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H$$ FUNCTIONAL CALCULUS AND SQUARE 
FUNCTIONS ON NONCOMMUTATIVE Lp-SPACES 

Marius Junge, Christian Le Merdy, Quanhua Xu 

Abstract. — We investigate sectorial operators and semigroups acting on noncommu-
tative Lp-spaces. We introduce new square functions in this context and study their 
connection with H°° functional calculus, extending some famous work by Cowling, 
Doust, Mclntoch and Yagi concernîng commutative Lp-spaces. This requires natural 
variants of Rademacher sectoriality and the use of the matricial structure of noncom-
mutative Lp-spaces. We mainly focus on noncommutative diffusion semigroups, that 
is, semigroups (Tt)t>o of normal selfadjoint operators on a semifinite von Neumann 
algebra (M,r) such that Tt : LP(M) —» LP(M) is a contraction for any p > 1 and 
any t > 0. We discuss several examples of such semigroups for which we establish 
bounded H°° functional calculus and square function estimâtes. This includes semi­
groups generated by certain Hamiltonians or Schur multipliers, g-Ornstein-Uhlenbeck 
semigroups acting on the ç-deformed von Neumann algebras of Bozejko-Speicher, and 
the noncommutative Poisson semigroup acting on the group von Neumann algebra of 
a free group. 
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Résumé (Calcul fonctionnel H°° et fonctions carrées dans les espaces Lp non commuta-
tifs) 

Nous étudions les opérateurs sectoriels et les semigroupes opérant sur un espace 
Lp non commutatif. Nous introduisons de nouvelles fonctions carrées adaptées à ce 
contexte et étudions leurs interactions avec le calcul fonctionnel H°°. Nous obtenons 
des extensions de travaux fameux de Cowling, Doust, Mclntoch et Yagi qui concer­
naient le cas commutatif. Cette étude nécessite l'introduction de variantes de la Rade-
macher sectorialité et l'usage des structures matricielles sur les espaces Lp non com-
mutatifs. Nous traitons de façon approfondie les semigroupes de diffusion non commu-
tatifs. Il s'agit des semigroupes (Tt)t>o d'opérateurs normaux et auto-adjoints opérant 
sur une algèbre de von Neumann semifinie (M, r ) , tels que Tt : LP(M) —• LP{M) est 
une contraction pour tout p > 1 et pour tout t > 0. Nous présentons et étudions 
plusieurs exemples de tels semigroupes, pour lesquels nous sommes en mesure d'éta­
blir une propriété de calcul H°° borné, ainsi que des estimations quadratiques. Cette 
étude inclut certains semigroupes engendrés par des opérateurs Hamiltoniens ou des 
multiplicateurs de Schur, des semigroupes d'Ornstein-Uhlenbeck opérant sur les al-
gèbres de von Neumann de (/-déformation de Bozejko-Speicher, et le semigroupe de 
Poisson non commutatif défini sur l'algèbre de von Neumann d'un groupe libre. 
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CHAPTER 1 

INTRODUCTION 

In the récent past, noncommutative analysis (in a wide sensé) has developed rapidly 

because of its interesting and fruitful interactions with classical théories such as C*-

algebras, Banach spaces, probability, or harmonie analysis. The theory of operator 

spaces has played a prominent rôle in thèse developments, leading to new fields of 

research in either operator theory, operator algebras or quantum probability. The ré­

cent theory of martingale inequalities in noncommutative Lp-spaces is a good example 

for this development. Indeed, square functions associated to martingales and most of 

the classical martingale inequalities have been successfully transferred to the noncom­

mutative setting. See in particular [64, 33, 68, 38], and also the récent survey [80] 
and the références therein. The noncommutative maximal ergodic theorem in [36] is 

our starting point for the study of noncommutative diffusion semigroups. On this line 

we investigate noncommutative analogs of classical square function inequalities. 

It is remarkable that operator space techniques have led to new results on classical 

analysis. We mention in particular completely bounded Fourier multipliers and Schur 

multipliers on Schatten classes [31]. In our treatment of semigroups no prior knowl-

edge on operator space theory is required. However, operator space concepts underlie 

our understanding of the subject. 

Our objectives are to introduce natural square functions associated with a secto-

rial operator or a semigroup on some noncommutative Lp-space, to investigate their 

connections with H°° functional calculus, and to give various concrète examples and 

applications. H00 functional calculus was introduced by Mclntosh [53], and then 

developed by him and his coauthors in a séries of remarkable papers [54, 21, 3]. 
Nowadays this is a classical and powerful subject which plays an important rôle in 

spectral theory for unbounded operators, abstract maximal Lp-regularity, or multi­

plier theory. See e.g. [43] for more information and références. 
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Square functions for generators of semigroups appeared earlier in Stein's classical 

book [70] on the Littlewood-Paley theory for semigroups acting on usual (=commuta-

tive) Lp-spaces. Stein gave several remarkable applications of thèse square functions 

to functional calculus and multiplier theorems for diffusion semigroups. Later on, 

Cowling [20] obtained several extensions of thèse results and used them to prove 

maximal theorems. 

The fundamental paper [21] established tight connections between Mclntosh's H°° 

functional calculus and Stein's approach. Assume that A is a sectorial operator on 

Lp(£), with 1 < p < oo, and let F be a non zéro bounded analytic function on a 

sector {|Arg(z)| < 0} containing the spectrum of A, and such that F tends to 0 with 

an appropriate estimate as \z\ —» oo and as \z\ ^ 0 (see Chapter 3 for détails). The 

associated square function is defined by 

\\x\\F = 
'OO 

0 
F(tA)x 

2 dt 

t 

i 
2 

P 

x G Lp 

For example if — A is the generator of a bounded analytic semigroup (Tt)t>o on LP(E), 

then we can apply the above with the function F(z) = ze~z and in this case, we obtain 

the familiar square function 

I W I F = 
R0 

1 oo 
t 

d 
dt 

(Tt(x)) 
2 

dt 2 

P 

from [70, Chapters III-IV]. One of the most remarkable connections between H00 

functional calculus and square functions on Lp-spaces is as follows. If A admits a 

bounded H00 functional calculus, then we have an équivalence i^i||x|| < < 
i^ll^H for any F as above. Indeed this follows from [21] (see also [49]). 

In this paper we consider a sectorial operator A acting on a noncommutative Lp-

space LP(A4) associated with a semifinite von Neumann algebra (J\A,T). For an 

appropriate bounded analytic function F as before, we introduce two square functions 

which are approximately defined as 

X F.c = 
'OO 

0 

[F(tA)x) *{F(tA)x) 
dt 

t 

i 
2 

and 

| ̂  11 F, r — 
»oo 

1 
(F(tA)x) (F{tA)x) 

dt 

t 

1 2 

P 

(see Chapter 6 for détails). The functions || \\F:C and || are called column and 

row square functions respectively. Using them we deflne a symmetric square func­

tion ||x|| F- As with the noncommutative Khintchine inequalities (see [51, 52]), 

this définition dépends upon whether p > 2 or p < 2. If p > 2, we set \\X\\F = 

max{ || x || i?,c ; || x || F,r}- See Chapter 6 for the more complicated case p < 2. Then one 
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CHAPTER 1. INTRODUCTION 3 

of our main results is that if A admits a bounded H°° functional calculus on LP(M), 

with 1 < p < oc, we have an équivalence 

(î.i) tfiH < \\X\\F < K2\\x\\ 

for thèse square functions. 

After a short introduction to noncommutative Lp-spaces, Chapter 2 is devoted 

to preliminary results on noncommutative Hilbert space valued Lp-spaces, which are 

central for the définition of square functions. Thèse spaces and related ideas first 

appeared in [51] (see also [52, 62]). In fact operator valued matrices and operator 

space techniques (see e.g. [58, 62, 63]) play a natural rôle in our context. However 

we tried to make the paper accessible to readers not familiar with operator space 

theory and completely bounded maps. 

In Chapter 3 we give the necessary background on sectorial operators, semigroups, 

and H00 functional calculus. Then we introduce a completely bounded H°° functional 

calculus for an operator A acting on a noncommutative LP{M). Again this is quite 

natural in our context and indeed it turns out to be important in our study of square 

functions (see in particular Corollary 7.9). 

Rademacher boundedness and Rademacher sectoriality now play a prominent rôle 

in H°° functional calculus. We refer the reader e.g. to [41], [79], [78], [47], [49] or 

[43] for developments and applications. On noncommutative Lp-spaces, it is natu­

ral to introduce two related concepts, namely the column boundedness and the row 

boundedness. If T is a set of bounded operators on LP(A4), we will say that T is 

Col-bounded if we have an estimate 

k 

Tk(xk)*Tk(xk) 
i 
2 

\LP(M) 
c 

k 

* 
xkxk 

1 2 
L'P{M) 

for any finite families X i , . . . , Tn in JF, and x±,..., xn in LP(M). Row boundedness 
is defined similarly. We develop thèse concepts in Chapter 4, along with the related 
notions of column and row sectoriality. 

Chapters 6 and 7 are devoted to square functions and their interplay with H°° 

functional calculus. As a conséquence of the main resuit of Chapter 4, we prove that 
if A is Col-sectorial (resp. Rad-sectorial), then we have an équivalence 

# I | | Z | | G , c < I M k c < K2\\x\\G:C (resp. Ki\\x\\G < \\x\\F < K2\\x\\G 

for any pair of non zéro functions F, G defining square functions. This is a noncom 

mutative generalization of the main resuit of [49]. Then we prove the aforementione< 

resuit that (1.1) holds true if A has a bounded H°° functional calculus. We also sho\ 

that conversely, appropriate square function estimâtes for an operator A on LP(M. 

imply that A has a bounded H°° functional calculus. 

Chapter 5 (which is independent of Chapters 6 and 7) is devoted to a noncommu­

tative generalization of Stein's diffusion semigroups considered in [701. We define a 
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4 CHAPTER 1. INTRODUCTION 

noncommutative diffusion semigroup to be a point iu*-continuous semigroup (Tt)t>o 

of normal contractions on (A^,r) , such that each Tt is selfadjoint with respect to 

r. In this case, (Tt)t>o extends to a co-semigroup of contractions on LP(M) for any 

1 < p < oo. Let — Ap dénote the négative generator of the Lp-realization of (Tt)t>o-

Our main resuit in this chapter is that if further each Tt : M —» M is positive (resp. 

completely positive), then Ap is Rad-sectorial (resp. Col-sectorial and Row-sectorial). 

The proof is based on a noncommutative maximal theorem from [37, 36], where such 

diffusion semigroups were considered for the first time. 

If (Tt)t>o is a noncommutative diffusion semigroup as above, the most interesting 

gênerai question is whether Ap admits a bounded H°° functional calculus on LP{M) 

for 1 < p < oo. This question has an affirmative answer in the commutative case [20] 
but it is open in the noncommutative setting. The last three chapters are devoted 

to examples of natural diffusion semigroups, for which we are able to show that Av 

admits a bounded H°° functional calculus. Here is a brief description. 

In Chapter 8, we consider left and right multiplication operators, Hamiltonians, 

and Schur multipliers on Schatten space Sp. Let H be a real Hilbert space, and let 

(&k)k>i and (Pk)k>i be two séquences of H. We consider the semigroup (Tt)t>o of 

Schur multipliers which are determined by Tt(Eij) = e~t^CXi~^J^Eij, where the E^s 

are the standard matrix units. This is a diffusion semigroup on B(l2) and we show 

that the associated négative generators Ap have a bounded H°° functional calculus 

for any 1 < p < oo. 

Let H be a real Hilbert space. In Chapter 9, we consider the ç-deformed von Neu­

mann algebras Tq(H) of Bozejko and Speicher [14, 15], equipped with its canonical 

trace. To any contraction a: H —>• H we may associate a second quantization oper­

ator Tq(a): Tq(H) —• Tq(H), which is a normal unital completely positive map. We 

consider semigroups defined by Tt — Tq(at), where (at)t>o is a selfadjoint contraction 

semigroup on H. This includes the g-Ornstein-Uhlenbeck semigroup [9, 11]. Thèse 

semigroups (Tt)t>o are completely positive noncommutative diffusion semigroups and 

we show that the associated Aps have a bounded H°° functional calculus for any 

1 < p < oo. 
In Chapter 10 we consider the noncommutative Poisson semigroup of a free group. 

Let G = ¥n be the free group with n generators and let | • | be the usual length 

function on G. Let VN(G) be the group von Neumann algebra and let X(g) G VN(G) 

be the left translation operator for any g G G. For any t > 0, Tt is defined by 

Tt(X(g)) = e~^9^X(g). This semigroup was introduced by Haagerup [30]. Again this 

is a completely positive noncommutative diffusion semigroup and we prove that the 

associated Ap's have a bounded H°° functional calculus for any 1 < p < oo. The 

proof uses noncommutative martingales in the sensé of [64], and we establish new 

square function estimâtes of independent interest for thèse martingales. 
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CHAPTER 1. INTRODUCTION 5 

Chapter 11 is a brief account on the non tracial case. We consider noncommutative 

Lp-spaces Lv(M.,Lp) associated with a (possibly non tracial) normal faithful state ip 
on M., and we give several generalizations or variants of the results obtained so far in 

the semifinite setting. 

We end this introduction with a few notations. If X is a Banach space, the algebra 

of ail bounded operators on X is denoted by B(X). Further we let Ix dénote the 

identity operator on X. 

We usually let (ek)k>i dénote the canonical basis of £2, or any orthonormal family 

on Hilbert space. Further we let Eij = ® ë j G B(£2) dénote the standard matrix 

unit s. 

We will use the symbol " x " to indicate that two functions are équivalent up to 

positive constants. For example, (1.1) will be abbreviated by \\X\\F X \\X\\. Next we 

will write X « Y to indicate that two Banach spaces X and Y are isomorphic. 

We refer the reader to e.g. [69] and [40] for the necessary background on C*-

algebras and von Neumann algebras. We will make use of UMD Banach spaces, for 

which we refer to [17]. 
The main results of the présent work were announced in [34]. We refer to related 

work of Mei's [55] in the semicommutative case. 
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CHAPTER 2 

NONCOMMUTATIVE HILBERT SPACE VALUED 

L p - S P A C E S 

2.A. Noncommutative Lp-spaces 

We start with a brief présentation of noncommutative Lp-spaces associated with a 

trace. We mainly refer the reader to [73, Chapter I] and [26] for détails, as well as to 

[65] and the références therein for further information on thèse spaces. 

Let A4 be a semifmite von Neumann algebra equipped with a normal semifinite 

faithful trace r. We let A 1 + dénote the positive part of A4. Let <S+ be the set of ail 

x G AA+ whose support projection have a finite trace. Then any x G S+ has a finite 

trace. Let S C Ai be the linear span of <S+, then S is a w*-dense *-subalgebra of A4. 

Let 0 < p < oo. For any x G <S, the operator \x\p belongs to 5+ and we set 

I M I P = T( \x\ 
1 x G S. 

Here \x\ = (x*x)^ dénotes the modulus of x. It turns out that || ||p is a norm on S if 

p > 1, and a p-norm if p < 1. By définition, the noncommutative Lp-space associated 

with (A4,T) is the completion of («S, || ||p). It is denoted by LP(A4). For convenience, 

we also set L°°{Ai) — Ai equipped with its operator norm. Note that by définition, 

LP(A4) fl A4 is dense in LP{A4) for any 1 < p < oo. 
Assume that A4 C B(H) acts on some Hilbert space 7i. It will be fruitful to also 

have a description of the éléments of LP(A4) as (possibly unbounded) operators on 

H. Let A4' C B(H) dénote the commmutant of Ai. We say that a closed and densely 

defined operator x on H is affîliated with Ai if x commutes with any unitary of A4'. 

Then we say that an affîliated operator x is measurable (with respect to the trace 

r) provided that there is a positive integer n > 1 such that r ( l — pn) < oo, where 

Pn — X[o,n](\x\) is the projection associated to the indicator function of [0, n] in the 

Borel functional calculus of |x|. It turns out that the set L°(A4) of ail measurable 

operators is a *-algebra (see e.g. [73] for a précise définition of the sum and product 

on L°(A4)). Indeed, this *-algebra has a lot of remarkable stability properties. First 

for any x in L°(A4) and any 0 < p < oo, the operator \x\p = (x*x)Ç belongs to 
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L°(M). Second, let L°(M)+ be the positive part of L°(M), that is, the set of ail 
selfadjoint positive operators in L°(M). Then the trace r extends to a positive tracial 
functional on L°(M)+, still denoted by r, in such a way that for any 0 < p < oo, we 
have 

7(M) = {x G L°(M) : r(\x\p) < oo}, 

equipped with ||x||p = (r(\x\p))p. Furthermore, r uniquely extends to a bounded 
linear functional on LL(M)1 still denoted by T. Indeed we have \r(x)\ < r(\x\) = \\x\\i 
for any x G LL(M). 

For any 0 < p < oo and any x G LP(M), the adjoint operator belongs to 
LP(M.) as well, with ||#*||p = \\x\\p- Clearly, we also have that x*x G (A4) and 
\x\ G LP(M), with || \x\ ||p = \\x\\p. We let LP(M)+ = L°(M)+ H LP(M) dénote the 
positive part of LP(M). The space LP(M) is spanned by LP(M) + . 

We recall the noncommutative Holder inecmalitv. Tf 0 < n. a. r < oo are such that 
Î 
p 

1 
Q 

1 
r 

then 

(2.1) \\xy\\r < \\x\\p\\y\\q, x e LP(M), y G L"{M). 

Conversely for any z G LR(M), there exist x e LP{M) and y G LQ(M) such that 
z = xy, and ||z||r = ||x||p||y||,. 

For any 1 < p < oo, let p' = p/(p — 1) be the conjugate number of p. Applying 
(2.1) with q — p' and r ~ 1, we may define a duality pairing between LP(M) and 
LP'(M) by 

(2.2) (x,y) = r(xy), x G LP(M), y G LP'(M). 

This induces an isometric isomorphisn 

(2.3) Lp(MY =LP'(M) 1 < p < oo 
1 

P 

1 
p' 

1. 

In particular, we may identify L1(A/1) with the (unique) predual A4* of A4. 
Another remarkable property of noncommutative Lp-spaces which will play a cru­

cial rôle is that they form an interpolation scale. By means of the natural embeddings 
of L°°(M) = M and LX(M) = M* into L°(M), one may regard (L°°(M), L1 (M)) 

as a compatible couple of Banach spaces. Then we have 

(2.4) \LOC(M),L1(M)}i =LP(M), 1 < » < o o , 

where [ , }Q stands for the interpolation space obtained by the complex interpolation 
method (see e.g. [6]). 

The space L2(M) is a Hilbert space, with inner product given by (x, y) (X , y*) = 
r(xy*). We will need to pay attention to the fact that the identity (2.3) provided by 
(2.2) for p — 2 differs from the canonical (antilinear) identification of a Hilbert space 
with its dual space. This leads to two différent notions of adjoints and we will use 
différent notations for them. Let T: L2(M) —> L2(M) be any bounded operator. On 
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2.B. TENSOR PRODUCTS 9 

the one hand, we will dénote by T* the Banach space adjoint of T provided by (2.3) 

and (2.2), so that 

r(T(x)y)=r(xT%y)), x, y G L2(M). 

On the other hand, we will dénote by the adjoint of T in the usual sensé of 

Hilbertian operator theory. That is, 

r(T(x)y*) = r(x(THy))*), x,yeL2(M). 

For any 1 < p < oo and any T: LP{M) LP(M), let T° : LP(M) LP(M) be 

defined by 

(2.5) T°(x) =T(x*)*, x G LP(M). 

If p = 2, we see from above that 

(2.6) rp~\ RP*0 

In particular T : L2(M) -+ L2(M) being selfadjoint means that T* = T°. 
The above notations will be used as well when T is an unbounded operator. 

We finally mention for further use that for any 1 < p < oo, LP(M) is a UMD 

Banach space (see [8] or [65, Section 7]). 

Throughout the rest of this chapter, (A4,T) will be an arbitrary semifinite von 

Neumann algebra. 

2.B. Tensor products 

Let H be a Hilbert space. If the von Neumann algebra B(H) is equipped with 
its usual trace tr, the associated noncommutative Lp-spaces are the Schatten spaces 
SP(H) for any 0 < p < oo. We will simply write Sp for Sp(£2). If n > 1 is any integer, 
then Bii2^) ~ Mn, the algebra of n x n matrices with complex entries, and we will 
write Sp for the corresponding matrix space Sp(£2l). 

We equip the von Neumann algebra M®B(H) with the trace r(g)tr. Then for any 
0 < p < oo, we let 

(2.7) SP[H-LP(M)\ = Lp{M®B(H)). 

Again in the case when H — £2 (resp. H — ^ ) , we simply write SP[LP(M)] (resp. 

SP[LP{M)} — Lp{Mn(M))) for thèse spaces. Thèse définitions are a spécial case of 

Pisier's notion of noncommutative vector valued Lp-spaces [62]. Further comments 

on thèse spaces and their connection with operator space theory will be given in the 

paragraph 2.D below. 

Lemmal.l. — For any 0 < p < oo, SP(H) 0 LP{M) is dense m SP[H; LP(M)}. 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2006 



10 CHAPTER 2. NONCOMMUTATIVE HILBERT SPACE VALUED LP-SPACES 

Proof. — Let (pt)t be a nondecreasing net of finite rank projections on H converging 

to Ih in the w*-topology. Then 1 0 pt converges to 1 <S> Ih m the iu*-topology of 

A4®B(H). As is well-known, this implies that <g> pt)x(l <S> pt) — x\\p —» 0 for any 

x G LP(A4®B(H)). Each Ht — pt(H) is finite dimensional, hence we have 

(1 0 pt)x{\ 0 pt) G LP(M (S) B(Ht)) = LP(M) 0 Sp(Ht) c Lp(M) 0 Sp(H) 

for any x G LP{M). This shows the density of SP(H) ® LP(M). 

We shall now define various H-valued noncommutative Lp-spaces. For any a, b G 
H, we let a (g) b G B(H) dénote the rank one operator taking any £ G i f to (£, 6)a. 

We fix some e G i f with ||e|| = 1, and we let pe = e 0 ë be the rank one projection 

onto Soanlei. Then for anv 0 < » < oo. we let 

Lp(M;Hc) = Lp(M®B(H))(l®Pe). 

We will give momentarily further descriptions of that space showing that its définition 

is essentially independent of the choice of e. For any 0 < p < oo, let us regard 

Lp(M) C Lp{M) (S) SP{H) c Lp{M®B(H)) 

as a subspace of LpyM.®B(H)) by identifying any c G LP(A4) with c®pe. Clearly 

this is an isometric embedding. This identification is équivalent to writing that 

Lp{M) = (l®pe)Lp{M®B(H))(l®pe). 

For any élément u G LP(M\HC) C LP(M~(§B(H)), the product u*u belongs to the 

subspace (l<g>pe)L% (M®B(H))(l®pe) of L%(M®B(H)). Applying the above iden­

tifications for | , we may therefore regard u*u as an élément of L,i(M). Hence 

(u*u)^ G LP(A4), and we have 

(2.8) \H\lp(M;HC] = \^u)h\\Lv(MV u G LP{M;HC). 

Let u G LP(M)®H and let (xk)k and (dk)k be finite families in LP(M) and H such 

that u = Lp(M;Hc Let ûeLp(M)® Sp{H) be defined by ù kXk (ak ® e) 

Then the mapping u ^ ù induces a linear embedding 

Lp(M) H cLp(M;Hc) 

Moreover the argument for Lemma 2.1 shows the following. 

Lemma 2.2. — For any 0 < p < oo; LP(M) 0 H is dense in LP(M; Hc). 

We shall now compute the norm on LP(M) ® H induced by LP(M]HC). Let us 

consider u = u = ak as above. Then we have 

u = %k ak e and u = xk ( Q>k-
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D 

Hence 
~ * ~ 
U U — 

ij 
(CLj,ai) Xi Xj 0 pe . 

Accordmg to (Z.ÔJ, this shows that 

(2.9) 

k 
Xh ah 

Lp(M;Hc) 
i,j 

,(aj5 ai) Xi Xj 
1 2 

LP(A4) 

In the above définitions, the index 'c' stands for 'column'. Indeed, if ( e i , . . . , en) h 
an orthonormal family of H and if X\,..., xn belong to LP(M), it follows from (2.9' 
that 
(2.10) 

k 

' xk®ek 
LP{M;HC) 

k 
XkXk 

1 
2 

LP(M) 

Xi 

xn 

0 

0 

0 

0 LP(MN(M)) 
Note that according to Lemma 2.2, we can now regard LP(M.\ Hc) as the completion 

of LP(M) (g) H for the tensor norm given by (2.9), if p is finite. See Remark 2.3 (2) 
for the case p = oo. 

We now turn to analogous définitions with commns replaced by rows. Let e G H 
with ||e|| = 1 as above, and let pë = ë ® e € B(H). For any 0 < p < oo, we let 

LP(M; Hr) = (l®pë)Lp(M®B(H)). 

Then any of the above results for LP(A4; Hc) has a version for LP(A4; Hr). In par-
ticular, let u = k xk ® ak in If (M) H, with Xk G LP(M) and ak G H. Then 
identifying u with the élément kxk e ak in LP(M®B(H)) yields a linear em-

beddmg 
Lp(M)®H c LP(M\Hr), 

and we have 

( 2 . m 
P 

0 ak 
LP(M;Hr) P 

\di, Qjj j X{X„ 
î 2 

Lp{M) 

Thus if ( e i , . . . , en) is an orthonormal family of i f and if xi,..., xn belong to LP(A4), 
then we have 
(2.12) 

k 
xk (g) ek 

LP(M:Hr) k 
* 

xkxk 

1 
2 

LP(A4) 

XI 

0 

0 

xn 
0 

0 LP{MN(M)) 
Moreover for any 0 < p < oo, LP(M) 0 i f is a dense subspace of LP(M; Hr). 

Throughout this work, we will have to deal both with column spaces LP(A4; Hc) 
and row spaces Lp(M\Hr). In most cases, they will play symmetric rôles. Thus we 
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12 CHAPTER 2. NONCOMMUTATIVE HILBERT SPACE VALUED LP-SPACES 

will often state some results for Lp(Ai] Hc) only and then take for granted that they 

also have a row version, that will be used without any further comment. 

Remark 2,3 

(1) Applying (2.10) and (2.12), we see that 

k 
^xk®ek L*{M;HC) 

k 
Xk ® ek 

\L2(M;HR) 
k 

Xk |2 
2 

î 
2 

for any x i , . . . , x n in L2(M). Thus L2(M;HC) and L2(M]Hr) both coincide with 

the Hilbertian tensor product of L2(Ai) and H. 

(2) The space L°°(Ai; Hc) C M®B(H) is iu*-closed, and arguing as in the proof 

of Lemma 2.1, it is clear that Ai 0 H C Loc(Ai'1 Hc) is u>*-dense. Indeed if (e^)^/ is 

a basis of H for some set 7, then L°°(Ai; Hc) coincides with the well-known space of 

ail families {xi)iGj in Ai such that 

(Xi)i^i 
l°°(M:HC) sup- Xi Xi 

i 
2 

M 
J C I finite < oo. 

(3) Let {Eij : i,j> 1} be the standard matrix units on B(£2), and let (ek)k>i be 

the canonical basis of £2. It follows either from the définition of LP(M]£2C), or from 

(2.10), that for any finite family (xk)k in Lp(Ai), we have 

k 
xk ® e\ 

M®B(H)) k 
Eki ® Xk 

SP[LP(M)]' 

A similar resuit holds true for row norms. 

For any 1 < p < oo, the linear mapping 

Qp : Lp {M®B(H)) [M®B{H) 

taking any x 6 LP(M®B{H)) to x( l ® pe) is a contractive projection whose range is 

equal to LP(M; Hc). Moreover thèse projections are compatible. Thus applying (2.4) 

for M®B(H), we obtain that 

(2.13) [L°°(.A/f; Hc), Ll(M; Hc)} 1 Lp(M-Hc). 1 < p < oo, 

A similar resuit holds for row spaces. 
Likewise, applying (2.3) to M®B(H), we obtain that 

(2.14) Lp [M\Hcy Lp (M; Hr), 1 < p < oo, 
1 

P 

1 

P' 
1, 

for the duality pairing defined by taking (x (g) a, y (g) b) to (a,b)r(xy) for any x <G 

Lp(M), y e Lp'(M), and a,b e H. By (2.10) and (2.12), an essentially équivalent 
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2.B. TENSOR PRODUCTS 13 

reformulation of this duality resuit is that for any 1 < p < oo and for any x\,..., xn G 

LP(M), we have 
(2.15) 

n 

k=l 

* 
xkxk 

Î 
2 sup 

n 

k=l 
(Vk,Xk) : G i / sdsq 

N 

fc=l 

VkVl 
1 
2 < 1 

We need to introduce two more if-valued noncommutative Lp-spaces, namely the 

intersection and the sum of row and column spaces. Thèse spaces naturally appear 

in the so-called noncommutative Khintchine inequalities (see below). Let 1 < p < oo. 
We will regard (LP(M; ifc), LP(M\Hr)) as a compatible couple of Banach spaces, in 

the sensé of interpolation theory (see e.g. [6]). Indeed if we let W be the injective 

tensor product of LP(M) and if, say, Lemma 2.2 and its row counterpart yield natural 

one-one linear mappings LP(M;HC) —> W and Lp(M;Hr) —> W. According to this 

convention, we define the intersection 

(2.16) LP(M; Hrnc) = Lp(M;Hc)nLp(M;Hr), 

equipped with the norm 

(2.17) \\u\\LP(M;Hrnc) = max \\u\\lp(M;HC), \\u\\LP(M;Hr) 

Then we define the sum 

(2.18) Lp(M;Hr+c) Lp(M;Hc)+Lp(M;Hr), 

equipped with the norm 

(2.19) \\u\\LP(M;Hr+c) inf ||^l||LP(M;ifc) ' \\u2\\LP(M;Hr) u = m + u2 

We now introduce Rademacher averages. Let [£k)k>i be a Rademacher séquence, 
that is, a séquence of independent random variables on a probability space (S,P) 
such that P Pl £k = - 1 l 

2 
for any k > 1. Then for any finite family 

x\,..., xn in an arbitrary Banach space X , we let 

(2.20) 
n 

k=l 
£k Xh 

Rad(X) 

n 

k=l 
£kMxk 

X 
dP(A). 

If X = Lp(Ai) is a noncommutative Lp-space for some 1 < p < oo, the above norms 

satisfy the following remarkable estimâtes (called the noncommutative Khintchine 

inequalities). Let i f be a Hilbert space and let (ek)k>i be an orthonormal séquence 

in if. 

(i) If 2 < p < oc, there is a constant Cp > 0 (only depending on p) such that for 

anv x-\ Xn in LP(M), we have 

(2.21) 

1 

V2l k=l 

xk®ek 
LP(M;Hrnc) 

n 

k=l 
£k xk Rad(LP(M)) 

Cp 
n 

k=: 

xk®ek 
LP(M;Hrnc) 
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14 CHAPTER 2. NONCOMMUTATIVE HILBERT SPACE VALUED LP-SPACES 

(ii) There is a constant Ci such that for any 1 < p < 2 and any x\,..., xn in LP(M), 

we have 

(2.22) 

Ci 
n 

fc=L 

x/c (g) efc 
LP(M;Hr+c) 

n 

k=l 

k=l 
Rad(LP(M)) 

n 

fc=1 

xfc (g) efc 
LLP(>t;ifr+c) 

Thèse fundamental inequalities were proved by Lust-Piquard [51] for the Schatten 

spaces when p > 1 and then extended to the gênerai case by Lust-Piquard and Pisier 

[52]. In accordance with (2.21) and (2.22), we let for any Hilbert space H 

(2.23) Lp(M;Hrad) = Lp(M;Hr+c) if 1 < p < 2; 

(2.24) Lp(M;Hrad) = Lp(M;Hrnc) if 2 < p < oo. 

Then it easily follows from (2.14) and its row counterpart that we have an isometric 

identification 

(2.25) Lp(M;Hrady = Lp'{M-Hrad), 1 < p,p < oo, 
1 

P 

1 

P1 
1. 

We conclude this paragraph by a simple lemma concerning tensor extensions. 

Lemma 2.4. — Let H,K be two Hilbert spaces and let LP(A4) be a noncommuta­

tive Lp-space, for some 1 < p < oo. Then for any bounded operator T': H —> K, 

the mapping Ilp 0 T (uniquely) extends to a bounded operator from LP(M]HC) into 

Lp(M;Kc), with 

\ILP 0 T : Lp(M;Hc) LP(M;KC)\\ = \\T\\. 

Likewise Ilp ®T extends to bounded operators of norm \\T\\ from Lp(Ai; Hr) into 

Lp(M]Kr), from Lp(M'1Hrnc) into Lp(M;Krnc), and from LP(M; Hr+C) into 

Lp(M-Kr+c). 

AU thèse extensions will be usually denoted by T. 

Proof. — Let T: H —» K be a bounded operator, and let 1 < p < oo. Let ( e i , . . . , en) 

be a finite orthonormal family in if, and let x\,...,xn be arbitrary éléments in 

LP(M). We consider u = Ylk xk ® ek and T(u) = Ylk xk ® T(ek). Then its norm in 

LP(M; Kr) is equal to 

IITHII = 
i,3 

(T(e,),T(eî)> * 
Xi Xj 

2 
P 

by (2.9). The n x n matrix [(T(ej),T(ei))] is nonnegative and its norm is less than 

or equal to ||T||2. Hence we may find a matrix A = [dij] G Mn such that 

A * A = [(T{e3),T(ei)) and l|A|| < ||T||. 
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2.C. VECTOR-VALUED FUNCTIONS 15 

Then we have 

i,j 

(T(e,),T(eA)x1x, 

i,j 

dkidkj xi Xj 

k i 

dki %i 
* 

3 
lk,ij 

Hence 

\\T(u)\\ = dij 

Xi 

bn 

0 

0 

0 

0 
0 

< l|A|| 

Xi 

0 

0 

0 

0 

0 
1P 

According to ( 2 . 1 0 ) , this implies that | | f < ||A||||ix|| < ||T|| | |ÎX|| and proves the 

column version of our lemma. 

The proof of the row version is similar and the other two results are straightforward 

conséquences. • 

2.C. Vector-valued functions 

In this paragraph, we give preliminary results in the case when the Hilbert space 

H is a concrète (commutative) L2-space. We let dénote an arbitrary a-finite 

measure space, and we shall consider Banach space valued L2-spaces L2(Q; X). For 

any Banach space X , this space consists of ail (strongly) measurable functions u : Çl —> 

X such that JQ \\u(t)Wx dji(t) is finite. The norm on this space is given by 

\\u\\LHQ;X) = \\u(t)\\2xdn(t) 
1 
2 u G L2(ft;X). 

The main référence for thèse spaces is [23], to which we refer the reader for more 

information and background. We merely recall a few facts. 

First, the tensor product L2(Q) (g) X is dense in L2(0 ;X) . 

Second, for any u G L2(d ;X) , and for any v G L2(fl; X * ) , the function t 

(v(t),u(t)) is integrable and we may define a duality pairing 

(2 .26 ) (v. u) = (v(t),u(t))dfi{t). 

This pairing induces an isometric inclusion 

( 2 . 2 7 ) L2(Q;X*) L2(Q;X)*. 

If further X is reflexive, then this isometric inclusion is onto, and we obtain an 

isometric isomorphism L2(f};X)* = L2(^ ;X*) (see e.g. [23, IV;1]). 

Third, as a conséquence of ( 2 . 4 ) , we have 

(2 .28 ) \L2(Q: L°°(M)),L2(^ Ll(M))] , = L2(Q: LP(M)), 1 < p < oo, 

whenever (M.r) is a semifinite von Neumann algebra. 
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16 CHAPTER 2. NONCOMMUTATIVE HILBERT SPACE VALUED LP-SPACES 

Proposition 2.5. — Let (fî, a) be a measure space. 

(1) For any 1 < p < 2, we have contractive inclusions 

F ( M ; L 2 ( ( ] ) c ) c L 2 ( ( ] ; L p ( M ) ) , Lp(M;L2(Q)r) C L2(fl;Lp(M)), 

and LV(M;L2(Çl)rad)cL2(n;L?(M)). 

(2) For any 2 < p < oo, we have contractive inclusions 

L2(n;Lp(M))cLP(M;L2(fl)c) and L2(Çl;Lp(M))cLt>{M;L2(n)r). 

For p oo, we also have a contractive inclusion 

L2(Çï;L?(M))cLV(M;L2(n)rad). 

