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THE TWISTED WEIGHTED FUNDAMENTAL LEMMA FOR
THE TRANSFER OF AUTOMORPHIC FORMS FROM GSp(4)
TO GL(4)
by
David Whitehouse

Abstract. — We prove the twisted weighted fundamental lemma for the group GL(4) x
GL(1) relative to a certain outer automorphism «, which yields GSp(4) as a twisted
endoscopic group. This version of the fundamental lemma is needed to stabilize the
twisted trace formula for the pair (GL(4) x GL(1), ). This stabilized twisted trace
formula is required for Arthur’s classification of the discrete spectrum of GSp(4) in
terms of automorphic representations of GL(4).

Résumé (e lemme fondamental tordu pondéré pour le transfert des formes automorphes de
GSp(4) aGL(4))

Nous démontrons le lemme fondamental tordu pondéré pour le groupe GL(4) x
GL(1) relativement & un certain automorphisme extérieur a qui permet de décrire
GSp(4) comme groupe endoscopique tordu. Cette version du lemme fondamental
est nécessaire pour stabiliser la formule des traces tordue pour le couple (GL(4) x
GL(1), a). Cette formule des traces tordues est requise pour la classification d’Arthur
du spectre discret de GSp(4) en termes des représentations automorphes de GL(4).

1. Introduction

Langlands’ functoriality conjecture predicts, in a very precise way, relationships
between automorphic representations on different groups. The trace formula is an
important tool in proving such relationships. For a reductive group G the trace
formula (see [Art88al]) gives two expressions for a certain linear form I(f); here f is
a suitable function on the adelic points of G. One expression, the geometric side of
the trace formula, is given as a sum over conjugacy classes of terms involving orbital
integrals, while the other, the spectral side of the trace formula, expresses I(f) in
terms associated to the automorphic representations of G. Therefore as the group G is
allowed to vary identities between geometric sides produce identities between spectral
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292 D. WHITEHOUSE

sides; out of these one can hope to deduce the relationships between automorphic
representations as suggested by Langlands’ functoriality conjecture.

Suppose now we are given two groups G1 and G2 defined over a number field F'. In
order to compare the trace formulas for these groups one needs to be able to compare
the conjugacy classes in G1(F') and G2(F') and to be able to transfer functions from
one group to the other given by identities between orbital integrals. In practice,
however, for example in the case that G; and G5 are inner forms of each other, one
is not quite able to do this. Instead one can only carry out these comparisons over
the algebraic closure of F'. One is therefore lead to the need for a refinement of this
trace formula to a stable trace formula; one in which the geometric side is indexed by
stable conjugacy classes and given in terms of stable orbital integrals.

The stabilization of the trace formula was initiated by Langlands in [Lan83]. The
first problem one encounters is that the distribution I(f) is not stable. In [Lan83]
Langlands suggested a stabilization of the form

I(f) =Y uG, H)S"(f7).

H

This sum is over a family of groups {H}, called elliptic endoscopic groups, attached
to G. The distributions S are themselves stable and Langlands conjectured a transfer
of functions f — f from G to H. One can then hope to compare these stable
distributions for different groups. The first case considered was that of SL(2) by
Labesse and Langlands in [LL79]. For general G, the stabilization of the regular
elliptic part of the trace formula was carried out by Langlands in [Lan83] under the
assumption of a transfer of functions f + f. The stabilization of the elliptic singular
terms was carried out by Kottwitz in [Kot86]. Building on the work of Kottwitz and
Langlands, Arthur has now stabilized the full trace formula in a series of papers
[Art02], [Art01] and [Art03] under the assumption of certain local conjectures,
known as fundamental lemmas, for orbital integrals and weighted orbital integrals;
see [Art02, Section 5].

The fundamental lemma for orbital integrals has been established in certain cases.
It is known for a few groups of low rank, namely for SL(2) by [LL79], U(3) by
[Rog90] and for Sp(4) and GSp(4) by [Hal97]. The fundamental lemma has also
been established for certain families of groups, for SL(n) by [Wal91] and for unitary
groups by [LINO4]. As mentioned in [Art02, Section 5] much less is known about the
generalization of the fundamental lemma to weighted orbital integrals.

In this paper we are interested in the stabilization of a twisted trace formula. Such
a trace formula applies to a group together with an automorphism. The stabilization
of the twisted trace formula was begun by Kottwitz and Shelstad in [KS99]. For
the stabilization of the full twisted trace formula one needs to prove fundamental
lemmas for twisted weighted orbital integrals. The statement of the twisted weighted
fundamental lemmas is given in the appendix to this paper.
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THE TWISTED WEIGHTED FUNDAMENTAL LEMMA 293

We now turn to the functorial transfer we are concerned with in this paper. We
take the group GSp(4) over a number field F'. The dual group of GSp(4) is GSp(4, C)
which has a natural inclusion into GL(4, C). Associated to this map of dual groups
functoriality suggests a transfer of automorphic representations from GSp(4)/F to
GL(4)/F.

There has been much interest in this transfer. Unpublished work of Jacquet,
Piatetski-Shapiro and Shalika produced this transfer for generic automorphic rep-
resentations of GSp(4); this result is proven in [AS] using different methods. Results
on the transfer from PGSp(4) to PGL(4) have been announced in [F1i04]. Flicker
uses a special form of the trace formula valid only for certain test functions and so, as
mentioned in his paper, the transfer is achieved only for automorphic representations
satisfying certain local conditions. The transfer of all automorphic representations
from GSp(4) to GL(4) is announced by Arthur in [Art04]. In this paper Arthur de-
scribes the results of his monograph [Art] in the case of GSp(4). The main theorem
in [Art04] is phrased as a classification theorem for representations of GSp(4). This
classification includes a parameterization of the representations of the local groups
GSp(4, F,) into packets together with a decomposition of the discrete spectrum of
GSp(4) in terms of automorphic representations of GL(4).

The results of [Art04] are achieved by a comparison of the stable trace formula
for GSp(4) with a stable twisted trace formula for GL(4) x GL(1) and a certain
automorphism « given in Section 2.4 below. The stabilization of these trace formulas,
and hence Arthur’s result, is conditional on cases of the fundamental lemma. We now
describe which fundamental lemmas are required.

For GSp(4) the fundamental lemma for invariant orbital integrals is proven in
[Hal97]; see also [Wei94]. The weighted fundamental lemma in [Art02, Section 5]
required for the stabilization of the full trace formula does not apply to GSp(4) since
its proper Levi subgroups are products of general linear groups, and therefore do not
possess proper elliptic endoscopic groups. Therefore, all the local conjectures required
for the stabilization of the trace formula for GSp(4) have been established.

For the stabilization of the twisted trace formula for GL(4) x GL(1) and the auto-
morphism «, the twisted fundamental lemma, for invariant orbital integrals is proven
in [F1i99]. Flicker’s proof is for fields of odd residual characteristic, however, this
is sufficient for global applications. A weighted variant of the twisted fundamen-
tal lemma, stated in the appendix, is also needed. This is because there are Levi
subgroups of GL(4) x GL(1) that have elliptic twisted endoscopic groups. It is this
fundamental lemma which we prove in this paper, we again restrict ourselves to local
fields of odd residual characteristic.

The outline of this paper is as follows. We begin in Section 2 by giving some
definitions and notations used throughout this paper.
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294 D. WHITEHOUSE

The conjectured twisted weighted fundamental lemma is given by the identity

> A kr§ (k)= > (G, G)s5(0).
KET G reg (M(F)) G'eErr (G)
The left hand side consists of a finite linear combination of twisted weighted orbital
integrals on the group G° with respect to the Levi subset M = M°% x o. We take
M’ to be an elliptic twisted endoscopic group for M?; the right hand side is then a
finite linear combination of stable weighted orbital integrals on certain groups G’ that
contain M’ as a Levi subgroup.

From Section 3 onwards we specialize to the twisted weighted fundamental lemma
for GO equal to GL(4) x GL(1). We begin in Section 3 by determining all endoscopic
groups that appear in the statement of the twisted weighted fundamental lemma, and
in Section 4 we compute the necessary weight functions, which appear in our weighted
orbital integrals.

As above, the twisted weighted fundamental lemma applies to a pair (M, M’) of a
Levi subset M = M9 x o of G = G° x o and an unramified elliptic twisted endoscopic
group M’ for M°. When M° = G° we recover the statement of the fundamental
lemma proven in [F1i99], hence we only consider proper Levi subgroups M°. There
are four pairs (M, M’) given in the table below, where E denotes the unramified
quadratic extension of the local nonarchimedean field F'.

MO M’

(GL(2) x GL(2)) x GL(1) GL(2) x GL(1)
(GL(1) x GL(2) x GL(1)) x GL(1) GL(2) x GL(1)
(GL(1) x GL(2) x GL(1)) x GL(1) | Resg,r(GL(1)) x GL(1)

GL(1)* x GL(1) GL(1)3

The theorem we prove in this paper is:

Theorem 1.1. — For each pair (M, M') as above the twisted weighted fundamental
lemma is true over local fields of characteristic zero and odd residual characteristic.

The proof of this theorem is given in Sections 5 through 8. We now outline the
proof for each pair. We take F' to be a local field of characteristic zero. We let R
denote the ring of integers in F'. We denote by ¢ the cardinality of the residue field
of F' that for now we assume is odd and greater than three.

In Section 5 we prove the fundamental lemma for the first pair. We begin by writing
both sides of the fundamental lemma in this case as untwisted orbital integrals on
GL(2, F). The identity to be proven then takes the form

FL(A) : L(A) = R(A)

indexed by elements A € GL(2, F). Moreover, since both sides vanish if the conjugacy
class of A in GL(2, F') does not intersect GL(2, R) we may assume that A € GL(2, R).
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We split the proof into two cases depending on whether A lies in a split or elliptic
torus. In the former case we may assume that

()

is diagonal. We find that both L(A) and R(A) depend only on |a — 1|, |d — 1],|a — d|
and |ad — 1|. Since we are assuming that F' has odd residual characteristic we have
the following three cases

Casel: g M =lad—1|=la—dl=d-1|=|a—1 =gV

Case2: ¢ M=la—1l=ld—1|=ad-1|=|a—d| =q¢ "

Case3: M =la—1|=|d—1|=|a—d|l > |ad— 1| =q V.
In each case we denote L(A) (resp. R(A)) by L(M,N) (resp. R(M,N)). In cases 1
and 3 we prove that

gL(M,N +1)— L(M,N)=qR(M,N +1)— R(M,N)
and in case 2 we prove that
L(M,N+1)—L(M,N)=R(M,N+1)— R(M,N).

In each case we exploit cancellations between the integrals on either side of F'L(A)
allowing us to readily compute the differences. Thus the proof of the identity F'L(A),
when A lies in a split torus, is reduced to proving the identity under the assumption

lad =1 = |a—d| = |d— 1| = |a — 1].

We then compute both sides of FFL(A) under this assumption and show that they are
equal. In the case that A lies in an elliptic torus we again reduce the proof to certain
cases, which we then prove, by following a similar strategy.

The proofs of the fundamental lemma for the Levi subgroup

M = (GL(1) x GL(2) x GL(1)) x GL(1)

and both its unramified elliptic twisted endoscopic groups are given in Sections 6
and 7. The proof uses the twisted topological Jordan decomposition which is described
in Section 4.5. We can write any element ya with v € M (R) uniquely as

Yo = usa = sau,

where sa has finite order prime to ¢ and u is topologically unipotent, i.e., ud" — I
as n — oo. Using this decomposition allows us to write the twisted weighted orbital
integral at ya as an (untwisted) weighted orbital integral at u on the group G, the
centralizer of sa in G. The main part of the proof of the fundamental lemma is when s
is the identity. In this case the twisted weighted orbital integrals become untwisted
weighted orbital integrals on Sp(4). These integrals are of a type that appear on the
right hand side of the fundamental lemma treated in Section 5. We are then able
to use the calculations from there to prove the fundamental lemma for both pairs
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296 D. WHITEHOUSE

(M, M’). When s is not the identity, the groups Gg, have dimension strictly smaller
than Sp(4) and the fundamental lemma can be readily verified in these cases.

In Section 8 we prove the fundamental lemma for the diagonal torus in GL(4) x
GL(1). We again use the twisted topological Jordan decomposition. The main part
of the proof comes down to proving an identity between weighted orbital integrals
on Sp(4) with respect to the diagonal torus. We establish this identity by exploiting
cancellations between the relevant integrals on Sp(4).

We delay to Section 9 the computation of certain p-adic integrals that are needed
in the proof of the fundamental lemma.

Acknowledgements. — 1 thank Dinakar Ramakrishnan for his support throughout
this project, Jiu-Kang Yu for answering my questions and Jacques Tilouine for his
interest in this work. The appendix to this paper is taken from a letter by James
Arthur and T am grateful to him for his permission to reproduce it there. Finally,
thanks are due to the referees for their thorough reading of this paper and their helpful
suggestions.

2. Preliminaries

In this section we give some definitions and notations that will be used throughout
this paper. Further to the notations introduced below we also adopt the notations
introduced in the appendix throughout this paper.

2.1. Twisted conjugacy. — For the moment we take F' to be a field of charac-
teristic zero and G° to be a connected reductive algebraic group defined over F. We
let @ be a quasi-semisimple automorphism of G° by which we mean, as in [KS99,
Section 1.1], an automorphism which preserves a pair (B,T) of a Borel subgroup B
and maximal torus 7" C B.

An element v € GV is a-semisimple if the element ya € G = GY x « is semisimple,
i.c., the automorphism of G° given by Int(vy)oa is quasi-semisimple in the sense above.
The twisted conjugacy class of v € GO is

{97"valg) 1 g€ G}
We note that for g € GO we have

g 'vag = g va(g)e,
and so the notion of twisted conjugacy of ~ is equivalent to conjugacy of ya by
elements of GO; these notions are used interchangeably. The twisted centralizer of
v eGYis

Zav(ya) = {g € G : g"yalg) =7} .

The element vo is strongly regular if Zgo(ya) is abelian. The connected component
of Zgo(ya) is denoted by G q.
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If MO is a Levi subgroup of G° which is stable under the automorphism « then we
say an element v € M? is strongly G°-regular if it is strongly regular as an element
of G°.

2.2. GSp(4) and Sp(4). — We let J denote the matrix
1

and we set
Sp(4) = {g € GL(4) : J'¢~'J 7" = g},
and
GSp(4) = {g € GL(4) : J'g71J 1 = \g, A € GL(1)}.
The intersection with GSp(4) of the upper triangular Borel subgroup of GL(4) is
a Borel subgroup of GSp(4). The proper parabolic subgroups of GSp(4) that contain
this Borel subgroup are the Siegel parabolic, which has Levi decomposition

1 T r

g 1 rs .
( awtg”w> 1 19 € GLE2) 0,

- (,)

and the Klingen parabolic which has Levi decomposition

where

1 xzr s
“ 1
g : g € GL(2)
—1 1 —X
a”“detyg 1

The intersection of each of these parabolic subgroups with Sp(4) is a parabolic sub-
group of Sp(4), we refer to their intersection with Sp(4) by the same name.

The dual group of GSp(4) is GSp(4, C) and under the bijection between parabolic
subgroups of G' and G the Siegel and Klingen parabolics are interchanged.

2.3. Notation. — From now on F' will denote a local nonarchimedean field of
characteristic zero. We let R denote the ring of integers in F' and we let 7 denote a
uniformizer in R. We fix the Haar measure on F that gives R volume one. We let ¢
denote the order of the residue field of F', which we take to have characteristic p. In
Sections 5 through 8 we assume p is odd. We use v and | | to denote the additive and

multiplicative valuations on F, which we normalized so that v(w) =1 and |x| = ¢~ 1.
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298 D. WHITEHOUSE

We let Up denote the group of units in R and U denotes the subgroups of Up defined
by
Um { Up, if m=0;
P71l 14+ 7mR, if m > 0.

We fix an algebraic closure F' of F' and denote again by | | the extension of | | to F.
The letter I' is used to denote the Galois group Gal(F'/F). For a group G; with an
action of Gal(F/F) we let G} denote the elements of G; that are fixed by T.

We use In to denote the natural logarithm and log to denote the logarithm to the
base q.

For an algebraic group H we let X (H) denote the group of characters of H and H"
denotes the connected component of the identity in H. For a finite extension of fields
E/F and an algebraic group H defined over E we let Resg,p H denote the restriction
of scalars of H to F.

For a compact open subgroup K of a p-adic group we use 1x or charx to denote
the characteristic function of K.

For ease of notation we frequently use blank entries in matrices to denote zeros.
Given A; € GL(n;), 1 < ¢ < k we let diag(Ay, ..., Ax) denote the block diagonal
matrix in GL(ny + ... + ng) with block diagonal entries Ay, ..., Ax.

2.4. Our case. — We now describe the situation we are considering in this pa-
per. We take G° = GL(4) x GL(1) over the local field F' and we take a to be the
automorphism of G° given by

a:(g,e) — (J'g~ 1T edety),

where J is as above. We set Gt = G x (o), G = G x a and K = G(R).

The dual group of GO is G° = GL(4,C) x GL(1,C). Since the automorphism «
is quasi-semisimple it induces an automorphism & on GO as in [KS99, Section 1.2].
This automorphism is given by

a:(h,t)— (tJ'h Tt e,

The proper standard parabolics P of G, which are stable under « are those whose
projection onto GL(4) are of the form

* % ok k * % ok ok % ok k%
% K ok %k * ok %k
x x|’ * ok ok |’ * K
* % * *

We take the Levi component M in each of these parabolic subgroups that contains
the diagonal torus in G°. We refer to these Levi subgroups as the (2,2) Levi, the
(1,2,1) Levi and the diagonal Levi.
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The transfer factor A which appears in the statement of the twisted weighted fun-
damental lemma is the product of the terms A1, Ay and Aqr from [KS99, Chapters
4 & 5]

Let M’ be a twisted endoscopic group for M. The stable twisted conjugacy class of
a strongly regular element § € MO9(F) is the intersection of M°(F) with the twisted
conjugacy class of § in MO(F). The stable conjugacy class of a strongly regular
element of M'(F') is defined similarly. By [KS99, Theorem 3.3.A] we have a map

Anprjar : Clyg(M') — Cly(M°, )

between semisimple stable conjugacy classes of M’ and M. The semisimple element
~ € M'(F) is called strongly G%-regular if the image of the conjugacy class of v under
this map is strongly GY-regular is the sense above.

The integrals r§;(va) depend on the choice of a measure on G4, there is a similar
such dependence in the definition of SCA’;/ (¢/). Within a stable conjugacy class these
measures are chosen so that stable conjugacy is measure preserving. Having done this,
if we are now given ya € M (F) and 4" € M'(F), such that A(+/,~) # 0, we normalize
the measures on M,, and M, such that under this normalization the (unweighted)
twisted fundamental lemma holds for the pair (M, M’).

3. Endoscopic groups

We now determine the unramified elliptic twisted endoscopic groups M’ for each
of the Levi subgroups M° of G° given in Section 2.4. We refer to [KS99, Section
2.1] for the definition of twisted endoscopic groups. For each such endoscopic group
M’ we also compute the set of elliptic twisted endoscopic groups for G° in Ep (G),
which contain M’ as a Levi subgroup; and for each group G’ in £y (G) we compute
the coefficient ¢p (G, G’). We note that for non-elliptic endoscopic groups in Ep/ (G)
the coefficient ¢p (G, G’) is zero.

The elliptic twisted endoscopic groups for G itself are computed in [F1i99, Section
L.F]; these results are recalled in Section 3.1. We use these results below in computing
the sets £y (G) and the norm maps from M to M’.

3.1. Twisted endoscopic groups for GL(4) x GL(1). — In this section we recall
results from [F1i99, Section 1.F] on the twisted endoscopic groups for G°. First we
note that given sa € é, assumed semisimple, the twisted centralizer Zz,(sa) depends
only on the component of s lying in GL(4, C). Moreover, after twisted conjugation,
we can assume that we have

s = (diag(1,1,¢,d),1).

Furthermore the @-conjugacy class of s does not change if ¢ is replaced by ¢!, d by
d=! and (c,d) by (d,c). We recall that a twisted endoscopic group H is called elliptic
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if (Z(H)')Y is contained in Z(G?). The elliptic twisted endoscopic groups of GO are
given below.

(1) ¢ =d = 1: The twisted centralizer of s is isomorphic to GSp(4, C) and we get
GSp(4) as a twisted endoscopic group.

(2) ¢ = d = —1: The connected component of the twisted centralizer of s is
isomorphic to GL(2,C)?/C* with C* embedded via z — (z,z7'). If we have a
trivial Galois action then we obtain (GL(2) x GL(2))’, where the prime denotes the
subgroup of pairs (A, B) with det A = det B, as a twisted endoscopic group. We can
also have a non-trivial Galois action with I" acting through a quadratic extension E/F
in which case we obtain Resg,p GL(2)’, with the prime here denoting determinant in
F*, as a twisted endoscopic group.

(3) ¢ =1, d = —1: The connected component of the twisted centralizer of s is
isomorphic to (GL(2,C) x GL(1,C)?)" with the prime denoting the subgroup of
triples (A,a,b) with det A = ab. In this case we only obtain elliptic endoscopic
datum if T' acts through a quadratic extension E/F; in which case we obtain
(GL(2) x Resg,r GL(1))/ GL(1), with GL(1) embedded as (z,z7'), as a twisted
endoscopic group.

Let H be a twisted endoscopic group for G° and let Ty denote the diagonal torus
in H. Let T denote the diagonal torus in G°. For each such group H and v =
(diag(z,y, z,t),w) € T the image of ya under the norm map N : T — Ty is given
below.

(1) GSp(4): N(va) = diag(zyw, zzw, tyw, ztw)

(2) (GL(2) x GL(2)): N(ya) = (diag(zyw, ztw), diag(xzw, ytw))

(3) Resg,/p GL(2)": N(va) = (diag(zyw, ztw), diag(zzw, ytw))

(4) (GL(2) x Resg/p GL(1))/ GL(1): N(ya) = (diag(zw, tw), y, z).

3.2. Twisted endoscopic groups for the (2,2) Levi. — In this section we take
M? to be the (2, 2) Levi in G°. We have M? = GL(2,C) x GL(2 C) x GL(1,C),
which sits inside G° as the (2,2) Levi. The restriction of & to MO is given by

(A, B,t) — (tw!B™'w, twt A w, t),

w = (1 1) .

Lemma 3.1. — The only elliptic twisted endoscopic group for M° is GL(2) x GL(1).

where

Proof. — Let s € MP° be such that s@ is semisimple. We may assume that s is
diagonal and, after twisted conjugacy in M, we can assume that it is of the form

§= (dla’g(lv 1, )\17)\2)7 82)-
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We now compute Zgz,(sa). We see that (A, B,t) € Zg;(s@) if and only if we have

AwtBw = (t )
t
A1 t 251
"Aw = .
b ( )\2) v < t/\2>

This is the case if and only if we have A = tw!B~1w and

() ()

So if A1 = Ao, then we have

Zmo(58) = {(A7tth‘1w,t) e M°:AeGL(2,C),te CX},

and

while if A\; # A2, then we have

~ x ty~t —
Zﬁo(sa):{(( y),( tg:wl),t)el\/lozx,y,tecx}.

Both of these centralizers are connected; hence we can only have a trivial Galois
action. Therefore only when we have A\; = A2 do we get elliptic twisted endoscopic
data for M°. In this case we have Zg;,(s@) = GL(2, C) x GL(1, C) and hence we get
GL(2) x GL(1) as a twisted endoscopic group for M°. |

We now compute Epp/ (G).

Lemma 3.2. — Let M’ represent the elliptic twisted endoscopic datum for M°. Then
the elliptic twisted endoscopic groups for G° in Eyp(G) are GSp(4) and (GL(2) x
GL(2)), the prime denoting the subgroup of pairs (A, B) with det A = det B. Each
group occurs with multiplicity one.

Proof. — We may as well take s = (I,1,1) € MO which gives rise to M’ = GL(2) x
GL(1). We need to look at the translations of s& by elements in Z(M) taken modulo
Z(G). We have

Z(M) = {(diag(a, a, b,b), ab)}
and

Z(é) = {(diag(a, a,a,a), az)} .
Thus we need to look for elliptic endoscopic datum for GO arising from elements of
the form (diag(1l,1, A\, A),\)a € G. So we get endoscopic datum only when we have
A = *+1 and we must have a trivial Galois action in both cases. O

We note that M’ sits inside GSp(4, C) as the Siegel Levi, hence we have M’ =
GL(2) x GL(1) sitting inside GSp(4) as the Klingen Levi. We have M’ sitting inside
(GL(2) x GL(2))" as (I' x GL(2))" where T is the diagonal torus in GL(2) and the
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prime again denotes the subgroup of pairs with equal determinant. The coefficients
1ty (G, G') are equal to 1 for G’ equal to GSp(4) and (GL(2) x GL(2))".

3.3. Twisted endoscopic groups for the (1,2,1) Levi. — In this section we
take MP to be the (1,2,1) Levi in G°. We have

M° = GL(1,C) x GL(2,C) x GL(1,C) x GL(1, C),
which sits inside G° as the (1,2,1) Levi. The restriction of & to MO is given by
(a,9,b,t) — (tb~", t(det g)~'g, ta™ ", t).

Lemma 3.3. — The unramified elliptic twisted endoscopic groups for M9 are GL(2) x
GL(1) and GL(1) x Resg,/p GL(1), where E/F is the unramified quadratic extension.

Proof. — After twisted conjugacy in M? we can assume that we have

1
S = <1, ( )\1> ,)\2,82) .

Then (a,g,b,t) € Zzz (sa) if and only if

(ab7g (1 /\1) (detg)gfl,abAQ) - (t, (t tA1> ,m) .

Hence we need ab = t and

1 1 det g~ ¢
g a9 det g7t )

Therefore if A\; = 1, then we have g is any element of GL(2, C), while if A\; # 1, then
()G
g€ ) .
y w
Thus we see that if A\; = 1, then
Zjo(s00) = {(a,g,a_1 det g,det g) € MO g€ GL(2,C),a € CX} ,

while if \; = —1, then

soton={(o(* ) erm) U{(e, )

and if A\; # %1, then
~ T —1
Zzpo(sa) = a, y ,a txy, 1y | oo

When A1 = 1 we have a connected centralizer and hence we have a trivial Galois
action. In this case we have elliptic endoscopic data and we get GL(2) x GL(1) as a
twisted endoscopic group for M°.
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When \; = —1 to get elliptic endoscopic datum we need to have a non-trivial
Galois action acting through a quadratic extension by

a, ,a Ty, ry, Ty | — | a, ,a xy, Ty | .
Y T

In order for our endoscopic data to be unramified we need this quadratic extension
to be unramified. In this case we get GL(1) x Resg,/p GL(1) as a twisted endoscopic
group for MP°.

Finally, when A1 # %1 the data is never elliptic. O

We now compute Epp (G) for M’ = GL(2) x GL(1).

Lemma 3.4. Let M' = GL(2) x GL(1). Then the only elliptic twisted endoscopic
group for GO in Enp (G) is GSp(4) with multiplicity two.

Proof. — Recall that M’ is given by the element sa = (diag(1, 1,1, \2), s2)a € M.
We have
Z(]/VT) = {(diag(a, c,c,a”te?), cg)}

and so we need to look for elliptic twisted endoscopic groups for G° given by trans-
lating s by elements of the form (diag(l, A A A2), )\2) € G°. Thus we need to look
at elements of the form (diag(1, A, A, A2X2), )\252) a € G. After twisted conjugacy we
can look at the elements of the form (diag(l, 1,1, A%),), 52) a. Since we must have a
trivial Galois action we get elliptic endoscopic data if and only if A = \;*; in which
case we get GSp(4). |

We have M’ sitting inside GSp(4,C) as the Klingen Levi and so we get
M’ = GL(2) x GL(1) sitting inside GSp(4) as the Siegel Levi. We also have
L]y[f(G,GSp(Zl)) =1.

Lemma 3.5. — Let M' = GL(1) x Resg/p GL(1). Then the elliptic twisted endo-
scopic groups for G° in Eni(G) consists of (GL(2) x Resp,p GL(1))/ GL(1) and
Resg/p GL(2)'. Each group appears with multiplicity two.

Proof. — Recall that M’ is given by the element (diag(1,1,—1,A2),s2)@ € M. We
need to look for elliptic twisted endoscopic groups for G° given by translating s& by
elements of the form

(diag(1, A, A, A%), M%) .

Thus we need to look at elements of the form (diag(l7 A =A%), )\282) a € G. After
conjugacy we can look at the elements (diag(l, 1, —1,A%)), 52) @ € G. Thus we get
elliptic data if A> = £A;*. When A\? = \; ' we get (GL(2) x Resg/r GL(1))/ GL(1),
while if A2 = —A; ' we get Resp,r GL(2)'. 0
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In this case we have M’ sitting inside each group in £,/ (G) as the diagonal torus.
And we have 13(G,G’) = 1 for both G’ = (GL(2) x Resg,r GL(1))/ GL(1) and
G = ResE/F GL(2)/

3.4. Twisted endoscopic groups for the diagonal Levi. — We now take MY
to be the diagonal torus in G%. We have M°? = GL(1, C)®, which sits inside G as
the diagonal torus.

Lemma 3.6. — The unramified elliptic twisted endoscopic group for M° is GL(1)3.

Proof. — Since MO is abelian we see that for any s € M we have
Zio(sq) = {(z,y,z,w,t) € MO 2w = yz = t}.

Hence we have Z37,(sa) = (C*)? and we get GL(1)? as the only twisted endoscopic
group for M°. Furthermore, it is both elliptic and unramified. O

We now compute Epy (G).

Lemma 3.7. — Let M' = GL(1)3. Then the elliptic twisted endoscopic groups for G°
in Epr(G) are GSp(4) and (GL(2) x GL(2))'; each group appears with multiplicity
two.

Proof. — We have
Z(]/W\) = {(diag(az, y,ty 't ), t)} .
Thus we need to look for the elliptic twisted endoscopic groups for G° given by
elements of the form
(diag(l,y_],yw,w),'w) aed.
We can conjugate such an element to (diag(1,1,y*w, w),w) &. Since we must have a
trivial Galois action we get elliptic data when we have w = 1 and y? = 1, in which

case we get GSp(4), or when we have w = —1 and y? = 1, in which case we get
(GL(2) x GL(2))'. O

For G’ equal to both GSp(4) and (GL(2) x GL(2))" we have M’ sitting inside as

the diagonal torus and we have iy (G,G') =1

3.5. Endoscopic groups for GSp(4). — We will also need to know the endoscopic
groups for GSp(4). There is only one proper elliptic endoscopic group for GSp(4)
namely (GL(2) x GL(2))/ GL(1) with GL(1) embedded as a +— (a,a™ '), see [F1i99,
Section 1.F]. It is given by the element diag(1l,—1,—-1,1) € GSp(4,C). The norm
map is given by

diag(a, b,cb™ !, ca™") — (diag(1, (ab)'¢), diag(a, b)) .

For each proper Levi subgroup M of GSp(4) we also need to compute the elliptic
endoscopic groups for GSp(4) in £,/ (GSp(4)). Since we are taking M as an endoscopic

ASTERISQUE 302



THE TWISTED WEIGHTED FUNDAMENTAL LEMMA 305

group for itself the elements of £,,(GSp(4)) are given by elements s € Z (ﬁ ) taken
modulo translation by Z(GSp(4, C)), which equals {diag(x,z,z,z)}.

Lemma 3.8. — Let M be the Siegel Levi in GSp(4). Then the elliptic endoscopic
groups in Ep;(GSp(4)) are GSp(4) and (GL(2) x GL(2))/ GL(1) each with multiplicity
one.

Proof. — We have M sitting inside GSp(4, C) as the Klingen Levi. So we have
Z(M) = {diag(z, y,y, 2 'y*)} .

And we get that the elliptic endoscopic groups in &p/(GSp(4)) are GSp(4) and
(GL(2) x GL(2))/ GL(1) each with multiplicity one. O

We have M sitting inside (GL(2) x GL(2))/ GL(1) as (T'x GL(2))/ GL(1) where T is
the diagonal torus in GL(2). And we have ¢7/(GSp(4), (GL(2) x GL(2))/ GL(1)) = 1.

Lemma 3.9. — Let M be the Klingen Levi in GSp(4). Then the only elliptic endo-
scopic group in Epr(GSp(4)) is GSp(4) with multiplicity one.
Proof. — We have M sitting inside GSp(4, C) as the Siegel Levi. So we have

The only elliptic endoscopic group given by such an element is GSp(4) itself which we
obtain when z =y = 1. O

Lemma 3.10. — Let M be the diagonal Levi in GSp(4). Then the elliptic endoscopic
groups in Epr(GSp(4)) are GSp(4) and (GL(2) x GL(2))/ GL(1), each with multiplicity
one.

