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Résumé. —  Cet ouvrage en deux volumes rassemble les actes du colloque Analyse
compleze, systémes dynamiques, sommabilité des séries divergentes et théories galoi-
siennes organisé & Toulouse du 22 au 26 septembre 2003 & ’occasion du soixantiéme
anniversaire de Jean-Pierre Ramis.

En introduction, le premier volume propose deux textes de souvenirs et trois textes
de synthése des travaux de J.-P. Ramis en analyse complexe, en théorie des équa-
tions différentielles linéaires et en théorie des équations différentielles non-linéaires.
Suivent des textes essentiellement consacrés aux théories galoisiennes, a ’arithmétique
et a l'intégrabilité : analogies entre théories différentielles et théories arithmétiques,
équations aux ¢-différences classiques ou p-adiques, probléme de Riemann-Hilbert et
renormalisation, b-fonctions, problémes de descente, modules de Krichever, lieu d’in-
tégrabilité, théorie de Drach et équation de Painlevé VI.

Le deuxiéme volume rassemble des textes plutdt liés a des questions d’analyse et
de géométrie : stabilité de Lyapounov, analyse asymptotique et dynamique pour des
pinceaux de trajectoires, analyse WKB et géométrie de Stokes, équations de Painlevé
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Abstract (Complex analysis, dynamical systems, summability of divergent series and
Galoistheories(11), Volumein honnor of Jean-Pierre Ramis)

These two bound volumes present the proceedings of the conference Complexr Anal-
ysis, Dynamical Systems, Summability of Divergent Series and Galois Theories held
in Toulouse from September 22" to September 26'" 2003, on the occasion of J.-P.
Ramis’ 60*" birthday.

The first volume opens with two texts composed of recollections and three texts
on J.-P. Ramis’ works on Complex Analysis and Ordinary Differential Equations
Theory, both linear and non-linear. This introduction is followed by papers concerned
with Galois Theories, Arithmetic or Integrability: analogies between differential and
arithmetical theories, g-difference equations, classical or p-adic, the Riemann-Hilbert
problem and renormalisation, b-functions, descent problems, Krichever modules, the
set of integrability, Drach theory and the VI*" Painlevé equation.

The second volume contains papers dealing with analytical or geometrical aspects:
Lyapunov stability, asymptotic and dynamical analysis for pencils of trajectories,
monodromy in moduli spaces, WKB analysis and Stokes geometry, first and second
Painlevé equations, normal forms for saddle-node type singularities, invariant tori for
PDEs.
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RESUMES DES ARTICLES

Pinceaux de courbes intégrales d’un champ de vecteurs analytique
FELIPE CANO, ROBERT MOUSSU & FERNANDO SANZ ....oviuiiiininaean 1

Soit vy une courbe intégrale d’'un champ de vecteurs analytique X dans une
variété réelle de dimension trois. Supposons que 7 ait un seul point limite et
qu’elle posseéde des tangentes itérées. Le pinceau intégral PI(vg) est 'ensemble
des courbes intégrales de X qui ont les mémes tangentes itérées (orientées)
que 7. Nous montrons que les courbes de PI(vy) sont, soit deux & deux sous-
analytiquement séparables, soit deux a deux asymptotiquement enlacées. Dans
ce dernier cas, PI() possede un axe formel qui est divergent si et seulement
si les courbes de PI(7g) sont non oscillantes.

On analytic families of invariant tori for PDEs
BORIS DUBROVIN ..t e e 35

Nous proposons d’appliquer la méthode des développements de Stokes a
la construction perturbative de tores invariants associés a des solutions d’EDP
quasi-périodiques en les variables d’espace et de temps. Pour les EDP inté-
grables, nous nous intéressons a la compensation de presque tous les petits
diviseurs apparaissant dans ’analyse pertubative, i.e., la compensation de tous
sauf un nombre fini. Nous traitons de cette compensation en détail sur I’exemple
de I’équation KP et nous montrons que dans ce cas, sous des hypotheses faibles
portant sur la décroissance de ’amplitude des modes de Fourier, toutes les
familles analytiques & tores invariants de dimension finie sont données par la
construction de Krichever en termes de fonctions théta de surfaces de Riemann.
Nous donnons une construction explicite de fonctions théta réelles de dimen-
sion infinie et des solutions de KP quasi-périodiques correspondantes comme
somme d’une infinité d’ondes planes en interaction.

Generating Function Associated with the Determinant Formula for the Solutions
of the Painlevé II Equation
NALINT JOosHI, KENJI KAJIWARA & MARTA MAZZOCCO .......oovvieinnnnn.n. 67

On s’intéresse a la formule déterminant de Hankel pour les solutions géné-
riques de 1’équation de Painlevé II. On établit une relation reliant les fonctions



xiv RESUMES DES ARTICLES

génératrices des coefficients des déterminants de Hankel aux solutions asymp-
totiques & 'infini du probléme linéaire dont les déformations isomonodromiques
sont décrites par cette équation de Painlevé II.

Instability of resonant totally elliptic points of symplectic maps in dimension 4
VaDIM KALOSHIN, JOHN N. MATHER & ENRICO VALDINOCI .................. 79

Un théoreme célebre de Moser établit la stabilité au sens de Lyapounov des
points fixes elliptiques génériques des applications qui conservent I’aire. On étu-
die la stabilité de Lyapounov des points fixes totalement elliptiques résonnants
d’applications symplectiques en dimension 4. On montre que, génériquement,
un point totalement elliptique résonnant convexe d’une application symplec-
tique est instable au sens de Lyapounov. La démonstration s’appuie de facon
essentielle sur celle donnée par J. Mather pour I'existence d’une diffusion d’Ar-
nold pour les hamiltoniens convexes a 2,5 degrés de liberté. Celle-ci, annoncée
dans [Ma5], n’est pas encore publiée.

On the Stokes geometry of higher order Painlevé equations
TAKAHIRO KAwAl, TATSUYA KOIKE, YUKIHIRO NISHIKAWA & YOSHITSUGU
1 1.8 20 ) 117

Nous exhibons plusieurs propriétés fondamentales liant, d’une part, la géo-
métrie de Stokes (i.e., la configuration des courbes de Stokes et des points
tournants) d’une équation de Painlevé d’ordre supérieur & grand parametre et,
d’autre part, la géométrie de Stokes de I'une des paires de Lax sous-jacentes.
L’équation de Painlevé d’ordre supérieur a grand parametre considérée est I'une
des équations de la hiérarchie P; pour J = I, II-1 ou II-2 que nous détaillons
dans le paragraphe 1. Les équations étant d’ordre supérieur leurs lignes de
Stokes peuvent se croiser et ’anomalie connue sous le nom de « phénomene de
Nishikawa » peut se produire aux points de croisement. Nous analysons le mé-
canisme par lequel ce phénomene de Nishikawa apparait. Plusieurs exemples de
géométrie de Stokes sont donnés dans le paragraphe 5 en vue d’une visualisation
de la partie centrale de nos résultats.

Versal deformation of the analytic saddle-node
FRANK LORAY ..o e 167

Dans la continuité de [10], nous construisons une forme normale simple
pour un feuilletage analytique au voisinage d’une singularité de type noeud-
col dans le plan réel ou complexe. Nous obtenons une telle forme en recollant
des variétés complexes feuilletées. Nous en déduisons une déformation analy-
tique miniverselle dans un cas simple. Nous donnons une forme unique pour
un nceud-col possédant une variété centrale analytique. Nous retrouvons ainsi
géométriquement et nous généralisons des résultats obtenus par J. Ecalle &
I’aide de la théorie des moules. Ce travail répond partiellement a des questions
ouvertes posées par J. Martinet et J.-P. Ramis & la fin de [11].
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RESUMES DES ARTICLES xVv

Asymptotics for general connections at infinity
CARLOS SIMPSON .ttt ettt ettt et e e e e e e e 189
Pour une courbe standard allant vers un point général a U'infini dans l’es-
pace des modules Mpgr des connexions sur une surface de Riemann compacte,
nous montrons que le transformé de Laplace de la famille des matrices de mono-
dromie admet un prolongement analytique avec ramification localement finie.
En particulier, ’ensemble convexe qui représente la croissance exponentielle est
un polygone dont les sommets sont dans un ensemble qu’on peut expliciter en
termes de la courbe spectrale. Malheureusement, nous n’obtenons pas d’infor-
mation sur la taille des singularités du transformé de Laplace et donc pas de
développement asymptotique pour la monodromie.
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ABSTRACTS

Pinceaux de courbes intégrales d’un champ de vecteurs analytique
FELIPE CANO, ROBERT MOUSSU & FERNANDO SANZ ....oviiiiinninanean 1

Let 79 be an integral curve of an analytic vector field X in a real three
dimensional manifold. Suppose that vy has a single limit point and that it has
all iterated tangents. The integral pencil PI(7) is the set of all integral curves
of X having the same (oriented) iterated tangents as . We prove that two
arbitrary curves in PI(y) are either subanalytically separated or asymptotically
linked. In this last case, PI(7p) has a formal axis which is divergent if and only
if the curves of PI(g) are not oscillatory.

On analytic families of invariant tori for PDEs
BORIS DUBROVIN .. e e e 35

We propose to apply a version of the classical Stokes expansion method to
the perturbative construction of invariant tori for PDEs corresponding to solu-
tions quasiperiodic in space and time variables. We argue that, for integrable
PDEs all but finite number of the small divisors arising in the perturbative
analysis cancel. As an illustrative example we establish such cancellations for
the case of KP equation. It is proved that, under mild assumptions about decay
of the magnitude of the Fourier modes all analytic families of finite-dimensional
invariant tori for KP are given by the Krichever construction in terms of theta-
functions of Riemann surfaces. We also present an explicit construction of in-
finite dimensional real theta-functions and of the corresponding quasiperiodic
solutions to KP as sums of an infinite number of interacting plane waves.



xviii ABSTRACTS

Generating Function Associated with the Determinant Formula for the Solutions
of the Painlevé II Equation
NALINT JosHI, KENJI KAJIWARA & MARTA MAZZOCCO .......ovvvuininnan... 67

In this paper we consider a Hankel determinant formula for generic solutions
of the Painlevé II equation. We show that the generating functions for the
entries of the Hankel determinants are related to the asymptotic solution at
infinity of the linear problem of which the Painlevé II equation describes the
isomonodromic deformations.

Instability of resonant totally elliptic points of symplectic maps in dimension 4
VADIM KALOSHIN, JOHN N. MATHER & ENRICO VALDINOCI .................. 79

A well known Moser stability theorem states that a generic elliptic fixed
point of an area-preserving mapping is Lyapunov stable. We investigate the
question of Lyapunov stability for 4-dimensional resonant totally elliptic fixed
points of symplectic maps. We show that generically a convex, resonant, totally
elliptic point of a symplectic map is Lyapunov unstable. The proof heavily relies
on a proof of J. Mather of existence of Arnold diffusion for convex Hamiltonians
in 2.5 degrees of freedom. The latter proof is announced in [Mab], but still
unpublished.

On the Stokes geometry of higher order Painlevé equations
TAKAHIRO KAwAl, TATSUYA KOIKE, YUKIHIRO NISHIKAWA & YOSHITSUGU
A K EL ottt e e e e 117

We show several basic properties concerning the relation between the Stokes
geometry (i.e., configuration of Stokes curves and turning points) of a higher
order Painlevé equation with a large parameter and the Stokes geometry of (one
of) the underlying Lax pair. The higher-order Painlevé equation with a large
parameter to be considered in this paper is one of the members of Pj-hierarchy
with J =1, II-1 or II-2, which are concretely given in Section 1. Since we deal
with higher order equations, the Stokes curves may cross; some anomaly called
the Nishikawa phenomenon may occur at the crossing point, and in this paper
we analyze the mechanism why and how the Nishikawa phenomenon occurs.
Several examples of Stokes geometry are given in Section 5 to visualize the core
part of our results.

Versal deformation of the analytic saddle-node
FRANK LORAY ..o e 167
In the continuation of [10], we derive simple forms for saddle-node singular
points of analytic foliations in the real or complex plane just by gluing foliated
complex manifolds. We give a miniversal analytic deformation of the simplest
model. We also derive a unique analytic form for those saddle-node having
an analytic central manifold. By this way, we recover and generalize results
earlier proved by J. Ecalle by using mould theory and partially answer to some
questions asked by J. Martinet and J.-P. Ramis at the end of [11].
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ABSTRACTS xix

Asymptotics for general connections at infinity
CARLOS SIMPSON .ttt ettt ettt et e e e e e e e 189
For a standard path of connections going to a generic point at infinity
in the moduli space Mpgr of connections on a compact Riemann surface, we
show that the Laplace transform of the family of monodromy matrices has
an analytic continuation with locally finite branching. In particular, the convex
subset representing the exponential growth rate of the monodromy is a polygon
whose vertices are in a subset of points described explicitly in terms of the
spectral curve. Unfortunately, we don’t get any information about the size of
the singularities of the Laplace transform, which is why we can’t get asymptotic
expansions for the monodromy.
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PINCEAUX DE COURBES INTEGRALES
D’UN CHAMP DE VECTEURS ANALYTIQUE
par

Felipe Cano, Robert Moussu & Fernando Sanz

Résumé. — Soit 9 une courbe intégrale d’un champ de vecteurs analytique X
dans une variété réelle de dimension trois. Supposons que 7p ait un seul point limite
et qu’elle possede des tangentes itérées. Le pinceau intégral PI() est 1’ensemble
des courbes intégrales de X qui ont les mémes tangentes itérées (orientées) que ~o.
Nous montrons que les courbes de PI(vg) sont, soit deux & deux sous-analytiquement
séparables, soit deux & deux asymptotiquement enlacées. Dans ce dernier cas, PI(vyo)
posséde un axe formel qui est divergent si et seulement si les courbes de PI(vp) sont
non oscillantes.

Abstract (Integral pencils of trajectories of an analytic vector field). — Let  be an inte-
gral curve of an analytic vector field X in a real three dimensional manifold. Suppose
that o has a single limit point and that it has all iterated tangents. The integral
pencil PI(vp) is the set of all integral curves of X having the same (oriented) iterated
tangents as 9. We prove that two arbitrary curves in PI(qg) are either subanalyti-
cally separated or asymptotically linked. In this last case, PI(7p) has a formal axis
which is divergent if and only if the curves of PI(yo) are not oscillatory.

0. Introduction

Soit X un champ de vecteurs analytique sur une variété M de dimension trois
et soit 7y une courbe intégrale de X dont lensemble w-limite, w(vp), est un point
singulier p de X. Nous nous intéresserons a la question suivante. Comment, d’un
point de vue analytique, o peut-elle tendre vers p? Cette question n’est pertinente
que si vy possede une tangente en p. En effet, soit m; : M; — My I'éclatement de
centre pg et soit 1 le relevé de 7 par 7. Son ensemble w-limite, w(71), est contenu
dans le diviseur exceptionnel de m; qui est identifié & RP(2). La courbe 7 a une
tangente en po de direction p; si et seulement si w(y;) = p1. Si ce n'est pas le cas,
I’étude de y; au voisinage de p; est un probleme de dynamique globale. Ce n’est plus

Classification mathématique par sujets (2000). — Primary 34CO08; Secondary 34C10, 37D30, 32B20,
32S50.
Mots clefs. — Champ de vecteurs, EDO, éclatement, oscillation, variété invariante.
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2 F. CANO, R. MOUSSU & F. SANZ

un probleme local de géométrie analytique. Pour cette raison nous nous intéressons
seulement aux courbes vy qui possedent des tangentes itérées TI(yy) = {pn}, c’est-a-
dire, & celles pour lesquelles il existe une suite infinie d’éclatements ponctuels

1 9 T,
M0<—M1<—M2~'~<—Mn,1<—nMn'”

de centres les points pg, p1,...,Pn-1,.-., telle que p, = w(v,) ol v, est le relevé de
Yn—1 par m,. La droite tangente & ~,_1 en p,_1 est naturellement orientée par vy,_i.
Nous notons p; le point correspondant de S? et TI* (7)) = {p;'} la suite des tangentes
itérées orientées de yo. L’ensemble PI(yo) des courbes 7 telles que TI (y) = TI" (7o)
est le pinceau intégral de vo pour X. Si T est une courbe formelle en Do, nous notons
encore TI(T) sa suite de points infiniment proches au sens de [2]. Si TI(T') = TI(~o)
nous dirons que T est l'aze de PI(v9) ou que 7o a un contact plat avec r.

S’il existe une surface analytique qui ne contient pas g et qui coupe =y selon une
infinité de points, on dit que 7y est oscillante. Dans ce cas, le théoreme suivant décrit

les propriétés du pinceau PI(yp).

Théoréme du spiralement axial ([7]). — Si vo est oscillante et posséde des tangentes
itérées, PI(g) posséde un axe I' convergent X -invariant et yo « spirale » autour de T.
De plus, si I' n’est pas contenu dans Sing X le lieu singulier de X, toutes les courbes
de PI(yo) \ T sont oscillantes et spiralent autour de T

Si la courbe 7 n’est pas oscillante, elle possede des tangentes itérées. Le but de
ce travail est I’étude des pinceaux PI(yp) constitués de courbes non oscillantes. Ces
objets ne sont pas rares. D’apres le théoreme précédent, c’est le cas si 7y est non
oscillante et n’a pas un contact plat avec Sing X.

Théorémel. — Si les courbes de PI(y) sont non oscillantes on a l'une des propriétés
susvantes :

s) Deux courbes distinctes, quelconques, de PI(yo) sont sous-analytiquement sépa-
rables.
e) Deux courbes distinctes, quelconques, de P1(g) sont asymptotiquement enlacées.

De plus, ces propriétés ne peuvent pas étre satisfaites simultanément.

Dans le cas s) nous dirons que PI(vyg) est un pinceau intégral séparé. Dans le cas e)
nous dirons que PI(vyg) est un pinceau intégral enlacé. La structure de tels pinceaux
est décrite dans le théoreme II ci-dessous. Avant de I’énoncer, définissons brievement
les concepts qui apparaissent dans le théoréme précédent. Soient v, 4" deux courbes
intégrales de PI(~y) et soient |y|, |7/| leurs images. On dit que 7, 7' sont « distinctes »
si ||, |¥/| ne sont pas contenues dans une méme orbite du flot de X, que ~, 4 sont
sous-analytiquement séparables s’il existe une application f bornée, non constante,
sous-analytique sur un voisinage de |y| U |7/| dans R? telle que le nombre de points
de f(Iv]) N f(|7]) est fini. Des coordonnées w = (x,y,z) centrées en p sont dites
z-positives pour v si |y| C {z > 0} et si v coupe transversalement les plans z =
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constante. On peut alors reparamétrer |y| par z. Ce que nous écrivons z — y(z) =
(z(2),y(2), 2), z > 0. Deux courbes v, 7' sont asymptotiquement enlacées s’il existe
des coordonnées w, z-positives pour 7, 7/, telles que la courbe z — (v(z) — +/(2))
dans R? x {0} = R? spirale autour de 0. Ce concept est indépendant des coordonnées
choisies pour le définir lorsque v, 7' sont non oscillantes.

Théorémell. — Soit PI(vy) un pinceau intégral enlacé de courbes non oscillantes.

(1) PI(~yo) posséde un azxe formel T non convergent transcendant ; c’est-a-dire qu’il
n’existe pas de surface analytique qui contienne T.

(2) SiV est un voisinage de p, il existe un ouvert sous-analytique connexe U C 'V
positivement invariant par le flot de X tel qu’une courbe intégrale v de X appartient
a PI(~o) si et seulement si |[y|NU # @.

Un pinceau enlacé de courbes non oscillantes est X-irréductible au sens suivant.
Un ouvert U comme dans le théoreme II n’est pas la réunion de deux ensembles sous-
analytiques non vides, disjoints, positivement invariants par le flot de X. En effet,
sinon, U contiendrait un sous-ensemble sous-analytique A positivement invariant par
le flot de X de dimension inférieure ou égale & deux. L’axe formel T de PI(~p) serait
contenu dans A, ce qui contredirait I’assertion 1 du théoreme II.

Supposons que g soit une courbe oscillante qui posseéde des tangentes itérées et
que 7o n’a pas un contact plat avec une courbe contenue dans Sing X. D’apres le
théoréme du spiralement axial, toutes les courbes de PI(g) \ I' sont oscillantes et
spiralent autour d'un axe I'. Une des composantes connexes de I' \ {p}, notée I'"
est une courbe intégrale de PI(yp). Deux courbes quelconques, distinctes de PI(vp)
sont asymptotiquement enlacées et il existe encore U, un ouvert X-invariant comme
dans le théoreme II [7]. Mais dans ce cas, PI(7yy) n’est pas X-irréductible puisque
U=({U~THurt.

Exemple (L’ équation d’Euler). — Dans C? muni des coordonnées (u, v) 'équation dif-
férentielle

(E:) Cfi—?:—u—l—gv, %z—vz avece = 0,1

définit un feuilletage holomorphe F. dont v = 0 est une séparatrice. Le plongement
jw de C x R dans C? défini par j,(u, 2) = (u,wz) avec w = exp(—ia) olt v est réel,
|a] < w/2 est transverse a F.. L’image inverse F. , de F. par j, est un feuilletage
en courbes réelles. Sa description permet de mieux comprendre la géométrie de F. du
« coté noeud-col » [23]. En identifiant C & R? via I'écriture u = z + iy = (x,y), les
feuilles de F ., sont les courbes intégrales de I’équation différentielle

(Eew) d—x:—cosax—i—sinay—i—az —y:—sinax—cosay — = —z

’ dt Todt Todt
Le plan z = 0 est la variété stable de E . Les courbes intégrales v de E; , contenues
dans z > 0 sont transverses aux plans z =constante. Ce sont des graphes y(z) =
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(u(z), 2), z > 0 de fonctions u(z) solutions de

2 Z—Z = % —ez, avecu(z) =x(z) +1y(z), z> 0.
Sie =0, o0n au(z) =cexp(—1/wz), ¢ € C L’ensemble des |y| C {z > 0} est un
pinceau intégral Py d’axe I' = {u = 0}. Si w = 1, elles sont non oscillantes et Py est
séparé. Si w # 1, les courbes de Py \ I sont oscillantes, elles spiralent autour de I'. Si

e =1, I'ensemble des |y| C {z > 0} est un pinceau intégral P; d’axe formel

To(2) = (@(2),5(x), 2) = (@(2),2), aveci(z) =Y (n—1)lw" 2"
n=1
Soient «, 7/, distinctes, appartenant a Pi, v(z) = (u(2), z), 7' (z) = (v/(z),z). Alors
on a (u(z) —u'(2)) = cexp(—1/wz), ¢ € C. Si w = 1, P; est un pinceau séparé de
courbes non oscillantes. Si w # 1, P; est un pinceau enlacé de courbes non oscillantes.

Les concepts oscillation, tangentes itérées, enlacement asymptotique, séparation
sont définis de fagon précise dans le chapitre suivant. Par des arguments classiques
de géométrie analytique réelle nous montrons qu’ils sont stables par des morphismes
permis. Ce sont des composés d’éclatements de points, de courbes lisses et de rami-
fications au-dessus de surfaces lisses. Ainsi, d’aprés le « théoréme d’uniformisation
polarisée » de [6], il suffit de démontrer les théoremes I et II lorsque la partie linéaire
DX (p) n’est pas nilpotente. Il est alors nécessaire de distinguer différents cas selon la
nature du spectre de DX (p). Cette démarche nécessite encore quelques définitions :
pinceau final hyperbolique, pinceau final de type I, pinceau final de type II.

Les chapitres 2, 3, 4 sont consacrés aux démonstrations des théorémes I (sans
Palternative) et IT pour les pinceaux hyperboliques, finaux de type I, finaux de type II,
respectivement. Enfin, dans le chapitre 5, nous montrons ’alternative du théoréme I
et nous prouvons que 1’étude des pinceaux intégraux se ramene a celui des pinceaux
finaux.

Ce travail doit beaucoup a une question de F. Dumortier et a des conversations
avec J.-M. Lion. Nous les remercions vivement.

1. Enlacement asymptotique et pinceau intégral

Dans toute cette partie, X désigne un champ de vecteurs analytique sur une va-
riété M de dimension trois et v : ¢ — v(t), ¢ > 0 une courbe intégrale non constante
de X dont I’ensemble w-limite noté p = w(y) est un point singulier de X. Dans un
premier paragraphe nous rappelons quelques concepts définis dans [7] : tangentes ité-
rées, courbes oscillantes, spiralement axial. Dans le paragraphe suivant nous étudions
les propriétés «individuelles » d’une courbe -y non oscillante. Nous montrons essentiel-
lement que la non oscillation est une propriété stable par des morphismes admissibles.
Ce sont des composés d’éclatements de points, de courbes et des ramifications. Le
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concept d’enlacement asymptotique de deux courbes intégrales est défini dans le pa-
ragraphe trois. Apres avoir constaté qu’il est indépendant des coordonnées choisies
pour le définir, pour des courbes non oscillantes, nous montrons qu’il est stable par
morphismes admissibles. Dans le dernier paragraphe, nous donnons la définition de
pinceau intégral et précisons quelques propriétés d’un tel objet. Nous étudions la
stabilité de ce concept par transformation admissible.

1.1. Tangentes itérées et oscillation. — Nous reprenons les notations de 'intro-
duction, v : t — v(t), t > 0 est une courbe intégrale de X sur M telle que w(y) = p.
Soit w1 : M1 — M 1D’éclatement de centre p. Il existe une unique courbe ~; dans M;
telle que m; o3 = 7. C’est une courbe intégrale du champ de vecteurs X; sur M,
défini par m,.(X1) = X. On dit que 1, X; sont les relevés de v, X par 7;. L’ensemble
w-limite, w(71), de 41 est contenu dans le diviseur exceptionnel 7; ' (p) qui est identifié
au projectif réel RIP(2). Dire que w(71) est un point p; de RIP(2) signifie que «y possede
une tangente en p dans la direction p;. Si c’est le cas, a la courbe 7y correspond une des
demies droites pf € S? associées & p; € RP(2). Le point pf est la tangente orientée
en p a y. Nous dirons que -y possede des tangentes itérées si 'on peut construire une
suite infinie

T T2 T,
M0<—M1<—M2'~'<— n,1<—nMn'~', avecMO:M,pO:p,

d’éclatements ponctuels m,,, n > 1, de centre le point p,,_1 de M, _1, telle que p,, soit
I’ensemble w-limite du relevé ~,, = ﬂgl 0 Yp—1 de yp_1 par m,. Si c’est le cas nous
dirons que TI(y) = {p,} est la suite des tangentes itérées de v et que TIT (v) = {p}'}
est la suite des tangentes itérées orientées de ~y.

Soit T une courbe formelle au point p et m; : My — M D’éclatement de centre p.
Il existe un unique point p; € 7y L(p) et une courbe formelle Ty en p1, le transformé
strict de f, telle que m; o fl = I. Par une induction évidente, on construit une suite
infinie de points TI(f) = {pn} associés a T. Clest la suite de points infiniment proches
de T au sens de [2]. Si TI(f) = TI(~y) nous dirons que v a un contact plat avec r.
Lorsque v a un contact avec une courbe I' analytique, la courbe I' est X-invariante
([7])- Plus généralement supposons que « ait un contact plat avec une courbe formelle
T et soit T'(2) = (Z(2), J(2), z) le développement de Puiseux de T' dans des coordonnées
w = (x,y, z) centrées en p. Si |y| posséde un paramétrage z — v(z) = (x(z),y(2), )
on peut montrer que f(z) est un développement asymptotique de v(z). Cette assertion
est prouvée dans [6] lorsque v est non oscillante. Nous ne l'utiliserons que dans ce
cadre.

Soit S une surface analytique dans M. On dit que v est S-oscillante si |y| ¢ S et
7 coupe S selon un nombre infini de points. La courbe v est non oscillante si, pour
toute surface analytique S dans M, «y n’est pas S-oscillante. En dimension deux, une
courbe qui possede des tangentes itérées est toujours non oscillante. Cette dichotomie

SOCIETE MATHEMATIQUE DE FRANCE 2004



6 F. CANO, R. MOUSSU & F. SANZ

oscillant-tangentes itérées n’est plus vraie en dimension trois. On a alors le théoreme
suivant du spiralement axial [7] :

Théoreme 1.1. — La courbe v est oscillante et posséde des tangentes itérées si et seule-
ment si v spirale autour d’une demie branche analytique I'T.

Le concept de spiralement axial est assez intuitif. Au lieu de rappeler sa définition
rappelons sa propriété caractéristique : v spirale autour de I'" si et seulement si~y a
un contact plat avec I'" et~y est S-oscillante pour toute surface analytique S contenant
I'". On en déduit que le spiralement axial est stable par éclatement (et effondrement)
ponctuel.

1.2. Courbes non oscillantes et transformations admissibles. — Nous
conservons les notations M, X, v, w(y) = p et nous supposons que v est non
oscillante. Dans [7] nous avons montré que si v est non oscillante, alors v possede
des tangentes itérées TI(y). Nous allons déduire du théoréme de spiralement axial la
stabilité de la non-oscillation par éclatement ponctuel :

Lemmel.2. — Soit v non oscillante. Alors son relevé y1 par l’éclatement de centre
w(y) = p est une courbe non oscillante.

Démonstration. — Supposons que 7; soit oscillante. C’est une courbe intégrale du
champ de vecteurs X relevé de X par m; qui est oscillante et qui possede des tan-
gentes itérées (comme «y). Ainsi v; spirale autour d'un axe I'f". Le spiralement axial
étant stable par éclatement de point, la courbe 7 est S-oscillante pour toute surface
analytique S contenant 71 (T'}). O

Soit Y un germe de courbe analytique lisse dans M passant par p qui ne rencontre
pas |y]. Quitte & localiser en p, on définit ’éclatement 7 : M7 — M de centre Y. 11
existe une unique courbe 1, le relevé de v par my, telle que m; oy, = . Nous dirons
que 71 est un éclatement de courbe lisse y-admissible. Si Y n’est pas X-invariant,
on ne peut pas en général «relever » X en un champ de vecteurs analytique sur Mj.
Cependant, il existe une fonction analytique g, strictement positive sur |y| et un champ
de vecteurs X; analytique sur My avec 1, (X1) = gX tels que |y1| soit 'image d’une
courbe intégrale de X;. Nous dirons encore que cette courbe est un relevé de vy par
m1 et nous la noterons toujours ;. Cette ambiguité est sans importance, I'objet de ce
travail étant I’étude des propriétés des images |y| des courbes intégrales v de X.

Lemme1.3. — Si~y est non oscillante, le relevé vy de ~y par l’éclatement w1 : My — M
d’une courbe Y lisse y-admissible est aussi une courbe non oscillante.

Démonstration. — Montrons tout d’abord que y; possede des tangentes itérées. Sup-
posons que ce ne soit pas le cas. Il existe une suite finie d’éclatements ponctuels (vide
si #w(y) > 1) mey1 2 Mygy1 — My, pour k =1,2,...,n— 1, de centres des points py,
telle que w(yk) = px avec 0y, = Yx—1 pour k = 2,3,...,n et telle que #w(v,) > 1.
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On peut choisir des coordonnées en p, p,, telles que le composé m = 7, 0m,_10---0m
ait une écriture polynomiale. Un argument élémentaire de connexité (voir [7] page
288) permet de construire une surface analytique S, dans M, d’équation polyno-
miale, telle que 7, soit Sp-oscillante. D’apres le théoréme de Tarski ([34]), 7(S,,) est
contenu dans une surface algébrique S pour les coordonnées choisies et la courbe ~y est
S-oscillante. Montrons que ; est non oscillante. Si ce n’est pas le cas, 1 spirale autour
d’un axe I‘f. Son image «y spirale autour de W(Ff). C’est une courbe oscillante. O

Un morphisme analytique m : M7 — M est une g-ramification en p; s’il existe des
coordonnées wy = (x1,y1,21) centrées en pi, des coordonnées w = (z,y, z) centrées
en p = m(p1) telles que m (z1,y1,21) = (z1,91,27) = (2,y,2). Nous dirons que m
est une ramification y-admissible si |y| C {z > 0}. Si ¢’est le cas, il existe une unique
courbe 7, telle que m o1 = v et |y1] C {21 > 0}. C’est une courbe intégrale du
champ de vecteurs X; sur Mj telle que 71, (X1) = X. Nous dirons encore que 1, X
sont les relevés de v, X par m. Un argument (comme dans le lemme 2) montre que
71 est non oscillante si et seulement si v est non oscillante.

L’éclatement ponctuel de centre p, les éclatements de courbes lisses y-admissibles,
les ramifications ~y-admissibles sont appelés des morphismes y-admissibles élémen-
taires. Pour les définir, nous sommes amenés a localiser. Nous les écrirons, avec la
notation germifiée, m : (M1,v1,p1) — (M,v,p) ot w(y1) = p1, m oy = 7. Un
morphisme y-admissible m est un composé de morphismes «-admissibles élémentaires.
Nous I'écrirons encore T : (Mﬁ,fﬂ — (M,~,p), ot mo¥ = v et w(¥) = p. On peut
résumer les définitions et les résultats de ce paragraphe avec la proposition suivante.

Proposition 1.4. — Soient ~ wune courbe intégrale mon-oscillante de X et 7
(M,5,p) — (M,v,p) un morphisme ~y-admissible. Alors, le relevé 5 de ~ est
non oscillant et c’est une courbe intégrale d’un champ vecteurs analytique X sur M.

Le corollaire suivant est une conséquence du théoreme de [14] de rectilineairization
des ensembles sous-analytiques, du théoreme du spiralement axial et de la proposition
précédente.

Corollaire 1.5 (Non-oscillation sous-analytique). — Si v est une courbe intégrale non
oscillante de X et Z un ensemble sous-analytique de M alors |y|NZ est un ensemble

finisi|y| ¢ Z.

1.3. Enlacement asymptotique. — Ce concept repose sur la notion intuitive de
courbe plane qui spirale autour d’un point que nous allons préciser. Soit v : ]0, zg] —
R? < {0} une courbe analytique telle que 0 = lim,_v(z). Dans des coordonnées
u = (z,y) on écrit :

v(z) = ((2),  B(2)) = (p(2) cosB(z), p(z)sinb(z))
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ou p = ||v|| et 6(2) est une fonction analytique sur |0, zg]. On dit que v spirale autour
de 0 si lim,_,o |6(2)] = oco. La fonction ((z) étant analytique, la courbe v coupe le
demi axe A = Ry x {0} selon une suite de points isolés v(z,) avec z, < zp_1.
L’indice d’intersection ¢(n) de v et A en z, prend ses valeurs dans {1, —1,0} selon la
regle : i(n) = 1 ¢l existe € > 0 tel que B(z) < 0 pour z, —e < z < z,, et B(z) > 0
pour z, < z < zp +¢,i(n) = —1si B(z) > 0 pour z, —€ < z < zp et B(z) <0
pour z, < z < z, + &, i(n) = 0 dans les autres cas. On a clairement ’équivalence : v
spirale autour de 0 si et seulement si lim,, .o [I(n)| = 00 ot I(n) = >_7_; i(n). Avec
cette caractérisation du spiralement, la démonstration de I'assertion suivante est un
exercice élémentaire.

Assertion. — Le concept de spiralement de v autour de O est indépendant des coor-
données (analytiques) choisies pour le définir.

Nous reprenons les notations des paragraphes précédents : X est un champ de
vecteurs sur M, 7 une courbe intégrale de X avec w(y) = p. Nous dirons que des
coordonnées w = (z,y,2z) = (u,z) centrées en p sont z-positives pour v si |y| C
{z > 0} et si v coupe transversalement les plans z=constante. Si c’est le cas, on peut
paramétrer  par z. Ce que nous écrirons y(z) = (z(z),y(2), z) = (u(z), z) avec z > 0.
Fixons des coordonnées w = (x,y, z) = (u, z) centrées en p.

Définition 1.6. — Soient 7, 7’ deux courbes intégrales distinctes de X avec w(y) =
w(vy') = p. Fixons des coordonnées w = (z,y,z) = (u, z) centrées en p. Nous dirons
que v, v sont w-asymptotiquement enlacées si les coordonnées w sont z-positives pour
v, v et si la courbe z — v(2) = u(z) — v/(2), avec v(2) = (u(2), 2), ¥/ (2) = (V/(2), 2),
spirale autour de 0.

D’apres P'assertion précédente on a :

Lemmel7. — Soient w = (z,y,2), w' = (¢',y,2) des coordonnées centrées en p.

Les courbes v, 7' sont w-asymptotiquement enlacées si et seulement si vy, ' sont
w’ -asymptotiquement enlacées.

Soit Sy, (7y) la surface réglée, a bord |v|, image dans la carte w de Papplication
(s,2) — (z(2) + s,y(2),2) avecz>0, s >0.

Les points d’intersection de v/ avec Sy, () correspondent au points d’intersection de la
courbe z — v(z) avec A = R5¢ x {0}. Ce sont les points 7' (z,,) = (2'(2n), 0, z,,) avec
x'(zn) > 0,2y, < 2n—1, ol {2, } est la suite définie plus haut pour la courbe v. L’indice
d’intersection de 7" avec Sy, (7) en 7/ (2y,) est encore i(n) et I(n) = IV ,(n) est I'indice

d’intersection de 7' avec Sy, (7). I est clair que 7, sont w-asymptotiquement

ZOyZ7L+1[
enlacées si et seulement si lim, .o [, (n)| = oc.
:
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Lemme1.8. — Soient w = (x,y,z) des coordonnées centrées en p, z-positives et y-
positives pour 7y, v . Alors les courbes 7y, 7' sont w = (z,y, z)-asymptotiquement en-
lacées si et seulement si vy, v sont w' = (x, z,y)-asymptotiquement enlacées.

Démonstration. — La premiere partie du lemme est une conséquence de la définition
de IV, (n). La seconde partie résulte de I'égalité Sy, () = S (7). O
Lemme1.9. — Soit v une courbe intégrale non oscillante de X et soient w = (x,y, z)

des coordonnées centrées en p = w(7y) telles que |y| ¢ {z = 0}. Quitte a restreindre
le domaine de définition de -y et a changer z en —z ces coordonnées sont z-positives

pour 7.

Démonstration. — Solent X = ad/0x +b90/0y + cd/0z et y(t) = (x(t),y(t), z(t))
les écritures de X et v dans la carte w. Puisque = est non oscillante les fonctions
z(t) = z(y(t)) et ¢(y(t)) = dz(t)/dt ne s’annulent qu’un nombre fini de fois. O

Proposition 1.10. — Soient v, 7' deux courbes intégrales non oscillantes de X et soient
w = (z,y,2), w = (2',y,2") des coordonnées centrées en p = w(y) = w(v') qui
sont z-positives, z'-positives pour 7y, v'. Les courbes vy, v sont w-asymptotiquement
enlacées si et seulement si v, v sont w'-asymptotiquement enlacées.

Démonstration. — D’apres le lemme 1.9 on peut supposer que les coordonnées w’ =
(a',y',2") sont a', 3/, 2/-positives pour 7, 7'. La matrice jacobienne D,, w’(0) étant
inversible, le vecteur dw’/0z(0) n’est pas nul. Quitte & permuter les positions de
2’ y’, 7" dans w’ on peut supposer que 9z'/9z(0) # 0. Cette permutation est en-
core légitime d’apres le lemme 1.8. Cette derniere propriété du couple w, w’ implique
que w” = (2',y’,z) sont des coordonnées centrées en p. D’apres le lemme 1.7, v, 7/
sont w-asymptotiquement enlacées si et seulement si -y, ' sont w”-asymptotiquement
enlacées. D’apres le lemme 1.8, v, 7' sont w” = (2/,y’, z)-asymptotiquement enla-
cées si et seulement si vy, v/ sont (2/,z,y')-asymptotiquement enlacées. D’apres le
lemme 1.7, v, 7/ sont (2, 2, 3’)-asymptotiquement enlacées si et seulement si vy, v/
sont (2, 2', y')-asymptotiquement enlacées. On conclut en appliquant le lemme 1.8 au
couple (z/,2,y), (a',y', ') = v O

La proposition précédente et ’abondance de coordonnées z-positives pour v, v/,
donnée par le lemme 1.9, justifient la définition suivante :

Définition 1.11. — Soient 7, v’ deux courbes intégrales non oscillantes de X telles que
w(vy) = w(y') = p. Nous dirons que v, v sont asymptotiquement enlacées s’il existe
des coordonnées w = (z,y, z) telles que 7, v/ soient w-asymptotiquement enlacées.

On peut aussi montrer que I’enlacement asymptotique de deux courbes intégrales
oscillantes qui possedent des tangentes itérées est indépendant des coordonnées z-
positives choisies pour le définir. Mais dans ce cas, on n’a plus le lemme 1.9 « d’abon-
dance » de coordonnées z-positives et la démonstration est plus difficile. Nous n’aurons
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pas a utiliser ce résultat dans ce travail qui porte, essentiellement, sur les courbes non
oscillantes.

Proposition 1.12. — Soient v, ' deuz courbes intégrales de X non oscillantes asymp-
totiquement enlaceés telles que p = w(y) = w(y') et soit H un germe de surface ana-
lytique lisse en p. Alors, |y|, |7'| sont contenues dans la méme composante connexe
de M < H.

Démonstration. — 11 suffit de choisir des coordonnées w = (z,y, z) telles que H =
{y = 0} et qui sont z-positives pour 7, 7. O

En particulier, dans les conditions de la proposition 1.12, v n’est pas contenue
dans H et toute courbe analytique lisse ou surface analytique lisse est un centre
ou v'-admissible d’éclatement ou de ramification. La proposition suivante montre la
stabilité de I’enlacement asymptotique par des morphismes admissibles :

Proposition 1.13. — Soient v, 7' deuz courbes intégrales de X non oscillantes telles
que p = w(y) = w(v'). Supposons que v, v sont asymptotiquement enlacées. Alors
un morphisme de germes d’espaces analytiques m : (M,[)) — (M, p) est y-admissible
si et seulement s’il est v'-admissible. En particulier TI(y) = TI(y'). Les relevés 7,
' de v, v par un morphisme admissible pour v,~' sont asymptotiquement enlacés.
Réciproquement, si 7 : (M,fﬂ — (M,p) est admissible pour v, et les relevés 7,
' de v, v par m sont asymptotiquement enlacés, alors ~y, 7' sont asymptotiquement
enlacées.

Démonstration. — D’apres la proposition 1.12, si 7, sont asymptotiquement enla-
cées, toute courbe analytique lisse ou surface analytique lisse est un centre admissible
d’éclatement ou de ramification pour v,v’. Par récurrence, il suffit de considérer le cas
ot : M — M est un morphisme admissible élémentaire : soit I’éclatement du point p,
soit I’éclatement d’une courbe analytique lisse Y passant par p, soit une ¢g-ramification.
Montrons tout d’abord que si p = w(¥), P’ = w(¥’) alors p = p’. Supposons que ce
ne soit pas le cas. Soient w = (z,y, z) des coordonnées z-positives pour =, v’ centrées
en p choisies de telle maniére qu’il existe des coordonnées w = (Z,%,2) : U — R3
centrées en p avec p’ € U telles que

m(Z,7,2) = (22, 2y, 2) si 7 est ’éclatement de centre p;
m(Z,y,2) = (ZY,y,2) siw est 'éclatement de centre Y = {z =y = 0};
m(Z,y,2) = (Z,y,2%) si 7 est une ramification.

Dans tous les cas, il existe un plan affine H dans la carte @ tel que p, p’ appartiennent
& deux composantes connexes distinctes de U ~ H et tel que H = w(H) soit conte-
nue dans une surface lisse. Les courbes |v|,|y/| appartiennent & deux composantes

distinctes de 7(U) \ H. D’apreés la proposition précédente, elles ne sont pas asympto-
tiquement enlacées. On peut supposer que p = p'. Les coordonnées w sont z-positives
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pour 7,7 et on a
m(Sa(¥)) = Sw(v) et 7(Sz(F) NIF']) = Suw(v) N 1Yl

D’apres le paragraphe précédent, les courbes 7, sont asymptotiquement enlacées si
et seulement si 7,7 le sont. O

1.4. Pinceau intégral. — Soit v une courbe intégrale de X qui possede des tan-
gentes itérées avec w(y) = p.

Définition 1.14. — Le pinceau intégral PI(7) est 'ensemble des courbes intégrales v/
de X telles que TT" () = TI"(v'). Nous dirons que :

(1) le pinceau PI(7y) est un pinceau intégral asymptotiquement enlacé s'il existe des
coordonnées w centrées en p telles que deux courbes quelconques distinctes de PI(w)
sont w-asymptotiquement enlacées;

(2) le pinceau PI(y) est un pinceau intégral séparé si tout couple v, v de PI(v)
est séparable, c’est-a-dire, s’il existe une application sous-analytique bornée non
constante f d’un voisinage de |y| U|y'| dans R? telle que card(f(|v]) N f(|7'])) < oo.

Lorsqu'il existe une courbe formelle T telle que TI(T') = TI(v) nous dirons que T est
laze du pinceau intégral PI(y). Par exemple, si 7y est oscillante, PI(7y) est un pinceau
d’axe I' convergent d’apres le théoréme du spiralement axial. De plus, si I' ¢ Sing X,
'une des demi-courbes I't C T appartient & PI(7y) et, en précisant le théoreme 2 de [7],
on peut montrer que PI(7y) est un pinceau asymptotiquement enlacé et qu’il n’est pas
séparé. D’autre part, il existe des pinceaux intégraux qui ne possedent pas d’axe. C’est
le cas de PI(y) ol v est une courbe intégrale de X = —x9/dz — Ay 0/0y — pz0/0z,
ou A, i € Ryp et (1, A, p) sont rationellement indépendants et |y| ¢ {zyz = 0}.

Dans la suite de ce paragraphe nous supposons que toutes les courbes de PI(~y) sont
non oscillantes. C’est par exemple le cas si PI() ne possede pas un axe convergent.
D’apres la proposition 1.10, la définition de pinceau enlacé composé de courbes non
oscillantes est intrinséque, elle est indépendante des coordonnées w choisies.

Le concept de pinceau intégral n’est pas en général stable par morphisme admis-
sible. Illustrons ceci par un exemple. Considérons X = —x9/dx —yd/dy — 2% 9/0x.
Le plan z = 0 est X-invariant et les courbes intégrales de X situées dans z > 0
s’écrivent v,.5(2) = (aexp(—1/z), bexp(—1/z), z). Ce sont les courbes d’un pinceau
intégral PI(vye,.p,) d’axe I' = {x = y = 0}. L’éclatement 7 de centre z = y = 0 est
y-admissible pour toute v, avec a®+b? # 0. Soit Y4 ;1 le relevé de 74, par m. Alors
PI(Va,p:1) = {Varpr1 | [a : 0] = [’ : 0] € RP(1)}. L’image inverse de PI(vq, 5,) €st une
union infinie de pinceaux intégraux.

Soit T' une courbe formelle en p € M. On dit que [ est (sous-analytiquement)
transcendante si T nest pas contenue dans une surface sous-analytique; c’est-a-dire,
TI(f) n’est pas un suite de points infiniment proches d’une surface sous-analytique.
Soit T'(z) = (#(z2),5(2), 2) une paramétrisation de Puiseux de T. La courbe T' est
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transcendante si et seulement si pour tout germe non nul de fonction analytique f
en p € M la série f(Z(2),7(2),2) est non nulle et cette propriété est stable par
éclatements de centre lisse. La proposition suivante montre que les pinceaux d’axe
formel transcendant sont stables par des morphismes admissibles :

Proposition 1.15. — Soit PI(~yo) un pinceau intégral de X d’axe formel transcendant
T et soit 7 : (M',p") — (M,p) un morphisme local composé d’éclatements de centre
lisse ou de ramifications tel que p appartient au transformé strict " deT par w. Alors
7 est admissible pour tout courbe «y € PI(7p) et lensemble m=1(PI(vo)) des relevés des
courbes de PI(vyo) par 7 est un pinceau intégral d’aze formel I Réciproquement, si
m: (M, v, p") — (M,~0,p) est un morphisme admissible tel que le pinceau intégral
PI(v}) a un aze formel transcendant I, alors, T = W(f’) est un axe transcendant du
pinceau PI(~y).

Démonstration. — C’est une conséquence de la caractérisation suivante du contact
plat entre o et T ([6]) : si f(z) = (Z(2),y(z), z) est une paramétrisation de Pui-
seux de T' et v(2) = (z(2),y(2), 2) est la paramétrization de la courbe ~y par z,
alors TI(f) = TI(vo) si et seulement si I'(z) est le développement asymptotique de
70(2). Notons que toutes les courbes du pinceau PI(vy) sont non oscillantes d’apres

le théoreme de spiralement axial puisque I' est non convergente. O

Le lemme suivant nous sera utile pour définir certains types de pinceaux intégraux
finaux.

Lemme1.16. — Soit v une courbe intégrale de X qui posséde une tangente en
w(y) = p. Cette tangente est une direction propre de DX (p) de valeur propre (7).

Démonstration. — Ce lemme est déja prouvé dans [7] lorsque v a un contact plat
avec une courbe analytique. L’argument utilisé se généralise de la fagon suivante. Soit
m : My — M Déclatement de centre p et 1, X; les relevés de v, X par m1. Un point p
de 7 (p) = RP(2) est un point singulier de X si et seulement si p est une direction
propre de DX (p). O

Définition 1.17. — Soit v une courbe intégrale de X qui possede des tangentes itérées.
On dit que PI(vy) est hyperbolique si A(y) # 0 et que PI(y) est final de type I si
A(y) =0, DX (p) est diagonalisable et de rang 1.

Dans les deux parties suivantes nous montrerons que les pinceaux hyperboliques et
finaux de type I sont des pinceaux séparés de courbes non oscillantes. Dans la partie 4,
nous définirons et étudierons les pinceaux finaux de type II. Ils ont un axe formel,
ils peuvent étre séparés, enlacés, ou posséder des courbes oscillantes. Enfin dans une
derniere partie, nous montrerons que ces résultats impliquent les théorémes I et II de
I’introduction via des morphismes admissibles.
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2. Pinceau intégral hyperbolique

L’objet de cette partie est de démontrer que les pinceaux hyperboliques sont sépa-
rés. Dans la suite, X désigne un champ de vecteurs analytique sur un voisinage de 0
dans R? et 4o : t — 7o(t) une courbe fixée de X avec A\(y0) # 0. Pour des raisons
évidentes de dynamique, A\(vy) < 0.

Théoréme 2.1. — Un pinceau intégral hyperbolique de X est séparé. Plus précisément,
supposons que Yo posséde des tangentes itérées et que la valeur propre A(vyo) de DX (0)
correspondant a la tangente en 0 & o soit strictement négative. Alors ~y est non
oscillante ainsi que toutes les courbes v de Pl(vyg). Deuz courbes distinctes de PI(vo)
peuvent étre séparées par une submersion analytique d’un voisinage de 0 dans R3
sur R2.

En fait, nous allons démontrer sous les mémes hypotheses et avec les mémes nota-
tions le résultat suivant :

Proposition 2.2. — Pour tout v € PI(7y), le germe en 0 de || est un germe de courbe
pfaffienne.

Avant de rappeler la définition d’un germe de courbe pfaffienne, notons que cette
proposition implique le théoréeme. Tout d’abord «les propriétés de finitude » des sous-
ensembles pfaffiens [18, 25| impliquent que toutes les courbes de PI(vy) sont non
oscillantes. D’autre part, d’apres [21] il existe une structure o-minimale, la famille
des T*°-pfaffiens, qui contient les sous-ensembles pfaffiens de R™ pour n € N. Il en
résulte que deux courbes distinctes de PI(yy) peuvent étre séparées par une projection
linéaire dans des coordonnées fixées.

Soit v : Ryp — R3 avec w(y) = 0 une immersion analytique, injective et soient
w1, wo deux 1-formes analytiques sur un voisinage de 0 dans R? avec w; intégrable
(c’est-a-dire wy A dw; = 0). Le germe de |y| en 0 est un germe de courbe {wy,ws}-
pfaffien si 'équation de pfaff wi; = 0 possede une variété intégrale de Rolle R; et si
la restriction a R; de wy possede une courbe intégrale de Rolle Ro telle que pour ¢
assez grand ~y(t) appartient & Ro. Rappelons que si w = 0 est une équation de Pfaff
intégrable, analytique sur une variété M et R une variété intégrale (lisse) de w = 0,
on dit que R est de Rolle si toute courbe analytique transverse au feuilletage défini
par w = 0 coupe R en un point au plus.

La démonstration de la proposition 2.2 repose sur le concept de variété stable.
Rappelons brievement sa définition et ses propriétés classiques ([28, 9, 12]). Soit Y
un champ de vecteurs analytique sur un voisinage V de 0 dans R dont 0 est un
point singulier. Notons A® = {A1, Aa,..., \¢} le sous-ensemble du spectre de DY (0)
constitué des valeurs propres de partie réelle strictement négative. Soit E° le sous-
espace de Tp R™ = R™ invariant par DY (0) qui lui correspond.
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Théoreme 2.3 (Variété stable). — Il existe une unique sous-variété analytique lisse W *
de dimension £ qui posséde les trois propriétés suivantes :

(1) La variété W* contient 0 et E® est son espace tangent en 0.

(i1) La variété W* est positivement invariante par le flot du champ Y.

(i) Soit vy :t > ~(t), t = 0 une courbe intégrale de X, avec w(y) =0, qui posséde
une tangente en 0 appartenant o E*. Alors le germe de || est contenue dans W*.

La propriété (iii) est moins classique que les deux précédentes (voir [31]).

Démonstration de la proposition 2.2. — Nous reprenons les notations, hypotheses du
théoréme : X est un champ de vecteurs analytique sur un voisinage de 0 € R3, ~q
une courbe intégrale de X avec w(yo) = 0 qui possede des tangentes itérées, la valeur
propre A(7o) est strictement négative et {A(70), Ab, Aj} est le spectre de DX (0). Par
définition de W*, les courbes v de PI(yy) sont contenues dans W#. Distinguons les
cas suivants :

Si dim W* = 1, la variété W* est une courbe analytique lisse. Le pinceau PI(vo)
ne contient que 7. Son image |vo| est une composante connexe de W? ~ {0}. C’est
une demie branche analytique.

Si dim W*# = 2, puisque nous nous intéressons aux germes en 0 des courbes v de
PI(70), nous pouvons supposer que X est analytique sur R3 et que W# est le plan
R? x {0}. Les courbes v de PI(7g) sont des courbes intégrales de X’ = X| - et elles
ont une tangente en 0. D’apres [18] ou [7] page 298, leur germe en 0 est pfaffien.

SidimW* =3 et A, Ay < 0, nous reprenons un argument de [19]. Le point 0 est
une singularité dans le domaine de Poincaré de X. D’apres le théoreme de Poincaré-
Dulac ([9] ou [1], page 179), il existe des coordonnées analytiques w = (z, y, z) centrées
en 0 telles que X s’écrive, modulo une unité multiplicative,

X = —J?% +f(xay)§y +g(m,y,z)%
ou f € R[z,y], g € R[z,y, z]. Les courbes intégrales de X sont des courbes intégrales
du systeme : w1 = zdy — f(x,y, )dz =0, ws = f(x,y)dz — g(z,y, z)dy = 0. L’équation
w1 est intégrable. Soit Ry(7y) la variété intégrale de w; = 0 qui contient une courbe
intégrale fixée v € PI(7p). C’est un cylindre |vy;| x R o1 41 est une courbe intégrale du
champ de vecteurs X’ = X|g2. Compte tenu de I’écriture de X', la courbe 77 possede
une tangente en 0 et |y1| est une courbe pfaffienne. Le cylindre |y1| x R = Ry(y)
est une variété de Rolle. La courbe |y| est une courbe intégrale de wa|g, () = 0. Elle
possede une tangente en 0. C’est une courbe de Rolle, elle est pfaffienne ([18]).

Si dimW?® =3 et \) = )\_6’ = g + 10y, ag < 0, By # 0, nous allons nous ramener
au cas dim W* = 1. Soit n le plus petit entier tel que n > ag/A(70) et soit

Y s e
My=R>—1 My <=2 My My_1 " M,
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la suite de n éclatements ponctuels de centres respectifs pg = 0, p1, p2,...,Pp—1 OU
TI(v) = {pr}. Pour k = 1,2,...,n soient vy, X les relevés par my de vi—1, Xk, avec
Xo = X. D’apres le lemme 1.16, on sait que la tangente en pg & - est une direction
propre de DX} (py) de valeur propre réelle A(7x). Soit A = {A(7k), A, A} le spectre
de DXk (pr). On a Ap = {\(Vr-1), N1 — A(W—1), \p_1 — AM(—1)}, pour k& > 2. On
en déduit que A, = Ao — nA(y0) = (0 — nA(0)) + iBo. La partie réelle de A, est
strictement positive. La variété stable de X,, en p, est de dimension 1. Ainsi PI(~)
est constitué de 7y qui est une demie branche analytique. O

3. Pinceau intégral central de type I

Soit X un champ de vecteurs analytique sur un voisinage de 0 dans R? et soit
7o une courbe intégrale de X, possedant des tangentes itérées et telle que PI(~)
est un pinceau intégral final de type I. C’est a dire que endomorphisme DX (0)
est diagonalisable de rang 1, de spectre {0,0,A} avec A # 0 et A(y9) = 0. Soient
Ey le noyau de DX (p) et E; le sous-espace propre de DX(0) correspondant a .
D’apres [12], il existe une unique courbe analytique lisse W" tangente en 0 & E;
qui est invariante par le flot de X. Dans toute la suite nous fixons des coordonnées
analytiques sur R3

w = (x,y,2) = (u,z) avec W" = {u =0}, By = {z=0}.

Théoréme3.1. — Les courbes de PI(v) sont non oscillantes et

(1) Si A >0, les courbes de PI(~yg) sont contenues dans une surface X -invariante de
classe C* qui est un graphe au-dessus de {z = 0}. Elles sont séparées par la projection
(,y,2) = (z,y).

(ii) Si A < 0, toute courbe v de PI(yy) est contenue dans une surface L(vy) de
classe C' et X —invariante (appelée lamelle) qui posséde la propriété suivante. Deux
courbes distinctes v, v’ de Pl(yo) sont séparées par la projection (x,y,z) — (z,y)
si L(y) # L(v') et elles sont séparées par la projection linéaire de L(vy) sur le plan
contenant 'aze w = 0 et la tangente en 0 & v si L(y) = L(v').

Désignons par A° (comme attracteur central) l’ensemble des courbes intégrales
~v de X dont 0 est 'ensemble w-limite et telles que |y| ¢ {u = 0}. D’apres [29],
une courbe v € A° possede des tangentes itérées si elle posséde une tangente en 0.
Ainsi nous pouvons remplacer I’hypotheése « vy possede des tangentes itérées » par
«yp possede une tangente en 0 ». De plus, on peut montrer, en précisant des arguments
et des résultats de [10, 29], que toutes les courbes de A¢ possedent une tangente en 0
des que cette propriété est vraie pour I'une d’entre elles. Dans ce cas, A€ est une union
disjointe de pinceaux intégraux. Ceci sort du cadre de notre étude et sera I'objet d’une
publication ultérieure.
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Dans le paragraphe 1, nous démontrons que les courbes de PI(y) sont non oscil-
lantes et le point (i) du théoréme 3.1. La démonstration du point (ii) est essentiel-
lement une conséquence d'un « théoréme de la variété centrale » relativement bien
connu des spécialistes [15, 8, 26]. Nous I’énongons dans le deuxiéme paragraphe sous
la forme que nous a enseignée F. Takens. Nous en déduisons le concept de lamelle et
prouvons (ii).

3.1. Variété centrale. — Nous reprenons les hypotheses et notations de 'intro-
duction pour X, w = (z,y, z). Un calcul classique montre qu’il existe une unique série
formelle ¢ de R][x, y]], telle que

$(0) =0, D(0) =0, Lx(z—1(z,y)) € (z—(z,y)R[[z,y]].

La surface formelle W¢ = {z = @(m,y) = 0} est X-invariante et nous 'appelerons
variété centrale formelle de X. En général, elle n’est pas convergente. Cependant,
pour tout k& > 1, elle peut s’incarner dans « une » surface de classe C*, W, invariante
par le flot de X, tangente en 0 au plan z = 0. C’est une variété centrale de X en 0.
Plus précisément, k& > 1 étant fixé, il existe une fonction v, de classe C* sur un
voisinage Vj de 0 € R? telle que 9y et 1Z ont les mémes jets d’ordre k£ en 0 et la
surface z — ¥y (z, y) = 0 est X —invariante. En général, il n’y a pas unicité des variétés
centrales pour un k fixé ni de variété centrale de classe C* [32].

Montrons que les courbes de PI(~yy) sont non oscillantes. Cette assertion étant déja
prouvée dans [29], nous allons en donner I'esquisse d’'une démonstration qui s’appuie
sur d’autres arguments. Supposons qu'une courbe v de PI(vy) soit oscillante. D’apres
le theoréme 1.1, la courbe ~y spirale autour d’une demie branche analytique I'" en 0
qui est X-invariante. Distinguons deux cas. Si I'" n’est pas contenue dans le lieu
singulier de X, d’apres [7], c’est 'axe d’un tourbillon de X et toutes les courbes de
PI(yo)~T'" sont oscillantes. Quitte & effectuer un nombre fini d’éclatements ponctuels,
on peut supposer ([7]) que DX (0) est de rang 2. Ce qui contredit I’hypotheése initiale.
Supposons que I'T soit contenue dans le lieu singulier de X. Quitte & changer X en
— X, on peut supposer que la valeur propre A = Ao de DX (0) est strictement négative.
En tout point p de I'" voisin de 0, le spectre de DX (p) est du type {0, A7, A,} avec
Ap # 0 et |\,| petit par rapport a |A,|. D’aprés une version a parametre du théoreme
d’Hadamard [12] (voir par exemple [24]), en tout p € I'" assez voisin de 0, il existe
une courbe lisse, analytique, invariante par X et passant par p tangente a la direction
propre correspondante & A,. L’union S de ces courbes est une surface analytique qui
contient I'". Elle est invariante par le flot de X par construction. D’aprés la propriété
caractéristique du spiralement axial décrite dans 1.1, 7 coupe S une infinité de fois et
n’est pas contenue dans S, ce qui est incompatible avec « S est X-invariante ».

