Mochizuki Takuro
 Kobayashi-Hitchin correspondence for tame harmonic bundles and an application

Astérisque, tome 309 (2006)
http://www.numdam.org/item?id=AST_2006__309__R1_0
© Société mathématique de France, 2006, tous droits réservés.
L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

KOBAYASHI-HITCHIN CORRESPONDENCE FOR TAME HARMONIC BUNDLES AND AN APPLICATION

Takuro Mochizuki

T. Mochizuki

Department of Mathematics, Kyoto University, Kyoto 606-8502, Japan.
E-mail: takuro@math.kyoto-u.ac.jp

2000 Mathematics Subject Classification. - 14J60, 53C07.
Key words and phrases. - Higgs bundle, harmonic bundle, Kobayashi-Hitchin correspondence, Hermitian-Einstein metric, Bogomolov-Gieseker inequality, flat bundle, variation of polarized Hodge structure, quasiprojective variety.

This work was prepared with the partial support of Ministry of Education, Culture, Sports, Science and Technology.

To my parents

KOBAYASHI-HITCHIN CORRESPONDENCE FOR TAME HARMONIC BUNDLES
 AND AN APPLICATION

Takuro Mochizuki

Abstract

We establish the correspondence between tame harmonic bundles and μ_{L}-polystable parabolic Higgs bundles with trivial characteristic numbers. We also show the Bogomolov-Gieseker type inequality for μ_{L}-stable parabolic Higgs bundles.

Then we show that any local system on a smooth quasiprojective variety can be deformed to a variation of polarized Hodge structure. As a consequence, we can conclude that some kind of discrete groups cannot be a split quotient of the fundamental group of a smooth quasiprojective variety.

Résumé (La correspondance de Kobayashi-Hitchin pour les fibrés harmoniques modérés et une application)

Nous établissons la correspondance de Kobayashi-Hitchin entre les fibrés harmoniques modérés et fibrés de Higgs paraboliques μ_{L}-polystables dont les deux premiers nombres de Chern sont nuls. Ensuite, nous montrons que tout système local sur une variété quasi-projective lisse peut être déformé vers une variation de structure de Hodge polarisée. En conséquence, nous pouvons conclure que certains groupes discrets ne peuvent pas apparaître comme quotient scindé d'un groupe fondamental d'une variété quasi-projective lisse.

CONTENTS

1. Introduction 1
1.1. Background 1
1.2. Main Purpose 2
1.3. Additional Results 6
1.4. Outline 8
1.5. Acknowledgement 9
2. Preliminary 11
2.1. Notation and Words 11
2.2. Review of some Results of Simpson on Kobayashi-Hitchin Correspondence 12
2.3. Weitzenböck Formula 15
2.4. A Priori Estimate of Higgs Fields 16
2.5. Norm Estimate for Tame Harmonic Bundle in Two Dimensional Case 19
2.6. Preliminary from Elementary Calculus 20
2.7. Reflexive Sheaf 22
2.8. Moduli Spaces of Representations 23
3. Parabolic Higgs Bundle and Regular Filtered Higgs Bundle 25
3.1. Parabolic Higgs Bundle 25
3.2. Filtered Sheaf 31
3.3. Perturbation of Parabolic Structure 34
3.4. Mehta-Ramanathan Type Theorem 37
3.5. Adapted Metric and the Associated Parabolic Flat Higgs Bundle 42
3.6. Convergence 42
4. An Ordinary Metric for a Parabolic Higgs Bundle 45
4.1. Around the Intersection $D_{i} \cap D_{j}$ 45
4.2. Around a Smooth Point of the Divisor 47
4.3. Global Ordinary Metric 53
5. Parabolic Higgs Bundle Associated to Tame Harmonic Bundle 59
5.1. Polystability and Uniqueness 59
5.2. Vanishing of Characteristic Numbers 60
6. Preliminary Correspondence and Bogomolov-Gieseker Inequality 65
6.1. Graded Semisimple Parabolic Higgs Bundles on Surface 65
6.2. Bogomolov-Gieseker Inequality 67
7. Construction of a Frame 69
7.1. A Priori Estimate of Higgs Field on a Punctured Disc 70
7.2. Construction of Local Holomorphic Frames 73
8. Some Convergence Results 79
8.1. Convergence of a Sequence of Tame Harmonic Bundles 79
8.2. Preparation for the Proof of Theorem 9.1 82
9. Existence of Adapted Pluri-Harmonic Metric 87
9.1. The Surface Case 87
9.2. The Higher Dimensional Case 92
10. Torus Action and the Deformation of Representations 95
10.1. Torus Action on the Moduli Space of Representations 95
10.2. Monodromy Group 99
G-Harmonic Bundle 103
A.1. G-Principal Bundles with Flat Structure or Holomorphic Structure 103
A.2. Definitions 105
A.3. Semisimplicity and Pluri-Harmonic Reduction 108
Bibliography 113

CHAPTER 1

INTRODUCTION

1.1. Background

1.1.1. Kobayashi-Hitchin correspondence. - We briefly recall some aspects of the so-called Kobayashi-Hitchin correspondence. (See the introduction of [38] for more detail.) In 1960's, M. S. Narasimhan and C. S. Seshadri proved the correspondence between irreducible flat unitary bundles and stable vector bundles with degree 0 , on a compact Riemann surface $([\mathbf{4 7}])$. Clearly, it was desired to extend their result to the higher dimensional case and the non-flat case.

In early 1980's, S. Kobayashi introduced the Hermitian-Einstein condition for holomorphic bundles on Kahler manifolds ([30], [31]). He and M. Lübke ([37]) proved that the existence of Hermitian-Einstein metric implies the polystability of the underlying holomorphic bundle. S. K. Donaldson pioneered the way for the inverse problem ([12] and [13]). He attributed the problem to Kobayashi and N. Hitchin. The definitive result was given by K. Uhlenbeck, S. T. Yau and Donaldson ([64] and [14]). We also remark that V. Mehta and A. Ramanathan ([40]) proved the correspondence in the case where the Chern class is trivial, i.e., the correspondence of flat unitary bundles and stable vector bundles with trivial Chern classes.

On the other hand, it was quite fruitful to consider the correspondences for vector bundles with some additional structures like Higgs fields, which was initiated by Hitchin ([22]). He studied the Higgs bundles on a compact Riemann surface and the moduli spaces. His work has influenced various fields of mathematics. It involves a lot of subjects and ideas, and one of his results is the correspondence of the stability and the existence of Hermitian-Einstein metrics for Higgs bundles on a compact Riemann surface.
1.1.2. A part of C. Simpson's work. - C. Simpson studied the Higgs bundles over higher dimensional complex manifolds, influenced by the work of Hitchin, but motivated by his own subject: Variation of Polarized Hodge Structure. He made great
innovations in various areas of algebraic geometry. Here, we recall just a part of his huge work.

Let X be a smooth irreducible projective variety over the complex number field, and E be an algebraic vector bundle on X. Let (E, θ) be a Higgs bundle, i.e., θ is a holomorphic section of $\operatorname{End}(E) \otimes \Omega_{X}^{1,0}$ satisfying $\theta^{2}=0$. The "stability" and the "Hermitian-Einstein metric" are naturally defined for Higgs bundles, and Simpson proved that there exists a Hermitian-Einstein metric of (E, θ) if and only if (E, θ) is polystable. In the special case where the Chern class of the vector bundle is trivial, the Hermitian-Einstein metric gives the pluri-harmonic metric. Together with the result of K. Corlette who is also a great progenitor of the study of harmonic bundles ([6]), Simpson obtained the Trinity on a smooth projective variety:

| Algebraic Geometry
 polystable Higgs bundle
 (trivial Chern class) |
| :---: | :---: |\leftrightarrow| Differential Geometry |
| :---: | :---: |
| harmonic bundle |$~ \leftrightarrow$| Topology |
| :---: |
| semisimple |
| local system |

If (E, θ) is a stable Higgs bundle, then $(E, \alpha \cdot \theta)$ is also a stable Higgs bundle. Hence we obtain the family of stable Higgs bundles $\left\{(E, \alpha \cdot \theta) \mid \alpha \in C^{*}\right\}$. Correspondingly, we obtain the family of flat bundles $\left\{L_{\alpha} \mid \alpha \in C^{*}\right\}$. Simpson showed that we obtain the variation of polarized Hodge structure as a limit $\lim _{\alpha \rightarrow 0} L_{\alpha}$. In particular, it can be concluded that any flat bundle can be deformed to a variation of polarized Hodge structure. As one of the applications, he obtained the following remarkable result ([55]):

Theorem 1.1 (Simpson). - Let Γ be a rigid discrete subgroup of a real algebraic group which is not of Hodge type. Then Γ cannot be a split quotient of the fundamental group of a smooth irreducible projective variety.

There are classical known results on the rigidity of subgroups of Lie groups. The examples of rigid discrete subgroups can be found in 4.7.1-4.7.4 in the 53 page of [55]. The classification of real algebraic group of Hodge type was done by Simpson. The examples of real algebraic group which is not of Hodge type can be found in the 50 page of [55]. As a corollary, he obtained the following.

Corollary 1.2. - $S L(n, \mathbb{Z})(n \geq 3)$ cannot be a split quotient of the fundamental group of a smooth irreducible projective variety.

1.2. Main Purpose

1.2.1. Kobayashi-Hitchin correspondence for parabolic Higgs bundles

It is an important and challenging problem to generalize the correspondence (1) to the quasiprojective case from the projective case. As for the correspondence of harmonic bundles and semisimple local systems, an excellent result was obtained by J. Jost and K. Zuo [29], which says there exists a tame pluri-harmonic metric on
any semisimple local system over a quasiprojective variety. The metric is called the Corlette-Jost-Zuo metric.

In this paper, we restrict ourselves to the correspondence between Higgs bundles and harmonic bundles on a quasiprojective variety Y. More precisely, we should consider not Higgs bundles on Y but parabolic Higgs bundles on (X, D), where (X, D) is a pair of a smooth irreducible projective variety and a normal crossing divisor such that $Y=X-D$. Such a generalization has been studied by several people. In the non-Higgs case, J. Li [35] and B. Steer-A. Wren [62] established the correspondence. In the Higgs case, Simpson established the correspondence in the one dimensional case [52], and O. Biquard established it in the case where D is smooth [5].

Remark 1.3. - Their results also include the correspondence in the case where the characteristic numbers are non-trivial.

For applications, however, it is desired that the correspondence for parabolic Higgs bundles should be given in the case where D is not necessarily smooth, which we would like to discuss in this paper.

We explain our result more precisely. Let X be a smooth irreducible projective variety over the complex number field provided an ample line bundle L. Let D be a simple normal crossing divisor of X. The main purpose of this paper is to establish the correspondence between tame harmonic bundles and μ_{L}-parabolic Higgs bundles whose characteristic numbers vanish. (See Chapter 3 for the meaning of the words.)

Theorem 1.4 (Proposition 5.1-5.3, and Theorem 9.4). - Let $\left(\boldsymbol{E}_{*}, \theta\right)$ be a regular filtered Higgs bundle on (X, D), and we put $E:=\boldsymbol{E}_{\mid X-D}$. It is μ_{L}-polystable with trivial characteristic numbers, if and only if there exists a pluri-harmonic metric h of (E, θ) on $X-D$ which is adapted to the parabolic structure. Such a metric is unique up to an obvious ambiguity.

Remark 1.5. - Regular Higgs bundles and parabolic Higgs bundles are equivalent. See Chapter 3.

Remark 1.6. - More precisely on the existence result, we can show the existence of the adapted pluri-harmonic metric for μ_{L}-stable reflexive saturated regular filtered Higgs sheaf on (X, D) with trivial characteristic numbers. (See Sections 3.1-3.2 for the definition.) Then, due to our previous result in [44], it is a regular filtered Higgs bundle on (X, D), in fact.

We are mainly interested in the μ_{L}-stable parabolic Higgs bundles whose characteristic numbers vanish. But we also obtain the following theorem on more general μ_{L}-stable parabolic Higgs bundles.

Theorem 1.7 (Theorem 6.5). - Let X be a smooth irreducible projective variety of an arbitrary dimension, and D be a simple normal crossing divisor. Let L be an ample
line bundle on $X . \operatorname{Let}\left(\boldsymbol{E}_{*}, \theta\right)$ be a μ_{L}-stable regular filtered Higgs bundle in codimension two on (X, D). Then the following inequality holds:

$$
\int_{X}{\operatorname{par}-\mathrm{ch}_{2, L}\left(\boldsymbol{E}_{*}\right)-\frac{\int_{X} \operatorname{par}^{-c_{1, L}^{2}\left(\boldsymbol{E}_{*}\right)}}{2 \operatorname{rank} E} \leq 0 ~}_{\text {. }}
$$

Such an inequality is called Bogomolov-Gieseker inequality.
1.2.2. Strategy for the proof of Bogomolov-Gieseker inequality. - We would like to explain our strategy for the proof of the main theorems. First we describe an outline for Bogomolov-Gieseker inequality (Theorem 1.7), which is much easier. We have only to consider the case $\operatorname{dim} X=2$. Essentially, it consists of the following two parts.
(1) The correspondence in the graded semisimple case :

We establish the Kobayashi-Hitchin correspondence for graded semisimple parabolic Higgs bundles. In particular, we obtain the Bogomolov-Gieseker inequality in this case.
(2) Perturbation of the parabolic structure and taking the limit :

Let ($\boldsymbol{c} E, \boldsymbol{F}, \theta$) be a given \boldsymbol{c}-parabolic μ_{L}-stable Higgs bundle, which is not necessarily graded semisimple. For any small positive number ϵ, we take a perturbation $\boldsymbol{F}^{(\epsilon)}$ of \boldsymbol{F} such that $\left({ }_{c} E, \boldsymbol{F}^{(\epsilon)}, \theta\right)$ is a graded semisimple μ_{L}-stable parabolic Higgs bundle. Then the Bogomolov-Gieseker inequality holds for $\left({ }_{c} E, \boldsymbol{F}^{(\epsilon)}, \theta\right)$. By taking a limit for $\epsilon \longrightarrow 0$, we obtain the Bogomolov-Gieseker inequality for the given $(c E, \boldsymbol{F}, \theta)$.
Let us describe for more detail.
(1) In [55], Simpson constructed a Hermitian-Einstein metric for Higgs bundle by the following process:
(i) : Take an appropriate initial metric.
(ii) : Deform it along the heat equation.
(iii) : Take a limit, and then we obtain the Hermitian-Einstein metric.

If the base space is compact, the steps (ii) and (iii) are the main issues, and the step (i) is trivial. Actually, Simpson also discussed the case where the base Kahler manifold is non-compact, and he showed the existence of a Hermitian-Einstein metric if we can take an initial metric whose curvatures satisfy some finiteness condition. (See Section 2.2 for more precise statements.) So, for a μ_{L}-stable \boldsymbol{c}-parabolic Higgs bundle $\left({ }_{c} E, \boldsymbol{F}, \theta\right)$ on (X, D), where X is a smooth projective surface and D is a simple normal crossing divisor, ideally, we would like to take an initial metric of $E:={ }_{c} E_{\mid X-D}$ adapted to the parabolic structure. But, it is rather difficult, and the author is not sure whether such a good metric can always be taken for any parabolic Higgs bundles. It seems one of the main obstacles to establish the Kobayashi-Hitchin correspondence for parabolic Higgs bundles.

However, we can easily take such a good initial metric, if we assume the vanishing of the nilpotent part of the residues of the Higgs field on the graduation of the parabolic filtration. Such a parabolic Higgs bundle will be called graded semisimple in this paper. We first establish the correspondence in this easy case. (Proposition 6.1).
(2) Let $\left({ }_{c} E, \boldsymbol{F}, \theta\right)$ be a μ_{L}-stable \boldsymbol{c}-parabolic Higgs bundle on (X, D), where $\operatorname{dim} X=$ 2. We take a perturbation of $\boldsymbol{F}^{(\epsilon)}$ as in Section 3.3. In particular, $\left({ }_{c} E, \boldsymbol{F}^{(\epsilon)}, \theta\right)$ is a μ_{L}-stable graded semisimple \boldsymbol{c}-parabolic Higgs bundle, and the following holds:

$$
\begin{gathered}
\left.\operatorname{par}-\mathrm{c}_{1}(c E, \boldsymbol{F})={\operatorname{par}-\mathrm{c}_{1}(c} E, \boldsymbol{F}^{(\epsilon)}\right), \\
\mid \int_{X}{\operatorname{par}-\mathrm{ch}_{2}(c E, \boldsymbol{F})-\int_{X}{\operatorname{par}-\mathrm{ch}_{2}\left(c E, \boldsymbol{F}^{(\epsilon)}\right)}(\leq C \cdot \epsilon .}^{\leq C .} .
\end{gathered}
$$

Then we obtain the Bogomolov-Gieseker inequality for $\left({ }_{c} E, \boldsymbol{F}^{(\epsilon)}, \theta\right)$ by using the Hermitian-Einstein metric obtained in (1). By taking the limit $\epsilon \rightarrow 0$, we obtain the desired inequality for the given $\left({ }_{c} E, \boldsymbol{F}, \theta\right)$.
1.2.3. Strategy for the proof of Kobayashi-Hitchin correspondence. - Let X be a smooth projective surface, and D be a simple normal crossing divisor. Let L be an ample line bundle on X, and ω be the Kahler form representing $c_{1}(L)$. Roughly speaking, the correspondence on (X, D) as in Theorem 1.4 can be divided into the following two parts:

- For a given tame harmonic bundle $\left(E, \bar{\partial}_{E}, \theta, h\right)$ on $X-D$, we obtain the $\mu_{L^{-}}$ polystable parabolic Higgs bundle ($c E, \boldsymbol{F}, \theta$) with the trivial characteristic numbers.
- On the converse, we obtain a pluri-harmonic metric of $\left(E, \bar{\partial}_{E}, \theta\right)$ on $X-D$ for $\operatorname{such}(c E, \boldsymbol{F}, \theta)$.
As for the first issue, most problem can be reduced to the one dimensional case, which was established by Simpson [52]. However, we have to show the vanishing of the characteristic numbers, for which our study of the asymptotic behaviour of tame harmonic bundles ([44]) is useful.

As for the second issue, we use the perturbation method, again. Namely, let $\left({ }_{c} E, \boldsymbol{F}, \theta\right)$ be a μ_{L}-stable \boldsymbol{c}-parabolic Higgs bundle on (X, D). Take a perturbation $\boldsymbol{F}^{(\epsilon)}$ of the filtration \boldsymbol{F} for a small positive number ϵ. We also take metrics appropriate ω_{ϵ} of $X-D$ such that $\lim _{\epsilon \rightarrow 0} \omega_{\epsilon}=\omega$, and then we obtain Hermitian-Einstein metrics h_{ϵ} for the Higgs bundle $\left(E, \bar{\partial}_{E}, \theta\right)$ on $X-D$ with respect to ω_{ϵ}, which is adapted to the parabolic structure $\boldsymbol{F}^{(\epsilon)}$. Ideally, we would like to consider the limit $\lim _{\epsilon \rightarrow 0} h_{\epsilon}$, and we expect that the limit gives the Hermitian-Einstein metric h for $\left(E, \bar{\partial}_{E}, \theta\right)$ with respect to ω, which is adapted to the given filtration \boldsymbol{F}. Perhaps, it may be correct, but it does not seem easy to show, in general.

We restrict ourselves to the simpler case where the characteristic numbers of $\left({ }_{c} E, \boldsymbol{F}, \theta\right)$ are trivial. Under this assumption, we show such a convergence. More
precisely, we show that there is a subsequence $\left\{\epsilon_{i}\right\}$ such that $\left\{\left(E, \bar{\partial}_{E}, \theta, h_{\epsilon_{i}}\right\}\right.$ converges to a harmonic bundle ($\left.E^{\prime}, \bar{\partial}_{E^{\prime}}, \theta^{\prime}, h^{\prime}\right)$ on $X-D$, and we show that the given $\left({ }_{c} E, \boldsymbol{F}, \theta\right)$ is isomorphic to the parabolic Higgs bundles obtained from $\left(E^{\prime}, \bar{\partial}_{E^{\prime}}, \theta^{\prime}, h^{\prime}\right)$.

Remark 1.8. - We obtained a similar correspondence for λ-connections in [46]. Although the essential ideas are same, we need some additional argument in the case of λ-connections.

1.3. Additional Results

1.3.1. Torus action and the deformation of a G-flat bundle. - Once Theorem 1.4 is established, we can use some of the arguments for the applications given in the projective case. For example, we can deform any flat bundle to the one which comes from a variation of polarized Hodge structure. We follow the well known framework given by Simpson with a minor modification. We briefly recall it, and we will mention the problem that we have to care about in the process.

Let X be a smooth irreducible projective variety, and D be a simple normal crossing divisor with the irreducible decomposition $D=\bigcup_{i \in S} D_{i}$. Let x be a point of $X-D$. Let Γ denote the fundamental group $\pi_{1}(X-D, x)$. Any representation of Γ can be deformed to a semisimple representation, and hence we start with a semisimple one.

Let (E, ∇) be a flat bundle over $X-D$ such that the induced representation $\rho: \Gamma \longrightarrow \operatorname{GL}\left(E_{\mid x}\right)$ is semisimple. Recall we can take a Corlette-Jost-Zuo metric of (E, ∇), as mentioned in Subsection 1.2.1. Hence we obtain a tame pure imaginary harmonic bundle $\left(E, \bar{\partial}_{E}, \theta, h\right)$ on $X-D$, and the induced μ_{L}-polystable \boldsymbol{c}-parabolic Higgs bundle $\left({ }_{c} E, \boldsymbol{F}, \theta\right)$ on (X, D), where \boldsymbol{c} denotes any element of \boldsymbol{R}^{S}. We have the canonical decomposition $\left({ }_{c} E, \boldsymbol{F}, \theta\right)=\bigoplus_{i}\left({ }_{c} E_{i}, \boldsymbol{F}_{i}, \theta_{i}\right)^{\oplus m_{i}}$, where each $\left({ }_{c} E_{i}, \boldsymbol{F}_{i}, \theta_{i}\right)$ is μ_{L}-stable.

Let us consider the family of \boldsymbol{c}-parabolic Higgs bundles $\left({ }_{c} E, \boldsymbol{F}, t \cdot \theta\right)$ for $t \in \boldsymbol{C}^{*}$, which are μ_{L}-polystable. Due to the standard Langton's trick [33], we have the semistable \boldsymbol{c}-parabolic Higgs sheaves $\left({ }_{\boldsymbol{c}} \widetilde{E}_{i}, \widetilde{\boldsymbol{F}}_{i}, \widetilde{\theta}_{i}\right)$ which are limits of $\left({ }_{\boldsymbol{c}} E_{i}, \boldsymbol{F}_{i}, t \cdot \theta_{i}\right)$ in $t \rightarrow 0$. On the other hand, we can take a pluri-harmonic metric h_{t} of the Higgs bundle $\left(E, \bar{\partial}_{E}, t \cdot \theta\right)$ on $X-D$ for each t, which is adapted to the parabolic structure. (Theorem 1.4). Then we obtain the family of flat bundles $\left(E, \mathbb{D}_{t}^{1}\right)$, and the associated family of the representations $\left\{\rho_{t}: \Gamma \longrightarrow \mathrm{GL}\left(E_{\mid x}\right) \mid t \in \boldsymbol{C}^{*}\right\}$. Since $\left(E, \bar{\partial}_{E}, t \cdot \theta, h_{t}\right)$ is tame pure imaginary in the case $t \in \boldsymbol{R}_{>0}$, the representations ρ_{t} are semisimple. The family $\left\{\rho_{t} \mid t \in \boldsymbol{C}^{*}\right\}$ should be continuous with respect to t, and the limit $\lim _{t \rightarrow 0} \rho_{t}$ should exist, ideally. We formulate the continuity of ρ_{t} with respect to t and the convergence of ρ_{t} in $t \rightarrow 0$, as follows. Let V be a \boldsymbol{C}-vector space such that $\operatorname{rank}(V)=$ $\operatorname{rank}(E)$. Let h_{V} denote the metric of V, and let $U\left(h_{V}\right)$ denote the unitary group for h_{V}. We put $R(\Gamma, V):=\operatorname{Hom}(\Gamma, \operatorname{GL}(V))$. By the conjugate, $U\left(h_{V}\right)$ acts on the space
$R(\Gamma, V)$. Let $M\left(\Gamma, V, h_{V}\right)$ denote the usual quotient space. Let $\pi_{\mathrm{GL}(V)}: R(\Gamma, V) \longrightarrow$ $M\left(\Gamma, V, h_{V}\right)$ denote the projection.

By taking any isometry $\left(E_{\mid x}, h_{t \mid x}\right) \simeq\left(V, h_{V}\right)$, we obtain the representation ρ_{t}^{\prime} : $\Gamma \longrightarrow \operatorname{GL}(V)$. We put $\mathcal{P}(t):=\pi_{\mathrm{GL}(V)}\left(\rho_{t}^{\prime}\right)$, and we obtain the map $\mathcal{P}: C^{*} \longrightarrow$ $M\left(\Gamma, V, h_{V}\right)$. It is well defined. Then, we obtain the following partial result.

Proposition 1.9 (Theorem 10.1, Lemma 10.2, Proposition 10.3)

1. The induced map \mathcal{P} is continuous.
2. $\mathcal{P}(\{0<t \leq 1\})$ is relatively compact in $M\left(\Gamma, V, h_{V}\right)$.
3. If each $\left({ }_{c} \widetilde{E}_{i}, \widetilde{\boldsymbol{F}}_{i}, \widetilde{\theta}_{i}\right)$ is stable, then the limit $\lim _{t \rightarrow 0} \mathcal{P}(t)$ exists, and the limit flat bundle underlies the variation of polarized Hodge structure. As a result, we can deform any flat bundle to a variation of polarized Hodge structure.

We would like to mention the point which we will care about. For simplicity, we assume $\left({ }_{c} E, \boldsymbol{F}, \theta\right)$ is $\mu_{L^{-}}$-stable, and $\left({ }_{c} E, \boldsymbol{F}, t \cdot \theta\right)$ converges to the μ_{L}-stable parabolic Higgs bundle $(c \widetilde{E}, \widetilde{\boldsymbol{F}}, \widetilde{\theta})$. Let $\left\{t_{i}\right\}$ denote a sequence converging to 0 . By taking an appropriate subsequence, we may assume that the sequence $\left\{\left(E, \bar{\partial}_{E}, h_{t_{i}}, t_{i} \cdot \theta_{i}\right)\right\}$ converges to a tame harmonic bundle $\left(E^{\prime}, \bar{\partial}_{E^{\prime}}, h^{\prime}, \theta^{\prime}\right)$ weakly in L_{2}^{p} locally over $X-D$, which is due to Uhlenbeck's compactness theorem and the estimate for the Higgs fields. Then we obtain the induced parabolic Higgs bundle (${ }_{c} E^{\prime}, \boldsymbol{F}^{\prime}, \theta^{\prime}$). We would like to show that $\left({ }_{c} \widetilde{E}, \widetilde{\boldsymbol{F}}, \widetilde{\theta}\right)$ and $\left({ }_{c} E^{\prime}, \boldsymbol{F}^{\prime}, \theta^{\prime}\right)$ are isomorphic. Once we have known the existence of a non-trivial map $G:{ }_{c} E^{\prime} \longrightarrow{ }_{c} \widetilde{E}$ which is compatible with the parabolic structure and the Higgs field, it is isomorphic due to the stability of ($c \widetilde{E}, \widetilde{\boldsymbol{F}}, \widetilde{\theta}$). Hence the existence of such G is the main issue for this argument. We remark that the problem is rather obvious if D is empty.

Remark 1.10. - Even if $\left({ }_{c} \widetilde{E}_{i}, \widetilde{\boldsymbol{F}}_{i}, \widetilde{\theta}_{i}\right)$ are not μ_{L}-stable, the conclusion in the third claim of Proposition 1.9 should be true. In fact, Simpson gave a detailed argument to show it, in the case where D is empty ([56], [57]). More strongly, he obtained the homeomorphism of the coarse moduli spaces of semistable flat bundles and semistable Higgs bundles.

In this paper, we do not discuss the moduli spaces, and hence we omit to discuss the general case. Instead, we use an elementary inductive argument on the rank of local systems, which is sufficient to obtain a deformation to a variation of polarized Hodge structure. However, it would be desirable to arrive at the thorough understanding as Simpson's work, in future.

Remark 1.11. - For an application, we have to care about the relation between the deformation and the monodromy groups. We will discuss only a rough relation in Section 10.2. More precise relation will be studied elsewhere.

Once we can deform any local system on a smooth quasiprojective variety to a variation of polarized Hodge structure, preserving some compatibility with the monodromy group, we obtain the following corollary. It is a natural generalization of Theorem 1.1.

Corollary 1.12. - Let Γ be a rigid discrete subgroup of a real algebraic group which is not of Hodge type. Then Γ cannot be a split quotient of the fundamental groups of any smooth irreducible quasiprojective variety.

Remark 1.13. - Such a deformation of flat bundles on a quasiprojective variety was also discussed in [28] in a different way.
1.3.2. Tame pure imaginary pluri-harmonic reduction (Appendix). - Let G be a linear algebraic group defined over \boldsymbol{C} or \boldsymbol{R}. We will discuss a characterization of reductive representations $\pi_{1}(X-D, x) \longrightarrow G$ via the existence of tame pure imaginary pluri-harmonic reduction. Here a representation is called reductive, if the Zariski closure of the image is reductive. Such a kind of characterization was given by Jost and Zuo ([29]) directly for G, although their definition of reductivity looks different from ours. It is our purpose to explain that the problem can be reduced to the case $G=G L(n)$ by Tannakian consideration. Some results are used in Chapter 10.

1.4. Outline

Chapter 2 is an elementary preparation for the discussion in the later chapters. The reader can skip this chapter. Chapter 3 is preparation about parabolic Higgs bundles. We discuss the perturbation of a given filtration in Section 3.3, which is one of the keys in this paper.

In Chapter 4, an ordinary metric for parabolic Higgs bundle is given. We follow the construction in $[\mathbf{3 5}]$ and $[\mathbf{3 6}]$. Our purpose is to establish the relation between the parabolic characteristic numbers and some integrals, in the case of graded semisimple parabolic Higgs bundles.

In Chapter 5, we show the fundamental properties of the parabolic Higgs bundles obtained from tame harmonic bundles. Namely, we show the μ_{L}-stability and the vanishing of the characteristic numbers. In Chapter 6, we show the preliminary Kobayashi-Hitchin correspondence for graded semisimple parabolic Higgs bundles. Bogomolov-Gieseker inequality can be obtained as an easy corollary of this preliminary correspondence and the perturbation argument of the parabolic structure.

In Chapter 7, we construct a frame around the origin for a tame harmonic bundle on a punctured disc. It is a technical preparation to discuss the convergence of a sequence of tame harmonic bundles. Such a convergence is shown in Chapter 8. We also give a preparation for the existence theorem of pluri-harmonic metric, which is completed in Chapter 9.

Once the Kobayashi-Hitchin correspondence for tame harmonic bundles is established, we can apply Simpson's argument of the torus action, and we can obtain some topological consequence of quasiprojective varieties. It is explained in Chapter 10. Chapter 10.2.3 is regarded as an appendix, in which we recall something related to pluri-harmonic metrics of G-flat bundles.

1.5. Acknowledgement

The author owes much thanks to C. Simpson. The paper is a result of an effort to understand his works, in particular, [51] and [55], where the reader can find the framework and many ideas used in this paper. The problem of Bogomolov-Gieseker inequality was passed to the author from him a few years ago. The author expresses his sincere gratitude to the referee for careful and patient reading, pointing out some mistakes, and suggesting simplifications. His comments and suggestions are really useful for improvement of this monograph. The author is grateful to C. Sabbah for the French translation of the abstract and the title. The author thanks Y. Tsuchimoto and A. Ishii for their constant encouragement. He is grateful to the colleagues of Department of Mathematics at Kyoto University for their help. He acknowledges the Max-Planck Institute for Mathematics and Institut des Hautes Études Scientifiques, where he revised this paper.

CHAPTER 2

PRELIMINARY

This chapter is a preparation for the later discussions. We will often use the notation given in Sections 2.1-2.2, especially.

2.1. Notation and Words

We use the notation $\mathbb{Z}, \boldsymbol{Q}, \boldsymbol{R}$ and \boldsymbol{C} to denote the set of integers, rational numbers, real numbers and complex numbers, respectively. For a real number a, we put $\boldsymbol{R}_{>a}:=$ $\{x \in \boldsymbol{R} \mid x>a\}$. We use the notation $\mathbb{Z}_{>a}, \mathbb{Z}_{\geq a}, \boldsymbol{Q}_{>a}$, etc. in a similar meaning.

For real numbers a, b, we put as follows:

$$
\begin{array}{rll}
{[a, b]:} & =\{x \in \boldsymbol{R} \mid a \leq x \leq b\} & \quad[a, b[:=\{x \in \boldsymbol{R} \mid a \leq x<b\} \\
] a, b]:=\{x \in \boldsymbol{R} \mid a<x \leq b\} &] a, b[:=\{x \in \boldsymbol{R} \mid a<x<b\}
\end{array}
$$

The notation $\delta_{i, j}$ will be Kronecker's delta, i.e., $\delta_{i, j}=1(i=j)$ and $\delta_{i, j}=0(i \neq j)$.
A normal crossing divisor D of a complex manifold X will be called simple, if each irreducible component is non-singular. Let $D=\bigcup_{i \in S} D_{i}$ be the irreducible decomposition. For elements $\boldsymbol{a} \in \boldsymbol{R}^{S}, a_{i}$ will denote the i-th component of $\boldsymbol{a}(i \in S)$. The notation ${ }_{a} E$ is often used to denote a vector bundle on X, and we often put $E:={ }_{\boldsymbol{a}} E_{\mid X-D}$.

Let Y be a manifold, E be a vector bundle on Y, and $\left\{f_{i}\right\}$ be a sequence of sections of E. We say $\left\{f_{i}\right\}$ converges to f weakly in L_{l}^{p} locally on Y, if the restriction $\left\{f_{i \mid K}\right\}$ converges to $f_{\mid K}$ weakly in $L_{l}^{p}(K)$ for any compact subset $K \subset Y$.

Let $\left\{\left(E^{(i)}, \bar{\partial}^{(i)}, \theta^{(i)}\right)\right\}$ be a sequence of Higgs bundles on Y. We say that the sequence $\left\{\left(E^{(i)}, \bar{\partial}^{(i)}, \theta^{(i)}\right)\right\}$ converges to $\left(E^{(\infty)}, \bar{\partial}^{(\infty)}, \theta^{(\infty)}\right)$ weakly in L_{2}^{p} (resp. in C^{1}) locally on Y, if there exist locally L_{2}^{p}-isomorphisms (resp. C^{1}-isomorphisms) $\Phi^{(i)}: E^{(i)} \longrightarrow E^{(\infty)}$ on Y such that the sequences $\left\{\Phi^{(i)}\left(\bar{\partial}^{(i)}\right)\right\}$ and $\left\{\Phi^{(i)}\left(\theta^{(i)}\right)\right\}$ weakly converge to $\bar{\partial}^{(\infty)}$ and $\theta^{(\infty)}$ respectively in L_{1}^{p} (resp. C^{0}) locally on Y.

Let E be a vector bundle on Y with a hermitian metric h. For an operator $F \in$ $\operatorname{End}(E) \otimes \Omega_{Y}^{p, q}$, we use the notation $F_{h}^{\dagger} \in \operatorname{End}(E) \otimes \Omega_{Y}^{q, p}$ to denote the adjoint of F with respect to h. The notation F^{\dagger} is often used, if there are no risk of confusion.

Let $\left(S_{i}, \varphi_{i}\right)(i=1,2, \ldots, \infty)$ be a pair of discrete subsets $S_{i} \subset \boldsymbol{R}$ and functions $\varphi_{i}: S_{i} \longrightarrow \mathbb{Z}_{>0}$. We say that $\left\{\left(S_{i}, \varphi_{i}\right) \mid i=1,2, \ldots\right\}$ converges to $\left(S_{\infty}, \varphi_{\infty}\right)$, if there exists i_{0} for any $\epsilon>0$ such that (i) any $b \in S_{i}\left(i>i_{0}\right)$ is contained in] $a-\epsilon, a+\epsilon[$ for some $a \in S_{\infty}$, (ii) $\sum_{b \in S_{i},|a-b|<\epsilon} \varphi_{i}(b)=\varphi_{\infty}(a)$ is satisfied.

2.2. Review of some Results of Simpson on Kobayashi-Hitchin Correspondence

2.2.1. Analytic stability and Hermitian-Einstein metric. - We recall some results in [51]. Let Y be an n-dimensional connected complex manifold which is not necessarily compact. Let ω be a Kahler form of Y. The adjoint for the multiplication of ω is denoted by Λ_{ω}, or simply by Λ if there are no confusion. The Laplacian for ω is denoted by Δ_{ω}.

Condition 2.1

1. The volume of Y with respect to ω is finite.
2. There exists an exhaustion function ϕ on Y such that $0 \leq \sqrt{-1} \partial \bar{\partial} \phi \leq C \cdot \omega$ for some positive constant C.
3. There exists an increasing function $\boldsymbol{R}_{\geq 0} \longrightarrow \boldsymbol{R}_{\geq 0}$ such that $a(0)=0$ and $a(x)=x$ for $x \geq 1$, and the following holds:

- Let f be a positive bounded function on Y such that $\Delta_{\omega} f \leq B$ for some positive number B. Then $\sup _{Y}|f| \leq C(B) \cdot a\left(\int_{Y} f\right)$ for some positive constant $C(B)$ depending on B. Moreover $\Delta_{\omega} f \leq 0$ implies $\Delta_{\omega} f=0$.

Let $\left(E, \bar{\partial}_{E}, \theta\right)$ be a Higgs bundle on Y. Let h be a hermitian metric of E. Then we have the $(1,0)$-operator ∂_{E} determined by $\bar{\partial} h(u, v)=h\left(\bar{\partial}_{E} u, v\right)+h\left(u, \partial_{E} v\right)$. We also have the adjoint θ^{\dagger}. If we emphasize the dependence on h, we use the notation $\partial_{E, h}$ and θ_{h}^{\dagger}. We obtain the connections $D_{h}:=\bar{\partial}_{E}+\partial_{E}$ and $\mathbb{D}^{1}:=D_{h}+\theta+\theta^{\dagger}$. The curvatures of D_{h} and \mathbb{D}^{1} are denoted by $R(h)$ and $F(h)$ respectively. When we emphasize the dependence on $\bar{\partial}_{E}$, they are denoted by $R\left(\bar{\partial}_{E}, h\right)$ and $F\left(\bar{\partial}_{E}, h\right)$. We also use $R(E, h)$ and $F(E, h)$, if we emphasize the bundle.

Condition 2.2. - $F(h)$ is bounded with respect to h and ω.
When Condition 2.2 is satisfied, we put as follows:

$$
\operatorname{deg}_{\omega}(E, h):=\frac{\sqrt{-1}}{2 \pi} \int_{Y} \operatorname{tr}(F(h)) \cdot \omega^{n-1}=\frac{\sqrt{-1}}{2 \pi} \int_{Y} \operatorname{tr} \Lambda(F(h)) \cdot \frac{\omega^{n}}{n}
$$

Note $\operatorname{tr} F(h)=\operatorname{tr} R(h)$. Recall that a subsheaf $V \subset E$ is called saturated if the quotient E / V is torsion-free. For any saturated Higgs subsheaf $V \subset E$, there is a

Zariski closed subset Z of codimension two such that $V_{\mid Y-Z}$ gives a subbundle of $E_{\mid Y-Z}$, on which the metric h_{V} of $V_{\mid Y-Z}$ is induced. Let π_{V} denote the orthogonal projection of $E_{\mid Y-Z}$ onto $V_{\mid Y-Z}$. Let tr_{V} denote the trace for endomorphisms of V.

Proposition 2.3 ([51] Lemma 3.2). - When the conditions 2.1 and 2.2 are satisfied, the integral

$$
\operatorname{deg}_{\omega}\left(V, h_{V}\right):=\frac{\sqrt{-1}}{2 \pi} \int_{Y} \operatorname{tr}_{V}\left(F\left(h_{V}\right)\right) \cdot \omega^{n-1}
$$

is well defined, and it takes the value in $\boldsymbol{R} \cup\{-\infty\}$. The Chern-Weil formula holds as follows, for some positive number C :

$$
\operatorname{deg}_{\omega}\left(V, h_{V}\right)=\frac{\sqrt{-1}}{2 \pi} \int_{Y} \operatorname{tr}\left(\pi_{V} \circ \Lambda_{\omega} F(h)\right) \cdot \frac{\omega^{n}}{n}-C \int_{Y}\left|D^{\prime \prime} \pi_{V}\right|_{h}^{2} \cdot \operatorname{dvol}_{\omega}
$$

Here we put $D^{\prime \prime}=\bar{\partial}_{E}+\theta$. In particular, if the value $\operatorname{deg}_{\omega}\left(V, h_{V}\right)$ is finite, $\bar{\partial}_{E}\left(\pi_{V}\right)$ and $\left[\theta, \pi_{V}\right]$ are L^{2}.

For any $V \subset E$, we put $\mu_{\omega}\left(V, h_{V}\right):=\operatorname{deg}_{\omega}\left(V, h_{V}\right) / \operatorname{rank} V$.
Definition 2.4 ([51]). - A metrized Higgs bundle $\left(E, \bar{\partial}_{E}, \theta, h\right)$ is called analytic stable, if the inequalities $\mu_{\omega}\left(V, h_{V}\right)<\mu_{\omega}(E, h)$ hold for any non-trivial Higgs saturated subsheaves $\left(V, \theta_{V}\right) \subsetneq(E, \theta)$.