Proof. — Given a measurable subset I C f2, we let xi dénote the indicator function 

of L Let x\,..., xn be in Ll(M). Then for any y\,..., yn in M = Ll(M)*, we have 

k 

\yk,xk) 

k 

VkVk 
I 
2 

M 
k 

j,k,li 
i 2 

Li(M) 

k 

IL,, l|2 
I 
2 %kXk 

i 
2 

1 

Taking the supremum over ail y\,..., yn with 
k \yk\\lo 1 yields 

(2.29) 

fc 
ikfcii 2 

i 2 * ' 
i 
2 

1 

Now changing xk into /i(//c) 2 for a séquence Zi,. . . , In of pairwise disjoint measur­

able subsets of finite measure in Q, and using (2.9), we dérive that 

n 

k=l 
Xk 0 Xh 

\Li{VL-L^{M)) 

n 

k=l 
Xk 0 Xh 

L^{M;L2{n)c) 

By density this shows that Ll[M] L2{Q)c) C L2(Q;L1(M)) contractively. On the 

other hand, we have an isometric isomorphism L2(M; L2(Q)C) = L2(Q]L2(M)) by 

Remark 2.3 (1). Thus in the column case, the resuit for 1 < p < 2 follows by 

interpolation, using (2.13) and (2.28). The row case can be treated similarly and the 

Rademacher case follows from the previous two cases. Once (1) is proved, (2) follows 

bv duality. • 

Remark 2.6. — Let 1 < p < 00 and let p' = p/{p — 1) be its conjugate number. If 

we identify H — L2(Q) with its complex conjugate in the usual way, and if we set 

X = LP(M), then the duality pairing given by (2.26) is consistent with the one in 

(2.14). Namely if 1 < p < 2, if u G D>(M, L2{Q)C) and if v G L2(ft; Lp (M)), then 

the action of v on u induced by (2.14) is given by (2.26). Indeed, this is clear when 

u G LP(M) 0 L2(Q) and v G Lp (M) 0 L2(Q), and the gênerai case follows by a 

density argument. This property will be extended in Lemma 2.8 below. 
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2.C. VECTOR-VALUED FUNCTIONS 17 

Définition 2.7. — Let 1 < p < oc 

(1) Le£ il —» Lp(Ai) be a measurable function. We say that u belongs to 

Lp(M;L2(Q)c) if (y,u(-)} belongs to L2(ft) for any y G Lp (A4) and if there 

exists 0 G Lp(M;L2(Q)c) such that 

(2.30) {y ®b,6) = (y,u(t))b(t)dii{t), yeLp'(M), beL2(ft). 

(2) Let 0 G Lp(Ai; L2(Q)c). We say that 6 is representable by a measurable function 

is there exists a measurable u: —» LP(M) such that (y,u(- )) belongs to L2(Q) 

for any y G Lp(Ai) and (2.30) holds true. 

If (1) (resp. (2)) holds, then 6 (resp. u) is necessarily unique. Therefore we will 

make no notational différence between 0 and u in this case. 

A similar terminology will be used for row spaces Lp(Ai; L2(Çl)r) or Rademacher 

spaces Lp(M;L2(n)rad). 

It is clear from Remark 2.6 that any u G LP(M; L2(tyc) N L2(Q; LP(M)) is repre­

sentable by a measurable function. Hence if 1 < p < 2, any élément of Lp(Ai; L2(Q)c) 

is representable by a measurable function. However we will see in Appendix B that 

this is no longer the case if p > 2. 

Lemma 2.8. — Let 1 < p,p' < oo be conjugate numbers and let u G LP(A4] L (Q)c) 

and v G Lp (A4; L2(Q)r) be (representable by) measurable functions in the sensé of 

Définition 2.7. Then the function t h-» (v(t),u(t)) is integrable on and 

(2.31) \(v(t)Mt))\du(t) \\U\\LP(M]L2(Q)C)\\V\\LPf(M)L2(Q)R)-

Moreover the action of v on u given by (2.14) for H = L2(Q) is equal to 

(2.32) lv,u) = (v(t),u(t))d^(t). 

Proof. — We may assume that p > 2. We fix some measurable u in LP(A4, L2(Q)C) 

By assumption, (2.30) holds true for any y G Lp (Ai) and any b G L2(tt). Hence 

t i—> (v(t),u(t)) is integrable and (2.32) holds true for any v in the tensor producl 

Lp'(M) 0 L2(Q). Let c G L°°(ft) and let v in Lp(A4) <g> L2(fy. Then 

(v(t),u(t))c(t)dv(t) = (cv, u). 

Hence by the above observation, we have 

(v(t),u(t))c(t) dji(t] < \\U\\LP(M^(Q)c) \\CV\\LP'{M;L*{n)r)' 
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18 CHAPTER 2. NONCOMMUTATIVE HILBERT SPACE VALUED LP-SPACES 

Applying Lemma 2.4 to the multiplication operator L2(Q) —> L2(Q) taking any b G 
L2(Çt) to c6, we obtain that the right hand side of the above inequality is less than or 

equal to 

LLCL|oo||^||LP(7W;L2(^)C)|B||LP/(X;L2(^)r). 

lakmg the supremum over ail c G L (il) with norm less than 1, we obtain (2.31) for 

v G LP(M)®L2(Q). 

Next we consider an arbitrary v G Lp (A4; L2(Q)r). By Proposition 2.5, we can 

find a séquence (vn)n>i in Lp (A4) ® L2(Q) such that 

\\v ~ vn\\L2m.Lp'(M)) < \\v-vn\\Lp'(M;L*{n)r) °-

Passing to a subsequence, we may assume that vn —» v a.e. Then (u,vn) —>• (u,v) 

a.e., and we deduce (2.31) by Fatou's Lemma. 

Finally applying (2.31) with (v — vn) instead of v, we deduce that since each vn 

satisfies (2.32), then v satisfies it as well. • 

Remark 2.9. — The previous lemma clearly has variants (with identical proofs) 

involving the Rademacher spaces. Namely, if u G LP(A4; L2(Q)rad) and v G 
Lp (M] L2(p)rad) are measurable functions, then the function t i—> (v(t),u(t)) is 

integrable on Jl, the identity (2.32) holds true, and 

(v(t),u(t))\diJi(t) ^ \\U\\LP(M;L2(Q) rad) LBLLLP/(7W;L2(̂ )rad)-

We conclude our discussion on measurable functions with the following useful con­

verse to Lemma 2.8. 

Lemma 2.10. — Let 1 < p < oo, and let p' be its conjugate number. Let w. Q —>• 

Lp(Ai) be a measurable function. Then u G LP(A4'1 L2(Q)c) if and only if t i—» 
(y,u(t)) belongs to L2(ft) for any y G Lp (Ai) and there is a constant K > 0 such 

that for any v G Lp (Ai) 0 L2(Q), we have 

{v(t),u(t))dn(t) ^ K\\V\\L*'(M-,L*(çï)ry 

In this case, the norm of u in Lp(A4; L2(fl)c) is equal to the smallest possible K. 

Proof. — The 'only if part follows from Lemma 2.8. If p > 1, the ' i f part is a direct 

conséquence of (2.14) and of the density of Lp' (M) ® L2(Q) in Lp (M; L2(Q)r). Thus 

it suffices to consider the case when p = 1. In this case, the resuit can be deduced 

from operator space arguments which will be outlined in the paragraph 2.D, and from 

[62, Lemma 1.12]. However we give a self-contained proof for the convenience of the 

reader. 
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2.C. VECTOR-VALUED FUNCTIONS 19 

We assume for simplicity that H = L2(Q) is infinité dimensional and separable 

(otherwise, replace séquences by nets in the argument below). Let u: fl —• Ll(M) 

be a measurable function, and assume that 

K — sup (v(t),u(t))dn(t) : v eM®L2{tt), IMU°°(.M;L2(n)r) < 1 < oo. 

By Proposition 2.5 (2), the norm on M (g) L2(Q) induced by L2(ft] M) is greater than 

the one induced by L°°(A4; L2(Çt)r). Thus v H-» fn(v,u) d\i extends to an élément of 

L2(Q;M)*. Since u is measurable and valued in Ll(M), we deduce from (2.27) that 

w G L ^ i 1 ^ ) ) -

Let (ek)k>i be an orthonormal basis of H = L2(ïï). Since u G L2(Q, L1(A1)), we 

can define xk G L1(A/1) by 

x,k ek(t)u(t) dfiCt), fc > 1. 

For any n > 1, we consider 

ur= 
n 

k=l 
xk®ek e Ll(M)® L2(Q). 

For convenience we let Z = L1(A4, L2(^)c) in the rest of the proof. Our objective is 

now to show that (un)n>\ is a Cauchy séquence in Z. For any m > 1, let Pm : H —> 

H be the orthogonal projection onto Spanjei,. . . , em}. If m < n, then we have 

(7Li 0 Pm)(ixn) = îzm. Hence | |^M||Z < LL̂ NLLZ by Lemma 2.4. Thus the séquence 

(||un ||z)n is nondecreasing. 

Next we note that for any n > 1, we have 

I K I U sup 
n 

k=l 

{Vk,xk) : ykeM, 
n 

k=l 

yk®ek\ < 1 

However if we write v = n 
k= i Vk ® ejfc, we have 

n 

k=l 

(yk,xk) (v(t),u(t))dfi{t). 

Hence (||i£n||z)n is bounded, with supn ||i£n||z = K. 
Let e > 0, and let TV > 1 be chosen such that ||WTV||^ >K2-e2. Let n > m > TV 

be two integers. According to (2.29), we have 

\\Um\\ 9 
Z u_um 2 

IZ {Uj^UfYi -\- {lin um ) (un - um)J 
1 
2 

2 

1 

Since n > m, we have u*niuni = u*num = u^un, hence 

O m + (Un - Um)*(un - Um) = U*Un. 

Thus we bave 

\\v>m\\z + \\un ~ UmWl < 

and hence 

\un - Um\\2z <K2- \\um\\2z < e2. 
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This shows that (un)n is a Cauchy séquence in Ll(M, L2(Q)C). It has therefore a 

limit in that space and by construction, this limit is necessarily u. This shows that 

u e Ll(M, L2(Q)C), with ||u||z <K. • 

Remark 2.11. — Again the previous lemma also has variants involving L2(Q)r, 

L2(Q)rc\c, or L2(Q)r+c. For instance, a measurable function w. Q —>• LP(M.) belongs 

to Lp(M;L2(n)r+c) with \\u\\LP(M.L2{çt)r+c) < K if and only if 

D 
(v{t),u[t))dii(t) <K\\v\\Lv, (X;L2(fi)rnc) 

for anyveLp (M)®L2(fy. 

We also observe that if V C L2(yt) is a dense subspace, then the same resuit holds 

true with Lp (M) <g> L2(Q) replaced by Lp' (M) <g> V. 

We will now interpret the above results in the case when H = L2(Q) = £2, and 

regard LP(M,£2), LP(M,£2), and Lp(M,£2rad) as séquence spaces. Let (ek)k>i dénote 

the canonical basis of £2. For any k > 1, let (pk = (•,ek) be the functional on £2 

associated with ek, and let LP(M\£2) —» LP(M) dénote the continuous extension 

of ILP <8> (fk> We say that a séquence (xk)k>i of LP(M) belongs to LP(M,£2) if there 

exists some (necessarily unique) u in LP(A41£2) such that xk — ¥k{u) for any k > 1. 

We adopt a similar convention for LP(M,£2) and Lp(M1£2rad). 

Corollary 2.12. — Let 1 < p < oo and let (xk)k>\ be a séquence of LP(M). Then 
{xk)k>i belongs to LP(M1£2) if and only if there is a constant K > 0 such that 

n 

k=l 

xk (8) ek 
LP{M\tï) 

SFFS n > 1. 

In this case the norm of (xk)k>\ in LP(M.1£2) is equal to the smallest possible K. 

Moreover the same resuit holds with £2 replaced by either £2 or £2rad. 

Proof — This clearly follows from Lemma 2.10 and Remark 2.11. 

We end this paragraph with a few observations to be used later on concerning 

Rademacher norms and vector-valued L2-spaces. 

Let Rad C Ll(Ti) be the closed subspace spanned by the eks. For any x\,..., xn 

in some Banach space X , the norm \\^k £kxk\\RgLd(X) denned by (2.20) is the norm 

of the sum ^k ek (g) xk in the vector valued Z^-space L ^ E j X ) . Accordingly, we let 

Rad(X) C LX{Y,\X) be the closure of Rad(g)X in LX(E;X). Likewise, we let Rado C 

L2(H) be the closed linear span of the Ê ^ ' S in L2(U), and we let Rad2(X) C L2ÇE; X) 

be the closure of Rad2 <8> X. By Kahane's inequality (see e.g. [50, Theorem l.e.13]), 

the spaces Rad(X) and Rad2(X) are isomorphic. 
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We let P: L2ÇE) —> L2(H) dénote the orthogonal projection onto Rad2- Let 

(Eo,Ei) be an interpolation couple of Banach spaces, and assume that EQ and E\ 

are both K-convex. Following [60, p. 43] or [59], this means that for i G { 0 , 1 } , the 

tensor extension P (g IE{ : I? (g) Ei —» L2 (g) Ei extends to a bounded projection on 

L2(E; Ei), whose range is equal to Rad2(Pi). For any a G (0,1), let Ea = [Eo, E\]a. 

Then 

L2(FJ;£a) = [L2(E;E0),L2(E;P1)]a, 

where [ , ]a is obtained by the complex interpolation method [6]. Owing to the 

projections onto Rad2(Po) and Rad2(£i) given by the K-convexity, this implies that 

Rad2(£?a) is isomorphic to the interpolation space [Rad2(^o), R-acbO^Ola- Applying 

Kahane's inequality, we finally obtain the isomorphism 

Rad(£a) « Rad(Eo), Rad(Pi) 
a ' 

Now note that for any 1 < p < oo, the Banach space Lp(Jvi) is iv-convex. Indeed, 

this follows from [25] and [59]. (More generally, any UMD Banach space is K-convex.) 

Thus we deduce from above and from (2.4) that i f l < r < o < o c , we have 

(2.33) Rad(Lp(X)) Rad(L9(X)) , Rad(Lr(M)] 
oc 

if 
1 

p 

1 - a 

Q 

a 

r 

Note also that by our définitions in paragraph 2.B, we have 

(2.34) Rad(Z/(.M)) Lp(M;£iad\ 1 < p < oo . 

2.D. Completely positive maps and completely bounded maps 

Let 1 < p < oo. We say that a linear map T: LP(M) —» LP(M) is positive if it 

maps the positive cone LP(A^)+ into itself. Then for an integer n > 2, we say that T 

is n-Dositive if 

IsP (g) 7 ~Lp(M) c 
n 

L p ( X ) 

is positive. Recall here that S p 
n 

LP{M) LP(Mn(M)) is a noncommutative Lp-

space. Finally we say that T is completely positive if it is n-positive for ail n. We 

refer the reader e.g. to [58] for a large information on completely positive maps on 

C*-algebras. 

Likewise, we say that T: LP(M) —• LP(M) is completely bounded if 

IITIU = supl 
n 

75S T:SZ Lp(M)) —> Sl{L*{M) 

is finite. In this case ||T||cb is called the completely bounded norm of T. If p is finite, 

it is easy to see that T is completely bounded if and only if ISP £g T extends to a 

bounded operator from SP[LP(M)} into itself. In that case, the extension is unique 

and 

(2.35) ||T|U = ||/Sp ® T: Sp[Lp(M)} —> Sp[Lp(M)}\\. 
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More generally if T: LP(M) —> LP(M) is completely bounded and H is any Hilbert 

space, then ISP(H) ®T extends to a bounded operator from SP[H; LV(A4)\ into itself, 

whose norm is less than or equal to ||T||cb. Conséquent ly, T ® IJJ bot h extends to 

bounded operators on LP(A4; Hc) and on LP(A4: Hr), with 

(2.36) \T®IH: Lp{M;Hc) Lp{M-Hc)\\ < \\T\\cb 

and 

(2.37) \T®I„: LP(M;HR) LP(M;HR)\\ < \\T\\CB. 

IR \\J- \\cb S r, we say tnat l is completely contractive. l\ext we say tnat tne 

operator T: LP(A4) —• LP(A4) is a complète isometry if ISP (g) T is an isometry for 

any n > 1. In this case, ISp®T: SP[LP(M)\ -+ SP[LP(M)} is also an isometry. 

Assume that 1 < p < oc, and let p' be its conjugate number. Applying (2.3) with 

Mn(M), we have an isometric identification SP[LP(M)}* = SP[LP'(M)}. It clearly 

follows from this identity that T: LP(M) —• LP(M) is completely bounded if and 

only its adjoint T* : Lp (M) —> Lp' (M) is completely bounded, with 

(2.38) \\T:Lp(M)-^Lp(M)\\cb ||T*: Lp\M) ^Lp\M)\\ch. 

Although we will not use it explicitly, we briefly mention that several notions 

considered so far have a natural description in the framework of operator space theory. 

We need complex interpolation of operator spaces, for which we refer to [63, Sec­

tion 2.7]. Let E\ be Ll(M.) equipped with the predual operator space structure of 

A4op. Then for any 1 < p < oo, equip LP(À4) with the operator space structure 

obtained by interpolating between A4 = î oo and E\ (see [63, p. 139]). Let Ep be 

this operator space, so that Ep = [ ^ o o ^ J i completely isometrically. Then for any 

Hilbert space H, and any 1 < p < oo, the définition (2.7) coincides with Pisier's 

operator space valued Schatten space SP[H; Ep] (see [62, pp. 24-25]). Thus according 

to [62, Lemma 1.7], a linear map T: LP(A4) —>• Lp(Ai) is completely bounded in the 

sensé of (2.35) if and only if it is completely bounded from Ep into itself in the usual 

sensé of operator space theory. 

Let H be a Hilbert space, and let Hc (resp. Hr) be the space H equipped with 

its column (resp. row) operator space structure (see e.g. [63, p.22]). Then for any 

6 G [0,1], let Hc(0) — [HClHr]e in the sensé of the interpolation of operator spaces. 
ThPTl 

Lp(M;Hc) : I 

p 
h Ep 1 < p < oo, 

where ®h dénotes the Haagerup tensor product (see e.g. [63, Chapter 5]). Indeed, 

this identity follows from [62, Theorem 1.1]. Likewise, we have 

LP(M; Hr) Ep SF 1 
p 

1 < p < oo, 

where we have defined Hr(6) = [HR, HC]Q for any 6 G [0,1]. 
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Remark 2.13. — Let Ai be a commutâtive von Neumann algebra, and let S be a 
measure space such that M ~ L°°(E) as von Neumann algebras (see e.g. [69, 1.18]). 
Then LP(M) coincides with the usual commutât ive space LP(H), and SP[H; I/P(S)] = 
LP(E; SP(H)) for any H and any 1 < p < oo. Thus a completely bounded map 
T: LP(E) —> LP(E) on some commutative Z7>-space is a bounded mapping whose 
tensor extension T 0 ISP extends to a bounded operator on the vector valued LP-
space LP{^SP). 

Likewise, for any Hilbert space H and any 1 < p < oo, we have 

LP(M;HC) = LP(M-1HR) = LP(M;HRAD) = LP(^H) 

isometrically. 
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C H A P T E R 3 

B O U N D E D A N D C O M P L E T E L Y B O U N D E D H°° 

F U N C T I O N A L C A L C U L U S 

3.A. H00 functional calculus 

In this paragraph, we give a brief review of H00 functional calculus on gênerai 

Banach spaces, and preliminary results. We mainly follow the fundamental papers 

[53] and [21]. See also [3] or [46] for further détails. We refer the reader e.g. to [29] 
or to [22] for the necessary background on semigroup theory. 

Let X be a Banach space, and let A be a (possibly unbounded) linear operator 

A on X. We let D(A), N(A) and R(A) dénote the domain, kernel and range of A 

respectively. Next we dénote by a (A) and p(A) the spectrum and the résolvent set 

of A respectively. Then for any z G p(A), we let R(z,A) = (z — A)~x dénote the 

corresponding résolvent operator. 

For any LU G (0,7r), we let 

z G C* : |Arg(2)| < ou 

be the open sector of angle 2LU around the half-line (0 ,+00) . By définition, A is a 

sectorial operator of type LU if A is closed and densely defined, a (A) C E^, and for 

any 6 G (LU, TT) there is a constant Kg > 0 such that 

(3.1) \\zR(z,A)\\<Ke, zeC 

We say that A is sectorial of type 0 if it is of type LU for any LU > 0. 

Let (Tt)t>() be a bounded cn-semigroup on X and let —A dénote its infinitésimal 

generator. Then A is closed and densely defined. Moreover o~(A) 
2 

and for any 

z e C 
2 

we have 

(3.2) R(z,A) 
1 OO 

0 
etz Tt dt 

in the strong operator topology (this is the Laplace formula). It is easv to deduce 

that A is a sectorial operator of type 7T 
2 ' 
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The following lemma is well-known. A semigroup (Tt)t>o which satisfies (i) and/or 
(ii) below for some oo G 0, 7T ' 

2 is called a bounded analytic semigroup, see e.g. [29. 
1.5]. 

Lemma 3.1. — Let (Tt)t>o be a bounded cç-semigroup on X with infinitésimal gener-
ator —A, and let uo G 7T 

2 The following are équivalent. 
(i) A is sectorial of type uo. 

(ii) For any 0 < a < 7T 
2 

LU, (Tt)t>o admits a bounded analytic extension (Tz)ze 
in B(X). 

For any 0 G (0,TT), let H°° be the space of ail bounded analytic functions 
fc '6 C . This is a Banach algebra for the norm 

| | / | |OO ,0 = SUPJ f(z) : z G : <e 
Then we let HZ° e be the subalgebra of ail / G H°° '6 for which there exist two 
positive numbers s, c > 0 such that 

(3.3) .(z <c 
\z\s 

a + un2* z e 

Let A be a sectorial operator of type u> G (0, n) on X. Let to < 7 < 6 < IT, and let 
T., be the oriented contour defined by : 

(3.4) r7(t) = 
-te27, t G M_; 
te~11, t G R+. 

In other words, T7 is the boundary of oriented counterclockwise. For any / G 
ITOO 
^ 0 '6 , we set 

(3.5) f(A) = 
1 

2TTI 
f(z)R(z,A)dz. 

It follows from (3.1) and (3.3) that this intégral is absolutely convergent. Indeed (3.3) 
imolies that for anv 0 < ^ < 0. we have 

(3.6) 
r7 

R(t)= dz 
z 

< oo . 

Thus f(A) is a well defined élément of B(X). Using Cauchy's Theorem, it is not hard 
to check that its définition does not dépend on the choice of 7 G (a;, 6). Furthermore, 
the mapping / 1—> f(A) is an algebra homomorphism from HçfÇEe) into B(X) which 
is consistent with the functional calculus of rational functions. We say that A admits 
a bounded H00 e functional calculus if the latter homomorphism is continuous, 
that is, there is a constant K > 0 such that 

(3.7) \\f(A)\\<K\\f\U0, K\\f\U 0 

Sectorial operators and H00 functional calculus behave nicely with respect to du­
ality. Assume that X is reflexive and that A is a sectorial operator of type UJ on X. 
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3.A. H°° FUNCTIONAL CALCULUS 27 

Then 4̂* is a sectorial operator of type LU on X* as well. Moreover for any 6 > LU and 

any B G H°°(J1Q), we have 

/ ( A * ) = / ( A ) * 

Consequently, A* admits a bounded H°°(YJQ) functional calculus if A does. 

We now turn to spécial features of sectorial operators with dense range. For any 

integer n > 1, let qn be the rational function defined by 

(3.8) 9n{z) = 
9 

rrz (n + z) (l + RI2;) 

If A is a sectorial operator on X , the séquences (n(n + A)~l)n and (nA(\ + nA)~l)n 

are bounded. Further it is not hard to check that n(n + A)~lx —> x for any x E X 

and that nA(l + nA)~1x —» x for any x G (see e.g. [21, Theorem 3.8]). This 

yields the following. 

Lemma 3.2. — Let A be a sectorial operator on X, and assume that A has dense 

range. Let (gn)n>i be defined by (3.8). Then 

sup \\gn(A)\\ < oc and lim 
n 

9N (A)x = x for any x E X. 

Consequently, A is one-one. 

Let A be a sectorial ooerator of tvue LU G (0, TT) and assume that A has dense range. 
Our next goal is to define an operator f(A) for any / G H°° e i, whenever 0 > LU. 

For any n > 1, the operator gn(A) is one-one and we have 

R(gn(A)) = D(A) N R(A). 

The latter space is therefore dense in X. We let g = gi, that is 

(3.9) 9(z) = Z 
( 1 + Z ) 2 

Then for any 6 G (LU.TT) and any F G H00 e, , the product function fg belongs to 
TTOO 

e hence we may define (fq)(A) G B(X) by means of (3.5). Then using the 

injectivity of g (A), we set 
f(A)=g(A)-1(fg)(A), 

with domain given by 

D(f(A)) = x e X : (fg)(A)](x)eD(A)nR(A)] 

It turns out that f(A) is a closed operator and that D(A) NR(A) C D(f(A)), so that 

f(A) is densely defined. Moreover this définition is consistent with (3.5) in the case 

when F G HZ°(Y,Q). Note however that f(A) may be unbounded in gênerai. 

Theorem 3.3. — (153]? [21]) Let 0 < LU < 0 < TT and let A be a sectorial operator of 

type LU on X with dense range. Then f(A) is bounded for any f G H^ÇEQ) if and 

only if A admits a bounded H°°(Y,Q) functional calculus. In that case, we have 

l l / ( A ) | | < i q / i u , , F EH°° '6 

where K is the constant from (3.7). 
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We also recall that the above construction comprises imaginary powers of sectorial 

operators. Namely for any s G M, let fs be the analytic function on C \ R_ defined 

by f8(z) = zls. Then fs belongs to H00^) for any 0 G (0, TT), with 

(3.10) ll/*l|oo,* = e"-l. 

The imaginary powers of a sectorial operator A with dense range may be defined by 

letting Als — fs(A) for any s G M. In particular, A admits bounded imaginay powers 

if it has a bounded H°°ÇEQ) functional calculus for some 0 (see [21, Section 5]). 

Remark 3.4. — It follows e.g. from [21, Theorem 3.8] that if A is a sectorial operator 

on a reflexive Banach space X , then X has a direct sum décomposition 

X = N(A)@R(A). 

Hence A has dense range if and only if it is one-one. Moreover the restriction of A 

to R(A) is a sectorial operator which obviously has dense range. Thus changing X 

into R(A), or changing A into the sum A + P where P is the projection onto N(A) 

with kernel equal to R(A), it is fairly easy in concrète situations to reduce to the case 

when a sectorial operator has dense range. 

Another way to reduce to operators with dense range is to replace an operator A 

by A + e for s > 0 and then let e tend to 0. Indeed, let A be a sectorial operator of 
type UJ on X and observe that for any £ > 0, A + e is an invertible sectorial operator 
of type UJ. In fact it is easy to deduce from the identity 

zR(z,A + e) z 
z — e. 

(z - e)R(z - e,A) 

that the operators A + e are uniformly sectorial of type UJ, that is, for any 0 G (u;, TT) 

there is a constant KQ > 0 not depending on e > 0 such that 

(3.11) zR(z, A + e) <K6j z e C '0 e>0. 

The following well-known approximation lemma will be used later on. We include a 
nroof for the convenience of the reader. 

Lemma 3.5. — Let A be a sectorial operator of type UJ on a Banach space X and let 

6 G ((J,7r) be an anale. Then A admits a bounded H°° '0 functional calculus if and 
only if the operators A + e uniformly admit a bounded H°° functional calculus, 

that is, there is a constant K such that \\f(A + s)\\<K\\f\Uefor any f E Hq° '0, 
and any £ > 0. 

Proof. — To prove the 'only i f part, assume that A admits a bounded H°° 

functional calculus and let UQ : Hçf e, —» B(X) be the resulting bounded 
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homomorphism. Let e > 0 and let / be an arbitrary élément of HZ0 e We define 

a function h on 6 by letting 

h(z) = (A+e)-f(e) 
h(z) 

l + z 
z e 

It is easy to check that h belongs to Hq° '6 , and that h(A) = f(A+e)-f(e)(l+A)-1. 

Moreover 

\\h\Ue < Ce\\f\Ue, 

for some constant Ce only depending on 6. Then we have 

1 1 / ( ^ + ^ ) 1 1 <\\h{A)\\ + |/(e)|||(l + A)-1\\ 

< | | ^ | | | | / l | |OO,E + ||/||OO,e||(l + ^)-1 | | 

^(II^HC + lKi + A ) - 1 ! ! ) ! ! / ! ! ^ . 

This shows the desired uniform estimate. 

To prove the ' i f part, first observe that for any z ^ 
UJ 1 

R(z,A + e) converges to 
R(z,A) when s —• 0. Thus given any / G Hçf , we have 

lim \\f(A + e) - / ( A ) | | = 0 

by (3.5), (3.11), and Lebesgue's Theorem. This concludes the proof. 

3.B. Completely bounded H°° functional calculus 

We will introduce 'completely bounded versions' of sectoriality and H 00 functiona 

calculus for operators acting on noncommutative Lp-spaces. Let (A4, r) be a semifinite 

von Neumann algebra, let 1 < p < oo, and let X = LP(M). We will use the space 

Y = Sp[Lp(M)} 

introduced in paragraph 2.B, and we recall from Lemma 2.1 that Sp (g) X is a dense 

subspace of Y. Throughout we will use the following two simple facts. First, for any 

£ G (Sp)*i £ (g) Ix (uniquely) extends to a bounded operator 

Ç®Ix: Sp[Lp{M)) —> Lp{M). 

Second, if y G SP[LP(M)} is such that (£,®Ix)y = 0 for any £ G (5P)*, then y = 0. 

We simply write / for the identity operator on Sp. Let A be a closed and densely 

defined operator on X = LP(M). We claim that the operator 

I® A: SP®D{A) -^Sp[Lp{M)} 

is closable. Indeed let (yn)n>o be a séquence of SP®D(A) converging to 0 and assume 

that (/ <g) A)yn converges to some y G Y. Then for any £ G (Sp)*, (£ 0 Ix)Vn belongs 

to -D(i4) and we have 

(£ ® /x)(/ ® A)y (£ ® /x) ( / ® A)yn — • (Ç®Ix)y. 
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On the other hand, we have (£ ® Ix)yn —» 0- Since A is closed, this implies that 
(£,®Ix)y = 0- Since £ was arbitrary, we deduce that y = 0. This proves the claim. 

The closure oî I ® A on SP\LP(M)} will be denoted by 

I®A. 

Note that if A = T: LP{M) — LP(M) is a bounded operator, then 7<g)T is bounded 

if and only if T is completely bounded, with ||T||C5 = ||^S^H (see paragraph 2.D). 

Lemma 3.6. — Let A be a closed and densely defined operator on X, and let A — 

on Y. 

(1) For any £ G {Sp)* and any y G D(A), (£®Ix)y belongs to D(A) and 

(3.12) A(t®Ix)y = (£®Ix)Ay. 

(2) We have 

p(A) = z G p(A) : R{z,A) is completely bounded 

Moreover, R(z,A) — I<g)R(z,A) for any z G p(A). 

Proof — Part (1) is proved by repeating the argument showing that I(g>A is closable. 

To prove (2), let z G p(A) and let £ G (Sp)*. By part (1), (z - A)(Ç®IX) and 

(€<8>Ix)(z — A) coincide on D(A), hence 

Ç®Ix = (z-A)(Ç®Ix)R(z,A). 

We deduce that for any e G Sp and any x G X, we have 

(3.13) (£, e)x = {z- A)(Ç®Ix)R{z, A){e ® x). 

Consider a pair (e,£) verifying (£, e) = 1, and define Rz : X —* X by 

Rz(x) = (£®Ix)R(z,A)(e®x), x e X. 

It follows from above that Rz is valued in D(A) and that (z — A)RZ — Ix- Further it 

is clear that Rz(z — A) = Id{A)- This shows that z G p{A), with R(z,A) = Rz. Now 

(3.13) can be rewritten as 

(£, e)R(z, A)x = (£®Ix)R(z, A)(e <g> x), eeSp, £ E ( S p ) * , x e x . 

This shows that e (g) ^4)x = *4)(e 0 x) for any e G Sp and any x G X. Hence 

R(z.A) is completely bounded and I®R(z,A) = R(z,A). 

Conversely, let z G p(A) such that R(z,A): X —+ X is completely bounded, and 

consider 1ZZ = I<8>R(z, A) : Y —> Y. Let ?/ G D(*4). By définition of this domain, 

there is a séquence (yn)n>i m Sp 0 D(A) such that yn y and (/ 0 A)yn —» *4Î/. It 

is clear that 7^z(z — *4)?/n = yn for any n > 1 and passing to the limit we deduce that 

llz{z - A)y = y. 
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On the other hand, let y G Y and let u = 1Zzy. Let (yn)n>i be a séquence in 
SP®X converging to y, and let un = (I ®R(z, A))yn for any n > 1. Then un belongs 
to Sp (g) D(A) and un —> Moreover 

( J (g) A)un = {I®AR(z,A))yn {I®AR(z,A))y. 

Hence u = Uzy G £>(.4), with A1Zzy = (I®AR(z, A))y. This shows that 1ZZ is 

valued in D(A) and that (2 — A)Rzy — y for any y e Y. Thèse results show that 

zep(A). • 

Définition 3.7. — Let A be a sectorial operator of type ou G (0, TT) on X = LP(M). 

(1) We say that A is cb-sectorial of type LU if I<g>A is sectorial of type LU on 

Sp[Lp(M)\. 

(2) Assume that (1) is fulfilled, and let 0 G (LU,TT) be an angle. We say that A ad­

mits a completely bounded H°°(EQ) functional calculus if I<g>A admits a bounded 

TTOC 
e functional calculus. 

Proposition 3.8. — Let A be a sectorial operator of type LU G (0, TT) on X — LP(M). 

(1) A is cb-sectorial of type LU if and only if R(z1A) is completely bounded for any 

z e C 'UJ and for any 6 £ (LU^TT) there is a constant KQ > 0 such that 

\\zR{z,A)\\ch<Ke, z e C <6-

(2) Assume that A is cb-sectorial of type LU, and let 0 > LU. For any f G HQ°ÇEO), 

the operator f(A) is completely bounded and I®f(A) = f(I®A). Further A 
admits a completely bounded H°° '0, functional calculus if and only if there is 

a constant K > 0 such that 

| | /04)||c6<#||/ | |oo,«, / G HZ" 6 
(3) Assume that A has dense range and is cb-sectorial of type LU. Then I®A hat 

dense range and for any 6 > LU, we have 

m (A) = / ( / ( 8 )A) , f eH°° e 

Proof. — Parts (1) and (2) are straightforward conséquences of Lemma 3.6 and (3.5). 

Assume that A has dense range and is cb-sectorial of type LU. and let A = I®A. 
Its range contains Sp 0 R(A), hence it is a dense subspace of Y. Let / G H00 ^6 
for some 0 > LU. It is clear that the two operators f(A) and I®f(A) coincide on 

Sp (g) R(g(A)). To prove that they are equal, it suffices to check that this space is a 

core for each of them. Since R(g(A)) is a core for f(A) and I®f(A) is the closure of 

/ (g) f(A) : Sp (g) D(f(A)) F, we obtain that Sp (g) R{g(A)) is a core of ï®f{A). 

Next, let y G D(f(A)), and let (gn)n>i be the séquence defined by (3.8). By 

Lemma 3.2, gn(A)y converges to y when n —> oo, and we also have 

f(A)gn(A)y = gJA)f(A)y f(A)i when n —» oo. 
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Now let (yk)k be a séquence of Sp 0 X converging to y. For any fixed n > 1, gn(A)yk 

belongs to Sp 0 R(g(A))1 and we both have 

9n(A)yk —> gn(A)y and f(A)gn(A)yk —> /M)^n(^)y 

when /c —> oo. 1ms proves that bF 0 /t(#(/lJJ is a core ol j(A) and complètes the 
proof. • 

We now turn to the spécial case of sectorial operators defined as négative generators 

of semigroups. Let (Tt)t>o be a bounded co-semigroup on X — LP(A4). We say 

that (Tt)t>o is a completely bounded semigroup if each Tt is completely bounded 

and supt>0 ||7t||cfe < oo. In this case, each / 0 Tt extends to a bounded operator 

I®Tt : Sp[Lp(j\4)] —» Sp[Lp(j\4)] and a standard equicontinuity argument shows that 

(I®Tt)t>o is a bounded cg-semigroup on Y = SP[LP(M)}. 

