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T H E T W I S T E D W E I G H T E D F U N D A M E N T A L L E M M A F O R 
T H E T R A N S F E R OF A U T O M O R P H I C F O R M S F R O M GSp(4 ) 

T O GL(4) 

by 

David W h i t e h o u s e 

Abstract. — We prove the twisted weighted fundamental lemma for the group GL(4) x 
GL(1) relative to a certain outer automorphism a:, which yields GSp(4) as a twisted 
endoscopic group. This version of the fundamental lemma is needed to stabilize the 
twisted trace formula for the pair (GL(4) x GL(l),a). This stabilized twisted trace 
formula is required for Arthur's classification of the discrete spectrum of GSp(4) in 
terms of automorphic representations of GL(4). 
Résumé (Le lemme fondamental tordu pondéré pour le transfert des formes automorphes de 
GSp(4) à GL(4)) 

Nous démontrons le lemme fondamental tordu pondéré pour le groupe GL(4) x 
GL(1) relativement à un certain automorphisme extérieur a qui permet de décrire 
GSp(4) comme groupe endoscopique tordu. Cette version du lemme fondamental 
est nécessaire pour stabiliser la formule des traces tordue pour le couple (GL(4) x 
GL(1), a). Cette formule des traces tordues est requise pour la classification d'Arthur 
du spectre discret de GSp(4) en termes des représentations automorphes de GL(4). 

1. Introduction 

Langlands' functoriality conjecture predicts, in a very precise way, relationships 
between automorphic representations on different groups. The trace formula is an 
important tool in proving such relationships. For a reductive group G the trace 
formula (see [Art88a]) gives two expressions for a certain linear form / ( / ) ; here / is 
a suitable function on the adelic points of G. One expression, the geometric side of 
the trace formula, is given as a sum over conjugacy classes of terms involving orbital 
integrals, while the other, the spectral side of the trace formula, expresses / ( / ) in 
terms associated to the automorphic representations of G. Therefore as the group G is 
allowed to vary identities between geometric sides produce identities between spectral 
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292 D. WHITEHOUSE 

sides; out of these one can hope to deduce the relationships between automorphic 
representations as suggested by Langlands' functoriality conjecture. 

Suppose now we are given two groups G\ and G2 defined over a number field F. In 
order to compare the trace formulas for these groups one needs to be able to compare 
the conjugacy classes in G\{F) and G2(F) and to be able to transfer functions from 
one group to the other given by identities between orbital integrals. In practice, 
however, for example in the case that G\ and G2 are inner forms of each other, one 
is not quite able to do this. Instead one can only carry out these comparisons over 
the algebraic closure of F. One is therefore lead to the need for a refinement of this 
trace formula to a stable trace formula; one in which the geometric side is indexed by 
stable conjugacy classes and given in terms of stable orbital integrals. 

The stabilization of the trace formula was initiated by Langlands in [Lan83]. The 
first problem one encounters is that the distribution / ( / ) is not stable. In [Lan83] 
Langlands suggested a stabilization of the form 

I(f) = ^Ti,(G,H)SH(fH). 

This sum is over a family of groups {H}, called elliptic endoscopic groups, attached 
to G. The distributions SH are themselves stable and Langlands conjectured a transfer 
of functions / 1—>• fH from G to H. One can then hope to compare these stable 
distributions for different groups. The first case considered was that of SL(2) by 
Labesse and Langlands in [LL79]. For general G, the stabilization of the regular 
elliptic part of the trace formula was carried out by Langlands in [Lan83] under the 
assumption of a transfer of functions / 1—>• fH. The stabilization of the elliptic singular 
terms was carried out by Kottwitz in [Kot86]. Building on the work of Kottwitz and 
Langlands, Arthur has now stabilized the full trace formula in a series of papers 
[Art02], [ArtOl] and [Art03] under the assumption of certain local conjectures, 
known as fundamental lemmas, for orbital integrals and weighted orbital integrals; 
see [Art02, Section 5]. 

The fundamental lemma for orbital integrals has been established in certain cases. 
It is known for a few groups of low rank, namely for SL(2) by [LL79], U(3) by 
[Rog90] and for Sp(4) and GSp(4) by [Hal97]. The fundamental lemma has also 
been established for certain families of groups, for SL(n) by [Wal91] and for unitary 
groups by [LN04]. As mentioned in [Art02, Section 5] much less is known about the 
generalization of the fundamental lemma to weighted orbital integrals. 

In this paper we are interested in the stabilization of a twisted trace formula. Such 
a trace formula applies to a group together with an automorphism. The stabilization 
of the twisted trace formula was begun by Kottwitz and Shelstad in [KS99]. For 
the stabilization of the full twisted trace formula one needs to prove fundamental 
lemmas for twisted weighted orbital integrals. The statement of the twisted weighted 
fundamental lemmas is given in the appendix to this paper. 
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We now turn to the functorial transfer we are concerned with in this paper. We 
take the group GSp(4) over a number field F. The dual group of GSp(4) is GSp(4, C) 
which has a natural inclusion into GL(4, C). Associated to this map of dual groups 
functoriality suggests a transfer of automorphic representations from GSp(4)/,F to 
GL(4)/F. 

There has been much interest in this transfer. Unpublished work of Jacquet, 
Piatetski-Shapiro and Shalika produced this transfer for generic automorphic rep­
resentations of GSp(4); this result is proven in [AS] using different methods. Results 
on the transfer from PGSp(4) to PGL(4) have been announced in [Fli04]. Flicker 
uses a special form of the trace formula valid only for certain test functions and so, as 
mentioned in his paper, the transfer is achieved only for automorphic representations 
satisfying certain local conditions. The transfer of all automorphic representations 
from GSp(4) to GL(4) is announced by Arthur in [Art04]. In this paper Arthur de­
scribes the results of his monograph [Art] in the case of GSp(4). The main theorem 
in [Art04] is phrased as a classification theorem for representations of GSp(4). This 
classification includes a parameterization of the representations of the local groups 
GSp(4, Fv) into packets together with a decomposition of the discrete spectrum of 
GSp(4) in terms of automorphic representations of GL(4). 

The results of [Art04] are achieved by a comparison of the stable trace formula 
for GSp(4) with a stable twisted trace formula for GL(4) x GL(1) and a certain 
automorphism a given in Section 2.4 below. The stabilization of these trace formulas, 
and hence Arthur's result, is conditional on cases of the fundamental lemma. We now 
describe which fundamental lemmas are required. 

For GSp(4) the fundamental lemma for invariant orbital integrals is proven in 
[Hal97]; see also [Wei94]. The weighted fundamental lemma in [Art02, Section 5] 
required for the stabilization of the full trace formula does not apply to GSp(4) since 
its proper Levi subgroups are products of general linear groups, and therefore do not 
possess proper elliptic endoscopic groups. Therefore, all the local conjectures required 
for the stabilization of the trace formula for GSp(4) have been established. 

For the stabilization of the twisted trace formula for GL(4) x GL(1) and the auto­
morphism a, the twisted fundamental lemma for invariant orbital integrals is proven 
in [Fli99]. Flicker's proof is for fields of odd residual characteristic, however, this 
is sufficient for global applications. A weighted variant of the twisted fundamen­
tal lemma, stated in the appendix, is also needed. This is because there are Levi 
subgroups of GL(4) x GL(1) that have elliptic twisted endoscopic groups. It is this 
fundamental lemma which we prove in this paper, we again restrict ourselves to local 
fields of odd residual characteristic. 

The outline of this paper is as follows. We begin in Section 2 by giving some 
definitions and notations used throughout this paper. 
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The conjectured twisted weighted fundamental lemma is given by the identity 

/cerG_reg(M(F)) 
AM.K(£',k)rÙ(k) 

G>eeM,{G) 
LM,(G,G')s^MfUf). 

The left hand side consists of a finite linear combination of twisted weighted orbital 
integrals on the group G° with respect to the Levi subset M = M° x a. We take 
M' to be an elliptic twisted endoscopic group for M°; the right hand side is then a 
finite linear combination of stable weighted orbital integrals on certain groups G' that 
contain M' as a Levi subgroup. 

From Section 3 onwards we specialize to the twisted weighted fundamental lemma 
for G° equal to GL(4) x GL(1). We begin in Section 3 by determining all endoscopic 
groups that appear in the statement of the twisted weighted fundamental lemma, and 
in Section 4 we compute the necessary weight functions, which appear in our weighted 
orbital integrals. 

As above, the twisted weighted fundamental lemma applies to a pair (M, M') of a 
Levi subset M = M° x a of G = G° x a and an unramified elliptic twisted endoscopic 
group M' for M°. When M° = G° we recover the statement of the fundamental 
lemma proven in [FH99], hence we only consider proper Levi subgroups M°. There 
are four pairs (M, M') given in the table below, where E denotes the unramified 
quadratic extension of the local nonarchimedean field F. 

M° 1 M' 
(GL(2) x GL(2)) x GL(1) GL(2) x GL(1) 

(GL(1) x GL(2) x GL(1)) x GL(1) GL(2) x GL(1) 
(GL(1) x GL(2) x GL(1)) x GL(1) Ress/F(GL(1)) x GL(1)  

GL(1)4 x GL(1) | GL(1)3  

The theorem we prove in this paper is: 

Theorem 1.1. — For each pair (M, M') as above the twisted weighted fundamental 
lemma is true over local fields of characteristic zero and odd residual characteristic. 

The proof of this theorem is given in Sections 5 through 8. We now outline the 
proof for each pair. We take F to be a local field of characteristic zero. We let R 
denote the ring of integers in F. We denote by q the cardinality of the residue field 
of F that for now we assume is odd and greater than three. 

In Section 5 we prove the fundamental lemma for the first pair. We begin by writing 
both sides of the fundamental lemma in this case as untwisted orbital integrals on 
GL(2, F). The identity to be proven then takes the form 

FL{A) : L(A) = R{A) 

indexed by elements A <G GL(2, F). Moreover, since both sides vanish if the conjugacy 
class of A in GL(2, F) does not intersect GL(2, R) we may assume that A G GL(2, R). 
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We split the proof into two cases depending on whether A lies in a split or elliptic 
torus. In the former case we may assume that 

B=(ab) 

is diagonal. We find that both L{A) and R{A) depend only on|a — 1|, |d — 1|, |a — d\ 
and \ad — 1|. Since we are assuming that F has odd residual characteristic we have 
the following three cases 

Case 1: q~M = \ad - 1| = \a - d\ = \d - 1| ^ \a - 1| = q~N 
Case 2: q~M = \a - 1| = \d - 1| = \ad - 1\ ^ \a - d\ = q~N 
Case 3: q~M = \a - 1| = \d - 1| = \a - d\ ^ \ad - 1\ = q~N. 

In each case we denote L(A) (resp. R(A)) by L(M, TV) (resp. R(M,N)). In cases 1 
and 3 we prove that 

qL(M, TV + 1) — L(M, TV) qR{M, TV + 1) — i?(M, TV) 

and in case 2 we prove that 

L(M,TV + 1) - L ( M , T V ) R(M,N+ 1)-R(M, TV). 

In each case we exploit cancellations between the integrals on either side of FL(A) 
allowing us to readily compute the differences. Thus the proof of the identity FL(A), 
when A lies in a split torus, is reduced to proving the identity under the assumption 

\ad- 1| - \a-d\ = \d - 1| = \a - 1|. 

We then compute both sides of FL(A) under this assumption and show that they are 
equal. In the case that A lies in an elliptic torus we again reduce the proof to certain 
cases, which we then prove, by following a similar strategy. 

The proofs of the fundamental lemma for the Levi subgroup 

M° = (GL(1) x GL(2) x GL(1)) x GL(1) 

and both its unramified elliptic twisted endoscopic groups are given in Sections 6 
and 7. The proof uses the twisted topological Jordan decomposition which is described 
in Section 4.5. We can write any element ja with 7 £ M(R) uniquely as 

^ya — us a — sau, 

where sa has finite order prime to q and u is topologically unipotent, i.e., uqn —> I 
as n —» 00. Using this decomposition allows us to write the twisted weighted orbital 
integral at 7a as an (untwisted) weighted orbital integral at u on the group Gsa, the 
centralizer of sa in G. The main part of the proof of the fundamental lemma is when s 
is the identity. In this case the twisted weighted orbital integrals become untwisted 
weighted orbital integrals on Sp(4). These integrals are of a type that appear on the 
right hand side of the fundamental lemma treated in Section 5. We are then able 
to use the calculations from there to prove the fundamental lemma for both pairs 
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(M, M'). When s is not the identity, the groups Gsa have dimension strictly smaller 
than Sp(4) and the fundamental lemma can be readily verified in these cases. 

In Section 8 we prove the fundamental lemma for the diagonal torus in GL(4) x 
GL(1). We again use the twisted topological Jordan decomposition. The main part 
of the proof comes down to proving an identity between weighted orbital integrals 
on Sp(4) with respect to the diagonal torus. We establish this identity by exploiting 
cancellations between the relevant integrals on Sp(4). 

We delay to Section 9 the computation of certain p-adic integrals that are needed 
in the proof of the fundamental lemma. 
Acknowledgements. — I thank Dinakar Ramakrishnan for his support throughout 
this project, Jiu-Kang Yu for answering my questions and Jacques Tilouine for his 
interest in this work. The appendix to this paper is taken from a letter by James 
Arthur and I am grateful to him for his permission to reproduce it there. Finally, 
thanks are due to the referees for their thorough reading of this paper and their helpful 
suggestions. 

2. Preliminaries 

In this section we give some definitions and notations that will be used throughout 
this paper. Further to the notations introduced below we also adopt the notations 
introduced in the appendix throughout this paper. 

2.1. Twisted conjugacy. — For the moment we take F to be a field of charac­
teristic zero and G° to be a connected reductive algebraic group defined over F. We 
let a be a quasi-semisimple automorphism of G° by which we mean, as in [KS99, 
Section 1.1], an automorphism which preserves a pair (B,T) of a Borel subgroup B 
and maximal torus T C B. 

An element 7 G G° is a-semisimple if the element 7 a G G = G° x a is semisimple, 
i.e., the automorphism of G° given by Int(7)oa is quasi-semisimple in the sense above. 
The twisted conjugacy class of 7 G G° is 

(<rV(fl) = ff € G ° } . 
We note that for g G G° we have 

g~1~/ag = g~1>ya(g)a, 
and so the notion of twisted conjugacy of 7 is equivalent to conjugacy of 7a by 
elements of G°; these notions are used interchangeably. The twisted centralizer of 
7 G G° is 

ZGo(7aO = G G° : = 7} • 
The element is strongly regular if ZGo(^a) is abelian. The connected component 
of ZGQ{^O) is denoted by G1QL. 
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If M° is a Levi subgroup of G° which is stable under the automorphism a then we 
say an element 7 G M° is strongly G°-regular if it is strongly regular as an element 
of G°. 

2.2. GSp(4) and Sp(4). — We let J denote the matrix 

J = 1 
- 1 

.-1 / 
and we set 

Sp(4) = {g e GL(4) : ßg-1 J-1 = g}, 

ana 
GSp(4) = {g G GL(4) : J'g"1^1 — \g, A G GL(1)}. 

The intersection with GSp(4) of the upper triangular Borel subgroup of GL(4) is 
a Borel subgroup of GSp(4). The proper parabolic subgroups of GSp(4) that contain 
this Borel subgroup are the Siegel parabolic, which has Levi decomposition 

9 
K awtg~1w/ 

1 x rN 
1 r s 

1 
1, 

: g G GL(2) 

where 

w=\i \ 

and the Klingen parabolic which has Levi decomposition 

a 
9 

a - 1 det ( 

T x r s N 
1 r 

1 -x 
1 , 

: g G GL(2) 

The intersection of each of these parabolic subgroups with Sp(4) is a parabolic sub­
group of Sp(4), we refer to their intersection with Sp(4) by the same name. 

The dual group of GSp(4) is GSp(4, C) and under the bijection between parabolic 
subgroups of G and G the Siegel and Klingen parabolics are interchanged. 

2.3. Notation. — From now on F will denote a local nonarchimedean field of 
characteristic zero. We let R denote the ring of integers in F and we let n denote a 
uniformizer in R. We fix the Haar measure on F that gives R volume one. We let q 
denote the order of the residue field of F, which we take to have characteristic p. In 
Sections 5 through 8 we assume p is odd. We use v and | | to denote the additive and 
multiplicative valuations on F, which we normalized so that v(n) = 1 and \ir\ — q~l. 
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We let UF denote the group of units in R and U™ denotes the subgroups of UF defined 
by 

= f UF, if m = 0; 
F \ 1 + 7rmi?, if m > 0. 

We fix an algebraic closure F of F and denote again by | | the extension of | | to F. 
The letter T is used to denote the Galois group Gal(F/F). For a group G\ with an 
action of Gal(i?/F) we let G\ denote the elements of G\ that are fixed by T. 

We use In to denote the natural logarithm and log to denote the logarithm to the 
base q. 

For an algebraic group H we let X(H) denote the group of characters of H and H° 
denotes the connected component of the identity in H. For a finite extension of fields 
E/F and an algebraic group H defined over E we let Res^/^ H denote the restriction 
of scalars of H to F. 

For a compact open subgroup K of a p-adic group we use IK or char^ to denote 
the characteristic function of K. 

For ease of notation we frequently use blank entries in matrices to denote zeros. 
Given Ai G GL(n^), 1 < i ^ k we let diag(Ai,..., Ak) denote the block diagonal 
matrix in GL(ni + . . . + rik) with block diagonal entries Ai,. . ., Ak-

2.4. Our case. — We now describe the situation we are considering in this pa­
per. We take G° = GL(4) x GL(1) over the local field F and we take a to be the 
automorphism of G° given by 

a : (g,e) i—> (J1 g~l J"1, e det p), 

where J is as above. We set = G° x (a), G = G° x a and K = G°(R). 
The dual group of G° is G° = GL(4, C) x GL(1,C). Since the automorphism a 

is quasi-semisimple it induces an automorphism a on G° as in [KS99, Section 1.2]. 
This automorphism is given by 

a : (h,t) i > (tJth^J-^t). 

The proper standard parabolics P° of G°, which are stable under a are those whose 
projection onto GL(4) are of the form 

'* * * * 
* * * * 

* * 
* * 

* * * * 
* * * 

* * * 
* 

* * * * 
* * * 

* * 
* 

We take the Levi component M0 in each of these parabolic subgroups that contains 
the diagonal torus in G°. We refer to these Levi subgroups as the (2,2) Levi, the 
(1,2,1) Levi and the diagonal Levi. 
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The transfer factor A which appears in the statement of the twisted weighted fun­
damental lemma is the product of the terms Ai, An and Am from [KS99, Chapters 
4 & 5]. 

Let M' be a twisted endoscopic group for M°. The stable twisted conjugacy class of 
a strongly regular element S G M°(F) is the intersection of M°(F) with the twisted 
conjugacy class of S in M°(F). The stable conjugacy class of a strongly regular 
element of M'(F) is defined similarly. By [KS99, Theorem 3.3.A] we have a map 

AM'/M • C1SS(M') —+ Clss(M°,a) 

between semisimple stable conjugacy classes of M' and M. The semisimple element 
7 G Mf(F) is called strongly G°-regular if the image of the conjugacy class of 7 under 
this map is strongly G°-regular is the sense above. 

The integrals r^(7«) depend on the choice of a measure on G1QI, there is a similar 
such dependence in the definition of s^, (•£'). Within a stable conjugacy class these 
measures are chosen so that stable conjugacy is measure preserving. Having done this, 
if we are now given ja G M(F) and 7' G M'{F), such that A(7', 7) / 0, we normalize 
the measures on Mja and My such that under this normalization the (unweighted) 
twisted fundamental lemma holds for the pair (M, M'). 

3. Endoscopic groups 

We now determine the unramified elliptic twisted endoscopic groups M' for each 
of the Levi subgroups M° of G° given in Section 2.4. We refer to [KS99, Section 
2.1] for the definition of twisted endoscopic groups. For each such endoscopic group 
M' we also compute the set of elliptic twisted endoscopic groups for G° in £M'(G), 
which contain M7 as a Levi subgroup; and for each group G' in £M> (G) we compute 
the coefficient LM*{G, G'). We note that for non-elliptic endoscopic groups in £M'{G) 
the coefficient LM'(G,G') is zero. 

The elliptic twisted endoscopic groups for G° itself are computed in [Fli99, Section 
I.F]; these results are recalled in Section 3.1. We use these results below in computing 
the sets £MI(G) and the norm maps from M to M'. 

3.1. Twisted endoscopic groups for GL(4) x GL(1). — In this section we recall 
results from [Fli99, Section I.F] on the twisted endoscopic groups for G°. First we 
note that given sa G C, assumed semisimple, the twisted centralizer Z^0(sa) depends 
only on the component of s lying in GL(4, C). Moreover, after twisted conjugation, 
we can assume that we have 

s = (diag(l, l,c,d), 1). 

Furthermore the 3-conjugacy class of s does not change if c is replaced by c_1, d by 
d~x and (c, d) by (d, c). We recall that a twisted endoscopic group H is called elliptic 
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if (Z(H)R)° is contained in Z(G°). The elliptic twisted endoscopic groups of G° are 
given below. 

(1) c — d — 1: The twisted centralizer of s is isomorphic to GSp(4, C) and we get 
GSp(4) as a twisted endoscopic group. 

(2) c = d = — 1: The connected component of the twisted centralizer of s is 
isomorphic to GL(2,C)2/CX with Cx embedded via z i—> (z,z_1). If we have a 
trivial Galois action then we obtain (GL(2) x GL(2))', where the prime denotes the 
subgroup of pairs (A, B) with det A = det B, as a twisted endoscopic group. We can 
also have a non-trivial Galois action with F acting through a quadratic extension E/F 
in which case we obtain Res^/^ GL(2)', with the prime here denoting determinant in 
Fx, as a twisted endoscopic group. 

(3) c = 1, d — — 1: The connected component of the twisted centralizer of s is 
isomorphic to (GL(2, C) x GL(1,C)2)/ with the prime denoting the subgroup of 
triples (A, a, b) with det A = ab. In this case we only obtain elliptic endoscopic 
datum if T acts through a quadratic extension E/F; in which case we obtain 
(GL(2) x Res£/FGL(1))/GL(1), with GL(1) embedded as 0,z_1), as a twisted 
endoscopic group. 

Let H be a twisted endoscopic group for G° and let TH denote the diagonal torus 
in H. Let T denote the diagonal torus in G°. For each such group H and 7 = 
(diag(#, z, £), w) G T the image of 7a under the norm map TV : T —> TH is given 
below. 

(1) GSp(4): N{^a) = diag(x?yu>, xzw, tyw, ztw) 
(2) (GL(2) x GL(2))/: N(-ya) = (diag(x^, ztw), diag(xzw, ytw)) 
(3) Res^/^ GL(2)/: N(ja) = (disig(xyw, ztw), diag(xzw;, ytw)) 
(4) (GL(2) x ReSjE;/FGL(l))/GL(l): N(ja) = (di&g(xw, tw), y, z). 

3.2. Twisted endoscopic groups for the (2,2) Levi. — In this section we take 
M° to be the (2,2) Levi in G°. We have M° = GL(2, C) x^GL(2,C) x GL(1,C), 
which sits inside G° as the (2,2) Levi. The restriction of a to M° is given by 

(A,B,t) 1—> {twtB-1w,twtA~1w,t), 

where 
w=(1 1) 

Lemma 3.1. — The only elliptic twisted endoscopic group for M° is GL(2) x GL(1). 

Proof — Let s G M° be such that sa is semisimple. We may assume that s is 
diagonal and, after twisted conjugacy in M°, we can assume that it is of the form 

s = (diag(l, 1, Ai, A2),s2). 
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We now compute Z^0(sa) . We see that (A, B, t) G Z^0(sa) if and only if we have 

AwfBw = I J 

and 
ft Ai > у/Aw = ft Ai > 

This is the case if and only if we have A = twtB iw and 

ft Ai > 
y2 

в-1 /Ai 
y2 

So if Ài = À2, then we have 

Z^0(sa) = ̂ (A.tw'A^w.t) e M ° :Ae GL(2, C), £ G C x | , 

while if Ài / À2, then we have 

GM0 :AG Zj~j0(sa)Zj~j0(s G M 0 : A G GLÍ2. Ci. t G Cx) 

while if Ài Ф Ло, then we have 

Zj~j0(sa) fx > 
V VJ 

ty-1 

ty-z-1 
RT E M° : x,y,t G Cx I . 

Both of these centralizers are connected; hence we can only have a trivial Galois 
action. Therefore only when we have Ai = A2 do we get elliptic twisted endoscopic 
data for M°. In this case we have Z^0(sa) = GL(2, C) x GL(1, C) and hence we get 
GL(2) x GL(1) as a twisted endoscopic group for M°. • 

We now compute £ M ' ( G ) . 

Lemma 3.2. — Let M ' represent the elliptic twisted endoscopic datum for M °. Then 
the elliptic twisted endoscopic groups for G° in £M'(G) are GSp(4) and (GL(2) x 
GL(2))', the prime denoting the subgroup of pairs (A, B) with det A = detB. Each 
group occurs with multiplicity one. 

Proof. — We may as well take s = (1,1,1) G M° which gives rise to M ' = GL(2) x 
GL(1). We need to look at the translations of sa by elements in Z ( M ) taken modulo 
Z(G). We have 

Z(M) = {(diag(a, a, 6, b),ab)} 
and 

Z(G) — {(diag(a, a, a, a), a2) } . 

Thus we need to look for elliptic endoscopic datum for G° arising from elements of 
the form (diag(l, l,A,A),A)a G G. So we get endoscopic datum only when we have 
A = ±1 and we must have a trivial Galois action in both cases. • 

We note that M ' sits inside GSp(4, C) as the Siegel Levi, hence we have M ' — 
GL(2) x GL(1) sitting inside GSp(4) as the Klingen Levi. We have M ' sitting inside 
(GL(2) x GL(2))r as (T x GL(2))f where T is the diagonal torus in GL(2) and the 
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prime again denotes the subgroup of pairs with equal determinant. The coefficients 
LM'{G,Gf) are equal to 1 for G' equal to GSp(4) and (GL(2) x GL(2))/. 

3.3. Twisted endoscopic groups for the (1,2,1) Levi. — In this section we 
take M° to be the (1,2,1) Levi in G°. We have 

M° = GL(1, C) x GL(2, C) x GL(1, C) x GL(1, C), 

which sits inside G° as the (1,2,1) Levi. The restriction of a to M° is given by 

(a,0,M) 1—> , t(det ^)_1flr, to-1, t). 

Lemma 3.3. — The unramified elliptic twisted endoscopic groups for M° are GL(2) x 
GL(1) and GL(1) x ResE/F GL(1), where E/F is the unramified quadratic extension. 

Proof — After twisted conjugacy in M° we can assume that we have 

*= 1, Ai ,A2,S2 . 

Then (a, g, ò, t) G Z<~?0 (sci) if and only if 

ft Ai > (detg)g 1Jab\2 = (Ht tx)>tx>)-

Hence we need ab — t and 

(Ht g-1 det g xi 
det g xt\i 

Therefore if Ai = 1, then we have g is any element of GL(2, C), while if Ai / 1, then 

(Ht tx)>tx>)-

Thus we see that if Ai = 1, then 

^Mo(sa) ~-(a, g,aTx det g, det g) G M° : g G GL(2, C), a G Cx \ 
while if Ai = — 1, then 

ZMo(sci) = ' (x N 
a, 

,a 1xy,xy\ (Ht X 
Y 

a 1xy1xy 

and if Ai 7̂  ±1, then 

ZM0 (sci) a, x , a 1xy,xy 

When Ai = 1 we have a connected centralizer and hence we have a trivial Galois 
action. In this case we have elliptic endoscopic data and we get GL(2) x GL(1) as a 
twisted endoscopic group for M°. 
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When Ai — —1 to get elliptic endoscopic da tum we need to have a non-trivial 
Galois action acting through a quadratic extension by 

(a, fX V a 1xy,xy,xy\ > (a, (V \ ,a 1xy,xyJ . 

In order for our endoscopic da ta to be unramified we need this quadratic extension 
to be unramified. In this case we get GL(1) x ResE/F GL(1) as a twisted endoscopic 
group for M ° . 

Finally, when Ai ^ ± 1 the da ta is never elliptic. • 

We now compute £M'(G) for № = GL(2) x GL(1). 

Lemma 3.4. — Let M' = GL(2) x GL(1). Then the only elliptic twisted endoscopic 
group for G° in £M'{G) is GSp(4) with multiplicity two. 

Proof. — Recall tha t M' is given by the element sa — (diag(l , 1,1, A2), « 2 ) 2 G M. 

We have 

Z(M) = { ( d i a g ( a , c , c , a _ 1 c 2 ) , c 2 ) } 

and so we need to look for elliptic twisted endoscopic groups for G° given by trans­

lating sa by elements of the form (diag(l , A, A, A 2 ) , A 2) G G°. Thus we need to look 

at elements of the form (diag(l , A, A, A 2 A2), A 2 5 2 ) a G G. After twisted conjugacy we 

can look at the elements of the form (diag(l , 1,1, A 2 A2), S 2 ) OL- Since we must have a 

trivial Galois action we get elliptic endoscopic da ta if and only if A2 = A^ 1 ; in which 

case we get GSp(4). • 

We have M' sitting inside GSp(4, C) as the Klingen Levi and so we get 
M' = GL(2) x GL(1) sitting inside GSp(4) as the Siegel Levi. We also have 
* M ' ( G , G S p ( 4 ) ) = l . 

Lemma 3.5. — Let M' = GL(1) x ResE/F GL(1). Then the elliptic twisted endo­

scopic groups for G° in £M'{G) consists of (GL(2) x Res^/j? GL(1) ) /GL(1) and 

R e s ^ / ^ G L ( 2 ) / . Each group appears with multiplicity two. 

Proof. — Recall tha t M' is given by the element (diag(l , 1, — 1, A2), s2) a G M. We 

need to look for elliptic twisted endoscopic groups for G° given by translating sa by 

elements of the form 

( d i a g ( l , A , A , A 2 ) , A 2 ) . 

Thus we need to look at elements of the form (diag(l , A, —A, A 2 A2), A 2 ^ ) a e G. After 

conjugacy we can look at the elements (diag(l , 1, — 1, A 2 A 2 ) , S 2 ) S G G. Thus we get 

elliptic da ta if A2 = ±X^. When A2 - A^ 1 we get (GL(2) x ResE/F GL(1) ) /GL(1) , 

while if A2 - - A ^ 1 we get ResE/F GL(2)F. • 
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In this case we have M' sitting inside each group in £M'(G) as the diagonal torus. 

And we have LM>(G,G') = 1 for both G' = (GL(2) x ResE/F GL(1) ) /GL(1) and 

G' = ResE/F GL(2) ' . 

3.4 . T w i s t e d endoscop ic groups for t h e d iagonal Levi . — We now take M0 

to be the diagonal torus in G°. We have M ° = G L ( 1 , C ) 5 , which sits inside G° as 

the diagonal torus. 

Lemma 3.6. — The unramified elliptic twisted endoscopic group for M ° is GL(1 ) 3 . 

Proof. — Since M° is abelian we see tha t for any s G M ° we have 

ZMo(sa) = {(x,y,z,w,t) G M ° : xw = yz = t}. 

Hence we have Zj^0(sa) = ( C x ) 3 and we get GL(1) 3 as the only twisted endoscopic 

group for M°. Furthermore, it is both elliptic and unramified. • 

We now compute 8M'{G). 

Lemma 3.7. — Let M' = GL(1 ) 3 . Then the elliptic twisted endoscopic groups for G° 

in EM'{G) are GSp(4) and (GL(2) x GL(2) ) / ; each group appears with multiplicity 

two. 

Proof. — We have 

Z(M) = { ( d i a g ^ , ^ , ^ - 1 , ^ - 1 ) , * ) } . 

Thus we need to look for the elliptic twisted endoscopic groups for G° given by 

elements of the form 

(diag(l , y~l, yw, w), w) a G G. 

We can conjugate such an element to (diag(l , 1, y2w, w), w) a. Since we must have a 

trivial Galois action we get elliptic da ta when we have w = 1 and y2 = 1, in which 

case we get GSp(4), or when we have w = — 1 and y2 — 1, in which case we get 

(GL(2) x GL(2)) ; . • 

For G' equal to both GSp(4) and (GL(2) x GL(2)) ; we have M' sitting inside as 

the diagonal torus and we have LM' (G,G') = 1 

3.5 . E n d o s c o p i c groups for GSp(4). — We will also need to know the endoscopic 

groups for GSp(4). There is only one proper elliptic endoscopic group for GSp(4) 

namely (GL(2) x GL(2) ) /GL(1) with GL(1) embedded a s a n ( a , ^ 1 ) , see [Fli99, 

Section l .F] . It is given by the element diag( l , —1, —1,1) G GSp(4, C). The norm 

map is given by 

diag(a, 6, c 6 _ 1 , ca~x) \—> (diag(l , (ab)~1c)1 diag(a, b)) . 

For each proper Levi subgroup M of GSp(4) we also need to compute the elliptic 

endoscopic groups for GSp(4) in £ M ( G S P ( 4 ) ) . Since we are taking M as an endoscopic 
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group for itself the elements of £M(GSP(4)) are given by elements s G Z(M) taken 
modulo translation by Z(GSp(4,C)), which equals {diag(x, x, x, x)}. 

Lemma 3.8. — Let M be the Siegel Levi in GSp(4). Then the elliptic endoscopic 
groups in £M(GSP(4)) are GSp(4) and (GL(2) x GL(2))/ GL(1) each with multiplicity 
one. 

Proof. — We have M sitting inside GSp(4, C) as the Klingen Levi. So we have 

Z(M) = {dmg{x,y,ylX-ly2)} . 

And we get that the elliptic endoscopic groups in £M(GSP(4)) are GSp(4) and 
(GL(2) x GL(2))/ GL(1) each with multiplicity one. • 

We have M sitting inside (GL(2) x GL(2))/ GL(1) as (Tx GL(2))/ GL(1) where T is 
the diagonal torus in GL(2). And we have £M(GSp(4), (GL(2) x GL(2))/GL(1)) = \ . 

Lemma 3.9. — Let M be the Klingen Levi in GSp(4). Then the only elliptic endo­
scopic group in £M(GSP(4)) is GSp(4) with multiplicity one. 

Proof. — We have M sitting inside GSp(4, C) as the Siegel Levi. So we have 

Z(M) = {diag(>,x,y,y)}. 

The only elliptic endoscopic group given by such an element is GSp(4) itself which we 
obtain when x = y = 1. • 

Lemma 3.10. — Let M be the diagonal Levi in GSp(4). Then the elliptic endoscopic 
groups in £M(GSP(4)) are GSp(4) and (GL(2) xGL(2))/ GL(1), each with multiplicity 
one. 

Proof — We have M sitting inside GSp(4, C) as the diagonal torus. So we have 

Z(M) = { d i a g ^ y , ? / - 1 ^ - 1 ^ } , 

and we get that the elliptic endoscopic groups in £M(GSP(4)) are GSp(4) and 
(GL(2) x GL(2))/ GL(1), each with multiplicity one. • 

We have M sitting inside (GL(2) x GL(2))/GL(1) as the diagonal torus and we 
have 

iM(GSp(4),(GL(2) x GL(2))/GL(1)) = i . 

4. Weight functions 

In this section we compute all the weight functions needed in the proof of the 
fundamental lemma. For a Levi subset M of G — G° x a the weight function VM is 
defined in [Art88b, Section 1]; throughout this section we adopt the notations and 
definitions given there. 
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4.1. Twisted weight functions. — In this section we adopt the notation of 
Section 2.4 and compute the weight functions for the relevant Levi subgroups of 
G° = GL(4) x GL(1). We will use the following basic fact in computing the weight 
functions below. 

Lemma 4.1. — For v = (v\,..., vn) G Fn define \v\ = max{|vi | , . . . , |i;n|}. Then for 
all k G GL(n, R) and v G Fn we have \vk\ = \v\. 

Proof. — We clearly have \vk\ ^ \v\ and replacing v by vk~x yields the result. • 

4.1.1. The (2,2) Levi. — In this section we take M° to be the (2,2) Levi in G°. We 
have M = M° x a. Let P° (resp. Q°) be the upper (resp. lower) block triangular 
parabolic in G° with M° as its Levi component. We have M = M° x a and if we set 
P = P° x a and Q = Q° x a then we have V{M) = {P, Q}. We let NP (resp. NQ) 
denote the unipotent radical of P° (resp. Q°). Let x G G°(F) and write 

x = npmpkp — 'riQrriQkQ 

with obvious notation. We write mp = (AP,BP,cp) G GL(2) x GL(2) x GL(1) and 
similarly we write UIQ = (AQ, BQ, CQ). 