The following important theorem is crucial for our argument.
Proposition 2.5 (Simpson). - Let (Y, ω) be a Kahler manifold satisfying Condition 2.1, and let $\left(E, \bar{\partial}_{E}, \theta, h_{0}\right)$ be a metrized Higgs bundle satisfying Condition 2.2. If it is analytic stable, then there exists a hermitian metric $h=h_{0} \cdot s$ satisfying the following conditions:

- h and h_{0} are mutually bounded.
$-\operatorname{det}(h)=\operatorname{det}\left(h_{0}\right)$. In particular, we have $\operatorname{tr} F(h)=\operatorname{tr} F\left(h_{0}\right)$.
- $D^{\prime \prime}(s)$ is L^{2} with respect to h_{0} and ω.
- It satisfies the Hermitian-Einstein condition $\Lambda_{\omega} F(h)^{\perp}=0$, where $F(h)^{\perp}$ denotes the trace free part of $F(h)$.
- The following equalities hold:

$$
\begin{gather*}
\int_{Y} \operatorname{tr}\left(F(h)^{2}\right) \cdot \omega^{n-2}=\int_{Y} \operatorname{tr}\left(F\left(h_{0}\right)^{2}\right) \cdot \omega^{n-2} \tag{2}\\
\int_{Y} \operatorname{tr}\left(F(h)^{\perp 2}\right) \cdot \omega^{n-2}=\int_{Y} \operatorname{tr}\left(F\left(h_{0}\right)^{\perp 2}\right) \cdot \omega^{n-2} \tag{3}
\end{gather*}
$$

Proof. - Condition 2.2 implies $\Lambda_{\omega} F(h)$ is bounded. Applying Theorem 1 in [51], we obtain the hermitian metric h satisfying the first four conditions. Due to Proposition 3.5 in [51], we obtain the inequality $\int_{Y} \operatorname{tr}\left(F(h)^{2}\right) \cdot \omega^{n-2} \leq \int_{Y} \operatorname{tr}\left(F\left(h_{0}\right)^{2}\right) \cdot \omega^{n-2}$. Since we have assumed the boundedness of $F\left(h_{0}\right)$, we also obtain $\int_{Y} \operatorname{tr}\left(F(h)^{2}\right) \cdot \omega^{n-2} \geq$
$\int_{Y} \operatorname{tr}\left(F\left(h_{0}\right)^{2}\right) \cdot \omega^{n-2}$ due to Lemma 7.4 in [51], as mentioned in the remark just before the lemma. Therefore, we obtain (2). Since we have $\operatorname{tr} F\left(h_{0}\right)=\operatorname{tr} F(h)$, we also obtain (3).
2.2.2. Uniqueness. - The following proposition can be proved by the methods in [51].

Proposition 2.6. - Let (Y, ω) be a Kahler manifold satisfying Condition 2.1, and $\left(E, \bar{\partial}_{E}, \theta\right)$ be a Higgs bundle on Y. Let $h_{i}(i=1,2)$ be hermitian metrics of E such that $\Lambda_{\omega} F\left(h_{i}\right)=0$. We assume that h_{1} and h_{2} are mutually bounded. Then the following holds:

- We have the decomposition of Higgs bundles $(E, \theta)=\bigoplus\left(E_{a}, \theta_{a}\right)$ which is orthogonal with respect to both of h_{i}.
- The restrictions of h_{i} to E_{a} are denoted by $h_{i, a}$. Then there exist positive numbers b_{a} such that $h_{1, a}=b_{a} \cdot h_{2, a}$.

Proof. - We take the endomorphism s_{1} determined by $h_{2}=h_{1} \cdot s_{1}$. Then we have the following inequality due to Lemma 3.1 (d) in [51] on $X-D$:

$$
\Delta_{\omega} \log \operatorname{tr}\left(s_{1}\right) \leq\left|\Lambda_{\omega} F\left(h_{1}\right)\right|+\left|\Lambda_{\omega} F\left(h_{2}\right)\right|=0
$$

Here we have used $\Lambda_{\omega} F\left(h_{i}\right)=0$. Then we obtain $\Delta_{\omega} \operatorname{tr}\left(s_{1}\right) \leq 0$. Since the function $\operatorname{tr}\left(s_{1}\right)$ is bounded on Y, we obtain the harmonicity $\Delta_{\omega} \operatorname{tr}\left(s_{1}\right)=0$ due to Condition 2.1.

We put $D^{\prime \prime}=\bar{\partial}+\theta$ and $D^{\prime}:=\partial_{E, h_{1}}+\theta_{h_{1}}^{\dagger}$, where $\theta_{h_{1}}^{\dagger}$ denotes the adjoint of θ with respect to the metric h_{1}. Then we also have the following equality:

$$
0=F\left(h_{2}\right)-F\left(h_{1}\right)=D^{\prime \prime}\left(s_{1}^{-1} D^{\prime} s_{1}\right)=-s_{1}^{-1} D^{\prime \prime} s_{1} \cdot s_{1}^{-1} \cdot D^{\prime} s_{1}+s_{1}^{-1} D^{\prime \prime} D^{\prime} s_{1}
$$

Hence we obtain $D^{\prime \prime} D^{\prime} s_{1}=D^{\prime \prime} s_{1} \cdot s_{1}^{-1} \cdot D^{\prime} s_{1}$. As a result, we obtain the following equality:
$\int\left|s_{1}^{-1 / 2} D^{\prime \prime} s_{1}\right|_{h_{1}}^{2} \operatorname{dvol}_{\omega}=-\sqrt{-1} \int \Lambda_{\omega} \operatorname{tr}\left(D^{\prime \prime} D^{\prime} s_{1}\right) \operatorname{dvol}_{\omega}=-\int \Delta_{\omega} \operatorname{tr}\left(s_{1}\right) \operatorname{dvol}{ }_{\omega}=0$.
Hence we obtain $D^{\prime \prime} s_{1}=0$, i.e., $\bar{\partial} s_{1}=\left[\theta, s_{1}\right]=0$. Since s_{1} is self-adjoint with respect to h_{1}, we obtain the flatness $\left(\bar{\partial}+\partial_{E, h_{1}}\right) s_{1}=0$. Hence we obtain the decomposition $E=\bigoplus_{a \in S} E_{a}$ such that $s_{a}=\bigoplus b_{a} \cdot \mathrm{id}_{E_{a}}$ for some positive constants b_{a}. Let $\pi_{E_{a}}$ denote the orthogonal projection onto E_{a}. Then we have $\bar{\partial} \pi_{E_{a}}=0$. Hence the decomposition $E=\bigoplus_{a \in S} E_{a}$ is holomorphic. It is also compatible with the Higgs field. Hence we obtain the decomposition as the Higgs bundles. Then the claim of Proposition 2.6 is clear.

Remark 2.7. - We have only to impose $\Lambda_{\omega} F\left(h_{1}\right)=\Lambda_{\omega} F\left(h_{2}\right)$ instead of $\Lambda_{\omega} F\left(h_{i}\right)=0$, which can be shown by a minor refinement of the argument.
2.2.3. The one dimensional case. - In the one dimensional case, Simpson established the Kobayashi-Hitchin correspondence for parabolic Higgs bundle. Here we recall only the special case. (See Chapter 3 for some definitions.)

Proposition 2.8 (Simpson). - Let X be a smooth irreducible projective curve, and D be a simple divisor of X. Let $\left(\boldsymbol{E}_{*}, \theta\right)$ be a filtered regular Higgs bundle on (X, D). We put $E={ }_{c} E_{\mid X-D}$. The following conditions are equivalent:
$-\left(\boldsymbol{E}_{*}, \theta\right)$ is poly-stable with par-deg $\left(\boldsymbol{E}_{*}\right)=0$.

- There exists a harmonic metric h of (E, θ), which is adapted to the parabolic structure of \boldsymbol{E}_{*}.

Moreover, such a metric is unique up to obvious ambiguity. Namely, let $h_{i}(i=1,2)$ be two harmonic metrics. Then we have the decomposition of Higgs bundles $(E, \theta)=$ $\bigoplus\left(E_{a}, \theta_{a}\right)$ satisfying the following:

- The decomposition is orthogonal with respect to both of h_{i}.
- The restrictions of h_{i} to E_{a} are denoted by $h_{i, a}$. Then there exist positive numbers b_{a} such that $h_{1, a}=b_{a} \cdot h_{2, a}$.

Proof. - See [52]. We give only a remark on the uniqueness. Let $\left(E, \bar{\partial}_{E}, \theta\right)$ be a Higgs bundle on $X-D$, and $h_{i}(i=1,2)$ be harmonic metrics on it. Assume that the induced prolongments ${ }_{c} E\left(h_{i}\right)$ are isomorphic. (See Section 3.5 for prolongment.) Recall the norm estimate for tame harmonic bundles in the one dimensional case ([52]), which says that the harmonic metrics are determined up to boundedness by the parabolic filtration and the weight filtration. Hence we obtain the mutually boundedness of h_{1} and h_{2}. Then the uniqueness follows from Proposition 2.6.

2.3. Weitzenböck Formula

Let (Y, ω) be a Kahler manifold. Let h be a Hermitian-Einstein metric for a Higgs bundle $\left(E, \bar{\partial}_{E}, \theta\right)$ on Y. More strongly, we assume $\Lambda_{\omega} F(h)=0$. The following lemma is a minor modification of Weitzenböck formula for harmonic bundles by Simpson ([52]).

Lemma 2.9. - Let s be any holomorphic section of E such that $\theta s=0$. Then we have $\Delta_{\omega} \log |s|_{h}^{2} \leq 0$, where Δ_{ω} denotes the Laplacian for ω.

Proof. - We have $\partial \bar{\partial}|s|_{h}^{2}=\partial\left(s, \partial_{E} s\right)=\left(\partial_{E} s, \partial_{E} s\right)+\left(s, \bar{\partial}_{E} \partial_{E} s\right)=\left(\partial_{E} s, \partial_{E} s\right)+$ $(s, R(h) s)$. Then we obtain the following:

$$
\partial \bar{\partial} \log |s|_{h}^{2}=\frac{\partial \bar{\partial}|s|^{2}}{|s|^{2}}-\frac{\partial|s|^{2} \cdot \bar{\partial}|s|^{2}}{|s|^{4}}=\frac{(s, R(h) s)}{|s|^{2}}+\frac{\left(\partial_{E} s, \partial_{E} s\right)}{|s|^{2}}-\frac{\partial|s|^{2} \cdot \bar{\partial}|s|^{2}}{|s|^{4}}
$$

We have $R(h)=-\left(\theta^{\dagger} \theta+\theta \theta^{\dagger}\right)+F(h)^{(1,1)}$, where $F(h)^{(1,1)}$ denotes the $(1,1)$-part of $F(h)$. Hence we have the following:

$$
\begin{align*}
& \Lambda_{\omega}(s, R(h) s)=\Lambda_{\omega}\left(s,\left(-\theta \theta^{\dagger}-\theta^{\dagger} \theta\right) s\right)+\Lambda_{\omega}\left(s, F(h)^{(1,1)} s\right) \tag{4}\\
& \quad=-\Lambda_{\omega}\left(\theta^{\dagger} s, \theta^{\dagger} s\right)-\Lambda_{\omega}(\theta s, \theta s)+\Lambda_{\omega}\left(s, F(h)^{(1,1)} s\right)=-\Lambda_{\omega}\left(\theta^{\dagger} s, \theta^{\dagger} s\right)
\end{align*}
$$

Here we have used $\Lambda_{\omega} F(h)=\Lambda_{\omega} F(h)^{(1,1)}=0$. Therefore we obtain the following:

$$
-\sqrt{-1} \Lambda_{\omega}(s, R(h) s)=\sqrt{-1} \Lambda_{\omega}\left(\theta^{\dagger} s, \theta^{\dagger} s\right)=-\left|\theta^{\dagger} s\right|_{h}^{2}
$$

On the other hand, we also have the following:

$$
-\sqrt{-1} \Lambda_{\omega}\left(\frac{(\partial s, \partial s)}{|s|^{2}}-\frac{\partial|s|^{2} \bar{\partial}|s|^{2}}{|s|^{4}}\right) \leq 0
$$

Hence we obtain $\Delta_{\omega} \log |s|^{2} \leq 0$.

2.4. A Priori Estimate of Higgs Fields

2.4.1. On a disc. - We put $X(T):=\{z \in \boldsymbol{C}| | z \mid<T\}$ for any positive number T. In the case $T=1, X(1)$ is denoted by X. We will use the usual Euclidean metric $g=d z \cdot d \bar{z}$ and the induced measure dvol $_{g}$. The corresponding Kahler form ω is given by $\sqrt{-1} d z \wedge d \bar{z} / 2$. Let $\Delta^{\prime \prime}$ denote the Laplacian $-\sqrt{-1} \Lambda_{\omega} \partial \bar{\partial}=-2 \partial_{z} \bar{\partial}_{z}$. By the standard theory of Dirichlet problem, there exists a constant C^{\prime} such that the following holds:

- We have the solution ψ of the equation $\Delta^{\prime \prime} \psi=\kappa$ such that $|\psi(P)| \leq C^{\prime} \cdot\|\kappa\|_{L^{2}}$ for any L^{2}-function κ and for any $P \in X$.
Let $\left(E, \bar{\partial}_{E}, \theta\right)$ be a Higgs bundle on X with a hermitian metric h. We have the expression $\theta=f \cdot d z$. We would like to estimate of the norm $|f|_{h}$ by the eigenvalues of g and the L^{2}-norm $\|F(h)\|_{L^{2}}:=\int_{X}|F(h)|_{h, g}^{2} \cdot \operatorname{dvol}_{g}$.

Proposition 2.10. - Let t be any positive number such that $t<1$. There exist constants C and C^{\prime} such that the following inequality holds on $X(t)$:

$$
|f|_{h}^{2} \leq C \cdot e^{10 C^{\prime}\|F(h)\|_{L^{2}}} .
$$

The constant C^{\prime} is as above. The constant C depends only on t, the rank of E and the eigenvalues of f.

Proof. - Let us begin with the following lemma, which is just a minor modification of the fundamental inequality in the theory of harmonic bundles.

Lemma 2.11. - We have the inequality:

$$
\Delta^{\prime \prime} \log |f|_{h}^{2} \leq-\frac{\left|\left[f, f^{\dagger}\right]\right|_{h}^{2}}{|f|_{h}^{2}}+5|F(h)|_{h, g}
$$

Proof. - By a general formula, we have the following inequality:

$$
-\sqrt{-1} \Lambda_{\omega} \partial \bar{\partial} \log |f|_{h}^{2} \leq-\sqrt{-1} \Lambda_{\omega} \frac{(f,[R(h), f])_{h}}{|f|_{h}^{2}}
$$

We obtain the desired inequality from $R(h)=F(h)-\left[\theta, \theta^{\dagger}\right]=F(h)-\left[f, f^{\dagger}\right] \cdot d z \cdot d \bar{z}$.
Let us take a function A satisfying $\Delta^{\prime \prime} A=5|F(h)|_{h}$ and $|A| \leq 5 C^{\prime}| | F(h) \|_{L^{2}}$. Then we obtain the following:

$$
\Delta^{\prime \prime}\left(\log |f|_{h}^{2}-A\right)=\Delta^{\prime \prime} \log \left(|f|_{h}^{2} \cdot e^{-A}\right) \leq-\frac{\left|\left[f, f^{\dagger}\right]\right|_{h}^{2}}{|f|_{h}^{2}}
$$

For any $Q \in X$, let $\alpha_{1}(Q), \ldots, \alpha_{\operatorname{rank}(E)}(Q)$ denote the eigenvalues of $f_{\mid Q}$. We put $\nu(Q):=\sum_{i=1}^{\operatorname{rank}(E)}\left|\alpha_{i}(Q)\right|^{2}$ and $\mu(Q):=\left|f_{\mid Q}\right|_{h}^{2}-\nu(Q)$. It can be elementarily shown that there exists a constant C_{1} which depends only on the rank of E, such that $C_{1} \cdot \mu^{2} \leq\left|\left[f, f^{\dagger}\right]\right|_{h}^{2}$. Hence, the following inequality holds:

$$
\Delta^{\prime \prime} \log \left(e^{-A} \cdot|f|_{h}^{2}\right) \leq-C_{1} \cdot \frac{\mu^{2}}{|f|_{h}^{2}}
$$

We also have a constant C_{2} which depends only on the eigenvalues of f, such that $\nu \leq C_{2}$ holds.

Let T be a number such that $0<T<1$, and $\phi_{T}: X(T) \longrightarrow \boldsymbol{R}$ is given by the following:

$$
\phi_{T}(z)=\frac{4 T^{2}}{\left(T^{2}-|z|^{2}\right)^{2}}
$$

Then we have $\Delta^{\prime \prime} \log \phi_{T}=-\phi_{T}$ and $\phi_{T} \geq 2$. In particular, we have $\nu \leq C_{2} \cdot \phi_{T} / 2$. The following lemma is clear.

Lemma 2.12. - Either one of $\left|f_{\mid Q}\right|_{h}^{2} \leq C_{2} \cdot \phi_{T}(Q)$ or $\left|f_{\mid Q}\right|_{h}^{2} \leq 2 \mu(Q)$ holds for any $Q \in X$.

We take a constant $\widehat{C}_{3}>0$ satisfying $\widehat{C}_{3}>C_{2}$ and $\widehat{C}_{3}>4 \cdot C_{1}^{-1}$, and we put $C_{3}:=\widehat{C}_{3} \cdot e^{5 C^{\prime}\|F(h)\|_{L^{2}}}$. We put $S_{T}:=\left\{P \in X(T) \mid\left(e^{-A} \cdot|f|^{2}\right)(P)>C_{3} \cdot \phi_{T}(P)\right\}$. For any point $P \in S_{T}$, we have $|f(P)|_{h}^{2}>C_{3} \cdot e^{A(P)} \cdot \phi_{T}(P)>C_{2} \cdot \phi_{T}(P)$. Due to Lemma 2.12, we obtain the following:

$$
\Delta^{\prime \prime} \log \left(e^{-A} \cdot|f|_{h}^{2}\right)(P) \leq-\frac{C_{1}}{4} \cdot|f(P)|_{h}^{2} \leq-\frac{1}{C_{3}}\left(e^{-A} \cdot|f|_{h}^{2}\right)(P)
$$

On the other hand, we have the following:

$$
\Delta^{\prime \prime} \log \left(C_{3} \cdot \phi_{T}\right)=-\frac{1}{C_{3}}\left(C_{3} \cdot \phi_{T}\right)
$$

Moreover, it is easy to see $\partial S_{T} \cap\{|z|=T\}=\varnothing$. Hence, we obtain $S_{T}=\varnothing$ by a standard argument. (See [1], [52] or the proof of Proposition 7.2 in [44].) Namely, we obtain the inequality $e^{-A}|f|_{h}^{2} \leq \widehat{C}_{3} \cdot e^{5 C^{\prime}\|F(h)\|_{L^{2}}} \cdot \phi_{T}$ on $X(T)$. Taking a limit for
$T \rightarrow 1$, we obtain $|f|_{h}^{2} \leq e^{10 C^{\prime}| | F(h) \|_{L^{2}}} \cdot \widehat{C}_{3} \cdot\left(1-|z|^{2}\right)^{-1}$ on X. Then the claim of Proposition 2.10 follows.
2.4.2. A Priori Estimate on a Multi-disc. - For a positive number T, we put $Y(T):=\left\{\left(z_{1}, \ldots, z_{n}\right)| | z_{i} \mid<T\right\}$. Let g denote the metric $\sum d z_{i} \cdot d \bar{z}_{i}$ of $Y(T)$. Let ω be a Kahler form on $Y(T)$ such that there exists a constant $C>0$ such that $C^{-1} \cdot \omega \leq g \leq C \cdot \omega$. Let $\left(E, \bar{\partial}_{E}, \theta\right)$ be a Higgs bundle with a hermitian metric h, which is Hermitian-Einstein with respect to ω. For simplicity, we restrict ourselves to the case $\Lambda_{\omega} F(h)=0$. We assume $\|F(h)\|_{L^{2}}<\infty$, where $\|F(h)\|_{L^{2}}$ denotes the L^{2}-norm of $F(h)$ with respect to ω and h. We have the expression $\theta=\sum f_{i} \cdot d z_{i}$ for holomorphic sections $f_{i} \in \operatorname{End}(E)$ on $Y(T)$.

Lemma 2.13. - Take $0<T_{1}<T$. There exist some constants C_{1} and C_{2} such that the following inequality holds for any $P \in Y\left(T_{1}\right)$:

$$
\log \left|f_{i}\right|^{2}(P) \leq C_{1} \cdot\|F(h)\|_{L^{2}}+C_{2}
$$

The constants C_{1} and C_{2} are good in the sense that they depend only on $T, T_{1}, \operatorname{rank} E$, the eigenvalues of $f_{i}(i=1,2, \ldots, n)$ and the constant C.

Proof. - We take a positive number T_{2} such that $T_{1}<T_{2}<T$. The induced Higgs field and the metric of $\operatorname{End}(E)$ are denoted by $\widetilde{\theta}$ and \widetilde{h}. Then the metric \widetilde{h} is a Hermitian-Einstein metric of $(\operatorname{End}(E), \widetilde{\theta})$ such that $\Lambda_{\omega} F(\widetilde{h})=0$. Because of $\widetilde{\theta}\left(f_{i}\right)=0$, we have the subharmonicity $\Delta_{\omega} \log \left|f_{i}\right|_{h}^{2} \leq 0$ due to Lemma 2.9. We use Theorem 9.20 in [18]. Note that $\Delta_{\omega} u=-\sqrt{-1} \Lambda_{\omega} \partial \bar{\partial} u$ is expressed as $-\sum a^{i, j} \partial_{x_{i}} \partial_{x_{j}} u$, where we use the real coordinate given by $z_{i}=x_{i}+\sqrt{-1} x_{n+i}$. (In terms of Chapter 9 of [18], we consider the case $b^{i}=c=0$.) The matrix $\mathcal{A}=\left(a_{i, j}\right)$ is symmetric and positive definite, and the eigenvalues are bounded uniformly, due to the condition $C^{-1} \cdot \omega \leq g \leq C \cdot \omega$. Hence, we obtain the following inequality for $P \in Y\left(T_{1}\right)$:

$$
\log \left|f_{i}\right|^{2}(P) \leq C_{3} \cdot \int_{Y\left(T_{2}\right)} \log ^{+}\left|f_{i}\right|^{2} \cdot \operatorname{dvol}_{g}
$$

Here we put $\log ^{+}(y):=\max \{0, \log y\}$, and C_{3} denotes a good constant.
The (1,1)-part of $F(h)$ is expressed as $\sum F_{i, j} \cdot d z_{i} \cdot d \bar{z}_{j}$. Due to Proposition 2.10, there exist good constants $C_{j}(j=4,5)$ such that the following inequality holds for any point $\left(z_{1}, \ldots, z_{n}\right) \in Y\left(T_{2}\right)$:

$$
\log \left|f_{1}\right|^{2}\left(z_{1}, \ldots, z_{n}\right) \leq C_{4} \cdot\left(\int_{\left|w_{1}\right|<T}\left|F_{1,1}\left(w_{1}, z_{2}, \ldots, z_{n}\right)\right|^{2} \cdot \sqrt{-1} d w_{1} \wedge d \bar{w}_{1}\right)^{1 / 2}+C_{5}
$$

Then the claim of Lemma 2.13 follows.

2.5. Norm Estimate for Tame Harmonic Bundle in Two Dimensional Case

2.5.1. Norm estimate. - We recall some results in [44]. We use bold symbols like \boldsymbol{a} to denote a tuple, and a_{i} denotes the i-th component of \boldsymbol{a}. We say $\boldsymbol{a} \leq \boldsymbol{b}$ for $\boldsymbol{a}, \boldsymbol{b} \in \boldsymbol{R}^{2}$ if $a_{i} \leq b_{i}$. We put $X:=\left\{\left(z_{1}, z_{2}\right) \in \boldsymbol{C}^{2}| | z_{i} \mid<1\right\}, D_{i}:=\left\{z_{i}=0\right\}$ and $D:=D_{1} \cup D_{2}$. Let $\left(E, \bar{\partial}_{E}, \theta, h\right)$ be a tame harmonic bundle on $X-D$. For each $\boldsymbol{c}=\left(c_{1}, c_{2}\right) \in \boldsymbol{R}^{2}$, we obtain the locally free sheaf ${ }_{c} E$ on X with parabolic structure ${ }^{i} F(i=1,2)$, as in Section 3.5. We also obtain the Higgs field θ of ${ }_{c} E_{*}$. The residue of θ induces the endomorphism $\operatorname{Gr}^{F} \operatorname{Res}_{i}(\theta) \in \operatorname{End}\left({ }^{i} \operatorname{Gr}^{F}\left(E_{\mid D_{i}}\right)\right)$ whose eigenvalues are constant on D_{i}. Thus, the nilpotent part \mathcal{N}_{i} of $\operatorname{Gr}^{F} \operatorname{Res}_{i}(\theta)$ is well defined. It is shown that the conjugacy classes of $\mathcal{N}_{i \mid P}$ are independent of $P \in D_{i}$. Let ${ }^{1} W$ denote the weight filtration of \mathcal{N}_{1} on ${ }^{1} \mathrm{Gr}^{F}\left(E_{\mid D_{1}}\right)$.

We have two filtrations ${ }^{i} F(i=1,2)$ on ${ }_{c} E_{\mid O}$. We put $\underline{\underline{2}} \operatorname{Gr}_{\boldsymbol{a}}^{F}:={ }^{2} \operatorname{Gr}_{a_{2}}^{F}{ }^{1} \operatorname{Gr}_{a_{1}}^{F}\left({ }_{c} E_{\mid O}\right)$. The maps \mathcal{N}_{i} induce the endomorphisms of ${ }^{2} \operatorname{Gr}_{a}^{F}$ which are denoted by ${ }^{2} \mathcal{N}_{i}$. Let ${ }^{2} W$ denote the weight filtration of $\underline{2}^{2} \mathcal{N}_{1}+{ }^{\underline{2}} \mathcal{N}_{2}$. We also have the filtration induced by ${ }^{1} W$, which is denoted by the same notation. We can take a decomposition ${ }_{c} E=$ $\bigoplus_{(\boldsymbol{a}, \boldsymbol{k}) \in \boldsymbol{R}^{2} \times \mathbb{Z}^{2}} U_{(\boldsymbol{a}, \boldsymbol{k})}$ satisfying the following conditions:
$-{ }^{i} F_{b}\left({ }_{c} E_{\mid D_{i}}\right)=\bigoplus_{a_{i} \leq b} U_{\boldsymbol{a}, \boldsymbol{k} \mid D_{i}}$ and ${ }^{1} F_{b_{1}}\left(\boldsymbol{c} E_{\mid O}\right) \cap{ }^{2} F_{b_{2}}\left(c E_{\mid O}\right)=\bigoplus_{\boldsymbol{a} \leq \boldsymbol{b}} U_{\boldsymbol{a}, \boldsymbol{k} \mid O}$

- We have ${ }^{1} W_{k}\left({ }^{1} \operatorname{Gr}_{b}^{F}\left({ }_{c} E_{\mid D_{1}}\right)\right)=\bigoplus_{a_{1}=b, k_{1} \leq k} U_{\boldsymbol{a}, \boldsymbol{k} \mid D_{1}}$ under the isomorphism ${ }^{1} \operatorname{Gr}_{b}^{F}\left({ }_{c} E_{\mid D_{1}}\right) \simeq \bigoplus_{a_{1}=b} U_{\boldsymbol{a}, \boldsymbol{k} \mid D_{1}}$.
- We have ${ }^{1} W_{k_{1}} \cap{ }^{2} W_{k_{2}}\left({ }^{2} \operatorname{Gr}_{\boldsymbol{a}}^{F}\left({ }_{c} E_{\mid O}\right)\right)=\bigoplus_{l \leq \boldsymbol{k}} U_{\boldsymbol{a}, \boldsymbol{l}}$ under the isomorphism ${ }^{2} \operatorname{Gr}_{\boldsymbol{a}}^{F}\left({ }_{c} E_{\mid O}\right) \simeq \bigoplus_{\boldsymbol{k}} U_{\boldsymbol{a}, \boldsymbol{l}}$.
We take a holomorphic frame $\boldsymbol{v}=\left(v_{1}, \ldots, v_{r}\right)$ which is compatible with the decomposition, i.e., for each v_{i} we have $\left(\boldsymbol{a}\left(v_{i}\right), \boldsymbol{k}\left(v_{i}\right)\right) \in \boldsymbol{R}^{2} \times \mathbb{Z}^{2}$ such that $v_{i} \in U_{\boldsymbol{a}\left(v_{i}\right), \boldsymbol{k}\left(v_{i}\right)}$. Let \widehat{h}_{1} be a hermitian metric of E given as follows:

$$
\widehat{h}_{1}\left(v_{i}, v_{j}\right)=\delta_{i, j} \cdot\left|z_{1}\right|^{-2 a_{1}\left(v_{i}\right)}\left|z_{2}\right|^{-2 a_{2}\left(v_{i}\right)}\left(-\log \left|z_{1}\right|\right)^{k_{1}\left(v_{i}\right)}\left(-\log \left|z_{2}\right|\right)^{k_{2}\left(v_{i}\right)-k_{1}\left(v_{i}\right)}
$$

We put $Z:=\left\{\left(z_{1}, z_{2}\right)| | z_{1}\left|<\left|z_{2}\right|\right\}\right.$.
Lemma 2.14. - h and \widehat{h}_{1} are mutually bounded on Z.
2.5.2. Some estimate for related metrics. - We put $\widetilde{X}:=\left\{\left(\zeta_{1}, \zeta_{2}\right)| | \zeta_{i} \mid<1\right\}$, $\widetilde{D}_{i}:=\left\{\zeta_{i}=0\right\}$ and $\widetilde{D}:=\widetilde{D}_{1} \cup \widetilde{D}_{2}$. Let $\pi: \widetilde{X}-\widetilde{D} \longrightarrow X-D$ denote the map given by $\pi\left(\zeta_{1}, \zeta_{2}\right)=\left(\zeta_{1} \zeta_{2}, \zeta_{2}\right)$. Then, we have $\pi^{-1}(Z)=\widetilde{X}-\widetilde{D}$. Hence Lemma 2.14 is reworded as $\pi^{*} h$ and $\pi^{*} \widehat{h}_{1}$ are mutually bounded.

We give a preparation for later use. We put $\widetilde{E}:=\pi^{*} E$. For $\boldsymbol{a}=\left(a_{1}, a_{2}\right) \in \boldsymbol{R}^{2}$, we put $\widetilde{\boldsymbol{a}}:=\left(a_{1}, a_{1}+a_{2}\right)$. Then, we put $\pi^{*} U_{\boldsymbol{a}, \boldsymbol{k}}=: \widetilde{U}_{\widetilde{\boldsymbol{a}}, \boldsymbol{k}}$. We put $\widetilde{\boldsymbol{v}}:=\pi^{*} \boldsymbol{v}$. We put $\widetilde{a}_{1}\left(\widetilde{v}_{i}\right):=a_{1}\left(v_{i}\right), \widetilde{a}_{2}\left(\widetilde{v}_{i}\right)=a_{1}\left(v_{i}\right)+a_{2}\left(v_{i}\right), k_{j}\left(\widetilde{v}_{i}\right):=k_{j}\left(v_{i}\right)$. Then, \widetilde{v}_{i} is a section of $\widetilde{U}_{\widetilde{\boldsymbol{a}}}\left(\widetilde{v}_{i}\right), \boldsymbol{k}\left(\widetilde{v}_{i}\right)$.

Let χ be a non-negative valued function on \boldsymbol{R} such that $\chi(t)=1(t \leq 1 / 2)$ and $\chi(t)=0(t \geq 2 / 3)$. Let $\rho(\zeta): \boldsymbol{C}^{*} \longrightarrow \boldsymbol{R}$ be the function given by $\rho(\zeta)=$ $-\chi(|\zeta|) \cdot \log |\zeta|^{2}$. Then, we will use the following metrics later (Section 5.2)

$$
\begin{gathered}
h_{0}\left(\widetilde{v}_{i}, \widetilde{v}_{j}\right):=\delta_{i, j} \cdot \prod_{k}\left|\zeta_{k}\right|^{-2 a_{k}\left(v_{i}\right)} \\
h_{1}\left(\widetilde{v}_{i}, \widetilde{v}_{j}\right):=h_{0}\left(\widetilde{v}_{i}, \widetilde{v}_{j}\right) \cdot\left(1+\rho\left(\zeta_{1}\right)+\rho\left(\zeta_{2}\right)\right)^{k_{1}\left(\widetilde{v}_{i}\right)} \cdot\left(1+\rho\left(\zeta_{2}\right)\right)^{k_{2}\left(\widetilde{v}_{i}\right)-k_{1}\left(\widetilde{v}_{i}\right)}
\end{gathered}
$$

Then, h_{1} and $\pi^{*} h$ are mutually bounded. The curvature $R\left(h_{0}\right)$ is 0 . Let $\widetilde{\omega}$ denote the Poincaré metric of $\widetilde{X}-\widetilde{D}$:

$$
\widetilde{\omega}=\sum_{i=1,2} \frac{d \zeta_{i} \cdot d \bar{\zeta}_{i}}{\left|\zeta_{i}\right|^{2}\left(-\log \left|\zeta_{i}\right|^{2}\right)^{2}}
$$

Lemma 2.15. - $R\left(h_{1}\right)$ and $\partial_{h_{1}}-\partial_{h_{0}}$ are bounded with respect to $\left(\widetilde{\omega}, h_{i}\right)(i=0,1)$.
Proof. - $\partial \log \left(1+\rho\left(\zeta_{2}\right)\right), \partial \bar{\partial} \log \left(1+\rho\left(\zeta_{2}\right)\right), \partial \log \left(1+\rho\left(\zeta_{1}\right)+\rho\left(\zeta_{2}\right)\right)$ and $\partial \bar{\partial} \log (1+$ $\left.\rho\left(\zeta_{1}\right)+\rho\left(\zeta_{2}\right)\right)$ are bounded with respect to $\widetilde{\omega}$. Then, the boundedness of $R\left(h_{1}\right)$ and $\partial_{h_{1}}-\partial_{h_{0}}$ follow.

2.6. Preliminary from Elementary Calculus

Take $\epsilon>0$ and $N>1$. In this section, we use the following volume form $\mathrm{dvol}_{\epsilon, N}$ of a punctured disc Δ^{*} :

$$
\operatorname{dvol}_{\epsilon, N}:=\left(\epsilon^{N+2} \cdot|z|^{2 \epsilon}+|z|^{2}\right)^{-1} \frac{\sqrt{-1} d z \wedge d \bar{z}}{|z|^{2}}
$$

Let f be a function on a punctured disc Δ^{*} such that $\|f\|_{L^{2}}^{2}:=\int_{\Delta^{*}}|f|^{2} \cdot \operatorname{dvol}_{\epsilon, N}<\infty$. We use the polar coordinate $z=r \cdot e^{\sqrt{-1} \theta}$. For the decomposition $f=\sum f_{n}(r) \cdot e^{\sqrt{-1} n \theta}$, we have $\|f\|_{L^{2}}^{2}=2 \pi \sum_{n}\left\|f_{n}\right\|_{L^{2}}^{2}$, where $\left\|f_{n}\right\|_{L^{2}}^{2}$ are given as follows:

$$
\left\|f_{n}\right\|_{L^{2}}^{2}:=\int_{0}^{1}\left|f_{n}(\rho)\right|^{2} \cdot\left(\epsilon^{N+2} \rho^{2 \epsilon}+\rho^{2}\right)^{-1} \frac{d \rho}{\rho}
$$

Proposition 2.16. - Let f be as above. Then we have a function v satisfying the following:

$$
\bar{\partial} \partial v=f \cdot \frac{d \bar{z} \wedge d z}{|z|^{2}}, \quad|v(z)| \leq C \cdot\left(|z|^{\epsilon} \epsilon^{(N-1) / 2}+|z|^{1 / 2}\right) \cdot\|f\|_{L^{2}} .
$$

The constant C can be independent of ϵ, N and f.
Proof. - We use the argument of S. Zucker in [66]. First let us consider the equation $\bar{\partial} u=f \cdot d \bar{z} / \bar{z}$. For the decomposition $u=\sum u_{n}(\rho) \cdot e^{\sqrt{-1} n \theta}$, it is equivalent to the following equations:

$$
\frac{1}{2}\left(r \frac{\partial}{\partial r} u_{n}-n \cdot u_{n}\right)=f_{n}, \quad(n \in \mathbb{Z})
$$

We put as follows:

$$
u_{n}:= \begin{cases}2 r^{n} \int_{0}^{r} \rho^{-n-1} f_{n}(\rho) \cdot d \rho & (n \leq 0) \\ 2 r^{n} \int_{A}^{r} \rho^{-n-1} f_{n}(\rho) \cdot d \rho & (n>0)\end{cases}
$$

Then $u=\sum u_{n} \cdot e^{\sqrt{-1} n \theta}$ satisfies the equation $\bar{\partial} u=f \cdot d \bar{z} / \bar{z}$.
Lemma 2.17. - There exists $C_{1}>0$ such that

$$
\left|u_{n}(r)\right| \leq C_{1} \cdot\left\|f_{n}\right\|_{L^{2}} \cdot\left(\frac{\epsilon^{(N+2) / 2} \cdot r^{\epsilon}}{|2 \epsilon-2 n|^{1 / 2}}+\frac{r^{1 / 2}}{(1+|n|)^{1 / 2}}\right) .
$$

The constant C_{1} is independent of n, ϵ, N and f.
Proof. - In the case $n \leq 0$, we have the following:

$$
\begin{align*}
\left|u_{n}(r)\right| \leq 2 r^{n}\left(\int _ { 0 } ^ { r } | f _ { n } (\rho) | ^ { 2 } \left(\epsilon^{N+2} \rho^{2 \epsilon}+\right.\right. & \left.\left.\rho^{2}\right)^{-1} \frac{d \rho}{\rho}\right)^{1 / 2} \tag{5}\\
& \times\left(\int_{0}^{r} \rho^{-2 n-1}\left(\epsilon^{N+2} \rho^{2 \epsilon}+\rho^{2}\right) \cdot d \rho\right)^{1 / 2}
\end{align*}
$$

We have the following:

$$
\int_{0}^{r} \rho^{-2 n-1}\left(\epsilon^{N+2} \rho^{2 \epsilon}+\rho^{2}\right) d \rho=\frac{\epsilon^{N+2} \cdot r^{2 \epsilon-2 n}}{2 \epsilon-2 n}+\frac{r^{-2 n+2}}{-2 n+2}
$$

Hence we obtain the following:

$$
\left|u_{n}(r)\right| \leq 2\left\|f_{n}\right\|_{L^{2}} \cdot\left(\frac{\epsilon^{(N+2) / 2} \cdot r^{\epsilon}}{|2 \epsilon-2 n|^{1 / 2}}+\frac{r}{|2-2 n|^{1 / 2}}\right) .
$$

In the case $n>0$, we also have the following:

$$
\left|u_{n}(r)\right| \leq 2 r^{n} \cdot\left\|f_{n}\right\|_{L^{2}}\left|\int_{A}^{r} \rho^{-2 n-1}\left(\epsilon^{N+2} \rho^{2 \epsilon}+\rho^{2}\right) d \rho\right|^{1 / 2}
$$

We have the following:

$$
\left|\int_{A}^{r} \rho^{-2 n-1} \epsilon^{N+2} \cdot \rho^{2 \epsilon} \cdot d \rho\right| \leq \frac{\epsilon^{N+2}}{|-2 n+2 \epsilon|} r^{-2 n+2 \epsilon} .
$$

We also have the following:

$$
\int_{A}^{r} \rho^{-2 n+1} d \rho= \begin{cases}\log r-\log A & (n=1) \\ (-2 n+2)^{-1}\left(r^{-2 n+2}-A^{-2 n+2}\right) & (n \geq 2)\end{cases}
$$

Therefore we obtain the following:

$$
\left|u_{n}(r)\right| \leq C \cdot\left\|f_{n}\right\|_{L^{2}}\left(\frac{\epsilon^{(N+2) / 2} \cdot r^{\epsilon}}{|2 \epsilon-2 n|^{1 / 2}}+\frac{r^{1 / 2}}{(1+|n|)^{1 / 2}}\right)
$$

Thus we are done.