Lemma 3.9. — Let (Tt)t>o be a completely bounded c$-semigroup on LP{M) and let 

A dénote its négative generator. Then I&A is the négative generator of (I<g>Tt)t>o, 

hence A is cb-sectorial of type | . 

Proof. — We let A = I<g)A, and we let B dénote the négative generator of (I®Tt)t>o 

on Y. Applying the Laplace formula (3.2) to (Tt)t>o and to (I®Tt)t>o, we see that 

/ 0 ( l - f^ 4 ) - 1 and (l + i3)_1 coincide on SP®X. According to Lemma 3.6, this implies 

that - 1 e p(A) and that (1 -h ̂ l)-1 = (1 + S)"1. Thus A = B. • 

Example 3.10. — Let 1 < p < oo, and let (Tt)t>o dénote the translation semigroup 
on LPCR), that is, (Ttf)(s) = fis — t) for s G M, t > 0. Its négative generator is the 
dérivation operator A = d 

dt 
with domain equal to the Sobolev space W 'P(R). More 

gênerally for any Banach space Z , we can define the translation semigroup (Tf)t>o 

on LP(W:Z) bv the same formula, and its négative generator is the dérivation Az 
with domain W1'P(R; Z). It is clear that Az coincides with A®IZ on LP(R) 0 Z. We 

noticed in Remark 2.13 that we have a canonical identification LP(R; Sp) = SP[LP(M)]. 

Hence it follows from Lemma 3.9 that the operator / 0 d 
dt 

coincides with the dérivation 

operator on LP(R'1SP), 

It turns out that for anv 9 > 
2 

, the operator Az has a bounded H00 <<9 functional 

calculus if and only if Z is a UMD Banach space (see [20, 32, 671). Thus if 1 < p < oo, 
the operator d 

dt 
has a completely bounded H°° e functional calculus for any 0 > 7T 

2 
because Sp is a UMD Banach space. 

3.C. Dilations 

We will need the following resuit due to Hieber and Prùss [32]. 

Proposition 3.11. — [̂32]̂ ) Let Z be a UMD Banach space. Let (Ut)t be a c^-group of 

isometries on Z', and let —B dénote its infinitésimal generator. Then B has a bounded 

9 functional calculus for any 6 > 
2 

More précisely there exists for any 0 > TT 
2 
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a constant Cz e only depending on 0 and Z such that < C^AH/Hoo e for anV 

G H§° 
e 

es 

Indeed using a transference technique, it is shown in [32] that for any B as above 
and any / G H§° e) one has 

\\f(B)\\ < \\f(Az)\\, 

where AZ is the dérivation operator on L2(R ;Z) discussed in Example 3.10. Since 

Az has a bounded H°° <<9 functional calculus for any 0 > TT 
2 

, this yields the resuit. 

Extending previous terminology, we say that a co-group (Ut)t on some noncommu­

tative Lp-space X is a completely isometric co-group if each Ut : X —>• X is a complète 

isometry. In this case, (I®Ut)t is a co-group of isometries on 5P[X]. 

Proposition 3.12. — Let \ < p < oo, and let M. be a semifinite von Neumann algebra. 

Let (Tt)t>o be a contractive co-semigroup on LP(M.) and let —A dénote its infinitési­

mal generator. Assume that there exist another semifinite von Neumann algebra M!, 

a co-group (Ut)t of isometries on LP(M'), and contrative maps J : LP(M) —• LP(M') 

andO: LP(M') -> LP(M) such that 

(3.14) Tt = QUtJ, t > 0. 

Then A admits a bounded H°° '6 functional calculus for any 0 > 7T 
2 

If further, 

(Ut)t ^ a completely isometric co-group and J and Q are completely contractive, then 
(Tt)t>o is completely bounded and A admits a completely bounded H°° >e functional 

calculus for any 0 > TT 
2 

Proof. — Let —B dénote the infinitésimal generator of (Ut)t on Lp(j\4'). Let z be a 
complex number with Ke(z) < 0. According to the Laplace formula (3.2), we have 

R(z,A) = -
O 

•oo 
etzTt dt and R{z,B) 

•oc 

0 
etzUtdt. 

Hence our dilation assumption (3.14) yields 

R(z,A) = QR{z,B)J. 

Then for any 0 > 
2 

and any / G we have f(A) = Qf(B)J, by (3.5). 

Therefore we have 

\\f(A)\\ < I I Q I I I I J I I I I f r B ) L L 

The Banach soace Lp(M') is UMD. hence B has a bounded '6 functional 

calculus bv Proposition 3.11. Thus A also has a bounded H°° Q functional calculus. 

If J and Q are completely contractive, J (g) J and I (g) Q extend to contractions 

I®J: Sp[Lp(M)} —> Sp[Lp(M')} and I®Q: Sp[Lp{M')} Sp[Lp(M)}. 
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If we assume that (Ut)t is a completely isometric group, we obtain that (Tt)t>o is a 
completely contractive co-semigroup and we have 

I®Tt = (I®Q)(I®Ut)(I®J\ t > 0. 

Since SP[LP(A4)] and Sp[Lp(A4f)] are noncommutative Lp-spaces, it follows from 
the first part of the proof and Lemma 3.9 that A — I®A has a bounded H0(1 e 
functional calculus for any 0 > 7T 

2 

Let M ~ L°° be a commutative von Neumann algebra and let (Tt)t>o be a CQ-
semigroup of positive contractions on Lp Fendler showed in [27] that there exist a 
commutative Lp-space Lp , a co-group {Ut)t of isometries on Lp and contrac­
tive maps J: Lp Lp and Q : Lp LP such that Tt — QUtJ for any 
t > 0. (This is a continuous version of Akcoglu's dilation Theorem [1, 2].) Applying 
Proposition 3.12, we deduce that A admits a bounded functional calculus for 
any 6 > 7T 

2 
provided that —A générâtes a positive contraction cg-semigroup on Lp 

for 1 < p < oo. This resuit is due to Duong [24] (see also [20]). However it is still un-
known whether an analog oi Mendier s Iheorem holds on noncommutative iv^-spaces, 
and this is a significant although interesting drawback for the study of completely 
positive contractive semigroups on noncommutative Lp-spaces. See Remark 5.9 for 
more on this. 
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C H A P T E R 4 

R A D E M A C H E R B O U N D E D N E S S A N D R E L A T E D 

N O T I O N S 

4.A. Column boundedness and row boundedness 

Rademacher boundedness [7, 19] has played a prominent rôle in récent develop-

ments of H°° functional calculus, see in particular [41], [79], [78], [47]. On non­

commutative ZAspaces it will be convenient to consider two natural variants of this 

notion that we introduce below under the names of column boundedness and row 

boundedness. 

Let X be a Banach space and let T C B(X) be a set of bounded operators on X. 

We say that T is Rad-bounded if there is a constant C > 0 such that for any finite 

families T i . . . . . Tn in J7, and x\,..., xn in A , we have 

(4.1) 
T7 

k=l 

£kTk(xk) 
Rad(X; 

C 
n 

k=l 
£k Xk 

Rad(X) 

In this définition, the norms || ||RAD(X) are given by (2.20). 

Let (A4, r) be a semifinite von Neumann algebra, let 1 < p < oc, and assume that 
X = Lp(M). We say that a set T C B(LP(M)) is Col-bounded (resp. Row-bounded) 
if there there is a constant C > 0 such that for any finite families T\,..., Tn in T, 

and x i , . . . , xn in Lp(j\4), we have 

(4.2) 

k 

Tk(xk)*Tk(xk) 
i 
2 

LP(M) 
c 

k 

xkxk 
1 
2 

\LP(M) 

(4.3) resp. 
h. 

Tk(xk)Tk(xkY 
i 
2 

LP(M) 
c 

k 

xkxt 
1 
2 

LP{M) 

The least constant C satisfying (4.1) (resp. (4.2), resp. (4.3)) will be denoted b; 

Rad(.F) (resp. Col(jF), resp. Row(jF)). Obviously any Rad-bounded (resp. Col 

bounded, resp. Row-bounded) set is bounded but the converse does not hold tru 

except on Hilbert space. 
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It follows from the noncommutative Khintchine inequalities (2.21) and (2.22) that if 

a set T C B(LP(M)) is both Col-bounded and Row-bounded, then it is Rad-bounded. 

Moreover thèse three notions coincide on commutative Lp-spaces (see Remark 2.13). 

However this is no longer the case in the gênerai noncommutative setting. Indeed let 

T — {T} C B(LP(M)) be a singleton, and let H be an infinité dimensional Hilbert 

space. Then T is Rad-bounded with Rad(JF) = ||T|| whereas T is Col-bounded if and 

only ÎÎT<8)IH extends to a bounded operator on LP(A4] HC). Indeed this follows from 

(2.10). Likewise T is Row-bounded if and only if T<g)7/j extends to a bounded operator 

on LP(M; HR). Thus applying (2.36) and (2.37), the set { T } is both Col-bounded 

and Row-bounded if T is completely bounded. 

It turns out that if p ^ 2, one may find T: LP{M) -> LP{M) such that T (g> IH 

is bounded on the column space LP(M.;HC), but T (g) IH is not bounded on the 

row space Lp(j\4\HR), see Example 4.1 below. Thus there are sets T which are 

Rad-bounded and Col-bounded without being Row-bounded. Similarly, one may 

find subsets of B(LP(A4)) which are Rad-bounded and Row-bounded without being 

Col-bounded, or which are Rad-bounded without being either Row-bounded or Col-

bounded. 

Example 4.1. — Let H be an infinité dimensional Hilbert space and let 1 < p ^ 2 < 

oo be any number. For simplicity we write SP[HC] and SP[HR] for LP(B(£2); HC) and 

LP(B(l2); HR) respectively. It is well-known that there exists an operator T: SP —> 

Sp whose tensor extension T 0 IH extends to a bounded operator on SP[HC] but 

T 0 IH SP[HR] —» SP[HR] is unbounded. We provide an example for the convenience 

of the reader not familiar with matricial and operator space techniques. 

We assume that p < 2, the other case being similar. We regard éléments of Sp as 

infinité matrices in the usual way and we let Eij dénote the standard matrix units. 

Let T: Sp Sp be defined by T(EXj) = E3l for any j > 1 and T(EtJ) = 0 for any 

i > 2 and any j > 1. Thus T — U o P, where U : Sp —» Sp is the transpose map, and 

P: Sp —• Sp is the canonical projection onto the space of matrices which have zéro 

entries except on the first row. It is easy to check that ||P||C6 = 1 and that \\U\\ = 1. 

Hence ||T|| = 1. We will show that 

(4.4) | | T®/H: SP[HC] ^ SP[HC}\\ = 1. 

We may assume that H = £2, and we let (ek)k>i dénote its canonical basis. Since P 

is completely contractive, the operator P <S> IH'- SP[HC] —» SP[HC] is contractive, by 

(2.36). Hence it suffices to show that U 0 IH is contractive on Spanj^ij ^ e ^ : j,k > 

1} C Sp (g) H. Let {c*jk)j,k>i be a finite family of complex numbers and let 

n = 
3,k 

ttjkEin <g) et. 
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Applying (2.10), we flnd that 

\m\sp[HC] = 
j,k:m 

&jk ^mk-Ejm 2 
SP 

Since 
n.k.m \m\sp[HC] j,k aJk ^kj 

* 
j,k aJk , we deduce that 

\W\\sp[HC) 
i,k 

OLjk Ekj 
Sp 

Applying the transpose map [/, we have 

(U ®IH)u 
i,k 

ajkEji g) eu. 

Then using (2.10) again we deduce that 

\\{U ®IH)U\\sp[HC) : 
3,k 

\ajk? 
i 
z 

3,k 
Oijk Ek< 

S2 

Since p < 2, we deduce that ||(?7 (g IH)U\\sp[HC] < IMISP[Hc]5 which proves (4.4). 

Now essentially reversing the above arguments, we see that if T g) J # extends to a 
Dounded operator on Sp[Hr] with norm < K, then for any finite family (ctjk)j,k>i of 
3omplex numbers, we have 

3,k 
ajk Ekj 

Sp 
K 

i,k 
otjk Ekj 

s2 

which is wrong. 

Throughout the rest of this chapter, A4 is a semifinite von Neumann algebra and 
we fix some 1 < p < oc. We will require the following lemma which extends [19, 
Lemma 3.2 . 

Lemma 4.2. — Let T C B(LP(M)) be a set of bounded operators, let I be an interval 
o/M, let C > 0 be a constant, and let 

r = 
n 

f(t)R(t)dt R: T -> T is continuous, f € L (I;dt), and 
i 

\f(t)\dt<C 

(1) If T is Rad-bounded then T is Rad-bounded with Rad(T) < 2CRad(Jr). 
(2) If T is Col-bounded (resp. Row-bounded), then T is Col-bounded (resp. Row-

bounded) with Col(T) < CCol[T) (resp. Row(T) < CRow{T)). 

Proof. — For the first assertion, recall that by [19, Lemma 3.2], the closed absolute 
convex hull aco{F) of T is Rad-bounded with Rad(ôcô(J7)) < 2Rad(^). A standard 
approximation argument shows that c 

T C acoiJ7). which proves the resuit. The 
same proof yields the second assertion, except that the factor 2 does not appear. 
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It was observée! in [78, 4.a] that given a measure space H, an interval I c i , and 

a strongly continuons function <3>: / —» £?(LP(£)), then the set : t e l } is 
Rad-bounded if and only if there is a constant C > 0 such that 

$(t)u(t)\ dt 
i 
2 C ix(£)| dt 

i 
2 

for any measurable function u: I —» Lp belonging to Lp ;£2C0) The aim of 

Proposition 4.4 below is to extend this resuit to our noncommutative setting. We will 

need a standard approximation procédure that we brieffy recall (see e.g. [23, III.2 

Lemma 1] for détails). 

Let (17, fi) be a a-fmite measure space. By a subpartition of 17, we mean a finite set 

TT = {Ii,..., Im} of pairwise disjoint measurable subsets of 17 such that 0 < fi(li) < oc 

for any 1 < i < m. Let Z be a Banach space and let TT be a subpartition of 17. We 

may define a linear mapping on Lp(17; Z) by letting 

(4.5) EII() 
m 

i=l 

1 

u(Ii) u(t)dfi(t) Xk ueLp(Q;Z) 

Here xi dénotes the indicator function of I. Then the mapping En : Lp(17; Z) —» 

LP(12;Z) is a contraction. Further if subpartitions are directed by refinement, then 

we have 

(4.6) lim 
TT 

Enu — u P 0, u e Lp(tt:Z). 

The use of the same notation En for ail Z and ail p should not create any confusion. 
The following elementary lemma is easy to deduce from (4.6) and its proof is left to 
the reader. 

Lemma 4.3. — Let (17, /i) be a a-finite measure space. Then for any a, & G L2(17) and 

for any c e L°°(17), we have 

cabda lim 
TT 

E7V(c)E7T(a)En(b) DFI. 

Let (17,/i) be a cr-finite measure space. If 17 —• B(LP(M)) is any bounded 

measurable function, we may define a multiplication operator T$ : L2(17; LP(A4)) —• 

L2(17;LP(A4)) by letting 

(T<,(u))(t) = <£>(t)u(t), ue L2(17;LP(M)). 

Proposition 4.4. — Let (17,/I) —» B(Lp(Ai)) be a bounded measurable function and 

consider the bounded set 

T' = 
1 

qdd t 
x(J) < oc: J C/x(J) < oc: J C fi, 0 < /x(J) < oc C£(LP( .M)) . 
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(1) If the set T is Col-bounded, then 

T$ : L P ( X ; L 2 ( 0 ) c ) LP(M; L2(Q)C) boundedly. 

(2) If the set T is Row-bounded, then 

T<$> : LP(M; L2(0)r) —+ LP(M; L2(0)r) boundedly. 

(3) If the set T is Rad-bounded, then 

T * : LP(M;L2(Q)rad) LP(M;L2(Çt)rad) boundedly. 

Proof. — We first assume that T is Col-bounded and we shall prove (1) by using 

duality. We let p' — p/(p — 1) be the conjugate number of p. Then we let u G 

LP(M) 0 L2(Q) and v G Lp' (M) ® L2(n). They may be written as 

u 

k 
Xk 0 dk and v 

v 

y3®b3. 

for some finite families (ak)k C L2(ft), (xk)k C LP(M), (b3)3 C L2(ft), and (y3)3 C 

Lp'(M). We claim that there is a constant K > 0 not depending on and v such 

that whenever TT is a subpartition of we have 

(4.7) 

k,j v 
E„((<ï>(.)xk,y3))En(ak)En(b3) K\\u\\LP(M;L2(n)c) \\v\\Lp'(M;L2(n)r)-

Taking this for granted for the moment, we deduce that 

(T*(u),v) = (<$>(t)u(t),v(t)) dfi(t) 

k,j k 
mt)xk,y,)ak{t)bAt) da(t) 

lim 
7T 

l 'fi 
En ( ($(• )xk, y3 ))En {ak)En (b3 ) dh 

bv Lemma 4.3. It therefore follows from (4.7) that 

(T^(u),v)\ < K\\u\\LP{M.L2{N)C) \\v\\LP>(M.L2(Q)ry 

By Lemma 2.10, we deduce that maps L2{Q) 0 LP(M) into LP(M] L2(tt)c) and 

that 

T * : I 7 ( X ; L 2 ( f t ) c ) L?(M;L2(tt)M < K 
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To complète the proof of (1), it therefore remains to prove (4.7). We let E = En 

along the proof of this estimate and we assume that E is defined by (4.5). Then we 

have 

k 
E({$(.)xk,y3))E(ak)E{b3) 

h 

m 

i=l 

1 

Mi)2 
LP{AA-HC) 

g 
ak 

g 
j 

m 

k 

1 

Mi)2 u i, 
u V 

Let (ek)k>i be an orthornormal family in some Hilbert space H. Owing to (2.14), we 

deduce that 

h k 
E((<S>(-)xk,y3))E(ak)E(b3) 

m 

i=l 

1 

Mi) 
3 
2 U 

k 
k 

k k 

LP{AA-HC) 
m 

I=l 

1 

Mi) 
i 
2 Ii 

V ei 
LP'(M;Hr) 

Thus if we let K = Col(.F) dénote the column boundedness constant of T, we obtain 

that 

h Q 
E((^)xkly3))E{ak)E(b3) 

< K 
rn 

i=l 

1 
n( TA i 2 

U 

LP(M;Hc) 

1 i=l 

m i 

i 
2 

V 
Lp'(M;Hr) 

Now recall that E — En: L2(Q) —» L2(Q) is a contraction. Equivalently, the linear 

mapping a: L2(fi) —-> H defined by letting 

a (a) = 
m 

i=l 

1 

Mi) 
i 2 U 

a m 

for any a G L2(Çt) is a contraction. Since 

m 

2=1 

1 

(rdd) i 2 l 
m m (ILP(g)(j)(u), 

it therefore follows from Lemma 2.4 that 

(4.8) 
m 

i=l 

1 

Mi) 
i 
2 m 

U o 
LP(M;Hc) 

\\U\\LP(M;Hc)-
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Similarly, 

(4.9) 
m 

2=1 

1 

Mi) 2 
V 

Lp'(M;Hr) 
Wv\\LP'(M\HR)I 

whence (4.7). 

The proof of (2) is identical to that of (1) and may be omitted. To prove (3), 
assume for instance that 1 < p < 2, the other case being similar. Let ix, v and 
E = En be as in the previous computation. Arguing as above, we find that 

E(m-)xk,yj))E(ak)E(b3) 

m 

2=1 

1 

Mi) 2 Ii 
U 

s LP(M;Hr+c) 
m 

2=1 

1 

Mi) i 
2 

V s 
Lp'{M;Hrnc) 

Then it follows from (2.22) that 

m 

2=1 

1 

Mi) 3 
2 s 

s 
Ii 

U s 
LP(M;Hr+c) 
Rad(J-) 

Cl 

m 

2=1 

1 

Mi) 2 d 
U ei 

LP(M;Hr+c) 

Hence using Lemma 2.4 as in the proof of (1), we deduce the following inequality 

K.J 
EJ(*(.)xk,yj)) E7r(ak)En(bJ) 

Rad(^) 

Ci 
\W\\LP(M;L2(n)r+c) \\V\\LP'(M:L2(Q)^r^)I 

which is the analogue of (4.7). The rest of the proof of (3) is identical to that of (1), 
appealing to Remark 2.11 in due place. • 

Remark 4.5. — Let <3> and T be as in Proposition 4.4. It follows from the above proof 
that if T is Col-bounded, then the norm of : LP{M; L2(tt)c) -> LP(M;L2(Q)C) 
is less than or equal to C o l ^ ) . Similar comments apply to the row case and to the 
Rademacher case, up to absolute constants. 

Remark 4.6. — Let Q —> B(LP(M)) be a bounded measurable function, and as­
sume that T<$> maps Lp[M] L2(0)c) into itself boundedly. If u G LP(M; L2(Q)c) is 
a measurable function (in the sensé of Définition 2.7), then T&u also is a measur­
able function, namely [T<$>u](t) — $(t)u(t). Indeed this is obvious if p < 2. Then 
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if p > 2, let us consider y G Lp (A4) and b G L2(Q). Applying Lemma 2.8 with 

v(t) = [T*(y ® b)} (t) = b(t)$(t)*y yields 

(y (g) b,T<^u) = ±*\y®b),u) 
p 

(*(t)*yMt))b(t) dfi(t) 

o 
{y^(t)u(t))b(t)dfi(t), 

and this proves the claim. 

4.B. Col-sectorial, Row-sectorial, and Rad-sectorial operators 

Following [41], we say that an operator A on some Banach space X is Rad-sectorial 

of Rad-type LU if A is sectorial of type eu and for any 0 G (ou, TT), the set 

(4.10) {zR(z, A) : z G C \ 
'0 i 

is Rad-bounded. This is a strengthenins; of (3.1), which says that the latter set merely 
has to be bounded. 

Next if X = LP(A4), we say that A is Col-sectorial (resp. Row-sectorial) of Col-

type (resp. Row-type) UJ if the set in (4.10) is Col-bounded (resp. Row-bounded) for 

any 0 G (ou, TT). If A is both Col-sectorial of Col-type LU and Row-sectorial of Row-type 

LU, then is is Rad-sectorial of Rad-type LU. 

In this paragraph, we establish a séries of simple results concerning thèse notions. 

Lemma 4.7. — Let 1 < p,p' < oo be conjugate numbers, and let A be a sectorial 

operator on Lp(Ai). Let LU G (0, TT) be an angle. Then A is Col-sectorial of Col-type LU 

on LP(AA) if and only if A* is Row-sectorial of Row-type LU on Lp (Ai). Moreover A 

is Rad-sectorial of Rad-type LU on Lp(Ai) if and only if A* is Rad-sectorial of Rad-type 

UJ on Lp'(AA). 

Proof. — Let T C B(LP(M)) be a set of operators, and let JF* = {T* : T G J7} C 

B(LP (A4)) be the set of its adjoints. Using (2.15), it is easy to see that T is Col-

bounded if and only if JF* is Row-bounded. If A is sectorial of type UJ on LP(A4), 

then v4* is sectorial of type LU on Lp (A4), and we have R(z,A)* = R(z,A*) for any 

z G C \ Ew. We deduce that A is Col-sectorial of Col-type LU if and only if A* is 

Row-sectorial of Row-type LU. The proof of the 'Rad-sectorial' resuit is similar. • 

Lemma 4.8. — Let 0 G (0, TT) be an anale, and let U : <e B(LP(A4)) be a strongly 

continuons bounded function whose restriction to '6 is analytic. If the set {U(z) : z G 

q 9 is Col-bounded {resp. Row-bounded, resp. Rad-bounded), then \U(z) : z G 'G 
also is Col-bounded (resp. Row-bounded, resp. Rad-bounded) 

Proof. — In the Rademacher case, this resuit is proved in [79, Proposition 2.8]. The 

proofs for the other cases are identical, using Lemma 4.2. • 
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Lemma 4.9. — Let (Tt)t>o be a bounded CQ-semigroup on LP(A4) with infinitésimal 

generator —A, and assume that A is sectorial of type LU G o, TT 
2 

Then A is Col-

sectorial of Col-type UJ if and only if for any anale a G '0 , 7T 
2 — UJ the set {Tz : 

z G a C B(LP{M)) is Col-bounded. The same resuit holds with Col-boundedness 
replaced by Row-boundedness or Rad-boundedness. 

Proof. — This resuit is an analog of Lemma 3.1. Again it is proved in [79, Theo-

rem 4.2] in the Rademacher case, and the proofs for the other cases are identical. • 

Remark 4.10. — Let A be a sectorial operator of type u G (0, TT) on some Banach 

space X. For any positive real number a > 0, we let Aa dénote the corresponding 

fractional power of A. If auo < TT, then Aa is a sectorial operator of type auu (see e.g. 

[5, Proposition 5.2]). It is well-known to specialists that with the same proof, one 

obtains that Aa is Rad-sectorial of Rad-type auj if A is Rad-sectorial of Rad-type UJ. 

Moreover if 6 and aO both belong to (0,7r), if / G H§° <a0 and if fa G if0°° e, is 

defined by fa(z) = f(za), then we have fa(A) = f(Aa). Thus Aa has a bounded 

aO functional calculus provided that A has a bounded H°° '0 functional 

calculus. 

Now assume that X = LP(M) is a noncommutative Lp-space. We observe that 

mimicking again the proof of [5, Proposition 5.2], and using Lemma 4.2 (2), we have 

that Aa is Col-sectorial (resp. Row-sectorial) of Col-type (resp. Row-type) equal to 

OLUJ if A is Col-sectorial (resp. Row-sectorial) of Col-type (resp. Row-type) equal to UJ. 

In [41, Theorem 5.3, (3)], Kalton-Weis showed that an operator with a bounded 

i7°°(£6)) functional calculus on a Banach space X is Rad-sectorial of Rad-type 6 

provided that X satisfies a certain géométrie property called (A). According to [41, 
Proposition 3.2], any UMD Banach space X satisfies this property. We deduce the 

following statement. 

Theorem 4.11. — Let 1 < p < oo and let A be an operator on LP(M.) with a bounded 

H°°(J2e) functional calculus. Then A is Rad-sectorial of Rad-type 6. 

In the next statement, we establish a variant of the above resuit for Col-sectoriality 

and Row-sectoriality (see also Remark 4.13). 

Theorem 4.12. — Let A be a sectorial operator on LP(M), with 1 < p < oo. Assume 

that A admits a completely bounded 9 functional calculus for some 6 G (0, TT). 

Then the operator A is both Col-sectorial of Col-type 0 and Row-sectorial of Row-

type 0. 

Proof. — We will only show the 'column' resuit, the proof for the 'row' one being the 

same. Given a number v > 0, we wish to show that the set 

qdsf zR(z,A) : z G C 
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is Col-bounded. We consider A = I®A on Y = S ^ L ^ A I )] (see paragraph 3.B). This 

is a noncommutative Lp-space, hence applying Theorem 4.11 we obtain that the set 

rv= zR{z,A) : z e C V 

is Rad-bounded. Now consider x\,..., xn in LP(A4) and 7 \ , . . . , Tn in For any 

finite séquence (£fc)i<fc<n valued in { — 1,1}, we have 

k 

lkj 2 

LP(M) 
k 

(ekxky{skXk) 
i 
2 

Eki 

n 

k=l 

ek Eki 0 X F C 
SP[LP(M)] 

(see Remark 2.3 (3)). Then passing to the average over ail possible choices of ek = ±1 , 

we deduce that 

o 

* 

xkxk 

i 
2 

LP(M) 

n 

k=l 

m Ekl ® ^k 
Rad(SP[LP(M)}) 

Likewise we have 

k 

Tk(xk)*Tk(xk) 
i 2 

LP(M) 

n 

fc=L 

p Tk(xk)*Tk(xk)Tk 
Rad(SP[LP(M)}) 

It therefore follows from Lemma 3.6 (2), that 

k 

Tk(xk)*Tk{xk) 
i 
2 

z , p (A4 ) 
Rad(T^) 

r 
xkxk 

i 
2 

Eki 

This concludes the proof, with Col(T^) < Rad(T^). 

Remark 4.13. — The complète boundedness assumption in Theorem 4.12 cannot be 

replaced by a boundedness assumption. Indeed assume that 1 < p / 2 < oc, let 

LU G (0, TT) be an angle, and assume that A4 = B(£2). According to Example 4.1, we 

have a bounded operator T: LP(A4) —> LP(A4) such that T 0 IH does not extend to 

a bounded operator on LP(M]HC). Shifting T if necessary we may clearly assume 

that cr(T) is included in the open set Then T is invertible and a(T ) C 

Hence there exists a positive number e > 0 such that a(T — E) C 'UJ We let 

A — T 1 — e. Bv construction, A is a bounded and invertible sectorial operator 

of tvpe LU. Hence it admits a bounded H°° e functional calculus for any 6 > LU. 

However R(—e,A) = —T, and {T} is not Col-bounded. Hence A cannot be Col-

sectorial. 

4.C. Some operator valued singular intégrais 

We wish to prove a criterion for the boundedness of certain operator valued singular 

intégrais which will appear both in Chapter 6 and in Chapter 7 below. We shall work 
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on the measure space Çt0 = ^f)- Let K: Q0 X —• B{LP{M)) be a bounded con­
tinuons function. We may define an operator T: L1(Q0; LP(M)) —> F°°(n0; FP(A4)) 
by 

«(5, t)u 
oo 

0 
«(5, t)u(t) dt 

t 
ueL1{Ç}0;Lp{M)). 

Then we say that K,(s,t) is the kernel of T. 
If T maps (L^fto) H L2(ft0)) ® into LP(.M; L2(ft0)c) and if there is a 

constant C > 0 such that \\TU\\LP{M.L2{QQ)C) < C\\u\\LP(M;L2(n0)c) for anv u in 
(L1(^o) H L2(Qo)) ® FP(.M), then T uniquely extends to a bounded linear mapping, 
that we still dénote by 

T: Lp(M'1L2(n0)c) LP(M-L2(n0)c)-

Indeed, (F1 (fî0) H Zr(fîo)) ® LP(M) is dense in LP(A<; LJ(fi)c). Moreover a standard 
approximation argument shows that this extension coincides with the original operator 
T on L1(Oo; LP(M)) H LP(M; L2(^0)c). In this case we simply say that the operator 
with associated kernel K,(s,t) is bounded on Lp(j\A; L2(QQ)C). We define similarly the 
boundedness of T on LP(M; F2(ft0)r), or on L ^ ( X ; L2(^0)rad)-

For any angle G (0,7r), we define 

(4.11) qf sqf F(L4) = Ft(,4 6» and ^ 0 ^ 4 '0 
Let A be a sectorial operator of type LU on LP(M). For any F G i7n° and any 
t > 0, let F(L4) = Ft(,4), where Ft(z) = F(tz). Using Lebesgue's Theorem and 
(3.5), it is not hard to see that the function t h-> Fit A) is continuous and bounded 
on ÇIQ (see also Lemma 6.5 below). Thus for any Fi, F2 G HQ° the kernel 
ft(,s51) — F2(sA)Fi (tA) is continuous and bounded on x ^o- The study of operators 
associated with such kernels for sectorial operators on Hilbert space goes back to [54]. 

Theorem 4.14. — Let A be a sectorial operator of type LU on LP(A4), and let Fi, F2 G 
dsf fsq 

(1) If A is Col-sectorial of Col-type LU, then the operator with kernel F2{sA)F\(tA) 
is bounded on LP(M; L2(Qo)c). 

(2) If A is Row-sectorial of Row-type LU, then the operator with kernel F2{sA)F\{tA) 
is bounded on LP(M; L2(Q0)r). 

(3) If A is Rad-sectorial of Rad-type LU, then the operator with kernel F2(sA)Fi(tA) 
is bounded on LP(M; L2(Qo)rad). 

Proof. — We shall only prove (1), the proofs of (2) and (3) being similar. We let 
6 > LU be such that Fi, F2 G H^ÇEQ) and fix some 7 G (UJ,0). Then applying (3.5) 
and the homomorphism property of the H°° functional calculus, we may write our 
kernel as 

(4.12) F2(sA)F1(tA) 
1 

27T2 . c 
F2(sz)Fi(tz)R(z, A) dz, t > 0, s > 0. 
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We shall apply Proposition 4.4 on the measure space (fi, ji) = (r7, | | ) . Our assump­

tion that A is Col-sectorial of Col-type UJ implies that the set {zR(z,A) : z <G T7} is 

Col-bounded. It therefore follows from Lemma 4.2 that the set 

1 

M) i 
zR(z,A) 

dz 

z 
: I C T7, 0 < /i(7) < oc 

is Col-bounded as well. Hence by Proposition 4.4, the function 

zR(z,A) 

2ixi 

induces a bounded multiplication operator 

( 4 . 1 3 ) 7 * : LP(M;L2(tt)c) LP(M; L2(fl)c). 

Our next goal is to show that we may define bounded linear mappings Si : L2(iïo) —• 

L2(n) and 52: L2(fl) -> L2(Q0) by letting 

( 4 . 1 4 ) S-ia(z) = 
oo 

0 
F1(tz)a(t) 

dt 

t 
a e L2(00); 

( 4 . 1 5 ) S2b(s) = 
r-, 

F2(S2)6(^) 
dz 

z 
6eL2(f i ) . 

First observe that 

( 4 . 1 6 ) K = sup 
t>0 , 

^ i ( ^ ) 
dz 

< oc and SUP 
r«OC 

0 
*l(tz) 

dt 

t 
< oo. 

Indeed, changing z into tz does not change Jr \Fi (tz) | dz , hence K = Jr Fi(z) H? 
Z 

and this number is finite by (3.6). On the other hand, for any z G T 7 \ {0} we have 

•>oo 

0 

F^tz) 
dt 

t 

'OC 

0 

dt 

t 
F1(X) 

dX 

X 

hence K' < K < oo. 

We let a be an arbitrary élément of L2(fio). Then 

»oc 

'0 

Fi(tz)a(t) 
dt 

t 

2 dz 

z 

r7 '0 
FAtz) 

dt 

t 

• on 

0 

Fx(tz) a(t) 2 dt 

t 

dz 

z 
by Cauchy-Schwarz, 

K' 
•oc 

0 

Fx(tz) \a(t) 2 
t 

dz 
KK' 

oo 

n 
\a(t |2 dt 

t 

by (4.16). This shows that (4.14) induces a bounded mapping with 

IISi: L2(fi0) ^ L 2 ( f i ) | | < ^KK>. 
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The proof of the boundedness of S2 is similar. Owing to Lemma 2.4, we may extend 

ILP 0 Si and ILP 0 S2 to bounded mappings 

Si: Lp(M;L2(n0)c) —> LP(M; L2(Q)c) 

and 

S2: LP(M;L2(Q)C) L P ( M ; L2(fi0)c)-

The same computations as above show that ILP 0 S i and ILP 0 S2 also extend to 

bounded operators from L2(fi0; LP(M)) into L2(VL-LP(M)) and from L2{Vt]Lp(M)) 

into L2(VL$\ Lp(M)) respectively. Moreover thèse tensor extensions are given by the 

intégral représentations (4.14) and (4.15). Thus we find that 

( 4 . 1 7 ) S\u(z) 
«oo 

'0 
Fx(tz)u{t) 

dt 

t 
u G L2(fi0; Lp(M)) H LP(M; L2(n0)c); 

(4.18) S\u(z) 
R7 

F2(sz)v(z) 
dz 

z 
v G L2(fi; Lp(M)) H Lp(M; L2{Çt)c). 

Now recall (4.13) and consider the composition operator 

SÏT*SÎ: Lp(M;L2(nQ)c) —* LP(M;L2(Q0)c). 

We claim that F2(sA)F\(tA) is a kernel for this operator, which will conclude the 

proof. To check this claim, we consider some u G (L1(fio) H L2(fi0)) 0 LP(A4). It 

follows from (4.17) and (4.13) that T<^S[u G L2(fi; LP(M)) H LP(M; L2(Q)c) with 

X B Siw] (z) 
1 

2m 

'OC 

0 
F1(tz)zR{z, A)u(t) 

dt 

t 
z g R 7 . 

