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ANALYTIC THEORY FOR THE QUADRATIC
SCATTERING WAVE FRONT SET AND APPLICATION
TO THE SCHRODINGER EQUATION

Luc Robbiano, Claude Zuily

Abstract. — We consider in this work, the microlocal propagation of analytic singu-
larities for the solutions of the Schrodinger equation with variable coefficients. We
introduce, following R. Melrose and J. Wunsch, a R™ compactification and a cotan-
gent compactification. We define by a FBI transform an analytic wave front set on
this cotangent bundle. The main part of this paper is to prove the propagation of
microlocal analytic singularities in this wave front set.

Résumé (Théorie analytique du front d’ onde de scattering quadratique et application a
I”égquation de Schrédinger)

On examine dans ce travail la propagation des singularités analytiques des so-
lutions de I’équation de Schrodinger & coefficients variables. Nous introduisons, en
suivant R. Melrose et J. Wunsch, une compactification de R™ et une compactification
du cotangent. Nous définissons sur ce cotangent un front d’onde analytique par une
transformation de FBI. La majeure partie de cet article est consacrée a la preuve de
la propagation des singularités analytiques microlocales de ce front d’onde.
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CHAPTER 0

INTRODUCTION

The purpose of this work is to provide a theory for the analytic quadratic scattering
wave front set, here denoted ©°W F,,, which in the C'* case has been introduced by
Wunsch [W1] after the work of Melrose [M1], and to apply it to the propagation of
analytic singularities for the linear Schrédinger equation with variable coefficients.

To understand what we are doing here, let us begin by a very simple example.
Let us consider the initial value problem for the constant coeflicients Schrodinger
equation,

ou

i— +Au=0, t>0, z€R"
(0.1) Yor T rerRt

Ujt=0 = U0

Taking ug = 6 and ug = e’im2, it is an easy exercise to see that a data which is a
distribution with compact support may give rise to a smooth solution (in ) for every
positive ¢, while an analytic data which oscillates at infinity may produce a singular
solution (in x) at some time ¢. This classical fact, which, roughly speaking, asserts
that the smoothness of the solution (in x), for ¢ > 0, is under the control of the
behavior at infinity of the initial data, is known as “propagation with infinite speed”.

It turns out that this fact extends in many directions. It is of microlocal nature,
it can be described geometrically and it holds for non trapping Laplacians which are
flat perturbation (at infinity) of the constant coefficient case.

These extensions have been the subject of many recent works. See Kapitanski-
Safarov [KS], Craig-Kappeler-Strauss [CKS], Craig [C], Shananin [Sh], Robbiano-
Zuily [RZ1, RZ2|, Kajitani-Wakabayashi [KW], Okaji [O], Morimoto-Robbiano-
Zuily [MRZ]. Related works have been done by Doi [D1, D2], Hayashi-Kato [HK],
Hayashi-Saitoh [HS], Kajitani [K], Vasy [V], Vasy-Zworski [VZ] and we refer to the
paper [CKS] for a more complete bibliography.
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In all these works we are handling two informations : behavior at infinity (decay,
oscillations. ..) and smoothness. In a recent paper, Wunsch [W1] proposed to em-
bed these two informations in one unique object, which he called the C*° quadratic
scattering (gsc) wave front set, in which the above phenomena of infinite speed propa-
gation would appear as a propagation of singularities result. Here the word quadratic
is used to emphasize that this wave front set takes in account the quadratic oscilla-
tions at infinity. Let us note that a scattering wave front set in the C°° case was
already introduced by Melrose [M1, M2]| and that related notions have been recently
considered by Wunsch-Zworski [WZ] (see also Rouleux [R]). Moreover, in the same
paper Wunsch gave a quite complete description of the propagation of singularities
for this C*> wave front set which will be described later one.

It is worthwhile to mention that some propagation results have been obtained a
long time ago by R. Lascar [L] (see also Boutet de Monvel [B]). In the C*° case, he
introduced a parabolic wave front set and he proved its propagation. However this
propagation (in z) holds between two points at the same time ¢ ; it is therefore unable
to link the “singularities” of the data to those of the solution for positive time.

The work of Wunsch relies on some geometrical point of view of Melrose. It be-
gins by working on a compact manifold M with boundary M, which comes from
a (stereographic) compactification of R™. Roughly speaking this corresponds to set,
for large z, = w/p, where p > 0 and w € S"~. The boundary OM corresponds
then to the infinity of R™. The second step is to define a cotangent bundle. The
natural one, coming from the above compactification would be the one where the
canonical one form is given by a = )\z—é’ + u- %y if (p,y) are local coordinates near
the boundary. However, having in mind that this bundle should hold the singularities
of the quadratic oscillatory data, Wunsch introduced the quadratic scattering (gsc)

cotangent bundle, T M where the canonical one form is given by o = /\i—g + - %.
Indeed if up(z) = €472} where A is an n x n symmetric real matrix, we have
ug = e#? A9 and the differential of the phase is

dqu

! = - ww@ " i w,w))—5
d(?mw,m) = —2(Aw, >p3+;awj(<A w5

Local coordinates, near the boundary, in this gsc cotangent bundle are given by
(p,y, A\, ). Now, since only high frequencies are involved in the occurring of singular-
ities, Melrose suggests to make a radial compactification in the fibers, that is to set,

for large A + |,
1 ~ _
o= 7()\2 FRREINVEE A=0o\, n=opu.
Then we may define the extended gsc cotangent bundle asT" M in which local coor-
dinates, near the boundary of M, are given by (p,y, 0, (\, %)), where p > 0, ¢ > 0.
Its boundary C is the union of two faces, ©Tp,, M = {(p,y,0,(\, 7)) : p = 0} and

®S*M ={(p,y,0.(\, i) : 0 = 0}

ASTERISQUE 283



CHAPTER 0. INTRODUCTION 3

The gsc wave front set is a subset of C. To define it, in the C°° case, Wunsch uses
Melrose’s theory of pseudo-differential operators on manifolds with corners [M1].
Here, in the analytic case (but also in the C*° or Gevrey cases) we use instead the
Sjostrand machinery of FBI transforms. Our analytic gsc wave front set will be defined
through a FBI transform with two scales (h, k), instead of only one scale A = 1/k in
the usual case. More precisely we shall set for u € L?(M),

(02) Tula,h,k) = / / eI o ) o oy, sy k)X oy Va9 dpdy

Here ¢ is a phase, a a symbol and x a cut-off function. (See § 2 for the precise
definitions of phases, symbols and ®*°W F,).
The simplest phase is the following

P(s,,00h) = (s — ag)ar + (y — ay) - o +ih[(s — os)® + (y — ay)?],

where a = (a5, vy, a7y ) € R x R™™H x R x R™L

Now, if u(t,-) is a solution of (0.1) and ¢y > 0, the ®WF,(u(to,-)) does not
propagate ; instead we introduce a uniform gsc analytic wave front set asCTy R, (u(to,-))
which will propagate.

In (0.2), the parameter h is used to describe the behavior at infinity (decay, oscil-
lations. .. ) while k is used to test the analytic smoothness. However near the corner
{p = o = 0} these two informations are mixed. As in the usual case, it is necessary
to define such transforms for a large class of phases. Moreover one should be able to
change phases, symbols and cut-off functions, in particular, to show the invariance
of the ¥“WF, ; to achieve these invariances, in particular to go from one phase to
another, one has to make a careful study of the pseudo-differential operators in the
complex domain, then in the real domain and to pass from the first theory to the
second by some delicates changes of contours. Here the situation is complicated by
the fact that our FBI phases have an imaginary part which goes to zero with h. In
the appendix the reader will find a complete Sjostrand’s theory in the case of two
scales.

Concerning the propagation theorems we consider a Schrédinger equation with a
Laplacian A, with respect to a scattering metric g in the sense of Melrose ; this means
that, near the boundary one can write g = dp—’f p%7 where h is a metric such that
h|aasr is positive definite. This includes, of course the flat metric for which h = dw?,
but also the asymptotically flat metrics on R™. In this setting we try to answer the
following question. Let mg be a point in C = qSCT}; M UBCS* M u be a solution of
the initial value problem for this Schrodinger equation and 7" > 0. On what condition
on up do we have my & W F,(u(T,-)) ? The answer, which depends strongly on
the position of mg in C, requires a careful study of the flow of the Laplacian on C.
This can be found in Wunsch [W1] ; however a still more precise description near the
corner {p = o = 0} is needed here. The different statements, according to the position
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4 CHAPTER 0. INTRODUCTION

of mg in C, will follow from four propagation results : propagation inside 41, M,
inside ¢S*M or along the corner (for the uniform °WF, and fixed t), from the
interior to the corner and finally from the boundary at infinity to the corner. To give
a flavor of the results obtained, let us describe the case of the first situation. Let
0 <t <ty and mg € ©T M. Assume that exptHa(mg) (the flow of the Laplacian
at infinity through mg) stays, for ¢ € [t1,to], inside the interior of 9Ty, M. Then
expt1 Ha(mg) does not belong to W F,(u(ty,-)) if and only if exptaHa(mg) does
not belong to B°W Fy (u(ts,-)). Coming back to the above question, this result can be
applied (with 1 = 0,t2 = t) when my = (0, yo, Ao, £0) in the following cases : o # 0
or o =10, Ao >0 or g =0, Ao <0, t <—1/2)g, because, in the later case, the flow
starting from mg reaches the corner after a finite time ¢t = —1/2\.

A complete description of the other cases can be found in § 4.

Let us now describe the method of proofs. The first idea, which comes from Sjos-
trand’s work [Sj], is that the FBI transform can be used, at the same time, to test
the microlocal smoothness and, as a Fourier integral operator, to reduce an oper-
ator to a simpler form. Let us be more precise. We look for a family of phases
v = @(0;p/h,y,a, h) and symbols a = a(8; p/h,y,a, h, k) depending on a parameter
0, such that

9 - A K ih ™2k Yoy _ —e/hk
(0.3) <% —|—2Ag> (ae )—(9(6 ), e>0,
where A7 is the adjoint of the Laplacian Ag.

This leads to the eikonal equation for ¢,

a 20y Oy
4 — h —,5— | =
(0.4 89+p(s 0?9,558) 0
and to the transport equations,
+oo
(0.5) Xaj+WkQaj 1 =b;, if a=> (WWk)a;,
j=0

where X is a non degenerate real vector field and @ a second order differential oper-
ator.

As soon as we have solved these equations, we see that the corresponding FBI
transform 7u(0;t, o, h, k) satisfies the real transport equation

19 0
Z . _ —c/hk
(0.6) (kao—l—at)Zu(G,t,a,h,k) O(e ), c>0,

and the propagation theorems follow easily.

The main point of the paper is therefore to solve (0.4) and (0.5). The resolution of
the eikonal equation (0.4) requires the use of the complex symplectic geometry. We
make a careful study of the bicharacteristic flow to span a nice complex Lagrangian
manifold on which the symbol q = 0* + p(sh,y, 752, sn) vanishes. It should be noted
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that one has to make a global (backward and forward) study of the bicharacteristic
system.

Since the transport equations are linear, they are easily solvable step by step.
However it is not straightforward that the corresponding symbol a = 3 (hv/k)? a; is
an analytic symbol ; the proof of this fact requires the use of a method of “nested
neighborhood” as described by Sjostrand [Sj]. In our context these constructions are
to be made either globally on [0, +00[ or until a time T at which all the coefficients
of X in (0.5) blow-up ; this leads to significant complications.

Finally we would like to thank the referee for its careful reading of the paper,
leading to many improvements of the original manuscript.
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CHAPTER 1

THE GEOMETRICAL CONTEXT

The content of this section is taken from Melrose [M1]. Here smooth will mean
analytic and all the objects will be smooth. Let M be a smooth compact manifold
with boundary M. A boundary defining function for M is a smooth function p on
M such that p = 0 and dp # 0 on OM. A scattering metric on M is a smooth
metric g such that, for some choice of boundary defining function p, we have, in a
neighborhood of OM

dp®> h
1.1 g=—+ —,
(1.1) At

where h is a smooth symmetric bilinear form on T*M such that h|sas is a metric.

This class of metrics has been built to include asymptotically flat metrics on the
Euclidian space R™. Indeed let us consider the upper hemisphere of the unit sphere
in R™,

M= 8% ={(to,t') ERxR": 45 >0, 5+ |t'|* =1},
with boundary 057 = {(to,t') € M : ty = 0}.

The function p(to,t') = to/(1 — t3)1/2, defined in a neighborhood of 9S7 and ex-
tended smoothly to S%, is a boundary defining function for S7. Then, a neighbor-
hood of 957 is diffeomorphic to a subset of [0, 400[ x S™~* by the map @ : (to,t') —
(p(to,t'),w) where w = t'/|t'|. On the other hand, R™ is diffeomorphic to

S% ={(to,t') ERxR" 1 to > 0,3 +|t'|* = 1}

by the stereographic compactification SP : R" =S, z — (to = 1/(z),t' = z/(2)),
where (z) = (1 + |2|>)*/2. Thus, by ® o SP, we can identify R” \ {2 : |z| < 1} with
a subset of |0, +oo[ x S"~1. It is easy to see that this corresponds to set p = 1/|z|,
w = z/|z| for |z| = 1. Since z = w/p, we check easily that, for |z] > 1, we have

_ dp?>  dw?

(® o SP)*(dz?) e
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In that follows we shall denote by (p,y) a system of local coordinates in a neigh-
borhood of the boundary. Then the metric h appearing in (1.1) can be written

n—1 n—1
(1.2) h=hoop,y)dp* +2 Y hoj(p.y)dpdy; + > hij(p,y)dy; dy;
j=1 ij=1

where the coefficients are analytic and
(1.3) the matrix (h;;(0,y))1<i,j<n—1 s positive definite on OM .

Following Wunsch we shall denote by vgsc(M) (gsc means quadratic scattering) the
space of vector fields on M which are, near the boundary, linear combination of p3d,
and p? 0y,;» 1 < j <n—1. Then ®*°T'M will be the space of smooth section of vgs.(M)
and °T*M its dual. The 1—canonical form on ¥“T*M can be written, in local

coordinates near OM , as

dp dy
1.4 a=A—=+p- —.
(1.4) 7 e
Then the current point in ¥“T*M near OM will be determined by its coordinates
(Y A 1)
We shall set
(1.5) BTgM = {m € ®T*M : p=0}.

Now if A2+ |u|? is very large it will be more convenient to introduce new coordinates
by setting
1 —
This corresponds to make a radial compactification of the fibers variables and we shall
denote by 4%¢ T" M the radial compactification of ¥*“T* M. Then, near ¢ = 0 we shall
take (p,y, 0, (X, 7)) as local coordinates of a point of 9T M.
It follows that 97T M is a manifold with corner and two faces. If we set

(1.6) o= =0\, p=ou, X2+|ﬁ|2:1.

w7 {qSCTEMM ={me qSCT:M :p =0},
BES*M ={m € T M :0 =0},

then

(1.8) C =0T M = =Ty, M UTS* M.

ASTERISQUE 283



CHAPTER 2

THE ANALYTIC QSC WAVE FRONT SET

It will be defined as a subset of C, through a FBI transform with two parameters.
Let us describe what will be the phases and the symbols.

2.1. The FBI phases
Let My = (Xo,Z0,a% hg) € R™ x R™ x R?" x [0, +o00[, with a® = (a%,a2) €
R™ x R™.

Definition 2.1. — We shall say that ¢ = ¢(X, a, h) is a FBI phase at M if one can
find a neighborhood V of (X, a’) in C* x C?", a neighborhood I, of hg in [0, +oc[
such that

(2'1) @(X7O‘7h) :902(X»a5)+903(O‘)+7;h901(Xva)7 o= (aX7aE)7

where
(2.2) vj, j=1,2,3 are holomorphic functions in V'
. and @9 isreal if (X,az) € R" x R",
¢

2.3 2 (Xo,a% ho) ==
( ) 8X( 0,00, 0) 0>

R 0% R

#1(Xo,0?) = 2 (Xo,a) = 0, (S350 ) (Xo,a?) s positive

2.4
( ) 82 Re 01

definite and ( >(X0,a0) is invertible,

8X8aX

(2.5) i) If ho = 0, (5222 ) (Xo, a2) is invertible,
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ii) if ho # 0, the matrices (agng!E)(Xg,ao, ho) and

2 Rep O*Reyp
0XOdaz 0XOax

0
(Xo,O[ 7h'0)
PImy 8*Imep
0Xdaz 0XOax

are invertible.

Examples 2.2

(i) o(X,a,h) = (X —ax)az + ih(X — ax)? is a FBI phase at (Xo, 2o, a’, ho) if
Olo = (Xo, Eo)

(ii) More generally let ¢ = (X — ax)az + ih1(X, a), where o1 is holomorphic,
real if (X, a) is real and satisfies ¢1 (X, o) = %()ﬂ a)=0ifaxy =X, p1(X,a) >
c|X — ax|?, for (X,a) in a real neighborhood of (Xo, (Xo,=Z0)). Then ¢ is a FBI
phase at (Xo,Zo,a’, ho) if a® = (Xo, Zo).

2.2. The analytic symbols
Our symbols will be formally of the following form
(2.6) a(X, o, h,k) = a;(X,a,h, k)(hVE)
Jj=0
where the a;’s are holomorphic with respect to (X, ) in a same complex neighborhood
of (Xo,a?), bounded in (h, k) in a same neighborhood of (hg, o) in [0, +-00[ x [0, +00]
and satisfy in these neighborhoods

2.7 a;j(X,a, h k)| <CIt 2 j>0.
( j

Actually we will take finite sums of such a;. The symbol a will be called elliptic at
(Xo,0°, ho,00) if ag(Xo,a®, ho,00) # 0.

2.3. The analytic gsc wave front set ©*“W F,

A point mg in C = QBT M is given by mo = (po, yo, 00, (X0, Ip)) in local coordi-
nates, where pg > 0, 09 > 0, po- 09 =0, yo € R ! and X(Q) +[7z|* = 1. Let so > 0 be
given and set hg = po/sg. We set

- (N T n
(2.8) Xo = (s0,90) €ER", Eg= (_;)7#_3) €R".
So S0

Definition 2.3. — Let u € D'(M) and mg € C. We say that mg ¢ ©WF,(u) if one
can find so > 0, a® € R??, a neighborhood Vo of a” in R?", a FBI phase ¢ at
(X0, Z0,a°, hg), neighborhoods Vi, V,, of hg, oo in [0, +0c[, positive constants C,

ASTERISQUE 283



2.6. MORE GENERAL PHASES 11

€0, an analytic symbol a, elliptic at (Xo,a; ho,00), a cut-off x € C§° equal to one
near Xg such that

(2.9) |Tu(a, h, k)| = ‘// eih_Qk_lW(p/h’y’a’h)a(p/h,y,a,h,kz)x(p/h,y) u(p,y)dpdy
g Ce—go/hk

for all @ in V0, hin Vj, N0, k in V,, N 0.

2.4. The uniform analytic gsc wave front set qSCI/IA/Fa

Definition 2.4. — Let I be an interval in R, (u(t;))ter be a family of distributions on
M and tg € 1. Let mg € C (see (1.8)). We shall say that mg ¢ W F,(u(to,-)) if one
can find sg, a°, ¢, a, Vo, Vi, Voo, C, €0 as in Definition 2.3 and §p > 0 such that

I Tults o b, k)| = ‘//e_ihizkilcp(“)a('")X(“-)U(t;p,y)dpdy < Ceeo/hk

for all a, h, k respectively in Vo0, Vi, N0, V, N0 and all ¢ € I such that |t — ¢] < do.

2.5. Invariance

An important result in this theory is the following.

Theorem 2.5. — The definitions of “*“WF, and qscﬂ/ﬁ:’a are independent of sg, o2,
w, a, x which satisfy the conditions in the Definitions 2.1 and 2.3.

The proof of this result is given in the Appendix.

2.6. More general phases

Later on we will be lead to handle FBI transform with more general phases than
those described in Definition 2.1, which may also depend on a parameter v € R?. Let
My = (Xo,E(LﬂO) € R x R x R?",

Definition 2.6. — We shall say that ¢ = (X, 8, v, h) is a phase at M if one can find
a neighborhood W of (Xy, 3%) € C" x C2", a set U C R? x ]0, +00[, &g > 0, Cp > 0
such that

(2.10) 1 is holomorphic in W, for all (v,h) € U and Imy(X,5,v,h) 20
if (X,6)€Weg=Wn(R"xR>*) and (v,h) € U,

(2.11) |1/)(X,6,u,h)|+’g—;p((X,ﬁ,u,h)—Eo <eo, if (X.0) €W, (nh)eU,

‘8Im¢

(2.12) %

(X.B,v.h)| < eoh, i (X.8) € Wa, (vh) €U,

SOCIETE MATHEMATIQUE DE FRANCE 2002



12 CHAPTER 2. THE ANALYTIC QSC WAVE FRONT SET

0% Im
0X?
|0%Y(X, B,m,h)| < Cy, for || <3, if (X,8)eW, (v,h)€eU.

(2.13)

(X,B,v,h) > —eoh1d, if (X,B) € W, (v,h) €U,

Let us set now Xo = (s, %) where s > 0 and yo € R, Zg = (70,10) € RxR" 1,
7 = s+ st ol

Theorem 2.7. — Let v be a phase at (Xo,Z0,3°). Let b be an analytic symbol in a
neighborhood of (Xo, 3°). Let us consider the point

mo = (ho, Yo, ko/70, (s570/T0, sg1m0/T0)) € C.

Then, if mog ¢ B“WE,(u), one can find x € C§°, x = 1 in a neighborhood of X,
positive constants Cy, dg, €9 such that

‘// KT B b s,y B, v, h) x(s,y) ulsh, y) dsdy| < Coe™ %/
for all (B,v,h, k) such that (v,h) € U and |3 — B° + |h — ho| + |k — ko| < 0.

Remark 2.8

(1) Two parameters h, k appear in (2.9). The parameter k is used to check the
microlocal smoothness of u (in particular at points my where pg > 0, o9 = 0) whereas
h is used to test the behavior at infinity (decay, oscillations, etc.).

(2) In the case where mq = (0,0, 70, (Ao, Fip)) With oo > 0, it is more convenient
to use the coordinates (0, yo, Ao, fo) Where A\g = Xo /00, f10 = Tiy/00- Let us set Xo =
(s0,Yo), where sg > 0, Zg = ()\0/337 ,uo/s%). Let ¢ be a FBI phase at (Xo,Z9,a’,0).
Assume that on can find positive constants C, 4, €5, an analytic symbol a, a cut-off
x equal to one near X such that

2oy | [[ e m et ats.ya (s, )l g dsdy| < Ce O,

for all o in a real neighborhood of o and h € ]0,e]. Then mg ¢ SWE,(u).
The converse is also true (take k = o¢ in (2.9)). In other terms we can ignore the
parameter k in (2.9) and fix it to the value og. This fact is proved in the Appendix
(Corollary A.16).

(3) If mo = (po,yo, 0, (Ao, Th)), we set Xo = (po, o), Zo = (Ao/pd, To/p3) and the
fact that mg ¢ B°WF,(u) is characterized by the inequality (2.9) where ¢ is a FBI
phase at (Xg,Z0,a’, po) and h = 1, that is we may ignore the parameter h. This
shows that W F,(u) N (S*M)° coincide with the usual analytic wave front set since
then the transformation appearing in (2.9) is a usual FBI transform in the sense of
Sjostrand [Sj].

(4) In section 1, we have identified R™ \ {z : [2| < 1} with a subset of S7, thus
with a subset of |0, +oo[ x S"~!, which corresponds to set z = w/p. Working in
R™, it is more convenient to use the coordinates (p,w) instead of local coordinates.
The one form on ¥“T*M is then equal to )\z—é’ + - ‘;—“2’. Here p has to be taken
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in an (n — 1)—dimensional subspace. Since the forms p - dw and (p — (p - w)w)dw
coincide (because w - dw = 0) it is natural to take y in w. Thus the coordinates of
mo € T M will be (po,wo, 00, Xos o)) Xi + |2 =1, fig L wo. Let us set

- Ao T
Xo = (s0,wp), Zo= (—, —)
(214) 0 ( 0 0) 0 58 5(2)

(Ily) = {a = (ap, 0w, 07, 0¢) € R*2 ., wp =1, ¢ Wy = 0}.

Claim. — Let v € D'(R™). Then mg ¢ W F,(u) if and only if one can find so > 0,
a¥ € (Ilp), a FBI phase ¢ at (Xo,Zo,a, ho), an elliptic symbol a at (Xo,a®, ho, 0o)
a cut-off x near Xy, positive constants C, g9 such that

(2.15) |Tu(e, h, k)|

Toe 2, -1
= ’/ / eth ™2k W(P/h,w,a,h)a(p/h,w,a,h,k:)x(p/h,w)u(w/p) pfil dW‘
0 Sn—1

< Ce—Eo/hk

for a close to o in (Iy), (h, k) close to (ho,0q) in [0,+0o[?, where
o(s,w,a,h) = (s — as)ar + (w— ay) - ac +ih[(s — as)? + (w0 — aw)?].

Indeed, in some local coordinates, (2.15) will coincide with (2.9). Let (61, ...,0,-1)
be an orthonormal basis of wy-. Writing a,, = wp + Z?;ll aj0;, ac = Z;le b;0; we
see that o, - a¢ = a - b ; therefore in these coordinates (2.1) is preserved and (2.2) to
(2.5) are satisfied.

Examples 2.9

(1) Let ug be such that e’l*lug € L2(R™) for some § > 0. Then %W F,(ugp) N
(T3, M)° = @. Indeed let mo = (0,wp, Ao, o) be a point of (BT, M)°. We
set a” = (s0,wo, Ao/s§, po/s3). According to Theorem 2.5 and Remark 2.8 (2), (4),
we can take k = 1, a = 1 and o(X,,h) = (X — ax)as + ih(X — ax)? (where
X = (p/h,w)) in (2.9). In the coordinates (p,w), our assumption on ug reads :
ug(w/p) = pEtz e 0/Py(p,w) with v € LRy x S"71). Let x be a C™ cut-off
supported in {|s — sg| + |w — wo| < €} with € < 1/2s¢. Then

dp

——dw.
p>T2

Tus(ah) = [ [ eI (o ) 0]
0 Snfl

On the support of y we have %30 <p/h < %so so —0/p < —% % Since |eih72“’| <1
we get |Tug(o, h)| < ‘Ce’ao/h, for all & near oy, which means that mg ¢ W F, (uo).
(2) Let ug(z) = e2{4®%) where A is a real n x n symmetric matrix. Then

qSCWFa(Uo) C A= {(O,WQ, —Awg - wo, Awg — (Awo 'wo)wo), wo € Sn_l}.
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14 CHAPTER 2. THE ANALYTIC QSC WAVE FRONT SET

First of all, since ug is analytic, it has no usual analytic wave front set ; by the
Remark 2.8, (3), it has no W F, in (¢S*M)°. We show now that

B F, (ug) N (T 55, M)° C Ag.
Here we may use the transformation (2.15) with
k=1, a=1 and ¢=(X—ax)az+ih(X —ax)>
Let mg = (0,wo, Ao, ft0) with o L wo but
(Ao, o) # (—Awp - wo, Awg — (Awg - wo)wo).

We set Xo = (So,&)o), Eo = (/\0/58,/10/5%) and we take Olo = (Xo,Eo) =
(so7w07 Xo/sd, uo/s%). Then we have

oo h—20 h ds
(2.16) Tuo(a, h) = If"/ / eth sk y (5, w) 7 dw
0 Sn—1 Sn

where
O(s,w,a, h) =0s(s,w,a) + ihb(s,w, )

1 Aw -

(2.17) 92(5,w,a):(s—as)af+(w—aw)a<—§ izw

01(s,w,a) = (5 — as)? + (w — a,)?

oy wo =1, ac-wy=0.
We have

00, Aw - w

(218) g (s,w,a) = o, + 53
and if t € T, 9" ! j.e. t-w =0 we have

004 t- Aw Aw — (Aw - w)w
2.18)’ N et AT v
(2.18) t ER t-ag -2 t-oc—1 32

Claim. — One can findt € T,,, S" 1, |t| =1, Cy > 0, € > 0 such that for all (s,w, )
in Ry x S~ 1 x (Ily) such that |s — so| + |w — wo| + |a — ag| < & we have
090,

(2.19) E(s,%a)‘-ﬁ-‘t-%(s,w@)‘ > Cy.

Otherwise for every t € T,,, S™ ! one can find sequences (s;), (w;), (a;) converging
to sg, wo, o such that

005 005 1 .
B (sj,wj,ozj)‘—k‘t R (sj,wj,aj)‘\j, J

It follows, according to (2.18), (2.18)' that

WV

1.

Awyg - Awn — (Awq -
Yo, Ao g g (R A (e oleny
50 50 50 50

but this is in contradiction with our choice of (Ag, o).
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002

. S,w,
Now let us fix « close to a” and let us set X = (s,w), V(X) = ‘?99 (s, ) .
(t- 92 (s,w,a))t

We introduce the following contour in C™,
(220) S={ZeC"*':Z=X+ivxi(X)V(X), X = (s,w) €]0, +oo[ x S"71}
where v is a small positive constant to be chosen and

Xl(X):lif|X—X0|<€1 70<X1<1,

Xl( )—O if |X X0| 281

1 being such that x(X) = 1 on the support of x; in (2.16). Since 6 given in (2.17)
can be extended as a holomorphic function of (s,w) in C x C™ and since x(X) =1 if
Y is not real, we can apply Stokes formula and deduce that

K2 2 (0% d
(2.21) Tug(ov,h) = h~ // G (2 )Zn+1

It follows from Taylor’s formula that, for Z in X, we have
02(2, @) = 02(X, @) + ivxa (X) [V (@) |2 + O (X V(X))

On the other hand we have
01(Z, ) = (Z—ax)? = | X —ax|?+ 2ivxa(X) (X — ax) - V(X) — 3 (X (X)]2.
We deduce that for Z in ¥ we have
(2.22) Re(ih™20(Z,a,h)) =

—vh 2 xa(X)|[V(X)|? +h 20 (X3 (X0)IV(X)]1?)

—hHIX —ax [P+ 2RO IV = (1) +(2) + (3) + (4).

We have
(1) =— l/hile(X)”f/'(X)”2
(2.23) 1(2)] gcyh_Qz/Xl(X)HV(X)HQ
() =—hHIX - ax]?

(@] <Cvh™ vxa(X)|[V(X)].

Taking v small, we deduce from (2.22) and (2.23), that
1 .

(2.24) Re(ih~20(Z,a, h)) < —§Vh*2X1(X)HV(X)H2 —hHX — ax]?.
We fix v and we write X = X1 U X9 where

Y= {Z € ||X XOH 51}

Yo = {ZE Y < HX—X()H}
On X1 we have y; =1 and on Y5, 0 < x1 < 1.
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16 CHAPTER 2. THE ANALYTIC QSC WAVE FRONT SET

On ¥; we have by (2.19) and (2.24)
1
(2.25) Re(ih™20(Z,a, b)) < —ZVC’S h2.

