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g - D I F F E R E N C E EQUATIONS AND 

p-ADIC L O C A L M O N O D R O M Y 

by 

Yves André & Lucia Di Vizio 

Abstract. — We present a p-adic theory of (/-difference equations over arbitrarily thin 
annuli of outer radius 1. After a detailed study of rank one equations, we consider 
higher rank equations and prove a local monodromy theorem (a Q-analog of Crew's 
quasi-unipotence conjecture). This allows us to define, in this context, a canonical 
functor of "confluence" from (/-difference equations to differential equations, which 
turns out to be an equivalence of categories (in the presence of Frobenius structures). 

Résumé (Equations aux (/-différences et monodromie p-adique). — Nous présentons une 
théorie p-adique des équations aux (/-différences sur des couronnes arbitrairement 
minces de rayon extérieur 1. Après une étude détaillée des équations de rang 1, 
nous nous penchons sur le cas de rang supérieur et nous démontrons un théorème 
de monodromie locale (un (/-analogue de la conjecture de quasi-unipotence de Crew). 
Cela nous permet de définir, dans ce contexte, un foncteur canonique de « confluence » 
des équations aux (/-différences vers les équations différentielles, qui s'avère être une 
équivalence de catégories (en présence de structures de Frobenius). 

Introduction 

In the context of p-adic differential equations, the expression "local theory" occurs 
in two different senses. In the naive sense, it refers to the study of the behaviour of 
solutions in a small punctured disk around a given singularity. This theory has been 
reasonably well-understood for a long tirne^1). 

On the other hand, according to some insights of Dwork and Grothendieck, the 
geometrically relevant p-adic differential equations are those which admit analytic 
solutions in all non-singular open unit disks, and which extend a little inside the 
singular disks. They should be understood as objects (cohomological coefficients) 
belonging to geometry in characteristic p. It is then consistent with this viewpoint 

2000 Mathematics Subject Classification. — Primary 39A13; Secondary 33D05, 12H50. 
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Although by no means completely understood, cf. for instance the problems raised by Ramero's 
theory [Ra98] in its differential variant. 
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56 Y. ANDRÉ & L. DI VIZIO 

to call "local theory" the study of the behaviour of solutions in arbitrarily thin annuli 
with outer radius 1 contained in singular open unit disks^. 

In this sense, the local theory of p-adic differential equations has been developped 
first by Robba (in rank one), then by Christol and Mebkhout (in arbitrary rank), and 
has recently reached full maturity with the proof of the so-called local monodromy 
theorem (Crew's quasi-unipotence conjecture) which provides a bridge toward the 
theory of p-adic Galois representations. 

The objective of this paper is to set up a local theory of p-adic (/-difference equa­
tions, parallel to the differential theory, and to put a link forward between the two 
theories. 

* * * 

In the history of the theory of p-adic differential equations, going from the rank 
1 case to arbitrary rank has been a difficult step. This is due in part to the fact 
that the study of rank 1 p-adic differential equations indulges fairly down-to-earth 
methods (cf. for instance [R85], [CC96]). In the first part of the paper we develop an 
analogous theory for p-adic (/-difference equations of rank 1. The techniques employed 
are inspired by the differential case and, due to their explicit and direct nature, 
bring to the fore the relationship with differential equations. In fact, we construct 
a canonical déformation functor from the category of p-adic differential equations of 
rank 1 to the category of p-adic (/-difference equations, which we describe explicitly. 

The first part is organized as follows. In § 1 we recall some basic facts of p-adic 
(/-difference algebra proved in [DV03]. In § 2 we prove some properties of the q-
exponential function which play a significant role in the sequel. Sections §3 and §4 
contain a (/-analog of Dwork-Robba's criterion of solvability and its application to 
(/-difference equal ions of rank 1 with meromorphic coefficient. The results in §4 are 
used in the next section to show that one can actually reduce the study of rank-one 
(/-difference equations analytic over an arbitrary thin annulus of outer radius 1, to 
the study of rank 1 (/-difference equations with polynomial coefficient. This reduction 
is crucial for the characterization of (/-difference equations with Frobenius structure 
(cf. §6). We finish the first part by proving that for a (/-difference equation having a 
Frobenius structure is equivalent to being a "deformation" of a differential equation 
with strong Frobenius structure (cf. § 7). From there, we obtain the p-adic monodromy 
theorem in the rank 1 case and the deformation functor (cf. §8). 

There are two appendices, the first one being devoted to the Frobenius structure of 
the (/-exponential series. In the second one. we give a (/-analog of Dwork's approach 
to the p-adic gamma function via the Frobenius structure of so-called exponential 
modules. 

(2^See the previous paper [A] for more detail and perspective, and for the apparatus of analogies 
which motivates the present paper. 
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(/-DIFFERENCE EQUATIONS AND p-ADIC LOCAL MONODROMY 57 

In the second part, we consider (/-difference modules M of arbitrary rank over 
the "Robba ring" ΊΖ of analytic functions on an arbitrarily thin annulus of outer 
radius 1. We prove the local monodaromy theorem for those (/-difference modules 
which admit a Frobenius structure: there exists a finite étale extension ΊΖ'/ΊΖ coming 
from characteristic p, such that M (g)π ΊΖ' [log χ] becomes a trivial (/-difference module 
(cf. §14.2, §14.3 for various equivalent precise statements). We follow K. Kedlaya's 
approach to the p-adic local monodromy theorem in the differential case, proving 
along the way a (/-analog of Tsuzuki's theorem on unit-root objects. 

This second part is organized as follows. We first discuss finite étale extensions 
ΊΖ'/ΊΖ coming from characteristic p, and how the (/-difference operator dq extends to 
ΊΖ' (the lack of an explicit expression for this extended operator leads to many technical 
difficulties in the sequel). We then introduce and investigate two notions of Frobenius 
structures for ^-difference modules: the strong Frobenius structure (analogous to its 
differential counterpart), and the confluent weak Frobenius structure (which yields a 
sequence of qp" -difference modules converging to a differential module with Frobenius 
structure). 

In § 13, we analyse (/-difference modules over ΊΖ with overconvergent (strong) Frobe­
nius structure of slope 0. As in Tsuzuki's theorem, they arise from finite /;-adic 
representations of the inertia group of a local field of characteristic p. 

We then prove three versions of the theorem of quasi-unipotence for ^-difference 
modules over ΊΖ which admit a strong Frobenius structure. We also show that such 
^-difference modules have a confluent weak Frobenius structure. 

This gives rise to a canonical functor of "coniluenee" between such (/-difference 
modules (Μ, E q ) , and differential modules over ΊΖ which admit a strong Frobenius 
structure, which has a canonical quasi-inverse (15.1, 15.2). More precisely, for any 
such (M, E c /), there is a canonical sequence of qp -difference structures on the ΊΖ-
module M (for fixed s and with /' —> oo, so that qp —> 1), related to each other by 
Frobenius, and which converges to a differential structure on 71/. 

PART I 
RANK 1 

1. Generalities on />adic (/-difference equations of rank 1 

1.1. The (/-difference algebra of analytic functions over an annulus 

Let Κ be a field of characteristic zero, complete with respect to a non archimedean 
absolute value | |, with residue field A; of characteristic /; > 0. We denote by OK its 
ring of integers and we assume that the absolute value is normalized by \p\ = p~l. 
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58 Y. ANDRÉ & L. DI VIZIO 

For any interval / C IR^o we consider the Κ-algebra Ακ(Ι) of analytic functions 
with coefficients in Κ on the annulus CK{I) = {x £ Κ : \x\ G / } : 

Ακ(Ι) T,„ezanX" • an e K; lim \an\pn = 0 Vp G 1 
η—>±OC 

We denote by A4 κ (I) its field of fractions (the field of meromorphic functions on 
C κ {!))-, a r l ( l by Β κ (I) the subring of bounded elements of ^4^(7). The theory of 
Newton polygons shows that every invertible analytic function on C(I) is bounded, so 
that Λκ{ΐΥ = Βκ(Ι)*· We will omit the subscript Κ when there is no ambiguity. 

We fix once and for all an element q G Κ, such that |1 — q\ < 1 and that q is not 
a root of unity. The algebra A{I) has a natural structure of a (/-difference algebra. 
This means that the homeomorphism 

C(I)^Cil) 

χ ι—> qx 

induces a K-algebra isomorphism 

aq : A(I) A{I) 
f(x) ^ f(qx) 

Similarly for M(I) and B(I). 

1.2. The q- dérivât ion. — To the operator oq one associates a "twisted derivation" 
dq defined by 

dq(f)(x) = f{qx) - f(x) 
(q - l)x 

which satisfies the twisted Leibniz Formula: 

(1) dq(fg)(x) = j\qx)dq(g)(x) + dq{f){x)g(x). 

For any pair of integers η ^ i ^ 1 and any f,g G M{I) the ç-derivation dq verifies: 

(2) dqxn = \n)qxn 1 , where [n]q = 1 + q H h qn 1 qn _ 1 

(3) 
aq 

(fg) 
x1-- n 

i 
xn \ where [0]' =1 , [n}l

q = [Ti}q[ri — 1]' and η 
i 

(fg)q 

q [n}n- [n}l 

(4) <%(fg)(x) = 
η 

j=0 

η 
J 

d'^(j)Wx)(Pq{g)(x). 

1.3. g-difference equations. — Let us now consider a q-difference equation of 
rank 1 with coefficients in M (I): 

(5) y{qx) = a(x)y(x), a{x) G M(I). 
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g-DIFFERENCE EQUATIONS AND p-ADIC LOCAL MONODROMY 59 

We shall often write (5) in the form 

(6) dqy(x) = g(x)y(x), with g {χ) -- αχ) - 1 
(q - l)x 

For any u £ M(I)*, z(x) = u(x) 1y(x) is a solution of the (/-difference equation 

(7) z(qx) = [uiqx^aixMx)] z(x) 

or equivalently of 

(8) dgz(x) = u(x) 
•u(qx) 

g (x) dqu(x) 
u(qx) 

z(x). 

We shall say that equations (5) and (7) (or (6) and (8)) are Al (^-équivalente. 
From (6), one derives the following sequence of equations 

<%(y)(x)=gn(x)y(x), 

with gi{x) = //(./·). gn+i(x) = gn(qx)gi(x) + dqgn(x). It is convenient to set g0(x) = 1. 
If g(x) is analytic at 0, then x)g(x) 9n(0) χ71 is a formal solution of y(qx) = (i(x)g(x). 

1.4. Generic points. — In order to apply the technique of generic points, we shall 
have to use an auxiliary extension of normed fields Ω// \ , with the following properties 
(for the construction of such a field, see for instance [RoOO. §3, 2]): 

1) the field Ω is complete and algebraically closed; 
2) the set of values of Ω is R->0; 
3) the residue field of Ω is a transcendental extension of the residue field of Κ. 

For any /; G M>n the field Ω contains an element tp, called a generic point (at distance ρ 
from 0), such that tp is transcendent over Κ and \ip\ — p , so that the norm induced 
over K(tp) C Ω is defined by 

Σ dh'4 
Σ dh'4 

sup, \<ι, p1 

S U P J \l)yp> 

Definition 1.1. For any G /, we call the number 

Rp(aq - a(x)) = inf p, lim inf 
/; - χ 

(jn(tp) 
a(x)) 

-l/n 

the generic radius of convergence of y(qx) = a(x)y(x) at tp. We will write simply Rp 

when no confusion is possible. 

•̂̂ We shall also use a similar terminology for other rings of functions. 
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60 Y. ANDRÉ & L. DI VIZIO 

1.5. Properties of the generic radius of convergence. — The following propo­
sition summarizes some facts about the generic radins of convergence, which are 
proven in [DV03]. 

Proposition 1.2 
1) (Twisted Taylor expansion) Let dqy{x) = g(x)y(x) be a q-difference equation with 

coefficient g(x) G M (I) and let ζ G C(I). Suppose that g(x) does not have any pole in 
qN£. Then dqy(x) = g(x)y(x) has an analytic solution in a neighborhood of ξ if and 
only if 

R := lim inf 
η—> oc 

9n(0 
|rf''] 

-l/n 
> \(q-m- 1) E] 

In that case, the unique analytic solution y(x) of y(qx) = a(x)y(x) in the open disk 
D(£,R~) verifying y (ξ) — 1 coincides with the sum of the series 

u ><0 

fJniO 
M{I) (x,0n,q, where (χ,ξ)η,, = (x - 0(x ~ <l0 · · · (* - q " ' 1 ® . 

2) Let b(x) = u(qx) [a(x)u(x). with u(x) G M{I)*. Then Rp(a - a(x)) = 
RP(o~ — b(x)) for any ρ G I, i.e., the generic radius of convergence is invariant under 
Ai (I)-equivalence. 

3) (//-analog of the Dwork-Robba effective bound) // R.p > \q — l\p, then 

\<Jn(tn) 
M{I) 

1 
M{I) for any η ^ 1. 

4) (Transfer to an ordinary disk) Let g(x) be analytic over Ό(ξ,ρ~), with ζ G Κ 
and \ξ\ $C ρ, and let Rp > \q—\\p. Then dqy(x) — g(x)y(x) has an analytic solution in 
the disk /)(£,. Rp ). Moreover, the equation d(jg{x) — g(x)y(x) has an analytic solution 
in the disk Ό(ξ, p~) if and only if Rp = p . 

5) (Transfer to a regular singular disk) Let a(x) G *4(]0,1[) and u(x) G Κ {χ} be a 
formal power series with coefficients in Κ such that v^qx)-1a(x)u(x) G Κ. If Rp = p , 
the series //(./·) converges for \x\ < p . 

Corollary 1.3. Let y(qx) — (i(x)y(x) be a q-difference equation with a(x) G A([Q, 1[) 
(resp. Λ^Ο, 1[) Π A1([0, I])). Then y(qx) = a(x)y(x) has a solution y(x) analytic and 
bounded in C([0, 1[) if and only if\m\p^\ Rp = 1 (resp. R\ — I). 

Proof. Let a{x) G .4([ϋ, 1[). It follows from the assertions in 4) of the previous 
proposition that the existence of a solution y(x) analytic and bounded over C([0, 1[) 
implies Rp = ρ for any ρ G ]0,1[. Hence we conclude that l im^i Rp = 1. 

On the other hand, suppose lini,,—ι Rp — 1. Again, by the assertions of 4), that 
the formal solution 

M{I) M{I) 

M{I) 
M{I) χ" 

ASTÉRISQUE 29G 



-̂DIFFERENCE EQUATIONS AND p-ADIC LOCAL MONODROMY 61 

of y(qx) — a(χ)y(χ) converges in D(0,R ) for any ρ G ]0,1[. This proves that 
y (χ) G *4([0,1[). Finally statement 3. implies that 

(9) 
9n(0) 
M{I) 

9n(to) 
M{I) 

1 
RN ' 

By letting ρ tend to 1, one proves that y(x) is bounded. 
If a(x) G A([Q,1[) Π Μ([0,1]), the generic radius of convergence R\ is defined. 

Assertion 4) of (1.2) states that y(qx) = a(x)y(x) has a solution y(x) G *4([0,1[) if 
and only if R\ = 1. Moreover the existence of the analytic solution y(x) G *A([0,1[) 
implies that Rp — ρ for any ρ G ]0,1[, therefore the inequality (9) allows to conclude 
that y(x) is bounded. • 

It is customary in the theory of g-difference equations to assume that the coefficient 
a is invertible^4). We shall follow this tradition, and consider mostly ^-difference 
equations y(qx) = (i(x)y(x) with a(x) G A(I)* = B(I)*. Written in the form dq(y) = 
gy, this implies that g G Β {I). Actually most of the time, we shall not only have 
g G Β (I) as in the differential case (the logarithmic differential of any element of A(I) 
belongs to £>(/)), but also \(q — l)g\B{i) < 1, \α\β(ΐ) = 1· 

2. An example: the ^-exponential function 

2.1. The α-exponential < „(./·)· — The power series 

eq(x) = 
x" 

M{I) Mi 

is a g-deformation of the exponential series and satisfies the ^-difference equation 

that is to say 
eq(qx) = (l + (q-l)x)eq(x). 

Μ([0,1]), 

Proposition 2.1. The series eq(x) has radius of convergence Y[l>0 M{I) 
l/p' + l 

Proof. — Everj' positive integer η can be uniquely written in the form η — psm + k, 
where m..s,k G Ζ, m and ρ are coprirne and 0 ^ k ^ ρ — 1. If k > 0 then \[n]q\ = 
\cfm{k]q + \p*m]q\ = 1, in fact \[k]q\= 1 and \\psm]g\ = |H,„-[p s],| < 1. Therefore 

M{I) 
[«/p] 

i=l 
\bUU = [[ 

2^0 
\p] 

[n/pi + l] 
qv' 

(4)This convention is also in use in the higher rank case, where a(x) is a matrix; it allows to define 
the dual system. 
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62 Y. ANDRÉ & L. DI VIZIO 

where the product on the right is actually finite. It follows that 

lim sup I 
11—>oc 

Mi/ l/n 
Π 

6çx) 
6çx) 6çx) 

6çx) 

Proposition 2.2. If 

(10) dist(agZ/\ 6gZ / ;) = min |a — qCYb\ < radius of convergence ofeq(x), 
nez P 

the analytic function eq(ax) / eq(bx), with a,b G Κ, α φ 0 φ b, is over convergent, i.e., 
it has a radius of convergence > 1. 

Remark 2.3. Notice that exp(ax')/exp(6;r), with a, b G Κ, is overconvergent if and 
only if \a — b\ < |π|, hence the inequality above is actually a ^-deformation of the 
analogous condition in the differential framework. 

Proof. The series eq(ax)/eq(bx) is solution of the ^-difference equation 

y(qx) = 1 + (q - I)ax 
1 + (q - l)bx y{x). 