Hence applying (4.18) with v — T^S\u, we obtain that 

[S2T*Siu](s) 
1 

2TTZ 
F2(sz) 

00 

0 
F1(tz)zR(z, A)u(t) 

dt 

t 

dz 

00 
F2(sA)F1(tA)u(t) 

dt 

t 

by Fubini's Theorem and (4.12). 
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C H A P T E R 5 

N O N C O M M U T A T I V E DIFFUSION S E M I G R O U P S 

In this chapter we will focus on a spécial class of semigroups acting on noncommu­
tative Lp-spaces. Throughout we let (A4,r) be a semifinite von Neumann algebra. 

Let T: Ai —*• A4 be a normal contraction. We say that T is selfadjoint if 

(5.1) T(T(x)y*) =T(xT(yy), x, y&Mf\Li{M) 

In this case, we have 

\T(T(x)y)\ = \T(xT(y*y)\ < M L L L L W I L O O < I K L I L L L Î / I U 

for any x,y in A4 fl Ll{M). Hence the restriction of T to A4 D Ll(M) (uniquely) 
extends to a contraction T\ : L1(A4) —>• L1(A/(). Then according to (2.4), it also 
extends by interpolation to a contraction Tp: LP(M) —> LP(A4) for any 1 < p < oo. 
We write Too = T for convenience. Then using the notation introduced in (2.5), we 
obtain that 

rri* rpu 
T) T)' ? 

1 < p < OO, 
1 1 

p' 
1. 

Indeed this follows from (5.1), and the hypothesis that is normal. In particular, 
the operator T2 : L2{M) —» L2(.M) is selfadjoint. 

It T is positive, then each Tp is positive, and hence T° =TP. Thus in this case, we 
have = Tv< for any 1 < p < oo. 

If T: A4 —> .A/f is a normal selfadjoint contraction as above, we will usually use the 
same notation T: LP(A4) —> Lp(Ai) instead of Tp, for ail its Lp-realizations. 

Let (Tt)t>o be a semigroup of operators on Ai. We say that {Tt)t>o 18 a (noncom­
mutative) diffusion semigroup if each Tt : M —» Ai is a normal selfadjoint contraction 
and if for any x G A4, Tt(x) —* x in the iu*-topology of A4 when t —>• 0+. It follows 
from above that such a semigroup extends to a semigroup of contractions on LP(A4) 
for any 1 < p < oo, and that (Tt)t>o is a selfadjoint semigroup on L2(A4). Moreover 
(Tt)t>o is strongly continuous on LP(A4) for any 1 < p < o o , by [22, Proposition 1.23]. 
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In gênerai we let — Ap dénote the infinitésimal generator of the realization of (Tt)t>o 

on LP(A4). If further each Tt : Ai —• Ai is positive, then 

(5.2) 4* — A / 1 < p < oo, 
1 

p 

1 

o 
1. 

Indeed in this case, the dual semigroup of the realization of (Tt)t>o on Lp(Ai) is 

exactly the realization of (Tt)t>o on Lp (Ai). Note that our terminology extends the 

one introduced bv Stein in [70, Chapter 3] in the commutative settiner. 

Remark5.1. — Let T: Ai —» A4 be a normal complète contraction, and assume that 

T is selfadjoint. The tensor extension IB(£2) ®T uniquely extends to a normal contrac­

tion I®T: B(£2)®Ai —> B(£2)®Ai, and it is easy to check that J®T is selfadjoint. 

For any 1 < p < oo, let Tp : LP(A4) LP(A4) be the ZArealization of T. Then Tp is 

completely contractive and I®Tp: SP[LP(A4)} -> SP[LP(A4)} is the Lp-realization of 

/(^Too. This is proved by applying the above results to IÇ^T^. An alternative route 

is to apply (2.38) with p = 1 to obtain that T\ is a complète contraction, and then to 

deduce that ||Tp||cb < 1 for any p G (1, oo) by interpolation. 

Let (Tt)t>o be a noncommutative diffusion semigroup on A4. We say that (Tt)t>o is 
a completely contractive diffusion semigroup if Tt : Ai —» Ai is a complète contraction 
for any t > 0. In this case, (I®Tt)t>o is a noncommutative diffusion semigroup 
on B(£2)®A4. We say that (Tt)t>o is a completely positive diffusion semigroup if 
Tt : Ai —> Ai is completely positive for any t > 0 (see paragraph 2.D). We recall 
that a completely positive contraction on a C*-algebra is a complète contraction (see 
e.g. [58, Chapter 3]). Thus a completely positive diffusion semigroup is a completely 
contractive one. 

Remark 5.2. — We can consider noncommutative diffusion semigroups from a slightly 

différent point of view. Suppose that (Tt)t>o is a selfadjoint semigroup of contrac­

tions on L2(Ai). Suppose further that for any t > 0, Tt extends to a contraction 

Ti^: Ll(A4) —» Ll(Ai), and that (Tiit)t>o is strongly continuous. Then {Tt)t>o 'is' 

a noncommutative diffusion semigroup. Indeed, for any t > 0, T*°t : A4 —> Ai is 

a normal selfadjoint contraction, T±°t —» Ij^ in the point ?i;*-topology, and the L2-

realization of T^°t coincides with Tt for any t > 0. 

We will need the following 'sectorial' forai of Stein's interpolation principle (see 

e.g. [70, III. 2] or [77]). In that statement, we let 

S (6) = { z G C * : 0 < Arg(z) < 0} 

for anv anele 0 G (0, TT). 

Lemma 5.3. — Let (Eo,E\) be any interpolation couple of Banach spaces, and for 

any a G (0,1); let Ea = [Eo,E\]a be the interpolation space obtained by the complex 
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interpolation method. We consider a family of bounded operators U(z) : EQ fl E\ —> 

E0 + Ei for z G S(6). Assume that: 

(a) For any x G Eo D E\, the function z i-> U{z)x is continuous and bounded, and 

its restriction to the interior of S{9) is analytic 

(b) For any x G E0 D Ei; c/(t)x G E0 and U(tel6)x G Ei /or an?/ t > 0, and the 

resulting functions t h—» U(t)x and 11—• U(te%e)x are continuous from (0, oc) znto 

.Eo «nd Ei respectively. 

(c) There exist nonnegative constants Cb, Ci suc A /or an?/ x G Eo H Ei and any 

t >0, we have 

I I ^ I I B O < C o N I E „ and ||f/(teî,?)x||Bl <Ci||a;||Bl. 

Then for any number a G (0,1) and any t > 0, U(teta9) maps E0 n £ \ into Ea, with 

\\u{tJa9)x\\Ea <ci-*cnx\\Ea, x G E0 H Ei. 

Throughout this chapter, we let 

po TT 
1 

p 
1 

2 

for any 1 < p < oc. 

Proposition 5.4. — Let (Tt)t>o be a noncommutative diffusion semigroup on Ai and 

for any 1 < p < oo, let —Ap dénote the generator of (Tt)t>o on LP(A4). Then Ap is 

a sectorial operator of type uup. 

Proof — This resuit is well-known in the commutative case and we simply mimic it! 
proof. By duality we may assume that 1 < p < 2. We let p' dénote the conjugat< 
number of p. First we note that since (Tt)t>o is a selfadjoint semigroup on L2(Ai) 

then A2 is a positive selfadjoint operator. Hence A2 is sectorial of type 0 and b\ 
spectral theory, 

Tz = e'zM : L2(M) —• L2(M) 

is a well-dehned contraction for any complex number z such that Refz) > 0. Let us 
apply Lemma 5.3 with E0 = LX{M), Ex = L2(M), 0 < 0 7T 

2 
and U(z)x = Tzx. 

According to (2.4), we have \L1(M),L2(M)} 2 
p' 

Lp{Ai). Hence we obtain that 

(5.3) \\TZ: L?(M) — L"(M)\\ < 1 

for any z G C* such that 0 < Arg(z) 7T 
P 

Likewise, (5.3) holds true if 7T 
P' 

Arg(z) < 0. Then Lemma 3.1 ensures tha Ap is sectorial of type 7T 
2 

7T LUV 

Remark5.5. — Let (Tt)t>o be a noncommutative diffusion semigroup on Ai, and 

consider two numbers 1 < p, q < oc. Let LU — maxjc^p, ouq}, so that Ap and Aq are 

both sectorial operators of type LU. It easily follows from the Laplace formula (3.2) and 

from (3.5) that for any 6 > LU and any / G H^ÇEQ), f(Ap) and f{Aq) are consistent 

operators, that is, they coincide on Lp(A4) HLq(A4). Likewise if Av and AQ both have 
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dense ranges and admit a bounded H°°(Z^Q) functional calculus for some 6 > UJ, then 
f(Ap) and f(Aq) are consistent for any / G Indeed for x G Lp (A4) H Lq (M), 
gn(Ap)x — gn(Aq)x is a common approximation of x in LP(A1) and in Lq(A4), by 
Lemma 3.2. Hence 

f(Ap)x = Lp - liir 
n 

(f9n)(Ap)x = Lq - lim 
n 

(fgn)(Aq)x = 

The next theorem is the main resuit of this chapter. We refer to paragraph 2.D foi 
the définition of 2-positivitv. 

Theorem 5.6. — Let (Tt)t>o be a noncommutative diffusion semigroup on Ai and for 
any 1 < p < oo, let —Ap dénote the generator of (Tt)t>o on Lp(Ai). 

(1) IfTt is 2-positive for any t > 0, then Ap is Col-sectorial (resp. Row-sectorial) 
of Col-type (resp. Row-type) equal to UJP. 

(2) IfTt is positive for any t > 0, then Ap is Rad-sectorial of Rad-type UJP. 

Proof — (1): We assume that Tt is 2-positive for any t > 0. If 1 < p,p' < oo 
are conjugate number s, then A* = Av> by (5.2). According to Lemma 4.7, we may 
therefore assume that 2 < p < oo in our proof of (1). Our first step consists in showing 
t.Vm.t thp spt 

*J~r) = {T, : Lp(Ai) —• Lp(A4) : t > 0} 

is Col-bounded. Since Tt is 2-positive and contractive, we have 

(5.4; TAxYTAx) < Tt(x*x\ xeLp{Ai). 

Indeed if x G A4, this is Choi's extension of the Kadison-Schwarz inequality for 2-
positive maps on unital C*-algebras (see [18] or [58, Ex. 3.4]). For an arbitrary 
x G Lp(Ai), let (xi)i>i be a séquence in LP(A4) fl A4 such that \\x — Xi\\p —> 0 when 
i —̂  00. Then \\x*x — x*Xi\\R —̂  0. Since Tt is continuous on L? (A4) we obtain that 
Tt(x*x) is the limit of Tt(x*Xi) in L§ (A4). Likewise since Tt is continuous on Lp(Ai), 
we see that Tt(x)*Tt(x) is the limit ofTt(xi)*Tt(xi) 'mL^(Ai). Since (5.4) holds true 
for any Xi, it holds true for x as well. 

Let t\,... ,tn be nonnegative real numbers, and let x\,.. .xn in Lp(Ai). We have 
n 

k=l 
Ttk(xkyTtk(xk) 2 2 

p 

n 

fc=L 

Ttfc(a;fc)*Ttjfe(zfc) 
n 

TtAxtxk) 
V 
2 

by (5.4). Let 1 < r < 00 be the conjugate number of 
z 

Since Tu (x\xk) is 
positive, there exists some y G LR(A4)+ such that ||y||r = 1 and 

n. 

k=l 
xkxk 

V 
2 

n 

k=l 
xkXk y 

By the noncommutative maximal ergodic theorem for positive diffusion semigroups 
[37, Cor. 4 (ni)] (see also [36]), there exists some ip G Lr(A/f)+ such that Tt(y) < (f 
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for any t > 0 and \\ip\\r < where K > 1 is an absolute constant not depending on 

y. By assumption the adjoint of the La -realization of Tt is equal to the Lr-realization 

of Tt for any t > 0, hence 

n 

k=l 

l ( * P 

2 

n 

k=l 

xkxk,Ttk(y) 

n 

lk 
x*kxk,<p 

< IMIr 
n 

lm 

* 
xkxk p 

2 

lkj 
n 

jki 

* 
XfcXk 

i 
2 

,9 

P 

This shows that 

n 
mlk (ARfc)*Ttfc(ifc) 

1 
2 

P 

vk n 

ml 
xkXk 2 

P 

Thus TV is a Col-bounded set, with Col(jFp) < \ / ï \ \ 

We fix some (3 G 0 7T N 
P 

Our second step consists in showing that the set 

ml T^p : LP(M) —> L ^ ( X ) : t > 0 

is Col-bounded. For this, we derme 

q P 
7T-23 

TT — p/3 
and a 

23 

TT 

Thèse numbers are chosen so thaï l-a 
Q 

a 
2 

1 

P 
Thus we have LP(M) = 

[Lq(M)1L2(M)\a by (2.4). More generally, it follows from (2.13) that for any 
positive integer n > 1, we have 

(5.5; Tztk(xk) 0 : [ ^ ( A i ; ( 4 ) ^ 2 ( ^ ; f â c ) ] a . 

We consider nonnegative real numbers ti,...,tn, and apply Lemma 5.3 with the 

spaces E0 = L«{M; (£2n)c), E1 = L2(M; ( O C ) , the angle 0 7T 
2 

and the mappings 

U (z) defined by letting 

U(z) 
n 

k=l 

Xk 0 ek 
n 

k=l 
Tztk(xk) 0 ek, 

for x i , . . . , x n G L2(M) H Lq(M). We note that 0 = aO. Since L2(M;{£2n)c) = 

el(L2(M)) (see Remark 2.3 (1)), and since each : L2(M) -> L2(M) is a con­

traction, we see that 

U [te' 2 Ei — JSiH < 1, t > 0. 
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On the other hand, using the fact that Tq is Col-bounded, we have 

| | / 7 ( T ) : F O - ^ F 0 | | < C O L ( ^ ) , t > 0. 

Hence U(etf3): Ea —» Ea has norm less than or equal to Co l f^ )1 a. Thus we find 

that 

n 

k=l 

|/7(T):FO-^F0 
LP(M;(£l)c) 

C o l ( ^ ) 1 - " 
n 

k=l 

Xk ® ejt 
LP(M;(£2N)C) 

for any xi,..., xn G Lp(Ai). This shows that Çp is Col-bounded. 

By symmetry, we have that {Tte-ip : LP(M) - » : t > 0} also is a Co] 

bounded subset of B(LP(M)). Now appealing to Lemma 4.8, we deduce that th 

set 

\TZ : L P ( M ) —*Lp(M) : fgs '0. 

is Col-bounded. Since this holds true for any 3 < TT 
P 

this implies by Lemma 4.9 that 

Av is Col-sectorial of Col-type TT 
2 

TT 

V A similar proof shows that Av is Row-sectorial of Row-type TT 
2 

TT 
P 

(2): In this part, we only assume that Tt is positive for any t > 0, and aim at 

showing that Ap is Rad-sectorial of Rad-type UJP. Again we may assume that p > 2, 

and we follow a similar scheme of proof. The first step consists in showing that 

T = {Tt : Lp(M) —• Lp(M) : t > 0} 

is Rad-bounded. Since the TV s are no longer assumed to be 2-positive, the inequality 

(5.4) is no longer available. However we have 

(5.6) Tt(x)2 < Tt(x2) iîx = x* G LP(M). 

If x G Ai is selfadjoint, this is the Kadison-Schwarz inequality [39] for positive maps, 

and the case when x G Lp(Ai) is selfadjoint follows by approximation. 

Let t i , . . . , tn be nonnegative real numbers, and let x\,... xn in Lp(Ai) such that 

ma) xkxk 
p 

k 

dgfd 
1 
Z 

DP 
< 1. 

According to (2.21), it sufflces to show that we have 

(5.7) 

k 

Ttk(xkyTtk(xk) 
1 
2 

P 
< K and 

k 

Ttk{xk)Ttk(xky 2 

\P 

for some constant K > 0 not depending either on the tks or the x'ks. Arguing as in 

the proof of (1) and using (5.6) as a substitute for (5.4), we obtain an inequality (5.7) 

in the case when each xk is selfadjoint. 
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For arbitrary xk's, let us consider the real and imaginary parts Re(xk) and lm(xk), 

which are selfadjoint éléments of Lp(A4). We have 

k 

[Re{xk)}2 
i 
2 

P 
k 

Re(xk) 0 ek 
|/7(T):FO-^F0 

1 

2 
k 

](xk + x£) 0 ek 
\LP(M;(£l)c) 

1 

2 sd 
xk0ek 

LP(M;(£l)c) 
k 

xk 0 ek 
LP(M;(£l)c) 

1 

2 
s 

xk 0 efe 
LP(M;(£2)C) 

xk 0 efc 
LP(A4;(£2)R) 

1. 

Hence 

k 

[Ttk(Re(xk)f 
1 l 
2 

d 
dq 

by the preceding part of the proof. Likewise, we have 

[Ttk(ïm(xk))}2 1 
2 

P 
< K. 

Since 

k 

)Ttk(xkyTtk(xk 
1 
2 

lp 
k 

\[Ttk(Re(xk))f 
1 
2 

P 
k 

K ( I m ( * f e ) ) ] 2 2 

we deduce that the first half (5.7) is fulfilled, up to doubling the constant. The second 

half holds true as well by the same arguments. 

Now arguing as in the proof of (1), it suffices to show that for any f3 G (0, 7T 
P 

, the 

set 
G = {Ttelp : Lp(M) — Lp{M) : t > 0} 

is Rad-bounded. The proof of this fact is essentially similar to the proof that the set 
Çp is Col-bounded in the proof of (1). The only significant change is that one has to 
use (2.33) with r = 2 in the place of (5.5). Détails are left to the reader. • 

Remark5.7. — Let T: A4 —» A4 be a selfadjoint normal contraction. Then arguing 

as in the proof of Theorem 5.6, we find that if T is positive, then the set 

\Tn : n > 0} C B(Lp(M)) 

is Rad-bounded for any 1 < p < oo. If further T is 2-positive, then this set is both 

Col-bounded and Row-bounded. 

Our next statement is an angle réduction principle for noncommutative diffusion 

semigroups. 
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Proposition 5.8. — Let (Tt)t>o be a noncommutative diffusion semigroup on A4 and 

for any 1 < p < oo, let —Ap dénote the generator of (Tt)t>o on Lp(j\4). Assume 

further that for any 1 < p < oo and for any 0 > Ap admits a bounded i / ° ° ( E ^ ) 

functional calculus. Then for any 1 < p < oo, Ap actually admits a bounded H°°ÇEQ) 

functional calculus for any 0 > LUP. 

Proof. — We may assume that p > 2, the proof for p < 2 being the same. As in the 

proof of Theorem 5.6, we need to ehoose some parameters allowing an efficient use 

of interpolation theory. We give ourselves two numbers 0 > S > uop. Then we pick 

a G (0, | ) such that | ( 1 — a) < ô. Once a is fixed, we let q G (p, oc) be the unique 

number such that - = ^—^ + so that we have p q 2 ' 

(5.8) U>(M) = \L"(M),L2(M)}a 

by (2.4). Then we choose v > \ close enough to | to ensure that v(l — a) < ô. 

First assume that AQ and AP are invertible, so that we can deal with theii 

imaginary powers. Then for any real number s G R, the imaginary powers A™, A™ 

and A™ are consistent opérât ors, by Remark 5.5. Hence (5.8) yields 

H A " ii < i i A " n i - a n ^ i r 

Since A2 is a positive selfadjoint opérât or, we have | \A™ || = 1, and hence 

\L"(M),L2(M)} 

According to our assumption, the operator AQ admits a bounded H°°(Yiv) functional 

calculus. Hence applying (3.10) we deduce that there is a constant K > 0 such that 

M*s|| < Keu\s\ for any s G R. Therefore, 

\\Ats\\ < K^e"^-^3 

K^e"^-^3 s eR. 

Since AV admits a bounded H^ÇZ^) functional calculus, the above estimate and [21, 
Theorem 5.4] show that AP actually admits a bounded iJ°°(Ee) functional calculus, 

which concludes the proof in the invertible case. 

The gênerai case can be deduced from above, using Lemma 3.5. Indeed, if s > 0 

is an arbitrary positive number, then A^ + e, AQ + s and AV + s are both invertible, 

hence the preceding estimâtes apply to them. In fact the 'only i f part of Lemma 3.5 

and Theorem 3.3 show that there is a constant C > 0 not depending on e > 0 such 

that \\(AP + e)ls\\ < Ceô^ for any s G R. Then the proof of [21, Theorem 5.4] shows 

that the operators AP + e uniformly admit a bounded H^ÇZQ) functional calculus, 

and the resuit follows from the ' i f part of Lemma 3.5. 

We note in passing that in the case when each Tt is positive, this proposition has 

a shorter proof. Indeed in that case it directly follows from Theorem 5.6 and [41, 
Proposition 5 . 1 ] . • 
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Remark 5.9. — Let (Tt)t>o be a diffusion semigroup on a commutative von Neumann 
algebra L°°(E). 

(1) For any 1 < p < oo and for any 0 > uopi Ap admits a bounded H°°(Y*Q) 
functional calculus on LP(E). This resuit is due to Cowling [20]. The question 
whether this holds true for noncommutative diffusion semigroups is open. 

A sketch of proof of Cowling's Theorem goes as follows. First one can show (see 
[27]) that for any 1 < p < oo, there exist a commutative Lp-space LP(E'), a co-
group (Ut)t of isometries on LPÇE,)1 and contractive maps J: LPÇE) —> LPÇE') and 
Q: Lp(Y>')-*Lp(Y>) such that 

(5.9) TT = QUtJ, t > 0. 

Then by Proposition 3.12, Ap admits a bounded H^ÇEe) functional calculus for any 
6 > ^ . Applying the above Proposition 5.8 yields the resuit. 

(2) For any t >0, TT is both a contraction on L°°(E) and on L1(E). Hence for any 
1 < p < oo, TT : LP(E) —• LP(E) is contractively regular in the sensé of [61]. Thus for 
any Banach space X, TT <S> Ix extends to contraction from LP(E; X) into itself. 

Let M. be any semifinite von Neumann algebra, and let j\f — Loo(E)(0A/f. Then 
we have a canonical identification 

Lp{j\f) = Lp{Y>-Lp{M)). 

Hence applying the above tensor extension property with X — LP(.M), we deduce 
that for any t > 0, TT 0 IM extends to a normal contraction 

Tt<8)lM : -A/" —> Af, 

and that (Tt(S)lM)t>o is a diffusion semigroup on N. We claim that for any 1 < p < oo 
and any 0 > LUP, the négative generator of its Lp realization admits a bounded i7°°(E6)) 
functional calculus. 

Indeed, let 1 < p < oo. According to [27], the dilation property (5.9) can be 
achieved with the additional property that J, Q, and Ut (for any t) are contractively 
regular. This gives rise to contractions 

miLv{M)-- Lp{^-Lp(M)) -^Lp{Y>'-Lp{M)) 

and 

Q®ILP{M) : ip(S7î Lp(M)) —> Lp(E- Lp{M)). 

Likewise, the Ut 0 ILP(M)S extend to a co-group (Ut0lLP(M))t of isometries on 
LP(E;; LP(M)), and we have 

Tt®ITiP( KA\ = (Q®lLP(M)){Ut®lLP(M))(J®ILP(M)), t > 0. 

We can therefore conclude as in (1) above. 
We refer the reader to [55] for related resuit s. 
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Remark 5.10. — We wish to record for further use an observation on the constants 
appearing in the proof of Proposition 5.8. If (Tt)t>o is a noncommutative diffusion 
semisroup as in this proposition, if 1 < v < oc, and if 0 > cc ,̂ let 

7Tp,6> : ^o°(^6>) —» B(LP(M)) 

be the bounded homomorphism taking any / G HQ°ÇEO) to f(AP). 

For any 1 < p < oo and any 6 > uov, let q > p and v > | be chosen as in the 
first lines of the proof of Proposition 5.8. Then it follows from the latter that for 
any constants K,K' > 1, there exists a constant K" > 1 such that whenever (Tt)t>o 
is a noncommutative diffusion semigroup on M, then ||7rDfl|| < K" provided that 
||7rp>1/|| < t f a n d < K f . 
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C H A P T E R 6 

S Q U A R E F U N C T I O N S O N N O N C O M M U T A T I V E 

L"-SPACES 

6.A. Square functions and their intégral représentations 

In this chapter we introduce square functions associated to sectorial operators 

on noncommutative Lp-spaces, which generalize the ones considered in [21] in the 

commutative setting. Throughout we let (M., r) be a semifinite von Neumann algebra. 

As in the previous chapter, we use the notation 

0N = M* dt 
t 

We also recall the définition of HQC(ZJUJ+) given by (4.11). 

Let 1 < p < oo and let A be a sectorial operator of type ou on LP(M). For any F 

in # Q ° ( E W + ) \ {0} and any x in LP(M), we define 

(6.1) 

N k c = ||* ̂  F(tA)X\\LP(M;LHn0)c) and N k r = \\t -> F(TA)X\\LP{M;L^n0)r)-

We already noticed that the function t I—• F(tA) is a continuous function from ÇIQ into 

B(LP(M)) (see paragraph 4.C). In particular, the function t ^ F(tA)x is continuous 

hence measurable from ÇIQ into LP(A4). Thus according to Définition 2.7 (1), it makes 

sensé to wonder whether it belongs either to LP(M; L2(Q0)c) or to LP(M; L2(Q0)r). 

The proper meaning of (6.1) is therefore the following. If t » F(tA)x belongs to 

Lp(M]L2{n0)c) (resp. LP(M] L2(ft0)r)), then ||x||F,c (resp. \\x\\F,r) is the norm of 

that function in LP(M; L2(tt0)c) (resp. LP(M; L2(^0)r))- Otherwise, \\x\\FiC (resp. 

||#||F,r) is equal to oo. 
It is easy to check that the set of ail x G LP(A4) for which ||X||F,c < oo is a subspace 

of LP(M) on which || | |^c is a seminorm. The same comment applies to || ||^r. 

We now consider a 'symmetric' form of thèse seminorms. For F and x as above, 

we set 

MF = \\t^F(tA)x\\LP{M.L2{Çto)rad). 
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Going back to the définition of L2(Ç}0)ra(i (see paragraph 2.B), we have more explicitly 

(6.2) 

\\X\\F = max \\F(' ^HLP(A4 ;L2(C20)C) ' \\F(' A)X\\LP(M;L2(Q0)r) if 2 < p < co; 

and 

(6.3) 

\\x\\F = inf \\ul\\LP(M;L2(n0)c) + \\U2\\LP(M;L2(n0)r) : tzi+112 = F('A)x if 1 < p < 2. 

We call square functions associated with A the above functions || \\F,C II ||F,r5 and 

|| ||F- It should be noticed that in gênerai, column square functions || ||_pjC and row 

square functions || ||irr are not équivalent. See Appendix A for a concrète example. 

It follows from Remark 2.13 that in the case when M ~ L°°(E) is a commutative 

von Neumann algebra, the quantities ||X||F,c? ||#||F,r, and ||x||i? ail coincide on LPÇE). 

Indeed, they are equal to 

(6.4) 
•OO , 

0 
(F(tA)x)(.) 

2 df 

t 

i 
2 

I L P ( E ) 

and hence the square function || \\F coincides with the one from [21] in this case. 

In order to stick to (6.4) m the noncommutative case, it is désirable to have an 
intégral représentation of the norm on LP(M; L2(O0)c) and on LP(Â4; L2(Sl0)r). This 
is essentially provided by the next two propositions. In thèse statements, we shall 
only consider the column case, and the row case may be treated similar ly. The resuit s 
established below will be used later on for a function u of the form 

u(t) = F(tA)x, t e Q0. 

We recall Proposition 2.5 which is used in Lemma 6.1 and Proposition 6.2 below. 

Lemma 6.1. — Assume that 2 < p <oc and let ueL2(Q0] LP(M)) CLP(M; L2(Q0)c] 

Then the function 11—• u(tYu(t) belongs to L1 (ÇIQ, L% (M)), and we have 

(6.5) * 
U u — 

oo 

C 
uitYuit) 

dt 

t 

(Here, as explained in paragraph 2.B, we regard u*u as an élément of L% (M).) 

Proof. — For anv t > 0 we have 

w^RU(T)\\LHM) I K * ) I I L P ( . m ) > 

hence the function u(-)*u(-) clearly belongs to the space L (f^o; £2 {M)). To prov 

(6.5), assume first that u belongs to LP(M) 0 L2(^0), and let (a,k)k and (xk)k b 
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finite families in L2(f20) and LP(M) respectively such that u = Ylkxk ® Q>k- Then 

u u — 
QD 

Qxi xj 
D 

"OO 

0 
ai(t)a3(t) 

dt 

t 
* 

xi xj 

oo 

0 
u(t)*u(t) 

dt 

t 

For an arbitrary u G L (ffo; LP(M)), take a séquence un in LP(M) (g)Zr(fio) converg-

ing to u in L2(^0; LP(M)). Then un also converges to u in LP(M\L2(^0)c), hence 

converges to w*u in La (A4). Furthermore we know from above that each un 

satisfies (6.5) hence passing to the limit, we deduce (6.5) for u. • 

Proposition 6.2. — Assume that 2 < p < oc and let u: Çto —> LP(M) be any continu­

ous function. The following two assertions are équivalent. 

(i) u belongs to Lp(M] L2(fi0)c)• 
(ii) There is a constant K > 0 s-uc/i /or am/ 0 < a < (3 < oo, we have 

a 
u(tYu(t) 

dt 

t L2(M) 
K2. 

In that case, we have 

(6.6) U U — lim 
oc—»0; P —>OO 

-0 

A 

WCCC 

and 

(6.7) IMIi>(.M;L2(Q0)c) lim 
A—>0; P—>-OO 

>0 

fa 
u(t)*u(t) 

dt 

t 

i 
2 

LP(M) 

Proof. — We assume (i). For any 0 < a < P < oo, we let Pa^ : L2(Çl0) —• L2(£l0) be 

bhe orthogonal projection defined by letting Pa^(a) = aX(A,B) f°r anY a £ L2(^o)-

Àccording to Lemma 2.4, /LP 0 Pa a extends to a contraction 

P^p: LP(M;L2(Q0)C) L"(M;L2(Çl0)c). 

It is plain that Pa^(u) is equal to the product function ux(a,a)-

Our hypothesis that u is continuous ensures that Pa:p(u) belongs to L2(Qo; LP(A4) 

Owing to Lemma 6.1, we then have 

(6.8) {PZ0{U)Y{PZ0{U)) 

d 

a 
u(t)*u(t) 

dt 

t 

By (2.8), we have 

\\{P^(u)Y{P^(u))\ p 
2 

\p*Mu)\\Lp(M-,L*(n0)c) WU\\2LP(M;L2(n0)c)-

Hence (ii) holds true, with K — \W\\LP(M;L2(Q0)c)-
Next we observe that Pa^ converges pointwise to the identity on L2(f2o), when 

a —> 0 and (3 —> oc. Hence ILP <&Pa,p converges pointwise to the identity on LP(M) <8) 
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L2(QQ)- Since ||Pa,/3|| < 1 f°r ANY a and /3, we deduce that Pa^ converges pointwise 

to the identity on LP(M; L2(tt0)c). Thus ^ ( u ) -> t/, and (6.6) and (6.7) follow 

from (6.8). 

For the converse direction, we assume (ii) and we let p' be the conjugate number of 

p. Let v be an arbitrary élément of Lp (Ai) 0 L2(^o) , and consider 0 < a < f3 < oo . 

The function ux(a,/3) belongs to LP(A4; L2(f20)c), and by (2.8) and Lemma 6.1, we 

have 

uX(a,P) LP(M;L2(n0)c) \\{uX(a,p))*{uX{*,f3))\\ 
1 
9 
L 

E 2 (M) 
a 

u(t)*u(t) 
dt 

t 

i 
2 
L2 (M) 

Moreover we have 

•0 

a 

(v(t),u(t)} 
dt 

t 
\\uX(a,f3) \\LP(M;L2(n0)c) WV\\Lp'{M;Lï{n0)r) 

by Lemma 2.8. Applying (ii) we deduce that 

(3 

a 
(v(t),u(t)) 

dt 

t 
K\\v\\ 

LP' {N;L2{ÇlQ)r)i 
veLp'{M)®L2(n0). 

Letting a —> 0 and (3 —> oc and using Lemma 2.10, this shows that the function u 
belongs to the space LP(M; L2(ÇIQ)C). • 

Proposition 6.2 does not extend to the range 1 < p < 2. The obstacle here is that if 

we consider a measurable function u: Qo —» LP(A4), then the function t i—• u(t)*u(t) 

is valued in (Ai) which is not a Banach space if p < 2. Thus in gênerai we have 

no way to define a Bochner intégral u(t)*u(t) y . To circumvent this difficulty, we 

will consider approximation by simple functions provided by 'conditional expectations' 

associated with subpartitions. For the définition of a subpartition TT and its associated 

mapping En, see (4.5) and the paragraph preceding Lemma 4.3. 

We observe that if w = J2k zk 0 ck G (Ai) 0 L1(^0), with ck G L1(QQ) anc 

zK£L%(M), then we may define 

•>oo 

0 
w(t) 

dt 

t 
k 

'OO 

'0 
ck(t) 

dt 

t 
Zk G L*{M). 

This yields a définition of J0°° u(t)*u(t) dt 
t 

for any u G LP(M) 0 L2(n0). 

Proposition 6.3. — Assume that 1 < p < 2 and let u G L2(f£o, Lp(Ai)). For any 

subpartition TT of ÇIQ, we let un = En (u) be defined by (4-5) and we note that 

belongs to LP(A4) 0 L2(Qo). Then the following two assertions are équivalent. 

(i) u belongs to LP(M; L2(Q0)c). 

(ii) There is a, constant K > 0 such that for anu TT. we have 

0 
u^tyu^t) 

dt 

t L2(M) 
K2. 
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In that case, 

(6.9) ii*u — lim 
71 

OO 

0 
||b||oo < ^\\f\U„ 

dt 
t 

and 

(6.10) IMILP(À4;L2(ÎÎ0)C) lim 
7T 

»oo 

R0 
u^ityu^t) 

dt 
t 

i 
2 

LP(M) 

Proof. — The proof is quite similar to the one of Proposition 6.2, hence we only 
outline it. If u satisfies (i), then \\U7T\\LP(M;L2(Q0)c) < \W\\Lp(M-:L2(n0)c) fc>r any ^ un 
converges to u in LP(M; L2(fto)r) by (4.6), and we have 

SFSQF 
oo 

0 
||b||oo < ^\\f\U„ 

dt 
t 

We deduce (ii) with K = \\U\\LP^M]L2(Q0)C)^ as wen as (^-9) an<̂  (6-10) 
Conversely, (ii) implies (i) by using Lemma 2.10. 

Remark 6.4. — Here we give other substitutes of Proposition 6.2 in the case when 
1 <p< 2. 

(1) Let u: Qo —> LP(M) be a continuous function. It is easy to deduce from the 
proof of Proposition 6.2 that u belongs to Lp(Ai; L2(QQ)C) if and only if for any 
0 < a < p < oo, the restricted function u\(a,p) belongs to Lp(Ai; L2(fLo)c), and 
there is a constant K > 0 such that \\uX(a,8)\\Lp(M]L2(n0)c) < K f°r any a < P- In 
that case, we have 

U LP{M;L2{<TL0)C) snn 
oc<3 

uX(a,(3) LP(M;L2(Q0)C) 

A similar resuit holds true with column norms replaced by row norms or Rademacher 
norms. Thus, u belongs to LP(A4; L2(^lo)rad) if and only if there is a constant K > 0 
SUCH that \\uX(as:3)\\LP(M;L2(fLo)rad) ^ K for 0 < a < P < 00 ' 

(2) Assume that 1 < p < 2 and let u: —» Lp(Ai) fl L2(Ai) be a continuous 
function. Then t i—» u(t)*u(t) is valued in Ll(M) and for any 0 < a < (3 < oo, we 
may therefore define the intégral 

E 

A 
u(tYu(t) 

dt 
t 

e L\M). 

Then it follows from above that u belongs to LP(AA\L2(QQ)C) if and only if 

a 
u(t)*u(t) dt 

t 
belongs to La (A4) for any a < /?, and there is a constant K > 0 such 

that 
E 

'a 
u(t)*u(t) 

E 
t P 

2 

K2 for any a < j3. 
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6.B. Equivalence of square functions 

Square functions associated to a sectorial operator were first introduced on Hilbert 

spaces by Mclntosh ([53]). Then it was shown in [54] that they are ail équivalent 

and that any sectorial operator (on a Hilbert space) has a bounded H°° functional 

calculus with respect to || H .̂ In [49], thèse results were extended to Rad-sectorial 

operators on classical (^commutative) Lp-spaces. Our objective (Theorem 6.7 below) 

is an extension of the latter results to noncommutative Lp-spaces. 