On the other hand on ¥ we have, | X — ax|| > [| X — Xo|| — % —ax| > 11, if a
is sufficiently close to a®. It follows from (2.24) that

(2.26) Re(ih™20(Z,a, h)) < —is? Tt
We deduce from (2.25), (2.26) and (2.21) that
|Tuo(a, h)| < Ce==o/h

if o and h are sufficiently close to a¥ and 0. It follows that (0, wo, Ao, o) & SW F,(uo)
as claimed.

By the same argument we can prove that uy has not ©““WF, on the corner p =
o = 0. Indeed, in this case we have to estimate

e ih=2k"19 h.k ds
Tuo(e, h, k) = A" i (s,w,a,h, )X(S,w) — dw
0 Snfl S +
where

Ref = (s —as)or + (w— ) ¢ — %Aw-w

Imb = (s — as)* + (w—a)?.
Then 9 5
%(Reﬂ) =a, +0(k), t- a—w(ReG) =t-ac+ O(k).
If o is close to a® = (so,wo, Ao/s3, Fp/s3), then ||+ |ag| # 0, since N+ [ = 1.
So, if k is small enough we still have (2.19), and the same proof applies.
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CHAPTER 3

THE LAPLACIAN AND ITS FLOW

3.1. The Laplacian

The Laplacian on M related to the metric g can be written in any system of
coordinates as

1 n—1 ‘
(3.1) Ag=—= > D;(VGg’* Dy),
\/6 3,k=0

where D; = £ 2 G = det(g;1), (¢7%) = (g;5) "

T Bl
i Ox;

Since ¢ is a scattering metric, (1.1) and (1.2) show that

o= P00 hoe ik
p4 ’ p2’ J p27

1<jk<n-1.
It is easy to see that, for small p, we have

1 \n+1
¢= (p_2> (H+0(p)), H = det(hjk(0,y))1<)k<n—1
(3.2) 9 ="+ 0(°), g™ =0("), 1<k<n—1
9" = pQEjk(y) +0(p*), 1<j,k<n—1, where

—ijk _
(hj ) = (hjk(07y))1<1j,k<n—l .

Here O(p%) denotes an analytic function on [0,e[ x M which can be written as
pla(p,y) with a analytic.
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It follows from (3.1) and (3.2) that

1
Bg=— [(p°D,)* + p* Ag + c(n) p° D, + pR] , where

hS)

0:\/—_2 ‘/_th (y)D )and

R=" 3" aalp:y)(p* D) (0> Dy)™, aac(p,y) = p”1"ane(p,y),
1<]al+6<2

0(0,2)=1, o(1,1) =0, ¢(2,0) =0, o(1,0) =2, ¢(0,1) =3.

(3.3)

Let us remark that one can also write
Ay = (0*D,)? + p* Do + ¢ (n)p* D, + p R,

(3.4) R'= Z bae(p,y) (02 D,) (pDy)*, bar(p,y) = p11 boe(p, y),
1<al+6<2

0(0,2) =1, 6(1,1) =0, 6(2,0)=0, 6(1,0)=1, 6(0,1) =2

3.2. The Hamiltonian

In the pseudo-differential calculus of Melrose [M2], the principal symbol of A is
a function on T M which can be written as

1
o(Ag)(p,y, A ) = p—2p(,07y,)\7,u) where

p(p, s A, u) =N+ [|ull® + pr(p,y, A, 1) with

lull? = Zh Wi, ()= > aae(p,y) N p®,

j,k=1 || +£=2

aoe(p,y) = paoe(p,y)-
The symplectic two forms on 9T M is w = do where a has been defined in (1.4).
Therefore
dANdp  duNdy dp N\ dy
=753 + = —2p—.
The Hamiltonian Ha of the symbol of A, is then defined by

(3.6)

1
(3.7) d(p—2p)<-> = —w(Ha, ).
An easy computation shows that
op dp 8p op dp Op
8) Ha= 2 — 2 o — p o — L) . 9,.
(B8) Ha=r550+ 3, 0, + (20— " on pap>‘9”< "ax 8y> On
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3.3. THE FLOW ON (%“Tg; M)° 19

Using (3.5) we see that
(3.9) N
Ha = Xo + X where

Xo = 2090, + 208 = |al®) 0 +2(11,,) + 4N - Dy = Oy 111%) Dy
n—1 .

where (a,6) = >~ F"(y)a;be. [lal* = (a,a), and
jok=1

X =p1p?9, + papdy + q1pO\ + qopd, where p; (resp. ¢;) are

polynomials of degree 1 (resp. 2) in A, p with analytic coefficients in (p,y).

3.3. The flow on (QSCTQMM)O

On this set the flow of the Laplacian will be the flow of Xq since X vanishes on
this set. Let mg = (0, yo, Ao, to) € (QSCTEMM)O. The flow of X starting from myg is
given by the equations

p(t) = 2A(t) p(t), p(0) =0
1

510) (0 =2 X B Wm0 90 =
20 = kD, MO =X
f(t) = AN (O = B, O, 1(0) = po.

This system has a unique maximal solution defined on [0, 7%*[ (and in |T%,0]).

Case 1: if po = 0. — By the first equation we have p(t) = 0 for ¢ € [0, 7*[ and the
last one shows that p(t) = 0, t € [0,7*[. Then, by the second equation, y(t) = yo,
t € [0, T*[, and the third one can be written A(£) = 2A2(t) ; thus we have \(t) = #O/\Ot
for t € [0, 1/2)\0[ if Ao > 0 and for ¢ € [0,400[ if Ay < 0. Moreover if A\g > 0 we
have limy_,1 /25, A(t) = 4+00. Summing up, if Ag > 0 we have T = 1/2), and every
integral curve of Xy starting from mgy = (0, yo, Ao, 0) reaches the corner p = o = 0
at finite time 1/2X\g. If A9 < O then the integral curve is defined for all ¢ in [0, +-00[
and stays in (95°T,,,M)°. The same discussion applies to the case ¢ € ]T},0]. We
introduce the sets

(311) { N={m=(py,\p):p=pn=0}

Nt={meN:A>0}, N-={meN:A<0}.

Case 2 : if up # 0. — In that case the solution of (3.10) exists for all time in R and
the integral curve stays in the interior of qscT; mM. Here is a sketch of the proof

of these facts (the details are in [W], section 11). If o # 0 then u(t) # 0 for all
tin |Ty, T*[. We set u(t) = p(t)/||p(t)|| and we parametrize the curve by s where
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20 CHAPTER 3. THE LAPLACIAN AND ITS FLOW

5(t) = 2||u(t)]|, s(0) = 0. The equations (3.10) give

L dp_ Ap AN N |y
i — = iv — =
R T g ||u||
319 . dyz i~ d/w _
(3.12) (i) Zh Hj (v) as 2 Z ay 4 g -
7,k=1
R
AT _ o)
(iii) s

Then we set o = A/||p|]| and we see that & = —(1 + o?). The solution of this
equation, such that «(0) = tanfy, 6y € ] - 77/2,#/2[, is a(s) = tan(fy — s) where
o — s €| —m/2,m/2[. It follows that A(s) = [|u(s)|| tan(fy — s). Using the equation
(iii) in (3.12), we get

le(s)]l = A cos® (60 — s)

(3.13)
As) = é sin2(fp — s).

Then, using (i), we obtain
(3.14) p(s) = C cos*(fy — s).

Since a(0) = Ao/||uol| = tan Oy, we have 6y = Arc tan \o/||1ol]. On the other hand, by
(3.13), A3/||io|| = A sin? 6. Therefore % + ||pol| = A. Moreover, $(t) = 2[|u(t)|| =
2A cos?(fp — s(t)). It follows that s(t) exists for all ¢ € R. This implies that the
solution of (3.12) exists for all ¢ € R and (3.13) shows that || 4 |u| is bounded so the
integral curve stays in the interior of qsch uM.

3.4. The flow on ¥¢S*M

When |A| + |g| is large, we make the change of variables in the cotangent space,
(P, y, A, 1) = (psy, 0, (A 1)) where

1 Y =
(315) U:W, )\:O')\7 nw=aou.

In these new coordinates the Hamiltonian Ha is singular at ¢ = 0. However 0 Ha is
a smooth vector field and we have

Op Op op  Op Op Op
1 Hp =
(316) o Ha = p 500yt 0, ( F o9, )&+( T )8——|—af(p,y,/\ )9, .
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3.5. BEHAVIOR OF THE FLOW FOR LARGE TIME 21

By definition, the flow of the Laplacian on %°¢S* M will be that of 0 Ha. It is therefore
given by the following equations

p= p%(m%Xﬁ) p(0) = po
y=§—ﬁ<-~-> y(0) = yo
(3.17) X:-(ﬁg—z +pg—p)(-~-) X(0) =X
) [ OO IR
& =0of(p,y, \T0) o(0) = 0.

The last equation shows that o(t) = 0 for all ¢.

3.5. Behavior of the flow for large time

Definition 3.1. — A maximal integral curve of o Ha on T M will be called non
trapped backward (resp. forward) if it is defined for all ¢ in | — 00, 0] (resp. [0, +o00])
and p(t) — 0 as t — —oo (resp. £ — +00).

In (3.11) we have introduced the sets ', N'*. Here we set

(3.18) t={m=(pyo,\R):p=m=0=0, A==1}.

Definition 3.2

(i) Let m € 9T M, m ¢ N'. We shall say that m is non trapped backward (resp.
forward) if the integral curve of o Ha starting from m is non trapped backward (resp.
forward).

(i) Let m € N, m = (0,y0,00,(£1,0)). We shall say that m is non trapped
backward (resp. forward) if the point (0, yo,0, (+1,0)) € N does not belong to the
closure of any integral curve of o Ha trapped backward (resp. forward).

We shall denote by T_ (resp. T4) the set of points which are trapped backward
(resp. forward).

Proposition 3.3. — Let mg € ©°S*M ~ (NS UT-). Then
N-oo(mo) = lim_expto Ha(mo) € NE.
(Same result when — and 4+ are exchanged).

Proof. — Here expto Ha denotes the flow of o Ha described in (3.17). Let mg =
(po, Y0, 0, (Mo, Tip)) be non trapped backward. We have the following cases.
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Case 1 : pg = Tig = 0. — The first equation in (3.18) shows that p(t) = 0, ¢ € (—o0, 0].
According to (3.5) we see that the other equations reduce to

T N=-2la*, =231 0,7

Therefore 7i(t) = 0, \(t) = 1, y(t) = yo, o(t) = 0, so for all t we have exp to Ha(mg) =
mo € fo_

Case 2 : pg =0, Tig # 0. — Then p(t) = 0 but 7(t) # 0 for all ¢ in ( 00 O] The
above equations show that \ is strictly decreasing on (—oc,0]. Since —1 < A(t) <
A(t) has a limit £ when ¢ goes to —oc. It follows that [|E(t)[|* = 1 — () > 1- €2

so A — —2(1 — ¢2). This implies that £ = ¥1 so ||@(t)|| — 0 and A(t) — +1. On
the other hand we deduce from the above equations that 4 |[7(t)||? = 4X(¢)||a(t)|?,
so if A\(t) — —1 when t — —oo we would have ||fi(t)||> — +o0. Therefore A(t) — 1
[Z®)] < Ced, 6 >0, t<0. It follows from the equation in y that y; € L*(—o0,0)
so y;(t) tends to a limit as ¢ — —oc.

Case 3: pg # 0. — In that case, mo non trapped backward implies that p(t) — 0
as t — —oo. Moreover, by the first equation in (3.17), we have p(t) # 0 for all ¢.
Now we check easily from (3.17) that j[ (p,y,X )] = 0 ; since, by ellipticity of
p =N+ ||u]|? + pr we have c(A? + [|u]|?) < p < L(A2 + ||p]?), it follows that A, 7,
r(p,y, \, i) and their derivatives are uniformly bounded. We have

: o .~ T -
p=rgy =20+ 110,y D).
Then, using the Euler relation, we get

S dp ~—/.~ or Op
L o pE =22 —)—2p—p—.
A=A gLy, A(”"’m) PP 5,

Since p(p,y, \, i) = 1, we obtain Y=o — 2+ pr2(p,y, \, i) where 71 and 7y are
bounded. Let us set a(t) = (A(t) — 1)/p(t). Then

- (-1)p 1

p? p?

— 1)+ p?rs] = 2a(t) + f(t)

[20(A = 1)(A+1) = 2Xp(A — 1) + p*rs]

where f is bounded on (—o00,0]. It follows that a is bounded on (—o0,0], so
IX(t) — 1| < Mp(t). Therefore A\(t) — 1 and ||u(t)]|2 =1 — X2(t) — p(t)r(---) — 0 so
lim¢—, oo expto Ha(mg) € NS. O

Given € > 0 we set

Qe ={(p,y, 1) €ECxC" 1 x C" ' |p| + || < e}
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Then one can find €* > 0 such that for all 0 < ¢ < &* and all (p,y, ) in Q. the
problem

(3.19) {p(p, YA p) =1

ReA <0

has a unique solution A = A\(p, y, u) which depends holomorphically on the parameters.
By extension we shall say that the point m = (p,y,0,(\, 1)) belongs to Q. if
(p,y, 1) belongs to Q. and A is the corresponding unique solution of (3.19).

Lemma3.4. — There exists e > 0 such that for all m* = (p*,y*,0, (A", u*)) in Qg
we have

(a) expto Ha(m*) exists for allt > 0

(b) expto Ha(m*) converges, ast goes to infinity, to a point (0,y,0,(—1,0)) € N¢,
(c) y depends holomorphically on (p*,y*, u*) in Qg and -

(d) y=y"+p" Fr(p",y" 1*) + p* Fap*, y", ).

Proof. — Let us introduce the following subset A of |0, +00[. We shall say that T' € A
if the system (3.17) with data (p*,y*, \*, u*) has a solution on [0, T] satisfying

|p(t)] < 20e™*
1/2
¢
(3.20) ly(t) —y*| <
[A(%) + 1| < 2e9e™ 4t
()] < 2e0e™%.

Our purpose is to show that A =]0, +oo[. Let T* = sup A and assume that T* < +oo.
Let T < T*. By the first equation of (3.17), our solution on [0, T] satisfies

p—paA = 2Xp+ p*alp,y) A + pb(p,y) p
a,b bounded. Then
p=—-20+2\+1)p+ap’\+ pbu = —2p + f1(t).

It follows from (3.20) that |f1(t)| < Crede™*. Since

t
p(t) =pe 4+ e_Qt/ e* f1(s)ds
0

we get

C 3
(3.21) Ip(t)| < ege™ + 716(2)67275 < 50 e 2
lf Cl €0 < 1

SOCIETE MATHEMATIQUE DE FRANCE 2002



24 CHAPTER 3. THE LAPLACIAN AND ITS FLOW

Now
_ 0 _op
H=Hax " by
= 20+ 2(A+ 1)+ a1 p* A\ + ag pp — Oy ||| + az p* X + as pAp + a5 pp®
= =2+ fa(t)
where | f2(t)] < Cae2e™4t. Since |u*| < g9 we get easily, as above,
3 _
(3.22) 0(t)] < S e
if Coeg < 1. Let us look to A\. We have, since p(p,y, A, 1) = 1,
(3.23) A — 1= —||u|® = plapA® + bAp 4 cp?).
Now

N1 = A+1A=1 = A+1][2—= A+ 1) = [N+1[(2—250) > [N+ 1]
if eg < 1/2. Tt follows from (3.23) and (3.20) that

(3.24) N+ 1] < Czele™ < gpe ™™
if C3eq9 < 1.
Finally, g5, = Op/0pr, = 2 E?:l Ejk(y)uj + pai A+ pag - . Then
ly(t) —y"| < Caeo /t e ?ds < %607
SO '
(3.25) ) — vl < 5ei

if Cyet/? < 1.
Moreover for t¢,t’ in [0, 7], we have

t/
(3.26) (1)~ u(t)| < Gz / e ds|.
t

Now it is easy to see that (p(T),y(T),\(T), (7)) have a limit as T goes to T*
and these limits satisfy estimates as (3.21), (3.22), (3.24) and (3.25). Applying the
Cauchy-Lipschitz theorem, we then see that a solution of (3.17) can be found, which
satisfies the estimates (3.20) on [0, 7" + d] ; this contradicts the definition of T and
proves that T* = +oo. Thus a) is proved and b) follows from (3.20) and (3.26).
Since expto Ha(m*) depends holomorphically on (p*,y*, u*) in Q., and since, by
(3.20), (3.26) the convergence to (0,y,0,(—1,0)) is uniform, the claim c) is proved.
Finally assume in (3.20) that the data p(0) = p* and u(0) = p* are equal to zero.
Then p(t) = u(t) = 0 for all ¢ in [0,4o00[. It follows that y(¢t) = 0 for all ¢ so
y(t) = y(0) = y*. This proves d). O
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Corollary 3.5. — Let
mo = (0,40,0,(=1,0)), >0 and V ={m*:d(m*, N L (mo)) <},

where d is Euclidian distance. Let m* € Q. be such that expto Ha(m™) converges,
as t goes to +00, to a point (0,y,0,(—1,0)). Then, if o is small enough, one can find
d > 0 such that if |y — yo| < 6 we have m* € V.

Proof. — Let m* = (p*,y*,0,(A\*, u*)). By the implicit function theorem, keeping
the notations in Lemma 3.4 d), one can find A} € C with Re\j < 0 and y5 € C*!
such that

p(p* yo, Ao, 1) =1
Yo =yo +p" F1(p",y5, 1*) + 1" F2(p", yg, 1)
It follows from Lemma 3.4 that m{§ = (p*, 5,0, (A, #*)) belongs to Q., and to
Nl (mg). Since \j = G(p*,yg, 1), where G is holomorphic in .., we see that

[m* —mg| < Cly* — yg|. From Lemma 3.4 and (3.27) we deduce that
Im® —mg| < Clyo —yl+ C'(Ip" + 7)) < Clyo =yl + C'eo < €6 + C'ep < 0
if 6 and g¢ are small enough. It follows that m* € V. O

Corollary 3.6. — One can find e¢g > 0 and a holomorphic function G in the set
{(p*, 1) = |p*| + |p*| < eo} such that if m* € Q, NN (mo), then u* = G(p*,y*).

Proof. — This follows from Lemma 3.4 d) and the implicit function theorem if we
can show that F5(0, yo,0) is invertible. To compute this term, we may take, in (3.17),
p* =10, y* = yo and p* = pje, where pj € C and (eq,...,ep—1) is the canonical
basis in C"~!. Then p(t) = 0 for all t. Let us set puj = z € C, y(t) = yo + 2Y (t),
7i(t) = zn(t). Then from (3.17), we get
n—1

Un(t) = 77" (yo) 2y () + O(|2[2) = 2Yi(t)
1

ji(t) = —2en(t) + O(=?) = =ii(t
since, by (3.23), we have A + 1 = O(|z|?).

It follows that (Y, n) satisfies the system

<.
Il

—2Zh (yo)m; (t) + O(l2]),  Yi(0) =0

n(t) = —277( )+ O(lz]), 1n(0) = ex.
To compute F»(0,yo, ) we have to solve this system with z = 0. We obtain n;(t) =0
if j # ¢ and ny(t ) e . We deduce that Yj(t) = 2E€k(yg)e_2t, which shows that

limg 4o Yir(t) = " (y0). Tt follows that F5(0,40,0) = (i (y0))1<k.e<n_1 which is
invertible. [l
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CHAPTER 4

STATEMENTS OF THE MAIN RESULTS
AND REDUCTIONS

We consider in this section for uy € L2?(R"), a solution u(t) in the space
C°([0, +o00[, L(R™)) N C([0, +00[, H2(R™)) of the problem

ou

A =0
(4.1) or ot

ul=0 = ug

where A, is the Laplacian with respect to a scattering metric g.

4.1. Main results

Our purpose is to answer the following question : given a point my in C =
aseTp M U 9S* M and a time T > 0, on what condition on the data uy do we
have mg ¢ W EF,(u(T, ")) ?

The point mq will be described by its coordinates

(i) i o0 = 0, mo = (po, g0, 0, (o, 7)), Xo + o = 1

(11) if o9 >0, mg = (071/0,)\0,/1,0) with A\g = X0/007 Mo = ﬁo/ao.

We shall consider several different cases.

Case 1. — pg =0, 09 > 0 and
(1i) po #0,T > 0, or
(111) o =0, >0,T >0, or
(L.iii) po =0, Ao < 0, T < —=1/2.

Theorem4.1. — We have mg ¢ BWEF,(u(T,-)) if and only if exp(—TXo)(mg) ¢
BTV F, (ug)-

Case 2. — pg =10, 09 >0 and

(2.) o =0, Ao <0, T = —1/2X0.

Let us set my = exp (5= Xo)(mo). It follows from § 3.3 that m; € N, that is
m1 = (0,91,0,(—1,0)). We shall denote by N;;O(ml) the set N2 (m1) ~ {m}, that
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is the set of points in S*M, different from my, which arrive at time ¢ = o0 at the
point my by the flow of 0 Ha.

Theorem 4.2
Assume that one can find a neighborhood U of mi = exp (ﬁ XO) (mg) such that

N7l (m1)NU does not intersect q“ﬁa(uo). Then mo & W F,(u( —1/2X0,)).

Case 3. — po =10, 0o > 0 and

(31) o = 0, o <Oand T > —1/2)\0.

As before let us set m; = exp (ﬁ Xo) (mo) € N¢. If my is not backward trapped
then, by Definition 3.2, all the points of N; 1 (m1) (that is the points arriving at
time 400 at my by the flow of 0 Ha) are not backward trapped ; therefore the set
N_oo(NL (m1)) is well defined. We shall set

scat(mi) = N_oo(N7 L (m1)) C NE.

Theorem 4.3

Let mqy = exp (ﬁ Xo) (mo) € N¢. Assume that my is not backward trapped and
that exp [ — (T + ﬁ)] (scat(mq)) N W EF, (up) = &. Then mg ¢ SWEF, (u(T,)).
Case 4. — oo =0 and (4.1) po >0, T > 0, or (4.ii) po =0, mo ¢ N, T > 0.

Theorem 4.4
Assume that mq is not backward trapped (then N_o(mg) € N§). Assume that
exp(—TX0)(N-oo(mp)) & W EF,(ug). Then mo ¢ BWEF,(u(T,")).

Case 5. — o0g >0 and
(51) po=0,m; = exp(—TXg)(mo) S Nf, T > 0.

Theorem 4.5 -
Assume that my ¢ W F,(ug). Then mg = exp(TXo)(m1) ¢ EWF,(u(T,)).

Remark 4.6. — Theorem 4.4 contains the so called “smoothing effect”. Using Exam-
ples 2.7 (1) and (2), we can recover results which, in this context, are analogue to
those of [RZ1] and [RZ2].

The results described above will follow from several other ones which we state now.

4.2. Propagation inside %°T,, M

Theorem 4.6
Let 0 < 0, < 0% and m € T M. Assume that exp(6Xo)(m) € (ST, M)° for
0 € [0.,0%]. Then

exp(0. Xo)(m) ¢ PWE, (u(bs,)) < exp(6* Xo)(m) ¢ ¥ WEF,(u(6%,")).
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4.3. Propagation of the uniform wave front set in (©*°S*M)" or on the
corner

Theorem4.7. — Let tg > 0 be fixed. Let 0 < 0, < 0* and m € ST M. Assume that
exp(Bo Ha)(m) € (35¢8* M)° (resp. B¢S* M N STy, M) for 6 € [0,,0%]. Then

exp(8.0 Ha)(m) & “WFq(ulto, ) <= exp(8”0 Ha)(m) & ¥W Fy(u(to, ).

4.4. Propagation from the interior to the corner

Theorem4.8. — Let m € N€ and ty > 0. Assume that one can find a neighborhood U
of m in B°S*M such that N;;o(m) does not intersect BWF,(u(to,-)) in U. Then
m ¢ BWE,(u(to,-)).

4.5. Propagation from the boundary at infinity to the corner

Theorem4.9. — Let m € N§. Assume that exp(—TXo)(m) ¢ W F,(ug). Then
m ¢ W Fq(u(T,-)).

4.6. Proofs of Theorems 4.1 to 4.5

Let us now show how Theorems 4.6 to 4.9 imply the main results.

A. Proof of Theorem 4.1. — According to the description of the flow on
(3T, M)° in § 3.3, we see that in the cases (1.i), (1.ii) and (1.iii) the bicharac-
teristic stays, for @ € [0, 7], inside (%¢T,,M)°. Thus Theorem 4.1 follows from
Theorem 4.6 taking 6, =0, 8* =T.

B. Proof of Theorem 4.2. — Let m; = exp (ﬁXo)(mo) € N¢ (since Ay < 0).

It follows from Theorem 4.8 (with to = 0) that m, ¢ s F, (up). Then one can find
e € ]0,—1/2Xo[ such that exp(eXo)(m1) ¢ W F,(u(e,-)). Applying Theorem 4.6
with 0, =, 8* = —1/2)¢ we get exp (— ﬁXo)(ml) =my ¢ Ols“’W]*"a(vut(—l/2)\o7 ))

C. Proof of Theorem 4.3. — Assume that
exp [ = (T + 537) Xo] (scat(ma)) N W F,(ug) = @.

Let m € scat(m;). Then m € N{. We apply Theorem 4.9 with T+ ﬁ instead

of T. Tt follows that m ¢ S E, (u(T + ﬁ7 -)). Then a small neighborhood of m

in ¥¢S*M does not intersect this set. We apply Theorem 4.7. We deduce that all
the bicharacteristic issued from m does not intersect ©*WFq (u(T + 3=, -)). Using
this argument for all points in scat(m;y), we see that one can find a neighborhood U

of my in §*M such that N1 (m1) does not intersect “°W F,, (w(T+35,7) nU. It

SOCIETE MATHEMATIQUE DE FRANCE 2002



30 CHAPTER 4. STATEMENTS OF THE MAIN RESULTS AND REDUCTIONS

e S M

905 M

Rpl (m)

my € N¢

my

mo mg
exp(=TXo)(mo)
T M T M
Theorem 4.1 Theorem 4.5 Theorem 4.2

Scat(my) = K C .r\/'i e S* M

my

exp(=TXy)(K)

my

/f' = ,T' Jr 217)\0
exp(—TXo)(N_c (mg))
T M @ M
Theorem 4.3 Theorem 4.4

follows from Theorem 4.8, with to =T + ﬁ > 0, that m ¢ qscﬂ/ﬁ:‘a (u(T + ﬁ7 ))
Let us introduce mg = exp(—TXo)(mo). Then m; = exp ((T + ﬁ)XO) (ma) ¢

qscﬂ/ﬁ:’a (u (T + ﬁ7 )) Then one can find € > 0 such that

exp(eXo)(mq)
= exp (T + 55 +¢) Xo) (m2) € (*Tpp M)° 0 (W, (u(T+ 5= +¢,-)))"
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o8t M

exp(0*ocHa)(m)

exp(b.oHa)(m)

exp(0* Xq)(m)

exp(f, Xg)(m)

@< M Ty M

Theorem 4.6 Theorem 4.7

e gt M

exp(—TXg)(m)

s M asT A

Theorem 4.8 Theorem 4.9

Applying Theorem 4.6 with 6, =T + ﬁ +e < 0* =T we see that exp(T Xg)(ms) =

mo & CWE, (u(T,)).

D. Proof of Theorem 4.4. — Let m; = N_(mg) € N§. Since
exp(—TXo)(m1) ¢ PWF,(ug)

we have, by Theorem 4.9, my ¢ S WF,(u(T,-)). If mg € “WF,(u(T,-)) then, by

Theorem 4.7, all the bicharacteristic starting at myg is contained in W F,(u(T,-)).
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Since this set is closed it would follow that

N_so(mo) =m1 = lim_exp(tXo)(mo) € Y, (u(T,-))
which is a contradiction. So mq ¢ W Fq(u(T, -)).

E. Proof of Theorem 4.5. — The complementary of qSCI/I/?Fa is an open set; then,
there exists € > 0 such that my = exp(eXo)(m1) & B“WF,(u(e,-)). We can now
apply Theorem 4.1 with T' — ¢ to obtain Theorem 4.5.
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PROOF OF THEOREM 4.6

In (T, M) we can, according to the Remark 2.8 (2), forget the parameter k
in the FBI transform and use (2.9)". Using (3.4) we see that the adjoint A} of our
Laplacian can be written as

A= (p*D,)? + p* Ao + c(n) p® D, + d(n) p* + pR where

(5.1) R= " baslp.)(0* Do) (0Dy)"  bor(p, ) = p*Boe(p.y) -
0<]al+£<2

Let (0o; 80,90, 0) € R x RT x R™ x R?" be a fixed point. Roughly speaking our
goal is to find phases ¢ = @(9; p/h,y, a, h), symbols a = a(&; p/h,y, a, h) depending
smoothly on all variables in a real neighborhood of (6y; s, yo, a0, 0) such that, at least
formally, we have

5.2 0 +iAy eih e =0, e>0.
o0
We shall seek for ¢ and a on the following form
_ P ' P
(5.3) @ = a0 h7y,a> +ihr (0: 2,y,0)
(5.4) a—ZhJaj< =, Q, h>

7=0

An easy computation shows that, working with the variable s = p/h, we have

(5.5) (889 +iA” )( e Y = 2 (T4 IT A TIT 4+ 1V).
= (5 <8@2> e e
(5.6)

V=S Py - ),
7,k=1
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I = —h(ﬁ(pl —HFo(s y, 272 8<p2>>a, where

ds = 0Oy
_ 0 ! gz 0 Opa O
(5.7) L= om 2t S0 <ay’ay> and
Fy isreal if (s,y) is real and is a polynomial in %7 %
ds ’ Oy
(5.8) 111 = h2 (Ea + F1 (S, Y, ((9a @z)‘aKg,gzl,g) a) .
2 .
(59) IV = Z h>t Xj (3h7 5, Y, (aa @é)\a|<2,£:1,2 ; O, ay) a

Jj=1

Here F; is analytic in (s,y), polynomial in (0%¢y), |a| < 2, £ = 1,2 and X is
a homogeneous differential operator of order j whose coefficients are finite sums of
terms of the form b(sh, y)c(s,y)(0%p1)(9° 2)?2 where |a| < 2, |B] <2, €1+ fo < 2
and ¢, b are smooth.