Notice that min a G^ ; ) \qaa — b\ is realized for a G Ζ, a ^ 0, hence, by multiplying 
eq(ax)/eq(bx) by (1, (q — l)ax)n^q, we can assume that min a Gz p |« — qab\ = \a — b\. 
Observing that for any integer η ^ 1 

(ç - l)foz)n,9 = fan - 1)6(1, - l)6çx) n-i,g, 
one verifies by induction that the series eq(ax)/eq(bx) is solution of 

dqy(x) = 
(a,b)n.q 

( L ( ç - l ) 6 : / ; ) n y -y(x)-

This proves that 
eq(ax) 
eq(bx) 

n̂ O 

(β, &)n,</ 
6çx) 6çx) 

Let r(e i /(x')) be the radius of convergence of eq(x). The condition |a — b\ < r(eq(x)) 
implies that 

lim sup 
η—>oo 

6çx) 
6çx) 

1/77. 1 
r(eq(x)} 

lim sup 
η—>oo 

n-1 

2 = 0 
(a — bql) 

l/n 
< 1. 

2.2. The analytic function loge q(x). — If \eq(x) — 1| < 1, it makes sense to 
consider the analytic function Lq(x) = \ogeq(x). From the (/-difference equation 
satisfied by eqi one derives immediately the equation: 

Lq{qx) = Lq{x)+\og(l + (q-\)x), 

which can be rewritten in the form 

dqLq(x) = 
6çx) 

(-l)n(q-l)n 
xn 

η + Γ 
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-̂DIFFERENCE EQUATIONS AND p-ADIC LOCAL MONODROMY 63 

We find that the analytic function Lq(x) has the (well-known^5)) expansion 
(cf. [HL46, §2], [Q]): 

Lq(x) = {-l)n-l{q - l)n~l 

n >>1 [n]qn xn. 

Proposition 2.4 
1) The series Lq(x) converges for \x\ < \q — 

2) / / M Ipli/fp-D 
19-11 

«updpji/tP-Djç _ 1|), then \Lq(x)\ < \x\. 

Proof 
1) It is enough to notice that 

lirn inf 
η oc 

(q-l)n-1 

[n}qn 
-l/n 

n >>1 
1 lim inf n2 log q l/n 1 

\ Q - M 

2) Since Lq(x) = χ n >>1n >>1 (-l)n(q-l)n 

[η+1] ς (η + 1) x
7 i , we have to prove that |.τ| < 

|0|1/(P-D 
n >>1 sup n+l]9(?2|<? - 1|) implies 

sup 
n^l 

(q - I f 
[n+l] 9(?2 + l) 

< 1. 

This follows from the inequalities |^|V(p-i) <ξ \ n + \\^n and sup (\p\1/{p^l\ \q - 1|) ζ 
Itn + l J J 1 ^ . • 

In the sequel of this section, we assume that Κ contains the p-th roots of unity. It 
then also contains ρ — 1 distinct non zero roots of the equation πρ — —ρπ. One picks 
one of them and denotes it by π (Dwork's constant). Notice that |π| = \p\l^p~l\ 

Corollary 2.5. ----- If \q — 1| < |π|, the series eq(nx)/exp(nx) is over convergent. 

Proof Let us consider the series 

LJTTX) = ττχ -F 

n̂ 2 
n >>1 (1 -fl)"- 1 

n >>1 n >>1 

Notice that the assumption |Q — 1| < |π| implies = |f?.|. For η — 2 , . . . ,ρ — 1 and 
|:c| < ]π((/ — 1 ) | _ 1 / / 2 the following inequality holds: 

il - o ) " - 1 

[n]qn 
π X < |π|. 

On the other hand, for η ^ ρ and |x| <\q- 1 | " V | 1 / 2 ^\Q~ 1 Γ 1 | π Γ ( η _ 3 ) / η w e have 
n >>1n >>1 

[n\qn 
πηχη (q - 1)ηπη 

η2 
xn <|π|. 

(5Hhe complex analog is essentially the quantum dilogarithm 
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64 Y. ANDRÉ & L. DI VIZIO 

We conclude that there exists ε > 0 such that for \x\ < l+ε we have \Lq(nx)—nx\ <\π\. 
Hence the series eq(nx)/exp(nx) = exp (Lq(nx) — πχ) is analytic for \x\ < 1 + ε. • 

2.3. Overconvergent solutions of ordinary (/-difference equation at 0 
In this subsection we are going to use the analytic function Lq to construct an 

overconvergent solution of a linear (/-difference equation of rank 1, under a suitable 
hypothesis. 

Lemma 2.6. — Let y(qx) = a(x)y(x) be a q-difference equation such that a(x) is 
an analytic function at 0, with a(0) = 1. Then write a(x) as an infinite product 
Π^ι (l + tM%1) • If there exists ε > 0 such that 

then the infinite product 

sup 
2^1 

\th\ 
\q*-l\ 

( l + e ) 4 <|π| 

2^1 
eq> 

n >>1 
ql - 1 

xl 

converges to an over convergent solution of y(qx) = a(x)y(x). 

Proof — Since 
n >>1 

\qi-l\ (! + £)*< |π| 
sup (|π|,\q l - l |) 

n >>1 
for any i ^ 1, 

we have 

It follows that 

sup 
|Χ|<1 + Ε 

n >>1 UIX1 

ql - 1 < sup 
|Χ|<1 + Ε 

μτχ% 

ql - 1 
<|π|. 

z(x) = n >>1 
2^1 

μιχί 

ql - 1 

is an analytic function for \x\ < 1 + ε and that sup | x | < 1 + £ \z(x)\ < \π\. We conclude 
that 

exp z(x) — eqi 

LLJX1 

ql - 1 

is an overconvergent solution of y(qx) = a(x)y(x). 

Proposition 2.7. Let y(qx) = a(x)y(x) be a q-difference equation such that a(x) = 
Πΐ>ι (l + A^*) Z 5 a n overconvergent analytic function. Then there exists a positive 
integer M and a positive real number ε such that y(qx) — a{x)y(x) is A4([0, 1 -H ε[)-
equivalent to 

y(qx) = 
AT 

2=1 
(1 + μτχι) y (χ). 
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g-DIFFERENCE EQUATIONS AND p-ADIC LOCAL MONODROMY 65 

Proof. Since a (χ) is overconvergent there exists a positive integer AI and a real 
number ε > 0 such that |//,-| > (1 + ε) ' for any / > AI. Let 0 < ε' < ε. For any 
\x\ ^ 1 + ε' < 1 + ε we have 

lim (l + e)'!* 1! 
1(^-1)1 

= 0. 

Let us fix an integer AI > 0 such that 

sup sup 
1>M \.r..<\ > :•' 

(1+ε)'Ί.τ' :| 
1(^-1)1 

< π 

and set 
a(x) = Π 

i>M 
1 + xl, 

It follows from the previous lemma that there exists ulx) G A([0,1 + ef[) such that 

u(qx) = a(x)u(x), i.e., such that u(qx) 
u(x) Φ ) = Π £ ι ( ΐ + / ^ ) -

3. Solvability (at the boundary) 

Recall that the Robba ring IZ = 1ZX = ΊΖκ,χ is the ring 

η = υε>0Λ(]ΐ-ε,ΐ[) 

of analytic functions on some thin annulus with the unit circle as outer boundary. 
The subring 

^ = £ ] = 4 , * = υ ε > 0 β ( ] 1 - ε , 1 [ ) 
of bounded functions is endowed with the sup-norm | V] an.r" -y. = sup \an\ (caution: 
this is not a Banach ring). If the valuation of Κ is discrete, this is a Henselian field, 
with residue field k((x)). 

We introduce the subrings 

Β = Bx = A([0,1[) Π £ f , Ή) = Hi = υε>0Α(]1 - ε, oc]) 

(on which the restriction of | |̂ t is the sup-norm, according to the principle of the 
maximum). 

In this section, we begin the study of ̂ -difference equations y(qx) = a{x)y{x) with 
a{x)eU* = (E*)*. 

By iteration of the operator dq, we deduce from the (/-difference equation y(qx) — 
a(x)y(x) a sequence of equations 

d7

q

ly{x) = gn(x)y{x), 

with gn(x) G ft and go(x) = 1. Since a(x) G β(]1 — ε, 1[) for some ε > 0, it makes 
sense to consider Rp(aq — a(x)) for ρ G ]1 — ε, 1[. 
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Definition 3.1. The equation y(qx) = r/(.r)/y (./·). with a(x) G is said to be so/?;-
ableS^ (at the outer boundary) if 

lini Λ,,(σ9 - a(.r)) = 1. 

Remark 3.2. It follows immediately from (1.2) that solvability is invariant under 
-equivalence. 

One can define the notion of solvability without using the generic radius of conver­
gence: 

Lemma 3.3. l im^i Rp = inf 1, lim inf,, , x 
9nW 
n >>1 

n >>1 
l£t 

Proof7"*. — Let us set 

i?,£t = inf 1, lim inf 
η —> oo 

n >>1 -1/n 
n >>1 n >>1 

Notice that for any ρ G ]1 — ε, 1[, we have 

Rp = lim inf sup 
n >>1 

9n{tp) 
n >>1 

-In 
and i?^t = lim inf 

η—>oo 
sup 

9n(x) 
Mq 

-1/n 

Moreover (cf. [CD94, 2.1]) hp(n) = sup 0^ s^ n \gn(tp)/[n]q\ is a continuous function 
of ρ and 

lim hp(n) = sup 
P—1 0<s<n 

9n{x) 

hence it is enough to prove the uniform convergence of the sequence hp(n)l/n. 
The proof of [DV02, 4.2.7] actually shows that for any positive integers Ν > η > 

s ^ 0 such that TV = [Ν/η] η + s, the /ip(n)'s verify the inequality 

h„(N)^N < M , ^ ) ( 1 / " ' ) + ( 1 / ί V , 
n >>1 

(N , ! ) [ / V / ? t ] W 

n >>1 

Hence, letting —> oo, we obtain 

1 
n >>1 ζ M » ) 1 / n IM'/I 

1/n lim [Ni\-i/N 

(6)This terminology is very unsatisfactory (solvable in what?) but has been of constant use in the 
theory of p-adic differential equations since Robba's studies. For want of a better word, we shall 
adopt it here. 
(7)The continuity of the function RP is proved in [CD94]. The proof that follows uses an argument 
of uniform convergence and it is a g-analog of an unpublished proof by F. Baldassarri and L. Di 
Vizio. 
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It follows from (1.2) that 
1 

n >>1 
r π! 1-1/" 
Hz I 

lim n >>1 < hn{n)l/n ^ 1 
V 

which finishes the proof. 

4. A characterization of solvability 

The following characterization of solvability is a ry-analog of a result by Dwork and 
Robba [DR77, 5.4] and will be used to prove that solvable (/-difference equations of 
rank 1 are ^-equivalent to solvable <y-difference equations with coefficients in A' [1/̂ ']· 

Proposition 4.1. Let Ω/A" be the extension introduced in subsection 1.4. The fol­
lowing assertions are equivalent: 

1) The q-difference equation y(qx) = a(x)y(x), a(x) G f t , is solvable. 
2) Tliere exists a sequence Rn{x) G SQ. such thai 

lim 
71 —*oc 

Rt)(qx) 
n >>1 -a(x) = 0. 

ct 

3) There exists a sequence Rn(x) G £ ί 2 such that 

lim 
<URn)(.r) 

n >>1 vU) 
ç Τ 

= 0, where q(x) = «(,·) -1 
(7 -1)·'· 

Proof. The equivalence between 2. and 3. is straightforward. 
Let us prove that 3. implies 1. We set (ji(x) = g(x) and #/ν + ι(·τ) — dqfjNi'x) + 

q\(x)qN(qx) &nd we fix ε G 10. 1[ and 7? > 0. We claim that if the inequality 
dq(R„)(x) 

R „(•'•) 
n >>1 n >>1 

n >>1 
is satisfied then we have 

<(Λ,ι)(*) 
Λη(*) //.γ(.>·) ^ ε for any Ν ^ 1. 

We prove our claim by induction. In fact, it follows from proposition 1.2 that 

<(/?„)(.*•) 
n >>1 

4 
< ι Κ ι 

and hence that |#ΑΓ(Λ')Ι<^ ζ 1. Therefore, recursively, one obtains: 

K + 1 (Rn)(x) - gN+dx)Rn(*)y 

= «(/?„)(.»:) -f,N(x)R„(.r)) +(<W)(*) - ( < W ) ( * ) - . 9 l ( . r )^„( :c) ) | 4 

ζ sup (Irf^i?,,)^) - .^ν(.Γ)/?„(.Ί·)|4 , \gN(qx) (dq(Rn)(x) - 5 ι(*)Λ„("))Ι £ t j 

^e\Rn(x)y . 
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Let us fix Ν > 0 and let ε < \[N]\{\. Thon there exists // ^> 0. depending on N, such 
that 

ÎJN{:r) 
ÎJN{ ÎJN{ 

^ sup 
MM*)Rn (x) 

M M * ) R n ( x ) 
(JN{-I-) 

m, 4 

MM*)Rn (x) 
MM*)Rn (x) ÎJN{ 

^ sur: ap 
ÎJN{ 

. ι < ι, 

which implies that /y(çj') = (i(x)ij(x) is solvable. 
Let us now prove that I. implies 3. Let us consider the sequence of elements of 8^: 

βο = 1. ·Μ·>\) = -g{:v). J . γ. ι (</.'') = ^. |v(.r) + .ή (.r),i.v (,·). 

We choose a generic point t\ G Ω such that jfj | = 1 and we set 

ÎJN{ 
11 

N=0 

ÎJN{ 
ÎJN{ 

(-Ϊ·ΪΙ)Ν,<Ι G S^[ti] C for any η ^ 1. 

Notice that Rn(x) satisfies the inhomogeneous ^-difference equation 

d<lRn(x)-g(x)R,,(.r) 
aoa 

N=0 

n]]

(j |^+ < |Λ7Ι(^·)|^ 
ajalal 

fiN(qx) 
η 

fiN(qx) 

fiN(qx) 
fiN(qx) 

(x, ti)N-l,q 

= [»• +1]</ 
β,,(χ) 
aps (•i'J-\)ii-\,<r 

The following lemma allows to conclude the proof by considering the subsequence 

(*Ρ'·-ΐ(*))„6Ζ>()· ' D 

Lemma4.2. \(in {x)/[n]]

(j |^+ < |Λ7Ι(^·)|^ -

Proof. Consider the polynomial ring S^[z}. We have an embedding of valued K-
algebras {SK | |̂ t) C {^[z\. | l̂ t.-O- where | \g^z is defined by 

| Σ ; αΜζί\εΚζ = s u p M^ l^t , for any £ \ ai(x)zi G £ % ] . 

Let r/f/.~ be a ^-difference derivation acting on in the following way 

dq.z ( Σ ^ ο <Φ)ζ1) = <Η(Χ)['}^"1 • for any Σ,^ο « . ( Φ * e ^1~]· 

Observe that 

and that 

dn 

Dx Σ , > ο « ^ Φ ' : 

da 
ap fiN(qx) 

ft.-

Σ ^ ο ^ - Φ ' Dx 
Σ ; •i]<>/(-r)f\ Dx 

We set Rn(x. ζ) = Σ!ν=ο .lv(.r) 
alap ( . r . 4 v , , e i f SHLCC 

aq,z 
M'y 

fiN(qx) 0 
(_L)»r/'(n-L)/2 I F N = 

for any pair of integers η > Ν > 0, 
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we conclude that 
βη{χ) 
βη{χ) Ap 

dr

q\z(Rn) 
βη{χ) 

(Χ, ζ) 
Asp 

< \ϋη(Χ,ζ)\ε^ζ = |Λη(Μι)|^ ' 

Remark 4.3. Notice that if #(:r) Ε iv [:r] then Rn{x) G ίί[χ\. 

4.1. Solvability of ^-difference equations with constant coefficients 
Corollary 4.4. The q-difference equation y(qx) = ay(x), with constant coefficient 
a G Κ, is solvable if and only if a G qZp. 

Proof. — It follows from proposition 4.1 and remark 4.3 that y(qx) = ay(x) is solvable 
if and only if a is the limit in SQ of a sequence Rn(qx)Rn(x)~1, with Rn(x) G Ω[χ]. 
Therefore if y(qx) = ay(x) is solvable, the coefficient a is the limit of a sequence in 
qz, i.e., α G ç Z p . Conversely, iî a = qa with α G Z p , then there exists a sequence of 
integers an G Ζ such that an —>· α and hence that |—^ a|^t —» 0. • 

Remark 4.5. By induction on ri ^ 1 (c/. [DV03, 1.2.4]), one can prove that the 
solutions of the equation y(qx) = ay(x) are necessarily solutions of the sequence of 
equations: 

dn 

Dx y(x) = 
(a - l)(a - q) • • • (a - q"-1) 

(q - l)(q2 - 1) · · · (qn - \)qn(«-\)/2xn 
aps 

Therefore the previous corollary implies that the series 

(11) 
u>0 

(a-l)(a-q)...(a-qn-1) 
- 1)(^2 - ! ) • • • - 1) 

xn 

has radius of convergence 1 if and only if α G qZp, generalizing [DV03, 8.2], where the 
radius of convergence of (11) was calculated under the assumption |1 — q\ < \p\l^p~l\ 
This should allow to drop the assumption \q — 1| < |π| in [DV03. §3]. 

4.2. Solvability of (/-difference equations meromorphic at zero. — The next 
corollary concerns rank 1 ^-difference equations whose coefficient has at worst a pole 
at 0 and is analytic in C(]0, 1[). 

Corollary 4.6. Consider a solvable q-difference equation y(qx) — a(x)y(x), with 
xNa(x) G Β for some positive integer N. Let aOCj(x) G Κ (χ) be a rational function 
such that all the finite zeros and poles q/'a00(a') are in C([0,1[), and that a(x)/aoc(x) 
is an invertible analytic function in Β having value 1 at 0. Then the q-difference 
equations y(qx) = a x (.r )//(./·) and y(qx) = a

Q^) y(x) CLTe both solvable. 