Prouvons maintenant la partie (i) du théoréme 3.1. Soit WY une variété centrale
de classe C' de X au point 0. Quitte & restreindre 'ouvert U de définition de X, on
peut supposer que W est le graphe d’une fonction de classe C1, 91 : u +— 11 (u) ol
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u appartient & un voisinage V' de 0 dans R?. Dans la carte (de classe C') w' = (u, 2')
avec 2/ = z — Y1 (z,y) le champ X s’écrit

X =a(w) % +b(w') % + 22 (1 + e(w')) %,
ot a(0) = b(0) = ¢(0) = 0. Quitte & restreindre U, on peut supposer que |c(w’)| < 1.
Soit v : ¢ — (u(t), 2/(¢)) une courbe intégrale quelconque de X telle que 2'(0) # 0.
La fonction ¢t — |2/(t)] est strictement croissante et ainsi w(y) # 0. Les courbes de
PI(~p) sont contenues dans Wf. La restriction & W¢ de la projection (x,y, z) — (x,y)
est injective. Elle sépare les courbes de PI(vo).

3.2. Partition en lamelles. — Dans ce paragraphe nous prouvons la partie (ii)
du théoreme 3.1. Nous reprenons les hypotheses et notations précédentes : X est un
champ de vecteurs analytique sur un voisinage U de 0 et 'endomorphisme DX (0) est
diagonalisable de spectre {0,0, A}, avec A < 0. Quitte a effectuer un changement de
temps, on peut supposer A = —1. Les coordonnées w = (x,y,z) = (u, z) sont fixées
telles que Ker DX (0) = {z = 0} et {u = 0} est la variété stable W* de X en 0. Quitte
a restreindre U et a changer z en pz avec > 0, on a :

Théoréme 3.2 ([8, 15, 26]). — Il existe un woisinage V de 0 dans R? et un C2-
difféeomorphisme H : U — V x| = 1,1, H : w = (u,2) — w = H(w) = (4,%z) =
(Z,9,Z), tangent a lidentité en 0, qui applique l'aze u =0 suruw =0 tel que
— — 0
X =H,(X)=Xo@) —z(1 +dw)) 5
ot X¢ est un champ de vecteurs de classe C* sur V vérifiant Xo(0) =0, DX(0) =0
et d est une fonction continue sur U nulle en 0.

L’espace R3 est muni des deux normes euclidiennes canoniques associées aux coor-
? Y 2 20021052 |12 — 2 72 4 52 :
données w = (x,y,2), W = (T,7,%) ||lw||* = x*+y*+ 27, |©||* = T° +7° +z°. Le fait
de les noter de la méme fagon simplifie ’écriture et n’apporte pas d’ambiguité. Quitte
a restreindre U, on peut supposer en outre que

IDH(w)|| < 3/2 siweU, |DH'@)|<3/2, |d@)]<1/2 siwe HU).

Dans la suite v : t — (u(t),2(¢)), t = 0, u(t) # 0 est une courbe intégrale de X
contenue dans PI(vg). Son image ¥ = H o : t — (u(t),z(t)) est une courbe intégrale
maximale de X telle que w(¥) = 0. La composante horizontale X (%) de X (u, ) étant
indépendante de z, la courbe ¢ — u(t) est une courbe intégrale du champ de vecteurs
Xo. On désigne par ¢ (¢ comme central) la courbe intégrale de X définie par

=c =C — d — N (7

7t () = (@®),0), o (@) = Xo(u(t)) # 0.
L’image inverse L(y) de L(¥) = [7¢|x ] —1, 1] par H est appelée lamelle de 7. L’image
réciproque par H de V x {0} est une variété centrale W{ et v¢ = H~! o ¢ est
une courbe « accompagnatrice » de v au sens de [29]. A priori, L(y) dépend de H.
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Mais, nous montrerons a la fin de ce chapitre que le germe de L(y) en 0 a un sens
intrinseque. Il est indépendant de H et des coordonnées choisies pour définir L(7). La
lamelle L(v) hérite, via H !, des propriétés différentiables des L (7). Plus précisément,
on a I’énoncé suivant :

Proposition 3.3 (Structuredeslamelles). — La lamelle L(vy) est une surface de classe
C* invariante par le flot de X. Plus précisément L(7y) est un ouvert d’une surface S,
de classe C' qui contient U N {u = 0}, tangente en 0 au plan contenant l’ave u = 0
et la tangente en 0 d «y. Le bord de L(vy) dans S, est l'intervalle U N {u = 0}.

Démonstration. — La courbe v étant non oscillante, on vérifie que le germe de |y
en 0 est un graphe de classe C! sur sa tangente. Quitte & effectuer une rotation
dans le plan z = 0, on peut supposer que la tangente orientée de v est le demi axe
{y = z = 0,z > 0}. Nous notons encore z — v(z) = (z,y(z),z(z)), z > 0 la
paramétrisation de || par x. Il existe une immersion o de classe C! de | — «, o[ dans
{y=2=0, 2 <0}U|y| qui prolonge . Son image H oo : x — (7°(x), Z(x)) est une
courbe de classe C!. L’ensemble [¢°|x | — 1, 1] est une surface de classe C'* des que «
est assez petit. Son image inverse par H est une surface S, de classe C! qui possede
les propriétés requises. O

Corollaire 3.4 (Séparation de~, v’ si L(y) = L(v')). — Soit 4" une courbe de PI(vo)
contenue dans L(v) distincte de . La projection (z,y,z) — (x,2) sépare v,~'.

Démonstration. — D’apres la proposition précédente, il existe un voisinage U, de 0
tel que S, N U, soit un graphe de classe C' sur son plan tangent en 0, le plan y = 0.
En particulier L(y) N U, est un graphe sur un ouvert du demi plan {y = 0, > 0}.
La restriction & L(vy) N U, de (z,y,2) — (z,2) est injective. Elle sépare les courbes
YN Uy, WINU,. -

Le lemme suivant est un des arguments de la caractérisation intrinseque des la-
melles. Il nous permettra aussi de minorer la distance entre deux courbes de PI(~)
qui n’appartiennent pas a la méme lamelle.

Lemme3.5. — Soit v/ une courbe intégrale de X contenue dans la lamelle L(v). II
existe to tel que pour t assez grand v'(t +to) = v(t) + exp (—t/2) p(t) ou ||p]| est une
fonction bornée.

Démonstration. — Par définition de L(v), les images ||, [7'| de ¥ = Ho~, ¥ = Hoy/
correspondent & la méme orbite de X. Il existe to tel que pour ¢ > to,

F(t) = @(t),Z(1), 7(t) = @t —t0), 7 (1)

avec 9¥ (t) = Xo(u(t)). Les fonctions Z(t), Z/(t) sont des solutions de
dz _ _ _ -

i —Z(1+d(w)) < —z/2 avecz > 0.
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On en déduit que z(t) = exp (—t/2)p(t), Z'(t) = exp (—t/2)@ (t) ou ||P|, |#| sont
des fonctions bornées. Puisque ||DH ~!(w)|| < 3/2, on a la majoration

Sl = = 3 -
1Y/ (8 +t0) = v(@)| = I1H @), Z' (¢ + 10)) — H @), 20| < 5IZ'(t + to) = Z(1)].
ceci démontre le lemme compte tenu de Décriture de z(t), z'(t). O

Proposition 3.6. — Deux courbes intégrales v, 7' distinctes qui n’appartiennent pas a
la méme lamelle sont séparées par la projection (x,y,z) — (x,y). Plus précisément,
siy(t) = (u(t), 2(t)), v'(t) = (W/'(t),2'(t)), alors quel que soit € > 0, il existe T et
K > 0 tels que

|/ (t1) — u(t)]| > Kexp (—et), sity >t>T.
La démonstration de cette proposition repose sur le lemme suivant (certainement

classique) qui minore la vitesse & laquelle se rapprochent deux courbes intégrales qui
tendent vers le méme point singulier dégénéré d’un champ de vecteurs.

Lemme3.7. — Soit F une application de classe C' d’un voisinage V de 0 € R™ dans
R™ telle que F(0) =0, DF(0) = 0 et soient t — v(t), t — vV'(t) deux courbes intégrales
de dv/dt = F(v) dont 0 est l’ensemble w-limite. Pour tout € > 0, il existe T tel que

[0 (t1) — v(t)|| > exp (—et) [V (T +t1 —t) —o(T)|| sity >t >T.
Démonstration. — Puisque F est C' et F(0) =0 on a
F(u') = F(v) = DF(0)(v = v) + [[v" = vlle(v',v)

ou DF, ¢ sont continues et DF(0) = 0, ¢(0,0) = 0. Soit n > 0 tel que || DF (v)]| < &/2
et (v, )| < /2 si ||v||, ||| < n. I existe T" > 0 tel que si ¢ > T alors ||v(t)],
[lv'(t)]] < n. Fixons to > 0. La fonction p(t) = ||v'(t + to) — v(t)]| satisfait I’équation

5 = (p(8)?) = (v/(t +to) — v(t), F(v'(t + o)) — F(v(1)))-
Pour t > T on a dp(t)?/dt > —2ep(t)?. Ainsi p(t) > exp (—et) p(T) si t > T, indépen-

demment de 3. L’inégalité requise s’en déduit en prenant to =t — t. O

Démonstration de la proposition 3.6. — En reprenant les notations précédentes on
pose

F(t) = H oy(t) = (@(t), (1)), 7°(t) = (@(t), 0),7°(t) = H™ o 7°(t) = (u’(t), 2°(t))-
On définit de la méme fagon 7' (t), 7(¢), 7/“(¢) et on écrit leurs composantes dans les
coordonnées w, w. Les courbes ¢, 4'® appartiennent & la variété centrale W¢ qui est

tangente en 0 au plan z = 0. Puisque w(y¢) = w(7®) = 0, il existe T > 0 tel que

1 .
SIe(t) =@ < () —we (@) sty >t T,
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Puisque ¢ appartient a la lamelle L(7y), d’apres le lemme 3.5, on peut choisir T tel
que

[u(t) —u®)|l < [[v() =Dl <1/2Kyexp(—t/2) sit>T,
ou K; est une constante positive. On a évidemment la méme majoration (avec les

mémes T, K7) pour le couple v/¢, u/. On en déduit, par I'inégalité triangulaire entre
u, u®, etc. que

1/2[74(t1) — v (@] < [ (t1) — w(t)]| + Kyexp (—t/2) sity >t>T.

Puisque ||[DH(w)|| < 3/2,on a ||t — 7| < |w —w'|| < 3/2||w — w'||. En appliquant
cette majoration & w = v°(t), w’ = +'°(t1), on obtient pour T assez grand :

(%) 1@ (t1) —a(t)|| < 3||u'(t1) — u(t)| +3K1exp(—t/2) sity >t >T.

Fixons ¢ < 1/2 et appliquons le lemme 3.7 précédent aux solutions w(t), u'(t) de
du/dt = Xo(u). Puisque v, ' n’appartiennent pas & la méme lamelle, u(t) # u'(t1)
pour t,t; > 0 et, en choisissant T" assez grand, il existe Ko > 0 tel que

@' (t1) —u(t)|| > Kaexp(—et) sity >t>T.

Cette inégalité avec (x) prouve la minoration annoncée. (|

Corollaire3.8. — La lamelle L(7y) d un sens intrinséque. Plus précisément L(v) est
la réunion des courbes accompagnatrices v' de v au sens de [29] : il existe T, K > 0
et to > 0 tels que |y (t +to) —v(#)|| < Kexp(—t/2) sit>T.

Démonstration. — D’apres le lemme 3.5, si ' est contenue dans L(y) cette majoration
est vérifiée. D’apres la proposition 3.6, elle ne peut pas I’étre si 7' n’est pas contenue
dans L(vy) puisque 'on aurait, pour € = 1/2, la minoration

exp (—t/2) < [|u/(t +to) — u(®)]| < [17'(t +t0) = v(®)]

des que t serait assez grand pour tout tg > 0. O

4. Pinceau intégral final de type II

L’objet de cette section est I’étude d’un pinceau intégral PI(~y) non hyperbolique
de X lorsque DX (p) est de rang 2 et le germe de X en p vérifie des conditions
algébriques « génériques ». Un tel pinceau sera appelé un pinceau final de type II.
Le premier paragraphe est consacré a leur définition et a I’énoncé des résultats, les
suivants a la démonstration de ces résultats. C’est le cas le plus riche, le pinceau
PI(vo) peut alors étre séparé ou enlacé. Les courbes qui le constituent peuvent étre
oscillantes ou non oscillantes.
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4.1. Définition d’un pinceau final de type II. — Dans toute cette partie X
désigne un champ de vecteurs analytique sur R® qui s’écrit dans des coordonnées

w = (l‘,y,Z) = (u,2)
(%) X =L(u,z) — zq“(% + Y), L(u, z) = Zzi L;(u)
=0

olt ¢ > 1, les L;(u) sont des champs de vecteurs linéaires sur R? = R? x {0} avec
rang DLo(0) = 2 et Y est un champ de vecteurs sur R? tel que Y (0)=0, dz(Y)=0.
Nous dirons que 0 est une singularité préfinale (de type II) pour X et que les coordon-
nées w = (u, z) sont de bonnes coordonnées pour X. Ces singularités ont été étudiées
par P. Bonckaert, F. Dumortier dans le cadre C* ([3]). Le plan z = 0 est l'unique
plan invariant par X tangent & z = 0. Soit 7 : t — 7(t), t > 0 une courbe intégrale
de X telle que z(0) # 0. Quitte & changer z en —z, on peut supposer z(0) > 0. Pour
t>0,on a z(t) >0 et z(t) est strictement décroissante. La courbe v est transverse
aux plans z = constante. Elle peut étre reparamétrée par z, ce que nous écrirons
v(z) = (2(2),y(2), 2) = (u(2), z), z > 0. L’application u(z) est solution de I’équation
différentielle
(*u) PARE du _ —zq:zib(u) + 27MY (u, 2)

' dz i=0 z o
Nous avons identifié les champs de vecteurs L;(u), Y (u, z) et leur écriture dans la
base 9/0xz, J/0y. La premiere partie du résultat suivant est classique ([9]) et sa
démonstration est élémentaire. La deuxiéme partie est démontrée dans [3].

Proposition 4.1. — Supposons que 0 soit une singularité préfinale de X et que w =
(x,y,2) = (u,2) soient de bonnes coordonnées pour X. Il existe une unique courbe
formelle lisse T invariante par X et tangente a l'aze u = 0. De plus, il existe une
courbe intégrale vy de X avec w(y9) =0 qui a un contact plat avec L.

L’entier ¢ + 1 qui apparait dans (x) est la multiplicité de la restriction de X a
I'. C’est un invariant du germe de X en 0. Un entier r > ¢ + 1, étant fixé, on peut

toujours choisir de bonnes coordonnées en 0 telles que I' soit tangente a l'ordre r a
u=0.

Ordre £(X) de la Trace de X. — Soient w = (u, z), w' = (v, z’) de bonnes coordon-
nées pour X. Les plans z = 0, 2/ = 0 sont les mémes. Un calcul élémentaire montre
que z = 2" et que v = A, (u) + 297 ¢(u, 2) avec D,p(0,0) =0, A, € GL(2,C{z}).
Comparons les écritures de 1’équation (*,) dans les coordonnées w, w’ :

11 du +1 41 du o +1 3t 0
29— =L, (u)+ 27 Y (u,2), 297 — =-L,(u)+ 21" Y'(v,2).
dz dz’'
En considérant L(u, z) = L.(u), L'(v', z) = L', (u") comme des endomorphismes de R?
a parameétre z, on montre que L, = A oL, oA} (modulo 2971). La trace T'x (z) = T'(2)

de 'endomorphisme L,(u) est un polynéme en z de degré < ¢ qui est indépendant
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des bonnes coordonnées choisies. Si T'(z) # 0, nous 'écrivons T'(z) = z* Trace Ly + - - -
avec Trace Ly # 0. Par définition, l'ordre de la trace Tx(z) de X est Pentier ¢(X)
défini par ¢(X) =¢siT(2) 20, (X)) =¢qsi T(z) =0.

Indice de radialité k(X) de X. — Notons A le produit extérieur de deux vecteurs de
R? et R(u) = 0/0x +y0/dy le champ radial de R?. Si R(u) A L.(u) Z 0 on a

R(u) A Ly(u) = zk(Qk(u) +--+), aveck<yq,

ot Q(u) est une forme quadratique non nulle. Par définition l’indice de radialité
de X est l'entier k(X) défini par k(X) = k si R(u) A Ly(u) Z0et k(X) =¢+1si
R(u) A L,(u) = 0. C’est un invariant analytique de X. En effet, on a k(X) = k (avec
éventuellement k = g+1) si et seulement si R(u)AL;(u) =0pouri=0,1,...,k—1et
R(u) A L(u) # 0. Si w' = (v, 2) sont aussi de bonnes coordonnées, en reprenant les
notations et la formule L, = A, o L, o A;! (modulo 29%!) du paragraphe précédent,
on vérifie que si R(u') A L. (v') = 2 (Qf (v') +---) ona k = k' et Q) = Q) 0 Ag. Si
k < q le discriminant de la forme quadratique Q. est un invariant de X, on le note
Ag(X) = Ag.

Définition 4.2. — Supposons que 0 soit une singularité préfinale de X. Nous dirons que
0 est une singularité finale de type II si k(X) = ¢+ 1 ou si k(X) < g et Ax(X) #£ 0.
De plus, si vy est une courbe intégrale de X comme dans la proposition 4.1, nous
dirons que PI(7p) est un pinceau final de type II.

Dans le chapitre 5, nous démontrerons que, modulo un morphisme admissible,
I’étude des singularités préfinales se ramene a I'étude des singularités finales.

4.2. Propriétés des pinceaux finaux de type II. — Soit PI(7) un pinceau
intégral final de type II de X et soient w = (z,y, z) des bonnes coordonnées pour X.
Nous dirons que PI(yp) est w-enlacé si deux courbes distinctes quelconques de PI(vp)
sont w-asymptotiquement enlacées.

Théoréme4.3. — Soit PI(vyo) un pinceau final de type II.

(1) PI(vyo) est un pinceau w-enlacé si les conditions suivantes sont satisfaites :
(e) (=10(X)<gq, TraceLy;<0, k=k(X)<q, Ap(X)<O.

(2) PI(vy0) est un pinceau séparé de courbes non oscillantes si une des quatre condi-
tions de (e) n’est pas satisfaite.

D’apres le paragraphe précédent, les conditions (e) sont complétement déterminées
par L(u, z), la partie linéaire de X en w. Ainsi, le corollaire suivant est une conséquence
immédiate du théoreme.

Corollaire4.4. — La nature (séparé-enlacé) d’un pinceau intégral final PI(~y) est dé-
terminée par le jet d’ordre ¢+ 1 du champ de vecteurs X.
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Il est possible, dans le cas (ii), de décrire plus précisément la « taille » et la « forme »
de PI(p). Mais ceci sort un peu des objectifs de ce travail. D’autre part, certains tra-
vaux de J. Ecalle ([11], v. IT) laissent & penser que les courbes intégrales d’'un pinceau
final possedent des développements transasymptotiques et que ces développements
les caractérisent. On peut alors se poser les questions : Ces développements sont-ils
resommables-réels 7. Si oui, comment se traduit sur les développements transasymp-
totiques l’alternative pinceau enlacé - pinceau séparé ?.

Théoreme4.5. — Supposons que 0 soit une singularité finale de type II de X dans
des coordonnées w = (u,z) et que Pl(7yg) soit w-enlacé d’axe formel T. Il existe un
cylindre U = {(u,2)/|u|l <1, 0 < z < e} positivement invariant par le flot de X tel
que v appartient & PI(yg) si et seulement si || NU # @. De plus on a Ualternative
suivante :

(1) Si PI(vo) contient une courbe oscillante, alors son aze T =T est convergent et
les courbes intégrales de PI(~yg) distinctes de T' sont oscillantes.
(2) Les courbes de PI(vy) sont non oscillantes et alors son axe I' est divergent.

Les démonstrations du théoreme 4.3 et de la premier partie du théoreme 4.5 sont
I’objet des paragraphes 4.4 et 4.5. Quant a la démonstration de ’alternative du théo-
reme 4.5, c¢’est une conséquence immédiate du théoréme du spiralement axial.

Proposition 4.6. — L’azxe T dun pinceau intégral final enlacé de courbes non oscil-
lantes n’est pas contenu dans une surface analytique.

Démonstration. — Supposons que ce ne soit pas le cas. Il existe un élément irréduc-
tible h de R{z,y, 2z} qui appartient & I'idéal de définition de T,

I(T) = {h € R[[z,y,2]] | hoT (2) = h(Z(2), §(2), z) = 0},

tel que H = {h = 0} soit une surface analytique. La courbe T étant (formellement)
X-invariante, la dérivée de Lie ¢ = Lxh = dh(X) est aussi un élément de I(f) N
R{z,y,z}. Il est divisible par h dans R{z,y,z}. En effet, si ce n’était pas le cas,
{h = g = 0} serait un ensemble analytique de dimension un avec h, g € I (f) et T serait
une courbe convergente. Ainsi, la restriction de g & H = {h = 0} est identiquement
nulle et H est une surface X-invariante. Soit U 'ouvert X-invariant du théoréme 4.5.
Quitte a le restreindre, on peut supposer que h est analytique sur U. Montrons que
H N U n’est pas vide. Supposons le contraire. On a par example h(w) > 0 pour
w = (x,y,z) € U. D’apres l'inégalité de Lojasiewicz [22], il existe C,a > 0 tels que

h(w) > Cdist(w, H)* > Cz%, siweU.

D’autre part, si v : z — (2(2),y(2), 2), z > 0, est une courbe de PI(vg), son dévelop-
pement asymptotique en 0 est f(z) Toutes les dérivées de h o v(z) en 0 sont nulles,
ce qui est incompatible avec 'inégalité ci-dessus. L’ensemble semi-analytique H N U
est de dimension 2. En effet, si ce n’est pas le cas, c’est une union finie de courbes
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analytiques lisses |y| avec v € PI(g) et ces courbes ne sont pas enlacées. D’apres le
théoréme de reduction de singularités (voir par example [13]), il existe un morphisme
m: My — M composé d’éclatements de points et de courbes tel que le transformé
strict H; de H soit & croisements normaux. Il existe une composante lisse H; de
H, telle que w(Hj) N U soit une surface invariante par X. Soient 1,7} les relevés
par 7 de deux courbes 7,v" € PI(~g) qui vérifient ||, || C w(Hy) NU. D’apres la
proposition 1.13, v;,~1 sont (comme 7, ~’) asymptotiquement enlacées. Mais ceci est
impossible puisque 71,7 sont contenues dans la surface lisse Hj. O

4.3. Equations de la dynamique «relative ». — Dans toute la suite 0 est une
singularité finale de type II d’un champ vecteurs X. Il s’écrit dans de bonnes coor-
données w = (u, z) = (z,y, 2)

(%) X =3 2Liu) - 241 (% +Y(u, z)), Y(0)=0, dz(Y)=0.
=0

On fixe une courbe intégrale vy de X, || C {z > 0} qui a un contact plat avec la
courbe formelle T' donnée par la proposition 4.1. On désigne par v, 7' deux courbes
intégrales de X contenues dans {z > 0} avec w(y) = w(7’) = 0. On les reparamétrise
par 2 o (u(2),2), 7 2 (1(2),2), ot u(z) = (2(2), y(2), w(2) = (@'(2),y/(2))
sont des solutions de I’équation différentielle

d i,
() Pan d_u = — Z 2" Ly (u) 4+ 2971 Y (u, 2).
2
i=0

Le plan R? est muni de sa structure euclidienne canonique (, ) et du « produit vec-
toriel » A. Pour décrire le comportement analytique relatif de v, 4" au voisinage de 0
nous étudierons les fonctions

vz () =u(s) — (), piz— p(z) = 02,
»—>M :z+—0(z) avec exp2inf(z) = e(z
e:z ) 0: 0(z) p2inf(z) = e(z).
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L’indice de radialité k = k(X) est déterminé par la formule

q

R(u) AY 2" Li(u) = 2(Qr(u) + ||u]® O(2))

i=0
ol Qk(u) est une forme quadratique dont le discriminant Ay est non nul si & < g.
Alinsi (#g) s’écrit encore

(+0) 2t () = —H(Qule(2) + O(2)).

Rappelons que I'indice £(X) = £ de la trace de X est défini par Tx(z) = Trace L, =
2¥(Trace Ly + O(2)) si Trace L, # 0 et £ < q.

Lemme4.7. — Sik >0 ousi k=0 et Ag <0 on peut écrire (x,) sous la forme

1 d
(*p) m e p(z) = =279 Y (Trace Ly + O(2)).
Démonstration. — Si k > 0, alors £ = 0, Lo(u) = (Trace Lo)u et la formule (*,) est

vraie. Si k = 0 et Ag < 0 les valeurs propres de Ly ne sont pas réelles. Un argument
de F. Takens [33] montre que I'on peut choisir une base de R? telle que les matrices
A; des L; s’écrivent dans cette base comme

Ai:<0_ﬁi> pour 0 < i < ¥4, A€:<az—ﬁe>7

Bi 0 Be e
avec oy # 0. La formule (x,) s’en déduit immédiatement. O
4.4. Pinceau final séparé. — Il s’agit de démontrer que si I'une des quatre condi-

tions (e) (¢ = £(X) < g, Trace Ly < 0, k = k(X) < ¢, Ar < 0) n’est pas satisfaite,
alors PI(vg) est séparé. Pour le démontrer, nous distinguons deux cas.

Assertionl. — Sif = q ou si £ < q avec TraceLy > 0 et Ag < 0 st k = 0 alors
PI(vo) = {70} et vo est non oscillante.

Remarquons tout d’abord que la condition | = g implique k > ¢. Supposons que
PI(~p) possede une courbe +' distincte de yp. Avec les notations de 4.3, étudions le
couple v = 79, 7. Posons v(z) = u(z) — v/(z). La fonction p(z) = ||v(2)] vérifie (x,).
Dans le cas £ < ¢ et Trace Ly > 0, la fonction p(z) ne peut pas tendre vers 0 avec z,
c’est-a-dire que w(v’) # 0. Supposons £ = ¢, on a alors

1 d
p(x) ! =p(z) = == (Trace Ly + O(2))
Si Trace Ly > 0, on vérifie que p(z) ne tends pas vers 0 avec z. Si Trace L, < 0, il
existe a > 0 tel que dp(z)/dz > az"1p(z). Par intégration on obtient, pour z assez
petit, p(z) > cz® avec ¢ > 0. Ceci est incompatible avec 7y, 7' ont un contact plat
avec I'. Enfin, d’aprés le théoréme du spiralement axial, 7y est non oscillante.
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Assertion 2. — Sik =g+ 1 ou si k < q avec A > 0, deuz courbes distinctes v, v
de Pl(o) peuvent étre séparées par une projection linéaire. De plus, les courbes de
PI(~o) sont non oscillantes.

Signalons que la premiére partie de cette assertion est vraie si 6(z) pos-
sede une limite 6y lorsque z tend vers 0. En effet, on peut supposer 6y = 0,
c’est-a-dire lim, ,oe(z) = (1,0). Dans les coordonnées u = (x,y), on a aussi
lim, _o(z(2) — 2'(2))/|z(2) — 2/(2)] = 1. La projection (x,y, z) — (z,z) sépare v, v'.
Pour démontrer que 6 tend vers une limite finie nous allons travailler avec (xg). Dis-
tinguons les deux cas de I’énoncé. Si k > ¢+ 1, c’est-a-dire 0 = e(z) A L;(e(z)) pour
0 < i < g, on déduit de (*xg) que la dérivée df(z)/dz est bornée et, par intégration,
que 6(z) tend vers une limite si z tend vers 0. Supposons maintenant que k < ¢ et
Aj > 0. L’endomorphsime Lj possede deux valeurs propres réelles distinctes A, p.
Choisissons des coordonnées u = (x,y) telles que les axes (y = 0), (x = 0) soient les
directions propres correspondantes. Dans ces coordonnées on a

e(z) = (cosb(z),sinb(z)), Qr(e(z)) = (A — p)sinb(z)cosf(z).
La relation (xg) s’écrit, avecr = q+1—Fk, a =1/2(u — A),

az" d%: 0(z) = sin26(z) + O(z).

On peut toujours supposer a > 0 quitte a changer 'orientation. En reprenant un joli
argument élémentaire de Hu ([16]) montrons que 6(z) tend vers une limite 6y = 0
(mod 7/2). La dérivée df(z)/dz étant du signe de sin 20(z) + O(z), un réel € > 0 étant
fixé, il existe zp(e) = zg, b(e) = b > 0 tels que

d
b (1) 0() siz<zo et ng+6<9(2)<(n+1)g—5,

La fonction 6(z) est strictement croissante sur =1 (Jnw/2 + &, (n + 1)7/2 — £[). On
peut supposer que zg appartient a un de ces intervalles, par exemple avec n = 0. Il
existe z1(g) = z1 < 2o tel que 0(z1) = 7/2 — . Puisque la valeur 7/2 + € ne peut étre
franchie par 0(z) qu’en décroissant on a 7/2 —e < 0(2) < /2 +es1 0 < z < z1(e).

Il reste & démontrer que les courbes de PI(yy) sont non oscillantes. Supposons qu’il
existe v € PI(vp) oscillante. D’apres le théoréme du spiralement axial, I’'axe du pinceau
est une courbe lisse analytique I'. Soient w = (z,y, z) = (u, z) de bonnes coordonnées
telles que I' = {u = 0}. Les courbes 't = T'N {z > 0} et v ne sont pas séparées par
une projection linéaire sur un plan contenant I'. Ce qui contredit la premiere partie
de l'assertion.

4.5. Pinceau final enlacé. — Nous supposons que les quatre conditions (e) sont
réalisées. Elles s’écrivent encore
(e,) Trace(L,) = 2*(Trace(L¢) + O(2)) avecf <q et Trace(L,) <0,

(eg) L.(e(2)) Ae(z) = 2"(Qrle(z)) + O(z)) avec k < q et le discriminant A, de
Qr(u) est strictement négatif.
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Pour achever la démonstration des théoremes 4.3 et 4.5 nous démontrons les trois
assertions suivantes.

Assertion 1. — Toute courbe intégrale v' de X avec w(y') =0, || C {z > 0} appar-
tient a PI(vo).

Appliquons (x,) au couple 7 = 5o, 7. Si p(2) = [0(2)]| = lu(2) — (=), pour =
assez petit on a, compte tenu de I’hypothese (e,),
1 d

— —p(z

PORE p(z)
Fixons  avec 0 < 8 < — Trace Ly. 11 existe zg > 0 tel que pour 0 < z < 2,

1 d 16}
map(z)>; avecr=q+1—4£>2.
On en déduit, par intégration, qu’il existe des constantes ¢, ¢’ > 0 telles que
/

g+1 = —z!(Trace L, + O(z)).

0<p(z)<cexp(— ) si0 <z < 2.

erl

Les courbes z — ~/(2), z — 70(z) ont un contact plat en 0. Cette propriété est
conservée par éclatements de points et donc TI(v") = TI(vo).

Assertion 2. — Deuz courbes distinctes de Pl(~yg) sont asymptotiquement enlacées.

Appliquons (*g) & une couple v, 7' de PI(7p). On a
d
2141 20(2) = = (@Quel2)) + 0(2))
Compte tenu de ’hypothese (eg), nous pouvons supposer que Qp(u) est définie po-
sitive, quitte & changer I'orientation de R2. Il existe o > 0 et zyp > 0 tels que pour

0<z<zyona

d
—9(2)<—% avecr=q+1—k>0.
z

dz
Il existe des constantes c, ¢’ > 0 telles que
0(z) > < tdsir>1 ou 0(z) > cLogl/z+c sir=1.

erl

Assertion 3. — I existe ¢, n > 0 tels que C = C.,; = {(u,2) | |lul]l <71, 0 <z < n}
soit X -positiverent invariant et toute courbe v qui coupe C appartient d PI(vo).

Soit 7y : z — (u(z), z) une courbe intégrale de X contenue dans z > 0. Pour établir

une relation différentielle sur r(z) = ||u(2)||, prenons le produit < u, (*,) > avec
du i .
(*u) Ak il ; 2 Li(u) + 277 Y (u, 2).
On obtient, compte tenu de 'hypothese (e,),
d
(%) 20y % = 2% (Trace Ly + O(2)) + 29 (u, Y (u, 2)).
z
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Puisque Y (0) = 0, on peut écrire Y (u, z) = 2 Yy(2) + |lu]| Yi(u, 2) ou Yy, Y7 sont des
applications bornées au voisinage de 0. La relation (x,.) s’écrit, avec s = ¢+ 1—¥¢ > 2,

dr(z) r
= ——(Trace Ly + O(z z0(z,u).
") = L (Trace Ly + 0()) + 20(2,u)
Puisque Trace L,y < 0, il existe €, 1) tels que la dérivée dr(z)/dz est strictement positive
pour 0 < z < ¢ et r = ||ul| = n. Ainsi C., est X-positivement invariant. De plus,

la fonction 7(z) est strictement croissante sur une région de la forme 7 > c2*1, avec
¢ > 0. Ainsi, lim,_,or(z) = 0 s'il existe z9 tel que (u(z0),20) appartienne a C. .

D’autre part, en écrivant vo(z) = (ug(2), 2), p(2) = ||u(z) — up(z)||, on a
dp _p(2),
() = e (— Trace Ly + O(2)).

Ainsi p(z) est une fonction plate en z = 0 puisque s > 2. La courbe 7 a un contact
plat avec I'. Elle appartient a PI(vo).

5. Le cas général

Soient X un champ de vecteurs analytique sur M, vy une courbe intégrale non
oscillante de X avec w(vyo) = p et PI(vo) son pinceau intégral. Nous allons démontrer
les deux théoremes énoncés dans 'introduction :

Théorémel. — Si les courbes de PI(7yg) sont non oscillantes on a l'une des propriétés
sutvantes :

s) Deuz courbes distinctes, quelconques, de PI(yo) sont sous-analytiquement sépa-
rées.
e) Deux courbes distinctes, quelconques, de P1(g) sont asymptotiquement enlacées.

De plus, ces propriétés ne peuvent pas étre satisfaites simultanément.

Théorémell. — Soit PI(vg) est un pinceau intégral enlacé de courbes non oscillantes.

(1) PI(yo) posséde un aze formel T non convergent, transcendant; ¢’est--dire, il
n’existe pas de surface analytique qui contienne T.

(2) Si V est un voisinage de po, il existe un ouvert sous-analytique U C V posi-
tivement invariant par le flot de X tel qu’une courbe intégrale v de X appartient a
PI(7o) si et seulement si |[y|NU # @.

Pour démontrer ces théorémes nous allons tout d’abord montrer que si PI(vy) n’est
pas séparé (par exemple il existe y; € PI(yp) distincte de o non séparable de ),
alors les trois assertions suivantes sont vraies :

(i) 11 existe une courbe formelle T' transcendante telle que TI(vo) = TL(T).

(ii) Deux courbes distinctes de PI(7y) sont asymptotiquement enlacées.

(iii) Pour tout voisinage V' de p € M, il existe un ouvert sous-analytique connexe U
positivement invariant par X tel que vy € PI(yo) si et seulement si |[y|NU # @.

Leurs démonstrations reposent sur la proposition suivante :

ASTERISQUE 297



PINCEAUX DE COURBES INTEGRALES 29

Proposition 5.1. — Supposons que g, v1 soient non séparables. Alors il existe un mor-
phisme admissible w : (M',~y,p") — (M, ~0,p) tel que PI(v() soit un pinceau final de
type I1.

Enfin, I'alternative de théoréme I est une conséquence de la proposition suivante :

Proposition 5.2. — Soient 79, 71 deux courbes non oscillantes asymptotiquement en-
lacées. Si f est une application sous-analytique bornée d’un voisinage U de |yo| U |71|
dans R?, alors card(f|yo| N flm|) = .

5.1. La proposition 5.1 implique (i), (ii), (iii). — Supposons que la proposi-
tion 5.1 soit vraie et que 7o, y1 ne soient pas séparables. Le relevé 7] = 7~ 1(v1) appar-
tient & PI(v)) et de plus 7{ et ¥] ne sont pas séparables. Les conditions (e) du théo-
reme 4.3 sont satisfaites en p’ pour PI(v{). En particulier, il existe une courbe formelle
T’ de (M',p’) analytiquement transcendante et telle que TI(v() = TI(f’ ) d’apres la
proposition 4.6. Soit la projection de I’ par 7. En utilisant les mémes arguments que

~

dans la démonstration de la proposition 1.15 on montre que TI(y;) = TI(o) = TI(T).
Il est clair que T est analytiquement transcendante. Pour montrer que T est sous-
analytiquement transcendante, il suffit de montrer que son relevé 0_1(f) par un
morphisme o : (]T/f ,p) — (M,p) est aussi analytiquement transcendant. Les re-
levés 7o, 71 de 9, 71 par o sont toujours non séparables. L’argument précédent
montre Dexistence d'un axe I' analytiquement transcendant pour PI(7;). Par projec-
tion, TI(y1) = TI(o(T)) et ainsi I' = o—(T). Ceci prouve I'assertion (i).

Montrons Passertion (ii). Soient 72,73 deux courbes distinctes de PI(vp). D’apres
la proposition 1.15, le morphisme 7 est admissible pour 7, et 3. Leurs relevés 5, v4
appartiennent au pinceau PI(v(). Puisque les courbes 7}, 7} ne sont pas séparables,
d’apres le théoreme 4.3, le pinceau PI(7{)) est un pinceau final de type II enlacé. Ceci
prouve que 2 et 3 sont asymptotiquement enlacées, d’apres la proposition 1.13. Ceci
prouve (ii).

Montrons I'assertion (iii). Si V' est un voisinage de p € M, V' = 77 1(V) est un
voisinage de p’ € M'. D’apres le théoréme 4.5, il existe un ouvert sous-analytique U’ C
V' tel que v € PI(v{) si et seulement si |y |NU’ # @. La projection U = w(U") posséde
la méme propriété relativement au pinceau PI(~g), d’apres la proposition 1.15. O

5.2. Démonstration de la proposition 5.1. — Le résultat suivant de [6] nous
permet de supposer que p est une singularité élémentaire du champ de vecteurs X,
c’est-a-dire, que DX (p) n’est pas nilpotente.

Théoreme 5.3 (Unifor misation yq-polarisé). — Soit o une courbe intégrale non oscil-
lante d’un champ de vecteurs X analytique sur un voisinage de p € M. Il existe un
morphisme admissible © : (M', v}, 0") — (M,~0,p) et un champ de vecteurs X' ana-
lytique sur un voisinage de p' tels que p’ soit une singularité élémentaire de X' et
une courbe intégrale de X'.
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D’apres le théoreme 2.1, nous pouvons supposer que A(yp) = 0. Sinon vy et 71
seraient séparables. On a alors deux possibilités pour le spectre de DX (p). Dans le
premier cas, le spectre de DX (p) s’écrit {0,0, A} avec A # 0. Quitte & effectuer un
éclatement local de centre p, on peut supposer que DX (p) est diagonalisable de rang 1.
Alors, v appartient a un pinceau final de type I. D’apres le théoreme 3.1, v et v1
sont séparables, ce qui est impossible. Dans le deuxiéme cas, le spectre de DX (p)
g’écrit {0, A\, \'} avec A\, X # 0. Montrons d’abord qu’on peut se ramener au cas d’une
singularité préfinale avec le lemme suivant :

Lemme5.4. — Il existe un morphisme ~yo-admissible © : (M',~v},p") — (M,~0,p) tel
que y soit une courbe intégrale d’un champ vecteurs X' tel que p' = w(y)) est une
singularité préfinale de type II.

Démonstration. — Soient w = (z,y,z) = (u, 2) des coordonnées centrées en p telles
que Ker DX (p) = {u = 0}. 1l existe (comme dans la proposition 4.1, voir [3]) une
unique courbe formelle (ou analytique) T lisse, tangente & {u = 0}, invariante par X
qui vérifie aussi que TI(f) = TI(vp). De plus, quitte & éclater le point p, on peut
supposer que le plan {z = 0} est X-invariant. Montrons tout d’abord que T n'est pas
contenue dans le lieu singulier Sing X de X. En effet, si Tc Sing X, on peut choisir les
coordonnées w telles que {u =0} = L. Si les valeurs propres A, A’ de DX (p) ne sont
pas imaginaires, la courbe T est une variété centrale de X en p. D’apres le théoreme
de la variété centrale (voir [15, 26]), la dynamique du flot de X est topologiquement
conjuguée & la dynamique du champ X|{,—¢y. Les courbes intégrales de X dont p est
le point w-limite sont contenues en {z = 0}. En particulier, la courbe vy, ce qui n’est
pas possible puisque A(yp) = 0. Si A = N = ia, a € R*, considérons o : M — M
I’éclatement de I'axe {u = 0}. Sa fibre Dy = o~ 1(p) est un cercle invariant par le
relevé X de X. Il possede une application premier retour de Poincaré non triviale.
Ainsi, toute courbe v telle que w(y) = p est une courbe oscillante. Ceci est impossible
puisque o est non oscillante.

La multiplicité de la restriction de X a la courbe invariante r ¢ Sing X est un
entier ¢ + 1 avec ¢ > 1, puisque [ est tangente au noyau de DX (p). Choissisons des
coordonnées w = (z,y,2) = (u,2) avec |y| C {z > 0} telles que T soit tangente &
Pordre au moins 2¢ + 1 avec {u = 0}. Un calcul élémentaire montre que, modulo une
unité multiplicative, X s’écrit dans ces coordonnées sous la forme

(*0) X = ; z L,L(’LL) -+ YO(U, Z) — Zq+1 &

ott les L;(u) sont des champs de vecteurs linéaires sur R? = R? x {0} avec DLg(0) de
rang 2 et Yy est un champ de vecteurs qui vérifie

Y(0) =0, dz(Yy) =0, Y5(0,2)=0(z%"), D,Yy(0,2) =0.
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Soit 7 : (M’',p') — (M,p) le morphisme composé des éclatements des g + 1 pre-
miers points infiniment proches de T et soient (u/, z) des coordonnées en p’ telles que
m(u', z) = (297N, 2). On vérifie aisément que le transformé X' = 7*(X) s’écrit sous
la forme

() X'=L.(u)— 27 (% + Y), Lo(u) = 2" Li(u)
=0

avec DL(0) de rang 2, dz(Y) = 0, Y(0) = 0. Ceci montre que p’ est une singularité
préfinale de type II. O

Le lemme suivant acheve la démonstration de la proposition 5.1 (voir aussi [30]) :

Lemmeb5.5. — Supposons que p est une singularité préfinale du champ de vecteurs X
avec A(yo) = 0. Il existe un morphisme admissible w : (M',~{,p’) — (M, ~0,p) tel que
PI(~) soit un pinceau final de type II.

Démonstration. — D’apres le lemme précédent, vg a un contact plat avec une courbe
X-invariante qui n’est pas contenue dans le lieu singulier de X . Soient w = (z,y, 2) =
(u, z) de bonnes coordonnées pour X telles que |yo| C {z > 0}. Ecrivons X sous la
forme (x) dans ces coordonnées. Notons g+ 1 la multiplicité de la restriction de X & r
et k = k(X) lindice de radialité de X. Par définition, k < g+ 1. Si k =g+ 1, PI(vo)
est un pinceau final de type II. Supposons que k < ¢. Si R(u) est le champ radial de
R2, D’entier k est défini par

R(u) A L,(u) = zk(Qk(u) +0(z), k<gq

ol Qx(u) est une forme quadratique non nulle. Notons Ay le discriminant de Q.
Nous allons montrer qu’il existe un morphisme yp-admissible = : (M’,p") — (M, p)
tel que p’ soit une singularité préfinale du relevé X’ de X et tel que le discriminant
A}, correspondant & X’ soit non nul. Supposons que Ay = 0. Posons

0 0
Li(x7y) = (Clzl‘—f—bzy) % + (Cix‘Fdiy) a_ya 1= 071527" -»q-

Les conditions précédentes sur Lg, L1, ..., Lr_1 se traduisent par les égalités a; = d;,
b = ¢ =0pour i =0,1,2,...k — 1 avec ap # 0. De plus, la condition Ay = 0
signifie que DL (0) a une valeur propre double et n’est pas diagonalisable. On peut
choisir u = (z,y) tel que ap = di, bp = 1, ¢, = 0. La droite {y = z = 0} est
invariante par X et Ly (u). L’éclatement de cette droite est un morphisme admissible
o: (]T/f, F1,p) — (M, v1,p). Soit X le relevé de X par 7 et soient w = (z,y,2) = (u, 2)
des coordonnées centrées en p telles que o(Z,¥y,2) = (¥, 2y, z). Le champ X sécrit
sous la forme

¥ snm - (2 L Fa

X =3 L) -2 (5z+V@9)

(3
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oua; =d; = az, by = bji—1, ¢ = 41,1 = 0,1,...,q — 1, 'dq = aq, dy = dg + 1,
Gy = Cq1.Siq—k = 0, R(@) A L.(2) = 29Q,(1). Le discriminant A, de Q, (%)
est égal A 1. Si g —k > 0 et cpy1 = 0 on a Li(@) = Li(u) pour i < k — 1 et
Li(u') = axR(«). Dans cette situation, I'indice de radialité k de X satisfait k> k et
on se ramene au cas précédent par une induction élémentaire sur ¢ — k. Sig—k >0
et cix1 # 0, effectuons tout d’abord une 2-ramification 1" au-dessus du plan z = 0.
C’est une transformation admissible 7' : (M, p) — (M,p). La droite {y = z = 0}
est invariante par X. Soit o ’éclatement de centre cette droite. La composition m =
ogoT : (M ~y,p") — (M,y,p) est un morphisme admissible. Soient w’ = (v, 2’) =
(2',y', 2") des coordonnées centrées en p’ = w(~y}) telles que w(x’,y', 2") = (2, y'2', 2'?).
Dans ces coordonnées le relevé X' de X s’écrit

q
. / 0
X' = E L) = 2T 1)2 == + Y (W, )
i=0 ( . )

avec ¢ = 2q — 1, Y’ possédant les propriétés habituelles. Un petit calcul montre que,
pour ¢ < 2k — 1, L} = 0 si ¢ est impair et L], = L; si ¢ = 2j, que L}, = aply et
Ly = y0/0x + cpy120/0y. L'indice de radialité de X' est égal a k' = 2k + 1. Le
discriminant A}, correspondant est 4ci41 # 0. O

5.3. Démonstration de la proposition 5.2. — Soient 79,71 et f = (f1, f2) — R?
comme dans l’enoncé de la proposition 5.2. Les courbes 7,y étant non oscillantes et
enlacées, on peut supposer que fi, fo sont analytiques sur un voisinage U de p. Cette
affirmation est une conséquence d’un résultat de [27]. Elle peut étre aussi montrée en
utilisant le théoréme de préparation de [20].

D’apres le théoreme II, les courbes 7p,y1 ont un contact plat avec une courbe
formelle T' transcendante. Quitte & effectuer une suite d’éclatements de points ou de
courbes lisses on peut choisir des coordonnées w = (x,y, z) centrées en p telles que
(voir [2, 13]) :

(1) Les courbes 7,71 sont z-positives.

(2) La courbe T est lisse transverse & {z=10}.

(3) Pour i = 1,2, la fonction f; s’écrit dans w sous la forme

fi(z,y, z) = 2Piy® 2" U (x,y, 2), avec U;(0) # 0.

Puisque les séries formelles fiof ne sont pas nulles, on peut supposer que p; = ¢; =0
pour ¢ = 1,2. En remplagant la coordonnée z par Z(Ul)l/“, on peut supposer que
fi(z,y,z) = z™. Les applications f et (z,y,2) — (z, fo(x,y,2)) ayant les mémes
fibres dans {z > 0}, on peut supposer que

fl(x,y,z):z et fQ(xvyaZ):ZmUQ(x7yaz)'

Si le rang générique de f est égal & 1, les images de |ygl, |71| sont confondues.
La proposition est alors vraie. Supposons que f est de rang générique 2. La courbe
I n’est pas contenue dans I’ensemble analytique {0fs/0x = 0f2/dy = 0}. Quitte &
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effectuer des éclatements de points on peut supposer que %—J;j # 0 sur {z > 0}. Soient

v (2) = (zj(x),y;(2),2), 5 = 0,1 les paramétrisations de |y|, |11| par z > 0. Pour
chaque zp > 0, la courbe

Czo = {(x;:%ZO) | fg(ac,y,z) = fQ(’YO(ZO))}

partage le plan {z = zp} en deux composantes connexes UZ‘; , U, telles que

{(z,y,20) | = 20(20),y > yo(20)} C UL,
{(z,y,20) | = 20(20),y < yo(20)} C U

Puisque 70,1 sont enlacées, il existe deux suites (z;7), (2,,) qui tendent vers 0 telles
que yo(2,5) > yi(z7) et zo(2,h) = x1(2), vo(z,) < yi(z,,) et zo(z,) = z1(2,,). Par
continuité, il existe une suite (z,) qui tend vers 0 telle que v1(z,,) appartient & C,,, .

Ainsi, les points yo(z,) et ¥1(zn) sont dans une méme fibre de f. O
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ON ANALYTIC FAMILIES OF INVARIANT TORI FOR PDES

by

Boris Dubrovin

Dedicated to J.-P. Ramis on the occasion of his 60th birthday

Abstract. — We propose to apply a version of the classical Stokes expansion method
to the perturbative construction of invariant tori for PDEs corresponding to solutions
quasiperiodic in space and time variables. We argue that, for integrable PDEs all but
finite number of the small divisors arising in the perturbative analysis cancel. As an
illustrative example we establish such cancellations for the case of KP equation. It
is proved that, under mild assumptions about decay of the magnitude of the Fourier
modes all analytic families of finite-dimensional invariant tori for KP are given by
the Krichever construction in terms of theta-functions of Riemann surfaces. We also
present an explicit construction of infinite dimensional real theta-functions and of
the corresponding quasiperiodic solutions to KP as sums of an infinite number of
interacting plane waves.

Résumé (Tores invariants pour certaines EDP). —  Nous proposons d’appliquer la mé-
thode des développements de Stokes & la construction perturbative de tores invariants
associés a des solutions d’EDP quasi-périodiques en les variables d’espace et de temps.
Pour les EDP intégrables, nous nous intéressons a la compensation de presque tous
les petits diviseurs apparaissant dans l’analyse pertubative, i.e., la compensation de
tous sauf un nombre fini. Nous traitons de cette compensation en détail sur I’exemple
de équation KP et nous montrons que dans ce cas, sous des hypotheses faibles
portant sur la décroissance de ’amplitude des modes de Fourier, toutes les familles
analytiques a tores invariants de dimension finie sont données par la construction de
Krichever en termes de fonctions théta de surfaces de Riemann. Nous donnons une
construction explicite de fonctions théta réelles de dimension infinie et des solutions
de KP quasi-périodiques correspondantes comme somme d’une infinité d’ondes planes
en interaction.

1. Introduction

Quasiperiodic solutions of the equations of motion

= f(u)

2000 Mathematics Subject Classification. — 35Q53, 37K10, 37K20, 14H70.
Key words and phrases. — KP equation, Stokes expansion, theta-functions.
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in the form
ut) =U(pr,....dn), Sj=wit+¢, j=1,....n

for a 2m-periodic in each ¢1, ..., ¢, function U has been studied in the classical me-
chanics since 19th century. The associated geometric image of linear motion on an
n-dimensional torus became widely accepted after creation of KAM theory and of the
Arnold-Liouville theory of completely integrable Hamiltonian systems [2], although
it was already familiar in the physics literature after the A. Einstein’s treatment of
the Bohr-Sommerfeld quantization rules for integrable systems with many degrees
of freedom [14]. In particular, the Arnold-Liouville theory applied to a completely
integrable Hamiltonian system on a 2n-dimensional symplectic manifold u € M?2"
establishes existence of families of n-dimensional invariant tori depending on n pa-
rameters I = (I1,...,1,)
(1.1) uwt|I) =U(¢r,...,¢n|I), ¢j=wi(Dt+¢), j=1,...,n.
Changing the values of the action variables I, ..., I,, one represents a 2n-dimensional
domain in the symplectic manifold as a torus fibration. Under the nondegeneracy
assumption [2] the frequencies w1 (I),...,w,(I) run through all possible directions in
an open set. In particular, for generic values of the parameters I the solution (1.1) is
a quasiperiodic function in time.

Systems of evolutionary PDEs

(1.2) ug = fU(U, Uy, Ugzy ... ), = (T1,T2,...,24), a=1,...,7

can be considered as an infinite-dimensional analogue of dynamical systems define on a
suitable space of functions of d spatial variables x1, ..., zq4. Although in certain cases it
is possible to develop an infinite-dimensional analogue of the Arnold-Liouville theory
of completely integrable Hamiltonian systems and to construct families of infinite-
dimensional invariant tori for certain nontrivial examples of nonlinear evolutionary
PDEs and, moreover, to develop an infinite-dimensional analogue of KAM theory (see
[28, 7, 24, 35]) and the related theory of Birkhoff normal forms (see [15, 21, 22]),
in the most physical applications families of low dimensional invariant tori for PDEs
play a prominent role.

For linear PDEs families of one-dimensional invariant tori can be readily found in
the form of plane waves

(1.3) u(x,t) = Acos(k1xy + - - + kqrg — wt + ¢o).

The wave numbers ki,...,kq take arbitrary values within some domain of the
d-dimensional space, the frequency

(1.4) w=wki,...,kq)

is determined from the so-called dispersion relation substituting the ansatz (1.3) into
the equation (1.2). It will be assumed that all branches of the dispersion relation (1.3)
are real-valued functions. For any such branch A is a r-component vector determined,
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in the generic situation, up to a scalar factor called the amplitude. The phase shift
¢o can also take an arbitrary value. The solution (1.3) in general is quasiperiodic
both in space and time variables. Multidimensional invariant tori for linear PDEs are
obtained as linear superpositions of plane waves

n
u(x,t) = Z Ajcos(kizy + -+ kbizg — w't + @)

i=1
with arbitrary amplitudes, phases and wave numbers, the frequencies determined as
above

Wwi=wkl, kY, i=1,...n.
Note that, in the discussion of invariant tori for PDEs, we will not specify the class
of functions(*) to be considered.
In many cases families of one-dimensional invariant tori can also be obtained for

various nonlinear PDEs as travelling wave solutions

(1.5) u(x,t) =U(p| A), ¢=kixi+ -+ kixqg — wt + ¢o.

Here U(¢| A) is a 2m-periodic function in ¢ depending on some number of parameters
A = (A1, Ag,...) that determine the shape of the wave. The wave numbers and
phases take arbitrary values. The shape of the wave does not depend on the phase
shifts but it may depend on the wave numbers. It is convenient to subdivide the
parameters A in two parts

(1.6) A= (ki,...,kq;a)

where the parameter a is a nonlinear analogue of the amplitude. The frequency is
to be determined from a nonlinear analogue of the dispersion relation. The latter
involves also the amplitude parameters a,

(1.7) w=w(k,..., kq;a).
For fixed ¢ the solution (1.5) takes constant values along the hyperplanes
kiz1 + -+ + kgqrg = const.

The points on the hyperplanes move in the orthogonal directions with the constant

v= k=i

Example1.1. — The periodic travelling wave for the Kadomtsev-Petviashvili (KP)
equation

phase velocity

1 3
(1.8) Upt + Z(3u2 + Uy )wx + 1w = 0

(D The dynamic on a suitable class of almost periodic functions would probably be the appropri-
ate framework for considering the families of finite-dimensional invariant tori with arbitrary wave
numbers.
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(here d = 2, x = x1, y = x2) can easily be obtained in terms of elliptic functions

u(z,y,t) =U(¢), ¢=kx+ly—wt+ do

U(p) = 2—]fK'2(,'<;2(:n2 {ggﬁ;ﬁ} —’y) +5

(19) T 6
: ¢ 312 K2, E
WETIP T IR Z BT
_E 1+ 2
K v

Here cn[z; k] is the Jacobi elliptic function with the modulus 0 < k < 1, K = K(k),
E = E(k) are complete elliptic integrals of the first and second kind resp., ¢ is an
arbitrary constant.

The functions (1.9) are periodic travelling waves propagating with constant speed
in the (z,t)-plane. For | = 0 the above formulae reduce to the so-called cnoidal waves
for the Korteweg-de Vries (KdV) equation

1
(1.10) up + 1(3“2 + Ugz)z = 0.

The KdV equation is known to arise in a fairly general setting of one-dimensional
weakly nonlinear waves with small dispersion (see, e.g., [33]). In particular it de-
scribes one-dimensional shallow water waves of small amplitude. The y-dependence
of solutions to the KP equation (1.8) describes(®) slow transversal perturbations of
the KdV waves [23], [33].

The elliptic modulus « plays the role of the amplitude parameter. At the limiting
value kK = 0 one obtains trivial solution u = 0; the frequency takes the value w =
—1(ck 4+ k%). For small positive values of the parameter

1 1
2 3
=k —|ck+k°—3— 0
€ [w + 1 (c + k)] >
one obtains approximately the plane wave solution

1/ 12 ;
uz%—l—Acos(k;x—l—ly—wt—l—cﬁo), w7 (3%—01(;—]&)

2
A~24/ =€
Vi

More accurate idea about the shape of the solution (1.9) for small amplitudes can be
obtained by using Stokes expansion method [37]; see also Chapter 13 of the Whitham’s
book [39]. We will represent this classical method of the theory of water waves in a

with the small amplitude

() The equation (1.8) is often called KPII to distinguish it from the KPI case. The latter equation
differs from (1.8) by the sign in front of the second derivative in y. It also has physical applications
but not within the theory of water waves [23].
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slightly modified version. Let us look for the solution to the KP equation in the form
of Fourier series

(1.11) u(zx,y,t) = %—i—Al cos g+ As cos2¢+ Agcos3p+..., ¢=kr+ly—wt+ oo
depending on a small parameter ¢ assuming that
(1.12) A =0(E"), k=1,2,....
Also the dispersion law must be expanded in a series with respect to the small pa-
rameter

1/ 12 3 &
(1.13) W=7 3E_Ck_k twtwet..., wp=0(").

The KP equation must hold for an arbitrary ¢¢ as an identity for formal series in e.
Without loss of generality one can use the small amplitude A = A; of the plane wave
as the expansion parameter. Substituting the ansatz (1.11)—(1.13) into (1.8) yields,
after simple calculation

(1.14)  u(z t)—E+Acos¢+A—2 1—A—2+O(A4) cos 2¢
' U= 2k ' 8K

S 3 AL o 4
+ 16k;4+ (A°) ) cos3p+ 16k;6+ (A®) ) cosdo + ...

1/,02 342 341
1.1 = (3——ck—K — A®).
(1.15) w 4<3k c )+8k;+128k;5+0( )
For small amplitudes (1.14)—(1.15) gives a reasonably good uniform approximation to

the cnoidal wave (1.9)

Multidimensional invariant tori for PDEs is still a not completely understood phe-
nomenon, although there are quite a few nontrivial examples of PDEs where a fam-
ilies of finite-dimensional invariant tori have been constructed, mainly by applying
the methods of algebraic geometry (see, e.g., [12, 26, 10]). One can think of them
as of the result of nonlinear interaction of travelling waves solutions, although this
operation in general has to be defined. We suggest the following approach to the
definition of the nonlinear interaction.

Let the PDE (or a system of PDEs) possess a family of travelling wave solutions
of the form (1.5) depending on some vector parameter

A= (ki,... . ka;a).

It is assumed that the wave vector ki, ..., kg assumes arbitrary values in some domain
of R,
(k1,...,kq) € K C R

The amplitude parameter a belongs to a m-dimensional domain

acDCR™
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Denote
A:=K xDcRI*™,

The solution (1.5) must satisfy the PDE identically in ¢°. Let us assume that, on a
certain submanifold of codimension 1,

acCCD, dmC=m-1

the solution (1.5) becomes constant. We will only consider the local situation where
D belongs to a small neighborhood of the manifold of constant solutions. Denote ¢
the distance of a point on D from C. So, the amplitude parameter is subdivided into
a=(gc), ceC.
For small e the solution (1.5) must become close to the plane wave
u >~ up(c) + A(e, ) cos ¢,
(1.16)
¢ =kix1+ -+ kqrg — wt + do, w~wo(ki,...,ka,C))

where wo(k1, ..., kq, ) is the dispersion law of the linearized PDE near the manifold
of constant solutions ¢ € C, A(0, ¢) = 0.

Definition 1.2. — We say that the family of n-dimensional invariant tori of the form
117 w="U(py,...,¢n|AD,. .., AM),
. d)i:kixl+k§x2+~-+k‘§xd—wit+¢?, i=1,....,n

is obtained as the result of (nonlinear) interaction of n plane waves if the following
conditions are fulfilled.

(i) The functions (1.17) are 27w-periodic in ¢1, ..., ¢p.
(i) As functions of (A ... A™) they are analytic on a complement in Ax- - -x.A
(n factors) to a collection of finite number of algebraic subvarieties Ry, ..., Ry

(1.18) (AW AMY e Ax o x AN UY Ry, ¢ R @M,

(iii) Near the manifold of constant solutions the Fourier expansion of the functions
(1.17) has the form

Uy dn|AY LA™Y = wg(er, ... enien, ... en)
+ A(e1,e1)cos ¢y + -+ + A(en, ) cos ¢y,
+ Z Amei (m1¢1+"'+mn¢n)

mezZ™,|m|>1
¢j:k{x1+~~+kéxd—wj+¢?, j=1...,n
w’ :wo(k{,...,ké,cj)—l—z:wi
k>1
uo(€C1y -y Cni €1,y ... En) =uglcr) + -+ +up(en) + O(e).

