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REGULARITY OF D-MODULES ASSOCIATED TO
A SYMMETRIC PAIR

by

Yves Laurent

A Jean-Michel Bony, a l’occasion de son 60° anniversaire.

Abstract. — The invariant eigendistributions on a reductive Lie algebra are solutions
of a holonomic D-module which has been proved to be regular by Kashiwara-Hotta.
We solve here a conjecture of Sekiguchi saying that in the more general case of
symmetric pairs, the corresponding module is still regular.

Résumé (Régularité des D-modules associés a une paire symétrique). —  Sur une algebre
de Lie réductive, les distributions invariantes qui sont vecteurs propres des opérateurs
différentiels bi-invariants sont les solutions d’un systéme holonome. 1l a été démontré
par Kashiwara-Hotta que ce module est régulier. Nous résolvons ici une conjecture
de Sekiguchi en montrant que ce résultat est encore vrai dans le cas plus général des
paires symétriques.

Introduction

Let G be a semi-simple Lie group. An irreducible representation of G has a char-
acter which is an invariant eigendistribution, that is a distribution on G which is
invariant under the adjoint action of G and which is an eigenvalue of every biinvari-
ant differential operator on G. A celebrated theorem of Harish-Chandra [2] says that
all invariant eigendistributions are locally integrable functions on G.

After transfer to the Lie algebra g of G by the inverse of the exponential map, an in-
variant eigendistribution is a solution of a Dg-module MY for some X € g*. Kashiwara
and Hotta studied in [4] these Dg-modules MF, in particular they proved that they
are holonomic and, using a modified version of the result of Harish-Chandra, proved
that they are regular holonomic. This shows in particular that any hyperfunction so-
lution of a module MY is a distribution, hence that any invariant eigenhyperfunction
is a distribution.
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166 Y. LAURENT

In [15], Sekiguchi extended the definition of the modules MY to a symmetric pair.
A symmetric pair is a decomposition of a reductive Lie algebra into a direct sum of
an even and an odd part, and the group associated to the even part has an action
on the odd part (see section 2.1 for the details). In the diagonal case where even
and odd part are identical, it is the action of a group on its Lie algebra. Sekiguchi
defined a subclass of symmetric pairs (“nice pairs”), for which he proved a kind of
Harish-Chandra theorem, that is that there is no hyperfunction solution of a module
MY supported by a hypersurface. He also conjectured that these modules are regular
holonomic.

In [11] and [12], Levasseur and Stafford give new proofs of the Harish-Chandra
theorem in the original case (the “diagonal” case) and in the Sekiguchi case (“nice
pairs”). In [1], we show that both theorems may be deduced from results on the roots
of the b-functions associated to M¥.

The aim of this paper is to prove Sekiguchi’s conjecture, that is the regularity of
MY | in the general case of symmetric pairs. Our proof do not use Harish-Chandra’s
theorem or its generalization, so we do not need to ask here the pairs to be “nice”.

In the first section of the paper we study the regularity of holonomic D-modules.
In the definition of Kashiwara-Kawai [6], a holonomic D-module is regular if it is mi-
crolocally regular along each irreducible component of its characteristic variety. We
had proven in [9], that the microlocal regularity may be connected to some microchar-
acteristic variety. We show here that an analogous result is still true if homogeneity
is replaced by some quasi-homogeneity.

In the second section, we prove Sekiguchi’s conjecture in theorem 2.2.1. First by
standard arguments, we show that outside of the nilpotent cone, the result may be
proved by reduction to a Lie algebra of lower dimension. Then on the nilpotent cone
we use the results of the first section to show that the module is microlocally regular
along the conormals to the nilpotent orbits.

1. Bifiltrations of D-modules

1.1. V-filtration and microcharacteristic varieties. — In this section, we recall
briefly the definitions of the V-filtration and microcharacteristic varieties. Details may
be found in [10] (see also [5], 8], [13]).

Let X be a complex manifold, Ox be the sheaf of holomorphic functions on X
and Dx be the sheaf of differential operators with coefficients in Ox. Let Y be a
submanifold of X. The ideal Zy of holomorphic functions vanishing on Y defines a
filtration of the sheaf Ox|y of functions on X defined on a neighborhood of Y by
FEOx = IE. The associate graduate, gryOx = @I¥/IEt! is isomorphic to the
sheaf MOz, x) where A : TyX — Y is the normal bundle to Y in X and O(ryx) the
sheaf of holomorphic functions on Ty X which are polynomial in the fibers of A. For f
a function of Ox|y we will denote by oy (f) its image in gry Ox.
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REGULARITY OF D-MODULES ASSOCIATED TO A SYMMETRIC PAIR 167

If 7 is the ideal of definition of an analytic subvariety Z of X, then oy (Z) =
{oy(f) | f € I} is an ideal of O(r, x| which defines the tangent cone to Z along Y
[17].

In local coordinates (z,t) such that Y = {t = 0}, Z% is, for k > 0, the sheaf of
functions

f@t)= Y fala,t)t®

la|=k

and if k is maximal with f € ZE, we have oy (f)(z,t) = Zla|=k falz,0)t.

