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H* FUNCTIONAL CALCULUS AND SQUARE
FUNCTIONS ON NONCOMMUTATIVE LP-SPACES

Marius Junge, Christian Le Merdy, Quanhua Xu

Abstract. — We investigate sectorial operators and semigroups acting on noncommu-
tative LP-spaces. We introduce new square functions in this context and study their
connection with H° functional calculus, extending some famous work by Cowling,
Doust, McIntoch and Yagi concerning commutative LP-spaces. This requires natural
variants of Rademacher sectoriality and the use of the matricial structure of noncom-
mutative LP-spaces. We mainly focus on noncommutative diffusion semigroups, that
is, semigroups (1;);>0 of normal selfadjoint operators on a semifinite von Neumann
algebra (M, 1) such that T;: LP(M) — LP(M) is a contraction for any p > 1 and
any t > 0. We discuss several examples of such semigroups for which we establish
bounded H* functional calculus and square function estimates. This includes semi-
groups generated by certain Hamiltonians or Schur multipliers, ¢-Ornstein-Uhlenbeck
semigroups acting on the ¢g-deformed von Neumann algebras of Bozejko-Speicher, and
the noncommutative Poisson semigroup acting on the group von Neumann algebra of
a free group.

© Astérisque 305, SMF 2006
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Résumé (Calcul fonctionnel H°° et fonctions carrées dans les espaces L.” non commuta-
tifs)

Nous étudions les opérateurs sectoriels et les semigroupes opérant sur un espace
LP non commutatif. Nous introduisons de nouvelles fonctions carrées adaptées a ce
contexte et étudions leurs interactions avec le calcul fonctionnel H*°. Nous obtenons
des extensions de travaux fameux de Cowling, Doust, McIntoch et Yagi qui concer-
naient le cas commutatif. Cette étude nécessite I'introduction de variantes de la Rade-
macher sectorialité et 1'usage des structures matricielles sur les espaces LP non com-
mutatifs. Nous traitons de fagon approfondie les semigroupes de diffusion non commu-
tatifs. Il s’agit des semigroupes (T});>0 d’opérateurs normaux et auto-adjoints opérant
sur une algébre de von Neumann semifinie (M, 7), tels que T;: LP(M) — LP(M) est
une contraction pour tout p > 1 et pour tout ¢ > 0. Nous présentons et étudions
plusieurs exemples de tels semigroupes, pour lesquels nous sommes en mesure d’éta-
blir une propriété de calcul H* borné, ainsi que des estimations quadratiques. Cette
étude inclut certains semigroupes engendrés par des opérateurs Hamiltoniens ou des
multiplicateurs de Schur, des semigroupes d’Ornstein-Uhlenbeck opérant sur les al-
gébres de von Neumann de ¢-déformation de Bozejko-Speicher, et le semigroupe de
Poisson non commutatif défini sur 'algébre de von Neumann d’un groupe libre.
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CHAPTER 1

INTRODUCTION

In the recent past, noncommutative analysis (in a wide sense) has developed rapidly
because of its interesting and fruitful interactions with classical theories such as C*-
algebras, Banach spaces, probability, or harmonic analysis. The theory of operator
spaces has played a prominent role in these developments, leading to new fields of
research in either operator theory, operator algebras or quantum probability. The re-
cent theory of martingale inequalities in noncommutative LP-spaces is a good example
for this development. Indeed, square functions associated to martingales and most of
the classical martingale inequalities have been successfully transferred to the noncom-
mutative setting. See in particular [64, 33, 68, 38], and also the recent survey [80]
and the references therein. The noncommutative maximal ergodic theorem in [36] is
our starting point for the study of noncommutative diffusion semigroups. On this line
we investigate noncommutative analogs of classical square function inequalities.

It is remarkable that operator space techniques have led to new results on classical
analysis. We mention in particular completely bounded Fourier multipliers and Schur
multipliers on Schatten classes [31]. In our treatment of semigroups no prior knowl-
edge on operator space theory is required. However, operator space concepts underlie
our understanding of the subject.

Our objectives are to introduce natural square functions associated with a secto-
rial operator or a semigroup on some noncommutative LP-space, to investigate their
connections with H* functional calculus, and to give various concrete examples and
applications. H® functional calculus was introduced by McIntosh [53], and then
developed by him and his coauthors in a series of remarkable papers [54, 21, 3|.
Nowadays this is a classical and powerful subject which plays an important role in
spectral theory for unbounded operators, abstract maximal LP-regularity, or multi-
plier theory. See e.g. [43] for more information and references.
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Square functions for generators of semigroups appeared earlier in Stein’s classical
book [70] on the Littlewood-Paley theory for semigroups acting on usual (=commuta-
tive) LP-spaces. Stein gave several remarkable applications of these square functions
to functional calculus and multiplier theorems for diffusion semigroups. Later on,
Cowling [20] obtained several extensions of these results and used them to prove
maximal theorems.

The fundamental paper [21] established tight connections between McIntosh’s H
functional calculus and Stein’s approach. Assume that A is a sectorial operator on
LP(Y), with 1 < p < oo, and let F' be a non zero bounded analytic function on a
sector {|Arg(z)| < 0} containing the spectrum of A, and such that F' tends to 0 with
an appropriate estimate as |z| — oo and as |z| — 0 (see Chapter 3 for details). The
associated square function is defined by

lalle = H(/j\F(tA)wl”%)%

For example if — A is the generator of a bounded analytic semigroup (T} );>0 on LP(3),
then we can apply the above with the function F'(z) = ze™* and in this case, we obtain

, x € LP(X).

P

the familiar square function

llz|F = H((/(;Oot‘%(ﬂ(:t))rdt)%

from [70, Chapters III-IV]. One of the most remarkable connections between H
functional calculus and square functions on LP-spaces is as follows. If A admits a

P

bounded H*® functional calculus, then we have an equivalence Ki|lz| < |lz|r <
Ks||z|| for any F as above. Indeed this follows from [21] (see also [49]).

In this paper we consider a sectorial operator A acting on a noncommutative LP-
space LP(M) associated with a semifinite von Neumann algebra (M, 7). For an
appropriate bounded analytic function F' as before, we introduce two square functions
which are approximately defined as

</000 (F(tA)x)* (F(tA)x) % )

SIE

]l Fe

and

e = ([ e (o )

(see Chapter 6 for details). The functions || ||g. and || ||F, are called column and
row square functions respectively. Using them we define a symmetric square func-
tion ||z||r. As with the noncommutative Khintchine inequalities (see [51, 52]),
this definition depends upon whether p > 2 or p < 2. If p > 2, we set ||z||p =
max{||z||r.c; |||/ Fr}. See Chapter 6 for the more complicated case p < 2. Then one

p
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CHAPTER 1. INTRODUCTION 3

of our main results is that if A admits a bounded H* functional calculus on LP(M),
with 1 < p < oo, we have an equivalence

(L.1) Killz| < [lzllp < Kol

for these square functions.

After a short introduction to noncommutative LP-spaces, Chapter 2 is devoted
to preliminary results on noncommutative Hilbert space valued LP-spaces, which are
central for the definition of square functions. These spaces and related ideas first
appeared in [51] (see also [52, 62]). In fact operator valued matrices and operator
space techniques (see e.g. [58, 62, 63]) play a natural role in our context. However
we tried to make the paper accessible to readers not familiar with operator space
theory and completely bounded maps.

In Chapter 3 we give the necessary background on sectorial operators, semigroups,
and H* functional calculus. Then we introduce a completely bounded H* functional
calculus for an operator A acting on a noncommutative LP(M). Again this is quite
natural in our context and indeed it turns out to be important in our study of square
functions (see in particular Corollary 7.9).

Rademacher boundedness and Rademacher sectoriality now play a prominent role
in H* functional calculus. We refer the reader e.g. to [41], [79], [78], [47], [49] or
[43] for developments and applications. On noncommutative LP-spaces, it is natu-
ral to introduce two related concepts, namely the column boundedness and the row
boundedness. If F is a set of bounded operators on LP(M), we will say that F is
Col-bounded if we have an estimate

1

H(;Tk(ﬂTk)*Tk(ﬂik))é’ e CH(E};»EZW)Z

for any finite families T1,...,T, in F, and z1,...,z, in LP(M). Row boundedness
is defined similarly. We develop these concepts in Chapter 4, along with the related

LP(M)

notions of column and row sectoriality.

Chapters 6 and 7 are devoted to square functions and their interplay with H*
functional calculus. As a consequence of the main result of Chapter 4, we prove that
if A is Col-sectorial (resp. Rad-sectorial), then we have an equivalence

K]HJ,

G,c < ||x||F,c < KQHIB

e  (resp. Ki|zlle < [lz|lr < Kallz|a)

for any pair of non zero functions F, G defining square functions. This is a noncom-
mutative generalization of the main result of [49]. Then we prove the aforementioned
result that (1.1) holds true if A has a bounded H* functional calculus. We also show
that conversely, appropriate square function estimates for an operator A on LP(M)
imply that A has a bounded H* functional calculus.

Chapter 5 (which is independent of Chapters 6 and 7) is devoted to a noncommu-
tative generalization of Stein’s diffusion semigroups considered in [70]. We define a

SOCIETE MATHEMATIQUE DE FRANCE 2006



4 CHAPTER 1. INTRODUCTION

noncommutative diffusion semigroup to be a point w*-continuous semigroup (7%)¢>0
of normal contractions on (M, 1), such that each T; is selfadjoint with respect to
7. In this case, (T});>0 extends to a co-semigroup of contractions on LP(M) for any
1 <p<oo. Let —A, denote the negative generator of the LP-realization of (T})¢>0.
Our main result in this chapter is that if further each T;: M — M is positive (resp.
completely positive), then A, is Rad-sectorial (resp. Col-sectorial and Row-sectorial).
The proof is based on a noncommutative maximal theorem from [37, 36], where such
diffusion semigroups were considered for the first time.

If (T})>0 is a noncommutative diffusion semigroup as above, the most interesting
general question is whether A, admits a bounded H* functional calculus on LP(M)
for 1 < p < oo. This question has an affirmative answer in the commutative case [20]
but it is open in the noncommutative setting. The last three chapters are devoted
to examples of natural diffusion semigroups, for which we are able to show that A,
admits a bounded H*° functional calculus. Here is a brief description.

In Chapter 8, we consider left and right multiplication operators, Hamiltonians,
and Schur multipliers on Schatten space SP. Let H be a real Hilbert space, and let
(ar)r>1 and (Br)rk>1 be two sequences of H. We consider the semigroup (7});>¢ of
Schur multipliers which are determined by T;(E;;) = e‘t(““z*ﬁj”)Eij, where the E;;’s
are the standard matrix units. This is a diffusion semigroup on B(¢?) and we show
that the associated negative generators A, have a bounded H* functional calculus
for any 1 < p < 0.

Let H be a real Hilbert space. In Chapter 9, we consider the ¢-deformed von Neu-
mann algebras I'q(H) of Bozejko and Speicher [14, 15], equipped with its canonical
trace. To any contraction a: H — H we may associate a second quantization oper-
ator I'y(a): Ty(H) — T';(H), which is a normal unital completely positive map. We
consider semigroups defined by Ty = I'q(a¢), where (a;)>0 is a selfadjoint contraction
semigroup on H. This includes the ¢g-Ornstein-Uhlenbeck semigroup [9, 11]. These
semigroups (T}):>0 are completely positive noncommutative diffusion semigroups and
we show that the associated A,’s have a bounded H* functional calculus for any
1<p<oo.

In Chapter 10 we consider the noncommutative Poisson semigroup of a free group.
Let G = F, be the free group with n generators and let |-| be the usual length
function on G. Let V. N(G) be the group von Neumann algebra and let A(g) € VN(G)
be the left translation operator for any ¢ € G. For any t > 0, T; is defined by
T;(Mg)) = e 19/\(g). This semigroup was introduced by Haagerup [30]. Again this
is a completely positive noncommutative diffusion semigroup and we prove that the
associated A,’s have a bounded H* functional calculus for any 1 < p < oo. The
proof uses noncommutative martingales in the sense of [64], and we establish new
square function estimates of independent interest for these martingales.

ASTERISQUE 305



CHAPTER 1. INTRODUCTION 5

Chapter 11 is a brief account on the non tracial case. We consider noncommutative
LP-spaces LP(M, ) associated with a (possibly non tracial) normal faithful state ¢
on M, and we give several generalizations or variants of the results obtained so far in
the semifinite setting.

We end this introduction with a few notations. If X is a Banach space, the algebra
of all bounded operators on X is denoted by B(X). Further we let Ix denote the
identity operator on X.

We usually let (ex)r>1 denote the canonical basis of £2, or any orthonormal family
on Hilbert space. Further we let E;; = e; € € B (¢2) denote the standard matrix
units.

We will use the symbol “ < ” to indicate that two functions are equivalent up to
positive constants. For example, (1.1) will be abbreviated by ||z||r < ||z||. Next we
will write X & Y to indicate that two Banach spaces X and Y are isomorphic.

We refer the reader to e.g. [69] and [40] for the necessary background on C*-
algebras and von Neumann algebras. We will make use of UMD Banach spaces, for
which we refer to [17].

The main results of the present work were announced in [34]. We refer to related
work of Mei’s [55] in the semicommutative case.

SOCIETE MATHEMATIQUE DE FRANCE 2006






CHAPTER 2

NONCOMMUTATIVE HILBERT SPACE VALUED
LP-SPACES

2.A. Noncommutative LP-spaces

We start with a brief presentation of noncommutative LP-spaces associated with a
trace. We mainly refer the reader to (73, Chapter I] and [26] for details, as well as to
[65] and the references therein for further information on these spaces.

Let M be a semifinite von Neumann algebra equipped with a normal semifinite
faithful trace 7. We let M denote the positive part of M. Let S be the set of all
x € M, whose support projection have a finite trace. Then any € S4 has a finite
trace. Let S € M be the linear span of S, then S is a w*-dense *-subalgebra of M.

Let 0 < p < co. For any 2 € S, the operator |z|? belongs to S1 and we set

lal, = (r(2?)?, zeS.

Here |z| = (z*2)% denotes the modulus of 2. It turns out that || ||, is a norm on & if
p > 1, and a p-norm if p < 1. By definition, the noncommutative LP-space associated
with (M, 7) is the completion of (S, || ||,). It is denoted by LP(AM). For convenience,
we also set L>°(M) = M equipped with its operator norm. Note that by definition,
LP(M)N M is dense in LP(M) for any 1 < p < oc.

Assume that M C B(H) acts on some Hilbert space H. It will be fruitful to also
have a description of the elements of LP(M) as (possibly unbounded) operators on
H. Let M" C B(H) denote the commmutant of M. We say that a closed and densely
defined operator z on H is affiliated with M if x commutes with any unitary of M’
Then we say that an affiliated operator = is measurable (with respect to the trace
7) provided that there is a positive integer n > 1 such that (1 — p,) < oo, where
Pn = X[o,n)(|]) is the projection associated to the indicator function of [0,7n] in the
Borel functional calculus of |z|. It turns out that the set LO(M) of all measurable
operators is a x-algebra (see e.g. [73] for a precise definition of the sum and product
on Lo%(M)). Indeed, this *-algebra has a lot of remarkable stability properties. First
for any x in LO9(M) and any 0 < p < oo, the operator |z|? = (z*x)% belongs to
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LO(M). Second, let L°(M), be the positive part of L°(M), that is, the set of all
selfadjoint positive operators in L°(M). Then the trace 7 extends to a positive tracial
functional on LO(M), still denoted by 7, in such a way that for any 0 < p < co, we
have

LP(M) = {z € L)(M) : 7(|z|") < oo},

equipped with ||z, = (7'(]:c|”))!l Furthermore, 7 uniquely extends to a bounded
linear functional on L!(M), still denoted by 7. Indeed we have |7(z)| < 7(|z|) = |||
for any x € LY(M).

For any 0 < p < oo and any € LP(M), the adjoint operator z* belongs to
LP(M) as well, with ||z*||, = ||z||,. Clearly, we also have that z*z € L% (M) and
|z| € LP(M), with || |z]||, = ||z|l,. We let LP(M)4 = L°(M); N LP(M) denote the
positive part of LP(M). The space LP(M) is spanned by LP(M);.

We recall the noncommutative Holder inequality. If 0 < p,q,r < co are such that
% + 5 = %, then

(2.1) lzylle < llzllpllylle, @€ LP(M), y € LIYM).

1

Conversely for any z € L"(M), there exist x € LP(M) and y € LI(M) such that
z =y, and ||z[» = [lz[lpllyllq-

For any 1 < p < oo, let p’ = p/(p — 1) be the conjugate number of p. Applying
(2.1) with ¢ = p/ and r = 1, we may define a duality pairing between LP(M) and
L¥' (M) by

(2.2) (w,y) = (ay),  x€LP(M), ye L¥(M).
This induces an isometric isomorphism

’ 1 1
(2.3) LP(M)* = LP (M), 1 <p< oo, sty T 1

In particular, we may identify L'(M) with the (unique) predual M, of M.

Another remarkable property of noncommutative LP-spaces which will play a cru-
cial role is that they form an interpolation scale. By means of the natural embeddings
of L*(M) = M and LY(M) = M, into L°(M), one may regard (L>°(M), L}(M))

as a compatible couple of Banach spaces. Then we have
(2.4) [L®(M), LY(M)]1 = LP(M), 1 <p <o,

where [, ]y stands for the interpolation space obtained by the complex interpolation
method (see e.g. [6]).

The space L?(M) is a Hilbert space, with inner product given by (z,y) — (z,y*) =
T(xy*). We will need to pay attention to the fact that the identity (2.3) provided by
(2.2) for p = 2 differs from the canonical (antilinear) identification of a Hilbert space
with its dual space. This leads to two different notions of adjoints and we will use
different notations for them. Let T': L?(M) — L?(M) be any bounded operator. On

ASTERISQUE 305



2.B. TENSOR PRODUCTS 9

the one hand, we will denote by T* the Banach space adjoint of T" provided by (2.3)
and (2.2), so that

T(T(az)y) =1(aT*(y)), x,y € LA(M).

On the other hand, we will denote by TT the adjdint of T in the usual sense of
Hilbertian operator theory. That is,

(T(2)y*) = 7'(:17(TT(,1/))*)7 z,y € L*(M).
For any 1 < p < oo and any T: LP(M) — LP(M), let T°: LP(M) — LP(M) be
defined by
(2.5) T°(x) =T (z")", z € LP(M).
If p = 2, we see from above that
(2.6) Th =T,

In particular T: L*(M) — L*(M) being selfadjoint means that 7% = T°.
The above notations will be used as well when T is an unbounded operator.

We finally mention for further use that for any 1 < p < oo, LP(M) is a UMD
Banach space (see [8] or [65, Section 7]).

Throughout the rest of this chapter, (M,7) will be an arbitrary semifinite von
Neumann algebra.

2.B. Tensor products

Let H be a Hilbert space. If the von Neumann algebra B(H) is equipped with
its usual trace tr, the associated noncommutative LP-spaces are the Schatten spaces
SP(H) for any 0 < p < oo. We will simply write S? for SP(¢2). If n > 1 is any integer,
then B(¢2) ~ M,, the algebra of n x n matrices with complex entries, and we will
write SP for the corresponding matrix space SP(¢2).

We equip the von Neumann algebra M® B(H) with the trace 7 ® tr. Then for any
0 < p < oo, we let

(2.7) SP[H; LP(M)] = LP(MEB(H)).

Again in the case when H = (? (resp. H = ¢2), we simply write SP[LP(M)] (resp.
SP[LP(M)] = LP(M,(M))) for these spaces. These definitions are a special case of
Pisier’s notion of noncommutative vector valued LP-spaces [62]. Further comments
on these spaces and their connection with operator space theory will be given in the
paragraph 2.D below.

Lemma 2.1. — For any 0 < p < oo, SP(H) ® LP(M) is dense in SP[H; LP(M)).

SOCIETE MATHEMATIQUE DE FRANCE 2006



10 CHAPTER 2. NONCOMMUTATIVE HILBERT SPACE VALUED LP-SPACES

Proof. — Let (p:): be a nondecreasing net of finite rank projections on H converging
to Iy in the w*-topology. Then 1 ® p; converges to 1 ® Iy in the w*-topology of
M®@B(H). As is well-known, this implies that ||(1 ® p;)z(1 ® py) — z||, — 0 for any
x € LP(M®B(H)). Each H; = p;(H) is finite dimensional, hence we have

(1@ p)r(l@pe) € LP(M® B(H,)) = LP(M) @ SP(H;) C LP(M) @ SP(H)

for any x € LP(M). This shows the density of SP(H) ® LP(M). O

We shall now define various H-valued noncommutative LP-spaces. For any a,b €
H, we let a ® b € B(H) denote the rank one operator taking any & € H to (£, b)a.
We fix some e € H with |le]| = 1, and we let p. = e ® € be the rank one projection
onto Span{e}. Then for any 0 < p < oo, we let

LP(M:H.) = LP(M&B(H))(1 & pe).
We will give momentarily further descriptions of that space showing that its definition
is essentially independent of the choice of e. For any 0 < p < oo, let us regard

LP(M) C LP(M) @ SP(H) C LP(M®B(H))

as a subspace of LP(M®B(H)) by identifying any ¢ € LP(M) with ¢ ® p.. Clearly
this is an isometric embedding. This identification is equivalent to writing that

LP(M) = (1@ p.)LP(MBB(H))(1 @ p.).

For any element u € LP(M; H.) C¢ LP(M®&B(H)), the product u*u belongs to the
subspace (1 pe)L% (M@B(H))(1®p.) of LT (M@B(H)). Applying the above iden-

o . . , . P
tifications for £, we may therefore regard u*u as an element of Lz(M). Hence

(u*u)z € LP(M), and we have
(28) HU'HLP(M;I-L,) = H(U*U)% HLP(/\/[)? u € LP(M; HF)'
Let u € LP(M)® H and let (xy ), and (ag)i be finite families in LP (M) and H such

that u = >, ¥ ® ax. Let @ € LP(M) ® SP(H) be defined by @ = Y, o1 @ (ap ® €).
Then the mapping u — u induces a linear embedding

LP(M)® H C LP(M; H,).
Moreover the argument for Lemma 2.1 shows the following.
Lemma 2.2. — For any 0 < p < oo, LP(M) @ H is dense in LP(M; H.).

We shall now compute the norm on LP(M) ® H induced by LP(M; H.). Let us
consider u = ), x ® aj, as above. Then we have

ﬁ:Zxk®ak®é and fL*ZZ$Z®€®(L_k.
k k
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2.B. TENSOR PRODUCTS 11

Hence
<y ~
U U= g (aj,a:) ;T Q pe .
iJ

According to (2.8), this shows that

1
@ [Snonl,, - (S’

In the above definitions, the index ‘¢’ stands for ‘column’. Indeed, if (e1,...,e,) is
an orthonormal family of H and if z1,...,z, belong to LP(M), it follows from (2.9)
that
(2.10)

DR

Lr(M)

z 0 -+ 0

1
Lo (M;H.) H(Zxk ")2

Note that according to Lemma 2.2, we can now regard LP(M; H.) as the completion
of LP(M) ® H for the tensor norm given by (2.9), if p is finite. See Remark 2.3 (2)
for the case p = co.

We now turn to analogous definitions with columns replaced by rows. Let e € H
with |le]| = 1 as above, and let p; = € ® e € B(H). For any 0 < p < 0o, we let

LP(M; H,) = (1@ pe) LP(M@B(H)).
Then any of the above results for LP(M; H.) has a version for LP(M; H,.). In par-
ticular, let u = ), x ® ar in LP(M) ® H, with x;, € LP(M) and a € H. Then
identifying u with the element Y, 2 ® € ® a) in LPF(M®B(H)) yields a linear em-
bedding

M)

T 0 O (g, vty

LP(M)® H C LP(M; H,),

and we have

W\ 2

(211) “;'Ifk@(lk‘ Lo(M:H.) = H(;(ai7a]‘>lilj) “LP(M).
Thus if (eq,...,e,) is an orthonormal family of H and if z1, ..., z, belong to LP(M),
then we have
(2.12)

Ty ... Ty

i 0 ... 0
el = [ (awai) | 0 -

”zk: A IPAT VB8 ; B e om :

0 --- 0

L (M, (M))
Moreover for any 0 < p < oo, LP(M) ® H is a dense subspace of LP(M; H,.).
Throughout this work, we will have to deal both with column spaces LP(M; H,)
and row spaces LP(M; H,.). In most cases, they will play symmetric roles. Thus we
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12 CHAPTER 2. NONCOMMUTATIVE HILBERT SPACE VALUED LP-SPACES

will often state some results for LP(M; H.) only and then take for granted that they
also have a row version, that will be used without any further comment.

Remark 2.3
(1) Applying (2.10) and (2.12), we see that

2 > lel)”
DIERTA vy = ()
a L2(M:H,) %

for any x1,...,x, in L*(M). Thus L*(M; H.) and L?(M; H,) both coincide with
the Hilbertian tensor product of L?(M) and H.

(2) The space L*°(M; H.) C M®B(H) is w*-closed, and arguing as in the proof
of Lemma 2.1, it is clear that M ® H C L (M; H,) is w*-dense. Indeed if (e;);cr is
a basis of H for some set I, then L (M; H.) coincides with the well-known space of
all families (x;);es in M such that

1
H(l‘i)ieIHLoo(M;Hc) = SUP{H(erxl>2HM :JC Iﬁnite} < 00.
ieJ

= T ®e ‘
L2(M;H,) H; k k

(3) Let {E;; : i,j > 1} be the standard matrix units on B(¢?), and let (ex)r>1 be
the canonical basis of ¢2. It follows either from the definition of LP(M;¢2), or from
(2.10), that for any finite family (zx)x in LP(M), we have

2 = E : ‘
[Son o],y = [ B0 0

A similar result holds true for row norms.

se[Le(M))

For any 1 < p < oo, the linear mapping
Qp: L(MBB(H)) — LY (MBB(H))

taking any x € LP(M®B(H)) to (1 ® pe) is a contractive projection whose range is
equal to LP(M; H.). Moreover these projections are compatible. Thus applying (2.4)
for M®B(H), we obtain that

(2.13) [L®(M; H.), L'(M; He)| = LP(M; He), 1 <p< oo,

1

P

A similar result holds for row spaces.
Likewise, applying (2.3) to M®B(H), we obtain that

(2.14) LP(M; H,)* = LV (M; H,.), 1<p<oo, -+—=1,

1
vy
for the duality pairing defined by taking (z ® a,y ® b) to (a,b)7(zy) for any z €
LP(M), y € LP (M), and a,b € H. By (2.10) and (2.12), an essentially equivalent
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2.B. TENSOR PRODUCTS 13

reformulation of this duality result is that for any 1 < p < oo and for any zy,...,z, €
LP(M), we have
(2.15)
n 1 n n 1
H (Z ﬂfz‘é:vk) ’ H = sup{‘Z(z/k,zk)} L yk € LV (M), “ (Z yky?é) ’ H < 1}
k=1 P k=1 k=1 P

We need to introduce two more H-valued noncommutative LP-spaces, namely the
intersection and the sum of row and column spaces. These spaces naturally appear
in the so-called noncommutative Khintchine inequalities (see below). Let 1 < p < oo.
We will regard (LP(M; H.), LP(M; H,)) as a compatible couple of Banach spaces, in
the sense of interpolation theory (see e.g. [6]). Indeed if we let W be the injective
tensor product of LP(M) and H, say, Lemma 2.2 and its row counterpart yield natural
one-one linear mappings LP(M; H.) — W and LP(M; H,) — W. According to this
convention, we define the intersection
(2.16) LP(M; Hyne) = LP(M; He) N LP(M; H,),
equipped with the norm

(2.17) el Lo (M) = max{ [lull e vtm s Null e vtim,) -
Then we define the sum

(2.18) LP(M; Hy o) = LP(M; He) + LP(M; Hy),
equipped with the norm

2190 |lullermin,y o = nE{lluilleogm + luellooomim,) © u = ur +uz}.

We now introduce Rademacher averages. Let (ex)r>1 be a Rademacher sequence,
that is, a sequence of independent random variables on a probability space (2, P)
such that ]P’(ek = 1) = ]P’(Ek = —1) = % for any k > 1. Then for any finite family
Z1,...,Ty in an arbitrary Banach space X, we let

(2.20) HZ | H;:IWW)X a0

If X = LP(M) is a noncommutative LP-space for some 1 < p < 0o, the above norms

satisfy the following remarkable estimates (called the noncommutative Khintchine
inequalities). Let H be a Hilbert space and let (ex)x>1 be an orthonormal sequence
in H.
(i) If 2 < p < oo, there is a constant C}, > 0 (only depending on p) such that for
any i, ...,%, in LP(M), we have
(2.21)

1 n n
— <
V2 H; mk@ek”mw;mm) = H; o xk’

n
<G |
Rad(LP(M)) — P ;$k®ek Lr(M;H

rﬁc)
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14 CHAPTER 2. NONCOMMUTATIVE HILBERT SPACE VALUED LP-SPACES

(ii) There is a constant C; such that for any 1 < p < 2 and any z1,...,x, in LP(M),
we have
(2.22)

Ch HZ T ® ek‘
k=1

These fundamental inequalities were proved by Lust-Piquard [51] for the Schatten
spaces when p > 1 and then extended to the general case by Lust-Piquard and Pisier
[52]. In accordance with (2.21) and (2.22), we let for any Hilbert space H

LP(MiH ()

n n
<1553 e < [0
LP(M;H i) ; Rad(LP(M)) ;

(2.23) LP(M; Hygq) = LP(M; Hyp.)  if 1<p<2;

(2.24) LP(M; Hpoq) = LP(M; Hpne) if 2<p<oco.
Then it easily follows from (2.14) and its row counterpart that we have an isometric
identification

/ _— 1
@2)  PMiHw) =D (M), 1<pa <o 4o =L

We conclude this paragraph by a simple lemma concerning tensor extensions.

Lemma 2.4. — Let H,K be two Hilbert spaces and let LP(M) be a noncommuta-
tive LP-space, for some 1 < p < oo. Then for any bounded operator T: H — K,
the mapping Ir» @ T (uniquely) extends to a bounded operator from LP(M; H.) into
LP(M; K.), with

HILP @T: LP(M§H0) - LP(M§KC)“ =T

Likewise Ir» @ T extends to bounded operators of norm ||T|| from LP(M; H,) into
LP(M; K,), from LP(M;H,n.) into LP(M; K.n.), and from LP(M;H,.) into
LP(M; Krie).

All these extensions will be usually denoted by T.

Proof. Let T: H — K be a bounded operator, and let 1 < p < co. Let (e, ...,e,)
be a finite orthonormal family in H, and let zy,...,x, be arbitrary elements in
LP(M). We consider u =Y, x; ® e}, and T(u) = > or @k @ T(ex). Then its norm in
LP(M; K.) is equal to

1T ()| = H(Z<T<ej>,T<ei>>ﬁ%)%\

%]

)

P

by (2.9). The n x n matrix [(T'(e;),T(e;))] is nonnegative and its norm is less than
or equal to ||T||?. Hence we may find a matrix A = [d;;] € M,, such that

A*A = [(T(e;),T(es))]  and  JA] < [T\
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2.C. VECTOR-VALUED FUNCTIONS 15

Then we have

Y (T(ey), Tlen)) aiay = Y duidyy i

ij i,k
= Z(del mi)*(dej $j>.
k i J
Hence
. ry 0 -+ 0 ry 0 -+ 0
1Tl = || - dy - P | :
) T, 0 -+ 0 zn, 0 -+ 0

p P

According to (2.10), this implies that |7(u)[| < [|A[l[fu]| < |T]/[|u] and proves the
column version of our lemma.

The proof of the row version is similar and the other two results are straightforward

consequences. O

2.C. Vector-valued functions

In this paragraph, we give preliminary results in the case when the Hilbert space
H is a concrete (commutative) L?-space. We let (Q, ) denote an arbitrary o-finite
measure space, and we shall consider Banach space valued L2-spaces L*(§2; X). For
any Banach space X, this space consists of all (strongly) measurable functions u:  —
X such that [, [|[u(t)|[% du(t) is finite. The norm on this space is given by

lulloee = ([ Ruldu®)’,  we @),

The main reference for these spaces is [23], to which we refer the reader for more
information and background. We merely recall a few facts.

First, the tensor product L?(2) ® X is dense in L?(; X).

Second, for any v € L*(€:;X), and for any v € L?(Q;X*), the function t
(v(t),u(t)) is integrable and we may define a duality pairing

(2.26) (vyu) = /(’U(t),u(lf))du(t).
Q

This pairing induces an isometric inclusion

(2.27) L3 X*) — L2(; X)*.

If further X is reflexive, then this isometric inclusion is onto, and we obtain an
isometric isomorphism L2(£2; X)* = L2(2; X*) (see e.g. [23, IV;1]).
Third, as a consequence of (2.4), we have

(2.28) [L2(9; L= (M), LX(Q, LY (M)], = L*(Q: LP(M)), 1 <p <o,

whenever (M, 7) is a semifinite von Neumann algebra.
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16 CHAPTER 2. NONCOMMUTATIVE HILBERT SPACE VALUED LP-SPACES

Proposition 2.5. — Let (Q, 1) be a measure space.