5.1. The first phase equation

Our purpose here is to find 2 such that the term I in (5.6) vanishes. We shall
solve, for (0, s,y) real, the Cauchy problem

(5.10) 8(‘;002 T (8@2> H o ”
v2lo=0, = (s — as)ar + (y —ay) -y

where a = (s, ay, ar, ay) € R?™ is a parameter close to ap. If we set
(5.11) ©2(0;8,y,0) = @2(6; 8,y, ry ) — sy — iy iy
then (5.10) is equivalent to

(5.12) % e <8¢2> H > H

P2lo=0, = Sar + Y - 0y
Let us consider the symbol
(5.13) Us,y,7,0,07) = 0" +a(s,y,7m), q(---) =872+ % ]|
The equation in (5.12) is equivalent to
(o, 022, 922 O _
" 9s 7 dy 06
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The bicharacteristic of ¢ starting from (6o, S, ¥, ar, o) is described by the equations

o) =1 6(0) = o
30 = 20,90, 70, 0(0)  5(0) =7
it =20 v =7
(5.14) K o
9*(t) = 0 (O) = _Q(Say77-7’r])
(1) = ~2L(s(0) y(0), 70, (1) 7(0) = 0
(6= -5-) n(0) = a

We have 6(t) =t + 60, 0*(t) = 6*(0) and the system in (s,y,7,n) has, for small |¢|, a
unique solution

(S(ta 57 ﬂa CV-,—, Oln), y(t’ 57 ﬂa CV-,—, Oln), T(t7 ’§7 {J? C¥7—7 a’ﬂ)? n(t7 ga ga CV-,—, Oln)) N

Let us consider, for fixed (o, o), the set

(515) A= {(97 8(0 - 90;§7 ga a‘raan)v y(a - 00;§7 :,(77 Qr, an)7 9*(0)7
(0 = 0035, T, e, ), 00 = 0035, F @z, ), (6,5,5) close to (6o, 50,90)

Then A is a Lagrangian submanifold and, since ¢ is constant on the bicharacteristics,
we have

(5.16) fa=0.

Now the map (6,5,7y) — (0,5(0 — 00; 5,9y, ar, ), y(@ — ;- - - )) has a Jacobian with
determinant equal to one at § = 6. It follows that the projection on the basis
II:A— RxRxR*1!, is a local diffeomorphism. Therefore one can find a real
function @2(6; s,y, or, o) in a real neighborhood of (6o, so, yo) such that

_ 022 002 002
(517) A= {(97373/» 89 ) 85 ) 8y )7 (0737y) close to (007807:(/0)}'

Then (5.16), (5.17) show that @3 solves (5.12). Let us note that

%(9; 8,Y, 0r, Q) = 7'(0 — 005 k1(0 — 003 8, Y, ar, 1),
(518) H2(9—90;57%@770‘17)7017-70‘17)

%—6;() =n(0 = 0o; K1(--), k2(- ), ar, )
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where
0=20 =20

(5.19) s(0—00;5, Y, ar,0y) =5 = §S=k1(0 —00;8,y,0r, ty) .
y(9_00;§7§7a7'7a77):y §252(9_607)

Now the solution @, in (5.18) is determined up to a constant. We shall take the
constant such that

(5.20) ©2(00; s0, Yo, ar, ) = xS0 + Ay - Yo
This determines s uniquely. Now we write
1 ~ ~
_ - 0 0
©2(005 8, Y, 0r, ) = ©2(60; S0, Yo, 0tr s Qi) +/ [(3 — 50) % + (¥ —vo) - ﬂ]
0 s dy

(Bo;ts + (1 —t)so, ty + (1 — t)yo, ovr, o) dt..
It follows from (5.20), (5.18), (5.14) that
P2(00; 8, y, 0, ) = xS0 + iy - S0+ (s — s0)ar + (Y — yo) - oy = ar s+ ay 1.

This proves that @ satisfies also the initial condition in (5.12). Let us note that o
defined in (5.11) satisfies then (5.10).

5.2. The second phase equation

Our purpose here is to find ¢; such that the term II in (5.7) vanishes. More
precisely, we shall solve, for (6, s,y) real, the Cauchy problem

_ 001 54002001 /00 D1\ Opz O

P1lo=o, = (s — as)® + (y — oy)?
where Fj is real.
Since L is a real vector field with smooth coefficients, the problem (5.21) has a

unique solution p; = 1(0;s,y, ) near (0, so,yo) which is a smooth function of its
arguments. Now, since Fj is real, we have

(5.22) L(Repy) =0, L(Im 1) = —Fo(s,y, 0p2)
' Repilo=g, = (s —as)® + (y — o), Imifp=g, = 0.

0s ~ Oy

Notation 5.1. — Let ag = (0,90, @2, ). We shall denote by s(t; ap), y(t; ag), ete.

the solution of (5.14) with data (6o, so, Yo, ¥, o).

Lemmab5.2. — Let us set
A= (97 8(0 - 90;:;, §7 Qr, Oln)7 y(e - 007 ’§7 :’[L Qr, a’ﬂ)7 a)a
0 9] 0 0 0 0

oxX ~0s 0y’ dax  0a, | Oy
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(i) Rep1(4) = (5 — ) + (¥ — o). ,

(ii) i(Regpl)(A) = %(Re@l)(A) =0, %(Reapl)(fl) >0ifas =35, ay = 7.

Proof. — If, instead of working in the (6, s,y) coordinates, we take the (5, S,7) co-
ordinates given by (5.19) (where § = §) we see, using (5.14) and (5.18) for ¢o, that
L = 9/06. Thus, setting F(6,5,y,a) = Repi(A), we get 0F/00 = 0 ; therefore

F(g7 3,7y, a) = F(00;5,7, ). Since for 0 = 0o, A = (60; 5,7, ) and since Re ¢ satis-
fies (5.22) we get (i). Then (ii) follows easily from (i). O
Let us note that (i) implies, in particular, that

Re 1 (; (0 — o; ), (0 — bo; ), ag) = 0.

5.3. The link between the bicharacteristics of ¢ and the flow of X
Let ¢ and X be defined in (5.13) and (3.9). Then we have the following lemma.

Lemmab5.3. — Let mg = (O,yO,AO,uO)e(QSCT:;MM)O and og = (so,yo,/\o/sg,uo/sg).
Let (s(6 — 6o; o), y(0 — o3 o), (8 — 005 arp), n(0 — bo; ) be the bicharacteristic of
q (defined in (5.14)) starting from «q. Let us set

(523) )\(0—90) = [8(0—90; ao)]37(0—90; Oéo), /1,(0—90) = [8(0—90; Ozo)]277(9—00; Oéo).
Then (0,y(6 — 0o; ), MO — bo), 11(6 — b)) = exp[(6 — o) Xo](mo).

Proof. — Tt is an easy computation using (5.14) and (3.10). O

5.4. ¢ is a FBI phase

Lemma5.4. — Let mg = (O,yO,AO,uO)e(QSCT:;MM)O and og = (so,yo,/\o/sg,uo/sg).
Let us set, according to Notation 5.1 and (5.23),

X(0) = (s(0 — 83 a0), y(0 — B3 a0)), Z(6) = (

MO0 _p0—t)
s3(0 — 0o; o) " 5%(0 — fo;0)/
Let us set p(0;s,y,a,h) = pa(0;s,y, ) + ihp1(0;s,y, ), where g3 and @1 are the
solutions of (5.10) and (5.21). Then, for small |0 — 0|, ¢(6,-) is a FBI phase at
(X(0),2(8), a0,0) (see Definition 2.1).

Proof. — Let us set X = (s,y), o = (ax,az), ax = (as,ay), a=s = (ar,ay). By
(5.10) and (5.11) we can write

P2(0; X, ) = p2(b0; X, ) + ¥2(0; X, az) = (X —ax)az +¢2(0; X, az).
Now, we deduce from (5.18) and (5.23) that

%(9;){(9),%) = (7(0 = B0 20). (6 = 03 a0)) = E(0).
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It follows from Lemma 5.2 that M(;%(G;X(G),ao) = 0. On the other hand (5.21)
shows that Re ¢1|p—p, = (X — ax)?. It follows that
0% Re 0?Re p1

axe (o) = o

(60: X, ) = 21d,

for all (X, a).
Therefore for (6, ) close to (6o, ap), we get
(82 Re ¢
0X?
0% Re
8X 8ax
Finally, since p2(00; X, @) = (X —ax)az, we get

(0;X(0),a)> >0

det (0; X(0),a) #0.

2L (f0; X, o) = Id, which implies

that, for 6 close to 6, det %(9? X (0),a) # 0. This proves our claim. O

5.5. The transport equations

Here we look for a symbol a such that the terms III and IV in (5.8), (5.9) vanish.
We shall take a of the form
a(t;s,y, o, h) = Z a;(0;s,y,a)h?, with
(5.24) J=0
Jaj(6; 5, y, )| < MIH 572

Setting h* = A™! we see that a = Sa; A\~9/2. Compared with the symbols used in
Sjostrand [Sj], these symbols are non classical. However, we follow essentially [Sj].
We shall work in the coordinates (6, 3,) of Lemma 5.2 where £ = 9/06 and we skip
the ~ for convenience. Coming back to (5.8), (5.9) and setting a = a — 1, we have to
solve the Cauchy problem

(% +¢(0, s,y, a)) a+h2(hPX) +ht X2)a=10

alo=o, =0

(5.25)

where X, j = 1,2, are homogeneous differential operators of order j with smooth
coefficients in (s,y, 6, a, h) in a neighborhood of (s, yo, 6o, @0,0) and b is a symbol.
Setting a; = exp (f;o c(o,s,y,a)do) a, we are lead to solve (5.25) with ¢ = 0. Here a
is fixed, so we skip it in that follows.

With r > 0 small enough and 0 < ¢t < r, we set

(5.26) Q= {(978711) : |9 — 00| +ls—sol+ |y —yol <7 — t}.
Given p > 0, we shall say that a € Ay, if a = 3,5 a;(0,5,y) b’ with

(5.27) sup |a;| < fi(a) 724792 0<t<r,
Q

ASTERISQUE 283



5.5. THE TRANSPORT EQUATIONS 39

(where f;(a) is the best constant for which (5.27) holds) and

+oo
(5.28) > fila)p’ =lla]l, < +oo.
j=0
Let us set
1
(5.29) 9,1 £(0,5,y,h) = (0 — 6) / f(ob+ (1 —0)bg,s,y,h)do.
0

Then the problem (5.25) (with ¢ = 0) is equivalent to

(5.30) (Id+B)a=d, where B=h"20,'(h*X; + h* Xs).

We want to show that one can find p > 0 such that || Bl|z(4,,4,) < co < 1, which will
imply that I + B is invertible.

Lemma5.5. — Let AJ, be the subspace of A, of symbols of the form a = Zj>3 ajh.
One can find a positive constant Cy such that for any p > 0 and a in .A;) we have

Co

1h=205  all, < p—gHaHp-

Proof. — We have
h 20, a =02 oy a; =Y h oy ajn = hib

j=3 j=1 jz1
where )
b;(6,5,y) = (6 — 90)/ 414208+ (1 — 000, 5, y)do.
Now, if (0, s,y) € Q; then ’
|00 + (1 —0)8 — Oo| + |s — s0| + [y — vol
=10 — 00| + |s — so| + |y — vo| + (¢ — 1)|6 — bo|
<r—t—(1-0)]0 -6 ;

0 (00 + (1 —0)00,5,y) € Qi (1—0)|6—0,|- Therefore

1 v ,
16(5,0,9)] < I9—0o|/ Fia2(@)(G +2)F 1t + (1 0)|0 — 6o]) ¢ do
0
So 2
b; (5,0, )| < fizra(a)(j +2)2+! 3,571‘/2.
Now, for j > 1, we have

i+2)i/2 49 1 \d/2 2
L 2 (14 5) (14 3) <
J

Therefore, for (6, s,y) in Q;, we have

b; (0, 5,y)| < 6e fiyala)j?/2t=/2.
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This shows that

(5.31) [(b) < 6e fir2(a).

It follows that

LA . . be
Hh%ﬂmzwm=2ﬁww<%zﬁuww<;wm O

Jjz1 Jjz1

Lemma5.6. — The operator h? X, + h* Xo maps A, to A;) and there exists a positive
constant Cy such that for all p in ]0,1[ and all a in A, we have

17> X1 + h* X2)all, < C1p° |all,-

Proof. — Since X, is an homogeneous differential operator of order ¢ (¢ = 1,2), the
Cauchy formula shows that for ¢’ < ¢
(5.32) sup | Xof| < C(t —t') “sup|f].

Q Iy
Now h2H X,a = s WA Xya; = it hi Xya;—_o—¢. The use of (5.32) shows
that

sup | Xea;j_o_¢| < C(t —t')"“sup|aj_o_s|
Q, Q

+/

<Ot —t) " fias(a)(j — 2 — O)FU20y=30=270),
Let us take t/ = j_J#t. Then

sup|Xgaj_2_g|
— . _lii_ o
(t+2)* 12— —2-10) 2026

<ot (o9
SO —=—0=2-0 1620

The right hand side of this inequality can be written as

1 4t

—J/241-£/2 ;j/2 _J_r
CEerEETs (£ +2)f jiter2 fi=a-ela).

W)
Since 1 < £ < 2, we have . Jli—m <land 1742 <1 (t <7 < 1), s0 we get

1
(+2)*

sup | Xeaj—o—¢| < C fi_o_e(a)j?/?t79/2.
Q

t

It follows that f;(h**¢ Xya) < C fj_2—¢(a), so

||h2+€Xea||p _ Z fj(h%eXea)pj <C Z fjf%g(a)pj < Cp€+2ij(a)pj

J2l+2 Jjzl+2 Jj=20

which proves the lemma. O
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Using the Lemmas 5.5 and 5.6, we deduce
|Ball, < CoCipllall,, forall a € A, and p €]0,1].

Taking p small enough we get our conclusion.

5.6. Proof of Theorem 4.6 (continued)

Let us set
(5.33) A= {9 € [04,07] : exp(0 Xo)(m) ¢ W F, (u(, ))}

If we show that A is open and closed in [, 6*] then the claim in Theorem 4.6 will
follow.

(i) A is open
Let 6y € A, that is mg = exp(6pXo)(m) ¢ TWF,(u(bo,-)). We set mg =
(0,40, Ao, o). Since the definition of W F,, is independent of the phase and the
symbol, we may take a = 1 and ¢ = ¢° = 9 + ih ¢ where
{ gag(s,y7a) =(s—as)ar +(y—oy) - ay

(5.34) :

@?(87:% a) = (S - as)2 + (y - Oéy) )
and ag = (s0,Y0, Ao/sp, p0/s3). Then one can find a cut-off function x(s,y) equal to
one in a neighborhood of (s, ), a neighborhood V,, of ay, strictly positive constants
C, ¢, go such that for all (a, h) in V4, x]0,col,

(5.35) |Tou(fo; ., h)| < Ce=o/"
where
(5:30)  Taulboia,h) = [[ 7wty (2y) i dody.

Let, for |0 — 6p| small enough, p(0;s,y,a, h) = ©2(0; s,y, @) + ihp1(0; s,y, ) be the
phase given by the Lemma 5.4 which, for = 6, is equal to ¢° given in (5.34).
Let a(6;s,y,a,h) the analytic symbol constructed in § 5.5, which is equal to one
for 8§ = 0y. Let x(0;s,y) be a cut-off which is equal to one in a neighborhood of
X(0) = (s(0 — 0o; ), y(8 — 005 p)). Let us set

(5.37)

. — ih2p(0;p/hyyeh) o (9. P P Nut o)
Tu(f;t, o, h) //e a(ﬁ, h,y,a,h)x@ hy) u(t; p,y)dpdy.
It follows from (5.35), (5.36) that
(5.38) |Tu(8o; 00, , h)| < Ce /" YaeV,,, Yhelo cl.
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Then we have

Lemmab5.7. — One can find two smooth functions U and V, €1 > 0, ¢c1 > 0 and
neighborhoods Va,, Vo, such that

(5.39) Tu(;t,a,h) =U(0 —t;a,h) +V(0;t,a,h)

(5.40)  |V(6;t,a,h)| < Cre==/" Y (B,t,a,h) € Vi, x [0,T] X Viy x 10, 1.
Let us assume this lemma proved ; then, for |§ — 6y| small enough, we can write
Tu(8;0,a,h) =Tu(by; 00, a, h) + W (0,600, a, h)

where W satisfies the estimate (5.40) with a larger Cy. It follows from (5.38) that
Tu(6;6,a, h) satisfies also the same kind of estimate. Therefore by the Definition 2.3,
we have (0,y(0 — 00), N0 — 6p), u(6 — 6p)) = exp((6 — o) Xo)(mo) ¢ W F,(u(6;-))
when |0 — 6| is small enough. Since mg = exp(fo Xo)(m) it follows that § € A if
0 € Vp,, which proves that A is open.

Proof of Lemma 5.7. — First of all we have |eih ¢| = e=h" ' Rewr(@in/hy.0) < 1 by
Lemma 5.2 (i). Now we take the symbol a = 3=, ;2 a;(6; p/h,y, @) b7, where a;
satisfies (5.24) and 4 is small enough. Then by (5.5) and the choice of ¢ and a we get

. 5\ )
(5.41) ‘(889+ A*)( ih™ “’)‘gM(M%h) — Meiz Los(MVE)  (~do/h

with do > 0 if MV§ < 1.
It follows from (5.37) that we have,

4 e (0; 2, y) ult; pry)
89T (0;t,c, h) //zA (9,E,y>u(t,p7y)dpdy

L s OY -
ih ®q
+//€ ago (- Jult, py)dpdy.
Therefore

6 ih— tP( 6 . — N
5 Lulbit,a.h) // )[% —ZAg,x} u(t; p,y)dpdy
// B () x (- )T gult; pyy) dpdy.

Since i Agu = —0u/0t we get
o 0 2ol 0 —
(5:42) (57+55) TulBit.am) = [[ e al-+) | 55— x| ulti p ) dpdy.

We prove now that the integral in the right hand side of the above inequality satisfies
an estimate like (5.40). Indeed, on the support of [6% —1Ay, X] , we have by definition
of x,

(5.43) g1 < | X = X ()] <224
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where X = (s,y) and X (0) = (s(6 — 0o; o), y(0 — 00; ap)). Moreover

OR
Re ¢1(0; X, ) = Re 1 (0; X (), ) + aifl (6; X (6), a)(X — X(0))
1 0%Re
5 xas (B:X(0),0)(X — X(6)” + oI X ~ X (6)]*)-
It follows from Lemma 5.2 (ii), that
(5.44) Re 1 (0; X, ) = co|| X — X(0)*.

Since |eih"?| = ¢ "Re@r our claim follows from (5.43), (5.44). Then (5.42) implies
(0 + 09)Tu(0,t;, h) = V(0,t, e, h) where
{ [V(0,t,0,h)| < Ce /" (0,t,0,h) € Vg, X [0,T] x Viy x]0, o]
from which Lemma 5.7 follows. O
(ii) A is closed
Let 6, € A. For every € > 0 there exists 6y € A such that [§y — 01| < . We take ¢

so small that 6; belongs to the neighborhood of 6y where ¢(0;---) a(6;- - - ) have been
constructed. Then, as above we can write

Tu(&l; 017 «, h) = T’U,(eo; 90, (e h) + V(907 91, a, h)
where V = O(e~¢/"). Since 6y € A, we have Tu(fp;0p,a,h) = O(e™%/") so the
above equality shows that exp[(61 — 0y) Xo](mo) = exp(, Xo)(m) does not belong to

BWF,(u(f1,-)) thus §; € A and A is closed. The proof of Theorem 4.6 is complete.
O
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CHAPTER 6

PROOF OF THEOREM 4.7

6.1. Propagation in (4¢S*M)°

In this set, qscﬂ/ﬁ:‘a coincide with the locally uniform analytic wave front set in-
troduced in [RZ1], Definition 1.1. Moreover Theorem 4.7 is of local nature, thus
independent of the asymptotic behavior of the metric. Therefore Theorem 4.7 in
(95¢S8* M)° will follow from Theorem 6.1 in [RZ1] as soon as we show that the flow of
o Ha described by (3.17) coincide with the bicharacteristic flow of the Laplacian A,
described in (3.4).

The principal symbol of A, is equal to p(p,y, p°7, pn) where p(p,y,\, 1) = A2 +
)l + pr(p,y, A\, 1) (see (3.4), (3.5)). Therefore the bicharacteristics of A, are de-
scribed by the equations

Jp
- 2YP 2
h=r35 (psy, p°T, p1)

o i=rg,
' S Y @( Y, p°7, p1)
8p p 8A nau p77 b
_ o

Then we have the following result.
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Lemma6.l. — Let mo = (po,¥yo0,0, (Mo, Tlp)) € (B¢S*M)°, po > 0. We set 19 =
Xo/pds Mo = Tho/p3. Let (p(t),y(t),7(t),n(t)) be the bicharacteristic of A, starting
at (po,yo,70,7M0). Then p(t) # 0 for all t. Let x(t) be the solution of the problem

X(t) = po/p(x(t)), x(0) = 0. Then
(B(t) = p(x(1)), B(t) = y(x (1)), At) = po(7p*) (x (1)), (1) = po(pn)(x(1)))
is the flow of o Ha described in (3.17).

The proof of this lemma is a straightforward computation.

6.2. Propagation on the corner

Let m = (0,%0,0, (Mo, Iy)) be a point of the corner. We take sy > 0 and we set
oo = (s0,Y0, Ao/s, Tg/s3)- Let 6y € R. Here we look for a phase ¢ and a symbol a
such that for some € > 0,

Ii 880 Ny A*) [eih’zk’lw(&p/hvy-ﬂ,h)a(g; %,y, a, h, k)] — O(e—s/hk)

for (6, p/h,y,a) in a complex neighborhood of (8o, so, y0, @) and (h, k) in a neigh-
borhood of (0,0) in ]0, +o00[ x ]0, +-00].
Setting s = p/h we see easily that

62) A= (

(6.3) A=eh R (14 17)

where

o (a0,
I7 (£a+z(A*<p)a+zh2kA* ) with

SR P N Ty Y TS

6.2.1. Resolution of the phase equation

Proposition 6.2. — There exists a holomorphic function ¢ = ¢(0;s,y,a, h) in a com-
plex neighborhood of (0, so, Yo, ) depending smoothly on h such that

dp 50 Oy
a9 +p(shws as’say> 0
Vlo=o, = (X —ax)az +ih(X — O(X)2

where X = (s,y), a = (ax, az), ax = (as, ), az = (ar, ay).
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Proof. — We introduce the symbol ¢ = 0* + p(sh,y, s*>7,sn) and for fixed a,h we
consider the bicharacteristic system of ¢ which is given by the equations

6(t) =1 0(0) = 0o
5(t) = 82 g—i(sh,y, s, 5m) s(0)=7%
i) =530 () y0) =7
(6.6) . H R
0*(t) =0 6*(0) = —p(3h,,5°7,57)
. op Op Op ~ .
T(t):—[ha—p+2375+n$](~-) 7(0) =7 = a, + 2ih( — ay)
i) =~ o) 7(0) = 7 = oy + 20h(F — ).

Here t is complex and (3,7) are taken in a neighborhood of (s, o) in C x C"~1.
By the Cauchy-Lipschitz theorem this system has, for small ¢, a unique holomorphic
solution which depends holomorphically on the initial data. Since 0(t) = ¢ + 6y we
can set ¢ + 0y = 0 and we consider

(6.7) A= {(6:5(0 — 60355, 0. 1), y(6 — 03 ++), 0°(0), (6 — 0055, 1, ),
00— i), (5.5) near (so,30) }-

Then A is a Lagrangian manifold on which ¢ vanishes. Moreover we see from the
equations (6.6) that the projection 7 from A to the basis is a local diffeomorphism.
Therefore one can find ¢ = p(60;s,y, o, h) such that

_ 22, 92y, 29(...
68) A={(0.55: G5 B:spa k), G200, F000)),

(0,s,y) in a neighborhood of (6y, so, yo)}.

Since ¢ vanishes on A, the function ¢ solves the equation in Proposition 6.2. However
one can add to ¢ any constant without changing A. We shall take the constant such
that

(6.9) @(80; 50, o0, @, h) = (s0 — as) ar + (Yo — ) - vy +ih[(s0 — as)* + (yo — ay)?].
Let us show then that ¢ satisfies also the initial condition. We can write
§0(007 $,Y, &, h) = @(905 50, Yo, &, h)
! Oy dp
+ [(3—30)—(90;7534'(1—15)50,75194'(1—15)2/0,0!,}1)+(y—y0)' (Bo;---)|dt.
0

0s a_y
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It follows from (6.8), (6.7), (6.6) that

@(00; 5,y, v, h) = (o3 50, Y0, @, h) + /01 [(s — s0) (ar + 2ih(ts + (1 — t) so — a))
(= y0) - (o + 20hlty + (1= )yo — ) |t

©(bo; s, y, . h) = (003 S0, yo, 2 h) + (s — so) ar + (¥ — ¥o) - @

1(y —50)*+ (¥ — o) - (yo — ay)} :

+2ih [%(s —50)% 4 (5 — 50)(50 — as) + 5

Using (6.9), we deduce that
30(005 S, Y, Q, h) = (3 - as)a-r + (y - ay) sy + ih [(3 - as)2 + (y - ay)z]
which is the initial condition in Proposition 6.2. O

6.2.2. ©(0,-) is a phase. — Let us show now that ¢(6;s,y,a, h) is a phase in the
sense of Definition 2.6 at (X (0),Z(6), a, ho = 0) (independent of v) where

X(0) = (s(6 — 6o; 50, Y0, @0, 0),y(0 — Oo; - -+ )),
E(8) = (7(8 — bo; S0, Y0, 0, 0), n(6 — o3 - +)).
We set
@(0; 5,5, 0, h) = Vo (05 5,y, @) + ihipi (s, y, @) + h? o (s, y, o, h)

and

F(h) = <sh Y, § f;_@ sgs;)

Then writing F'(h) = F(0) +hF’(0) + h? G(h) and using Proposition 6.2, we see that
1o satisfies the equation

8¢2 6¢2 8¢2
7 (5 5
Thus 9 is real if (s,y, ) are real. Moreover by (6.7)7 (6.8),

O (0, X(6),00) = O (B:5(6 — i), (6 — b, --) 00,0) = ().

On the other hand v; satisfies the equation

_..0p ] 25¢2 3¢2
{E%—zsap(O,yﬁ s ay)

Yilo=0, = (X — ax)*.
It follows that £ Ret; = 0 and Re 1 ]g—g, = (X — ax)?. Working in the coordinates
(0,3,7) as in Lemma 5.2, the vector field £ becomes 9/96. It follows that

Re 1 (6;5(0 — 00; 5,7, 0,0), (0 — o; - -+ ), @) = (5 — ovs)* + (§ — o)
which shows that Re; > 0 if (s,y,«) are real. Finally,
Re 11 (X (0),a0) = (so — $0)* + (yo — y0)* = 0.
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6.2.3. Resolution of the transport equation. — We look for a symbol a of the
form
a(b;s,y,a,h, k) = Zaj(ﬂ; 5,1y, a, h) (hWk)!
j=0
where the a;’s satisfy the following estimates

la;(6; 5, y, o, )| < MI+! 372

If, instead of working in the (0, s, y) variables we shift to the new variables (0,5, 7),
where s(0 — 6;5,y,a,h) = s and y(0 — 0o;s,y,a,h) = y, the operator £ becomes
0/06. Therefore solving the equation IT = 0 in (6.5) is equivalent to solve
0 -

[% +e(0:5,50)] b+ (B2 (VE) P2) b =0

b|9:90 =1
where P» is a second order differential operator. Then the same argument as used in
[Sj] or in the proof of Theorem 4.6 ensures the existence of such a symbol.

Now, before giving the proof of Theorem 4.7, we must link the flow of 0 Ha with
the bicharacteristic of p described in (6.1).

Proposition 6.3. — Let mqo = (0,%0,0, (Mo, i) be a point in the corner. Let so > 0
and set 79 = Xo/s8, Mo = To/s8. Let (s(t),y(t),7(t),n(t)) be the bicharacteristic of
the symbol p(0,y, s>7, sn) issued from (s, Yo, 7o, M0). Then s(t) # 0 for all t. Let x(t)
be the solution of the problem x(t) = so/s(x(t)), x(0) =0. Then

(B(t) = 0,7(t) = y(x(1)), A(t) = s0(7s*) (x (1)), 7i(t) = s0(sm) (x(t))
is the flow of o Ha (described in (3.17)) through my.

Proof. — This is a straightforward computation. O
6.2.4. Proof of Theorem 4.7. — Let us introduce the set
(6.10) A=1{0€[0.,0%] : exp(fo Ha)(m) ¢ SWF,(u(to,))} .

If we show that A is open and closed in [,,0*] we are done. A is open because
qscﬂ/ﬁ:’a(u(to, -)) is closed. It remains to prove that A is closed. Let (6,,) be a se-
quence in A which converges to some 6y € R. Let us set exp(6po Ha)(m) = mo =
(0,90, 0, (o, 7iy)). Let Vg, be an open neighborhood of 6y in R in which the phase
©(0; s,y, , h) given by Proposition 6.2 and the symbol solving the transport equations
exist. Let v be the solution of the problem *(¢) = so/s(v(t)), 7(0) = 0 introduced in
Proposition 6.3. Then one can find 6#,, such that 50 =0y + (0, — 6y) € Vp, and we
fix it. Now let us set, for 6 in Vj,,

(6.11)

Tu(0;t,a,h, k) =//eih_Q’“_l‘”(e‘Xh’“’h)a(9;Xh,a,h,k)x(9;Xh)U(t;p,y)dydp
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where X}, = (p/h,y) and x(6;-) is a cut-off function localizing at
X () = (s(8 — bo; 50, Y0, 20), y(0 — 0o; S0, Yo, @) ,
S0 > 07 Qo = (3073/0» X0/837 ﬁO/S%)

Lemma6.4. — One can find two smooth functions U,V , complex neighborhoods Wy, ,
Wa, of 0o, o, positive constants C, g, o, 01 such that

Tu(@;t,a,h k) =U(kO —t;a,h, k) +V(0;t,a, h, k)
[V (0;t,0, h, k)| < Cec0/hk
for all (G;t,a, h, k) m W00 X ]to — 09, to + 50[ X Wao X ]07 (51[ X ]07 (51[

(6.12)

Proof. — 1t is very similar to that of Lemma 5.7 so we only sketch it. It follows from
(6.3), (6.4), (6.5), Proposition 6.2 and from the construction of the symbol that (6.2)
is true. It follows that 7u satisfies

10
- Tul(0:
(k ae +0,) Tu(b;t,0,h, k)
ih=2 kL. 1o —
=//€"‘ Rl )a(“')[E% —ZAg,x}(-~~)U(t;p,y)dpdy+V1
where V] is a smooth function satisfying the estimate in (6.12). Then we use the
properties of the phase ¢ on the support of [% 8—89 — 1Ay, X] to achieve the proof. [

It follows from Lemma 6.4 that
(6.13) Tu(fo;t, o0, hy k) = Tu(fost — k(6o — 0o), v, b, k) + Va
where V3 satisfies the estimate in (6.12).