Consider now the conormal bundle to Y denoted by A = Ty X as a submanifold of
T*X. If f is a function on T*X, oA (f) is a function on the normal bundle T (T*X).
The hamiltonian isomorphism T7T* X ~ T*T™* X associated to the symplectic structure
of T* X identifies Tp (T*X) with the the cotangent bundle T*A and thus o (f) may
be considered as a function on T*A.

The sheaf Dy is provided with the filtration by the usual order of operators denoted
by (Dx,m)m>0 and that we will call the “usual filtration”. The graduate associated to
this filtration is grDx ~ 7, O|r-x] where m : T*X — X is the cotangent bundle and
O|r-x) is the sheaf of holomorphic functions polynomial in the fibers of 7. We have
also gr'"Dx ~ T O(p- x)[m] where Ojr«x)[m] is the sheaf of holomorphic functions
polynomial homogeneous of degree m in the fibers of 7. If P is a differential operator
of Dx|y, its principal symbol is a function o(P) on T* X defined in a neighborhood of
A =Ty X and oa(o(P)) is a function on T*A (denoted by ox{1}(P) in the notations
of [10]).

The sheaf Dx|Y of differential operators on a neighborhood of Y is also provided
with the the V-filtration of Kashiwara [5]:

ViDx = {P € Dx |Vj € Z, PT} c T} 7},

where 7, = Ox if j < 0.

In local coordinates (z,t), the operators z; and D,, := 8/8z; have order 0 for the
V-filtration while the operators t; have order —1 and Dy, := §/9¢; order +1.

Remark that the V-filtration induces a filtration on grDx =~ m.Ojr+x] which is
nothing but the filtration F associated the conormal bundle A = Ty X. In coor-
dinates, A = {(z,t,&,7) € T*X | t = 0,§ = 0}, a function of Oy x)[m] nzy*
is a function f(z,t,§&, ) which is polynomial homogeneous of degree m in (£,7) and
vanishes at order at least m — k on {t =0, £ = 0}.

The two filtrations of Dx define a bifiltration Fi;Dx = Dx ; N Vi Dx. The associ-
ated bigraduate is defined by grpDx = @gr’}jD x with

gr'}ij = FyjDx /(Fx-1,;Dx + Frj—1Dx)
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168 Y. LAURENT

and is isomorphic to grygrDx that is to the sheaf m.O,) of holomorphic functions
on T*A polynomial in the fibers of 7 : T*A — Y. The image of a differential operator
P in this bigraduate will be denoted by o (c,1)(P) and may be defined as follows:

If the order of P for the V-filtration is equal to the order of its principal symbol
o(P) for the induced V-filtration then op(c0,1)(P) = op(c(P)) and if the order of
o(P) is strictly lower then o (c0,1)(P) = 0.

Let M be a coherent Dx-module. A good filtration of M is a filtration which is
locally finitely generated that is locally of the form:

Mp = Z DX,m+mjuja
j=1,..,N
where uy,...,un are (local) sections of M and my, ..., my integers.

It is well known that if (M,,) is a good filtration of M, the associated graduate
grM is a coherent grDx-module and defines the characteristic variety of M which
is a subvariety of 7*X. This subvariety is involutive for the canonical symplectic
structure of 7*X and a Dx-module is said to be holonomic if its characteristic variety
is lagrangian that is of minimal dimension.

In the same way, a good bifiltration of M is a bifiltration which is locally finitely
generated. Then the associated bigraduate is a coherent gr D x-module which defines
a subvariety Chp (c0,1)(M) of T*A. It is a homogeneous involutive subvariety of T*A
but it is not necessarily lagrangian even if M is holonomic.

If 7 is a coherent ideal of Dx then:

Ch(M) = {€ € T*X |V P € T, o(P)(£) = 0}
Cha(eo,)(M) = {{ € T*"A |V P € I, op(e0,)(P)(C) = 0}

Regular holonomic Dx-modules have been defined by Kashiwara and Kawai in [6,
Definition 1.1.16.]. A holonomic Dx-module M is regular if it has regular singularities
along the smooth part of each irreducible component of its characteristic variety. It
is proved in [6] that the property of regular singularities is generic, that is it suffices
to prove it on a dense open subset of A, in particular we may assume that A is the
conormal bundle to a smooth subvariety of X. The definition of regular singularities
along a smooth lagrangian variety is given in [6, Definition 1.1.11.] but in this paper,
we will use the following characterization which we proved in [9, Theorem 3.1.7.]:

Proposition 1.1.1. — A coherent Dx-module has regular singularities along a la-
grangian manifold A if and only if Chp(co,1)(M) is contained in the zero section of
T*A.

1.2. Weighted V-filtration. — The V-filtration is associated to the Euler vector
field of the normal bundle TyX which in coordinates is equal to Y tiD;j . We want to
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REGULARITY OF D-MODULES ASSOCIATED TO A SYMMETRIC PAIR 169

define a new filtration associated to a vector field 3 m,-E-D;;j . As this is not invariant
under coordinate transform, we have first to give an invariant definition.