Proof. — We have M sitting inside GSp(4, C) as the diagonal torus. So we have
Z(M) = {diag(z,y,y 'z,27"2)},

and we get that the elliptic endoscopic groups in Ep(GSp(4)) are GSp(4) and
(GL(2) x GL(2))/ GL(1), each with multiplicity one. O

We have M sitting inside (GL(2) x GL(2))/ GL(1) as the diagonal torus and we
have

(GSp(3), (GL(2) x GL(2)/ GL(L) = 5.

4. Weight functions

In this section we compute all the weight functions needed in the proof of the
fundamental lemma. For a Levi subset M of G = G° x « the weight function vy is
defined in [Art88b, Section 1]; throughout this section we adopt the notations and
definitions given there.
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4.1. Twisted weight functions. — In this section we adopt the notation of
Section 2.4 and compute the weight functions for the relevant Levi subgroups of
G° = GL(4) x GL(1). We will use the following basic fact in computing the weight
functions below.

Lemma 4.1. — For v = (v1,...,v,) € F" define |v| = max{|v1|,...,|vn|}. Then for
all k € GL(n, R) and v € F'™ we have |vk| = |v|.

Proof. — We clearly have |vk| < |[v| and replacing v by vk~! yields the result. O

4.1.1. The (2,2) Levi. — In this section we take MY to be the (2,2) Levi in G°. We
have M = M x a. Let PY (resp. Q") be the upper (resp. lower) block triangular
parabolic in G° with M° as its Levi component. We have M = M° x a and if we set
P=P%xaand Q= Q% x « then we have P(M) = {P,Q}. We let Np (resp. Ng)
denote the unipotent radical of PY (resp. Q). Let x € GO(F') and write
r =npmpkp = ngmqgkq

with obvious notation. We write mp = (Ap, Bp,cp) € GL(2) x GL(2) x GL(1) and
similarly we write mg = (Ag, Bg, ¢g).

Lemma 4.2. — With notation as above we have

vpr(x) = vol(a$/Z(AY)) (In |det Ag| — In|det Ap|).

Proof — For (A, B,c) € MY we have

a: (A, B, c)— (wB tw,wt A7 w, cdet AB),
and hence

Ay ={a= (diag(al,(zl),diag(a,fl,afl)),ag)}.
We fix the basis {x1, x2} of X(Anr) given by x; : a — a;. We have

Appo ={b= (diag(bl,bl),diag(bg, b2)), b3)}

and we fix the basis {1, p2, @3} of X (Apm0) given by ¢; : b — b;. We have Apo =
{p1 — pa}. We now compute (@1 — @2). Let dy,,04,,0,, denote the basis of a} 0
given by 0y, (¢;) = 0;5, the Kronecker delta symbol.

To determine (@1 —p2)Y we may as well work inside GL(4). We set Py equal to the
upper triangular Borel subgroup of GL(4) and we take My to be the diagonal torus
in Py. We have

A]y[o = ]Vfo = {C = diag(q, 62,63,04)}

and we fix the basis {81, B2, 83, 84} of X (My) given by 3; : ¢ — ¢;. We define
03, € apg, similarly.
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We now describe the splittings a}, = a%o @ (a5 )* and ap, = apo @ ab’. The map

X (Apo) - X (Moy) is given by
Bir— o1 Par— @1 Bar— p2 Bsr— @2
and the map apo < ap, is given by
o1 +— 2(B1+ B2) 2 — 5(B3+ Pa).
Thus we have
ap, = apo @ ab, = Span{ds, + 0,05, + dp, } ® Span{ds, — ds,,0p, — 05,}
and
ap, = apo & (alliz)* = Span{B1 + B2, 83 + B4} ® Span{B1 — B2, B3 — fa}.
Therefore we have

p1— 0o = (Bt o) — S(Bs+ Ba) = B — By + 5 (B — Ba) + (B — B)

equal to the projection of 3 — B3 onto ah,. Now (B2 — f3)Y = dg, — dp, whose
projection onto apo is

1 1

5((5,6'1 + 5[‘32) - 5(553 + 554)‘
Hence we have (p1 — ¢2)¥ = £(6p, — 0p,)-

The map X (App0) — X(Apn) is given by
Y1 X1 Y2 —> —X1 @3+ X2-

We have Ap = {2x1}, Ag = {—2x1} and

(2x1)Y @ x1+— % x2 — 0.

Hence for A = a1x1 + azx2 € a}; ¢ we have

ay
PN = S elaG/Z(AR)
and ) a
oY = " oG Z AR

We now make explicit the isomorphism between X (Ap) ®z R and X (M)r @z R.
We have a basis for X (M) given by the characters

Y11 (A, B),c) — det Adet B~% 92 : ((4, B),c) —> ¢

of MP. The restriction map X (Ax;) — X (M)F is given by 11 — 4x1 and 93 — xa.
Now we have

Hy(mp): x1+—— sIn|det ApBp'| x2 — Injcp|.

Therefore,
vp(A, z) = exp (—% In|det ApBp'| — azln |cP()
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and similarly for vg (X, ). Hence vy (A, ) equals
2 vol(aG/Z(A}))
a

[exp (—Z—l In|det ApBp'| — azIn ]epl> — exp (—% In |det AQBél| —azln

eal)|-

Taking the limit as A = a;x1 + az2x2 — 0 we get

 vol(af/Z(AY))
2

But we have |det ApBp| = |det AgBg| and hence

var(z) = vol(a8/Z(AY)) (In|det Ag| — In|det Ap|),

vnr(z) = (m |det ApBp'| — In |det AQBC;H) .

which completes our computation. O
We now compute vy on the unipotent radical of P°.

Lemma 4.3. — We have

1 &r1 X2
1 x3 x4

VM ) ,1 :vol(aIGg/Z(AIV;))lnmax{l,|:c1|,|x2|,|x3|,|$4|,|:1:1x4fa:2x3|}.
1
Proof. — We write
1 T T 1
1 x3 x4 1 <AQ )
- ko.
1 y1 y2 1 Bg
1 ys ya 1

Applying the vector (1,0,0,0) A (0,1,0,0) and using Lemma 4.1 allows us to deduce
that

In | det Ag |= Inmax{1, |z1|, |z2|, |23, |2a|, |T124 — 223}

and the result follows. O

4.1.2. The (1,2,1) Levi. — In this section we take M° to be the (1,2,1) Levi in G.
Let P° (resp. Q%) be the upper (resp. lower) triangular parabolic in G® with M° as
its Levi component. We have M = M° x o and if we set P = P’ x a and Q = Q" x «
then we have P(M) = {P,Q}. We let Np (resp. Ng) denote the unipotent radical of
PO (resp. Q). Let x € GO(F) and write

r = npmpkp = anQkQ

with obvious notation. We write mp = (ap, Bp,cp,dp) € GL(1) x GL(2) x GL(1) x
GL(1) and similarly we write m¢ = (ag, Bg, cg,dg)-
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Lemma 4.4. — With notation as above we have
vol(aG/Z(AY, _ _
vy () = #g_(_l’)l (ln IanQ1| - ln[apcpll) .

Proof. — We have
A}u = {a = (0,1,],0,1_1,(12)} .
We fix the basis {x1,x2} of X(Aa) given by x; : a — a;. We have
Apro = {b = (b1, diag(bz, b2), b3, bs)}
and we fix the basis {1, p2, @3, pa} of X(Ap) given by ¢; : b— b;. We have
Apo = {p1 — 2,02 — 3}

We now compute (1 — p2)¥ and (w2 — p3)Y. Let 8, 00p,, 00y, 0y, denote the basis
of a},0 given by o, (v;) = 6ij.

To determine (¢1 — @2)Y and (2 — p3)Y we may as well work inside GL(4). We
set Py equal to the upper triangular Borel subgroup of GL(4) and we take M, to be
the diagonal torus in Py. We have

A, = Mo = {c = diag(c1, 2, ¢3,¢4)}

and we fix the basis {081, 82,03,04} of X (M) given by G; : ¢ — ¢;. We define
0p, € apg, similarly.

We now need to describe the splittings aj, = apo @ (uﬁ?)* and ap, = apo @ af,(?.
The map X (Apo) - X (M) is given by

B 1 Par— 2 B3 2 [1+—— @3,
and the map apo < ap, is given by
o1 B w2 — 5(B2+ B3) @3 — Pa
Thus we have
ap, = apo @ ah = Span{dg,, 65, + 05y, 05, } © Span{ds, — ds, },

and
A, = apo @ (ab ) = Span{B1, B2 + Bs, Bs} ® Span{Bs — s}

Therefore we have
1 1
Y1 — 2 =1 — 5(52 +03)=p1— B2+ §(ﬂ2 — f33)

equal to the projection of 8; — 32 onto a},. Now we have (81 — B2)" = 03, — 93,
whose projection onto apo is

1
651 - 5(5[12 + 6[’3)'
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Hence we have (¢1 — 2)¥ = 6,, — 50,,. Now

1 1
P2 — 3 = §(ﬂ2 +83) = Bs =Pz —Ps+ 5(52 - B33)
equals the projection of 33 — 34 onto a},. Now we have (83 — 84)Y = 0g, — dg, whose
projection onto apo is
1
5082 +08) — 0g,-
1

Hence we have (g2 — ¢3)Y = 504, — 04,

The map X (Ap0) — X(An) is given by
p1 == X1 p2——0 p3—> —X1 P4 X2-
We have Ap = {x1}, Ag = {—x1} and
(x1)V: xair—1 x2+—0.

Hence for A = a1 x1 + a2x2 € a}‘w,c we have

ai
brN) = g zag)”

and u
bolN) = = o z(ag)

We now make explicit the isomorphism between X (Ap/) ®z R and X (M)r ®z R.
We have a basis for X (M )p given by the characters

Y1 : (a,B,c,d) — ac™t, o (a, B, c¢,d) — acd?® det B

on MP. The restriction map X (Ayr) — X(M)p is given by 91 +— 2x1 and 12 — 2x2.
Now we have

Hy(mp): x1+— %ln|apc;1| X2 — %ln|apc;od%D det Bp|.
Therefore,
vp(A, x) = exp (4(1_21 In |apb131| - %2— In lapdeZP det Bp|>
and similarly for vg (A, z). We can set ag = 0 and take the limit as a; — 0 to give

1(a/Z(AY, - -
op(z) = M (111 |anQ1{ —In |apcP]|)

as wished. O
We now compute vy; on the unipotent radical of P°.

Lemma 4.5. — We have
1 Xr1 To I3
1 T4
1 xs
1
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equal to
w (Inmax{1, |z1], |z2|, |z3|} + In max{1, |z4l|, |z5], |2124 + T225 — 23]}) .

Proof. — We write

1 xr1 T2 I3 1
1 T4 . Y1 1 4@ B k
Loas | |y 1 @ @
1 Y3 Ya Ya 1 @

Applying the vector (1,0,0,0) allows us to deduce that
Injag| = Inmax{1, |z1|, |x2|, |z3]}.
Taking the transpose inverse of the above matrix equation and applying the vector
(0,0,0,1) allows us to deduce that
In |céll = Inmax{1, [z4|, |2s|, |z124 + 225 — x3|}

and the result follows. O
4.1.3. The diagonal Levi. — Let MY be the diagonal Levi subgroup in G°. For
the proof of the fundamental lemma it is (essentially) sufficient to compute vy on
elements of G° fixed by a, i.e., elements of the form g = (g1, g2) € Sp(4) x GL(1). For
now we show that for such a g vps(g) is, up to a scalar, equal to v, (g1) where M,
is the diagonal Levi in Sp(4). We will then compute vy, on the unipotent radical of
the upper triangular Borel subgroup in Sp(4).

Let B (resp. B;) denote the upper triangular Borel subgroup of G° (resp. Sp(4)).
Lemma 4.6. — For g € (g91,92) € G°(F) with g1 € Sp(4) we have

vol(af/Z(A}))
Sp(4

vol(ayP™ /Z(AY,))

UM(g = le(gl)'
Proof. — We have
Aym = {a = (diag(ay, az,a5 ", a7"),a3)},
and we fix the basis {x1, x2, x3} of X (Anr) given by x; : a — a;. We have
Apro = {b = (diag(bs, b2, b3, b4),b5)}

and we fix the basis {¢1,...,¢5} of X(Appo) given by ¢; : b — b;. The map
X (App0) — X (Anr) given by restriction is given by

Pr—— X1 P2 X2 P3— —X2 P4 —X1 ¥P5+— X3-
We have
Ay, = {a = diag(al,ag,agl,afl)} .
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We identify apr, with the subspace of apr of elements which are zero on x3 and we
identify a}, with the subspace {aix1 + azx2} of aj;.
We now compute 6g(\) for A = a1x1 + asxz2 +asxs € a?\/[,c- We have

Apo = {1 — p2,p2 — p3,03 — Pa},

and
Ap = {x1 — x2,2x2}.
We have
(X1 —x2)":t xi—2 xo— =2 x3+— 0,
and

2x2)Y: x1—0 x2—1 x3+—0.
On the other hand
Ap, = {x1 — x2,2x2},
and we have
(x1—x2)": xir—1 x2— —1,
and
(2x2)V i x1— 0 x2+— 1.

Hence we see that for A = A\ +azxs € a}; ¢ with A1 € aj;, ¢ we have Op()\) =
05, (\1). Now each Borel subgroup of G, which is « stable and which contains M©°
is of the form w™! B%w with w = (wy, 1) where w; is an element of the Weyl group of

Sp(4). Hence we deduce that for each Borel subgroup P° of G° which contains MY
we have

vol(aB/Z(A}))0p(N) = vol(ap™ /Z(AY,)0p, (M),
where P; denotes the Borel subgroup of Sp(4) which is contained in P°.

Next we compute vp(A, g) and vp, (A1, g1). In order to compute vp(A, g) we need
to write g = npmpkp with np € Np(F), mp € MO(F) and kp € K. But if we write
g1 = np,mp kp, with obvious notation then we have

g = (91792> = (np,,1)(mp,, gQ)(kPl ;1)

Hence we have for A = A\ + agxs that

’UP()\,Q) =vp (Ahgl)ng'iaS'
Thus we get

oA\ g) = Y vp(Ag)lp(N)7

PEP(M)
G Vv
_ VOl(SC;Z{Z(AB\z) ‘g2|~a3 Z 1)P1(>\1,g1)9P1()\1)*1-
vol(ag, ' /Z(Ag,)) PLeP (M)
And now taking the limit as A — 0 gives the result. O
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Multiplying n on the left by such an element we can put n in the form

1 X1
1
1 —I1

For m > 0 and u € Ur we have

1 ur™™\ 1 T " u
1 - ,u/vlﬂ_m 1 T _u—l

and hence we deduce that
la] = max{1, |z}
and
|b] 7! = max{1, |z1]}.

o w = (23). In this case we have

1 —y2 »1 Y3

1
w 'Np,w = b1
—ya 1 y2—11y4
1
Multiplying n on the left by such an element we can put n in the form
1
1 X4
1
1
And as above we deduce that
la| =1

and
|b| = max{1,|z4|}.

« w = (14). In this case we have

1
— 1
W N w = 4 [V v 1 s
Y1 1
—Ys3 y1 y2 1

Using the vector (1,0,0,0) we deduce that
la| = max{1, |z1], |z2 + z124|, |23}
and using (1,0,0,0) A (0,0, 1,0) we deduce that

|ab71| = maX{L |.’L‘1|27 ’-T'i +z122 + 1'%1'4”’
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We now compute vy, on the unipotent radical of B;. We set

1 1y 2+ 2124 T3

1 Tyg i)
= € Np, (F).
n 1 o B, (F)
1

313

In order to do this we neced to write n = nymik; for each Borel subgroup of Sp(4)

containing M; and then if we write
Y. -1 -1
my = diag(a,b,b™",a™")

we need to compute |a| and |b|.
The Weyl group of Sp(4) is isomorphic to Dg with generators

1 1

Explicitly the Weyl group is given by
{e,(12)(34), (23), (14), (1243), (1342), (13)(24), (14)(23)},

where we have

e=1
(12)(34) = w,
(23) = W2

(14) = wywawy
(1243) = wawy
(1342) = wyw,

(13)(24) = wowywe

(14)(23) = W1 WawW1wWsy.

« w = e. In this case we have |a| = |b] = 1.
« w = (12)(34). In this case we have

1 Y2 —y1ys ya

y1 1 Y3 Y2
1

—y 1

w‘lNBlw =
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« w = (1243). In this case we have

1 Y1
p— 1 P
'w_lNBl'w _ Y2 Ulz 1

—Ys  Y2—Yys 1
Using the vector (0,0, 1,0) we deduce that

|b| = max{1, |z,|} 7,
and using (1,0,0,0) A (0,0,1,0) we deduce that
lab™1| = max{1, |z1|?, |z3 + z122 + 2324]}.
o w = (1342). In this case we have

1 viya —y2 Ya

1
w ' Ng,w =
Y1 —Y3 1 yo
Y1 1

Using the vector (0,1,0,0) we deduce that
[b] = max{1, |z4],|z4]},
and using (0,1,0,0) A (0,0,0,1) we deduce that
la='b| = max{1, |z4]}.

« w = (13)(24). In this case we have

1 !
1
w INgw=
—y2  ~yz3 1w

—Y4 Y1Ya — Y2 1
Using the vector (0, 1,0,0) we deduce that
|b| = max{1, |z2|, |z4|},
and using (1,0,0,0) A (0,1,0,0) we deduce that
lab] = max{1,|zs|, |74, |3 — 2122|, |25 — T324 + T12274]}.

. w = (14)(23). In this case we have

1
- 1
w_lNBIw: y
Yiya — Y2 —Ya 1
—Y3 —y2 Y1 1

Using the vector (1,0,0,0) we deduce that

‘(1,| = max{l, |£L‘1‘.‘ ‘372 + .1’1.7,'4|, |$3|}7
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and using (1,0,0,0) A (0,1,0,0) we deduce that
|ab| = max{1, |x2|, |z4], |x3 — T122], |22 — x3z4 + T1T2x4|}.

Let’s set A = ai1x1 + azx2 € a7\/11,0~ Where y; is the character of M; map-
ping diag(ai,as,a;*,a7t) to a;. Let z € Sp(4,F) and let P, be a Borel sub-
group containing M;. We write * = np,mp kp, with the usual notation where
mp, = diag(ap,, bpl,b;ll,a;ll). Then we have

Hp, (x): x1 — Injap,| x2+— Inlbp,|.

Hence we have vp, (A, z) = |ap, [**[bp, [** and therefore for A = Bazx1 +azx2 € ay, ¢
we have

vp, (/\7m) = (lapl |B|bP1[)a2'

Next we compute 6p, for each of these Borel subgroups P, = w™'Biw and \ =
Bazx1 + azxz2 € aj; o These functions are given in the table below.

w Ap, Op, (N)/a3
e 2X2, X1 — X2 B-1
(12)(34) | 2x1,x2 — X1 B - pB)
(23) —2x2,x1+x2 | —(B+1)
(14) 2X2, —X1 — X2 —(f+1)
(1243) | —2x1,x1+x2 | —B(B+1)
(1342) | 2x1,—x1—x2 | —B(B+1)
(13)(24) | —2x1,x1 —x2 | Al —=0)
(14)(23) | —2x2, —x1 + X2 8-1

For 3 € C we set 0p, (3) = 0p(\)/ai. We have

1(aS%P™ /Z(AY,
v, (T, ) = Z e B(;g()n/(/i') 5.) (lap, | bp; )2

I2)

The value at as = 0 of this expression is equal to

Sp(4
vol(a3 ™ /Z(AY,
2

)) 1
UM, (a") = EP 01-’1 (ﬂln|al"1| + ln|bp1‘)2
1

(3)
for any value of 3. The calculations above give the following.

vol(a i’ ™ /Z(AY)) .
— U

Lemma 4.7. — We have vy, (n) equal to mes

—(A? +2B? +2C% + D* + 2E% + F?) + 2(AB + AE + BD + CD + EF)
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where
A = Inmax{1, |za|, |4, |3 — 2122], |23 — T324 + T12274]}
B = Inmax{1, |z, |z2 + z124], |z3]}
C = Inmax{1l, |z1]}
D =Inmax{1,|z|?, |z3 + z172 + ziz4]}
E = Inmax{1, |za], |z4|}
F = Inmax{1, |z4]}.

Combining Lemmas 4.6 and 4.7 we get the following.

Corollary 4.8. — For

1 &1 x2+T1004 @3

1 Xq €9
) = , 1] € Ng(F
n ) e B(F)

1

vol(a8 /Z(AY)) times
— g &

we have vpr(n) equal to
—(A%2 4+ 2B%4+20? + D? + 2E* + F?) + 2(AB + AE + BD + CD + EF).

where A, ..., F are as in Lemma 4.7.

4.2. Weight functions for GSp(4). — In this section we compute the weight
functions for the Levi subgroups of GSp(4).

4.2.1. The Siegel Levi. — In this section we take M to be the Siegel Levi in GSp(4).
Let P (resp. Q) be the upper (resp. lower) triangular parabolic in GSp(4) with M as
its Levi component. Then we have P(M) = {P,Q}. We let Np (resp. Ng) denote
the unipotent radical in P (resp. Q). Let z € GSp(4, F') and write

xr =npmpkp = ngmqgko

with obvious notation. We write

mp = (AP ) € M(F),

bpuwtAp'w
and similarly for mg.
Lemma 4.9. — With notation as above we have

opr(z) = vol(aB*™ /Z(AY)) (In|det Ag| — In |det Ap]) .
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Proof. — We have
Ay = {a = diag(a1, a1, a7 "az, a7 az)} .

We fix the basis {x1, x2} of X(Aas) given by x; : a — a;. We have Ap = {2x1 — x2}
and Ag = {—2x1 + x2}. We now compute (2x1 — x2)".

Let &y, , 0y, denote the basis of a}, given by 0y, (x;) = ;5. We set Py equal to the
upper triangular Borel subgroup of GSp(4) and we take My to be the diagonal torus
in Py. We have

Any = Mo = {c = diag(ci, ¢z, cglc:;, 01_103)}
and we fix the basis {1, B2, 83} of X (My) given by 5; : ¢ — ¢;. We define dg; € apy,
similarly.

We now need to describe the splittings a}, = ap @ (ago)* and ap, = ap® aIP;O. The
map X (Ap) - X(My) is given by

fr—x1 B2r—x1 B3+ x2
and the map ap — ap, is given by
X1+ 361+ B2 x2 — Ps.

Thus we have

ap, =ap @ alp;() = Span{651 + 6527 663} S?) Span{(551 - 552}7
and

ap, = ap @ (ap,)* = Span{B + B2, B3} @ Span{f1 — Ba}.

Therefore we have
2x1 —x2 =01+ B2 — B3 =202 — B3+ (61 — B2)

equal to the projection of 28, — (3 onto ap. Now we have (282 — §3)Y = dg, whose

projection onto a} is 3(ds, + dg,). Hence we have (2x1 — x2)" = 205,

Hence for A = a1x1 +azx2 € a"j\/[’c we have

0PN = ol /Z(AY))
and
ay
PN = o oeg/zan)

We now make explicit the isomorphism between X (Ay) ®z R and X(M)r ®z R.
We have a basis for X (M)g given by the characters

A
Vi ( bth’1w> > det A

and

A
V2 ( b’th"lw) — b
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The restriction map X (M)rp — X (An) is given by 91 +— 2x3 and 32 — x2. There-
fore,

Hy(mp): x1+— 31nldet Ap| x2 — In|bp|,
and so

vp(A, ) = exp (792—1 In|det Ap| — az1n |bp|> .
We have a similar expression for vg (A, z). Taking a; = 0 and letting a; — 0 gives

vpr(z) = vol(a$™™ /Z(AY)) (In |det Ag| — In |det Ap])
as desired. O
The computation of vp; on the unipotent radical of P follows directly from the

proof of Lemma 4.3.

Lemma 4.10. — We have

1 T T

1
Y ’1" 7| = vol(@E*™ /z(AY))) In max{1, |z|, |r], |s], [xs — r?|}.

4.2.2. The Klingen Levi. — In this section we take M to be the Klingen Levi in
GSp(4). Let P (resp. @) be the upper (resp. lower) triangular parabolic in GSp(4)
with M as its Levi component, then we have P(M) = {P,Q}. We let Np (resp. Ng)
denote the unipotent radical in P (resp. Q). Let x € GSp(4, F') and write

Tr = npmpkp = ’anQkQ
with obvious notation. We write

ap
mp = Bp EM(F)
a;l det Bp

and similarly for mg.

Lemma 4.11. — With notation as above we have

vpr () = vol(a2 P /Z(AY)) (In]ag| — Inlap]) .

Proof. — We have
Ay = {a = diag(al,ag,ag,aflag)} .

We fix the basis {x1,x2} of X(Awm) given by x; : a + a;. We have Ap = {x1 — x2}
and Ap = {x2 — x1}. We now compute (x1 — x2)".
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Let 4y, , 9y, denote the basis of a}, given by d,,(x;) = di;. We set Py equal to the
upper triangular Borel subgroup of GSp(4) and we take My to be the diagonal torus
in Py. We have

An, = Moy = {c = diag(cy, co, cglcg,cflc;;)} ,
and we fix the basis {81, 82, 83} of X (My) given by 3, : ¢ — ¢;. We define 03, € any,
similarly.
We now describe the splittings ap, = ap @ (aﬁ))* and ap, = ap ® a,}zu. The map
X(Ap) - X (My) is given by
B x1 B2r— x2 B3 2xa,
and the map ap — ap, is given by
X1+ B1 x2 — 30

Thus we have

ap, = ap & ap, = Span{ds,,ds, + 205, } & Span{ds, },
and

ap, = ap @ (ap,)* = Span{61, B3} © Span{24; — f3}.

Therefore we have
1 1
X1 — X2 231—553251—524- (ﬁz‘gﬂz)

equal to the projection of 31 — B2 onto a},. Now we have (81 — 32)Y = 05, — 0, whose
projection onto ap is dg,. Hence we have (x1 — x2)¥ = y,-
Therefore for A = a;x1 + asx2 € a?u,c we have

aq
Op(\) = — L
PN = gz
and
aq

9 A = — NN
oW =~ oiadzan)
We now make explicit the isomorphism between X (Ay) @z R and X(M)p @z R.
We have a basis for X (M) given by the characters

a
Py B —a
a~tdet B

and

g B —— det B.
a~ldet B
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The restriction map X (M)r — X (Apr) is given by 91 — x1 and ¥2 — 2x2. So we
have
Hpy(mp) : x1 — Inldetap| x2 — 3 In|det Bp|,

and therefore,

vp(A, x) = exp (—al Inljap| — % In |det Bp|) .
We have a similar expression for vg(A,x). Setting az = 0 and taking the limit as
a; — 0 gives

o () = vol(a% P /Z(AY})) (In|ag| — In|ap))
as desired. O

The computation of vps on the unipotent radical of P follows directly from the

proof of Lemma 4.5.

Lemma 4.12. — We have

1z r s
1
o |1 | = vol@E RO sz (aR) mmax1, al, Irl, 5]}
1

4.2.3. The diagonal Levi. — In this section we take M to be the diagonal Levi in
GSp(4). We will compute vps on the unipotent radical of the upper triangular Borel
subgroup of GSp(4). We follow the strategy in the twisted case; we first relate the
function wvps to vag,, where M is the diagonal torus in Sp(4) and then use Lemma
4.7.

Let B denote the upper triangular Borel subgroup of GSp(4) and let B; denote its
intersection with Sp(4).

Lemma 4.13. — For g € Sp(4, F') we have

vol(ag ™" /Z(AR) -
S L\9)

vol(a? @ /Z(AY,))

vm(g) =

Proof. — We have
Ay = {a = (diag(a1, az,a; "a3, a; 'as)}
and we fix the basis {x1, x2, x3} of X(Aar) given by x; : a — a;. We have
An, = {(1 = diag(al,ag,agl,afl)} .
We identify aps, with the subspace of aps given by those elements which are zero on

x3 and we identify a}, with the subspace {a1x1 + azx2} of aj;.
We now compute 0p(A) for A € aj; . We have

Ap ={x1— Xx2,2x2 — x3}
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and

(x1i—x2)": xair—1 xa— —1 x3+—0
and

(2x2—=x3)": x1=—0 x2—1 x3+—0.
We have

Ap, = {x1 — x2,2x2},
and
(x1=x2)": xar—1 x2— —1,

and

(2x2)V i x1— 0 xo— 1.
Hence we see that for A = A\ + azxs € a}; o, with A1 € a};, o, we have Op()\) =
0p,(M\1). Now each Borel subgroup of GSp(4) is of the form w !Bw with w an

element of the Weyl group of Sp(4). Hence we deduce that for each Borel subgroup
P of GSp(4) that contains M we have

vol (™™ /Z(A%))0p (V) = vol(a ™ /Z(A},))0p, (M),

where P, = P N Sp(4).

Next we compute vp(A, g) and vp, (A1,g). In order to compute vp(A, g) we need
to write g = npmpkp with np € Np(F), mp € M°(F) and kp € K. Since we are
assuming that g € Sp(4) we can do this inside Sp(4) and assume that mp € M; for
each P. Hence we have for A = A\; + azxs that

vp(A, g) = vp (A1, 9).

And we get
v g) = D vp(\g)lp(N)
PEP(M)
1(a§/Z(AY
= OB ZRE) S (g (M)
VOl(C‘B1 /Z(ABI)) PLeP(My)
Taking the limit as A — 0 gives the result. 4

Since the unipotent radical of B lies inside Sp(4) we conclude the following Corol-
lary of Lemmas 4.13 and 4.7.

Corollary 4.14. — Lel

1 1 r9o4+ 2124 T3

1 T4 X9
n= Np(F
n 1 o S 3( )
1
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5)) times

GSp(4) v
Then vpr(n) is equal to M

—(A% +2B% +20% + D? + 2F? + F?) + 2(AB+ AE + BD + CD + EF),

where
A = Inmax{1,|za], |za|, |25 — T122], |23 — 2324 + T12274]}
B = Inmax{1, |z1], |z2 + z124], |23}
C = Inmax{1, |z1|}
D =1Inmax{1, |z, |?, |z3 + 2122 + Ti24|}
E = Inmax{1, |z2|, |z4|}
F = Inmax{1, |z4|}.
4.3. Other groups. — We will also need to compute weighted orbital integrals on

groups closely related to GL(2). We now compute vy for M the diagonal torus in

GL(2).

Lemma 4.15. — Let M be the diagonal torus in GL(2) and B the upper triangular
Borel subgroup containing M. Then we have

VM (1 1’) = vol(agL(Q)/Z(Ag))lnmax{l, ||}

Proof. — Let @ denote the lower triangular Borel subgroup of GL(2). Then we have
P(M) ={P,Q}. We have
Ay = {a = (a1,a2)}
and we let x; € X(M) be given by x; : a — a;. We have Ap = {x1 — x2}, Ag =
{x2 = x1} and
(x1—x2)": xar—1 xa— -1
Let A = a1x1 + az2x2 € a}; ¢ then

az — aq

PN = gz (an)

(9
n= .
1
If z € R then we have n € GL(2, R) and vy (n) = 0. Next we note that for m > 0
and u € Up we have

(1 M1_) = (u—llﬂ.m 1) (W_m wm) (_7;: ") € No(F)M(F)GL(2, R)
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Therefore, if x ¢ R then

vol(af/Z(A}))

exp (—aq In|z| + az In|z|)
az —ap

vpm(a1x1 + azxz,n) =
and taking the limit as A — 0 gives vas(n) = vol(aG/Z(A%)) In |z| as required. O

4.4. Normalization of volumes. — Let M9 be one of our Levi subgroups
of GY and let M’ be a twisted endoscopic group for M°. We need to normal-
ize vol(a$/Z(A})) for P a parabolic subset of G with Levi component M with
vol(aG,/Z(AY.,)) where G’ € Ey/(G) and P’ is a parabolic subgroup of G’ with levi
component M’.

The norm map gives an isomorphism between ap and ap/; and restricts to give an
¢ and a%:. We choose measures on these spaces, which are
preserved by this isomorphism.

First we take M° to be the (2,2) Levi in G° and PP the upper triangular parabolic
in GY with M° as a Levi component. Then we have

Ay ={a= ((diag(ahal),diag(afl,afl)),ag)} ,

isomorphism between a

and
N(aa) = diag(atay, as, as, a; 2az) € GSp(4),
and
N(a) = (diag(aiasz, aj *az), diag(az, a2)) € (GL(2) x GL(2))".
Using this we see that we have
vol(af/Z(Ap)) = vol(a ™M /Z(A})) = vol(ap, @ M z(AY,)).