We will need the following simple lemma. 

Lemma 6.5. — Let A be a sectorial operator of type uu on LP(M), with 1 < p < oc. 
LetFeH^(E^). 

( 1 ) For any f G the function t ^ F(tA)f(A) from ft0 into B{LP(M)) 

is absolutely integrable and 

oo 

/0 
F(tA)f(A) 

dt 

t 

"OO 

0 

F(t) 
dt 
t 

f(A). 

(2) For any f € H°°(ELO+), supt>0 \\F(tA)f(A)\\ < oo . 

( 3 ) Assume that A is Col-sectorial of Col-type uu and let 6 > uu such that F G 

7JQ°(E6>). Then there is a constant K > 0 such that for any f G H00(TIQ), the 

set of ail F(tA)f(A) for t > 0 is Col-bounded, with 

Col[{F(tA)f(A) : T > 0 } ) < I V | | / | U , , . 

(4 ) The resuit in (3) holds true with Row-boundedness or Rad-boundedness replacinc 

Col-boundedness. 

Proof. — The first two assertions hold true in any Banach space and go back (at least 

implicitly) to Mclntosh's earliest paper on H°° functional calculus [53]. To prove ( 3 ) , 

we essentially repeat Mclntosh's proof of ( 2 ) . Given 0 > uu and F G HQ°(Y,Q), let 

7 G (CJ,0) be an intermediate angle and recall from (4 .16 ) that 

Ko sup 
t>0 r7 

\F(tz)\ 
d2 

Z 
< oo . 

Using ( 3 . 5 ) , we now write 

F(tA)f(A) 
1 

2TTZ 
F(tz)f(z)R(z,A) dz 

for any / G H^ÇEe) and any t > 0. Our assumption implies that the set {zR(z,A) : 

z G T7} is Col-bounded. Moreover 

s 
\F(tz)f(z)\ 

dz 

z < tfoH/lloo,* 

for any / G H^^o) and any t > 0. We therefore deduce ( 3 ) from the second part of 

Lemma 4 .2 . The last assertion (4 ) can be proved in the same manner. • 
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Remark 6.6. — Let A be a sectorial opertor of type UJ on LP(M) and let F G 

tfo°°(^+)\{0}. Then 

\\X\\F,C = 0 ̂  ||x||F>r = 0 \\x\\F = 0 x G N(A). 

Indeed each of the first three conditions means that F(tA)x — 0 for any t > 0, and 

this obviously holds if a: G N(A). Assume conversely that F(tA)x = 0 for any t > 0 

and let F be defined by F(z) = F(z). Then F(tA)F(tA)x = 0 for any t > 0. Since 

'OO 

0 
F(t)F(t) 

dt 

t 
F(t)F(t) 

the first part of Lemma 6.5 ensures that f(A)x = 0 for any / G HQ0(Y,U+). Using 

e.g. f(z) = g(z) = z(l + z)~2, this implies that x G N(A). 

Thus if A is injective, || ||i?,C5 || ||F,r, and || \\p are norms on the respective subspaces 

of LP(A4) on which they are finite. 

Theorem 6.7. — Assume that 1 < p < oo. Let A be a sectorial operator of type UJ on 

LP(M), and let 0 G (o;,7r). We consider two functions F and G in H^ÇEe) \ {0}. 

(1) If A is Col-sectorial of Col-type to, then there exists a constant C > 0 such that 

for any f G HQ°(Y,Q) and any x G LP(M), we have 

\\f(A)x\\FtC < C\\f\Ue\\x\\G,c 

Moreover we have an équivalence 

\\X\\G,C ~ I k l k o x G Lp{M). 

(2) If A is Row-sectorial of Row-type UJ, then the same properties hold with || \\F,r 

and || ||G,r replacing \\ ||F,c and \\ ||G,c-

(3) / / A 25 Rad-sectorial of Rad-type UJ, then the same properties hold with || \\F and 

|| ||G replacing \\ ||FjC and || ||G>C. 

Proof. — We shall only prove (1), the proofs of (2) and (3) being identical. Since 

G G Ho°(Tie) is a non zéro function, we can choose ip\ and (f2 in HQ°(EQ) with the 

property that 
oo 

0 
Vi{t)ip2{t)G(t) 

dt 

t 
1. 

We consider some / G H^ÇEQ). According to Lemma 6.5 (1), the function mapping 

any t > 0 to ipi(tA)(p2(tA)G(tA)f(A) is absolutely integrable on ÏÎq? and 

(6.11) 
OO 

0 
MtA)<p2(tA)G(tA)f(A) 

dt 

t 
f(A). 

On the other hand, it follows from Lemma 6.5 (3), and our hypothesis that A is Col-

sectorial of Col-type UJ, that the set of ail operators (f2(tA)f(A) is Col-bounded and 

that we have an estimate 

Col({<p2(tA)f(A) : t > 0\) < K\\f\Ue, 
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where K > 0 is a constant not depending on / . Let us now apply Proposition 4.4 and 

its subséquent Remark 4.5, with Q — ÇIQ, dji{t) — ̂ , and 

= <p2(tA)f(A), t > 0. 

By Lemma 4.2, we deduce from above that 

Col 
\ 

I 

M - 0 , 
Lp2ltA t(A 

P 

t 
I C H Q , 0 < < oc < Wlloc,*. 

Then we obtain that the multiplication operator T$ is bounded on LP(A4; L2(^o)c) 

with 

|T*: Lp(.M;L2(tt0)c) / 7 (M;L2( f t0 )c ) | | < ATH/lloo,»-

Assume that ||X||G,c < so that G(-A)x belongs to LP(M; L2(^o)c)- By Re­

mark 4.6, T$(G(- A)x) is equal to the function p2{' A)G(- A)f(A)x. Hence we have 

proved that the latter function belongs to LP(A4', L2(£lo)c), with 

(6.12) \\tp2i-A)G{-A)f(A)x\\ LP(M;L*(na)r) < A-||/||oo,9||a;||G,c. 

We now apply Theorem 4.14 with F\ = (f \ and F2 = F. According to our hypoth-

esis that A is Col-sectorial, the operator T with kernel F(sA)y>i(tA) is bounded from 

Lp(Ai; L2(Çto)c) into itself. Furthermore, Lemma 6.5 (1) ensures that the function 

ip2(- A)G(- A)f(A)x belongs to L1 (ft0; LP(M)). Hence T maps this function to the 

function 

s 
00 

0 
F(sA)ip1(tA)^2(tA)G{tA)f(A)x 

dt 

t 

By (6.11), the above intégral is equal to F(sA)f(A)x. This shows that F{- A)f(A)x 

is a function which belongs to Lp(j\4; L2(ÇIQ)C) and using (6.12), we have the estimate 

\\F(-A)f(A)x\\ ||b||oo < ^\\f\U„ < K\\T\\\\f\Ue\\x\\G,c 

This concludes the proof of the first part of (1), with C — ^ | | T | | . 

To prove the second part, we will use the fact that LP(M) is reflexive (we assumed 

that 1 < p < 00). By Remark 3.4, we have a direct sum décomposition LP(M.) = 

N(A)®R(A). Moreover ||X||F;C = \\X\\GIC = 0 for every x G N(A). Thus to prove that 

IL \\F,C and II ||G,c are équivalent on Lp(*A/f), it suffices to prove that they are équivalent 

on R(A). Let (gn)n>o be the bounded séquence of H^ÇEo) defined by (3.8) and let 

C' = sup^NLU .GVJLOO^}. The preceding estimate yields 

\\9n(A)x\\F,c<CC'\\x\\G)C, n > 1, x e LP(M). 
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Let x e R(A) and let v be an arbitrary élément of Lp (M) (g) L2(^0), where p' is the 
conjugate number of p. For any n > 1, we have by Lemma 2.8 that 

» oo 

0 
(v(t),F(tA)gn(A)x) 

dt 
t 

\F{.A)gn(A)x LP(M;L2(fl0)c) \\v\\Lp'{M;L2{n0)r) 

\\gn(A)x\\F,c |MILp,(M;L2(fio)r) 

CC'\\x\\GAv\\L*\M-,L*{nQ)ry 

Since x G R(A), gn(A)x converges to x, by Lemma 3.2. Hence applying Fatou's 
Lemma immediately leads to 

>oo 

0 
(v(t),F(tA)x) 

dt 
t 

CC'\\x\\G,c\\v\\Lp'{M.L2(Qo)ry 

Owing to Lemma 2.10, this shows that F(- A)x belongs to LP(M; L2(^0)c), with 

||a:||F>c<CC,||a;||G>c. 

Switching the rôles of F and G then shows that || \\G,C and || \\F̂ C are actually équivalent 
on R(A), which concludes the proof. • 
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C H A P T E R 7 

H°° F U N C T I O N A L C A L C U L U S A N D S Q U A R E 
F U N C T I O N E S T I M A T E S 

In this chapter we investigate the interplay between bounded or completely 
bounded H00 functional calculus and square functions, for a sectorial operator on 
a noncommutative Lp-space. Our results should be regarded as noncommutative 
analogues of those proved by Cowling, Doust, Mclntosh, and Yagi in [21, Sections 
4 and 6]. For simplicity we will restrict to the case when p > 1, although some of 
the results of this chapter extend to the case when v = 1. We recall the notation 
sf sf dt 

t 
Let A be a sectorial operator of type tu G (0, TT) on some noncommutative Lp-space 

LP(M), with 1 < p < 00. Let F G i7^°(E^+) \ { 0 } . We say that A satisfies a square 
function estimate (SF) if there is a constant K > 0 such that 

( S F ) \\x\\F<K\\xl x G LP(M). 

A straightforward application of the Closed Graph Theorem shows that (SF) holds 
true if and only if \\X\\F is finite for any x G LP(A4). 

Recall that the operator A* is sectorial of type LU on LP (A4). Let G G HQ° (!!,&+) \ 
{ 0 } . We say that A satisfies a dual square function estimate (SQ) if A* satisfies a 
square function estimate with respect to G, that is, there is a constant K > 0 such 
that 

(«5G) \\G(-A*)y\\LP'{M;mno)rad) <K\\y\\p,, yeLP'(M). 

We notice the following conséquence of Theorem 6.7 (3). 

Corollary 7.1. — Assume that A is Rad-sectorial of Rad-type UJ on LP(A4). If A 
satisfies (SF) for some F G H^ÇE^^) \ {0}, then A satisfies (SF) for ail F G 
H^(^+)\{0}. 

Our next statement extends some estimâtes from [21, Section 4 and 6] to the 
noncommutative setting. Keeping the notation from the latter paper we let (fe(t) = 
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tp(el) for any measurable function ip: ÇIQ -+ C. Thus (p ̂  (pe induces an isometric 

isomorphism from LP(Q0) onto LP(R; dt) for any 1 < p < oo. We let LfTe be the Fourier 

transform of ipe if ip belongs either to L1(Çt0) or to L2(Q0)-

Proposition 7.2. — Let A be a sectorial operator of type uu on LP(A4), with 1 < p < oo. 

Consider three numbers ô, v, a such that uu<S<a<2a — 8 < u < n, and two 

functions F, G G HQ°ÇES). Let <p = GF and note that the restriction of cp to is 

integrable. Assume that there is a constant C > 0 such that 

(7.1) ||b||oo < ^\\f\U„ s G R. 

If A satisfîes a dual square function estimate (SQ), then there is a constant K > 0 
such that for any f G i^Q°(E^) and any x G LP(M), we have 

\\f(A)x\\ < K\\x\\F\\f\U„. 

Proof. — The assumption (7.1) ensures that there is a constant Ci > 0 with the 

following property. For any / G HQ°(£,„), there exists a function b G L1 (QQ) nL°°(fio) 

such that 

(7.2) ||b||oo < ^ \ \ f \ U „ 

and 

m -
oo 

0 
b(t)cp(tz) 

dt 

t 
z G E<$. 

Indeed this follows from the proof of [21, Theorem 4.4], see in particular (4.3) 
in that paper. Since b G L1(QQ)1 the second part of Lemma 6.5 ensures that 
-oo 
0 

\b(t)\\\v(tA)\\ di 
t 

is finite. A simple computation using Fubini's Theorem then 

shows that 

f(A) 
'OO 

0 
b(t)tp(tA) 

dt 

t 

oo 

0 
b(t)G(tA)F(tA) 

dt 

t 

For any x G LP(M) and any y G Lp (M) = LP(M)*, we dérive that 

(HA)x,y) 
'OO 

0 
(b(t)F(tA)x,G(tA*)y) 

dt 

t 

Hence 

\(f(A)x,y)\ < H6IU 
r*00 

0 
\{F(tA)x,G{tA*)y) 

dt 

t 

Now assume that \\x\\p < oc, that is, F(-A)x belongs to LP(M; L2(Q0)rad). We 

assumed that A satisfîes (SQ), SO that G(- A*)y belongs to Lp (M; L2(Qo)rad). Hence 

by Remark 2.9, there is a constant C2 > 0 such that 

\(f(A)x,y)\<C2\\b\\00\\x\\F\\y\\. 

Applying (7.2) then yields 

\(f(A)x,y)\<ClC2\\x\\F\\y\\\\j\U,. 
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The resuit therefore follows by taking the supremum over ail y G Lp (M) with \\y\\ < 1 
r 

Remark 7.3. — Let A be a sectorial operator of type UJ G (0, TT) on LP(A4), with 
1 < p < 00. Given any v G (a;, TT), choose ô and a such that uj<S<a<2a — 5 <v. 
According to [21, Example 4.7], there exists F, (7 G H§°(Es) such that the product 
function ^ = (7F satisfies the assumption (7.1) in Proposition 7.2. For this spécifie 
pair (F, G) of non zéro functions in HQ°(Y,UJ+), we obtain that if A satisfies (SF) and 
(SG), then it admits a bounded H^ÇE») functional calculus. Indeed this follows from 
Proposition 7.2. 

Corollary 7.4. — Let A be a Rad-sectorial operator of Rad-type UJ G (0,7r) on Lp(j\4), 
with 1 < p < 00. Assume that there exist two non zéro functions F, G G HQC(Y,UJ+) 
such that A satisfies (SF) and (SG). Then A admits a bounded i7°°(E^) functional 
calculus for any 0 G (UJ, TT). 

Proof. — This follows from Corollary 7.1 and Remark 7.3 above. • 

Remark 7.5. — The assumptions that both A and A* satisfy square function esti­
mâtes are necessary in Corollary 7.4. Indeed there may exist A of type UJ without any 
bounded H°° functional calculus such that A satisfies (SF) for any F G HQ°(EUJ+). 
See [48, Section 5] for an example on Hilbert space. 

We now turn to the converse of Corollary 7.4 and an équivalence resuit. 

Theorem 7.6. — Let A be a sectorial operator of type UJ G (0,7r) on LP(M), with 
1 < p < 00. Assume that A admits a bounded H°°(TIQ) functional calculus for some 
9 G (UJ,TT). 

(1) Then A satisfies a square function estimate (SF) and a dual square function 
estimate (S*G) for any F, C G Hg°(Ze+) \ { 0 } . 

(2) Let P: LP(M) —• LP(M) be the projection onto N(A) with kernel equal to R(A) 
(see Remark 3.4)- Then for any F G HQ°(YJQ+) \ {0}7 we have an équivalence 

||*|| x | |* | |F + x G LP(M). 

Proof. — Consider F G HQ^ÇL^) \ {0} with v > 0 and let us show the square function 
estimate (SF) for A. Recall from Remark 6.6 that \\X\\F = 0 if x G N(A). Hence 
according to Remark 3.4, we may assume that A has dense range. For any z G E^, 
we let 

Fz(t) = F(tz), t > 0. 

Clearly each FZ is both bounded and integrable on QQ. The starting point of the 
proof is the following construction extracted from [21]. Let ip: R —> R be an in-
finitely many differentiable function with compact support included in [—2, 2] satis-
fying X]fcL-oo ^ (s — ̂ )2 — 1 f°r anY ^ ^ R, and let tpk — VK" ~k) f°r anY integer 
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k. By définition, each ipk has support in [k — 2,/c + 2]. Then for any k,j G Z, 

let rjk: [k - 2,fe + 2] C be defined by r?/c(s) = ± e ^ ' s . It is proved in [21, 

Lemma 6.5 that 

k 

sup 
a.—>0 3 

(aeïpk,Tjk < OO. 

Since (Tjk)j is an orthonormal basis of L2([k — 2, /c + 2]; (it) for any /c £ Z, then we 
have 

llalli2(fi0) - IKIlL2(lR;dt) 
1 

2TT ll̂ èlli2(IR;dt) 

1 

2TT 
P 

ll^fc||L2([FC_2 
,fc+2];di) 

1 

2TT P 

(aeïpk,Tjk) 2 

for any a G L2(^o)- Changing both the notation and the indexing, we deduce the 

existence of a séquence (bj)j>\ in L2(On) with the following two properties. First, 

( 7 . 3 ) llalli2(Q0) 
3>l 

{a,bj)\ 
2 

a G L2(n0). 

Second, 

(7.4) K sup 
J>1 

(aeïpk,Tjk < 00. 

For any j > 1, we let hj G H°°(Y>o) be defined by 

(7.5) hi(z) = Œ*,bi) F(tz)bj(t) 
dt 

t 

Let (£J)I<J<N be a finite séquence taking values in { — 1,1}. For any z G E^, we have 

N 

3 = 1 

e3h3(z) < K 

by (7.4). Since A admits a bounded H°°(Eo) functional calculus, we deduce that 

N 

SG 

£jhj(A) Ki\\xl 

for some constant K\ > 0 not depending either on N or on the e^s. Equivalently, we 

have that for every x G LP(M), Sjhj(A)x\\ < Hence averaging over ail 

possible choices of e3-, = ± 1 , we obtain that 

N 

QSF 

LP(A1)) 
Rad(LP(A1)) 

Ki\\xl x G LP(A4). 
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By Corollary 2.12 and (2.34), this shows that for every x G LP(M), the séquence 

(hi(A)x) belongs to Lp(M\llnA) and that 

(7.6) (hJ(A)x)j^1 
LP(M;Prad) 

:- K2\\x\\LP{M), 

for some constant Ko > 0 not depending on x. 

According to (7.3), we consider the linear isometry V: L2(Qo) —• £ defined by 

letting V(a) = ((a,6i))j>1 for any a G L2(^o)- Its adjoint V* : l2 L2(O0) is a 

contraction, hence ILP (g) V* extends to a contraction 

V*: Lp(M;i2rad] Lp(M;L2(Qo)rad) 

by Lemma 2.4. Let us show that for any x G D(A) D R(A), we have 

(7.7) F {hJ(A)x)j F(-A)x. 

Recall from Chapter 3 that with g(z) = ^i+zy, we may write x — g(A)x' for som€ 

(unique) x' G LP(M). Moreover by the first two parts of Lemma 6.5, we have 

roo 

0 

\F(tA)g(A) 2 dt 

t 
oo . 

Hence F(- A)g(A)bj(- ) is integrable on ÇIQ for any j > 1. Then using Fubini's Théo 

rem, it is easy to deduce from (7.5) that 

hAA)g(A) 
OO 

0 

F{tA)g{A)b3(t) 
dt 

t 

Now let y G Lp (M) be an arbitrary functional on Lp(Ai). We see from above that 

(F(-A)x,y) (F(-A)g(A)x',y) e L2(ft0) 

and that 

(hj(A)x,y) 
•OO 

0 

F(tA)x,y bj(t) 
dt 

t 
J > 1 -

Thus V maps the function (F(- A)x,y) to the séquence ((/ij;(A)x, y)) .>v Since V is 

an isometry, this implies that conversely, V* maps the séquence ((hj(À)x,y)) .>1 to 

the function (F(- A)x,y). Since this holds for any y G Lp (M), this concludes the 

proof of (7.7). Owing to (7.6), this implies that 

\\x\\F<K2\\xl x G D(A) n R(A). 

We now appeal to the approximating séquence (gn)n>i defined by (3.8). For a 

x G LP(M) and any n > 1, gn(A)x belongs to D(A) D R(A), hence ||^n(i4)x||F 
K2\\gn(A)x\\. Since (gn{À))n>\ is bounded, this shows that for an appropriate ce 

stant Kz > 0, we have 

\\gn(A)x\\F <K3\\x\\, n > 1, x e Lp(M). 
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Arguing as at the end of the proof of Theorem 6.7, we deduce that \\X\\F < K%||x|| for 

any x G Lp(j\4). This concludes the proof that A satisfies (SF)- Applying this resuit 

for A*, we obtain that A satisfies (S%) as well. 

We now turn to the second assertion. Since A admits a bounded H°°(EQ) functional 

calculus, A is Rad-sectoriel of Rad-type 0 by Theorem 4.11. Thus Theorem 6.7 

ensures that || and || \\F2 are équivalent for any two functions Fi, F2 G HQ°(EQ+) \ 

{ 0 } . It therefore suffices to prove the resuit for a particular function F G HQ°(EQ+). 

Furthermore, it clearly follows from the first part of this proof that we only need to 

show that || || F dominâtes the original norm on R(A). We fix numbers 0 < LU < 

6 < 5 < a < 2a — 8 < v < TT and we recall from [21, Example 4.7] that there 

exist F, G G HQ°(Y,S) such that the product function LÇ = GF satisfies (7.1). By the 

first part of this proof, A satisfies (S*G) hence applying Proposition 7.2, we find some 

constant K > 0 such that \\f(A)x\\ < K\\x\\F\\f\\oo^ for any / G HQ°(E1/). Let us 

apply this estimate with / = gn. Since (gn)n>i is a bounded séquence of H°°(EV), 

we obtain an estimate 

\\gn(A)x\\ <K'\\x\\F, n > 1, x G LP(M). 

Now assume that x G R(A). Then gn(A)x converges to x (see Lemma 3.2). This 

yields \\x\\ < i '̂H^Hi? and complètes the proof. • 

If A has dense range and has a bounded HOG(EQ) functional calculus, the above 
theorem yields an équivalence 

I M I ^ I M I F , x e Lp(M), 

for any F G Jff0°o(Se+) \ { 0 } . 
This may be obviously combined with either Proposition 6.2 or Proposition 6.3. 

The resulting formula is easy to be written down when p > 2 and we give it explicitly 

in the next statement. The case when p < 2 is more involved and its statement is left 

to the reader. We will corne back to this case in Corollary 7.10 below. 

Corollary 7.7. — Let A be a sectorial operator of type LU G (0, TT) on Lp(j\d), with 

2 < p < oo. Assume that A has dense range and admits a bounded ii~°°(£#) functional 

calculus for some 0 G (UJ.TT). Then for any F G HQ°(EQ+)\{0}7 we have an équivalence 

\\x\\ x max lim 
a.—>0; /3^oo 

•0 
F(tA)x * F(tA)x 

dt 

t LP(M) 

lim 
a.—>0a.—>0 

'0 

a 

F(tA)x F(tA)x 
dt 

t 

2 

LP(M) J 
x G Lp(M). 
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Let i be a sectorial operator of type UJ G (0,7r) on LP(M), with 1 < p < 2. For 
any F G H^ÇE^^) \ { 0 } , we may consider an alternative square function by letting 

[x]F - inf{||xi||F,c + I N I k r : x = xi+x2) 

for any x G LP(M). It is clear that \\X\\F < [#]F- Indeed if [Œ]^ is finite, and if we 

have a décomposition x = x\ + x2 with ||#i || F,c < oo and \x21|F^r < oo, then we 

have F(- A)x — u\ + u2l with iti = F(- A)x\ and ?i2 = F(- A)x2, and thèse functions 

belong to LP(M; L2(Q0)C) and LP(M] L2(f20)r) respectively. We do not know if the 

two square functions || \\F and [ ]F are équivalent in gênerai. In the next statement 

we give a sufficient condition for such an équivalence to hold true. 

Theorem 7.8. — Let A be a sectorial operator on LP(A4), with 1 < p < 2. Let UJ G 
(0, TT) and assume that A is both Col-sectorial of Col-type UJ and Row-sectorial of Row-

type UJ. Let F, G be two non zéro functions in HQ°(YIuj+) and assume that A admits a 

dual square function estimate (SQ). Then || \\F x [ ]F on Lp(j\A). Indeed, there is a 

constant C > 1 such that whenever x G LP(M.) satisfies \\X\\F < oo, then there exist 

x\,x2 G LP(M) such that 

x = X\ + x2 and lkl| |F,c+|k2||F,r <C\\X\\F. 

Proof. — We may assume that A has dense range. We will use the function g defined 

by (3.9). The assumptions imply that A is Rad-sectorial of Rad-type UJ. Thus ail 

square functions || \\F are pairwise équivalent, by Theorem 6.7. Hence it suffices to 

prove the resuit for a particular function F G HQ° ÇEQ+). Therefore we may assume 

that 

'0 

G(t)F(t) 
dt 

t 
1. 

By the first part of Lemma 6.5, we have 

(7.8) 
'OO 

0 
G(tA)F(tA)g(A) 

dt 

t 
g(A). 

Since A satisfies (SQ), we can introduce the bounded linear operator 

W: Lp'(M) Lp\M;L2(n0)rad), W(y) = G(.A)*y. 

Note that by (2.25), the adjoint of W maps LP(M; L2(n0)rad) into LP(M). 

Let x G LP(M) such that \\x\\F < oo. There exist two functions u\ G 

Lp(M; L2{n0)c) and u2 G LP(M; L2(n0)r) such that m + u2 = F(- A)x and 

ll^l||LP(A4;L2(tto)c) IM|LP(A4;L2(tt0)r) :2||x||F. 

Since Lp(M-L2(n0)c) C LP(M; L2(ft0)rad) and LP(M; L2(Q0)r) c LP(M; L2(^)rad), 

we may introduce 

x1 = W*ui and x2 = W*u2. 
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Let i = 1, 2. By the first two parts of Lemma 6.5, we have f0°° ||̂ r(^4)(Sr(tA) ||2 y < oo 
and by Proposition 2.5 ( 1 ) , we have j0°° | |^(t)||2 y < oo. Hence t ^ g(A)G(tA)ui(t) 
is integrable on OQ, and we actually have 

( 7 . 9 ) g(A)xi = 
>oo 

0 
g(A)G{tA)Ui(t) 

dt 

t 

Indeed, for any y G Lp (M), 

(g(A)xuy) (ui,Wg(Ayy) 
oo 

0 
Ul(t),G(tAyg(Ayy] 

dt 

t 
by Remark 2.9 

"OO 
g(A)G(tA)Ui(t) 

dt 
t y 

Since ux + u2 = F(-A), it follows from (7.8) and ( 7 . 9 ) that g(A)x = g(A)xi -\-g(A)x2. 
We assumed that A has dense range, hence g (A) is one-one. Thus x — x\ + x2. It 
now remains to estimate | |XI| |F,c and ||#21| F,r-

By assumption, A is Col-sectorial of Col-type uu. According to Theorem 4.14, the 
operator with kernel F(sA)G(tA) is therefore bounded on LP(M; L2(ÇIQ)C). Let 

Tc: Lp(M;L2(n0)c)—*Lp(M;L2(n0)c) 

dénote the resuiting operator. Since A is also Row-sectorial of Row-type LU, we have 
a similar bounded operator 

Tr: LP(M;L2(Çl0)r) — LP(M; L2(n0)r) 

Consider b G L (flo) fl L2(^o) and y G Lp (Al) . Suppose that ?/ belongs to the 
range of g (A)*, so that y = g(Ayy' for some y7. Then 

[Tc* (y® &)](*) = G( ^ ) * 
OO 

'o 
F(sA)*yb(s) 

ds 

s 

Hence by Lemma 2.8, we have 

Tc(ui),y® b 
oc 

0 
Ul(t),G(tAy 

oo 

0 
F(sA)*yb(s) 

ds 
s 

dt 

oo 

0 

fOO 

0 
'Mt),G{tAyF(sAyy) b(s] 

ds 
s 

dt 
t 

'OO 

0 

OO 

0 
F(sA)g(A)G(tA)u1(t),y')b(S] 

ds 
s 

dt 
t 
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Since b G L^fîo) and /0°° 1 1 0 ( ^ ) ^ ( ^ ) ^ 1 W II T < 00 > we may aPPly Fubini's Theorem 
in the last intégral. Hence using (7.9), we deduce that 

(Tc{Ul),y®b) 
oo 

0 
F(sA) 

'OO 

0 
g(A)G(tA)Ul(t) 

dt 

t y' b(s) 
ds 

s 
oo 

0 
F(sA)g(A)x1,y')b(s) 

ds 

s 

»oo 

R0 
\F(sA)xuy) b(s) 

ds 

s 

Since g (A)* has dense range, this calculation shows that Tc(u\) = F(- A)x\. Likewise 

we have Tr(u2) = FC A)x2. Consequently, 

I k l l k c + \\X2\\F,r ||TC|| K | | + ||Tr|| ||u2|| 2 max l|Tc||,||Tr||}||x||F. 

Corollary 7.9. — Let A be a sectorial operator of type uu G (0,7r) on LP(M), with 

1 < p < 2. Assume that A admits a completely bounded H00 CE e) functional calculus 

for some 0 G (o;,7r), and let F G HQ°(E0+) \ { 0 } . If further A has dense range, then 

\\x\\ x inf{||xi||F,c + I M k r X = X\ + x2} x G Lp{M). 

Proof. — By Theorem 4.12, the operator A is both Col-sectorial and Row-sectorial of 

respective types 0. Moreover it satisfîes dual square function estimâtes by Theorem 7.6 

(1). Thus by Theorem 7.8 above, || \\F and [ ]p are équivalent. Further more || \\p is 

équivalent to the usual norm, by Theorem 7.6 (2), which proves the resuit. • 

The next resuit is an immédiate conséquence of Corollary 7.9 and Proposition 6.3. 

For simplicity if u: f£0 —• LP(M) is defined by u(t) = F(tA)z for some z G LP(M) 

and if TT is a subpartition of Oo, we write (F{tA)z)^ instead of un(t). 

Corollary 7.10. — Let A be a sectorial operator of type uu G (0, n) on LP(M), with 

1 < p < 2. Assume that A has dense range and admits a completely bounded H°°(EQ) 

functional calculus for some 6 G (CJ,7T). Then for any F G HQ°(Y10+) \ {0}, we have 

an équivalence 

||*|| x inf lim 
•OO 

0 
{F(tA)Xl 

7T 
F{tA)xx 

TV 

dt 

t 

i 
2 

LP{M) 

lim 
TV 

OO 

0 
F(tA)x2j 

TV 
F{tA)x2 

TV 

dtN 

t 

i 
2 

LP(M) T 

where for any x G LP{M), the infimum runs over ail X\,x2 G LP(M) such that 

X = Xi + x2 

Remark 7.11. — Let (Tt)t>o be a bounded analytic semigroup on LP{M), with 1 < 

p < oo, and let —A dénote its generator. Assume that A admits a bounded H^ÇEQ) 
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functional calculus for some 6 7T 
2 

Assume for simplicity that A is one-one. The 
function F(z) — ze z belongs to i7o°(E^) for any v < | , and we have 

F{tA)x = tAe~tAx t 
d 
dt 

Tt(x) xeLp{M), t > 0 . 

Thus we deduce from Corollary 7.7 that if p > 2, we have an équivalence 

\\x\\ x max lim 
w G w G a 

t 
d 
dt 

Tt(x)) 
2 

dt 
i 
2 

LP{M) 

lim 
a—>0; P^OO 

»/3 

Q 

Q 
Q 

Tt(x) 
2 
S 

2 

LP(M) ) 
x GLp{M), 

A similar resuit can be written down in the case p < 2, using Corollary 7.10. 
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V A R I O U S E X A M P L E S OF MULTIPLIERS 

8.A. Left and right multiplication operators 

Let (A4, r) be a semifinite von Neumann algebra acting on some Hilbert space H, 

and let 1 < p < oo. For any a G Al , we define a bounded operator £a : Lp(Ai) —» 

LP(M) by letting 

(8.1) Ca(x) = ax, xeLp(Ai). 

We will call Ca the left multiplication by a on LP(M). We aim at extending this 

définition to unbounded operators. 

Thus we let a: D(a) C H —-> H be a closed and densely defined operator on H. 

We assume that p(a) ^ 0 and that a is affiliated with Ai. This means that au = ua 

for any unitary u in the commutant Ai' C B(H). For any z G p(a), this implies that 

(z — a)it = — a), and hence i?(z, a)i/ = uR(z, a) for any unitary u G Ai7. Thus we 

have 

(8.2) R(z,a) G M, z G p(a). 

We will not use (8.1) directly to define £a, because multiplying an unbounded oper­

ator a with some x G Lp(Ai) leads to technical difficulties. Instead we will use left 

multiplications by resolvents, see (8.3). 

Lemma 8.1. — Let c e Ai C B(H) be a one-one operator, and let x G LP(M). If 

ex — 0; then x = 0. 

Proof. — This is clear by regarding x and ex as unbounded operators on H in the 

usual way. Indeed if ( belongs to the domain of x, then we have cx(Q — 0. Hence 

z ( O = 0 . • 

Lemma 8.2. — Let (bt)t C Ai be any bounded net converging to 0 in the strong oper­

ator topology of B(H). Then \\btx\\p —» 0 for any 1 < p < oo and any x G LP(A4). 
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Proof. — We start with p = 2. Let x G L2(M). Then xx* G Ll(M) ~ M* and we 

have 

I I M l l T{{btx)*{btx)) r(blbtxx*) {b*tbt,xx*)MiM^ 

By Hahn-Banach, xx* : A4 —> C extends to some tu*-continuous functional on B(H), 

and hence there exist two séquences (Çk)k>i and (£fc)fc>i belonging to £2(H) such that 

(blbtxx*) 
oo 

w G 
M0c),6c), w G A l 

Thus we obtain that 

I I M I ! 
oo 

k=l 

(blbtxx*) 
oo 

QD 
i i m c o i i 2 

i 
2 

OO 

QD 

w G Al 
2 

Since 6t —» 0 strongly and (bt)t is bounded, we deduce that ||6t^||2 —• 0. 
Assume now that p > 2 and take x e A4 H L2(A4). We let a = - , so that we have 

[L^(M),L2(M)]a = LP(M) by (2.4). This implies that 

| | M | P < IIMI2 I I M l L " " 

We know from the first part of this proof that ||^x||2 —> 0- Since (bt)t is bounded, 

we deduce that ||^x||p —> 0. Using again the boundedness of (bt)t1 together with the 

densitv of A4 H L2(A4) in LP(M)< we obtain that \\bfx\L -> 0 for anv x G LP(M). 

Finally we assume that 1 < p < 2, and we let x G Lp(Ai). By the converse of the 

noncommutative Hôlder inequality (see paragraph 2.A), there exist x',x" in L2p(A4) 

such that x = x'x". Then we have < H^^'lbpll^'lbp- However H^x'l^p —> 0 

by the above paragraph, hence we obtain that | |^x|L —» 0 • 

Lemma 8.3. — For any z G p(a), the left multiplication jCR(Z^) : LP(A4) —> Lp(Ai) is 
one-one and has dense range. 

Proof. — That £R(Z,A) is one-one follows from Lemma 8.1. Next let y G Lp (A4) h 

orthogonal to the range of CR(Z A\. Then 

0 = r(R(z,a)xy) = r(xyR(z,a)) 

for any x G LP(A4), hence yR(z, a) = 0. Thus R(z, a)* y* = 0 and by Lemma 8.1, we 

deduce that y = 0. This shows that CR^^) nas dense range. • 

Let z G p(a). According to Lemma 8.3, we may consider the inverse of £#(z,a) 

with domain V equal to the range of Cp(r n\. Then we define 

(8.3) 0 = r(R(z,a)xy) = 0 = r(R(z,a)xy) = 

Clearly £a is a closed and densely defined operator. Using the résolvent equatior 

R(zi,a) - R(z2, a) (z2 - z1)R(zua)R(z2,a), 
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it is easy to see that this définition does not dépend on z. Moreover p(a) C p{Ca) and 

(8.4) R(Z, CA) = CR(z,cl); z G p(a). 

Détails are left to the reader. 

We now consider the spécifie case of sectorial operators. 

Proposition 8.4 

(1) Assume that a: D(a) —» H is a sectorial operator of type uu G (0,7r); which 

is affiliated with M. Then Ca is sectorial of type uu on Lp(j\4). Moreover 

p{a) C p(Ca) and for any z G p{a) and any x G LP{M.), we have R(z, Ca)(x) = 

R(z, a)x. 

(2) For any f G Hg° we have 

(8.5) /(£«)(*) = /(a)s, x G LP(M). 