Let us consider the fiber bundle p : TyX — Y. The sheaf Dip, x,y] of relative
differential operators is the subsheaf of the sheaf Dr,x of differential operators on
TyX commuting with all functions of p~!Oy. A differential operator P on TyX is
homogeneous of degree 0 if for any function f homogeneous of degree k in the fibers
of p, Pf is homogeneous of degree k.

In particular, a vector field 77 on TyX which is a relative differential operator
homogeneous of degree 0 defines a morphism from the set of homogeneous functions
of degree 1 into itself which commutes with the action of p~!Oy, that is a section of

Hom,-10, (Oryx(1], Oryx(1]) .-

Let (z,t) be coordinates of X such that Y = {(z,t) € X |t = 0}. Let (z,t) be the
corresponding coordinates of TyX. Then 7 is written as:

=) ai;(@)tDy,
and the matrix A = (a;;(z)) is the matrix of the associated endomorphism of Or, x (1]
which is a locally free p~!Oy-module of rank d = codimy Y. Its conjugation class

is thus independent of the choice of coordinates (z,t). When the morphism is the
identity, 77 is by definition the Euler vector field of Ty.X.

Definition 1.2.1. — A vector field 77 on Ty X is definite positive if it is a relative dif-
ferential operator homogeneous of degree 0 whose eigenvalues are strictly positive
rational numbers and which is locally diagonalizable as an endomorphism of Or, x[1].

A structure of local fiber bundle of X over Y is an analytic isomorphism between
a neighborhood of Y in X and a neighborhood of Y in 7yX. For example a local
system of coordinates defines such an isomorphism.

Definition 1.2.2. — A vector field n on X is definite positive with respect to Y if:

(i) n is of degree 0 for the V-filtration associated to Y and the image oy (n) of n
in grd,Dx is definite positive as a vector field on Ty-X.

(ii) There is a structure of local fiber bundle of X over Y which identifies n and

oy (n).

It is proved in [10, proposition 5.2.2] that if oy (n) is the Euler vector field of Ty X
the condition (ii) is always satisfied and the local fiber bundle structure of X over Y
is unique for a given 7, but this is not true in general.

We will now assume that X is provided with such a vector field n. Let 8 = a/b the
rational number with minimum positive integers a and b such that the eigenvalues
of B71n are positive relatively prime integers. Let Dx[k] be the sheaf of differential
operators @ satisfying the equation [Q,n] = BkQ and let V,'Dx be the sheaf of
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170 Y. LAURENT

differential operators @ which are equal to a series Q = 3, Qi with Q; in Dx|[l] for
each [ € Z.

By definition of a definite positive vector field, we may find local coordinates (z, t)
such that n = Y m;t;D;, and we may assume that the m; are relatively prime integers
after multiplication of 7 by 8~1. In this situation, the operators zj and Dy, have
order 0 while the operators ¢; have order —m; and D;, order +m;. This shows in
particular that any monomial 2%t D} D¢ is in some Dx[k] and thus that Dy is the
union of all V,:’DX. This defines a filtration V" of the sheaf of rings Dx.

The principal symbol of (@, 7] is the Poisson bracket {c(P), o(n)} which is equal to
H,(0(P)) where H,, is a vector field on 7* X, the Hamiltonian of . The V"-filtration
on Dx induces a filtration on the graduate of Dx that is on O(p.x). A function f of
O\~ x1 will be in V,:’O[T* x if it is a series of functions f; for | > k with H, f = —[f.
In this case we set o) (f) = f.

We are now in a situation analog to that of section 1.1 with two filtrations on
Dx, the usual filtration and the V"-filtration. The sheaf Dx is thus provided with
a bifiltration by F,:'J-DX = Dx,; N V,'Dx and this defines a symbol 6" (c0,1)(P) which
is a function on T*X. By definition, 6" (c0,1)(P) is equal to o} (c(P)) where k is the
order of P for the V"-filtration. This symbol is thus equal to 0 if the order of o(P) is
strictly less than k.

If M is a coherent Dx-module, we define a good bifiltration and a microcharac-
teristic variety Ch"(co,1)(M). If M = Dx /I we will have:

Ch"(c0,1)(M) = {( € T*X |V P € I, 0" (c0,1)(P)({) = 0}.

The difference with the previous situation is the local identification of Ty X with X
which defines isomorphisms T*T3 X ~ T*TyX ~ T*X and make 0"(c(P)) a function
on T*X. Especially, if 7 is the Euler vector field of Ty X and 7 a vector field on X
with oy (n) = 7, the definitions of this section coincide with the definitions of the
previous one except for this identification.

1.3. Direct image of V-filtration. — Let ¢ : Y — X be a morphism of complex
analytic manifolds. A vector field u on Y is said to be tangent to the fibers of ¢ if
u(fop)=0forall fin Ox. A differential operator P is said to be invariant under ¢
if there exists a C-endomorphism A of Ox such that P(f o) = A(f) o for all f in
Ox. If we assume from now that ¢ has a dense range in X, A is uniquely determined
by P and is a differential operator on X. We will denote by A = ¢, (P) the image of
P in Dx under this ring homomorphism.