(1) For any 1 < p <2, we have contractive inclusions
LP(M;LA(Q),) C LA (s LP(M)),  LP(M; L*(Q),) C L*(Q; LP(M)),
and  LP(M;L*(Q),,.) C L*(Q; LP(M)).
(2) For any 2 < p < oo, we have contractive inclusions
L3 LP(M)) C LP(M; L3(),) and L*(Q; LP(M)) C LP(M; L*(Q),).
For p # 0o, we also have a contractive inclusion
L*(Q; LP(M)) € LP(M; LA(Q),.,.)-

Proof. — Given a measurable subset I C Q, we let x; denote the indicator function
of I. Let x1,...,z, be in L'(M). Then for any yi,...,y, in M = L'(M)*, we have

] < [0 L (S ]
(2mtt)' (),

Taking the supremum over all y1,...,y, with >, |lyx[|2, <1 yields

(2.20) (S lel)” < (X o)
k k

" » 1 " . . e
Now changing xj, into pu(Ix)2xy for a sequence I, ..., I, of pairwise disjoint measur-

IN

IN

1

able subsets of finite measure in 2, and using (2.9), we derive that

n n
Tr @ X1, < H Tk .
“; kX L2(;L1 (M) — 1; k& X1,

By density this shows that L*(M; L%(Q).) C L?(Q; L'(M)) contractively. On the
other hand, we have an isometric isomorphism L?(M; L*(Q).) = L*(Q; L*(M)) by
Remark 2.3 (1). Thus in the column case, the result for 1 < p < 2 follows by
interpolation, using (2.13) and (2.28). The row case can be treated similarly and the
Rademacher case follows from the previous two cases. Once (1) is proved, (2) follows
by duality. 0

LYUM;L2(Q))

Remark 2.6. — Let 1 < p < oo and let p’ = p/(p — 1) be its conjugate number. If
we identify H = L?(Q) with its complex conjugate in the usual way, and if we set
X = LP(M), then the duality pairing given by (2.26) is consistent with the one in
(2.14). Namely if 1 < p < 2, if u € LP(M, L2(Q).) and if v € L2(Q; L? (M)), then
the action of v on u induced by (2.14) is given by (2.26). Indeed, this is clear when
u € LP(M) ® L2() and v € LP' (M) ® L2(2), and the general case follows by a
density argument. This property will be extended in Lemma 2.8 below.
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2.C. VECTOR-VALUED FUNCTIONS 17

Definition 2.7. — Let 1 < p < 0.
(1) Let u: Q@ — LP(M) be a measurable function. We say that u belongs to
LP(M; L3(),) if (y,u(-)) belongs to L*(Y) for any y € LP (M) and if there
exists € LP(M; L?(S2),) such that

(2.30) (y @ b,6) = /Q ul) bt du(t), e LP (M), be LX(Q).

(2) Letf € LP(M;L?(R),). We say that 0 is representable by a measurable function
is there exists a measurable u: Q — LP(M) such that (y,u(-)) belongs to L?(2)
for any y € LP (M) and (2.30) holds true.

If (1) (resp. (2)) holds, then 0 (resp. u) is necessarily unique. Therefore we will
make no notational difference between 6 and u in this case.

A similar terminology will be used for row spaces LP(M; L*(Q2),) or Rademacher
spaces LP(M; L*(2), .a)-

It is clear from Remark 2.6 that any u € LP(M; L?(2).) N L?(§%; LP(M)) is repre-
sentable by a measurable function. Hence if 1 < p < 2, any element of LP(M; L?(f2) )
is representable by a measurable function. However we will see in Appendix B that
this is no longer the case if p > 2.

Lemma2.8. — Let 1 < p,p' < oo be conjugate numbers and let u € LP(M; L*(2),)
and v € LP' (M;L3(Q),) be (representable by) measurable functions in the sense of
Definition 2.7. Then the function t — (v(t),u(t)) is integrable on Q and

(2.31) /Q|<v(t),U(t)>|du(t) < lullo(mizzo) ) 101 o (i 22(0),)-
Moreover the action of v on u given by (2.14) for H = L*(Q) is equal to

(2.32) (v,u) = /Q(v(t),u(t))du(t).

Proof — We may assume that p > 2. We fix some measurable u in LP(M, L3(Q).).
By assumption, (2.30) holds true for any y € L? (M) and any b € L?(Q2). Hence
t — (v(t),u(t)) is integrable and (2.32) holds true for any v in the tensor product
LP' (M) @ L2(). Let ¢ € L°°(Q) and let v in LP' (M) ® L2(£2). Then

/Q (o(t), u(t)) c(t) du(t) = (cv,u).

Hence by the above observation, we have

/Q (o(8), u(t)) e(t) du(t)

< lullervtinz@pllevll o (a2,
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18 CHAPTER 2. NONCOMMUTATIVE HILBERT SPACE VALUED LP”-SPACES

Applying Lemma 2.4 to the multiplication operator L?(2) — L?() taking any b €
L?(f2) to cb, we obtain that the right hand side of the above inequality is less than or
equal to

||C||oo||u||LP(M;LQ(Q)(,) |U||Lv’(M;L2(sz),.)-

Taking the supremum over all ¢ € L*>°(§2) with norm less than 1, we obtain (2.31) for
ve LY (M) @ L3(Q).

Next we consider an arbitrary v € L¥' (M; L3(Q),). By Proposition 2.5, we can
find a sequence (vy,),>1 in L”/(M) ® L2(£2) such that

v —’l/’rz,H[,'Z(sz;Lv'(M)) < ||U_/U"l||L1”(M;L2(S2),<) — 0.

Passing to a subsequence, we may assume that v, — v a.e. Then (u,v,) — (u,v)
a.e., and we deduce (2.31) by Fatou’s Lemma.

Finally applying (2.31) with (v — v,,) instead of v, we deduce that since each v,
satisfies (2.32), then v satisfies it as well. O

Remark 2.9. - The previous lemma clearly has variants (with identical proofs)
involving the Rademacher spaces. Namely, if u € LP(M;L*(Q),,,) and v €
LP (M; L*(Q),qa) are measurable functions, then the function t — (v(t),u(t)) is
integrable on ), the identity (2.32) holds true, and

/Q!<v<t>,u<t>>| apu(t) <l ooz, o100 e,

We conclude our discussion on measurable functions with the following useful con-
verse to Lemma 2.8.

Lemma 2.10. — Let 1 < p < oo, and let p’ be its conjugate number. Let u: Q —
LP(M) be a measurable function. Then u € LP(M;L*(Q),.) if and only if t
(y,u(t)) belongs to L*() for any y € L (M) and there is a constant K > 0 such
that for any v € LP (M) @ L%(Q), we have

[ 0O @) dn®)| < Kol agroen,
In this case, the norm of u in LP (M, LQ(Q)C) 18 equal to the smallest possible K.

Proof. — The ‘only if’ part follows from Lemma 2.8. If p > 1, the ‘if’ part is a direct
consequence of (2.14) and of the density of LP' (M) @ L(2) in L? (M; L*(Q),.). Thus
it suffices to consider the case when p = 1. In this case, the result can be deduced
from operator space arguments which will be outlined in the paragraph 2.D, and from
[62, Lemma 1.12]. However we give a self-contained proof for the convenience of the
reader.
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2.C. VECTOR-VALUED FUNCTIONS 19

We assume for simplicity that H = L?(2) is infinite dimensional and separable
(otherwise, replace sequences by nets in the argument below). Let u: Q — L'(M)
be a measurable function, and assume that

K = sup{| [ (o) u(®) dutt)] : v e M& L), [ollaasnry <1} <o

By Proposition 2.5 (2), the norm on M ® L?(f2) induced by L?(£2; M) is greater than
the one induced by L>(M; L*(Q),). Thus v — [, (v, u) du extends to an element of
L?(€; M)*. Since u is measurable and valued in L'(M), we deduce from (2.27) that
u € L2(Q, LY (M)).

Let (ex)k>1 be an orthonormal basis of H = L?(). Since u € L?(Q, L*(M)), we
can define x), € L*(M) by

T = /Q er(t)u(t) du(t), k> 1.

For any n > 1, we consider

n
up = Y ap®ep € L'(M) @ L*(Q).
k=1
For convenience we let Z = L*(M, L?(Q2).) in the rest of the proof. Our objective is
now to show that (u,)n>1 is a Cauchy sequence in Z. For any m > 1, let P,: H —
H be the orthogonal projection onto Span{ey,...,en}. If m < n, then we have
(Ith ® Pp)(upn) = um. Hence ||um|lz < ||unllz by Lemma 2.4. Thus the sequence
(llunllz)n is nondecreasing.
Next we note that for any n > 1, we have

n
l[unllz = SUP{‘Z<yk7xk>‘ Dyk €M,
P

1»®e~,H <1p.

However if we write v = ZZ:I Yr ® e, we have
n
> te) = [ (wle)u(®) du(o).
k=1 2
Hence (||unl|z)n is bounded, with sup,, |lu.||z = K.
Let € > 0, and let N > 1 be chosen such that ||un|% > K% —&2. Let n > m > N
be two integers. According to (2.29), we have

112
il + tn = 3 < || (st + (= ) (1 = ) |

Since n > m, we have u) U, = U}ty = ul Uy, hence
Up U, + (U, — Un) " (U — Upn) = U Uy
Thus we have
Humnzz + fJun — UmHQZ < ||un”227
and hence
lun = umllZ < K? = [lumllZ < €.
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This shows that (u,), is a Cauchy sequence in L'(M, L?(Q).). It has therefore a
limit in that space and by construction, this limit is necessarily u. This shows that
u€ LY(M, L3(Q).), with [lullz < K. O

Remark 2.11. — Again the previous lemma also has variants involving L?(12),,
L2()rne, or L2(Q)r4c. For instance, a measurable function u: Q — LP(M) belongs
to LP(M; L3(Q)ryc) with [lull Lo(at,22(0) < K if and only if

7-+4:)

/Q (o), u(®)) dut) | < Kol vtz

for any v € LP' (M) @ L2(1).
We also observe that if V C L?(12) is a dense subspace, then the same result holds
true with L? (M) @ L2(Q) replaced by L' (M) @ V.

We will now interpret the above results in the case when H = L%(Q) = ¢2, and
regard LP(M, (%), LP(M, ¢2), and LP(M, 2, ) as sequence spaces. Let (ex)x>1 denote
the canonical basis of ¢2. For any k > 1, let ¢, = (-,ex) be the functional on ¢2
associated with ey, and let pg: LP(M;¢2) — LP(M) denote the continuous extension
of I'» ® ). We say that a sequence (z)k>1 of LP(M) belongs to LP(M, £2) if there
exists some (necessarily unique) u in LP(M, ¢?) such that z = Py (u) for any k > 1.
We adopt a similar convention for LP(M, ¢2) and LP(M, {2 ).

T

Corollary 2.12. — Let 1 < p < oo and let (zx)k>1 be a sequence of LP(M). Then
(zk)k>1 belongs to LP(M, ¢?) if and only if there is a constant K > 0 such that

n
oo
k=1

In this case the norm of (xk)k>1 in LP(M, €2) is equal to the smallest possible K.

Moreover the same result holds with €% replaced by either (2 or (2.

< K, n>1.
Lr(M;e2)

Proof. — This clearly follows from Lemma 2.10 and Remark 2.11. O

We end this paragraph with a few observations to be used later on concerning
Rademacher norms and vector-valued L2-spaces.

Let Rad C L!(X) be the closed subspace spanned by the ¢;’s. For any 1, ...,z,
in some Banach space X, the norm sz Ekmk“Rad(X) defined by (2.20) is the norm
of the sum 3°, x ® z in the vector valued L'-space L'(Z; X). Accordingly, we let
Rad(X) c LY(X; X) be the closure of Rad ® X in L'(Z; X). Likewise, we let Rady C
L?(X) be the closed linear span of the e;’s in L?(¥), and we let Rada(X) C L?(Z; X)
be the closure of Rads ® X. By Kahane’s inequality (see e.g. [50, Theorem 1.e.13]),
the spaces Rad(X) and Radz(X) are isomorphic.
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We let P: L?(X) — L?(X) denote the orthogonal projection onto Rads. Let
(Fo, E1) be an interpolation couple of Banach spaces, and assume that Ey and E,;
are both K-convex. Following [60, p. 43] or [59], this means that for ¢ € {0, 1}, the
tensor extension P ® Ig,: L’ ® E; — L? ® E; extends to a bounded projection on
L?(3; E;), whose range is equal to Rads(E;). For any « € (0,1), let E, = [Ey, E1]a.
Then

L*(3;E,) = [L*(%; Eo), L* (5 E1 ) a,
where [, ], is obtained by the complex interpolation method [6]. Owing to the
projections onto Rad2(Ep) and Rad2(E;) given by the K-convexity, this implies that
Rads(E,) is isomorphic to the interpolation space [Rad2(Ep), Radz(E1)]. Applying
Kahane’s inequality, we finally obtain the isomorphism

Rad(E,) ~ [Rad(E,), Rad(E))]

Now note that for any 1 < p < oo, the Banach space LP(M) is K-convex. Indeed,
this follows from [25] and [59]. (More generally, any UMD Banach space is K-convex.)
Thus we deduce from above and from (2.4) that if 1 <7 < ¢ < 0o, we have

1 11—« «
4+ —.
r

(2.33) Rad(LP(M)) ~ [Rad(L¢(M)), Rad(L"(M))] if - =

“ p q
Note also that by our definitions in paragraph 2.B, we have
(2.34) Rad(LP(M)) ~ LP(M;£2,)), 1<p<oo.

2.D. Completely positive maps and completely bounded maps

Let 1 < p < oo. We say that a linear map T: LP(M) — LP(M) is positive if it
maps the positive cone LP(M), into itself. Then for an integer n > 2, we say that T
is n-positive if

Iy ® T+ SEILP(M)] — SE[LP(M)]
is positive. Recall here that SE[LP(M)] = LP(M,(M)) is a noncommutative LP-
space. Finally we say that T is completely positive if it is n-positive for all n. We
refer the reader e.g. to [58] for a large information on completely positive maps on
C*-algebras.
Likewise, we say that T': LP(M) — LP(M) is completely bounded if

I Tllcb = sup||Zsp ® T+ SFLP(M)] — SHLP(M)]|
is finite. In this case ||T|| is called the completely bounded norm of T. If p is finite,
it is easy to see that T is completely bounded if and only if Ig» ® T extends to a

bounded operator from SP[LP(M)] into itself. In that case, the extension is unique
and

(2.35) 1Tt = |[Zsw ® T SPILP(M)] — SPILP(M)]].
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More generally if T': LP(M) — LP(M) is completely bounded and H is any Hilbert
space, then Igp ;) ® T' extends to a bounded operator from SP[H; LP(M)] into itself,
whose norm is less than or equal to ||T||. Consequently, T'® Iy both extends to
bounded operators on LP(M; H..) and on LP(M; H,.), with

(2.36) |T &Iy LP(M; He) — LP(MGHe)|| < 1|7
and
(2.37) |T @ I LP(M; Hy) — LP(MH,)|| < ||T | eo.

If |T)|es < 1, we say that T is completely contractive. Next we say that the
operator T': LP(M) — LP(M) is a complete isometry if Ig» ® T is an isometry for
any n > 1. In this case, Isp ® T': SP[LP(M)] — SP[LP(M)] is also an isometry.

Assume that 1 < p < 00, and let p’ be its conjugate number. Applying (2.3) with
M, (M), we have an isometric identification SE[LP(M)]* = SP'[LP (M)]. Tt clearly
follows from this identity that 7': LP(M) — LP(M) is completely bounded if and
only its adjoint T*: L (M) — LP (M) is completely bounded, with

(2.38) IT: LP(M) — LP(M)]|y = ||IT": L¥' (M) — L7 (M) cp-

Although we will not use it explicitly, we briefly mention that several notions
considered so far have a natural description in the framework of operator space theory.

We need complex interpolation of operator spaces, for which we refer to [63, Sec-
tion 2.7]. Let E; be L'(M) equipped with the predual operator space structure of
MP°P. Then for any 1 < p < oo, equip LP(M) with the operator space structure
obtained by interpolating between M = E,, and E; (see [63, p.139]). Let E, be
this operator space, so that E, = [Fw, El]% completely isometrically. Then for any
Hilbert space H, and any 1 < p < oo, the definition (2.7) coincides with Pisier’s
operator space valued Schatten space SP[H; E,| (see [62, pp. 24-25]). Thus according
to [62, Lemma 1.7], a linear map T': LP(M) — LP(M) is completely bounded in the
sense of (2.35) if and only if it is completely bounded from E,, into itself in the usual
sense of operator space theory.

Let H be a Hilbert space, and let H. (resp. H,) be the space H equipped with
its column (resp. row) operator space structure (see e.g. [63, p.22]). Then for any
6 € [0,1], let H.(0) = [H,, H,]p in the sense of the interpolation of operator spaces.
Then

LP(M;H,) = He(5) @1 By, 1< p< oo,
where ®j, denotes the Haagerup tensor product (see e.g. [63, Chapter 5]). Indeed,

this identity follows from [62, Theorem 1.1]. Likewise, we have

LP(M; H,) = E, @, H.(3), 1 <p <o,

1
P

where we have defined H,.(0) = [H,, H.]s for any 6 € [0,1].
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Remark 2.13. — Let M be a commutative von Neumann algebra, and let ¥ be a
measure space such that M ~ L°°(X) as von Neumann algebras (see e.g. [69, 1.18]).
Then LP(M) coincides with the usual commutative space LP(X), and SP[H; LP(X)] =
LP(3;SP(H)) for any H and any 1 < p < oco. Thus a completely bounded map
T: LP(X) — LP(X) on some commutative LP-space is a bounded mapping whose
tensor extension T' ® Is» extends to a bounded operator on the vector valued LP-
space LP(X; SP).
Likewise, for any Hilbert space H and any 1 < p < oo, we have
LP(M;H.) = LP(M; H,) = LP(M; H,4q4) = LP(X; H)

isometrically.
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CHAPTER 3

BOUNDED AND COMPLETELY BOUNDED H*
FUNCTIONAL CALCULUS

3.A. H* functional calculus

In this paragraph, we give a brief review of H*® functional calculus on general
Banach spaces, and preliminary results. We mainly follow the fundamental papers
[63] and [21]. See also [3] or [46] for further details. We refer the reader e.g. to [29]
or to [22] for the necessary background on semigroup theory.

Let X be a Banach space, and let A be a (possibly unbounded) linear operator
Aon X. We let D(A), N(A) and R(A) denote the domain, kernel and range of A
respectively. Next we denote by o(A) and p(A) the spectrum and the resolvent set
of A respectively. Then for any z € p(A), we let R(z,A) = (z — A)~! denote the
corresponding resolvent operator.

For any w € (0, 7), we let
o ={z€C" : |Arg(z)| < w}
be the open sector of angle 2w around the half-line (0,+0c0). By definition, A is a

sectorial operator of type w if A is closed and densely defined, o(A) C ¥, and for
any 6 € (w, ) there is a constant Ky > 0 such that

(3.1) lzR(z, A)| < Ko, z€C\Zy.

We say that A is sectorial of type 0 if it is of type w for any w > 0.

Let (T}):>0 be a bounded cp-semigroup on X and let —A denote its infinitesimal
generator. Then A is closed and densely defined. Moreover o(A) C i—%— and for any
z € C\ ¥z, we have

(3.2) R(z,A) = —/ e Ty dt
0

in the strong operator topology (this is the Laplace formula). It is easy to deduce
that A is a sectorial operator of type 7.
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The following lemma, is well-known. A semigroup (7});>¢ which satisfies (i) and/or
(ii) below for some w € (0, %) is called a bounded analytic semigroup, see e.g. [29,
L5].

Lemma 3.1. — Let (T})i>0 be a bounded co-semigroup on X with infinitesimal gener-
ator —A, and let w € (0,%). The following are equivalent.

(i) A is sectorial of type w.
(ii) For any 0 < a <% —w, (T})>0 admits a bounded analytic extension (T.).ex
in B(X).

8%

For any 6 € (0,m), let H>(Zy) be the space of all bounded analytic functions
f:Xp — C. This is a Banach algebra for the norm

[ flloo,o = sup{[f(2)] : 2 € Eq}.
Then we let H§®(Xg) be the subalgebra of all f € H*®(Xy) for which there exist two
positive numbers s, ¢ > 0 such that
(33) fe) <ol ey
. z € z .
R ’
Let A be a sectorial operator of type w € (0,7) on X. Let w < v < 0 <, and let
I';, be the oriented contour defined by :

—te!, te R_:
3.4 I'.(t) = 7 ’
(34) 2 () { te”, t € Ry.

In other words, I'y is the boundary of ¥, oriented counterclockwise. For any f €

HE* (), we set
(3.5) f(A) = 1 / f(z2)R(z,A)dz.
2mi Jr, ’

It follows from (3.1) and (3.3) that this integral is absolutely convergent. Indeed (3.3)
implies that for any 0 < v < 6, we have

(3.6) [ vl %] <.

Thus f(A) is a well defined element of B(X). Using Cauchy’s Theorem, it is not hard
to check that its definition does not depend on the choice of v € (w, ). Furthermore,
the mapping f — f(A) is an algebra homomorphism from H°(2g) into B(X) which
is consistent with the functional calculus of rational functions. We say that A admits
a bounded H*(3y) functional calculus if the latter homomorphism is continuous,
that is, there is a constant K > 0 such that

(3.7) [f(AN < Kllflloow.  f € H (o).

Sectorial operators and H°° functional calculus behave nicely with respect to du-
ality. Assume that X is reflexive and that A is a sectorial operator of type w on X.
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Then A* is a sectorial operator of type w on X* as well. Moreover for any 6§ > w and
any B € H>® (%), we have . .
f(A") = f(A)

Consequently, A* admits a bounded H>(Xy) functional calculus if A does.

We now turn to special features of sectorial operators with dense range. For any
integer n > 1, let g, be the rational function defined by
n?z
If A is a sectorial operator on X, the sequences (n(n+ A)~!) and (nA(1+nA)~")
are bounded. Further it is not hard to check that n(n + A)~'z — z for any x € X
and that nA(1 + nA) 'z — z for any x € R(A) (see e.g. [21, Theorem 3.8]). This

yields the following.

Lemma 3.2. — Let A be a sectorial operator on X, and assume that A has dense
range. Let (gn)n>1 be defined by (3.8). Then

sup ||gn(A)|| < oo and limg,(A)z =z for any z € X.
n n
Consequently, A is one-one.

Let A be a sectorial operator of type w € (0, 7) and assume that A has dense range.
Our next goal is to define an operator f(A) for any f € H>®(¥p), whenever § > w.
For any n > 1, the operator g, (A) is one-one and we have

R(gn(A)) = D(A)N R(A).

The latter space is therefore dense in X. We let g = ¢;, that is
z

(3.9) g(z) = T o
Then for any 6 € (w,7) and any f € H*(Xy), the product function fg belongs to
H§°(3p) hence we may define (fg)(A) € B(X) by means of (3.5). Then using the
injectivity of g(A), we set

f(A) = g(A)~ (f9)(A),
with domain given by

D(f(4)) = {z € X : [(f9)(A)l(x) € D(A) N R(A)}.

It turns out that f(A) is a closed operator and that D(A) N R(A) € D(f(A)), so that
f(A) is densely defined. Moreover this definition is consistent with (3.5) in the case
when f € H§?(Xg). Note however that f(A) may be unbounded in general.

Theorem 3.3. (153], [21]) Let 0 < w < @ < 7 and let A be a sectorial operator of
type w on X with dense range. Then f(A) is bounded for any f € H>®(Xy) if and
only if A admits a bounded H™(Xg) functional calculus. In that case, we have

(AN < Kl flloo, — f€H(Eg),
where K is the constant from (3.7).
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We also recall that the above construction comprises imaginary powers of sectorial
operators. Namely for any s € R, let f; be the analytic function on C\ R_ defined
by fs(z) = 2. Then f; belongs to H*(3g) for any 6 € (0, ), with

(3-10) ”fsnoo,G = el

The imaginary powers of a sectorial operator A with dense range may be defined by
letting A® = f,(A) for any s € R. In particular, A admits bounded imaginay powers
if it has a bounded H*°(¥y) functional calculus for some 6 (see [21, Section 5]).

Remark 3.4. — 1t follows e.g. from [21, Theorem 3.8] that if A is a sectorial operator
on a reflexive Banach space X, then X has a direct sum decomposition

X = N(A) @ R(A).
Hence A has dense range if and only if it is one-one. Moreover the restriction of A
to R(A) is a sectorial operator which obviously has dense range. Thus changing X
into R(A), or changing A into the sum A + P where P is the projection onto N(A)
with kernel equal to R(A), it is fairly easy in concrete situations to reduce to the case

when a sectorial operator has dense range.

Another way to reduce to operators with dense range is to replace an operator A
by A+ € for € > 0 and then let € tend to 0. Indeed, let A be a sectorial operator of
type w on X and observe that for any € > 0, A + ¢ is an invertible sectorial operator
of type w. In fact it is easy to deduce from the identity

z
2R(z, A+e) = [—] [(z = &)R(z — £, A)]
z—¢€
that the operators A + ¢ are uniformly sectorial of type w, that is, for any 6 € (w, )
there is a constant Ky > 0 not depending on £ > 0 such that

(3.11) |zR(z, A+ ¢)|| < Ko, 2€C\ Xy, € >0.

The following well-known approximation lemma will be used later on. We include a
proof for the convenience of the reader.

Lemma 3.5. — Let A be a sectorial operator of type w on a Banach space X and let
0 € (w, ) be an angle. Then A admits a bounded H*®(Lg) functional calculus if and
only if the operators A + € uniformly admit a bounded H*>(%g) functional calculus,
that is, there is a constant K such that | f(A + ¢)|| < K||fllco,0 for any f € HF(Zy)
and any € > 0.

Proof. — To prove the ‘only if’ part, assume that A admits a bounded H*°(Zy)
functional calculus and let Up: HG(Xg) — B(X) be the resulting bounded
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homomorphism. Let € > 0 and let f be an arbitrary element of H§°(3g). We define
a function h on ¥y by letting

fle)
1+2
It is easy to check that h belongs to Hi®(Zy), and that h(A) = f(A+e)—f(e)(1+A4) L.
Moreover

h(z) = f(z+¢€) — z € Xy.

1A]lo0,0 < Collflloo,6
for some constant Cy only depending on . Then we have
IF(A+ e < IR+ £ +A4)7"]
< U [[~lloo,6 + Il fllow,0]| (1 + A) 7]
< (luellCo + 1I(1 + A) "M D If lloo,6-

This shows the desired uniform estimate.

To prove the ‘if’ part, first observe that for any z ¢ ¥, R(z, A + ¢) converges to
R(z,A) when € — 0. Thus given any f € H§®(Xy), we have

lim [|£(A4 <) — f(4)] = 0
by (3.5), (3.11), and Lebesgue’s Theorem. This concludes the proof. O

3.B. Completely bounded H* functional calculus

We will introduce ‘completely bounded versions’ of sectoriality and H*° functional
calculus for operators acting on noncommutative LP-spaces. Let (M, 7) be a semifinite
von Neumann algebra, let 1 < p < oo, and let X = LP(M). We will use the space

Y = SP[LP(M)]

introduced in paragraph 2.B, and we recall from Lemma 2.1 that SP ® X is a dense
subspace of Y. Throughout we will use the following two simple facts. First, for any
¢ € (SP)*, £ ® Ix (uniquely) extends to a bounded operator

ERIx : SP[LP(M)] — LP(M).
Second, if y € SP[LP(M)] is such that (£®Ix)y = 0 for any £ € (SP)*, then y = 0.
We simply write I for the identity operator on SP. Let A be a closed and densely
defined operator on X = LP(M). We claim that the operator
I® A: S?®@ D(A) — SP[LP(M))

is closable. Indeed let (yn,)n>0 be a sequence of S?® D(A) converging to 0 and assume
that (I ® A)y, converges to some y € Y. Then for any £ € (SP)*, (£ ® Ix )y, belongs
to D(A) and we have

A @ Ix)yn = (€@ Ix)(I ® A)yn — (ERIx)y.
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On the other hand, we have (£ ® Ix)y, — 0. Since A is closed, this implies that
(€®1x)y = 0. Since £ was arbitrary, we deduce that y = 0. This proves the claim.
The closure of I ® A on SP[LP(M)] will be denoted by

IRA.
Note that if A =T: LP(M) — LP(M) is a bounded operator, then I®&T is bounded
if and only if T is completely bounded, with ||T||c, = [|[I®T]| (see paragraph 2.D).

Lemma 3.6. — Let A be a closed and densely defined operator on X, and let A = IRA
onY.

(1) For any & € (SP)* and any y € D(A), (§®Ix)y belongs to D(A) and
(3.12) A(E®Ix)y = (E&1x)Ay.
(2) We have
p(A) = {z € p(A) : R(z,A) is completely bounded }.
Moreover, R(z, A) = IQR(z, A) for any z € p(A).

Proof. — Part (1) is proved by repeating the argument showing that I® A is closable.

To prove (2), let z € p(A) and let & € (SP)*. By part (1), (z — A)(§®Ix) and
(£RIx)(z —.A) coincide on D(A), hence

E@Ix = (2 — A)(€RIx)R(z, A).
We deduce that for any e € SP and any x € X, we have
(3.13) (€,e)r = (2 — A)(ERIx)R(z, A)(e @ ).
Consider a pair (e, &) verifying (£,¢) = 1, and define R,: X — X by
R.(z) = (€RIx)R(z, A)(e ® 1), x e X.
It follows from above that R, is valued in D(A) and that (z — A)R, = Ix. Further it
is clear that R.(z — A) = Ip(a). This shows that z € p(A), with R(z, A) = R.. Now
(3.13) can be rewritten as
(€,e)R(z, A)x = (ERQIx)R(z, A)(e @ x), eeSP e (8P, z € X.

This shows that e ® R(z, A)x = R(z, A)(e ® ) for any e € SP and any z € X. Hence
R(z, A) is completely bounded and IQR(z, A) = R(z, A).

Conversely, let z € p(A) such that R(z, A): X — X is completely bounded, and
consider R, = I®R(z,A): Y — Y. Let y € D(A). By definition of this domain,
there is a sequence (Yn)n>1 in SP ® D(A) such that y, — y and (I @ A)y, — Ay. It
is clear that R.(z — A)y, = yn for any n > 1 and passing to the limit we deduce that
R:(z— Ay =y.
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On the other hand, let y € Y and let u = R,y. Let (yn)n>1 be a sequence in
SP ® X converging to y, and let u,, = (I ® R(z, A))y, for any n > 1. Then u,, belongs
to S? ® D(A) and u,, — u. Moreover

(I® Au, =(I® AR(z,A))y, — (IQRAR(z, A))y.
Hence v = R,y € D(A), with AR,y = (I®AR(z,A))y. This shows that R, is

valued in D(A) and that (z — A)R,y = y for any y € Y. These results show that
z € p(A). O

Definition 3.7. — Let A be a sectorial operator of type w € (0,7) on X = LP(M).
(1) We say that A is cb-sectorial of type w if I®A is sectorial of type w on
SPILP(M)].
(2) Assume that (1) is fulfilled, and let 0 € (w,m) be an angle. We say that A ad-
mits a completely bounded H(Xg) functional calculus if I®A admits a bounded
H>(Zg) functional calculus.

Proposition 3.8. — Let A be a sectorial operator of type w € (0,7) on X = LP(M).

(1) A is cb-sectorial of type w if and only if R(z, A) is completely bounded for any
zeC\ Y. and for any 0 € (w, ) there is a constant Ky > 0 such that

||ZR(27A)||(:I)SK97 ZEC\E*Q

(2) Assume that A is cb-sectorial of type w, and let 8 > w. For any f € H5(Xy),
the operator f(A) is completely bounded and IRf(A) = f(I®A). Further A
admits a completely bounded H(Xg) functional calculus if and only if there is
a constant K > 0 such that

1f(Alles < K[ flloco,  f € Hg(Xg)

(3) Assume that A has dense range and is cb-sectorial of type w. Then I®A has
dense range and for any 6 > w, we have

I9f(A) = fFIRA),  fe H™().

Proof. — Parts (1) and (2) are straightforward consequences of Lemma 3.6 and (3.5).

Assume that A has dense range and is cb-sectorial of type w, and let A = IQA.
Its range contains S? ® R(A), hence it is a dense subspace of Y. Let f € H>®(Zy)
for some # > w. It is clear that the two operators f(A) and I®f(A) coincide on
SP @ R(g(A)). To prove that they are equal, it suffices to check that this space is a
core for each of them. Since R(g(A)) is a core for f(A) and I®f(A) is the closure of
I® f(A): S?P® D(f(A)) — Y, we obtain that SP ® R(g(A)) is a core of IQf(A).

