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ANALYTIC THEORY FOR THE QUADRATIC
SCATTERING WAVE FRONT SET AND APPLICATION

TO THE SCHRÖDINGER EQUATION

Luc Robbiano, Claude Zuily

Abstract. — We consider in this work, the microlocal propagation of analytic singu-

larities for the solutions of the Schrödinger equation with variable coe�cients. We

introduce, following R.Melrose and J.Wunsch, a Rn compacti�cation and a cotan-

gent compacti�cation. We de�ne by a FBI transform an analytic wave front set on

this cotangent bundle. The main part of this paper is to prove the propagation of

microlocal analytic singularities in this wave front set.

Résumé (Théorie analytique du front d’onde de scattering quadratique et application à
l’équation de Schrödinger)

On examine dans ce travail la propagation des singularités analytiques des so-

lutions de l'équation de Schrödinger à coe�cients variables. Nous introduisons, en

suivant R. Melrose et J.Wunsch, une compacti�cation de Rn et une compacti�cation

du cotangent. Nous dé�nissons sur ce cotangent un front d'onde analytique par une

transformation de FBI. La majeure partie de cet article est consacrée à la preuve de

la propagation des singularités analytiques microlocales de ce front d'onde.

c© Astérisque 283, SMF 2002
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CHAPTER 0

INTRODUCTION

The purpose of this work is to provide a theory for the analytic quadratic scattering
wave front set, here denoted qscWFa, which in the C∞ case has been introduced by
Wunsch [W1] after the work of Melrose [M1], and to apply it to the propagation of
analytic singularities for the linear Schrödinger equation with variable coefficients.

To understand what we are doing here, let us begin by a very simple example.
Let us consider the initial value problem for the constant coefficients Schrödinger
equation,

(0.1)

i
∂u

∂t
+∆u = 0, t > 0, x ∈ Rn

u|t=0 = u0
.

Taking u0 = δ and u0 = e−i|x|2 , it is an easy exercise to see that a data which is a
distribution with compact support may give rise to a smooth solution (in x) for every
positive t, while an analytic data which oscillates at infinity may produce a singular
solution (in x) at some time t. This classical fact, which, roughly speaking, asserts
that the smoothness of the solution (in x), for t > 0, is under the control of the
behavior at infinity of the initial data, is known as “propagation with infinite speed”.

It turns out that this fact extends in many directions. It is of microlocal nature,
it can be described geometrically and it holds for non trapping Laplacians which are
flat perturbation (at infinity) of the constant coefficient case.

These extensions have been the subject of many recent works. See Kapitanski-
Safarov [KS], Craig-Kappeler-Strauss [CKS], Craig [C], Shananin [Sh], Robbiano-
Zuily [RZ1, RZ2], Kajitani-Wakabayashi [KW], Okaji [O], Morimoto-Robbiano-
Zuily [MRZ]. Related works have been done by Doi [D1, D2], Hayashi-Kato [HK],
Hayashi-Saitoh [HS], Kajitani [K], Vasy [V], Vasy-Zworski [VZ] and we refer to the
paper [CKS] for a more complete bibliography.



2 CHAPTER 0. INTRODUCTION

In all these works we are handling two informations : behavior at infinity (decay,
oscillations. . . ) and smoothness. In a recent paper, Wunsch [W1] proposed to em-
bed these two informations in one unique object, which he called the C∞ quadratic
scattering (qsc) wave front set, in which the above phenomena of infinite speed propa-
gation would appear as a propagation of singularities result. Here the word quadratic
is used to emphasize that this wave front set takes in account the quadratic oscilla-
tions at infinity. Let us note that a scattering wave front set in the C∞ case was
already introduced by Melrose [M1, M2] and that related notions have been recently
considered by Wunsch-Zworski [WZ] (see also Rouleux [R]). Moreover, in the same
paper Wunsch gave a quite complete description of the propagation of singularities
for this C∞ wave front set which will be described later one.

It is worthwhile to mention that some propagation results have been obtained a
long time ago by R. Lascar [L] (see also Boutet de Monvel [B]). In the C∞ case, he
introduced a parabolic wave front set and he proved its propagation. However this
propagation (in x) holds between two points at the same time t ; it is therefore unable
to link the “singularities” of the data to those of the solution for positive time.

The work of Wunsch relies on some geometrical point of view of Melrose. It be-
gins by working on a compact manifold M with boundary ∂M , which comes from
a (stereographic) compactification of Rn. Roughly speaking this corresponds to set,
for large x, x = ω/ρ, where ρ > 0 and ω ∈ Sn−1. The boundary ∂M corresponds
then to the infinity of Rn. The second step is to define a cotangent bundle. The
natural one, coming from the above compactification would be the one where the
canonical one form is given by α = λ dρ

ρ2 + µ · dyρ if (ρ, y) are local coordinates near
the boundary. However, having in mind that this bundle should hold the singularities
of the quadratic oscillatory data, Wunsch introduced the quadratic scattering (qsc)
cotangent bundle, qscT ∗M where the canonical one form is given by α = λdρ

ρ3 +µ · dyρ2 .
Indeed if u0(x) = ei〈Ax,x〉, where A is an n × n symmetric real matrix, we have
u0 = e

i
ρ2 〈Aω,ω〉 and the differential of the phase is

d

(
1
ρ2
〈Aω, ω〉

)
= −2〈Aω, ω〉dρ

ρ3
+

n∑
j=1

∂

∂ωj
(〈Aω, ω〉)dωj

ρ2
.

Local coordinates, near the boundary, in this qsc cotangent bundle are given by
(ρ, y, λ, µ). Now, since only high frequencies are involved in the occurring of singular-
ities, Melrose suggests to make a radial compactification in the fibers, that is to set,
for large λ+ |µ|,

σ =
1

(λ2 + |µ|2)1/2 , λ = σλ, µ = σµ .

Then we may define the extended qsc cotangent bundle qscT
∗
M in which local coor-

dinates, near the boundary of M , are given by (ρ, y, σ, (λ, µ)), where ρ � 0, σ � 0.
Its boundary C is the union of two faces, qscT

∗
∂MM = {(ρ, y, σ, (λ, µ)) : ρ = 0} and

qscS∗M = {(ρ, y, σ, (λ, µ)) : σ = 0}.

ASTÉRISQUE 283



CHAPTER 0. INTRODUCTION 3

The qsc wave front set is a subset of C. To define it, in the C∞ case, Wunsch uses
Melrose’s theory of pseudo-differential operators on manifolds with corners [M1].
Here, in the analytic case (but also in the C∞ or Gevrey cases) we use instead the
Sjöstrand machinery of FBI transforms. Our analytic qsc wave front set will be defined
through a FBI transform with two scales (h, k), instead of only one scale λ = 1/k in
the usual case. More precisely we shall set for u ∈ L2(M),

(0.2) T u(α, h, k) =
∫∫

eih
−2k−1ϕ(ρ/h,y,α,h)a(ρ/h, y, α, h, k)χ(ρ/h, y)u(ρ, y) dρdy .

Here ϕ is a phase, a a symbol and χ a cut-off function. (See § 2 for the precise
definitions of phases, symbols and qscWFa).

The simplest phase is the following

ϕ(s, y, α, h) = (s− αs)ατ + (y − αy) · αη + ih[(s− αs)2 + (y − αy)2] ,

where α = (αs, αy, ατ , αη) ∈ R× Rn−1 × R× Rn−1.
Now, if u(t, ·) is a solution of (0.1) and t0 > 0, the qscWFa(u(t0, ·)) does not

propagate ; instead we introduce a uniform qsc analytic wave front set qscW̃Fa(u(t0, ·))
which will propagate.

In (0.2), the parameter h is used to describe the behavior at infinity (decay, oscil-
lations. . . ) while k is used to test the analytic smoothness. However near the corner
{ρ = σ = 0} these two informations are mixed. As in the usual case, it is necessary
to define such transforms for a large class of phases. Moreover one should be able to
change phases, symbols and cut-off functions, in particular, to show the invariance
of the qscWFa ; to achieve these invariances, in particular to go from one phase to
another, one has to make a careful study of the pseudo-differential operators in the
complex domain, then in the real domain and to pass from the first theory to the
second by some delicates changes of contours. Here the situation is complicated by
the fact that our FBI phases have an imaginary part which goes to zero with h. In
the appendix the reader will find a complete Sjöstrand’s theory in the case of two
scales.

Concerning the propagation theorems we consider a Schrödinger equation with a
Laplacian ∆g with respect to a scattering metric g in the sense of Melrose ; this means
that, near the boundary one can write g = dρ2

ρ4 + h
ρ2 , where h is a metric such that

h|∂M is positive definite. This includes, of course the flat metric for which h = dω2,
but also the asymptotically flat metrics on Rn. In this setting we try to answer the
following question. Let m0 be a point in C = qscT

∗
∂MM ∪ qscS∗M , u be a solution of

the initial value problem for this Schrödinger equation and T > 0. On what condition
on u0 do we have m0 �∈ qscWFa(u(T, ·)) ? The answer, which depends strongly on
the position of m0 in C, requires a careful study of the flow of the Laplacian on C.
This can be found in Wunsch [W1] ; however a still more precise description near the
corner {ρ = σ = 0} is needed here. The different statements, according to the position

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2002



4 CHAPTER 0. INTRODUCTION

of m0 in C, will follow from four propagation results : propagation inside qscT ∗
∂MM ,

inside qscS∗M or along the corner (for the uniform qscWFa and fixed t), from the
interior to the corner and finally from the boundary at infinity to the corner. To give
a flavor of the results obtained, let us describe the case of the first situation. Let
0 � t1 < t2 and m0 ∈ qscT

∗
M . Assume that exp tH∆(m0) (the flow of the Laplacian

at infinity through m0) stays, for t ∈ [t1, t2], inside the interior of qscT
∗
∂MM . Then

exp t1H∆(m0) does not belong to qscWFa(u(t1, ·)) if and only if exp t2H∆(m0) does
not belong to qscWFa(u(t2, ·)). Coming back to the above question, this result can be
applied (with t1 = 0, t2 = t) when m0 = (0, y0, λ0, µ0) in the following cases : µ0 �= 0
or µ0 = 0, λ0 > 0 or µ0 = 0, λ0 < 0, t < −1/2λ0, because, in the later case, the flow
starting from m0 reaches the corner after a finite time t = −1/2λ0.

A complete description of the other cases can be found in § 4.
Let us now describe the method of proofs. The first idea, which comes from Sjös-

trand’s work [Sj], is that the FBI transform can be used, at the same time, to test
the microlocal smoothness and, as a Fourier integral operator, to reduce an oper-
ator to a simpler form. Let us be more precise. We look for a family of phases
ϕ = ϕ(θ; ρ/h, y, α, h) and symbols a = a(θ; ρ/h, y, α, h, k) depending on a parameter
θ, such that

(0.3)
(
∂

∂θ
+ i∆∗

g

)
(aeih

−2k−1ϕ) = O
(
e−ε/hk

)
, ε > 0 ,

where ∆∗
g is the adjoint of the Laplacian ∆g.

This leads to the eikonal equation for ϕ,

(0.4)
∂ϕ

∂θ
+ p

(
sh, y, s2

∂ϕ

∂s
, s
∂ϕ

∂y

)
= 0

and to the transport equations,

(0.5) Xaj + h2kQaj−1 = bj , if a =
+∞∑
j=0

(h
√
k)jaj ,

where X is a non degenerate real vector field and Q a second order differential oper-
ator.

As soon as we have solved these equations, we see that the corresponding FBI
transform T u(θ; t, α, h, k) satisfies the real transport equation

(0.6)
(
1
k

∂

∂θ
+

∂

∂t

)
T u(θ; t, α, h, k) = O

(
e−c/hk

)
, c > 0 ,

and the propagation theorems follow easily.
The main point of the paper is therefore to solve (0.4) and (0.5). The resolution of

the eikonal equation (0.4) requires the use of the complex symplectic geometry. We
make a careful study of the bicharacteristic flow to span a nice complex Lagrangian
manifold on which the symbol q = θ∗ + p(sh, y, τs2, sη) vanishes. It should be noted
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CHAPTER 0. INTRODUCTION 5

that one has to make a global (backward and forward) study of the bicharacteristic
system.

Since the transport equations are linear, they are easily solvable step by step.
However it is not straightforward that the corresponding symbol a =

∑
(h
√
k)jaj is

an analytic symbol ; the proof of this fact requires the use of a method of “nested
neighborhood” as described by Sjöstrand [Sj]. In our context these constructions are
to be made either globally on [0,+∞[ or until a time T∗ at which all the coefficients
of X in (0.5) blow-up ; this leads to significant complications.

Finally we would like to thank the referee for its careful reading of the paper,
leading to many improvements of the original manuscript.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2002





CHAPTER 1

THE GEOMETRICAL CONTEXT

The content of this section is taken from Melrose [M1]. Here smooth will mean
analytic and all the objects will be smooth. Let M be a smooth compact manifold
with boundary ∂M . A boundary defining function for M is a smooth function ρ on
M such that ρ = 0 and dρ �= 0 on ∂M . A scattering metric on M is a smooth
metric g such that, for some choice of boundary defining function ρ, we have, in a
neighborhood of ∂M

(1.1) g =
dρ2

ρ4
+

h

ρ2
,

where h is a smooth symmetric bilinear form on T ∗M such that h|∂M is a metric.
This class of metrics has been built to include asymptotically flat metrics on the

Euclidian space Rn. Indeed let us consider the upper hemisphere of the unit sphere
in Rn,

M = Sn
+ =

{
(t0, t′) ∈ R× R

n : t0 � 0 , t20 + |t′|2 = 1} ,
with boundary ∂Sn

+ = {(t0, t′) ∈M : t0 = 0}.
The function ρ(t0, t′) = t0/(1− t20)

1/2, defined in a neighborhood of ∂Sn
+ and ex-

tended smoothly to Sn
+, is a boundary defining function for Sn

+. Then, a neighbor-
hood of ∂Sn

+ is diffeomorphic to a subset of [0,+∞[× Sn−1 by the map Φ : (t0, t′) �→
(ρ(t0, t′), ω) where ω = t′/|t′|. On the other hand, Rn is diffeomorphic to

◦
S n
+ = {(t0, t′) ∈ R× R

n : t0 > 0, t20 + |t′|2 = 1}

by the stereographic compactification SP : Rn →
◦
Sn
+, z �→

(
t0 = 1/〈z〉 , t′ = z/〈z〉

)
,

where 〈z〉 = (1 + |z|2)1/2. Thus, by Φ ◦ SP , we can identify Rn � {z : |z| < 1} with
a subset of ]0,+∞[× Sn−1. It is easy to see that this corresponds to set ρ = 1/|z|,
ω = z/|z| for |z| � 1. Since z = ω/ρ, we check easily that, for |z| � 1, we have

(Φ ◦ SP )∗(dz2) =
dρ2

ρ4
+
dω2

ρ2
.



8 CHAPTER 1. THE GEOMETRICAL CONTEXT

In that follows we shall denote by (ρ, y) a system of local coordinates in a neigh-
borhood of the boundary. Then the metric h appearing in (1.1) can be written

(1.2) h = h00(ρ, y)dρ2 + 2
n−1∑
j=1

h0j(ρ, y)dρdyj +
n−1∑
i,j=1

hij(ρ, y)dyidyj

where the coefficients are analytic and

(1.3) the matrix (hij(0, y))1�i,j�n−1 is positive definite on ∂M .

Following Wunsch we shall denote by νqsc(M) (qsc means quadratic scattering) the
space of vector fields on M which are, near the boundary, linear combination of ρ3∂ρ
and ρ2∂yj , 1 � j � n−1. Then qscTM will be the space of smooth section of νqsc(M)
and qscT ∗M its dual. The 1−canonical form on qscT ∗M can be written, in local
coordinates near ∂M , as

(1.4) α = λ
dρ

ρ3
+ µ · dy

ρ2
.

Then the current point in qscT ∗M near ∂M will be determined by its coordinates
(ρ, y, λ, µ).

We shall set

(1.5) qscT ∗
∂MM =

{
m ∈ qscT ∗M : ρ = 0

}
.

Now if λ2+|µ|2 is very large it will be more convenient to introduce new coordinates
by setting

(1.6) σ =
1

(λ2 + |µ|2)1/2 , λ = σλ, µ = σµ, λ
2
+ |µ|2 = 1 .

This corresponds to make a radial compactification of the fibers variables and we shall
denote by qscT

∗
M the radial compactification of qscT ∗M . Then, near σ = 0 we shall

take (ρ, y, σ, (λ, µ)) as local coordinates of a point of qscT
∗
M .

It follows that qscT
∗
M is a manifold with corner and two faces. If we set

(1.7)

{
qscT

∗
∂MM = {m ∈ qscT

∗
M : ρ = 0} ,

qscS∗M = {m ∈ qscT
∗
M : σ = 0} ,

then

(1.8) C = ∂ qscT
∗
M = qscT

∗
∂MM ∪ qscS∗M .
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CHAPTER 2

THE ANALYTIC QSC WAVE FRONT SET

It will be defined as a subset of C, through a FBI transform with two parameters.
Let us describe what will be the phases and the symbols.

2.1. The FBI phases

Let M0 = (X0,Ξ0, α0, h0) ∈ Rn × Rn × R2n × [0,+∞[, with α0 = (α0X , α
0
Ξ) ∈

Rn × Rn.

Definition 2.1. — We shall say that ϕ = ϕ(X,α, h) is a FBI phase at M0 if one can
find a neighborhood V of (X0, α

0) in C
n × C

2n, a neighborhood Ih0 of h0 in [0,+∞[
such that

(2.1) ϕ(X,α, h) = ϕ2(X,αΞ) + ϕ3(α) + ihϕ1(X,α) , α = (αX , αΞ) ,

where

(2.2)

{
ϕj , j = 1, 2, 3 are holomorphic functions in V

and ϕ2 is real if (X,αΞ) ∈ R
n × R

n ,

(2.3)
∂ϕ

∂X
(X0, α

0, h0) = Ξ0 ,

(2.4)


ϕ1(X0, α

0) =
∂Reϕ1
∂X

(X0, α
0) = 0 ,

(∂2Reϕ1
∂X2

)
(X0, α

0) is positive

definite and
(∂2Reϕ1
∂X∂αX

)
(X0, α

0) is invertible,

(2.5) i) If h0 = 0,
(

∂2ϕ2
∂X∂αΞ

)
(X0, α

0
Ξ) is invertible,
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ii) if h0 �= 0, the matrices
(

∂2ϕ
∂X∂αΞ

)
(X0, α

0, h0) and
∂2 Reϕ
∂X∂αΞ

∂2 Reϕ
∂X∂αX

∂2 Imϕ
∂X∂αΞ

∂2 Imϕ
∂X∂αX

 (X0, α
0, h0)

are invertible.

Examples 2.2

(i) ϕ(X,α, h) = (X − αX)αΞ + ih(X − αX)2 is a FBI phase at (X0,Ξ0, α0, h0) if
α0 = (X0,Ξ0).

(ii) More generally let ϕ = (X − αX)αΞ + ihϕ1(X,α), where ϕ1 is holomorphic,
real if (X,α) is real and satisfies ϕ1(X,α) = ∂ϕ1

∂X (X,α) = 0 if αX = X , ϕ1(X,α) �
c |X − αX |2, for (X,α) in a real neighborhood of (X0, (X0,Ξ0)). Then ϕ is a FBI
phase at (X0,Ξ0, α0, h0) if α0 = (X0,Ξ0).

2.2. The analytic symbols

Our symbols will be formally of the following form

(2.6) a(X,α, h, k) =
∑
j�0

aj(X,α, h, k)(h
√
k)j

where the aj ’s are holomorphic with respect to (X,α) in a same complex neighborhood
of (X0, α

0), bounded in (h, k) in a same neighborhood of (h0, σ0) in [0,+∞[× [0,+∞[
and satisfy in these neighborhoods

(2.7) |aj(X,α, h, k)| � Cj+1 jj/2 , j � 0 .

Actually we will take finite sums of such aj . The symbol a will be called elliptic at
(X0, α

0, h0, σ0) if a0(X0, α
0, h0, σ0) �= 0.

2.3. The analytic qsc wave front set qscWFa

A point m0 in C = ∂ qscT
∗
M is given by m0 = (ρ0, y0, σ0, (λ0, µ0)) in local coordi-

nates, where ρ0 � 0, σ0 � 0, ρ0 · σ0 = 0, y0 ∈ Rn−1 and λ
2

0 + |µ0|2 = 1. Let s0 > 0 be
given and set h0 = ρ0/s0. We set

(2.8) X0 = (s0, y0) ∈ R
n , Ξ0 =

(λ0
s30

,
µ0
s20

)
∈ R

n .

Definition 2.3. — Let u ∈ D′(M) and m0 ∈ C. We say that m0 /∈ qscWFa(u) if one
can find s0 > 0, α0 ∈ R2n, a neighborhood Vα0 of α0 in R2n, a FBI phase ϕ at
(X0,Ξ0, α0, h0), neighborhoods Vh0 , Vσ0 of h0, σ0 in [0,+∞[, positive constants C,
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ε0, an analytic symbol a, elliptic at (X0, α
0, h0, σ0), a cut-off χ ∈ C∞

0 equal to one
near X0 such that

|T u(α, h, k)| �
∣∣∣ ∫∫ eih

−2 k−1ϕ(ρ/h,y,α,h)a
(
ρ/h, y, α, h, k

)
χ
(
ρ/h, y

)
u(ρ, y)dρdy

∣∣∣(2.9)

� Ce−ε0/hk

for all α in Vα0 , h in Vh0 � 0, k in Vσ0 � 0.

2.4. The uniform analytic qsc wave front set qscW̃F a

Definition 2.4. — Let I be an interval in R, (u(t; ·))t∈I be a family of distributions on
M and t0 ∈ I. Let m0 ∈ C (see (1.8)). We shall say that m0 /∈ qscW̃F a(u(t0, ·)) if one
can find s0, α0, ϕ, a, Vα0 , Vh0 , Vσ0 , C, ε0 as in Definition 2.3 and δ0 > 0 such that

|T u(t;α, h, k)| �
∣∣∣ ∫∫ e−ih−2 k−1ϕ(··· )a(· · · )χ(· · · )u(t; ρ, y)dρdy

∣∣∣ � Ce−ε0/hk

for all α, h, k respectively in Vα0 , Vh0 � 0, Vσ0 � 0 and all t ∈ I such that |t− t0| � δ0.

2.5. Invariance

An important result in this theory is the following.

Theorem 2.5. — The definitions of qscWFa and qscW̃F a are independent of s0, α0,
ϕ, a, χ which satisfy the conditions in the Definitions 2.1 and 2.3.

The proof of this result is given in the Appendix.

2.6. More general phases

Later on we will be lead to handle FBI transform with more general phases than
those described in Definition 2.1, which may also depend on a parameter ν ∈ Rd. Let
M0 = (X0,Ξ0, β0) ∈ Rn × Rn × R2n.

Definition 2.6. — We shall say that ψ = ψ(X, β, ν, h) is a phase at M0 if one can find
a neighborhood W of (X0, β

0) ∈ Cn × C2n, a set U ⊂ Rd × ]0,+∞[, ε0 > 0, C0 > 0
such that

(2.10)

{
ψ is holomorphic in W, for all (ν, h) ∈ U and Imψ(X, β, ν, h) � 0

if (X, β) ∈ WR = W ∩ (Rn × R
2n) and (ν, h) ∈ U ,

(2.11) |ψ(X, β, ν, h)|+
∣∣∣ ∂ψ
∂X

(X, β, ν, h)− Ξ0
∣∣∣ � ε0 , if (X, β) ∈W , (ν, h) ∈ U ,

(2.12)
∣∣∣∂ Imψ

∂X
(X, β, ν, h)

∣∣∣ � ε0h, if (X, β) ∈WR , (ν, h) ∈ U ,
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(2.13)
∂2 Imψ

∂X2
(X, β, ν, h) � −ε0h Id , if (X, β) ∈ WR , (ν, h) ∈ U ,

|∂αψ(X, β,m, h)| � C0 , for |α| � 3 , if (X, β) ∈ W , (ν, h) ∈ U .

Let us set nowX0 = (s0, y0) where s0 > 0 and y0 ∈ Rn−1, Ξ0 = (τ0, η0) ∈ R×Rn−1,
r20 = s60 τ

2
0 + s40 |η0|2.

Theorem 2.7. — Let ψ be a phase at (X0,Ξ0, β0). Let b be an analytic symbol in a
neighborhood of (X0, β

0). Let us consider the point

m0 =
(
h0, y0, k0/r0 ,

(
s30 τ0/r0 , s

2
0η0/r0

))
∈ C.

Then, if m0 /∈ qscWFa(u), one can find χ ∈ C∞
0 , χ = 1 in a neighborhood of X0,

positive constants C0, δ0, ε0 such that∣∣∣ ∫∫ eih
−2 k−1ψ(s,y,β,ν,h) b(s, y, β, ν, h)χ(s, y)u(sh, y)dsdy

∣∣∣ � C0 e
−δ0/hk ,

for all (β, ν, h, k) such that (ν, h) ∈ U and |β − β0|+ |h− h0|+ |k − k0| < ε0.

Remark 2.8

(1) Two parameters h, k appear in (2.9). The parameter k is used to check the
microlocal smoothness of u (in particular at points m0 where ρ0 > 0, σ0 = 0) whereas
h is used to test the behavior at infinity (decay, oscillations, etc.).

(2) In the case where m0 = (0, y0, σ0, (λ0, µ0)) with σ0 > 0, it is more convenient
to use the coordinates (0, y0, λ0, µ0) where λ0 = λ0/σ0, µ0 = µ0/σ0. Let us set X0 =
(s0, y0), where s0 > 0, Ξ0 =

(
λ0/s

3
0 , µ0/s

2
0

)
. Let ϕ be a FBI phase at (X0,Ξ0, α0, 0).

Assume that on can find positive constants C, δ, εh, an analytic symbol a, a cut-off
χ equal to one near X0 such that

(2.9)′
∣∣∣ ∫∫ eih

−2 ϕ(s,y,α,h)a(s, y, α, h)χ(s, y)u(hs, y)dsdy
∣∣∣ � Ce−δ/h ,

for all α in a real neighborhood of α0 and h ∈ ]0, εh]. Then m0 /∈ qscWFa(u).
The converse is also true (take k = σ0 in (2.9)). In other terms we can ignore the
parameter k in (2.9) and fix it to the value σ0. This fact is proved in the Appendix
(Corollary A.16).

(3) If m0 = (ρ0, y0, 0, (λ0, µ0)), we set X0 = (ρ0, y0), Ξ0 =
(
λ0/ρ

3
0 , µ0/ρ

2
0

)
and the

fact that m0 /∈ qscWFa(u) is characterized by the inequality (2.9) where ϕ is a FBI
phase at (X0,Ξ0, α0, ρ0) and h = 1, that is we may ignore the parameter h. This
shows that qscWFa(u)∩ (S∗M)0 coincide with the usual analytic wave front set since
then the transformation appearing in (2.9) is a usual FBI transform in the sense of
Sjöstrand [Sj].

(4) In section 1, we have identified Rn � {z : |z| < 1} with a subset of Sn
+, thus

with a subset of ]0,+∞[ × Sn−1, which corresponds to set z = ω/ρ. Working in
R
n, it is more convenient to use the coordinates (ρ, ω) instead of local coordinates.

The one form on qscT ∗M is then equal to λ dρ
ρ3 + µ · dωρ2 . Here µ has to be taken
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in an (n − 1)−dimensional subspace. Since the forms µ · dω and (µ − (µ · ω)ω)dω
coincide (because ω · dω = 0) it is natural to take µ in ω⊥. Thus the coordinates of
m0 ∈ qscT

∗
M will be (ρ0, ω0, σ0, (λ0, µ0)), λ

2

0 + |µ0|2 = 1, µ0 ⊥ ω0. Let us set

(2.14)

X0 = (s0, ω0) , Ξ0 =
(λ0
s30

,
µ0
s20

)
(Π0) =

{
α = (αρ, αω, ατ , αζ) ∈ R

2n+2 : αω · ω0 = 1 , αζ · ω0 = 0
}
.

Claim. — Let u ∈ D′(Rn). Then m0 /∈ qscWFa(u) if and only if one can find s0 > 0,
α0 ∈ (Π0), a FBI phase ϕ at (X0,Ξ0, α0, h0), an elliptic symbol a at (X0, α

0, h0, σ0)
a cut-off χ near X0, positive constants C, ε0 such that

(2.15) |T u(α, h, k)|

�
∣∣∣ ∫ +∞

0

∫
Sn−1

eih
−2 k−1ϕ(ρ/h,ω,α,h)a

(
ρ/h, ω, α, h, k

)
χ
(
ρ/h, ω

)
u
(
ω/ρ

) dρ

ρn+1
dω

∣∣∣
� Ce−ε0/hk

for α close to α0 in (Π0), (h, k) close to (h0, σ0) in [0,+∞[2, where

ϕ(s, ω, α, h) = (s− αs)ατ + (ω − αω) · αζ + ih[(s− αs)2 + (ω − αω)2] .

Indeed, in some local coordinates, (2.15) will coincide with (2.9). Let (θ1, . . . , θn−1)
be an orthonormal basis of ω⊥

0 . Writing αω = ω0 +
∑n−1

j=1 aj θj , αζ =
∑n−1

j=1 bj θj we
see that αω · αζ = a · b ; therefore in these coordinates (2.1) is preserved and (2.2) to
(2.5) are satisfied.

Examples 2.9

(1) Let u0 be such that eδ|x|u0 ∈ L2(Rn) for some δ > 0. Then qscWFa(u0) ∩
(qscT

∗
∂MM)0 = ∅. Indeed let m0 = (0, ω0, λ0, µ0) be a point of (qscT

∗
∂MM)0. We

set α0 =
(
s0, ω0, λ0/s

3
0 , µ0/s

2
0

)
. According to Theorem 2.5 and Remark 2.8 (2), (4),

we can take k = 1, a = 1 and ϕ(X,α, h) = (X − αX)αΞ + ih(X − αX)2 (where
X = (ρ/h, ω)) in (2.9). In the coordinates (ρ, ω), our assumption on u0 reads :
u0
(
ω/ρ

)
= ρ

n
2+

1
2 e−δ/ρv(ρ, ω) with v ∈ L2(R+ × Sn−1). Let χ be a C∞ cut-off

supported in {|s− s0|+ |ω − ω0| < ε} with ε � 1/2s0. Then

T u0(α, h) =
∫ +∞

0

∫
Sn−1

eih
−2ϕ(ρ/h,ω,α,h)χ

(
ρ/h, ω

)
e−δ/ρ v(ρ, ω)

dρ

ρ
n
2+

1
2
dω .

On the support of χ we have 1
2 s0 � ρ/h � 3

2 s0 so −δ/ρ � − 2δ
3s0

1
h . Since |eih

−2ϕ | � 1
we get |T u0(α, h)| � Ce−ε0/h, for all α near α0, which means that m0 /∈ qscWFa(u0).

(2) Let u0(x) = e
i
2 〈Ax,x〉, where A is a real n× n symmetric matrix. Then

qscWFa(u0) ⊂ Λ0 =
{(

0, ω0,−Aω0 · ω0, Aω0 − (Aω0 · ω0)ω0
)
, ω0 ∈ Sn−1} .
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First of all, since u0 is analytic, it has no usual analytic wave front set ; by the
Remark 2.8, (3), it has no qscWFa in (qscS∗M)0. We show now that

qscWFa(u0) ∩ (qscT
∗
∂MM)0 ⊂ Λ0.

Here we may use the transformation (2.15) with

k = 1, a = 1 and ϕ = (X − αX)αΞ + ih(X − αX)2.

Let m0 = (0, ω0, λ0, µ0) with µ0 ⊥ ω0 but

(λ0, µ0) �= (−Aω0 · ω0, Aω0 − (Aω0 · ω0)ω0).

We set X0 = (s0, ω0), Ξ0 =
(
λ0/s

3
0 , µ0/s

2
0

)
and we take α0 = (X0,Ξ0) =(

s0, ω0, λ0/s
3
0 , µ0/s

2
0

)
. Then we have

(2.16) T u0(α, h) = h−n

∫ +∞

0

∫
Sn−1

eih
−2θ(s,ω,α,h)χ(s, ω)

ds

sn+1
dω

where

(2.17)



θ(s, ω, α, h) = θ2(s, ω, α) + ihθ1(s, ω, α)

θ2(s, ω, α) = (s− αs)ατ + (ω − αω)αζ −
1
2
Aω · ω
s2

θ1(s, ω, α) = (s− αs)2 + (ω − αω)2

αω · ω0 = 1 , αζ · ω0 = 0 .

We have

(2.18)
∂θ2
∂s

(s, ω, α) = ατ +
Aω · ω
s3

and if t ∈ TωSn−1 i.e. t · ω = 0 we have

(2.18)′ t · ∂θ2
∂ω

= t · αζ −
t ·Aω
s2

= t · αζ − t · Aω − (Aω · ω)ω
s2

.

Claim. — One can find t ∈ Tω0 S
n−1, |t| = 1, C0 > 0, ε > 0 such that for all (s, ω, α)

in R+ × Sn−1 × (Π0) such that |s− s0|+ |ω − ω0|+ |α− α0| � ε we have

(2.19)
∣∣∣∂θ2
∂s

(s, ω, α)
∣∣∣+ ∣∣∣t · ∂θ2

∂ω
(s, ω, α)

∣∣∣ � C0 .

Otherwise for every t ∈ Tω0 S
n−1 one can find sequences (sj), (ωj), (αj) converging

to s0, ω0, α0 such that∣∣∣∂θ2
∂s

(sj , ωj, αj)
∣∣∣+ ∣∣∣t · ∂θ2

∂ω
(sj , ωj, αj)

∣∣∣ � 1
j
, j � 1 .

It follows, according to (2.18), (2.18)′ that

λ0
s30

+
Aω0 · ω0

s30
= 0 and t ·

(µ0
s20
− Aω0 − (Aω0 · ω0)ω0

s20

)
= 0

but this is in contradiction with our choice of (λ0, µ0).
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Now let us fix α close to α0 and let us setX = (s, ω), <V (X) =

(
∂θ2
∂s (s, ω, α)(

t · ∂θ2∂ω (s, ω, α)
)
t

)
.

We introduce the following contour in Cn,

(2.20) Σ =
{
Z ∈ C

n+1 : Z = X + iν χ1(X) <V (X) , X = (s, ω) ∈ ]0,+∞[× Sn−1}
where ν is a small positive constant to be chosen andχ1(X) = 1 if |X −X0| � ε1 , 0 � χ1 � 1 ,

χ1(X) = 0 if |X −X0| � 2ε1

ε1 being such that χ(X) = 1 on the support of χ1 in (2.16). Since θ given in (2.17)
can be extended as a holomorphic function of (s, ω) in C×Cn and since χ(X) = 1 if
Σ is not real, we can apply Stokes formula and deduce that

(2.21) T u0(α, h) = h−n

∫∫
Σ

eih
−2θ(Z,α,h)χ(Z)

dZ

Zn+1
1

.

It follows from Taylor’s formula that, for Z in Σ, we have

θ2(Z,α) = θ2(X,α) + iν χ1(X)‖<V (x)‖2 +O(ν2χ21(X)‖<V (X)‖2) .

On the other hand we have

θ1(Z,α) = (Z−αX)2 = ‖X−αX‖2+2iν χ1(X)(X−αX) · <V (X)−ν2χ21(X)‖<V (X)‖2 .

We deduce that for Z in Σ we have

Re(ih−2θ(Z,α, h)) =(2.22)

− ν h−2χ1(X)‖<V (X)‖2 + h−2O
(
ν2χ21(X)‖<V (X)‖2

)
− h−1‖X − αX‖2 + ν2h−1χ21(X)‖<V (X)‖2 = (1) + (2) + (3) + (4) .

We have

(2.23)



(1) =− ν h−2χ1(X)‖<V (X)‖2

|(2)| �Cνh−2ν χ1(X)‖<V (X)‖2

(3) =− h−1‖X − αX‖2

|(4)| �Cνh−1ν χ1(X)‖<V (X)‖2 .
Taking ν small, we deduce from (2.22) and (2.23), that

(2.24) Re(ih−2θ(Z,α, h)) � −1
2
ν h−2χ1(X)‖<V (X)‖2 − h−1‖X − αX‖2 .

We fix ν and we write Σ = Σ1 ∪ Σ2 where{
Σ1 = {Z ∈ Σ : ‖X −X0‖ � ε1}
Σ2 = {Z ∈ Σ : ε1 < ‖X −X0‖} .

On Σ1 we have χ1 = 1 and on Σ2, 0 � χ1 � 1.
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On Σ1 we have by (2.19) and (2.24)

(2.25) Re(ih−2θ(Z,α, h)) � −1
4
νC20 h

−2 .

On the other hand on Σ2 we have, ‖X − αX‖ � ‖X −X0‖ − ‖α0X − αX‖ � 1
2 ε1, if α

is sufficiently close to α0. It follows from (2.24) that

(2.26) Re(ih−2θ(Z,α, h)) � −1
4
ε21h

−1 .

We deduce from (2.25), (2.26) and (2.21) that

|T u0(α, h)| � Ce−ε0/h

if α and h are sufficiently close to α0 and 0. It follows that (0, ω0, λ0, µ0) /∈ qscWFa(u0)
as claimed.

By the same argument we can prove that u0 has not qscWFa on the corner ρ =
σ = 0. Indeed, in this case we have to estimate

T u0(α, h, k) = h−n

∫ +∞

0

∫
Sn−1

eih
−2 k−1 θ(s,ω,α,h,k)χ(s, ω)

ds

sn+1
dω

where  Re θ = (s− αs)ατ + (ω − αω)αζ −
k

2s2
Aω · ω

Im θ = (s− αs)2 + (ω − αω)2 .
Then

∂

∂s
(Re θ) = ατ +O(k), t · ∂

∂ω
(Re θ) = t · αζ +O(k).

If α is close to α0 =
(
s0, ω0, λ0/s

3
0 , µ0/s

2
0

)
, then |ατ |+ |αζ | �= 0, since λ

2

0 + |µ0|2 = 1.
So, if k is small enough we still have (2.19), and the same proof applies.
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CHAPTER 3

THE LAPLACIAN AND ITS FLOW

3.1. The Laplacian

The Laplacian on M related to the metric g can be written in any system of
coordinates as

(3.1) ∆g =
1√
G

n−1∑
j,k=0

Dj

(√
GgjkDk

)
,

where Dj = 1
i

∂
∂xj

, G = det(gjk), (gjk) = (gjk)−1.
Since g is a scattering metric, (1.1) and (1.2) show that

g00 =
1 + ρ2h00

ρ4
, g0k =

h0k
ρ2

, gjk =
hjk
ρ2

, 1 � j, k � n− 1 .

It is easy to see that, for small ρ, we have

(3.2)



G =
( 1
ρ2

)n+1
(H +O(ρ)) , H = det(hjk(0, y))1�j,k�n−1

g00 = ρ4 +O(ρ6) , g0k = O(ρ4) , 1 � k � n− 1

gjk = ρ2h
jk
(y) +O(ρ3) , 1 � j, k � n− 1 , where

(h
jk
) = (hjk(0, y))−11�j,k�n−1 .

Here O(ρ%) denotes an analytic function on [0, ε[ × ∂M which can be written as
ρ%a(ρ, y) with a analytic.
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It follows from (3.1) and (3.2) that

(3.3)



∆g =
1
ρ2
[
(ρ3Dρ)2 + ρ4∆0 + c(n)ρ5Dρ + ρR

]
,where

∆0 =
1√
H

n−1∑
j,k=1

Dj

(√
Hh

jk
(y)Dk

)
and

R =
∑

1�|α|+%�2
aα%(ρ, y)(ρ3Dρ)%(ρ2Dy)α , aα%(ρ, y) = ρσ(|α|,%) ãα%(ρ, y),

σ(0, 2) = 1 , σ(1, 1) = 0 , σ(2, 0) = 0 , σ(1, 0) = 2 , σ(0, 1) = 3 .

