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¢-DIFFERENCE EQUATIONS AND
p-ADIC LOCAL MONODROMY
by

Yves André & Lucia Di Vizio

Abstract. — We present a p-adic theory of g-difference equations over arbitrarily thin
annuli of outer radius 1. After a detailed study of rank one equations, we consider
higher rank equations and prove a local monodromy theorem (a g-analog of Crew’s
quasi-unipotence conjecture). This allows us to define, in this context, a canonical
functor of “confluence” from g¢-difference equations to differential equations, which
turns out to be an equivalence of categories (in the presence of Frobenius structures).

Résumé (quuations aux g-différences et monodromie p-adique). — Nous présentons une
théorie p-adique des équations aux g¢-différences sur des couronnes arbitrairement
minces de rayon extérieur 1. Apres une étude détaillée des équations de rang 1,
nous nous penchons sur le cas de rang supérieur et nous démontrons un théoreme
de monodromie locale (un g-analogue de la conjecture de quasi-unipotence de Crew).
Cela nous permet de définir, dans ce contexte, un foncteur canonique de « confluence »
des équations aux g-différences vers les équations différentielles, qui s’avere étre une
équivalence de catégories (en présence de structures de Frobenius).

Introduction

In the context of p-adic differential equations, the expression “local theory” occurs
in two different senses. In the naive sense, it refers to the study of the behaviour of
solutions in a small punctured disk around a given singularity. This theory has been
reasonably well-understood for a long time(").

On the other hand, according to some insights of Dwork and Grothendieck, the
geometrically relevant p-adic differential equations are those which admit analytic
solutions in all non-singular open unit disks, and which extend a little inside the
singular disks. They should be understood as objects (cohomological coefficients)
belonging to geometry in characteristic p. It is then consistent with this viewpoint

2000 Mathematics Subject Classification. — Primary 39A13; Secondary 33D05, 12H50.

Key words and phrases. — p-adic monodromy, g-difference equations, p-adic representation.
(J)Although by no means completely understood, c¢f. for instance the problems raised by Ramero’s
theory [Ra98] in its differential variant.
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56 Y. ANDRE & L. DI VIZIO

to call “local theory” the study of the behaviour of solutions in arbitrarily thin annuli
with outer radius 1 contained in singular open unit disks(?).

In this sense, the local theory of p-adic differential equations has been developped
first by Robba (in rank one), then by Christol and Mebkhout (in arbitrary rank), and
has recently reached full maturity with the proof of the so-called local monodromy
theorem (Crew’s quasi-unipotence conjecture) which provides a bridge toward the
theory of p-adic Galois representations.

The objective of this paper is to set up a local theory of p-adic ¢-difference equa-
tions, parallel to the differential theory, and to put a link forward between the two
theories.

* ok ok

In the history of the theory of p-adic differential equations, going from the rank
1 case to arbitrary rank has been a difficult step. This is due in part to the fact
that the study of rank 1 p-adic differential equations indulges fairly down-to-earth
methods (¢f. for instance [R85], [CC96]). In the first part of the paper we develop an
analogous theory for p-adic g-difference equations of rank 1. The techniques employed
are inspired by the differential case and, due to their explicit and direct nature,
bring to the fore the relationship with differential equations. In fact, we construct
a canonical deformation functor from the category of p-adic differential equations of
rank 1 to the category of p-adic ¢-difference equations, which we describe explicitly.

The first part is organized as follows. In §1 we recall some basic facts of p-adic
q-difference algebra proved in [DV03]. In §2 we prove some properties of the ¢-
expounential function which play a significant role in the sequel. Sections §3 and §4
contain a g-analog of Dwork-Robba’s criterion of solvability and its application to
g-difference equations of rank 1 with meromorphic coefficient. The results in §4 are
used in the next section to show that one can actually reduce the study of rank-one
g-difference equations analytic over an arbitrary thin annulus of outer radius 1, to
the study of rank 1 ¢-difference equations with polynomial coefficient. This reduction
is crucial for the characterization of g-difference equations with Frobenius structure
(¢f. §6). We finish the first part by proving that for a ¢-difference equation having a
Frobenius structure is equivalent to being a “deformation” of a differential equation
with strong Frobenius structure (¢f. §7). From there, we obtain the p-adic monodromy
theorem in the rank 1 case and the deformation functor (¢f. §8).

There are two appendices, the first one being devoted to the Frobenius structure of
the g-exponential series. In the second one, we give a g-analog of Dwork’s approach
to the p-adic gamma function via the Frobenius structure of so-called exponential
modules.

* ok ok

(2)See the previous paper [A] for more detail and perspective, and for the apparatus of analogies
which motivates the present paper.
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¢-DIFFERENCE EQUATIONS AND p-ADIC LOCAL MONODROMY 57

In the second part, we consider g¢-difference modules M of arbitrary rank over
the “Robba ring” R of analytic functions on an arbitrarily thin annulus of outer
radius 1. We prove the local monodromy theorem for those g-difference modules
which admit a Frobenius structure: there exists a finite étale extension R’ /R coming
from characteristic p, such that M @g R'[logx] becomes a trivial g-difference module
(c¢f. §14.2, §14.3 for various equivalent precise statements). We follow K. Kedlaya's
approach to the p-adic local monodromy theorem in the differential case, proving
along the way a g-analog of Tsuzuki’s theorem on unit-root objects.

This sccond part is organized as follows. We first discuss finite étale extensions
R'/R coming from characteristic p, and how the g-difference operator d, extends to
R’ (the lack of an explicit expression for this extended operator leads to many technical
difficulties in the sequel). We then introduce and investigate two notions of Frobenius
structures for g-difference modules: the strong Frobenius structure (analogous to its
differential counterpart), and the confluent weak Frobenius structure (which yields a
sequence of ¢ -difference modules converging to a differential module with Frobenius
structure).

In § 13, we analyse ¢-difference modules over R with overconvergent (strong) Frobe-
nius structure of slope 0. As in Tsuzuki's theorem, they arise from finite p-adic
representations of the inertia group of a local field of characteristic p.

We then prove three versions of the theorem of quasi-unipotence for ¢-difference
modules over R which admit a strong Frobenius structure. We also show that such
g-difference modules have a confluent weak Frobenius structure.

This gives rise to a canonical functor of “confluence” between such ¢-difference
modules (M, 3,), and differential modules over R which admit a strong Frobenius
structure, which has a canonical quasi-inverse (15.1, 15.2). More precisely, for any
such (M, %), there is a canonical sequence of ¢"" -difference structures on the R-
module M (for fixed s and with i — oo, so that ¢” — 1), related to cach other by
Frobenius, and which converges to a differential structure on M.

PART 1
RANK 1

1. Generalities on p-adic ¢-difference equations of rank 1

1.1. The ¢-difference algebra of analytic functions over an annulus

Let K be a field of characteristic zero, complete with respect to a non archimedean

absolute value | |, with residue field & of characteristic p > 0. We denote by Oy its

ring of integers and we assume that the absolute value is normalized by [p| = p !
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58 Y. ANDRE & L. DI VIZIO

For any interval I C Ry we consider the K-algebra Ak (I) of analytic functions
with coefficients in K on the annulus Ci(I) = {x € K : |2] € I}:

Ar(I) = {Z"G%(l,,.l,‘” ta, € K; lilll lap|p" =0Vpe I} )

We denote by Mg (1) its field of fractions (the field of meromorphic functions on
Ci(I)), and by By (I) the subring of bounded elements of Ak (I). The theory of
Newton polygons shows that every invertible analytic function on C(1) is bounded, so
that Ag (I)* = By (I)*. We will omit the subscript K when there is no ambiguity.

We fix once and for all an element ¢ € K, such that |1 — ¢ < 1 and that ¢ is not
a root of unity. The algebra A(1) has a natural structure of a ¢-difference algebra.
This means that the homeomorphism

C(I) —C(I)

T qu
induces a K-algebra isomorphism
o, A(l) — A(I)
f(x) — flqx)
Similarly for M(I) and B(I).

1.2. The g-derivation. — To the operator o, one associates a “twisted derivation”
d, defined by

flar) — f(r)

d,(f)(x) =

(Nt = R

which satisfies the twisted Leibniz Formula:

(1) dy(F9) () = f(a2)dy(g)(w) + dy(f)(@)g(2).

For any pair of integers n > ¢ > 1 and any f,g € M(I) the g-derivation d, verifies:

. , q*t —1
(2) dga" = [n]ya™", where [n], =1+q+- - +¢" ' = ! ;

1

dr . n ; n n
(3) {n(]l! xt = (”) 7", where [()];:1, [n]!q =[n}q[n — l]l, and (j) = #,
q q g .

W g0 =3 (1) 4@

=0

1.3. ¢-difference equations. — Let us now consider a g-difference equation of
rank 1 with coefficients in M(I):

(5) y(qr) = a(x)y(x). alx) € M(I).
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¢-DIFFERENCE EQUATIONS AND p-ADIC LOCAL MONODROMY 59

We shall often write (5) in the form

(6) dyy(w) = g(x)y(x), with g(x) = ((L;l—)—l_)_zl

For any u € M(I)*, z(x) = u(x) 'y(x) is a solution of the g-difference equation
(7) 2(qx) = [ulqx) Ha()u(x)] z(x)

or equivalently of

(8) dyz(x) =

We shall say that equations (5) and (7) (or (6) and (8)) are M(I)-equivalent®.
From (6), one derives the following sequence of equations

’H;’(U)(-") = gn(0)y(x),

with g1 () = g(1), gnr1(x) = gu(qu)gr(x)+dyg,(x). Tt is convenient to set go(a) = 1
If g(x) is analytic at 0, then 2”2(, "[';'(](,));17” is a formal solution of y(qxr) = a(r)y(x).

a

1.4. Generic points. — In order to apply the technique of generic points, we shall
have to use an auxiliary extension of normed fields Q /K, with the following properties
(for the construction of such a ficld, see for instance [Ro00. §3, 2]):

1) the ficld € is complete and algebraically closed:

2) the set of values of Q is R>:

3) the residue field of € is a transcendental extension of the residue field of K.
For any p € R the ficld © contains an clement ¢,, called a generic point (at distance p
from 0). such that ¢, is transcendent over K and |t,| = p, so that the norm induced
over K (t,) C Q is defined by

Sagt ;}
2o bty

~osup; Jaglp!

sup; b, |p/ ’

Definition 1.1.  For any p € I. we call the mumber
—1/n
- o aalt,
R,(o, — a(r)) = inf [ p,limint Il ‘,)
n—x | [n],

the generic radius of convergence of y(qa) = a(a)y(x) at t,. We will write simply R,
when no confusion is possible.

(3)We shall also use a similar terminology for other rings of functions.
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60 Y. ANDRE & L. DI VIZIO

1.5. Properties of the generic radius of convergence. — The following propo-
sition summarizes some facts about the generic radius of convergence, which are
proven in [DV03].

Proposition 1.2

1) (Twisted Taylor expansion) Let d,y(x) = g(x)y(x) be a g-difference equation with
coefficient g(x) € M(I) and let & € C(I). Suppose that g(x) does not have any pole in
"¢ Then dyy(x) = g(x)y(x) has an analytic solution in a neighborhood of & if and
only if

-1

gul€)| "
ap

In that case, the unique analytic solution y(x) of y(qr) = a(x)y(x) in the open disk

R := liminf

n—"2>

> [(q = 1)g].

D(&, R™) verifying y(&§) = 1 coincides with the sum of the series

Yn (é) . n
Z ['1}! ('I"*é)ni(lﬂ where (-')7s£)rur1 = ("‘ - E)(‘IT - (]E) to ('I. —(q ISC)
n=0 g
2) Let b(x) = u(qe) ta(r)u(x), with u(x) € M(I)*. Then R,(0c — a(x)) =
R,(0 —b(x)) for any p € 1. i.c.. the generic radius of convergence is invariant under
M(I)-equivalence.
3) (¢-analog of the Dwork-Robba effective bound) If R, > |¢ — 1|p. then
gnlty) !
[l | Ry
4) (Transfer to an ordinary disk) Let g(r) be analytic over D(E,p~). with & € K

. foranyn > 1.

and |&] < p. and let R, > |q—1]p. Then dyy(x) = g(x)y(x) has an analytic solution in
the disk D(§. R ). Moreover, the equation d,y(v) = g(r)y(a) has an analytic solution
in the disk D(&, p~) if and only if R, = p.

5) (Transfer to a regular singular disk) Let a(x) € A(]0, 1) and u(x) € K [2] be a
formal power series with coefficients in K such that u(qr) ™ a(xyu(e) € K. If R, = p.
the serics u(x) converges for |x| < p.

Corollary 1.3. Let y(qr) = a(x)y(x) be a q-difference equation with a(x) € A(]0, 1])
(resp. A([0, 1)) " M([0,1]) ). Then y(qr) = a(a)y(x) has a solution y(x) analytic and
bounded in C([0,1]) if and only if lim,_y R, =1 (resp. Ry =1).

Proof. -~ Let a(x) € A([0,1]). Tt follows from the assertions in 4) of the previous
proposition that the existence of a solution y(ar) analytic and bounded over C([0, 1])
implies R, = p for any p € 10, 1[. Hence we conclude that lim,., R, = 1.

On the other hand. suppose lim, .; R, = 1. Again. by the assertions of 4), that

(7’(0) n
o) =3

n=>0

the formal solution
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¢-DIFFERENCE EQUATIONS AND p-ADIC LOCAL MONODROMY 61

of y(qr) = a(r)y(x) converges in D(0, R ) for any p € 0,1[.  This proves that
y(x) € A([0,1[). Finally statement 3. implies that

9n(0)| _ |gn(t,)
g [
By letting p tend to 1, one proves that y(x) is bounded.

If a(x) € A([0,1]) N M([0,1]), the generic radius of convergence Ry is defined.
Assertion 4) of (1.2) states that y(gx) = a(x)y(xr) has a solution y(x) € A([0, 1]) if
and only if R} = 1. Moreover the existence of the analytic solution y(x) € A([0, 1])
implies that R, = p for any p € ]0, 1, therefore the inequality (9) allows to conclude

1

Ry

(9)

~

that y(x) is bounded. O

It is customary in the theory of g-difference equations to assume that the coefficient
a is invertible®. We shall follow this tradition, and consider mostly g-difference
equations y(qr) = a(x)y(x) with a(z) € A(1)* = B(I)*. Written in the form d,(y) =
gy. this implies that ¢ € B(I). Actually most of the time, we shall not only have
g € B(I) as in the differential case (the logarithmic differential of any element of A(1)
belongs to B(I)). but also [(¢ — 1)g|pry < 1. |alpay = 1.

2. An example: the ¢g-exponential function

2.1. The g-exponential ¢,(x). — The power series
"
eqlt) =D o
n>=0 [’”’L]

is a g-deformation of the exponential series and satisfies the g-difference equation
dqf)q = €q,

that is to say
eq(qr) = (14 (g — Da)e, ().

1/t

Proposition 2.1. The series eq(x) has radius of convergence [ ], ’[p]q,,,
>

Proof. — Every positive integer n can be uniquely written in the form n = p*m + k,
where m, s,k € Z, m and p are coprime and 0 < k < p—1. If & > 0 then |[n],| =
lq” " [k]q + [p*mly| = 1. in fact [[k],| = 1 and |[p*m],| = |[m],~[p*]4] < 1. Therefore

| o | B [re/p] ’ ) 3 / ["/[),Jrl]
i = TT ol =TT ]
1= 120

(O This convention is also in use in the higher rank case, where a(x) is a matrix; it allows to define
the dual system.
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62 Y. ANDRE & L. DI VIZIO

where the product on the right is actually finite. It follows that

. , o l/n_ 1/ptt
11,1111:21) ]| = H ‘[1)](”), ‘ . d
i=0
Proposition 2.2. If
t Zy Zpy : vrdinie of commeraence of o (A
(10) dist(aq®r, bq"r) = (1‘1€111’1 la — b < radius of convergence of eq(x),

the analytic function e, (ax)/e,(bx), with a,b € K, a # 0 # b, is overconvergent, i.e.,
it has a radius of convergence > 1.