Proof. It follows from (4.1) and its proof that there exists a sequence Rn(x) G 
4 n ^ ( ] 0 , l [ ) such that 

lim Rn(qx) 
Rn(x) - a(x) 

°ί2 
apsps 
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Let Gn(x) G Ω (.τ) be a rational function such that Rn(x)/Gri(x) is an invertible 
analytic function over C([0, 1[), having value 1 at 0, and that all the poles and zeros 
of Gn(x) are in C([0,1[) U {oo}. Hence the Taylor expansion at oo of Gn(qx)/Gn(x) 
defines an invertible element of 7ί\^ and \Gn(qx)/Gtl(x)\£t = 1. Then, 

Rn{qx] 
Rn(x] 

a(x[ 

Rn{qx)Gn(x) a(x) \ Gn(qx) t a(x) fGn(qx) 
Rn(x)Gn(qx) aoc(x)J Gn(x) a^(x)\Gn(x) 

a(x) 

(loc(x) 

CIog(x) 4 

Rn(gx)Gn(x) _ a(x) \ aoc(x) Gn(x) (Gn{qx) _ , , 
Rn(x)GnXqx) aoQ(x)J a(x) Gn(qx) V Gn(x) aocW 

Rn(x)Gn(qx) aMJ a(x) 
we obtain the equality 

Gn(qx) \GJx) 
SiI1Co {^*)Gn(*) A ± \ Rn(gx)Gn€ xB and Rn(gx)GnRn(gx)Gn - r - i x ) ) G * t 

o-oc(a') 
i?„(.r) Slip 

u„(<7x)Gn(.T) a(x) 
R„(x)Gn(qx) a^c(x) 

Gn(qx) 
Gn(x] 

By proposition 4.1 we conclude that both y(qx) = a x (./')//(./·) and Rn(gx)Gn= ̂ 7^?/0T) 
are solvable (/-difference equations. • 

5. Reduction to the case of (/-difference equations with 
polynomial coefficient 

In [R85], Robba has shown that any rank one differential equation over is 
equivalent to a differential equation with coefficient in K[l/x](s\ His method uses a 
kind of additive decomposition of the coefficient (using logarithmic derivatives) and 
cannot be translates into the ^-difference context. In this section we prove a ^-analog 
of Robba's result using a kind of multiplicative decomposition of the coefficient. 

Proposition 5.7. - Any solvable q-difference equation y(qx) = (i(x)y(x). with a(x) G E^, 
is E^-equivalent to a solvable q-difference equation of the form 

E+w 

4 

CS2 

Rn(gx)Gn 
a(x) 

4 4 Rn( 

(12) y(qx) = ql" 
M 

i=l 
1 + μ, βη{χ) 

where IQ G ZP, M is a positive integer, μι G Κ and |μ2| ^ \q — 1| for i = 1,... . M. 

Proof. The proof is divided into several steps. 

(8)Actually he considered only differential equations with rational coefficients, but his argument 
extends in general. 
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Step 0. There exists an unique multiplicative décomposition 

a(x) = λ 
Aps 

l(x)n,(x) 

of a(x) in such that 
- λ G Κ. λ φ 0; 
- TV G Ζ; 
- /(.r) is an invertible analytic function in 1 + xJB; 
- ni(x) is invertible function in 1 + ^Ί~0. 

Proof of Step 0. - [CM02. 6.5] and [C81a]. • 

Step 1. The (/-difference equation y(qx) — (i(x)y(x) is 71^-equivalent to a q-
difference equation of the form 

(13) βη{χ)βη{χ) λ /(,·) 
Λ7 

i=l 
1 + βη{χ) 

χ1 
βη{χ) 

where Λ G A\ Λ φ 0. Ν, M e Ζ, M > 0. μ( G Κ for any / = 1.. . .. M and I (χ) is an 
invertible analytic function in 1 -f xB. 

Proof of Step 1. The analytic function ///(./·) G Ή), considered in Step 0, can be 
uniquely written as a convergent infinite product 

(14) mix) = 
βη{χ) 

/ = 1 
1 + 

βη{χ) 
χ' 

It follows from proposition 2.7 that there exists z(x) G Ύΰ such that z(qx) — m(x)z(x) 
and hence that (qx) a(x) has the form (13). • 

Step 2. The equation (13) is ^-equivalent to the solvable (/-difference equation 

(15) y(qx) = X 
xN 

M 

i = l 
1 τ βη{χ) 

χ' 
βη{χ) 

with Λ G Ά\ Α φ 0, Ν. M G Ζ, Μ > 0 and |//,7| < 1 for any i = l AL 

Proof of Step 2. Let us write /(./') as an infinite convergent product 

ι M = 
oo 

(ΐ + λ,χ'). 

Since /(./·) does not have any zero in C([0, 1[), we have \Xt \ ̂  1 for any i > 0. As far as 
the μ,,-'s are concerned, it is enough to recall that the analytic function m(x) (cf. (14)) 
is invertible in Ί~ΰ to conclude that |//?| < 1 for any /' = 1,... .71/. Hence it follows 
from (4.6) that the /̂-difference equations 

(16) •yiqx) = 
OC 
Π 
?.= i 

{l + \,x')y(x) 

Π 

π 

π 

π 
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and 

y(qx) = 
λ Ai 

Π 
/ = 1 

1 + βη{χ) 
,7W 

βη{χ) 

are both solvable. Since /(:/;) G Β. the equation (16) has a solution u(x) G (cf. 1.3), 
which establishes the ^-equivalence between (13) and (15). • 

Step 3. The solvability of (15) implies that Λ G q"1'. Ar = 0 and |/i7;| < |</ — 1| for 
any i = 1. . . . , M. 

Proof of Step 3. Let b(x) = (X/xN) UfL, (l + /',/·'·')· Since\(b(x) - l)/(q - l)x\£i 

^ 1, necessarily \1)(χ)\ε\ = 1 and hence |λ| = 1. 
Let us write inductively dr

q

ly(x) = (jn(x)ij(x) for any η ^ 1. Writing #n(;r) ex-
plicitely in terms of b(x) (cf. [DV03. 1.2.4]) we obtain 

fin 
βη{χ) 

βη{χ) 

(-1)" 
HM - ΐ )"χ" 

βη{χ) 

.7=0 
βη{χ) 77 

βη{χ) Q'1 

q-]ij-1)/2b(x)b(qx)---b(qJ'lx) 
βη{χ) 

(17) ( -1)" βη{χ) 
N i ( î - i ) n ^ + 1 ) " βη{χ) 

ι 
βη{χ) 

This shows that if TV φ 0, the equation ;(/(#.;.·) = b(x)y(x) is not solvable, in contra­
diction to the hypothesis. Therefore it is enough to prove that λ G Έρ assuming that 
TV = 0. 

Since y(qx) — b(x)y(x) is solvable, there exists Rn(x) G Ω j.r. I/χ] (cf. Remark 4.3) 
such that 

Rn(qx) 
Bn(x) 

- b(x) 
ε1ι 

—> 0. 

hence λ is a limit of a sequence in q/L. This proves that Λ G qLp and that the equation 
y(qx) — b(x)X~1y(x) is also solvable. 

So we are reduced to proving the statement for a solvable (/-difference equation of 
the form 

βη{χ) 
M 

2=1 
Π 1 + βη{χ) 

X"' 
βη{χ) 

or equivalently of the form 

dqy(x) = 
M 

βη{χ) 

βη{χ)βη{χ) 
βη{χ) Π 

j>> 
ι + βη{χ) 

xn> 
βη{χ) 

Since |u1| < 1. the solvability (cf. 1.2) implies that \μ7\ ^ \q - 1| for any / = 1,.. ., M. 

Step 3 finishes the proof. 
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6. Frobenius structure in rank 1: existence criterion 

From now on, we assume that the residue field k of Κ is perfect. 

In [CC96, §2], it is proven that a differential equation of the form 

2/Ό0 
βη{χ) 

α ι 
χ 

0,2 
" X1 

dm 
X'n 

1 
pPAL 

Α­
Ι 
χ 

has a strong Frobenius structure if and only if it is solvable and there exists a positive 
integer s such that (ps — l)a\ G Ζ. In this section we prove an analogous result for 
^-difference equations. Some steps of our proof use methods that can be adapted to 
the differential case, simplifying some technical details in [CC96]. 

Let us consider a Frobenius automorphism τ of 7\ , i.e.. a continuous automorphism 
of the field Κ lifting the Frobenius automorphism of the residue field k. Let s be a 
positive integer and let us assume that q is rs-invariant. Usually one considers the 
semilinear endomorphim ο - o.s of S1 defined by 

o.s I 
βη{χ) 

anx" 
•nez 

rs{an)xp 

An analogous endomorphism φ can be defined over the ^-difference algebra of analytic 
functions over a disk or an annulus. centered at 0 or at oo. 

Definition 6.1. We say that a ̂ -difference equation y(qx) — <7(./')//(./'). with «,(.7;) G S1, 
has a (strong) Frobenius structure if there exists u(x) G (£"*") such that 

(18) u(qx) 
βη{χ) 

φή=α(χ)*α((Μ)*··-α(η>>"-ι.ιήφ 

for a suitable choice1 of ,s\ 

Remark 6.2. Notice that ν{χ)φ< = ν(χ)σ«φ for any v(x) G S] (here ν(χ)σ"φ means 
00 <r(/(r(./·))). Let y(x) be a solution of the equation y(qx) — a(x)y{x) in an extension 
of ft. If y{qx) = a(x)y(x) has a Frobenius structure then υ{χ)φ = u(x)y(x) with 
ulx) G (S^) and (18) can be written in the following way: 

φή=α(χ)*α((Μ)*··-α(η>>"-ι.ιήφ 

Lemma 6.3. — //' a q-difference equation y(qx) = a(x)y(x), with a(x) G has a 
Frobenius structure, then it is solvable. 

Proof. Let ε > 0 be such that a{x) G Α(]1-ε. 1[) and let z(x) = Ση^ο °»(χ·- fp)n-<n 
with o ? l G Κ. be a solution of y(qx) = a(x)y(x) at the generic point tp, for ρ G ]1— ε. 1[. 

It follows from the assumption that there exists u(x) G (ft) such that .:(.r)° = 
u(x)z(x) is a solution of y(qx) — an* (x)(py(x) at . Hence we obtain 

(19) /·',. Κ - v M " ) ' /·..··',· - a(x)'f • ,f < 1. 
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Since y(qx) = a(x)y(x) and y(qx) = αρ*(χ)φ'υ(χ) are ̂ -equivalent, we have 

lim Rp(aq - a(x)) = lim Rp{aq - αφ,(χ)φ). 
p-+l p-+l 

This forces y(qx) = a(x)y(x) to be solvable. • 

We recall (cf. proof of (5.1). Step 0) that any invertible a(x) G £t can be uniquely 
written as a product a(x) = (X/xN)l(x) ///(./·). with Λ G Κ, TV G Ζ, I(χ) G (1 + xB)* 
and m(x) G (l + 7?"^) · The main result of this section is: 

Theorem 6.4. - A q-difference equation of rank 1 with coefficient in E\ i.e., 

y(qx) = l(x) ni(.r) y(x). 

has a Frobenius structure if and, only if it is solvable and there exists a positive integer 
s such that A7'* - 1 G q1. 

6.1. Idea of the proof of theorem 6.4. — It follows from (6.3) and (5.1) that it 
is enough to prove the statement: 

Proposition 6.5. A ([-difference equation 
Ai 

(20) </··'/.<·' </ H O · W 1: '̂, )//:·-:. 
7=1 

with Zo G Ζ ρ and //^, . . . . μ M G Λ , has a Frobenius structure if and only if it is solvable 
and there exists an integer s ^ 0 such that Z() G Z/(/ / s — 1). 

First of all let us remark that: 

Lemma 6.6. A q-difference equation y(qx) = qll)y(x), with Zo G Z p (cf. (4-4))? has 
a Frobenius structure if and only if Zo G Z / ( / / — 1). 

Proof The equation g (qx) = qli)y(x) is ^-equivalent to /y(r/.r) = r/ t ) P ;(/(χ·) if and 
only if (jrs - 1)Z0 G Ζ. • 

Eventually, the proposition G.5 is a consequence of the following proposition: 

Proposition 6.7. A q-difference equation of the form 
M 

(21) .</"/.<·· H fl ' ' ν )"··'·:'· 

with μ\,... , G Κ, has a Frobenius structure if and only if it is solvable. 

In fact: 
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Proof of propos/Mon 6.5 (assuming proposition 6.7). Suppose that (20) has a 
Frobenius structure, which implies that it is solvable. Since /q G Z / ; . the equation 
y(qx) = ql{) y(x) is solvable. This implies that the equation 

V ((1·ΐ') = 
M 

i = l 
1 + (q - 1) Q1 

x1 //(•ο 

is also solvable, and hence that it has a Frobenius structure. Moreover it proves that 
also y(qx) = qll)y(x) has a Frobenius structure, i.e.. that /() G Z/Q/ s — 1) (cf. (C.6)). 

On the other hand, if /() G Z/(/r s — 1) and (20) is solvable, the equation y(qx) — 
ql{)y(x) has a Frobenius structure and y(qx) = Πί=ι (l + ((/ ~~ 1)̂ 7") ij(-v) l* solvable. 
Then it follows from (6.7) that (20) has a Frobenius structure. • 

6.2. Proof of proposition 6.7. — First we prove a lemma, which is a fundamental 
step in the proof of (6.7). It is a ry-analog of a particular case of [Mo77. Prop. 1]: 

Lemma 6.8. Let u(qx) — c(x)u(x) be a q-différence equation such that v(x) is an 
analytic element on C([0.1]). without zeros and poles in C([0. 1]) and u(x) is a non 
zero analytic element on C([(). 1[). Then u(x) is an analytic element on C([0. 1]). 

Proof. One has to show (cf. [Mo77. Th. 4]) that for any a G Κ. \a.\ = 1. there exists 
an analytic element on D(0, 1 ) U D(aA~) whose restriction to D(0, 1 ) coincides 
with u(x). Let us fix a G A', \ci\ = 1. It follows from [Mo77. Th. 1] that there exists 
fja(x). called the singular factor oï u(x) with respect to D(a. 1~). such that 

1) g(l(x) is an analytic element on Ρ 1 \ D(a. 1 ). without zeros in Ρ1 \ D(a, 1 ); 
2) there exists an integer* in such that liin./.^oc(.r — a)'"g(l(x) ~ 1: 
3) h(l(x) — u(x)/ga(x) is an analytic element on D({). 1~)UD(a. with no zeros 

in D(a, 1"). 
It follows from our hypothesis on 

r(x) = a(qx) 
a(x) 

ga(q.r) ha(qx) 
ga(x) h(,(x) 

and the properties oï ga(x) and ha(x) that: 

1) g(l(qx)/ga(x) is an analytic element on Ρ 1 \ D(a.l~), without zeros in Ρ 1 \ 
D(aA~); 

2) \imx^^g(,(qx)/ga(x) = q'n\ 
3) h(l(qx)/h(l(x) is an analytic element without zeros on D(a.l~). Since both 

u(qx)/u(x) and ga(qx)/' g(l(x) are analytic elements on D(0. without zeros in 
D(0,1~). the same is true for ha(qx)/ha(x). This proves that ha(qx)/ha(x) is an 
analytic element on D(0. 1~) U D(a. with no zeros in D(a. 1~). 

We conclude that q~'"'g(l(qx)/'fja(x) is the singular factor of v(x) with respect to 
D(a,l~)> This implies that ga(qx)/ga(*) = qm arid hence ga(x) — \xni, for some 
A G Κ and -m G Ζ. By the definition of singular factor. ga(x) does not have any 
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zero in Ρ 1 \ D(a, 1~), which implies that rn = 0. Eventually, u(x) = Xha(x), which 
means that ιι(χ) is the restriction of an analytic element on D(0.1") U D(a. 1~). as 
claimed. • 

Now we are ready to prove (6.7). Remark that one implication is a particular case 
of (6.3). So let us suppose that (21) is solvable and prove? that it has a Frobenius 
structure. The proof is divided into steps: 

Step 0. It is enough to prove? that there exists a solution y(x) G Β of the (/-difference 
equation 

(22) y(qx) = 
M 

Π 
ι= 1 

(l + (q-l )//,/·' )//(:/·). 

with Iμ,; I ̂  1 for any /' = 1, .... M and \q — 1| < |π|. and a Frobenius endomorphism 
φ such that y(x)/y(x)^ is over convergent. 

Proof of Step 0. Notice that the fact that (21) is solvable implies that |μ2| ζ 1 for 
any i — 1, . . . , M (cf. (5.1)). Moreover (21) has a solution y(x) analytic and bounded 
over the disk C(]l,oc]) (cf. (1.3)). We have? to prove that there exists a positive 
integer s such that y(x)/y(x)(Î> G 8^. By iteration we may replace q by an integral 
power of q and hence suppose? that \q — 1| < |π|: this doesn't change the solution 
y(x). which is still solution of the iterated equation, and the inequality |μ,| ^ 1 is 
still verified after a reduction of the type? (5.1, Stepl), since the iterated equation is 
necessarily solvable. A change of variable of the form χ \-+ 1/x allows to conclude. • 

Step 1. ----- There exists h > 0 such that y(x)ph is ο ver convergent, hence algebraic 
over the field Ε of analytic elements with coefficients in K, (i.e. the completion of the 
field of rational functions K(x) with respect to the norm induced by 

Proof of Step 1. The solution y(x) can be written as a product of (/-exponentials: 

φή=α 
M 

2=1 
eq, 

apl 
χ1 χ1 

The analytic function 

LOG ?/(:/:) = 
χ1 

y —1 
χ1 χ1 

χ1 
7' 

converges for 

M < inf 
t=l Λ/ 

χ1 

t=l Λ/ 

l/i 
inf 

i=l,...,M 
1 

(q - l)tk 

l/i 

Therefore tliere exists ε > 0 such that log y(x) is analytic and bounded over the disk 
\x\ < l + Ε. We deduce that tliere exists and integer h > 0 such that \ph logy(x)\ < |π| 
for any \x\ < 1 -F ε, and hence, taking the exponential of \ogy(x)p , that y(x)p 

converges for \x\ < 1 + ε. 
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Step 2. There exists ,s > 0 such that y(x)/y(x)0 G Ε. 