Let us remark that one can also write

(3.4)


∆g = (ρ2Dρ)2 + ρ2∆0 + c′(n)ρ3Dρ + ρR′ ,

R′ =
∑

1�|α|+%�2
bα%(ρ, y)(ρ2Dρ)%(ρDy)α , bα%(ρ, y) = ρθ(|α|,%) b̃α%(ρ, y) ,

θ(0, 2) = 1 , θ(1, 1) = 0 , θ(2, 0) = 0 , θ(1, 0) = 1 , θ(0, 1) = 2 .

3.2. The Hamiltonian

In the pseudo-differential calculus of Melrose [M2], the principal symbol of ∆g is
a function on qscT

∗
M which can be written as

(3.5)



σ(∆g)(ρ, y, λ, µ) =
1
ρ2

p(ρ, y, λ, µ) where

p(ρ, y, λ, µ) = λ2 + ‖µ‖2 + ρr(ρ, y, λ, µ) with

‖µ‖2 =
n−1∑
j,k=1

h
jk
(y)µj µk , r(· · · ) =

∑
|α|+%=2

aα%(ρ, y)λ%µα ,

a0%(ρ, y) = ρã0%(ρ, y) .

The symplectic two forms on qscT
∗
M is ω = dα where α has been defined in (1.4).

Therefore

(3.6) ω =
dλ ∧ dρ
ρ3

+
dµ ∧ dy

ρ2
− 2µ · dρ ∧ dy

ρ3
.

The Hamiltonian H∆ of the symbol of ∆g is then defined by

(3.7) d
( 1
ρ2

p
)
(·) = −ω(H∆, ·) .

An easy computation shows that

(3.8) H∆ = ρ
∂p

∂λ
∂ρ +

∂p

∂µ
· ∂y +

(
2p− 2µ · ∂p

∂µ
− ρ

∂p

∂ρ

)
∂λ +

(
2µ

∂p

∂λ
− ∂p

∂y

)
· ∂µ .
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Using (3.5) we see that
(3.9)

H∆ = X0 + X̃ where

X0 = 2λρ∂ρ + 2(λ2 − ‖µ‖2)∂λ + 2〈µ, ∂y〉+ 4λµ · ∂µ − (∂y‖µ‖2)∂µ ,

where 〈a, b〉 =
n−1∑
j,k=1

h
jk
(y)aj bk , ‖a‖2 = 〈a, a〉 , and

X̃ = p1ρ
2∂ρ + p2ρ∂y + q1 ρ∂λ + q0 ρ∂µ where pi (resp. qi) are

polynomials of degree 1 (resp. 2) in λ, µ with analytic coefficients in (ρ, y) .

3.3. The flow on
(qsc

T ∂MM
)0

On this set the flow of the Laplacian will be the flow of X0 since X̃ vanishes on
this set. Let m0 = (0, y0, λ0, µ0) ∈

(qsc
T

∗
∂MM

)0. The flow of X0 starting from m0 is
given by the equations

(3.10)



ρ̇(t) = 2λ(t)ρ(t) , ρ(0) = 0

ẏj(t) = 2
n−1∑
k=1

h
jk
(y(t))µk(t) , y(0) = y0

λ̇(t) = 2(λ2(t)− ‖µ(t)‖2) , λ(0) = λ0

µ̇(t) = 4λ(t)µ(t)− ∂y‖µ(t)‖2 , µ(0) = µ0 .

This system has a unique maximal solution defined on [0, T ∗[ (and in ]T∗, 0]).

Case 1: if µ0 = 0. — By the first equation we have ρ(t) = 0 for t ∈ [0, T ∗[ and the
last one shows that µ(t) = 0, t ∈ [0, T ∗[. Then, by the second equation, y(t) = y0,
t ∈ [0, T ∗[, and the third one can be written λ̇(t) = 2λ2(t) ; thus we have λ(t) = λ0

1−2λ0t

for t ∈
[
0, 1/2λ0

[
if λ0 > 0 and for t ∈ [0,+∞[ if λ0 < 0. Moreover if λ0 > 0 we

have limt→1/2λ0 λ(t) = +∞. Summing up, if λ0 > 0 we have T ∗ = 1/2λ0 and every
integral curve of X0 starting from m0 = (0, y0, λ0, 0) reaches the corner ρ = σ = 0
at finite time 1/2λ0. If λ0 < 0 then the integral curve is defined for all t in [0,+∞[
and stays in (qscT

∗
∂MM)0. The same discussion applies to the case t ∈ ]T∗, 0]. We

introduce the sets

(3.11)

{
N =

{
m = (ρ, y, λ, µ) : ρ = µ = 0

}
N+ = {m ∈ N : λ > 0} , N− = {m ∈ N : λ < 0} .

Case 2 : if µ0 �= 0. — In that case the solution of (3.10) exists for all time in R and
the integral curve stays in the interior of qscT

∗
∂MM . Here is a sketch of the proof

of these facts (the details are in [W], section 11). If µ0 �= 0 then µ(t) �= 0 for all
t in ]T∗, T

∗[. We set µ̂(t) = µ(t)/‖µ(t)‖ and we parametrize the curve by s where
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ṡ(t) = 2‖µ(t)‖, s(0) = 0. The equations (3.10) give

(3.12)



(i)
dρ

ds
=

λρ

‖µ‖ (iv)
dλ

ds
=

λ2 − ‖µ‖2
‖µ‖

(ii)
dyi
ds

=
∑

h
ij
µ̂j (v)

dµ̂%

ds
= −1

2

n−1∑
j,k=1

∂h
jk

∂y%
µ̂j µ̂k .

(iii)
d‖µ‖
ds

= 2λ

Then we set α = λ/‖µ‖ and we see that α̇ = −(1 + α2). The solution of this
equation, such that α(0) = tan θ0, θ0 ∈

]
− π/2, π/2

[
, is α(s) = tan(θ0 − s) where

θ0 − s ∈
]
− π/2, π/2

[
. It follows that λ(s) = ‖µ(s)‖ tan(θ0 − s). Using the equation

(iii) in (3.12), we get

(3.13)


‖µ(s)‖ = A cos2(θ0 − s)

λ(s) =
A

2
sin 2(θ0 − s) .

Then, using (i), we obtain

(3.14) ρ(s) = C cos2(θ0 − s) .

Since α(0) = λ0/‖µ0‖ = tan θ0, we have θ0 = Arc tan λ0/‖µ0‖. On the other hand, by
(3.13), λ20/‖µ0‖ = A sin2 θ0. Therefore

λ2
0

‖µ0‖ + ‖µ0‖ = A. Moreover, ṡ(t) = 2‖µ(t)‖ =
2A cos2(θ0 − s(t)). It follows that s(t) exists for all t ∈ R. This implies that the
solution of (3.12) exists for all t ∈ R and (3.13) shows that |λ|+ |µ| is bounded so the
integral curve stays in the interior of qscT

∗
∂MM .

3.4. The flow on qscS∗M

When |λ| + |µ| is large, we make the change of variables in the cotangent space,
(ρ, y, λ, µ) �→ (ρ, y, σ, (λ, µ)) where

(3.15) σ =
1

[p(ρ, y, λ, µ)]1/2
, λ = σλ, µ = σµ.

In these new coordinates the Hamiltonian H∆ is singular at σ = 0. However σH∆ is
a smooth vector field and we have

(3.16) σH∆ = ρ
∂p

∂λ
∂ρ+

∂p

∂µ
∂y−

(
µ
∂p

∂µ
+ρ

∂p

∂ρ

)
∂λ+

(
µ
∂p

∂λ
−∂p
∂y

)
∂µ+σf(ρ, y, λ, µ)∂σ .
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By definition, the flow of the Laplacian on qscS∗M will be that of σH∆. It is therefore
given by the following equations

(3.17)



ρ̇ = ρ
∂p

∂λ
(ρ, y, λ, µ) ρ(0) = ρ0

ẏ =
∂p

∂µ
(· · · ) y(0) = y0

λ̇ = −
(
µ
∂p

∂µ
+ ρ

∂p

∂ρ

)
(· · · ) λ(0) = λ0

µ̇ =
(
µ · ∂p

∂λ
− ∂p

∂y

)
(· · · ) µ(0) = µ0

σ̇ = σf(ρ, y, λ, µ) σ(0) = 0 .

The last equation shows that σ(t) = 0 for all t.

3.5. Behavior of the flow for large time

Definition 3.1. — A maximal integral curve of σH∆ on qscT
∗
M will be called non

trapped backward (resp. forward) if it is defined for all t in ]−∞, 0] (resp. [0,+∞[)
and ρ(t)→ 0 as t→ −∞ (resp. t→ +∞).

In (3.11) we have introduced the sets N , N±. Here we set

(3.18) N c
± =

{
m = (ρ, y, σ, (λ, µ)) : ρ = µ = σ = 0 , λ = ±1

}
.

Definition 3.2

(i) Let m ∈ qscT
∗
M , m /∈ N . We shall say that m is non trapped backward (resp.

forward) if the integral curve of σH∆ starting from m is non trapped backward (resp.
forward).

(ii) Let m ∈ N , m = (0, y0, σ0, (±1, 0)). We shall say that m is non trapped
backward (resp. forward) if the point (0, y0, 0, (±1, 0)) ∈ N c

± does not belong to the
closure of any integral curve of σH∆ trapped backward (resp. forward).

We shall denote by T− (resp. T+) the set of points which are trapped backward
(resp. forward).

Proposition 3.3. — Let m0 ∈ qscS∗M � (N c
− ∪ T−). Then

N−∞(m0) = lim
t→−∞

exp tσH∆(m0) ∈ N c
+.

(Same result when − and + are exchanged).

Proof. — Here exp tσH∆ denotes the flow of σH∆ described in (3.17). Let m0 =
(ρ0, y0, 0, (λ0, µ0)) be non trapped backward. We have the following cases.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2002



22 CHAPTER 3. THE LAPLACIAN AND ITS FLOW

Case 1 : ρ0 = µ0 = 0. — The first equation in (3.18) shows that ρ(t) ≡ 0, t ∈ (−∞, 0].
According to (3.5) we see that the other equations reduce to

ẏj = 2
n−1∑
k=1

h
jk
(y)µk , λ̇ = −2‖µ‖2 , µ̇ = 2λµ− ∂y‖µ‖2 .

Therefore µ(t) ≡ 0, λ(t) ≡ 1, y(t) ≡ y0, σ(t) ≡ 0, so for all t we have exp tσH∆(m0) =
m0 ∈ N c

+.

Case 2 : ρ0 = 0, µ0 �= 0. — Then ρ(t) ≡ 0 but µ(t) �= 0 for all t in (−∞, 0]. The
above equations show that λ is strictly decreasing on (−∞, 0]. Since −1 � λ(t) � 1,
λ(t) has a limit D when t goes to −∞. It follows that ‖µ(t)‖2 = 1 − λ

2
(t) → 1 − D2

so λ̇ → −2(1 − D2). This implies that D = ∓1 so ‖µ(t)‖ → 0 and λ(t) → ±1. On
the other hand we deduce from the above equations that d

dt ‖µ(t)‖2 = 4λ(t)‖µ(t)‖2,
so if λ(t) → −1 when t → −∞ we would have ‖µ(t)‖2 → +∞. Therefore λ(t) → 1,
‖µ(t)‖ � Ceδt, δ > 0, t � 0. It follows from the equation in y that ẏj ∈ L1(−∞, 0)
so yj(t) tends to a limit as t→ −∞.

Case 3: ρ0 �= 0. — In that case, m0 non trapped backward implies that ρ(t) → 0
as t → −∞. Moreover, by the first equation in (3.17), we have ρ(t) �= 0 for all t.
Now we check easily from (3.17) that d

dt [p(ρ, y, λ, µ)] = 0 ; since, by ellipticity of
p = λ2 + ‖µ‖2 + ρr we have c(λ2 + ‖µ‖2) � p � 1

c (λ
2 + ‖µ‖2), it follows that λ, µ,

r(ρ, y, λ, µ) and their derivatives are uniformly bounded. We have

ρ̇ = ρ
∂p

∂λ
= 2λρ+ ρ2 r1(ρ, y, λ, µ).

Then, using the Euler relation, we get

λ̇ = λ · ∂p
∂λ
− 2p− ρ

∂p

∂ρ
= λ

(
2λ+ ρ

∂r

∂λ

)
− 2p− ρ

∂p

∂ρ
.

Since p(ρ, y, λ, µ) = 1, we obtain λ̇ = 2λ
2 − 2 + ρr2(ρ, y, λ, µ) where r1 and r2 are

bounded. Let us set α(t) = (λ(t)− 1)/ρ(t). Then

α̇ =
λ̇ρ− (λ− 1) ρ̇

ρ2
=

1
ρ2
[
2ρ(λ− 1)(λ+ 1)− 2λρ(λ− 1) + ρ2 r3

]
α̇ =

1
ρ2
[
2ρ(λ− 1) + ρ2 r3

]
= 2α(t) + f(t)

where f is bounded on (−∞, 0]. It follows that α is bounded on (−∞, 0], so
|λ(t)− 1| � Mρ(t). Therefore λ(t) → 1 and ‖µ(t)‖2 = 1 − λ2(t) − ρ(t)r(· · · )→ 0 so
limt→−∞ exp tσH∆(m0) ∈ N c

+.

Given ε > 0 we set

Ωε =
{
(ρ, y, µ) ∈ C× C

n−1 × C
n−1 : |ρ|+ |µ| < ε

}
.
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Then one can find ε∗ > 0 such that for all 0 < ε < ε∗ and all (ρ, y, µ) in Ωε the
problem

(3.19)

{
p(ρ, y, λ, µ) = 1

Reλ < 0

has a unique solution λ = λ(ρ, y, µ) which depends holomorphically on the parameters.
By extension we shall say that the point m = (ρ, y, 0, (λ, µ)) belongs to Ωε if

(ρ, y, µ) belongs to Ωε and λ is the corresponding unique solution of (3.19).

Lemma 3.4. — There exists ε0 > 0 such that for all m∗ = (ρ∗, y∗, 0, (λ∗, µ∗)) in Ωε0

we have

(a) exp tσH∆(m∗) exists for all t � 0,
(b) exp tσH∆(m∗) converges, as t goes to infinity, to a point (0, y, 0, (−1, 0)) ∈ N c

−,
(c) y depends holomorphically on (ρ∗, y∗, µ∗) in Ωε0 and
(d) y = y∗ + ρ∗F1(ρ∗, y∗, µ∗) + µ∗F2(ρ∗, y∗, µ∗).

Proof. — Let us introduce the following subset A of ]0,+∞[. We shall say that T ∈ A
if the system (3.17) with data (ρ∗, y∗, λ∗, µ∗) has a solution on [0, T ] satisfying

(3.20)



|ρ(t)| � 2ε0 e−2t

|y(t)− y∗| � ε
1/2
0

|λ(t) + 1| � 2ε0 e−4t

|µ(t)| � 2ε0 e−2t .

Our purpose is to show that A =]0,+∞[. Let T ∗ = supA and assume that T ∗ < +∞.
Let T < T ∗. By the first equation of (3.17), our solution on [0, T ] satisfies

ρ̇ = ρ
∂p

∂λ
= 2λρ+ ρ2a(ρ, y)λ+ ρb(ρ, y)µ,

a, b bounded. Then

ρ̇ = −2ρ+ 2(λ+ 1)ρ+ aρ2λ+ ρbµ = −2ρ+ f1(t).

It follows from (3.20) that |f1(t)| � C1 ε
2
0 e

−4t. Since

ρ(t) = ρ∗ e−2t + e−2t
∫ t

0

e2s f1(s)ds

we get

(3.21) |ρ(t)| � ε0 e
−2t +

C1
2
ε20 e

−2t � 3
2
ε0 e

−2t

if C1 ε0 � 1.
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Now

µ̇ = µ
∂p

∂λ
− ∂p

∂y

= −2µ+ 2(λ+ 1)µ+ a1ρ
2λµ+ a2 ρµ− ∂y‖µ‖2 + a3ρ

2λ+ a4 ρλµ+ a5ρµ
2

= −2µ+ f2(t)

where |f2(t)| � C2 ε
2
0 e

−4t. Since |µ∗| � ε0 we get easily, as above,

(3.22) |µ(t)| � 3
2
ε0 e

−2t

if C2 ε0 � 1. Let us look to λ. We have, since p(ρ, y, λ, µ) = 1,

(3.23) λ2 − 1 = −‖µ‖2 − ρ(aρλ2 + bλµ+ cµ2) .

Now

|λ2 − 1| = |λ+ 1| |λ− 1| = |λ+ 1| |2− (λ+ 1)| � |λ+ 1|(2− 2ε0) � |λ+ 1|

if ε0 � 1/2. It follows from (3.23) and (3.20) that

(3.24) |λ+ 1| � C3 ε
2
0 e

−4t � ε0 e
−4t

if C3 ε0 � 1.
Finally, ẏk = ∂p/∂µk = 2

∑n
j=1 h

jk
(y)µj + ρa1λ+ ρak · µ. Then

|y(t)− y∗| � C4 ε0

∫ t

0

e−2sds � C4
2
ε0 ,

so

(3.25) |y(t)− y∗| � 1
2
ε
1/2
0

if C4 ε
1/2
0 � 1.

Moreover for t, t′ in [0, T ], we have

(3.26) |y(t)− y(t′)| � C4 ε0

∣∣∣ ∫ t′

t

e−2sds
∣∣∣ .

Now it is easy to see that (ρ(T ), y(T ), λ(T ), µ(T )) have a limit as T goes to T ∗

and these limits satisfy estimates as (3.21), (3.22), (3.24) and (3.25). Applying the
Cauchy-Lipschitz theorem, we then see that a solution of (3.17) can be found, which
satisfies the estimates (3.20) on [0, T ∗ + δ] ; this contradicts the definition of T ∗ and
proves that T ∗ = +∞. Thus a) is proved and b) follows from (3.20) and (3.26).
Since exp tσH∆(m∗) depends holomorphically on (ρ∗, y∗, µ∗) in Ωε0 and since, by
(3.20), (3.26) the convergence to (0, y, 0, (−1, 0)) is uniform, the claim c) is proved.
Finally assume in (3.20) that the data ρ(0) = ρ∗ and µ(0) = µ∗ are equal to zero.
Then ρ(t) = µ(t) = 0 for all t in [0,+∞[. It follows that ẏ(t) = 0 for all t so
y(t) = y(0) = y∗. This proves d).
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Corollary 3.5. — Let

m0 = (0, y0, 0, (−1, 0)), δ∗ > 0 and V = {m∗ : d(m∗, N−1
+∞(m0)) < δ∗},

where d is Euclidian distance. Let m∗ ∈ Ωε0 be such that exp tσH∆(m∗) converges,
as t goes to +∞, to a point (0, y, 0, (−1, 0)). Then, if ε0 is small enough, one can find
δ > 0 such that if |y − y0| < δ we have m∗ ∈ V .

Proof. — Let m∗ = (ρ∗, y∗, 0, (λ∗, µ∗)). By the implicit function theorem, keeping
the notations in Lemma 3.4 d), one can find λ∗0 ∈ C with Reλ∗0 < 0 and y∗0 ∈ Cn−1

such that

(3.27)

{
p(ρ∗, y∗0 , λ

∗
0, µ

∗) = 1

y0 = y∗0 + ρ∗F1(ρ∗, y∗0 , µ
∗) + µ∗F2(ρ∗, y∗0 , µ

∗) .

It follows from Lemma 3.4 that m∗
0 = (ρ∗, y∗0 , 0, (λ

∗
0, µ

∗)) belongs to Ωε0 and to
N−1
+∞(m0). Since λ∗0 = G(ρ∗, y∗0 , µ

∗), where G is holomorphic in Ωε0 , we see that
|m∗ −m∗

0| � C |y∗ − y∗0 |. From Lemma 3.4 and (3.27) we deduce that

|m∗ −m∗
0| � C |y0 − y|+ C′(|ρ∗|+ |µ∗|) � C |y0 − y|+ C′ ε0 � Cδ + C′ ε0 < δ∗

if δ and ε0 are small enough. It follows that m∗ ∈ V .

Corollary 3.6. — One can find ε0 > 0 and a holomorphic function G in the set
{(ρ∗, µ∗) : |ρ∗|+ |µ∗| < ε0} such that if m∗ ∈ Ωε0 ∩N−1

+∞(m0), then µ∗ = G(ρ∗, y∗).

Proof. — This follows from Lemma 3.4 d) and the implicit function theorem if we
can show that F2(0, y0, 0) is invertible. To compute this term, we may take, in (3.17),
ρ∗ = 0, y∗ = y0 and µ∗ = µ∗

% e% where µ∗
% ∈ C and (e1, . . . , en−1) is the canonical

basis in Cn−1. Then ρ(t) = 0 for all t. Let us set µ∗
% = z ∈ C, y(t) = y0 + zY (t),

µ(t) = zη(t). Then from (3.17), we get

ẏk(t) = 2
n−1∑
j=1

h
jk
(y0)zηj(t) +O(|z|2) = z Ẏk(t)

µ̇(t) = −2zη(t) +O(|z|2) = z η̇(t)

since, by (3.23), we have λ+ 1 = O(|z|2).
It follows that (Y, η) satisfies the system

Ẏk(t) = 2
n−1∑
j=1

h
jk
(y0)ηj(t) +O(|z|) , Yk(0) = 0

η̇(t) = −2η(t) +O(|z|) , η(0) = e% .

To compute F2(0, y0, 0), we have to solve this system with z = 0. We obtain ηj(t) = 0
if j �= D and η%(t) = e−2t. We deduce that Ẏk(t) = 2h

%k
(y0)e−2t, which shows that

limt→+∞ Yk(t) = h
%k
(y0). It follows that F2(0, y0, 0) = (h

%k
(y0))1�k,%�n−1 which is

invertible.
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CHAPTER 4

STATEMENTS OF THE MAIN RESULTS

AND REDUCTIONS

We consider in this section for u0 ∈ L2(Rn), a solution u(t) in the space
C0([0,+∞[, L2(Rn)) ∩ C1([0,+∞[, H−2(Rn)) of the problem

(4.1)


∂u

∂t
+ i∆gu = 0

u|t=0 = u0

where ∆g is the Laplacian with respect to a scattering metric g.

4.1. Main results

Our purpose is to answer the following question : given a point m0 in C =
qscT

∗
∂MM ∪ qscS∗M and a time T > 0, on what condition on the data u0 do we

have m0 /∈ qscWFa(u(T, ·)) ?
The point m0 will be described by its coordinates
(i) if σ0 = 0, m0 = (ρ0, y0, 0, (λ0, µ0)), λ

2

0 + |µ0|2 = 1
(ii) if σ0 > 0, m0 = (0, y0, λ0, µ0) with λ0 = λ0/σ0, µ0 = µ0/σ0.
We shall consider several different cases.

Case 1. — ρ0 = 0, σ0 > 0 and
(1.i) µ0 �= 0, T > 0, or
(1.ii) µ0 = 0, λ0 > 0, T > 0, or
(1.iii) µ0 = 0, λ0 < 0, T < −1/2λ0.

Theorem 4.1. — We have m0 /∈ qscWFa(u(T, ·)) if and only if exp(−TX0)(m0) /∈
qscWFa(u0).

Case 2. — ρ0 = 0, σ0 > 0 and
(2.i) µ0 = 0, λ0 < 0, T = −1/2λ0.
Let us set m1 = exp

(
1
2λ0

X0

)
(m0). It follows from § 3.3 that m1 ∈ N c

−, that is
m1 = (0, y1, 0, (−1, 0)). We shall denote by Ṅ−1

+∞(m1) the set N−1
+∞(m1)�{m1}, that
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is the set of points in S∗M , different from m1, which arrive at time t = +∞ at the
point m1 by the flow of σH∆.

Theorem 4.2
Assume that one can find a neighborhood U of m1 = exp

(
1
2λ0

X0

)
(m0) such that

Ṅ−1
+∞(m1) ∩ U does not intersect qscW̃F a(u0). Then m0 /∈ qscWFa

(
u
(
− 1/2λ0, ·

))
.

Case 3. — ρ0 = 0, σ0 > 0 and
(3.i) µ0 = 0, λ0 < 0 and T > −1/2λ0.
As before let us set m1 = exp

(
1
2λ0

X0

)
(m0) ∈ N c

−. If m1 is not backward trapped
then, by Definition 3.2, all the points of N−1

+∞(m1) (that is the points arriving at
time +∞ at m1 by the flow of σH∆) are not backward trapped ; therefore the set
N−∞(N−1

+∞(m1)) is well defined. We shall set

scat(m1) = N−∞(N−1
+∞(m1)) ⊂ N c

+ .

Theorem 4.3
Let m1 = exp

(
1
2λ0

X0

)
(m0) ∈ N c

−. Assume that m1 is not backward trapped and
that exp

[
−
(
T + 1

2λ0

)]
(scat(m1)) ∩ qscWFa(u0) = ∅. Then m0 /∈ qscWFa(u(T, ·)).

Case 4. — σ0 = 0 and (4.i) ρ0 > 0, T > 0, or (4.ii) ρ0 = 0, m0 /∈ N c
−, T > 0.

Theorem 4.4
Assume that m0 is not backward trapped (then N−∞(m0) ∈ N c

+). Assume that
exp(−TX0)(N−∞(m0)) /∈ qscWFa(u0). Then m0 /∈ qscW̃F a(u(T, ·)).

Case 5. — σ0 > 0 and
(5.i) ρ0 = 0, m1 = exp(−TX0)(m0) ∈ N c

−, T > 0.

Theorem 4.5
Assume that m1 /∈ qscW̃F a(u0). Then m0 = exp(TX0)(m1) /∈ qscWFa(u(T, ·)).

Remark 4.6. — Theorem 4.4 contains the so called “smoothing effect”. Using Exam-
ples 2.7 (1) and (2), we can recover results which, in this context, are analogue to
those of [RZ1] and [RZ2].

The results described above will follow from several other ones which we state now.

4.2. Propagation inside qscT
∗
∂MM

Theorem 4.6
Let 0 � θ∗ < θ∗ and m ∈ qscT

∗
M . Assume that exp(θX0)(m) ∈ (qscT

∗
∂MM)0 for

θ ∈ [θ∗, θ∗]. Then

exp(θ∗X0)(m) /∈ qscWFa(u(θ∗, ·))⇐⇒ exp(θ∗X0)(m) /∈ qscWFa(u(θ∗, ·)).
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4.3. Propagation of the uniform wave front set in (qscS∗M)0 or on the
corner

Theorem 4.7. — Let t0 > 0 be fixed. Let 0 � θ∗ < θ∗ and m ∈ qscT
∗
M . Assume that

exp(θσH∆)(m) ∈ (qscS∗M)0 (resp. qscS∗M ∩ qscT ∗
∂MM) for θ ∈ [θ∗, θ∗]. Then

exp(θ∗σH∆)(m) /∈ qscW̃Fa(u(t0, ·))⇐⇒ exp(θ∗σH∆)(m) �∈ qscW̃F a(u(t0, ·)).

4.4. Propagation from the interior to the corner

Theorem 4.8. — Let m ∈ N c
− and t0 � 0. Assume that one can find a neighborhood U

of m in qscS∗M such that Ṅ−1
+∞(m) does not intersect qscW̃F a(u(t0, ·)) in U . Then

m /∈ qscW̃F a(u(t0, ·)).

4.5. Propagation from the boundary at infinity to the corner

Theorem 4.9. — Let m ∈ N c
+. Assume that exp(−TX0)(m) /∈ qscWFa(u0). Then

m /∈ qscW̃F a(u(T, ·)).

4.6. Proofs of Theorems 4.1 to 4.5

Let us now show how Theorems 4.6 to 4.9 imply the main results.

A. Proof of Theorem 4.1. — According to the description of the flow on
(qscT

∗
∂MM)0 in § 3.3, we see that in the cases (1.i), (1.ii) and (1.iii) the bicharac-

teristic stays, for θ ∈ [0, T ], inside (qscT
∗
∂MM)0. Thus Theorem 4.1 follows from

Theorem 4.6 taking θ∗ = 0, θ∗ = T .

B. Proof of Theorem 4.2. — Let m1 = exp
(
1
2λ0

X0

)
(m0) ∈ N c

− (since λ0 < 0).

It follows from Theorem 4.8 (with t0 = 0) that m1 /∈ qscW̃F a(u0). Then one can find
ε ∈

]
0,−1/2λ0

[
such that exp(εX0)(m1) /∈ qscWFa(u(ε, ·)). Applying Theorem 4.6

with θ∗ = ε, θ∗ = −1/2λ0 we get exp
(
− 1
2λ0

X0

)
(m1) = m0 /∈ qscWFa

(
u
(
−1/2λ0, ·

))
.

C. Proof of Theorem 4.3. — Assume that

exp
[
−
(
T + 1

2λ0

)
X0

]
(scat(m1)) ∩ qscWFa(u0) = ∅.

Let m ∈ scat(m1). Then m ∈ N c
+. We apply Theorem 4.9 with T + 1

2λ0
instead

of T . It follows that m /∈ qscW̃F a

(
u
(
T + 1

2λ0
, ·
))
. Then a small neighborhood of m

in qscS∗M does not intersect this set. We apply Theorem 4.7. We deduce that all
the bicharacteristic issued from m does not intersect qscW̃F a

(
u
(
T + 1

2λ0
, ·
))
. Using

this argument for all points in scat(m1), we see that one can find a neighborhood U

of m1 in S∗M such that N−1
+∞(m1) does not intersect qscW̃F a

(
u
(
T + 1

2λ0
, ·
))

in U . It
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follows from Theorem 4.8, with t0 = T + 1
2λ0

> 0, that m1 /∈ qscW̃F a

(
u
(
T + 1

2λ0
, ·
))
.

Let us introduce m2 = exp(−TX0)(m0). Then m1 = exp
((
T + 1

2λ0

)
X0

)
(m2) /∈

qscW̃F a

(
u
(
T + 1

2λ0
, ·
))
. Then one can find ε > 0 such that

exp(εX0)(m1)

= exp
((
T + 1

2λ0
+ ε

)
X0

)
(m2) ∈ (qscT

∗
∂MM)0 ∩

(qsc
WFa

(
u
(
T + 1

2λ0
+ ε, ·

)))c
.
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Applying Theorem 4.6 with θ∗ = T + 1
2λ0

+ ε < θ∗ = T we see that exp(TX0)(m2) =
m0 /∈ qscWFa(u(T, ·)).

D. Proof of Theorem 4.4. — Let m1 = N−∞(m0) ∈ N c
+. Since

exp(−TX0)(m1) /∈ qscWFa(u0)

we have, by Theorem 4.9, m1 /∈ qscW̃F a(u(T, ·)). If m0 ∈ qscW̃F a(u(T, ·)) then, by
Theorem 4.7, all the bicharacteristic starting at m0 is contained in qscW̃F a(u(T, ·)).
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Since this set is closed it would follow that

N−∞(m0) = m1 = lim
t→−∞

exp(tX0)(m0) ∈ qscW̃F a(u(T, ·))

which is a contradiction. So m0 /∈ qscW̃F a(u(T, ·)).

E. Proof of Theorem 4.5. — The complementary of qscW̃F a is an open set; then,
there exists ε > 0 such that m2 = exp(εX0)(m1) �∈ qscWF a(u(ε, ·)). We can now
apply Theorem 4.1 with T − ε to obtain Theorem 4.5.
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CHAPTER 5

PROOF OF THEOREM 4.6

In (qscT
∗
∂MM)0 we can, according to the Remark 2.8 (2), forget the parameter k

in the FBI transform and use (2.9)′. Using (3.4) we see that the adjoint ∆∗
g of our

Laplacian can be written as

(5.1)


∆∗

g = (ρ2Dρ)2 + ρ2∆0 + c(n)ρ3Dρ + d(n)ρ2 + ρR where

R =
∑

0�|α|+%�2
bα%(ρ, y)(ρ2Dρ)% (ρDy)α , b0%(ρ, y) = ρ3−%b̃0,%(ρ, y) .

Let (θ0; s0, y0, α0) ∈ R × R+ × Rn × R2n be a fixed point. Roughly speaking our
goal is to find phases ϕ = ϕ

(
θ; ρ/h, y, α, h

)
, symbols a = a

(
θ; ρ/h, y, α, h

)
depending

smoothly on all variables in a real neighborhood of (θ0; s0, y0, α0, 0) such that, at least
formally, we have

(5.2)
( ∂

∂θ
+ i∆∗

g

)
(aeih

−2ϕ) = O(e−ε/h) , ε > 0 .

We shall seek for ϕ and a on the following form

ϕ = ϕ2

(
θ;

ρ

h
, y, α

)
+ ihϕ1

(
θ;

ρ

h
, y, α

)
(5.3)

a =
∑
j�0

hj aj

(
θ;

ρ

h
, y, α, h

)
.(5.4)

An easy computation shows that, working with the variable s = ρ/h, we have

(5.5)
( ∂

∂θ
+ i∆∗

g

)
(aeih

−2ϕ) = h−2 eih
−2ϕ(I + II + III + IV ) .

(5.6)


I = i

(
∂ϕ2
∂θ

+ s4
(∂ϕ2
∂s

)2
+ s4

∥∥∥∂ϕ2
∂y

∥∥∥2)a, where

‖Y ‖2 =
n−1∑
j,k=1

h
jk
(y)Yj Yk = 〈Y, Y 〉 .
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(5.7)



II = −h
(
Lϕ1 + iF0

(
s, y,

∂ϕ2
∂s

,
∂ϕ2
∂y

))
a, where

L =
∂

∂θ
+ 2s4

∂ϕ2
∂s

∂

∂s
+ 2s2

〈∂ϕ2
∂y

,
∂

∂y

〉
and

F0 is real if (s, y) is real and is a polynomial in
∂ϕ2
∂s

,
∂ϕ2
∂y

.

(5.8) III = h2
(
La+ F1

(
s, y, (∂αϕ%)|α|�2, %=1,2

)
a
)
.

(5.9) IV =
2∑

j=1

h2+jXj

(
sh, s, y, (∂αϕ%)|α|�2, %=1,2 ; ∂s, ∂y

)
a.

Here F1 is analytic in (s, y), polynomial in (∂αϕ%), |α| � 2, D = 1, 2 and Xj is
a homogeneous differential operator of order j whose coefficients are finite sums of
terms of the form b(sh, y)c(s, y)(∂αϕ1)%1(∂βϕ2)%2 where |α| � 2, |β| � 2, D1 + D2 � 2
and c, b are smooth.

5.1. The first phase equation

Our purpose here is to find ϕ2 such that the term I in (5.6) vanishes. We shall
solve, for (θ, s, y) real, the Cauchy problem

(5.10)


∂ϕ2
∂θ

+ s4
(∂ϕ2
∂s

)2
+ s2

∥∥∥∂ϕ2
∂y

∥∥∥2 = 0

ϕ2|θ=θ0 = (s− αs)ατ + (y − αy) · αη

where α = (αs, αy, ατ , αη) ∈ R
2n is a parameter close to α0. If we set

(5.11) ϕ2(θ; s, y, α) = ϕ̃2(θ; s, y, ατ , αη)− αsατ − αyαη

then (5.10) is equivalent to

(5.12)


∂ϕ̃2
∂θ

+ s4
(∂ϕ̃2
∂s

)2
+ s2

∥∥∥∂ϕ̃2
∂y

∥∥∥2 = 0

ϕ̃2|θ=θ0 = sατ + y · αη

.

Let us consider the symbol

(5.13) D(s, y, τ, η, θ∗) = θ∗ + q(s, y, τ, η) , q(· · · ) = s4 τ2 + s2 ‖η‖2 .

The equation in (5.12) is equivalent to

D
(
s, y,

∂ϕ̃2
∂s

,
∂ϕ̃2
∂y

,
∂ϕ̃2
∂θ

)
= 0.
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The bicharacteristic of D starting from (θ0, s̃, ỹ, ατ , αη) is described by the equations

(5.14)



θ̇(t) = 1 θ(0) = θ0

ṡ(t) =
∂q

∂τ
(s(t), y(t), τ(t), η(t)) s(0) = s̃

ẏ(t) =
∂q

∂η
(· · · ) y(0) = ỹ

θ̇∗(t) = 0 θ∗(0) = −q(s̃, ỹ, τ̃ , η̃)

τ̇(t) = −∂q
∂s

(s(t), y(t), τ(t), η(t)) τ(0) = ατ

η̇(t) = −∂q
∂y

(· · · ) η(0) = αη .

We have θ(t) = t+ θ0, θ∗(t) = θ∗(0) and the system in (s, y, τ, η) has, for small |t|, a
unique solution(

s(t; s̃, ỹ, ατ , αη), y(t; s̃, ỹ, ατ , αη), τ(t, s̃, ỹ, ατ , αη), η(t; s̃, ỹ, ατ , αη)
)
.

Let us consider, for fixed (ατ , αη), the set

(5.15) Λ =
{(
θ, s(θ − θ0; s̃, ỹ, ατ , αη), y(θ − θ0; s̃, ỹ, ατ , αη), θ∗(0),

τ(θ − θ0; s̃, ỹ, ατ , αη), η(θ − θ0; s̃, ỹ, ατ , αη)
)
, (θ, s̃, ỹ) close to (θ0, s0, y0)

}
.

Then Λ is a Lagrangian submanifold and, since D is constant on the bicharacteristics,
we have

(5.16) D|Λ = 0 .

Now the map (θ, s̃, ỹ) �→ (θ, s(θ − θ0; s̃, ỹ, ατ , αη), y(θ − θ0; · · · )) has a Jacobian with
determinant equal to one at θ = θ0. It follows that the projection on the basis
Π : Λ → R × R × Rn−1, is a local diffeomorphism. Therefore one can find a real
function ϕ̃2(θ; s, y, ατ , αη) in a real neighborhood of (θ0, s0, y0) such that

(5.17) Λ =
{(

θ, s, y,
∂ϕ̃2
∂θ

,
∂ϕ̃2
∂s

,
∂ϕ̃2
∂y

)
, (θ, s, y) close to (θ0, s0, y0)

}
.

Then (5.16), (5.17) show that ϕ̃2 solves (5.12). Let us note that

(5.18)


∂ϕ̃2
∂s

(θ; s, y, ατ , αη) = τ
(
θ − θ0; κ1(θ − θ0; s, y, ατ , αη),

κ2(θ − θ0; s, y, ατ , αη), ατ , αη

)
∂ϕ̃2
∂y

(
· · ·

)
= η

(
θ − θ0; K1(· · · ), κ2(· · · ), ατ , αη

)
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where

(5.19)


θ = θ

s(θ − θ0; s̃, ỹ, ατ , αη) = s

y(θ − θ0; s̃, ỹ, ατ , αη) = y

⇐⇒


θ = θ

s̃ = κ1(θ − θ0; s, y, ατ , αη) .

ỹ = κ2(θ − θ0; · · · )
Now the solution ϕ̃2 in (5.18) is determined up to a constant. We shall take the
constant such that

(5.20) ϕ̃2(θ0; s0, y0, ατ , αη) = ατ s0 + αη · y0 .
This determines ϕ̃2 uniquely. Now we write

ϕ̃2(θ0; s, y, ατ , αη) = ϕ̃2(θ0; s0, y0, ατ , αη) +
∫ 1

0

[
(s− s0)

∂ϕ̃2
∂s

+ (y − y0) ·
∂ϕ̃2
∂y

]
(
θ0; ts+ (1− t)s0, ty + (1− t)y0, ατ , αη

)
dt.

It follows from (5.20), (5.18), (5.14) that

ϕ̃2(θ0; s, y, ατ , αη) = ατ s0 + αη · s0 + (s− s0)ατ + (y − y0) · αη = ατ s+ αy · η .
This proves that ϕ̃2 satisfies also the initial condition in (5.12). Let us note that ϕ2
defined in (5.11) satisfies then (5.10).