Then let us consider the equation $\partial v=u \cdot d z / z$. For the decomposition $v=$ $\sum v_{n} \cdot e^{\sqrt{-1} n \theta}$, it is equivalent to the following equations:

$$
\frac{1}{2}\left(r \frac{\partial v_{n}}{\partial r}+n \cdot v_{n}\right)=u_{n}, \quad(n \in \mathbb{Z})
$$

We put as follows:

$$
v_{n}(r):= \begin{cases}2 r^{-n} \cdot \int_{0}^{r} \rho^{n-1} u_{n}(\rho) \cdot d \rho & (n \geq 0) \\ 2 r^{-n} \cdot \int_{A}^{r} \rho^{n-1} u_{n}(\rho) \cdot d \rho & (n<0)\end{cases}
$$

Then we have $\partial v=u \cdot d z / z$ for $v:=\sum v_{n} \cdot e^{\sqrt{-1} n \theta}$. From Lemma 2.17, we obtain the following in the case $n>0$:
(6) $\left|v_{n}(r)\right| \leq 2 r^{-n} \int_{0}^{r} \rho^{n-1}\left(\frac{\epsilon^{(N+1) / 2} \cdot \rho^{\epsilon}}{|2 \epsilon-2 n|^{1 / 2}}+\frac{\rho^{1 / 2}}{(1+|n|)^{1 / 2}}\right) d \rho \cdot\left\|f_{n}\right\|_{L^{2}}$

$$
\leq C_{2} \cdot\left\|f_{n}\right\|_{L^{2}} \cdot\left(\frac{\epsilon^{(N+2) / 2}}{|2 \epsilon-2 n|^{1 / 2}} \frac{r^{\epsilon}}{|n+\epsilon|}+\frac{1}{(1+|n|)^{1 / 2}} \frac{r^{1 / 2}}{n+1 / 2}\right)
$$

We have a similar estimate in the case $n<0$. Hence we obtain the following:

$$
|v(z)| \leq \sum_{n}\left|v_{n}(r)\right| \leq C_{4} \cdot\left(\epsilon^{(N-1) / 2} r^{\epsilon}+r^{1 / 2}\right) \cdot\|f\|_{L^{2}}
$$

Thus the proof of Proposition 2.16 is finished.

2.7. Reflexive Sheaf

We recall some general facts about reflexive sheaves. See [21] and [41] for some more properties of reflexive sheaves. Let X be a complex manifold. Recall that a coherent \mathcal{O}_{X}-module \mathcal{E} is called reflexive, if \mathcal{E} is isomorphic to the double dual $\mathcal{E}^{\vee \vee}:=\mathcal{H o m}\left(\mathcal{H o m}\left(\mathcal{E}, \mathcal{O}_{X}\right), \mathcal{O}_{X}\right)$ of \mathcal{E}. Recall we can take a resolution locally on X (Lemma 3.1 of [41]):

$$
\begin{equation*}
0 \longrightarrow \mathcal{E} \longrightarrow \mathcal{V}_{0} \longrightarrow \mathcal{V}_{1} \longrightarrow 0 \tag{7}
\end{equation*}
$$

Here \mathcal{V}_{0} is locally free and \mathcal{V}_{1} is torsion-free. The following Hartogs type theorem is well known.

Lemma 2.18. - Let Z be a closed subset of X whose codimension is larger than 2. Let f be a section of a reflexive sheaf \mathcal{E} on $X \backslash Z$. Then f is naturally extended to the section of \mathcal{E} over X.

Proof. - We have only to check the claim locally. Let us take a resolution (7), and then f induces the section of \tilde{f} of \mathcal{V}_{0} on $X-Z$. Due to the Hartogs' theorem, \widetilde{f} can be extended to the section on X. Since it is mapped to 0 in \mathcal{V}_{1}, we obtain the section of \mathcal{E} on X.

The converse is also true.

Lemma 2.19. - Let \mathcal{F} be a torsion-free coherent sheaf on X such that any section f of \mathcal{F} on $U-Z$ is extended to the section on U, where U denotes an open subset and Z denotes a closed subset with $\operatorname{codim} Z \geq 2$. Then \mathcal{F} is reflexive.

Proof. - We have the inclusion $\iota: \mathcal{F} \longrightarrow \mathcal{F}^{\vee \vee}$, which is isomorphic outside of the subset $Z_{0} \subset X$ with $\operatorname{codim}\left(Z_{0}\right) \geq 2$. Then, we obtain the surjectivity of ι from the given property of \mathcal{F}, and thus ι is isomorphic.

Lemma 2.20. - If \mathcal{E} is reflexive, $\mathcal{E} \otimes \mathcal{O}_{D}$ is torsion-free for a divisor D.
Proof. - Take a resolution as in (7). Because of $\operatorname{Tor}^{1}\left(\mathcal{V}_{1}, \mathcal{O}_{D}\right)=0$, we obtain the injection $\mathcal{E} \otimes \mathcal{O}_{D} \longrightarrow \mathcal{V}_{0} \otimes \mathcal{O}_{D}$, and hence $\mathcal{E} \otimes \mathcal{O}_{D}$ is torsion-free.

Lemma 2.21. - If \mathcal{E} is a reflexive sheaf, $\mathcal{H o m}(\mathcal{F}, \mathcal{E})$ is also reflexive for any coherent sheaf \mathcal{F}.

Proof. - Let us check the condition in Lemma 2.19. Let U be a small open subset, on which we have a resolution $\mathcal{V}_{-1} \xrightarrow{a} \mathcal{O}_{U}^{\oplus r} \xrightarrow{b} \mathcal{F} \longrightarrow 0$ on U. Let f be a homomorphism $\mathcal{F} \longrightarrow \mathcal{E}$ on $U \backslash Z$, where $\operatorname{codim} Z \geq 2$. The morphism $\mathcal{O}_{U}^{\oplus r} \longrightarrow \mathcal{E}$ is naturally induced on $U \backslash Z$, which is naturally extended to the morphism $\varphi: \mathcal{O}_{U}^{\oplus r} \longrightarrow \mathcal{E}$ on U by the Hartogs property. Since $\varphi \circ a$ is $0, \varphi$ induces the extension of f.

2.8. Moduli Spaces of Representations

Let Γ be a finitely presented group, and V be a finite dimensional vector space over \boldsymbol{C}. For $a, f \in \operatorname{GL}(V)$, we put $\operatorname{ad}(a)(f):=a \circ f \circ a^{-1}$. The space of homomorphisms $R(\Gamma, V):=\operatorname{Hom}(\Gamma, \operatorname{GL}(V))$ is naturally an affine variety over \boldsymbol{C}. We regard it as a Hausdorff topological space with the usual topology, not the Zariski topology. We have the natural action of $\mathrm{GL}(V)$ on $R(\Gamma, V)$ given by ad. Let h_{V} be a hermitian metric of V, and let $U\left(h_{V}\right)$ denote the unitary group of V with respect to h_{V}. The usual quotient space $R(\Gamma, V) / U\left(h_{V}\right)$ is denoted by $M\left(\Gamma, V, h_{V}\right)$. Let $\pi_{\mathrm{GL}(V)}$ denote the projection $R(\Gamma, V) \longrightarrow M\left(\Gamma, V, h_{V}\right)$.

More generally, we consider the moduli space of representations to a complex reductive subgroup G of $\mathrm{GL}(V)$. We put $R(\Gamma, G):=\operatorname{Hom}(\Gamma, G)$, which we regard as a Hausdorff topological space with the usual topology. It is the closed subspace of $R(\Gamma, V)$.

Let K be a maximal compact subgroup of G. Assume that the hermitian metric h_{V} of V is K-invariant. We put $N_{G}\left(h_{V}\right):=\left\{u \in U\left(h_{V}\right) \mid \operatorname{ad}(u)(G)=G\right\}$ which is compact. We have the natural adjoint action of $N_{G}\left(h_{V}\right)$ on G, which induces the action on $R(\Gamma, G)$. The usual quotient space is denoted by $M\left(\Gamma, G, h_{V}\right)$. Let π_{G} denote the projection $R(\Gamma, G) \longrightarrow M\left(\Gamma, G, h_{V}\right)$. We have the naturally defined map $\Phi: M\left(\Gamma, G, h_{V}\right) \longrightarrow M\left(\Gamma, V, h_{V}\right)$. The map Φ is clearly proper in the sense that the inverse image of any compact subset via Φ is also compact.

A representation $\rho \in R(\Gamma, G)$ is called Zariski dense, if the image of ρ is Zariski dense in G. Let \mathcal{U} be the subset of $R(\Gamma, G)$, which consists of Zariski dense representations. Then the restriction of Φ to \mathcal{U} is injective.

Let ρ and ρ^{\prime} be elements of $R(\Gamma, G)$. We say that ρ and ρ^{\prime} are isomorphic in G, if there is an element $g \in G$ such that $\operatorname{ad}(g) \circ \rho=\rho^{\prime}$. We say ρ^{\prime} is a deformation of ρ in G, if there is a continuous family of representations $\rho_{t}:[0,1] \times \Gamma \longrightarrow G$ such that $\rho_{0}=\rho$ and $\rho_{1}=\rho^{\prime}$. We say ρ^{\prime} is a deformation of ρ in G modulo $N_{G}\left(h_{V}\right)$, if there is an element $u \in N_{G}\left(h_{V}\right)$ such that ρ can be deformed to $\operatorname{ad}(u) \circ \rho^{\prime}$ in G. The two notions are different if $N_{G}\left(h_{V}\right)$ is not connected, in general. We also remark that ρ can be deformed to ρ^{\prime} in G modulo $N_{G}\left(h_{V}\right)$, if and only if $\pi_{G}(\rho)$ and $\pi_{G}\left(\rho^{\prime}\right)$ are contained in the same connected component of $M\left(\Gamma, G, h_{V}\right)$.

We recall some deformation invariance from [55]. A representation $\rho \in R(\Gamma, G)$ is called rigid, if the orbit $G \cdot \rho$ is open in $R(\Gamma, G)$.

Lemma 2.22. - Let $\rho \in R(\Gamma, G)$ be a rigid and Zariski dense representation. Then any deformation ρ^{\prime} of ρ in G is isomorphic to ρ in G.

Proof. - If ρ is Zariski dense, then $G \cdot \rho$ is closed in $R(\Gamma, G)$. Hence it is a connected component.

CHAPTER 3

PARABOLIC HIGGS BUNDLE AND REGULAR FILTERED HIGGS BUNDLE

We recall the notion of parabolic structure, and then we give some detail about the characteristic numbers for parabolic sheaves. In Section 3.3, a perturbation of the filtration is given, which will be useful in our later argument.

3.1. Parabolic Higgs Bundle

3.1.1. c-Parabolic Higgs sheaf. - Let us recall the notion of parabolic structure and the Chern characteristic numbers of parabolic bundles following [35], [39], [51], [52], [62] and [65]. Our convention is slightly different from theirs.

Let X be a connected complex manifold and D be a simple normal crossing divisor with the irreducible decomposition $D=\bigcup_{i \in S} D_{i}$. Let $\boldsymbol{c}=\left(c_{i} \mid i \in S\right)$ be an element of \boldsymbol{R}^{S}. Let \mathcal{E} be a torsion-free coherent \mathcal{O}_{X}-module. Let us consider a collection of the increasing filtrations ${ }^{i} \mathcal{F}(i \in S)$ indexed by $\left.] c_{i}-1, c_{i}\right]$ such that (i) ${ }^{i} \mathcal{F}_{a}(\mathcal{E}) \supset \mathcal{E}\left(-D_{i}\right)$ for any $\left.a \in] c_{i}-1, c_{i}\right]$, (ii) ${ }^{i} \mathcal{F}_{a}(\mathcal{E})=\bigcap_{a<b}{ }^{i} \mathcal{F}_{b}(\mathcal{E})$. We put ${ }^{i} \operatorname{Gr}_{a}^{\mathcal{F}} \mathcal{E}:={ }^{i} \mathcal{F}_{a}(\mathcal{E}) /{ }^{i} \mathcal{F}_{<a}(\mathcal{E})$. We assume that the sets $\left\{\left.a\right|^{i} \operatorname{Gr}_{a}^{\mathcal{F}} \mathcal{E} \neq 0\right\}$ are finite for any i. Such tuples of filtrations are called the \boldsymbol{c}-parabolic structure of \mathcal{E} at D, and the tuple $\left(\mathcal{E},\left\{{ }^{i} \mathcal{F} \mid i \in S\right\}\right)$ is called a \boldsymbol{c}-parabolic sheaf on (X, D). We will sometimes omit to denote \boldsymbol{c}. We say $\left(\mathcal{E},\left\{^{i} \mathcal{F} \mid i \in S\right\}\right)$ is reflexive, if \mathcal{E} is reflexive. (See [21] and [41] for reflexive sheaves. See also Section 2.7.)

Definition 3.1. - For a reflexive \boldsymbol{c}-parabolic sheaf $\left(\mathcal{E},\left\{^{i} \mathcal{F} \mid i \in S\right\}\right)$, we say that the parabolic structure is saturated, if $\mathcal{E} /{ }^{i} \mathcal{F}_{a}$ are torsion-free $\mathcal{O}_{D_{i}}$-modules for any i and a.

We remark that each ${ }^{i} \mathcal{F}_{a}$ are also reflexive. To see it, let us see the inclusion ${ }^{i} \mathcal{F}_{a} \longrightarrow{ }^{i} \mathcal{F}_{a}^{\vee \vee}$. Since \mathcal{E} is reflexive, the inclusion ${ }^{i} \mathcal{F}_{a} \longrightarrow \mathcal{E}$ is extended to the injection ${ }^{i} \mathcal{F}_{a}^{\vee \vee} \longrightarrow \mathcal{E}$. (See the proof of Lemma 2.21.) Hence we obtain the inclusion ${ }^{i} \mathcal{F}_{a}^{\vee \vee} /{ }^{i} \mathcal{F}_{a} \longrightarrow \mathcal{E} /{ }^{i} \mathcal{F}_{a}$. The codimension of the support of ${ }^{i} \mathcal{F}_{a}^{\vee \vee} /{ }^{i} \mathcal{F}_{a}$ is larger than 2 , and $\mathcal{E} /{ }^{i} \mathcal{F}_{a}$ is torsion-free as an $\mathcal{O}_{D_{i}}$-module. Hence we obtain ${ }^{i} \mathcal{F}_{a}^{\vee \vee} /{ }^{i} \mathcal{F}_{a}=0$

We will use the notation \mathcal{E}_{*} instead of $\left(\mathcal{E},\left\{{ }^{i} \mathcal{F}\right\}\right)$ for simplicity. When we emphasize \boldsymbol{c}, we will often use the notation ${ }_{c} \mathcal{E}$ and ${ }_{c} \mathcal{E}_{*}$ instead of \mathcal{E} and \mathcal{E}_{*}. In the case $\boldsymbol{c}=$ $(0, \ldots, 0)$, the notation ${ }^{\diamond} \mathcal{E}_{*}$ is used. We will also use the following notation.

$$
\begin{equation*}
\mathcal{P a r}\left(\mathcal{E}_{*}, i\right):=\left\{\left.a\right|^{i} \operatorname{Gr}_{a}^{\mathcal{F}}(\mathcal{E}) \neq 0\right\}, \quad \mathcal{P a r}{ }^{\prime}\left(\mathcal{E}_{*}, i\right):=\mathcal{P a r}\left(\mathcal{E}_{*}, i\right) \cup\left\{c_{i}, c_{i}-1\right\} \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{gap}\left(\mathcal{E}_{*}, i\right):=\min \left\{|a-b| \mid a, b \in \mathcal{P} \operatorname{ar}^{\prime}\left(\mathcal{E}_{*}, i\right), a \neq b\right\}, \quad \operatorname{gap}\left(\mathcal{E}_{*}\right):=\min _{i \in S} \operatorname{gap}\left(\mathcal{E}_{*}, i\right) \tag{9}
\end{equation*}
$$

Let us recall a Higgs field ([65]) of a \boldsymbol{c}-parabolic sheaf on (X, D). A holomorphic homomorphism $\theta: \mathcal{E} \longrightarrow \mathcal{E} \otimes \Omega_{X}^{1,0}(\log D)$ is called a Higgs field of \mathcal{E}_{*}, if the following holds:

- The naturally defined composite $\theta^{2}=\theta \wedge \theta: \mathcal{E} \longrightarrow \mathcal{E} \otimes \Omega_{X}^{2,0}(\log D)$ vanishes.
$-\theta\left({ }^{i} \mathcal{F}_{a}\right) \subset{ }^{i} \mathcal{F}_{a} \otimes \Omega_{X}^{1,0}(\log D)$
Such a tuple $\left(\mathcal{E}_{*}, \theta\right)$ is called a \boldsymbol{c}-parabolic Higgs sheaf on (X, D).
A c-parabolic Higgs sheaf $\left(\mathcal{E}_{*}, \theta\right)$ on (X, D) is called reflexive and saturated, if the underlying \boldsymbol{c}-parabolic sheaf is reflexive and saturated. A morphism between \boldsymbol{c} parabolic Higgs sheaves is defined to be a morphism of the underlying sheaf which is compatible with the parabolic structures and the Higgs fields.

Lemma 3.2. - Let $\left(\mathcal{E}_{*}, \theta\right)$ be any c-parabolic Higgs sheaf on (X, D). Then there exists the reflexive saturated parabolic Higgs sheaf $\left(\mathcal{E}_{*}^{\prime}, \theta^{\prime}\right)$, such that we have the morphism $\left(\mathcal{E}_{*}, \theta\right) \longrightarrow\left(\mathcal{E}_{*}^{\prime}, \theta^{\prime}\right)$ which is isomorphic in codimension one, i.e. isomorphic outside of the subset with codimension two. Such $\left(\mathcal{E}_{*}^{\prime}, \theta^{\prime}\right)$ is unique up to the canonical isomorphism.

Proof. - Let \mathcal{E}^{\prime} denote the double dual of \mathcal{E}. We have the canonical morphism $\mathcal{E} \longrightarrow \mathcal{E}^{\prime}$ which is isomorphic outside of the subset Z of codimension two. Let ${ }^{i} \mathcal{F}_{a}^{1}$ denote the subsheaf of \mathcal{E}^{\prime} which consists of the sections f of \mathcal{E}^{\prime} such that $f_{\mid X-Z} \in{ }^{i} \mathcal{F}_{a}$. Such a subsheaf is coherent $([\mathbf{6 0}])$. We have $\mathcal{E}^{\prime}\left(-D_{i}\right) \subset{ }^{i} \mathcal{F}_{a}^{1}$ for any $\left.\left.a \in\right] c_{i}-1, c_{i}\right]$. We have the natural surjection $\pi_{i, a}: \mathcal{E}^{\prime} \longrightarrow \mathcal{E}^{\prime} /^{i} \mathcal{F}_{a}^{1}$, and the target is the $\mathcal{O}_{D_{i}}$-module. Let $T_{i, a}$ denote the torsion part of $\mathcal{E}^{\prime} /{ }^{i} \mathcal{F}_{a}^{1}$ as an $\mathcal{O}_{D_{i}}$-module, and we put ${ }^{i} \mathcal{F}_{a}^{\prime}:=\pi_{i, a}^{-1}\left(T_{i, a}\right)$. Then, it is easy to see that $\left\{{ }^{i} \mathcal{F}^{\prime} \mid i \in S\right\}$ gives the saturated \boldsymbol{c}-parabolic structure of \mathcal{E}^{\prime}. The Higgs field θ naturally induces the morphism $\mathcal{E} \longrightarrow \mathcal{E}^{\prime} \otimes \Omega_{X}^{1,0}(\log D)$. Due to the reflexivity of \mathcal{E}^{\prime}, we obtain $\theta^{\prime}: \mathcal{E}^{\prime} \longrightarrow \mathcal{E}^{\prime} \otimes \Omega_{X}^{1,0}(\log D)$ satisfying $\theta^{2}=0$. It is easy to check $\theta\left({ }^{i} \mathcal{F}_{a}^{\prime}\right) \subset{ }^{i} \mathcal{F}_{a}^{\prime} \otimes \Omega_{X}^{1,0}(\log D)$. The uniqueness is clear.

For a \boldsymbol{c}-parabolic Higgs sheaves $\left(\mathcal{E}_{i *}, \theta_{i}\right)(i=1,2)$ on (X, D), we obtain the sheaf of the morphisms $\mathcal{H o m}\left(\left(\mathcal{E}_{1 *}, \theta_{1}\right),\left(\mathcal{E}_{2 *}, \theta_{2}\right)\right)$.

Lemma 3.3. - If $\left(\mathcal{E}_{2 *}, \theta_{2}\right)$ is reflexive and saturated, $\mathcal{H o m}\left(\left(\mathcal{E}_{1 *}, \theta_{1}\right),\left(\mathcal{E}_{2 *}, \theta_{2}\right)\right)$ is reflexive.

Proof. - We have only to check the condition in Lemma 2.19. Let f be a section of $\mathcal{H o m}\left(\left(\mathcal{E}_{1 *}, \theta_{1}\right),\left(\mathcal{E}_{2 *}, \theta_{2}\right)\right)$ on $U \backslash Z$, where U denotes an open subset and Z denotes
a closed subset with $\operatorname{codim}(Z) \geq 2$. Since \mathcal{E}_{2} is reflexive, it is extended to the homomorphism $\tilde{f}: \mathcal{E}_{1} \longrightarrow \mathcal{E}_{2}$ on U, which is compatible with θ_{i}. We have the induced map $\varphi:{ }^{i} \mathcal{F}\left(\mathcal{E}_{1}\right) \longrightarrow \mathcal{E}_{2} /{ }^{i} \mathcal{F}\left(\mathcal{E}_{2}\right)$. The codimension of the support of $\operatorname{Im}(\varphi)$ is larger than 2 , and $\mathcal{E}_{2} /^{i} \mathcal{F}\left(\mathcal{E}_{2}\right)$ is a torsion-free $\mathcal{O}_{D_{i}}$-module. Hence, we obtain $\operatorname{Im}(\varphi)=0$, i.e., \widetilde{f} preserves the filtration.

Assume X is projective. Let Y be a sufficiently ample and generic hypersurface of X. We put $D_{Y}:=D \cap Y$, which is assumed to be a simple normal crossing divisor of Y. Let $\left(\mathcal{E}_{i * \mid Y}, \theta_{i Y}\right)$ denote the induced parabolic Higgs sheaf on $\left(Y, D_{Y}\right)$ by $\left(\mathcal{E}_{i *}, \theta_{i}\right)$. If $\mathcal{E}_{i *}$ is reflexive and saturated, so is $\mathcal{E}_{i * \mid Y}$. (See Corollary 3.1.1 of [41].)
Lemma 3.4. - Assume $\operatorname{dim} X \geq 2$ and that $\mathcal{E}_{2 *}$ is saturated and reflexive. For any morphism $f:\left(\mathcal{E}_{1 * \mid Y}, \theta_{1 Y}\right) \longrightarrow\left(\mathcal{E}_{2 * \mid Y}, \theta_{2 Y}\right)$, we have $F:\left(\mathcal{E}_{1 *}, \theta_{1}\right) \longrightarrow\left(\mathcal{E}_{2 *}, \theta_{2}\right)$ which induces f.

Proof. - Let $\theta_{i \mid Y}: \mathcal{E}_{i * \mid Y} \longrightarrow \mathcal{E}_{i * \mid Y} \otimes \Omega_{X}^{1,0}(\log D)_{\mid Y}$ denote the restriction of θ_{i} to Y. We have the induced morphism $G: f \circ \theta_{1 \mid Y}-\theta_{2 \mid Y} \circ f: \mathcal{E}_{1 * \mid Y} \longrightarrow \mathcal{E}_{2 * \mid Y} \otimes$ $\Omega_{X}^{1,0}(\log D)_{\mid Y}$. Because of $f \circ \theta_{1 Y}-\theta_{2 Y} \circ f=0$ in $\mathcal{H o m}\left(\mathcal{E}_{1 * \mid Y}, \mathcal{E}_{2 * \mid Y}\right) \otimes \Omega_{Y}^{1,0}\left(\log D_{Y}\right)$, G induces the map $\mathcal{E}_{1 * \mid Y} \longrightarrow \mathcal{E}_{2 * \mid Y} \otimes \mathcal{O}(-Y)_{\mid Y}$. We regard it as the section of $\mathcal{J}:=\mathcal{H o m}\left(\mathcal{E}_{1 *}, \mathcal{E}_{2 *}\right) \otimes \mathcal{O}(-Y)_{\mid Y}$. Since $\mathcal{G}:=\mathcal{H o m}\left(\mathcal{E}_{1 *}, \mathcal{E}_{2 *}\right)$ is reflexive, we have $H^{i}(X, \mathcal{G} \otimes \mathcal{O}(-Y))=0(i=0,1)$, if Y is sufficiently ample. (See the proof of Proposition 3.2 in [41].) Hence, we have $H^{0}(Y, \mathcal{J})=0$, i.e., $G=0$. Then, the claim of the lemma follows from Generalized Enriques Severi Lemma (Proposition 3.2 in [41]) and Lemma 3.3.

Remark 3.5. - We also have the parallel notion of \boldsymbol{c}-parabolic sheaves on smooth varieties with simple normal crossing divisors over a field k.

Remark 3.6. - Sometimes, it will be convenient to consider filtrations ${ }^{i} \mathcal{F}$ such that $S\left({ }^{i} \mathcal{F}\right)=\left\{a \in \boldsymbol{R} \mid{ }^{i} \operatorname{Gr}_{a}^{\mathcal{F}}(\mathcal{E}) \neq 0\right\}$ is not contained in an interval $\left.] c_{i}-1, c_{i}\right]$ for some c_{i}. In that case, we will call $\left\{{ }^{i} \mathcal{F} \mid i \in S\right\}$ a generalized parabolic structure. Higgs field is also defined as in the standard case, i.e., a holomorphic map $\theta: \mathcal{E} \longrightarrow \mathcal{E} \otimes \Omega_{X}^{1,0}(\log D)$ such that $\theta^{2}=0$ and $\theta\left({ }^{i} \mathcal{F}_{a}\right) \subset{ }^{i} \mathcal{F}_{a} \otimes \Omega_{X}^{1,0}(\log D)$.
3.1.2. The parabolic first Chern class and the degree. - For a \boldsymbol{c}-parabolic sheaf \mathcal{E}_{*} on (X, D), we put as follows:

$$
\mathrm{wt}\left(\mathcal{E}_{*}, i\right):=\sum_{\left.a \in] c_{i}-1, c_{i}\right]} a \cdot \operatorname{rank}_{D_{i}}{ }^{i} \operatorname{Gr}_{a}^{\mathcal{F}}(\mathcal{E})
$$

Here $\operatorname{rank}_{D_{i}}{ }^{i} \operatorname{Gr}_{a}^{\mathcal{F}}(\mathcal{E})$ denotes the rank as an $\mathcal{O}_{D_{i}}$-module. In the following, we will often denote it by $\operatorname{rank}^{i} \operatorname{Gr}_{a}^{\mathcal{F}}(\mathcal{E})$, if there are no risk of confusion. The parabolic first Chern class of \mathcal{E}_{*} is defined as follows:

$$
\operatorname{par-c} \mathcal{c}_{1}\left(\mathcal{E}_{*}\right):=c_{1}(\mathcal{E})-\sum_{i \in S} \operatorname{wt}\left(\mathcal{E}_{*}, i\right) \cdot\left[D_{i}\right] \in H^{2}(X, \boldsymbol{R}) .
$$

Here $\left[D_{i}\right]$ denotes the cohomology class given by D_{i}. If X is an n-dimensional compact Kahler manifold with a Kahler form ω, we put as follows:

$$
\operatorname{par}-\operatorname{deg}_{\omega}\left(\mathcal{E}_{*}\right):=\int_{X} \operatorname{par}-\mathrm{c}_{1}\left(\mathcal{E}_{*}\right) \cdot \omega^{n-1}, \quad \mu_{\omega}\left(\mathcal{E}_{*}\right):=\frac{\operatorname{par}^{-\operatorname{deg}_{\omega}\left(\mathcal{E}_{*}\right)}}{\operatorname{rank} \mathcal{E}}
$$

If ω is the first Chern class of an ample line bundle L, we also use the notation $\operatorname{par}-\operatorname{deg}_{L}\left(\mathcal{E}_{*}\right)$ and $\mu_{L}\left(\mathcal{E}_{*}\right)$.

Lemma 3.7. - Let $\mathcal{E}_{*}^{(i)}(i=1,2)$ be \boldsymbol{c}-parabolic sheaves on (X, D), and let $f: \mathcal{E}_{*}^{(1)} \longrightarrow$ $\mathcal{E}_{*}^{(2)}$ be a morphism which is generically isomorphic. Then, we have $\mu\left(\mathcal{E}_{*}^{(1)}\right) \leq \mu\left(\mathcal{E}_{*}^{(2)}\right)$. If the equality occurs, f is isomorphic in codimension one.

Proof. - By considering the restriction to a generic complete intersection curve, we have only to discuss the case $\operatorname{dim} X=1$. Let P be any point of D. We put $F_{a}^{(i)}:=$ $\operatorname{Im}\left({ }^{P} \mathcal{F}_{a}\left(\mathcal{E}^{(i)}\right)_{\mid P} \longrightarrow \mathcal{E}_{\mid P}^{(i)}\right)$ for $\left.\left.a \in\right] c(P)-1, c(P)\right]$, which give the filtration $F^{(i)}$ of $\mathcal{E}_{\mid P}^{(i)}$. We have the induced map $f_{\mid P}: \mathcal{E}_{\mid P}^{(1)} \longrightarrow \mathcal{E}_{\mid P}^{(2)}$ which preserves the filtrations. We put $I:=\operatorname{Im}\left(f_{\mid P}\right), K:=\operatorname{Ker}\left(f_{\mid P}\right)$ and $C:=\operatorname{Cok}\left(f_{\mid P}\right)$. Let $F(K)$ (resp. $\left.F^{(1)}(I)\right)$ denote the induced filtration on K (resp. I) by $F^{(1)}$. Let $F(C)$ (resp. $F^{(2)}(I)$) denote the induced filtration on C (resp. I) by $F^{(2)}$. We put as follows:

$$
w(K):=\sum a \cdot \operatorname{Gr}_{a}^{F}(K), \quad w^{(i)}(I):=\sum a \cdot \operatorname{Gr}_{a}^{F^{(i)}}(I), \quad w(C):=\sum a \cdot \operatorname{Gr}_{a}^{F}(C)
$$

Then, we have $-w^{(1)}(I) \leq-w^{(2)}(I)$ and $-w(K)<-w(C)+r_{0}$, where $r_{0}=\operatorname{rank} K=$ rank C. It is easy to obtain the claims of the lemma from these relations.

Remark 3.8. - For the parabolic first Chern class on algebraic varieties, we have only to replace the cohomology group and the integral by the Chow group and the degree of the 0 -cycles.
3.1.3. μ_{L}-Stability. - Let X be a smooth projective variety with an ample line bundle L over a field k, and D be a simple normal crossing divisor of X. The $\mu_{L^{-}}$ stability of \boldsymbol{c}-parabolic Higgs sheaves is defined as usual. Namely, a \boldsymbol{c}-parabolic Higgs sheaf $\left(\mathcal{E}_{*}, \theta\right)$ is called μ_{L}-stable, if the inequality par- $\operatorname{deg}_{L}\left(\mathcal{E}_{*}^{\prime}\right)<\operatorname{par}^{-\operatorname{deg}_{L}\left(\mathcal{E}_{*}\right) \text { holds }}$ for any saturated non-trivial subsheaf $\mathcal{E}^{\prime} \subsetneq \mathcal{E}$ such that $\theta\left(\mathcal{E}^{\prime}\right) \subset \mathcal{E}^{\prime} \otimes \Omega^{1,0}(\log D)$. (Recall a subsheaf $\mathcal{E}^{\prime} \subset \mathcal{E}$ is called saturated, if $\mathcal{E} / \mathcal{E}^{\prime}$ is torsion-free.) Here the parabolic structure of \mathcal{E}_{*}^{\prime} is the naturally induced one from the parabolic structure of \mathcal{E}_{*}. Similarly, μ_{L}-semistability and μ_{L}-polystability are also defined in a standard manner.

Let $\left(\mathcal{E}_{*}^{(i)}, \theta^{(i)}\right)(i=1,2)$ be μ_{L}-semistable \boldsymbol{c}-parabolic Higgs sheaves such that $\mu_{L}\left(\mathcal{E}_{*}^{(1)}\right)=\mu_{L}\left(\mathcal{E}_{*}^{(2)}\right)$. Let $f:\left(\mathcal{E}_{*}^{(1)}, \theta^{(1)}\right) \longrightarrow\left(\mathcal{E}_{*}^{(2)}, \theta^{(2)}\right)$ be a non-trivial morphism. Let $\left(\mathcal{K}_{*}, \theta_{\mathcal{K}}\right)$ denote the kernel of f with the naturally induced parabolic structure and the Higgs field. Let \mathcal{I} denote the image of f, and $\widetilde{\mathcal{I}}$ denote the saturated subsheaf of $\mathcal{E}^{(2)}$ generated by \mathcal{I}. The parabolic structures of $\mathcal{E}_{*}^{(1)}$ and $\mathcal{E}_{*}^{(2)}$ induce the parabolic
structures of \mathcal{I} and $\widetilde{\mathcal{I}}$, respectively. We denote the induced parabolic sheaves by $\left(\mathcal{I}_{*}, \theta_{\mathcal{I}}\right)$ and $\left(\widetilde{\mathcal{I}}_{*}, \theta_{\widetilde{\mathcal{I}}}\right)$.

Lemma 3.9. - $\left(\mathcal{K}_{*}, \theta_{\mathcal{K}}\right),\left(\mathcal{I}_{*}, \theta_{\mathcal{I}}\right)$ and $\left(\widetilde{\mathcal{I}}_{*}, \theta_{\widetilde{\mathcal{I}}}\right)$ are also μ_{L}-semistable such that $\mu_{L}\left(\mathcal{K}_{*}\right)=\mu_{L}\left(\mathcal{I}_{*}\right)=\mu_{L}\left(\widetilde{\mathcal{I}}_{*}\right)=\mu_{L}\left(\mathcal{E}_{*}^{(i)}\right)$. Moreover, \mathcal{I}_{*} and $\widetilde{\mathcal{I}}_{*}$ are isomorphic in codimension one.

Proof. - Using Lemma 3.7 and $\mu_{L^{-}}$-semistability of $\left(\mathcal{E}_{*}^{(i)}, \theta^{(i)}\right)$, we have $\mu\left(\mathcal{E}_{*}^{(1)}\right) \leq$ $\mu\left(\mathcal{I}_{*}\right) \leq \mu\left(\widetilde{\mathcal{I}}_{*}\right) \leq \mu\left(\mathcal{E}_{*}^{(2)}\right)$. Since the equalities hold, the claim of the lemma follows.

Lemma 3.10. - Let $\left(\mathcal{E}_{*}^{(i)}, \theta^{(i)}\right)(i=1,2)$ be μ_{L}-semistable reflexive saturated parabolic Higgs sheaves such that $\mu_{L}\left(\mathcal{E}_{*}^{(1)}\right)=\mu_{L}\left(\mathcal{E}_{*}^{(2)}\right)$. Assume either one of the following:

1. One of $\left(\mathcal{E}_{*}^{(i)}, \theta^{(i)}\right)$ is μ_{L}-stable, and $\operatorname{rank}\left(\mathcal{E}^{(1)}\right)=\operatorname{rank}\left(\mathcal{E}^{(2)}\right)$ holds.
2. Both of $\left(\mathcal{E}_{*}^{(i)}, \theta^{(i)}\right)$ are μ_{L}-stable.

If there is a non-trivial map $f:\left(\mathcal{E}_{*}^{(1)}, \theta^{(1)}\right) \longrightarrow\left(\mathcal{E}_{*}^{(2)}, \theta^{(2)}\right)$, then f is isomorphic.
Proof. - If $\left(\mathcal{E}_{*}^{(1)}, \theta^{(1)}\right)$ is μ_{L}-stable, the kernel of f is trivial due to Lemma 3.9. If $\left(\mathcal{E}_{*}^{(2)}, \theta^{(2)}\right)$ is μ_{L}-stable, the image of f and $\mathcal{E}^{(2)}$ are same at the generic point of X. Thus, we obtain that f is generically isomorphic in any case. Then, we obtain that f is isomorphic in codimension one, due to Lemma 3.7. Since both of $\mathcal{E}_{*}^{(i)}$ are reflexive and saturated, we obtain that f is isomorphic.

Corollary 3.11. - Let $\left(\mathcal{E}_{*}, \theta\right)$ be a μ_{L}-polystable reflexive saturated Higgs sheaf. Then we have the unique decomposition:

$$
\left(\mathcal{E}_{*}, \theta\right)=\bigoplus_{j}\left(\mathcal{E}_{*}^{(j)}, \theta^{(j)}\right) \otimes \boldsymbol{C}^{m(j)}
$$

Here, $\left(\mathcal{E}_{*}^{(j)}, \theta^{(j)}\right)$ are μ_{L}-stable with $\mu_{L}\left(\mathcal{E}_{*}^{(j)}\right)=\mu\left(\mathcal{E}_{*}\right)$, and they are mutually nonisomorphic. It is called the canonical decomposition in the rest of the paper.
3.1.4. \boldsymbol{c}-Parabolic Higgs bundle in codimension k. - We will often use the notation ${ }_{c} E$ instead of \mathcal{E}. We put as follows, for each $i \in S$:

$$
{ }^{i} F_{a}\left({ }_{c} E_{\mid D_{i}}\right):=\operatorname{Im}\left({ }^{i} \mathcal{F}_{a}\left({ }_{c} E\right)_{\mid D_{i}} \longrightarrow{ }_{c} E_{\mid D_{i}}\right) .
$$

The tuple (${ }^{i} \mathcal{F} \mid i \in S$) can clearly be reconstructed from the tuple of the filtrations $\boldsymbol{F}:=\left({ }^{i} F \mid i \in S\right)$. Hence we will often consider $\left({ }_{c} E, \boldsymbol{F}\right)$ instead of $\left({ }_{c} E,\left\{{ }^{i} \mathcal{F} \mid i \in S\right\}\right)$, when $c E$ is locally free. We put $D_{I}:=\bigcap_{i \in I} D_{i}$ for any subset $I \subset S$, on which we have the induced filtrations ${ }^{I} \boldsymbol{F}:=\left({ }^{i} F_{\mid D_{I}} \mid i \in I\right)$ of ${ }_{c} E_{\mid D_{I}}$.

Definition 3.12. - Let ${ }_{c} E_{*}=\left({ }_{c} E, \boldsymbol{F}\right)$ be a \boldsymbol{c}-parabolic sheaf such that ${ }_{c} E$ is locally free. If the following conditions are satisfied, ${ }_{c} E_{*}$ is called a c-parabolic bundle.

- Each ${ }^{i} F$ of ${ }_{c} E_{\mid D_{i}}$ is the filtration in the category of vector bundles on D_{i}. Namely, ${ }^{i} \operatorname{Gr}_{a}^{F}\left({ }_{c} E_{\mid D_{i}}\right)={ }^{i} F_{a} /{ }^{i} F_{<a}$ are locally free $\mathcal{O}_{D_{i}}$-modules.
- The tuple of the filtrations \boldsymbol{F} is compatible in the sense of Definition 4.37 in [44]. (In this case, the decompositions are trivial.) Namely, for any subset $I \subset S$ we have a decomposition $\bigoplus_{a \in \boldsymbol{R}^{I}} U_{\boldsymbol{a}}={ }_{c} E_{\mid D_{I}}$ locally on D_{I}, such that $\bigcap_{i \in I}{ }^{i} F_{a_{i} \mid D_{I}}=\bigoplus_{b \leq a} U_{\boldsymbol{b}}$.
We remark that the second condition is trivial in the case $\operatorname{dim} X=2$.
Remark 3.13. - Our compatibility condition of the parabolic filtrations are same as the "locally abelian" condition given in [27]. (See Corollary 4.48 of [44], for example.)

The notion of \boldsymbol{c}-parabolic bundle is too restrictive in the case $\operatorname{dim} X>2$. Hence we will also use the following notion in the case $k=2$.

Definition 3.14. - Let ${ }_{c} E_{*}$ be a \boldsymbol{c}-parabolic sheaf on (X, D). It is called a \boldsymbol{c}-parabolic bundle in codimension k, if the following condition is satisfied:

- There is a Zariski closed subset $Z \subset D$ with $\operatorname{codim}_{X}(Z)>k$ such that the restriction of ${ }_{c} E_{*}$ to $(X-Z, D-Z)$ is a c-parabolic bundle.

