\. Therefore, we have obtained the following 

Theorem. — Let A G X+ n Cp. Then, for each n ^ 0, Hn(Up(Z),Vz(p)(\)) has a 
finite, natural L(Z)-module filtration such that 

grHn(Up(Z),VZ(p}(\))^ 
wewL(n) 

-xybk(ej,ei)e 
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By the universal coefficient theorem, one then obtains a similar result over Fp. 
Finally, by an argument similar to the one in 2.10, one obtains the following analogue 
in cohomology. 

Corollary. — Let A G X+ n Cp. Then, for each n > 0, Hn(UP(Z), V¥p{\)) has a 
finite, natural L(Z)-module filtration such that 

grHn(UP(Z), Vpp(A)) * 0 VfLp(w • A). 
wewL(n) 

3.9. Let us derive in this subsection a corollary about the p-Lie algebra associated 
with the p-lower central series of T. (This result will not be used in the sequel). 

Let J7 be a decreasing sequence T = F1T D F2T ^ - • of normal subgroups of T. 
It is called an 7Vp-sequence if it is an iV-sequence and x G F T implies that xp G FpiT. 
In this case, gr^T is a graded p-Lie algebra, see [36, Chap. I, Cor. 6.8] or [5, Chap. II, 
§5, Ex.10]. 

For our purposes, it is convenient to define the p-lower central series {Fp T}n^i as 
follows. Denoting by I¥p the augmentation ideal of FPT, set 

F?r:={xer\x-l€l?p}. 

This is an TVp-sequence (see [42, Lemma 3.3.1]), and we denote the associated graded 
p-Lie algebra by grp T. 

The n-th term F^T of the p-lower central series is sometimes defined as the sub­
group of T generated by all elements xpS satisfying psuo{x) ^ n, where u(x) denotes 
the largest integer i such that x G Cl(T). That the two definitions agree is due to 
Lazard [36, Chap. I, Th. 5.6 & 6.10] and Quillen [45], see also [42, § 11.1]. 

Let us denote by Cie¥p the category of Lie algebras over Fp, by p-Cie¥p the subcate­
gory of p-Lie algebras, and by gv-Cie¥p and p-gr-Cie¥p, respectively, the subcategories 
of graded and graded p-Lie algebras over Fp. The forgetful functor p-Cie¥p —> Cie¥p 
has a left adjoint, denoted by p-C; it takes gr-Cie¥p to p-gi-Cie¥p. 

Corollary. — LetT be a finitely generated, torsion-free, nilpotent group, say of class c. 
Suppose that ©^=1 (T)/Cl(T) has no p-torsion. Then, there is an isomorphism 
of graded p-Lie algebras 

g r ; r ^ p - £ ( g r r ® F p ) . 

Proof. — The hypothesis implies easily that gr T 0 ¥p = grisol T 0 ¥p. Moreover, it 
follows from the proof of [22, Th. 3.2 (i)] that every j(n)/In has no p-torsion. This 
implies that, inside Fpr, one has the identifications 1^ 0 Fp = In 0 Fp = . One 
deduces from this, coupled with Theorem 3.1, the isomorphisms 

grFpr =i (grisol IT) 0 Fp =i Uz(grisol r ) 0 Fp =i U¥p(gvisol T 0 Fp) = U¥p(grT 0 Fp). 

On the other hand, by Quillen [45], grFpT is isomorphic as graded Hopf algebra to 
U^s(gTp T), the restricted enveloping algebra of the p-Lie algebra grp T. 
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Recall that U^SY the restricted enveloping algebra functor, is left adjoint to the 
forgetful functor Aswp —» p-Cie^p, where As^p denotes the category of associative 
Fp-algebras (with unit), while the usual enveloping algebra functor is left adjoint to 
the forgetful functor As^p —> Ciewp. Thus, since the adjoint of a composite is the 
composite of the adjoints, one has UYP(L) = U^s(p-C(L)), for any Fp-Lie algebra L. 

Therefore, one obtains an isomorphism of graded Hopf algebras 

U^(p-C(giT ® F„)) - ^" (gr ; r ) . 

Taking primitive elements, this gives, by the theorem of Milnor-Moore [38, Th. 6.11], 
an isomorphism of graded p-Lie algebras p-£(grT 0 Fp) = gr* T. The corollary is 
proved. 

Remark. — It is easy to see that the torsion primes in 0£=1 C^(T)/CL(T) and in 
gr T are the same. Presumably, it should not be difficult to extract from the proof of 
Proposition 3.3 that the torsion primes in gru are also the same. 

4. Standard and BGG complexes for distribution algebras 

4.1. As in subsection 2.2, there is defined a complex 

• U{G) ®U(P) A2(g/p) A U{G) ®U(P) (fl/p) U{G) ®U(P) 

the differentials being defined by the same formula as in 2.2. Note, however, that this 
complex is not exact. We shall denote it by <S.(G, P). 

More generally, let V be a G-module and let Vjp denote V regarded as an U{P)-
module. Then one obtains, as in 2.2, a complex of ZY(G)-modules 

> U(G) ®U{P) (A2(g/p) <8> V\P) U{G) ®U{P) (g/p 0 V\P) 

U{G) ®U(P) y\p V —> 0. 