5.2. The second phase equation

Our purpose here is to find ϕ1 such that the term II in (5.7) vanishes. More
precisely, we shall solve, for (θ, s, y) real, the Cauchy problem

(5.21)

Lϕ1 =
∂ϕ1
∂θ

+ 2s4
∂ϕ2
∂s

∂ϕ1
∂s

+ 2s2
〈∂ϕ2
∂y

,
∂ϕ1
∂y

〉
= −iF0

(
s, y,

∂ϕ2
∂s

,
∂ϕ2
∂y

)
ϕ1|θ=θ0 = (s− αs)2 + (y − αy)2

where F0 is real.
Since L is a real vector field with smooth coefficients, the problem (5.21) has a

unique solution ϕ1 = ϕ1(θ; s, y, α) near (θ0, s0, y0) which is a smooth function of its
arguments. Now, since F0 is real, we have

(5.22)

{
L(Reϕ1) = 0 , L(Imϕ1) = −F0(s, y, ∂ϕ2)
Reϕ1|θ=θ0 = (s− αs)2 + (y − αy)2 , Imϕ1|θ=θ0 = 0 .

Notation 5.1. — Let α0 = (s0, y0, α0τ , α
0
η). We shall denote by s(t;α0), y(t;α0), etc.

the solution of (5.14) with data (θ0, s0, y0, α0τ , α0η).

Lemma 5.2. — Let us set

A =
(
θ; s(θ − θ0; s̃, ỹ, ατ , αη), y(θ − θ0; s̃, ỹ, ατ , αη), α

)
,

∂

∂X
=

∂

∂s
or

∂

∂y
,

∂

∂αX
=

∂

∂αs
or

∂

∂αy
.

ASTÉRISQUE 283



5.4. ϕ IS A FBI PHASE 37

Then

(i) Reϕ1(A) = (s̃− αs)2 + (ỹ − αy)2.

(ii)
∂

∂X
(Reϕ1)(A) =

∂

∂αX
(Reϕ1)(A) = 0,

∂2

∂X2
(Reϕ1)(A)" 0 if αs = s̃, αy = ỹ.

Proof. — If, instead of working in the (θ, s, y) coordinates, we take the (θ̃, s̃, ỹ) co-
ordinates given by (5.19) (where θ̃ = θ) we see, using (5.14) and (5.18) for ϕ2, that
L = ∂/∂θ̃. Thus, setting F (θ̃, s̃, ỹ, α) = Reϕ1(A), we get ∂F/∂θ̃ = 0 ; therefore
F (θ̃; s̃, ỹ, α) = F (θ0; s̃, ỹ, α). Since for θ̃ = θ0, A = (θ0; s̃, ỹ, α) and since Reϕ1 satis-
fies (5.22) we get (i). Then (ii) follows easily from (i).

Let us note that (i) implies, in particular, that

Reϕ1
(
θ; s(θ − θ0;α0), y(θ − θ0;α0), α0

)
= 0 .

5.3. The link between the bicharacteristics of q and the flow of X0

Let q and X0 be defined in (5.13) and (3.9). Then we have the following lemma.

Lemma 5.3. — Let m0 = (0, y0, λ0, µ0)∈(qscT
∗
∂MM)0 and α0 =

(
s0, y0, λ0/s

3
0, µ0/s

2
0

)
.

Let
(
s(θ − θ0;α0), y(θ − θ0;α0), τ(θ − θ0;α0), η(θ − θ0;α0)

)
be the bicharacteristic of

q (defined in (5.14)) starting from α0. Let us set

(5.23) λ(θ−θ0) = [s(θ−θ0;α0)]3 τ(θ−θ0;α0), µ(θ−θ0) = [s(θ−θ0;α0)]2 η(θ−θ0;α0) .
Then

(
0, y(θ − θ0;α0), λ(θ − θ0), µ(θ − θ0)

)
= exp[(θ − θ0)X0](m0).

Proof. — It is an easy computation using (5.14) and (3.10).

5.4. ϕ is a FBI phase

Lemma 5.4. — Let m0 = (0, y0, λ0, µ0)∈(qscT
∗
∂MM)0 and α0 =

(
s0, y0, λ0/s

3
0, µ0/s

2
0

)
.

Let us set, according to Notation 5.1 and (5.23),

X(θ) =
(
s(θ − θ0;α0), y(θ − θ0;α0)

)
, Ξ(θ) =

( λ(θ − θ0)
s3(θ − θ0;α0)

,
µ(θ − θ0)

s2(θ − θ0;α0)

)
.

Let us set ϕ(θ; s, y, α, h) = ϕ2(θ; s, y, α) + ihϕ1(θ; s, y, α), where ϕ2 and ϕ1 are the
solutions of (5.10) and (5.21). Then, for small |θ − θ0|, ϕ(θ, ·) is a FBI phase at
(X(θ),Ξ(θ), α0, 0) (see Definition 2.1).

Proof. — Let us set X = (s, y), α = (αX , αΞ), αX = (αs, αy), αΞ = (ατ , αη). By
(5.10) and (5.11) we can write

ϕ2(θ;X,α) = ϕ2(θ0;X,α) + ψ2(θ;X,αΞ) = (X − αX)αΞ + ψ2(θ;X,αΞ) .

Now, we deduce from (5.18) and (5.23) that
∂ϕ2
∂X

(θ;X(θ), α0) =
(
τ(θ − θ0;α0), η(θ − θ0;α0)

)
= Ξ(θ) .

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2002



38 CHAPTER 5. PROOF OF THEOREM 4.6

It follows from Lemma 5.2 that ∂ Reϕ1
∂X (θ;X(θ), α0) = 0. On the other hand (5.21)

shows that Reϕ1|θ=θ0 = (X − αX)2. It follows that

∂2Reϕ1
∂X2

(θ0;X,α) = −
∂2Reϕ1
∂X ∂αX

(θ0;X,α) = 2 Id,

for all (X,α).
Therefore for (θ, α) close to (θ0, α0), we get(∂2Reϕ1

∂X2
(θ;X(θ), α)

)
" 0

det
∂2Reϕ1
∂X∂αX

(θ;X(θ), α) �= 0 .

Finally, since ϕ2(θ0;X,α) = (X−αX)αΞ, we get ∂2ϕ2
∂X ∂αΞ

(θ0;X,α) = Id, which implies

that, for θ close to θ0, det ∂2ϕ2
∂X ∂αΞ

(θ;X(θ), α) �= 0. This proves our claim.

5.5. The transport equations

Here we look for a symbol a such that the terms III and IV in (5.8), (5.9) vanish.
We shall take a of the form

(5.24)


a(θ; s, y, α, h) =

∑
j�0

aj(θ; s, y, α)hj , with

|aj(θ; s, y, α)| � M j+1 jj/2 .

Setting h2 = λ−1 we see that a = Σaj λ−j/2. Compared with the symbols used in
Sjöstrand [Sj], these symbols are non classical. However, we follow essentially [Sj].
We shall work in the coordinates (θ̃, s̃, ỹ) of Lemma 5.2 where L = ∂/∂θ̃ and we skip
the ∼ for convenience. Coming back to (5.8), (5.9) and setting a = a− 1, we have to
solve the Cauchy problem

(5.25)


( ∂

∂θ
+ c(θ, s, y, α)

)
a+ h−2(h3X1 + h4X2)a = b

a|θ=θ0 = 0

where Xj , j = 1, 2, are homogeneous differential operators of order j with smooth
coefficients in (s, y, θ, α, h) in a neighborhood of (s0, y0, θ0, α0, 0) and b is a symbol.
Setting a1 = exp

( ∫ θ

θ0
c(σ, s, y, α)dσ

)
a, we are lead to solve (5.25) with c = 0. Here α

is fixed, so we skip it in that follows.
With r > 0 small enough and 0 � t < r, we set

(5.26) Ωt =
{
(θ, s, y) : |θ − θ0|+ |s− s0|+ |y − y0| < r − t

}
.

Given ρ > 0, we shall say that a ∈ Aρ, if a =
∑

j�0 aj(θ, s, y)h
j with

(5.27) sup
Ωt

|aj | � fj(a)jj/2 t−j/2 , 0 < t < r ,
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(where fj(a) is the best constant for which (5.27) holds) and

(5.28)
+∞∑
j=0

fj(a)ρj = ‖a‖ρ < +∞ .

Let us set

(5.29) ∂−1
θ f(θ, s, y, h) = (θ − θ0)

∫ 1

0

f(σθ + (1− σ)θ0, s, y, h)dσ .

Then the problem (5.25) (with c = 0) is equivalent to

(5.30) (Id+B)a = d, where B = h−2∂−1
θ (h3X1 + h4X2) .

We want to show that one can find ρ > 0 such that ‖B‖L(Aρ,Aρ) � c0 < 1, which will
imply that I +B is invertible.

Lemma 5.5. — Let A′
ρ be the subspace of Aρ of symbols of the form a =

∑
j�3 aj h

j.
One can find a positive constant C0 such that for any ρ > 0 and a in A′

ρ we have

‖h−2∂−1
θ a‖ρ � C0

ρ2
‖a‖ρ .

Proof. — We have

h−2∂−1
θ a = h−2

∑
j�3

hj ∂−1
θ aj =

∑
j�1

hj ∂−1
θ aj+2 =

∑
j�1

hj bj

where

bj(θ, s, y) = (θ − θ0)
∫ 1

0

aj+2(σθ + (1− σ)θ0, s, y)dσ.

Now, if (θ, s, y) ∈ Ωt then

|σθ + (1− σ)θ0 − θ0|+ |s− s0|+ |y − y0|
= |θ − θ0|+ |s− s0|+ |y − y0|+ (σ − 1)|θ − θ0|

� r − t− (1− σ)|θ − θ0| ;

so (σθ + (1− σ)θ0, s, y) ∈ Ωt+(1−σ)|θ−θ0|. Therefore

|bj(s, θ, y)| � |θ − θ0|
∫ 1

0

fj+2(a)(j + 2)
j
2+1(t+ (1− σ)|θ − θ0|)−

j
2−1dσ.

So
|bj(s, θ, y)| � fj+2(a)(j + 2)

j
2+1

2
j
t−j/2.

Now, for j � 1, we have

(j + 2)j/2

jj/2
· j + 2

j
=
(
1 +

1
j/2

)j/2(
1 +

2
j

)
� 3e.

Therefore, for (θ, s, y) in Ωt, we have

|bj(θ, s, y)| < 6efj+2(a)jj/2 t−j/2 .
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This shows that

(5.31) fj(b) � 6efj+2(a) .

It follows that

‖h−2∂−1
θ a‖ρ = ‖b‖ρ =

∑
j�1

fj(b)ρj � 6e
∑
j�1

fj+2(a)ρj � 6e
ρ2
‖a‖ρ .

Lemma 5.6. — The operator h3X1+h4X2 maps Aρ to A′
ρ and there exists a positive

constant C1 such that for all ρ in ]0, 1[ and all a in Aρ we have

‖(h3X1 + h4X2)a‖ρ � C1 ρ
3‖a‖ρ .

Proof. — Since X% is an homogeneous differential operator of order D (D = 1, 2), the
Cauchy formula shows that for t′ < t

(5.32) sup
Ωt

|X%f | � C(t− t′)−% sup
Ωt′
|f | .

Now h2+%X%a =
∑

j�0 h
2+%+jX%aj =

∑
j�2+% h

jX%aj−2−%. The use of (5.32) shows
that

sup
Ωt

|X%aj−2−%| � C(t− t′)−% sup
Ωt′
|aj−2−%|

� C(t− t′)−% fj−2−%(a)(j − 2− D)
1
2 (j−2−%) t′−

1
2 (j−2−%) .

Let us take t′ = j−2−%
j t. Then

sup
Ωt

|X%aj−2−%|

� C t−% (D+ 2)−%

j−%
(j − 2− D)

1
2 (j−2−%) (j − 2− D)−

1
2 (j−2−%)

j−
1
2 (j−2−%)

t−
1
2 (j−2−%) fj−2−%(a) .

The right hand side of this inequality can be written as

C t−j/2 t1−%/2 jj/2 · 1
(D+ 2)%

j%

j1+%/2
fj−2−%(a) .

Since 1 � D � 2, we have 1
(%+2)	

· j	

j1+	/2 � 1 and t1−%/2 � 1 (t < r � 1), so we get

sup
Ωt

|X%aj−2−%| � Cfj−2−%(a)jj/2 t−j/2 .

It follows that fj(h2+%X%a) � Cfj−2−%(a), so

‖h2+%X%a‖ρ =
∑

j�%+2

fj(h2+%X%a)ρj � C
∑

j�%+2

fj−2−%(a)ρj � Cρ%+2
∑
j�0

fj(a)ρj

which proves the lemma.

ASTÉRISQUE 283



5.6. PROOF OF THEOREM 4.6 (CONTINUED) 41

Using the Lemmas 5.5 and 5.6, we deduce

‖Ba‖ρ � C0C1 ρ‖a‖ρ , for all a ∈ Aρ and ρ ∈ ]0, 1[ .

Taking ρ small enough we get our conclusion.

5.6. Proof of Theorem 4.6 (continued)

Let us set

(5.33) A =
{
θ ∈ [θ∗, θ∗] : exp(θX0)(m) /∈ qscWFa(u(θ, ·))

}
.

If we show that A is open and closed in [θ∗, θ∗] then the claim in Theorem 4.6 will
follow.

(i) A is open
Let θ0 ∈ A, that is m0 = exp(θ0X0)(m) /∈ qscWFa(u(θ0, ·)). We set m0 =

(0, y0, λ0, µ0). Since the definition of qscWFa is independent of the phase and the
symbol, we may take a ≡ 1 and ϕ = ϕ0 = ϕ02 + ihϕ01 where

(5.34)

{
ϕ02(s, y, α) = (s− αs)ατ + (y − αy) · αη

ϕ01(s, y, α) = (s− αs)2 + (y − αy)2 ,

and α0 =
(
s0, y0, λ0/s

3
0, µ0/s

2
0

)
. Then one can find a cut-off function χ(s, y) equal to

one in a neighborhood of (s0, y0), a neighborhood Vα0 of α0, strictly positive constants
C, c0, ε0 such that for all (α, h) in Vα0 × ]0, c0[,

(5.35) |T0u(θ0;α, h)| � Ce−ε0/h

where

(5.36) T0u(θ0;α, h) =
∫∫

eih
−2ϕ0(ρ/h,y,α,h)χ

(ρ
h
, y
)
u(θ0; ρ, y)dρdy .

Let, for |θ − θ0| small enough, ϕ(θ; s, y, α, h) = ϕ2(θ; s, y, α) + ihϕ1(θ; s, y, α) be the
phase given by the Lemma 5.4 which, for θ = θ0, is equal to ϕ0 given in (5.34).
Let a(θ; s, y, α, h) the analytic symbol constructed in § 5.5, which is equal to one
for θ = θ0. Let χ(θ; s, y) be a cut-off which is equal to one in a neighborhood of
X(θ) = (s(θ − θ0;α0), y(θ − θ0;α0)). Let us set
(5.37)

T u(θ; t, α, h) =
∫∫

eih
−2ϕ(θ;ρ/h,y,α,h)a

(
θ;
ρ

h
, y, α, h

)
χ
(
θ;
ρ

h
, y
)
u(t; ρ, y)dρdy .

It follows from (5.35), (5.36) that

(5.38) |T u(θ0; θ0, α, h)| � Ce−ε0/h , ∀α ∈ Vα0 , ∀h ∈ ]0, c0[ .
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Then we have

Lemma 5.7. — One can find two smooth functions U and V , ε1 > 0, c1 > 0 and
neighborhoods Vθ0 , Vα0 such that

(5.39) T u(θ; t, α, h) = U(θ − t;α, h) + V (θ; t, α, h)

(5.40) |V (θ; t, α, h)| � C1 e
−ε1/h , ∀ (θ, t, α, h) ∈ Vθ0 × [0, T ]× Vα0 × ]0, c1[ .

Let us assume this lemma proved ; then, for |θ − θ0| small enough, we can write

T u(θ; θ, α, h) = T u(θ0; θ0, α, h) +W (θ, θ0, α, h)

where W satisfies the estimate (5.40) with a larger C1. It follows from (5.38) that
T u(θ; θ, α, h) satisfies also the same kind of estimate. Therefore by the Definition 2.3,
we have (0, y(θ − θ0), λ(θ − θ0), µ(θ − θ0)) = exp((θ − θ0)X0)(m0) /∈ qscWFa(u(θ; ·))
when |θ − θ0| is small enough. Since m0 = exp(θ0X0)(m) it follows that θ ∈ A if
θ ∈ Vθ0 , which proves that A is open.

Proof of Lemma 5.7. — First of all we have |eih−2ϕ| = e−h−1 Reϕ1(θ;ρ/h,y,α) � 1 by
Lemma 5.2 (i). Now we take the symbol a =

∑
j�δ/h2 aj

(
θ; ρ/h, y, α

)
hj , where aj

satisfies (5.24) and δ is small enough. Then by (5.5) and the choice of ϕ and a we get

(5.41)
∣∣∣( ∂

∂θ
+ i∆∗

g

)
(aeih

−2ϕ)
∣∣∣ � M

(
M

√
δ

h
h
)δ/h2

= Me
δ

h2 Log(M
√
δ) � e−δ0/h

2

with δ0 > 0 if M
√
δ < 1.

It follows from (5.37) that we have,

∂

∂θ
T u(θ; t, α, h) =−

∫∫
i∆∗

g(ae
ih−2ϕ)χ

(
θ;
ρ

h
, y
)
u(t; ρ, y)dρdy

+
∫∫

eih
−2ϕa

∂χ

∂θ
(· · · )u(t, ρ, y)dρdy .

Therefore
∂

∂θ
T u(θ; t, α, h) =

∫∫
eih

−2ϕ(··· )a(· · · )
[ ∂
∂θ
− i∆g, χ

]
u(t; ρ, y)dρdy

+
∫∫

eih
−2ϕa(· · · )χ(· · · )i∆gu(t; ρ, y)dρdy .

Since i∆gu = −∂u/∂t we get

(5.42)
( ∂

∂t
+

∂

∂θ

)
T u(θ; t, α, h) =

∫∫
eih

−2ϕ(··· )a(· · · )
[ ∂
∂θ
−i∆g, χ

]
u(t; ρ, y)dρdy .

We prove now that the integral in the right hand side of the above inequality satisfies
an estimate like (5.40). Indeed, on the support of

[
∂
∂θ − i∆g, χ

]
, we have by definition

of χ,

(5.43) ε1 � ‖X −X(θ)‖ � 2ε1
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where X = (s, y) and X(θ) = (s(θ − θ0;α0), y(θ − θ0;α0)). Moreover

Reϕ1(θ;X,α) = Reϕ1(θ;X(θ), α) +
∂Reϕ1
∂X

(
θ;X(θ), α)(X −X(θ)

)
+

1
2
∂2Reϕ1
∂X2

(θ;X(θ), α)(X −X(θ))2 + o(‖X −X(θ)‖2) .

It follows from Lemma 5.2 (ii), that

(5.44) Reϕ1(θ;X,α) � c0‖X −X(θ)‖2 .
Since |eih−2ϕ| = e−hReϕ1 , our claim follows from (5.43), (5.44). Then (5.42) implies{

(∂t + ∂θ)T u(θ, t;α, h) = V (θ, t, α, h) where

|V (θ, t, α, h)| � Ce−ε/h , (θ, t, α, h) ∈ Vθ0 × [0, T ]× Vα0 × ]0, c0[

from which Lemma 5.7 follows.

(ii) A is closed
Let θ1 ∈ A. For every ε > 0 there exists θ0 ∈ A such that |θ0 − θ1| � ε. We take ε

so small that θ1 belongs to the neighborhood of θ0 where ϕ(θ; · · · ) a(θ; · · · ) have been
constructed. Then, as above we can write

T u(θ1; θ1, α, h) = T u(θ0; θ0, α, h) + V (θ0, θ1, α, h)

where V = O(e−ε/h). Since θ0 ∈ A, we have T u(θ0; θ0, α, h) = O(e−δ/h) so the
above equality shows that exp[(θ1 − θ0)X0](m0) = exp(θ,X0)(m) does not belong to
qscWFa(u(θ1, ·)) thus θ1 ∈ A and A is closed. The proof of Theorem 4.6 is complete.
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CHAPTER 6

PROOF OF THEOREM 4.7

6.1. Propagation in (qscS∗M)0

In this set, qscW̃F a coincide with the locally uniform analytic wave front set in-
troduced in [RZ1], Definition 1.1. Moreover Theorem 4.7 is of local nature, thus
independent of the asymptotic behavior of the metric. Therefore Theorem 4.7 in
(qscS∗M)0 will follow from Theorem 6.1 in [RZ1] as soon as we show that the flow of
σH∆ described by (3.17) coincide with the bicharacteristic flow of the Laplacian ∆g

described in (3.4).
The principal symbol of ∆g is equal to p(ρ, y, ρ2τ, ρη) where p(ρ, y, λ, µ) = λ2 +

‖µ‖2 + ρr(ρ, y, λ, µ) (see (3.4), (3.5)). Therefore the bicharacteristics of ∆g are de-
scribed by the equations

(6.1)



ρ̇ = ρ2
∂p

∂λ
(ρ, y, ρ2τ, ρη)

ẏ = ρ
∂p

∂µ
(· · · )

τ̇ =
[
− ∂p

∂ρ
− 2ρτ

∂p

∂λ
− η

∂p

∂µ

]
(ρ, y, ρ2τ, ρη)

η̇ = −∂p
∂y

(· · · ) .

Then we have the following result.
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Lemma 6.1. — Let m0 = (ρ0, y0, 0, (λ0, µ0)) ∈ (qscS∗M)0, ρ0 > 0. We set τ0 =
λ0/ρ

3
0, η0 = µ0/ρ

2
0. Let (ρ(t), y(t), τ(t), η(t)) be the bicharacteristic of ∆g starting

at (ρ0, y0, τ0, η0). Then ρ(t) �= 0 for all t. Let χ(t) be the solution of the problem
χ̇(t) = ρ0/ρ(χ(t)), χ(0) = 0. Then(

ρ(t) = ρ(χ(t)), y(t) = y(χ(t)), λ(t) = ρ0(τρ2)(χ(t)), µ(t) = ρ0(ρη)(χ(t))
)

is the flow of σH∆ described in (3.17).

The proof of this lemma is a straightforward computation.

6.2. Propagation on the corner

Let m = (0, y0, 0, (λ0, µ0)) be a point of the corner. We take s0 > 0 and we set
α0 =

(
s0, y0, λ0/s

3
0, µ0/s

2
0

)
. Let θ0 ∈ R. Here we look for a phase ϕ and a symbol a

such that for some ε > 0,

(6.2) A =
(1
k

∂

∂θ
+ i∆∗

g

)[
eih

−2 k−1ϕ(θ;ρ/h,y,α,h)a
(
θ;

ρ

h
, y, α, h, k

)]
= O(e−ε/hk)

for
(
θ, ρ/h, y, α

)
in a complex neighborhood of (θ0, s0, y0, α0) and (h, k) in a neigh-

borhood of (0, 0) in ]0,+∞[× ]0,+∞[.
Setting s = ρ/h we see easily that

(6.3) A = eih
−2 k−1ϕ(I + II)

where

(6.4) I = h−2k−2
(∂ϕ
∂θ

+ p
(
sh, y, s2

∂ϕ

∂s
, s

∂ϕ

∂y

))
a

(6.5)


II =

1
k

(
La+ i(∆∗

gϕ)a+ ih2k∆∗
ga
)
with

L =
∂

∂θ
+ s2

∂p

∂λ

(
sh, y, s2

∂ϕ

∂s
, s

∂ϕ

∂y

) ∂

∂s
+ s

∂p

∂µ
(· · · ) ∂

∂y
.

6.2.1. Resolution of the phase equation

Proposition 6.2. — There exists a holomorphic function ϕ = ϕ(θ; s, y, α, h) in a com-
plex neighborhood of (θ0, s0, y0, α0) depending smoothly on h such that

∂ϕ

∂θ
+ p

(
sh, y, s2

∂ϕ

∂s
, s
∂ϕ

∂y

)
= 0

ϕ|θ=θ0 = (X − αX)αΞ + ih(X − αX)2

where X = (s, y), α = (αX , αΞ), αX = (αs, αy), αΞ = (ατ , αη).
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Proof. — We introduce the symbol q = θ∗ + p(sh, y, s2τ, sη) and for fixed α, h we
consider the bicharacteristic system of q which is given by the equations

(6.6)



θ̇(t) = 1 θ(0) = θ0

ṡ(t) = s2
∂p

∂λ
(sh, y, s2τ, sη) s(0) = s̃

ẏ(t) = s
∂p

∂µ
(· · · ) y(0) = ỹ

θ̇∗(t) = 0 θ∗(0) = −p(s̃h, ỹ, s̃2 τ̃ , s̃ η̃)

τ̇(t) = −
[
h
∂p

∂ρ
+ 2sτ

∂p

∂λ
+ η

∂p

∂µ

]
(· · · ) τ(0) = τ̃ = ατ + 2ih(s̃− αs)

η̇(t) = −∂p
∂y

(· · · ) η(0) = η̃ = αη + 2ih(ỹ − αy) .

Here t is complex and (s̃, ỹ) are taken in a neighborhood of (s0, y0) in C × C
n−1.

By the Cauchy-Lipschitz theorem this system has, for small t, a unique holomorphic
solution which depends holomorphically on the initial data. Since θ(t) = t + θ0 we
can set t+ θ0 = θ and we consider

Λ =
{(
θ; s(θ − θ0; s̃, ỹ, α, h), y(θ − θ0; · · · ), θ∗(0), τ(θ − θ0; s̃, ỹ, α, h),(6.7)

η(θ − θ0; · · · )
)
, (s̃, ỹ) near (s0, y0)

}
.

Then Λ is a Lagrangian manifold on which q vanishes. Moreover we see from the
equations (6.6) that the projection π from Λ to the basis is a local diffeomorphism.
Therefore one can find ϕ = ϕ(θ; s, y, α, h) such that

Λ =
{(

θ, s, y;
∂ϕ

∂θ
(θ; s, y, α, h),

∂ϕ

∂s
(· · · ), ∂ϕ

∂y
(· · · )

)
,(6.8)

(θ, s, y) in a neighborhood of (θ0, s0, y0)
}
.

Since q vanishes on Λ, the function ϕ solves the equation in Proposition 6.2. However
one can add to ϕ any constant without changing Λ. We shall take the constant such
that

(6.9) ϕ(θ0; s0, y0, α, h) = (s0 − αs)ατ + (y0 − αy) · αη + ih[(s0 − αs)2 + (y0 − αy)2] .

Let us show then that ϕ satisfies also the initial condition. We can write

ϕ(θ0; s, y, α, h) = ϕ(θ0; s0, y0, α, h)

+
∫ 1

0

[
(s− s0)

∂ϕ

∂s

(
θ0; ts+(1− t)s0, ty+(1− t)y0, α, h

)
+(y− y0) ·

∂ϕ

∂y
(θ0; · · · )

]
dt.
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It follows from (6.8), (6.7), (6.6) that

ϕ(θ0; s, y, α, h) = ϕ(θ0; s0, y0, α, h) +
∫ 1

0

[
(s− s0)

(
ατ + 2ih(ts+ (1− t)s0 − αs)

)
+(y − y0) ·

(
αη + 2ih(ty + (1 − t)y0 − αy)

)]
dt

ϕ(θ0; s, y, α, h) = ϕ(θ0; s0, y0, α, h) + (s− s0)ατ + (y − y0) · αη

+2ih
[1
2
(s− s0)2 + (s− s0)(s0 − αs) +

1
2
(y − y0)2 + (y − y0) · (y0 − αy)

]
.

Using (6.9), we deduce that

ϕ(θ0; s, y, α, h) = (s− αs)ατ + (y − αy) · αη + ih
[
(s− αs)2 + (y − αy)2

]
which is the initial condition in Proposition 6.2.

6.2.2. ϕ(θ, ·) is a phase. — Let us show now that ϕ(θ; s, y, α, h) is a phase in the
sense of Definition 2.6 at (X(θ),Ξ(θ), α, h0 = 0) (independent of ν) where

X(θ) =
(
s(θ − θ0; s0, y0, α0, 0), y(θ − θ0; · · · )

)
,

Ξ(θ) =
(
τ(θ − θ0; s0, y0, α0, 0), η(θ − θ0; · · · )

)
.

We set

ϕ(θ; s, y, α, h) = ψ2(θ; s, y, α) + ihψ1(s, y, α) + h2ψ0(s, y, α, h)

and
F (h) = p

(
sh, y, s2

∂ϕ

∂s
, s
∂ϕ

∂y

)
.

Then writing F (h) = F (0)+ hF ′(0)+ h2G(h) and using Proposition 6.2, we see that
ψ2 satisfies the equation

∂ψ2
∂θ

+ s4
(∂ψ2
∂s

)2
+ s2

∥∥∥∂ψ2
∂y

∥∥∥2 = 0 .

Thus ψ2 is real if (s, y, α) are real. Moreover by (6.7), (6.8),
∂ψ2
∂X

(θ,X(θ), α0) =
∂ϕ

∂X

(
θ; s(θ − θ0; · · · ), y(θ − θ0, · · · ), α0, 0

)
= Ξ(θ) .

On the other hand ψ1 satisfies the equationLψ1 = is
∂p

∂ρ

(
0, y; s2

∂ψ2
∂s

, s
∂ψ2
∂y

)
ψ1|θ=θ0 = (X − αX)2 .

It follows that L Reψ1 = 0 and Reψ1|θ=θ0 = (X −αX)2. Working in the coordinates
(θ, s̃, ỹ) as in Lemma 5.2, the vector field L becomes ∂/∂θ. It follows that

Reψ1
(
θ; s(θ − θ0; s̃, ỹ, α, 0), y(θ − θ0; · · · ), α

)
= (s̃− αs)2 + (ỹ − αy)2

which shows that Reψ1 � 0 if (s, y, α) are real. Finally,

Reψ1(X(θ), α0) = (s0 − s0)2 + (y0 − y0)2 = 0.
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6.2.3. Resolution of the transport equation. — We look for a symbol a of the
form

a(θ; s, y, α, h, k) =
∑
j�0

aj(θ; s, y, α, h)(h
√
k)j

where the aj’s satisfy the following estimates

|aj(θ; s, y, α, h)| � M j+1 jj/2 .

If, instead of working in the (θ, s, y) variables we shift to the new variables (θ, s̃, ỹ),
where s(θ − θ0; s̃, ỹ, α, h) = s and y(θ − θ0; s̃, ỹ, α, h) = y, the operator L becomes
∂/∂θ. Therefore solving the equation II = 0 in (6.5) is equivalent to solve

[ ∂
∂θ

+ c(θ; s̃, ỹ, α)
]
b+ (h

√
k)−2

(
(h
√
k)4P2

)
b = 0

b|θ=θ0 = 1

where P2 is a second order differential operator. Then the same argument as used in
[Sj] or in the proof of Theorem 4.6 ensures the existence of such a symbol.

Now, before giving the proof of Theorem 4.7, we must link the flow of σH∆ with
the bicharacteristic of p described in (6.1).

Proposition 6.3. — Let m0 = (0, y0, 0, (λ0, µ0)) be a point in the corner. Let s0 > 0
and set τ0 = λ0/s

3
0, η0 = µ0/s

2
0. Let (s(t), y(t), τ(t), η(t)) be the bicharacteristic of

the symbol p(0, y, s2τ, sη) issued from (s0, y0, τ0, η0). Then s(t) �= 0 for all t. Let χ(t)
be the solution of the problem χ̇(t) = s0/s(χ(t)), χ(0) = 0. Then

(ρ(t) = 0, y(t) = y(χ(t)), λ(t) = s0(τ s2)(χ(t)), µ(t) = s0(sη)(χ(t))

is the flow of σH∆ (described in (3.17)) through m0.

Proof. — This is a straightforward computation.

6.2.4. Proof of Theorem 4.7. — Let us introduce the set

(6.10) A =
{
θ ∈ [θ∗, θ∗] : exp(θσH∆)(m) /∈ qscW̃F a(u(t0, ·))

}
.

If we show that A is open and closed in [θ∗, θ∗] we are done. A is open because
qscW̃F a(u(t0, ·)) is closed. It remains to prove that A is closed. Let (θn) be a se-
quence in A which converges to some θ0 ∈ R. Let us set exp(θ0σH∆)(m) = m0 =
(0, y0, 0, (λ0, µ0)). Let Vθ0 be an open neighborhood of θ0 in R in which the phase
ϕ(θ; s, y, α, h) given by Proposition 6.2 and the symbol solving the transport equations
exist. Let γ be the solution of the problem γ̇(t) = s0/s(γ(t)), γ(0) = 0 introduced in
Proposition 6.3. Then one can find θn such that θ̃0 = θ0 + γ(θn − θ0) ∈ Vθ0 and we
fix it. Now let us set, for θ in Vθ0 ,
(6.11)

T u(θ; t, α, h, k) =
∫∫

eih
−2 k−1ϕ(θ;Xh,α,h)a(θ;Xh, α, h, k)χ(θ;Xh)u(t; ρ, y)dydρ
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where Xh =
(
ρ/h, y

)
and χ(θ; ·) is a cut-off function localizing at

X(θ) =
(
s(θ − θ0; s0, y0, α0), y(θ − θ0; s0, y0, α0)

)
,

s0 > 0, α0 =
(
s0, y0, λ0/s

3
0, µ0/s

2
0

)
.

Lemma 6.4. — One can find two smooth functions U, V , complex neighborhoods Wθ0 ,
Wα0 of θ0, α0, positive constants C, ε0, δ0, δ1 such that

(6.12)

{
T u(θ; t, α, h, k) = U(kθ − t;α, h, k) + V (θ; t, α, h, k)

|V (θ; t, α, h, k)| � Ce−ε0/hk

for all (θ; t, α, h, k) in Wθ0 × ]t0 − δ0, t0 + δ0[×Wα0 × ]0, δ1[× ]0, δ1[.

Proof. — It is very similar to that of Lemma 5.7 so we only sketch it. It follows from
(6.3), (6.4), (6.5), Proposition 6.2 and from the construction of the symbol that (6.2)
is true. It follows that T u satisfies(1

k

∂

∂θ
+ ∂t

)
T u(θ; t, α, h, k)

=
∫∫

eih
−2 k−1ϕ(··· )a(· · · )

[ 1
k

∂

∂θ
− i∆g, χ

]
(· · · )u(t; ρ, y)dρdy + V1

where V1 is a smooth function satisfying the estimate in (6.12). Then we use the
properties of the phase ϕ on the support of

[
1
k

∂
∂θ − i∆g, χ

]
to achieve the proof.

It follows from Lemma 6.4 that

(6.13) T u(θ0; t, α, h, k) = T u
(
θ̃0; t− k(θ0 − θ̃0), α, h, k

)
+ V2

where V2 satisfies the estimate in (6.12).
Let us check at what point does T u(θ̃0; · · · ) microlocalize. By (6.7) and (6.8) we

have, with X = (s, y),

∂ϕ

∂X

(
θ̃0; s(θ̃0 − θ0; s0, y0, α0, 0), y(θ̃0 − θ0; · · · ), α0, 0)

=
(
τ(θ̃0 − θ0; s0, y0, α0, 0), η(θ̃ − θ0; · · · )

)
.

Since θ̃0 − θ0 = γ(θn − θ0), setting s = s ◦ γ and using Proposition 6.3 we see that

∂ϕ

∂X

(
θ̃0; s(θn − θ0), y(θn − θ0), α0, 0

)
=

s(θn − θ0)
s0

( λ(θn − θ0)
s3(θn − θ0)

,
µ(θn − θ0)
s2(θn − θ0)

)
.

Since θn ∈ A and ϕ̃ = s(θn−θ0)
s0

ϕ is a phase in the sense of Definition 2.6, it follows
from Definition 2.4 that exp((θn − θ0)σH∆)(m0) = exp(θnσH∆)(m) does not belong
to qscW̃F a(u(t0, ·)). Therefore, taking k small enough, the right hand side of (6.13)
is bounded by e−ε0/hk uniformly for t in ]t0 − δ, t0 + δ[. Therefore the left hand side
has the same bound, which proves that θ0 ∈ A, so A is closed.
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Let m0 = (0, y0, 0, (−1, 0)) ∈ N c
−. We take s0 > 0 and we set α0 =(

s0, y0,−1/s30, 0
)
. The scheme of the proof is the same as in Theorem 4.7. We

look for a phase ϕ and a symbol a such that (6.2) holds.
In this case we have to study in particular the flow starting from a real point

(s̃, ỹ, ατ , αη) on the interval ] − T ∗, 0] where −T ∗ looks like 1/2ατ s̃
3. The problem

then is that the solution s(θ) blows up at θ = −T ∗. This forces us to stay slightly
far from −T ∗ at a distance KH , see Theorem 7.1 below, where K is a large constant
and H = h+ |αη|. Then we will have to control (with respect to K) precisely all the
quantities which may blow up at −T ∗. This is a kind of renormalization. In the case
of the flat Laplacian it is easy to see that

s(θ; s̃, ỹ, ατ , 0) =
s̃

1− 2ατ s̃3θ
.

For fixed (ỹ, ατ ), the map (θ, s̃) �→ (θ, s(θ; s̃, ỹ, ατ , 0)) is a diffeomorphism from O1 to
O2 (see fig. 1, 2).
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7.1. The phase equation

Let us set

(7.1)


Iα = {α ∈ R

2n : |α− α0| < εα} ,
Ih = {h ∈ R : 0 < h < εh} ,
H = h+ |αη| , if (α, h) ∈ Iα × Ih .

Theorem 7.1. — There exist positive constants εα, εh, εs, K, K ′ such that for (α, h)
in Iα × Ih, if we set

D1 =
{
(θ1, s̃1) ∈ R− × R+ : |s̃1 − s0| < εs , Q1 � 1− 2ατ s̃

3
1 θ1 > KH

}
and

E =
⋃

(θ1,es1)∈D1

{
(θ, s, y) ∈ C× C× C

n−1 : |θ − θ1| <
1
K ′ Q1 ,

∣∣∣s− s̃1
Q1

∣∣∣
<

1
K ′

1
Q1

, |y − y1| <
1
K ′

}
,

(where y1 ∈ C
n is a certain point depending on (θ1, s̃1, y0, α, h) defined in (7.16)),

one can find a function ϕ = ϕ(θ; s, y, α, h) holomorphic in (θ, s, y) in E depending
smoothly on (α, h) in Iα × Ih such that

(7.2)


∂ϕ

∂θ
+ p

(
hs, y, s2

∂ϕ

∂s
, s
∂ϕ

∂y

)
= 0

ϕ|θ=0 = (s− αs)ατ + (y − αy)αη + ih
[
(s− αs)2 + (y − αy)2

]
.

Proof. — Let q = θ∗+p(hs, y, τs2, sη) and let us consider the bicharacteristic system
for q,

(7.3)



θ̇(t) = 1 θ(0) = 0

ṡ(t) = s2
∂p

∂λ
(hs, y, τs2, sη) s(0) = s̃

ẏ(t) = s
∂p

∂µ
(· · · ) y(0) = ỹ

θ̇∗(t) = 0 θ∗(0) = −p(hs̃, ỹ, τ̃ s̃2, s̃ η̃)

τ̇ (t) = −
[
h
∂p

∂ρ
+ 2sτ

∂p

∂λ
+ η

∂p

∂µ

]
(· · · ) τ(0) = τ̃

η̇(t) = −∂p
∂y

(· · · ) η(0) = η̃ .

Then obviously θ(t) = t, for all t and θ∗(t) = θ∗(0). Therefore we shall take θ instead
of t as parameter on the bicharacteristic.
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Proposition 7.2. — There exist positive constants εh, εs, εy, δ0, K, M , such that for
all (α, h) in Iα × Ih all (θ1, s̃1) in D1 and all (s̃, ỹ, τ̃ , η̃) such that

(7.3)′ |s̃−s0| � εs , |s̃− s̃1| < δ0Q1 , |ỹ−y0| < εy , |τ̃ −ατ | <
1
K
Q1 , |η̃| <

1
K
Q1 ,

the system (7.3) has an unique solution defined for Re θ ∈
[
θ1 − 1

K Q1, 0
]
, | Im θ| <

1
K Q1, which satisfies

|s(θ)| � 2s0
1− 2ατ s̃31 Re θ

, |y(θ)− ỹ| � M

K

|(τs2)(θ) − τ̃ s̃2| � 1
K
, |η(θ)| < 2

K
Q1 .