It is easy to observe that a reflexive saturated \boldsymbol{c}-parabolic Higgs sheaf is a \boldsymbol{c} parabolic Higgs bundle in codimension two.
3.1.5. The characteristic number for c-parabolic bundle in codimension two. - For any c-parabolic bundle ${ }_{c} E_{*}$ in codimension two, the parabolic second Chern character par-ch ${ }_{2}\left({ }_{c} E_{*}\right) \in H^{4}(X, \boldsymbol{R})$ is defined as follows:

$$
\begin{align*}
& \operatorname{par}-\operatorname{ch}_{2}\left({ }_{c} E_{*}\right):=\operatorname{ch}_{2}\left({ }_{c} E\right)-\sum_{\substack{i \in S \\
a \in \mathcal{P} \operatorname{ar}\left({ }_{c} E_{*}, i\right)}} a \cdot \iota_{i *}\left(c_{1}\left({ }^{i} \operatorname{Gr}_{a}^{F}\left({ }_{c} E\right)\right)\right) \tag{10}\\
& +\frac{1}{2} \sum_{\substack{i \in S \\
a \in \operatorname{Par}\left({ }_{c} E_{*}, i\right)}} a^{2} \cdot \operatorname{rank}\left({ }^{i} \operatorname{Gr}_{a}^{F}(c E)\right) \cdot\left[D_{i}\right]^{2} \\
& +\frac{1}{2} \sum_{\substack{(i, j) \in S^{2} \\
i \neq j}} \sum_{\substack{P \in \operatorname{Irr}\left(D_{i} \cap D_{j}\right) \\
\left(a_{i}, a_{j}\right) \in \operatorname{Par}\left(c E_{*}, P\right)}} a_{i} \cdot a_{j} \cdot \operatorname{rank}^{P} \operatorname{Gr}_{\left(a_{i}, a_{j}\right)}^{F}(c E) \cdot[P] .
\end{align*}
$$

Let us explain some of the notation:

- $\operatorname{ch}_{2}\left({ }_{c} E\right)$ denotes the second Chern character of ${ }_{c} E$.
- ι_{i} denotes the closed immersion $D_{i} \longrightarrow X$, and $\iota_{i *}: H^{2}\left(D_{i}\right) \longrightarrow H^{4}(X)$ denotes the associated Gysin map.
$-\operatorname{Irr}\left(D_{i} \cap D_{j}\right)$ denotes the set of the irreducible components of $D_{i} \cap D_{j}$.
- Let P be an element of $\operatorname{Irr}\left(D_{i} \cap D_{j}\right)$. The generic point of the component is also denoted by P. We put ${ }^{P} F_{(a, b)}:={ }^{i} F_{a \mid P} \cap{ }^{j} F_{b \mid P}$ and ${ }^{P} \operatorname{Gr}_{\boldsymbol{a}}^{F}:={ }^{P} F_{\boldsymbol{a}} / \sum_{\boldsymbol{a}^{\prime} \lesseqgtr \boldsymbol{a}}{ }^{P} F_{\boldsymbol{a}^{\prime}}$. Then rank ${ }^{P} \mathrm{Gr}_{\boldsymbol{a}}^{F}$ denotes the rank of ${ }^{P} \mathrm{Gr}_{\boldsymbol{a}}^{F}$ as an \mathcal{O}_{P}-module.
- We put $\mathcal{P a r}\left(\boldsymbol{c}_{\boldsymbol{*}}, P\right):=\left\{\left.\boldsymbol{a}\right|^{P} \operatorname{Gr}_{\boldsymbol{a}}^{F}\left({ }_{c} E\right) \neq 0\right\}$.
$-\left[D_{i}\right] \in H^{2}(X, \boldsymbol{R})$ and $[P] \in H^{4}(X, \boldsymbol{R})$ denote the cohomology classes given by D_{i} and P respectively.
If X is an n-dimensional compact Kahler manifold with a Kahler form ω, we put as follows:

If ω is the first Chern class of an ample line bundle L, we use the notation
 equalities par-c ${ }_{1, L}^{2}\left({ }_{c} E_{*}\right)=\operatorname{par}^{-c_{1}^{2}}\left({ }_{c} E_{*}\right)$ and $\left.\operatorname{par}^{-\mathrm{ch}_{2, L}}\left({ }_{c} E_{*}\right)=\operatorname{par}^{-\mathrm{ch}_{2}(c} E_{*}\right)$.

Definition 3.15. - Let X be a smooth projective variety with an ample line bundle L, and let D be a simple normal crossing divisor. Let $\left({ }_{c} E_{*}, \theta\right)$ be a μ_{L}-polystable reflexive saturated c-parabolic Higgs sheaf on (X, D). We say that $\left(c E_{*}, \theta\right)$ has trivial characteristic numbers, if any stable component $\left({ }_{c} E_{*}^{\prime}, \theta^{\prime}\right)$ of $\left({ }_{c} E_{*}, \theta\right)$ satisfies $\left.\operatorname{par}-\operatorname{deg}_{L}\left({ }_{c} E^{\prime}{ }_{*}\right)=\int_{X} \operatorname{par}^{-\operatorname{ch}_{2, L}\left(c E^{\prime}\right.}{ }^{\prime}\right)=0$

3.2. Filtered Sheaf

3.2.1. Definitions. - We recall the notion of filtered sheaf by following [52]. Let X be a complex manifold, and D be a simple normal crossing divisor with the irreducible decomposition $D=\bigcup_{i \in S} D_{i}$. For $\boldsymbol{a} \in \boldsymbol{R}^{S}, a_{i}$ denotes the i-th component of \boldsymbol{a} for $i \in S$. A filtered sheaf on (X, D) is defined to be a tuple $\boldsymbol{E}_{*}=\left(\boldsymbol{E},\left\{{ }_{c} E \mid \boldsymbol{c} \in \boldsymbol{R}^{S}\right\}\right)$ as follows:
$-\boldsymbol{E}$ is a quasi coherent \mathcal{O}_{X}-module. We put $E:=\boldsymbol{E}_{\mid X-D}$.

- ${ }_{c} E$ are coherent \mathcal{O}_{X}-submodules of \boldsymbol{E} for any $\boldsymbol{c} \in \boldsymbol{R}^{S}$ such that ${ }_{c} E_{\mid X-D}=E$.
- In the case $\boldsymbol{a} \leq \boldsymbol{b}$, we have $\boldsymbol{a}_{\boldsymbol{a}} E \subset{ }_{\boldsymbol{b}} E$, where $\boldsymbol{a} \leq \boldsymbol{b}$ means $a_{i} \leq b_{i}$ for all $i \in S$. We also have $\bigcup_{\boldsymbol{a} \in \boldsymbol{R}^{S} \boldsymbol{a}} E=\boldsymbol{E}$ and ${ }_{\boldsymbol{a}} E=\bigcap_{a<\boldsymbol{b}} \boldsymbol{b} E$.
- We have $\boldsymbol{a}^{\prime} E={ }_{\boldsymbol{a}} E \otimes \mathcal{O}_{X}\left(-\sum n_{j} \cdot D_{j}\right)$ as submodules of \boldsymbol{E}, where $\boldsymbol{a}^{\prime}=\boldsymbol{a}$ $\left(n_{j} \mid j \in S\right)$ for some integers n_{j}.
- For each $\boldsymbol{c} \in \boldsymbol{R}^{S}$, the filtration ${ }^{i} \mathcal{F}$ of ${ }_{\boldsymbol{c}} E$ indexed by $\left.] c_{i}-1, c_{i}\right]$ is given as follows:

$$
{ }^{i} \mathcal{F}_{d}(c E):=\bigcup_{\substack{a_{i} \leq d \\ \boldsymbol{a} \leq \boldsymbol{c}}} a E .
$$

Then the tuple $\left({ }_{c} E,\left\{{ }^{i} \mathcal{F} \mid i \in S\right\}\right)$ is a \boldsymbol{c}-parabolic sheaf, i.e., the sets $\{a \in$ $\left.\left.] c_{i}-1, c_{i}\right]\left.\right|^{i} \operatorname{Gr}_{a}^{\mathcal{F}}\left({ }_{c} E\right) \neq 0\right\}$ are finite.

Remark 3.16. - By definition, we obtain the \boldsymbol{c}-parabolic sheaf ${ }_{\boldsymbol{c}} E_{*}$ obtained from filtered sheaf \boldsymbol{E}_{*} for any $\boldsymbol{c} \in \boldsymbol{R}^{S}$, which is called the \boldsymbol{c}-truncation of \boldsymbol{E}_{*}. On the other hand, a filtered sheaf \boldsymbol{E}_{*} can be reconstructed from any \boldsymbol{c}-parabolic sheaf ${ }_{\boldsymbol{c}} E_{*}$. So we can identify them.

Definition 3.17. - A filtered sheaf \boldsymbol{E}_{*} is called reflexive and saturated, if any \boldsymbol{c} truncations are reflexive and saturated.

A filtered sheaf \boldsymbol{E}_{*} is called a filtered bundle in codimension k, if any \boldsymbol{c}-truncations are \boldsymbol{c}-parabolic bundle in codimension k.

Remark 3.18. - In the definition, "any \boldsymbol{c} " can be replaced with "some \boldsymbol{c} ".
A Higgs field of \boldsymbol{E}_{*} is defined to be a holomorphic homomorphism $\theta: \boldsymbol{E} \longrightarrow$ $\boldsymbol{E} \otimes \Omega^{1,0}(\log D)$ satisfying $\theta\left({ }_{c} E\right) \subset{ }_{c} E \otimes \Omega_{X}^{1,0}(\log D)$.

Let $\boldsymbol{E}_{*}^{(i)}(i=1,2)$ be a filtered bundle on (X, D). We put as follows:

$$
\begin{array}{cc}
\widetilde{\boldsymbol{E}}:=\operatorname{Hom}\left(\boldsymbol{E}^{(1)}, \boldsymbol{E}^{(2)}\right), & \boldsymbol{a} \widetilde{E}:=\left\{f \in \widetilde{\boldsymbol{E}} \mid f\left(\boldsymbol{c}^{(1)}\right) \subset{ }_{c+\boldsymbol{a}} E^{(2)}, \forall \boldsymbol{c}\right\} . \\
\widehat{\boldsymbol{E}}:=\boldsymbol{E}^{(1)} \otimes \boldsymbol{E}^{(2)}, & \boldsymbol{a} \widehat{E}:=\sum_{\boldsymbol{a}_{1}+\boldsymbol{a}_{2} \leq \boldsymbol{a}} \boldsymbol{a}_{1} E^{(1)} \otimes \boldsymbol{a}_{2} E^{(2)} .
\end{array}
$$

Then $\left(\widetilde{\boldsymbol{E}},\left\{{ }_{a} \widetilde{E}\right\}\right)$ and $\left(\widehat{\boldsymbol{E}},\left\{{ }_{\boldsymbol{a}} \widehat{E}\right\}\right)$ are also filtered bundles. They are denoted by $\operatorname{Hom}\left(\boldsymbol{E}_{*}^{(1)}, \boldsymbol{E}_{*}^{(2)}\right)$ and $\boldsymbol{E}_{*}^{(1)} \otimes \boldsymbol{E}_{*}^{(2)}$.

Let $\left(\boldsymbol{E}_{*}, \theta\right)$ be a regular filtered Higgs bundle. Let a and b be non-negative integers. Applying the above construction, we obtain the parabolic structures and the Higgs fields on $T^{a, b}(\boldsymbol{E}):=\operatorname{Hom}\left(\boldsymbol{E}^{\otimes a}, \boldsymbol{E}^{\otimes b}\right)$. We denote it by $\left(T^{a, b} \boldsymbol{E}_{*}, \theta\right)$.

3.2.2. The characteristic numbers of filtered bundles in codimension two

Let X be a smooth projective variety with an ample line bundle L, and let D be a simple normal crossing divisor. Let \boldsymbol{E}_{*} be a filtered bundle in codimension two on (X, D).

Lemma 3.19. - For any $\boldsymbol{c}, \boldsymbol{c}^{\prime} \in \boldsymbol{R}^{S}$, we have $\operatorname{par}-\mathrm{c}_{1}\left(\boldsymbol{c} E_{*}\right)={\operatorname{par}-\mathrm{c}_{1}\left(\boldsymbol{c}^{\prime} E_{*}\right) \text { in }}^{\text {in }}$ $H^{2}(X, \boldsymbol{R})$.

Proof. - The j-th components of \boldsymbol{c} and \boldsymbol{c}^{\prime} are denoted by c_{j} and c_{j}^{\prime} for any $j \in S$. Take an element $i \in S$. We have only to consider the case $c_{j}=c_{j}^{\prime}(j \neq i)$. We may also assume $c_{i}^{\prime} \in \mathcal{P} \operatorname{ar}\left(\boldsymbol{E}_{*}, i\right)$ and $c_{i}<c_{i}^{\prime}$. Moreover it can be assumed that c_{i} is sufficiently close to c_{i}^{\prime}. Then we have the following exact sequence of \mathcal{O}_{X}-modules:

$$
0 \longrightarrow{ }_{c} E \longrightarrow{ }_{c^{\prime}} E \longrightarrow{ }^{i} \operatorname{Gr}_{c_{i}^{\prime}}^{F}\left(c^{\prime} E_{\mid D_{i}}\right) \longrightarrow 0
$$

We put $c:=c_{i}^{\prime}-1$. Then we have the following:

$$
\begin{equation*}
{ }^{i} \operatorname{Gr}_{c}^{F}\left(c_{c} E\right) \otimes \mathcal{O}\left(D_{i}\right) \simeq{ }^{i} \operatorname{Gr}_{c_{i}^{\prime}}^{F}\left(c^{\prime} E\right), \quad{ }^{i} \operatorname{Gr}_{a}^{F}(c E) \simeq{ }^{i} \operatorname{Gr}_{a}^{F}\left(c^{\prime} E\right),\left(c<a<c_{i}^{\prime}\right) \tag{11}
\end{equation*}
$$

Therefore we have $\operatorname{wt}\left({ }_{c} E_{*}, i\right)=\operatorname{wt}\left({ }_{c^{\prime}} E_{*}, i\right)-\operatorname{rank}^{i} \operatorname{Gr}_{c}^{F}\left({ }_{c} E\right)$. On the other hand, we have $c_{1}\left(c^{\prime} E\right)=c_{1}\left({ }_{c} E\right)+c_{1}\left(\iota_{*}{ }^{i} \operatorname{Gr}_{c^{\prime}}^{F}\left(c^{\prime} E\right)\right)$. There is a closed subset $W \subsetneq D_{i}$ such that ${ }^{i} \operatorname{Gr}_{c^{\prime}}^{F}\left(c^{\prime} E\right)_{\mid D_{i}-W}$ is isomorphic to a direct sum of $\mathcal{O}_{D_{i}-W}$. We remark that $H^{2}(X, \boldsymbol{R}) \simeq H^{2}(X \backslash W, \boldsymbol{R})$, because the codimension of W in X is larger than two. Then it is easy to check $c_{1}\left(\iota_{*}^{i} \operatorname{Gr}_{c^{\prime}}^{F}\left(c^{\prime} E\right)\right)=\operatorname{rank}^{i} \operatorname{Gr}_{c}^{F}\left({ }_{c} E\right) \cdot\left[D_{i}\right]$. Then the claim of the lemma immediately follows.

Corollary 3.20. - For any $\boldsymbol{c}, \boldsymbol{c}^{\prime} \in \boldsymbol{R}^{S}$, we have the following:

$$
\operatorname{par}-\operatorname{deg}_{L}\left(c E_{*}\right)=\operatorname{par}-\operatorname{deg}_{L}\left(c^{\prime} E_{*}\right), \quad \int_{X} \operatorname{par}-\mathrm{c}_{1, L}^{2}\left(c E_{*}\right)=\int_{X} \operatorname{par}-\mathrm{c}_{1, L}^{2}\left(c^{\prime} E_{*}\right)
$$

In particular, the characteristic numbers $\operatorname{par}-\operatorname{deg}_{L}\left(\boldsymbol{E}_{*}\right):=\operatorname{par}^{-} \operatorname{deg}_{L}\left({ }_{c} E_{*}\right)$ and

Remark 3.21. - The μ_{L}-stability of a regular filtered Higgs bundle is defined, which is equivalent to the stability of any \boldsymbol{c}-truncation. Due to Corollary 3.20 , it is independent of a choice of \boldsymbol{c}.

Proposition 3.22. - For any $\boldsymbol{c}, \boldsymbol{c}^{\prime} \in \boldsymbol{R}^{S}$, we have the following:

$$
\int_{X}{\left.\operatorname{par}-\mathrm{ch}_{2, L}\left(c E_{*}\right)=\int_{X}{\operatorname{par}-\mathrm{ch}_{2, L}\left(c^{\prime}\right.} E_{*}\right)}
$$

Proof. - We have only to consider the case $\operatorname{dim} X=2$. We use the following lemma.
Lemma 3.23. - Let Y be a smooth projective surface, and D be a smooth divisor of Y. Let \mathcal{F} be an \mathcal{O}_{D}-coherent module. Then we have the following:

$$
\int_{X} \operatorname{ch}_{2}\left(\iota_{*} \mathcal{F}\right)=\operatorname{deg}_{D} \mathcal{F}-\frac{1}{2} \operatorname{rank}_{D}(\mathcal{F}) \cdot(D, D)
$$

Proof. - By considering the blow up of $D \times\{0\}$ in $Y \times \boldsymbol{C}$ as in [17], we can reduce the problem in the case Y is a projective space bundle over D. We can also reduce the problem to the case \mathcal{F} is a locally free sheaf on D. Then, in particular, we may assume that there is a locally free sheaf $\widetilde{\mathcal{F}}$ such that $\widetilde{\mathcal{F}}_{\mid D}=\mathcal{F}$. In the case, we have the K-theoretic equality $\iota_{*} \mathcal{F}=\widetilde{\mathcal{F}} \cdot(\mathcal{O}-\mathcal{O}(-D))$. Therefore we have the following:

$$
\operatorname{ch}\left(\iota_{*} \mathcal{F}\right)=\operatorname{ch}(\widetilde{\mathcal{F}}) \cdot\left(D-D^{2} / 2\right)=\operatorname{rank} \widetilde{\mathcal{F}} \cdot D+\left(-\frac{1}{2} \operatorname{rank} \widetilde{\mathcal{F}} \cdot D^{2}+c_{1}(\widetilde{\mathcal{F}}) \cdot D\right)
$$

Then the claim of the lemma is clear.
Let us return to the proof of Lemma 3.22. We use the notation in the proof of Lemma 3.19. We have the following equalities:

$$
\begin{align*}
\int_{X} \operatorname{ch}_{2}\left(c^{\prime} E\right)= & \int_{X} \operatorname{ch}_{2}\left({ }_{c} E\right)+\operatorname{deg}_{D_{i}}\left({ }^{i} \operatorname{Gr}_{c_{i}^{\prime}}^{F}\left(c^{\prime} E\right)\right)-\frac{1}{2} \operatorname{rank}^{i} \operatorname{Gr}_{c_{i}^{\prime}}^{F}\left(c^{\prime} E\right) \cdot D_{i}^{2} \tag{12}\\
& =\int_{X} \operatorname{ch}_{2}(c E)+\operatorname{deg}_{D_{i}}\left({ }^{i} \operatorname{Gr}_{c}^{F}\left({ }_{c} E\right)\right)+\frac{1}{2} \operatorname{rank}^{i} \operatorname{Gr}_{c}^{F}\left({ }_{c} E\right) \cdot D_{i}^{2}
\end{align*}
$$

Here we have used (11). We also have the following:

$$
\left.c_{i}^{\prime} \cdot \operatorname{deg}_{D_{i}}\left({ }^{i} \operatorname{Gr}_{c_{i}^{\prime}}^{F}\left(c^{\prime} E\right)\right)=(c+1) \cdot\left(\operatorname{deg}_{D_{i}}{ }^{i} \operatorname{Gr}_{c}^{F}\left(c_{c} E\right)\right)+\operatorname{rank}^{i} \operatorname{Gr}_{c}^{F}\left({ }_{c} E\right) \cdot D_{i}^{2}\right) .
$$

We remark the isomorphism ${ }^{P} \operatorname{Gr}_{\left(c_{i}^{\prime}, a\right)}^{F}\left(c^{\prime} E\right) \simeq{ }^{P} \operatorname{Gr}_{(c, a)}^{F}(c E)$ and the following exact sequence:

$$
0 \longrightarrow{ }^{j} \operatorname{Gr}_{a}^{F}(c E) \longrightarrow{ }^{j} \operatorname{Gr}_{a}^{F}\left(c^{\prime} E\right) \longrightarrow \bigoplus_{P \in D_{i} \cap D_{j}}{ }^{P} \operatorname{Gr}_{\left(c_{i}^{\prime}, a\right)}^{F}\left(c^{\prime} E\right) \longrightarrow 0
$$

Hence we obtain the following equality:

$$
a \cdot \operatorname{deg}_{D_{j}}\left({ }^{j} \operatorname{Gr}_{a}^{F}\left(c^{\prime} E\right)\right)=a \cdot \operatorname{deg}_{D_{j}}\left({ }^{j} \operatorname{Gr}_{a}^{F}(c E)\right)+a \cdot \sum_{P \in D_{i} \cap D_{j}} \operatorname{rank}^{P} \operatorname{Gr}_{(c, a)}^{F}(c E) .
$$

We have the following equalities:
$\frac{1}{2} c_{i}^{\prime 2} \cdot \operatorname{rank}^{i} \operatorname{Gr}_{c_{i}^{\prime}}^{F}\left(c^{\prime} E\right) \cdot D_{i}^{2}=\frac{1}{2} c^{2} \operatorname{rank}^{i} \operatorname{Gr}_{c}^{F}(c E) \cdot D_{i}^{2}+\left(c+\frac{1}{2}\right) \cdot \operatorname{rank}^{i} \operatorname{Gr}_{c_{i}^{\prime}}^{F}\left(c^{\prime} E\right) \cdot D_{i}^{2}$.

$$
\begin{equation*}
c_{i}^{\prime} \cdot a \cdot \operatorname{rank}^{P} \operatorname{Gr}_{\left(c_{i}^{\prime}, a\right)}^{F}\left(c^{\prime} E\right)=c \cdot a \cdot \operatorname{rank}^{P} \operatorname{Gr}_{(c, a)}^{F}(c E)+a \cdot \operatorname{rank}^{P} \operatorname{Gr}_{(c, a)}^{F}(c E) \tag{14}
\end{equation*}
$$

Then we obtain the following:

$$
\begin{gather*}
\int_{X}{\operatorname{par}-\mathrm{ch}_{2, L}\left(c^{\prime} E_{*}\right)-\int_{X}{\operatorname{par}-\mathrm{ch}_{2, L}\left({ }_{c} E_{*}\right)=\operatorname{deg}_{D_{i}}\left({ }^{i} \operatorname{Gr}_{c}^{F}\left({ }_{c} E\right)\right)+\frac{1}{2} \operatorname{rank}^{i} \operatorname{Gr}_{c}^{F}\left({ }_{c} E\right) \cdot D_{i}^{2}}_{-\operatorname{deg}_{D_{i}}\left({ }^{i} \operatorname{Gr}_{c}^{F}\left({ }_{c} E\right)\right)-(c+1) \operatorname{rank}^{i} \operatorname{Gr}_{c}^{F}\left({ }_{c} E\right) D_{i}^{2}-\sum_{j \neq i} \sum_{P \in D_{i} \cap D_{j}} \sum_{a} a \cdot \operatorname{rank}^{P} \operatorname{Gr}_{(c, a)}^{F}\left({ }_{c} E\right)}}_{+\left(c+\frac{1}{2}\right) \operatorname{rank}^{i} \operatorname{Gr}_{c}^{F}\left({ }_{c} E\right) D_{i}^{2}+\sum_{j \neq i} \sum_{P \in D_{i} \cap D_{j}} \sum_{a} a \cdot \operatorname{rank}^{P} \operatorname{Gr}_{(c, a)}^{F}\left({ }_{c} E\right)=0 .} . \tag{15}
\end{gather*}
$$

Thus we are done.
Definition 3.24. - Let $\left(\boldsymbol{E}_{*}, \theta\right)$ be a μ_{L}-polystable reflexive saturated regular filtered Higgs sheaf on (X, D). We say that $\left(\boldsymbol{E}_{*}, \theta\right)$ has trivial characteristic numbers, if any stable component $\left(\boldsymbol{E}_{*}^{\prime}, \theta^{\prime}\right)$ of $\left(\boldsymbol{E}_{*}, \theta\right)$ satisfies $\operatorname{par}-\operatorname{deg}\left(\boldsymbol{E}_{*}^{\prime}\right)=\int_{X} \operatorname{par}^{-c h}\left(\boldsymbol{E}_{*}^{\prime}\right)=0$.

3.3. Perturbation of Parabolic Structure

Let X be a smooth projective surface over \boldsymbol{C} with an ample line bundle L, and D be a simple normal crossing divisor with the irreducible decomposition $D=\bigcup_{i \in S} D_{i}$. (Remark that each D_{i} is smooth by definition of simple normal crossing divisor. See Section 2.1.) Let (${ }_{c} E, \boldsymbol{F}, \theta$) be a \boldsymbol{c}-parabolic Higgs bundle over (X, D). Due to the projectivity of D_{i}, the eigenvalues of $\operatorname{Res}_{i}(\theta) \in \operatorname{End}\left({ }_{c} E_{\mid D_{i}}\right)$ are constant. Hence we obtain the generalized eigen decomposition with respect to $\operatorname{Res}_{i}(\theta)$:

$$
{ }^{i} \operatorname{Gr}_{a}^{F}\left({ }_{c} E_{\mid D_{i}}\right)=\bigoplus_{\alpha \in C}{ }^{i} \operatorname{Gr}_{(a, \alpha)}^{F, \mathbb{E}}\left({ }_{c} E_{\mid D_{i}}\right)
$$

Let \mathcal{N}_{i} denote the nilpotent part of the induced endomorphism $\mathrm{Gr}^{F} \operatorname{Res}_{i}(\theta)$ on ${ }^{i} \operatorname{Gr}_{a}^{F}\left({ }_{c} E_{\mid D_{i}}\right)$.

Definition 3.25. - The \boldsymbol{c}-parabolic Higgs bundle $(\boldsymbol{c} E, \boldsymbol{F}, \theta)$ is called graded semisimple, if \mathcal{N}_{i} are 0 for any $i \in S$.

For simplicity, we assume $c_{i} \notin \mathcal{P a r}\left({ }_{c} E_{*}, i\right)$ for any i, where $\boldsymbol{c}=\left(c_{i} \mid i \in S\right)$.
Proposition 3.26. - Let ϵ be any positive number satisfying $\epsilon \cdot 100 \operatorname{rank}(E) \leq$ $\operatorname{gap}\left({ }_{c} E, \boldsymbol{F}\right)$. There exists a \boldsymbol{c}-parabolic structure $\boldsymbol{F}^{(\epsilon)}=\left({ }^{i} F^{(\epsilon)} \mid i \in S\right)$ such that the following holds:
$-\left({ }_{c} E, \boldsymbol{F}^{(\epsilon)}\right)$ is a graded semisimple \boldsymbol{c}-parabolic Higgs bundle.

- We have $\mathrm{wt}\left({ }_{c} E, \boldsymbol{F}^{(\epsilon)}, i\right)=\mathrm{wt}\left({ }_{c} E, \boldsymbol{F}, i\right)$. (See Subsection 3.1.2 for wt.) In particular, we have $\operatorname{par}-\mathrm{c}_{1}\left({ }_{c} E, \boldsymbol{F}^{(\epsilon)}\right)=\operatorname{par}^{-\mathrm{c}_{1}}\left({ }_{c} E, \boldsymbol{F}\right)$.
- There is a constant C, which is independent of ϵ, such that the following holds:
$-\operatorname{gap}\left({ }_{c} E, \boldsymbol{F}^{(\epsilon)}\right)=\epsilon$.
Such $\left({ }_{c} E, \boldsymbol{F}^{(\epsilon)}, \theta\right)$ is called an ϵ-perturbation of $\left({ }_{c} E, \boldsymbol{F}, \theta\right)$.
Proof. - To take a refinement of the filtration ${ }^{i} F$, we see the weight filtration induced on ${ }^{i} \mathrm{Gr}^{F}$. Let η be a generic point of D_{i}. We have the weight filtration W_{η} of the nilpotent map $\mathcal{N}_{i, \eta}$ on ${ }^{i} \mathrm{Gr}^{F}\left({ }_{c} E_{\mid D_{i}}\right)_{\mid \eta}$, which is indexed by \mathbb{Z}. We recall the following general lemma.

Lemma 3.27. - Let C be a smooth irreducible projective curve over \boldsymbol{C}. The generic point of C is denoted by η, and let $K(\eta)$ denote the corresponding field. Let V be an algebraic vector bundle on C. The fiber of V over η is denoted by $V_{\mid \eta}$, which is the $K(\eta)$-vector space.

If we are given a $K(\eta)$-vector subspace $V_{\eta}^{\prime} \subset V_{\mid \eta}$, then there exists the unique vector subbundle V^{\prime} of V, whose fiber over η is V_{η}^{\prime}.

Proof. - We put $t:=\operatorname{rank} V$ and $s:=\operatorname{rank} V_{\eta}^{\prime}$. Let $G(t, s)$ denote the Grassmann variety of the s-dimensional subspaces of \boldsymbol{C}^{t}. Let Q be any closed point of C. We take a local frame u_{1}, \ldots, u_{t} of V on a Zariski neighbourhood of Q. Let $A(Q)$ denote the local ring at Q in C. The fraction field of $A(Q)$ is naturally isomorphic to $K(\eta)$. By using the frame u_{1}, \ldots, u_{t}, we identify $V \otimes A(Q)$ and $A(Q)^{\oplus t}$. The $K(\eta)$-subspace V_{η}^{\prime} of $A(Q)^{\oplus t} \otimes K(\eta)=K(\eta)^{\oplus t}$ gives the morphism $\varphi: \operatorname{Spec} K(\eta) \longrightarrow G(t, s)$ over $\operatorname{Spec}(\boldsymbol{C})$. Since A is a discrete valuation ring and $G(t, s)$ is proper, the morphism φ is uniquely extended to $\bar{\varphi}: \operatorname{Spec}(A) \longrightarrow G(t, s)$ by the valuative criterion for properness. (See Theorem 4.7 in $[\mathbf{2 0}]$, for example.) It gives the extension of V_{η}^{\prime} around Q.

By using the lemma, we can extend W_{η} to the filtration W of ${ }^{i} \mathrm{Gr}^{F}\left({ }_{c} E_{\mid D_{i}}\right)$ in the category of vector bundles on D_{i} due to the smoothness of D_{i} and $\operatorname{dim} D_{i}=1$. By our construction, $\mathcal{N}_{i}\left(W_{k}\right) \subset W_{k-2}$ and $\operatorname{dim} \mathrm{Gr}_{k}^{W}=\operatorname{dim} \mathrm{Gr}_{-k}^{W}$. The endomorphism
$\operatorname{Res}_{i}(\theta)$ preserves the filtration W on ${ }^{i} \operatorname{Gr}^{F}\left({ }_{c} E_{\mid D_{i}}\right)$, and the nilpotent part of the induced endomorphisms on $\mathrm{Gr}^{W}{ }^{i} \mathrm{Gr}^{F}\left({ }_{c} E_{\mid D_{i}}\right)$ are trivial.

Let us take the refinement of the filtration ${ }^{i} F$. For any $\left.\left.a \in\right] c_{i}-1, c_{i}\right]$, we have the surjection $\pi_{a}:{ }^{i} F_{a}\left({ }_{c} E_{\mid D_{i}}\right) \longrightarrow{ }^{i} \operatorname{Gr}_{a}^{F}\left({ }_{c} E_{\mid D_{i}}\right)$. We put ${ }^{i} \widetilde{F}_{a, k}:=\pi_{a}^{-1}\left(W_{k}\right)$. We use the lexicographic order on $\left.] c_{i}-1, c_{i}\right] \times \mathbb{Z}$. Thus we obtain the increasing filtration ${ }^{i} \widetilde{F}$ indexed by $\left.] c_{i}-1, c_{i}\right] \times \mathbb{Z}$. The set $\left.\left.\widetilde{S}_{i}:=\{(a, k) \in] c_{i}-1, c_{i}\right] \times\left.\mathbb{Z}\right|^{i} \operatorname{Gr}_{(a, k)}^{\widetilde{F}} \neq 0\right\}$ is finite.

Let $\left.\left.\varphi_{i}: \widetilde{S}_{i} \longrightarrow\right] c_{i}-1, c_{i}\right]$ be the increasing map given by $\varphi_{i}(a, k):=a+k \epsilon$. We put as follows:

$$
{ }^{i} F_{b}^{(\epsilon)}=\bigcup_{\varphi_{i}(a, k) \leq b}{ }^{i} \widetilde{F}_{(a, k)}
$$

Thus we obtain the \boldsymbol{c}-parabolic structure $\boldsymbol{F}^{(\epsilon)}=\left({ }^{i} F^{(\epsilon)} \mid i \in S\right)$.
Let P be any point of D_{i}. Take a holomorphic coordinate neighbourhood $\left(U_{P}, z_{1}, z_{2}\right)$ around P such that $U_{P} \cap D_{i}=\left\{z_{1}=0\right\}$. Then we have the expression $\theta=f_{1}\left(z_{1}, z_{2}\right) \cdot d z_{1} / z_{1}+f_{2}\left(z_{1}, z_{2}\right) \cdot d z_{2}$. Then, $f_{j}\left(0, z_{2}\right)(j=1,2)$ preserve the filtration ${ }^{i} F^{(\epsilon)}$. Therefore, it is easy to see that $\left({ }_{c} E, \boldsymbol{F}^{(\epsilon)}, \theta\right)$ is c-parabolic Higgs bundle on (X, D). By our construction, it has the desired property. Thus the proof of Proposition 3.26 is finished.

The following proposition is standard.

Proposition 3.28. - Assume that $\left({ }_{c} E, \boldsymbol{F}, \theta\right)$ is μ_{L}-stable. If ϵ is sufficiently small, then the ϵ-perturbation $\left({ }_{c} E, \boldsymbol{F}^{(\epsilon)}, \theta\right)$ is also μ_{L}-stable.

Proof. - Let ${ }_{c} \widehat{E} \subset{ }_{c} E$ be a saturated subsheaf such that $\theta\left({ }_{c} \widehat{E}\right) \subset{ }_{c} \widehat{E} \otimes \Omega^{1,0}(\log D)$. Let $\widehat{\boldsymbol{F}}$ and $\widehat{\boldsymbol{F}}^{(\epsilon)}$ be the tuples of the filtrations of ${ }_{c} \widehat{E}$ induced by \boldsymbol{F} and $\boldsymbol{F}^{(\epsilon)}$ respectively. There is a constant C, which is independent of choices of ${ }_{\boldsymbol{c}} \widehat{E}$ and small $\epsilon>0$, such that $\left|\mu_{L}\left({ }_{c} \widehat{E}, \widehat{\boldsymbol{F}}\right)-\mu_{L}\left(c_{c} \widehat{E}, \widehat{\boldsymbol{F}}^{(\epsilon)}\right)\right| \leq C \cdot \epsilon$. Therefore, we have only to show the existence of a positive number η satisfying the inequalities $\mu_{L}\left({ }_{c} \widehat{E}, \boldsymbol{F}\right)+\eta<\mu_{L}\left({ }_{c} E, \boldsymbol{F}\right)$, for any saturated Higgs subsheaf $0 \neq{ }_{c} \widehat{E} \subsetneq{ }_{c} E$ under the μ_{L}-stability of $(c E, \boldsymbol{F}, \theta)$. It is standard, so we give only a brief outline. Due to a lemma of A. Grothendieck (see Lemma 2.5 in [$\mathbf{1 9}]$) we know the boundedness of the family $\mathcal{G}(A)$ of saturated Higgs subsheaves ${ }_{c} \widehat{E} \subsetneq{ }_{c} E$ such that $\operatorname{deg}_{L}\left({ }_{c} \widehat{E}\right) \geq-A$ for any fixed number A.

Let us consider the case where A is sufficiently large. Then $\mu_{L}\left({ }_{c} \widehat{E}_{*}\right)$ is sufficiently small for any ${ }_{c} \widehat{E} \notin \mathcal{G}(A)$. On the other hand, since the family $\mathcal{G}(A)$ is bounded, the function μ_{L} on $\mathcal{G}(A)$ have the maximum, which is strictly smaller than $\mu_{L}\left({ }_{c} E_{*}\right)$ due to the μ_{L}-stability. Thus we are done.

3.4. Mehta-Ramanathan Type Theorem

3.4.1. Statement. - We discuss the Mehta-Ramanathan type theorem for parabolic Higgs sheaves. Let X be an n-dimensional smooth irreducible projective variety over C with an ample line bundle L. For simplicity, we assume the characteristic number of k is 0 . Let D be a simple normal crossing divisor of X.

Proposition 3.29. - Let $\left(V_{*}, \theta\right)$ be a parabolic Higgs sheaf over (X, D). It is $\mu_{L^{-}}$ (semi)stable, if and only if $\left(V_{*}, \theta\right)_{\mid Y}$ is $\mu_{L}-($ semi)stable, where Y denotes a complete intersection of sufficiently ample generic hypersurfaces.

We closely follow the arguments of V. Mehta, A. Ramanathan ([41], [40]) and Simpson ([55]). See the papers for more detail.
3.4.2. \mathcal{W}-operator. - In the following, let k denote a field of characteristic 0 . Let \mathcal{X} be a smooth projective variety over k, with an ample line bundle L. Let \mathcal{D} be a simple normal crossing divisor of \mathcal{X}. Let \mathcal{W} be a vector bundle on \mathcal{X}. A \mathcal{W}-valued operator of a parabolic sheaf V_{*} on $(\mathcal{X}, \mathcal{D})$ is defined to be a morphism $\eta: V_{*} \longrightarrow V_{*} \otimes \mathcal{W}$. A \mathcal{W}-subobject of $\left(V_{*}, \eta\right)$ is a saturated subsheaf $F \subset V$ such that $\eta(F) \subset F \otimes \mathcal{W}$. We endow F with the induced parabolic structure. A parabolic sheaf with a \mathcal{W}-valued operator $\left(V_{*}, \eta\right)$ is defined to be μ_{L}-semistable if and only if $\mu_{L}\left(F_{*}\right) \leq \mu_{L}\left(V_{*}\right)$ holds for any \mathcal{W}-subobject $F_{*} \subset V_{*}$. The μ_{L}-stability is also defined similarly.

In general, we have the \mathcal{W}-subobjects $F_{*} \subset V_{*}$ with the properties: (i) $\mu_{L}\left(G_{*}\right) \leq$ $\mu_{L}\left(F_{*}\right)$ for any \mathcal{W}-subobject G_{*} of $\left(V_{*}, \eta\right)$, (ii) if $\mu_{L}\left(G_{*}\right)=\mu_{L}\left(F_{*}\right)$, we have $\operatorname{rank}(G) \leq$ $\operatorname{rank}(F)$. Such F_{*} is uniquely determined, which can be shown by using an argument similar to the last part of the proof of Proposition 3.28. It is called the β - \mathcal{W}-subobject of $\left(V_{*}, \eta\right)$. By a similar argument, we also obtain the Harder-Narasimhan filtration.
3.4.3. Weil's Lemma. - In general, for a given projective variety \mathcal{X} with a normal crossing divisor $\mathcal{D}=\bigcup_{j \in S} \mathcal{D}_{j}$, a pair of a line bundle \mathcal{L} on \mathcal{X} and a tuple $\boldsymbol{a}=\left(a_{j} \mid j \in\right.$ $S) \in \boldsymbol{R}^{S}$ is called a parabolic line bundle on $(\mathcal{X}, \mathcal{D})$. We can regard them as the \boldsymbol{a}-parabolic sheaf on $(\mathcal{X}, \mathcal{D})$ in an obvious manner. Let $\operatorname{Pic}(\mathcal{X}, \mathcal{D})$ denote the set of parabolic line bundles on $(\mathcal{X}, \mathcal{D})$.

Let us return to the setting in Subsection 3.4.1. For simplicity, we assume $H^{i}\left(X, L^{m}\right)=0$ for any $m \geq 1$ and $i>0$. We put $S_{m}:=H^{0}\left(X, L^{m}\right)$ for $m \in \mathbb{Z}_{\geq 1}$. For $\boldsymbol{m}=\left(m_{1}, \ldots, m_{n-1}\right) \in \mathbb{Z}_{\geq 1}^{n-1}$, we put $S_{\boldsymbol{m}}:=\prod_{i=1}^{t} S_{m_{i}}$. Let $Z_{\boldsymbol{m}}$ denote the correspondence variety, i.e., $Z_{\boldsymbol{m}}=\left\{\left(x, s_{1}, \ldots, s_{n-1}\right) \in X \times S_{\boldsymbol{m}}, \mid s_{i}(x)=0,1 \leq i \leq n-1\right\}$. The natural morphisms $Z_{\boldsymbol{m}} \longrightarrow S_{m}$ and $Z_{m} \longrightarrow X$ are denoted by q_{m} and $p_{\boldsymbol{m}}$, respectively. We put $Z_{m}^{D}:=Z_{\boldsymbol{m}} \times_{X} D$ and $Z_{m}^{D_{j}}:=Z_{\boldsymbol{m}} \times_{X} D_{j}$. Recall that $Z_{m}^{D_{j}}$ are irreducible, because $Z_{m}^{D_{j}}$ is a vector bundle over D_{j}. Let K_{m} denote the function field of $S_{\boldsymbol{m}}$. We put $Y_{\boldsymbol{m}}:=Z_{\boldsymbol{m}} \times_{S_{\boldsymbol{m}}} K_{\boldsymbol{m}}, Y_{\boldsymbol{m}}^{D_{j}}:=Z_{\boldsymbol{m}}^{D_{j}} \times_{S_{\boldsymbol{m}}} K_{\boldsymbol{m}}$ and $Y_{\boldsymbol{m}}^{D}:=Z_{\boldsymbol{m}}^{D} \times_{S_{m}} K_{\boldsymbol{m}}$.

The irreducible decomposition of $Z_{\boldsymbol{m}}^{D} \times_{S_{m}} K_{\boldsymbol{m}}$ is given by $\bigcup_{j} Z_{\boldsymbol{m}}^{D_{j}} \times_{S_{m}} K_{\boldsymbol{m}}$. Recall the following result of Mehta and Ramanathan, by whom such a type of lemma is called Weil's Lemma.

Lemma 3.30. - Assume $n \geq 2$. For $\boldsymbol{m}=\left(m_{1}, \ldots, m_{n-1}\right)$ with each $m_{i} \geq 3$, the natural map $\operatorname{Pic}(X, D) \longrightarrow \operatorname{Pic}\left(Y_{\boldsymbol{m}}, Y_{\boldsymbol{m}}^{D}\right)$ is bijective.