We shall call it the standard complex of V relative to the pair (U(G),U(P)), and 
denote it by <S.(G, P, V). When V = Vz(A), we shall denote it simply by <S.(G, P, A). 

Further, as in 2.4, let us define, for any £ E the generalized Verma module 
(for U(G) and U(P)) 

MP{£,):=U{G) ®U(P)VzL(0-

Set MZP(P)(0 := MP(0 ®z Z(p) and <sf(p)(G,P, A) := S.(G,P, A) ®z Z(p), for any 
A E X + . 

4.2. For the rest of this section, let us fix A E X+ and a prime integer p such that 
A E CP. Recall from 2.4 that fip(A) denotes the multiset of those £ E X£ such that 
VQ(£) is a composition factor of Al(g/p)q. 

Since W(G) is free ovevU(P) (see, for example, [28, § II. 1.12]), one obtains exactly 
as in 2.4 the following 
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Lemma. — Let A e D Gp. Then each Si (p)(G, P, A) admits a finite filtration by 
Uz{p)(G)-modules such that the successive quotients are the Mpp)(£), for £ e fij;(A). 

Next, since f/z(p)(0) C Uz(p)(G) C C/Q(0), one deduces that Uz(p){&)G is contained 
in the center of Uz{p)(G). Recall the characters X/x,p and xM>p = TT O Xm,p, where 7R is 
the morphism Z(p) —> Fp, introduced in 2.6.3. If M is a ZVz(p) (G)-module generated by 
an element of weight \i annihilated by u, then Uz(p) (#)G acts on M by the character 
X/x,p (see 2.6.3). 

Let J = N^6^; (A) Ker X£,P (each £ being counted with its multiplicity). It fol­
lows from the previous lemma that <S?(p)(G, P, A) is a module over the ring A := 
Uz(p)(&)G/1, which is a finite Z(p)-module. Let Xi>--->Xr be the distinct algebra 
homomorphisms A —> Fp, numbered so that Xi — X\v-> and, for j = 1, . . . , r, set 

<S>(G, P, %4 := (x G «S.Z(P)(G, P, A) | I W t t ) ( K e r Xe<P)x = 0 
-xybk(ej, 

These are, clearly, subcomplexes of <S.(p) (G, P, A). Then, exactly as in 2.7(*), one 
obtains the 

Corollary. — One has S.(p) (G, P, A) = ©j=1 (p) (G, P, A)^., a direct sum of com­
plexes. 

4.3. Our aim in this section is to prove the following theorem. 

Theorem. — Assume that VG is simply-connected, that X(T)/ZR has no p-torsion 
and that Up is abelian. Let A £ X+ D Cp. Consider the direct summand subcomplex 
sf(p) (G, P, X)Yx n defined in 4.2. Then, for each i ^ 0, one has 

<S <P)ÍG.P.AW Sí 
wewL(i) 

MZp(p)(w-\). 

As in [16, VI.5], we treat first the case A = 0 and then derive from it the general 
case. 

4.4. The case A = 0.— Since Up is abelian, the differentials in the standard Koszul 
complex computing H.(\ip) are all zero and hence H9(\ip) = A*(tip). Therefore, by 
a result of Kostant [33, §8.2], the composition factors of Al(g/p)q are exactly the 
VQ(W • 0), for w £ WL(i), each occuring with multiplicity one. 

Moreover, as easily seen, the assumption that Up is abelian is equivalent to the fact 
that if a, /3 G P+ \ Rp then a + ¡3 £ R, which is also equivalent to the fact that Up 
acts trivially on g/p. Therefore, by Corollary l.lO.b), each Al(g/p)%(p) is the direct 
sum of the Weyl modules Vl" (w • 0), for w E WL(i). It follows that 

(*) S {P)(G.P) £ 
w€WL(i) 

MZpM(w-0), 
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and, therefore, <S- (p) (G, P) = <S- (p) (G, P)xx,p in this case. This proves the sought-for 
result when A = 0 and p ^ h — 1. (Note that no further assumption on G and p is 
needed in this case). 

4.5. The general case.— Now, let A G X+ n Cp be arbitrary. First, since 
<S.Z(p) (G, P, A) = <S.Z(p) (G, P) 0 V(A), one deduces from 4.4 (*) and the tensor identity 
([19, Prop. 1.71) that, for i ^ 0, 

(1) <SZ(p)(G,P,A)-
wewL(i 

Wz(p) (G) ® ^ (P) fe (wp - p) ® VZ(P) (A)) . 

Let <Ŝ (p) (G, P, A) denote the summand corresponding to w on the R.H.S. Then 

(2) <S.Z(p)(G,P,A) = 
wewL 

Sw(p) (G, P, A), 

each <SZ(p) (G, P, A) occuring in degree £(w). 
Therefore, by 4.2, one obtains that 

(3) 5Z(P)(G,P,AW EE 
w£WL 

Swip) (G, P, A)̂ A p. 