Moreover
1

s(θ)
=

1
s̃
− 2τ̃ s̃2θ + F where |F | � C

K2
Q1 .

On the other hand the solution (s(θ; s̃, ỹ, τ̃ , η̃, h), y(θ; · · · ), τ(θ; · · · ), η(θ; · · · )) is holo-
morphic with respect to (θ; s̃, ỹ, τ̃ , η̃) in the set,

∆ =
⋃

(θ,es1)∈D1

{
|s̃− s1| < δ0Q1, |ỹ − y0| < εy, |τ̃ − ατ | <

1
K
Q1, |η̃| <

1
K
Q1,

Re θ ∈
[
θ1 −

1
K
Q1, 0

]
, | Im θ| < 1

K
Q1

}
.

Proof. — We begin with the case where θ is real. The existence of a small T > 0
for which (7.3) has a solution on [−T, 0] satisfying the estimates in the proposition
follows from the Cauchy-Lipschitz theorem. Let −T∗(s̃, ỹ, τ̃ , η̃) be the maximal time
for which this solution exists and satisfies the estimates.

Case 1. — For any data (s̃, ỹ, τ̃ , η̃), we have −T∗(· · · ) � θ1 − 1
K Q1. Then the

proposition is proved.

Case 2. — Assume there is a data (s̃, ỹ, τ̃ , η̃) for which one has θ1− 1
K Q1 < −T∗(· · · )

and let T > 0 be such that −T∗(· · · ) < −T . Then on [−T, 0] we have a solution of
(7.3) which satisfies the above estimates. It follows that |y(θ)|, |τ(θ)s2(θ)|, |η(θ)| are
bounded by constants depending only on (s0, y0).

For any integer p � 2 and any θ in [−T, 0], we have

(7.4)
∫ 0

θ

|s(σ)|pdσ � C(s0, y0)
(1− 2ατ s̃31 θ)p−1

.

Since θ > θ1 − 1
K Q1 it follows that

1− 2ατ s̃
3
1 θ > 1− 2ατ s̃

3
1 θ1 +

2ατ s̃
3
1

K
Q1 �

(
1− C

K

)
Q1 � 1

2
Q1

if K is large. Therefore

(7.5) |s(θ)| � 4s0
Q1

,

∫ 0

θ

|s(σ)|p dσ � C

Qp−1
1

, if p � 2 .
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On the other hand, since H = h+ |αη| and Q1 > KH , we have

(7.6) h|s(θ)| � 4s0
K

, |s(θ)| · |η(θ)| � 8s0
K

.

Now it follows from (7.3) that

|η(θ)| � |η̃|+
∫ 0

θ

∣∣∣∂p
∂y

∣∣∣dσ
and it is easy to see that∣∣∣∂p

∂y

∣∣∣ � C
(
s2 |η|2 + s2h2(τs2) + sh(τs2)s|η|+ shs2 |η|2

)
,

where C depends only on a bound of the coefficients of p.
Using the fact that τs2 is bounded, the estimate |η(θ)| � 2

K Q1 and (7.6), we see
that ∣∣∣∂p

∂y

∣∣∣ � C1
K2

Q21 s
2 +

C2
K

Q1 s
2 |η| .

It follows from (7.5) that

|η(θ)| � |η̃|+ C3
K2

Q1 +
C2
K

Q1

∫ 0

θ

s2(σ) |η(σ)|dσ .

We can use Gronwall’s inequality and (7.5) to get

|η(θ)| � 1
K

(
1 +

C3
K

)
Q1 exp

C4
K

since |η̃| � 1
K Q1. Taking K so large that

(
1 + C3

K

)
eC4/K � 3/2, we deduce that

(7.7) |η(θ)| � 3
2

1
K
Q1 , θ ∈ [−T, 0] .

Let us now estimate τs2. From (7.3), we get

d

dθ
(τs2) = τ̇ s2 + 2τ sṡ = −hs2 ∂p

∂ρ
(· · · )− s2η · ∂p

∂µ
(· · · ) .

Since τ s2 is bounded, it follows from (3.5) that∣∣∣∂p
∂ρ

(· · · )
∣∣∣+ ∣∣∣ ∂p

∂µ
(· · · )

∣∣∣ � C(h+ |η(θ)|)s(θ) .

Using (7.7) and the fact that Q1 > KH � Kh we see that the right hand side is
bounded by C

K2 Q
2
1 s
3. It follows that

|(τs2)(θ) − τ̃ s̃2| � C

K2
Q21

∫ 0

θ

s3(σ)dσ

which implies, using (7.5), that

(7.8) |(τs2)(θ)− τ̃ s̃2| � C′

K2
� 1

2K
, θ ∈ [−T, 0] .
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Now ẏ = s ∂p
∂µ ; since

∣∣s ∂p
∂µ (· · · )

∣∣ � C
K Q1 s

2, where C depends only on the data (α0,
the coefficient of p ...), using (7.5) we get,

(7.9) |y(θ)− ỹ| � C′

K
� 1

2
M

K
,

if M � 2C′.
Finally, we consider s(θ). We have ṡ(θ) = s2 ∂p

∂λ (sh, y, τs
2, sη) from which we

deduce that
ṡ(θ)
s2(θ)

=
(
2τs2 + a(sh, y)h2 s2(τs2) + hs2 b(sh, y) · η)

)
(θ) .

It follows that

−1
s̃
+

1
s(θ)

= −2θ τ̃ s̃2−2
∫ 0

θ

∫ 0

σ

d

dθ
(τs2)(x)dxdσ︸ ︷︷ ︸

(1)

+
∫ 0

θ

[ah2 s2(τs2) + hs2b · η](σ)dσ︸ ︷︷ ︸
(2)

.

Using (7.5) we see that

|(2)| � CQ1
K2

.

We have seen in the proof of (7.8) that∣∣ d
dθ

(τs2)
∣∣ � CQ21

K2
s3,

so using (7.5) twice, we see that

|(1)| � CQ1
K2

.

Therefore we can write

(7.10)


1

s(θ)
=

1
s̃
− 2τ̃ s̃2θ + F (θ)

|F (θ)| � CQ1
K2

.

It follows that we can write

(7.10)′ s(θ) =
s̃

1− 2τ̃ s̃3θ + s̃F (θ)
.

Now we have
|1− 2τ̃ s̃3θ + s̃F | � 1− 2ατ s̃

3
1θ − C

( 1
K

+ δ0

)
Q1

1− 2ατ s̃
3
1θ �

(
1− C

K

)
Q1 .

So we can write

|s(θ)| �
|s̃|(1− C

K )
1− C( 2K + δ0)

· 1
1− 2ατ s̃31θ

.

Since |s̃| � s0 + εs, taking εs, δ0, small and K large so that

(s0 + εs)(1 − C
K )

1− C( 2K + δ0)
� 3

2
s0
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we get

(7.11) |s(θ)| �
3
2 s0

1− 2ατ s̃31θ
, θ ∈ [−T, 0] .

Now the estimates (7.7) to (7.11) are true for any T < T∗, so letting T go to T∗
we conclude that they are true up to θ = −T∗. Then we consider the system (7.3)
with data s(−T∗), y(−T∗), τ(−T∗), η(−T∗) and we solve it on [−T∗ − δ,−T∗] by the
Cauchy-Lipschitz theorem. Matching this solution with the previous one, we obtain
a solution of (7.3) on [−T∗ − δ, 0] which satisfies the estimates in Proposition 7.2,
getting a contradiction. This proves the Proposition 7.2 in the case where θ is real.

Let us consider the case of complex θ. We recall the following well known result.
Let (θ0, X0) ∈ R× CN and

Ω =
{
(θ,X) ∈ C× C

N : |θ − θ0| < a, |X −X0| < b
}
.

Let F : Ω → CN be a holomorphic function such that supΩ ‖F (X)‖ = M < +∞.
Then the Cauchy problem {

Ẋ(θ) = F (θ,X(θ))

X(θ0) = X0

has a unique holomorphic solution defined in {θ ∈ C : |θ − θ0| < ρ} where

(7.12) ρ < a
(
1− exp

( −b
(N + 1)aM

))
.

Let us fix (θ1, s̃1) in D1 and let us take θ0 ∈
[
θ1 − 1

K Q1, 0
]
. We introduce

s1(θ) =
s(θ)
s(θ0)

, y1(θ) = y(θ) , τ1(θ) = τ(θ)s(θ0)2 , η1(θ) = η(θ)s(θ0) ,

and we consider the system satisfied by

X(θ) =
(
s1(θ), y1(θ), τ1(θ), η1(θ)

)
which is derived from (7.3). It can be written as Ẋ(θ) = F (X(θ)). Let us introduce

Ω =
{
(s1, y1, τ1, η1) ∈ C

2n : |s1 − 1|+ |y1 − y(θ0)|+ |τ1 − τ(θ0)s(θ0)2|
+|η1 − s(θ0)η1(θ0)| < δ

}
,

where δ depends on the domain on which the coefficients of p extend holomorphically ;
then, using the estimates (7.5) to (7.11) for real θ0, we see that supΩ ‖F (X)‖ �
C0(1 + s(θ0)) � C0(1+4s0)

Q1
= M , by (7.5) since Q1 � 1. We take a = 2

K Q1 where K
is so large that δ

(2n+1)aM = δK
2(2n+1)C0(1+4s0)

� Log 2.
It follows that exp

(
− δ

(2n+1)aM

)
� 1

2 ; so our system has a holomorphic solution
in the set

{
|θ − θ0| < a

2

}
=

{
|θ − θ0| < 1

K Q1
}
. Matching these solution for θ0 ∈[

θ1 − Q1
K , 0

]
, we obtain a solution of (7.3) for Re θ ∈

[
θ1− 1

K Q1, 0
]
, | Im θ| < 1

K Q1 as
claimed. The proof of Proposition 4.2 is complete.
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Corollary 7.3. — There exist constants Cj, j = 1, . . . , 8, depending only on the data,
such that

C1
Q21

�
∣∣∣∂s(θ)
∂s̃

∣∣∣ � C2
Q21

,
∣∣∣∂s(θ)
∂ỹ

∣∣∣ � C3
K2Q1

,
∣∣∣∂s(θ)
∂τ̃

∣∣∣ � C4
Q21

,
∣∣∣∂s(θ)
∂η̃

∣∣∣ � C5
KQ21

∂y(θ)
∂ỹ

= Id+O
( 1
K

)
,
∣∣∣∂y(θ)
∂s̃

∣∣∣ � C6
Q1

,
∣∣∣∂y(θ)
∂τ̃

∣∣∣ � C7
Q1

,
∣∣∣∂y(θ)
∂η̃

∣∣∣ � C8
Q1

.

Proof. — For the estimates on s(θ) use (7.10), (7.10)′. We obtain

∂s(θ)
∂s̃

=
1 + 4 τ̃ s̃3 θ − s̃2 ∂F (θ)∂es
(1− 2 τ̃ s̃3 θ + s̃F (θ))2

.

From (7.10) and the Cauchy formula we have ∂F (θ)/∂s̃ = O
(
1/K2

)
. From the lines

after (7.10)′ we get

|1− 2 τ̃ s̃3 θ + s̃F (θ)| �
(
1− C

K
− C δ0

)
Q1 � 1

2
Q1 ,

if 1/K and δ0 are small enough.
Moreover, since τ̃ s̃3 = −1 +O

(
Q1/K

)
, Re θ � 0, | Im θ| � Q1/K, we get,

1 + 4 τ̃ s̃3 θ − s̃2
∂F (θ)
∂s̃

= 1 + 4 |Re θ|+O
(
1/K

)
.

Then the estimates on ∂s(θ)/∂s̃ follow. For the estimates on y(θ), we use the equality
y(θ) = ỹ + g(θ), g = O

(
1/K

)
and the Cauchy formula.

Let us remark that, in Proposition 7.2, we can take

τ̃ = ατ + 2ih(s̃− αs) , η̃ = αη + 2ih(ỹ − αy) .

Indeed this follows from the estimate

|τ̃ − ατ | = 2h|s̃− αs| � 2H(|s̃− s0|+ |s0 − αs|) � 4εH � H � 1
K
Q1 ,

if ε � 1/4 and from the analogue for |η̃ − αη|.
So we introduce the following notation

(7.13) f(θ; s̃, ỹ, α, h) = f
(
θ; s̃, ỹ, ατ + 2ih(s̃− αs), αη + 2ih(ỹ − αy), h

)
which will be used for f = s, y, τ, η. The function f is then defined in the set

∆ =
⋃

(θ1,es1)∈D1

{
(θ, s̃, ỹ) ∈ C× C× C

n−1 : |s̃− s̃1| < δ0Q1, |ỹ − y0| < εy,(7.14)

Re θ ∈
[
θ1 −

1
K
Q1, 0

]
, | Im θ| < 1

K
Q1

}
.

We introduce now, for fixed α, h, the set
(7.15)

Λ =
{(
θ, s(θ; s̃, ỹ, α, h), y(θ; · · · ), θ∗(0), τ (θ; s̃, ỹ, α, h), η(θ; · · · )

)
, (θ, s̃, ỹ) ∈ ∆

}
.
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Let us consider the set

E =
⋃

(θ1,es1)∈D1

{
(θ, s, y) ∈ C× C× C

n−1 : |θ − θ1| <
1
K ′ Q1,(7.16)

|y − y(θ1; s̃1, y0, α, h)| <
1
K ′ ,

∣∣∣s− s̃1
1− 2ατ s̃31 θ1

∣∣∣ < 1
K ′ ·

1
Q1

}
.

Then we have

Proposition 7.4. — Let Λ be defined by (7.15) and π be the projection on the basis.
Then if K ′ is large enough, we have E ⊂ π(Λ) and, if we set Λ1 = π−1(E) then the
map π : Λ1 → E is bijective.

Proof

Claim. — For any (θ, s, y) in E one can find (θ, s̃, ỹ) in ∆ such that

(7.17)


θ = θ

s(θ; s̃, ỹ, α, h) = s

y(θ; s̃, ỹ, α, h) = y .

Here α and h are fixed in Iα, Ih.

We set s̃ = s̃1 + t̃ and s = es1
1−2ατ es31 θ1 + t = es1

Q1
+ t. Let us recall that, according to

(7.10), we have

s(θ; s̃, ỹ, α, h) =
s̃

1− 2 τ̃ s̃3θ + s̃F (θ)
where τ̃ = ατ + ih(s̃− αs) and |F | � C

K2 Q1.
Now, if |θ − θ1| < 1

K′ Q1, |t̃| � δ0Q1 and |s̃− αs| � εs, we have

1− 2 τ̃ s̃3θ + s̃F (θ) = Q1 − 6ατ s̃
2
1 t̃θ1 +G(θ; t̃, ỹ, α, h)

where |G| � C
(
1
K′ + δ20 +

1
K2 + εs+εα

K

)
Q1.

It follows that the equation s(θ; · · · ) = s is equivalent to

s̃1Q1 + t̃Q1 = Q1 s̃1 − 6ατ s̃
3
1 t̃θ1 + tQ1(Q1 − 6ατ s̃

2
1 t̃θ1) + (s̃1 + tQ1)G.

Now, since Q1 + 6ατ s̃
3
1 θ1 = 1 + 4ατ s̃

3
1 θ1 = c1 � 1, this equation is equivalent to

(7.18) t̃ =
1
c1
tQ1(Q1 − 6ατ s̃

2
1 t̃θ1) +

1
c1
(s̃1 + tQ1)G(θ; t̃, ỹ, α, h) = H(t̃, ỹ) .

On the other hand, forgetting α and h which are fixed, we can write

y(θ; s̃, ỹ) = y(θ; s̃, y0) + (ỹ − y0)
∂y

∂ỹ
(θ; s̃, y0) +O(|ỹ − y0|2) .

Since ∂y/∂ỹ (θ; s̃, y0) = 1 +O
(
1/K

)
, we see that the equation y(θ; s̃, ỹ) = y is equiv-

alent to

(7.19) ỹ − y0 = a(θ; s̃)(y − y(θ; s̃, y0)) +O(|ỹ − y0|2) .
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Now

y(θ; s̃, y0) = y(θ1; s̃1, y0) + (θ − θ1)
∂y

∂θ
(θ∗; s̃∗, y0) + t̃

∂y

∂s̃
(· · · ),

and we have ∣∣∣∂y
∂θ

(θ∗; s̃∗, y0)
∣∣∣ � C,

∂y

∂s̃
= O

( 1
K

)
, |θ − θ1| <

1
K ′ .

It follows that (7.19) is equivalent to

(7.20) ỹ − y0 = a(θ; s̃)(y − y(θ1; s̃1, y0)) +O
( 1
K ′

)
+ t̃O

( 1
K

)
+O(|ỹ − y0|2) .

Setting Y =
(
t̃/(ỹ − y0)

)
, we see, according to (7.18) and (7.20), that (7.17) can be

written as Y = Φ(Y ).
Taking |t| � 1

K′ Q1, |y − y(θ1; s̃1, y0)| � 1/K ′ and setting

B =
{
(t̃, ỹ) : |t̃| � δ0Q1, |ỹ − y0| < εy

}
we see that, if δ0 is small enough and K ′ " K, then Φ maps B into itself and satisfies
|Φ(Y )−Φ(Y ′)| � δ|Y − Y ′| with δ < 1. Thus the first part of Proposition 7.4 follows
from the fixed point theorem.

Let Λ1 = π−1(E) ; we must show that π : Λ1 → E is injective. We recall that

1
s(θ)

=
1
s̃
− 2 τ̃ s̃2 θ + F (θ) , y(θ) = ỹ +G(θ)

where
∣∣∂F
∂es
∣∣+ ∣∣∂F

∂ey
∣∣+ ∣∣∂G

∂es
∣∣+ ∣∣∂G

∂ey
∣∣ = O( 1K )

, and τ̃ = ατ +2ih(s̃−αs). Forgetting α, h,
which are fixed, assume that

s(θ; s̃, ỹ) = s(θ; s̃′, ỹ′) , y(θ; s̃, ỹ) = y(θ; s̃′, ỹ′) .

It follows, from the above formulas that

(s̃′− s̃)
(
1+2ατ θ s̃ s̃

′(s̃+ s̃′)
)
+4ihθ(s̃′− s̃)f(s̃, s̃′, α) = s̃ s̃′

[
s̃F (θ; s̃, ỹ)− s̃′F (θ; s̃′, ỹ′)

]
ỹ − ỹ′ = G(θ; s̃′, ỹ′)−G(θ; s̃, ỹ)

where f(s̃, s̃′, α) = O(1). Since |1 + 2ατ θ s̃ s̃
′(s̃ + s̃′)| is bounded below the above

equations lead to the estimates
|s̃− s̃′| � C

(
h+

1
K

)(
|s̃− s̃′|+ |ỹ − ỹ′|

)
,

|ỹ − ỹ′| � C

K

(
|s̃− s̃′|+ |ỹ − ỹ′|

)
.

Taking h and 1/K small enough we see that this implies s̃ = s̃′ and ỹ = ỹ′.

Proposition 7.5. — For all λ in Λ1, the map dπ : TλΛ1 → Tπ(λ)E is surjective.

Proof. — Let G be the map

(θ, s̃, ỹ) �−→ (θ, s(θ; s̃, ỹ, α, h), y(θ; · · · ), θ∗(0), τ(θ; s̃, ỹ, α, h), η(θ; · · · ))
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from the set

∆1 =
⋃

(θ1,es1)∈D1

{
(θ, s̃, ỹ) : |s̃− s1| < δQ1, |ỹ − y0| < δ,

Re θ ∈ [θ1 − δQ1, 0], | Im θ| < δQ1

}
to Λ1. If we show that d(π◦G) is surjective, then we are done. Now it is easy to see that

d(π ◦G) is surjective if and only if the determinant of the matrix A =

(
∂s(θ)
∂es

∂s(θ)
∂ey

∂y(θ)

∂es
∂y(θ)

∂ey

)
is different from zero. This will follow from Corollary 7.3. Indeed we have∣∣∣∂s

∂s̃

∣∣∣ � C

Q21
,

∂s

∂ỹ
= O

( 1
K2Q1

)
,

∂y

∂s̃
= O

( 1
Q1

)
,

∂y

∂ỹ
= Id+O

( 1
K

)
.

This implies that

| detA| � C

Q21
.

Proof of Theorem 7.1. — It follows from Propositions 7.4 and 7.5 that one can find a
smooth function ϕ = ϕ(θ; s, y, α, h) which, for fixed α, h, is defined on the set E (see
(7.16)) such that

Λ1 =
{(

θ, s, y,
∂ϕ

∂θ
(θ; s, y, α, h),

∂ϕ

∂s
(θ; · · · ), ∂ϕ

∂y
(θ; · · · )

)
, (θ, s, y) ∈ E

}
.

Since Λ1 ⊂ Λ and the symbol q∗ = θ∗+p(hs, y, τs2, sη) vanishes on Λ, we have solved
the first equation in (7.2). Obviously ϕ is defined up to a constant and we can choose
it such that ϕ(0; s0, y0, α, h) = (s0−αs)ατ +(y0−αy)αη+ ih[(s0−αs)2+(y0−αy)2].
Then we write

ϕ(0; s, y, α, h) = ϕ(0; s0, y0, α, h) +
∫ 1

0

[∂ϕ
∂s

(
0; ts+ (1− t)s0, ty + (1− t)y0, α, h

)
·

·(s− s0) +
∂ϕ

∂y

(
0; ts+ (1− t)s0, ty + (1− t)y0, α, h

)
· (y − y0)

]
dt.

Now
∂ϕ

∂s
(0; · · · ) = τ (0; s̃, ỹ, α, h) = ατ + 2ih(s̃− αs)

where s(0; s̃, ỹ, α, h) = ts+ (1− t)s0 = s̃. Using these relations and the same one for
∂ϕ/∂y, we find that ϕ satisfies also the initial condition in (7.2).

Proposition 7.6. — Let (α, h) be fixed in Iα×Ih. Then the phase given in Theorem 7.1
satisfies, for (θ, s̃, ỹ) in ∆

ϕ
(
θ; s(θ; s̃, ỹ, α, h), y(θ; · · · ), α, h

)
= (s̃− αs)ατ + (ỹ − αy) · αη

+ ih
[
(s̃− αs)2 + (ỹ − αy)2

]
+ θp(hs̃, ỹ, τ̃ s̃2, s̃ η̃)

where τ̃ = ατ + ih(s̃− αs) and η̃ = αη + ih(ỹ − αy).
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Proof. — Let us write f(θ) instead of f(θ; s̃, ỹ, α, h). Then

(1) =
d

dθ
[ϕ(θ; s(θ), y(θ), α, h)] =

(∂ϕ
∂θ

+ ṡ
∂ϕ

∂s
+ ẏ

∂ϕ

∂y

)
(θ; s(θ), y(θ), α, h).

Using (7.3) and the definition of ϕ, we get

ṡ
∂ϕ

∂s
+ ẏ

∂ϕ

∂y
= τs2

∂p

∂λ
+ sη · ∂p

∂µ
= 2p(hs, y, τs2, sη) .

Since p is constant on the bicharacteristics and
∂ϕ

∂θ
= θ∗(0) = −p(hs̃, ỹ, τ̃ s̃2, η̃ s̃),

where τ̃ = ατ + ih(s̃−αs), η̃ = · · · , we get (1) = p(hs̃, ỹ, τ̃ s̃2, s̃ η̃). On the other hand
we have

ϕ(0; s̃, ỹ, α, h) = (s̃− αs)ατ + (ỹ − αy) · αη + ih[(s̃− αs)2 + (ỹ − αy)2] ,

which proves our claim.

7.2. Link between the flow of σH∆ and the bicharacteristics

Proposition 7.7. — Let (θ, s̃, ỹ), θ < 0, and (α, h) be fixed real points in ∆ and Iα×Ih.
(i) We set R2 = p(hs̃, ỹ, ατ s̃

2, s̃αη) > 0. Then the problem

(7.21)


χ̇(t) =

1
Rs(χ(t); s̃, ỹ, ατ , αη, h)

χ(0) = θ

has a unique solution defined on [0, T ∗] with χ(T ∗) = 0.
(ii) If we set, for t ∈ [0, T ∗],

ρ(t) = hs(χ(t); s̃, ỹ, ατ , αη, h), y(t) = y(χ(t); s̃, ỹ, ατ , αη, h)

λ(t) =
1
R
(τs2)(χ(t); s̃, ỹ, ατ , αη, h), µ(t) =

1
R
(sη)(χ(t); s̃, ỹ, ατ , αη, h)

then
(
ρ(t), y(t), 0, (λ(t), µ(t))

)
= exp tσH∆

(
ρ(0), y(0), 0, (λ(0), µ(0))

)
.

Proof

(i) Let us introduce the following set

A =
{
T > 0 : (7.21) has a solution on [0, T ] with (χ(t), s̃, ỹ) ∈ ∆

}
.

Then A is an interval which is non empty, by the Cauchy-Lipschitz theorem. Let
T ∗ = supA. Then, on [0, T ∗[ one has χ(t) � 0 (by the definition of ∆). Since
s(θ; s̃, ỹ, · · · ) > 0 and R > 0 we have χ̇ > 0 so limt→T∗ χ(t) = D � 0 exists. By (7.21)
we have then

lim
t→T∗

χ̇(t) =
1

Rs(D; s̃, ỹ, ατ , αη, h)
> 0.
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Therefore T ∗ < +∞. We can extend χ to [0, T ∗] by setting χ(T ∗) = D. If D < 0,
the equation in (7.21) with χ(T ∗) = D would have a solution on [T ∗, T ∗ + ε] with
(χ(t), s̃, ỹ) ∈ ∆ with contradicts the maximality of T ∗ ; so χ(T ∗) = 0.

(ii) This claim follows from (7.3) and (3.17) by a simple computation.

7.3. The transport equation

As before we look for an analytic symbol a such that

(7.22)
(1
k
∂θ + i∆∗

g

)
(aeih

−2k−1ϕ) = O(e−δ/hk) , δ > 0 .

Working in the (θ, s̃, ỹ) coordinates instead of (θ, s, y) we are lead to solve the transport
equation

(7.23)


( ∂

∂θ
+ c(θ; s̃, ỹ, α) + h2kQ

)
a = b

a|θ=0 = 0

where Q is of second order and is a linear combination with bounded coefficients of
∂2es , s

2(θ)∂2ey , s(θ)∂es ∂ey, s(θ)∂es, s(θ)∂ey . To see this, we first note that

∂es =
∂s(θ)
∂s̃

∂s +
∂y(θ)
∂s̃

· ∂y

∂eyj
=

∂s(θ)
∂ỹj

∂s +
∂y(θ)
∂ỹj

· ∂y .

Now, it follows from (7.10)′ that

∂s(θ)
∂s̃

= a(θ; s̃, ỹ)s2(θ)

where a(θ) �= 0,
∂s(θ)
∂ỹj

= bj(θ)s2(θ)

where bj(θ) = O
(
Q1/K

)
(because ∂F/∂ỹ = O

(
Q1/K

)
by (7.10) and the Cauchy

formula),
∂yk(θ)
∂s̃

= O
( 1
K

)
,

∂yk(θ)
∂ỹj

= δjK +O
( 1
K

)
.

Moreover, from the line after (7.10)′, we have |s(θ)| � C/Q1. Inverting the system
above and using these informations, we see that

s2∂s = α(θ; s̃, ỹ)∂es + β(θ; s̃, ỹ) · ∂ey
∂y = γ(θ; s̃, ỹ)∂es + δ(θ; s̃, ỹ) · ∂ey

where α, β, δ are bounded and γ(θ) = O
(
Q1/K

)
. Since |s(θ)| � C/Q1, it follows that

the coefficient of ∂es coming from s∂y is bounded. Then our claim follows from the
fact that, in the coordinates (s, y) the operator Q is given by ∆∗

g which is described
in (5.1). We shall set λ−1 = h2k and take a =

∑
j�0 λ

−j aj.
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We shall define our symbol in a subset of ∆ introduced in (7.14). First of all by
the usual trick we can assume that c = 0 in (7.23). Formally, the system (7.23) can
be solved in ∆ since it is a linear problem ; our goal will be, therefore, to show that
this formal resolution leads to an analytic symbol. The equation (7.23) is equivalent
to

(7.24)


(I +B)a = b, where

B = ∂−1
θ λ−1Q and ∂−1

θ a(θ; s̃, ỹ) = θ

∫ 1

0

a(µθ; s̃, ỹ)dµ.

According to (7.14) let (θ1, s̃1) ∈ D1. We introduce for t > 0, 0 < t′ < εy,

Ωtt′ =
{
(θ, s̃, ỹ) : 0 > θ > θ1 −

Q1
K

+ t, |s̃− s̃1| < δ0t, |ỹ − y0| < εy − t′
}

where Q1 = 1− 2ατ s̃
3
1 θ1 and δ0 is small enough.

Claim 1. — Ωtt′ ⊂ ∆ (see (7.14)).

Let (θ, s̃, ỹ) ∈ Ωtt′ ; let us take θ′1 = θ1 + t, s̃1 = s1 and let us show that (θ′1, s̃1) ∈
D1. To see this, we write

Q′
1 = 1− 2ατ s̃

3
1 (θ1 + t) = Q1 + 2|ατ | s̃31t > KH .

This shows that Q′
1 � Q1, Q′

1 > KH , Q′
1 � 2|ατ | s̃31t. Thus (θ′1, s̃1) ∈ D1. Now

0 > θ > θ1 −
Q1
K

+ t � θ′1 −
Q′
1

K
, |s̃− s̃1| < δ0t � δ0

2|ατ | s̃31
Q′
1 and |ỹ − y0| < εy.

It follows that (θ, s̃, ỹ) ∈ ∆.

Claim 2. — If (θ, s̃, ỹ) ∈ Ωtt′ then, for µ ∈ (0, 1), (µθ, s̃, ỹ) ∈ Ωtµt′ where tµ = I−Jµ,
I =

∣∣θ1− Q1
K

∣∣, J =
∣∣θ1− Q1

K

∣∣−t. The expression of tµ follows easily from the definition
of Ωtt′ and tµ � t, since t <

∣∣θ1 − Q1
K

∣∣.
Let us remark that J = I − t and 0 � θ > −J .
Now, given ρ > 0, we shall say that a ∈ Aρ if a =

∑
j�0 λ

−j aj with

(7.25) sup
Ωtt′
|aj | � fj(a)jj t−j t′−2j

where fj(a) is the best constant for which such an estimate holds and

(7.26)
+∞∑
j=0

fj(a)ρj = ‖a‖ρ < +∞ .

Claim 3. — One can find a positive constant C such that for all ρ > 0 and a ∈ Aρ

(7.27) ‖Ba‖ρ � Cρ‖a‖ρ .
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Proof. — We shall prove (7.27) when B = ∂−1
θ λ−1 s2(θ)∆ey and B = ∂−1

θ λ−1∂2es , the
other terms are easier to handle. In the first case we have

Ba =
∑
j�0

λ−j−1 ∂−1
θ s2(θ)∆ey aj

=
∑
j�1

λ−j θ

∫ 1

0

s2(µθ, · · · )∆ey aj−1(µθ, · · · )dµ =
∑
j�1

bj .

Then

sup
Ωtt′
|bj | � |θ|

∫ 1

0

sup
Ωtµt′

|s2∆ey aj−1|dµ, j � 1 .

Now, in Ωtµt′ , we have 1 − 2ατθ(Re s̃)3 > 2|ατ |(Re s̃)3 tµ � C0 tµ. It follows from
(7.10) that supΩtµt′

|s2| � C1 t
−2
µ .

Let t′0 < t′ ; then by the Cauchy formula we have

sup
Ωtµt′

|∆ey aj−1| � C2(t′ − t0)−2 sup
Ωtµt′0

|aj−1| .

Using (7.25) we get

sup
Ωtt′
|bj | � C3|θ|fj−1(a)(j − 1)j−1(t′ − t′0)

−2 t′−2j+20

∫ 1

0

t−2µ t−j+1
µ dµ.

Since tµ = I − Jµ, we have∫ 1

0

t−j−1
µ dµ =

(I − J)−j

jJ
− I−j

jJ
� t−j

jJ
,

since I − J = t and I � 0.
Let us take t′0 =

√
j/(j + 1) t′, for j � 0. Then, t′ − t′0 � t′/2(j + 1), so we get

sup
Ωtt′
|bj | � C3|θ|fj−1(a)(j − 1)j−1 4(j + 1)2

( j + 1
j

)j−1
t′−2j

1
jJ

t−j .

Since
|θ|
J

� 1 and(j − 1)j−1(j + 1)2
(j + 1

j

)j−1 1
j

� C0 j
j ,

where C0 is an absolute constant we obtain

sup
Ωtt′
|bj | � C4 fj−1(a)jj t′−2j t−j .

It follows that fj(Ba) � C4 fj−1(a), for j � 1, which implies (7.27). In the case where
B = ∂−1

θ λ−1∂2es , we take t0 < tµ. Then

sup
Ωtµt′

|∂2es aj−1| < C5(tµ − t0)−2 sup
Ωt0t′

|aj−1| .

If we take t0 = j
j+1 tµ then tµ − t0 =

tµ

j+1 . It follows that

sup
Ωtt′
|bj| � C6 |θ|fj−1(a)(j − 1)j−1(j + 1)2 t′−2j+2

∫ 1

0

t−2µ t−j+1
µ dµ.
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We obtain the same estimate as before (since t′−2j+2 � ε2y t
′−2j) and we conclude in

the same way.

It follows from (7.27) that (I + B) is invertible in Aρ, if ρ is small enough. Now
we can take t′ = 1

2 εy and t = Q1/K in the definition of Ωtt′ . Moreover we take
λ−1 = h2k. Since Q1 > KH we have t−1 � H−1 ; therefore the aj ’s satisfy the
estimates |aj | � M j jjH−j on Ωtt′ . The analytic symbols that we shall handle will
be on the form

a =
∑

j<δH/h2k

(h2k)j aj

where δ is a small positive constant. Then the size of the first term which has been
neglected is as follows : if j0 ∼ δH/h2k then,

|(h2k)j0 aj0 | �
(
h2kMj0

1
H

)j0
� (δM)j0 � e−γH/h2k � e−γ/hk

since H � h, where γ > 0 if δM < 1.
Summing up we have obtained an analytic symbol in a set which is slightly smaller

than ∆ but has the same form. For convenience we shall still call it ∆. Then, if we
denote by Φ the map

(θ, s̃, ỹ) �−→
(
θ; s(θ; s̃, ỹ, α, h), y(θ; s̃, ỹ, α, h)

)
then the symbol a(θ; s, y, α, h) is well defined in E1 = Φ(∆) ⊂ E.

7.4. End of the proof of Theorem 4.8

We introduce a cut-off function χ = χ(h, s, y) supported in E1 = Φ(∆) such that,
with Q = 1− 2ατ (Re s̃)3 θ,

χ ◦ Φ = 1 if Q � 2KH and |s̃− αs|+ |ỹ − αy| �
ε0

C1K

χ ◦ Φ = 0 if Q � 1
2
KH or |s̃− αs|+ |ỹ − αy| �

ε0
C2K

where ε0 is the constant appearing in the Definition B in the Appendix and C2 < C1
are constants (independent of K) which depend only on the data. Then the support
of a derivative of χ is contained in the image by Φ of the set W1 ∪W2, where

(7.28)


W1 =

{
(θ, s̃, ỹ) :

ε0
C1K

� |s̃− αs|+ |ỹ − αy| �
ε0

C2K
, Q � 1

2
KH

}
,

W2 =
{
(θ, s̃, ỹ) :

1
2
KH � Q � 2KH, |s̃− αs|+ |ỹ − αy| �

ε0
C2K

}
.

Let ϕ, a be the phase and the amplitude which satisfy (7.22) and u be a solution of
our Schrödinger equation. We set
(7.29)

T u(θ; t, α, h, k) =
∫

eih
−2k−1ϕ(θ;ρ/h,y,h)a

(
θ;

ρ

h
, y, α, h

)
χ
(
θ;

ρ

h
, y
)
u(t, ρ, y)dρdy .
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Using (7.22) and the equation satisfied by u, we see easily that

(∂θ − k∂t)T u(θ; t, α, h, k) = F (θ; t, α, h, k) +G(θ; t, α, h, k)

where

(7.30) |G(θ; t, α, h, k)| � Ce−δ/hk , δ > 0

for θ in suppχ, |t− t0| � ε, α ∈ Iα, h ∈ Ih, k > 0 small and F is a finite sum of terms
of the form

(7.31)
∫

eih
−2k−1ϕ(θ;ρ/h,y,α,h)a

(
θ;

ρ

h
, y, α, h, k

)
χ̃
(
θ;

ρ

h
, y
)
v(t, ρ, y)dρdy

where χ̃ is a derivative of χ of order � 1 and v is a derivative of u of order � 1. Then,

(7.32) supp χ̃ ⊂ suppχ′ ⊂W1 ∪W2 .

It follows that
d

dθ

(
T u(θ; t− kθ, α, h, k)

)
= F (θ; t− kθ, α, h, k) +O(e−δ/hk) .

We take θ0 < 0 such that χ
(
θ0; ρ/h, y

)
≡ 0 and we integrate both sides of the

above equality from θ = θ0 to θ = 0. Since ϕ
(
0; ρ/h, y, α, h

)
is a FBI phase at(

s0, y0,
(
− 1/s30, 0

)
, α0, 0

)
, Theorem 4.8 will be proved if we can show that

I =
∫ 0

θ0

∫
eih

−2k−1ϕ(θ;ρ/h,y,α,h)a
(
θ;

ρ

h
, · · ·

)
χ̃
(
θ;

ρ

h
, y
)
v(t− kθ; ρ, y)dρdydθ(7.33)

= O(e−δ/hk) , δ > 0 ,

uniformly in t when |t − t0| � ε and for α ∈ Iα, h ∈ Ih, k > 0 small. Since
supp χ̃ ⊂W1 ∪W2 we divide the proof of (7.33) into two cases.

Case 1. — We consider the part of the integral where
(
θ, ρ/h, y

)
∈ W2 (this is the

hard case). We set

(7.34)


h̃ =

h

H
, k̃ = Hk, s =

ρ

h̃

ψ(θ; s, y, α, h) =
1
H
ϕ
(
θ;

s

H
, y, α, h

)
.

We obtain

I1 = h̃

∫∫
W2

ei
eh−2ek−1ψ(θ;s,y,α,h)a

(
θ;

s

H
, y, α, h, k

)
χ̃
(
θ;

s

H
, y
)
v(t− kθ; h̃s, y)dsdydθ .

If
(
θ, s/H, y) ∈ W2 then one can find (θ1, s̃1) ∈ D1 (see Theorem 7.1) such that

|θ − θ1| �
1
K ′ Q1,

∣∣∣ s
H
− s̃1
Q1

∣∣∣ � 1
K ′ ·

1
Q1

where Q1 = 1 − 2ατ s̃
3
1 θ1 (see (7.14)). Let (θ, s̃, ỹ) ∈ ∆ satisfying Φ(θ, s̃, ỹ) =(

θ, s/H, y
)
. Then Q1 = 1− 2ατ (Re s̃)3 Re θ +O

(
1
K + δ0

)
Q1. Therefore

1
2
KH +O

( 1
K

+ δ0

)
Q1 � Q1 � 2KH +O

( 1
K

+ δ0

)
Q1
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so, if 1
K + δ0 is small enough,

(7.35)
1
4
KH � Q1 � 3KH .

It follows that

|s| �
∣∣∣s− s̃1

Q1
H
∣∣∣+ ∣∣∣s̃1 H

Q1

∣∣∣ � H

K ′Q1
+ |s̃1|

H

Q1
�
( 1
K ′ + |s̃1|

) 3
K
.

This shows that |s| is small if K is large enough. Our goal is to apply Theorem A.14 in
the Appendix. Therefore we have to show that ψ is a phase satisfying the conditions
of Definition A.4 in the Appendix.