Proof. - Since we have the natural correspondence between the irreducible components of D and $Y_{\boldsymbol{m}}^{D}$, the claim is obviously reduced to Proposition 2.1 of [41].
3.4.4. A family of degenerating curves. - As in [41], we fix a sequence of integers $\left(\alpha_{1}, \ldots, \alpha_{n-1}\right)$ with $\alpha_{i} \geq 2$. We put $\alpha:=\prod \alpha_{i}$. For a positive integer m, let (m) denote $\left(\alpha_{1}^{m}, \ldots, \alpha_{n-1}^{m}\right)$. Let V_{*} be a coherent parabolic sheaf on (X, D). For each m, we can take an open subset $U_{m} \subset S_{(m)}$ such that (i) $q_{(m)}^{-1}(s)$ are smooth $\left(s \in U_{m}\right)$, (ii) $q_{(m)}^{-1}(s)$ intersects with the smooth part of D transversally, (iii) V_{*} is a parabolic bundle on an appropriate neighbourhood of each $q_{(m)}^{-1}(s) \subset X$. In the following, we will shrink U_{m}, if necessary. In Section 5 of [41], Mehta and Ramanathan constructed a family of degenerating curves. Take integers $l>m>0$. Let A be a discrete valuation ring over k with the quotient field K. Then there exists a curve C over $\operatorname{Spec} A$ with a morphism $\varphi: C \longrightarrow X \times \operatorname{Spec} A$ over $\operatorname{Spec} A$ with the properties: (i) C is smooth, (ii) the generic fiber C_{K} gives a sufficiently general K-valued point in U_{l}, (iii) the special fiber C_{k} is reduced with smooth irreducible components C_{k}^{i} $\left(i=1, \ldots, \alpha^{l-m}\right)$ which are sufficiently general k-valued points in U_{m}. We use the notation D_{C} to denote $C \times_{X} D$. We also use the notation $D_{j, C}, D_{j, C_{K}}$ and $D_{j, C_{k}^{i}}$ in similar meanings. Then, we obtain the parabolic bundle $\varphi^{*}\left(V_{*}\right)$ on $\left(C, D_{C}\right)$, which is denoted by $V_{* \mid C}$. The restriction to C_{K} and C_{k}^{i} are denoted similarly. Let W_{*} be a parabolic subsheaf of $V_{* \mid C_{K}}$. Recall that W can be extended to the subsheaf $\widetilde{W} \subset V_{\mid C}$, flat over Spec A with the properties: (i) \widetilde{W} is a vector bundle over C, (ii) $\widetilde{W}_{\mid C_{k}^{i}} \longrightarrow V_{\mid C_{k}^{i}}$ are injective. (See Section 4 of $[\mathbf{4 1}]$.) In particular, we have $\operatorname{deg}_{L}\left(\operatorname{det}\left(\widetilde{W}_{\mid C_{K}}\right)\right)=\sum \operatorname{deg}_{L}\left(\operatorname{det}\left(\widetilde{W}_{\mid C_{k}^{i}}\right)\right)$. We have the induced parabolic structure of $\widetilde{W}_{\mid C_{k}^{i}}$ as the subsheaf of $V_{* \mid C_{k}^{i}}$, for which we have $\mathrm{wt}\left(W_{l *}, D_{j, C_{K}}\right) \geq \mathrm{wt}\left(\widetilde{W}_{\mid C_{k}^{i} *}, D_{j, C_{k}^{i}}\right)$ for each D_{j}. Therefore, we obtain $\mu_{L}\left(\widetilde{W}_{* \mid C_{K}}\right) \leq \sum_{i} \mu_{L}\left(\widetilde{W}_{\mid C_{k}^{i}, *}\right)$. If the equality occurs, we have $\operatorname{wt}\left(W_{l *}, D_{j, C_{K}}\right)=\operatorname{wt}\left(\widetilde{W}_{\mid C_{k}^{i} *}, D_{j, C_{k}^{i}}\right)$ for any i and j, and \widetilde{W}_{*} with the induced parabolic structure is the parabolic bundle.
3.4.5. The arguments of Mehta and Ramanathan. - Let \mathcal{W} be a vector bundle on X. Let $\left(V_{*}, \eta\right)$ be a parabolic sheaf with a \mathcal{W}-operator on (X, D).

Lemma 3.31. - $\left(V_{*}, \eta\right)$ is μ_{L}-semistable, if and only if there exists a positive integer m_{0} such that $\left(V_{*}, \eta\right)_{\mid Y_{(m)}}$ is also μ_{L}-semistable for any $m \geq m_{0}$.

Proof. - We have only to show the "only if" part. We reproduce the argument in [41]. First, assume $\left(V_{*}, \eta\right)_{\mid Y_{(m)}}$ is μ_{L}-semistable for some m, and we show that $\left(V_{*}, \eta\right)_{\mid Y_{(l)}}$ is μ_{L}-semistable for any $l>m$. We take a family of degenerating curves C as in Subsection 3.4.4. We have the β - \mathcal{W}-subobject $W_{l, *} \subset V_{* \mid C_{K}}$. We extend it to $\widetilde{W} \subset V_{\mid C}$. Note that it is naturally the \mathcal{W}-subobject. Since we have $\mu_{L}\left(W_{l *}\right) \leq$ $\sum_{i} \mu_{L}\left(\widetilde{W}_{\mid C_{k}^{i} *}\right)$ and $\mu_{L}\left(V_{* \mid C_{K}}\right)=\sum_{i} \mu_{L}\left(V_{* \mid C_{k}^{i}}\right)$, we obtain $\mu_{L}\left(W_{l *}\right) \leq \mu_{L}\left(V_{* \mid C_{K}}\right)$. Thus, we obtain the semistability of $V_{* \mid Y_{(l)}}$.

We will show that V_{*} is not semistable if $V_{* \mid Y_{(m)}}$ are not semistable for any m. By shrinking U_{m} appropriately, we may have \mathcal{W}-subobjects $W_{m *}$ of $p_{(m)}^{*} V_{* \mid q_{(m)}^{-1} U_{m}}$ such that $W_{m * \mid q_{(m)}^{-1}(s)}$ is the β - \mathcal{W}-subobject of $\left(V_{*}, \eta\right)_{\mid q_{(m)}^{-1}(s)}$ for any $s \in U_{m}$. The restriction $W_{m * \mid Y_{(m)}}$ is the β - \mathcal{W}-subobject of $\left(V_{*}, \eta\right)_{\mid Y_{(m)}}$. We have the parabolic line bundle $\mathcal{L}_{m *} \in \operatorname{Pic}(X, D)$ corresponding to $\operatorname{det}\left(W_{m, *}\right)_{\mid Y_{(m)}} \in \operatorname{Pic}\left(Y_{(m)}, Y_{(m)}^{D}\right)$.

We put $\beta_{m}:=\mu_{L}\left(W_{m, * \mid Y_{(m)}}\right)$. For $l>m$, we obtain $\beta_{l} \leq \alpha^{l-m} \cdot \beta_{m}$ by using a family of degenerating curves. Since we have $\beta_{m}=\alpha^{m} \cdot \mu_{L}\left(\mathcal{L}_{m *}\right) / \operatorname{rank}\left(W_{m}\right)$, we obtain $\mu_{L}\left(\mathcal{L}_{l *}\right) / \operatorname{rank} W_{l} \leq \mu_{L}\left(\mathcal{L}_{m *}\right) / \operatorname{rank} W_{m}$. On the other hand, we have $\beta_{m} \geq \alpha^{m} \mu_{L}\left(V_{*}\right)$, and the sequence $\left\{\mu_{L}\left(\mathcal{L}_{m *}\right)\right\}$ is bounded. Since $\left\{\operatorname{wt}\left(\mathcal{L}_{m}, D_{j}\right)\right\}$ is finite, we may take a subsequence $Q \subset\{m\}$ such that $\operatorname{deg}_{L}\left(\mathcal{L}_{m}\right)$, wt $\left(\mathcal{L}_{m}, D_{j}\right)$ and $\operatorname{rank}\left(W_{m}\right)$ are independent of the choice of $m \in Q$.

Let us show that $\mathcal{L}_{m}(m \in Q)$ are isomorphic. Take $l>m$ in Q. We take a family of degenerating curves as above. We extend $W_{l \mid C_{K}}$ to \widetilde{W} on C. From $\beta_{l}=\alpha^{l-m} \beta_{m}, \beta_{l}=\mu_{L}\left(W_{l *}\right) \leq \sum \mu_{L}\left(\widetilde{W}_{\mid C_{k}^{i} *}\right)$ and $\mu_{L}\left(\widetilde{W}_{\mid C_{k}^{i} *}\right) \leq \beta_{m}$, we obtain $\mu_{L}\left(\widetilde{W}_{\mid C_{k}^{i} *}\right)=\beta_{m}$, and thus $\widetilde{W}_{\mid C_{k}^{i} *}$ are β - \mathcal{W}-subobjects of $V_{* \mid C_{k}^{i}}$. In particu$\operatorname{lar}, \mu_{L}\left(\operatorname{det}\left(\widetilde{W}_{\mid C_{k}^{i} *}\right)\right)=\mu_{L}\left(\mathcal{L}_{l * \mid C_{k}^{i}}\right)$. We also obtain $\mu_{L}\left(W_{l *}\right)=\sum \mu_{L}\left(\widetilde{W}_{\mid C_{k}^{i} *}\right)$, and hence $\operatorname{wt}\left(\widetilde{W}_{\mid C_{k}^{i} *}, D_{j, C_{k}^{i}}\right)=\operatorname{wt}\left(W_{l *}, D_{j, C_{K}}\right)=\operatorname{wt}\left(\mathcal{L}_{l *}, D_{j}\right)$. Hence we obtain $\operatorname{deg}_{L}\left(\operatorname{det}\left(\widetilde{W}_{\mid C_{k}^{i}}\right)\right)=\operatorname{deg}_{L}\left(\mathcal{L}_{l \mid C_{k}^{i}}\right)$, and thus $\mathcal{L}_{l \mid C} \simeq \operatorname{det}(\widetilde{W})$. Since the parabolic weights are also same, we have $\operatorname{det}(\widetilde{W})_{*} \simeq \mathcal{L}_{l * \mid C}$. Since C_{k}^{i} are sufficiently general in U_{m}, we obtain $\mathcal{L}_{l * \mid Y_{(m)}} \simeq \mathcal{L}_{m * \mid Y_{(m)}}$, and hence $\mathcal{L}_{l *}$ and $\mathcal{L}_{m *}$ are isomorphic. Now, let \mathcal{L}_{*} denote $\mathcal{L}_{l *}(l \in Q)$.

Let us show the existence of a \mathcal{W}-subsheaf \widetilde{W} of V, such that $\widetilde{W}_{\mid q_{(m)}^{-1}(s)}=W_{m \mid q_{(m)}^{-1}(s)}$ for a sufficiently large m. Such \widetilde{W} will contradict with the semistability of $\left(V_{*}, \eta\right)$. Let U be an open subset of X on which V is a vector bundle. We may assume that $\operatorname{codim}(X-U) \geq 2$. We put $r=\operatorname{rank}\left(W_{m}\right)$ for $m \in Q$. Let G denote the bundle of Grassmann varieties on U, whose fiber over $q \in U$ consists of the subspaces of $V_{\mid q}$ with rank r. We have the natural embedding of G into the projectivization of $\bigwedge^{r} V_{\mid U}$. Let $\Sigma \subset \bigwedge^{r} V_{\mid U}$ denote the cone over G.

Let F denote the double dual of $\bigwedge^{r} V$. We have the naturally induced saturated parabolic structure of F. Let $\mathcal{H o m}\left(\mathcal{L}_{*}, F_{*}\right)$ denote the sheaf of homomorphisms from \mathcal{L}_{*} to F_{*}, which is reflexive. We put $H:=H^{0}\left(X, \mathcal{H o m}\left(\mathcal{L}_{*}, F_{*}\right)\right)$. For any $\phi \in H$,
we put $\Sigma(\phi):=\{x \in U \mid \phi(x) \in \Sigma\}$. Since $\{\Sigma(\phi) \mid \phi \in H\}$ is bounded family, we have $q_{(m)}^{-1}(s) \not \subset \Sigma(\phi)$ for a sufficiently large m and $s \in U_{m}$, unless $\Sigma(\phi) \neq U$. On the other hand, there exists a non-trivial morphism $\phi \in H$ such that $q_{(m)}^{-1}(s) \subset \Sigma(\phi)$ for such m and s, due to the above consideration and General Enriques-Severi Lemma (Proposition $3.2[\mathbf{4 1}]$). Hence, we obtain $\Sigma(\phi)=U$ for such ϕ. The image of ϕ naturally induces the saturated subsheaf $\widetilde{W} \subset V$. If m is sufficiently large, we also obtain $\eta(\widetilde{W}) \subset \widetilde{W} \otimes \mathcal{W}$. To see it, we recall the boundedness of the family \mathcal{S} of the saturated subsheaves F of V such that $\operatorname{deg}(F) \geq C$, for some fixed C (Lemma 2.5 in [19]). So we can take a large m such that $\eta(F) \subset F \otimes \mathcal{W}(F \in \mathcal{S})$ if and only if $\eta\left(F_{\mid q^{-1}(s)}\right) \subset F_{\mid q^{-1}(s)} \otimes \mathcal{W}$ for a sufficiently general $s \in U_{m}$. Thus we are done.

Lemma 3.32. - $\left(V_{*}, \eta\right)$ is μ_{L}-stable, if and only if there exists a positive integer m_{0} such that $\left(V_{*}, \eta\right)_{\mid Y_{(m)}}$ is also μ_{L}-stable for any $m \geq m_{0}$.

Proof. - We reproduce the argument in [40]. First, let us see $\left(V_{*}, \eta\right)_{\mid q_{(m)}^{-1}(s)}$ is simple for sufficiently large m if $\left(V_{*}, \eta\right)$ is μ_{L}-stable. To show it, we have only to consider the case V_{*} is reflexive and saturated. Let $\mathcal{H o m}\left(\left(V_{*}, \eta\right),\left(V_{*}, \eta\right)\right)$ be the sheaf of endomorphisms of V which preserves the parabolic structure and commutes with η. Then, it is easy to check $\mathcal{H o m}\left(\left(V_{*}, \eta\right),\left(V_{*}, \eta\right)\right)$ is reflexive by using Lemma 2.19, and hence the claim is shown by applying General Enriques-Severi Lemma.

Let us recall the notion of socle of semistable objects, which is the direct sum of stable subobjects (See [40] for more precise. Recall we have assumed the characteristic of k is 0 .) Assume that $\left(V_{*}, \eta\right)_{\mid Y_{(m)}}$ is stable for some m. Then, it can be shown that $\left(V_{*}, \eta\right)_{\mid Y_{(l)}}$ is also stable for any $l>m$ by using a family of degenerating curves and the socle of $\left(V_{*}, \eta\right)_{\mid Y_{(l)}}$, instead of β - \mathcal{W}-subobjects. So we assume that $\left(V_{*}, \eta\right)_{\mid Y_{(m)}}$ is not stable for any m, and we will show that $\left(V_{*}, \eta\right)$ is not μ_{L}-stable.

Let N be sufficiently large. By shrinking U_{m} appropriately for $m \geq N$, we may assume (i) $\left(V_{*}, \eta\right)_{\mid q_{(m)}^{-1}(s)}$ is simple and semistable for any $s \in U_{m}$, (ii) the socle of $\left(V_{*}, \eta\right)_{\mid Y_{(m)}}$ is extended to $W_{m *} \subset p_{(m)}^{*} V_{* \mid q_{(m)}^{-1}\left(U_{m}\right)}$, (iii) $W_{m * \mid q_{(m)}^{-1}(s)}$ is the socle of $\left(V_{*}, \eta\right)_{\mid q_{(m)}^{-1}(s)}$ for any $s \in U_{m}$. Since $\left(V_{*}, \eta\right)_{\mid q_{(m)}^{-1}(s)}$ are simple, $W_{m} \neq p_{(m)}^{*} V_{\mid q_{(m)}^{-1}\left(U_{m}\right)}$. We have the parabolic line bundle $\mathcal{L}_{m *}$ on (X, D) corresponding to $\operatorname{det}\left(W_{m * \mid Y_{(m)}}\right)$ on $\left(Y_{(m)}, Y_{(m)}^{D}\right)$. We have $\mu_{L}\left(\mathcal{L}_{m, *}\right)=\operatorname{rank}\left(W_{m}\right) \cdot \mu_{L}\left(V_{*}\right)$. Hence, we can take a subsequence $Q \subset\{m\}$ such that $\operatorname{rank} W_{m}, \operatorname{wt}\left(\mathcal{L}_{m *}, D_{i}\right)$ and $\operatorname{deg}\left(\mathcal{L}_{m}\right)$ are independent of $m \in Q$. We put $r:=\operatorname{rank} W_{m}$ for $m \in Q$.

Let G_{m} denote the bundle of Grassmann varieties on $q_{(m)}^{-1}\left(U_{m}\right)$, whose fiber over $Q \in q_{(m)}^{-1}\left(U_{m}\right)$ consists of the subspace of $p_{(m)}^{*}(V)_{\mid Q}$ with rank r. We have the natural embedding of G_{m} into the projectivization of $p_{(m)}^{*}\left(\bigwedge^{r} V\right)_{\mid q_{(m)}^{-1}\left(U_{m}\right)}$. Let \widehat{G}_{m} denote the cone over G_{m}.

Take $m_{0} \in Q$, and let E denote the set of $\mathcal{L}_{*} \in \operatorname{Pic}(X, D)$ with $\mu_{L}\left(\mathcal{L}_{*}\right)=r$. $\mu_{L}\left(V_{*}\right)$ such that there exists $\phi: \mathcal{L}_{* \mid Y_{\left(m_{0}\right)}} \longrightarrow \bigwedge^{r} V_{* \mid Y_{\left(m_{0}\right)}}$ with $\phi\left(\mathcal{L}_{\mid Y_{\left(m_{0}\right)}}\right) \subset \widehat{G}_{m_{0}}$ and
$\eta(\operatorname{Im} \phi) \subset \operatorname{Im} \phi \times W$. By the same argument as the proof of Lemmas 2.7-2.8 of [40], it can be shown that E is finite.

Let us show that $\mathcal{L}_{l} \in E$ for any $l \in Q$ with $l>m_{0}$. Let C be a family of degenerating curves. We extend $W_{l \mid C_{K}}$ to $\widetilde{W} \subset V_{*}$. We have the inequalities $\mu_{L}\left(W_{l *}\right) \leq$ $\sum \mu_{L}\left(\widetilde{W}_{\mid C_{k}^{i} *}\right), \mu_{L}\left(\widetilde{W}_{\mid C_{k}^{i} *}\right) \leq \alpha^{m} \mu_{L}\left(V_{*}\right)$ and the equality $\mu_{L}\left(W_{l *}\right)=\alpha^{l} \mu_{L}\left(V_{*}\right)$. Thus, the inequalities are actually equalities. Hence, we have $\operatorname{wt}\left(\operatorname{det}(\widetilde{W})_{\mid C_{k}^{i} *}, D_{j, C_{k}^{i}}\right)=$ $\operatorname{wt}\left(\mathcal{L}_{l *}, D_{j}\right)$ and $\mu_{L}\left(\operatorname{det}(\widetilde{W})_{\mid C_{k}^{i}, *}\right)=\mu_{L}\left(\mathcal{L}_{l * \mid C_{k}^{i}}\right)$. Therefore, we obtain $\mathcal{L}_{l * \mid C} \simeq$ $\operatorname{det}(\widetilde{W})_{*}$. In particular, $\mathcal{L}_{l * \mid C_{k}^{i}} \simeq \operatorname{det}\left(\widetilde{W}_{\mid C_{k}^{i}}\right)_{*}$. Since C_{k}^{i} are sufficiently general, we obtain $\mathcal{L}_{l *} \in E$.

Then, we can take a subsequence $Q^{\prime} \subset Q$ such that $\mathcal{L}_{m *}$ are isomorphic ($m \in Q^{\prime}$). The rest of the argument is same as the last part of the proof of Lemma 3.31.
3.4.6. End of Proof of Proposition 3.29. - We have only to show the "only if" part. We reproduce the argument in [55]. Assume the μ_{L}-stability of $\left(V_{*}, \theta\right)$. Let $Y=Y_{1} \cap \cdots \cap Y_{t}$ be a generic complete intersection, where $\operatorname{deg}_{L}\left(Y_{i}\right)$ are appropriately large numbers. We put $Y^{(i)}:=Y_{1} \cap \cdots \cap Y_{i}$ and $Y^{(0)}:=X$. We also put $D^{(i)}:=$ $D \cap Y^{(i)}$ and $D^{(0)}=D$. We put $C_{1}:=\prod_{i=1}^{t}\left(\operatorname{deg}_{L}\left(Y_{i}\right) / \int_{X} c_{1}(L)^{n}\right)$. We put $\mathcal{W}^{(i)}:=$ $\Omega_{Y^{(i)}}\left(\log D^{(i)}\right)_{\mid Y}$. Let $\theta_{Y}^{(i)}$ denote the induced $\mathcal{W}^{(i)}$-operation of $V_{* \mid Y}$. We may assume that $\left(V_{* \mid Y}, \theta_{Y}^{(0)}\right)$ is μ_{L}-stable due to Lemma 3.32. By applying the Mehta-Ramanathan type theorem to the Harder-Narasimhan filtration of V_{*}, we may have a constant B such that (i) it is independent of the choice of Y_{i} and a sufficiently large $\operatorname{deg}_{L}\left(Y_{i}\right)$, (ii) par- $\operatorname{deg}_{L}\left(F_{*}\right) \leq B \cdot C_{1}$ for any $F_{*} \subset V_{* \mid Y}$. We show that $\left(V_{*}, \theta^{(i)}\right)$ are μ_{L}-stable by an induction.

Assume that the claim holds for $i-1$. Let F_{*} be a $\mathcal{W}^{(i)}$-object of $V_{* \mid Y}$ such that $\mu_{L}\left(F_{*}\right) \geq \mu_{L}\left(V_{* \mid Y}\right)=\mu_{L}\left(V_{*}\right) \cdot C_{1}$, and we will derive the contradiction. We put $G:=V / F$, which is provided with the induced parabolic structure. Then, we have the induced map $\theta: F_{*} \longrightarrow G_{*}\left(-Y_{i}\right)$. Let H denote the kernel. Let N denote the saturated subsheaf of $G\left(-Y_{i}\right)$ generated by F / H, provided with the induced parabolic structure. We have $\mu\left((F / H)_{*}\right) \leq \mu\left(N_{*}\right)$. Let $J \subset E_{*}\left(-Y_{i}\right)$ denote the pull back of N via $E\left(-Y_{i}\right) \longrightarrow G\left(-Y_{i}\right)$ with the induced parabolic structure. We obtain the following:

$$
\begin{align*}
& B \cdot C_{1} \geq \operatorname{par}^{-d^{2}}{ }_{L}\left(J\left(Y_{i}\right)_{*}\right) \geq \operatorname{par}^{-d^{2}}{ }_{L}\left(F_{*}\right)+\operatorname{par}-\operatorname{deg}_{L}\left(N_{*}\left(Y_{i}\right)\right) \tag{16}\\
& \geq 2 \operatorname{par}^{-\operatorname{deg}_{L}}\left(F_{*}\right)-\operatorname{par}^{-\operatorname{deg}_{L}}\left(H_{*}\right)+\operatorname{rank}(F / H) \cdot \operatorname{deg}_{L}\left(\mathcal{O}\left(Y_{i}\right)_{\mid Y}\right) \\
& \geq\left(2 \operatorname{rank}(F) \cdot \mu\left(V_{*}\right)-B\right) \cdot C_{1}+\operatorname{rank}(F / H) \cdot \operatorname{deg}_{L}\left(\mathcal{O}\left(Y_{i}\right)_{\mid Y}\right)
\end{align*}
$$

If $\operatorname{deg}_{L}\left(Y_{i}\right)$ is sufficiently large, $\operatorname{deg}_{L}\left(\mathcal{O}\left(Y_{i}\right)_{\mid Y}\right)$ is much larger than C_{1}. Hence $\operatorname{rank}(F / H)$ must be 0 , and hence F is actually a $\mathcal{W}^{(i-1)}$-subobject, which contradicts with the μ_{L}-semistability of $\left(V_{* \mid Y}, \theta^{(i-1)}\right)$. Thus the induction can proceed.

3.5. Adapted Metric and the Associated Parabolic Flat Higgs Bundle

We recall a 'typical' example of filtered sheaf. Let E be a holomorphic vector bundle on $X-D$. If we are given a hermitian metric h of E, we obtain the $\mathcal{O}_{X^{-}}$ module ${ }_{c} E(h)$ for any $\boldsymbol{c} \in \boldsymbol{R}^{S}$, as is explained in the following. Let us take hermitian metrics h_{i} of $\mathcal{O}\left(D_{i}\right)$. Let $\sigma_{i}: \mathcal{O} \longrightarrow \mathcal{O}\left(D_{i}\right)$ denote the canonical section. We denote the norm of σ_{i} with respect to h_{i} by $\left|\sigma_{i}\right|_{h_{i}}$. For any open set $U \subset X$, we put as follows:

$$
\Gamma\left(U,{ }_{c} E(h)\right):=\left\{\left.f \in \Gamma(U \backslash D, E)| | f\right|_{h}=O\left(\prod\left|\sigma_{i}\right|_{h_{i}}^{-c_{i}-\epsilon}\right) \forall \epsilon>0\right\} .
$$

Thus we obtain the \mathcal{O}_{X}-module ${ }_{c} E(h)$. We also put $\boldsymbol{E}(h):=\bigcup_{c} \boldsymbol{c} E(h)$.
Remark 3.33. - In general, ${ }_{c} E(h)$ are not coherent.
Definition 3.34. - Let $\widetilde{\boldsymbol{E}}_{*}$ be a filtered vector bundle. We put $E:=\widetilde{E}=\widetilde{\boldsymbol{E}}_{\mid X-D}$. A hermitian metric h of E is called adapted to the parabolic structure of $\widetilde{\boldsymbol{E}}_{*}$, if the isomorphism $E \simeq \widetilde{E}$ is extended to the isomorphisms ${ }_{c} E(h) \simeq{ }_{c} \widetilde{E}$ for any $\boldsymbol{c} \in \boldsymbol{R}^{S}$.

The following result is proved in [44].
Proposition 3.35. - Let $\left(E, \bar{\partial}_{E}, \theta, h\right)$ be a tame harmonic bundle on $X-D$. Then, we obtain the \boldsymbol{c}-parabolic Higgs bundle $\left({ }_{c} E(h)_{*}, \theta\right)$ on (X, D) by the above construction.

Proof. - By Theorems 8.58 and 8.59 in [44] (the $\lambda=0$ case), ${ }_{c} E(h)_{*}$ with the induced filtrations is a \boldsymbol{c}-parabolic bundle. By Corollary 8.89 in [44], θ is regular.

3.6. Convergence

We give the definition of convergence of a sequence of parabolic Higgs bundles. Although we need such a notion only in the case where the base complex manifold is a curve, the definition is given generally. Let X be a complex manifold, and $D=\bigcup_{j \in S} D_{j}$ be a simple normal crossing divisor of X. Let p be a number which is sufficiently larger than $\operatorname{dim} X$. Let b be any positive integer.

Definition 3.36. - Let $\left(E^{(i)}, \bar{\partial}^{(i)}, \boldsymbol{F}^{(i)}, \theta^{(i)}\right)(i=1,2, \ldots)$ be a sequence of \boldsymbol{c} parabolic Higgs bundles on (X, D). We say that the sequence $\left\{\left(E^{(i)}, \bar{\partial}^{(i)}, \boldsymbol{F}^{(i)}, \theta^{(i)}\right)\right\}$ weakly converges to $\left(E^{(\infty)}, \bar{\partial}^{(\infty)}, \boldsymbol{F}^{(\infty)}, \theta^{(\infty)}\right)$ in L_{b}^{p} on X, if there exist locally L_{b}^{p}-isomorphisms $\Phi^{(i)}: E^{(i)} \longrightarrow E^{(\infty)}$ on X satisfying the following conditions:

- The sequence $\left\{\Phi^{(i)}\left(\bar{\partial}^{(i)}\right)-\bar{\partial}^{(\infty)}\right\}$ converges to 0 weakly in L_{b-1}^{p} locally on X.
- The sequence $\left\{\Phi^{(i)}\left(\theta^{(i)}\right)-\theta^{(\infty)}\right\}$ converges to 0 weakly in L_{b-1}^{p} locally on X, as sections of $\operatorname{End}\left(E^{(\infty)}\right) \otimes \Omega^{1,0}(\log D)$.
- For simplicity, we assume that $\Phi^{(i)}$ are C^{∞} around D.
- The sequence $\left\{\Phi^{(i)}\left({ }^{j} F^{(i)}\right)\right\}$ converges to ${ }^{j} F^{(\infty)}$ in an obvious sense. More precisely, for any $\delta>0, j \in S$ and $\left.a \in] c_{j}-1, c_{j}\right]$, there exists m_{0} such that $\operatorname{rank}^{j} F_{a}^{(\infty)}=\operatorname{rank}^{j} F_{a+\delta}^{(i)}$ and that ${ }^{j} F_{a}^{(\infty)}$ and $\Phi^{(i)}\left({ }^{j} F_{a+\delta}^{(i)}\right)$ are sufficiently close in the Grassmann varieties, for any $i>m_{0}$.

Lemma 3.37. - Let X be a smooth projective variety, and D be a simple normal crossing divisor of X. Assume that a sequence of \boldsymbol{c}-parabolic Higgs bundles $\left\{\left(E^{(i)}, \bar{\partial}^{(i)}, \boldsymbol{F}^{(i)}, \theta^{(i)}\right)\right\}$ on (X, D) converges to $\left(E^{(\infty)}, \bar{\partial}^{(\infty)}, \boldsymbol{F}^{(\infty)}, \theta^{(\infty)}\right)$ weakly in L_{b}^{p} on X. Assume that there exist non-zero holomorphic sections $s^{(i)}$ of $\left(E^{(i)}, \bar{\partial}^{(i)}\right)$ such that $\theta^{(i)}\left(s^{(i)}\right)=0$ and that $s_{\mid P}^{(i)} \in{ }^{j} F_{0}\left(E_{\mid P}^{(i)}\right)$ for any $P \in D_{j}$ and $j \in S$.

Then there exists a non-zero holomorphic section $s^{(\infty)}$ of $\left(E^{(\infty)}, \bar{\partial}^{(\infty)}\right)$ such that $\theta^{(\infty)}\left(s^{(\infty)}\right)=0$ and that $s_{\mid P}^{(\infty)} \in{ }^{j} F_{0}\left(E_{\mid P}^{(\infty)}\right)$ for any $P \in D_{j}$ and $j \in S$.
Proof. - Let us take a C^{∞} _metric \widetilde{h} of $E^{(\infty)}$ on X. We put $t^{(i)}:=\Phi^{(i)}\left(s^{(i)}\right)$. Since p is large, we remark that $\Phi^{(i)}$ are C^{0}. Hence we have $\max _{P \in X}\left|t^{(i)}(P)\right|_{\widetilde{h}}$. We may assume $\max _{P \in X}\left|t^{(i)}(P)\right|_{\tilde{h}}=1$.

We have $\Phi^{(i)}\left(\bar{\partial}^{(i)}\right)=\bar{\partial}^{(\infty)}+a_{i}$, and hence $\bar{\partial}^{(\infty)} t^{(i)}=-a_{i}\left(t^{(i)}\right)$. Due to $\left|t^{(i)}\right| \leq 1$ and $a_{i} \longrightarrow 0$ weakly in L_{b-1}^{p}, the L_{b}^{p}-norm of $t^{(i)}$ are bounded. Hence we can take an appropriate subsequence $\left\{t^{(i)} \mid i \in I\right\}$ which weakly converges to $s^{(\infty)}$ in L_{b}^{p} on X. In particular, $\left\{t^{(i)}\right\}$ converges to a section $s^{(\infty)}$ in C^{0}. Due to $\max _{P}\left|s^{(\infty)}(P)\right|_{\widetilde{h}}=1$, the section $s^{(\infty)}$ is non-trivial. We also have $\bar{\partial}^{(\infty)} s^{(\infty)}=0$ in L_{b-1}^{p}, and hence $s^{(\infty)}$ is a non-trivial holomorphic section of $\left(E^{(\infty)}, \bar{\partial}^{(\infty)}\right)$. It is easy to see that $s^{(\infty)}$ has the desired property.

Corollary 3.38. - Let (X, D) be as in Lemma 3.37. Assume that a sequence of \boldsymbol{c} parabolic Higgs bundles $\left\{\left(E^{(i)}, \bar{\partial}^{(i)}, \boldsymbol{F}^{(i)}, \theta^{(i)}\right)\right\}$ on (X, D) weakly converges to both $\left(E, \bar{\partial}_{E}, \boldsymbol{F}, \theta\right)$ and $\left(E^{\prime}, \bar{\partial}_{E^{\prime}}, \boldsymbol{F}^{\prime}, \theta^{\prime}\right)$ in L_{b}^{p} on X. Then there exists a non-trivial holomorphic map $f:\left(E, \bar{\partial}_{E}\right) \longrightarrow\left(E^{\prime}, \bar{\partial}_{E^{\prime}}\right)$ on X which is compatible with the parabolic structures and the Higgs fields.

CHAPTER 4

AN ORDINARY METRIC FOR A PARABOLIC HIGGS BUNDLE

In this chapter, we would like to explain about an ordinary metric for parabolic Higgs bundles, which is a metric adapted to the parabolic structure. Such a metric has been standard in the study of parabolic bundles (for example, see [4], [36] and [35]). It is our purpose to see that it gives a rather good metric when the parabolic Higgs bundle is graded semisimple. (If it is not graded semisimple, we need more complicated metric as discussed in [5] and [52].) After giving estimates around the intersection and the smooth part of the divisor in Sections 4.1 and 4.2, we see some properties of an ordinary metric in Section 4.3.

4.1. Around the Intersection $D_{i} \cap D_{j}$

4.1.1. Construction of a metric. - We put $X:=\left\{\left(z_{1}, z_{2}\right) \in C^{2}| | z_{i} \mid<1\right\}$, $D_{i}:=\left\{z_{i}=0\right\}$ and $D=D_{1} \cup D_{2}$. Take a positive number ϵ, and let ω_{ϵ} denote the following metric, for some positive number N :

$$
\sum\left(\epsilon^{N+2} \cdot\left|z_{i}\right|^{2 \epsilon}+\left|z_{i}\right|^{2}\right) \cdot \frac{d z_{i} \cdot d \bar{z}_{i}}{\left|z_{i}\right|^{2}} .
$$

Let $\left({ }_{c} E_{*}, \theta\right)$ be a c-parabolic Higgs bundle on (X, D). We put $E:={ }_{c} E_{\mid X-D}$. We take a positive number ϵ such that $10 \epsilon<\operatorname{gap}\left({ }_{c} E_{*}\right)$. We have the description:

$$
\theta=f_{1} \cdot \frac{d z_{1}}{z_{1}}+f_{2} \cdot \frac{d z_{2}}{z_{2}}, \quad f_{i} \in \operatorname{End}\left(c_{c} E\right)
$$

We have $\operatorname{Res}_{i}(\theta)=f_{i \mid D_{i}}$.

Assumption 4.1

- The eigenvalues of $\operatorname{Res}_{i}(\theta)$ are constant. The sets of the eigenvalues of $\operatorname{Res}_{i}(\theta)$ are denoted by S_{i}.
- We have the decomposition:

$$
{ }_{c} E=\bigoplus_{\boldsymbol{\alpha} \in S_{1} \times S_{2}}{ }_{c} E_{\boldsymbol{\alpha}} \quad \text { such that } \quad f_{i}\left({ }_{c} E_{\boldsymbol{\alpha}}\right) \subset{ }_{c} E_{\boldsymbol{\alpha}} .
$$

There are some positive constants C and η such that any eigenvalue β of $f_{i \mid E_{\alpha}}$ satisfies $\left|\beta-\alpha_{i}\right| \leq C \cdot\left|z_{i}\right|^{\eta}$ for $\boldsymbol{\alpha}=\left(\alpha_{1}, \alpha_{2}\right)$.

Remark 4.2. - The first condition is satisfied, when we are given a projective surface X^{\prime} with a simple normal crossing divisor D^{\prime} and a \boldsymbol{c}-parabolic Higgs bundle (${ }_{c^{\prime}} E^{\prime} * \theta^{\prime}$) on $\left(X^{\prime}, D^{\prime}\right)$, such that $(X, D) \subset\left(X^{\prime}, D^{\prime}\right)$ and $\left({ }_{c} E_{*}, \theta\right)=\left(c^{\prime} E^{\prime}, \theta^{\prime}\right)_{\mid X}$. The second condition is also satisfied, if we replace X with a smaller open subset around the origin $O=(0,0)$.

In the following, we replace X with a smaller open subset containing O without mentioning, if it is necessary. Let us take a holomorphic decomposition ${ }_{c} E_{\alpha}=$ $\bigoplus_{a \in \boldsymbol{R}^{2}} U_{\boldsymbol{\alpha}, \boldsymbol{a}}$ satisfying the following conditions, where b_{i} denotes the i-th component of \boldsymbol{b} :

$$
\bigoplus_{\boldsymbol{b} \leq \boldsymbol{a}} U_{\boldsymbol{\alpha}, \boldsymbol{b} \mid O}={ }^{1} F_{a_{1} \mid O} \cap{ }^{2} F_{a_{2} \mid O} \cap{ }_{\boldsymbol{c}} E_{\boldsymbol{\alpha} \mid O}, \quad \bigoplus_{b_{i} \leq a} U_{\boldsymbol{\alpha}, \boldsymbol{b} \mid D_{i}}={ }_{\boldsymbol{c}} E_{\boldsymbol{\alpha} \mid D_{i}} \cap^{i} F_{a} .
$$

We take a holomorphic frame $\boldsymbol{v}=\left(v_{1}, \ldots, v_{r}\right)$ compatible with the decomposition, i.e., we have $\left(\boldsymbol{a}\left(v_{j}\right), \boldsymbol{\alpha}\left(v_{j}\right)\right) \in \boldsymbol{R}^{2} \times \boldsymbol{C}^{2}$ for each v_{j} such that $v_{j} \in U_{\boldsymbol{\alpha}\left(v_{j}\right), \boldsymbol{a}\left(v_{j}\right)}$. Let h_{0}^{\prime} be the hermitian metric of ${ }_{c} E$ for which \boldsymbol{v} is orthonormal. Let h_{0} be the hermitian metric of E such that $h_{0}\left(v_{i}, v_{j}\right)=h_{0}^{\prime}\left(v_{i}, v_{j}\right) \cdot\left|z_{1}\right|^{-2 a_{1}\left(v_{i}\right)} \cdot\left|z_{2}\right|^{-2 a_{2}\left(v_{i}\right)}$, where $a_{j}\left(v_{i}\right)$ denotes the j-th component of $\boldsymbol{a}\left(v_{i}\right)$. We put as follows:

$$
A=A_{1}+A_{2}, \quad A_{i}=\bigoplus\left(-a_{i} \frac{d z_{i}}{z_{i}}\right) \cdot \operatorname{id}_{U_{\boldsymbol{\alpha}, \boldsymbol{a}}}
$$

Then, we have $\partial_{h_{0}}=\partial_{h_{0}^{\prime}}+A$. We also have $R\left(h_{0}\right)=R\left(h_{0}^{\prime}\right)=0$.

4.1.2. Estimate of $F\left(h_{0}\right)$ in the graded semisimple case

Proposition 4.3. - If $\left({ }_{c} E_{*}, \theta\right)$ is graded semisimple in the sense of Definition 3.25, then $F\left(h_{0}\right)$ is bounded with respect to ω_{ϵ} and h_{0}.

Proof. - Since we have $F\left(h_{0}\right)=R\left(h_{0}\right)+\left[\theta, \theta^{\dagger}\right]+\partial_{h_{0}} \theta+\bar{\partial} \theta^{\dagger}$, we have only to estimate $\left[\theta, \theta^{\dagger}\right], \partial_{h_{0}} \theta$ and $\bar{\partial} \theta^{\dagger}$. We have the natural decompositions $f_{i}=\bigoplus f_{i \boldsymbol{\alpha}}$ for $i=1,2$, where $f_{i \boldsymbol{\alpha}} \in \operatorname{End}\left({ }_{\boldsymbol{c}} E_{\boldsymbol{\alpha}}\right)$. Since the decomposition of $E=\bigoplus E_{\boldsymbol{\alpha}}$ is orthogonal with respect to h_{0}, the adjoint f_{i}^{\dagger} of f_{i} with respect to h_{0} preserves the decomposition. Hence we have the decomposition $f_{i}^{\dagger}=\bigoplus f_{i \boldsymbol{\alpha}}^{\dagger}$, and $f_{i \boldsymbol{\alpha}}^{\dagger}$ is the adjoint of $f_{i \boldsymbol{\alpha}}$ with respect to $h_{0 \mid U_{a, \alpha}}$.

Let us show that $\left[\theta, \theta^{\dagger}\right]$ is bounded with respect to h_{0} and ω_{ϵ}. We put $N_{i}:=$ $f_{i}-\bigoplus_{\alpha} \alpha_{i} \cdot \mathrm{id}_{c E_{\alpha}}$ for $i=1,2$, and then we have $\left[f_{i}, f_{j}^{\dagger}\right]=\bigoplus_{\alpha}\left[N_{i}, N_{j}^{\dagger}\right]$. Since $\left({ }_{c} E_{*}, \theta\right)$ is graded semisimple, we have $N_{1 \mid D_{1}}\left({ }^{1} F_{a}\right) \subset{ }^{1} F_{<a}$. We also have $N_{1 \mid D_{2}}\left({ }^{2} F_{a}\right) \subset{ }^{2} F_{a}$. Hence, we obtain $\left|N_{1}\right|_{h_{0}} \leq C \cdot\left|z_{1}\right|^{2 \epsilon}$ for some positive constant C. Similarly we can obtain the estimate $\left|N_{2}\right|_{h_{0}} \leq C \cdot\left|z_{2}\right|^{2 \epsilon}$. Thus we obtain the boundedness of $\left[\theta, \theta_{h_{0}}^{\dagger}\right]$ with respect to h_{0} and ω_{ϵ}.