Let Z be a submanifold of Y and T' a submanifold of X. Let i be a vector field on
Y invariant under . We assume that 7 is definite positive with respect to Z and that
1’ = p«(n) is definite positive with respect to T. We also multiply n by an integer so
that its eigenvalues and those of ' are integers.
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REGULARITY OF D-MODULES ASSOCIATED TO A SYMMETRIC PAIR 171

Example 1.3.1. — Let Y be a complex vector space and ¢ : Y — X = C¢ given by
© = (¢1,.--,p4) where ¢1,...,pq are holomorphic functions on Y homogeneous of
degree my,...,mgy. Let Z = {0} and 7 be the Euler vector field of Y, so that the
Vn-filtration is the V-filtration along {0}. Then 1’ = ¢.(n) is equal to Y m;t; Dy, on
X and is definite positive with respect to {0}. Remark that we do not assume that ¢
is defined in a neighborhood of Z.

In the general case, we can choose local coordinates (y,t) on X so that n' =
>~ my;t;Dy;, then the map ¢ is given by y; = @;(x) and t; = 1;(x) where the functions
@i(x) is homogeneous of degee 0 for ) while the function v;(z) is homogeneous of degee
m; for n.

The sheaf Dy x = Oy Qy-104 ¢ 'Dx is a (Dy,¢~ ' Dx)-bimodule with a canon-
ical section 1 ® 1 denoted by 1y_ x. If we choose coordinates (xy,...,z,) of X and
coordinates (yi1,...,yp) of Y and if ¢ = (¢1,...,¥p), then the sections of Dy_, x are
represented by finite sums >, fo(y) ® D and the left action of Dy is given by

Dy, fa )® D7) = af"‘( ®D°'+ .fa —--(y) ® Dy, D
Ay Yi

If NV is a coherent Dx-module, its inverse image under ¢ is the Dy-module ¢* N =
Dy_x ®y-1py ¢ 'N. In general, p* N is not coherent but if A is holonomic, ¢*N
is holonomic (hence coherent).

Let Dy_ x[k] be the set of sections satisfying 1 - u — u - p.n = —B6'ku where g
(resp. B') is the g.c.d. of the eigenvalues of 1 (resp. ¢.n). (We may assume that
B =1or @ = 1 but not both in general). We define V;,Dy_,x as the subsheaf of
Dy _, x of the sections which may be written as series le x w with u; in Dy, x[l].
Remark that 1y_, x satisfies - lyx = ly_x - ¢«n hence is of order 0.

If NV is a coherent Dx-module provided with a V7' -filtration we define a filtration
on its inverse image by:

VI N = Z ViDy o x ® 17D 80—1‘/}771./\/.
k=p'i+B;
The sheaf Dy _ x is also provided with a filtration (Dy_ x); induced by the usual
filtration of Dx hence of a bifiltration F"Dy_,x. If N is bi-filtrated, we define in the
same way a bifiltration on @, N

Proposition 1.3.2. — Let T be an ideal of Dy which is generated by all the vector fields
tangent to the fibers of ¢ and by a finite set (P1,...,P) of differential operators
invariant under @. Let J be the ideal of Dx generated by (p«(P1),...,p«(P)). Let
M =Dy /T and N =Dx /T and put on M and N the bifiltrations induced by F"Dy
and F" Dx.

SOCIETE MATHEMATIQUE DE FRANCE 2003



172 Y. LAURENT

Then, there ezists a canonical morphism of Dy -modules M — ©*N which is a
morphism of bi-filtrated F"Dy -modules and an isomorphism at the points where p is
a submersion.

Proof. — There is a canonical morphism Dy — Dy _,x given by P +— P-1y_ x. The
vector fields tangent to the fibers cancel Dy _,x and a differential operator invariant
under ¢ satisfy P-ly_x = ly_x - ¢«(P) hence this morphism defines a morphism
M — o, N which is a morphism of left V"Dy-modules by the definitions.

In a neighborhood of a point where ¢ is a submersion, we may choose local
coordinates (Z1,...,Zp,Y1,--.,Yn—p) such that ¢(z,y) = . Then Dy_x is the
sheaf of operators P(x,y, D;), the vector fields tangent to the fibers are generated
by Dy,,...,D and the differential operators invariant under ¢ are of the form

' Pyn_p

P(z,Dg) modulo (Dy,), so M — ¢, N is an isomorphism. O

Let S = ¢~ !(T) and z be a point of S where ¢ is a submersion. In a neighborhood
of z, Y is isomorphic to X x S and if we fix such an isomorphism, " which is a vector
field on X may be considered as a vector field on Y, definite positive relatively to S.
Remark that o’ differ from 7 by a vector field tangent to . Then proposition 1.3.2
gives:

Corollary 1.3.3
The microcharacteristic variety Ch"(co,1)(M) is equal to Ch" (c0,1)(M) in a neigh-
borhood of x.

1.4. Weighted V-filtration and regularity

Definition 1.4.1. — Let Z be a submanifold of X and n be a vector field which is
definite positive with respect to Z. A coherent Dx-module has n-weighted regular
singularities along the lagrangian manifold A = T X if there is a dense open subset
Q of A such that Ch"(c0,1)(M) C A in a neighborhood of Q.

If oz (n) is the Euler vector field of Tz X, proposition 1.1.1 shows that this definition
coincide with the definition of Kashiwara-Kawai.