Let us check at what point does Tu(6y;---) microlocalize. By (6.7) and (6.8) we
have, with X = (s,y),

0 ~ ~ ~
_SD(QOa 3(90 - 90a 50, Yo, @0, 0)7 y(eo - 607 e )7 aOvo)

0X
= (7(60 — bo; 50, Y0, 20, 0), n(0 — Op;---)).

Since 6y — 0y = v(0,, — 6p), setting 5 = s o~y and using Proposition 6.3 we see that

Oop =~ _ _ 500 — 00) 1 M0, — 6 (0, — 6
S 7500, = 0), 500, — 00, 0,0) = =0 (SRl B,
(9n*90)

0X 50
Since 6, € A and ¢ = = © is a phase in the sense of Definition 2.6, it follows
from Definition 2.4 that exp((6,, —0o) o Ha)(mo) = exp(0n,0 Ha)(m) does not belong
to BW Fo(u(to,-)). Therefore, taking k small enough, the right hand side of (6.13)

is bounded by e~=0/"* uniformly for ¢ in |tg — 6, %o 4+ §[. Therefore the left hand side
has the same bound, which proves that 6y € A, so A is closed.
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Let mo = (0,90,0,(—1,0)) € N We take so > 0 and we set ap =
(so7y0,—1/sg70). The scheme of the proof is the same as in Theorem 4.7. We
look for a phase ¢ and a symbol a such that (6.2) holds.

In this case we have to study in particular the flow starting from a real point
(3,9, ar, o) on the interval | — T*, 0] where —T™* looks like 1/2a,3%. The problem
then is that the solution s(f) blows up at § = —T*. This forces us to stay slightly
far from —T™ at a distance K H, see Theorem 7.1 below, where K is a large constant
and H = h + |a,|. Then we will have to control (with respect to K) precisely all the
quantities which may blow up at —7™. This is a kind of renormalization. In the case
of the flat Laplacian it is easy to see that

B s
C1-2a,3%0°

For fixed (y, ), the map (0,5) — (0, s(6;5,y, ar,0)) is a diffeomorphism from O; to
O3 (see fig. 1, 2).

s(0: 5,9, a-,0)

Figure 1.

Figure 2.
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7.1. The phase equation
Let us set
I, ={a e R*™:|a — ap| < ea},
(7.1) In={heR:0< h<ep},
H="h+|oy|, if (o,h) €Iy x 1.

Theorem 7.1. — There exist positive constants e, ep, €5, K, K' such that for (o, h)
in Iy X Iy, if we set

Dy, = {(017§1) eR_ xR, |§1—80| <ées, #1—20&-,—’5?01 >KH}

and

s1
s — ——

1
_ n—1,
= J {(9,s,y)e<cXc><<c 1001 < 35 Qu s — 5

(91,§1)€D1

<1 1 | |<1}
K,Q17y U1 K,7

(where y1 € C™ is a certain point depending on (01,51,y0,a, h) defined in (7.16)),
one can find a function ¢ = p(0;s,y,a,h) holomorphic in (0,s,y) in E depending
smoothly on (a, h) in In X I, such that

¢
(7.2) o
plo—o = (s — as)ar + (y — ay) oy +ih[(s — as)® + (y — ay)?].

Proof. — Let q = 0* +p(hs,y, s, sn) and let us consider the bicharacteristic system
for ¢,

0t) =1 6(0)=0
5(t) 82%(h8,y,7'8 ,8M) s(0)=7%
i) =552 y0) =7

(7.3) K o,
0*(t) =0 0*(0) = —p(hs,y,75°,57)
%(t):—{hg—z—l-%Tg—i—f—ng—Z](-“) 7(0) =7
i) = ~5o+) ”0) =7

Then obviously 8(t) = ¢, for all ¢ and 6*(t) = 6*(0). Therefore we shall take 6 instead
of t as parameter on the bicharacteristic.
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Proposition 7.2. — There exist positive constants €y, €5, €y, 60, K, M, such that for
all (a, h) in I, X Iy, all (01,51) in Dy and all (8,4,7,7) such that

~ o~ - - 1 - 1
(7.3)" [s—s0| <es, [s=31] <d0Q1, |[Y—yo| <ey, |7'—0lr|<EQ1’ |TI|<EQ1,

the system (7.8) has an unique solution defined for Re6 € [91 — %Ql,O], [Im 6| <
%Ql, which satisfies

280 ~ M
< ——m——, 0) -yl < —
2
(75%)(0) — 75%| < n(O)] < Q1.
Moreover ) )
%:g—%@g&—i—F where |F| < 2Q1.

On the other hand the solution (s(0;s,y,7,1m,h), y(0;---), 7(0;---), n(0;---)) is holo-
morphic with respect to (0;3,y,T,7) in the set,

~ ~ ~ 1 ~ 1
A= | {F-sl<0Quli—wl<e F ol < £ QI < £ Q.
(0,81)€D1

1 1
Re € [ — - Q1,0], [mo] < @1 }.

Proof. — We begin with the case where 6 is real. The existence of a small T' > 0
for which (7.3) has a solution on [—T,0] satisfying the estimates in the proposition
follows from the Cauchy-Lipschitz theorem. Let —T, (5,9, 7,7) be the maximal time
for which this solution exists and satisfies the estimates.

Case 1. — For any data (5,y,7,7), we have —T,(---) < 61 — %Ql. Then the
proposition is proved.
Case 2. — Assume there is a data (5,9, 7, 7) for which one has 6; — % Q1< —Tu(--)
and let 7' > 0 be such that —T,(---) < —T. Then on [T, 0] we have a solution of
(7.3) which satisfies the above estimates. It follows that |y(6)|, |7(8)s2(6)|, |n(9)| are
bounded by constants depending only on (sg, yo)-

For any integer p > 2 and any # in [T, 0], we have

(74) / | |pd0 (1 _ 2S27y()6))p1

Since 0 > 0, — %Ql it follows that

~ - 20, 1
1—20,5560 >1—2a,5 60, + 2 le /(1—%>Q12§Q1
if K is large. Therefore
(7.5) 15(6 / Is(0)Pdo < 2, if p>
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On the other hand, since H = h + |a,| and )1 > KH, we have

(76) M@ < 22, [5(6)] - ()] < 2.

Now it follows from (7.3) that
0
~ dp
i<+ [ 2]
I<hil+ |15,

‘ s2|n? + s2h2(15?) + sh(ts?) s|n| + shs? |n|2),

and it is easy to see that

where C' depends only on a bound of the coefficients of p.
Using the fact that 7s? is bounded, the estimate |1(f)| < 2 Q1 and (7.6), we see
that

—)\ Q2 2+—Q182|n|

It follows from (7.5) that

. C C
1(6) <|n|+732621+f2@1/ *(0) (o) o

We can use Gronwall’s inequality and (7.5) to get

0] < (14 52) Quexp &

K
since [7j| < £ Q1. Taking K so large that (1 + $2)e“1/X < 3/2, we deduce that

(1.7 no) <2t oel-T0).
Let us now estimate 7s%. From (7.3), we get

C;];(7'32) =7s? 42788 = —thg—i(-u) —s%n- S—Z()
Since 752 is bounded, it follows from (3.5) that

L(oo)| +[ S| < o+ o560,

Using (7.7) and the fact that @1 > K H > Kh we see that the right hand side is
bounded by % Q2 s3. Tt follows that

- C 0
()0 -7 < 15 [ o)
6
which implies, using (7.5), that

(7.8) (rs)0) - 7 < oy < S ee[-To).
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( )} <F ¢ Q1 5%, where C depends only on the data (o,
the coefficient of p ...), uslng (7.5) we get,

(7.9) ly(0) — | <

it M >2C".
Finally, we consider s(d). We have 5(0) = s a—p(sh y,7s%,sn) from which we
deduce that

V— < Op .
Nowy—sm ; since

1M
_g__v
K 2K

82((00)) = (275> + a(sh,y) h*s*(7s*) + hs*b(sh,y) - n))(0).
s
It follows that
—l-i-L = 20732 2/ / (15> dxda—l—/o [ah?s?(75%) + hs?b-n)(0)do
s s(9) do 0
(2)
Using (7.5) we see that
cq
@) < 2
We have seen in the proof of (7.8) that
d, o _CQT 3
= <
|d0(TS )| < %2 s
so using (7.5) twice, we see that
C
)< St
Therefore we can write
1
—— ==—-2T50+ F(0
(7.10) s(0) ' v
Ch
F)] < S
It follows that we can write
(7.10)' s(0) = >

12780 13F(0)
Now we have
11— 2759+ 5F| > 1— 20,530 — c( +d0) @

1- 20,50 > (1 - ﬁ) Q.
So we can write _ .
sl - %) 1
Is(0)] < 5 T3,
1-C(% +4do) 1-—2a;570
Since [8] < sg + €5, taking €5, dg, small and K large so that

(so+es)(1—%) 3

1—C(Z 14 27
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we get

250

(7.11) [s(8)] < m,
Now the estimates (7.7) to (7.11) are true for any T < Tk, so letting T go to Tk
we conclude that they are true up to § = —T,. Then we consider the system (7.3)
with data s(—T%), y(—=T%), 7(—=T%), n(—=T%) and we solve it on [-T, — §, —T%] by the
Cauchy-Lipschitz theorem. Matching this solution with the previous one, we obtain
a solution of (7.3) on [T, — 4,0] which satisfies the estimates in Proposition 7.2,
getting a contradiction. This proves the Proposition 7.2 in the case where 6 is real.

Let us consider the case of complex 6. We recall the following well known result.
Let (6p, Xo) € R x CV and

Q={(0,X)eCxC":|0 -0 <a, |X —Xo| <b}.

6 e[-T,0].

Let F : Q — CV be a holomorphic function such that supg, ||[F(X)| = M < +oo.
Then the Cauchy problem

{X(9)=F(9,X(9))

X (6h) = Xo
has a unique holomorphic solution defined in {6 € C : |0 — 6| < p} where
—b
Let us fix (61,51) in D7 and let us take 6y € [01 — %Qh O]. We introduce
s(0
51(6) = S 1 O) = 9(6). 7(6) = TO)s(60)", 1(6) = () (60).

and we consider the system satisfied by

X(0) = (51(0), y1(0), 71(0), m(9))

which is derived from (7.3). It can be written as X (0) = F(X(0)). Let us introduce

Q= {(s1,y1,71,m) € C*™ : |sy — 1| + |y1 — y(60)| + |71 — T(60) 5(60)?|
+m — s(60)m (60)| < 6},

where § depends on the domain on which the coefficients of p extend holomorphically ;
then, using the estimates (7.5) to (7.11) for real 6y, we see that supg ||F(X)| <
Co(1 + s(6p)) < w = M, by (7.5) since Q1 < 1. We take a = & Q1 where K
is so large that (2n+‘i)aM = 2(2n+1)56{§(1+450) > Log 2.

It follows that exp ( — m) < 1 ; so our system has a holomorphic solution
in the set {|0 — 6o| < £} = {|6 — 6o| < +Q1}. Matching these solution for 6 €
61 — %, 0], we obtain a solution of (7.3) for Re € [61 — +Q1,0], |[Im6| < + Q1 as
claimed. The proof of Proposition 4.2 is complete. O
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Corollary 7.3. — There exist constants Cj, j =1,...,8, depending only on the data,
such that

Cl 88(9) 02 (93(9) 03 (93(9) 04 (93(9 5

2 g ‘ a~ ’ ‘N2 8~ ’ g K2 ) ‘ < ‘N2 8~ < K 2

Q1 5 Q1 Y Q1 Q1 1 @1
) _ 1 3y ). Cs |9y0) _ Cr 19y(0)| _ Cs
B _Id+O<K>’ ‘ 0, | o7 < O ‘ an SO

Proof. — For the estimates on s(#) use (7.10), (7.10)’. We obtain
0s(6)  1+475°0 — 3220

05  (1—-27330 + sF(a))

From (7.10) and the Cauchy formula we have dF(6)/95 = O(1/K?). From the lines
after (7.10)" we get

P c 1
11— 2750 + 5F(0)| > (1 - —050) Q12501

if 1/K and Jp are small enough.
Moreover, since 75° = =1+ O(Q1/K), Red <0, |Im 0] < Q1/K, we get,

=g _ 2 0F(0)
Js

1+4 =1+4|Ref|+ O(1/K).

Then the estimates on ds(6)/Js follow. For the estimates on y(6), we use the equality
y(0) =y +g(f), g = O(1/K) and the Cauchy formula. O

Let us remark that, in Proposition 7.2, we can take
T=oa, +2ih(5§—as), 7=oa,+2ih(§—ay).
Indeed this follows from the estimate

Q17

~ ~ ~ 1
[T — ar| = 2h|s — as] <2H(|S — so| + [s0 —as]) <4e H < H < 74

if ¢ < 1/4 and from the analogue for |77 — |-
So we introduce the following notation

(7.13) f(0;5,9,a,h) = f(@; 5,7, ar + 2ih(5 — as), oy + 2th (Y — ay), h)
which will be used for f = s,y,7,7. The function f is then defined in the set

ria= {(9,;@ecXcch—l:|§—§1|<50Q1,|g—y0|<ay,
(91,§1)€D1

Re € [01 - %Ql,o], |Tm 0| < %Ql}.

We introduce now, for fixed «, h, the set
(7.15)

A= { (0. 5(6:5.5, . h), y(6s--), 0°(0), (635,50, ). (B ), (6,5.5) € A}
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Let us consider the set

1
(7.16) E = U {(G,S,y)ECxCxC”_l:|0—91|<FQ1’
(61,51)eD1

_ 1 % 1 1
— (6131, 90, @, h)| < =, —7’<—-—}.
v = 401,90, 0, h) < 77 |8 1- 20,50, - K Q

Then we have

Proposition 7.4. — Let A be defined by (7.15) and 7 be the projection on the basis.
Then if K' is large enough, we have E C w(A) and, if we set Ay = 7~ 1(E) then the
map 7 : Ay — E is bijective.

Proof

Claim. — For any (0, s,y) in E one can find (0,3,y) in A such that

0 =4
(7.17) s(0;5,9,a,h) = s
y(0;5,9,a,h) = y.

Here a and h are fized in 1, I.

Weset =31+ and s =
(7.10), we have

+t= % +t. Let us recall that, according to

31
1—2a, 55 01

s
1-27530+5F(9)
where 7 = a, + ih(5 — a;) and |F| < 5 Q1.
Now, if [0 — 61| < 2 Q1. [t] < do Q1 and |5 — | < &5, we have
1—273%0+3F(0) = Q1 — 6a,52t6, + G(0;1,7, o, h)
where |G| < C(3 + 63 + 7= + =52=) Q1.
It follows that the equation s(f;---) = s is equivalent to

5101 —|—le =Q15 — 60&,-;?1?91 —|—tQ1(Q1 — 6(17-:9?591) + (gl + th)G.

Now, since Q1 + 6c, 5367 = 1 + 4, 33601 = ¢ > 1, this equation is equivalent to

5(6;5,y,a,h) =

~ 1 ~ 1 ~ ~
(7.18) t= ath(Ql — 60, 57101) + a(sl +tQ1)G(0;t,y,a,h) = H(t,7).

On the other hand, forgetting o and h which are fixed, we can write

_ _ _ 0 _ _
y(0;5,9) = y(0;5,y0) + (7 — o) == (65, 50) + O(J — yol*).-

Ay
9y
Since y/0y(0;3,y0) = 1 + O(1/K), we see that the equation y(6;5,7) = y is equiv-
alent to

(7.19) J—yo = a(0:3)(y — y(0:3,50)) + Oy — wol*).
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Now
- - y . Oy
Q(9737Zl/0):ﬂ(01731»y0) (0 91)_9(0 3 S 7y0)+ta_§()7
and we have
Yy dy 1 1
_—— re < = = J— _ -

It follows that (7.19) is equivalent to

(120) G0 = alB:3)(y — y(01;51,30) + O 75) + FO( ) + O~ wol?).

Setting ¥V = (t~/(§— Yo)), we see, according to (7.18) and (7.20), that (7.17) can be
written as Y = &(Y).
Taking [t| < 7 Q1, |y — y(f1;51,50)] < 1/K’ and setting

B={(t7):[t| <00Q1, [T —vo| < ey}

we see that, if g is small enough and K’ >> K, then ® maps B into itself and satisfies
[®(Y)—@(Y')| < 6|Y — Y| with § < 1. Thus the first part of Proposition 7.4 follows
from the fixed point theorem.

Let A; = 7~ !(E) ; we must show that 7 : A; — E is injective. We recall that

1
5(9)
where | £+ | |+| | + l 2G| — = O(+%), and 7 = a; + 2ih(5— a,). Forgetting a, A,
which are fixed, assume that
5(0;5.9) = 5(0:5.9), y(0;5,9) =y(0;5.7).
It follows, from the above formulas that

(5'=3) (1420, 055 (5+5)) +4ih0(s' —3) f(5,5',a) =55 [SF(0;5,y) — 5 F(6;5,7)]

where f(5,5,a) = O(1). Since |1 + 2a,055 (5 + §')| is bounded below the above
equations lead to the estimates

_ 1y, o
F-F<C(h+ =) (F-F1+17-7).

_ %_2;?9+F(9), y(0) =7+ G(0)

F-71< S5+ - 7).
Taking h and 1/K small enough we see that this implies =3 and §y = 7'. O
Proposition 7.5. — For all X in Ay, the map dm : Tx Ay — Trx)E is surjective.

Proof. — Let G be the map
(9, ga Yy)— (9a§(0; :SV’ ?77 Q, h)ag(av T )a 0*(0)71(07 §7 g? «, h)’ﬂ(ea e ))
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from the set

A= U {(e,:e:,g) 3= 51| < 6Qu, |7 — wol <4,

(61,51)eD1
Ref € [, — 6Q1,0], | Imf| < 6Q1}

to Aq. If we show that d(woG) is surjective, then we are done. Now it is easy to see that

9s(0) 0s(0)
d(m o @) is surjective if and only if the determinant of the matrix A = (63(50) 93&))>
95 0y
is different from zero. This will follow from Corollary 7.3. Indeed we have

ds| . C  0Os 1 dy 1 dy 1
a:;’/ 2 oy O<K2Q1>’ 05 O(Q1>’ B Id+O(K>
This implies that
C
det A| > —. O
e Al> G

Proof of Theorem 7.1. — It follows from Propositions 7.4 and 7.5 that one can find a
smooth function ¢ = p(6; s, y, @, h) which, for fixed «, h, is defined on the set F (see
(7.16)) such that

9 0 0
A= {050 a—?(ﬂ;s,y,a,h), a_f(a%"')’ 8_‘;’(0;...)), (0.5.9) € E}.

Since A; C A and the symbol ¢* = 6* +p(hs,y, 752, sn) vanishes on A, we have solved
the first equation in (7.2). Obviously ¢ is defined up to a constant and we can choose
it such that ¢(0; so, Yo, @, h) = (80— ats) ar + (Yo — o) iy +ih[(s0 — as)? + (Yo — ay)?].
Then we write

1
0
P(0: 5., h) = (050, g )+ [ [ 52 (0585 4+ (1= )30+ (1 = )gn. ).
0

0
(5= 50) 5 (0t + (= s,y + (1= o, ) - (y o).

Now
Op -~ .
(0 ) = 2055 ) = g +20h(5— )
s
where 5(0;5, 7, a, h) =ts + (1 —t) so = 5. Using these relations and the same one for
Op/0y, we find that ¢ satisfies also the initial condition in (7.2). O

Proposition 7.6. — Let («, h) be fixzed in I, X I},. Then the phase given in Theorem 7.1
satisfies, for (0,s,y) in A

§0(97§(97 g’ ga «, h’)7 g(07 e )a a, h’) = (g_ O(S)OZT + (g_ O‘y) " Qy
+ih[(3 = as)? + (§ — ay)?] + 0p(h3,5,75%,37)

where T = a; +ih(5 — as) and 1 = a, +1h(Y — ay).
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Proof. — Let us write f(0) instead of f(6;5,y,,h). Then

(1) = a%[gp(e; s(0),y(0), o, h)] = (aﬁ 422, y‘a—‘p)(e;s(e),y(e),a,h)-

00 ds y
Using (7.3) and the definition of ¢, we get
sg—f yg—j = 732% + sn - g—z = 2p(hs,y, 75, s1).
Since p is constant on the bicharacteristics and
0 g~
a_sg = 0*(0) = _p(h37y77'§2»77§>»
where 7 = a; +ih(5—ay), 7 =---, we get (1) = p(h3,y,752,57). On the other hand

we have
80(0”57 §7 «, h) = (g_ O[S)OCT + (ﬂ_ ay) : an + Zh[(g_ Oés)2 + (:,[j_ ay)2]7

which proves our claim. [l

7.2. Link between the flow of 0 Hpn and the bicharacteristics

Proposition 7.7. — Let (6,3,%), 0 < 0, and («, h) be fized real points in A and I, X Ij.
(i) We set R* = p(h3,y, ar 32, Say) > 0. Then the problem
. 1
(7.21) M) = R @55, am an )
x(0) =0
has a unique solution defined on [0,T*] with x(T*) = 0.
(ii) If we set, for t € [0,T*],

p(t) = hs(x(t); 5,9, ar, ay, h), y(t) = y(x(t); 5,7, ar, o, h)
1

X(t) = E (7'32)(X(t); ga §7 Qr, Oy, h)v ﬁ(t) = % (SW)(X(t); ga ﬂa Qry Qs h)
then (p(t)7 y(t)’ 0, (X(t)7 ﬁ(t))) =expto Ha (,O(O), y(0)7 0, (X(O)7 E(O))
Proof

(i) Let us introduce the following set

A= {T > 0:(7.21) has a solution on [0,T] with (x(¢),5,7) € A}.

~—

Then A is an interval which is non empty, by the Cauchy-Lipschitz theorem. Let
T* = supA. Then, on [0,7*[ one has x(t) < 0 (by the definition of A). Since
s(6;5,y,---) >0 and R > 0 we have x > 0 so lim;_7+ x(¢t) = ¢ < 0 exists. By (7.21)
we have then

1
lim x(t)

- 0.
t—T* RS(E;S,%OCTaamh) g
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Therefore T* < +oo. We can extend x to [0,7*] by setting x(T*) = ¢. If £ < 0,
the equation in (7.21) with x(7*) = ¢ would have a solution on [T*,T* + ] with
(x(t),s,y) € A with contradicts the maximality of T* ; so x(7) = 0.

(ii) This claim follows from (7.3) and (3.17) by a simple computation. O

7.3. The transport equation

As before we look for an analytic symbol a such that

1 N, ke _
(7.22) (E&g—szg)(aeh ) — O0(eMRY 550,
Working in the (6, s, y) coordinates instead of (6, s, y) we are lead to solve the transport
equation
0
— +¢(0;5,7,0)+h*kQ)a=1b
(7.23) (7 +<0:7.500 + 17kQ)

a|9:0 = 0

where @ is of second order and is a linear combination with bounded coefficients of
02, s(0) 85-, 5(0) 050y, s(0) 05, s(8) 0y. To see this, we first note that
_ 0s(8) Iy(8)
%= o5 P e O
0s(0) oy(0)
—~0s + —=—=-0y.
9y, oy;

O, =

Now, it follows from (7.10)" that

858(;) = a(0:3,7)s%(0)

where a(6) # 0,

9y,
where b;(0) = O(Q1/K) (because 9F/0y = O(Q1/K) by (7.10) and the Cauchy

formula),
Ay (0) 1 Ay (0) 1
O o(g). B perofl)
93 k) Tay, K TO%E
Moreover, from the line after (7.10), we have |s(0)| < C/Q;. Inverting the system
above and using these informations, we see that

3283 = a(0,§,§)8’5+ 5(&3@ : 85

Oy = (0:5,5) 05 + 6(6;3,9) - Oy
where a, 3,8 are bounded and () = O(Q1/K). Since |s(8)| < C/Qx, it follows that
the coeflicient of 05 coming from s9, is bounded. Then our claim follows from the

fact that, in the coordinates (s,y) the operator @ is given by A7 which is described
n (5.1). We shall set A=! = h?k and take a = 2ois0 A a;.
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We shall define our symbol in a subset of A introduced in (7.14). First of all by
the usual trick we can assume that ¢ = 0 in (7.23). Formally, the system (7.23) can
be solved in A since it is a linear problem ; our goal will be, therefore, to show that
this formal resolution leads to an analytic symbol. The equation (7.23) is equivalent
to

(I +B)a=10b, where

(7.24) - o 1 o
B=0, A"Q and 0, a(6;5,y) =46 a(u;s,y)du
0

According to (7.14) let (01,51) € D1. We introduce for t > 0, 0 < ¢’ < g,

Qtt’ = {(97§,§)0>0>01 - %+t7 |§_,§1| <§0t7 |§_y0| <5y_t/}

where Q1 = 1 — 2a, 53601 and & is small enough.
Clam1. — Qu C A (see (7.14)).

Let (6,5,7) € Q4 ; let us take ) = 01 + ¢, 51 = s1 and let us show that (8],57) €
D-. To see this, we write

Q) =1-20,8(0) +1) = Q1 + 2|, |33t > K H.
This shows that Q] > Q1, Q) > KH, Q) > 2|a,|s3t. Thus (0},51) € D1. Now

SO do -
0>9>01—?+t2 -~ % |s—sl|<§0t<mQ’1 and |y —yo| < gy.
It follows that (0,5,7y) € A.

Claim2. — If( S,Y) € Qtt/ then, for € (0,1), (u0,5,y) € Q¢ wheret, =1—Jyu,
1= —t. The expression of t,, follows easily from the definition
of Qupr and t > t, since t < |91 =+ |

Let us remark that J =1 —tand 0> 6 > —J.
Now, given p > 0, we shall say that a € A, if a = Zj>0 A7 a; with
(7.25) supla;| < f;(a) 7174

where f;(a) is the best constant for which such an estimate holds and
(7.26) ij a)p’ = |all, < +oo.

Claim 3. — One can find a positive constant C such that for all p >0 and a € A,
(7.27) |Ball, < Cpllall,-

SOCIETE MATHEMATIQUE DE FRANCE 2002



64 CHAPTER 7. PROOF OF THEOREM 4.8

Proof. — We shall prove (7.27) when B = 9, ' \"'s?(0) Ay and B = 0, ' A\"1 02, the
other terms are easier to handle. In the first case we have

Ba = Z)\*jflae_lsz(G)A@-aj

j=0
=> A Je/ ) Aga; 1 (pf => b
j=1 j=1

Then
sup|b| |9|/ sup |s*Agaj_1|du, j>1.
Now, in 4, we have 1 — 2a,6 (Re§73 > 2|a,|(Res)3t, = Cot,. It follows from
(7.10) that supq, |s | < City2
Let t) <t ; then by the Cauchy formula we have

sup [Agaj_1| < Co(t' —t9) ™2 sup |aj_1].

Q ’ A
tyt tutf

Using (7.25) we get

1
sup [bj| < Cs[0] fi—1(a)(j — 1)77H(t' — t6)_2t672”2/ t 2t dp.
0

Since t, = I — Jpu, we have
1 » » »
i I—-J)=7 177 t7J
/t“J 1dl£:¥—.—<.—,
0 JJ JJ JJ
sincel] —J=tand I >0
Let us take t) = /j/(j + 1) ¢, for j > 0. Then, ¢’ —t; > ¢'/2(j + 1), so we get

, i 1\J-1 1
‘ 1< , )2 (L2 -2j = 4—j
sup b5] < Calf fy-1 (@) = 1P 4G+ VA1) ¢ e
Since ) L
) 4+ 1\i—
Pl < 1) 2() T2 - <
7 <L and( -1 G+ (m) = < Gof,

where Cy is an absolute constant we obtain

sup [b;| < Ca fj—1(a) 772177
Q‘Lt/

It follows that f;(Ba) < Cy fj—1(a), for j > 1, which implies (7.27). In the case where
B =0, 7192, we take ty < t,. Then

sup [02a;_1| < Cs(t, —to) "2 sup |a;_1].

’ ’
tyut tot

If we take to = 745t then t, —to = 7

1
sup |b;| < Cs 0] fj—1(a)(j — 1771 (j + 1)2¢/~2+2 / t 2t dp.
0

tt/
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We obtain the same estimate as before (since t'~27+2 < é‘Z t'=27) and we conclude in
the same way. O

It follows from (7.27) that (I 4+ B) is invertible in A,, if p is small enough. Now
we can take ' = e, and t = @Q1/K in the definition of Q. Moreover we take
Al = h2?k. Since Q1 > KH we have t7! < H~! ; therefore the a;’s satisfy the
estimates |a;| < M7 j9 H=7 on Q. The analytic symbols that we shall handle will

be on the form
a= Z (h?k)’ a;
j<8 H/h2k
where § is a small positive constant. Then the size of the first term which has been
neglected is as follows : if jo ~ § H/h?k then,
|(h2k’)j0 aj,| < (thMjO %)JO < (5M)j0 < e~V H/h?k < e V/hk

since H > h, where v > 0 if §M < 1.

Summing up we have obtained an analytic symbol in a set which is slightly smaller
than A but has the same form. For convenience we shall still call it A. Then, if we
denote by ® the map

(0,5,9) — (0;5(6;5,5,,h), y(0: 5,7, . h))
then the symbol a(0;s,y, «, h) is well defined in E; = ®(A) C E.

7.4. End of the proof of Theorem 4.8

We introduce a cut-off function x = x(h, s,y) supported in F; = ®(A) such that,
with Q = 1 — 2a, (Re 3)34,

Xo®=1 if Q>2KH and |§—a5|+|g—ay|<5—°K
1

0D =0 if Q<IKH  or [f—au+|j—ay > -2

X - \2 s Yy y/CQK

where g¢ is the constant appearing in the Definition B in the Appendix and Cy < C}
are constants (independent of K) which depend only on the data. Then the support
of a derivative of x is contained in the image by ® of the set W7 U Wy, where

~ [311) ~ ~ €o 1
Wy = 9 Z—< - g - <—7 2_ B}
. 1={030): g <ol tli-al< g Q> 5 KH|

1 _ _
Wy — {(a,s,@ S KH <Q<2KH, 5= ay + 7 — ) < CZOK}

Let ¢, a be the phase and the amplitude which satisfy (7.22) and u be a solution of

our Schrodinger equation. We set
(7.29)

Tu(0;t,a,h, k) = /eih—ak—w(e;p/h,y,h)a(g; %,y,a,h> X(&; %,y) u(t, p,y)dpdy.
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Using (7.22) and the equation satisfied by u, we see easily that

(0p — kO)) Tu(O;t,a, h, k) = F(0;t,a, h, k) + G(0; t,a, b, k)
where
(7.30) |G(0;t,a,h k)| < Ce ¥ 50

for 6 in suppx, [t —to| <&, a € I,, h € I, k> 0 small and F is a finite sum of terms
of the form

(7.31) /eih_z’“_l“’(e*”/h’y’“’h) a(9; g, y,a b, k) %(9; g, y) (t, p,y) dpdy
where Y is a derivative of x of order > 1 and v is a derivative of u of order < 1. Then,
(7.32) supp X C suppx C Wi UWs,.