(1.19)
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The Fourier coefficients

A = A (k.. kS 61,y EnyCly ety Cn)
must be analytic functions on (1.18). Their Taylor expansions in €1, ...&, near
C x -+ x C must begin with the terms of the order |m/|,
(1.20) Ay = O™, Im| = |ma| + -+ + |ma).

Also in the expansion of the dispersion law the k-th term
(1.21) w,j%:wi(k},...,kg,al,...,en,cl,...,cn)

must be of the order k in €. The coefficients of the leading Fourier modes must
coincide with the leading coefficients of the plane wave expansions (1.16).

We believe that existence, for any n > 1, of the analytic families of n-dimensional
invariant tori satisfying the assumptions of the Definition 1.2 implies integrability
of the PDE. It would be interesting to prove precise mathematical theorems in this
direction.

In this paper we pursue a more modest goal. For the example of KP equation
we want to prove that, indeed, the analytic families of invariant tori satisfying the
conditions of the Definition 1.2 exist for any n. Actually, we will prove that the fam-
ilies of invariant tori obtained by the I.M. Krichever’s construction [25]) satisfy the
assumptions of the Definition. Moreover, we will prove that all such analytic families
of invariant tori must be given by the Krichever’s construction. Our main motiva-
tion was the mathematical understanding of the remarkable physical experiments of
J. Hammack et al. [20, 19]. In these experiments the propagation of small amplitude
shallow water waves was studied. In a water tank of the size approximately 13 x 27
m and depth 20 cm the waves were generated by a wavemaker programmed to create
a superposition of two cnoidal waves with different directions of propagation and dif-
ferent amplitudes. The measurements of the resulting wave profile proved to be in a
remarkable agreement with the two-dimensional invariant tori for KP given in terms
of theta-functions (see below). Also some oceanic observation were analyzed in [19];
again the agreement with the theta-functional invariant tori looked encouraging.

To our opinion the experimental results suggest the following main question to be
addressed: why the multidimensional invariant tori for KP created by Krichever [25]
with sophisticated algebro-geometric technique are observable in the physical exper-
iments? Putting this in a different way, the mathematical questions to be answered
are

— does the Krichever’s construction cover all finite-dimensional invariant tori for
KP?

— are these tori stable?

One of the difficulties in proving exact statements in this direction is quasiperi-
odicity of the solutions with respect to the spatial directions. The extension of the
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finite-dimensional Arnold-Liouville and KAM theory to the infinite-dimensional sit-
uation developed in [28, 7, 24, 35] mainly refers to the space of spatially periodic
functions.

In Section 2 we prove a simple uniqueness statement (see Theorem 2.2 below): all
finite-dimensional invariant tori for KP obtained as a result of nonlinear interaction
of plane waves in the sense explained above are expressed in terms of theta-functions
of Riemann surfaces via the Krichever construction.

In the last Section we extend the technique developed in the proof of Theorem
2.2 to the explicit construction of the moduli space of the KP theta-functions of
infinite genus. They are obtained as infinite superpositions of plane waves satisfying
certain requirements to ensure convergence of the infinite sums. The KP solutions
given in terms of these theta-functions will be quasiperiodic in both space and time
variables. For the case of hyperelliptic Riemann surfaces the theory of theta-functions
of infinite genus and associated KdV periodic and quasiperiodic solutions was initiated
by H.McKean and E.Trubowitz [31]. For the KP case, where arbitrary Riemann
surfaces can appear in the finite genus case, the infinite genus theory for the doubly
periodic in (x,y) KP solutions was created by I. Krichever [27] (see also [6]). The
state-of-the-art of the theory of the associated infinite genus theta-functions can be
found in the monograph of J. Feldman, H. Knérrer and E. Trubowitz [17]. Observe
that our approach does not require any assumption about spatial periodicity.

2. Can one see the shape of a Riemann surface looking at the water
waves?

The question in the title of this Section clearly alludes the famous problem, due to
M. Kac, regarding the possibility of hearing the shape of a drum. In the situation of
the theory of water waves, however, one does not know a priori whether a “drum”,
i.e., a Riemann surface determining the shape of the wave profile, is hidden behind
the sufficiently rich class of the water waves. In this Section we suggest an analytic
approach to this problem based on a uniqueness theorem for analytic families of
invariant tori for the KP equation given by the Krichever construction.

Let us begin with some preliminaries of the theory of KP equation. Although (1.8)
is strictly speaking not an evolutionary PDE, our definition of nonlinear interaction
of plane waves makes sense also for the KP case. Observe that the mean value

/u(m,y,t) dx

is a first integral. We will always consider the solutions with zero mean value. This
is not a serious constraint. Indeed, the KP equation is invariant with respect to the
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action of the group of scaling/Galilean transformations

1
z = cx' +ac’y — Ebc3t’

2/ 34/
= _ - t
(2.1) y=cy 2ac
t=ct

1 1

-2,/ 2
= —_ __b
U=-c u + 2a 3

depending on three arbitrary parameters ¢ # 0, a, b. Using these transformations one
can always kill the mean value.

Technically it is more convenient to work with the so-called bilinear form of KP.
The substitution

(2.2) u = 202log 7(x,y,1)
reduces (1.8) to
(2.3) 37'9?1, — ATy Tygn + T Tagza + 3(TyyT — Ty2) + A(TpT — TuTt) + 2672 = 0.

Here b is an integration constant. Actually what will be studied is the invariant tori
for (2.3) of the form
T(l‘, yﬂf) = AO + Z Amei (m1¢1+"'+mn¢n)7
(2.4) o
¢j =kjz+ly—wit+¢), j=1,...,n

Without loss of generality one can assume

Ag = 1.
Moreover, doing if necessary suitable shifts along ¢?,...,¢" one can normalize the
leading coefficients in such a way that
(25) A-1,0,..,0) = A1,0,...,005 -+ A(0,..,0,-1) = A(0,....0,1)-

Let us first recall the construction of the algebro-geometric invariant tori for KP.
They are parametrized by quadruples (3,,, 00, (, o) where 3, is a Riemann surface of
genus n with a marked point co € X,,, ¢ is a 3-jet of a local parameter on ¥,, near
00, ((00) = 0. Finally, o must be an anticomplex involution

(2.6) 0:%, —%,, olx)=o00, (=

such that the fixed-point set of the involution o consists of n 4+ 1 components. Call
ai,...,a, the (homology classes of) the suitably oriented components not containing
the point co. These will be the basic a-cycles on the Riemann surface ¥,. The
conjugated b-cycles can be choosen arbitrarily provided that

(2.7) o«(a;) = a;, o.(b;)=-b;, j=1,...,n
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The Fourier coefficients of the algebro-geometric solutions have the form
(2.8) Ay = e7™mBm)

where § = (B;;) is the real symmetric positive definite n x n matrix given by the
periods of holomorphic differentials

(29) ﬂij = —ij{ Wi, % w; = (5”
bj a;

The wave numbers and frequencies are given in terms of the coefficients of expansions
of the basic holomorphic differentials near co € 3,

1
T 2r
The phase shifts ¢? can be arbitrary real numbers.

The formulae (2.8)—(2.7) is nothing but the Krichever’s construction [25] of the
algebro-geometric solutions to KP (see also [10, 13] regarding the reality conditions).
We will refer to the class of quadruples (X,,00,(,0) described above as the KP
Riemann surfaces, and their theta-functions as to the KP theta-functions. Recall
that, besides the reality conditions no other constraints are to be imposed on the
triple (X, 0o, (). More precisely, the following statement holds true [13].

(2.10) w; (P) (ki + 1Li¢ +wi> +O(¢*) d¢, P — oo.

Theorem 2.1. — For any KP Riemann surface (X,,,00,(, o) the formulae (2.2), (2.4),
(2.8)(2.10) with arbitrary real phase shifts ¢9,...,¢% define a real smooth solution
to the KP equation (1.8). Conversely, if the real smooth KP solution u(z,y,t) of
the form (2.2), (2.4), (2.8)—(2.10) for some triple (X,,00,() remains smooth under
evolution along all flows of the KP hierarchy then the Riemann surface 3, must admit
an involution o with the above properties. Moreover, all the phase shifts must be real.

Let us call the wave numbers k1, ..., ky, l1,...,l, resonant if, for some i # j
(2.11) ki = ikj and likj = ljk?z

If this is not the case and k1 # 0,...,k, # 0 the wave numbers will be called non-
resonant. From the definition of plane waves it follows that one can assume all wave
numbers k; to be positive.

Theorem 2.2. — Let (2.4) be a family of solutions to (2.3), for arbitrary phase shifts

O, ..., %, depending analytically on the small parameter € and on the “amplitudes”
(2.12) a1 =Aqp,.0 >0, a2 =A01,0,..,00>0,...,an = App,. 1) >0
and on arbitrary nonresonant wave numbers k1 £ 0,...,k, #0, l1,...,l, such that
(2.13) A = 0(5\m1\+~~+|mn\).

Then this family is given by (2.8)-(2.7) for some KP Riemann surface (¥,,,00,(,0)
of the above form.
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Proof. — Let us begin with algebraic preliminaries. Denote

R:(C[zfﬂ,... 2

) #n
the ring of Laurent polynomials of n variables. The degree of a monomial in R is
defined by

degzit ...z = |ig| 4+ - + in].
Denote R,, the subspace of Laurent polynomials of the degree m. The product of
Laurent polynomials satisfies

(2.14) RiR; C 1 Ri.
The ring of trigonometric polynomials in ¢1, ..., ¢, is naturally identified with R
by putting
Zj =e'?, j=1,...,n.
So, the above definition and properties of the degree holds true also for trigonometric
polynomials.

We can now reformulate the assumptions of the Theorem in the following way. We
are looking for a solution to the equation (2.3) in the form

(2.15) T=1+ €Zaj(2:j + z;l) + Z gmriml
j=1 m>2
where
(2.16) =N e Ry
k=2

In these formulae we use the superscript [m] for labelling the terms of the order m
with respect to €. The coefficients of these trigonometric polynomials along with the
coefficients of the expansions

1 m .
(2.17) wjzz(i%kj/\?—k?)—i—ZEMw][» ], i=1,...,n

m>1
(2.18) b= cmpm
m>1

are to be determined from the KP equation (2.3). Here we introduce the notation
)\j;:— j:].,...,n.

Let us now describe more precisely the result of substitution of the ansatz (2.15)
to the KP equation (2.3). We need to introduce the following notations. Put

Ny 0 N2 N L gpan 2
ar];k]a%, (911*;]9])\]8%, =2 K 3/ngj)a¢j.

j=1
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We also introduce operators

- 0
o =3 W 2 s

=7 9%
Finally, the fourth order linear differential operator L will be defined by
(2.19) L =0y + 30, + 40,0;.

Using these notations one can rewrite the result of substitution of the ansatz (2.15)
to the KP equation at the order m > 2 approximation as the following equation:

(2.20) L™ + Y [4@%13”[1} 1 oplkl 1
k+l=m
+ 3 [382 102711 — 49,7119371) 4 71917l 1 47119, 0,711 — 49,7110,711 |
it+j=m

n Z { oKl 9, 711 710) _ 49,71kl £l 4yl HTU]}:O,
i+j+k=m

In this formula it is understood that, in the sums 3" all the summation indices are
distinct from zero.

The left hand side of this equation is a trigonometric polynomial in ¢9, ..., ¢%. Be-
cause of the property (2.14), the degree of this differential polynomial is less or equal
to m. Since ¢9,...,#" are arbitrary variables, we can determine the unknown coef-

ficients just equating the coefficients of the trigonometric polynomials. More specifi-
[m]

Lewvin

Flml Z M pilindf++ingy)

21 .0.ln
2<ir [+ +in|<m

cally, in order to determine the coefficient a; of the trigonometric polynomial

one is to collect the coefficients of 21 ... 2% in (2.20). Clearly the resulting expression

[m]

will depend linearly on a; ", . It Wlll also depend on the lower order coefficients

ET ]J , ™'l with m’ < m, and on wj[-m/]
[i1] + -+ + |in] = 2. Similarly, in order to compute the coefficient wj[-mfu of the

expansion (2.17) one is to collect the terms containing the monomial z;. Again, it is

easy to see that all the coefficients of this monomial depend at most linearly on wim =1

J

g /]j , b with m/ < m, and on w][-ml] with m’ < m — 1. Finally, to

determine b™ it suffices to collect the constant term of the trigonometric polynomial
(2.20).

We obtain a recursive procedure for computing the coefficients of the expansions

(2.15)—(2.18). This procedure is an analogue of the classical Stokes expansion method

with m’ < m—1. Here we use the assumption

and also on a

explained in the introduction; it also resembles the Lindstedt series method of the
classical mechanics (see Chapter XIII of the Poincaré book [34]). Let us prove that
this procedure works to produce a unique solution for any m.
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It is easy that the equations for b[™ and w][-m_l]

from the first line of (2.20) it follows that the coefficients of these unknowns are equal

have unique solutions. Indeed,

to 1. Let us prove that the coefficient of azn]z is not identically equal to zero.
Let us introduce the polynomial in 2n variables ki,...,ky,, A1,..., A, depending
on n integer indices i1, . .., in,
n 4 n 2 n n
(2.21) D(iy, ..., in) == (Z ksis> -3 ( > kSASz‘S) = ks Y (K2 = Bk A2)is.
s=1 s=1 s=1 s=1
Clearly, the following identity holds true
(2.22) Lt tmbrt4madn) _ Dy | my, et (migrttmadn)
if

1 .
¢J:ij+k]/\jy+Z<k]3_3kj)\§>t+¢?, j=1...,n.
For example,
D(+£1,0,...,0)=---=D(0,...,0,£1)=0

D(l, 1,0,..., 0) = 3k1ko [(kﬁl + k2)2 + (/\1 — /\2)2]
D(l, —-1,0,..., 0) = —3k1ko [(kﬁl — k2)2 + ()\1 — /\2)2}

etc. Let us prove that, for arbitrary integers i1, ..., i, satisfying
(2.23) lia] 4+ Jin] 2 2
the polynomial D(i1,...,4,) is not an identical zero. Indeed, collecting the terms of

the polynomial that contain the third and fourth powers of the variables kq, ..., k,
yields

n
D(iy,... in) = 3 i2(if = 1) k4 dgig(4i2 — DE3ky + ..
s=1

s#t
where the periods stand for the terms of lower degree in k;. If at least one of the
indices 41, ..., is not equal to zero or to +1, then the sum of the fourth powers of &;

does not identically vanish. If this is not the case, at least two indices, say is and iy,
s # t do not vanish, due to the assumption (2.23). In this case the coefficient of k>k;

is not equal to zero.
[m] wgmfl], plml

11...2p?

From the above arguments it follows that, all the coeflicients a
for m > 2 are uniquely determined from the equation (2.20) in the form of polynomials
in ay,...,a, with the coeflicients being rational functions in k1, ..., k.

We are now to prove existence of the analytic families of invariant tori of the
described form. This will imply, last but not least, the proof of cancellation of all the
divisors D(iq, ..., in) With |i1]| 4+ - 4 |in] > 2.

To prove existence of the families of invariant tori with needed analytic properties
we will use the Krichever construction [25] of algebro-geometric solutions of KP.
According to this construction an arbitrary Riemann surface ¥, of genus n with an
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arbitrary marked point co € ¥,, and a 3-jet of a local parameter ¢ near co, {(o0) = 0,
gives rise to a family of solutions of KP of the form

u(z,y,t) = 07 logf + %
f= 3 erimamlgimiort o tmas,)

mezZ™
(224) ¢j :kj$+ljy—th+¢?, j: 1,...,’[1.

In this formulae 5 = (f;;) is the period matrix (2.9) of holomorphic differentials on
Y, with respect to a basis of cycles aq,...,an,b1,...,b, € H1(X,,Z) normalized by
the standard form of the intersection pairing matrix

(2.25) a; °oa; = bz o bj = 0, a; o bj = (Sij,

the wave numbers k;, {; and frequencies w; are given by the expansions (2.10) of the
normalized holomorphic differentials w; near oo, #Y,...,8° are arbitrary phase shifts,
¢ is a certain constant. The constant ¢ can be killed by the Galilean transformation

c L c,
Ur— U — — r— T+ -
6’ 4
corresponding to a suitable change of the 3-jet of the local parameter ¢
€ .3
(— -

We will always assume ¢ = 0.

The solution (2.24) in general is a complex valued meromorphic function of the
variables x, y, t, ¢9,...,¢2. If the triple (3,,00,() admits an antiholomorphic in-
volution o satisfying (2.6) such that the fixed-point set of the involution consists of
n + 1 ovals, then the period matrix g8;; and the wave numbers and frequencies are
all real provided the basis of cycles is chosen in the way described in the Theorem.
Moreover [16], the theta-function in (2.24) takes positive values for all real phase
shifts ¢9,..., 4%, and the solution u(x,y,t) is real-valued and smooth. Therefore, in
this case, the Krichever formulae (2.24) define a n-dimensional invariant torus for KP.
It will also be invariant for all the flows of the KP hierarchy. Conversely, from reality
and smoothness of the solution (2.24) on the torus generated by the flows of the KP
hierarchy it follows that (X,,, 00, () must admit the antiholomorphic involution with
the above properties (see the Theorem 2.1 above).

We will now produce the needed analytic family of n-dimensional invariant tori for
KP considering the families of solutions (2.24) with “small” a-cycles.

Let us consider the family of Riemann surfaces of the above form depending on n
sufficiently small parameters s1,..., sy, such that, in the limit s; — 0 the j-th cycle
a; is squeezed to zero such that

(2.26) n(8)ls;=o0
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is a genus n — 1 curve with an ordinary double point. Construction of such a deforma-
tion can be found in the Chapter III of the Fay’s book [16]. The following statements
proved in [16] will be essential for us.

First, denote %7 the normalization of (2.26) and P the two points of the nor-
malization to be identified on the nodal curve. The basic normalized holomorphic
differential w;(s) on X,(s) in the limit s; — 0 goes to the normalized third kind
differential on f){l with simple points with the residues £1/27i in the points P;F
resp. Other normalized holomorphic differentials wy, on ¥, (s) go to the normalized
holomorphic differentials on f){l The same claim holds true for limits of normalized
2nd and 3d kind differentials on ¥,,(s) with pole away from the pinched cycle. The
diagonal entry §;; has logarythmic behaviour as s; — 0,

Bjj = —logs; + O(1),

other matrix entries have regular expansions in s;.

Iterating this procedure, in the limit s; — 0,...,s, — 0 the Riemann surface ¥,
goes to the rational nodal curve with n pairs of identified points 27 ,...,27. The
basic holomorphic differentials take the limiting values

1 1 1
9.97 :—‘( - )d, i=1,....n.
( ) bt 2m z—z; z—z;-r S "

We will assume that the marked point co € X,,(s) corresponds to the point z = oo of
the limiting Riemann sphere and that the local parameter ¢ on %,,(s) goes to

1
(=~
z
on the Riemann sphere near infinity. Comparing the expansions
1 _ _ _
wi= =5 (5 = )+ (57 = BRI+ (5 = (5120 + O()]

with the formulae (2.10) expressing the wave numbers and frequencies in terms of
expansion near co of the basic normalized holomorphic differentials we conclude that
the identified points must have the form

(2.28) z;tzé(Ajiikj), j=1,...,n

Observe that the nonresonance condition (2.11) means that all 2n points (2.28) are
pairwise distinct.

The crucial point in proving cancellation of all small divisors but those correspond-
ing to the resonances (2.11) is in proving that arbitrary configuration of the pairwise
distinct double points (2.28) on the Riemann sphere can be obtained by the above
n-parametric degeneration procedure within the family of KP Riemann surfaces.

Let B;;(s) be the period matrix (2.9) of the family of Riemann surfaces with re-
spect to the basis of cycles that will be assumed to be continuosly depending on the
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parameter s. Denote
(2.29) aj(s) =e ™) =1 n.
At s =0 one has

a1(0) =--- = a,(0) = 0.

The off-diagonal entries of the matrix §;;(s) admit finite limits at s — 0 and

ong.; ki—kj)2+ (i —X\)?%2
2.30 ¢~ 0) — (i =k i

(230) (b Tk 4 (A 7

The wave numbers k;(s),;(s) and the frequencies w;(s) defined from the expansions
(2.10) also admit the limits as s — 0 of the form

1 )
(2.31) ki(0) = ki, 1;(0) = k), wi(0) = Z(:’)ijf. -k, j=1...,n

We are now to prove that, for arbitrary nonresonant real numbers k1, ..., k&, and
arbitrary real numbers ly,...,[, and for arbitrary sufficiently small positive numbers
ai,...,a, there exists a family of triples (¥,,,00,() of the above form depending
analytically on the parameters a1,...,an,k1,...,kn,l1,...,l,. To this end we are to
introduce theta-functions of the second order.

Let v = (v1,...,vy) be a vector with all components v; = 0 or 1. Such a vector
will be called characteristic. Define second order theta-function 6[v](¢|3) with the
characteristic v by

(2.32)  6[v](¢]9)

n
= Z Hai(mﬁrm vi) H Zijm MMV tm Vi Si((2matvn)gite o+ (2matvn)én)
mezn i=1 i<j
Here
(2.33) aj=e i Ziy=e a4

Our definition of the second order theta-functions differs from the standard one (see,
e.g., [16]) by the factor

1 - —v2/2 —vv; /2
i=1 i<j
The advantage of our normalization is that, the functions (2.32) are real analytic in

the variables Z;; > 0, a; > 0, ¢, € R provided that the lowest eigenvalue p of the
symmetric off-diagonal matrix

log Zi;

satisfies

(2.34) p<27rlogobj_27 j=1,...,n.
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Actually, (2.32) are even functions in ay,...,a,. In particular,

(2.35)  A[0]=1+2 Z a? cos ¢; + O(a”)
i=1

(2.36)  O[n,] = cos ¢; + Z a? [Zij cos(2¢; + i) + Zigl cos(2¢; — ¢;)] + O(a*)
J#i
(2.37) Blny] = cos(ey + ;) + Z;;" cos(di — ;)

+ Z ai [Ziijk cos(2¢, + ¢; + ¢;) + ZﬁﬁlZﬁvl cos(2¢k — ¢ — ¢;)
k#i,j

+ Zigl(Ziijfkl cos(¢; — b; + 2br) + Zi;Iij cos(¢hs — & — 2¢k))}

+ O(a®)

In these formulae n; stands for the characteristic with the i-th component 1 and all
others 0,

nij:ni—l—nj, Z#]

The following statement was proven in [8] (cf. also [32], [10]).

Lemma2.3. — The function

T(z,y,t) =0(¢lf) = Y e TimImeimdrtetmadn),
mEZ"

d)j:k'jx—i—ljy—wjt—i—d)(;, j=1,...,n

satisfies (2.8) for arbitrary phase shifts ¢Y,...,¢% iff the vectors k = (ki,...,ky),
l=(lh,...,ln), w = (w1,...,wy) and the matriz § = (B;;) satisfy the following
system of equations

(238) Sk, Lw,B) = (9} + 307 — 40,0, + b) Bv](6]8)]o—0 = 0

for some constant b = b(k,l,w,3) and for arbitrary characteristic v € (Z/27)". Here
0 0 0
O = ki—, O := li—, 0,:= Wi =—-.
e A= oY

In particular, the equations (2.38) remain valid for the values

k=k(s), 1=1Is), w=w(s), B=70(s)

of our family of Riemann surfaces for a suitable constant b = b(s). Indeed, it can be
readily checked that, at the limit s = 0 the equations (2.38) hold true by substituting
a3 =--- = a2 =0 and the values Z;j, kj, lj, wj from (2.30), (2.31) and b = 0.
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We will now prove that the system (2.38) has unique solution of the form

Zij = Zij(ad, ... a2 ki, ke, ),

wj=wjal, ... a2 ke, kel ),
b=0b(a3,...,a2 k1, .. ko1, 1)
(2.39) Zi (0,0, k1, ks L) = EZ i 8:232
Wi(0,. ., 0.k, o kgl ) = i(3k>\2 k)
b(0,...,0,k1,... kn,l1,...,0ln) =0
analytic for sufficiently small a?, ..., a2 and for arbitrary nonresonant vectors k and [.

Let us first construct such analytic solution for the subsystem
(2.40) fl0]=0, f[n;]=0,i=1,...,n, fln,]=0,1<i<j<

To this end let us fix the nonresonant vectors k£ and A° and choose a real positive

number A such that the symmetric matrix ?j with

0 Lo (R =KD+ (A = AD)?

0 “:__1 i A ]
i BT Rz (0 e 7

Jj

L 1
= ——loga,
- gaj,
is positive definite for
O0<a;j <A, j=1,...,n
Then the functions f[0], f[n;], f[ni;] will be real analytic in a, Z, k, A, w, b for
0<a; <A, j=1,...,n
for some A’ < A and for Z, k, I, w, b sufficiently close to
(k7 — k)% + (A) = A)? K

0 0 0 0 0 0y2) 2,0

0 — k A X (N k b =0

TR AHEDEE (N =D T YT ; (BO9)° = (5)).
respectively. For a3 = -+ = a,, = 0 the system (2.40) has unique solution given by

(2.39). We derive existence of such solution to (2.40) for positive small a by applying
the implicit function theorem (cf. [9]). Indeed, from the formulae (2.35)—(2.37) it
readily follows that, at a2 =0,...,a2 =0

oflo] 1
ab ’

O70) _ Ol _ s

8Wj ’ 8(4)]' v

(2.41) of0] _,  0flni] _
8ZP<1 - 8qu -
78 ’L - . .

g[ZnJ] =32 kik; [(ki — kj)* + (N = Xj)?] 8ipdjq, i <Js D <.

rq
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We obtain a triangular Jacobi matrix with the nonvanishing diagonal. This proves
existence of the needed analytic solution.
Explicitly, the expansion of the needed solution reads

py kil
(242) Zy = fiﬁ {1 + 32— [afkipi; + ajkip;i]
Pij [oipi;
kik; 2kdq.;
+256-2 At 4 O(at)

pj_jpi—j k#i,j pj;cpi_kpjkpj_k
where
(243)  p5 = (ki £ k)’ 4+ (N —N)% i # ]
(244)  py = (K2 = k2" 428K — k) (A — A)2 = 3(Ai — Aj)*
(2.45)  qiji = [(A = A (K = 3A7) + (A — M) (kg = 3A%) + (A = M) (k7 — 3)7)]
X [(Ai = A) (A5 = M) (A — i)

i (k5 — k) + Ny (ki — kD) + M (k7 — K2)]
a2kA (i — \j)?

(8kiA? — K7) + 6ki[a2k2 + 83 “p+—[f} +0(a%)
i il

(2.46) Ww; =

R

(2.47) b=—6Y alk!+O(a*).

Let us now prove that the solution (2.42)—(2.47) to the subsystem (2.40) also sat-
isfies the whole system (2.38).

Lemma24. — Let Z?j be the value of the functions (2.42) at a point a®, k%, 1° (non-

resonance of k;?, lg-) is assumed). Then the system of equations

(248) Zij(a%,.. .,ai,kl,. --7knall7-- 7ln) = ZO

ijs 1<i<j<n

for sufficiently small

Do (a2 = (@) + 3 (ks — )2+ >0 = X)?

has three-dimensional variety of solutions.

Proof. — Let us first establish validity of the claim of the Lemma for a{ = - -+ = a.
Let us rewrite the formula (2.30) in the form of the cross-ratio
ko — k)2 A— N2 P S Vo Vo
a9) B RP A A ey = L AT
(ki + k)2 + (N — Aj) I 2=z oz -z

+ are defined in (2.28). Because of invariance of the

cross-ratio with respect to the M6bius group
az+b

— s

cz+d

where the complex numbers z

ad — bc # 0,
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the space of complex solutions to the system

(/fi — kj)2 -+ (>\i - Aj)2 B (k? — k?)Q + (/\? — )\?)2
(ki + K2+ N = A)2 (B +ED)2 4 (A = A9)?

1<i<j<n

is at least three-dimensional. The subgroup PSLs(R) of the Mébius group preserves
reality of the numbers k;, A;. So the dimension of the space of real solutions is also
greater or equal to three. It is easy to see that this dimension cannot be greater
than 3. This proves the Lemma, in the limiting case a® = 0.

Let us now extend the PSLy(R)-symmetry onto the whole space of solutions to
the equations (2.40). We first rewrite the symmetry in the infinitesimal form with the
generator

(2.50) XO:ZE (A —E2) +q); +r] ai +Z[p/\k: +qk]a(z

Here p, q, r are arbitrary real parameters. The one-parameter subgroups correspond-
ing to ¢ and r have a clear meaning: these are the groups of scaling transformations
of k and A and diagonal shifts of A\ respectively,

kjr—ckj, \jr—cXj, j=1,...,n, c#0

2.51
( ) AjF—Aj+a, j=1,...,n

They are clearly also symmetries of the full system inducing the transformation
3 3 5 .
lj — I + ak;, wjl—>wj+§alj+1a ki, j=1,...,n

The generator of the one-parameter subgroup corresponding to p can be recast into
the form

(p) _ 9 W0 9 0o_ 1 12 3
(2.52) X 7251 %Jr o @i = 1Bk A] — K.

Remarkably, in this form the transformations (2.52) yield symmetries of the full sys-
tem (2.38) when w? is replaced by the exact solution w; of the system. This deep
result is one of the important steps in the proof of the Shiota theorem [36]. It follows
from the following claim [36]: compatibility of the system (2.38) implies compatibility
of the system

(2.53) (2070) + 40,0, — 4040 + b) O[V)(8]3)|g=0 = 0

for some vector & and some constant b. From uniqueness of such a vector it follows
that w coincides with the derivative of w along the vector field

9 9
(2.54) X® = Z Sl ~ g

The lemma is proved. O
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We are now ready to complete the proof of the Theorem. According to Lemma
2.4 combined with Torelli theorem [18], the dimension of the space of solutions to
the system (2.38) is equal to the dimension of the moduli space of (real) Riemann
surfaces of genus n plus 3, i.e., it is equal to 3n for n > 2. We have described the
3n-dimensional manifold of solutions (2.42), (2.46) to the subsystem (2.40) that by
construction contains the solutions of the form (2.9)-(2.7) for Riemann surfaces with
sufficiently small real ovals ai,...,a,. The dimension counting proves coincidence
of these two families. In particular this implies that all the remaining equations
of the system (2.38) hold true on the space of solutions (2.42)—(2.47). Therefore the
unique solution to KP defined in (2.15)—(2.17) starting from a given nonresonant wave
numbers k1,...,kn, l1,...,l, and arbitrary sufficiently small amplitudes aq,...,a,
must have the form (2.8)—(2.7). Uniform convergence of the series (2.24) for theta-
functions together with cancellation of all the divisors but D(n; &+ n;), ¢ # j implies
analyticity of the family of invariant tori. The Theorem is proved. o

Remark 2.5. — Explicitly, the extension of the symmetry (2.52) onto the full space of
solutions to (2.38) reads

1 0 1 0
2. XP =N" " \jkj— + - (A — kD) —
OV L
2,2 G\ T A 4
VE YR
Together with the fields
0 0
x@ — b 4 N——
2 kigE gy
and
0
x(m) — -
25,
it generates the action of PSLs(R) on the space of solutions of the system (2.38):
[X(Q) X(p)] = x® [X(V") X(p)] = lX(Q) [X(V") X(Q)} = x)
) ) ) 2 Y ) *

The vector field X (?) generates infinitesimal changes of the marked point co € ¥,,. In
other words, integrating the vector field (2.55) one obtains, for n > 1, the Riemann
surface with the parameters a?, ..., a2, k1,...,kn, A1, ..., A,. This construction gives
an answer to the question put in the title of the Section. It would be important
however to elaborate more practical tools in the analysis of the experimental water
wave data in order to measure the moduli of the Riemann surface “hidden” behind
the water wave profile. For the case of two interacting plane waves such tools has

been developed in [20, 19].
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3. Infinite genus theta-functions of Riemann surfaces without Riemann
surfaces

The invariant tori for KP identified in the previous Section as the result of nonlinear
interaction of n plane waves with small amplitudes 2ay,...,2a, can be represented
as infinite sums of homogeneous polynomials in aq,...,a, of various degrees with
coefficients depending on the phases ¢1, ..., ¢, and on the wave numbers k1, ..., k,,
l1 = k1M1, ..., ln = knAn. Let us recast this sum in the following way. For any subset

I={i,....ig} c{1,2,...,n}, ¢g>0
denote
(3.1) GI:ail...aigAHI
the sum of all monomials that contain only a; for ¢ € I. We put
0y =1.
Denote also
¢I:{¢i17"'7¢ig}’ aI:{a/iM"'va’ig};
kr={ki,,... ki, }, Ar={ i, -, A, }-

Lemma3.l. — The genus n KP theta-function described in the Theorem 2.2 can be
represented in the form

(3.2) (1, ¢nll) = 29\1\(¢1|a1,/€1,>\1)
i

where the summation takes place over all subsets I C {1,2,...,n}. The functions
9|I|(¢1|a1,k1,/\j) are real analytic for all real monresonant vectors ky, Ar and for
sufficiently small nonnegative amplitudes ay. The terms of this expansion can be
uniquely determined from the system of the form (2.38) with n — |I| by requiring that
the sum
(3.3) > 01(dslas, ks Ag)
JcI

with

¢i=ki(a:+/\iy)—wft+¢?, 1el

with some vector w! satisfies KP.

Here |I| is the cardinality of the set I. It should be emphasized that the radii of
convergence
iy < Tiy, A, <Ti,

of the series depend on kj, Aj.

Proof. — This statement is almost obvious since, supressing all the amplitudes a; = 0
for j € {1,2,...,n} I one reduces a theta-function of the genus n to another one of
the genus |I]. O
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We will also redenote the functions Af; by Af, with ¢ = |I|. Explicitly, from
(2.42)—(2.45) it follows that

(3.4) Abi(¢|a) —2Za L cosng

n>0
(3.5) Ab2(¢1, palar,az, ki, ka,l1,l2) =2 [— cos(p1 + ¢2) + Piy cos(¢1 — ¢2)]
P12 P12
464 kiko ( 2).2 27.2 P12
——— (aikip12 + a3kipar) | =2 cos(¢1 + ¢2) — =22 COS(¢1 $2)
[p12p12)? P12 P12
+0(a%)
(36) A93(¢17 ¢27 ¢3|a15 az, asz, kla k27 k3a Z17 l2) Z3)
=2 [% cos(¢1 + ¢z + ¢3) + pfp%pgl cos(p1 + p2 — ¢3)
P12/)23P31 P12P23P31
+ -+
m cos(¢1 — g2 + d3) + p1_2p733p3ll cos(—¢1 + g2 + ¢3)}
P12P23Ps1 P12P23P31
kikok B
+ 512 —aTsda { k[ 225 cos(é + d5) — 223 cos(9n — )]
P12P12P23P23P31P31 P23 P23
- +
+ azks [p—il cos(s + 1) — 2L cos(s — ¢1)}
P31 P31
k][22 cos(on + ) — 212 cos(on — 62)] b+ Ola)
P12 P12
In these formulae, we use the same notations as in the previous Section, i.e., the
polynomials p?:j, Dij, Gijk in the variables kq,..., &y, A1,..., A, with
Aj = 1j/k;

are defined in (2.43)—(2.45). Recall that, in order to obtain a solution 7(z,y,t) to the
KP equation (2.3) one has to substitute in (3.2)

¢j = kjx + Ly — wit + ¢)

with arbitrary phase shifts ¢9 and the frequencies represented by a decomposition
similar to (3.2)

(37) Wwj = Wy (k Aj ) + ijl‘(a’ja k]) + Z ijz'(a’jv ai, ki, kja Ais )‘]) +
i#]
In this expansion,
1
w?(k;j, )\]) = ZUf]A? — kf)
is the dispersion law of the linearized KP,

n
wj (alv"'7an;k17"'7kn;>\17"'7)\n)
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is the “pure genus n” contribution into the nonlinear dispersion law (3.7) to be found
from the system (2.40) of the genus n and then subtracting the lower genera contri-
butions. Explicitly,

(3.8) w; = 6k} (a7 + 3aj + O(a?))
2k4 —\; 2
(3.9) = 48k; » L ki = A1 + 0(a*)
VED) lepU

etc. The genus g term
(79 ...aigAf)g(qbil,...,¢ig|ai1,...,aig,kil,...,kig,)\il,...,)\ig)
®; :k»x—i-k»)\jy—wjt—l-gzﬁ?
wj = w; O(kj, \j)
+ij(a’jﬂkj)+"'+Awf(ain'"7aig7ki17"'7kig7)\i1ﬂ"'7)‘ig)

(3.10)

is created as the result of interaction of g plane waves

(3.11) 2ay, coslk;, (x + N\, y) — (kl1 i )t + qbgl] +
+ 2a;, cos[ki, (x + Xi,y) — (klg, Aig )t + qﬁ?q]

and their harmonics. If the amplitudes of the plane waves are of order ¢ then their g-
tuple interaction is of the order 9. In other words, to compute the solution 7(z,y, t)
of (2.3) of genus N >> 1 with the accuracy € for n < N it suffices to sum the
expansions of the form (3.10) with g < n truncating them at the order n. The result
of the truncation will give uniform in the whole plane (z,y) € R? approximation of
the genus N solution for the times |t| < O(e~™). Observe that the representation
(3.2) resembles the virial expansion wellknown in the statistical mechanics (see, e.g.,
[29], §72).

We want to generalize the expansion (3.2) to the case of interaction of infinite
number of plane waves. Given infinite sequences of real numbers

(3.12) az(al,ag,...), aj>0, k:(kl,kg,...), k?j>0, )\:(/\1,)\2,...)

we can construct a formal Fourier series of infinite number of variables ¢ = (¢1, ¢2,...)
representing it as the following power series in a

(3.13) qb|a k )\ Z Z a]Ae ¢1|a1,k1,)\1)

9=0|I|=g

The summation takes place over all finite subsets I C N. This formal expression
makes sense for finite sequences of amplitudes a, ¢.e., assuming that a; = 0 for j > N
for some big N. In that case it reduces, for sufficiently small aq,...,ay, to the KP
theta function of genus N.
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If all the amplitudes a1, as do not vanish, then, at each order in ¢ one is to summate
infinite series. E.g., at the order one (3.13) gives

2 Z a; Cos @;,
i=1
at the order two
P
QZa aj[ cos(¢; + ¢;) + — cos(¢i — ¢;)
1<j ZJ Pij

etc. We will now give simple sufficient conditions for convergence of the series (3.13)
for infinite sequencies of the data (3.12). To this end we are to recall some important
points of the theory of infinite dimensional theta-functions, following the book [17].

Let 8 = (;; be an infinite symmetric matric with real values, i, j =1, 2,.... We
say that the matrix 3 satisfies the FKT condition if there exists a sequence of positive
numbers o = (01,09, ...) and a number & satisfying

O<k<m
such that

(i) the following series converges

o0
(3.14) Z e "% < oo
j=1
(ii) for all finite sequencies of integers m = (my,ma,...), |[m| = |my|+|ma|+--- <
oo the following inequality holds true

(3.15) m, fm) = Z Bijmimj = Z o;m
J
For a given sequence ¢ introduce the Banach space B, given by
(3.16) B(,f{zi(zl,zg,...,)e@x’ lim @:0.}
J—00 U]
with the norm
(3.17) |z|| = sup == & ]|
i 95
According to the Theorem 4.6 of [17] for a symmetric matrix [ satisfying the FKT
condition for some o the theta-series

(3.18) 0(¢|0) = Z e~ ™(m.pm) i(m,¢)

mezZ>™,
|m|<oo

converges absolutely and uniformely on a sufficiently small ball around any point
¢ € B, to a holomorphic function.
It is clear that, for a given symmetric matrix §;; satisfying the FKT condition,

i; with the same off-diagonal terms g;; = 3;; for i # j

another symmetric matrix 3;;
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and with arbitrary diagonal terms satisfying 6§»j > B for all j = 1,2,... will also
satisfy the FKT condition with the same o.

Let us first give a simple sufficient condition for an off-diagonal symmetric matrix
Bij to ensure a possibility to choose positive numbers 311, 822, . ..in such a way that
the whole symmetric matrix 3;; satisfies the FK'T condition for some sequence o.

Lemma3.2. — Let the real symmetric off-diagonal matriz 3;; satisfies the condition
(3.19) pi=Y B <o, i=1,2,....

j>i
Let o be any sequence of positive numbers satisfying the convergence condition (3.14)
with some positive k < mw. Let ;-)j be another sequence of positive numbers defined by

j
ﬂ?j:Uj-F?Zuk, j=1
k=1

(it is assumed that all numbers p; are nonnegative). Then, for any choice of the
diagonal entries satisfying

(3.20) Bij > B, i=>1

the matriz B satisfies the FKT condition.

Proof. — Because of the obvious inequality
S Buymimg =Y Bim? =23 |mi . Biym |
i,j j i §>i

it suffices to obtain upper estimate for the second term. Let us consider the Hilbert
space of square summable sequencies

LY = {(wi, zis1,-..) | i T < oo}
Applying the standard inequality
(2, A2)| < |Alla(w,2), @€ LY

valid for an arbitrary Hilbert-Schmidt operator A to the rank one operator

(TiyTig1,y ... ) — (Zﬁijxj,o,...>

7>

Zi Zﬂijxj‘ < Zm?

Jj>i Jjzi

we obtain

Finite sequencies of integers give vectors in L(Qi). Applying to these vectors the last
inequality yields

oo
Zﬁijmimj > Zﬁjjm? -2 Zﬂj Zmi
] J

J=1  k>j

This proves the Lemma. |
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Using the Lemma, we will give a simple sufficient condition for an infinite sequence
of plane waves to generate, via the formula (3.13), an infinite genus KP theta-function
for arbitrary sufficiently small amplitudes a; and given wave numbers k;, ;.
Lemma3.3. — Let )

7 = 5N +iky), k>0 j=>1
be a sequence of complex numbers satisfying the following conditions.

(1) There exists a small positive number r > 0 such that

(3.21) lzi —zi| >r, i#34, |um—Z|>r 4,5=12,....
(ii) The series
(3.22) > 77 < o0
j=1
converges.

Then there exists a sequence of positive numbers ;-)j such that the matriz 5 with
the off-diagonal entries

1 (ki — k)2 +N—N)2
3.23 — J J
(3:23) R S S I wy Wl ot
satisfies the FKT condition for arbitrary diagonal entries such that

B> B8y, j=12....

Proof. — The formula for 6% can be rewritten in the form
o __ 1, ‘ﬂ :
K 21 Zj — Zj

Using the elementary inequality

1
|Imw| for ‘E‘ < =
z

g | %
og 5

[2]

we derive that
ks

N

for a fixed i and any sufficiently large j >> i. Applying Lemma 3.2 we complete the
proof of the Lemma. O

le |<—

We are now ready to prove convergence of the series (3.13) for a suitable class of
parameters a, k, A. Let the vectors k, A\ satisfy the conditions of the Lemma 3.3.
Choose positive numbers ¢; in such a way that the series (3.14) converges for some

positive k < . Choose numbers ?j in such a way that
J

(3.24) B >0 +2> ), j=1,2,...
k=1
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where

9N\ 1/2
(3.25) w= (2 ()7)

G>i
and the off-diagonal matrix 3; = 37 (k, ) is defined in (3.23).
Theorem 3.4. — Let the numbers kj;, A\, j > 1, satisfy the assumptions of the Lemma
3.8 and the numbers ?j satisfy the conditions (3.23)-(3.25). Then for arbitrary
positive numbers a = (a1, ag, . ..) satisfying

0
(3.26) aj <e TP j=1,2,...
the series (3.13) converges absolutely and uniformely on a sufficiently small ball
around any point ¢ € B, to a holomorphic function. The series expansion (3.7)

also converges to a sequence of frequencies (wi,ws,...). The theta-function (3.13),
after the substitution

¢ =ki(z+ Ny) —wit +¢), j=1.2,...

for arbitrary real phase shifts, yields a quasiperiodic solution to the KP equation (2.3)
for some constant b = b(a, k, ).

Proof. — Let us consider the space of off-diagonal matrices 3;; satisfying the following
inequalities
k vz 1,
(3.27) z;(z;@]r) <§(ﬁkk—ok), k=1,2,....
J=1  j>i

For any a satisfying (3.26) and any off-diagonal 3;; satisfying (3.27) the theta-series
(3.18) converges to an analytic function on B,. It will also depend analytically on
the period matrix, moreover, it satisfies the heat equations

00 020 00 020
A ——— = YU R Zij = — .
Oay, o972 0Z;; 0¢;i09¢;
One can also prove analyticity of the theta-functions of the second order (2.32). Like
in the proof of the Theorem 2.2, we consider the system of equations (2.40). The
functions f[v] vanish at a = 0 for

ﬁij = ﬁ?j, 1< j, wj = (3]6]/\? — kijg), b=0.

-

The inverse to the Jacobi matrix (2.41) is a bounded operator due to our assump-
tions about the wave numbers. Applying the implicit function theorem we obtain
convergence of the series (3.13), (3.7). The Theorem is proved. O

Example3.5. — Let A; = 0 for all j > 1 and k; be arbitrary positive numbers satis-
fying
ki — kjl > 1, i
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for some positive r. Then the assumptions of the Theorem 3.4 are fulfilled. In this
way one obtains the theta-functions of the hyperelliptic Riemann surfaces of infinite
genus (cf. [31], [17]). In particular, if k; grows linearly with j, then the series (3.13)
will converge for all @ with exponential decay

) —cj
aj <e

for some positive constant c¢. The formulae (3.13), (3.7) define quasiperiodic solutions
to the KdV equations.

More generally, our approach describes some neighborhood of the manifold of
hyperelliptic Riemann surfaces of infinite genus. In particular, assuming that the
points z; satisfying (3.21) belong to a strip of a finite width along the imaginary axis,
one obtain slow transversal perturbations of the KdV quasiperiodic solutions. The
condition (3.22) in this case holds automatically true. It would be interesting to prove
that the intersection with this neighborhood of the so-called heat curves of [27], [6],
[17] associated with doubly periodic in z, y solutions u(xz,u,t) of KP form a dense
subset. For the case of finite genus density was proved in [5].

Some of our assumptions about behaviour of the sequence of wave numbers can in
fact be relaxed. We will consider more general situation in a subsequent publication.
The assumption (3.21) that prevents the interacting waves to be close to resonant
seems however to be essential. For example, as it was shown by S. Venakides [38],
the limits of hyperelliptic theta-functions with the parameters k; accumulating in
the interval [0, 1] are weird functions described by a minimization principle of the
Lax-Levermore type [30]. It would be also interesting to prove that our infinite genus
theta-functions (3.13) come from a parabolic Riemann surfaces in the sense of Ahlfors
and Sario [1].

We also plan to study in subsequent publications the relationship of our approach
to the approach of V. Zakharov and E. Schulman to the problem of classification of
integrable PDEs.
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GENERATING FUNCTION ASSOCIATED WITH
THE DETERMINANT FORMULA FOR THE SOLUTIONS OF
THE PAINLEVE II EQUATION

by

Nalini Joshi, Kenji Kajiwara & Marta Mazzocco

Abstract. — In this paper we consider a Hankel determinant formula for generic
solutions of the Painlevé II equation. We show that the generating functions for the
entries of the Hankel determinants are related to the asymptotic solution at infinity
of the linear problem of which the Painlevé II equation describes the isomonodromic
deformations.

Résumé (Fonction génératrice associée a la formule déterminant pour les solutions de
I’équation de Painlevé 1)

On s’intéresse a la formule déterminant de Hankel pour les solutions génériques
de I’équation de Painlevé II. On établit une relation reliant les fonctions génératrices
des coefficients des déterminants de Hankel aux solutions asymptotiques a l’infini
du probléme linéaire dont les déformations isomonodromiques sont décrites par cette
équation de Painlevé II.

1. Introduction

The Painlevé IT equation (Pry),
2

(1) %:2713—43371—1—4(04—1—%),

where « is a parameter, is one of the most important equations in the theory of
nonlinear integrable systems. It is well-known that Py; admits unique rational solution
when « is a half-integer, and one-parameter family of solutions expressible in terms
of the solutions of the Airy equation when « is an integer. Otherwise the solution is
non-classical [13, 14, 17].
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The rational solutions for Pyj(1) are expressed as logarithmic derivative of the ratio
of certain special polynomials, which are called the “ Yablonski- Vorob’ev polynomials”,
[18, 20]. Yablonski-Vorob’ev polynomials admit two determinant formulas, namely,
Jacobi-Trudi type and Hankel type. The latter is described as follows: For each
positive integer N, the unique rational solution for o« = N 4 1/2 is given by

d ON+1
u = — log a ,
dx ON
where oy is the Hankel determinant
ag ap -+ GN-1
al a2 ... aN
ON = . .. . )
GN—-1 AN "+ A2N—-2

with a,, = a,,(z) being polynomials defined by the recurrence relation
agp = , a; =1,
(2)

n—1
day,
Ap+1 = T + E Ak Qp—1—k-
k=0

The Jacobi-Trudi type formula implies that the Yablonski-Vorob’ev polynomials
are nothing but the specialization of the Schur functions [12]. Then, what does the
Hankel determinant formula mean? In order to answer this question, a generating
function for a,, is constructed in [6]:

Theorem 1.1 ([6]). — Let 6(x,t) be an entire function of two variables defined by
(3) 0(x,t) = exp (2t/3) Ai(t*> — z),

where Ai(z) is the Airy function. Then there exists an asymptotic expansion
8 oo
(4) En log (x,t) ~ gan(m) (=2t)7",

as t — oo in any proper subsector of the sector |argt| < w/2.

This result is quite suggestive, because it shows that the Airy functions enter twice
in the theory of classical solutions of the Pyr:

(1) in the formula [3]
d .
U= log A1(21/3x), a=0.

the one parameter family of classical solutions of Py for integer values of « is expressed
by Airy functions,

(2) in formulae (3), (4) the Airy functions generate the entries of determinant
formula for the rational solutions.
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In this paper we clarify the nature of this phenomenon. First, we reformulate
the Hankel determinant formula for generic, namely non-classical, solutions of Pyp
already found in [10, 11]. We next construct generating functions for the entries
of our Hankel determinant formula. We then show that the generating functions are
related to the asymptotic solution at infinity of the isomonodromic problem introduced
by Jimbo and Miwa [9]. More explicitly, the generating functions we construct are
represented formally by series in powers of a variable ¢ that does not appear in the
second Painlevé equation. We show that they satisfy two Riccati equations, one in
the = variable of Py, the other in the auxiliary variable t. These Riccati equations
simultaneously linearise to the two linear systems whose compatibility is given by Piy.
This is the first time in the literature, to our knowledge, that the construction of the
isomonodromic deformation problem has been carried out by starting directly from
the Painlevé equation of interest.

This result explains the appearance of the Airy functions in Theorem 1.1. In fact,
for rational solutions of Pyy, the asymptotic solution at infinity of the isomonodromic
problem is indeed constructed in terms of Airy functions [7, 8, 15].

We expect that the generic solutions of the so-called Painlevé II hierarchy [1, 2, 4]
should be expressed by some Hankel determinant formula. Of course the generating
functions for the entries of Hankel determinant should be related to the asymptotic
solution at infinity of the isomonodromic problem for the Painlevé II hierarchy. We
also expect that the similar phenomena can be seen for other Painlevé equations. We
shall discuss these generalizations in future publications.

Acknowledgements. — The authors thank Prof. H. Sakai for informing them of refer-
ences [7, 8]. They also thank Prof. K. Okamoto for discussions and encouragement.

2. Hankel Determinant Formula and Isomonodromic Problem

2.1. Hankel Determinant Formula. — We first prepare the Hankel determinant
formula for generic solutions for Py (1). To show the parameter dependence explicitly,
we denote equation (1) as Pyi[a]. The formula is based on the fact that the 7 functions

for Pyy satisfy the Toda equation,
(5) oop —(0)) = Opi10n-1, neZ, '=d/dx.

n n

Putting 7, = 0, /00 so that the 7 function is normalized as 79 = 1, equation (5) is
rewritten as

2
(6) T?{L/Tn - (T?{L) = Tn+1Tn—1 — W/’TEL, T-1 = 1/)7 T0 = ]-a =9, nNnE 4.

Then it is known that 7,, can be written in terms of Hankel determinant as follows
[11]:
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Proposition 2.1. — Let {an tnen, {bn}tnen be the sequences defined recursively as

() an=a, 1 +¢ Y, aa;, by=b, y+¢ Y  bib, ao=¢p, by=1p.
i+j=n—2 it+j=n—2
,j20 1,720

For any N € Z, we define Hankel determinant 7n by
det(aitj—2)ij<ny N >0,
(8) ™ = § 1, N =0,
det(bi+j—2)i vy N <0.
Then TN satisfies equation (6).
Since the above formula involves two arbitrary functions ¢ and %, it can be regarded
as the determinant formula for general solution of the Toda equation. Imposing

appropriate conditions on ¢ and ¥, we obtain determinant formula for the solutions
of PH:

Proposition 2.2. — Let ¥ and ¢ be functions in x satisfying

(9) % _ % — oyt
(10) S — ol = 20,

Then we have the following:
(1) ug = (log )’ satisfies Pri[a].
(2) u_1 = —(log®)" satisfies Pr[c — 1].
/
(3) uny = (log TN“) , where Ty is defined by equation (8), satisfies P[4+ NJ.

TN

Proof. — (i) and (ii) can be directly checked by using the relations (9) and (10). Then
(iii) is the reformulation of Theorem 4.2 in [10]. O

2.2. Riccati Equations for Generating Functions. — Consider the generating
functions for the entries as the following formal series

(11) Foo(a,t) =D an(x) 7", Goolw,t) =Y bn(x) t7"
n=0 n=0

It follows from the recursion relations (7) that the generating functions formally satisfy
the Riccati equations. In fact, multiplying the recursion relations (7) by t~™ and take
the summation from n = 0 to oo, we have:

Proposition 2.3. — The generating functions Fuoo(z,t) and G (x,t) formally satisfy
the Riccati equations

OF
12 — = —F? +t?F —¢?
(12) o YF? +t o,
oG
1 2 207 42
(13) 5 ©G? +12G — t%,

respectively.
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Since F,, and G are defined as the formal power series around t ~ oo, it is
convenient to derive the differential equations with respect to ¢. In order to do this,
the following auxiliary recursion relations are useful.

Lemma2.4. — Under the condition (9) and (10), a, and b, (n > 0) satisfy the fol-
lowing recursion relations,

(14) (Wansz = ¥'ans1)’ = 2(n+ pay,
(15) (Pbrsz = @'bny1)" = 2(n + 1)ipbn,
respectively.

We omit the details of the proof of Lemma 2.4, because it is proved by straight but
tedious induction. Multiplying equations (14) and (15) by t~™ and taking summation
over n = ( to 0o, we have the following differential equations for Fi, and G:

Lemma25. — The generating functions Fo and G formally satisfy the following
differential equations,

oF OF
(16) 2t = U — ) T + (= 2P F + (0 + ),
oG oG
(17) 2pt o = Ue' —tp) 5 + (¢t =P +20)G + P (Ve +10),
respectively.

Eliminating z-derivatives from equations (12), (16), and equations (13), (17), re-
spectively, we obtain the Riccati equations with respect to t:

Proposition 2.6. — The generating functions F, and G formally satisfy the follow-
ing Riccati equations,
1"

F
(18) Qtaa—t = (¢ — tp)F? + (Et +2- t3)F + 12 (¢’ + ty),
Lle 50”
19 2—=—(¢ —tp)G* + (=t +2-3)G+ 2 +1
(19) o0 =@ G+ (St 2= 0)G 2 1 1),
respectively.
2.3. Isomonodromic Problem. — The Riccati equations for Fu, equations (12)

and (18) are linearized by standard technique, which yield isomonodromic problem
for Py1. It is easy to derive the following theorem from the Proposition 2.3 and 2.6:

Theorem 2.7
(1) It is possible to introduce the functions Y1(x,t), Ya(x,t) consistently as

Ctolovi oty 2 [1ovi 1wt

(20) F“(x’t)_a(?l%JrE)_w'—w[yl at+4(¢ t)}
1 [vn Y,
(21) YQE<%+7).
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Then Y7 and Yy satisfy the following linear system for Y = (é ) :

2 2z =z P
o - T 27 2 Talttu)
(22) Y =AY, A= S :
ot l{(u —t)—+a}—t—+z+£
R D 4272
t
0 3
(23) Y =B, B=| |
)

where z = —p.
(2) Similarly, it is possible to introduce the functions Z1(x,t), Za(x,t) consistently
as

ty10Z; t o [10z 1r¢"
24 = (=) == |22 (2
(24) Goo(,) @(Zl ox +2) @ —tp {Zl ot +4< t) ’
1,077 t©h
2 Zy=—(——+—).
(25) 2 gp(ax 2 )
Then Zy and Zs satisfy the following linear system for Z = (2)
2z =z %)
) Lo Li-w)
(26) Cz=-0z C= i 2 ? ,
ot —l{(u +1)> +a} Lzt
o LT 472772
‘ ¥
9 2
(27) o Z=Dv. p=| 24
p 2

Remark 2.8. — The linear systems (22), (23) and (26), (27) are the isomonodoromic
problems for Pri[ac — 1] and Pri[a], respectively [9]. For example, compatibility con-
dition for equations (22) and (23), namely,

0A 0B

— ——+[A,B] =

81} 8t +[ Y ] O)
gives

dz

. = —2u_1z — 2a,
(28) dﬁ;*l =u?, — 2z — 2z,

o Ldp

LT T yds

which yields Prilac — 1] for w_;. This fact also guarantees the consistency of two
expressions for F, in terms of Y7 in equation (20). Similar remark holds true for G
and 7.
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Remark 2.9. — F, and G, are also expressed as,

Yo Za
29 Fo=t—=, Go=t—
( ) o Y1 I o Z1 )
respectively. Conversely, it is obvious that for any solution Y; and Y5 for the linear
system (22) and (23), F' = tY2/Y; satisfies the Riccati equations (12) and (18) (Similar

for G).
Remark 2.10. — Theorem 1.1 is recovered by putting ¢ = 1, ¢ = x.

Remark 2.11. — Y7 can be formally expressed in terms of a,, by using equation (20)
as

1 x _ 1= ans1 — Pan
(30) Y7 = const. X exp (—t3 - —t> 7 exp l_ Z Iintl = ¥ moy-n
120 2 2 2« n

which coincides with known asymptotic behavior of ¥; around ¢t ~ co [9].

3. Solutions of Isomonodromic Problems and Determinant Formula

In the previous section we have shown that the generating functions F, and G
formally satisfy the Riccati equations (12,18) and (13,19), and that their linearization
yield isomonodromic problems (22, 23) and (26,27) for Pr;. Now let us consider
the converse. We start from the linear system (22) and (23). We have two linearly
independent solutions around ¢ ~ oo, one of which is related with Fi(z,t). Then,
what is another solution? In fact, it is well-known that linear system (22) and (23)
admit the formal solutions around ¢ ~ oo of the form [9],

Y(1) 43 " 1 (1) (1)
(31) Y1 = <Y1<1> = exp (E - %) t_a[ (0) ) ﬂ*"l’
2 Y21 Y22
(2) 3 (2) @)
t t
(32) Y® = <Y1<2>> = exp (_E + %) te [ (g) + <y}§)> T+ (%;) 4 }
Y, Y21 Yaa

From Remark 2.9 we see that there are two possible power-series solutions for the
Riccati equation (18) of the form,

1 —
vt
R B TR AR
LR B v

v e

(33) Y(l) — F(l) =t co + le,_l + -

(34) Y® o @ =t t3(do 4+ dit™t +---).

The above two possibilities of power-series solutions for the Riccati equations are
verified directly as follows:
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Proposition 3.1. — The Riccati equation (18) admits only the following two kinds of
power-series solutions around t ~ co:

(35) FO =N "¢, t7, FO=¢)"d, t"
n=0 n=0

Proof. — We substitute the expression,
o0

(36) F=t'Y c, t",
n=0

for some integer p to be determined, into the Riccati equation (18). We have

oo n oo n
2(p — n)Cnthrl*n = Z W(Z CkCnfk)t2p72n — Z w(z CkCnfk)tQPJrlan
n=0 k=0 n=0 k=0

oo ’ll)/, (oo}
+3° (? + 2) Cnt? ™" =Y et (¢ + 1)
n=0 n=0

The leading order should be one of t2°11, t#*3 and t3. Investigating the balance of
these terms, we have p =0 or p = 2. O

oo

n=0

We also have the similar result for the solution of the Riccati equation (19):

Proposition 3.2. — The Riccati equation (19) admits only the following two kinds of
power-series solutions around t ~ oo:

[ee] (oo}
(37) GO = "e, t7", GO =22 f,t7".
n=0 n=0

It is obvious that F() and G") are nothing but our generating functions Fs
and G, respectively. Then, what are F(?) and G®®? In the following, we present
two observations regarding this point. First, there are unexpectedly simple relations
among those functions:

Proposition 3.3. — The following relations holds.

(2) t? (2) £
38 F )= ———, G t) = =————.
Proof. — Substitute F(x,t) = t?/g(x,t) into equation (18). This gives equation (19)
for G(z,t) = g(x,—t) by using the relation (9). Choosing g(x,t) = G (z,t), F(x,t)
must be F(?)(x,t), since its leading order is t?. We obtain the second equation by the
similar argument. O

Second, F®)(z,t) and G (x,t) are also interpreted as generating functions of
entries of Hankel determinant formula for Py;. Recall that the determinant formula
in Proposition 2.1 is for the 7 sequence 7, = 0, /09 so that it is normalized as 79 = 1.
We show that F®)(z,t) and G® (x,t) correspond to different normalizations of 7
sequence:
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Proposition 3.4. — Let

(39) FO(z,t) Zd

(40) G (x,1t) Z fo (=8)7T,

be formal solutions of the Riccati equations (12),(18) and (13), (19), respectively. We
put

(41) Kep—1 = det(di+j)i7j=17...7n (n > 0), Kk_1 =1,

(42) 9n+1 = det(fi+j)i’j:1’,”7n (TL > 0), 01 =1.