(3) Let 0 G (CJ,7T) be an angle. Then CA has a bounded H°°(Y,Q) functional calculus 

if and only if a has one. In that case, Ca actually has a completely bounded 

H°°(EQ) functional calculus. 

(4) If a has dense range, then £a has dense range. If further a admits a bounded 

if°°(E6») functional calculus, then (8.5) holds true for any f G H°°{YIQ). 

Proof. — Part (1) clearly follows from (8.4). Next (2) follows (1) and (3.5), and (3) 

is a straightforward conséquence of (2). 

Let us turn to (4). We let A — Ca. We assume that a has dense range. According 

to [21, Theorem 3.8], a(t + a)_1 —• IH strongly when t —» 0+. Moreover the net (a(t-\-

a)~1)t>o is bounded by sectoriality. Hence for any x G LP(M), \\a(t+a)~1x—x\\p —» 0 

when t —» 0+, by Lemma 8.2. Using (1), we note that a(t + a)~lx = A(t + A)~1(x). 

Consequently, a(t -f a)~lx belongs to R(A) for any t > 0. Thus R(A) is a dense 

subspace of Lp{Ai). 

Assume moreover that a admits a bounded i7°°(E^) functional calculus and con­

sider any / G H°°(Y>E). Let x G LP(M), and let g be defined by (3.9). Applying (2) 

twice, we see that 

g(a)f(a)x = g(A)(f(A)(x)) •- g(a)[f(A)(x)}. 

Since g (a) in one-one, the identity f(A)(x) = f(a)x now follows from Lemma 8.1. • 

Next we discuss left multiplications by co-semigroups. 

Proposition 8.5 

(1) Let (wt)t>o be a bounded co-semigroup on H, with négative generator a, and 

assume that wt G M for each t > 0. Then a is affiliated with M. 

(2) For any t > 0 and x G LP{M), we define Tt(x) = wtx. Then (Tt)t>o is a 

bounded CQ-semigroup on LP(M), with négative generator equal to Ca. 
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Proof. — According to the Laplace formula (3.2), we have 

( i + a r 1 ^ ) 
oo 

lo 
e-lTt{x) dt, Ce H. 

Since M. C B{H) is strongly closed, this implies that (1 + a)-1 G A4. That a is 

affiliated with Ai follows at once. 

It is clear that (Tt)t>o is a bounded semigroup. Since (wt)t>o is bounded and 

strongly continuous, Lemma 8.2 ensures that (Tt)t>o also is strongly continuous. 

Let A be the négative generator of (Tt)t>o- To show that A = Ca, it suffices to 

check that (1 + A)'1 = £(1+a)-i, by (8.4). We use the Laplace formula again. Let p' 

be the conjugate number of p. For x G LP(M.) and y G Lp (Ai), we have 

{l + A)-\x),y)LPrp, 
'OO 

0 
e-lTt{x) dt,y 

LP,LJ>' 

oo 

0 
e 1 r(wtxy) dt. 

Arguing as in Lemma 8.2, we may find two séquences (Oc)/c>i and (Çk)k>i belonging 
to £2(H) such that 

r{wxy) 
oo 

k=l 

e-lTt{x) dt, w G M. 

Thus we obtain that 

+ 1(a;),2/)LPjLP/ 
oo 

0 

SF 
oo 

QF 

(wt(Çk)^k)dt 

oo 

k=l 

'OO 

0 
e twAC^dt^k 

oo 

k=l 
(l + a ) - 1 ^ ) , ^ ) 

r ( ( l + a)-1x?/) 

;(l + a) 1x,?/)LP)LP/ 

This proves the desired identity. 

Remark 8.6. — In order to apply Proposition 8.4 (3), one needs to know which sec­

torial operators on a Hilbert space have a bounded H°° functional calculus. This 

question was initiated in Mclntosh's fundamental paper on H00 calculus [53]. We 

refer to [54], [3, Lecture 3], [5], and [45] for various results on this topic. Let (wt)t>o 

be a bounded Co-semigroup on H, with négative generator a. We recall that if (wt)t>o 

is a contraction semigroup, then a has a bounded H°°{EQ) functional calculus for any 

0 > ^ . Furthermore, if a is sectorial of type UJ < ^ , then for any 0 > uu, a has a 

bounded H°°{YJQ) functional calculus if and only if (wt)t>o is similar to a contraction 

semigroup [45]. 
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Remark 8.7 

(1) Let a: D(a) C H —• H be a closed and densely defined operator affiliated with 

A4, and assume that p(a) ^ 0 . In (8.3) or (8.4) we defined the left multiplication by 

a on Lp(Ai). By symmetry, one can clearly define the right multiplication by a on 

Lp(Ai); we dénote this operator by 7Za. Namely, if a is bounded, we let 1Za(x) = xa 

for any x G Lp(Ai). Then if a is unbounded, we argue as in the 'left case' and 

for any z G p(a), the operator 7Za is defined as z — Tl^z ay Equivalently, we have 

R(z, 7Za) = 7ZR(z,cl)' is clear that Propositions 8.4 and 8.5 extend Verbatim to right 

multiplications. 

(2) If 1 < p,p' < oo are two conjugate numbers, then the adjoint of the left 

multiplication by a on LP(A4) coincides with the right multiplication by a on Lp (Ai). 

Indeed if a is bounded, we have 

(ax,y) = r(axy) — r(xya) = (x,ya), x G Lp(Ai), y G Lp (M). 

Then the gênerai case follows from the bounded one, by using resolvents. 

By a similar calculation, one has C°a = lZa* and lZ°a = £a* (using the notation 

introduced in (2.5)). By (2.6) we deduce that if p = 2, we have 

R{zuA) and nl = na.. 

Thus Ca (resp. lZa) is selfadjoint on L2(M) if and only if a is selfadjoint. 

(3) We recall that two (possibly unbounded) operators A and B with non empty 

résolvent sets are called commuting if for any z\ G p(A) and z2 G p(B), we have 

R{zuA)R(z2, B) = R(z2, B)R(zuA). 

It is clear that if a, b are two sectorial operators on H affiliated with M, then the 
operators A = Ca and B = TZb on LP(M) commute in the above sensé. 

Left and right multiplications were used in the early days of H°° functional calculus 
to provide some examples involving pairs of commuting operators. Assume that p ^ 2, 
and consider the case when Ai is equal to B(l2) equipped with the usual trace. It was 
shown in [44] that there may exist positive selfadjoint operators a and b on £2 such 
that the pair (Ca,1Zb) does not have a bounded joint functional calculus on Sp (see 
the latter paper for a définition), although Ca and IZb each admit a bounded i7°°(E#) 
functional calculus for any 6 > 0. On the other hand it follows from [54] and [41, 
Theorem 6.3] that there may exist a positive selfadjoint operator a on H such that 
the operator Ca on S1 is not Rad-sectorial. 

8.B. Hamiltonians 

In this part we wish to consider a spécial class of quantum dynamical semigroups 

and their extensions to noncommutative Lp-spaces. For that purpose, we will need 
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a few facts about bisectorial operators on gênerai Banach spaces, their functional 

calculus, and relationships with sectorial operators. For any LU G (0, | ) , we let 

qdfc ( Z G C * 
7T 

2 
LU Arg(*)| 

7T 

2 
LU 

be the open cone of angle 2uu around the imaginary axis ÏR. Then we let i/°°(<S^) 

be the algebra of ail bounded analytic functions on S^ equipped with the supremum 

norm, and we let HQ°(SUJ) be the subalgebra of ail / for which there exists s > 0 such 

that \f(z)\ = 0(\z\~s) as \z\ —> oo for z G and \f(z)\ = 0(\z\s) as |z| 0 for 

z e S^. We say that a closed and densely defined operator B on some Banach space 

X is bisectorial of type LU if its spectrum is contained in the closure of 5^, and if for 

any 6 G (u;, T^), ZR(Z, B) is uniformly bounded outside e>6>- This is the same as saying 

that B and —B are both sectorial of type LU -f ^ . 

Assume that + Ç g(z)R(z, B and let g G HQ°(SQ). By analogy with (3.5), we 

define 

(8.6N g(z)R(z, B 
1 

27T2 i 7 
g(z)R(z, B) + g(-z)R(z, -B) dz 

As in the sectorial case, this définition does not dépend on 7, and g \—» #(-£?) is an 

algebra homomorphism which is consistent with the functional calculus of rational 

functions. We say that B is bisectorial of type 0 if it is bisectorial of type LU for any 

( 0 , ! ) . 

For any 0 < LU < | , the transformation z H-> — z2 maps 5^ onto £20; • It is not hard 
to show that if B is bisectorial of type LU G (0, Ç), then — i?2 is a sectorial operator 
of type 2uu. Furthermore, the functional calculi of B and — B2 are compatible in the 
following sensé. Let 0 G (2c<;,7r) and let / G HQ°ÇEQ). Then the function g: SQ/2 —• C 
defined by #(z) = / ( - z 2 ) belongs to H§°(SE/2), and we have = f(-B2). This 

follows from (8.6) and (3.5), détails are left to the reader. 

We will apply the above construction to generators of bounded groups. Let X 

be a Banach space and let (Ut)teR be a bounded co-group on X. We let iA dénote 

its infinitésimal generator. It is clearly bisectorial of type 0, hence A2 is a sectorial 

operator of type 0. The function f defined by 

f(z) = e-* 1 
14-2 

belongs to H^ÇLQ) for any 0 < | . Thus if we let 7 G ( f , ^f) and apply the above 

results to f, we find that 

(8.7) e 2 (l + A2)-1 
1 

2TTZ r. 
e 2 1 

1-22 
#(z , iA) + R(z, -iA)) dz . 

We claim that 

(8.8) e 2 
1 

2TT 

00 

—00 

e 2 Usds 
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in the strong sensé. To prove this identity we start from the following two standard 

identities. For any s > 0, 

e 2 
1 

2TT 

oo 

— oo 

e~lste-^ dt and SF 1 

7T 

•oo 

— oo 

e-istîhdt 

Using Cauchy's Theorem and the analyticity of the two functions 

SZ 2* 
z e e 2 

and z^esz 1 
1-z2 ' 

we deduce that for any s > 0, 

e 2 

2TT 

1 
2TTZ 

esz e*2 dz and 
DG 

2 

1 

2ni r7 

eS2 dz 
l — zz 

Next using Fubini's Theorem, we deduce that 

'OO 

— OO 

s2 

2tt 
SF 

2 
[/g <is 

'OO 

0 

e 2 

2tt 
SF 

2 
*7S + <7_s SW 

1 

2ni 

oo 

0 

esz z2 1 
1-z2 

{Us + U-,) dz ds 

1 
2ni T7 

e 2 i 

'0 
esz Us ds 

»oo 

0 
esz Us ds dz 

According to the Laplace formula (3.2), the two intégrais in the above brackets are 

equal to —R(z,—iA) and —R(z,iA) respectively. Hence combining with (8.7), we 

have proved that 

oo 

— oo 

p 2 
7̂T 2 

| Us ds e 2 ( l + A 2 ) " 1 . 

To deduce (8.8), it remains to observe that 

oo 

— oo 

e~|s| Usds 2(1 +A2)"1 . 

This is an easy conséquence of the Laplace formula applied to the two semigroup 

(Us)s>o and (U-S)s>0. 

Corollary 8.8. — Let iA be the generator of a co-group of isometries on X. Then A2 

is a sectorial operator of type 0, and we have 

(8.9) SFGF 1 

2 7T 

D 

— oo 

SSD2 
U i ds 

St2 
t > 0. 

Moreover, \\e tA2\\ < 1 for any t > 0 

Proof — We already noticed that A2 is sectorial of type 0. Formula (8.9) follows 

by applying (8.8) with A replaced by \/2L4, and then changing s into y/2 s in the 
s2 

resulting intégral. Since each U i is a contraction and J e~^~ ds = 2 y/ïr, we deduce 

that ||e-M2|| < 1 . • 
We give another gênerai resuit which will be used later on in this chapter. 
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Lemma 8.9. — Let (Tt)t>o be a bounded c$-semigroup on X, and let —C dénote its 
qenerator. We let 

h(s) 1 
2 0 ? 

1_ 
e 4.s 3 

52 

for any s > 0. 

Then we have 

(8.10) E-TCH -•oc 

0 
h(s) TST2 ds t > 0. 

If (Tt)t>o is a contractive semigroup, then \\e~tC2 || < 1 for any t > 0. 

Proof. — Formula (8.10) is well-known, see e.g. [22, Ex. 2.32]. Indeed a proof of 
(8.10) can be obtained by a computation similar to the one given for (8.8). Since 
JQ00 h(s) ds = 1, the last assertion is clear from (8.10). • 

We will now apply the above results to a spécial class of quantum dynamical groups 
and their generators (see e.g. [57, III. 30]). Let (A4,T) be a semifinite von Neumann 
algebra, and let 1 < p < oo be any number. Let a and b be two selfadjoint operators 
affiliated with A4. If they are both bounded, we define an operator Ad(a^ : LP(A4) —> 
LP(M) bv 

Ad(ab)(x) = ax — xb, x G Lp(M). 
We will extend this définition to the case when a or b is unbounded. Let A — Ca and 
B = IZb be the left and right multiplications on LP(A4) by a and b respectively (see 
paragraph 8.A). We claim that the intersection D(A) D D(B) is a dense subspace of 
LP(A1), and that the différence operator 

A — B: D(A) H D{B) —• LP(M) 

taking x to A(x) — B(x) is closable. To prove the density assertion, note that for any 
x G LP(M), we have 

inR(in, A)(x) = inR(in, a)x —> x 

when n —> oo. Indeed this follows from (8.4) and Lemma 8.2. Likewise, 
inR(in, B)(x) —» x when n —>> oo. We deduce that n2R(in, B) R(in, A)(x) —» — x 
when n —• oo. Since R(in, B) and R(in,A) commute for any n > 1, each élément 
n2R(in, B) R(in, A)(x) belongs to the subspace D(A) D D(B). Hence x is the limit 
of a séquence of D(A) n D(B). 

To prove the closability of A — B, suppose that (xn)n>\ is a séquence of D(A)P\D(B) 
convergingto 0, such that A(xn) — B(xn) converges to some x G LP(M). The résolvent 
operators R(i.A) and R(i.B) commute, hence 

R{i,A)R(i,B)(A- B) R(i,B)[AR{i,A)} R{i,A) [BR(i, B) 

on D(A) H D(B). Thus 

R(i,A)R{i,B)(x) limR(LB)\AR(LA)](xn) 
n 

\imR(LA) \BR(LB)](xr,) 
n 

0. 

Since R(i, A)R(i, B) is one-one, this shows that x = 0. Hence A — B is closable. 
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We can now define Adta 5) as the closure of A — B, that is, 

(8.11) >W(a,6) LP(M) -» LP 

Lemma 8.10. — Let a and b be selfadjoint operators affiliated with A47 and let 1 < 

V < 00. For any t G R, we define Ut : LP(M) -» LP(M) by 

Ut{x) eltaxe~lt\ xeLp(M). 

Then (Ut)teR i>s a CQ-group of isometries on LP(M), with generator equal to iAd(a^y 

Proof. — For any t G M, we define 

Tt : LP(M) ^LP(M) and St: LP(M) —+ Lp(M) 

by letting Tt(x) — eltax and St{x) = xe~ltb for any x G LP(M). According to 

Proposition 8.5 and its 'right' version, (Tt)teR and (St)teR are both co-groups of 

isometries on LP{M.), with generators equal to iCa and — xTZb respectively. Thèse two 

co-groups are commuting (that is, SsTt — TtSs for any and Ut = StTt is defined 

as their product. Then it is easy to check that (Ut)teR is a co-group of isometries. By 

e.g. [56, p. 24], its generator is the closure of the sum of the generators of (Tt)t and 

(St)t- By (8.11), this operator is iAdça^y • 

Remark 8.11. — Let a, b and (Ut)t be as in Lemma 8.10 above. Let a = / 0 a be 

the closure of lp (g) a on the Hilbertian tensor product £2 02 H, and let b be defined 

similarly. Thèse are selfadjoint operators affiliated with B(l2)®M. Then it is clear 

that (Ut)t is a completely isometric co-group, with 

I®Ut(y) = eltaye-ltl t G l , yeSp[Lp(M)} 

By Lemma 3.9, iI®Ad(a^ = iAd^~^ is the generator of (I®Ut)t-

Theorem 8.12. — Consider two finite commuting families ( a i , . . . , an) and (61 , . . . , bn) 

of selfadjoint operators affiliated with A4. (Namely we asssume that aïOj = â â  and 

bibj = bjbi for any 1 < z, j < n, but we do not assume that ai commutes with bj.) We 

assume that 1 < p < 00, and for any 1 < j < n, we let Aj = Ad(a b ^ be defined by 

(8.11) on Lp(M). 

(1) The sum operator 

C = A2 + •.. + A2n 
n 

3 = 1 

D(A2) Lp(M) 

is closed and densely defined, and —C générâtes a completely contractive semi­

group on the space Lp(Ai). 

(2) Furthermore for any 0 > 0, C admits a completely bounded H^ÇZQ) functional 

calculus on LP(A4). 
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Proof. — It follows from Corollary 8.8 and Lemma 8.10 that for any 1 < j < n, A2 is 

a sectorial operator of type 0 and that — A2- générâtes a contractive semigroup (T/)^>o 

on Lp(M). Since LP(M) is UMD, it also follows from [32, Section 4] that A2 admits 

a bounded H^iEo) functional calculus for any 9 > 0. 

Next the sectorial operators A 2 , . . . , A2 are pairwise commuting, in the sensé of 

Remark 8.7 (3). Indeed Ai,..., An are pairwise commuting, by our hypothesis that 

both families ( a i , . . . , an) and (6 i , . . . , bn) are commuting. 

Since LP(M) is UMD, we deduce by [41, Proposition 3.2] and [47, Theorem 1.1] 

that the sum operator C = Af-\ h A2 is a sectorial operator of type 0 (in particular, 

it is closed and densely defined), and that C admits a bounded H00(Tle) functional 

calculus for any 9 > 0. Further if we let 

Tt = Tt1..-Ttn: Lp(M) —>Lp{M) 

for any t > 0, then (Tt)t>o is a co-semigroup of contractions. By [56, p. 24], its 

generator is — C. This proves the 'bounded' version of the theorem. 

To prove the 'completely bounded' version, we let OLJ — I®a,j and bj = I<g>bj be the 

closures of lp 0 a3- and lp <g) bj on £2 ®2 H respectively. According to Remark 8.11, 

*4 (̂ô~\ô7) = I®Aj. Moreover ( a i , . . . , a^) and (&i, . . . , bn) are commuting families. 

Hence applying the first part of this proof to thèse families, we obtain that I®C 

générâtes a contractive semigroup and admits a bounded H°°(TJQ) functional calculus 

for any 9 > 0. • 

Remark 8 A3 

(1) Consider (ai,. . ., an) and .. ., bn) as in Theorem 8.12 above. Suppose that 

p — 2, and let Tt = e~tC be the semigroup generated by — C on L2(A4). It is clear 

that A2 is selfadjoint for any 1 < j < n. Indeed this follows either from Remark 8.7 

(2), or from the fact that the generator of a group of isometries on Hilbert space 

is necessary skewadjoint. This implies that for any t > 0, Tt : L2(j\A) —» L2(A4) is 

selfadjoint. Furthermore applying Corollary 8.8 and Lemma 8.10 on X — L1(A/1), 

and arguing as in the proof of Theorem 8.12 (1), we see that Tt is contractive on 

Ll(M) for any t>0. Hence (Tt)t>o is a diffusion semigroup on M (see Remark 5.2). 

Later on in this chapter, we will consider the square root operator 

(8.12) A = C' A1 + - + AI 
1 
2 

Applying Lemma 8.9 and the above paragraph, we see that (e )t>o als° is a diffusion 

semigroup on M. 

(2) For a selfadjoint operator a affiliated with M, we let 

Ada Ad(aa) 

For any s G M, the operator Us: L2(M) —> L2(M) taking any x G L2(M) to 
EISAXE-ISA -g completely positive. Hence according to Lemma 8.10 and Corollary 8.8, 
e-tAda -g completely positive for any t > 0. 
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Next we consider a commuting family ( a i , . . . , an) of selfadjoint operators affiliated 

with M, we let Aj = Adaj for any 1 < j < n, and we let C — A\ H h A?n. (In other 

words, we consider the case when aj = bj in Theorem 8.12 and in (1) above.) Since 

Tt — e~tc is the product of the e~tJ^daj 5 we obtain from above that Tt is completely 

positive for any t > 0. Likewise, if A is defined by (8.12), then e~tA is completely 

positive for any t > 0. Indeed this follows from Lemma 8.9. Thus (e~tC)t>o and 

(e~tA)t>o are completely positive diffusion semigroups. 
2 — 

Thèse results apply in particular to the case when A — \ Ada\ — ((*4da) )2 is the 

modulus of the operator Ada. 

For a fixed 1 < p < oo, let Ai,..., An and C be as in Theorem 8.12, and let 6 > 0 be 

a positive angle. The second part of the above theorem says that the homomorphism 

7r: HQ°(EO) —> B(LP(M)) taking / to f(C) is bounded. According to the methods we 

used for this resuit, the norm of that homomorphism can be dominated by a constant 

only depending on p, and n, and not on the families ( a i , . . . , an) and (&i, . . . , bn) 

used to define Ai,..., An. For some applications (see paragraph 8.C below), the fact 

that ||7r|| may dépend on n turns out to be a serious drawback. In the last part of this 

paragraph, we will show that this norm can be dominated by a constant which does 

not dépend on n, provided that we insist that 0 be large enough. As in Chapter 5, 

we let 

Ldp — TT 
1 

P 

1 

2l 

Theorem 8.14. — Let (À4,r) be a semifinite von Neumann algebra, let 1 < p < oo, 
and let 0 > UJp. There exists a constant KQ^p satisfying the following property: 

If ( a i , . . . , an) and ( 6 i , . . . , bn) are two commuting families of selfadjoint operators 

affiliated with M, if Aj = Ad(a.jbj^ on LP{M), and if we let A = (A\ + • • • + A ^ ) 2 , 
then 

||/04)|| < Ke,P\\f\Ue, Ke,P\\f\U 

Proof. — We noticed in Remark 8.13 (1) that —A générâtes a diffusion semigroup 

on M. Thus according to Proposition 5.8 and the subséquent Remark 5.10, it will 

suffice to prove the theorem for any 0 > f. 

We write 

b(y) 
1 

2 ^ 
e 4 and h(s) 

1 1_ 
e 4S 3 

52 
for the two nonnegative functions appearing in (8.9) and (8.10) respectively. 

Let C = A\ + • • • + A?n be the square of A, and let (Tt)t>o be the co-semigroup 

generated by — C. For any 1 < j < n, we let (UJt)t be the co-group on LP(M) 

generated by iAj. We noticed in the proof of Theorem 8.12 that (Tt)t>o is the 
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product of the semigroups generated by the A2's. According to (8.9), we obtain that 

for any t > 0, 

qf 
OO 

•oo 
KyJU1 xdyi 

Vit12 

oc 

-oo 
b(yn) Un i dyn 

Vr, t 2 

Rn 
b(y1)---b(yn)U1 L..-Un 1dy1.-.dyn. 

ynt2 

Applying Lemma 8.10, we deduce that for any x G Lp(j\A), 

Tt(x) 
<Rri 

• • • b(yn) exp{it* -\ 1_ ynan)}x 

exp -z*2 (7/161 H h ynbn dyi"- dyn . 

If we change t into si2 in the above identity and apply (8.10), we deduce that 

e'tA{x) h(s)b(yi)...b(yn) exp{itsi(yiai H \-ynan)} x 

: exp{-its* (2/161 H h 2/n6n) ds dyi • • • d2/n , 

the latter intégral being taken on R+ x M . 

Thus e~tA is an average of CO-groups of isometries on LP(M). More precisely, 

for any (s,2/1,.. . , 2/n) in the set R+ x Rn, let B{s, 2/1, • • •, yn} dénote the operator 

—iAd(a^, where a — s^{y\a\ H h ynan) and 6 = s^{y\bi H \-ynbn)- With this 

notation, we have 

e x p { - t £ { s , 2 / i , . . . ,yn}}{x) Qxp{it 6'2 (2/iai H h ynan)}x 

x exp{-zts2 _j [_ 2/n6n)} 

for any x G LP(.M). Hence we actually have 

e-tA h(s)b(y1) • • -b(yn) exp{-tB{s,yi,... ,2/n}}ds^2/1 * • • dyn 

in the strong sensé. 

We can now conclude by repeating the argument in the proof of Proposition 3 .12 (it 

is actually possible to apply this proposition directly). Indeed by the Laplace formula 

we deduce from above that for any complex number z with Re(z) < 0, we have 

(8.13) R(z,A) h(s)b(yi) • • -b(yn) R(z,B{s,y1:... ,2/n}) ds CH/i • •• dyn 

Then applying ( 3 . 5 ) , we deduce that for any 6 > | and any / G H™ (Le), we have 

R(z,A) h(s) b(yi)••• b(yn) f(B{s,yu...,yn}) ds dyi--- dyn . 

According to Proposition 3.11 for X = LP(M), we have an estimate 

\\f{B{s,yi,...,yn})\\ <tf*,p||/||oo,0, 
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for some uniform constant KQ^P only depending on 9 and p. Since h and b are non-
negative and have intégrais equal to one, we deduce that for any / G H^ÇEQ), 

\\f(A)\\ h(s)b(y1) • -b(yn] f(B{s,yu...,yn}) ds dyi • • • dyn 

h(s)b(y1) • • -b(yn] Ke,P \\f\\oo,odsdyi • • • dyn •• KeAf\\oo,e. 

Remark 8.15. — Arguing as in the proof of Theorem 8.12, we obtain a completely 
bounded version of Theorem 8.14. Namely there is a constant KQIP such that if dj, bj 
and A are in this theorem, then ||/(A)||cb < Ke,p\\f\\oo,o for any / G HQ°(T,Q). 

Remark 8.16 
(1) Let A i , . . . , An, C, and A as above. Since C = A2, it follows from Theorem 8.14 

that for any 9 > 2UJP we have 

(8.14) | |/(C)|| < Ke,P\\f\Ue, f e H§°(Xe). 

(2) Assume that a3 — bj for any 1 < j < n. In that case, the Co-semigroup 
(Tt)t>o generated by — C is completely positive (see Remark 8.13 (2)). Hence C 
is Rad-sectoriel of Rad-type UJP by Theorem 5.6. Therefore combining (8.14) and 
[41, Proposition 5.1], we deduce that for any 9 > UJPI there is a constant K'e p only 
depending on p and 9 such that | | / (C) | | < K'ep ||/||oo,0 fc>r any / G H^ÇEe). In turn 
this implies that 

\\f(A)\\ < K'0Jf\Ue, 0 Dp 
2 

f e H§°(Xe 

8.C. Schur multipliers on Sp 

Let 1 < p < oo. As usual, we will regard the Schatten space Sp as a space of 
scalar valued infinité matrices, and we let Eij dénote the standard matrix unit s, for 
i,j > 1. Let [a,ij]ij>i be an infinité matrix of complex numbers. By définition, the 
Schur multiplier on Sp associated with this matrix is the linear operator A whose 
domain is the space of ail x — [xlJ] G Sp such that [aijXij] belongs to Sp', and whose 
action is given by 

A(x) d{j Xij:]i^j;> i, X = [xij]i,3>l e 

Each Eij belongs to D(A), hence A is densely defined. It is also easy to check that A 
is closed. Moreover the kernel of A is equal to 

N(A) Sp&n{Eij : dij — 0}, 

In particular, A is one-one if ^ 0 for any i,j > 1. 
Let z G C be a complex number. Clearly z G p(A) if and only if a^j ^ z for any 

i,2 > 1 and if the Schur multiplier associated with the matrix [(z — aij)~1} is bounded. 
In that case, R(z,A) coincides with that Schur multiplier. 
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For any 0 G (0, TT) and any / G H00^), it will be convenient to let / : £#U{0} C 
o 

dénote the prolongation of / obtained by letting / (0) = 0. 

Using (3.5), we deduce from above that if A is sectorial of type uu G (0,7r), then 

dij G for any i,j > 1, and f(A) is the Schur multiplier associated with the matrix 
o 

[/ (aij)] for any / G H§°(^E) and any 0 G (uu, n). 

Furthermore, —A générâtes a bounded Co-semigroup (Tt)t>o on Sp if and only if 

the Schur multipliers associated to the matrix [e_£aiJ'] are uniformly bounded. In 

that case, Tt is indeed the Schur multiplier associated to the latter matrix. 

The main resuit of this paragraph is the following. 
Proposition 8.17. — Let H be a real Hilbert space, and let {ak)k>\ and (Pk)k>i be two 
séquences of H. In the next statements, || • || dénotes the norm on H. 

(1) For any 1 < p < oo, the Schur multiplier on Sp associated with [||o^ — (5j\\\ is 

cb-sectorial of type uup = 7r|| — ^| and admits a completely bounded H^ÇEQ) 

functional calculus for any 0 > uup. 

(2) For any 1 < p < oo, for any 0 > uup, and for any f G H°°(Y,0), the Schur 
o 

multiplier associated with [f (\\oii — /3j\\)] is completely bounded on Sp. 
(3) For any t > 0, the Schur product Tt associated with [e-t(Hai~^'H)] is completely 

contractive on Sp for any 1 < p < oo, and (Tt)t>o is a diffusion semigroup on 

B(£2). 

We will need the following approximation lemma. Its proof is elementary, using 
the facts given before Proposition 8.17. We leave it as an exercice for the reader. 

Lemma 8.18. — Let 1 < p < oo and let LU G (0, TT) be an angle. For any i,j > 1, let 

(a>ij)n>i be a séquence ofT,^, which admits a limit a^ when n —> oc. Let BN (resp. 

A) be the Schur multiplier on Sp associated with [a™] (resp. with [aij]). 

(1) Assume that cr(BN) C for any n > 1 and assume that for any 0 > eu, there 

is a constant KQ > 0 such that \\zR(z, BN)\\ < KQ for any z G C \ and any 

n > 1. Then A is sectorial of type uu. 

(2) Assume further that for some 0 > uu, there is a constant K > 0 such that 

\\f(BN)\\ < iq/lloo,* for any f G Hg°(Z0) and any n > 1. Then A has a 

bounded H^ÇEQ) functional calculus. 

(3) Assume that —BN générâtes a bounded c^-semigroup (Ttn)t>o for any n > 0, 

and that there is a constant C > 1 such that ||Ttn|| < C for any t > 0 and any 

n > 1. Then —A générâtes a bounded c^-semigroup (Tt)t>o, and \\Tt\\ < C for 

any t > 0. 

Proof of Proposition 8.17. — We fix some 1 < p < oo. Throughout this proof we let 

dij — 11^-/^11, and we let A be the Schur multiplier on Sp associated with the matrix 

[o>ij\ij>i- Replacing H by the closed linear span of the a^'s and flj's if necessary, we 
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may asssume that H is separable. Let (ek)k>i be an orthonormal basis of H. For any 

k > 1, we let 

Pjk = (Pj,ek) and Pjk = (Pj,ek) • 

Then for any i, j > 1, we have 

â 7 = lim 
n 

with KJ 
n 

Nfe=l 

Pjk = (Pj,ek) 
I 
2 

Ail numbers and are real, hence we may define selfadjoint operators ak and 

bk on 2̂ with diagonal matrices equal to Diag{a^/c : i > 1} and Diag{/?jfc : j > 1} 

respectively. Let A& be the Schur multiplier associated to the matrix [a^ — /îjfc]. 

Then 
a^7 = lim 
n 

(ans - Pjk)Eij akEij — Eijbk 

for any i,j > 1. Hence A& = .4d(afc,6fc) in the notation of paragraph 8.B. For any 

integer n > 1, we let 

ans - Pjk)Eijans - Pjk)Eij 

Thus Bn is the Schur multiplier associated with the matrix [a™]. 

We fix some 6 > up. Then for any À G C \ we let 

fx(z) 
1 

1 + * 

A 

X-z 

Let 0' = (ujp + 0)/2 and note that f\ belongs to H^ÇEQ'), with supA ||/a||oo,0' < oo. 
Hence by Theorem 8.14 (applied with #'), there is a constant KQ not depending either 

on À or n such that ||/;\(.Bn)|| < KQ. 

On the other hand, by Theorem 8.12 and Lemma 8.10, — Bn générâtes a contraction 

semigroup on Sp. Hence ||(1 + -Bn)_1|| < 1 for any n > 1, by the Laplace formula. 

Since f\(Bn) — (1 + Bn)~l — XR(X, Bn), we deduce that for any n > 1, 

||Aiî(A,Sn)|| < + A G C \ £ A . 

By Lemma 8.18 (1), this implies that A is sectorial of type UJP. 

Likewise using Lemma 8.18 (2) and Theorem 8.14, we obtain that A admits a 

bounded H°°(YIQ) functional calculus for any 0 > UJP. This proves the 'bounded' 

part of (1). To obtain the 'completely bounded' part, it suffices to apply the same 

argument together with Remark 8.15 and a obvious completely bounded version of 

Lemma 8.18. 

We now prove (2). Note that A may fail to have dense range. We let / G H°°(Y,0). 

Multiplying / by the function gn defined by (3.8), we find a bounded séquence (fn)n>i 
o o 

in i7o°(£(9) such that fn converges pointwise to / on U { 0 } . Since A admits a 

completely bounded H°°ÇEe) functional calculus, there is a constant C > 0 such that 

||/n(A)||cb < C||/n||oo,0 f°r any n > 1. Thus the completely bounded norms of the 
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o 
Schur multipliers associated with [fn (al3)\ are uniformly bounded. Passing to the 
limit, we deduce the resuit. 

To prove (3), let t > 0 be any nonnegative real number. For any n > 1, the Schur 

product associated with [e~ta^] is e~tBn, and the latter is a complète contraction on 

Sp. In fact this is a complète contraction on Sq for any 1 < q < oo, by arguing as 

in Remark 8.13 (1). Passing to the limit, and using Lemma 8.18 (3), this shows that 

the the Schur product associated with [e~£aiJ'] is a complète contraction on Sq for any 

1 < q < oo. By Remark 5.2, this semigroup is a diffusion semigroup. • 

Remark 8.19. — Proposition 8.17 (1) is no longer true for p G { l ,oo} . Indeed con­

sider the following example. Take two séquences (tk)k>i and (sfc)fc>i °f positive real 

numbers, and for any i,j > 1, define 

0L% = VÛG21 and Pj - V^J e2j + l 

on r equipped with its canonical basis [ek)k>\- Then ||a^ — — ti + Sj for any 

i,j > 1. Hence the operator A to be considered is the Schur multiplier associated 

with the matrix [ti + Sjj. It we take e.g. Sk = tk — 2^, it was proved by Uijterdijk 

[74] that the latter Schur product does not have any bounded H°° functional calculus 

on S1. 
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CHAPTER 9 

SEMIGROUPS ON q-DEFORMED VON NEUMANN 
ALGEBRAS 

9.A. The case - 1 < q < 1 

This chapter is devoted to semigroups derived from second quantization on von 

Neumann algebras of ç-deformation Tq(H) in the sensé of Bozejko and Speicher (see 

[14, 15]). We start with a few définitions and some background, for which we refer 

the reader to the two latter papers and to [13]. 
If H is a complex Hilbert space and n > 0 is an integer, we let 7i®n be the algebraic 

n-fold tensor product W (g) • • • <S>H and we let ( , )o be the standard inner product on 

H®n. By convention, H®° = C . We fix some q G ( — 1,1). Then one defines 

(9.1) (C,C>« - (Q«C,C')o, w(h) 

where Qq : TL®n q-(®n js a hnear operator defined as follows. Let Sn dénote the 

permutation group on the integers { 1 , . . . , n} and for any a G Sni let t(a) dénote the 

number of inversions of a. Then Qq is defined by 

(9.2^ Qq(hi 0 - • • 0 hn) 
TAU) 

qi{a) Km ® • • • ® ha{n)l hu...,hneH. 

According to [14], Qp is a positive operator on TL^n, and C i—>• ((X)q 18 a norm on 

Ti®n'. We let Hfn dénote the resulting completion. Then by définition, the g-Fock 

space over H is the Hilbertian direct sum 

TAU) 
n>0 

TAU) 

In the sequel we will use ( , )q to dénote the inner product on the whole space Jrq(7i). 

Since its restriction to each 7i®n coincides with (9.1), there should be no confusion. 

Accordingly, || \\q will stand for the norm on Jrq(H). 