Proof of Step 2. It follows from Step 1. that the (/-difference algebra E[y(x)\ is 
a finite extension of E. Since y(qx)'1 = a(x)ly(x)1 for any i G Ν, the (/-difference 
module E[y(x)} = ;·'/ y(x)'. with d = deg Ε [y (χ)]/Ε, is semisimple. Moreover the 
Frobenius φι stabilizes E[y(x)} as a subalgebra of Β (cf. [C86, Th. 5.2]). It follows 
that Ε(ps(y(x)). s G Ν, is a finite family of sub-(/-difference modules of rank 1 of 
E[y(x)}. and hence that there exists .s G Ν such that Eos(y(x)) = Ey(x) (cf. [C81b. 
10.1] and [CC96, proof of th. 2.3.1]). • 

Step <i. y(x)/y(x)<!> is an analytic element on C([0. 1]). 

Proof of Step S. The analytic element //(./·)/y(x)° is solution of the (/-difference 
equation: 

u(qx) 
u(x) 

= r(./'). with v(x) — 
M 

7 = 1 

1 + (q - 1)/A,.r' 

π ; : ( ) ' ( ΐ + ( 9 - ΐ ) / ' Γ ^ . ' ^ ' ) 
e K(x). 

Since |//,;| ^ 1. v(x) is an analytic element on C([0. 1]). without zeros and poles in 
C([(), 1]). We deduce that u(x) is an analytic element over C([0. 1]) from lemma G.8. • 

Step 4- — //(./')///(.r)° is overconvergent. 

Proof of Step 4- This stateinent is proved in the second part for (/-difference sys­
tems of any rank (cf. 13.3). We will give here a simplified proof under the assumption 
|1 - q\ < \π\ι)!Άΐ. This implies that there exists // > |π| _ 1 such that 

v(x) = 
M 

/=! 

l + (q-])li,.r' 
π ; ΐ ο 1 ( ι + ( ' / - ι ) / 'Γ ' / , ; · ' · " ' ' ) 

is analytic for \x\ ^ //. Let dq'v(x) = (jn(x)u(x) for any /; ^ 1, with (j\(x) = 
v(x) - !/((/ - l).r. We have 

sup .(/,(./·)! < ι. 

Therefore the recursive relation gn + \(x) = (ju(qx)(j\(x) + dq(jn(x) implies that 

sun 
t=l Λ/ 

Ι.</»+ι(·0 
ι 

t=l Λ/ 

In particular |(/„ + i(0)| ζ η Since u(x) = 1 + Σ-„^ι fJn(O) xn, we conclude that u(x) 
converges for \x\ < //|π|, with //|π| > 1. The same is true for y(x)/y(x)0 since u(x) 
and y(.v)/y(x)C) coincide up to a non zero constant factor. • 
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6.3. Remark. — Notice? that the Step 1 above combined with (5.1) proves following 
statement: 

Corollary 6.9. Let y(qx) = (i(x)y(x) be a q-difference equation with Frobenius struc­
ture. Then, there exists a non négative integer li and a solution y(x) of y(qx) = 
a(x)y(x) in a finite extension of S1 such that y(x)p G SJ. 

In the? next sect ions we will show that the solution y(x) is actually in an unramified 
extension of . which is a much stronger statement. 

7. (/-deformation of differential equations with strong Frobenius structure 

In the previous section we have? given a naïve definition of the (strong) Frobenius 
structure? for (/-difference equations of rank 1. In the higher rank case we are going to 
consider another Frobenius structure that we call confluent weak Frobenius structure. 
Proposition 7.3 below establishes the equivalence between the two definitions for in­
difference equations of rank 1. 

Definition 7.1. We say that y(qx) — a(x)y(x) has confluent weak Frobenius struc­
ture if there? exists a sequence of qp -difference equations y(qp x) = an(x)y(x). with 
qT = q and (/()(./') = a(x). such that 

1) for any // ^ 1 the equations 

y(qp (" l)x) = r/„_i (.r)//(.r) and //((/ " ".r) = an(x)°y(x) 

are? £ ̂ -equivalent via un(x) G (£"*") ' : 
2) the sequences (a„(x) — 1)/(qp — l) ./· and un(x) converge' in £ ' . 

Remark 7.2. In the? notation of the previous definition, let. (a„(x) — 1 ) / — 1) ·*' 

—> (j(x) and ·ΐίη(χ) u(x). Then the differential equation ~^-{x) = q(-f')u{:1') n a s a 

ax 
strong Frobenius structure: 

//(·'·) + 
t=l Λ/ 

»(·'·) 
= / 'V ' "_1.7(·Ό°· 

In other words, there exists a discrete family of difference equations 

<1,··" !)(•>•) = 
a J.,ή - 1 

(<!»"" - 1)·' 
!/(•>•) 

with an action of the? Frobenius. which "tends" to the? differential equation dy 
d.r t=l Λ/ 

g(x)y(x). having a strong Frobenius structure. 

Proposition 7.3. For a q-diflerence equation y(qx) = a(x)y(x), with a(x) G (£^)*. 
it is equivalent to have a strong Frobenius structure or a confluent weak Frobenius 
structure. 
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Proof. Let us suppose that y(qx) = a(x)y(x) has a Frobenius structure. Then the 
sequence of iterated difference equations 

//(V "·>') = an(x)y(x), with an(x) = 
t=l Λ/ 

i.=0 
a(q1 x). 

satisfies condition 1. Since y(qx) = a(x)y(x) is solvable, the equation y(qp x) = 
an(x)y(x) is solvable for any η ε> 1, hence 

ajx) - 1 
(qpS" - l)x ^ 1. 

This proves that an(x) —> 1 when η —* oo. Moreover it follows from (6.9) that 
y(qx) = a(x)y(x) admits a solution y(x) such that y(x)1' G , for some h G Z^Q. 
Since 

t=l Λ/ t=l Λ/ 

y(x)p" 
an(x)p" - 1 
(^" - l)x 

an(x) - 1 
(qP- - l)x K ( : r ) - C ) . 

t=l Λ/ 
t=l Λ/ 

we obtain 

dx ( ; Φ · Κ ) 
y(x)i>" 

dq„*» t=l Λ/ 

lim 
η—>oo y(x)i>" 

lim 
α„(.τ) - 1 

(qP- - l)x Π K u O - C ) 
<-"=l 

= ρ lim 
II—>OC 

o„ (;(:) - 1 
t=l Λ/t=l Λ/ 

which proves that (an (x) — 1)/(q p — l)x has a limit g(x) in . The existence of 
the sequence utl(x) and its limit, as well as the strong Frobenius structure of ^(x) = 
g(x)y(x), is a consequence of the fact that JJJ.(X) = (j(x)y(x) and y(x) = a(x)y(x) 
have the same solution in some finite extension of £^. 

Suppose we have a sequence of equations satisfying 1. and 2. Then clearly °fj:(x) — 
(j(x)y(x) has a strong Frobenius structure, hence it is solvable. 

We claim that every equation yn(qp "x) = an(x)yn(x) is solvable. We set 

(L'.ihAx) = /'!;(.<)//„(./·) and dky 
dxk 

{x) = gk(x)y(x). 

Then for any η ^> 1 we have !//',(x)\t-- — \(]ι(χ)\εϊ and \qp " — 1| < |π|, which means 
that \hn{x)/[k]l

(iP,n l̂ t = \fjk(x)/k\\ei- l t follows from lemma 3.3 that yn(qp"" x) = 
(hi(x)y>i(x) is solvable for any η ^> 1. We deduce that yn{qp "x) = (·/')///> (.>') is 
solvable for any /* ^ 0 from the inequality (19), describing the action of the Frobenius 
on the generic radius of convergence. 
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For any η ^ 0 consider the decomposition of (/„(./·) (cf. (5.1). Step 0): 

t=l Λ/t=l Λ/ t=l Λ/ 
t=l Λ/ 

ln(x)m„(x). 

with λ η € A", Nn e Z, /„(;;;) £ (1 +./;£)* and m„.(.x) e (1 + ~H^)\ and the analogous 
decomposition of un(x): 

UU{X) = t=l Λ/ 
t=l Λ/ 

rn{x)m'n(x). 

By performing a gauge transformation we can assume that N'n — 0 for any n. More­
over since yn(qp x) = an(x)yn(x) is solvable for any η ^ 0, we necessarily have 
Nn = 0 and λ η G qZp for any η ^ 0 (cf. the proof of (5.1)). Moreover condition 1. 
and the uniqueness of the above decompositions imply that 

Κι — λη-\. 
t=l Λ/t=l Λ/ 

t=l Λ/ 
/„(:/·)* = Z„-I(.TO. for any η ^ 1. 

t=l Λ/t=l Λ/ 
t=l Λ/ 

m 7 i ( ^ = m r f_i(.r). 

The first equality means that /;((/' ( ' nχ) = '*/(;/*) and y(qp (" n x) = Xn-iy(x) 
are E^-equivalent. Since qT = q and A/; G (/£ /\ Xn is rs-invariant. Hence we have 
Xn = Xn-i = AQ. The unicity of the decomposition above shows that λο is the 
exponent of the limit differential equation 7̂(;'*') = g(x)y(x) and hence that λ 0 = qli). 
with (pn — l)/o G Ζ, for some positive integer n. We conclude from theorem 6.4 that 
y(qx) — a(x)y(x) has a strong Frobenius structure. • 

8. The group of isomorphism classes of (/-difference equations of rank 1 
admitting a Frobenius structure 

We know that a solvable differential equation (resp. a differential equation with 
Frobenius structure) of rank one y' — gy defined over E^ has a solution of the form 
xn //(./·) (resp. r(x)). where a G Z / ; and u(x) (resp. v(x)) is an element of some finite 
unramified extension of (cf. [Cr87], [T98b]. [CoOl]). The same is true for 
(/-difference equal ions : 

Proposition 8.1. —- Let y(qx) = a(x)y(x), with a(x) G E^, be a solvable q-differ­
ence equation (resp. a q-difference equation with Frobenius structure). Then y(qx) = 
a(x)y(x) has a solution of the form xnu(x) (resp. ν(x)), where a G 7L}) and u(x) 
(resp. r(x) ) is an element of a finite uriramifted extension of E^. 

(gï Following [S68], wc call unramified extension of valued fields an extension of valued fields such 
that the ramification index is equal to 1 and the extension of the residue fields is separable. 
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Proof. We know from (5.1), (6.7) and (6.9) that y(qx) = a(x)y(x) has a solution 
of the form xaa(x). where a G 7L]} and u(x) is an element of an extension of 
solution of a ç-difference (equation with Frobenius structure. Moreover we know that 
the Frobenius structure of y(qx) = a(x)y(x) forces α G Z/(ps — 1) for some positive 
integer ,s. which amounts to saying that a G Zp Π Q. It follows from (7.3) that u(x) 
is solution of a differential equation over £t with strong Frobenius structure, hence 
that u(x) (resp. ν = xnu) is an element of a finite unramified extension of S1. • 

The ^-equivalence classes of differential equations of rank one j/(x) — fj(x)y(x) 
form a group with respect to addition of the coefficient g(x). and equivalence classes 
of equations with Frobenius structure form a subgroup, which we denote by d-eq^. 
Note that, for such equations, the space K.y G (£"*")' defines a character of the abso­
lute Galois group G^yxyy which depends only on the class of the equation, and this 
provides a homomorphism 

7 (Φ) 
d-eq^ 

Xi<{Gk.((x))) 

to the group of Κ-rational characters of Gfc((.r))- If the residue field k is algebraically 
closed, this is a bijection; the inverse map associates to the character χ the \-
eigenspace in any big enough finite unramified extension (£"*")' of (this is an £t-line). 
endowed with the natural derivation. 

In the same vein, the ^-equivalence classes of ^-difference equations of rank one 
y(qx) = a(x)y(x) form a group with respect to multiplication of the coefficient a(x). 
Equations with strong Frobenius structure form a subgroup, which we denote by 
σ<Γβαε> ' Similarly, the space K.y G (S^)' defines a character of the absolute Galois 
group Gkyxy. which depends only on the class of the equation, and this provides a 
homomorphism 

(φ) 
aq-eqst 

^K(Gk.i{x))) 

to the character group of Gj,.^xy. If the residue field k is algebraically closed, this is 
a bijection; the inverse map associates to the character χ the \-1-eigenspace in any 
big enough finite unramified extension (E^)' of (this is an £t-line), endowed with 
the natural a^-action. 

On the other hand, proposition 7.3 associates by "confluence" to any element of 
(Jq-eq^ an element of d-eq^\ and it is easy to see that they correspond to the same 
character of (7/,((,,.)). One thus arrives at the following 

Theorem 8.2. — Let us assume that k is algebraically closed. There are canonical 
group isomorphisms 

(Φ) 
oq-eq A 

Xi<(Gk({x))) t=l Λ/ t=l Λ/ 

the composite being given by "confluence". 
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Remark 83. - The group of tame characters of Gfc((x-)) is canonically isomorphic to 
(Zp DQ)/Z. For any a G Zp HQ. the corresponding object of d-ecf^ (resp. oq-eq^) ) 
is represented by d/dx + a/χ (resp. dq + [a]q/x) and depends only on the class of a 
mod Z. 

APPENDICES TO PART I 

9. Frobenius structure of dqy(x) = nqy(x) 

9.1. g-analog of the Dwork exponential. — Recall that the "Dwork exponential" 
θ(χ) = exp(7i\r — πχρ) expresses the Frobenius structure of the differential equation 
y' = 7ny, and has radius of convergence > 1. 

In the same way one can define an element nq such that |π ς| is the radius of 
convergence of eq(x)(10K Consider the (/-difference equation satisfied by eq(nqx): 

(23) y(qx) = a(x)y(x) with a(x) = (1 + (q - l)nqx). 

It is defined over S^r and it has a Frobenius structure (cf. proposition 6.7). Equation 

(23) can be iterated in the following way: 

y(qp x) = aps(x)y(x) with ap»(x) = a(x)a(qx) • • • a(qp ~lx). 

Then the series ( q(nqx)° = eq(nq xp ) is solution of the q-difference equation 

(24) „(,/.,·) = alAxfy (x). 
The fact that (23) has a Frobenius structure means that (23) and (24) are S\/r-
equivalent. i.e., that 

eq(irqx) 
eq(nqx)* 

eJ-Kqx) 
t=l Λ/ l/x 

^10^The choice of such an element is not canonical. A possible choice would be the following: let η 
be the smallest positive integer such that \qp — 1| < |π|; then one can choose nq such that 

< = -b>W)"'"' -[pl«p)''""2 -b]„„»-i π. 
In other words, we have chosen π v» = π and we have set recursively πρ — —[pi ,π , , + i , for any 

Ψ * qp' L V ql> 
i = 0, . . . , η — 1. This is a good choice, in fact if \qp" — 1| < |π| then \[p]ql>" | = |p| and hence 

t=l Λ/ ii : 

t=l Λ/ t=l Λ/ 

t=l Λ/ t=l Λ/ 

t=l Λ/ 

t=l Λ/ 

t=l Λ/ 

1/J' I + 1 

t=l Λ/ 

t=l Λ/ 

πΙ1/"" 

| H V " " + 1 

π|·/»/' + 1. 
This proves that |π(/| is equal to the radius of convergence of eq{x) (cf. (2.1)). 
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Since τ is a Frobenius autoiiiorpliisni such that r s fixes q. the definition of nq implies 
that \TTJ — TTQ\ < \π(1\. Therefore the existence of a strong Frobenius structure for (23) 
is equivalent to the overconvergence of 

cq(nqxp) 
cq(nqxp) 

A reasonable analog of Dwork's exponential θ(χ) (from the viewpoint of strong Frobe­
nius structures'11)) would be the following series 

cq(nqxp) 
cq(nqxp) 

Unfortunately we arc1 not able to prove that this series is overconvergent, unless 
|1 — q\ < |π|. In fact if |1 — q\ < \π\ its overconvergence is a immediate consequence 
of the overconvergence of the Dwork's (exponential θ(χ) and (2.5). 

9.2. (y-analog of Artin-Hasse exponential series. — Another reasonable q-
analog of the Dwork exponential, from the viewpoint of confluent weak Frobenius 
structures, is the modified series 

OJx) = cq(nqxp) 
cq(nqxp) 

If \q — 1| < |TT|. the overconvegence of 0q(x) immediately follows from the oven-conver­
gence of θ(χ) and (2.5). To prove the overconvergence of 0q(x) under more general 
hypotheses, one could try to construct an analog of the Artin-Hasse series, but our 
proof, which is quite similar to the one in the differential case, works only under 
restrictive assumptions. Anyway we are going to sketch it. 

Proposition 9.1. Suppose that there exists q G Q ;, such that ql> = q. Let 

Eq(x) = 
Eq(x) 

Eq(x) Eq(x) 
Eq(x) Eq(x)Eq(x) 

Eq(x) 
Hi 

(' „2 </' 
χΐ>2 

[P2]q"[p]<l 

Then Eq(x) is analytic and bounded by 1 on the disk D(i). 1 ). 