Let X = C™ with coordinates (z1,...,Zn—p,t1,...,tp) and Z = {t =0}, let Y =
C™ with coordinates (21,...,2Zn—p,y1,-..,Yp) and Z' = {y = 0}. Let my,...,m, be
strictly positive integers , we define the map ¢ : Y — X by ¢(x,y) = (=, 47", .-, ¥p ")
and the vector field n = Zi:l...p m;t;Dy,.

Lemma 1.4.2. — Let M be a holonomic Dx -module with n-weighted regular singulari-
ties along T X , then ¢* M is a holonomic Dy -module with regular singularities along
T3Y.
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Proof. — We may assume that M is equal to Dx /Z for some coherent ideal Z of M.
The inverse image of M by ¢ is, by definition:

P*M =Dy_x ®,-1py ¢ "M =Dy_x/Dy_xT.

The sections of Dy _, x are represented by P(z,y, Dz, Di) = Y aqs(z, y)D2D? and
we define the filtration V"Dy_, x in the same way than in the previous section. For
this filtration z7y? D2 D is of order <m, 3>—|8|. We also define the usual filtration on
Dy _ x, that is the filtration by the order in (D, D;). In this way, Dy _ x is provided
with a bifiltration F"Dy _, x which is compatible with the bifiltration F"Dx, that is
an operator P of F})Dx sends FDy_,x into an+k,j+lDY—"X'

Let Dy x[N] be the sub-Dy-module of Dy_,x generated by Df for [B] < N. If
M is holonomic, ¢* M is holonomic hence coherent. The images of the morphisms
Dy_x[N] — ¢*M make an increasing sequence of coherent submodules of p*M
which is therefore stationary, so there exists some Ny such that Dy_, x[N] — ¢*M
is surjective for all N > Ny. The bifiltration induced by F"Dy_, x on Dy_,x[N] is
a good FDy-filtration which induces a good filtration on ¢*M if N > Ny, we will
denote it by F[N]o* M.

The associate graduate is denoted by gr[N]p* M and, as F[N] is a good bifiltration,
the analytic cycle of T*Y associated to gr[N]p*M is independent of N [10, Prop
3.2.3.]. For N > Ny, the canonical morphism gr[No]p*M — gr[N]p*M induces an
isomorphism on the associated cycles hence gr[No]p* M and gr[N]p* M have the same
support and the kernel and cokernel of the morphism have a support of dimension
strictly lower.

An operator P of F}} Dx sends FZJ’.’DY_.X[NO] into Fﬁuk,jHDY—»X[NO +1]. If P an-
nihilates a section u of F};[No|p* M, its class in gry,; Dx that is the function 0" (c0,1)(P)
annihilates the image of u in gr[N + lJp* M. Let ¢ be a point of A = T;X such that
Ch"(c0,1)(M) C T3 X in a neighborhood of . By the hypothesis, there is a dense open
subset Q of such points in A. There is a differential operator P which annihilates u
and such that 0" (co,1)(P) = t} u where p is a function invertible at ¢. Hence there
exists some [ such that the image of u in gr[N + [J¢* M is annihilated by tM = yM™
hence is supported by y; = 0. As gr[Np]p* M is finitely generated, there exists some
N1 > Ny such that the image of gr[NoJo* M in gr[N1]p* M is contained in y; = 0.

We can do the same for the other equations of T7,Y" and show that there exists some
N3 > Ny such that the image of gr[No|¢* M in gr[N]¢* M is contained in T%,Y". This
shows that gr[No]p* M is supported by the union of T%,Y and of a set W of dimension
strictly lower than the dimension of T%,Y. But we know that this support is involutive
hence all its component have a dimension at least that dimension, so gr[Ng]p* M is
supported in T%,Y in a neighborhood of ¢~!(¢). By definition gr[No]p*M is equal
to Chrs,y (c0,1)(* M), hence ¢* M has regular singularities along T7,Y". O
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174 Y. LAURENT

Theorem 1.4.3. — Let X be a complex manifold, n : T*X — X the projection, Z a
submanifold of X and n a vector field on X which is definite positive with respect
to Z. Let M be a holonomic Dx-module. We assume that:

(1) M is a regular holonomic Dx-module on X — Z,
(2) M has n-weighted regqular singularities along T3 X,
(3) The dimension of Ch(M)NT3X is equal to the dimension of X.

Then M is a regular holonomic Dx-module.

Proof. — We fix local coordinates (1,...,2Zn_p,t1,...,tp) of X so that Z = {t = 0}
andn =3, _mt;Dy,. Wedefineamapy:Y — X by p(z,y) = (z,97™,...,yp ")
where Y is a neighborhood of 0 in C™. If Z’ is the set {y = 0}, lemma 1.4.2 shows
that ¢*M has regular singularities along 77,Y".

The third condition means that the characteristic variety of M has no irreducible
component contained in 771(Z) except T4X. The same is true for ¢*M on Z'.
This may be proved as in lemma 1.4.2 but with the usual filtration replacing the
bifiltration. This may also be proved easily with the definition of the characteristic
variety in terms of microdifferential operators.