It follows that
d
do

We take 6y < 0 such that X(Go; p/h,y) = 0 and we integrate both sides of the

above equality from 6§ = 6y to # = 0. Since <p(0; p/h,y7a,h) is a FBI phase at

(50,50, (—1/s3,0),0,0), Theorem 4.8 will be proved if we can show that

0
— ih =2k (0;p/h,y,a,h) P NS0 P )i — kg
(7.33)I /90 /e a(@, X >X<9, h,y) v(t — kO; p,y)dpdydo

= O MYy, 5>0,

uniformly in ¢ when |t — ty| < € and for @ € Iy, h € I, k > 0 small. Since
supp X C W1 U W, we divide the proof of (7.33) into two cases.

(Tu(®;t — kO, c, h, k) = F(0;t — kO, a, h, k) + O(e~/"F).

Case 1. — We consider the part of the integral where (6, p/h,y) € Wy (this is the
hard case). We set

A=l homg s=L
(7.34) H h
. — 1 . S
¢(97 s, Y, Q, h’) - E@<97 an7a7 h’) .
We obtain
I = h//W2 eth ™7k lww;s’y’(’"h)a(e; %,ymz,h,k) )Z(G; %731) U(t — k6; hs,y)dsdydf.

If (0, s/H,y) € Wy then one can find (#1,51) € D1 (see Theorem 7.1) such that

1 S s 1 1

_/Qla T _1’ g T A

K H Q! "K'

where Q1 = 1 — 2,530 (see (7.14)). Let (0,5,y) € A satisfying ®(0,5,7) =
((9,3/H7 y) Then Q1 = 1 — 2a,(Re3)® Re + O(% + 50) Q1. Therefore

|6 —01] <

%KH+O<%+50>Q1 <Qi< 2KH+O(%+60)Q1
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s0, if & 4 dg is small enough,

1
(7.35) ZKH <Qy<3KH.
It follows that
51 . H H . H 1 -\ 3
<o o] |« g < ()
sl ‘8 Q1 +81Q1 K’Q1+81|Q1 K’+|81| K

This shows that |s| is small if K is large enough. Our goal is to apply Theorem A.14 in
the Appendix. Therefore we have to show that ¢ is a phase satisfying the conditions
of Definition A.4 in the Appendix.

Let us check that Im ) > 0, when the variables are real. Since ¢ satisfies (7.2) and
p is a real quadratic form in (A, u), we see easily that Im ¢ is the solution of a linear
vector field which is transverse to the hypersurface § = 0. Since Im plg—¢ > 0, the
positivity propagates as long as ¢ exists.

The second point is to check condition 3) and, first of all to find the point &p.

Let us recall that, according to Lemma 3.4 and Corollary 3.6, if (p,y,0, (A, 1))
is a point such that p + |pu| < eo, (p,y) # (0,y0) which satisfies yo = y +
pF1(p,y, ) + wFa(p,y,u) and X is the unique negative solution of p(p,y, A, u) = 1,
then (p,y,0, (A, 1)) belongs to N;;o(mo). Moreover p = u(p,y), A = A(p,y)-

We fix (711, s1,91) in [0, 1 x R4 x R"~1 and we consider the following neighborhood
of this point

~ ~ = 1 1
(736) Vo= {(hs,9) €DAXCxC i =Tl + |5 — | +ly—ml <}
1
where 7 is to be chosen. We also assume that H= h + |a,| < r. Then we set

A = Ahisi, 1), 1= pu(hisi,yi) and

(7.37) € = <2_%, i—%)

Proposition 7.8. — If r is small enough, we have for all (E s,y) in 'V,

O A1 oY H1
. 5 - 3 . ; -2 <
(7.38) 5 (0:5.9) 3 |+, @0 7 <=0

where €q is the constant appearing in Definition A.4 in the Appendiz.

Proof. — From the definition of ¢ we have, (see (7.13) and (7.15)),

ov 1 oo
g(oasay) - 1(07372/70[7}1')’ 83/ (973ay) - Hﬂ(9757yaaah)

where ®(0;3,7) = (0, S/H,y) that is s(6;5,y,a,h) = s/H and y(6;5,y,a,h) = y.

1
T2
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Lemma7.9. — Let (5',9") be the solution, which is real, of

Then
|§ =3 < Ch(|s — as| + |7 — ay|)
(i) . <Cl~z -
v -7 < g(ls—aslﬂy—ayl)
(i) 9(6; 3,7, a, h) — g(6; 5,7,y vy, h)| < CR(|5 — as| + |7 — ay]),

Proof. — By the proof of Proposition 7.4 (see (7.17)) for fixed 6 the solution (§',%")
(resp. (8,%)) exists and (0,5",7’) (resp. (6,5,%)) belongs to A (see (7.14)). This
means that | — 51| < doQ1, [V — yo| < ey, |5 — 51| < 00 Q1 |¥ — yo| < gy. It follows
that |§ — 5| < 200Q and |y — 7’| < 2¢,.

Now for ¢ in [0, 1] let us set

M; = t(ga g) + (1 - t)(gl’g/) = (gt’gt)'

With the notations of Proposition 7.2 we have

1— 20,320 + 5,F(0; My, a,h) = 1 — 2a7§§9+0(|§—§1| Y7 -5+ %)
2

It follows then that we have
|1 — 20,3570 4+ 5 F(0; My, o, h)| > C1Q1.

Let us set

o= P05 g, w= 2 WO,
S

Then Corollary 7.3 shows that,

e C C c o 1
o < lal < 02 s < K20, |vj| < o D—Id"‘O(?)'
Moreover
ds(0) 1 ds(0) 1 oy(0) 1 ay(0) 1
o _O<Q‘{>’ Er _O<KQ§>’ o7 _O<Q1> and —5= _O<Q1>'
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Using the formula (7.10)" we obtain

9%s C 9%s C
<_
8~2 (0 Mt7a h) NS Q?’ 888~(9 Mt,Ol h) KQ2
9%s c
< — < —
8”2(9 Mz, o, ) SKQ a:e:?‘\KQ%
0%y C 0%y C
< — g =,
838~(0 My, 0o h)| < 7o a2l S K

By the Taylor formula with integral remainder we get

(j) 0,3,7,a,h) = (Z) (6,5, 7, r + 2ih(5 — as), ay + 26h(F — ), @, )

-~ Y;
= (;) (9,5,2/,%,%,/1) + (Yl/)

Ch, . ~ Ch
Gl li—oyl). V1< G (5= oul + i~ ay).
Let us set B = |5 — 5|+ Q1|y — ¥'|. Then we have B < C(do + &4) Q1.
Now, using the Taylor formula up to the second order and the above estimates on

where

Y1) <

the second derivatives of s, y, we get

-7 O(B*/Q}
Yossan- (Joesan-(35) (3) (S0
<y>( y Sy Y, @, ) y ( ySHY Q& ) V D y_y/ + O B2/Q%

We deduce from the above computations and the hypotheses in the Lemma 7.9 that,

(8) = (i) (6,5,9,a,h) — (;) 0.3.7,a.h)

3 (a U) (g-g) L (@ B?/Q} N (yl)
VD) \y-vy O(B2/Q? Y’
Let us set M = (mj),) = (2vjux) ; then |myp| < C/K?. It follows that D — M is
invertible and (D — M)~' = I+ O(1/K). Then we have

G-7 = (D—M)*1<— 1YIV+Y’) +O<gz>

s =n-lu.g-mro(D).

This implies that
2

~ - B

B < Ch([s — o] + |7 — ay]) +CQ—.
1

Now B/Q1 < C(do +¢&y) ; it follows that B < C'h(|s — as| + |y — ay]) since dp + ¢, is

small enough, which proves the first part of the lemma, since @1 > K H and h = h/H.
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Since s(0) = s/H = s(0), with |s| ~ C/K, we have

5 7(6) = 55 7(0)| = 5 |T2(0) ~ 72(0)] = (1),

52
Now, by (7.8), (zs?)(0) = 75*+ f and (75%)(0) = o 52 + f where |f| +|f] < C/K2.
It follows that
-~ ~ 1
(1) S CKZh([s = as| +[7 — o) + 2 |£(0) = F(0)].
On the other hand,

%:O<K21Q1>’ %:d%)’ %:O<K1Ql> and g_g:df{lcgl)'

Then using Taylor’s formula and the part (i) of the lemma we obtain
(1) S Ch(5 = ol +17 = ay ).
if K?H is bounded, and (ii) follows. The same argument applies to %77. O

Let us now prove (7.38). Using the notations of Lemma 7.9, we write

8_1/}_)\1 1 1 1 1

1 A
A - S V2 (2 L
ds s3  H? () H2T(9)+<32 s%)Ts—’—s%(Ts 51>'
N—— —

M (2) (3)

The term (1) is bounded by Chéseo < %607 by Lemma 7.9. Since 752 is bounded, we
have |(2)] < Cr < 3eo. Let us look to (3).
In that follows we shall write (5, 7) instead of (§',7"). Let us set

P* = h3(9§§7ga OzT,Oln,h)
y =y --)

(7:39) N = () 0)
b= ()6

where R = p(h3,7,a,; 3% a,3) # 0.
Let us set m* = (p*,y*,0, (\*, u*)). It follows from Proposition 7.7 that one can
find T* > 0 such that

. 1 1.
expT*oc Ha(m") = (hs,y7 0, (E a, s, Esa,,)) .
Therefore, if h + || is small enough, Lemma 3.4 shows that
. liin expto Ha(m™) = . li+m expto Ha(hs,y,---) = (0,y,0,(—1,0))
where |y —y| < C1H.
Then Corollary 3.5 shows that d(m*, N;L (mg)) < C2H. This means that one can
find (pQ,yQ,O, ()\2,/12)) S N_:;o(mo) such that

lp* = p2| +1y" —yal + [N = Xa| + |p" — po] < C2H.
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It follows that

N = A", y )+ " = u(p™, ¥
<IN = Aol + A2 = A", y")| + 1" — pa] + |2 — p(p*, y™)|
<202H + C3(|p2 — p"| + |y2 — ys|) < CuH

because Ao = A(p2,y2), p2 = p(p2,y2) where A and p are holomorphic functions.
Therefore we have

IN = A+ " = ] <IN = A", y")
+ " = (™, v+ A", y™) = v, yo)| + [w(p™, ™) — m(p1, v1)|
SCHA+C(lp" —p| +1y" —mnl) <CH.
Now R? =5%a2 +5%a} + O(h) = 1/sf + O(H). Then
A
’R/\* - —1‘ n (Ru* _ &‘ <CH
S1 S1

which, according to (7.39) proves (7.38) and completes the proof of Proposition 7.8.
O

Let us now check condition 4 in the Definition A.4 in the Appendix.
Lemma 7.10. — One can find a positive constant C' such that for real (0, s,y),

Im Z—;ﬁ(@,s,y,a,h) <eoh, =35 or Y.

Proof. — We use Lemma 7.9. The observation is that, if s/H and y are real, then
(0,5, is real ; this implies that 7(6;5, ¥, or, oy, h) is real. Now

b 1 1 1

5(97873/,0%}1) = Z0) = 75 7(0) + 75 (2(6) = 7(0)).
So |Im 84/8s| < 7= |7(0) — 7(8)] < Chéseg < o, by Lemma 7.9, since h < 1, taking
Cdy < 1. The same argument works for Im 9 /dy. O

The condition 5) in Definition A.4 follows from the holomorphy of 1, so we are left
with condition 6) which is

(7.40) (Im")(0,s,y) = —eoh, for real (0,s,y).
Let us recall that we have set
s
0:5 7. . h) = —
é( b 37 y? a’ ) H

y(0;8,9,a,h) =y.
Then, if we set
Os dy; 0Os dy;
=H_—=, bj=—2 =H—, D=(==
a 93’ J 935’ Tk ayk;’ <ayk;>7

SOCIETE MATHEMATIQUE DE FRANCE 2002



72 CHAPTER 7. PROOF OF THEOREM 4.8

we have
c’ C C C
—— < < — < = —
e S < o bl s mg | K3
Let us recall (see (7.10)) that 1/s(8) = 1/3—27520+ F, where T = oy +2ih(3— )
and F = O(Q1/K?). It follows that

| < D:I+O(%>.

0s(0) 1+475%0+4ih3'0 -39 U
o5 (1-27330+3F)? v
From the Cauchy formula, integrating on a ball [s — {| = 6 Q1, we see that
F 1 1\2
‘8 @( < L —o(4)
Js K2 6@, K2
Now, since 475%6 is close to 4, sj Ref which is non negative, we deduce that
|U| is bounded above and below by strictly positive constants. On the other hand
we can write 275°0 + 5F = Q1 + O(% + 50) Q1+ O(h). Since h < H < Q1/K
(see (7.1)) we deduce that |V| is bounded above and below by C'Q%. Since, by
(7.35), Q1 is equivalent to K H we deduce that H 0s(6)/05s is uniformly equivalent to
H/K?H? = 1/K?H, which is our first claim. For the estimate on b;, we use the fact
that gj(ﬁ) =y; + G;(0), where G; = O(1/K). By the argument used above we get,

8GJ‘ < g 1 B g 1

05| °K 6Q1 6 K2H'

The other estimates follow also from the expressions of s(6), y(f) and the Cauchy
formula on a ball |y; — ¢| = e. It follows that

We set M = (mjy), then (D — M)~! =1d+0O(1/K) and

9 1<1+9(D—M)‘17>2~— Yoo 2
ds a a Js a dy
(7.41)
9 =(D— )—1[2_1§}
Oy 0y adsl’
Let us recall that we have
oy 1 - .
a_y - Eﬂ(97 5Y,Q, h’)
and, by (7.3),
0
i(t) = =5 (hs(0), y(0). 75°(0) 50(0)

with 7(0) = 7 = ay, + 2ih(J — ay). It follows that, with h = h/H,
0% 1o 1 (/0 ~ 0\rop
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We claim that, with A = |Res — a;| + | Rey — oy, we have

0%
(7.42) Gy = = 2 1d +— 0( + A)
This will be achieved if we prove that
ap h hA
(7.43) Im/ —‘aa Mgy ¢ )] =0(5+ )

since (D — M)~t =1d+0O(1/K).

Now p = A2 + 3" W*(y) pj ke + pr, where r = p?ro(p,y) A2 + pri(p, y) A\ and it
will be clear from the method that the term pr can be handled in the same manner.
Therefore let us assume that p = A% + f(y) u?. Then 9p/dy = f1(y) u? and

9 4 dN\[d oy 0
s (L) w5 s0] - (- 22
ds v 0s

2hrs(5 1 55) T2hws (G - L 5) =M@+ )

where f;, j= 1,2 are smooth function which are real if y is real.
We recall that, if f = s,y,7,n, we have

flo;5,9,0,h) = f(a; 5,7, ar + 2ih(5 — ay), oy + 20h(Y — o), h) .

Lemma7.11. — With the notations of (7.28) and Lemma 7.9, let (0,5,y) € Ws.
Then, for o € [0,0] we have the following estimates.

s(0) — 5(D)] < ChAW, [ylo) (D) < O gz
10(e) = n(E)| < ChA, [s(0)] +[s()| < Cuo,
D)0) ~ 2| < onid (14 757).
@)(0) - )] <o,

o a%“(g)(g) - g_’g( )| < (K];H KZ;)
8%(;) - g—;( )| <o
Do) - )| <o(ns 22,
(o) - Zhz)| <c

where ¥ = (0;Re 3, Re Y, ar, o, h), up(o) = 1/(1 — 2a,(Res)30) and

=|Res— as|+ |Rey — ayl.
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Proof. — Since —2a,(Re3)? is positive, we have in Wy (see (7.28)),
1
1-20,(Re5)’c > 1—20a-(Res)*0 > Q1 > S KH.
Thus ug(c) < 2/KH.

Moreover for any z, ¢ such that z = Res+ O(H), ( = Rey + O(H) we have
1-272%04 2F(0;2,¢,...) =1—2a,(Re3)®0 + O(H)
since 7 = a; + 2ih(z — o) and F = O(H). It follows that
1

1 -272%c+ 2F(0;2,(,...)| > §u0(0)

if K is large enough.

Let us recall the rule of differentiation. By the Cauchy formula applied in the set
(7.3), each time we differentiate a holomorphic function ¢ with respect to § (resp.
y,7,1) we loose a factor which is O(1/Q1) (resp. O(1), O(K/Q1), O(K/Q1)) with
respect to 1. Note that Q1 ~ K H by (7.35). Recall now that,

s
127830 +5F(0)’
where F = O(H/K) (see (7.10)). By the above rule, we get

oF O( 1 >’ 3F_O<£>, a_F:(9<i> if =7 or 7,

s(0:8,4,7.1,h)

95 K2) oy \K/) oz K

2 2 2
%§ZZO<K;H>’ ggfggj:O(%)’ 88'3“;;:(9<KIH>’
2 2

oL o(l). i -o( ).

Using the explicit expression of s(o) given above we obtain the following estimates.

0s(0) O@ud), 0s(0) :(9<£ 2)) 0s(o) — O(ud), 0s(0) :O(i 2>’

9 a7 K o7 Yol oy K0
9?s(o) 1 5\ 9%s(o) 1 5\ 0%s(o0) 1,

932 _O<KH“°>’ 9507 _O<ﬁ“0>’ 950z _O<KH“0>’
9?s(o) H ,\ 0%s(0) 1 5

B _O<E“0>’ 0 _O<E“0>’

where we have used the estimate ug(o) < 1/K H.

Finally let us remark that, according to Lemma 7.9 we have,
ChA
HK '
Let us now prove the estimates on s in (7.44)

[Im3s] < ChA, |Imy| < h(]s — as| + |7 — oy|) < ChA.

s(o) — s(X) = s(0; 8,7, ar + 2ih(5 — as), ayy + 20h(Y — o), h)
— s(o;Res,Rey, ar, an, h).
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Thus, the first estimate in (7.44) follows from the Taylor formula and the above
bounds on the derivatives of s.

Consider now (%) = %(g)(a) - %(E). We have

0s , . - Os o~
= — N T 2 — Wlg)y... ) T T< ; I ¢t
(%) % (0:5,7, r 4 2ih(5 — as),...) 7 (o;Res, Rey,...)
+ 2ih 22 (a;g,ﬂ, ar + 2ih(s — ay), . .. ) .
T

The last term in the right hand side is bounded by hu3. Then

_ 0%s hA _ 0% hA 1 ,
Ims'@_qKH“O)’ Iy ooy = (KHF“°>
. 0?s 1, SO . o~ o~
2ih(x —as)@—C)(hA-ﬁuO), r=Torn, a" =Ssory.

This proves the claimed bound for (x).
Let us consider now (k*) = (% (8)(o) — g—fj (X). We have the term 2ihds/97 which
is O(hud). Moreover

Img% - O(hA%ug» Imﬂg—; - 0(}’;—‘2%%) - 0(’;(—/211%)
h(s — as);g—z‘; - O(hA%u%).

This proves the bound for (xx).
For the bounds concerning y(c) and (o), we use the fact that we have,

- 1 -
y(o) =G+0(5). (o) =i+ OH).
Details are left to the reader. O

It follows from these estimates that (see (7.43)")
hH
(1) = real term + O(hHAu% + 71%) .
Indeed we have, with ¥ = (0;Res,Rey, ar, oy, h)

o o) Oy(o
()= §2(")ﬂ2(0>f2(£(a))<8%('y“) - Zgai ga(’g))

So we can write

(1) = LD ) (52 ) - 15 g ) +

where the first term in the right hand side is real. Moreover R is a finite sum of R;,

j=1,...,6, which we consider now. We have,

oy(o o) Oy(o
Ry = (s*(0) — 32(2))ﬂ2(0)f2(g(0'))( %(g) _ 28 %;)
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By Lemma 7.11 we have |s?(0) —s?(X)| < Ch Aug ; moreover n*(0) f2(y(0)) is O(H?),

9y vy . (H oy 1
8_§ =0(1), P (’)(?) (see after (7.40)) and Fri 0(ﬁ>
It follows that WH A
Ry = O(hH? Auf) = 0=}
since ug = O(1/KH).
dy v 0y
= 2 2 _— 2 P _ - - =
Ry = ()0 (0) = () o) (55~ 5 55):

We have [s*(X)] < Cu, [n%(0) — n*(8)] < ChHA. Therefore we get, Ry =
O(hH Aud). Now R = $*(3)n*(2)[f2(y (o)) — f2(y(2))(---)]. We have
F2(4(0)) ~ So(E)] < Clylo) — y(D)] < O

It follows that

KH K
Now
0
Ru= ()P (9) L) (52 0) - 529)) = 0w 1) = 0 (S a)
Then 5
Ry = S (S)7(E) o) (L0) - 1 (%) 52 0).

Recall that a = H0s/Js and v = H 0s/0y. It follows that

v v 1 s s s s 0s Os

T -Ixy=— | Em-Z& CE o)L ).
Gty Bs(5) - O2(x)) [a'g(”)<a§( ) ag(")> +a§(")(a§ @)= 55! )
The denominator is bounded below by Cug and from Lemma 7.11, the numerator

can be estimated by

H 2 2 h A 2 2 h 2 ! h 4
2. Sialall . < _
C(Kuo (huo—l—KHuO)—i—uo Ku())\CKuO.
It follows that " ) b
_ 2, 21 _ 2
s = O(H?ui ) g7 = Oz 18)-
Finally
25 Yy (249 0y
Ro = s (D)n* () £(y(D) 2 (D) (5= - 52 ()

can be estimated by

h hA >:O<hH2 2+@ 2)

H
2 2
uo H '_<K2H+K2H2 K3 0T Tgs o)

K
Summing up we get

hH
R=Y R;=0(hHAuj+ —uj).
; J ( Up KU)
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Since
0 C
p < — i >
‘/9 uo(a)da‘ S (KHyp— if p>2
we obtain
hA h

77

The other terms can be handled in the same manner, using the above estimates. This

proves (7.42).
Our next claim is

0% ~_ b
4 =2 A
(7.46) o +h(9< +4).
Since
o 1  op
_8yj = H(an+22h( a ))+ T J, oy, +—(hs(o),y(0),...)do

and, by (7.41),
0 b 0 (9( 1 ) 0

= -%+2(1+2(D—M)—17> 0

%a

35 a 05

we can write,

821/) - ,~bj 8}9
507y, _—2m—(1+0( / 5y (bl (U),...)da).
Thus (7.46) will follow from,
o b L 97 /0p
(7.47) Im/ [ D M) )8,§ 2(D M) aﬂ<ay(h§(a)7 )) dor
1
:ho(?+A)

Since b/a = O(1), the estimate of

0
b 4 0 /0p
Im/e “(D - M) a—,g<a—y>da

has been obtained in the proof of the preceding case. On the other hand we have

b0 011 -0(7%)

Therefore the main term remaining is

i [ (5

As before, we will assume that p = A2 + f(y) 42, which implies that Op/dy = f1(y) >

So we are left with the estimate of

0
Im[/ ~ by s % 2 4o +/ 2 hws- da+/ 2 Ry tdo
= Im ( ())
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Let us look to the first term. By (7.44) we have |fa(y) — fo(y)| < ChA/KH. Tt
follows that

1 1 Ay 5 5 5 o )
- - _= < . <
(a a(rea1)>f2(3)a§§ﬂ SOKMA - o g < ChH Aug,
1 0 h 1 ChAH
E(fz(g)—fz(y»a—gﬁf SOK*H 4oy Aoy HP g = —— 55—,
1 dy 0 hA
afz(@(a—»}—a—g)ff <CK2HK2H2H2ug:ChAHug,
1 Jy 2 2\, 2 2 1 2 3 2 3
—hy) 52 (57 = 8°)°| S CK*H g hAH? ui = ChAH® uj,
L) 2 202 — )| < OK2H —— ChH Au? = ChAH?2
afz(y)a—gs (n”—n)| < el ug = ug .

It follows that o
(1) = real term + ((’)/ hHAu%(a)da) .
0

Therefore hA

Im(1) = 0(=2).

m(l)=0 e
The same estimates and the same method apply to the term (2) and (3). Then (7.46)
follows.

The last step in the proof of (7.40) is the following claim

0% by 2~ -
(7.48) Im 5 = 2<Re 5) h+ O(KhA).

To prove this we shall use (7.34) and Proposition 7.6 which give
1 5 7 y iy ~ ~ o~ o~ ~
V= I ((3 —as)ar + (U — ay)a, +ih((5— as)? + (7 — ay)2) + 6p(h3, 7,75, 577))

where 7 = a, + 2ih(5 — o), 1 = oy + 200 (7 — o).
Let us recall that, by (7.41), % = P(% + Q(%, where
1 b b
P=-+—-(D-M)"'y, Q=—=-(D-M)"".
a a a

Let us also assume, for simplicity that p = A2 + Zﬁjk(y) i Then

g—f - %P(QT + 2h(3 — o) + (4ihFE + 4725 +§f1(§)ﬁ’2)0>
- %Q(an + 2ih(§ — ay) + (32 f2(9) 77 + 5%k f3(5) 1) 9) .
We write
(7.49) g—f _ %(PU +QV).
Now we have L 1 I
P=—(1+b(D—M)"'y) = 5(1+o(§))
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and
Js 1+ 4ih540 +475%0 — 8F/8§i
95 52 H’
since s(f) = s/H. On the other hand,
U =7(1+4ih3* 0 +475°0) + O(H?).

Since OF /05 = O(1/K?) we get

1 1 , 1

=PU = = (73 + R), R:O(H + ﬁ>
Moreover, using the Taylor and Cauchy formulas, we see that if R is a holomorphic
function, depending on (0,5, 9, T, 7), which is real on the real and bounded by L, then
|ImR| < CLLA.

We can now begin to estimate the second derivative of ¢. We have

a=H

0,1 2 _ 1y R _OR
g(ﬁpu)_ SEP LR+ <(2zhs +2T§)P+P£+Qa—g>.
M

@)
It follows that
Im(1) = O(K%A + K3 (H2 n i) iA) — O(K3h - hA + KhA).
K2)H

On the other hand
OR

OR 1
pP— — =0O(KH?*+ =
o5 T9% O(KH + K)
and Im P = O(Kh A). Therefore we get

Im(2) = O(K*HhA+ KhA).

Then

91 - _
(7.50) Im %<EPU> — O(K*HhA+ KhA).

Let us look now to the term

P (o) =P a(gov) +og(zav) - m+@.

We have QV = O(H) so
0 1 1~
—=QV = 0(§) and  ImQV = 0(?“4).
Since P = O(K?H) and Im P = O(K h A) we get
Im(1) = O(K HhA).

On the other hand,

1 0Q

(2):E8—§V+%Q288—‘,y{ =(3) + (4).
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The same argument shows that (3) = O(1) so Im(3) = O(h A). Now it is easy to see
that Im(4) = 2(Re b/a)2 h+ O(hA). Then

9 /1 b\2+ -~
(7.51) Im (EQV> - 2(Re 5) h+O(hA).
It follows from (7.49), (7.50) and (7.51) that if K?H < 1, we have
0% by2+ ~
(7.52) Im 5 = 2<Re E) h+O(KhA)

which proves (7.48).

Now, since by (7.28) A < €9/C2 K, where Cy is large, taking 1/K < g, we deduce
from (7.42), (7.46) and (7.52) that (7.40) is satisfied.

Thus we may apply the Theorem A.14 in the Appendix to conclude that the part
of the integral (7.33) where (6,p/h,y) € Wa is O(e=%/"*), with § > 0.

Case 2. — Let us look now to the part of the integral where (6,5, y) belongs to W1
that is

€o ~ ~ o

= S[s— o, - S 5%

S <+ -l < o

In this integral, (0, s,y) is real. It follows from Lemma 7.9 ((5',¥’, v, o) being real)
that

" 1
62:1—20471%\%(9?’92§KH7

|Ims| < Ch(|Res — as| + |Rey — ay)
(7.53) O~ B ~

[Imy| < Kh(|Res—ozs|+|Rey—ozy|).
Let us set
(7.54) A? = |Re3 — as]® + |Rey — oy .
Then in W we have

€0
. > .

(7.55) A 20K

Lemma7.12. — In Wy we have
1 - ~
Imy > §h(| Res — as|? + |Reqy — ay|?).
Proof. — From Proposition 7.6, we have
©(0;5(0),y(0),,h) = (5 — as)ar + (J — ay) oy + ih [(g— as)? + (7 — ay)z]
1) (2)
+0p (h3,7,75%,57) .
—_————
(3)

We have
Im(2) = hA? — h(Im3)? — h(Im7y)?.
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It follows from (7.53) that
1
(7.56) Im(2) > hA? — o(ﬁ hA? + R A2) .
We have also
(7.57) Im(1) =Imsa, +Imy - .
On the other hand,
p(h3,7,75%,50) = 725" + 3207 + hs(h3a(h3,9)(75*)2 + b(- - )78 5 + (- ) 3*7°),

where 7 = ar + 2ihs — o), 1] = oy + 260 (Y — ).
It is easy to see that

Im725* = 402 Re3® Im 5 4 4ha, Res*(Res — as) + O(h%A)
(7.58) Im3%7? = O(hHA)
Imhs(h3a(---)(78%)2 +---) = O(h*A) = O(hH A).
It follows from (7.56) to (7.58) that
(7.59)  Ime >Imy-ay+ar [(1 +40a, Re) Im3 + 40h Re 5(Re s — ozs)]
T RA? 0(%}% T R2A? ¢ hHA) .
On the other hand (7.10) shows that

H 1 1 H
—=——==--2T3%0+F, |F|<C=,
s s@) s Tt 7] K
and, since H/s is real, we get
Ims ~
—%—ﬂmﬁzeHmF:o.
S

Since [5]2 = Re 52 + O(h? A?), we obtain
Im3(1 + 4a, Re3®0) + 460h Re5*(Re5 — o) = Re3” Im F + O(h*A).
Then (7.59) implies that
Img > hA?+Imj- oy + oy Res? Im F + O(%hAQ n hHA) .
Then, Lemma 7.12 will follow from the following lemma.
Lemma7.13. — We have

1 1
Iy ay +a, Red Im F = <9(ﬁm+mwur EhA?).

Indeed, since A > €9/2C1 K, we have O(75hA+hH A+ +hA?) < $hA? which
implies that Im ¢ > %hA27 as claimed. O
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Proof. — Let us recall that p = \? + Zﬁjk Wy b + pr, with

r=apA? + b+ cp?  and y:s@(hs,y,TSQ,sn)2282(77>+hs2ﬁ7

ou ou
where (n) = (X, Ejkn,.i) 1 - Then
y(0) =y — 2/ s2(o da—/ hs*( hs(o)---)do =y € R"1.
Denoting by s(6),y(6) the real functions such that

S

S(a;glaﬂlaaTaan) = E7 y(ev : ) =Y

(see Lemma 7.9) we can write

(7.60) Im§ = 2Tm / o) (o)) — 82(0)(n(0))] do

+Im/ §(a)--~)—32(0)@(hs(0)-~-)]d0=I+II.