Sketch of the proof 
Step 1. We deduce from the1 formula 

('q{{p]rrr) = <\(.ι·)('Ί(<}χ) · • • ('<,((?' lx) 

that 
Eq{x)EJqx)---Eq(rr\r) 

Eq(xE) Eq{x)EJqx)---Eq(rr\r)Eq{x)EJqx)---Eq(rr 

The hypothesis q G Q7, is used here to prove that [ p ] i s a /;-adic integer. Such 
an estimate seems to be difficult when \q — 1| ^ |7r|. 

*11 hiot from the viewpoint of confluent weak Frobenius structures, cf. § 9.2, the next appendix, and 
12.12. 
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Step 2 (q-analog of the Dieudonné's theorem). One proves that for any f(x) G 
1 + xK If.rJ we have 

/(:;·) e 1 + Οκ M mf(qx)---f(q"-l:r) 
fT(-r») 

e ι + [i^xOK 14. 

One concludes the proof remembering that qT = q. since q G Qp, and hence that 
W ) = Eq(x"). 

Corollary 9.2. The semes 

eq(nx)eql>(-nxp) = eq(nx) 
eq Ρ(πχΡ) 

ι s ο χ ) e re ο ην ci g e r 11. 

To prove the corollary one follows the proof in the differential case. One has to take 
into account that q G Qp implies \ [n]q\ — η for any integer n. Moreover \ρπ — [p]q7r\ < 
17ΓI implies that eql> (πμ xp/[p]q) cqr ( — 7τχρ)~ι is ovcTconvergent (cf. corollary 2.2). 

10. ρ-adic (/-exponential and Koblitz' Gamma function 

In this appendix, we leave our local framework and outline? some global aspects 
of (/-difference equations of rank OIK? with overeonvergent Frobenius structure. More 
precisely, we sketch a (/-analog of part of Dwork's paper [D83], in which he related 
Morita's p-adic Gamma function Γ / ; to the Frobenius structure of his exponential 
modules. 

We shall recover in this way a function Vpq which is a /;-adic analog of Jackson's Tq 

function as well as a (/-analog of Morita's i p function, and which had been previously 
introduced by N. Koblitz [Ko80][Ko82b] using Morita's approach112\ 

10.1. Dwork's operator r . — In this appendix, the singular disk is the unit 
disk at infinity, so that the relevant ring of overeonvergent functions is Ή\/τ = 
U£>o*4([0, 1 + c[). We work over Κ = ^ ( π ) and with τ ••- id for simplicity. 

Following Dwork. let us introduce the operator ν defined by 

Ap anxn apnx". 

This is a left inv(?rse of the? Frobenius operator induced by φ : χ ι—>· xp. It acts on TU 
and intertwines dq = xdq and xdqi> up to multiplication by [p]q: 

[p}qoqpip = ( '<)q. 

More generally, for any a G %p, ψ sends the space x(LTU to xHT0 where b is the so-called 
successor of a G Z ;,. i.e.. the unique? y;-adic integer such that pb — a G Ζ Π [0.;;[. 

^12^ In fact, one of us defined Γ / ;. ( / using (/-exponential modules - à la Dwork -, and was told afterwards 
by F. Sullivan that this function had been defined earlier - à la Morita - by Koblitz. 
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10.2. (/-Exponential modules. — The simplest examples of Dwork's "exponential 
modules" are of the form χ"(>π'ι"τί\/Τ' They lack strong Frobenius structure (except 
when a is a rational number) but have a weak Frobenius structure: if b denotes the 
successor of α. xa βπχ7ί\^τ is isomorphic to the Frobenius inverse image of xbe7rj'ri\^T 
(due to the overconvergence of Dwork's exponential). 

A similar phenomenon occurs in the ^-difference case. Proposition 2.1 suggests to 
replace βπχ by c(](nqx) for some constant nq with the following property: defining 
the sequence ) by TiqP»\\ — —π1^,,» /\p](1i>" >. we assume that \TT(JP» | = \π\ for a big 
enouglrLi>. Then proposition 2.1 shows that eq(7rqx) has radius of convergence 1. 

However, we shall have to assume that \q — 1| < p~]/p~} in order to ensure that 
the series 

Oq (x) Cq (Uqx) 
Cqp (Uqxp) 

is overconvergent. The equation np = —[p}qTTqi> is irrelevant at this point but will be 
used in the sequel. 

We set 

Λ,α = x"<'(,{Kqx), 

and consider the Ή;.-module fq.a^\/r equipped with the natural action of' dq — xdq. 
A simple computation shows that Sqfqjl = (qanqx + [o]q)f(ha- Let us write the classes 
modulo 1ιι\δ(, in braces. So. 

Sqfqjl = (qanqx + [o]q)f(ha {f q.a} in Îq.a^i Ix 

<*</ Îq.a^i Ix 

from which one deduces that this cokernel has dimension 1 over Λ and is generated 
by {/„,,}• 

If /; is the successor of a. then 
eqr(nqx 

eqr(nqx 
<'q{K<rr) 

eqr(nqx") 

is overconvergent, which expresses the fact that ,ί<{,αΐί\/Ί. is isomorphic to the Frobe­
nius inverse image4 of fqi'.b'H]^.. The same argument as in the differential case shows 
that V extends to a mapping f(h(lH\/v —> }'ηΐ>Α)Ή\ι v by the following formula 

<ULM.f) = f,lrMV(.r''-',%l(.v)f). 

(l,^It is easy to see that such a π([ exists at least after replacing A' by a finite extension. On the 
other hand, there does not seem to be a "uniform", canonical choice for such π(], and one can actually 
show that the sequence {ττ ) never converges. 
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10.3. TIK(]. — Since -φ intertwines Sq and OqP up to a factor [p]<r it passes to the 
"cohoniology": 

φ : 
LIMH\IV 

LIMH\IV 1/2) 

fq".!>HU 

àql> {.f(]l'.b^-l/j) 
and one can define an element Τ {Kq(a) G A"* by 

Γ,Μ(« + 1) {/„/'.6+1 }Γ,Μ(« + 1) 

One then computes: 
</>{/„.()} = r,,,, (()){./;,,,„} = {f¥.Mm,(x))} = {/„,,,}. 
If a is a unit, b is a successor of a + 1. and one has 

Γ.„,„(α + 1 ){/„/>. !>} 

= T;r"',+V{/r,.«+i} = -<r"K~">]MU.,} = -<rw„.q(«){f<i<:'>} 
= {~(ΐ}<ιΓι,.Ί(«){Ιιΐ>.Ι,\-

If α is divisible by then α = pb and 6+1 is a successor of a + 1, whence: 

Γ , Μ ( « + 1) {/„/'.6+1 } 

= *l-"HU,.+i} = -^"<r"HMU„} = -^r>],r,M,(«){/,,,,6} 
-l"l,.,,{(l){f,i".b+\}-

where 
+/ Mr/ 

f¥.Mm f¥.Mm,(x))} = 1 

by assumption. 
Therefore, as a function of a G Z/;. Γ/;>ί7(ί/) satisfies the functional equations of 

Koblitz' function of the same name: 

W O ) = ι. Γ/,.,/ί" + 1) 
f¥.Mm 

[1-a]q ft is a unit. 
- 1 if|rv|7, < 1 . 

In order to check that TpJI(a) is Koblitz' function, it remains to prove its continuity. 
In fact, we shall prove the so-called "Boyarsky principle" for (/-exponential modules 
}\ι.(,Ή\/r i.e.. the analyticity of Γ lKq on each disk D( — k. \p\ + ). A* = 0. 1 /; — 1. 

Let us expand 0q(x) = ^ c , , / . For every a G Έρ Π D( — k, 1~). one has 

<i'{f„.„} = < Γ „ > ) { / „ , , , , } = {V .M/'i .r-^,/,-))} V.M/'i.r-^,/,-)) 

= {Ec>(+A-(-D"rr"""-"("-,,',/2^7[fe],/,[fc + i],/.....['' + » - fqr.b) 

hence 

V.M/'i.r-^,/,-)) , (Λ \nn(-n(a + k)-n(n-l)i>)/2 -n-k ~ nn +Â- V 1 / '/ /L • 

α + A: 
ar q" 

a + A-
Ρ 

+ 1 
at 

a + A; 
ab 

+ η - 1 
ab 
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which is analytic in D( — k. |p|)+ + since |1 — q\ < |π|, as follows from the expansion 

[c]9„ = - l + 
n><0 

C 
7 η 

(qp - l)m~l. 

It would be interesting to extend this approach "à la Boyarsky" to other (/-difference 
modules with ρ-adic parameters, notably to Koblitz' p-adic hypergeornetric q-
difference equations [Ko82bl. 

PART II 
HIGHER RANK 

11. Preliminaries: unramified extensions of E+ 

In this part, it will be essential to deal not only with E\ but also with its unramified 
extensions as well. Whereas any such extension is of the form E\, for some new 
variable χ', the (/-difference operator dq and Frobenius fail to act on x' as simply as 
they do on x. Thus the relatively down-to-earth methods of part I do not apply to 
the case of E^^. In this preliminary section, we give some tools to handle this issue. 

11.1. Topologies. — Let Κ be a complete non-archimedean field of characteris­
tic 0, with residue field k of characteristic /; > 0. We keep the notation of part I 
for rings of analytic functions. For any interval / , the ring B(I) of bounded analytic 
functions on the annulus C(I) is endowed with the topology given by the sup-norm 
I |/, for which it is complete. It is also endowed with a coarser topology (strictly 
coarser if / is not closed): the Frechet topology defined by the norms | \j for all closed 
J C / . Its Frechet completion is A(I). 

Similarly, the topology of the Robba ring ΊΖ is the finest for which the injections 
A(]l — ε. 1[) ΊΖ, are continuous, cf. e.g.. [Cr98, 4], and the induced topology on 8^ 
is coarser than the topology defined by the /;-adic norm | | — \ \ε-\- '14\ 

The truncation 7r>o in positive degrees is continuous, both as an operator 7Z —> 
xA([0, 1[) and as an operator ft — χ·β([0, 1[). 

If Κ is discretely valued and J is closed, A(J) is a Banach space, and the Banach 
norm coincides with the sup-norm on C( J) if the endpoints of J lie in \/\K* \ ([Cr98. 
4.2]). 

11.2. Unramified extensions and absolute values. — We assume in the rest of 
this section that k is perfect and that Κ is discretely valued. Then E^K T is the field of 
fractions of the hensehan ring Όε\ with residue field A;((./;)). Any finite unramified 

(14)ΐη [Ke], TZ is denoted by V^f}l and £t by Τ^:)) [I/p}. 
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extension of EK r is of the form EK, r , . for a finite unramified extension K'/Κ and a 
new variable x' algebraic over EJ

K T [Ma95]. 
Among the finite étale extensions of the Robba ring 7 \ / \ . those of the form 

ΙΖκ',χ' — ΊΖ,κ,χ E^K, r, play a distinguished role in the local theory of p-adic 
differential equations (as was first emphasized in the work of R. Crew [Cr98]). We 
shall see that they play a similar role in the local theory of p-adic {/-difference equa­
tions. The most suitable way to deal with all these extensions is to embed them (up 
to isomorphism) in a fixed canonical "big Robba ring" ΊΖ. as was done by K. Kedlaya 
[ K e p 5 ) (the field of constants of Κ is Κ := K (ôw(k) W(k)). 

For any element y G ΊΖκ.χ ftiid any r G ](). 1[. one defines |/y||.r| = r (also written, 
abusively, \y\r) to be the sup-norm of y on the circle \x\ = r if y G ^4([r, 1 [), oc 
otherwise. Similarly for ΊΖκ'.χ'- Note that if y G E^K r . \y\r = \y\ for any r close 
enough to 1. 

The drawback of this notion is its dependence on the choice of x'. Kedlaya has 
shown how to bypass it by introducing (partially defined) canonical absolute values 
I |r.ca,ii on 7o 1 6 ) . He proves that for any y G ΊΙκ',χ' C ΊΖ and any r close enough to 1, 
l̂ lr.can coincides with the naive1 absolute4 value |/y||,r'| = r [Ke. 3.7]. 

On the other hand, let τ denote a Frobenius endomorphism of K. It extends 
uniquely to K. Let us fix a positive integer s and consider the endomorphism 0,s = φ 
of 1ZK,X given by φ(Σ an^n) — Σ τ"(αη)χρ 11. Then φ extends canonically to a r s -
semilinear endomorphism of ΊΖ. and one has the formula c a i l = |/y|,-.Can [Ke, 
following prop. 3.11]. Hence for r close enoTigli to 1, 

11.3. Good coordinates. — Because E\ is henselian. φ lifts uniquely to any finite 
unramified extension of £].. By definition φ(χ) = xv. For a finite unramified extension 
of E\ with tame residual extension of degree say r/, one can take x' = xlln so that 
again φ(χ') = (x')p'• However, in the case of a wild totally ramified residual extension 
(say of degree pni). it is not possible to choose x' such that φ(χ') = (x')p, although 
φ(χ') = (xj> mod p . 

In order to get some control on the Frobenius action in the course of computations, 
it is important to choose x! carefully. For this purpose, one can use so-called Katz-
Gabber extensions. According to Katz-Gabl)er [Ka86. 1.4.2]. one can choose x' in 
such a way that x' is algc^braic of degree p m over k(x) and such that the extension 
k(x.x')/k(x) defines (via x) a finite covering f k. : Ck ~^ Ρ J. unramified above Ρ 1 \ 0 
and totally ramified at χ' — χ = 0. We denote by fk : Ck —> Ρ 1 \ 0 the restriction 

(^denoted by Γ̂ ί.Τ-οΙ or Γ"^Γ„„ in Inc. cit. 
Those attached to his partial valuations wu -1 · 

\y0\\x'\=ri/"* = \y\\x'\=r-
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of fk above Ρ 1 \ 0. Extending k if necessary, we assume that one of points, say P*., 
of Ck with x' = oc is A:-rational. 

Let / : C —» ~Pqk be a lifting of this finite covering, with C projective and flat over 
Oa ' ( 1 7 ) . We denote again by the letter χ (resp. xr) a lifting of the first (resp. second) 
coordinate to C (we refer to such a coordinate x' as a '"good coordinate' for this finite 
extension of E \ ). 

Wre denote by / : C —> Ρ 1 \ 0 the restriction of / above Ρ 1 \ 0. The finite covering 
fi< '· Cκ —> Vl

K \ 0 is unramified above the disk D([l, oc]). 
Let (C) denote the (y;-adic) weak completion of the affine algebra 0(C). Via /*, 

this an étale extension of 0nj. It is known that 0\C) is heiiselian (cf. e.g.. [E02. 
th. 3]), from which it follows that the endomorphism φ of E \ , preserves O^(C). On 
the other hand, (^^[[1/x]] and Ok[[1/^']] are both (/>-equivariantly isomorphic to the 
completion of O(C) at Pk. 

We now fix an element q G 7i* (not a root of unity) satisfying \q\ = 1, and fixed 
under rs. The homothety χ ι—> qx extends uniquely to an automorphism of each of the 
topological Κ-algebras Ε j . E \ , . 1ZX. 1ZX>. ΊΖ. and also of (C) (the latter ring being 
henselian). We denote all these extensions somewhat abusively by the symbol aq. Of 
course, in general oq(x') is not proportional to x'. 

The assumption rs(q) = q ensures that aq and φ generate a twisted polynomial 
ring K[a(r φ] of endomorphisms of any of the previous rings: 

aq φ = φ ov

q = φ a(Jl,». 

12. ^-difference modules and Frobenius structures 

12.1. σ-modules. — Let. Β be a commutative integral Q-algebra and let σ be an 
inject ive endomorphism of 7?. 

Definition 12.1. Α σ-module, or a-difference module over Β is a free 7?-module 71/ 
of finite rank equipped with an 7?-linear isomorphism 

Σ : σ*Μ := 71/ ®R.a Β —> M. 

The σ-modules over 7? form a category in an obvious way^18^. which is linear over 
the fixed ring of 7? under a. 

In terms of a basis (inφ, \ μ of 717. the datum of Σ is equivalent to the datum 
of an invertible matrix, which it is convenient to define as the inverse A G GLfl (B) of 
the matrix of Σ. With this convention, the σ-difference matrix system 

σ(Υ) = AY 

is equiVc dent to condition that Σΐ ιη}> i s fixed by Σ. 

(i')por a conceptual proof of the existence of such a lifting, cf. e.g., [Cr98, 8.3]; here, it suffices to 
lift to cha.ract(Tistic 0 an equation relating χ and x'. 
^18^and even a monoïdal symmetric rigid category 
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If φη'-) is another basis, with m'- — J2(H l)V)nit, then the inverse A' of the matrix 
of Σ in this new basis is ΗσΑΗ~ι. 

Remark 12.2. σ-modules can also be understood in terms of non-commutative con­
nections, cf. [A01]. 

In the sequel, we consider the case where R is E\ or 1ZX, or (if k is perfect and Κ 
is discretely valued) one of their finite extensions E\, ,Tix>. In such cases, we consider 
σ-modules as topological modules. When σ — oq, the notion of σ-module amounts to 
that of g-difference module over R, our main object of study. When σ = φ, we denote 
the isomorphism defining the structure of 0-module by 

Φ : φ*Μ := ΑΙ ®η,φ R —> ΑΙ. 

This example is studied at length in [Ke]. 

Remark 12.3. — If Κ is discretely valued, ft is a field and ΊΖ is a Bczout ring: every 
finitely generated ideal is principal (as was remarked by several authors (cf. e.g., 
[Cr98, 4.9]), this follows from hazard's theory of principal parts). Any Bezout ring R 
is integrally closed and coherent, and any finitely generated i?-module is a direct sum 
of its torsion submodule and of a free module, cf. e.g., [Cr98, 4.9]. Thus, in that 
case, one could replace "free" by "locally free" in the définition of σ-modules. 

If R is Bézout, and the subring of -cons tant s is a field Κ, then the category of 
σ^-modules is tannakian over Κ. 