Remark 2.3. Notice that exp(ax)/exp(bx), with a,b € K, is overconvergent if and
only if |a — b| < ||, hence the inequality above is actually a g-deformation of the
analogous condition in the differential framework.

Proof. The series e,(ax)/e,(bx) is solution of the ¢-difference equation

L+ (¢ — Dax (x)

().

I+ (¢ — L)bx Y

Notice that mingez, |[¢“a — b is realized for o« € Z, o > 0, hence, by multiplying

ylqr) =

eqlax)/eq(bx) by (1,(q — 1)awr), 4, we can assume that mingez, la — ¢*b| = |a — b|.
Observing that for any integer n > 1

dy(1. (g = )b}y = (4" — D1 (g — 1)bgr)u—1.q.
one verifies by induction that the series ¢,(ax)/e,(bx) is solution of

a,b n.q
TN E—)

dyyle) = (1.(q = 1)ba)g

This proves that

eqlar) Z (a.h).q o

) PR TI

n=0 [n, a

Let r(eq(x)) be the radius of convergence of ¢,(x). The condition |a — b| < r(eq(x))
implies that

( . b) 1/n n-—1 ) 1/n
lim sup | ~——4=4 lim sup a— by’ < 1. O
S [n]}, r(eq(x)) n—n Ilj[(]( )
2.2. The analytic function loge,(x). — If |e,(x) — 1] < 1, it makes sense to
consider the analytic function L,(x) = logeq(x). From the g-difference equation

satisfied by ¢4, one derives immediately the equation:
Ly(qx) = Ly(x) +log(1 + (¢ — 1)x).

which can be rewritten in the form

x"

dyLy(r) = (=)"(g = 1)"~

n+1
n=>0 +
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¢-DIFFERENCE EQUATIONS AND p-ADIC LOCAL MONODROMY 63

)

We find that the analytic function L,(r) has the (well-known'®) expansion

(c¢f. [HL46, §2], (Q]):
L,(x)= Z ()" g - )" Xt

= [n]yn
Proposition 2.4
1) The series Ly(x) converges for |v| < |g— 1]~
p[/ (=D
2) If |x] < |—~1—|—snp (Ip|Y P~V g = 1)), then |Ly(x)| < |2].
q-—
Proof

1) It is enough to notice that

q— l)” ~1 !_1/”

1111 111 [']),]q]),

n—oc

. . e ‘ L/n
= 1yl inf [ log g "= pEeTE

o) (—=D)"(¢g—1)"
2) Since Ly(r) = (‘ Pl T )

, .(n
M—Y(_l;—[” sup (|p| V=1 g — 1]) implies

la
G-,
n+1],n+1)"

;r"), we have to prove that |x| <

sup < 1.

nzl

This follows from the inequalities [p|"/ =" < |n+1]"/" and sup (|p|"/@ V. |¢ - 1) <
[+ 11,177, o
In the sequel of this section, we assume that K contains the p-th roots of unity. It
then also contains p — 1 distinct non zero roots of the equation ¥ = —pm. One picks
one of them and denotes it by 7 (Dwork’s constant). Notice that |x| = [p|}/(P=1),
Corollary 2.5. — If |q — 1] < |xt|, the series eq(wx)/exp(me) is overconvergent.

Proof. -~ Let us consider the series

1 — n—1 ’
L(I(’JTLI') = 7 + Z(_l)n,fl %Trnmn.

= [n]n

Notice that the assumption |¢ — 1] < |7| implies |[n],| = |n|. Forn=2,...,p—1 and
lx] < |m(q — 1)|7'/? the following inequality holds:

1 — n—1 ’
¢ﬂ’”.’l,’” < |n|.
nlyn
On the other hand, for n > p and |x| < ¢ — 1|7 x|V/? < |g — 1|7 Y|~ =3/ we have
(1 B (1>”71 7_(_”,1/,71, — (q - 1)"'71—71 m"l < |7T|.
[n]yn n?

(®)the complex analog is essentially the quantum dilogarithm
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64 Y. ANDRE & L. DI VIZIO

We conclude that there exists € > 0 such that for [x| < 14+¢& we have

Ly(mx)—mx|<|ml.
Hence the series eg(mx) /exp(mr) = exp (L, () — mx) is analytic for |z|<1+¢e. O

2.3. Overconvergent solutions of ordinary ¢-difference equation at 0

In this subsection we are going to use the analytic function L, to construct an
overconvergent solution of a linear g-difference equation of rank 1, under a suitable
hypothesis.

Lemma 2.6. Let y(qr) = a(a)y(x) be a g-difference equation such that a(x) is
an analytic function at 0, with a(0) = 1. Then write a(x) as an infinite product
Hi>l (1 - /1,;;1,'""), If there exists & > 0 such that

1

sup ———(1+¢)" < |«
] )" < |x|

H o Hi N
q q — 1

i>1

then the infinite product

converges to an overconvergent solution of y(qx) = a(x)y(x).

Proof. Since
i ] sup (|7, [¢' =1
{.'“'l (1+¢) < |m| b ! ) for any i > 1,
lg" — 1] g — 1]
we have ‘ ‘
it it
sup | L, < Hid ) < sup frit ‘ < |ml.
|r|<l+e (]L -1 e|<l+e (11 -1

It follows that

o it
)= L, (,,f - ]>

i>1

is an analytic function for [x| < 1+ ¢ and that sup|, .. |z(x)| < |7|. We conclude

that .
Jit
expz(z)=|le,s | ——
REE H ' <qz—1>
121
is an overconvergent solution of y(qz) = a(x)y(x). ]

Proposition 2.7 . Let y(qx) = a(x)y(x) be a g-difference equation such that a(x) =
ILs, (1 + ;Li:r’"') s an overconvergent analytic function. Then there exists a positive
integer M and a positive real number ¢ such that y(qz) = a(x)y(x) is M([0,1 + <[)-

equivalent to
M

ylgr) =T (1 + pa’) y(a).

i=1
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¢-DIFFERENCE EQUATIONS AND p-ADIC LOCAL MONODROMY 65

Proof. Since a(x) is overconvergent there exists a positive integer A and a real
number ¢ > 0 such that |p;| > (1 +¢)" for any i > M. Let 0 < & < e. For any
] <1+¢& <1+ e we have

1+ ¢)i|at
lim (——L’I‘ =0.
i—oe (g = 1)
Let us fix an integer M > 0 such that
1+ ¢e)i|a’
sup  sup u—t—l < |~

i>M [aj<14e (@0 —1)]

a(r) = H (1+,‘Il_:)

and set

i> M
It follows from the previous lemma that there exists w(x) € A([0, 1 + €’[) such that
- , u(qx ,
u(qr) = a(x)u(x), i.c.. such that g )(1,(;17) = H?:Il (1+ pit). O

u(x)

3. Solvability (at the boundary)
Recall that the Robba ring R = R, = Ry, is the ring
R = U5>()A(]1 — &, 1[)

of analytic functions on some thin annulus with the unit circle as outer boundary.

The subring

et
ET = E‘j - g[\',.r - UE>()B(]1 - &, 1[)

of bounded functions is endowed with the sup-norm | 3" a,x"|¢1 = sup|a,| (caution:
this is not a Banach ring). If the valuation of K is discrete, this is a Henselian field,
with residue field k((x)).

We introduce the subrings

B=B,=A0,1)n&N, H =H = U0 Al —&,x])

(on which the restriction of |

et 18 the sup-norm, according to the principle of the
maximum).

In this section, we begin the study of g-difference equations y(qx) = a(x)y(x) with
a(r) € R* = (€M)

By iteration of the operator d,, we deduce from the ¢-difference equation y(gx) =
a(x)y(x) a sequence of equations

dyy(r) = gn(r)y(r),

with g, (2) € € and go(x) = 1. Since a(z) € B(]1 — £, 1]) for some £ > 0, it makes
sense to consider R,(o, —a(x)) for p € |1 —e, 1.
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Definition 3.1. The equation y(qr) = a(x)y(x), with a(z) € EF, is said to be solv-
able®) (at the outer boundary) if

lim R,(o, —a(x)) = L.

p—1
Remark 3.2. It follows immediately from (1.2) that solvability is invariant under

ET-equivalence.

One can define the notion of solvability without using the generic radius of conver-

gence:

L —1/n
Lemma 3.3. lim, .; R, = inf <l,liminf,,ﬁx ”[’;I(]'!') I )
q &
Proof(7). Let us set
—1/n
. . .o gn
Reir = inf | 1, liminf g (,>
n—oc ’I],];] ot

Notice that for any p € ]1 — =, 1], we have

—1/n
9nlt)) gn ()

[n]g [n

Moreover (cf. [CD94, 2.1]) h,(n) = supg <, |g,,(t/,)/['n]£}! is a continuous function
of p and

~1/n
) and Ret = liminf [ sup

n—oo 0<s<n

R, = liminf < sup
(

n—oo )<s<n

£t

gn ()
T
[l
hence it is enough to prove the uniform convergence of the sequence hp(n)l/”.
The proof of [DV02, 4.2.7] actually shows that for any positive integers N > n >
s = 0 such that N = [N/n]n + s, the h,(n)’s verify the inequality

“1/N

lim h,(n) = sup
p—1 0<s<n

£t

(V]!

h,,(N)l/N ghy)(n)(l/'n)l(l/N) I S A
’ ’ ([l )™ (5],

Hence, letting N — oo, we obtain

1

R, < hy(n)" (|[n};’l/" Jim HN]EI|—A1/N> .

(6)This terminology is very unsatisfactory (solvable in what?) but has been of constant use in the
theory of p-adic differential equations since Robba’s studies. For want of a better word, we shall
adopt it here.

(M The continuity of the function R, is proved in [CD94]. The proof that follows uses an argument
of uniform convergence and it is a g-analog of an unpublished proof by F. Baldassarri and L. Di
Vizio.
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It follows from (1.2) that
) 1
VYt [N Y) < ()<
N —~

L !
ﬁ; (H”]q R,

which finishes the proof. O

4. A characterization of solvability

The following characterization of solvability is a g-analog of a result by Dwork and
Robba [DR77, 5.4] and will be used to prove that solvable g-difference equations of
rank 1 are Ef-equivalent to solvable ¢-difference equations with coefficients in & [1/.r].
Proposition 4.1. Let QK be the cxtension introduced in subsection 1.4. The fol-
lowing assertions are cquivalent:

1) The q-difference equation y(qr) = a(e)y(x), alx) € EF, is solvable.
2) There crists a scquence R, () € E5. such that

. R, (qr)
lim ' —a(x =0.
. R, (x) (x) &)
3) There cxists a sequence R, (x) € 55T2 such that
. dy(Ry) () a(r) —1
1 T g =0, where gla) = ———.
i R, () 9t el where g(r) (q—1)x
Proof. The cequivalence between 2. and 3. is straight forward.

Let us prove that 3. implies 1. We set gy (x) = g(@) and gy (v) = dogn () +
g1 ()gn (gr) and we fix £ € ]0. 1] and n > 0. We claim that if the inequality
dy(R,)(x
Ll o)

X ¢

()
()

o

is satisfied then we have
(/j‘l\f(l?,,)((r)
R, ()

—gn(x) < e forany N >

!
g!)
We prove our claim by induction. In fact, it follows from proposition 1.2 that

(lq (R,)(x)
R, ()

<[V,

+
532

< 1. Therefore. recursively. one obtains:

and hence that |gn ()¢
|y (R) () = gn g (o) B ()1

() (R () = g () Ry ) + g (00 (dy (1)) = g1 () R ()|
sup ([ (1)) = g () B ()] 1 -l (4) (dy (R)() = g1 () B (1)) 1)
€ |I?,,,(:1’)|551 .

//\

N
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Let us fix N > 0 and let ¢ < |[’\/]q| Then there exists n > 0. depending on N, such

that
gn (1) ‘ (I(IIV(R,, ) gn(r) (lf;\vR;,(«") ' €
— < sup — — : — < sup ﬁ.l < 1,
[1\ ]1/ F’slz [‘]\/ ]1] R'l (1) [‘N]q EJZ [‘7\” ]q 1{11 (') E’s‘z [A ]q

which implies that y(qr) = a(r)y(x) is solvable.
Let us now prove that 1. implies 3. Let us consider the sequence of elements of £F:

o= 1. i) = —glr). Bnyilqr) = dydn(r) + 51 (2)x ().

We choose a generic point ¢ € € such that |f] = 1 and we set

I5)
R, (x) = Z []VV(] )(1 t)N.g € gt [t] C giz for any n > 1.
N=0 q

Notice that IR, (1) satisfies the inhomogeneous ¢-difference equation

({q RII (I)A(l(l) ]?H (1)

. dyfn () + 3 () By (x) "L Bnlqr)
- et )N — S PNy
;J [-‘,V]EI (1 l)f\./ ,\,Z] U\/ — l] (1 l)’\/ l.q

/ n )
[n]q

The following lemma allows to conclude the proof by considering the subsequence

(R/’” | ('I.))n€7"i>u’ O

Lemma4.2. |5, (x)/[n],] 0 < |Ru(a

= [I) + l]q (l /l)uflq

ey,

Proof. -~ Consider the polynomial ring €7[z]. We have an embedding of valued A'-
algebras (£1. 'gr C ( ET[VH ler ). where | |er . is defined by
IZ a; Nei . = sup|ul(.1‘)|g, . forany 3, L &Mz).
2
Let d, - be a g-difference derivation acting on €7[z]. in the following way

dy.- (Zi><J ”"("')’:i) =2 ail@)ilgz" forany 35,0 ai(a)z’ € ET[2).

Observe that "
L (g =)

[“]{I ’ZI>() @ :

e

£tz
and that

'Z,‘)o a(r)z'| = 'Z,)O a; ()t :
&t g&l
We set R, (a.2) => v, f[\] (r.z)ng € ENz]. Since

dy . 0 for any pair of integers n > N > 0,
| ('I . )N q Y
[”];, (—1)tg"n=1/2if = N,
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we conclude that
B () dy .(Ry)

(nly g [,

Remark 4.3. - Notice that if g(2) € K[a] then R, (x) € Q[z].

(x.2)

< Ry (e, Z)’gt‘: =|R, (x, t )}532 . O

etz

4.1. Solvability of ¢-difference equations with constant coefficients

Corollary 4.4. The q-difference equation y(qr) = ay(x), with constant coefficient
a € K. is solvable if and only if a € ¢”r.

Proof. It follows from proposition 4.1 and remark 4.3 that y(qx) = ay(x) is solvable
if and only if a is the limit in 8;3 of a sequence R, (qr)R, (x)~', with R, (x) € Qx].
Therefore if y(gx) = ay(x) is solvable, the coefficient a is the limit of a sequence in
G~ ie.. a € ¢"r. Conversely, if a = ¢ with o € Z,, then there exists a sequence of

integers v, € Z such that «,, — « and hence that ](""‘) - algr — 0. O

axrvn

Remark 4.5. By induction on n > 1 (¢f. [DV03, 1.2.4]). one can prove that the
solutions of the equation y(qx) = ay(x) arc necessarily solutions of the sequence of
equations:

dy y(x) = (a—D(a—q)--(a—q"")
W, " (g = D(g® = 1) (g = Dgntn= D/ 2gen

Therefore the previous corollary implies that the series

y(a).

) ((1 - 1)((1,—(1)‘..((,/ ,{In—l) .
(11) Z (q— (@ —1)-(¢" = 1) r

n=0

has radius of convergence 1 if and only if a € ¢%r, generalizing [DV03, 8.2], where the
radius of convergence of (11) was calculated under the assumption |1 —¢| < [p|"/ =1,
This should allow to drop the assumption |¢ — 1| < |7| in [DV03. §3].

4.2. Solvability of ¢-difference equations meromorphic at zero. — The next
corollary concerns rank 1 ¢-difference equations whose coefficient has at worst a pole
at 0 and is analytic in C(]0, 1]).