Then K, and 0,, are related to 7,, as
Tn Tn

Tn T_n
(44) o= =1 (n>0).

To prove Proposition 3.4, we first derive recurrence relations that characterize d,,
and f,. By substituting equations (39) and (40) into the Riccati equations (12) and
(13), respectively, we easily obtain the following lemma:

Lemma 3.5

(1) do and dy are given by dg = —p and dy = ', respectively. Forn > 2, d,, are
characterized by the recursion relation,

n—2 o o 3
(45) Qo= dyy + 2 S g, by = LS 00
Vs (G

(2) fo and f1 are given by dg = —¢ and dy = ¢, respectively. Forn > 2, f, are
characterized by the recursion relation,

n2 /
(46) fo= o+ X i o= oo~ (W) + e

k 2

Proof of Proposition 3.4. — Consider the Toda equations (5) and (6). Let us put
(47) F,.= 20 =T

0_1 T—1

s o that 7_1 = 1. Then it is easy to derive the Toda equation for 7,:

w//w _ (w/)2 + @w?; 7~—2

(48) %'?{L/;n - (?r/L)2 - 7A:n+15:n—1 - 1/12 ns
"oy 2 3
(49) z,= ¥ (ww) LI S %
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We have the determinant formula for 7, as,

det(@itj—2)ij<qntr n >0,
(50) %'n = 17 n = 07

det(bi+j,2)i7j<|n‘_1 n <0,

" AV 3
~ ~ - + o~ ~ 1
(51) Cln:a;krf'w Y= (W) + ey Z Gy, do——,
w i+j=n—2 w
4,520
. - 1 . - "oy AV + 3
(52) by = b;,1+a > bibj, b= vy %) Lo
itj=n—2
4,520
Now it is obvious from Lemma 3.5 that
(53) dj=bj (j>2), kn=7, (n<0),
which proves equation (41). Equation (42) can be proved in similar manner. O

We remark that the mysterious relations among the 7 functions and the solutions
of isomonodromic problem in Proposition 3.3 and 3.4 should eventually originate from
the symmetry of Pyy, but their meaning is not sufficiently understood yet.

4. Summability of the generating function

To study the growth as n — oo of the coeflicients a,,(z) (or b,(z)) in (11) we use
a theorem proved in [5], based on a result by Ramis [16].

Theorem 4.1. — Consider the following nonlinear differential equation in the variable s
s dH
ds
where k is a positive integer, c(s) is holomorphic in the neighbourhood of s = 0 and
¢(0) # 0, and b(s, H) is holomorphic in the neighbourhood of (s, H) = (0,0). Then
equation (54) admits one and only one formal solution H¢(s) of the form Hy(s) =
oo L ans™. Moreover Hy is k-summable in any direction arg(s) = 0 except a finite
number of values ¥. Furthermore the sum of Hy(s) in the direction arg(s) = 9 is a
solution of equation (54).

(54) () H + 5 b(s, H),

Equation (18) can be put into the form (54) by changing the variable ¢ = 1/s and
taking H = F' — ag. We obtain equation (54) with k¥ = 3 and

c(s) = %(1 - %HSQ - 283),

bls, H) = —5 (10 (" /105 +257)
@+ s = )" + 20— ¥ ) H + sy — ' 5)H.)
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Applying theorem 4.1, we obtain that equation (18) admits one and only one formal
solution Fi (t) of the form Fuo () = Y0 ant~™. This formal solution is 3-summable
in any direction arg(t) = ¢ except a finite number of values ¥ and its sum in the
direction arg(s) = ¥ is a solution of equation (18). The definition of k-summability
implies that Fo (t) is Gevrey of order 3, namely, for each x there exist positive numbers
C(z) and K (z) such that

lan(z)| < C(z)(n) /3K (z)", for all n > 1.

Clearly, one can prove a similar result for the coefficients d,, of the second formal
solution F'®) of equation (18). One has to apply theorem 4.1 to a new series H
defined as H(s) = s2F?) — dj.
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INSTABILITY OF RESONANT TOTALLY ELLIPTIC POINTS
OF SYMPLECTIC MAPS IN DIMENSION 4

by

Vadim Kaloshin, John N. Mather & Enrico Valdinoci

Abstract. — A well known Moser stability theorem states that a generic elliptic fixed
point of an area-preserving mapping is Lyapunov stable. We investigate the ques-
tion of Lyapunov stability for 4-dimensional resonant totally elliptic fixed points of
symplectic maps. We show that generically a convex, resonant, totally elliptic point
of a symplectic map is Lyapunov unstable. The proof heavily relies on a proof of
J. Mather of existence of Arnold diffusion for convex Hamiltonians in 2.5 degrees of
freedom. The latter proof is announced in [Ma5], but still unpublished.

Résumé (Instabilité des points totalement elliptiques résonnants d’applications symplec-
tiques en dimension 4)

Un théoréme célebre de Moser établit la stabilité au sens de Lyapounov des points
fixes elliptiques génériques des applications qui conservent ’aire. On étudie la sta-
bilité de Lyapounov des points fixes totalement elliptiques résonnants d’applications
symplectiques en dimension 4. On montre que, génériquement, un point totalement el-
liptique résonnant convexe d’une application symplectique est instable au sens de Lya-
pounov. La démonstration s’appuie de fagon essentielle sur celle donnée par J. Mather
pour 'existence d’une diffusion d’Arnold pour les hamiltoniens convexes a 2,5 degrés
de liberté. Celle-ci, annoncée dans [Ma5], n’est pas encore publiée.

1. Introduction

J. Moser investigated the smooth area-preserving diffeomorphisms f of the plane
with elliptic fixed points. He showed [Mo] (see also [LM] for a simple proof) that, if
the linearization df (pg) of f at a fixed point py has eigenvalues exp(42miw), which is
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not a small root of unity, then generically pg is Lyapunov stable(). An application of
such result is the stability of the planar restricted three body problem (see e.g. [MH]).

Let R?" be the Euclidean space (x1,...,Zn,y1,.--,Yn) € R?™ and Q be the stan-
dard bilinear skew-symmetric 2-form Q = Y7  dz; A dy;. A C® smooth map f :
R — R2" is called symplectic if it preserves w, i.e. f*Q = Q. Let f(0) = 0 be a
fixed point. We say that a fixed point is totally elliptic if all the eigenvalues of the
linearization df (0) are pairwise complex conjugate, non-real, and of absolute value
one, i.e. exp(£2miw;), 2w; ¢ Z, j = 1,...,n. A fixed point 0 is called Lyapunov
stable if for any € > 0 there is § = §(¢) > 0 such that if [p — 0] < J, then |f"p—0] < ¢
for all n.

In the multidimensional case (i.e. n > 1), totally elliptic periodic points are the
only possible stable periodic points. Indeed, since df (0) preserves the skew-symmetric
form w if one of eigenvalues \ of df (0) is not 1 in absolute value, then A~! is also an
eigenvalue. So either X or A~! in absolute value exceeds 1, say A. The approxima-
tion of the dynamics by linearization shows that pg is unstable along the eigenspace
corresponding to A.

R. Douady [Dou] proved that the stability or instability property of a totally
elliptic point is a flat phenomenon for C*° mappings. Namely, if a C°° symplectic
mapping fy satisfies certain non—degeneracy hypotheses, then there are two mapping
f and g such that

— fo— f and fy — g are flat mappings at the origin and
— the origin is Lyapunov unstable for f and Lyapunov stable for g.

In the present paper we begin an investigation of totally elliptic fixed points in
dimension 4. Let f : R* — R* be a C° smooth symplectic mapping with a fixed
totally elliptic point at the origin 10 < s < oo. Denote the eigenvalues of df (0) by
exp(:l:27riw?), j =1,2. We assume that:

(H1, resonance) Let w® = (w,w)) have a resonance of order at least 10, i.e. for

any k = (ko,k1,ko) € Z2, (k1,k2) # 0 such that ko + kjw? + kow$ = 0 we have
|k1] + |k2| > 9 and there is at least one k with this property. Denote

1
ko = min{|ki| + |ka| : ko + k1w¥ + kowd =0} and  dyo = 5 min{k,o, s}.

In particular, (H1) does not exclude possibility of rational w® = (p1/q, p2/q) with
q > p1, p2 and |p1| + |p2| > 9. We shall not consider low order resonances here.

Denote A, C R? the line of w’s in the frequency space satisfying this equation.
Notice that such line passes through w®. As a matter of fact, we shall construct orbits
diffusing “along” Ay.

(D'We remark that earlier a weaker result was obtained by V. Arnold [Ar1]. Lyapunov stability will
be defined below.
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Let (21,72,y1,y2) € R* be Euclidean coordinates. Let us introduce “canonical
polar coordinates”:

x; = +/2rjcos2ml;, y; =+/2rjsin2n6;, j=1,2,

where 6; is determined modulo 1 or simply ¢; € T and r; > 0. Denote Ry =
{z € R: z > 0} the positive semi-axis. To avoid degeneracy of transformation to
polar coordinates, it is convenient to introduce cones. For any 0 < a < 1, 0 < p
denote

Ky ={(r1,m2): 0<ar <ry<p, 0<ary <r <p}

In the interior of K7, the transformation from Euclidean to polar coordinates is non-
degenerate. Denote by

IC;‘ = {(91,02,7“1,7“2) S T2 X Ri : (7“1,7“2) S Kg}

the cone part of the p-neighborhood of the origin. Its complement contains neighbor-
hood of the planes {r; = 0};—1 2, where polar coordinates are degenerate.

Suppose we have a totally elliptic point at r = 0 satisfying (H1). Birkhoff Nor-
mal Form (BNF), e.g. [Ar2], App.7A or [Dou]|, states that for small r the map
f(b1,7r1,02,72) = (01, R1, 04, Rs) can be written in the form:

OP(r)

) 0 04+ B, d1l

(@j) . ( j +wj + br+ or; (mo )) + Rem(6, 7),
B ={Bj}j=1,2 = {Bij }i.j<2

where B : R? — R? is a symmetric matrix, P(r) is a polynomial in (rq,72) having

(1)

zero of order at least 3 at the origin (r1,72) = 0. The remainder term Rem : U —
R? is naturally defined near the origin 0 € U C R? and is C*® smooth away from
{rj =0};=1,2. Since condition (H1) rules out resonances of order up to k, o — 1,
the smallest term in Taylor expansion of Rem(f,r) at the origin is of order at least
2d,0 = 10 in (@1,y1,72,y2). It implies that inside Kf all partial derivative with
respect to (r1,r2) of Rem(,r) of order do—1 > 4 (resp. d,o0 > 5) tend to 0 (resp. stay
bounded) as r — 0.
We also make the following assumption:

(H2, positive torsion) Let B be symmetric non-degenerate positive definite and let
it map degenerate planes {r; = 0};—1 2 transversally to the resonant line Ay, i.e. for
j = 1,2 the intersection B{r; = 0} N Ay is exactly one point.

Generically B is symmetric non-degenerate and satisfies image condition. However,
B is not necessarily positive definite. M. Herman [Her| gave an example of Hamilto-
nian systems and symplectic maps arbitrarily close to integrable, which have elliptic
fixed points with B not positive definite. The positive definiteness assumption on B
is needed to recover fiber-convexity hypothesis required to apply Mather theory.
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Let @ > 0 be small enough so that the image cone w® + B(K{%) contains an
nonempty interval of Aj around w?:

(2) (Akﬁ{wO—I—B(Kf(’)}) W' #£ 2.

We shall restrict consideration of the remainder terms of BNF to the cone IC? for
small p > 0.

1.1. Genericity of totally elliptic points and the main result. — Here we
shall formalize the notion of a generic totally elliptic point. Let K s =K U {0} and
IE? = T? x IA(,? We denote Cs’d(ﬁ;;)— the space of C*¥ functions with the natural
C*-topology having all partial derivative of order d bounded and of order (d — 1)
tending to 0 as r tends to 0 inside K and (0,7) € T? x I/(\'g‘ = /€g coordinates.

Fix w satisfying (H1) and let d = 1{k,0, s}. Consider the canonical polar coordi-
nates. Denote
5 <(ag—7fj"), ag—r(:)) (mod 1),r1,7"2) +Rem(0,r) = R(0, R) € T x R2

R(0,7) = (01(0,7),02(0,7), R1(0,7), R1(0,7)) € T? x RY.

Denote the space of remainder terms Rem(¢,r) in BNF (1) defined on K for some
small p > 0 by RS, ,. In a view of discussion after BNF (1) we have that R}, , C
Cs’d(f/(\'g‘). With the above notations BNF (1) becomes

(4) (2;) — <9j * “f; Bﬂ) + R0, 7).

Let s be a positive integer. Let M be one of U, T? x U, T? x U x T, or K. If f
is a C* real valued function on M, the C*—norm || f||s of f

[flls= " sup [lo*f(m)],

meM,|a|<s

where the supremum is taken over the absolute values of all partial derivatives 9% of
f order < s. The Banach space of C*® real valued functions on M with the C*—norm is
denoted C*(M). The topology associated to the C*—norm is called the C*—topology.

Consider the space of remainders R;, ,. We endow it with the strong C*~topology
on the space of functions on a non-compact manifold or the C* Whitney topology. A
base for this topology consists of sets of the following type. Let ® = {¢;,U; }ica be a
locally finite set of charts on T? x K, where K is the open cone. Let K = {K;}ica
be a family of compact subsets of T? x K3, K; CU;. Let also ¢ = {;}ien be a family
of positive numbers. A strong basic neighborhood N*(f, ®, K, ¢) is given by

[(Fei)(z) = (gp0)(@)ls < &3,

The strong topology has all possible sets of this form.
The set of C° (i.e. infinitely differentiable) real valued functions on M is denoted
C*(M). The C*—topology on C*(M)(= NsC*(M)) is the topology generated by
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the union of C*~topologies, and it may be also described as the projective (or inverse)
limit of the C*—topologies.

Definition 1.1. — We say that a totally elliptic point satisfying (H1-H2) is of generic
type if the remainder R(6,r) belongs to a set C* Whitney open dense set in R, o

The main result, announced in this paper, is the following:

Theorem 1.2. — Suppose hypotheses (H1-H2) hold true, a > 0 and satisfies (2), p > 0
is small, 10 < s < o0, R is a remainder term of f given by (3-4). Then, for
R(O,r) € R, of generic type, the elliptic fized point 0 is Lyapunov unstable. More-
over, there is 0 < 40 = 46 (o, { P}, Q;}j=1,2) < p such that there is a pair of points
(0F, rE) with |rE| > 6 and f7(6F,rF) — 0 as n — +o0, respectively, and trajectories
{f7(0%,7%) }nez, belong to K33

Remark 1.3. — As a matter of fact, in Theorem 8.1 below we shall give further de-
tails about diffusing trajectories { f™(6%,7%)} ez, . An important point is that these
trajectories diffuse along the resonant segment Ay (see (H1)) and, therefore, belong
to K3¢ avoiding degenerate planes {r; = 0};=1 2.

Remark 1.4. — The above result can be viewed as a counterexample to a 4-dimensi-
onal counterpart to Moser stability theorem under hypotheses (H1-H2) of a resonance
between eigenvalues.

Remark 1.5. — As the reader will see, the proof essentially relies on Mather’s proof
of existence of Arnold diffusion for a cusp residual set of nearly integrable convex
Hamiltonian systems in 2.5 degrees of freedom [Mab, Mad4|. The latter proof is
highly involved, long, and extremely complicated. Since it is still unpublished, we
do not find it possible to describe it here in full details. This is the main reason
why this paper is an announcement of Theorem 1.2. Below we just extract necessary
intermediate results from Mather’s proof. The application to our result is carried out
in Section 9.

Remark 1.6. — We hope to get rid of resonant hypothesis (H1) in future work. How-
ever, positive torsion (H2) is crucial to apply variational methods and Mather theory.

Assumptions of high differentiability s > 10 and absence of low order resonances
k,o > 10 are required to extract sufficient differentiability of the remainder term
R(6,r) with respect to r at » = 0 in “canonical polar coordinates” inside a cone KS.
More presicely, R € C’S’d(lC‘p’) for d > 5. See representation of the remainder in the
form (11).

The proof is organized as follows. In Section 2, we suspend a symplectic map f sat-
isfying hypothesis (H1-H2) in the small cone K near a totally elliptic point 0 to a time
periodic fiber-convex Hamiltonian H¢(60,r,t) , i.e. we construct a Hamiltonian whose
time 1 map equals f in KS5. In Section 2.1, we recall how to switch from Hamiltonian
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equations to Euler-Lagrange equations. Section 3 is devoted to an outline of the proof
of Theorem 1.2, i.e. the proof of existence of “diffusing” trajectories. In Section 4, we
state Mather Diffusion Theorem [Mab5] in terms of Lagrangians. An important part of
this result is an explicit list of non-degeneracy hypotheses which guarantee existence
of diffusion. In Sections 5 — 7 we state these non-degeneracy hypotheses. In Section 8
we restate Mather Diffusion Theorem in terms of existence of a minima for a certain
Variational Principle due to Mather [Ma5]. Existence of such a minimum corresponds
to existence of a “diffusing” trajectory. In Section 9, we verify that for small positive
do and {9, = 2_j50}jez+ in each annulus 0 < J;41 < |r] < 0; < p < 1 intersected
with K5 the symplectic map (1) (resp. the suspending Hamiltonian Hy) is a small
perturbation of an integrable map (resp. an integrable Hamiltonian). Therefore, we
manage to apply the above mentioned Variational Principle in each of these annuli.
In the final Section, we derive the main result (Theorem 1.2) by “gluing” the annuli.
Namely, show existence of a minima to the aforementioned Variational Principle and
conclude that it corresponds to one of “diffusing” trajectories from Theorem 1.2. Ex-
istence of the other trajectory can be proven in the same way. This would complete
the proof. For the reader’s convenience, this paper is provided with two appendices:
in Appendix A we introduce necessary notions and objects of Mather theory, while
Appendix B contains proofs of auxiliary lemmas.

Sections 2, 3, 9, and Appendices A & B are written by the first and the third
authors. Sections 4-8 are written by the first author based on the graduate class of
the second author [Mad4].

2. Suspension of a symplectic map near totally elliptic points of
a time periodic fiber-convex Hamiltonian

Moser [Mo2] showed how to suspend a twist map of a cylinder to a time 1 map of
a time periodic fiber-convezity Hamiltonian, i.e. Hessian 02, H in r is positive definite
everywhere. To the best of our knowledge, there is no general extension of this result
to higher dimensional case, even locally. We apply the standard method of generating
functions to construct a required suspension. Even though the fact we need seems
quite standard we could not find an appropriate reference.

The following suspension results are known to the authors. Bialy and Polterovich
(see [Gol, sect. 41, A) proved existence of smooth suspension theorem with fiber-con-
vexity. However, this result makes use of the restrictive assumption that a generating
function S(0,©) corresponding to f(f,r) = (6, R) has to have a symmetric matrix
892,95 (0,0). Since such condition is not satisfied in general, we can not apply this
result. Kuksin-Poschel [KP] proved existence of global analytic suspension, which
does not possess fiber-convexity.

We propose here a way to construct a local suspension keeping fiber-convezity. Our
proof, given in Appendix B, is a modification of the one by Golé [Go] (see sect. 41, B).
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It is based on the construction of a suitable family of generating functions and on a
local analysis of it.

Lemma2l. — Let f:R* — R* be a C° smooth symplectic map with a totally elliptic
point f(0) = 0 at the origin satisfying hypothesis (H1-H2) of positive definite torsion
and 10 < s < oo. Then for any 0 < a < 1/2 and a small positive p there is a C5+1d+1
smooth Hamiltonian, written in BNF (0, r)-polar coordinates (1) as

1
Hy(0,7,t) = wiry +wara + §<Br, r)+ P(r)+re(f,7,t)
(5)
1

= wir] + wary + §<Br, Ty + hy(0,r,t),

where P(r) is a polynomial in r having zero of order at least 3 at v =0 and r¢(6,7,t)
belongs C’S+1’d+1(lC§’p x T), periodic in t of period 1 and such that the time 1 map of
Hamiltonian flow of H equals f in the cone IC,%O‘.

Remark 2.2. — By definition of H ¢, we see that 92 H is positive definite for small r €
K7 and all (0,t) € T? x T. Notice that one can not deduce that H is positive definite
in a full p-neighborhood of zero, since polar coordinates are degenerate along the

planes {r; = 0},=1 2 and the origin. This hides the degeneracy of positive definiteness.

2

5%, which does not

This is the reason why we restrict our suspension to the cone K
contain those planes.

The proof of this lemma is in Appendix B.

2.1. Hamiltonian and Euler-Lagrange flows are conjugate. — In this Sec-
tion, which may be skipped by an expert, we exhibit the standard duality between
Hamiltonian and Lagrangian systems given by the Legendre transform. More explic-
itly, we state that if a Hamiltonian H satisfies certain conditions, then there is a
Lagrangian L such that the Hamilton flow of H corresponds to the Euler-Lagrange
flow of L after a coordinate change (see e.g. [Ar2]). Because of this construction,
after this Section, we may consider only Euler-Lagrangian flows.

We shall denote (0,v) € TT" ~ T" x R™. The Legendre transform associates
to a Hamiltonian H (0,7, t), H : T*T" x T — R, which is assumed to be positive-
definite in r, a Lagrangian L(0,v,t), L : TT" x T — R, which is positive-definite in v,
according to the following scheme:

L(f,v,t) = sup {(r,v)—H(0,r1t)},
(6 reTyTr

where (, ) : TT" x T*T" — R is pairing between dual spaces.

When L is related to H as above, we say that L is the dual of H. Let us consider the
Euler-Lagrange flow associated to L. The latter is defined as a flow on the extended
phase space TT™ x T such that its trajectories (6(t),0(t),t) = (dO(t),t) are solutions
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of the Euler-Lagrange equation:

d [(OL oL
() a@ (%) = %0

The trajectories of the Euler-Lagrange flow can be also characterized as those which
minimize locally the action [ L(dy(t),t)dt among absolutely continuous curves with
the same boundary conditions. The standard (but crucial for our purposes) obser-
vation is that when we subtract a closed 1-form 7, defined on T™ x T, from the
Lagrangian L, then both L — n and L have the same Euler-Lagrange equations (see
e.g. [Fal).
Let us suppose the Hamiltonian H (0, r,t) satisfies the following properties:
(1) Positive definiteness in r: For each (0,7) €T*T™ and t € T the restriction of
H to T;T" x {t} is positive definite;
(2) Super-linear Growth in r: For each (0,r) €T*T" and t € T
H(O,rt)
I — 400 as |r|| — +oo
(3) Completeness: All the solutions of the Hamiltonian equations can be extended
for all t € R.

We need these conditions to be satisfied in order to apply Mather theory (see
Appendix A and Section 9). Notice that the Hamiltonian H of the form (5) satisfies
all these properties near » = 0. The standard result says:

Lemma2.3(seeeg. [Ar2], 815). — Ifa C**! Hamiltonian H(0,r,t) satisfies the above
conditions (1-3) with s > 1 and L(0,v,t) is the dual of H, then the map L : (0,7,t) —
(0,v,t), given by

(8) L(O,r,t)=(0,0.H(0,r1t),t),

is C*-smooth and invertible, and it conjugates the Hamiltonian flow of H to the Euler-
Lagrange flow of L, i.e. it provides a one-to-one correspondence between trajectories
of both flows. Moreover, the Lagrangian L salisfies properties (1-3) above with r
replaced by v and H by L.

Let Hy be given by formula (5). Let H} be the integrable part H(r) = wiry +

1
waTa + §<Br, r) + P(r). Namely, P(r) is the polynomial in r part of hs(6,r). Notice
that Legendre transform of H; has the form

(9) Lf(@,’l),t) :ZO(U_WO)—’_Pf(@av_WOat)v

where £(v — w") is the Legendre transform of Hj(r) and Py is a C* smooth remain-
der defined on T? x {8, H (0, K35,t) —w’} x T. The form (5) of Hy shows that
OpHy(0,r,t) = W+ Br 4 0rhys(0,r,t). Therefore, for small p we have that B(Ky) C
{0,Hf(0, K57 ,t) —w’} so we could assume that Ly is well-defined on B(K). More-

over, Py has a zero in (v—w?) of at least 6-th order, i.e. Py € C*9*1(T? x B(Kg) x T)
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for d > 5. We shall apply Mather’s technology to the Lagrangian L; and its Euler-
Lagrange flow.

3. Scheme of construction of diffusing trajectories using
Mather action functional

In this Section, we outline a variational approach due to Mather [Ma5, Ma4, Ma3]
to construct diffusing trajectories toward and outward from zero from Theorem 1.2.
We concentrate on the one going toward zero first. Construction of the other one is
very similar.

3.1. Rough sketch of the proof of Theorem 1.2. — Application of lemma 2
for n = 2 to the symplectic map f, given by (1) provides the suspension Hamiltonian
H¢(0,r,t) given in g5 near r = 0. We have that locally, i.e., in K35, H satisfies fiber-
convexity from hypothesis (1, Sect. 2.1) above. To meet hypotheses (2-3, Sect. 2.1),
one may smoothly extend Hy for large r keeping convexity in r so that it is an
integrable Hamiltonian, e.g. given by (36). Thus, Mather theory is applicable (see
Section 9).

Let Ly(6,v,t) be the dual of H¢(6,7,t), given by (9). The Legendre coordinate
change (8) in our case has the form £(0,r,t) = (§,w° + Br + 0,hs(0,7,t),t). Let us
approximate it by its linearization T0 5 : 1 — v = w” + Br. Denote Ky (w°, B) =
T.0,g(K) the image cone, whose complement we need to avoid. By (H2), for small
« > 0 the image cone K2%(w’, B) contains a segment in Ay of length 2p/||B~||
centered at w®. Fix a = a(k, B) > 0 with the above property. We shall “diffuse”
inside K %(w’, B). Denote by ej, the unit vector parallel to Ay and fix a small 0 < § <
p/l|B~Y| (to be determined later).

Put 26 =6 and §; = 2776, for each j € Z, . Fix the sequence of annuli

(10) Aj(w®) = {2726 < v —w°| < 2%5;} C RE.

Denote Kg‘fj(wo,B) = K%(w® B) N A;(w°). By definition for each j € Z; we have
wd + dj+1€k, wd + djer, wd + dj—1er € Kgfj(wo,B) and adjacent annuli Aj(wo) and
Aj11(WP) overlap, ie. Aj(w?) N Ajp1(w?) # @. We now point out the aim of our
constructions and the steps needed to reach it:

The goal. — Construct a diffusing trajectory {(8,0)(t)};>o such that at time 0 its
velocity 6(t) is approximately w® + dpex;

Stage 1. — At a time 77 > 0, its velocity 9(7}) is approximately w® 4 61ex and, in
between 0 and 77, we have 6(t) € Kgfl(wo, B);

Stage 2. — At a time 75 > Ty, its velocity 9(7’1) is approximately w® 4 dzey and, in
between 7; and 7, we have 0(t) € K§, (w% B) and so on;
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Stage j. — At a time T; > T;_4, its velocity 0(71 is approximately w® + §;e;, and,
in between 7;_1 and 7;, we have 0(t) € K§, (w®, B), and so on for possibly infinite
number of stages.

If we could construct a trajectory with these properties, we would obtain a trajec-
tory for the symplectic map f which goes toward the origin. To construct a trajectory
going out from the origin, the arguments involved are analogous. This would indeed
prove Theorem 1.2. Formalization of this scheme requires some notions of Mather
theory.

3.2. A naive idea of Mather’s mechanism of diffusion. — We start with

A Model Example. — Suppose f : M — M be a smooth diffeomorphism of an 2n-
dimensional manifold possibly with a boundary. Let m be any positive integer and
P1,...,Pm be a collection of hyperbolic periodic points of the same index, i.e. the
dimensions of stable and unstable manifolds are the same. Suppose that for each
i =1,...,m—1 the unstable manifold W*"(p;) intersects the stable manifold W*(p;11)
transversally and both belong to M. Then, it is easy to show that W#*(p1) intersects
W (pm).

If M =T2x K3 > (0,7) and r-coordinates of p; are close to d;ex, then there exists
a trajectory whose r-coordinate change from nearby §;ex to nearby d,,¢ex.

As a matter of fact, in Mather’s mechanism of diffusion we use the following objects:

— the hyperbolic periodic points p;’s are replaced by Mather sets M;, whose pro-
jection onto r-component is localized near §;ex;

— the stable and unstable manifolds W*(p;) and W*(p;) are replaced by the stable
and unstable sets W?*(M;) and W*(M,) respectively. W?#(M;) and W*(M;) are not
necessarily manifolds and not even continuous;

— to verify the intersection of unstable and stable sets W*(M;) and W*(M,11),
respectively, we shall use the barrier function defined in Section 8 (see formulas (31-
32));

— to show that the intersection of W*(M;) and W*(M ;) foreachi=1,...,m—1
implies existence of a connecting trajectory between My and M,,, we define a suitable
action functional (24). As it was shown by Mather [Mad4], under certain hypotheses,
the minimum of such an action functional is achieved on a trajectory of the Euler-
Lagrange equation connecting M7 and M,, (see Section 8).

In Appendix A, we define Mather sets, barrier functions, and related objects. The
reader who is familiar the basics of Mather theory may go directly to next Section.
Others may read Appendix A first.

3.3. Detailed scheme of the proof of Theorem 1.2. — We now continue our
discussion, assuming that the reader familiar with basic notions of Mather theory
(see Section 9). The diffusing trajectories we shall construct move along the resonant
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segment Ay from (H1). Consider a sequence of subsegments of Ay given by I'; =
[0j+1€k,05ex) C Ak, j € Z4. Denote

I's = Uj>11“j.

On each of the segments I';’s we mark a sufliciently dense finite set of points
{5j,pek}2”1 C I'; (we determine later how dense this set has to be). Each stage of

diffusion described in Section 3.1 consists of m; sub-stages. First, we enumerate
marked points in T's. We set M, = >%  m; and for M, < i < M,y we set
wi =w’+6 i—M,ek. Loosely speaking, M; as introduced in the previous Section,
is an invariant set of trajectories with approximate rotation vector w;. We shall
formalize this idea in Section 8. To give a precise definition of M;’s we need further
discussion.

Let Hy¢(6,7,t) be the suspension of the symplectic map f under consideration given
in £F near r = 0 by lemma 2. We have that locally (i.e., near r = 0) Hy satisfies
convexity condition (1, Sect. 2.1). To meet hypotheses (2-3, Sect. 2.1), one extends H
for large r by an integrable Hamiltonian, e.g. given by (36) keeping convexity in r.
Thus, Mather theory is applicable to our case (see Section 9).

Consider the Legendre transform of H¢, which would lead to a Lagrangian of the
form (9). The first term of Ly corresponds to an integrable Lagrangian. Moreover,
we show in Section 9 that for small §o > 0 the second term Py can be considered as a
small perturbation. Therefore, we shall be able to apply Mather Diffusion Theorem
(see Section 4). We shall write the remainder in the form (34) with m = 3 and r
replaced by (v — w?)

3
(11) Pr(0,v -’ ) =) (v =)} (v —w); PP (0,v — w°,1),
p=0
where (v — w?); is i-th coordinate of (v — w?), i = 1,2. Let us denote Py =

(Po, P, P>, P3) and define the unit sphere for perturbations P

3
SS,?) — {P_f : Z HPPHQC'S(’[[‘?)(B(Kgu)XT) = ]_}
p=0

Since Py € C*1(T? x B(K2*) x T) with d > 5, by lemma B.1 we have that C?
norm of P is well-defined.

We denote also by L3, r the Fenchel-Legendre transform associated with Ly by (29).
In the images of each marked frequency, we choose a cohomology class ¢; € Lg, r(w;)
foreachi=1,...,M,p,..., so that adjacent ¢;’s are sufficiently close. We are now in
position to define the sets {M;}; from the previous Section to be Mather sets M.
We shall slightly modify the choice of ¢;’s in Section 8.
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Definition 3.1. — We say that L£g s has channel property with respect to a resonant
segment I's if there is a smooth connected curve or C Lg r(I's) such that for each
w’ € T's the curve o intersects L f(w').

Lemma3.2([Mad]). — Let 10 < s < oco. Then, for a C* Whitney open dense set of
P € 53, there is § = 6(Pf) > 0 such that the Fenchel-Legendre transform Lg ¢ has
channel property with respect to I's. In particular, for any pair of positive integers
i <1’ the sets Lg §(w;) and Lg ¢(wir) are connected by or.

Remark 3.3. — In Section 6.2 we introduce certain non—degeneracy hypothesis (C1)—
(C3) and (C4),—(C8),, for perturbations of integrable Lagrangian systems and in
Section 9 show how to adapt these hypothesis for remainder terms in BNF (4) of
totally elliptic points. The C° Whitney open dense set of remainders P; € §°3
that satisfy adapted non—degeneracy hypotheses (C1)—(C3) and (C4),—(C8),, fulfills
channel property of the lemma.

We construct trajectories that diffuse along or inside the channel Lg ;(T's). To
accomplish this, roughly speaking, we vary the cohomology ¢ in order to vary the
velocity 6.

We shall apply the Mather method of changing Lagrangians [Ma5]. Mather applied
this method in [Ma3] to show the existence of unbounded trajectories for generic
time periodic mechanical systems on T?. We outline some of the key ideas of the
method. For simplicity let L(6,v,t) = 3(v,v) + eP(6,v,t) be sufficiently smooth
nearly integrable Lagrangian and n¢ = cd# be the standard closed one form on T? x T

for a vector ¢ € R? ~ TyT?2, § € T2. Then the following scheme can be exploited:

(1) Euler-Lagrange flows of L and (L — n°) are the same (see e.g. [Fa]).
(2) Minimization of c-action ff(L — %) (dv(t),t)dt with e-error leads to minimiza-
tion of

(12) 0.0~ ey =5 (h-ch—c) —(0).

Therefore, trajectories minimizing c-action have approximate velocity c. As a matter
of fact, even if 7¢ is a closed one form with [¢|t2 = ¢, L is close to integrable and b—a
is large enough, trajectories minimizing c-action still have approximate velocity ¢ (see
[Mad4]). From now on we consider 7° as a closed one form.

(3) Suppose we can find an action functional

(13) S AR IGIORE
i=17ti

for a sequence of closed one forms {7;}?_, such that [ni]r> = ¢; and [n41]m2 = cis1,
where ¢; and ¢;41 are close for each i = 1,...,j — 1 and the minimum of such inte-
gral is achieved on a trajectory {(dv(t),t) : t € [t1,tm]|} of the Euler-Lagrange flow
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of L(®). Standard properties of action minimization give that this is indeed true for
time ¢ # t1,...,t;,, but it is a delicate problem to show that this does not happen
at connection times ¢ = t1,...,¢,. The corresponding minimizing trajectory (t)
might have corners 4(t; ) # 4(t]). Notice now that at time ¢ in [t1,ts] velocity is
approximately ¢; and at time ¢ in [t,,—1,%m] velocity is approximately ¢,,. Thus,
the key to the method is to find an action functional with the above property and
justify absence of corners. In (13) we made only a rough attempt. This functional is
defined in Section 8. Usually, this construction is quite involved and highly nontrivial
[Ma5, Ma4, Ma3].

4. Mather diffusion theorem

In this Section, we state Mather result about existence of Arnold diffusion in a
generality we use for our application. See [Ma5] for the most general version. As a
matter of fact, to prove our main result (Theorem 1.2) in Section 8) we shall refor-
mulate Mather Diffusion Theorem in terms of a certain variational principle and in
Section 9 apply this principle to prove Theorem 1.2.

In the subject of Arnold diffusion, one studies a time-periodic or autonomous
Hamiltonians/Lagrangians that are perturbations of integrable Hamiltonians/Lag-
rangians (see e.g. [AKN]).

In the time periodic case, the Lagrangian takes the form

L(97 97t) = 60(9) + EP(97 9.7t)a

where £y is a C*® smooth function on a convex closed set with smooth boundary
U C R?, ¢ is a small positive number, P is a C*® smooth function on T? x U x T,
and s > 3. In other words, P is periodic of period 1 in 6,65, and t. The function
Lo is called the unperturbed integrable Lagrangian and the function P is called the
perturbation term.

Denote dgﬁo = 8;-11 9'/0 the Hessian matrix of second partial derivatives of £,

i.e. dgﬁo = (8927: 9.‘7[0), We shall assume that dg@o is everywhere positive definite

4,j=1,2"

on U, i.e. we have E?,j:l 8927'9'[0(9)%% >0, for all § € U and all (p1,¢2) € R2 0.
In the Hamiltonian case, the /ailalogous assumption is that the unperturbed integrable
Hamiltonian convex.

Now, we briefly discuss the problem of Arnold diffusion. For the unperturbed
integrable Lagrangian L = {j, the Euler-Lagrange (E.—L. for short in the sequel)
equations reduce to d26/dt?> = 0. Every solution  lies on a torus {# = w}, where
w = (w1,wz) € U. The w;’s are called the frequencies of the solution.

By a trajectory of L, we mean a solution of the E.-L. equations associated to L.
Along a trajectory of L, 6 is constant in the case of the unperturbed integrable

(2) Actually, summation could be over infinite number of terms, as formula (25) shows.
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system and varies slowly in the case of a small perturbation of the integrable system.
The problem of Arnold diffusion is whether 6 can vary a lot over long periods of
time. Recently a great progress has been achieved in proving Arnold diffusion in so-
called a priori unstable case by many different groups (see papers [Be], [CY], [DLS],
[T1, T2, T3], announcements [X1, X2], and work in preparation [KM]). The result
below is for the a priori stable case.

Recall that for a positive integer C*(M) denotes the Banach space of C* real valued
functions on M (see Section 1.1 for notations and definitions). Now let s be oo, or
an integer > 3. We let £° denote the topological space of C* functions ¢y : U — R,
such that ¢ is positive definite in 9, i.e. the Hessian d(gﬁo is positive definite. Endow
L% with the C® topology. We let P? denote the topological space of C* functions
P:T? x U x T — R endowed with the C*~topology. Denote

Sz = {P c Pe: ||P||C3(T2><U><T) = 1}

the unit sphere in the space of perturbations. The topology in §° is induced from the
ambient space P%.

Definition 4.1. — A set Wj C P? is called §-cusp residual if

A) there is a non-negative continuous function § on S§ such that the set Uj =
{P€S8;: 6(P)>0}is open and dense in S} ;

B) thereisacuspset Vi ={eP € P°: P e Uj, 0<e < (P)}, which is a subset of
homogeneous extension of U which is defined by RU®* = {A\P € P*: P € U*, A > 0};

C) there is an open and dense set Wy in V.

Definition 4.2. — If ' ¢ R? is a line segment, we shall say that it is rational or
resonant if there is a resonance(® k = (ko, k1, ko) € 73 such that T is contained in
the line Ayg.

We say that a curve I' C R? is a resonant piecewise linear curve if it is a finite
union of resonant segments I' = U2, I's so that end points of I's belong to end points
of 's_1 and T'y4q, forall s=2,...,m— 1.

The following result is a modified version of the result announced by Mather [Ma5]
for the time-periodic case:

Mather Diffusion Theorem. — Let I' be a resonant piecewise linear curve in U and let
3 < s < oo. There exists a non-negative continuous function 6(4y,T") : P* — R4,
such that, for any perturbation eP in a 0({y,T")-cusp residual set W(;S(ZO’F) C P2,
there is a trajectory (0,60)(t) of L. = by + P, whose velocity moves along T'. More
precisely, there is a constant C = C(€y, P,T) > 0 and T = T'(¢y, P,T') > 0 such that
dist ( Uo<t<T é(t),I‘) < C\/e, where dist is the standard Hausdorff distance between
sets in U.

(3)Recall that saying that k is a resonance, we mean that k € Z3 and (k1, k2) # 0.
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Remark 4.3. — The function §(¢y,I") (and consequently the §(¢y, I')-cusp residual set
Wg(éo7r)) depends on the choice of resonant lines I'1,...,I",,. However, they are
independent of behavior of the diffusing trajectory (6, 6)(t).

In particular, this implies the following result. Consider a finite collection of non—
void open subsets 1, . .., Q2,41 of U, then there is a resonant piecewise linear curve I,
consisting of m resonant segments I' = U2, I's connecting distinct {2x’s in any pre-
assigned order. Then, by Mather Diffusion Theorem there is a trajectory which visits
the sets Q1,..., Q41 in the pre—assigned order.

We point out that existence of a “diffusing” trajectory (6, 9)(t) moving along any
prescribed resonant piecewise linear curve is a strong form of Arnold diffusion. How-
ever, existence of such a trajectory is proved only for a d-cusp residual set of pertur-
bations [Mad].

The purpose of the next four sections is to define qualitatively the function (¢, I")
and the sets U (;S(ZO’F) and W(SS(ZO’F) mentioned in definition 4.1 and Mather Diffusion
Theorem. We start by defining two averaged mechanical systems L, o and L. For
sake of brevity, we shall not say precisely in what sense the trajectories of L a
and L, approximate certain trajectories of L. We also give an heuristic motivation
of the notion of these averaged systems L, p and L,. These averaged mechanical
systems are used to define a C® open and dense set U [SS(ZO,F) of “good directions” of
perturbations on the unit sphere §*. In Section 7 we define §(£g, I')-cusp residual set
W(SS( t6,1) using barrier functions. In Section 8 we restate Mather Diffusion Theorem in
terms of a certain variational principle. Finally, in Section 9 we apply this variational
principle to prove our main result (Theorem 1.2).

5. Averaged mechanical systems corresponding to single
and double resonances

5.1. A Single Resonance Averaged System or a First (w, A)-Averaged Sys-
tem. — Let L(6, 6, t) = 60(9)+5P(9, 6, t) be a C'* small perturbation of an integrable
Lagrangian £y on T? x U x T, s > 3. Let us assume d*/y > 0 on U. Consider a res-
onant frequency vector w = (wy,ws) € R? and its resonance k = (ko, k1, ko). This
means that k € Z3, (k1,k2) # 0 and ko + kiwi + kawe = 0. If w € Q2, it admits
two linearly independent resonances; otherwise, it admits at most one resonance up
to multiplication by scalar.

We denote by A = Ay, the resonant line from (H1). Thus, A is the set of all w € R?
for which k is a resonance. We set

(14) TR = {(01,02,t) € T*> x T' : k10; + ko2 + kot = 0 (mod 1)} .

If 9(0) € A, the trajectory of the unperturbed Euler-Lagrange of 60(9) either be-
longs to T% or to its parallel translation. Thus, the 2-torus T3 can be viewed as a
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subgroup of T? x T*. We set T = T2 x T! /T3 (and we refer to it as the factor space).
Since the unperturbed Euler-Lagrange flow is parallel to T3, we call T — torus of
fast motion and T} — torus of slow motion.

Let (61,02,t) = (¢35, ¢%) € TY x T2 denote slow and fast coordinates on T} and
T3, respectively. The product decomposition depends on an arbitrary choice. We
shall specify our choice later (see lemma 6.3). Denote by dHa the normalized Haar
(Lebesgue) measure on the fast torus T%. Let P(0,t,w) = P(0,w,t). Define the first
(w, A)-averaged potential

(15) Paa(eh) = [ Plehoohow) da(oh).
ek
So P, T}X — R is a real valued function on T}\.

To define the first (w, A)-averaged kinetic energy one needs some linear algebra.
Actually, the precise form of this kinetic energy is not important for us. What really
matters is that the kinetic energy is given by a constant quadratic form on T(T}).

Consider the natural projection 75 : T2 x T* — T} along the fast torus T. The
definition of both slow and fast tori T} and T% depends only on the resonance k
determining I' C Aj. The projection 74 induces a linear map dmp : R?2 x R — Ry.
The restriction to R? x 0 has a null space, denoted by Ny C R?. Denote by Ni the
orthogonal complement of N, with respect to d?{y(w). Define

(16) Ko = (Lo(w)/2)] s

K, A may be regarded as a constant quadratic form on T' (T}) in a view of identifi-
cation of Na and T (T}) given by dnma.
Let
Lon=Kon+Ponopry,p: T (T}) — R,

where pry o 1 T (Th) — T4. We call Ly, 5 the first (w, A)-averaged system associated
to w € A, which is an autonomous mechanical system whose kinetic energy is K, a
and whose potential energy is —F, A o pr,, 4.

A classical idea of averaging consists in the fact that the trajectories of L with
approximate frequency vector w can be approximately described in terms of fast and
slow variables. The fast variables correspond to the motion parallel to T and the
slow variables correspond to the motion normal (in a suitable sense) to T%. If we
average with respect to the fast variables, we obtain a new Lagrangian system L, o =
K, A + P, A whose trajectories approximate the trajectories of L with approximate
rotation vector w.

5.2. A Double Resonance Averaged System or a Second w-Averaged Sys-

tem Associated to a Rational Frequency. — Following the notation introduced
here above, we let L(6,0,t) = £y(0) + cP(6,0,t) be a C° small perturbation of an
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integrable Lagrangian £y on T? x U x T, and we assume that d?/y > 0 on U. Con-
sider a rational frequency vector w = (w1, w2) = (p1/q,p2/q) € Q? and assume that
(p1/q,p2/q) is the reduced form, i.e. the greatest common divisor of integer pi, po,
and ¢ is 1. For the unperturbed integrable system /g, every trajectory with rotation
vector f = w is closed and parallel to the 1-torus

(17) TL = {(Ap1, A\p2, \q) € T? x T : X € R}.

Since T? x T! is an Abelian group, T. may be considered as a subgroup. Let T? =
T2 x T /TL be the 2-torus obtained as a coset of T.,. Similarly to the previous section,
we call T, — fast and T? — slow torus respectively. Let (¢2, pf) € T2 x TL denote
1 respectively. Let P(6,t,w) = P(0,w,t).
Denote by dH, the normalized Haar (Lebesgue) measure on the 1-torus TL. Recall
that 15(9, t,w) = P(0,w,t). Define the second w-averaged potential

(18) Puet) = [ Pletvhw) dulol),

w

slow and fast coordinates in T? and T

Note that P, : T2 — R is a real valued function. We need now some linear algebra in
order to define the second w-averaged kinetic energy. Consider the natural projection
7, T2 x T — T2 along fast torus T.. The definition of both T. and =, depends
only on (q,p1,p2) € Z3, where w = (p1/q,p2/q). The projection 7, induces a linear
map dm, : R? x R — R2. The restriction to R? x 0 becomes an isomorphism. Since
{y is a C? smooth function on R?, its Hessian d?/o(w) can be regarded as a quadratic
form on R%. We define

(19) K, = d*ly(w)/2
and we shall identify R? with 7' (T?) via dr,. Let also define
(20) Lo =Ko+ Pyopr,: T (T3) — R,

where pr,, : T (T2) — T? is the natural projection. We call L,, the second w-averaged
system associated with the rational frequency w = (w1,w2) = (p1/q,p2/q) € Q. This
is an autonomous mechanical system whose kinetic energy is K, and whose potential
energy is —P, o pr,,.

6. Definition of U§(€0 r)

6.1. Part I: Building blocks. — In this Section, we begin the definition of the set
of admissible directions U 55( ¢o,T) O11 the unit sphere of perturbations S7 or, equivalently,
qualitative definition of §(¢y,I"). Later, we use this to define a &(¢y,I")-cusp residual
set Wg( to,T)" where Mather Diffusion Theorem holds. We need it for the application of
Mather Diffusion Theorem to our main result Theorem 1.2. The set U §( to.T) implicitly
appears in Mather Diffusion Theorem and it is defined as a set where a non—negative
functional 6(¢p,T") is positive. We shall not give here a complete definition §(¢y,T"),
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since this would need quite a long discussion. We shall only sketch some qualitative
aspects of its definition. For the discussion of the size of (¢, I") we refer to [Ma4].

Step 1. — Consider a resonant piecewise linear curve I' = U™ T’y C B? consisting
of m resonant line segments I's C Ay = {(w1,w2) € B? : k{ + kjwi + kjws = 0},
kS = (k§, Kk, k3) € Z* as in definition 4.2.

Step 2. — For each resonant segment I'y we associate a non-negative function
0(€o,T'5) : 87 — R4, defined in the next Section. Then, §(¢y,I") = min}*; §(4, T's).

Now we discuss the qualitative part of the definition of 6(¢y,I's) for one segment.
For the sake of simplicity, we omit the subindex s in the sequel, hence, in what follows,
I" will denote a single resonant segment. For one segment, we state a finite collection
of non—degeneracy hypotheses of two types. Each hypothesis turns out to be fulfilled
generically [Mad].

Type 1. — Non—degeneracy of the 1-parameter family of the first (w,I)-averaged
mechanical system {L, 1 }wer on T (TL).

Type 2. — I'-non—degeneracy of the second w-averaged mechanical system L, on
T (T?) associated to a rational frequency w € T' N Q2.

There are countably many rationals w’s in any resonant segment I'. However, we
need type 2 non—degeneracy only for finitely many rational w’s. At the end of Section
6.3, we define a marginal denominator go = qo(fo, P,I's) with the following meaning.
Let w = (p1/q,p2/q) be in the reduced form, then we need to impose non—degeneracy
hypotheses of type 2 on w only if ¢ < go. In the next two Sections, we define the non-
degeneracy hypotheses of type 1 on the family {L, a}wea of the first (w, A)-averaged
system and of type 2 on the second w-averaged system L, w € AN Q? along with
qo(€o, P,T'5) respectively.

6.2. Part II: Non-degeneracy of averaged systems associated to a single
segment I'. — By means of Step 2 of the last section, we see that it suffices to
define U 68( t0.T) for one segment. Since ¢ is fixed, we shall omit it from the notation
and denote this set U§(F).

Let A = Ay be the line that contains a bounded segment I'. For w € T", we write
P, r for the averaged function P, 5 defined in section, and T% for T} (i = 1,2). Thus,
{P,r :w €T} isa C® smooth 1-parameter family of functions defined on the circle
Tf. For eP to be in Ug’(r), we require that the global minima of {P, r : w € T'} are of
generic type. More precisely, we require the following three hypotheses to be fulfilled:

(C1) For each value w € T', each global minimum of m,, of P, r is non-degenerate,
i.e. P!/ n(my,) > 0.

(CQ) For each w € T', there are at most two global minima of P, r.

Let wyp € T'" and suppose that P,, r has two global minima m,,, and mfdo. We
may continue these to local minima m,, and m/, of P, r, for w € T near wy, in view
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of (C1). Thus, m, and m/, depend continuously on w and they are the given global
minima for w = wy. In addition to (C1) and (C2), we require that the following first
transversality condition be fulfilled:

(03) deI(mw) 7& dPWI (m;) .
dw w=wq dw w=wq

Next, we require £y and P to fulfill some conditions on the second w-averaged
systems L,, associated to w € I' N Q?, defined in Section 5.2. Such an w has the form
w=p/q = (p1/q,p2/q), where p = (p1,p2) € Z?, and q € Z, ¢ > 0. If p/q is in the
reduced form, i.e. 1 is the greatest common denominator of p1, ps and ¢, then we say
that ¢ is the denominator of w. We shall require the remaining hypotheses only in
the case w has small denominator, i.e. ¢ < qo, where qo = qo(¢o, P,T") is a positive
integer depending on fy, P, and I". The definition of ¢ is the quantitative aspect of
the definition of U§(F) that we shall postpone to Section 6.3.

The first condition we require L, to fulfill is a condition on P,, alone:

(C4),, The function P, on T? has only one global minimum m,, and it is non—
degenerate in the sense of Morse, i.e. the quadratic form d?P,,(m,,) is non-singular.

To state the remaining hypotheses, we need to define a special homology element
her of Hy(T%;R):
Since w € I' N Q?, we have T., C T2, so T3/TY is a circle in T?, and

7~ Hy(T2/T.;Z) ¢ H,(T%;7Z) c H,(T?;R).

We let h, r be a generator of Hy(T%/TL;Z). In view of the inclusions above, this is an
element of Hi(T2;R). Geometrically, the above situation has the following meaning.
Consider a circle I, r C T? in the homology class h,, r and take 7 (I, ) C T? x T,
where the projection m, : T2 x T — T2 is defined in Section 5.2. Therefore, h,  is
such that 71 (I, r) is parallel to T% C T? x T.

The Lagrangian L, describes a conservative mechanical system, i.e. it has the form
kinetic energy — potential energy. Here, the kinetic energy K, is associated to the
constant Riemannian metric g, = d?{o(w) on T?. The potential energy is —P,, o pr,.
By a slight abuse of terminology, we shall shorten this to —P,,.

Next conditions that we require on L, are easily described in terms of the Mau-
pertuis principle:

We let E, = —P,(m,,), where m,, € T? is the unique minimum of P,,, as above.
For any E > E,,, we let

For E > E,, the function P, + E is everywhere positive on T2. Hence, gz is a C*
Riemannian metric on T2. For E = E,,, the function P, + E is positive except at
m,,, where it vanishes and has a non—-degenerate minimum.

The Maupertuis principle states that trajectories of L, having energy E are the
same as geodesics of gg, except for a time-reparametrization. Carneiro [DC] has
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extended the Maupertuis principle and shown that absolute minimizers of L,, having
energy E correspond to class A geodesics of g (in the sense of Morse [Mor| and
Hedlund [Hed]).

Pick a large energy constant E* = E*({o, P,T") > 0. The next condition that we
impose on L, concerns the shortest closed geodesics of g in the homology class h,, r,
for E, + E* > E > E,. Briefly, we require that these are of generic type. More
explicitly, we ask that the following four hypotheses are fulfilled:

(C5), For E,+E* > E > E,, each shortest closed geodesic of gg in the homology
class h,, r is non-degenerate in the sense of Morse.

(C6),, For E, + E* > E > E,, there are at most two shortest closed geodesics of
gr in the homology class A, r.

Let Ey > E, and suppose that there are two shortest geodesics v and ' of gg,
in the homology class h, r. We may continue these to locally shortest geodesics vg
and vy, of g for E near Ej, in view of (C5),. If p is a closed curve on T2, we
let £ (1) denote its length with respect to gg. We require that the following second
transversality condition be fulfilled:

dE E=E; dE E=E;

These are the hypotheses that we require gg to fulfill when E, + E* > F > E,,.
Note that the case E = E,, is somehow special, because gg, is not a Riemannian
metric, since it vanishes at m,,(*). Nevertheless, we may define the length of a curve
with respect to gg, just as one normally defines the length of a curve with respect
to a Riemannian metric. We define a geodesic to be a curve that is the shortest
distance between any two sufficiently nearby points. It is easy to see that there exists
a shortest geodesic of gg, in the homology class h,, r. We require L, to fulfill the
following condition:

(C8). There is only one shortest geodesic « of g, in the homology class h,, r, and
~ is non—degenerate in the sense of Morse.

In saying that a gg—shortest geodesic v is non—degenerate in the sense of Morse,
we mean the following:

Let u be a transversal to -y, intersecting -+ in one point, not m,,, in the case that
E = E,. For each point P € pu, let yp be the gg—shortest curve through P in the
homology class h,, r and let £g(yp) denote its gp—length. The function P — ¢g(yp)
is C® near p N+ and the condition that v be non-degenerate means that its second
derivative is positive.

In the case that £ > E,,, this is the usual notion of non—degeneracy in the sense
of Morse.

(4)This corresponds to a periodic trajectory for the Euler-Lagrangian flow of L = £y + e P.
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Definition 6.1. — 68(1“)( = 68(@0 F)) ={eP:e>0,P € P, and P satisfies hypothe-
ses (C1)—(C3) as well as hypotheses (C4),—(C8),, for w € I' N Q? with small denomi-
nator, 4.e. such that ¢ < go(¢o, p,T'), where ¢ denotes the denominator of w.}

Remark 6.2. — This definition can be considered as an implicit definition of §(¢g,T).

6.3. What denominators are small?— In this Section, we define the marginal
denominator qo = qo(fo, P,T") from the previous definition. This would answer the
question for which rational w’s we need to verify the non-degeneracy hypotheses
(C4),—(C8),,. Recalling (14) and (17), we associate to a rational frequency w and
a resonant segment I' 3 w two decompositions of T? x T! into (the standard) direct
product, and we denote the result of this operation by T2 x TL and T. x T2. These
decompositions can be defined by changing the basis on T2 x T'. Based on the lemma
below we can define the following decomposition T, x Ti,r x TL = T? x T! into a
direct sum.

Lemma6.3. — There is a choice of these decompositions so that TL C T2, T. C TZ.

Proof. — It seems easiest to discuss this in terms of a short sequence of topological
abelian groups.

0—A—B—C—0.

Thus, A is a topological subgroup of B, and C' is a quotient group of B. Denote the
inclusion of A into B by ¢ bad the projection of B onto C' by j. To say that the
sequence is short exact means that the kernel of j is i(A).

A splitting of such a sequence is given by a continuous homomorphism k& of C
into B such that j o k is the identity. Equally well, it can be given by a continuous
homomorphism [ of B into A. such that [ o is the identity. The relation between k
and [ is that the kernel of [ is k(C).

Given k (resp. [) there is a unique [ (resp. k) such that this relation holds. Given
such a splitting, B is the direct sum of i(A4) and k(C).

There is a splitting, in fact many, for both of the short exact sequences in the case
we consider (it suffices A to be a torus). Indeed, notice that when we consider Tf.
(resp. T2) as a subgroup T? x T we choose a splitting of the appropriate one of the
two exact sequences in question(®. This proves the lemma. O

Below we present a test to determine gg. The idea of the test is to check how dense
the unperturbed closed trajectory 6 = w in the 2-torus TZ. A precise definition is in
terms of averaged systems L, r = K, r+ P, r and L, = K, + P, on slow tori T (T})
and T (T2) =T (T. 1 x TL), respectively. In the notation of the previous section, let
m,, and m/, be globél (or local continuation of global) minima of P, on Ty and let

(®)Note that the inclusion of TIL in T2 depends on the choice of splitting. One has inclusion for some
splittings not for others.
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T : T x Th — Tk be the natural projection. For each energy E,+E* > E > E,,,
we need that the shortest geodesics vg and « (if it exists) of gg are contained in a
small neighborhood of W;’%(mw um/,) (or 7T;1F (my,) if m/, does not exist). The precise
definition is as follows.

On the slow torus Tk, we define the 1-parameter family of first (w,I')-averaged
potentials {P, r : T — R},er. Suppose hypotheses (C1)-(C3) are fulfilled. By
the first transversality condition (C3), there are finitely many wo € I' with P, r

having two global minima m,,, and m;, . Mark these wy’s. By (C1) and (C2), for w’s

/

wo?
respectively, to local minima nearby. Pick a small n > 0, so that n-neighborhoods
of the marked wp’s, denoted by Y7 ,
Y7, there is a well defined continuation m,, and m/,. Such n will be called (¢, P,T)-

admissible.

nearby the marked wy’s, there is a smooth continuation m,, and m/, of m,, and m

are disjoint. Moreover, in each neighborhood

Consider now a small 7 > 0 with the following properties. For each w € T,
consider two cases. In the first case w is in one of T . Then, we define a 2-tuple
of T-neighborhoods D, and lA)L in T} are centered at m,, and m/, respectively and
disjoint. Denote D7, = DT, U lA)L In the other case, w is outside of neighborhoods
of marked frequencies Y7, ’s put D], to be a T-neighborhood centered at the global
minimum m,,.

Definition 6.4. — A rational frequency w € I' N Q? is (¢, P, T, n, 7)-admissible with a
small 7 > 0 if the family of first (w,T")-averaged systems {L, r = Ko + Purtwer
satisfy hypotheses (C1)—(C3) and for an (¢y, P,T')-admissible n > 0 and any E,+E* >
E > E, each shortest geodesic (resp. local continuation of a shortest geodesic) vg

(resp. v} if it exists) of the Maupertuis metric gg in the homotopy class h, 1 belongs
to 7, (D7)

Recall that, for each double resonance of a rational frequency w = (p1/q,p2/q) €
I'NQ?% in (20), we may define the double resonant mechanical system L, on the slow
2-dimensional torus Ti and the natural projection m, 1 : Ti — T}X onto the slow
1-dimensional torus Tk C T2. Then, we have the following result:

Lemma 6.5 ([Mad]). — Suppose the perturbation term P(6, 9,15) satisfies hypotheses
(C1)-(C3). Then, for any T > 0, there is an integer qo = qo(fo, P,T',T), such that,
for any rational frequency w with denominator ¢ > qo, we have that w is (b, P,T',n, 7)-
admissible. Namely, a corresponding shortest geodesic (resp. local continuation of a
shortest geodesic) yg (resp. vy if exists) of the Maupertuis metric gg, defined in (21),
belongs to the strip 7T;1F(DL) C T2.

(6) As a matter of fact the proof in [Ma4] requires a stronger form of admissibility which still fits
into the proof of our main result (Theorem 1.2).
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For further reference, we need to give a definition of  and 7-neighborhoods for
double resonances. Let L, and T? be the mechanical Lagrangian on the 2-torus
corresponding to a rational frequency w = (p1/q,p2/q) € T N Q? as above. Let
{9E}E€(E,+E+,B.] De the 1-parameter family of Maupertuis metrics defined by (21).
Suppose hypotheses (C4),—(C8),, are fulfilled. Mark parameters Ey where gg has two
shortest geodesics in the homology class h,, r. By the second transversality condition
(C7)y, there are finitely many Ey € [E, + E*, E,] with metrics gg, having two
shortest geodesics vg, and vg . By (C8)., there is a smooth continuation vz, and
vg, to locally shortest geodesics. Pick a small 5, > 0 so that n,-neighborhoods of
marked Ey’s (denoted by Y ) are disjoint. Moreover, in each neighborhood Y%’ there
is a well defined continuation g and v%. Such 7, is called (o, P,T",w)-admissible.

Pick a small 7, > 0 with the following properties. For each F€lE,, E, + E*]
consider two cases. Either w is in one of T%“; Then, we define a 2-tuple of 7-
neighborhoods 5% and 13% in T2 of the locally shortest geodesics g, and Vg, Te-
spectively so that these neighborhoods and disjoint. Denote D}, = EE U ﬁ]} In
the other case E' is outside of these neighborhoods of marked energies, then D7 is a
T-neighborhood of the shortest geodesic vg.