Next we take MY to be the (1,2,1) Levi in GY and P° the upper triangular parabolic
in GO with M? as a Levi component. First we take M’ = GL(2) x GL(1). Then we
have

Ay = {a = (diag(a, 1, 1,@1_1),(12)} ,
and
N(ac) = diag(aiaz, a1az, a; ‘a2, a; 'az) € GSp(4).
Using this we see that we have
vol(a/Z(A %)) = 2vol(ag, P /Z(A})).

Next we take M to be the (1,2,1) Leviin G and PP the upper triangular parabolic
in GO with M? as a Levi component. We take M’ = GL(1) x Resg,/p GL(1). Then
we have

Ay = {a = (diag(a, 1, 1,af1),a2)} ,
and

N(aa) = (diag(aiaz, ay *az), diag(aiaz, aj *as)) € Resg,r GL(2),
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and
N(aa) = (diag(aiaz, a; 'az),1,1) € (GL(2) x Resg,r GL(1))/ GL(1).
Using this we see that we have
vol(af/Z(A%)) = vol(af /Z(A )

for each elliptic endoscopic group G’ € Ep/(G).
Next we take M? equal to the diagonal Levi in G and P° the upper triangular
parabolic in GO with MY as a Levi component. We have

Ay = {a = (diag(al,az,az_l,afl),a3)} ,
and
N(aa) = diag(aiazas, ala2_1(I3, aflagag, aflaglag) € GSp(4),
and
N(aq) = (diag(aiazas, ay *a; taz), diag(aia; tas, aj tasas)) € (GL(2) x GL(2))'.
Using this we see that we have
vol(aff/Z(A})) = 2vol(ai P /Z(AY,)),

and
vol(a§/Z(A})) = 2vol(al P *CH) y7(AY, ).

We also need to do the same for GSp(4) and its elliptic endoscopic group
(GL(2) x GL(2))/ GL(1). First we take M equal to the Siegel Levi in GSp(4). Then

we have
. -1 -1
Ay = {a = diag(a1,a1,a7 'az, a7 'a2)},
and
N(aa) = (diag(1, a; %az), diag(a1,a1)) € (GL(2) x GL(2))/ GL(1).
Using this we see that we have
y 1
vol(aS5P™ /Z(AY)) = 3 vol(a\GL@*CLEN/GLM) sz (AY, ).
Next we take M equal to the diagonal Levi in GSp(4). We have
Apr = {diag(a1,az,a; 'az,a 'as)},
and
N(a) = (diag(1,a; 'a; tas), diag(a1, az)) € (GL(2) x GL(2))/ GL(1).
Therefore we have

» 1 \ .
vol(aBP ™ /Z(AY)) = 5 vol(alSH X GLEN/ GLM) 7 (A ).
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4.5. Weighted orbital integrals. — In this section we prove a couple of lemmas
that will be useful in the computation of our weighted orbital integrals. We begin
with the following lemma, which allows us to write our weighted orbital integrals as
integrals over the Levi subgroup itself.

For this section we take G° to be a connected reductive group over F. We let o
be a quasi-semisimple automorphism of G° which we assume to be of finite order and
defined over F'. We take M° to be a Levi component of a parabolic subgroup P°® with
unipotent radical N; we assume all these groups are defined over F. We let K be a
hyperspecial maximal compact subgroup of G° which is in good position relative to
MY, We assume that M?, P° N and K are all stable under o.

Lemma 4.16. — Let Kyy = MY(F)NK. For a € M°(F) for which ac is strongly G°-
regular let @, : N — N denote the inverse of the bijection N — N : n — a"'naa(n)

and define
or@ = [ e dn,
N(F)NK

where the Haar measure on N(F) is normalized to give N(F) N K volume one. Let
va € M(F) be strongly G°-regular then

rir(ya) = IDM('YOf)|1/2/ Ly, (m™ ya(m))op(m™ ya(m)) dm,
Moo (F)\MO(F)
where the Haar measure on M°(F) gives K volume one.

Proof. — By the Iwasawa decomposition we have G®(F) = M°(F)N(F)K and we
can write the Haar measure on GO(F) as dg = dm dn dk. By definition we have

i (o) = |DG(’YC¥)|1/2/ 1k (g™ va(g))va(g) dg
Gya (F)\GO(F)

= ng(’ya)ll/Q/ / / 1 (E7In tm~ Yya(m)a(n)a(k))
K JN(F) J Mo (F)\MO(F)
-vp (mnk) dm dn dk

1

= |Da(ya)|'/? 1 (n~'m™ ya(m)a(n))vy (n) dm dn.

N(F) /MW(F)\MO(F)
If we set a = m~tya(m) € M°(F) then we have
1

ntm™Yya(m)a(n) = a(a” n taa(n)),

which lies in K if and only if a € Kj; and a~'n~'aa(n) € N(F)N K. Hence we have

7§ (va) equal to

|De(ya)| /2 / Ly (m~ya(m))
Mo (F)\MO°(F)

/ 1N(F)0K(a71n*1aa(n))vM(n) dn dm.
N(F)
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Let n’ = a~'n~taa(n) so that n = p,(n') then we have
0
/ In(rnk(a 'nac(n))vn (n) dn :/ 'UM(<pa(n'))‘ n, dn'.
N(F) N(F)NK on
But we have
on _ DM('ya) 1/2
on’| | Dg(ya)
and hence
155 (r0) = D)2 [ L (= 50(m)) o (m 50 (m)) dm
Iy (PO\MO(F)
as wished. O

We now give a reduction for weighted orbital integrals using the topological Jordan
decomposition; see [ BWWO02, Section 3].

We now make the assumptions that all our groups are defined over R and we take
K = G°(R). We further assume that « is defined over R and is of finite order prime
to p, the residual characteristic of F'.

We continue with the notation above and assume that G° is defined over R and
let K = G°(R). Assume further that the automorphism « has order prime to the
residual characteristic of F' and that K is stable under a. For v € G°(R) we can write
ya € G uniquely as

Yo = usa = sau

with sa absolutely semisimple (i.e., sa has finite order prime to the residual char-
acteristic of F') and u topologically unipotent (i.e., u?" — 1, the identity in G°, as

We now make the assumption of [ BWWO02, Lemma 5.5]. That is, we assume that
if sy and sqa for s1, s2 € K are residually semisimple and conjugate by an element of
GO(F) then they are also conjugate by an element of K. This is automatic in the case
that « is trivial. In the case that G® = GL(4) x GL(1) and « is as in Section 2.4 this
is verified in [BWWO02]; see also [F1i99, Section I.H]. Under this assumption we have
for g € G°(F) that if g7 'va(g) € G°(R) then g € Zgo(sa)(F)K. For g € Zgo(sa)

we have

g 'usa(g) = g~ tugs.
Hence g 'usa(g) € K if and only if g~'ug € K. Furthermore, if we fix sa and set
G = Zgo(sa) then we have

1

Zgo(usa) = Zg, (u).

Assume now that v € MY(R). Then we have u,s € M°(R) and, as in Lemma
[BWWO02, Lemma 5.5],

r, (usa) = | D (usa)[/? / 1k, (g~ ug)onr(9) dg,
G1,u(F)\G1(F)
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where G, denotes the connected component of the centralizer of v in G; and the
measure on G1(F) is taken to give K1 = G1(F) N K volume one.

We now assume further that G; is connected. We note that this is the case if
G° = GSp(4) and « is trivial or if G° = GL(4) x GL(1) and « is as in Section 2.4.
Then K is a hyperspecial maximal compact subgroup of G1(F) and P, = Zpo(sa)
is a parabolic subgroup of GG;. Hence by the Iwasawa decomposition we again have

Gi(F) = P, (F)K;.

Moreover, P; has Levi decomposition M;N; where M; = Zpo(sa) and N; =
Znp(sa). We normalize the Haar measures on M, (F') and Ni(F') to give My N K,
and N, N K7 volume one. We can now mimic the proof of Lemma 4.16 to deduce the
following.

Lemma 4.17. — For a € My(F) strongly Gi-regular let ¢, : N1 — Ny denote the

inverse of the bijection Ny — Ny : n v a”‘n"tan and define

o (a) = / orr(a(n)) dn.
Ni(F)NK,

With the notations above we have

r$ (usa) = Dy, (u)‘l/Q/ IKMI('rrfl'lmz,)ap1 (m~tum) dm.
My (F)\M; (F)

5. The fundamental lemma for the (2,2) Levi

In this section we take M° to be the (2,2) Levi in G, We have

MY = {((A B) c> : A, BeGL(2),ce GL(l)}

and we write such an element as a triple (A, B, ¢). The restriction of o to MY is given

by
a: (A, B,c¢)— (w'B 'w,w' A" \w, cdet AB),

o=(,Y).

We set M’ = GL(2) x GL(1) the unramified elliptic twisted endoscopic group for M.
In this Section we prove the fundamental lemma for the pair (M, M’).

where
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5.1. Twisted integrals. — In this section we concentrate on the calculation of the
twisted integrals. Note that we have

(I,B,1)"Y(A,B,c)a(l,B,1) = (Aw'B™ w, I, cdet B),

and hence every twisted conjugacy class in MY contains a representative of the form
(A,I,c). We now determine the stable twisted conjugacy class of such an element.

Lemma 5.1. — Assume that ya € M(F) be semisimple. Let m € M(F) such that
m~iya(m) € M(F). Then there exists mq € M(F) such that

mrya(m™) = mya(my).

Proof. — We may assume that v = (A,1,c). We take m = (D, E, f) € M(F) and
assume that m~1(A, 1, c)a(m) € M(F). We have

m~ YA, I, c)a(m) = (D7 Aw' B~ w, B~ ! D™ w, cdet DE).
Hence we have F; = E~'w!D~'w € GL(2, F) and therefore,
GL(2,F) > D 'AW'E~'w = D' ADw! Fyw

from which it follows that D™*AD € GL(2, F). Now there exists D; € GL(2, F') such
that DflADl = D 'AD. Then we can take m; = (Dl,thflefl, 1). O

Thus the stable twisted conjugacy class of a strongly regular element ~ is equal to
the twisted conjugacy class of v. We now show that the twisted orbital integrals on
GO can be written as untwisted orbital integrals on GL(2).

Lemma 5.2. Let yoo = (A, I,c)a € M(F) be semisimple and strongly G°-regular.
Then if ¢ € Up we have 7'%’} (ya) = 0. Otherwise, let Ty denote the centralizer of A in
GL(2) then we have

S (va) = |Dag (va) |/ / laL2.r) (CTHAC)op(CT1AC, I, 1) dC.
JT (F)\ GL(2,F)

Proof. — By Lemma 4.16 we have
1§ 00) = [Dartra) [ [ Ly (m~ Y ya(m))op (m™ ya(m)) dm.
T(F)\MO(F)
But now let m = (C, D,e) € M°(F) then we have

m'ya(m) = (C 1 Aw' D™ w, D™ w'C~'w, cdet CD).

Thus we see that if m~'ya(m) € Ky then we have D~ 'w!C~'w € GL(2, R) from
which it follows that we must have det CD € Ur. But this then forces ¢ € Ur and
hence if ¢ ¢ Ur then r§;(ya) vanishes.
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Now assume that ¢ € Ur. Then we have that m~!ya(m) € K}, if and only if
D 'wtC~'w = C; € GL(2, R) and

C'Aw' D™ 'w = CT'ACw' Crw € GL(2, R).

Which is if, and only if, C7!AC € GL(2, R) and D = w!C~'wC; with C; € GL(2, R).
So we have m™!ya(m) € Ky if, and only if,

m = (C,w'C 'w,e)(I,Cy,1)

with C71AC, C, € GL(2, R).
Now we note that for k € K and n € N(F') we have

Phk—1ya(k) (17) = k71¢7 (('X(k)’lb(l(k?)il )kv

and hence

op(k™yalk)) :/ UM (Ph-15a(k) (1)) dn
N(F)NK
_ / var (kY on (alk)na(k) "V )k) dn
JN(F)NK

= [ urles(alkina(t) ™) dn
JN(F)NK

which equals op(v) after a suitable change of variables.

Therefore the integrand in 7§, (ya) is invariant under right multiplication of m by
an element of Kj,;. Thus if we set T equal to the centralizer of A in GL(2) then we
have

ri(ya) = |DM(7@’)‘1/2/ laLe.r) (CTHAC)op(CTHAC, I,1) dC
T\ (F)\ GL(2,F)
as wished. O

5.2. Explicit statement of the fundamental lemma. — We now give an ex-
plicit statement of the fundamental lemma for the pair (M, M'). Let va = (A, I,c)a €
M (F) be semisimple. Under the norm maps we have

cdet A
N(va) = cA € M'(F) C GSp(4, F),

and to
N(va) = ((“de“l C) .,cA> e M'(F) c (GL(2. F) x GL(2, F)))’.

By Lemma 5.1 the fundamental lemma for the pair (M, M’) is the assertion that
for all A € GL(2,F) and ¢ € F'* for which (A, I,c)a € M is strongly GY-regular we
have

r$ (AT e)a) = 7'1(5[b:p(4)((1iag((fdet A cA c)) + 7‘5\,([;,1‘(2))(6]“(2))/((1iag((; det A, c), cA).
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From Lemma 5.2 we know that the twisted integral vanishes if ¢ € Up. It is also
clear from Lemma 4.16 that the integrals on GSp(4) and (GL(2) x GL(2))’ vanish if
¢ € Up. Thus the fundamental lemma is proven in this case. Moreover, if ¢ € Up then
all integrals that appear in the statement of the fundamental lemma are independent
of ¢ and so we may assume that ¢ = 1. Furthermore, we may as well assume that
A € K; = GL(2, R). Having fixed A we let T} denote the centralizer of A in GL(2).
Then we can write

GL(2, F) = [[ Ti(F)zmK:
m20
for an explicit set of representatives z,, to be given below.

Let Py (resp. P») denote the upper triangular parabolics in GSp(4) (resp. (GL(2) x

GL(2))’) of which M’ is a Levi component. By abuse of notation we write

i-ar (7))

det B
0P1(B) =0p B
1

o (42 )3
for B € GL(2, F).

Therefore the fundamental lemma we wish to prove is given by the following.

Proposition 5.3. — Let A € GL(2, R) be such that vyao = (A,I,1)c is strongly G°-
regular. Assume that we have z' Az, € GL(2, R) if and only if m < N(A). Then

N(A)
IDar(va) V2> vol(Ky N 2 Ty (F)zm \K1)op (2, Azp)
m=0
is equal to
N(A)
|Dar (N (va )| > vol(Ky N 2 Ty (F)zin\K1) (07, (25" Azm) + 05, (2, Azin)) -
m=0

We label the identity of this Proposition by FL(A). We now proceed to prove
FL(A). We split the proof into two cases, in the first we assume that A lies in a split
torus, while in the second we assume that A lies in an elliptic torus.

5.3. Computation of op, op, and op,. — In this section we give the expressions

for op, op, and op,. We set vol(a8/Z(A})) equal to 1/Inq and normalize the other
volumes as in Section 4.4.
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5.3.1. Calculation of op. — We have

1 1 o
1 3
Np = R IS
1
1
If we identify Np(F) with F* using xj,...,z4 as our coordinates then for z =

(A, I,1) € MO(F) with

a=(24)

‘n~lza(n) is given by

the map n+— z~

T —d 0 b det A T

To 1 0 detA—d 0 b To
det A

T3 T ae c 0 detA—a O T3

T4 det A c 0 —a T4

Let B denote this matrix then we have
det B= —det A7%(det A — 1)(det A — tr A + 1);

and after a change of variables we have, for A € GL(2, R), op(A) equal to the product
of |(det A — 1)(det A — tr A + 1)| with

/ charps (B (21, 22, 23, 24)) logmax{1, |z1], |a2|, |z3], |z4], 2124 — z223|}.
JFpa

5.8.2. Calculation of op,. — We have

1 xr s
1 T

New = 1 —x
1

We identify Np, with F'3 using x, 7 and s as our coordinates. For

det A
y = A
1
with
a b
A=
(- 4
the map n +— y~'n"lyn is given by
x (det A —a)x —cr
filr]—>detAa™! —bx + (det A — d)r
s (det A — 1)s + ba® + (d — a)ar — cr?
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Therefore after a change of variables we have

op (A) =|(det A —1)(det A —tr A+ 1)[/ chargs (f(z,7,s))logmax{1, |x|, ||,
F3

5.8.8. Calculation of op,. — In this case we have
op,(A) = |det A — 1| log max{1, |z|}.
jz|<|det A—1|—1
5.4. Proof of the fundamental lemma for split tori. — In this section we

prove Proposition 5.3 when A lies in a split torus. After conjugation we may assume
that A lies in the diagonal torus 7. We begin by giving a double coset decomposition
for GL(2, F').

Lemma 5.4. — For each m > 0 let x,, € F be an element of valuation of —m. Then
we have

cLe F) = [[ niem (1 x;") Ky

m=>=0
Proof. — By the Iwasawa decomposition we have GL(2, F') = T (F)U(F)K;, where

U denotes the subgroup of GL(2) of upper triangular unipotent matrices. But for
u € Ur and x € F we have

C)-C)CD0 )

To check that the union of double cosets is disjoint we note that

L))

and for this matrix to lie in K; we would need a,b € Up and m = n. O

We now fix a sequence of elements (z,,) as in Lemma 5.4 and we set
- 1 z,,
m l .
1 fa a (a—d)rm,
Zm ( d> Zm = < d )

1 it m=0;
WKy Nz Ty (Fzm\Ky) =4 ’
vol(K1 Nz, Th (F)zm\ K1) {(q—l)qml, if m > 0.

)

Note that we have

and therefore,

We now set,
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then in the notation of Proposition 5.3 we have N(A) = v(a — d). Using the action
of the Weyl group in GL(2) we can assume that we have |a — 1| < |d — 1|. We recall
that we are assuming that F' has odd residual characteristic, so we can split the proof
of Proposition 5.3 into the following three cases

Case 1: [ad — 1| =|a—d|=|d—-1] 2 |a — 1]

Case 2: [a— 1| =|d—1| =|ad — 1| = |a — d|

Case 3: la—1|=|d—1|=|a—d| 2 |ad — 1].
Our strategy will be to show that each case follows from proving the identity FL(A)
when |ad — 1| = |a — d| = |d — 1] = |a — 1|. We then prove that the identity FL(A)
holds in this case. In order to guarantee that, for any M > 0, there exists a,d € Up
such that

lad —1|=la—d| = |d— 1] = [a— 1] = ¥

we need to make the additional assumption that ¢ > 3. See Remark 5.9 below for the
case that ¢ = 3.

We will need to compute op, op, and op, at elements of the form

a b
d
with a,d € Ur and 0 < |a —d| < |b] < 1. For op the matrix B of Section 5.3.1 equals
—d 0 b ad
0 dla—1) 0 b
0 0 a(d—1) 0
ad 0 0 —a
After suitable row operations, invertible over R, we can put B in the form
0 0 b ad-1
0 (a—1)d O b
0 0 d—1 0
d 0 0 -1
Since the function vy is invariant under right multiplication by K we may assume
that z1 = d~'xzy. After multiplying zo by d~! we get that op(A4) is given by
|a — 1]|d — 1|Jad — 1| times the integral of
log max{1, |zz|, |z3|, |24], |2] — z273]}
over the region in F® given by
. |.’L‘3| < |d_ 1|_1
e (ad —1)zy + bzs € R
o (a—1)xo + bxg € R.

We have op, at the element
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equal to |a — 1||d — 1||ad — 1| times the integral of
log max{1, [, |r|, |s[}

over the region in F3 given by

oz < Jd -1t

o —bzx+dla—1)reRr

« (ad—1)s+ z(bx — (a — d)r) € R.
5.4.1. Reduction in case 1. — We assume that we have N > M and

g M=lad—1|=la—d =|d=1>|a—1=q V.

We let L(M,N) (resp. R(M,N)) denote the left (resp. right) hand side of the
identity F'L(A) in this case. We will see that L(M, N) and R(M, N) are well defined.
In this section we prove the following Proposition.

Proposition 5.5. For all N > M we have
qL(M,N+1)—L(M,N) = 3q*M—3+(3M+N+1)(q—1) =qR(M,N+1)—R(M,N).

Proof. We begin by considering the twisted integrals op(z'Az,). We need to
integrate
log max{1, |zz|, |z3|, |z4], |25 — z2x3|}

over the region given by

ool < Jd -1t

o brg+ (ad—1)zy € R

. ((L — 1).1’2 +brys € R
where b € R with |a —d| < |b] < 1.

We first consider when |[b|~! < |z3] < |d — 1|7. Then we have

x4 = —(ad — 1)*1bw3u1
with u; € U ") and |z4] = |ad — 1]} |bas| > |b|~. Therefore,
2o = —(a — 1) bagus = (a — 1) (ad — 1)~ b2z3u1u0
with ug € U;v(bz") and |zg| = |a — 1|7 tad — 1| 71[b%x3|. Therefore,

x5 — xow3 = b?zius(ad — 1)"%(a — 1) ((a — Duy — (ad — 1)uy)
Since
[(a — Duy — (ad — Dug| = |d — 1|
for all such u; and us we have

&2 — za25] = |(ad — 1) (a — 1)~} ||bas[>.

The contribution to the integral is

la —1]"'ad — 1|7} / log |(ad — 1) (a — 1)~} |bx3 |2
(b=t <Jaws|<|d—1]
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We are now left with the region given by
o Jws] < b7

o |z4] < lad — 171

o (a—1)zo +bxy € R.

We now consider the case that |r4| > |b|~!. Then we have

o = (a — 1) tbxyu

with u € U;v(bu) and |z2| = |a — 1|7 |bz4|. Now
|25 — zoxs| = |zo||zizy ' — w3,
and
wfzy | =la — 1|[p| " |wa] < [o] 71

Therefore making the change of variables x3 +— x3 — TiT;l gives the contribution to
the integral as

|a—1|"1/ / logmax{|a — 1|7 |bxyl, |a — 1|7 bxal|23]},
lzs|<Ib| =1 Jb] =P <|za|<lad—1] !

which we can write as the sum of

|a—1|_1|b|_1/ log|a — 1|71 |bay],
|bl =t <|zal<lad—1]71

a= 11" (lad =11 = ) log J|.

J1<|z3|<[b] 71
Finally we are left with the remaining contribution, which is

/ / / log max{1, |z, |z3|, |4, |23 — 2223}
wsi<ioi=r Jizai<ip) -1 Jizzi<la=111

We note that the integrals above depend only on M, N and |b|. We now compute
the difference qL(M,N + 1) — L(M,N). For b with |b| = ¢* where 0 < k < M we
set

and

d
We need to compute gop(M, N + 1,k) — op(M, N, k). From the first contribution to
the integral the difference is given by

op(M,N. k) =op (“ b) .

q_M'H/ (M + N +1—2k+ 2log|z3])
g~ <|z3|<qM

minus
q*M/ (M + N — 2k + 2log |z3]).
Sk <|zs|<qM

The difference between the second contributions is given by

| (N + 1=k +logled) +a @ = ¢ [ loglaa
gk <|zq4|<gM 1<|xs|<qr
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minus
g 2RI / (N — k+log|zal) + ¢ 2M (g™ — ¢¥) / log 3.
gk <|z4|<qgM 1<|z3|< gk

And the difference between the third contributions is

q‘2M_N/ / / log max{1, |z3|, [xi — xows|}.
|z3|<g* J]za|<gF Jz2|=gN !

We note that |z 23| < ¢**"V~! < ¢* and so making the change of variables 3
T3 + Ty 122 in this last integral gives

q’QM’N/ / / N + 1+ logmax{1, |z3]}.
lzs|<gh Jlzal<gh Jlza|=gN+?

Using Lemma 9.1 we get
qop(M,N +1,k) —op(M,N,k) = BM + N —2k +1)(¢g—1) — 1+ ¢ M.

Now we have qL(M, N + 1) — L(M, N) equal to ¢~™ times

M-—1
(qop(M,N+1, M)—0p(M,N,M))+(q—1) Y _ (qop(M, N+1,k)—op(M,N, k))g" 7.
k=0

Using the fact that

m
(L=q71)) ig' =mg™ ~ -1
i=0 q-1

for all m > —1 we get
qL(M,N +1) — L(M,N) =3¢ ™+ (3M + N +1)(¢—1) - 3.

We now consider the right hand side of the identity FL(A). First we consider the
relevant integrals on GSp(4). Here we need to integrate

log max{1, |z|, 7], |s|}

over the region in F'® given by

o lzf <Jd -1t

o« —bzx+dla—-1reRr

o (ad—1)s+z(bx — (a — d)r) € R.
First we suppose that [b|~! < |z|]. Then r = d~'(a — 1)~ bau with u € U,
have

v(b:):). We

be — (a — d)r = bz — (a — d)d™'(a — 1) " tbzu = bz(a — 1) "'d"Y(d(a — 1) — (a — d)u)

and we note that
ld(a —1) — (a — d)u| = |d — 1]
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for all u € U;U(bx)

to the integral is

|a—1|-1|ad—l|_1/ log |a — 1|71 |ba?|.
[b] =t <[|z|<[|d—1|~*

. Hence we must have |s| = |a — 1|7!|b22|. Thus the contribution

We are now left with the region

o ol < oI

ol < Ja— 1)1

o (ad—1)s+x(bx — (a—d)r) € R
to integrate over. Making the change of variables s — s — (ad — 1)tz (bx — (a — d)r)
we see that the contribution to the integral is

logmax{1, |z|, |r],|s — (ad — 1) " z(bz — (a — d)r)|}.
/mgwx/mg.a4|1/|sl<ad_1|x gmax{L,[al,rl,|s — (ad — 1) *z(bx — (a — d)r)]}

Multiplying z,r and s by suitable units this integral equals

/ / / logmax{1, |z|, |r|,|s — 7~ Mz(bx — 77r)|}.
lz|<bl =1 JrI<la—1]71 J]s|<|ad—1] 1
The integral on (GL(2) x GL(2))’ is given by

op, (27  Azy) = |ad — 1] log |z|.
1<|z|<|ad—1|~1

We note that the integrals above depend only on M, N and |b|. For |b| = ¢,

0 < k < M, we define op, (M, N, k) and op, (M, N, k) as we did for op(M, N, k). We

now compute
(qop,(M,N + 1,k) —op, (M,N,k)) + (qop,(M,N 4+ 1,k) — op,(M, N, k)).

First we compute qop, (M, N + 1,k) — op, (M, N, k). The first part of the integral
contributes

q—M+1/ N —k+1+2log|z|
a*<|z|<gM

minus
q’M/ N — k+2log|z]|.
gt <|z|<qM

While the second part of the integral contributes

g N—2M / / / logmax{l,|x|]r|,|5—7r*M:U(bx—7rM'r)|}7
Sz|<gk Jr|=¢N+1 J]s|<gM

which equals
g N—2M / / / logmax{|r|,|s — zr|},
Jiet<ar Jiri=gv 1 Jisigqm

q—N—M/ / N + 1+ logmax{1,|z|},
lz|<gh JIr|=gN+1

since k < M < N.

which equals
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Putting this together and using Lemma 9.1 gives
(gop,(M,N +1,k) —op (M,N,k)) + (qop,(M,N + 1,k) — op,(M, N, k))

equal to

BM+N—-k+1)(g—1)—2+2¢".
And we get qR(M,N + 1) — R(M, N) equal to

3¢ M -3+ BM+N+1)(¢g—1)
as required. O
5.4.2. Reduction in case 2. — We assume that NV > M and
g M=la—1=ld-1=lad—1|>]a—d| =q¢ V.

We let L(M,N) (resp. R(M,N)) denote the left (resp. right) hand side of the
identity F'L(A) in this case. We will see that L(M, N) and R(M, N) are well defined.
In this section we prove the following Proposition.

Proposition 5.6. — For all N > M we have
L(M,N+1)—L(M,N)=0=R(M,N +1)— R(M,N).

Proof. — We begin by analyzing the twisted integrals op. For b with |b] = ¢~ we

write

op(M, N, k) = op (“ Z)
and we define, for 0 < k < N,
e(M, N,k) = op(M, N + 1,k) — op(M, N, k).

Now we have

N
GNTL(M,N 4+ 1) =0p(M,N+1,N+ 1)+ (q—1) > op(M,N +1,k)¢"*
k=0
N N
=op(M,N+1,N+1)+(g—1)> op(M,N,k)g" %+ (¢—1) Ze (M, N, k)q
k=0

N
=op(M,N+1,N+1)—op(M,N,N) + ¢Vt 'L(M,N)+ (¢ — 1) Z e(M, N, k)q

Therefore, ¢V (L(M, N + 1) — L(M, N)) is equal to
N
op(M,N +1,N+1) —op(M,N,N) + (¢ —1)>_ e(M, N, k)g"*.
k=0
Thus we will be done with the left hand side if we can show that op(M,N+1, N+1) =
op(M,N,N) and e(M, N, k) =0 for all k.
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Now recall that op(M, N, k) is given by ¢~3M times the integral of
logmax{1, |za|, ||, |z4], |23 — To23}

over the region given by

o lzal < gV

o bzs+(ad—1)xs € R

o (a—1)zo + bzy € R.

We now consider the integral over this region when |b| = ¢—*. First suppose that
q* < |r3] < ¢M. Then we have

x4 = —(ad — 1) bzsu,
with uq € U;v(bz?’) and
xo = —(a — 1) 'brgus = (a — 1) *(ad — 1) " b2 w3unu,
with us € U;v(b“). Therefore,
22 — xow3 = (ad — 1) 2b%x3u? — (a — 1) ad — 1) 'b?*03u uy
= (ad — 1) %(a — 1) '222u1 ((a — Duy — (ad — 1)us).

We have
[(a — Duy — (ad — Dug| = |d — 1|

M we have

for all u; and us and hence in the range ¢* < |z3| < ¢
log max{1, [z2], |z3], [za|, |2] — wows} = log |2} — wawa| = 2M — 2k + 2log |x3].
We are now left to integrate over the region

. |x3] < min{¢*, ¢™}

o |zal <M
o (a—1)zo + bxy € R.
Next we suppose that ¢* < |z4] < ¢™. Then we have
zo = —(a—1)"'bzau
with u € U;U(bm“). Hence,
22 — zoxs = 22 + (a — 1) bargurs = (a — 1) bagu(u (@ — )b~ 2y + 23).
Now |u~'(a — 1)b~tay| < ¢~ M+*gM = ¢F. Hence making the change of variables
x3— a3 —u (a—1)b T2y

gives the integral over this region as
i / / (M — k + log max{|z4|, |z3x4al|}) .
lzal<q® Jgk <|z4|<qM

And finally we are left with the integral

/ / / log max {1, |za|, |23, |z4l, |23 — zow3]}.
|z3|<min{q*,¢™} Jlzs|<min{q*,qgM} J|z2| <M
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It’s clear from above that op(M, N, k) does not depend on N and hence we have
e(M, N, k) =0 for all k. Moreover, we see that

op(M,N,N) = q‘gM/ log max{1, |zal, |z3|, |24, |23 — z223|}
[z2],|zs], |24l <q™
and hence we have op(M,N + 1, N + 1) =op(M, N, N).

Now we turn to the right hand side of the identity F'L(A). Let R;(M,N)
(resp. R2(M, N)) denote the contribution to R(M,N) from the sum over the op,
(resp. op,).

First we consider the integral on (GL(2) x GL(2))’. We have for 0 < m < N
=qM log max{1, |z|}
lz|<q™
and it’s clear from this that we have Ry(M,N) = Ray(M,N +1).

Now we consider the integral on GSp(4). For [b| = ¢ %, 0 < k < N, we set

op, (z;ll Azp)

JPI(M’N?k):OPI (a Cbl>,

and define
ei(M,N,k) =o0p (M,N+ 1,k) —op, (M, N, k).
As above we have ¢V (R(M,N + 1) — R(M, N)) equal to

N
O'pl(M,N-{» 17N+1) *O.Pl(MvaN) + (q_ 1) el(Mvak)qN7k~
k=0

We now show that this expression is equal to zero.
Having fixed M we set, for m € Z,

I(m)= q"3M/ / |r|log max{1, |r|,|s — 7™r?|}.
[ri<q™ J]s|<q™

We note that I(m) is constant for m > 2M. We will express op, (M, N +1,N +1) —
op, (M,N,N) and e; (M, N, k)¢ =% in terms of I(m).

We begin by computing e; (M, N, k). Recall that op, (M, N, k) is equal to ¢g—3M
times the integral of

log max{1, |z, |r], s}

over the region

o |z <M

« bz +dla—1)reR

o (ad —1)s + z(bx — (a — d)r) € R.

First we suppose that ¢® < |z| < ¢™. Then we have

r=d (a—1)"tbzu
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with u € Up"®"). Therefore,
z(br — (@ — d)r) = bzr?d 1 (a — 1) (d(a — 1) — (a — d)u)

and we have
d(a —1) = (a — d)u| = [d — 1

for all such u. Hence over this region the integrand is equal to log |ad — 1|~ !|bz?| and
therefore the contribution to ei(M , N, k) is zero.