‘We have

0
I=2Tm /0 [52(0) (n(0)) = (n(@))) + (@) (s*(0) — *(0)) | dor

Let us introduce the following function

1
7.61 f)=—— >0.
(7.61) w0l = S Resarg

Then, using the Lemma 7.9 and the estimates on 9s(0)/95s, 9s(6)/0y - - - (see Corol-
lary 7.3) we obtain, |s(6) — s(0)] < ChAu3. Moreover we have |s(0) + s(0)] < Cug
and [(n(o))| < CH. It follows that

0 0
(7.62) ‘/0 (1(0)(*(0) — 5*(0)) do] < CHhA/e (o) do < iggf - ;Z;

Now we have n(0) = 1+ G(0), n(f) = a,; + G(0), where G and G are bounded by
CH/K. Let us write for convenience (1) = f(y)n. Then

() = (n) = f(y)(n(o) —n(o)) +nlo)(f(y) — ()
(m) = () = 2ih f(y(0))(F — o) + f(y(0))(G (o) — G(0)) + (o) (f(y(0)) — f(y()))-
Since |y(o) —y(o)| < ChA/K H, we see easily that

[f(y(@))(G(o) = G(o)] + [n(0)(f(y(o)) = fy(o))] < —=-
It follows that

(7.63) 2Im /9 0 [2(0) ((1(0))— (n(0))) | do = 4h(Re—av) /9 0 (o) do+0( )

ASTERISQUE 283



7.4. END OF THE PROOF OF THEOREM 4.8 83

We can apply exactly the same technique to the term II and obtain
hA

i)

Then, using (7.60), (7.62), (7.63), (7.64) we obtain

my- o, = 7" 7, —ad)ak ’ o hA
(7.65)  Imj-ay, =40 > B (Re§)(ReF; — af) "/e %(0)do +0( 75 ) -

3.k

(7.64) 1 = 0(

Let us look now to the term Im F. According to the computations made before
(7.10), we have

(7.66) F:4/0/0 Zhﬂk n,()n, (t)dtdo
7 o

+2/ / hs? 77 +h 2gp>(t)dtda+/00h§( )%da_(I)Jr(H)Jr(HI).

Let us look to the term (I) Since [s%(t) — s3()| < C|s(t) — s(t)|ud < C"h Aug, we
can replace s3(t) by s3(t) modulo an error which is O(%%). Then we write n(t) =
1+ G(t), n(t) = a, + G(t) where G and G are bounded by C £. It follows as before
that

_1mg/ /' ﬁda}jh, (Re§) ok (Reg; — a”-FO(hA)

The same computation can be apphed to the terms (I7) and (1) and we find finally

hA | hA?
_AJ
(7.67) ImF_16h§ 7" (Re§) o (Re ) — o // dtda+(’)< = )

Now we see easily, using (7.10), that, with ug defined in (7.61),

() ~ (Re3)u3(0)] < € Zudo),

H
[5°(8) = (Re ) ug(t)] < C 3z ug(t)
Using (7.4) we see that we can replace, in (7.65) and (7.67) s by (Re’s)ug modulo an
error which is O(#z hA). On the other hand we have

(7.68)

/%mawm%hu;u—%w»
Then we get ’
ImF = ——szkhjk Re§)ak(Re —a])/eo 2(t )dt+o<M +hHA+ h?AQ)
Using (7.65) and (7.68) we conclude that
Res?a, ImF = —Im7y - an—|—(9<hA +hHA+ %1412)
which is the claim in Lemma 7.13. O
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End of the proof of Theorem 4.8. — By the Lemma 7.11, the part of the integral, in
(7.35), lying in Wi is bounded by C'e~%/"*. This proves (7.35) and completes the
proof of Theorem 4.8. |
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CHAPTER 8

PROOF OF THEOREM 4.9

We consider the case mg € N§, mg = (0,70,0,(1,0)). We proceed as in the proof
of Theorem 4.8, § 7 ; we look for a phase ¢ and a symbol a satisfying the phase and
transport equations.

8.1. Resolution of the phase equation

Let d be a strictly positive integer. We denote by P, the set of polynomials of the
following form

(8.1) (5,4, b A ) = hb(s, 5, A+ > bag(s,y,h) p* N

la|+i<d
a#0

where b and b,; extend to holomorphic functions near (so,yo) and are smooth in h
on [0, +oo[. Then we have

(i) Let 7 € Pg ; then for all Ky > 0 one can find C(Ky) > 0 such that for all
(8,9, h, A, p) satisfying [s — so| + || + [y — yo| + [A| + || < Ko one has

(8.2) (s, 5 hy A )| < C(Ko)(h + [u]).

(ii) If r € Py, Or/0s € Py, Or/0y € Py and Or/OX € Pg_q if d > 2.
Recall that the symbol of Ay is p(p, y, A, ) = A% + ||u]|? + pr so

(8.3) p(sh,y, 27, sn) = st 4 32||n||2 + thF(s,y, h, s, n), 7€ Pa.

Proposition 8.1. — Let ag = (so,yo,l/sg,O). There exist positive constants €g, €,
€y; €a, € and for h in |0,e,] a holomorphic function ¢ = ¢(8;s,y, o, h) in the set

E= {(O,S,y,a) €ECxCxC" !t xC?:Ref € (—o0,e0],

[Im 8| < eg,

S [y —yo| < ey, |O<—Ofo|<5a}

S0 ‘< Es
T+210] ST
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such that

(8.4)
9 200 0P\ _ s
20 +p<sh,y7s 99 788y> =0in F
Ploco = (s — as)ar + (y— ) -y — Als — 50)? + ih[(s — @) + (y — 7]

where A = (1+68)s5?, § small.
Proof. — We introduce the symbol

(8.5) q=0"+p(sh,y, st sn)

and we study the bicharacteristic system of ¢ when the parameter on the curve is real.
For (3,7, a,h) in C x C"~1 x C2" x ]0, +-00[ such that

5—s0l <€l |7 —wol < 62,

1
aT—5—3‘—1—|0477|<Egw 0<h<ey,
0

we consider the system

(8.6)
0(t) =1, 6(0) =0
5(t) = 275 + hstri(s,y, b, s>, n), s(0)=7%
§() = 252() + hs? [alhs, y)(rs?) + sb(hs,p) -], y(0) =F
0(t) =0, 0"(0) = —p(3h. 5. )

() = — [4337-2 + 23||n||2 + shra(s,y, h, s, 77)]7
7(0) =7 = a, — 2A(5 — sg) + 2ih(5 — as)
n(t) = _328yH77H2 + 82h7“3(8,y, ha 327—7 77)7 77(0) = ﬁ = an + 2lh(§_ ay)7

where m € P1, 72,73 € Pa, a,b (and their derivatives) are uniformly bounded and

n—1 n —jk

= (X F wm). ol = > Z-wmn.

i=1 G k=1

Lemma8.2. — The system (8.6) has, for €, 52, e, E(,)l small enough, a unique global

solution on (—o0,0] which is holomorphic with respect to (3,7, ).

Proof. — First of all we have 0(t) =t and 6*(t) = 6*(0) which are globally defined on
(—00,0]. Then we introduce the following subset I of [0,+oc0[: T € I iff the problem
(8.6) has a unique solution on [T, 0], which is holomorphic with respect (5,7, o, ay)
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and satisfies

0 5 T < Ol< 10
s ) ) — 31 < (ol + )2
(i) |n(®) =7l <layl+h
(iv) |7(t)s%(t) — 75%| < |ay| +h where 7 = a, — 2A(5 — sp).

(We assume |a,| +h <& +&9 <1).

The set I is of course an interval which is non empty. Indeed, the Cauchy-Lipschitz
theorem shows that (5.51) has a unique solution on [T, 0] for some small T > 0 which
is holomorphic with respect to the data. This solution satisfies |s(t) — 3] < C'|¢| so (i)
will be satisfied if T' and €4, are small enough (with respect to sg) ; now, according
to the equation satisfied by n we have n(t) = 0 if o, and h are equal to zero ; since
n is smooth with respect to c, and h, we will have |n(t)| < C(|a,| + h) ; then using
the equation satisfied by n and (8.2) we get

0
7 </ i(0)ldo < Clay| + h)? < |ag| + b
t

if €2 and &) are small enough. On the other hand we can write

0
() — 71 < / 1§(0)]do < Cr (o] + h) + Cah < (Jag| + B)V2.
t
Finally,

d
S(rs?) = #5? 4 2755 = <258 > + 5hr(s, g by 5PT).

with r € Py. Therefore, using (8.2) we get
IT(t)s*(t) — 7% < Ci(|oyg| + h)? + Coh(h + || + ) < |oy,| + .

Let us set T* = supl. If T" = +o00 our lemma is proved ; so assume T* < +oo and
let Ty € I, Ty < T*. On [—Tp, 0] we have a solution which satisfies (8.7). By (8.8) we
have,

0 0
Ir(t)s () — 72| < 2 / 15(0) [ ln(0) |2 do + R / 13(0) Ir(s(0), (o), - )| dor.

It follows from (8.7) and (8.2) that one can find a constant C; depending only on the
data such that

(8.8)

2 ~~2 2 0 do
IT(t)s”(t) — 757 < Ci(|ay| + h) TR
therefore
- 1
(8.9) 7 (t)s*(t) — 75°| < 5 (| + 1),

if e, and gj, are small enough with respect to the data.
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Now we use the second equation of (8.6). We get

S(t
(8.10) 852((2) = 275> + s*hry (s,y,h, $27, n), r1€Pi.
Let us set
(8.11) f(t) = (7s*)(t) — 752,
Integrating (8.10) between ¢ and zero we get
1 1 0 0
B12) 5o R+ Q/t F(o)do +h/t 2(0)r1(5(0), y(0), -+ ) dor.

Then we write

0 0 0

s13) [t = lof@)i - [ af@o =70~ [ oroyin.
It follows from (8.8) and (8.11)

(o) = =25%(0) (o) + hs* (@) r(s(0), y(0),-), T € P2
50,
(lom| + 1)
(1+la))*
Therefore, using (8.13), (8.14), (8.15) and (8.9) we get

(8.14) lof' (o) < Cy

= 20t|75" + 2t f(t) + g(t)

It follows that

(8.15) O = T T 2R T L)

A1+ g1 (0] < Cs(Jevy| +h).

Now
75 = (ar — 2A(5 — 50)) 8°
_ 1 1 ~ 3 =3 .3\ _
= <_s3 + (aT - _38> —2A(3 50)> (sg+38° —sp) =14 0(e5 +€4),

where O(e) stands for a quantity bounded by Ce where C' depends only on the data.
It follows from (8.15) that

L+gi(t) +21t|(F3% + fi(t)) = 14+ 2/t| + O(eq + €5 +n) + [t|Oleq +€1).

Therefore, if e4, €5, €, are small enough we will have

1 So S0
8.16 %0 st <2—2_ te =Ty, 0.
(8.16) 271+ 2/ [(2)] 1+ 2[t] [=75,0]
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Next, using (8.6) we get

/|5 |da+h/ 2@ [01(- ) + ba(- )| do
do 0 do
Calle| *")/_m Tt vy
SO
(817) 9(6) = 71 < 5 (ol + W)Y2, € [T5,0].
Finally
n(e) — e
0 70
< [ S 2y @@ + [ Al oo, o
5] .
< [Collo] + 02 + Cohlla| 1] [
(3.18) 1(6) — gl < 5 (g + ).

It follows from (8.6) and (8.7) that $, y, 7, 1 are integrable on (—7"*,0] therefore
s(t), y(t), 7(t), n(t) have limits s(—T%), y(=T*), 7(-T*), n(-T*) as t — —T*.
Moreover these limits satisfy the estimates (8.9), (8.16), (8.17), (8.18). Then we solve
the system (8.6) with data s(=T"), y(—T%), 7(=T"*), n(—T*) on t = —T™* ; by the
Cauchy Lipschitz theorem, we find a solution on [—-T* — §, —T*] close to the data ;
matching this solution with the previous one, we get a solution on [-T™* — §, 0] which
will satisfy the estimates (8.7). This contradicts the definition of 7* and proves that
T = +o0.

We show now that we can complexify the time ¢ and obtain a solution of (8.6) in
the set Ret € (—o0, —¢], |Imt| < €. The equations (8.6) show that we can take 0 as
a new variable on the bicharacteristic.

Lemma83. — The system (8.6) in (s(0),y(0),7(0),n(0)) has, for small €9, €Y, &3,
9, €9 a unique holomorphic solution for Re® € (—oo, —eg], |Im6| < ey, which is

holomorphic with respect to the data (8,y, ar, o).

Proof. — Let us recall the following well known result. Let (fy, Xo) € C x CV and
Q=1{6,X) e CxCYN :|0—6) <a,|X—-Xo| <b}). Let F:Q — C" bea
holomorphic function such that supg, |F| = M < +oc0. Then the Cauchy problem

{ X(0) = F(0,X(0))

(8.19) X(60) - X
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has a unique solution, holomorphic in {6 € C: |# — 6| < p} where

(8.20) p< a(l —exp (m)) .

We apply this result to the system (8.6). We take 6y € [0,+o0o[ and we call Xy =
(5(60),y(00),7(60),n(Ao)), the value at § = 6 of the solution found in Lemma 8.2.
Here N = 2n. We take b small depending on (sg,y0) ; then M also depends only on
(s0,Yo) ; finally we take b/a = (2n + 1) M Ln2. Tt follows that the system (8.6) with
data Xy at 6 = 6y has a unique holomorphic solution in {|§ € C™ : |§ — 0| < p} where
p depends only on (sp,yo) but is independent of 6y. Therefore moving 6y from 0 to
+00, we get a solution of (8.6) in a fixed small complex neighborhood of [0, +oco[. We
can check that this solution satisfies the estimates (8.7) on this set.

0

59

(8:21) A= {(0,50:5,7,0,), y(5--),0%(0), 703 )m(6;-+-)

Ref € ] — 00, ef[, | Im6] < e, |5 — so| < &0, [ — yo| < b }

0 -0 -0

Proof of Proposition 8.1. — We introduce for €3, €2, €9, €y, €), small enough the sets

where a;, oy, h are fixed such that | — 1/s3| + [ay] < €, h € 10,0, We also
introduce the set
(8.22) E= {(a,z,y) €CxCxC" ! Ref €] - o0,
So €
T2 S 1+
Let 7 : A — C x C x C*~! be the projection on the basis.

|Im 6| < Y, |2

s — < .

Lemma84. — If €9, &), € are small (depending on the data (so,y0)) one can find
€2 >0, ey > 0 such that the map 7 : A — E is bijective.

Proof. — We fix (a, h). For fixed 8 and (0, z,y) in E we must find 5,y such that
5= sol < <, [j— yol < & and

(8.23) { s(0;5, 5,0, h) = 2

y(0:s,y,00h) = y.
It follows from (8.15) and (8.7) (ii) that this system is equivalent to
§=2(1—20(ar — 2A(3 — 50))3° + g1(0) + 2|0] f1(9))
{ U=y+9200;5,7,0r,00,h).

To solve (8.24) we use the fixed point theorem. For (0, o, h) fixed and (0, z,y) € E
let us consider the map from C x C*~! in itself

2(1—20(c, — 2A(5 — 50))3° + g1(0) +2/0] f1(6))
y+g200,--).

(8.24)

(8.25) FG,7) = {
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We shall show that F' maps the set
B={(5,7)€CxC" ' :|5—-s0| <es |7 —w0| < Ey}

in itself. Let us denote by Fi(s,4) (resp. F») the first (resp. the second) component
of F. We have, from (8.7),

(8:26) [F2(5.9) —yol < |y —yol +192(0,- )| < &y + (|lovg| +1)/* <&y + (0 +en) /2.

Now if (0, z,y) is in E, we have

y = S0 O(Ez) .
14210 1410]

moreover

1 - - - .
oy = % + O(eq), 3= sg + 38(2)(8 —s0)+O((5— 30)2), [s — so| < es.

Let us skip the ~. We have, from (8.25)

S0 O(e,) )

()= Fi(s,y) =0 = (1—29 1+ 0]

(1 = 20(i3 ~ 24(s = 50) + O(ca) )

50

(58 4+ 3s3(s — s0) + O(|s — 80|2)> +91(0) + 2|9|f1(9)] —50-

Using the fact that A = (1+84)s5* we get
—20

(1) = 1—20

It follows from (8.26) and the fact that |% < 1if Ref <0, that

(5 —50)(1 —264) + O(e, + a0+ +€2).

|F(s,9) — (s0,90)| <&y + (Ea +en)?+ (1 —204)es + Ole. + €0 +en +€2).

If we take 64 € ]0,3[ and &, + (ea + )2 + O(ex + €a + 1 +€2) < Sacs, then
F(s,y) € B.
We show now that F': B — B satisfies

(8:27)  |F(s,y) = F(s"y)| <k(ls = s'| + 1y = ']), (s,9), (s',9)) € B, k<L
Since ¢1, g2, f1 are smooth in s,y and satisfy (8.15), we have,
(12101 F1 O+ 12Dlg; (05 5,9, -) = 9;(8; 8",/ s+ )| < Clea+en)*(ly—y' |+ 15— 5]).
Let us estimate
I =—20z[(a; —2A(s — 50))s® — (ar — 2A(s" — 50))s"]
= —20z(arr + 2A50) (5% — 5"3) + 4A0z(s* — 5').

‘We have )
==+ O(ga), 3 — s = (s — s/)(SS% + O(s — s0))
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and )
N S 2 _ _ 50
st =% =(s—s")(4s; + O(s — s0)), =2 1_29+O(62)1+|0|.
Then
_ 50 Ole.) i . 2 .
= 20(1_294—1+|9|>(38+2A30+O(6a)>(s s')(352 + O(s — s0))
50 Ol(e:) / 3
— 4 — .
+4A9(1_29+1+|0|)(3 §')(4s3 + O(s — 50))
=20 1 9 , 458 p
I—ms()(s%—F?Aso)f%so(s 3)—|—4A91_29(5 s')

+|S—S/|O(6z+6a+gs)'
60 120, 160, , /
I= (7=~ Togg st + Togg %) (6= 9) s = 510(e: o +22).
Since Asg =1 — 254 we get
2l
15 200]

Taking e,,eq4,en, and 6 € ]O, % [ we get (8.27). The proof of Lemma 8.4 is complete. O

7] < ( (1—26A)+(9(6z—|—€a—|—6h)>|s—s'|.

Lemma8.5. — The map dm : T\A — T\ E is surjective for all X in A.
Proof. — Let G be the map (for fixed a, h)
(97§7 :,[j) — (97 8(6, ’§7 §7 «, h)a y(97§7 §7 e )7 9*(9)7 T(97 e )7 n(ev T ))

from the set {Ref € (—o0,ep[,|Imb| < €¢,[5 — so| < €5,]7 —y| < gy} to A. If

d(m o G) is surjective then dr is also surjective. Now d(m o G) is surjective if and
0s(0) 0s(0)
only if det (85(39) 85%)) is non zero. According to (8.7) (ii), this will be the case if
95 oy
|05(6)/93| > co > 0. By (8.15) we have s(6) = 5/D where

D =1-20(a, —2A(5 — 50))5° + g1(0) + 20 f1(0).

Then
0s(6 1
D? z(g) =1- 20(8—3 + O(ea) + O(as)> (s3+O(es) + (1+10) O((ea +21)?)
0
1
— s0(~20) (5 33 = 2458) + (L 0) Ol + 0 + (ea +2)'12),
0
D> g_g — 120 4AsE 160+ (14 10)Oles + (0 + (e +21)H?)

— 14540+ (1 +|0) Oy + (ca +2n)/?).

Since Ref € | — 00, ¢9] we will have

02 22] > ol + 1) = Ofe. + (e -+ 20)72) 1 + 0],
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Corollary 8.6. — There exists p = p(0;s,y,a,h) defined on E, holomorphic with re-

spect to (0, s,y, ), smooth in h such that
¢ dp dp
A= . Bl
{(9’ S’ y7 80 (07 S7y7a7 h)’ 88 (07 )’ 8:(/ (97 ))7 (0’ S’ y) e }

Then Proposition 8.1 follows from Corollary 8.6 since ¢ (defined in (8.5)) vanishes
on A.

8.2. Resolution of the transport equation

As before, working in the coordinates (6,3, y) we are led to solve the problem

0 - 19
<% +c(0,s,§)>a+2h kPya =0

a|9:0 =1

(8.28)

where ¢ is equal to i Aj¢ in the new coordinates. The solution should exist in the set
{Reb € (—00,0], | Im6| < €4,|5 — so| < €5, |y — yo| < €y} Using the properties of ¢ it
is not difficult to see that

(8.29) le(0;5,79)] < Ref € (—00,0], |Imé| < ep.

c
1416]’
Therefore we are in the same situation as in [RZ1] (4.16) and the same construction
can be made showing that (8.28) can be solved in a space of symbols. We refer to
[RZ1] for the details.

8.3. Proof of Theorem 4.9

Let mo = (0, 40,0, (1,0)) € N§. Our assumption is that
1
exp(_TXO)(mO) = (p = anOa )‘0 = ﬁ7u0 = O)
does not belong to W F,,(uy).
Let us introduce the continuous family of FBI transform

(8.30)  Tu(f;t,a, h, k)
= // ei"_g’“_we;%’y’“’h)a(e; %y,a,h,k) X(G; %y) ult; p,y)dpdy
where ¢ and a have been constructed in § 8.1, 8.2 and x is a cut-off function equal to
one when
[am— ‘<1 ol < e
hoo1+2p]l Sa1gjep YIS g
As in the proof of Lemma 6.4, we see that

(18 0

T35 " 5) Tu(®;t, ) = —// TR0 40 A, X (- Vult pry) dpdy.
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Using the properties of ¢ on the support of [Ag, x] we deduce, as in Lemma 6.4 that
(8.31) Tu(0;t,a,h, k) =U(kO — t;a, h, k) + V(0;t,a, b, k)

where U, V' are continuous in

0= {(0,t7a7h,k) 10 € (—00,0], [t =T| < do, |a—ap| < ea, hE0, e1], k € [O,Ek]}
and
(8.32) [V (6;t,a,h, k)| < Ce /" in On{h>0k>0}.

It follows from (8.31) and (8.32) that

(8.33) Tu(0;t,a,h, k) = Tu( ! :0,a, h, k) +Vi(6;t, 0, h, k)

k
where V; satisfies (8.32).

Now the phase which appears in the FBI transform (8.30) can be written, according
to § 6.2.2, as

w(&,ﬁ,yﬂ h) = @2(0; %,%O&) —H’hg@l(G;

h B,y7a,h>.

h
It follows that
(1) =ih ™2k~ <p< %,%,y,a,h)
:i(hk)*z[km(—é;k-}:#ky,a)+i(hk)<p1(—£;k.ﬁ,y,a,h)}.
Therefore if we set

H=hk, v=(thk),

(8.34) Ya(s,y, o, v) = ks@z( - é;ks,y,a) :
1/J1(87y»a»V)2801(—%;/?871/,@,71),

then

(8.35) (1) = [wz( e 1/>+1H¢1< e y)} —iH" 2¢( — H)

Lemma8.7. — Let

~ So

_ _ 12T
0= o5 Xo=(%0,%0), Zo= (T,())-

50

Then, when v = (t, h, k) tends to vy = (T,0,0), z/;(p/H,ymz,u) tends (uniformly in
p/H,y,a) to z/;(p/H,ymz,uo) and ¥ is a phase at (Xo,Zo, ap,0,1p).

Proof. — Let first h go to zero. Since the phase ¢ is smooth in h up to h = 0,
o( —t/k,ks,y,a,h) tends to o( — t/k,ks,y,,0). Let (5,7, ) be given and let us
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denote by s(0), y(6), 7(6), n(0) the solution of (8.6) given by Lemma 8.2. We claim
that

(8.36) a(0;5(0),y(0), ) = [§*(ar — 2A(5 — 50))* + 3%[|ay[|°] 0
+ (S —as)ar+ (Y —ay)a, — A5 - 30)2.

Indeed we have

l9(0:50).3(0).0,0) = (55 +560) 52 +(6) 52) (6:5(6),4(0).0) = (1.

Now 5(0) = 2(7s*)(0) = 25*(0) - Op/0s, y = 25*(0)(Dp/dy). Tt follows that

_ 9y 209 0. 9N (. _ v,
(1) =55 +20(0.0(0), (52 ) @) (s ) 65--)) = = 55(0:--)
by (8.4). We deduce from (8.6), (8.21) and Corollary 8.6 that
a * * ~ ~ ~ ~) ~
_8_§(973(9)7y(9)70‘70) =—0 (9) =0 (O) :p(oaya?Twsﬁ) = 547-2 +§Q“an||2
where T = a, — 2A(5 — s¢). Then (8.36) follows using (8.4) and the fact that ¢ = ¢
if h =0. It follows that
t t t

kgpg(— E’S<_ E),y(— E),a) = —Ut+ kV where
(8.37) U =5 (ar — 240 — $0))2 + 32| oy ||,

V=0GE-as)a,+ 7 —ay) a, — AE —s0)?.
Now let (ks,y) be given. The system

(8.38)

is equivalent, according to (8.15), to

S
k(L+g1(t)) + 26(7s% + f1(t))
We know from (8.23) that this system has a unique solution which is moreover con-
tinuous in k € [0, +ool. It follows from (8.37), (8.38) that ks ( —t/k; ks, y, ) has a
limit when ¢t — 7" and k — 0. Let us now look to ;. We have seen in § 6.2.2 that
t t . t - -
(8.39) Rwl(— E;S( = E;s,y,a>,y< = E;m),a,O) = (58— as)? + (J — ay)?

so the same argument as before works. Concerning the imaginary part of ¢; ; accord-

=5, J+0(lay"'?) =y.

ing to § 6.2.2, we have
O 1 (6: 5(6), 4(6), @) = £2(Tm ) (6;50)....)

00
_ @ 20p2  Opay 2
=5(0)5 (0.5 G550 ) = O((0)),
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Since s%(#) is integrable on (—o0, 0] it follows that

t to_ t
Im%(— E;S(- E;s,y,a>,y<— E;m),a)

has also a limit when &k — 0, ¢ — T'. Let us denote by

wQ( ' Yy &y V0)+1H’(/}1( »y704V0)

this limit. Let

_ 1/2T

27"’ 0 (San0)7 0 ( fs-% ’ )

It remains to show that ¢ is a phase at (Xo,Zo, ag,ho = 0,19) in the sense of Defi-
nition 2.6. Conditions (2.10), (2.11), (2.12) are easy satisfied. Let us look to (2.13).
We have

~ S0
S —

8w2< o y)—llmk28@2< Tk:soyoz>
Ds » Yo, &o, Vo Km0 Os k 2T7 05 &0
Now
T o ksg o ksg
5( k 307y0a010> - k+ 2T = oT +O(k’)
T
y( k 307y0a010> =Y
(% Jou( =)o) =7(— % )
- — - —_— . = — —:8 o
Ds k73 k750ay0,@0 Y k, y X0 T ky 05 Y0, @0
o 7'08(2)
82(_T/k7 50, Yo, aO)
_ (1+2T/k)?
_738 .
Therefore
dpay T | so (k +2T)2 (27)*  1/2T
kz—(__7k_7 ) )Z Ok = :
Ds L Yo, Qo _53 +O(k) — 38 :9%
It follows that
8w2<30 Yo, @ l/) 1/2T
—a_ \ 50 Y0, %o, Vo | =
ds \2T G
Moreover
8—1/}(8—0 o u)—lim%(—zkso a)-O
8y 2T7y07 0, %0 _k:—>0 ay k7 2T7y07 o) — VY.
Finally
Re s (55 ) = lim R (—st—o )
€Y1 » Yo, o, Vo _krll},(l) € Y1 ka 2T7ZIO» 0
and
Re@l(_% k T7y07a0) Resﬁl(—%,3(—%;307%7@0)73}(_%§"‘)7a0)+0(k)
= (80—80)2+(y0—y0)2+0(k) — 0. O
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We can now give the final argument of the proof of Theorem 4.9. It follows
from Lemma 8.7, Theorem 2.7 and the fact that (0,yo,1/27,0) does not belong
to BCW Fy (u(0, -)) that

t —e/H
[ 7u( - E;O,a,h,k‘)‘ <Ce =M £ >0, H=hk,
for all ain Vi, 0 < h <ep, 0 <k <ep and [t —T| < 6 (since v = (T, h, k) € V).
We use (8.33) to show that
|Tu(0;t,a,h, k)| < C'e™=2/ME g4 >0

for the same value of the parameters. Since the phase of the later FBI transform is,
by Proposition 8.1,

(055,90, h) = (5 — as)ar + (y — ay)ay — A(s — 50)* +ih[(s — as)* + (y — )]

which is a FBI phase in the sense of Definition 2.1, we deduce from Definition 2.4
that the point mq does not belong to W F(u(T,-)) which is our claim. O

SOCIETE MATHEMATIQUE DE FRANCE 2002






APPENDIX

We develop here the Sjostrand theory of FBI transform in the case of two scales.
This will allow us to define the gsc analytic wave front set. The main difficulty will
be to prove the invariance of this notion under the change of phase, amplitude and
cut-off functions.

A.1. The phases

Definition A.1. — Let mg = (z0, &0, a’, ho) € R™ x R™ x R?" x [0, +oo[. We shall say
that ¢ = p(x, a, h) is an FBI phase at my if one can find a neighborhood V of (x¢, a®)
in C" x C?", a neighborhood I, of hg in [0, +oo[ such that, in V' x I,
QD(J:, «, h) = 902(1"7 0‘5) + 903(04) + ih(pl(.%', a)7 a = (awv 0‘5)7

where

(1) ¢4, j =1,2,3, are holomorphic in V,

(2) @2 is real when (x,a¢) € (R™ x R") NV, 3 is real when « is real,

(3) g_i(x()aaov hO) = 607

8Re<p1

9*R
(4) ¢1(w0,0%) = 0, =P (w0,0") = 0, (57

0x?

(xo,ao)> is positive definite,

(o, a0)> is invertible,

(a) if ho = 0, the matrix ( 0o (x a0)> is invertible
0 ) 8,2360[5 0, g )

%p
(%caag

3 Rep 9%Rep
Oxdae Oxday 0
8%Imyp 9%Imep (.’IJ07C¥ ’ho)
0xdae Oxdag

(b) if hg # 0, the matrices )(xo, a®, ho) and

are invertible.
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The simplest example of such a phase is given by
pla,a,h) = (z - ag)ag + ih(z - a,)?

with OZO = (1‘0,50).
Now, if f is a complex function defined on the complex domain, we define

F(2) = 3 + T
(A1)

Fi() = - ()~ TE).