Lemma 4.2. — With notation as above we have 

vM{x) = vol(a£/Z(A^)) (In |det AQ\ — In |det AP\) . 

Proof — For (A, B, c) G M° we have 

a : (A,B,c) i—> (wTB~1w, wtA~1w,cdet AB), 

and hence 

AM = {a = (diag(ai,ai),diag(a^1,a1_1)),a2)} . 

We fix the basis {xi, X2} of X(AM) given by \i '• a ^ ai- We have 

AMo = {b= (diag(òi,òi),diag(ò2,Ò2)),ò3)} 

and we fix the basis {^1,^2^3} of X(AMo) given by cpi : b bi. We have APo = 
{<p 1 — Lp2}' We now compute (fi\ — fi2)y• Let Sipi,6(P2,SIP3 denote the basis of aM0 
given by S^%(fij) = Sij, the Kronecker delta symbol. 

To determine ((fii—fi2)w we may as well work inside GL(4). We set Po equal to the 
upper triangular Borei subgroup of GL(4) and we take Mo to be the diagonal torus 
in Pq. We have 

AMo = M0 = {c = diag(ci,c2,c3,c4)} 
and we fix the basis {Pi, 02,03, P*} of X(M0) given by ft : c ^ a. We define 
àpi ̂  ciM0 similarly. 
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We now describe the splittings a*Po = d p 0 0 (^p0°)* a n d aP0

 = aP° ® aP°0-
 T n e m a P 

X(Apo) -» X(M0) is given by 

01 I • (Pi 02 ' > Vl 03 ' > ^2 04 1 > ^2 

and the map apo ap0 is given by 

01 I • (Pi 02 ' > Vl 03 ' > ^2 04 1 > ^2 

Thus we have 

ap0 = <*P° © apn° = Span{5/31 + ^2,(5/33 + (5/34} © Span j^ - Sp2,Sp3 - 5p4} 

and 

a*Pn =oJ>o©(aS°)* Span{A + /32, /?3 + £4} © Span{/3i - /?2, 03 ~ PA}-

Therefore we have 

(fl - if2 1 
9 01 + h) 

1 
2 (/?3+/^4)=^2-/33-

1 / 
3i - h) 3, -

equal to the projection of 02 — 03 onto dp0. Now (02 — 03)y — <5/32 ~ /̂33 whose 
nroiection onto a DO is 

"(¿/3! +ÔP2) - ~(ÔP3 +ÔP4) 

Hence we have (</?i — (p2)v — — <^>2)* 
The map X(̂ 4Mo) —• X(̂ 4A )̂ is given by 

<Pi 1—• Xi V?2 1—• -Ai ^3 1—• X2-

We have AP = {2xi}, AQ = {-2xi} and 

(2Xi)v : Xi ^ è X2 ̂  0. 

Hence for A = aiXi +«2X2 G a*M c we have 

MA) " 2vol(a«/Z(A^)) 

and 

We now make explicit the isomorphism between X(AM) 0z R and X(M)p 0z R-
We have a basis for X(M)p given by the characters 

^1 : (CA,£),c) 1—> det Adet^-1 ^2 : ((v4,5),c) 1—> c 

of M°. The restriction map X(AM) X{M)p is given by ipi \-> 4xi and ip2 ^ X2-
Now we have 

HM{mP): xi 1—> \la\det ApBp1] X2 '—>ln|cP|. 

Therefore, 
vp(\, x) = exp —̂ In |det ApBp11 — a2 In \cp\^ 

a i 

2vol (ag /Z (A£)) 
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and similarly for VQ(\,X). Hence VM(\%) equals 

2vol(ag/Z(A^>)) 
a1 

|̂ exp Bpx In |det ApBpx\ - a2 In |eP|j - exp Bpx m |det AQBQ1] - a2 In |eQ|JJ . 

Taking the limit as A = a\\i + «2X2 ^ 0 we get 

vM(x) vol(a?/Z(A^): 
2 

(ln|det ApPp1 In I det A q ^ 1 

But we have |det ApBp\ = |det AQBQ\ and hence 
vM(x) = vol(a^/Z(A^))(ln|det>lQ| - ln |det^P | ) 

which completes our computation. 
We now compute VM on the unipotent radical of P°. 

Lemma 4.3. — We have 

MM 
1 X\ x2 

1 Xs X4 
1 

1 . 

1 vol(ap/Z(AP))lnmax{l, |xi|, |x2|, |x3|, |x4|, \xix4-x2x3\} 

Prnnf — Wp writp 

(1 Xi X2 
1 X3 X4 

1 
^ 1, 

1 > 
1 

2/1 2/2 1 
2/3 2/4 ly 

2/1 2/2 1) kb 

Applying the vector (1, 0, 0, 0) A (0,1, 0, 0) and using Lemma 4.1 allows us to deduce 
that 

In I det AQ \ = lnmaxjl, \xi\, \x2\, \x$\, |x4|, \x1X4 - x2x3\} 
and the result follows. • 

4.1.2. The (1,2,1) Levi. — In this section we take M° to be the (1,2,1) Levi in G. 
Let P° (resp. Q°) be the upper (resp. lower) triangular parabolic in G° with M° as 
its Levi component. We have M = M° x a and if we set P — P° x a and Q = Q° x ce 
then we have V(M) = {P, Q}. We let 7V> (resp. NQ) denote the unipotent radical of 
P° (resp. Q°). Let x G G°(F) and write 

x _ ripuipkp — nQmQkQ 

with obvious notation. We write mp = (ap, Pp, cp, dp) G GL(1) x GL(2) x GL(1) x 
GL(1) and similarly we write ran — (an, BQ, CQ.QIQ). 
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Lemma 4.4. — With notation as above we have 

VM(X) 
vol(ag /Z(A£)) 

2 
(\n\aQcQ1\ - lnlapCp1!) 

Proof. — We have 
AM = {a = (ai,/,a1"1,a2)} . 

We fix the basis {xi, A2} of X(AM) given by Xz : a 1—> â . We have 

AMo = {b = (òi,diag(ò2,ò2),ò3,ò4)} 

and we fix the basis {cpi, tp2, </?3, ^4} of X(AMo) given by (fi : b \—> b{. We have 

AFo {(fi - (p2l ¥2 - ^3}-

We now compute (</?i — (p2)v and (ip2 — ^3)v- Let (5^, (5̂ 2, , denote the basis 
of aM0 given by V(v?j) = Sij. 

To determine ((fi — (f2)v and (cp2 — (/?3)v we may as well work inside GL(4). We 
set Po equal to the upper triangular Borel subgroup of GL(4) and we take Afo to be 
the diagonal torus in PN. We have 

AMO = = {c = diag(ci, c2,c3,c4)} 

and we fix the basis {Pi, P2, P3, P4} of X(Mo) given by Pi : c q. We define 
$PI £ flMo similarly. 

We now need to describe the splittings aPo — a*p0 © (aPo )* and ap0 = apo © apo. 
The map X(^4Po) -» X(M0) is given by 

Pi 1 > <£l #2 1 • ^2 /?3 1 > ^2 /?4 1 > ^3, 

and the map apo ^ ap0 is given by 

VI 1—• Pi '—• f (#2 + AO ^3 1—> PA-

Thus we have 

ap0 = aFo © apo° = Span{^1, 5P2 + SP3,8P4} © Span{^2 - 5P3}, 

and 

apo = apo © (a£o°)* = Span{/?i,/32 + p3,p4} © Span{/32 - /33}. 
Therefore we have 

<Pl-<P2=P1- ^(P2 + P3) = Pi- P2 + \{P2 ~ Ps) 

equal to the projection of Pi — P2 onto ap0. Now we have (pi — /32)v = 8P1 — 5P2 
whose projection onto apo is 

6f3i - \ + Sp3). 
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Hence we have (fii — Lp2)y — S(fl — \8^2. Now 

fi2 ~ fi3 = \(p2 + Ps) -P4=P3~P4 + \(p2 - Ps) 

equals the projection of /3% — P4 onto a*p0. Now we have (P3 — P^)y — ôp3 — ôp4 whose 
projection onto cipo is 

2(^2 +SPs) ~ Ô04 • 

Hence we have (fi2 — fisY = ~ 
The map X(AMo) —» X(AM) is given by 

<£i 1—> Xi ^2'—>0 fi3\—>-Xi ^4'—> X2-

We have AP = {xi}, Aq = {-Xi} and 

(Xi)V : Xi ^ 1 X 2 ^ 0 . 

Hence for A = a\Xi + 2̂X2 ^ AM c we have 

MA) " vol(a?/Z(AV))' 

and 

g( ) = "vol(o?/Z(A^))-
We now make explicit the isomorphism between X(AM) &z R and X(M)p 0z R. 

We have a basis for X(M)P given by the characters 

ipi : (a, J5, c, d) 1 • ac_1, ^2 : (a, P, c, d) 1 > acd2 det P 

on M°. The restriction map X(AM) —» X(M)p is given by ^1 ^ 2xi and 2̂ 2x2-
Now we have 

HM(mP): xi 1—• I In\apc~p1 | X2 1—• \ In |aPcPdp det PP|. 

Therefore, 

vp(A, x) = exp (—-7̂  m |ap6pX| — In \aPcPdp det Pp|^ 

and similarly for i;q(A, x). We can set a2 = 0 and take the limit as a\ —• 0 to give 

vol(qg/Z(A£)) / _! , 
^M0) = 9 (ln|aQcQ I - In \aPcP |J 

as wished. 

We now compute VM on the unipotent radical of P°. 

TJTMMA 4.5. — We have 

vM 

T xi x2 x3\ 
1 X4 

1 x5 
1 / 
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equal to 
vol(aP/Z(AP)) Qnmax|l5 [x1] 1̂ 1̂  |X3|j _|_ mmax{l, |X4|7 |X5|5 \Xlx± + X2X5 - xz\}). 

Proof. — We write 
/1 xi x2 x3\ 

1 X4 
1 x5 

1 
У1 i 
У2 1 

\2/3 У 4 У 4 1. 

AQ \ 
BQ kQ 

К со) 

Applying the vector (1, 0, 0, 0) allows us to deduce that 
In\aQ\ = lnmaxjl, |xi|, \x2\, |#3|}. 

Taking the transpose inverse of the above matrix equation and applying the vector 
(0, 0, 0,1) allows us to deduce that 

In \CQ1\ = lnmax{l, |x4|, |x5|, \xix± + x2x5 - x3\} 
and the result follows. • 

4.1-3. The diagonal Levi. — Let M° be the diagonal Levi subgroup in G°. For 
the proof of the fundamental lemma it is (essentially) sufficient to compute VM on 
elements of G° fixed by a, i.e., elements of the form g = (g\,g2) £ Sp(4) x GL(1). For 
now we show that for such a g VM{9) is, up to a scalar, equal to ^Mi(#i) where Mi 
is the diagonal Levi in Sp(4). We will then compute VMI °n the unipotent radical of 
the upper triangular Borel subgroup in Sp(4). 

Let B° (resp. B\) denote the upper triangular Borel subgroup of G° (resp. Sp(4)). 

Lemma 4.6. — For g € ( p i , ^ ) £ G0(F) with g± € Sp(4) we /¿ave 

vMl (91 )• vol(ag/Z(A^)) 
vol(4f4)/Z(A^)) 

vMl (91 )• 

Proof. — We have 

AM = {a = (diag(ai,a2,a2_1,af1),a3)} , 

and we fix the basis {xi? X2, X3} °f X(AM) given by \i : a f—^ ai- We have 

AMo = {b = (diag(&i,&2,&3,&4),&5)}, 
and we fix the basis {<^i,..., fis} of X(AM^) given by (pi : h bi. The map 
X(AM°) —» X(AM) given by restriction is given by 

<Pi 1—• Xi 2̂ 1—• X2 ^3 1—> -X2 ^4 1—• -Xi ^5 1—> X3-
We have 

AML = = diag(ai, a2,a2 1»ai *)} • 
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We identify with the subspace of OM of elements which are zero on \3 and we 
identify a -̂ with the subspace {ai\i + &2X2} of a^-. 

We now compute Op (A) for A = a>iXi + «2X2 + «3X3 £ AM c- We nave 

ABo = {(^1 - (̂ 2, ^2 - <£3, ^3 - ^4}, 

and 
A5 = {Xi - X2,2x2>. 

We have 
(Xi - X2)v : Xi ^ 2 X2 ^ -2 X3 ^ 0, 

and 
(2X2)V : Xi ^ 0 X2 ̂  1 X3 ̂  0. 

On the other hand 
ABl = {xi ~ X2,2x2>, 

and we have 
(Xi - X2)v : Xi 1 • 1 X2 1 > - 1 , 

and 
(2X2)V : Xi^O X2 1. 

Hence we see that for A = Ai + a3X3 G c with Ai G a -̂ c we have #p(A) = 
^Bi(Ai). Now each Borel subgroup of G°, which is a stable and which contains M° 
is of the form w~1B°w with w = (wi, 1) where w\ is an element of the Weyl group of 
Sp(4). Hence we deduce that for each Borel subgroup P° of G° which contains M° 
we have 

vol(a£/Z(A£))MA) = vol(a^(4)/Z(A^i))^Pl(A1), 
where Pi denotes the Borel subgroup of Sp(4) which is contained in P°. 

Next we compute vp(\,g) and vp1(\\, g±). In order to compute vp(\g) we need 
to write g = npmpkp with np G Np(F), mp G M°(F) and hp G K. But if we write 
9i — np1mp1kp1 with obvious notation then we have 

9 = (91,92) = (np11l)(mPl1g2)(kp1Jl). 

Hence we have for A = Ai + a3X3 that 

vP(\g) = vPl(\ugi)\g2\~a3. 

Thus we get 

vM(\g) 
PEV(M) 

vP(\g)6p(\)-1 

vol(qg/Z(AV)) 
vol(a^4Vz(AVi)) m Pl(\ugi) 

vpAXugJOpM-1 

And now taking the limit as A —» 0 gives the result. 
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Multiplying n on the left by such an element we can put n in the form 

/1 X! 
1 

1 —X\ 

\ i 
For m > 0 and u G Up we have 

U^tt™ 1 
1 U^t t™ 1 

7T-m 
7T™ 

7T-m 
7T™ 

and hence we deduce that 
\a\ = max{l, \xi\} 

and 
l&l"1 = max{l,\x1\}. 

. w = (23). In this case we have 

w 1Np1w -

/1 -2/2 2/i ys 
1 2/1 

~y± 1 2/2 - 2/12/4 
V 1 

Multiplying n on the left by such an element we can put n in the form 

T > 
1 X4 

1 
1 > 

And as above we deduce that 
\a\ = l 

and 
|ò| = max{l, \x4¡}. 

• w = (14). In this case we have 

w 1NB1W 

1 > 
2/42/1 - 2/2 1 2/4 

2/i 1 
-2/3 2/1 2/2 1̂  

Using the vector (1, 0, 0, 0) we deduce that 

\a\ = max{l, |xi|, \x2 + xix4\, |#3|}-

and using (1, 0, 0, 0) A (0, 0,1, 0) we deduce that 

lab'1] — max{l, \xi\2, \xs + x±x2 + x\x^\}. 
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We now compute VMx on the unipotent radical of B\. We set 

n = 

'1 X\ X2 + X\X± £3 
1 X4 x2 

1 -x_ 
1 

eNBl(F). 

In order to do this we need to write n = n\m\k\ for each Borel subgroup of Sp(4) 
containing M\ and then if we write 

mi = diag(a, 6, b 1,a 1) 

we need to compute |a| and |6|. 
The Weyl group of Sp(4) is isomorphic to Dg with generators 

Wi 

( 1 
1 

1 
V l 

w2 = 
l 

l 
- l 

1, 

Explicitly the Weyl group is given by 

{e, (12)(34), (23), (14), (1243), (1342), (13)(24), (14)(23)}, 

where we have 

e = I 

(12)(34)=™i 

(23) w2 

(14) = w\w2wi 

(1243) = w2wi 

(1342) = wxw2 

(13)(24) = ^2^i^2 
(14)(23) = w\w<2W\U)2 

• w — e. In this case we have \a\ — \b\ — 1. 
• tu = (12) (34). In this case we have 

w 1NB1W 

/1 2/2 ~ 2/12/4 2/4 
2/i 1 2/3 2/2 

1 
v -2/1 1 
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. w = (1243). In this case we have 

w 1NB1W -

/ 1 2/1 
-2/2 1 2/3 2/i 

1 
V—2/4 2/2 - 2/12/4 1, 

Using the vector (0, 0,1, 0) we deduce that 
\b\=ma*{l,\x1\}-1, 

and using (1, 0, 0, 0) A (0, 0, 1, 0) we deduce that 
|afr-1| = max{l, |xi|2, \x3 + x\x2 + x\x4\\. 

• w = (1342). In this case we have 

w 1NB1W — 

1 2/12/4 - 2/2 2/4 \ 
1 

2/1 -2/3 1 2/2 
2/i 1 / 

Using the vector (0,1, 0, 0) we deduce that 
|6| = max{l, \x4\, \x4\}, 

and using (0,1, 0, 0) A (0, 0, 0, 1) we deduce that 
|a -1b|= max{l, \x4\}. 

. w = (13) (24). In this case we have 

w 1NB1W 

1 -2/1 
1 

-2/2 -2/3 1 2/1 
-2/4 2/12/4 -2/2 1 

Using the vector (0,1, 0, 0) we deduce that 
|6| = max{l, \x2\, \x4\}, 

and using (1, 0, 0, 0) A (0,1, 0, 0) we deduce that 
\ab\ — max{l, \x2\, |x4|, \x3 — x1x2\, \x\ - x3x4 + x\x2x4\\. 

. w = (14) (23). In this case we have 

w 1NB1W • -2/1 1 J 
2/12/4 - 2/2 -2/4 1 I 

-2/3 -2/2 2/i 1/ 
Using the vector (1, 0, 0, 0) we deduce that 

lai = maxjl, \xA, \x2 + xxx4\, \x3\}, 
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and using (1, 0, 0, 0) A ( 0 , 1 , 0, 0) we deduce that 

\ab\ = max{l, \x2\, |x4|, |x3 - xix2\, \x\ - x3x4 + xxx2x^\\. 

Let's set A = aiXi + a2X2 G ol*Mi c. Where \i is the character of Mi map­
ping diag(ai, a2, a^1, a^1) to â . Let x G Sp(4, F) and let Pi be a Borel sub­
group containing Mi. We write x = rip1mp1kpl with the usual notation where 
mp1 = diag(ap1,bp1, bp^, a^1). Then we have 

HPl(x) : xi 1—•lnlapj X2 1—>ln|6Pl|. 

Hence we have vpx (A, x) — \apl\ai \ bpr\a2 and therefore for A = (3a2\\ + a2X2 G C 
we have 

vPl(X,x) = (\aPlf\bPl\r. 

Next we compute 0p1 for each of these Borel subgroups Pi = w~lBiw and A = 
/3a2Xi + A2X2 € ijvf c- These functions are given in the table below. 

w I APl I ePl{X)/<4~ 
e 2X2,Xi~X2 / 3 - 1 

(12)(34) 2Xi,X2-Xi /3(1-/3) 
(23) -2x2,Xi+X2 -(/3+1) 
(14) 2x2,-Xi-X2 -(/?+l) 

(1243) -2Xi,Xi+X2 -0(0+1) 
(1342) 2Xl,-Xi-X2 -/3(/3+l) 

(13)(24) -2xi ,Xi-X2 /3(1-/3) 
(14)(23) -2X2,-Xi+X2 / 3 - 1 

For /3 6 C we set 0P, (/?) = (9P(A)/a|. We have 

vMl (x, if) 

Pi 

vol(a°fp(4)/Z(A^)) 
a?2ePl(ß) 

a?2ePl(ß) 

The value at a2 = 0 of this expression is equal to 

a?2eP vol(a|*4)/Z(A£V 
2 

Pi 
^-i^(/31n|aPl|+ln|6Pl|)2 

for any value of (3. The calculations above give the following. 

AI txr 7 , x 7 . vol(a*p /̂Z(A£ )) 
Lemma 4.7. — We nave VMA71) eaual t° —2 — times 

— (À2 + 2 £ 2 + 2C2 + £>2 + 2F2 + F2) + 2(AB + AE + BD + CD + EF) 
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where 

A = lnmaxjl, \x2\, \x4\, \x3 — x\x2\, \x\ — x3x4 + x\x2x4\} 

B — lnmaxjl, \x2 + X\x4\, \x3\} 

C — lnmaxjl, \x\|} 

D — lnmaxjl, |xi|2, |x3 + X\X2 + x\x4\\ 

E = lnmaxjl, \x2\, \x4\} 

F = In maxi 1, \x4\}. 

Combining Lemmas 4.6 and 4.7 we get the following. 

Corollary 4.8. — For 

n = 

(\ X\ X2 + X\X4 x3 \ \ 

1 x: X2\a eNB(F) 
1 —X\ 

1 / / 
we have %(n) equal to VOL(AB/%(AB)) times 

-(A2 + 2B2 + 2C2 + D2 + 2F2 + F2) + 2(AB + AE + + CD + E'F). 

where A,. . . , F are as m Lemma 4.1. 

4.2. Weight functions for GSp(4). — In this section we compute the weight 
functions for the Levi subgroups of GSp(4). 

4-2.1. The Siegel Levi. — In this section we take M to be the Siegel Levi in GSp(4). 
Let P (resp. Q) be the upper (resp. lower) triangular parabolic in GSp(4) with M as 
its Levi component. Then we have V(M) = {P, Q}. We let Np (resp. Nq) denote 
the unipotent radical in P (resp. Q). Let x £ GSp(4, F) and write 

x - npmpkp = nQTTiQkQ 

with obvious notation. We write 

mP=(Ap t ) € M(F), 
\ bpw1Ap wj 

and similarly for ttlq. 

Lemma 4.9. — With notation as above we have 

vM(x) = vol(apSp(4)/Z(A^)) (In |det AQ\-ln |det AP\). 
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Proof. — We have 

AM = {a = diag(ai,ai, â "1a2, a^1a2)} . 

We fix the basis {xi, X2} of X(̂ 4M) given by Xz ' « ^ We have Ap = {2xi - X2} 
and Aq = {—2xi + X2}. We now compute (2xi - X2)v-

Let SXl,ôX2 denote the basis of a*M given by SXi(xj) = hj- We set Pn equal to the 
upper triangular Borel subgroup of GSp(4) and we take Mo to be the diagonal torus 
in P0. We have 

AMo = M0 = {c = diag(ci,C2,c2"1c3,c5f1c3)} 
and we fix the basis {ft, ft, ft} °f X(M0) given by ft : X(Mo) We define ô@. E aM0 
similarly. 

We now need to describe the splittings aPo = ap 0 (apo)* and ap0 = ap 0 apQ. The 
map X(Mo) -» X(Mo) is given by 

ft 1 > XL 02 1 • Xl ft 1 > X2 

and the map ap ^ ap0 is given by 

Xl »—> è#L + #2 X 2 ^ f t -

Thus we have 

ap0 = ap ® apo = Spanj^, + ôp2, ôp3} ® S p a n j ^ - ôp2}, 

and 

aPo = ap 0 (a£0)* = Spanjft + ft, ft} 0 Span{ft - ft}. 

Therefore we have 
2xi - X2 = ft + ft - ft = 2ft - ft + (ft - ft) 

equal to the projection of 2ft — ft onto ap. Now we have (2ft — ft)v = 8p2 whose 
projection onto ap is ̂ (Sp1 + Sp2). Hence we have (2xi — X2)v = \^xi-

Hence for A = aixi + «2X2 £ a^ c we have 

0 p ^ ~ 2vol(ap7Z(Ap))' 

and 

° ^ X ) - 2vol(ag/Z(Ap))' 

We now make explicit the isomorphism between X(AM) ® z R and X(M)F ® z R 
We have a basis for X(M)p given by the characters 

-01 : [ , , , 1 J 1—> detA 
Y V bwtA-1wJ 

and 
-01 : [ , , , 1 J 1—> detA 
Y V bwtA-1wJ 

ASTÉRISQUE 302 



THE TWISTED WEIGHTED FUNDAMENTAL LEMMA 319 

The restriction map X(M)p —• X(AM) is given by ipi i—> 2xi and ip2 » X2- There­
fore, 

HM(mP) : xi 1—• |ln|deti4P| X2 '—>m|òp|, 

and so 
vp(À, x) = exp —̂ In I det Ap\ — a2 In |6p|^ . 

We have a similar expression for vq(A,x). Taking a2 = 0 and letting ai —• 0 gives 

vM(x) = vol(apSp(4)/Z(AP))(ln|detAQ| - In |det AP|) 

as desired. • 

The computation of VM on the unipotent radical of P follows directly from the 
proof of Lemma 4.3. 

Lemma 4.10. — We have 

VM 

(1 x 
1 r s 

1 
^ 1 

: vol(ap P(4VZ(AP))) lnmax{l, \x\, |r|, \xs - r2\}. 

4-2.2. The Klingen Levi. — In this section we take M to be the Klingen Levi in 
GSp(4). Let P (resp. Q) be the upper (resp. lower) triangular parabolic in GSp(4) 
with M as its Levi component, then we have V(M) = {P, Q}. We let Np (resp. NQ) 
denote the unipotent radical in P (resp. Q). Let x £ GSp(4,F) and write 

x = npmpkp = riQ'rriQkQ 

with obvious notation. We write 

TUP : 
'aP N 

BP 
K a~pX det Bp, 

e M (F) 

and similarly for TUQ. 

Lemma 4.11. — With notation as above we have 

vM{x) = vol(o°SP(4)/Z(AP)) (In \aQ\ - In \aP\) 

Proof. — We have 
AM — {a = diag(ai, a2, a2, a^a2)] -

We fix the basis {xi, X2} of X(AM) given by Xi a ^ ai- We have Ap = {xi — X2} 
and Ap — {x2 — Xi}- We now compute (xi — X2)v-
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Let ôXl, SX2 denote the basis of a*M given by SXi(xj) = àij- We set Po equal to the 
upper triangular Borel subgroup of GSp(4) and we take M0 to be the diagonal torus 
in PQ. We have 

AMo = M0 = {c = diag(ci,c2,c2"1c3,cf ^3)} , 

and we fix the basis {ft, ft, ft} of X(Mo) given by ft : c 1—» We define ôpL G dM0 
similarly. 

We now describe the splittings aPo — ap 0 (cipo)* and ap0 = ap 0 apo. The map 
X(Ap) -» X(M0) is given by 

ft 1—• Xl #2 1—• X2 ft 1—> 2X2, 

and the map ap c—> ap0 is given by 

Xi 1 > ft X2 1 > ^ft-

Thus we have 

ap0 = ap 0 ap0 = Spanj^,, ^2 + 26 p3} 0 Span{^2}, 

and 
ap0 = ap 0 (a£0)* = Span{ft,ft} 0 Span{2ft - ft} 

Therefore we have 

Xi - X2 = ft - ^ft = ft - ft + (ft - ^ft J 

equal to the projection of ft — ft onto ap. Now we have (ft — ft)v = ^ — ^2 whose 
projection onto ap is 5^. Hence we have (xi — X2)v = 8Xl. 

Therefore for A = a 1X1 +^2X2 £ &M c we have 

°p{X) vol(aS/Z(A£)) 

and 

°q{X) vol(A$/Z(AV)) 

We now make explicit the isomorphism between X(AM) ^z R and X(M)p ® z R-
We have a basis for X(M)P given by the characters 

01 
a 

B 
a_1detP 

a 

and 
/ l 

02 : ^ 
\ ^ d e t ^ / 

detP. 
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The restriction map X(M)p —» X(AM) is given by i—>• xi and 2̂ • 2x2- So we 
have 

HM(rnP) : xi 1—• ln|detaF| X2 1—• | ln |detPP| , 
and therefore, 

vp(A, x) = exp ^—ai In \ap\ — ^ In |det Pp|^ . 

We have a similar expression for VQ(A,a;). Setting a2 = 0 and taking the limit as 
ai —» 0 gives 

«M(x) = vol(a°Sp(4)/Z(A^)) (In |aQ| - In \aP\) 
as desired. • 

The computation of VM on the unipotent radical of P follows directly from the 
proof of Lemma 4.5. 

Lemma 4.12. — We have 

VM 

(1 x r s 
1 r 

1 -x 
K 1 . 

= vol(apSp(4)/Z(AF))) lnmax{l, \x\, |r|, 

4.2.3. The diagonal Levi. — In this section we take M to be the diagonal Levi in 
GSp(4). We will compute VM on the unipotent radical of the upper triangular Borel 
subgroup of GSp(4). We follow the strategy in the twisted case; we first relate the 
function VM to VMI , where Mi is the diagonal torus in Sp(4) and then use Lemma 
4.7. 

Let B denote the upper triangular Borel subgroup of GSp(4) and let B\ denote its 
intersection with Sp(4). 

Lemma 4.13. — For g G Sp(4,F) we have 

VM(g 
vol(qgSp(4)/Z(AV)) 
v o l ( a r ) / Z ( A V ) ) ^ ( ^ -

Proof. — We have 

AM = {a = (diag(ai,a2,a2"1a3,a1_1a3)} 

and we fix the basis {xi, X2, X3j °f X(AM) given by \% a l—̂  ai- We have 

AMl = {a = diag(ai,a2,a^1,a["1)} . 

We identify aMi with the subspace of aM given by those elements which are zero on 
X3 and we identify a*Mi with the subspace {aiXi + ^2X2} of a^. 

We now compute #p(A) for A £ aM c. We have 

Ap = {xi - X2,2x2 - X3J 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2005 



322 D. WHITEHOUSE 

and 

(Xi - X2)v : Xi 1—• 1 X2 '—> - 1 X3 1—• 0 

and 

(2X2 - Xs)v : Xi ^ 0 X2 ^ 1 X3 ^ 0. 

We have 

ABl = {Xi - X2,2x2>, 

and 

(Xi - X2)v : Xi 1 • 1 X2 1 > - 1 , 

and 
(2X2)V : xi ^ 0 X2 1. 

Hence we see that for A = Ai + as\3 £ AM c wlth Ai G a -̂ c, we have 0B(A) = 
^Bi(^i). Now each Borel subgroup of GSp(4) is of the form w~1Bw with w an 
element of the Weyl group of Sp(4). Hence we deduce that for each Borel subgroup 
P of GSp(4) that contains M we have 

vol(a^Sp(4)/Z(AP))^P(A) = vol(aPp(4)/Z(APi))^Pl(A1), 

where Px = Pfl Sp(4). 
Next we compute vP(\,g) and vPl(\i,g). In order to compute vP(\,g) we need 

to write g = npmpkp with np G NP(F), mp G M°(F) and fcp G if. Since we are 
assuming that g G Sp(4) we can do this inside Sp(4) and assume that mp G Mi for 
each P. Hence we have for A = Ai + 0,3X3 that 

vP(\,g) = vPl(\i,g). 

And we get 

VM{\9) 
PeV(M) 

vP(X,g)eP(X)-1 

vol(qg/Z(A£)) 
vol(a|p(4)/Z(AV); Pier (Ah) 

vP(\,g) = vPl(\i,g) 

Taking the limit as A —• 0 gives the result. • 

Since the unipotent radical of B lies inside Sp(4) we conclude the following Corol­
lary of Lemmas 4.13 and 4.7. 

Corollary 4.14. — Let 

n — 

T Xi X2 + X1X4 £3 
1 X4 X2 

1 —X\ 
G NB(F) 
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Then VM\n) is equal to ———1~—1—— times 

-(A2 + 2B2 + 2C2 + D2 + 2E2 + F2) + 2{AB + AE + BD + CD + EF), 

where 

A — lnmax{l, |x2|, \x^\, |#3 — x\Xi\, \x\ — £3X4 + x\x2X4\\ 

B — lnmaxjl , |xi|, |x2.+ x\X±\, \x^\\ 

C — lnmaxjl , \x\\] 

D = lnmax{l, |xi|2, |x3 + xix2 + x\x^\} 

E = lnmaxjl , |x2|, ^41} 

F = lnmaxjl , \x4\}. 

4.3. Other groups. — We will also need to compute weighted orbital integrals on 
groups closely related to GL(2). We now compute VM for M the diagonal torus in 
GL(2). 

Lemma 4.15. — Let M be the diagonal torus in GL(2) and B the upper triangular 
Borel subgroup containing M. Then we have 

W M C l ) =vol(0BL(2)/Z(A^))lnmax{l,|a;|}. 

Proof. — Let Q denote the lower triangular Borel subgroup of GL(2). Then we have 
V(M) = {P,Q}. We have 

AM = {a = (a1,a2)} 

and we let Xi £ X(M) be given by x% a l—ai- We have Ap = {xi — X2}, Aq = 
{X2 - Xi} and 

(Xi - X2)V : Xi 1 > 1 X2 1 • - 1 . 

Let A = aixi + ^2X2 G c then 

a m - Q2 ~~ai 
W ) - vol(a?/Z(AV))-

We set 
/ 1 x 

" = ( 1 

If x G R then we have n G GL(2, R) and % ( n ) = 0. Next we note that for m > 0 
and u G [/F we have 

^1 7X7r-mN ( 1 
U_17Tm 1 

(a?/Z(AV))- 7Tm i, 
1 7T™ (a?/Z(AV))-

G NQ(F)M(F) GL(2 ,# 
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Therefore, if x 0 R then 

, vol(a£/Z(A£)) t . | | _ , „ 
VM{O>IXI + «2X2, n) = - — exp (-ai in \x\ + a2 In x|) 

a2 - ai 
and taking the limit as A —» 0 gives %(n) = vol(ap/Z(Ap)) In |x| as required. • 

4.4. Normalization of volumes. — Let M° be one of our Levi subgroups 
of G° and let M' be a twisted endoscopic group for M°. We need to normal­
ize vol(cip/Z(Ap)) for P a parabolic subset of G with Levi component M with 
vol(dp//Z(Ap,)) where G7 E £M'(G) and P' is a parabolic subgroup of C with levi 
component M'. 

The norm map gives an isomorphism between ap and ap/; and restricts to give an 
isomorphism between ap and ap/. We choose measures on these spaces, which are 
preserved by this isomorphism. 

First we take M° to be the (2,2) Levi in G° and P° the upper triangular parabolic 
in G° with M° as a Levi component. Then we have 

AM = {a = ((diag(ai,ai),diag(a~1,a];1)),a2)} , 

and 
N(aa) = diag(a2a2, a2, a2, a^2a2) E GSp(4), 

and 

N(aa) = (diag(a?a2,a-2a2),diag(a2,a2)) E (GL(2) x GL(2))'. 

Using this we see that we have 

vol(ag/Z(A£)) = vol(a°Sp(4)/Z(A£)) = vol(agL(2)xGL(2))'/Z(A^)). 

Next we take M° to be the (1,2,1) Levi in G° and P° the upper triangular parabolic 
in G° with M° as a Levi component. First we take M' = GL(2) x GL(1). Then we 
have 

AM = {a = (diag(ai, 1, l,af 1),a2)} , 

and 

N(aa) = diag(aia2, aia2, a]~1a2, a1_1a2) E GSp(4). 

Using this we see that we have 

vol(ap7Z(AP)) = 2vol(apf p(4)/Z(Ap)). 

Next we take M° to be the (1,2,1) Levi in G° and P° the upper triangular parabolic 
in G° with M° as a Levi component. We take M' = GL(1) x ResE/F GL(1). Then 
we have 

AM = {a = (diag(ai, 1,1, af1), a2)} , 

and 
7V(ao:) = (diag(aia2, a^1a2)1 diag(aia2, a^la2)) E ResE/F GL(2)', 
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and 

N(aa) = (diag(aia2,ai-1a2),l,l) G (GL(2) x ResE/F GL(1))/GL(1). 

Using this we see that we have 

vol(ap7Z(Ap)) - vol(a%7z(AP,)) 

for each elliptic endoscopic group G' G £M'(G). 

Next we take M° equal to the diagonal Levi in G° and P° the upper triangular 
parabolic in G° with M° as a Levi component. We have 

AM = {a = (diag(ai,a2,a2_1,a];1),a3)} , 

and 
N(aa) = diag(<2ia2<23, aia^1*^, a^1a2a3, a^a^az) G GSp(4), 

and 

N(aa) = (diag(aia2a3, a^1a2_1a3), diag(aia2"1a3, a1_1a2a3)) G (GL(2) x GL(2))'. 