Corollary 4.6. Consider a solvable g-difference equation y(qr) = a(x)y(x), with
aNa(x) € B for some positive integer N. Let ax(x) € K(x) be a rational function
such that all the finite zeros and poles of ax (x) are in C([0, 1]), and that a(x)/ax (x)
is an invertible analytic function in B having value 1 at 0. Then the q-difference

equations y(qr) = ax(x)y(x) and y(qr) = %y(;ﬁ) are both solvable.
Proof. It follows from (4.1) and its proof that there exists a sequence R, (x) €

£ N Ag(]0.1]) such that

R, (qx) )

R, (x) =0

i
552

lim

n—oc
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Let G, () € Q) be a rational function such that R, (r)/G,(x) is an invertible
analytic function over C([0, 1), having value 1 at 0, and that all tho poles and zeros
of G, (x) arc in C([0,1[) U {oc}. Hence the Taylor expansion at oc of G, (qu) /G, ()
defines an invertible element of H(2 and |G, (qr) /G, (x |¢1 = 1. Then,

R, (qx) .
’ R, (x) ~ale) &l

_ ‘( n(( )(171( ) - (l( ) > (1,,((11) " (1,(,1-) <(}r:((]~l7) » (I)>
n( )(u; ((jl) (I,%(.'IT) G, (; ) ([X(J1‘> (1'”('1.) o (T
)

o

ax (11’,,((1'1')(:',,( ) a(x) > (ne (1) N Go(x) [(Galqr) : N
(130( Dle R, ()G, (qx) B asc(r) ) alr) Go(qr) < Go(r) A”X(J)> &,
o Ralq)Ga(e)  ale) N ax(x) G, (x) (G (qr)
Since (R,,(.I')G,,(q;r) (Ix(.’l')> a(r) € a3 and G lar) < Gol) — e (2 )> cH

we obtain the equality

1 R, (qx) - < 1 R, (qr)G, (1) B alr)
R, (x) e =il R, ()G (qr)  asc () |e

G (qr)

—a(x) o)

— oo ()

~T ) '
t‘Sl

By proposition 4.1 we conclude that both y(gx) = a~ (x)y(x) and y(gx) = ”“('Z::r)y(:r)

Q

are solvable ¢-difference equations.

5. Reduction to the case of ¢-difference equations with
polynomial coefficient

In [R85], Robba has shown that any rank one differential cquation over ET s
equivalent to a differential equation with coefficient in K[1/2]®). His method uses a
kind of additive decomposition of the coefficient (using logarithmic derivatives) and
cannot be translates into the g-difference context. In this section we prove a g-analog
of Robba’s result using a kind of multiplicative decomposition of the coefficient.

Proposition 5.1. Any solvable q-difference equation y(qr) =a(x)y(r), with a(x) €ET,
is EV-equivalent to a solvable g-difference equation of the form

M
lo i .
(12) ylgr) =" ] (1 + I—:) y(r).
i=1
where ly € Z,,, M is a positive integer, p; € K and |p;| < g — 1| fori=1,... M.
Proof. —— The proof is divided into several steps.

8) Actually he considered only differential equations with rational coefficients, but his argument
extends in general.
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Step 0. There exists an unique multiplicative decomposition
A
a(r) = N L) m(x)

of a(r) in & such that

SAERN. NF#O:

- N e Z;

- I(x) is an invertible analytic function in 1 + 2B:
- m(x) is invertible function in 1 + LK1,

Proof of Step 0. [CMO2. 6.5] and [C81a)]. O
Step 1. The g¢-difference equation y(qr) = a(r)y(x) is Hi-equivalent to a ¢-
difference equation of the form
\ M .
13 r) = I (1 ->
(13) wlar) = =5 ('),-H. ) ul)
where A € N\ AN #0. N.M e Z. M > 0.y, € K for any i = 1..... 4 M and [(r) is an

invertible analytic function in 1 + 8.

Proof of Step 1. The analytic function m () € H'. considered in Step 0. can be
uniquely written as a convergent infinite product

(14) mir) = ﬁ(1+"‘)

1=1
It follows from proposition 2.7 that there exists z(.r) € HT such that z(qr) = m(r)z(x)

and hence that - ((’") () has the form (13). O

Step 2. The cquation (13) is B-equivalent to the solvable g-difference equation

i
(15) y(qr) = ,\H(l—i-/)' r),
with A€ K. A# 0, NoAL € Z, M >0 and || < 1 forany i =1,.... M.

Proof of Step 2. Let us write [(.r) as an infinite convergent product
o0
H + Ao
=1

Since () does not have any zero in C([0, 1]), we have

Ail < 1forany i > 0. As far as
the p;°s are concerned, it is enough to recall that the analytic function m(a) (¢f. (14))
is invertible in H' to conclude that || < 1 for any i = 1..... M. Hence it follows
from (4.6) that the ¢-difference cquations

X
(16) y(qz) = H (1+ Na') y(r)

=1
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and
Hi
y(qr) = VH(J—}— )(/ )
=1
are both solvable. Since I(x) € B. the equation (16) has a solution u(x) € B (¢f. 1.3),
which establishes the B-equivalence hetween (13) and (15). O

Step 3. The solvability of (15) implies that A € ¢“v. N = 0 and |;1;] < |¢ — 1] for
any i = 1..... M.

Proof of Step 3. Let b(r) = (M) H,—J (14 p;/a"). Since

< 1, necessarily [b(x)]er = l and hence [A| = 1.

(b(r) = 1)/(q = 1)rfes

Let us write inductively djjy(x) = g, (r)y(r) for any n = 1. Writing g,,(r) ex-
plicitely in terms of b(x) (¢f. [DV03. 1.2.4]) we obtain

n —1)" " n _ .
['1’]:, . = M[N]E,(((l __)1)”;’:” fzo(fl)" (./),, Jr/ U 1/b( Nb(qa) - b(g’ I.IT) N
a7 I
[”] q— 1) N gt
1
Tl

This shows that if N # 0, the equation y(qr) = b(x)y(x) is not solvable, in contra-
diction to the hypothesis. Therefore it is enough to prove that A € Z,, assuming that
N = 0.

Since y(qr) = b(a)y(r) is solvable, there exists R, (@) € Q[x. 1/x] (¢f. Remark 4.3)
such that

— (.

‘M —b(r)

R, ()

of
“Q

hence A is a limit of a sequence in ¢”. This proves that A € ¢® and that the equation
y(qr) = o)A\ 'y(r) is also solvable.
So we are reduced to proving the statement for a solvable g-difference equation of

the form
A

yar) =11 (1 + /:,’, ) y().

i=1

or cquivalently of the form

_1 )
dyy(r <Z il Py +1 H (1 + ’/1:’ ) >y(;r).

J>i

Since |p;| < 1. the solvability (¢f. 1.2) implies that ;] < |g — 1] for any i = 1..... M.

Step 3 finishes the proof. O
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6. Frobenius structure in rank 1: existence criterion
From now on, we assuime that the residue field k of K is perfect.
In [CC96. §2], it is proven that a differential equation of the form
/
y (o a a a 111
yl) e e Ly {—]

y(r) X T2 DL

has a strong Frobenius structure if and only if it is solvable and there exists a positive
integer s such that (p® — 1)a; € Z. In this section we prove an analogous result for
g-difference equations. Some steps of our proof wse methods that can be adapted to
the differential case. simplifying some technical details in [CC96).

Let us consider a Frobenius automorphism 7 of A, i.e., a continuous automorphism
of the field A lifting the Frobenius automorphism of the residue field &. Let s be a
positive integer and let us assume that ¢ is 7%-invariant. Usually one considers the
semilinear endomorphim ¢ = ¢, of €7 defined by

(,)5< E (1,,,.1:"> = E T ay, )P "
nel nez
An analogous endomorphism ¢ can be defined over the g-difference algebra of analytic
S [} 0

functions over a disk or an annulus. centered at ) or at oc.

Definition 6.1. We say that a g-difference equation y(qa) =a(a)y(r). with a(r) € ET,
has a (strong) Frobenius structure if there exists u(a) € (51')* such that

(18) : a(e) =a(e)alqe)? - alq” ~'r)?

for a suitable choice of s.

Remark 6.2. Notice that v()?74 = o(x)70? for any v(x) € EF (here v(a)7¢? means
poay(v(x))). Let y(r) be asolution of the equation y(q.r) = a(a)y(x) in an extension
of E.If y(qr) = a(r)y(r) has a Frobenius structure then y()? = u(r)y(r) with
u(r) € (ET)* and (18) can be written in the following way:

YLy = () e = (),

Lemma 6.3. — If a q-difference cquation y(qr) = a(v)y(x), with a(x) € . has a
Frobenius structure. then it is solvable.

Proof. Let = > 0 besuch that a(r) € A(Jl -2 1) and let z(x) = 32, S an (2. ty)ng
with a,, € K. beasolution of y(qr) = a(r)y(r) at the generic point ¢, for p € [1—=.1].

It follows from the assumption that there exists u(x) € (ET)* such that z(a)? =
u(r)z(r) is a solution of y(qr) = a,-(v)?y(x) at f; Hence we obtain

(19) H/;I'\ (O'q - (11)‘(‘1))0) < R/)(Uq - (I(I))[)N < /)1)‘\ < L
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Since y(qr) = a(x)y(r) and ylgr) = ap (0)?y(r) are E-equivalent, we have

lim R,(co, —a(x)) = lim R (0, — a,(2)?).

p-—1 p—1

This forces y(qx) = alx)y(r) to be solvable. O

We recall (ef. proof of (5.1). Step 0) that any invertible a(r) € € can be uniquely
written as a product a(a) = (A ™M) I(x)m(r), with A€ K, N € Z, I(x) € (1 +xB)"
and m(x) € (l + %HT)*. The main result of this scection is:

Theorem 6.4. A g-difference equation of rank 1 with coefficient in ET, i.e.,

A
ylgr) = N L)y m(e)y(r).

has a Frobenius structure if and only if il is solvable and there exists a positive integer
s such that \"~1 € ¢”.

6.1. Idea of the proof of theorem 6.4. — It follows from (6.3) and (5.1) that it
is enough to prove the statement:

Proposition 6.5. A q-difference equation
A i
. lo ' .
(20) ylar) = TT(1+ (o= D5 )y,
1=1 ’
with lo € Zy, and juy.....ppp € K. has a Frobenius structure if and only if it is solvable

and there exists an integer s = 0 such that ly € Z./(p® — 1).
First of all let us remark that:

Lemma 6.6. A q-difference equation y(qr) = ¢ y(x), with ly € Z, (cf. (4.4)), has
a Frobenius structure if and only if ly € Z/(p” = 1).

Proof. The cquation y(qr) = ¢"y(x) is E-cquivalent to y(gr) = ¢ y(x) if and
only if (p® — 1)l € Z. O

Eventually. the proposition 6.5 is a consequence of the following proposition:

Proposition 6.7 . A q-difference equation of the form

Al
i
21 ylgx) = (1 71‘,> :.
(21) ylqr) Hl e =1 ) yle)
with py. ..., jiar € K. has a Frobenius structure if and only if it is solvable.

In fact:
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Proof of proposition 6.5 (assuming proposition 6.7). Suppose that  (20) has a
Frobenius structure. which implies that it is solvable. Since 1y € Z,,. the equation
y(qr) = ¢ y(r) is solvable. This implies that the equation
AN )
ylar) =] (l + (¢ — 1)’%) y(r)
i=1
is also solvable, and hence that it has a Frobenius structure. Moreover it proves that
also y(qr) = ¢ y(r) has a Frobenius structure. i.e.. that Iy € Z/(p* — 1) (¢f. (6.6)).
On the other hand, if [y € Z/(p* — 1) and (20) is solvable, the equation y(qgr) =
¢ y(r) has a Frobenius structure and y(qr) = H,\Il (1+ (¢ — )& ) y(r) is solvable.
Then it follows from (6.7) that (20) has a Frobenius structure. O

6.2. Proof of proposition 6.7. — First we prove a lemma. which is a fundamental
step in the proof of (6.7). Tt is a g-analog of a particular case of [Mo77. Prop. 1]:

Lemma 6.8. Let u(qr) = v(x)ule) be a g-difference equation such that v(e) is an
analytic element on C([0.1]). without zeros and poles in C([0.1]) and () is a non
zero analytic element on C([0.1). Then w(a) is an analytic element on C(10.1]).

Proof. One has to show (¢f. [Mo77. Th. 1]) that for any a € K. |a| = 1. there exists
an analytic clement on D(0.17) U D(a.17) whose restriction to D(0,1 ) coincides
with (). Let us fix @ € K. |a| = 1. Tt follows from [Mo77. Th. 1] that there exists
Ga (). called the singular factor of u(x) with respect to D(a.17). such that
1) ga(r) is an analytic clement on P < D(a. 1), without zeros in P' < D(a. 17):
2) there exists an integer o such that lim, (0= a)™ g, (1) = 1:
3) ho() = ule)/g () is an analytic element on D(0. 1)U D(a. 1 7). with no zeros
in D(a.17).
It follows from our hypothesis on
Lo ulgr) galge) ha(qr)
CIENET T ) el

and the properties of g, () and h, (1) that:

1) ga(qr)/gq () is an analytic element on P! < D(a, 1), without zeros in P!~
D(a.17);

2) limg—ne ga(q)/ga() = ¢

3) holqr)/ha(x) is an analytic element without zeros on D(a.17). Since both
u(qr)/ulr) and go(qe)/g. () are analytic clements on D(0.17). without zcros in
D(0,17). the same is true for h,(qe)/h,(x). This proves that h,(qr)/he(x) is an
analytic element on D(0.17) U D(a. 17). with no zeros in D(a.17).

We conclude that ¢ =" g, (qr)/g.(x) is the singular factor of v(a) with respect to
D(a,17). This implies that g,(qr)/g.(x) = ¢ and hence g,(x) = A, for some
A€ K and m € Z. By the definition of singular factor. g,(x) does not have any
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zero in P10 D(a, 17), which implies that m = 0. Eventually, u(x) = A, (r), which
means that u(x) is the restriction of an analytic clement on D(0.17) U D(a.17). as

claimed. O

Now we are ready to prove (6.7). Remark that one implication is a particular case
of (6.3). So let us suppose that (21) is solvable and prove that it has a Frobenius
structure. The proof is divided into steps:

Step 0. It is enough to prove that there exists a solution y(x) € B of the ¢-difference
equation
A
(22) ylgr) =TT (1 + (g = Dpar’) yl).
i=1
with [p;] < 1 for any i = 1..... M and |¢g — 1] < |7|. and a Frobenius endomorphism

¢ such that y(x)/y(x)? is overconvergent.

Proof of Step 0. Notice that the fact that (21) is solvable implies that || < 1 for
any i = 1..... M (¢f. (5.1)). Moreover (21) has a solution y(r) analytic and bounded
over the disk C(]1.0c]) (¢f. (1.3)). We have to prove that there exists a positive
integer s such that y(r)/y(r)? € 1. By iteration we may replace ¢ by an integral
power of ¢ and hence suppose that |¢ — 1] < |7]: this doesn’t change the solution
y(). which is still solution of the iterated equation. and the inequality ;] < 1 is
still verified after a reduction of the type (5.1, Stepl), since the iterated equation is
necessarily solvable. A change of variable of the form -+ 1/r allows to conclude. O

- = . b .
Step 1. There exists h > 0 such that y()? is overconvergent. hence algebraic
over the field I of analytic elements with coefficients in K, (i.e. the completion of the
field of rational functions A () with respect to the norm induced by 7).

Proof of Step 1. The solution y(.r) can be written as a product of g-exponentials:

The analytic function

M
Ly
logy(r) = Z Ly <[/I] x )
q

=1
converges for

1/i 1/i

ar

(q" = D) (q — 1)

Therefore there exists € > () such that log y(:r) is analytic and bounded over the disk

lo] < inf
i=1,....A

x| < 142, We deduce that there exists and integer h > 0 such that [p/ logy(x)| < |7
ta)

. ~ h )
for any |x] < 1 + &, and hence, taking the exponential of logy(x)” , that y(a)?
converges for || < 1+ &, O
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5

Step 2. There exists s > 0 such that y(a)/y(2)? € E.