We are now left with the region

o |z| < min{q*, ¢M}

o rf <M

. (ad —1)s + z(bx — (a — d)r) € R.
So after scaling our variables by suitable units we can take this region to be

« 2| < min{q"*, ¢}

o lr] < gM

o ™5+ x(r*z — 7wVr) € R.
Making the change of variables z — x + %ﬂ'N_kT‘ and r — 27, which doesn’t change
the integrand, this region becomes

« 2| < min{q*, ¢}

o lr] <M

o M5+ 7k(z + 7N Fr)(z — 7N Fr) € R,
Thus we see that if |z| > |7 ~*r| then we have

|7% (z 4+ 7N ) (@ — 7V TR = |7Fe?| = 7R (@ + aV TR (@ — 7V R

and the contribution to e (M, N, k) is zero. Therefore e;(M, N, k) is equal to the
difference between the integral of
g 3Mlog max{1,|r|, |s|}
over the regions
. |T| < q]VI
o Ja| < g N
o ™M s 4 7k (x4 7Nk (2 — 7NFI-Fr) € R,
and
o <M
o o] <gFNr|
o M5t 7k(x + 7N Fr) (@ — 7V Fr) € R.
Over the first region the integral is equal the sum of
g Mg N - g IERN — k),

the contribution when |z| = ¢*~V|r|,

q—&qu—N—QI(QN _ k‘ + 2)
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the contribution when |z| < ¢*~V~2|r|, and

oo

g MmN (1=3¢ YIRN —k+2)+¢ M"Y "2 *(1—q ) I(2N —k+2+a)
a=1

the contribution when |z| = ¢*~N~=1|r|.

Over the second region the integral is equal to the sum of
q—3qu—N—II(2N _ k)

Ic—N~1|,,,|’

the contribution when |z| < ¢ and

oo
q MmN (1 =3¢ I@N — k) +q*MgF N Y "2¢7 (1 — ¢ HIR2N — k +a)
a=1
the contribution when |z| = ¢~V |r|.
Hence we have e; (M, N, k)gN =% equal to ¢~3M times

¢ 'I2N — k) 4+q '(1—2¢")I(2N — k +2)

+q > 207 (1—q¢ )TN —k+2+4a) - I2N -k +a)),
a=1

which equals ¢~3 times the sum of
¢ (2N — k) —q ' I(2N — k +2),

and

(oo} oo
207 (1—q )Y ¢ I@N —k+2+a)—2¢ " (1—¢")> ¢ “I2N —k+1+a).
a=0 a=0
We now sum from k = 0 to V. By telescoping we have

N
> qUI@N —k)—q ' I2N —k+2) =q 'I(N)+q 'I(N +1) — 27 1(2M).
k=0

While we have

N oo N oo
DY T IRN —k+24a)—> > g “I2N —k+1+a)

k=0 a=0 k=0 a=0
equal to
N+1 oo N oo
DD T N +k+1+a)=Y > ¢ “I(N+k+1+a),
k=1 a=0 k=0a=0

which equals

>IN +2+a)—> g °I(N+1+a),

a=0 a=0

SOCIETE MATHEMATIQUE DE FRANCE 2005



344 D. WHITEHOUSE

which equals

1 =

a=0

using the fact that I(m) is constant for m > 2M. Putting this altogether we get

N
qszu(q —1) ZGI(AL N, k,)qN—k
k=0
equal to
oo
(=g IN)+ (1 =g DI(N+1)=2(1—q ") ¢ “I(N+1+a).
a=0

Next we compute op, (M, N +1,N+1)—op (M, N,N) in terms of I(m). We have

op, (M, N, N) equal to ¢~3M times the integral of
log max{1, |z|, ||, |s|}

over the region

o fel. Irl < ¢

aMs +aNg(x —7) € R,

which becomes, after the change of variables r +— x — r that doesn’t affect the inte-
grand,

o Jzl, ] < g™
o« ™™s 4+ 7Nar € R.

Since the region and integrand are symmetric in x and » we can compute this integral
as twice the integral when |x| < |r| minus the integral when || = |r|. The contribution
from when |z| < |r| is

o0

Z/l L] ., (=@ )x*rllogmax{L, |rl, |s _ a2
a=0 T, gq 1

which equals

While the contribution whe

S g (- g HIN +a).
na\JJT: 7| is equal to (1 — ¢ 1)I(N). Hence we have
op (M,N +1,N +1) — op,(M,N,N)
equal to ¢73M times
Qi (0 —q¢ HI(N+1+4a)—(1—qg HI(N+1)

a=0

minus

2> (¢7*(1—q "IN +a)) — (1 - ¢ HI(N).

a=0
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But we have

2y g (1—g¢ DI(N+1+a)—2> ¢ *(1—q HI(N +a)

a=0 a=0
equal to
201—¢7 ") (¢7“I(N + 14a)) —2(1 — ¢ I(N),
a=0

and hence we have ¢*™ (op, (M,N + 1, N + 1) — op (M, N, N)) equal to

2(1 —q1)? iq_“I(N +1+a)-(1—qg HI(N+1)—(1—q HI(N).

a=0

Thus Ry (M, N + 1) — Ry(M, N) = 0 as required. |
5.4.8. Reduction in case 3. — We assume that N > M and
g M=la-1|=|d-1=]a—d| >|ad— 1] =q V.

We let L(M,N) (resp. R(M, N)) denote the left (resp. right) hand side of the
identity F'L(A) in this case. We will see that L(M, N) and R(M, N) are well defined.
In this section we prove the following Proposition.

Proposition 5.7. — For all N > M we have
qL(M,N+1)—L(M,N) = Qq_M—2+2(M+N+1)(q—1) =qR(M,N+1)—R(M,N).

Proof. — We begin by considering the twisted integrals op(z,,,! Az,,). Again we need
to integrate
log max{1, |z, |z3|, |zal, |23 — zox3|}
over the region in F? given by
o |z3| < |d—1]71
o bzs + (ad—1)zy € R
e (a—1)x2+bzg € R.

We first consider the contribution when |[b|~! < |z3|. Then we have

x4 = —(ad — 1) " bzzuy
with u, € U, Therefore |x4] = |ad — 1|~} |bzs| > |b|~! and hence
2 = —(a— 1) " brgus = (a — 1) (ad — 1) b2z3u1u0
with uy € U "™, Thus,

23 — xox3 = (ad — 1) "%(a — 1)~ '?23u1 (us (@ — 1) — (ad — 1)us).

Since
|lui(a — 1) — (ad — Nug| = |d — 1|
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for all u; and us we have
|22 — zox3| = |(ad — 1) 720?23

So the contribution when |b|7! < |z3] is

|ad—1|*1|u—1|*1/ log |(ad — 1)"%b%22].
b= <|zs|<|d—1] =1

We are now left to integrate over
o Jas| < [0
o |z4| < Jad — 1|71
e (a—1)zo +bxy € R.
Suppose that |z4] > |b|~!. Then we have

xg = —(a — 1)71bx4u

vbza) and

with v € Up
x5 — xomw3 = 2+ (a — 1) Ybrqurs = x4(xg + (@ — 1) tbuzxs).
So after multiplying x3 by a suitable unit the contribution to the integral is

T / / log max{|7 ™ Mbxy|, |x4(xs + 7 Mbx3)|}.
lwa|<[b| =1 Jb] 1 <|za|<|ad—1] 7

Finally, when |z4| < |b|’1 the contribution is

/ / / log max{1,|val, |z3]|, |74|, |23 — T2w35]}.
les|<IbI =t ]zl <[~ Sz <la—1] 1

We define o p(M, N, k) as before and now compute gop(N +1, M, k)—op(N, M, k).
From the first contribution to the integral the difference is given by

q*M“/ (2N — 2k + 2 + 2log |x3])
Jak<|z3|<gM
minus
q*M/ (2N — 2k + 2log |z3]).
J gk <|zz|<gM
The difference between the second contributions is

2q~ M-N+k / log |z4l,
Jjeal=g~+1

and the difference between the third contributions is zero. Using Lemma 9.1 we get
qgop(M,N +1,k) —op(M,N,k) =2(M + N —k+1)(¢g—1),
and we compute

qL(M,N +1)— L(M,N) =2~ ™ =2+ 2(M + N + 1)(q — 1).

ASTERISQUE 302



THE TWISTED WEIGHTED FUNDAMENTAL LEMMA 347

We now turn our attention to the right hand side of the identity F'L(A). First we
look at computing the integrals op, (2, Az,,). We are integrating the function

logmax{1, |z|, |r|, |s|}
over the region
o |zl <|d-1]71
e ~bzx+dla—1)re R
o (ad—1)s 4+ z(bx — (a — d)r) € R.
If |b]~! < |z| then we have
r=d Ya—-1)"bzu
with u € U "), Then
be — (a — d)r = bxd *(a — 1) (d(a — 1) — (a — d)u),
and we have
|d(a — 1) = (a — d)u| = |d — 1|
for all such u. Hence we have
|s| = |ad — 1]~ |ba?|.

Therefore, the contribution to the integral is

lad — 1|7 a — 1|7} / log lad — 1|7 [ba?|.
Sl -1 <jzi<]d=1]-1
The region that’s left is given by
ozl < fb 7
cr) < ja—1]71t
« (ad —1)s +xz(bx — (a —d)r) € R.

Making the change of variables s — s — (ad — 1) "'z (bx — (a — d)r) gives the remaining
integral as

/ / / log max{1, ||, |r], |s — (ad — 1)~ "2(bz — (a — d)r)|}.
el<b1 = Jiri<la=11-1 Jjsi<lad—1]-1

And making the change of variables r +— 7 + (a — d) "1bx gives this integral as

max4 1, x|, |r —d)" b - -1 Ya=d)zr|}.
Aﬂg[ﬂ'l/h‘léhl—ll_l/l log max{1, |z|, |r+(a—d) " bz|, |s—(ad—1)""(a—d)zr|}

s|<lad—1[~1
We see that if [zr| > |a — d|~! then the integrand equals
log |ad — 1|7 Ya — d||xr|,

and so the contribution to the integral from this region is

]ad—l['I/ / log lad — 1|~ !a — d||xr|.
1<)2)< bl a1/ |a] 1 <[r[<[a—1] 1
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Now we look at the contribution when |zr| < |a—d|~!. This is given, after suitable
change of variables in x and s, by

/ / / log max{1, |[z|, |7 + 7™bx|,|s|}.
lz|<]b] = Jri<la=1]" 1 zr|<la—1] 7 Js|<lad—1] 7!

We define op, (M,N,k) as before and we now compute gop, (M,N + 1,k) —
op, (M, N, k). The difference between the first contributions to the integrals gives

q—M+1/ (N+1—/c+2log|x|)—q*M/ (N —k + 2log|z]).
gk <|z|<qM Jak <|x|<qM

The difference between the second contributions is

M- [ (¥ - M+ logly) [ jaf
JgM <yl <gM Ttk JqM|y|<|z|<qk

— Mg - 1)2/ (N +logy))(k +1 — log y])
1<|yl<q®

plus

q—21u+1/ / le‘lzq‘M(q—l)/ k+1—10g[y|‘
qM <|y|<gM+r Jq=My|<|z|<g® J1<]y|<qk

And the difference between the third contributions is

o [ [ sl
[z|<gk Jr|<gM er|<gM Ss|=gN+1

Putting these altogether gives
qop (M,N +1,k) —op (M,N, k)= (2M + N —k+1)(g—1) =1 +q M.
We note that we have
qop,(M,N + 1,k) —op,(M,N, k) = (N +1)(g — 1)
and hence
qlop,(M,N +1,k) + op,(M,N + 1,k)) — (op,(M,N + 1,k) + op,(M,N + 1,k))
equals
(2M +2N —k+2)(g— 1) —1+4¢ M.
We now compute

qR(M,N +1) — R(M,N) =2¢~™ —2 4 2(M + N + 1)(¢ — 1)

as desired. O
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5.4.4. Proof when M = N. — We assume that we have
la—1l=1|d—1]=|ad — 1| = |d — 1| = ¢ M.
We let L(M) (resp. R(M)) denote the left (resp. right) hand side of the identity

FL(A). We now prove the following Proposition which completes the proof of Propo-
sition 5.3 in the case that A lies in a split torus.

Proposition 5.8. — For all M > 0 we have
1— q—l\l
L(M)=4M — 4———1— = R(M).
q—
Proof. — We begin by computing the left hand side of FL(A). For b with |b| = ¢=*
we set

op(M,k) = op <“ 3) .

As we have seen op (M, k) is equal to the sum of

q—I\/I/ log(sz_%]z;;]Z),
q* <|z3|<qM

and
q—21b1+k/ log(qM_kI:L'4|),
gk <|z4|<gM
and
(qfll/l _q721\1+k)/ log[ity,l,
1<|z3|<qk
and

q M / / / log max{1, |zs|, |23, |x4], |23 — xzows|}.
Jz3|<qk Jza|<qF Vx| <qM

Putting this altogether gives

1 M akeamy  OFTM —g3M
O'P(]\/fk):(4]\/[—~2k)+qj(—2+q + g : )__ q3_1
And we get
M1 1—g-M
L(M) = op(M, M) +(q—1) Y op(M, k)g™ * 1 = anr —4—T— —
q—
k=0

We now compute R(M). We define op, (M, k) and op,(M, k) similarly. First we
note that
1— q—l\’f
Mk)y=M — ————.
Upz( ’ ) q—1

We now compute op, (M, k). As we have seen this is equal to the sum of

M / log(q™~*|z|?),
g+ <|z|<qM
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Now we consider the contribution when |z| < ¢*. In this case we need to have that
(ad — 1)zr € R. When |z| < 1 the contribution is

F(1) + /1<| o F(r)).

Finally we are left with the region 1 < |z| < ¢! and |r| < ¢M|z|~!. Let’s set |z| = ¢*
with 1 <4 < I. Then |r| < ¢™~%. Note that for all such i we have ¢* < ¢™~%. If we
split up the cases that |r| < ¢* and ¢* < |r| < ¢ then the contribution to the integral
is
!
> vol(jz| = ¢') <ti(qi) + / , F(ITD) :
i=1 g <|r|<gM 1
Putting this altogether gives op, (M, k) + op,(M, k) equal to
34 d4gM _gmM—ktl =M=l _g=8M  —3M43042 _ o~3M+2

AM — k) + - +
( ) q—1 ¢ -1 (¢+1)(¢*—1)
And we compute the right hand side of FL(A) to be
M
-1
AM@M — 44— =
qg—1
as required. O
Remark 5.9. — We made the assumption that ¢ > 3 in order to ensure that we could

reduce to this M = N case. However, in the case that ¢ > 3 the reductions made
are still valid. The identity proven in the Proposition above is again valid, it’s just
that it doesn’t actually represent a case of the fundamental lemma since there are no
elements a and d satisfying the necessary conditions. Hence the fundamental lemma
for the (2,2) Levi is proven in the case that ¢ = 3 as well.

5.5. Proof of the fundamental lemma for elliptic tori. — In this section we
prove Proposition 5.3 in the case that A lies in an elliptic torus. In this case we may
assume that

a bD
A= (b a> € GL(2, R)

with v(D) =0or 1 and Ep = F(\/B) a quadratic extension of F'. We note that for
v=(A,1,1) € M°(F) we have

|Da(ya)|'/? = [bV'D| = [Dar (N (va))| /2.
We take the following from [F1i99, Section I.I]. Let 7} denote the torus in GL(2)
with

x

Ty(F) = {(; yD) €GL(2,F):z+yVD e Eg}
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and

q_3M/ / / log max{1, |z|,|r|,|s — (ad — 1) 'z (bx — (ad — 1)r)|}.
lzi<gh JIr|<q™ Jls|<qM

We turn our attention to computing this latter integral. It’s clear that if |z(bx —
(ad—1)r)| > 1 then the final term dominates. We begin by computing the contribution
to the integral in this case. We need to compute the volume of z and r such that
lz(bx — (a — d)r)| = ¢™ for m > 0.

Making the change of variables

1
T T+ i(ad — )bty e 27

turns this into
|b| "t bz — (a — d)r||bx — (a — d)r|.

We now make the change of variables u = bx — (ad — 1)r and v = bz + (ad — 1)r,
which multiplies the integral by |b|~!|ad — 1|7!. Given m with 0 < m < k the volume
m

of w and v such that |uv| = ¢~ ™ is

> vol(jul = g~ ™) vol(jo] = ¢ ") = (m+ 1)g™ ™ (1 —q )%

n=0
Thus the contribution to op, (M, k) when |z(bx — (ad — 1)r)| > 1 is
k-1
MY (m A DM +k—m)g (1 —-q )%

m=0
We are now left the range of integration
oz < gF ] <M, 2(bz — (ad — 1)) € R
. |s] < M

and after making of change of variables in s we can take our integrand to be
logmax{1, |z|, ||, |s|}.

We set | = |k/2], so that |bxr?| > 1 if and only if |z| > ¢'. We define, for a > 0,

a

g

F(q¢*) = / log max{q®, |s|} = Mq¢™ — 1
|s|<gM -

Let us first consider the case that ¢ < |z| < ¢*. Then in order that z(bz — (ad —

1)r) € R we need r = (ad — 1)~ 'bzu with u € U;U(bmz). The volume of such r equals

[(ad — 1)"'z~1| and the contribution to the integral is

/ L Nad =07 o)
g <|r|sq
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Similarly we reduce the proof of FL(A) when |det A — 1| < [b2D| to the case that
|det A — 1] = |b?D|; we then prove FL(A) in the case that |02D| < |det A — 1| < |b].

We again need to make the assumption that ¢ > 3. However the same argument
as in Remark 5.9 allows us to deduce the fundamental lemma in the case that ¢ = 3
as well.

5.5.1. Proof when b is a unit. — We begin by proving Proposition 5.3 under the
assumption that b € Up.

Proposition 5.10. — Let A be as above with b € Up. If we have |T(A)| = 1 then both
sides of FL(A) are equal to
2|D|*/?|det A — 1] log max{1, |z|}.
J|z|<|det A—1]~1

Otherwise we must have v(D) = 1 and a € U}, then if we set |[det A — 1| = ¢~ % we
have both sides of FL(A) equal to

1— qfkfl
|D|/? (Qk +14qF 1t - 2———) .
qg—1
Proof. — We first compute the twisted integral. In this case after applying row
operations invertible over R we get B in the form

00 a—1 b
00 (detA—1T(A) 0
b 0 det A —a 0
0 b?> —det A(det A —a) —ab

Hence we have
lza| < |(det A —1)T(A)| ™!

and we can take bzy = —(a — 1)z3, br; = —(det A — a)x3 and

b’zy = (det A — adet A — a” + a)zs.

Then
b (z174 — zow3) = — det AV*T(A)x3
and hence |z124 — 22x3| = |T(A)2%]. So we have
op(A) = |det A — 1||T(A)]| log max{1, |z3|, |[T'(A)z3|}.

lza|<|det A—1]=1|T(A)[~?
The integral on (GL(2) x GL(2))’ is

|det A — 1| log max{1, |z|}.
|z|<|det A—1|~1

In order to compute the integral on GSp(4) we need to integrate

log max{1, |z], |r|, |s|}
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Let z,,, = diag(1, #™) then we have the double coset decomposition
GL(2, F) = [[ Tv(F)zmK1,
m>0
where K; = GL(2, R). We have
2o Az, = (W‘a’/”b 7r";bD> .
and so z,,' Az, € K if and only if m < v(b). We have

Klﬁz;lel(F)ZmZ{( _l,.n " yD) eKl}.
My x

So if we set vol(D, m) = vol(K; N 2} T} (F)z,\ K1) then we have

1, if Ep/F unramified and m = 0;
vol(D,m) =< (q+1)¢™™ !, if Ep/F unramified and m > 0;
qm. if Ep/F ramified.

We set T'(A) = det A — tr A + 1. Then we have Up(Z;llAZ"L) equal to the product
of |det A — 1||T'(A)| with

/ char g (B'(z1, 22, 23, x4)) log max{1, |z1]. |xa|, |3, |24, |z124 — xows|},
J e

where B is the matrix

—a 0 ambD  det A
0 detA—a 0 7™bD
7w~ ™bh 0 det A —a 0
detA 7~ ™b 0 —a

We have op, (2,1 Az,,) equal to |det A — 1||T(A)]| times the integral of

m

log max{1, |z, |r[, [s[}

over the region in I given by

o (det A —a)r — 7 ™br € R

o« —mMbDx + (det A—a)r € R

o (det A —1)s — 7~ ™b(r? — 72™D2?) € R.

And we have

opy (2, Az) = |det A — 1] log |z|.
Ji<|z|<|det A—1|~!

As in the case that A lies in a split torus we will reduce the proof of F'L(A) to
certain cases. We find, in the course of the proof, that the integrals in the identity
FL(A) depend only on |b| and |det A — 1|. We first prove the equality in the case that
b is a unit. Using similar reductions as above we reduce the proof of FL(A) when
|b] < |det A — 1] to the case that |b| = |det A — 1|; we then prove F'L(A) in this case.
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over (z,r,s) € F? such that
det A —a -b T 2
< “bD  det A — a> <r> €h

(det A — 1)s 4+ b(Dz? —7?) € R.
Doing the row operation R2 — bR2 + (det A — a)R1 in the matrix above gives
detA—a —b
T(A)detA 0 )°
Hence we need |z| < |T(A)|7! and (det A — a)x — br € R.
Therefore if |T(A)] = 1 we have

and

op (A) = |det A — 1] logmax{1,|s|}
J|s|<|det A—1|—1

and the result follows.

Let a1 = a + bvD and as = a — bv/D be the eigenvalues of A in Ep. We have
T(A) = (a1 — 1)(as — 1) and hence if |T(A)] < 1 we must have v(D) = 1 and
a € Up. It follows that [T(A)| = ¢~'. We now assume that this is the case and set
|det A — 1| = ¢ *. The twisted integral is

|D|1/2q_k_l/| w 1logm:—m{l,q']|:/1:3|2}
z3|<qkt

and the integral on (GL(2) x GL(2))" is

|D|}/2qF / log(max {1, |z|}).

Jlz|<qk

For the integral on GSp(4) we first note that b(r? — Dz?) € R if and only if z and
r are in R, and hence if and only if x € R. The integral on GSp(4) is therefore the
sum of

|D|/2gk-1 / log max{1, [s|},

Js|<qk
the term contributing when |z| < 1, and

|D|1/2q_1 / k41
Jlzl=q

the term contributing when |z| = q.
We compute the twisted integral to be

12 (o —k—1 per -1 k-1, k+1
|DI 2q (k+1)q To1 )¢ (@ =1)).

The integral on (GL(2) x GL(2))" equals

9 |
|D|1/2q*"' (qu _4q )
qg—1
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and the integral on GSp(4) equals

o1 (7 (ke = L) e -0

Hence we get both the left and right hand sides of the identity F'L(A) equal to
1— —k—1
|D|Y/? (2k e 2;’———)
qg—1
and we are done. O
For the rest of this Section we assume that |b| < 1.

5.5.2. Reduction when |b] < |det A — 1]. — In this section we reduce the proof of
Proposition 5.3 in the case that [b] < |det A — 1] to the case that |b| = |[det A — 1].
We note that if we have [b| < 1 and |det A — 1| = 1 then we have |[T'(A)| = 1 and
|det A — 1| = 1. It follows that both sides of F"L(A) vanish in this case. Thus we may
as well assume that we also have |det A — 1] < 1.

Under the assumption |b] < |det A — 1| < 1 we have

|det A—a|=|a—1] =|det A—1|=q¢ M
and hence |T(A4)| = |a — 1|?> = ¢~ ?M. We set n = det A then
n—ala—1)(n—a)"t=n-a)"ala—1)*a+1) = b*D(n+ala—1))).

Hence if |b| < |a — 1| we have

In —a(a—1)(n—a)" ! =|n—1|.
On the other hand if |b| = |a — 1] then, provided ¢ > 3, given b we can choose a such
that |a — 1| = |b| and

In—ala=1)(n—a)~|=|n - 1|,

we make this further assumption in the case that [b] = |a — 1].
We now assume that N > M and

g N =1|b <|detA—1|=¢q M.

We let L(M, N) (resp. R(M, N)) denote the left (resp. right) hand side of the identity
FL(A) in this case. We now prove the following Proposition.

Proposition 5.11. — With the notations and assumptions above we have, for all N >
M>1, LM,N+1)—L(M,N) and R(M,N + 1) — R(M, N) equal to

—M

1_ 1_g-3M
~N-1|1y1/2 q q

D 2M — - — )
fq |D| ( p— g )

where f = f(Ep/F) is the degree of the residue field extension.
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Proof. — We begin by seeing how to compute op(z,' A2,,). Recall we have

—a 0 ambD  det A

0 detA—a 0 T™mbD
T ™b 0 det A —a 0
detA 77 ™b 0 —a

B =

We now do a series of row operations invertible over R to get B in a suitable form.
The row operation R1 — n~1(R1 — (7™bD)(n — a) ' R3) gives

—(a—-1n—-a)"t 0 0 1
0 n—a 0 «™bD

T~ "™h 0 n—a 0

n T ™h 0 —a

Now we do R2 — R2 — (#™bD)R1 and R1 — aR1 + R4 to give
n—ala—1)(n—-a)"t 7=™b 0 0
(a—1)(n—a)'x™bD n—a O 0

T~ ™b 0 n—a O
n ™™™mb 0 —a
Now
n—ala—1)(n—a)"t = ~(n—a) " (~ala—1)*(a+1) +b°D(n +a(a - 1)))

and therefore provided a — 1 € Up we have

In—a(a—1)(n—-a)"=|n—al a—1]*=|n—a| > |7™bD]|.
Next we do R2 — R2 — (a — 1)7™bD(a — a? + n? — an) ' R1 to give
(n—a)"Y(a—a?+n?-an) ™ 0 0
0 n—a—(a—1)(a—a?+n?—-an)"¥?D 0 0
w~"b 0 n—a 0
n A) 0 -—a

But now
l(a — 1)(a —a® +n? —an)"?D| = |a — 1|7 |b? D).

After multiplying row 2 by a suitable unit and adding row 1 to row 4 and multiplying
1

it by a™* we get
(n—a)Y(a—a?*+n?2—an) =™ 0 O
0 n—a 0 0
T~ ™b 0 n—a O
(a—1)(n—a) ! 0 0 -1

Therefore in order to compute the twisted integral we need to integrate the function
log max{1, |z1], |z2|, |z3], |z4], |z124 — 223]}

over the region
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o T2 < — 1|7t

e (n—a)y'(a—a®+n?—an)z; + 7 "brs € R

e T ™Mby + (n—a)zzs € R

e(a=1)(n—a)lzy — 24 € R.
Note that we can set z4 = (a — 1)(n — a)~!'x; and make the change of variables
x3 — (@ —1)(n — a) " 'z3 to give our integral as the integral of

log max{1, |1, |z2|, |z3], |27 — z223]}

over the region

o Jz2| <n— 171

«(n—a)"a—a®+n?—an)r; + 1 "bxy € R

o« m™bxy + (a — 1)z3 € R.

First we note that for m such that |7~"b| < |n — 1] this region becomes

. |’I?2| < !’I’L — 1|71

o Jz1] < n— 171

o a3l < |n— 1171

Now assume that |[7~"b| > |n—1|. First suppose that |[77"b|7! < |z2| < |n—1|71.

Then we have

2

1 = —(n—a)(a—a®+n?—an) 'n Mbxou,

with u; € U;"(”HI 522) and

|z1] = |n — a| Y7 Mbag| > |m bt
hence
r3 = —(a — 1)717r‘mb$1u2
=(a—1)" n—a)a—a®>+n?—an) 77202 20uus
with up € U;i(ﬂimbm); and therefore |z3| = [(n — 1)72||7~™b|?|22|. Now we have

L% — xox3 equal to
23 2% uy (a—1)"H(n—a)(a—a*+n?—an)"((n—a)(a—1)u; — (a—a®+n?— an)us).
And since
(n—a)(a—1)— (a —a*+n*—an) = —nT(A)
S0
|(n—a)(a—1)uy — (a —a® +n* —an)ug| = |n — 1>
for all u; and us. Hence we deduce that
|23 — zoxs| = |7~ "b(n — a) " lay|?

Thus the contribution to the integral is

[n— 1|_2/ 2log | ™b(n — 1) ay).
=m0 =1 <[zal<|n 1]
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So we are now left with the region

o |z < bt

oz < n =17t

o« T bz + (a — 1)z3 € R.

We first consider the case that |7~ ™b| ! < |z1| < [n — 1|7, Then we have
r3=—(a—1)"'r "br1u

with u € U;U(bx')

. Hence |z3| = |(n — 1)"'n~™b||x1]. Then
2 — xowz = 22 + (a — 1)~ ln ™baaxu
=(a—1)"r "buzi((a — D)a™b u ey 4 x2).
Now |(a — 1)7™b~ 'u~tx;| < |7#~™b|~! and so making the change of variables
ZTo — o — (a — l)ﬂmb*1u71x1

gives the integral as

]n—ll_l/ / log(l(n—1)’17r_mbx1|max{1,].r2]}).
fr=mb|=1<|z1|<|n—1]71 J|za|<|m b1

Finally we are left with the region
o |zo| < 70!
o 2] < |mmmp|
o lz3| < n =171

We see that the integrals above depend only on |b|, |n—1| and m. For [a—1| = ¢~ ™

and |b| = ¢~V we set
op(M,N,m) = ap(z;llAzm)
then it’s clear from above that we have
op(M,N+1,m+1)=o0op(M,N,m)

for all m with 0 < m < N. So we have |D|~/2¢N (¢L(M,N + 1) — L(M, N)) equal
to

N41 N
Z vol(D,m)op(M,N + 1,m) — Z vol(D,m)op(M,N,m),
m=0 m=0

which equals

N
vol(D,0)op(M,N +1,0) + Z (vol(D,m + 1) — vol(D, m))op(M, N,m)).

m=0

In the case that |D| = ¢=! we have vol(D,m) = ¢™ for all m and hence we see
that

gDV (L(M, N + 1) = L(M,N)) = op(M, N + 1,0).
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In the case that |D| = 1 we have vol(D,0) = 1 and vol(D,m) = (¢ + 1)¢g™ ! if
m > 0. Hence

vol(D, 1) — vol(D,0) = ¢q
and if m > 0 then
vol(D,m + 1) — vol(D,m) = (¢ + 1)¢"™ — (¢ + 1)¢" " = (¢ — 1)(q + 1)¢" .
So we see that if |[D| = 1 then
|D|7Y2¢NFY(L(M,N + 1) — L(M,N)) = op(M, N + 1,0) + op(M, N,0).

Now for N > M we have
_ —3M , , , 2 s
op(M,N,0) =q / / / logmax{1, |z1],|z2|, |z3], |2 — 23|}
[z1|<gM Jlz2|<gM Jaz|<gM

Hence we get from Lemma 9.7 that

N+1jp|—1/2 B 1—¢ M 1—¢3M
gV DI (LM, N 1) = LM, N)) = ] (2M =~ = ot )

We now turn to computing the right hand side of FL(A). First we consider the
integral on GSp(4). Recall we need to integrate

logmax{1, |z|, ||, |s|}

over the region in F given by

e (n—a)r—7"™br € R
o« —™bDz + (n —a)r € R
e (n—1)s — 7~ ™b(r* — n?mDx?) € R.

Now consider
n—a —n™b
—m™bD n—a )’
Doing the row operation R2 — R2 + n™bD(n — a) ! R1 gives
n—a )
0 (n—a) nTA))"
Note that |T'(A)| = [n — 1|2 and hence we need to integrate

logmax{1, |z|, |r], |s|}

over the region in F® given by
el <n—171t
e(n—a)r—7m""bre R
e (n—1)s — 77 ™b(r? — 2™ Dx?) € R.
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and over the region
. [r| < min{g™, ¢¥ "™}
. |zl < g
o M5 — N (2 — D(zm™)?) € R.
When |r| > |7™z| we have
Ir® = D(aw™)?| = |rf? = r? — D(ex™ )2

and the integrals cancel. Hence e(M, N, m) is given by the difference between inte-
grating

g *Mlog max{1, |2/, |s|}
over the regions

o x| <M

. || < g7l

. 7TM5 _ ﬂ.N—'m,(TZ _ D(.’EW"L+1)2) c R,
and
M

o |zl <q
o || < g7l
o ™Ms — gN=m(p2 — D(z7n™)?) € R.
Now note that when |r| < ¢~ ?|z| we have
|’I”2 _ D((I?Wm+1)2| — |D(:U7Tm+l)2|
and
|r? — D(xzr™)?| = |D(xr™)?|.