We let be the unit élément in 7r®° = C . This is usually called the vacuum. For 

any h G 7Y, the création operator c(h) on J7q(7ï) is defined by letting c(h)Q = /i, 

c(h)(hi (8) • • • (8) ftn) : h 0 h\ <g) • • • 0 hn. h\,..., hn G 7Y, 
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and then extending by linearity and continuity. Indeed, 

c(h): Fq(H)-^Fq(H) 

is a bounded operator taking 7iq into K } for any n > 0. Next the annihilation 

operator a (h) : Fq(H) —• Fq{H) is defined by 

a(h) = c(hY heH. 

Throughout the rest of this chapter, we let H be a real Hilbert space, and we let Hc 

dénote its complexification. We will use the above ç-Fock space, as well as création 

and annihilation operators, for TL — Hc- For any h G H, we let 

w(h) = a(h) + c(h) 

This is a selfadjoint operator on Fq{Hc), called a g-Gaussian operator. By définition, 

the von Neumann algebra of g-deformation associated with H is 

w(h) vN{w{h) : h S H} C B(Fq(Hc)), 

the von Neumann algebra generated by ail o-Gaussian operators. 
We let 

(9.3) T(x) = (xïl, fi)a, x€Tq{H). 

It was proved in [15] that il is a cyelic and separating vector for the von Neumann 
algebra Tq(H), so that the mapping 

A:rq(H)-^Fq(Hc), A(x) = x(Q), 

is one-one and has dense range. Moreover r is a normal, faithful, normalized trace on 
Tq(H). In this chapter, we will consider the noncommutative Lp-spaces Lp(Tq(H)) 

associated with r. Since 

\\x\\i=T(x*x) = \\x{Çî)\\i 

for any x G Tq(H), we see that A extends to a unitary isomorphism 

(9.4) L2(Tq(H)) ~ Tq(Hc). 

Following [13], we now consider the second quantization on g-Fock spaces and 

von Neumann algebras of g-deformation. Let H\,H2 be two real Hilbert spaces, 

with complexifications denoted by H\ and H2 respectively. Let a: H\ —> H2 be 

a contraction, and let â: TLi —> H2 dénote its complexification. Then there is a 

(necessarily unique) linear contraction 

Fq{a): Fq(Hi)Fq{H2) 

such that Fa(a)(Q) = Q and for any n > 1, 

(9.5) F„(a)(h, <g> • • • <8> K) à(hi) (g) • • • <g> â(hn) hi,-. •, hn G Tii 

(See [13, Lemma 1.4].) Moreover we have 

Fq(ar = Fg(a*) and F(aaf) = F(a)F(a') 
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for any contractions a, a . Next, there is a (necessarily unique) normal unit al com­

pletely positive map 
r,(a): r , ( ^ ) -^Tq(H2) 

such that A o Tq(a) = Fq(a) o A. Equivalently, 

(9.6) WJa)(x)]n Fq(a)(xQ), x G r , ( / f i ) . 

This is established in [13, Section 2]. According to that paper, or using (9.6), we see 

that 

r9(a)(x) Fq(a)xFq(a*) 

for any x G rq(Hi). Hence we deduce that 

(9.7) ïq(a)(x) rq(a)(x*) a : e r , ( i î i ) 

Lemma9.1. — For any contraction a: FL\ —» H2, and any 1 < p < 00, the operator 

r9(a) (uniquely) extends to a complète contraction from Lp(Tq(Hi)) into Lp(Tq(H2))-

Proof. — The proof is similar to the one at the beginning of Chapter 5. Let x G 

Yn(H\) and y G Ta(H2). Using (9.3), (9.6), and (9.7), we have 

T(yTq(a)(x)) y\TJa)(x)\n,n)a (yFq(a)(xn),n)q 

(xQ,Fq(a*)(y*n))q {xn,[rq(a*)(y*W)q 

T(rq(a*)(y)x). 

We deduce that 

\r(yTq(a)(x)] Iklli lir^(«*)(î/)lloo Iklli WvWoo-

Taking the supremum over y in the unit bail of rg(772), we obtain that ||rg(a)(x)||i < 
llxlli. This shows that Tq(a) extends to a contraction Tq(a): L1(Tq(Hi)) 
L1(Tq(H2)). By interpolation, we deduce that Tq(a): Lp(rg(i/i)) Lp(Tq(H2)) is a 
contraction for anyp > 1. Arguing as in Remark 5.1, we see that Tq(a) : Lp(Tq(Hi)) —> 

Lp(Tq(H2)) is actually a complète contraction. • 

Remark 9.2. — Under the identification (9.4), the extension of Tq(a) to L2 coincides 

with Fq(a). It also follows from the above proof that Tq(a) is selfadoint (in the sensé 

of (5.1)) if a: H\ —> H2 is selfadjoint. 

We now turn to semigroups of operators obtained from second quantization. We 

will silently use Lemma 9.1, which allows to consider thèse operators as contractions 

on noncommutative Lp-spaces. 

Lemma 9.3. — Let q G ( — 1,1). Let H be a real Hilbert space and let (at)t>o be a 

co-semigroup of contractions on H. For any t > 0, let Tt = Tq(at) be defined by 

second quantization on Tq(H). 

(1) For any 1 < p < oo, (Tt)t>o is a completely contractive CQ-semigroup on 

LP(Tq(H)). 
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(2) If further (at)t>o is selfadjoint, then (Tt)t>o is a completely positive diffusion 

semigroup on Tq(H) (in the sensé of Chapter 5). 

Proof. — For simplicity, we write Lp instead of Lp(Tq(H)) along this proof. It is 

clear that (Tt)t>o is a semigroup of complète contractions on each Lp. Since (at)t>o 

is strongly continuous on H, (dt)t>o is strongly continuous on H^. Hence (Fq(at))t>o 

is strongly continuous on each H^n, by (9.5). By density, it is strongly continuous 

on Fq(Hc). This implies that (Tt)t>o is point w*-continuous on the von Neumann 

algebra Tq(H). In turn, arguing as in Chapter 5, this implies that (Tt)t>o is strongly 

continuous on Lp for any 1 < p < oo. This proves (1). The assertion (2) now follows 

from Remark 9.2. • 

Theorem 9.4. — Let H be a real Hilbert space and let (at)t>o be a co-semigroup of 

contractions on H. For any q G ( — 1,1) and any t > 0, we let Tt = Tq(at). Then for 

any 1 < p < oo, we let —AP dénote the generator of (Tt)t>o on Lp(Tq(H)). 

(1) For any 1 < p < oo, and any 0 > | , the operator AP has a completely bounded 

H°°(Y,Q) functional calculus. 

(2) If further (at)t>o is selfadjoint, then for any 1 < p < oo, and any 6 > - — \ \, 
— ' I p Z I 

the operator AP has a completely bounded H00 CE Q) functional calculus. 
Proof. — Clearly part (2) of this theorem follows from Lemma 9.3 (2), Proposi­
tion 5.8, and part (1). Thus we only have to prove (1). We fix some 1 < p < oo 

and write A — AP for simplicity. According to [71, Theorem 8.1], there exist a (real) 
Hilbert space a linear isometry j : H —» K, and a c0-group (ut)te^ of orthogonal 
operators on K such that 

R(z,A) t > 0. 

Applying second quantization, we have Tq(at) = Tq(j*)Tq(ut)Tq(j), for any t > 0. 
Owing to Lemma 9.1, we consider the Lp-realizations of thèse quantized operators, 
which we dénote by 

J = rq(j): L"(TJH)) — L'iTJK)). Q = rq(f): Lp(Tq(K)) —> Lp(Tq(H)) 

and 

Ut=Tq(ut):LP(rq(K)) Lp(Tq(K)). t G R. 

Then J.Q are complète contractions. By Lemma 9.3, (Uf)t is a co-group of com­

plète contractions on Lp(Tq(K)), or equivalently, a co-group of complète isometries. 

Moreover we have the following dilation property 

Tt = QUtJ. t G R. 

The resuit therefore follows from Proposition 3.12. 

In the case when at = (Tt)t>o is the so-called ç-Ornstein-Uhlenbeck semi­

group (see e.g. [9, 11]). This is a selfadjoint semigroup, and hence it satisfies the 

conclusion of Theorem 9.4 (2). 
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9.B. Clifford algebras 

We now présent an analogue of Theorem 9.4 on Clifford algebras. Thèse algebras 

correspond to the ones considered in the previous paragraph for q = — 1, up to some 

modifications due to the fact that the operator Qq defined by (9.2) has a non trivial 

kernel if q — — 1. Instead of formally using 9.A, we will consider the (équivalent) 

usual définition of Clifford algebras in terms of antisymmetric product s. We refer the 

reader to [16, 66] for more information. 

If H is a complex Hilbert space, we let An(H) dénote the n-fold antisymmetric 

product of H, equipped with the canonical inner product given by 

hi A • • • A hn , h\ A • • • A tin det[(hh h'3)\, fti, h'j G H. 

By convention, A°(7^) = C . We let fî be the unit élément of A0(H). Then the 

antisvmmetric Fock space over TL is the Hilbertian direct sum 

MH) 0 An(H). 
n>0 

For any h G H, the création operator c(h) on AÇH) is defined by letting c(h)Ç} — h 

c ( k ) ( k i A - A k n ] h A h\ A • • • A hn hi,. . ., hn G H, 

and then extending by linearity and continuity. Its adjoint c(hy is the annihilation 

operator, denoted by a(h). 

Next we consider a real Hilbert space iJ, we use the above construction on H — H<£, 

and we let w(h) — a (h) + c(h) for any h G H. Thèse operators are called Fermions. 

The von Neumann Clifford algebra associated with H is 

C(H) = vNiw(h) : h G H\ C B(A(Hr) 

We equip it with the normal faithful normalized trace r defined by r(x) — (x i l , ^ ) , 
and we consider the associated noncommutative Lp-spaces LP(C(H)). 

In the analogy with paragraph 9.A, we can think of A (H) and C(H) as being equal 
to T'-i(H) and T-i(H) respectively. Then second quantization on thèse spaces can 
be defined as in 9.A. Namely if a: H\ —> H2 is a contraction between real Hilbert 
spaces and if a dénotes its complexification, the operator F_i(a): A(Hi) —> A(H2) 

is the (necessarily unique) linear contraction defined by F-\(à)(il) — Q and for any 
n > 1, 

(9.8) F_i(a)(/ii A - " A / i „ â(hi) A • • • A a(hn) fti,.. •, hn G H\. 

Next, r_ i ( a ) : C(H\) —> ^ ( ^ 2 ) is the (necessarily unique) normal unital completely 
positive map such that 

(9.9) [r_i(a)(a:)]îî F_i(a)(a;îî): i e C ( H i ) . 

It is easy to see that Lemmas 9.1 and 9.3, as well as Remark 9.2 extend to the 

case q = — 1. Likewise, Theorem 9.4 extends to that case with the same proof and we 

obtain the following statement. 
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Theorem 9.5. — Let H be a real Hilbert space and let (at)t>o be a c$-semigroup of 

contractions on H. For any t > 0, we let Tt = T-i(at). Then for any 1 < p < oo, we 

let —Ap dénote the generator of (Tt)t>o on LP(C(H)). 

(1) For any 1 < p < oo, and any 0 > ~, the operator Ap has a completely bounded 

H°°ÇE0) functional calculus. 

(2) If further (at)t>o is selfadjoint, then for any 1 < p < oo, and any 0 > TT|- — 

the operator Ap has a completely bounded H°°(T,e) functional calculus. 

Assume now that H is infinité dimensional, and let (ei)i>\ be an orthonormal 

family. We let Wi = w(ei) for any i > 1. It is well-known that thèse operators form 

a 'spin System'. Namely they are hermitian unitaries on A(H) and 

WiWj = -WjWu if i ^ j . 

We let 1 be the set of ail increasing finite séquences {ii < %2 < • • • < im} of positive 
integers. If F is such a séquence we let 

vF = wil-.. Wim 

By convention, the empty set belongs to X, and we let V0 = 1. Also we write |F| fo 

the cardinal of F G T. Since the W^s form a spin System, the *-algebra they générât 

is equal to 

V = SpaniVp : F G l \ . 

Thus V is w*-dense in C(H), and it is dense in LP(C(H)) for any 1 < p < oo. 
It is easy to see that for any F = {i\ < Z2 < • • • < zm}, we have 

VFVt = e%1 A • • • A eirn. 

Hence the VF's form an orthonormal basis of L2(C(H)). 

We now focus on the completely positive noncommutative diffusion semigroup on 
C(H) defined by 

Tt = T-1(e-tIH), t>0. 

This is the Fermionic Ornstein-Uhlenbeck semigroup. According to the above discus­

sion, we have 

Tt(VF) - e ^ l ^ V p , t > 0, F G J. 

The operator A : V —» V defined by 

(9.10) A{VF) = \F\VF, F El. 

is called the number operator. It follows from above that for any 1 < p < oo, the 

négative generator Ap of (Tt)t>o on LP(C(H)) is an extension of A. Equivalently we 

can regard Ap as an Lp-realization of the number operator. 
o 

For convenience, we introduce T — T \ {0}. 
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Corollary 9.6. — Let 1 < p < oo and let 0 > tt\ - — | | be an angle. Then for any 
function f G H°°(Yjq) and for any finitely supported family of complex numbers {ap 
Fez}, we have 

(9.11) 
F 

aFf(\F\)VF 
P 

K\\f\\oo,e 
F 

a F VF 

where K > 0 is a constant not depending on f. 

Proof. — Let A = Ap be the négative generator of the Fermionic Ornstein-Uhlenbeck 
semigroup on LP(C(H)), and let f e H°°(Y,e)- We let 

Lp(C(H)) Span{FF : Fel}. 

According to the above discussion and (9.10), we have LP(C(H)) = R(A). We let À 
dénote the restriction of A to that space. By Theorem 9.5 (2), A admits a bounded 
H°°(Yio) functional calculus. Hence by Theorem 3.3 and Remark 3.4, we may define 
a bounded operator 

f(A): L*(C(H)) ^ IS(C(H)) 

and | | / (Â) | | < If ||/||oo,0 for some constant K not depending on / . Now using (9.10), 
o o o 

we see that f(A) takes Vp to f(\F\)Vp for any F <G T. Thus f(A) takes (J2F AF V F ) 
to (DFaF/ ( |F | ) yF) , which yields (9.11). • 

The latter corollary can be regarded as a resuit on 'noncommutative Fourier mul­
tipliers' associated with a spin System. Indeed, Corollary 9.6 says that the family 

{/(|F|) :Fei} 

is a bounded multiplier on LP{C(H)) with respect to the basis {VF : F G l}. In fact, 
A = Ap has a completely bounded if°°(E^) functional calculus on LP(C(H)). Hence 

o 
{f(\F\) : F G T } is a completely bounded multiplier. Namely, (9.11) remains true if 
( « F ) F is a family lying in Sp, and multiplication is replaced by tensor products. 

We noticed that results in this paragraph correspond to those in paragraph 9.A in 
the case q = — 1. We can do the same in the case q = 1. However the results we may 
obtain in this case are not new. Indeed for a real Hilbert space H, the von Neumann 
algebra ^i{H) is commutative, hence Cowling's Theorem (see Remark 5.9) apply to 
semigroups on Ti(H) obtained from second quantization. 
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CHAPTER 10 

A NONCOMMUTATIVE POISSON SEMIGROUP 

10.A. Definitions 

Let n > 1 be an integer, and let G = ¥n be a free group with n generators denoted 

by c i , . . . , cn . We let e be the unit élément of G, and we let (ôg)geG dénote the 

canonical basis of £Q. Then we let À: G —» B(l2G) be the left regular représentation 

of G, defined by 

X{g)Sh = àgh, g, h e G. 

We recall that the group von Neumann algebra VN(G) C B(£Q) is defined as the von 

Neumann algebra on l2r generated by the *-algebra 

V = Span{A(sO : g G G}. 

We let r be the normalized trace on VN(G) defined by r(x) = (x(ôe),Se) for any 

x G VN(G). We will consider the noncommutative Lp-spaces LP(VN(G)) associated 

with this trace. For any 1 < p < oo, V C LP(VN(G)) is a dense subspace. Moreover 

for any finitely supported family (aa)a of complex numbers, we have 

g 

agX(g) 
2 

9 
; k i 2 

I 
2 

Thus we have L2{VN{G)) = £2G. 

Since G is a free group, any g G G lias a unique décomposition of the form 

(10.1) (I Il '* 2 'Ci 1 

where p > 0 is an integer, each i3 belongs to { 1 , . . ., n} , each k3 is a non zéro integer, 

and ij ^ i3+i if 1 < j < p — 1. The case when p = 0 corresponds to the unit élément 

g — e. By définition, the length of g is defined as 

U/l fc, + • • • + fcj. 

This is the number of factors in the above décomposition of g. 



104 CHAPTER 10. A NONCOMMUTATIVE POISSON SEMIGROUP 

For any nonnegative real number t > 0, we let Tt : V —> V be the linear mapping 
defined by letting 

( 1 0 . 2 ) Tt(\(g)) =e-tM\(g), q E G. 

It is proved in [30] that this operator uniquely extends to a normal unital completely 

positive map Tt: VN(G) —» VN(G). It is easy to check that each Tt is selfadjoint 

(in the sensé of (5.1)) , and that Tt(x) —• x as t —• 0 + in the iu*-topology of VN(G), 

for any x G VN(G). Thus (Tt)t>o is a completely positive diffusion semigroup in the 

sensé of Chapter 5 (see Remark 5.1). 

Let T be the unit circle. If n = 1, then G = Z, and (Tt)t>o is the classical Poisson 

semigroup on L°°(T). 

Définition 10.1. — TTie diffusion semigroup (Tt)t>o on ^ ^ ( F n ) defined by (10.2) is 

called the noncommutative Poisson semigroup. 

Following the notation in Chapter 5, we let — Ap dénote the infinitésimal generator 
of (Tt)t>Q on LP(VN(G)) for any 1 < p < oo. It is clear from ( 1 0 . 2 ) that V is included 
in the domain of Ap, and that 

Ap(\(g)) = \g\X(g), geG. 

Our main objective is Theorem 10 .12 below, which says that Ap has a (completely) 
bounded H00 CE e) functional calculus on LP(VN(G))) for any 6 > uop = n\p~l — 

2_1 | . The proof will require several steps of independent interest. First we will 
show that each Tt can be 'dilated by a martingale', see Proposition 10.5. Then in 
the next paragraph, we will establish square function estimâtes for noncommutative 
martingales, which generalize well-known commutative results. In the final part of 
this chapter, we will combine thèse results to obtain square function estimâtes for 
the semigroup (Tt)t>o, and Theorem 10 .12 will be deduced from thèse estimâtes. 
This scheme owes a lot to Stein's proof of square function estimâtes for commutative 
diffusion semigroups (see [70, Chapter IV]). 

10.B. Dilation by martingales 

If A4 and Ai' are two von Neumann algebras equipped with normalized normal 

faithful traces r and r7, we say that an operator T: M —» M1 préserves traces (or is 

trace preserving) if r' o T — T on Ai. 

If TT : (Ai, r) —» (Ai'', T') is a normal unital faithful trace preserving ^représentation, 

then it (uniquely) extends to an isometry from Lp(Ai) into LP(M') for any 1 < p < oo. 
In fact, thèse isometries are complète. We call the adjoint Q: A4' —» Ai of the 

embedding Ll(Ai) ^ Ll(Ai') induced by 7r the conditional expectation associated 

with 7r. This map is also trace preserving and extends to a complète contraction 
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10.B. DILATION BY MARTINGALES 105 

Lp{A4f) —• LP(M) for any 1 < p < oo. Moreover Q: M' —> M is unital and 
completely positive. 

In fact if Ai is a von Neumann subalgebra of A4', and TT is the canonical embedding, 

then Q is a conditional expectation in the usual sensé. In this case, Q is actually the 

unique trace preserving conditional expectation A4' —> Ai and we call it the canonical 

conditional expectation onto A4. 

Définition 10.2. — Let M. be a von Neumann algebra equipped with a normalized trace 

r, and let T : A4 —> A4 be a bounded operator. We say that T satisfîes Rota's dilation 

property if there exist a von Neumann algebra j\f equipped with a normalized trace, 

a normal unital faithful *-représentation TT: A4 —» J\f which préserves traces, and a 

decreasing séquence (Afm)m>i of von Neumann subalgebras of Af such that 

(10 .3 ) Tm = Qo£mo7r, m > l , 

where Sm: Af —>• Afm C Af is the canonical conditional expectation onto Afm, and 

where Q: Af —>• A4 is the conditional expectation associated with n. 

Remark 10.3 

( 1 ) Assume that T: A4 —> A4 satisfîes Rota's dilation property. Then T is normal, 

unital, completely positive, and selfajoint. Indeed let a be the trace on Af, then for 

any x, y G Ai we have 

T{T(x)y) = r(QS17r(x)y) 

= o-(£iir(x)Ti{y)) 

= a(7r(x)S17T(y)) 

= r(xQSi7i(y)) = r(xT(y)). 

Since T is positive, it therefore satisfîes (5.1). 
Thus in the sequel, we will mostly restrict our attention to operators T which are 

normal, unital, completely positive, and selfadjoint. Note that such an operator is 
necessarily trace preserving. Indeed, 

r(T(x)) = r(T(x)l) = r(xT(l)) = r(xl) = r{x) 

for any x G Ai. 

( 2 ) The above property is named after Rota's Theorem which asserts that if Ai 

is commutative, and if T : Ai —> A4 is a normal unital positive selfadjoint operator, 

then T2 satisfîes Rota's dilation property (see e.g. [70, IV. 9 ] ) . 

( 3 ) Let T: Ai —> Ai be a normal unital completely positive selfadjoint operator 

satisfying Définition 10.2. We noticed that 7r, Sm and Q ail extend to associated Lp-

spaces. In the sequel we will keep the same notation for thèse extensions. Then it is 

clear that ( 10 .3 ) holds as well on Lp(Ai) for any 1 < p < oo. 
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If (M\, ri), . . . , (Ain, Tn) is a finite family of von Neumann algebras equipped with 

distinguished normalized traces, we let 

(M,T) 
l<i<n 

'Mi,Ti) 

dénote their reduced free product von Neumann algebra (in the sensé of [75, 76]). 
On the other hand, we let * Mx for the unital algebra free product of the Mi s, 

l<i<n 
which is a w;*-dense *-subalgebra of Ai. Then for any 1 < i < n, we let Mi = 

Ker(r2) C Mi dénote the kernel of Ti. Now suppose that we have a second fam­

ily (M[, r ' i ) , . . . , (M'n, Tn) °f v o n Neumann algebras with distinguished normal­

ized traces, with reduced free product von Neumann algebra denoted by (M',r'). 

Assume further that for each z, we have a normal unital completely positive map 

Tt: Mi —> M'i which préserves traces. According to [10, Theorem 3.8], there is a 

unique normal unital completely positive map T': M —• Mf such that 

T(xi • • -xp) = T 2 l(.xi) • '-Tlp(xp) 

whenever p > 1 is an integer, i3 ^ ij+i for any 1 < j < p — 1, and x3 G Mi, for any 

1 < j ' < V- This map is called the 'free product' of the Tz's, and we will dénote it by 

T = Ti * • • • *T„ 

The above algebraic condition détermines the free product on the algebra * M 

(see [10] for détails). 

Lemma 10A. — - For 1 < i < n, let Tt: (Ml,rl) —>• (Mi,Ti) be a normal unital com­

pletely positive map preserving traces. If each T% satisfies Rota1 s dilation property, 

then their free product 

7,*-••*'/;,: * (Mun) 
l<i<n 

* (Mi,Ti) 
Ki<n 

also satisfies Rota's dilation property. 

Proof. — By assumption, there exist for any i = 1,..., n a von Neumann algebra 

AT equipped with a normalized trace <x;, a normal unital faithful *-representation 

7T2 : M, —> AT which préserves traces, and a decreasing séquence (A/^ n ) m >i of von 

Neumann subalgebras of M1 such that T 2

m — Qt o S'm o 7r2 for any integer m > 1, 

where £]n : M
1 —• M]n C M1 and Q' : M1 —> M , are the conditional expectations 

ffiven bv Définition 10.2. We consider the free product 

TT — TX\ * • • • *7Tn l<2<n l<i<n 

According to [10, Theorem 3.7], the normal imitai map TT is a faithful trace preserving 

^représentation. Likewise for any m > 1, the product * (Ml

ml o~i) can be regarded 
l<i<n 
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as a von Neumann subalgebra of * (AT, <T;), and the séquence of thèse subalgebras 
1 < i < n 

is decreasing. We may also consider 

= <brn*---*£m: * (Al ,<n) 
Ki<n 

* ( A / ^ a , ) C * (Af1, ai) 
1 < i < n l<t<n 

for any m > 1, and 

Q = Qi*---*Qn: * ( A / V i ) 
Ki<n 

* ( A I 2 , T , ) . 

As one might expect, the mapping Q is the conditional expectation associated with TT. 

Indeed Q is normal, unital, completely positive, and préserves traces. Hence it suffices 

to check that Q o TT is the identity mapping on * (Af;, T;) . Since Qi o m = I on 
1 <i<n 

each Al; , we easily see that Q o TT = I on the algebra free product * Mi. Since Q 
l<i<n 

is normal, this yields the resuit. Likewise, £m is the canonical conditional expectation 

onto * (Afin, o~i). Thus it suffices to show that for any integer m > 1, we have 
1 <C?<Tn (Tn* • • • *Tin)m = QoSmOTT 

on * (M-i,Ti). Again it is easy to check that it holds true on * Mi, and the 
l<i<n l<i<n 

resuit follows by normality. • 

We now corne back to the von Neumann algebra VN(¥n) equipped with its stan­

dard trace r (see paragraph 10.A). Here we assume that n > 2. We let T\ be the 

standard trace on L°°(T), which is given by T I ( / ) = J f(z)dm(z). For any inte­

ger A: G Z, let ek dénote the function z i—> zk on T. For any r G (0,1], we let 

Pr: L°°(T) —>• L°°(T) be the (unique) normal mapping taking to r^'e^ for any /c. 

Equivalently, Pr is the convolution operator / i—>• pr * / , with pr equal to the Poisson 

kernel. It is well-known that 

(10.4) (WV(Fn),r) : * (^(T),^). 
i < i < n 

We note that Pr is unital, trace preserving, and positive (hence completely positive). 

According to our previous discussion we may therefore consider the free product (with 

n factors) 

(10.5) Pr*---*Pr: (VN(Fn),r) (VN(¥n),r). 

It turns out that for any g G F„, 

(Pr*---*Pr)(A(ff); rl9lMg). 

Indeed, let e\ dénote the élément e& in the zth factor of (L°°(T), ri)* • • • *(L°°(T), T\). 

If g G G has a factorization (10.1), then X(g) corresponds to • • • el£ through the 

identification (10.4). Each kj is non zéro, hence each belongs to the kernel of T\. 

Hence by the algebraic characterization of the free product operator, Pr* • • • *Pr takes 

X(q) to 

Prà\)' • • Pr(ekpp) = • • • r W ) e£ • • • ejf = r^lA(^). 
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This shows that for any t > 0, the normal operator Tt : VN(¥n) —» VN(¥n) defined 

by ( 1 0 . 2 ) coincides with the free product Pe-t* • • • *Pe-t. Combining Rota's Theorem 

(see Remark 10.3 ( 2 ) ) and Lemma 10.4, we deduce the following. 

Proposition 10.5. — Let (Tt)t>o be the noncommutative Poisson semigroup on 

VN(¥n) (see Définition 10.2). For any t >0, the operator Tt satisfies Rota's dilation 

property. 

10.C. Square function estimâtes for noncommutative martingales 

Let (A/*, cr) be a von Neumann algebra equipped with a normalized normal faithful 

trace. Suppose that (A/*m)m>o is an increasing séquence of von Neumann subalge-

bras of A/\ and let £m : J\f —» J\fm be the canonical conditional expectations. A 

noncommutative martingale is defined as a séquence (xm)m>o in L1(Af) such that 

£m(xm+i) — xm for any m > 0. Clearly for any x G Ll(N), the séquence (£m(x))m>o 

is a martingale. 

Likewise if {Afm)m>o is a decreasing séquence, a reverse martingale is a séquence 

{xm)m>o hi L1(Af) such that £m+i(xm) = xm+i for any m > 0. Then for any 

x G Ll(Af), (£m(zO)m>o is a reverse martingale. 

We refer the reader to [64], [65, Section 7] and the références therein for infor­

mation on noncommutative martingales and related square functions, which play a 

crucial rôle in this topic. Proposition 10.8 below gives a square function estimate 

for noncommutative martingales, which generalizes an inequality due to Stein [70, p. 

113] . 

We start from another noncommutative generalization of a resuit of Stein, due to 

Pisier and the third named author. 

Proposition 10.6. — (1^4]J Let (£k)k>o be either an increasing or decreasing séquence 

of (canonical) conditional expectations on Nand let 1 < p < oo. For any k > 0, we 

let 

I®Sk: Sp[Lp(X)\ —> SP[LP(N)' 

be the tensor extension of £k- Then the set {I®£k : k > 0 } is both Col-bounded and 

Row-bounded on Sp[Lp(J\f)}. Thus it is also Rad-bounded on Sp[Lp{J\f)}. 

Proof. — In the case of a increasing séquence, this is essentially a restatement of [64, 

Theorem 2.3] . The proof in the decreasing case is identical. • 

Lemma 10.7. — Let (£k)k>o be either an increasing or decreasing séquence of (canon­

ical) conditional expectations on N, let 1 < p < oc, and let {XJ)3>O be a séquence of 

Lp(AT). For any integer k>2, set yk = x3 if 2J + 1 < k < 2J'+1. 
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(1) If (XJ)J>O belongs to the space Lp(J\f; l2,), then the séquence {m 2 Y^k=2 £k(yk))rn>2 

belongs to Lp {J\f ] £2), and 

(10.6) 
_ 3 

m 2 
m 

k=2 
,£k(yk) 

m>2 ,£k(yk 
Kp \\(Xj)j>o\\LP(Af;q)i 

where Kp > 0 is a constant only depending on p (and not on either A/" or the 

Moreover the same resuit holds true with Lp(J\f]£2) replaced by Lp(J\f;£2). 

(2) If (XJ)J>O belongs to LP{J\f'J2RAD), then the séquence (ra~§ YJk=2 ̂ k(yk))m>2 

belongs to LP(AT; £2ad)7 and 

F _ 3 m 2 
m 

k=2 
£k(Vk) 

m>2 ,£k(ykX 
KP \\(XJ)J>o\\LP(Af;Pad)i 

where Kp > 0 is a constant only depending on p. 

Proof — According to Corollary 2.12, we may assume that (XJ)J>O is a finite sé­

quence. We define 

Zkm 
1 

m 
£k(yk), M > K > 2. 

Let (efc)fc>o be the canonical basis of £2, and let Emn be the standard matrix units 

on Sp. Using Remark 2.3 (3) twice and Proposition 10.6, we have an estimate 

\\{Zkm)m>k\\LP{J\f;(P®e2)c) 
Um>k>2 

1 

m 
LP(Af;(£2<g)P)c) 

\LP(Af;(£2<g)P)c) 

]k>2 

ek 0 I®£k 
Km>h 

1 

m 
Emi ® Vk 

\LP(tf®B(£2Y,£2) 

Cp 
'fc>2 

ek <8> 
Km>k 

1 
m 

Eml ® Vk 
\LP(N®B(P);PC) 

ML 

m>k>2 

1 

m 
ek ® em (g) 

P(N®B(P);PC) 

Next we have 

m>fc>2 

1 

m 
efc (g) em (g) î/fc 

LP(Af;{£2®£2)c) 
m>/c>2 

1 

m2 
VkVk 

i 
2 

P 

7>0 

* 
9J + 1 

P(N®B(P);PC) 

1 

m2 V 

i 
2 

j>0 

x-Xj 2J 

m>2J' + l 

1 

m2 

2 I 

lp 

C 

j>0 

Xj Xj 
1 
9 

lp' 
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where c supJ 2J i 
jm>2o+l m2 

i 
2 

is a universal constant. Altogether we obtain 
that 

\\{Zkrn)rn>k\\Lv{N-,{P®P)c.] Kp ||(^j)j>o||lp(A/';^ 

with Kp — cCp, 

Now let S: £2 02 ^ -* £2 be defined by 

S[(akm)k,m>l 
1 

m k<m 
OLkm I 

m>l 

This mapping is a well-defined contraction. Indeed, 

S\{0Lkm)k,m>l_ 
2 

2 m> 1 

1 

m 

m 

k=l 

2 

fc rn>k 

\0ikm\2 (&km)k,m 
i2 
12* 

Let 5 : LP(A/"; {£2 (g) ^2)c) -> Lp(Af;£2c) be the tensor extension given by Lemma 2.4. 

Then 5 takes (zkm)m>k>2 to (m 2 Ylk=2^k(yk)) Thus (10 .6 ) follows from the 

above estimate. 
The row counterpart of (10 .6 ) has the same proof, and the second part of the lemmg 

follows from the first one. C 

Proposition 10.8. — Let (£m)m>o be either an increasing or decreasing séquence of 

(canonical) conditional expectations on M, and let 1 < p < oc. For any x G Lp{Af) 

and any m > 0, we let 

Am(x) 
1 

m + 1 

rn 

k=0 
£k(x) and Am(x) = Am(x) - Arn_i(x). 

Then the séquence (y/m Am(x))m>1 belongs to the space Lp(Af; £2ad) and satisfies 

| ( > M A m ( x ) ) m > 1 | | L P ( ^ d ) Kv\\x\\v, 

where Kp > 0 is a constant only depending on p. 

Proof — We shall prove this resuit in the case of an increasing séquence (£m)rn>o, 

the proof for the decreasing case being similar. We adapt the arguments from [70, 
pp. 113-114] to the noncommutative setting. 

Let 1 < p < 00 and let x G LP(M). We set 

d0(x) = S0(x) and dk(x)=Sk{x)-Sk-i(x) if A-> 1. 

Given an integer m > 1, we let TV = [log9(ra)l, so that 2 ^ < m < 2IV+1 - 1. We have 

Am(x) 
m 

k = C 

1 
m+1 

I dk{x) 
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Hence 

Am(x) 
i 

rnirn + 1) 

m 

k=l 

kdk(x) 

1 
m(m + 1) 

di(x) 
N-l 

J=0 

2J + I 

fc=2J+l 

kdk{x) 
m 

k=2N + l 
kdk(x) 

For any integer j > 0, we set 

(10.7) x3 

2.7 + l 

fc=2J'+l 

4 ( ^ ) , 

and we note that for any integers 1 < q < r, we have 

r 

k=q+A 

kdk(x) r 
r 

k=a+l 

dk(x) 
r-1 

k=q+l 

dk(x) 
r-2 

dk(x dq+i(x) 

Since £2J+I (XJ) = Xj, we obtain that for any j > 0, we have 

fc=2J'+l 

Aï/A-(.r) 
2̂  + 1-l 

A.-2J+1 

£k(xj) 

(2 '̂+1 + l)x? 
2.7 + l 

fc=2J' + l 

£k{xj). 

Likewise, 

rn 

•̂=2^ + 1 

kdk(x) = m 
m 

A:=2̂  + 1 

rn — 1 

A:=2^+1 

£k(xN) 

(m + l)£m(zjv) 
rn 

£k{xN). 

For any integer A: > 2, we set 

= x. if 27 -h 1 < A: < 2J+1. 

Then we have obtained that 

Am(x] 
1 

m(m + 1) 

[los,(m)]-l 

3=0 

(2]+1 +1 )x? + (m+1 )£„, (̂ [iog2(m.)] 
m 

A:=2 

£k{Uk) 

The four ternis in the above parenthesis provide a décomposition 

A,„(a-) R(z,A)R(z,A)R(z,A)R(z,A)R(z,A) 

and it now suffices to give an estimate for each of the four resulting séquences 

A,„(a-)A,„(a-) 
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Obviously we have 

\Z™Am(X))m>1 
i i " ( A / ; ^ O D ) 

\\di\\p^P 

m>l 

1 

m (m + 1) 
\\x\\P. 

Let TJ — S2j for any integer j > 0. Then Xj — T J+\{X) — TAX), by (10.7). Thus 

{xj)j>o is a séquence of martingale différences. Hence according to the noncommuta­

tive Burkholder-Gundy inequalities [64], the séquence (XJ)J>O belongs to Lp{M]£2rad) 

and we have an estimate 

(10.8 (xj)j>0 LP(Af;Pad) \\di\\p 

where cp is a constant only depending on p. Using Lemma 10.7 (2), we immediately 

deduce an estimate for the fourth term, 

y/m Am(x)) \LP(Af;£2.ad) KP \\x\\p. 