Proof of Step 2. It follows from Step 1. that the g-difference algebra Efy(x)] is
a finite extension of E. Since y(qr)' = a(r)'y(r)" for any i € N, the g-difference
module Ely(r)] = «_ F y(x)'. with d = deg E[y(x)]/E. is semisimple. Moreover the
Frobenius ¢ stabilizes Ely(x)] as a subalgebra of B (¢f. [C86, Th. 5.2]). It follows
that F ¢g(y(r)). s € N, is a finite family of sub-g-difference modules of rank 1 of
Ely(x)]. aud hence that there exists s € N such that E ¢y (y(r)) = Ey(x) (¢f. [C81b.
10.1] and [CC96. proof of th. 2.3.1]). O

Step 3. y(a) /y()? is an analytic element on C([0. 1]).

Proof of Step 5. The analytic element () /y(0)? is solution of the g-difference
equation:
M ;
u(qar . L+ (g — 1)t i
tgr) = ¢(a). with v(r) TH PR g ) — ¢ N'(n).
ulr) el | o (Lt (g =1D)pl qvar)

Since |p;] < 1. 0(r) is an analytic element on C([0.1]). without zeros and poles in
C([0.1]). We deduee that w(a) is an analytic element over C([0. 1]) from lemma 6.8, O

Step 4. y()/y(r)? is overconvergent.

Proof of Step 4. This statement is proved in the second part for g-difference sys-
tems of any rank (¢f. 13.3). We will give here a simplified proof under the assumption
Il —¢| < |z M. This implics that there exists 1 > |7/ 7! such that

A

14+ (¢ — Dyt
1'('1') = H pi—1 1 T it
i=1 j=0 ( + ((] - l)/l qa )

!

is analytic for [o] < n. Let dju(e) = g, (0)u(r) for any n = 1. with g (r) =
o) = 1/(q — 1)r. We have

sup g1 ()] < 1.
[rl<n

Therefore the recursive relation g, 41 () = g, (qa)gr () + dyg, () implies that
sup ‘.(/n 1»1('1')’ < —
f < Ul

In particular g, (0)] < =", Since u(r) = 1+ Z”)] "1[';1(](.)).’1"1, we conclude that ()

a

converges for || < nlm|. with y7| > 1. The same is true for y(a)/y(r)? since u(r)
and y()/y()? coincide up to a non zero constant factor.
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6.3. Remark. — Notice that the Step 1 above combined with (5.1) proves following

statement:

Corollary 6.9. Let y(qr) = a(x)y(r) be a g-difference equation with Frobenius struc-
ture.  Then. there cxists a non negative integer hoand a solution y(x) of y(qr) =
a()y(r) in a finite cetension of £ such that A(/(.r)”h €&t

In the next sections we will show that the solution y(.r) is actually in an unramified

extension of £ which is a mnch stronger statement.

7. ¢-deformation of differential equations with strong Frobenius structure

In the previous section we have given a naive definition of the (strong) Frobenius
structure for ¢-difference equations of rank 1. In the higher rank case we are going to
consider another Frobenius structure that we call confluent weak Frobenius structure.
Proposition 7.3 below establishes the equivalence hetween the two definitions for ¢-
difference equations of rank 1.

Definition 7.1. We say that y(qr) = a(e)y(e) has confluent weak Frobenius struc-
ture if there oxists a sequence of ¢ =difference equations y(g” ") = a, ()y(r). with

-

q7 = ¢ and ay(r) = a(r). such that

~

1) for any n = 1 the equations

) = ) and gl ) = ag () y ()

are Ef-equivalent via u,, (1) € (8")
2) the sequences (a, (1) = 1)/ (¢" " = 1) and u,, () converge in EF.

Remark 7.2. In the notation of the previous definition. let (a,, (@) - 1)/((1””' - 1)

. . oy
— ¢g(r) and u, () — u(r). Then the differential equation ]—/(1) = g(r)y(r) has a
dr

strong Frobenius structure:

I
w' () C o :
g(r) + =prat ().
ulr)
In other words. there exists a discrete family of difference equations

ay () —1

m!/(-")

dyrylr) =
: : : . : . - P .y
with an action of the Frobenius. which “tends™ to the differential equation l—(z) =
a.r
g()y(r). having a strong Frobenius structure.

Proposition 7.3. For a q-difference cquation y(qr) = ale)y(e). with a(r) € (E7)*.
it is equivalent to have a strong Frobenius structure or a confluent weak Frobenius
structure.
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Proof. Let us suppose that y(gr) = a()y(x) has a Frobenius structure. Then the
sequence of iterated difference equations

P -1

y(g" " x) = an(x)y(e), with a,(r) = H a(q'e).
i=0

satisfies condition 1. Since y(gr) = a(x)y(x) is solvable, the equation y(¢” @) =
an(x)y(r) is solvable for any n > 1, hence
an(x) —1
(" = D
This proves that a,(r) — 1 when n — oo. Morcover it follows from (6.9) that
y(qr) = a(x)y(r) admits a solution y(x) such that y(;r)”h € &, for some h € Zx.

< 1.

£t

Since

h
(1(11"‘" (’,1/(:1r)/ ) B (1,,(;1.)1,“ —1 _ (1,,,(.1:) —1 H ((1 (1) g
yla)” (" = Da (¢"" = Da 4 . ‘
¢ =

we obtain

% ('.’/(.lf)"]' ) Ay (l‘/(-’”)ph )

= lim
y(e)r" n=oe ()"
. ay () —1 .
=1 i) —
1121‘{& (((1"\” - ])I ll_I ((l (I) Q)>
¢ =
C#1
() — 1
= p" lim ()

ne—oo (qP™" = 1)’

which proves that (a, () —1)/(¢"" — 1)a has a limit ¢g(xr) in . The existence of
the sequence u,, () and its limit, as well as the strong Frobenius structure of :;—ll/(l) =

. at QW A N o= . .
g(r)y(r), is a consequence of the fact that 5% (r) = g(w)y(r) and y(r) = a(r)y(r)
have the same solution in some finite extension of €.

Suppose we have a sequence of equations satisfying 1. and 2. Then clearly %(1) =
g(x)y(x) has a strong Frobenius structure, hence it is solvable.

We claim that every equation ;1/,,((/1"\" £2) = a, (x)y, (r) is solvable. We set

. . d*;
(]2,,&!1 o () = h¥ (), (#)  and EA—/(I) = gr()y(x).
Then for any n > 1 we have |hL (0)]er = |g1(0)]er and [¢" " — 1] < |#|. which means

et It follows from lemma 3.3 that gy, (¢"  x) =

that |/1’,‘;(.17)/[A']fl,,\,. let = |gr(x)/k!
a, )y, (r) is solvable for any n > 1. We deduce that y,, (¢" ") = a,(x)y, (r) is
solvable for any n > 0 from the inequality (19), describing the action of the Frobenius

on the generic radius of convergence.
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For any n > 0 consider the decomposition of a,, () (¢f. (5.1). Step 0):
A
a, () = % Lo (), ().
aNn
with A\, € K, N, € Z, [,,(«) € (1 +2B)* and m,, (z) € (1 + %HT)*, and the analogous
decomposition of u,, (x):

w, () = 1"53 ! () ml, ().

By performing a gauge transformation we can assume that N/, = 0 for any n. More-
over since y, (¢" &) = a,(x)y, () is solvable for any n > 0, we necessarily have
N, = 0 and A\, € ¢ for any n = 0 (¢f. the proof of (5.1)). Morcover condition 1.
and the uniqueness of the above decompositions imply that

/\:; — /\,, l-
sl 1)
l::(qp ))[ ( N0 l . .
]/(41.) (1) =11 (r). for any n > 1.
n :1:,——1)
AU T
/717),,(.1')' =m, _(x).
”111('1.)
r s . s(n=1) B s 1)
T'he first equality means that y(¢” x) = AN ylr) and y(g” x) = A—y(e)
are Ef-cquivalent. Since ¢ = ¢ and A, € ¢“r. A, is 7o-invariant. Hence we have
An = Ano1 = Ag. The unicity of the decomposition above shows that Ay is the
exponent of the limit differential cquation $%(r) = g(r)y(r) and hence that A, = gl

with (p" — 1)ly € 7Z, for some positive integer n. We conclude from theorem 6.4 that
y(qr) = a(x)y(x) has a strong Frobenius structure. O

8. The group of isomorphism classes of ¢-difference equations of rank 1
admitting a Frobenius structure

We know that a solvable differential equation (resp. a differential equation with
Frobenius structure) of rank one ¢’ = gy defined over €7 has a solution of the form
x®u(x) (resp. v(w)), where a € Z,, and w(w) (resp. v(x)) is an clement of some finite
unramified extension of E1Y (¢f. [Cr87]. [T98b]. [Co01]). The same is true for
¢-difference equations:

Proposition 8.1. — Let y(qr) = a(x)y(x). with a(x) € EY, be a solvable q-differ-
ence cquation (resp. a g-difference equation with Frobenius structure). Then y(qr) =
a(x)y(x) has a solution of the form x“u(x) (resp. v(x)), where & € Z, and u(r)
(resp. v(x)) is an element of a finite unramified extension of ET.

D Following [S68]. we call unramified extension of valued fields an extension of valued fields such
that the ramification index is equal to 1 and the extension of the residuce fields is separable.
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Proof. We know from (5.1). (6.7) and (6.9) that y(qxr) = a(x)y(r) has a solution
of the form r®u(r). where a € Z, and u(r) is an element of an extension of &7,
solution of a g-difference equation with Frobenius structure. Moreover we know that
the Frobenius structure of y(qr) = a(w)y(xr) forces a € Z/(p® — 1) for some positive
integer s. which amounts to saying that « € Z, N Q. It follows from (7.3) that u(x)
is solution of a differential equation over £ with strong Frobenius structure, hence
that w(r) (resp. 0 = +u) is an clement of a finite unramified extension of £ O

The Ef-cquivalence classes of differential equations of rank one /(1) = g(a)y(r)
form a group with respect to addition of the coefficient g(x). and equivalence classes
of equations with Frobenius structure form a subgroup, which we denote by (l—('qf‘f‘:).
Note that, for such equations, the space K.y € (E) defines a character of the abso-
lute Galois group G((,y). which depends only on the class of the equation. and this

provides a homomorphism
(@) - +
([—(’(]E) e ‘X[\'((rk((‘,,.)))

to the group of K-rational characters of G,y If the residue field & is algebraically
closed, this is a bijection; the inverse map associates to the character y the y-
eigenspace in any big enough finite unramified extension (E1) of € (this is an EF-line).
endowed with the natural derivation.

In the same vein. the Ef-equivalence classes of g-difference equations of rank one
ylqr) = alr)y(r) form a group with respect to multiplication of the coefficient a(ir).
Equations with strong Frobenius structure form a subgroup, which we denote by
rr(,—(’qi."f;). Similarly. the space K.y € (€1) defines a character of the absolute Galois
group G,y which depends only on the class of the equation. and this provides a
homomorphism

(o) e Y
Oy=Cey — ;\1\-((1“(1,)))

to the character group of Gy (). If the residue field A is algebraically closed. this is

“Leigenspace in any

a bijection; the inverse map associates to the character x the y
big enough finite unramified extension (£7)" of £F (this is an E-line). endowed with
the natural og-action.

On the other hand. proposition 7.3 associates by “confluence” to any element of
O'(]—(”qgf) an clement of (1—('(/??). and it is casy to sce that they correspond to the same
character of Gy(,y). One thus arrives at the following

Theorem 8.2. Let us assume that k is algebraically closed.  There are canonical
group isomorphisms
ey = X (G ~ e (o)
Oq=Cley — I\( ’L'((.:'))) T A€y

the composite being given by “confluence ™.
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Remark 8.3. The group of tame characters of Gy (), is canonically isomorphic to
(Z,NQ)/Z. For any «v € Z, N Q. the corresponding object of (1—(’(12('.")) (resp. (rq—('q‘(g(’;)) )

is represented by d/dx + «o/a (resp. d, + [, /x) and depends only on the class of o
mod Z.

APPENDICES TO PART 1

9. Frobenius structure of d,y(x) = m,y(x)

9.1. g-analog of the Dwork exponential. — Recall that the “Dwork exponential”
O(x) = exp(ma — waP) expresses the Frobenius structure of the differential equation
y' = my. and has radius of convergence > 1.

In the same way one can define an clement 7, such that |7,| is the radius of
convergence of ¢, ()", Consider the g-difference equation satisfied by ey(myx):
(23) ylgr) = a(x)y(x) with a(x) = (1 4+ (¢ — Dm,x).

It is defined over 53/_1, and it has a Frobenius structure (¢f. proposition 6.7). Equation
(23) can be iterated in the following way:

ylg? @) = ap-(0)y(r)  with e (r) = alx)a(qr) - alg” x).
Then the series ¢, (m,0)? = (’,,(71';’1—\.17')‘\) is solution of the ¢-difference equation

(24) ylqr) = ap-()?y(r).

The fact that (23) has a Frobenius structure means that (23) and (24) are 53/.,_-
equivalent, 7.e., that

(,(I(ﬂ.’l'l.)z/) - ()(l(ﬂ_zl-\"l,,p “1/x

i) | it (o )

(10 The choice of such an element is not canonical. A possible choice would be the following: let n

_— "
be the smallest positive integer such that |¢P — 1] < |x|: then one can choose 7, such that

n )ul " 2
o = ) e ()

In other words. we have chosen 7 ,n = 7 and we have set recursively = —[p]q,,/ T opitl - for any
qb
. R . . s "
i=0,..., n — 1. This is a good choice, in fact if |¢” — 1| < |x| then |[p]([,,n] = |p| and hence
Lpit]
—_ 1! 1/p"
Il = TL [P, | " Al
1/p' Tt 5
o [ R P
= 1lizo |l !
1/p't 0t
_ n 1/p
=0 [p],lp’t ‘ﬂ-l n .

This proves that |7,] is equal to the radius of convergence of e, () (cf. (2.1)).

ASTERISQUE 296



¢-DIFFERENCE EQUATIONS AND p-ADIC LOCAL NONODRONY 83

Since 7 is a Frobenins automorphism such that 7% fixes ¢. the definition of 7, implics
that |77 —m,| < [m,|. Therefore the existence of astrong Frobenius structure for (23)
is equivalent to the overconvergence of
cq(mgr)
eq(mgar”)’
A reasonable analog of Dwork’s exponential 6(a) (from the viewpoint of strong Frobe-
nius structures' V) would be the following scries
Cq(myr)
Co(mgnr)’
Unfortunately we are not able te prove that this series is overconvergent. unless
[1—q| < |x]. In fact if |1 — ¢| < |7] its overconvergence is a immediate consequence

of the overconvergence of the Dwork’s exponential 0(r) and (2.5).

9.2. ¢g-analog of Artin-Hasse exponential series. — Another reasonable ¢-
analog of the Dwork exponential, from the viewpoint of confluent weak Frobenius
structures. is the modified series

()1/(71—1['1.)
Cyr(Tqpal)

I{ g — 1| < |7]. the overconvegence of 6, () immediately follows from the overconver-
5 I .

O,r) =

genee of O() and (2.5). To prove the overconvergence of () under more general
hypotheses, one could try to construct an analog of the Artin-Hasse series, but our
proof. which is quite similar to the one in the differential case. works only under

restrictive assumptions. Anvway we are going to sketceh it.
Proposition 9.1. Suppose that there crists q € Q,, such that ¢ = q. Let

.l‘[)’ o ."1»')
B () = ) = e [ =) [ =)
=1 (w) AR <m,> 0 (Mw[ﬁ]q)

i>0
Then E, () is analytic and bounded by 1 on the disk D(0.17).
Sketeh of the proof
Step 1. We deduce from the formula
eq( [[)],7.1‘) = cglr)oglqr) e (q" 1.1')

that ‘ R N
E () E (qr)- E (g7 ")
E, ()

The hypothesis ¢ € Q,, is used here to prove that [1)]5}’/[11]E7 is a p-adic integer. Such

= cil[plgr) € L+ [plgrOx o] .
an estimate seems to be difficult when |q — 1) > (7).

ot from the viewpoint of confluent weak Frobenius structures, ¢f. §9.2. the next appendix. and
12.12.
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Step 2 (q-analog of the Dieudonné’s theorem.). One proves that for any f(x) €

1 + oK [a] we have

S fqr) - flg" )
Jrr)

One concludes the proof remembering that ¢7 = ¢. since ¢ € Q. and hence that

By (a?) = B, («7). 0

flryel+ 0Oy Hlﬂ 3 el+ [[)](T;I‘O[\' [[Iﬂ .