12.2. Strong Frobenius structure. — We assume that q is fixed under r t S. We 
shall be interested in situations where the given module AI is at the same time a 
σ^-module and a 0-module. 

Definition 12.4. A strong Frobenius structure on a ^-difference module (AL T,q) over 
R is the datum of a structure of 0-module Φ on Μ, and Φ being subject to the 
following "intcgrability condition": 

Σ ( ίΦ = Φ(Σ ( / ) " \ 

to be understood in the sense that the following diagram commutes 

Σ(ίΦ = Φ(Σ(/)"\Σ(ίΦ = Φ(Σ(/)"\ 
Σ(ίΦ = Φ(Σ(/)"\AOS 

•Φ* Μ 

Σ(ίΦ = Φ 

σ,,.Μ • Σ» 
Μ. 

We also say that (Μ, Σ 9 , Φ) is a σ,,-0-niodule over R. 
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If Σ(Ι and Φ are represented by the matrices A 1 and F 1 respectively in a given 
basis (///./) of M, the integrability condition translates into 

Fa" Aq = A*,,* F. where Aql, : = Aq"s Λ/' • • · Aq. 

Remark 12.5. Let us consider the (/-difference system Ya" = AY attached to 
(71A E r /,(m,)). Then Υφ = FY satisfies the ql/pS-difference? system with ma­
trix Afr which can be turned, after p s iterations, into the ^-difference system 

We denote by aq- Mod°n (resp. aq- Mod\p) the category of aq modules over R 
endowed with a specified (resp. an unspecified) strong Frobenius structure. If 7? is 
Bézout and if the subring of ^-constants is a field A\ then oq- Mod^f is tannakian 
over A' while σ({- Mod'}', is tannakian over the field Â ,s of elements of A' fixed under r s . 

For any ring homomorphism R —> Rf compatible with aq. r ( l i , ) . and for any replace­
ment of φ by some power ψ1. there is an obvious functor between the corresponding 
categories of (/-difference modules with strong Frobenius structures. 

Example 12.6 (^-Exponential). In the case of a ey-diffcrence module? of rank // = 1. 
identified, after the? choice of a. basis, with a difference equation y(qx) = o(.r)y(.r) with 
a(x) G A*, the strong Frol)enius structure is unieiue if it exists and is given by yu/y 
provided it belongs to R (otherwise, tliere is no strong Frobenius structure). 

This is the case? of the r/-differencc equation satisfied by eq(nq.r) as in appe?nelix 9. 

Example 12.7((/-Logarithm). The? equation dq('q{x) = 1/x, or equivalently 

Cq(qx) = ?(l{x)+q-l 

has the? obvious solution ("(/-logarithm") 

σ(ΙΥ(χ)σ(ΙΥ(χ)σ(ΙΥ(χ) 

(q (x) Q q - 1 
log q 

log./-. 

One has 
(Λ.ν)':' = l>"<„(-r). 

Consider the? line?ar system of order 2 

(25) σ(ΙΥ(χ) = Ί 0 
1 1 

Y x (x) 

having α-1 C1 (x) as solution. Then Y x) 2 -1 
P* <„(.*·) is a solut ion of 

(20) σ(ΙΥ(χ) = 1 0 
1 1 

30 
Y (x). 

( 1 ί})satisfying the usual relation a(J φ = φ aq 
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Since 
q -1 

p l q (x) 
1 0 
(J 7/S 

<1 - 1N 
p l q (x) 

we conclude that (25) and (2G) are S ^-equivalent. 
The differential Galois group is obviously the additive group G(l. and one has a 

canonical fully faithful -fundor 

RepK Ga —> o-q- Modn 

which sends the standard two-dimensional representation to the (/-difference module 
attached to I (j. 

Example 12.8 ((/-Difference modules arising from Galois representations) 
Let us assume that k is perfect and A' is discretely valued. Let k'((xf)) be a finite 

Galois extension of A'( (./')), and let £]<f r, be the corresponding finite unramified Galois 
extension of S^K v. Then S^, r, has a canonical structure of ση-ώ-module over S^K r. 
given by the canonical extension of aq and à to £\<r r,. 

We denote by d- Mod]'] (resp. d- Mod\(f) the category of differential modules (free) 
over R endowed with a specified [resp. an unspecified) strong Frol)enius structure. If 
R is Bczout and if the subring of σ^-const ants is a field K. tIkui d- Mod^f is tannakian 
over Κ while d- ModipH is tannakian over the field A.s of elements of A' fixed under rs. 

Let G/,•((.,·)) be the absolute Galois group oï k((x)). There1 are well-known -functors 

D<d '· 1*(1>K GH{.v)) —> d-AIod^. 

D{;] : RepKCh-i(.r}) — d- Mod^]. 

given by 
V ι—> (V (,)ΊΖκ' .V')ak{(')] 

for suitable ΙΖκ'^-' (depending on V), cf. [T98b] (here (//,.,(.r)) is considered as a 
constant profinite group-scheine. and representations are understood in the algebraic 
sense, i.e.. as representations of a group scheme: in particular, representations of 
G/,-((.r:)) in this sense have finite image). 

This carries over to the ry-difference case. For any V G RepK G/,.((.,.)) of dimension 
//. there4 is a finite unramified extension E\<f , (say in ΊΖ) such that (V c / ) K R / ) ( ' K I U ) ) 
(resp. (V ®/v ΊΖκ>^v')c'k({•'-)) ) is a SJK ;.-module (resp. 7Zjx..,.-module) M of rank //. This 
module inherits a natural ey-difference structure and strong Frobenius structure from 
E)<f y/ (rcsp. Ί1κ'..ν')' If A' = K' [e.g.. if/.' is algebraically closed), one recovers V from 
71/ by the following recipe "k la Fontaine': V = (AI «>o Et, ,.,)Σ" (rcsp. = V(AI) : = 
(AI07VK, ,,)Σ"). 

Proposition 12.9. TJicrc is a canonical fully faithful Κs-linear -functor 

®/v ΊΖκ>^v')c'k({•'-)) ®/v ΊΖκ>^ΊΖκ>  
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and a canonical fully faithful Κ-linear -functor 

D (o) qw: RepKGkm) -> σ(}- Mod\i 

given by 
V ->B,epK(Gk{{,r)) χ B,epK(Gk{{,r)) χ 

for suitable ΊΖχ'.χ' (depending on V). 

The fact that the functor is full is seen as usual using internal Horn: it reduces to 
the fact that D^(VCk•«•'•») is the largest trivial subobject of D^\V). 

Remark 12.10. Combining the last two examples, one finds a canonical fully faithful 
Κ-linear ^-functor 

: B,epK(Gk{{,r)) χ Ga) Gq- Mod{R'[ 

given by 
B,epK(Gk{{,r)) χB,epK(Gk{{,r)) χB,epK(Gk{{,r)) χ Gk{Lr))xGU(K) 

for suitable ΊΖκ'.ν1· 

12.3. Confluent weak Frobenius structure. — Let us remark that if M is a 
qp +1) -difference module, then φ*Μ has a natural structure of qp ^-difference module 
(in a given basis they are "given by" matrices AqPi» and ΑΨι>ίΗ respectively). 

On the other hand. qv —> 1 when / —> oc, and the phenomenon of confluence 
occurs in this natural way. in the /j-adic setting. 

Combining these two remarks, this suggests to introduce another type of Frobenius 
structure, which seems to have no counterpart in the differential case: a sequence of 
Frobenius predecessors (qp -difference modules) which for / —» oc converge1 to a strong 
Frobenius structure on the limit differential module. More precisely: 

Definition 12.11. A confluent weak Frobenius structure on a ^-difference module 
(Μ. Σί7) over Ε is a sequence (Mi = (Μ. Σ^,,, ))^o of qp -difference structures on M. 
and isomorphisms 

Φ/ : ο,Μ,. , ^ Mt 

of qp -difference modules, such that 
1) the operators Δ/ = ι 

if/"'"-!) (Gk{{,r)) χ - I d converge to a derivation on M. 
2) Φ/ converges to a strong Frobenius Φ^ for the differential module (Μ. Δ ^ ) . 

In terms of associated matrices, this amounts to the data of a sequence of matrices 
F/, A p/, G GL,,(R), ι ^ 0. related by the following relations: 

F*7'1*''* AQPIS — A^ (Q 1+1) FI 
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and such that the sequences (Fr) and (G,: : = (qp - 1)~~](A(jl), - I)) both converge in 
Mfl(R) to some limits F^ and 67^ respectively (A, represents the "'quotient'" Y ^ Y p 1 
where Y, is a fundamental solution of the system σ -,^Υ-, = A η>..Υ). 

' · q1' ' qi' '/ 
We denote by σ,Γ Mod)\mi φ the category of modules oven- 7? (Widowed with a 

specified confluent weak Frobenius structure. 
We denote by aq- Mo(t^UM the analogous category where one leaves the nior-

phisnis Φ, unspecified: objects consist of a sequence (Μ. Σ ,,'-Ο)·/̂ ) of -difference 
structures on M converging to a differential module structure on M, these data being-
par t of an unspecified confluent weak Frobenius structure. 

If R, is Bézout and if the subring of ^-constants is a field A\ then σ(}- Mod^mt^ 
is tannakian over A" while σ(}- Mod\^(:) is tannakian over Ks. 

One has a canonical 0-functors "limit differential module'1: 

Linit : aq-Modc;;nïà —> d-Μ(ηήν [AL Σ(/. (Mh Φ,-)) ι—> (Μ^. Δ ^ . Φ), 

Lini.^} : σ<Γ Μοά^ηΐ{φ) —> d- Mod{*]. (Μ. Ση. (Mh )) ι—> (M^.A^). 

Example 12.12 ((/-Exponential). We assume that πτ = π and that \q—l\ < p~]/p~l. 
Let us consider the ^-difference module (Μ = ΊΖ.Σ(]) of rank // = 1 attached to q-
difference system dqy = iry (with solution eq(nx))\ explicitly, 

Σ,/(1) = (1 + (ί7-1)π.Γ)-1. 

Then corollary 2.5 shows that (Σ p,, ) together with 

(Φ/,Φ/(1) = ίν(π./·'/)Α'(,- + 1Ι(π^+ι)) 

form a confluent weak Frobenius structure with limit differential module (ΊΖ, A^ = 
τ. d 

d.r 
+ TIX). 

Example 12.13 (/y-Logarithm). The sequence of matrices A ,i» — (} (/ ) . F, = I, 
defines a confluent weak Frobenius structure for the (/-logarithm (in this case Y.-T — 

(4-ΐ)[ρ'Ί, 
( q -1) (is-1) 

(is -18) log .r I 
0 ). One has a canonical fully faithful -functor 

Rep K G a —> o~q- Mod ,(ί-οηϊώ) 

which sends the standard two-dimensional representation to the ry-difference module 
attached to (q. 

Example 12.14 (ry-Difference modules which arise from Galois representations) 
Let us assume that k is perfect and Κ is discretely valued. Let k'((xr)) be a finite 

Galois extension of k((x)). let E\<t r, be the corresponding finite unramified Galois 
extension of r, and let ΊΖκ'be the corresponding finite étale extension of ΊΖκ,χ-
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Remark 12.15. (S^K, ,.,.aQ) has a canonical confluent weak Frobenius structure. 

given by Σ,(Ρί« = σΡ and Φ, = φ. One lias ôqP,., ι 
(V''-s"-i) < - Id) —» xd/dx 

on T. and we are about to see that the same holds on SJ<F ΧΙ. 

We may assume that K' = K. Let τυ be a uniformizer of Οχ, and let us write 
ordzu(qp — 1) = η,· (η, —> oc with /) . Then σ '̂ is identity on the henselian ring 
Όε\/τυη', hence also on its étale extension Ο ε\ /τυη'. This means that all δ(/Ρ,+ extend 
to 0 A--linear endomorphisms of Όε\ . The formula (r/7;) — αδ^ν^ (6) — (̂ ρ/>· (ft)fr = 
(r/p — l)^,,** ((i)SqPi.- (b) shows that 6qP>.s induces a derivation of Όε\ /τυ"'. Since its 
restriction to Οε\/vo"'1 is xd/dx, it is xd/dx. Therefore δ —> xd/dx on E].,. 
Remark 12.16. For r close enough to 1, one has |a(/(V)||.i:/|=r/ = |cTf/(./y) |r/iC.ul = r' 
for every r' G [r. 1[, hence (5i7(Ar/ ([r, τ7]) C (*4r/ ([τ, r']). Arguing as above, one shows 
that δ p>s —> xd/dx on Ax'([r, r']). Similarly, ôqP,, —> xd/dx on ΊΖκφχ'* and ΊΖκ1 ,xf 
has a canonical confluent weak Frobenius structure, given by Σ = σ£ and Φ/ = φ. 

One can then play the game of (12.8) with confluent weak Frobenius structures 
instead of strong Frobenius structures, and get: 

Proposition 12.17. There is a canonical fully faithful Κs-linear ^-fimctor 
%Κ,(^:((:ι:)) X ^«)%Κ,(^:((:ι:)) X ^«)%Κ,(^:((:ι:)) X ^«) 

and a canonical fully faithful Κ-linear 0-functor 
%Κ,(^:((:ι:)) X ^«) %Κ,(^:((:ι:)) X ^«) aq- Mod, (conf φ) 

given by 
%Κ,(^:((:ι:)) X ^«) %Κ,(^:((:ι:)) X ^«) 

for suitable ΊΖκφΛ' (depending on V). 

Remark 12.18. Combining the last, two examples, one finds a canonical fully faithful 
K-linear -functor 

D (confφ) 
σ(1 

%Κ,(^:((:ι:)) X ^«) aq- Mod (conf» 

given by 
V ι—> D (conf φ) 

y ) 1 = ^ ( 8 ) ^ ^ log α:) %Κ,(^:((:ι:)) X ^«) 
for suitable ΊΖκ',.ν' ̂  HS well as a canonical fully faithful AVlinear Θ-functor 

D .COllf φ %Κ,(^:((:ι:)) X ^«) aq- Mod ρconfφ 
11,r 

Composing the former with the limit functor 1λώι^φ\ one gets the 0-functor 

D)r : RepK(GH[x)) X G„.) d- Mod%[ . 
This is easily checked on the regular representation of a finite Galois quotient G of 
(7/,.((x)), for which (V Os) ΤΖκ'.,r,)Gh{lJ'y) is nothing but the Galois extension ΊΖ'/1Z in ΊΖ 
with Galois group G. 
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12.4. Solvability at the outer boundary. — We generalize definition 3.1 to the 
higher rank case. As in §1.4, let /;.,. be a generic point of absolute value r G ]\q — 1|, 1[ 
in some complete extension Ω of Κ. For any /; G ]\q— 1|. r], let An(tr, ρ) be the ring of 
analytic functions in the Ω-disk \.r — fr\ < p. This is a (/-difference ring in a canonical 
way. and the canonical embedding Λκ([ι\ 1[) c—> An(tr,p) is compatible with aq. 

Let r' be in ]|(/ - 1|. 1 [. 

Definition 12.19. A (/-difference module M over Ακ([ν'. 1[) is solvable (at the outer 
boundary) if there is a function 

re}r'A{^p(r)e}\q-l\.r} 
such that limr_,i p(r) — 1 and .1/ ^Kur. ύ -4ω(̂ γ· /?(r)) nas a ka>sis of elements fixed 
under Err 

Since any ^-difference module M over £j or 7ZX is "defined over Ακ([τ\ 1[)*' for some 
r close enough to 1. this provides a definition of solvability (at the outer boundary) 
for such modules. We say that a (/-difference module M over some finite unramified 
extension (resp. 1ZX>) is solvable if the underlying (/-difference module over E\ 
(resp. 1ZX) is. 

Let us choose a basis of M and denote by Aq the inverse of the matrix of ΣΓ/ in 
this basis. Let us define a sequence of matrices 

GqS) — I-. G(,\ — 1 
( 1- 1) (Aq-I). Gry.m+l = • dq(G q.„,) + G^m (GqA - Ulq · q m.I). 

The (/-difference system Υσ<ι = AqY then gives rise to the sequence of systems 

j-md\"Y = G„.mY. 
For the solution around tr normalized by Y(tr), one has the twisted Taylor expansion 
(cf. (1.2), [DV02, 4], [DV03. 3]) 

Υ (χ) = 
(uqlq) 

t->" Gq,-m (tr) 
|ms12) (<rJr)a.rn-

From this formula, denoting by \nq\ < 1 the limit of \[m]q\ the following lemma 
follows immediately. 

Lemma 12.20. - M is solvable if and only if 

lim sup lim sup \G(hW\)/m ^ |πς|. 
r—>1 m 

Proposition 12.21. Any q-difference module M over ΊΖκ',.ν' with a strong Frobenius 
struct/are is solvable. 

Indeed, the strong Frobenius structure M induces a strong Frobenius structure on 
the underlying (/-difference module over ΊΖΚ.,Γ* hence we may assume that Έ,κ'.χ' — 
ΙΖκ.ν Dwork's well-known argument applies (if M is defined over ΑΚ([ϊ'ρ A[) and 
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A I ®Ακ([πΆ[) An(tri>. pp) has a basis of elements fixed under Σ,7, and if r and ρ are 
close enough to 1. then φ*Μ is defined over ΑΚ([ϊ'· 1[) and φ*ΑΙ ΘΑΚ(['-Λ[) An(tr<p) 
has a basis of elements fixed under Σ^). 

Proposition 12.22. - For any solvable q-difference module over 1Ζκ>../•' (resp. ŜK, r,), 
I m n ^ ^ y = I in G L ( A I ) . 