Definition A.2. — With the notations of Definition A.1, we shall say that ¢ is a pre-
cised FBI phase at mg if it is an FBI phase at m and moreover, (z,a) € V and
91 /0x(z, o) = 0 imply ¢f(z,a) = 0.

Then we have the following result.

Proposition A.3. — Let ¢ be an FBI phase at mo = (x0,&0,a, ho). Then one can find
a precised FBI phase ¢ at mg such that

o(x, o, h) = p(x, 0, h) + g(a, h)

with g(a, ho) = 0. Moreover if the inequality (2.9) (defining SS°W F,(u)) is true with
@, it is also true, with other constants, with .

Proof. — Using the hypothesis 4) in Definition A.1 and the implicit function theorem,
we see that there exists a holomorphic function z(a) such that d¢f /0z(z(a), a) =0,
with z(a®) = 29 and x(«) is real if « is real. Let us set

o(z,a,h) = p(x,a,h) — ihel(z(a), a).
Since @ = a(x, a¢) + w3(a) + th(p1(z, @) — i (z(a),®)), we see that ¢ satisfies
the hypotheses 1) to 5) in Definition A.1. Since 0@} /0x = J¢}/Ox, the solution of
0P 0x(x, ) = 0 is also z(«) and &7 (z(a),a) = 0.
We introduce now a weaker notion of phase. The reason for that is that, in a
propagation process, even if we begin at the initial time with an FBI phase, after a
while the phase could only be a phase in the following sense.

Definition A.4. — Let mo = (20,&0,8°) € R® x R™ x R?". We shall say that ¢ =
W(x, B, m, h), defined for (x,3) in a neighborhood W of (x¢, 3°) in C" x C?" and for
the parameters (m, h) in a set U C RY x R¥, is a phase at my if there exist positive
constants g¢g, Cp such that
(1) % is holomorphic in W for any (m, h) in U,

(2) Im(z, B,m,h) > O if (z,8) € Wg = WNR" x R and (m, h) € U,

(3) |v(x, B, m,h) |—|—| (z,8,m,h) — §0| €o, for all (z,3) in W and (m,h) in U,
(4) |22mY (2, B, m, h)| eoh, for all (x B) € Wg, and (m, h) ev,
(5)
(6) Im

5 |8a¢(x B,m,h)| < Cy for |a| <3, (x,8) e W, (m,h) €

6 amg Y (x,8,m,h) > —eoh Id if (x, ) € Wg and (m,h) € U.
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For the purpose of the theory, we introduce now the phases of pseudo-differential
operators.

Definition A.5. — Let mg = (z0, &0, a’, ho) € R™ x R™ x R?" x [0, +oo[. We shall say
that
¢ =¢(x,y,a,h) = pa(z,y, ag) +ihei(x, y, )

is a pseudo-differential phase, near my if

(1) ¢j, 7 = 1,2, are holomorphic on a neighborhood V' of py = (z0, 7o, a’) in
C" x C" x C?n,

(2) o is real if (x,y,a¢) € VR = V N (R x R™ x R?™).

(3) 2(a,,06) = i (7,0) = 0.

(4) ﬂ(96,:5, a) = 0 implies ¢ (z,z,a) = 0.

0oy
o 82 T
(5) 821 (po) = 0 and ( 8091021 (p0)> is positive definite. We shall denote by a,(z, )
the solution of 821 (x, @, ag(z, ag), ag) = 0 with a (o, ag) =al, o’ = (ag,ag).
a 0 a 0 . :
.. \+L0, L0, ) = — 5 \&o, 4o, ) = G0, 0-
(6) e (xo,x0, 0, h) 3y (xo,x0,a”, h) = &g, for all h in a neighborhood of h
Moreover the matrices
9*¢] 0% 0%¢1
—_— 2
22 (po) + D20y (po) + o2 (po)
0%¢f 0%

9100, (po) + dyoas (po)
are invertible.

(7) One can find C' > 0 such that for every (z,y, @) in Vi

oi(r,y, ) > C[(aw - am(x,ag))z + (o — am(y,ag))Q] .

(8) If ho = 0, the matrix 2 (20, o, ag) is invertible. If hg # 0, the matrices

P
8:(/8&5

8:(/8&5 2l

il 50952 (o) Fagi (po)
( ’ )(Po) and M = ( dydag 33529;
B0 (P0) ga (P0)

are invertible.
Then we have,

Proposition A.6. — Let mqo = (20, &, ", ho) € R" x R™ x R?" x [0, +00[. Let ¢ be a
precised FBI phase at mqg. Then

go(x,y,oz, h) = @(x,a, h) - 952(y7 a&) - @3(&) + Zh@{(yva) + h(ﬁi(yva)

is a pseudo-differential phase at mg.
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Proof. — Let us remark that if (z,y, «) is real then

QO(J?, Y, a, h) = éb{(l‘v «, h) - @(y7 , h’) .
We have QDQ({E,y,Ctg) = 62(1.7@5) - @2(%@5) and (,01(1',:1/,0[) = 9’51(1"70‘) + (Z{(%a) -
i@%(y,a). Then, the conditions 1), 2), 3) in Definition A.5, are trivially satisfied.
Condition 4) is also easily satisfied since ¢ is precised. Let us check 5). We set
¥ = @7. Let z(a) be the local solution of the problem
o
oz
Since @ is precised, we have t(z(a),®) = 0. Differentiating with respect to o, we
obtain,

(A.2)

(z(a),a) =0, x(a®) =x.

o Oz o

T (@(e), @) (@) + 52 (a(a).0) = 0.
Therefore
0
(A.3) (9(;/; (z(a),a) =0, z(a’)=mx.
Now,
dp1 _ 947 0y _
aaa: (,00) =2 8aw (Jfo,O[ ) - 07

which is the first part of condition 5). If we differentiate (A.2) and (A.3) with respect
to a, we get,

2.\ 2
(44 aa;z B %%) 1 aiaﬁm
oy 9% ox 1 0% 0%Y\—1, 0%
(4.5) da2 o _8aw8x . Aoy, (8%0836) (W) ((%cacuw) >0,

by condition 4) in Definition A.1.
Since ) )
1 9
=2
a2 (po) a2

(x()aao)a

the second part of 5) follows.
Let us check now condition 7) since condition 6) follows easily from condition 3),
4) in Definition A.1. We deduce from (A.5) that we can find a,(z, o) such that, with

Y =&y,

0
(46) T raueag)a0) =0, aulensad) = ol
By (A.4), the map o, — z(«a) is, for any o, a local diffeomorphism. The inverse
map x~ ' (z, a¢) satisfies, by (A.2), 0v/day(x, 2~ (z,a¢), ag) = 0. By uniqueness in
(A.2) we obtain 27 (z, ag) = ay(z, a¢). Then

(A7) Y(x, oap (T, 0g), o) = Y(x(aa(x, ae), ag), oz (z, o), ae) = 0.
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It follows from Taylor’s formula that

Y, 0) = Y(a, a0, ac), ) + P (7,00 (2, 06) )0 — (7, )
+ M(z,0)(ay — ag(z, a))?
= M(z,a) (g — az(z,a¢))?.
By (A.5) and condition 4) in Definition A.1 we have M (zg,a’) > 0. Therefore, with
¥ = @4, we have
(A.8) Y(r,a) = Clag — ax(z,a¢)]?, if (z,a) is real.

Then condition 7) follows from (A.8) since ¢ (z,y,a) = @} (z, @) + @1 (y, ).
To check condition 8) when hg # 0, we differentiate (A.2) and (A.3) with respect
to ae and ay. We get, with v = @] = @7 (y, a)

() ()

Oaz0ae ~ \da,0y/ \ 0y? OyOa
o Py ()t oy
da2  \da,0y/ \ 0y? Oyday /"
Let us set A = ( aiiﬁy) (22715) ~'. By condition 4) of Definition A.1 this is an invertible

matrix at (zg,a®, ho). We set also

2 2 251 2 ~p
:<a§aﬁ5>’ Cz(aiai)’ Dz(aay(;p%)’ Ez(aayai)'

Then the matrix M occurring in condition 8) can be written at pg as

M= D+ ihB E +ihC
~ \ 25hAB 2ihAC

DE
Now, condition 5) of Definition A.1 ensures that the matrix ( ) is invertible.

BC
Since A is invertible it follows that M is uniformly invertible when h > h; > 0. The
.
invertibility of ( 7y aa )(po) follows from that of ( 823‘25 ). O
The case hg = 0 in 8) is easier since ;:T“Z“E(acg, 0, 0¢) = _aa:Tii(xO’ aY) is invertible

by condition 5), Definition A.1.

Remark A.7. — For a general pseudo-differential phase, we still have the correspon-
dence between z(«) and o, (z, a¢). Indeed, by conditions 5), 6) in Definition A.5 we
can solve the problems

g‘ﬁ (x, @, ap(z, ae), a¢) =0, az(xo,ag) =ad

z(a),z(a),0) =0, z(a’)=x.

<6</71 947 ) (
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We have ¢} (z, x, az(x, ag), ag) = 0 by condition 4) so

(%ﬁl + 88§1>(x,x,a$(x,a§)7a§) =0.
The map x — oz (x, ae) is, by condition 6), a local diffeomorphism so we deduce, as
above, that a,(z, o) and x(«) are inverse of each other.

A.2. Good contours

Pseudo-differential operators in the complex domain will lead to integrals along
some contours. In this section we define these objects which will be called “good
contours”. Let W an open subset of R?* x R?" and V a subset of RY x |0, +oo[. Let
flz,y,z,h) = fa(z,y,h)+h fi(x,y, z, h) be a real function defined for (y, z) in W and
(z,h)in V.

We shall assume that

(A.10) HC>0:|8E’;,Z)fj| <C,j=12,V(y,2z) e W, V(z,h) €V, V|a| <3

(411) For any (x,h) in V, f has a unique critical point in (y, 2)
(denoted (y(z,h),z(z,h))) in W.
(A.12)
The matrix (ﬂ)u y(z,h), z(x,h), h) has signature (n+k,n+ k)
8(:(/,2)2 ) ) ) ) ) ) )

Vhy >0, 3Ch, >0:V(x,h) with h > hy; we have

| [a(jﬁ)z (2, y(w, b, 2(2, 1), )] 71H < Ch, .

(A.13)

Jhe >0, Co>0:V(x,h) €V, hel0,hg], %(z,y(w,h),z(w,h),h)

has signature (k, k), 882@1 (x,y(x,h), 2(z, h),h) has signature (n,n) and
155w st ztn] | < o
2SN

Let us remark that (A.13) implies (A.12) for small h.

Definition A.8. — Let f be satisfying (A.10) to (A.13). Let

Fﬂ?,h : (?’ Z) E— (y(ac,);,z,h),z(ac,f/, Zah’))
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be a map from a neighborhood of (0,0) in R¥ x R™ to W C R2?* x R?", such that
y(x,0,0,h) = y(x, h), 2(x,0,0,h) = z(x,h). We shall say that ', , is a good contour
for f if there exists a positive constant Cj such that, for every (z,h) in V,

(A14) f(ac,y, 2, h’) - f(x,y(x, h)7 Z(Jﬁ, h)7 h) < _CO [|y - y(x, h’)|2 + h|Z - Z(Jﬁ, h’)|2]

on the contour I'; j, (that means for (y, z) = (y(z, Y.,Z,h),2(x,Y,Z,h))). We assume
moreover that y(x, Y, Z h) = y1(x, Y, h)+hys(z,Y, Z, h) and that for all (z,h) in V,
(A.15)

|a(aY,Z)yj(' o )| + |8EXY,Z)Z($7Y7Z7h)| < Co, |a| <2

Y 2 YNzl )
Dy z(.0.0.) () [ +h|Dyzz.0.0.m) () | > G0V + hizP).

Proposition A.9. — Let 'y .0 and I'y p1 be two good contours for f. Then, there exist

for s € [0,1] a smooth family Ty p.s a good contours and 6 > 0 such that for every
(z,h) inV,

(Fm,h,o N fz,h,o) U (Fm,h,l N fz,hJ) U {8l~“z,h75 s E [O, 1]} - {(y,z) :
f(xa Y,z h) < —oh =+ f(xa y(l’, h)a Z(J), h)a h)} .

Proof. — To prove this result, we first write f in a set of Morse coordinates. This
leads us to check that the change of coordinates is well defined in a fixed neighborhood
of the critical point, that means independent of (z,h) € V and that the constants are
also uniform.

LemmaA.10. — Let Ay be a 2nx 2n matrixz which is real, symmetric and has signature
L,
(n,n). Then there exists a matriz Qo such that Ag = QoD Qo with D = <O OI )

and, for all symmetric matriz A, such that |[A — Ao|| < 1/2||Ay?|, one can find
Q = Q(A) such that
() A='QDQ, Q(Ao) = Qu,
(ii) 1Q(4) — Q(B)I < || 45" |I'/* | A = B, when || Ao — Bl < 1/2(| A5,
(iii) QA < 2/ Ag QA
(V) QI < [l 4oll*/? + 1/2|| A2

Here || - || is the matriz norm related to the Euclidian norm in R?".

—

Proof. — We write Ag = *OAO, where O is orthogonal and A diagonal ; then we
write A = 'Ky D K, where Kj is the diagonal matrix which entries are the square
roots of the absolute values of the eigenvalues of Ayg. We set Q9 = KoO. Then
Ap ="QoDQo and [|Qo|1*> = [ Aol Qo '[I* = |45 [l Now we set @ = Qo+ R ; then
R must satisfy

A—Ag="QoDR+'RDQy+"'RDR.
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To solve this equation we define, by induction, R;, K; such that
K():O KJ+1:A—A0—tRJDRJ, ]20
(A.16)
R; ——DtQO s j=0.
It is easily proved that
1 _ .
1K1 = K5l < 7 (G + G- 1) 114 I — Kjoall, G =1

We deduce, by induction, from this inequality that, for j > 1,

1
145
1K — Kjall < 5= [[4 = Aol

It follows that K; — K, R; — Re and ROO solves our initial equation. Now, if we
denote by K7, R the solution of (A.16) with B instead of A, we have,

155 — Kl < |A= Bl + 5 H 1~ Kl
which implies that
15 = K1l < 2014 = Bl| = 5= 1A = BII-
Then
1, . _
1Q(A) = Q(B)]| = R = Rl < 511Qg K = KLl < 1057 - 1A = BIl.
Finally
1
QI < 1Qoll + I RII < 140l + —HQ Y= < Aol + =5
’ HA 14571 2|45 ||1/2
and
Q™M =A™ QDI < A7 - QI < 2145 - QlI- O
Proof of Proposition A.9. — We shall consider the case where h is small ; the case h

large follows the same lines and y, z play the same role. We write

(A'17) f(x,y, 2, h) = f(x,y(x, h),Z(.%‘, h‘)v h) + (t(y - y(x, h))7 t(z - Z(JJ, h)))
Ay hB y—y(x,h)
(htB hAg) (z — z(x,h)) ’

where Ay, B, As depend on (z,y, z, h) and satisfy the estimates

[ = S mas| < 1l = o] + 1z = 2.0,
2= 2L tmen)]| < Cally = st 0] + 12 = 2t )
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2

42 = SL ()] < Cally = vt ]+ |2 = =, )

where mg , = (x,y(x, h), z(x,h),h) and C is a constant which depends only on the
constant C' in (A.10).
We wish to apply the Lemma A.10 to A, so we need that

1
0*f -1
2| (Gyz(men) H
It follows from (A.13) that this will be achieved if

Ch (|y - y(ac,h)| + h’|z - Z(Ji,h)D <

1
2CoC1
Under this condition, the Lemma A.10 implies that one can find Q1 = Q1(z,y, 2, h)
such that

(A.18) ly —y(x, h)[ + hlz — z(x, h)| <

Al = thDlQl where Dl = Ik 0 .
0 -1y

Since Ay = Al(x,y,h) + hAY(z,y,2,h), it follows from Lemma A.10, (ii), that

Q1 = Qi(z,y,h) + hQY(z,y,z,h), with Q] = Q(A}). Moreover ||Q1| and HQalH
are uniformly bounded by constants which depend only on Cy, C in (A.10), (A.13).
It follows that we have

A hBY\ ('@ 0 D;  h'Q{'B\ (Q1 0
htBhAy) — \ 0 I)\h'BQ' hA 01)"
Let us set thlB = B; and let us look for 3 such that
I 0 D1 hBl I th o Dl 0
htQs I) \hiB; hA, 0 I T\ 0 hA4s/)
This will be achieved if D1 Q2 + B; = 0 and we find

As = A + h(*B1Q2 4+ "Q2B1 + 'Q2D1 Q2).

Then Q2 = —D7 ' By and ||Q2]| is uniformly bounded. Moreover if A is small enough,
As will satisfy the hypothesis of Lemma A.10 if

ly —y(z, W) + [z — 2(z, h)| < Co,
where Cy depends only on Cy, C, C; in (A.10), (A.13). It follows that one can find

Qg such that A3 = tQ3 D2 Qg with D2 = <% _OI ) Then

Ay hBY\ [ 0) Dy 0 (@ hQ2)
htBhAs)  \h'Q2 Qs 0 hDs 0 Q3 /)

Now we introduce the coordinates
Y =Qui(z,y,2,h)(y —y(z, h) + hQ2(z,y, 2, h)(z — z(z, h))
Z = QS(JU,ZJ’ Z, h,)(Z - Z(J?, h’)) .
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This is a change of coordinates from U to U, where U contains a fixed ball with center
(y(z,h), z(z,h)) and U contains a fixed ball with center (0,0). Moreover, there exists
a uniform constant C3 such that

1
— |z — 2(x, h)| < |Z| < C3]z — 2(x, h)|
Cs

Ci?, [ly = y(a, k)| + hlz = z(z, B)|] < [Y]+h|Z| < Cs[ly — y(z, )| + hlz — 2(z, h)[] .
Now, if we write f is the coordinates (X, Z) we get
F(2,Y, Z,1) = f(z, y(a, ), 2(w, h), h) + Y2 — Y + h(Z2 - Z3)
where Y = (Y1,Ys) € R¥ x RF, Z = (Z1,75) € R® x R™. So a good contour for f
must satisfy
Yi2 = [Vl + h(Z1 2 — | Zf?) < —C(IVi[? + [Yal2 + BIZ0 P + | Zaf?).
Therefore, on such contour we have
(A.19) Vil + h|Z1> < 6(|Yo|* + h|Zo)?), 0<d<1.

The contour, in the coordinates (Y, Z) satisfies the conditions (A.15), since we have
seen that Q1 = Q) (z,y,h) + hQY(z,y,z,h). Let us denote by (Y, Z) the parameters
on the contour and

Y(2,Y,Z,h) =Y (2,Y,h)+hY?*(x,Y,Z,h).

It follows from (A.19), using a Taylor expansion of (Y, Z), that there exists a constant
Cy, depending only on fixed constants, such that

(A4.20) ‘8Y1Y‘ ﬂgél <5 (V”E)j +hF¥§ )
+O5(|Y P+ h|Z)P + V2 Y2+ h32|Z).

Therefore, if
1 ~
8L~2 Y =0, 8Z~2 Z =0,
oY 0Z
it follows from (A.15) that

Cs( +VW1Y‘+hP21‘

1 ~ ~
> (PP +nIZP).

22,

- ~ oY,
Using (A.20) we see that this implies Y = Z = 0. Thus the map (903/ ) :
0z

RE+7 — RE+7 is bijective. L
It follows that we can solve the system in (Y, Z)
Yo = Yy (x,Y, h) + hY(x,Y, Z, h)
{@:%@iim
if h and |Ya| + | Z2| are small enough.
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Therefore any good contour can be parametrized by (Ya, Zs). If we have two good
contours parametrized in the Morse coordinates by (Ya, Z3), that means that we have
Fm,h,j = (Yij (.’IJ, }/’2, Z27 h)a Z{ ({E, )/27 Z27 h))7 ] = 07 17 then

fz,h,s = (Syll(xvY%ZQ)h) =+ (1 - S)Ylo(an27Z2ah)75Z%(' o ) + (1 - S)Z?( o ))

is a good contour, since it satisfies (A.19) and it is the family that we looked for. O

A.3. Pseudo-differential operators in the complex domain

We follow here Sjostrand [Sj]. The parameter A will be replaced by h=2k~! and
the weight of the spaces H, will depend on some parameters (including h and k).

Let W be a neighborhood of a point o € CV. Let V C RY x Rt x R* be the set of
parameters m, h, k. Let ¢ = o(x;m, h, k) be a real function which is C* with respect
toz in W and satisfies 3, , <o supy . [05¢| < C. We shall say that u = u(z;m, h, k)
belongs to H, if

(i) for any (m,h,k) in V, x +— u(x;m, h, k) is holomorphic in W,

(ii) there exist C' > 0, M > 0 such that for any (m,h, k) in V and z in W

|u(z; m, h, k)| < C(hk)*Mehfzkﬂ“"(I;m’h’k).

To any (m, h, k) in V we associate a function a = a(z,y,&; m, h, k) holomorphic with
respect to (z,y,€) in a neighborhood W of (zo, o, 2 22 (z0;m, h, k)) and uniformly
bounded. It will be called “analytic symbol”. We consider now

20 e
Dueo) = {06 € €V x €V fao —y| < r. € = Z SE (@oim, h k) + iR(z0 — y) }
Here R is large enough but r is so small that I'y,(zo) is contained in the set where a
is holomorphic.

Now, for u € H,, we set
(A.22) Au(x;m, h, k)

h=2k!

B ( 27

N oo,
) // eI @ (g g, Emy by k) u(y; m, by k) dy dE.
Fh(ajo)

Then Awu is holomorphic with respect to x near xy and modulo a term which is
uniformly bounded by 6*5"72’“71, 0 > 0, we can integrate, in (A.22), on I'y(x) instead
of ', (x¢). Moreover one can see that Au € H,.
To invert the elliptic symbols, we have to modify slightly the argument of Sjostrand.
We shall say that a(z, &, \;m, h, k) = Zj>0 A a;(z,&m, h, k) is a formal analytic
symbol if one can find a neighborhood of (z¢, &), a set V' containing the parameters
(m, h, k) and Cy > 0 such that

(A.23) laj(z, &m, h, k)| < CITH 592 Y (x,€) e W, Y(m,hk)eV.
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We shall set

—2|a
A= Z)ﬁj)\ oz!l | 0ga; D™ = XF Ap(x,&m, hk, D) => AR A
720 E>0 k>0
Let to > 0 and, for t € ]0,t], Q¢ be an open subset of C" such that

i) Qs CQ,if s <t

)36 >0:Vs<t, Ve eQs, B(z,0(t—s5)) CQ C Oy, CW.

Let H(9:) be the space of holomorphic functions on Q;, endowed with the sup
norm and F,; = L(H(), H(Qs)) be the space of bounded linear operator with the
corresponding norm || - ||s¢. Then

].) Ak, € Es,t

2) | Agllsr < CFFVER2 (¢ — )— if 5 <t

We set fr = Supg i<, (k,j% | Aglls.c and [[all, = Y=y 50 p* fr- Then a is a formal

analytic symbol iff one can find py > 0 such that ||a||,, < +oc.

To a formal symbol a, we can associate an operator Op(a) obtained by the for-
mula (A.22), where a has been replaced by leKC%h_gk_l (h?k)? a;(z,&m, h, k), with
Cs5 large enough.

Conversely we can associate to the operator defined by (A.22), a formal analytic
symbol given by

1 1 o
A=) .(Z)\2)Ia\(a£ %a)(x, @, &myh k), N =hT2k"h

The formula (4.4) and the Lemma 4.1 in [Sj] show that if u € H,,
3C >0, 3e>0:|(0Op(oa) — A)u| < Cet k' e=e),

On the other hand if we define, on the set of formal symbols, the composition by

9%a 0°b 2 _ 3271
atb = Za' Z/\2 (iA2)lal oga G’ A= TR

the Theorem 4.2 in [Sj] shows that if u € H, one can find C > 0, ¢ > 0 such that
|[Op(a#b) — Op(a) o Op(b)]u| < Cel kT o)

The Lemmas 1.3 and 1.4 in [Sj] still hold and we can invert the elliptic formal symbols
i.e. those for which |ag(x,&;m, h, k)| = C > 0 for all (x,€) in W and (m, h, k) in V.

If the operator A given by (A.22) is elliptic, which means that,

3C>0:V(z,y,8) eW, Y(m,hk) eV, l|a(z,y,&m b k)| >C
then its associate formal symbol o4 is elliptic and one can find a formal symbol b
such that
1d = Op(0.4#b) = Op(.4) 0 Op(b) = A 0 Op(b) in H,.

The equality = in H, means that the difference applied to u € H, is bounded by
Ceh 2k He—e),
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We shall use the Remark 4.3 in [Sj] which we recall. Let ¢ = ¢(z,y,& m, h, k) be
holomorphic near (g, zo, ) uniformly bounded which satisfies

¢|r:y = Oa
(A.24) 2
M = (8(9ng> is invertible and ||[M ~!|| is uniformly bounded.
Let us set
h=2k~!

N 3 —27.—1
Au(zim, k) = (F5—) //Felh K& ) g2y, € m, by k) ulys my by k) dyde

where a is an analytic symbol near (zo, yo, ) and I' a contour, which will be described
below, such that A will be an operator on the complex domain. Thanks to (A.24), we
can write ¥(z,y,&; -+ ) = (x—y) - f(z,y,&; m, h, k) and the map £ — f(x,y,&m, h, k)
is a local diffeomorphism on a neighborhood which is independent of (z,y,m, h, k).
Let us denote by g the inverse map & = g(x,y,0;m, h, k) and let @ be an analytic
symbol. We set

Zu(x,)z(

where

h2k1
27

N -2, -1
) //.e“”‘ KOG 0,y 0 m, by k) ulys m b, k) dy d9
N

- P _
I' = {(y,&) dle—yl<r,0= 8—1ﬁ(x07x0,§0;-~-)+iR(:1c—y)}.

Then A is an operator on H, if |g—f(x0,xo7§0; cee) = %3—5(:100; -++)| is small enough.

Now, if in the integral defining Au we took I' = g(z,I';m, h, k) and if in A we
took a(z,y,0;---) = a(z,y, g(x,y,0;--+),- ) Jac(g(z,y,0;--)) then A = A in H.
Moreover a is elliptic iff a is elliptic. O

We would like now to define an operator on the complex domain using a pseudo-
differential phase ¢ = @(z,y, @, h) whose definition is given in Definition A.5. Let
a = a(x,y,a; h, k) be an analytic symbol. Here the parameters are (h, k). Formally
this operator will be given by

(A.25)  Au(z;a,h, k)
h=2k=t\n b1kt
N ( 27 ) ( 27

Here ¢ and a are holomorphic near (g, o, a") and u is holomorphic near x.

Let us describe the contour I'. Let ¢ = @a(x,y, ag) +ihpi(z, y, o). Let ag(z,y, ae)
be the solution of ggi (x,y, oz (2, y, a¢), a¢) = 0 with aw(xo,xo,ag) = a. We have
0z (x, @, 0¢) = ag(x, a¢), with the notation of Definition A.5, 5). Let I'y, be the
contour given by o, = ag(z,y, ag) +t, where t € R”, |t| < J, and let us set

—17-1.n
b, y, e, hy k) = (h k ) /26;«;116—1W(z,y,am(z,y,aé),%)/ e_hflk—lw(z,y,a)
27T Fa:,;

n/2 e
)" [[ e et ae,y, o k) u(ys bR dyda.
T

calx,y, o, h k) da, .

SOCIETE MATHEMATIQUE DE FRANCE 2002



112 APPENDIX

T

Since (%(wmxm a®)) > 0 (Definition A.5, 5)), we obtain easily, from the Taylor
formula thzat b is an analytic symbol near (zo, o, ag). Moreover if a is elliptic then b
is elliptic if hk is small enough (here o plays the role of £). Let us remark that if we
change ¢ in the definition of the contour I', then we obtain, in b, an error which is
O(e=="""*¥")_ This error was not negligible in the case of Sjéstrand [Sj]. However it
has no consequence here according to our definition of ““W F,.

Now we want to give a meaning to

—2p-1\n
(A.26) Au(z; o, h, k) = <h 2k ) // eth 2k gz (@ y.ae) Fih i (2.y a0 (@,y,06) ae)]
m ’

b(z,y, ae; b, k)u(y; h, k) dydo .
Let us show now that the phase

¢($,y, Qg, h) = 802(35724’ af) + ih§01($,ya aﬂ?(xaya OZE),OZE)
satisfies the condition (A.24). First of all, conditions 3) and 4) in Definition A.5 show
that v = 0 if x = y. Assume now that A is small. Then

0 0%
Orxdag  Oxdag +0(h)

and since po(z, z, ¢) = 0, we have
Pos Py
Oxdag  Oydag’
so the second condition on v follows from 8), Definition A.5. When h > § > 0, we

use instead conditions 5) and 8).
Now we have

o Opa . Op1
%(xo,l’o,a(g)) = a—x(l‘o,xo,@g) + Zhg(xo,l’o,ao)
0 day
=+ ih 82; (anx())O[O) : a;.‘;(xoax(bag)
13}
= a_i(ananOZO)h) = 607

by condition 6) Definition A.5. By the discussion made after (A.24), if we set,
T={(.0):lc—yl <r.6=6+iR—y)}

then I'" = g(z,y,T) is a good contour, and A in (A.26) is well defined on H, as soon
as |% g—;‘ — §0| is small enough.

Thus we have obtained a contour I' in (A.25) where a, € Ty, (y, a¢) € IV and we
show now that this contour is a good contour for f = Re(ip). We shall use the results
of § 2. Our function f is here a function of (x,y, 2z, h) where y stands for (y, a¢) and
z = ay. With these notation we have f(z,y,2,h) = fo(z,y) + h fi(x,y, z), where

fo =Re(ip2) and fr = —Rep1 = —¢f.
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We may assume, making a translation, that (ignoring x which is fixed)

0% f
0z2

fQ(O) = fl(0,0) =0,
Let z(y) be the solution of

Ly z) =0, =0)=0.

Then if z(y) + ¢ is a good contour for ¢1, which means that on the contour we have

Fily,2(y) +1) = fily, 2(y)) < —CJt?

and if we have a good contour in y for fa(y) + h f1(y, 2(y)) which reads
fo(y) + hfily, 2(y)) < —Clyl,

on the contour, then the contour in (y,z), (y,z = 2(y) + t) is a good contour for
f2(y) + h f1(y, 2) since

fa(y) +h fi(y, 2(y) + 1) = faly) +h fr(y, 2(y) + h(f1(y, 2(y) +1) — f1(y, 2(y))
< —Clyl* = Chlt]?

(0,0) invertible.

on the contour and conditions (A.15) are satisfied.