Let us check that Imψ � 0, when the variables are real. Since ϕ satisfies (7.2) and
p is a real quadratic form in (λ, µ), we see easily that Imϕ is the solution of a linear
vector field which is transverse to the hypersurface θ = 0. Since Imϕ|θ=0 � 0, the
positivity propagates as long as ϕ exists.

The second point is to check condition 3) and, first of all to find the point ξ0.
Let us recall that, according to Lemma 3.4 and Corollary 3.6, if (ρ, y, 0, (λ, µ))

is a point such that ρ + |µ| � ε0, (ρ, y) �= (0, y0) which satisfies y0 = y +
ρF1(ρ, y, µ) + µF2(ρ, y, µ) and λ is the unique negative solution of p(ρ, y, λ, µ) = 1,
then (ρ, y, 0, (λ, µ)) belongs to Ṅ−1

+∞(m0). Moreover µ = µ(ρ, y), λ = λ(ρ, y).
We fix (h̃1, s1, y1) in [0, 1[×R+×Rn−1 and we consider the following neighborhood

of this point

(7.36) Vr =
{
(h̃, s, y) ∈ [0, 1[× C× C

n−1 : |h̃− h̃1|+
∣∣∣ 1
s2
− 1
s21

∣∣∣+ |y − y1| < r
}

where r is to be chosen. We also assume that H= h+ |αη| < r. Then we set

(7.37)


λ1 = λ(h̃1 s1, y1) , µ1 = µ(h̃1 s1, y1) and

ξ0 =
(λ1
s31

,
µ1
s21

)
.

Proposition 7.8. — If r is small enough, we have for all (h̃, s, y) in Vr,

(7.38)
∣∣∣∂ψ
∂s

(θ; s, y)− λ1
s31

∣∣∣+ ∣∣∣∂ψ
∂y

(θ; s, y)− µ1
s21

∣∣∣ � ε0

where ε0 is the constant appearing in Definition A.4 in the Appendix.

Proof. — From the definition of ψ we have, (see (7.13) and (7.15)),

∂ψ

∂s
(θ, s, y) =

1
H2

τ(θ; s̃, ỹ, α, h) ,
∂ψ

∂y
(θ; s, y) =

1
H
η(θ; s̃, ỹ, α, h)

where Φ(θ; s̃, ỹ) =
(
θ, s/H, y

)
that is s(θ; s̃, ỹ, α, h) = s/H and y(θ; s̃, ỹ, α, h) = y.
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Lemma 7.9. — Let (s̃′, ỹ′) be the solution, which is real, of s(θ; s̃′, ỹ′, ατ , αη, h) =
s

H
(= s(θ; s̃, ỹ, α, h)) , |s| ∼ c

K
,

y(θ; s̃′, ỹ′, ατ , αη, h) = y (= y(· · · )) .

Then

(i)


|s̃− s̃′| � Ch(|s̃− αs|+ |ỹ − αy|)

|ỹ − ỹ′| � C
h̃

K
(|s̃− αs|+ |ỹ − αy|)

(ii) |g(θ; s̃, ỹ, α, h)− g(θ; s̃′, ỹ′, ατ , αη, h)| � C h̃(|s̃− αs|+ |ỹ − αy|) ,

where g = 1
H2 τ or 1

H η, g = 1
H2 τ or 1

H η.

Proof. — By the proof of Proposition 7.4 (see (7.17)) for fixed θ the solution (s̃′, ỹ′)
(resp. (s̃, ỹ)) exists and (θ, s̃′, ỹ′) (resp. (θ, s̃, ỹ)) belongs to ∆ (see (7.14)). This
means that |s̃′ − s̃1| < δ0Q1, |ỹ′ − y0| < εy, |s̃− s̃1| < δ0Q1, |ỹ − y0| < εy. It follows
that |s̃− s̃′| < 2δ0Q1 and |ỹ − ỹ′| < 2εy.

Now for t in [0, 1] let us set

Mt = t(s̃, ỹ) + (1 − t)(s̃′, ỹ′) = (s̃t, ỹt) .

With the notations of Proposition 7.2 we have

1− 2ατ s̃
3
t θ + s̃tF (θ;Mt, α, h) = 1− 2ατ s̃

3
1 θ +O

(
|s̃− s̃1|+ |s̃′ − s̃1|+

Q1
K2

)
.

It follows then that we have∣∣1− 2ατ s̃
3
t θ + s̃tF (θ;Mt, α, h)

∣∣ � C1Q1 .

Let us set

a =
∂s

∂s̃
(θ; s̃, ỹ, τ̃ , η̃, h) , uj =

∂s(θ)
∂ỹj

, vj =
∂yj(θ)
∂s̃

, 1 � j � n,

D =
(∂yj(θ)

∂ỹk

)
1�j,k�n−1

, U = (uj) , V = (vj) .

Then Corollary 7.3 shows that,

C1
Q21

� |a| � C2
Q21

, |uj | �
C

K2Q1
, |vj | �

C

Q1
, D = Id+O

( 1
K

)
.

Moreover

∂s(θ)
∂τ̃

= O
( 1
Q21

)
,
∂s(θ)
∂η̃

= O
( 1
KQ21

)
,
∂y(θ)
∂τ̃

= O
( 1
Q1

)
and

∂y(θ)
∂η̃

= O
( 1
Q1

)
.
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Using the formula (7.10)′ we obtain∣∣∣∂2s
∂s̃2

(θ,Mt, α, h)
∣∣∣ � C

Q31
,

∣∣∣ ∂2s
∂s̃∂ỹ

(θ,Mt, α, h)
∣∣∣ � C

KQ21∣∣∣∂2s
∂ỹ2

(θ,Mt, α, h)
∣∣∣ � C

KQ1
,

∣∣∣∂2y
∂s̃2

∣∣∣ � C

KQ21∣∣∣ ∂2y
∂s̃∂ỹ

(θ,Mt, α, h)
∣∣∣ � C

KQ1
,

∣∣∣∂2y
∂ỹ2

∣∣∣ � C

K
.

By the Taylor formula with integral remainder we get(
s

y

)
(θ, s̃, ỹ, α, h) =

(
s

y

)(
θ, s̃, ỹ, ατ + 2ih(s̃− αs), αη + 2ih(ỹ − αy), α, h

)
=
(
s

y

)
(θ, s̃, ỹ, ατ , αη, h) +

(
Y1
Y ′

)
where

|Y1| �
Ch

Q21

(
|s̃− αs|+ |ỹ − αy|

)
, |Y ′| � Ch

Q1

(
|s̃− αs|+ |ỹ − αy|

)
.

Let us set B = |s̃− s̃′|+Q1 |ỹ − ỹ′|. Then we have B � C(δ0 + εy)Q1.
Now, using the Taylor formula up to the second order and the above estimates on

the second derivatives of s, y, we get(
s

y

)
(θ, s̃, ỹ, α, h)−

(
s

y

)
(θ, s̃′, ỹ′, α, h) =

(
a U

V D

)(
s̃− s̃′

ỹ − ỹ′

)
+

O(B2/Q31

)
O
(
B2/Q21

) .

We deduce from the above computations and the hypotheses in the Lemma 7.9 that,(
0
0

)
=
(
s

y

)
(θ, s̃, ỹ, α, h)−

(
s

y

)
(θ, s̃′, ỹ′, α, h)

=
(
a U

V D

)(
s̃− s̃′

ỹ − ỹ′

)
+

O(B2/Q31

)
O
(
B2/Q21

)+
(
Y1
Y ′

)
.

Let us set M = (mjk) =
(
1
a vj uk

)
; then |mjk| � C/K2. It follows that D −M is

invertible and (D −M)−1 = I +O
(
1/K

)
. Then we have

ỹ − ỹ′ = (D −M)−1
(
− 1
a
Y1V + Y ′

)
+O

(B2

Q21

)
s̃− s̃′ =

1
a
Y1 −

1
a
U · (ỹ − ỹ′) +O

(B2

Q1

)
.

This implies that

B � Ch
(
|s̃− αs|+ |ỹ − αy|

)
+ C

B2

Q1
.

Now B/Q1 � C(δ0 + εy) ; it follows that B � C′h(|s̃−αs|+ |ỹ−αy|) since δ0+ εy is
small enough, which proves the first part of the lemma, since Q1 � KH and h̃ = h/H.
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Since s(θ) = s/H = s(θ), with |s| ∼ C/K, we have∣∣∣ 1
H2

τ(θ) − 1
H2

τ(θ)
∣∣∣ = 1

s2
|τ s2(θ)− τs2(θ)| = (1) .

Now, by (7.8), (τ s2)(θ) = τ̃ s̃2+ f and (τ s̃2)(θ) = ατ s̃
′2 + f where |f |+ |f | � C/K2.

It follows that

(1) � CK2h(|s̃− αs|+ |ỹ − αy|) +
1
s2
|f(θ)− f(θ)|.

On the other hand,
∂f

∂s̃
= O

( 1
K2Q1

)
,

∂f

∂ỹ
= O

( 1
K2

)
,

∂f

∂τ̃
= O

( 1
KQ1

)
and

∂f

∂η̃
= O

( 1
KQ1

)
.

Then using Taylor’s formula and the part (i) of the lemma we obtain

(1) � C h̃(|s̃− αs|+ |ỹ − αy|),
if K2H is bounded, and (ii) follows. The same argument applies to 1

H η.

Let us now prove (7.38). Using the notations of Lemma 7.9, we write
∂ψ

∂s
− λ1

s31
=

1
H2

τ (θ)− 1
H2

τ(θ)︸ ︷︷ ︸
(1)

+
( 1
s2
− 1
s21

)
τs2︸ ︷︷ ︸

(2)

+
1
s21

(
τs2 − λ1

s1

)
︸ ︷︷ ︸

(3)

.

The term (1) is bounded by C h̃δ2 ε0 � 1
3 ε0, by Lemma 7.9. Since τs2 is bounded, we

have |(2)| � C r � 1
3 ε0. Let us look to (3).

In that follows we shall write (s̃, ỹ) instead of (s̃′, ỹ′). Let us set

(7.39)



ρ∗ = hs(θ; s̃, ỹ, ατ , αη, h)

y∗ = y(θ; · · · )

λ∗ =
1
R
(τs2)(θ; · · · )

µ∗ =
1
R
(sη)(θ; · · · )

where R = p(hs̃, ỹ, ατ s̃
2, αη s̃) �= 0.

Let us set m∗ = (ρ∗, y∗, 0, (λ∗, µ∗)). It follows from Proposition 7.7 that one can
find T ∗ > 0 such that

expT ∗σH∆(m∗) =
(
hs̃, ỹ, 0,

( 1
R
ατ s̃

2,
1
R
s̃αη

))
.

Therefore, if h+ |αη| is small enough, Lemma 3.4 shows that

lim
t→+∞

exp tσH∆(m∗) = lim
t→+∞

exp tσH∆(hs̃, ỹ, · · · ) = (0, y, 0, (−1, 0))

where |y − ỹ| � C1H .
Then Corollary 3.5 shows that d(m∗, N−1

+∞(m0)) � C2H . This means that one can
find (ρ2, y2, 0, (λ2, µ2)) ∈ N−1

+∞(m0) such that

|ρ∗ − ρ2|+ |y∗ − y2|+ |λ∗ − λ2|+ |µ∗ − µ2| � C2H .
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It follows that

|λ∗ − λ(ρ∗, y∗)|+ |µ∗ − µ(ρ∗, y∗)|
� |λ∗ − λ2|+ |λ2 − λ(ρ∗, y∗)|+ |µ∗ − µ2|+ |µ2 − µ(ρ∗, y∗)|

� 2C2H + C3(|ρ2 − ρ∗|+ |y2 − y∗2 |) � C4H

because λ2 = λ(ρ2, y2), µ2 = µ(ρ2, y2) where λ and µ are holomorphic functions.
Therefore we have

|λ∗ − λ1|+ |µ∗ − µ1| � |λ∗ − λ(ρ∗, y∗)|
+ |µ∗ − µ(ρ∗, y∗)|+ |λ(ρ∗, y∗)− λ(ρ1, y1)|+ |µ(ρ∗, y∗)− µ(ρ1, y1)|

� CH + C(|ρ∗ − ρ1|+ |y∗ − y1|) � CH .

Now R2 = s̃4α2τ + s̃2α2η +O(h) = 1/s21 +O(H). Then∣∣∣Rλ∗ − λ1
s1

∣∣∣+ ∣∣∣Rµ∗ − µ1
s1

∣∣∣ � CH

which, according to (7.39) proves (7.38) and completes the proof of Proposition 7.8.

Let us now check condition 4 in the Definition A.4 in the Appendix.

Lemma 7.10. — One can find a positive constant C such that for real (θ, s, y),∣∣∣ Im ∂ψ

∂x
(θ, s, y, α, h)

∣∣∣ � ε0 h̃ , x = s or y .

Proof. — We use Lemma 7.9. The observation is that, if s/H and y are real, then
(θ, s̃′, ỹ′) is real ; this implies that τ(θ; s̃′, ỹ′, ατ , αη, h) is real. Now

∂ψ

∂s
(θ, s, y, α, h) =

1
H2

τ(θ) =
1
H2

τ(θ) +
1
H2

(τ(θ) − τ(θ)) .

So
∣∣ Im ∂ψ/∂s

∣∣ � 1
H2 |τ (θ)− τ(θ)| � C h̃δ2 ε0 � ε0, by Lemma 7.9, since h̃ � 1, taking

Cδ2 � 1. The same argument works for Im ∂ψ/∂y.

The condition 5) in Definition A.4 follows from the holomorphy of ψ, so we are left
with condition 6) which is

(7.40) (Imψ′′)(θ, s, y) � −ε0 h̃ , for real (θ, s, y) .

Let us recall that we have set  s(θ; s̃, ỹ, α, h) =
s

H

y(θ; s̃, ỹ, α, h) = y .

Then, if we set

a = H
∂s

∂s̃
, bj =

∂y
j

∂s̃
, γk = H

∂s

∂ỹk
, D =

(∂y
j

∂ỹk

)
,
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we have
C′

K2H
� |a| � C

K2H
, |bj| �

C

K2H
, |γk| �

C

K3
, D = I +O

( 1
K

)
.

Let us recall (see (7.10)) that 1/s(θ) = 1/s̃−2 τ̃ s̃2 θ+F , where τ̃ = ατ+2ih(s̃−αs)
and F = O

(
Q1/K

2
)
. It follows that

∂s(θ)
∂s̃

=
1 + 4 τ̃ s̃3 θ + 4ihs̃4 θ − s̃2 ∂F

∂es
(1− 2 τ̃ s̃3 θ + s̃F )2

=
U

V
.

From the Cauchy formula, integrating on a ball |s̃− ζ| = δQ1, we see that∣∣∣∂F (θ)
∂s̃

∣∣∣ � C
Q1
K2
· 1
δQ1

= O
( 1
K2

)2
.

Now, since 4 τ̃ s̃3 θ is close to 4ατ s
3
0 Re θ which is non negative, we deduce that

|U | is bounded above and below by strictly positive constants. On the other hand
we can write 2 τ̃ s̃3 θ + s̃F = Q1 + O

(
1
K + δ0

)
Q1 + O(h). Since h � H < Q1/K

(see (7.1)) we deduce that |V | is bounded above and below by CQ21. Since, by
(7.35), Q1 is equivalent to KH we deduce that H∂s(θ)/∂s̃ is uniformly equivalent to
H/K2H2 = 1/K2H , which is our first claim. For the estimate on bj, we use the fact
that y

j
(θ) = ỹj +Gj(θ), where Gj = O

(
1/K

)
. By the argument used above we get,∣∣∣∂Gj

∂s̃

∣∣∣ � C

K
· 1
δQ1

=
C

δ

1
K2H

.

The other estimates follow also from the expressions of s(θ), y(θ) and the Cauchy
formula on a ball |ỹj − ζ| = ε. It follows that

bj
a

= O(1) , γk
a

= O
(H
K

)
, mjk =

bjγk
a

= O
( 1
K3

)
.

We set M = (mjk), then (D −M)−1 = Id+O
(
1/K

)
and

(7.41)


∂

∂s
=

1
a

(
1 +

b

a
(D −M)−1γ

) ∂

∂s̃
− b

a
(D −M)−1

∂

∂ỹ

∂

∂y
= (D −M)−1

[ ∂
∂ỹ
− γ

a

∂

∂s̃

]
.

Let us recall that we have
∂ψ

∂y
=

1
H
η(θ; s̃, ỹ, α, h)

and, by (7.3),

η̇(t) = −∂p
∂y

(hs(t), y(t), τ s2(t), sη(t))

with η(0) = η̃ = αη + 2ih(ỹ − αy). It follows that, with h̃ = h/H ,

∂2ψ

∂y2
= (D −M)−1

(
2ih̃ Id+

1
H

∫ 0

θ

( ∂

∂ỹ
− γ

a

∂

∂s̃

)[∂p
∂y

(· · · )
]
dσ

)
.
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We claim that, with A = |Re s̃− αs|+ |Re ỹ − αy|, we have

(7.42) Im
∂2ψ

∂y2
= 2h̃ Id+

h̃

K
O
( 1
K

+A
)
.

This will be achieved if we prove that

(7.43) Im
∫ 0

θ

( ∂

∂ỹ
− γ

a

∂

∂s̃

)[∂p
∂y

(· · · )
]
dσ = O

( h

K2
+
hA

K

)
since (D −M)−1 = Id+O

(
1/K

)
.

Now p = λ2 +
∑

hjk(y)µj µk + ρr, where r = ρ2 r0(ρ, y)λ2 + ρr1(ρ, y)λµ and it
will be clear from the method that the term ρr can be handled in the same manner.
Therefore let us assume that p = λ2 + f(y)µ2. Then ∂p/∂y = f1(y)µ2 and( ∂

∂ỹ
− γ

a

∂

∂s̃

)[∂p
∂y

(hs(σ), y(σ), τ s2, sη)
]
= s2 η2 · f2(y) ·

(∂y
∂ỹ
− γ

a

∂y

∂s̃

)
(7.43)′

+2f1(y)η2 s
(∂s
∂ỹ
− γ

a

∂s

∂s̃

)
+ 2f1(y)s2 η

(∂η
∂ỹ
− γ

a

∂η

∂s̃

)
= (1) + (2) + (3)

where fj, j= 1, 2 are smooth function which are real if y is real.
We recall that, if f = s, y, τ, η, we have

f(σ; s̃, ỹ, α, h) = f
(
σ; s̃, ỹ, ατ + 2ih(s̃− αs), αη + 2ih(ỹ − αy), h

)
.

Lemma 7.11. — With the notations of (7.28) and Lemma 7.9, let (θ, s̃, ỹ) ∈ W2.
Then, for σ ∈ [θ, 0] we have the following estimates.

(7.44)



|s(σ)− s(Σ)| � ChAu20 , |y(σ)− y(Σ)| � C
hA

KH
,

|η(σ)− η(Σ)| � ChA, |s(σ)|+ |s(Σ)| � Cu0 ,∣∣∣ ∂
∂s̃

(s)(σ) − ∂s

∂s̃
(Σ)

∣∣∣ � Chu20

(
1 +

A

KH

)
,∣∣∣ ∂

∂ỹ
(s)(σ) − ∂s

∂ỹ
(Σ)

∣∣∣ � C
h

K
u20 ,∣∣∣ ∂

∂s̃
(y)(σ) − ∂y

∂s̃
(Σ)

∣∣∣ � C
( h

K2H
+

hA

K2H2

)
,∣∣∣∂y(σ)

∂ỹ
− ∂y

∂ỹ
(Σ)

∣∣∣ � C
h

KH
,∣∣∣ ∂

∂s̃
(η)(σ) − ∂η

∂s̃
(Σ)

∣∣∣ � C
(
h+

hA

KH

)
,∣∣∣ ∂

∂ỹ
(η)(σ) − ∂η

∂ỹ
(Σ)

∣∣∣ � Ch.

where Σ = (σ; Re s̃,Re ỹ, ατ , αη, h), u0(σ) = 1/(1− 2ατ (Re s̃)3σ) and

A = |Re s̃− αs|+ |Re ỹ − αy|.
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Proof. — Since −2ατ (Re s̃)3 is positive, we have in W2 (see (7.28)),

1− 2ατ (Re s̃)3σ � 1− 2ατ (Re s̃)3 θ � Q1 � 1
2
KH .

Thus u0(σ) � 2/KH .
Moreover for any z, ζ such that z = Re s̃+O(H), ζ = Re ỹ +O(H) we have

1− 2 τ̃ z3σ + zF (σ; z, ζ, . . . ) = 1− 2ατ (Re s̃)3σ +O(H)

since τ̃ = ατ + 2ih(z − αs) and F = O(H). It follows that∣∣1− 2 τ̃ z3σ + zF (σ; z, ζ, . . . )
∣∣ � 1

2
u0(σ)

if K is large enough.
Let us recall the rule of differentiation. By the Cauchy formula applied in the set

(7.3)′, each time we differentiate a holomorphic function ψ with respect to s̃ (resp.
ỹ, τ̃ , η̃) we loose a factor which is O

(
1/Q1

)
(resp. O(1), O

(
K/Q1

)
, O

(
K/Q1

)
) with

respect to ψ. Note that Q1 ∼ KH by (7.35). Recall now that,

s(σ; s̃, ỹ, τ̃ , η̃, h) =
s̃

1− 2 τ̃ s̃3σ + s̃F (σ)
,

where F = O
(
H/K

)
(see (7.10)). By the above rule, we get

∂F

∂s̃
= O

( 1
K2

)
,
∂F

∂ỹ
= O

(H
K

)
,
∂F

∂x
= O

( 1
K

)
if x = τ̃ or η̃ ,

∂2F

∂s̃2
= O

( 1
K3H

)
,

∂2F

∂s̃∂ỹ
= O

( 1
K2

)
,

∂2F

∂s̃∂x
= O

( 1
KH

)
,

∂2F

∂ỹ2
= O

(H
K

)
,

∂2F

∂ỹ∂x
= O

( 1
K

)
, etc.

Using the explicit expression of s(σ) given above we obtain the following estimates.

∂s(σ)
∂s̃

= O(u20) ,
∂s(σ)
∂ỹ

= O
(H
K
u20

)
,
∂s(σ)
∂τ̃

= O(u20) ,
∂s(σ)
∂η̃

= O
( 1
K
u20

)
,

∂2s(σ)
∂s̃2

= O
( 1
KH

u20

)
,
∂2s(σ)
∂s̃∂ỹ

= O
( 1
K2

u20

)
,
∂2s(σ)
∂s̃∂x

= O
( 1
KH

u20

)
,

∂2s(σ)
∂ỹ2

= O
(H
K
u20

)
,
∂2s(σ)
∂ỹ∂x

= O
( 1
K
u20

)
,

where we have used the estimate u0(σ) � 1/KH .
Finally let us remark that, according to Lemma 7.9 we have,

| Im s̃| � ChA, | Im ỹ| � ChA

HK
, h

(
|s̃− αs|+ |ỹ − αy|

)
� ChA.

Let us now prove the estimates on s in (7.44)

s(σ)− s(Σ) = s(σ; s̃, ỹ, ατ + 2ih(s̃− αs), αη + 2ih(ỹ − αy), h)

− s(σ; Re s̃,Re ỹ, ατ , αη, h) .
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Thus, the first estimate in (7.44) follows from the Taylor formula and the above
bounds on the derivatives of s.

Consider now (∗) = ∂
∂es (s)(σ) −

∂s
∂es (Σ). We have

(∗) = ∂s

∂s̃

(
σ; s̃, ỹ, ατ + 2ih(s̃− αs), . . .

)
− ∂s

∂s̃
(σ; Re s̃,Re ỹ, . . . )

+ 2ih
∂s

∂τ̃

(
σ; s̃, ỹ, ατ + 2ih(s̃− αs), . . .

)
.

The last term in the right hand side is bounded by hu20. Then

Im s̃ · ∂
2s

∂s̃2
= O

( hA

KH
u20

)
, Im ỹ

∂2s

∂s̃∂ỹ
= O

( hA

KH
· 1
K2

u20

)
,

2ih(x∗ − αs)
∂2s

∂s̃∂x
= O

(
hA · 1

KH
u20

)
, x = τ̃ or η̃, x∗ = s̃ or ỹ.

This proves the claimed bound for (∗).
Let us consider now (∗∗) = ∂

∂ey (s)(σ)−
∂s
∂ey (Σ). We have the term 2ih∂s/∂η̃ which

is O(hu20). Moreover

Im s̃
∂2s

∂s̃∂ỹ
= O

(
hA

1
K2

u20

)
, Im ỹ

∂2s

∂ỹ2
= O

( hA

KH

H

K
u20

)
= O

(hA
K2

u20

)
,

h(s̃− αs)
∂2s

∂ỹ ∂τ̃
= O

(
hA

1
K
u20

)
.

This proves the bound for (∗∗).
For the bounds concerning y(σ) and η(σ), we use the fact that we have,

y(σ) = ỹ +O
( 1
K

)
, η(σ) = η̃ +O(H).

Details are left to the reader.

It follows from these estimates that (see (7.43)′)

(1) = real term +O
(
hHAu20 +

hH

K
u20

)
.

Indeed we have, with Σ = (σ; Re s̃,Re ỹ, ατ , αη, h)

(1) = s2(σ)η2(σ)f2(y(σ))
(∂y(σ)

∂ỹ
− γ(σ)
a(σ)

∂y(σ)
∂s̃

)
.

So we can write

(1) = s2(Σ)η2(Σ)f2(y(Σ))
(∂y
∂ỹ

(Σ)− γ(Σ)
a(Σ)

∂y

∂s̃
(Σ)

)
+R

where the first term in the right hand side is real. Moreover R is a finite sum of Rj ,
j = 1, . . . , 6, which we consider now. We have,

R1 = (s2(σ)− s2(Σ))η2(σ)f2(y(σ))
(∂y(σ)

∂ỹ
− γ(σ)
a(σ)

∂y(σ)
∂s̃

)
.
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By Lemma 7.11 we have |s2(σ)−s2(Σ)| � ChAu30 ; moreover η2(σ)f2(y(σ)) is O(H2),

∂y

∂ỹ
= O(1),

γ

a
= O

(H
K

)
(see after (7.40)) and

∂y

∂s̃
= O

( 1
KH

)
.

It follows that
R1 = O(hH2Au30) = O

(hHA

K
u20

)
since u0 = O

(
1/KH

)
.

R2 = s2(Σ)(η2(σ)− η2(Σ))f2(· · · )
(∂y
∂ỹ
− γ

a

∂y

∂s̃

)
.

We have |s2(Σ)| � Cu20, |η2(σ) − η2(Σ)| � ChHA. Therefore we get, R2 =
O(hHAu20). Now R3 = s2(Σ)η2(Σ)[f2(y(σ)) − f2(y(Σ))(· · · )]. We have

|f2(y(σ)) − f2(y(Σ))| � C |y(σ)− y(Σ)| � C
hA

KH
.

It follows that
R3 = O

(
u20H

2 hA

KH

)
= O

(hHA

K
u20

)
.

Now

R4 = s2(Σ)η2(Σ)f2(y(Σ))
(∂y
∂ỹ

(σ) − ∂y

∂ỹ
(Σ)

)
= O

(
u20H

2 h

KH

)
= O

(hH
K

u20

)
.

Then

R5 = s2(Σ)η2(Σ)f2(y(Σ))
(γ
a
(σ)− γ

a
(Σ)

) ∂y
∂s̃

(σ) .

Recall that a = H∂s/∂s̃ and γ = H∂s/∂ỹ. It follows that

γ

a
(σ)− γ

a
(Σ) =

1
∂s
∂es(σ) ·

∂s
∂es (Σ)

[
∂s

∂ỹ
(σ)

(∂s
∂s̃

(Σ)− ∂s

∂s̃
(σ)

)
+
∂s

∂s̃
(σ)

( ∂s
∂ỹ

(σ)− ∂s

∂ỹ
(Σ)

)]
.

The denominator is bounded below by Cu40 and from Lemma 7.11, the numerator
can be estimated by

C
(H
K
u20 ·

(
hu20 +

hA

KH
u20

)
+ u20 ·

h

K
u20

)
� C′ h

K
u40.

It follows that
R5 = O

(
H2u20

h

K

) 1
KH

= O
(hH
K2

u20

)
.

Finally

R6 = s2(Σ)η2(Σ)f2(y(Σ))
γ

a
(Σ)

(∂y(σ)
∂s̃

− ∂y

∂s̃
(Σ)

)
can be estimated by

u20H
2 · H

K

( h

K2H
+

hA

K2H2

)
= O

(hH2

K3
u20 +

hHA

K3
u20

)
.

Summing up we get

R =
6∑

j=1

Rj = O
(
hHAu20 +

hH

K
u20

)
.
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Since ∣∣∣ ∫ 0

θ

up0(σ)dσ
∣∣∣ � C

(KH)p−1
if p � 2 ,

we obtain

(7.45) Im
∫ 0

θ

(1)dσ = O
(hA
K

+
h

K2

)
.

The other terms can be handled in the same manner, using the above estimates. This
proves (7.42).

Our next claim is

(7.46) Im
∂2ψ

∂s∂yj
= −2h̃ Re

bj
a

+ h̃O
( 1
K

+A
)
.

Since
∂ψ

∂yj
=

1
H

(αj
η + 2ih(ỹj − αj

y)) +
1
H

∫ 0

θ

∂p

∂yj
(hs(σ), y(σ), . . . )dσ

and, by (7.41),
∂

∂s
= − b

a
· ∂
∂ỹ

+O
( 1
K

)
· ∂
∂ỹ

+
1
a

(
1 +

b

a
(D −M)−1γ

) ∂

∂s̃
,

we can write,

∂2ψ

∂s∂yj
= −2i h̃ bj

a

(
1 +O

( 1
K

))
+

1
H

∂

∂s

(∫ 0

θ

∂p

∂yj
(hs(σ), y(σ), . . . )dσ

)
.

Thus (7.46) will follow from,

Im
∫ 0

θ

[
1
a

(
1 +

b

a
(D −M)−1γ

) ∂

∂s̃
− b

a
(D −M)−1

∂

∂ỹ

](∂p
∂y

(hs(σ), · · · )
)
dσ(7.47)

= hO
( 1
K

+A
)
.

Since b/a = O(1), the estimate of

Im
∫ 0

θ

b

a
(D −M)−1

∂

∂ỹ

(∂p
∂y

)
dσ

has been obtained in the proof of the preceding case. On the other hand we have
b

a
(D −M)−1γ = O

( 1
K3

)
.

Therefore the main term remaining is

Im
∫ 0

θ

1
a

∂

∂s̃

(∂p
∂y

)
dσ.

As before, we will assume that p = λ2+f(y)µ2, which implies that ∂p/∂y = f1(y)µ2.
So we are left with the estimate of

I = Im
[∫ 0

θ

1
a
f2(y)

∂y

∂s̃
s2 η2dσ +

∫ 0

θ

2
a
f1(y)s ·

∂s

∂s̃
η2dσ +

∫ 0

θ

2
a
f1(y)s2η ·

∂η

∂s̃
dσ

]
= Im

(
(1) + (2) + (3)

)
.
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Let us look to the first term. By (7.44) we have |f2(y) − f2(y)| < ChA/KH. It
follows that∣∣∣∣(1a − 1

a(real)

)
f2(y)

∂y

∂s̃
s2η2

∣∣∣∣ � CKhA · 1
K2H

H2u20 � ChHAu20 ,∣∣∣∣1a (f2(y)− f2(y))
∂y

∂s̃
s2η2

∣∣∣∣ � CK2H
h

K2H
A

1
K2H

H2u20 =
ChAH

K2
u20 ,∣∣∣∣1a f2(y)(∂y∂s̃ − ∂y

∂s̃

)
s2η2

∣∣∣∣ � CK2H
hA

K2H2
H2u20 = ChAHu20 ,∣∣∣∣1a f2(y) ∂y∂s̃ (s2 − s2)η2

∣∣∣∣ � CK2H
1

K2H
hAH2u30 = ChAH2u30 ,∣∣∣∣1a f2(y) ∂y∂s̃ s2(η2 − η2)

∣∣∣∣ � CK2H
1

K2H
ChHAu20 = ChAH2u20 .

It follows that

(1) = real term +
(
O
∫ 0

θ

hHAu20(σ)dσ
)
.

Therefore
Im(1) = O

(hA
K

)
.

The same estimates and the same method apply to the term (2) and (3). Then (7.46)
follows.

The last step in the proof of (7.40) is the following claim

(7.48) Im
∂2ψ

∂s2
= 2

(
Re

b

a

)2
h̃+O(K h̃A) .

To prove this we shall use (7.34) and Proposition 7.6 which give

ψ =
1
H

(
(s̃− αs)ατ + (ỹ − αy)αη + ih

(
(s̃− αs)2 + (ỹ − αy)2

)
+ θp(hs̃, ỹ, τ̃ s̃2, s̃ η̃)

)
where τ̃ = ατ + 2ih(s̃− αs), η̃ = αη + 2ih(ỹ − αy).

Let us recall that, by (7.41), ∂
∂s = P ∂

∂es +Q ∂
∂ey , where

P =
1
a
+

b

a
(D −M)−1γ , Q = − b

a
· (D −M)−1 .

Let us also assume, for simplicity that p = λ2 +
∑

h
jk
(y)µj µk. Then

∂ψ

∂s
=

1
H
P
(
ατ + 2ih(s̃− αs) + (4ihτ̃ s̃4 + 4τ̃2 s̃3 + s̃f1(ỹ) η̃2)θ

)
+

1
H
Q
(
αη + 2ih(ỹ − αy) +

(
s̃2 f2(ỹ) η̃2 + s̃2 ihf3(ỹ) η̃

)
θ
)
.

We write

(7.49)
∂ψ

∂s
=

1
H

(PU +QV ) .

Now we have
P =

1
a
(1 + b(D −M)−1γ) =

1
a

(
1 +O

(H
K

))
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and

a = H
∂s

∂s̃
=

1+ 4ihs̃4θ + 4τ̃ s̃3 θ − ∂F/∂s̃

s̃2
s2

H
,

since s(θ) = s/H . On the other hand,

U = τ̃ (1 + 4ihs̃4 θ + 4τ̃ s̃3 θ) +O(H2).

Since ∂F/∂s̃ = O
(
1/K2

)
we get

1
H
PU =

1
s2

(τ̃ s̃2 +R) , R = O
(
H2 +

1
K2

)
.

Moreover, using the Taylor and Cauchy formulas, we see that if R is a holomorphic
function, depending on (θ, s̃, ỹ, τ̃ , η̃), which is real on the real and bounded by L, then
| ImR| � CL h

H A.
We can now begin to estimate the second derivative of ψ. We have

∂

∂s

( 1
H
Pu

)
= − 2

s3
(τ̃ s̃2 +R)︸ ︷︷ ︸

(1)

+
1
s2

(
(2ihs̃2 + 2τ̃ s̃)P + P

∂R

∂s̃
+Q

∂R

∂ỹ

)
︸ ︷︷ ︸

(2)

.

It follows that

Im(1) = O
(
K3hA+K3

(
H2 +

1
K2

) h

H
A
)
= O(K3h · h̃A+Kh̃A) .

On the other hand

P
∂R

∂s̃
+Q

∂R

∂ỹ
= O

(
KH2 +

1
K

)
and ImP = O(KhA). Therefore we get

Im(2) = O(K3H h̃A+K h̃A) .

Then

(7.50) Im
∂

∂s

( 1
H
P U

)
= O(K3H h̃A+K h̃A) .

Let us look now to the term
∂

∂s

( 1
H
QV

)
= P

∂

∂s̃

( 1
H
QV

)
+Q

∂

∂ỹ

( 1
H
QV

)
= (1) + (2).

We have QV = O(H) so

∂

∂s̃
QV = O

( 1
K

)
and ImQV = O

( 1
K
h̃A

)
.

Since P = O(K2H) and ImP = O(KhA) we get

Im(1) = O(KH h̃A) .

On the other hand,

(2) =
1
H

∂Q

∂ỹ
V +

1
H
Q2

∂V

∂ỹ
= (3) + (4).
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The same argument shows that (3) = O(1) so Im(3) = O(h̃A). Now it is easy to see
that Im(4) = 2

(
Re b/a

)2
h̃+O(h̃A). Then

(7.51) Im
∂

∂s

( 1
H
QV

)
= 2

(
Re

b

a

)2
h̃+O(h̃A) .

It follows from (7.49), (7.50) and (7.51) that if K2H � 1, we have

(7.52) Im
∂2ψ

∂s2
= 2

(
Re

b

a

)2
h̃+O(K h̃A)

which proves (7.48).
Now, since by (7.28) A � ε0/C2K, where C2 is large, taking 1/K ' ε0, we deduce

from (7.42), (7.46) and (7.52) that (7.40) is satisfied.
Thus we may apply the Theorem A.14 in the Appendix to conclude that the part

of the integral (7.33) where
(
θ, p/h, y

)
∈W2 is O(e−δ/hk), with δ > 0.

Case 2. — Let us look now to the part of the integral where (θ, s̃, ỹ) belongs to W1

that is

Q = 1− 2ατ Re s̃3 θ � 1
2
KH ,

ε0
C1K

� |s̃− αs|+ |ỹ − αy| �
ε0

C2K
.

In this integral, (θ, s, y) is real. It follows from Lemma 7.9 ((s̃′, ỹ′, αs, αy) being real)
that

(7.53)


| Im s̃| � Ch(|Re s̃− αs|+ |Re ỹ − αy|)

| Im ỹ| � C

K
h̃(|Re s̃− αs|+ |Re ỹ − αy|) .

Let us set

(7.54) A2 = |Re s̃− αs|2 + |Re ỹ − αy|2 .

Then in W1 we have

(7.55) A � ε0
2C1K

.

Lemma 7.12. — In W1 we have

Imϕ � 1
2
h(|Re s̃− αs|2 + |Re ỹ − αy|2) .

Proof. — From Proposition 7.6, we have

ϕ(θ; s(θ), y(θ), α, h) = (s̃− αs)ατ + (ỹ − αy)αη︸ ︷︷ ︸
(1)

+ ih
[
(s̃− αs)2 + (ỹ − αy)2

]︸ ︷︷ ︸
(2)

+ θp (hs̃, ỹ, τ̃ s̃2, s̃ η̃)︸ ︷︷ ︸
(3)

.

We have
Im(2) = hA2 − h(Im s̃)2 − h(Im ỹ)2 .
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It follows from (7.53) that

(7.56) Im(2) � hA2 −O
( 1
K2

hA2 + h2A2
)
.

We have also

(7.57) Im(1) = Im s̃ατ + Im ỹ · αη .

On the other hand,

p(hs̃, ỹ, τ̃ s̃2, s̃ η̃) = τ̃2 s̃4 + s̃2 η̃2 + hs̃
(
hs̃a(hs̃, ỹ)(τ̃ s̃2)2 + b(· · · ) τ̃ s̃2 s̃ η̃ + c(· · · ) s̃2 η̃2

)
,

where τ̃ = ατ + 2ihs̃− αs), η̃ = αη + 2ih(ỹ − αy).
It is easy to see that

(7.58)


Im τ̃2 s̃4 = 4α2τ Re s̃3 Im s̃+ 4hατ Re s̃4(Re s̃− αs) +O(h2A)
Im s̃2 η̃2 = O(hHA)

Imhs̃(hs̃a(· · · )(τ̃ s̃2)2 + · · · ) = O(h2A) = O(hHA) .

It follows from (7.56) to (7.58) that

Imϕ � Im ỹ · αη + ατ

[
(1 + 4θατ Re s̃3) Im s̃+ 4θh Re s̃(Re s̃− αs)

]
(7.59)

+ hA2 +O
( 1
K2

hA2 + h2A2 + hHA
)
.

On the other hand (7.10) shows that

H

s
=

1
s(θ)

=
1
s̃
− 2τ̃ s̃2 θ + F , |F | � C

H

K
,

and, since H/s is real, we get

− Im s̃

|s̃|2 − 2 Im τ̃ s̃2 θ + ImF = 0 .