Corollary 9.2. The serics

cqlmr)
co(mryep(—mal) = ——F—
’I( ) ’I,( ) (’(/ r»(ﬂ'.l']))
18 overconvergent.

To prove the corollary one follows the proof in the differential case. One has to take
into account that ¢ € Q, implies |[n],| = n for any integer n. Morcover [pr — [p], 7] <

|7 implies that cqo (77207 /[ply) cor (—ma”) 71 is overconvergent (ef. corollary 2.2).

10. p-adic ¢-exponential and Koblitz” Gamma function

In this appendix, we leave our local framework and outline some global aspects
of ¢-difference equations of rank one with overconvergent Frobenius structure. More
precisely. we sketeh a g-analog of part of Dwork’s paper [D83]. in which he related
Morita’s p-adic Gamma function I', to the Frobenins structure of his exponential
modules.

We shall recover in this way a function I'), , whicliis a p-adic analog of Jackson’s T,
function as well as a g-analog of Morita’s I'), function. and which had been previously
introduced by N. Koblitz [Ko80|[Ko82b| using Morita's approach!?).

10.1. Dwork’s operator «. — Iu this appendix. the singular disk is the unit

disk at infinity. so that the relevant ring of overconvergent functions is Hl/’_

Us~0 A([0. 1 + <[). We work over ' = Q(7) and with 7 = id for simplicity.
Following Dwork. let us introduce the operator ¢ defined by

l(E (l,,.r") = E '

This is a left inverse of the Frobenins operator induced by o 4 — 7. It acts on H'
and intertwines o, = wd, and wd,e up to multiplication by [p],:

[[)](,(Sq,. | = U,(Sq‘

More generally, for any a € Z,,. ¢ sends the space +“HT to 2"HT where bis the so-called
successor of a € Z,,. i.c.. the unique p-adic integer b such that pb —a € Z N[0, pl.

20 fact. one of us defined [}, using g-exponential modules - a la Dwork -, and was told afterwards
by F. Sullivan that this function had been defined carlier - a la NMorita - by Koblitz.

ASTERISQUE 296



¢-DIFFERENCE EQUATIONS AND p-ADIC LOCAL NMONODRONY 85

10.2. ¢-Exponential modules. —— The simplest examples of Dwork’s “exponential
modules™ are of the form .1'”('”"'7’{{/1,. They lack strong Frobenius structure (except
when a is a rational munber) but have a weak Frobenius structure: if b denotes the
successor of a, .1"’('”“'7‘(1'/‘,_ is isomorphic to the Frobenius inverse image of .1"’(‘”"'7‘4/.,,
(due to the overconvergence of Dwork’s exponential).

A similar phenomenon occurs in the g-difference case. Proposition 2.1 suggests to

replace ¢ by ¢, (m,x) for some constant m, with the following property: defining
P

v v | = |7 for n big

o /[Pl yer - we assume that |7

"
y sequence (7P . - _
the sequence (7)) by Tit = =T o

enough™) . Then proposition 2.1 shows that ¢, () has radius of convergence 1.

"in order to ensure that

However. we shall have to assume that ¢ — 1] < p= !/
the series
cq(mgr)
O,(1) = ey
Cor(Tyra?’)

is overconvergent. The equation 7 = —[pl, 7,0 is irrelevant at this point but will be

used in the sequel.
We set
foa = 2" cy(mgr),
and consider the IH'EV/,‘,V—III()(lH](‘ ,/},_,,'Hviv/‘,, equipped with the natural action of 8, = wd,,.

A simple computation shows that &, [« = (¢ 7+ [alq) [.q. Let us write the classes

modulo I g, in braces. So.

jq.u Hl/,r

from which once deduces that this cokernel has dimension T over A and is generated

by { St

If b is the successor of a. then

.fq.u(J') B (',/(TT,,,I‘)

Sar () Cyr(Tga?)

{fq.u }—l} = —( ”71—,/ I[(’]q{,/.{/,u} i“

is overconvergent, which expresses the fact that ,/},,,,’HT/,A is isomorphic to the Frobe-

nius inverse image of ’/',,,,,l,H]I/ .- The same argument as in the differential case shows
R I T , , i . i . 3 .

that ¢ extends to a mapping fy.o M, — ferasH;,, by the following fornula

Cganf )= Far (0, (0) f).

UL s casy to see that such a 7, exists at least after replacing K by a finite extension. On the
other hand. there does not scem to be a muniform™. canonical choice for such 7. and one can actually

show that the sequence (7r’],>u ) never converges.
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10.3. I'),. — Since ¢ intertwines d, and d, up to a factor [p],. it passes to the

“cohomology™:

o ,/’q.qu/v,, ,/‘(/I'AIIH];/‘I.
0y (»/;/«'IHI/‘,-) Oqr (fq’ﬂhH-:-/‘,-)

and one can define an clement '), (a) € K* by

l"‘{./‘([dl} - ﬂ',l/)l)_”F/J.t((“){./)/’ﬂb}

One then computes:
P Lot =g foro} = { oo (04 ()} = {fyro}-
[f a is a unit. b is a successor of a + 1. and one has
Upgla+ D forn}
= TF:/’ " ]‘r'{ff/-u b1} = '"‘lmuﬂz(/’_ll]‘[”L/‘r'{./'zl-u} =—q " [(l}'ll‘lul((l){'/‘fl"-"}
[—alyUpgla){ for s}
If a is divisible by p. then a = pb and b+ 1 is a successor of a + 1. whence:
Ppgla+D{fyrne}
=y "0l = —m e gl gl = = M al U (@) for )

- I‘[’»’I((’){./‘r//’Al» b1 }

where
y-
77('1/ Tyr [(I],/ o o [ ] —
— s = TF(’ TqrPlg =

0] qr

by assumption.
Thercfore. as a function of « € Z,. I, ,(a) satisfies the functional equations of
Koblitz" function of the same name:
U a+1)  J[=al, ifaisaunit
L) (a) -1 if |a], < 1.
In order to check that I'), (@) is Koblitz" function. it remains to prove its continuity.
In fact. we shall prove the so-called “Bovarsky principle” for g-exponential modules
,l'(,_,,H{/",A i.c.. the analyticity of T}, on cach disk D(=hk. [p["). k =0.1... .. p— 1.
Let us expand 0, () = > 2,0 For every a € Z, W D(—k.17). onc has

l"{fu.q} = W{}}‘r/'.q(”){./‘q/"h} - {fq".l:’r'("ﬁAqu("‘))} - {Zfl;:z+l\~,/;,/',l)+u}
{3 cpnan(—1)ng bt )/»/27-1—"/,," B0+ e D+ 0= fora}

),(0) = 1.

hence

_ —n(a+hk)— —)p)/2 —n—~k
FIL([((’) :Z;IHI‘FL'(AI)”(I( nlasth) =l )I)/ “([l’”

a—+k a-+ k a4k
. +1 o +n—-1
Pl Lo o P o
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which is analytic in D(—k, [p|"), since |1 — ¢| < |r|. as follows from the expansion

[('}q,, = -1+ Z (;};) ((17’ _ ])m ]‘

mz=0
It would be interesting to extend this approach “a la Boyarsky” to other g-difference
modules with p-adic parameters, notably to Koblitz' p-adic hypergeometric g-
difference equations [Ko82b].

PART II
HIGHER RANK

11. Preliminaries: unramified extensions of &7

In this part. it will be essential to deal not only with £ but also with its unramified
extensions as well. Whereas any such extension is of the form E‘I, for some new
variable 2/, the ¢-difference operator d, and Frobenius fail to act on 2’ as simply as
they do on o, Thus the relatively down-to-carth methods of part T do not apply to
the case of EI/. In this preliminary section, we give some tools to handle this issue.

11.1. Topologies. — Let K be a complete non-archimedean field of characteris-
tic 0, with residue field & of characteristic p > 0. We keep the notation of part 1
for rings of analytic functions. For any interval I, the ring B(I) of bounded analytic
functions on the annulus C(1) is endowed with the topology given by the sup-norm
| |7, for which it is complete. It is also endowed with a coarser topology (strictly
coarser if I is not closed): the Frechet topology defined by the norms | | for all closed
J C I. Tts Frechet completion is A(1).

Similarly, the topology of the Robba ring R is the finest for which the injections
A(]l —.1]) < R. are continnous. ¢f. e.g.. [Cr98. 4]. and the induced topology on &1
is coarser than the topology defined by the p-adic norm | | = | |¢r (V.

The truncation ~v,-o in positive degrees is continuous, both as an operator R —
2+ A([0, 1]) and as an operator ET — +B([0. 1]).

If K is discretely valued and J is closed. A(J) is a Banach space, and the Banach
norm coincides with the sup-norm on C(.J) if the endpoints of .J lic in /|A™*| ([Cr98.

11.2. Unramified extensions and absolute values. — We assume in the rest of

this section that & is perfect and that K is discretely valued. Then ET»_J, is the field of
fractions of the henselian ring Og¢ with residue field k(). Any finite unramified

Ko
U9 [Ke], R is denoted by Fg,(,(_;';),,), and 7 by F(]‘..((,f,":))[l/p].
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extension of 52\, is of the form EI\‘/..,»“ for a finite wnramified extension K'/K and a
new variable @ algebraic over S;r\»“r [Ma95].

Among the finite étale extensions of the Robba ring Ry, those of the form
Ry = R et E}L\v,“,_, play a distinguished role in the local theory of p-adic
differential equations (as was first emphasized in the work of R. Crew [Cr98]). We
shall see that they play a similar role in the local theory of p-adic g-difference equa-
tions. The most suitable way to deal with all these extensions is to embed them (up
to isomorphism) in a fixed canonical “big Robba ring” R. as was done by K. Kedlaya
[Ke]"™ (the field of constants of Ris K=K Oy Wk)).

For any clement y € Ry, and any r € 0. 1[. one defines |yl (also written,

abusively, |y|,) to be the sup-norm of y on the circle |z| = r if y € A([r, 1]), oo
otherwise.  Similarly for Ry ... Note that if ¢y € SA,r\,“,_. [yl = |y| for any r close

enough to 1.

The drawback of this notion is its dependence on the choice of 2/, Kedlaya has
shown how to bypass it by introducing (partially defined) canonical absolute values
[/ can o1 RUO . He proves that for any y € Ry 0 C R and any 1 close enough to 1,
Ylpery—r [Ke. 3.7].

On the other hand, let 7 denote a Frobenius endomorphism of K. It extends

[y].can coincides with the naive absolute value

uniquely to A, Let us fix a positive integer s and consider the endomorphism ¢ = ¢
of Ry given by o> a,x™) = > 7%(a,, )’ . Then ¢ extends canonically to a 75-
semilinear endomorphisim of R. and one has the formula |y®|,1/ .- = |y|,.can [Ke.

can

following prop. 3.11]. Hence for 1 close enough to 1.

197 07 = =

11.3. Good coordinates. — Because £f is hensclian, ¢ lifts uniquely to any finite
unramified extension of £1. By definition ¢(.r) = 2. For a finite unramified extension
of &1 with tame residual extension of degree say n. one can take 2/ = 2'/" so that
again ¢(a') = (a/)”. However. in the case of a wild totally ramified residual extension
(say of degree p™), it is not possible to choose @’ such that ¢(2’) = (2/)7, although
o(a’) = (") mod p.

In order to get some control on the Frobenius action in the course of computations,

g
it is important to choose @/ carefully. For this purpose, one can use so-called Katz-
Gabber extensions.  According to Katz-Gabber [Ka86. 1.4.2]. once can choose 1/ in
o
such a way that 27 is algebraic of degree p™ over k(x) and such that the extension
E(r.a’)/k(r) defines (via ) a finite covering f, : ' — P} unramified above P! ~ 0
&k k A

and totally ramificd at 2/ = = 0. We denote by fi, : C. — P!~ 0 the restriction

k(e I . ,
(19) denoted by F(,yg,(},),),, or 10,7 on in loc. cit.
(16)Those attached to his partial valuations w

log =1 -

Tos
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of f,. above P!~ 0. Extending & if necessary. we assume that one of points. say D
of (', with 2/ = ~ is A-rational.

Let f:C — Pé,,\_ be a lifting of this finite covering, with C' projective and flat over
Or U7 We denote again by the letter @ (resp. @) a lifting of the first (resp. second)
coordinate to C' (we refer to such a coordinate .t as a “good coordinate” for this finite
extension of £F).

We denote by f: ¢ — P10 the restriction of f above P!~ 0. The finite covering
fr:Cr — P}\- ~ 0 is unramified above the disk D([1. >]).

Let OT(C') denote the (p-adic) weak completion of the affine algebra O(C). Via f*,
this an étale extension of OH‘,' It is known that OT(C") is heusclian (¢f. c.g.. [E02.
th. 3]). from which it follows that the endomorphism ¢ of E:r preserves OT(CY). On
the other hand, Ok [[1/x]] and Og|[1/2']] are both ¢-cquivariantly isomorphic to the
completion of O(C') at Py.

We now fix an element ¢ € K* (not a root of unity) satisfying |¢] = 1. and fixed
under 7%. The homothety . — ¢r extends uniquely to an automorphism of each of the
topological K-algebras E,'J'..E‘j,,.’R,,..’R,,,,/.T;’. and also of OT(C") (the latter ring being
henselian). We denote all these extensions somewhat abusively by the symbol o,. Of
course, in general o, (47) is not proportional to 2.

The assumption 7%(¢) = ¢ ensures that o, and ¢ generate a twisted polynomial

ring K'lo,. o] of endomorphisms of any of the previous rings:

oq0 =00l =go,.

12. ¢-difference modules and Frobenius structures

12.1. o-modules. — Let R be a commmutative integral Q-algebra and let o be an

injective endomorphism of R.

Definition 12.1. A o-module, or o-difference module over R is a free R-module M
of finite rank cquipped with an R-linear isormorphism
Yoo M :=Mope R— M.

(%) which is lincar over

The o-modules over R form a category in an obvious way
the fixed ring of I? under o.
o

In terms of a basis (m; )=, of M. the datum of ¥ is equivalent to the datum

of an invertible matrix. which it is convenient to define as the inverse A € GL, (R) of
the matrix of X. With this convention, the o-difference matrix system

oY) =AY
is equivalent to condition that > . Y;:m; is fixed by X.
{ i J .

U7 For a conceptual proof of the existence of such a lifting, cf. c.g., [Cr98, 8.3]; here, it suffices to

lift to characteristic 0 an cquation relating @ and 2.

%and even a monoidal symmetric rigid category
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If (m’}) is another basis, with m/; = Y7 (H '), ;m;, then the inverse A’ of the matrix

of ¥ in this new basis is H7AH ",

Remark 12.2. o-modules can also be understood in terms of non-commutative con-
nections, ¢f. [AO1].

In the sequel, we consider the case where R is £ or R, or (if & is perfect and K
is discretely valued) one of their finite extensions 5‘1/.72‘1,./‘ In such cases, we consider
o-modules as topological modules. When o = g, the notion of o-module amounts to
that of ¢-difference module over R, our main object of study. When o = ¢, we denote
the isomorphism defining the structure of ¢-module by

DM :=Moigy, R — M.

This example is studied at length in [Ke].

Remark 12.3. If K is discretely valued, €T is a field and R is a Bézout ring: every
finitely generated ideal is principal (as was remarked by several authors (cf. e.g.,
[Cr98. 1.9]), this follows from Lazard’s theory of principal parts). Any Bézout ring R
is integrally closed and coherent, and any finitely generated R-module is a direct sum
of its torsion submodule and of a free module, ¢f. e.g., [Cr98, 4.9]. Thus, in that
‘ase, one could replace “free™ by “locally free” in the definition of o-modules.