Hence e(M, N, m) is given as the difference between integrating

g M g=m=2 |2/ log max{1, |z, |s|}
over the region
o |zl < g
e Mg — gNIMA2ZDY2 ¢ R
and
o x| <M

e mMs —aNtm D22 e R
plus the difference between integrating
¢ M1 — ¢ Hg ™ Y| log max{1,|z], |s|}

over the region

o |z < M

e Mg — gN+tm+2,2 ¢ R
and
. M
.zl <q
e Mg — gN+tM D22 ¢ R,
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First suppose that [#=™b|~! < |r| < |n — 1|7!. Then we have
x=(n—a) v "bru
with u € U, ") 8o
(n—=1)s =77 "b(r? — 7" Da?) = (n — 1)s — 7 "b(r? — 7*"D((n — a) " 7 "bru)?)
=(n—1)s—7a "br*(1 — Db*(n — a)~2u?).

Hence the contribution to the integral is
In—1|‘2/ log [n — 1|~ Ym—br?|.
Jlmmmb 1< |r|<|n—1]"1!

We are then left with the region

o |7l <min{jn — 1|7, |7=™p| 71}

ol < |n—171

e (n—1)s — 7 ™b(r? — w®™ Dx?) € R.

The integrals above depend only on |[b| = ¢V, |n — 1| = ¢~

op,(M,N,m) =op, (2, ' Az,,)

M and m. We set

and write
op(M,N+1,m+1)=o0p (M,N,m)+e(M,N,m).
Let Ry (M, N) denote the contribution of the GSp(4) integral to the right hand side
of the identity FL(A). Then we have |D|=1/2 (¢NT1Ry (M, N + 1) — ¢V Ry (M, N))
equal to

op, (M,N +1,0)+ i (vol(D,m + 1) — vol(D, m))op, (M, N, m)
m=0
+ i vol(D,m + 1)e(M, N,m).
m=0
Thus when |D| = ¢~ we have ¢V D|"V2(R,(M,N + 1) — R (M, N)) equal to
op (M,N +1,0) + EN: vol(D,m + 1)e(M, N, m)
m=0

and when |D| = 1 we have ¢V D|=Y2(Ry (M, N + 1) — R, (M, N)) equal to
N
op,(M,N +1.0) + op, (M,N.0) + > _ vol(D.m + 1)e(M.N,m).
m=0

We now set about computing e(M, N, m), which is given by the difference between

integrating
q *Mlogmax{1, |z|,|r|,|s|}

over the region

o 7] < min{gM, ¢V}
ozl < gV
. 7T1”s _ 7.‘_]\7—111,(7.2 _ D(.’ITﬂ'"H_l)Q) c R,
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But adding all this together gives e(M, N, m) as the difference between integrating

¢ M g™ 2|2 log max{1, |z, s|}
over

.z < g™

e Mg — gpN+mT2 D02 ¢ R
and

ozl < gM

. TF]WS _ 7TN+7rl,+22.2 cR
plus the difference between integrating
q 3 Mg Y| logmax{1, |z, |s|}

over the region
o |z] < gM
e eMg — gNTME2,2 ¢ R

and

.z <gM

o M5 — gN+tm D22 € R.

Having fixed M, N and D we set I(k) equal to the integral of

/2] log max{1,|al. |s|}

over the region

o lz] < M

o« M5 — gNtR2 ¢ R,

Then if |D]| = 1 we have

e(M,N,m) = q *M=""Y(I(m + 2) — I(m))

and if |[D| = ¢~ we have
e(M,N,m)=q *M=""2(I(m +3) — I(m +2)) + g M= (m 4 2) — I(m + 1)).

We need to compute

N

Z vol(D,m + 1)e(M, N, m).

m=0

When | D] = 1 this sum is equal to

N
¢ Y (g + Vg~ (I +2) = I(m)
m=0

=(14+q¢ H(I(N +2)+I(N+1)—1I(1) — 1(0))
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while if |D| = ¢~! this sum is equal to

N
g M > (g I (m+3) — I(m +2)) + I(m +2) = I(m +1))

= ¢ YI(N +3)—I(2) + (N +2)— I(1).

Finally we also need to compute op, (M, N,0), which equals ¢=3* times the inte-
gral of
log max{1, |z|,|r],|s|}
over the region
crl <M
.o lz] < gM
o Ms — 7N (r? — D2?) € R.

This equals

/ / log max{1, |z|,|r]|, |s|}
lz|<|r|<gM JreMs—aN(r2—Dz?)eER

plus

/ / log max{1, |z|, |r|, |s|},
JIri<lz|<qM JaMs—aN(r2-Dz?)eR

which equals the sum of

/ / ir| log max{1, ||, |5}
"I"S(]AI WAlsf’er’r‘QER

q‘lv/ / |z| log max{1, |z|,|s|}.
|z|<gM JaMs—nNDz2€R

Hence we get op, (M,N,0) = ¢ 31 + ¢ 1)I(0) and op, (M,N + 1,0) =
¢ *M(1 4+ ¢ YHI(1) if |[D| = 1. While if [D| = ¢~! we get op, (M,N + 1,0) =
I(1) +q '1(2).

We note that when m > N we have

I(m) = / / |z|log max{1, |z|,|s|}
lz|<gM Js|<qM

which by Lemma 9.4 is equal to

q ]wng 3 q31\[ -1
q+1 ¢ -1/

and

Therefore we have

1 g-3M
ID|7YV2gN+H Y (R (M,N +1) — R{(M,N)) = f (]W - qu_) :
¢ —
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Next we do R2 + R2— (7~™b)"!(n—a)R1 and multiply the second row by a suitable

unit to get
n—ala—1)(n-a)~! 7=™b 0 0

ambTIT(A) 0 0 0
T~ ™ 0 n—a O
n T~ ™b 0 —a

Next we do R4 — a~ (R4 — R1) to give
n—ala—1)(n—a)™t 7=™b 0 0

TambTIT(A) 0 0 0
T~™"b 0 n—a O
(a—1)(n—a)™? 0 0 -1

So we wish to integrate
logmax{1, |z1], |z2|, |z3], |z4], |x124 — 2223}

over the region given by

o o] < EmbTIT(A) T = [l

e T Mbrs + (n—ala—1)(n—a) Hay €R

« (n—a)zg+ 7 ™bx1 € R

o« — x4+ (a—1)(n—a) 'z, € R.
Thus we can take x4 = (@ — 1)(n — a) " 'z; and make the change of variables x3
(a —1)(n —a) lzz to give it as the integral of

log max{1,|z1], |z2|, |23|, |27 — zox3|}

over the region
o |z1| < |7mb| !
o« T Mbxy + (n—ala—1)(n—a) )z € R
. (a—1)z3+ 7 ™bx; € R.
Let’s see how to compute this integral. Recall that |n —a(a — 1)(n —a)™}| < |b].
—1-1

First suppose that |z1| > |n —a(a — 1)(n — a) . Then we have

2o = —1"b" ' (n—ala—1)(n—a) Hziu

— — —a)" 1),
v((n=ala=1{n=a)"21) 4nd we note that |z3| < |1|. Moreover since

In—ala—1)(n—a)~ 7" > b~

with uy € U

we also have |z1]| > |7~ ™b|~! and hence
z3=—(a— 1)717r_mbm1uQ

with ug € UF_v(TrimbIl)

and we have |z3| = |77 ™x1| > |x1]. Now
22— xpxy =2t — (n—ala—1)(n—a) ") a—1)" 22uuy

=2i(1-(n—ala—1)(n—a) ") (a—1)" ujuy)
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We now compute the integrals on (GL(2) x GL(2))’. We have

—M

op, (2  Azm) = q log max{1, |z|}

S| <gM
1—gM
g—1
Thus if we set op, (M, N,m) = op,(z,,' Az,) then we have
op,(M,N+1,m+1)=op,(M,N,m).

Hence if we let Ro(M, N) equal the contribution to the right hand side of F'L(A) from
the integral on (GL(2) x GL(2))’ then we have

=M

1 — —-M
DI (RaMLN + 1) = Ra(M,N)) = 1 (M= )
Putting these together gives

_g-M 1 _,3M
R(M,N +1) — R(M,N) = fq~"'|D|'/? (2M—1 ql - = 1 )
q- q -

as required. O

5.5.8. Proof when |b] = |det A —1|. -— In this section we prove Proposition 5.3 under
the assumption that |b] = |det A —1|. It follows that we have |a— 1| = |det A —a| = ||
and |T(A)| = |b|?. Let N > 1 and assume that we have |b| = |det A — 1| = ¢~ . We
let L(NN) (resp. R(IV)) denote the left (resp. right) hand side of the identity FL(A).
We now prove the following Proposition.

Proposition 5.12. — With the notations and assumptions above for all N > 1 we have
L(N) and R(N) equal to
C/ANG—2Ng-N  _4g+3g-N+1 L 9N _ ,—2N —N+3 _ —4N
|D|1/z( q ¢ " —4g+3g +§1 ¢ q 4 >
q—1 (@—1) (a-1D(¢® 1)
if |D| = ¢~* and equal to

AN —2N¢ N1 N —4(qg+ 1) +q N"1(3¢* +6q + 1) —2¢ 2N

qg+1
(@+1) q-1 (¢ —1)?
g~ N+ _ AN N1
+20—F—— — (2N + 1)
(¢—1)(¢* 1)
if |D] = 1.
Proof. — We begin by computing the integrals op(z,} Az,,). As we saw in the proof

of Proposition 5.11 we can make row operations to put the matrix B in the form
n—ala—1)(n—a)™t 7™ 0 0
(a—1)(n—a) 7D n—a 0 0
T~ ™bh 0 n—a O
n m™h 0 —a
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and since
l—(n—ala—1)(n—a)a—-1)"1=—nla—1)" (n—a)"'T(A)
we have
11— (n—ala—1)(n—a)Ha—1)tuu| =1

for all u; and ug. Hence when |z1| > [n —a(a —1)(n —a) !|~! the integrand is equal
to 2log |x1].

Now suppose we have [b|™! < |z1| < |n —ala — 1)(n — a)™!|~!. Then we have
|za] < |[7™b 1| and
r3=—(a—1)"'77™bzu

with u € U;U(ﬂ_mbzl). Therefore |x3| = |[7~™x1| > |z1]. Now

7% — XoT3 = xf + (a — 1)_17r_mba:1m2u

=z1(21 + (a — 1)_17r‘"”ba:2u)
but
l(a — 1) ' "bxou| = |7 ™xy| < b7 < |y

and hence when |b|~! < |z;| the integrand is equal to 2log|z1].
So the contribution to the integral when |b|~! < |z1| < |[7™b] 7! is

2|7r_mb2|_l/ log |x1].
[bl = <|z1[<|mwmb| 1

We are now left with the region
o Jzi < [B[7

. I,L.2| < |7.r—7nb|—1

e (a—1)zg + 7" "bxy € R.

Next we suppose that |z1| > |[77™b|~!. Then we have

r3=—(a—1)"'7 ™bxu

v(m~"bxy)

with u € Up and so |z3| = |x1] > |z2|. Now
2 —xoxw3 = 22 4 (a — 1) 'n ™buz 20
=ur ™(a—1)"tbx (T n" (@ — )b ey + x0)
and
lu= 7™ (a — )b~ aq| = |7y | < |77t

—1._m

so making the change of variables x5 +— 2o —u~ '™ (a—1)b~'z; gives the contribution
when |7~ ™b|7t < |z1| < |b]7! as

|b|_1/ / log max{ |7~ " x|, |7~ " 21|22},
lwm=mb| =1 <z [<[b| =1 S]z2|<|mmmb| =1
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which equals the sum of

[b|ﬂ1|7r_mb|_1/ log |7~ ™ x|
[ =mb| = <|z1|<[b| T

b= L (bt~ |7rmb|*1>/ log 2.

1< |za| =" b| 1

and

Finally we are left with the region
o] < el

o |2o| < |mmp| !

o las| < 07N

With |b] = ¢~ we have op(z,,} Az,,) equal to the sum of

2q’N‘m/ log |21 |
gN <|z1|<gN+m

and
—N—m
o (m + 1o a1])
qNﬁ"L<|(L'1 ’gqN

and

@ —a v [ log las|

1<|za|<gN —m

and

N / / / log max{1, |z, , |zal, |zal, |o? — z223]}.
|1 |<gN—m Jza|<gN —m Jas|<qN

Putting these together we get

—-N + q—37n —~9 q73m _ q—3N

op(et Azm) = (2N + 2m) + 2 = -

Now we compute the left hand side of FL(A). When |D| = ¢=! we get

ANg — 2Ng—N N —4q 4+ 3¢ Nt fog N _ g2N . g N3 q—4N>
q—1 (¢—1) (¢—=1(¢-1)

and when |D| =1 we get L(N) equal to

I

L) = D12

AN —2Ng—N-1 —4g+ 1)+ ¢ VN 13B¢2+6g+1) — 22N
(g+1) q +( (g+1))+q (3q q+1)—2q

qg—1 (g —1)2
q7N+3 *(]74N No1
+2——(q—1)(q3— 0 — 2N+ 1)V

We now look to compute the right hand side of FL(A). We have op, (2, Azy,)
equal to ¢ 3V times the integral of

log max{1, 2], |r], |s|}

over the region in F® given by

. || < |7mb|
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e ™ ™Mbr —(n—a)xr € R
e (n—1)s -7 "b(r? — 72" Dx?) € R.

First suppose that |b|=1 < |z| < [#™b|~!. Then we have |r| = |7z| and
|7 ™b(r? — 72 Da?)| = [br™2?| > 1.
Therefore |s| = |#™2?| and the contribution to the integral is

|7_r77nb2|-1 / 10g|71'm:1,’2[7
CISEIN L

quf’"’/ (2log|z| —m).
gV <|z|<gN T

We are then left to compute, after multiplying s by a suitable unit, the integral of

which equals

log max{1, |z|, ||, |s|}
over the region in F? given by
oz < b7
o r| < Jrmmhl e
o Vs —7N=m(r2 — D(n™x)?) € R.

The contribution when |[r? — D(7™x)?| > ¢V ™ is

N+m
q / (logl|z|g, +m).
z€Ep,qN M <z|p, <g? N ™)

Having fixed N and m we set | = [ X5 | If [D| = 1 then 7 ~™b(r* = D(r™x)?) € R
if and only if |r| < ¢! and |z] < ¢"T™ and the contribution to the integral is

/ / / log max{1, |z|,|r|, |s|}.
lz|<q!Tm Jlr|<qt Jls|<q™

If [D| = ¢~! then we have 7~ ™b(r? — D(7™x)?) € R if and only if |r| < ¢' and
|z] < ¢"1 ™ where [; = LN—';”iJ and the contribution to the integral is

/ / / log max{1, |z|, ||, |s|}
lz|<g it Jlr|<q! Js|<q™

When |D| = ¢!, if N —m = 21 we get op, (2.} Az,) equal to ¢~V times
92BN — 3N-m g2mi3lil 1 PE

2N + m)g*N — + + = + ,

( ) q—1 -1 ¢-1 (¢+1)(¢-1)

while if N —m = 2[4+ 1 we have op (2} Az;,) equal to ¢~ 3V times

. 2q3N . qBme q2m+31+3 1 q3l+2

2N +m qJN — + + + .

() -1 71 F1 @ru@ D

We compute the contribution of the integral on GSp(4) to R(NV) to be
\D|}/? <3N(I‘ (N =2)g~~ *3(1+3qu g N*? (q4N> .
g—1 (¢—=1?%  (¢-D(¢*-1)
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Now suppose that |[D| = 1. Then we have op, (2! Azy) equal to ¢~3V times the

sum of

2 3N _ 2 3N—m N+m+21
2N +m)@®N + (N —m — 21 — 2)gNtm+2 _ 24 4 _1
q-1 q—1
and
3N—-m _ ,N+m+2l+42 3l4+2m—+1 1 3142
_2q 2q + q . + . + q . )
q* -1 ?-1 ¢-1 (¢+1)(¢-1)

We compute that the contribution of the integral on GSp(4) to R(N) is equal to

N 3N(¢+1)—2Ng—N-! N -3¢ —3+(2¢> —2q+6)g~ N

—2Ng N1 -2
qg—1 (g —1)2
g N3 4 g N _9qN
(g—1)(¢®>—-1)

Now we compute the contribution of the integral on (GL(2) x GL(2))" to R(N).

We have
~N

1
Up2(z;11Azm) = qu/ loglz| = N — -9
q

1<|z|<qN -1

And we compute that the contribution when |D| = ¢! is

|D|1/2q7q7N N — 17q¥N
q—1 q-1
while when |D| =1 it is

<¢w+ﬁq+DUqPU)<N_1;gﬁ>_

qg—1 q—1

Putting these calculations together gives the computation of R(N) and finishes the
proof. O

5.5.4. Reduction when |det A — 1| < [b>D|. — We now assume that we have
|det A — 1| < |b2D|. In this section we reduce the proof of Proposition 5.3 in the case
that |[det A — 1| < |b2D| to the case that |det A — 1| = [b*D)|.

So we assume that we have N > M and

¢ N =|det A—1| < [b’°D| = ¢ *M|D].

We let L(M, N) (resp. R(M, N)) denote the left (resp. right) hand side of the identity
FL(A).

We note that under the assumption that |det A—1| < [6>D| we have |a— 1|, |det A—
a| < |b2D| and so |T(A)| = |b®D|. For ease of notation we set n = det A. We now
prove the following Proposition.
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Thus we can do R2 + R2 — (a®? — a — n® + an)7?™b~ 2R3 to give

—a 0 "D n
0 0 aln—-DTA)T*™b2 0
0 0 a—1 7™
n w™b 0 —a

Thus we need to integrate
log max{1, |z1], |z2]|, |x3], |x4], |x124 — z223]}

over the region
. 3] < |(n — 1)Dr?m |1
o« T by + (a — 1)zg € R
o —axr| +7m"bDx3 +nxy € R
e nry + 7 "bry — ary € R.

Therefore we can take z, = a~'7™bDx3 + a~'nzs and then we need to integrate
log max{1, |xal, |x3], |74, |a"'nzi + (a ' 7"™bDxy — w2)x3]}

over the region
. Jz3] < |(n - 1)Dr?™| !
o« T ™Mby + (a — 1)zg € R
e a~nm™bDzxs + a 'n’xy + 7 ™bxy — axy € R.

Inay +a~'7n™bDxy to give our integral

Now we make the change of variables x2 — a~
as the integral of
logmax{1, |2z, |z3|, |z4], |75 — 2023]}

over the region

o 23] < |(n = 1)Dr?m |1

e T Mbxy + (a—1)z3 €R

o« T bxy + b Dxs + (n — 1)xg € R
1Azy,) equal to ¢V =2M| D| times this integral.
First suppose that |z3] > |a — 1|7!. Then we have

and we have op(z

leal = |70 Ha — Das| < |as).
Now
[(n = 1)xzy| < [bD7™(a — 1)zg| < |7™bDxs],
hence
|[7™bDxs + (n — 1)ag| = |7"bDxs| > 1,
and so |z2] = [7*™ Dz3|. Therefore we have

jal® = [72™b(a — 1)%3] < |2os| = 7™ Da

and the integrand equals log |7?™ Dx%|.
We are now left with the region
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Proposition 5.13. — With the notations and assumptions above we have, for all M > 1
and N = 2M +v(D), ¢gL(M,N + 1) — L(M,N) and ¢gR(M,N + 1) — R(M, N) equal
to
A q—q M
|D|Y/? <(2N +2M +3)g — (2N + 1)g M — 2——1>
q—

1

when |D| =g+, and equal to

—M

1 —
(2N +2M +2)(q+ 1) — (AN + 4)g ™M — 2(q + D= . -

when |D| = 1.

Proof. — We begin by computing the twisted integrals op(z,,'Az,,). As above we
have
—-a 0 7D n
0 n-—a 0 ©™bD
™~™b 0 n-—a 0
n T ™bh 0 —a

B =

We now do a series of row operations invertible over R to get B in a suitable form.
First we do R2 +— R2 — (n — a)(7~™b)" ' R4 and then divide by n to give

—a 0 7D n
—(n—a)m™b™t 0 0 (a—1)7mb!
T~ ™bh 0 n—a 0

n T~ 0 —a

Next we do R3 — aR3 4+ 7~ "™bR1 and then divide by n to give

—a 0 b D n
—(n—a)m™b"t 0 0 (a—1)7amb !

0 0 a—1 T

n T~ ™b 0 —a

Next we do R2 +— aR2 — (n — a)7b~ ' R1 to give

—a 0 T™mbD n

0 0 —(m—a)r®D (a®>—a—n?+an)rmb!
0 0 a—1 =™

n 7™ 0 —a

Now we note that
a’—a—-n*+an=—ala—1)*a+1)+b*D(n+ala—1))
and since |a — 1| < |b] < 1 so

l[a® —a — n® + an| < max{|a — 1|2, 2D} < |b?.
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o |z3| < min{|p2D%7?™ |71 |a — 1|71}
o |zg] <m0
o T "bxy + wbDxs € R.

If |z3| > [7™bD|~! then we have

|$2t — ,ﬂ?meS‘
and so
|zows| = [7*™ D3| > |b°D| ' = |77 b 72 > |4)?
therefore the integrand is equal to log [72™ Dz2| in this case as well. So the contribu-
tion to the integral when |7™bD|~! < |z3] < |(n — 1)Da?™ |71 is

lﬂ_—2mb2|—1/ 1Og|7r2me§],
|[mmbD| =1 <|z3|<|(n—1)Dn2m |1

which equals

2M=2m / (2log|zs| — 2m +log|D]) .
Jqrrm|DI=1 <lzg <V +3m D]

We are then left with the region
+ |ea] < [7™bD| 1 = gD
. IT4| < Iﬂ,—mb!—l — qum
o |.L2| < l’/l'_mb|_l — qJ\/[—nz
to integrate over.

Thus we see that op(z,,' Azy,) depends only on m, |b| and |n — 1|. We define
op(M,N,m) = op(z;, Az;n) and we see that

gop(M,N+1,m)—op(M,N,m) = (qg—1)(2N + 2m + 2 — log | D|).

So we have
M

gL(M,N +1) = L(M,N) = ¢~ ™|D'/* Y " vol(D,m)(g — 1)(2N + 2m + 2 — log | D|),

m=0

which equals

_—M
|D|1/? ((2N +2M +3)g— (2N +1)gM — quq—l_>
if |D] = ¢~! and
) 1— q—I\I
(2N +2M +2)(q+ 1) — (4N +4)g ™ —2(q + 1)—(1_—1
if |[D| = 1.
We now turn to the computation of the right hand side of the identity FL(A).
First we consider the integrals op, (2! Az,,), which are equal to |n — 1||b?>D| times
the integral of

log max{1, |z|, |r|,]s|}
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over the region in F3 given by
e (n—a)z—7m"™breR
e —mbDx+ (n —a)r € R
o (n _ ]_)'5 _ 7'('"'”()(7'2 . 7T2mDZL‘2) c R

We consider
n—a —n™b
—n™bD n—a

then doing R2 — R2 + (n — a)7™b~ ' R1 gives

< n—a —7r""’b>
™D + (n — a)m™b~(n — a) 0 '
Now
—#BD + (n - @)™ (0 — @) = 775 (~6D + (n - a)?)
=7"b InT(A),

which has absolute value |7™bD]|. So after more row operations we get the matrix

0 —7~™h
TmbD 0 '

Therefore op, (2} Azm) is equal to |(n — 1)b2D] times the integral of

logmax{1, |z|, |r|, |s|}

over the region in '3 given by

o 2] < |7mbD| !

o Jr| < M|

o (n—1)s — 7 ™b(r? — Dr’m2?) € R.

We set op, (M, N,m) = op, (2,,' Azmm). Then we have

¢MINIDI Y qop, (M, N +1,m) —op, (M,N,m))
equal to the sum of
(N +1)g"(q = 1) vol({z. 7 : [x~"b(r* — D(n™x)?)| < 1}),

the contribution when |77"b(r? — D(7™z)?)| < 1, and the sum of
@ =) [ N + log|r~"b(r? — D(x"2)?)|
z,r|m = b(r2—D(mmz)?)|>1

and
¥ vol({,r : [r="b(r? = D(x"a)?)| < 1}),

which is the contribution when |7=™b(r? — D(7™x)?)| > 1. Putting these contribu-
tions together gives qop, (M, N + 1,m) — op, (M, N, m) as the sum of

(N+1)(g—1)

SOCIETE MATHEMATIQUE DE FRANCE 2005



374 D. WHITEHOUSE

and

q*2M+m|D|(q—1) 10g|7-2 —-D:UQ‘ —M+m
|z]<gM|D| =1, |r|<gM =™ |r2 = Da?|>qM-m

and
q721\~[+1nlDlVO1{|Il < (]]W|D|71,|T\ < q]me . |,r2 _ DLQl > qA[—’IIL}.

The integral above can be written as the sum of

¢ M|DI(q - 1>/ log|Dz?| — M +m

gM-m<fz|<gM D]
and

g~2M+m D|(q - 1>/ log|z|gp — M +m

2€ED,qM-"<|z|g Lq2(M—m)

And we have vol{|z| < ¢™|D|7!,|r| < ¢™~™:|r? — D2?| > ¢™ =™} equal to
" (MDIT = M) +vol{z € Ep ¢ < z[m, < @)
Now we compute gop, (M, N + 1,m) —op, (M, N, m) equal to
(N+M+m+2)qg—(N+M+m+3)+q ™

if |D| = ¢~!. And when |D| = 1 we have qop, (M, N +1,m) —op, (M, N, m) equal to

, _ -m —M+1 -M g " —gq M2
(N+M+m+1)g—(N+M+m+2)+2¢q — 2q +gq _92 1
q
when M — m is even and equal to
—m —M+1
N+M+m+1)g—(N+M+m+2 12— g M _ 04 g
qg+1

when M — m is odd.
With similar notation we have

qgopy,(M,N +1,m)—op,(M,N,m)=(N+1)(¢g—1).

Using these computations we get

o -M
gR(N +1,M) — R(N, M) = |D|"/? ((QN +2M +3)g— (2N +1)g™M - zq—q—>

qg—1
when |D| = ¢~ ! and

1— q—vl\l
qR(N +1,M)—R(N,M) = (2N +2M+2)(q+1) = (4N +4)g ™ —2(q + 1)—_1—
when |D| = 1. O
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5.5.5. Proof when |b°D| < |det A—1| < |b|. — In this section we assume that we have
|2D| < |det A — 1| < |b| and we prove Proposition 5.3 in this case. We set |b| = ¢~
and |det A — 1| = ¢~ . We then have |T'(A)| = [b?>D| = ¢~?M|D|. We let L(M,N)
(resp. R(M, N)) denote the left (resp. right) hand side of the identity FL(A). Again
for ease of notation we set n = det A. We now prove the following Proposition.

Proposition 5.14. — Let M and N be such that M < N < 2M +v(D). Then L(M,N)
and R(M, N) are equal to

(N +2M +1)g— (2N +1)g~™ dg—2(qg+1)g M — g7 V¥ 4 g~V M

q—1 (g —1)?
N g N+2 q—N731\4—1)
(g—=1)(¢®—1)

|D|1/2(

if |D| = q~! and are equal to

2N+ M)(g+1) (AN+2)g™ 4(g+1) =4 M(g+1) =2V 42NV
q—1 g—1 (@—1)*

q—N _ qu—3M/

2 (@—1(¢* - 1)

if|D| = 1.

Proof. — We begin by computing op(2,,! Az, ). As we saw in the proof of Proposition
5.13, we have op(2,, Az,,) equal to |(n — 1)b?D| times the integral of

log max{1, |z2], |3, |za], |25 — z2x3|}

over the region
. |23] < |(n — 1)Dr?m|~1
o« T ™Mbxy+ (a—1)zs € R
o T bz + 10 Dxs + (n — 1)xg € R.

As we saw above the contribution to this integral when |x3| > [7™bD|~! is

|7r72mb2|_1/ log|7r2me§|.
|xmbD| =1 < |z3|<|(n—1)72m D| -1

We are then left to integrate over the region

. Il'3| < |7T’,an’WI

o« mTMbxy + (a — 1)zz € R

o« T b2y + (n — 1)xg € R.
We note that if [#™bD|~! < |n — 1]7! then this region becomes

o 23] < |7mbD| !

o |zg| < ™|
o |zo| < |mmb| L
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over the region
. |z| < |7™bD| !
. T b — (TL — (L):l? e R
o (n—1)s — 7~ "b(r? — Dn?™2?) € R.
For |n — 1|~ < |z| < [z™bD| " we have

rl =[5~ (n = 1)a]

and
Is| = |(n — 1)~ 'bDr™2?|.

Hence the contribution to the integral is
In — 1[71|7r"”b|*1/ log(|(n — 1)~ *oDr™2?)).
In=1]=t<|z|<|xmbD|

We are then left with the region
. |z| < min{|n — 1|7, |7™bD| 1}
. IT| g 'ﬂ_f'rnblfl
e (n—1)s—7"mb(r? - Dr*m2?) € R
and we can compute this integral as in the proof of Proposition 5.12 when [n—1] = |b|.
Having fixed M, N and m we set | = LM%"‘J When |D| = ¢7! we compute
op, (z2;,' Azp) to be equal to

2 _ q—m—l q—N—QIVI—l qufl q7N721\1+3H—1

+ + + ,
q-1 @ -1 -1 (¢g+1)(¢*-1)

and when |D| = 1 we have op, (z,,} Az;,) equal to the sum of

N+M+m+14+qg ™=

9 q7m+l q—N721\/1

N+ M — 2 -
+ +m q_1+ q2_1+ P—1

and

—N—=2M+3l+2m+1 —N—=2M+3l+2

oM _ 2q+1 ¢ q

M—2l—m—2 21L[+21+m+ 2M+42l14+m + _ + i )

( e ¢ q+1 -1 (¢+1)(g*—1)
1

We now assume that |D| = ¢~ . We compute the contribution of the integral on

GSp(4) to the right hand side of F'L(A) to be equal to |D|'/? times
(N +2M +1)g— Ng~M  3q— g~ M+ _gq~M . g~ N+2 _ g-N-3M-1
q-1 (¢—1)° (¢—1(¢* - 1)

when [D| = ¢~'. And when |D| = ¢~! the integral on (GL(2) x GL(2))’ contributes

|D]1/2 times
-M -N
_ 1 —
4—q NIRRT AY
qg—1 qg—1

The sum of these expressions equals L(M, N).
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On the other hand if |7™bD|™! > |n — 1|7! then when |n — 1|7 < |z3] < |#™bD| !
we have
g = —7"b"Ya — 1)xsu

v((n—1)x3)

with u € Up and |zz| < |7~ ™b|71. The integrand in this case equals

log max{|z3|, |27 — z2z3]}.

But for x3 in this range we have |23||z3|™! < |[77™b|"! and so after a change of

variables in xo the integral over this range becomes

|7~ p| ! / / log max{|xs|, |z2z3|}.
JIn—1]7t<|zs | mmb D] Sao|Km b~

We can write this integral as the sum of

|7r"”b|“2/ log |x3]
[n—1[=1<]zs|<|mmbD| !

and
l7=™b| " (|7 oD| " — |n — 1|71)/ log max{1, |z2|}.
lwa| < m=rmb] =2

And finally we are left to integrate over

. |.’I?3| < |TL — 1|71

. |’174| < |7.r7m,b|fl

. |.’I,'2| < |7T_m’b|71.

We let ¢ € {0,1} be such that |D| = ¢~°. Using the results of Section 9 we get
op(z;  Az,y,) equal to ¢~ N 72M=¢ times

2(1N+2]\I+e . (131\[—37” _ (]21”+€ (]3]”_3"L -1

2N 2 N+2M+e o
(2N +2m +e)q - e

And we compute L(M, N) to be equal to

|D‘1/2((2N +2M +1)g— 2N +1)g~™  4g—2(q+1)q~ M — g7V + 7N
q-—1 (¢ —1)2

—N+2 —N—-3M-1
g Nt —g¢

(g—1)(¢> - 1) )

+

1

when |D| = ¢~ and to be equal to

2N+ M)(g+1) (AN+2)g ™M 4(g+1)—4¢ M(g+1)— 9q~ N+ 9g=N-M
qg—1 qg—1 (q—1)2

q
D@ -

-N _ ,—N-=-3M

when |D| = 1.
We now turn to the computation of the right hand side of F'L(A). We begin with
the integrals op, (2.1 Az,,), which equal |(n — 1)b>D| times the integral of

log max{1, |z|, |r|, |s|}
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We now assume that |D| = 1. The contribution of the integral on GSp(4) to
R(M, N) is equal to the sum of

) 2(]_M q—N~31M

N+ M)g™M - .