Next, let y € D(f(A)), and let (g,)n>1 be the sequence defined by (3.8). By
Lemma 3.2, g,,(A)y converges to y when n — oo, and we also have

F(A)gn(A)y = gn(A) f(A)y — f(A)y when n — oo.
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Now let (yx)r be a sequence of SP ® X converging to y. For any fixed n > 1, g,(A)yx
belongs to SP ® R(g(A)), and we both have

gn(A)y — gn(A)y and  f(A)gn(A)yr — f(A)gn(A)y

when & — oo. This proves that SP ® R(g(A)) is a core of f(.A) and completes the
proof. O

We now turn to the special case of sectorial operators defined as negative generators
of semigroups. Let (T}):>0 be a bounded cy-semigroup on X = LP(M). We say
that (Ti)¢>0 is a completely bounded semigroup if each T; is completely bounded
and sup;>q [|T¢fles < co. In this case, each I ® T} extends to a bounded operator
IQT,: SP[LP(M)] — SP[LP(M)] and a standard equicontinuity argument shows that
(I®T})i>0 is a bounded cp-semigroup on Y = SP[LP(M)].

Lemma 3.9. — Let (T;)i>0 be a completely bounded co-semigroup on LP(M) and let
A denote its negative generator. Then I®A is the negative generator of (IQT})i>o,
hence A is cb-sectorial of type F.

Proof. — We let A = I®A, and we let B denote the negative generator of (I®7}):>0
on Y. Applying the Laplace formula (3.2) to (T3):>0 and to (I®T});>0, we see that
I®(14+A)~! and (1+B)~! coincide on SP® X. According to Lemma 3.6, this implies
that —1 € p(A) and that (1 +A)~! = (14 B)~!. Thus A= B. O

Example 3.10. — Let 1 < p < o0, and let (7}):>0 denote the translation semigroup
on LP(R), that is, (T;f)(s) = f(s —t) for s € R, ¢t > 0. Its negative generator is the
derivation operator A = %, with domain equal to the Sobolev space W P(R). More
generally for any Banach space Z, we can define the translation semigroup (7/7)i>0
on LP(R; Z) by the same formula, and its negative generator is the derivation A%
with domain WP (R; Z). It is clear that A% coincides with A® I, on LP(R) ® Z. We
noticed in Remark 2.13 that we have a canonical identification LP(R; SP) = SP[LP(R)].
Hence it follows from Lemma 3.9 that the operator I @% coincides with the derivation
operator on LP(R; SP).

It turns out that for any 6 > 7, the operator AZ has a bounded H> (%) functional
calculus if and only if Z is a UMD Banach space (see [20, 32, 67]). Thusif1 < p < oo,
the operator % has a completely bounded H>(%y) functional calculus for any § > 7,
because SP is a UMD Banach space.

3.C. Dilations
We will need the following result due to Hieber and Priiss [32].

Proposition 3.11. — (|32]) Let Z be a UMD Banach space. Let (Uy); be a co-group of
isometries on Z, and let — B denote its infinitesimal generator. Then B has a bounded
H> (%) functional calculus for any 6 > 5. More precisely there exists for any 0 > 7
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a constant Czg only depending on 6 and Z such that ||f(B)|| < Czpl| fllec,0 for any
f € H ().

Indeed using a transference technique, it is shown in [32] that for any B as above
and any f € H§?(Xg), one has

1B < I£(AZ),

where AZ is the derivation operator on L?(R; Z) discussed in Example 3.10. Since
AZ has a bounded H>(Z) functional calculus for any 6 > Z, this yields the result.

Extending previous terminology, we say that a co-group (U): on some noncommu-
tative LP-space X is a completely isometric co-group if each Uy: X — X is a complete
isometry. In this case, (IQU;); is a co-group of isometries on SP[X].

Proposition 3.12. — Let 1 < p < 00, and let M be a semifinite von Neumann algebra.
Let (T})e>0 be a contractive co-semigroup on LP(M) and let —A denote its infinitesi-
mal generator. Assume that there exist another semifinite von Neumann algebra M’,
a co-group (Uy); of isometries on LP(M’), and contrative maps J: LP(M) — LP(M")
and Q: LP(M") — LP(M) such that

(3.14) T, =QU.J, t>0.

Then A admits a bounded H*(Xg) functional calculus for any 6 > 3. If further,
(Uy)y is a completely isometric co-group and J and Q are completely contractive, then
(T1)e>0 is completely bounded and A admits a completely bounded H(3g) functional
calculus for any 6 > 3.

Proof. — Let —B denote the infinitesimal generator of (U;); on LP(M’). Let z be a
complex number with Re(z) < 0. According to the Laplace formula (3.2), we have

R(z,A) = —/ e Ty dt and R(z,B) = —/ eU dt .
0 0

Hence our dilation assumption (3.14) yields
R(z,A) = QR(z,B)J.

Then for any 6 > 7 and any f € H§°(Xg), we have f(A) = Qf(B)J, by (3.5).
Therefore we have

A< NQUIIHILF(B)II-

The Banach space LP(M’) is UMD, hence B has a bounded H>(Xy) functional
calculus by Proposition 3.11. Thus A also has a bounded H*(Xy) functional calculus.

If J and @ are completely contractive, I ® J and I ® @ extend to contractions
I®J: SP[LP(M)] — SP[LP(M)] and I®Q: SP[LP(M')] — SP[LP(M)].

SOCIETE MATHEMATIQUE DE FRANCE 2006



34 CHAPTER 3. BOUNDED AND COMPLETELY BOUNDED H> FUNCTIONAL CALCULUS

If we assume that (Uy); is a completely isometric group, we obtain that (7});>¢ is a
completely contractive cp-semigroup and we have

IR, = (I2Q)(I2U)(I&J),  t>0.

Since SP[LP(M)] and SP[LP(M’)] are noncommutative LP-spaces, it follows from
the first part of the proof and Lemma 3.9 that A = I®A has a bounded H>(%y)
functional calculus for any 6 > 7. O

Let M =~ L*°(¥) be a commutative von Neumann algebra and let (7});>0 be a cop-
semigroup of positive contractions on L”(3). Fendler showed in [27] that there exist a
commutative LP-space LP(X'), a co-group (U;); of isometries on LP(X'), and contrac-
tive maps J: LP(X) — LP(¥') and Q: LP(X') — LP(X) such that T} = QU,J for any
t > 0. (This is a continuous version of Akcoglu’s dilation Theorem [1, 2].) Applying
Proposition 3.12, we deduce that A admits a bounded H>(%y) functional calculus for
any 6 > Z provided that —A generates a positive contraction cg-semigroup on LP(X),
for 1 < p < oo. This result is due to Duong [24] (see also [20]). However it is still un-
known whether an analog of Fendler’s Theorem holds on noncommutative LP-spaces,
and this is a significant although interesting drawback for the study of completely
positive contractive semigroups on noncommutative LP-spaces. See Remark 5.9 for
more on this.

ASTERISQUE 305



CHAPTER 4

RADEMACHER BOUNDEDNESS AND RELATED
NOTIONS

4.A. Column boundedness and row boundedness

Rademacher boundedness [7, 19] has played a prominent role in recent develop-
ments of H* functional calculus, see in particular [41], [79], [78], [47]. On non-
commutative LP-spaces it will be convenient to consider two natural variants of this
notion that we introduce below under the names of column boundedness and row
boundedness.

Let X be a Banach space and let F C B(X) be a set of bounded operators on X.
We say that F is Rad-bounded if there is a constant C' > 0 such that for any finite
families Ty,...,T, in F, and x1,...,x, in X, we have

4.1 ” Tz H <CH ” .
(4.1) ;5k k(xk) oty ;sk TH{| )

In this definition, the norms || ||pmd(X) are given by (2.20).

Let (M, T) be a semifinite von Neumann algebra, let 1 < p < oo, and assume that
X = LP(M). We say that a set F C B(LP(M)) is Col-bounded (resp. Row-bounded)
if there there is a constant C' > 0 such that for any finite families T1,...,7T, in F,
and 1, ..., 2z, in LP(M), we have

1

(4.2) H (Z Tk;(fﬂk)*TA:(-’I?k)) ’
k

1

oy = € H (Zk: w’t‘m’“) 2

Lr(M)

< OIS
Lr(M) — Zk:aklk Ly (M)

The least constant C satisfying (4.1) (resp. (4.2), resp. (4.3)) will be denoted by
Rad(F) (resp. Col(F), resp. Row(F)). Obviously any Rad-bounded (resp. Col-
bounded, resp. Row-bounded) set is bounded but the converse does not hold true
except on Hilbert space.

(4.3) (resp. H(Z Tk(fL’k)Tk(:ltk)*)%
k
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It follows from the noncommutative Khintchine inequalities (2.21) and (2.22) that if
aset F C B(LP(M)) is both Col-bounded and Row-bounded, then it is Rad-bounded.
Moreover these three notions coincide on commutative LP-spaces (see Remark 2.13).
However this is no longer the case in the general noncommutative setting. Indeed let
F ={T} c B(LP(M)) be a singleton, and let H be an infinite dimensional Hilbert
space. Then F is Rad-bounded with Rad(F) = ||T'|| whereas F is Col-bounded if and
only if T'® Iy extends to a bounded operator on LP(M; H,.). Indeed this follows from
(2.10). Likewise F is Row-bounded if and only if T'® I 5 extends to a bounded operator
on LP(M; H,). Thus applying (2.36) and (2.37), the set {T'} is both Col-bounded
and Row-bounded if T' is completely bounded.

It turns out that if p # 2, one may find T': LP(M) — LP(M) such that T ® Iy
is bounded on the column space LP(M; H,), but T ® Iy is not bounded on the
row space LP(M; H,), see Example 4.1 below. Thus there are sets F which are
Rad-bounded and Col-bounded without being Row-bounded. Similarly, one may
find subsets of B(LP(M)) which are Rad-bounded and Row-bounded without being
Col-bounded, or which are Rad-bounded without being either Row-bounded or Col-
bounded.

Example 4.1. — Let H be an infinite dimensional Hilbert space and let 1 < p # 2 <
oo be any number. For simplicity we write SP[H,.| and SP[H,] for L?(B(¢?); H..) and
LP(B(€%); H,) respectively. It is well-known that there exists an operator T': SP —
S? whose tensor extension T ® [y extends to a bounded operator on SP[H.] but
T ® Iy SP[H,| — SP[H,] is unbounded. We provide an example for the convenience
of the reader not familiar with matricial and operator space techniques.

We assume that p < 2, the other case being similar. We regard elements of SP as
infinite matrices in the usual way and we let E;; denote the standard matrix units.
Let T: S? — SP be defined by T(F,;) = Ej; for any j > 1 and T(E;;) = 0 for any
i>2and any 7 > 1. Thus T'= U o P, where U: 57 — SP is the transpose map, and
P: SP — SP is the canonical projection onto the space of matrices which have zero
entries except on the first row. It is easy to check that ||P|., = 1 and that ||U]| = 1.

Hence ||T|| = 1. We will show that

(4.4) |7 ® In: SPIH] — SPIH]|| = 1.

We may assume that H = ¢?, and we let (ex)k>1 denote its canonical basis. Since P
is completely contractive, the operator P @ I: SP[H.] — SP[H,] is contractive, by
(2.36). Hence it suffices to show that U ® Iy is contractive on Span{E,; ® ey : j, k >
1} € SP® H. Let (o )jk>1 be a finite family of complex numbers and let

U= E ajkE1j®ek.
Jik
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Applying (2.10), we find that

1
lllsoiery = || @ ameEim )|

Jrkym

Since Zj&ma_j;gamkEjm = (ZM Qjk Ekj> (Ej,k Qjk Ekj>, we deduce that

lullsony = |3 am B | -
J.k

sr’

Applying the transpose map U, we have

U Inu =Y apEn e
7,k

Then using (2.10) again we deduce that

(U @ In)ullsrim,) = (Z ]ajk,2> o HZ o Ek'j'
gk J.k

Since p < 2, we deduce that ||[(U ® I )ul/sem,) < ||ullsr(a.), which proves (4.4).

52

Now essentially reversing the above arguments, we see that if T'® Iy extends to a
bounded operator on SP[H,| with norm < K, then for any finite family (a;x);r>1 of
complex numbers, we have

[Sonul, <5 o
J.k 3.k

52’

which is wrong.

Throughout the rest of this chapter, M is a semifinite von Neumann algebra and
we fix some 1 < p < co. We will require the following lemma which extends [19,
Lemma 3.2].

Lemma4.2. — Let F C B(LP(M)) be a set of bounded operators, let I be an interval
of R, let C > 0 be a constant, and let

7= {/f(t)R(t) dt ’R: I — F is continuous, f € L*(I;dt), and /[f(t)ldt < C}.
I I

(1) If F is Rad-bounded then T is Rad-bounded with Rad(T) < 2C Rad(F).
(2) If F is Col-bounded (resp. Row-bounded), then T is Col-bounded (resp. Row-
bounded) with Col(T) < CCol(F) (resp. Row(T) < CRow(F)).

Proof. — For the first assertion, recall that by [19, Lemma 3.2], the closed absolute
convex hull @eo(F) of F is Rad-bounded with Rad(aco(F)) < 2Rad(F). A standard
approximation argument shows that %T C aco(F), which proves the result. The
same proof yields the second assertion, except that the factor 2 does not appear. 0O
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It was observed in [78, 4.a] that given a measure space X, an interval I C R, and
a strongly continuous function ®: I — B(LP(X)), then the set {®(t) : t € I} is
Rad-bounded if and only if there is a constant C' > 0 such that

H(K@“W“”%“>%pSCH<AWunﬁu>%

for any measurable function u: I — LP(X) belonging to LP(X; L?(I)). The aim of

P

Proposition 4.4 below is to extend this result to our noncommutative setting. We will
need a standard approximation procedure that we briefly recall (see e.g. [23, II1.2
Lemma 1] for details).

Let (€2, 1) be a o-finite measure space. By a subpartition of €2, we mean a finite set
m={lL,...,L,} of pairwise disjoint measurable subsets of 2 such that 0 < u(I;) < oo
for any 1 < i < m. Let Z be a Banach space and let = be a subpartition of . We
may define a linear mapping E, on LP(Q); Z) by letting

m

=4 — 1 y PO-
(4.5) E.(u) = ; ea) </1 u(t)d,u(t)) X1I; s u€ LP(Q; 7).

Here x; denotes the indicator function of I. Then the mapping E,: LP(Q;Z) —
LP(Q; Z) is a contraction. Further if subpartitions are directed by refinement, then
we have

(4.6) lim || Eru — ufl, = 0, u € LP(Q; Z).

The use of the same notation E, for all Z and all p should not create any confusion.
The following elementary lemma is easy to deduce from (4.6) and its proof is left to
the reader.

Lemma4.3. — Let (2, 1) be a o-finite measure space. Then for any a,b € L*(2) and
for any ¢ € L*°(§2), we have

/cabdu = lim/ Er(c)Er(a)E,(b)du.
Ja Q

™

Let (2, 1) be a o-finite measure space. If ®: Q — B(LP(M)) is any bounded
measurable function, we may define a multiplication operator Tg: L?(2; LP(M)) —
L2(Q; LP(M)) by letting

(To(uw)) (t) = (t)u(t), uw € L*(Q; LP(M)).

Proposition 4.4. — Let ®: (Q,u) — B(LP(M)) be a bounded measurable function and
consider the bounded set

1 P
f:{ﬂﬂ/émmmyfcmo<mm<m}cB@LM»

1
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(1) If the set F is Col-bounded, then

Ty: LP(M; L%(Q),) — LP(M; L*(),) boundedly.

C

(2) If the set F is Row-bounded, then
To: LP(M; L3(Q),) — LP(M;L*(Q),)  boundedly.
(3) If the set F is Rad-bounded, then

To: LP(M; L3(Q),,4) — LP(M;L*(Q),,.)  boundedly.

Proof. — We first assume that F is Col-bounded and we shall prove (1) by using
duality. We let p’ = p/(p — 1) be the conjugate number of p. Then we let u €
LP(M) @ L*(Q) and v € LP (M) @ L?(2). They may be written as

u = Zu ® ag and v = Zyj ® by,
k J

for some finite families (ag)x € L3(Q), (zx)r C LP(M), (bj); C L*(Q), and (y;); C
LPI(M). We claim that there is a constant K > 0 not depending on u and v such
that whenever 7 is a subpartition of ), we have

(4.7)

S [ (@ o 05)) Bl Bl

k,j ° Q

UHLv’(M;L‘l(Q),)-

< K|ull prass1

Taking this for granted for the moment, we deduce that
(Tau).) = [ @(0u(e) 0(0) dutt)
_z/ )ik, y)an(0;(1) dia(t)
= hm Z/ )2k, y;)) Er(ar)Ex(bj) dp

by Lemma 4.3. It therefore follows from (4.7) that

[(Te(u), v)| < Kllull oo m;r2(0).)

By Lemma 2.10, we deduce that T maps L*(Q) ® LP(M) into LP(M; L?*(Q2),) and
that

[0l Lo (M2 (),

|To: LP(M; L*(Q),) — LP(M; L*(Q),)]] <
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To complete the proof of (1), it therefore remains to prove (4.7). We let £ = E,
along the proof of this estimate and we assume that E is defined by (4.5). Then we
have

;j /Q E((®(-)zk,y;)) E(ar)E(b;)

m

_ %: ; “(}1)2 (/Ii<<b(.)ik~,yj>)(/llak)(/Ilbj)
=S (L) ()

Let (ex)r>1 be an orthornormal family in some Hilbert space H. Owing to (2.14), we
deduce that

Z/QE(<‘I’(‘)xk,yﬁ)E(ak)E(bj)
[

m

Zr‘i)—%</ld>>(/lu)®ez

=1

L»(M;H,)

- 1
; w(l;)z (/17 ”) ® e;

Thus if we let K = Col(F) denote the column boundedness constant of F, we obtain
that

kzj /QE(@(')“k»yﬁ)E(ak)E(bj)

LY (M;H,)

m

1
>~ K (/ U) X e;
; u(I)z N, LP(M;H,)
m 1
Z —_— (/ v) & e; .
= n(l)2 M, Lr' (M;H,)

Now recall that E = E.: L*(Q) — L?(f) is a contraction. Equivalently, the linear
mapping o: L?(Q2) — H defined by letting

1
ola) = ; )} (/Iia)ei

for any a € L?(f2) is a contraction. Since

i 1 I (/1 “)®€i=(-’Lv®o‘)(u),

i=1 )u([l)§ i

it therefore follows from Lemma 2.4 that

1
; w(I)z </1iu)®ei

(4.8)

< lull LM,
Lp(M;H,)
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Similarly,

(4.9) < loll Lo (i,

L? (M;H,)

=

o
; pl;): (/li”)@@ei

whence (4.7).

The proof of (2) is identical to that of (1) and may be omitted. To prove (3),
assume for instance that 1 < p < 2, the other case being similar. Let u, v and
E = E, be as in the previous computation. Arguing as above, we find that

%:/QE(@(-)wk,yj>)E(ak)E(bj)

S ([ e)(f v)ee

i=1 i

Lo (M;H, 1)

G|
X (/ v) X e; .
; /“L(Ii)% I; ' Lr' (M;H,nc)
Then it follows from (2.22) that
> (L)
d U | Re;
; ()3 ( I )< I ) LP(M;H, s )
, |
< Rag(f) Z . (/ U)@ei .
1 i=1 /’L(IZ)2 I; LP(M?HT-H:)

Hence using Lemma 2.4 as in the proof of (1), we deduce the following inequality

5 [ Be(@C k1) En () )

Rad(F)
<=4 lullLr (M2 @) i) 101 L (Mi2(0) 00y

which is the analogue of (4.7). The rest of the proof of (3) is identical to that of (1),
appealing to Remark 2.11 in due place. O

Remark 4.5. — Let ® and F be as in Proposition 4.4. It follows from the above proof
that if 7 is Col-bounded, then the norm of Ty: LP(M; L*(Q),) — LP(M;L3(Q),)
is less than or equal to Col(F). Similar comments apply to the row case and to the
Rademacher case, up to absolute constants.

Remark 4.6. — Let ®: Q — B(LP(M)) be a bounded measurable function, and as-
sume that Tp maps LP(M; L?(Q),) into itself boundedly. If u € LP(M;L?(?),) is
a measurable function (in the sense of Definition 2.7), then Teu also is a measur-
able function, namely [Tou](t) = ®(t)u(t). Indeed this is obvious if p < 2. Then
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42 CHAPTER 4. RADEMACHER BOUNDEDNESS AND RELATED NOTIONS

if p > 2, let us consider y € LP'(M) and b € L2(Q). Applying Lemma 2.8 with
o(t) = [Ta(y @ b)|(t) = b(t)®(t)"y yields

(y @ b, Tou) = (Ti(y @ b). u) = /S '2<<I><t>*y, u(t)) b(t) dya(?)

- /Q (g, D(E)ult)) b(t) du(t),

and this proves the claim.

4.B. Col-sectorial, Row-sectorial, and Rad-sectorial operators

Following [41], we say that an operator A on some Banach space X is Rad-sectorial
of Rad-type w if A is sectorial of type w and for any 6 € (w, ), the set

(4.10) {zR(z,4) : z€ C\ Sy}

is Rad-bounded. This is a strengthening of (3.1), which says that the latter set merely
has to be bounded.

Next if X = LP(M), we say that A is Col-sectorial (resp. Row-sectorial) of Col-
type (resp. Row-type) w if the set in (4.10) is Col-bounded (resp. Row-bounded) for
any 0 € (w, 7). If A is both Col-sectorial of Col-type w and Row-sectorial of Row-type
w, then is is Rad-sectorial of Rad-type w.

In this paragraph, we establish a series of simple results concerning these notions.

Lemma 4.7. Let 1 < p,p/ < oo be conjugate numbers, and let A be a sectorial
operator on LP(M). Letw € (0,7) be an angle. Then A is Col-sectorial of Col-type w
on LP(M) if and only if A* is Row-sectorial of Row-type w on LY (M). Moreover A
is Rad-sectorial of Rad-type w on LP(M) if and only if A* is Rad-sectorial of Rad-type
w on LV (M).

Proof. — Let F C B(LP(M)) be a set of operators, and let F* = {T* : T € F} C
B(LP (M)) be the set of its adjoints. Using (2.15), it is easy to see that F is Col-
bounded if and only if F* is Row-bounded. If A is sectorial of type w on LP(M),
then A* is sectorial of type w on LP (M), and we have R(z, A)* = R(%, A*) for any
z € C\ X,. We deduce that A is Col-sectorial of Col-type w if and only if A* is
Row-sectorial of Row-type w. The proof of the ‘Rad-sectorial’ result is similar. O

Lemma4.8. — Let 6 € (0,7) be an angle, and let U: ¥y — B(LP(M)) be a strongly
continuous bounded function whose restriction to X is analytic. If the set {U(z) : z €
0%} is Col-bounded (resp. Row-bounded, resp. Rad-bounded), then {U(z) : z € g}
also is Col-bounded (resp. Row-bounded, resp. Rad-bounded).

Proof. — In the Rademacher case, this result is proved in [79, Proposition 2.8]. The
proofs for the other cases are identical, using Lemma 4.2. O

ASTERISQUE 305



4.B. COL-SECTORIAL, ROW-SECTORIAL, AND RAD-SECTORIAL OPERATORS 43

Lemma 4.9. — Let (T;)i>0 be a bounded co-semigroup on LP(M) with infinitesimal
generator —A, and assume that A is sectorial of type w € (0,%). Then A is Col-
sectorial of Col-type w if and only if for any angle a € (0,5 — w), the set {T

2z € 8o} C B(LP(M)) is Col-bounded. The same result holds with Col-boundedness

replaced by Row-boundedness or Rad-boundedness.

Proof. — This result is an analog of Lemma 3.1. Again it is proved in {79, Theo-
rem 4.2] in the Rademacher case, and the proofs for the other cases are identical. [

Remark 4.10. — Let A be a sectorial operator of type w € (0,7) on some Banach
space X. For any positive real number o > 0, we let A* denote the corresponding
fractional power of A. If aw < m, then A® is a sectorial operator of type aw (see e.g.
[5, Proposition 5.2]). It is well-known to specialists that with the same proof, one
obtains that A® is Rad-sectorial of Rad-type aw if A is Rad-sectorial of Rad-type w.
Moreover if § and af both belong to (0,7), if f € H§(Xap) and if fo, € HG(Xy) is
defined by fu(z) = f(z%), then we have f,(A4) = f(A%). Thus A* has a bounded
H®(X,4) functional calculus provided that A has a bounded H*(Xy) functional
calculus.

Now assume that X = LP(M) is a noncommutative LP-space. We observe that
mimicking again the proof of [5, Proposition 5.2], and using Lemma 4.2 (2), we have
that A® is Col-sectorial (resp. Row-sectorial) of Col-type (resp. Row-type) equal to
aw if A is Col-sectorial (resp. Row-sectorial) of Col-type (resp. Row-type) equal to w.

In [41, Theorem 5.3, (3)], Kalton-Weis showed that an operator with a bounded
H>(Xy) functional calculus on a Banach space X is Rad-sectorial of Rad-type 6
provided that X satisfies a certain geometric property called (A). According to [41,
Proposition 3.2], any UMD Banach space X satisfies this property. We deduce the
following statement.

Theorem 4.11. — Let 1 < p < oo and let A be an operator on LP(M) with a bounded
H> (X)) functional calculus. Then A is Rad-sectorial of Rad-type 6.

In the next statement, we establish a variant of the above result for Col-sectoriality
and Row-sectoriality (see also Remark 4.13).

Theorem 4.12. Let A be a sectorial operator on LP(M), with 1 < p < co. Assume
that A admits a completely bounded H>(Xy) functional calculus for some 6 € (0, 7).
Then the operator A is both Col-sectorial of Col-type 8 and Row-sectorial of Row-
type 6.

Proof. — We will only show the ‘column’ result, the proof for the ‘row’ one being the
same. Given a number v > 6, we wish to show that the set

Fo={zR(z,A) : z€ C\ I, }.
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is Col-bounded. We consider A = I® A on Y = SP[LP(M)] (see paragraph 3.B). This
is a noncommutative LP-space, hence applying Theorem 4.11 we obtain that the set

T,={2R(z,A) : z€ C\%,}

is Rad-bounded. Now consider zi,...,z, in LP(M) and Ty,...,T, in F,. For any
finite sequence (ex)1<k<n valued in {—1,1}, we have

[ T = Nt

ek Br1 @ o H
“; SP[LP (M)

Lr(M)

(see Remark 2.3 (3)). Then passing to the average over all possible choices of e, = *1,
we deduce that

J(i)!

Likewise we have

(S rrmi)]
k

It therefore follows from Lemma 3.6 (2), that

= er (Br ® ok H
LP(M) H; (Bl ) Rad(SP[LP(M)])

— IS e (s @ TR )(E ' .
LoM) H; k (Isp @ Ty)(Er1 ® ay) Rad(SP[LP (M)

Nl=

1
T,,x,*T,x»)z < Rad(7, i( I*I) .
|1(§k; M) Ti(w)) ]y < Bad(To) [ (i),
This concludes the proof, with Col(7,) < Rad(7,). O
Remark 4.13. — The complete boundedness assumption in Theorem 4.12 cannot be

replaced by a boundedness assumption. Indeed assume that 1 < p # 2 < oo, let
w € (0,7) be an angle, and assume that M = B(¢?). According to Example 4.1, we
have a bounded operator T': LP(M) — LP(M) such that T ® Iy does not extend to
a bounded operator on LP(M; H.). Shifting T' if necessary we may clearly assume
that o(7T) is included in the open set ¥,. Then T is invertible and o(T') C X,.
Hence there exists a positive number € > 0 such that o(T~! —¢) C ¥,. We let
A = T-! — . By construction, A is a bounded and invertible sectorial operator
of type w. Hence it admits a bounded H>(%y) functional calculus for any § > w.
However R(—e,A) = —T, and {T'} is not Col-bounded. Hence A cannot be Col-
sectorial.

4.C. Some operator valued singular integrals

We wish to prove a criterion for the boundedness of certain operator valued singular
integrals which will appear both in Chapter 6 and in Chapter 7 below. We shall work
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on the measure space Qp = (R}, 4). Let x: Qg x Qg — B(LP(M)) be a bounded con-
tinuous function. We may define an operator T: L*(Qo; LP(M)) — L% (; LP(M))
by

Tu(s) = /000 K(s, t)u(t) % , u € L' (Qo; LP(M)).

Then we say that x(s,t) is the kernel of T'.

If T maps (L'(Qo) N L3(Qp)) ® LP(M) into LP(M;L?(Qp),.) and if there is a
constant C' > 0 such that |Tullzsmir2(a0),) < CllullLrm;zz(oy),) for any u in
(L'(Q0) N L%(0)) ® LP(M), then T uniquely extends to a bounded linear mapping,
that we still denote by

T: LP(M; LA(Q),) — LP(M: LA(Q),).

Indeed, (L'($20) N L?(Q0)) ® LP(M) is dense in LP(M; L?(€2),). Moreover a standard
approximation argument shows that this extension coincides with the original operator
T on LY(Q0; LP(M)) N LP(M; L?(Qp),). In this case we simply say that the operator
with associated kernel (s, t) is bounded on LP(M; L?(€)),). We define similarly the
boundedness of T' on LP(M; L?(Q),.), or on LP(M; L*(Q0),.,4)-

For any angle w € (0,7), we define
(4.11) H>®(Z,4) = Ugsw H®(Zg) and H (Eut) = Upsw HG (p).

Let A be a sectorial operator of type w on LP(M). For any F € H§° (X, +) and any
t > 0, let F(tA) = Fi(A), where Fi(z) = F(tz). Using Lebesgue’s Theorem and
(3.5), it is not hard to see that the function t — F(tA) is continuous and bounded
on §y (see also Lemma 6.5 below). Thus for any Fy, F» € H§°(2,+), the kernel
k(s,t) = Fy(sA)F;(tA) is continuous and bounded on Qg x 2. The study of operators
associated with such kernels for sectorial operators on Hilbert space goes back to [54].

Theorem 4.14. — Let A be a sectorial operator of type w on LP(M), and let Fy, Fy €
HG® (Zoy)-
(1) If A is Col-sectorial of Col-type w, then the operator with kernel Fa(sA)Fy(tA)
is bounded on LP(M; L*(p),).
(2) If A is Row-sectorial of Row-type w, then the operator with kernel Fy(sA)Fy(tA)
is bounded on LP(M; L*(Qp),.).
(3) If A is Rad-sectorial of Rad-type w, then the operator with kernel F5(sA)Fy(tA)
is bounded on LP(M; L*(Q), ,4)-

Proof. — We shall only prove (1), the proofs of (2) and (3) being similar. We let
6 > w be such that Fy, Fy € H(Xy) and fix some v € (w,d). Then applying (3.5)
and the homomorphism property of the H* functional calculus, we may write our
kernel as

(4.12) Fy(sA)Fi(tA) = %/ Fy(sz)Fy(tz)R(z, A) dz, t>0,s>0.
r,
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We shall apply Proposition 4.4 on the measure space (2, u) = (T ). Our assump-
tion that A is Col-sectorial of Col-type w implies that the set {zR(z, A) : z € ', } is
Col-bounded. It therefore follows from Lemma 4.2 that the set

L zR(z, A) dz Icr,, 0<pu(l) <o
2R |

1

(1) z
is Col-bounded as well. Hence by Proposition 4.4, the function
2R(z, A)
O(z) = ———=
)= =5

induces a bounded multiplication operator
(4.13) To: LP(M; L*(Q),) — LP(M; L*(Q),.).

Our next goal is to show that we may define bounded linear mappings S;: L?(€) —
L2(Q2) and Sy: L?(2) — L%(Qp) by letting

e it .
(4.14) Sia(z) = / Fi(tz)a(t) (7, a € L*(Qo);

0 /

1

(4.15) Sob(s) = / Fo(s2)b(2) % be L3(9).

Jr,
First observe that

dt
(4.16) K—sup/ ’Fl (tz) ’—‘ <oo and K'= sup / jFl |— < 00.
t>0Jr, zel'y Jo

Indeed, changing z into tz does not change [F ‘Fl (tz)| { dz
b Y

, hence K = jr |F1 )| 1%}!,
and this number is finite by (3.6). On the other hand, for any z € T, \ {()} we have

[imen e [Cinen g = [ nol§

hence K’ < K < o0.
We let a be an arbitrary element of L?(£2y). Then

J ([ mosmor )

~

S/ (/ |Fu(t2)] %)(/ Fi(tz)||a(t) 2dt) ‘dz by Cauchy-Schwarz,
r, \Jo 0
SK’/ (/ IFy(t2)]Ja(0)| 2d’>‘ d <KK/ (o) <

ry 0 0 A

by (4.16). This shows that (4.14) induces a bounded mapping with
[S1: L3(Q0) — L*(Q)| < VKK'.
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The proof of the boundedness of Sy is similar. Owing to Lemma 2.4, we may extend
Iy ®S7 and I1» ® Sz to bounded mappings

g;: LP(M7L2(QO)C) - LP(MV LQ(SZ)()
and
Sp: LP(M; L2(Q),) — LP(M; L*(9),)-

The same computations as above show that Iy, ® S; and Ip» ® Sy also extend to
bounded operators from L2(; LP(M)) into L?(2; L?(M)) and from L2(Q; LP(M))
into L2(Q; LP(M)) respectively. Moreover these tensor extensions are given by the
integral representations (4.14) and (4.15). Thus we find that

(417)  Syu(z) = /:o Fy(tz)u(t) % u € L*(Qo; LP(M)) N LP(M; L*(Q0),);

—~ ' /) . ,
(4.18) Sav(s) = / Fy(s2)v(2) Z, v € L3 LP(M)) N LP(M; LA(Q),).
r, z
Now recall (4.13) and consider the composition operator

82Ty Sy: LP(M; L*(90),) — LP(M; L2(Q),).