7. Definition of Wz?(éo r) using type 2 non-degeneracy
(of Barrier functions)

In this Section, we define the non-degeneracy hypotheses of the second type. They
are formulated in terms of minima of certain barrier functions, restricted to what we
call Poincaré screens. First, we explain the meaning of Poincaré screens and we define
them. Later on, we define required barrier functions and state the non—degeneracy
hypotheses that we need to define 6(¢y, I')-cusp residual set W§(€07F).

As mentioned in Section 3.2 diffusing trajectories stay most of the time close to the
corresponding Mather sets M; and from time to time make almost heteroclinic ex-
cursions along stable and unstable sets W*(M;) and W*(M;41) from one set M; to
the next one M;;1. In order to keep track of those excursions, we pose a smooth hy-
persurface (Poincaré screen) “in between” M; and M, 1. To give a precise definition
we need further discussion.

Recall that Mvi =7 M; C T2 x T is the projected Mather sets. Suppose hypotheses
(C1)—(C3) and (C4),—(C8),, for rational w’s with small denominator are fulfilled.
Consider two different cases:

(1) wis Cy/e-close to a rational (p;1/q, p2/q) with small denominator ¢ < go, where
C is some positive constant depending only on £y, P,T", 7 and is closely related to the
energy constant E*.

(2) the opposite case.

SOCIETE MATHEMATIQUE DE FRANCE 2004



102 V. KALOSHIN, J.N. MATHER & E. VALDINOCI

Recall that, for any frequency w € T', we associate homology class in H;(T?,R) ~
R? equal to w. Each Lagrangian satisfying conditions (1-3) of section 2.1 has Fenchel-
Legendre transform Lg associated to it by (29). Using L3, we associate to each
homology class w any cohomology class ¢, inside Lg(w).

It turns out that, in the first case, for a sufficiently small € # 0 and a cohomology
¢ € Lg(w), there is rescaling which relates ¢ and E € [E,, E, + E*], such that the
projected Mather set Me belongs to ;' (D%). In the second case, the projected
Mather set M¢ belongs to Wfl(DL). In both cases, the projected Mather sets are
localized in a 7-neighborhood of one or two hypersurfaces on the base T? x T. We
shall distinguish these cases.

Definition 7.1. — Let w € " and ¢ € Lg(w) be a cohomology class. Distinguish two
cases: D7 (resp. D7) has one or two components.

In the one component case, let us define S¢ C T? x T to be a smooth hypersurface
(i.e., a codimension one closed smooth submanifold) topologically parallel 7! (vz),
which is transversal to class A geodesics with respect to g, and disjoint from its
T-neighborhood 7;1(D%) in the first case and topologically parallel to mp Y(my,),
transversal to class A geodesics with respect to vg and +}, and disjoint from its
7-neighborhood 75 * (D7) in the second case.

In the two component case: let us define S¢,5¢ C T2 x T to be a pair of smooth
hypersurfaces parallel and separating 7 !(vg) and 7 !(v};) in the double resonance
case. “Separating” means that S¢ and S cut T2 x T into two disjoint parts each
containing either m ' (vg) or m,*(7%). In the single resonance case define S¢, S C
T2 x T to be of smooth hypersurfaces parallel and separating 7' (m,,) and 7 *(m/,).
Call S¢ (resp. S¢ and S§ ) Poincaré screen (resp. screens) associated with cohomology
class ¢ € Lg(w).

Hypotheses (C1-C8) we impose do not imply that the geodesic yg and the mini-
mum m,, vary continuously with £ and w € I'. Points of discontinuity are usually
call bifurcations. However, (Cl) and (C4,,) imply that vg and m, vary piecewise
continuously. Therefore, we can choose Poincaré screens so that they are piecewise
constant with respect to c¢. In other words, one could divide I' into a finite number of
subintervals, so that for all w in a subinterval the Poincaré screen is the same.

By construction, all S¢ are topologically parallel. This property essentially relies
on the fact that we have only one resonant segment I' under consideration. Since S°¢
is piecewise constant in ¢, we shall treat the case of one Poincaré screen S for each c.
The other case is analogous.

Denote by S; = S¢ Poincaré screens corresponding to the frequencies w;, i =
1,2,... related to ¢;, i = 1,2,... by Fenchel-Legendre transform respectively. We
marked these frequencies w;’s in Section 3.3. Consider a cyclic cover T% x R over T x
T} obtained by cutting along a Poincaré screen S and unrolling. Fix one representative
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of T2 x Tk in TZ x R and denote it by T% x TL(0). For each integer k, we denote by
tp : TA xR — T% xR the deck transformation along Th-direction, and by T2 x TH (k) =
1 (T2 x TL(0)) its k-th shift. Denote by S? an image of S; in T% x R under the natural
embedding so that SY N (T2 x TL(0)) # @. By construction, for each i = 1,2,... we
have that the corresponding S; is topologically parallel to T% and that ¢ (S;) N g (S;)
are disjoint for any k # k. Denote S* = 14(S;) for k, i € Z and 5; = S¢. Now we
define the §(¢o, I')-cusp residual set W, .

Consider a closed one form 7, with [n]r2 = ¢ and ¢ € Lg(I"). Define the barrier
function on S;
b

(22) H, 2((6,0), (0, £)) = inf { [ @-n@o. t)dt},

where the infimum is taken over all absolutely continuous curves 7 : [a,b] — T2 x R
such that y(a) =0, y(b) =6, a=+t (mod 1), b=t (mod 1), b—a > T, (0,t) € S?,
(0',t) € S}

For next definition, we need to introduce suitable curves ¢1(0,¢) = (8,t'), which
correspond to closed curves on T% x TL connecting a point on S; with itself and
making only one turn in Th-direction. Notice that, in this case, H, 7 is independent
of the choice of 7 in [n]rz = ¢ and [n]y, because such curves are closed. For a Mané
critical or subcritical form, the barrier function H,, r is finite and continuous [Ma5].
Let us consider
(23) H.(6,t) = liminf H, 7((0,1), (,1)).

T—~+o00

This definition is a particular case of the definition of barrier function (32). In [Ma2],
Mather proved that the limit exists.

Lemma7.2([Mad]). — Let P € Uas(eo rys € be sufficiently small and positive, and T be
a resonant line segment in U. Then, the Fenchel-Legendre transform Lg associated
with L = €y + P by (29) has the channel property with respect to T.

By lemma 7.2, there is a closed connected curve or C Lg(I') with the channel
property. We could parameterize this curve by a smooth parameter, say 7, i.e. or :
[0,1] = or C L(T'). Thus, we can define a family of barrier functions

{HT 1Sy — ]R}TG[O,l]

by ¢; = or(r), S =S¢ and H.(0,t) = H.. : S; — R. It turns out that, under our
hypotheses, H, is continuous in 7 and even satisfies certain modulus of continuity
(see [Mad]). As we pointed out above, hypersurfaces S, can be chosen to be smooth
in 7. Recall that a closed subset D of a torus T¢ is called acyclic in T? if there is a
neighborhood V of D in T? such that the inclusion map Hy(V,R) C Hy(T¢,R) is the
zero map. Since the ambient manifold T¢ is a torus, the above inclusion map is the
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zero map if and only if any closed curve in V' is contractible. Let

D,=<(0,t)eS,: H.(6,t) = in H. (0t

{0.0 6.0 = min H0'0)}

the set where minimum of the barrier H. on S is achieved. Recall that S, is diffeo-
morphic to the 2-dimensional torus. The last non—degeneracy hypothesis we require
is the following;:

(C9) For each 7 € [0, 1] the set D, C S; is acyclic.

Suppose that there is a curve or € Lg(I') with channel property such that the
family of barrier functions {H },¢(o,1) satisfies hypothesis (C9); then, we denote the
set of perturbation terms ¢ P with this property by W(SS( .1 C RU 55( lo,T)" The following
result is not trivial to prove:

Lemma7.3 ([Mad]). — The set W§(z0,r) is C* open and dense in V&(S(éo,r)'

The application of Mather theory to the instability of elliptic points requires the
following lemmas about the localization of the velocity of the minimizers. Recall that
L(0,v,t) = lo(v) + eP(0,v,t) is C* smooth nearly integrable Lagrangian, defined on
T? x U x T. Let L be Fenchel-Legendre transform associated with L. Denote by
7y : T2 x U x T — U the natural projection.

Localization Lemmal. — There is C = C (g, P) > 0 such that for any frequency
w € U and any cohomology class ¢ € Lg(w) the Marié set N°(D M°) is contained in

T (B ().

In other words, velocity of minimizers with approximate velocity w may differ
from w at most by C'\/e.

Let the perturbation direction P € U(‘;( lo,T)" then, for any frequency w € I' and any
cohomology class ¢ € Lg(w), the Poincaré screen S¢, the barrier function H,, and its
minimum set D¢ C S¢ are well defined.

Localization Lemmall. — The property D¢ being acyclic depends only on the values
of L inside m} (Bé\/g(w)) with the same C' as in the Localization Lemma I.

These lemmas are a restatement of Lemma 3 in [Mab] and they follow from it.
Their proof is based on a careful perturbation analysis. First, one proves that, with
the standard identification of Hy(T? R) ~ R?, H'(T? R) ~ R?, Fenchel-Legendre
transform L is C'y/z-close to the map V,fy : U — R?. Then, using a generalization
of (12) to the case of arbitrary C'* smooth convex unperturbed integrable Lagrangian
(o(0) and the remark that (6 + ¢, + ¢) is non-negative, one shows that, if C' is too
large, c-minimality would be contradicted. See also [BK] for similar results.
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8. Variational principle and restatement of Mather diffusion theorem

In this Section, we introduce a variational principle of Mather [Ma4]. We shall use
the notation of the previous section. By lemma 7.2, we have that £3(I") has a smooth
connected curve o C Lg(I') having channel property. Fix an orientation on or toward
L3(w?) and a sufficiently dense ordered set of cohomology classes € = {¢;}iez, C or
so that they are monotonically oriented along or and in between any two ¢;_1 and
¢;+1 on or there is only ¢; from €. How dense this set needs to be will depend on how
close the family of barriers {H,},¢[o,1) defined above to fail hypothesis (C9). This
collection of ¢;’s plays the role of the collection of w;’s from Section 3.3. For each
positive integer i, denote Poincaré screens by S; = S¢ on T2 x T} and by §i = Gei
on TZ x R, Mather sets by M; = M C T? x R? x T. Fix a sequence of closed one
forms 7; such that [g)pz = ¢; and positive numbers T;. For (6,t) € S;, (6',t') € Siy1
and T > 0 define

b
(24) Hior, ((6,0), (6, )) = inf { [ @-m@o. t)dt},

where the infimum is taken over all absolutely continuous curves 7 : [a,b] — T2 x R
such that v(a) =0, v(b) = 60', a =t (mod 1), b =t (mod 1), b —a > T;. This leads
to a variational principle

(25) > Hig, ((03,t3), (051, i) -
ieJ’

Here above, we understood the following notation: if J is a set of consecutive integers,
we denote by J’ the index set J without its largest element (provided it exists).

If all one forms n; are critical or subcritical, then each H; is finite and continuous.
Therefore, we can define a minimizer of the variational principle to be a sequence
{(0i,t:;) - i € J} such that if @ < b and {(0),¢}) : i € J} is any sequence satisfying
(0.,t) = (0;,t;) for i < a and i > b, then

R
Z HzT gzvt (9i+1a 1+1 Z HlT ggvt; ( ;Jrlat;Jrl)) .
eJ’ icJ’

Since each H; is finite and continuous, an elementary compactness argument shows
the existence of a minimizer.

Theorem8.1. — LeteP € W;(e ) Then, for any index set J, there are sequences of
positive numbers {e;}icy and subcritical closed one forms {n;}ics, such that [n;lt —
ar([nirs) < €i, and large positive numbers {T;}icy satisfying the following property:
there exists a minimizer {dy(t) : t € R} of the variational principle (25), which
provides a smooth solution of the Euler-Lagrange equation (7). In other words, the
minimizer {dy(t) : t € R} has no corners.

SOCIETE MATHEMATIQUE DE FRANCE 2004



106 V. KALOSHIN, J.N. MATHER & E. VALDINOCI

9. Application

In this Section, we describe how to apply Theorem 8.1 in order to prove Theorem
1.2. Tt does not seem possible to simplify arguments, because of degeneracy of polar
coordinates at the planes r; =0, j =1,2.

Consider the rough sketch of the proof from Section 3.1 and Lagrangian L defined
in (9). We shall modify it by restricting Ly to the annuli {A;(w®)};ez, and applying
Theorem 8.1 to each of these restrictions. This will allow us to construct a modification
of the variational principle (25) appropriate for our problem.

Write the remainder Py of Ly in the form (11). If ' C Ay, is contained in one of the
axes, some terms might vanish, but not all of them. For a unit vector ex = (ef, ei)
parallel to I', denote

3
Prr(0,v—uw’t) = Z(e}c)p(ei}?’_pPp(G,v — w0, t).
p=0

To apply Theorem 8.1 to Ly in each of the annuli, we need to verify the following
hypotheses

— (C1)—(C3) for all w’s in T,

— (C4),—(C8),, for w’s with small denominators in I, and

- (C9) for all ¢’s in Lg(or).

First we shall verify all hypotheses except (C9). For this purpose, we define the
following Lagrangian

1
(26) Lyr(0,v,t) = 5(3_1(1) — wo), (v— w0)> +ePrr(6,v— wo,t),

where ¢ is nonzero and small. For this perturbation term Py r using (15) (resp. (18))
define the first (w,T)-averaged potential, denoted by Pf,r : Tk — R (resp. the
second w-averaged one, denoted by Py, : T2 — R).

Rescale the annulus A;(w?) to the unit size. Denote T : v — A(v — w?) +
rescaling centered at w”. We have that T%'/% (4;(w?) = AW°) = {1/4 < |r| < 4}.
Notice that Ay is invariant under rescaling Tj‘o for any A > 0.

Restrict the Lagrangian Ly to T2 x A; (w?) x T. Consider the rescaling Tjg/éo in

(v—w?) of T2 x A;j(w®) x T to T? x A(w®) x T. it gives the new “rescaled” Lagrangian
, 1
(27) L;(Qa v,t) = §<B 1(U - wo)v (v— w0)>
3
+ 8027 Z(v O wo)gprg(O, v —wt),
p=0
where {P](0,v —w°,t) = P,(0, Tii/éov - t)}3_y is C*973 smooth and defined in
T? x K?wo, B) x T. Denote the remainder
S8 (v —wO)i (v — )3 P PI(0, T v — w0, 1)

by P;(@,v — w0, t).
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The definitions of all hypotheses except (C9) involves averaged kinetic and potential
energies. Fix any positive integer j. Notice that the unperturbed integrable parts are
the same for both Ly and L?”,F' These parts define the averaged kinetic energies (see
(16) and (19)). Thus, the averaged kinetic energies of Ly and L?F coincide. Now
consider the perturbation terms. A direct calculation based on (15) and (18) shows
that up to a constant the first w-averaged (resp. the second (w, I')-averaged) potentials
of Ly and Ly are coincide respectively. Therefore, for each j € Z; we have that up
to a constant

I'-averaged mechanical systems associated to Ly and L;_F coincide.

Denote the first w-averaged and the second (w,I')-averaged mechanical systems by
L5 and L, s respectively. The definition of a small denominator gy involves only
averaged mechanical systems. After qg is determined, notice that choosing dy small
enough we need to verify (C4),—(C8), only for at most one w® in the case w° is a
rational with small denominator. Suppose Ly in (26) satisfies hypotheses (C1)—(C3)
and (C4),—(C8)., (if the latter is necessary). Then, there exists 6 = §(4o, I, Pyr) > 0
such that the variational principle (25) is well-defined for the Lagrangian L r and
each 0 < |¢| < 4. In notations of Section 3.1, let § be given by 26 = §y. Consider also
the rescaling of the original Lagrangian L in (v —w?), in order to see that the above
arguments is applicable to L too.

The definition of all hypotheses except (C9) involves averaged kinetic and potential
energies. The above verification shows that if L} satisfies hypotheses (C1)-(C3) and
(C4),—(C8),, (if the latter is necessary) on I's, then Li} satisfies these hypotheses on
I's too. The only difference is that the constant in front of P; decreases as j increases.
This implies that if P} € U5, 1), then P} € U, 1.

In notations of Section 3.1 we now verify that, for a C* Whitney open and dense
set of remainders (11), the restriction of Ly to any of T? x K§; (w®, B) x T satisfies
hypotheses (C1)—-(C3) on I's and (C4),—(C8),, (if the latter is necessary). This implies
that the variational principle (25) is well-defined. What is left to verify is hypothesis
(C9), and the fact that velocity of minimizers of the variational principle (25) belong
to the corresponding cones Kf§'; (W°, B).

Suppose the first potential satisfies hypotheses (C1)—(C3) on I', = [w°, w° + pex],
where p is the radius of the ball such that (9) is defined on T? x K¢(w°, B) x T.

Consider now the rescaling L?c of the restriction of Ly on the annulus A;(w). By
lemma 3.2, there is a smooth curve or with channel property. Denote by U% a part of
this curve which connects Lg(w®+§;e) and Lg(w®+8;11ex). We can apply Theorem
8.1 with the curve 0'2/ as the curve with channel property. According to the variational
principle (25) its minimizers velocity moves along I" with a certain error.

The Localization Lemma I shows that minimizers of the variational principle (25)
for L = Ljf have velocity C277/2-close to T' for some constant C. Therefore, after
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the backward rescaling, the velocity has to be C27%7/2-close to I';. It implies that
minimizing trajectory of (25) does not leave the cone T? x K§; (w° B) x T.

The Localization Lemma II shows that non-degeneracy hypothesis (C9) holds for
Ljf taking into account that the velocity value is C277/2-close to T'. By lemma 7.3,
the set of restrictions of L; onto T2 x K§; (w®, B) x T, where hypothesis (C9) holds,
is C'* Whitney open and dense. Therefore, there is a C* Whitney open and dense
set of remainders Py in (9) such that for all positive integers j the corresponding P;
fulfills hypothesis (C9). This completes the proof of Theorem 1.2. O

Appendix A. Mather minimal sets

In this Appendix, we discuss basic objects of Mather’s theory of minimal or action-
minimizing measures [Ma]. This theory can be considered as an extension of KAM
theory. Namely, it provides a large class of invariant sets for a Hamiltonian (or dual
Euler-Lagrange) flow. KAM invariant tori and Aubry-Mather sets are examples of
these sets. We need to define these notions to give the detailed scheme of the proof
of Theorem 1.2 (see Section 3.1).

We start with a positive integer n, a smooth n-dimensional torus T", and a C*-
smooth time periodic Lagrangian L : TT" x T — R, (f,v) € TT", s > 2 which
satisfies hypotheses (1-3) of section 2.1. Note that all definitions and results of this
section can be given for any smooth compact manifold instead of T". Later we apply
it for n = 2 and the Lagrangian L given by (9) near the zero section and extended
outside to keep fiber-convexity.

We say that p is a probability measure, if it is a Borel measure of total mass one.
Let P, be the space of probability measures on TT™ x T invariant with respect to
Euler-Lagrange flow (7). We shall consider probability measures only from Pp. If n
is a closed one-form on T™ x T, we may associate to it a real valued function 7 on
TT™ x T as follows: express 7 in the form

1N = nNr=df + n.dr,
where np» is the restriction of  to T™ and 7, : T — R and set
7/7\: nrn + Ny o,

where 7 : TT" x T — T" x T denotes the natural projection. This function has the

property
b

[aarw.na= [

a (v,7)
for every absolutely continuous curve = : [a,b] — T™ with the right hand being usual
integral over the curve (v,7) : [a,b] — T™ x T defined by (v, 7)(t) = (7v(t),t mod 1).
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If 14 is an invariant probability measure on TT" x T, its average action is defined as

A(w) = [ 16.0.0) du6.0.0)

Since L is bounded below, this integral is well defined, although it may be equal
to +00. Next step is to define an appropriate notion which generalizes the rotation
vector of a periodic trajectory. If A(u) < oo, one can define a rotation vector p(u) €
Hy(T™,R) of a probability measure p by

(28) (0. fikee) + e = [ 6,0.,2) du(6.0,1)
for every C! closed one form 1 on T" x T, where
[ = ([lr=, [n)r) € HY(T" x T,R) = H'(T", R) x R

denotes the de Rham cohomology class and (, ) denotes the dual pairing Hy(T™, R)
x H'(T™,R) — R. The idea of a rotation vector is classical and goes back to Schwartz-
man’s asymptotic cycles (see [Ma] in the time independent case), but in the time
dependent case definitions and arguments are the same. In [Ma], by using a Krylov-
Bogoliuboff type argument, Mather proved the following result:

LemmaA.l. — For every homology class h € Hy(T™,R) there exists a probability
measure i € Pr, such that A(p) < oo and p(u) = h.

Such a probability measure p € Py, is called minimal or action-minimizing if

A(p) =min{A(v) : p(v) = p(u)},
where v ranges in Pr, and A(v) < co. If p(u) = h, we also say that p is h-minimal.
Denote by M}, closure of the union of supports of all A~-minimal measures from Py,.
This set My, C TT"™ x T is called Mather set. By the above lemma M, is always
nonempty.
A probability measure p € Py, is c-minimal for ¢ € H*(T", R), if it minimizes

Ac(p) = A(p) — (p(p), ¢)

over all invariant probability measures. A.(u) as above is called c-action of a measure.
Mather [Ma] also proved the following result:

LemmaA.2. — For every cohomology class ¢ € H*(T™,R) there exists a c-minimal
probability measure p € Py, such that A(u) < oo.

Denote by M€ closure of supports of the union of all c-minimal measures from
Pr. M¢ C TT" x T is also called Mather set. By the above lemma M€ is always
nonempty. Mather [Ma] proved that

Une, (tn,R)yMn = Uee g (tn, r) M.

It turns out that M€ can be “nicely” projected onto the base T™ x T.
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Graph Theorem. — Let w: TT" x T — T" x T be the natural projection onto the base.
Then, for any c € HY(T",R), the corresponding Mather set M€ is a Lipschitz graph
over the base T" x T, i.e. 7~ L ppe : TMS — ME.

Call m M€ projected Mather set and denote ME = T M°.
Definition A.3. — The function
BL : Hl(Tn;R) B R7 ﬁL(h’) = A(:U’)7
where p is an h—minimal probability measure, is called Mather’s (-function. The
function
ar » HY(T",R) — R, ar(c)= sup {(h,c)—Br(h)}
he H,(T™,R)

is called Mather’s a-function.

LemmaA.4 ([Ma]). — Both a-function and B-function are conver and conjugate by
the Legendre transform.

By definition,
Br(h) +ar(c) = (h,c), he H(T",R), c€ HY(T",R).
To distinguish from the standard Legendre transform (6) the map
(29) Lgs: Hi(T",R) — {compact, convex, non-empty subsets of H*(T™ R)},

defined by letting L3(h) be the set of ¢ € H'(T",R) for which the inequality in (9)
becomes equality, is called Fenchel-Legendre transform. In what follows, we shall
identify each h—minimal invariant probability measure with a c¢—minimal invariant
probability measure, provided that ¢ € Lg(h).

For an absolutely continuous curve v : [a,b] — T", let us denote dy(t) =
(7(t),4(t)). The above is well defined for a.e. ¢t. For such v and a closed one form 7
with [n]r= = ¢, we call c-action

b
(30) A = [(@ =0, v,
a
where 7j(6, 0,t) = npn (0,£)0 +n7(0,t) if n = np™df + nrdt. Notice that c-action does
not depend on a choice of 7 in the cohomology class c¢. A closed one form 7 on T™ x T
is called Mané critical if and only if

Eg{/@—mw}zo

Since each closed one form can be written as [n] = ([]=, []T), by the definition of
a-function for Mané critical one form we have [n]r = —a([n]r=). We also say that n
is Mané supercritical if [n]t > —ar([n]n) and Mané subcritical if [n]r < —ar([n]Tn).
We shall explain geometric meaning of sub and super criticality in the next section.
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We say that an absolutely continuous curve v : R — T™ is an absolute c-minimizer
if, for any interval [a,b] and any absolutely continuous curve v; : [d,e] — T™ such
that d = a (mod 1) and e = b (mod 1), we have

b e
/XL—mwwwow<ZgL—mwm@JMu

where 7 is a Mané critical closed one form on T™ x T such that [n]r» = ¢. Notice
that the time intervals b — a and e — d are not necessarily the same. Completeness of
the Euler-Lagrange flow (see property 3 of Lagrangian) implies that every ¢-minimal
curve is C'-smooth and, therefore, as smooth as L is. So it is C*~'-smooth. Denote
the union of all sets of c-minimizers {(dv(t),t) : t € R} CTT™ x T by N¢ and call it
Mané set. This set is certainly a closed set.

We now introduce the notion of barrier function and we deal with another set of
trajectories associated to a cohomology class ¢ € H!(T",R). The barrier function
is introduced in [Ma2] and is a generalization of Peierl’s barrier. Let 61,6, € T™,
71,72 € T > 0, and 7 is a Mané critical one closed one form on T” x T such that
[7]r» = c. Define

(31) hwﬂﬁﬁﬂwmwﬂsz/@—ﬁwﬂmﬂﬁ

where the infinum is taken over all absolutely continuous curves 6 : [a,b] — T™ such
that a = 71 (mod 1), b =75 (mod 1), 6(a) = 01, 6(b) = 6, and b — a > T. Define the
barrier function

(32) hn((eh T1)7 (927 TQ)) = 171113_}_%2 h’ThT((eh T1)7 (927 TQ))'
In [Ma2], Mather has proved that the limit exists. He also introduced a pseudo-metric
(33) pe((01,11), (02, 72)) = hn((glv 1), (02,72)) + hT]((gQa 72), (01,71)).

It turns out that this construction is independent of 7, provided n is Mané critical
and [n]p» = c¢. One can show that p. > 0, satisfies the triangle inequality, and is
independent of the choice of a Mané critical closed one form 7. The set

A*={(0,7) : pe((0,7),(0,7)) = 0}
is called Aubry set. One can show [Ma2] that
MEC A CNCCTT" xT
for all c € HY(T™,R) and A¢ also satisfies the Graph Theorem stated above.

Appendix B. Proofs of auxiliary lemmas

LemmaB.1. — For positive p and 0 < a < 1 consider the space of C*% smooth

function on ﬁg > (0,7) with the natural C* Whitney topology in K5, where m < d <
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s < 00, d,m € Zy. Then for any C° Whitney open dense set D5_ . of (m+ 1)-tuples
(90s - -+ gm) of C*4=™ smooth functions on Ky, the set offunctwns of the form

(34) 9(0,1) = _r{ry " g,(0,7)
p=0

with (m 4 1)-tuples (go, ..., gm) € D5_,, intersected with C*(K2*) is C* Whitney
open dense.

Proof of Lemma B.1. — Pick r = (r1,r2) € Kg, ie. 0 <arp <rg <pand0 <
arg <11 < p. We find two functions f11(6,7) and f21(0,7) defined on K¢ satisfying
(35) r1f11(0,7) — rafa1(0,7) = f(0,7).

Consider two functions equalities:

FO.r) = 0,11, 5m1) = raga(,7), (8,71, 572) = mgi(6.7).

To define f1 and f2 by explicit formulas inside K consider the coordinate change:
= (r,ar), r2 = (0,72 — ary), and f(0,71,72) = f(0,7r1,72). By Hadamard-
Torricelli’s lemma

9 7“1, / a~ 9 lf?”l, )dt

r191(6,71,0) = f(earla 0) — f(9,0) = f(f),?“l, %7'1)

1 I -~ -~ ry ~
QQ(Q,FLFQ) = / a'f (9 rl,tTQ)dt _ f(9,7'1,7'2) - f(9,7’1,0).
0

0ra Te — §71
2

f(e 1, )

This implies that for fi; = g1 + §g2 and fo1 = g2 (35) holds true.

Notice that f1; and fo1 have zero of order (m — 1) in r in the sense that they
are C*9~1 smooth. Application of Hadamard-Torricelli’s lemma to f1; and fo; gives
explicit formulas for functions fo2, fi2, and fa2, which have zero of order (m —2) in r,
namely, functions belong to CS’d’Q(ICg). After m steps we get explicit formulas for
functions fom, ..., fmm. Denote fp, = fp for p = 0,...,m. These functions satisfy
(34) which completes the proof. O

Proof of Lemma 2.1. — We start with an integrable truncation of f. Let fbe defined
by (1) with P;,Q; = 0. Then, the time 1 map of the Hamiltonian

(36) Ho(0,7) = wiry + wars + 2<Br )

coincides with fy, as an easy calculation shows. Construct a time periodic deformation
{H(-,t)}+er of Hy so that the time 1 map of H(-,t) coincides with f and so that H(-,t)
is C**1 close to Ho(+) near r = 0 for all ¢t € T. Since Hy is convex in r, s > 2, and we
are interested in small r, it implies the desired convexity of H(-,t) in r for each ¢t € T.

The construction of {H(-,¢)}ier is done using generating functions. We recall
a standard fact from Hamiltonian system (see e.g. Arnold [Ar2] sect.48) for a C*®
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smooth symplectic map g(0,7) = (8, R), 6,0 € T", r, R € R’}: one can define a C*!
smooth generating function S, (6, ©) so that

{r = —095,(0,0),

(37)
R = 065,(0,0).

The function S,(6,©) above is defined up to a constant. Direct calculation for f
and f in a small r-neighborhood of zero show that

1
5#0,0) = §<B*1(9 —0—-w),(®—0—w))and

S(8,0) = S7(6,0) +0(|(© — 0 —w)).

(38)

Consider a smooth family of generating functions {gt}te[o,l] given by

ht) ) 51 1
5,(0,0)={ 2 EB (0 —0—w/h(t),(©—0—w/h(t)) forte (03]

h(t)51/2(0,0) + (1 — h(t))S; (0, 0) for ¢ € [5,1],
where h is a smooth positive function away from zero, h(1) = h'(1/2) =0, h(1/2) =1,
and 1/h(t) = t near t = 0+. The choice of h is designed so that S; is sufficiently
smooth with respect to ¢ for ¢t € (0,1]. By construction, S; generates a smooth family
{ft}te(o,1) of exact symplectic twist maps (see [Go] sect 26 or [McS] sect 9.3). More
precisely, f(0,7) = (0 + (h(t))"'(w+ Br),r) for 0 < ¢t < 1/2 and lim;_o4 f; = 1d.
Define s4(6,7) = S4(6,0 + (h(t)) " (w + Br)) for 0 <t < 1/2. It becomes

s¢(0,7) = (2h(t))"Y(Br, 7).

By assumption, 1/h(t) = t near zero s; can be smoothly continued for all ¢ € [0, 1]
with so = 0 and s1(0,7) = Sf(0,0(0,7)), where ©(6,r) is given by f(0,7) = (0, R)
for some R. Now we can write:
(39) fi(rdf) —rdf = dsy, te[0,1].

It shows that {ﬁ}te[o,l] is a Hamiltonian isotopy. By standard results from
symplectic geometry, obtained by combining homotopy formula and (39) (see
e.g. Prop.9.18 in [McS] or Thm.58.9 in [Go]) this family generates Hamiltonian
functions {H(-,t)}+c[0,1) as follows. Denote by X, vector fields generated by iso-
topy ﬁ, i.e. given by )A(:t(f), r) = (dﬁ/dt)((ﬁ)*l(& r)), by i, o the interior derivative
of a 1-form a by )A(:t, and by s.(0,7) a form of generating function, given by (39).
Then

- ‘ ~ . (d
iy o) = it = () (o).
One can check that dH (-, t) = —ig,dr A\ db.

By the construction, the time map of ﬁf(-,t) from time ¢ =0 to t =1 equals f.
However, {H(:,t)}ic[o,1) is not necessarily periodic in ¢. To attain periodicity we
slightly modify the above construction. For small ¢, say ¢t € [0, 9], we have f;(0,r) =
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(0 + tBr,r) and, therefore, I;ff(',t) = Hy(0,r). Let us define f1_, = f-1o f for
T € [0,4]. Let S1_,(0,©) be the generating function of f1_, with S1_,(0,0 4+ w) = 0.
Consider the following family of generating functions

5.(6,6) = S4(6,0) for t € (0,1 — 6]
ST (= 9(1)80(6,0) + g(1)S1_4(6,0))  for t € [1—4,1],

where g(t) is a C*T! smooth function on [1 — §,1], with g(1 — §) = 0, g(1) = 1,
and g (1) = g®(1 - 6) = 0 for p = 0,1,...,s + 1. By construction, S; defines
a Hamiltonian isotopy {fi}ie(0,1) With f1 = 171 = f. By the same token as above
{fi}ie(0,1) defines a Hamiltonian function Hy(-,t) which is C**! smooth and periodic
in time ¢.

In order to verify positive definiteness, we consider two cases: t € [0,1/2] and
t € [1/2,1]. In the first case, near ¢ = 0+, we have f;(0,r) = (0 + tBr,r) and,
therefore, H¢(6,7,t) = Ho(#,r). Similarly, for 0 < ¢ < 1/2, but not near zero,
we have that Hy(0,r,t) = m(t)Ho(0,r), where m(t) is a smooth strictly positive
function (explicitly computable from h(t)). Definition (36) of Hy and hypothesis (H2)
of positive definiteness of B implies positive definiteness of 92, Hy for 0 < ¢ < 1 — 6.

In the case t € [1 —4,1], by definition, S;(6,0) = S#(6,0) + 0(|(© - — w)|*).
Explicit calculation gives that the underlying Hamiltonian has the form

1
(40) H9,7,t) = wirs +wars + §<B7"a r) 4+ 0(|r[*).

It implies the Hessian 02 H (-, t) is close to B and, therefore, positive definite. This
proves the lemma. O
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ON THE STOKES GEOMETRY OF HIGHER ORDER
PAINLEVE EQUATIONS

by

Takahiro Kawai, Tatsuya Koike, Yukihiro Nishikawa & Yoshitsugu Takei

Abstract. — We show several basic properties concerning the relation between the
Stokes geometry (i.e., configuration of Stokes curves and turning points) of a higher
order Painlevé equation with a large parameter and the Stokes geometry of (one of)
the underlying Lax pair. The higher-order Painlevé equation with a large parameter
to be considered in this paper is one of the members of Pj-hierarchy with J = I,
II-1 or II-2, which are concretely given in Section 1. Since we deal with higher
order equations, the Stokes curves may cross; some anomaly called the Nishikawa
phenomenon may occur at the crossing point, and in this paper we analyze the
mechanism why and how the Nishikawa phenomenon occurs. Several examples of
Stokes geometry are given in Section 5 to visualize the core part of our results.

Résumé (Sur la géométrie de Stokes des équations de Painlevé d’ ordre supérieur)

Nous exhibons plusieurs propriétés fondamentales liant, d’une part, la géométrie
de Stokes (i.e., la configuration des courbes de Stokes et des points tournants) d’une
équation de Painlevé d’ordre supérieur a grand parametre et, d’autre part, la géomé-
trie de Stokes de ’'une des paires de Lax sous-jacentes. L’équation de Painlevé d’ordre
supérieur a grand parametre considérée est 'une des équations de la hiérarchie Py
pour J = I, II-1 ou II-2 que nous détaillons dans le paragraphe 1. Les équations étant
d’ordre supérieur leurs lignes de Stokes peuvent se croiser et I’anomalie connue sous
le nom de « phénomeéne de Nishikawa » peut se produire aux points de croisement.
Nous analysons le mécanisme par lequel ce phénomeéne de Nishikawa apparait. Plu-
sieurs exemples de géométrie de Stokes sont donnés dans le paragraphe 5 en vue d’une
visualisation de la partie centrale de nos résultats.
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0. Introduction

This paper is the first of a series of our papers on the exact WKB analysis of
higher order Painlevé equations. For the sake of the clarity and the uniformity of
the description we restrict our consideration in this paper to the P;, Pir.; and Pg
hierarchies with a large parameter 7, which are described explicitly in Section 1.
Although these hierarchies are basically the same as those discussed by Shimomura
([S2]), Gordoa-Pickering ([GP]) and Gordoa-Joshi-Pickering ([GJP]), we need to
appropriately introduce a large parameter n in their coefficients together with the
underlying systems of linear differential equations (the so-called Lax pairs) so that we
may develop the WKB analysis of the hierarchies in question. As is evident in the
series of papers ([KT1, AKT2, KT2, T1]; see [KT3] for their résumé), the relations
between the Stokes geometry for (one of) the Lax pair and the appropriately defined
Stokes geometry for the Painlevé equation play the key role in the WKB analysis of
the traditional Painlevé equations, i.e., the second order differential equations first
studied by Painlevé and Gambier. One of our main purposes of this paper is to show
that the relations observed for the traditional Painlevé equations remain to hold for
each member in the Painlevé hierarchies considered in this paper (Section 2). Another
main purpose of this paper is to analyze why the novel and interesting phenomena
numerically discovered by one of us (Y.N.) should occur in our context (Section 3).
To analytically detect where the phenomena (the so-called Nishikawa phenomena) are
observed, we introduce the notion of new Stokes curves in Section 4. In Section 5 we
present several illuminating examples of Stokes geometry for higher order Painlevé
equations and the Stokes geometry of their underlying Lax pair. Appendix A gives
a proof of some properties of auxiliary functions K; and K; used in Sections 1 and 2
to write down the Pypi-hierarchy with a large parameter. In Appendix B we note
that the Pi-hierarchy with a large parameter is equivalent to a hierarchy discussed by
Gordoa and Pickering ([GP]) if a large parameter is appropriately introduced.

As the discussion of [K'T1] etc. uses a Lax pair of single differential equations, the
results there may look pretty different from the results in this paper, where a Lax pair
of 2 x 2 systems is used, that is, the framework of Flaschka-Newell ([FN]) and Jimbo-
Miwa ([JM]) is used instead of the framework of Okamoto ([O]); in particular, the
apparent singularities which played an important role in [KT1] etc. do not appear in
this paper. Hence we end this introduction with briefly recalling the geometric results
in [KT1] which are reformulated for a Lax pair of matrix equations. For the sake
of simplicity we consider only the first Painlevé equation. Thus, following [JM], we
start with the following Lax pair:

(i - nA)w =0, (0.la)

(0.1)
(Q - B)w =0,  (0.1b)

ASTERISQUE 297
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where

02) o < v(t,n) Az — u(t, 77)))
2?2 +ult,n)x +ult,n)? +t/2  —v(t,n)

and

(0.3) B= ( 0 2) .
z/2+u(t,n) O

That is, we consider an isomonodromic deformation (with respect to the variable t) of
the first matrix equation (0.1.a); the second equation (0.1.b) explicitly describes this
deformation. To obtain (0.1) we have introduced a large parameter 7 to the equation
(C.2) of [JM, p. 437] so that the resulting compatibility condition may become the first
Painlevé equation with a large parameter n in [KT1] etc. We have also interchanged
the first component and the second component of the unknown vector 1 for the sake of
uniformity of presentation in this paper. The compatibility condition of the equations
(0.1.a) and (0.1.b), i.e.,

(0.4) % — g—f +n(AB—-BA)=0

can be readily seen to be equivalent to the following system (Hj):
du -

(0.5) (Hy):{ ¥ .
dv 9
i n(6u® +t)

We next construct the so-called 0-parameter solution (u,v) of (Hy) which has the
following form:

(0.6) at
(0.7) o(t

(0.8) 6uz+t=0 and Dp=0
hold and that u; and ; (j > 1) are recursively determined. Substituting (u, ) into
the coefficients of A and B, we let Ay and By denote their top degree part in 7, that
is,
0 Az — 1o (t))
(0.9) Ao=1| , S ,
x4 Up(t)x + uo(t)” +¢/2 0

(0.10) By = ( OA 2).
/2 + Uo(t) 0

To consider the linearization of (Ht) at (u, v), we set u = t+Au and v = v+Av in (0.5)
and consider the part linear in (Au, Av). (Although the terminology “linearization”
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used here has a completely different meaning from that used in [JM], we hope there
is no fear of confusions; in [JM] etc., the linearization of (H1) means the system (0.1)
of linear differential equations.) Then we obtain

01 i () =7 (o) (&)

Let C' and Cj respectively denote

()

and

(0.13) < 1 20% é) .

Concerning the matrices Ag, By and Cy we find the following several relations.
First of all, (0.8) immediately entails

(014) Ao = 2(:[: - ﬂo)Bo.
This relation leads to the following

Fact A

(1) The equation (0.1.a) has one double turning point x = up(t) if U # 0.
(ii) It has one simple turning point x = —2ug(t) if o # 0, and this point is a
turning point of the equation (0.1.b).

Here and in what follows we use the terminology “a turning point” for a matrix
equation like (0.1.a) to mean, as usual, a point where eigenvalues of its highest degree
part in n (i.e., the matrix Ag in the case of (0.1.a)) merge. In other words, a turning
point is a zero of the discriminant of the characteristic equation of the highest degree
part, and it is said to be simple (resp. double) if it is a simple (resp. double) zero of
the discriminant. We next obtain

(0.15) 12ao(t)uo(t) +1=0
by differentiating (0.8). Then this relation proves the following

Fact B. — The eigenvalues Ay of Ay (i.e., £2(x — up)vx + 2up) and the eigenvalues
px of By (i-e., £vx + 2uy) satisfy the following relation:
0 0
0.16 —Ar = —[+.
(0.16) B = it

The following Fact C might look too trivial to note, but for the sake of later
references we note it here.
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Fact C. — We find

(0.17) det(v — Cp) = 4det(u — By) .
T=Ug,u=vr/2

In what follows a point is called a turning point of a non-linear equation when
it is a turning point of the linearization of the non-linear equation at a 0-parameter
solution. (Hence, logically speaking, we have to specify the 0-parameter solution to
define the notion of a turning point. However, the situation is usually obvious and
we omit the explicit reference to the 0-parameter solution unless it is confusing.)

The following Fact D (actually together with Facts A, B and C) is observed for all
traditional Painlevé equations with due modifications and it plays a crucially impor-
tant role in reducing each Painlevé transcendent to Painlevé I near its simple turning
point. (Cf. [KT1, KT2] and [KT3].)

Fact D
(i) At the turning point t = 0 of the equation (0.11), the double turning point
x = Up(t) merges with the simple turning point x = —2ug(t) in the Stokes geometry
of (0.1.a).
(ii) We find
1 t ﬂo(t)
(0.18) —/ (vy —v_)dt = / (A — AL)dx,
2 Jo —2a0(t)

where vy are the eigenvalues of the matriz Cy.

Since a Stokes curve of (0.1.a) that emanates from a turning point a is, by definition,
a curve defined by

(0.19) Im /x(/\+ —A_)dz =0,

and since a Stokes curve of (0.11) that emanates from its turning point 7 (actually
7 =0) is given by

¢
(0.20) Im/ (vy —v_)dt =0,
the relation (0.18) entails the following important

FactE. — Ift (# 0) lies on a Stokes curve of (0.11), the Stokes geometry of (0.1.a)
becomes degenerate in the sense that its two turning points are connected by a Stokes
curve.

In this manner the Stokes geometry of (0.11), i.e., the Stokes geometry of (Hj) is
closely related with that of (0.1.a), one of the underlying Lax pair whose monodromy
data (including Stokes multipliers) are preserved.
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Remark 0.1. — As is common in the literature (e.g., [V]) in the exact WKB analysis
(i.e., WKB analysis based on the Borel resummation), we employ the above defini-
tion of a Stokes curve, that is, the definition making use of the imaginary part of
the quantity in question; considering the imaginary part, not the real part, is most
appropriate in view of the definition of the Borel resummation.

Remark 0.2. — Because of the simple character of the Stokes geometry of (0.1.a) its
degeneracy occurs only when the parameter ¢ lies on a Stokes curve of (0.11). As
we will see in Section 3, this is not always the case for the higher order Painlevé
equations. However, Fact E, together with Facts A, B, C and D, will be confirmed
with due modifications in Section 2 for each member in the Pj-hierarchy with J =1,
II-1 or II-2.

1. Pj-hierarchy with a large parameter (J =1, II-1 or 1I-2)

The purpose of this section is to explicitly write down the Pj-hierarchy with a large
parameter (J = I, II-1 or II-2) together with the underlying Lax pair.

1.1. Pi-hierarchy with a large parameter. — The P-hierarchy with a large
parameter 7 is, by definition, the following family of systems of non-linear equations
which are labeled by a positive integer m. As one can readily see, the first member of
the family, i.e., (P1)1 is reduced to (P;), the Painlevé I equation with a large parameter
n (in the notation of [KT3] etc.). This fact justifies the name “Pr-hierarchy”. It was
introduced (in a form somewhat different from the expression below) by Shimomura
([S1, S2]) in studying the most degenerate Garnier system. It is essentially the
same as the Pi-hierarchy proposed earlier by Gordoa and Pickering ([GP]) through a
particular reduction of KdV-hierarchy in a similar way as in the case of Pj_i-hierarchy
discussed in the next subsection (¢f. Appendix B). See also [KS].

Definition 1.1.1 (P, -hierarchy with alarge parameter )

d .
% —2; (j=1,...,m), (1.1.1.a)
Um+1 = 07

where w; is a polynomial of u; and v; (1 <1< j) that is determined by the following
recursive relation:

1 J Jj—1
(1.1.2) w; = §(Zukuj+l—k> + Zukwj—k
k=1 k=1
=
— §<kavjk> +Cj+5jmt (j = 1,...,m).

k=1
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Here c; is a constant and ;,, stands for Kronecker’s delta.
Remark 1.1.1

(i) (Pr1)1 is equivalent to
(1.1.3) uf = n?(6u? + ey + 4t).

(ii) (Pr)2 is equivalent to
(1.1.4) u" = n?(20uruf + 10(u}))?) + n*(—40u? — 16¢1u; + 16¢2 + 16t).

(ili) (Pr)s is equivalent to
(1.1.5)  ul® = n2(28uul? + 56uiul® + 42(u))?) — n* (280w + 280u; (1))

+ 16c1u”) 4+ n°(280u? + 96¢1u? — 64couy — 3262 + 64cs + 64t).

To present the underlying Lax pair we first introduce the following polynomials in
x with coeflicients u;, etc.

(1.1.6) U(x) =a™ — Zujxm*j,
j=1
(1.1.7) V()= va™,
j=1
(1.1.8) W(z) =Y wja™.
j=1
We then let A and B denote the following matrices:
V(x)/2 Uz
(1.1.9) A= @)/ (@)
(2™t —2U(z) + 2W (2))/4 =V (x)/2
0 2
(1.1.10) B= .
up+x/2 0
Now the required Lax pair is given by
(aﬂ—nA)wzo, (1.1.11.a)
(1.1.11) (L1)m : ;
(E —nB>¢=0. (1.1.11.b)

In order to prove that (P),, is the condition for the compatibility of (1.1.11.a) and
(1.1.11.b), we first show the following

Lemmall.l. — The system of equations (Pr), together with the relation (1.1.2) en-
tails
d’LUj

(1.1.12) 5 =2nuiv; +0jm (G =1,...,m).

SOCIETE MATHEMATIQUE DE FRANCE 2004



124 T. KAWAI, T. KOIKE, Y. NISHIKAWA & Y. TAKEI

Proof. — When m = 1 the conclusion is obvious. Hence, we suppose m > 1. It, then,
follows from (1.1.2) that

1
(1.1.13) wy = iu“f + ¢y
Thus we find by (1.1.1.a)
(1.1.14) wi = 2nuqvy.

We, now, use the induction on j. Suppose that (1.1.12) holds for j = 1,...,j0 < m.
Then, by differentiating w;,+1 determined by (1.1.2), we find

Jo+1
(1.1.15) w;OH = 5( Z (upjor2—k + Uku;'o+2—k)>

k=1 ,
Jo
/ /
+ Z(ukwjo+1—k + U Wi 41-g)
k=1 4
1 Jo
’ /
D) (Z(Ukvjo-i-l—k + Ukvjo-i-l—k)) + 0jo+1,m-
k=1

Then, the induction hypothesis together with (P;),, entails

Jo+1 Jo Jo
/
(1.1.16) wfy 1y = 277( D Vit D VkWip 1k + D URUIjo 41k
=1 k=1 k=1
Jo
- Z(WH + urug + ’wk)vjo-i-l—k) + 0jot+1,m
k=1 ‘
Jo Jo
=27 <vj0+1u1 + Z Vjo+1—pUp+1 T Z VWi +1—k
p=1 k=1
Jo Jo Jo
+ Z URUIVjo4+1—k — Z Uk+1Vjo+1—k — Z Wijo+1-1V1
k=1 k=1 =1
Jo
-3 ulukvjo+1—k) + 0jot+1,m
k=1
= 200jo 101 + Ojo1,m-
Thus, the induction proceeds, completing the proof of (1.1.12). O

We, now, prove the following
Proposition 1.1.1. — (Pr)y, is the compatibility condition for (1.1.11.a) and (1.1.11.b).

Proof. — The compatibility condition for (1.1.11.a) and (1.1.11.b) is given by

04 9B

(1.1.17) TR

+n[A, B] = 0.
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It follows from the definition of matrices A and B that

U U—zmtl —Ww 2V
(1.1.18) P .
—uV —(2V)/2 2™t —aU + W —u U

Writing down (1.1.17) componentwise, we find the following three relations.

(1.1.19) 7771%—‘: + 2 U +2U — 2™ — W) =0,
ou
1.1.2 Tl 42V =
( 0) Uy +2V =0,
ou ow
—1 _ e _ _ _ —
(1.1.21) n o (—x 5 +2—8t 2) — 4w,V — 22V = 0.

Clearly, (1.1.20) is the same as (1.1.1.a). As the part of (1.1.19) with degree m + 1
or m in x trivially vanishes, the relation (1.1.19) is reduced to
0v; .

(1.1.22) nfla—tj +2(—ugu; —ujpr —w;) =0 (§=1,...,m).
This is nothing but (1.1.1.b). Note that u,;,+1 = 0 by the definition. Let us, next,
write down the coefficients of like powers in = in (1.1.21). The coefficient of z™ is
~19m

ot

that of 27 (1<j<m—1)is

(1.1.23) — 20, = 0,

ouj ow;
(1.1.24) L ( gt“ + 2%) — duyv; — 20j41 =0,
and that of 29 is
0
(1.1.25) ! (2ﬂ - 2) — 4wy vy, = 0.
ot
Then, Lemma 1.1.1 proves that (1.1.24) is reduced to
_10u; .
(1.1.26) n 1%:2%1 G=1,...,m—1).

The same lemma entails that (1.1.25) is a trivial relation. The combination of (1.1.23)
and (1.1.26) is again the same as (1.1.1.a). Thus we have confirmed that (P),, is the
compatibility condition of (1.1.11.a) and (1.1.11.b.). O

1.2. Ppp.i-hierarchy with a large parameter. — The Pjpq-hierarchy (with a
large parameter) is a hierarchy obtained by a similarity reduction of the KdV hier-
archy. As is shown by Gordoa and Pickering in [GP], this hierarchy together with
its underlying Lax pair can be reproduced also by their scheme called “nonisospec-
tral scattering problems”. Here, following the formulation of [GP], we define the
Prp.1-hierarchy with a large parameter in the following manner:
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Definition 1.2.1 (P-1-hierarchy with a large parameter 7)

0
(1.2.1) (Pit1)om - (n—lg + 21)) Ko+ g(2tv+n71) + ¢ = 0.
Here, m is a positive integer that labels a member of the hierarchy, v = v(t) is an
unknown function, g (# 0) and ¢ are constants, and K is a polynomial of v and its

derivatives defined by the following recursive relation

(1.2.2) oK 1 = (20 — ATt (v — )9y — 2200 — W) K

for j > 0 with K¢ = 1/2 and 0; = 0/0kt.

Remark 1.2.1. — Although the differentiation 0; appears in the left-hand side of the
recursive relation (1.2.2), we can define each K so that it becomes a polynomial only

of v and its derivatives and independent of any integrated terms like 0, Lv. For the
proof see Appendix A. For example, first few members of K; are given as follows:

(1.2.3) Ko=1/2,

(1.2.4) Ky = v+,

(1.2.5) Ky =3v" —6n "% + 72 ((v))? — 200") + n 30,
(1.2.6) K3 = —100° + 300 "o’ + 172 (100%(v)? + 200%0")

+173 (= 10(v')® — 4000'v” — 10020®)

774 (= (") + 200 = 200W) 4 775,
Remark 1.2.2. — By an induction we can also show that
(=1)727=1(25 — 1)

(1.2.7) K; = 7 v +0(n™),
where (2j — )l = (2j —1)-(2j —3) - --- 3- L.
Remark 1.2.3
(i) (Pr1)1 is
(1.2.8) n 2" =0 —gtv4+n) —c

This is equivalent to (Pi1), the Painlevé IT equation with a large parameter 7).
(11) (PH_l)Q is

(1.2.9) W = n72(100%0" + 100(v)?) — 60° — g(2tv +71) — .

The underlying Lax pair of (1.2.1) is

(1.2.10) (L111)m
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where
-1
1 — T, 2T, 01
(1.2.11) A= — O , B= .
4xg \ 2¢T,, — n’Qé‘me N 10T, q0
Here, T;, and g respectively denote the following functions:
m
(1.2.12) T =gt + Y (42) K i,
k=0
(1.2.13) qg=x+v—nW.

Our Pip.1-hierarchy (1.2.1) is obtained from the hierarchy
(1.2.14) (O +20)Ky, +9(2tv+1)+¢c=0
discussed by Gordoa and Pickering through the scaling
(1.2.15) v /Gy 2m/CmAD g e e
Here, K; is a polynomial of v and its derivatives, satisfying the recursive relation
(1.2.16) O js1 = (0} + 40" — )0 +2(v" —vH))K;.

Note that by the scaling (1.2.15) K; is transformed to n2j/(2m+1)Kj and each K can
be written as

(1.2.17) Kj = Kjlv,n) = Kjol] + 07 ' Kja[o] + -+ 0 2 Ko 1 [0]

with Kj;; being a polynomial of v and its derivatives independent of 1. As is ex-
plained also in [GP, III, pp. 5751-5755], (1.2.14) is the compatibility condition for
the following system of linear ordinary differential equations:

0 0
43?9%1? = (=0T + 2T =)0,

ox
(1.2.18) 52
2 —
(w—l—v’—v —x>w—0,
or for the system equivalent to it:
0 ~ 0
1.2.19 —yp=A —¢y =B
where
1 —o,T, 2T, _ (01
(1.2.20) A= — o "), B= :
dxg \2¢T,, — 07T}, 0, Ty, q0
Here,
m
(1.2.21) T =gt + Z(4m)lem_k and ¢=z+v? -
k=0
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As a matter of fact, by straightforward computations we readily find that

0A OB  ~+ ~ 00
(1.2.22) o ot [A, B] = (A 0)
with
1
(1.2.23) A= —%(at —20)0,{ (01 + 2v) K + g(2tv + 1) }.

Thus (1.2.14) is the compatibility condition for the Lax pair (1.2.19) with (1.2.20).
Our Lax pair (1.2.10) and (1.2.11) are obtained from (1.2.19) and (1.2.20) through
the scaling (1.2.15) and 2 — n?/Gm+1g,

1.3. Pir2-hierarchy with a large parameter. — The Pjj_o-hierarchy with a large
parameter is obtained from the hierarchy introduced by Gordoa-Joshi-Pickering in
[GJP, p.337] through an appropriate scaling of the variables and constants. Here,
we content ourselves with explicitly listing up the final results and we refer the reader
to [N1] and [N2] for the details of the discussion.

Definition 1.3.1 (P-2-hierarchy with a large parameter 7)

m—1
K1+ Y ¢Kj+gt =0,

(1.3.1) (Pir2)m : J=
Lm,-l—l + Z Cij = 4.

j=1

Here, g (# 0), ¢; and ¢ are constants, and K; and L; are polynomials of unknown
functions u, v and their derivatives defined by the following recursive relation

132) o8 Kjp\ 1 (n ' +un'o,—n7207 2970, K;
o ! L1 2 20 1o, + n 1ty un~1o, +n=20? L;
(j 2 0) with Ko =2 and Lo =0.

Remark 1.3.1. — As in the case of Pr.;-hierarchy, we can show that K; and L; become
polynomials of u, v and their derivatives. For the proof see [N1] and [N2]. First few
members of K; and L; are given as follows:

K1 u
(1.3.3) :
L1 v
(13.4) K, 1 u? + 20—t/
o Ly) 2 2uv +n~ N ’

K; 1\2 [ u?+ 6uv — 3n"tu + 12"
(1.3.5) = (—) .
Ls 2 3uv + 3v2 + 3n~tuv’ + %"
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Remark 1.3.2
(i) (Pri—2)1 is reduced to

(1.3.6) n2u" = 2ud + 2¢ (2tu + 77_1) + 49.

(i) (Pr—2)2 is reduced to

1
(13.7) n*ul = Gl [7774 (—4(ul)2u” + 3u(u)? + 4uu'u(3)> + 160 3 guu’
u
+ 173 (=16gt(uw)* + 5ud(u')? + 16gtun + 10uu”) — 245~ ' gu®

+ (1692t2u — 16¢1%u® — 486u> — 169tu4 — 2ciu® — 5u7)} .

The underlying Lax pair of (Pir2)m is

0
(a—x - nA)w =0, (1.3.8.a)
(138) (LH_Q)m : 8
(& - nB)w =0, (1.3.8.b)
where
(1.3.9) A=A e AT Lo G AMTS) 4 e AO)
-z +u/2 1
(1.3.10) po 0T .
—v oz —u/2
Here, AU) denotes
—(2{E — U)Tj — UﬁlatTj QTJ‘

. 1
(1.3.11) AW = P —20T; — =10, {(2z — u)T;
—I-atTj + Kj+1}

)

(22 — )T + 1 10,T;
where

(1.3.12) T =

N~

m
E ™ Kj .
Jj=0

2. Relations between the Stokes geometry of the (Pj)-hierarchies and
that of their underlying Lax pairs

In this section we prove that the relations, being similar to the Facts A ~ E for
the traditional Painlevé equations explained in Introduction, also hold between the
Stokes geometry of a member in the (Py)-hierarchies (J = I, II-1 and II-2) and that
of its underlying Lax pair.
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2.1. Case of the (Pr)-hierarchy. — As in the case of the traditional Painlevé
equations, we first construct what we call the 0-parameter solution (Uj,v;) of (Pr)m
of the following form:

(2.1.1) uj(t,m) =ujo(t) +n ")+,
(2.1.2) 0i(t,m) = Vj0(t) + 0 00 (t) + -

Substituting these expansions into (1.1.1.a) and (1.1.1.b), we readily find that v
(j =1,...,m) identically vanishes and @; o should satisfy

(213) ajJrl’o-l—al’oaj’o-i-’l’ﬁj’o =0 (j = 1,...,m).

We can also observe that u, 5 and v, 5 (k > 1) are recursively determined once ;¢ is
taken to be zero and U, o is chosen so that it satisfies the algebraic equation (2.1.3).
Note that the top order part w; o of w; satisfies a recursive relation

. (& - ,
(2.1.4) w;o = 3 (Zuk,oujJrl_k,o) + Zuk,owj—k,o +¢j+dimt (G=1,...,m)
k=1 k=1

corresponding to (1.1.2), and that (2.1.3) together with (2.1.4) recursively determines
each Ujo (j =1,...,m) as a polynomial of &1 . In particular, as Un41,0 = 0 by the
definition, (2.1.3) for j = m provides an algebraic equation for %; . Hence all ;¢
and U;,¢ are determined algebraically and the O-parameter solution (4, ;) of (Pi)m
is thus constructed.

Remark 2.1.1. — By using an induction on j we can verify that u; o is a polynomial of
u1,0 with degree at most j. Furthermore, letting (—1)j_1ajﬂ{’0 denote the top degree
part of @, we obtain the following recursive relation for {«;} as a consequence of
(2.1.3) and (2.1.4):

L, j-1 |
(2.1.5) ajp1=a;+ Q(Zakaﬁl*k) = aklgk—aix) (G=1,...,m)
k=1 k=1

and oy = 1. Since

j(_%)(_%_l)”'(_%_j+1) 1-3-5-----(25—1)

(2.16) & =(-2) 7 i

satisfies the same recursive relation (2.1.5), we can conclude that o; = &; # 0. Thus,
U1,0 is a solution of an algebraic equation with degree exactly equal to m + 1 and,
roughly speaking, there exist m + 1 0-parameter solutions of (Pr)y,.
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We, next, substitute the 0-parameter solution (4;,7;) of (P),, into the coefficients
A and B respectively given by (1.1.9) and (1.1.10), i.e., the coefficients of its under-
lying Lax pair. Then, their top order parts Ay and By become
VO (%)/2 U()(J))
(2.1.7) Ag = ,
(22 — 2Us(z) + 2Wo(z)) /4 —Vo(x)/2

(2.1.8) B o2
. 0= )
Uro+z/2 0

where Uy (z), Vo(x) and Wy(z) respectively denote the top order parts (in 1) of U(x),
V(z) and W(z), that is,

(2.1.9) UQ(J)) =" — Z Aj7ol‘m_j,
j=1

m .
(2.1.10) Vo(z) = Bj0x™ 7,

j=1

m .

(2.1.11) Wo(x) = @j0z™ .

j=1

Here, it follows from (2.1.3) that
22 — 2Up(2) + 2Wo(2)

m m
= gmtl + Z ﬂmmm“ﬂ +2 Z ’ﬁ)\j?()l‘m_j

=1 =1
m m
1 ~ 1—4 ~ ~ o~ —j
(2.1.12) =gt 4 E Ujor™ 7 —2 E (Wjt1,0 + U,0Uj0)x™ 7
=1 =1
m m
=gl + 2@1,090’” — E ﬂmxm“ﬂ — 2@170 E ﬂmxmﬂ
j=1 j=1

= (LL' + 2&170)(._]0(1')
holds. This immediately entails
Uy ({E)

(2.1.13) Ay = == B,

and hence, as a generalization of Fact A for the traditional Painlevé equations, we
obtain the following

Proposition 2.1.1

(i) The equation (1.1.11.a) has m (generically) double turning points (which will be
denoted by x = by(t), ..., x = by, (t) in what follows), and each double turning point
is a root of Up(z) = 0.
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(ii) It has one (generically) simple turning point © = —2uUy o(t), (which will be
denoted by x = a(t) for short in what follows), and this point is simultaneously a
turning point of the equation (1.1.11.b).