Let us see the estimate of $\partial_{h_{0}} \theta$. We have the following, where α_{1} denotes the first component of $\boldsymbol{\alpha}$:

$$
\partial_{h_{0}}\left(f_{1} \cdot \frac{d z_{1}}{z_{1}}\right)=\partial_{h_{0}}\left(\sum_{\boldsymbol{\alpha}} \alpha_{1} \cdot \operatorname{id}_{E_{\alpha}} \cdot \frac{d z_{1}}{z_{1}}\right)+\partial_{h_{0}^{\prime}}\left(N_{1} \frac{d z_{1}}{z_{1}}\right)+\left[A_{2}, N_{1} \frac{d z_{1}}{z_{1}}\right] .
$$

The first term is 0 . We put $\Omega:=d z_{1} \wedge d z_{2} / z_{1} \cdot z_{2}$. Let us see the second term $\partial_{h_{0}^{\prime}} N_{1} \cdot d z_{1} / z_{1}=: G_{0} \cdot \Omega$. Then, G_{0} is a C^{∞}-section of $\operatorname{End}(E)$ satisfying $G_{0 \mid D_{1}}\left({ }^{1} F_{a}\right) \subset$ ${ }^{1} F_{<a}$ and $G_{0 \mid D_{2}}=0$. Let us see the third term $\left[A_{2}, N_{1}\right] \cdot d z_{2} / z_{2}=: G_{1} \cdot \Omega$. Then, G_{1} is a C^{∞}-section of $\operatorname{End}(E)$ such that $G_{1 \mid D_{i}}\left({ }^{i} F_{a}\right) \subset{ }^{i} F_{<a}$. Hence, the second and the third terms are bounded. Thus we obtain the boundedness of $\partial_{h_{0}} \theta$. Since $\bar{\partial} \theta_{h_{0}}^{\dagger}$ is adjoint of $\partial_{h_{0}} \theta$ with respect to h_{0}, it is also bounded. Thus the proof of Proposition 4.3 is finished.

4.2. Around a Smooth Point of the Divisor

4.2.1. Setting. - Let Y be a complex curve, and L be a line bundle on Y. Let \mathcal{U} be a neighbourhood of Y in L. The projection $L \longrightarrow Y$ induces $\pi: \mathcal{U} \longrightarrow Y$. Let σ denote the canonical section of $\pi^{*} L$. Let $|\cdot|$ be a hermitian metric of $\pi^{*} L$. Thus, we obtain the function $|\sigma|: \mathcal{U} \longrightarrow \boldsymbol{R}$. Let J_{0} denote the complex structure of \mathcal{U} as the open subset of L, and let J be any other integrable complex structure such that $J-J_{0}=O(|\sigma|)$. We regard \mathcal{U} as a complex manifold via the complex structure J. The (0,1)-operator $\bar{\partial}$ is induced by J.

Let $\left(E, \bar{\partial}_{E}\right)$ be a holomorphic vector bundle on \mathcal{U}. We put $E_{Y}:=E_{\mid Y}$, and let F be a filtration of E_{Y} in the category of holomorphic vector bundles indexed by \boldsymbol{R}. For later use, we also consider the case where F is not necessarily a c-parabolic filtration for any $c \in \boldsymbol{R}$, i.e., $S(F)=\left\{a \mid \operatorname{Gr}_{a}^{F}(E) \neq 0\right\}$ is not contained in any interval $\left.] c-1, c\right]$ of the length 1 . Thus $E_{*}=(E, F)$ may be a parabolic bundle in a slightly generalized sense (Remark 3.6). But, if F is not a c-parabolic filtration, we will assume (i) $J=J_{0}$ and (ii) the decomposition $E=\bigoplus E_{u}$ (see Subsection 4.2.2) is given holomorphically. In the case F is a c-parabolic filtration, we have the number $\operatorname{gap}(F):=\operatorname{gap}(E, F)$ as in Subsection 3.1.1. Otherwise, we put $\operatorname{gap}(F):=\max \{|a-b| \neq 0 \mid a, b \in S(F)\}$. Let ϵ be a positive number such that $10 \epsilon<\operatorname{gap}(F)$. Let ω be a Kahler form of \mathcal{U}. Take a small positive number C and a large real number N. Then, we put $\omega_{\epsilon}:=\omega+C \cdot \epsilon^{N} \sqrt{-1} \partial \bar{\partial}|\sigma|^{2 \epsilon}$, which gives a Kahler form of $\mathcal{U} \backslash Y$.

Let θ be a Higgs field of E_{*} in the sense of Remark 3.6. We put $f:=\operatorname{Res}(\theta) \in$ $\operatorname{End}\left(E_{Y}\right)$.

Assumption 4.4. - The eigenvalues of f are assumed to be constant on Y. (See Remark 4.2.)
4.2.2. Construction of a metric. - We construct a hermitian metric of $E_{\mid \mathcal{U}-Y}$ adapted to the filtration, by following [35] and [36] essentially. (See also [4].) We have the generalized eigen decomposition $E_{Y}=\bigoplus_{\alpha \in C} \operatorname{Gr}_{\alpha}^{\mathbb{E}}\left(E_{Y}\right)$ with respect to f. We also have the generalized eigen decomposition $\operatorname{Gr}_{a}^{F}\left(E_{Y}\right)=\bigoplus_{\alpha} \operatorname{Gr}_{(a, \alpha)}^{F, \mathbb{E}}\left(E_{Y}\right)$ of $\operatorname{Gr}_{a}^{F}\left(E_{Y}\right)$ with respect to $\operatorname{Gr}^{F}(f)$. Then we put $\widehat{E}_{Y, u}:=\operatorname{Gr}_{u}^{F, \mathbb{E}}\left(E_{Y}\right)$ for $u \in \boldsymbol{R} \times \boldsymbol{C}$, and $\widehat{E}_{Y}:=\bigoplus \widehat{E}_{Y, u}$.

Let h_{0}^{\prime} be a C^{∞}-metric of E on \mathcal{U}. The holomorphic structure of E and the metric h_{0}^{\prime} induces the unitary connection ∇_{0} of E on \mathcal{U}. We put $h_{Y}:=h_{0 \mid Y}^{\prime}$. We assume that the decomposition $E_{Y}=\bigoplus \operatorname{Gr}_{\alpha}^{\mathbb{E}}\left(E_{Y}\right)$ is orthogonal with respect to h_{Y}. The holomorphic structure of E_{Y} and the metric h_{Y} induce the unitary connection $\nabla_{E_{Y}}$ of E_{Y}. Thus the connection $\nabla_{\pi^{*} E_{Y}}$ is induced on $\pi^{*} E_{Y}$. Then, we can take a $C^{\infty_{-}}$ isometry $\Phi: \pi^{*} E_{Y} \longrightarrow E$ such that $\nabla_{0} \circ \Phi-\Phi \circ \pi^{*} \nabla_{E_{Y}}=O(|\sigma|)$ with respect to ω, as in $[\mathbf{3 5}]$. To see it, we take any isometry Φ^{\prime} such that $\Phi_{\mid Y}^{\prime}$ is the identity. We identify E and $\pi^{*} E$ via Φ^{\prime} for a while. Let $\mathfrak{u}(E)$ be the bundle of anti-hermitian endomorphisms of E. We have the section $A=\nabla_{0}-\nabla_{\pi^{*} E_{Y}}$ of $\mathfrak{u}(E) \otimes \Omega_{\mathcal{U}}^{1}$. We can take a C^{∞}-section B of $\mathfrak{u}(E)$ such that $B=O(|\sigma|)$ and $\nabla_{\pi^{*} E_{Y}} B-A=O(|\sigma|)$, which can be easily checked by using the partition of unity on Y. Then we obtain $g^{-1} \circ \nabla_{\pi^{*} E_{Y}} g-\nabla_{0}=O(|\sigma|)$ for $g=\exp (B)$, which implies the existence of an appropriate isometry Φ. We identify E and $\pi^{*} E_{Y}$ via such a Φ as C^{∞}-bundles.

The metric h_{Y} induces the orthogonal decomposition $\operatorname{Gr}_{\alpha}^{\mathbb{E}}\left(E_{Y}\right)=\bigoplus_{a \in \boldsymbol{R}} \mathcal{G}_{(a, \alpha)}$ such that $\bigoplus_{a \leq b} \mathcal{G}_{(a, \alpha)}=F_{b} \operatorname{Gr}_{\alpha}^{\mathbb{E}}(E)$. We have the natural C^{∞}-isomorphism $\mathcal{G}_{u} \simeq \widehat{E}_{Y, u}$, and thus $E_{Y} \simeq \widehat{E}_{Y}$. We identify them as C^{∞}-bundles via the isomorphism. Let $h_{Y, u}$ denote the restriction of h_{Y} to \mathcal{G}_{u} for $u \in \boldsymbol{R} \times \boldsymbol{C}$. We put $E_{u}:=\pi^{*} \mathcal{G}_{u}$, and thus $E=\bigoplus E_{u}$ and $h_{0}^{\prime}=\pi^{*} h_{Y}=\bigoplus \pi^{*} h_{Y, u}$. We put as follows:

$$
\begin{equation*}
h_{0}:=\bigoplus \pi^{*} h_{Y,(a, \alpha)} \cdot|\sigma|^{-2 a} \tag{17}
\end{equation*}
$$

4.2.3. Estimate of $R\left(h_{0}\right)$. - We put $\Gamma:=\bigoplus a \cdot \operatorname{id}_{E_{a, \alpha}}$.

Lemma 4.5. - $R\left(h_{0}, \bar{\partial}_{E}\right)$ is bounded with respect to ω_{ϵ} and h_{0}. More strongly, we have the following estimate, with respect to h_{0} and ω_{ϵ} :

$$
\begin{equation*}
R\left(h_{0}, \bar{\partial}_{E}\right)=\bigoplus_{u \in \boldsymbol{R} \times \boldsymbol{C}} \pi^{*} R\left(h_{Y, u}, \bar{\partial}_{\widehat{E}_{Y, u}}\right)+\Gamma \cdot \bar{\partial} \partial \log |\sigma|^{-2}+O\left(|\sigma|^{\epsilon}\right) \tag{18}
\end{equation*}
$$

Proof. - Let $\bar{\partial}_{1}$ denote the $(0,1)$-part of $\pi^{*} \nabla_{\widehat{E}_{Y}}$. Let T denote the $(0,1)$-part of $\nabla_{0}-\pi^{*} \nabla_{E_{Y}}$. We put $S=\bar{\partial}_{E_{Y}}-\bar{\partial}_{\widehat{E}_{Y}}$. We put $Q=T+\pi^{*} S$. Then, we have $\bar{\partial}_{E}=\bar{\partial}_{1}+Q$. We have $S\left(F_{a}\right) \subset F_{<a} \otimes \Omega_{Y}^{0,1}$, and $T_{Y Y}=0$ in $\left(\operatorname{End}(E) \otimes \Omega_{\mathcal{U}}^{1}\right)_{\mid Y}$. Hence, we have $Q=O\left(|\sigma|^{4 \epsilon}\right)$. The operator $\partial_{1, h_{0}}$ is determined by the condition $\bar{\partial} h_{0}(u, v)=h_{0}\left(\bar{\partial}_{1} u, v\right)+h_{0}\left(u, \partial_{1, h_{0}} v\right)$ for smooth sections u and v of E. Similarly, we obtain the operator $\partial_{1, h_{0}^{\prime}}$.

Let $Q_{h_{0}}^{\dagger}$ denote the adjoint of Q with respect to h_{0}, and then $\partial_{E, h_{0}}=\partial_{1, h_{0}}-Q_{h_{0}}^{\dagger}$. Hence we obtain $R\left(\bar{\partial}_{E}, h_{0}\right)=\left[\bar{\partial}_{1}, \partial_{1, h_{0}}\right]-\bar{\partial}_{1} Q_{h_{0}}^{\dagger}+\partial_{1, h_{0}} Q-\left[Q, Q_{h_{0}}^{\dagger}\right]$. Since Q and $Q_{h_{0}}^{\dagger}$ are $O\left(|\sigma|^{4 \epsilon}\right)$ with respect to ω_{ϵ} and h_{0}, so is $\left[Q, Q_{h_{0}}^{\dagger}\right]$. We have $\partial_{1, h_{0}} Q=$ $\partial_{1, h_{0}^{\prime}} Q+\partial \log |\sigma|^{-2}[\Gamma, Q]$. Since Q is sufficiently small, the second term is $O\left(|\sigma|^{2 \epsilon}\right)$ with respect to ω_{ϵ} and h_{0}. Since $T_{\mid Y}$ is 0 in $\left(\operatorname{End}(E) \otimes \Omega_{\mathcal{U}}^{1}\right)_{\mid Y}$, we have $\partial_{1, h_{0}^{\prime}} T=O\left(|\sigma|^{2 \epsilon}\right)$ with respect to ω_{ϵ} and h_{0}. Since $\left(\partial_{1, h_{0}^{\prime}} S\right)_{\mid Y}\left(F_{a}\right) \subset\left(F_{<a} \otimes \Omega^{1,0}(\log Y) \otimes \Omega^{0,1}\right)_{\mid Y}$, we have $\partial_{1, h_{0}^{\prime}} S=O\left(|\sigma|^{2 \epsilon}\right)$ with respect to h_{0} and ω_{ϵ}. Thus, $\partial_{1, h_{0}} Q$ and the adjoint $\bar{\partial}_{1} Q_{h_{0}}^{\dagger}$ are also $O\left(|\sigma|^{2 \epsilon}\right)$ with respect to ω_{ϵ} and h_{0}. We have $\left[\bar{\partial}_{1}, \partial_{1, h_{0}}\right]=\left[\bar{\partial}_{1}, \partial_{1, h_{0}^{\prime}}\right]+$ $\Gamma \cdot \bar{\partial} \partial \log |\sigma|^{-2}$. Since we have $\bar{\partial}_{1}+\partial_{1, h_{0}^{\prime}}=\nabla_{\pi^{*} \widehat{E}_{Y}}$ by our construction, we obtain $\left[\bar{\partial}_{1}, \partial_{1, h_{0}^{\prime}}\right]=\pi^{*} R\left(h_{Y}, \bar{\partial}_{\widehat{E}_{Y}}\right)+\left[\bar{\partial}_{1}, \bar{\partial}_{1}\right]+\left[\partial_{1, h_{0}^{\prime}}, \partial_{1, h_{0}^{\prime}}\right]=\pi^{*} R\left(h_{Y}, \bar{\partial}_{\widehat{E}_{Y}}\right)+O\left(|\sigma|^{2 \epsilon}\right)$ with respect to ω_{ϵ} and h_{0}. Thus Lemma 4.5 is proved.

Corollary 4.6. - We have the following estimate with respect to ω_{ϵ} : $\operatorname{tr} R\left(h_{0}, \bar{\partial}_{E}\right)=\sum_{(a, \alpha)} \pi^{*} \operatorname{tr} R\left(h_{Y,(a, \alpha)}, \bar{\partial}_{E_{Y,(a, \alpha)}}\right)+\sum a \cdot \operatorname{rank} \operatorname{Gr}_{a}^{F}(E) \cdot \bar{\partial} \partial \log |\sigma|^{-2}+O(1)$
4.2.4. Estimate of $F\left(h_{0}\right)$ in the graded semisimple case. - In this subsection, we assume that the filtration F (Subsection 4.2.1) is a c-parabolic filtration for some $c \in \boldsymbol{R}$.

Proposition 4.7. - If $\left(E_{*}, \theta\right)$ is graded semisimple, $F\left(h_{0}\right)$ is bounded with respect to ω_{ϵ} and h_{0}.

Proof. - We put $\rho_{0}:=\bigoplus \alpha \cdot \operatorname{id}_{E_{(a, \alpha)}}$ and $\bar{\rho}_{0}:=\bigoplus \bar{\alpha} \cdot \operatorname{id}_{E_{(a, \alpha)}}$. Let P be any point of Y. Let $\left(U, z_{1}, z_{2}\right)$ be a holomorphic coordinate neighbourhood of (\mathcal{U}, J) around P such that $U \cap Y=\left\{z_{1}=0\right\}$. We are given the Higgs field:

$$
\theta=f_{1} \cdot \frac{d z_{1}}{z_{1}}+f_{2} \cdot d z_{2}
$$

Since $f_{2 \mid Y}$ preserves the filtration F, f_{2} is bounded with respect to h_{0}. It is easy to see $\left[\rho_{0}, f_{2}\right]_{\mid Y}=0$. Hence $\left[\rho_{0}, f_{2}\right]$ is $O\left(|\sigma|^{2 \epsilon}\right)$ with respect to h_{0}. We put $f_{1}^{\prime}=f_{1}-\rho_{0}$. Due to the graded semisimplicity of $\left(E_{*}, \theta\right)$, we have $f_{1 \mid Y}^{\prime}\left(F_{a}\right) \subset F_{<a}$. Hence f_{1}^{\prime} is $O\left(|\sigma|^{2 \epsilon}\right)$ with respect to h_{0}. Then it is easy to check the boundedness of $\left[\theta, \theta^{\dagger}\right]$ with respect to ω_{ϵ} and h_{0}, by a direct calculation.

We have the following:

$$
\partial_{E, h_{0}}\left(f_{1}\right) \cdot \frac{d z_{1}}{z_{1}}=\partial_{1, h_{0}^{\prime}}\left(f_{1}^{\prime}\right) \cdot \frac{d z_{1}}{z_{1}}+\left[\Gamma, f_{1}^{\prime}\right] \cdot \partial \log |\sigma|^{2} \cdot \frac{d z_{1}}{z_{1}}-\left[Q_{h_{0}}^{\dagger}, f_{1}\right] \cdot \frac{d z_{1}}{z_{1}}
$$

Then, $\partial_{1, h_{0}^{\prime}} f_{1}^{\prime}=A \cdot d z_{2} \cdot d z_{1} / z_{1}$ is $C^{\infty}(2,0)$-form of $\operatorname{End}(E)$, and $A_{\mid Y}\left(F_{a}\right) \subset F_{<a}$. Hence the first term is $O\left(|\sigma|^{2 \epsilon}\right)$ with respect to ω_{ϵ} and h_{0}. Similarly, the same estimate holds for the second term. Since $Q_{h_{0}}^{\dagger}=O\left(|\sigma|^{2 \epsilon}\right)$, the third term is $O\left(|\sigma|^{\epsilon}\right)$.

We have $\partial_{E, h_{0}} f_{2} \cdot d z_{2}=\partial_{1, h_{0}^{\prime}} f_{2} \cdot d z_{2}+\left[\Gamma, f_{2}\right] \cdot \partial \log |\sigma|^{2} \cdot d z_{2}-\left[Q_{h_{0}}^{\dagger}, f_{2}\right] \cdot d z_{2}$. Since the first term is a $C^{\infty}-2$-form of $\operatorname{End}(E)$, it is $O\left(|\sigma|^{2 \epsilon}\right)$ with respect to ω_{ϵ} and h_{0}. The
same estimate holds for the second term because of $\left[\Gamma, f_{2}\right]\left(F_{a}\right) \subset F_{<a}$. Since $Q_{h_{0}}^{\dagger}$ is $O\left(|\sigma|^{2 \epsilon}\right)$, the third term is $O\left(|\sigma|^{\epsilon}\right)$ with respect to ω_{ϵ} and h_{0}. Then Proposition 4.7 is proved.
4.2.5. Preliminary for the calculation of the integral. - Let $\widehat{h}_{Y}=\bigoplus \widehat{h}_{Y, u}$ be a hermitian metric of E_{Y} for which $\bigoplus \widehat{E}_{Y, u}$ is orthogonal. We put $\widehat{h}:=\pi^{*} \widehat{h}_{Y}$. We put $A:=\partial_{E, h_{0}}-\partial_{E, \widehat{h}}$.
Lemma 4.8. - We have the following estimates with respect to ω_{ϵ} :

$$
\begin{equation*}
\operatorname{tr} A=\sum_{a} a \cdot \operatorname{rank} \operatorname{Gr}_{a}^{F}(E) \cdot \partial \log |\sigma|^{-2}+O(1) \tag{19}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{tr}\left(A \cdot R\left(h_{0}\right)\right)=\sum_{a, \alpha} \pi^{*} \operatorname{tr} R\left(\widehat{E}_{Y, a, \alpha}, h_{Y, a, \alpha}\right) \cdot a \cdot \partial \log |\sigma|^{-2} \tag{20}
\end{equation*}
$$

$+\sum_{a, \alpha} \operatorname{rank} \widehat{E}_{Y, a, \alpha} \cdot a^{2} \cdot \bar{\partial} \partial \log |\sigma|^{-2} \partial \log |\sigma|^{-2}+\operatorname{tr}\left(Q_{\widehat{h}}^{\dagger} \cdot\left[\Gamma \cdot \partial \log |\sigma|^{-2}, Q\right]\right)+O(1)$

$$
\begin{align*}
\operatorname{tr}(A \cdot R(\widehat{h}))=\sum_{a, \alpha} \pi^{*} \operatorname{tr} R\left(\widehat{E}_{Y, a, \alpha}, \widehat{h}_{Y, a, \alpha}\right) & \cdot a \cdot \partial \log |\sigma|^{-2} \tag{21}\\
& -\operatorname{tr}\left(\Gamma \cdot \partial \log |\sigma|^{-2}\left[Q, Q_{\widehat{h}}^{\dagger}\right]\right)+O(1)
\end{align*}
$$

Proof. - We have $\partial_{E, h_{0}}=\partial_{1, h_{0}^{\prime}}-Q_{h_{0}}^{\dagger}+\Gamma \cdot \partial \log |\sigma|^{-2}$ and $\partial_{E, \widehat{h}}=\partial_{1, \widehat{h}}-Q_{\widehat{h}}^{\dagger}$. We put $P=\partial_{1, h_{0}^{\prime}}-\partial_{1, \widehat{h}}$, which is a C^{∞}-section of $\bigoplus \operatorname{End}\left(E_{u}\right) \otimes \Omega^{1,0}$. Thus, we have $A=P+Q_{\widehat{h}}^{\dagger}-Q_{h_{0}}^{\dagger}+\Gamma \cdot \partial \log |\sigma|^{-2}$. Since $Q_{\widehat{h}}^{\dagger}$ and $Q_{h_{0}}^{\dagger}$ are bounded with respect to $\left(\omega_{\epsilon}, \widehat{h}\right)$, we obtain (19).

Let us show (20). Since $P+Q_{h_{0}}^{\dagger}$ is bounded with respect to h_{0} and ω_{ϵ}, we have the boundedness of $\operatorname{tr}\left(\left(P+Q_{h_{0}}^{\dagger}\right) \cdot R\left(h_{0}\right)\right)$ with respect to ω_{ϵ}. From (18), we obtain the following:

$$
\begin{align*}
& \operatorname{tr}\left(\Gamma \cdot \partial \log |\sigma|^{-2} \cdot R\left(h_{0}\right)\right)=\sum_{a, \alpha} \pi^{*} \operatorname{tr} R\left(\widehat{E}_{Y, a, \alpha}, h_{Y, a, \alpha}\right) \cdot a \cdot \partial \log |\sigma|^{-2} \tag{22}\\
& \quad+\sum_{a, \alpha} \operatorname{rank} \widehat{E}_{Y, a, \alpha} \cdot a^{2} \cdot \bar{\partial} \partial \log |\sigma|^{-2} \cdot \partial \log |\sigma|^{-2}+O(1)
\end{align*}
$$

Let us see $\operatorname{tr}\left(Q_{\widehat{h}}^{\dagger} \cdot R\left(h_{0}\right)\right)$. We decompose it as follows:

$$
\begin{equation*}
\operatorname{tr}\left(Q_{\widehat{h}}^{\dagger} \cdot\left[\bar{\partial}_{1}, \partial_{1, h_{0}}\right]\right)-\operatorname{tr}\left(Q_{\widehat{h}}^{\dagger} \cdot \bar{\partial}_{1} Q_{h_{0}}^{\dagger}\right)+\operatorname{tr}\left(Q_{\widehat{h}}^{\dagger} \cdot \partial_{1, h_{0}} Q\right)-\operatorname{tr}\left(Q_{\widehat{h}}^{\dagger} \cdot\left[Q, Q_{h_{0}}^{\dagger}\right]\right) \tag{23}
\end{equation*}
$$

Since $\left[\bar{\partial}_{1}, \partial_{1, h_{0}}\right]$ is bounded with respect to $\left(\omega_{\epsilon}, \widehat{h}\right)$, we obtain the boundedness of the first term. Recall $Q_{h_{0}}^{\dagger}=\left(\pi^{*} S\right)_{h_{0}}^{\dagger}+T_{h_{0}}^{\dagger}$. Because of $T_{\mid Y}=0$ in $\left(\operatorname{End}(E) \otimes \Omega^{0,1}\right)_{\mid Y}$ and $\partial_{1, h_{0}} T=\partial_{1, h_{0}^{\prime}} T+\left[\Gamma \cdot \partial \log |\sigma|^{-2}, T\right]$, we have $\partial_{1, h_{0}} T_{\mid Y}=0$ in $\left(\operatorname{End}(E) \otimes \Omega^{1,0}(\log Y) \otimes\right.$ $\left.\Omega^{0,1}\right)_{\mid Y}$. Because of $\bar{\partial}_{1} T_{h_{0}}^{\dagger}=\left(\partial_{1, h_{0}} T\right)_{h_{0}}^{\dagger}$, it is easy to obtain $\bar{\partial}_{1} T_{h_{0}}^{\dagger}=O\left(|\sigma|^{2 \epsilon}\right)$ with respect to $\left(\widehat{h}, \omega_{\epsilon}\right)$. We also have $T_{h_{0}}^{\dagger}=O\left(|\sigma|^{2 \epsilon}\right)$ with respect to $\left(\widehat{h}, \omega_{\epsilon}\right)$. Since $\pi^{*} S$ is
a section of $\bigoplus_{a>a^{\prime}} \operatorname{Hom}\left(E_{a, \alpha}, E_{a^{\prime}, \alpha^{\prime}}\right) \otimes \Omega^{0,1}$, we have $\pi^{*} S_{h_{0}}^{\dagger}=O\left(|\sigma|^{2 \epsilon}\right)$ with respect to $\left(\widehat{h}, \omega_{\epsilon}\right)$. Hence, $Q_{h_{0}}^{\dagger}$ and $\left[Q_{h_{0}}^{\dagger}, Q\right]$ are $O\left(|\sigma|^{2 \epsilon}\right)$ with respect to ($\left.\omega_{\epsilon}, \widehat{h}\right)$. Therefore, the fourth term in (23) is bounded. Because of $\bar{\partial}_{1} \pi^{*} S_{h_{0}}^{\dagger}=\left(\partial_{1, h_{0}^{\prime}} \pi^{*} S\right)_{h_{0}}^{\dagger}+([\Gamma$. $\left.\left.\partial \log |\sigma|^{-2}, \pi^{*} S\right]\right)_{h_{0}}^{\dagger}$, it is easy to obtain $\bar{\partial}_{1} \pi^{*} S_{h_{0}}^{\dagger}=O\left(|\sigma|^{2 \epsilon}\right)$ with respect to $\left(\omega_{\epsilon}, \widehat{h}\right)$. Together with the estimate of $\bar{\partial}_{1} T_{h_{0}}^{\dagger}$ above, we obtain the boundedness of $\bar{\partial}_{1} Q_{h_{0}}^{\dagger}$ with respect to $\left(\omega_{\epsilon}, \widehat{h}\right)$. Hence, we obtain the boundedness of the second term in (23). We have $\partial_{1, h_{0}} Q=\partial_{1, h_{0}^{\prime}} Q+\left[\Gamma \cdot \partial \log |\sigma|^{-2}, Q\right]$, and $\partial_{1, h_{0}^{\prime}} Q$ is bounded with respect to $\left(\omega_{\epsilon}, \widehat{h}\right)$. Therefore, the third term is $O(1)+\operatorname{tr}\left(Q_{h_{0}}^{\dagger}\left[\Gamma \cdot \partial \log |\sigma|^{-2}, Q\right]\right)$. Thus we obtain (20).

Let us show (21). Since $P, Q_{\widehat{h}}^{\dagger}$ and $Q_{h_{0}}^{\dagger}$ are bounded with respect to ($\omega_{\epsilon}, \widehat{h}$), we have $\operatorname{tr}\left(\left(P+Q_{\widehat{h}}^{\dagger}-Q_{h_{0}}^{\dagger}\right) R(\widehat{h})\right)=O(1)$ with respect to ω_{ϵ}. We have $R(\widehat{h})=\left[\bar{\partial}_{1}, \partial_{1, \widehat{h}}\right]-$ $\bar{\partial}_{1} Q_{\widehat{h}}^{\dagger}+\partial_{1, \widehat{h}} Q-\left[Q_{\widehat{h}}^{\dagger}, Q\right]$. Because of $\partial_{1, \widehat{h}} T=O\left(|\sigma|^{2 \epsilon}\right)$ with respect to ($\omega_{\epsilon}, \widehat{h}$) and $\partial_{1, \widehat{h}} \pi^{*} S \in \bigoplus_{a>a^{\prime}} \operatorname{Hom}\left(E_{a, \alpha}, E_{a^{\prime}, \alpha^{\prime}}\right) \otimes \Omega^{2}$, we have $\operatorname{tr}\left(\Gamma \cdot \partial \log |\sigma|^{-2} \cdot \partial_{1, \widehat{h}} Q\right)=O\left(|\sigma|^{2 \epsilon}\right)$ with respect to ω_{ϵ}. By a similar reason, $\operatorname{tr}\left(\Gamma \cdot \partial \log |\sigma|^{-2} \bar{\partial}_{1} Q_{\widehat{h}}^{\dagger}\right)=O\left(|\sigma|^{2 \epsilon}\right)$. Since we have $\left[\bar{\partial}_{1}, \partial_{1, \widehat{h}}\right]=\pi^{*} R\left(\widehat{E}, \widehat{h}_{Y}\right)+O\left(|\sigma|^{2 \epsilon}\right)$ with respect to $\left(\widehat{h}, \omega_{\epsilon}\right)$, we obtain (21).
Corollary 4.9. - We have the following estimates with respect to ω_{ϵ} :

$$
\begin{align*}
\operatorname{tr}\left(A \cdot R\left(h_{0}\right)+A \cdot R(\widehat{h})\right)= & \sum_{u} \pi^{*}\left(\operatorname{tr} R\left(\widehat{E}_{Y, u}, h_{Y, u}\right)+\operatorname{tr} R\left(\widehat{E}_{Y, u}, \widehat{h}_{Y, u}\right)\right) \cdot a \cdot \partial \log |\sigma|^{-2} \tag{24}\\
& +\sum_{u} a^{2} \cdot \operatorname{rank} \widehat{E}_{Y, u} \cdot \partial \log |\sigma|^{-2} \cdot \partial \bar{\partial} \log |\sigma|^{-2}+O(1)
\end{align*}
$$

Here, $u=(a, \alpha)$.
4.2.6. Estimate of a related metric. - For later use (Section 5.2), we consider a related metric in the case where one more filtration W is given on $\operatorname{Gr}_{(a, \alpha)}^{F, \mathbb{E}}(E)$ indexed by \mathbb{Z}. The argument and the calculation are essentially contained in those of Section 3.A in [5]. Since our purpose is more restricted, the construction of the metric can be more rough.

We put $\widetilde{E}_{u, k}:=\operatorname{Gr}_{k}^{W} \operatorname{Gr}_{u}^{F, \mathbb{E}}\left(E_{Y}\right)$ for $(u, k) \in(\boldsymbol{R} \times \boldsymbol{C}) \times \mathbb{Z}$ and $\widetilde{E}_{Y}:=$ $\bigoplus \widetilde{E}_{u, k}$. We put $\widetilde{F}_{(a, k)} \operatorname{Gr}_{\alpha}^{\mathbb{E}}(E):=\pi_{a}^{-1}\left(W_{k}\right)$, where π_{a} denotes the projection $F_{a} \operatorname{Gr}_{\alpha}^{\mathbb{E}}(E) \longrightarrow \operatorname{Gr}_{(a, \alpha)}^{F, \mathbb{E}}(E)$. The metric h_{Y} induces the orthogonal decomposition $\operatorname{Gr}_{\alpha}^{\mathbb{E}}(E)=\bigoplus_{(a, k) \in \boldsymbol{R} \times \boldsymbol{C}} \mathcal{G}_{a, \alpha, k}$ such that $\widetilde{F}_{(b, l)} \operatorname{Gr}_{\alpha}^{\mathbb{E}}(E)=\bigoplus_{(a, k) \leq(b, l)} \mathcal{G}_{a, \alpha, k}$. We have the natural C^{∞}-isomorphism $\mathcal{G}_{u, k} \simeq \operatorname{Gr}_{k}^{W} \operatorname{Gr}_{u}^{F, \mathbb{E}}\left(E_{Y}\right)$ for $(u, k) \in(\boldsymbol{R} \times \boldsymbol{C}) \times \mathbb{Z}$. Thus, we obtain the C^{∞}-identification of E_{Y} and \widetilde{E}_{Y}. Let $h_{Y, u, k}$ denote the restriction of h_{Y} to $\mathcal{G}_{u, k}$.

Via the identification $\Phi: \pi^{*} E_{Y} \simeq E$, we obtain the C^{∞}-decomposition $E=$ $\bigoplus E_{a, \alpha, k}$. Then, we put as follows:

$$
h_{1}:=\bigoplus_{a, \alpha, k} \pi^{*} h_{Y, a, \alpha, k} \cdot|\sigma|^{-2 a} \cdot\left(-\log |\sigma|^{2}\right)^{k} .
$$

There exist some constants C and N such that $C^{-1} \cdot h_{0} \cdot(-\log |\sigma|)^{-N} \leq h_{1} \leq$ $C \cdot h_{0} \cdot(-\log |\sigma|)^{N}$.

For appropriate constants C_{1}, we put $\widetilde{\omega}:=\omega+C_{1} \cdot \partial \bar{\partial} \log \left(-\log |\sigma|^{2}\right)$, which gives the Poincaré like metric on $\mathcal{U} \backslash Y$.

Lemma 4.10. - $R\left(h_{1}\right)$ is bounded with respect to $\widetilde{\omega}$ and $h_{i}(i=0,1)$. The difference $\partial_{E, h_{1}}-\partial_{E, h_{0}}$ is bounded with respect to $\widetilde{\omega}$ and h_{0}.
Proof. - Under the identification $E_{Y}=\widetilde{E}_{Y}$, we put $\widetilde{S}=\bar{\partial}_{E_{Y}}-\bar{\partial}_{\widetilde{E}_{Y}}$. We put $S^{\prime}:=$ $\widetilde{S}-S$. As before, we have $\bar{\partial}_{E}=\bar{\partial}_{2}+\widetilde{Q}$ and $\widetilde{Q}=T+\pi^{*} \widetilde{S}$. We also have $\bar{\partial}_{1}=\bar{\partial}_{2}+\pi^{*} S^{\prime}$. Because of $T_{\mid Y}=0$ in $\left(\operatorname{End}(E) \otimes \Omega_{\mathcal{U}}^{1}\right)_{\mid Y}, T$ and $T_{h_{1}}^{\dagger}$ are $O\left(|\sigma|^{2 \epsilon}\right)$ with respect to $\left(h_{i}, \widetilde{\omega}\right)$ $(i=0,1)$. Because of $\widetilde{S}\left(\widetilde{F}_{(a, k)}\right) \subset \widetilde{F}_{<(a, k)} \otimes \Omega_{Y}^{0,1}, \widetilde{S}$ and $\widetilde{S}_{h_{1}}^{\dagger}$ are $O\left((-\log |\sigma|)^{-1 / 2}\right)$ with respect to $\left(h_{1}, \widetilde{\omega}\right)$. We also obtain $\widetilde{S}=O(1)$ and $\widetilde{S}_{h_{1}}^{\dagger}=O\left((-\log |\sigma|)^{-1 / 2}\right)$ with respect to $\left(h_{0}, \widetilde{\omega}\right)$. In particular, \widetilde{Q} and $\widetilde{Q}_{h_{1}}^{\dagger}$ are bounded with respect to ($h_{i}, \widetilde{\omega}$) ($i=0,1$).

We put $\mathcal{K}:=\bigoplus k / 2 \cdot \operatorname{id}_{E_{u, k}}$. Then, we obtain the following:

$$
\begin{align*}
\partial_{E, h_{1}}=\partial_{2, h_{1}}-\widetilde{Q}_{h_{1}}^{\dagger} & =\partial_{2, h_{0}}+\mathcal{K} \cdot \partial \log \left(-\log |\sigma|^{2}\right)-\widetilde{Q}_{h_{1}}^{\dagger} \tag{25}\\
=\partial_{1, h_{0}} & +\left(\pi^{*} S^{\prime}\right)_{h_{0}}^{\dagger}+\mathcal{K} \cdot \partial \log \left(-\log |\sigma|^{2}\right)-\widetilde{Q}_{h_{1}}^{\dagger} \\
& =\partial_{E, h_{0}}+Q_{h_{0}}^{\dagger}+\left(\pi^{*} S^{\prime}\right)_{h_{0}}^{\dagger}+\mathcal{K} \cdot \partial \log \left(-\log |\sigma|^{2}\right)-\widetilde{Q}_{h_{1}}^{\dagger} .
\end{align*}
$$

It is easy to see that $\pi^{*} S^{\prime}$ and $\left(\pi^{*} S^{\prime}\right)_{h_{0}}^{\dagger}$ are bounded with respect to h_{0}. Thus, we obtain the boundedness of $\partial_{E, h_{1}}-\partial_{E, h_{0}}$ with respect to ($\widetilde{\omega}, h_{0}$).

We decompose $R\left(h_{1}\right)$ as follows:

$$
\begin{equation*}
R\left(h_{1}\right)=\left[\bar{\partial}_{2}, \partial_{2, h_{1}}\right]+\partial_{2, h_{1}} \widetilde{Q}-\bar{\partial}_{2} \widetilde{Q}_{h_{1}}^{\dagger}-\left[\widetilde{Q}, \widetilde{Q}_{h_{1}}^{\dagger}\right] \tag{26}
\end{equation*}
$$

We decompose the second term as follows:

$$
\begin{align*}
& {\left[\partial_{2, h_{1}}, \widetilde{Q}\right]=\left[\mathcal{K} \cdot \partial \log \left(-\log |\sigma|^{2}\right), \widetilde{Q}\right] } \tag{27}\\
&+\left[\partial_{2, h_{0}^{\prime}}+\Gamma \cdot \partial \log |\sigma|^{-2}, T\right]+\left[\partial_{2, h_{0}^{\prime}}+\Gamma \cdot \partial \log |\sigma|^{-2}, \widetilde{S}\right]
\end{align*}
$$

Since $\partial \log \left(-\log |\sigma|^{2}\right)$ is bounded with respect to $\widetilde{\omega}$, we have the boundedness of $\mathcal{K} \cdot \partial \log \left(-\log |\sigma|^{2}\right)$ with respect to $\left(\widetilde{\omega}, h_{i}\right)(i=0,1)$. Hence, the first term in (27) is bounded. The adjoint with respect to h_{1} also satisfies the same estimate.

We have $T=O\left(|\sigma|^{3 \epsilon}\right)$ with respect to $\left(\widetilde{\omega}, h_{i}\right)(i=0,1)$ and $\left[\partial_{2, h_{0}^{\prime}}, T\right]_{\mid Y}=0$ in $\left(\operatorname{End}(E) \otimes \Omega^{1,0}(\log D) \otimes \Omega^{0,1}\right)_{\mid Y}$. Hence $\left[\Gamma \cdot \partial \log |\sigma|^{2}, T\right]$ and $\left[\partial_{2, h_{0}^{\prime}}, T\right]$ are $O\left(|\sigma|^{3 \epsilon}\right)$ with respect to $\left(\widetilde{\omega}, h_{i}\right)(i=0,1)$. Their adjoints with respect to h_{1} are also $O\left(|\sigma|^{2 \epsilon}\right)$ with respect to $\left(\widetilde{\omega}, h_{i}\right)$. Therefore, we obtain the boundedness of the second term in (27) and the adjoint.

Let $\widetilde{S}=A \cdot d \bar{z}_{1}+B \cdot d \bar{z}_{2}$ be the expression for a local coordinate $\left(U, z_{1}, z_{2}\right)$ such that $z_{1}^{-1}(0)=Y \cap U$. Then, we have $A_{\mid Y}=0$ and $B_{\mid Y}\left(\widetilde{F}_{(a, k)}\right) \subset \widetilde{F}_{<(a, k)}$. We have $[\Gamma, B]_{\mid Y}\left(F_{a}\right) \subset F_{<a}$. Thus $\left[\Gamma \cdot \partial \log |\sigma|^{-2}, \widetilde{S}\right]$, and the adjoint with respect to h_{1} are
$O\left(|\sigma|^{2 \epsilon}\right)$ with respect to $\left(\widetilde{\omega}, h_{i}\right)(i=0,1)$. We have $\left[\partial_{2, h_{0}^{\prime}}, A \cdot d \bar{z}_{1}\right]_{\mid Y}=0$ in $(\operatorname{End}(E) \otimes$ $\left.\Omega^{1,0}(\log Y) \otimes \Omega^{0,1}\right)_{\mid Y}$. For the expression $\left[\partial_{2, h_{0}^{\prime}}, B d \bar{z}_{2}\right]=\left(C_{1} \cdot d z_{1} / z_{1}+C_{2} d z_{2}\right) \cdot d \bar{z}_{2}$, we have $C_{1 \mid Y}=0$ and $C_{2 \mid Y}\left(\widetilde{F}_{(a, k)}\right) \subset \widetilde{F}_{<(a, k)}$. Hence, $\left[\partial_{2, h_{0}^{\prime}}, \widetilde{S}\right]$ and the adjoint with respect to h_{1} are bounded with respect to both of $\left(\widetilde{\omega}, h_{i}\right)(i=0,1)$. Therefore, we obtain the boundedness of the third term in (27) and the adjoint. Thus we obtain the boundedness of the second and third terms in (26).