We claim that Fy(sA)F)(tA) is a kernel for this operator, which will conclude the
proof. To check this claim, we consider some u € (L'(Q0) N L3(Qp)) ®@ LP(M). It
follows from (4.17) and (4.13) that TeSiu € L2(Q2; LP(M)) N LP(M; L3 (Q),) with

o [ It
[To Siu)(z) = — | Fi(t2)2R(z, Au(t) =,  z€T,.
27T7/ Jo t
Hence applying (4.18) with v = Tq)au, we obtain that
— —~ 1 1o dt\ dz
o T S1u|(s) = Fy(s A (z, A)u(t) — ) —
(52 Ta Sru)(s) = 5 /r 2(sz)(/0 Fi(t2)2R(z, AYu(t) 7 ) -
"0 dt
= Fy(sA)Fy(tA)u(t) v
Jo 4
by Fubini’s Theorem and (4.12). O
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CHAPTER 5

NONCOMMUTATIVE DIFFUSION SEMIGROUPS

In this chapter we will focus on a special class of semigroups acting on noncommu-
tative LP-spaces. Throughout we let (M, 7) be a semifinite von Neumann algebra.
Let T: M — M be a normal contraction. We say that T is selfadjoint if

(5.1) (T(z)y*) = 7(2T(y)*), z,y € MNL'(M).
In this case, we have
|T(T(@)y)| = |7(=Ty"))] < lzlhTW) oo < l2lllylloo

for any z,y in M N L'(M). Hence the restriction of T to M N L*(M) (uniquely)
extends to a contraction T;: L'(M) — L'(M). Then according to (2.4), it also
extends by interpolation to a contraction T,: LP(M) — LP(M) for any 1 < p < oc.
We write T, = T for convenience. Then using the notation introduced in (2.5), we

obtain that
1 1

T;:Tz?/, 1 <p<oo, I_7+I7:1
Indeed this follows from (5.1), and the hypothesis that T\ is normal. In particular,
the operator Ty: L*(M) — L?(M) is selfadjoint.
It T' is positive, then each T), is positive, and hence T; = T},. Thus in this case, we
have T,y = T for any 1 < p < oo.
IfT: M — M is a normal selfadjoint contraction as above, we will usually use the
same notation T': LP(M) — LP(M) instead of T}, for all its LP-realizations.

Let (T};):>0 be a semigroup of operators on M. We say that (7});>0 is a (noncom-
mutative) diffusion semigroup if each T;: M — M is a normal selfadjoint contraction
and if for any x € M, Ty(z) — z in the w*-topology of M when t — 0. Tt follows
from above that such a semigroup extends to a semigroup of contractions on LP(M)
for any 1 < p < oo, and that (73):>0 is a selfadjoint semigroup on L%(M). Moreover
(T¢)¢>0 is strongly continuous on LP(M) for any 1 < p < oo, by [22, Proposition 1.23].
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In general we let —A, denote the infinitesimal generator of the realization of (1});>0
on LP(M). If further ecach Ty: M — M is positive, then

1 1
(5.2) A, = Ay, l<p<oo, —+—=1L

p p
Indeed in this case, the dual semigroup of the realization of (T});>0 on LP(M) is
exactly the realization of (T})y>o on LP (M). Note that our terminology extends the
one introduced by Stein in [70, Chapter 3] in the commutative setting.

Remark 5.1. — Let T: M — M be a normal complete contraction, and assume that
T is selfadjoint. The tensor extension Iz (,2)®@T uniquely extends to a normal contrac-
tion I@T: B({?) &M — B({?)&M, and it is easy to check that I®T is selfadjoint.
For any 1 < p < oo, let T},: LP(M) — LP(M) be the LP-realization of T'. Then T}, is
completely contractive and I®T,: SP[LP(M)] — SP[LP(M)] is the LP-realization of
I®T,. This is proved by applying the above results to I®T.,. An alternative route
is to apply (2.38) with p = 1 to obtain that 7} is a complete contraction, and then to
deduce that ||Tp|lcs < 1 for any p € (1, 00) by interpolation.

Let (Tt)¢>0 be a noncommutative diffusion semigroup on M. We say that (T});>0 is
a completely contractive diffusion semigroup if T;: M — M is a complete contraction
for any ¢t > 0. In this case, (/&T})¢>0 is a noncommutative diffusion semigroup
on B )@M. We say that (T;)>0 is a completely positive diffusion semigroup if
T;: M — M is completely positive for any ¢ > 0 (see paragraph 2.D). We recall
that a completely positive contraction on a C*-algebra is a complete contraction (see
e.g. [58, Chapter 3]). Thus a completely positive diffusion semigroup is a completely
contractive one.

Remark 5.2. We can consider noncommutative diffusion semigroups from a slightly
different point of view. Suppose that (7}):;>0 is a selfadjoint semigroup of contrac-
tions on L?(M). Suppose further that for any t > 0, T} extends to a contraction
Ti: LY (M) — LY (M), and that (T1)e>0 is strongly continuous. Then (T});>¢ ‘is’
a noncommutative diffusion semigroup. Indeed, for any ¢ > 0, T73: M — M is
a normal selfadjoint contraction, 777 — I in the point w*-topology, and the L%
realization of 17§ coincides with 7T} for any t > 0.

We will need the following ‘sectorial’ form of Stein’s interpolation principle (see
e.g. [70, IIL. 2] or [77]). In that statement, we let
S0) = {z€C" :0< Arg(z) <6}
for any angle 6 € (0, 7).

Lemma 5.3. — Let (FEy, E1) be any interpolation couple of Banach spaces, and for
any o € (0,1), let E, = [Fo, E1]a be the interpolation space obtained by the complex
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interpolation method. We consider a family of bounded operators U(z): Ey N Ey —
Ey+ E; for z € S(0). Assume that:
(a) For any x € Ey N Ey, the function z — U(z)x is continuous and bounded, and
its restriction to the interior of S(0) is analytic.
(b) For any x € Eg N Ey, U(t)x € Ey and U(te?®)x € Ey for any t > 0, and the
resulting functions t — U(t)x and t — U(te?®)z are continuous from (0, 0c) into
Ey and E; respectively.
(¢) There exist nonnegative constants Co, C1 such that for any x € EgNE; and any
t > 0, we have

UMzl < Collzle, — and  [U(te”)z]|p, < Cillz] s,
Then for any number o € (0,1) and any t > 0, U(te**?) maps Ey N By into Eq, with
|U(te"*)zl|g, < Co~*CYllzlle,. =€ EynE.

Throughout this chapter, we let

’1 1

Wy =T|=-— =

/4 P 2

for any 1 < p < o0.

Proposition 5.4. — Let (T})>0 be a noncommutative diffusion semigroup on M and

for any 1 < p < o0, let —A, denote the generator of (T})i>0 on LP(M). Then Ay, is
a sectorial operator of type wy.

Proof. — This result is well-known in the commutative case and we simply mimic its
proof. By duality we may assume that 1 < p < 2. We let p’ denote the conjugate
number of p. First we note that since (T});>0 is a selfadjoint semigroup on L?(M),
then As is a positive selfadjoint operator. Hence As is sectorial of type 0 and by
spectral theory,
T, = e 42 L2 (M) — L*(M)

is a well-defined contraction for any complex number z such that Re(z) > 0. Let us
apply Lemma 5.3 with Ey = L'(M), By = L*(M), 0 < § < %, and U(z)z = T.ux.
According to (2.4), we have [L1(M), LQ(M)];% = LP(M). Hence we obtain that

(5.3) T.: LP(M) — LP(M)| <1

for any z € C* such that 0 < Arg(z) < Z. Likewise, (5.3) holds true if -0 <
Arg(z) < 0. Then Lemma 3.1 ensures that A, is sectorial of type 7 — }% = Wp. O
Remark 5.5. — Let (T});>0 be a noncommutative diffusion semigroup on M, and

consider two numbers 1 < p,q < 0o. Let w = max{wp,wq}, so that A, and A, are
both sectorial operators of type w. It easily follows from the Laplace formula (3.2) and
from (3.5) that for any § > w and any f € HG®(Zy), f(A4,) and f(A,) are consistent
operators, that is, they coincide on LP(M)NLY(M). Likewise if A, and A, both have
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dense ranges and admit a bounded H* (%) functional calculus for some 6 > w, then
f(A,) and f(A,) are consistent for any f € H>(2g). Indeed for z € LP(M)NLI(M),
gn(Ap)z = gn(Aq)x is a common approximation of z in LP(M) and in LI(M), by
Lemma 3.2. Hence

f(Ap)z = LP lirrln(fgn)(Ap)a: = L7 - li7rln(fgn)(Aq)x = f(Aq)z.

The next theorem is the main result of this chapter. We refer to paragraph 2.D for
the definition of 2-positivity.

Theorem 5.6. — Let (T})1>0 be a noncommutative diffusion semigroup on M and for
any 1 < p < oo, let —A, denote the generator of (Ty)i>0 on LP(M).
(1) If Ty is 2-positive for any t > 0, then A, is Col-sectorial (resp. Row-sectorial)
of Col-type (resp. Row-type) equal to wy.
(2) If Ty is positive for any t > 0, then A, is Rad-sectorial of Rad-type wy.

Proof. — (1): We assume that T} is 2-positive for any ¢t > 0. If 1 < p,p’ < oo
are conjugate numbers, then A7 = Ay by (5.2). According to Lemma 4.7, we may
therefore assume that 2 < p < oo in our proof of (1). Our first step consists in showing
that the set
Fp = {Ty: LP(M) — LP(M) : t > 0}

is Col-bounded. Since T; is 2-positive and contractive, we have
(5.4) Ti(x)* Ty (z) < Ty(z*x), xz € LP(M).
Indeed if x € M, this is Choi’s extension of the Kadison-Schwarz inequality for 2-
positive maps on unital C*-algebras (see [18] or [58, Ex. 3.4]). For an arbitrary
x € LP(M), let (x;);>1 be a sequence in LP(M) N M such that ||z — z;||, — 0 when
i — oo. Then |z*z — @j;||z — 0. Since T; is continuous on L% (M) we obtain that
T;(z*x) is the limit of Ty(x ;) in L% (M). Likewise since T} is continuous on LP(M),
we see that T} (z)*T}(x) is the limit of T} (z;)*Ty(x;) in L% (M). Since (5.4) holds true
for any x;, it holds true for z as well.

Let t1,...,t, be nonnegative real numbers, and let z1,...x, in LP(M). We have

I8t moo) [ =[5 mtrmn], <[5 min],

by (5.4). Let 1 < r < oo be the conjugate number of §. Since ), Tt (zjx1) is
positive, there exists some y € L" (M) such that ||y||, = 1 and

”ZTtk TiTk “ <ZTtk TrTk), >

By the noncommutative maximal ergodic theorem for positive diffusion semigroups
[37, Cor. 4 (iii)] (see also [36]), there exists some ¢ € L"(M)4 such that Ti(y) < ¢
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for any t > 0 and ||¢||» < K, where K > 1 is an absolute constant not depending on

y. By assumption the adjoint of the L% -realization of T} is equal to the L -realization
of T} for any t > 0, hence

HZTW TyTk H <kaxk,Ttk >
< <Zx,§xk,<p>
k=1

s
=1 2
n % 2
< K| (i),
Zo)

This shows that

1

(S rr o), < V| (Swim)
k=1 k=1

Thus F,, is a Col-bounded set, with Col(F,) < VK.
We fix some 3 € (0, %) Our second step consists in showing that the set

p = {Tien: LP(M) — LP(M) : t > 0}
is Col-bounded. For this, we define
T —20 2B
q_p<7r—p,3) and a=—.
These numbers are chosen so that 1—;9‘- + & = %. Thus we have LP(M) =

[LI(M), L*(M)]o by (2.4). More generally, it follows from (2.13) that for any
positive integer n > 1, we have

(5.5) LP(M; (£)e) = [LUM; (€2)e), L2(M; () )]a

We consider nonnegative real numbers tp,...,%,, and apply Lemma 5.3 with the
spaces Eg = LI(M; (¢€2).), Ey = L*(M; (£2).), the angle = Z, and the mappings
U(z) defined by letting

n n
z)(Zxk ®€k> Zthk ) ® ex,
k=1 k=1

for z1,...,m, € L*(M) N LYM). We note that 3 = af. Since L2(M;(£2).) =
(2(L*(M)) (see Remark 2.3 (1)), and since each T, .z : L*(M) — L*(M) is a con-
traction, we see that

|U(te'?): By — Ey| <1, t>0.
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On the other hand, using the fact that F, is Col-bounded, we have
HU(T) Ey "_’EOH SCOl(fq), t>0.

Hence U(e*?): E, — E, has norm less than or equal to Col(F,)'~®. Thus we find
that

HZ Ty, ein(xr) ® e ) < COl(fq)l_a
k=1

LP(M;(£3)e ; e ekHL”(M:(f%’,)«-)
for any x1,...,2, € LP(M). This shows that G, is Col-bounded.

By symmetry, we have that {Tj.-is: LP(M) — LP(M) : t > 0} also is a Col-
bounded subset of B(LP(M)). Now appealing to Lemma 4.8, we deduce that the
set

{T,: LP(M) — LP(M) : z € Zﬁ}

is Col-bounded. Since this holds true for any § < %, this implies by Lemma 4.9 that
us us

Ay is Col-sectorial of Col-type § — r
A similar proof shows that A, is Row-sectorial of Row-type § — %
(2): In this part, we only assume that T} is positive for any ¢ > 0, and aim at
showing that A, is Rad-sectorial of Rad-type wp. Again we may assume that p > 2,

and we follow a similar scheme of proof. The first step consists in showing that
F = {T;: LP(M) — LP(M) : t >0}

is Rad-bounded. Since the T}’s are no longer assumed to be 2-positive, the inequality
(5.4) is no longer available. However we have

(5.6) Ty(x)?* < Ty(z?) if x =a* € LP(M).

If x € M is selfadjoint, this is the Kadison-Schwarz inequality [39] for positive maps,
and the case when z € LP(M) is selfadjoint follows by approximation.
Let t1,...,t, be nonnegative real numbers, and let x4, ...z, in LP(M) such that

1

()} <1

According to (2.21), it suffices to show that we have
(5.7)

” (Z Ty (k)" T, (:vk)) 3
;

for some constant K > 0 not depending either on the t;’s or the z}s. Arguing as in
the proof of (1) and using (5.6) as a substitute for (5.4), we obtain an inequality (5.7)

1

max{ H (; LITZer,) ’ H )

p

1
< K

— )
P

< K and H (Z Ty, (zk)Ty, (Ik)*)
k

p

in the case when each xy is selfadjoint.
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For arbitrary zy’s, let us consider the real and imaginary parts Re(zy) and Im(zy,),
which are selfadjoint elements of LP(M). We have

H( > [Re(a)l)” H,, B HZRG(‘“)®e"'Hu<M;<eﬁ>«>

= “Z Ty + ) ®€k‘

2 LP(M;(62).)
1
< — ke > ke x5 :
=3 (HZH’ 9l M) HZJ" 9] Lf*(M:(é%»-))
1
<3 |
=3 <HZ ke ’”’ Ly (Mi(e2). Zlk@) Hlormsen), >>
< 1.

Hence
< K

P

“ (Z [T, (Re(zx))]%) 2
k

by the preceding part of the proof. Likewise, we have

H( Ttk (Im xk))] )

< K.

Since
1 1 1

H (Z Ty, (zk)" Ty, (J’k)> : , < H (Z [Tm. (Rc(xk))]2> ? Hp—l— H (Z [Tf,k (IIII(:IIk))]2> :
k k k

we deduce that the first half (5.7) is fulfilled, up to doubling the constant. The second
half holds true as well by the same arguments.

b
P

Now arguing as in the proof of (1), it suffices to show that for any 5 € (0, %), the
set
Q’ = {Tte“’: LP(M) — LP(M) ot Z 0}
is Rad-bounded. The proof of this fact is essentially similar to the proof that the set
G, is Col-bounded in the proof of (1). The only significant change is that one has to
use (2.33) with » = 2 in the place of (5.5). Details are left to the reader. O

Remark 5.7. — Let T: M — M be a selfadjoint normal contraction. Then arguing
as in the proof of Theorem 5.6, we find that if T is positive, then the set

(T" : n >0} € B(LP(M))

is Rad-bounded for any 1 < p < oco. If further T is 2-positive, then this set is both
Col-bounded and Row-bounded.

Our next statement is an angle reduction principle for noncommutative diffusion
semigroups.
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Proposition 5.8. — Let (T;)1>0 be a noncommutative diffusion semigroup on M and
for any 1 < p < oo, let —A, denote the generator of (T})i>0 on LP(M). Assume
further that for any 1 < p < oo and for any 6 > %, A, admits a bounded H>(¥y)
functional calculus. Then for any 1 < p < oo, A, actually admits a bounded H*>(Xg)
functional calculus for any 0 > wy,.

Proof. — We may assume that p > 2, the proof for p < 2 being the same. As in the
proof of Theorem 5.6, we need to choose some parameters allowing an efficient use
of interpolation theory. We give ourselves two numbers § > § > w,. Then we pick
a € (0, %) such that 7 (1 —a) < 0. Once « is fixed, we let ¢ € (p,00) be the unique
number such that % = l;—“ + 5, so that we have

(5-8) LP(M) = [LI(M), L*(M)]a

by (2.4). Then we choose v > 7 close enough to 7 to ensure that v(1 — ) < 4.

First assume that Ag, A, and A, are invertible, so that we can deal with their
imaginary powers. Then for any real number s € R, the imaginary powers A%, Aff
and A';f are consistent operators, by Remark 5.5. Hence (5.8) yields

[AZ] < AT Az o
Since Aj is a positive selfadjoint operator, we have ||A%|| = 1, and hence
ALl < A
According to our assumption, the operator A, admits a bounded H*(%,) functional

calculus. Hence applying (3.10) we deduce that there is a constant K > 0 such that
1AZ] < Kevlsl for any s € R. Therefore,

||A;SH < Kl—aeu(l—a)|s|
< Klegdlsl s€R.

Since A, admits a bounded H>(%,) functional calculus, the above estimate and [21,
Theorem 5.4] show that A, actually admits a bounded H*(Xy) functional calculus,
which concludes the proof in the invertible case.

The general case can be deduced from above, using Lemma 3.5. Indeed, if ¢ > 0
is an arbitrary positive number, then A; 4+ ¢, A, 4+ € and A, + € are both invertible,
hence the preceding estimates apply to them. In fact the ‘only if’” part of Lemma 3.5
and Theorem 3.3 show that there is a constant C' > 0 not depending on € > 0 such
that ||(4, +€)*|| < Cedl®! for any s € R. Then the proof of [21, Theorem 5.4] shows
that the operators A, + ¢ uniformly admit a bounded H>(%y) functional calculus,
and the result follows from the ‘if’ part of Lemma 3.5.

We note in passing that in the case when each T} is positive, this proposition has
a shorter proof. Indeed in that case it directly follows from Theorem 5.6 and [41,
Proposition 5.1]. O
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Remark 5.9. — Let (T}):>0 be a diffusion semigroup on a commutative von Neumann
algebra L>=(X).

(1) For any 1 < p < oo and for any 6 > wp, A, admits a bounded H> ()
functional calculus on LP(X). This result is due to Cowling [20]. The question
whether this holds true for noncommutative diffusion semigroups is open.

A sketch of proof of Cowling’s Theorem goes as follows. First one can show (see
[27]) that for any 1 < p < oo, there exist a commutative LP-space LP(X'), a co-
group (Uy): of isometries on LP(X'), and contractive maps J: LP(X) — LP(¥’) and
Q: LP(Y') — LP(X) such that

Then by Proposition 3.12, A, admits a bounded H>(%y) functional calculus for any
6 > %. Applying the above Proposition 5.8 yields the result.

(2) For any t > 0, T is both a contraction on L>(¥) and on L!(X). Hence for any
1< p<oo, Ty: LP(X) — LP(X) is contractively regular in the sense of [61]. Thus for
any Banach space X, T} ® Iy extends to contraction from LP(X; X) into itself.

Let M be any semifinite von Neumann algebra, and let N' = L>®°(X)@M. Then
we have a canonical identification

LP(N) = LP(5; LP(M)).
Hence applying the above tensor extension property with X = LP(M), we deduce
that for any t > 0, T} ® x4 extends to a normal contraction

Ti@Ipm: N — N,

and that (T;®1aq)e>0 is a diffusion semigroup on V. We claim that for any 1 < p < oo
and any 6 > w,, the negative generator of its L? realization admits a bounded H (%)
functional calculus.

Indeed, let 1 < p < oo. According to [27], the dilation property (5.9) can be
achieved with the additional property that J, @, and U, (for any t) are contractively
regular. This gives rise to contractions

J®Ipppy: LP(E; LP(M)) — LP(Y; LP(M))
and
QBRI (My: LP(E LP(M)) — LP(5; LP(M)).

Likewise, the U; ® I1»aq)’s extend to a co-group (Ut®ILp(M))t of isometries on
Lr(¥'; LP(M)), and we have

Tt@ILP(M) = (leLT’(M))(Ut@ILP(M))(J®ILP(M))7 t Z O

We can therefore conclude as in (1) above.
We refer the reader to [55] for related results.
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Remark 5.10. — We wish to record for further use an observation on the constants
appearing in the proof of Proposition 5.8. If (T})¢>0 is a noncommutative diffusion
semigroup as in this proposition, if 1 < p < oo, and if § > wp, let

Tp9: HGC(X9) — B(LP(M))
be the bounded homomorphism taking any f € H§®(Xg) to f(A,).

For any 1 < p < oo and any 6 > w,, let ¢ > p and v > 5 be chosen as in the
first lines of the proof of Proposition 5.8. Then it follows from the latter that for
any constants K, K’ > 1, there exists a constant K” > 1 such that whenever (T});>0
is a noncommutative diffusion semigroup on M, then ||, ]| < K" provided that

7pwll < K and |[mg, || < K.
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CHAPTER 6

SQUARE FUNCTIONS ON NONCOMMUTATIVE
LP-SPACES

6.A. Square functions and their integral representations

In this chapter we introduce square functions associated to sectorial operators
on noncommutative LP-spaces, which generalize the ones considered in [21] in the
commutative setting. Throughout we let (M, 7) be a semifinite von Neumann algebra.
As in the previous chapter, we use the notation

QO_( i‘1-71)

We also recall the definition of H§®(2,+) given by (4.11).
Let 1 < p < 0o and let A be a sectorial operator of type w on LP(M). For any F
in H3°(Zy+) \ {0} and any z in LP(M), we define
(6.1)
2l pe= ||t — F(tA)z

Lr(M:L2(0).) and  |z|| p,r = ||f — F(tA) IHLP(M L2(20)r)"

We already noticed that the function ¢t — F(tA) is a continuous function from 2y into
B(LP(M)) (see paragraph 4.C). In particular, the function ¢ — F(tA)z is continuous
hence measurable from Qg into L?(M). Thus according to Definition 2.7 (1), it makes
sense to wonder whether it belongs either to LP(M; L?(€)),) or to LP(M; L?(£), ).
The proper meaning of (6.1) is therefore the following. If ¢ — F(tA)zx belongs to
LP(M; L*(),) (resp. LP(M;L%*(),)), then ||z| g (resp. ||z|F,) is the norm of
that function in LP(M; L%(Qy),) (resp. LP(M;L?*(Q),)). Otherwise, ||z||F,. (resp.
lz]| 7.»-) is equal to oo.

It is easy to check that the set of all z € LP(M) for which ||z| p. < oo is a subspace
of LP(M) on which || ||rc is a seminorm. The same comment applies to || || 7.

We now consider a ‘symmetric’ form of these seminorms. For F' and x as above,
we set

Izl =t = FEAZ] Lo ptr200),00)
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Going back to the definition of L2(),qa (see paragraph 2.B), we have more explicitly
(6.2)
2 F = maX{HF

I|F(: }if2<p<oo

x”LP M;L2(Q0).)? >xHLP(M;L2(QU)r)

and
(6.3)
ol = inf{ ol o2 Hivll ooz, ¢ witus = F(- Ao} if 1<p<2.

We call square functions associated with A the above functions || ||z, || ||F,r, and
[l [|7. It should be noticed that in general, column square functions || ||r,. and row
square functions || ||, are not equivalent. See Appendix A for a concrete example.

It follows from Remark 2.13 that in the case when M ~ L*°(X) is a commutative
von Neumann algebra, the quantities ||z| g, ||Z] ., and ||z||F all coincide on LP ().
Indeed, they are equal to

(6.4) H(AWMFwamcwz?)%

and hence the square function || ||F coincides with the one from [21] in this case.

Lr(s)

In order to stick to (6.4) in the noncommutative case, it is desirable to have an
integral representation of the norm on LP(M; L?(€),) and on LP(M; L?(€), ). This
is essentially provided by the next two propositions. In these statements, we shall
only consider the column case, and the row case may be treated similarly. The results
established below will be used later on for a function u of the form

u(t) = F(tA)z, t e Q.

We recall Proposition 2.5 which is used in Lemma 6.1 and Proposition 6.2 below.

Lemma 6.1. — Assume that 2 < p <oo and let uELQ(QO; LP(M))C LP(M; L*(Q)..)-
Then the function t — u(t)*u(t) belongs to L'(, L% (M)), and we have

dt

(6.5) uru = /Ooo u(t) u(t) et

(Here, as explained in paragraph 2.B, we regard u*u as an element of L2 (M).)
Proof. — For any t > 0 we have
l®*uOll 5 gy = 1003000

hence the function u(-)*u(-) clearly belongs to the space L'(Qg; L% (M)). To prove
(6.5), assume first that u belongs to LP(M) ® L?(€), and let (ax)r and (zx)x be
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finite families in L2(€o) and LP(M) respectively such that u = ), zx ® ax. Then

wu = Slayaysie = ([T ao iz,

2] 2

For an arbitrary u € L?(Qg; LP(M)), take a sequence uy,, in LP(M)® L?(€) converg-
ing to u in L?(Q; LP(M)). Then u,, also converges to u in LP(M; L?*(£),), hence
u*u, converges to u*u in L% (M). Furthermore we know from above that each uy,
satisfies (6.5) hence passing to the limit, we deduce (6.5) for . d

Proposition 6.2. — Assume that 2 < p < 0o and let u: Qo — LP(M) be any continu-
ous function. The following two assertions are equivalent.
(1) u belongs to LP(M; L?*(£).)-
(ii) There is a constant K > 0 such that for any 0 < o < B < 0o, we have
A dt
/ w(ty ut) & < K2,
[e%

tilLEom

In that case, we have

B
(6.6) uru = a—»%l;%l—»oo/a w(t) u(t) n
and

) B dt 3
60 ooy =, m ([ uoran T )

a—0; f—o0

Lp(M)

Proof. — We assume (i). For any 0 < o < 8 < 00, we let Py g: L%(Qg) — L?(€) be
the orthogonal projection defined by letting Py g(a) = ax(a,p) for any a € L%(Qyp).
According to Lemma 2.4, I1» ® P, g extends to a contraction

Pop: LP(M; L2(Qp),) — LP(M; L*(9),).

It is plain that 15(1\5(11) is equal to the product function ux(q,g)-
Our hypothesis that u is continuous ensures that P, g(u) belongs to L?(Q; LP(M)).
Owing to Lemma 6.1, we then have

L 8
(6.8) (Paop()" (Poaw) = [ ult)u(®) 7
By (2.8), we have
“(@(“))*(@(“))“g = HE"»\ﬂ(u)“iP(M;L%QO)C) < ”“HZLP(M:Lz(Qo)c)'

Hence (ii) holds true, with K = ||u|| Lo 12(00).)-

c

Next we observe that P, g converges pointwise to the identity on L?(£)), when
a — 0 and 8 — oo. Hence I1» ® P, g converges pointwise to the identity on LP(M)®
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L?(€). Since ”ﬁa\[ﬁ“ < 1 for any « and 3, we deduce that P/’(,\ﬁ converges pointwise
to the identity on LP(M; L?*(Qp),.). Thus P/a\[;(u) — u, and (6.6) and (6.7) follow
from (6.8).
For the converse direction, we assume (ii) and we let p’ be the conjugate number of
p. Let v be an arbitrary element of LP' (M) ® L2(€), and consider 0 < a < 8 < 0.
The function ux(q, g belongs to LP(M;L?(Qp).), and by (2.8) and Lemma 6.1, we
have
8
/ u(t) u(t) dt
J t

1
2

* 1
H“X(am”Lv(M;L?(szu)J = ”(“X(aﬁ)) (“X(am)Hzg(M) = ‘ L%(Mf
Moreover we have
B dt
[(v(t), u(t)] + = lwxplleraizz o)) 101 L vszz o).

by Lemma 2.8. Applying (ii) we deduce that

o dt :
[(u(t), u(t))] 7 S Kl vz, veELPM)® L*().
Letting @ — 0 and 8 — oo and using Lemma 2.10, this shows that the function u
belongs to the space LP(M; L?(€y),). O

Proposition 6.2 does not extend to the range 1 < p < 2. The obstacle here is that if
we consider a measurable function u: Qg — LP(M), then the function t — wu(t)*u(t)
is valued in L% (M) which is not a Banach space if p < 2. Thus in general we have
no way to define a Bochner integral ff w(t)*u(t) % . To circumvent this difficulty, we
will consider approximation by simple functions provided by ‘conditional expectations’
associated with subpartitions. For the definition of a subpartition 7 and its associated
mapping Er, see (4.5) and the paragraph preceding Lemma 4.3.

We observe that if w = 3", zx @ ¢, € LT (M) @ LY (Qp), with ¢, € L'(Qp) and
zp € L% (M), then we may define

/000 w(t) % = Z(/OOO e (t) ?) 2z € LE(M).

k
This yields a definition of [~ u(t)*u(t) 4t for any u € LP(M) ® L?(Qy).

Proposition 6.3. — Assume that 1 < p < 2 and let u € L*(Qq, LP(M)). For any
subpartition © of Qo, we let ux = Er(u) be defined by (4.5) and we note that u,
belongs to LP(M) @ L?(Q0). Then the following two assertions are equivalent.

(i) u belongs to LP(M; L*(Qo),.).

(ii) There is a constant K > 0 such that for any 7, we have

/oo Ur () ur(t) %
0

< K2,
LEM)
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In that case,

. [ . dt

(6.9) u*u = lim Ur () ur (1) n

T Jo
and

_ o dt\?
(6.10) lull Lo(Miz2(0y),) = lim H </ U (£)" un(t) 7) .

" 0 Lr(M)
Proof. — The proof is quite similar to the one of Proposition 6.2, hence we only

outline it. If u satisfies (i), then ||ur|| Lo M;L2(00).) < 1l LrM;L2(00).) fOr any m, ux
converges to u in LP(M; L%(Qp),) by (4.6), and we have
o dt
Wity = / ()" un (1) 2L
0 t

We deduce (i) with K = [Ju| LA 22(00).), a5 well as (6.9) and (6.10).

Conversely, (ii) implies (i) by using Lemma 2.10. O
Remark 6.4. — Here we give other substitutes of Proposition 6.2 in the case when
1<p<2.

(1) Let u: Q9 — LP(M) be a continuous function. It is easy to deduce from the
proof of Proposition 6.2 that u belongs to LP(M; L?(p).) if and only if for any
0 < a < 3 < oo, the restricted function ux(,,s) belongs to LP(M; L*(Qp).), and
there is a constant K > 0 such that [|ux(a,g)llr(M;12(00).) < K for any a < 3. In
that case, we have

”u”LP(M;LQ(QO)c) = ig’jnux(aﬁ)”LP(M;L‘Z(QOM'

A similar result holds true with column norms replaced by row norms or Rademacher
norms. Thus, u belongs to LP(M; L?(€)rqq) if and only if there is a constant K > 0
such that [|ux (a8 llLe(M;L2(00),0q) < K for any 0 < a < 8 < co.

(2) Assume that 1 < p < 2 and let u: Qo — LP(M) N L?(M) be a continuous
function. Then ¢ +— wu(t)*u(t) is valued in L'(M) and for any 0 < a < 8 < oo, we
may therefore define the integral

/ﬁ awyu® e L m,

Then it follows from above that u belongs to LP(M;L?(€).) if and only if
faﬁ w(t)*u(t) flt—t belongs to L% (M) for any a < 3, and there is a constant K > 0 such

that
B
’ /a )y u(t) &

. < K? for any a < .