Proof. — Let us first consider the case of ΊΖκ'.χ'- This is a problem about the under­
lying -̂difference module over ΤΙκα-? hence we may assume that ΊΖκ'.χ' — ΊΖκ.χ- Let 
us take a basis of A L and consider matrices Aq and Gq,m as before, and the sequence 
Aqn = A < ~ X · • · ΑΣ,< A . We have to show that lim^^ Α ι = I in G L ^ I Z ) . The 
relations between the iterates of aq and of dq are given by the formula (cf. [DV02. 
1.1.11], [DV03. 1.2]) 

Qnq '11 

m=() , m 
Q 

{q-l)mqw{m-l)/2xmd"\ 

It implies the following relation 

Qnq 
q 

m=0 
η 
m 

(<i-iy"<r{"'-[]/'2Gq.,n-

Let us now take η = ρ1. and let / tend to oc. Let us cut the previous sum into three 
pieces / -f Σιη<ρ'>/2 + Σ,„>»'ail(^ wl'ife, for any fixed /' close enough to 1. 

\Aqn \r ^ max 1, sup 
2 < m <p1/2 

q 
77). a 

\q - l\m \GQJTL\ . sup 
QJTL\ . 

a 
771 <1 

\'l-l\"'\G,,n\r 

The quantity sup0<m<p,72 | (^ ) J |<r/ — 1|"' |Gf/,m|r tends to 0 because the factors ( F )^ 

tend uniformly to 0. Tlu1 quantity supM^P,/2 ('/,', ) J \q — l|m |G(/.„, |r tends to 0 be­
cause the factors |Gf/,m|r tend uniformly to 0 due to the solvability condition. 

Let us now assume that A I is defined over £K r. In order to get lim, . x A(JP, - I in 
G L F L ( S ^ ) , one needs some uniformity in r in the previous estimates. This is provided 
by the effective bound à la Dwork-Robba [DV03, 5]: for p(r) as in (12.19), 

\Gq.m\r^ sun 
QJTL\ . QJTL\ . QJTL\ . 

p1 

Π (i) 77lq 
Slip \G(, n\r 
7) <u 

V 

Mr) 
m 

which is valid for any r close enough to 1, and gives 

\Gq.m\ ^ sup 
m( ι ) <...<m(/' - ι ) m̂ 

p323 

Π Ai) q1 
sup G„ J 
η < il 

at the limit r = 1 bv solvability (at the outer boundary). 
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13. "Unit-root" ^-difference modules 

In this section, we study unit-root -̂difference modules over ΊΖ, that is σ(]-φ-
modules M over ΊΖ for which there exists a O^t-lattice A4 in M such that Φ induces 
an isomorphism φ*ΑΛ = A4. 

We prove the ry-analog of Tsuzuki's theorem (in the differential case): after passing 
to a finite separable extension of k ((:/')) and to the corresponding finite et ale extension 
of ΊΖ, M admits a basis of vectors fixed by Ση and Φ simultaneously. 

\\Te follow Christol's approach [C01] of that theorem, which is more analytic than 
Tsuzuki's proof. The fact that what follows looks more involved than [C01] is not 
due to pecularities of the (/-difference theory, but to the fact that we had to fill two 
gaps in ChristoLs paper̂ 20̂ . 

13.1. Overconvergence of solutions. — We start with a complete non-
archimedean field of characteristic 0, with residue field k of characteristic ρ > 0. We 
don't assume Κ discretely valued nor k perfect, but we assume that Κ contains the 
j>th roots of unity (so that Dwork's constant π belongs to Ά ). and we fix q G Κ such 
that \q - 1| < |π|. 

Let a and η be real numbers such that 0 < a < 1 < //. Define 

ft = r log (\ 
logrt + log|/;|* 

so that 
a,1-log r/p log Vp-\og }•/}) log rj 

takes the value 1 at r — ir , and 
a < π <—> ft > 1. 

Notice that ft < p. 

Lemma 13.1. - Let Y G GL^B([(). 1[)) be such that 

\Y CY arid G := χ • dqY • Y"1 G Μμ(ΟΒ{[0,η[)). 
Then there exists Y' G GL/7 (£([(), 1[)) such that 

\Υ' ~ i|i ^ a and G' := χ · dqY' · Y'~l G Μμ(ΟΒ([0^{)) 
and such that 

Y'(x")-Y-1 eGLi((S([0.//[)). 

(20)̂ jie nrgt gap ijes jn [C01, prop. 13] where two different computations are made in #([0, 1[) and 
r respectively, and are subsequently compared in the ••intersection B([0, 1[) Π £]/r'\ which is 

meaningless. The second gap occurs at the end of the proof (th. 17), where one is supposed to redo 
the argument of prop. 13 over a finite unramified extension £\jr, of ̂ \j.r- But tne argument of 
prop. 13 makes strong use of the explicit form χ xv of Frobenius, and breaks down for 
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Proof. (The proof is entirely parallel to that given in [C01, Lemma 1] in the 
differential case.) There are three steps. 
Step 1. — It is straightforward to check that the matrix Gm defined inductively by 

Go = I, G,„ + 1 - χ - dq(Gfll) + Gm(qx)(G(x) - mq • q~m • I) 

satisfies 
. « • ' Ό ' <;„,). 

From these formulas, taking into account the fact that the operator d'l("/[m]q does not 
increase the sup-norm on £([(). 1[) {cf. [DV02. 4.2.1], [DV03. 2.1]). one derives the 
following estimates: 

|G,„|. ^ [m]! q d'" 
[lqqm] 

(Y - /) ^ Η , ·'ν· [DV03. 2.1]) 

Since log/' i—> log |Gm|r is a convex function, one obtains by interpolation 

\Gm\r ^ [//;]· I · a 1-log r/log 7/ 

for every r between 1 and η. In particular. |Gm|, < 1 and liin,„ \Gm\r — 0 if r < //. 

.S7r/> 2. We shall see that 
Y' : = 1 

u r = 2 
Y (y) 

satisfies the conditions of the lemma. Since the m-th Taylor coefficient of V is nothing 
but the pm-th Taylor coefficient of Y. it is clear that \Y' — I\\ ^ o. 

Moreover, considering the (/-analog of the Taylor expansion, one finds 

)',(.r")Y(x) ' = 1 
Ρ (ζ.ΐ:) 

Υ (ζ.ΐ:)Υ (J:)'' 

= 1 + 
(ζ.ΐ:) 

1 
(ζ.ΐ:) 1 

V (ζ.ΐ:) 

€G'L„(B([0-•'/[)) €G'L„ 
(ζ.ΐ:) 

Since |r/ - 1| < |π|. the coefficient of G,„ is in C/v. and it easily follows that H : = 
>"(.,·")->^' €G'L„(B([0-•'/[))· 
67 cp 3. One has 

P . G V ) = (* · df/)(y(./:"))y(^)-1 = xdqH • H~\qx) + HGH~l (qx) 

which lies in GLfl(0ΒφΜ)). hence G7 G Λ/„(£([(), •//"[)) and \G'[tf ^ \pq\~x = \p\~{. 
On the other hand. |G'|i = \dqYf.(Υ,)~ι\ι ^ o. By log-convex interpolation, one 

finds 
\G'\r ζ al-lo^r/'P]n^7Jp-^gr/p\ogii 

for every r between 1 and if. In particular, \G'\q,i ^ 1 by the choice of β, whence the 
lemma. 
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Assume moreover that α < |π| and let η be a non-negative integer such that 
if" • |π| > 1. Then the real number if := (if" · \π\)ρ " lies in the interval ]l.//[. 

Proposition 13.2. - Under the assumption of the lemma, Y G GLfi(0B^{]jy^). 

Proof (cf. [C01, Prop. 3]j. One has |.r~"'(G,,,/!'"]',)!,, < |1 / [m] n - 1^ (Μ'/Γ"'· 
If η = 0, this is ζ (r/)~m, and by the (/-analog of the Taylor (expansion of Y. one 
concludes that Y G GLfÎ(0B^i)ll^^). 

One then argues by induction on //. By the previous lemma, there is Y' which satis­
fies our assumptions with η replaced by n — 1 and η replaced by if. By induction, Y' G 
GLlL(0B{[^{n'y>[))- Hence Y'(xl>) G GLFL{0B{[{hlf[)). and since H G GLfl(0B{[ihn[)) C 
GLFL(OB{[0_,,φ), one concludes that F = / / " ^ ' ( . r ^ ) G G y L ; i a s well. • 

Corollary 13.3. Let Y G GLIT(B(}l. oc])) ta ,swA tfm* |F - J | < |π| and Υσ«Υ~ι G 
Mtl(Ht). Then Y G GL^H\). 

Indeed, the assumption implies (xdqY) • Y~l G Μμ{Η\). In fact, since actually 
Y G GLii(0B{]1^])), (xdqY) · F"1 G Mlt(Onf. After change of variable χ ^ l/x, 
and for // close enough to 1. one is in the situation of the previous proposition. 

13.2. (/-analog of Tsuzuki's theorem: the case when F is close to / 
We assume that A' is endowed witli a Frobenius automorphism τ and that k is alge­

braically closed. We fix a positive integer .s and consider the Frobenius φ : Σ anxn i—» 
Στ"(αη)χΡ " 011 ^ r assume that qr = q. 

Lemma 13.4. For any F{) G GL^Ok) such, that |A0 — I\ < 1, there exists Hq G 
GLfl(0K) such that H^F()H{Jl = I and \H{] - I\ = \H~L - I\ <C \F{) - I \ . 

For ,s = 1. this is part of [C01. Lemma 12]. The same proof works for any ,s > 0. 

Lemma 13.5. - For any F G GLfÎ(S].) such that \F — I\ < 1, there exists 
H G GLfl(0K[[x}}) C GLit{Oer) such that ΗφΡΗ~ι G GL^H\.)) and \H - I\ = 
\H-*-I\<\F-I\. 

Proof For s = 1, this is part of [COT, Lemma 8]. The proof for any s > 0 is 
similar. One starts by noticing that, the endomorphism id — φ of xK[[χ]} has an 
inverse: ψ — ΣΤ ^η - anĉ  n̂â  this hwerse stabilizes the subring 7;r>o S. Let U be 
the closed subspace of Μμ(0κ[[χ}\) consisting of matrices Η satisfying \H — I\ = 
\H 1 — I\ ζ \F — I \ . and let us consider the following endomorphism / oïU: 

f(H) = Η + (φο1,,.,ι)(Η°ΡΗ-λ) 

which can also be written as 

f(H) = 1+ {φ ο LX>„)(H°FH~L • Il II .. 
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Let us check that / is a contraction; one has 

f(H) - f(H') = (φ ο 7,>o)(tf*(F/r1 - / ) - (H'Y{F(H'yl - I) + Η - H') 

= (φ ο 7 , - ) ( ( ^ 0 - (H')*)(FH-1 - I)) 
- {{H')0F{H')~\H - H')H~l + Η — H')). 

and it is clear that the norm of both terms in the difference is < \H — H'\. Thus / 
has a fixed point H. and since Φ is invertible, ηχ>ο{Ηφ FH~l) — 0 as wanted. • 

Proposition 13.6. - Let F G GLtl(£}v) satisfy \F - I\ < |π|, and let A(r Aql,» G 
ϋΙμ(ηχ) be such that 

F"Aq = A^F, Aql, =Ασ,«ρ"-ι···Α(ί. 

Then Aq G ΟΙμ{Οε]) arid there exists Y G GLy/(£)£]) such that 

Υσ" = AqY, Υφ = FY. 

Proof. — Using the two previous lemmas, one reduces to the case when F G 
GL^Ont) and F(0) = I (still with \F - I\ < |π|). Let us define a sequence of 
matrices Ym G GLu(0^,t ) by 

Ytr> = F~~l(F(p)~l • · · (F0 r 1 

As above, let us set. for any positive integer n. Aq» = Aqq" 1 • · • Aq. From the 
relation Αφρ., = Fa,,AqF~1, one derives by induction on η the following relation in 
GL^nxyq 

A(/)ril), = Fa<>" AanF-1 
Applying this to the powers of ps, one then computes 

( Ο Γ ' Λ ^ π = (F*'")**' • · · (F0)^Fcr'MgF"1(F0)-1 · · · (F^")-1 = Af^L. 

We now use the fact (12.21, 12.22) that the sequence Aql>>»», hence also Α^ρ,„*, tends 
to / in GLfl(hZx), and derive that Aq G GLM(7iJ). Indeed, since Ί.τ>"Υιη=Ί';Γ>1)Υηιι =0, 
7,><>A, = 1^ηΤΓ>ο(^;:,0)ΐ;Τ1: ^ has 7r>o(AjL) - 7,>0J = 0. whence 

= (λ and it follows that Aq G GLfl(Ht). 
By (12.21). (12.22) again. |A^'L - J^ t 0, hence (F^")~1 AqYrn tends to / 

also in GL^L(BQ1. oc]). But Fm has a limit Y in G L ^ O ^ ] ^ ] ) . hence F^F" '1 = 
Aq G GL/y(£(]l.oc]). Applying (13.3), one concludes that Y G GL^Hl). and that 
Υσ«γ-1 = Aq. Since F G GL^OeQi^]), the entries of Λ/ and F actually lie in Oni. 

On the other hand, it is obvious that Ycfp — FY in GL^L{OB(]I,OG\))^ hence also in 
GL^Hl). • 

Corollary 13.7. Let (ALT>q) be a q-difference module over 1ZX with a strong Frobe-
nius structure Φ. Let us assume that there is a basis of M in which the Frobenius 
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matrix F has entries in 8^ and satisfies \F — I\ < |π|. Then there is a basis of AI 
which is fixed under both ΣΊ and Φ. 

13.3. Going up in finite unramified extensions of S}. — We now assume in 
addition that Κ is discretely valued (and again that k is algebraically closed). Hence 
Κ is a finite extension of the field of fractions of the Witt ring W(k). 

We are now looking for generalizations of the previous results when S^K r is replaced 
by a finite unramified extension 8ΊΚ ι:, (xf being a good coordinate4 as in § 11.3). The 
difficulty lies of course in the fact that OIK4 cannot assume that crq(xf) is proportional 
to x', nor that φ(χ') = (x')p. 

We use again the notations / : C —-> PQK x ·̂ ê c- · · OI* § 11.3. Le4t d, be the degree 
of / . Let us first generalize4 corollary 13.3. 

Proposition 13.8. Let Y' G GLfl(Dx>(]1. oc]) be such that \Υ' - I\ < \π\ and 
(Y>y«(Y>yl G Μμ(θ\€)κ). Then Y' G GLt,(OHC)K). 

Proof We first notice4 that it is sufficient to prove that Y' G GL μ{Ό] (C)[l / h]) for 
some h G H], of norm 1: the fact that A'q := (Υ')σ<ι (Υ')~ι has no pole at h = 0 will 
imply that Y' has no pole as well at //, = 0. After such a localization, we may assume 
that 0\C)[\/h] is a free On] [l///]-moelule of rank d. 

In the second place, we notice4 that A' G Αίμ(0^(C)). Let us endow the free 
OHC)[l/h]-modn\e of rank μ. say AT = θ'^Ο1"(C)[l/h]m'-r with the σ,,-linear en­
domorphism Έ(1 defined by the matrix (A'(f)~[ in the4 basis ( ///,· ). Via / , AT gives rise 
to an "underlying"1 ^-difference module AI over Oni [1///]. We endow it with the basis 
(nij) constructed via (////·) and a fixed basis of (C)[l/h] ewer Oni[l/h]. In this 
basis, the ç-difference system has a solution Y G GLfl(j(Β,Γ(]1. oc})) with V(0) = I. 
Let zu be a uniformizing parame4ter for Οκ. and let η be such that |π| = |zu|n_1. The 
condition \ Υ' — I\ < |π| translates into: the image of the vectors m/ in AT'/zun are fixed 
under Σ(/. Since aq = id mod tu", this implies that the image of the vectors nij in 
AI/wn are fixed under Σ9. Hence \Y - I\ < |π|, and by (13.3), Y G GLfld{On^[l/h]), 
which implies that Y' G GLfl{0\C)[l/h]). • 

Let us now generalize lemma 13.5: 

Lemma 13.9. — For any F' G GL^Sl) such that \F' - I\ < 1, there exists H G 
GLyOK[[x'})) C GL^Oj) such that HçbFfHl G GLfl{0^(C)K) and \H - I\ = 
\H~l \F' -I\. 

Proof. One can even require that II^F'E"1 G GLfI(nl). The proof is almost the 
same as in (13.5), except that one has to deal with two Frobenius enelomorphisms 
at the same time: φ. and φ' which raises to x' to the power ρ". One introduces the 
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inverse 'φ' — [φ')η of id — φ1'. and the space W analogous to U with x' in place 
of x. One checks that the formula 

/(//) = H + {iho1{y)>,)(H't'F'H-1) 

(with 0, not 0'!) defines an endomorphism of W. One checks as in (13.5) that / is a 
contraction by writing f(H) in the form f(H) = I + (ψ ο 7(χ/)>0)(H(J)(F,H'1 - /) + 
i f + (17ς6 - Ηφ')) and using the fact that \ΗΦ - (Η')φ - Ηφ' + {Η')φ' \ < \Η - Η'\. • 

At last, let us generalize proposition 13.6: 

Proposition 13.10. - • Let F ' G GL[,(£•].,) satisfy \F' - I\ < |π|, <md Η A' » G 
G/,,, ('&,·') be such that 

(F'r>A'Q = (A'qP*)*F', A'QP, = A'QP,· · · A'Q. 

Then A'Q G GLit(Osi) there exists Y' G GLit{0^) such that 

(Υ')Σ'Ι = A'QY', (Υ')Ψ = F'Y'. 

Proof. Using (13.8) and (13.9) in the place of (13.3) and (13.5) respectively, the 
argument is the same as in (13.6). except that one cannot directly apply the truncation 
operator 7;r/>n since aq does not commute with 7x/>o. We are in the situation where 
F' , hence Y'N, is in GLft(0^(C)K), and where ((Υ^ή-'Α^ = (ΑΡ^)Φ''' -> I in 
GLFL(KX>), and we have to derive that A'Q G GLfl(0^(C)K). 