(N + M)q P R
and

N+2M)—(N+M)g™ 1-qgM 2MgM g N-2M_g=N=3M
(q+1)(( ) —( i l-gq o AMaT “ )
q—1 (@—1) -1 (¢—1)(¢*—1)

and

B (]71\[ qu(q.'j + 1) _ quf‘ZAI(q + 1)
q+1 (¢—1)(¢* - 1) '
The integral on (GL(2) x GL(2))’ contributes

1—qg N 1_g M
<N———q—> (qu—i—(q+1) q )
qg—1 qg—1

to R(M, N). Adding these together we find they are equal to L(M, N). |

6. The fundamental lemma for the (1,2,1) Levi I
In this section we take MO to be the (1,2,1) Levi in G°. We have
a
MY = A ,e | : A€ GL(2),a,b,e € GL(1)
b
and we write such an element as a tuple (a, A,b,e). The restriction of a to M is
given by
a:(a,Abe)— (b7 det A71A a1, abedet A).

We set M’ = GL(2) x GL(1) an unramified elliptic twisted endoscopic group for M.
In this section we prove the fundamental lemma for the pair (M, M").

6.1. Stable conjugacy. — We begin by determining the stable twisted conjugacy
class of an a-semisimple element v = (a, A,b,e) € M?(F). For m = (a1, A1,b1,e1) €
MO we have

7’77/‘1’}/(1(771) = ((albl)_la,det AflA;IAAl, ((lel)-lb,(llbl det Al(j).

Now if we assume that m; 'ma(m;) € M°(F) then it’s clear that we must have
a1by € F and det Ay € F*. Moreover, after twisted conjugation over F', we can
assume that A is either diagonal or else lies in an elliptic torus of the form

() e

Y
with v(D) € {0,1} and Ep = F(v/D) a quadratic extension of F.
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Lemma 6.1. — Assume that A lies in the diagonal torus. Then the stable twisted
conjugacy class of v is equal to the twisted conjugacy class of ~y.

Proof. — Let T denote the diagonal torus in GL(2). Then the question is, given
A, € GL(2,F) with A7'AA, € GL(2,F) and det A; € F*, does there exist B €
GL(2, F) such that B-'AB = A7'AA; and det B = det A;. We know there exists
C € GL(2, F) such that C~'AC = A7'AA;; and by multiplying C' on the left by an
element of T'(F') we can insist that det C = det A;. O

For v = (a, A, b,e) with A diagonal we take the Haar measure on M, (F'), which
gives its maximal compact subgroup volume one.

Lemma 6.2. — Assume that A is non-central and lies in an elliptic torus as above.
Then the stable twisted conjugacy class of v is equal to the disjoint union of the twisted
conjugacy classes of v = (a, A, b,e) and (a,c ' A,b,ce) with c € F*\Ng, /rE}.

Proof. — Let T denote the torus in GL(2) containing A. First it’s clear that (a, 4, b, e)
and (a,c”'A,b, ce) are not twisted conjugate over F. It’s also clear that they are
stably conjugate, since we can conjugate them by an element of the form (1, B,1,1)

with B € T(F') such that det B = ¢. Next we show that every element of the stable
twisted conjugacy class of v is conjugate to one of these elements. Let

y1 = m Yya(m) = ((a1by) ta,det A7 AT AAL (ayby) " b, a1by det Aje)

lie in the stable twisted conjugacy class of 4. Then we can find B € GL(2, F') such
that AflAAl = B~'AB. We can change our choice of B by multiplying B on the left
by an element of T'(F) and hence change det B by an element of Ng,,p(#[). Thus
1 is twisted conjugate over F to either (a, A, b, e) or (a,c 1A,b, ce). O

We continue with the assumption that A lies in an elliptic torus as above. First sup-
pose that Ep/F is ramified. Then we may take ¢ € Urp. We note that the weighted or-
bital integral at the element (a,c™' A, b, ce) is the same as the weighted orbital integral
at the element (ca, A, cb, ¢~ 'e), having multiplied by the element (c,diag(c, ¢), ¢, c™2)
which lies in Z(GY) N K. But now conjugating this element by m = (c, I, 1,1) gives
(a, A,b,e). Thus the weighted orbital integral along the twisted conjugacy class of
~v = (a, A, b, e) is equal to the weighted orbital integral along the twisted conjugacy
class of (a,cA,b,ce). For such an A we take the measure on M, (F) that gives its
maximal compact subgroup volume two.

Next we assume that Fp/F unramified and we take

A - <C, Dd>
d c
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with (D) = 0. In this case (a,7A,b, 7 1e) is stably conjugate but not conjugate to
~ = (a, A, b, e). Conjugating this element by

(-(" ) 1)
(a5 70) )

If the stable twisted conjugacy class of v = (a, A,b,e) intersects MY(R) then we
can assume that we have a,b,e € Up and A € GL(2, R) with A as above. If we
assume that (a, A,b,e) € M°(R) then we see that the twisted conjugacy class of
(a,TA,b,m"e) intersects M°(R) if and only if v(d) > 1; this is clear from the double
coset decomposition found in Section 5.5. For such an A we take the measure on

gives

M., (F) that gives its maximal compact subgroup volume one.

6.2. Statement of the fundamental lemma. — In this section we give the state-
ment of the fundamental lemma for the pair (M, M’).

We recall that M’ sits inside GSp(4) as the Siegel Levi and the only elliptic twisted
endoscopic group in Epp/ (G) is GSp(4), with multiplicity two. Thus in this case the
fundamental lemma states that for ¢/ a strongly G-regular, stable conjugacy class in
M'(F) we have

Z'I'f[(k,a) = 2(9%&}9(4)([/)
k
where the sum on the left is over those twisted conjugacy classes in M?(F) for which
N(ka) =0

We now compute the function .S(EIS;IJ(4)(€’) whose definition is given in [Art02,

Section 5]. From Lemma 3.8 we see that for
¢ = diag(g. aw'g 'w).
a (stable) conjugacy class in M'(F'), we have

’ J 1 /7
sGir(0) = 1P (diag(g. aw'g ™ w) = Zrd (ding(1adet g7). 9)

where G” = (GL(2) x GL(2))/ GL(1). Therefore the fundamental lemma for the pair
(M, M') is given by the following Proposition.

Proposition 6.3. — For ya = (a,g,b,e)a € M(F) semisimple and strongly G°-regular
we have

G () GSp(4) [ €eag a" 1
r = 2Ty — T ,ea
E, rav (') LY ( ebdet g w"g’lw> M (( u,‘lb> 9>
vy

where the sum on the left hand side is over representatives for the twisted conjugacy
classes within the stable twisted conjugacy class of .
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For ~' = diag(eag, ebdet gw'g~'w) € M'(F) we take the Haar measure on M!,(F)
that gives its maximal compact subgroup volume one.

For P° the upper triangular (1,2,1) parabolic in G® we set vol(a%/Z(AY,)) = 1/Inq
and normalize the other volumes as in Section 4.4.

6.3. Proof of the fundamental lemma. — In this section we prove Proposition
6.3. We begin by noting that for v = (a, g,b,¢) € MY(F) the stable twisted conjugacy
class of y does not intersect MO(R) if |a| # |b]. It’s clear that the integrals on GSp(4)
and (GL(2) x GL(2))/ GL(1) also vanish in this case.

If |a| = |b| then we may. after twisted conjugation, assume that a,b € Up. Then
the stable twisted conjugacy class of v intersects M°(R) if and only if eg is conjugate
in GL(2) to an element in GL(2, R). It’s also clear that if eg is not conjugate to an
element in GL(2, R) then the integrals on GSp(4) and (GL(2) x GL(2))/ GL(1) also
vanish.

We now assume that we have v € M°(R). We use the twisted topological Jordan
decomposition to prove the fundamental lemma. We can write yao € M (R) uniquely
as

Yo = usa = sau
with u € MO(R) topologically unipotent and sa € M (R) absolutely semisimple. The
twisted weighted orbital integrals can now be computed using 4.17. We set N equal
to the unipotent radical of the upper triangular parabolic of which M9 is a Levi
component, we define N’ in GSp(4) similarly.

Given s = (a1, g1, b1, e1) we have

Zypo(sa) = {(a,g,a“l,e) eM’: g7 g19g=g1.detg = 1}.

For u = (a,g,a™!,e) € Zypo(sa) topologically unipotent we have that the norm of
yo in GSp(4) is equal to the product of the absolutely semisimple element

g1
ae
1 < a?lb] detglwtgflw>

and topologically unipotent element

g
e < a~?det gw‘g"w) ’

We can then also use Lemma 4.17 to compute the weighted orbital integrals on GSp(4).
We now proceed to prove the fundamental lemma by analyzing the possibilities
for s.

6.5.1. s equal to the identity. — We first consider the case that s is the identity. In
this case we have Zgo(a) = Sp(4) x GL(1) and we take v = (u,e) € Sp(4,R) x Up
topologically unipotent.

Lemma 6.4. Suppose that s is the identity, then the fundamental lemma holds.
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Proof. — We have

u= g € Sp(4, R)
a-!
topologically unipotent. By Lemma 4.17 we have

Sp(4
Tg](("? 6)04) - rKll)l(ng)en(u)

and hence for v = (u, e) we have
Sp(4) /
ZTM FY a ZrKlmgen
,7/
where {u'} is a set of representatives for the conjugacy classes within the stable

conjugacy class of u. But now using Lemma 4.16 and the double coset decompositions
for SL(2, F) given in [F1i99, Lemma I.1.3] we have

Sp(4) GSp(4)
Z TK]:;mgen(u/) - rKhEgen(u’)
w

From the fundamental lemma for the (2,2) Levi proven above we have

GSp(4 . GL(2)xGL(2)) [ ;-
TKliEéel(u) = T(%,Z)((dlag(agv 1)7 1)&) - TETX(GI)J?2))’( ) (dlag(a27 1), ag)

Therefore to prove Proposition 6.3 we need to show that

3 : GL(2)xGL(2)) [ 1:
7'&2)((d1ag(ag, 1), Da) — TETX(GI)J?z))'( ) (diag(a®, 1), ag)

is equal to
Sp(4) 1 G" s -1
2ry* Y (diag(ag, wt(ag)~'w)) — r§y (diag(a,a™"), g).
First we note that

" . — GL(2)xGL(2 .
r§ir (diag(a,a 1), g) = rigEGrE® (diag(a?, 1), ag).

Next we note that the element

(% wttagyia) € G060

lies in Sp(4) and by Lemma 4.16 we have

2557 (diag(ag, w' (ag) ~'w)) = 2ryh Y (diag(ag, w' (ag) ~'w)).
Since this element is topologically unipotent, we can apply Lemma 4.17 to get

27'1C5,S,I)(4)(diag(ag7 w'(ag) tw)) = rg‘Q)((diag(ag, wt(ag) tw), 1)a).

After twisted conjugation we have

T(C;Q,Q)((diag(aga 71}t(ag)7IU))7 1)0/) = T(C;,Z)((diag((a'g)27 I)7 1)0[)
and from the calculations of Section 5 we have

1"(C§2)((diag((a,g)27 I, Da) = r((’;g)((diag(ag, I),1a)

and we are done. O
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6.5.2. s central. — We now assume that s = (a1, 91,b1,e1) with g1 = diag(ey,c1) a
scalar matrix. Therefore we have u = (a,g,a~!,e) with a,e € GL(1) and g € SL(2).
In this section we prove Proposition 6.3 for v = us either by reducing the proof to
Lemma 6.4 or by showing that both sides of the identity in Proposition 6.3 vanish.
We begin with the following Lemma.

Lemma 6.5. — Let va = (a,g,b,e)a € M(F) be semisimple and strongly G°-regular.
Then for A\, € Urp we have

TIC\:} (’}/Oé) = r}CL;I(()‘a7 g, )‘b7 e)a)'

Proof. — Since we are free to scale v by an element of Z(G%) N K without changing
the value of 7§ (ya) we have
rii((Aa, pg, Ab,e)a) = r§i (Au~"a, g, \u™'b, A7 pe)a).
But now for m = (A, I, x~1, 1) we have
m A\ ta, g, AT b, A pe)a(m) = (a, g, b,e)
and we are done. O

Now suppose that a; = b;. Then by Lemma 6.5 we have r§,(va) = r§; (ua) and
the fundamental lemma in this case follows from Lemma 6.4. Proposition 6.3 in the
case that a; # by follows from the following.

Lemma 6.6. — With notation as above assume that we have a1 # by. Then both sides
of the fundamental lemma vanish.

Proof. — We first compute N N Zgo(sa), by abuse of notation we work inside GL(4).
For
1 1 Ty I3
1 T4

n = eN
1 s
1
we have
1 *1'5 Tg X3 —X1T4 — X2T5
T2
-
1
and

b101 T4
-1
1 blcl I5
1

—1
(1 a; clx1 a; c1x2 ap bla:g
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Thus we need

Ty = —blcflzlr,r)

Tro = bl(ifllr'_/;

o — 41

€Ty =a; C1I2

= =1, ..

Ly = —a; C1&71,
from which it follows that x; = a,flblxl and ro = aflblxg. But since we are assuming
that a; # by, it follows that 21 = x9 = x4 = x5 = 0. But now we need x3 = uflblwg,
and hence x3 = 0 in this case as well. Thus when ay # b; the twisted integral vanishes
by Lemma 4.17.

We now consider the right hand side of the fundamental lemma. First we consider
the integral on GSp(4). The absolutely semisimple part of N(ya) is

g1
s1 = ae .
! 1 ( aflbl det,(hwtgf’w>

We now compute Zgspay(s1) N N'. For

1 Ty T2
1 Xr3 X1 /
n = eN
1
1
we have
—1 —1
1 ay bixy ay biaa

slnss = 1 (),flhlzlr;; aflblxl
Sy 1. S1 —

1
1
from which it follows that Zggpa)(s) NN’ = {I} if a1 # b; and hence by Lemma 4.17
the integral on GSp(4) vanishes.
Finally we consider the integral on (GL(2) x GL(2))/ GL(1). The norm of the
element yo in (GL(2) x GL(2))/ GL(1) is equal to

1
<< (1‘2@11)1) ,61(1,1(z(1,glg> € (GL(2) x GL(2))/ GL(1).
T

And therefore if a; # b; then aflbl ¢ U}, and since u is topologically unipotent
a=? € U}.. Hence we have a2a; 'b; € U} and the integral on (GL(2) x GL(2))/ GL(1)
vanishes. O

6.3.3. s diagonal. In this section we prove Proposition 6.3 in the case that s is
diagonal but not central. So we take

§ = (Gu <F1 d ) ,1)1,671)
1
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with ¢; # dyi. After twisted conjugation we may assume that a; = ¢; = 1. We now
compute N1 = N N Zg(sa); by abuse of notation we consider N C GL(4).

Lemma 6.7. — Let s = (1,diag(1,d;),b1,e1). Then we have the following possibilities
fOT' N1 .
(1) If by = dy = —1 then

1 Tr1 g —T1I2

1 —T2
N =
! 1 —X
1
(2) Ifbl = dl 75 —1 then
1 X1 0 0
1 0
N =
! 1 —I
1
(3) If by = dy! # —1 then
1 dll'z
N —
! 1 0
1
(4) If by =1 and dy # 1 then
100 z3
N, = 1 0
10
1

(5) In all other cases Ny = {I}.

Proof. — For
1 27 20 a3
1 Ty
n =
1 Ts
1
we have

1 —x5 x4 3 — 21704 — T2T5
1 €Zo
a(n) = 1 o

1
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and
1 Xy d1172 blmg
s Ins = 1 b1z
1 bld;11?5
1
Hence we need
_ -1
xrp = 71)1(11 Xy
ro = ()1154
Tryq = d1.772
Irs = —&I7.

Thus unless by = dy we have r1 = x5 = 0. And unless b; = dfl we have o = x4 = 0.
And the only way both can happen is if by = d; = —1 (since we are assuming that
d; #1). We also need to have

bixy = x3 — 114 — T2X5
and hence we need to have
(1 =b1)rs = 124 + 2205 = (dy — 1)21202.
Putting this all together completes the proof. O

We now compute the twisted integral in each of the above cases. We have

c -1
u=1a, 1 ).a e
C

and so the stable twisted conjugacy class of v = us is equal to the twisted conjugacy
class of ~.

Lemma 6.8. With notation as in Lemma 6.7 the twisted integral 7'%}(704) s given
by the following.
(1) If by = diy = —1 then

r$(va) = lac — 1|Jac™! = 1] / log max{1, |z1|, |v2|, |T122]}.
x| <lacm =171 Jlza|<lac—1]

(2) If by =dy # —1 then

r$(va) = lac™t = 1] e logmax{1, |z1]}.
r|sjacT =17

(3) If by = d; ' # —1 then
7'5\;1(7(1) = |ac — 1| log max{1, |z2|}.

lz2|<lac—1|~1
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(4) If by =1 and dy # %1 then

r§i(ya) = la — 1| logmax{1, |z3|}.
|z3|<la—1]~1

(5) In all other cases r§;(ya) = 0.

1

Proof. — In cach case we compute uv~'n"tun for n € N. In the first case we have

1 I—-atoz; A—ate Hry —(1-ate) —ateYaias

u In"tun = 1 _(1 —a_lc”)xz
1 -1 —a ey
1
In the second case we have
1 (1-ate)x; 0 0
uInTlun = ! 0
N 1 —(1—alte)n
1
In the third case we have
10 (1—ate s 0
_ 1 (1—ate YNdias
O S D
u”'nT un 1 0
1

In the fourth case we have

100 (1—a"2?)ay

winTlun = ! 0
B 1 0
1
And of course in the fifth case the integral vanishes. O

Now we turn to the corresponding integrals on GSp(4). The absolutely semisimple
part of N(vya) is

(11
S1 = €] b
1

bid,

Lemma 6.9. — With notation as above we have the following possibilities for Ni =
Zasp(a)(s1) TN
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1 Ty 0

1
N| = (1) o
1

(1) If by = 1 then

(2) If bl = d1 = —1 then

1 0 xz
1
1
(3) If by = dy & {1,—1} then
1 0 0
1
(4) If by = d]' ¢ {1, —1} then
1 0 9
N = 10 0
1
1
(5) In all other cases N{ = {I}.
Proof. — For
1 ry T2
n— 1 3 XT3 N,
1
1
we have
1 b].’l?] d1b1[L’2
-1 1 bldflr,;; blxl
s, nsy = 1

and the result follows.

We now need to compute the weighted integral on Zggp(4)(s1) at the element

ac
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These integrals are given in the following Lemma.

Lemma 6.10. — With notation as above the integral 27’1%18,1)(4)(1\7(7a)) is given by the

following.
(1) If by =1 then
25" (N (va)) = 2]a — 1 log max{1, |z1]}.
Jlri|<la=1]"1
(2) If by =dy = —1 then 27"1?,%1)(4)(N(’ya)) is equal to

lac — 1|lac™ — 1] / log max{1, |xa], |x3], |z273]}.
Jlzz|<|ac—1]71 J|zs|<lac—1—1] 71

(3) If by = dy # —1 then

27’5\)15213(4)(1\[(7&)) =lac™! -1 log max{1, |z3|}.

jwal<ac= 11|11

(4) If by = d7' # —1 then

2”'?451)(4)(/\[(’)’0)) = |ac — 1|/ logmax{1, [z2]}.

|z2|<lac—1]=1

(5) In all other cases 2/’&;15;1)(4)(]\[(7(1)) =0.

Proof. — We take n € N{. In the first case we have

1 (1-a?)x 0
-2
wtnTtun = ! 0 (1=a™)z
1
1
In the second case we have
1 0 (1—a2c?)zy
A 2,2,
wnTlun = ! (1 ae )JEJ 0
1
1
In the third case we have
1 0 0
2.2y,
u=n=lun — 1 (I1—a*c*)x3 0
1
1

In the fourth case we have
1 0 (1—-a?2c?)a,

utn"tun = Lo 0
1
1
And in the fifth case it’s clear that the integral vanishes. O
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For the integral on (GL(2) x GL(2))/ GL(1) the norm of vy« is

1
(( a2b > , erea diag(c, dlc_l)) € (GL(2) x GL(2))/ GL(1).
1
Thus we see that the integral vanishes unless b1 = 1 in which case it equals

la — 1| log max{1, |z|}.
lz|<la=1]~1
Combining the above lemmas proves Proposition 6.3 in this case.
6.5.4. s elliptic. — We now assume that we have g1 € GL(2, F') which is non-central
and lies in an elliptic torus. After stable twisted conjugation we can assume that we

- (&) Dd1
g1 = (dl o > € GL(2, R)

have

with d; # 0 and v(D) = {0,1}. We let Ep = F(v/D). For sa to be absolutely
semisimple we need to have
k a®
()

for some = € F and k prime to the residual characteristic of F'. But then, as an
element of Ep, we have g; = Cax for some k' root of unity ¢. Since we're assuming
that g is non-central we must have ( ¢ F*. Hence we must have Fp/F unramified
and v(D) = 0. After twisted conjugation we can take

s = <17 (Cl D> ,bl,el> .
1 C1

We now compute Nu = N N Zgo(sa), which by abuse of notation we consider as a
subgroup of GL(4).

Lemma 6.11. — With notation as above we have the following possibilities for Nj.
(1) If by = —1 and c; =0 then
1 r1 X9 (D.’L‘% — .’E%)/Q
1 Dl‘l

1 —x2
1

Ny =

(2) If by =1 then
100 T3

Ny =

(3) In all other cases we have Ny = {I}.
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Proof. — For
1z x2 x3
1 T4
n =
1 Is
1
we have
1 —z5 x4 3 — 2124 — X225
a(n) = ) -
1
and
1 ciz1 + 22 Dz + 172 by
s Ins = 1 (C% — D)"Y (bicrwq — by Dxs)
1 (¢} = D)~ M (=bizg + bicizs)

1
Hence we need
x = —(c? = D) N (=bzy + bicizs)
z3 = (2 — D) Y(bicrzg — by Dxs)
x4 = Dxi + 122
T5 = —C1T] — Ta.
So we have
(} = D)xy = bizy — bicrs
and from the third and fourth equations we get
(cf — D)y = —x4 — C1Z5.
Hence we have
(14+b1)za + (1 —by)zs = 0.
We also have
(2 — D)xy = bicywy — by Das
and from the third and fourth equations we get
(¢? — D)xg = 174 + Dzs.
So we have
(IT+b)zg+c1 (1 —by)zs =
c1(by — D)xg — D(1 + by)xs =
Hence we deduce that

((’%(1 — b1)2 — D(l + ()1)2)1‘4 =0
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and

(C%(l — 1)1)2 — D(l + [)1)2).’1,'5 =0.
Thus unless by = —1 and ¢; = 0 we have 1 = 29 = 24 = 25 = 0. Now we also need
to have

T3 — X1Tg — Lol = bixs.
Thus if by = 1 then we can take x3 to be anything we like. On the other hand if
by = —1 and ¢; =0 we have 24 = Dy, x5 = —22 and x3 = 5 (Dz? — 23). O

¢ Dd _ .
u= (a, (d . > ,a l,e) € Zyo(sa)

to be topologically unipotent; so we have ¢ € U} and d € (7). We have

1 e cey + Dd D(c+dey) aThe e
us = | aa ] ceq | .
Y\ c4dey, ey +Dd )’ 1 e

We take

Now ¢+ dc¢y € Up and hence we deduce that it is only the twisted conjugacy class
of us that intersects M°(R), i.e., the other twisted conjugacy class within the stable
twisted conjugacy class of us does not intersect MO(R). The twisted integrals at the
element us are given by the following lemma.

Lemma 6.12. — With notation as above the twisted integrals r§;(ya) are given by the
following.

(1) If by = —1 and ¢; = 0 then
r$ (va) = 2| D¢ (va) |2 /log max{1, |x1], |z2|}

over the region
e (l—ate)ry —a"ldra € R
« —a~'dDx; + (1 —a"'e)ry € R.
(2) If by =1 then
r$(ya) = la — 1] logmax{1, |x3]}.

Jlag|<la—1]71

(3) In all other cases r$;(va) = 0.

Proof. — First suppose we have by = —1 and ¢; = 0 then we have
1 (1—-ate)xy —atdry —a ™ 'dDxy + (1 —a~te)ws =
1 *
B T P
u”nT tun 1 .
1
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If by = 1, then we have
100 (1-a"?)x3
1 0
—1, -1, _
u"nT tun = 1 0
1
And in all other cases it’s clear that the integral vanishes. O
Next we look at the integrals on GSp(4). The absolutely semisimple part of
N(va) is
C1 D
1 C1
s1=e¢e
! ! b1C1 —'le
—b1 b101
Lemma 6.13. — With notation as above we have the following possibilities for N| =
ZGSp(4)(51) NN'.
(1) If by = =1 and ¢y = 0. then
1 X D.Tg
N{ _ 1 r3 I
1
1

(2) If by =1 then

1
1
(3) In all other cases N{ = {I}.
Proof. — For
1 Tr1 X2
1 xr3 T
n=
1
1

we have s™!ns equal to (¢? — D)~! times

1 b] (Cf + D).IZ'] — b161:E2 — l)]ClDLL':;

*lech.’L'l + b]C%.’I:Q + b1D2.’L‘3
1 —2byc1Ty + bixe + c2by w3 b1 (c? + D)xy — bicywa — biey Dag
1
1
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Hence we need
(C%—D) T = l)l(C%-f-D) r, — b101 Trg — b1C1D I3

(C‘f — D) o = “lech Ty + blc% Tro + leQ T3
((f% — D) Tr3 = —2()161 x1 + [)1 xro + C%bl xI3.
That is
(b1c2 +b1D+D —c2) z; — bicy Ty — bic1 D x3 =0
—2bic1 D xr1 + (D + })1(3% - ('%) To + le2 rs =0
—2b1c T + by x2 + (Bby+D—¢c2) 23 =0.

Equation 1 times D plus equation 2 times ¢; gives
D(D — ) (1 +by)ay + e1(1 —by)(D — ¢} )ay =0
and since D — ¢? # 0 we have
D1 +b)xy +c1(1 —=by)ze =0
Next we do equation 2 times c2b; + D — ¢ minus equation 3 times b; D? to give
2bic1D(1 = by)(cf — D)y + (by — 1)(cf — D) (= (¢} = D) + bi(cf + D))a2 =0
and since D — ¢? # 0 we have
2011 D(1 —by)zy + (by — 1)(—(c} — D) + bi(ci + D))ag = 0.
Thus we have
D(1+by)ay 4 e1(1 —by)ag = 0
2b1c1D(1 — by)zy + (by — 1)(—(c? — D) + bi(c? + D))ay = 0,

which yields
(D(by + 1)* — (b — 1)Hz; =0

and

(by — 1)(c3(by — 1)% — D(by + 1)*)zy = 0.
Therefore if ¢; = 0 and b; = —1 we can take 7 and xs to be whatever we like; and
then we have Dx3 = x2. Now if by = 1 then we have 1 = 0 and x5 = —Dx3. In all
other cases we have 11 = 1o = x3 = 0. O

Now we compute the integrals on GSp(4). We need to compute the relevant inte-
grals at the element

ac adD
, ad ac
u=-e
a~lc —a 'dD
—a~'d alc
Lemma 6.14. — With notation as above 27'5\3[5;1)(4)(]\[(’7(})) is given by the following.
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(1) If by = —1 and ¢; = 0 then we have QTSIS,pM)(N(fya)) equal to

2 Dasspiay (N (1)) [1/2 / log{L, |z1], |3}

over the region
e (a®> —? — Dd*)axy +2cdDx3 € R
« 2cdzy + (a® — ¢ — Dd?)z3 € R.

(2) If by = 1 then we have 2r$15,p(4)(N('ya)) equal to

2|la — 1] logmax{1, |z3|}.
|z3|<la—1]=*

(3) In all other cases we have QTAG[S,p(4)(N(fya)) =0.

Proof. — Let’s consider the first case. We have

1 (a? — c? — Dd?)xy + 2cdDxs *

-1 1 2cdzi + (a® — ® — Dd?)z3  *
uw”'nTun =

In the second case we have
1 0 —D(1 —a ?)x3

And it’s clear that in the third case the integral vanishes. O

Again we recall that the integral on (GL(2) x GL(2))/ GL(1) vanishes unless b; = 1

in which case it equals

la — 1] log max{1, |z|}.
|z|<la—1]~1
Thus it’s clear that the fundamental lemma holds in all cases except perhaps when
by = —1 and ¢; = 0. We have |Dg(va)| = [Dgspa) (N (ya))| and in this case we need
to show that the integrals of logmax{1, |z|, |y|} over the regions in F? given by

a—c —d T 9
Cap a2 () e

a’? —c® — Dd? 2edD 2\ ¢ R
2cd a? — ¢ — Dd? y

are equal. We readily see that if |d| > |a — ¢| then both these matrices lie in

GL(2, R) <d d)
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and if |d| < |a — ¢| then both these matrices lie in

GL(2, R) (“_ ¢ o C) :

Hence the integrals above are equal and the proof of Proposition 6.3 is now complete.

7. The fundamental lemma for the (1,2,1) Levi II

In this section we again take M to be the (1,2,1) Levi in G°. We have

a
MO = A |.,e]:AeGL(2),a,bee GLQ)
b

and we write such an element as a tuple (a, A,b,e). The restriction of a to MO is
given by

a:(a,Abe)—s (b det A7V A0 ", abedet A).
We set M’ = GL(1) x Resg,p GL(1) an unramified elliptic twisted endoscopic group
for MO. In this section we prove the fundamental lemma for the pair (M, M’).

7.1. Statement of the fundamental lemma. — Let F denote the unramified
quadratic extension of F. We fix D € F with v(D) = 0 such that E = F(v/D). Let
REg denote the ring of integers in £ and Ug the group of units. We let | |g denote the
multiplicative valuation on E normalized such that |7|g = ¢72. Given 3 € E we let
3 denote its Galois conjugate. We fix the Haar measure on E that gives Rg volume
one.

We recall from Lemma 3.5 that the elliptic twisted endoscopic groups for G in
En (G) are Gy = Resg/p GL(2) and G2 = (GL(2) x Resg,p GL(1))/ GL(1). More-
over each group appears with multiplicity two and we have M’ sitting inside both of
these groups as the diagonal torus.

The stable twisted conjugacy classes in M?(F), which transfer to M'(F), are those
with representatives of the form

Moreover as we saw in Section 6.1 the stable twisted conjugacy class of v is the disjoint
union of the twisted conjugacy classes of v and

c
, a br D
s a
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And we have, using [KS99, Chapter 4], A(N(ya),7) = (=1)*® and A(N(ya),v') =
(_1)v(b)+1.

We let 8 = a + bv/D € E*. The fundamental lemma is given by the following
Proposition.

Proposition 7.1. — Let v and ' be as above, then we have

o)~ = 0 (2 (<7 Y e (%) 9)).

For P° the upper triangular (1,2,1) parabolic in G° we set vol(aG/Z(A})) = 1/Ing
and normalize the other volumes as in Section 4.4.

7.2. Proof of the fundamental lemma. — We note that both sides of the identity
in Proposition 7.1 vanish if the stable twisted conjugacy class of v does not intersect
MO(R). Thus we may assume that we have

C
a bD
— MO%R).
v b a e | € MP(R)

d

We now compute 2r$3 (N (ya)) and 2r$2 (N (ya)). We have
ZTEII,(N('W)()) =l|ef — dB|e / _ log max{1,|z|p}
Jz|<|ef—dB| 5"
and
27 (N (var)) =

c—d| log max{1, |z|}.

Jz|<le—d| 1
As in the previous section we use the twisted topological Jordan decomposition of
ya to prove the fundamental lemma. So we write Yoo = usa = sau as a commuting
product of an absolutely semisimple element sa and a topological unipotent element u.
We again analyze the possibilities for sa and prove the fundamental lemma for each
such sa and every topologically unipotent element u that commutes with it.

7.2.1. s equals the identity. — We now assume that s is equal to the identity. With
a slight change in notation we take

€ Sp(4, R) x Up

®

with ¢,e € UL, B =a +bVD € Uk and a® — Db? = 2.
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In order to use the calculations and reductions of Section 5 we make the further
assumption that ¢ > 3. However, arguing as in Remark 5.9 will give the fundamental
lemma in the case ¢ = 3 as well.