2
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6.B. Equivalence of square functions

Square functions associated to a sectorial operator were first introduced on Hilbert
spaces by Mclntosh ([53]). Then it was shown in [54] that they are all equivalent
and that any sectorial operator (on a Hilbert space) has a bounded H* functional
calculus with respect to || ||7. In [49], these results were extended to Rad-sectorial
operators on classical (=commutative) LP-spaces. Our objective (Theorem 6.7 below)
is an extension of the latter results to noncommutative LP-spaces.

We will need the following simple lemma.

Lemma 6.5. — Let A be a sectorial operator of type w on LP(M), with 1 < p < oo.
Let F € H*(Zu4).
(1) For any f € HZ°(Xu+), the function t — F(tA)f(A) from Qo into B(LP(M))
is absolutely integrable and

[ reansan g = ([ rof) s,

(2) For any f € H*(Su+), sup;sq [|[F(EA)f(A)] < oo.

(3) Assume that A is Col-sectorial of Col-type w and let 6 > w such that F €
HG°(2g). Then there is a constant K > 0 such that for any f € H*(3y), the
set of all F(tA)f(A) fort >0 is Col-bounded, with

Col({F(tA)f(A) b o}) < K|S0

(4) The result in (3) holds true with Row-boundedness or Rad-boundedness replacing
Col-boundedness.

Proof. — The first two assertions hold true in any Banach space and go back (at least
implicitly) to McIntosh’s earliest paper on H* functional calculus [53]. To prove (3),
we essentially repeat Mclntosh’s proof of (2). Given # > w and F € H(Zy), let
v € (w,0) be an intermediate angle and recall from (4.16) that

d
Kozsup/ |F(tz)|‘—zl < 00.
t>0Jr, z

Using (3.5), we now write
F(tA) f(A) = —— /F Ft2)f(2)R(z, A) d=

T oM

for any f € H*(Xy) and any t > 0. Our assumption implies that the set {zR(z, 4) :
z € 'y} is Col-bounded. Moreover

[ P2 < Kol

for any f € H*(Xy) and any t > 0. We therefore deduce (3) from the second part of
Lemma 4.2. The last assertion (4) can be proved in the same manner. O
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Remark 6.6. — Let A be a sectorial opertor of type w on LP(M) and let F €
H§(Z,+)\ {0}. Then
|lzllpe =0 < ||z||Fr =0 ||lz||p =0 a € N(A).

Indeed each of the first three conditions means that F(tA)z = 0 for any ¢ > 0, and
this obviously holds if x € N(A). Assume conversely that F(tA)z = 0 for any ¢ > 0
and let F' be defined by F(z) = F(z). Then F(tA)F(tA)x =0 for any ¢t > 0. Since
>~ dt
| Fra S =1P1ta, >0

the first part of Lemma 6.5 ensures that f(A)z = 0 for any f € H§®(Z,+). Using
e.g. f(z) =g(z) = 2(1 + 2)~2, this implies that z € N(A).

Thus if A is injective, || |F.c, || || F,r, and || || F are norms on the respective subspaces
of LP(M) on which they are finite.

Theorem 6.7. — Assume that 1 < p < co. Let A be a sectorial operator of type w on
LP(M), and let 0 € (w, ). We consider two functions F and G in H§®(Zg) \ {0}.
(1) If A is Col-sectorial of Col-type w, then there exists a constant C > 0 such that
for any f € H§(Xg) and any x € LP(M), we have

£ (A)zlFe < Clifllooollzllcc-

Moreover we have an equivalence
Izlle.e < llzllre, =€ LP(M).

(2) If A is Row-sectorial of Row-type w, then the same properties hold with || ||F,r
and || ||a,» replacing || |Fc and || ||c,c-

(3) If A is Rad-sectorial of Rad-type w, then the same properties hold with || || and
Il replacing || ||pc and || [lg.c.

Proof. — We shall only prove (1), the proofs of (2) and (3) being identical. Since
G € H{*(Xp) is a non zero function, we can choose ¢1 and @9 in H§(Xg) with the
property that

/0 Taenen® <1

We consider some f € H§®(%y). According to Lemma 6.5 (1), the function mapping
any t > 0 to 1 (tA)p2(tA)G(tA)f(A) is absolutely integrable on Q, and

(6.11) | ereaeaeaceansn § = ra,

On the other hand, it follows from Lemma 6.5 (3), and our hypothesis that A is Col-
sectorial of Col-type w, that the set of all operators @o(tA)f(A) is Col-bounded and
that we have an estimate

Col({¢2(tA)f(4) : t > 0}) < K|fllo.s.
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where K > 0 is a constant not depending on f. Let us now apply Proposition 4.4 and
its subsequent Remark 4.5, with Q = Qq, du(t) = %, and
O(t) = pa2(tA)f(A),  t>0.

By Lemma 4.2, we deduce from above that

f”ocﬁ

Col({ﬁ/]@z(zﬁfl)f(fl)% cTC Q. 0< p(l) < oo}> <K

Then we obtain that the multiplication operator Ty is bounded on LP(M; L?(€y),),
with

| To: LP(M: L*(Q),) — LP(M; L*(0),)|| < Kl fll.0-

Assume that ||z[g. < oo, so that G(- A)z belongs to LP(M;L*(Qp).). By Re-
mark 4.6, To(G(- A)x) is equal to the function po(- A)G(- A) f(A)x. Hence we have

proved that the latter function belongs to LP(M; L?(€)),), with

(612) H@Q( A)G( A)f(A)/LH Le(M;L2(Q).) < K’Hf”OO-()”'T”GJ?'

o

We now apply Theorem 4.14 with F} = ¢; and F» = F. According to our hypoth-
esis that A is Col-sectorial, the operator T with kernel F/(sA)p(tA) is bounded from
LP(M; L?(€),) into itself. Furthermore, Lemma 6.5 (1) ensures that the function
wa(- A)G(- A) f(A)x belongs to L'(y; LP(M)). Hence T maps this function to the
function

o dt
- /0 Fls A1 (t4)pa (FA)G (A f(A)r 5
By (6.11), the above integral is equal to F/(sA)f(A)x. This shows that F(- A)f(A)x
is a function which belongs to LP(M; L?(€),.) and using (6.12), we have the estimate

HF( A).f(A)T’HL;»(M;L'Z(QO)(_) < KT fllso.ollll G e

This concludes the proof of the first part of (1), with C' = K||T|.

To prove the second part, we will use the fact that LP(M) is reflexive (we assumed
that 1 < p < oo). By Remark 3.4, we have a direct sum decomposition LP(M) =
N(A)® R(A). Moreover ||z .. = ||z]|c.. = 0 for every 2 € N(A). Thus to prove that
Il F.c and || ||G.c are equivalent on LP (M), it suffices to prove that they are equivalent
on R(A). Let (gn)n>0 be the bounded sequence of Hi®(2g) defined by (3.8) and let

C" = sup,>o{llgnlloc.6}. The preceding estimate yields

lgn(A)zllpe < CC'zllge,  n =1, € LP(M).
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Let z € R(A) and let v be an arbitrary element of LP (M) ® L%(S), where p/ is the
conjugate number of p. For any n > 1, we have by Lemma 2.8 that

o dt
/o |(w(®), FA)gn(A)a)| — < [FC A)gn(A)2]| Lo apiaiag)) Ve vz,

< ||97L(A)'T”F»C H”HL”'(M;“(QO)H
< CC'||zlle eIVl o (M:n2 (),

Since z € R(A), gn(A)z converges to x, by Lemma 3.2. Hence applying Fatou’s
Lemma immediately leads to

o0 dt
/0 [(v(t), F(tA)z)| 7 < CC'|zllG e VIl o (Mer2 (020
Owing to Lemma 2.10, this shows that F(- A)z belongs to LP(M; L?(€)),), with
2l Fe < CCl|2l e

Switching the roles of F' and G then shows that || ||¢,c and || || 7. are actually equivalent

on R(A), which concludes the proof. O
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CHAPTER 7

H> FUNCTIONAL CALCULUS AND SQUARE
FUNCTION ESTIMATES

In this chapter we investigate the interplay between bounded or completely
bounded H* functional calculus and square functions, for a sectorial operator on
a noncommutative LP-space. Our results should be regarded as noncommutative
analogues of those proved by Cowling, Doust, McIntosh, and Yagi in {21, Sections
4 and 6]. For simplicity we will restrict to the case when p > 1, although some of
the results of this chapter extend to the case when p = 1. We recall the notation
Qo = (R, 4).

Let A be a sectorial operator of type w € (0,7) on some noncommutative LP-space
LP(M), with 1 < p < oo. Let F' € H§(X,+) \ {0}. We say that A satisfies a square
function estimate (Sg) if there is a constant K > 0 such that
(S¥) lzllp < Kllzll, =€ LP(M).

A straightforward application of the Closed Graph Theorem shows that (Sg) holds
true if and only if ||z||F is finite for any = € LP(M).

Recall that the operator A* is sectorial of type w on LP (M). Let G € HZ®(Su1)\
{0}. We say that A satisfies a dual square function estimate (S¢) if A* satisfies a
square function estimate with respect to G, that is, there is a constant K > 0 such
that

(Sc) 1GC AW o it 2010y < Klllrs y € L7 (M).
We notice the following consequence of Theorem 6.7 (3).

Corollary 7.1. — Assume that A is Rad-sectorial of Rad-type w on LP(M). If A
satisfies (Sg) for some F € HE°(Zu4) \ {0}, then A satisfies (Sg) for all F €

H§®(Zo+) \ {0}

Our next statement extends some estimates from [21, Section 4 and 6] to the
noncommutative setting. Keeping the notation from the latter paper we let . (t) =
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@(e') for any measurable function p: 5 — C. Thus ¢ — ¢, induces an isometric
isomorphism from L?(Q) onto LP(R;dt) for any 1 < p < oo. We let . be the Fourier
transform of ¢, if ¢ belongs either to L'(€) or to L2(€).

Proposition 7.2. — Let A be a sectorial operator of type w on LP(M), with 1 < p < oc.
Consider three numbers 6,v,« such that w < 6 < a < 2a— 8§ < v < m, and two
functions F,G € H§(3;5). Let ¢ = GF and note that the restriction of ¢ to € is
integrable. Assume that there is a constant C' > 0 such that

(7.1) |Ge(s)| > Cemll, s €R.

If A satisfies a dual square function estimate (S¢;), then there is a constant K > 0
such that for any f € H(X,) and any v € LP(M), we have

1f(A)zl < Kljzllellflloc.-

Proof. — The assumption (7.1) ensures that there is a constant C; > 0 with the
following property. For any f € H§°(%,), there exists a function b € L' (20)NL>(Qo)
such that

(7.2) [lloc < C1ll flloc,

and
e dt
z) = / b(t)p(tz) 7 z € ;.
0 A

Indeed this follows from the proof of [21, Theorem 4.4], see in particular (4.3)
in that paper. Since b € L!'(g), the second part of Lemma 6.5 ensures that
fo 1b()[lo(tA) | 5 dt s finite. A simple computation using Fubini’s Theorem then

shows that

d dt

ﬂAw:Amb<>aA>* AmmwGu> 1a) %

For any 2 € LP(M) and any y € L¥ (M) = LP(M)*, we derive that

() = [ G0OF A G T

Hence
dt

()] < ol [ FeA) Glea )]

Now assume that [|z||p < oo, that is, F(- A)z belongs to LP(M;L*(Q),,,)- We
assumed that A satisfies (S%,), so that G(- A*)y belongs to L' (M; L?(%)raa). Hence
by Remark 2.9, there is a constant C, > 0 such that

[(f(D)z, )| < Collblloo |2l 7 [[y]-
Applying (7.2) then yields
|(f(A)z,y)| < Cr8o|lz|l Pyl flloc.w-
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The result therefore follows by taking the supremum over all y € L' (M) with ||y|| < 1.
a

Remark 7.3. — Let A be a sectorial operator of type w € (0,7) on LP(M), with
1 < p < oo. Given any v € (w,7), choose ¢ and a such that w < d < @ < 2a— 3§ < v.
According to [21, Example 4.7], there exists F,G € H{°(Xs) such that the product
function ¢ = GF satisfies the assumption (7.1) in Proposition 7.2. For this specific
pair (F,G) of non zero functions in H§®(X,+ ), we obtain that if A satisfies (Sr) and
(8¢), then it admits a bounded H>(3,) functional calculus. Indeed this follows from

Proposition 7.2.

Corollary 7.4. — Let A be a Rad-sectorial operator of Rad-type w € (0,7) on LP(M),
with 1 < p < oo. Assume that there exist two non zero functions F,G € H§(X,4)
such that A satisfies (Sr) and (Sg). Then A admits a bounded H>(Xy) functional
caleulus for any 6 € (w, ).

Proof. — This follows from Corollary 7.1 and Remark 7.3 above. O

Remark 7.5. — The assumptions that both A and A* satisfy square function esti-
mates are necessary in Corollary 7.4. Indeed there may exist A of type w without any
bounded H> functional calculus such that A satisfies (Sg) for any F € H§® (X4 ).
See [48, Section 5] for an example on Hilbert space.

We now turn to the converse of Corollary 7.4 and an equivalence result.

Theorem 7.6. — Let A be a sectorial operator of type w € (0,m) on LP(M), with
1 <p<oo. Assume that A admits a bounded H*(Xy) functional calculus for some
0 € (w,m).
(1) Then A satisfies a square function estimate (Sp) and a dual square function
estimate (S¢;) for any F,G € H§®(Zg4) \ {0}.
(2) Let P: LP(M) — LP(M) be the projection onto N(A) with kernel equal to R(A)
(see Remark 3.4). Then for any F € H3(Zg+) \ {0}, we have an equivalence

Izl = llzllr + [IP@), e LP(M).

Proof. — Cousider F € H§(X,)\ {0} with v > 6 and let us show the square function
estimate (Sp) for A. Recall from Remark 6.6 that ||z||z = 0 if x € N(A). Hence
according to Remark 3.4, we may assume that A has dense range. For any z € ¥,
we let
F2(t) = F(tz), t>0.

Clearly each F* is both bounded and integrable on €y. The starting point of the
proof is the following construction extracted from [21]. Let ¢: R — R be an in-
finitely many differentiable function with compact support included in [—2,2] satis-
fying > o ¢(s —k)> =1 for any s € R, and let ¢, = ¢(- —k) for any integer
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k. By definition, each vy has support in [k — 2,k +
let 7jr: [k — 2,k + 2] — C be defined by 7jk(s) =
Lemma 6.5] that

Then for any k,j € Z,

2],
$e2s It is proved in [21,

Z sup Z| EVk, Tik ‘ < Q.

Since (71 ); is an orthonormal ba81s of L?([k — 2,k + 2];dt) for any k € Z, then we
have

1 .
”a||2L2(szU) = ||(Le||i2(R;dt) ~or ”ae||2L2(R;dr,)

1 ~

o Z @k lF 2 (k2 p 20,00
k

1 ~

—ﬂ' Z|<aell/)k77-jk'>|
ik

for any a € L%()). Changing both the notation and the indexing, we deduce the
existence of a sequence (b;);>1 in L?(€2y) with the following two properties. First,

(7.3) lall?2i00) = > _Ja.b)|",  ae L3().
Jjz1

Second,

(7.4) K = sup Z| (F?.b;)| <
z€291>1

For any j > 1, we let h; € H*>(Xy) be defined by

(7.5) ) = (Fb) = [P BD

Let (¢;)1<j<n be a finite sequence taking values in {—1,1}. For any z € 3y, we have

N
‘Z Ejhj(Z)! < K
j=1

by (7.4). Since A admits a bounded H*°(%y) functional calculus, we deduce that

N
[ X o] <.
j=1

for some constant K; > 0 not depending either on IV or on the ¢;’s. Equivalently, we
have that for every x € LP(M), HZ] e;h;(A)z| < Ki|lz|. Hence averaging over all
possible choices of £; = %1, we obtain that

N
H; g hji(A) l

r e LP(M).
iy < Fillel (M)
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By Corollary 2.12 and (2.34), this shows that for every x € LP(M), the sequence
(h,j(A):E)j21 belongs to LP(M;¢2_,) and that

(7.6) ”(h‘]'(A):L‘)jzl}

for some constant Ky > 0 not depending on z.

<K
pomn,p < I,

According to (7.3), we consider the linear isometry V: L?(2y) — ¢? defined by
letting V(a) = ((a,bj>)j>1 for any a € L?(Qp). Its adjoint V*: £2 — L2(€) is a
contraction, hence I1» ® V* extends to a contraction

Ve LP(M; £2,)) — LP(M; L2 (%) rad)

rad

by Lemma 2.4. Let us show that for any x € D(A) N R(A), we have
(7.7) Vs ( (hj(A)x)j> — F(-A)z.

Recall from Chapter 3 that with g(z) = iy, We may write 7 = g(A)z" for some
(unique) ' € LP(M). Moreover by the first two parts of Lemma 6.5, we have

[ IEeAg R <o
0

Hence F(- A)g(A)b;(-) is integrable on Qg for any j > 1. Then using Fubini’s Theo-
rem, it is easy to deduce from (7.5) that

() = | T Pay )5 &

t
Now let y € LP (M) be an arbitrary functional on LP(M). We see from above that
(F(-A)z,y) = (F(- A)g(A)x',y) € L*(Q)
and that

J= 1L

)

(A = [ ()50

Thus V maps the function (F(- A)z,y) to the sequence ((hj(A)a:,y>)j>1. Since V is

an isometry, this implies that conversely, V* maps the sequence ((lzj(A)a:,y))j>1 to
the function (F(- A)z,y). Since this holds for any y € LF (M), this concludes the

proof of (7.7). Owing to (7.6), this implies that
|z||F < Kallzl, 2 € D(A) N R(A).

We now appeal to the approximating sequence (gn)n>1 defined by (3.8). For any
x € LP(M) and any n > 1, g,(A)z belongs to D(A) N R(A), hence |g,(A)z|r <
Ks|lgn(A)z||. Since (gn(A))n>1 is bounded, this shows that for an appropriate con-
stant K3 > 0, we have

lgn(A)z|lF < Ksllzl,  n>1, z€ LP(M).

SOCIETE MATHEMATIQUE DE FRANCE 2006



74 CHAPTER 7. H>* FUNCTIONAL CALCULUS AND SQUARE FUNCTION ESTIMATES

Arguing as at the end of the proof of Theorem 6.7, we deduce that ||z|r < Kjlz|| for
any x € LP(M). This concludes the proof that A satisfies (Sg). Applying this result
for A*, we obtain that A satisfies (S;) as well.

We now turn to the second assertion. Since A admits a bounded H* (%) functional
calculus, A is Rad-sectoriel of Rad-type 6 by Theorem 4.11. Thus Theorem 6.7
ensures that || ||, and || | r, are equivalent for any two functions Fy, Fy € H§® (394 )\
{0}. It therefore suffices to prove the result for a particular function F' € H§®(Xg4).
Furthermore, it clearly follows from the first part of this proof that we only need to
show that || || dominates the original norm on R(A). We fix numbers 0 < w <
0 <6< a<22a-6<v <7 and we recall from [21, Example 4.7] that there
exist F,G € H{®(X5) such that the product function ¢ = GF satisfies (7.1). By the
first part of this proof, A satisfies (S¢;) hence applying Proposition 7.2, we find some
constant K > 0 such that || f(A)z| < K||z||p||f]lec,, for any f € H§(X,). Let us
apply this estimate with f = g,. Since (gn)n>1 is a bounded sequence of H>(X,),
we obtain an estimate

lgn(A)x|| < K'||2||F, n>1, xe LP(M).

Now assume that @ € R(A). Then g,(A)x converges to = (see Lemma 3.2). This
yields ||z|| < K'||z||r and completes the proof. O

If A has dense range and has a bounded H*(¥y) functional calculus, the above
theorem yields an equivalence

el < llzllp, @€ LP(M),

for any F € H§(Zg4) \ {0}.

This may be obviously combined with either Proposition 6.2 or Proposition 6.3.
The resulting formula is easy to be written down when p > 2 and we give it explicitly
in the next statement. The case when p < 2 is more involved and its statement is left
to the reader. We will come back to this case in Corollary 7.10 below.

Corollary 7.7. Let A be a sectorial operator of type w € (0,m) on LP(M), with
2 <p < oo. Assume that A has dense range and admits a bounded H*>(Xg) functional
calculus for some 0 € (w, ). Then for any F € H§(Xo+)\{0}, we have an equivalence

||| = max{aﬁtl)i;rélaoo”(/‘:j(F(tA)x)*(F(tA)x) %)é oty

lim H(/j(F(tA)x)(F(tA)x)* %)é LP(M)}, x € LP(M).

a—0; f—o0
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Let A be a sectorial operator of type w € (0,7) on LP(M), with 1 < p < 2. For
any F' € H§°(Z,+) \ {0}, we may consider an alternative square function by letting

[2]p = inf{llz1llFc + lz2llpr : @ =21 + 22}

for any z € LP(M). 1t is clear that ||z||r < [z]r. Indeed if [z]p is finite, and if we
have a decomposition x = z1 + x3 with ||z1||F. < o0 and ||z2||F» < oo, then we
have F(- A)x = uy + ug, with uy = F(- A)z; and ug = F(- A)zs, and these functions
belong to LP(M; L%(S),) and LP(M; L?(),) respectively. We do not know if the
two square functions || || and [ ]F are equivalent in general. In the next statement
we give a sufficient condition for such an equivalence to hold true.

Theorem 7.8. — Let A be a sectorial operator on LP(M), with 1 < p < 2. Let w €
(0,7) and assume that A is both Col-sectorial of Col-type w and Row-sectorial of Row-
type w. Let F,G be two non zero functions in H§® (X, ) and assume that A admits a
dual square function estimate (S¢;). Then || ||p <[ |r on LP(M). Indeed, there is a
constant C > 1 such that whenever x € LP(M) satisfies ||z||p < oo, then there exist
x1, 22 € LP(M) such that

x=x1+ T2 and lzillge + l|z2llFr < Cllz| p

Proof. — We may assume that A has dense range. We will use the function g defined
by (3.9). The assumptions imply that A is Rad-sectorial of Rad-type w. Thus all
square functions || ||p are pairwise equivalent, by Theorem 6.7. Hence it suffices to
prove the result for a particular function F € H§°(X9+). Therefore we may assume

that

/OO G(t)F(t)# ~ 1.

By the first part of Lemma 6.5, we have

(7.8) /0 " Gumpaag) @ = g,

Since A satisfies (S¢;), we can introduce the bounded linear operator
W: LY (M) — LV (M: L*(Q0)raa).  W(y) = G(-A)"y.
Note that by (2.25), the adjoint of W maps LP(M; L*(Q), ) into LP(M).

Let € LP(M) such that |z||p < oo. There exist two functions u; €
LP(M; L*(Qy),) and ug € LP(M; L?(Qy),) such that u; + uz = F(- A)z and
lwill oLz @o),) + lullLr (M2, ) < 2l P
Since LP(M; L*(Qy),) C LP(M; L3 (), ,q) and LP(M; L3(), ) C LP(M; L2(Q), 10)
we may introduce

1 = Wy, and Ty = Wus.
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Let i = 1,2. By the first two parts of Lemma 6.5, we have [~ [|g(A)G(tA)|? % < oo
and by Proposition 2.5 (1), we have [ ||u;(t)||? % < co. Hence t — g(A)G(tA)u;(t)
is integrable on €2, and we actually have

(7.9) 9(A)z; = /O " gacan .

Indeed, for any y € L¥' (M),

(9(A)zi,y) = (ui, Wg(A)"y)
dt

- /0 " (1), G(A) g (A)" W) T by Remark 2.9

- </0°° G(A)G(tAYu (1) '—?u>

Since u; +uz = F(- A), it follows from (7.8) and (7.9) that g(A)x = g(A)z; + g(A)z2
We assumed that A has dense range, hence g(A) is one-one. Thus z = x; + xo. It
now remains to estimate ||z1|| 7 and ||z2|| F.r.
By assumption, A is Col-sectorial of Col-type w. According to Theorem 4.14, the
operator with kernel F(sA)G(tA) is therefore bounded on LP(M; L?(€),). Let
T.: LP(M; L*(R),) — LP(M; L*(0),)

denote the resulting operator. Since A is also Row-sectorial of Row-type w, we have
a similar bounded operator

T,: LP(M; L*(),) — LP(M; L*(),)

Consider b € L'(€) N L2(Qp) and y € L (M). Suppose that y belongs to the
range of g(A)*, so that y = g(A)*y’ for some y’. Then

7)) = Glear ([T Fearyie L)

Hence by Lemma 2.8, we have

(To(u1),y ®b) = /Ooo<ul(t (/OOOF(SA)*yb(s)%)>%

=/0°°/0°°u1 F(sa) ) b(s) = &
d
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Since b € L(Qp) and [ |lg(A)G(tA)ui(t)|| & < oo, we may apply Fubini’s Theorem
in the last integral. Hence using (7.9), we deduce that

& °° dt ds
(Te(u1),y®0b) = / <F(sA)/ g(A)G(tA)uy(t) T ,y/> b(s) —
0 0 S
e , ds
=/, (F(sA)g(A)z1,y") b(s) "
> d
= [ e S
0 s
Since g(A)* has dense range, this calculation shows that T.(u;) = F(- A)x;. Likewise
we have T, (uz2) = F(- A)x2. Consequently,

lz1llpe + ezl pr < Tl fuall + 1Tl uzll < 2max{| Tl |1 T Hl2llF- O

Corollary 7.9. — Let A be a sectorial operator of type w € (0,7) on LP(M), with
1< p<2. Assume that A admits a completely bounded H™(Zg) functional calculus
for some 0 € (w,m), and let F € H§(Zo+) \ {0}. If further A has dense range, then

2| < inf{||lz1 | Fc + |22l F,r = @ = 21 4+ 22}, x € LP(M).

Proof. — By Theorem 4.12, the operator A is both Col-sectorial and Row-sectorial of
respective types 6. Moreover it satisfies dual square function estimates by Theorem 7.6
(1). Thus by Theorem 7.8 above, || ||r and [ |r are equivalent. Furthermore | || ¢ is
equivalent to the usual norm, by Theorem 7.6 (2), which proves the result. O

The next result is an immediate consequence of Corollary 7.9 and Proposition 6.3.
For simplicity if u: Qo — LP(M) is defined by u(t) = F(tA)z for some z € LP(M)
and if 7 is a subpartition of Qo, we write (F(t4)z)_ instead of wur(t).

Corollary 7.10. —— Let A be a sectorial operator of type w € (0,7) on LP(M), with
1< p< 2. Assume that A has dense range and admits a completely bounded H> ()
functional calculus for some 6 € (w,m). Then for any F € H§®(Zg4) \ {0}, we have
an equivalence

=) = i“f{“;“ ([ rean); (ream), %)

+

L»(M)

1

2

lim
T

( /0 " (F(tAYe) _(F(tA)zs)” %) LP(M)},

where for any x € LP(M), the infimum runs over all 1,22 € LP(M) such that
T =1+ 2.

Remark 7.11. — Let (T});>0 be a bounded analytic semigroup on LP(M), with 1 <
p < 00, and let —A denote its generator. Assume that A admits a bounded H* ()
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functional calculus for some 6 < 5. Assume for simplicity that A is one-one. The

function F'(z) = ze™* belongs to Hg®(X,) for any v < 7, and we have

-

0
oy (Ty(x)). x € LP(M), t>0.
Thus we deduce from Corollary 7.7 that if p > 2, we have an equivalence

F(tA)r =tAe e = —t

B9 2 3
lz]] = max{uﬂéi;%l_m‘K/a t (—);(Tt(l))’ dt) o)
li 712 W[ : ; P
ﬂ—>0%1'/131—'00H<«/a ! E(Tt(l)) dt) Lz»(M)}7 =& LAM).

A similar result can be written down in the case p < 2, using Corollary 7.10.
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CHAPTER 8

VARIOUS EXAMPLES OF MULTIPLIERS

8.A. Left and right multiplication operators

Let (M, 7) be a semifinite von Neumann algebra acting on some Hilbert space H,
and let 1 < p < oo. For any a € M, we define a bounded operator £,: LP(M) —
LP(M) by letting

(8.1) Lq(x) = az, x € LP(M).

We will call £, the left multiplication by a on LP(M). We aim at extending this
definition to unbounded operators.

Thus we let a: D(a) C H — H be a closed and densely defined operator on H.
We assume that p(a) # @ and that a is affiliated with M. This means that au = ua
for any unitary u in the commutant M’ C B(H). For any z € p(a), this implies that
(z —a)u = u(z —a), and hence R(z,a)u = uR(z,a) for any unitary u € M’. Thus we
have

(8.2) R(z,a) € M, z € p(a).

We will not use (8.1) directly to define L,, because multiplying an unbounded oper-
ator a with some x € LP(M) leads to technical difficulties. Instead we will use left
multiplications by resolvents, see (8.3).

Lemma8.1. — Let c € M C B(H) be a one-one operator, and let x € LP(M). If
cx =0, then z = 0.

Proof. — This is clear by regarding x and cz as unbounded operators on H in the
usual way. Indeed if { belongs to the domain of z, then we have cx(¢) = 0. Hence
x(¢) = 0. O

Lemma 8.2. — Let (by): C M be any bounded net converging to 0 in the strong oper-
ator topology of B(H). Then ||biz|, — 0 for any 1 < p < oo and any x € LP(M).
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Proof. — We start with p = 2. Let z € L?(M). Then zz* € L'(M) ~ M, and we
have

b3 = 7((bew)* (b)) = 7(bFbrza™) = (bibe, 22™) pp .-
By Hahn-Banach, zz*: M — C extends to some w*-continuous functional on B(H),
and hence there exist two sequences ((x)r>1 and (€x)k>1 belonging to ¢2(H) such that

(w, 2" ) popm, = z (w(Ck), k), w e M.
k=1
Thus we obtain that
Ibeally = 37 (be(G)sbelea)) < (0 Ne(l2) ™ (D Ivelen)?) ™
k=1 k=1 k=1

Since by — 0 strongly and (b;) is bounded, we deduce that ||b;z||2 — 0.
Assume now that p > 2 and take x € M N L%(M). We let a = %, so that we have
[L®(M), L2>(M)]o = LP(M) by (2.4). This implies that

el < bl el .

— o0

We know from the first part of this proof that ||b;z|]2 — 0. Since (b;); is bounded,
we deduce that ||b:x||, — 0. Using again the boundedness of (b;)¢, together with the
density of M N L%(M) in LP(M), we obtain that ||bx|, — 0 for any z € LP(M).
Finally we assume that 1 < p < 2, and we let © € LP(M). By the converse of the
noncommutative Holder inequality (see paragraph 2.A), there exist 2/, 2" in L?*?(M)

ol !

such that z = 2'z”. Then we have ||bix||, < [|bia’||2p]|2” ||2p. However ||bya’||2p — 0
by the above paragraph, hence we obtain that ||b,z||, — 0 O

Lemma 8.3. — For any z € p(a), the left multiplication Ly, q): LP(M) — LP(M) is
one-one and has dense range.

Proof. — That Lp(. 4 is one-one follows from Lemma 8.1. Next let y € v (M) be
orthogonal to the range of Lg(, ,). Then

0=7(R(z,a)zy) = 7(zyR(z,a))

for any x € LP(M), hence yR(z,a) = 0. Thus R(z,a)*y* = 0 and by Lemma 8.1, we
deduce that y = 0. This shows that Lg(; ,) has dense range. O

Let z € p(a). According to Lemma 8.3, we may consider the inverse of Lg(. q),
with domain D equal to the range of Lg(, ). Then we define

(8.3) Loyi=2—=Ly, D — LP(M).
Clearly L, is a closed and densely defined operator. Using the resolvent equation

R(z1,a) — R(z2,a) = (22 — z1)R(21,a)R(22,a),
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it is easy to see that this definition does not depend on z. Moreover p(a) C p(L,) and
(8.4) R(z,Ls) = LR(z,a) z € p(a).

Details are left to the reader.
We now consider the specific case of sectorial operators.

Proposition 8.4
(1) Assume that a: D(a) — H is a sectorial operator of type w € (0,7), which
is affiliated with M. Then L, is sectorial of type w on LP(M). Moreover
pla) C p(Ly) and for any z € p(a) and any x € LP(M), we have R(z,Ly)(z) =
R(z,a)x.
(2) For any f € H®(Eu4), we have

(8.5) f(La)(x) = fla)z, =z € LP(M).

(3) Let 6 € (w,m) be an angle. Then L, has a bounded H*>®(Xy) functional calculus
if and only if a has one. In that case, L, actually has a completely bounded
H>(3y) functional calculus.

(4) If a has dense range, then L, has dense range. If further a admits a bounded
H>(X3p) functional calculus, then (8.5) holds true for any f € H™(Zy).