Using this we see that we have 

vol(ap7Z(AP)) = 2vol(aGSp(4)/Z(APi)), 

and 
vol(a«/Z(AP)) = 2vol(agL(2)xGL(2))'/Z(AP2)). 

We also need to do the same for GSp(4) and its elliptic endoscopic group 
(GL(2) x GL(2))/GL(1). First we take M equal to the Siegel Levi in GSp(4). Then 
we have 

AM = {a = diag(ai,ai,a1"1a2,af 1a2)} , 

and 

N(aa) = (diag(l,af2a2),diag(ai,ai)) G (GL(2) x GL(2))/GL(1). 

Using this we see that we have 

vol(aGSp(4)/Z(AP)) = ivol(ap;L(2)xGL(2))/GL(1)/Z(AP,)). 

Next we take M equal to the diagonal Levi in GSp(4). We have 

AM = {diag(ai,a2,a2~1a3,a];1a3)} , 

and 

N(a) = (diag(l,a-1a2"1a3),diag(ai,a2)) G (GL(2) x GL(2))/ GL(1). 

Therefore we have 

vol(aGSp(4)/Z(AP)) 1 
2 

/ol(a^GL(2)xGL(2))/GL(1)/Z(AP,)). 
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4.5. Weighted orbital integrals. — In this section we prove a couple of lemmas 
that will be useful in the computation of our weighted orbital integrals. We begin 
with the following lemma, which allows us to write our weighted orbital integrals as 
integrals over the Levi subgroup itself. 

For this section we take G° to be a connected reductive group over F. We let a 
be a quasi-semisimple automorphism of G° which we assume to be of finite order and 
defined over F. We take M ° to be a Levi component of a parabolic subgroup P° with 
unipotent radical TV; we assume all these groups are defined over F. We let K be a 
hyperspecial maximal compact subgroup of G° which is in good position relative to 
M ° . We assume that M ° , P°, TV and K are all stable under a. 

Lemma 4.16. — Let KM = M°(F) f~)K. For a G M°{F) for which act is strongly G°-
regular let cpa : TV —» TV denote the inverse of the bisection TV —» TV : n i—>• a~lnaa(n) 
and define 

CRP(A) = 
I N(F)nK 

VMiVain)) an, 

where the Haar measure on N(F) is normalized to give N(F) n K volume one. Let 
ja G M(F) be strongly G° -regular then 

lKM(rn 1-ya(m))aP(m 
M^a(F)\M°(F) 

lKM(rn 1-ya(m))aP(m 1>ya(m)) dm, 

where the Haar measure on MU(F) gives KM volume one. 
Proof. — By the Iwasawa decomposition we have G°(F) = M°(F)N(F)K and we 
can write the Haar measure on G°(F) as dg = dm dn dk. By definition we have 

rM(ja) = |DG(7^)|1/2 , 
^A(F)\G°(F) 

L/c(a 1lCi(g))vM{g) dg 

|^G(7«)|1/2 
K N{F) M7A(F)\M°(F) 

1n 1m 1^/a(m)a(n)a(k)) 
• VMimnk) dm dn dk 

PG (7«) |1 /2 f 
N(F) 

RM^(F)\M°(F) 
1K(TI 1m 1^a(m)a(n))vMM dm dn. 

If we set a — m lrya(m) G M°(F) then we have 
n lm 1ja(m)a(n] a(a 1n 1aa(n)) 

which lies in K if and only if a G KM and a 1n 1aa(n) G N(F) D K. Hence we have 
rM(ja) equal to 

\DG(7a)\^2 
M^a(F)\M°(F) 

M^a(F)\M°(F) 

N(F) 
^N(F)nK(a ln 1 acx(n))vM{n) dn dm. 
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Let n' = a ln laa(n) so that n = (pa(jif) then we have 

/ lN(F)nK(a~1n~1aa(n))vM(n) dn = f vM{fia(n')) ^ dm!, 
JN(F) JN(F)nK ûn 

But we have 

JN(F) 
1тм(т?\слк(а 1n 1аа(п))ум(п) dn 

N(F)nK 
VMÍVairí)) дп 

дп1 dn!. 

But we have 
on Dnhoi) 1/2 

Dnhoi) 
and hence 

rM(la) = \DM(~/a)\1/2 / lKM(m~1ja(m))aP(m~1^a(rn)) dm 
JMya(F)\M°(F) 

as wished. • 
We now give a reduction for weighted orbital integrals using the topological Jordan 

decomposition; see [BWW02, Section 3]. 
We now make the assumptions that all our groups are defined over R and we take 

K — G°(R). We further assume that a is defined over R and is of finite order prime 
to p, the residual characteristic of F. 

We continue with the notation above and assume that G° is defined over R and 
let K = G°(R). Assume further that the automorphism a has order prime to the 
residual characteristic of F and that K is stable under a. For 7 G G°(R) we can write 
70; G G uniquely as 

7a = us a = sau 
with sa absolutely semisimple (i.e., sa has finite order prime to the residual char­
acteristic of F) and u topologically unipotent (i.e., uqn —> 1, the identity in G°, as 
n —> 00). 

We now make the assumption of [BWW02, Lemma 5.5]. That is, we assume that 
if s\Ot and S2& for s\1 S2 G K are residually semisimple and conjugate by an element of 
G°(F) then they are also conjugate by an element of K. This is automatic in the case 
that a is trivial. In the case that G° = GL(4) x GL(1) and a is as in Section 2.4 this 
is verified in [BWW02]; see also [FH99, Section I.H]. Under this assumption we have 
for g G G°(F) that if g'^aig) G G°(R) then g G ZGo(sa)(F)K. For g G ZGo(sa) 
we have 

g~1usa(g) = g~1ugs. 
Hence g~1usa(g) G K if and only if g~lug G K. Furthermore, if we fix sa and set 
G± — ZQO (sa) then we have 

ZGo(usa) = ZGl(u). 
Assume now that 7 G M°(R). Then we have u, s G M°(R) and, as in Lemma 

[BWW02, Lemma 5.5], 

rM(usa) = \DG(usa)\1/2 \ lKl(g~1ug)vM(g) dg, 
^G1)U(F)\Gi(F) 
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where G\^u denotes the connected component of the centralizer of u in G\ and the 
measure on G\(F) is taken to give K\ = G\(F) fl K volume one. 

We now assume further that G\ is connected. We note that this is the case if 
G° = GSp(4) and a is trivial or if G° = GL(4) x GL(1) and a is as in Section 2.4. 
Then K\ is a hyperspecial maximal compact subgroup of G\(F) and Pi = Zpo(sa) 
is a parabolic subgroup of G\. Hence by the Iwasawa decomposition we again have 

G1 (F) = P1(F)K1. 

Moreover, Pi has Levi decomposition M\N\ where M\ = ZMo(sa) and N\ — 
ZNP(SCV). We normalize the Haar measures on M\(F) and N\(F) to give M\ fl K\ 
and Ni H K\ volume one. We can now mimic the proof of Lemma 4.16 to deduce the 
following. 

Lemma 4.17. — For a G M\(F) strongly G\-regular let cpa : Ni Ni denote the 
inverse of the bijection Ni —> Ni : n a~1n~1an and define 

aPl(a) = / vM(<Pa(n)) dn. 
JN1(F)nK1 

With the notations above we have 

rM(usa) = \DMl(u)\1/2 Mi,u(F)\Mi(F) KMl(m um)(7p1(m urn) dm. 

5. The fundamental lemma for the (2,2) Levi 

In this section we take M° to be the (2,2) Levi in G°. We have 

M° = {{(A b)'C) : A B e G L ( 2 ) , c G G L ( l ) | 

and we write such an element as a triple (A, B, c). The restriction of a to M u is given 
bv 

a : (A,B,c) \—> (w B~ w, w A~ w,cdet AB), 

where 

w — 
1 

1 

We set M' — GL(2) x GL(1) the unramified elliptic twisted endoscopic group for M. 
In this Section we prove the fundamental lemma for the pair (M, Mf). 
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5.1. Twisted integrals. — In this section we concentrate on the calculation of the 
twisted integrals. Note that we have 

(J, B, 1)-1 B, c)a(J, B, 1) = (Aw^^w, J, cdet B), 

and hence every twisted conjugacy class in M0 contains a representative of the form 
(A, /, c). We now determine the stable twisted conjugacy class of such an element. 

Lemma 5.1. — Assume that G M{F) be semisimple. Let m G M{F) such that 
m~1ja(m) G M(F). Then there exists mi G M(F) such that 

m7a(m_1) — mi7ce(m1"1). 

Proof. — We may assume that 7 = (A,I,c). We take m = (D,E,f) G M(F) and 
assume that m~x (A, I, c)a(m) G M(F). We have 

m~1{A,I,c)a{m) = (D'1 AwtE~1w, E~~1wtD~1w,cdet DE). 

Hence we have Ex = E-1wtD~1w G GL(2,F) and therefore, 

GL(2,F) 3 D~1AwtE~1w = D'1 ADw1Exw 

from which it follows that D~l AD G GL(2, F). Now there exists £>i G GL(2, F) such 
that D±1AD1 = D~1AD. Then we can take mx = {D^w1 D^wE^1,1). • 

Thus the stable twisted conjugacy class of a strongly regular element 7 is equal to 
the twisted conjugacy class of 7. We now show that the twisted orbital integrals on 
G° can be written as untwisted orbital integrals on GL(2). 

Lemma 5.2. — Let 7a = (A,I,c)a G M{F) be semisimple and strongly G°-regular. 
Then if c ^ UF we have rM{^a) = 0. Otherwise, let T\ denote the centralizer of A in 
GL(2) then we have 

rM(ia) = \DM(7a)\^2 f lGL(2,i?)(^1^)aF(C7-1AC,/,l) dC. 
JT!(F)\GL(2,F) 

Proof. — By Lemma 4.16 we have 

rMha) = \DM(JCY)\1/2 / lKM(m~1ja(m))aP(m~1ja(m)) dm. 
JT(F)\M°(F) 

But now let m = (C, D, e) G M°(F) then we have 

m_17a(m) = (C~1AwtD~1w, D~1wtC~1w, cdet CD). 

Thus we see that if m~l/ya(m) G KM then we have D~1wtC~1w G GL(2, R) from 
which it follows that we must have detCZ} G UF- But this then forces c G UF and 
hence if c ^ UF then rM(^a) vanishes. 
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Now assume that c G Up. Then we have that m l^a{m) G KM if and only if 
D^w'C^w = d G GL(2,i?) and 

C^Aw^^w = C _ 1 , 4 C V C i w G GL(2,#). 

Which is if, and only if, C~lAC G GL(2, R) and D = w^^wd with Ci G GL(2, i?). 
So we have m~l^a{m) G if M if, and only if, 

m = (C ,^C- 1 7 i ; , e ) ( i ,C i , l ) 

with C - M ^ d G GL(2,i?). 
Now we note that for k G KM and n G N(F) we have 

C^Aw^^w = C-^C^CIÎI; G GL(2,#).l^a{k)) 

and hence 

o~p{k l^a{k)) 
N(F)nK 

(к 1(p^(a(k)n 

r 
N(F)nK 

Ум(к 1(p^(a(k)na(k) 1)k) dn 

N(F)nK 
Ум(<Р-у(&(к)па(к) 1)) dn, 

which equals <Tp(7) after a suitable change of variables. 
Therefore the integrand in rM(ja) is invariant under right multiplication of m by 

an element of KM- Thus if we set T\ equal to the centralizer of A in GL(2) then we 
have 

rfj ( 7 a) = |£> A / ( 7 a) | 1/2 
,T1(F)\GL(2,F) 

l G L f ^ C C - M C j C T p ^ - U C , / , ! ) dC 

as wished. 

5.2. Explicit statement of the fundamental lemma. — We now give an ex­
plicit statement of the fundamental lemma for the pair (M, M'). Let 7a = (A, i , c)a G 
M(F) be semisimple. Under the norm maps we have 

N(7 a) = 
/c det A 

cA 

c 

G M'(F) c GSp(4,F), 

and to 

N(7 a) = 
'c det A 

C ; 
cA G M'(F) C (GL(2,F) x GL(2,F))'. 

By Lemma 5.1 the fundamental lemma for the pair (M,Mf) is the assertion that 
for all A G GL(2,F) and c G Fx for which (A,I,c)a G M is strongly G°-regular we 
have 

r?f((A, i , c)a) = r^ , p ( 4 ) (d iag(cdet A, cA, c)) + M' 
(GL(2)xGL(2)V 

(diagfcdet A, c),cA). 

ASTÉRISQUE 302 



THE TWISTED WEIGHTED FUNDAMENTAL LEMMA 331 

From Lemma 5.2 we know that the twisted integral vanishes if c 0 UF- It is also 
clear from Lemma 4.16 that the integrals on GSp(4) and (GL(2) x GL(2))' vanish if 
c ^ Up. Thus the fundamental lemma is proven in this case. Moreover, if c G Up then 
all integrals that appear in the statement of the fundamental lemma are independent 
of c and so we may assume that c = 1. Furthermore, we may as well assume that 
A G K\ = GL(2,7£). Having fixed A we let Xi denote the centralizer of A in GL(2). 
Then we can write 

GL(2,F) = TJ Ti(F)zmKi 
rn>0 

for an explicit set of representatives zm to be given below. 
Let P\ (resp. P2) denote the upper triangular parabolics in GSp(4) (resp. (GL(2) x 

GL(2))') of which M' is a Levi component. By abuse of notation we write 

aP(B)=ap((B 7),l)/detB \ 
aPl(B) = aPl f B 
aPl(B) = aPl f B 

for B G GL(2,F). 
Therefore the fundamental lemma we wish to prove is given by the following. 

Proposition 5.3. — Let A G GL(2, R) be such that 7a = (A, 7, l)a is strongly G°-
regular. Assume that we have z^Azm G GL(2,i?) if and only if m ^ N(A). Then 

N(A) 

\DM(ia)\^2 ^o\(K1nz^1Tl{F)zni\K1)cip{z^1Azrn) 
m=0 

is equal to 

N(A) 
ÌDM'iNija))}1'2 

m=0 

ml(K1 fi 2:-1Xi(X)2;m\7C"1) (aPl (z'1 Azm) + aP2{Z^1 Azm)) . 

We label the identity of this Proposition by FL(A). We now proceed to prove 
FL(A). We split the proof into two cases, in the first we assume that A lies in a split 
torus, while in the second we assume that A lies in an elliptic torus. 

5.3. Computation of crp, o~pl and o~p2. — In this section we give the expressions 
for crp, <jp1 and crp2. We set vol(ap/Z(Ap)) equal to l/\nq and normalize the other 
volumes as in Section 4.4. 
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5.3.1. Calculation of ap. — We have 

Np = 

'1 xi x 2

N 

1 £3 X4 
1 

1 

1 

If we identify Np(F) with F4 using xi , . . . ,X4 as our coordinates then for x = 
(A J, l) <E M°(F) with 

A = 
a 6 

, c d 

the map n H-» X n xa(n) is given by 

Xi 
X2 

X3 
\X4 

•> det A - 1 

0 deti-d 0 60 deti-d det A 
0 d e t i - d 0 6 
c 0 det A - a 0 

det A c 0 —a 

Xi 

X2 

X3 

,X4 

Let 5 denote this matrix then we have 

d e t £ = - det A~z(det A - l)(det A - tr A + 1); 

and after a change of variables we have, for A G GL(2, R), o~p{A) equal to the product 
of I (det A - l)(det A - tr A + 1)| with 

' pA 
chaxR*(B (x i ,x 2 , x 3 , x 4 ) ) logmax{ l , |xi|, |x 2 | , |x 3 | , |x 4 | , |x ix 4 - x2x3\}. 

5.3.2. Calculation of ap1. — We have 

N a = 

1 x r s 
1 r 

1 - x 
1 

We identify Np1 with F 3 using x, r and 5 as our coordinates. For 

V = 

'det A 
A 

1 

with 

A = 
a 

c dj 

the map n ^ y 1n 1yn is given by 

6 = 
X 

r 
s/ 

det A " 1 

(det A — ajx — cr 
-bx + (det A - d)r 

(det A — l)s + bx2 + (d — a)xr - cr 2 
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Therefore after a change of variables we have 

aPl(A) = | (det A - l)(det A - tr A + 1)| / charts (f(x, r, s)) logmaxjl, |r|, |s|}.  
JF3 

5.3.3. Calculation of ap2. — In this case we have 

ap2(A) = | det A - 1| / T\(F)U(F)Ki logmax{l, |x|}. 

5.4. Proof of the fundamental lemma for split tori. — In this section we 
prove Proposition 5.3 when A lies in a split torus. After conjugation we may assume 
that A lies in the diagonal torus Xi. We begin by giving a double coset decomposition 
for GL(2,F). 

Lemma 5.4. — For each m ^ 0 let xm G F be an element of valuation of —m. Then 
we have 

GL(2,F)= T J t M f W 1 X ™ j A V 

Proof. — By the Iwasawa decomposition we have GL(2,,F) = T\(F)U(F)Ki, where 
U denotes the subgroup of GL(2) of upper triangular unipotent matrices. But for 
u G Up and x G F we have 

e 7 ) - ( " o e 0 r o 
To check that the union of double cosets is disjoint we note that 

^1 -Xm^ ^ ^1 xn^j = axn - bxm^ 

and for this matrix to lie in K\ we would need a, b G UF and m = n. 

We now fix a sequence of elements (xm) as in Lemma 5.4 and we set 

Zm={ i) 
Note that we have 

_! fa \ _ fa {a-d)xm\ 
Zm \ d)Zrn~\ d ) 

and therefore. 

Zm TJtMfW1TJtMfW1 1, 
(q-l)qm-\ 

if rn — 0; 
if m > 0. 

We now set 
als a 

i 
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then in the notation of Proposition 5.3 we have N(A) — v(a — d). Using the action 
of the Weyl group in GL(2) we can assume that we have \a — 1| ^ \d — 1|. We recall 
that we are assuming that F has odd residual characteristic, so we can split the proof 
of Proposition 5.3 into the following three cases 

Case 1: \ad - 1| = \a - d\ = \d - 1| ^ \a - 1| 
Case 2: \a - 1| = \d - 1| = \ad - 1| > \a - d\ 
Case 3: \a - 1| = \d - 1| - \a - d\ ^ \ad - 1|. 

Our strategy will be to show that each case follows from proving the identity FL(A) 
when \ad — 1| = \a — d\ = \d — 1| = \a — 1|. We then prove that the identity FL(A) 
holds in this case. In order to guarantee that, for any M ^ 0, there exists a, d G Up 
such that 

\ad - 1| = \a - d\ = \d - 1| = \a - 1| = q~M 
we need to make the additional assumption that q > 3. See Remark 5.9 below for the 
case that q = 3. 

We will need to compute crp, crp1 and crp2 at elements of the form 

(a b\ 

with a, d G f/p and 0 < \a — eZ| ̂  |6| ^ 1. For crp the matrix B of Section 5.3.1 equals 
/-d 0 6 ad^ 

0 d(a - 1) 0 6 
0 0 a ( d - l ) 0 

\a<i 0 0 —ay 
After suitable row operations, invertible over R, we can put B in the form 

'0 0 b ad-V 
0 (a - l)d 0 6 
0 0 d - 1 0 

Kd 0 0 - 1 , 
Since the function is invariant under right multiplication by K we may assume 
that x\ — d~1x<±. After multiplying x2 by d~l we get that crp (A) is given by 
\a — l\\d — l\\ad — 1| times the integral of 

logmaxjl, \x2\, \x3\, |x4|, \x\ - x^W 
over the region in F3 given by 

. \x3\ Id-ll"1 
• (ad — l)x4 + bxs G R 
• (a — l)x2 + bx^ G R. 
We have crpx at the element 0 X3 

\detA  
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equal to \a — l||d — l\\ad — 1| times the integral of 

logmaxjl, |r| |r| |r| |r| |r|, 

over the region in F3 given by 
• \x\ ^ \d-l\-1 
. -bx + d(a - l)r G R 
• (ad — l)s + x(bx — (a — d)r) G R. 

5.4-1 • Reduction in case 1. — We assume that we have TV ̂  M and 

q'M = \ad - 1| = \a - d\ = \d - 1| > \a - 1| = q~N. 

We let L(M,TV) (resp. R(M,N)) denote the left (resp. right) hand side of the 
identity FL(A) in this case. We will see that L ( M , TV) and R(M, TV) are well defined. 
In this section we prove the following Proposition. 

Proposition 5.5. — For all TV ^ M we have 

qL{M,N + l)-L(M,N) = 3o-M-3 + (3M + TV + l ) (a- l ) = qR(M,N + l)-R{M,N). 

Proof. — We begin by considering the twisted integrals ap(z^l1 Azm). We need to 
integrate 

logmax{l, |x2|, \x3\, \x4\, \x\ - x2x3\} 
over the region given bv 

. \x3\ ̂  \d-l\~1 
• bx3 + (ad — l)x4 £ R 
. (a — l)x2 + bx4 G R 

where be R with \a - d\ ^ \b\ < 1. 

We first consider when < \x3\ ^ \d — . Then we have 

X4 = —(ad — l)~1bx3ui 

with Ul G U~v(bx3) and \x4\ = \ad- l\-x\bxs\ > Therefore, 

x2 = —(a — \)~xbx4u2 = (a — l)~1(ad — l)~1b2x3u\u2 

with u2 G U~v{bX4) and \x2\ = \a- l\~l\ad- l l " 1^2^ . Therefore, 

x\ — x2x3 = b2x\ui(ad — l)~2(a — l)_1((a — l)m — (ad — l)u2) 

Since 

\(a - l)Ul - (ad - l)u2\ = \d- 1| 
for all such u\ and u2 we have 

\x\ - x2x3\ = I (ad - l)-x(a - l)-1!!^!2. 

The contribution to the integral is 

\a _ i|-i|ad _ i |-i f log I(fld _ i)-i(a - l ) " 1 ^ ! 2 . 
7|6|-i<|a;3|^|d-l|-i 
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We are now left with the region given by 
. \x3\ < \b\-~1 
. \x4\ ^ \ad- I]'1 
• (a — l)x2 + bx4 G R. 

We now consider the case that \x4\ > l^l"1. Then we have 

x2 — (a — l)~1bx4u 

with u e U~v(bX4) and \x2\ = \a- l^^bx^. Now 
\xl - X2X3\ = |X2||X4X 1̂ - X3|, 

and 
\x\x^\ = |a-l||6|-1|x4| < l&l-1. 

Therefore making the change of variables xs i—> £3 — x\x^X gives the contribution to 
the integral as 

qk<\x3 
'\x3K\b\-1 \b\-l<\x4\^\ad-l\~^ 

logmax{|a — 1 | 1 1 1 , \a — 1| 1 |6iC411} 

which we can write as the sum of 
la-ir1^-1 

|6|-1<|x4|̂ |ad-l|-1 
log |a- l | 1\bx4\1 

and 
l-l\-\\ad-l\-1-\b\-1) \ 

|6|-1<|x4 
l\xz\. 

rinally we are left with the remaining contribution, which is 

|6|-1<|x4| J<ihi-i J qk<\x3\^qM 
.gmaxd, b2|, fel, \x4\, \x2A - X9X3I). 

We note that the integrals above depend only on M, TV and \b\. We now compute 
the difference qL(M, N + 1) - L(M, N). For b with 161 = q~k where 0 ^ k ^ M we 
set 

ap(M,N,k) = dp 
g-M+l 

We need to compute qap(M, N + 1, /c) — ap(M, TV, fc). From the first contribution to 
the integral the difference is given by 

g-M+l 
qk<\x3\^qM 

(M + TV + 1 - 2k + 2 log 1x31) 

minus 
q -M 

gfc<|x3|̂ <7M 
(M + 7V-2/c + 21og|x3|). 

I he diherence between the second contributions is given by 
g-M+l k + 1 

qk<\x3\ 
(7V + l - /e + logb4|) + Q qk<\x3\^qM 

g-M+l 
log |x3| 
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minus 

q~2M+k J (N - k + log 1*41) + q-2M(qM - qk) f log |x3|. 
Jqk<\xA\^qM Jl<\x3\^qk 

And the difference between the third contributions is 

q-2M~N I I I logmax{l, |x2|, \x\ - x2x3\}. 
J\x3\^qk J\x4\^qk J\x2\=qN + 1 

We note that \x2~1x2\ ^ q2k~N~1 < qk and so making the change of variables x3 
%3 + x2~1x2 in this last integral gives 

q-2M~N f f f N + 1 + logmax{l, \x3\}. 
J\x3\<iqk J\xA\^qk J\x2\=qN + 1 

Using Lemma 9.1 we get 

qaP(M, TV + 1, k) - ap(M, TV, k) = ( 3 M + TV - 2k + l)(q - 1) - 1 + q~M'. 

Now we have qL(M, TV + 1) - L(M, TV) equal to q~M times 

M-l 
(qaP(M, TV+1, M)-aP(M, TV, M)) + (a-l) ] T (q<rP{M, TV-f 1, fc)-<7P(M, TV, k))qM~k~^ 

k=0 
Using the fact that 

(l-ç-1 
m 

i=G 
iql = rnq™ -

qm _ 1 

4 - 1 

for all m ^ - 1 we get 

qL(M, TV + 1) - L(M, TV) = 3a~M + ( 3 M + TV + l)(g - 1) - 3. 

We now consider the right hand side of the identity FL(A). First we consider the 
relevant integrals on GSp(4). Here we need to integrate 

logmaxjl, \x\, |r|, \s\} 

over the region in F3 given by 

. \x\ < \d-l\~1 

. -bx + d(a - l)r G R 
> (ad — 1)5 + x(bx — (a — d)r) G i?. 

First we suppose that |ò|_1 < \x\. Then r = d~x(a - l)~1bxu with u G UFv{bx). We 
have 

bx — (a — d)r = bx — (a — d)d 1 fa — 1) ^aru òx(a - l ^ d ^ f d f a - 1) - (a - a » 

and we note that 
\d(a- 1) - ( a - a > | = \d- 1| 
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for all u G UpV<Kbx\ Hence we must have |s| = \a — 1| x\bx2\. Thus the contribution 
to the integral is 

l a - i r V d - i r 1 / log |a - lp1!^2! . 
^Ibl-^lxl^ld-ll"1 

We are now left with the region 
. M < |6|-i 
. I r K l a - l l " 1 
• (ad — l)s + x(bx — (a — d)r) G R 

to integrate over. Making the change of variables s H—• s — (ad — l)~1x(bx — (a — d)r) 
we see that the contribution to the integral is 
f f f logmax{l>N>|r|>|S-(ad-l)-x(te-(a-d)r) |} . 

Multiplying x, r and s by suitable units this integral equals 

[ f I logmaxjl, \x\, |r|, \s - n~Mx(bx - 7rMr)|}. 

The integral on (GL(2) x GL(2))/ is given by 

T-l-cTlM-l J Irl^la-ll-1 J H^lad-ll"1 
logmaxjl, \x\, |r|, |s — (ad — 1) — (a — d)r)\}. 

Multiplying x. r and s by suitable units this integral equals 

rKla-ll-1 . rKla-ll-1 . jKlarf-ll-1 
iogmaxjl, \x\, |r|, |s — n Mx(bx — 7rMr)|}. 

The integral on (GL(2) x GL(2))/ is given by 

ap2(zrn1Azrn) = \ad - 1| / \og\x\. 
^Klxl^lad-ll-1 

We note that the integrals above depend only on M, TV and \b\. For \b\ = q k, 
0 ^ k ^ M, we define aPl (M, TV, /c) and aP2 (M, TV, A;) as we did for aP(M, TV, k). We 
now compute 

(qaPl (M, TV + 1, k) - aPl (M, TV, k)) + (acrP2 (M, TV + 1, fc) - crP2 (M, TV, A;)). 
First we compute qaPl (M, TV + 1, k) — aPl (M, TV, k). The first part of the integral 

contributes 
q-M+l 

'qk<\x\^q* 
TV — /c + 1 + 2 log \x\ 

minus 
q-M 

qk<\x\^qM 
TV - k + 2log\x\. 

While the second part of the integral contributes 
q-N-2M 

)\x\^qk \r\=qN + 1 \s\^qM 
logmaxjl, \x\\r\, \s — n Mx(bx — IT r)|}, 

which equals 
-N-2M 

'\xKqf \r\=qN + 1 \s\^qM 
logmax{|r|, \s — xr\}, 

which equals 
-N-M 

\x\^qk \r\ = qN + 
TV + 1 + logmaxjl, Id), 

since k < M ^ TV. 
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Putting this together and using Lemma 9.1 gives 
(qaPl (M, N + l,k)-aPl (M, TV, k)) + (qaP2 (M, TV + 1, k) - aP2 (M, TV, k)) 

equal to 
(3M + TV - k + 1)(<? - 1) - 2 + 2g - M . 

And we get gi?(M, TV + 1) - i?(M, TV) equal to 

3q~M - 3 + (3M + TV + l)(q - 1) 

as required. • 

5.4-2. Reduction in case 2. — We assume that TV ^ M and 
q~M = \a- 1| = \d- 1| = \ad- 1| ^ |a - d| = g"*. 

We let L(M, TV) (resp. R(M,N)) denote the left (resp. right) hand side of the 
identity FL{A) in this case. We will see that L(M, TV) and R(M, TV) are well defined. 
In this section we prove the following Proposition. 

Proposition 5.6. — For all TV > M we have 
L(M, TV + 1) — L(M, TV) = 0 = R(M, TV + 1) — fl(M, TV). 

Proof. — We begin by analyzing the twisted integrals aP. For b with |6| = q~k we 
write 

<xP(M,iV,/c) = a P ( a ^ 

and we define, for 0 ̂  k ^ TV, 
e(M, TV, fc) = crP(M, TV + 1, /c) — crP(M, TV, /c). 

Now we have 
AT 

qN^L(M, N + l)= (JP{M, TV + 1, AT + 1) + (q - 1) ̂  <jP(M, W + 1, fc)^-* 
fc=0 

= ap(M, TV + 1, TV + 1) + (g — 1) ̂ 2 vp(M, TV, k)qN~k + ( g _ l) ^ e(M, TV, fc)g"~* 

AT 
= a P (M, N + 1, N + 1) - aP(M, N, N) + qN+lL(M, N) + (q — 1) ̂  e(M, TV, k)qN~k. 

K=0 

Therefore, ç ^ 1 (L(M, TV + 1) - L(M, TV)) is equal to 
N 

ap(M, TV + 1, TV + 1) - a P (M, TV, N) + (q-l)J2 e(M, TV, k)qN~k. 
K=0 

Thus we will be done with the left hand side if we can show that <7p(M, TV + 1, TV + 1) = 
crp(M, JV, TV) and e(M, TV, k) = 0 for all k. 
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Now recall that <7p(M, TV, k) is given by q 3M times the integral of 
logmaxjl, \x2\, \x3\, \x4\, \x\ - x2x3} 

over the region given by 

• bx3 + (ad — l)x4 G R 
• (a — 1)̂ 2 + bx4 G 
We now consider the integral over this region when \b\ = q~k. First suppose that 

qk <\xs\^qM. Then we have 

bx3 + (ad 

x4 — —(ad — 1) bx3ui 
with m G UpV{bX3) and 

^2 = —(a — l)~1bx4u2 = (a — l)~1(ad — l)~1b2x3u2ui 
with u2 G U~v{bxA\ Therefore, 

x\ - x2x3 = (ad - \)~2b2x\u\ - (a - l)~L(ad - l)~1b2x\uiu2 
= (ad - l)~2(a - l)-1b2x2]u1((a - l)Ul - (ad - l)u2). 

We have 
I (a - l > i - (ad - l)u2\ = \d-l\ 

for all ui and u2 and hence in the range qk < \x3\ ̂  qM we have 
logmaxjl, \x21, \x3\, \x4\, \x\ - x2x3} = log \x\ - x2x3\ = 2M - 2k + 2log |x3|. 

We are now left to integrate over the region 
. |x3| < mm{qk,qM} 
• \x&\ < qM 
m (a — l)x2 + bx4 G 

Next we suppose that qk < \x4\ ̂  qM. Then we have 
x2 = —(a — l)~1bx4u 

with u G U^v<ybX4\ Hence, 
x\ — x2x3 = x\ + (a — X)~xbx4ux3 = (a — l)~lbx4u(u~l (a — l)b~lx4 + x3). 

Now \u~x(a — l)b~1x4\ ^ q-M+kqM _ /̂c jrence making the change of variables 

x3 1—> x3 — u"1(a — l)b~1x4 
gives the integral over this region as 

qM / q-M+kqM / q-M+kqM (M - fc + log max{|x4\,\x3x4 |}) . 

And finally we are left with the integral 

/ q-M+kqM / q-M+kqM / q-M+kqM logmaxjl, \x2\, \x3\, \x4\, \x24 - x2x3\}. 
J\x3\^min{qk,qM} J | x4 | ̂ min{gfc ,qM } J\x2\^qM 
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It's clear from above that aP(M, TV, k) does not depend on TV and hence we have 
e(M, TV, k) — 0 for all k. Moreover, we see that 

<7P(M, TV, TV) = q~3M [ logmaxjl, |x2|, \x3\, \x4\, \x\ - x2x3\} 
J\x2l\x3\M^qM 

and hence we have crP(M, TV + 1, TV + 1) = crP(M, TV, TV). 
Now we turn to the right hand side of the identity FL{A). Let jRi(M, TV) 

(resp. R2(M,N)) denote the contribution to R(M,N) from the sum over the aPl 
(resp. crp2). 

First we consider the integral on (GL(2) x GL(2))'. We have for 0 ^ m ^ TV 

o'P2{z^l1Azrn) = qM / logmaxjl, \x\} 
J\x\^qM 

and it's clear from this that we have R2(M, TV) = R2(M, TV + 1). 
Now we consider the integral on GSp(4). For 161 = q~k. 0 < k < TV, we set 

aPl(M,N,k)=aPl (a bY 

and define 

ei(M,TV,A:) = aPl (M, TV + 1, k) - aPl (M, TV, k). 

As above we have qN+l (R(M, TV+1) - R(M, TV)) equal to 
N 

<rPl (M, TV + 1, TV + 1) — aPl (M, TV, TV) + (9 - 1) ^ ex (M, TV, k)qN~k. 
k=0 

We now show that this expression is equal to zero. 
Having fixed M we set, for m G Z, 

I(m) = q-3M / / |r|logmax{l,|r|,|s-7Tmr2|}. 
J\r\<qM J\s\<qM 

We note that I(m) is constant for m ^ 2M. We will express aPl (M, TV + 1, TV + 1) -
(jp1 (M, TV, TV) and e1(M,N,k)qN"k in terms of J(ra). 

We begin by computing ei(M, TV, Recall that aPl(M, TV, &) is equal to g-3Â  
times the integral of 

logmaxjl, |r|, |s|} 

over the region 

• \x\ < aM 
• —òx + d(a — l)r G 
• (ad — 1)5 + x(òx — (a — d)r) G i?. 

First we suppose that qk < \x\ ^ qM. Then we have 

r = d-1(a — l)~1bxu 
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with u G UFv(^bx\ Therefore, 
x(bx -(a- d)r) = bx2d~1(a - l)~1(d(a - 1) - (a - d)u) 

and we have 
\d{a-l) - (a-d)u\ = \d - 1| 

for all such u. Hence over this region the integrand is equal to log \ad — l|_1|6x2| and 
therefore the contribution to ei(M, TV, k) is zero. 

We are now left with the region 
. \x\ ^ mm{qk,qM} 
. \r\ ^ qM 
• (ad — l)s + x(bx — (a — d)r) G R. 

So after scaling our variables by suitable units we can take this region to be 
• \x\ ^ min{gfc, qM} 
• \r\ < qM 
. 7TMS + x(lTkX ~7TNr) G R. 

Making the change of variables x i—> x + ^nN~kr and r \—> 2r, which doesn't change 
the integrand, this region becomes 

• \x\ ^ min{qk,qM} 
. \r\ ^ qM 
• irMS + 7rk(x + 7rN-kr)(x-7rN-kr) G R. 