If R is Bézout, and the subring of o,-constants is a field K, then the category of
o,-modules is tannakian over A

12.2. Strong Frobenius structure. — We assume that ¢ is fixed under 7°. We
shall be interested in situations where the given module A is at the same time a
o,-module and a ¢-module.

Definition 12.4. A strong Frobenius structure on a g-difference module (A, X,) over
R is the datum of a structure of ¢-module & on Af, ¥, and ¢ being subject to the
following “integrability condition™

. ST
Y, =3 (3,)",
to be understood in the sense that the following diagram commutes

G = P Il

6.0y M =0,.6.M oM
TqxP o
2y
O'([_*A[ ]\[

We also say that (M, 3,. ®) is a g,-¢-module over R.
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[f ¥, and @ are represented by the matrices A, Fand F71 respectively in a given

basis (m;) of M. the integrability condition translates into

5 T [
Foud, = A:;,, . where A - = A, A" - Ay

qr”

Remark 12.5. Let ns consider the g-difference system Y7 =AY attached to
(M., (m;)). Then Y = FY satisfics the ¢V -difference system with ma-
trix Ay, which can be twrned. after p* iterations. into the g-difference system

(Y(,"‘))rr,, — /1 “qu.

ql’

. £ h) -

We denote by a,- Mody, (resp. o, M()(l(,; ) the category of a, modules over R
endowed with a specified (resp. an unspecified) strong Frobenius structure. If R is
Bézout and if the subring of o,-constants is a ficld i, then o,- Mod'?) is tannakian

1) { 1 R
[

over I\ while a,- Mod', is tannakian over the field K of elements of A fixed under 77,

For any ring homomorphism 2 — R’ compatible with o,. 71" and for any replace-
ment of ¢ by some power ¢'. there is an obvious functor between the corresponding

categories ol g-difference modules with strong Frobenius structures.

Example 12.6 (¢-Exponential). In the case of a ¢-difference module of rank ji = 1.
identified. after the choice of a basis. with a difference equation y(qr) = a()y(r) with
a(r) € R, the strong Frobenius structure is unique if it exists and is given by 4 /y
provided it belongs to R (otherwise, there is no strong Frobenius structure).

This is the case of the g-difference equation satisfied by ¢, (7,4) as in appendix 9.
Example 12.7 (¢-Logarithm). The equation d, 0, () = 1/ or equivalently
Colgr) = () +q—1

has the obvious solution (“g-logarithm™)

q—1

() = log .r-.

logyq
One has
{yle)” = Py,

Counsider the linear system of order 2

(25) oY (1) = ; (1) Y ().

having (fl’l(i,!)) as solution. Then (‘1:’(_,'1).,) = (,).f";(l.',)) is a solution of
(20) a Y (r) = i {l) ' Y ().

(1

satisfving the nsual relation o, ¢ = ¢ (r,';
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( q—1 > B <] ()) <q-» ]>
P, () Ao ()

we conclude that (25) and (26) are Ef-cquivalent.

Since

The differential Galois group is obviously the additive group G,. and once has a
canonical fully faithful ¢-functor

Rep Gy — oy- ]\]ud,(f“;‘)’)

which sends the standard two-dimensional representation to the g-difference module
attached to ¢,

Example 12.8 (¢-Difference modules arising from Galois representations)

Let us assume that A is perfect and I is discretely valued. Let A((2')) be a finite
Galois extension of A((11)). and let 5;\»,._,,, be the corresponding finite unramified Galois
T

extension of E}( .- Then 6}\-/ . has a canonical structure of o,-é-module over &, .

given by the canonical extension of o, and o to €., .

We denote by d- Mod$, (resp. d- /\'Io(l(,;i'))) the category of differential modules (free)
over R endowed with a specified (resp. an unspecified) strong Frobenius structure. If
I is Bézout and if the subring of o -constants is a field A’ then d- M()(l(,:;/’) is tannakian
over K while d- ModY, is tannakian over the ficld K of clements of A fixed under 7.

Let G,y be the absolute Galois group of A((r)). There are well-known so-functors

Dy Repy Gryy — d- Al”(l";?,. .
(o) s v ()
D, Rep e Gy — d-Mod g .

eiven by
Vi (Vo Ry o) e

for suitable Ry (depending on V). ¢f. [T98b] (here G,y is considered as a
constant profinite group-scheme. and representations are understood in the algebraic
sense. i.c., as represeutations of a group scheme: in particular. representations of
G0y in this sense have finite image).

This carries over to the g-difference case. For any V€ Rep e Gy of dimension
ji. there is a finite unramified extension 5}\-,(4,., (sav in 75) such that (Voo ;\'57\», )

N

(resp. (Vo Rygr ) ren ) s a 517\»“,_—1110<1111(* (resp. Ry ~module) M of rank g This
module inherits a natural ¢-difference structure and strong Frobenius structure from
E,T\-,UI,, (resp. Rygr). WK = K’ (e.g.. if k is algebraically closed). one recovers V- {rom
M by the following recipe ~a la Fontaine™ V 2 (M E,T\-,“,,,)x" (resp. =2 V(M) =
(M =R )5,

Proposition 12.9. There is a canonical fully faithful K -linear --functor

v (3
- Repy Gy — o4-Mody .
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and a canonical fully faithful K -lincar =-functor
o) . ) v ()
l),(m) s Repye Gy — 04-Modg |
given by
Vi— (V ) RI\./“F,)("LUJ )
for suitable Ry .+ (depending on V7).

The fact that the functor is full is seen as usual using internal Hom: it reduces to
the fact that Dﬁ{’j)(L’(’Ir<<J»>)) is the largest trivial subobject of DL(:)(V)

Remark 12.10. Combining the last two examples, one finds a canonical fully faithful
K-linear @-functor

o) . al ()

DS Rep e (Grayy X Ga) — 4= Modig”
given by

Vi— l)ﬁ,‘;)(‘) = (Voo Ry [log ;1'])(“"(('” xG. (K)

for suitable Ry .
12.3. Confluent weak Frobenius structure. — Let us remark that if A is a

(it 1)s

q’
(in a given basis they are “given by ™ matrices Aq,,,.. and A" |
qr

-difference module., then ¢, M has a natural structure of ¢ *-difference module

. respectively).

On the other hand. ¢” — 1 when i — ~c. and the phenomenon of confluence
occurs in this natural way. in the p-adic setting.

Combining these two remarks, this suggests to introduce another type of Frobenius
structure. which secems to have no counterpart in the differential case: a sequence of
Frobenius predecessors (¢ -difference modules) which for i — o converge to a stroug

Frobenius structure on the limit differential module. Nore precisely:
Definition 12.11. A confluent weak Frobenius structure on a g-difference module
(M.E,) over R is a sequence (M; = (M, Zq,,,.; )izo of ¢7 -difference structures on M.
and isomorphisms

[OFIS (/’)*17\[,', bl ,/\[,
of ¢ -difference modules, such that
1 (v
(qr'” —1) (

2) @; converges to a strong Frobenius @ for the differential module (M. A ).

1) the operators A; = — Id) converge to a derivation A on Af.

{IP“

In terms of associated matrices. this amounts to the data of a sequence of matrices

F;. A(],,h € GL,(R). 1> 0. related by the following relations:
U.,l'“\ o @
Fi Aq"“ - Aqv"“)” Ei.
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.+ — 1)) both converge in
y -l

: A1 . v Qe M1COY AT Y= ) 1)1 ( /

and such that the sequences (F;) and (G; = (¢ — 1) (‘«11/,,
M, (R) to some limits F'y and G respectively (F; represents the “quotient’ )/+I
where Y; is a fundamental solution of the system a Y= /lq,,, Yi).

nf ¢ . .
We denote by a,- Mod'™ ” the category of o, modules over R endowed with a
q- SO q
specified confluent weak Frobenius structure.
conf(
We denote by a,- Mod')) “) the analogous category where one leaves the mor-
. . . s . .
phisms &; unsp(\('lh(‘(l: ()l).](‘('is consist of a sequence (M. Z'/"" ))izo of ¢ -difference
structures on M converging to a differential module structure on AL, these data being
part of an unspecified confluent weak Frobenius structure.
conf
If 7 is Bézout and if the subring of o,-constants is a ficld A, then o,- Mod', (o)
| a”
f

is tanmakian over K while o= Mod'™ “ is tanmakian over V.

One has a canonical ¢-functors “limit differential module™
Lim? : o /l/)d“'”i - ]\[()d‘,’/)‘,. (ALY, (M ®y)) — (M. A D).
Lim'? : gy Mod'™" " — d- Mod'?. (M. (M) e (Mo A ).

Example 12.12 (¢-Exponential). We assune that 77 = 7 and that |¢—1] < p= /¢!
Let us consider the g-difference module (A = R.Y,) of rank yo = | attached to ¢-

difference system d,y = my (with solution ¢, (m.r)): explicitly.
S, =1+ (¢ yme)™ "

Then corollary 2.5 shows that (2,0-) together with

i i1
b _ N D
(P, Di(1) = (‘I,,,(Tr.l )/(q""‘ 1 (ma ))
form a confluent weak Frobenius structure with limit differential module (R, Ax =

d .
v+ ).

Example 12.13 (¢-Logarithm). The sequence of matrices Aq/,,\ = (} 7). Fi = 1.
defines a confluent weak Frobenius structure for the g-logarithm (in this case Y; =

(=[P, 0 . ) o .
( (i1, ) ). One has a canonical fully faithful @-functor
((/vI)T‘\'—I log v 1 '

rglconf o)
Rep e G, — 04 ]\[{)(I,R '“

which sends the standard two-dimensional representation to the g-difference module
attached to ¢,.

Example 12.14 (¢-Difference modules which arise from Galois representations)
Let us assume that k is perfect and K is discretely valued. Let &' ((2')) be a finite
Galois extension of k((x)). let 5}:’, » be the corresponding finite unramified Galois

extension of 5,\ Land let Ry o be the corresponding finite étale extension of Ry,
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Remark 12.15. (5}\ 04) has a canonical confluent weak Frobenius structure,
T, ~ o p’“ . o N e S - | p"\' T . oy
given by X = 0f and &, = ¢. One has (5([,,,5 = D l)((r(/ Id) — wd/dx

on SI\, and we are about to sce that the same holds on 5}"\-, v
We may assume that " = K. Let @ be a uniformizer of Oy, and let us write
1= . . s . . . . .
ordg (¢ — 1) = n; (n; — > with i). Then of is identity on the henselian ring
O /", hence also on its étale extension Ogs /" . This means that all §_,. extend
r ’,/
w(ab) = ad i (b) =6, (a)b =

to O -lincar endomorphisms of (’)54 . The formula (5(/,,
‘.l‘/

I - - - . . . . . .
(q7 = 1) _,is(a)d ,ic(b) shows that d .. induces a derivation of O /@', Since its
q q q &l
restriction to O /" is wd/dr. it is wd/dr. Therefore § .. — wd/dr on &l
i q a

Remark 12.16. For » close enough to 1. one has [, (") = = |og ()0 can =17
for every 1’ € [r 1], hence §, (A, ([ror']) © (Aw ([ro0”]). Arguing as above. one shows
that 0. — wd/de on A ([r.r"]). Shwmilarly, 6, — wd/dr on Ry and Ry o
=al Cand ®; = 0.

has a canonical confluent weak Frobenius structure. given by 3

"
One can then play the game of (12.8) with confluent weak Frobenius structures
pla; g
instead of strong Frobenius structures, and get:
Proposition 12.17. There is a canonical fully faithful K -linear &<-functor
Juty , ’
conf ¢ y v ) conf o
Dy s Repre Gy — 0q- Mody
and a canonical fully faithful K-lincar «-functor
(conf o) . y ¥ (conf ¢)
1)(,1[ s Repye Gy — a4-Modg
given by
Vi— (‘/ & R,]\'/”,,/)(:“‘"'“
or suitable Ry . (depending on V).
. N I 4
Remark 12.18. Combining the last two examples, one finds a canonical fully faithful
g I ; y
K -lincar co-functor
. y 4 - ‘ ;4
DY) Rep (G % Ga) — 0= Modg ™)
given by
Vo DS-;(;:)M 1,'))(vr) - (V @ IRK/J/ []Og'r])(,,..(( o X G (K)
for suitable R/ ,r. as well as a canonical fully faithful A ,-lincar co-functor
onf ¢ -onf ¢
l):,‘;“' 7 Repe (G X Ga) — 04 M()d;é“:' “

()

Composing the former with the limit functor Lim~ '’ one gets the @-hunctor

DY Repe(Giiay) % Ga) — d- Mod'y) .
This is easily checked on the regular representation of a finite Galois quotient G of

G2y for which (V& Ry ) is nothing but the Galois extension R’ /R in R
with Galois group G.
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12.4. Solvability at the outer boundary. — We generalize definition 3.1 to the
higher rank case. Asin §1.4, let £, be a generice point of absolute value » € J|lg — 1], 1]
in some complete extension  of K. For any p € ||g—1].7]. let Aq(t,, p) be the ring of
analytic functions in the Q-disk [+ —1,.| < p. This is a g-difference ring in a canonical
way, and the canonical embedding Ay ([r. 1]) < Aq(#,. p) is compatible with 04

Let 7 be in J|lg — 1].1[.

Definition 12.19. A g-difference module A7 over Ay ([, 1]) is solvable (at the outer
boundary) if there is a function

el 1 —p(r)ellqg—1].r]

such that lim, .y p(r) = 1T and M =4, 0 Aa(te. p(r)) has a basis of elements fixed
under X,

Since any ¢-difference module M over 7 or R, is “defined over Ay ([r, 1])” for some
r close enough to 1. this provides a definition of solvability (at the outer boundary)
for such modules. We say that a ¢-difference module M over some finite unramified
extension &, (resp. R, is solvable if the underlying g-difference module over &1
Bl & . o i
(resp. R,) is.
Let us choose a basis of M and denote by A, the inverse of the matrix of ¥, in
this basis. Let us define a sequence of matrices
Goo=1. G b A\, — 1 G =ux-d, (G G
Tq.0) — 4+ Tg.1 — q— 1 (/ q ) Tgan+1 = A '('q( ’I/.III)+ Tqom
The ¢-difference system Y% = A, Y then gives rise to the sequence of systems
{ y ] 2 1 .

ANY = Gy Y.

(Gya—my-q ".1).

For the solution around ¢, normalized by Y (#,.). one has the twisted Taylor expansion

(¢f. (1.2). [DVO02. 4]. [DV03. 3])
}f(.l‘) = Z /:'“M (’ /7')(]./”-

]!
m =0 ['“]'I

From this formula, denoting by

7, < 1 the limit of H'm]il’l/"’, the following lenuna
follows immediately.

Lemma 12.20. - M s solvable if and only if

lim sup limsup |G, |,l,/”" <yl
r—1 m

Proposition 12.21. Any q-difference module M over Ry o with a strong Frobenius
structure is solvable.

Indeed, the strong Frobenius structure A induces a strong Frobenius structure on
the underlying g¢-difference module over Ry .. hence we may assume that Ry 0 =
Ri... Dwork’'s well-known argument applies (if A is defined over Ag ([17,1]) and
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M @ a,(rrap Aa(tee. pP) has a basis of elements fixed under ;. and if » and p are
close enough to 1. then ¢, M is defined over Ax ([ 1]) and & M ey, )y Aalt. p)

has a basis of clements fixed under X,).

Proposition 12.22. For any solvable q-difference module over Ry o (resp. 5,1,“,./).
lim, o (B,)" =1 in GL(M).