Since |s̃|2 = Re s̃2 +O(h2A2), we obtain

Im s̃(1 + 4ατ Re s̃3 θ) + 4θh Re s̃4(Re s̃− αs) = Re s̃2 ImF +O(h2A) .

Then (7.59) implies that

Imϕ � hA2 + Im ỹ · αη + ατ Re s̃2 ImF +O
( 1
K2

hA2 + hHA
)
.

Then, Lemma 7.12 will follow from the following lemma.

Lemma 7.13. — We have

Im ỹ · αη + ατ Re s̃2 ImF = O
( 1
K2

hA+ hHA+
1
K
hA2

)
.

Indeed, since A � ε0/2C1K, we have O
(
1
K2 hA+ hHA+ 1

K hA2
)

� 1
2 hA

2 which
implies that Imϕ � 1

2 hA
2, as claimed.
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Proof. — Let us recall that p = λ2 +
∑

h
jk
µj µk + ρr, with

r = aρλ2 + bλµ+ cµ2 and ẏ = s
∂p

∂µ
(hs, y, τ s2, sη) = 2s2〈η〉+ hs2

∂r

∂µ
,

where 〈η〉 =
(∑

k h
jk
ηκ
)
j=1,...,n

. Then

y(θ) = ỹ − 2
∫ 0

θ

s2(σ)〈η(σ〉dσ −
∫ 0

θ

hs2(σ)
∂r

∂µ
(hs(σ) · · · )dσ = y ∈ R

n−1 .

Denoting by s(θ), y(θ) the real functions such that

s(θ; s̃′, ỹ′, ατ , αη) =
s

H
, y(θ, · · · ) = y

(see Lemma 7.9) we can write

Im ỹ = 2 Im
∫ 0

θ

[
s2(σ)〈η(σ)〉 − s2(σ)〈η(σ)〉

]
dσ(7.60)

+ Im
∫ 0

θ

h
[
s2(σ)

∂r

∂µ
(hs(σ) · · · )− s2(σ)

∂r

∂µ
(hs(σ) · · · )

]
dσ = I + II .

We have

I = 2 Im
∫ 0

θ

[
s2(σ)

(
〈η(σ)〉 − 〈η(σ)〉

)
+ 〈η(σ)〉(s2(σ)− s2(σ))

]
dσ .

Let us introduce the following function

(7.61) u0(θ) =
1

1− 2Re s̃3ατ θ
� 0 .

Then, using the Lemma 7.9 and the estimates on ∂s(θ)/∂s̃, ∂s(θ)/∂ỹ · · · (see Corol-
lary 7.3) we obtain, |s(θ) − s(θ)| � ChAu20. Moreover we have |s(θ) + s(θ)| � Cu0
and |〈η(σ)〉| � CH . It follows that

(7.62)
∣∣∣ ∫ 0

θ

〈η(σ)〉(s2(σ) − s2(σ))dσ
∣∣∣ � CHhA

∫ 0

θ

u30(σ)dσ � CHhA

K2H2
=

ChA

K2H
.

Now we have η(σ) = η̃ + G(σ), η(θ) = αη + G(σ), where G and G are bounded by
CH/K. Let us write for convenience 〈η〉 = f(y)η. Then

〈η〉 − 〈η〉 = f(y)(η(σ)− η(σ)) + η(σ)(f(y)− f(y))

〈η〉 − 〈η〉 = 2ihf(y(σ))(ỹ − αy) + f(y(σ))(G(σ) −G(σ)) + η(σ)
(
f(y(σ)) − f(y(σ))

)
.

Since |y(σ) − y(σ)| � ChA/KH , we see easily that

|f(y(σ))(G(σ)−G(σ))| + |η(σ)(f(y(σ))− f(y(σ))| � ChA

K
.

It follows that

(7.63) 2 Im
∫ 0

θ

[
s2(σ)

(
〈η(σ))−〈η(σ)〉

)]
dσ = 4h〈Re ỹ−αy〉

∫ 0

θ

s2(σ)dσ+O
( hA

K2H

)
.
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We can apply exactly the same technique to the term II and obtain

(7.64) II = O
( hA

K2H

)
.

Then, using (7.60), (7.62), (7.63), (7.64) we obtain

(7.65) Im ỹ · αη = 4h
∑
j,k

h
jk
(Re ỹ)(Re ỹj − αj

y)α
k
η

∫ 0

θ

s2(σ)dσ +O
(hA
K2

)
.

Let us look now to the term ImF . According to the computations made before
(7.10), we have

F = 4
∫ 0

θ

∫ 0

σ

s3(t)
∑
jk

hjk(y(t))η
j
(t)η

k
(t)dtdσ(7.66)

+2
∫ 0

θ

∫ 0

σ

(
hs3 η

∂r

∂µ
+ hs2

∂r

∂ρ

)
(t)dtdσ +

∫ 0

θ

hs(σ)
∂r

∂λ
dσ = (I) + (II) + (III) .

Let us look to the term (I). Since |s3(t)− s3(t)| � C|s(t)− s(t)|u20 � C′hAu40, we
can replace s3(t) by s3(t) modulo an error which is O

(
hA
K2

)
. Then we write η(t) =

η̃ +G(t), η(t) = αη +G(t) where G and G are bounded by C H
K . It follows as before

that

Im(I) = 16h
∫ 0

θ

∫ 0

σ

s3(t)dtdσ
∑
j,k

h
jk
(Re ỹ)αk

η(Re ỹj − αj
y) +O

(hA
K2

)
.

The same computation can be applied to the terms (II) and (III) and we find finally

(7.67) ImF = 16h
∑
j,k

h
jk
(Re ỹ)αk

η(Re ỹj −αj
η)
∫ 0

θ

∫ 0

σ

s3(t)dtdσ+O
(hA
K2

+
hA2

K

)
.

Now we see easily, using (7.10), that, with u0 defined in (7.61),

(7.68)


|s2(σ)− (Re s̃)2u20(σ)| � C

H

K
u30(σ) ,

|s3(t)− (Re s̃)3u30(t)| � C
H

K
u40(t) .

Using (7.4) we see that we can replace, in (7.65) and (7.67) s by (Re s̃)u0 modulo an
error which is O

(
1
K2 hA

)
. On the other hand we have∫ 0

σ

((Re s̃)u0(t))3 dt =
1

4ατ
(1− u20(t)).

Then we get

ImF = − 4h
ατ

∑
jk

h
jk
(Re ỹ)αk

η(Re ỹj − αj
η)
∫ 0

θ

u20(t)dt +O
(hA
K2

+ hHA+
hA2

K

)
.

Using (7.65) and (7.68) we conclude that

Re s̃2ατ ImF = − Im ỹ · αη +O
(hA
K2

+ hHA+
hA2

K

)
which is the claim in Lemma 7.13.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2002



84 CHAPTER 7. PROOF OF THEOREM 4.8

End of the proof of Theorem 4.8. — By the Lemma 7.11, the part of the integral, in
(7.35), lying in W1 is bounded by Ce−δ/hk. This proves (7.35) and completes the
proof of Theorem 4.8.
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CHAPTER 8

PROOF OF THEOREM 4.9

We consider the case m0 ∈ N c
+, m0 = (0, y0, 0, (1, 0)). We proceed as in the proof

of Theorem 4.8, § 7 ; we look for a phase ϕ and a symbol a satisfying the phase and
transport equations.

8.1. Resolution of the phase equation

Let d be a strictly positive integer. We denote by Pd the set of polynomials of the
following form

(8.1) r(s, y, h, λ, µ) = hb(s, y, h)λd +
∑

|α|+j�d
α�=0

bαj(s, y, h)µαλj

where b and bαj extend to holomorphic functions near (s0, y0) and are smooth in h

on [0,+∞[. Then we have

(i) Let r ∈ Pd ; then for all K0 > 0 one can find C(K0) > 0 such that for all
(s, y, h, λ, µ) satisfying |s− s0|+ |h|+ |y − y0|+ |λ|+ |µ| � K0 one has

(8.2) |r(s, y, h, λ, µ)| � C(K0)(h+ |µ|) .

(ii) If r ∈ Pd, ∂r/∂s ∈ Pd, ∂r/∂y ∈ Pd and ∂r/∂λ ∈ Pd−1 if d � 2.
Recall that the symbol of ∆g is p(ρ, y, λ, µ) = λ2 + ‖µ‖2 + ρr so

(8.3) p(sh, y, s2τ, sη) = s4 τ2 + s2‖η‖2 + hs2 r̃(s, y, h, s2τ, η) , r̃ ∈ P2 .

Proposition 8.1. — Let α0 =
(
s0, y0, 1/s30, 0

)
. There exist positive constants εθ, εs,

εy, εα, εh and for h in ]0, εh[ a holomorphic function ϕ = ϕ(θ; s, y, α, h) in the set

E =
{
(θ, s, y, α) ∈ C× C× C

n−1 × C
2n : Re θ ∈ (−∞, εθ],

| Im θ| < εθ,
∣∣∣s− s0

1 + 2|θ|

∣∣∣ < εs
1 + |θ| , |y − y0| < εy, |α− α0| < εα

}



86 CHAPTER 8. PROOF OF THEOREM 4.9

such that
(8.4)

∂ϕ

∂θ
+ p

(
sh, y, s2

∂ϕ

∂s
, s
∂ϕ

∂y

)
= 0 in E

ϕ|θ=0 = (s− αs)ατ + (y − αy) · αη −A(s− s0)2 + ih[(s− αs)2 + (y − αy)2]

where A = (1 + δ)s−40 , δ small.

Proof. — We introduce the symbol

(8.5) q = θ∗ + p(sh, y, s2τ, sη)

and we study the bicharacteristic system of q when the parameter on the curve is real.
For (s̃, ỹ, α, h) in C× Cn−1 × C2n × ]0,+∞[ such that

|s̃− s0| < ε0s, |ỹ − y0| � ε0y,
∣∣∣ατ −

1
s30

∣∣∣+ |αη| � ε0α, 0 < h < ε0h,

we consider the system
(8.6)

θ̇(t) = 1, θ(0) = 0

ṡ(t) = 2τs4 + hs4 r1(s, y, h, s2τ, η), s(0) = s̃

ẏ(t) = 2s2〈η〉+ hs2
[
a(hs, y)(τs2) + sb(hs, y) · η

]
, y(0) = ỹ

θ̇∗(t) = 0, θ∗(0) = −p(s̃h, ỹ, · · · )
τ̇ (t) = −

[
4s3τ2 + 2s‖η‖2 + shr2(s, y, h, s2τ, η)

]
,

τ(0) = τ̃ = ατ − 2A(s̃− s0) + 2ih(s̃− αs)

η̇(t) = −s2∂y‖η‖2 + s2hr3(s, y, h, s2τ, η), η(0) = η̃ = αη + 2ih(ỹ − αy),

where r1 ∈ P1, r2, r3 ∈ P2, a, b (and their derivatives) are uniformly bounded and

〈η〉 =
( n−1∑

i=1

h
ij
(y)ηj

)
, ∂y ‖η‖2 =

n∑
j,k=1

∂h
jk

∂y
(y)ηj ηk .

Lemma 8.2. — The system (8.6) has, for ε0s, ε
0
y, ε

0
α, ε

0
h small enough, a unique global

solution on (−∞, 0] which is holomorphic with respect to (s̃, ỹ, α).

Proof. — First of all we have θ(t) = t and θ∗(t) = θ∗(0) which are globally defined on
(−∞, 0]. Then we introduce the following subset I of [0,+∞[ : T ∈ I iff the problem
(8.6) has a unique solution on [−T, 0], which is holomorphic with respect (s̃, ỹ, ατ , αη)
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and satisfies

(8.7)



(i)
1
10

s0
1 + 2|t| � |s(t)| � 10

s0
1 + 2|t|

(ii) |y(t)− ỹ| � (|αη|+ h)1/2

(iii) |η(t)− η̃| � |αη|+ h

(iv) |τ(t)s2(t)− τ̃ s̃2| � |αη|+ h where τ̃ = ατ − 2A(s̃− s0) .

(We assume |αη|+ h � ε0α + ε0h � 1).
The set I is of course an interval which is non empty. Indeed, the Cauchy-Lipschitz

theorem shows that (5.51) has a unique solution on [−T, 0] for some small T > 0 which
is holomorphic with respect to the data. This solution satisfies |s(t)− s̃| � C |t| so (i)
will be satisfied if T and εs0 are small enough (with respect to s0) ; now, according
to the equation satisfied by η we have η(t) ≡ 0 if αη and h are equal to zero ; since
η is smooth with respect to αη and h, we will have |η(t)| � C(|αη| + h) ; then using
the equation satisfied by η and (8.2) we get

|η(t)− η̃| �
∫ 0

t

|η̇(σ)|dσ � C(|αη|+ h)2 � |αη|+ h

if ε0α and ε0h are small enough. On the other hand we can write

|y(t)− ỹ| �
∫ 0

t

|ẏ(σ)|dσ � C1(|αη|+ h) + C2h � (|αη|+ h)1/2 .

Finally,

(8.8)
d

dt
(τs2) = τ̇ s2 + 2τsṡ = −2s3‖η‖2 + s3hr(s, y, h, s2τ, η) ,

with r ∈ P2. Therefore, using (8.2) we get

|τ(t)s2(t) − τ̃ s̃2| � C1(|αη|+ h)2 + C2h(h+ |αη|+ h) � |αη|+ h.

Let us set T ∗ = sup I. If T ∗ = +∞ our lemma is proved ; so assume T ∗ < +∞ and
let T0 ∈ I, T0 < T ∗. On [−T0, 0] we have a solution which satisfies (8.7). By (8.8) we
have,

|τ(t)s2(t)− τ̃ s̃2| � 2
∫ 0

t

|s(σ)|3‖η(σ)‖2dσ + h

∫ 0

t

|s3(σ)| |r(s(σ), y(σ), · · · )|dσ .

It follows from (8.7) and (8.2) that one can find a constant C1 depending only on the
data such that

|τ(t)s2(t)− τ̃ s̃2| � C1(|αη|+ h)2
∫ 0

−∞

dσ

(1 + |σ|)3 ,

therefore

(8.9) |τ(t)s2(t)− τ̃ s̃2| � 1
2
(|αη|+ h) ,

if εα and εh are small enough with respect to the data.
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Now we use the second equation of (8.6). We get

(8.10)
ṡ(t)
s2(t)

= 2τs2 + s2hr1(s, y, h, s2τ, η) , r1 ∈ P1 .

Let us set

(8.11) f(t) = (τs2)(t)− τ̃ s̃2 .

Integrating (8.10) between t and zero we get

(8.12)
1
s(t)
− 1
s̃
= −2t τ̃ s̃2 + 2

∫ 0

t

f(σ)dσ + h

∫ 0

t

s2(σ)r1(s(σ), y(σ), · · · )dσ .

Then we write

(8.13)
∫ 0

t

f(σ)dσ = [σf(σ)]0t −
∫ 0

t

σf ′(σ)dσ = −tf(t)−
∫ 0

t

σf ′(σ)dσ .

It follows from (8.8) and (8.11)

f ′(σ) = −2s3(σ)‖η(σ)‖2 + hs3(σ)r(s(σ), y(σ), · · · ) , r ∈ P2
so,

(8.14) |σf ′(σ)| � C1
(|αη|+ h)2

(1 + |σ|)2 .

Therefore, using (8.13), (8.14), (8.15) and (8.9) we get
1
s(t)
− 1
s̃
= 2|t| τ̃ s̃2 + 2|t|f(t) + g(t)

2|f(t)| � |αη|+ h

|g(t)| � C2(|αη|+ h)2 .

It follows that

(8.15)

 s(t) =
s̃

1 + g1(t) + 2|t|(τ̃ s̃3 + f1(t))

|f1(t)|+ |g1(t)| � C3(|αη|+ h) .

Now

τ̃ s̃3 = (ατ − 2A(s̃− s0)) s̃3

=
( 1
s30

+
(
ατ −

1
s30

)
− 2A(s̃− s0)

)
(s30 + s̃3 − s30) = 1 +O(εs + εα),

where O(ε) stands for a quantity bounded by Cε where C depends only on the data.
It follows from (8.15) that

1 + g1(t) + 2|t|(τ̃ s̃3 + f1(t)) = 1 + 2|t|+O(εα + εs + εh) + |t|O(εα + εh) .

Therefore, if εα, εs, εh are small enough we will have

(8.16)
1
2

s0
1 + 2|t| � |s(t)| � 2

s0
1 + 2|t| , t ∈ [−T0, 0] .
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Next, using (8.6) we get

|y(t)− ỹ| � 2
∫ 0

t

|s2(σ)〈η(σ)〉|dσ + h

∫ 0

t

|s2(σ)| |D1(· · · ) + D2(· · · )|dσ

� C4(|αη|+ h)
∫ 0

−∞

dσ

(1 + |σ|)2 + C5h

∫ 0

−∞

dσ

(1 + |σ|)2
so

(8.17) |y(t)− ỹ| � 1
2
(|αη|+ h)1/2 , t ∈ [−T0, 0] .

Finally

|η(t)− αη|

�
∫ 0

t

|s2(σ)|
∑
i,j

∣∣∣∂hij
∂y

y(σ)
∣∣∣|ηi(σ)| |ηj(σ)|dσ +

∫ 0

t

h |s2(σ)| |r3(s(σ), · · · )|dσ

�
[
C6(|αη|+ h)2 + C7h(|αη|+ h)

] ∫ 0

−∞

dσ

(1 + |σ|)2
so

(8.18) |η(t)− αη| �
1
2
(|αη|+ h) .

It follows from (8.6) and (8.7) that ṡ, ẏ, τ̇ , η̇ are integrable on (−T ∗, 0] therefore
s(t), y(t), τ(t), η(t) have limits s(−T ∗), y(−T ∗), τ(−T ∗), η(−T ∗) as t → −T ∗.
Moreover these limits satisfy the estimates (8.9), (8.16), (8.17), (8.18). Then we solve
the system (8.6) with data s(−T ∗), y(−T ∗), τ(−T ∗), η(−T ∗) on t = −T ∗ ; by the
Cauchy Lipschitz theorem, we find a solution on [−T ∗ − δ,−T ∗] close to the data ;
matching this solution with the previous one, we get a solution on [−T ∗− δ, 0] which
will satisfy the estimates (8.7). This contradicts the definition of T ∗ and proves that
T ∗ = +∞.

We show now that we can complexify the time t and obtain a solution of (8.6) in
the set Re t ∈ (−∞,−ε], | Im t| � ε. The equations (8.6) show that we can take θ as
a new variable on the bicharacteristic.

Lemma 8.3. — The system (8.6) in (s(θ), y(θ), τ(θ), η(θ)) has, for small ε0s, ε0y, ε0α,
ε0h, ε

0
θ a unique holomorphic solution for Re θ ∈ (−∞,−εθ], | Im θ| < εθ, which is

holomorphic with respect to the data (s̃, ỹ, ατ , αη).

Proof. — Let us recall the following well known result. Let (θ0, X0) ∈ C × CN and
Q = {(θ,X) ∈ C × C

N : |θ − θ0| < a, |X − X0| < b}. Let F : Q → C
N be a

holomorphic function such that supQ |F | = M < +∞. Then the Cauchy problem

(8.19)

{
Ẋ(θ) = F (θ,X(θ))

X(θ0) = X0
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has a unique solution, holomorphic in {θ ∈ C : |θ − θ0| < ρ} where

(8.20) ρ < a
(
1− exp

( −b
(N + 1)aM

))
.

We apply this result to the system (8.6). We take θ0 ∈ [0,+∞[ and we call X0 =(
s(θ0), y(θ0), τ(θ0), η(θ0)

)
, the value at θ = θ0 of the solution found in Lemma 8.2.

Here N = 2n. We take b small depending on (s0, y0) ; then M also depends only on
(s0, y0) ; finally we take b/a = (2n+ 1)MLn2. It follows that the system (8.6) with
data X0 at θ = θ0 has a unique holomorphic solution in {|θ ∈ Cn : |θ−θ0| < ρ} where
ρ depends only on (s0, y0) but is independent of θ0. Therefore moving θ0 from 0 to
+∞, we get a solution of (8.6) in a fixed small complex neighborhood of [0,+∞[. We
can check that this solution satisfies the estimates (8.7) on this set.

Proof of Proposition 8.1. — We introduce for ε0θ, ε
0
s, ε

0
α, ε

0
y, ε

0
h small enough the sets

Λ =
{(
θ, s(θ; s̃, ỹ, α, h), y(θ; · · · ), θ∗(0), τ(θ; · · · ), η(θ; · · · )

)
(8.21)

Re θ ∈ ]−∞, ε0θ[, | Im θ| < ε0θ, |s̃− s0| < ε0s, |ỹ − y0| < ε0y

}
where ατ , αη, h are fixed such that

∣∣ατ − 1/s30
∣∣ + |αη| < ε0α, h ∈ ]0, ε0h[. We also

introduce the set

(8.22) E =
{
(θ, z, y) ∈ C× C× C

n−1, Re θ ∈ ]−∞, ε0θ[,

| Im θ| < ε0θ,
∣∣∣z − s0

1 + 2|θ|

∣∣∣ < εz
1 + |θ| , |y − y0| < εy

}
.

Let π : Λ→ C× C× Cn−1 be the projection on the basis.

Lemma 8.4. — If ε0s, ε
0
y, ε

0
α are small (depending on the data (s0, y0)) one can find

εz > 0, εy > 0 such that the map π : Λ→ E is bijective.

Proof. — We fix (α, h). For fixed θ and (θ, z, y) in E we must find s̃, ỹ such that
|s̃− s0| < ε0s, |ỹ − y0| < ε0y and

(8.23)

{
s(θ; s̃, ỹ, α, h) = z

y(θ; s̃, ỹ, α, h) = y .

It follows from (8.15) and (8.7) (ii) that this system is equivalent to

(8.24)

{
s̃ = z

(
1− 2θ(ατ − 2A(s̃− s0)) s̃3 + g1(θ) + 2|θ|f1(θ)

)
ỹ = y + g2(θ; s̃, ỹ, ατ , αη, h) .

To solve (8.24) we use the fixed point theorem. For (θ, α, h) fixed and (θ, z, y) ∈ E

let us consider the map from C× Cn−1 in itself

(8.25) F (s̃, ỹ) =

{
z
(
1− 2θ(ατ − 2A(s̃− s0)) s̃3 + g1(θ) + 2|θ|f1(θ)

)
y + g2(θ, · · · ) .
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We shall show that F maps the set

B = {(s̃, ỹ) ∈ C× C
n−1 : |s̃− s0| < εs, |ỹ − y0| < εy

}
in itself. Let us denote by F1(s̃, ỹ) (resp. F2) the first (resp. the second) component
of F . We have, from (8.7),

(8.26) |F2(s̃, ỹ)− y0| � |y− y0|+ |g2(θ, · · · )| � ε̃y +(|αη|+h)1/2 � ε̃y+(εα+ εh)1/2 .

Now if (θ, z, y) is in E, we have

z =
s0

1 + 2|θ| +
O(εz)
1 + |θ| ;

moreover

ατ =
1
s30

+O(εα), s̃3 = s30 + 3s20(s̃− s0) +O((s̃− s0)2), |s̃− s0| < εs.

Let us skip the ∼. We have, from (8.25)

(1) = F1(s, y)− s0 =
( s0
1− 2θ

+
O(εz)
1 + |θ|

)[(
1− 2θ

( 1
s30
− 2A(s− s0) +O(εα)

)
(s30 + 3s20(s− s0) +O(|s− s0|2)

)
+ g1(θ) + 2|θ|f1(θ)

]
− s0 .

Using the fact that A = (1 + δA)s−40 we get

(1) =
−2θ
1− 2θ

(s− s0)(1− 2δA) +O(εz + εα + εh + ε2s) .

It follows from (8.26) and the fact that
∣∣ −2θ
1−2θ

∣∣ � 1 if Re θ � 0, that

|F (s, y)− (s0, y0)| � ε̃y + (εα + εh)1/2 + (1− 2δA)εs +O(εz + εα + εh + ε2s).

If we take δA ∈
]
0, 12

[
and ε̃y + (εα + εh)1/2 + O(εz + εα + εh + ε2s) � δA εs, then

F (s, y) ∈ B.
We show now that F : B → B satisfies

(8.27) |F (s, y)− F (s′, y′)| � k(|s− s′|+ |y − y′|) , (s, y) , (s′, y′) ∈ B, k < 1 .

Since g1, g2, f1 are smooth in s, y and satisfy (8.15), we have,

(|z||θ||f1(θ)|+ |z|)|gj(θ; s, y, · · · )− gj(θ; s′, y′, · · · )| � C(εα+ εh)1/2(|y− y′|+ |s− s′|) .

Let us estimate

I = −2θz
[
(ατ − 2A(s− s0))s3 − (ατ − 2A(s′ − s0))s′3

]
= −2θz(ατ + 2As0)(s3 − s′3) + 4Aθz(s4 − s′4).

We have

ατ =
1
s30

+O(εα), s3 − s′3 = (s− s′)(3s20 +O(s− s0))
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and
s4 − s′4 = (s− s′)(4s20 +O(s− s0)), z =

s0
1− 2θ

+O(εz)
1

1 + |θ| .

Then

I = −2θ
( s0
1− 2θ

+
O(εz)
1 + |θ|

)( 1
s30

+ 2As0 +O(εα)
)
(s− s′)(3s20 +O(s− s0))

+ 4Aθ
( s0
1− 2θ

+
O(εz)
1 + |θ|

)
(s− s′)(4s30 +O(s− s0)) .

I =
−2θ
1− 2θ

s0

( 1
s30

+ 2As0
)
3s20(s− s′) + 4Aθ

4s40
1− 2θ

(s− s′)

+ |s− s′|O(εz + εα + εs) .

I =
( −6θ
1− 2θ

− 12θ
1− 2θ

As40 +
16θ

1− 2θ
As40

)
(s− s′) + |s− s′|O(εz + εα + εs) .

Since As40 = 1− 2δA we get

|I| �
( 2|θ|
1 + 2|θ| (1− 2δA) +O(εz + εα + εh)

)
|s− s′| .

Taking εz, εα, εh and δ ∈
]
0, 12

[
we get (8.27). The proof of Lemma 8.4 is complete.

Lemma 8.5. — The map dπ : TλΛ→ Tπ(λ)E is surjective for all λ in Λ.

Proof. — Let G be the map (for fixed α, h)

(θ, s̃, ỹ) �−→
(
θ, s(θ; s̃, ỹ, α, h), y(θ; s̃, ỹ, · · · ), θ∗(θ), τ(θ; · · · ), η(θ, · · · )

)
from the set {Re θ ∈ (−∞, εθ[, | Im θ| < εθ, |s̃ − s0| < εs, |ỹ − y| < εy} to Λ. If
d(π ◦ G) is surjective then dπ is also surjective. Now d(π ◦ G) is surjective if and

only if det

(
∂s(θ)
∂es

∂s(θ)
∂ey

∂y(θ)
∂es

∂y(θ)
∂ey

)
is non zero. According to (8.7) (ii), this will be the case if∣∣∂s(θ)/∂s̃∣∣ � c0 > 0. By (8.15) we have s(θ) = s̃/D where

D = 1− 2θ(ατ − 2A(s̃− s0)) s̃3 + g1(θ) + 2θf1(θ).

Then

D2 ∂s(θ)
∂s̃

= 1− 2θ
( 1
s30

+O(εα) +O(εs)
)
(s30 +O(εs) + (1 + |θ|)O((εα + εh)1/2)

− s0(−2θ)
( 1
s30
· 3s20 − 2As30

)
+ (1 + |θ|)O(εs + εα + (εα + εh)1/2),

D2 ∂s

∂s̃
= 1− 2θ − 4As40 + 6θ + (1 + |θ|)O(εs + (εα + (εα + εh)1/2)

= 1− 4δAθ + (1 + |θ|)O(εs + (εα + εh)1/2) .

Since Re θ ∈ ]−∞, εθ] we will have∣∣∣D2 ∂s

∂θ

∣∣∣ � c0(1 + |θ|)−O(εs + (εα + εh)1/2)(1 + |θ|).
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Corollary 8.6. — There exists ϕ = ϕ(θ; s, y, α, h) defined on E, holomorphic with re-
spect to (θ, s, y, α), smooth in h such that

Λ =
{(

θ, s, y,
∂ϕ

∂θ
(θ; s, y, α, h),

∂ϕ

∂s
(θ; · · · ), ∂ϕ

∂y
(θ; · · · )

)
, (θ, s, y) ∈ E

}
.

Then Proposition 8.1 follows from Corollary 8.6 since q (defined in (8.5)) vanishes
on Λ.

8.2. Resolution of the transport equation

As before, working in the coordinates (θ, s̃, ỹ) we are led to solve the problem

(8.28)


( ∂

∂θ
+ c(θ, s̃, ỹ)

)
a+ ih2kP2a = 0

a|θ=0 = 1

where c is equal to i∆∗
gϕ in the new coordinates. The solution should exist in the set

{Re θ ∈ (−∞, 0], | Im θ| � εθ, |s̃− s0| � εs, |ỹ− y0| � εy}. Using the properties of ϕ it
is not difficult to see that

(8.29) |c(θ; s̃, ỹ)| � C

1 + |θ| , Re θ ∈ (−∞, 0], | Im θ| � εθ .

Therefore we are in the same situation as in [RZ1] (4.16) and the same construction
can be made showing that (8.28) can be solved in a space of symbols. We refer to
[RZ1] for the details.

8.3. Proof of Theorem 4.9

Let m0 = (0, y0, 0, (1, 0)) ∈ N c
+. Our assumption is that

exp(−TX0)(m0) =
(
ρ = 0, y0, λ0 =

1
2T

, µ0 = 0
)

does not belong to qscWFa(u0).
Let us introduce the continuous family of FBI transform

T u(θ; t, α, h, k)(8.30)

=
∫∫

eih
−2k−1ϕ(θ; ρ

h ,y,α,h)a
(
θ;
ρ

h
, y, α, h, k

)
χ
(
θ;
ρ

h
, y
)
u(t; ρ, y)dρdy

where ϕ and a have been constructed in § 8.1, 8.2 and χ is a cut-off function equal to
one when ∣∣∣ρ

h
− s0

1 + 2|θ|

∣∣∣ � 1
2

εs
1 + |θ| , |y − y0| �

1
2
εy.

As in the proof of Lemma 6.4, we see that(1
k

∂

∂θ
+

∂

∂t

)
T u(θ; t, · · · ) = −i

∫∫
eih

−2k−1ϕ(θ;··· )a(θ; · · · )[∆g, χ](· · · )u(t, ρ, y)dρdy .
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Using the properties of ϕ on the support of [∆g, χ] we deduce, as in Lemma 6.4 that

(8.31) T u(θ; t, α, h, k) = U(kθ − t;α, h, k) + V (θ; t, α, h, k)

where U, V are continuous in

O =
{
(θ, t, α, h, k) : θ ∈ (−∞, 0], |t− T | � δ0, |α− α0| � εα, h ∈ [0, εh], k ∈ [0, εk]

}
and

(8.32) |V (θ; t, α, h, k)| � Ce−ε0/hk in O ∩ {h > 0, k > 0} .

It follows from (8.31) and (8.32) that

(8.33) T u(0; t, α, h, k) = T u
(
− t

k
; 0, α, h, k

)
+ V1(θ; t, α, h, k)

where V1 satisfies (8.32).
Now the phase which appears in the FBI transform (8.30) can be written, according

to § 6.2.2, as

ϕ
(
θ;
ρ

h
, y, α, h

)
= ϕ2

(
θ;
ρ

h
, y, α

)
+ ihϕ1

(
θ;
ρ

h
, y, α, h

)
.

It follows that

(1) = ih−2k−1ϕ
(
− t

k
;
ρ

h
, y, α, h

)
= i(hk)−2

[
kϕ2

(
− t

k
; k · ρ

hk
, y, α

)
+ i(hk)ϕ1

(
− t

k
; k · ρ

hk
, y, α, h

)]
.

Therefore if we set

(8.34)


H = hk , ν = (t, h, k) ,

ψ2(s, y, α, ν) = kϕ2

(
− t

k
; ks, y, α

)
,

ψ1(s, y, α, ν) = ϕ1

(
− t

k
; ks, y, α, h

)
,

then

(8.35) (1) = iH−2
[
ψ2

( ρ

H
, y, α, ν

)
+ iHψ1

( ρ

H
, y, α, ν

)]
= iH−2ψ

( ρ

H
, y, α, ν,H

)
.

Lemma 8.7. — Let

s̃0 =
s0
2T

, X0 = (s̃0, y0), Ξ0 =
(1/2T

s̃30
, 0
)
.

Then, when ν = (t, h, k) tends to ν0 = (T, 0, 0), ψ
(
ρ/H, y, α, ν

)
tends (uniformly in

ρ/H, y, α) to ψ
(
ρ/H, y, α, ν0

)
and ψ is a phase at (X0,Ξ0, α0, 0, ν0).

Proof. — Let first h go to zero. Since the phase ϕ is smooth in h up to h = 0,
ϕ
(
− t/k , ks, y, α, h

)
tends to ϕ

(
− t/k , ks, y, α, 0

)
. Let (s̃, ỹ, α) be given and let us
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denote by s(θ), y(θ), τ(θ), η(θ) the solution of (8.6) given by Lemma 8.2. We claim
that

(8.36) ϕ2(θ; s(θ), y(θ), α) = [s̃4(ατ − 2A(s̃− s0))2 + s̃2‖αη‖2]θ
+ (s̃− αs)ατ + (ỹ − αy)αη −A(s̃− s0)2 .

Indeed we have
d

dθ
[ϕ(θ; s(θ), y(θ), α, 0)] =

(∂ϕ
∂θ

+ ṡ(θ)
∂ϕ

∂s
+ ẏ(θ)

∂ϕ

∂y

)
(θ; s(θ), y(θ), α) = (1) .

Now ṡ(θ) = 2(τs4)(θ) = 2s4(θ) · ∂ϕ/∂s, ẏ = 2s2(θ)
〈
∂ϕ/∂y

〉
. It follows that

(1) =
∂ϕ

∂θ
+ 2p

(
0, y(θ),

(
s2
∂ϕ

∂s

)
(θ; · · · ),

(
s
∂ϕ

∂y

)
(θ; · · · )

)
= −∂ϕ

∂θ
(θ; · · · )

by (8.4). We deduce from (8.6), (8.21) and Corollary 8.6 that

−∂ϕ
∂θ

(θ; s(θ), y(θ), α, 0) = −θ∗(θ) = −θ∗(0) = p(0, ỹ, s̃2 τ̃ , s̃ η̃) = s̃4 τ̃2 + s̃2‖αη‖2

where τ̃ = ατ − 2A(s̃− s0). Then (8.36) follows using (8.4) and the fact that ϕ = ϕ2
if h = 0. It follows that

(8.37)


kϕ2

(
− t

k
; s
(
− t

k

)
, y
(
− t

k

)
, α
)
= −Ut+ kV where

U = s̃4(ατ − 2A(s̃− s0))2 + s̃2‖αη‖2,
V = (s̃− αs)ατ + (ỹ − αy) · αη −A(s̃− s0)2 .

Now let (ks, y) be given. The system

(8.38)


s
(
− t

k
; s̃, ỹ, α

)
= ks

y
(
− t

k
; s̃, ỹ, α

)
= y

is equivalent, according to (8.15), to

s̃

k(1 + g1(t)) + 2t(τ̃ s̃3 + f1(t))
= s, ỹ +O(|αη|1/2) = y .

We know from (8.23) that this system has a unique solution which is moreover con-
tinuous in k ∈ [0,+∞[. It follows from (8.37), (8.38) that kϕ2

(
− t/k; ks, y, α

)
has a

limit when t→ T and k → 0. Let us now look to ϕ1. We have seen in § 6.2.2 that

(8.39) Reϕ1
(
− t

k
; s
(
− t

k
; s̃, ỹ, α

)
, y
(
− t

k
; · · ·

)
, α, 0

)
= (s̃− αs)2 + (ỹ − αy)2

so the same argument as before works. Concerning the imaginary part of ϕ1 ; accord-
ing to § 6.2.2, we have

∂

∂θ
[Imϕ1(θ; s(θ), y(θ), α)] = L1(Imψ)(θ; s(θ), . . . )

= s(θ)
∂p

∂ρ

(
0, y, s2

∂ϕ2
∂s

, s
∂ϕ2
∂y

)
= O(s2(θ)) .
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Since s2(θ) is integrable on (−∞, 0] it follows that

Imϕ1

(
− t

k
; s
(
− t

k
; s̃, ỹ, α

)
, y
(
− t

k
; · · ·

)
, α
)

has also a limit when k → 0, t→ T . Let us denote by

ψ2
( ρ
H
, y, α, ν0

)
+ iHψ1

(ρ
h
, y, α, ν0

)
this limit. Let

s̃0 =
s0
2T

, X0 = (s̃0, y0), Ξ0 =
(1/2T

s̃30
, 0
)
.

It remains to show that ψ is a phase at (X0,Ξ0, α0, h0 = 0, ν0) in the sense of Defi-
nition 2.6. Conditions (2.10), (2.11), (2.12) are easy satisfied. Let us look to (2.13).
We have

∂ψ2
∂s

( s0
2T

, y0, α0, ν0

)
= lim

k→0
k2

∂ϕ2
∂s

(
− T

k
; k

s0
2T

, y0, α0

)
.

Now

s
(
− T

k
; s0, y0, α0

)
=

ks0
k + 2T

=
ks0
2T

+O(k),

y
(
− T

k
; s0, y0, α0

)
= y0

∂ϕ2
∂s

(
− T

k
; s
(
− T

k
; s0, y0, α0

)
, y
(
− T

k
, · · ·

)
, α0

)
= τ

(
− T

k
; s0, y0, α0

)
=

τ0s
2
0

s2(−T/k; s0, y0, α0)

=
(1 + 2T/k)2

s30
.

Therefore

k2
∂ϕ2
∂s

(
− T

k
, k

s0
2T

, y0, α0

)
=

(k + 2T )2

s30
+O(k) −→ (2T )2

s30
=

1/2T
s̃30

.

It follows that
∂ψ2
∂s

( s0
2T

, y0, α0, ν0

)
=

1/2T
s̃30

.

Moreover
∂ψ

∂y

( s0
2T

, y0, α0, ν0

)
= lim

k→0

∂ϕ2
∂y

(
− T

k
,
ks0
2T

, y0, α0

)
= 0 .

Finally

Reψ1
( s0
2T

, y0, α0, ν0

)
= lim

k→0
Reϕ1

(
− T

k
, k

s0
2T

, y0, α0

)
and

Reϕ1
(
− T

k , k
s0
2T , y0, α0

)
= Reϕ1

(
− T

k , s
(
− T

k ; s0, y0, α0
)
, y
(
− T

k ; · · ·
)
, α0

)
+O(k)

= (s0 − s0)2 + (y0 − y0)2 +O(k) −→ 0.
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We can now give the final argument of the proof of Theorem 4.9. It follows
from Lemma 8.7, Theorem 2.7 and the fact that

(
0, y0, 1/2T, 0

)
does not belong

to qscWFa(u(0, ·)) that∣∣∣T u(− t

k
; 0, α, h, k

)∣∣∣ � Ce−ε/H , ε1 > 0 , H = hk ,

for all α in Vα0 , 0 < h < εh, 0 < k < εk and |t − T | � δ (since ν = (T, h, k) ∈ Vν0 ).
We use (8.33) to show that

|T u(0; t, α, h, k)| � C′ e−ε2/hk , ε0 > 0

for the same value of the parameters. Since the phase of the later FBI transform is,
by Proposition 8.1,

ϕ(0; s, y, α, h) = (s− αs)ατ + (y − αy)αη −A(s− s0)2 + ih[(s− αs)2 + (y − αy)2]

which is a FBI phase in the sense of Definition 2.1, we deduce from Definition 2.4
that the point m0 does not belong to qscW̃F (u(T, ·)) which is our claim.
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We develop here the Sjöstrand theory of FBI transform in the case of two scales.
This will allow us to define the qsc analytic wave front set. The main difficulty will
be to prove the invariance of this notion under the change of phase, amplitude and
cut-off functions.