We first notice that 0^K is a free W.|.-module of rank d (it conies from a locally 
free A([r, oc])-module of rank d (r < 1), which is automatically free since A([r, oc]) is 
principal). 

Let us endow the free (C)^-module of rank //, say AI' = :·'· '{{( 1)κ ni',, with 
a 0-linear endomorphism Φ defined by the matrix (F')~L in the basis (///,·). and endow 
AI'(&S\, with the af/-linear endomorphism Σ(] defined by the matrix (AQ)~L in the same 
basis. Via / , ΑΓ gives rise to an "underlying" ^-difference module AI over Ti\, and 
M e-]. becomes a σ,,-0-module over S}v. We endow AI with the basis (ni:J) constructed 
via (m') and a fixed basis of Ό^κ over Ti\., and we denote by AQ and F respectively 
the inverse matrices of Σ(1 and Φ in this basis. Then the argument of (13.6) applies 
and shows that AQ G GL^Hl), which implies that A'Q G GL^O^(C)K). A'QP,• 

13.4. (/-analog of Tsuzuki's theorem: the general case. — In this section A" is 
a complete discrete valuation field of characteristic 0, with algebraically closed residue 
field k of characteristic We assume that π G A", that \q — 1| < |π|. AMs endowed 
with a Frobenius r, and we assume that, for a given s > 0, rs(q) = q. 

As before, φ is the rMinear endomorphism of ft (or TV) which sends χ to xp>. 
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Theorem 13.11. Let (M. Σq) be a q-difference module over IZX with a strong Frobe­
nius structure Φ. Let us assume that there is a Οε\ -lattice Ai in M such that Φ 
induces an isomorphism 

Φ*Μ -=-> Ai. 

Then there is a finite unramified extension E \ , of 8}r and a basis of Ai ®o t Όε\ 
which is fixed under both Ef/ and Φ. 

In particular, (Μ &ηΓ kZx',^q) is a trivial q-difference mod/ale. 

This follows from the previous proposition and the following lemma of N. Tsuzuki 
[T98b. 5.2.2] (cf. also [C01. Lemma 16]): 

Lemma 13.12. For any F G GLlL(0^), there exists a finite unramified extension 
El and H e GLfl(Ofif) such that \mFH'x - I\ < |π|. 

This is proven in [T98b. 5.1.1], [C01, lemme 16] for s = 1, but the proof works 
for any s > 0. 

14. Quasi-unipotence 

In this section Κ is assumed to be complete, discretely valued, of characteristic 0. 
with residue held k perfect of characteristic / ;>() . Κ is endowed with a Frobenius r. 
As before, φ is the rMinear endomorphism of (or IZ) which sends χ to xp\ 

We shall prove the quasi-unipotence of ^-difference modules over IZ which admit a 
strong Frobenius structure, using Kedlaya's structure theorem for 0-modules over IZ. 

Another path toward quasi-unipotence seems possible, through the structure theo­
rem of [A02] for tannakian categories with a Hasse-Arf filtration. However, this would 
require a (/-analog of Christol-Mebkhout theory of exponents and analytic slopes. 

14.1. Kedlaya's filtration. — We shall rely on the following theorem [Ke, 6.10]: 

Theorem 14.1. - Let (ΑΙ,Φ) be a e>-module overlZ. Then there exists a unique finite 
ascending filtration (Mj) by saturated φ-modules such that 

i) the quotients Mj/Mj+i have a single Φ-slope Sj, 
ii) j ι—» sj is increasing, 
iii) each quotient ΜΊ/Μ3 + \ comes from a unique φ-module (Α^-.Φ) over , and 

Nj (g)£t S has a unique slope in the sense of Dieudonné-Manin, which is s3. 

Here, ε is the usual notation for the p-adic completion of £t. "Mj saturated" means 
as usual that M/Mj is torsion-free over IZ, which implies that it is free, since it is also 
finitely presented and IZ is a Bézout ring. Notice that M\ = N\ IZ. 
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The definition of Φ-slopes^21) involves the "big Robba ring" ΊΖ {cf. §11.2), whose 
precise definition will not matter here. A 0-module L over 7Z is said to have a single 
slope s if there exists a basis of eigenvectors for Φ in L (S)jz 7Z with eigenvalues in some 
finite extension of Ό κ of valuation equal to s. 

We shall also use the following result: 

Proposition 14.2. Let (Μ, Φ) be a à-module over ΊΖ. Then up to replacing k( (./·)) 
by a finite separable extension (and ΊΖ by the corresponding étale extension) and Κ 
by a finite extension, 

i) there exists a basis m of M in which the inverse matrix F of Φ can be written 
as F = D~]U, where D is a diagonal matrix with diagonal entries Dl in L\ and of 
non-decreasing valuations, and with U G GLfl{OgT), \U — I\ < 1, 

ii) the Φ-slopes of Ν := ] f-'^m, coincide with the slopes of Ν (g)£T S in the sense of 
Dieudon η é-Μαηιη, 

iii) Ν contains Ni (in the notation of § H-l). 
iv) the valuations of Dj are equal for i < rkN, and are strictly smaller than the 

valuations of Dj for j > rkiV, 
ν) Ν is the direct sum of Ν γ and N[ := 0i>rkiv rtii, 
vi) moreover, one may choose m in such a way that Ν = I\SJnii, so 

that U may be written in block form as U — ( Q where X G GL^ ν (C^t ), 
Ζ G GLμ-r]ί ν {Ο£τ ), and Υ has entries in θ\. 

Proof. - Multiplying F by some constant and replacing 1\ by a finite extension, one 
may assume that the Φ-slopes belong to the value group of O. 

For i) and ii). see [Ke. 6.9], where it is shown that the Dieudoimé-Alaiiin slopes of 
Ν (g>£T 8 are the valuations of the 1),'*. 

The construction and characterization of N\ in [Ke, 6.10] also shows iii). On the 
other hand, setting 8 = Κ ί&χ W{h{{x))), it is shown in [Ke. 5.9] that Φ can be put 
into diagonal form D by some change of basis via a matrix V G GL^^O^) (applied to 
m), with \V — I\ < 1. Points iv), v) and v) follow easily. • 

14.2. The local monodromy theorem. — We assume that \q — 1| < |π| and that 
rs(g) = q. 

Theorem 14.3. Any q-difference modale (M, Eg) over ΊΖ which admits a strong 
Frobenius structure is quasi-unipotent: after replaxing k((x)) by a finite separable 
extension (and 1Z by the corresponding étale extension), it admits a filtration by sat­
urated q-difference submodules, with trivial quotients^22"1. 

(21)called special slopes in [Ke]: we call them Φ-slopes here in order to prevent any confusion with 
the (analytic) slopes à la Christol-Mebkhont, whose definition does not make use of any Frobenius 
structure, and which will appear in the sequel. 
(22)as ̂ -difference modules, i.e., they admit a basis which is fixed under Σ9. 
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Proof. Multiplying F by some constant and replacing Κ by a finite extension, one 
may assume that the Φ-slopes belong to the value group of 0 , and that the least 
Φ-slope is 0. 

We may freely replace k((x)) by a finite separable extension and extend the dis­
cretely valued field Jv, so that we may assume that we are in the situation of the 
previous proposition, that π G Κ and that k is algebraically closed. 

We shall prove that AI\ is stable under Σ^. Applying (13.11), one deduces that it 
is trivialized, as a (/-difference module, in some finite extension of 7Z coming from a 
finite separable extension of k((x)). The same will be true for the Mj by induction, 
whence the quasi-unipotence of (M. Ef/). 

We rely of course on the integrability condition Fa<l Aq = A^ *F, in the basis 
provided by (14.2) vi). We write Aq.AqV» in block form 

A === P<i Qn 
Rq Sq AqP« — P„PS Qnl>* 

P„PS Qnl>* 
We have to show that Rq = 0. 

The lower left corner of the integrability condition gives rise to the equation 

Bq = (Z""ylD"B^AD')-lX. 

where D' (resp. D") is the diagonal matrix with diagonal entries DL, i ^ rkil/i 
(resp. i > rkTl/i). 

Let us fix r sufficiently close4 to 1 (so that our (/-difference module with Frobenius 
structure is defined over .A([r, If))- Then the canonical absolute values | \r\/P« can are 
defined for each of the matrices entering the last displayed equation. Moreover 

\(Za")-1 D"\rUp\CH,n- \(F>')~1 X\rup\c-clu ^ 1, 

and |ri/;,̂ c.mi = \RqP» |r.(.an. Thus |Rq\rwp\c,xu ^ \Rql^\r.c-An- Now we may re­
place φ by a large power, i.e.. s is replaced by a large multiple. When s —> oo, we 
know that AqV* I in ΊΖ (l)y (12.21), (12.22)), hence \Rlfl. | -» 0. We conclude 
that Rq = 0. • 

14.3. Logarithmic variant 
Theorem 14.4. - For any q-differ en, ce module (AL Er/) overlZx which admits a strong 
Frobenius structure, there is a finite étale extension 1ZX>/7ZX coming from a finite 
separable extension k'((x')) jk((:/'))< such that Μ κ r'Rx> jlog ./·] has a basis fixed by Ef/. 

This follows from the previous theorem and the following lemma: 

Lemma 14.5. dq : 7Zx/[\ogx] —> 7Zx>[\ogx} is surjective. 

Proof. It is easy straightforward that Sq = xdq = (q — l)~1(aq — id) induces a K-
linear isomorphism 7ZX/K —>· 7ZX/K. Besides, note that ôq(x" logkx) is a polynomial 
of degree ζ k in log.x, with coefficients in K[x, l/x\- From there, using the twisted 
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Leibniz rule, it is not difficult to conclude by induction on the degree of log that 
δ(ί '· 7 .̂/:[log.r] —> 7£r[log;/'] is subjective. 

Let us now turn to the et ale extension 1Ζκ> tX> [log x\. We may assume that Κ = K'. 
Again, by induction on the degree? of log. one reduces the statement to the subjectivity 
oîôq : nr>/K π,.,/κ. 

Recall (cf. (12.16)) that if I is a closed interval contained in ]0. 1[ and close enough 
to the point 1, one has Sq(Ax'(I)) C (*4T/(/)), and that δ f)i.. —> xd/dx when / —> oo. 

One has 
([pJS}q)([pls}q)~1 E!!!=o ([pJS}q)([pls}q)~1 E!!!=o ([pJS} + + g) 

It is easy to see that for given g G Αχ>(1). Φ/(g) forms a Cauchy sequence (for j < i. 
write ^i(g) as ([pJS}q)([pls}q)~1 E!!!=o ~' ^jiff^"''^'" ) and compare each of the 
// ' ' ·/!>' terms to ipj(g))- Hence? it e'onve?rges in the? Banach space AX>(I). 

On the other hand, although x'd/dx' : AX>(I)/K —> Ax> (I)/7v is not surjective. 
every h G AX>(I)/K has a (.r/e//ri./'/)-])reimage? in Αχ'(1') / Κ, for any closed interval I' 
contained in the interior of I. For / close enough to 1. the? same is true? for xd/dx. 
which is a multiple of x'd/dx' by a unit in AX>(I): tliere exists / G AX'(I')/K such 
that xd/dx(f) = h. In the? case h = lim i:,(g). one? finds ôq(f) = e/ in AX>(I)/K. 
Whence the result. • 

As in the differential case? (cf. [A02]). theorem 14.4 can be expressed in the follow­
ing "tannakian way": 

Theorem 14.6. Let us assume that k is algebraically closed. Then the canonical 
&-functor 

: RcpK(Gk((.r)) x G„) — aq-Mod(R'] 

is an équivalence of categories. In fact, tliere is a canonical quasi-inverse \σ>\ and a 
canonical isomorphism ο VaV = Id. 

This quasi-inverse is given by V}^\M) :— (M Qf>jz ΤΖ'[\ο£χ])Έ,' for ΊΖ' big enough 
(in TV), and the isomorphism M —^ D^V^f (AT) is induced by the? canonical iso­
morphism 

(M (/;n ft'[log.r])E« Θκ ft'[log;/:] ^ Μ Θη TZf[\ogx}. 

Proof We? know that this functor is fully faithful, and its essential subjectivity is 
ensured by (14.1). The rest is formal and left to the? reader. • 

Remark 14.7. This functor actually comes from a fully faithful -functor 

R<>PK(Gk((x)) x Ga) —+ aq- ModV, 
but the latter is not essentially surjective?. For instance 

Ext Ιο(1^(π,π) = ExtRcpG(i(K,K) = κ. 

while Εχΐσ _ Mod(<;>) (£"*", S^) is a Κ-space of infinite dimension. 
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Corollary 14.8. There is a canonical K-linear fully faithful 0-functor 

σ,-Mod^ —^σ(ΓΜοά^λΐ{φ) 

givenbyD^oV^W. 

Is it an equivalence of categories? This is likely. One way to tackle the question 
would be to prove directly the essential surjectivity of jj^ni^ along the above lines; 
the major technical problem in this direction is to control the variation of Kedlaya's 
filtration attached to the confluent sequence of qp -difference modules when i —» oo. 

15. Applications 

15.1. Confluence. — We assume again that k is algebraically closed. We assume 
that π G A, that \q — 1| < |π|. A is endowed with a Frobenius τ, and we assume 
that, for a given s > 0, rs(q) = q. 

As before, φ is the Ts-linear endomorphism of IZ which sends χ to xp . 
We call the composed (g)-functor 

Conf : aq- Mod{£] —> aq- Μοά^ηΐ{φ) —> d- Mod%], 

where the first functor is f j ^ ^ ^ o ^ and the second is Lim^\ "(he p-udic confluence 
functor". 

Theorem 15.1. - - One has Conf oD^ = In particular, Conf is an equivalence. 

Proof. This is clear from remark 12.18, and from the fact that and are 
equivalences, by the quasi-unipotence theorems. • 

Remark 15.2. It is clear that the restriction of these functors to rank one objects 
gives rise to the group isomorphisms of (8.2). 

15.2. Canonical g-déformât ion. — We call the composed 0-functor 

ς-Def = ο : d- Mod^ aq- Mod^ 

''the p-adic q-deformation functor'". 

Theorem 15.3. q-Def is a quasi-inverse of Conf. Moreover, it is canonically iso­
morphic to 0* o (qp -Def). 

Proof. — • By the quasi-unipotence theorems, it is clear that q-Deî is an equivalence. 
In order to prove the first assertion, it is thus enough to see that q-Dei is left quasi-
inverse to Conf, which follows immediately from the fact that Conf o D ^ = D{f. 

For the second assertion, one remarks that q-Deî(M) (resp. qp -Def (M)) is the first 
(resp. the second) term in the sequence of modules defined by £)™llf(̂ ) 0 γ(Φ) (M). • 

(23) using tacitly the canonical isomorphism Dj^ ο Vaq = Id. 
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15.3. Analytic slopes and exponents. — Let r' be in ]\q — 1|,1[, and Λ be a 
non negative real number. By analogy with the differential case (cf. [CM02]), we 
introduce the following 

Definition 15.4. A ̂ -difference module M over Ακ{[ν', 1[) nas (analytic) slopes ^ Λ 
if there is a function 

r G ]r',l[i—> p(r) G ]r1+\r] 

such that M <8U/V([r,i[) Λ ^ Γ ^ ^ ' ) ) bas a basis of elements fixed under Ef/. 

It is clear that this implies solvability in the sense of (12.19). 
Since any (/-difference module AI over 1ZX is "defined over ΑΚ([Γ> 1[Γ for some r 

close enough to 1, this provides a definition of "having slopes ζ À'1 for such mod­
ules. This property is stable by passage to subquotients, dual, tensor products and 
extensions. One checks exactly as in the differential case that for η prime to p , the 
base-change by ./* t—> x" of M is a q1/7"-difference module of slopes ^ tiX. 

It is likely that the Christol-Mebkhout theory of slope nitrations carries over to the 
(/-difference case, but we haven't checked all details. 

We now assume for simplicity that the residue field k is algebraically closed. 

Example 15.5 ((/-difference equations of rank 1 with Frobenius structure) 
We have seen in (7.3) that any (/-difference equation over ΊΖ with Frobenius struc­

ture has a non-zero solution in some finite unramified extension ε\, o f f ] , and that 
y' / y G S\. Thus the group isomorphism σ-eq^ d-eq^f from (8.2) preservers the 
property of "having slopes ^ λ". 

In particular, (/-difference equations of rank 1 with Frobenius structure4 and slope 0 
(i.e., slope ^ 0) correspond to tame characters of G/,.((.,.)) (via (8.2)). hence are of the 
form dq — \^\qlx with π G Zp ΓΊ Q. 

Theorem 15.6. Any AI G σΊ - Alod^ with slope 0 has a filtration with graded pieces 
of rank one. 

Proof. By quasi-unipotence. we may assume, after taking sub quotients, that AI 
corresponds to a representation V of G/,.((,,.)) with finite4 image G (which is the semi-
direct product of a cyclic group of order prime4 to ρ by a group, cf. [S68]). Rep­
resentations of G then correspond to (/-difference modules in the tannakian category 
generated by AT which have4 slope 0. By base-change by χ ι—• xn for suitable η prime 
to p , we may assume that G is a /j-group, i.e., that with are in the purely wild case. 
By the4 previous example, there is no one-dimensional representation of G which cor­
responds to a (/-difference module of slope4 0. Since G is a /;-group. we4 conclude that 
it is trivial. • 

It follows from that AI is an iterated extension of (/-difference modules of type 
1Z[dq]/(d(j + [o/],/). / = 1,. . .. // = vkAI, with «v G Έρ HQ well defined mod. Ζ and up 
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to permutation. Let us call these4 p-adic numbers (mod. Ζ and up to permutation) 
the exponents of M. Taking into account remark 8.3. we have: 

Proposition 15.7. The functors Conf and q-Oei preserve objects of (an a I y lie) slope 0 
and ffieir exponents. 
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