Proof. -~ Let us first consider the case of Ry .. This is a problem about the under-
lying ¢-difference module over Ry .. hence we may assume that Ry o = Ry . Let
us take a basis of M. and consider matrices A, and G, as before, and the sequence

el

Ay = A% A% A We have to show that lim, .« qu, =1 in GL,(R). The
relations between the iterates of o, and of d, are given by the formula (¢f. [DV02.
1.1.11], [DV03. 1.2])

n
n .
no__ meom(m—=1)/2 m gm
o, = E (q—1)"q s
m 4

m=0
It implies the following relation
n
" 1)/2
A‘/” - Z <’”) ((/_ 1)’”(1”,(,” )/ (’q.m~
=0 q

Let us now take n = p'. and let 7 tend to ~c. Let us cut the previous sum into three
pieces I + Z,,,(:_,,, ot zm;,): » and write. for any fixed » close enongh to 1.

i i

) )
Ay ]y < max <l. sup | (1 ) <[ )
O<m<pi/? m § m )

i
I = 1" |Gyml, tends to 0 becanse the factors (7 )’1

m
! m v
( n )4/ ‘{1 —1 ‘ K’q.m[
cause the factors |G, ], tend uniformly to 0 due to the solvability condition.
i ) :

‘(/ - lim l('vmm|,, . Sup
mz=pt/?

|([ - ]"” \('vqiln\,,>~

1

The quantity supg..,,, < /2 ‘(II’“ )(I

tend uniformly to 0. The quantity sup Ctends to 0 be-

m=pt/? I3

Let us now assume that A/ is defined over E}L\» - Inorder to get lim; .« A(I,,, =/ 1in

GL,(ET), one needs some uniformity in - in the previous estimates. This is provided
by the effective hound a la Dwork-Robba [DV03, 5]: for p(r) as in (12.19),

, (], , o\
’(’qJn],. < Sup —‘—<1) SUp |(1([_,,‘,' — .
D <ocm =D om qu n<p /)(’)

which is valid for any r close enough to 1, and gives

, o
|Gyl < sup ——1 sup |Gyl |,

mD < <m - <m H’I)lq n<jpt

at the limit » = 1 by solvability (at the outer boundary). O
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13. “Unit-root” ¢-difference modules

In this section, we study unit-root ¢-difference modules over R, that is o,
modules M over R for which there exists a Ogi-lattice M in M such that & induces
an isomorphism ¢, M = M.

~-

We prove the g-analog of Tsuzuki’s theorem (in the differential case): after passing
to a finite separable extension of k(()) and to the corresponding finite étale extension
of R, M admits a basis of vectors fixed by 2, and @ simultancously.

We follow Christol’s approach [CO1] of that theorem, which is more analytic than

Tsuzuki’s proof. The fact that what follows looks more involved than [CO1] is not
due to pecularities of the g-difference theory. but to the fact that we had to fill two
gaps in Christol’s paper(20),
13.1. Overconvergence of solutions. — We start with a complete non-
archimedean field of characteristic (. with residue field & of characteristic p > 0. We
don’t assume K discretely valued nor & perfect, but we assume that K contains the
p-th roots of unity (so that Dwork’s constant 7 belongs to i), and we fix ¢ € K such
that |q — 1] < |=|.

Let o and 7 be real numbers such that 0 < o < 1 < 1. Define
log «v
A=p—————,
log ov + log [p]
so that
o 1—logr/plog I[[)*IU;J‘ r/plogn

takes the value 1 at = 57, and
< E= 7> .
Notice that 5 < p.
Lemma 13.1. — LetY € GL,(B([0.1])) be such that
YV~ I, <a and G:=ux-d,Y Y '€ M, (Og(o.))-
Then there cxists Y € GL,(B([0,1])) such that
Y~ I, <a and G :=ua-d,Y"- y' e M, (Opo.77)

and such that

Y)Yt e GL,(B([0.9])).

(20)The first gap lies in [COL, prop. 13] where two different computations are made in B([0, 1[) and

+
1/x
meaningless. The second gap occurs at the end of the proof (th. 17), where one is supposed to redo

EI/ , respectively, and are subsequently compared in the “intersection B(l0,1)) n &7, 7, which is

the argument of prop. 13 over a finite unramified extension SI/_]., of SI/‘._. But the argument of

prop. 13 makes strong use of the explicit form = — x” of Frobenius, and breaks down for EI/ e
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Proof. (The proof is entirely parallel to that given in [COL. Lenuna 1] in the
differential case.) There are three steps.
Step 1. [t is straightforward to check that the matrix (7, defined inductively by

Go=1. Gy =a-d(G,)+Gh(qe)(Gle) —mg-q " - T)
satisfies

MYy =G Y

From these formulas. taking into account the fact that the operator (lfl"/[m“[ does not
increase the sup-norm on B([0.1]) (¢f. [DV02. 4.2.1]. [DV03. 2.1]). one derives the
following estimates:

m

G <] !-L‘Ym/ls !
Gl <[l e 0 < i

Since logr — log |G, |, is a convex function. one obtains by interpolation

e (G, <

I log 1/ log
|(’vm‘r < <|[’”“/ .”) ogr/logn

for every + between 1 and . In particular, |G, < 1 and lim,, |G, |, = 0 if » < ).

Step 2. We shall see that
|
Y= = Y Y (y)
P yl=ur
satisfies the conditions of the lemma. Since the m-th Taylor coefficient of Y is nothing
but the pm-th Taylor coefficient of Y. it is clear that |Y' — I|; < «a.

NMorcover. considering the g-analog of the Tavlor expansion. one finds
te} te) .

Y/ Y () = ! Y (Co)Y () !
P -
cr=1
= I (C 1. (¢ ¢q" "
o Z(W("‘)<; Z [m]’, >
¢r=1 ‘

Since |¢ — 1] < |x|. the coefficient of (7, is in Oy . and it easily follows that H :=
Y)Y e GL,(B([0.1])).

Step 3. One has
PGy = (- (l,,)(Y(.l"’)))’(;l:“)_1 = xd,H - H " qr) + HGH ' (qx)

which lies in G L, (Op(jo.,p))- hence G e M, (B([0.9")) and [G'],0 < [pg| " = [p] 7"
On the other hand. |G’} = |d,Y".(Y") '} < «. By log-convex interpolation. one
finds

/ —log o —logr y
‘G 1'. S(r’ l()hl/])l()hljl) log r/plogn

for every r between 1 and »?. In particular,

G'[,;s < 1 by the choice of /3, whence the
lemma. O
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Assume moreover that o < |r| and let n be a non-negative integer such that

n?" - Ixl > 1. Then the real number 1 = (0" - |7)? " lies in the interval 1. 1]
] i ! ]
Proposition 13.2. Under the assumption of the lemma. Y € GL(Ogjo.,1)-

Proof (¢f. [CO1. Prop.3]).  One has [+ " (G, /[m]])], < /[l < ()
Ifn =0, this is < (/)" and by the g-analog of the Taylor expansion of Y. one
concludes that Y € GL, (Opo.,)))-

One then argues by induction on n. By the previous lemma, there is Y which satis-

fies our asswmptions with 1 replaced by n—1 and 7 replaced by 7. By induction, Y’ €
G L (Opjo.0)rp)- Henee Y/ () € GL, (Opo.yp))- and since H € GLu(Opo.p) C
G L, (Op(o.y)))- one concludes that Y = H='Y'(ar) € GL,(Op(o.y)) as well. O

Corollary 13.3. Let Y € GL,(B(]1.~x])) be such that |Y — 1| < |x| and Y1y ! €
A/,,(HIA)‘ Then'Y € GL,(HL).

Indeed, the assumption implies (wd,Y) - Y ! € ]\/,,('H:‘,'.). In fact, since actually
Y € GL(Opgi~p)s (2d,Y) - Y-l e 1\/,,(0}{‘1_)‘ After change of variable @ — 1/,
and for 1) close enough to 1. one is in the situation of the previous proposition.

13.2. g-analog of Tsuzuki’s theorem: the case when F' is close to [

We assume that K is endowed with o Frobenius automorphism 7 and that k is alge-
braically closed. We fix a positive integer s and consider the Frobenius ¢ @ > a, 2™ —
ST (ay ) " on EL We assume that ¢7 = q.

Lemma 13.4. For any Fy € GL,(Ok) such that |Fy — 1} < 1, there cxists Hy €
GL,(Ok) such that Hi FyHy ' =1 and |Hy — I = [Hy " — 1| < |F) — 1]

For s = 1. this is part of [CO1. Lemma 12]. The same proof works for any s > 0.

Lemma 13.5. For any I € GL,(EL) such that |F — I| < 1, there exists
H e GL,(Okl[lr]]) € GL,(Ogt) such that H?FI -l e G'L,,(Hj.)) and |H — 1] =
|H™ ' — 1| < |F 1.

Proof. For s = 1. this is part of [CO1. Lemua 8], The proof for any s > 0 is
similar.  One starts by noticing that the endomorphism id — ¢ of wK[[x]] has an

n

inverse: 1) = > ¢". and that this inverse stabilizes the subring 5,0 €. Let U be

the closed subspace of AL, (O [[r]]) consisting of matrices H satistying [H — I| =
[H ' — 1] <|F — I]. and let us cousider the following endomorphism f of U:

JH) =H + (o, o) (HOFH™)
which can also be written as

FUL) =T+ (0o, o) (HFH™' + H - H).
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Let us check that f is a contraction; one has
FUH) = fOH') = (¢ 0y, -0) (HO(FH = 1) = (H)(F(H) ™ = 1) + H — H')
— (o) (I — () (FH '~ 1))
- ((H*FH'Y "(H-HYH '+ 1~ H')).
and it is clear that the norm of both terms in the difference is < |H — H'|. Thus f

has a fixed point H. and since ¢ is invertible, 4,0 (H® FH ™) = 0 as wanted. O

Proposition 13.6. Let F e GL,(ED) satisfy |[F — 1| < x|, and let A,, Ay €
GL,(R.) be such that

" T s
Foudy = A° F, Ay = Ag" A,

(/”‘

Then Aq € GL,(Ogt) and there cists Y € GL,(O&!) such that

N

YO =AY, YO = FY

Proof. Using the two previous lemmas, one reduces to the case when F €
GLu(Oyp1) and F(0) = I (still with
matrices Y, € GL, (O, ) by

I — 1] < |n]). Let us define a sequence of

Y’,” — l;‘~-l(l_-;1(/:)—l . ([g(,’)"') l.

S o . Ton—1
As above. let us set. for any positive integer n, A, = A" -+ A,. From the
relation A:fl,\ = 71 A,F~" one derives by induction on n the following relation in
GL,(R.):
A”")

(Iu;;‘

= F%a" ‘4(1” F 1 )
Applying this to the powers of p*, one then computes

(V7)™ A Yo = (B9 )00 (PO) T P A P (F) 7 e (97) 7 = 4

m qr

m

We now use the fact (12.21, 12.22) that the sequence A ,m-, hence also 4:;1 tends
toin GL,(R;). and derive that A, € G'L,/(HI:). Indeed, since vy, -0 Y, =7,50 Y =0,

Y0 A, = Yo' (v, ~-n(14:f,’,1,',.~ DY one has ",.I.:-u(z’l:’,’:”\) — =0l = 0. whence
Ye-0A4, = 0. and it follows that A, € GL,(H!).

By (12.21). (12.22) again. [A5. = Ilgr — 0. hence (Y;")"'4,Y;, tends to I
also in G'L,(B(]1.x]). But Y, has a limit Y in G'L,(Op(j;.~)). hence Yooy -l =
A, € GL,(B(]1.x]). Applying (13.3). one concludes that Y € GL,(H!). and that
Y7y = A,. Since Y € GL,(Op(1.~))- the entries of A, and Y actnally lie in OHT’ .

On the other hand, it is obvious that Y = 'Y in GL,(Op(.~j))- hence also in
GL,(HL). O

Corollary 13.7. Let (M. 3,) be a g-difference module over R, with a strong Frobe-
nius structure ®. Let us assume that there is a basis of M in which the Frobenius
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matric F has entries in 7 and satisfies

F — 1| < |w|. Then there is a basis of M
which is fized under both ¥, and ®.

13.3. Going up in finite unramified extensions of £f. — We now assume in
addition that K is discretely valued (and again that & is algebraically closed). Hence
K is a finite extension of the field of fractions of the Witt ring W (k).

We are now looking for generalizations of the previous results when El

i is replaced

by a finite unramified extension S,\ Lo (a7 being a good coordinate as in §11.3). The
difficulty lies of course in the fact that one cannot assume that o, () is proportional
to &', nor that o) = (2/)".

We use again the notations [ : ' — Po, N0, ete... of §11.3. Let d be the degree

of f. Let us first generalize corollary 13.3.

Proposition 13.8. Let Y' € GL,(By(]l.x]) be such that |Y' — I| < |x| and
(Yo (Y) "€ M, (ON(C) ). Then Y € GL,(OT(C)).

Proof. We first notice that it is sufficient to prove that Y € GL,,( (OT(C)[1/h]) for
some h € HI of norm 1: the fact that A= (Y7 (YY) " has no pole at h = 0 will
imply llml Y’ has no pole as well at b = 0. After such a localization. we may assume
that OT(C')[1/h] is a free O, [1/h]-module of rank d.

In the second place, we notice that Af/ € ]\[,,(OT((,')). Let us endow the free
ON(C)[1/h}-module of rank ji. say M’ = ! OT(C)[1/h]m!, with the o,-linear en-
domorphism ¥, defined by the matrix (Af,)_' in the basis (m;). Via f, M’ gives rise
to an “underlying” ¢-difference module A over OH‘} [1/h]. We endow it with the basis
(m;) constructed via (m/) and a fixed basis of OT(C)[1/h] over Oy [1/h]. T this
basis, the g-difference system has a solution Vo€ GL,4(B,(]1.x])) with Y(0) = I.
Let @ be a uniformizing parameter for Oy, and let n be such that |7] = ||~ The
condition |Y'—1I| < || translates into: the image of the vectors m/ in M’ /@™ arve fixed
under ¥,. Since o, = idmod @". this implics that the image of the vectors my in
M/w" are fixed under X,. Hence cand by (13.3), Y € GL,a(O, [1/0]).
which implies that Y/ € GL, (O (C')[1/h]). O

Let us now generalize lemma 13.5:

Lemma 13.9. — For any I € GL“(EI,) such that |F" — I| < 1. there cxists H €
GL(Ok[[2"]]) € GLW(Ogt ) such that H?F'H ' € GL,(ON(C) ) and |H — 1] =
H - <P T

Proof. One can even require that H*F'H ' e GL, (H ). The proof is almost the

same as in (13.5), except that one has to deal with two Frobenius endomorphisnis
at the same time: ¢. and ¢’ which raises to 27 to the power p*. One introduces the
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inverse ¢/ = 377 ()" of id — ¢'. and the space Y’ analogous to U with 2" in place
of . One checks that the formula

f(H) = H + (¢ oryn=0)(HF'H ")

(with ¢, not ¢'!) defines an endomorphism of U’. One checks as in (13.5) that [ is a
contraction by writing f(I1) in the form f(H) = 1 4 () 0 30 )(H?(F'H L—1T)+
H+(H®—H?")) and using the fact that |H? — (H')* — H* + (H')*'| < |H — H'|. O

At last. let us generalize proposition 13.6:

Proposition 13.10. — Let I' € GL,(E!) s
GL,(R.) be such that

Y= I < |z, and let A}, Al . €
q

(Iw/)m, 4/ (A/ );)[;v/‘ AL = (A:I)”(/n'\ [ A:I

qr” r/l’

Then A € GL, (O ) there exists Y € GL,(Oq ) such that
q / £ / [

(Y/)rr” _ A,/,Y/a (Y/) — 'y’
Proof. Using (13.8) and (13.9) in the place of (13.3) and (13.5) respectively. the
argument is the same as in (13.6). except that one cannot directly apply the truncation
operator 7,.~o since a, does not commute with v, ~0o. We are in the situation where
F’, hence Y,f, is in GL, (O1(C) k), and where ((Y,,)70)~ A’},f, = (/1:/,,,,“ )" — I'in
GLu(R.r), and we have to derive that Aj € GL,(ON(C) ).

We first notice that OI\» is a free Hi-module of rank d (it comes from a locally
free A([r. oc])-module of rank d (r < 1), which is automatically free since A([r, oc]) is
principal).