Proof. — Part (1) clearly follows from (8.4). Next (2) follows (1) and (3.5), and (3)
is a straightforward consequence of (2).

Let us turn to (4). We let A = £,. We assume that a has dense range. According
to [21, Theorem 3.8], a(t+a)~! — Iy strongly when ¢t — 0. Moreover the net (a(t+
a)™1)i>0 is bounded by sectoriality. Hence for any ¢ € LP(M), |la(t+a)'z—z||, — 0
when t — 0%, by Lemma 8.2. Using (1), we note that a(t + a) 'z = A(t + A)~!(z).
Consequently, a(t + a) 'z belongs to R(A) for any ¢t > 0. Thus R(A) is a dense
subspace of LP(M).

Assume moreover that a admits a bounded H*(%y) functional calculus and con-
sider any f € H*(Xy). Let x € LP(M), and let g be defined by (3.9). Applying (2)
twice, we see that

g9(a)f(a)z = g(A)(f(A)(z)) = g(a)[f(A)(z)].

Since g(a) in one-one, the identity f(A)(z) = f(a)x now follows from Lemma 8.1. O

Next we discuss left multiplications by cg-semigroups.

Proposition 8.5

(1) Let (we)e>0 be a bounded co-semigroup on H, with negative generator a, and
assume that wy € M for each t > 0. Then a is affiliated with M.

(2) For anyt > 0 and x € LP(M), we define Ty(x) = wiz. Then (Ti)i>0 is a
bounded co-semigroup on LP(M), with negative generator equal to L,.
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Proof. — According to the Laplace formula (3.2), we have

(1+a) () = /Ooo(ziwt(C)dt, (e H.

Since M C B(H) is strongly closed, this implies that (1 4+ a)~! € M. That a is
affiliated with M follows at once.

It is clear that (T});>0 is a bounded semigroup. Since (w;);>o is bounded and
strongly continuous, Lemma 8.2 ensures that (7});>0 also is strongly continuous.

Let A be the negative generator of (7})¢>o. To show that A = L£,, it suffices to
check that (14 A)™" = L(144)-1, by (8.4). We use the Laplace formula again. Let p’
be the conjugate number of p. For x € LP(M) and y € LY (M), we have

ge o)

<(1+A)_1(:1:),;1/>L,,1L,,/ = </0 e ' Ty(x)dt, 7/> .= ‘/0‘00 e~ r(wery)dt.

Ly Lp

Arguing as in Lemma 8.2, we may find two sequences ((x)r>1 and (§x)r>1 belonging
to (2(H) such that

o0

T(way) Z w(Ck), w e M.
k=1

Thus we obtain that

(+ A ) s = [ Y @@ 6 d
k=1

/Uoo C_t’wt((tk:)dtvfk>

<(1 + a)‘l(gk')vgk>

(=)

I
M3 <
P

>
Il

1

Il
L 1M

= 7((1+a) oy

= <(1 ) y>LI),Lp' .
This proves the desired identity. O
Remark 8.6. — In order to apply Proposition 8.4 (3), one needs to know which sec-

torial operators on a Hilbert space have a bounded H* functional calculus. This
question was initiated in McIntosh’s fundamental paper on H* calculus [53].

refer to [54], [3, Lecture 3], [5], and [45] for various results on this topic. Let (w;)¢>0
be a bounded cg-semigroup on H, with negative generator a. We recall that if (w;)¢>0
is a contraction semigroup, then a has a bounded H>°(%y) functional calculus for any
6 > %. Furthermore, if a is sectorial of type w < 7, then for any 6 > w, a has a
bounded H°(%y) functional calculus if and only if (w;);>¢ is similar to a contraction

semigroup [45].
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Remark 8.7

(1) Let a: D(a) C H — H be a closed and densely defined operator affiliated with
M, and assume that p(a) # @. In (8.3) or (8.4) we defined the left multiplication by
a on LP(M). By symmetry, one can clearly define the right multiplication by a on
LP(M); we denote this operator by R,. Namely, if a is bounded, we let R,(z) = za
for any © € LP(M). Then if a is unbounded, we argue as in the ‘left case’ and
for any z € p(a), the operator R, is defined as z — 72;2(1270’). Equivalently, we have
R(2,Ra) = RR(s,a)- It is clear that Propositions 8.4 and 8.5 extend verbatim to right
multiplications.

(2) If 1 < p,p’ < oo are two conjugate numbers, then the adjoint of the left
multiplication by @ on LP(M) coincides with the right multiplication by a on ¥ (M).
Indeed if a is bounded, we have

(az,y) = T(azy) = 7(xya) = (z,ya), x € LP(M), ye L7 (M).

Then the general case follows from the bounded one, by using resolvents.
By a similar calculation, one has £, = Rq« and R, = L4~ (using the notation
introduced in (2.5)). By (2.6) we deduce that if p = 2, we have

Ll =L, and Rl =R+

Thus L, (resp. Rq) is selfadjoint on L?(M) if and only if a is selfadjoint.

(3) We recall that two (possibly unbounded) operators A and B with non empty
resolvent sets are called commuting if for any 2z, € p(A) and 22 € p(B), we have

R(21, A)R(ZQ, B) = R(ZQ, B)R(Z1, A)

It is clear that if a,b are two sectorial operators on H affiliated with M, then the
operators A = L, and B = R} on LP(M) commute in the above sense.

Left and right multiplications were used in the early days of H* functional calculus
to provide some examples involving pairs of commuting operators. Assume that p # 2,
and consider the case when M is equal to B(¢?) equipped with the usual trace. It was
shown in [44] that there may exist positive selfadjoint operators a and b on ¢? such
that the pair (L., Rp) does not have a bounded joint functional calculus on SP (see
the latter paper for a definition), although £, and R} each admit a bounded H>(%y)
functional calculus for any 6 > 0. On the other hand it follows from [54] and [41,
Theorem 6.3] that there may exist a positive selfadjoint operator a on H such that
the operator £, on S! is not Rad-sectorial.

8.B. Hamiltonians

In this part we wish to consider a special class of quantum dynamical semigroups
and their extensions to noncommutative LP-spaces. For that purpose, we will need
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a few facts about bisectorial operators on general Banach spaces, their functional
calculus, and relationships with sectorial operators. For any w € (0, 7), we let

S, ={z€C": g—w<|Arg(z)|<g+w}

be the open cone of angle 2w around the imaginary axis iR. Then we let H>*(S,,)
be the algebra of all bounded analytic functions on S, equipped with the supremum
norm, and we let H5°(S,,) be the subalgebra of all f for which there exists s > 0 such
that |f(z)] = O(]z]7®) as |z] — oo for z € S, and |f(2)] = O(]z]°) as |z] — 0 for
z € S,. We say that a closed and densely defined operator B on some Banach space
X is bisectorial of type w if its spectrum is contained in the closure of S, and if for
any 6 € (w, 5), zR(z, B) is uniformly bounded outside Sg. This is the same as saying
that B and —B are both sectorial of type w + 7.

Assume that w + § <y < 6+ 7, and let g € H3°(Sy). By analogy with (3.5), we
define

1
(8.6) g(B) = 3 g(2)R(z,B) + g(—2)R(z,—B) dz.

™ r,
As in the sectorial case, this definition does not depend on v, and g — g¢(B) is an
algebra homomorphism which is consistent with the functional calculus of rational
functions. We say that B is bisectorial of type 0 if it is bisectorial of type w for any
w e (0,75).

For any 0 < w < 7, the transformation z -22

maps S, onto Xa,. It is not hard
to show that if B is bisectorial of type w € (0, %), then —B? is a sectorial operator
of type 2w. Furthermore, the functional calculi of B and —B? are compatible in the
following sense. Let 6 € (2w, ) and let f € H§°(Xg). Then the function g: Sg,o — C
defined by g(z) = f(—z%) belongs to H§°(Sg/2), and we have g(B) = f(—B?). This
follows from (8.6) and (3.5), details are left to the reader.

We will apply the above construction to generators of bounded groups. Let X
be a Banach space and let (Uy);cr be a bounded cg-group on X. We let ¢4 denote
its infinitesimal generator. It is clearly bisectorial of type 0, hence A2 is a sectorial
operator of type 0. The function f defined by

fe)=e -

belongs to H5®(Xg) for any 6 < 5. Thus if we let v € (7, 31) and apply the above
results to f, we find that
1 2 1

a2 o _ L o2
(87) e F - (1A = — FW(e e

) (R(2,iA) + R(z,—iA)) dz.

We claim that

1 0 2
(8.8) e = — e 2 Usds
V2T J o
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in the strong sense. To prove this identity we start from the following two standard
identities. For any s>0,

e

Ni“

—zst _t? —s 1 00 —ist _ 1
ez dt and e ¥ =— e ——=dt.

vV 271' / T J—0o et

Using Cauchy’s Theorem and the analyticity of the two functions

22 1
z—eFe? and z — e%* -2
-z
we deduce that for any s > 0,
2
e~ T -1 22 e~ s -1
= ——/ e** e dz and = — eszﬁdz.
o 27 Jr 2 211 r,

Next using Fubini’s Theorem, we deduce that
2

[t e [0

) (U + U_S) dz ds

62—'

I
Lyl

\
ﬂ\

122
- r(ez_l_lg)Uo e U, ds+/0 “Uwsdstz.

According to the Laplace formula (3.2), the two integrals in the above brackets are
equal to —R(z,—41A) and —R(z,1A) respectively. Hence combining with (8.7), we
have proved that

o —s2 —1sl A2
/ (e\/z—jr - &5 )Usds =e T —(1+4H)7!
—00
To deduce (8.8), it remains to observe that

oo
/ e U ds = 2(1 4 A%H)7!
—00

This is an easy consequence of the Laplace formula applied to the two semigroups
(US)SZO and (U—s)320~

Corollary 8.8. — Let iA be the generator of a co-group of isometries on X. Then A2
is a sectorial operator of type 0, and we have

8.9 et = / wU t>0.
(89) —5r [ iU o
Moreover, ||e”tA2|| <1 for anyt > 0.

Proof. — We already noticed that A? is sectorial of type 0. Formula (8.9) follows
by applying (8.8) with A replaced by v/2tA, and then changmg s into v/2s in the
resulting integral. Since each U ! is a contraction and [ e~ T ds = 2/, we deduce

that [le=*4°| < 1. O

We give another general result which will be used later on in this chapter.
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Lemma 8.9. — Let (T)i>0 be a bounded co-semigroup on X, and let —C denote its
generator. We let
1
e das
h(s) = 3 for any s > 0.
S 2

Then we have

(8.10) o1t

\al

$)Tyads,  t>0.

’l
If (Ty)t>0 is a contractive semigroup, then |e=t“? || <1 for anyt > 0.

Proof. — Formula (8.10) is well-known, see e.g. [22, Ex. 2.32]. Indeed a proof of
(8.10) can be obtained by a computation similar to the one given for (8.8). Since
J57 h(s)ds =1, the last assertion is clear from (8.10). O

We will now apply the above results to a special class of quantum dynamical groups
and their generators (see e.g. [57, II1. 30]). Let (M, 7) be a semifinite von Neumann
algebra, and let 1 < p < oo be any number. Let a and b be two selfadjoint operators
affiliated with M. If they are both bounded, we define an operator Ad, ) : LP(M) —
LP(M) by

Ad ) (7) = ax — xb, z € LP(M).
We will extend this definition to the case when a or b is unbounded. Let A = £, and
B = Ry be the left and right multiplications on LP(M) by a and b respectively (see
paragraph 8.A). We claim that the intersection D(A) N D(B) is a dense subspace of
LP(M), and that the difference operator
A—-B: D(A)ND(B) — L?(M)

taking x to A(z) — B(z) is closable. To prove the density assertion, note that for any
x € LP(M), we have
inR(in, A)(z) = inR(in,a)r — =z

when n — oo. Indeed this follows from (8.4) and Lemma 8.2. Likewise,
inR(in, B)(x) — x when n — oo. We deduce that n?R(in, B) R(in, A)(z) — —=x
when n — oo. Since R(in, B) and R(in, A) commute for any n > 1, each element
n?R(in, B) R(in, A)(z) belongs to the subspace D(A) N D(B). Hence z is the limit
of a sequence of D(A) N D(B).

To prove the closability of A— B, suppose that (x,),>1 is a sequence of D(A)ND(B)
converging to 0, such that A(z,)— B(x,) converges to some x € LP(M). The resolvent
operators R(i, A) and R(i, B) commute, hence

R(i, A)R(i, B)(A — B) = R(i, B)[AR(i, A)] — R(i,A)[BR(i, B)]
on D(A) N D(B). Thus
R(i, A)R(i, B)(z) = lim R(i, B)[AR(i, A)| (z,) — lim R(i, A)[BR(i, B)| (x) = 0.

Since R(i, A)R(i, B) is one-one, this shows that = 0. Hence A — B is closable.
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We can now define Ad(, ;) as the closure of A — B, that is,

(8.11) Ad(ap) = La — Ry,

Lemma 8.10. — Let a and b be selfadjoint operators affiliated with M, and let 1 <
p < 0co. For any t € R, we define Uy: LP(M) — LP(M) by

Up(x) = e@ze z € LP(M).
Then (Up)er is a co-group of isometries on LP(M), with generator equal to iAd 4 p)-

Proof. — For any t € R, we define
T;: LP(M) — LP(M) and Sp: LP(M) — LP(M)

by letting T;(z) = ez and Si(x) = ze ™ for any € LP(M). According to
Proposition 8.5 and its ‘right’ version, (T%);cg and (S¢);cr are both co-groups of
isometries on LP?(M), with generators equal to iL, and —iRy respectively. These two
co-groups are commuting (that is, STy = T;Ss for any s,t), and U, = ST} is defined
as their product. Then it is easy to check that (Uy),cr is a co-group of isometries. By
e.g. [56, p. 24], its generator is the closure of the sum of the generators of (7;); and
(St)¢. By (8.11), this operator is i.Ad(q p)- O

Remark 8.11. — Let a,b and (U;); be as in Lemma 8.10 above. Let a = I®a be
the closure of Iy2 ® a on the Hilbertian tensor product ¢? ®, H, and let b be defined
similarly. These are selfadjoint operators affiliated with B(¢2)®@M. Then it is clear
that (U;); is a completely isometric co-group, with

[BU(y) = e'ye™™  teR, ye SPILP(M)].
By Lemma 3.9, il/®Ad, ;) = iAd(a’;) is the generator of (IQU,),.

Theorem 8.12. — Consider two finite commuting families (a1, ..., a,) and (b1, ..., by)
of selfadjoint operators affiliated with M. (Namely we asssume that a;a; = aja; and
bib; = b;b; for any 1 <1,j <mn, but we do not assume that a; commutes with b;.) We
assume that 1 < p < oo, and for any 1 < j < n, we let A; = Adq, ;) be defined by
(8.11) on LP(M).

(1) The sum operator

C=A} +--+ AL: (| D(42) — LP(M)
j=1
is closed and densely defined, and —C generates a completely contractive semi-
group on the space LP(M).
(2) Furthermore for any 6 > 0, C' admits a completely bounded H*®(Xy) functional
calculus on LP(M).
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Proof. — Tt follows from Corollary 8.8 and Lemma 8.10 that for any 1 < j < n, A? is

a sectorial operator of type 0 and that —A? generates a contractive semigroup (Tt] )t>0
on LP(M). Since LP(M) is UMD, it also follows from [32, Section 4] that A3 admits

a bounded H>(Xy) functional calculus for any 6 > 0.

Next the sectorial operators A%, ..., A2 are pairwise commuting, in the sense of
Remark 8.7 (3). Indeed Aq,..., A, are pairwise commuting, by our hypothesis that
both families (a1, ...,a,) and (b1,...,b,) are commuting.

Since LP(M) is UMD, we deduce by [41, Proposition 3.2] and [47, Theorem 1.1]
that the sum operator C' = A2+ -+ A2 is a sectorial operator of type 0 (in particular,
it is closed and densely defined), and that C' admits a bounded H* (%) functional
calculus for any 6 > 0. Further if we let

T, =T} T/ LP(M) — LP(M)

for any t > 0, then (T});>0 is a co-semigroup of contractions. By [56, p. 24], its
generator is —C'. This proves the ‘bounded’ version of the theorem.

To prove the ‘completely bounded’ version, we let a; = I®a; and b~] = I®b; be the
closures of Iy2 ® a; and Ij2 @ b; on ¢? ®, H respectively. According to Remark 8.11,
Ad(g; a7y = I@A;. Moreover (ai,...,a,) and (b:,,l;l) are commuting families.
Hence applying the first part of this proof to these families, we obtain that I®RC
generates a contractive semigroup and admits a bounded H*°(%y) functional calculus

for any 6 > 0. a
Remark 8.13
(1) Consider (ai,...,a,) and (b1,...,b,) as in Theorem 8.12 above. Suppose that

p =2, and let T; = e~ *“ be the semigroup generated by —C on L?(M). It is clear
that A? is selfadjoint for any 1 < j < n. Indeed this follows either from Remark 8.7
(2), or from the fact that the generator of a group of isometries on Hilbert space
is necessary skewadjoint. This implies that for any ¢ > 0, T;: L2(M) — L?(M) is
selfadjoint. Furthermore applying Corollary 8.8 and Lemma 8.10 on X = L(M),
and arguing as in the proof of Theorem 8.12 (1), we see that T} is contractive on
LY(M) for any t > 0. Hence (T});>0 is a diffusion semigroup on M (see Remark 5.2).
Later on in this chapter, we will consider the square root operator

1
(8.12) A=C7 = (A2+.. 4+ 42)2
Applying Lemma 8.9 and the above paragraph, we see that (e~t4),>¢ also is a diffusion

semigroup on M.

(2) For a selfadjoint operator a affiliated with M, we let
-Ada = Ad(a,a)'

For any s € R, the operator Us: L?(M) — L%*(M) taking any = € L*(M) to
e’ xe~% is completely positive. Hence according to Lemma 8.10 and Corollary 8.8,
e~ tAd? ig completely positive for any ¢ > 0.
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Next we consider a commuting family (a1, ..., ay) of selfadjoint operators affiliated
with M, we let A; = Ad,, for any 1 < j <n, and we let C = A} +---+ A2. (In other
words, we consider the case when a; = b; in Theorem 8.12 and in (1) above.) Since
Ty = e~ *C is the product of the eftAd"fQ, we obtain from above that T} is completely
positive for any t > 0. Likewise, if A is defined by (8.12), then e~*4 is completely
positive for any ¢t > 0. Indeed this follows from Lemma 8.9. Thus (e '“);>o and
(e_tA)tZO are completely positive diffusion semigroups.

These results apply in particular to the case when A = |Ada| = ((Ada)z)% is the
modulus of the operator Ad,.

Forafixed 1 < p < oo, let Ay, ..., A, and C be as in Theorem 8.12, and let § > 0 be
a positive angle. The second part of the above theorem says that the homomorphism
m: H§?(X9) — B(LP(M)) taking f to f(C) is bounded. According to the methods we
used for this result, the norm of that homomorphism can be dominated by a constant
only depending on p, 8, and n, and not on the families (a1,...,ay,) and (b1,...,b,)
used to define Ay, ..., A,. For some applications (see paragraph 8.C below), the fact
that ||7|| may depend on n turns out to be a serious drawback. In the last part of this
paragraph, we will show that this norm can be dominated by a constant which does
not depend on n, provided that we insist that 6 be large enough. As in Chapter 5,

we let
1 1

UJp =T ’5 — 5 .
Theorem 8.14. — Let (M, 1) be a semifinite von Neumann algebra, let 1 < p < oo,
and let § > w,. There exists a constant Kg , satisfying the following property:

If (a1,...,a,) and (by,...,by) are two commuting families of selfadjoint operators
affiliated with M, if Aj = Ad(a,p,) on LP(M), and if we let A = (A} 4 -+ A2)3,
then

IF(AI < Kopllfllocw,  f € Hg (o).

Proof. — We noticed in Remark 8.13 (1) that —A generates a diffusion semigroup
on M. Thus according to Proposition 5.8 and the subsequent Remark 5.10, it will
suffice to prove the theorem for any 6 > 7.

We write

1 e 1
/7 st
for the two nonnegative functions appearing in (8.9) and (8.10) respectively.

Let C = A? + .- 4+ A2 be the square of A, and let (T});>0 be the cp-semigroup
generated by —C. For any 1 < j < n, we let (U/); be the co-group on LP(M)
generated by iA;. We noticed in the proof of Theorem 8.12 that (T}):>¢ is the

99

2
bly) = 1 e~ T and h(s) =
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product of the semigroups generated by the Af’s According to (8.9), we obtain that
for any t > 0,

Ty

([ o0 ) ([ 07 o)

—00 J1 —00 K

L b)) U 0.

y1t2 ynt

Applying Lemma 8.10, we deduce that for any x € LP(M),

Ti(x) = / b(y1) - b(yn) exp{it? (yra1 + -+ + ynan)}

L
x exp{ —it2 (yib1 + - + ynbn) } dy1 - - dyn .

If we change t into st? in the above identity and apply (8.10), we deduce that

e (1) = / h(s)b(y1) - b(yn) exp{’zﬁl‘us“?1 (yrar + -+ ypan) } @
X exp{—it s%(ylbl + o+ ynb,,,)} dsdyy - - dy, ,

the latter integral being taken on R, x R".

Thus e~ is an average of co-groups of isometries on LP(M). More precisely,
for any (s,y1,...,yn) in the set R+ x R™, let B{s, 1/1,...,gn} denote the operator
—iAd g 1), where a = :,2( yray + -+ z/na,,) and b = s? (y1b1 + -+ - + ynby). With this
notation, we have

exp{—tB{s,y1,...,yn}}(x) = ()xp{it .9%(;1/1(11 + -+ yna,,,,,)} T
X O'Xp{_it 3%(.7111)1 + :Unb’n)}
for any x € LP(M). Hence we actually have

et = /h(S) b(yr) - blyn) exp{—tB{s,y1, ..., yn}t} dsdyr - dyn

in the strong sense.

We can now conclude by repeating the argument in the proof of Proposition 3.12 (it
is actually possible to apply this proposition directly). Indeed by the Laplace formula
we deduce from above that for any complex number z with Re(z) < 0, we have

(8.13) R(z,A) = / h(s)b(y1) - b(yn) R(z, B{s,y1,. .., yn}) dsdyr - dyn .

Then applying (3.5), we deduce that for any § > % and any f € Hg®(¥g), we have

fl4) = / h(s)b(yr) - -blyn) F(B{s,y1.- - yn}) dsdys -~ dyn .
According to Proposition 3.11 for X = LP(M), we have an estimate
”f(B{S, Yis--- »yn}) || < K(?,p Hf”oo,@’
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for some uniform constant Ky, only depending on ¢ and p. Since h and b are non-
negative and have integrals equal to one, we deduce that for any f € H§°(Xg),

(A < /h(S)b(yl)-“b(:un)Hf(B{S,yu...,yn})||d6‘dy1---d?n

IN

/h(S)b(yl)mb(yn)Ko,p [ flloc,0 ds dyr -+ dyn = Kop |l flloce. O

Remark 8.15. — Arguing as in the proof of Theorem 8.12, we obtain a completely
bounded version of Theorem 8.14. Namely there is a constant Ky , such that if a;, b;
and A are in this theorem, then || f(A)l|ev < Ko pllflloo,o for any f € HG(Ey).

Remark 8.16
(1) Let Ay,..., A,,C, and A as above. Since C = A?, it follows from Theorem 8.14
that for any 6 > 2w, we have

(8.14) IO < Kopllflloces  f € HG(Zg).

(2) Assume that a; = b; for any 1 < j < n. In that case, the co-semigroup
(Ti)i>0 generated by —C' is completely positive (see Remark 8.13 (2)). Hence C
is Rad-sectoriel of Rad-type w, by Theorem 5.6. Therefore combining (8.14) and
[41, Proposition 5.1}, we deduce that for any 6 > wp, there is a constant K(’;J) only
depending on p and ¢ such that || f(C)| < Kj, || flloc,e for any f € HG®(Zp). In turn
this implies that

w " oo
LA < Kyl Sl 6> 22, f € HE(So).

8.C. Schur multipliers on S?

Let 1 < p < oco. As usual, we will regard the Schatten space SP as a space of
scalar valued infinite matrices, and we let E;; denote the standard matrix units, for
i,j > 1. Let [ai;]; ;>1 be an infinite matrix of complex numbers. By definition, the
Schur multiplier on SP associated with this matrix is the linear operator A whose
domain is the space of all = [z;;] € SP such that [a;;2;;] belongs to SP, and whose
action is given by

A(x) = laijziglijsr, @ = [zylig=1 € D(A).

Each E;; belongs to D(A), hence A is densely defined. It is also easy to check that A
is closed. Moreover the kernel of A is equal to

N(A) = Span{Eij LA = 0}
In particular, A is one-one if a;; # 0 for any ¢,5 > 1.
Let z € C be a complex number. Clearly z € p(A) if and only if @, ; # 2 for any

i,7 > 1 and if the Schur multiplier associated with the matrix [(z —a;;) '] is bounded.
In that case, R(z, A) coincides with that Schur multiplier.
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For any 6 € (0,7) and any f € H>(3y), it will be convenient to let f: 3gU{0} — C

denote the prolongation of f obtained by letting } (0) = 0.

Using (3.5), we deduce from above that if A is sectorial of type w € (0, ), then
a;j € 3, for any i, > 1, and f(A) is the Schur multiplier associated with the matrix
[} (a;j)] for any f € HG(Xg) and any 6 € (w, ).

Furthermore, —A generates a bounded cp-semigroup (73);>0 on S? if and only if
the Schur multipliers associated to the matrix [e“‘”-’] are uniformly bounded. In
that case, T; is indeed the Schur multiplier associated to the latter matrix.

The main result of this paragraph is the following.

Proposition 8.17. Let H be a real Hilbert space, and let (og)k>1 and (Bk)r>1 be two
sequences of H. In the next statements, || - || denotes the norm on H.

(1) For any 1 < p < oo, the Schur multiplier on S? associated with [||c; — B;||] is
cb-sectorial of type w, = W[% — %| and admits a completely bounded H(Xg)
functional calculus for any 6 > wy,.

2) For any 1 < p < oo, for any 60 > w,, and for any f € H>®(Xy), the Schur
p

(o)

multiplier associated with [f (||(,yi — ﬁJH)] is completely bounded on SP.

(3) For anyt >0, the Schur product Ty associated with [e‘t(“o‘z_ﬁl”)] is completely
contractive on SP for any 1 < p < oo, and (Ti)i>0 ts a diffusion semigroup on
B((?).

We will need the following approximation lemma. Its proof is elementary, using
the facts given before Proposition 8.17. We leave it as an exercice for the reader.

Lemma 8.18. — Let 1 < p < 0o and let w € (0,7) be an angle. For anyi,j > 1, let
(a;‘j)nzl be a sequence of X, which admits a limit a;; when n — oco. Let B, (resp.
A) be the Schur multiplier on SP associated with [af] (resp. with [a;;]).

(1) Assume that o(B,) C X, for any n > 1 and assume that for any 0 > w, there
is a constant Ko > 0 such that ||zR(z, B,)|| < Ky for any z € C\ ¥y and any
n > 1. Then A is sectorial of type w.

(2) Assume further that for some 6 > w, there is a constant K > 0 such that
(B < K||fllooo for any f € HZ(Xg) and any n > 1. Then A has a
bounded H>(3g) functional calculus.

(3) Assume that —B,, generates a bounded co-semigroup (T}*);>0 for any n > 0,
and that there is a constant C > 1 such that | T{*]] < C for any t > 0 and any
n > 1. Then —A generates a bounded co-semigroup (T})i>o0, and | ;]| < C for
any t > 0.

Proof of Proposition 8.17. — We fix some 1 < p < oco. Throughout this proof we let
a;j = ||o; — B;]|, and we let A be the Schur multiplier on S? associated with the matrix
[a;j]ij>1. Replacing H by the closed linear span of the a;’s and 3;’s if necessary, we
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may asssume that H is separable. Let (ex)r>1 be an orthonormal basis of H. For any
k>1, we let
ik = (v, ex) and Bir = (B, ex) -

Then for any ¢,j > 1, we have

n ) 1
ay; = hmam, with ay; = (E {aik “‘,Bjkl )
k=1

All numbers «;; and ;) are real, hence we may define selfadjoint operators ay and
by on ¢? with diagonal matrices equal to Diag{a;x : ¢ > 1} and Diag{8jx : j > 1}
respectively. Let Aj be the Schur multiplier associated to the matrix [a, — Bk
Then

Ar(Eij) = (ai — Bjk) EBij = axEij — Bijby,
for any i, > 1. Hence Ay = Ad(,, s,) in the notation of paragraph 8.B. For any
integer n > 1, we let
= (AZ4 .4 A2)7
Thus B, is the Schur multiplier associated with the matrix [a ZJ]
We fix some 6 > w,,. Then for any A € C\ £y, we let

NG P

142 A—=z
Let 0’ = (w, + 6)/2 and note that fx belongs to H§® (g ), with supy || fallec,er < 00.
Hence by Theorem 8.14 (applied with 8), there is a constant Ky not depending either
on A or n such that || fx(Bn)|| < Ko.
On the other hand, by Theorem 8.12 and Lemma 8.10, — B,, generates a contraction
semigroup on SP. Hence ||(1 + B,)~!|| < 1 for any n > 1, by the Laplace formula.
Since fi(Bn) = (1 + B,)~! — AR(), B,,), we deduce that for any n > 1,

IAR(\, By)|l < Ko+ 1, AeC\ 3.

By Lemma 8.18 (1), this implies that A is sectorial of type wp.

Likewise using Lemma 8.18 (2) and Theorem 8.14, we obtain that A admits a
bounded H*(%y) functional calculus for any 6 > w,. This proves the ‘bounded’
part of (1). To obtain the ‘completely bounded’ part, it suffices to apply the same
argument together with Remark 8.15 and a obvious completely bounded version of
Lemma 8.18.

We now prove (2). Note that A may fail to have dense range. We let f € H®(Zy).
Multiplying f by the functlon gn defined by (3.8), We find a bounded sequence (f,,)n>1

in H3°(XZg) such that fn converges pointwise to f on ¥y U {0}. Since A admits a
completely bounded H>(%y) functional calculus, there is a constant C' > 0 such that
[l < Cllfulloce for any n > 1. Thus the completely bounded norms of the
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Schur multipliers associated with [f,, (ai;)] are uniformly bounded. Passing to the
limit, we deduce the result.
To prove (3), let t > 0 be any nonnegative real number. For any n > 1, the Schur

product associated with [e~**] is e~*B» and the latter is a complete contraction on
SP. In fact this is a complete contraction on S7 for any 1 < q < oc, by arguing as
in Remark 8.13 (1). Passing to the limit, and using Lemma 8.18 (3), this shows that
the the Schur product associated with [e~!*i] is a complete contraction on S7 for any

1 < ¢ < . By Remark 5.2, this semigroup is a diffusion semigroup. O

Remark 8.19. Proposition 8.17 (1) is no longer true for p € {1,00}. Indeed con-
sider the following example. Take two sequences (tx)r>1 and (sx)g>1 of positive real
numbers, and for any i, j > 1, define
a; = /1, ea; and Bj = \/5j €2j4+1

on ¢? equipped with its canonical basis (ex)r>1. Then |lo; — 3;|| = t; + s; for any
i,7 > 1. Hence the operator A to be considered is the Schur multiplier associated
with the matrix [t; + s;]. It we take e.g. s = t;, = 2¥, it was proved by Uijterdijk
[74] that the latter Schur product does not have any bounded H*° functional calculus
on St
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CHAPTER 9

SEMIGROUPS ON ¢-DEFORMED VON NEUMANN
ALGEBRAS

9.A. The case -1 <¢<1

This chapter is devoted to semigroups derived from second quantization on von
Neumann algebras of g-deformation I'y(H) in the sense of Bozejko and Speicher (see
[14, 15]). We start with a few definitions and some background, for which we refer
the reader to the two latter papers and to [13].

If H is a complex Hilbert space and n > 0 is an integer, we let H®" be the algebraic
n-fold tensor product H® --- ® H and we let (, )o be the standard inner product on
H®™. By convention, H® = C. We fix some ¢q € (—1,1). Then one defines

(9'1) <<7C/>q = <Q(1<»C/>0a ¢, C’ € H®"7

where Qg: HO — H®" is a linear operator defined as follows. Let S, denote the
permutation group on the integers {1,...,n} and for any o € S, let ¢(o) denote the
number of inversions of 0. Then @, is defined by

92)  Qu(m @ @hy) = > ¢" Doy @ @hgiy,  hi,.. hy €H.
ceS,

i 1
According to [14], Q, is a positive operator on H®", and ¢ — ((,¢)¢ is a norm on
HE". We let Hff” denote the resulting completion. Then by definition, the ¢g-Fock
space over ‘H is the Hilbertian direct sum

Fo(H) = @ HE".

@D
n>0
In the sequel we will use ( , )4 to denote the inner product on the whole space F,(H).
Since its restriction to each H(;@" coincides with (9.1), there should be no confusion.
Accordingly, || ||; will stand for the norm on F,(H).