We set |b| = ¢~ and |c — 1| = ¢~ . Then we have

g 3N-M i N <M,

v 1/2 = .
et { g~N TN > M,

|Da(va) |2 = g7,
NN M
Do (N 1/2 _ q y 1 X 5
| C’l( (’7“))' q—QAI’ lf N > A/[,
Dy (N (ya))[V/? = g7,

Using Lemma 4.17 we note that the twisted weighted orbital integrals we need to
compute on G are equal to the weighted orbital integrals on GSp(4) with respect
to the Klingen Levi. Let M; denote the Klingen Levi in GSp(4) and P; the upper
triangular parabolic of which M; is a Levi component. We also set N; equal to the
unipotent radical in P;. We let op, denote the function

op (a) = / v, (Pa(n)) dn
J N1 (F)NGSp(4,R)

where ¢, : N1 — N the inverse of the map Ny — N; : n — a~'n"tan. By
abuse of notation we identify v with it’s component lying in Sp(4); then we have

r$(ya) — r$ (7 @) equal to |Dar(ya)|'/? times
M
op, (V) + (g +1) D (=1)"¢"  op (2! vzm)
m=1
where
1
1

And Proposition 7.1 says that it equals

N N
M —2N o ¢ =1 -N N q¢ —1
. NN -T2 NgN —
=D (2(1 ( I q2—1>+q ( 9 q—1>>

if N < M and equals
‘ 20 _ N _q
(—1)M (2(1—2M <]qu2M q _ 1> 4N <NqN q >>
2 -

1 qg—1
it N > M.
We now set about computing
M
op, () + @+ 1) D (=1)"q" op (2 72m).-
m=1
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To put us in the same shape as Section 5 we scale our element v by ¢ to give

which of course doesn’t change the value of op, (2, v2,). And in the notation of

n = det (a bD) = 2.
b a

We have [n — 1| = |c — 1| = ¢V and |b| = ¢=™. Note also that we have |3 — 1| =
max{|a — 1], |b|}. But since a? — b?>D = c? it follows that |3 — 1| = max{|c — 1|, |b|}.
We begin by proving Proposition 7.1 under the assumption that 5|2 < [n—1| < |b].

Section 5 we have

So we have M < N. As we have seen in Sections 5.5.3 and 5.5.5, op, (2.1 v2,,) for
0 < m < M equals the sum of
gt ~N-2M

2 q
N+ M — 2
+ M +m q—1+ q2—1+ F -1

and
—~N—2M+31+2 —N—2M+3l
(M~2l—m—2)q_2M+2”""+q*”’+21+’”2q+1 q MA3L2mAL 2M+31+-2

+ :
g+1 > -1 (g+1)(¢g*—1)

where | = [ &5, Using this we compute that
M
op (N +(@+1) Y (=1)"q™ top (2, 12m)
m=1

equals

M M 2M M -1 N+M N v -1
(2 (s = ) e (v - U))

And since | Dy (va)| = ¢~ Proposition 7.1 follows in this case.

In proving the fundamental lemma for the (2,2) Levi in the case of an elliptic
torus we reduced the proof to this case. We now follow these same reductions for the
fundamental lemma here. First we assume that we have |c — 1| < |b]2. We set

ap (A17 N7 m) =op (2;,172771)
and

M
L(M,N)=q M <opl (N, M,0)+ (g +1) > _(=1)"q™ 'op, (N, M, m)> .

m=1
We now compute gL(M,N + 1) — L(M,N). As we have seen in the proof of
Proposition 5.13 we have gop, (M, N + 1,m) — op, (M, N,m) equal to

q q
q+1

-m _ —M+2
(N+M+m+1)g—(N+M+m+2)+2¢ ™ -2 M oM _of 1
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if M —m is even and equal to

—-m _ ,—M+1

(N+M+m+1)g— (N+M+m+2)+2¢™ —qg M- 2q4+ql—
q

if M —m is odd.

Using this we compute that gL(M, N + 1) — L(M, N) equals (—1)™ times the sum

of
N+1 N
g N+ ((N + l)qN-H _4q ,;_I 1) N <NqN . ‘Iq A*11>
and 2M 20
9g~M+1 (MqQM _ qqz __11> —oqg M (qu“ - __qqz — 11)
as required.
Now assume that we have ¢~V = |c — 1| = |n — 1| = [b| = ¢~ ™. Again we set

op, (M, N,m) = op, (2, vzm)

and
M

L(M,N) =op,(M,N,0)+ (q+1) > _(=1)"q™ 'op, (M,N,m).
m=1

We denote, as in the case of the (2,2) Levi,
e(M,N,m)=0op,(M+1,N,m+1)—op (M,N,m),

and we have L(M + 1, N) + L(M, N) equal to
M
op, (M +1,N,0) = op, (M,N,0)+ (¢+1) > _(=1)" ¢ e(M.N.m).
m=0
And as we have seen in the proof of Proposition 5.11
e(M,N,m) =q 3N"""YI(m+2) — I(m)),

where I(m) is equal to the integral of

x|, s}

|z| log max{1,

over the region
. o] < g"
o s —qamtMa2 ¢ R
And we have
op, (M,N,0) =q *N(1+¢ HI0) and op (M +1,N,0)=q N1+ ¢ HI(1).
Hence we have
L(M 4+ 1,N) + L(M,N) = (g + 1)g N1 (=)™ (M +2) + (-1)MI(M + 1)) .
But since I(m) is constant for m > M so we have L(M + 1, N) + L(M,N) = 0 as
required.
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The proof of Proposition 7.1 is now complete under the assumption that s equals
the identity.

7.2.2. s not equal to the identity. — We now analyze the other possibilities for s.
Let’s take
s = (a1,91,b1,e1).
First we assume that g; € Z(GL(2)). Then we have u € M°(F) topologically
unipotent and a(u) = u. If a; = b; then from Lemma 6.5 we have

7'CA}(usa) = TJC\'} (ua).

It’s clear that when a; = b; we also have
v (N (usa)) = i (N (ua))
and
r$2 (N (usa)) = r$2 (N (ua)).
Hence in this case Proposition 7.1 follows from the case that s is equal to the identity.
Next we assume that g; is central and a; # b;. Then from Lemma 6.6 we see
that the left hand side of the identity in Proposition 7.1 vanishes. It’s clear that the
corresponding integrals on G; and G also vanish. Thus we are done with the case
that g, is the identity.
Now we suppose that g1 € Z(GL(2)). Then we can take

s = <17 (Cl D) 7b17el)
1 C1
—(a (€ Dd a1
uw={a{, ) e

topologically unipotent with ¢> — Dd? = 1. In this case, as remarked before Lemma

and

6.12, the other twisted conjugacy class within the twisted conjugacy class of usa does
not intersect MO(R). The twisted integrals in this case have been computed in Lemma
6.12.

We now compute the integrals on G; and Gs.

Lemma 7.2. — We have 27‘?’11,(N(usa)) =0 unless by = —1 and ¢; = 0 in which case
it equals

max{|a — c|g, |d|g} logmax{1, |z|g}.
[z|p<max{la—c|p;|d|p} !

Proof. — We have the norm of s in GL(2, E)’ equal to

(P o2
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If we let N’ denote the unipotent radical of a Borel subgroup containing M’ then we
have N’ N Z¢g, (N (sa)) = {I} unless

e(cr + \/B) = eby(c1 — \/5)
which is if and only if ¢; =0 and b = —1. Let 8 = ¢+ dv/D then when ¢; = 0 and

by = —1 we have

QTg,l,(N(usa)) =laf —a 'Y E / log max{1, |z|g}

Jz|p<laf—a 1371 5]

=11- a'1/371|E/ 1 logmax{1, |z|g}
lz|le<1—a=1 87 g

= max{|a — c|g, |d|g} log max{1, |z|r}

|z| e <max{la—c|g.ld|g}~"
as required. O
Lemma 7.3. — We have 27'1?2,(]\7(11504)) = 0 unless by = 1 in which case it equals

la — 1| log max{1, |z|}.

|z|<la—1]~1

Proof. — We have the norm of s in (GL(2, F) x E*)/F* equal to

((e eb1>’cl+@>'

If we let N’ denote the unipotent radical of a Borel subgroup containing M’ then
N'NZeg,(N(sa)) = {I} unless by = 1. In this case we see from above that we have

2rC2 (N (usa)) = |a — 1 log max{1, |z
M lz|<la—1]71

and we are done. O

So, unless either by = 1 or by = —1 and ¢; = 0, all integrals vanish and the
fundamental lemma holds. If we have b; = 1 then by Lemma 6.12 the twisted integral
is equal to

la — 1] log max{1, |z3|}
lzsz]<la—1]~1
and we are done in this case.

Now suppose that b = —1 and ¢; = 0. Then by Lemma 6.12 we need to show that

the integral of

2 /log max{1, |z1], |z2|}
over the region

e (a—c)xy —dxa € R
. *dD.T,‘l +((l4(3).’172 €R
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is equal to

/ log max{1, |z|g}.
|z|p<max{|a—c|p,|d|g}~!

If we let max{|a — c|, |d|} = ¢~™, then this latter integral is equal to

2n

" -1
2 n _ .
(nq q2—1)

We now turn to the first integral. As we saw in Section 6.3.4 this integral is equal

to

2 [ / log mas{1, |, a2},
|z1|<max{|la—c],|d|} 1 J|z2|<max{|a—c]|,|d|} 1!

which equals, by Lemma 9.8,

2n 2n+1 2
q q 1 q \
2 (ng®™ — + + + )
(q g—1 ¢-1 ¢-1 (¢g+1)(¢*-1)

2n

qg" -1
2 n )
<nq q2—1)

The proof of Proposition 7.1 is now complete.

which equals

8. The fundamental lemma for the diagonal Levi

In this section we prove the fundamental lemma for M° equal to the diagonal torus
in G° and M’ equal to GL(1)3, the unique unramified elliptic twisted endoscopic group
for MP°. The restriction of o to M? is given by

a: (diag(a, b, c,d), e) — (diag(d~, ¢, b7, a™ 1), abede).
8.1. Statement of the fundamental lemma. — We note that for v =
(diag(a,b,c,d),e) € M°(F) and m = (diag(ay, b1, c1,d1),e1) € MO(F) we have
m ™ ya(m) = (diag((a1d1) " ta, (brc1) " tb, (brc1) " te, (a1dy) ~td), arbicidye).

It’s clear from this that the stable twisted conjugacy class of 7y is equal to the twisted
conjugacy class of 7. Therefore the fundamental lemma for the pair (M, M') is given
by the following Proposition.

Proposition 8.1. — For (diag(a,b,c,d),e)a € M(F) which is strongly G°-regular we
have
r$ ((diag(a, b, ¢, d), e)a) — QTE/,S,p(‘l)(diag(abe, ace, bde, cde))
equal to
27‘5\?}'(2) XGL2)’ (diag(abe, cde), diag(ace, bde))
- rﬁ,L(z) xGL(2)/ GL(I)(diag(l, a~'d), diag(abe, ace)).

We set vol(a§/Z(AY)) = 2/Inq and normalize the other volumes as in Section 4.4.
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8.2. Proof of the fundamental lemma. — As above for

m = (dlag(al, bl,Cl,dl),el) S MO(F)
we have

m~ Y ya(m) = (diag((a1d1) ta, (bic1) 7 'b, (bic1) " te, (a1di)~1d), ar1bicidye).
Hence we see that the twisted conjugacy class of v = (diag(a,b,c,d),e) € M°(F)
intersects M°(R) if and only if we have |a| = |d|, |b| = |c| and |abe] = 1. Tt’s clear
that unless these conditions are met then the same is true of the conjugacy class of
N(ya) in M'(F). Thus we may as well assume that we have
v = (diag(a, b, c,d),e) € M°(R).

Under this assumption we have 27“55,1‘(2)XGL(z))’(diag(abe,cde),diag(ace, bde)) equal

to
2|lab — cd||ac — bd| log max{1, |z|} log max{1, |y|}
|z|<|ab—cd] 1 |yl <lac—bd| 1
and TS\(;,L(?)XGL(Q))/GL(I)(diag(l,a‘ld), diag(abe, ace)) equal to

2|la — d||b — ¢ 10gmax{1,|x|}/ log max{1, |y|}.
|z|<la—d|~t lyl<lb—c| =1
We now prove Proposition 8.1 using the twisted topological Jordan decomposition.
As before we write ya = usa = sau and analyze the possibilities for s.

8.2.1. s equal to the identity. — We begin by proving Proposition 8.1 in the case that
s is the identity. We take v = (u,e) € Sp(4, R) x GL(1, R) topologically unipotent.
We write

u = diag(a, b, b~ ', a™t).
Then with the normalizations above we have, from Lemma 4.17, r§(yva) =
2r$,s,p(4)(u). Thus in order to prove Proposition 8.1 in this case we need to
prove that

27‘1?48,‘)(4) (diag(a, b, b~ ,a™ 1)) — 21"?,18,1)(4) (diag(ab,ab™*,a"1b,a" b 1))

is equal to
2|ab — 1}|a — b| log max{1, |z|} log max{1, |y|}
lz|<lab—1]~1 ly|<la—b[~1
minus
2la — 1]|b — 1| log max{1, |z|} log max{1, |y|}.
lz|<la—1]~1 lyl<[b—1]~1

We have |a — 1| < 1 and |b— 1] < 1. Since we are in odd residual characteristic we
have at least three of |ab — 1|, |a — b|, |a — 1| and |b — 1| equal. For N > M we define
I(N, M) to be equal to QTR;,IS,p(‘l)(diag(a, b,b=1,a"1)) for @ and b such that

]a—1|:q’N, |b—l|:|afb|:|ab—1|:q"M
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and we define I(M, N) to be equal to Qrf,lsfp(‘l)(diag(a,b, b~1,a71)) for a and b such
that
lab—1|=q N, la—1]=|b—1]=|a—b| = ¢ M.
Using the action of the Weyl group in Sp(4) we see that in order to prove Propo-
sition 8.1 in the case that s is the identity it suffices to prove the following Lemma.

Lemma 8.2. — For N > M we have (N, M) — I(M, N) equal to
M _ M _
92g~2M (prgh — 1 1 Mg — 4 1
q—1 g—1

N_l M~1
9qg~N-M (NqN_q ) <MqM_q )
q—1 qg—1

minus

We now see how to compute 27"1(618,‘)(4) (a,b,b=1,a~1). Using the notation of Lemma
4.7 we need to integrate

—(A? +2B? +2C% + D? + 2E? + F*) + 2(AB + AE + BD + CD + EF)

over the region

. ISC1| < Ia_bl—l

o Jzal < b= 1]

o (ab—1)zg +bla—b)zi24 € R

e (@ = 1Dz3+ab }(1 - b*)z122 € R.

We assume that |[a — b] = |b — 1|. We first note that if |z1z4] > |b — 1|7 then we
must have both |z;| > 1 and |z4]| > 1. Now

lz124] > |b— 1|7 = 22| = |ab — 1|7 Ya — bl|z124] > |z124] > |0 — 1|71
S |J)1$2| > |b~ 1|‘1.
So if |z124] > |b — 1]7! then we have
29 = —(ab—1)""(a — b)bz124u

v((b—=1)x1x4)

with v € Up and we have
3= —(a* — 1)71(1 - b*)ab 'z 290
=(a® —1)"Yab—1)"1(1 = b?)(a — b)azizsuv
with v € U;U((b_l)mm).

Now suppose that |ziz4] < [b — 1|77, then we have |z2| < |ab — 1|71, Now if
|z1@2) > [b— 1|71 then we have

3 =—(a® = 1)71(1 = b?)ab lz zow

with w € U (= Dwiea),
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And finally if we have |z1z4] < |b— 1|7} and |z122| < |b — 1|7! then we have
|z3] < la —1]|~!. So we have divided our region of integration into three regions. The
first is given by

o |lz1za] > 017!

e x3=—(ab—1)"Ya— b)bz1z4u, u € Up

e 23 =(a? —1)"1(ab—1)"}(1 - b?)(a — blaz?zsuv, v € U;U((b_l)z‘“).
The second is given by

o |z124] < B - 171

o |z2| < lab— 1|71, |z1xa| > |0 — 1|71

e x3=—(a? - 1)"1(1 - b¥)ab lzyzow, w € U;v((bfl)““).

And the third by

o |z174] < - 171

o Jz2| < lab— 1|71, |zixe| < |0 —1]71

o Jz3] < la— 171

We now compute I(N, M) — I(M, N) over each of these three regions.

v((b—=1)xz1x4)

Region 1. — Over the first region we clearly have
B = log |xs|
C = log|a1]
E = log |z,
F = log |2a4|
for both I(N, M) and I(M, N).
Next we compute A over region 1 under the assumption that |a —b] = |b— 1| < 1.
We have

A = log max{|za|, |x3 — x122], |72 — T34 + T12074]}.
Now, 22 — x324 + 212224 equals
z2z2u(ab—1)"%(a®>~1)"Y(a—b)((a—b)(a® —1)b*u—(ab—1)(1—b%*)av—(ab—1)(a® —1)b)
and
(@ —b)(a® = 1)b* — (ab— 1)(1 — b*)a — (ab — 1)(a® — 1)b = (a — b)(1 — b?).
Therefore
|22 — x3z4 + T17024] = |2222||ab — 1]7%a® — 1|7 — 1
and so
A =log (|ziz}||ab — 1|72|a® — 1|7 b — 1*) .
For D we note that 3 + 2122 + 314 equals

22z4(a® — 1) ab - D)7 (1 - b?)(a — blauv — (a® — 1)(a — b)bu + (a® — 1)(ab — 1))
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and
1 -b)(a—b)a—(a®>—1)(a—-b)b+ (a®> —1)(ab—1) = (b® —1)(ab - 1).
First we look at I(IN, M). In this case over region 1 we have

o« A=2logl|zi|+2loglzal + N - M
o B=2log|z1| + log|zs]| + N — M
o C =loglzy]

« D =2log|z1| +log|zs| + N - M
« E =log|z1| + log|z4]

o F =log|z4]

and so
—(A?2+2B%+2C%* + D> + 2E? + F?) + 2(AB+ AE + BD + CD + EF)
equals
4(N — M)log|z1| + 2(N — M) log|z4| + 4(log |z1])? + 8log |1 | log |z4] + 2(log |z4])?.
Next we compute I(M, N) over region 1. In this case we have

o« A=2logl|z1| + 2log|z4| + 2(N — M)
o« B=2log|z1| +log|za| + N - M

. C =log|xy]
o E=log|zi|+log|zal + N - M
o F'=log|z4]

For D, we have z3 + z122 + 374 equal to
(a®—1)"(ab—1)""ziz4u ((1 — b*)(a — b)av + (a* — 1)(ab— 1)u™! — (a® — 1)(a — b)b) .
Now
v=1+ (b—1)"%(ab— 1)z %z 'y
with y € R, so
(1 —=b*)(a —b)av = (1 — b*)(a — b)a+ (1 — b*)(a — b)a(b — 1)"%(ab — Dz %z y

and
(1 =0%)(a — b)a(b - 1)"*(ab — a1 *z; "yl = |(ab — )ay?zyy| < ¢ M.
Since
(a—b%)(a—b)a+ (a* —1)(ab—1) — (a® — 1)(a — b)b = (ab — 1)(b* — 1)
we get

|z3 + 2122 + 2324| = |2224]
and so D = 2log|z1| + log|z4|. Therefore for I(M, N) over region 1 we have
—(A? +2B% +2C? + D? + 2E* + F?) + 2(AB + AE + BD + CD + EF)
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equal to
4(N — M)log|zi| +4(N — M) log |z4| + 4(log |r1|)2 + 8log |z1]| log |z4| + 2(log |:C4|)2.

Hence we see that the contribution from region 1 to I(N, M) — I(M, N) is equal
to

2(M — N)g~M-N /

/ log |x4]
1< za|<gM JgM|z4|~ 1< |21 |<gM

which equals
2 - N)g ™ [ (1= fzal ™) log |zal.
1< |z4|<gM

Region 2. — We now compute the contribution from the integrals over region 2 to
I(N,M) — I(M,N). We begin by computing the contribution to I(N,M). In this
case region 2 is given by

o |z, |zl 24| < M

o |lT124] < gM < |7172]
e 23 =—(a® —1)"11 - b?)ab 'z 20w, W € U;v((b‘l)mlzz).
We note that we have |z1], |z2| > 1, |z4] < |22| and |z3| = ¢V ~M|z122] > ¢V. So we
have
A = log max{|zs|, |z3 — z122|, |23 — x324 + T17274]}
B =N — M + log|z1| + log |z2|
C = log |z1]
D = log max{|z1|?, |x3 + 2172 + ¥374]}
E = log|zz|
F = logmax{1, |z4|}.
For A we have
x3 —x120 = —(a® — )77 (1 — b?)aw + (a? — 1)b)z 122
and since
(1 =b%)a+ (a®* —1)b = (a —b)(1 + ab)
S0
lzg — z120| = ¢ M|z 20].
And we have
acg — T3%4 + 1204 = x2 + (a® — 1)1 — b?)ab lwzixows + T1 2274
= zo(xgy + (a® = 1)717 (1 = bH)aw + (a® — 1)b)z124).
We note that
(1—b%)a+ (a®> = 1)b = (a — b)(1 + ab)
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and hence that |(1 — b%)aw + (a? — 1)b] = ¢~ M for all w. Therefore after scaling z;
and zo by suitable units, which doesn’t affect B or E, we get

A = logmax{q"¥ M|z1z5|, |xa(x2 + 7™ Nai24)[}.
We now make the change of variables x4 — x4 — WN‘Mxl_lxg, which again doesn’t
affect B or E, to give

A= N —M +log|z1| + log |z2| + logmax{1, |z4]|}.

For D we have
x3 + T2 4 2224 = 21 (((a® — 1)b — (1 — b?)aw)(a® — 1) 'b " 'zo + 2124).
Since
(@> = 1)b— (1 —b*a = (a+b)(ab—1)
we have
[((a* = 1)b = (1 = b)aw)(a® — 1)o7} = ¢V ™M

for all w. Thus after scaling x2 by a suitable unit we have

A/IANLL'Q + .’1311'4)|}.

D = log max{|z|?, |z1 (7

So we have

A= N — M +log|z1| + log|za| + logmax{1, |z4|}

B =N — M +log|z1| + log |z2|

C = log|z1|

D = log|z1| + logmax{|z1], 7™ N zy + z124]}

E = log ||

F = log max{1, |z4|}.
If we have |z2| > ¢~ then

D =N — M +log|z1| + log|z2|

on the other hand if |z2| < ¢*™~" then we can do the change of variables z4 +—

x4 — ™ ~Ng 2y, which doesn’t change the value of B or C, to give

D = 2log|z1| + log max{1, |z4|}.
The difference between the integrand
—(A% +2B% +2C? + D? + 2E* + F?) + 2(AB + AE + BD + CD + EF)

when

D =N — M +log|z1| + log |z2|
and

D = 2log|z1| + log max{1, |z4|}
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is

(N — M +log|xa| — logmax{1,|z4|})* — (log|z1])?.
Lemma 8.3. — The integral of

(N = M +log |z2| — log max{1, [z4]})? — (log |21)?
over the region

. |I1|,|x4l éqM
. l.’EQl g q2M—N
. |.’E1l‘4| < qM < |.”E1.’L‘2|

1S zero.

Proof. — We assume that N < 2M so that this region is non-empty. We note that
we must have |z1| > ¢V ™. The volume of x;,x2,x4 such that log|z;| = k with
N-M<k<Mis

(1 =g (PN = MR = (1= (PN - MR,

We now compute the volume of x1,x2,z4 such that log|zz| — logmax{1,|z4|} =
M — N+ k, with N — M < k < M, is the sum of

PV =g (@M - gV E) = (1 g (@MY - )

b

the contribution when |z4| < 1, and

_—1\2/ M _ _N-k = i
Q=g @™ =" D g

i=M-—-N+k+1

(1= g (g™ = gV TINPM TN — MR,

the contribution when |z4| > 1. This sum equals
(1 =g (@M N =Mk
as required. Od

Therefore we can assume that D = N — M +log |z1| + log |x2| in all cases and then
we have

—(A%4+2B?4+2C%+ D? + 2E* + F?) + 2(AB+ AE+ BD + CD + EF)
equal to
2(N — M) log |z1x2| + 4(log |z1| + log max{1, |z4|}) log |z2| — 2(log max{1, |z4|})>.
So I(N, M) is equal to ¢=3M times the integral of this function over the region

o |21, |22, lza] < g™
o lzmy] < gM < |m122].
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We compute the contribution from the 2(N — M)log|zixs| term. If we make the
change of variables z = z 22 then the integral becomes

2(N — M)q—“”/

=11
/ / a1 log |21,
1]z |<gM Jzal<qM |z |~ S M <] z[<qM |z |

which equals the integral of

2(N — M)q (M +log |z |)|@1|”" — M| q—1

over 1 < |z1| < g™ . We will compute the remaining terms when we compute (M, N)
over region 2.

We now compute the contribution to I(M, N) over region 2. This region is given
by

o o], |zal < @M friwa| < g
o |z < gV, zia0] > ¢M
e x3=—(a? 1)1 - bab lz 20w, w € U;"((b_l)rlu).

We note that we must have |z2| > 1, |x3] = |z122| and |z4| < |z2]|. So we have

M

A = log max{|za|, |23 — 2172, |¥5 — 2374 + T1T224]}

B = log max{|z1x2|, |x2 + z124]}

C = logmax{1, [z1]}

D =logmax {1, |z1|?, |3 + 122 + 224}

E =log|z2|

F = log max{1, |z4]}.
We note that

B = log |z2| + logmax{1, |z}
As we saw above |z — z122| = |z122] and so
A = log max{|za|, |z122|, |25 — 7324 + T12074]}.
We have
T3 — T3xy + 17024 = To(xa 4+ (a® — 1) 710 tryay (1 — b2)aw + (a® — 1)b))
and we note that
(1—-b%)a+ (a®> = 1)b= (a — b)(1 + ab).

Hence

l(a® = 1) ez (1 = b2)aw + (a® — 1)b] = |z124]
for all w. So after multiplying x4 by a suitable unit we can take

A =log|xz| + log max{1, |z1]. jxe — z124|}.
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Making the change of variables x4 — x4 + wflzz when |z2] < ¢™ gives
A— { 2log |2, if 22| > ¢";
log |z1| + log |z2| + logmax{1, |x4]}, if x| < ¢M.
Now we look at D. We have
3+ 1wy + 2irs = x1((a? = 1)7'0 1 ((a® = Db — (1 = bHaw)xe + x124).
We write
w=1+4+ a_lbacflx;l:c
with |z| < ¢™. Then
x3 + 110 + 22wy = x1((a® — 1) (a4 b)(ab — 1) + bmfla:;lx)rcg + z1x4)
=(@® -1 Ya+b)(ab—1)ziz2 + (a® — 1) (D? — D)z + 27y,

Multiplying x5 and x by suitable units gives

— - M
7TN A[:L'11172+7T A 1:+;r%:v4.

T3+ 122 + x?:m =
Now if |21| > 1 then this equals

2 N—M_—1 —2
xi(zg + ] xp 4 xwy )

and we can make the change of variables x4y — 74 — 7TN‘fola72 + W*A[xxl”z to get
x2x4. On the other hand if |x1| < 1 then we have

x + 7TN~]WLL‘1£L‘2 + l%‘L4
and we can make a change of variables @ — = — N =Mayixzy — LL'%JJ4 to get x. So we
have
[ 2loglzy| +log max{1, |x4l}, if |x1] > 1;
| logmax{L, |x|}, if |zq| < 1.
Putting this altogether gives
A_{210g|x2|, if |xa| > ¢™,
~ | log 2| +log |z | + logmax {1, |x4]}, if |w2] < ¢M
B =log|z2| + log max{1, ||}
C = logmax{1, |z1|}
[ 2log |z1] + logmax{1, |z4|}, if [z1| > 1,
| logmax{1, [z|}, if |x1] < 1
E =log |xa]
F =logmax{1, |z4|}.
and we need to integrate the function
— (A% 4 2B +2C% + D? + 2E* + F?) + 2(AB + AE + BD + CD + EF)
over the region
o |zl o] |wa] < M, |za| < gV
o |yzg) < gM < i)
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When |z1| < 1 the integrand is equal to
2(logmax{1, ||} + logmax{1, |x4]}) log [x2] — logmax{1, [|})% — (log max{1, |z4|}).
But if we have |z1| < 1 then integrating over x is the same as integrating over x4 and
we can replace this function by
4log max{l, |z4]} log |x2| — 2(logmax{1, |x4]})?.

If we now assume we have |z2| < ¢ so that |x1| > 1 then we are in the situation

considered above, when computing (N, M), and we take our integrand to be
4(log || + log max{1, |z4|}) log |z2| — 2(log max{1, |z4|})?.
Finally we have the region |z2] > ¢™ and |z1| > 1 then the integrand is equal to
4(log max{1, |z4]} + log |x1|) log |z2| — 2(log max{1, |z4|})?.
Thus we can take our integrand to be
4(logmax{1l, |z4|} + logmax{1,|z|}) log |z2| — 2(log max{1, |z4|})*
in all cases. Therefore the contribution to I(M, N) from region 2 is given by ¢=N—2M
times the integral of this function over the region
o |zl zal < @M Jziwa] < g™
o o] < ¢V, |zr122] > M.
So the contribution from region 2 to I(N, M) — I(M, N) is equal to the integral of
2(N = M)g~™ ((M 110 [ s [~ — Ml |72 — '31‘_;:#‘_2)

over 1 < |z1] < g™, plus the integral of

q731\/l (

4(log 21| + logmax{1, |z4|}) log |z2| — 2(log max{1, |z4|})?)
over the region

o |zl |2al, [2a| < g™

o |z1234] < @M < |z129]
minus the integral of

g VM (4(log max{1, |z1|} + log max{1, |z4|}) log |22| — 2(log max{1, lz4]})?)
over the region

o o], [zl <@ laa| < gV

o |vizy] < g™ < |z129).

We now compute the difference of these integrals. We begin with the contribution
from the log max{1,|z;|} log|z2| term. Given
So over the first region we compute

M / 21|~ log |1 | / log |2|
1<]ay | <gM JgMzy |71 < aa|<qgM

21| > 1 the volume of x4 is ¢™ x|~ L.
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while over the second we compute

N / 21| log a1 / log [2].
1<|z1|<qM gMlzi| i< |z2[<gN

The integral over xo over the first region gives

M _ M. |-1
Mg — (M o[ )M |~ S
q-—
while over the second region we get
N _ My, |—1
Ng¥ — (M~ log |y )gfa |+ — kL
q—
Multiplying the first by ¢~2* and the second by ¢~~~ and subtracting gives
M N-M; M _ N 1 v d® =gV 1
(M =N)g " +q 777 (q" =" ) (M —loglar[Jlz|™ +¢7 7 —q—llxll" :

which we then need to multiply by |z1]|~!log|z1| and integrate over 1 < |a;| < ¢™.

Next we consider the logmax{1, |z4|}log|za| term. Given |z4] > 1 and xs with
|za| > |24| the volume of x; is g™ (|z4|™' — 22| ™). So over the first region we need
to compute

= | (24l log 4] log 2] — ||~ log |4 log 3|
Ji<lad<aM Jlzal<|zal<q
while over the second we need to compute

g N / / 24|~ log |24] log 2] — |o2] ™ log |24 log 2.
1<y |<gM Jzg|<|z2|<gN

24|V log |x4| log |z2| term. Taking the difference over these two
regions means we need to compute the integral of

We consider the

—2M —-N—-M
— 9

((M CN)GM (g™ N MY g og o]+ 4q -

|1'4|) 24| ™" log |24

over the region 1 < |z4] < ¢™. Next we consider the |z2| !log|z2|log |x4| term.
Taking the difference over these two regions means we need to compute the integral

of (1 — g7 1) log |x4| times

N(N+1) nop loglaal(loglaa| +1) nopy MM +1) oy
—— - q -
2 2 2
. log |374|(102g]ac4

+1) g2

over the region 1 < |z4] < ¢M.
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Finally we consider the (logmax{1,|z4]|})? term. Given |z4| = ¢*¥ > 1 the volume
of 1 and z2 in the first region is

M—k M M—k
S*l—-qh) D - = ¢(1-qg " —¢"
a=1 b=M—a+1 a=1
@EM—k+L _ Mt
- (T - (- )
=

=M F M — (M = k)gM (1 - q7),

while the volume of z; and z4 in the second region is

M-k N M—k
Sooqt-¢) D> fl-gH= D "U-g "V -
a=M-—-N+1 b=M—-a+1 a=M—-N+1

— gNFM R M (N (1 — g )M,
Thus in computing the difference between the two regions we need to integrate
(@M =g 1 (N —loglaa)(1 — ¢ g™ "M — (M —log |za])g™*M (1 — ¢ 7))
-~ (log |z4)?

over 1 < |z4] < ¢M™. Adding this altogether gives the contribution to I(N,A) —
I(M, N) over region 2 as the integral of the sum of

6(M — N)g~ |z~ log |a],

N-M M N v —qM 2
4q_ - (A[(q —q ) + q_—1> 'CCI_ lOg |:E|,
q—2M _ q—N—M
2(2 = FN(N+1)(1 g Hg VM - MM +1)(1 - q*)q*?M) log |z,
4N M (N — ¢M)|z| "2 (log |2])?,
2(Mq M — (M 4 1)g M1 = Ng™N M 4 (N + 1)g VM) (log [«])%,
and

—1 _ -2
2N — M)g~M <M|;L~|—1 Y TPEE U et '1“" >
q—
over the region 1 < |z| < ¢M.
Region 3. — We have I(N, M) given by ¢~ =3M times the integral of
—(A? +2B? +2C% + D* + 2E? + F*) + 2(AB + AE + BD + CD + EF)

over the region
o |21, |22l 24| < g™
o lzrzal, [2122| < @M

. |z3] < qV.
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And we have I(M, N) given by ¢~V 73 times the integral of the same function over
the region

ozl |zl < @M || < M

o 22| < gV, |rraa] < M
o |z < qM.