Let us endow the free OT(C) g-module of rank g, say M/ = w' HONC) gm!L with
a ¢-lincar endomorphism ® defined by the matrix (F/)~! in the basis (1n; ) and ondow
M'&& '/ with the oy-lincar endomorphism 3, defined by the matrix (A] )~ in the same
basis. Via f. M’ gives rise to an “underlying” ¢-difference module A7 over HI, and
M =&l becomes a a,-¢-module over £F. We endow M with the basis (mj) constructed
via (m}) and a fixed basis of OJ}\» over Hi, and we denote by A, and F' respectively
the inverse matrices of ¥, and ¢ in this basis. Then the argument of (13.6) applies
and shows that A, € GL,(H!). which implics that A, €GL LOT(O) ). |

13.4. g-analog of Tsuzuki’s theorem: the general case. — In this section /A" is
a complete discrete valuation field of characteristic 0, with algebraically closed residue
field k of characteristic p. We assume that 7 € I, that |¢ — 1| < |7|. K is endowed
with a Frobenius 7, and we assume that, for a given s > 0, 79(q) = ¢.

As before, ¢ is the 77-lincar endomorphism of £F (or R) which sends r to .
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Theorem 13.11. Let (M. %) be a q-difference module over R, with a strong Frobe-
nius structure ®. Let us assume that there is a Ogi-lattice M in M such that ®
induces an isomorphism

oM — M.

Then there is a jl:’f)rif(,’. ’(I,’I)/I'(I.’"l/l:fl:(fd extension 6‘:[/ ()f g:r and a basis ()/. M X0 + Ogr
which is jl,:IT({([ under both Eq and .

In particular, (M ©r, R, X,) is a trivial g-difference module.

This follows from the previous proposition and the following lemma of N. Tsuzuki
[T98b, 5.2.2] (¢f. also [CO1. Lemma 16]):

Lemma 13.12. For any F € GL,(Ogt). there erists a finite unramified extension
El and H € GL,(Opr ) such that [ HFH ' — 1| < |x.

This is proven in [T98b. 5.1.1], [CO1, lemme 16] for s = 1, but the proof works
for any s > 0.

14. Quasi-unipotence

In this section K is assumed to be complete, discretely valued. of characteristic 0,
with residue field & perfect of characteristic p > 0. K is endowed with a Frobenius 7.
As before, ¢ is the 77-lincar endomorphism of £ (or R) which sends @ to o

We shall prove the quasi-unipotence of g-difference modules over R which admit a
strong Frobenius structure, using Kedlaya's structure theorem for ¢g-modules over R.

Another path toward quasi-unipotence seems possible, through the structure theo-
rem of [A02] for tannakian categories with a Hasse-Arf filtration. However. this would
require a g-analog of Christol-Nebkhout theory of exponents and analytic slopes.

14.1. Kedlaya’s filtration. — We shall rely on the following theorem [Ke, 6.10]:

Theorem 14.1. — - Let (M, ®) be a ¢p-module over R. Then there exists a unique finite
ascending filtration (M;) by saturated ¢-modules such that

i) the quotients M; /M, 1 have a single $-slope s,

ii) j— sj is increasing.

iii) cach quotient M;/M ;41 comes from a unique d-module (Nj.®) over EF. and
Nj @et € has a unique slope in the sense of Dieudonné-Manin. which is s;.

Here, £ is the usual notation for the p-adic completion of £ t, "M saturated” means

as usual that M/M; is torsion-free over R, which implies that it is free, since it is also
finitely presented and R is a Bézout ring. Notice that M} = Nj &gt R.
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The definition of ®-slopes?!) involves the “big Robba ring” R (¢f. §11.2), whose
precise definition will not matter here. A ¢-module L over R is said to have a single
slope s if there exists a basis of eigenvectors for @ in L &g R with cigenvalues in some
finite extension of Ok of valuation equal to s.

We shall also use the following result:

Proposition 14.2. Let (M, ®) be a d-module over R. Then up to replacing k((x))
by a finite separable extension (and R by the corresponding étale extension) and K
by a finite extension,

i) there exists a basis m of M in which the inverse matriz F' of ® can be written
as F = D7 'U, where D is a diagonal matriz with diagonal entries D; in K and of
non-decreasing valuations. and with U € GL,(Ogt). U — I} < 1,

ii) the ®-slopes of N := & m; coincide with the slopes of N @ey £ in the sense of
Dieudonné-Manin,

iii) N contains Ny (in the notation of § 14.1),

iv) the valuations of D; are equal for i < vk N. and are strictly smaller than the
valuations of D; for j > 1k N,

v) N is the direct sum of Ny and Ni = Bisek NETG,

vi) moreover. one may choose m in such a way that N = €< ~EImi. so
that U may be written in block form as U = (‘\) L), where X € GLy N (Ogi).
ZeGL, kN (Ogt). and Y has entrics in Oll.

Proof. Multiplying F' by some constant and replacing A by a finite extension, one
may asstme that the ®-slopes belong to the value group of O.

For i) and ii). sec [Ke, 6.9], where it is shown that the Dieudonné-Manin slopes of
N ¢t € are the valuations of the D;’s.

The construction and characterization of Ny in [Ke, 6.10] also shows iii). On the
other hand, setting E=N 2z, W(k((x))), it is shown in [Ke. 5.9] that ® can be put

into diagonal form D by some change of basis via a matrix V' € G'L,(Og) (applied to

m), with [V — I| < 1. Points iv), v) and v) follow casily. O
14.2. The local monodromy theorem. — We assume that |¢ — 1| < |7] and that
m(q) = q.

Theorem 14.3. Any q-difference module (M.X,) over R which admits a strong
Frobenius structure is quasi-unipotent: after replacing k((x)) by a finite separable
extension (and R by the corresponding étale extension), it admits a filtration by sat-
urated q-difference submodules, with trivial quotients®?) .

(2D called special slopes in [Kel: we call them @-slopes here in order to prevent any confusion with
the (analytic) slopes a la Christol-Mebkhout, whose definition does not make use of any Frobenius
structure, and which will appear in the sequel.

(22) a5 ¢-difference modules, i.e., they admit a basis which is fixed under g
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Proof. Multiplying F' by some constant and replacing K by a finite extension, one
may assume that the ®-slopes belong to the value group of O, and that the least
d-slope is 0.

We may freely replace k((x)) by a finite scparable extension and extend the dis-
cretely valued field K, so that we may assume that we arce in the situation of the
previous proposition, that 7 € I\ and that & is algebraically closed.

We shall prove that Ay is stable under 3,. Applying (13.11), one deduces that it
is trivialized, as a ¢-difference module, in some finite extension of R coming from a
finite separable extension of k((x)). The same will be true for the Af; by induction,
whence the quasi-unipotence of (M. X)),

We rely of course on the integrability condition F7vA, = A:/,', F. in the basis
provided by (14.2) vi). We write A,. A+ in block form

Ag= (@) = (T Qo)
T \rys,) T e S,

We have to show that R, = 0.
The lower left corner of the integrability condition gives rise to the equation

R, = (Z74)"" D”R:;",,.\ (D" 'X.

where D’ (resp. D) is the diagonal matrix with diagonal entries D;, i < rk M,
(resp. i > rk Aly).
Let us fix » sufficiently close to 1 (so that our g-difference module with Frobenius

structure is defined over A([r. 1[)). Then the canonical absolute values | |1/ o, are

defined for each of the matrices entering the last displayed equation. Morcover

(Z7) D" (D) X e ~

can can g ]

and

11’:;),,.\ o e = IRy lrcan. Thus [Ry [0/,
place ¢ by a large power, i.e.. s is replaced by a large multiple. When s — oo, we
know that A, — [ in R (by (12.21), (12.22)), hence |[R - |y.can — 0. We conclude
that 12, = 0. O

< R, lrcan. Now we may re-

can

14.3. Logarithmic variant

Theorem 14.4. —  For any q-difference module (M. Y,) over R, which admits a strong
Frobenius structure. there is a finite étale extension R, /R, coming from a finite
separable catension k' (")) /k((x)). such that Mg R, [logx] has a basis fived by X,.

This follows from the previous theorem and the following lemmas
Lemma 14.5. dy: R llogr] — Ry flog.r] is surjective.

Proof. — It is easy straightforward that §, = xd, = (¢ — 1)~ (o, — id) induces a K-
lincar isomorphism R, /K — R, /K. Besides, note that d,(x"log"r) is a polynomial
of degree < k in logx, with coefficients in Kx,1/x]. From there, using the twisted
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Leibniz rule, it is not difficult to conclude by induction on the degree of log that
9y« Rilloga] — R, [logr] is surjective.

Let us now turn to the etale extension Ry [log .. We may assume that &' = K.
Again, by induction on the degree of log. one reduces the statement to the surjectivity
of bg : Ry /KN — R, /K.

Rec (111 (¢f. (12.16)) that if [ is a closed interval contained in 0. 1] and close enough
to the point 1. one has 6,( A,/ (1)) C (A, (1)), and that (5{1,,,,. — wd/da when i — oc.

One has

Sy(f) =g <=0 f =vilg) = (")) """ 44 g).
It is casy to sce that for given g € A,/ (1). v;(g) forms a Cauchy sequence (for j < i.
write ¢ (g) as ([p7°])(p™],) " Z:::{:‘ e (g7 @) and compare each of the
Pl terms to ¢0;(g)). Henee it converges in the Banach space A, (1).

On the other hand, although @/d/dx’' + A (I)/ KN — A, (I)/K is not surjective.
every h € Ao (1)/K has a (/d/d+")-preimage in A,/ (I') /I, for any closed interval I’
contained in the interior of 1. For I close enough to 1. the same is true for vd/de.
which is a multiple of +/d/da’ by a mit in A, (I): there exists f € A (I')/K such
that wd/dr(f) = h. In the case h = lim ¢ (g). one finds d,(f) = g in A (I)/K.
Whence the result. U

As in the differential case (¢f. [A02]). theorem 144 can he expressed in the follow-
ing “tannakian way™:

Theorem 14.6. Let us assume that 'k is algebraically closed.  Then the canonical
“-functor

DY) Rep (G % Ga) — - Mod'y
is an cquivalence of (‘(ll(’f]()’l‘i(’.s‘. In f{l,r‘f. there is a canonical quasi-inverse lf"'ﬁ(,{/'> and a
canonical isormorphism D,(T(I) o L"},(f,'f') = Id.

This guasi-inverse is given by L*;f/‘,"))(]\[) = (M oo Rl[log o)) for R’ big enough
(in ﬁ) and the isomorphism A =, D((;,': Vo ”)( M) is induced by the canonical iso-
morphisim

(M = R'[log ,1'])’\:" Ce R loga] — M g R'[log.x].
Proof. - We know that this functor is fully faithful. and its essential surjectivity is
ensured by (14.4). The rest is formal and left to the reader. (]
Remark 14.7. This functor actually comes from a fully faithful @-functor
Rep e (Gr(oy) X Go) — 04 /W()dif"{).
but the latter is not essentially surjective. For instance
Ext%_ Mod'?) (R.R) = Extpepe, (K. K) =K.

while Ext_ o) (€7, EM) is a K-space of infinite dimension.
q= v ot
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Corollary 14.8. There is a canonical K-linear fully faithful o-functor
¢ ‘onf (¢
o4-M ()r[%)) — 04~ Mod" (¢)
. ~conf (¢ b) (2
given by D" @5 V(,(f/’))(“).
Is it an equivalence of categories? This is likely. One way to tackle the question
. . S - (conf o .
would be to prove directly the essential surjectivity of [ (ﬁ(q““ ) along the above lines:
the major technical problem in this direction is to control the variation of Kedlaya’s
filtration attached to the confluent sequence of ¢ -difference modules when i — oc.

15. Applications

15.1. Confluence. — We assume again that £ is algebraically closed. We assume
that 7 € K, that |¢ — 1| < |x|. K is endowed with a Frobenius 7, and we assume
that, for a given s > 0, 7°(¢) = q.

As before, ¢ is the 7°-lincar endomorphism of R which sends @ to 2.

We call the composed @-functor

. ¢ ) onf (¢
Conf : o4 ﬂf'[()(lgé)) — 04~ Mod3" @ 4 M()d,(rg)).
where the first functor is D;}‘J"i(d’)oV,T(jb) and the second is Limi‘f), “the p-adic confluence
functor”.
" 0 /) . . . .
Theorem 15.1. One has Conf OD((,(::) = D((,(’ ' In particular, Conf is an equivalence.
Proof. This is clear from remark 12.18, and from the fact that Df,({:) and D((,(’()) are
equivalences, by the quasi-unipotence theorems. O
Remark 15.2. It is clear that the restriction of these functors to rank one objects
gives rise to the group isomorphisms of (8.2).
15.2. Canonical ¢-deformation. — We call the composed @-functor
g-Def = Df,‘:) o V((I(/)) d- ]\J()d%)) — 0y A'fod%))
“the p-adic g-deformation functor”.
Theorem 15.3. q-Def is a quasi-inverse of Conf. Moreover, it is canonically iso-
morphic to o, o (qP -Def).

Proof. - By the quasi-unipotence theorems; it is clear that ¢-Def is an equivalence.
In order to prove the first assertion, it is thus enough to sce that g-Def is left quasi-
inverse to Conf, which follows immediately from the fact that C()nfon,(f) = D((‘l(b).

For the second assertion, one remarks that ¢-Def (M) (resp. g7 -Def (M) is the first

(resp. the second) term in the sequence of modules defined by Df;?/“f(m o Vd((b)(]\[). O

(23)using tacitly the canonical isomorphism D(U(f:) o V{,(:f)) 2 Id.
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15.3. Analytic slopes and exponents. — Let 1/ be in |l¢g — 1]. 1], and X be a
non negative real number. By analogy with the differential case (¢f. (CMO02]), we

introduce the following

Definition 15.4. A ¢-difference module Al over Ay ([r/, 1) has (analytic) slopes < A
if there is a function
re P! 1 p(r) €]t

such that M @4, () Aalt,.p(r)) has a basis of elements fixed nnder ¥,

It is clear that this implies solvability in the sense of (12.19).

Since any ¢-difference module M over R, is “defined over Ay ([r. 1[)” for some r
close enough to 1. this provides a definition of “having slopes < A7 for such mod-
ules. This property is stable by passage to subquotients. dual, tensor products and
extensions. One checks exactly as in the differential case that for n prime to p, the
hase-change by & — " of M is a ¢!/ "-difference module of slopes < nA.

It is likely that the Christol-NMebkhout theory of slope filtrations carries over to the
g-difference case. but we haven’t checked all details.

We now assume for simplicity that the residue field A is algebraically closed.

Example 15.5 (¢-difference equations of rank 1 with Frobenius structure)

We have scen in (7.3) that any ¢-difference equation over R with Frobenius struc-
ture has a non-zero solution in some finite unramified extension 5}., of £1. and that
y'/y € EL Thus the group isomorphisim (7-('(1;";) =, (1-(‘([;(';)) from (8.2) preserves the
property of “having slopes <A™

In particular. ¢-difference equations of rank 1 with Frobenius structure and slope 0
(i.c.. slope < 0) correspond to tame characters of G,y (via (8.2)). hence are of the
form d,; — [o], /0 with o € Z, N Q.

Theorem 15.6. Any M € o,- Mod'? with slope 0 has a filtration with graded pieces
| R 1 ! !

of rank one.

Proof. — By quasi-unipotence. we may assume. after taking subquotients. that A/
corresponds to a representation Voof Gy, with finite image &' (which is the scmi-
direct product of a cyvelic group of order prime to p by a p-group. cf. [S68]). Rep-
resentations of G then correspond to g-difference modules in the tannakian category
generated by M. which have slope 0. By base-change by a2 for suitable n prime
to p, we may assume that G is a p-group. i.c.. that with are in the purely wild case.
By the previous example, there is no one-dimensional representation of ¢ which cor-
responds to a g-difference module of slope (0. Since G is a p-group. we conclude that
it is trivial. O

It follows from that Al is an iterated extension of ¢-difference modules of type
Rld,|/(dy+[aily). i = 1. = vk M. with o; € Z, NQ well defined mod. Z and up
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to permutation. Let us call these p-adic numbers (mod. Z and up to permutation)
the exponents of M. Taking into account remark 8.3. we have:

Proposition 15.7. The functors Cont and q-Def preserve objects of (analytic) slope 0
and their cxponents.
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