By hypothesis, M is regular on X \ Z hence by [6, Cor 5.4.8.] ¢*M is regu-
lar holonomic on Y \ Z’. So, ¢*M has regular singularities along each irreducible
component of its characteristic variety, hence by definition, it is a regular holonomic
Dy-module.

Then by [6, theorem 6.2.1.], the direct image y.p* M is a regular holonomic Dx-
module. By definition

<P*<P*M = R‘P*(DXHY ®“5y DY—)X ®]IL;—1DY SO‘lM)
and the morphism Dx — Dx.y ®p, Dy_ x is injective hence M is a submodule of

pxp* M hence a regular holonomic Dx-module. (]

The following corollary is the generalization of the definition of regular holonomic
D-modules and of proposition 1.1.1. It is proved from the previous theorem by de-
scending induction on the dimension of the strata.

Corollary 1.4.4. — Let M be a holonomic Dx-module. Assume that there is o strati-
fication X =|J Xo such that Ch(M) C UT%_ X and for each a there is a vector field
Na positive definite along X, such that M has n-weighted regular singularities along
T X.

Then M is a regular holonomic Dx-module.

2. Symmetric pairs

2.1. Definitions. — Let us briefly recall what is a symmetric pair. For the details
we refer to [15] and [12]. Let G be a connected complex reductive algebraic group with
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Lie algebra g. Fix a non-degenerate, G-invariant symmetric bilinear form x on the
reductive Lie algebra g such that « is the Killing form on the semi-simple Lie algebra
(9,9]. Fix an involutive automorphism o of g preserving « and set ¢ = Ker(d — I),
p = Ker(9 + I). Then g = €@ p and the pair (g, ) or (g,?) is called a symmetric
pair. Recall that ¢ and p are orthogonal with respect to x and that € is a reductive
Lie subalgebra of g. Denote by K the connected reductive subgroup of G with Lie
algebra £. The group K acts on p via the adjoint action.

Let p* be the dual of p, O(p) = S(p*) the ring of regular functions on p (S(p*) is
the symmetric algebra), O(p*) = S(p) the ring of regular functions on p* and D(p) the
ring of differential operators on p with coefficients in O(p). The ring of functions O(p)
is naturally embedded in D(p) and we embed O(p*) = S(p) in D(p) as differential
operators with constant coefficients. That is we associate to an element u of the vector
space g the derivation in the direction of u

Du(f)(z) = 3 f(&+ tw)lg

and we extend to the symmetric algebra S(p). Remark that this embedding is com-
patible with the filtration by the degree in S(p) and the filtration by the order in
D(p).

Notice that K has an induced action on S(p), S(p*) and D(p) and we have natural
embeddings of the invariant subrings S(p)*¥ c D(p)¥X and S(p*)¥ C D(p)¥X. The ring
S(p)X is equal to the ring of polynomials C[ps,...,p,] for some py,...,p, in S(p)¥
and in the same way S(p*)¥ is equal to a ring of polynomials C[gy, ..., g} [7].

The differential of the action of K on p induces a Lie algebra homomorphism
7 : € — Der S(p*) hence an embedding 7 : ¢ — D(p) defined by

(r(@)- )®) = 27 O)limo, foract, [€OE), vep.

As a section of the tangent bundle, 7(A) is the map p — Tp = p X p given by
T(A)(X) = (X, [X, A]).

We denote by N(p) the nilpotent cone of p, that is the set of nilpotent elements
of g which lie in p, it is also the subvariety of p defined by the set of K-invariant
functions S(p*)X. In the same way we consider the nilpotent cone N(p*) which is
the subvariety of p* defined by S(p)*. An important result is that the nilpotent cone
N(p) is a finite union of K-orbits [7, theorem 2].

The cotangent bundle T*p is equal to p x p*. The non-degenerate form « on g
defines a non-degenerate symmetric bilinear form on p and an isomorphism p ~ p*.
We identify T*p = p x p* ~ p x p. Let C(p) = {(z,y) € p x p | [z,y] = 0}, then the
dimension of (p x N(p)) NC(p) is equal to the dimension of p [12, lemma 2.2.].

The characteristic variety of D,/D,7(€) is equal to C(p). Let F be an ideal of
finite codimension of S(p)¥, its graduate is a power of S(p)¥ hence the characteristic
variety of the Dy-module D, /D, F' is p x N(p). Finally, if 7 be the left ideal of D,

SOCIETE MATHEMATIQUE DE FRANCE 2003



176 Y. LAURENT

generated by F' and 7(¥), the characteristic variety of Mg = D, /7 is contained in
(p x N(p)) NC(p) hence MF is a holonomic Dp-module.

As a special case, we have the diagonal case where G = G; x G with ¥(z,y) = (y, )
for some reductive group G;. Thus (g,¢) = (g1 @ g1,91) and K = G; with its
adjoint action on p = g;. Let A € p* and F) = {P — P(\) | P € S(p)¥}, then
the corresponding module MY = D, /D,7(€) + D, F) is the module of Kashiwara-
Hotta [4].

2.2. The conjecture of Sekiguchi

Theorem 2.2.1. — Let F be an ideal of finite codimension of S(p)X and Mg =D, /T
where I is the left ideal of Dy generated by F' and 7(&).
Then MFp is a regular holonomic Dy-module.