A.1. The phases

Definition A.1. — Let m0 = (x0, ξ0, α0, h0) ∈ Rn ×Rn ×R2n × [0,+∞[. We shall say
that ϕ = ϕ(x, α, h) is an FBI phase atm0 if one can find a neighborhood V of (x0, α0)
in Cn × C2n, a neighborhood Ih0 of h0 in [0,+∞[ such that, in V × Ih0 ,

ϕ(x, α, h) = ϕ2(x, αξ) + ϕ3(α) + ihϕ1(x, α) , α = (αx, αξ) ,

where

(1) ϕj , j = 1, 2, 3, are holomorphic in V ,
(2) ϕ2 is real when (x, αξ) ∈ (Rn × R

n) ∩ V , ϕ3 is real when α is real,

(3)
∂ϕ

∂x
(x0, α0, h0) = ξ0,

(4) ϕ1(x0, α0) = 0,
∂Reϕ1
∂x

(x0, α0) = 0,
(∂2Reϕ1

∂x2
(x0, α0)

)
is positive definite,(∂2Reϕ1

∂x∂αx
(x0, α0)

)
is invertible,

(5)

(a) if h0 = 0, the matrix
( ∂2ϕ2
∂x∂αξ

(x0, α0ε)
)
is invertible,

(b) if h0 �= 0, the matrices
( ∂2ϕ

∂x∂αξ

)
(x0, α0, h0) and(

∂2 Reϕ
∂x∂αξ

∂2 Reϕ
∂x∂αx

∂2 Imϕ
∂x∂αξ

∂2 Imϕ
∂x∂αx

)
(x0, α0, h0)

are invertible.
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The simplest example of such a phase is given by

ϕ(x, α, h) = (x− αx)αξ + ih(x− αx)2

with α0 = (x0, ξ0).
Now, if f is a complex function defined on the complex domain, we define

(A.1)


f r(z) =

1
2
(f(z) + f(z))

f i(z) =
1
2i
(f(z)− f(z)) .

Definition A.2. — With the notations of Definition A.1, we shall say that ϕ is a pre-
cised FBI phase at m0 if it is an FBI phase at m0 and moreover, (x, α) ∈ V and
∂ϕr

1/∂x(x, α) = 0 imply ϕr
1(x, α) = 0.

Then we have the following result.

Proposition A.3. — Let ϕ be an FBI phase at m0 = (x0, ξ0, α0, h0). Then one can find
a precised FBI phase ϕ̃ at m0 such that

ϕ̃(x, α, h) = ϕ(x, α, h) + g(α, h)

with g(α0, h0) = 0. Moreover if the inequality (2.9) (defining qscWFa(u)) is true with
ϕ, it is also true, with other constants, with ϕ̃.

Proof. — Using the hypothesis 4) in Definition A.1 and the implicit function theorem,
we see that there exists a holomorphic function x(α) such that ∂ϕr

1/∂x(x(α), α) = 0,
with x(α0) = x0 and x(α) is real if α is real. Let us set

ϕ̃(x, α, h) = ϕ(x, α, h) − ihϕr
1(x(α), α) .

Since ϕ̃ = ϕ2(x, αξ) + ϕ3(α) + ih(ϕ1(x, α) − ϕr
1(x(α), α)), we see that ϕ̃ satisfies

the hypotheses 1) to 5) in Definition A.1. Since ∂ϕ̃r
1/∂x = ∂ϕr

1/∂x, the solution of
∂ϕ̃r

1/∂x(x, α) = 0 is also x(α) and ϕ̃r
1(x(α), α) = 0.

We introduce now a weaker notion of phase. The reason for that is that, in a
propagation process, even if we begin at the initial time with an FBI phase, after a
while the phase could only be a phase in the following sense.

Definition A.4. — Let m0 = (x0, ξ0, β0) ∈ Rn × Rn × R2n. We shall say that ψ =
ψ(x, β,m, h), defined for (x, β) in a neighborhood W of (x0, β0) in Cn × C2n and for
the parameters (m,h) in a set U ⊂ RN × R+, is a phase at m0 if there exist positive
constants ε0, C0 such that

(1) ψ is holomorphic in W for any (m,h) in U ,
(2) Imψ(x, β,m, h) � 0 if (x, β) ∈ WR = W ∩ Rn × R2n and (m,h) ∈ U ,
(3) |ψ(x, β,m, h)|+

∣∣∂ψ
∂x (x, β,m, h)− ξ0

∣∣ � ε0, for all (x, β) in W and (m,h) in U ,
(4)

∣∣∂ Imψ
∂x (x, β,m, h)

∣∣ � ε0h, for all (x, β) ∈WR, and (m,h) ∈ U ,
(5) |∂αψ(x, β,m, h)| � C0 for |α| � 3, (x, β) ∈W , (m,h) ∈ U ,
(6) Im ∂2ψ

∂x2 (x, β,m, h) � −ε0h Id if (x, β) ∈WR and (m,h) ∈ U .
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For the purpose of the theory, we introduce now the phases of pseudo-differential
operators.

Definition A.5. — Let m0 = (x0, ξ0, α0, h0) ∈ Rn ×Rn ×R2n × [0,+∞[. We shall say
that

ϕ = ϕ(x, y, α, h) = ϕ2(x, y, αξ) + ihϕ1(x, y, α)

is a pseudo-differential phase, near m0 if

(1) ϕj , j = 1, 2, are holomorphic on a neighborhood V of ρ0 = (x0, x0, α0) in
Cn × Cn × C2n.

(2) ϕ2 is real if (x, y, αξ) ∈ VR = V ∩ (Rn × R
n × R

2n).
(3) ϕ2(x, x, αξ) = ϕi

1(x, x, α) = 0.

(4)
∂ϕr

1

∂αx
(x, x, α) = 0 implies ϕr

1(x, x, α) = 0.

(5)
∂ϕ1
∂αx

(ρ0) = 0 and
(∂2ϕr

1

∂α2x
(ρ0)

)
is positive definite. We shall denote by αx(x, αξ)

the solution of
∂ϕr

1

∂αx
(x, x, αx(x, αξ), αξ) = 0 with αx(x0, α0ξ) = α0x, α

0 = (α0x, α
0
ξ).

(6)
∂ϕ

∂x
(x0, x0, α0, h) = −

∂ϕ

∂y
(x0, x0, α0, h) = ξ0, for all h in a neighborhood of h0.

Moreover the matrices
∂2ϕr

1

∂x2
(ρ0) + 2

∂2ϕr
1

∂x∂y
(ρ0) +

∂2ϕr
1

∂y2
(ρ0)

∂2ϕr
1

∂x∂αx
(ρ0) +

∂2ϕr
1

∂y∂αx
(ρ0)

are invertible.
(7) One can find C > 0 such that for every (x, y, α) in VR

ϕr
1(x, y, α) � C

[
(αx − αx(x, αξ))2 + (αx − αx(y, αξ))2

]
.

(8) If h0 = 0, the matrix
∂2ϕ2
∂y∂αξ

(x0, x0, α0ξ) is invertible. If h0 �= 0, the matrices

( ∂2ϕ

∂y∂αξ

)
(ρ0) and M =

(
∂2ϕ

∂y∂αξ
(ρ0) ∂2ϕ

∂y∂αx
(ρ0)

∂2ϕ
∂αx∂αξ

(ρ0) ∂2ϕ
∂α2

x
(ρ0)

)
are invertible.

Then we have,

Proposition A.6. — Let m0 = (x0, ξ0, α0, h0) ∈ Rn × Rn × R2n × [0,+∞[. Let ϕ̃ be a
precised FBI phase at m0. Then

ϕ(x, y, α, h) = ϕ̃(x, α, h)− ϕ̃2(y, αξ)− ϕ̃3(α) + ihϕ̃r
1(y, α) + hϕ̃i

1(y, α)

is a pseudo-differential phase at m0.
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Proof. — Let us remark that if (x, y, α) is real then

ϕ(x, y, α, h) = ϕ̃(x, α, h) − ϕ̃(y, α, h) .

We have ϕ2(x, y, αξ) = ϕ̃2(x, αξ)− ϕ̃2(y, αξ) and ϕ1(x, y, α) = ϕ̃1(x, α) + ϕ̃r
1(y, α) −

iϕ̃i
1(y, α). Then, the conditions 1), 2), 3) in Definition A.5, are trivially satisfied.

Condition 4) is also easily satisfied since ϕ̃ is precised. Let us check 5). We set
ψ = ϕ̃r

1. Let x(α) be the local solution of the problem

(A.2)
∂ψ

∂x
(x(α), α) = 0 , x(α0) = x0 .

Since ϕ̃ is precised, we have ψ(x(α), α) = 0. Differentiating with respect to αx we
obtain,

∂ψ

∂x
(x(α), α)

∂x

∂αx
(α) +

∂ψ

∂αx
(x(α), α) = 0.

Therefore

(A.3)
∂ψ

∂αx
(x(α), α) = 0 , x(α0) = x0 .

Now,
∂ϕ1
∂αx

(ρ0) = 2
∂ϕ̃r

1

∂αx
(x0, α0) = 0,

which is the first part of condition 5). If we differentiate (A.2) and (A.3) with respect
to αx we get,

(A.4)
∂x

∂αx
= −

(∂2ψ
∂x2

)−1 ∂2ψ

∂x∂αx

(A.5)
∂2ψ

∂α2x
= − ∂2ψ

∂αx∂x
· ∂x

∂αx
=
( ∂2ψ

∂αx∂x

)(∂2ψ
∂x2

)−1( ∂2ψ

∂x∂αx

)
" 0 ,

by condition 4) in Definition A.1.
Since

∂2ϕr
1

∂α2x
(ρ0) = 2

∂2ψ

∂α2x
(x0, α0),

the second part of 5) follows.
Let us check now condition 7) since condition 6) follows easily from condition 3),

4) in Definition A.1. We deduce from (A.5) that we can find αx(x, αξ) such that, with
ψ = ϕ̃r

1,

(A.6)
∂ψ

∂αx
(x, αx(x, αξ), αξ) = 0 , αx(x0, α0ξ) = α0x .

By (A.4), the map αx �→ x(α) is, for any αξ, a local diffeomorphism. The inverse
map x−1(x, αξ) satisfies, by (A.2), ∂ψ/∂αx(x, x−1(x, αξ), αξ) = 0. By uniqueness in
(A.2) we obtain x−1(x, αξ) = αx(x, αξ). Then

(A.7) ψ(x, αx(x, αξ), αξ) = ψ(x(αx(x, αξ), αξ), αx(x, αξ), αξ) = 0 .

ASTÉRISQUE 283



A.1. THE PHASES 103

It follows from Taylor’s formula that

ψ(x, α) = ψ(x, αx(x, αξ), αξ) +
∂ψ

∂x
(x, αx(x, αξ), αξ)(αx − αx(x, αξ))

+M(x, α)(αx − αx(x, αξ))2

= M(x, α)(αx − αx(x, αξ))2 .

By (A.5) and condition 4) in Definition A.1 we have M(x0, α0)" 0. Therefore, with
ψ = ϕ̃r

1, we have

(A.8) ψ(x, α) � C |αx − αx(x, αξ)|2 , if (x, α) is real .

Then condition 7) follows from (A.8) since ϕr
1(x, y, α) = ϕ̃r

1(x, α) + ϕ̃r
1(y, α).

To check condition 8) when h0 �= 0, we differentiate (A.2) and (A.3) with respect
to αξ and αx. We get, with ψ = ϕ̃r

1 = ϕ̃r
1(y, α)

(A.9)


∂2ψ

∂αx∂αξ
=
( ∂2ψ

∂αx∂y

)(∂2ψ
∂y2

)−1( ∂2ψ

∂y∂αξ

)
∂2ψ

∂α2x
=
( ∂2ψ

∂αx∂y

)(∂2ψ
∂y2

)−1( ∂2ψ

∂y∂αx

)
.

Let us set A =
(

∂2ψ
∂αx∂y

)(
∂2ψ
∂y2

)−1. By condition 4) of Definition A.1 this is an invertible
matrix at (x0, α0, h0). We set also

B =
( ∂2ψ

∂y∂αξ

)
, C =

( ∂2ψ

∂y∂αx

)
, D =

( ∂2ϕ̃r

∂y∂αξ

)
, E =

( ∂2ϕ̃r

∂y∂αx

)
.

Then the matrix M occurring in condition 8) can be written at ρ0 as

M =
(
D + ihB E + ihC

2ihAB 2ihAC

)
.

Now, condition 5) of Definition A.1 ensures that the matrix
(
D E

B C

)
is invertible.

Since A is invertible it follows that M is uniformly invertible when h � h1 > 0. The
invertibility of

(
∂2ϕ

∂y∂αξ

)
(ρ0) follows from that of

(
∂2 eϕ

∂y∂αξ

)
.

The case h0 = 0 in 8) is easier since ∂2ϕ2
∂y∂αξ

(x0, x0, α0ξ) = −
∂2 eϕ2
∂y∂αξ

(x0, α0) is invertible
by condition 5), Definition A.1.

Remark A.7. — For a general pseudo-differential phase, we still have the correspon-
dence between x(α) and αx(x, αξ). Indeed, by conditions 5), 6) in Definition A.5 we
can solve the problems

∂ϕr
1

∂αx
(x, x, αx(x, αξ), αξ) = 0 , αx(x0, α0ξ) = α0x(∂ϕr
1

∂x
+
∂ϕr

1

∂y

)
(x(α), x(α), α) = 0 , x(α0) = x0 .
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We have ϕr
1(x, x, αx(x, αξ), αξ) = 0 by condition 4) so(∂ϕr

1

∂x
+
∂ϕr

1

∂y

)
(x, x, αx(x, αξ), αξ) = 0 .

The map x �→ αx(x, αξ) is, by condition 6), a local diffeomorphism so we deduce, as
above, that αx(x, αξ) and x(α) are inverse of each other.

A.2. Good contours

Pseudo-differential operators in the complex domain will lead to integrals along
some contours. In this section we define these objects which will be called “good
contours”. Let W an open subset of R

2k ×R
2n and V a subset of R

N × ]0,+∞[. Let
f(x, y, z, h) = f2(x, y, h)+hf1(x, y, z, h) be a real function defined for (y, z) in W and
(x, h) in V .

We shall assume that

(A.10) ∃C > 0 : |∂α(y,z)fj | � C , j = 1, 2 , ∀ (y, z) ∈W , ∀ (x, h) ∈ V , ∀ |α| � 3 .

(A.11)

{
For any (x, h) in V, f has a unique critical point in (y, z)

(denoted (y(x, h), z(x, h))) in W .

(A.12)
The matrix

( ∂2f

∂(y, z)2
)
(x, y(x, h), z(x, h), h) has signature (n+ k, n+ k),

∀h1 > 0, ∃Ch1 > 0 : ∀ (x, h) with h � h1 we have∥∥∥[ ∂2f

∂(y, z)2
(x, y(x, h), z(x, h), h)

]−1∥∥∥ � Ch1 .

(A.13)

∃h2 > 0, C0 > 0 : ∀ (x, h) ∈ V, h ∈ ]0, h2],
∂2f

∂y2
(x, y(x, h), z(x, h), h)

has signature (k, k),
∂2f1
∂z2

(x, y(x, h), z(x, h), h) has signature (n, n) and∥∥∥[∂2f
∂y2

(x, y(x, h), z(x, h), h)
]−1∥∥∥ � C0∥∥∥[∂2f1

∂z2
(x, y(x, h), z(x, h), h)

]−1∥∥∥ � C0 .

Let us remark that (A.13) implies (A.12) for small h.

Definition A.8. — Let f be satisfying (A.10) to (A.13). Let

Γx,h : (Ỹ , Z̃) �−→ (y(x, Ỹ , Z̃, h), z(x, Ỹ , Z̃, h))
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be a map from a neighborhood of (0, 0) in Rk × Rn to W ⊂ R2k × R2n, such that
y(x, 0, 0, h) = y(x, h), z(x, 0, 0, h) = z(x, h). We shall say that Γx,h is a good contour
for f if there exists a positive constant C0 such that, for every (x, h) in V ,

(A.14) f(x, y, z, h)− f(x, y(x, h), z(x, h), h) � −C0
[
|y − y(x, h)|2 + h|z − z(x, h)|2

]
on the contour Γx,h (that means for (y, z) = (y(x, Ỹ , Z̃, h), z(x, Ỹ , Z̃, h))). We assume
moreover that y(x, Ỹ , Z̃, h) = y1(x, Ỹ , h)+hy2(x, Ỹ , Z̃, h) and that for all (x, h) in V ,
(A.15)

|∂α(Y,Z)yj(· · · )|+ |∂α(Y,Z)z(x, Ỹ , Z̃, h)| � C0 , |α| � 2∣∣∣DY,Zy(x, 0, 0, h)
(
Y

Z

) ∣∣∣2 + h
∣∣∣DY,Zz(x, 0, 0, h)

(
Y

Z

) ∣∣∣2 � 1
C0

(|Y |2 + h|Z|2).

Proposition A.9. — Let Γx,h,0 and Γx,h,1 be two good contours for f . Then, there exist
for s ∈ [0, 1] a smooth family Γ̃x,h,s a good contours and δ > 0 such that for every
(x, h) in V ,(

Γx,h,0 � Γ̃x,h,0

)
∪
(
Γx,h,1 � Γ̃x,h,1

)
∪ {∂Γ̃x,h,s : s ∈ [0, 1]} ⊂

{
(y, z) :

f(x, y, z, h) � −δh+ f(x, y(x, h), z(x, h), h)
}
.

Proof. — To prove this result, we first write f in a set of Morse coordinates. This
leads us to check that the change of coordinates is well defined in a fixed neighborhood
of the critical point, that means independent of (x, h) ∈ V and that the constants are
also uniform.

Lemma A.10. — Let A0 be a 2n×2nmatrix which is real, symmetric and has signature

(n, n). Then there exists a matrix Q0 such that A0 = tQ0DQ0 with D =
(
In 0
0 −In

)
and, for all symmetric matrix A, such that ‖A − A0‖ � 1/2‖A−1

0 ‖, one can find
Q = Q(A) such that

(i) A = tQDQ, Q(A0) = Q0,
(ii) ‖Q(A)−Q(B)‖ � ‖A−1

0 ‖1/2‖A−B‖, when ‖A0 −B‖ � 1/2‖A−1
0 ‖,

(iii) ‖Q(A)−1‖ � 2‖A−1
0 ‖‖Q(A)‖,

(iv) ‖Q(A)‖ � ‖A0‖1/2 + 1/2‖A−1
0 ‖1/2.

Here ‖ · ‖ is the matrix norm related to the Euclidian norm in R2n.

Proof. — We write A0 = tOΛO, where O is orthogonal and Λ diagonal ; then we
write Λ = tK0DK0 where K0 is the diagonal matrix which entries are the square
roots of the absolute values of the eigenvalues of A0. We set Q0 = K0O. Then
A0 = tQ0DQ0 and ‖Q0‖2 = ‖A0‖, ‖Q−1

0 ‖2 = ‖A−1
0 ‖. Now we set Q = Q0+R ; then

R must satisfy

A−A0 = tQ0DR+ tRDQ0 + tRDR.
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To solve this equation we define, by induction, Rj , Kj such that

(A.16)

K0 = 0 , Kj+1 = A−A0 − tRjDRj , j � 0

Rj =
1
2
D tQ−1

0 Kj , j � 0 .

It is easily proved that

‖Kj+1 −Kj‖ � 1
4
(
‖Kj‖+ ‖Kj−1‖

)
‖A−1

0 ‖‖Kj −Kj−1‖ , j � 1 .

We deduce, by induction, from this inequality that, for j � 1,
‖Kk‖ � 1

‖A−1
0 ‖

, 0 � k � j

‖Kj −Kj−1‖ � 1
2j−1

‖A−A0‖ .

It follows that Kj → K∞, Rj → R∞ and R∞ solves our initial equation. Now, if we
denote by K ′

j , R
′
j the solution of (A.16) with B instead of A, we have,

‖K ′
j −Kj‖ � ‖A−B‖+ 1

2
‖K ′

j−1 −Kj−1‖ ,

which implies that

‖K ′
j −Kj‖ � 2‖A−B‖ − 1

2j−1
‖A−B‖ .

Then

‖Q(A)−Q(B)‖ = ‖R∞ −R′
∞‖ � 1

2
‖Q−1

0 ‖‖K∞ −K ′
∞‖ � ‖Q−1

0 ‖ · ‖A−B‖.

Finally

‖Q‖ � ‖Q0‖+ ‖R‖ � ‖A0‖1/2 +
1
2
‖Q−1

0 ‖
1

‖A−1
0 ‖

� ‖A0‖1/2 +
1

2‖A−1
0 ‖1/2

and
‖Q−1‖ = ‖A−1 tQD‖ � ‖A−1‖ · ‖Q‖ � 2‖A−1

0 ‖ · ‖Q‖.

Proof of Proposition A.9. — We shall consider the case where h is small ; the case h
large follows the same lines and y, z play the same role. We write

f(x, y, z, h) = f(x, y(x, h), z(x, h), h) +
(
t(y − y(x, h)), t(z − z(x, h))

)
(A.17) (

A1 hB

h tB hA2

)(
y − y(x, h)
z − z(x, h)

)
,

where A1, B, A2 depend on (x, y, z, h) and satisfy the estimates∥∥∥A1 − ∂2f

∂y2
(mx,h)

∥∥∥ � C1
(
|y − y(x, h)|+ h|z − z(x, h)|

)
,

∥∥∥B − ∂2f

∂y∂z
(mx,h)

∥∥∥ � C1
(
|y − y(x, h)|+ |z − z(x, h)|

)
,
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∥∥∥A2 − ∂2f

∂z2
(mx,h)

∥∥∥ � C1
(
|y − y(x, h)|+ |z − z(x, h)|

)
,

where mx,h = (x, y(x, h), z(x, h), h) and C1 is a constant which depends only on the
constant C in (A.10).

We wish to apply the Lemma A.10 to A1, so we need that

C1
(
|y − y(x, h)|+ h|z − z(x, h)|

)
� 1

2
∥∥∥(∂2f

∂y2
(mx,h)

)−1∥∥∥ .
It follows from (A.13) that this will be achieved if

(A.18) |y − y(x, h)|+ h|z − z(x, h)| � 1
2C0C1

.

Under this condition, the Lemma A.10 implies that one can find Q1 = Q1(x, y, z, h)
such that

A1 = tQ1D1Q1 where D1 =
(
Ik 0
0 −Ik

)
.

Since A1 = A′
1(x, y, h) + hA′′

1 (x, y, z, h), it follows from Lemma A.10, (ii), that
Q1 = Q′

1(x, y, h) + hQ′′
1(x, y, z, h), with Q′

1 = Q(A′
1). Moreover ‖Q1‖ and ‖Q−1

0 ‖
are uniformly bounded by constants which depend only on C0, C in (A.10), (A.13).

It follows that we have(
A1 hB

h tB hA2

)
=
(

tQ1 0
0 I

)(
D1 h tQ−1

1 B

h tBQ−1
1 hA2

)(
Q1 0
0 I

)
.

Let us set tQ−1
1 B = B1 and let us look for Q2 such that(

I 0
h tQ2 I

)(
D1 hB1
h tB1 hA2

)(
I hQ2
0 I

)
=
(
D1 0
0 hA3

)
.

This will be achieved if D1Q2 +B1 = 0 and we find

A3 = A2 + h(tB1Q2 + tQ2B1 + tQ2D1Q2).

Then Q2 = −D−1
1 B1 and ‖Q2‖ is uniformly bounded. Moreover if h is small enough,

A3 will satisfy the hypothesis of Lemma A.10 if

|y − y(x, h)|+ |z − z(x, h)| � C2,

where C2 depends only on C0, C, C1 in (A.10), (A.13). It follows that one can find

Q3 such that A3 = tQ3D2Q3 with D2 =
(
In 0
0 −In

)
. Then(

A1 hB

h tB hA2

)
=
(

Q1 0
h tQ2 Q3

)(
D1 0
0 hD2

)(
Q1 hQ2
0 Q3

)
.

Now we introduce the coordinates
Y = Q1(x, y, z, h)(y − y(x, h)) + hQ2(x, y, z, h)(z − z(x, h))

Z = Q3(x, y, z, h)(z − z(x, h)) .
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This is a change of coordinates from U to Ũ , where U contains a fixed ball with center
(y(x, h), z(x, h)) and Ũ contains a fixed ball with center (0, 0). Moreover, there exists
a uniform constant C3 such that

1
C3
|z − z(x, h)| � |Z| � C3 |z − z(x, h)|

1
C3

[
|y − y(x, h)|+ h|z − z(x, h)|

]
� |Y |+ h|Z| � C3

[
|y − y(x, h)|+ h|z − z(x, h)|

]
.

Now, if we write f is the coordinates (X,Z) we get

f(x, Y, Z, h) = f(x, y(x, h), z(x, h), h) + Y 21 − Y 2
2 + h(Z21 − Z22 )

where Y = (Y1, Y2) ∈ Rk × Rk, Z = (Z1, Z2) ∈ Rn × Rn. So a good contour for f
must satisfy

|Y1|2 − |Y2|2 + h(|Z1|2 − |Z2|2) � −C
(
|Y1|2 + |Y2|2 + h|Z1|2 + h|Z2|2

)
.

Therefore, on such contour we have

(A.19) |Y1|2 + h|Z1|2 � δ(|Y2|2 + h|Z2|2) , 0 < δ < 1 .

The contour, in the coordinates (Y, Z) satisfies the conditions (A.15), since we have
seen that Q1 = Q′

1(x, y, h) + hQ′′
1 (x, y, z, h). Let us denote by (Ỹ , Z̃) the parameters

on the contour and

Y (x, Ỹ , Z̃, h) = Y 1(x, Ỹ , h) + hY 2(x, Ỹ , Z̃, h) .

It follows from (A.19), using a Taylor expansion of (Y, Z), that there exists a constant
C4, depending only on fixed constants, such that∣∣∣∂Y 11

∂Ỹ
Ỹ
∣∣∣2 + h

∣∣∣∂Z1
∂Z̃

Z̃
∣∣∣2 � δ

(∣∣∣∂Y 12
∂Ỹ

Ỹ
∣∣∣2 + h

∣∣∣∂Z2
∂Z̃

Z̃
∣∣∣)(A.20)

+C3
(
|Ỹ |3 + h|Z̃|3 + h1/2 |Ỹ |2 + h3/2 |Z̃|2

)
.

Therefore, if
∂Y 12

∂Ỹ
Ỹ = 0,

∂Z2

∂Z̃
Z̃ = 0,

it follows from (A.15) that

C3(· · · ) +
∣∣∣∂Y 11
∂Ỹ

Ỹ
∣∣∣2 + h

∣∣∣∂Z1
∂Z̃

Z̃
∣∣∣2 � 1

C0

(
|Ỹ |2 + h |Z̃|2

)
.

Using (A.20) we see that this implies Ỹ = Z̃ = 0. Thus the map

(
∂Y 1

1

∂ eY 0
0 ∂Z2

∂ eZ

)
:

Rk+n → Rk+n is bijective.
It follows that we can solve the system in (Ỹ , Z̃){

Y2 = Y 1
2 (x, Ỹ , h) + hY 2

2 (x, Ỹ , Z̃, h)

Z2 = Z2(x, Ỹ , Z̃, h)

if h and |Y2|+ |Z2| are small enough.

ASTÉRISQUE 283



A.3. PSEUDO-DIFFERENTIAL OPERATORS IN THE COMPLEX DOMAIN 109

Therefore any good contour can be parametrized by (Y2, Z2). If we have two good
contours parametrized in the Morse coordinates by (Y2, Z2), that means that we have
Γx,h,j = (Y j

1 (x, Y2, Z2, h), Z
j
1(x, Y2, Z2, h)), j = 0, 1, then

Γ̃x,h,s =
(
sY 1

1 (x, Y2, Z2, h) + (1− s)Y 0
1 (x, Y2, Z2, h), sZ

1
1 (· · · ) + (1 − s)Z01 (· · · )

)
is a good contour, since it satisfies (A.19) and it is the family that we looked for.

A.3. Pseudo-differential operators in the complex domain

We follow here Sjöstrand [Sj]. The parameter λ will be replaced by h−2k−1 and
the weight of the spaces Hϕ will depend on some parameters (including h and k).

Let W be a neighborhood of a point x0 ∈ CN . Let V ⊂ Rd×R+×R+ be the set of
parameters m,h, k. Let ϕ = ϕ(x;m,h, k) be a real function which is C∞ with respect
to x inW and satisfies

∑
|α|�2 supV×W |∂αxϕ| � C. We shall say that u = u(x;m,h, k)

belongs to Hϕ if

(i) for any (m,h, k) in V, x �→ u(x;m,h, k) is holomorphic in W ,
(ii) there exist C > 0, M > 0 such that for any (m,h, k) in V and x in W

|u(x;m,h, k)| � C (hk)−M eh
−2k−1ϕ(x;m,h,k) .

To any (m,h, k) in V we associate a function a = a(x, y, ξ;m,h, k) holomorphic with
respect to (x, y, ξ) in a neighborhood W̃ of

(
x0, x0,

2
i
∂ϕ
∂x (x0;m,h, k)

)
and uniformly

bounded. It will be called “analytic symbol”. We consider now

Γh(x0) =
{
(y, ξ) ∈ C

N × C
N : |x0 − y| < r, ξ =

2
i

∂ϕ

∂x
(x0;m,h, k) + iR(x0 − y)

}
.

Here R is large enough but r is so small that Γh(x0) is contained in the set where a
is holomorphic.

Now, for u ∈ Hϕ, we set

Au(x;m,h, k)(A.22)

=
(h−2k−1

2π

)N ∫∫
Γh(x0)

eih
−2k−1(x−y)·ξa(x, y, ξ;m,h, k)u(y;m,h, k)dydξ .

Then Au is holomorphic with respect to x near x0 and modulo a term which is
uniformly bounded by e−δh−2k−1

, δ > 0, we can integrate, in (A.22), on Γh(x) instead
of Γh(x0). Moreover one can see that Au ∈ Hϕ.

To invert the elliptic symbols, we have to modify slightly the argument of Sjöstrand.
We shall say that a(x, ξ, λ;m,h, k) =

∑
j�0 λ

−jaj(x, ξ;m,h, k) is a formal analytic
symbol if one can find a neighborhood of (x0, ξ0), a set V containing the parameters
(m,h, k) and C0 > 0 such that

(A.23) |aj(x, ξ;m,h, k)| � Cj+1
0 jj/2 , ∀ (x, ξ) ∈W , ∀ (m,h, k) ∈ V .
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We shall set

A =
∑
j�0

λ−j λ
−2|α|

α!
∂αξ ajD

α =
∑
k�0

λ−kAk(x, ξ;m,h, k,D) =
∑
k�0

λ−kAk .

Let t0 > 0 and, for t ∈ ]0, t0], Ωt be an open subset of CN such that
i) Ωs ⊂ Ωt, if s < t,
ii) ∃ δ > 0 : ∀ s < t, ∀x ∈ Ωs, B(x, δ(t− s)) ⊂ Ωt ⊂ Ωt0 ⊂W .
Let H(Ωt) be the space of holomorphic functions on Ωt, endowed with the sup

norm and Es,t = L(H(Ωt),H(Ωs)) be the space of bounded linear operator with the
corresponding norm ‖ · ‖s,t. Then

1) Ak ∈ Es,t

2) ‖Ak‖s,t � Ck+1
1 kk/2(t− s)−k, if s < t.

We set fk = sup0<s<t�t0
(t−s)k

kk/2 ‖Ak‖s,t and ‖a‖ρ =
∑

k�0 ρ
k fk. Then a is a formal

analytic symbol iff one can find ρ0 > 0 such that ‖a‖ρ0 < +∞.
To a formal symbol a, we can associate an operator Op(a) obtained by the for-

mula (A.22), where a has been replaced by
∑

|j|� 1
C2

h−2k−1 (h2k)j aj(x, ξ;m,h, k), with
C2 large enough.

Conversely we can associate to the operator defined by (A.22), a formal analytic
symbol given by

σA =
∑ 1

α!
1

(iλ2)|α|
(∂αξ ∂

α
y a)(x, x, ξ;m,h, k) , λ2 = h−2k−1 .

The formula (4.4) and the Lemma 4.1 in [Sj] show that if u ∈ Hϕ,

∃C > 0 , ∃ ε > 0 : |(Op(σA)−A)u| � Ceh
−2k−1(ϕ−ε) .

On the other hand if we define, on the set of formal symbols, the composition by

a#b =
∑
α

1
α!

1
(iλ2)|α|

∂αa

∂ξα
∂αb

∂xα
, λ2 = h−2k−1

the Theorem 4.2 in [Sj] shows that if u ∈ Hϕ one can find C > 0, ε > 0 such that∣∣[Op(a#b)−Op(a) ◦Op(b)]u
∣∣ � Ceh

−2k−1(ϕ−ε) .

The Lemmas 1.3 and 1.4 in [Sj] still hold and we can invert the elliptic formal symbols
i.e. those for which |a0(x, ξ;m,h, k)| � C > 0 for all (x, ξ) in W and (m,h, k) in V .

If the operator A given by (A.22) is elliptic, which means that,

∃C > 0 : ∀ (x, y, ξ) ∈ W̃ , ∀ (m,h, k) ∈ V , |a(x, y, ξ;m,h, k)| � C

then its associate formal symbol σA is elliptic and one can find a formal symbol b
such that

Id ≡ Op(σA#b) ≡ Op(σA) ◦Op(b) ≡ A ◦Op(b) in Hϕ .

The equality ≡ in Hϕ means that the difference applied to u ∈ Hϕ is bounded by
Ceh

−2k−1(ϕ−ε).
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We shall use the Remark 4.3 in [Sj] which we recall. Let ψ = ψ(x, y, ξ;m,h, k) be
holomorphic near (x0, x0, ξ0) uniformly bounded which satisfies

(A.24)


ψ|x=y = 0 ,

M =
( ∂2ψ

∂x∂ξ

)
is invertible and ‖M−1‖ is uniformly bounded.

Let us set

Au(x;m,h, k) =
(h−2k−1

2π

)N
∫∫

Γ

eih
−2k−1ψ(x,y,ξ;··· )a(x, y, ξ;m,h, k)u(y;m,h, k)dydξ

where a is an analytic symbol near (x0, y0, ξ0) and Γ a contour, which will be described
below, such that A will be an operator on the complex domain. Thanks to (A.24), we
can write ψ(x, y, ξ; · · · ) = (x−y) ·f(x, y, ξ;m,h, k) and the map ξ �→ f(x, y, ξ;m,h, k)
is a local diffeomorphism on a neighborhood which is independent of (x, y,m, h, k).
Let us denote by g the inverse map ξ = g(x, y, θ;m,h, k) and let ã be an analytic
symbol. We set

Ãu(x; · · · ) =
(h−2k−1

2π

)N
∫∫

eΓ
eih

−2k−1(x−y)·θ ã(x, y, θ;m,h, k)u(y;m,h, k)dydθ

where

Γ̃ =
{
(y, θ) : |x− y| < r, θ =

∂ψ

∂x
(x0, x0, ξ0; · · · ) + iR(x− y)

}
.

Then Ã is an operator on Hϕ if
∣∣∂ψ
∂x (x0, x0, ξ0; · · · )−

2
i
∂ϕ
∂x (x0; · · · )

∣∣ is small enough.
Now, if in the integral defining Au we took Γ = g(x, Γ̃;m,h, k) and if in Ã we

took ã(x, y, θ; · · · ) = a(x, y, g(x, y, θ; · · · ), · · · ) Jac(g(x, y, θ; · · · )) then A = Ã in Hϕ.
Moreover a is elliptic iff ã is elliptic.

We would like now to define an operator on the complex domain using a pseudo-
differential phase ϕ = ϕ(x, y, α, h) whose definition is given in Definition A.5. Let
a = a(x, y, α;h, k) be an analytic symbol. Here the parameters are (h, k). Formally
this operator will be given by

Au(x;α, h, k)(A.25)

=
(h−2k−1

2π

)n(h−1k−1
2π

)n/2 ∫∫
Γ

eih
−2k−1ϕ(x,y,α;h)a(x, y, α;h, k)u(y;h, k)dydα.

Here ϕ and a are holomorphic near (x0, x0, α0) and u is holomorphic near x0.
Let us describe the contour Γ. Let ϕ = ϕ2(x, y, αξ)+ihϕ1(x, y, α). Let αx(x, y, αξ)

be the solution of ∂ϕ1
∂αx

(x, y, αx(x, y, αξ), αξ) = 0 with αx(x0, x0, α0ξ) = α0x. We have
αx(x, x, αξ) = αx(x, αξ), with the notation of Definition A.5, 5). Let Γαx be the
contour given by αx = αx(x, y, αξ) + t, where t ∈ Rn, |t| � δ, and let us set

b(x, y, αξ, h, k) =
(h−1k−1

2π

)n/2

eh
−1k−1ϕ1(x,y,αx(x,y,αξ),αξ)

∫
Γαx

e−h−1k−1ϕ1(x,y,α)

· a(x, y, α, h, k)dαx .
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Since
(∂2ϕr

1
∂α2

x
(x0, x0, α0)

)
" 0 (Definition A.5, 5)), we obtain easily, from the Taylor

formula that b is an analytic symbol near (x0, x0, α0ξ). Moreover if a is elliptic then b

is elliptic if hk is small enough (here αξ plays the role of ξ). Let us remark that if we
change δ in the definition of the contour Γαx then we obtain, in b, an error which is
O(e−εh−1k−1

). This error was not negligible in the case of Sjöstrand [Sj]. However it
has no consequence here according to our definition of qscWFa.

Now we want to give a meaning to

Au(x;α, h, k) =
(h−2k−1

2π

)n
∫∫
Γ′
eih

−2k−1[ϕ2(x,y,αξ)+ihϕ1(x,y,αx(x,y,αξ),αξ)](A.26)

b(x, y, αξ;h, k)u(y;h, k)dydαξ .

Let us show now that the phase

ψ(x, y, αξ, h) = ϕ2(x, y, αξ) + ihϕ1(x, y, αx(x, y, αξ), αξ)

satisfies the condition (A.24). First of all, conditions 3) and 4) in Definition A.5 show
that ψ = 0 if x = y. Assume now that h is small. Then

∂2ψ

∂x∂αξ
=

∂2ϕ2
∂x∂αξ

+O(h)

and since ϕ2(x, x, αξ) ≡ 0, we have

∂2ϕ2
∂x∂αξ

= − ∂2ϕ2
∂y∂αξ

,

so the second condition on ψ follows from 8), Definition A.5. When h � δ > 0, we
use instead conditions 5) and 8).

Now we have
∂ψ

∂x
(x0, x0, α0ξ) =

∂ϕ2
∂x

(x0, x0, α0ξ) + ih
∂ϕ1
∂x

(x0, x0, α0)

+ ih
∂ϕ1
∂αx

(x0, x0, α0) ·
∂αx

∂x
(x0, x0, α0ξ)

=
∂ϕ

∂x
(x0, x0, α0, h) = ξ0,

by condition 6) Definition A.5. By the discussion made after (A.24), if we set,

Γ̃ =
{
(y, θ) : |x− y| < r, θ = ξ0 + iR(x− y)

}
then Γ′ = g(x, y, Γ̃) is a good contour, and A in (A.26) is well defined on Hχ as soon
as

∣∣2
i
∂χ
∂x − ξ0

∣∣ is small enough.
Thus we have obtained a contour Γ in (A.25) where αx ∈ Γαx , (y, αξ) ∈ Γ′ and we

show now that this contour is a good contour for f = Re(iϕ). We shall use the results
of § 2. Our function f is here a function of (x, y, z, h) where y stands for (y, αξ) and
z = αx. With these notation we have f(x, y, z, h) = f2(x, y) + hf1(x, y, z), where
f2 = Re(iϕ2) and f1 = −Reϕ1 = −ϕr

1.
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We may assume, making a translation, that (ignoring x which is fixed)

f2(0) = f1(0, 0) = 0,
∂2f1
∂z2

(0, 0) invertible.