Likewise, using a slight modification of Lemma 10.7 (2), with SK = I, and writing 

[log9(m)l-l 

7=0 

2^x3 2 

2[log2(rn)] 

K=2 
VK 

we obtain an estimate 

777 
3 
2 

flog9(m)l-l 

3=0 

\\di\\p 
m>2 L P ( A / * ; ^ A D ) 

Kp\\x\\p. 

In turn, this implies an estimate 

™A2„(x-))m>1 \\di\\p K \\x\\P. 

We now turn to the third term of the décomposition, equal to (X) i_ 
m, 

^ m{% [\og2(m)}) • 
By Proposition 10.6, we have an inequality 

\\di\\p™A2„(x-))m>1 
\\di\\p Cp 

1 

m 
X[log2(m)] 

m>^ LP(A:£lld)' 

Then we introduce an operator S: £2 —> £2 which maps any séquence (CVN)N>O to the 

séquence (/3m)m>i defined by 

An 
1 

777 
«[log2(m)] 777- > 1. 

Indeed, we have 

m>l 

\BM\2 

N>0 

,2N + 1-1 

m = 2N 

1 

TT) 
\aN\2 

N>0 

\aN\2. 

Let S: Lp(J\f; £2ad) —» Lp(N',£2rad) ^e the tensor extension of S given by Lemma 2.4. 

Using (10.8), we see that 

1 

m 
X[log2(m)] 

m>l 
5 (xAr)AT>o) 
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and that 

1 

m 
X[log2(m) 

m>l \LP(N-/2rad) 
\(xN)N>o\\LP(N-/2rad) Cp||a:||p. 

Thus we obtain the last desired estimate, 

( ^ A m ( * ) L > l \LP(N-/2rad) 
\LP(N-/2rad) 

Corollary 10.9. — Let M be a von Neumann algebra equipped with a normalized nor­

mal faithful trace, let T : A4 —>• A4 be a normal unital completely positive selfadjoint 

operator, and assume that T satisfîes Rota's dilation property. For any x G Ll{A4) 

and any m > 0, we let 

\LP(N-/2rad) 1 

ra + 1 

m 

k=0 
Tk(x) ano Dm(x) = Sm(x) - Sm-i(x). 

Then for any 1 < p < oo and any x G LP(A4), the séquence [^/m Drn(x))>1 belongs 

to the space Lp(A4,l2ad) and satisfîes 

(VmDm(a;))m>1 KP \\X\\P; 

where Kv > 0 is a constant only depending on p. 

Proof. — Let 1 < p < oo. Let A/*, 7r, Afm, S m and Q be as in Définition 10.2, and let 

So = I\r. Then it follows from Remark 10.3 (3) that 

Dm = Q ° Am O TT on LP{M), 

where Am is defined as in Proposition 10.8. Since the two mappings TT: Lp(Ai) —> 

Lp(Af) and Q: Lp(Af) —> LP(A4) are (completely) contractive, the resuit follows at 

once from the latter proposition. • 

10.D. Functional calculus for the noncommutative Poisson semigroup 

According to Proposition 10.5 and Corollary 10.9, each Poisson operator Tt on 

LP(VN{¥)) satisfies a certain 'discrète square function estimate', if 1 < p < oo. Later 

on in this chapter, we will deduce a 'continuous square function estimate', in the 

sensé of Chapter 7, for the generator of the semigroup (Tt)t>o- Passing from discrète 

to continuous estimâtes will require the following approximation lemmas. In thèse 

statements, Ai is any semifinite von Neumann algebra. 

Lemma 10.10. — Suppose that 2 < p < oo, and let 0 < a < j3 < oo be two positive real 

numbers. We let H = L2{\a,f3\;dt). Then for any continuous function v: [a,/3] —» 

LP(M), we have 

\\v\\LP(M;HRAD) lim 
DSF 

'\/ëv(em)) f<m<§ \LP(N-/2rad) 
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Proof. — It follows from (2.8) and Lemma 6.1 that 

\\V\\LP(M;HC) 

a. 
v(s) v(s) ds 

i 
2 E 2 

Then by Riemann's approximation Theorem, we deduce that 

\\V\\LP(M;HC) lim 
QS 

e 

?<m<# 

v(em)*v(£m) 
2 

E 2 
lim 

£^0 + 
Evism) f <m<§ LP{M-Xi) 

Likewise, the norm of v in LP(M.; Hr) is equal to the limit (when s —> 0+) of the 

norm of the finite séquence (y/ëv(em)) « < Kp in the space Lp(Ai; £2). The desired 

resuit follows from thèse two results, by (2.24). • 

Lemma 10.11. — We recall that QQ = (R+, dt/1). Let 1 < p < oo, and let LU: [0, oo) —• 
LP(A4) be a continuous function which is continuously differentiable on (0, oo). We 

set 

DSF i 

t 

t 

0 
Lpyu) du, t > 0; 

and 

(10.9 Q 1 

m -h 1 

777 

fc = 0 

if(ek) e > 0, m > 0. 

Assume that there is a constant K > 0 swcft 

(10.10) m > i l - < i - i ) ) m > i l LP{M]llod) K 

for any e > 0. T/ien £/ie function t tcf)' (t) from (0, oo) m£o Lp(.A/f) belongs to the 

space LP{M] L2(Çlo)rad), and we have 

\\t i ^ | LP(M;L2(n0)rarf) 

Proof. — Throughout this proof, we fix two constants 0 < a < (3 < oo, and w( 

consider the Hilbert space H = L2(\a, 3}: dt). We set 

é(t) = Vtè'(t) te (a, (3) 

According to Remark 6.4 (1), it will suffice to show that 

(10.11) ^ LP(M;HRAD) 
K. 

Since Lp is continuously differentiable, we have the constant cp = sup{ H '̂Cs) || : 0 < 

s < (3\ at our disposai. For any integer m > 1, we define 

<t>m{t) 
1 

m 

771—1 

k = 0 

S 
SE 

m ) 
t > 0. 

ASTÉRISQUE 305 



10.D. FUNCTIONAL CALCULUS FOR THE NONCOMMUTATIVE POISSON SEMIGROUP 115 

For a fixed t G (0,/3), and any integer 0 < k < m — 1, let Ik be the closed intervai 

with endpoints ^ and • Then we may write 

0m (t) 
1 

t 

•t 

0 

m—1 

fc=0 

K 
P 

m. 
X/fc M ^ • 

Hence we have 

X/fc M ^ • 

1 

t 

P 

0 

SSF 
m — 1 

k=0 

D 
tk 

m) 
Xik (u) du. 

On the other hand we have \\<p(u) — < cpt/m whenever u G Ik- Letting 

C'q = /3c/3, we deduce that 

(10.12) 4>{t) -<t>m{t) 
S 

m 
0 < t < /?, m > 1. 

The function (j) is differentiable on (0, oo), and we have 

(10.13) 4>'(t) 
1 

t 
W)-4>{t)) t > 0. 

For any e > 0 and any m > 1, we have 

(p(em) m + - mu£m_l and = <t>m{em). 

Hence we obtain 

ip(em) - (j>m{em) = (ra + - Î 4 - I ) 

which is the discrète analogue of (10.13). Combining with the latter formula we 

deduce that 

4>' {em] 
1 

E'ïïl 
[iç[em) — 4>(em)) 

1 

em 
ip(em) - (pm^em)] 

1 

em 
^m{em) - <j>(em) 

m + 1 

em 
ra +- Î4-I 

1 

em 
0m(em) - (j){em) 

Thus we finally have 

e ip{em) 
m + l 

m 
II£ — II£ 

1 

/ m 
{(t>m{em) - <j>(em)) 

The norm of the (finite) séquence i 
m 

ém(em) - é(em) f<™<! in IS(M;FRAD) is 

less than or equal to 

f<m<§ 

1 

'm 
<j)(em) - (f)m(em) 4 

m> ̂  

1 
3 

7722 

Indeed the latter inequality follows from (10.12). Hence 

lim sup 
IJY 

1 

m 
'èm{em) - é(em)) 

f <m<§ IS(M;FRAD) 
0. 
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On the other hand, our assumption on the u^s ensures that the limsup (for e —» 0+) 

of the norm of the séquence (mr=[ (um — uern_l)) ^<rn<p in LP(A4\ Hrad) is less than 

or equal to K. Thus we have proved that 

(10.14; limsup 
c=o+ 

e ip(£m) f<m<§ \LnM^rad) 
K. 

If p > 2, we deduce (10.11) by applying Lemma 10.10 with v = ip. 

Now assume that 1 < p < 2, and let p' be its conjugate number. We consider v 

in Lp (A4) (8) C([a,f3\) and we assume that \\v\\LP>^.Hrad} < 1. According to Re­

mark 2.11, (10.11) will follow if we can show that \(ip, v)\ < K. Since t 1—» (vp(t), v(t)) 

is continuous on we have 

e ip( 
•P 

a 
(Mt),v(t))dt 

lim 
£-^0 + 

£ 

f<mf 

'ipiem), v(em)) 

By the duality relation (2.25), \(é,v)\ is therefore less than or equal to 

lim sup 
£ ^ 0 + 

£ yj{£m)) f<m<§ \LP(M;Prad) 
lim sup 

£^0-
£ v(em) f <m<§ LP'(M;Pad) 

By Lemma 10.10 and (10.14), we obtain the inequality | (-0,17)1 < K. 

Theorem 10.12. — Let (Tt)t>o be the noncommutative Poisson semigroup on VN(¥n) 

(see Définition 10.2). For any 1 < p < 00 7 we let —AP be the generator of (Tt)t>o 

on LP(V N(Fn)), and we let OJP = TT| ^ — ^ |. Then for 0 > cvP7 the operator AP has a 

completely bounded H00(Y,Q) functional calculus. 

Proof — We will first show that AP has a bounded H°°(Y,Q) functional calculus for 

any 0 > cup. We noticed in paragraph 10.A that (Tt)t>o is a completely positive 

diffusion semigroup on VN(¥n). Hence for any 1 < p < 00, the operator AP is Rad-

sectorial of Rad-type LUP by Theorem 5.6. Thus according to Corollary 7.4, it suffices 

to find 0 > LUP and a non zéro function F G HQ°Ç£O) such that AP both satisfies the 

square function estimate (<SF)> and the dual square function estimate (S*F) (in the 

sensé of Chapter 7). Since A* — AP/, it actually suffices to prove (SF) only. 

We fix some 1 < p < 00. We let x G Lp(VN(¥n)) and apply Lemma 10.11 

to the function cp(t) — Tt(x). We let 0 be the associated average function. Since 

(f(ek) — T£k(x) — Tç(x), the averages defined by (10.9) are equal to 

* 4 
1 

m + 1 

m 

fc=0 
Tek(x). 

Then by Proposition 10.5 and Corollary 10.9, the uniform condition (10.10) holds true 

with K = Kp\\x\\p, Kp being a universal constant. Thus Lemma 10.11 ensures that 

(10.15) t t(pf(t) 
LP(M;L2(Q0)rad) 

Kp 11 x I j p. 
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We consider the holomorphic function 

F(z) = e'z 
l-e~z 

z 
zeC. 

It is easy to check that F G Hg°ÇEo) for any 0 < | . We fix some 6 G (up, f ) , and we 

will check that AV satisfies (SF). According to (10.15), it suffices to show that 

(10.16) t(j)'(t) = F(tAp)x t > 0. 

Let us write A — Av for simplicity. We first observe that 

zF'(z) + F(z) [zF{z)\ ( l - e - * ) / - ( 0 / -ze~z. 

ai (M)̂ <-H i noitonnî sril Ĥ)0^! oi ggnoisd (s)Nr̂ S noilonnl srti aonsH 

bnjs .(oo.O) no sidjsiins-iarlib 

t 
d 

dt 
(F(tA)) [zF'(z)](tA) t > 0. 

Since [ze~z}{tA) = - £ § ( T t ) , we deduce that 

I 
d 

dt 
F(tA)x F(tA)x t 

d 

dt 
t > 0. 

Integrating this relation yields 

tF(tA)x % ( t ) - 0 ( t ) ) ; t > 0. 

Indeed, j^(t(f)(t)) — ip(t). Dividing the latter formula by t and applying (10.13), we 

obtain the desired identity (10.16). 

It is not hard to check that the above arguments work as well with I<g>Ap in the 

place of Ap. Thus Ap actually has a completely bounded H^ÇEQ) functional calculus 

for any 0 > top. • 

We conclude this chapter by an application to 'noncommutative Fourier multipli-
o 

ers'. We recall that G = VN(¥n) and we let G — G \ { e } . Then arguing as in the 

proof of Corollary 9.6, we deduce the following. 
Corollary 10.13. — Let 1 < p < oo and let 0 > — | | be an angle. Then for 

any function f G H^ÇZQ) and for any finitely supported family of complex numbers 

{ag : g G G}, we have 

g 

a9/(b|)A(5) 
P 

K\\f\\oo,e 

9 

ag\(g)\ 
p 

where K > 0 is a constant not depending on f 

For any integer m > 0, let 

Em Span{A(#) : \g\ = m}. 
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Thus V is the algebraic direct sum of the Em's. In gênerai, this direct sum does not 

induce a Schauder décomposition in Lp(Ai). Namely let 

Pm-V m 

n=0 
Em 

be the natural projection. Then it is shown in [12] that if p < | or p > 3, we have 

sup 
m>l 

Prn- LP(M) LP(M)\\ = oo. 

In the opposite direction, the next statement says that the direct sum 

k>0 
E2k LP{M) 

induces an unconditional décomposition for any 1 < p < oo. 

Corollary 10.14. — Let 1 < p < oo. There is a constant K > 0 such that for any 

finite family (xk)k>o with xk G E2k, and for any ek — ± 1 , we have 

k>0 

£k%k 
\P 

C 

k>0 p 

Proof. — According to Carleson's Theorem (see e.g. [28, Chapter 7]), (2k)k>o is 

an interpolating séquence for the open right half-plane S ç . This means that for 

any bounded séquence (ck)k>o of complex numbers, there exists a bounded analytic 

function / : Hi —>• C such that f(2k) = c& for any k > 0 and moreover 

ll/lloo.ï C sup Icfcl 
k 

for some constant C > 1 not depending on (ck)k>o- We apply this property with 
Ck = and we let / G H°°(T,^) be the resulting interpolating function. 

Let us write 

k>0 
Xk 

g 

ag\(g), 

o 
where {ag : g G G} is a finite family of complex numbers. Then ag = 0 if \g\ is not 

a power of 2, and we have 

k>0 
£k%k 

k>0 

£k 

l0l=2fe 

agX(g) 

k>0\g\=2* 
«s/(2fc)A(5) 

9 

>9/(l5l)A(5) 

The resuit therefore follows from Corollary 10.13. 

The above corollary may be combined with the noncommutative Khintchine in­

equalities (2.21) and (2.22). We obtain that if 2 < p < oo, we have an équivalence 

k 

Xk 
p 

max 
k 

XkXk 
i 
2 
\p 

k 

XkXt 
1 
2 

p 
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for finite families (xk)k>o such that xk <E E2k for any k > 0. Likewise if 1 < p < 2. 

we obtain for thèse families that 

k 
Xk p 

inf 

k 

VkVk 
1 
2 

p k 
Zk4 

1 
2 

p 

where the infimum runs over ail (yk)k>o and (zk)k>o m LP(M) such that Xk = Vk + %k 

for any k > 0. 
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CHAPTER 11 

THE NON TRACIAL CASE 

In this short chapter, we briefly discuss extensions of the results established so far 

to the setting of noncommutative Lp-spaces associated with a non tracial state. 

Let A4 be a von Neumann algebra and let (p be a distinguished normal faithful 

state on Ai. We do not assume that Lp is tracial. For any 1 < p < oo, we let 

LP(AÏ, Lp) be the associated Haagerup noncommutative f p-space, with norm denoted 

by II Ilp- We refer the reader to [73] for a complète description of thèse spaces, and 

to [651 or [381 for a brief présentation. We merely recall that if Al C B(H) acts on 

some Hilbert space if, then Lp(Ai,(p) is defined as a space of possibly unbounded 

operators on L2(E; i f) with the following properties. First, if 1 < p, q, r < oo are such 

that - + - = \ , then xy G Lr(Al,(/?) whenever x G Lp(M,Lp) and y G Lq(M,Lp). 

Second, for any 1 < p, q < oo and any x G Lp(M,p)), the positive operator \x\* 

belongs to Lq(M,Lp). with 

IIN'II2 = INI?. 

Third, there are two natural order-preserving isometric identifications 

Ai-L°°(M,<p) and M*^L\M,tp). 

In particular, (p may be regarded as a positive élément of L (AA,ip). Consequently 
for any 1 < p < oo, we may regard the space 

(7?2P Ai(p2p {ip2PXLp2p : x G Ai} 

as a subspace of Lp(Ai,ip) and this subspace turns out to be dense. It should be 

noticed that if p / q, then Lp(M,(p) fl Lq(Ai,(p) = { 0 } . This is in sharp contrast 

with the case of the noncommutative Lp-spaces considered so far in this paper (see 

paragraph 2.A). 

As usual we let tr: Ll(M,(p) —* C dénote the functional corresponding to 1 G Al 

in the above identification Ai* — L1(A4,(/P). It satisfies 

r(cpx) = (p{x), x G Ai. 
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We also recall that if 1 < p < oo and p 1 + p' 1 = 1, then 

tr(xy) = tr(yx), x G Lp{Ai,p), y G U*\M,ip), 

and the duality pairing (x. y) ^ tr(xy) induces an isometric isomorphism 

LP'{M,p) = LP(M,LPY. 

Furthermore L2(Ai,p) is a Hilbert space, with inner product given by (x,y) i—> 

tr(y*x). 

Using [38, Section 1], one may naturally define spaces Lp(Ai,Hc) and Lp(M,Hr) 

for any Hilbert space H. Then as in Chapter 2, we define LP(A4, Hrad) as the intersec­

tion Lp(M, Hc) n LP(M, Hr)\ï2<p< oc, and as the sum LP(M, Hc) + LP(M, Hr) 

if 1 < p < 2. Then it is not hard to check that ail the results established in Chapters 

3, 4, 6 and 7 for the tracial noncommutative Lp-spaces extend to the LP(A4, (p)'s. 

We now discuss analogs of the results obtained in Chapter 5. We need the following 

définition. Suppose that (Ai, p) and (AT, ip) are two von Neumann algebras equipped 

with normal faithful states (p and tp. Let T: Ai —» M be a bounded operator, and let 

1 < p < oo. Consider the linear mapping from 
i i 

(p2p Aip2p é^pj\fi^p 

taking 
i i i i 

p2p xp2p to ip2PT[x)i[j2P for any x G Ai. If this linear operator extends to a 

bounded operator from Lp(Ai, p) into Lp(J\f, 0 ) , we say that T has an Lp extension 

and we let 

Tp: LP(M^)~^LP(M^) 

dénote the resulting operator. 
Let (Ai,p) as above, and let = (crf)se^ dénote the one parameter modular 

automorphism group of R on Ai associated with p. Let T: Ai —> Ai be a normal 
positive contraction such that 

p o T < p on Ai + . 

According to [35, Theorem 5.1], T has an Lp extension Tp: Lp(Ai,p) —• Lp(Ai,p) 

for any 1 < p < oo. Assume further that 

afoT = Toaf, s G M, 

and that T is c^-svmmetric, that is, 

p(T(x)y) = p(xT(y)) x, î/ G A l . 

Then T2 : L2(A4,(f) —> L2(M,p) is a selfadjoint operator. Indeed, let Aia dénote 

the family of éléments of Ai which are analytic with respect to . By [35, Proposi­

tion 5.5] , we have T2(xp2~) = T(x)p^ for any x G Aia- Hence for any x,y G Aia, we 

have 

[T2(x(p*),y(p*) 2 tr({y<p2)*T{x)<p*) ••trUpy*T(x)) <p(y*T(x)). 
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Likewise, 

'xtp*,T2(yip*))L2 <p(T(y*)x). 

Since A4a(p2 is dense in L2(A4,Lp) [38, Lemma 1.1], this proves the resuit. 

Theorem 11.1. — Let (Tt)t>o be a w*-continuous semigroup of operators on (Ai,Lp). 
Assume that for any t > 0, Tt : A4 —> A4 is a normal positive (p-symmetric contrac­

tion, and that we both have 

P °Tt < (p on Ai+ and af oTt=Ttoaf, seR. 

(1) For any t > 0 and any 1 < p < oo, the operator Tt admits an Lp extension 

Tpj on Lp(Ai,Lp), and (TPit)t>o is a c^-semigroup of contractions on Lp(A4,p>). 
Moreover (T2^)t>o is a selfadjoint semigroup on L2(Ai,p>). 

(2) Let Ap be the négative generator of (Tpj)t>o- Then for any 1 < p < oo, Ap is a 

sectorial operator of type cup — TT\^ — ||. 

(3) Assume further that each Tt : Ai —» Ai is completely positive. Then for any 

1 < p < oo, the operator Ap is Col-sectorial (resp. Row-sectorial) of Col-type 

(resp. Row-type) equal to LOP. 

Proof — Part (1) easily follows from the previous discussion. Part (2) is an analog 

of Lemma 5.4. Its proof relies on interpolation, using Kosaki's Theorem [42]. Part 

(3) is an analog of Theorem 5.6. Its proof is similar to the one of that theorem, using 

Kosaki's Theorem again and the noncommutative ergodic maximal theorem in the 

non tracial case (see [36, Section 7]). We skip the détails. • 

We now introduce an analogue of Rota's dilation property in the non tracial setting. 
We follow the scheme of paragraph 10.B. We consider a von Neumann algebra (Af, ip) 

equipped with a normal faithful state ip. Let A4 C Af be a von Neumann subalgebra 
and assume that it is invariant under <r̂ , that is, af(A4) C A4 for any s G M. Let 
(p e A4* be the restriction of ip to Ai. Then af = af<M for any t. Let 1 < p < oo. 

Then LP(A41 Lp) can be naturally identified with a subspace of Lp(Af, îp). Indeed, the 

canonical embedding Ai —• Af has an Lp extension Lp(A4, Lp) Lp(Af,tp) in the 

above sensé, and this extension is an isometry (see [38, Section 2]). Furthermore 

there exists a unique normal conditional expectation S : Af —• A4 such that îp = Lp o £ 

[72]. We call it the canonical conditional expectation onto Ai. This map also has 

an Lp extension £p: Lp(Af,ip) —> Lp(A4,Lp), and this extension is a contraction [38, 
Lemma 2.21. 

More generally, let (Ai, Lp) and (A41be two von Neumann algebras equipped 

with normal faithful states, and let TT: A4 —• A4' be a normal unital faithful *-

représentation such that 

( n . i ) Lp = Lp' O 7T and af' (n(A4)) CTT(M), seR. 
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Then TT admits an Lp extension for any 1 < p < oo, and 

TTp: Lp(Ai,p) -^Lp(A4',p') 

is an isometry. Let £: Ai —> TT(A4) be the canonical conditional expectation onto 

TT(M) and let Q: Ai -+ Ai be defined by TT O Q = S. Then we say that Q is the 

conditional expectation associated with TT. It is clear that Q has an Lp extension for 

any 1 < p < oo, with TTP O Qp = £p. Moreover Q is the adjoint of T\\. 

The non tracial analogue of Définition 10.2 is as follows. Let (A4,p) be a von 

Neumann algebra equipped with a normal faithful state, and let T: Ai —» Ai be a 

bounded operator. We say that T satisfies Rota's dilation property if there exist a 

von Neumann algebra (M, ip) equipped with a normal faithful state, a normal unital 

faithful ^représentation TT: Ai —» Af such that p = ipon and TT(M) is invariant under 

cr^, and a decreasing séquence (Mm)m>i of von Neumann subalgebras of M which 

are invariant under , such that 

Tm = Qo£(m)o7r , m > 1, 

where £(m) : Af —> Mm C M is the canonical conditional expectation onto Mm, and 
where Q: M —> Ai is the conditional expectation associated with TT. 

Clearly such an operator is completely positive and for any 1 < p < oo, it admits 
an Lp extension Tp : LP(A4, p) —• LP(A4, p), with Tp — Qp o 8(1)p o TTP. It is not hard 
to show that in addition, T is (^-svmmetric. 

With the above définition, Corollary 10.9 extends to the non tracial case. The proof 
is the same, using the noncommutative martingale inequalities from [38, Section 3]. 

Corollary 11.2. — Let (Tt)t>o be a -continuous semigroup of operators on (Ai,p). 

Assume that for any t > 0, Tt : Ai —» Ai satisfies the above Rota's dilation prop­

erty. Then it satisfies Theorem 11.1 and moreover, the operator Ap admits a bounded 

H°°(YJQ) functional calculus on LP(A4, p) for any 6 > CJp and any 1 < p < oo. 

Proof. — The proof is similar to the one of Theorem 10.12, using Theorem 11.1 

instead of Theorem 5.6. • 

Following [4], we say that T: (Ai, p) —• (Ai,p) is factorizable if there exist a von 

Neumann algebra (Ai',p') equipped with a normal faithful state, and two normal 

unital faithful ^représentations 

TT: M —>M' and TT: A4 —> A4' 

both satisfying (11.1), such that T = Q o TT, where Q: A4' —» A4 is the conditional 

expectation associated with TT. According to [4, Theorem 6.5], T2 : Ai —> Ai satisfies 

Rota's dilation property if T is factorizable and (^-symmetric. 
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Consequently, if (Tt)t>o is a w*-continuous semigroup of operators on M such that 
each operator Tt : M. —> M. is both factorizable and (p-symmetric, then it gives rise to 
a semigroup (Tp^)t>o on LP(M, (p) whose négative generator has a bounded if°°(E^) 
functional calculus, provided that 1 < p < oo and 6 > cup. 
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APPENDIX A 

COMPARING ROW AND COLUMN SQUARE 

FUNCTIONS 

We aim at showing that in gênerai, row and column square functions as defined by 

(6.1) are not équivalent. We will provide an example on Schatten spaces Sp = Sp(£2). 

We let (ek)k>i dénote the canonical basis of £2 and we let a be the unbounded positive 

selfadjoint operator on £2 such that 

a 
k 

otkek 
k 

ak2kek 

for any finite family (ak)k of complex numbers. 

We fix some 1 < p < oo, and we let Ap = Ca be the left multiplication by a on Sp 

(see paragraph 8.A). For any 6 > 0, the operator a has a bounded i f ° ° ( I ] # ) functional 

calculus on £2. Hence Ap also has a bounded H°°(Eg) functional calculus on Sp, by 

Proposition 8.4. Since a has dense range, it also follows from the latter proposition 

that Ap has dense range. Applying Theorem 7.6, we therefore obtain that for any 

0 > 0, and any non zéro F G 7 7 Q ° ( S ^ ) , we have an équivalence 

(A.l) 11*11 ~ Mf, x e Sp. 

Lemma A.l. — Let F G H§°CEg) \ {0} and let CF U»\F(t)\*<£)-> Then we have 

\\X\\F,c = CF\\x\\ xeSp, 

Proof. — Let 0 < a < / ? < o c b e two positive numbers, and let x G Sp. According 

to (8.5). we have 

(F(tAp)(x))* (F(tAp)(x)) (F(ta)x)*(F(ta)x) x*F(ta)*F(ta)x 

for any t > 0. Hence 

(A.2) 
6 

qd 
(F(tAp)(x))*(F(tAp)(x)) 

dt 
s 

zs 
-0 

a 
F (ta)* F (ta) 

dt 

t 
x. 

For any t > 0 and any k > 1, F(ta)ek — F(t2h)ekl hence 

[F(ta)*F(ta)]ek \F(t2k)\2ek. 
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Furthermore, we have 

d 

' a 

F(t2k)\2 
dt 

t 

oo 
\F{t2k)\2 

dt 

t 4 

when a —» 0+ and (3 —• oo. Thus the operator in (A.2) converges to c2Fx*x (in 

the S2-norm, say), and we deduce from either Proposition 6.2 or Remark 6.4 (2) 

that the function u\ t \-^> F(tAp)(x) belongs to Sp(L2(Qo)c)1 and that u*u = cFx*x. 

Consequentlv we have 

\\x\\FtC = \\(u*u)ï\\SP cF ||(a;*a:)2||5p = cF\\x\\Sp. 

Let F be any non zéro function in H§°ÇEe), with 6 G (0, TT). Combining the above 

lemma with (A. l ) , there exists a constant K > 0 such that for any x E Sp, we have 

||x||F>r < K\\x\\F,c for any x G 5P, if p > 2; 

IMkc < ^ | |x | |F , r for anv x G 5P. if p < 2; 

We shall now prove that except if p = 2, thèse estimâtes cannot be reversed. 

Proposition A.2 

(i) Assume that p > 2. TT&en sup HxIIf.c 
H*llF,r 

x E Sp oo . 

(2) Assume that p < 2. TTien sup HxIlF.r x E Sp oo . 

Proof. — By Proposition 8.4, Ap has a completely bounded H°°(Ho) functional cal­

culus for any 6 > 0. Hence by Theorems 4.12 and 6.7, it sufïices to prove the resuit 

for one spécifie function F. Throughout the proof, we will use the function 

F(z) 1 -z 
z2e . 

In the notation introduced in Lemma A.l , we have cF = -7=. 
We first assume that p > 2. For any integer k > 0, we let 

dk 
oc 

0 
F(t)F(t2k^ 

dt 

t 

We will use the fact that for any i,j > 1, we have 

00 

0 
F(t2l)F(t2J) 

dt 

t d\i-j\-

Indeed this is obtained by changing t into t2J in this intégral. Furthermore, we have 

0 < 4 
••oo 

0 
e-*2*e-2 * dt 

2* 

1 + 2fc 
2"2. 

Given an integer n > 1, we consider e = ei 4- • • • + en and x e.6àe 
y/n 

With Eij e^e3 

we then have 

xx* = e 0 e 
n 

xccx 

<x< 
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According to the définition of a, we have 

{F(tAp)(x))(F(tAp)(x)) F(ta)xx*F(ta) 
n 

i,3 = l 
F{t2l)F{t23)ElJ 

for any positive real number t > 0. Taking the intégral over O0, and applying the row 
version of Proposition 6.2, we deduce that 

M\l,r 
n 

d\i-3\ Eij R S2 

We let A = be the n x n matrix in the right hand side of the above formula. 
Then we have 

l|A|||2 
n 

d\i-j\ 
2 2n 

n 

fc=0 
dk\2 2n 

n 
2~k < An. 

By construction, A > 0, hence we have 

||A||gi = tr 
77. 

d\i-j\ EiJ nd$ = nc2F 
n 
2' 

We need to divide our discussion into two cases. 
If 2 < p < 4, we let a e (0,1] be such that [l-a 

1 a 
2 

2 
P 

Then 

|A||s5 < | |A | | ^a | |A | | «2 . 

This yields the estimate 
|x||F)r <22«"21n1-t. 

Since x SF is rank one, its norm in Sp does not dépend on p, and it is equal to 
M ! SF Hence x||F)r <22«"21n1-t by Lemma A.l . We obtain that 

IklIL 
||A|| ç < |x|| 

|x||^r < 2y/n. 

Since n was arbitrary and a > 0, we obtain (1) in this case. 
If p > 4, we note that ||A|| ç < |x||^r < 2y/n.||A||52. Hence ||x||^r < 2y/n. Since | |x| |^c = f, 

we also obtain (1) in that case. 

We now turn to the proof of (2). We assume that 1 < p < 2, and we let p' be 
its conjugate number. According to Remark 8.7 (2), A* is the right multiplication 
by a on Sp . For any y G Sp , we let ||Î/||F,C and ||2/||F,r dénote the column and row 
square functions corresponding to Ap. Of course Lemma A.l has an analog for right 
multiplications, and the latter says that \\y\\p,r = for any y G Sp . Likewise, 
part (1) of Proposition A.2 has an analog for A*, namely 

(A.3) sup 'IM|F,r 
llî/lkc 

||A|| ç < |x|| 
— OO . 
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To prove (2), assume on the contrary that there is a constant K > 0 such that 

(A.4) \\x\\Fir < K\\x\\F,c, xeSp. 

Let y G Sp and x G Sp. We consider the approximating séquence (gn)n>i defined by 

(3 .8 ) and we recall that gn(Ap)(x) = gn(a)x —» x when n oo. By the first part of 

Lemma 6.5, we have 

(y,9n{Ap)(x)) 2 
oo 

0 
y,F(tAv)2{gn(a)x)) 

dt 

t 

2 
•oo 

'o 
F(tApy(y),F(tAp)(gn(a)x)] 

dt 

t 

According to Lemma 2.8, this implies that 

(y,gn(Ap)(x)) 2\\gn{a)x\\F,r \\y\\F,C-

Now using (A.4) and Lemma A.l , we deduce that 

\(y,9n(Ap)(x)) /2KcF \\9n(a)x\\ \\y\\F>c K\\x\\ \\y\\F,c. 

Passing to the lirait when n —• oo, this yields \(y,x)\ < K \\x\\\\y\\F,c- Then taking 

the supremum over ail x G Sp with \\x\\ = 1, we obtain that \\y\\ < K\\y\\F,c fc>r 

any y G Sp . Since ||y||F,r = CF||2/||, this contradicts (A.3) and complètes the proof 

of(2) . • 
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APPENDIX B 

MEASURABLE FUNCTIONS IN Lp (L2) 

Let 2 < p < oo. The Banach space LP(M; L2(R)) can be described as the space of 

ail measurable functions g : M2 —> C such that 

ll0llï,P(L*) : 
r»oo 

-oo 

r>00 

-oo 
g(s,t)\2dt 

E 
2 

ds < oo 

module- the functions which vanish almost everywhere on R2. Then it is easy to 

check that a function g G LP(R;L2(R)) is representable by a measurable function 

u: R —> LP(R) in the sensé of Définition 2.7 if and only if 

>oo 

oo 
g(s,t)\p ds < oo for a.e. t G R. 

Indeed in that case we have u(t) = g(- ,t) for almost every t G R. We will prove that 

not ail éléments of LP(R;L2(R)) are representable by a measurable function from R 

into LP(R) by exhibitine; a function q G LP(R: L2(R)) such that 

(B.l 
'•OO 

— oc 
\g(s,t)\p ds = oo for a.e. t G R 

For any positive numbers a, 6, m such that b > a, let Pa,6,m C R2 be the parallelogram 

with vertices equal to (—a, 0), (0, 0), (6, ra&), and (b — a, mb). Thus this parallelogram 

has a pair of horizontal sides, and a pair of sides having slope equal to m. Next we 

let ga b m be the indicator function of Pa h m. It is clear that 

(B.2) 
•OO 

/ —OC 
\ga,b,m(s,t)\p ds = a 0 <t <mb. 
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On the other hand, 

||<7a,6,ra||LP(L2) ~ 

^t 

— a 
(m(s + a)) 2 ds + (b — a) (ma) 2 

6 

b—a 
(m(b-s)) 2 

h 9. 2 
•a 

0 
5 V 2 -f (6 — a) a 2 

771 p 
2 26 1+ p 2 [b — a)a p 2 kj 

£ 2 a p 
2 

( a + 6). 

Since we assumed that b > a, this yields 

(B.3) /a,6,m|Up(L2) r — 7 — i l 
p 6P m2 a2 

We now make spécial choices for our parameters a, b, m. Let n > 1 be an integer. We 

let 

an = 4np, 

and then we choose bn and mn so that 

bnmn 77 and 
I 1 1 

bn rriri aï = 1 

Writing bl ml a\ = bï è [mnbn)* 4 T , this leads to the following choice: 

_jp_ 
bn — np-2 4P- 2 

and mn = n p-2 4 p- 2 

Note that since p > 2, we have = p(l + > p and therefore we have an <bn. 

Then we simply let gn for the function gan,bn,mn studied so far. According to (B.2) 

and (B.3), we both have ||gn||z,p(L2) < 2P and 

oo 

— oo 
\gn(s,t)\Pds = 4n? 0 < t < n 

Therefore we can define 

9 
oo 

71=1 

2~ngn e LP(R;L2{R)). 

Moreover since each gn is nonnegative, we have g > 2 ngn > 0 for any n > 1. Thus 

for t > 0, we have 

•oo 

— oo 
\g(s,t)\pds >2~NP 

oo 

— oc 
9n(s,t)\Pds >2"P 

provided that n > t. Hence f_ \g(s, t)\p ds = oo. This proves (B.l) for t > 0. An 

obvious modification vields a function q for which (B.l) holds for t G K. 
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