A.4. Pseudo-differential operators in the real domain

Let mo = (20,&0,a°, ho) € R™ x R™ x R?" x [0, 4+00[ and ¢ a pseudo-differential
phase near mg (Definition A.5). Let V be a neighborhood of a® in R?". We set,
following Sjostrand,

VV = {(x,y,a) ER"XxR"XR™:zx =y, oy = oz, a¢), 0 € V}
where

8 T
(;i_l (xayaaz(xay7a§)7a§) =0

and oy (x, ag) = oz (2, 2, a¢). Let a be an analytic symbol. Then we set, for x real,

(A.27)
AV u(z; h k) = // e e oy, as b, k) x (o, y, @) uly; h k) dyda.
acV
Here x is a cut-off function which localizes in the set where ¢ satisfies the conditions

of Definition A.5, y = 1 near VV and a is an analytic symbol.
Here is an important result in this theory which will be used later on.

Theorem A.11. — Let ¢ be a phase in the sense of Definition A.4, b an analytic sym-
bol, ¢ a pseudo-differential phase, a an analytic symbol and let AV be defined by
(A.27). Then one can find 1 > 0 (depending only on Cy, in Definition A.4, and @)
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such that if eg < €1 then there exist 6 > 0, C' > 0 such that for all (x,3) in W and
all (m,h) in U, we have

AV (eih*Zkflw(-,ﬁ,m,h) b(~,5,m, h, k)) _ eih*Zkflw(x,ﬁ,m,h) c(x,ﬂ,m, h, k‘) +d
where |d| < Ce%"""%" ¢ is an analytic symbol and
c= e—ih*2k*1¢(z,ﬂ7m,h)A(eih*2kf1w(47ﬂ,m,h) b(, 5, m, h, k))

where, in the last expression, A acts in the complex domain as an operator on H_ 1y,

modulo error terms bounded by Ce=%h %"

Proof. — The first step is to study the phase 8 = p+1, which occurs in the expression
of AV (eth™ K "p).
LemmaA.12. — Let @ be a phase in the sense of Definition A.4. Let ¢ be a pseudo-
differential phase (Definition A.5). We set

0(1‘7 y’ a’ ﬂ’ m’ h) = w(x’ y? a7 h) + ¢(y7 /87 m7 h)'

Then for all (x,3) in W, all (m,h) in U there exist y(x,3,m,h), a(zx,B,m,h) such
that
Gyl B, h). e, B ). ) = () = () =0,
Moreover (y, ) satisfies the following properties
(i) y(z, B,m, h) = =.
(ii) ax(z,B,m,h) = az(z, ag(x, B8, m, h)) where ag is the real on the real.
(iii) There exist e1 > 0, C > 0 such that, for 0 < ey < €1,

|Imag(x,ﬂ,m,h)| < C€0h7 fO?” (I7ﬂ) € WﬂRgna
g1 and C depend only on Cy (Definition A.4) and ¢.

Proof. — Let us note that in ii) the function «, in the right hand side is the function
which appears in 5) Definition A.5, that is (thanks to 3))
0
Fo (1,0, 0), ) = 0.
Moreover we have )
0 el
G (w0) =0, 5EL@ma) =0

and thanks to 4) Definition A.5, differentiating with respect to c¢, we get
dp1

Oae

It follows that (y(x, ) = z, ap(z, o)) is a solution of

9  y_ 9%
aaa; _8a5

(x,x,az(x,ag),ag) = O

() = Oa y(Jjo,Olg) = 2o, az(x070[2) = O[S:
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It remains to solve

0
g_y(xaxvaa:(xaaﬁ)7afaﬁvmah) = 07
with respect to ag. Let us denote by a%(ac, B,m, h) the solution of
(4.28) 2 (a00) + (o o) = 0

for a¢ in a neighborhood of a?. This equation can be solved since ( 6125225 ) is invertible.

We note that oz% is real if (z, 8) is real. Now, let us denote by a¢(x, 3, m,h) the
solution in c¢ (near ag) of the equation,

de o _
(A.29) dy (z,x, oz (x, ag), g, h) + ay (z,8,m,h) =0.

One can solve (A.29) if the matrix

Ve () () ()
Oydoe Oyda, 0a2 Doy e
is invertible, which is implied by the condition 8) of Definition A.5, since DC is
invertible iff A — BC~! D is invertible.
Since o (z, 3,m, h) is real for (z, 3) real, we have
| Im ag| = [ Im(ag — ag)] < |ag — agl.

To prove that |a% — ag| < Ceph, we apply the following result.

LemmaA.13. — Let F,G be C? function from RN to RN. Let Xo,m9 in RY and
assume that F(Xo) = no, G(Xo) = 0. Let us assume that the matrices
OF O(F + hG)

—(Xo) and X

X (Xo)

are invertible.
Let X(n) be the solution of F(X(n)) =n. Let Y(n, h) be the solution of

(F +hG)(Y (n,h)) = n,
for n close to ng. Then

Y (n,h) = X (n)| < Chln—mnol.

First of all, Lemma A.13 implies the claim iii) in Lemma A.12 since it follows from
4), Definition A.4 that 86—15 — g—;f < egh. Moreover let us note that we can solve
(A.28), (A.29) with a right hand side 7, keeping the conclusion of Lemma A.12 if

[n| < o, with gg small.
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Proof of Lemma A.13. — We have

oF

n=F(X0)=FYM0)+ 55 m)IXm =Y0)+0(Xm) —Y®)).

Moreover

T = T2 (Xo) + Ol —mol) and F(Y () =0~ hG(¥ ().

Since |G(Y (n))| < C'|n — ol we get
1X(n) = Y (n)| < C(hln —nol +|X () =Y ()[?)

and the lemma follows. O

Proof of Theorem A.11. — Recall that 0 = ¢ + ¢ = 05 + ihf1, where 02 = @o + 1,
01 = ¢1. We show first that f = —Im 6 satisfies the conditions (A.10) to (A.13). We
have f = fo + h fi with fo = —Im#6s, f{ = —Ref;. The correspondence between
the variables in f and 6 is the following : the variable y (resp. z) in f is the variable
(y,a¢) (resp. ay) in §. The condition (A.10) is obviously satisfied and (A.11) has
been proved in Lemma A.12. Since # is holomorphic in (y, «) we are reduced to prove
that some matrices of second derivatives of # are invertible with uniformly bounded
inverses since the conditions on the signature will follow from the holomorphy. Let
us begin by (A.13), which is the case of small h. We have
8291 824,01

2 T 92
0a2 0o

and the later is uniformly invertible by conditions 3), 5) in Definition A.5 (since they
are taken at the point (z,z, az (2, a¢), a¢, h)). Now we have

8%0,  9%po
2 2
0202 _ 82y2 Gyzaag
2 O%pa  Opa
8(y7 Oég) dae Oy 60(2
‘We have
@(x z,0¢) = 0
2 ) -
8045

(condition 3)) and 8(2/250;5 is invertible (condition 8)). If h is small enough, it follows

that (’)yaingE is invertible with a uniformly bounded inverse.
Let us consider now the case h large. We have

9%0 %¢ 2%¢
oy? Oydae  Oyda,

920 | 9% 9% 2%
2 Oae Oy Oa? Ooe Doy
Ay, @) JE R
Do % %

Qo 0y o a2
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At the point (x, x, ag(x, ag), a¢) we have 92 _ (). Then

2
60zE
¢ ¢ %01 _0%¢y
aag Oagday —ih 301? Oaeday
¢ 2%¢ %01 ¢y
Oz Dove a2 Qg Oore da?2

Since
Op1 _ Op1 _ Opa _
Oay,  Oag  Oog

at the critical point, we can prove (as in (A.9)) that

Po 9% (82901>—1 1
(90% ~ Jagda, \ da2 o Oarg

Thus we can write

a B C
ol tBihDE-YDihD | = M.
b« tC ih'D  ihE

020

" . B C

Now, by condition 8), the matrix (iht DihE
(B — CE~''D) invertible. Combining the second and the third “line”, we see that
M is invertible if (!B — DE~!(C) is invertible, which is the case, since E is sym-
metric. We are going now to change the contour of integration in the integral giving
AV (e "k ¥p) | in order to integrate on a good contour. Then proposition will follow,
since, by Proposition A.9, we can then change this good contour to the good contour
(Tw,,I7) given after (A.25), (A.26).

Let xo(z,y,a) € C§° be a cut-off function with suppxo C {x = 1} (where x
appears in the right hand side of (A.27)), xo = 1 in a neighborhood of VV (see the
beginning of § 4) and o > 0.

For s € [0,1], we set

) is invertible. This is equivalent to

. _ 0 -
Fs:y=y+is5><o(x,y,a)g—y(w,yﬂ,ﬂ,m,h% where y € R".

For each o € V, the contour I'y = R” is modified in a set where x = 1. Therefore in
AV (---) (see (A.27)) by holomorphy, we can integrate on I'; instead of I'y.

Let now x2 € C¢°, suppx2 C {xo = 1}, x2 = 1 on a neighborhood of VV and
X2 2 0.

Let x1 € C8°, suppx1 C {x2 = 1}, xa = 1 near VV, x1 = 0. For s € [0,1] and
a €V we set,

y=1y, y€R"™,
(A.30) o = dg + sx2(z;7, ) (oe(z, B,m,h) — ),  de €R",

Qg;:&w+8X2($7ﬂ7&)(aa:($767m7h)_ag)a &weRna
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and we define

. ., 00
y:g+Z6X0(x7y? )ay(x Y, & aﬂam h’)

Ls o = g +is0 (gc~62)ﬁ
& — Q¢ xX1(Z,y, 80[5

(xaﬂagaﬁamah)7

Qg =0 .

We have fo =TI"1. Let us compute 6 on fs. ‘We have

00
0( ,,y,amh)—&(x y7 7ﬂ7m h)+25X0($ Yy, )‘ (!I? y7 7ﬂ7m h‘)‘

dy
+iso x1(z, g, &) %(x,g,g,ﬁ,m,h)F+O<52X3‘g_z‘2+ 52022 883 ‘ )
If 6 is small enough we get
(A31)ImO(z,y,a, B,m, h) = ImO(z,y, a, B,m, h)+gX0(1‘ y, Q) g& (z,y,q, B,m, h)‘
5 2
—|—23X1xy, ‘8 acg,g,ﬁ,m,h)’
We show now that we can restrict the contour to the set where xy; = 1. By

Lemma A.12 we have | Im a¢(z, 8, m, h)| < Cyheg. Therefore,
0(z,y,a, B,m, h) = 0(z,y, Rea, B,m, h) + O(eoh),

(where O means uniformly bounded by a constant depending only on C,, and ¢). It
follows that

Im6(z,y,a,3,m,h) = hRepi(z,y,Rea, B,m, h) + O(eoh)

since Im ) > 0 on the real; then, by (A.30) and condition 7) in Definition A.5, we get
on the contour

Im6 > Ch[(Regm - ozz(ac,Regé))2 + (Rea, — az(y, Regé))2]

00 2
_y(xvgvgaﬁamah) +O(th)

é SO
+§X0($7y7a)

Now since x1 = 1 on a neighborhood of VV we see that if (z,7,a) € R" x R" x R??
belongs to the set {x1 < 1} we have |a; — ag (2, 0¢)| + |0z — az(y, a¢)| = 6 > 0 with
a uniform 0. For this we use that, in the integral (A.27), « is bounded and that, by
Remark A.7, ag(z,0¢) = B & v = (e, &¢). Now

|Rea, — az(z;Reae)| + |Rea, — a:(y, Reay)
= |a$ _aw(xvaﬁﬂ +|aw _aw(y7a€)| +O(|aw(x7ﬂvmvh) _O‘(a):| + |a§($767mvh) _a2|

>§+O(|x—x0|)2§
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if |x — x| is small enough. It follows that Im 6 > C1h on this set. This gives an error

term which is O(e=" ") In the set {x; = 1}, on the boundary of the contour

I's; we have & € 9V so, |a — a®| > 6y > 0. Moreover xo(z,7,a) = 1. Now, since &
and ag are real it follows from (A.30) that,
Ima = sxa(; 9, @) Imla(z, 3,m, h)] = O(h),
by the Lemma A.12, iii) and ii). Then,
9 97 0100 2 9
Im6 > Chﬂgx - O‘m(xagg)| + |Olm - ar(y7g§)| ] + 5 a_y (%Qa o ) + O(€Oh+ h )
Claim. — Let |a| 4 [b] + |c| < d1. Then, the problem in (y,a),

az(z,0¢) = a, +a

az(y,a¢) =a, +b
g—z(ﬂc@gﬂ,m,h) =c

has a unique solution (y,a) such that,

la —a®| + |y —yo| < Cdy
with a positive C' which is independent of (8, m,h) and di. Assume this claim true.
Then if dy is such that Cdy = %50 we get

5106 2 ,
—| = >
9 8y($7ﬂ7g767m7h) /0150

where Cy depends only on C and 0. It follows then that Im @ > Cyh on this set which
gives an error term which is O(E_C2h71k71).

| (2, ) — @, |* + | (y, 2,) — a,)* +

Therefore we can shift the contour T'; = I'g to T'y N {x1 =1}
Proof of the claim. — The map
a0
F: (gag) &y — Oy (x,gg),gm — Oy (ngg)a 8_y (x,g,g,ﬂ,m,h)

is a local diffeomorphism.
Indeed we first note that,

0oy _((9%0{)*1 0?7

dag  \0a2 Doz Oae’
2, . ry —1 2, 2,7
aax:_<3801> (5@1 _|_8801>’
Oy da2 0zda,  Oyday
and
o0 _ ¢
da  da’
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It follows that the differential of F at (xg,a’) is (uniformly in (3, m, h)) invertible if
the matrix

0 6290; 82‘»0;
da2 Qo Oag
%" %0l 9] D0y 0
Oa, O 0o, 0y 0a2  Oagdog (.%'07 Lo, @, 5’ m, h)
9% 8% R
0y? Byda, Oydog

is (uniformly) invertible.
This is equivalent to say that the matrix

%0 9%
Oyda, Oydag

R
2
M = a2 Odazdag (an Zo, OZO, h)

%pf %
Oa, Ox Oy, Oy

is (uniformly) invertible, because ( ) is invertible (see Definition
A5 6)).
ZWr 82<p1*

. B . ] . . 2o .
Now, if hg = 0, since 57 and dypa; are invertible and 775 = O(h) we obtain

that M is (uniformly) invertible if A is small enough. If hg # 0, since 2 does not

. 2 i
depend on a, and ¢! (z,z, ) = 0 we get %521 (70, 70,a’) = 0. Then,

8%y 8%
2
M = a2 804,,28015

o D¢
Oyda, Oydag

which is (uniformly) invertible by Definitions A.5, 8). It remains to show that the later
is a good contour for —Im#. For this we are going to use (A.31) with xo(z,y, @) =
X1(z, ¥, @) = 1 since suppx1 C {xo = 1}. According to (A.30) with s =1, x2 = 1
and to the fact (Lemma A.12) that (z,x, a(z, 3, m, h)) is critical point for 6, we set

(A.32) O(z,y,a,m,h) = 0(z,x,a(x, 3, m,h),m, h)
+%D29(x, x,a(z, B,m,h),m,h) - X2+ O(E3)

where

= =(@G—z,a—a°
(A33) {D_ (897(9&)’ X - (y ’ )

El=|g—af + |ce —a2|j +hlay —a2), 7>0.
Since, by Lemma A.12, Im a(x, 3, m, h) = O(goh), we can replace in D26, in the above

formula, a(x, 3, m, h) by Re a(x, 3, m, h) modulo an error which is O(goh|| X ||?). Now
0 = po + thpy + 9. Since 3 is real on the real, we have

(A.34) Im [D?ps(z, 7, Re a(z, B, m, h)) X?] = 0.
To take care of Re D%p; we recall that (Lemma A.12),
az(x7ﬂ7m7h) = az(ac,ozg(ac,ﬂ,m,h))

SO
Re a(x, 8, m, h) = ag(z, Re ag(x, B,m, h)) + O(eoh).
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Therefore we can replace in D%y, Re a,(x, 3, m, h) by a,(x, Re ag(z, 3,m, h)) mod-
ulo errors which are O(ggh E?). So we are left with

(1) = h Re D*¢ (, z, i (2, Re ag (z, B,m, h)), Re ag (, B, m, h)) X 2.
Now, by conditions 4) and 7), Definition A.5, we have
Repi(z, 2,0z (x,Reae(--+)), Reag(---)) =0,
Rey1(z,y,a) 2 0 if (x,y,«) is real.

Then, that Re D1 (z,z, ay(z,Reae(--+)), Reag(---)) = 0. It follows from condi-
tion 7), Definition A.5 and Taylor’s formula that,

hRe i (x, 7, ay — o + ag(z,Re ae(z, B,m,h)), ae — ag + Reag(x, B,m, h))
=(1)+O(E?) > Ch(dy — a2 + az(z,Reag(--+)) — az(z,Reag(- - ) + ag — ag))Q.

It follows that

(A.35) h Re D1 (2, x, a(w, B, m, h) X? = Ch(dy — o) + az(z,Re ag(wx, B,m, h))

—og(x,Reae(---) + e — ag))2 + O(goh E? + E3).

Now by condition 6), Definition A.4, we have

(A.36) Im D%y (x, 8, m, h) X? > —Ceoh| X|?.

We deduce from (A.31) to (A.36) that

(A.37) ImO(x,y, o, B,m, h) — Im O(x, x, a(x, B, m, h), m, h)

> Ch(d, — o) + ag(z, Reag(z, B,m, h)) — az(z,Reae(--) + de — af))?

0|06 ‘2 6| 06

t3 a—y(%g&ﬂamah) t3 87%(

where X = (§ — z,a — ).
Let us set p* = (z,z, a(x, B,m,h), m,h). Recall that this is a critical point for 6,
(Lemma A.12). Then, (A.37) implies

5(10%, ..
(A.38) Im9(x,y,a,ﬂ,m,h)2§ ‘a—yz(p )y — )

2
xvga gvﬁamv h)’ + O(ES + E()hEz)

829 *\ (7~ 0 2
+ 5y (07)@—a?)

020 020 . o2
g 07— 0) + oo )]

2
+Chla, —a? — %(x,Reag(x,ﬁ,m,h))(d'g - ag)‘ + O(E? + eoh E?).
3

Now, the sum of squares, in the right hand side of (A.38), is equal to ||M (p*)Y||?
where M is the matrix

26 %0 5%0
0y2 Oydae O0yday,

M= o) %0 %0
| 9aedy 604% Oaedag

0 —VChg=VChld
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and Y = (§ — x,8¢ — o, &, — a)). Now we have seen that

Jag _(82<p1)—1 ) %1
dag a2 Doy e

and (see the beginning of the proof of Theorem A.11)

9%, . %0, . . 0% [0%p1\"1 O%py

902 P = 520 =ith 5 (a2> dogdae

o o Doy o2 o Ocrg
It follows that M can be written as

A B C
M= |'Bih'DE'D ih'D
0 VChE'DChId
Moreover, since 1) does not depend on «, it follows from condition 8), Definition A.5
B
that, when h is large, the matrix ( D g) is invertible at p*. Since B is also invertible

we see from the second and third “line” of M that M is also uniformly invertible.
When h is small we write,
026
Oagda

82801
2
80[5

32‘?1

(v _ ~0) — 5
(5")(@ = a®) = ih Gacon

(p")(@ — a)

(p*)(@ — ag) +ih

since %(p*) = 0. Then
¢

520 . : N ~ ~
m(p )(a—ao) =1h Y1 (——(x,a(x,ﬁ,m,h))(ag—ag)—i-aI—ag).

OagOoyy r Oag

By condition 8), Definition A.5, (,jiiTﬁ%(p*) is uniformly invertible since p* is close to
(wo, 0, ). It follows that

_ 9% N 0% _ 026 _
A39) |j—z)2<C G- <C ) @- “)(@—a®
(439) ol < €[5 50T < €| 5o ()2t o5 () Ea)

Oy —al — %(x afz, B,m, h))(ae —ad) ’
xT xT 8015 9 s My ) E g

+Ch?

By the same way

~ o o\~ 2
(A40) [ = aff? < C| 5 55 (") @ — o)
82@ *\ [~ 0 629 *\ (7 82410 *\ [~ 0 2
< O Griclo) e )+ G5 (5) 5 =) + ()@ = o)
+Cly— 2> + Ch?|a, — a2*.
day ~ 2
(A.41) h|ax—a2|2<ham—ag—T%(z,ag(...))(ag—ag)‘ —|—C’h|ag—a2|2.
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Using (A.38) to (A.41) we obtain, if ¢ is small enough
m6(z,y, o, B,m, h) = C(|y — z|* + |ag — og]* + h|a, — ).

xT

According to Definition A.8, this proves that the contour T, is good for —Im 6.

Theorem A.14. — Let v be a phase, in the sense of Definition A.4, at (xo,&o, 3°) €
R” x R® x R™. Let b be an analytic symbol in a neighborhood of (xo,3°). We set
2o = (s0,40), where so >0, & = (10,1m0), 15 = s675 + s6lmol®s Co = 7= (5570, §m0),
ng = (ho,yo,ko/’f‘o,CQ) and © = (s,y). Then, if ng ¢ ¥WF,(u), one can find

X € C§°, x =1 in a neighborhood of o, positive constants Cy, 61, p1
(442) | / T B b, 3, ) () ush, y) dsdy| < Crem
for all (B,h,m, k) such that (m,h) € U, |3 — B°| + |h — ho| + |k — ko| < p1.

Proof. — Our assumption implies that there exists a precised FBI phase ¢ (by Propo-
sition A.3, Definition A.2) at (zo,Z0,a’, ho), where Zg = (70/70,70/70), an analytic
elliptic symbol a, a cut-off function yo € C§° equal to one in a neighborhood of z
and positive constants Cy, dg, po such that

(A.43) ‘// eih_Qk_lﬁ"(I""’h)a(x,a,h,k)XO(x)u(hs,y)dsdy‘ < Coe %o/,

for all, a, h,k such that |« — a®| + |h — ho| + |k — ko| < p, b > 0, k > 0. Let
® = @(z,z,a,h) be the pseudo-differential phase (Definition A.5) constructed in
Proposition A.6. We set, formally,

(A.44) Av(z, h, k) = // eih_%_l@(z’z’o"h)a(x,a,h)v(z,h,kz)dzda

which can be realized either as an operator in the complex domain or as an operator
in the real domain.
Since A is elliptic, there exists an analytic symbol ¢(z, 8, h, k) such that

(Ad5)  A(eMRTCRID (G om b, k) = b, B m, b k) R @O
where A acts on H_iyy. Indeed, if B is the inverse of A in H_1y4, we have
etk W B(eh Tk W) — ¢ modulo errors which are O(e=%/"%). Let V be a neigh-
borhood of ag. It follows from (A.45) and Theorem A.11 that
(A.46) AV (eih’2k’1¢)(-ﬂ,m,h) (-, B,m, h, /{i)) = b(z, B, m, h, k) eihfzkfld)(z,ﬁ,m,h)

+O(e /M),

Let us recall that the function x occurring in the expression of Ay in (A.27) is such
that, for some rg > 0,

X(z,z,0) =1 if |z — 2|+ |og — ag(z, o)

VoA

X, z,a) =0 if |z — 2|+ |og — ag(z, o)
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Let x1 = x1(2) € C§°(R™) be such that

xi(z)=1 if |z—uxg

=0 if |z—ux
Let us set
(1) = lag — ag(@, ag)| + |z — au(z, ag)].
Since the map, « — a,(, ag) is invertible for all a¢ near a% we can find C' > 0 such
that for all r; > 0 small enough
lag(z, ae) — az(z,ae)| <11 = |z — 2| < Cry.

We claim that if (1) < ro/(1 + 2C) then x1(2) = x(z, z, @) = 1. Indeed, it follows from
this inequality that |o, (x, ae) —am (2, )] < 2ro/(1 +2C) so |z —z| < 2C'r /(1 4 2C)

therefore
20 To To

1+2C 1+4+2C

_ . _
|z — 2| + | gz, ae)| < o

which implies that x(x, z,«) = 1. Moreover
20 To To

+ 0
1+2C  1+4+2C°

1+2C°

|z —x0| < |2 — 2]+ |z — 20| < since |x — x| <

It follows that x1(z) = 1.

Summing up we have proved that, on the support of x(z,z,a) — x1(z) we have
(1) > 70/(1+2C). We deduce from Definition A.5, 7) that |e? % '¢| < ¢=C1/hk
which proves that in the definition of AY we can replace x(z, z, ) by x1(z) (modulo
controlled errors) if |x — x| is small enough. Then

J? h, k‘ // zh 2k (w,2,0,h) (1‘ a, h, ]{i)Xl( ) (z’h,k)dzda_ko(efﬁ/hk),

(where the error term is bounded by sup |v]).
Let us write (A.46), replacing x by x1. We have

(A.47) b(x,B,m,h,k) eih—%—lw(m,ﬁ,m,h,k)
= / eih—2k—1sa(x,a,h)a(x’ a, h, k)f(a, /87 m, h, k) do + O(GﬂS/FLk)7
acV

where

fla, Bym b k) = /X1(z)eih_gk_l[7“’2(%"‘5)”’1“’1(Z’O‘)J“w(z’ﬁ’m’h)] c(z,B8,m,h,k)dz.

It follows from (A.8) that Rei(z,a) = Clay — ax (2, a¢)|? and, since Ime) > 0 we
have |f| < Cn(hk)™Y for some N € N. Then, using (A.47) we can write, with
- (Svy)7

(4.48) [ 7K VEBmI i, ) (o) a5 ) dsdy

:/ fla,B,m,h, k) - (// eihizkil"’g(m’o"h)a(x,a,h,k)x(w)u(hs,y) dsdy) do.
acV
This proves Theorem A.14. O
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Corollary A.15. — The definition of W F, is invariant under a change of phase
satisfying Definition A.1.

Proof. — We have seen in Proposition A.3 that we may assume that the phase is
precised. We can change sg in the definition of ®¥°WF,. Indeed, let ¢ be a FBI
phase at (wo,&,a’ ho), 0 = (50,%0), & = (70,m0) ; let us set @(s,y,a,h) =
W’zgo(s/% Y, Q, 'yh)7 v > 0. Then ¢ is an FBI phase at ('yso, Yo, 70/7>,m0/7?, P, 'yho).
We see that the change of (h,s) to (vh,s/v) in the definition of ¥°W F, gives rise to
the phase ¢ in the integral. The analytic symbol is changed but stays elliptic. Now
let us take two precised FBI phase at the same point zo = (s¢, o). Then we see easily
that they satisfy both the Definition A.4 (for instance, condition 2) in Definition A.4
follows from (A.8)), so we may apply the Theorem A.14. O

Corollary A.16. — Let @ be a FBI phase at (z0,&,a,0). Let us assume that one can
find positive constants C, 8, hy, an analytic symbol a elliptic at (xq,a’, ho), a cut-off
X € C§°, equal to one near ko = (So,Yo) such that

‘/eih_%(s’y’“’h)a(s,y7a,h)x(s,y)U(8h,y)dsdy( < Ce /M

or all o in a neighborhood of o an € 10, h1|. Let us set
f 1 hborhood of a® and h €0, h1[. L

3 2
SAT s
2 6 2 4 2 - 070 — 0’0
TOZSOTO+SO|7]0| >O7 To = ) o = )
To To

where & = (70,m0). Then ng = (0,y0,1/r0, (o, 7o) & W F,(u). In the coordinates
(A, i) this reads (0, yo, 370, 531m0) & BSWE,(u).

Proof. — We may assume that ¢ is precised. Let us set ¢ = %(ﬁ when rg # 0.
Then ¢ is a precised FBI phase at (so7y0,7'0/7"0,n0/7"0,a07 0). Let us associate to @,
a pseudodifferential phase ¢ by the formula in Proposition A.6. Finally let us set
Y(x,B,m,h) = %@(w,ﬁ, h). Then 1 is a phase in the sense of Definition A.4 at the
point (zo, %50,010), o = (70,M0), o = (s0,%0) and U = B(ry*, ) x]0,8), (m,h) € U.
Let us set

AVv(z, o, h k) = // th Tk o (@ zah) a(z,a,h)x1(z, z, @) v(z, h, k)dzdo.
acV

We can apply Theorem A.11 as in the proof of Theorem A.14. We get
AV (eih—%—lw(-,ﬁ,m,h) c(-, B,m, h, k)) = a(z, B, ) eih—Qk—lw(m,ﬁ,m,h) + 0(675/%)'

In this formula we fix k = kg = 7‘51 and we obtain, with x = (s, )
// eih_Qm_lﬁ(w’ﬁ’h)a(x,ﬂ, h)Mdsdy

= / f(a»ﬁ,m,h)( / eih%(z*a’h)x(w)a(x,a,h)u(hs,y>dsdy)da+O(e—5/h>,
acV

with f = O(h=N).
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Then the result follows if we consider m as the parameter k in the definition of
BCWF,. O

Corollary A.17. — Let mo = (po, Yo, 70,M0) with pg > 0. Then mo ¢ WEF,(u) (the
usual analytic wave front set) if and only if (po, yo,0, (No, ) & SW F,(u), where
o = Po 7o T = o .
V5T + [mol? VP§TS + Imol?
Proof. — We note that, in the definition of WF, and ¥“WF, we did not take the
same coordinates on 7M. The statement of this corollary takes this difference in
account. Indeed, we have
dy
P
If (po, Yo, 0, (Mo, f10)) ¢ C°W EF,(u) then if we set h = hg and k= = ), in our trans-
formation 7', we recover a FBI transform in the sense of Sjostrand. Then we have
(P0,Y0,70,Mm0) & WE,(u) with 70 = \o/pg, 1m0 = Ty/p? ; our claim follow since W F,

dp
Tdp+n-dy = (p°7) 5t (p°n)

is conical.

Conversely, let us assume that (po, Yo, 70, m0) ¢ WF,(u). Let us set, with z = (p, y),
@ = (z — ay) - ag +i(z — a;)?. Then one can find positive constants C, §, Ao and a
cut-off x € C§°, x(po,yo) = 1 such that

/eMﬁ(w’o‘)X(x)u(ac) dac‘ <Ce™™

for all & in a neighborhood of (pg, Yo, 70,70) and A > Ao.
Let us set ¢(z, a, h) = (x — ap)ag +ih(x — a,)? and let us associate to ¢ a pseudo-
differential phase by Proposition A.6. Finally let us set
)

W,y Bom i) =m (2 = 0.) 60+ (= 8- 2] + = [(S - 8) + - 6,)7].

m
Then 9 satisfies the conditions in Definition A.4 for all g¢ if
Is = pol + [y — yol +168s — po| + |8y — yol + 8- — 70| + |8y — mo| + [m — 1]
is small enough. It follows from Theorem A.11 that we have the formula (A.48). Let
us make h = 1 in this formula. The right hand side is O(e~%/*). Now if m plays
the role of A in the left hand side, we recover the expression 7w ; this proves our
claim. |
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