Thus we see that if \x\ > l ^ " ^ then we have 
\7Tk(x + TT^-^r)^ - 7rN~kr)\ = \7TkX2\ = \lTk (x + ^N + 1~kr){x - 7TN + 1-kr)\ 

and the contribution to ei(M, TV, /c) is zero. Therefore ei(M, TV,/c) is equal to the 
difference between the integral of 

6T3M logmaxll, |r|, |s|} 
over the regions 

. \r\ <: qM 

. \x\ < qk-N\r\ 

. 7TMS + 7Tfc(x + 7TN+1-kr)(x - 7rN^-kr) G R, 
and 

• |r| < qM 
. \x\ ^ qk-N\r\ 
• 7TMs + 7Tfc(x + TT^rXx - Tr^-^r) G iî. 
Over the first region the integral is equal the sum of 

q-3Mqk-N(l-q-1)I(2N - fc), 
the contribution when = #fc_iVM, 

q-3Mq*-N-2l(2N ~ k + 2) 
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the contribution when \x\ ^ qk N 2|r|, and 

q-3Mqk-N-l(l-3q-1)I(2N-k + 2)+q-:iMqk-N-1 
OD 

a = 1 
2q-a(l-q-i)I(2N-k + 2 + a) 

the contribution when \x\ = q* 1 l\r\. 
Over the second region the integral is equal to the sum of 

q-3Mqk-N-1I(2N-k) 

the contribution when \x\ ^ q |r|, and 

q-3Mqk-N^ _ 39-1)/(2JV _ k) + q-3Mqk~* 
OD 

a=l 
2g-a(l-a-i)/(27V-/c + a) 

the contribution when \x\ = q \r\. 
Hence we have ei(M, TV, k)qN~k equal to gf_3M times 

q~1I(2N -h)+ q~x{l - 2q~1)I(2N - k + 2) 

+ T1 oo 

a = l 
2g"a(l - g ) (I(2N - k + 2 + a) - /(2TV - fc + a)) , 

which equals q 3M times the sum of 

q~1I(2N - k) - q~1I(2N - k + 2) 

and 

2tf-1(l-tf-1 
oo 

a=0 
q-aI(2N — k + 2 + a) — 2q~1(l - q'1 

oo 

a=0 
q-aI(2N - fc + l + a). 

We now sum from A; = 0 to TV. By telescoping we have 
N 

k=0 
q-1I(2N -k)- q'1I(2N — k + 2) q~xI{N) + q~lI{N + 1) - 2q~1I(2M). 

While we have 
N oo 

k=0 a=0 
q-aI(2N - k + 2 + a) 

N oo 

fc=0 a=0 
q~aI(2N - k + 1 + a) 

equal to 
7V+1 oo 

k=l a=0 
<ra/(TV +/c + 1 + a) 

TV oo 

fc=0 a=0 
a-a/(TV + /c + l + a), 

which equals 
oo 

a=0 
a-a/(2TV + 2 + a) 

oo 

a=0 
a-"/(TV + l + a), 
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which equals 
1 °° 

T—-ÏI(2M) - Y. «~aj(N + 1 + 
^ a=0 

using the fact that I (m) is constant for m ^ 2M. Putting this altogether we get 
N 

q3M(q-l)Y,e№N,k)qN-k N - k 
k=0 

equal to 
00 

(1 - q-^IiN) + (1 - q'^IiN + 1) - 2(1 - q~1)2 ] T g-a/(TV + 1 + a). 
Next we compute aPl (M, 7V + l ,7V+l)-crPl (M, TV, TV) in terms of J(ra). We have 

aPl (M, TV, TV) equal to c/_3M times the integral of 
logmaxjl, |x|, |r|,s )} 

over the region 
. \x\M ^qM 
. 7TMS + 7TNX(X - r) G R, 

which becomes, after the change of variables r 1—> x — r that doesn't affect the inte­
grand, 

• \x\,\r\ < qM 
. 7rMs + 7TNxr G R. 

Since the region and integrand are symmetric in x and r we can compute this integral 
as twice the integral when \x\ ^ \r\ minus the integral when \x\ = \r\. The contribution 
from when \x\ ^ \r\ is 

00 „ 
V / q-M+kqM (1 - ç-^IttVI logmax{l, \r\, \s - tt^+V2!}, 

which equals 
00 

a=0 

While the contribution when \x\ — \r\ is equal to (1 — g_1)/(TV). Hence we have 
aPl (M, TV + 1, TV + 1) - aPl (M, TV, TV) 

equal to q~3M times 
00 

2 Y (^a(X - Q'1)1^ + 1 + a)) - (1 - q'^HN + 1) 
a=0 

oo 
a=0 * / - » ( ! - 9 - 1 ) J ( ^ +a). 

While the contribution when \x\ — \r\ is equal to (1 — q 1)I(N). Hence we have 
aPl (M, TV + 1, N + 1) - aPl (M, TV, TV) 

equal to q 3 M times 
oo 

a=0 
[q-a(l - q~1)I(N + 1 + a)) - (1 - q~1)I(N + 1) 

minus 
oo 

a=0 

{q-a(l - q~1)I(N + a)) - (1 - g" 1 ) /^ ) . 
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But we have 
oo oo 

2 J2 <?"°(1 - q'1)!^ + 1 + a) -2 Yl q~a(x - ^"1)/(iV + a) 
a=0 a=0 

equal to 
oo 

2(1 - g"1)2 J2 (<l~ai(N + 1 + a)) - 2(1 - q"1) /^ ) , 
a=0 

and hence we have q3M(aPl (M, TV + l,TV + l)-crPl (M, TV, TV)) equal to 
oo 

2(1 - g"1)2 q~aI(N + 1 + a) - (1 - q'^^N + 1) - (1 - q"1) /^ ) . 
a=0 

Thus i*i(M, TV + 1) - i^i(M, TV) - 0 as required. 
Reduction in case 3. — We assume that TV ^ M and 

q-M = \a - 1| = \d - 1| = |a - d\ ^ \ad - 1| = q ^ . 
We let L(M,TV) (resp. R(M,N)) denote the left (resp. right) hand side of the 

identity FL(A) in this case. We will see that L(M, TV) and i?(M, TV) are well defined. 
In this section we prove the following Proposition. 

Proposition 5.7. — For all N ^ M we have 
qL(M,N + l)-L(M, TV) = 2q-M-2 + 2(M + TV + l)(q-l) = qR(M, N + 1) — R(M, TV). 

Proof. — We begin by considering the twisted integrals aP(z^n1Azrn). Again we need 
to integrate 

logmax{l, |a;21, |#3|, |#4|, |x2 - x2x3|} 
over the region in F3 given by 

. \x3\ ^ 
• bx3 + (ad — 1)*4 G i2 
• (a — l)x2 + bx4 G i?. 

We first consider the contribution when < |x3|. Then we have 

x4 = —(ad — 1)~ bx3u\ 

with u\ G Upv("bX3\ Therefore \x4\ = \ad — l|_1|foc3| > and hence 

X2 = —(a — 62:4̂ 2 = (a — l)~1(ad — l)~1b2x3uiu2 

with u2 G UpV{bXA). Thus, 
*2 — *2x3 = (ad — l)_2(a — l)~1b2x\ui(ui(a — 1) — (ad — l)u2). 

Since 
\ui(a - 1) - (ad - l)u2\ = \d - 1| 
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for ail u\ and u2 we have 

\x4 — x2x3\ = |(ad — l)~2b2x3\. 

So the contribution when \b\~x < \x3\ is 

\ad - l p ^ a - lp1 / 6|-1<|x4|^|ad-l|-1 log |(ad - iy2b2xj\. 

We are now left to integrate over 
. \x3\ < l^r1 
• \x4\ < I ad -
• (a — l)x2 + bx4 G R. 

Suppose that I ou I > Then we have 

x2 = —(a — 1) 1bx4u 

with u G UpV<<bxA\ and 

x2 — x2x3 = x2jr (a — l)~1bx4ux3 = x4{x4 + (a — l)~1bux3). 

So after multiplying x3 by a suitable unit the contribution to the integral is 

l a - l T 1 / f logmax{|7r-M6x4Hx4(x4+ 7r-M6x3)|}. 
Jlxal^lbl-1 J|6|-1<|x4|^|ad-l|-1 

Finally, when \x4\ ̂  the contribution is 

/ / / logmaxjl, \x2\, |x3|, \x4\, \x\ - x2x3\}. 
J\x3\<:\b\-^ J\xA\^\b\-i J\x*\^\a-l\-i 

We define aP(M, iV, /c) as before and now compute q<jp(N + 1, M, /c) — crp (TV, M, A:). 
From the first contribution to the integral the difference is given by 

q~M+1 f 6|-1<|x4| (27V-2/c + 2 + 21og|x3|) 

minus 
q~M f {2N -2k + 2log\x3\). 

Jqk<\x3\^qM 
The difference between the second contributions is 

2q~M~N+k f log IX4I, 
J\xA\=qN + ̂  

and the difference between the third contributions is zero. Using Lemma 9.1 we get 

qaP(M, N + 1, k) - crP(M, TV, k) = 2(M + N - k + l)(o - 1), 

and we compute 

çL(M, TV + 1) - L(M, TV) = 2q~M - 2 + 2(M + TV + l)(a - 1). 
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We now turn our attention to the right hand side of the identity FL(A). First we 
look at computing the integrals <JP1 (z^1 AZM). We are integrating the function 

logmaxil, 1*1, Irl, \s\\ 

over the region 
. |*| ^ | d -
. ~bx + d(a -l)r e R 
• (ad — l)s + x(bx — (a — d)r) G R. 

If \b\~x < |*| then we have 
r = d~1(a — l)~1bxu 

with u G U~v{bx). Then 

bx — (a — d)r = bxd~l(a — l)~l(d(a — 1) — (a — d)u), 

and we have 
| d ( a - 1) - (a-d)u\ = \d - 1| 

for all such w. Hence we have 

|s| - \ad-l\-l\bx2\. 

Therefore, the contribution to the integral is 

\ad-lTV-ll"1 / l og | ad- lT1^*2! . 
ilbl-^lxl^ld-ll-1 

The region that's left is given by 

. I r K l a - l l " 1 
• (ad — l)s + x(bx — (a — d)r) G R. 

Making the change of variables s t—* s — (ad — 1)_1*(6* — (a — d)r) gives the remaining 
integral as 

I-lTV-ll"1 l-lTV-ll"1 /-lTV-ll"1 logmaxjl, |*|, |r|, | s - ( a d - 1 )~1*(6*- ( a - d ) r ) | } . 

And making the change of variables r ^ r + (a — d)~xbx gives this integral as 

/-lTV-ll"1 / /-lTV-ll"1 /-lTV-ll"1 / / logmaxjl, |*|, \r+(a—d)~1bx\, \s—(ad— l)_1(a—d)*r|}. 

We see that if \xr\ > \a — d\~l then the integrand equals /-lTV-ll"1 / /-lTV-ll"1 /-lTV-ll"1 /-lTV-ll"1  

log |ad —[-lTV-ll"1-lTV-ll— d||*r|, 

and so the contribution to the integral from this region is 

\ad-l\-1 (-lTV-ll"1[-lTV-ll"1-lTV-ll[-lTV-ll"1-lTV-ll"1 log | a d - i r V - d l M . 

. IrKla-ll"1 
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Now we look at the contribution when \xr\ ^ \a — d\ 1. This is given, after suitable 
change of variables in x and s, by 

f f [ logmax{l,|x|,|r + 7rM6x|,|s|}. 
Jlxl^lbl-1 ^Irl^la-ll-Mxrl^la-ll-1 J \ \ad-11 -1 

We define aPl(M, N,k) as before and we now compute qap1(M,N + — 
<jp1 (M, TV, k). The difference between the first contributions to the integrals gives 

q'M+1 (q-M-\q-l)2 f(A + 1 - k + 2 log |x|) - cTM / q-M-\q-l)2 f(TV - k + 2 log |x|) . 

The difference between the second contributions is 

q-™{q- l )q-M-\q- l )2 f (N-M + log\y\) 
JqM <\y\^qM + k q-M-\q-l)2 fJq~M \y\^\x\^qk 

= q-M-\q-l)2 f q-M-\q-l)2 f{N + \og\y\){k + 1 -log\y\) 
Jl<\y\^qk 

plus 

q~2M+1 f f N"1 =q~M{q-l) f fc + l - log |y | . 
JqM <\y\^qM + k Jq~M\yK\x\^qk J K\y\^qk 

And the difference between the third contributions is 

q-N~2M f f f log 14 
J\x\^qk J\r\^qM ,\xr\^qM J\s\=qN + 1 

Putting these altogether gives 

qaPl (M, A + 1, /c) - aPl (M, A", k) = (2M + TV - k + l)(q - 1) - 1 + q~M. 

We note that we have 

qap2 (M, Ar + 1, k) - ap2 (M, A, A;) = (A + l)(q - 1) 

and hence 

q(aPl (M, A + 1, k) + crp2 (M, A + 1, A;)) - (aPl (M, A + 1, A:) + ap2 (M, AT + 1, k)) 

equals 
(2M + 2A - k + 2)(g - 1) - 1 + q~M. 

We now compute 

qR(M, N+l)- R(M, TV) = 2q~M - 2 + 2(M + TV + l)(a - 1) 

as desired. 
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5.4-4- Proof when M = N. — We assume that we have 
\a- 1| = \d- 1| = \ad- 1| = \d- 1| = q~M. 

We let L(M) (resp. R(M)) denote the left (resp. right) hand side of the identity 
FL(A). We now prove the following Proposition which completes the proof of Propo­
sition 5.3 in the case that A lies in a split torus. 

Proposition 5.8. — For all M ^ 0 we have 
l-q-M 

L(M) = 4M - 4 q \ = R{M). 

Proof. — We begin by computing the left hand side of FL(A). For b with |6| = q~k 
we set 

ap(M,k) = aP a b d. 

As we have seen <jp(M, k) is equal to the sum of 

q-M I l o g ^ - ^ s l 2 ) , 
Jqk<\x3\^qM 

and 
Q~2M+k I \og(qM-k\x4\), 

Jqk<\xA\^qM 
and 

(q-M-q-2M+k) fJqk<\xA\^qM log|x3|, 
and 

q~3M / / logmax{l, \x2\,\x3\, \x4\, \x\ - x2x3\}. 
J\x3\^qk <J\xA\^qk J\x<2.\^qM 

Putting this altogether gives 
i n3k-3M _ n-3M 

aP(M, k) = (4M - 2k) + (-2 + q~M + q3/c"3M) - ± = ^ . 
q — 1 q6 — 1 

And we get 
L(M) = aP(M,M) + (q- 1) V crP(M, k)qM~k~l = 4M - 4 ^ . 

We now compute R(M). We define aPl(M,k) and crp2(M1k) similarly. First we 
note that 

l_q-M 
aP2(M: k) = M 

q J-

We now compute opx (M, k). As we have seen this is equal to the sum of 

q~M f log(qM-fc|*|2), 
Jqk<\x\<^qM 
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Now we consider the contribution when \x\ ^ ql. In this case we need to have that 
(ad — l)xr G R. When \x\ ^ 1 the contribution is 

F(l) + 
K\r\^qM 

F(\r\). 

Finally we are left with the region 1 < \x\ < ql and \r\ ^ qM\x\-1. Let's set \x\ = q1 
with 1 ̂  i ^ I. Then \r\ ^ qM~%. Note that for all such i we have q% < qM~l. If we 
split up the cases that \r\ < ql and ql < \r\ < qM then the contribution to the integral 
is 

i 

i=i 
vol(\x\=q') F(\r\) 

q^<\r\^qM-i 
F(\r\) 

Putting this altogether gives ap1 (M, k) + ap2 (M, k) equal to 

(4M - k) - 3 + 4(?-M -q-M-k+l 
q-1 

q-M-i _ g-3M 
g2 - 1 

-3 + 4(?-M -q-M-k+l 
(9 + i ) (93- i ) 

And we compute the right hand side of FL{A) to be 

4MqM 
п м - 1 

q - l 

as required. 

Remark 5.9. — We made the assumption that q > 3 in order to ensure that we could 
reduce to this M = N case. However, in the case that q > 3 the reductions made 
are still valid. The identity proven in the Proposition above is again valid, it's just 
that it doesn't actually represent a case of the fundamental lemma since there are no 
elements a and d satisfying the necessary conditions. Hence the fundamental lemma 
for the (2,2) Levi is proven in the case that q = 3 as well. 

5.5. Proof of the fundamental lemma for elliptic tori. — In this section we 
prove Proposition 5.3 in the case that A lies in an elliptic torus. In this case we may 
assume that 

A 'a b& 
b a G GL(2,fl) 

with v{D) = 0 or 1 and ED = F(y/D) a quadratic extension of F. We note that for 
7 = (A, J,1) € M°(F) we have 

\DM{ia)\1/2 :\bVD\ = \DM>(N(>ya))\1'2. 

We take the following from [Fli99, Section 1.1]. Let T\ denote the torus in GL(2) 
with 

M-i 
F(\r\) 

fx yD 
\V X . 

e GL(2,F) -.x + y^D e E* 
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and 

q-3M 
\x\^qk \r\^qM f\s\^qM 

logmax{l, \x\, |r|, |s — (ad — 1) 1x(bx — (ad — l)r)|}. 

We turn our attention to computing this latter integral. It's clear that if \x(bx — 
(ad—l)r)\ > 1 then the final term dominates. We begin by computing the contribution 
to the integral in this case. We need to compute the volume of x and r such that 
\x(bx — (a — d)r)\ — qrn for m > 0. 

Making the change of variables 

x I—> x -b ^(ad — 1)6 1r, r I—> 2r 

turns this into 
lòl'^òx - (a - d)r\\bx -(a- d)r\. 

We now make the change of variables u = bx — (ad — l)r and v = bx + (ad — l)r, 
which multiplies the integral by \b\~x\ad — . Given m with 0 ^ m < k the volume 
of u and v such that \uv\ = g_m is 

m 

n=0 
volfld = <Tn) volfld = g~m+n) = (m + l)(Tm(l - g"1)2. 

Thus the contribution to crp. (M, k) when |x(òx — (ad — l)r)\ > 1 is 

q k -M 
k-l 

m=0 
(m + 1)(M + k - m)q-rn(l - q~l). 

We are now left the range of integration 

\x\ ^ qk, \r\ < aM, x(òx - (ad - l)r) G Ä 
< aM, x(òx 

and after making of change of variables in s we can take our integrand to be 

logmaxjl, \x\, |r|, 

We set I = [k/2\, so that \bx2\ > 1 if and only if \x\ > ql. We define, for a ^ 0, 

k-l 
k-l <<M 

logmax{oa,|s|} = M<7M 
(ad - l)r) 
(ad - l)r) 

Let us first consider the case that q < \x\ ^ q . Then in order that x(bx — (ad — 
l)r) E R we need r = (ad — l)~1bxu with u G U^v<<bx \ The volume of such r equals 
I(ad — and the contribution to the integral is 

'ql<\x\^qk 
(ad-l)-1x~1\F(qM\bx\). 
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Similarly we reduce the proof of FL(A) when |det^l — 1| $C \b2D\ to the case that 
I det 4̂ - 1| = \b2D\; we then prove FL(A) in the case that \b2D\ ^ |det A - 1| < |6|. 

We again need to make the assumption that q > 3. However the same argument 
as in Remark 5.9 allows us to deduce the fundamental lemma in the case that q = 3 
as well. 

5.5.1. Proof when b is a unit. — We begin by proving Proposition 5.3 under the 
assumption that b G UF-

Proposition 5AO. — Let A be as above with b £Up- If we have \T(A)\ = 1 then both 
sides of FL(A) are equal to 

2|£>| 1 / 2 |det,4- 1| /2|£>|1/2|det,4- 1| logmax{l,|x|}. 

Otherwise we must have v(D) = 1 and a G Up, then if we set |det A — 1| = q~~k we 
have both sides of FL(A) equal to 

| D | i /2 (2k + 1 + q-k~i - 2 1 ~ g ^ ~ 1 ) . 

Proof. — We first compute the twisted integral. In this case after applying row 
operations invertible over R we get B in the form 

/0 0 a -I b \ 
0 0 (detA-l)T(A) 0 
6 0 det A - a 0 

\0 ò2 - det A(det A - a) -ab) 

Hence we have 
|x 3 | < I (det A - 1)T(A)| _ 1 

and we can take 6x4 = —(a — l)x 3, bx\ = —(det A — a)x 3 and 

b2x2 = (det A2 - a det A - a2 + a)x3. 

Then 
b2(x1x4 - x2x3) = - det Ab2T(A)x\ 

and hence \x\x4 — x2x3\ — |T(^4.)x2|. So we have 

aP(A) = |det A - 1||T(A)| / logmax{l, |x3|, |T(^l)x2|}. 
J|x3|^|det A-l|-1|T(A)|-i 

The integral on (GL(2) x GL(2))' is 

| d e t A - l | / logmaxjl, |x|}. 
7|̂ |̂ |det A—If-1 

In order to compute the integral on GSp(4) we need to integrate 

logmaxjl, |x|, |r|, \s\} 
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Let Zra — diag(l,7rm) then we have the double coset decomposition 
GL(2,F) 

Azjn 
T1(F)zmK1, 

where K, = GL(2, R). We have 

GL(2,F) 7r~m6 a j 
and so z^Azjn G K\ if and only if m ^ v(b). We have 

KiHZ^T^Zm f x 7rmyD\ 
v 7I~rnV X ) 

GL(2,F) 

So if we set vol(D,m) = vo\{K\ n zTO1Ti(iR),2:m\.K'i) then we have 

vol(D, m) 
1, if ED IF unramified and m = 0: 
fa + l)<7m , if ED IF unramified and m > 0; 

if ED IF ramified. 
We set T(A) = det .A — tr A + 1. Then we have ap(zm1Azrn) equal to the product 

of \detA- 1\\T(A)\ with 

F4 
char/?4(Bt(a:i,X2,X3,a:4))loemax{l, tail, ta2l, |x3|, ta4|, \X\XA - XOXQII, 

where B is the matrix 
-a 0 7rmbD detA^ 
0 det A - a 0 7rmbD 

7r-rnb 0 detA-a 0 
det A 7r-m6 0 -a , 

We have ap1(zrn1 Azm) equal to |det A — 1||T(̂ 4)| times the integral of 
logmaxjl, \x\, |r|, \s\} 

over the region in F3 given by 
(det A - a)x - 7r-m6r G i? 
-nmbDx + (det A — a)r G R 
(det A - l)s - 7T-mb(r2 ~ ir2rnDx2) G R. 

And we have 
°P2(zrn1Azrn) I det A - 1 

K|.x|̂ |det 
log|z|. 

As in the case that A lies in a split torus we will reduce the proof of FL(A) to 
certain cases. We find, in the course of the proof, that the integrals in the identity 
FL(A) depend only on \b\ and |det A — 1|. We first prove the equality in the case that 
b is a unit. Using similar reductions as above we reduce the proof of FL(A) when 
\b\ < |det A — 1| to the case that \b\ = |det A — 1|; we then prove FL(A) in this case. 
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over (x, r, s) G F3 such that 

/det A - a -6 \ / x \ 2 
V -&D d e t A - a J Vry G 

and 
(det ,4 - l)s + 6(£>x2 - r2) G i*. 

Doing the row operation R2 ^ bR2 + (det A — a)Rl in the matrix above gives 

/ det A ~ a -b\ 
\T(A) det A 0 ) ' 

Hence we need |x| ^ ^(A)^1 and (det A - a)x - br G R. 
Therefore if \T(A)\ = 1 we have 

crPl(yl) = I det A - 1| /Jqk<\xA\^qM logmax{l, |s|} 

and the result follows. 
Let a\ = a + and a2 = a — fr\/D be the eigenvalues of A in i ^ . We have 

T(A) = (ai - l)(a2 - 1) and hence if \T(A)\ < 1 we must have v(D) = 1 and 
a G Up. It follows that |T(A)| = q"1 • We now assume that this is the case and set 
|det 4̂ — 1| = q~k. The twisted integral is 

IDI^V*-1 
\x3\^qk + 1 

logmax{l,o Vsl2} 

and the integral on (GL(2) x GL(2)V is 

\D\^2q-k 
\x\ ̂ qk 

log(max{l, \x\}). 

For the integral on GSp(4) we first note that b(r2 — Dx2) G R if and only if x and 
r are in R, and hence if and only if x G R. The integral on GSp(4) is therefore the 
sum of 

\D\l/2q-k-l 
\sKqk 

logmax{l, 

the term contributing when \x\ ^ 1, and 

\D\l/2q-k-l 
'\x\=q 

k + 1 

the term contributing when \x\ — q. 
We compute the twisted integral to be 

\D\1'2 [2q-k-1 ((k+l)qk+1 
qk+1 - 1 

q-l 
q-k^{qk+l_l ) . ) . 

The integral on (GL(2) x GL(2))' equals 

\D\^2q-k ' k q k - ^ 
Q ~ 1 
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and the integral on GSp(4) equals 

\D\^ (V*-1 (V - j ^ ) +(k + 1)(1 - cT 1 ) ) • 

Hence we get both the left and right hand sides of the identity FL(A) equal to 

|D|i/2 f2k + l + q-*-1 - 2 1 ~ G J L

F C ~ 1 ) 

and we are done. • 

For the rest of this Section we assume that \b\ < 1. 
5.5.2. Reduction when \b\ ^ |det A — 1|. — In this section we reduce the proof of 
Proposition 5.3 in the case that \b\ ^ |detv4 — 1| to the case that \b\ = |det^4 — 1|. 
We note that if we have \b\ < 1 and |det A — 1| = 1 then we have |T(A)| = 1 and 
|det A — 1| = 1. It follows that both sides of FL(A) vanish in this case. Thus we may 
as well assume that we also have |det A — 1| < 1. 

Under the assumption \b\ ^ |detyl — 1| < 1 we have 

| de tA-a | = \a- 1| = \det A - 1| = q~M 

and hence \T(A)\ = \a - 1|2 = q~2M. We set n = det A then 

n-a(a- l)(n - a)'1 = (n - a)~1(a(a - l) 2(a + 1) - b2D(n + a(a - 1))). 

Hence if \b\ < \a — 1| we have 

\n - a (a — l)(n — a)~1\ = \n — 1|. 

On the other hand if |6| = \a — 1| then, provided q > 3, given b we can choose a such 
that |a — 1| = \b\ and 

\n — a (a — l)(n — a ) _ 1 | = \n — 1|, 

we make this further assumption in the case that \b\ = \a — 1|. 
We now assume that TV ̂  M and 

q~N = \b\ < \detA- 1| - q'M. 

We let L(M, N) (resp. R(M, TV)) denote the left (resp. right) hand side of the identity 
FL(A) in this case. We now prove the following Proposition. 

Proposition 5.11. — With the notations and assumptions above we have, for all N ^ 
M ^ 1, L(M, N + 1) - L(M, N) and R(M, N + 1) - #(M, TV) equal to 

fq-N~l\D\^ i-q~M i-q-3M 
2M q— ^—-

where f = f(Eo/F) is the degree of the residue field extension. 
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Proof. — We begin by seeing how to compute CFP(Z^}Azm). Recall we have 

B 
-a 0 7rmbD detA\ 
0 det A - a 0 ir^bD 

7r~m6 0 det A - a 0 
,detA ir-^b 0 -a J 

We now do a series of row operations invertible over R to get B in a suitable form. 
The row operation Rl n~~1(Rl — (7rm6D)(n — a)~1R3) gives 

- ( a - l ) ( n - a )" 1 0 0 1 
0 n - a 0 7TrnbD 

7r-mb 0 n - a 0 
n 7r~m6 0 - a , 

Now we do R2^ R2- (nrnbD)Rl and Rl ^ aRl + i*4 to give 

fn - a(a - l)[n - a)~L 7r-'ub U U\ 
( a - l ) ( n - a ) - 1 7 r m 6 D n - a 0 0 

7r-m6 0 n - a 0 
\ n 7T-mb 0 - a / 

Now 
n - a(a - l)(n - a )" 1 = - (n - a ) - 1 ( - a ( a - l) 2(a + 1) + b2D(n + a(a - 1))) 

and therefore provided a — 1 0 [7F we have 
|n - a(a - l)(n - a)" 1 ! = |n - a\~l\a - 1|2 = |n - a| > |7rm6D|. 

Next we do R2 ^ R2 - (a - l)7rm6D(a - a 2 + n 2 - a n ) " 1 ^ ! to give 
'(n — a) 1(a — a 2 -f- n 2 — an 

0 
7r"m6 

n 

7r-m6 0 0 \ 
n - a - (a - l)(a - a 2 + n 2 - an)~1b2D 0 0 

0 n - a 0 
7r-m6 0 -a) 

But now 
|(a - l)(a - a 2 + n 2 - a n ) " 1 ^ ! = |a - 11 —x|fo2^>|. 

After multiplying row 2 by a suitable unit and adding row 1 to row 4 and multiplying 
it by a - 1 we get 

'(n - a)" 1(a - a 2 + n 2 - an) 7r~m6 0 (T 
0 n - a 0 0 

Tr-^b 0 n - a 0 
V ( a - l X r c - a ) " 1 0 0 - 1 , 

Therefore in order to compute the twisted integral we need to integrate the function 
logmax{l, |zi|, \x2\, \x3\, \x4\, \x\x4 - x2x3\\ 

over the region 
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• \x2\ < \n-l\-1 
• (n — a)-1 (a — a2 + n2 — an)x\ + 7r_mòx2 G R 
. iï~rnbxi + (n — a)xs G R 
• (a — l)(n — a)~1Xi — X4 G i?. 

Note that we can set X4 = (a — l)(n — a)~lx\ and make the change of variables 
X3 1—>• (a — l)(n — a)_1x3 to give our integral as the integral of 

logmaxjl, |xi|, 1, |z3|, la;? - x2x3|} 

over the region 
• \x2\ ^ \n-l\~1 
• (n — a)~l(a — a2 + n2 — an)xi + ir~rnbx2 G 
. 7r-m6xi + (a - l)x3 G i*. 
First we note that for m such that |7r~m6| ^ |n — 1| this region becomes 
. \x2\ ̂  \n-l\~1 
. \Xl\ ^ In - l l "1 
. |x3| < I n - l l " 1 . 

Now assume that |7r~m6| > | n - l | . First suppose that |7r-m6|_1 < \x2\ ̂  | n - l | _ 1 . 
Then we have 

x\ =—(n — a)(a — a + n — an) IT mbx2ui 

with u\ G UFV^ bx^ and 

|xi| = \n-a\-1\Tr-rnbx2\ > |7T-mòr1 

hence 

x3 = -(a - l)~17T~rnbxiu2 

= (a - 1)_1(> - a)(a - a2 + n2 - a n ) - 1 ^ - 2 ^ 2 ^ ^ ! ^ 

with u2 G cV̂ 7r and therefore |x3| = |(n - 1) 2||7r m6|2|x2|. Now we hav< 
x\ — x2x3 equal to 

x¡7г"2m62г¿l(а-l)_1(n-а)(а-а2 + n2-аn)"2((rг-а)(а-l)г¿l-(а-а2 + n2-аn)w2) 
And since 

(n - a)(a - 1) - (a - a2 + n2 - an) —nT(A) 
so 

|(n - a)(a - l)г¿l - (a - a2 + n2 - an)u2\ = \n — 1|2 
for all u\ and г¿2. Hence we deduce that 

\x\-x2xs\ = \n-rnb{n-a)-1X2\2. 

Thus the contribution to the integral is 

| n - l | - 2 / 21og|7r-m6(n-l)"1^. 
J In-^b]-1 <\x2\^\n-l\-1 
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So we are now left with the region 
• \X2\ < |7T-m6|- 1 

• \ X l \ < I n - l l " 1 

. 7r-m6xi + (a - l)x 3 e R. 
We first consider the case that |7r_m&|-1 < \xi \ ̂  |n — Then we have 

x 3 = —(a — l)~17r~rnbxiu 
with u G UF

v{bxi). Hence |x 3 | = |(n - I)"1?!-"™*?!\Xl|. Then 

x 2 — X2X3 = x 2 + (a — l) -17r~m6x2Xi'a 
- (a - l)- 17r-m6^xi((a - l)Tzrnb-1u-1x1 + x 2). 

Now I (a — l)7r m 6 _ 1 ^ _ 1 Xi I ^ |7 r _ m 6 | _ 1 and so making the change of variables 
x 2 1 > x 2 — (a — l)7vrnb~1u~1Xi 

gives the integral as 

I n - l l " 1 / / log( |(n-l)- 1 7r- m &x 1 |max{l, |x 2 |}) . 
^|7T-^6|-1<|^L|^|RI—II"1 J\x2\^\7T-mb\-1 

Finally we are left with the region 
• 1*21 < k-^i"1 

. \xi\ ^ ITT-™^- 1 

. |x 3 | < I n - l l " 1 . 
We see that the integrals above depend only on |6|, |n —1| and m. For \a —1| = q~M 

and |6| = q~~N we set 
crP(M,TV,m) = ap^Azm) 

then it's clear from above that we have 
crP(M, TV + 1, m + 1) = aP(M, TV, m) 

for all m with 0 ^ m ^ TV. So we have \D\~1^2qN (<?L(M, TV + 1) - L(M, TV)) equal 
to 

TV+1 N 
^2 vol(D, m)(ip(M, TV + 1, m) - ^ vol(L>, m)crp(M, TV, m), 
m=0 m=0 

which equals 

vol(L>, 0)crP(M, TV + 1, 0) + (vol(D, m + 1) - vol(L>, m))crP(M, TV, m)). 
m=0 

In the case that |D| = q~x we have vol(D,m) = qm for all m and hence we see 
that 

qN+i ^1-1/2 ( L ( M , TV + 1) - L ( M , TV)) = cr P (M, TV + 1, 0). 
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In the case that \D\ = 1 we have vol(L>,0) = 1 and vol(D,m) = (q + l)gm_1 if 
m > 0. Hence 

vol(L>, 1) - vol(£>,0) = q 

and if m > 0 then 

vol(D, m + 1) - vol(A m) = (g + l)am - (a + l ) ^ " 1 = (q - l){q + l ) ^ " 1 . 

So we see that if \D\ — 1 then 

\D\~l/2qN+l (L(M, TV + 1) - L ( M , TV)) = <JP(M, TV + 1, 0) + aP (M, TV, 0). 

Now for TV ̂  M we have 

aP(M,N,0) = q-3M f f JJ\xi\^ \og^{l1\xl\1\x2l\x^\x\-x2x^}. 
J\x1\^qM J\xi\^qM J\x3\^qM 

Hence we get from Lemma 9.7 that 

qN+l |£>|-l/2 (L(MJ N + X) _ L ( M ; JV)) \og^{l1\xl\1\x2l\x^\x\-x2x^} 
og^{l1\xl\1\x2l\x^\x\-x2x^}. 

We now turn to computing the right hand side of FL(A). First we consider the 
integral on GSp(4). Recall we need to integrate 

logmaxjl, |x|, |r|, \s\} 

over the region in F3 given by 

• (n — a)x — TT'^br G R 
. -TT^bDx + (n-a)r £ R 
• (n - 1)5 - 7r-m6(r2 - 7r2mDx2) G 

Now consider 
/ n-a -7r'mb\ 
\-7TrnbD n-a J 

Doing the row operation R2 \—» R2 + 7rmbD(n — a) XR1 gives 

/ n - a -7T-mò \ 
V 0 {n~ a)-lnT{A)J ' 

Note that |T(A)| = |n — 1|2 and hence we need to integrate 

logmaxjl, \x\, |r|, |s|} 

over the region in F3 given by 

. \r\ < ln-11"1 

. (n - a)x - n'^br G R 

. (n - 1)5 - 7T-m6(r2 - 7r2mDx2) G R. 
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and over the region 
• |r| < min{gM\qN-m} 
• \x\ < qM 
. nMs- 7rN-m(r2 - D(x7rm)2) G R. 

When \r\ ^ |7rmx| we have 
|r2 - D(x7rm)2| = |r|2 = |r2 - D(x7rm+1)2\ 

and the integrals cancel. Hence e(M, TV, m) is given by the difference between inte­
grating 

q~3M logmax{l,|z|,|s|} 

over the regions 
. \x\ < qM 
. \r\ ^ 9-m-1|x| 
. TTMS - Tr^-^r2 - D(x7rni+1)2) G R, 

and 

. \x\ ^ qM 

. 7TMS ~ TT^-^r2 - D(x7TTn)2) G 
Now note that when |r| ^ q~m~2\x\ we have 

|r2 - D(x7rm+1)2| = |D(x7rm+1)2| 

and 
\r2 - D{xixrn)2\ = |D(X7RM)2|. 