We can also prove Fact B in a quite general context, that is, even for (P),, we
have

Proposition 2.1.2. — The eigenvalues A+ of Ay and the eigenvalues pu+ of By satisfy
the following relation:

0] 0]
(2.1.14) a)\i = %ui.

For the proof of Proposition 2.1.2 see [T2], where the method of diagonalization
for the Lax pair (Ly),, is used to prove the proposition in question.

Now, to define the Stokes geometry of (Py),, we consider the linearization of (P;),,
at the O-parameter solution (4;,v;), that is, we take the part linear in (Au;, Av;) after
the substitution u; = U; + Au; and v; = v; + Av; in (). We then obtain

d

thuj =2nAv; (j=1,...,m),

(2.1.15)

d ~ ~ .
£Avj =2n(Auji1 + U1 Auj + AU + Aw;)  (F=1,...,m).

This defines a system of first order linear ordinary differential equations for
(Auj, Av;). We write this system as

Auy Auy

Awvq Avy

d Ausg Awug

(2.1.16) 7 | Ave | =000 | A,
A’Um, A'Um,

As in the case of the traditional Painlevé equations, we then call a turning point
(resp. Stokes curve) of (2.1.16) a turning point (resp. Stokes curve) of our non-linear
equation (P),,. That is, if we let Cjy denote the top order part (i.e., the part of order 0
in n) of the coefficient matrix C(¢,n) of the right-hand side of (2.1.16), a turning point
7 of (Pp)., is a point where two eigenvalues v;(t) (j = 1,2) of Cyp merge and a Stokes
curve of (Pp),, emanating from 7 is given by Im th (v1 — v2)dt = 0. To write down Cq
in an explicit manner, we note the following

Lemma2.1.1

(2.1.17) Aw; =1 0Au; +O(n™ ) (G=1,...,m).
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Proof. — In parallel with the proof of Lemma 1.1.1, we use the induction on j to
prove (2.1.17). In the case of j =1 (1.1.13) immediately entails
(2.1.18) Aw1 = ﬂlAul.

We now suppose that (2.1.17) holds for j = 1,...,jo(< m). It follows from (1.1.2)
that

Jo+1
(2.1.19) Awjosr = Y Tjoya-sAuy
k=1
Jo Jo
+ D (g1 AWy + Bjg 41— AuR) = Y Tjg 41— 1Ay
k=1 k=1

Then by the induction hypothesis together with the fact ¥; 9 = 0 we find

Jot+1 Jo
(2.1.20) Awjop1 = > Wjgra—kAug + Y (Bjo1-kT1,0 + Djor1—k)Aug + O(n~ ).
k=1 k=1
Since we know by (2.1.3) that @;41,0 + U1,0%j,0 + Wj,0 = 0 holds for j =1,...,m, we
obtain from (2.1.20) the following:
(2.1.21) Awjy 1 = U1 0Aujo11 + O ).
This completes the proof of (2.1.17). O

In view of (2.1.15) and Lemma 2.1.1 we find that the explicit form of Cj is given
by

0 2
6ti1,0 0 2
0 0 2
(2.1.22) Cy = | 2u20 [4Uu1,00] 2
0 0 2
2@,\370 4@,\1700

This leads to the following

Proposition 2.1.3. — We have the relation

(2.1.23) det(v — Co) = 4™ [ [ det(n — By)
j=1

= H (1/2 — 4(2@1’0@) + bj(t))),
j=1

x=b;(t),n=v/2

where bj(t) denotes a double turning point of (1.1.11.a), i.e., a root of Up(z) = 0
(cf. Proposition 2.1.1).
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Proof. — Expanding

noo =1
—3&170 1% -1
0 po -1
(2.1.24) det(2u — Co) = 4™ | 20 [Z2u10 p| —1
0 no =1
—6370 —2@1,0 M

with respect to the first column, we find

det(2u — Co)= 4™ [1? (1 — 201,0)™ ™" = 3010(n* — 21,0)" "

—g o (4 — 201,0)™ % — -+ = U 0]

(2.1.25) = 47 ((u? = 2001,0)™ = T ,0 (W = 2001,0)™ " = -+ = Tim,0]
= 4mU0(M2 - 2@170).

This immediately entails (2.1.23). O

Proposition 2.1.3 claims that +2./2u o(¢) + b;(¢) is an eigenvalue of Cy for j =
1,...,m. We can thus label each eigenvalue of Cy by a combination of the index
j and the sign; we let v; 1 denote £24/2%U; 0(t) + b;(¢) in what follows. Note that
vj+ + vj— = 0 holds for every j.

It also follows from Proposition 2.1.3 that det(v — Cp) = 0 has the form f(v?,¢)
with some polynomial f of degree m. This implies that there are two kinds of turning
points for (P)m,: (1) A turning point where the degree 0 part of f vanishes (“a turning
point of the first kind”), and (ii) a turning point where the discriminant of f vanishes
(“a turning point of the second kind”). Then, as in the case of the traditional Painlevé
equations, we can obtain the following relations between the Stokes geometry of (Pr),
and that of its underlying Lax pair (Lp)n,.

Proposition 2.1.4
(i) Lett = 7! be a turning point of the first kind of (Pt)y. Then att =11 a double
turning point © = b;(t) merges with the simple turning point x = a(t) = —2U1o(t) in

the Stokes geometry of (1.1.11.a). Consequently the two eigenvalues v; + of Coy merge
and vanish at t = 1'. Furthermore the following relation holds:

1 rt b (t)
(2.1.26) 5/ (01 — vy, )it :/ Ay — A_)da.
71 a(t)
it) Let t = 7 be a turning point of the second kind of (P)y. Then att =71 @
(i) 9
double turning point x = b;(t) merges with another double turning point x = by (t).

11

Consequently two eigenvalues v;  and vy y of Co merge at t = 7, and so do v; _
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and vy _. Furthermore the following relation holds:

t t b;(t)
eron) [ e -vpaddt== [ e —we)di= [ =,
T I b

1 71 1 (t)

Proof. — We first consider the case of a turning point ¢t = 7! of the first kind. Proposi-
tion 2.1.3 implies that 277 () + b;(t) vanishes at t = 7! for some j. This immediately

entails that = b;(t) merges with = —2TU; () at ¢t = 7! and that v; 1 merge and
vanish there. Note that Proposition 2.1.3 also implies
(2.1.28) s () = 03 (0) = 2w 0) = )]

Hence it follows from Proposition 2.1.2 that
d v

b () 9
A —Al)dx = / — (A = Al)dzx
a(t) ot

b@®) 9

= - (hy — p)de
/a(t) e — 1)
= (p+ — p-)

1
= §(Vj,+ —Vj—).

(2.1.29)

r=b;(t)

Integrating (2.1.29) from 7! to ¢, we then obtain (2.1.26).

We next consider the case of a turning point ¢t = 7! of the second kind. Proposition
2.1.3 again implies that 241 0(¢) + b;(t) coincides with 21y o(t) + bj (t) at t = 71 for
some j and j/. This entails that = b;(t) merges with x = b (¢) at ¢t = 71 and that
vj + and v 1 merge there. The proof of the relation (2.1.27) is similar to that of
(2.1.26). O

As an immediate consequence of the relations (2.1.26) and (2.1.27) we also observe
the following important

Proposition 2.1.5. — If ¢ lies on a Stokes curve of (Pi),, emanating from a turning
point t = 71 (resp. t = 7Y) of the first (resp. second) kind, the Stokes geometry of
(1.1.11.a) becomes degenerate in the sense that its two turning points x = b;(t) and
x = a(t) (resp. x = b;(t) and x = b (t)) are connected by a Stokes curve.

Propositions 2.1.4 and 2.1.5 are natural generalizations to (Pr),, of Facts D and E
for the traditional Painlevé equations explained in Introduction.

2.2. Case of the Pii.j-hierarchy. — As in the case of the Pi-hierarchy, by sub-
stituting

(2.2.1) v ="0(t,n) =vo(t) +n 01 (t) + -
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into (1.2.1) and comparing like powers of 7, we can construct the 0-parameter solution
v(t,n) of (Pi1.1)m. In this case the top order part ¥y satisfies

(2.2.2) 2@\0Km,0(i)\0) + 29ty + ¢ = 0,
or more explicitly

(=1)™m2™(2m — 1!
m)!

(2.2.3) 02 4 21T + ¢ =0

(cf. Remark 1.2.2).
We then substitute the 0-parameter solution v(¢, ) of (Pi1.1)m into the coefficients
A and B of the underlying Lax pair (1.2.10). Their top order parts Ay and By are

given by
1 0 Thmo 01
(2.2.4) Ag=— , Bo= )
229 \ qoTmo O q 0
where
(2.2.5) Tmo =gt + Z(4x)kafk,0‘ 0
k=0 v
(2.2.6) g =z + V3.
Thus
Tm 0
2.2.7 Ap =B
(2.2.7) 0= ug 0

holds and hence we obtain

Proposition 2.2.1

(i) The equation (1.2.10.a) has m (generically) double turning points (which will be
denoted by x = by(t), ..., x = by, (t) in what follows), and each double turning point
x = b;(t) is a root of Tpn0 =0, that is,

(2.2.8) Tpno=22"""[](x = b;(t)).
j=1
(ii) It has one (generically) simple turning point * = —(0o(t))?, (which will be

denoted by © = a(t) for short in what follows), and this point is simultaneously a
turning point of the equation (1.2.10.b).

The following proposition corresponding to Fact B also holds for (Pi1.1)m.

Proposition 2.2.2. — The eigenvalues A+ of Ay and the eigenvalues pu+ of By satisfy
the following relation:

0 0
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(For the proof of Proposition 2.2.2 see [T2].)

Now we consider the linearization of (Pi1.1)., at the 0-parameter solution v. Let
AK; denote the linear (in Av) part of K; after the substitution v = 7+ Awv, then the
linearization of (Pr1)m is

(2.2.10) (N0 + 20)AK,, + 2K, v—ﬁAv +2gtAv = 0.

Since K is a polynomial of v and its derivatives, there exists a (formal) differential
operator

(2.2.11) pi(t ™ O ™) = pio(t.n ™ 0h) + 0" patn T 0 +

for which the following relation holds:

(2.2.12) AK; =pi(t,n 001 Av.

In terms of this operator p;(t,n 19;n!), the characteristic equation (i.e., the top
order part (with respect to 1) of the symbol obtained by replacing =9, by v) of
(2.2.10) is expressed as
(2.2.13) C(t,v) = (v + 200)pm,o(t,v) + 2Kmo| _ + 2gt.

vV=v0
This C(t,v) corresponds to the characteristic equation of Cjy in the case of P-
hierarchy.

Proposition 2.2.3. — We find

(2.2.14) C(t,v) =4m ﬁ det(u — Bo)
j=1

z=b; (t),/,l,:V/2.

Proof. — We first note that the right-hand side of (2.2.14) becomes

m _m 2 ~2
(2.2.15) 4™ ][] det(n — By) I:bj#:y/;zx [[(w*-5-2)

Jj=1 J

x=bj,u=v/2

I
—

v
(=)

z:(u274v02)/4.
To calculate the left-hand side of (2.2.14), we use the recursive relation (1.2.2).

Considering the linear (in Av) part of both sides of (1.2.2), we find that {p; o} should
satisfy the following recursive relation:

I
S
3
=

I
—

J

=2T0n0

)

(2.2.16) vpsi10(tv) = (0P = 4880)pi0(tv) + 20(v = 200)Kjo|
V=V
that is,
(2:2.17) Piro(t,v) = (V= 45)pi0(tv) +2(v = 200) K|
V=g
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By solving this recursive relation with the initial condition

(2218) Pl,o(t7 I/) =V — 2:[)\0,

we obtain
m—1

(2.2.19) Pmo(t,v) =2(v —200) Y (¥ = 400" T ) Kyo|
k=0 v=vo

It then follows from (2.2.13) that the left-hand side of (2.2.14) becomes

(2.2.20) 23" - 433)*”"“}@,0‘

_ +2gt,
k=0 0

which coincides with 2Tn70|z—(u27 172)/4° This completes the proof of Proposition
- 0
2.2.3. O

Thus the same propositions as Propositions 2.1.1 ~ 2.1.3 in the case of the P-
hierarchy hold for the Piyi-hierarchy also. In particular, since it follows from Propo-
sition 2.2.3 that C(t,v) is of the form f(v2,t) with some polynomial f of degree m,
we can define a turning point of the first kind and that of the second kind also for
the Pj1.1-hierarchy in a manner similar to the case of the Pj-hierarchy. For both kinds
of the turning points we can verify the following relations, similar to those for the
Pr-hierarchy, between the Stokes geometry of (Pir.1)m, and that of its underlying Lax
pair (Lir1)m.

Proposition 2.2.4
(i) Lett = 1! be a turning point of the first kind of (Pir.1)m. Then att = 7' a double
turning point x = b;(t) merges with the simple turning point x = a(t) = —(0o(t))? in

the Stokes geometry of (1.2.10.a). Consequently the two roots vj + of C(t,v) merge
and vanish at t = 1'. Furthermore the following relation holds:

1 [t bj(t)
(2221) 5/ (Vj7+ — l/j7_)dt = / (/\+ — )\_)d.l?
71 a(t)
(ii) Let t = 7 be a turning point of the second kind of (Pir1)m. Then att = 7'
a double turning point x = b;(t) merges with another double turning point x = by (t).
Consequently two roots vj 4 and vj 4 of C(t,v) merge at t = 71, and so do v;_ and
vj . Furthermore the following relation holds:

t t b;(t)
(2222) / (Vj,Jr - l/j/’Jr)dt = —/ (l/j’, — l/j/’,)dt = / ()\Jr - )\,)dl’
7 T b, (t)

Proposition 2.2.5. — If ¢ lies on a Stokes curve of (Pir1)m emanating from a turning
point t = 71 (resp. t = 7Y) of the first (resp. second) kind, the Stokes geometry of
(1.2.10.a) becomes degenerate in the sense that its two turning points x = b;(t) and
x =a(t) (resp. x = b;(t) and x = bj (t)) are connected by a Stokes curve.

ASTERISQUE 297



STOKES GEOMETRY OF HIGHER ORDER PAINLEVE EQUATIONS 139

We omit the proof of Propositions 2.2.4 and 2.2.5 as it is the same as that of
Propositions 2.1.4 and 2.1.5.

2.3. Case of the Prpz-hierarchy. — As is discussed in [N1] and [N2], the re-
lations between the Stokes geometry of each member of the hierarchy and that of
its underlying Lax pair, similar to those for the Pi-hierarchy and Piyi-hierarchy, can
be confirmed also for the Pio-hierarchy. We refer the reader to [N1] and [N2] for
their precise formulation and the details of the proofs. Here, we only explain the core
part of the discussion. For the sake of simplicity of the notations, we restrict our
consideration to the case where co = ¢y =+ =¢n_1 =0.
Substituting the O-parameter solution

(2.3.1) a(t,n) = do(t) +n~tan(t) +-- -,
(2.3.2) o(t,n) = Vo(t) +n ‘0 (t) + - -

of (Pir2)m into the coefficients A and B of the underlying Lax pair (1.3.8), we find
that their top order parts Ag and By become

1 (—Q2x— a() T 0 2T, 0
(2.3.3) Ao = - ( N i - ,
g —2U0Tm70 (2]} — U,O)Tm70

(2.3.4) By = (ﬂ thiz 1 ) ,

—9 (E—ﬂo/Q

where
(2.3.5) To = = 3 MK
e moT g jz::()x A TR
This immediately entails that
(2.3.6) Ay = Hmop

Hence, if we let z = b;(t) (1 < j < m) denote a root of T,, o = 0, each b;(t) becomes
a (generically) double turning point of the equation (1.3.8.a). Note that in this case
there exist two (generically) simple turning points, denoted by = a4 (t) and z = as(t)
in what follows, since the characteristic equation of By is a quadratic polynomial in z.
We, next, consider the linearization of (Pir2)m at (u,v) = (u,v). Letting AK;
and AL, respectively denote the linear part of K; and L; in (Au, Av) after the
substitution (u,v) = (u,?) + (Au, Av), we find that the linearization of (Piy.2)., is

(2.3.7) AKpi1=ALp41 =0.

Let C(t,v) denote its characteristic equation, then we obtain

(2.3.8) C(t,v) = (=1)™ ] det(u — Bo) P
=1 H=Vv/2,x=0b;
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As in the preceding two subsections, (2.3.8) enables us to define a turning point of the
first kind and that of the second kind also for the Pjro-hierarchy. The key relation
(2.3.8) can be proved in a similar manner as in Section 2.2; That is, since K; and L;
are polynomials of u, v and their derivatives, there exists a 2 X 2 matrix of differential
operators

(2.3.9) Dj(t,n " 0n ") = Dyolt,n™'0) + 0 " Dyja(t,n ) + - -
satisfying
(2.3.10) <AKj> = D;(t, " 0 (Au> .

AL;j Av

Then, in terms of D;(t,n~10y;n~1), C(t,v) is expressed as
(2.3.11) C(t,v) = det Dppg1,0(t, v).

On the other hand, considering the linear (in (Au, Av)) part of both sides of (1.3.2)
and taking its top order term, we find

(Go—v)/2 1 1
(2312) Dj+170(t, l/) = N N Dj70(t, l/) —|— —Kj70[2,
Vo (’U,Q + V)/2 2

where I stands for the 2 x 2 identity matrix. By solving this recursive relation under
the condition D4 o(t,v) = I2, we obtain

Lo @ —v)/2 1 7
(2.3.13) Dmy10=75 ) Km—jo ~ ~ '
2 ; o (Uo +v)/2

Hence (2.3.5) and (2.3.13) entail that

(2.3.14) Duni1o(t,v) = ﬁ <<(ﬁo :V)/Q @ +1 )/2> —bj12>
j=1 () (N 14
(@ —v)/2 - 1
]Hl< Bo (to +v)/2—b; )

The relation (2.3.8) immediately follows from (2.3.4), (2.3.11) and (2.3.14).

3. The inevitability of the Nishikawa phenomenon

In a computer-assisted study of the Stokes geometry for (Prr2)2 Nishikawa ([N1])
found the following intriguing phenomenon:

There exist points outside the union of all Stokes curves for (Piy2)2 where the
Stokes geometry of (1.3.8.a) degenerates. Furthermore the totality of such points
forms a curved ray emanating from the intersection of two Stokes curves for (Pi12)s.

The purpose of this section is to show why and how such a phenomenon, which is
now known as the Nishikawa phenomenon, should be observed. To fix the notations
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we consider the case (Pp)a, although the reasoning equally applies to (Py),, with
m > 2 and J = I, II-1 or II-2. We note that the phenomena studied below are
not observed when m = 1, i.e., for the traditional Painlevé equations. One important
reason for this is the fact that the number of the double turning points of the equation
(1.1.11.a) is 1 when m = 1; at least two double turning points seem to be needed for
the occurrence of a Nishikawa phenomenon.

Let T be a crossing point of two Stokes curves of (Pr)2. Suppose that, when ¢ lies on
one of the Stokes curves of (Pp)2, a (double) turning point A is connected with a (sim-
ple) turning point C' by a Stokes curve in the Stokes geometry of the linear equation
(1.1.11.a) and that another (double) turning point B is similarly connected with C by
a Stokes curve of (1.1.11.a) when ¢ lies on the other Stokes curve of (Pr)s2; the (topo-
logical) configuration of the Stokes curves of (1.1.11.a) when ¢t = T is seen in Figure
3.1. (As we study the configuration of Stokes curves both for the Painlevé equations
(i.e., in t-variable) and for one of the underlying Lax pair (i.e., in a-variable), we
put throughout this article a sign ﬂ or ﬂ to each figure for the convenience of the
reader.) In what follows, having these geometrical situations in mind, we label the
two Stokes curves of (Pr)q crossing at T as [AC] and [BC] respectively.

FiGURE 3.1

Let us move around the point T from ¢ to ¢4 as designated by the arrows shown
in Figure 3.2.

FIGURE 3.2
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To fix the notation let us suppose that the configuration of Stokes curves of
(1.1.11.a) at t; (j = 1,2,3) is as in Figure 3.3.j. The letters a ~ ¢ label the di-
rections into which Stokes curves asymptotically flow. Such configurations are really
observed, for example, near the crossing point of Stokes curves of (Pr)2 shown in
Figure 5.1.2(i) in Section 5.

Ficure 3.3.1 FIGURE 3.3.2 FiGure 3.3.3

Note that we can detect the configuration in Fig. 3.3.3 by the relation (2.1.26)
without resorting to the computer-assisted numerical computations; the Stokes curve
emanating from B and flowing to the direction b in Fig. 3.3.1 should now go to some
direction looking at C' on the left side, but the number of directions to which Stokes
curves of (1.1.11.a) flow is 7 and they are exhausted by a ~ g. Since (1.1.11.a) is a
2 x 2 system, its Stokes curves do not cross. Hence the only direction to which the
Stokes curve in question flow is the direction a. The same reasoning applies to the
Stokes curve emanating from C' and flowing to the direction e in Fig. 3.3.1. Thus
Fig. 3.3.3 is a logical consequence of Fig. 3.3.1 and Fig. 3.3.2.

Now, is it possible to reach a point t4 in [AC] with keeping the topological con-
figuration designated in Fig. 3.3.3 7 For the convenience of the reader we give the
configuration of Stokes curves of (1.1.11.a) when ¢ = t4 in Fig. 3.3.4.

FIGURE 3.3.4

The answer to the above question is clearly “No”, because no Stokes curve can
connect A and C; if such a Stokes curve existed, it should cross the Stokes curve
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emanating from B and flowing to the direction a or d, and it should contradict the
requirement that no Stokes curves should cross for 2 x 2 systems. Thus the Stokes
curve emanating from B and flowing to the direction a should swing further and hit
the turning point A as in Fig. 3.3.5 at some point ¢ = t5 during the journey of ¢ from
t3 to t4.

FIGURE 3.3.5

We can then smoothly continue our journey; we find the configuration shown in
Fig. 3.3.6 after ¢ passes through ¢5, as is detected by (2.1.26). Then it is natural to
find the configuration shown in Fig. 3.3.4 as we continue our journey to reach ¢t = t,4.

FIGURE 3.3.6

Summing up, during the journey from ts to t4, unanticipated degeneracy of the
Stokes geometry of (1.1.11.a) inevitably occurs at some point, and the totality of such
points is a (curved) ray emanating from T'. This explains why and how the Nishikawa
phenomenon should occur.

We note that the above discussion makes essential use of the fact that, although
(Pp)2 is equivalent to the fourth order equation (and hence its Stokes curves may, and
really do, cross), the Lax pair associated with it consists of 2 x 2 systems.
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4. Introduction of a new Stokes curve to explain the Nishikawa
phenomenon

The purpose of this section is to introduce a “new” Stokes curve so that the
Nishikawa phenomenon may be naturally interpreted as the occurrence of degeneracy
of the Stokes geometry of the underlying Lax pair when the parameter ¢ lies on the
new Stokes curve. Introduction of a new Stokes curve was first done by Berk-Nevins-
Roberts ([BNR]) for a linear differential operator with holomorphic coefficients so
that the connection formula for WKB solutions may be consistently written down near
crossing points of Stokes curves. Because of the complexity of the equation in question,
the reasoning of Berk et al. cannot be applied to our case. Instead, in introducing
new Stokes curves for the linearization of (Pjy),, such as (2.1.16) we use the graph-
theoretical structure of the Stokes curves of the linear equation (1.1.11.a),(1.2.10.a)
or (1.3.8.a).

Now, as Nishikawa ([N1]) has numerically observed, it is not always the case that
we encounter Nishikawa phenomena near a crossing point of Stokes curves for the
linearization of Painlevé equations, or for short, Fréchet derivatives. To characterize
a crossing point of Stokes curves near which we observe Nishikawa phenomena we
make some preparatory discussions.

Let us suppose that two Stokes curves for a Fréchet derivative cross transversally
at a point T'. By the Fact E for (Pj),, (¢f. Proposition 2.1.5 and Proposition 2.2.5)
each of the Stokes curves corresponds to a pair of turning points of (1.1.11.a) (or
(1.2.10.a) or (1.3.8.a)) which are connected by a Stokes curve. Then either one of the
following two situations is observed at t = T

Case I: These two pairs share one turning point.
Case II: The four turning points are mutually distinct.

In what follows, we say in Case I that the two Stokes curves of (1.1.11.a) etc. (each of
which connects a pair of turning points) are hinged by the shared turning point. We
also call the shared turning point a hinging turning point (c¢f. Fig. 4.1). Using these
terminologies, we further classify the situations in Case I.

Case Ia: The hinged two Stokes curves of (1.1.11.a) are adjacent at the hinging
turning point.

Case Ib: The hinged two Stokes curves of (1.1.11.a) are not adjacent.

Note that, if the hinging turning point z(7') in Fig. 4.1 is simple, then Case Ib is
never realized; in fact, only 3 Stokes curves emanate from a simple turning point, and
hence two Stokes curves are always adjacent there.

A crossing point 7' is said to be Lax-adjacent, or for short, LA if the configuration
of Stokes curves of (1.1.11.a) etc. at t = T is classified as in Case Ta. Otherwise, it
is said to be non-Lax-adjacent or non-LA for short. An important property of two
adjacent Stokes curves of (1.1.11.a) etc. is that the dominance relation of each of
the Stokes curves is opposite (if the angle formed by the two Stokes curves does not

ASTERISQUE 297



STOKES GEOMETRY OF HIGHER ORDER PAINLEVE EQUATIONS 145

z| z|

z(T)

Case la Case Ib Case I1

FIGURE 4.1. Example of configurations of relevant Stokes curves of
(1.1.11.a) etc. in Cases Ia, Ib and II. In Cases Ia and Ib x(7T) designates
the hinging turning point, while the pairs are not hinged in Case II.

contain the cut that fixes the branch of the characteristic values of (1.1.11.a) etc.) .
In what follows we use this property in a substantial manner.

A new Stokes curve is, by definition, not introduced at a non-LA crossing point.
At an LA crossing point T' we introduce new Stokes curves that pass through T,
following the rules given below. Here and in what follows, we attach the symbol
“(4,4) > (k,—)” etc., to each (ordinary) Stokes curve to mean

t
(4.1) Re/ (Vj4+ — Vg,—)dt >0

holds on the Stokes curve in question. Here, v;  (resp. v;,—) designates the relevant
characteristic root of the Fréchet derivative which is labeled by (4, +) (resp. (k,—)),
that is, v 4+ and v, _ are solutions of the equation

(4.2) det(v — Cp) = 0.

(Cf. (2.1.23), (2.2.14) and (2.3.8)) We choose the lower end point of the integral
in (4.1) to be the turning point from which the Stokes curve emanates. We also
note that two symbols like (j,+) > (k,—) and (k,+) > (j,—) are attached to a
Stokes curve which emanates from a turning point of the second kind; this means
that two Stokes curves determined respectively by Im f:(l/j7+ — v, )dt = 0 and

Im th (Vg,+ — vj,—)dt = 0 sit on one and the same curve.

Rules for introducing new Stokes curves
Case A. — At a Lax-adjacent crossing point T of two Stokes curves Cy and Csy re-

spectively emanating from turning points 71 = 7 and 1o = T4 of the first kind.

In this case, using the Fact D for (Pj),, (cf. Proposition 2.1.4 and Proposition
2.2.4) and the assumption that 7" is an LA crossing point, we can find a simple turning
point a(t) and two double turning points b;(t) and b(t) for which the configuration
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of relevant Stokes curves of (1.1.11.a) etc. contains the following portion at ¢t = T
(Fig. 4.2).

z

FIGURE 4.2

Here, the wiggly line designates a cut to fix the branch of v/— det Ay. Since 71 is
a turning point of the first kind, we can find characteristic roots v; + so that they
satisfy

(4.3) Vi~ = ~Vi+
and
(44) l/j7+(7'1) = l/j7_(7'1) =0.

(Cf. the remark after Proposition 2.1.3.) Letting Qo denote — det Ay, we may assume

t b (t)
(4.5) % / (Vjy —vj_)dt =2 / V Qo dx:

T (L(t)
by replacing v+ and v _ if necessary. To fix the notation let us suppose that the
Stokes curve Cj is labeled by (j,4+) > (j, —). We then find

b; (T) 1 /T
(4.6) Re . VQodx = 1 /T1 (Vj+ — vj,—)dt > 0.
With a similar reasoning we find characteristic roots v, 4 satisfying
(4.7 Vig— = —Vk 4,
(4.8) Vg +(12) = v, —(12) =0
and

b}c(t

t )
(4.9) / (Vi + — V= )dt = 4e v Qo dz
To a(t)

with ¢ = £1. In view of the location of the cut in Fig. 4.2, we find from (4.6)

br (T)
(4.10) Re/ v Qodx < 0.

(T
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Hence the Stokes curve Cp is labeled as (k,+) > (k,—) (resp. (k,—) > (k,+)) if

¢ = —1 (resp. € = 1). Then we introduce a new Stokes curve by the following:
t t
(4.11) Im/ (V4 — vg,—)dt = Im/ (Vg4 —vj—)dt =0
T T
if e =—1, and
t t
(4.12) Im/ (Vj4 — Vg +)dt = Im/ (vg,— —v;—)dt =0
T T

if e = 1. At this moment we label a new Stokes curve by just the pair(s) of indices
of the characteristic roots appearing in the definition of the curve, that is, we do not
use the inequality symbol. To be concrete, the curve defined by (4.11) (resp. (4.12))
is labeled as (4, +; k, =), (k, +; j, —) (vesp. (4, +; k,+), (k, —; j, —)). Thus the resulting
configuration of (ordinary and new) Stokes curves near ¢ = T' is either one of the
following two graphs given in Fig. 4.3.

t]

)

]

1

FIGURE 4.3

CaseB. — At a Laz-adjacent crossing point T of two Stokes curves Cy and Cy re-
spectively emanating from a turning point 71 = 71 of the first kind and from a turning
point 1o = T3 of the second kind.

By the same reasoning as in Case A we find a simple turning point a(t) and two
double turning points b;(t) and by (t) for which the configuration of Stokes curves of
(1.1.11.a) etc. contains the portion designated in Fig.4.4 (or its mirror image) at
t="T.

Let us choose characteristic roots v; + so that they satisfy (4.3) ~ (4.6). To fix the
situation we assume the Stokes curve C; is labeled as (j,+) > (j, —). By the Fact D
for (Py)m (cf. Proposition 2.1.4 and Proposition 2.2.4.), we find vy 4 for which the
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El

FIGURE 4.4

following relation holds with appropriate o = + and € = £1:

t b (t)
(4.13) / (Vk,a - l/j7+)dt = 26/ AV QQ dr.

T2 b (t)
Hence we find
d a(t) by (1)
(4.14) Vi,o — Vj+ = 26—( v/ Qodx + v Qo dl‘)

LANIO a(t)
On the other hand, (4.3) and (4.5) entail

d @
(415) Vj+ = 2& \/QO dx.
a(t)

Thus we conclude € = +1 in (4.14). Then, as o is rather conventional in our current
context, we consider both situations. (If we consider the problem globally, not local-
izing the problem near T, o should be fixed in concrete problems. See [N'T] for this
point.) Since we have labeled C; as (j,+) > (j, —), we find

b; (T)

(4.16) VQodz > 0.
a(T)

Hence the Lax-adjacency assumption implies

bi (T)
(4.17) / v/ Qodx > 0.
b;(T)

J

This means that Cy is labeled as
(1.18) (k,+) > (j,+) and (j, =) > (k,—) if o = +
(419) (k7 _) > (.77+) and (.77 _) > (ka+) if o =—.

The required new Stokes curve is then given by

¢
(4.20) Im/ (Vg + — Vg,—)dt = 0.
T
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Thus the resulting configuration of (ordinary and new) Stokes curves near t = T is
either one of the following two graphs given in Fig. 4.5.

]

1

]

1

(s +) > (G, =) (s +) > (G, =)

FIGURE 4.5

CaseC. — At a Lax-adjacent crossing point T of two Stokes curves Cy and Cy re-
spectively emanating from turning points 71 = 71 and 72 = 73! of the second kind.

In this case, using the Fact D for (Pj),, (cf. Proposition 2.1.4 and Proposition
2.2.4.) we find three double turning points b;(t), b (t) and b;(t) for which the config-
uration of Stokes curves of (1.1.11.a) etc. contains the following portion at ¢ = T

FIGURE 4.6
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To fix the situation, let us choose characteristic roots v; + and vy + so that they
satisfy the following:

(4.21) vj— =—v; 4 and vy _ = —vp 4,
(4.22) Vi (1) = vk (1) #0,

¢ ¢
(4.23) / (Vj+ — Vi, 4 )dt = —/ (Vj,— — vg,—)dt

1 T1

b;(t)
=2 V Qo dz.
by (t)
We also assume
b; (T)
(4.24) Re vV Qo dz > 0.
b (T)

Otherwise stated, the Stokes curve C; is labeled as (j, +) > (k,+) and (k, —) > (j, —).
In parallel with the argument in Case B, we find characteristic roots vy + for which
the following relation holds with appropriate ¢ = + and € = +1:

t by (t)
(4.25) / (Vo — Vg4 )dt = 2¢ vV Qo dz.
T )

2 b (t

Then we have

4/ o b
(4.26) Vg — Vgt = 255 ( Qo dx + VvV Qo dx)

b (t) b (t)
d by (t)
:25—( \/QQd$)+E(Vj7+ —Vk7+)>.
dt\ o, (1)

Hence we conclude € = +1. Again in parallel with Case B, we do not fix o. Since we
have assumed (4.24), the Lax-adjacency assumption entails

by (T)
(4.27) Re v Qodzr < 0.
be(T)
As e =+11in (4.25), we find that the Stokes curve Cs is labeled as
(4.28) (k,+)>(,+) and (I,—) > (k,—) if o =+
or
(4.29) (k,+)>(,—) and (I,4) > (k,—) if 0 = —.

Then the required new Stokes curve is given by

t
(4.30) Im/ (Vj+ — V,0)dt = 0.
T

Thus the resulting configuration of Stokes curves near ¢ = T is either one of the
following two graphs given in Fig. 4.7.
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]

71

FIGURE 4.7

There exist crossing points of an ordinary Stokes curve and a new Stokes curve
introduced above. However, no Nishikawa phenomena have been observed near them,
at least in the examples so far studied. (Cf. [N1]; see also §5.4). Hence we do not
try to define the “secondary” new Stokes curves in this article. At the same time we
surmise that we need such new Stokes curves in some more complicated examples.

Now, the importance and the naturality of the notion of new Stokes curves are
shown by the following

Theorem4.1. — Ift lies on a new Stokes curve introduced above, then the imaginary
part of the integral f;f((:)) Qo dx vanishes for appropriately chosen turning points
x1(t) and x2(t) of the equation (1.1.11.a), (1.2.10.a) or (1.3.8.a). To be more concrete,
we find the following:
(i) In Case A, x1(t) = bi(t) and x2(t) = b;(t).
(ii) In Case B, x1(t) = a(t) and x2(t) = by (¢).
(ili) In Case C, z1(t) = bi(t) and x2(t) = b;(t).

Proof. — As the reasoning is the same for all cases, we prove the theorem only in the
case (i). In what follows we use the notations in Rules above. Let us consider the
case where € = —1 in (4.9). Then, summing up (4.5) and (4.9), we find

b; (1)

t t
(4.31) / (01 — vy, )it +/ Wiy —vi)dt =4 [ /Dy da.

1 T2 b (t)

Since T is a crossing point of Stokes curves C7 and Cs,

T T
(4.32) Im/ (Vj+ —vj—)dt = Im/ (Vk,+ — Vg, )dt =0
T1 T2

holds. Therefore we obtain
t b (t)
(4.33) Im/ (Vj4 —Vj— + Vgt — Vg )dt =4Im Vv Qodx.
T b (t)
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Since the left-hand side of (4.33) vanishes by the definition (4.11) of a new Stokes
curve, we find the required fact. O

Remark 4.1. — If x4 (¢) and x2(t) are connected by a Stokes curve of (1.1.11.a) etc.,
then we find

z2(t)
(4.34) Im vV Qodx =0,

@1 (t)
but not vice versa. The point is that a Stokes curve of (1.1.11.a) etc. is, by definition,
an integral curve of the vector field Im /@ dx that emanates from a turning point.
(Cf. [AKT1, p.80])
As a matter of fact, Rules stated above are somewhat loose. A more precise
description of a new Stokes curve should be as follows:
If the (real 1-dimensional) curve defined by (4.34) is non-singular,

Iz(t)
(4.35) Re/ v/ Qo dz
Il(t)

is monotonically decreasing or increasing along the curve. In particular, we can always
find a point w in the curve where the integral

T2 (t)
(436) / kV4 QQ dx
x1 (t)

vanishes at ¢ = w. Then, in an analogy with the case of linear differential operators
with holomorphic coefficients (¢f. [ BNR],[AKT1]), the part of the new Stokes curve
which contains w should be designated by a dotted line (near ¢ = T') in the precise
definition of a new Stokes curve. As a matter of fact the dotted part of a new Stokes
curve is irrelevant to the degeneracy of the Stokes geometry of (1.1.11.a) etc.. This
can be confirmed by a similar reasoning as is given in §3 once concrete description of
a new Stokes curve is given. As a typical example we analyze the example we studied
in §3. This time we consider the configuration of the Stokes curves of (1.1.11.a) etc.
att =t; (j =6,7,8) designated in Fig. 4.8.

ﬂ T2

[BC]

FIGURE 4.8. (Cf. Figure 3.2.)

ASTERISQUE 297



STOKES GEOMETRY OF HIGHER ORDER PAINLEVE EQUATIONS 153

If we move from t3 to t¢ along [BC], we cross [AC] at T. Hence it follows from
(2.1.26) that the Stokes curve emanating from A and flowing to the direction e and
the Stokes curve emanating from C and flowing to the direction a in Fig. 3.3.2 should
interchange the directions to which they flow when ¢ reaches t¢, as shown in Fig. 4.9.6.

ﬂ a g ﬂ a g

d €

FIGURE 4.9.6 FIGURE 4.9.7

Again by (2.1.26) and the comparison of Fig. 3.3.1 and Fig. 3.3.2, we find from
Fig. 4.9.6 that the configuration of Stokes curves at ¢ = t7 is given in Fig. 4.9.7.

Now we know that the unanticipated degeneracy of Stokes curves occurs at t5
(cf. §3), and we can confirm that the point ¢5 lies on the new Stokes curve described
in Fig. 4.3. As the unanticipated degeneracy at t5 means that A and B are connected
by a Stokes curve (cf. Fig. 3.3.5), we label the curve as [AB]. Is it, then, possible to
reach a point tg where A and B are connected by a Stokes curve with keeping the
topological configuration designated in Fig. 4.9.77 The answer is clearly “No” by the
same reasoning as in §3, i.e., by the fact that no Stokes curves are allowed to cross
each other for a 2 x 2 system, like (1.1.11.a). Otherwise stated, if A and B were
really connected by a Stokes curve at t = tg, either (A and C) or (B and C) should
be connected by a Stokes curve before ¢ reaches ts. But, neither Stokes curve [AC]
nor [BC| exists between t7 and ts. This means that A and B are not connected by a
Stokes curve at tg, although

B
(4.37) Im/ VQodxr =0
A

holds at ¢t = tg. As a matter of fact, some numerical computation shows that (4.36)
vanishes at some point w near tg. Thus the precise description of the Stokes curves
would be as in Fig. 4.10.

Finally we note that we can actually label a new Stokes curve not by just a pair
like (k,+; k,—) but by a more informative label like (k,+) > (k, —); the sign of

z2(T)
(4.38) Re / VQodx

1(T)
can be effectively used for this purpose. Concerning these subtle issues we will report
in our forthcoming paper.
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]

T2

[BC]

[AB]

FIGURE 4.10

5. Examples of Stokes geometry

5.1. As the simplest example of the linearization of a higher order Painlevé equation,
we study (Pr)z2 in this subsection. In this case the configuration of the Stokes curves
are shown in Figure 5.1.1. However, if we want to understand the global structure
of the configuration, we should take into account the Riemann sheet structure of the
coefficients of (Pr)sz; the coefficients contain a multi-valued function @; ¢ defined by

(5.1) 5U3 o + 2c1t1,0 — 202 — 2t = 0.

Hence we first prepare three sheets which describes the Riemann sheet structure of
U1,0, and we then draw the Stokes curves of the linearization of (F)2 on each sheet.
The resulting configurations are described in Figure 5.1.2(j) (5 = 1,ii,iii) where we
have chosen ¢; = 1 — 1.7¢ and ¢ = 0. We note the singular points of % o are given
by the zeros of discriminant of (5.1), which are coincident with the turning points 71
and 71 of (P)2 of the first kind. The wiggly lines in Figure 5.1.2(j) designate the
cuts to describe the global structure of 4 o with the additional information that the
singularity of 41 o is of the square-root type. We note that, if we take into account
the sheet structure of %y o, the points il and 7i! on the first sheet (i.e., in Figure
5.1.2(i)), for example, are not the turning points (of the second kind).

We next draw the new Stokes curves in Figure 5.1.2(j) to find the following Figure
5.1.3(4) (j = i,ii,1ii). Here, we employ the precise definition of a new Stokes curve
given in Remark 4.1; we will see below that the dotted part is irrelevant to the
topological change of the configuration of the Stokes geometry of the linear equation
(1.1.11.a). In Figure 5.1.5(i).j (resp. Figure 5.1.5(ii).k), we concretely describes the
configuration of Stokes curves of (1.1.11.a) when ¢ moves around the crossing point
t = Ty (resp. T()) of Stokes curves in Figure 5.1.3(i) (resp. Figure 5.1.3(ii)). The
configuration for ¢ = T(;) (resp. t = T(;;)) is also given in Figure 5.1.4(i) (resp. Figure
5.1.4(ii)). The specific points to be considered are labeled by t =¢; (j = 1,...12) in
Figure 5.1.3(i) and by ¢t = ¢, (k = 13,...18) in Figure 5.1.3(ii). The reader readily
finds that the topological changes occur only at ¢ = ¢; or ¢ = ¢; that lies on an
ordinary Stokes curve or on the solid line part of a new Stokes curve.
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t] (the first sheet of 1y ,)

[~

FIGURE 5.1.1 FIGURE 5.1.2(i)
ﬂ (the second sheet of ) ﬂ (the third sheet of 1y )
h 11 T-zl
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5.2. Since the number of double turning points of (1.1.11.a) is 2 for (P;)2, we need
to try to study (Pr)s, for example, to find a crossing point of two Stokes curves
both emanating from a turning point of the second kind. (Case C in Section 4.)
Fortunately we can really locate it in the Stokes geometry of (Pp)s (with ¢; = 1.2+40.84,
ca = —1.7—1.5¢ and ¢3 = ). The Stokes geometry (without the detailed consideration
of the sheet structure) is given in Figure 5.2.1. We concentrate our attention to the
turning points 7' and 74! specified in Figure 5.2.1 and we present in Figure 5.2.3
the configuration of Stokes curves of (1.1.11.a) at the crossing point T" of the Stokes
curve for (P;)3 emanating from 74! and that from 7I. The configuration of the Stokes
curves for ¢ = t; specified in Figure 5.2.2 is given respectively by Figure 5.2.4.j.

5.3. In studying (Pi1.1)m, one might wonder there would be any effect of the singu-
larity at = 0 in the equation (1.2.10.a). As some Stokes curves of (1.2.10.a) flow
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into the singular point x = 0 besides the points at infinity, the appearance of the
Stokes geometry of (1.2.10.a) is somewhat different from that of the Stokes geome-
try of (1.1.11.a). But, nothing peculiar is observed concerning the relation between
the Stokes geometry of the linearization of (Pir.1),, and that of the linear equation
(1.2.10.a). In order to show this we present the Stokes geometry of (Pi.1)2 with
g =—1/2 and ¢ = 0.5 — 0.81, again ignoring the detailed sheet structure (cf. [NT)).
We concentrate our attention to turning points 7! and 7! in Figure 5.3.1, and we

present the enlarged figure of the Stokes curve emanating from 7' and that from 7',
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together with the required new Stokes curve at the crossing point 7. The configura-
tion of the Stokes curves of (1.2.10.a) for t = T is given by Figure 5.3.3 and that for
t=t; (j=1,...,6) is given respectively by Figure 5.3.4.5.

5.4. In connection with a remark before Theorem 4.1, we show an example of a
crossing point of a new Stokes curve and an ordinary Stokes curve. The example
is observed for (Pir2)2 with ¢ = 9.8 — 0.14, g = 7,6 + 6.6 and 6 = —6.2 — 5.64,
as we show below. The Stokes geometry of the linearization of (Pi.2)2 is given by
Figure 5.4.1, and we concentrate our attention to the portion of Figure 5.4.1 that is
enlarged in Figure 5.4.2; we focus our attention to the Stokes curve C; (j = 1,2,3)
respectively emanating from the turning point 7; (j = 1,2, 3), the new Stokes curve
Cy emanating from the crossing point Ty of Co and C5 and the crossing point T' of
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the Stokes curve C and the new Stokes curve Cy; the configuration of Stokes curves
of (1.3.8.a) at t = T is given by Figure 5.4.3. Although we do not include the figures
of the configuration of Stokes curves when the parameter ¢ moves around 7', we note
that the topological change is observed only when t lies on Cy or Cy.
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Appendix A

Some properties of £; and K

Let us first consider {F;} defined by the following recursive relation:

(A.1) 0iFj1 = (0] + 4udy + 2u")F;
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with Fyp = 1/2. Here and in what follows, ' denotes the differentiation with respect
to the variable t. Then, as is proved in [DT, Introduction], the following lemma holds
for {F;} thus defined.

LemmaA.l. — If {F;} satisfy (A.1) and each F; does not contain a constant term,
then the following relation holds:

n—1 n
(A.2) fn+1 = — Z fnfj]:jqu + 4uz.7-"n,j.7-'j
=0 =0

n n
+2) Fu O F = O Fu jOuF;.
Jj=0 Jj=0

Once the relation (A.2) is confirmed, we can readily find that all F; are polynomials
of u and its derivatives by using an induction. Note that the recursive relation (A.1)
itself does not fix integration constants in each step; here, we fix them to be 0.

In what follows we present a proof of Lemma A.1 along the line of [DT] for the
reader’s convenience. (See also [L] for another proof different from below.)

Proof. — Multiplying both sides of (A.1) by F,,—; and taking the sum from j = 0 to
n, we obtain

(A.3) N FusjOiFji1 =Y FujOiFi+ > Fuj(4ud, + 2u)F;.
§=0

=0 =0
The left-hand side of (A.3) can be written as

n—1 n—1
1 1
(A4) .7:08,5.7:”_’_1 + §8t Z fn_jfj+1 = 58,5 (fn-i-l + Z fn—jfj-{-l) .

Jj=0 J=0

On the other hand, since

(A.5) N Fusi0PF; =0, ( N Fa 0 F; - 5 > atfnjatfj)
j=0 j=0

Jj=0
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and

(A.6) Fo—j(4udy + 2u')F; = 20, (u Z]:n_j]:j) ,

n
Jj=0 J=0

the right-hand side of (A.3) becomes

n 1 n n
(A.7) at<2fnja§fj -3 > O Fu_j0F; + 2qunjfj).
Jj=0 J=0 =0
This proves the lemma. O

Straightforward computations show that

(A.8) F1=u,

(A.9) Fo=3u?+u",

(A.10) Fy = 10u® + 5(u)? + 10un” + u®,
(A.11) Fy = 35ut + 70(u(u)? + uw?u") + 21(u")?

+ 280 u® + 14uu™® + 4,

The polynomials {F;} of u and its derivatives have the following scaling property:

LemmaA.2. — Under the scaling u — N*u, t — X71t, {F;} is transformed as

(A12) Fy e NI,

Employing what is called the Miura map u = v’ — v?, we now define a new family
{K;} of polynomials by

(A.13) K; = F;

u=v’—v2

Then we can readily find that {/C;} satisfies the recursive relation (1.2.16). Hence
these polynomials {/C;} coincide with those introduced in Section 1.2 to define the
hierarchy (1.2.14) of Gordoa and Pickering. The following scaling property of {/C;}
is also an immediate consequence of Lemma A.2:

LemmaA.3. — Under the scaling v — v, t — X~'t, {K;} is transformed as
(A.14) Kj— MK,
Finally, as is explained in Section 1.2, { K} defined by the recursive relation (1.2.2)

is obtained from {K;} through the scaling v + n/Cm+y ¢ s y2m/Cm+Dy and
Kj— n?i/@m+1) g ;. Hence K; also becomes a polynomial of v and its derivatives.
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Appendix B
Another formulation of the Pi-hierarchy
In [GP] Gordoa and Pickering discuss the following hierarchy of differential equa-
tions:
(B.l) gm+1 +gt=0,

where g is a non-zero constant and {G; } is defined by (B.2) below in terms of constants
{6;} and {F;} given in Appendix A.

J
(BQ) gj :.7'—]‘-1—(51.7:]‘,14--"4—(5]'.7'.0 = Zék}'j,k ((50 = 1)
k=0
Remark B.1. — We may assume §; = 0 without loss of generality. We also note that

g may be changed to be an arbitrary non-zero constant by an appropriate scaling of
u and t.

Remark B.2. — {G;} satisfies
(B.3) 0:Gjr1 = (8} + 4ud; + 2u')G;.

Note that each G; contains the constant term 0, /2. Hence an argument similar to
that employed in the proof of Lemma A.1 entails that

n—1 n
(B4) Gpi1=— Z Gn—jGjt1 + 4“2 Gn—39;
7=0 j=0
+2) Gn 072G =Y 0Gn—;0:G;
j=0 j=0

n—1

1 1
+ 56n+1 + 1 ZO On—j0jy1-
=

We now introduce a large parameter 7 to (B.1) through a scaling

(B.5) u+— 7720‘u7 t—> 77'3157 T — 772&55; g— n2(m+1)a*5g’ 5; — 772aj5.

Here, o and 3 are arbitrary constants satisfying o + 8 = 1. Under this scaling {G,}
is transformed as

(B.6) G — Gy,
where
J
k=0

We thus obtain from (B.1) the following hierarchy of differential equations with a
large parameter 7:

(B.8) Gmi1+9gt=0.
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We now claim that the hierarchy (B.8) is equivalent to the Pi-hierarchy formulated
in Section 1.1. That is, we can prove the following

Proposition B.1. — Assume that ¢ = 22™%! and that §; = 0. Then, for a given
solution u of (B.8), if we let u; and v; (1 < j < m) be respectively given

(B.9) u; = 274G,
(B.lO) U = —272j’l7718th,
(uj,v;) satisfies (Pr)m with
. 132
(B.11) ¢ =27%72 <5j+1 +3 Z‘Sj—k5k+1> (I<j<m).
k=0
Proof. — If we define w; by
2-2-1 (Gj_;,_l — 2G1Gj — 77_28t2Gj) (1 <js<m-— 1),
(B.12) w; =
—272m=1(2G1 G, + 202Gy (j =m),

we readily find that u;, v; and w; satisfy the system (1.1.1). Thus what remains to be
verified is that u;, v; and w; thus defined should satisfy the recursive relation (1.1.2).
Note that it follows from (B.4) and (B.6) that G; satisfies the following relation:

n—1 n
(B.13) Gn+1 = — Z Gn_jGj+1 + 4’(1,2 Gn_jGj
Jj=0 j=0
+2072Y G j07G =Y 01Ga0iGy
j=0 j=0
1 1 n—1
+ 56n+1 + 1 Z On—j0jy1-
7=0
Using this relation (B.13), we obtain
(B.14) L.H.S of (1.1.2) — R.H.S of (1.1.2)
, 192
27%2 <5j+1 +t5 > 5j7k5k+1) — ¢ (j #m),
k=0

= —272m71(Gm+1 4 22m+1t)

1% :
#2722 (G 4+ 5 Y it ) = om (= m).
k=0

Hence (B.11) entails (1.1.2). This completes the proof of Proposition B.1. O
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Each member of the hierarchy (B.8) has the following Lax pair:

(B.15)

where

(B.16)
and

(B.17)

0 0

Ll O, 2T, s 01
g \2(x — )Ty, — 0 20%T, n 0, T )’ x—u0

m

1%::§:@wyam_f

Jj=0

As the form of this Lax pair is similar to that of (Li1).m, (i.e., the underlying Lax
pair of the Pip1-hierarchy), we can develop a similar argument as in Section 2.2 also

for the hierarchy (B.8). This gives us another proof of Propositions 2.1.1 ~ 2.1.5 for
the Pi-hierarchy.
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VERSAL DEFORMATION OF THE ANALYTIC
SADDLE-NODE
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Frank Loray

To Jean-Pierre Ramis for his 60th birthday

Abstract. — In the continuation of [10], we derive simple forms for saddle-node sin-
gular points of analytic foliations in the real or complex plane just by gluing foliated
complex manifolds. We give a miniversal analytic deformation of the simplest model.
We also derive a unique analytic form for those saddle-node having an analytic central
manifold. By this way, we recover and generalize results earlier proved by J. Ecalle
by using mould theory and partially answer to some questions asked by J. Martinet
and J.-P. Ramis at the end of [11].

Résumé (Défor mation ver selle d’un ncaud-col analytique). — Dans la continuité de [10],
nous construisons une forme normale simple pour un feuilletage analytique au voisi-
nage d’une singularité de type nceud-col dans le plan réel ou complexe. Nous obtenons
une telle forme en recollant des variétés complexes feuilletées. Nous en déduisons une
déformation analytique miniverselle dans un cas simple. Nous donnons une forme
unique pour un nceud-col possédant une variété centrale analytique. Nous retrou-
vons ainsi géométriquement et nous généralisons des résultats obtenus par J. Ecalle
a ’aide de la théorie des moules. Ce travail répond partiellement & des questions
ouvertes posées par J. Martinet et J.-P. Ramis & la fin de [11].

Introduction and results

Let X be a germ of analytic vector field at the origin of C2

X = f(z,9)0: + g(z,y)0y, f,9€R{z,y}or C{z,y}
having a singularity at 0: f(0) = g(0) = 0. Consider F the germ of singular holomor-

phic foliation induced by the complex integral curves of X near 0. A question going
back to H. Poincaré is the following:

Problem. — Find local coordinates in which the foliation is defined by a vector field
having coefficients as simple as possible.

2000 Mathematics Subject Classification. — 32S65.
Key words and phrases. — Normal form, singularity, foliation.
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In this problem, the vector field is considered up to analytic change of coordinates
and up to multiplication by a germ of analytic function. For instance, if the vector
field X has a linear part (in the matrix form)

<(z Z) = (ax + by)0y + (cz + dy)0y

having non zero eigenvalues A1, A2 € C with eigenratio A\y/A; ¢ R, then H. Poincaré
proved that the vector field X is actually linear in convenient analytic coordinates. In
this situation, the eigenvalues {1, A2} (resp. the eigenratio Ay /A1) provide a complete
set of invariants for such vector fields (resp. foliations) modulo analytic change of
coordinates.

In this paper, we consider unramified saddle-nodes, i.e. foliations defined by a vec-
tor field having (exactly) one zero eigenvalue and multiplicity 2. Following H. Dulac,
such a foliation is defined in convenient coordinates by a vector field of the form

and one can further formally reduce the vector field X to a unique form
(2) X, = 220, + YOy + prydy, peC

The complete analytic classification of those singular points has been given by
J. Martinet and J.-P. Ramis in 1982 (see [11] or section 1), giving rise to infinitely
many invariants additional to the formal one p above. The resulting moduli space
is huge and we expect that a generic saddle-node cannot be defined by a polynomial
vector field in any analytic coordinates (although this is open, as far as I know).
A direct application of our recent work [10] provides the following

Theorem1. — Let F be a germ of saddle-node foliation at the origin of R?
(resp. of C?) in the form (1) above. Then, there ewist local analytic coordinates
in which F is defined by a vector field of the form

(3) Xy =20 +ydy +2f(y)dy, f € Cly}
where f'(0) = p.

This statement is a particular case of a general simple analytic form independantly
announced by A.D.Bruno and P.M. Elizarov for all resonant saddles (A2/A\1 € Q™)
and saddle-nodes in 1983 (see [3, 6]). So far, only the case of Theorem 1 with p =0
has been proved: it is presented by J. Ecalle as an application of resurgent functions
and mould theory at the end of [5], p. 535. In 1994, P.M. Elizarov made an important
step toward the analytic form announced by solving in [7] the associate cohomological
equation. One can immediately deduce from his computations that the family X; of
Theorem 1 is miniversal at f = 0: the coefficients of f play the role of Martinet-
Ramis’ invariants at the first order. This will be rigorously stated in section 1, once
we have recalled the definition (and construction) of Martinet-Ramis’ invariants.
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It is important to notice that the form (3) is not unique. Of course, we can modify
the functional coefficient f by conjugating the vector field with an homothety y +— c-y,
¢ € C*. But even if we restrict to tangent-to-the-identity conjugacies, the form (3) is
perhaps locally unique at Xy (f = 0), but not globally for the following reason. By
construction (see proof of Theorem 1), the form (3) is obtained with f(0) # 0, even if
the saddle node has a central manifold (see below). For instance, the model X, has
also another form (3) with f(0) # 0.

From preliminary form (1), we see that {z = 0} is an invariant curve for the vector
field that we will call strong manifold throughout the paper. Tangent to the zero
eigendirection, there is also a unique “formal invariant curve” {y = ¢(z)}, ¢ € R[[z]]
or Cl[z]], which is generically divergent. When this curve is convergent, we call
it central manifold. A remarquable result of Martinet-Ramis’ classification is that
saddle-nodes having a central manifold form an analytic submanifold of codimension
one (in the unramified case). For instance, saddle-nodes in the form (3) with f(0) =0
have the central manifold {y = 0}. Conversely, a natural question is:

Problem. — Given a saddle-node like in Theorem 1 having a central manifold, is it
possible to put it analytically into the form (3) with f(0) = 0 (i.e. simultaneously
straightening the central manifold onto {y = 0}) ?

For generic u, the answer is yes:

Theorem?2. — Let F be a germ of saddle-node foliation at the origin of R?
(resp. of C%) like in Theorem 1 with u € C — R~. If F has a central manifold,
then there exist local analytic coordinates in which F is defined by

(4) Xy =220, +y0y, +xf(y)dy,, with f(0)=0.
Moreover, this form is unique up to homothety y — c -y, ¢ € C*.

In the remaining case p € R™, we will give necessary and suffisant conditions in
section 4 in terms of Martinet-Ramis’ invariants (see Theorem 8), thus providing a
complete answer to the question above; in the case u = 0, the condition was al-
ready given by J .Ecalle in [5], p.539. It turns out that these conditions are very
restrictive (infinite codimension). For instance, when p € —N*, only the saddle-nodes
analytically conjugated to the formal model (2) can be normalized to the form (4).
In particular, for each p € —N*, the subfamily of those X satisfying f(0) = 0 and
f'(0) = p provides a codimension two analytically trivial deformation of the formal
model (2).

Accidentally, our method to prove Theorem 2 provides in turn a simple form for
saddles:

Theorem 3. — Let F be a germ of saddle foliation at the origin of R? (resp. of C?)
with eigenratio —p < 0. Then there exist local analytic coordinates in which F is
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defined by a vector field of the form
(5) Xy = —20, + pu(f(y) +x)ydy, with f(0)=1.

This latter form is not unique: for generic p, all X; are conjugated. For saddle-
nodes having a central manifold that cannot be transformed into the form (4), it is
possible to give an alternate unique form as follows.

Theorem4. — Let F be a germ of saddle-node foliation at the origin of R?
(resp. of C2) like in Theorem 1 having a central manifold. Let n € N be such
that u+mn & R™. Then, there exist local analytic coordinates in which F is defined by
a vector field of the form

(6) Xy = 220, + yOy + xzyf(z"y)0y, where f(0) = p.
Moreover, this form is unique up to homothety y — c-y, ¢ € C*.

Acknowledgements. — Many thanks to Bernard Malgrange who helped us to improve
the presentation.

1. Martinet-Ramis’ invariants

We recall the construction of [11]. Consider a saddle-node in Dulac preliminary
form (1)
X =220, +y0y, +xf(x,9)9y, f € C{z,y}.
The Sectorial Normalization Theorem due to Hukuhara, Kimura and Matuda reads

as follows. For a sufficiently small r,e > 0, there exists on each of the two sectorial
domains V*t and V~

VE={lz|<r |yl <7 0—c<arg(xz) <7 +e}

a unique holomorphic diffeomorphism ®* : V¥ — ®*(V*) c C? of the form
O(z,y) = (z,¢(z,y)), which is tangent to the identity at (0,0) and conjugating the
saddle-node above to its formal normal form (2)

X, = 220, + YOy + pry0y.

The model X, admits the first integral H,(z,y) := yz"e'/. Once we have fixed
determinations H;F of H,, on the sectors V= coinciding over {—¢ < arg(x) < +&}, we
immediately deduce sectorial first integrals H* := Hff o®* for the initial saddle-node.

On the overlapping V™ NV ™, the two first integrals H* and H~ factorize in the
following way. Over V0 = {mr—¢ < arg(x) < m+¢}, the first integrals H and H~ both
identify the space of leaves with a neighborhood of 0 € C, the size of which depending
on the radius r: one can write H~ = ¢° o H for some germ of diffeomorphism ¢° €
Diff (C, 0). Over the other overlapping V>° = {—¢ < arg(z) < +¢}, the first integrals
H™* and H~ both identify the space of leaves with C: one can write H~ = ¢™® o H™
for some affine automorphism ¢ of C. From the asymptotics of ®* and the choice
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of the determinations HF, one easily deduce that the linear parts of ¢° and ¢ are

mo
respectively e?™* and 1.