We let  be the unit element in H®® = C. This is usually called the vacuum. For
any h € H, the creation operator ¢(h) on F,(H) is defined by letting c(h)2 = h,

c(hy (M ®- @hy) = h@h1 @ ® hy, hi,...,hn € H,
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and then extending by linearity and continuity. Indeed,
c(h): Fq(H) — Fq(H)
is a bounded operator taking H?" into Hgg(”ﬂ) for any n > 0. Next the annihilation
operator a(h): Fq(H) — F4(H) is defined by
a(h) = c(h)*, heH.
Throughout the rest of this chapter, we let H be a real Hilbert space, and we let H¢

denote its complexification. We will use the above g-Fock space, as well as creation
and annihilation operators, for H = Hg. For any h € H, we let

w(h) = a(h) + c(h).
This is a selfadjoint operator on F,(Hg), called a g-Gaussian operator. By definition,
the von Neumann algebra of ¢g-deformation associated with H is
I, (H) = vN{u)(h) :he Hy C B(F,(Hg)).

the von Neumann algebra generated by all g-Gaussian operators.
We let

(9.3) T(x) = (9, Q)q, x eIy (H).

It was proved in [15] that €2 is a cyclic and separating vector for the von Neumann
algebra I';(H), so that the mapping

A:Ty(H) — Fq(He),  Alz) = (),

is one-one and has dense range. Moreover 7 is a normal, faithful, normalized trace on
I'y(H). In this chapter, we will consider the noncommutative LP-spaces LP(T'y(H))
associated with 7. Since

l2ll3 = 7(a*2) = [|l=(Q)]I;
for any x € T'y(H), we see that A extends to a unitary isomorphism
(9.4) LA(T,(H)) = F,(Hg).

Following [13], we now consider the second quantization on g-Fock spaces and
von Neumann algebras of ¢-deformation. Let Hy, Ho be two real Hilbert spaces,
with complexifications denoted by H; and H, respectively. Let a: Hy — Hs be
a contraction, and let a: H; — Ho denote its complexification. Then there is a
(necessarily unique) linear contraction

Fyla): Fq(Ha) — Fq(Hz)
such that Fi,(a)(2) = Q and for any n > 1,
(9.5) Fyla)(m ® - @ hy) = a(h1) ® - @ alha), hi,... h, € Hy.
(See [13, Lemma 1.4].) Moreover we have

Fy(a)* = Fy(a¥) and  F(ad') = F(a)F(a)
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for any contractions a,a’. Next, there is a (necessarily unique) normal unital com-
pletely positive map
Lg(a): Tg(Hy) — Tg(Hz)
such that AoT'y(a) = Fy(a) o A. Equivalently,
(9.6) [y(a)(x)]Q = Fy(a)(x), x el (Hyp).

This is established in [13, Section 2]. According to that paper, or using (9.6), we see
that
Ly(a)(a) = Fy(a)aFy(a’)
for any « € I';(H;). Hence we deduce that
(9.7) (T(@)(@)" = Tyla)@®), @€ Ty(Hy).

Lemma 9.1. — For any contraction a: Hy — Hs, and any 1 < p < oo, the operator
[y(a) (uniquely) extends to a complete contraction from LP(T'q(Hy)) into LP(T'y(H2)).

Proof. The proof is similar to the one at the beginning of Chapter 5. Let = €
I,(Hy) and y € I'y(Hs). Using (9.3), (9.6), and (9.7), we have
P(yTo(@) (@) = (WITy(@)(@))2 Qg = (YF,(a)(x0), Q)
= (@, Fy(a™)(y™Q))q = (@, [Tq(a™)(y™)]D)q
= 7(Ty(a")(w) ).
We deduce that
Iy Ty(@)@))] < falli ITa@) @)oo < el ]

Taking the supremum over y in the unit ball of T';(Hz), we obtain that ||T'y(a)(z)]]; <
lzlli.  This shows that I'j(a) extends to a contraction Ty(a): L*(Ty(H;)) —
LY(T'y(Hz)). By interpolation, we deduce that I'y(a): LP(Tq(H,)) — LP(I'y(H2)) is a

contraction for any p > 1. Arguing as in Remark 5.1, we see that I'y(a): LP(Fq(Hy)) —

LP(T';(H2)) is actually a complete contraction. O
Remark 9.2. Under the identification (9.4), the extension of I';(a) to L? coincides

with Fiy(a). It also follows from the above proof that I';(a) is selfadoint (in the sense
of (5.1)) if a: Hy — Hs is selfadjoint.

We now turn to semigroups of operators obtained from second quantization. We
will silently use Lemma 9.1, which allows to consider these operators as contractions
on noncommutative LP-spaces.

Lemma 9.3. Let ¢ € (—1,1). Let H be a real Hilbert space and let (ai)i>0 be a
co-semigroup of contractions on H. For any t > 0, let T, = U'y(a;) be defined by
second quantization on T'y(H).

(1) For any 1 < p < oo, (Ti)i>0 is a completely contractive cy-semigroup on
LP(Lg(H)).
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(2) If further (ai)i>o is selfadjoint, then (Ty)i>0 is a completely positive diffusion
semigroup on I'y(H) (in the sense of Chapter 5).

Proof. — For simplicity, we write L instead of LP(I';(H)) along this proof. It is
clear that (T});>0 is a semigroup of complete contractions on each LP. Since (a;);>o
is strongly continuous on H, (d;);>o is strongly continuous on He. Hence (F(at))i>0
is strongly continuous on each H(Ef)", by (9.5). By density, it is strongly continuous
on Fy(Hc). This implies that (73);>¢ is point w*-continuous on the von Neumann
algebra I'y(H). In turn, arguing as in Chapter 5, this implies that (7});>¢ is strongly
continuous on LP for any 1 < p < oo. This proves (1). The assertion (2) now follows

from Remark 9.2. O
Theorem 9.4. Let H be a real Hilbert space and let (a;)i>0 be a co-semigroup of

contractions on H. For any q € (—1,1) and any t > 0, we let Ty = T'y(ay). Then for
any 1 < p < oo, we let —A, denote the generator of (13)>0 on LP(T((H)).
(1) For any 1 <p < oo, and any 6 > %, the operator A, has a completely bounded
H(Xy) functional calculus.
(2) If further (at)i>o is selfadjoint, then for any 1 < p < oo, and any 0 > 77}% - ’ﬂ
the operator A, has a completely bounded H>(3¢) functional calculus.

Proof. Clearly part (2) of this theorem follows from Lemma 9.3 (2), Proposi-
tion 5.8, and part (1). Thus we only have to prove (1). We fix some 1 < p < oo
and write A = A, for simplicity. According to [71, Theorem 8.1], there exist a (real)
Hilbert space K, a linear isometry j: H — K, and a ¢y-group (u),er of orthogonal
operators on K such that
ay = j ugj, t>0.

Applying second quantization, we have I'q(a;) = Ty ()T, (u)Ty(j), for any ¢ > 0.
Owing to Lemma 9.1, we consider the LP-realizations of these quantized operators,
which we denote by

J=T,(): (T (H) — LP(Ty(K)).  Q=Ty(j*): L'(Ty(K)) — LV(T',(H).
and

U =T,(w): LP(T'y(K)) — L"(I'y(K)). teR.
Then .J. Q) are complete contractions. By Lemma 9.3, (U;): is a c¢y-group of com-

plete contractions on LP(I',(K)), or equivalently. a co-group of complete isometries.
Moreover we have the following dilation property

Tt - (2[];] [6 R
The result therefore follows from Proposition 3.12. O

In the case when a; = ¢ "Iy, (T});>0 is the so-called ¢-Ornstein-Uhlenbeck semi-
group (see e.g. [9, 11]). This is a selfadjoint semigroup, and hence it satisfies the
conclusion of Theorem 9.4 (2).
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9.B. Clifford algebras

We now present an analogue of Theorem 9.4 on Clifford algebras. These algebras
correspond to the ones considered in the previous paragraph for ¢ = —1, up to some
modifications due to the fact that the operator @, defined by (9.2) has a non trivial
kernel if ¢ = —1. Instead of formally using 9.A, we will consider the (equivalent)
usual definition of Clifford algebras in terms of antisymmetric products. We refer the
reader to [16, 66] for more information.

If H is a complex Hilbert space, we let A"(H) denote the n-fold antisymmetric
product of H, equipped with the canonical inner product given by

(hiN - Nhy, ByN - AR = det [(h;, lz;)], hi, b € H.

By convention, A°(H) = C. We let Q be the unit element of A°(H). Then the
antisymmetric Fock space over ‘H is the Hilbertian direct sum

AH) = © A*(H).

For any h € H, the creation operator ¢(h) on A(H) is defined by letting ¢(h)Q2 = h,
(f(h)(hl Ao A h,n) =hAhi AN Ahy, hi,....h, € H,

and then extending by linearity and continuity. Its adjoint ¢(h)* is the annihilation
operator, denoted by a(h).

Next we consider a real Hilbert space H, we use the above construction on H = Hg,
and we let w(h) = a(h) + ¢(h) for any h € H. These operators are called Fermions.
The von Neumann Clifford algebra associated with H is

C(H) = vN{w(h) : he H} ¢ B(A(Hg)).

We equip it with the normal faithful normalized trace 7 defined by 7(x) = (2, ),
and we consider the associated noncommutative LP-spaces LP(C(H)).

In the analogy with paragraph 9.A, we can think of A(H) and C(H) as being equal
to F_1(H) and T'_ | (H) respectively. Then second quantization on these spaces can
be defined as in 9.A. Namely if a: H; — Hs is a contraction between real Hilbert
spaces and if a denotes its complexification, the operator F_;(a): A(H,) — A(H2)
is the (necessarily unique) linear contraction defined by F_,(a)(§2) = Q and for any
n>1,

(9.8) F_](a)(h1 /\---/\h,n) = a(lh) A--- ANalhy), hi,...,h, € Hy.
Next, I'_1(a): C(H,) — C(Hz2) is the (necessarily unique) normal unital completely
positive map such that
(9.9) C_1(a)(@)]Q = F_1(a)(z), x e C(H,).
It is easy to see that Lemmas 9.1 and 9.3, as well as Remark 9.2 extend to the

case ¢ = —1. Likewise, Theorem 9.4 extends to that case with the same proof and we
obtain the following statement.
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Theorem 9.5. — Let H be a real Hilbert space and let (ai)i>0 be a co-semigroup of
contractions on H. For anyt >0, we let T, =T _1(a¢). Then for any 1 < p < oo, we
let — A, denote the generator of (T;)i>0 on LP(C(H)).

(1) For any 1 <p < oo, and any 6 > 7, the operator A, has a completely bounded
H>(Xy) functional calculus.

(2) If further (at)i>0 is selfadjoint, then for any 1 < p < oo, and any 6 > ﬂ"% - % ,
the operator A, has a completely bounded H™(3g) functional calculus.

Assume now that H is infinite dimensional, and let (e;);>1 be an orthonormal
family. We let W; = w(e;) for any i > 1. It is well-known that these operators form
a ‘spin system’. Namely they are hermitian unitaries on A(H) and

WiW; = —W;W;, if @i #£ 4.
We let Z be the set of all increasing finite sequences {i; < iz < -+ < i} of positive
integers. If F' is such a sequence we let

Ve =W, - W,

m*

By convention, the empty set belongs to Z, and we let Vi = 1. Also we write |F| for
the cardinal of F' € Z. Since the W;’s form a spin system, the x-algebra they generate
is equal to
P = Span{Vg : F € I}.
Thus P is w*-dense in C(H), and it is dense in LP(C(H)) for any 1 < p < co.
It is easy to see that for any F' = {i; < iy < -+ < i,,}, we have

Vil = iy N Né€g,, .

Hence the Vp’s form an orthonormal basis of L2(C(H)).

We now focus on the completely positive noncommutative diffusion semigroup on
C(H) defined by

Ty =T (e 'Iy), t>0.
This is the Fermionic Ornstein-Uhlenbeck semigroup. According to the above discus-
sion, we have
Ty(Vp) = e Ve, t>0, Fel.

The operator A: P — P defined by
(9.10) A(Vr) = |FIVp,  FeT,

is called the number operator. It follows from above that for any 1 < p < oo, the
negative generator A, of (T});>0 on LP(C(H)) is an extension of A. Equivalently we
can regard A, as an LP-realization of the number operator.

(o)
For convenience, we introduce Z =7 \ {@}.
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Corollary 9.6. — Let 1 < p < oo and let 6 > w[% — %1 be an angle. Then for any
function f € H*(Xg) and for any finitely supported family of complex numbers {ap :

Fe %}, we have

(9.11) |2 ar sr) Ve < Kl | S e Vi
F F

where K > 0 is a constant not depending on f.

Proof. — Let A = A, be the negative generator of the Fermionic Ornstein-Uhlenbeck
semigroup on LP(C(H)), and let f € H*(Zg). We let

o

LP(C(H)) = Span{Vr : F € I}.
According to the above discussion and (9.10), we have LP(C(H)) = R(A). We let A
denote the restriction of A to that space. By Theorem 9.5 (2), A admits a bounded
H® (%) functional calculus. Hence by Theorem 3.3 and Remark 3.4, we may define
a bounded operator

f(A): LP(C(H)) — LP(C(H)),
and ||f(2)|[ < K||f|lco.6 for some constant K not depending on f. Now using (9.10),

we see that f(;l) takes Vi to f(|F|)VF for any F € T Thus f(;l) takes (Y pap Vi)
to (Xpap f(IF]) VF), which yields (9.11). O

The latter corollary can be regarded as a result on ‘noncommutative Fourier mul-
tipliers’ associated with a spin system. Indeed, Corollary 9.6 says that the family

{f(|F]) : Fe1}
is a bounded multiplier on LP(C(H)) with respect to the basis {Vp : F' € 7}. In fact,
A = A, has a completely bounded H*°(Xg) functional calculus on LP(C(H)). Hence

{f(|F]) : F € %} is a completely bounded multiplier. Namely, (9.11) remains true if
(ap)p is a family lying in S?, and multiplication is replaced by tensor products.

We noticed that results in this paragraph correspond to those in paragraph 9.A in
the case ¢ = —1. We can do the same in the case ¢ = 1. However the results we may
obtain in this case are not new. Indeed for a real Hilbert space H, the von Neumann
algebra I'y (H) is commutative, hence Cowling’s Theorem (see Remark 5.9) apply to
semigroups on 'y (H) obtained from second quantization.
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CHAPTER 10

A NONCOMMUTATIVE POISSON SEMIGROUP

10.A. Definitions

Let n > 1 be an integer, and let G = F,, be a free group with n generators denoted
by c1,...,¢,. We let e be the unit element of G, and we let (dy)gec denote the
canonical basis of £2,. Then we let \: G — B((%,) be the left regular representation
of G, defined by

Ag)on = Ogh, g, heqG.
We recall that the group von Neumann algebra VN (G) C B(¢%,) is defined as the von
Neumann algebra on (%, generated by the x-algebra

P = Span{A(g) : g€ G}.

We let 7 be the normalized trace on VN(G) defined by 7(x) = (x(d.),d.) for any
x € VN(G). We will consider the noncommutative LP-spaces LP (VN (G)) associated
with this trace. For any 1 < p < oo, P C LP(VN(G)) is a dense subspace. Moreover
for any finitely supported family (o), of complex numbers, we have

(Sl = (S)’

Thus we have L2(VN(G)) = (2.
Since G is a free group, any ¢ € G has a unique decomposition of the form

Wi

10.1 g= i (jL_f.h, B .Cl.:,,
11 [P

i
where p > 0 is an integer, each i; belongs to {1,...,n}, each k; is a non zero integer,
and i; # 141 if 1 < j < p —1. The case when p = 0 corresponds to the unit element
g = e. By definition, the length of g is defined as

|(]| = |k’l| +- |k'p|'

This is the number of factors in the above decomposition of ¢.
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For any nonnegative real number ¢ > 0, we let 7;: P — P be the linear mapping
defined by letting

(10.2) Ti(Mg)) = 1'A\g),  geG.

It is proved in [30] that this operator uniquely extends to a normal unital completely
positive map Ty: VN(G) — VIN(G). It is easy to check that each T} is selfadjoint
(in the sense of (5.1)), and that T}(z) — 2 as t — 01 in the w*-topology of VN(G),
for any x € VN(G). Thus (T3);>0 is a completely positive diffusion semigroup in the
sense of Chapter 5 (see Remark 5.1).

Let T be the unit circle. If n = 1, then G = Z, and (T});>0 is the classical Poisson
semigroup on L(T).

Definition 10.1. — The diffusion semigroup (T;)i>0 on VN(F,) defined by (10.2) is
called the noncommutative Poisson semigroup.

Following the notation in Chapter 5, we let —A,, denote the infinitesimal generator
of (T})e>0 on LP(VN(G)) for any 1 < p < oo. It is clear from (10.2) that P is included
in the domain of A4,, and that

Ap(Mg) = lglMg).  g€G.

Our main objective is Theorem 10.12 below, which says that A, has a (completely)
bounded H>(¥y) functional calculus on LP(VN(G))) for any 6 > w, = wlp~! —
271, The proof will require several steps of independent interest. First we will
show that cach 7, can be ‘dilated by a martingale’, seec Proposition 10.5. Then in
the next paragraph, we will establish square function estimates for noncommutative
martingales, which generalize well-known commutative results. In the final part of
this chapter, we will combine these results to obtain squarc function estimates for
the semigroup (7})¢>0, and Theorem 10.12 will be deduced from these estimates.
This scheme owes a lot to Stein’s proof of square function estimates for commutative
diffusion semigroups (see [70, Chapter 1V}]).

10.B. Dilation by martingales

If M and M’ are two von Neumann algebras equipped with normalized normal
faithful traces 7 and 7/, we say that an operator T: M — M’ preserves traces (or is
trace preserving) if 7/ o T =7 on M.

If m: (M. 7)— (M’ 7')is anormal unital faithful trace preserving *-representation,
then it (uniquely) extends to an isometry from LP(M) into LP (M) for any 1 < p < oc.
In fact, these isometries are complete. We call the adjoint @Q@: M’ — M of the
embedding L'(M) — L*(M’) induced by 7 the conditional expectation associated
with 7. This map is also trace preserving and extends to a complete contraction
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10.B. DILATION BY MARTINGALES 105

LP(M') — LP(M) for any 1 < p < oo. Moreover Q: M’ — M is unital and
completely positive.

In fact if M is a von Neumann subalgebra of M’, and 7 is the canonical embedding,
then @ is a conditional expectation in the usual sense. In this case, @ is actually the
unique trace preserving conditional expectation M’ — M and we call it the canonical
conditional expectation onto M.

Definition 10.2. Let M be a von Neumann algebra equipped with a normalized trace
7, and let T: M — M be a bounded operator. We say that T' satisfies Rota’s dilation
property if there exist a von Neumann algebra N equipped with a normalized trace,
a normal unital faithful x-representation m: M — N which preserves traces, and a
decreasing sequence (N, )m>1 of von Neumann subalgebras of N such that

(10.3) T" =Qo&,om, m>1,
where €, N — N,y € N is the canonical conditional expectation onto N,,, and

where Q: N — M is the conditional expectation associated with .

Remark 10.3

(1) Assume that T: M — M satisfies Rota’s dilation property. Then T is normal,
unital, completely positive, and selfajoint. Indeed let o be the trace on A, then for
any x,y € M we have

Il

T(QE 1T (x)y)
o(Erm(z)m(y))
a(m(x)E17(y))
T(@Q&1m(y)) = T(aT(y)).

Since T' is positive, it therefore satisfies (5.1).

7(T'(x)y)

Thus in the sequel, we will mostly restrict our attention to operators 7" which are
normal, unital, completely positive, and selfadjoint. Note that such an operator is
necessarily trace preserving. Indeed,

7(T(z)) = 7(T(x)1) = (2T (1)) = 7(x1) = 7(x)
for any z € M.
(2) The above property is named after Rota’s Theorem which asserts that if M

is commutative, and if T: M — M is a normal unital positive selfadjoint operator,
then T satisfies Rota’s dilation property (see e.g. [70, IV. 9]).

(3) Let T: M — M be a normal unital (:ompletoly positive selfadjoint operator
satisfying Definition 10.2. We noticed that 7, &, and Q all extend to associated LP-
spaces. In the sequel we will keep the same notation for these extensions. Then it is
clear that (10.3) holds as well on LP(M) for any 1 < p < oc.
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If (My,7),...,(M,,7,) is a finite family of von Neumann algebras equipped with
distinguished normalized traces, we let

denote their reduced free product von Neumann algebra (in the sense of [75, 76]).

On the other hand, we let <*< M, for the unital algebra free product of the M;’s,
1<i<n

o
which is a w*-dense *-subalgebra of M. Then for any 1 < ¢ < n, we let M,;=
Ker(r;) € M, denote the kernel of 7,. Now suppose that we have a second fam-
ily (M,7"1),...,(M',,7) of von Neumann algebras with distinguished normal-
ized traces, with reduced free product von Neumann algebra denoted by (M’ 7).
Assume further that for each i, we have a normal unital completely positive map
T;: M; — M'; which preserves traces. According to [10, Theorem 3.8], there is a
unique normal unital completely positive map T': M — M’ such that

T(xy---wpy) =T (x1) - Ty, (xp)

(o]
whenever p > 1 is an integer, i; # ij41 for any 1 < j <p—1, and x; € M;, for any
1 < j < p. This map is called the ‘free product’ of the T;’s, and we will denote it by

T = Ti% 5Ty,

The above algebraic condition determines the free product on the algebra * M,
: wy

<i<n
(see [10] for details).

Lemma 10.4. — For 1 <i<wmn, let T;: (M;,7;) — (M, 1) be a normal unital com-
pletely positive map preserving traces. If each T; satisfies Rota’s dilation property,
then their free product

Tyx--5Ty % (M, 1) — F (M, i)
i<n <
also satisfies Rota’s dilation property.

Proof. — By assumption, there exist for any ¢ = 1,...,n a von Neumann algebra
N equipped with a normalized trace o;, a normal unital faithful *-representation
7t M; — N7 which preserves traces, and a decreasing sequence (A f';,,),,,/7> 1 of von
Neumann subalgebras of N7 such that T/ = Q; o £ o for any integer m > 1.
where £ NT = N C N and Q': N' — M, are the conditional expectations
given by Definition 10.2. We consider the free product

=Tk kT, ok (MiT) —
1<i<n

: l(N'iﬂf)-

1<

According to [10, Theorem 3.7], the normal unital map 7 is a faithful trace preserving

x-representation. Likewise for any m > 1, the product % (N7, 0;) can be regarded
1< <y

<i<n
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as a von Neumann subalgebra of % (N",0;), and the sequence of these subalgebras
1<i<n
is decreasing. We may also consider

Em _E ke E:iz 1<¥< (Niagi) - * (Ninvo-i) - * (Nivai)

m
for any m > 1, and
=Q% - %Q,: * oy * i Ti).
Q=0 Qn 1<i< n(N aaz) - 1§i§n(M“Tl)
As one might expect, the mapping @) is the conditional expectation associated with .
Indeed @ is normal, unital, completely positive, and preserves traces. Hence it suffices
to check that @ o 7 is the identity mapping on ]<>F< (M, 7). Since Q; om; = I on
<n

each M, we easily see that Q o7 = I on the algebra free product . M. Since @

1 n
is normal, this yields the result. Likewise, £,, is the canonical conditional expectation

onto 1<¥< (N v2.0i). Thus it suffices to show that for any integer m > 1, we have
<i<n

(T5e31,)" = QoEmon

on x (M;, ;). Again it is easy to check that it holds true on % M;, and the
1<i<n 1<i<n

result follows by normality. O

We now come back to the von Neumann algebra VN(F,,) equipped with its stan-
dard trace 7 (see paragraph 10.A). Here we assume that n > 2. We let 7 be the
standard trace on L°(T), which is given by 71(f) = [ f(z)dm(z). For any inte-
ger k € 7, let e;, denote the function z +— 2z¥ on T. For any r E (0,1], we let
P,: L>(T) — L>(T) be the (unique) normal mapping taking ey to r/*le; for any k.
Equivalently, P, is the convolution operator f +— p, * f, with p, equal to the Poisson
kernel. It is well-known that

(10.4) (VN(F,),7) = 1<;T< ’,L(L%(T),Tl).

We note that P, is unital, trace preserving, and positive (hence completely positive).
According to our previous discussion we may therefore consider the free product (with
n factors)
(10.5) P xP.: (VN(F,),7) — (VN(F,), 7).
It turns out that for any g € F,,,
(P #P)(Mg)) = rIAg).

Indeed, let e} denote the element ey, in the ith factor of (L>(T), 7y )% - - - ¥(L>(T), 11).
If g € G has a factorization (10.1), then A(g) corresponds to e"';‘ (Z[; through the
identification (10.4). Each k; is non zero, hence each )’ belongs to the kernel of 7.
Hence by the algebraic characterization of the free product operator, P.x---xP, takes
Ag) to

P"'(e;gll) o Pr(ezp ) _ (7"““' . ,,,-lkpl) 6211 . e;r; _ T“gl)\(g).

P
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This shows that for any ¢ > 0, the normal operator T;: VN(F,,) — VN(F,) defined
by (10.2) coincides with the free product P,-+% ---xP,-.. Combining Rota’s Theorem
(see Remark 10.3 (2)) and Lemma 10.4, we deduce the following.

Proposition 10.5. — Let (T})i>0 be the noncommutative Poisson semigroup on
VN(F,,) (see Definition 10.2). For anyt > 0, the operator Ty satisfies Rota’s dilation
property.

10.C. Square function estimates for noncommutative martingales

Let (N, o) be a von Neumann algebra equipped with a normalized normal faithful
trace. Suppose that (N m)m>0 is an increasing sequence of von Neumann subalge-
bras of N, and let &,,: N — N,, be the canonical conditional expectations. A
noncommutative martingale is defined as a sequence (,,)m>0 in L'(N) such that
Em(@Tmi1) = Ty, for any m > 0. Clearly for any x € L*(N), the sequence (£,,(2))m>0
is a martingale.

Likewise if (N m)m>0 is a decreasing sequence, a reverse martingale is a sequence
(Tm)m>0 in LY(N) such that £, 41(xm) = @y for any m > 0. Then for any
x € LYN), (Em(x))m>0 is a reverse martingale.

We refer the reader to [64], [65, Section 7] and the references therein for infor-
mation on noncommutative martingales and related square functions, which play a
crucial role in this topic. Proposition 10.8 below gives a square function estimate
for noncommutative martingales, which generalizes an inequality due to Stein [70, p.
113].

We start from another noncommutative generalization of a result of Stein, due to
Pisier and the third named author.

Proposition 10.6. — ([64]) Let (E)k>0 be either an increasing or decreasing sequence
of (canonical) conditional expectations on N, and let 1 < p < oo. For any k > 0, we
let

IREy: SP[LP(N)] — SPILP(N)]

be the tensor extension of . Then the set {IREy : k > 0} is both Col-bounded and
Row-bounded on SP[LP(N')]. Thus it is also Rad-bounded on SP[LP(N)].

Proof. — In the case of a increasing sequence, this is essentially a restatement of 64,
Theorem 2.3]. The proof in the decreasing case is identical. O
Lemma 10.7. — Let (E;)k>0 be either an increasing or decreasing sequence of (canon-

ical) conditional expectations on N, let 1 < p < oo, and let (x;)j>0 be a sequence of
LP(N). For any integer k > 2, set yp = x; if 29 +1 <k < 2JF1
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(1) If (z;) >0 belongs to the space LP(N'; £2), then the sequence (m_%‘;;c”:2 €k(yk))m22
belongs to LP(N;02), and

10. (—3 ) ’ < K ()50 oAy

06 |(m P2 80) sl S Ko NEizollrven
where K, > 0 is a constant only depending on p (and not on either N or the
Em’s).

Moreover the same result holds true with LP(N';€2) replaced by LP(N; €2).
(2) If (z;);50 belongs to LP(N;€2,,), then the sequence (m~3% 1, Ek(yk))m22
belongs to LP(N; €2, ), and

‘rad

(e 3 eetwn), |
k=2 =

where K, > 0 is a constant only depending on p.

Lr(N;e2, ) < Ky ”(xj).7'20||m(/\/;e’f_“d)7

Proof. — According to Corollary 2.12, we may assume that (z;);>0 is a finite se-

quence. We define 1
Zkm = — gk:(yk), m Z k ,>_ 2.
m

Let (ex)r>o0 be the canonical basis of ¢2, and let E,,, be the standard matrix units
on SP. Using Remark 2.3 (3) twice and Proposition 10.6, we have an estimate

1
Y — ek ®em ®Er(yr)
m

m>k>2

Z@k ® IRE} <Z %;Eml ® yk)

E>2 m>k

Z€k® (Z %Eml ®Z/k>

E>2 m>k

” (ka)nLZkt || LP(N;(£2@62),.) —
Lr (N (€2®62),)

LP(N'®B(£2);¢2)

IN

Cp

LP(NEB(£2);€2)

IN

Cy

1
Z — €k ®€m ®yk
m

m>k>2
Next we have

| ¥ taomon (Y o)’
— e Qem @ Yk ' = ! k?!k) H
moko2 LrN(E®e)c) mks2 P

Lr(N;(£202).) '

|

9J+1

(e (X X 5)

j20 k=241 m>k

71‘
(Cwm2 > =)

>0 m>2i 41

1

" 2

e (X )|
>0 P

p

VAN

D

VAN

)
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. 1
where ¢ = (sup ;27 Y o241 ;7%5 ) * is a universal constant. Altogether we obtain
that
I zrm)m>kll o NViezoe).) < Kpll())izo0llLevie).
with K, = cC,,.
Now let S: ¢? @5 €2 — £2 be defined by

1
S[(akm)k,mzl] = <— _5_ akm)
\/ m2>1
k<m
This mapping is a well-defined contraction. Indeed,

2 ) 9
S Z Z |al~'m| S ”((Vkm)k‘m”‘z-

k m>k

m

. 1
HS[((YA:m)k‘le:l ||; = Z E ‘Z e,
k=1

m>1

Let S: LP(N; (2 ® (2),) — LP(N:¢2) be the tensor extension given by Lemma 2.4.
Then S takes (Zkm )m>k>2 tO (nf% Py 8;,»(%)) . Thus (10.6) follows from the
>k> : -

m
above estimate.

The row counterpart of (10.6) has the same proof, and the second part of the lemma
follows from the first one. O

Proposition 10.8. — Let (€ ,,1),,,,20 be either an increasing or decreasing sequence of
(canonical) conditional expectations on N, and let 1 < p < oc. For any x € LP(N)
and any m > 0, we let

1 m
- k;gk(x) and A (x) = Ay () — Ay ().

A (x) =

m

Then the sequence (/m Ay, (x)) belongs to the space LP(N; 02, ) and satisfies

m>1 rad

|’(\/EA"”'(17))11L21||L”(/\/’:l’%.l,z) ’<“ I(P ||"L‘HI”

where K, > 0 is a constant only depending on p.

Proof. — We shall prove this result in the case of an increasing sequence (Er,)m>0,
the proof for the decreasing case being similar. We adapt the arguments from [70,
pp. 113-114] to the noncommutative setting.

Let 1 <p < oo and let @ € LP(M). We set

do(x) = Ep(x) and dp(x) = Ep(x) = Epq () if k> 1.