We have $\left[\bar{\partial}_{2}, \partial_{2, h_{1}}\right]=\left[\bar{\partial}_{2}, \partial_{2, h_{0}^{\prime}}\right]+\bar{\partial} \partial \log |\sigma|^{-2} \cdot \Gamma+\bar{\partial} \partial \log \left(-\log |\sigma|^{2}\right) \cdot \mathcal{K}$ which is bounded with respect to $\left(\widetilde{\omega}, h_{i}\right)(i=0,1)$. Thus we obtain the boundedness of $R\left(h_{1}\right)$.

4.3. Global Ordinary Metric

4.3.1. Decomposition and metric of a base space. - Let X be a smooth projective complex surface, and D be a simple normal crossing divisor with the irreducible decomposition $D=\bigcup_{i \in S} D_{i}$. We also assume that D is ample. Let L be an ample line bundle on X, and ω be a Kahler form which represents $c_{1}(L)$. For any point $P \in D_{i} \cap D_{j}$, we take a holomorphic coordinate (U_{P}, z_{i}, z_{j}) around P such that $U_{P} \cap D_{k}=\left\{z_{k}=0\right\}(k=i, j)$ and $U_{P} \simeq \Delta^{2}$ by the coordinate. Let us take a hermitian metric g_{i} of $\mathcal{O}\left(D_{i}\right)$ and the canonical section $\mathcal{O} \longrightarrow \mathcal{O}\left(D_{i}\right)$ is denoted by σ_{i}. We may assume $\left|\sigma_{k}\right|_{g_{k}}^{2}=\left|z_{k}\right|^{2}(k=i, j)$ on U_{P} for $P \in D_{i} \cap D_{j}$.

Let us take a hermitian metric g of the tangent bundle $T X$ such that $g=d z_{i} \cdot d \bar{z}_{i}+$ $d z_{j} \cdot d \bar{z}_{j}$ on U_{P}. It is not necessarily same as ω. The metric g induces the exponential map $\exp : T X \longrightarrow X$. Let $N_{D_{i}} X$ denote the normal bundle of D_{i} in X. We can take a sufficiently small neighbourhood U_{i}^{\prime} of D_{i} in $N_{D_{i}} X$ such that the restriction of $\exp _{\mid U_{i}^{\prime}}$ gives the diffeomorphism of U_{i}^{\prime} and the neighbourhood U_{i} of D_{i} in X. We may assume $U_{i} \cap U_{j}=\coprod_{P \in D_{i} \cap D_{j}} U_{P}$.

Let p_{i} denote the diffeomorphism $\exp _{\mid U_{i}^{\prime}}: U_{i}^{\prime} \longrightarrow U_{i}$. Let π_{i} denote the natural projection $U_{i}^{\prime} \longrightarrow D_{i}$. Via the diffeomorphism p_{i}, we also have the C^{∞}-map $U_{i} \longrightarrow D_{i}$, which is also denoted by π_{i}. On U_{P}, π_{i} is same as the natural projection $\left(z_{i}, z_{j}\right) \longmapsto z_{j}$. Via p_{i}, we have two complex structures $J_{U_{i}}$ and $J_{U_{i}^{\prime}}$ on U_{i}. Due to our choice of the hermitian metric g, p_{i} preserves the holomorphic structure (i.e., $J_{U_{i}^{\prime}}-J_{U_{i}}=0$) on U_{P}. The derivative of p_{i} gives the isomorphism of the complex bundles $T\left(N_{D_{i}}(X)\right)_{\mid D_{i}} \simeq T D_{i} \oplus N_{D_{i}} X \simeq T X_{\mid D_{i}}$ on D_{i}. Hence we have $J_{U_{i}}-J_{U_{i}^{\prime}}=O(|\sigma|)$.

Let ϵ be any number such that $0<\epsilon<1 / 2$. Let us fix a real number N, which is sufficiently large, say $N>10$. We put as follows, for some positive number $C>0$:

$$
\omega_{\epsilon}:=\omega+\sum_{i} C \cdot \epsilon^{N} \cdot \sqrt{-1} \partial \bar{\partial}\left|\sigma_{i}\right|_{g_{i}}^{2 \epsilon}
$$

Proposition 4.11. - If C is sufficiently small, then ω_{ϵ} are Kahler metrics of $X-D$ for any $0<\epsilon<1 / 2$.

Proof. - We put $\phi_{i}:=\left|\sigma_{i}\right|_{g_{i}}^{2}$. We have $\sqrt{-1} \cdot \partial \bar{\partial} \phi_{i}^{\epsilon}=\sqrt{-1} \cdot \epsilon^{2} \cdot \phi_{i}^{\epsilon} \cdot \partial \log \phi_{i} \cdot \bar{\partial} \log \phi_{i}+$ $\sqrt{-1} \cdot \epsilon \cdot \phi_{i}^{\epsilon} \cdot \partial \bar{\partial} \log \phi_{i}$. Hence the claim of Proposition 4.11 immediately follows from the next lemma.

Lemma 4.12. - We put $f_{t}(\epsilon):=\epsilon^{l} \cdot t^{2 \epsilon}$ for $0<\epsilon \leq 1 / 2$ and for $l \geq 1$. The following inequality holds:

$$
\begin{gather*}
f_{t}(\epsilon) \leq\left(\frac{l}{-\log t^{2}}\right)^{l} \cdot e^{-l} \quad\left(0<t<e^{-l}\right) \tag{28}\\
f_{t}(\epsilon) \leq\left(\frac{1}{2}\right)^{l} \cdot t \quad\left(t \geq e^{-l}\right) \tag{29}
\end{gather*}
$$

Proof. - We have $f_{t}^{\prime}(\epsilon)=\epsilon^{l-1} t^{2 \epsilon} \cdot\left(l+\epsilon \log t^{2}\right)$. If $t<e^{-l}$, we have $\epsilon_{0}:=l \times$ $\left(-\log t^{2}\right)^{-1}<1 / 2$ and $f_{t}^{\prime}\left(\epsilon_{0}\right)=0$. Hence f_{t} takes the maximum at $\epsilon=\epsilon_{0}$, and we obtain (28). If $t \geq e^{-1}$, we have $f_{t}^{\prime}(\epsilon)>0$ for any $0<\epsilon<1 / 2$, and thus $f_{t}(\epsilon)$ takes the maximum at $\epsilon=1 / 2$. Thus we obtain (29).

The Kahler forms ω_{ϵ} behave well around any point of D in the following sense, which is clear from the construction.

Lemma 4.13. - Let P be any point of $D_{i} \cap D_{j}$. Then there exist positive constants $C_{i}(i=1,2)$ such that the following holds on U_{P}, for any $0<\epsilon<1 / 2$:
$C_{1} \cdot \omega_{\epsilon} \leq \sqrt{-1} \cdot \epsilon^{N+2} \cdot\left(\frac{d z_{i} \cdot d \bar{z}_{i}}{\left|z_{i}\right|^{2-2 \epsilon}}+\frac{d z_{j} \cdot d \bar{z}_{j}}{\left|z_{j}\right|^{2-2 \epsilon}}\right)+\sqrt{-1}\left(d z_{i} \cdot d \bar{z}_{i}+d z_{j} \cdot d \bar{z}_{j}\right) \leq C_{2} \cdot \omega_{\epsilon}$.
Let Q be any point of D_{i}°, and $\left(U, w_{1}, w_{2}\right)$ be a holomorphic coordinate around Q such that $U \cap D_{i}=\left\{w_{1}=0\right\}$. Then there exist positive constants $C_{i}(i=1,2)$ such that the following holds for any $0<\epsilon<1 / 2$ on U :

$$
C_{1} \cdot \omega_{\epsilon} \leq \sqrt{-1} \cdot \epsilon^{N+2} \cdot\left(\frac{d w_{1} \cdot d \bar{w}_{1}}{\left|w_{1}\right|^{2-2 \epsilon}}\right)+\sqrt{-1}\left(d w_{1} \cdot d \bar{w}_{1}+d w_{2} \cdot d \bar{w}_{2}\right) \leq C_{2} \cdot \omega_{\epsilon} .
$$

Lemma 4.14 (Simpson [51], Li [35]). - Let us consider the case $\epsilon=1 / m$ for some positive integer m. Then the metric ω_{ϵ} satisfies Condition 2.1.

Proof. - We use the argument of Simpson in [51]. The first condition is easy to check. Since we have assumed that D is ample, we can take a C^{∞}-metric $|\cdot|$ of $\mathcal{O}(D)$ with the non-negative curvature. We put $\phi:=-\log |\sigma|$, where σ denote the canonical section. Then $\sqrt{-1} \partial \bar{\partial} \phi$ is a non-negative $C^{\infty}-2$-form, and it is easy to check that the second condition is satisfied.

To check the condition 3, we give the following remark. Let P be a point of $D_{i} \cap D_{j}$. For simplicity, let us consider the case $(i, j)=(1,2)$. We put $V_{P}:=\left\{\left(\zeta_{1}, \zeta_{2}\right)| | \zeta_{i} \mid<1\right\}$. Let us take the ramified covering $\varphi: V_{P} \longrightarrow U_{P}$ given by $\left(\zeta_{1}, \zeta_{2}\right) \longmapsto\left(\zeta_{1}^{m}, \zeta_{2}^{m}\right)$. Then it is easy to check that $\widetilde{\omega}=\varphi^{-1} \omega_{\epsilon}$ naturally gives the C^{∞}-Kahler form on V_{P}. If f is a bounded positive function on $U_{P} \backslash D$ satisfying $\Delta_{\omega_{\epsilon}}(f) \leq B$ for some constant
B, we obtain $\Delta_{\tilde{\omega}}\left(\varphi^{*} f\right) \leq B$ on $V_{P}-\varphi^{-1}\left(D \cap U_{P}\right)$. Since $\widetilde{\omega}$ is C^{∞} on V_{P}, we may apply the argument of Proposition 2.2 in $[\mathbf{5 1}]$. Hence $\Delta_{\widetilde{\omega}}\left(\varphi^{*} f\right) \leq B$ holds weakly on V_{P}. Then we can apply the arguments of Proposition 2.1 in [51], and we obtain an appropriate estimate for the sup norm of f. By a similar argument, we obtain such an estimate around any smooth points of D. Thus we are done.
4.3.2. A construction of an ordinary metric of the bundle. - Let ($c E_{*}, \theta$) be a c-parabolic Higgs bundle on (X, D). In the following, we shrink the open sets U_{i} without mentioning, if it is necessary. We put $D_{i}^{\circ}:=D_{i} \backslash \bigcup_{j \neq i} D_{j}$.

On each D_{i}, we have the generalized eigen decomposition with respect to $\operatorname{Res}_{i}(\theta)$:

$$
\begin{equation*}
{ }_{c} E_{\mid D_{i}}=\bigoplus_{\alpha}^{i} \operatorname{Gr}_{\alpha}^{\mathbb{E}}\left({ }_{c} E_{\mid D_{i}}\right) \tag{30}
\end{equation*}
$$

For each point $P \in D_{i} \cap D_{j}$, we may assume that there is a decomposition ${ }_{c} E_{\mid U_{P}}=$ $\bigoplus^{P} U_{\boldsymbol{a}, \boldsymbol{\alpha}}$ as in Section 4.1. Let ${ }^{P} \boldsymbol{v}$ be a holomorphic frame compatible with the decomposition. We take a C^{∞}-hermitian metric \widehat{h}_{0} of ${ }_{c} E$ such that ${ }^{P} \boldsymbol{v}$ is an orthonormal frame on U_{P} and that the decomposition (30) is orthogonal. We have the induced unitary connections $\nabla_{0, i}$ and $\nabla_{c E_{\mid D_{i}}}$ on ${ }_{c} E_{\mid U_{i}}$ and ${ }_{c} E_{\mid D_{i}}$, respectively. Then, we can take a C^{∞}-isomorphism ${ }^{i} \Phi: \pi_{i}^{*}\left({ }_{c} E_{\mid D_{i}}\right) \simeq{ }_{c} E$ on U_{i} such that (i) the restriction of ${ }^{i} \Phi$ to D_{i} is the identity, (ii) the restriction of ${ }^{i} \Phi$ to U_{P} is given by the frames ${ }^{P} \boldsymbol{v}$ and $\pi_{i}^{*}\left({ }^{P} \boldsymbol{v}_{\mid U_{P} \cap D_{i}}\right)$, (iii) $\nabla_{0, i} \circ{ }^{i} \Phi-{ }^{i} \Phi \circ \pi^{*} \nabla_{c} E_{\mid D_{i}}=O\left(\left|\sigma_{i}\right| g_{g_{i}}\right)$. ([35]. See also the explanation in Subsection 4.2.2.) We also obtain the orthogonal decompositions $\operatorname{Gr}_{\alpha}^{\mathbb{E}}\left({ }_{c} E_{\mid D_{i}}\right)=\bigoplus_{a \in \boldsymbol{R}}{ }^{i} \mathcal{G}_{(a, \alpha)}$ with respect to \widehat{h}_{0} such that ${ }^{i} F_{b} \operatorname{Gr}_{\alpha}^{\mathbb{E}}\left({ }_{c} E_{\mid D_{i}}\right)=$ $\bigoplus_{a \leq b} \mathcal{G}_{(a, \alpha)}$. They induce the C^{∞}-decompositions ${ }_{c} E_{\mid U_{i}}=\bigoplus_{c}^{i} E_{(a, \alpha)}$.

We can take a hermitian metric h_{0} of E on $X-D$, which is as in Subsection 4.1.1 on U_{P}, and as in Subsection 4.2.2 on $U_{i} \backslash \bigcup U_{P}$. More precisely, we take a hermitian metric $h_{D_{i}}$ of ${ }_{c} E_{\mid D_{i}^{\circ}}$ such that (i) the decomposition ${ }_{c} E_{\mid D_{i}^{\circ}}=\bigoplus^{i} \mathcal{G}_{u \mid D_{i}^{\circ}}$ is orthogonal, (ii) $h_{D_{i}}\left({ }^{P} v_{k},{ }^{P} v_{l}\right)=\delta_{k, l} \cdot\left|z_{j}\right|^{-2 a_{j}\left({ }^{P} v_{k}\right)}$ for each $P \in D_{i} \cap D_{j}(j \neq i)$. Let $h_{D_{i}, u}$ denote the restriction of $h_{D_{i}}$ to ${ }^{i} \mathcal{G}_{u \mid D_{i}^{\circ}}$. Then, h_{0} is given by (17) on $U_{i} \backslash D$. We have $h_{0}\left({ }^{P} v_{k},{ }^{P} v_{l}\right)=\delta_{k, l} \cdot\left|z_{i}\right|^{-2 a_{i}\left({ }^{P} v_{k}\right)} \cdot\left|z_{j}\right|^{-2 a_{j}\left({ }^{P} v_{k}\right)}$ on $U_{P} \backslash D$ for $P \in D_{i} \cap D_{j}$. Thus, we obtain the metric of E on $\bigcup_{i} U_{i} \backslash D$. We extend it to the metric of E on $X-D$. Such a metric h_{0} is called an ordinary metric, in this paper. The following lemma immediately follows from Proposition 4.3 and Proposition 4.7.

Lemma 4.15. - If $\left({ }_{c} E_{*}, \theta\right)$ is graded semisimple, then $F\left(h_{0}\right)$ is bounded with respect to h_{0} and ω_{ϵ}.

4.3.3. Calculation of the integrals

Lemma 4.16

$$
\left(\frac{\sqrt{-1}}{2 \pi}\right)^{2} \int_{X-D}\left(\operatorname{tr} R\left(h_{0}\right)\right)^{2}=\int_{X} \operatorname{par}-\mathrm{c}_{1}^{2}\left({ }_{c} E_{*}\right) .
$$

Proof. - We have $\left(\operatorname{tr} R\left(h_{0}\right)\right)^{2}=\left(\operatorname{tr} R\left(\widehat{h}_{0}\right)\right)^{2}+\operatorname{tr} R\left(\widehat{h}_{0}\right) \cdot \bar{\partial} \operatorname{tr} A+\operatorname{tr} R\left(h_{0}\right) \cdot \bar{\partial} \operatorname{tr} A$. We have the following equality:

$$
\left(\frac{\sqrt{-1}}{2 \pi}\right)^{2} \int_{X-D}\left(\operatorname{tr} R\left(\widehat{h}_{0}\right)\right)^{2}=\int_{X} c_{1}\left(c_{c} E\right)^{2}
$$

Due to (19), we obtain the following:

$$
\begin{array}{r}
\left(\frac{\sqrt{-1}}{2 \pi}\right)^{2} \int_{X-D} \operatorname{tr} R\left(\widehat{h}_{0}\right) \cdot \bar{\partial} \operatorname{tr} A=\sum_{i} \frac{\sqrt{-1}}{2 \pi} \int_{D_{i}} \operatorname{tr} R\left(\widehat{h}_{0 \mid D_{i}},{ }_{c} E_{\mid D_{i}}\right) \cdot\left(-\mathrm{wt}\left({ }_{c} E_{*}, i\right)\right) \tag{31}\\
=\sum_{i}-\operatorname{wt}\left({ }_{c} E_{*}, i\right) \cdot \operatorname{deg}_{D_{i}}\left({ }_{c} E_{\mid D_{i}}\right)=-\sum_{i} \mathrm{wt}\left({ }_{c} E_{*}, i\right) \int_{X} c_{1}\left({ }_{c} E\right) \cdot\left[D_{i}\right]
\end{array}
$$

We put $\widehat{E}_{D_{i}, u}:={ }^{i} \operatorname{Gr}_{u}^{F, \mathbb{E}}\left(E_{\mid D_{i}}\right)$, which is naturally isomorphic to ${ }^{i} \mathcal{G}_{u}$ as C^{∞}-bundles. Hence the metric $h_{D_{i}, u}$ on $\widehat{E}_{D_{i}, u}$ is induced (Subsection 4.3.2). Then, we obtain the following, using Corollary 4.6:

$$
\begin{align*}
\left(\frac{\sqrt{-1}}{2 \pi}\right)^{2} \int_{X-D} \operatorname{tr} R\left(h_{0}\right) \cdot \bar{\partial} \operatorname{tr} A=-\sum_{i} & \operatorname{wt}\left({ }_{c} E_{*}, i\right) \sum_{u} \frac{\sqrt{-1}}{2 \pi} \int_{D_{i}} \operatorname{tr} R\left(h_{D_{i}, u}, \widehat{E}_{D_{i}, u}\right) \tag{32}\\
& +\sum_{i} \operatorname{wt}^{2}\left({ }_{c} E_{*}, i\right)^{2} \cdot \frac{\sqrt{-1}}{2 \pi} \int_{D_{i}} \bar{\partial} \partial \log \left|\sigma_{i}\right|^{2}
\end{align*}
$$

We have the naturally induced parabolic structure of ${ }_{c} E_{\mid D_{i}}$ at $D_{i} \cap \bigcup_{j \neq i} D_{j}$. Then we have the following equality:

$$
\begin{align*}
& \sum_{u} \frac{\sqrt{-1}}{2 \pi} \int_{D_{i}} \operatorname{tr} R\left(h_{D_{i}, u}, \widehat{E}_{D_{i}, u}\right)={\operatorname{par}-\operatorname{deg}_{D_{i}}\left({ }_{c} E_{\mid D_{i} *}\right)} \tag{33}\\
&=\operatorname{deg}_{D_{i}}\left(c E_{\mid D_{i}}\right)-\sum_{j \neq i} \operatorname{wt}\left({ }_{c} E_{*}, j\right) \cdot \int_{X}\left[D_{i}\right] \cdot\left[D_{j}\right]
\end{align*}
$$

We also have $\frac{\sqrt{-1}}{2 \pi} \int_{D_{i}} \bar{\partial} \partial \log \left|\sigma_{i}\right|^{2}=\int_{X}\left[D_{i}\right]^{2}$. Thus we obtain the following:

$$
\begin{align*}
& \left(\frac{\sqrt{-1}}{2 \pi}\right)^{2} \int_{X-D} \operatorname{tr} R\left(h_{0}\right) \cdot \bar{\partial} \operatorname{tr} A=-\sum_{i} \mathrm{wt}\left({ }_{c} E_{*}, i\right) \int_{X} c_{1}\left({ }_{c} E\right) \cdot\left[D_{i}\right] \tag{34}\\
& +\sum_{i} \sum_{j \neq i} \mathrm{wt}\left({ }_{c} E_{*}, i\right) \cdot \operatorname{wt}\left({ }_{c} E_{*}, j\right) \int_{X}\left[D_{i}\right] \cdot\left[D_{j}\right]+\sum_{i} \mathrm{wt}\left({ }_{c} E_{*}, i\right)^{2} \cdot \int_{X}\left[D_{i}\right]^{2} \\
& =- \\
& \sum_{i} \mathrm{wt}\left({ }_{c} E_{*}, i\right) \int_{X} c_{1}\left({ }_{c} E\right) \cdot\left[D_{i}\right]+\sum_{i} \sum_{j} \mathrm{wt}\left({ }_{c} E_{*}, i\right) \cdot \mathrm{wt}\left({ }_{c} E_{*}, j\right) \int_{X}\left[D_{i}\right] \cdot\left[D_{j}\right] .
\end{align*}
$$

Then the claim of the lemma follows.

Corollary 4.17

$$
\left(\frac{\sqrt{-1}}{2 \pi}\right)^{2} \int_{X-D}\left(\operatorname{tr} F\left(h_{0}\right)\right)^{2}=\int_{X} \operatorname{par}-\mathrm{c}_{1}^{2}\left({ }_{c} E_{*}\right)
$$

Proof. - It follows from $\left(\operatorname{tr} F\left(h_{0}\right)\right)^{2}=\left(\operatorname{tr} R\left(h_{0}\right)\right)^{2}$ and the previous lemma.
Proposition 4.18. - If $\left(\boldsymbol{E}_{*}, \theta\right)$ is graded semisimple, the following equality holds:

$$
\left(\frac{\sqrt{-1}}{2 \pi}\right)^{2} \int_{X-D} \operatorname{tr}\left(F\left(h_{0}\right)^{2}\right)=2 \int_{X} \operatorname{par}^{-\operatorname{ch}_{2}\left(c E_{*}\right) .}
$$

Proof. - We have only to show the following two equalities:

$$
\begin{gather*}
\int_{X-D} \operatorname{tr}\left(F\left(h_{0}\right)^{2}\right)=\int_{X-D} \operatorname{tr}\left(R\left(h_{0}\right)^{2}\right) . \tag{35}\\
\left(\frac{\sqrt{-1}}{2 \pi}\right)^{2} \int_{X-D} \operatorname{tr}\left(R\left(h_{0}\right)^{2}\right)=2 \int_{X} \operatorname{par}^{2}-\operatorname{ch}_{2}\left(c E_{*}\right) .
\end{gather*}
$$

Let us show (35). By a direct calculation or the classical Chern-Simons theory, we obtain the following equality:

$$
\begin{align*}
\operatorname{tr}\left(F\left(h_{0}\right)^{2}\right)=\operatorname{tr} & \left(R\left(h_{0}\right)^{2}\right)+2 \operatorname{tr}\left(\left(\partial_{h_{0}} \theta+\bar{\partial} \theta_{h_{0}}^{\dagger}\right) \cdot R\left(h_{0}\right)\right) \tag{37}\\
& +d\left(\operatorname{tr}\left(\left(\theta+\theta_{h_{0}}^{\dagger}\right) \cdot\left(\partial_{h_{0}} \theta+\bar{\partial} \theta_{h_{0}}^{\dagger}\right)\right)+(2 / 3) \cdot \operatorname{tr}\left(\left(\theta+\theta_{h_{0}}^{\dagger}\right)^{3}\right)\right) .
\end{align*}
$$

Since $R\left(h_{0}\right), \partial_{h_{0}} \theta$ and $\bar{\partial} \theta_{h_{0}}^{\dagger}$ are a (1,1)-form, a (2,0)-form and a (0,2)-form respectively, we obtain the vanishing of the second term in the right hand side. It is easy to obtain $\operatorname{tr}\left(\left(\theta+\theta_{h_{0}}^{\dagger}\right)^{3}\right)=0$ from $\theta^{2}=\theta_{h_{0}}^{\dagger 2}=0$.

We put $Y_{i}(\delta):=\left\{x \in X| | \sigma_{i}(x)\left|=\min _{j}\right| \sigma_{j}(x) \mid=\delta\right\}$ and $Y(\delta):=\bigcup_{i} Y_{i}(\delta)$. From the estimate in Sections 4.1-4.2, $\operatorname{tr}\left(\theta \cdot \bar{\partial} \theta_{h_{0}}^{\dagger}\right)$ and $\operatorname{tr}\left(\theta_{h_{0}}^{\dagger} \cdot \partial_{h_{0}} \theta\right)$ are bounded with respect to $\omega_{\epsilon^{\prime}}$ for some $0<\epsilon^{\prime}<\epsilon$. Hence, we obtain the following convergence:

$$
\lim _{\delta \rightarrow 0} \int_{Y(\delta)} \operatorname{tr}\left(\theta \cdot \bar{\partial} \theta_{h_{0}}^{\dagger}\right)=\lim _{\delta \rightarrow 0} \int_{Y(\delta)} \operatorname{tr}\left(\theta_{h_{0}}^{\dagger} \cdot \partial_{h_{0}} \theta\right)=0
$$

Then, we obtain the formula (35):
Let us see (36). We put $A:=\partial_{h_{0}}-\partial_{\widehat{h}_{0}}$. Then we have $\operatorname{tr}\left(R\left(h_{0}\right)^{2}\right)=\operatorname{tr}\left(R\left(\widehat{h}_{0}\right)^{2}\right)+$ $d \operatorname{tr}\left(A \cdot R\left(h_{0}\right)+A \cdot R\left(\widehat{h}_{0}\right)\right)$. The contribution of the first term is as follows:

$$
\left(\frac{\sqrt{-1}}{2 \pi}\right)^{2} \int_{X-D} \operatorname{tr}\left(R\left(\widehat{h}_{0}\right)^{2}\right)=2 \operatorname{ch}_{2}(c E)
$$

As for the second term, we obtain the following from Corollary 4.9:

$$
\begin{align*}
& \left(\frac{\sqrt{-1}}{2 \pi}\right)^{2} \int_{X-D} d \operatorname{tr}\left(A \cdot R\left(h_{0}\right)+A \cdot R\left(\widehat{h}_{0}\right)\right)=-\sum_{i, a, \alpha} a \cdot \operatorname{deg}_{D_{i}}\left({ }^{i} \operatorname{Gr}_{a, \alpha}^{F, \mathbb{E}}\left(c E_{\mid D_{i}}\right)\right) \tag{38}\\
& \quad-\sum_{i, a, \alpha} a \cdot \operatorname{par}-\operatorname{deg}_{D_{i}}\left({ }^{i} \operatorname{Gr}_{a, \alpha}^{F, \mathbb{E}}\left(c_{c} E_{\mid D_{i}}\right)_{*}\right)+\sum_{i, a, \alpha} a^{2} \operatorname{rank}^{i} \operatorname{Gr}_{a, \alpha}^{F, \mathbb{E}}\left({ }_{c} E_{\mid D_{i}}\right) \int_{X}\left[D_{i}\right]^{2} .
\end{align*}
$$

Here ${ }^{i} \operatorname{Gr}_{a, \alpha}^{F, \mathbb{E}}\left({ }_{c} E_{\mid D_{i}}\right)_{*}$ is the parabolic bundle on $\left(D_{i}, D_{i} \cap \bigcup_{j \neq i} D_{j}\right)$ with the canonically induced parabolic structure. We have the following:

$$
\begin{align*}
& \sum_{\alpha}{\operatorname{par}-\operatorname{deg}_{D_{i}}\left({ }^{i} \operatorname{Gr}_{a, \alpha}^{F, \mathbb{E}}\left({ }_{c} E_{\mid D_{i}}\right)_{*}\right)=\operatorname{par-\operatorname {deg}_{D_{i}}({}^{i}\operatorname {Gr}_{a}^{F}({}_{c}E_{|D_{i}})_{*})}}^{\quad=\operatorname{deg}_{D_{i}}\left({ }^{i} \operatorname{Gr}_{a}^{F}\left({ }_{c} E_{\mid D_{i}}\right)\right)-\sum_{\substack{j \neq i, P \in D_{i} \cap D_{j}}} \sum_{\substack{a \in \mathcal{P}_{a r}\left(c_{c} E, P\right) \\
a_{i}=a}} a_{j} \cdot \operatorname{rank}\left({ }^{P} \operatorname{Gr}_{\boldsymbol{a}}^{F}\left({ }_{c} E_{\mid O}\right)\right) .} \tag{39}
\end{align*}
$$

Then (36) immediately follows.
4.3.4. The degree of subsheaves. - Let V be a saturated coherent $\mathcal{O}_{X-D^{-}}$ submodule of E. Let π_{V} denote the orthogonal projection of E onto V with respect to h_{0}, which is defined outside the Zariski closed subset of codimension two. Let h_{V} be the metric of V induced by h_{0}. The following lemmas are the special case of the results of J . $\mathrm{Li}[\mathbf{3 5]}$.
Lemma 4.19. - $\bar{\partial} \pi_{V}$ is L^{2} with respect to h_{0} and ω_{ϵ} if and only if there exists a coherent subsheaf ${ }_{c} V \subset{ }_{c} E$ such that ${ }_{c} V_{\mid X-D}=V$.

Lemma 4.20. - $\operatorname{deg}_{\omega_{\epsilon}}\left(V, h_{V}\right)=\operatorname{par}-\operatorname{deg}_{\omega}\left({ }_{c} V_{*}\right)$ holds.
Proof. - We give just an outline of a proof of Lemma 4.20. By considering the exterior product of E and V, we may assume $\operatorname{rank} V=1$. We may assume that L is very ample. Let C be a smooth divisor of X with $\mathcal{O}(C) \simeq L$ such that (i) ${ }_{c} V$ is locally free on a neighbourhood of C, (ii) C intersects with the smooth part of D transversally, (iii) ${ }^{i} F$ is a filtration in the category of the vector bundles on D_{i} around $C \cap D_{i}$. We can take a smooth (1,1)-form τ whose support is contained in a sufficiently small neighbourhood of C, such that τ and ω represents the same cohomology class. Then we have $\int \operatorname{tr} R\left(h_{V}\right) \cdot \omega=\int \operatorname{tr} R\left(h_{V}\right) \cdot \tau$. It can be checked $\left.\frac{\sqrt{-1}}{2 \pi} \int \operatorname{tr} R\left(h_{V}\right) \cdot \tau=\operatorname{par}^{-\operatorname{deg}_{\omega}(c}{ }_{c} V_{*}\right)$ by an elementary argument.

CHAPTER 5

PARABOLIC HIGGS BUNDLE ASSOCIATED TO TAME HARMONIC BUNDLE

In this chapter, we show the fundamental property of the parabolic Higgs bundles associated to tame harmonic bundles, such as μ_{L}-polystability and the vanishing of characteristic numbers. We also see the uniqueness of the adapted pluri-harmonic metric. These results give the half of Theorem 1.4.

5.1. Polystability and Uniqueness

Let X be a smooth irreducible projective variety over \boldsymbol{C}, and D be a simple normal crossing divisor with the irreducible decomposition $D=\bigcup_{i \in S} D_{i}$. Let L be any ample line bundle of X.

Proposition 5.1.- Let $\left(E, \bar{\partial}_{E}, \theta, h\right)$ be a tame harmonic bundle on $X-D$, and let $\left({ }_{c} E_{*}, \theta\right)$ denote the associated \boldsymbol{c}-parabolic Higgs bundle for any $\boldsymbol{c} \in \boldsymbol{R}^{S}$. (See Section 3.5.)

- $\left({ }_{c} E_{*}, \theta\right)$ is μ_{L}-polystable, and par-deg ${ }_{L}\left({ }_{c} E_{*}\right)=0$.
- Let $\left({ }_{c} E_{*}, \theta\right)=\bigoplus_{i}\left({ }_{c} E_{i *}, \theta_{i}\right) \otimes \boldsymbol{C}^{p(i)}$ be the canonical decomposition (Corollary 3.11). Then we have the orthogonal decomposition $h=\bigoplus_{i} h_{i} \otimes g_{i}$. Here h_{i} are pluri-harmonic metrics for $\left(E_{i}, \bar{\partial}_{E_{i}}, \theta_{i}\right)$, and g_{i} are hermitian metrics of $\boldsymbol{C}^{p(i)}$.

Proof. - The equality par- $\operatorname{deg}_{L}\left({ }_{c} E_{*}\right)=0$ can be easily reduced to the curve case (Proposition 2.8). It also follows from the curve case that $\left({ }_{c} E_{*}, \theta\right)$ is μ_{L}-semistable.

Let us show $\left({ }_{c} E_{*}, \theta\right)$ is μ_{L}-polystable. Let $\left({ }_{c} V_{*}, \theta_{V}\right)$ be a non-trivial saturated Higgs subsheaf of $\left({ }_{c} E_{*}, \theta\right)$ such that $\mu_{L}\left({ }_{c} V_{*}\right)=\mu_{L}\left({ }_{c} E_{*}\right)=0$ and $\operatorname{rank}(V)<\operatorname{rank}(E)$. Recall that we have the closed subset $Z \subset X$ such that ${ }_{c} V_{\mid X-Z}$ is the subbundle of ${ }_{c} E_{\mid X-Z}$. The codimension of Z is larger than 2 . We have the orthogonal projection $\pi_{V}: E \longrightarrow V$ on the open set $X-(Z \cup D)$. Let $C \subset X$ be any smooth curve such that (i) C intersects with the smooth part of D transversally, (ii) $C \cap Z=\varnothing$. Let θ_{C} denote the induced Higgs field of $E_{\mid C \backslash D}$. Due to the result in the curve case, we
obtain that $\pi_{V \mid C}$ is holomorphic and that θ_{C} and $\pi_{V \mid C}$ commute. Then, we obtain that $\pi_{V \mid X-(D \cup Z)}$ is holomorphic and that $\left[\pi_{V}, \theta\right]=0$. Since the codimension of Z is larger than two, π_{V} naturally gives the holomorphic map $E \longrightarrow E$ on $X-D$, which is also denoted by π_{V}. It is easy to see $\pi_{V}^{2}=\pi_{V}$, and that the restriction of π_{V} to V is the identity. Hence we obtain the decomposition $E=V \oplus V^{\prime}$, where we put $V^{\prime}=\operatorname{Ker} \pi_{V}$. We can conclude that V and V^{\prime} are vector subbundles of E, and the decomposition is orthogonal with respect to the metric h. Since we have $\left[\pi_{V}, \theta\right]=0$, the decomposition is also compatible with the Higgs field. Hence we obtain the decomposition of $\left(E, \bar{\partial}_{E}, \theta, h\right)$ into $\left(V, \bar{\partial}_{V}, \theta_{V}, h_{V}\right) \oplus\left(V^{\prime}, \bar{\partial}_{V^{\prime}}, \theta_{V^{\prime}}, h_{V^{\prime}}\right)$ as harmonic bundles. Then it is easy that $\left({ }_{c} E_{*}, \theta\right)$ is also decomposed into $\left({ }_{c} V_{*}, \theta_{V}\right) \oplus\left({ }_{c} V^{\prime}{ }_{*}, \theta_{V^{\prime}}\right)$. Since both of $\left({ }_{c} V_{*}, \theta_{V}\right)$ and $\left({ }_{c} V^{\prime}, \theta_{V^{\prime}}\right)$ are obtained from tame harmonic bundles, they are $\mu_{L^{-}}$-semistable. And we have $\operatorname{rank}(V)<\operatorname{rank}(E)$ and $\operatorname{rank}\left(V^{\prime}\right)<\operatorname{rank}(E)$. Hence the μ_{L}-polystability of $\left({ }_{c} E, \theta\right)$ can be shown by an easy induction on the rank.

From the argument above, the second claim is also clear.
Proposition 5.2. - Let $\left({ }_{c} E_{*}, \theta\right)$ be a c-parabolic Higgs bundle on (X, D). We put $E:={ }_{c} E_{\mid X-D}$. Assume that we have pluri-harmonic metrics h_{i} of $\left(E, \bar{\partial}_{E}, \theta\right)(i=1,2)$, which are adapted to the parabolic structures. Then we have the decomposition of Higgs bundles $(E, \theta)=\bigoplus_{a}\left(E_{a}, \theta_{a}\right)$ satisfying the following conditions:

- The decomposition is orthogonal with respect to both of h_{i}. The restrictions of h_{i} to E_{a} are denoted by $h_{i, a}$.
- There exist positive numbers b_{a} such that $h_{1, a}=b_{a} \cdot h_{2, a}$.

We remark that the decomposition $(E, \theta)=\bigoplus\left(E_{a}, \theta_{a}\right)$ induces the decomposition of the \boldsymbol{c}-parabolic Higgs bundles $\left({ }_{c} E_{*}, \theta\right)=\bigoplus\left({ }_{c} E_{a_{*}}, \theta_{a}\right)$.

Proof. - Recall the norm estimate for tame harmonic bundles ([44]) which says that the harmonic metrics are determined up to boundedness by the parabolic filtration and the weight filtration. Hence we obtain the mutually boundedness of h_{1} and h_{2}. Then the uniqueness follows from Proposition 2.6. (The Kahler metric of $X-D$ is given by the restriction of a Kahler metric of X. It satisfies Condition 2.1, according to [51].)

5.2. Vanishing of Characteristic Numbers

Proposition 5.3. - Let $\left(E, \bar{\partial}_{E}, \theta, h\right)$ be a tame harmonic bundle on $X-D$, and $\left({ }_{c} E_{*}, \theta\right)$ be the induced c-parabolic Higgs bundle. Then we have the vanishing of the following characteristic numbers:

$$
\int_{X}{\operatorname{par}-\mathrm{ch}_{2, L}\left(c E_{*}\right)=0, \quad \int_{X} \operatorname{par}-\mathrm{c}_{1, L}^{2}\left(c E_{*}\right)=0}
$$

Proof. - We may and will assume $\operatorname{dim} X=2$. Let h_{0} be an ordinary metric for the parabolic Higgs bundle $\left({ }_{c} E_{*}, \theta\right)$. We have only to show $\int \operatorname{tr}\left(R\left(h_{0}\right)^{2}\right)=\int \operatorname{tr}\left(R\left(h_{0}\right)\right)^{2}=0$.

Let $I(D)$ denote the set of the intersection points of D. Let $\pi: \widetilde{X} \longrightarrow X$ be a blow up at $I(D)$. We put $\widetilde{D}:=\pi^{-1}(D)$. Let \widetilde{D}_{i} denote the proper transform of D_{i}, and let \widetilde{D}_{P} denote the exceptional curve $\pi^{-1}(P)$. We put $\widetilde{S}:=S \cup I(D)$. Then, we have $\widetilde{D}=\bigcup_{i \in \tilde{S}} \widetilde{D}_{i}$. We take neighbourhoods \widetilde{U}_{i} of \widetilde{D}_{i} with retractions $\widetilde{\pi}_{i}: \widetilde{U}_{i} \longrightarrow \widetilde{D}_{i}$ for $i \in \widetilde{S}$, as in Subsection 4.3.1.

We put $\widetilde{E}:=\pi^{-1}(c E)$. On $\widetilde{E}_{\mid \widetilde{D}_{i}}(i \in S)$, we have the naturally induced filtration ${ }^{i} F$. For any intersection point $P \in D_{i} \cap D_{j}$, we have the isomorphism $\widetilde{E}_{\mid \widetilde{D}_{P}} \simeq$ ${ }_{c} E_{\mid P} \otimes \mathcal{O}_{\widetilde{D}_{P}}$. We have the filtrations ${ }^{i} F$ and ${ }^{j} F$ on ${ }_{c} E_{\mid P}$. We take a decomposition ${ }_{c} E_{\mid P}=\bigoplus U_{\boldsymbol{a}}$ such that ${ }^{1} F_{a_{1}} \cap{ }^{2} F_{a_{2}}=\bigoplus_{\boldsymbol{b} \leq \boldsymbol{a}} U_{\boldsymbol{b}}$. Then, we put ${ }^{P} F_{b}\left({ }_{c} E_{\mid P}\right):=$ $\bigoplus_{b_{1}+b_{2} \leq b} U_{\boldsymbol{b}}$, which gives the filtration of ${ }_{c} E_{\mid P}$. The induced filtration on $\widetilde{E}_{\mid \widetilde{D}_{P}}$ is also denoted by ${ }^{P} F$. The tuple of filtrations $\left({ }^{i} F \mid i \in \widetilde{S}\right)$ is denoted by \boldsymbol{F}.