We have thus defined the moduli map:

(7) X+— SOO(C) = ezmug + En>2 anC” S DiH(C, 0)
() =¢+t €C (a translation)

The main result of [11] is

Theorem (Martinet-Ramis). — Any two saddle-nodes into the form (1) are conjugated
by a tangent-to-the-identity diffeomorphism ® : (C2,0) — (C2,0), D®(0) = I, if, and
only if, they have the same image through the moduli map above.

Moreover, the moduli map is surjective: any pair (¢°, p>°) € Diff(C,0) x C can be
realized by a saddle-node of the form (1).

Two saddle-nodes X and X in the form (1) can be conjugated by a diffeomorphism
® : (C2%,0) — (C2,0) with a non trivial linear part, namely an homothety in variable y.
In this case, the corresponding pairs are conjugated by an homothety:

(e @°(¢),e-87(0)) = (¥°(c- ), 9™(c- (), for some c € C".

This equivalence relation on Diff (C,0) x C provides a complete set of invariants for
saddle-nodes with multiplicity 2 with respect to the analytic conjugacy.

The classification above is a foliated version of Ecalle-Malgrange-Voronin classifi-
cation of tangent-to-the-identity maps. Let us recall the Martinet-Ramis presentation
in the case of multiplicity 2. Any p(z) = z + 2imz? + - - - € Diff(C, 0) is conjugate by
formal change of the coordinate to the 1-time map ¢, = eXp(ZiW%(‘)x) for a unique
p € C. On sectors V¥ like the ones above (without variable y), Leau’s Theorem says
that one can conjugate the dynamics of ¢ with that of ¢, by tangent-to-the-identity
sectorial diffeomorphisms ®*. After composition with convenient determinations of
the ¢, -invariant function H,(x) := xz~*e!/* one deduce sectorial invariant functions
H? identifying the quotients of V¥ by the dynamics with C*. On VO (resp. V*°)
defined as before, the functions H* identify the set of @-orbits with a punctured
neighborhood of 0 (resp. co) whose size depend on the radius of the sectors V.
Therefore, one can write H~ = ¢ o HT (resp. H~ = ¢> o H™) for some germ of dif-
feomorphism ¢° € Diff(C, 0) (resp. p>° € Diff(C, >)). The respective linear parts of
those diffeomorphisms are €™ and 1. The Ecalle-Malgrange-Voronin Theorem can
be stated like Martinet-Ramis Theorem above except that ¢ can be any convergent

power series ¢ + >, o an(".

Theorem (Martinet-Ramis). — The analytic invariants (o°, >°) of a saddle-node into
the form (1) coincide with the analytic invariants of the holonomy map p(x) = = +
2ima® + .-+ of the strong manifold {x = 0}.
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Therefore, any two saddle-nodes in the form (1) are analytically conjugated if and
only if the holonomy maps of the corresponding strong manifolds are analytically
conjugated in Diff(C, 0).

Another consequence is that very few tangent-to-the-identity maps ¢(z) = « +
2imz? + -+ € Diff(C,0) are the holonomy map of the strong manifold of a saddle-
node into the form (1).

Theorem (Martinet-Ramis). — A saddle-node into the form (1) admits a central man-
ifold if and only if the translation part o> of the analytic invariants (¢, ©*°) is trivial.
In this case, the holonomy of the central manifold coincide with ¢°.

When there is a central manifold, we note that the analytic class of the saddle-node
is given by ¢° up to linear conjugacy; the conjugacy class of ©° in Diff(C, 0) does not
characterize the saddle-node in general.

We also note that any germ of diffeomorphism ¢°(¢) = e*7#¢ + ... € Diff(C,0)
is the holonomy map of the central manifold of a saddle-node of the form (1) with
formal invariant u.

There are similar constructions and results for saddle-nodes

X =219, + yo, + ¥ f(z,9)0,, f € C{z,y}.

with higher multiplicity, ¥ € N*, and for tangent-to-the-identity germs ¢(z) = z +
2imrxkt! + ... € Diff(C, 0) giving rise to multiple moduli (ga?, O )i=1,...k

— @?(C) zein;L/kC+... EDiff((C,O) -
¥ * {s0?°(4)=§+--- € Diff (C, 0) I=1....k

where, in the saddle-node case, all ¢7° are translations. Those 2k-uple have to be con-
sidered up to simultaneous conjugacy by an homothety and up to a cyclic permutation
of the indices {1,...,k}. We omit the precise statements here.

Let us now consider the following family of saddle-nodes (¢ > 0)

1‘2

1
m<0, n<—1

with fo.0 = fo,1 = fi,1 = 0, so that multiplicity is 2 and formal invariant p, and
consider its Martinet-Ramis’ invariants (depending on ¢)

©2() = e¥™C 4D enC™ and @™ (() =C(+t
n>0

Then, the main result of [7] reads
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Theorem (Elizarov). — The derivative (in the sense of Gdteau) of Martinet-
Ramis’moduli at € = 0 is given by
den —1,-2i m
—|5:0 — pin—lo—2iTnu Z —fm,n(_n)m
Oe = (14 m+ un)
dt

; m
d _67:_1 — 28T
i = (S

2T

where I is the Euler’s Gamma Function.

For instance, if we restrict to the family (3) of Theorem 1, we have

IS P0) = AT, anC”
) _n%%a"y H {@”(C) =(+ao -

In particular, the derivative at Xy is bijective. The theorem above motivates the
following analytic form announced in [3]

Conjecture (Bruno-Elizarov). — Any saddle-node in the form (1) with formal invari-
ant p can be analytically reduced to the form

9) 2?0y + Y0y + m(fo tuy+ Y fm,nxmy"“)@y
(m,n)EE,
with support in the strip Es = {(m,n);n > 0,2 +1 <m < 2 + 2} for any slope 0 <

s < 400 such that Ey does not intersect the set of resonances {(m,n);m+ un € —N}.

For s = +o00, Bruno’s form (9) coincides with our (3) without restriction on pu
(E4 o contains resonances for p € Q).

2. Proof of Theorem 1

We repeat the geometric construction of [10]. Consider the germ of foliation Fy
defined by a vector field X of the form (1)

Xo = 20, +ydy +af(,9)0y, [feC{z,y}.
Maybe replacing y by = + y, the linear part of X is given by

(2 (1)) — (co+y)d, with c= f(0)#0.

Therefore, the vector field X is well-defined on the neighborhood of any small hori-
zontal disc Ay = {|z| < €} x {0}, € > 0, and transversal to Ay outside the singular
point. Consider inside the horizontal line L = C x {0} the covering given by Ag and
Ao = {|z| > €/2} x {0}, and denote by C = Ay N A the intersection corona. By
the flow-box Theorem, there exists a unique germ of diffeomorphism of the form

®:(C?,C)— (C*0); (x,y) — (d(z,9),y), ¢(x,0) =z
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straightening Fy onto the vertical foliation Fo, (defined by d,) at the neighborhood
of the corona C. Therefore, after gluing the germs of complex surfaces (C x C, Ay)
and (C x C,A,) along the corona by means of ®, we obtain a germ of smooth
complex surface S along a rational curve L equipped with a singular holomorphic
foliation F and a (germ of) rational fibration y : (S,L) — (C,0) (an holomorphic
fibration whose fibers are biholomorphic to C). Following [8], there exists a germ
of submersion  : (S, L) — C completing y into a system of trivializing coordinates:

(z,y): (S,L) — C x (C,0).

FIGURE 1. Gluing (bi)foliated surfaces

At the neighborhood of any point p € L, the foliation F is defined by a (non unique)
germ of holomorphic vector field, or equivalently by a unique germ of meromorphic
vector field of the form

X = f(xay)az + ay

with f meromorphic at p. By unicity, this meromorphic vector field is actually globally
defined on the neighborhood of L and is therefore rational in z, i.e. f is the quotient
of two Weierstrass polynomials. For y fixed (close to 0), the horizontal component
f(z,y)0, defines a meromorphic vector field on the corresponding horizontal line
C x {y} whose zeroes and poles coincide with the tangencies between F and the
respective vertical and horizontal fibrations. By construction, we control the number
of poles: in the second chart, F = F, is transversal to y, although in the first chart,
F = Fo has exactly one simple tangency with any horizontal line. It follows that, for
y fixed, the meromorphic vector field f(z,y)d, has exactly 1 simple pole and thus 3
zeroes (counted with multiplicity).

Of course, in restriction to L, the pole vanishes together with one zero at the

singular point of 7. We conclude that the vector field X defining the foliation F
takes the form
2 3

go(y) + g1(y)z
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FIGURE 2. Uniformization

with f;,9; € C{y}. Up to a change of projective horizontal coordinate z :=
{%} on S, one can assume that {x = oo} is a vertical leaf of F, that {z = 0}
is the invariant curve of the saddle-node tangent to the non zero eigendirection and
that F has a contact of order 2 with the vertical fibration along {x = 0} (likely as in
the local form (1)). Therefore, fo, f1, fs = 0 and, reminding that F is an unramified
saddle-node with 0-eigendirection transversal to L, we also have f2(0) # 0, g1(0) # 0,
90(0) = 0 and g¢{(0) # 0. After division, F is actually defined by a vector field of the
form

X =220, + (f(y)z +y9(y))dy,  f(0),g(0) # 0.

After change of y-coordinate, one may normalize the holomorphic vector field yg(y)9,
to g(0)ydy; after division by ¢g(0) and linear change of the z-coordinate, we finally
obtain the form (3).

3. Gluing Lemmae

Although Theorems 2, 3 and 4 can be shortly proved by using Savelev Theorem
[15] like in [10], we provide an alternate proof more “down to the earth” where we
simultaneously construct the auxiliary fibration during the gluing construction. In
order to do this, we need some lemmae allowing us to glue pairs of non transversal
foliations.

The order of contact between two germs of regular holomorphic vector fields X3
and X, at 0 € C2, or between the corresponding foliations, is by definition the order
at 0 of the determinant det(X;, Xs). For instance, X; and Xs are transversal if and
only if they have a contact of order £ = 0. Now, if those two foliations share a
common leaf, and if moreover there is no contact between them outside this leaf, then
the contact order k¥ € N* is constant along this common leaf and classifies locally the
pair of foliations:

Lemmab. — Let F be a germ of regular analytic foliation at the origin of C? (or R?)
having the horizontal axis Lo : {y = 0} as a particular leaf and having no other contact
with the horizontal fibration {y = constant}: F is defined by a unique function (or
vector field) of the form

F(z,y) =y+y"zf(x,y) with f(0,0) #0
(or X = g(x,y)0x + ykaya with g(0,0) # 0)
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where k € N* denotes the contact order between F and the horizontal fibration. Then,
up to a change of coordinates of the form ®(x,y) = (é(x,y),y), the foliation F is
defined by the function (or vector field)

Fo(z,y) =y+ay® (or Xo =0, +y"9,).

The restriction of ® to Lg is the identity if, and only if, f(0,w) = 1. Moreover, the
normalizing coordinate ® is unique once we have decided that it fixes the vertical axis,

i.e. ¢(x,y) = mqg(x,y)

Proof. — Given F as in the statement, choose F(z,y) to be the unique function
which is constant on the leaves and has restriction F(0,y) = y on the vertical axis:
F(z,y) = y(1 + 2F(z,y)). The assumption dF A dy = y*u(z,y), u(0,0) # 0, yields

F(z,y) = y* 1 f(z,y) with £(0,0) # 0, whence the form F(z,y) = y + zy* f(z,y).
Now, we have

F=Fy0®) with ®¢(z,y) = (zf(z,y),y)-

Thus, ®( is the unique change of z-coordinate which conjugates the functions F'
and Fp; in particular, it conjugates the induced foliations.

Conversely, assume that ®(x,y) = (¢(z,y),y) is conjugating the foliations respec-
tively induced by F' and Fy: we have

Fyo®(z,y) = o F(z,y) with ¢(y)=y+y"¢(0,y)

(the germ ¢ is determined by the equality restricted to {w = 0}). If we decompose
f(z,y) = u(z) + yv(x,y), we notice that ¢ o F(z,y) = y + zy*(u(x) + yo(x,y)), so
that ¢(z,0) = zu(z) = zf(x,0). Finally, if ¢(z,y) = xg’g(x,y), then ¢(y) = y and ®
actually conjugates the functions: we must have ® = &, whence the unicity.

Now, if F is defined by X = f(x,y)0, + g(x,y)0y, assumption gives dy(X) =
g(z,y) = y*g(z,y) with £(0,0),9(0,0) # 0. After dividing X by g, we can write
X = f(z,y)0z + y*d,. We have already proved that any two such foliations (in
particular those induced by X and Xj) are conjugate by a unique diffeomorphism
of the form ®(z,y) = (:cq;(x,y),y) Now, if ®(z,y) = (é(x,y),y) conjugates the
foliations respectively induced by X and X, it actually conjugates these vector fields.
In restriction to the trajectory Lo, we see that ¢(x,0) conjugates )A(:|LO = f(z,0)0; to
the constant vector field 9. Therefore, ¢(z,0) = fox md{ and ¢(z,0) = z if, and
only if, f(z,0) = 1. O

For the next statement, denote by 2 C (C x {0}) a connected open domain inside
the horizontal axis.

Lemma6. — Let F and F' be regular holomorphic foliations defined at the neighbor-
hood of 2 in C? both having Q as a particular leaf. Assume that the contact between
each foliation with the horizontal fibration {y = constant} reduces to Q, with same
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order k € N*. In other words, F and F' are respectively defined by vector fields
X = f(z,y)0: +y*0, and X'= f'(,y)0: +y"0,

where f and [’ are non vanishing functions in the neighborhood of Q. Then, F and
F' are conjugated in a neighborhood of Q by a diffeomorphism of the form ®(z,y) =
(x + yp(x,y), ¥(y)) (firing Q) if, and only if, the two following conditions hold

(1) f(2,0) = f'(x,0);

(2) the respective holonomies ¢ and ¢’ of F and F' along Q are analytically con-
Jugated: o p = 0.

Proof. — Following Lemma 5, condition (1) is the necessary and sufficient condition
for the existence of local conjugacies ® = (yo(z,y),y) between F and F' at the
neighborhood of any point wy € 2. Fix one of these points and consider the respective
holonomy maps ¢ and ¢’ computed on the transversal T : {x = z¢} in the variable y.
By condition (2), up to conjugate, say F’, by a diffeomorphism of the form (z, ¥ (y)),
we may assume without loss of generality o(y) = ¢'(y). We start with the local
diffeomorphism ®(z,y) = (yo(z,y),y) given by Lemma 5 conjugating the foliations
and fixing T. Since ® conjugates the corresponding vector fields X and X', it extends
analytically along the whole of Q by the formula ®(p) := ®3} o ® o ®%(p). The
condition ¢(y) = ¢’(y) implies that & is uniform. O

Here is a last gluing Lemma for pairs of regular foliations F and G at the neigh-
borhood of a common leaf Q. Again,  is a connected open subset of the horizontal
axis  C (C x {0}). When G is the horizontal fibration, the following Lemma reduces
to the previous one.

Lemma7. — Let F and G (resp. F' and G') be regular holomorphic foliations defined
at the neighborhood of 1 in C? both having Q0 as a regular leaf. Assume that the
contact between F and G (resp. F' and G') reduces to §, with same order k € N*. In
other words, the foliations above are respectively defined by vector fields

X =0 +yf(z,9)0, and Y =X +y*g(z,y)0,,
(resp. X' =0, +yf'(z,9)9, and Y' =X +y*¢ (z,y)0,)

where g and g’ are non vanishing functions in the neighborhood of Q. Then, F and G
are simultaneously conjugated to F' and G' in a neighborhood of 2 by a diffeomorphism

of the form ®(z,y) = (z +yo(z,y), y¥(z,y)) (firing point-wise Q) if, and only if, the
two conditions hold

(i) for any (and for all) xo € Q, we have
g(z,0) _ 9'(x,0) ,
exp(— [, £(¢,0)d¢) — exp(— [, (¢, 0)d¢)’
(i) the respective pairs of holonomies (pr,pg) and (px/,pg) along Q are simul-
taneously analytically conjugated: V¥ o pr = @xr o and 1 o pg = pg: o Y.
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Proof. — Tt is similar to that of the previous Lemma. Up to a change of coordinate
y := ¥(y) (which does not affect neither f(x,0), nor g(x,0) and hence preserves
equality (i)), we may assume that holonomies (¢x, pg) = (pr, pg/) actually coincide
on a transversal T : {x = zp}. We just detail that condition (i) exactly provides the
existence of local conjugacies between the given pairs of foliations fixing point-wise (2;
the unique conjugacy fixing T will extend uniformly along € by (ii).

At the neighborhood of any point (z9,0) € €, say zp = 0 for simplicity, we
preliminary conjugate X to Xo = 0, by respective local changes of y-coordinate
\I/(J?,y) = (ma?ﬂﬂ(ﬂ%y))a w(ovo) #0

U.X=Xo=0, and V.Y =Y =2"go(z,9)0. + Ou

Doing the same with the pair X’ and Y’, we see by Lemma 5 that the corresponding
pairs of foliations are conjugated by a diffeomorphism fixing point-wise {y = 0} if, and
only if, the differential form w = go(x,0)dz along Q coincide with the corresponding
one w' = g}(z,0)dz for X\, = Xo and Y§ = 0, + y*go(z,y)d,. This 1-form w can be
redefined in the following intrinsic way: the holonomy of G between two transversal
cross-sections Ty and T7 computed in any coordinate y which is F-invariant (here F
is defined by 0, ) takes the form

1
py) =y + (/ w) Yt + (higher order terms)

0

where (z;,0) :=T; N Q, i =0,1. Since
(s

g0 k

U'Xg =0, — ———yd, and U'Yy)=V*"X)+ ——y"0,,
T Yy, ’ Ty,
(15 and 1, are partial derivatives of 1)) we derive in restriction to €
Yz (z,0)
0)=——"F—7"--=- d 0) = 0) - 0
f(.l?, ) 1/1(1‘,0) an go(l‘, ) w(% ) g(xv )
yielding the formula for the local invariant of our conjugacy problem
w= 9(z,0) dx. O

exp(— [ f(C,0)dC)

4. Proof of Theorem 2

Given a saddle-node foliation F of the form (4), it is easy to verify that its analytic
continuation at the neighborhood of the horizontal line L = C x {0} satisfies

(1) the line L is a global invariant curve for F, the union of a smooth leaf together
with 2 singular points;

(2) the point z = 0 is a saddle-node singular point with multiplicity 2, formal
invariant g and invariant curve {zy = 0}; in particular, the saddle-node has a central
manifold which is contained in L;
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(3) the point x = oo is a singular point with eigenratio —p and invariant curve
{z =00} U{y =0}

(4) the foliation F has a contact of order 2 with the vertical fibration along the
invariant curve {x = 0} (in the sense of section 3).

=l e =
TN =
.@{xO} /\{oo}

i

FIGURE 3. Geometry of the second normal form

Conversely, a germ of foliation F on C x (C,0) satisfying conditions above can
easily be transformed into the form (4). Indeed, F is defined by a unique vector field
of the form F(z,y)0, + 0, with F' meromorphic at the neighborhood of the line L.
In restriction to the horizontal lines, the vector field F(z,y)d, is rational; its zeroes
and poles coincide with the points where the foliation F is respectively vertical and
horizontal. Because we have two singular points of multiplicities 1 and 2 along L,
we deduce that F(z,y)0, has 3 zeroes (counted with multiplicity) in restriction to
each fiber; hence, it it has exactly 1 pole (the divisor of a vector field has degree 2
on C). From conditions (2) and (4), we actually see that the zeroes are supported by
the vertical invariant curves, that L gives contribution for 1 pole and one can write
F(x,y) = Wirg(y)) for holomorphic functions f,g € C{y}. It is easy to verify
that f and g do not vanish at y = 0 otherwise the singular points would be more
degenerate. Therefore, the foliation F is also defined by the holomorphic vector field

X =220, + (f(y)z + g(y)ydy,  f(0),g(0) # 0.

After a change of y-coordinate, one may linearize the holomorphic vector field yg(y)9,
to g(0)ydy; after division by ¢g(0) and linear change of the z-coordinate, we finally
obtain the form (4).

A necessary condition for a saddle-node to admit a form (4) is that the holonomy
of the central manifold, which actually coincides with Martinet-Ramis’ invariant ¢"
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= oo}

FIGURE 4. Holonomy compatibility

(see section 1), is also the anti-holonomy of the invariant curve L around the singular
point 2 = oco. This gives restriction for ¢, and hence for the saddle-node, at least
when ¢ € R™. In the case u < 0, the other singular point is linearizable by Poincaré’s
Theorem implying the linearizability of the holonomy map ¢°. Here, we use prop-
erty (3) above and the fact that, in the resonant (non linearizable) case, the node has
only one irreducible germ of invariant curve. In the case g = 0, the holonomy ¢
is tangent to the identity and its inverse (¢°)~! must be the holonomy of the strong
manifold (the invariant curve tangent to the non zero eigendirection) of a saddle-node
having a central manifold. Following section 1, this is equivalent to condition (3) of
Theorem 8 below.

Theorem 8. — Let F be a germ of saddle-node with multiplicity 2 at the origin of R?
(resp. of C?) having a central manifold. Then, there exist analytic coordinates in
which F is defined by a vector field of the form (4)
Xy = 220, + yOy + xf(y)0y, with f(0) =0.

(and p = f'(0)) if, and only if, we are in one of the following cases

(1) we C- IR_7

(2) u <0 and o is linearizable up to conjugacy in Diff (C,0),

(3) = 0 and Martinet-Ramis’ invariants (85, @' ): of po satisfy: all §f are linear.

When p & Q, the form (4) is unique up to homothety y — c -y, c € C*.

Recall that condition (2) is automatic as soon as p is a Bruno number:
lo
ue B — E M < 00
an
n>=0

(where py /¢, stand for successive truncatures of the continued fraction of |u|). The
set B has full Lebesgue measure in R. For all other values 4 € R~ — B, condition (2)
is very restrictive for ¢g, and thus for the saddle-node.
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Like in Section 2, we start with a germ of saddle-node Fy defined on the neighbor-
hood of some disc Ag and glue it with a germ of foliation F, along a complementary
disc A in order to obtain a germ of 2-dimensional neighborhood S along a rational
curve L equipped with a singular foliation F. The difference with Section 2 is that we
now glue Fy and F, along a common invariant curve, in such a way that L becomes
a global invariant curve for the foliation F. We do it first respect to the vertical
fibration; this is very easy but we need the difficult Savelev’s Theorem to recover the
triviality of the neighborhood (and the rational fibration). Then, we give an alternate
gluing using technical (but elementary) Lemmae of section 3 in which we keep on
constructing by hands the rational fibration.

= L i/:iﬂj N,
M- =P
DI~ DN
I W=

FIGURE 5. Gluing picture

%L
g

We start with Fy into Dulac preliminary form
Xo = 2?0; +ydy +ayf(x,9)dy, feCla,y}, f(0)=

(when the saddle-node has a central manifold, the form (1) can be achieved with
the central manifold contained in {y = 0}, see [11]). Consider, in local coordinates
(z = 1/z,y) at infinity, a germ of singular foliation F, defined by

Xoo = T80z — (n+9(Z,y))ydy, g(0)=0.

Up to a linear change of z-coordinate, one may assume that F is actually defined
on the neighborhood of A.,. Obviously, there exists a germ of diffeomorphism of the
form

®:(C?,C) — (C*C); (w,y) — (x,0(x,y), ¢(x,0)=0
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gluing Fy with F if, and only if, the respective holonomy maps around the corona
C = Ag N Ay are conjugated in Diff(C, 0).

When g ¢ R, the holonomy map ¢° of Fy around C (or x = 0) is hyperbolic and
hence linearizable by Koenigs” Theorem. It is therefore enough to choose X, linear.
When £ > 0, then the holonomy map ¢ can be realized as the holonomy of a saddle
Foo like above following [12, 14]. When u < 0 and ¢V is linearizable, we obviously
realize it with X, linear. Finally, when u = 0, condition (3) of Theorem 2 is exactly
the one to realize (¢°)~! as the holonomy of the strong manifold of a saddle node
Foo having a central manifold. After gluing Fy and Fo, along C, we obtain a germ of
surface S containing a rational curve L which, by Camacho-Sad’s Formula (see [4]),
has 0 self-intersection in S. Following Savelev’s Theorem [15], there exists a system
of trivializing coordinates: (z,y) : (S, L) — C x (C,0). Up to a change of trivializing
coordinates z := {%} and y = ¢(y) on S, one may assume properties (1), (2),
(3) and (4) of the begining of the section all satisfied. Therefore, F is defined by a
vector field of the form (4). The existence part is proved. O

Let us now show how to avoid with Savelev Theorem by using section 3. We first
choose germs of foliations Fy and F, with compatible holonomy as in the previous
proof. Instead of X, we define the foliation Fy by the meromorphic vector field

2

- X
14 af(z,y)

After a local change of the z-coordinate, we may assume that the restriction X’o| L=

#2(%0)895 to L = {y = 0} coincides with the global meromorphic vector field %&E.

By the same way, the alternate meromorphic vector field

o0

- 9, 4yd,, ¢(0)=0.
p+g(1/z,y) vy, 9(0)

defines F, at the neighborhood of x = co and its restriction %8@, coincide

pntg
with %&E after a local change of z-coordinate at infinity (they are both conjugated
to ix@x at x = 00).

Assume first that )A(;o and )Z'oo are defined at the neighborhood of some horizontal
discs Ag and A, covering L. Maybe restricting to slightly smaller discs, one may
assume that the intersecting corona C' = Ay N A, does not contain —1/u (the pole
of %max): therefore, the vector fields Xy and Xo are both holomorphic on the neigh-
borhood of C' and can be glued by means of Lemma 6. By this way, we construct a
surface S equipped with a global foliation F and a rational fibration y : S — (C,0).
By Fisher-Grauert [8], S is a germ of trivial C-bundle and we can end the proof as
before.

The problem is that )~(0 and )?OO are a priori defined on small respective neigh-
borhoods Q and Q. of = 0 and x = co. We would like to apply a change of
coordinate in variable z in order to enlarge ), for instance. We cannot do this with
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an homothety anymore because we need to preserve the restrition of X oo to L in order
to apply Lemma 6. We can only use the changes of coordinates which commute with
2 2 .
iz T1,m0), t € C. By this
way, we will not be able to cover the complement of {0y with the new domain ., but

Oz, i.e. those ones given by an element of the flow exp(t

at least, we may assume that Qg and ., intersect. Then, we can complete a covering
of L by adding a third open set €; in such a way that the intersections Qg N Qq,
Qo N Qoo and Q1 N Qs do not contain neither 0, —1/p nor co. We refer to [1] for a
complete description of the flow exp(tﬁ@x) in function of u. Finally, consider the
third foliation defined on the neighborhood of 2; by the rational vector field
22

14 pa
By means of Lemma 6, we can glue the 3 foliations together on the neighborhood
of L, simultaneously preserving the y-coordinate. This finishes the second proof of
the construction of form (4). O

Oz + yOy.

It remains to prove the unicity (up to homothety) of form (4) in case u is not
rational negative. Assume that F and F are of the form (4) and are analytically
conjugated on a neighborhood of (z,y) = 0. Following [11], they are also conjugated
by a germ of diffeomorphism of the form

Dg : (C?,0) — (C2,0) ; (z,9) — (z.¢o(z,y))

which must preserve the central manifold: ¢g(x,0) = 0. One can extend analytically
®( on a neighborhood of L—{x = oo} in the obvious way, by lifting-path-property. We
claim that ®( extends until the other singular point x = co. Before proving this, let
us show how to conclude the proof. Therefore, we obtain a global diffeomorphism ®
along L conjugating F and F. By Blanchard’s argument, ® permutes the horizontal
lines: for any line L’ close to L, the restriction of y along the image ®(L’) is an
holomorphic map from a compact manifold into a bounded domain; therefore, y|e (1,
is constant and ®(L’) is actually a fiber of y. Therefore, one can write ®(x,y) =
(x,¢(y)) and due to the form (4), ¢ has to commute with yJ, and must be linear.
This concludes the proof of Theorem 8. O

We first prove the claim in case F is in the Poincaré domain (¢ € C—R™). Recall
that property (3) implies that Fo is non resonant and hence linearizable by a local

change of coordinates of the form (Z,y) — (Z, ¢oo(Z,y)). Therefore, we can assume
that F and F are defined by

and that ¢ (7,y) = (T, ¢(Z,y)) is a self-conjugacy of Fo, at the neighborhood of the
punctured disc A* := Ay, — {Z = 0}. The question is, when does @ coincide with a
symetry of Foo

b (z,y) = (Z,c-y), ceC".
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Of course, this is the case if, and only if, ¢(Z,y) is linear in y. In fact, for x fixed,
#(T,y) commutes with the holonomy y + e~2"Hy of F., and is therefore linear as
soon as u is not rational.

Finally, in the remaining case p > 0, the fact that ®¢ extends at the singular point
at infinity is due to J.-F. Mattei and R. Moussu ([13], p. 484-485 or [12], p. 595-596)
in the case pr > 0 and to M. Berthier, R. Meziani and P.Sad ([2], Theorem 1.1) in
the case p = 0. Actually, in both cases, it is proved that any conjugacy between
the holonomy maps of two saddles (u > 0) or strong manifolds of two saddle-nodes
with a central manifold (p = 0) extends as a conjugacy of the respective foliations of
the form @ (z,y) = (2, Ppoo(x,y)); this o will automatically coincide with @y and
extend it at the singular point z = co. The claim is proved. O

Remark 9. — In the case p € Q, it is easy to construct examples of F and F like
above that are not globally conjugated and giving rise to non unique form (4).

Proof of Theorem 3. — It is the same with pu > 0, except that we start with the
saddle F, at © = oo. Following Martinet-Ramis (see section 1), the anti-holonomy
WV (y) = €%y + - - . of F. can be realized as the holonomy of the central manifold
of a saddle-node Fy. Like above, we can glue those two foliations and obtain normal
form (4). We deduce the normal form (5) for the saddle Fo by setting £ = 1/x in
the form (4). O

5. Proof of Theorem 4
Let us start by blowing-up a saddle-node of the form (4)
X; =220, +y0, +xyf(y)0y, f(0)=p.

Along the exceptional divisor, we have one saddle with eigenratio —1 and a saddle-
node, given in the chart (x,t), y = tz, by

X; = 228, + 10, + xt(f(xt) — 1)0,.
In particular, X  takes the form (6) of Theorem 4 with n = 1 and has formal invariant
p=p—1

After n successive blow-ups of the saddle-nodes, we obtain an exceptional divisor
like in the picture below where the new saddle-node takes the form (6) of Theorem 4
with formal invariant g = p — n. All other singular points are saddles with —1
eigenratio.

The rough idea to put a given saddle-node F into the form (6) is to realize it as the
n** blowing-up of a saddle-node F, then apply Theorem 2 to put F into the form (4).
We first detail the case n = 1.

Since the holonomy map ¢ of the strong manifold of Fis tangent-to-the-identity,
it can be realized as the holonomy map of a saddle with —1 eigenratio following
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\ blowing-up

Y
/Jj X;
ﬁ

FIGURE 6. Blowing-up a saddle-node

FIGURE 7. After 3 blowing-ups

Martinet-Ramis (see [12]). Therefore, one can glue those two foliations along their
invariant curve like we did in section 4 to prove Theorem 2 (first gluing construction).
By this way, we obtain a germ of surface S around a rational curve L having self-
intersection —1 by Camacho-Sad index Theorem [4]. Following Grauert (see [9]), the
neighborhood of a smooth rational curve with negative self-intersection in a surface is
rigid: maybe replacing S by a smaller neighborhood of L, S is biholomorphic to the
neighborhood of the exceptional divisor after blowing-up the origin of C? (—1 self-
intersection). After making this identification, the global foliation F on S becomes
the germ of a saddle-node F at the origin of C?. The corresponding formal invariants
are related by u = u — 1 so that if F satisfies the assumptions of Theorem 4 with
n = 1, then one can apply Theorem 2 to F. Once F is in the form (4), we obtain
the form (6) for F. Here, we implicitely use the known fact that one can blow up a
diffeomorphism: the conjugacy from F to its normal form (4) induces after blowing
up a conjugacy from F to its normal form (6). This proves the existence part. O
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The unicity also follows from that of form (4) proved in Section 4. Indeed, if two
such foliations F and F' are locally conjugated, then the corresponding holonomies
along the exceptional divisor L are conjugated. By Mattei-Moussu [13], this implies
that the —1 saddles are conjugated; therefore, the holonomies of the saddles along the
other invariant curve {¢ = oo} are conjugated as well. This latter means that after
blowing down, the holonomies of the strong manifold of the corresponding saddle-
nodes F and F’ are conjugated. We can apply unicity of Theorem 2. O

The general case n € N* is proved by the same way. Starting from a saddle-node
F with formal invariant w> —n (or p & R), we glue it successively with —1 saddles
in order to construct a m-blow-up configuration as in the picture; then, Grauert’s
Theorem permits to blow down successively all irreducible components of the divisor:
at each step, the component which contains the saddle-node has again self-intersection
—1 by Camacho-Sad. After blowing down the whole divisor, we can apply Theorem 2
to the resulting saddle-node.

ﬁ
FIGURE 8. Gluing foliations along an exceptional divisor

For the unicity, given a conjugacy between two saddle-nodes F and F like above,
we successively deduce by Mattei-Moussu the conjugacy of all respective —1 saddles
and finally of the resulting saddle-nodes F and F' after blowing down. The unicity
follows again from that of Theorem 2.
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ASYMPTOTICS FOR GENERAL CONNECTIONS
AT INFINITY

by

Carlos Simpson

Abstract. — For a standard path of connections going to a generic point at infinity
in the moduli space Mpgr of connections on a compact Riemann surface, we show
that the Laplace transform of the family of monodromy matrices has an analytic con-
tinuation with locally finite branching. In particular, the convex subset representing
the exponential growth rate of the monodromy is a polygon whose vertices are in a
subset of points described explicitly in terms of the spectral curve. Unfortunately, we
don’t get any information about the size of the singularities of the Laplace transform,
which is why we can’t get asymptotic expansions for the monodromy.

Résumé (Asymptotique des connexions génériques a l’infini). —  Pour une courbe stan-
dard allant vers un point général & l'infini dans ’espace des modules Mpgr des
connexions sur une surface de Riemann compacte, nous montrons que le transformé de
Laplace de la famille des matrices de monodromie admet un prolongement analytique
avec ramification localement finie. En particulier, I’ensemble convexe qui représente
la croissance exponentielle est un polygone dont les sommets sont dans un ensemble
qu’on peut expliciter en termes de la courbe spectrale. Malheureusement, nous n’ob-
tenons pas d’information sur la taille des singularités du transformé de Laplace et
donc pas de développement asymptotique pour la monodromie.

1. Introduction

We study the asymptotic behavior of the monodromy of connections near a general
point at oo in the space Mpg of connections on a compact Riemann surface X. We
will consider a path of connections of the form (E,V + t0) which approaches the
boundary divisor transversally at the point on the boundary of Mpg corresponding
to a general Higgs bundle (E, §). By some meromorphic gauge transformations in §5
we reduce to the case of a family of connections of the form d + B + tA. This is very
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tegral.

© Astérisque 297, SMF 2004



190 C. SIMPSON

similar to what was treated in [36] except that here our matrix B may have poles.
We import the vast majority of our techniques directly from there. The difficulty
posed by the poles of B is the new phenomenon which is treated here. We are not
able to get results as good as the precise asymptotic expansions of [36]. We just show
in Theorem 6.3 (p. 205) that if m(¢) denotes the family of monodromy or transport
matrices for a given path, then the Laplace transform f({) of m has an analytic
continuation with locally finite singularities over the complex plane (see Definition
6.2, p.205). The singularities are what determine the asymptotic behavior of m(t).
The upside of this situation is that since we are aiming for less, we can considerably
simplify certain parts of the argument. What we don’t know is the behavior of f({)
near the singularities: the main question left open is whether f has polynomial growth
at the singularities, and if so, to what extent the generalized Laurent series can be
calculated from the individual terms in our integral expression for f.

We can get some information about where the singularities are. Fix a general point
(E,0). Recall from [26, 27, 19, 30] that the spectral curve V is the subset of points
in T*(X) corresponding to eigenforms of §. We have a proper mapping 7 : V — X. In
the case of a general point, V' is smooth and the mapping has only simple ramification
points. Also there is a tautological one-form

ac HO(V, 7 Q%) c HY(V, Q).

Finally there is a line bundle L over V such that £ = 7, (L) and € corresponds to
the action of « on the direct image bundle. This is all just a geometric version of the
diagonalization of € considered as a matrix over the function field of X.

Let R C X denote the subset of points over which the spectral curve is ramified,
that is the image of the set of branch points of 7. It is the set of turning points of our
singular perturbation problem. Suppose p and ¢ are points in X joined by a path ~.
A piecewise homotopy lifting of v to the spectral curve V' consists of a collection of
paths

¥ ={Fitiz1,..k

such that each 7; is a continuous path in V', and such that if we denote by v; := m07;
the image paths in V', then v starts at p, v, ends at ¢, and for i = 1,...,k — 1, the
endpoint of v; is equal to the starting point of «; 1 and this is a point in R. Among
these there is a much more natural class of paths which are the continuous homotopy
liftings, namely those where the endpoint of 7; is equal to the starting point of ;41
(which is not necessarily the case for a general piecewise lifting).

Denote by () C C the set of integrals of the tautological form « along piecewise
homotopy liftings of v, i.e. the set of complex numbers of the form

a:éazzzéia.

i=1
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Let X% (v) be the subset of integrals along the continuous homotopy liftings. The
following is the statement of Theorem 6.3 augmented with a little bit of information
about where the singularities are.

Theorem 1.1. — Let p,q be two points on X, and let v denote a path from p to q. Let
{(E,V+10)} denote a curve of connections cutting the divisor Ppr at a general point
(E,0) and let (V,a, L) denote the spectral data for this Higgs bundle. Let m(t) be the
function (with values in Hom(E,, E,)) whose value at t € C is the transport matriz
for the connection V +t0 from p to q along the path ~. Let f(() denote the Laplace
transform of m. Then, f has an analytic continuation with locally finite singularities
over the complex plane. The set of singularities which are ever encountered is a subset
of the set () C C of integrals of the tautological form along piecewise homotopy
liftings defined above.

It would have been much nicer to be able to say that the set of singularities is
contained in %" (v), however I don’t see that this is necessarily the case. However,
it might be that the singularities in X" () have a special form different from the
others. This is an interesting question for further research.

Ths first singularities which are encountered in the analytic continuation of f de-
termine the growth rate of m(t) in a way which we briefly formalize. Suppose that
m(t) is an entire function with exponentially bounded growth. We say that m(¢) is
rapidly decreasing in a sector, if for some (open) sector of complex numbers going to
00, there is £ > 0 giving a bound of the form |m(t)| < e~¢I*l. Define the hull of m by

hull(m) := {¢ € C | e **m(t) not rapidly decreasing in any sector}.

It is clear from the definition that the set of ¢ such that e=*m(t) is rapidly decreasing
in some sector, is open. Therefore hull(m) is closed. It is also not too hard to see that
it is convex (see §13). Note that the hull is defined entirely in terms of the growth
rate of the function m.

Corollary 1.2. — In the situation of Theorem 1.1, the hull of m is a finite convex
polygon with at least two vertices, and all of its vertices are contained in (7).

The above results fall into the realm of singular perturbation theory for systems
of ordinary differential equations, which goes back at least to Liouville. A steady
stream of progress in this theory has led to a vast literature which we don’t attempt
completely to cover here (and which the reader can explore by using internet and
database search techniques, starting for example from the authors mentionned in the
bibliography).

Recall that following [4], Voros and Ecalle looked at these questions from the view-
point of “resurgent functions” [43, 44, 42, 21, 20, 22, 7, 9, 15]. In the terminology
of Ecalle’s article in [7], the singular perturbation problem we are considering here
is an example of co-equational resurgence. Our approach is very related to this view-
point, though self-contained. We use a notion of analytic continuation of the Laplace
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transform 6.2 which is a sort of weak version of resurgence, like that used in [15] and
[9]. The elements of our expansion 6.1 are what Ecalle calls the “elementary mono-
mials” and the trees which appear in §8 are related to (co)moulds (co)arborescents,
see [7]. Conversion properties related to the trees have been discussed in [23] (which
is on the subject of KAM theory [24]). The relationship with integrals on a spectral
curve was explicit in [14], [15]. The works [42], Ecalle’s article in [7], and [15], raise
a number of questions about how to prove resurgence for certain classes of singular
perturbation problems notably some arising in quantum mechanics. A number of
subsequent articles treat these questions; I haven’t been able to include everything
here but some examples are [23], [16], [17], ... (and apparently [46]). In particular
[17] discuss extensively the way in which the singularities of the Laplace transform
determine the asymptotic behavior of the original function, specially in the case of
the kinds of integrals which appear as terms in the decomposition 6.1.

There are a number of other currents of thought about the problem of singular
perturbations. It is undoubtedly important to pursue the relationship with all of
these. For example, the study initiated in [6] and continuing with several articles
in [7], as well as the more modern [1] (also Prof. Kawai’s talk at this conference)
indicates that there is an intricate and fascinating geometry in the propagation of
the Stokes phenomenon. And on the other hand it would be good to understand the
relationship with the local study of turning points such as in [8], [41]. The article
[16] incorporates some aspects of all of these approaches, and one can see [5] for a
physical perspective. Also works on Painlevé’s equations and isomonodromy such as
[11, 28, 34, 45] are probably relevant .

Even though he doesn’t appear in the references of [36], the ideas of J.-P. Ramis
indirectly had a profound influence on that work (and hence on the present note).
This can be traced to at least two inputs as follows:

(1) T had previously followed G.Laumon’s course about ¢-adic Fourier transform,
which was partly inspired by the corresponding notions in complex function theory,
a subject in which Ramis (and Ecalle, Voros, ...) had a great influence; and

(2) at the time of writing [36] I was following N. Katz’s course about exponen-
tial sums, where again much of the inspiration came from Ramis’ work (which Katz
mentionned very often) on irregular singularities.

Thus I would like to take this opportunity to thank Jean-Pierre for inspiring such
a rich mathematical context.

I would also like to thank the several participants who made interesting remarks
and posed interesting questions. In particular F. Pham pointed out that it would be
a good idea to look at what the formula for the location of the singularities actually
said, leading to the statement of Theorem 6.3 in its above form. I haven’t been able
to treat other suggestions (D. Sauzin, ... ), such as looking at the differential equation
satisfied by f(().
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2. The compactified moduli space of connections

Let X be a smooth projective curve over the complex numbers C. Fix r and
suppose E is a vector bundle of rank r over X. A connection (by which we mean an
algebraic one) on E is a C-linear morphism of sheaves V : E — F ®o Q% satisfying
the Leibniz rule V(ae) = (da)e + aV(e). If p and ¢ are points joined by a path
~v:[0,1] = X, v(0) = P, v(1) = Q then local solutions of V(e) = 0 continue along ~,
giving a transport matric m(E,V) : Ep — Eg. The transport matrix, our main
object of study, is the fundamental solution of a linear system of ODE’s. If E is a
trivial bundle (which will always be the case at least on a Zariski open subset of X
containing 7) then there is a formula for the transport matrix as a sum of iterated
integrals [10, 25]. A modified version of this formula is basic to the argument below,
although we mostly refer to [36] for the details of that part of the argument.

Recall that we have a moduli space Mpg of rank r vector bundles with integrable
connection on X [39], which has a compactification Mpr C Mpr constructed as
follows. A Higgs bundle is a pair (E,6) where 6 : E — E ®@p QY is an Ox-linear
bundle map (rather than a connection) [26, 27, 38|, which is semistable of degree
0 if F has degree zero and if any sub-Higgs bundle has degree < 0. In fact for any
A € Al we can look at the notion of vector bundle with \-connection [18]—related
in an obvious way to the notion of singular perturbation—which is a pair (E, V) of
a bundle plus a connection-like operator satisfying Leibniz’ rule with a factor of A in
front of the first term. For A = 0 this is just a Higgs bundle and for any A # 0 the
operator A~V is a connection.

With these definitions, there is a moduli space [37, 40, 39] My.q — A! for vector
bundles with A-connection, A € A'. The fiber over A = 0 is the moduli space Mpe for
semistable Higgs bundles of degree zero, whereas for any A # 0 the fiber is isomorphic
to MDR~

The Higgs-bundle moduli space has a subvariety MBioll parametrizing the Higgs
bundles (E, ) such that € is nilpotent as an 4 -valued endomorphism of E. Let
MY, denote the complement of MBEI in Mpo and let My 4 denote the complement
of MBEI in Myoq. Then the algebraic group G,, acts on Myoq preserving all of the
above subvarieties, and the compactification is obtained as the quotient [37, 40|

MDR = Mﬁod/Gm'

The complement of Mpoj in Muea (which is also the complement of M{_; in M 4)
is isomorphic to Mpr X G,, and this gives the embedding Mpr — Mpgr. The
complementary divisor is given by

In conclusion, this means that the points at co in Mpgr correspond to equiva-
lence classes of semistable, degree 0, non-nilpotent Higgs bundles (E,6) under the
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equivalence relation
(E,0) ~ (E,uf)

for any u € Gy,.

Recall that the moduli space Mp, is an irreducible algebraic variety [39], so Pprg is
also irreducible. The general point therefore corresponds to a “general” Higgs bundle
(E,0) (in what follows we often forget to add the adjectives “semistable, degree 07).
For a general point, the spectral curve of 6 (described in more detail in the section
after next) is an irreducible curve with ramified map to X, such that the ramification
points are all of the simplest type.

We should note that Arinkin [2, 3] has defined a finer compactification by modifying
the notion of A-connection, and this is taken up by Inaba, Iwasaki and Saito [28].

3. Curves going to infinity

The moduli spaces considered above are coarse only. In an etale neighborhood
of the generic point, though, they are fine and smooth. At a general point of the
divisor Ppg, both Mpg and Ppg are smooth. Thus we can look for a curve cutting
Ppr transversally at a general point. Such a curve may be obtained by taking the
projection of a curve in Myoq cutting Mpe) at a general point. In turn, this amounts
to giving a family (E., V.) where V. is a A(c)-connection, parametrized by ¢ € C
for some curve C. In an etale neighborhood of the point A = 0, the function A(c)
should be etale. Note also that (Ep, Vo) should be a general semistable Higgs bundle
of degree zero.

The easiest way to obtain such a curve is as follows: let (E,6) be a general Higgs
bundle, stable of degree zero. The bundle F is stable as a vector bundle (since stability
is an open condition and it certainly holds on the subset of Higgs bundles with § = 0,
so it holds at general points). By Narasimhan-Seshadri, E supports a (flat unitary)
connection V compatible with the holomorphic structure and we can set

Va:=AV+10

for A € A'. Here the parameter is ) itself. The subset G,, C A! corresponds to
points which are mapped into Mpg, and indeed the vector bundle with connection
corresponding to the above A-connection is

(E,V +10), t=X\""1

The map actually extends to a map from A' into Mpr for the other coordinate chart
A providing a neighborhood at oo in P!. In conclusion, the family of connections
{(E,V +1t0)} corresponds to a morphism

P! — Mpr
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sending t € A! into Mpg, sending the point t = oo to a general point in the divisor
Ppr, and the curve is transverse to the divisor at that point. This type of curve was
called a pencil of connections by Losev and Manin [31].

We will look only at curves of the above form. It should be possible to obtain
similar results for other curves cutting Ppr transversally at a general point, but that
is left as a problem for future study.

We will investigate the asymptotic behavior of the monodromy representations of
the connections (E,V + t0) as t — co. Recall that the Betti moduli space Mp is the
moduli space for representations of 71 (X) up to conjugation, and we have an analytic
isomorphism MJx = M 3" sending a connection to its monodromy representation. We
will look at the asymptotics of the resulting analytic curve Al — Mp.

In order to set things up it will be useful to fix a basepoint p € X and a trivialization
7 : E, 2 C". Then for any v € m1 (X, z) we obtain the monodromy matrix

p(E,V +1t0,1,v) € GL(r,C).

Of course the monodromy matrices don’t directly give functions on the moduli space
Mp of representations, because they depend on the choice of trivialization 7. How-
ever, one has the Procesi coordinates (see Culler and Shalen [12] and Procesi [33])
which are certain polynomials in the monodromy matrices (for several v at once)
which are invariant under change of trivialization and give an embedding of the Betti
moduli space Mp into an affine space. We will look at the asymptotic behavior of the
monodromy matrices, but the resulting asymptotic information will also hold for any
polynomials (see Corollary 14.2), and in particular for the Procesi coordinates. This
will give asymptotic information about the image curve in Mp.

Notationally it is easier to start right out considering the transport matrices be-
tween points p and ¢. In any case, the functions we shall consider, be they the matrix
coefficients of the monodromy p or some other polynomials in these or the transport
matrices, will be entire functions m(t) on the complex line ¢t € C. We will be looking
to characterize their asymptotic properties.

The method we will use is the same as the method already used in [36] to treat
exactly this question, for a more special class of curves going to infinity in Mpr. In
that book was treated the case of families of connections (E,V + t) where

E=0%, V=d+B, 0=A

with A and B being r x r matrices of one-forms on X such that A is diagonal and
B contains only zeros on the diagonal. In [36], a fairly precise description of the
asymptotic behavior of the monodromy was obtained. It was also indicated how one
should be able to reduce to this case in general; we shall explain that below. The
only problem is that in the course of this reduction, one obtains the special situation
but with B being a matrix of one-forms which has some poles on X. In this case the
exact method used in [36] breaks down.
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The purpose of the present paper is to try to remedy this situation as far as
possible. We change very slightly the method (essentially by taking the more canonical
gradient flows of the functions Rg;; rather than the flows defined in Chapter 3 of [36],
and also stopping the flows before arriving at the poles of B). However, we don’t
obtain the full results of [36], namely we can show an analytic continuation result
for the Laplace transform of m(t) (this Laplace transform is explained in more detail
below), however we don’t get good bounds or information about the singularities
of the Laplace transform other than that they are locally finite sets of points. In
particular we obtain information about the growth rate of m(¢) but not asymptotic
expansions.

Even in order to obtain the analytic continuation, a much more detailed exami-
nation of the dynamics generated by the general method of [36] is necessary. This
is the main body of the present paper (see Theorem 12.5). For the remainder of the
technique we mostly refer to [36].

Thus while we treat a much more general type of curve going to infinity than was
treated in [36], we obtain a weaker set of results for these curves. This leaves open
the difficult question of what kinds of singularities the Laplace transforms have, and
thus what type of asymptotic expansion we can get for m(t).

4. Genericity results for the spectral data

Before beginning to look more closely at the monodromy representations, we will
consider some properties of general points (E,#) on Ppr, best expressed in terms of
the spectral curve [26, 27, 19, 30, 14, 34].

Suppose (F, ) is a Higgs bundle. Suppose P € X and v € TpX; then we obtain the
fiber Ep which is a vector space of rank r, with an endomorphism ép(v) € End(Ep).
We say that P is singular if p(v) has an eigenvalue (i.e. zero of the characteristic
polynomial) of multiplicity > 2. It is more natural to look at the eigenforms of 6
obtained by dividing out the vector v. The eigenforms are elements of the cotangent
space Tp X = (Q%)p.

We say that a singular point P is generic if there is exactly one eigenform of
multiplicity > 2; if it has multiplicity exactly 2; and if the two eigenforms a* of @
which come together at P, may be expressed in a neighborhood with coordinate z as

ot =cdz +az"?dz+--- .

The condition that all singular points are generic is a Zariski open condition on the
moduli space of Higgs bundles.

Suppose P is a generic singular point. The eigenforms give a set of » — 1 distinct
elements of THX, consisting of the values of the multiplicity-one eigenvalues of 6
at P, plus the leading term cdz for the pair a®. Call this set EFp. We say that P
is non-parallel if EFp, viewed as a subset of the real two-dimensional space TpX,
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doesn’t have any colinear triples, nor any quadruples of points defining two parallel
lines.
In terms of a coordinate z at P we can write the elements of EFp as

a;(P) = a;dz

with a; being distinct complex numbers, and say a; = ¢ in the previous formulation.
Then P is non-parallel if and only if the set of a; € C =2 R? doesn’t have any colinear
triples or parallel quadruples. In turn this is equivalent to saying that the angular
coordinates of the complex numbers a; — a; are distinct.

Lemma4.l. — The set of Higgs bundles (E,8) such that the singularities are generic
and satisfy the non-parallel condition, is a dense real Zariski-open subset of the moduli
space.

Proof. — The condition of being non-parallel is a real Zariski open condition. In
particular, the condition that all singular points be generic and non-colinear, holds in
the complement of a closed real algebraic subset of the moduli space. Therefore, if
there is one such point then the set of such points is a dense real Zariski open subset.

To show that there is one point (FE,f) such that all of the singular points are
generic and non-parallel, we can restrict to the case where E = O%" is a trivial
bundle. In this case, 6 corresponds to a matrix of holomorphic one-forms on X. We
will consider a matrix of the form A+ AB with A diagonal having entries «;, and B is
off-diagonal with A small. The singular points are perturbations of the points where
a;(P) = a;(P). A simple calculation with a 2 x 2 matrix shows that the singularities
are generic in this case. In order to obtain the non-colinear condition, it suffices to
have that for a point P where a;(P) = «;(P), the subset of r — 1 values of all the
ai(P) is non-parallel.

For a general choice of the «y, this is the case. Suppose we are at a point P where
a1(P) = az(P) for example. Then moving the remaining «y, for k > 3 shows that the
remaining points are general with respect to the first one. A set of » — 1 points such
that the last 7 — 2 are general with respect to the first one (whatever it is), satisfies
the non-parallel condition. O

Lemma4.2. — If (E,0) is generic in the sense of the previous lemma, then the spectral
curve V' is actually an irreducible smooth curve sitting in the cotangent bundle T*X.
There is a line bundle L on V' such that E = 7, (L) and 0 is given by multiplication
by the tautological one-form over V.

Proof. — The genericity condition on the way the eigenforms come together at any
point where the multiplicity is > 2, guarantees that at any point where the projection
m:V — X is not locally etale, the curve V is a smooth ramified covering of order 2 in
the usual standard form. This shows that V' is smooth. It is irreducible, because this
is so for at least some points (for example the deformations used in the previous proof)
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and Zariski’s connectedness implies that in a connected family of smooth projective
curves if one is irreducible then all are. For connectedness of the family we use the
irreducibility of the moduli space of Higgs bundles cf. [39]. The last statement is
standard in theory of spectral curves [26, 27, 19, 30]. O

Remark. — Once p and ¢ are fixed, then for general 6 the endpoints p, ¢ will not be
contained in the set R of turning points.

5. Pullback to a ramified covering and gauge transformations

Fix a general Higgs bundle (E,#) on X. By taking a Galois completion of the spec-
tral curve of 8 and Galois-completing a further two-fold ramified covering if necessary,
we can obtain a ramified Galois covering

p:Y — X

such that the pullback Higgs field ¢*6 has a full set of eigen-one-forms defined on Y;
and such that the ramification powers over singular points of 8 are divisible by 4.
We have one-forms aj, ..., a;, and line sub-bundles

Ly,...,L, Cp*E
such that at a general point of Y we have
V:p"E2L1 @ L,

with ¢*6 represented by the diagonal matrix with entries a;;. Note that ¢*6 preserves
L; (acting there by multiplication by «;) globally on Y. However, the isomorphism
will only be meromorphic, and also the L; are of degree < 0. Choose modifications
L, of L; (see Lemma 5.1 below, also the modifications are made only over singular
points) such that L} is of degree zero, and set

E=L®& L.
Let 0’ denote the diagonal Higgs field with entries o; on E’. Let V' be a diagonal flat
connection on E’. We have a meromorphic map
Vv E— F,
and
Yo horyt =4
Suppose now that V was a connection on F, giving a connection ¢*V on ¢*FE. We
can write
bog' Vol =V 4
with 3 a meromorphic section of End(E’) ®o Q4.
A transport matrix of (F,V + t0) may be recovered as a transport matrix for the
pullback bundle on Y. Indeed if v is a path in X going from p to ¢ then it lifts to a
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path going from a lift p’ of p to a lift ¢’ of q. Thus it suffices to look at the problem
of the asymptotics for transport matrices for the pullback family

{(p"E, "V + tp"0)}.
We may assume that p and ¢ are not singular points of 6, so p’ and ¢’ will not be
singular points of ¢*f. Then the transport matrices for this family are conjugate (by
a conjugation which is constant in t) to the transport matrices for the family

{(E',\V' + B +t0)}.

Lemmab5.1. — In the above situation, the modifications L) of L; may be chosen so
that the diagonal entries of B are holomorphic. Furthermore the poles of the remaining
entries of B are restricted to the points lying over singular points in X for the original
Higgs field 0 (the “turning points”).

Proof. — Note first that, by definition, away from the singular points of # the eigen-
one-forms are distinct so the eigenvectors form a basis for E, in other words the direct
sum decomposition 1 is an isomorphism at these points. Thus ¥ only has poles over
the singular points of  (hence the same for 3).

We will describe a choice of L} locally at a singular point.

Look now in a neighborhood of a point P’ € Y, lying over a singular point P € X.
Let 2’ denote a local coordinate at P’ on Y, with 2 a local coordinate at P on X and
with

z=(2")".
Our assumption on Y was that m is divisible by 4. In fact we may as well assume
that m = 4 since raising to a further power doesn’t modify the argument. Thus we
can write

2 = M4
There are two eigenforms of § which come together at P. Suppose that their lifts are
o1 and ag. Then near P’ we can write

QD*E:U@L:»,EBH-@LT

where U is the rank two subbundle of p*E corresponding to eigenvalues a; and as.
The direct sum decomposition is holomorphic at P’ because the other eigenvalues
of 6 were distinct at P and different from the two singular ones (of course after the
pullback all of the eigenforms have a value of zero at P’ but the decomposition still
holds nonetheless).

Now we use a little bit more detailed information about spectral curves for Higgs
bundles: the general (E,#) is obtained as the direct image of a line bundle on the
spectral curve (Lemma 4.2). This means that locally near P there is a two-fold
branched covering with coordinate v = z'/2 such that the rank 2 subbundle of E
corresponding to the singular values looks like the direct image of the trivial bundle
on the covering, and the 2 x 2 piece of 8 looks like the action of multiplication by
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udz = 2u?du. The direct image, considered as a module over the series in z, is just
the series in u. One can obtain a basis by looking at the odd and even powers of u:
the basis vectors are e; = 1 and e; = u. In these terms we have

fe; = eadz; Bes = zeqdz.

Thus the 2 x 2 singular part of € has matrix

0z
<1O>dz.

Pulling back now to the covering Y which is locally 4-fold, we have a basis for U in

which
o0 DTN
0y = ((z’)3 0 dz'.

On the other hand, since up until now our decomposition is holomorphic, the pullback
connection ¢*V may be written (in terms of our basis for U plus trivializations of
the L; for i > 3) as d + B’ where B’ is a holomorphic matrix of one-forms. Since
the basis can be pulled back from downstairs, we can even say that B’ consists of
one-forms pulled back from X.

To choose the modifications L] (for i = 1,2) locally at P’ we have to find a mero-
morphic change of basis for the bundle U, which diagonalizes ¢*0|y;. The eigenforms
of the matrix are +(2’)%dz’" and we can choose eigenvectors

(p*0lv)ex = (£(2')°d2 Ve

Choose the line bundles L} and L/, to be spanned by the meromorphic sections e
and e_ of U. These are indeed eigen-subbundles for ¢*6. We just have to calculate the
connection ¢*V on the bundle U’ = L} & L,. Which is the same as the modification

of U given by the meromorphic basis z’ey, (') es.

Note by calculation that

Note first that the matrix B’ of one-forms pulled back from X consists of one-forms
which have zeros at least like (2/)2dz’. Thus B’ transported to U’ is still a matrix of
holomorphic one-forms so it doesn’t affect our lemma. In particular we just have to
consider the transport to U’ of the connection dy constant with respect to the basis
(e1,e2) on the bundle U.

Calculate

L)

~ (a5 )* (o= atog o)

dv(ayes +a—e_)=dy <(
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and with the notation dy- for the constant connection on the bundle U’ with respect
to its basis e, this is equal to

=dy (ares +a_e_)+ay(dlogz')e_ + a_(dlog2')e;.

We conclude that the connection matrix (3 is, up to a holomorphic piece, just the 2 x 2

(55 )

In particular the diagonal terms of § are holomorphic, as desired for the lemma.
These local modifications piece together to give global modifications L} of the L;.
We have to show that the L) are of degree zero.

matrix

In general, given a meromorphic connection on a bundle which is a direct sum of
line bundles, we can extract its “diagonal” part, which in terms of a local framing
compatible with the direct sum is just the connection given by the diagonal entries
of the original connection matrix. Denote this operation by ( )giag- Note that for
any diagonal connection V' and meromorphic endomorphism-valued one-form 3, the
diagonal connection is given by (V' + 3)diag = V' + Bdiag Where Sdiag is the matrix of
diagonal entries of (.

Setting E’ := @ L} we have a meromorphic map ¢ : E — E’. We obtain a
meromorphic connection 1) o ¢*V o4~ on E’, and by the above choice of L/ the
associated diagonal connection is holomorphic at the singularities. On the other
hand, 1) 0 p*V o1~ is holomorphic away from the singularities, so its diagonal part is
holomorphic there too. Therefore the global diagonal connection (1) 0 ¢*V 0 1™ 1) giag
on @ L} is holomorphic. This proves that the L] are of degree zero. In particular, our
choice of modification is allowable for the argument given at the start of the present
section. This proves the lemma. O

Remarks

(i) The above proof gives further information: the only terms with poles in the ma-
trix 3 are the off-diagonal terms corresponding to the two eigenvalues which came to-
gether originally downstairs in X; and these terms have exactly logarithmic (i.e. first-
order) poles with residue 1. This information might be useful in trying to improve
the current results in order to obtain precise expansions at the singularities of the
Laplace transform of the monodromy.