Hence e(M, TV, m) is given as the difference between integrating 

g-3AVm~2M logmaxjl, \x\, \s\} 

over the region 

. \x\ < <JM 

. 7rA/a_7rJV+m+2£)A.2 E 
and 

. \x\ ^ qM 

. irMs-TTN+mDx2 e R 

plus the difference between integrating 
q~3M{l - q-l)q-m-l\x\logmaxjl, \x\, \s\) 

over the region 

• \x\ < qM 

. nMs-TrN+m+2x2 e R 

and 
. \x\ < qM 
. TTMS - TrN+mDx2 € R. 
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First suppose that |TT TTlb\ 1 < \r\ ^ \n — 1| 1. Then we have 

x = (n — a) 7T mbru 
withueU-v{7r~rnbr). So 

(TI - 1)5 - 7T-mò(r2 - 7T2rnDx2) (n - 1)5 - 7T-mò(r2 - 7T2mD((n - a)-17T-mò™)2) 

: (n - 1)5 - 7T-mòr2(l - £>ò2(n - a)" V ) . 

Hence the contribution to the integral is 

\n-l\-'2 
l7r_rnòl_1<lrl̂ (n_1l̂ 1 

log |n- l r 1 ^ - ™ ^ 2 ! . 

We are then left with the region 

\r\ < min{|n - 11"1, I — ^ ^ I — 1 } 
\x\ ^ |n - II"1 
(n - 1)5 - 7T-mò(r2 - 7T2mDx2) G 

The integrals above depend only on |6| = q N, \n — 1| = q M and m. We set 

aPl (M, TV, m) = crPl ( z^^™) 

and write 
<TPI(M, TV + l,ra + 1) crpl (Af, TV, m) + e(M, TV, m). 

Let Ri(M, TV) denote the contribution of the GSp(4) integral to the right hand side 
of the identity FL{A). Then we have \D\~^2 (ç7V+1i?i(Af, TV + 1) - qNR1(M,N)) 
equal to 

crFl(M,TV + 1,0) 4 
iV 

rn = 0 
(vol(D, m + 1) - vol(£>, m))crFl (M, TV, m) 

N 

m.=0 
vo\(D, m + l)e(Af, TV, m). 

Thus when \D\ q 1 we have q /V + l|D|-l/2 ;i?i(Af,TV + l) -R^M.N)) equal to 

<jPl(Af,TV + l,0) + 
N 

m=0 
vol(L>,ra + l)e(M, TV, m) 

and when \D\ 1 we have qN+l\D\-l/2< 'Ri(M, TV + 1) - Ri(M, TV)) equal to 

aPl (M, TV + 1, 0) + aPl (Af, TV, 0) + 
m = 0 

vol(L>, m + l)e(M, TV, m). 

We now set about computing e(M, TV, m), which is given by the difference between 
integrating 

q-3Af logmax{l,|a;|,H,H} 
over the region 

|r| < min{qM,qN-m} 
\x\ < gM 
nMs - nN-m(r2 - D(xTrm+1)2) G R, 
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But adding all this together gives e(M, TV, m) as the difference between integrating 
q-3Mq-m-2\x\ logmaxjl, |x|, |s|} 

over 

. TTMs-TTN+m+2Dx2 e R 
and 

. \x\ ^ qM 

. nMs-TTN+m+2x2 e R 
plus the difference between integrating 

9-3Af - m - i , ^ i^i ,3n ̂  î i ,3n 

\x\ < q M 

over the region 
• \x\ < qM 
. 7vMs-7rN+m+2x2 G R 

and 
• \x\ < qM 
. ITMS-TIN+™DX2 e R. 
Having fixed M, TV and D we set I(k) equal to the integral of 

\x\logmax{l, |x|, 
over the region 

• |*| ̂  qM 
. TTMS - irN+kx2 e R. 
Then if \D\ = 1 we have 

e(M, TV, m) - q-™-rn-i (/(m + 2) _ j(m)) 

and if |D| = q~l we have 
e(M, TV, m) = q-3M-RN-2{I(m + 3) - /(m + 2)) + G-3A/-m-i(j(m + 2) - J(ra + 1)). 

We need to compute 
N 

vol(D, m + l)e(M, TV, m) 
?n=0 

When |D| = 1 this sum is equal to 
N 

?-3ME(« + 1 ) « " ' ( / ( m + 2 ) - / w ) 
m=0 

= (1 + q-^iHN + 2) + /(TV + 1) - 7(1) - /(0)) 
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while if \D\ = q 1 this sum is equal to 

q-3M 
N 

m=() 
(q-l(I(m + 3) - I(m + 2)) + I(m + 2) - I(m + 1)) 

q-l(I(N + 3) - 1(2)) + I(N + 2) - 1(1). 

Finally we also need to compute crPl(M, N,0), which equals q 6M times the inte­
gral of 

logmax{l, \x\, |r|, \s\} 

over the region 
\r\ <: qM 
\x\ 4: qM 
7TMs-7TN{r2 -Dx2) G R. 

This equals 

nMS-7TN(r nMS-7TN(r2-Dx2)eR 
logmaxjl, \x\, |r|, 

plus 

|r|<|rr|̂ gM 7VMs_7TNfr2_Dx2^)eR 
logmaxjl, |x|, |r|,|s|}, 

which equals the sum of 

\r\<^qM KM s_7rNr2eR 
\r\logmax{l, |r|, \s\} 

and 
•T1 

\x\^qM ixM S-TTN Dx2£R 
|z|logmax{l, \x\, \s\}. 

Hence we get crPl(M,7V,0) = q~3M(1 + ç_1)/(0) and aPl(M,7V + 1,0) = 
q~3M{\ + ^-^/(l) if \D\ = 1. While if |£>| = ç"1 we get crPl(M,7V +1,0) = 
7(l) + ç-1/(2). 

We note that when m > TV we have 

J(ra) = 
\x\^qM \s\^qM 

\x\ logmaxjl, |x|, \s\} 

which by Lemma 9.4 is equal to 

Q 
9 + 1 

Mq3M q3M - 1 
q3 - 1 

Therefore we have 

mi-i/2 дг+i { R { M TV + lì — Ri ÍM. ЛГУ M - 1 - <r3M 
93 - 1 
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Next we do R2 i—> R2 — (TT mb) 1 (n — a)Rl and multiply the second row by a suitable 
unit to get 

n - a(a - l)(n - a)~l TT rnb 0 0 \ 
T R 7 ^ " 1 ! ^ ) 0 0 0 

7T-mb 0 n - a 0 
n 7T-mò 0 - a / 

Next we do R4 i ^ a"1 (#4 - ¿21) to give 

'n - a(a - l)(n - a)'1 it rnb 0 0 \ 
^ ^ - ^ ( A ) 0 0 0 

7T-mb 0 n - a 0 
, ( a - l ) ( n - a ) _ 1 0 0 - 1 / 

So we wish to integrate 

logmaxjl, |xi|, |*2|, |a:31, |*4|, |*i*4 - x2x3\} 

over the region given by 
. |*i| ^ i ^ f e - 1 ^ ) ! " 1 = ^b]-1 
• ir~nibx2 + (n — a(a — l)(n — a)~l)x\ G J? 
• (n — a)*3 + 7T~rnbxi G it* 
• —*4 + (a — l)(n — a)_1*i G i?. 

Thus we can take *4 = (a — l)(n — a)_1*i and make the change of variables *3 H 
(a — l)(n — a)_1*3 to give it as the integral of 

logmaxjl, |*i|, |x2|, |*3|, |*? - x2x3\} 

over the region 

• \xi\ < |7F^ |̂ —1 
• 7R_mfrr2 + (n — a(a — l)(n — a)~1)xi G 
. (a - 1)*3 + 7r"m6*i G 
Let's see how to compute this integral. Recall that \n — a(a — l)(n — a)~1\ ^ \l 

First suppose that \xi \ > \n — a(a — l)(n — a)_1|_1. Then we have 

*2 = —7Rm6_1(n — a(a — l)(n — a)~1)x\Ui 

with I61 G £y~^((n-a(a-1)(n-a) anj we note that |X2| ^ Moreover since 

| n - a ( a - l ) ( n - a ) - 1 T 1 ^ l&l"1 

we also have \x\ \ > \7T~mb\~1 and hence 

*3 - (a - l)~17T~rnbxiu2 

with u2 G UpV^ bxi^ and we have \x3\ = |7R~m*i| ^ |*i|. Now 

xl — x2x3 = x\ — (n — a(a — l)(n — a)_1)(a — \)~lx\u\u2 

= x\(l — (n — a(a — l)(n — a)_1)(a — l)~1uiu2) 
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We now compute the integrals on (GL(2) x GL(2))'. We have 

o-p2(zm1Azm) = q M 
\x\^qM 

logmaxjl, 1x1} 

: M1 -q -M 
q-l 

Thus if we set ap2(M, TV, m) = o~p2(zrn1 Azm) then we have 

GP2 (M, AT + 1, ra + 1) = op2 (M, TV, m). 

Hence if we let R2(M, TV) equal the contribution to the right hand side of FL(A) from 
the integral on (GL(2) x GL(2)V then we have 

qN+l\D\~lt2 (R2(M, TV + 1) - R2(M, AO) M 1 - Q -M 

9 - i 
Putting these together gives 

R(M,N + 1) - R(M,N) l-g~3M< 2M 
l-q'M 

q-l 
l-g~3M< 

9 3 - l 
as required. 

5.5.3. Proof when \b\ — |det A — 1|. — In this section we prove Proposition 5.3 under 
the assumption that \b\ = \detA — 1|. It follows that we have |a — 1| = |detA — a\ = \b\ 
and \T(A)\ = \b\2. Let TV ^ 1 and assume that we have \b\ = |det A - 1| = q~N'. We 
let L(N) (resp. R(N)) denote the left (resp. right) hand side of the identity FL(A). 
We now prove the following Proposition. 

Proposition 5.12. — With the notations and assumptions above for all TV ^ 1 we have 
L(TV) and R(N) equal to 

ID]1/2 '4Nq - 2Nq~N -4g + 3g-7V+1+2a-7V-g-2iv 
(q ~ i)2 

q-N+3 q-4N 
( g - l ) ( < 7 3 - l ) 

if \D\ = q 1 and egnaZ ¿0 

(<7 + l 
4N -2Nq-N~1 

9 ^ 
-4(g + 1) + q-N'1(3q2 + 6q + 1) - 2<T2JV 

^q-N + 3_q-4N 
( q - l ) ( g 3 _ i ) 

(2N + l)q-N-1 

if\D\ = l. 

Proof. — We begin by computing the integrals ap(zm1 Azm). As we saw in the proof 
of Proposition 5.11 we can make row operations to put the matrix B in the form 

fn-a{a- l ) (n-a)-x n^b 0 0^ 
(a-l)(n-a)-17TmòD n - a 0 0 

7T~mò 0 n-a 0 
n 7T-mò 0 -ay 
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and since 

1 - (n - a(a - l)(n - a)_1)(a - l)"1 = -n(a - l)_1(n - a)~lT(A) 
we have 

|1 — — a (a — l)(n — a)~1)(a — l)~1uiu2\ = 1 
for all г¿l and u2. Hence when \x\\ > \n — a (a — l)(n — a)_1|-1 the integrand is equal 
to 2log \xi\. 

Now suppose we have < \xi\ ^ \n — a (a — l)(n — a)~1\~1. Then we have 
\x21 ^ l^b-1] and 

X3 = —(a — l)~17r~rnbxiu 

with u G U^v{7l~mbxi). Therefore \x3\ = |7r-mxi| ^ \Xl\. Now 

x\ — x2xs — x\ + (a — l)~1n~rnbxix2u 

= xi(xi + (a - l)_17r~m6x2^) 

but 

I (a - ly^-^bx^ = K"mx2| ^ lop1 < |xi| 
and hence when < \x\\ the integrand is equal to 21og|xi|. 

So the contribution to the integral when \b\~l <\x\\^ |7rm6|_1 is 

2|7T-m62|-1 f log 1^1. 

^Ibl-^lxil^lTr^bj-1 
We are now left with the region 

. kiKir1 
• \x2\ < I t t - ^ o I " 1 
. (a - l)x3 + 7r-m6xi G R. 

^ext we suppose that \x\ \ > |7r-m6|_1. Then we have 

X3 = -{a - l)~17T~mbxiU 

vith u G U^v(y7r bxi^ and so |x3| ^ \x\ \ > \x2\. Now 

x2 — x2xs — x\ + (a — l)~17r~rnbuxix2 
= mr"m(a - l)-16xi(^-17rm(a - l ) ^ 1 ^ + x2) 

tnd 

o making the change of variables x2 1—> £2 — ix_17rm(a — l)b~lx\ gives the contribution 
vhen \7T-mb\-1 < \Xl\ ^ as 

l&l"1 / / logmaxdTr-^iUTT-^iHxal}, 
J\7r-™b\-i<\Xl\<:\b\-1 J\x2\^\7r-™b\-1 

and 
\u-17rm(a-l)b-1x1\ \u-17rm(a-l)b-1x1\ 

so making the change of variables x2 »—> x2 — u 7im(a — \)b x\ gives the contribution 
when I T T - ^ I - 1 < \xA ^ \b\~l as 

ir1 
iTr-^bl-i^mKI&l-i iTr-^bl-i^mKI 

logmax{|7r-ma;i|)|7r-ma:i||a;2|}, 
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which equals the sum of 

i ^ r v ^ r 1 
ITT-^ÒI-^IXII^IÒI"1 

loglTr-^l 

and 
ITT-^ÒI-^IXII^IÒ 

KlxaKk-^bl-1 
log|x2|. 

Finally we are left with the region 

\xi\ < |7T-mò|-1 
1*2 | < iTT-̂ òl-1 
Ix3| < \b\-\ 

With \b\ = q N we have ap(zm1Azrn) equal to the sum of 

2q-N-m 
qN<\x1\<^qN + ™ 

logici I 

and 
-N-m 

qN-m<\Xl\<:qN 
(m +log|a?i I) 

and 
(q-N-q-N-m] 

K\x2\<:qN-m 
log|x2| 

and 
g-3N 

qN-m \x2\^qN-m \x3KqN 
logmaxjl, \xi\, \x2\, \x3\, \x\ - x2x3\}. 

Putting these together we get 

aP(zm1Azm] (2N + 2m) 
-TV + -3m _ 2 

q-l 

q—3m q—3N 

q3 - 1 
Now we compute the left hand side of FL(A). When \D\ = q we get 

L(N) IDI1/2 ANq - 2Nq~N 
q-l 

-4q + 3q~N+1 + 2q-N - q~2N 
{q-i)2 

q.N+z_q-AN-
(q-mó-i) 

and when \D\ = 1 we get L(N) equal to 

(9 + 1) AN - 2Nq-N~1 
q-l 

(-4(g + 1)) + q-N-1(3q2 + 6q + 1) - 2q~2N 
Q-l)2 
q-N+3 _ q-4N 

2(q-l)(q3-l) 
(2N+l)q-N-\ 

We now look to compute the right hand side of FL(A). We have ap1(zm1Azrn) 
equal to q~3N times the integral of 

logmaxjl, \x\, |r|, \s\\ 

over the region in F3 given by 
\x\ ^ l^bl"1 
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n-rnbr - (n - a)x e R 
(n - l)s - 7r"m6(r2 - 7r2mDx2) G R. 

First suppose that \b\ 1 < \x\ ^ |7rm6| 1. Then we have \r\ = \nrnx\ and 

\7T-mb(r2 -7T2mDx2)\ |67TmX2| > 1. 

Therefore |s| = |7rmx2| and the contribution to the integral is 

ITT-™/)2!-1 
Ifel-̂ lxl̂ lTr̂ fel-1 

logkmx2|, 

which equals 
2N-m 

qN <\x\^qN + m 
(2 log \x\ — m) . 

We are then left to compute, after multiplying s by a suitable unit, the integral of 
logmaxjl, \x\, |r|, |s|} 

over the region in F3 given by 

\x\ ̂  W'1 
\r\ ^ lir-^b]-1 
TTNS- nN-m(r2 - D(nrnx)2) G R. 

The contribution when \r2 — D(iirnx)2\ > qN 171 is 

qN+m 
xeED,qN-™<\x\ED^q2(N-rn) 

(log \X\ED + m) . 

Having fixed N and m we set / = L ^ ^ J • If \D\ = 1 then n^bir2 -D(7rmx)2) G R 
if and only if |r| ^ q1 and \x\ ^ <̂ +m and the contribution to the intégral is 

\s\^qN \r\^ql \s\^qN 
logmax{l, \x\, |r|, \s\}, 

If |£>| = q'1 then we have 7r~m6(r2 - £>(7rmx)2) G if and only if \r\ ^ ^ and 
\x\ ^ ql^+rn where Zi = |_7V~̂ l+1 J and the contribution to the integral is 

|x|̂ gzi+m • \s\^qN 
logmaxjl, |r|, |s|}. 

When |D| = q 1, iî N — m = 21 we get (zmx Azm) equal to g 3iv times 

(27V + m)q3N 
2 3N _ 3N-m 

q-l 

ç2m+3/ + l 

qz - 1 
1 

q3 - 1 

q3l + 2 
(q+l)(qs-l) 

while if N — m = 21 + 1 we have <jp1 (z^Azm) equal to g 3N times 

(27V + m)g37V 2q3N g3N-m g2m+3Z+3 
ql - 1 

1 
q3 - 1 

a3l+2 
(g + l ) (g3- l ) 

We compute the contribution of the integral on GSp(4) to R(N) to be 

|D|1/2 3Nq - (AT - 2)q~N 
q-l 

-3q + 3q~N 
(q-l)(q 

q-N+3_q-4N^ 

(q-l)(q3-l) 
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Now suppose that \D\ = 1. Then we have apl(zrn1Azrn) equal to q 3N times the 
sum of 

(2TV + m)q3N + (TV - m - 21 - 2)qN+rn+21 -2q3N - 2q3N~rn N+m+2l 

9 - 1 
and 

3N-m _ QN+m+2l + 2 
_9- -

« 2 - 1 

ç3/+2m+l 
q2 - 1 

1 
q3 - 1 

ç3/+2 
(g + l ) (g3-l)" 

We compute that the contribution of the integral on GSp(4) to R(N) is equal to 

- 2Nq~N'1 - 2- 3W(a + l)-2iVç-7V-1 
q-l 

-3q - 3 + (2g2 - 2ç + 6)g-w 
(9 "I )2 
q-N+3 +g-N _2g-4N 

(q-1)^-1) 
Now we compute the contribution of the integral on (GL(2) x GL(2))' to R(N). 

We have 
-
3W(a + l)-2iVç-

q-l 
l-q-N 

log \x\ = N l-q-N 
q-l 

And we compute that the contribution when \D\ = q 1 is 

(g + ^l-g-^) 
(g + ^l-g-^) 

(g + ^l-g-^) 
q - 1 

while when |D| = 1 it is 

( —N (q + 1) (1 -q, (g + ^ l - g - ^ ) ( q + 1 ) 1 - Q - N ' 

g- i 
Putting these calculations together gives the computation of R(N) and finishes the 

proof. • 

5.5.4- Reduction when |detA — 1| ^ \b2D\. — We now assume that we have 
I det A — 1| ^ \b2D\. In this section we reduce the proof of Proposition 5.3 in the case 
that I det A - 1| < \b2D\ to the case that \det A - 1| = \b2D\. 

So we assume that we have TV ^ M and 

q~N = I det A - 1| ̂  \b2D\ = q~2M\D\. 

We let L(M, TV) (resp. R(M, TV)) denote the left (resp. right) hand side of the identity 
FL(A). 

We note that under the assumption that |det A —1| ^ \b2D\ we have \a —1|, |det A — 
a\ ^ \b2D\ and so |T(A)| = \b2D\. For ease of notation we set n = det A. We now 
prove the following Proposition. 
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Thus we can do R2 i-> R2 - (a2 - a - n2 + an)7r2mò~2R3 to give 

f-a 0 TT^bD n \ 
0 0 a(n - l)T(A)7T2mò-2 0 
0 0 a - 1 7r'mb 

\ n 7r-mb 0 -a J 

Thus we need to integrate 

logmaxjl, |*i|, |*2|, |*3|, |*4|, |*1*4 - *2*3|} 

over the region 

• |*31 ^ \{n - l)D7r2m\-1 

. 7T_ m6*4 + (a - 1)*3 G 
• —a*i + 7rm6D*3 + n*4 G 
• n*i + 7T~mbx2 — a*4 G i?. 

Therefore we can take *i = a~lixrnbDx3 + a - 1 n * 4 and then we need to integrate 

logmaxjl, |*2|, |*3|, |*4|, \a~1nx2 + (a.r17rmbDx4 — *2)*3|} 

over the region 
. |* 3| ^ l ( n - i ) ^ 2 - ! - 1 

. 7r _ m6* 4 + (a - 1)*3 G 
• a~1n7rrnbDxs + a _ 1 n 2 *4 + ir~rnbx2 — a*4 G it*. 

Now we make the change of variables *2 i—• a~xn*2 + a_ 17rm6D*4 to give our integral 
as the integral of 

logmaxjl, |*2|, |*3|, |*4|, I * 2 - x2x3\} 
over the region 

. |* 3| < |(n - l ) ^ ^ ! - 1 

. 7T~m6*4 + (a - 1)*3 G R 

. 7T-mbx2 + n^bDxs + (n - 1)*4 G R 
and we have crpf^"1 Az^) equal to g _ A r _ 2 M | D | times this integral. 

First suppose that |*3|>|a — Then we have 

|*4| = k m 6 - 1 ( a - l ) * 3 | < | * 3 | . 
Now 

|(n - 1)*4| < \bD7rm(a - 1)*3| < \nnibDx3\, 
hence 

|7Tm6D*3 Hh (n - 1)*4| = \7rmbDx3\ > 1, 
and so |*2| = \7r2mDxs\. Therefore we have 

|*4|
2 = \ir2nib-2{a - 1) 2* 2 | < |* 2* 3 | - \7r2rnDx2\ 

and the integrand equals log \ 7r27nDx2\. 
We are now left with the region 
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Proposition 5.13. — With the notations and assumptions above we have, for all M ^ 1 
and TV ^ 2M + v(D), qL(M, TV + 1) - L(M, TV) and qR(M, TV + 1) - #(M, TV) eg^a/ 
¿0 

I D I 1 / 2 (27V + 2M + 3)g - (27V + l)q~M • 2q~q 
q-l 

when \D\ = q 1, and equal to 

(27V + 2M + 2){q + 1) - (47V + 4)g~M - 2{q + 1} 
1 - q~M 

q-l 

when \D\ = 1. 

Proof — We begin by computing the twisted integrals ap(zm1 Azm). As above we 
have 

B 

' -a 0 TTrnbD n " 
0 n-a 0 7TmbD 

7i~rnb 0 n - a 0 
, n 7r-mb 0 - a , 

We now do a series of row operations invertible over R to get B in a suitable form. 
First we do R2 ^ R2 — {n — a)(7r~m6)_1 R4 and then divide by n to give 

-a 0 7TrnbD n 
- ( n - a)7Trnb~1 0 0 (a-l)^77^-1 

7T"mò 0 n - a 0 
n 7T_mò 0 - a 

Next we do R3 ^ aR3 + TT rnbRl and then divide by n to give 

-a 0 7rm6L> n 
- ( n - a ) ^ ^ - 1 0 0 ( a - l ^ ò " 1 

0 0 a - 1 7T-rnb 
n 7T-rnb 0 - a 

Next we do R2 i-+ ai?2 - (n - a ) ^ " ^ ! to give 

—a (J 7T"lbJJ n 
0 0 - (n - a)7r2mL> (a2 - a - n2 + an^b'1 
0 0 a - 1 7T-mò 
n 7T~mò 0 - a 

Now we note that 

a2 - a-n2 + an = -a(a - l)2(a + 1) + b2D(n + a(a - 1)) 

and since la — Il ^ 161 < 1 so 

|a2 - a - n2 + an I ^ max{|a - 1|2, |62L>|} ^ |62|. 
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. \x3\ ̂  min{\b2D27v2rn\-\ \a - l^1} 

. \x4\ < ITV-171^-1 

. 7v-mbx2 + ixmbDx3 e R. 
If \x3\ > |7rm6D|-1 then we have 

\x2\ = \7rzmDx3\ 
and so 

1*2*31 = \n2mDx23\ > \b2D\-1 > \Tr~mb\-2 > \x4\2 
therefore the integrand is equal to log \K2mDx\\ in this case as well. So the contribu­
tion to the integral when \-KmbD\~l < \x3\ < |(n - l)D7r2m|-1 is 

iTr-2^2!-1 f J(?M + m|jD|-l<|X3|^giV + 2rn|D|- \og\7T2mDx2l 

which equals 

q2M-2m f J(?M + m|jD|-l<|X3|^giV + 2rn|D|- (21og|x3|-2m + log|D|). 
J(?M + m|jD|-l<|X3|̂ giV + 2rn|D|-l 

We are then left with the region 
. |x3| ^ ^bD^1 = qM+m\D\-1 
• \x4\ ̂  ^-^b]'1 = qM-171 
. \x2\ ^ ITT-™^-1 = qM-m 

to integrate over. 
Thus we see that ap(zrn1 Azm) depends only on m, \b\ and \n — 1|. We define 

<jp(M, N,m) — ap(z~nlAzm) and we see that 
qaP(M, TV + 1, m) - o~p(M1 TV, m) = (q - 1)(27V + 2m + 2 - log\D\). 

So we have 
M 

qL(M,N + l)-L(M,N) = q~M\D\1/2 ^ vo\(D, m){q - 1)(2N + 2m + 2 - log\D\), 
m=0 

which equals 

\D\^2 (̂ (27V + 2M + 3)q - (27V + l)q'M - 2^-^-^j 

if \D\ = q'1 and 
1 - a~M (27V + 2Af + 2){q + 1) - (47V + A)q~M - 2(q + 1) <7 - 1 

if |D| = 1. 
We now turn to the computation of the right hand side of the identity FL(A). 

First we consider the integrals crPl (z^1 Azm), which are equal to \n — 1||62D| times 
the integral of 

logmaxjl, \x\, |r|, s ) }. 
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over the region in F3 given by 
• (n - a)x - 7r~m6r e R 
• -7irnbDx + (n - a)r e R 
. (n - l)s - rr-mb(r2 - rr2mDx2) e R. 

We consider 
/ n — a —7T~rnb\ 
\-?rmbD n-a J 

then doing R2 i-> R2 + (n - a)rrrnb~1Rl gives 

/ n-a -7T-mb\ 
\-7rmbD + (n-a)7rmb-1(n-a) 0 J' 

Now 

—7TmbD + (n - a)7Trnb'1(n -a) = ^b'1 {-b2 D + (n - a)2) 

= 7rmb-1nT(A), 

which has absolute value |7rmoD|. So after more row operations we get the mat 

/ 0 -7r~m6\ 
\irmbD 0 ) ' 

Therefore ap± (z^1 Azm) is equal to \(n — l)b2D\ times the integral of 

logmaxjl, |r|, \s\] 

over the region in F3 given by 
. |*| $C ^bD]-1 
• \r\ ^ ^^b]-1 
. {n - l)s - 7r-m6(r2 - Dn2mx2) e R. 

We set <jp1 (M, TV, m) = ap1 (z^Azm). Then we have 

q2M"rN\D\-\qaPl (M, TV + 1, m) - aPl (M, TV, m)) 

equal to the sum of 
(TV + l)qN(q - 1) vol({*, r : ̂ ^bÇr2 - £>(7rmx)2)| <: 1}), 

the contribution when |7r~m6(r2 — D(7rmx)2)\ ^ 1, and the sum of 

-qN) f TV + log\rr-mb(r2 - D{iv7nx)2)\ 
Jx,r:\ir-inb(r2-D(7rrnx)2)\>l 

and 
q N+l vol({x, r : \7T-mb(r2 - D(7rmx)2)| ^ 1}), 

which is the contribution when \7r~mb(r2 — D(7rrnx)2)\ > 1. Putting these contribu­
tions together gives qaPl (M, TV + 1, m) - aPl (M, TV, m) as the sum of 

(N+l)(q-l) 
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and 

q-2MJrrn\D\(q -I) f log |r2 — Dx2 \ — M + m 
J\x\^qM\D\-^ ,\r\^qM~™ 1\r2-Dx2\>qM ~™ 

and 

q-2M+m\D\vol{\x\ ^ qM\D\-\\r\ <: q™-™ : \r2 - Dx2\ > qM-m}. 

The integral above can be written as the sum of 

q-M\D\(q-l) f log\Dx2\- M + ra 
7gAi-m<|x|̂ gA/|D|-l 

and 

q-2M+rn\D\(q - 1) / log\X\ED - M + m 
JxeED,qM-™<\x\ED^q2(M-™) 

And we have vol{|x| < qM\D\~\ \r\ < qM-m : |r2 - Dx2\ > qM-™} equal to 

qM-7n{qM\D\-1 -qM~m)+vo\{x G £D : qM~m < \X\ED < g2(M"m)}. 

Now we compute gcrp1 (M, TV + 1, m) — <Jpl (M, A/", m) equal to 

(TV + M + m + 2)g - (TV + M + m + 3) + g"m 

if \D\ = q-1. And when \D\ = 1 we have acrPl (M, TV + 1, m) - aPl (M, TV, m) equal to 
-m _ -Af+2 

(TV + M + m + l)g - (TV + M + m 4- 2) + 2g"m - 2q~M+1 + g~M - 2- — ^ 

when M — m is even and equal to 
-m __ -M + l 

(TV + M + m + l)g - (TV + M + m + 2) + 2g~m - q-M - 2-

when M — m is odd. 
With similar notation we have 

gcrp2(M,TV + l,m) -ap2(M, TV, m) = (TV + l ) ( g - 1). 

Using these computations we get 

gi?(TV + 1, M) - R(N, M) = \D\^2 (̂ (2TV + 2M + 3)q - (2TV + l)q~M - 2^-^-^j 

when \D\ = g"1 and 

1 - a~M 

g#(TV + 1, M) - R{N, M) = (2TV + 2M + 2)(g + 1) - (4Â  + 4)g~M - 2(q + 1) _x 

when |D| = 1. • 
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5.5.5. Proof when \b2D\ ^ |det A—1| < \b\. — In this section we assume that we have 
\b2D\ ^ |det A — 1| < \b\ and we prove Proposition 5.3 in this case. We set \b\ — q~M 
and |det^l - 1| = q~N. We then have \T(A)\ = \b2D\ = q~2M\D\. We let L{M,N) 
(resp. R(M,N)) denote the left (resp. right) hand side of the identity FL{A). Again 
for ease of notation we set n = det A. We now prove the following Proposition. 

Proposition 5.14. Let M and N be such that M < N ^ 2M + v(D). Then L(M, N) 
and R(M, N) are equal to 

IDl1/2 
(2N + 2M+ l)q - (2N + l)q~M 

q-l 

4q - 2{q + l)q'M - q~N+l + q-N-M 

q-l) 2 
q-N+2 _ -N-3M-1 • 

(9 - i)(<?3 - i) 

if \D\ = q 1 and are equal to 

2(N + M)(q + 1) 

q-l 

(4N + 2)q~M 

q-l 

4(q + 1) - 4q~M(g + 1) - 2q~N+1 + 2q~N~M 

(q-iy 
q-N _ -N-3M 

2 ( g - l ) ( g 3 _ l ) 

if \D\ = 1 

Proof. — We begin by computing o~p{zml Azm). As we saw in the proof of Proposition 
5.13, we have ap(z^n1Azm) equal to \{n — l)b2D\ times the integral of 

logmax{l, \x2\, \x3\, |x4|, \x\ - x2x3\\ 

over the region 

. 7r~rnbx4 + (a - l)x3 G R 

. n-^bxo + 7TmòD^ + (n- 1)XA G R. 

As we saw above the contribution to this integral when \x3\ > \7rrnbD\ 1 is 

k-2mò2,-l 
iTT^ÒDI-^Ixal^Kn-l)^2^!)!-1 

log|7T2mD*§|. 

We are then left to integrate over the region 

|z31 ^ UmbD\-1 
7r-rnbx4 + (a - l)x3 G R 
7r~mbx2 + {n- l)x4 G R. 

We note that if |7rm6Z)| 1 ^ \n — 1| 1 then this region becomes 

\x3\ ^ In^bD]-1 
\x4\ < I T T ^ Ò I " 1 

\x2\ ^ I T T - ^ Ò I " 1 . 
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over the region 

. \x\ ̂  l^bD]-1 
• 7T_mòr - (n - a)x e R 
. (n - 1)5 - 7T-mò(r2 - D7r2mx2) e R. 

For \n - 1 1 - 1 < |*| ^ I ^ Ò D I " 1 we have 

\r\ = iTT^b-^n- 1)*| 

and  
|5| = K n - i ) - 1 ^ ^ 2 ! . 

and 
|¿| = \{п-1)-1ЪОжтх2\. 

Hence the contribution to the integral is 

|n - î r V - " ^ ! - 1 / |n - îrV-"^!-1|n - îrV-"^!-1 log(|(n - l^bD^x2]). 

We are then left with the region 
• \x\ ^ min{|n - II"1, l^bDl'1} 
. \r\ ^ ITT-771^-1 
• (n - l)s - 7r-m6(r2 - D7r2mx2) G R 

and we can compute this integral as in the proof of Proposition 5.12 when \n —1| = |6| 
Having fixed M, TV and m we set / = [M~mj. When \D\ = q~l we comput 

ap1(z^n1Azrn) to be equal to 
9 _ n-m-l n-N-2M-l n — N — l „-iV-2M+3/ + l 

N + M + m+l+q-^-2 q +q 3 + g + g 
g - 1 g ^ - l a2 - 1 (g + l ) (g3- l ) 

and when \D\ — 1 we have ap1 (z^Azm) equal to the sum of 
o „-ra+l -N-2M 

N + M + m 7 + 2 ^ + ^ — 
q — 1 — 1 (7̂  — 1 and 

o„ I i „-N-2M+3l + 2m+l ^-A-2Af+3Z + 2 
(M-2/-m-2)«?-2M+2(+m+g-2M+2'+'"i^li + 5 + ^ . 

9 + 1 92"1 ( 9 + l ) ( c 3 - l ) 
We now assume that \D\ — q~l. We compute the contribution of the integral on 

GSp(4) to the right hand side of FL(A) to be equal to \D\1/2 times 
(N + 2M + l)q - Nq-M _ 3q - g~M+1 - 2q~M q~N+2 - q-N-3M-l 

q-1 (^W2 + {q _ l){qz _ 1} 
when \D\ = q~l. And when \D\ = q~l the integral on (GL(2) x GL(2))' contributes 
\D\1/2 times 

Q-v-M (N_ i-q~N\ 

The sum of these expressions equals L ( M , AO. 
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On the other hand if \nnibD\-1 > \n - I]"1 then when |n - I]"1 < \x3\ ̂  {n^bD^1 
we have 

x4 — —7Trnb~l(a — \)x3u 

with u e U-v{{n-1)x3) and \x2\ ̂  17T mb\ 1. The integrand in this case equals 

logmax{|x3|, \x\ - x2x3\}. 

But for x3 in this range we have |a;|||x3|_1 ^ \7r~mb\~1 and so after a change of 
variables in x2 the integral over this range becomes 

\7T~mb\-1 f f logmax{>3|,|x2x3|}. 
Jln-ll-^lxal^lTT^bDl-1 J\x2\^\7r-™b\~1 

We can write this integral as the sum of 

\7V'mb\-2 
\n-l\-1<\x3\^:\7TmbD\-ì 

logici 

and 
ÌTT-^bì-Hì^bDÌ-1 - In - 11"1 

\x2\^\n-™ -b|-i 
log maxi 1, \x2\}. 

. |.x3| < In - l l "1 
• \x4\ < |7T-r̂ 6|-1 
• \X2\ ^ \7T-r7lb\-\ 
We let e G {0,1} be such that \D\ = q~e. Using the results of Section 9 we get 

ar>(zz}Az7n) equal to Q-N-2M-e times 

oflJV + 2A/+e „3A/-3m JM+e „3M-3ra i 
(2/V + 2m + e)qN+2M+e - ^ • ^ g , , . 

q — 1 çJ — 1 
And we compute L(Af, N) to be equal to 

1/2/(27V + 2M + l ) g - (2N + l)q~M _ 4q - 2(q + l)q~M - q~N+1 + g~^-A/ 
q-N+2 _ q-N-3M-i, 

+ fa - lïïa3 - 1) ) 

when |Z)| = q 1 and to be equal to 

2(Â  + M)(q + 1) (4N + 2)g~M 4(q + 1) - 4q-M(g + 1) - 2g~iY+1 + 2q-N~M 

^ ^ 1 ^ " l ) 2 q-N_q-N-3M 

+ 2 (q-l)(q3-l) 
when |D| = 1. 