Lemma. — Assume further that VG is simply-connected and that X(T)/ZR has no 
p-torsion. Then, for every w G WL, 

5Z(P)(G,P,AW ^A4p(p)(w.A). 

Proof. — First, exactly as in 2.7, one obtains that each Swip) (G, P, A)̂ A p has a filtra­
tion whose quotients are the .A/fp(p)(£) for those £ such that V Q ^ ) is a composition 
factor of the Z/Q-module VQ(W-0) ®VQ(A) (counted with multiplicities) and such that 
XÇ,P XA,P* 

Moreover, under the assumptions of the lemma, one obtains, exactly as in the proof 
of Proposition 2.8, that any such £ has the form y • A, for some y G WL. 

But then the assumption that VQ (y • A) occurs as a composition factor of VQ (W -0)(g) 
VQ(A) implies that y = w and that the multiplicity is one. This may be deduced, for 
example, from [27, Satz 2.25]. For the convenience of the reader, let us record a proof. 
Firstly, it is well-known that any composition factor of the Z/Q-module VQ' (W-0)®VQ(A) 
has the form VQ(W • 0 +1/) , for some weight v of VQ(A) and occurs with a multiplicity 
at most equal to dimVQ(A)I/, see, for example, [24, §24, Ex. 12] or, better, the proof 
of Cor. 4.7 in [1]. Secondly, for such a z/, suppose that w • 0 + v = y • A, for some 
y G W. Then, 

y~lwp- p = A - y~lv. 
Let 6 denote this weight. Since y~lwp (resp. y~lv) is a weight of Vq(p) (resp. VQ(A)), 

one has 9 G —NP+ (resp. 0 G NP+) and, therefore, 0 = 0. Thus, since the stabilizer 
of p in W is trivial, y = w. Finally, v = t(/A has multiplicity one in VQ(A). This 
completes the proof of the lemma and, therefore, of Theorem 4.3. 
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5. Dictionary 

Let G = GSp(2g)z be the split reductive Chevalley group over Z defined by 
tXJX = v - J where J is given by g x ^-blocks 

J = 
s 1d 

, - 1 
sdg 

Let B = TN, resp. Q = MU, be the Levi decomposition of the upper triangular 
subgroup of G, resp. of the Siegel parabolic, i.e., the maximal parabolic associated 
to a, the longest simple root for (G, £,T), so M = Li where / = A\{a}. Note that 
VG = Sp(2g) is simply-connected and that the unipotent radical of Q is abelian. 

The group of characters X of T is identified to the sublattice 

{(ag, • • • , ai; c) G Z9 x Z | c = ag H h a\ mod. 2} 

of Z9+1 in the following manner. The character (ap, • • • , ai; c) is defined by 

diagfe, * r \ * ' O ^ # * r • ^ c - a i - - ^ ) / 2 . 

The weight lattice P(R) coincides with X, and the root lattice ZR is the intersection 
of X with the hyperplane {c = 0}. In particular, X/ZR is torsion free. The cone 
X+ C I of dominant weights of G is given by the conditions ag ^ • • • ^ a\ ^ 0. The 
half-sum p of the positive roots of G is then p = (g,..., 1; 0). 

If (eg,..., ei) is the canonical basis of Z9, the highest coroot 7V of G is eg + 
The condition (A + p, 7V) < reads, therefore, 

ag + a^_i + g + (# - 1) ^ p. 

For a character 0 = (a^,..., a\\ c) we define its degree as |0| = 52i=i a^ the dual 
character <\> = (a^,..., a\ \ — c) of 0 has the same degree. Note that \p\ = g(g + l)/2. 
So, 

(A + p , 7 V K | A + p| 

with equality for # ^ 2. 

Let V — (ep,..., ei, e*,..., e*) be the standard Z-lattice on which G acts; given two 
vectors w G V, we write (v,w)j = lvJw for their symplectic product. Then Q is the 
stabilizer of the standard lagrangian lattice W = (eg,..., ei); we have V = W© W*; 
M = Li is the stabilizer of the decomposition (W, W*); one has M = GL(g) x Gm. 
Let BM = B H M be the standard Borel of M. 

Recall from 1.5 the definition of admissible lattices and, for A G X+, the Z-lattices 
V(X)MIN and V(A) 

Let A G X+ and n = |A|; for any with 1 < i < j <: n, let 0ifi : V®n -> V®^"2) 
denote the contraction given by 

vi ® • • • 0 vn i—• (vi,Vj)j vi ® • • • ® Si (8) • • • (g) <8) • • • ® vn, 
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and let be the submodule of V®n defined as intersection of the kernels of the 
c/>ij. By applying the Young symmetrizer c\ = a\ • b\ (see [18], 15.3 and 17.3) to 
V^n\ one obtains an admissible Z-lattice V(A)Young in VQ(A). 

Then, by Corollary 1.9, one has the 

Corollary. — For any p-small weight A G , one has canonically 

V(X)min ® Z(p) = F(A)Young ® Z(p) = F(A)MAX ® Z(p). 

Moreover, a similar result holds for a weight fi G X~j^ of M, provided it is p-small 
for M. 
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