The proof of this theorem will be made in several steps. First we will reduce to the
semi-simple case (lemma 2.2.3), then prove by induction on the dimension of the Lie
algebra, that the result is true outside of the nilpotent cone (lemma 2.2.4) and the
key point of the proof is the case of a nilpotent orbit (lemma 2.2.6).

Lemma 2.2.2. — Let Y be a complex manifold and X =Y x C. Let P(t,D;) be a
differential operator on C with principal symbol independent of t and Z be a coherent
ideal of Dx which contains P.

Let My be the inverse image of M = Dx /T on'Y by the immersion Y — X, then
M is isomorphic to the inverse image of My by the projection q : X — Y, that is

M= DX—+Y ®q—1'Dy q—lMY = MY@OC
In particular, M is reqular holonomic if and only if My is reqular holonomic.

Proof. — This lemma is a (very) special case of [14, theorem 5.3.1. ch II]. The first
step is to prove that D¢/DcP is isomorphic to (Dc/DcD;)N. The proof is the same
than that of [14, theorem 5.2.1. ch II], but as there is only one variable, the proof is
very simple and use only functions instead of differential operators of infinite order.
Then we can follow the proof of [14] but with finite order operators instead of infinite
order operators.

Remark that if P were a differential operator in several variables, for example,
P = D? + D,, this result would be true only with the sheaf D of differential
operators with infinite order.

As X =Y xC, the inverse image of My by q is isomorphic to the external product
of D-modules My ®0Oc¢. O

Assume that p = po @ p1, the action of K on po being trivial. Then S(p)¥ =
S(po) ® S(p1)X, this defines a morphism § : S(p)X — S(p1)¥ by restriction and
F, = §(F) is an ideal of finite codimension of S(p1)¥. Let Mg, = Dy, /I; where T;
is the ideal of D,, generated by 7, (¢) and Fj.
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Lemma 2.2.3

(1) The module M is isomorphic to Oy, &(MF)p, where (MFp),, is the restric-
tion of Mp to p;.
(2) (MF)p, (hence Mp) is regular if Mp, is regular.

Proof. — By induction on the dimension of pg, we may assume that po = C and
choose linear coordinates (z,t) of p such that po = {(z,t) € p | = 0}. The action
of K is trivial on po hence S(p)X contains S(po) and as F is finite codimensional in
S(p)¥ it contains a polynomial in D;. Lemma 2.2.2 shows the first part of the lemma.

We assume now that Mg, is regular. Recall that (Mp),, = Mp/tMF is a holo-
nomic Dy, -module generated by the classesof 1,..., D;n_l. Let M’ be the submodule
of (Mp),, generated by the class u of D*~!. The vector fields of () are indepen-
dent of (¢, D;) hence u is annihilated by 7(¢). If P is an element of F', as an operator
of D, it is equal to §(P) + AD; hence 6(P) annihilates u. So u is annihilated by 7(¥)
and by F; and M’ is a quotient of Mp,. So M’ is regular.

Consider now M which is the submodule of M generated by the classes D{*~*
and D2, The quotient M”/M’ is generated by the class v of D{"~? which is
annihilated by 7(¢) and by Fy, so it is regular. We have an exact sequence

0_>MI_)MH—>M”/M1_)O,

where two terms are regular hence M" is regular. Continuing the same argument, we
get that (Mp),, is regular. O

Let b be a semisimple element of p. Then p = p® @ [£,b] and g® = € @ p® defines
a symmetric pair. Let § be the restriction map & : S(p)X — S(p®)X’, this map is
injective and if F' is an ideal of finite codimension of S(p)¥ then §(F) is an ideal of
finite codimension of S(p®)& ’ [3, lemma 19]. Let Zy be the left ideal of Dy» generated
by 6(F) and 7(€°) and My, = Dy /Ts.

Lemma 2.2.4. — In a neighborhood of b, Mg is isomorphic to the external product of
the holomorphic functions on the orbit of b by a quotient of My. In particular, Mg
is regular if My, is regular.

Proof. — Let V be a linear subspace of £ such that ¢ = V@¥®. Themap f: Vxp® —p

given by f(y,Z) = exp(y) - Z is a local isomorphism. If (z1,...,Z,—,) are linear
coordinates of V and (¢1,...,t,) are linear coordinates of p°, the map f defines local
coordinates (z1,...,Zn—r,t1,...,t,) of p in a neighborhood of b. Lemma 3.7 of [15]

shows that in these coordinates, the orbit Kb is {(z,t) | t = 0}, p® = {(z,t) | = = 0}
and the differential operators D, ..., D, _ _ belong to 7(¢). Hence M is the product
of Ok by a module N.

If Z is an element of €, 7,(Z) is by definition the vector field on p with value [Z, A]
at a point A of p. The value of 7,5(Z) at a point A of p® is the projection of [Z, A]
on p®, hence 7, (¥) is equal to 7,(£) modulo Dy, ..., D,,_,. On the other hand, let
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P € F, as the coordinates (t,...,t,) are linear coordinates of p®, the value of P on
a function of ¢ is the restriction of P to S(p®)¥ *. Hence N is a quotient of M;,. O

Lemma 2.2.5. — Let A be the conormal to 0 in p. The microcharacteristic variety
Ch (c0,1)(MF) is contained in (p x N(p)) NC(p).