We now turn to the computation of the right hand side of FL(A). We begin with 
the integrals (Tpl(z^l1 Azm), which equal |(n — l)b2D\ times the integral of 

logmaxll, Id, Irl, 
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We now assume that \D\ = 1. The contribution of the integral on GSp(4) to 
R(M, N) is equal to the sum of 

(N + M)q~M 
2q~M 
q2-l 

q-N-3M 

q3 - 1 

and 

(9+1) 
'(N + 2M) - (N + M)q'M 

q-l 

, l - g - M 
{q-l)2 

2Mq~M 
q1 - 1 

-7V-2M _ Q-N-3M 

( g - l ) ( g 3 _ l ) 

and 
q-M  
9 + 1 

(?-iV( 3 + 1 ) _ -iV-2A/( +1 ) 

( o - l ) ( o 3 _ l ) 
The integral on (GL(2) x GL(2))' contributes 

N - 1 - q~iy 

q-l 

1 — «-M N 
(7-M + ( ( / + l ) 1 - V g - 1 y 

to R(M, N). Adding these together we find they are equal to L(M, AT) 

6. The fundamental lemma for the (1,2,1) Levi I 

In this section we take M° to be the (1,2,1) Levi in G . We have 

M° 
a 

A e A G GL(2), a, ò, e G GL(1) 

and we write such an element as a tuple (a, A, 6, e). The restriction of a to M° is 
given by 

a : (a, A, ò, e) (ò ,detA 1Aìa 1ìabe det A). 

We set M' = GL(2) x GL(1) an unramified elliptic twisted endoscopic group for M. 
In this section we prove the fundamental lemma for the pair (M, M'). 

6.1. Stable conjugacy. — We begin by determining the stable twisted conjugacy 
class of an a-semisimple element 7 = (a, A, 0, e) G M°(F). For m = (ai, Ai, 61, ei) G 
Af 0 we have 

m 17«(m) ((aiòi)_1a,det A, 1 A, 1AAu(a1bi) lb, axbx det Aie). 

Now if we assume that m^lma{mi) G M°(F) then it's clear that we must have 
a\bi G F and d e t ^ i G i?x. Moreover, after twisted conjugation over F , we can 
assume that A is either diagonal or else lies in an elliptic torus of the form 

( 2 x + Dy) 

y + x 
x + yVD G E* 

with v(D) G {0, 1} and EJJ = F(y/D) a quadratic extension of F. 
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Lemma 6.1. — Assume that A lies in the diagonal torus. Then the stable twisted 

conjugacy class 0 / 7 is equal to the twisted conjugacy class 0 / 7 . 

Proof. — Let T denote the diagonal torus in GL(2). Then the question is, given 

Ai G G L ( 2 , F ) with A~1AA1 G G L ( 2 , F ) and det A1 G F x , does there exist B G 

G L ( 2 , F ) such tha t B~lAB = A'1 AAX and d e t £ = d e t A i . We know there exists 

C G GL(2, F) such that C~x AC = A^1 AA\ \ and by multiplying C on the left by an 

element of T(F) we can insist tha t det C — det A\. • 

For 7 — (a, A, 6, e) with A diagonal we take the Haar measure on M 7 a ( F ) , which 

gives its maximal compact subgroup volume one. 

Lemma 6.2. — Assume that A is non-central and lies in an elliptic torus as above. 

Then the stable twisted conjugacy class 0 / 7 is equal to the disjoint union of the twisted 

conjugacy classes of j — (a,A,b,e) and ( a , c _ 1 A,b,ce) with c G FX\NED/FER). 

Proof — Let T denote the torus in GL(2) containing A. First it 's clear that (a, A, 6, e) 

and (a, c _ 1 A, 6, ce) are not twisted conjugate over F. I t 's also clear that they are 

stably conjugate, since we can conjugate them by an element of the form (1, B, 1, 1) 

with B G T(F) such that det B — c. Next we show that every element of the stable 

twisted conjugacy class of 7 is conjugate to one of these elements. Let 

7 l = m~1ja(m) = ((aibi)~1a, det A^1A^1AAi, (aib1)~
1b, a±bi d e t A i e ) 

lie in the stable twisted conjugacy class of 7. Then we can find B G G L ( 2 , F ) such 
tha t A^xAAi = B~lAB. We can change our choice of B by multiplying B on the left 
by an element of T(F) and hence change det B by an element of NED/F(E^). Thus 
71 is twisted conjugate over F to either (a, A, 6, e) or (a, c~l A, 6, ce). • 

We continue with the assumption tha t A lies in an elliptic torus as above. First sup­

pose tha t ED/F is ramified. Then we may take c G Up. We note tha t the weighted or­

bital integral at the element (a, c~1A, 6, ce) is the same as the weighted orbital integral 

at the element (ca, A, cb, c _ 1 e ) , having multiplied by the element (c, diag(c, c), c, c~2) 

which lies in Z(G°) D K. But now conjugating this element by m — (c, / , 1 , 1 ) gives 

(a, A, 6, e). Thus the weighted orbital integral along the twisted conjugacy class of 

7 = (a, A, b1 e) is equal to the weighted orbital integral along the twisted conjugacy 

class of (a,cA,b,ce). For such an A we take the measure on MJA(F) tha t gives its 

maximal compact subgroup volume two. 

Next we assume that ED/F unramified and we take 

A = 
'c Dd> 

d c 
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with v(D) — 0. In this case (a, IT A, 6, TT le) is stably conjugate but not conjugate to 
7 = (a, A, £>, e). Conjugating this element by 

gives 

1, 
'1 

71 / 

, 1 , 1 

a, 
c Dud" 

7T d c 
l 1 + 2 

If the stable twisted conjugacy class of 7 = (a,A,b,e) intersects M°(R) then we 
can assume that we have a, 6, e G £/F and A G GL(2, R) with 4̂ as above. If we 
assume that (a, A, b, e) G M°(R) then we see that the twisted conjugacy class of 
(a, ixA, b, 7r~1e) intersects M°(R) if and only if v(d) ^ 1; this is clear from the double 
coset decomposition found in Section 5.5. For such an A we take the measure on 
Mia(F) that gives its maximal compact subgroup volume one. 

6.2. Statement of the fundamental lemma. — In this section we give the state­
ment of the fundamental lemma for the pair (Af, M'). 

We recall that M' sits inside GSp(4) as the Siegel Levi and the only elliptic twisted 
endoscopic group in £M'(G) is GSp(4), with multiplicity two. Thus in this case the 
fundamental lemma states that for £' a strongly (7-regular, stable conjugacy class in 
M'(F) we have 

r & ( f c a ) = 2 e ° S p í V ) 

where the sum on the left is over those twisted conjugacy classes in M°(F) for which 

N(ka) = 

We now compute the function s^,p^{£') whose definition is given in [Art02, 
Section 5]. From Lemma 3.8 we see tha t for 

£' = diag(g, awtg"1w), 

a (stable) conjugacy class in M'(F), we have 

tfkf) = r ° S p ( 4 ) ( d i a g ( 5 , a u - (

5 - 1 u . ) ) - \v% (diag(l , a det g'1), g) 

where G" = (GL(2) x GL(2)) / GL(1). Therefore the fundamental lemma for the pair 

(M, M') is given by the following Proposition. 

Proposition 6.3. — For 7 a = (a, g, b, e)a G M(F) semisimple and strongly G°-regular 

we have 

r£(ya) = 2r^Ptt eag 
eòdet g wtg lw 

R M' a-lb) 
eag 

where the sum on the left hand side is over representatives for the twisted conjugacy 
classes within the stable twisted conjugacy class of 7. 
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For 7' = diag(eag, e6detgwtg~1w) G M'(F) we take the Haar measure on Mf ,{F) 
that gives its maximal compact subgroup volume one. 

For P° the upper triangular (1,2,1) parabolic in G° we set vol(ap/Z(Ap)) = 1/lng 
and normalize the other volumes as in Section 4.4. 

6.3. Proof of the fundamental lemma. — In this section we prove Proposition 
6.3. We begin by noting that for 7 = (a, g, 6, e) G M°(F) the stable twisted conjugacy 
class of 7 does not intersect M°(R) if \a\ 7̂  \b\. It's clear that the integrals on GSp(4) 
and (GL(2) x GL(2))/GL(1) also vanish in this case. 

If \a\ = \b\ then we may, after twisted conjugation, assume that a, b G Up. Then 
the stable twisted conjugacy class of 7 intersects M°(R) if and only if eg is conjugate 
in GL(2) to an element in GL(2,JR). It's also clear that if eg is not conjugate to an 
element in GL(2,f?) then the integrals on GSp(4) and (GL(2) x GL(2))/GL(1) also 
vanish. 

We now assume that we have 7 G M°(R). We use the twisted topological Jordan 
decomposition to prove the fundamental lemma. We can write 70: G M(R) uniquely 
as 

7a = usa — sau 
with u G M°(R) topologically unipotent and sa G M(R) absolutely semisimple. The 
twisted weighted orbital integrals can now be computed using 4.17. We set TV equal 
to the unipotent radical of the upper triangular parabolic of which M° is a Levi 
component, we define N' in GSp(4) similarly. 

Given s — (a 1, g\, b\, e\) we have 
ZMo(sa) = {(a,^,a _ 1 ,e) G M° : g~lgig = gi,detg = 1}. 

For u = (cL,g-, a - 1 , e) G ZMo(sa) topologically unipotent we have that the norm of 
7a in GSp(4) is equal to the product of the absolutely semisimple element 

aiefgi _ \ 
1 ^ a~1b1 det g1wtg~1w J 

and topologically unipotent element 

ae 9 

V a 2 det qwtq lw 
We can then also use Lemma 4.17 to compute the weighted orbital integrals on GSp(4). 

We now proceed to prove the fundamental lemma by analyzing the possibilities 
for s. 
6.3.1. s equal to the identity. — We first consider the case that s is the identity. In 
this case we have ZGo{a) = Sp(4) x GL(1) and we take 7 = (г¿, e) G Sp(4, R) x Up 
topologically unipotent. 

Lemma 6.4. — Suppose that s is the identity, then the fundamental lemma holds. 
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Proof. — We have 

u - 9 
\ a"1 

€ Sp(4,Ä) 

topologically unipotent. By Lemma 4.17 we have 

r^((u,e)a) rSp(4) (u) 
' Klingen W 

and hence for 7 = (u, e) we have 

r&(7'<*) rSp(4) (u') 
' Klingen V" ) 

where {u'} is a set of representatives for the conjugacy classes within the stable 
conjugacy class of u. But now using Lemma 4.16 and the double coset decompositions 
for SL(2, F) given in [FH99, Lemma 1.1.3] we have 

rSP(4) ( f) _ GSp(4) ( , 
' KlingenVa ) — ' KlingenV")' 

From the fundamental lemma for the (2,2) Levi proven above we have 

rGSp(4) (u) 
' Klingen V a) 

r(2,2) (diag(a#, 1), l)a) (GL(2)xGL(2)) 
' (TxGL(2))' (diag(a2, l),ag). 

Therefore to prove Proposition 6.3 we need to show that 
rG (2,2; (diag(a#, 1), l)à (GL(2)xGL(2)) 

' (TxGL(2))/ (diag(a2, l),ag) 

is equal to 
0 GSp(4) 
¿1 T\/TI 

{d\o,g{ag1w\ag) lw)) - r^, (diag(a7 a l),g). 
First we note that 

r^(diag(a,a 1),g) (GL(2)xGL(2))' 
' (TxGL(2))/ (diag(a2, l),ag) 

Next we note that the element 

ag 
wl (ag)~1w 

e GSp(4; 

lies in Sp(4) and by Lemma 4.16 we have 

2rGSp(4)(diag(a^,^(a^)-1^)) 9 Sp(4) {àmg{ag,w\ag) 1w)). 

Since this element is topologically unipotent, we can apply Lemma 4.17 to get 
9 GSp(4) [dia,g( ag1wt(ag) 1w)] rG 

r(2,2) 
,Xdia,g(agiwt(ag) 1w)il)a). 

After twisted conjugation we have 

rG 
r(2,2) 

(diag(ao, wt(aq) 1w).l)a rG 
(2,2; 

((diag((ag)2,/),l)a) 

and from the calculations of Section 5 we have 
rG (2,2; ((diag((a^)2,/),l)a) rG r(2,2) [(diag(a^,7), l)a) 

and we are done. 
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6.3.2. s central. — We now assume that s — (ai, gi, 61, e{) with g\ = diag(ci,ci) a 
scalar matrix. Therefore we have u = (a,p,a _ 1 ,e) with a, e G GL(1) and g G SL(2). 
In this section we prove Proposition 6.3 for 7 = us either by reducing the proof to 
Lemma 6.4 or by showing that both sides of the identity in Proposition 6.3 vanish. 
We begin with the following Lemma. 

Lemma 6.5. — Let ja = (a, g,b, e)a G M (F) be semisimple and strongly G°-regular. 
Then for A, fi G UF we have 

rA/(7«) = ^ ( ( A a , ^ , A6,e)a). 

Proof. — Since we are free to scale 7 by an element of Z(G°) n K without changing 
the value of r^(7«) we have 

r^((Aa, p,g, A6, e)a) = r%((\fi~la, g, A^ _ 16, A~ 1p,e)a). 

But now for rn — (A, /, 1) we have 

ra_1(A^_1a, g, A/i_16, A_1/xe)a(m) = (a, 6, e) 

and we are done. • 

Now suppose that ai = b\. Then by Lemma 6.5 we have ^(ja) = r^(ua) and 
the fundamental lemma in this case follows from Lemma 6.4. Proposition 6.3 in the 
case that a\ ^ b\ follows from the following. 

Lemma 6.6. — With notation as above assume that we have a\ 7̂  b\. Then both sides 
of the fundamental lemma vanish. 

Proof. — We first compute TV D ZQO(SO)1 by abuse of notation we work inside GL(4). 
For 

/ 1 xi x2 x3\ 
1 X4 

n = EIV 
1 x 5 

V 1/ we have 

a(n) = 

f\ —X4 X3 — X1X4 — X2X$\ 
1 x2 

,
 1 T 

and 

s 1ns = 

1 a~[lc\X\ a\xc\x2 a^1bix3\ 
1 ÒiC1~

1X4 
1 bic^lx$ 

1 / 
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Thus we need 
xi = -bic^Xb 
X2 = b1C^1X4 
X4 = a{xc\x2 
X'5 = —(2̂  ^С\Х\Щ 

from which it follows that x\ — a^xh\X\ and x2 — a^lb\x2. But since we are assuming 
that a\ / 6 1 , it follows that x\ = x2 = x4 = x§ = 0. But now we need x% — a^1b\x3l 
and hence x3 — 0 in this case as well. Thus when a\ ^ bi the twisted integral vanishes 
by Lemma 4.17. 

We now consider the right hand side of the fundamental lemma. First we consider 
the integral on GSp(4). The absolutely semisimple part of N(^fa) is 

Sl = aiei ( 1 -U i f t -1 I V ax 61 detgiwtg1 wj 

We now compute ^GSp(4)(SI) ^ NF. For 

n 
/1 X\ x2 

1 X3 Xi 
1 

V 1 

G N' 

we have 

sl 1nsi 
/1 ax lbix\ aA lbix2\ 

1 a^lb\x3 a^1b\X\ 
1 

V 1 / 
from which it follows that ^GSp(4)(6>) H TV7 = {/} if a\ 7̂  b\ and hence by Lemma 4.17 
the integral on GSp(4) vanishes. 

Finally we consider the integral on (GL(2) x GL(2))/GL(1). The norm of the 
element 7a in (GL(2) x GL(2))/GL(1) is equal to 

a-2a-ibi) .e^neag^ G (GL(2) x GL(2))/GL(1). 

And therefore if a\ / 61 then a~[lb\ ^ UF, and since u is topologically unipotent 
a'2 G UF. Hence we have a^a^h 0 UF and the integral on (GL(2) x GL(2))/ GL(1) 
vanishes. • 

6.3.3. s diagonal. — In this section we prove Proposition 6.3 in the case that s is 
diagonal but not central. So we take 

4 ( '"•(" , / , ) • ' " • " 
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with c\ 7̂  d\. After twisted conjugation we may assume that a\ = c\ — 1. We now 
compute N\ = N PI Zc(sa); by abuse of notation we consider N C GL(4). 

Lemma 6.7. — Let s = (1, diag(l, di), &i, ei). T/ien u>e /za?;e £/&e following possibilities 
forNx. 

(1) If 6, = di = - 1 tfien 

N1 
1 X\ x2 —XiX: 

1 -x2 
1 —Xi 

1 

(2) Ifbi = d1^-l then 

N1 

/1 X! 0 0 
1 0 

1 — X i 
\ 1 

(3) Ifb1 = d7l ^ - 1 then 

N1 
/1 0 X2 0 \ 

1 îX2 
1 0 

(4) Ifbi = l and di ^ 1 then 

N1 

1 0 0 x3 
1 0 

1 0 
1 

(5) In all other cases N± = {I}. 

Proof. — For 

n -

1 xi x2 x3^ 
1 X4 

1 x5 
1 ; 

we have 

a(n) 

fl —X5 X4 X3 — X1X4 — x2x^\ 
1 x2 

1 — Xi 
V 1 / 
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and 

s lns -

T xi dix2 bix3 
1 biX4 

1 bidîlxs 
1 

Hence we need 

xi = —bid^1x$ 
x2 = bix4 
x4 = dix2 
X5 = -Xl. 

Thus unless b\ — d\ we have x\ — x^ = 0. And unless b\ — d^1 we have x2 — X4 = 0. 
And the only way both can happen is if b\ = d\ = — 1 (since we are assuming that 
d\ / 1). We also need to have 

bix3 — x3 — X1X4 — x2x$ 

and hence we need to have 

(1 - 61)3:3 = X1X4 + x2x5 = (di - l)xix2-

Putting this all together completes the proof. • 

We now compute the twisted integral in each of the above cases. We have 

u=(a, (C ^ x ) , * - 1 . ^ 

and so the stable twisted conjugacy class of 7 = us is equal to the twisted conjugacy 
class of 7. 

Lemma 6.8. — With notation as in Lemma 6.7 the twisted integral r^j(ja) is given 
by the following. 

(1) Ifbi = di = - 1 then 

rAi(la) = \AC ~ M\ac~l - 1| / / logmaxjl, \xi\, \x2\, \xix2\}. 
J\Xl\^\ac-i-l\-^ J\x2\^\ac-l\ 

(2) Ifbi =di^-l then 

r<Aiha) = \AC~L ~M J\Xl\^\ac-i-l\-^ J\x2\^\ac-l\ logmaxjl, |xi|}. 

(3) Ifh = d~l ^ - 1 then 

rffija) = \ac- 1| / logmaxjl, \x2\}. 
J\x2\^\ac-l\-1 
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(4) Ifb\ = l and di ^ ±1 then 

r ^ ( 7 c ) = \a-l\ 
\x3\^\a-l\'^ 

logmaxjl, \x3\} 

(5) In all other cases r?f(^a) = 0. 

Proof. — In each case we compute u 1n lun for n G N. In the first case we have 

u ln lun 

1 (1 — a 1c)x\ (1 — a lc 1)x2 —(1 — a 1c)(l —a lc 1)x\x2\ 
1 -(1 - a~1c~1)x2 

1 —(1 — a~1c)xi 
1 ) 

In the second case we have 

u 1n lun 
a (1 - a-Lc)xi 0 0 N 

1 0 
1 —(1 — a~lc)x\ 

K 1 J 
In the third case we have 

u 1n lun 
^1 0 ( 1 - a-1c~1)x2 0 

1 (1 - arxc-v)dxx2  

1 0 
V 1 

In the fourth case we have 

u xn 1un 

/ 1 0 0 (l-a-2)x3\ 
1 0 

1 0 ' 
i / 

And of course in the fifth case the integral vanishes. • 

Now we turn to the corresponding integrals on GSp(4). The absolutely semisimple 
part of N(^ya) is 

si = a di 
h 

K M l / 

Lemma 6.9. — With notation as above we have the following possibilities for N[ — 
^GSp(4)(si)niV'. 
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(1) Ifb± = l then 

Ni" 

'1 xi 0\ 
1 0 xi 

1 

(2) Ifhi = di = - 1 then 

Ni" 
'1 0 X2 

1 x3 0 
1 

1 , 

(3) Ifbi = di { 1 , - 1 } then 

Ni" 

î o ch 
1 x3 O 

1 
îy 

(4) / / 6i = dT1 £ { 1 , - 1 } t/zen 

7V{ 

O x2N 
1 0 0 

1 
^ 1 > 

(5) In all other cases Ni = 17) 

Proof. — For 

n 

(1 Xi X2N 
1 x3 Xi 

1 
^ 1 . 

G TV' 

we have 

s1 1nsi -

T bixi dibiX2 
1 6id1_1X3 61X1 

1 
1 

and the result iollows. 

We now need to compute the weighted integral on ^GSp(4)(5i) at the element 

u — 
ac 1 

a~lc 
a-lcr\ 

ас 
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These integrals are given in the following Lemma. 

Lemma 6.10. — With notation as above the integral 2r^,p{y4\N(~/a)) is given by the 
following. 

(1) Ifh = l then 

2r^p(4)(7V(7«)) = 2 | a - l | /2r^p(4)(7V(7«) logmax{l, \Xl|}. 

(2) Ifbi = d± = -1 then 2r^p(4)(Nfra)) is equal to 

\ac - l\\ac~l - 1| / / logmaxjl, \x2\, \x$\, \x2x3\}. 
J\x2\^\ac-l\-1 J\x3\<:\ac-1-1\-1 

(3) //bi = di ^ -1 tfiera 
2r^p(4)(7V(7c)) = lac"1 - 1| /J\x2\^\ac-l\-1 J\x3\<:\ac-1-1\- logmax{l, |*3|}. 

(4) If b1 = d~l ^ -1 £/ien 

2r^p(4)(7V(7a)) = \ac-l\ f J\x2\^\ac-l\-1 J\x3\<:\ac-1-1\- logmax{l, \x2\}. 
J\x2\^\ac-l\-1 

(5) In all other cases 2r̂ p(4)(AT(7a)) = 0. 

Proof. — We take 77, G A/7. Tn the first case we have 

u 1n 1un — 

1 ( l - a - 2 ) x i 0 ^ 
1 0 (l-a~'2)x1 

1 
1 J 

In the second case we have 

u 1n 1un 

a 0 (1 - a-2c-2)x2\ 
1 ( l - a -2c2 )x3 0 ] 

In the third case we have 

u 1n 1 im 
0 ° \ 

1 (1 - a~2c2K3 0 
1 

^ 1 / 
In the fourth case we have 

u 1n 1un -

1 0 (1 - a~2c~2)x2 
1 0 0 

1 
1 

And in the fifth case it's clear that the integral vanishes. 
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For the integral on (GL(2) x GL(2))/ GL(1) the norm of 7a is 

( C a - 2 0 >eieadiag(c>^c-1)) G (GL(2) x GL(2))/GL(1). 

Thus we see that the integral vanishes unless 61 = 1 in which case it equals 

\a — 1| / logmaxjl, \x\}. 
^IxKla-ll"1 

Combining the above lemmas proves Proposition 6.3 in this case. 

6.3.4- s elliptic. — We now assume that we have g\ G GL(2, F) which is non-central 
and lies in an elliptic torus. After stable twisted conjugation we can assume that we 
have 

9i = ci Doli 
qc ci 

e GL(2,#) 

with di / 0 and v(D) = {0,1}. We let ED = F(VD). For sa to be absolutely 
semisimple we need to have 

9Ì = 
aox 

sp 

for some x E F and /c prime to the residual characteristic of F. But then, as an 
element of ED, we have g\ = C,x for some kth root of unity £. Since we're assuming 
that gi is non-central we must have ( 0 i ? x . Hence we must have EQ/F unramified 
and v(D) = 0. After twisted conjugation we can take 

s — 1, Cl 
1 

F) 
ci 

,&i,ei 

We now compute N\ = N n Zoo(sa), which by abuse of notation we consider as a 
subgroup of GL(4). 

Lemma 6.11. — With notation as above we have the following possibilities for N\. 

(1) If b\ = —1 and c\ — 0 then 

apls 

1 xx x2 (Dxi -xi)/2y 

1 
1 

Dxx 

-x2 

1 

(2) / / 6i = 1 taen 

(N = ) 

1 0 0 x 3

N 

1 0 
1 0 

1 

(3) In all other cases we have N\ = {I}. 
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Proof. — For 

n = 

1 Xi X2 Xs 
1 X4 

1 X5 
1 

we have 

a(n) -

1 —X5 X4 Xs — X1X4 — X2X5\ 
1 X2 

1 — Xi 
1 / 

and 

s 1ns 

(\ C1X1+X2 L>Xi+CiX2 
1 

1 

bix3 

(cj - D^ihaxi - hDx5) 
(c\ - J D)- 1 ( -ò ix 4 + òiCix5) 

Hence we need 

Xi = -(C2 - D) 1(-biX4 + Ò1C1X5) 

x2 = (c2 - D)_1(òicix4 - biDx5) 
X4 = Dxi + C1X2 
X5 = — Ci#i — x2. 

So we have 
(c2 — D)xi = 61X4 — 61C1X5 

and from the third and fourth equations we get 

(c2 — D)xi = —X4 — C1X5. 

Hence we have 
(l + 6i)x4+ ci(l-6i)x5 = 0. 

We also have 
(c2 — D)x2 = 61C1X4 — biDx$ 

and from the third and fourth equations we get 

(c2 — D)x2 = C1X4 -f Dx$. 

So we have 

(l + 6i)x4 + ci(l-6i)x5 =0 
c i (6 i - l ) x4 -D( l+6 i )x5=0 . 

Hence we deduce that 

(c2(l-61)2-D(l + 61)2)x4-0 
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arid 
(C2(1-61)2-D(1+61)2)X5 =0 . 

Thus unless b\ = — 1 and c\ — 0 we have x\ = x2 = #4 = x.5 = 0. Now we also need 
to have 

X*3 — X1X4 — X2X^ ^ 61X3. 

Thus if b\ — 1 then we can take X3 to be anything we like. On the other hand if 
61 = —1 and c\ — 0 we have X4 = Dx\, x$ — —x2 and x3 — \ (Dx\ — x2). • 

We take 
/ (c Dd\ _! \ r, < , 

u = I a, I I , a ,e J e ZM° lsa) 

to be topologically unipotent; so we have c £ UF and d G (7r). We have 

as = / fca+Dd D(c + da)\2r^p(4)(7V(7«) \ 
V \ c + dci cci + Dd )2r^p(4)(7V(7«) J 

Now c + dci E L/p and hence we deduce that it is only the twisted conjugacy class 
of us that intersects M°(R), i.e., the other twisted conjugacy class within the stable 
twisted conjugacy class of us does not intersect M°(R). The twisted integrals at the 
element us are given by the following lemma. 

Lemma 6.12. — With notation as above the twisted integrals 7̂ (707) are given by the 
following. 

(1) If bi = —1 and c\ = 0 then 

rf7(7«) = 2|JDG(7a)|1/2 /"logmaxfl, l^l, |x-2|} 

over the region 
. (1 — a-1c)xi — a~ldx2 E R 
. -a~ldDxi + (1 - a~1c)x2 E R. 

(2) Ifbt = l then 

rhi(ri<x) = \a ~ !| / logmax{l, \x3\}. 
J\x3\^\a-l\-i 

(3) In all other cases 7*^(7«) = 0. 

Proof — First suppose we have b\ — — 1 and ci = 0 then we have 

/1 (1 — a_1c)xi — a~ldx2 —a~ldDx\ + (1 — a_1c)x2 *\ 
- 1 - 1 1 * u n un = 

1 * 
V 1 / 
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If 61 = 1, then we have 

и ln lun 

/ 1 0 0 (l-a~2)x3\ 
1 0 

1 0 
V 1 / 

And in all other cases it's clear that the integral vanishes. • 

Next we look at the integrals on GSp(4). The absolutely semisimple part of 
N(^ya) is 

si = e 
'a v 
1 ci 

b\C\ —b\D 
K -bx b\c\ 

Lemma 6.13. — With notation as above we have the following possibilities for N[ — 
ZGsP(4)(si) n N'. 

(1) If bi - —1 and ci = 0. then 

S1=e 
' /1 xi Dx3\ 

1 X3 Xi 
1 

A i / 
(2) If bx = 1 then 

S1=e 
/1 0 -DX; 

1 x3 0 
1 

\ 1 
(3) In all other cases Ni = {/). 

Proof. — For 

n 

1 xi x: 
1 x3 x_ 

1 
1 

we have s lns equal to (c2 — D) 1 times 

/1 bi(cf + D)x\ - bicix2 - biCiDx3 —2biC\Dxi + bic\x2 + biD2x3 \ 
1 -2biCiXi + bix2 + cfbix3 bi(c\ + - òiCix2 - biCiDx3 
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Hence we need 
(c2 - D) xi = bi(c\ + D) xi - bici x2 - b\C\D x3 
(c2 - D) x2 = -2biCiD xi + bxc\ x2 + bxD2 x3 
(c2 — D) x3 = -2bici xi + 61 x2 + c\bi x3. 

That is 
(bic\ + biD + D - c\) xi - bici x2 - biCiD x3 = 0 

-2biCiD xi + (L> + 6lC2-c2) x2 + 6i^2 x3 = 0 
-26ici xi + 61 x2 + (c26i + D - c\) x3 = 0. 

Equation 1 times D plus equation 2 times ci gives 

- c2)(l + + ci(l - bi)(D - c\)x2 = 0 
and since D — c2 7̂  0 we have 

D(l + bi)xi +ci( l - 6i)x2 = 0 
Next we do equation 2 times c\bi + D — c\ minus equation 3 times biD2 to give 

2biCiD{l - bi)(c2 - D)xi + (bi - l)(c2 - D)(-(c2 - D) + ^(c2 + D))z2 - 0 
and since D — c2 7̂  0 we have 

26iCiD(l - + (61 - l)(-(c2 - D) + 61 (cf + D))x2 = 0. 
Thus we have 

D(l + +ci( l - bi)x2 = 0 
26iCiD(l - bi)xi + (&x - l)(-(c2 — D) + bi(c2 + Z)))x2 = 0, 

which yields 
(D(h + l)2 - cKh - l)2)Xl = 0 

and 
(61 - l)(cf(6! - l)2 - D{bx + l)2)x2 = 0. 

Therefore if c\ = 0 and 61 = —1 we can take x\ and x2 to be whatever we like; and 
then we have Dx3 — x2. Now if bi — 1 then we have x\ — 0 and x2 — —Dx3. In all 
other cases we have x\ = x2 = x3 = 0. • 

Now we compute the integrals on GSp(4). We need to compute the relevant inte­
grals at the element 

u — e 
f ac adJJ \ 
ad, ac 

a~lc —a~ldD 
V — a~ld a~lc I 

Lemma 6.14. — With notation as above 2r^pP<y4\N(^a)) is given by the following 
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(1) If bi = —1 and c\ = 0 then we have 2r^p(^4\N(ja)) equal to 

2|^GSp(4)(Af(7a))r/2 f log{l,|a:i|,|x3|} 

over the region 
. (a2 - c2 - Dd2)Xl + 2cdDx3 G R 
• 2cdxx + (a2 - c2 - L>d2)x3 G f?. 

(2) Ifb\ — \ then we have 2r<jffip^(N(70)) equal to 

2\a — 1| / logmax{l, |x3|}. 
J|x3|^|a-i|-i 

(3) In a// other cases we have 2r^p<"4\N(ja)) — 0. 

Proof — Let's consider the first case. We have 

u ln lun 

'1 {a2 - c2 - Dd2)x1 + 2cdDx3 *\ 
1 2cdxx + (a2 - c2 - Dd2)x3 * 

1 

In the second case we have 

u xn lun 

a 0 -D(l -a~2)x3^ 
1 (1 -a-2)x3 0 

1 
1 

And it's clear that in the third case the integral vanishes. • 

Again we recall that the integral on (GL(2) x GL(2))/ GL(1) vanishes unless b\ = 1 
in which case it equals 

\a — 1| / logmax{l, \x\}. 
Jìxì^ìa-lì-1 

Thus it's clear that the fundamental lemma holds in all cases except perhaps when 
bi = —1 and c\ — 0. We have \DG{IOL)\ — \DGsp^(N(ja))\ and in this case we need 
to show that the integrals of logmaxjl, \x\, \y\\ over the regions in F2 given by 

'а-с -d \ ÍA € R2 
,—dD a — с) У y i 

and 
fa2 - c2 - Dd2 2cdD \ fx\ 2 
I 2cd a2-c2-Dd2 [y eH 

are equal. We readily see that if \d\ ^ \a — c\ then both these matrices lie in 

G l W \ (d d) 
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and if |d| < |a — c| then both these matrices lie in 

GL(2,fl) a — c ^ 
a — CJ 

and if \d\ < \a — c\ then both these matrices lie in 
Hence the integrals above are equal and the proof of Proposition 6.3 is now complete. 

7. The fundamental lemma for the (1,2,1) Levi II 
In this section we again take M° to be the (1,2,1) Levi in G°. We have 

M ° = | ^ A j , e j : A G GL(2),a,6,e G GL(1)| 

and we write such an element as a tuple (a, A, 6, e). The restriction of a to M° is 
given by 

a : (a, A, 6, e) i—> (6 _ 1 , det A~l A, a - 1 , afre det A). 
We set M' = GL(1) x KesE/F GL(1) an unramified elliptic twisted endoscopic group 
for M°. In this section we prove the fundamental lemma for the pair (M, M'). 

7.1. Statement of the fundamental lemma. — Let E denote the unramified 
quadratic extension of F. We fix D G F with v(D) = 0 such that E = F(y/~D). Let 
RE denote the ring of integers in E and UE the group of units. We let | \E denote the 
multiplicative valuation on E normalized such that \TT\E = Q~2• Given (5 G E we let 
/3 denote its Galois conjugate. We fix the Haar measure on E that gives RE volume 
one. 

We recall from Lemma 3.5 that the elliptic twisted endoscopic groups for G° in 
8M'{G) are Gx = ResE/FGL(2y and G2 = (GL(2) x ResE/F GL(1))/GL(1). More­
over each group appears with multiplicity two and we have M' sitting inside both of 
these groups as the diagonal torus. 

The stable twisted conjugacy classes in M°(F), which transfer to M'{F), are those 
with representatives of the form 

7 : 

(c \ 
a bD 
o a 

\ d) , 
Moreover as we saw in Section 6.1 the stable twisted conjugacy class of 7 is the disjoint 
union of the twisted conjugacy classes of 7 and 

7' 
a bw-1D 
bu a c 

dl 
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And we have, using [KS99, Chapter 4], A(N(-/a)^) = (-l)^6) and A(A^(7a),7/) = 
(_!)"(&)+!. 

We let ¡3 = a + b\fl) G Ex. The fundamental lemma is given by the following 
Proposition. 

Proposition 7.1. — Let 7 and 7' be as above, then we have 

A(N(-/a)^) = (-l)^6) = (-1) c (b) 2rGl 
M' 

ceß 
deß 

4- 2r°2 ce 
de 

,ß 

For P° the upper triangular (1,2,1) parabolic in G° we set vol(ap/Z(Ap)) = 1/lng 
and normalize the other volumes as in Section 4.4. 

7.2. Proof of the fundamental lemma. — We note that both sides of the identity 
in Proposition 7.1 vanish if the stable twisted conjugacy class of 7 does not intersect 
M°(R). Thus we may assume that we have 

7 

fC 
a bD 
b a 

K d 

, e G M°(R). 

We now compute 2r(Q,{N{^a)) and 2r(^,{N(^a)). We have 

2r%\{N{1a)) = \c(3-aW\E f _ logmax{l, \x\E} 

JlxKlcP-dp]-1 

and 

2rZ*,(N(>ya)) = \c-d\ f logmax{l, |x|}. 
Jlxl^c-dl-1 As in the previous section we use the twisted topological Jordan decomposition of 

707 to prove the fundamental lemma. So we write 7a = usa = sau as a commuting 
product of an absolutely semisimple element sa and a topological unipotent element u. 
We again analyze the possibilities for sa and prove the fundamental lemma for each 
such sa and every topologically unipotent element u that commutes with it. 