Let z(y) be the solution of

∂f1
∂z

(y, z(y)) = 0, z(0) = 0.

Then if z(y) + t is a good contour for ϕ1, which means that on the contour we have

f1(y, z(y) + t)− f1(y, z(y)) � −C |t|2

and if we have a good contour in y for f2(y) + hf1(y, z(y)) which reads

f2(y) + hf1(y, z(y)) � −C |y|2,

on the contour, then the contour in (y, z), (y, z = z(y) + t) is a good contour for
f2(y) + hf1(y, z) since

f2(y) + hf1(y, z(y) + t) = f2(y) + hf1(y, z(y)) + h(f1(y, z(y) + t)− f1(y, z(y))

� −C |y|2 − Ch |t|2

on the contour and conditions (A.15) are satisfied.

A.4. Pseudo-differential operators in the real domain

Let m0 = (x0, ξ0, α0, h0) ∈ Rn × Rn × R2n × [0,+∞[ and ϕ a pseudo-differential
phase near m0 (Definition A.5). Let V be a neighborhood of α0 in R2n. We set,
following Sjöstrand,

∇V =
{
(x, y, α) ∈ R

n × R
n × R

2n : x = y, αx = αx(x, αξ), α ∈ V
}

where
∂ϕr

1

∂x
(x, y, αx(x, y, αξ), αξ) = 0

and αx(x, αξ) = αx(x, x, αξ). Let a be an analytic symbol. Then we set, for x real,
(A.27)

AV u(x;h, k) =
∫∫

α∈V

eih
−2k−1ϕ(x,y,α,h)a(x, y, α;h, k)χ(x, y, α)u(y;h, k)dydα.

Here χ is a cut-off function which localizes in the set where ϕ satisfies the conditions
of Definition A.5, χ = 1 near ∇V and a is an analytic symbol.

Here is an important result in this theory which will be used later on.

Theorem A.11. — Let ψ be a phase in the sense of Definition A.4, b an analytic sym-
bol, ϕ a pseudo-differential phase, a an analytic symbol and let AV be defined by
(A.27). Then one can find ε1 > 0 (depending only on C0, in Definition A.4, and ϕ)
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such that if ε0 < ε1 then there exist δ > 0, C > 0 such that for all (x, β) in W and
all (m,h) in U , we have

AV
(
eih

−2k−1ψ(·,β,m,h) b(·, β,m, h, k)
)
= eih

−2k−1ψ(x,β,m,h) c(x, β,m, h, k) + d

where |d| � Ce−δh−1k−1
, c is an analytic symbol and

c = e−ih−2k−1ψ(x,β,m,h)A
(
eih

−2k−1ψ(·,β,m,h)b(·, β,m, h, k)
)

where, in the last expression, A acts in the complex domain as an operator on H− Imψ,
modulo error terms bounded by Ce−δh−1k−1

.

Proof. — The first step is to study the phase θ = ϕ+ψ, which occurs in the expression
of AV (eih

−2k−1ψb).

Lemma A.12. — Let ψ be a phase in the sense of Definition A.4. Let ϕ be a pseudo-
differential phase (Definition A.5). We set

θ(x, y, α, β,m, h) = ϕ(x, y, α, h) + ψ(y, β,m, h) .

Then for all (x, β) in W , all (m,h) in U there exist y(x, β,m, h), α(x, β,m, h) such
that

∂θ

∂y
(x, y(x, β,m, h), α(x, β,m, h),m, h) =

∂θ

∂αx
(· · · ) = ∂θ

∂αξ
(· · · ) = 0 .

Moreover (y, α) satisfies the following properties

(i) y(x, β,m, h) = x.
(ii) αx(x, β,m, h) = αx(x, αξ(x, β,m, h)) where αx is the real on the real.
(iii) There exist ε1 > 0, C > 0 such that, for 0 < ε0 < ε1,

| Imαξ(x, β,m, h)| � Cε0h, for (x, β) ∈W ∩ R
3n ,

ε1 and C depend only on C0 (Definition A.4) and ϕ.

Proof. — Let us note that in ii) the function αx in the right hand side is the function
which appears in 5) Definition A.5, that is (thanks to 3))

∂ϕ1
∂αx

(x, x, αx(x, αξ), αξ) = 0 .

Moreover we have
∂ϕ2
∂αξ

(x, x, αξ) = 0,
∂ϕi

1

∂αξ
(x, x, α) = 0

and thanks to 4) Definition A.5, differentiating with respect to αξ, we get

∂ϕr
1

∂αξ
(x, x, αx(x, αξ), αξ) = 0.

It follows that (y(x, αξ) = x, αx(x, αξ)) is a solution of

∂ϕ

∂αx
(· · · ) = ∂ϕ

∂αξ
(· · · ) = 0 , y(x0, α0ξ) = x0 , αx(x0, α0ξ) = α0x .
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It remains to solve
∂θ

∂y
(x, x, αx(x, αξ), αξ, β,m, h) = 0,

with respect to αξ. Let us denote by α1ξ(x, β,m, h) the solution of

(A.28)
∂ϕ2
∂y

(x, x, αξ) +
∂ψr

∂y
(x, β,m, h) = 0

for αξ in a neighborhood of α0ε. This equation can be solved since
(

∂2ϕ2
∂y∂αξ

)
is invertible.

We note that α1ξ is real if (x, β) is real. Now, let us denote by αξ(x, β,m, h) the
solution in αξ (near α0ξ) of the equation,

(A.29)
∂ϕ

∂y
(x, x, αx(x, αξ), αξ, h) +

∂ψ

∂y
(x, β,m, h) = 0 .

One can solve (A.29) if the matrix

∂2ϕ

∂y∂αξ
− ih

( ∂2ϕ1
∂y∂αx

)
·
(∂2ϕ1
∂α2x

)−1
·
( ∂2ϕ1
∂αx∂αξ

)
is invertible, which is implied by the condition 8) of Definition A.5, since

(
A B

D C

)
is

invertible iff A−BC−1D is invertible.
Since α1ξ(x, β,m, h) is real for (x, β) real, we have

| Imαξ| = | Im(αξ − α1ξ)| � |αξ − α1ξ |.

To prove that |α1ξ − αξ| � Cε0h, we apply the following result.

Lemma A.13. — Let F,G be C2 function from RN to RN . Let X0, η0 in RN and
assume that F (X0) = η0, G(X0) = 0. Let us assume that the matrices

∂F

∂X
(X0) and

∂(F + hG)
∂X

(X0)

are invertible.
Let X(η) be the solution of F (X(η)) = η. Let Y (η, h) be the solution of

(F + hG)(Y (η, h)) = η,

for η close to η0. Then

|Y (η, h)−X(η)| � Ch|η − η0| .

First of all, Lemma A.13 implies the claim iii) in Lemma A.12 since it follows from
4), Definition A.4 that

∣∣∂ψr

∂y −
∂ψ
∂y

∣∣ � ε0h. Moreover let us note that we can solve
(A.28), (A.29) with a right hand side η, keeping the conclusion of Lemma A.12 if
|η| � ε0, with ε0 small.
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Proof of Lemma A.13. — We have

η = F (X(η)) = F (Y (η)) +
∂F

∂X
(Y (η))(X(η) − Y (η)) +O(|X(η)− Y (η)|2).

Moreover

∂F

∂X
(Y (η)) =

∂F

∂X
(X0) +O(|η − η0|) and F (Y (η)) = η − hG(Y (η)).

Since |G(Y (η))| � C |η − η0| we get

|X(η)− Y (η)| � C(h|η − η0|+ |X(η)− Y (η)|2)

and the lemma follows.

Proof of Theorem A.11. — Recall that θ = ϕ + ψ = θ2 + ihθ1, where θ2 = ϕ2 + ψ,
θ1 = ϕ1. We show first that f = − Im θ satisfies the conditions (A.10) to (A.13). We
have f = f2 + hf1 with f2 = − Im θ2, f1 = −Re θ1. The correspondence between
the variables in f and θ is the following : the variable y (resp. z) in f is the variable
(y, αξ) (resp. αx) in θ. The condition (A.10) is obviously satisfied and (A.11) has
been proved in Lemma A.12. Since θ is holomorphic in (y, α) we are reduced to prove
that some matrices of second derivatives of θ are invertible with uniformly bounded
inverses since the conditions on the signature will follow from the holomorphy. Let
us begin by (A.13), which is the case of small h. We have

∂2θ1
∂α2x

=
∂2ϕ1
∂α2x

and the later is uniformly invertible by conditions 3), 5) in Definition A.5 (since they
are taken at the point (x, x, αx(x, αξ), αξ, h)). Now we have

∂2θ2
∂(y, αξ)2

=

 ∂2θ2
∂y2

∂2ϕ2
∂y∂αξ

∂2ϕ2
∂αξ∂y

∂2ϕ2
∂α2

ξ

 .

We have
∂2ϕ2
∂α2ξ

(x, x, αξ) = 0

(condition 3)) and ∂2ϕ2
∂y∂αξ

is invertible (condition 8)). If h is small enough, it follows

that ∂2θ
∂y∂αξ

is invertible with a uniformly bounded inverse.
Let us consider now the case h large. We have

∂2θ

∂(y, α)2
=


∂2θ
∂y2

∂2ϕ
∂y∂αξ

∂2ϕ
∂y∂αx

∂2ϕ
∂αξ∂y

∂2ϕ
∂α2

ξ

∂2ϕ
∂αξ∂αx

∂2ϕ
∂αx∂y

∂2ϕ
∂αx∂αξ

∂2ϕ
∂α2

x

 .
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At the point (x, x, αx(x, αξ), αξ) we have ∂2ϕ2
∂α2

ξ
= 0. Then ∂2ϕ

∂α2
ξ

∂2ϕ
∂αξ∂αx

∂2ϕ
∂αx∂αξ

∂2ϕ
∂α2

x

 = ih

 ∂2ϕ1
∂α2

ξ

∂2ϕ1
∂αξ∂αx

∂2ϕ1
∂αx∂αξ

∂2ϕ1
∂α2

x

 .

Since
∂ϕ1
∂αx

=
∂ϕ1
∂αξ

=
∂ϕ2
∂αξ

= 0

at the critical point, we can prove (as in (A.9)) that

∂2ϕ

∂α2ξ
=

∂2ϕ1
∂αξ∂αx

(∂2ϕ1
∂α2x

)−1 ∂2ϕ1
∂αx∂αξ

.

Thus we can write

∂2θ

∂(y, α)2
=

 a B C
tB ihDE−1tD ihD
tC ihtD ihE

 = M .

Now, by condition 8), the matrix
(

B C

ihtD ihE

)
is invertible. This is equivalent to

(B − CE−1tD) invertible. Combining the second and the third “line”, we see that
M is invertible if (tB − DE−1tC) is invertible, which is the case, since E is sym-
metric. We are going now to change the contour of integration in the integral giving
AV (eih

−2k−1ψb), in order to integrate on a good contour. Then proposition will follow,
since, by Proposition A.9, we can then change this good contour to the good contour
(Γαx ,Γ′) given after (A.25), (A.26).

Let χ0(x, y, α) ∈ C∞
0 be a cut-off function with suppχ0 ⊂ {χ = 1} (where χ

appears in the right hand side of (A.27)), χ0 = 1 in a neighborhood of ∇V (see the
beginning of § 4) and χ0 � 0.

For s ∈ [0, 1], we set

Γs : y = ỹ + isδχ0(x, ỹ, α)
∂θ

∂y
(x, ỹ, α, β,m, h) , where ỹ ∈ R

n .

For each α ∈ V , the contour Γ0 = Rn is modified in a set where χ = 1. Therefore in
AV (· · · ) (see (A.27)) by holomorphy, we can integrate on Γ1 instead of Γ0.

Let now χ2 ∈ C∞
0 , suppχ2 ⊂ {χ0 = 1}, χ2 = 1 on a neighborhood of ∇V and

χ2 � 0.
Let χ1 ∈ C∞

0 , suppχ1 ⊂ {χ2 = 1}, χ1 = 1 near ∇V , χ1 � 0. For s ∈ [0, 1] and
α̃ ∈ V we set,

(A.30)


y = ỹ , ỹ ∈ R

n ,

αξ = α̃ξ + sχ2(x; ỹ, α̃)(αξ(x, β,m, h)− α0ξ) , α̃ξ ∈ R
n ,

αx = α̃x + sχ2(x, ỹ, α̃)(αx(x, β,m, h)− α0x) , α̃x ∈ R
n ,
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and we define

Γ̃s



y = y + iδχ0(x, ỹ, α̃)
∂θ

∂y
(x, y, α, β,m, h) ,

αξ = αξ + isδχ1(x, ỹ, α̃)
∂θ

∂αξ
(x, y, α, β,m, h) ,

αx = αx .

We have Γ̃0 = Γ1. Let us compute θ on Γ̃s. We have

θ(x, , y, α,m, h) = θ(x, y, α, β,m, h) + iδχ0(x, ỹ, α̃)
∣∣∣∂θ
∂y

(x, y, α, β,m, h)
∣∣∣2

+isδχ1(x, ỹ, α̃)
∣∣∣ ∂θ
∂αξ

(x, y, α, β,m, h)
∣∣∣2 +O

(
δ2χ20

∣∣∣∂θ
∂y

∣∣∣2 + s2 δ2χ21

∣∣∣ ∂θ
∂αξ

∣∣∣2) .
If δ is small enough we get

Im θ(x, y, α, β,m, h) � Im θ(x, y, α, β,m, h)+
δ

2
χ0(x, ỹ, α̃)

∣∣∣∂θ
∂y

(x, y, α, β,m, h)
∣∣∣2(A.31)

+
δ

2
sχ1(x, ỹ, α̃)

∣∣∣ ∂θ
∂αξ

(x, y, α, β,m, h)
∣∣∣2 .

We show now that we can restrict the contour to the set where χ1 = 1. By
Lemma A.12 we have | Imαξ(x, β,m, h)| � Cαhε0. Therefore,

θ(x, y, α, β,m, h) = θ(x, y,Reα, β,m, h) +O(ε0h) ,

(where O means uniformly bounded by a constant depending only on Cα and ϕ). It
follows that

Im θ(x, y, α, β,m, h) � h Reϕ1(x, y,Reα, β,m, h) +O(ε0h)

since Imψ � 0 on the real; then, by (A.30) and condition 7) in Definition A.5, we get
on the contour

Im θ � Ch
[
(Reαx − αx(x,Reαξ))

2 + (Reαx − αx(y,Reαξ))
2
]

+
δ

2
χ0(x, ỹ, α̃)

∣∣∣∂θ
∂y

(x, y, α, β,m, h)
∣∣∣2 +O(ε0h) .

Now since χ1 = 1 on a neighborhood of ∇V we see that if (x, ỹ, α̃) ∈ Rn × Rn × R2n

belongs to the set {χ1 < 1} we have |α̃x − αx(x, α̃ξ)|+ |α̃x − αx(y, α̃ξ)| � δ > 0 with
a uniform δ. For this we use that, in the integral (A.27), α is bounded and that, by
Remark A.7, αx(x, α̃ξ) = βx ⇔ x = x(βx, α̃ξ). Now

|Reαx − αx(x; Reαξ)|+ |Reαx − αx(y,Reαξ)|
� |α̃x−αx(x, α̃ξ)|+ |α̃x−αx(y, α̃ξ)|+O(|αx(x, β,m, h)−α0x|+ |αξ(x, β,m, h)−α0ξ |

� δ +O(|x − x0|) � δ

2
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if |x− x0| is small enough. It follows that Im θ � C1h on this set. This gives an error
term which is O(e−C1h

−1k−1
). In the set {χ1 = 1}, on the boundary of the contour

Γ̃s we have α̃ ∈ ∂V so, |α − α0| � δ0 > 0. Moreover χ0(x, ỹ, α̃) = 1. Now, since α̃
and α0 are real it follows from (A.30) that,

Imα = sχ2(x; ỹ, α̃) Im[α(x, β,m, h)] = O(h) ,

by the Lemma A.12, iii) and ii). Then,

Im θ � Ch
[
|αx − αx(x, αξ)|2 + |αx − αx(y, αξ)|2

]
+
δ

2

∣∣∣∂θ
∂y

(x, y, · · · )
∣∣∣2 +O(ε0h+ h2) .

Claim. — Let |a|+ |b|+ |c| � d1. Then, the problem in (y, α),
αx(x, αξ) = αx + a

αx(y, αξ) = αx + b

∂θ

∂y
(x, y, α, β,m, h) = c

has a unique solution (y, α) such that,

|α− α0|+ |y − y0| � Cd1

with a positive C which is independent of (β,m, h) and d1. Assume this claim true.
Then if d1 is such that Cd1 = 1

2 δ0 we get

|αx(x, αξ)− αx|2 + |αx(y, αx)− αx|2 +
δ

2

∣∣∣∂θ
∂y

(x, y, α, β,m, h)
∣∣∣2 � C1 δ

2
0

where C1 depends only on C and δ. It follows then that Im θ � C2h on this set which
gives an error term which is O

(
e−C2h

−1k−1)
.

Therefore we can shift the contour Γ1 = Γ̃0 to Γ̃1 ∩ {χ1 = 1}.

Proof of the claim. — The map

F :
(
y, α

)
�−→

(
αx − αx

(
x, αξ

)
, αx − αx

(
y, αξ

)
,
∂θ

∂y

(
x, y, α, β,m, h

))
is a local diffeomorphism.

Indeed we first note that,

∂αx

∂αξ
= −

(∂2ϕr
1

∂α2x

)−1 ∂2ϕr
1

∂αx∂αξ
,

∂αx

∂y
= −

(∂2ϕr
1

∂α2x

)−1( ∂2ϕr
1

∂x∂αx
+

∂2ϕr
1

∂y∂αx

)
,

and
∂θ

∂α
=

∂ϕ

∂α
.
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It follows that the differential of F at (x0, α0) is (uniformly in (β,m, h)) invertible if
the matrix 

0 ∂2ϕr
1

∂α2
x

∂2ϕr
1

∂αx∂αξ

∂2ϕr
1

∂αx∂x
+ ∂2ϕr

1
∂αx∂y

∂2ϕr
1

∂α2
x

∂2ϕr
1

∂αx∂αξ

∂2ϕ
∂y2

∂2ϕ
∂y∂αx

∂1ϕ
∂y∂αξ

 (x0, x0, α0, β,m, h)

is (uniformly) invertible.
This is equivalent to say that the matrix

M =

(
∂2ϕr

1
∂α2

x

∂2ϕr
1

∂αx∂αξ

∂2ϕ
∂y∂αx

∂2ϕ
∂y∂αξ

)
(x0, x0, α0, h)

is (uniformly) invertible, because
(

∂2ϕr
1

∂αx∂x
+ ∂2ϕr

1
∂αx∂y

)
is invertible (see Definition

A.5 6)).
Now, if h0 = 0, since ∂2ϕr

1
∂α2

x
and ∂2ϕr

1
∂y∂αξ

are invertible and ∂2ϕ
∂y∂αx

= O(h) we obtain
that M is (uniformly) invertible if h is small enough. If h0 �= 0, since ϕ2 does not
depend on αx and ϕi

1(x, x, α) = 0 we get ∂2ϕi
1

∂α2 (x0, x0, α0) = 0. Then,

M =

(
∂2ϕ
∂α2

x

∂2ϕ
∂αx∂αξ

∂2ϕ
∂y∂αx

∂2ϕ
∂y∂αξ

)
which is (uniformly) invertible by Definitions A.5, 8). It remains to show that the later
is a good contour for − Im θ. For this we are going to use (A.31) with χ0(x, ỹ, α̃) =
χ1(x, ỹ, α̃) = 1 since suppχ1 ⊂ {χ0 = 1}. According to (A.30) with s = 1, χ2 = 1
and to the fact (Lemma A.12) that (x, x, α(x, β,m, h)) is critical point for θ, we set

θ(x, y, α,m, h) = θ(x, x, α(x, β,m, h),m, h)(A.32)

+
1
2
D2θ(x, x, α(x, β,m, h),m, h) ·X2 +O(E3)

where

(A.33)

{
D = (∂y, ∂α) , X = (ỹ − x, α̃− α0)

Ej = |ỹ − x|j + |α̃ξ − α0ξ |j + h |αx − α0x|j , j � 0 .

Since, by Lemma A.12, Imα(x, β,m, h) = O(ε0h), we can replace in D2θ, in the above
formula, α(x, β,m, h) by Reα(x, β,m, h) modulo an error which is O(ε0h‖X‖2). Now
θ = ϕ2 + ihϕ1 + ψ. Since ϕ2 is real on the real, we have

(A.34) Im
[
D2ϕ2(x, x,Reα(x, β,m, h))X2

]
= 0 .

To take care of ReD2ϕ1 we recall that (Lemma A.12),

αx(x, β,m, h) = αx(x, αξ(x, β,m, h))

so
Reαx(x, β,m, h) = αx(x,Reαξ(x, β,m, h)) +O(ε0h) .
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Therefore we can replace in D2ϕ1, Reαx(x, β,m, h) by αx(x,Reαξ(x, β,m, h)) mod-
ulo errors which are O(ε0hE2). So we are left with

(1) = h ReD2ϕ1(x, x, αx(x,Reαξ(x, β,m, h)), Reαξ(x, β,m, h))X2 .

Now, by conditions 4) and 7), Definition A.5, we have

Reϕ1(x, x, αx(x,Reαξ(· · · )), Reαξ(· · · )) = 0 ,

Reϕ1(x, y, α) � 0 if (x, y, α) is real .

Then, that ReDϕ1(x, x, αx(x,Reαξ(· · · )), Reαξ(· · · )) = 0. It follows from condi-
tion 7), Definition A.5 and Taylor’s formula that,

h Reϕ1(x, ỹ, α̃x − α0x + αx(x,Reαξ(x, β,m, h)), α̃ξ − α0ξ +Reαξ(x, β,m, h))

= (1) +O(E3) � Ch(α̃x − α0x + αx(x,Reαξ(· · · ))− αx(x,Reαξ(· · · ) + α̃ξ − α0ξ))
2 .

It follows that

h ReD2ϕ1(x, x, α(x, β,m, h)X2 � Ch(α̃x − α0x + αx(x,Reαξ(x, β,m, h))(A.35)

−αx(x,Reαξ(· · · ) + α̃ξ − α0ξ))
2 +O(ε0hE2 + E3) .

Now by condition 6), Definition A.4, we have

(A.36) ImD2ψ(x, β,m, h)X2 � −Cε0h‖X‖2 .

We deduce from (A.31) to (A.36) that

Im θ(x, y, α, β,m, h)− Im θ(x, x, α(x, β,m, h),m, h)(A.37)

� Ch(α̃x − α0x + αx(x,Reαξ(x, β,m, h)) − αx(x,Reαξ(· · · ) + α̃ξ − α0ξ))
2

+
δ

2

∣∣∣∂θ
∂y

(x, y, α, β,m, h)
∣∣∣2 + δ

2

∣∣∣ ∂θ
∂αξ

(x, y, α, β,m, h)
∣∣∣2 +O(E3 + ε0hE

2)

where X = (ỹ − x, α̃− α0).
Let us set ρ∗ = (x, x, α(x, β,m, h),m, h). Recall that this is a critical point for θ,

(Lemma A.12). Then, (A.37) implies

Im θ(x, y, α, β,m, h) � δ

2

(∣∣∣∂2θ
∂y2

(ρ∗)(ỹ − x) +
∂2θ

∂y∂α
(ρ∗)(α̃− α0)

∣∣∣2(A.38)

+
∣∣∣ ∂2θ

∂αξ∂y
(ρ∗)(ỹ − x) +

∂2θ

∂αξ∂α
(ρ∗)(α̃ − α0)

∣∣∣2)
+Ch

∣∣∣α̃x − α0x −
∂αx

∂αξ
(x,Reαξ(x, β,m, h))(α̃ξ − α0ξ)

∣∣∣2 +O(E3 + ε0hE
2) .

Now, the sum of squares, in the right hand side of (A.38), is equal to ‖M(ρ∗)Y ‖2
where M is the matrix

M =


∂2θ
∂y2

∂2θ
∂y∂αξ

∂2θ
∂y∂αx

∂2θ
∂αξ∂y

∂2θ
∂α2

ξ

∂2θ
∂αξ∂αx

0 −
√
Ch ∂αx

∂αξ

√
Ch Id
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and Y = (ỹ − x, α̃ξ − α0ξ , α̃x − α0x). Now we have seen that

∂αx

∂αξ
= −

(∂2ϕ1
∂α2x

)−1 · ∂2ϕ1
∂αx∂αξ

and (see the beginning of the proof of Theorem A.11)

∂2θ

∂α2ξ
(ρ∗) =

∂2ϕ

∂α2ξ
(ρ∗) = ih

∂2ϕ1
∂αξ∂αx

(∂2ϕ1
∂α2x

)−1 ∂2ϕ1
∂αx∂αξ

.

It follows that M can be written as

M =

A B C
tB ihtDE−1D ihtD

0
√
ChE−1D

√
Ch Id

 .

Moreover, since ψ does not depend on α, it follows from condition 8), Definition A.5

that, when h is large, the matrix
(
B C

D E

)
is invertible at ρ∗. Since B is also invertible

we see from the second and third “line” of M that M is also uniformly invertible.
When h is small we write,

∂2θ

∂αξ∂α
(ρ∗)(α̃− α0) = ih

∂2ϕ1
∂α2ξ

(ρ∗)(α̃ξ − α0ξ) + ih
∂2ϕ1

∂αξ∂αx
(ρ∗)(α̃x − α0x)

since ∂2ϕ2
∂α2

ξ
(ρ∗) = 0. Then

∂2θ

∂αξ∂α
(ρ∗)(α̃− α0) = ih

∂2ϕ1
∂αξ∂αx

(ρ∗)
(
− ∂αx

∂αξ
(x, α(x, β,m, h))(α̃ξ − α0ξ) + α̃x − α0x

)
.

By condition 8), Definition A.5, ∂2ϕ
∂y∂αξ

(ρ∗) is uniformly invertible since ρ∗ is close to
(x0, x0, α0). It follows that

|ỹ−x|2 � C
∣∣∣ ∂2ϕ

∂αξ∂y
(ρ∗)(ỹ−x)

∣∣∣2 � C
∣∣∣ ∂2ϕ

∂αξ∂y
(ρ∗)(ỹ−x)+ ∂2θ

∂αξ∂α
(ρ∗)(α̃−α0)

∣∣∣2(A.39)

+Ch2
∣∣∣α̃x − α0x −

∂αx

∂αξ
(x, α(x, β,m, h))(α̃ξ − α0ξ)

∣∣∣2 .
By the same way

(A.40) |α̃ξ − α0ξ|2 � C
∣∣∣ ∂2ϕ

∂y∂αξ
(ρ∗)(α̃ξ − α0ξ)

∣∣∣2
� C

∣∣∣ ∂2ϕ

∂y∂αξ
(ρ∗)(α̃ξ − α0ξ) +

∂2θ

∂y2
(ρ∗)(ỹ − x) +

∂2ϕ

∂y∂αx
(ρ∗)(α̃x − α0x)

∣∣∣2
+ C |ỹ − x|2 + Ch2 |α̃x − α0x|2 .

(A.41) h |αx − α0x|2 � h
∣∣∣αx − α0x −

∂αx

∂αξ
(x, αξ(· · · ))(α̃ξ − α0ξ)

∣∣∣2 + Ch |αξ − α0ξ |2 .
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Using (A.38) to (A.41) we obtain, if ε0 is small enough

Im θ(x, y, α, β,m, h) � C
(
|ỹ − x|2 + |α̃ξ − α0ξ |2 + h |α̃x − α0x|

)
.

According to Definition A.8, this proves that the contour Γ̃1 is good for − Im θ.

Theorem A.14. — Let ψ be a phase, in the sense of Definition A.4, at (x0, ξ0, β0) ∈
Rn × Rn × Rn. Let b be an analytic symbol in a neighborhood of (x0, β0). We set
x0 = (s0, y0), where s0 > 0, ξ0 = (τ0, η0), r20 = s60 τ

2
0 + s40|η0|2, ζ0 = 1

r0
(s30 τ0, s

2
0 η0),

n0 =
(
h0, y0, k0/r0, ζ0

)
and x = (s, y). Then, if n0 /∈ qscWFa(u), one can find

χ ∈ C∞
0 , χ = 1 in a neighborhood of x0, positive constants C1, δ1, ρ1

(A.42)
∣∣∣ ∫ eih

−2k−1ψ(x,β,m,h)b(x, β,m, h)χ(x)u(sh, y)dsdy
∣∣∣ � C1 e

−δ1/hk ,

for all (β, h,m, k) such that (m,h) ∈ U , |β − β0|+ |h− h0|+ |k − k0| < ρ1.

Proof. — Our assumption implies that there exists a precised FBI phase ϕ (by Propo-
sition A.3, Definition A.2) at (x0,Ξ0, α0, h0), where Ξ0 =

(
τ0/r0, η0/r0

)
, an analytic

elliptic symbol a, a cut-off function χ0 ∈ C∞
0 equal to one in a neighborhood of x0

and positive constants C0, δ0, ρ0 such that

(A.43)
∣∣∣ ∫∫ eih

−2k−1ϕ(x,α,h)a(x, α, h, k)χ0(x)u(hs, y)dsdy
∣∣∣ � C0 e

−δ0/hk ,

for all, α, h, k such that |α − α0| + |h − h0| + |k − k0| < ρ, h > 0, k > 0. Let
ϕ̃ = ϕ̃(x, z, α, h) be the pseudo-differential phase (Definition A.5) constructed in
Proposition A.6. We set, formally,

(A.44) Av(x, h, k) =
∫∫

eih
−2k−1 eϕ(x,z,α,h)a(x, α, h)v(z, h, k)dzdα

which can be realized either as an operator in the complex domain or as an operator
in the real domain.

Since A is elliptic, there exists an analytic symbol c(z, β, h, k) such that

(A.45) A
(
eih

−2k−1ψ(·,β,m,h)c(·, β,m, h, k)
)
= b(x, β,m, h, k)eih

−2k−1ψ(x,β,m,h)

where A acts on H− Imψ. Indeed, if B is the inverse of A in H− Imψ , we have
e−ih−2k−1ψB(eih

−2k−1ψb) = c, modulo errors which are O(e−δ/hk). Let V be a neigh-
borhood of α0. It follows from (A.45) and Theorem A.11 that

AV
(
eih

−2k−1ψ(·,β,m,h) c(·, β,m, h, k)
)
= b(x, β,m, h, k)eih

−2k−1ψ(x,β,m,h)(A.46)

+O(e−δ/hk) .

Let us recall that the function χ occurring in the expression of AV in (A.27) is such
that, for some r0 > 0,

χ(x, z, α) = 1 if |x− z|+ |αx − αx(x, αξ)| � r0 ,

χ(x, z, α) = 0 if |x− z|+ |αx − αx(x, αξ)| � 2r0 .
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Let χ1 = χ1(z) ∈ C∞
0 (Rn) be such that

χ1(z) = 1 if |z − x0| � r0

= 0 if |z − x0| � 2r0 .

Let us set
(1) = |αx − αx(x, αξ)|+ |αx − αx(z, αξ)| .

Since the map, x �→ αx(x, αξ) is invertible for all αξ near α0ξ , we can find C > 0 such
that for all r1 > 0 small enough

|αx(x, αξ)− αx(z, αξ)| � r1 =⇒ |x− z| � Cr1 .

We claim that if (1) � r0/(1 + 2C) then χ1(z) = χ(x, z, α) = 1. Indeed, it follows from
this inequality that |αx(x, αξ)−αx(z, αξ)| � 2r0/(1 + 2C) so |x−z| � 2Cr0/(1 + 2C)
therefore

|x− z|+ |αx − αx(x, αξ)| �
2Cr0
1 + 2C

+
r0

1 + 2C
= r0

which implies that χ(x, z, α) = 1. Moreover

|z − x0| � |z − x|+ |x− x0| �
2Cr0
1 + 2C

+
r0

1 + 2C
, since |x− x0| �

r0
1 + 2C

.

It follows that χ1(z) = 1.
Summing up we have proved that, on the support of χ(x, z, α) − χ1(z) we have

(1) � r0/(1 + 2C). We deduce from Definition A.5, 7) that |eih−2k−1ϕ| � e−C1/hk

which proves that in the definition of AV we can replace χ(x, z, α) by χ1(z) (modulo
controlled errors) if |x− x0| is small enough. Then

AV v(x, h, k) =
∫∫

α∈V

eih
−2k−1 eϕ(x,z,α,h)a(x, α, h, k)χ1(z)v(z, h, k)dzdα+O(e−δ/hk) ,

(where the error term is bounded by sup |v|).
Let us write (A.46), replacing χ by χ1. We have

(A.47) b(x, β,m, h, k)eih
−2k−1ψ(x,β,m,h,k)

=
∫
α∈V

eih
−2k−1ϕ(x,α,h)a(x, α, h, k)f(α, β,m, h, k)dα +O(e−δ/hk) ,

where

f(α, β,m, h, k) =
∫

χ1(z)eih
−2k−1[−ϕ2(z,αξ)+ihϕ1(z,α)+ψ(z,β,m,h)] c(z, β,m, h, k)dz .

It follows from (A.8) that Reϕ1(z, α) � C|αx − αx(z, αξ)|2 and, since Imψ � 0 we
have |f | � CN (hk)−N for some N ∈ N. Then, using (A.47) we can write, with
x = (s, y),∫∫

eih
−2k−1ψ(x,β,m,h) b(x, β,m, h, k)χ(x)u(sh, y)dsdy(A.48)

=
∫
α∈V

f(α, β,m, h, k) ·
( ∫∫

eih
−2k−1 eϕ(x,α,h)a(x, α, h, k)χ(x)u(hs, y)dsdy

)
dα.

This proves Theorem A.14.
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Corollary A.15. — The definition of qscWFa is invariant under a change of phase
satisfying Definition A.1.

Proof. — We have seen in Proposition A.3 that we may assume that the phase is
precised. We can change s0 in the definition of qscWFa. Indeed, let ϕ be a FBI
phase at (x0, ξ0, α0, h0), x0 = (s0, y0), ξ0 = (τ0, η0) ; let us set ϕ̃(s, y, α, h) =
γ−2ϕ

(
s/γ, y, α, γh

)
, γ > 0. Then ϕ̃ is an FBI phase at

(
γs0, y0, τ0/γ

3, η0/γ
2, α0, γh0

)
.

We see that the change of (h, s) to
(
γh, s/γ

)
in the definition of qscWFa gives rise to

the phase ϕ̃ in the integral. The analytic symbol is changed but stays elliptic. Now
let us take two precised FBI phase at the same point x0 = (s0, y0). Then we see easily
that they satisfy both the Definition A.4 (for instance, condition 2) in Definition A.4
follows from (A.8)), so we may apply the Theorem A.14.

Corollary A.16. — Let ϕ̂ be a FBI phase at (x0, ξ0, α0, 0). Let us assume that one can
find positive constants C, δ, h1, an analytic symbol a elliptic at (x0, α0, h0), a cut-off
χ ∈ C∞

0 , equal to one near x0 = (s0, y0) such that∣∣∣ ∫ eih
−2 bϕ(s,y,α,h)a(s, y, α, h)χ(s, y)u(sh, y)dsdy

∣∣∣ � Ce−δ/h ,

for all α in a neighborhood of α0 and h ∈ ]0, h1[. Let us set

r20 = s60 τ
2
0 + s40 |η0|2 > 0, τ0 =

s30τ0
r0

, η0 =
s20η0
r0

,

where ξ0 = (τ0, η0). Then n0 =
(
0, y0, 1/r0, (τ0, η0)

)
/∈ qscWFa(u). In the coordinates

(λ, µ) this reads (0, y0, s30 τ0, s
2
0η0) /∈ qscWFa(u).

Proof. — We may assume that ϕ̂ is precised. Let us set ϕ̃ = 1
r0
ϕ̂ when r0 �= 0.

Then ϕ̃ is a precised FBI phase at
(
s0, y0, τ0/r0, η0/r0, α

0, 0
)
. Let us associate to ϕ̃,

a pseudodifferential phase ϕ by the formula in Proposition A.6. Finally let us set
ψ(x, β,m, h) = 1

m ϕ̂(x, β, h). Then ψ is a phase in the sense of Definition A.4 at the
point

(
x0,

1
r0
ξ0, α

0
)
, ξ0 = (τ0, η0), x0 = (s0, y0) and U = B(r−10 , δ)×]0, δ), (m,h) ∈ U .

Let us set

AV v(x, α, h, k) =
∫∫

α∈V

eih
−2k−1ϕ(x,z,α,h)a(x, α, h)χ1(x, z, α)v(z, h, k)dzdα.

We can apply Theorem A.11 as in the proof of Theorem A.14. We get

AV
(
eih

−2k−1ψ(·,β,m,h) c(·, β,m, h, k)
)
= a(x, β, h)eih

−2k−1ψ(x,β,m,h) +O(e−δ/hk) .

In this formula we fix k = k0 = r−10 and we obtain, with x = (s, y)∫∫
eih

−2m−1 eϕ(x,β,h)a(x, β, h)u(hs, y)dsdy

=
∫
α∈V

f(α, β,m, h)
(∫

eih
−2 bϕ(x,α,h)χ(x)a(x, α, h)u(hs, y)dsdy

)
dα+O(e−δ/h) ,

with f = O(h−N ).
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Then the result follows if we consider m as the parameter k in the definition of
qscWFa.

Corollary A.17. — Let m0 = (ρ0, y0, τ0, η0) with ρ0 > 0. Then m0 /∈ WFa(u) (the
usual analytic wave front set) if and only if (ρ0, y0, 0, (λ0, µ0)) /∈ qscWFa(u), where

λ0 =
ρ0 τ0√

ρ20 τ
2
0 + |η0|2

, µ0 =
η0√

ρ20 τ
2
0 + |η0|2

.

Proof. — We note that, in the definition of WFa and qscWFa we did not take the
same coordinates on T ∗M . The statement of this corollary takes this difference in
account. Indeed, we have

τ dρ+ η · dy = (ρ3τ)
dρ

ρ3
+ (ρ2η) · dy

ρ2
.

If (ρ0, y0, 0, (λ0, µ0)) /∈ qscWFa(u) then if we set h = h0 and k−1 = λ, in our trans-
formation T , we recover a FBI transform in the sense of Sjöstrand. Then we have
(ρ0, y0, τ0, η0) /∈ WFa(u) with τ0 = λ0/ρ

3
0, η0 = µ0/ρ

2
0 ; our claim follow since WFa

is conical.
Conversely, let us assume that (ρ0, y0, τ0, η0) /∈WFa(u). Let us set, with x = (ρ, y),

ϕ̃ = (x − αx) · αξ + i(x− αx)2. Then one can find positive constants C, δ, λ0 and a
cut-off χ ∈ C∞

0 , χ(ρ0, y0) = 1 such that∣∣∣ ∫ eiλeϕ(x,α)χ(x)u(x)dx
∣∣∣ � Ce−λδ

for all α in a neighborhood of (ρ0, y0, τ0, η0) and λ � λ0.
Let us set ϕ(x, α, h) = (x−αx)αξ+ ih(x−αx)2 and let us associate to ϕ a pseudo-

differential phase by Proposition A.6. Finally let us set

ψ(s, y, β,m, h) = m−2
[( s

m
− βs

)
βτ + (y − βy) · βη

]
+

i

m

[( s

m
− βs

)2
+ (y − βy)2

]
.

Then ψ satisfies the conditions in Definition A.4 for all ε0 if

|s− ρ0|+ |y − y0|+ |βs − ρ0|+ |βy − y0|+ |βτ − τ0|+ |βη − η0|+ |m− 1|
is small enough. It follows from Theorem A.11 that we have the formula (A.48). Let
us make h = 1 in this formula. The right hand side is O(e−δ/k). Now if m plays
the role of h in the left hand side, we recover the expression T u ; this proves our
claim.
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