Given an integer m > 1, we let N = [log,(m)], so that N <y < 2N+1 1. We have

m

M) =Y (1= 5E) di).

k=0
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Hence

m

Am(r) = m(m +1) 4 de‘”

1 N-1 2i+1 m
ol — (dl n Z( kdk(rn)) + Y k:d;\,(a:)>.

J=0  k=27+1 k=2N 41
For any integer j > 0, we set
Qit1
(10.7) xp= Y di(w),
k=27 +1

and we note that for any integers 1 < ¢ < r, we have

i kdi(z) = 7'( 72 (1;\,,(:1:)> - ( ’Z_:l d]\.(.’l,‘)) - ( f dk(w)> — = dgyi(x).

k=qg+1 k=q+1 k=q+1 k=q+1

Since Eqj+1(x;) = 2, we obtain that for any j > 0, we have

21'01 21}171
> kdelw) = P = Y Exa
k=2J 41 k=27 41
2J+1
= @+ - Y &
k=27 41
Likewise,
m m m—1
Z kdp(x) = m Z di(x) — Z Er(xn)
k=2N+1 k=2N+1 k=2N+1
= (m+ 1)&E( Z Er(xn)
k=2N 41

For any integer k& > 2, we set
yp =, if 27+ 1<k <2/t

Then we have obtained that

[log,(m)]—1 m
. 1 - j+1
Am(”’) = m <d1 ("I/) + JZO (2] +1)*Tj+(7”+1)gm "Nog, ( m) ZEL UA >

The four terms in the above parenthesis provide a decomposition
2 1
Am( ) Al ( ) +Am( ) +Am( ) +Am('))

and it now suffices to give an estimate for each of the four resulting sequences

(\/;ﬁ m(‘r )m>1
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Obviously we have

[V E0) I PV ||d1|¢,ﬁ,,(§>;] ey ) el

Let Fj; = &, for any integer j > 0. Then x; = F;1(x) —F;(x), by (10.7). Thus
(x;);>0 is a sequence of martingale differences. Hence according to the noncommuta-
tive Burkholder-Gundy inequalities [64], the sequence (z;);>0 belongs to LP(N;¢2_ )
and we have an estimate

(10.8) || (z;

LNz, ) < cpllzllp,

where ¢, is a constant only depending on p. Using Lemma 10.7 (2), we immediately
deduce an estimate for the fourth term,

H(\/F 7" . rrvleLl‘(/\/:/%,,,l) S ](P“‘/I"HP‘

Likewise, using a slight modification of Lemma 10.7 (2), with £, = I, and writing

[logy (m)]—1 olloga (m)]
E 2"H =2 g Yk »
j=0

we obtain an estimate
[logy (m)]—1

X '
m”2 20ty ) " < K, |x|l,.
H ( Z J m>2 L”(N;P%"’]) - P || ||p

7=0

In turn, this implies an estimate

T !
H Vi m m>1| L,;(./\ﬁ[z 2 S K
We now turn to the third term of the decomposition, equal to A2, (z) = = Em (T l1og, (m)))-
By Proposition 10.6, we have an inequality
(VmA x
H m 7”'?1 HL"(N‘/24,41) H ( [lo;,z(m)]) m>1 HL”(N:I",")-M)

Then we introduce an operator S: ¢? — ¢ which maps any sequence (a ) ~N>o0 to the
sequence (3, )m>1 defined by

1
/jm = ﬁ Qllog, (m)]> m > 1.
Indeed, we have
N+l L
St = (X5 )lavk < Tjan:
m>1 N>0 N =28 N>0
Let S: LP(NG 2, ) — LP(N; €2, ) be the tensor extension of S given by Lemma 2.4.

Using (10.8), we see that

(\/—1,7; :v[10g2<m>])m21 = 5{((”)1@0)}
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and that

< len)vzollrviez, ) < coll2llp.

1
H (ﬁ x[logg(m)]) m>1 ‘

Thus we obtain the last desired estimate,
”(\/T—nA?n(x))leHLI’(N;ZZad) < Kll’/Hx“p 0

Corollary 10.9. Let M be a von Neumann algebra equipped with a normalized nor-
mal faithful trace, let T: M — M be a normal unital completely positive selfadjoint
operator, and assume that T satisfies Rota’s dilation property. For any x € L*(M)
and any m > 0, we let

Lr(N32,0)

m

Sm(z) = ! ZT’C(;L’) and D, (x) = Sp(x) — Sp—1().
m+ 1 P

Then for any 1 < p < oo and any & € LP(M), the sequence (y/m Dy, (x))
to the space LP(M, (?,,) and satisfies

|[(\/T_nD7fL(x))m21HL‘P(M,Z?,,“I) < Ky [lllp,

where K, > 0 is a constant only depending on p.

m>1 belongs

Proof. — Let 1 < p < oo. Let N, m, N\, Em and @ be as in Definition 10.2, and let
Eo = Ips. Then it follows from Remark 10.3 (3) that

Dy =QoA,om  on LP(M),

where A,, is defined as in Proposition 10.8. Since the two mappings 7: LP(M) —
LP(N) and Q: LP(N) — LP(M) are (completely) contractive, the result follows at
once from the latter proposition. O

10.D. Functional calculus for the noncommutative Poisson semigroup

According to Proposition 10.5 and Corollary 10.9, each Poisson operator T; on
LP(V N(IF)) satisfies a certain ‘discrete square function estimate’, if 1 < p < oco. Later
on in this chapter, we will deduce a ‘continuous square function estimate’, in the
sense of Chapter 7, for the generator of the semigroup (7});>¢. Passing from discrete
to continuous estimates will require the following approximation lemmas. In these
statements, M is any semifinite von Neumann algebra.

Lemma 10.10. — Suppose that2 < p < 00, and let 0 < a < § < oo be two positive real
numbers. We let H = L*([o, 8];dt). Then for any continuous function v: [a, 3] —
LP(M), we have

oot = lim || (VEvEm) ., o

nlw

Lp(M;e2, )
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Proof. It follows from (2.8) and Lemma 6.1 that

Lr(M;H,
o]l

Then by Riemann’s approximation Theorem, we deduce that

= lim H (Vev(em))

e—0t

||’UHLI’(MJ{(_):£1A;II(I)I* He Z v(em)*v(em)||

agm<y
& = -

"Smgg

21
€

(NS Nl=

Lp(M;e2)

Likewise, the norm of v in L”(/\/l H,

) is equal to the limit (when ¢ — 0%1) of the
norm of the finite sequence ( cv(em )
Yy

2<m< in the space LP(M;¢?). The desired

result follows from these two results, by (2. 24) |

Lemma 10.11. — We recall that Qy = (R, dt/t). Let 1 < p < o0, and let ¢: [0, 00) —
LP(M) be a continuous function which is continuously differentiable on (0,00). We
set

ot
o(t) = % / o(u) du, t>0;
L Jo

and

m

(10.9) U, = — +1 kzogp (ek), >0, m>0.

Assume that there is a constant K > 0 such that

(10.10) | (Vm(us, —u <K

mf]) m>1 HL" (M2, )

for any € > 0. Then the function t — t¢'(t) from (0,00) into LP(M) belongs to the
space LP(M; L*(0),,4): and we have

Ht — t¢/(t)HLP(M;LQ(Qu),W,) < K.

Proof. — Throughout this proof, we fix two constants 0 < a < < oo, and we
consider the Hilbert space H = L?([a, 3]; dt). We set

=Vitd'(t),  te(a ).
According to Remark 6.4 (1), it will suffice to show that

(10.11) < K.

HZZ}HLP(M;H',«“L) -

Since ¢ is continuously differentiable, we have the constant ¢z = sup{||¢/(s)]| : 0 <
s < ﬁ} at our disposal. For any integer m > 1, we define

m—1

b () = % 3 @(%) t>0.

k=0
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For a fixed t € (0,

©and

with endpoints % t(ky::l)

Hence we have

||¢(f) - ¢m (t)

< Z
<3/

On the other hand we have ||¢(u) — cp(%

c?; = fcg, we deduce that

. C’ﬁ

(), and any integer 0 < k < m — 1, let I be the closed interval
. Then we may write

t m 1
@m /

ka( u)du.

Z_ (m) X (u )’du.

k=
)l < ¢st/m whenever u € Ij. Letting

O0<t< B, m>1.

The function ¢ is differentiable on (0, 00), and we have

(10.13) p

For any € > 0 and any m > 1, we have

(m + Du, — mus;,

plem) =

Hence we obtain

m—1

p(em) = pm(em) =

which is the discrete analogue of (10.13).

deduce that

(1) = < (o(t) - (1)),

(m + 1) (s,

t>0.

= ¢m(em).

€
and Usy 1

- ufn—l)a

Combining with the latter formula we

, 1
o (em) = —— (plem) — o(em))
1 1
= % ( (Ern) ()Z),,L(EITL)) + % (¢7n(€m) - ¢(5777‘))
m+1 R 1 N
- em (um - U’m—]) + e (¢77L<€’n) ¢(€7n'))~
Thus we finally have
m+1 . 1
Ve(em) = T (uf, —up,_1) + N (m(em) — p(em)).
The norm of the (finite) sequence (\/lm (¢m(em) — dp(em))) ocped i LP(M;2,) is
less than or equal to o
1
H¢ (em) qu(Efn)H < c/ﬂ —_.

Indeed the latter mequallty follows from (10.12). Hence

lim sup ” (

e—0t

(ém(em) = o(em))

) . =
g<m< g ILr(Me, )

SOCIETE MATHEMATIQUE DE FRANCE 2006



116 CHAPTER 10. A NONCOMMUTATIVE POISSON SEMIGROUP

On the other hand, our assumption on the u$,

of the norm of the sequence (% (us, —us,_,

’s ensures that the limsup (for e — 0T)
in LP(M; Hyqq) is less than

) 2<m<?
or equal to K. Thus we have proved that

(10.14) limsupH (VEv(Em) o gpes

e—0+

<
LF(M;Ef‘ad) -
If p > 2, we deduce (10.11) by applying Lemma 10.10 with v = 1.

Now assume that 1 < p < 2, and let p’ be its conjugate number. We consider v
in LP' (M) @ C(|o, f]) and we assume that [Vl Lo (M H,g) < 1 According to Re-
mark 2.11, (10.11) will follow if we can show that |(1,v)| < K. Since t — (¥(t),v(t))
is continuous on [a, 3], we have

8
(,v) = / (W (), v(t) dt

= i ) L)) .
Jim e _;i ((em),v(em))

By the duality relation (2.25), |(1, v)| is therefore less than or equal to

lims H € . x lims I . .
P (VEv(em)) a e LMz, ) iy (VEv(em) a e L (M2, )

By Lemma 10.10 and (10.14), we obtain the inequality |(¢),v)| < K. a

Theorem 10.12. — Let (T})1>0 be the noncommutative Poisson semigroup on VN (F,,)
(see Definition 10.2). For any 1 < p < oo, we let —A, be the generator of (T})i>0
11

on LP(VN(Fy)), and we let w, = 7r|; — 5| Then for 0 > wy, the operator A, has a

completely bounded H*(Zg) functional calculus.

Proof. — We will first show that A, has a bounded H*>(Zy) functional calculus for
any 0 > w,. We noticed in paragraph 10.A that (7};);>0 is a completely positive
diffusion semigroup on VN (F,,). Hence for any 1 < p < oo, the operator A, is Rad-
sectorial of Rad-type w, by Theorem 5.6. Thus according to Corollary 7.4, it suffices
to find # > w, and a non zero function F' € H§®(¥4) such that A, both satisfies the
square function estimate (Sg), and the dual square function estimate (S%) (in the
sense of Chapter 7). Since A5 = A, it actually suffices to prove (Sr) only.

We fix some 1 < p < oo. We let z € LP(VN(F,)) and apply Lemma 10.11
to the function ¢(t) = Ti(x). We let ¢ be the associated average function. Since
@(ek) = Tor(x) = TF(x), the averages defined by (10.9) are equal to

wy = —— Y TH).
k=0
Then by Proposition 10.5 and Corollary 10.9, the uniform condition (10.10) holds true
with K = K,||z|p, K, being a universal constant. Thus Lemma 10.11 ensures that

(10.15) [t = t¢/(t)||LP(M;L2(Qo)md) < Kplizlly.
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We consider the holomorphic function

1 — —z
Fz)=e*— ze , z€C.
It is easy to check that F' € H§°(¥g) for any 6 < 7. We fix some 6 € (wp, 5 ), and we

will check that A, satisfies (Sp). According to (10.15), it suffices to show that
(10.16) tg'(t) = F(tAp)z, t>0.

Let us write A = A,, for simplicity. We first observe that
2F' () + F(2)=[2F(2)]) =1 —-e %) — (%) = —ze™~.

Hence the function z +— 2F’(z) belongs to H{°(Xs), the function t — F(tA) is
differentiable on (0, c0), and

t%(F(tA)) = [2F'(2)](tA), t>0.

Since [ze7?|(tA) = —tg—t(Tt), we deduce that

t% (F(tA)a:) +FaA) = 2 (o), >0

Integrating this relation yields
tF(tA)z = t(p(t) — o(t)), t>0.

Indeed, %(td)(t)) = ¢(t). Dividing the latter formula by ¢ and applying (10.13), we

obtain the desired identity (10.16).

It is not hard to check that the above arguments work as well with I®A,, in the
place of A,. Thus A, actually has a completely bounded H> (%) functional calculus
for any 6 > w. O

We conclude this chapter by an application to ‘noncommutative Fourier multipli-

ers’. We recall that G = VN(F,) and we let G = G\ {e}. Then arguing as in the
proof of Corollary 9.6, we deduce the following.

Corollary 10.13. — Let 1 < p < oo and let 6 > W‘% — %[ be an angle. Then for

any function f € H®(Xg) and for any finitely supported family of complex numbers
o]
{ag : g € G}, we have

| a5 sttabr@)| | < Kl sl [ M|

where K > 0 is a constant not depending on f.

For any integer m > 0, let

En = Span{A(g) : |g| = m}.
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Thus P is the algebraic direct sum of the F,,’s. In general, this direct sum does not
induce a Schauder decomposition in LP(M). Namely let

Pm: P — é')l Em
0

n=

be the natural projection. Then it is shown in [12] that if p < 2 or p > 3, we have
3

sup HPm: LP(M) — L”(M)” = o0.

m>1

In the opposite direction, the next statement says that the direct sum

@ Eor C LP(M)
k>0
induces an unconditional decomposition for any 1 < p < oc.

Corollary 10.14. Let 1 < p < oco. There is a constant K > 0 such that for any
finite family (zr)k>0 with v, € B, and for any e, = +1, we have

H E erxk| < CH E .’L‘kH .
k>0 P k>0 P

Proof. — According to Carleson’s Theorem (see e.g. [28, Chapter 7)), (2F)k>¢ is
an interpolating sequence for the open right half-plane ¥z. This means that for
any bounded sequence (ci)r>0 of complex numbers, there exists a bounded analytic

function f: ¥z — C such that f(2%) = ¢ for any k > 0 and moreover

[ fllooz < CSILII) lex]

for some constant C' > 1 not depending on (cx)r>0. We apply this property with

ck = €k, and we let f € H>(¥Xz) be the resulting interpolating function.
Let us write
Z"Ek = ZO‘QMIIL
k>0 9

o
where {a, : g € G} is a finite family of complex numbers. Then oy = 0 if |g| is not
a power of 2, and we have

Doakrr = ex > aghlg) =Y Y agf(2)Ag) =Y agf(lghA(9).

k>0 k>0 |gl=2F k>0 |g|=2k

The result therefore follows from Corollary 10.13. O

The above corollary may be combined with the noncommutative Khintchine in-
equalities (2.21) and (2.22). We obtain that if 2 < p < oo, we have an equivalence

[, = mos{] (i) | (o))

9
p
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for finite families (zy)k>0 such that z; € Eq« for any k > 0. Likewise if 1 < p < 2,
1

we obtain for these families that
1
|2, = me{[| (i), + [(Z2eet)] -
P p X P A P

where the infimum runs over all (yx)r>0 and (zx)r>0 in LP(M) such that xx = yx + 2%
for any k > 0.
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CHAPTER 11

THE NON TRACIAL CASE

In this short chapter, we briefly discuss extensions of the results established so far
to the setting of noncommutative LP-spaces associated with a non tracial state.

Let M be a von Neumann algebra and let ¢ be a distinguished normal faithful
state on M. We do not assume that ¢ is tracial. For any 1 < p < oo, we let
LP(M, @) be the associated Haagerup noncommutative LP-space, with norm denoted
by || ||,. We refer the reader to [73] for a complete description of these spaces, and
to [65] or [38] for a brief presentation. We merely recall that if M C B(H) acts on
some Hilbert space H, then LP(M, ) is defined as a space of possibly unbounded
operators on L?(R; H) with the following properties. First, if 1 < p,¢,r < oo are such

that % + % = 1 then zy € L"(M,p) whenever z € LP(M,¢) and y € LI(M, p).

Second, for any 1 < p,q < oo and any z € LP(M, ), the positive operator lxl’?
belongs to LY(M, p), with

2% 1§ = 3.
Third, there are two natural order-preserving isometric identifications

M~ L=(M, p) and M, ~ LY (M, ).

In particular, ¢ may be regarded as a positive element of L!'(M,¢). Consequently
for any 1 < p < oo, we may regard the space

P My = {pap¥ : x e M}
as a subspace of LP(M, ) and this subspace turns out to be dense. It should be
noticed that if p # ¢, then LP(M,¢) N L9(M,p) = {0}. This is in sharp contrast
with the case of the noncommutative LP-spaces considered so far in this paper (see
paragraph 2.A).
As usual we let tr: L'(M, p) — C denote the functional corresponding to 1 € M
in the above identification M, ~ L'(M, ¢). It satisfies

tr(pzx) = p(x), r e M.
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1

We also recall that if 1 < p < oo and p~' +p'~ " =1, then

tr(zy) = tr(yx), x e LP(M, ), y e LV (M, ),
and the duality pairing (x,y) — tr(xy) induces an isometric isomorphism
LV (M, ) = LP(M, )",
Furthermore L?(M, ) is a Hilbert space, with inner product given by (z,y)
tr(y*z).

Using [38, Section 1], one may naturally define spaces LP(M, H..) and LP(M, H,)
for any Hilbert space H. Then as in Chapter 2, we define LP(M, H,.q) as the intersec-
tion LP(M, H.) N LP(M, H,.) if 2 < p < oo, and as the sum LP(M, H.) + LP(M, H,.)
if 1 <p < 2. Then it is not hard to check that all the results established in Chapters
3, 4, 6 and 7 for the tracial noncommutative LP-spaces extend to the LP(M, p)’s.

We now discuss analogs of the results obtained in Chapter 5. We need the following
definition. Suppose that (M, ¢) and (N, 1)) are two von Neumann algebras equipped
with normal faithful states ¢ and . Let T: M — N be a bounded operator, and let
1 < p < oo. Consider the linear mapping from

taking go%v atcp%v to ’t/)%vT(:r/)/z/Jﬁ for any x € M. If this linear operator extends to a
bounded operator from LP(M, ¢) into LP(N, 1), we say that T has an LP extension
and we let
Ty: LP(M. ) — LN )

denote the resulting operator.

Let (M, ) as above, and let 0¥ = (0%),cg denote the one parameter modular
automorphism group of R on M associated with p. Let T: M — M be a normal
positive contraction such that

woT < ¢ on M.
According to [35, Theorem 5.1], T" has an L? extension T),: LP(M, @) — LP(M, o)
for any 1 < p < oo. Assume further that
ool =Too?, s €R,
and that T is @-symmetric, that is,

¢(T(2)y) = ¢(aT(y)), @.yeM.
Then Ty: L3*(M,p) — L?*(M,p) is a selfadjoint operator. Indeed, let M, denote
the family of elements of M which are analytic with respect to o¥. By [35, Proposi-
tion 5.5, we have Ty (zp2) = T(z)¢p? for any x € M,. Hence for any z,y € M,, we
have

nI=

(Ta(x9%),yp?) ., = tr((yp?) T(x)p?) = tr(py*T(2)) = o(y*T(z)).
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Likewise,
1 1 .
(203, Ta(yp?)) . = ¢(T(y")).
Since Map? is dense in L?(M, ) [38, Lemma 1.1], this proves the result.

Theorem 11.1. — Let (T})i>0 be a w*-continuous semigroup of operators on (M, p).
Assume that for any t > 0, Ty: M — M is a normal positive p-symmetric contrac-
tion, and that we both have

poTly < ¢ on My and ocfoTly=Tio0?, seR.

(1) For any t > 0 and any 1 < p < oo, the operator T; admits an LP extension
Ty on LP(M, ), and (Tp¢)i>0 is a co-semigroup of contractions on LP(M, ).
Moreover (Tat)i>o0 is a selfadjoint semigroup on L*(M, ).

(2) Let A, be the negative generator of (Tpt)i>0. Then for any 1 < p < oo, Ay is a
sectorial operator of type wp = W‘% - % .

(3) Assume further that each T,: M — M is completely positive. Then for any
1 < p < oo, the operator A, is Col-sectorial (resp. Row-sectorial) of Col-type

(resp. Row-type) equal to wy.

Proof. — Part (1) easily follows from the previous discussion. Part (2) is an analog
of Lemma 5.4. Its proof relies on interpolation, using Kosaki’s Theorem [42]. Part
(3) is an analog of Theorem 5.6. Its proof is similar to the one of that theorem, using
Kosaki’s Theorem again and the noncommutative ergodic maximal theorem in the
non tracial case (see [36, Section 7]). We skip the details. O

We now introduce an analogue of Rota’s dilation property in the non tracial setting.
We follow the scheme of paragraph 10.B. We consider a von Neumann algebra (A, )
equipped with a normal faithful state 1. Let M C A be a von Neumann subalgebra
and assume that it is invariant under o¥, that is, 6% (M) C M for any s € R. Let
¢ € M, be the restriction of ) to M. Then ¢¥ = O’ED\M for any t. Let 1 < p < oc.
Then LP(M, @) can be naturally identified with a subspace of LP(N, ). Indeed, the
canonical embedding M — A has an LP extension LP(M, ) — LP(N,v¢) in the
above sense, and this extension is an isometry (see [38, Section 2]). Furthermore
there exists a unique normal conditional expectation £: N — M such that ¢ = o &
[72]. We call it the canonical conditional expectation onto M. This map also has
an LP extension &,: LP(N, ) — LP(M, p), and this extension is a contraction [38,
Lemma 2.2].

More generally, let (M, ¢) and (M', ') be two von Neumann algebras equipped
with normal faithful states, and let 7: M — M’ be a normal unital faithful -
representation such that

(11.1) p=¢ om and O'fl(ﬂ'(M)) c (M), seR.
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Then 7 admits an LP extension for any 1 < p < oo, and
T LP(M, @) — LP(M',¢')

is an isometry. Let £: M’ — (M) be the canonical conditional expectation onto
7(M) and let Q: M" — M be defined by 7 o Q = £. Then we say that Q is the
conditional expectation associated with . It is clear that ) has an L? extension for
any 1 < p < oo, with m, 0 Q, = £,. Moreover Q is the adjoint of ;.

The non tracial analogue of Definition 10.2 is as follows. Let (M, ) be a von
Neumann algebra equipped with a normal faithful state, and let T: M — M be a
bounded operator. We say that T satisfies Rota’s dilation property if there exist a
von Neumann algebra (A, 1) equipped with a normal faithful state, a normal unital
faithful *-representation 7: M — A such that ¢ = yom and (M) is invariant under
o¥, and a decreasing sequence (N m)m>1 of von Neumann subalgebras of ' which
are invariant under o¥, such that

T" =Qo&(m)om, m > 1,

where £(m): NV — N,,, C N is the canonical conditional expectation onto N,,, and
where Q: N/ — M is the conditional expectation associated with .

Clearly such an operator is completely positive and for any 1 < p < oo, it admits
an LP extension Tp,: LP(M, ) — LP(M, ), with T), = Q, 0 E(1), o m,. It is not hard
to show that in addition, T is p-symmetric.

With the above definition, Corollary 10.9 extends to the non tracial case. The proof
is the same, using the noncommutative martingale inequalities from [38, Section 3].

Corollary 11.2. — Let (T})i>0 be a w*-continuous semigroup of operators on (M, ).
Assume that for any t > 0, Ty: M — M satisfies the above Rota’s dilation prop-
erty. Then it satisfies Theorem 11.1 and moreover, the operator A, admits a bounded
H>(%g) functional calculus on LP(M, @) for any 6 > w, and any 1 < p < co.

Proof. — The proof is similar to the one of Theorem 10.12, using Theorem 11.1
instead of Theorem 5.6. O

Following [4], we say that T': (M, @) — (M, p) is factorizable if there exist a von
Neumann algebra (M’, ') equipped with a normal faithful state, and two normal
unital faithful *-representations

TM— M and T M— M

both satisfying (11.1), such that T" = (2 o, where Cj: M’ — M is the conditional
expectation associated with 7. According to [4, Theorem 6.5], T?: M — M satisfies
Rota’s dilation property if T is factorizable and p-symmetric.
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Consequently, if (T})¢>0 is a w*-continuous semigroup of operators on M such that
each operator T;: M — M is both factorizable and ¢-symmetric, then it gives rise to
a semigroup (T} ¢ )i>0 on LP(M, @) whose negative generator has a bounded H>(%y)
functional calculus, provided that 1 < p < oo and 0 > wy,.
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APPENDIX A

COMPARING ROW AND COLUMN SQUARE
FUNCTIONS

We aim at showing that in general, row and column square functions as defined by
(6.1) are not equivalent. We will provide an example on Schatten spaces SP = SP(¢?).
We let (e )r>1 denote the canonical basis of ¢? and we let a be the unbounded positive
selfadjoint operator on 2 such that

a(z akek) = Z ar2bey
k k

for any finite family (ag)x of complex numbers.

We fix some 1 < p < oo, and we let A, = £, be the left multiplication by a on SP
(see paragraph 8.A). For any 6 > 0, the operator a has a bounded H>(3y) functional
calculus on ¢2. Hence A, also has a bounded H>(Xg) functional calculus on SP, by
Proposition 8.4. Since a has dense range, it also follows from the latter proposition
that A, has dense range. Applying Theorem 7.6, we therefore obtain that for any
0 > 0, and any non zero F' € H§(%g), we have an equivalence

(A1) loll =< llzle, @€ SP.
LemmaA.l. — Let F € H5*(S9)\{0}, and let cp = ([, |F(t)|* & )%. Then we have
lzllpe=crlzl, — xeSP
Proof. — Let 0 < a < § < oo be two positive numbers, and let z € SP. According

to (8.5), we have
(F(tAy)(x)) (F(tAp) () = (F(ta)z)" (F(ta)z) = z* F(ta)* F(ta)x

for any ¢ > 0. Hence

8 :
(A.2) / (F(tAp)(x))*(F(tAp)(m))% = ( / F(ta)*F(ta>%)"”‘

For any ¢t > 0 and any k > 1, F(ta)e, = F(t2%)ey., hence
[F(ta)*F(ta)]ex = |F(t2%))ep,.
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Furthermore, we have

A dt > dt
e o [Cipene s -
«

when o — 07 and 8 — oo. Thus the operator in (A.2) converges to c% z*x (in
the S%-norm, say), and we deduce from either Proposition 6.2 or Remark 6.4 (2)
that the function u: ¢ — F(tA,)(z) belongs to SP(L?(p).), and that u*u = ¢ z*z.
Consequently we have

1 1
[zl e = [I(u™u)2[sr = cr [[(z"x) 2|50 = cpllafsp. O

Let F' be any non zero function in H§°(3g), with 6 € (0, 7). Combining the above
lemma with (A.1), there exists a constant K > 0 such that for any z € SP, we have
lzllrr < K||z||pe forany z € SP, if p>2;
|zl pe < K||x||F, forany z €SP, if p<2;

We shall now prove that except if p = 2, these estimates cannot be reversed.

Proposition A.2
(1) Assume that p > 2. Then sup{ lzllee g e S”}

lzll F,r 00 -

(2) Assume that p < 2. Then sup{ lzler . o e ST’} = 00.

H-THF»(:
Proof. — By Proposition 8.4, A, has a completely bounded H>(3y) functional cal-
culus for any 6 > 0. Hence by Theorems 4.12 and 6.7, it suffices to prove the result
for one specific function F. Throughout the proof, we will use the function
F(z)= 2Te7.
In the notation introduced in Lemma A.1, we have cp = %

We first assume that p > 2. For any integer k > 0, we let
dt

dy, = /OOO F(t)F(t2%) -

We will use the fact that for any 7,5 > 1, we have
o ‘ o dt
F(t2)F(t27) 5= dji—j|-
0
Indeed this is obtained by changing ¢ into ¢27 in this integral. Furthermore, we have
2%
— <2
1+2k —

_k
2

()Sdk:/ e_t2§e_2kt dt =
0

Given an integer n > 1, we consider e = e;+---+e¢, and z = 9\%@. With E;; = e;®Qe;,
we then have
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According to the definition of a, we have
(F(tAp)(z)) (F(tA,)(x))" = F(ta)zz*F(ta)* Z F(t2)F(t29) E;;
3,j=1

for any positive real number ¢ > 0. Taking the integral over £y, and applying the row
version of Proposition 6.2, we deduce that

Z dll Jl ElJ

1,j=1

Izl =

We let A = [d|i_j|] be the n x m matrix in the right hand side of the above formula.
Then we have

”ZXHS2 - Z |d|z ]|| < 2n Z Idk|2 < 2n ZQ_k < 4n.

1,j=1

By construction, A > 0, hence we have

n
n
||AH51 = tr( Z d|i—j| Ei]') =ndy = nc% = 5

ij=1
We need to divide our discussion into two cases.
If 2 < p <4, we let a € (0,1] be such that (1;10‘)4—%: %. Then

1Allgz < AN AN
This yields the estimate
2|l <22 'n'"%.
Since xz = % is rank one, its norm in SP does not depend on p, and it is equal to

”e” = /n. Hence ||T|]Fc =c%n =12 by Lemma A.1. We obtain that

i g

Since n was arbitrary and a > 0, we obtain (1) in this case.

If p > 4, we note that [|All gz < [|Alls2. Hence lzl%, < 2yn. Since |z|%,. = %,
we also obtain (1) in that case.

We now turn to the proof of (2). We assume that 1 < p < 2, and we let p’ be
its conjugate number. According to Remark 8.7 (2), A; is the right multiplication
by a on S?'. For any y € S?, we let ||y r. and ||y||r» denote the column and row
square functions corresponding to A;. Of course Lemma A.1 has an analog for right
multiplications, and the latter says that ||y||r, = cp|ly|| for any y € S?. Likewise,
part (1) of Proposition A.2 has an analog for Ay, namely

(A.3) sup{ Iyl 7.r ty € SP'} = 0.
lyllF.e
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To prove (2), assume on the contrary that there is a constant K > 0 such that

(A4) lzllpr < Kllzllpe, 2 €SP

Let y € S?" and = € SP. We consider the approximating sequence (gn)n>1 defined by
(3.8) and we recall that g,(A4,)(z) = gn(a)x — = when n — oo. By the first part of
Lemma 6.5, we have

(Y, gn(Ap)())

Vﬁ/mme&f@a@@>%

dt
= V2 [ TR, ). Fea @) §
According to Lemma 2.8, this implies that

(4, 9(Ap)(@))| < V2llgn(@)z]| pr lyllF.c.

Now using (A.4) and Lemma A.1, we deduce that

(. gn(Ap)(@))] < V2K cp [lgn(@)z| lylre < K llz] [yllr.c.
Passing to the limit when n — oo, this yields [(y, )| < K||z|/||y||F.c. Then taking

the supremum over all z € SP with ||z| = 1, we obtain that ||y|| < K|y||F. for
any y € SP'. Since ||[y||pr = crllyll, this contradicts (A.3) and completes the proof
of (2). O
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MEASURABLE FUNCTIONS IN LF(L?)

Let 2 < p < co. The Banach space LP(R; L2(R)) can be described as the space of
all measurable functions g: R? — C such that

P

oy = [ ([ latsoPar) ds < oc.

—00 “J —00

modulo the functions which vanish almost everywhere on R?. Then it is easy to
check that a function g € LP(R; L?(R)) is representable by a measurable function
u: R — LP(R) in the sense of Definition 2.7 if and only if

oo
/ lg(s,t)|Pds < o0 for a.e. t € R.

— o0

Indeed in that case we have u(t) = g(-,t) for almost every t € R. We will prove that
not all elements of LP(R; L?(R)) are representable by a measurable function from R
into LP(R) by exhibiting a function g € LP(R; L2(R)) such that

(B.1) / lg(s,t)|Pds = o0 for a.e. t € R.

— 00

For any positive numbers a, b, m such that b > a, let P, p »m C R? be the parallelogram
with vertices equal to (—a,0), (0,0), (b,mb), and (b— a, mb). Thus this parallelogram
has a pair of horizontal sides, and a pair of sides having slope equal to m. Next we
let gq,5,m be the indicator function of P, p . It is clear that

(B.2) / [gabm(s,t)Pds = a 0<t<mb.

— 00
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On the other hand,

b
Hga7b7m|]’]:p(m) / m(s+a))tds + (b—a)(ma)? -|—/ (m(b—s))% ds
b—a

= m? (2/0a52ds+(b )a2>

<m? (2a1+% + (b— a)a%) = m¥%a%(a+b).
Since we assumed that b > a, this yields
(B.3) 1 9ab.mllLe(z2) < 2% b m? a?.

We now make special choices for our parameters a, b, m. Let n > 1 be an integer. We
let
ay = 4np’

and then we choose b,, and m,, so that
1 11
bpmy, =n and bk mz2 ar = 1.
1

1 1 1 1_1 np
Writing b5 m2 af = b *? (mnbn)% 4_2L, this leads to the following choice:

npz np

bn-nv "2 450 and My =N v24 -2,

Note that since p > 2, we have ;J% = p(l + ;,Tz) > p and therefore we have a,, < b,.
Then we simply let g, for the function gq,, b, ,m, studied so far. According to (B.2)
and (B.3), we both have ||gn|[Ls(r2) < 25 and

[ee)
/ lgn(s,t)|P ds = 4™P 0<t<n.

— 0o

Therefore we can define
o0
=Y 27"g, € LP(R;L*(R)).
n=1

Moreover since each g, is nonnegative, we have g > 27 "g,, > 0 for any n > 1. Thus
for t > 0, we have

| tasopds z2 [ g sapas 22
provided that n > t. Hence f lg(s,t)[Pds = oo. This proves (B.1) for ¢ > 0. An
obvious modification yields a functlon g for which (B.1) holds for ¢t € R.
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