7.2.1. s equals the identity. — We now assume that s is equal to the identity. With 
a slierht chanere in notation we take 

7 : 

(с 
ас'1 bc~lD 
bc~l ac~l 

с'1 

e G Sp(4, R) x UF 

with c,e e Ul, 8 = a + by/D G Uh and a2 - Db2 = c2. 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2005 



398 D. WHITEHOUSE 

In order to use the calculations and reductions of Section 5 we make the further 
assumption that q > 3. However, arguing as in Remark 5.9 will give the fundamental 
lemma in the case q = 3 as well. 

We set |6| = q-M and |c - 1| = q~N. Then we have 

\DG{ia)\1'2 • q-3N-M^ IF N ^ M) 
q-N-3Mi if дг ^ Mj 

Юм(7«)Г/2=9-М, 

|£>Gl(iV(7a))|1/2 
g~2Ar, if TV < M, 

-IM if TV ^ M, 

|DG2(TV(7a))|1/2=(?-A'. 

Using Lemma 4.17 we note that the twisted weighted orbital integrals we need to 
compute on G° are equal to the weighted orbital integrals on GSp(4) with respect 
to the Klingen Levi. Let Mi denote the Klingen Levi in GSp(4) and Pi the upper 
triangular parabolic of which Mi is a Levi component. We also set N\ equal to the 
unipotent radical in Pi. We let opx denote the function 

°PÀa) = / vMl(<Pa(n)) dn 
J N1(F)nGSp(4,R) 

where (fa : Ni —> N\ the inverse of the map N\ —> N\ : n i—» a~1n~1an. By 
abuse of notation we identify 7 with it's component lying in Sp(4); then we have 
r<h<i{la) ~ RM^'A) equal to I DM (7«) I t i m e s 

M 
w p1 (7) + (<? + 1) Y, (-l)M<?M"1^P1 tâ-yZm) 

m = 1 
where 

zm = 
\ 

1 
7TM 

1 / 
And Proposition 7.1 says that it equals 

Va2N Va2N -
Q2-l 

q n+ aN - 1 
Nq"-?—^ q - 1 

if N ^ M and equals 

(-i)M 2q~2M Mq2M 
q2M - 1 
<72 - 1 

+ q n (N Q Q qN - 1 
a - 1 

if AT > M. 
We now set about computing 

<7Pl(7) + (tf+l) 
M 

m—1 

(-l)mqm-l<yPAz^Zm) 
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To put us in the same shape as Section 5 we scale our element 7 by c to give 

7 = 
'c2 \ 

a bD 
b a 

1 / 
which of course doesn't change the value of ap1(zm1jzrn). And in the notation of 
Section 5 we have 

, fa bD\ 2 n — det I 1 = c . 
\b a J 

We have \n - 1| = \c - 1| = q~N and \b\ = q~M. Note also that we have \(3 - 1\ = 
max{|a — 1|, \b\}. But since a2 — b2D = c2 it follows that \(3 — 1| = max{|c — 1|, 

We begin by proving Proposition 7.1 under the assumption that \b\2 ^ \n — 1| ^ 
So we have M ^ N. As we have seen in Sections 5.5.3 and 5.5.5, crp1{z^l1jzrn) for 
0 ^ rn ̂  M equals the sum of 

9 0-m+l -N-2M 
N + M + m 7 + 2+; - + — 

q — 1 qz — 1 qs — 1 
and 

o„ 1 1 „-AT-2M+3/+2ra+l .-iV-2M+3I+2 
(M_2Z-m-2)(7-2M+2(+m + a-2M+2'+m^±i + ^ — + ,g iw , ^ 

9 + 1 l (g + l)(<?3-l) 
where I = [jv~mj, Using this we compute that 

M 
^ ( 7 ) + (<? +1) E (-i)m9m-vPl ( ^ 7 ^ ) 

m=l 
equals 

(_1)M A ^ - M (Vg2M _ + 9""+^ (NqN - t ) ) • 
And since |DM(7«)| = g_M Proposition 7.1 follows in this case. 

In proving the fundamental lemma for the (2,2) Levi in the case of an elliptic 
torus we reduced the proof to this case. We now follow these same reductions for the 
fundamental lemma here. First we assume that we have |c — 1| ^ \b\2. We set 

aPl (M, Af, m) = aPl (z^jZm) 
and 

L(M, N) = q'M LPl (TV, M, 0) + (q + 1) ] T (-l)mçm" VPl (TV, M, m)") . 
\ m=l / 

We now compute qL(M1N + 1) — L(M, TV). As we have seen in the proof of 
Proposition 5.13 we have qo~pl (M, TV + 1, m) — 07̂  (M, Af, m) equal to 

-m _ -Af+2 
(iV + M + m + 1)9 - (TV + M + m + 2) + 2ç-m - 2ç~M+1 + - 2^ ± 

0 + 1 
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if M — m is even and equal to 

(TV + M + m + l)q - (TV + M + m + 2) + 2g~m - q~M • — m _ Q — M + l 
2-

9 + 1 if M - m is odd. 
Using this we compute that qL(M, N + 1) — L(M, N) equals ( —1)M times the sum 

of 
q-N+M (N + l)qN+1 qN+1 - 1 

q-l q-N+M „JV„l 
NqN-Q—± q - 1 

and 
2<TM+1 Mq2M q2M - 1 

ç2 - 1 2g"A/ L(M, TV) 
g2 - 1 

as required. 
Now assume that we have g_Ar = \c — 1| = \n — 1| ^ |&| = g_M. Again we set 

aPl (M, TV, m) = aPl {z^l*™) 
and 

LfM, TV) = crPl (M, TV, 0) + (q + r 
avm 

q2M 
(_l)m m_i (M ^ x 

We denote, as in the case of the (2,2) Levi, 
e(M, TV, m) = crPl (M + 1, TV, m + 1) - crPl (M, TV, m), 

and we have L(M + 1, TV) + L(M, TV) equal to 

crPl (M + 1, TV, 0) - aPl (M, TV, 0) + (q +1 ; 
M 

m=0 
(-l)m+1gme(M, TV,m). 

And as we have seen in the proof of Proposition 5.11 
e(M, TV,m) q-3N-rn~1(I(m + 2) - J(ra)), 

where I(m) is equal to the integral of 
|x| logmax{l, |x|, \s\} 

over the region 
. \x\ ^ qN 
. 7TNS-7Tm + MX2 G 

And we have 
aPl(M,AT,0) = g-3iV(l + g-1)/(0) and <rPl (M + 1, TV, 0) = q~3N (1 +q -1) 1(1). 

Hence we have 
L(M + 1, A) + L(M, N) = (q + l )^3^"1 ((-1)M+1/(M + 2) + (-1)M/(M + 1)) . 

But since I(m) is constant for m ^ M so we have L(M + 1, A) + L(M, TV) = 0 as 
required. 
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The proof of Proposition 7.1 is now complete under the assumption that s equals 
the identity. 
7.2.2. s not equal to the identity. — We now analyze the other possibilities for s. 
Let's take 

s = (ai,0i,61,ei). 
First we assume that g\ G Z(GL(2)). Then we have u G M°(F) topologically 

unipotent and a(u) = u. If a\ — b\ then from Lemma 6.5 we have 
r^,(N(uSa))=r^,(N(ua))(Ua)). 

It's clear that when a\ — b\ we also have 

r^,(N(uSa))=r^,(N(ua))(Ua)). 

and 
r°>(N(uSa))=r%,{N(Ua)).(Ua)). 

Hence in this case Proposition 7.1 follows from the case that s is equal to the identity. 
Next we assume that g\ is central and a\ 7̂  b\. Then from Lemma 6.6 we see 

that the left hand side of the identity in Proposition 7.1 vanishes. It's clear that the 
corresponding integrals on G\ and G2 also vanish. Thus we are done with the case 
that gi is the identity. 

Now we suppose that q\ & Z(GL(2)). Then we can take 

r%(usa) = r%(ua). 

It 's clear tha t when a\ — b\ we also have 

r1I

1,(N(usa))=rG\(N(ua)) 

and 

rG},(N(usa)) = rG},{N(ua)). 

Hence in this case Proposition 7.1 follows from the case that s is equal to the identity. 
Next we assume that g\ is central and a\ 7̂  b\. Then from Lemma 6.6 we see 

that the left hand side of the identity in Proposition 7.1 vanishes. It's clear that the 
corresponding integrals on G\ and G2 also vanish. Thus we are done with the case 
that gi is the identity. 

Now we suppose that g\ £ Z(GL(2)). Then we can take 

S=(HC1 CJ'01'61) 
and 

U=(a'[d Dcd)^a~1'e) 
topologically unipotent with c2 — Dd2 = 1. In this case, as remarked before Lemma 
6.12, the other twisted conjugacy class within the twisted conjugacy class of usa does 
not intersect M°(R). The twisted integrals in this case have been computed in Lemma 
6.12. 

We now compute the integrals on G\ and G2-

Lemma 7.2. — We have 2rfr(N(usa)) — 0 unless b\ = —1 and c\ — 0 in which case 
it equals 

msix{\a - c\E,\d\E} / logmax{l, \x\E}. 
^Ixl^maxjla-cl^ldls}-1 

Proof. — We have the norm of s in GL(2, E)' equal to S=(HC1 CJ'01'61) 

/e(ci + V D ) S = ( H C 1 CJ'01'6\ 
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If we let N' denote the unipotent radical of a Borel subgroup containing M' then we 
have N' n ZGl(N(sa)) = {1} unless 

e(ci + y/D) = e6i(ci - y/D); 

which is if and only if c\ = 0 and 6i = —1. Let /3 = c + d\/Z} then when ci = 0 and 
b± — — 1 we have 

2 r ^ ( 7 V ( ^ ) ) = l a ^ - a - 1 ^ - 1 ^ / J |x|£^max{|a-c|£;,|d| E} logmax{l, \x\E} 

= |1 - a-lfrx\E f J |x|£^max{|a-c|£;,|d| E} logmax{l, \x\E} 

= max{|a - c\El \d\E} / logmax{l, \x\E} 

J |x|£^max{|a-c|£;,|d| E}"1 as required. 

Lemma 7.3. — We have 2r^f,(N(usa)) = 0 unless b\ = 1 in which case it equals 

\a — 1| / logmax{l, \x\}. 
Jlxl^la-ll"1 

Proof. — We have the norm of s in (GL(2,F) x Ex)/Fx equal to 

( ( eò, 
Ci + У/D ) 

If we let Nf denote the unipotent radical of a Borel subgroup containing M' then 
N' n Zc2(N(sa)) = {/} unless b± = 1. In this case we see from above that we have 

2rf?,(N(usa)) = \a - 1| / logmax{l, |x|} 
J \ x\^\a — \\~x 

and we are done. • 
So, unless either b\ = 1 or b\ = —1 and c\ — 0, all integrals vanish and the 

fundamental lemma holds. If we have b\ = 1 then by Lemma 6.12 the twisted integral 
is equal to 

\a-l\ / logmaxjl, \x3\} 
J\x3\^\a-l\-i 

and we are done in this case. 
Now suppose that b\ = — 1 and c\ — 0. Then by Lemma 6.12 we need to show that 

the integral of 
2 / logmaxjl, \x\\, |x2|} 

over the region 
• (a — c)x\ — dx2 G R 
• —dDx\ + (a — c)x2 G R 

ASTÉRISQUE 302 



THE TWISTED WEIGHTED FUNDAMENTAL LEMMA 403 

is equal to 
/ logmax{l, l^l^}. 

J Ixlŝ max-fla — cl s,Idi e}-1 
If we let maxi la — cl, Idi} = a n, then this latter integral is equal to 

g2 
(g + l)(g3_i) 

We now turn to the first integral. As we saw in Section 6.3.4 this integral is equal 
to 

2 / / logmax{l, |xi|, |x2|}, 
J|xi|^max{|a —c|,|d|}-1 J |a;21 ̂ max{ |a — c|,|d|}_1 

which equals, by Lemma 9.8, 

2 nq2n q2n 
q2n 

q2n+i 
q2 - 1 

1 
g3 - 1 

g2 
(g + l)(g3_i) 

which equals 

2 nq2n - q2n - 1 
q2 - 1 

The proof of Proposition 7.1 is now complete. 

8. The fundamental lemma for the diagonal Levi 

In this section we prove the fundamental lemma for M° equal to the diagonal torus 
in G° and M' equal to GL(1)3, the unique unramified elliptic twisted endoscopic group 
for M°. The restriction of a to M° is given by 

a : (diag(a, o, c, d), e) i—• (diag(d-1, c_1, a - 1 ) , abode). 

8.1. Statement of the fundamental lemma. — We note that for 7 = 
(diag(a, 6, c, d),e) G M°(F) and m = (diag(ai, &i, ci, di), ei) G M°(F) we have 

m_17a(m) = (diag((aidi)_1a, {b\Ci)~1b, (oiCi)_1c, (aidi)-1d), a\b\C\d\e). 

It's clear from this that the stable twisted conjugacy class of 7 is equal to the twisted 
conjugacy class of 7. Therefore the fundamental lemma for the pair (M, M') is given 
by the following Proposition. 

Proposition 8.1. — For (diag(a, 0, c, d), e)a G M (F) which is strongly G°-regular we 
have 

r^((diag(a, 0, c, d), e)ce) — 2r^p(^(diag(aoe, ace, ode, cde)) 
egim/ to 

2rM/L^XGL^2^ (diag(aoe, cde), diag(ace, bde)) 
- r(GL(2)xGL(2))/ GL(1) (diag(1; a - l ^ 2 r M / L ^ X G L ^ 2 ^ ̂  

We set vol(a^/Z(A^)) = 2/In a and normalize the other volumes as in Section 4.4. 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2005 



404 D. WHITEHOUSE 

8.2. Proof of the fundamental lemma. — As above for 
m = (diag(ai,&i,ci,di),ei) G M°(F) 

we have 
m~l^a{m) = (diag((aidi)_1a, (6iCi)_16, (friCi)_1c, (aidi)_1d), ai&iCidie). 

Hence we see that the twisted conjugacy class of 7 = (diag(a, b, c, d), e) G M°(F) 
intersects M°(R) if and only if we have \a\ = |d|, |6| = |c| and \abe\ — 1. It's clear 
that unless these conditions are met then the same is true of the conjugacy class of 
N(7a) in Mr(F). Thus we may as well assume that we have 

7 = (diag(a, 6, c, d), e) G M°(#). 
Under this assumption we have 2r^,L(^xGL(2)) (diag(a6e, cde), diag(ace, 6de)) equal 
to 

2|a6 — cd||ac — bd\ / logmax{l, \x\} \ logmax{l, \y\) 
J\x\^\ab-cd\-^ J\y\^\ac-bd\-^ 

and r^^^xGL(2))/G1^1) (diag(l, a_1d), diag(a6e, ace)) equal to 

2|a —d||6 —c| / logmaxjl, \x\} / logmax{l, \y\}. 
JlxKlo-dl-1 ilyKlb-cl-1 

We now prove Proposition 8.1 using the twisted topological Jordan decomposition. 
As before we write 7a = usa = sau and analyze the possibilities for s. 
8.2.1. s equal to the identity. — We begin by proving Proposition 8.1 in the case that 
s is the identity. We take 7 = (u,e) G Sp(4, R) x GL(l,i?) topologically unipotent. 
We write 

u = diag(a, 6, a-1). 
Then with the normalizations above we have, from Lemma 4.17, rM(~fa) = 
2rMSfp^4\u). Thus in order to prove Proposition 8.1 in this case we need to 
prove that 

2r^p(4) (diag(a, 6, b~\a'1)) - 2r^p(4) (diag(a6, ab~\a~lb, a~lb~1)) 
is equal to 

2 | a 6 - l | | a - 6 | / logmaxjl, \x\} / logmax{l, \y\} 
J\x\<\ab-1\-1 Jlvl^la-bl-1 

minus 
2 | a - l | | 6 - l | / J\x\<\ab-1\-1 logmax{l,|x|} / J\x\<\ab-1\-1 logmax{l, \y\}. 

We have \a — 1| < 1 and \b — 1| < 1. Since we are in odd residual characteristic we 
have at least three of \ab - 1|, \a - b|, \a - 1| and \b - 1| equal. For i V ^ M w e define 
I(N, M) to be equal to 2r^p(4) (diag(a, 6, a"1)) for a and b such that 

|a - 1| = q~N, \b - 1| - |a - b\ = \ab - 1| = tf~M 
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and we define I(M,N) to be equal to 2rM, '(diag(a,6, b 1,a *)) for a and b such 
that 

\ab - 1| = g"", |a - 1| - |6 - 1| = \a - b\ = q~M. 
Using the action of the Weyl group in Sp(4) we see that in order to prove Propo­

sition 8.1 in the case that s is the identity it suffices to prove the following Lemma. 

Lemma 8.2. — For N ^ M we have I(N, M) - I ( M , N) equal to 

2q-2M MqM qM - 1 
q-l 

MqM qM -1 
q-l 

minus 
2q-N-M Nqh qN -1 

q-l 
MqM qM -1 

q-l 

We now see how to compute 2r^p(yA\a, b,b 1, a 1). Using the notation of Lemma 
4.7 we need to integrate 

— (A2 + 2B2 + 2C2 + D2 + 2E2 + F2 ) + 2{AB + AE + BD + CD + F F ) 

over the region 
. |xi| ^ |a -

• (ab — l)x2 + b(a — b)xiX4 G f? 
. (a2 - l)x3 + ab~l(l - b2)xix2 G R. 
We assume that |a — b\ = \b — 1|. We first note that if |xiX4| > \b — 1|_1 then we 

must have both \x\ \ > 1 and \x4\ > 1. Now 

\x!X4\ >\b- |x2| = |a& - lT^a - 6||xix4| > \xxx4\ > \b - I]'1 
=> |xix2| > |6 - 1|_1. 

So if |xiX4| > \b — 1|_1 then we have 
x2 — —(ab — l)~1(a — b)bx\x4u 

with u G 7̂~v((6_1)Xi;r4) ancj we have 

x3 = -(a2 - 1)_1(1 - b2)ab~1x1x2v 
= (a2 - I)'1 (ab - 1)_1(1 - b2)(a - b)ax\x4uv 

with v e u~v{{b-1)xiX2). 
Now suppose that \xix4\ ^ |6 — then we have \x2\ ^ \ab - Now if 

\x\x2\ > \b — 1|_1 then we have 

%3 ~(a2 - 1)_1(1- - b2)ab~1xix2w 
with w G UpV{{b-1)xxX2). 
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And finally if we have |xiX4| ^ \b — and \x\x2\ ^ \b — then we have 
|#31 ^ \a> — So we have divided our region of integration into three regions. The 
first is given by 

. \x1x4\ > \b -

. x2 = -(ab - l ) " 1 ^ - b)bXlx4u, u G u-v((b~1)xiX4) 

. X3 = (a2 - lj-^afc - l ) - 1 ^ - b2)(a - b)ax2x4uv, v G Upv{{b'1)xxX2\ 
The second is given by 

• \xix4\ ^\b- ll'1 
. \x2\ ̂  \ab-l\~\ \Xlx2\ > |6 — ll"1 
. x3 = -(a2 - l ) - 1 ^ - b^ab^x^w, w G Up<{b-1)xxX2\ 

And the third by 
. IX1X4I < l ^ - i r 1 
. \x2\ ̂  \ab-l\~\ \xlX2\ ̂  \b-l\~1 
. \x3\ < la- l l"1. 

We now compute I(N, M) — i(M, N) over each of these three regions. 

Region 1. — Over the first region we clearly have 

£ = log|x3| 

C = log|xi| 

£ = log | * 2 I 

F = log|x4| 

for both I(N, M) and 7(M, N). 
Next we compute A over region 1 under the assumption that \a — b\ = \b — 1| < 1. 

We have 

A = logmax{|x2|, \x3 — xxx2\, \x\ - x3x4 + xix2x4\}. 

Now, x2 — x3x4 + XiX2x4 equals 

x\x\u(ab-l)-2(a2-l)-\a-b)((a-b)(a2-l)b^(a2 - 1)6 = (a - b)(l - b2).(l - b2). 

and 

(a - b)(a2 - l)b2 - (ab - 1)(1 - b2)a - (ab - l)(a2 - 1)6 = (a - b)(l - b2). 

Therefore 

\x\ - x3x4 + xxx2x4\ = \x\x\Wab - l|~2|a2 - l l - 1 ^ - 1|3 

and so 

A = log (\x2x2\\ab - 1|-2|a2 - l l "1^ - 1|3) . 

For D we note that x3 + x\X2 + x\x4 equals 

x\x4(a2 - \yx(ab - 1)_1((1 - b2)(a - b)auv - (a2 - l)(a - b)bu + (a2 - l)(ab - 1)) 
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and 

(1 - b2)(a - b)a - (a2 - l)(a - b)b + (a2 - l)(ab - 1) = (ò2 - l)(ab - 1). 

First we look at I(N, M). In this case over region 1 we have 

. A = 21og|xi| + 21og|£4| + A r - M 

. B = 21og|xi| +log|x4| + N -M 

. C = log|xi I 

. D = 21og|xi| + log |x4 |+iV-M 
• E = log|xi| + log|tf4| 
. F = log|x4| 

and so 

-{A2 + 2B2 + 2C2 + D2 + 2E2 + F2) + 2(AB + AE + BD + CD + EF) 

equals 

4(7V - M) log \Xl| + 2{N - M) log |x41 + 4(log |*i |)2 + 8log \Xl | log \xA\ + 2(log |x4|): 

Next we compute /(M, TV) over region 1. In this case we have 
. A = 2 log \Xl | + 2 log |x41 + 2(N - M) 
. £ = 21og|xi| +log|x4| + N - M 
. C = log | a; 11 
• E = log + log \xA\ + N - M 
• F = log|x4| 

For D, we have x3 + x\X2 + x\x± equal to 

{a2-l)-l{ab-l)-lx\xAu ((1 - o2)(a - b)av + (a2 - l)(ab - l)^"1 - (a2 - l)(a - 6). 

Now 
v = 1 + (6 - l)-2(a£> - l)x^2x^y 

with y G i?, so 

(1 - 62)(a - 6)av = (1 - b2)(a - b)a + (1 - b2){a - b)a(b - l)~2(ab - l)x^2x^y 

and 

|(1 - b2){a - b)a(b - l)-2(ab - l ^ a ^ y l = \(ab - 1 ) ^ 4 ^1 < q~M~N. 

Since 

(a - b2)(a - b)a + (a2 - l)(ab - 1) - (a2 - l)(a - 6)6 = [ab - 1)(62 - 1) 

we get 

|x3 + x\x2 + x\x\\ = |x2x4| 

and so D = 2 log |xi| -f log |x4|. Therefore for /(M, TV) over region 1 we have 

-(A2 + 2£2 + 2C2 + D2 + 2F2 + F2) + 2{AB + AE + BD + CD + EF) 
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equal to 
4(TV - M) log |xi| + 4(TV - M) log |x4| + 4(log |^i|)2 + 8log \Xl| log |x4| + 2(log |x4|)2. 

Hence we see that the contribution from region 1 to /(TV, M) — /(M, TV) is equal 
to 

2(M - N)q-M~N f b^ab-'x^w f b^ab-'x^w log|x4| 

which equals 

2(M-7V)g-M / b^ab-'x^w (1 - |x4r1)log|x4|. 

Region 2. — We now compute the contribution from the integrals over region 2 to 
/(TV, M) - /(M, TV). We begin by computing the contribution to /(TV, M). In this 
case region 2 is given by 

. |x1|,|x2|,|x4| <^qM 
• \xix4\ ^ qM < \xix2\ 
. x3 = -(a2 - - b^ab-'x^w, w G tf-^-1)****). 

We note that we have |xi|, |x2| > 1, |x4| < \x2\ and |x3| = qN~M\xix2\ > qN. So we 
have 

A = logmax{|x2|, |x3 - xix2|, |x2 - x3x4 + xix2x4|} 
B = TV - M + log |*i I + log |x21 
C = log I 
D = logmax{|xi|2, |x3 + X\x2 + x2x4|} 
F = log |x2| 
F = logmax{l, |x4|}. 

For A we have 
x3 ~ Xlx2 = -(a2 - b^ab-'x^w - b2)aw + (a2 - l)6)xix2 

and since 
(1 - b2)a + (a2 - 1)6 = (a - 6)(1 + ab) 

so 
|x3 - xix2| = qN~M\xiX2\. 

And we have 
x\ - x3x4 + xix2x4 = x2 + (a2 - 1)_1(1 - b2)ab~1wxix2x4 + xix2x4 

= x2(x2 + (a2 - l ) - ^ - 1 ^ - ^2)a^ + (a2 - l)b)xix4). 
We note that 

(1 - b2)a + (a2 - 1)6 = (a - 6)(1 + ab) 
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and hence that |(1 — b2)aw + (a2 — 1)6| = q M for all w. Therefore after scaling x 
and X2 by suitable units, which doesn't affect B or E, we get 

A = l o g m a x ^ - ^ z i ^ l , \x2(x2 + TTm~n

 Xlx4)\}. 

We now make the change of variables 14 ^ 14 - TTn~mx1~
1x2, which again doesn' 

affect B or E, to give 

A = N - M + log \xx\ + log \x2\ + logmax{l, |a 4 |} . 

For D we have 

£3 + x\x2 + x\x4 — xi(((a2 - 1)6 - (1 - b2)aw)(a2 - l)~1b~1x2 + X1X4). 

Since 

(a2 - 1)6 - (1 - 62)a = (a + b)(ab - 1) 
we have 

|((a2 _ i ) 6 _ (1 _ b2)aw)(a2 - l ) - ^ " 1 ! = g i V " M 

for all u>. Thus after scaling x2 by a suitable unit we have 
D = logmax{|xi|2, \XI(TTm~nx2 + xix4)\}. 

£»n WP VjJWP 

A = TV - M + log \xi \ + log|x2| + logmaxjl, \x4\} 

B = AT - M + log |xi I + log |x21 

C = log|a:1| 

D = log + logmax{|xi|, \TTM~NX2 + £ix 4 |} 

E = \og\x2\ 

F = logmax{l, |#4 |} . 

If we have \x2\ > q

2M~N then 

D = N — M + log |xiI + log|x2| 

on the other hand if \x2\ ^ g 2 M N then we can do the change of variables X4 H-» 
X4 — 7rM~Nx1~

1x2, which doesn't change the value of B or C, to give 

£> = 2 log |xi| + logmaxjl, \x4\}. 

The difference between the integrand 

- (A 2 + 2£ 2 + 2C2 + D2 + 2E2 + F2) + 2(A£ + AF + BD + CD 4- EF) 

when 
£> = AT _ M + log|xi| +log|x 2 | 

and 
D = 21og|xi| + logmaxjl, \x±\} 
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is 

(TV - M + log laraI - logmax{l, |x4|})2 - (log l^l)2. 

Lemma 8.3. — The integral of 

(7V-M + log|x2| -logmax{l,|x4|})2 - (log|xi|)2 

over the region 

• \xil\x4\^qM 
. \x2\ ̂  q2M~N 
• \x\X4\ ^ qM < \x\x2\ 

is zero. 

Proof — We assume that TV < 2 M so that this region is non-empty. We note that 
we must have \xi\ > qN~M. The volume of Xi,x2,x4 such that log|xi| = k with 
N - M < k ^ M is 

qk(l - q-1)(q2M-N - qM-k)qM~k = (1 _ g-l){q3M-N _ q2M-ky 

We now compute the volume of x\,x2,x4 such that log|x2| — logmaxjl, |x4|} = 
M - TV + /c, with TV - M < k < M, is the sum of 

qM-N+k{1 _ q-l){qM _ qN-k) = (1 _ Q-l){q2M-N+k _ QM^ 

the contribution when \x4\ ^ 1, and 
2M-N 

(1 - q-l)\qM ~ QN~k) E 9* = (! " b^ab-'x^w ~ ( / " " W ^ " b^ab-'x^w 
z=M-7V+fc+l 

the contribution when |x4| > 1. This sum equals 

(1 - q-^q™-" - q2M-k) 

as required. • 

Therefore we can assume that D = N — M + log \x\| + log \x2\ in all cases and then 
we have 

-(A2 + 2B2 + 2C2 + £>2 + 2F2 + F2) + 2{AB + AE + BD + CD + EF) 

equal to 

2(TV - M)log|xiX2| + 4(log|xi| + logmaxjl, \x4\}) log \x2 \ - 2(logmax{l, |x4|})2. 

So /(TV, M) is equal to q~3M times the integral of this function over the region 

. |x2|, \x4\ ^ #M 
• |xix4| ^ qM < \xix2\. 
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We compute the contribution from the 2(N — M) log |xiX2| term. If we make the 
change of variables z = X\x2 then the integral becomes 

2(N-M)q~3M b^ab-'x^w / b^ab-'x^w / b^ab-'x^w Imi"1 log M, 

which equals the integral of 

2{N - M)q~M ( ( M + loglxxD^r1 - M\xx\~2 - ^ q b^ab-'x^w ) 

over 1 ^ \x\ I ̂  qM. We will compute the remaining terms when we compute /(M, N) 
over region 2. 

We now compute the contribution to I(M, N) over region 2. This region is given 
by 

• \x1l\x4\ <tfM, \xlXA\ ^qM 
. \x2\^qN, \Xlx2\>qM 

. X3 = _(a2 _ !)-!(! _ b2)ab-1x1x2w, w e Upv{{b-1)xiX2K 

We note that we must have \x2\ > 1, \x3\ = \x\x2\ and \x4\ < \x2\. So we have 

A — logmax{|x2|, \x3 — x\x2\, \x\ — x3x4 + x\x2x4\\ 

B = logmax{|xiX2|, \x2 + £1X41} 
C = logmaxjl, \x\\} 

D — logmax{l, |xi|2, \x3 + X1X2 + x\x4\\ 

£ = log|x2| 

F = logmax{l, \x4\}. 

We note that 

B = log \x2 \ + logmaxfl, \xi\}. 

As we saw above \x3 — x\x2\ = |xiX2| and so 

A = logmax{|x2|, |xix2|, \x\ — X3X4 + x\x2x4\\. 

We have 

x\ — x3x4 + x\x2x4 = x2[x2 + (a2 — l)_16_1xiX4((l — b2)aw + (a2 — 1)6)) 

and we note that 
(1 - b2)a + (a2 - 1)6 = (a - 6)(1 + ab). 

Hence 

|(a2 - l)-16~1x1x4((l - 62)aw + (a2 - 1)6| = \Xlx4\ 

for all IU. SO after multiplying X4 by a suitable unit we can take 

A = log\x2\ -f logmax{l, \xi\, \x2 — xix4\}. 
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Making the change of variables x4 ^ x4 + xx lx2 when |x2| ^ qM gives 
A = f 2 l o g ^ l , if \x2\ >qM; 

\ log|xi| -f log|x2| +logmax{l, |x4|}, if \x2\ ^ qM. 
Now we look at D. We have 

X3 + x\x2 + x2x4 = xi((a2 — l)~1b~1 ((a2 — 1)6 — (1 — b2)aw)x2 + xix4) 
We write 

w = 1 + a_16x^1x2_1x 
with \x\ ^qM. Then 
X3 + x\X2 + x2x4 = xi((a2 — l)~16~1((a + 6)(a6 — 1) + bx^1x^1x)x2 + xix4) 

= (a2 - l)"16~1(a + 6)(a6 - \)xxx2 + (a2 - 1)_1(62 - l)x + x2x4. 
Multiplying x2 and x by suitable units gives 

0 tv — A / —A-/ 2 X3 + X1X2 + X1X4 = 7T X1X2 + 7T X + X:X4. 

Now if |xi| > 1 then this equals 
x2(x4 + TTn ~ M x^1 X2 + XX]"2) 

and we can make the change of variables x4 —» x4 — TTn~mx^1 x2 + tt_mxx^2 to get 
xfx4. On the other hand if \x\ \ ̂  1 then we have 

X -f 7TN~M XiX2 + xjx4 
and we can make a change of variables x 1—» x — 71"̂  mX\X2 — x2x4 to get x. So we 
have 

= f 21og|xi| + logmax{l, |x4|}, if |xi| > 1; 
\ logmax{l, |x|}, if |xi| ^ 1. 

Putting this altogether gives 
A = f 21og|x2|, if |x2| >aM, 

\ log |x2| + log |xi| + logmaxjl, |x4|}, if |x2| < qM 
B = log |x2| + logmaxjl, |xi|} 
C = logmaxjl, |xi |} 

_ ( 21og|xi| + logmax{l, |x4|}, if |xi| > 1, 
\ logmax{l, |x|}, if |xi| ^ 1 

E = log |x2| 
F — logmaxjl, |x4|}. 

and we need to integrate the function 
-(A2 + 2B2 + 2C72 + D2 + 2E2 + F2) + 2(AB + AE1 + BD + CD + EF) 

over the region 
. IxlJxxUx.l <aM, | x 2 K ^ 
• |#i#4| < qM < |xix2|. 
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When \xi \ $J 1 the integrand is equal to 
2(logmax{l, \x\} + logmax{l, |x4|}) log \x2\ — (logmax{l, |x|})2 — (logmaxjl, |x4|})2. 
But if we have \x± \ ^ 1 then integrating over x is the same as integrating over x4 and 
we can replace this function by 

4 logmaxjl, \x4\} log \x2\ — 2(logmax{l, |x4|})2. 
If we now assume we have \x2\ ^ qM so that \x\\ > 1 then we are in the situation 
considered above, when computing /(TV, M), and we take our integrand to be 

4(log|xi| +logmax{l, \x4\}) log \x2\ - 2(logmax{l, |x4|})2. 
Finally we have the region \x2\ > qM and \xi \ > 1 then the integrand is equal to 

4(logmax{l, \x4\} + log \Xl |) log \x2\ - 2(logmax{l, \x4\})2. 
Thus we can take our integrand to be 

4(logmax{l, \x4\} + logmaxjl, |#i|}) log \x2\ — 2(logmax{l, 1})2 
in all cases. Therefore the contribution to I(M, TV) from region 2 is given by q-N~2M 
times the integral of this function over the region 

. \xil\x4\ ^qM, \xlX4\ ^qM 
• \x2\ ̂ qN, \xlX2\>qM. 

So the contribution from region 2 to /(TV, M) — /(M, TV) is equal to the integral of 

2{N - M)q~M (\m + log \x\|_1 - M\Xl\~2 - Ml^M^ 

over 1 ^ \xi\ ^ qM, plus the integral of 
q~3M (4(log \Xl\ + logmax{l, \x4\}) log \x2\ - 2(logmax{l, |x4|})2) 

over the region 
. \xi\, \x2\, \x4\ < qM 
• \xix4\ < qM < \xix2\ 

minus the integral of 
q-N-2M (4(iogmax{i5 |xi|} + logmax{l, |x4|}) log \x2\ - 2(logmax{l, |x4|})2) 

over the region 
• \Xll\x4\^qM, \x2\^qN 
• \xix4\ < qM < \xix2\. 
We now compute the difference of these integrals. We begin with the contribution 

from the logmaxjl, \xi|} log \x2\ term. Given \x\\^\ the volume of x4 is qM\X\\~x. 
So over the first region we compute 

q'2M I b^ab-'x^w \xi\~1 logici / b^ab-'x^w log|x2| 
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while over the second we compute 

q~N~M f l o g ^ l f log\x2\. 
Jl<|xiK9A' JqA>\x1\-1<lx2Ì^qN 

The integral over x2 over the first region gives 

MqM - (Af - logl^iDc^lxrl' 
qM -qM\x^\-1 

q-l 

while over the second region we get 

NqN _ {M _lQg 1 ^ 1 ) ^ 1 ^ |-1 _ g" qM -qM\x^\-1 

Multiplying the first by q 2M and the second by q N M and subtracting gives 

(M - N)q'M + q-N-M(qM - qN)(M - log I ^ D I ^ r 1 + q-"'™* ^ ^ l ' 1 , 

which we then need to multiply by \x\\~ 1 log \x\ \ and integrate over 1 ^ \xi \ ^ qM. 
Next we consider the logmaxjl, \x4\} log\x2\ term. Given \x4\ > 1 and x2 with 

\x2\ > \x4\ the volume of x\ is qM (\x4\~l — \x2\~1). So over the first region we need 
to compute 

q 2M Jl<|xiK9A' / Jl<|xiK9A' |x4| 1 log |x4| log |x2| - |x2| 1 log |x41 logic i 
Jl^\x4\^qM J\x4\<\x2\^qAI 

while over the second we need to compute 

q -N-M 
\x4\<\x2\^q» \x4\<\x2\^q» 

\x4\ 1log|x4|log|x2| - \x2\ 1log|x4|log|x2|. 