Proof. — Let E be the Euler vector field of the vector space p. It is clear on the
definition, that the vector fields of 7(¢) preserve the homogeneity of functions hence
that they commute with E. So they are homogeneous of degree 0 for the V-filtration
at 0. On the other hand, they are homogeneous of degree 1 for the usual filtration as
any vector field. So if u € 7(¥), oA (c0,1)(u) = o(u).

On differential operators with constant coefficients, the V-filtration at {0} and the
usual filtration coincide, hence we have also 0 (c0,1)(P) = o(P) for these operators.

So, Ch(co,1)(Mp) is contained in the set of points where the symbols of the
operators of 7(¢) and of F' vanish that is in (p x N(p)) NC(p). O

Lemma 2.2.6. — For each nilpotent orbit S of N(p), there is a vector field n which is
positive definite with respect to S and such that Mg has n-weighted regular singular-
ities along Tgp.

Proof. — Let S be one of these orbits, r the codimension of S and X € S. As
in [12, §3] (see also [16, Part I, §5.6]) we can choose a normal slo-triple (H, X,Y)
in p which generates a Lie algebra isomorphic to slz and acting on p by the adjoint
representation. Then p splits into a direct sum of irreducible submodules of dimensions
i +1fori=1...r. Moreover p = p¥ @ [X, ¥, dimp¥ = r and we can select a basis
(Y1,...,Y,) of p¥ such that [H,Y;] = —\;Y;. Let V be a linear subspace of ¢ such
that ¢ =V @ €X. If (by,...,b,_,) is a basis of V, the map F : C* — p given by

F(z1,. ., Tnor,t1,...,tr) = exp(z1b1) ... exp(Tn—rbn_r) - (X + > t;Y3)

is a local isomorphism hence defines local coordinates (z,t) of p in a neighborhood
of X. In these coordinates, S = {(z,t) | t = 0}, p¥ = {(=,t) | = = 0}, and the
differential operators Dy, ,...,D,, . are in the ideal generated by 7(¢) [15, lemma
3.7].

Let E be the Euler vector field of the vector space p. A standard calculation [16,
Part 1, §5.6] shows that E(t;)|z=0 = mst; with m; = $); + 1. Moreover, if by, = H,
we proved in [1, lemma 3.4.1] that F is equal to n + w where n = Z;zl mjt;Dy; and
w=1/2D,__ . By definition, n is positive definite with respect to S.

Define a map ¢ : p = V = C" by p(z,t) =t. Let ' = Y myt;Ds; on V. The
functions ¢1, .. .,t, satisfy E(t;) = n/(t;) = m;t; hence they are homogeneous and the
map ¢ is defined in a conic neighborhood of X. This also shows that E is invariant
under ¢ and that ' = ¢, (E).

The module M is equal to D, /Z where 7 is a coherent ideal of Dy, which contains
the derivations Dy, ,...,D hence T is generated by Dg,,...,D and a finite

Y X —r ' Tn—r
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set of differential operators Q1(t, D), ...,Qn(t, D;) depending only of (¢, D;). (This
result is standard and also a special case of lemma 2.2.2).
The module M g satisfies the hypothesis of corollary 1.3.3 hence Ch®? (00,1)(MPF) is
equal to Ch"(c0,1)(MF) and by lemma 2.2.5 it is contained in (p x N(p)) N C(p).
Assume now that T¢p is an irreducible component of the characteristic variety
Ch(MpF) and let z* be a generic point of T§p, that is a point which does not belong
to other irreducible components of Ch(Mp). We have

Tsp C Ch(MF) C (p x N(p)) NC(p)

and as they have the same dimension, they are equal generically. So Ch”(co,1)(Mp) =
T3p generically on T$p and we are done. O

Proof of theorem 2.2.1. — We will argue by induction on the dimension of g and first,
we reduce to the semi-simple case. Set g1 = [g, g], &1 = €Ng1, p1 = pN g, 3 the center
of g and pg = 3N p. We have p = po @ p1 and by lemma 2.2.3, it suffices to prove the
theorem for p;. As 3 N ¢ acts trivially we may assume that g is semisimple.

Let z be a non-nilpotent element of p. It decomposes as £ = b+ n where b is
non zero and semisimple, n is nilpotent and [b,n] = 0. As g is semisimple, p® is of
dimension strictly less than p, hence we may assume by the induction hypothesis that
the theorem is true for p®. Lemma 2.2.4 shows that M is regular in a neighborhood
of b. As My is constant on the orbits, it is regular on the orbits whose closure
contains b, in particular at z.

We proved that Mpg is regular outside of the nilpotent cone. As the nilpotent
cone is a finite union of orbits, we will now argue by descending induction on the
dimension of these orbits. So let z be a nilpotent point of p, Kz its orbit and assume
that M is regular on p — Kz in a neighborhood of . Lemma 2.2.6 shows that Mg
has 7-weighted regular singularities along T p hence theorem 1.4.3 shows that Mg
is regular at x. O
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