(ii) This gauge transformation is probably not new, but I don’t currently have a
good reference. It looks related to [29], [45] and [34], and indeed may go back to
14, 43].

(iii) The fact that we had to go to a covering whose ramification power is divisible
by 4 rather than just 2 (as would be sufficient for diagonalizing ) is somewhat mys-
terious; it probably indicates that we (or some of us at least) don’t fully understand
what is going on here.
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Let p428 denote the matrix of diagonal entries of 5. Let Z = Y be the universal

covering. Over Z we can use the diagonal connection V' + 34128 to trivialize

E'\z = 0Y.
With respect to this trivialization , our family now has the form of a family of con-
nections

{(0%,d+ B +tA)}
where A (corresponding to the pullback of 6’ to Z) is the diagonal matrix whose
entries are the pullbacks of the «;; and where B is a matrix whose diagonal entries
are zero, and whose off-diagonal entries are meromorphic with poles at the points
lying over singular points for 6.

We can now apply the method developped in [36] to this family of connections.
Note that it is important to know that the diagonal entries of A come from forms on
the compact Riemann surface Y; on the other hand the fact that B is only defined
over the universal covering Z is not a problem. The next two sections will constitute
a brief discussion of how the method of [36] works; however the reader is refered back
there for the full details.

6. Laplace transform of the monodromy operators

We now look at a family of connections of the form d+ B+tA on the trivial bundle
O" on the universal covering Z of the ramified cover Y, where A is a diagonal matrix
with one-forms «; along the diagonal, and B is a matrix of meromorphic one-forms
with zeros on the diagonal. We assume that the poles of B are at points P € R coming
from the original singular points of the Higgs field # on X. We make no assumption
about the order of poles, in spite of the additional information given by Remark (i)
after the proof of Lemma 5.1 above.

Assume that p and ¢ are two points in Z, not on the singular points. Choose
a path ~ from p to ¢ not passing through the singular points. We obtain the
transport matriz m(t) for continuing solutions of the ordinary differential equation
(d+ B+tA)f =0 from p to g along the path v. Note that m(¢) is a holomorphic
r X r-matrix-valued function defined for all ¢t € C.

Denote by Z* (resp. Z¢) the complement of the inverse image of R (resp. the
complement of the union of open discs of radius € around points in the inverse image
of R). The poles of B force us to work in Z* rather than Z, and in the course of
the argument an € will be chosen so that we really work in Z¢. Actually it turns
out that the fact of staying inside these regions will be guaranteed by our choice of
vector fields, so we don’t need to worry about any modification of the procedure of
[36] because of this difference.

Recall that after a gauge transformation and an expansion as a sum of iterated
integrals, we obtain a formula for the transport matrix. One way of thinking of this
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formula is to look at the transport for the connection d + sB + tA and expand in
a Taylor series in s about the point s = 0, then evaluate at s = 1. The terms in
the expansion are the higher derivatives in s, at s = 0, which are functions of t. A
concrete derivation of the formula is given in [36]. It says

m(t) = EI: /m bretd!

where:
— the sum is taken over multi-indices of the form I = (ig,41,..., ) where we note
k= [I];

— for a multi-index I we denote by Z7 the product of k = |I| factors Z* x - - - x Z*;
—in Z} we have a cycle

nr = {(y(t1), .., v(te))}

for 0 <t; < -+ <t < 1 where v is viewed as a path parametrized by t € [0, 1];

— the cycle n; should be thought of as representing a class in a relative homology
group of Z7F relative to the simplex formed by points where z; = z;41 or at the ends
21 =porz, =q;

— the matrix B leads to a (now meromorphic) matrix-valued k-form by on Z}
defined as follows: if the entries of B are denoted b;;(2)dz then

by = bikik71 (zk)dzk A=A bilio (zl)dzleikio

where e;,;, denotes the elementary matrix with zeros everywhere except for a 1 in
the irig place;

— and finally g is a holomorphic function Z7 — C defined by integrating the
one-forms «; as follows:

Z1 q
g[(zl,...,zk):/ ai0+~~+/ (o710
p Zk

The terms in the above expression correspond to what Ecalle calls the elementary
monomials som, see his article in [7].

The fact that by is meromorphic rather than holomorphic is the only difference
between our present situation and the situation of [36]. Note that because our path
misses the singular points and thus the poles of B, the cycle n; is supported away
from the poles of b;. We will be applying essentially the same technique of moving
the cycle of integration 7, but we need to do additional work to make sure it stays
away from the poles of b;.

It is useful to have the formula

q
91(21, cee 7Zk) = Gigi1 (Zl) + ot i (Zk) + / Qi
p
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where

z
gij(z) 2:/ Q; — Q.
p

Our formula for m gives a preliminary bound of the form
Im(t)| < Ce®ltl.
Indeed, along the path ~ the one-forms b;; are bounded, so
lbr] < C*

on 7y; also we have a bound |g;(z)| < a for z € 5, uniform in I; and finally the cycle
of integration n; has size (k!)~!. Putting these together gives the bound for m(t)
(and, incidentally, shows why the formula for m converged in the first place).

Recall now that the Laplace transform of a function m(t) which satisfies a bound
such as the above, is by definition the integral

f(¢Q) = /000 m(t)e  tdt

where ¢ € C with || > a and the path of integration is taken in a suitably chosen
direction so that the integrand is rapidly decreasing at infinity. In our case since m(t)
is a matrix, f({) is also a matrix. We can recover m(t) by the inverse transform

mit) = 5 § FQO

with the integral being taken over a loop going around once counterclockwise in the
region || > a.

The singularities of f({) are directly related to the asymptotic behavior of m(t).
This is a classical subject which we discuss a little bit more in §14. One can note
for example that by the inverse transform, there exist functions m(t) satisfying the
preliminary bound |m(t)] < Ce®!l but such that the Laplace transforms f(¢) have
arbitrarily bad singularities in the region || < a. Thus getting any nontrivial restric-
tions on the singularities of f amounts to a restriction on which types of functions
m(t) can occur.

In our case, the expansion formula for m(t) leads to a similar formula for the
Laplace tranform, which we state as a lemma. Define the image support of a collection
1 = {nr} by the collection of functions g = {gs} to be the closure of the union of the
images of the component pieces:

g(n) == Ja:r(In:]) € C,
I

where |n;| C Z; is the support of the chain n;. As in [36], p. 42, the support |n;]| is
defined as the smallest closed subset of Z; such that the integral of n; against any
form vanishing on |ny| is zero.
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Lemma6.1l. — With the functions gy, the forms by, and the chains n; intervening
above, for any ( in the complement of the region g(n) the formula

10 = Z/I gzbiC

I n

converges, and gives an analytic continuation of the Laplace transform in the (unique)
unbounded connected component of the complement of g(n).

Proof. — The convergence comes from the same bounds on b; and the size of ; which
allowed us to bound m. The fact that this formula gives the Laplace transform is an
exercise in complex path integrals. O

The terms in this expansion correspond to Ecalle’s elementary monomials “soc”
in [7].

A first approach would be to try to move the path v so as to move the union of
images ¢g(n) and analytically continue f to a larger region. This works quite well
for rank 2, where one can get an analytic continuation to a large region meeting
the singularities [14]. In higher rank, the 3 x 3 example at the end of [36] shows
that this approach cannot be optimal. In fact, we should instead move each cycle
of integration 7; individually. Unfortunately this has to be done with great care in
order to maintain control of the sizes of the individual terms so that the infinite sum
over [ still converges.

Now we get to the main definition. It is a weak version of resurgence, see [15, 9].

Definition 6.2. — A function such as f({) defined on |(| > a is said to have an analytic
continuation with locally finite branching if for every M > 0 there is a finite set of
points Sy C C such that if o is any piecewise linear path in C—.S); starting at a point
where |(| > a and such that the length of ¢ is < M, then f(¢) can be analytically
continued along o.

And the statement of the main theorem.

Theorem 6.3. — Suppose m(t) is the transport matriz from p to q for a family of
connections on the trivial bundle O of the form {d + B + tA}. Suppose that A is
diagonal with one-forms «;, coming from the pullback of a general Higgs field 6 over
the original curve X, and suppose that B is a meromorphic matriz of one-forms with
poles only at points lying over the singular points of 0. Let f({) denote the Laplace
transform of m(t). Then f has an analytic continuation with locally finite branching.

Most of the remainder of these notes is devoted to explaining the proof.
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7. Analytic continuation of the Laplace transform

We now recall the basic method of [36] for moving the cycles n; to obtain an
analytic continuation of f(¢). We refer there for most details and concentrate here just
on stating what the end result is. Still we need a minimal amount of notation. Before
starting we should refer to [17] (and the references therein) for an extensive discussion
of this process for each individual integral in the sum, including numerical results on
how the singularities of the analytic continuations determine the asymptotics of the
pre-transformed integrals.

We work with pro-chains which are formal sums of the form n = 3", n; of chains
on the Zj. Here, technically speaking chains are the “singular-de Rham chains” of
[36] p. 41, made up of direct images of differential forms under maps from simplices
into the Zj. These arise because of the use of cutoff functions in the argument.

We have a boundary operator denoted 9+ A where 0 is the usual boundary operator
on each nr individually, and A (different from the matrix of one-forms considered
above) is a signed sum of face maps corresponding to the inclusions Z;, — Z7 obtained
when some z; = z;41. Our original pro-chain of integration in the integral expansion
satisfies (0 + A)n = 0. We can write the expansion formula of Lemma 6.1 as an
integral over the pro-chain n =", 7y,

b
1) / —
where b is the collection of forms by on Z7 and g is collection of functions g;. Such
a formula is of course subject to the condition that the infinite sum of integrals
converges.
In a formal way (i.e. element-by-element in the infinite sums implicit in the above
notation), if we add to n a boundary term of the form (0 + A)x then the integral

dceSIl t Cllgtllge'
/n+ + Ak 9 /'r] 9

This again is subject to the condition that the infinite sums on both sides converge
absolutely and in fact that the individual terms in the rearrangement (i.e. separating
0 and A) converge absolutely. Whenever we use this, we will be refering (perhaps

without mentionning it further) to the work on convergence which was done in [36].
Our analytic continuation procedure rests upon consideration of the locations of
the images by the function g, of the pro-chains of integration. Recall the notation

g(n) = U91(|771|)
1

where |n;| is the support of the chain ;.
If f is defined by the right-hand integral over 7 in a neighborhood of a point (g,
meaning that the image g(n) misses an open neighborhood of (p, and if the image
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g(n+ (0 + A)x) misses an entire segment going from (p to (1, then the integral over
7+ (0 + A)k defines an analytic continuation of f along the segment. The procedure
can be repeated with 7 replaced by n + (0 + A)x.

At this point we let our notation slide a little bit, and denote by 1 any pro-chain
which would be obtained from the original chain of integration by a sequence of
modifications of the kind we are presently considering, such that the integral over 7
serves to define an analytic continuation of f(¢) to a neighborhood of a point ¢y € C.
The original pro-chain n of Lemma 6.1 is the initial case. Our assumption on 7
says among other things that the image g(n) doesn’t meet a disc around ¢p. Fix a
line segment S going from (y to another point ¢1; we would like to continue f in a
neighborhood of S. By making a rotation in the complex plane (which can be seen as
a rotation of the original Higgs field) we may without loss of generality assume that
the segment S is parallel to the real axis and the real part of (; is smaller than the
real part of (. Let u be a cut-off function for a neighborhood of S and write

n=n+n", 7' =g"(u)n.

We will apply the method of [36] to move the piece n’ (this piece corresponds to what
was called n in Chapter 4 of [36]).

The first step is to choose flows. This corresponds to Chapter 3 of [36]. In our
case, we will use flows along vector fields W;; which are C°>° multiples of the gradient
vector fields of the real parts Rg;;. To link up with the terminology of [36], these
vector fields determine flowing functions f;;(z,t) (for z € Z and t € RT taking values
in Z) by the equations

0
5 (1) = Wii(fij(2,0)),  fij(2,0) = z.

Note that this choice is considerably simpler than that of [36]. The choice of vector
fields will be discussed in detail below, and will in particular be subject to the following
constraints.

Condition 7.1

(i) the vector fields W;; are lifts to Z of vector fields defined on the compact
surface Y';

(ii) the differential dRg;; applied to W;; at any point, is a real number < 0;

(ili) there exists ¢ such that the flows preserve Z° i.e. the vector fields W;; are
identically zero in the discs of radius € around the singular points; and

(iv) the W;; are identically zero.
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The flows given by our vector fields lead to a number of operators F', K and H
defined as in Chapters 4 and 5 of [36]. These give pro-chains
Fr=) F(-KA)H(AK)*y,

(]

Fip =Y F(-KA)K(@+ Ay,
FKp=> FK(AK)™.

The reader can get a fairly good idea of these definitions from our discussion of the
points on |F'7| in §8 below.

Lemma7.2. — With these notations, and assuming that the vector fields satisfy the
constraints marked above, we can write

n+ 0+ AFKp=1n"+ Fr — F.

On the right, the images g(n") and g(F1) miss a neighborhood of the segment S.
Assuming we can show that the image g(F'1) also misses a neighborhood of the segment

S, then
b
oo
©) n+(0+A)FKe 9 — G

gives an analytic continuation of f from (y to (1 along the segment S.

Proof. — The operator K corresponds to applying the flows defined by Wj; in the
various coordinates. This has the effect of decreasing the real part Jg. The fact
that in our case we use flows along vector fields which are positive real multiples
of —gradRg;; (this is the second of the constraints on W;;) implies that the flows
strictly respect the imaginary part of g. This differs from the case of [36] and means
we can avoid discussion of “angular sectors” such as on pages 52-53 there. Thus, in
our case, when we apply a flow to a point, the new point has the same value of Sy,
and the real part Rg is decreased.

The operator F' is related to the use of buffers; we refer to [36] for that discussion
and heretofore ignore it. The operator A is the boundary operator discussed above;
and the operator H is just the result of doing the flows K after unit time. In particular,
A doesn’t affect the value of g. And H decreases Jtg while fixing J¢g just as K did
(this point will perhaps become clearer with the explicit description of points in the
supports of 't and F'K ¢ in the next section).

The proof of the first formula is the same as in [36] Lemma 4.4, and we refer there
for it.

To show that the supports of g(n") and g(F) miss a neighborhood of S, it is useful
to be a little bit more precise about the neighborhoods which are involved. Let N7 be
the support of u, which is a neighborhood of S (we assume it is convex), and let Ny be
the support of du which is an oval going around S but not touching it. Let N3 be the
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neighborhood of S where wu is identically 1. Let D be a disc around (p, such that g(n)
misses D, and which we may assume has radius bigger than the width of N;. Then

g(n) € N1 = (N1n D),
g(n") € C— (NsUD),
and (0 + A)y' = —(0 + A)n" with
9((0+Am') C N2 — (N2 N D).

In particular the support of g(n”) misses the neighborhood N3 of S. Also, given that
the boundary term (0 + A)n’ is supported in the U-shaped region No, the effect of
our operators on g and g described above implies that g(F1) is supported away
from N3. This completes the proof of the second statement of the lemma.

For the last statement, assume that we have chosen things such that the support
of g(F7) also misses S. This is certainly what we hope, because of the inclusion of
the operator H applying all the flows for unit time. The only possible problem would
be if we get too close to singular points; that is the technical difficulty which is to be
treated in the remainder of the paper. For now, we assume that this is done.

Formally speaking, the first equation of the lemma means that

/L_/ b
ng—C 17”+FT—F’1/)g_<.

By our starting assumption f({) is defined by the integral on the left, in a neigh-
borhood of (3. On the other hand, the integral on the right defines an analytic
continuation along the segment S.

An important part of justifying the argument of the preceding paragraph (and
indeed, of showing that the integral on the right is convergent) is to bound the sizes
and numbers of all the chains appearing here. This was done in [36].

The only difference in our present case is the poles in the integrand b. However,
thanks to the third constraint on the vector fields W;;, everything takes place in
Z5 = Z° x ---x Z%, and on Z° there is a uniform bound on the size of b;;. Also,
everything takes place inside a relatively compact subset of Z, see §9. Thus the
integrand in the multivariable integral is bounded by
sup [b| < CF
z3
for k = |I|. With this information the remainder of the argument of [36] works
identically the same way (it is too lengthy to recall here). This justifies the formal
argument of two paragraphs ago and completes the proof of the lemma. O

Remark. — It is clear from the end of the proof that the bounds depend on e, which
in turn will depend on how close we want to get to a singularity. This is the root
of why we don’t get any good information about the order of growth of the Laplace
transform at its singularities.
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8. Description of cells using trees

As was used in [36], the chains defined above can be expressed as sums of cells. We
are most interested in the chain F'7 although what we say also applies to the other
ones such as FK . These chains are unions of cells which have the form of a family
of cubes parametrized by points in one of the original cells nj. We call these things
just cubes. In the cubes which occur the points are parametrized by “trees” furnished
with lots of additional information™). We make this precise as follows: a furnished
tree is:

— a binary planar tree T' (not necessarily connected) sandwiched between a top
horizontal line and a bottom horizontal line;

— with leftmost and rightmost vertical strands whose edges are called the side
edges;

— for each top vertex of the tree (i.e. where an edge meets the top horizontal line)
we should specify a point z € Z* (the point corresponding to the left resp. right side
edge is p resp. q);

— for each region in the complement of the tree between the top and bottom hor-
izontal lines and between the side edges we should specify an index, so that each
(non-side) edge of the tree is provided with left and right indices which will be de-
noted 7. and j. below; and

— each edge e is assigned a “length” s(e) € [0, 1].

Suppose T is a furnished tree. By looking at the indices assigned to the regions
meeting the top and bottom horizontal lines we obtain multi-indices I*°P and I°°%, so
the collection of points (21,...,2x) attached to the top vertices gives a point 2'°P €

;Wp .

We can now explain how a furnished tree leads to a point zP°t € Z oot (). This
depends on a choice of vector fields W;; for each pair of indices ¢, j, which we now
assume as having been made. A flowing map ® : T — Z is a map from the topological
realization of the tree, into Z, satisfying the following properties:

(i) if v is a top vertex which is assigned a point z in the information contained in
T, then ®(v) = z;

(ii) the side edges are mapped by constant maps to the points p or g respectively;
and

(iii) if e is an edge with left and right indices i, and j. and with initial vertex v
and terminal vertex v, then ®(e) is the flow curve for flowing along the vector field

(D The occurence of trees here is certainly related to and probably the same as Ecalle’s notions of
(co)mould (co)arborescent cf. [22]. In another direction, John Conway pointed out at the time of
[36] that cubes parametrized by trees in this way glue together into Stasheff polytopes. I didn’t
know what those were at the time, but retrospectively this still remains mysterious since we are
dealing with representations of the fundamental group and it isn’t clear what that has to do with
homotopy-associativity. This is certainly a good subject for further thought.
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Wi, ;. from ®(v) to ®(v’), where the flow is done for time s = s(e). This determines
®(v') as a function of ®(v) and the information in the tree. Thus by recursion we
determine the ®(v) for all vertices, as well as the paths ®(e) for the edges e (the map
® on the edges is only well determined up to reparametrization because we don’t fix a
parametrization of the edges; the length s is abstract, since it is convenient to picture
even edges assigned s = 0 as being actual edges).

For a given choice of vector fields W;; and of information attached to the tree 7',
the flowing map exists and is unique. This determines a point given by the values z
at the bottom vertices,

ZbOt(W, T) € Zvor.

Now go back to the situation of the previous section. Starting from a chain n’ we

obtained a chain F'7.

Lemma8.1. — The points in the support of FT are described as the z*°* (W, T), where
W = {W;;} is the collection of vector fields used to define the flows K and H, and
where T is a furnished tree such that z*°P(T) is in the support of ' and satisfying the
following auziliary condition:

(x) there exists (up to reparametrization of the planar embedding) a horizontal line
which cuts the tree along a sequence of edges, such that all of these edges are assigned
the fixed length value s = 1.

Proof. — See [36], pages 54-55. The auxiliary condition comes from the term H in
the formula for 7. O

Remark. — For the chain F'K the same statement holds except that the furnished
trees T' might not necessarily satisfy the auxiliary condition.

We finish this section by pointing out the relationship between g(z*°P) and g(z"°").
This is the key point in our discussion, because z*°P is the input point coming from

bot i5 the output point which goes into the resulting chain Fr. We

the chain n’ and z
want to prove that the real part of g(2"°') can be moved down past the end of the

segment S.

Lemma8.2. — IfT is a furnished tree and W a choice of vector fields, then
g(=""(T)) = g(=*P(T)) + gi.;.
. JP(e)
In particular if W saitsfies Condition 7.1 then
9(z"°"(T)) = 9(=**(T)) € Reo-
Proof. — If e is an edge of T and s’ € [0, s(e)] then we can define the tree T” obtained
by pruning T at (e, s’). This is obtained by cutting off everything below e and sending

the bottom vertex of e to the line at the bottom. The indices associated to regions in
the complement follow accordingly. Finally we set s(e) := s’ in the new tree T".
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Suppose for the same edge e we also pick s” € [s', s(e)]. Then we obtain a different
pruning denoted T (which has almost all the same information except for the length
of the edge e). Let v’ (resp.v”) denote the bottom vertices corresponding to e in
the trees T” (resp. T"). Let ®' (resp. ®”) denote the flowing map for T’ (resp. T").
These coincide and coincide with ® on the parts of the trees that are in common (the
unpruned parts). We have

" (v'")

g(2PUT™) = g(2PH(T")) + / dgij..
o/ (v')

Note that the segment of ®(e) going from ®'(v') to ®”(v”) is a flow curve for the
vector field W;_;,, and it flows for time s” — s’

If we prune at an edge e with s’ = s(e) then it amounts to cutting off the tree
at the lower vertex of e. If furthermore all of the length vectors assigned to edges
below e are 0, then g(zP°*(T")) = g(z"°%(T)).

By recurrence we obtain the first statement in the lemma.

Recall that one of the constraints was the condition that the vector fields W;_;, be
negative multiples of the gradient vector fields for the real functions Rg;,_;,. With this
condition we get that the integral of dg;,;, along a flow curve for W;_;, is a negative
real number, so this gives at each stage of the recurrence

g(z"(T")) — g(2"°(T")) € Ro.
Putting these together gives the second statement of the lemma. O

There is also another way to prune a tree: if e is an edge such that i, = j. then we
can cut off e and all of the edges below it, and consolidate the two edges above and
to the side of e into one edge. The only difficulty here is that the consolidated edge
might have total length > 1 but this doesn’t affect the remainder of our argument
(since at this point we can ignore questions about the sizes of the cells). Let 77 denote
the pruned tree obtained in this way. We again have

9(z"(T) = g(z""(T")) € R<o.

In general we will be trying to show for the trees which arise in F'7, that the real
part of g(zP°(T)) is small enough. If we can show it for 7" then it follows also for 7T
In this way we can reduce for the remainder of the argument, to the case where i, # j.
for all edges of T'. This is the content of the following lemma. For its statement, recall
the neighborhood S C N; appearing in the proof of Lemma 7.2.

Lemma8.3. — Let |S| = (o — (1 denote the length of the segment along which we want
to continue f. In order to show that the image g(FT) misses a neighborhood, say N1,
of the segment S it suffices to choose our vector fields W (satisfying Condition 7.1)
so that if T is any furnished tree satisfying:

(i) the auxiliary condition (%) of Lemma 8.1;
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(i) that ie # je for all edges e of T; and
(iii) that 2*°P(T) is in the support of n/';
then g(zP°%(T)) lies outside of our neighborhood Ny of S.

Proof. — Assume that we have chosen the vector fields to give the reduced condition
of this statement. Suppose z is a point on the support of F'7. Then there is a furnished
tree T' as in Lemma 8.1 such that z = zP°*(T!) and such that z*°P(T!) is on the
support of . Let T := (T') be the pruning of 7" described directly above. It
still satisfies (i), i.e. the condition (x) of Lemma 8.1, and by the pruning process it
automatically satisfies (ii). Also z*°P(T) = 2*P(T) is on the support of 7', so our
condition gives that g(z"°*(T)) lies outside of N;i. On the other hand,

9P (TY) — g((T) € Beo. g(="H(T)) — g(="P(T)) € Reo.

Thus g(2) = g(z"(T")), then g(z*(T)) = g(z**((T"))), and then g(='°P(T)) li
in order on a line segment parallel to the real axis. Given that g(z*P(T")) € Ny but
g(2P°Y(T)) ¢ N1, and that N is a convex, we obtain g(z) € Ny as desired. O

Remark. — The condition of the lemma will not be possible, of course, when the
segment S passes through a turning point. Finding out the conditions on S to make
it possible will tell us where the turning points are.

9. Remoteness of points

One of the important facets of the statements of theorems 6.3 and 1.1 is the local
finiteness of the set of singularities. We describe here briefly how this works. It re-
produces the discussion of [36], but with considerable simplification due to Condition
7.1 (iv) which says that when ¢ = j the flow f;;(z,¢) is constant.

It should be noted that the local finiteness notion 6.2 is fairly strong in that one
can wind arbitrarily many times around a given singularity for an arbitrarily small
cost in terms of length of the path. In our mechanism, this is achieved by analytically
continuing along a large number of very small segments.

We can choose a metric do on Z* (and which is a singular but finite metric on Z)
with the property that for any distinct pair of indices ¢ # j, if £ : [0,1] — Z is a path
whose derivative is a negative real multiple of grad $g;; then

/w<m%mm—%MM)

3
Later in §11 we will choose a smooth metric h on Z. We can choose do to be
conformally equivalent to h, so that gradients point in the same direction for both
metrics. Thus the above condition (using the metric do) will also be true for any path
whose derivative is a negative real multiple of the gradient grad, Rg;; with respect
to h.
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Now suppose z = (z;) € Z;, and suppose T' is a binary planar tree embedded in Z,
with one top vertex at p and whose bottom vertices are the z;. Let

rr(z) ::/Tda

be the total length of the tree with respect to our metric. Define the remoteness r(z)
to be the infimum of r7(z) over all such trees.

Lemma9.1l. — Suppose T is a furnished tree, and use flows defined by vector fields
satisfying Condition 7.1 to define z”°*(T). Then

r(2"(T)) < (2P (T)) + g(=*P(T)) — g(="°(T)).

Proof. — If T is any tree as in the definition of remoteness for 2'°P(T') then we can
add T to T! (the top vertices of T' being the same as the bottom vertices of T) to
obtain a tree 72 as in the definition of remoteness for z”°*(7"). The formula

rr2(27°U(T)) < v (2°P(T) + g(2"P(T)) = g(2"(T))

is immediate from Lemma 8.2 and the property of do; use Condition 7.1 (iv) to deal
with edges of T having i, = je. O

Lemma9.2. — Let v be a path from p to q, which leads to the original pro-chain n
appearing in Lemma 6.1. Suppose My is the length of v in the metric do. Then for
any point z on the support of n we have r(z) < Mpy.

Proof. — For any point z on the support of n, we have z; = y(t;) fort; < --- <t < 1.
The path 7 can be considered as a tree (of total length M) starting at p with one
spine and k edges of length 0 coming off at the points z;. O

In our procedure for analytic continuation along a path of length < M, we obtain
chains whose support consists only of points with r(z) < My 4+ 2M (see § 13 below).
In particular each z; is at distance < My + 2M from p with respect to do. Thus
everything we do takes place in a relatively compact subset of Z (and concerns only
a finite number of singular points P € 7).

10. Calculations of gradient flows

We express the gradient of the real part of a holomorphic function, as a vector field
in a usual coordinate and in logarithmic coordinates. This is of course elementary
but we do the calculation just to get the formula right. Suppose z is a coordinate
in a coordinate patch on X. The metric on X may be expressed by the real-valued
positive function

|dz|”

h(z) = 5
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Write z = x + iy. Note that dz and dy are perpendicular and have the same length,

SO
h(z) = |dx|?.
The real tangent space has orthogonal basis
{5 5)
ox’ Oy

and the formula 5 5
|-l
oz ox
yields
0
—|=h""2
‘83:‘
In particular an orthonormal basis for the real tangent space is given by

{h1/2£, h1/22}.

Ox dy
Thus we have the formula, for any function a:
da 0 da 0
da=h—— —
grada Ox Ox + Oy Oy

Now suppose g = a+1b is a holomorphic function (with a, b real), and pose f(z) :=
0g/0z so that dg = f(z)dz. Write f(z) = u + iv with u,v real, and expand:

(u+iv)(dz +idy) = %dm + g—Zdy + i%dm + ig—Zdy.
Comparing both sides we get
oa oa
u=oo, U= —8—y.

Note that a = Rg is the real part of g, so finally we have the formula
dg. 0 dg. 0
dRg=nh RE)— — (S=2)=— |-
gracg (2) <( 82)6% J@z)8y>
Suppose now that w is a local coordinate at a point P, and consider
g = anpw™.
Let z = —ilogw so w = €¥*, and writing z = = + iy we have w = e’*~¥. Then

mz, g _ - i
; — = miame

0z

mz

g(z) = ame’
If we write mia,, = e"t* then

@ _ erfmeri(ermx)
- )
0z

SO

grad Rg = h(z)e" ™V (Cos(s + mx)g, sin(s + mx)§> )
€L Y
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The asymptotes are the values © = B where cos(s +maz) = 0. At these points, the
gradient flow vector field is vertical (going either up or down, depending on the sign
of sin(s + ma)). If the flow goes up, then it stays on the vertical line until y = co.

Note that the gradient of Rg is perpendicular to the level curves of Rg, so it is
parallel to the level curves of &g. Which is to say that the level curves of Sg are the
flow lines. This gives an idea of the dynamics of the flow. We have

Sg = S((im) " Lermmy)Filstma)y — _pp=ler=my coq(s 4 mg).

Thus a curve Sg = C is given by
—mC

—my _
e cos(s + mzx)

e

or (noting that the sign of C' must be chosen so that the right hand side is positive)
y=m"'r +m 'log|cos(s +mx)| — m~*log|mC|.

In particular the level curves are all vertical translates of the same curve; this curve
y = m~r + m~llog|cos(s + mz)| has vertical asymptotes at the points where
cos(s + mz) = 0. Note however that at the asymptotes, we get y — —oo; whereas our
coordinate patch corresponds to a region y > yg. Thus, every gradient flow except for
the inbound (i.e. upward) flows directly on the asymptotes, eventually turns around
and exits the coordinate patch. This of course corresponds to what the classical
picture looks like in terms of the original coordinate w.

Also we can calculate the second derivative (which depends only on z and not
on which level curve we are on, since they are all vertical translates). Consider for
example points where cos(s + ma) > 0. There

dy  sin(s +mz)
dx cos(s + mx)
and
d%y B -m
dz? ~ cos?(s + ma)
In particular note that we have a uniform bound everywhere:
2
% < -
here with v = m.
Suppose now more generally that g is a holomorphic function with Taylor expansion

G = QW™ + Qo w™ T 4

Then we will get
h(z)"te™ " grad Rg = ( cos(s + maz:)2 sin(s + maz:)3 +O(e™).
ox’ oy

In particular, the direction of the gradient flow for ¢ is determined, up to an error
term in O(e™Y), by the vector (cos(s + mz),sin(s +mx)).
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The asymptotes are no longer vertical curves, but they remain in bands = € B;j 4.
Also we can choose A in the definition of steepness, so that at non-steep parts of the
level curves we still have a bound

11. Choice of the vector fields W;;

The only thing left to be determined in order to fix our procedure for moving the
cycle of integration is to choose the vector fields. Before going further, fix a smooth
metric h on Z, for example coming from the pullback of a smooth metric on Y.
Use this to calculate gradients (note that h is different from the singular metric do
considered in §9, but they are conformally equivalent so the remoteness estimate of
89 holds for h-gradient paths). Suppose € is given. Let p denote a cutoff function
which is identically 0 in the discs D, 5(P) (for all points P in the inverse image of R),
and is identically 1 outside the (closed) discs D, (P). Of course £ will be small enough
that the discs don’t intersect. Consider also a positive real constant g € Rsg. Then
we put

Wij == pgrad Rg;,
and
Wi/j = sz]
The vector fields W}; satisfy Condition 7.1 (with €/2 in place of €). We will use these
vector fields for our choice of flows, and apply the criterion of Lemma 8.3.

The point we want to make in the present section is that the flow curves for the
cut-off gradient vector field W}, are the same as those of the true gradient flow along
Wi, up until any point where they enter some D, (P). This will allow the notational
simplification of looking at Wj; rather than W}, in the next section.

Let v > 0 be the radius used to define the oval neighborhood Ny, i.e. choose Nj
equal to the set of points of distance < v from S. Once ¢ is given, choose u large
enough so that the following property holds:

Condition 11.1. — If 2(t) = fi;(20, 1) is a flow curve for W;; (for distinct indices ¢ # j)
which never enters into any D, (P) flowing for ¢ € [0, s] with s > 1, then

9ij (fij(20,8)) — gij(20) < G — (o — 2v.
Recall that (p,(; were the endpoints of the segment S with (; — {p a negative real

number.

It is possible to choose u (we only need to do it over a relatively compact subset of
zo € Z by the remark at the end of §9, but in any case everything involved is pulled
back from the compact Y so the choice of p is uniform in zp).
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The next lemma formalizes the following reduction: the trees which show up in
Lemma 8.3 have a horizontal line of edges assigned length 1. If the flow for at least
one of these edges stays outside of all the D.(P) then by Condition 11.1 the value
of ¢ is decreased sufficiently to get us out of N;. Thus the only case which poses a
problem is when every downward branch of the tree ends up flowing into some D, (P).
In this case we prune the tree at the points where it enters these discs.

Lemma1l.2. — Suppose € is given, and p chosen to satisfy Condition 11.1. Use the
vector fields W/, to define the flows. In order to show that the image g(F'T) misses
our neighborhood N1 of the segment S, it suffices to show that if T is any furnished
tree satisfying the following conditions:

(i) that 2*°P(T) lies on the support of n';

(ii) that i # je for any edge of T';

(iii) that for each bottom vertex v of T (except for bottom vertices on side edges)
there is a singular point P(v) such that ®(v) € D(P(v)); and

(iv) that all other points of ®(T') are outside the discs D.(P),

then g(zP°%(T)) is not in the neighborhood Ny of S.

Proof. — Suppose T is a furnished tree as in the reduction of Lemma 8.3. Prune T" at
any point where the flowing map ® enters into one of the closed discs D.(P). If this
prunes all branches of the tree, then by an argument using 8.2 similar to the previous
reductions, that puts us in the case described here so we are done.

Thus we may assume that there is at least one branch which is not pruned. By
condition 8.3 (i) which is the same as Condition () of Lemma 8.1, the branch going
to the bottom has at least one edge assigned length 1. This edge has i, # j.. By
Condition 11.1 we have for this edge

/ dgieje < Cl — C() — 2v.
®(e)
Therefore, by the formula of Lemma 8.2 we have
9(z"(T) = g(=**P(T)) < G1 = Go — 20,

Given that g(z*P(T)) € g(n') C N1 but N is an oval with largest diameter 2v+(o—(1,
we get g(zP°Y(T)) & N;. O

Corollary 11.3. — Define the chain F1 using the vector fields Wl’j Then, in order to
show that g(F'T) misses Ny it suffices to show that for any furnished tree T satisfying
the conditions (i)-(iv) of 11.2 with respect to the flowing map ® defined by the vector
fields Wi; (rather than W; ), we have g(z"°*(T)) & Ny.

Proof. — The two flowing maps coincide, in view of condition (iv). O

In view of this corollary, we can in the next section ignore the cutoff functions p
and look directly at the gradient flows W;;.
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12. Results on the dynamics of our flowing maps

We will consider a system of discs centered at our singular points P:
D.(P) C D¢(P) C D,(P) C Dy(P).

We will first fix v and w so that certain things are true in a coordinate system for
D,,(P) (and say u = w/2). Then once u and w are fixed we will let £ — 0. Finally
¢ > ¢ will be a function of € with £ — 0 when € — 0.

The innermost discs D, (P) are those which will enter into the reduction of Lemma
11.2. Recall that p is chosen after €. In view of the Corollary 11.3, we henceforth
look directly at the gradient flows W;; = p grad Rg;;.

Our first lemma bounds the number of outgoing subtrees.

Lemmal12.1l. — If T is a furnished tree with one top edge e, and if ® : T — X is a
flowing map such that the images of all bottom vertices are contained in some D¢ (P;),
and if ®(e) exits from D, (P) then T contains a strand o such that ®(o) exits from
D,,(P) also.

Our next lemma gives a normal form for any subtree which stays entirely within
D, (P).

Lemmal12.2. — If T is a furnished tree with one edge e at the top, and if ® is a
flowing map from T into D, (P) C X such that all of the bottom vertices are mapped
into D¢(P), then the curve ®(e) passes into De(P), and flows along a vector field
Wi j. in an ingoing sector near an ingoing curve Gjj, .

The last of our preliminary lemmas bounds the number of subtrees having the
previous normal form.

Lemma12.3. — There is a number K (depending on u,w, A but independent of €, &
and p) such that if T is a furnished tree consisting of one edge strand k plus a number
of sub-trees coming out of k, and if ® is a flowing map from T into D, (P) with the
property that all the sub-trees coming out of k are covered by Lemma 12.2, then there
are < K of these sub-trees.

For the proofs of these lemmas, we will use a logarithmic coordinate system for
D,,(P). If zp denotes the coordinate in the disc then we introduce z;, = —ilogzp
and write z;, = x + iy zp = €Y.

The disc D,,(P) is given by y > yo.

The vector fields W;; = pgrad Rg;; are approximately equal (up to a term smaller
by a factor of O(ue™)) to the standard vector fields W;; = pgrad §}?ng where ggj is
the leading term in the Taylor expansion for g;; at P.

Because of this, we obtain the following facts. The asymptotic directions (which
are close to vertical lines) occur in bands of the form = € B;;, where B;;, C R are
intervals which can be made as small as we like by modifying yo. These intervals are
disjoint, except for the asymptotes of the pairs {W,, Wji} or {Wy;, Wy;}, where 4, j
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are the two indices attached to P, and k is any index different from these two. In
those cases the pairs share the same values B;;, and the same bands. We say that
a vector field Wj; is attached to an interval B if B = B;j,. The only intervals with
more than one vector field attached to them are those described above.

It is worth mentionning why we have this disjointness property. It is because of the
non-parallel condition on the eigenforms of € at the singular points. The non-parallel
condition implies that the bands, which are the solutions of s+maxz = 0 modulo 7, are
distinct, because the values of s (which are the angular coordinates of the constants
attached to the leading terms of g;; as explained in the preceding section) are different
exactly because of it. Notice that the exponents m are the same for all of the values
1J except the two attached to the singular point; for those which are attached the
value m’ is bigger. The non-parallel condition gives disjointness for all of the bands
except the ones corresponding to the attached indices ij and ji. For those, note
that if we make a general rotation of everything, the asymptotic solutions of s + m'z
move differently than the solutions of s+ mx, so those bands are disjoint from all the
other ones. The general rotation of everything corresponds to a condition that the
line segments in the complex plane along which we analytically continue, might be
constrained not to be parallel to a certain finite number of directions. This doesn’t
hurt our ability to analytically-continue the function.

We can fix a number A > 0 with the following properties: outside of an asymptotic
band for W;; or Wj;, the slope of the vector W;; satisfies

dy
b
Inside an asymptotic band B, only the vector fields W;; which are attached to B can

(Wij)| < A.

have slope bigger than A or less than —A.

Suppose now that (z(t),y(t)) is a flow along one of the vector fields W;;. We say
that the path is steep if
dy
dz
and we say that it is not steep otherwise. We say that the path is ingoing if dy/dx > 0

and outgoing otherwise. Note that with our logarithmic coordinate system, outgoing

> A,

is downward and ingoing is upward. The coordinate patch (i.e. choice of yg) and the
choice of A can be made so that all of the paths satisfy the following property:

— once the path is steep and outgoing, it remains steep and outgoing for the re-
mainder of the time of definition, and ends up leaving the region y > yq.

This is true even though the vector field is not exactly equal to the standard model
but only close to it.

On the other hand, the direction, i.e. the sign of dx/dt remains the same throughout
the interval where the path is not steep. Call this sign (—1)™. In particular we can
think of the path as being parametrized by x. Define the slope to be the signed
derivative (—1)"dy/dz.
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We have a bound, in the region where the path is not steep:
d?y
dz?

with v > 0 a positive constant. Note that the second derivative is also the variation
of the slope with respect to x when we go in the direction of the path.

In particular, once the path is outgoing it remains outgoing for the remainder of

<=7

its period of definition. This is because of the second derivative when it is not steep,
and the fact that when it becomes steep and outgoing then it stays that way.
We now note the additive relation for the vector fields at vertices of a tree.

Lemma12.4. — Suppose we are in the situation of a flowing map ® : T — X defined
by vector fields W;; = pgradRg;;. At any vertex v of T with edges noted e1, ez, e3
(say ey ingoing and es,e3 outgoing), we have three indices i, j, k such that

Z.e1 :iez =1 jez :ie3 =J; je1 :je3 =k.
For the three vector fields Wiy, W, Wji corresponding to the edges eq, ea, e3 we have

the relation

Wik(fb(v)) = Wz(fb(v)) + ij(q)(v)).

Proof. — The vector fields W;; are all the same multiple of the gradients grad Jg;;.
The fact that dg;; = a; — «; implies that dg;; + dgjr = dgi, giving the relation in
question. O

Proof of Lemma 12.1. — The disc D, (P) will be determined by y > y; for some y;
fixed as a function of yo (and in fact one could take y; = yo + 1 for example).
A consequence of the additive relation is that if W, (®(v)) is outgoing (i.e. dy/dt < 0
along this vector) then one of the other two W;(®(v)) or Wji(®(v)) will also be
outgoing. As we have noted above, if the flow along any edge is outgoing at some
point then it is outgoing for all further points. In particular if at any point in the tree
the flow is outgoing then we can choose a strand going down to the bottom, along
which the flow is always outgoing. If there is an edge which crosses out of D, (P), at
the crossing point it has dy/dt < 0, so we get a strand which maintains dy/dt < 0 as
long as it stays inside D,,(P). In particular the strand cannot go back to D.(P) so it
must exit from D,,(P) (here using the hypothesis that any strand must end in some

D.(F;)). This completes the proof of Lemma 12.1. O
Now we come to the proofs of Lemmas 12.2 and 12.3. Fix notations L := —loge
and L1 := —log&. Thus we will let L — oo and we have to specify L; as a function

of L such that Ly — oo too. Our discs D.(P) and D¢(P) respectively become the
regions y > L and y > L;. We will specify L; as a function of L so as to make the
proofs of Lemmas 12.2 and 12.3 work.

In both lemmas, we lift the maps ® into maps into the coordinate chart for the
logarithmic coordinates.
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Proof of Lemma 12.2. — At any point where the flow is not steep, the second deriva-
tive is bounded above by —v. In particular the flow becomes outgoing before it
becomes steep again. Furthermore, if v is a vertex with indices 4, j, k as above, such
that the vector field W, (®(v)) is not steep but is ingoing, then the additive relation
insures that one of the other two flows W;;(®(v)) or Wjx(®(v)) has slope less than
or equal to the slope of W, (®(v)). For this, draw a line through the first vector, and
note that one of the two other vectors has to lie below or on the line. Note that this
gives two cases: either the new vector changes direction (i.e. the sign (—1)™ changes)
and the new vector is in fact outgoing; or else the direction stays the same and the
slope decreases. Thus if ¢ is any point in 7" where the flow is ingoing but not steep,
then we can choose a strand o below ty with the property that at the end of the
strand the flow becomes outgoing; and along the strand the direction stays the same
and the second derivative satisfies

d m Y

%((—1) %) < -y
in a distributional sense. Then (noting by (z(t),y(t)) the coordinates of the image
point ®(t) for t € o) we have

m g
y(t) < ylto) + A(=1)"(2(t) = 2(t)) — 5 (@(t) - 2(t0))”
for any t > to. In particular there is a number N such that
y(t) <y(to) + N

further along the strand. We will choose 1 = L — N.

Recall now that in the hypotheses of the lemma, we suppose that all strands in
the tree remain inside D, (P) and also finish in D.(P). However, we construct above
a strand which eventually becomes outgoing; therefore the strand must enter the
region corresponding to D.(P) before it becomes outgoing (and notice also that it
could simply stop inside this region before becoming outgoing, a case not mentionned
above). In particular, if there is any point ¢y corresponding to a non-steep ingoing
flow, or of course to any sort of outgoing flow, then we have to have y(to) + N > L
or y(to) > L.

Now we can complete the proof of the lemma. If v is any vertex, such that the
incoming edge is steep and ingoing, then one of the two outgoing edges has to be
either non-steep and ingoing, or outgoing. This is verified from the fact that at most
two different vector fields can be attached as ingoing asymptotic vector fields for the
same band B. From what was said above, the bottom vertex of the first edge e of
the tree must satisfy y(®(v)) > L1, in other words the first edge continues all the
way until Dg(P). Also the part of the edge e which is outside of D¢(P) must be
contained in an ingoing asymptotic band for its vector field W;; and the flow is steep
at all points of ®(e) which are outside of D¢(P). This completes the proof of Lemma
12.2. O
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Proof of Lemma 12.3. — Consider a vertex v along k where a subtree in the normal
form of Lemma 12.2 comes off. Use the same notation as previously for the edjes and
indices adjoining v. For the sake of simplicity we assume that x corresponds to the
two leftmost edges e; and ez at v. The upper edge of the subtree is thus ez with
indices jk.

Note from the proof of 12.2 that W is ingoing and steep at ®(v).

As a first case, note that if the anterior edge e; of k has W;; which is outgoing
and steep, then the subsequent edge es of k is also outgoing and steep. In particular
at any point where x becomes outgoing and steep, it remains that way and in fact
will leave the region y > y; before it goes into any other band B. By looking at the
possible combinatorics of the indices one sees, even in the case of two vector fields
sharing the same band, that there can be no further normal-form vertices on x.

In view of the previous paragraph we may restrict our attention to the places where
K is either not steep, or else steep but ingoing. However, if it is steep but ingoing then
again at most one vertex with a normal-form subtree can correspond to the current
band; thus at some point x leaves this band and must become non-steep. On the
other hand, once k is non-steep, it doesn’t change to become steep and ingoing. It
doesn’t do this in the middle of an edge, because of the second derivative condition.
It doesn’t do it at a vertex because the edge e3 which comes off is steep and ingoing,
and a W;; which is not steep couldn’t be the sum of two steep and ingoing vectors.

The two previous paragraphs show that we may (at the price of at most two extra
normal-form subtrees) restrict our attention to the region where x is non-steep. Now
one sees again from the additive relation that if Wj;, and W;; are non-steep, whereas
Wj, is steep and ingoing, then the directions of W;; and W;; must be the same.
Indeed, if not then we would have Wj, = Wy, + (—W;;) which would be a sum of
two vectors in the same non-steep quadrant, so Wj; in a steep quadrant would be
impossible.

Since the sign (—1)™ of dx/dt doesn’t change, we can use x to parametrize k.
Furthermore the slope (—1)™dy/dx is decreasing along k (note that at any vertices
where a subtree in normal form comes off, the remaining outgoing edge of x has a
smaller slope than the ingoing edge, because of the additive relation).

In other words, the second derivative is distributionally less than the constant —~,
so at some time t with |z(t) —zo| < 24/y we get to (—1)™dy/dx < —A, i.e. k becomes
steep and outgoing. We get that the non-steep part of the path x is parametrized
by an interval in the z-coordinate, of length < 2A4/+. There is a bound K so that
such an interval can cross (or go near) at most K — 2 asymptotic bands. A band is
attached to at most two pairs of indices, but only one of these can lead correspond
to a normal-form subtree. Thus (counting the two we may have missed above) the
number of normal-form subtrees attached to v is < K. This completes the proof of
Lemma 12.3. O
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We now come to the main result of this section. Fix u,w as above, and let Ly :=
L+ N be the function determined by the above proofs. For any ¢ put L := loge and
set £ := el = eNe. Note that £ — 0 as € — 0.

Theorem 12.5. — There is a bound K depending on u,w and a real constant F' (which
will be (o +2v — (; later on), but with K independent of €, £ and p, with the following
properties. Suppose T is a furnished tree and ® : T — X is a flowing map such that
the top vertices are outside of any D, (P;) and such that the bottom vertices are each
mapped into some D.(P;). Suppose furthermore that g(z*°%) > g(2'*°P) — F. Then
we can cut T into a tree T onto which are attached subtrees, such that ® maps the
bottom vertices of T into various D¢(P;) and such that the number of bottom vertices
of T' is bounded by K.

Proof. — Among the subtrees that we strip off are any ones starting with edges e for
which i, = j.. In particular we may assume from the start that 7" has no such edges.

Next group the bottom vertices into series connected by intervals where the bound-
ing path of the interval (i.e. the path of edges in the tree which goes from the bottom
vertex at one end of the interval to the bottom vertex at the other end) is mapped
into D, (P). There is a bound K for the number of such series, because any path
which goes out of D, (P) and back has to contribute at least a certain fixed amount to
g(2%°P) — g(2P°"). Next we can look at a specific series. It is the set of bottom vertices
of a subtree T} obtained by taking the union of all of the paths joining the bottom
vertices together. Note in particular that ®(71) C D, (P). Let x denote the boundary
path of T7. Note that the subtree T doesn’t necessarily include all strands emanating
from all of its vertices. However, if v is a vertex on k corresponding to an adjoining
edge e not in k, then either e goes into the interior of the region bounded by &, in
which case e starts a subtree mapped into D, (P) and such that all bottom edges go
into D.(P); or else it goes out of the region bounded by x in which case e is not a
part of the tree T7. In the former case, the normal form of Lemma 12.2 applies to the
subtree starting at e. In the latter case, the subtree starting at e could be in normal
form or not. However, if e is an edge going out of k such that the subtree starting
at e is not in the normal form of Lemma 12.2, then this subtree contains at least one
strand which goes out of D, (P). By Lemma 12.1 it also contains a strand which goes
out of D,,(P) and there is a global bound K5 on the number of such edges e. If we
cut k at vertices v where such edges e go out, then it is cut into < K3 strands «” and
each little strand has only vertices corresponding to normal-form subtrees. Finally,
by the bound of Lemma 12.3 there are no more than K3 such vertices on each little
strand x’. Each of these normal-form subtrees can be cut at the point where it goes
into D¢ (P), and there is only one such point for each subtree. Thus if we trim off the
tree Ty at all of the points where the strands enter D¢ (P), there are at most K K3
bottom vertices. Finally, since there were at most K; subtrees T} corresponding to
series of bottom vertices, we can trim off T' to a tree 7' where there are at most
K1 K> K3 bottom vertices, all going inside some D¢ (P;). This proves the theorem. [0
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13. Proofs

By a multisingular point we mean a point y = (y1,...,yx) € Z; such that the y,

are singular points of the functions g;, Note that in our situation the singular

Gng1”
points in Z are the preimages of the turning points P € R corresponding to the places
where the Higgs field 6 has singular eigenvalues.

If z is a point in Z} with 7(z) < M then in particular each z; is at distance
< M from p with respect to do (using the notations of §9). This defines a relatively
compact subset of Z, containing a finite number of singular points. It is improved
with the lemma below.

Define Sys to be the set of complex values of the form g(y) where y are multisingular
points with r(y) < My + 2M. This is the subset which is to enter into the definition

of analytic continuation with locally finite branching for f(¢).

Lemma13.1. — For each M, the set Sy is finite.

Proof. — There is a positive constant ¢ such that if P, and P, are distinct singular
points, then the distance from P; to P, using the metric do is at least ¢. Suppose
y = (y1,-..,yk) is a multisingular point, so each y; is a singular point. If r(y) <

My +2M then, in view of the definition of 7 there are at most (Mo + 2M)/c indices i
such that y; # yi+1. Let y' := (i, ...,y ) be the sequence of distinct different points
in the sequence y. Define a new multi-index I" by setting i/, = ij(4) where b(a) is the
place with yyq) = v, and Ypa)+1 = Yoy1- Then v’ € Zp and g (y') = g1(y). Now
k' < (Mo+2M)/c so there are only a finite number of possibilities for 3 (the singular
points themselves occuring in a fixed relatively compact subset of Z as pointed out
above). Thus there are only a finite number of possible values. O

Proof of Theorem 6.3. — Suppose we have already analytically continued f along a
piecewise linear path of length < M;. Inductively we may assume that the points of
1 have remoteness < My + 2M;. If we add a segment S then the total length of the
path is < M where M = M; + |S|. We assume that S doesn’t meet any of the points
in SM

Fix a number v > 0 so that the segment S stays at a distance > 2v away from
the points of Sy;. Choose our neighborhoods N; with N; being the oval around S of
radius v, so N; stays at a distance > v away from the points of Sp;. Let K be the
bound of Theorem 12.5. Choose & small enough so that if z € D¢(P) then for any ¢

z
/ ai
P

We show that all points of the chain F'7 are sent (by g) outside of N3. Suppose on the

<V
K.

contrary that we had a point, corresponding to a tree T, such that g(zP°*(T)) € Nj.
By Theorem 12.5 there exists a pruning 7”7 of T' with k£ < K bottom vertices, such
that for every bottom vertex v of T' we have ®(v) € D¢(P(v)) for some singular point
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P(v). In particular, the point 2”°*(T") which is the vector of these ®(v) is near to
a point y = (..., P(v),...). More precisely we obtain from k¥ < K and the bound
above,

l9(y) — g(z°°"(T"))] < v.

On the other hand, if g(z"°*(7")) were inside N3 then the singular point y would
occur below points of 7 at distance < 2|S|, and hence below points of p at distance
< Mo+2My +2|S| < Mo+ 2M, therefore g(y) must be included in Sps. On the other
hand, the point g(zP°*(T")) occurs on the real segment between g(z>°*(T)) and some
point of g(n"). This contradicts the assumption that the neighborhood N; stays away
from Sy by distance at least v. This shows that all points of g(F'7) are outside of N3,
and completes the proof that we can analytically continue f(¢) along the segment S.

Finally in order to maintain the inductive hypothesis we note that, cutting every-
thing off fairly close to the segment S we can insure that the points of the new cycle
of integration F'7 (and also Fi)) are remote from points of 7 at distance < 2|S|, hence
they have remoteness < My + 2M as required. O

Proof of Theorem 1.1. — — The statement is essentially contained in that of The-
orem 6.3, but we need to show that Syy C X(v). In other words, if 2 € Z; is a
multisingular point, we need to show that g(z) is the integral of the tautological form
on a piecewise homotopy lifting 7. Recall the formula

Z1 q
gI(Z):/ aio+"'+/ Ay, -
p 2k

Let 7/ be the path joining z; to z;+1 where by convention zy = p and zx4+1 = ¢. These
paths are unique up to homotopy because we are working in the contractible universal
cover Z. Composing the main projection Z — Y with Galois automorphisms of Y
and then the projection Y — V', gives projections 7; : Z — V which commute with
the projection to X, such that «; is the pullback of the tautological form « on V,
i.e. oy = 77 (c). We can put 4; := 7; 0 7. The collection ¥ = {¥;} is a piecewise
homotopy lifting of v. To see this, note that the projections to X of the 7; are equal
to the projections of the original ¥/, so these join together to give a path homotopic
to the projection of the path from p to ¢ in Z. Since the lifts p,q € Z were chosen to
correspond to our original path v in X, so the composite path in X is homotopic to
~. Our formula for g7(z) becomes

g[(z)—Z/%a—Aa.

3

This shows that Sy is a subset of (). O
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14. Conclusion

We close with a few more general remarks about the consequences of Theorem 6.3.
The first is to note that it also applies to any polynomials in the transport matrix
coefficients, in particular to the Procesi coordinates for Mpg.

Lemmal14.1l. — Suppose f1 and fo have analytic continuations with locally finite
branching, then the same is true for their convolution fi * fa.

Proof. — This was proven in [9]. See also the proof of [36] Lemma 11.1. There, the
proof of locally finite branching for the convolutions uses only locally finite branching
for the two functions. O

Corollary 14.2. — If P(t) is a polynomial in the transport matrices for various paths,
then then the Laplace transform of P(t) has an analytic continuation with locally finite
branching.

Proof. — The Laplace transform of a product of functions mq (t)ms(t) is the convolu-
tion of their Laplace transforms, so Lemma 14.1 and Theorem 6.3 give the result. O

The next remark is about the growth rate of m(t). This is measured by the hull
hull(m) defined in the introduction.

For reference we indicate first an elementary argument showing that hull(m) is
convex. Indeed, if {y is a point which is not in hull(m), then by definition there is
an angular sector s in which m(t)e~%" is rapidly decreasing. Suppose u is a complex
number such that (o + w is in hull(m). Again by the definition of hull(m) this
implies that m(t)e~¢*e~% is no longer rapidly decreasing in any part of s. This
means that s is contained in the half-plane Rut < 0. In particular, for any vector
u’ which is a negative real multiple of u, we have that Ru't > 0 so m(t)e*@te’“'t is
rapidly decreasing on s, therefore (y+u’ is not in hull(m). This proves the convexity.

Next we can characterize hull(m) as the intersection of all closed half-planes H C C
such that the Laplace transform f of m admits an analytic continuation over the
complementary open half-plane (this would give another proof of convexity). Indeed,
if a point ¢ is in the complement of hull(m) then the sector along which m(t)e=¢!
is rapidly decreasing provides an open half-plane containing ¢ over which f can be
analytically continued. This shows one inclusion. The other inclusion is clear from
the inverse Laplace transform.

The hull is related to growth rates as follows. If hull(m) is a single point, then
some multiplicative translate of the form m(t)e¢* has sub-exponential growth. If
hull(m) contains at least a line segment, then we say m is semistrictly exponential:
for subsequences in sectors covering all but two directions we have a lower bound of the
form |m(t)| > ce®!!l, and in particular there is a positive lower bound for the possible
exponents a which can enter into bounds of the form |m(t)| < Ce®!. If hull(m)
contains a nonempty interior (say, containing the origin) then we say m is strictly
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exponential: there is a lower bound of the form |m(t)| > ce®*l valid on subsequences
in all directions.

Unfortunately we are only able to show that some monodromy matrix is semistrictly
exponential in the generic case of Corollary 1.2 of the introduction.

Proof of Corollary 1.2. — By Theorem 1.1, the Laplace transform has locally finite
branching (Definition 6.2). Choose M big enough so that one goes all the way around
hull(m) with a path of length < M. Let Sﬁfﬁl C Sy be the subset of non-removable
singularities of the Laplace transform attainable by a path of length < M (which
is finite because Sy is finite). Then f admits an analytic continuation to an open
half-plane if and only if this half-plane doesn’t meet S%;*. Therefore hull(m) is a
polygon.

We show by specialization that for some fundamental group elements at least,
hull(m) is not reduced to a single point. General considerations using Hartogs’ theo-
rem show that if the monodromy is semistrictly exponential for a special curve going
to infinity, then the same will be true away from a piecewise holomorphic real codi-
mension 2 divisor.

We choose as special curve the family of connections on the trivial bundle of the
form d+ B+tA with A diagonal and B off-diagonal, everything being holmorphic on X,
that was originally considered in [36]. In that case, we get asymptotic expansions
whose coefficients can be calculated. One route is to note that for generic values
of A and B, calculation of the coefficients gives nonzero coefficients at more than one
singular point. Another route would be to note that if there were only one singularity
for the monodromy matrices for this family, then the monodromy representation would
actually have polynomial growth. That possibility is ruled out by specializing again
to a direct sum of a 2 x 2 system and trivial systems, and noting that for 2 x 2 systems
we have proven (in the paper [35]) that the monodromy representation always has
growth at least et for some integer k.

In any case by either of these two routes we can conclude that the Laplace transform
for at least one monodromy matrix has at least two singularities. O

It is perhaps more interesting to note that the same thing also works for the Procesi
coordinates. This improves, at least for certain generic points at infinity approached
from certain sectors, the bound given in [35].

Corollary 14.3. — For each family (E,V + t0) going to infinity at a generic Higgs
bundle (E,0), let py denote the family of monodromy representations, thought of as a
point in Mp. Let R; : Mp — C denote a set of Procesi coordinates giving an affine
embedding. Write by abuse of notation R;(t) := R;(p:). Then each hull(R;) is a
polygon, and for general (E,6) (in a dense open set) at least one R; is semistrictly
exponential (i.e. its hull has at least two vertices). If we define |p¢| := sup, |R;(t)| then
for general (E,0) and for a family of subsequences t — oo covering all but possibly
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two opposite directions, we have bounds of the form

2] > cel"

with a > 0.
Proof. — The same proof as for Corollary 1.2 works here too. O

Lastly it is important to reiterate that, in spite of the above consequences, the
result of Theorem 6.3 is highly unsatisfactory in that it doesn’t say anything about
the behavior of the Laplace transform f({) near the singularities. It doesn’t even seem
clear what the answer will be: on the one hand one can imagine that an improvement
of the present analysis, potentially based on Remark (i) following the proof of Lemma
5.1, might lead to a polynomial bound for the singularities. On the other hand, a crude
look at the present argument yields no such bound, and it is also quite concievable
that the poles in the matrix B lead unavoidably to more complicated singularities of
f(¢). This is undoubtedly true in the general case where B has poles of order > 1.

This problem also leads to the unsatisfactory statement of Corollary 14.3: if we
could calculate exactly where the singularities were we could probably show that
for generic values of (E,0) the singularities would span a convex hull with nonempty
interior, in other words that the monodromy families p; would be strictly exponential.
This would be a more significant improvement of the result of [35].

The result of Theorem 6.3 should be thought of as a weak form of “resurgence”
for the monodromy function m(t) and its Laplace transform. The problem of getting
more precise information about this behaviour is probably most naturally attacked
using new ideas and techniques for resummation such as have been developped by the
school of J.-P. Ramis.
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