We consider the \x4\ 1 log\x4\ log \x2\ term. Taking the difference over these two 
regions means we need to compute the integral of 

f(M - N)q~M - {q'2M - q-N~M)\x4\\og \x4\ • 
-2M _ -N-M \ 

|x4| |x4| 1 log |x4| 
Q - 1 / 

over the region 1 ^ \x4\ < qM. Next we consider the |x2|_1 log \x2\ log \x4\ term. 
Taking the difference over these two regions means we need to compute the integral 
of (1 — q~l) log \x4\ times 

N(N + 1) _N_M _ log|x4|(loglx4| + l) N-M _ M(M + 1) oM 
2 q 2 2 1 

+ log | X4 [(log lx4 1 + 1) -2A/ 

over the region 1 ^ \x4\ ^ qM 
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Finally we consider the (logmaxjl, |x4|}) term. Given \x4\ = q ^ 1 the volume 
of x\ and x2 in the first region is 
M-k 

a = 1 
qa{l-q~L) 

M 

6=M-a + l 
q'il-q-1) 

M-k 

a=l 
qa(l-q-l)(qlvl -qm~a) 

(l-q-V q2M-k+l _ gM+1 
q-l 

(M - k)qM 

q™-k - qM - (M - k)qM (1 - q~l), 
while the volume of X\ and x4 in the second region is 

M-k 

a=M-N+l 
qh(l-q~l) 

N 

b=M-a+l 
qh(l-q~l) 

M-k 

a=M-iV + l 
q'il-q-'Kq" - qM~a) 

: Q"+™-K - q>" -(N- fc)(l - q~')qm. 
Thus in computing the difference between the two regions we need to integrate 

(q-N~M - q~™ + (N - log |x4|)(l - q-*)q-N-M - (M - log \x4\)q~2M (1 - q~1)) 
(log|x4|)2 

over 1 $J \x4\ ̂  q . Adding this altogether gives the contribution to I(N,M) — 
I(M, N) over region 2 as the integral of the sum of 

6(M - A^)g-M|xr1log|x|, 

4g-N-M M(qM-qN) qN-qM 
q-l 

\x\ 2log|x|, 

2 -2M _ -N-M 
2 \ 

q - 1 

- N(N + 1)(1 - q-l)q-N~M - M (M + 1)(1 - q-l)q 2M log\x\ 

4q-N-M(qN -qM)\x\-2(\og\x\r.i 
2(Mq~2M — (M + Vjq-™-1 - Nq-N~M + (A + l)q-N-M~l){\og |x|)2, 

and 
2{N - M)q~M M\x\~l - M\x\~2 Nq-N~M 

q - l 

over the region 1 ̂  \x\ ̂  qM. 
Region 3. — We have /(A, M) given by q N 3M times the integral of 

-(A2 + 2B2 + 2C2 + D2 + 2E2 + F2) + 2(AB + AE + BD -f CD + EF) 

over the region 

\х1\,Ы,Ы<чм 

\xix4\, \xix2\ < qM 

\x3\^qN-
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And we have I(M, N) given by q N 3A/ times the integral of the same function over 
the region 

. \Xl\,\xi\ sC qM, \xxxA\ ^ qM 

. \x2\^qN, \xlX2\^qM 
• |ar3| ^ qM-

Thus after removing the common region we need to compute the integral of our 
function over the region 

. \Xl\,\x2\,\x4\^qAI 

. |XI.T4|, \xix2\ ^ qAI 

. qM < \x3\^qN 

and subtract from it the integral over the region 

• \x!\,\x4\ -. qM, \xlX4\ qM 
. qM < \x2\^qN, \xlX2\^qM 
. qM < \x2\^qN, \xlX2\^qM 

We first compute the integrand over the first of these subregions. We have 

A = logmax{|x3|, \x\ — x3x4 + X\x2x4\} 

£ = log |a;3| 
C = logmaxjl, \xi\} 

D = logmax{l, |xi|2, |x3 + xix2 + x\x4\} 

E = logmaxjl, \x2\, \x4\} 

F = logmaxjl, \x4\}. 

After the change of variables x3 i—» x3 ± X\X2, which doesn't change the region of 
integration, we have 

A = logmax{|x3|, \x\ - x3x4|} 

S = logeai 
C — logmaxjl, \x\\\ 

D = logmaxjl, \x\|2, \x3 + x\x4\] 

E — logmaxjl, \x2\, \x4\\ 

F = logmaxjl, |#4|}-
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We can make the change of variables 1 4 ^ x 4 + *|x3 1 wmcn doesn't alter E since 
x2x3l G R to get 

A = log \x3\ + logmaxjl, \x4\} 
B = log |x31 
C — logmaxjl, \x\\\ 
D = logmax{|xi|2, \x3 + x\x4\} 
E = logmax{l, \x2\, \x4\} 
F — logmaxjl, \x4\}. 

If 1 > qM\xi \ then D = log \x3\. On the other hand if |xs| ^ qM\x\\ then we can 
do a change of variables in x4 to get 

D = 21og \xi\ + logmaxjl, \x4\\. 
The difference in the integrand between taking 

D = 2 log \x\ \ + logmaxjl, ^41} 
and taking D — log [̂ 31 is 

(log^sI - (log I + logmax{l, \x4\\)f - (log|xi|)2. 

Lemma 8.4. — The integral of 
( log^l - (log|xi| +logmax{l, |x4|}))2 - (logl^l)2 

over the region 

. 1 ̂  \xi \ ̂  qiVl 

. |ar2|,k4| ^ qM\xi\~l 

. qM < \x3\ ^ m i n j ^ l x x U ^ } 
is zero. 

Proof. — We fix k with 0 ^ k ^ M and set Mx = min{A/ + /c, N}. The volume of 
xi,x2,xs,x4 with = gfc is 

qk(l - q-i)qM-kqM-k(qM* - qM) = (1 - g-1)(g2Af+Afi-fc - ç3M-fc). 
Now we compute the volume of x\,x2,x3,x4 such that logici — (log |xi| + 

logmax{l, \x4\}) — k. If \x4\ < 1 then the volume is 
Mi-k 
E <f(l - <r V'-V+i(l - a"1) = (1 - q~l)(qM+Ah ~ q2M). 

i=M — k+l 
Now assume that \x4\ > 1. Then the region is given by 

. 1< \x4\ ^ qM~k 

. qM~k\x4\-1 < \x1\^qM\x4\-1 

. qM < \x3\ ^ m i n j ^ l x i l - 1 , ^ } . 
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So we need 
qM < \x3\ = qk\xlXi\ < unn{qM\x1\-1,qN}. 

So the total volume of Xi,X2,x3,x4 with |x4| > 1 and |̂ 31 = qk\x\x4\ is 
M-k 

i=l 
2log|x!|. 

Mi-k—i 

j=M-k-i+l 
qj(l-q-1)qM-iQk+i+i(l-q-1), 

which equals 
(1 - g-1)(q2M+Ml-fc - q3M~k - qM+Ah + q2M) 

as required 

By this lemma we can assume that we have D = log|x3|. Then over the first 
subregion we have 

-(A2 + 2B2 + 2C2 + D2 + 2E2 + F2) + 2(AB + AE + BD + CD + EF) 

equal to 
2(logmax{l, \xx\} + logmax{l, \x2\, \x4\}) log |x3| 

plus 
-2(logmax{l, |xi|})2 - 2(logmax{l, |x2|, \x4\} - logmaxjl, |x4|})2. 

The contribution from the 21ogmax{l, Ixi 1} log IX3I term is 

2q2M NqN MqM qN -qM 
q-l 2log|x!|. 

2log|x!|. 

The contribution from the — 2(logmax{l, |xi|})2 term is 

-2q2M(qN-qM) 
'l^\xi\^qM 

M - ^ i o g M ) 2 . 

The contribution from the 2 logmax{l, |x2|, |x41} log term is 

4qM NqN MqM qN - qM 
q-l 2log|x!|. 

log |X4 I 

plus 

-2qM(\-q-1) NqN MqM qN -qM 
q-l 2log|x!|. 

Iog|x4|. 

The contribution from the -2(logmax{l, IX2I, 1x41} - logmaxjl, |x4|})2 term is 

-2qM(qN -qM) 
\*i\<\x2\^qM 

|x2| l(\ogm.a^{l, lx21} - logmaxll, |x4|})2, 

which equals 
•2qM~HqN -qM) 

2log|x!|. 
(log |Z2 I)2 
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plus 

-2qM(qN-qM) f 2log|x!|. \x2 |~X (log \x2X^ |)2. 

Making the change of variables y = x2x^}, this latter term equals 

-2qM(qN - qM) f 2log|x!|. \y\~l(qM\y\~l - q'\\og \y\)2. 

Adding this altogether gives the integral of 
— (A2 + 2B2 + 2C2 + D2 + 2E2 + F2) + 2(AB + AE + BD + CD + EF) 

over the first subregion as the integral of 

2q2M (^NqN - MqM - ^ ~ f ) l*l~2 log |*| - VM(^ - 9M)|x|-2(log |x|)2 

plus 

2qM~Hq + i) - MqM - qNq_\AI) log M 

over 1 ̂  \x\ ^ q . 
We now compute the integral over the second subregion. This subregion is given 

by 
. \xS\,\^\^qM 
• qM < |x2K qN 
• qM < |x2K qN 

We note that \xi \ < 1 and we have, after a change of variables, 

A = 2\og\x2\ 
B = \og\x2\ 
C = 0 
D = logmax{l, \x3\} 
E = log\x2\ 
F = logmaxjl, |x4|}. 

And 
-(A2 + 2B2 + 2C2 + D2 + 2E2 + F2) + 2(AB + AE + BD + CD + EF) 

equals 

- (logmaxjl, |x4|})2 + 2 log \x2\ logmaxjl, |x4|} + 2 log \x2 \ logmaxjl, \x3\} 
- (logmaxjl, \x3\})2. 

But integrating over x4 is the same as integrating over x3. Hence we can replace this 
function by 

-2(logmax{l, |x4|})2 + 41og \x2\logmaxjl, |x4|}. 
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Thus to compute the integral we need to multiply this function by q2M\x2\ 1 and 
integrate over qM < \x2\ ̂  qN and \x4\ ̂  qM. We have 

/ \x2\~l = (N - M)(l - q-1) 
JqM <\x2\^qN 

and so the integral of — 2(logmax{l, |x41})2 yields 

-2{N -M)q2M{l-q-1) f (log|x4|)2. (log|x4|)2. 

We have 

(log|x4|)2. 
\x2\ 1 log |ж2| 

N(N + 1) 
2 

M (M + 1) 
2 

(log|x4|)2. 

and so the contribution of 41og|.X2| logmaxjl, \x4\} is 

2 (N(N + 1) - M(M + 1)) ç2M(l - ç"1) / J\x\<\ab-1\-1 log |Z4|. 

Thus the integral over the second subregion is equal to the integral over 1 ̂  \x\ ^ 
qM of 

2 (N(N + 1) - M(M + 1)) 92A/(1 - q-1) log |x| - 2(7V - M)q2M(1 - q-l)(log\x\)2. 

Combining this together we get that the contribution to /(A/", M) — 2"(M, N) over 
region 3 is equal to q~SM~N times the integral over 1 ̂  \x\ ^ qM of the sum of 

2q2M (NQN - MqM - g^ _ Q" ) |x|"2 log 

2//-1(9 + 1) (iV9" - MqM - qNqiq^') logkl, 

-2(W(iV + 1) - M(A/ + 1))</2M(1 -ç-^loglarl, 
and 2 ^ ((TV - Jl/)(1 - q'1) - 2(qN - qM)\x\-2) (log |x|)2. 
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Putting it altogether. — Gathering together the computations above we get that 
/(TV, M) — i~(M, TV) is equal to the integral of the sum of 

2{M - N)q~M \og\x\, 
2((-(M2 + M - N)q + (TV + M2 + M + l))^2^1"1 

+ (M2q - (Af + l ) 2 ) ^ 7 ^ - 1 ) log 
4(M-7V)(/-M|xr1log|x|, 

2q-N-M ^MqM + (A, _ 2M)qN + Q__Q_^ |x|-2 lQg 

2(M(g-2M - q-N~M) - (Af + l ) ^ - 2 ^ 1 - g-iV-M-1))(log |x|)2, 

and 2M(TV - M)q-M\x\-1 - 2M(TV - M)q'M\x\~2 - 2(TV - M)<rM{p^ 

+2(TV - M)q~M\^ 

over the region 1 ^ \x\ ^ qM. Using the results of Section 9 we compute this integral 
to be equal to 

2<Г2М MqM qM - 1 
(7 -1 

gM -1 gM - 1 
9 - 1 

minus 
2 -N-M NqN qN-l 

q-l MqM qM - 1 
q-l 

and the proof of Lemma 8.2 is now complete. 
8.2.2. s not equal to the identity. — We now assume that s is not the identity. After 
twisted conjugation we may assume that we have 

s - l 
ai 

bi. 

bi. 

with ai = = c\ — 1 for some k prime to the residual characteristic of F and with 
a\ and b\ not both 1. Since M° is abelian u £ M(F) commutes with sa if and only 
if a(u) = u and hence if and only if u is of the form 

u = 

a 
b 

b-1 

a-1 

e 

We take equal to the unipotent radical of the upper triangular Borel in G° and 
compute the possibilities for Ni = N n ZGo(sa). By abuse of notation we consider 
N c GL(4). 
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Lemma 8.5. — With notation as above we have the following possibilities for Ni. 
(1) If a\ = 1 then we have 

N1 
/1 0 0 0^ 

1 x4 0 
1 0 

(2) If ai = b\ = — 1 then we have 

N1 
^1 Xi X2 — XiX2 

1 0 -X2 
1 —Xi 

V 1 

(3) If a-i ±1 bi = ai i/ien u>e have 

N1 
' /1 xi 0 0 

1 0 0 
1 —Xi 

V i 

(4) 77 ai ^ ±1 and 6i = a, 1, £/iero we Ziave 

N1 
/1 0 x2 0 

1 0 aiX2 
1 0 

V 1 

(5) If b\ = \ then we have 

N1 
/ 1 0 0 

1 0 0 
1 0 

V IJ 

(6) In all other cases we have Ni = {I}. 

Proof. — We take 

n = 

fl Xi x2 + X1X4 x3\ 
1 X4 X5 

1 Xq 
\ 1 

We have 

a(n) 

/1 —X6 — X4X6 X3 ~ X2X6 — XlX5 
1 X4 x2 

1 —Xi 
V 1 
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a ri r 

s lns -

T xi ai(x2+xix4) bix3 \ 
1 CL1X4 bix$ 

1 òia1"1X6 
1 / 

We now find n such that a(n) = s 1ns. First we note that 

• Xi = —XQ 

• xi = XQ — 0 unless a\ — bi 
• X4 = 0 unless ai = 1. 

Let's first assume that ai = 1. Then we have bi ^ 1 and so xi = X6 = 0, 
x2 — .x'5 = 0 and X3 = 0. We now assume that we have ai ^ 1. Therefore we must 
have X4 = 0. We have £2 = %5 — 0 unless a\ = b^1 and we also need to have 

(1 - bi)x3 = x2x6 + X1X5 = (b^1 - l)xix2. 

The result now follows. • 

We now compute the integral rM(usa) in each of these cases. 

Lemma 8.6. — With notation as above we have the following possibilities for rM(usa). 

(1) If a\ = bi = — 1 then 

rM(usa) = 4|a — b\\ab— 1| /1 Xl x2 -xix2> logmaxjl, \x\|} /1 Xl x2 -xix2> logmaxjl, \x2\}. 

(2) In all other cases rM(usa) — 0. 

Proof. — We let n G N\{F) and compute v M (n) When a\ — 1 we have n G Sp(4) 
and % ( n ) = 0 by Corollary 4.8. Similarly when a\ ^ ±1 and b\ — a\ we have 
n G Sp(4) and VMM — 0 by Corollary 4.8. When a\ ^ ±1 and 6i = aT 1 we have 

1 0 x2 0 
1 0 aia 

1 0 
1 

a 
1 

1 
v aï1 

1 0 £2 0 
1 0 x2 

1 0 
1 

T > 
1 

1 
ai/ 

and 

vM 
a 0 x2 oN 

1 0 x2 
1 0 

1 , 

0 

by Corollary 4.8. Finally when ai — bi = — 1 we have 

n -

1 Xl x2 -xix2> 
1 0 -x2 

1 —Xi 
1 J 
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and one can compute as in the proof of Lemma 4.7 that 
VM(U) = 41ogmax{l, \xi|} logmaxjl, \x2\}. 

Moreover for u = diagfa, 6, a-1. b~1) we have 

u 1n lun -

(I (l-a~1b)x1 {l-a-1b-l)x2 -(1 - a~lb){l - a~1b-1)x1x2\ 
1 0 -(1 - a~1b-1)x2 

1 -(l-a~lb)x1 
{ 1 / 

and the result now follows. • 

We now consider the integral on GSp(4). We have N(usa) equal to the product of 

si = Ci 
a1 \ 

bi 
aibi) 

and 
fab ^ 

ab~l 
a~lb  

a- 1b -1 
We take N equal to the unipotent radical of the upper triangular Borel in GSp(4) 

and we compute the possibilities for N[ = N D ^GSp(4)(5i)-
Lemma 8.7. - With notation as above we have the following possibilities for N[. 

(1) If a\ = 1 then we have 

N1 
'1 xx 0 0 N 

1 0 0 
1 -xx 

1 / 
(2) If ai = bi = — 1 then we have 

Ni 
fl 0 0 x'3N 

1 x4 0 
1 0 

V 1, 
(3) If a\ =̂  ±1 and b\ — a\ then we have 

N1 
'1 0 0 0> 

1 x4 0 
1 0 

V 
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(4) If' ai ^ i l and òi = ai \ t/ien we have 

N1 
1 0 0 x3 

1 0 0 
1 0 

1 , 

(5) If b\ = 1 £/ien we /mve 

N1 
1 0 x2 0 \ 

1 0 x2 
1 0 

1 / 

(6) In all other cases we have N[ — {I}. 

Proof — We take 

n = 

{\ X\ x2 + X\XA x3 
1 X4 x2 

1 -x-
1 

and we have 

sx 1ns\ 

/1 aixi òi(x2+^i^4) aiòiX3x 
1 bia^lX4 b\x2 

1 —CL\X\ 

\ i , 

So if we have s1 lns\ = n then we have the following implications 

• a\ ^ 1: x\ — 0 
. 6i 7̂  1: x2 = 0 
• ai ^ b^1: x3 = 0 
• ai b\\ X4 = 0 

and the result now follows. 

We now compute the integral 2r<^>p^ (N(7a)) in each of these cases. 

Lemma 8.8. — With notation as above we have the following. 
(1) If ai = b\ = — 1 then 2r^p<"4\N(ja)) is equal to 

2\a — b\\ab — 1| / logmaxjl, \x4\} / logmax{l, \x3\}. 
i|x4K|a-b|-1 JlxsKlab-ll-1 

(2) In all other cases we have 2r^p(^ (7V(7a)) = 0. 
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Proof. — We let n G Ni(F). Suppose first that a\ — b\ = — 1 then 

/ 1 0 0 x3\ 

vM' 1 X* Q = 21ogmax{l, |x3|}logmax{l, |x4|}. 

V J 
Now for 16 = diag(a6, a6_1, a~lb,a~1b~l) and n as above we have 

u 1n 1un 

/ 1 0 0 ( 1 - a " 2 6 - 2 ) x 3 \ 
1 ( 1 -a~2b2)x4 0 

1 0 

V î / 

and the result is clear in this case. In all other cases one can check that for n G N[ 
we have VM'(n) = 0. • 

Finally we consider the integrals on (GL(2) x GL(2))' and (GL(2) x GL(2))/ GL(1). 
We have 7 = us = diag(a, 6, a, b~l, b\a~l) and as we saw above the integral on 
(GL(2) x GL(2))/ is equal to 2\ab - aib-1b1a,-1\\aaib-1 - 661a"1! times 

/ logmax{l, \x\} / logmax{l, \y\}. 
J\x\^\ab-a1b-1b1a-1 I"1 J\y\^\aaib-1 -bb1a~1\^1 

and the integral on (GL(2) x GL(2))/GL(1) is equal to 

2\a — b\a l\\b — a\b 1\ / logmax{l, \x\} / logmaxjl, \y\}. 
V|x|̂ |a—61a-11-1 ^lyKI^-aib-1!-1 

Now it's clear that the integral on (GL(2) x GL(2))/ GL(1) vanishes unless we have 
ai = bi = 1 and the integral on (GL(2) x GL(2))' vanishes unless a\ = b\ ~ ± 1 in 
which case it is equal to 

2\ab — l\\a — b\ /Ji^\x\^qk logmax{l, \x\} /Ji^\x\^qk logmaxjl, \y\}. 

The fundamental lemma is now proven! 

9. Some p-adic integrals 

In this section we compute certain p-adic integrals that were required in the proof 
of the fundamental lemma. All these integrals are over open subsets of Fn. In each 
case we take the measure on Fn that gives Rn volume one; and we suppress it from 
our notation. 

Lemma 9.1. — For k ^ 0 we have 

loo: \x\ = k 
loo: \x\ = kq* q

k - 1 
qk - 1 
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Proof. — We have 

i=0log|x| : 
log|x| : 

k 

i=0 
iql(l-q-1) = kqk 

k-l 

i=0 
ql = kqk 

qk - 1 
qk - 1 

as wished. 

As a corollary we have the following. 

Lemma 9.2. — Assume that 0 ^ a ^ b then 

q"<\x\^qh 
log \x\ = bqb - aqa 

gb - qa 
q-i ' 

Lemma 9.3. — Let M > 0. Then we have 

<l^\x\^qAI 
\x\kiog\x\ = (l-q~1) 

(M + l)(k+\) 
(k+\) 

q(M+l){k+\) _ qk+i 

(Q^1 - l)2 
if k — 1 and 

l^\x\^qM 
x\ 1 log |x| 

M(M + 1) 
2 

l^\x\^qM 

Proof. — We have 

K\x\^qM 
\x\klog\x\ : i=0 q -1 

A/ 

i=0 
i=0 (k+1) m 

If A; = — 1 then it's clear that this integral is equal to 
Af(M + 1) 

2 
l-q-1) 

On the other hand if k ^ — 1 then we have 
A/ 

m=l 
mq(k+l)rn = 

A/ 

m = l 

ç(A/+l)(fc + l) _ m(A-+l) 
qk + 1_ 1 

(A/+l)(fc+l) 
^ ^ - T T Ì 

M 

771 = 1 

qm{k+l) 
qk+l - 1 

^A-z+iXfe+i) 
M ̂ —7— 

ç(A/+l)(fc+l) _ ^ 

qk + 1_ 1)2 
as wished. 

Lemma 9.4. — Let M ^ 0 £/zen we /za?;e 

\s\^qAI \s\^qAI 
\x\ logmaxjl, \x\, \s\} 
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equal to 

g 
9 + 1 

Mq3M q3M - 1 
q3 - 1 

Proof. — We write this integral as the sum of 

\x\<\s\<^qM 
x\ log max{ l , |x|} 

and 

\x\<\s\<^qM 
\x\logmaxjl, \x\, \s\) 

The first integral equals 

\x\^qM 
x\2 l ogmax{ l , \x\}. 

The second equals 

\x\^qM 
l ogmax{ l , \s\} 

\x\<\s\ 1*1, 

which equals 

q-1  
9 + 1 \x\^qM 

\s\2 l ogmax{ l , \s\}. 

Thus the sum of the two integrals is 

n a-1 

|.x|̂ gA/ 
\x\2 l ogmax{ l , | .T |} . 

which equals 

q 
9 + 1 

Mq3M 
q3M - 1 
q3 - 1 

by Lemma 9.3. 

Lemma 9.5. — Let M > 0 then we have 

l<^\x\^qM 
( logM)2 M2qM 

(2M - l)qM 
q-l 

9 QM ~ Q 
(q - l)2 

1 

1 + q + i 

q - l 
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Proof. — We have 

(logM)2 
(logM)2 

M 

k=0 
fcV(l-9_1) 

M 

k=0 
k2qk 

M-l 

fc=0 
(k + l)2qk 

M2qM 
M-l 

k=0 
{2k + l)qk 

M2qM - 2 (M - l)qM 
q-l 

qM - q 
(q - 1)2 

qM - 1 
q-l 

M2qM (2M - l)qM 
q-l 

2 qM - q 
(q-l)2 

1 
q-l 

as wished. 

Lemma 9.6. — Let M ^ 0 then we have 

M2qM 
M2qM M2qM g(M+l)(fc+l) _ 1 

M2qM 

if k 7^ — 1 and we have 

l^\x\^qM 
M2qM (A/+l)( l-g-1). 

Proof. — Assume that k ^ — 1 then we have 

M2qM 
\x\k = a-q-1) 

M 

m=0 
(/e+l)m 

M2qM g(M+i)(fc+i) _ : 
çfc+i _ i 

And when k = — 1 the result is clear. 

Lemma 9.7. — Assume that 0 ^ k ^ A/. TTierc 

M2qM 1̂ 31 ̂ gk M2qM 
log maxi 1, |x21, |x31, |x4|, 1x5 - x2x3| j 

equals 

M2qM(logM)2 |x21, |x31, |x4|, 1x5 

9 - 1 
Ç3 -1 

Ç3 - 1 
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Proof. — For ease of notation we define, for m ^ 0, 

L (rn) = 
l^\x\^qm 

log IXI 

and 
him) = 

l^\x\^qrn 

|x|2log|x|. 

We begin by considering the contribution to the integral when q < |x 2 | ^ q . In 
this case the integral is 

f\x3\<qk \x4\^qk qk<\x2\^qM 

logmax{|x2|, Ix l̂x^Xo 1 - x 3 | j . 

Now Ix!^ \ < qk and so we can make a change of variables X3 1—> X3 + x 4 x 2 to give 

\x4\^qk \x4\^qk qk<\x2\^qM 
logmax{|x2|, |x 2 | |x 3 |}, 

which equals 

(1) q2k(h(M) - h(k)) + qk(qM - qk)h{k). 

We are now left to integrate over the region |x 2|, |xs|, |x 4| < q . Since the integrand 
is symmetric in x 2 and x 3 we can take twice the integral with |x 3 | < |x 2 | plus the 
integral with |x 3 | = |x 2|. 

We begin by computing the contribution when |x 3 | < |x 2|. This is equal to 

\x4\^qk \x3\<\x2\ \x2\^qk 
logmaxjl, |x2|, |x4|, \x\ - x 2 x 3 | j . 

If |x 2 | > |x 4 | then \x\ — x 2 x 3 | = |x 2 | |x 2

 1x2 - x 3 | and |x2

 lx\\ < |x 4 | < |x 2|. Hence we 
can make the change of variables X3 1—> x 3 + x ^ x 2 to get the integral 

|a;4|<|̂ 2| 'k3|<|x2| \x2\^qk 

logmaxjl, |x2|, |x 2 | |x 3 |}, 

which equals 

l^\x2\^qk 
(|7rX2|)2l0g|x2| + 

\xA\<\x2\ l^\x3\<\x2\ l<\x2\^qk 
log I • 

The first of these integrals is 

(2) q-2h(k). 
The second integral can be written as 

\XA\<\X2\ \x3\<\x2\^qk l^\x3\<qk 

log|x3|, 

which equals 

q-1 

\x3\<\x2\Kqk 
N1 

l^\x3\^qk 
log|^ 3|, 
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and by Lemma 9.6 this equals 

(3) 
2fc 

-^-rh (k) q + l 
1 

9 + 1 
h(k) 

On the other hand if we have \x%\ < \x2\ ̂  \x4\ then the integral becomes 

2 
\x3\<\x2\^\x4\^qk 

logmaxjl, |x4|}, 

which equals 
2q -1 

|x2|̂ |x4| 
1*2 I 

\x4\^qk 
logmaxjl, 1}. 

We have 

r 
|x2|̂ |x4| 

1*2 | Q\XA\2 
o + l 

and therefore 

(4) 2 
|x3|<|x2K|x4|̂ q;c 

logmaxjl, \x±\} lvkl2^- I2 (k). 

Now we look at the contribution to the integral when |x2| = |x3|. We split it up 
into three cases 

(a) \x21 < IX41, integrand equals logmaxjl, |iC412} 
(b) 1X21 = M 
(c) I#21 > \x41, integrand equals logmaxjl, |x2|2}. 

In case (a) the contribution is 

\x2\<\x4\^qk fl*3| = |s2| \x2\^qk 
logmaxjl, IX4I2}. 

This integral is 

(5) : i - ? - x ) '|x2|<|x4| 
x2 

\x4\^qk 
logmaxjl, |x4|2] Q\XA\2 I2 (K). 

o + l 

Similarly the contribution in case (c) is 

(6) 2q-1(l-q~1)I2(k). 
We now deal with the contribution in case (b). We can write this as 

l^|x2| = |x3| = |x4|̂ g* 
log |a?2| + logmaxjl, |x3||l - xl(x2x3) 

Firstly we have 

(7) 
'K|z2| = |*3| = l*4K9fc 

log M = (1 - q~1)2I2(k). 

Now we deal with 

fl^|x2| = |a;3| = |x4|̂ gfc 
logmaxjl, |x3||l - xl(x2x3) 1\} 
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We have 
i r TT 1-1 i —7i f 1 — 2<7-1, if i = 0; 

v o l { « e ^ : | l - « | = 9 l} = { ^ ( 1 9 _ g - 1 ) 5 i f z > 0 ; 

And therefore 

/ l o g m a x { l , |x3 | | l - x\(x2x3)~1\} 
Jl^\x2\^\x3\ = \x4\^qk 

is equal to 

( l - ^ - 1 ) /J l^\x2\^qk J\x\^ / | ^ 2 | 2 l o g m a x { l , | x 2 | | x | } 
J l^\x2\^qk J\x\^l 

minus 

q-^l-q-1) fJ l^\x2\^qk J\x\^ | x 2 | 2 l o g m a x { l , | x 2 | } . 

Now in the integral 

( 1 - q-1 ) /J l^\x2\^qk J\x\^ / | x 2 | 2 l o g m a x { l , \x2\\x\} 

if we make the change of variables y = xx2 t hen this integral becomes 

(1-q-1) fJ l^\x2\^qk J\x\^ \x2\ f l o g m a x { l , | y | } , 
J\y\^\x2\^Qk J\y\^qk which equals, by L e m m a 9.6, 

(1 - Q-1)2 f ^ 2 ( f c + 1 ) - ^ l 2 > ) l o g m a x { l , \y\}. 
J\y\^qk \ <T — 1 J 

Hence we have 

/J l^\x2\^qk J\x\^ l o g m a x j l , |^3| |1 — x1(x2x3)~1\} 
J l^|x2| = |x3| = |x4|̂ gfe 

equal to 

(8) 9 2 f c ^ r i / l ( A : ) _ q~*TPih{k) - q~2{q -1)/2(fc)-

P u t t i n g this al together , the integral 

/J l^\x2\^qk J\x\^ /J ̂  / l o g m a x j l , \x2\, | .T3|, \x4\, \x\ — x2x3\} 
J\x2\^qAI J\x3\^qk J\x4\^qk 

is equal to 

(1) + 2 x (2) + 2 x (3) + 2 x (4) + (5) + (6) + (7) + (8). 

Collecting together like t e rms in this sum gives 

q2kh{M) + {qM+k - q2k)h(k) + q-2(q2 +Q+ l)/2(fc). 

Applying Lemmas 9.1 and 9.3 now gives the result . 
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Lemma 9.8. — Assume that 0 ^ a ^ b ^ c. Then 

l\x\^qa f\r\^q> \s\^qc 
logmaxjl, |r|, \s\} 

is equal to 

CQa+b+c a+26+1 a+26+1 1 3a+2 

9 - 1 a2 - 1 a3 - 1 (q + l)(q*-iy 

Proof. — The contribution when qb < \s\ ^ qc is 

a+26+1 
a+26+1 

loelsl a+26+1 a+26+1 
qc -qb 
q-l 

We are now left with 

a+26+1 |r|<Cgb a+26+1 
logmaxjl,|r| |r|,|r||r| 

which equals 

2 
a+26+1 |r I ^ I s \ ̂ q{ 

logmaxjl, |x|,\s\} -
'\x\^qa /\r\ = \s\^ql 

logmaxjl, \x\,\s\}. 

This equals 

2 
'\x\t*Qa \s\^qb 

\s\ logmaxjl, \x\, \s\} — 
'\x\^qc f\s\^qb 

(l-q l)\s\logmaxjl, \x\, |s |}, 

which equals 

(l + T 1 ) 
l\s\^qb 

\s\ logmaxjl, \x\, \s\} 

Now the contribution when Isl > qa is 

(l+q-l)qa 
?"<|sK«l 

H log H = g° ba2b- (a+l)a2a -
q2b _ g2a+2 

qz - 1 
by Lemma 9.3. 

We are now left with 

(1 + T 1 ) 
\x\^q« • a+26+1 

|s| logmaxjl, a+26+1= aç3a -
3a _ X 

ÇJ - 1 
by Lemma 9.4. 

Thus 

is equal to the sum of 
a+26+1 '\r\<^qb l\s\^q< 

logmaxjl, \x\, |r|, |s|} 

na + b cqc - bqb c b 
i — q a- 1 

qa ba2b - (a + l)a2a 2b _ Q2a+2 
qz - 1 
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and 

aqòa 
За _ x 

аз - 1 • 

Adding these terms together gives 
na + b+c na + 2b+l i n3a+2 

cqa+b+c - q + q + 1 + q-
q q-l q2-l % 3 - l ( ç + l ) ( g 3 - l ) 

as wished. 

Appendix 

The twisted weighted fundamental lemma 

In this appendix we give the formulation of the twisted weighted fundamental taken 
from a letter from James Arthur to Dinakar Ramakrishnan, dated March 11 , 2002. 

Let me try to convince you that the statement of the conjectural twisted, weighted 
fundamental lemma is similar to that of the untwisted case. We can in fact state them 
identically if we take G to be the connected component G° x a of the nonconnected 
group (7+ = G° xi {a). We assume that G is unramified over a local p-adic field F (of 
characteristic 0). 

Let Af = Af° xi a be a "Levi subset1' of G, in the sense of my paper [Art88b, 
p. 228]. Then V(M) denotes the set of "parabolic subsets" P = MNP of G with Levi 
component Af, and AM the split component of the centralizer of Af in Af°. We define 
the weighted orbital integral 

JAf(7,/) - l^(7)|1/2 / ./V V)<\w(.r) dx, 
JG^(F)\G(F) 

f e C^{G{F)), 7 G M(F) strongly G°-regular, G1 = Cent(C0, 7)°, as a special case 
of [Art88b, p. 233]. 

Suppose that AP represents an unramified elliptic, twisted endoscopic datum 
(M', M') A/'£A/) ÔR • Here, s'M is a semisimple element in the nonconnected 
component Af = A/0 x\ a C G = G° xi a. (I trust that this slightly nonstandard 
formulation is OK.) We suppose that M' is an L-subgroup of LM° = M° x 1L>, 
and that £fAI is the identity embedding. We then define £M>(G) as in the untwisted 
case, in [Art99, §3]. Thus, if Z(A/)r denotes the group of T-invariants in the 
centralizer of Af in Af°, SM'(G) is the set of twisted endoscopic data for G° of the 
form (GF/,^/,5/,^/), where s' lies in s'^jZ\[A1)^, G' is the connected centralizer of s' in 
G and £' is the identity embedding of Q' = M'G' into LG°. The elements in SM'{G) 

are taken up to translation of s' by Z(G)r. 
We can now proceed as in [Art02, §5]. Set 

iM'(G,G') = \Z(M'f /Z(Mf\\Z{G'f /Z(G)r\-\ 
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and 
kerG.1vg(M{F)) 

where k G M(F) is strongly G -regular, and u = uk is the stabilizer in G(F) of the 
unit in a Hecke algebra of G°(F). 

Conjecture. — Let t be a strongly G°-regular, stable conjugacy class in Mf(F). Then 

kerG.1vg(M{F)) 
LM>{G,G')sM,{t), 

equals 

G'££M,{G) 
LM>{G,G')sM,{t), 

where s^/(-t ) is the junction defined uniquely for the unramified connected pair 
{G',M') in [Art02, Conjecture 5.1]7 and Am,k is the twisted transfer factor for M°, 
normalized relative to the hyperspecial maximal compact K n M°(F). 
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