Thus after removing the common region we need to compute the integral of our
function over the region

o |zl |22l 2| < gV
x| < ¢M

Iy

o 2124
e qM < as| < gV

and subtract from it the integral over the region

TN EIES qM, x| < g™
o M < x| < gV, |mraa| < ¢M

. [173| < q/\['

We first compute the integrand over the first of these subregions. We have

A = log max{|x3|, |25 — v334 + T17274]}

B = log |x3|

21}

D = logmax{1, [z1|?, |v3 + 2172 + 7724]}

C = logmax{1,

E =logmax{1,|x2|, |z4|}
F = logmax{1, |z4]}.

After the change of variables z3 — z3 £ 2122, which doesn’t change the region of

integration, we have

A = logmax{|z3|, |23 — r3z4|}

B = log |x3]

C = logmax{1, |z1]}

D =logmax{1,|z1|?, |z3 + x 24|}
E = logmax{1,|r2|, |z4|}

F =logmax{1, |z4|}.
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We (.an make the change of variables x4 — x4 + :Lﬁxd_ 1 which doesn’t alter E since
T2x5 ' € R to get
A = log|z3| + logmax{1, |z4]}
B = log |x3]
C = log max{1, |z1|}
D = log max{|z1|?, |z3 + xx4|}
E = log max{1, |z2|, |za|}
F =logmax{1, |z4|}.
If |z3| > ¢™|x1| then D = log|x3|. On the other hand if |z3| < ¢™|z1| then we can
do a change of variables in z4 to get
D = 2log|z1| + log max{1, |z4]}.
The difference in the integrand between taking
D = 2log|z| + logmax{1, |z4|}
and taking D = log|z3]| is
(log [zs| — (log |z | + log max{1, [z4]}))? — (log |21])?.
Lemma 8.4. — The integral of
(log |z3| — (log 1] + log max{1, |z4]}))* — (log|z1])?
over the region
1< fa| < g
. |52| 4] < gMlaa| 7!
e M < |z3] < min{gM|z,|, ¢V}
18 zero.
Proof. — We fix k with 0 < k < M and set M; = min{M + k, N}. The volume of
Z1, T2, x3,xq With |z;] = q* is
G (1 — g1 )gM FgM =R (M1 _ My = (1 — ¢~ 1)(g2M+ M1k _ 3M—k),
Now we compute the volume of z,x2,x3,24 such that log|xzs| — (log|zi| +
log max{1, |z4]|}) = k. If |x4] < 1 then the volume is
M~k

S a1 e (- g = (1 g (M g,
i=M—k+1

Now assume that |z4] > 1. Then the region is given by
o 1< |ay| < gMF
. qﬂ[—k}‘,r |—1 < |T1| [V[]T4‘—1
e ¢M < |x3] < min{gM x|, ¢V}
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So we need
" < x| = ¢"farza] < minfgM a7 ¢

So the total volume of 1, z9, 23, x4 with |z4] > 1 and |z3| = ¢¥|r 74| is

M—k My —k—1i
dfi—=g ) DY d—qg eI - g,
i=1 j=M—k—i+1

which equals

(1— q*l)(qZA[Jr/\llfk _ PM kMM g2

q

as required. O

By this lemma we can assume that we have D = log|xs|. Then over the first
subregion we have
— (A% +2B% +2C% + D* + 2E* + F?) + 2(AB + AE + BD + CD + EF)
equal to
2(log max{1, |z1|} + logmax{1, |z2|, |z4|}) log|z3]
plus
—2(log max{1, |z1|})? — 2(log max{1, |z2|, |74]} — logmax{1, |z4|})*.

The contribution from the 2logmax{1, |z} log|xzs| term is

( gV — ¢
2g?M <NqN Mg - ﬁ) / 212 log |4,
g—1 1<z |<qM

The contribution from the —2(logmax{1, |z1|})? term is
22 gV = o) [ 1] (log 2.

1<z <M

The contribution from the 2log max{1, |z2|, |z4|} log |z3| term is
gN — M

4q™M (NqN — Mg - —) / log |
q—1 1< |24 <q
plus

gV —gM
—2¢M(1—q ") (NgV = Mg" = / log |z4].
q—1 1<zl <q™

The contribution from the —2(logmax{1, |z, |z4|} — log max{1, [z4|})? term is

M(gN _ gM

—2q q lz2| "t (log max{1, |z2|} — log max{1, [z4]})?,

‘/|I4|$|I2KQM

which equals

oM (g — M) / o]~ (log |12])?
1<z |<gM
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plus
20 ™) [ feal (o 2227 .
ISNEANEIN A

Making the change of variables y = 1:2174:1, this latter term equals
-2¢M(¢V — ") / lyl= (M [yl ™ = a ™ (log y])%.
J1yl<gM

Adding this altogether gives the integral of
— (A2 +2B% + 202 + D?> + 2E* + F?) + 2(AB + AE + BD + CD + EF)

over the first subregion as the integral of

N M
M qg —4q - 1 / -
202 (N = b = T ) o] oglal 402 (g" = gl log o)

plus
g~ — M
20M Y+ 1) (NqN — MgM - ——) log |z|
q-—

1

over 1 < |z| < ¢™.

We now compute the integral over the second subregion. This subregion is given
by

o w3l lza < g

« ¢M <laa| <V

o 2| < gMas|h

M

We note that |x1] < 1 and we have, after a change of variables,

A =2log|xs]
B = log |x2|
C=0
D = log max{1l, |z3|}
E = log |2
F = logmax{1,|z4|}.
And
—(A? +2B? +2C? + D* + 2E* + F*) + 2(AB+ AE + BD + CD + EF)
equals

— (log max{1, |x4]})* + 2log |x2| log max{1, |x4|} + 2log |z2|log max{1, |x3|}
— (log max{1, |z3|})>.
But integrating over x4 is the same as integrating over x3. Hence we can replace this
function by
—2(logmax{1l, |z4|})* + 4log|zz| log max{1, |z4|}.
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Thus to compute the integral we need to multiply this function by ¢*M|z;|~! and

N and |24] < ¢™. We have

integrate over ¢M < |z2| < ¢
[ el = (V=M1 - g,
Mclza|<q
and so the integral of —2(logmax{1, |z4|})? yields

LN - M@V (1 - g / (log |24])2.
<lzal<qM

We have

' iy o (NN+1) MM +1) .
/”<}1>i<qN |22 7 log |xa| = < 5 _ 5 > (1-q¢ Y

and so the contribution of 4 log |x2|log max{1, |z4|} is
2(VN 4 1) = MOT+ 1)@ (1= g7 [ log 4.
<lal <

Thus the integral over the second subregion is equal to the integral over 1 < |z| <

q/\[ of

2(N(N +1) = MM+ 1)) ¢*M (1 — g Y log |z| — 2(N = M)¢*M (1 — ¢~V (log |2])?.

Combining this together we get that the contribution to I(N ]\[) — I(M,N) over
region 3 is equal to ¢ *M =N times the integral over 1 < || < ¢M of the sum of

N M
2¢2M (Nq — MgM - %) || =2 log | z|.

qN _ qM
2™ g+ 1) (Nq” - MM - ———) log |z},
-

1
—2(N(N +1) = M(M + 1)) ¢*(1 — ¢ ") log |z|.
and M (N =M1 - Y =2¢N - ¢ )IL'_Z) (log |x[)?.
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Putting it altogether. — Gathering together the computations above we get that
I(N,M)—1(M,N) is equal to the integral of the sum of

2(M — N)qgMlog|z|,
2((—(M*+ M — N)g+ (N +M?+ M +1))g M1
H(M?q — (M + 1)?)g~ VM) log [z,
4(M = N)g~ M|~ log|al,

qJ\I

N _
20" (Mg 4 (N — 20)q" + T )| log e

Q(M(q-ZJ\/[ _ q—N—]\/I) o (A[ + 1)((1—21\/[—1 _ q—N——I\/[——l))(log|m|)2’

=1
and  2M(N — Mg~ M|~ — 2M(N — Mg~ || — 2(N - Mg~ M 3
-
-2
o(N — gV
+2( L

over the region 1 < |z| < ¢M. Using the results of Section 9 we compute this integral

. M _1 , M _1q
2¢72M [ MgM — q MM — q
qg—1 qg—1

N M
Qq‘]\/_]\/[ NqN _ q — 1 ]\/Iq}” _ q —1
qg—1 q—1

and the proof of Lemma 8.2 is now complete.

to be equal to

minus

8.2.2. s not equal to the identity. — We now assume that s is not the identity. After
twisted conjugation we may assume that we have

1

ai
by
with af = bf = ¢k = 1 for some k prime to the residual characteristic of F and with
a1 and by not both 1. Since M? is abelian u € M (F) commutes with s« if and only
if a(u) = u and hence if and only if u is of the form

a

We take N equal to the unipotent radical of the upper triangular Borel in G° and
compute the possibilities for Ny = N N Zgo(sa). By abuse of notation we consider
N C GL(4).
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Lemma 8.5. — With notation as above we have the following possibilities for Nj.
(1) If a1 = 1 then we have

Ny =

(2) If a1 = by = —1 then we have

1 Xy T —IT1X2

N1 _ 1 0 —XI2
1 —X
1

(3) If a1 # *+1 and by = a1 then we have

1 Xy 0 0
N, = 1 0 O
1 —T1
1
(4) If ay # +1 and by = a7 ', then we have
10 i) 0
1 0 ajxs
N, =
' 1 0
1
(5) If by = 1 then we have
100 XT3
10 0
M= 10
1

(6) In all other cases we have Ny = {I}.

Proof. — We take
1 1 2 +2x124 T3

1 T4 x5
n =
1 Ze
1
We have
1 —x¢g Ts — XT4Tg T3 — T2Tg — T1Ts
1 xa xTo
a(n) =
1 —x
1
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and
1 = a1(132+.’1311174) b1.’173
T 1 a1%4 bizs
s ns = )
1 blal Te
1

We now find n such that a(n) = s~ !ns. First we note that

e« 1 = —Ts¢

« 1 = xg = 0 unless a; = by

e T4 = 0 unless a; = 1.

Let’s first assume that a; = 1. Then we have by # 1 and so ;1 = ¢ = 0,
zo = x5 = 0 and z3 = 0. We now assume that we have a; # 1. Therefore we must
have x4 = 0. We have x5 = x5 = 0 unless a; = b1_1 and we also need to have

(1 —b1)xz = zowe + 2125 = (b ' — 1)x120.
The result now follows. O

We now compute the integral 7§, (usa) in each of these cases.

Lemma 8.6. — With notation as above we have the following possibilities for TAG/I(usa).
(1) If a]; = b1 = —1 then

r$ (usa) = 4|a — b||lab—1] logmax{1, |z1|} log max{1, |z2|}.
lz1]<la=b] 1 |#2|<|ab—1]1

(2) In all other cases r§;(usa) = 0.

Proof. — We let n € Ni(F') and compute vps(n). When a; = 1 we have n € Sp(4)
and vpr(n) = 0 by Corollary 4.8. Similarly when a; # 41 and b; = a; we have
n € Sp(4) and vas(n) = 0 by Corollary 4.8. When a; # +1 and b, = a; ! we have

10z O 1 10z O 1
1 0 a1 o 1 1 0 Zo 1
1 0 - 1 1 0 1
1 a;! 1 a
and

10 o 0

1 0 )

UM 10 =0
1

by Corollary 4.8. Finally when a; = by = —1 we have

1 Ty T2 —T1X2

1 0 —I2
n =
1 —I1
1
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and one can compute as in the proof of Lemma 4.7 that
var(n) = 4logmax{1, [x1|} logmax{1, |xa|}.
Moreover for u = diag(a, b,a™!,b~1) we have
1 (I1—a D)y (1—a" % Hay —(1—a 'h)(1 —a b Hajas
-1 -1 1 0 —(1 —a b=y
1 —(1—a"'b)a
1

and the result now follows. O

We now consider the integral on GSp(4). We have N(usa) equal to the product of

1
a — al
S1 = C1 b1
(lel
and
ab
ab™!
a '

a7t
We take N’ equal to the unipotent radical of the upper triangular Borel in GSp(4)
and we compute the possibilities for N{ = NN Zggpa)(s1).
Lemma 8.7. — With notation as above we have the following possibilities for Ni.

(1) If a1 = 1 then we have

12, 0 O
1 0 O
N| =
! 1 —T
1
(2) If ay = by = —1 then we have
10 0 T3
1 x4 O
N/ —
e 10
1
(3) If ay # £1 and by = ay then we have
10 0 0
o 1 XLy 0
b 1o
1
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(4) If a1 # £1 and by = a; ', then we have

1
N = 0

(5) If by =1 then we have

10.7320
Niz 101‘2

(6) In all other cases we have Ni = {I}.
Proof. — We take

1 2y xo+x124 23

n— 1 T4 X9
o 1 —X1
1

and we have

1 ayzy by(ze + x124) ar1bizs

1 1 bla1‘1(£4 bixo
5] nsy =
1 —a1T
1

So if we have sflnsl = n then we have the following implications
ea; #1: 21 =0
. bl 7é 1: XTo = 0
. ay #£ bfl: xr3 =0
o 47 75 bli T4 =0

and the result now follows.

We now compute the integral QTSS,I)M)(N(’)/O()) in cach of these cases.

Lemma 8.8. — With notation as above we have the following.

1) If a1 = by = —1 then 2TGS,D(4) N(va)) s equal to
M

2|la — b||ab — 1] log max{1, |z4|}

log max{1, |z3|}.
los|<lab—-1]~!

lra|<la—b]~!

(2) In all other cases we have 27’5\}5:‘)(4)(N(’ya)) =0.
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Proof. — We let n € N1(F'). Suppose first that a; = b; = —1 then

100 xrs3
1 Ty 0 .
v Lol T 2log max{1, |z3|} logmax{1, |z4]}.
1
Now for u = diag(ab,ab™',a='h,a'b~!) and n as above we have
10 0 (1—a2b72)x;
232

w=n=lun — 1 (1 —a2b%)xy 0

1 0

1

and the result is clear in this case. In all other cases one can check that for n € Ny
we have vy (n) = 0. |

Finally we consider the integrals on (GL(2) x GL(2))" and (GL(2) x GL(2))/ GL(1).
We have v = us = diag(a,b,a:b™1,bja™!) and as we saw above the integral on
(GL(2) x GL(2))’ is equal to 2|ab — a1b™'bya'||aa1b~! — bbya~!| times

/ log max{1, |z|} log max{1, [y[}.
lz|<|lab—a1b~1bya~ 1|1 lyl<laaib=1—bbia=1| !

and the integral on (GL(2) x GL(2))/ GL(1) is equal to

2la — bra b —a b 10gmax{1,|x|}/ logmax{1, |y|}.
lz|<la—bia=t]| "1 lyl<|b—arb=1| =t

Now it’s clear that the integral on (GL(2) x GL(2))/ GL(1) vanishes unless we have
a1 = by = 1 and the integral on (GL(2) x GL(2))" vanishes unless a1 = by = £1 in
which case it is equal to

2lab — 1||la — b| log max{1, |z|} log max{1, |y|}.
Jja|<lab—1] 1 lyl<la—b| !

The fundamental lemma is now proven!

9. Some p-adic integrals

In this section we compute certain p-adic integrals that were required in the proof
of the fundamental lemma. All these integrals are over open subsets of F". In each
case we take the measure on F™ that gives R™ volumme one; and we suppress it from
our notation.

Lemma 9.1. — For k > 0 we have

k __ 1
[ teslel = ket =t
1</2|<qk q—1
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Proof. — We have

k k—1
/ loglz| = > iq'(L—q ') = ke* = > q' = k¢* -
1<|z|<q i=0 i=0

as wished. O

As a corollary we have the following.

Lemma 9.2. — Assume that 0 < a < b then
b a

/ log |z| = bg® — ag® — 4 .
qu <|z|<q® q-1

Lemma 9.3. — Let M > 0. Then we have

g kl [q(/\1+1)(k:+l q(]\’[-‘rl)(k-f—l) _ qk+l
T | = (1- - 5
/§|:L'|<q’” |T| 0g|7| ( q ) ( qk+1 -1 (qk+l - 1)2 )

if k # —1 and

_ MM +1 _
/ Lo log x| = L—-—)(1 —q ).
J1<|a|<qM 2

Proof. We have

/||< Jzlfloglal = (1 ¢ qu’”“
1<|a|<qgM

m=1

If £ = —1 then it’s clear that this integral is equal to
M(M + 1
_(_2_+_)(1 _ (1—1).

On the other hand if k # —1 then we have

(MA41)(k+1) _ qm(L+l)

A
) q
m=1

m=1
_ <Mq(1u+1)(k+1) - il: qmu-+1)>
-1 P 1
(A[q(/\l—H (k+1) - MO qk+l>
k+1 _ ] (¢F+1T=1)2
as wished. O

Lemma 9.4. — Let M > 0 then we have

/ / || log max{1, |z|,|s|}
Jlz|<egM S s|<qM
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equal to
q s M —1
—— | Mq¢°" — —— ).
qg+1 g3 —1
Proof. — We write this integral as the sum of
/ 2| log max{1, ||}
JsI<lz|<qM
and

/ |z| log max{1, |z|, |s|}.
|z <|s|<q™
The first integral equals
/ |2|? log max{1, |x|}.
lz|<q™M
The second equals

/ log max{1, |s|} |x|,
Jls|<gM lz]<|s|
which equals

qfl

qg+1,

/| o |s|? log max{1, |s|}.
s|<q

Thus the sum of the two integrals is

—1
q 2
1+ ) / |z|? log max{1, |z|},
( q+ 1 jz|<qM {

q (]\I 3M M — 1)
_4 Iq =
q—+1 g3 —1

which equals

by Lemma 9.3.

Lemma 9.5. — Let M > 0 then we have

(2M — 1)gM i qM —q

/ (log[a])? = MM —
1<z <qM
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Proof. — We have

log |x kg1 — ¢!
/lgmgq“( ¢ |2])? Z (1—g™")

M—1
—Zk? F= > (k+1)%
k=0 k=0
M—1
12gM — Z (2k + 1)¢"
k=0
— M2gM 2 (M -1)g" ¢ —q\ ¢ -1
q-—1 (¢ —1)? q—1
APt (M — )¢ M —¢q 1
q—1 (=12 q-1
as wished. d
Lemma 9.6. — Let M > 0 then we have
(M+1)(k+1) _ |
q
/ 7| = (1—q~ )T—
1< 2| <gM ¢t =1
if k # —1 and we have
/ lz| ™t = (M +1)(1—-q").
1<]a|<qM
Proof. — Assume that £ # —1 then we have
M
|.Z'|k — (1 _ (]71) (I(k+l)7n
. 2
(M+1)(k+1) _
1,9 1
=(l-q l)*lﬁ-l—
q —1
And when k£ = —1 the result is clear. Od
Lemma 9.7. — Assume that 0 < k < M. Then
ol
|z2|<qM Jlzs|<gh J|za| <k
equals
(]\[ N k_)q[\[Jr‘Zk, B 2q1\[+2k' _ q[\[Jrk . qlik B q3k: —~1
qg—1 ¢ -1
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Proof. — For ease of notation we define, for m > 0,

Ii(m) = / log |x|
1<z <™

Io(m) = / |x|2 log |z|.
1<|z|<g™

We begin by considering the contribution to the integral when ¢* < lz2| < g
this case the integral is

/ / / log max{|zy|, |za||z3zs ' — 23]}
lz3|<qh Jzal<qr Jgb <|z2|<qM

Now |z5z; !l < ¢* and so we can make a change of variables z3 — x3 4+ z3z; ' to give

/ / / log max{|z2], |z2l2]},
lz3|<qk Jzal <k J gk <|z2|<qM
which equals

(1) F(IL(M) = I (k) + ¢" (™ — ¢) (k).

We are now left to integrate over the region |xa|, |3, |z4] < ¢*. Since the integrand
is symmetric in z2 and z3 we can take twice the integral with |x3] < |z2| plus the

and

M In

integral with |zg| = |z2].
We begin by computing the contribution when |z3] < |z2|. This is equal to

[ [ tesmax{ilesl ol o2 - saal)
lzal<q* Jzs|<|za| Jloz|<q*

If (23] > |z4] then |23 — zox3| = |2a||zy ‘2] — x3| and |25 ' 23| < |24| < |22|. Hence we

can make the change of variables x3 — z3 + x;lxﬁ to get the integral

/ / / log max{1, |z2|, |z2||z3|},
Sz <|za| Jzs|<|z2| J|w2|<gF

which equals

[ Greatoglanl + [ sl
1< |z2|< g |zal<|z2| /1< ]Ts|<|22] /1< ]Z2| <Gk

The first of these integrals is
(2) q 2L (k).

The second integral can be written as

lza|<|z2| J|z3|<|z2|<g* J1< 23] <qP

Y
|zs|<|z2|<qk J1g]z3|<q*

which equals
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and by Lemma 9.6 this equals

3)

2k

I, (k) — L (k).
q+11() q+12(>

On the other hand if we have |z3| < |z2| < |z4] then the integral becomes

2/ log max{1, |z4|},
lzs]| <|z2]|<|eal<g¥

which equals

2q_1/ |x2] logmax{1, |z4|}.
EPINER ERIN

qlzs|?
|z2| = P
ENEEN q+

We have

and therefore

(4) 2/ logmax{1, |z4|} = 2 d I (k).
Jzs | <2 | <zl <g* g+1
Now we look at the contribution to the integral when |zo| = |z3]|. We split it up

into three cases
(a) |T2| < |24|, integrand equals log max{1, |z4|?}
(b) [z2] = [z4]
(c) |z2| > |z4], integrand equals log max{1, |z2|?}.

In case (a) the contribution is

/ / / log max{1, |z4]}.
|z2|<|za|<g* Jxs|=|z2| /|z2]|<qF

This integral is

-1

5« —q”>/ |ml/ log max{1, 242} = 22— Iy (k).
EAREN |24l <" q+1

Similarly the contribution in case (c) is

(6) 271 (1 — g~ ") Ia(k).

We now deal with the contribution in case (b). We can write this as

/ log |z2| + log max {1, |z3||1 — z2(zox3) [}
1< |z2|=zs|=|za|<g"

Firstly we have

(7) / log|za| = (1 — q_l)glg(k:).
1<]z2|=]z3|=|za|<q"

Now we deal with

/ log max{1, |z3||1 — 22 (zox3)*|}.
1< z2|=|z3|=|z4| <k
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We have
. 1_2(1“1 if ¢ = 0;
Hu€Up: |1 —u|=q '} = : ’ ’
vol{u P ul =q "} { q t(1 — g1, ifi > 0.
And therefore
/ log max{1, |z3||1 — x5 (z223) " "]}
1<z |=las|=|xa|<gF

is equal to

1—-q " |z2|? log max{1, |xa||x|}

J1<]al<q* -/|w1<1

minus

g " (1—qh |z2|? log max{1, |x2|}.
J1Lza|<q"

Now in the integral

(lgqfl) |;L'2|210gmax{1,|w2||:1;|}

I1<|z2|<q® »/Imlél

if we make the change of variables y = zxo then this integral becomes

(1—qg |22 | log max{1, |y|},

ly|<Jz2]<qg* ly|<qg¥

which equals, by Lemma 9.6,

2(k+1) _ |2
1y q Y|
(1—q H? /|U|<qk (W) log max{1, |y|}.

Hence we have
/ log max{1, {zs||1 — LL'?l(.’I,'Q.’L’g)_II}
1< |z |=ws|=|za|<q"

equal to

2kq_1 249 1 -9
E— ) — 2\K) — — 1) Is(k).
(®) P )~ q g B — g2 — DEa(k)

Putting this altogether, the integral

/ / / log max{1, |z2
lz2|<g?M Jlzs|<gh J|zal<g¥

(1) 4+ 2% (2) +2x (3)+2x (4) + (5) + (6) + (7) + (8).

L sl Jxal, |J,£21 — zox3|}

is equal to
Collecting together like terms in this sum gives
PP (M) + (M — PRV (R) + ¢ 2 (q% + g + D I2(k).

Applying Lemmas 9.1 and 9.3 now gives the result.

ASTERISQUE 302



THE TWISTED WEIGHTED FUNDAMENTAL LEMMA 433

Lemma 9.8. — Assume that 0 < a < b<c. Then
/ / log max{1, |z|, |r|, |s|}
|z|<q* JIr|<qb Js|<q¢

qu+b+c N qa+2b+1 N 1 N q3a+2
g—1 -1 -1 (¢+1)(¢*—-1)

18 equal to

atbtc _

cq

Proof. The contribution when ¢* < |s| < ¢° is

c_ b
qa+b / log|s{ _ qa+b <ch —bqb o q q ) )
Jqb<|s|<q" q—1

We are now left with

/ / / log max{1, |z|, ||, [s]},
lz|<q® JIri<q® Js[<q®
which equals

2/ / logmax{1, |z|, |s|} — / / log max{1, |z|, |s|}.
lz|<q® Jr<|s|<q® Jlz[<qe JIr|=|s|<q”

This equals
2 [ [ lstiogmax{ufel st~ [ [ (- g )lsllogmax{1,fal. Js}
Jjzi<qe J1si<qt lz|<q® J]sI<q"

which equals
(l—i—q_])/ / |s|log max{1, |z
lz|<qe Js|<q®

Now the contribution when |[s| > ¢® is

(1+q‘1)q“/

Jqr<|s|<q®

)

s|}.

g2 — g2a+?
[s|log |s| = ¢ (qub —(a+1)¢*" = —)

q* -1
by Lemma 9.3.
We are now left with
. q3a -1
1+ q_l)/ / |s|logmax{1, |z, |s[} = ag™ — =
l|<qe JIs|<qn g’ —1
by Lemma 9.4.
Thus

/ / / log max{1, |z|, |r|, |s|}
Jlz|<qr Jr|<qb Js|<qC

is equal to the sum of
b
a+b c » 45 —4q
cq¢ — b — —— |,
q ( ¢ —ba’ == > :

o g2 — qra+?
q" (bq "~ (a+ 1)¢** — T—l—) ;
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and
3a
. -1
aq3a o qg—
7 —1
Adding these terms together gives
atbtc a+2b+1 1 3a+2
CqLL+b+C _ q + q > + - + q -
¢g—1  ¢#-1 ¢-1 (¢+1)(¢*—1)
as wished. O
Appendix

The twisted weighted fundamental lemma

In this appendix we give the formulation of the twisted weighted fundamental taken
from a letter from James Arthur to Dinakar Ramakrishnan, dated March 11, 2002.

Let me try to convince you that the statement of the conjectural twisted, weighted
fundamental lemma is similar to that of the untwisted case. We can in fact state them
identically if we take G to be the connected component G x « of the nonconnected
group G = GY x (a). We assume that G is unramified over a local p-adic field F' (of
characteristic 0).

Let M = M° x a be a “Levi subset” of G, in the sense of my paper [Art88b,
p. 228]. Then P(M) denotes the set of “parabolic subsets” P = M Np of G with Levi
component M, and Aj; the split component of the centralizer of AL in MY, We define
the weighted orbital integral

Il £) = 1D [ fla yyons () dr,
J&, (FNG(F)
f e Cx(G(F)), v € M(F) strongly G%-regular, G, = Cent(G,7), as a special case
of [Art88b, p. 233].

Suppose that A’ represents an unramified elliptic, twisted endoscopic datum
(A[’,M’,s’j\u\f;”) f/()\l MP. H(—Ee7 S/I‘i is a semisimple element in the nonconnected
component M = M% xa c G = G x a. (I trust that this slightly nonstandard
formulation is OK.) We suppose that M’ is an L-subgroup of Y0 = MO x W,
and that &}, is the identity embedding. We then define £5//(G) as in the untwisted
case, in [Art99, §3]. Thus, if Z(]TT)r denotes the group of I'-invariants in the
centralizer of M in ]/\70, Enr (@) is the set of twisted endoscopic data for GO of the
form (G',G’.s'. &), where s lies in s’MZ(ﬁ)F, G’ is the connected centralizer of s in
G and ¢ is the identity embedding of ¢’ = M'G’ into “GY. The elements in Ex/ (G)
are taken up to translation of s’ by Z(CAV')F.

We can now proceed as in [Art02, §5]. Set

(GG = |Z(MY ) Z(AD) 1 Z(GY /2(G)F |
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and

r$ (k) = Jar(kyw)
where k € M(F) is strongly G°-regular, and u = ux is the stabilizer in G(F) of the
unit in a Hecke algebra of GO(F).

Conjecture. — Let ¢ be a strongly GO-regular, stable conjugacy class in M'(F). Then

> Amx (W k)r§i(k)

KET Gureg(M (F))

equals

ST (GGG (),

G'eEp (@)

where 5%’, (¢") is the function defined uniquely for the unramified connected pair
(G', M'") in [Art02, Conjecture 5.1], and Ay i is the twisted transfer factor for MY,
normalized relative to the hyperspecial mazimal compact K N MO(F).

References

[Art] J. ARTHUR — Automorphic representations of classical groups, in preparation.

[Art88a] , The invariant trace formula. II. Global theory, J. Amer. Math. Soc. 1
(1988), no. 3, p. 501-554.

[Art88b] , The local behaviour of weighted orbital integrals, Duke Math. J. 56
(1988), no. 2, p. 223-293.

[Art99] , On the transfer of distributions: weighted orbital integrals, Duke Math. J.
99 (1999), no. 2, p. 209-283.

[Art01] , A stable trace formula. II. Global descent, Invent. Math. 143 (2001),
no. 1, p. 157-220.

[Art02] , A stable trace formula. I. General expansions, J. Inst. Math. Jussieu 1
(2002), no. 2, p. 175-277.

[Art03] , A stable trace formula. III. Proof of the main theorems, Ann. of Math.
(2) 158 (2003), no. 3, p. 769-873.

[Art04] , Automorphic representations of GSp(4), in Contributions to automorphic
forms, geometry, and number theory, Johns Hopkins Univ. Press, Baltimore, MD,
2004, p. 65-81.

[AS] M. ASGARI & F. SHAHIDI — Generic transfer from GSp(4) to GL(4), Compositio

Math., to appear.

[BWWO02] J. BALLMANN, R. WEISSAUER & U. WESELMANN — Remarks on the fundamental
lemma for stable twisted endoscopy of classical groups, preprint, 2002.

[F1i99] Y.Z. FLICKER — Matching of orbital integrals on GL(4) and GSp(2), Mem. Amer.
Math. Soc., vol. 137, American Mathematical Society, Provdence, RI, 1999.

, Automorphic forms on PGSp(2), Electron. Res. Announc. Amer. Math.
Soc. 10 (2004), p. 39-50 (electronic).

[Hal97] T.C. HALES — The fundamental lemma for Sp(4), Proc. Amer. Math. Soc. 125
(1997), no. 1, p. 301-308.

[F1i04]

SOCIETE MATHEMATIQUE DE FRANCE 2005



436

[Kot86]
[KS99]

[Lan83]

[LL79]
[LNO04]

[Rog90]

[Wal91]

[Wei94]

D. WHITEHOUSE

R.E. KOTTWITZ — Stable trace formula: elliptic singular terms, Math. Ann. 275
(1986), no. 3, p. 365-399.

R.E. KoTTwITZ & D. SHELSTAD — Foundations of twisted endoscopy, Astérisque,
vol. 255, Société Mathématique de France, Paris, 1999.

R.P. LANGLANDS — Les débuts d’une formule des traces stable, Publications Math-
ématiques de 1’Université Paris VII [Mathematical Publications of the University
of Paris VII], vol. 13, Université de Paris VII U.E.R. de Mathématiques, Paris,
1983.

J.-P. LABESSE & R.P. LANGLANDS ~ L-indistinguishability for SL(2), Canad. J.
Math. 31 (1979), no. 4, p. 726-785.

G. LauMoN & B.C. NGO — Le lemme fondamental pour les groupes unitaires,
preprint, 2004.

J.D. ROGAWSKI — Automorphic representations of unitary groups in three vari-
ables, Annals of Mathematics Studies, vol. 123, Princeton University Press,
Princeton, NJ, 1990.

J.-L. WALDSPURGER — Sur les intégrales orbitales tordues pour les groupes
linéaires: un lemme fondamental, Canad. J. Math. 43 (1991), no. 4, p. 852-896.
R. WEISSAUER — A special case of the fundamental lemma I, II, III, IV, unpub-
lished, 1994.

D. WHITEHOUSE, Institut des Hautes Etudes Scientifiques, Le Bois-Marie, 35, route de Chartres,
F-91440 Bures-sur-Yvette, France e FE-mail : dw@ihes.fr

ASTERISQUE 302