We put $\widetilde{\theta}:=\pi^{-1} \theta$. Then $(\widetilde{E}, \boldsymbol{F}, \widetilde{\theta})$ is a generalized parabolic Higgs bundle in the sense of Remark 3.6. The residue $\operatorname{Res}_{i} \tilde{\theta}$ preserves the filtration ${ }^{i} F$. On each $i \in \widetilde{S}$, the residue $\operatorname{Res}_{i} \widetilde{\theta}$ induces the endomorphism of ${ }^{i} \operatorname{Gr}_{a}^{F}(\widetilde{E})$. The eigenvalues are constant, and hence the nilpotent part \mathcal{N}_{i} is well defined. The conjugacy classes of $\mathcal{N}_{i \mid P}$ are independent of the choice of $P \in \widetilde{D}_{i}([\mathbf{4 4}])$. Thus, we obtain the weight filtration ${ }^{i} W$ on ${ }^{i} \operatorname{Gr}_{a}^{F}(\widetilde{E})$. We put $\widetilde{F}_{(a, k)}:=\pi_{a}^{-1}\left({ }^{i} W_{k}\right)$, where π_{a} denotes the projection ${ }^{i} F_{a} \longrightarrow$ ${ }^{i} \operatorname{Gr}_{a}^{F}(\widetilde{E})$.

Let \widetilde{P}_{i} denote the intersection point of \widetilde{D}_{i} and \widetilde{D}_{P} for $i \in S$ and $P \in I(D)$. Around \widetilde{P}_{i}, we have the holomorphic frame ${ }^{P i} \widetilde{\boldsymbol{v}}$, as in Subsection 2.5.2. Namely, we take a holomorphic frame ${ }^{P i} \boldsymbol{v}$ around P as in Subsection 2.5.1, (D_{i} plays the role of D_{1}, there) and we put ${ }^{P i} \widetilde{\boldsymbol{v}}:=\pi^{-1}\left({ }^{P, i} \boldsymbol{v}\right)$ around \widetilde{P}_{i}. We take a hermitian metric \widehat{h}_{1} of \widetilde{E} such that ${ }^{P, i} \widetilde{\boldsymbol{v}}$ around \widetilde{P}_{i} are orthonormal with respect to \widehat{h}_{1}. By using it, we take C^{∞}-isomorphisms $\widetilde{\Phi}_{i}: \widetilde{\pi}_{i}^{*} \widetilde{E}_{\mid \widetilde{D}_{i}} \simeq \widetilde{E}_{\mid \widetilde{U}_{i}}$ on $\widetilde{U}_{i}(i \in \widetilde{S})$ as in Subsection 4.3.2. Then, we can take a hermitian metric h_{1} which is as in Subsection 2.5.2 for the frame ${ }^{P}{ }^{i} \widetilde{\boldsymbol{v}}$ around \widetilde{P}_{i}, and as in Subsection 4.2.6 around \widetilde{D}_{i}.

Lemma 5.4. - We have $\int \operatorname{tr}\left(R\left(h_{0}\right)^{2}\right)=\int \operatorname{tr}\left(R\left(h_{1}\right)^{2}\right)$ and $\int \operatorname{tr}\left(R\left(h_{0}\right)\right)^{2}=\int \operatorname{tr}\left(R\left(h_{1}\right)\right)^{2}$.
Proof. - Let $\widetilde{\omega}$ denote a Poincaré like metric on $\widetilde{X}-\widetilde{D}$. Let \widetilde{h}_{0} be an ordinary metric for ($\widetilde{E}, \boldsymbol{F}, \widetilde{\theta})$ as constructed in Subsection 4.3.2. Then, $\pi^{*} h_{0}$ and \widetilde{h}_{0} are mutually bounded. Both of $\pi^{*} R\left(h_{0}\right)$ and $R\left(\widetilde{h}_{0}\right)$ are bounded with respect to \widetilde{h}_{0} and $\widetilde{\omega}$.

Let us see that $A_{0}=\partial_{\widetilde{E}, \pi^{-1} h_{0}}-\partial_{\widetilde{E}, \widetilde{h}_{0}}$ is bounded with respect to $\widetilde{\omega}$ and \widetilde{h}_{0}. Let us recall the description of A_{0} around \widetilde{P}_{i}. We take a holomorphic coordinate neighbourhood $\left(U, z_{1}, z_{2}\right)$ such that $\left\{z_{1} \cdot z_{2}=0\right\}=U \cap\left(\widetilde{D}_{i} \cup \widetilde{D}_{P}\right)$. We put $D_{j}^{\prime}:=$ $\left\{z_{j}=0\right\}$. We have two holomorphic decomposition $\widetilde{E}_{\mid U}=\bigoplus U_{\boldsymbol{a}}=\bigoplus \widetilde{U}_{\boldsymbol{a}}$ such that ${ }^{j} F_{b}=\bigoplus_{a_{j} \leq b} U_{\boldsymbol{a} \mid D_{j}^{\prime}}=\bigoplus_{a_{j} \leq b} \widetilde{U}_{\boldsymbol{a} \mid D_{j}^{\prime}}$, where a_{j} denotes the j-th component of \boldsymbol{a}. We put $\Gamma_{j}=\bigoplus a_{j} \cdot \operatorname{id}_{U_{a}}$ and $\widetilde{\Gamma}_{j}=\bigoplus a_{j} \cdot \mathrm{id}_{\widetilde{U}_{a}}$. We have $\partial_{\widetilde{E}, \pi^{-1}\left(h_{0}\right)}=\mathcal{D}_{1}-\sum \Gamma_{j} \cdot d z_{j} / z_{j}$ and $\partial_{\widetilde{E}, \widetilde{h}_{0}}=\mathcal{D}_{2}-\sum \widetilde{\Gamma}_{j} \cdot d z_{j} / z_{j}$, where \mathcal{D}_{1} (resp. \mathcal{D}_{2}) is the (1,0)-operator of $\widetilde{E}_{\mid U}$,
preserving the decomposition $\widetilde{E}_{\mid U}=\bigoplus U_{\boldsymbol{a}}$ (resp. $\widetilde{E}_{U}=\bigoplus \widetilde{U}_{\boldsymbol{a}}$). Then, we have $A_{0}=\sum\left(\widetilde{\Gamma}_{j}-\Gamma_{j}\right) d z_{j} / z_{j}+\left(\mathcal{D}_{1}-\mathcal{D}_{2}\right)$. Because of $\left(\widetilde{\Gamma}_{j}-\Gamma_{j}\right)_{\mid D_{j}^{\prime}}{ }^{j} F_{a} \subset{ }^{j} F_{<a}$ and $\left(\mathcal{D}_{1}-\mathcal{D}_{2}\right)_{\mid D_{j}^{\prime}}{ }^{j} F_{a} \subset{ }^{j} F_{a} \otimes \Omega^{1,0}$, we obtain the boundedness of A_{0} with respect to $\pi^{-1} h_{0}$ and $\widetilde{\omega}$, around \widetilde{P}_{i}.

Let us recall the description of A_{0} around $Q \in \widetilde{D}_{i}(i \in \widetilde{S})$. Let $\left(U, z_{1}, z_{2}\right)$ be a holomorphic coordinate around Q such that $z_{1}^{-1}(0)=U \cap \widetilde{D}_{i}$. We have two $C^{\infty}{ }_{-}$ decomposition $\widetilde{E}_{\mid U}=\bigoplus E_{a}=\bigoplus \widetilde{E}_{a}$ such that ${ }^{i} F_{b}=\bigoplus_{a \leq b} E_{a \mid \widetilde{D}_{i}}=\bigoplus_{a \leq b} \widetilde{E}_{a \mid \widetilde{D}_{i}}$. We put $\Gamma:=\bigoplus a \cdot \operatorname{id}_{E_{a}}$ and $\widetilde{\Gamma}:=\bigoplus a \cdot \operatorname{id}_{\widetilde{E}_{a}}$. We have a description $\partial_{\pi^{-1} h_{0}}=$ $\partial_{1, \pi^{-1} h_{0}^{\prime}}-\Gamma d z_{1} / z_{1}+O(1)$, where $O(1)$ denotes the bounded one form with respect to h_{0} and $\widetilde{\omega}$, and $\partial_{1, \pi^{-1} h_{0}^{\prime}}$ is operator on $\widetilde{E}_{\mid U}$ (not on $\widetilde{E}_{U \backslash \widetilde{D}_{i}}$) such that $\partial_{1, \pi^{-1} h_{0}^{\prime} \mid \widetilde{D}_{i}}$ preserves the filtration ${ }^{i} F$. (See the proof of Lemma 4.5.) Similarly, we have $\partial_{\widetilde{h}_{0}}=$ $\partial_{1, \widetilde{h}_{0}^{\prime}}-\widetilde{\Gamma} d z_{1} / z_{1}+O(1)$. For the expression $\partial_{1, \pi^{-1} h_{0}^{\prime}}-\partial_{1, \widetilde{h}_{0}^{\prime}}=B_{1} \cdot d z_{1} / z_{1}+B_{2} \cdot d z_{2}$, we have $B_{1 \mid \widetilde{D}_{i}}=0$ and $B_{2 \mid \widetilde{D}_{i}}\left({ }^{i} F_{a}\right) \subset{ }^{i} F_{a}$. We also have $(\widetilde{\Gamma}-\Gamma)_{\mid \tilde{D}_{i}}{ }^{i} F_{a} \subset{ }^{i} F_{<a}$. Thus, we obtain the boundedness of $\partial_{\pi^{-1} h_{0}}-\partial_{\widetilde{h}_{0}}$. Now, it is easy to obtain $\int \operatorname{tr}\left(R\left(h_{0}\right)^{2}\right)=$ $\int \operatorname{tr}\left(R\left(\widetilde{h}_{0}\right)^{2}\right)$ and $\int \operatorname{tr}\left(R\left(h_{0}\right)\right)^{2}=\int \operatorname{tr}\left(R\left(\widetilde{h}_{0}\right)\right)^{2}$.

Due to the lemmas 2.15, 4.5 and 4.10, $R\left(\widetilde{h}_{0}\right), R\left(h_{1}\right)$ and $A_{0}:=\partial_{h_{1}}-\partial_{\widetilde{h}_{0}}$ are bounded with respect to $\left(\widetilde{h}_{0}, \widetilde{\omega}\right)$. Hence, $\operatorname{tr}\left(A_{0}\right), \operatorname{tr}\left(R\left(\widetilde{h}_{0}\right)\right), \operatorname{tr}\left(R\left(\widetilde{h}_{0}\right) \cdot A_{0}\right), \operatorname{tr}\left(R\left(h_{1}\right)\right)$ and $\operatorname{tr}\left(R\left(h_{1}\right) \cdot A_{0}\right)$ are bounded with respect to $\widetilde{\omega}$. Then, it is easy to show $\int \operatorname{tr}\left(R\left(\widetilde{h}_{0}\right)^{2}\right)=\int \operatorname{tr}\left(R\left(h_{1}\right)^{2}\right)$ and $\int \operatorname{tr}\left(R\left(\widetilde{h}_{0}\right)\right)^{2}=\int \operatorname{tr}\left(R\left(h_{1}\right)\right)^{2}$.

Due to the norm estimate (Lemma 2.14), $\widetilde{h}:=\pi^{*} h$ and h_{1} are mutually bounded. We also have that $R(\widetilde{h})$ is bounded with respect to \widetilde{h} and $\widetilde{\omega}$. Let s denote the selfadjoint endomorphism of $\pi^{-1}(E)$ with respect to \widetilde{h} and h_{1}, determined by $\widetilde{h}=h_{1} \cdot s$. We have $\partial_{\widetilde{h}}-\partial_{h_{1}}=s^{-1} \partial_{h_{1}} s$ and $\bar{\partial}\left(s^{-1} \partial_{h_{1}} s\right)=R(\widetilde{h})-R\left(h_{1}\right)$, which is bounded with respect to h_{1} and $\widetilde{\omega}$.

Let us show the following equality for any test function χ on $\widetilde{X}-\widetilde{D}$:

$$
\begin{equation*}
\int\left(s^{-1} \partial_{h_{1}}(\chi \cdot s), \partial_{h_{1}}(\chi \cdot s)\right)_{h_{1}} \cdot \widetilde{\omega}=\int\left(\chi \cdot \bar{\partial}\left(s^{-1} \partial_{h_{1}} s\right), \chi \cdot s\right) \cdot \widetilde{\omega}+\int \partial \chi \cdot \bar{\partial} \chi \cdot \operatorname{tr}(s) \cdot \widetilde{\omega} \tag{40}
\end{equation*}
$$

We have the following:

$$
\begin{align*}
& \int\left(s^{-1} \partial_{h_{1}}(\chi \cdot s), \partial_{h_{1}}(\chi \cdot s)\right)_{h_{1}}=\int\left(\bar{\partial}\left(s^{-1} \cdot \partial_{h_{1}}(\chi \cdot s)\right), \chi \cdot s\right)_{h_{1}} \tag{41}\\
= & \int(\bar{\partial} \partial \chi, \chi \cdot s)_{h_{1}}+\int\left(\chi \cdot \bar{\partial}\left(s^{-1} \partial_{h_{1}} s_{0}\right), \chi \cdot s\right)_{h_{1}}+\int\left(\bar{\partial} \chi \cdot s^{-1} \partial_{h_{1}} s, \chi \cdot s\right)_{h_{1}}
\end{align*}
$$

Moreover, we have the following:

$$
\begin{align*}
(\bar{\partial} \partial \chi, \chi \cdot s)_{h_{1}}+\left(\bar{\partial} \chi \wedge s^{-1} \partial_{h_{1}} s, \chi \cdot s\right)_{h_{1}} & =\operatorname{tr}(\bar{\partial} \partial \chi \cdot \chi \cdot s)+\operatorname{tr}\left(\bar{\partial} \chi \cdot \partial_{h_{1}} s \cdot \chi\right) \tag{42}\\
& =-\partial(\operatorname{tr}(\bar{\partial} \chi \cdot \chi \cdot s))-\operatorname{tr}(\bar{\partial} \chi \partial \chi \cdot s)
\end{align*}
$$

Thus we obtain (40).

Lemma 5.5. - $s^{-1} \partial_{h_{1}} s$ is L^{2} with respect to $\widetilde{\omega}$ and \widetilde{h}.
Proof. - Let ρ be a non-negative valued function on \boldsymbol{R} satisfying $\rho(t)=1$ for $t \leq 1 / 2$ and $\rho(t)=0$ for $t \geq 2 / 3$. Take hermitian metrics g_{i} of the line bundles $\mathcal{O}\left(\widetilde{D}_{i}\right)(i \in \widetilde{S})$. Let σ_{i} denote the canonical section of $\mathcal{O}\left(\widetilde{D}_{i}\right)$, and $\left|\sigma_{i}\right|$ denote the norm function of σ_{i} with respect to g_{i}. We may assume $\left|\sigma_{i}\right|<1$. We put $\chi_{N}:=\prod_{i \in \tilde{S}} \rho\left(-N^{-1} \log \left|\sigma_{i}\right|^{2}\right)$. Then, $\partial \chi_{N}$ is bounded with respect to $\widetilde{\omega}$, independently of N. By using (40), we obtain $\int\left|s^{-1} \partial_{h_{1}}\left(\chi_{N} s\right)\right|_{h_{1}}^{2} \operatorname{dvol}_{\widetilde{\omega}}<C$ for some constant C, and thus we obtain the claim of the lemma.

We put $A_{1}:=s^{-1} \partial_{h_{1}} s$, which is L^{2} with respect to $\widetilde{\omega}$ and h_{1}. We have $R\left(h_{1}\right)=$ $R(\widetilde{h})-\bar{\partial} A_{1}$. Since we have $\operatorname{tr} R(\widetilde{h})=\operatorname{tr} F(\widetilde{h})=0$, we have $\operatorname{tr}\left(R\left(h_{1}\right)\right)^{2}=-d\left(\operatorname{tr} R\left(h_{1}\right)\right.$. $\operatorname{tr} A_{1}$). Since $R\left(h_{1}\right)$ is bounded with respect to $\widetilde{\omega}$ and h_{1}, we obtain that $\operatorname{tr} R\left(h_{1}\right) \cdot \operatorname{tr} A_{1}$ is L^{2} with respect to $\widetilde{\omega}$. We also know that $d\left(\operatorname{tr} R\left(h_{1}\right) \cdot \operatorname{tr}\left(A_{1}\right)\right)$ is integrable. Then we obtain the vanishing, due to Lemma 5.2 in [51]:

$$
\int\left(\operatorname{tr} R\left(h_{1}\right)\right)^{2}=\int d\left(\operatorname{tr} R\left(h_{1}\right) \cdot \operatorname{tr} A\right)=0
$$

(Note that $\widetilde{\omega}$ satisfies the condition of the lemma.) Thus, we obtain \int par- $\mathrm{c}_{1}\left(c E_{*}\right)^{2}=$ $\left(\frac{\sqrt{-1}}{2 \pi}\right)^{2} \int\left(\operatorname{tr} R\left(h_{0}\right)\right)^{2}=\left(\frac{\sqrt{-1}}{2 \pi}\right)^{2} \int\left(\operatorname{tr} R\left(h_{1}\right)\right)^{2}=0$.

Because of $R(\widetilde{h})=-\left[\theta, \theta_{\widetilde{h}}^{\dagger}\right]$ and $\theta^{2}=0$, we easily obtain $\operatorname{tr}\left(R(\widetilde{h})^{2}\right)=0$. Thus we obtain the following:

$$
\operatorname{tr}\left(R\left(h_{1}\right)^{2}\right)+\bar{\partial}\left(\operatorname{tr}\left(A_{1} \cdot R\left(h_{1}\right)\right)+\operatorname{tr}\left(A_{1} \cdot R(\widetilde{h})\right)\right)=0
$$

From the boundedness of $R\left(h_{1}\right)$ and $R(\widetilde{h})$ with respect to $\widetilde{\omega}$ and h_{1}, we obtain that $\operatorname{tr}\left(A_{1} \cdot R\left(h_{1}\right)\right)$ and $\operatorname{tr}\left(A_{1} \cdot R(\widetilde{h})\right)$ are L^{2} with respect to $\widetilde{\omega}$. Thus we obtain the vanishing, by using Lemma 5.2 in [51] again:

$$
\int \bar{\partial}\left(\operatorname{tr}\left(A_{1} \cdot R\left(h_{1}\right)\right)+\operatorname{tr}\left(A_{1} \cdot R(\widetilde{h})\right)\right)=0
$$

CHAPTER 6

PRELIMINARY CORRESPONDENCE AND BOGOMOLOV-GIESEKER INEQUALITY

In this chapter, we show the existence of the adapted pluri-harmonic metric for graded semisimple μ_{L}-stable parabolic Higgs bundles on a surface (Proposition 6.1). We will use it together with the perturbation of the parabolic structure (Section 3.3) to derive more interesting results. One of the immediate consequences is BogomolovGieseker inequality (Theorem 6.5).

6.1. Graded Semisimple Parabolic Higgs Bundles on Surface

We show an existence of Hermitian-Einstein metric for μ_{L}-stable parabolic Higgs bundle on a surface under the graded semisimplicity assumption, which makes the problem much easier. Later, we will discuss such existence theorem for parabolic Higgs bundle with trivial characteristic numbers in the case where the graded semisimplicity is not assumed.

Proposition 6.1. - Let X be a smooth irreducible projective complex surface with an ample line bundle L, and D be a simple normal crossing divisor. Let ω be a Kahler form of X, which represents $c_{1}(L)$. Let $\left({ }_{c} E_{*}, \theta\right)$ be a c-parabolic Higgs bundle on (X, D), which is μ_{L}-stable and graded semisimple. Let us take a positive number ϵ satisfying the following:
$-10 \epsilon<\operatorname{gap}\left(c E_{*}\right)$, and $\epsilon=m^{-1}$ for some positive integer m.
We take a Kahler form ω_{ϵ} of $X-D$, as in Subsection 4.3.1. We put $E={ }_{c} E_{\mid X-D}$, and the restriction of θ to $X-D$ is denoted by the same notation. Then there exists a hermitian metric h of E satisfying the following conditions:

- Hermitian-Einstein condition $\Lambda_{\omega_{\epsilon}} F(h)=a \cdot \mathrm{id}_{E}$ for some constant a determined by the following equation:

$$
\begin{equation*}
a \cdot \frac{\sqrt{-1}}{2 \pi} \frac{\operatorname{rank} E}{2} \int_{X-D} \omega_{\epsilon}^{2}=a \cdot \frac{\sqrt{-1}}{2 \pi} \frac{\operatorname{rank}(E)}{2} \int_{X} \omega^{2}={\operatorname{par}-\operatorname{deg}_{\omega}\left(c E_{*}\right) .} \tag{43}
\end{equation*}
$$

- h is adapted to the parabolic structure of ${ }_{c} E_{*}$.

- We have the following equalities:

$$
\begin{aligned}
\int_{X} 2 \operatorname{par}-\mathrm{ch}_{2}\left(c E_{*}\right) & =\left(\frac{\sqrt{-1}}{2 \pi}\right)^{2} \int_{X-D} \operatorname{tr}\left(F(h)^{2}\right) \\
\int_{X} \operatorname{par}-\mathrm{c}_{1}^{2}\left({ }_{c} E_{*}\right) & =\left(\frac{\sqrt{-1}}{2 \pi}\right)^{2} \int_{X-D} \operatorname{tr}(F(h))^{2}
\end{aligned}
$$

Proof. - Let us take an ordinary metric h_{0} for the parabolic bundle $\left(c E_{*}, \theta\right)$ as in Section 4.3. Note we have $\Lambda_{\omega_{\epsilon}} \operatorname{tr} R\left(h_{0}\right)=\Lambda_{\omega_{\epsilon}} \operatorname{tr} F\left(h_{0}\right)$. We put $\gamma_{i}:=\operatorname{wt}\left({ }_{c} E_{*}, i\right)$.

Let us see the induced metric $\operatorname{det}\left(h_{0}\right)$ of $\operatorname{det}(E)$. Due to our construction, $\operatorname{det}\left(h_{0}\right)$ is of the form $\tau \cdot\left|z_{i}\right|^{-2 \gamma_{i}} \cdot\left|z_{j}\right|^{-2 \gamma_{j}}$ around $P \in D_{i} \cap D_{j}$, where τ denotes a positive $C^{\infty_{-}}$ metric of $\operatorname{det}\left({ }_{c} E\right)_{\mid U_{P}}$. If P is a smooth point of D_{i}. then the metric $\operatorname{det}\left(h_{0}\right)$ is of the form $\tau \cdot\left|\sigma_{i}\right|_{g_{i}}^{-2 \gamma_{i}}$, where τ and γ_{i} are as above. Therefore, $\operatorname{tr} R\left(h_{0}\right)=R\left(\operatorname{det}\left(h_{0}\right)\right)$ is C^{∞} on X. If a is determined by (43), we have $\int_{X-D}\left(\operatorname{tr} \Lambda_{\omega_{\epsilon}} F\left(h_{0}\right)-\operatorname{rank}(E) \cdot a\right) \cdot \omega_{\epsilon}^{2}=0$. Recall $\epsilon=m^{-1}$ for some positive integer m. Then the following lemma can be shown by a consideration of orbifolds.

Lemma 6.2. - We can take a bounded C^{∞}-function g on $X-D$ satisfying the conditions (i) $\Delta_{\omega_{\epsilon}} g=\sqrt{-1} \Lambda_{\omega_{\epsilon}} \operatorname{tr}\left(F\left(h_{0}\right)\right)-\sqrt{-1} \operatorname{rank}(E) \cdot a$, where a is determined by the equation (43), (ii) $\partial g, \bar{\partial} g$, and $\partial \bar{\partial} g$ are bounded with respect to ω_{ϵ}.

We put $g^{\prime}:=g / \operatorname{rank} E$ and $h_{i n}:=h_{0} \cdot \exp \left(-g^{\prime}\right)$. We remark that the adjoints θ for h_{0} and $h_{i n}$ are same. We also remark that $\partial_{h_{i n}}-\partial_{h_{0}}$ and $R\left(h_{i n}\right)-R\left(h_{0}\right)$ are just multiplications $-\partial g^{\prime} \cdot \mathrm{id}_{E}$ and $\partial \bar{\partial} g^{\prime} \cdot \mathrm{id}_{E}$ respectively, which are bounded with respect to ω_{ϵ}.

Lemma 6.3. - The metric $h_{i n}$ satisfies the following conditions:

- $h_{i n}$ is adapted to the parabolic structure of $c E_{*}$.
- $F\left(h_{i n}\right)$ is bounded with respect to $h_{\text {in }}$ and ω_{ϵ}.
- Let V be any saturated coherent subsheaf of E, and let π_{V} denote the orthogonal projection of E onto V. Then $\bar{\partial} \pi_{V}$ is L^{2} with respect to $h_{\text {in }}$ and ω_{ϵ}, if and only if there exists a saturated coherent subsheaf ${ }_{c} V$ of ${ }_{c} E$ such that ${ }_{c} V_{\mid X-D}=V$. Moreover we have par- $\operatorname{deg}_{\omega}\left({ }_{c} V_{*}\right)=\operatorname{deg}_{\omega_{\epsilon}}\left(V, h_{i n, V}\right)$, where $h_{i n, V}$ denotes the metric of V induced by $h_{i n}$.
$-\operatorname{tr} \Lambda_{\omega_{\epsilon}} F\left(h_{i n}\right)=\operatorname{rank}(E) \cdot$ a for the constant a determined by the equation (43).
- The following equalities hold:

$$
\begin{aligned}
& \left(\frac{\sqrt{-1}}{2 \pi}\right)^{2} \int_{X-D} \operatorname{tr}\left(F\left(h_{i n}\right)^{2}\right)=\int_{X} 2{\operatorname{par}-\operatorname{ch}_{2}\left(c E_{*}\right)}_{\left(\frac{\sqrt{-1}}{2 \pi}\right)^{2} \int_{X-D} \operatorname{tr}\left(F\left(h_{i n}\right)\right)^{2}=\int_{X} \operatorname{par}-c_{1}^{2}\left({ }_{c} E_{*}\right)} .
\end{aligned}
$$

Due to the third condition, $\left(E, h_{i n}, \theta\right)$ is analytic stable with respect to ω_{ϵ}, if and only if $\left({ }_{c} E_{*}, \theta\right)$ is μ_{L}-stable.

Proof. - Since g^{\prime} is bounded and since h_{0} is adapted to the parabolic structure, $h_{i n}$ is also adapted to the parabolic structure. We have $F\left(h_{i n}\right)=F\left(h_{0}\right)+\partial \bar{\partial} g^{\prime} \cdot \mathrm{id}_{E}$. Hence the boundedness of $F\left(h_{i n}\right)$ with respect to ω_{ϵ} and h_{0} follows from those of $F\left(h_{0}\right)$ and $\partial \bar{\partial} g^{\prime}$.

For any saturated subsheaf $V \subset E$, the orthogonal decomposition $\pi_{V}^{h_{0}}$ and $\pi_{V}^{h_{i n}}$ are same. Hence $\bar{\partial} \pi_{V}^{h_{i n}}$ is L^{2}, if and only if there exists a coherent subsheaf ${ }_{c} V \subset{ }_{c} E$ such that ${ }_{c} V_{\mid X-D}=V$, by Lemma 4.19. Let $h_{0, V}$ and $h_{i n, V}$ denote the metrics of V induced by h_{0} and $h_{i n}$. We have $\operatorname{tr} F\left(h_{i n, V}\right)=\operatorname{tr} F\left(h_{0, V}\right)+\operatorname{rank}(V) \cdot \partial \bar{\partial} g^{\prime}$. Then we obtain $\operatorname{deg}_{\omega_{\epsilon}}\left(V, h_{0, V}\right)=\operatorname{deg}_{\omega_{\epsilon}}\left(V, h_{i n, V}\right)$ from the boundedness of $\partial \bar{\partial} g^{\prime}$ and ∂g^{\prime} with respect to ω_{ϵ}. Therefore the third condition is satisfied. The fourth condition is satisfied by our construction. The fifth condition is also checked by using the boundedness of $F\left(h_{i n}\right), F\left(h_{0}\right), \bar{\partial} \partial g^{\prime}$ and $\bar{\partial} g^{\prime}$.

Now Proposition 6.1 follows from Lemma 6.3 and Proposition 2.5.

6.2. Bogomolov-Gieseker Inequality

We have an immediate and standard corollary of Proposition 6.1, as in [51].
Corollary 6.4. - Let X be a smooth irreducible projective surface with an ample line bundle L, and let D be a simple normal crossing divisor of X. Let $\left({ }_{c} E_{*}, \theta\right)$ be a μ_{L}-stable c-parabolic graded semisimple Higgs bundle on (X, D). Then we have the following inequality:

$$
\int_{X} \operatorname{par}-\operatorname{ch}_{2}\left({ }_{c} E_{*}\right)-\frac{\int_{X} \operatorname{par}-c_{1}^{2}\left(c E_{*}\right)}{2 \operatorname{rank} E} \leq 0
$$

Proof. - Let h be the metric of E as in Proposition 6.1. Then we have the following:

Then the claim follows from $\operatorname{tr}\left(F(h)^{\perp 2}\right) \geq 0$. (See the pages $878-879$ in $[\mathbf{5 1}]$.)
By using the perturbation of the parabolic structure, we can remove the assumption of graded semisimplicity. We can also remove the assumption $\operatorname{dim} X=2$ by using Mehta-Ramanathan type theorem.

Theorem 6.5 (Bogomolov-Gieseker inequality). - Let X be a smooth irreducible projective variety of an arbitrary dimension with an ample line bundle L, and let D be
a simple normal crossing divisor. Let $\left(\boldsymbol{E}_{*}, \theta\right)$ be a μ_{L}-stable regular Higgs bundle in codimension two on (X, D). Then the following inequality holds:

$$
\int_{X}{\operatorname{par}-\mathrm{ch}_{2, L}\left(\boldsymbol{E}_{*}\right)-\frac{\int_{X} \operatorname{par}-\mathrm{c}_{1, L}^{2}\left(\boldsymbol{E}_{*}\right)}{2 \operatorname{rank} E} \leq 0}
$$

(See Subsection 3.1.5 for the characteristic numbers.)
Proof. - Due to the Mehta-Ramanathan type theorem (Proposition 3.29), the problem can be reduced to the case where X is a surface. Take a real number $c_{i} \notin$ $\mathcal{P a r}\left(\boldsymbol{E}_{*}, i\right)$ for each i, and let us consider the \boldsymbol{c}-truncation $\left({ }_{c} E_{*}, \theta\right)$. Let \boldsymbol{F} denote the induced \boldsymbol{c}-parabolic structure of ${ }_{c} E$. Let ϵ be any sufficiently small positive number, and let us take an ϵ-perturbation $\boldsymbol{F}^{(\epsilon)}$ of \boldsymbol{F} as in Section 3.3. Since $\left({ }_{c} E, \boldsymbol{F}^{(\epsilon)}, \theta\right)$ is μ_{L}-stable and graded semisimple, we obtain the following inequality due to Corollary 6.4:

$$
\int_{X} \operatorname{par}^{-\operatorname{ch}_{2}\left(c E, \boldsymbol{F}^{(\epsilon)}\right)-\frac{\int_{X} \operatorname{par}^{2} \mathrm{c}_{1}^{2}\left({ }_{c} E, \boldsymbol{F}^{(\epsilon)}\right)}{2 \operatorname{rank} E} \leq 0}
$$

By taking the limit in $\epsilon \rightarrow 0$, we obtain the desired inequality.
Corollary 6.6. - Let X be a smooth irreducible projective surface with an ample line bundle L, and let D be a simple normal crossing divisor. Let $\left(\boldsymbol{E}_{*}, \theta\right)$ be a μ_{L}-stable
 Then we have $\operatorname{par}^{-\mathrm{c}_{1}}\left(\boldsymbol{E}_{*}\right)=0$.
Proof. - par-deg $L_{L}\left(\boldsymbol{E}_{*}\right)=0$ implies $\int_{X} \operatorname{par}^{-c_{1}}\left(\boldsymbol{E}_{*}\right) \cdot c_{1}(L)=0$. Due to the Hodge index theorem, it implies $-\int \operatorname{par}^{2} \mathrm{c}_{1}^{2}\left(\boldsymbol{E}_{*}\right) \geq 0$, and if the equality holds then $\operatorname{par}-\mathrm{c}_{1}\left(\boldsymbol{E}_{*}\right)=0$. On the other hand, we have the following inequality, due to Theorem 6.5:

$$
-\frac{\int_{X} \operatorname{par}-\mathrm{c}_{1}^{2}\left(\boldsymbol{E}_{*}\right)}{2 \operatorname{rank} E} \leq-\int_{X} \operatorname{par}^{2}-\operatorname{ch}_{2}\left(\boldsymbol{E}_{*}\right)=0 .
$$

Thus the claim follows.

CHAPTER 7

CONSTRUCTION OF A FRAME

We put $X(T):=\{z \in \boldsymbol{C}| | z \mid<T\}$ and $X^{*}(T):=X(T)-\{O\}$, where O denotes the origin. In the case $T=1$, we omit to denote T. Let $\left(E, \bar{\partial}_{E}, \theta, h\right)$ be a tame harmonic bundle on X^{*}. Recall that the coefficients $a_{j}(z)$ of $P(z, t):=\operatorname{det}\left(t-f_{0}(z)\right)=$ $\sum a_{j}(z) \cdot t^{j}$ are holomorphic on X, where $f_{0} \in \operatorname{End}(E)$ is given by $\theta=f_{0} \cdot d z / z$. The set of the solutions of the polynomial $P(0, t)$ is denoted by S_{0}.

Assumption 7.1. - We assume the following:

1. We have the decomposition $E=\bigoplus_{\alpha \in S_{0}} E_{\alpha}$, such that $f_{0}\left(E_{\alpha}\right) \subset E_{\alpha}$. In particular, we have the decomposition $f_{0}=\bigoplus f_{0 \alpha}$.
2. There exist some positive numbers $T_{0}<1, C_{0}$ and ϵ_{0} such that $|\beta-\alpha|<$ $C_{0} \cdot|z(Q)|^{\epsilon_{0}}$ holds for any eigenvalue β of $f_{\alpha \mid Q}\left(Q \in X^{*}\left(T_{0}\right)\right)$.
3. We put $\xi:=\sum_{\alpha \in S_{0}} \operatorname{rank}\left(E_{\alpha}\right) \cdot|\alpha|^{2}$. We assume $\xi<K_{0}$ for a given constant K_{0}.

Remark 7.2. - The conditions 1 and 2 are always satisfied, if we replace X by a smaller open set. Moreover, it is controlled by the behaviour of the eigenvalues of f_{0}.

We obtain the parabolic Higgs bundle $\left({ }_{a} E_{*}, \theta\right)$ for $a \in \boldsymbol{R}$ from $\left(E, \bar{\partial}_{E}, h\right)$, where ${ }_{a} E$ is as in Section 3.5 ([52]). In the case $a=0$, we use the notation ${ }^{\diamond} E$. Thus we have the parabolic filtration F of ${ }_{a} E_{\mid O}$ and the sets $\mathcal{P} \operatorname{ar}\left({ }_{a} E\right):=\left\{b \mid \operatorname{Gr}_{b}^{F}\left({ }_{a} E_{\mid O}\right) \neq 0\right\}$. For any $b \in \mathcal{P a r}\left({ }_{a} E\right)$, we put $\mathfrak{m}(b):=\operatorname{dim} \operatorname{Gr}_{b}^{F}\left({ }_{a} E_{\mid O}\right)$. Recall $\operatorname{det}\left({ }_{a} E\right) \simeq \widetilde{a} \operatorname{det}(E)$, where \widetilde{a} is given as follows:

$$
\widetilde{a}:=\sum_{b \in \mathcal{P a r}(a E)} \mathfrak{m}(b) \cdot b .
$$

Let U_{0} be a finite subset of $] a-1, a\left[\right.$, and let η_{0} be a sufficiently small positive numbers such that $\left.U_{0} \subset\right] a-1+10 \cdot \eta_{0}, a-10 \cdot \eta_{0}\left[\right.$ and $|b-c|>10 \cdot \eta_{0}$ for any distinct elements $b, c \in U_{0}$. We make an additional assumption.

Assumption 7.3. - For any $c \in \mathcal{P a r}\left({ }_{a} E\right)$, there exists $b \in U_{0}$ such that $|c-b|<\eta_{0}$.
We put $\mathcal{P}(b):=\left\{c \in \mathcal{P} \operatorname{ar}\left({ }_{a} E\right)| | c-b \mid<\eta_{0}\right\}$. We obtain the decomposition $\mathcal{P a r}\left({ }_{a} E\right)=\coprod_{b \in U_{0}} \mathcal{P}(b)$. We put $\bar{b}:=\max \mathcal{P}(b)$.

In the following of this chapter, we say that a constant C is good, if it depends only on $T_{0}, C_{0}, \epsilon_{0}, K_{0}, \eta_{0}$ and $r:=\operatorname{rank}(E)$. We say a constant $C(B)$ is good if it depends also on additional data B.

Proposition 7.4. - Let $\left(E, \bar{\partial}_{E}, \theta, h\right)$ be a tame harmonic bundle on X^{*} satisfying the assumptions 7.1 and 7.3.

- There exist holomorphic sections F_{1}, \ldots, F_{r} of ${ }_{a} E$ on $X\left(\gamma_{0}\right)$ with the numbers $b_{1}, \ldots, b_{r} \in U_{0}$, such that $\left|F_{i}\right|_{h} \leq C_{10} \cdot|z|^{-\bar{b}_{i}} \cdot\left(-\log |z|^{2}\right)^{N}$ holds. Here γ_{0}, C_{10} and N are good constants. We have $\#\left\{b_{i}=b\right\}=\# \mathcal{P}(b)$.
$-C_{11}^{-1} \cdot|z|^{-\widetilde{a}} \leq\left|\bigwedge_{i=1}^{r} F_{i}\right|_{h} \leq C_{11} \cdot|z|^{-\widetilde{a}}$ holds for a good constant C_{11}. In particular, F_{1}, \ldots, F_{r} give the frame of ${ }_{a} E$.
- On any compact subset $H \subset X^{*}\left(\gamma_{0}\right)$, we have $\left\|F_{i \mid H}\right\|_{L_{1}^{p}, h} \leq C_{12}(H, p)$, where p is an arbitrarily large number.

We will prove the proposition in the rest of this chapter.

7.1. A Priori Estimate of Higgs Field on a Punctured Disc

Let $\left(E, \bar{\partial}_{E}, \theta, h\right)$ be a tame harmonic bundle on X^{*} as in Proposition 7.4. We know that the curvature $R(h)$ of $\bar{\partial}_{E}+\partial_{E}$ is bounded with respect to h and the Poincaré metric $\widetilde{g}=|z|^{-2}(-\log |z|)^{-2} d z \cdot d \bar{z}$ on $X^{*}(T)$ for $T<1$. ([52]. See also [44]). We would like to show that the estimate is uniform, when we vary the set S_{0} boundedly.

Proposition 7.5. - $|R(h)|_{h, \tilde{g}} \leq K_{10}$ holds on $X^{*}\left(T_{1}\right)$ for some good constants T_{1} and K_{10}.

Proof. - In the following argument, K_{i}, ϵ_{i} and T_{i} will denote good constants, and Δ denotes the Laplacian $-\partial_{z} \partial_{\bar{z}}$ (up to the positive constant). Let \mathcal{L} be a line bundle $\mathcal{O}_{X^{*}} \cdot e$ with the Higgs field $\theta_{\mathcal{L}}$ and the metric $h_{\mathcal{L}}$ given by $\theta_{\mathcal{L}}(e)=e \cdot \beta \cdot d z / z(\beta \in \boldsymbol{C})$ and $h_{\mathcal{L}}(e, e)=1$. Since we have only to consider $\left(E, \bar{\partial}_{E}, \theta, h\right) \otimes\left(\mathcal{L}, \theta_{\mathcal{L}}, h_{\mathcal{L}}\right)$, we may and will assume $0<K_{1}<\xi<K_{2}$.

By an elementary argument, we can take a decomposition $S_{0}=\coprod_{i=1}^{k_{0}} S_{i}^{(1)}$ with the following property:

$$
\begin{aligned}
& -\left|\alpha_{j}-\alpha_{k}\right| \leq 1 \text { for any } \alpha_{j}, \alpha_{k} \in S_{i}^{(1)} \\
& -\left|\alpha_{j}-\alpha_{k}\right|>\operatorname{rank}(E)^{-1} \text { for } \alpha_{j} \in S_{i}^{(1)} \text { and } \alpha_{k} \in S_{0}-S_{i}^{(1)}
\end{aligned}
$$

We put $\mathcal{S}(1):=\left\{1, \ldots, k_{0}\right\} \subset \mathbb{Z}_{>0}$. Inductively on n, we take a subset $\mathcal{S}(n) \subset \mathbb{Z}_{>0}^{n}$ and a decomposition $S_{0}=\coprod_{I \in \mathcal{S}(n)} S_{I}^{(n)}$ as follows. Assume $\mathcal{S}(n)$ and $S_{I}^{(n)}(I \in \mathcal{S}(n))$ are
already given. We can take a decomposition $S_{I}^{(n)}=\coprod_{i=1}^{k(I)} S_{I, i}^{(n+1)}$ with the following property:

$$
\begin{aligned}
& -\left|\alpha_{j}-\alpha_{k}\right| \leq(n+1)^{-1} \text { for } \alpha_{j}, \alpha_{k} \in S_{I, i}^{(n+1)} \\
& -\left|\alpha_{j}-\alpha_{k}\right|>(n+1)^{-1} \cdot \operatorname{rank}(E)^{-1} \text { for } \alpha_{j} \in S_{I, i}^{(n+1)} \text { and } \alpha_{k} \in S_{I}^{(n)}-S_{I, i}^{(n+1)}
\end{aligned}
$$

Then we put $\mathcal{S}(n+1):=\{(I, i) \mid I \in \mathcal{S}(n), i=1, \ldots, k(I)\}$ and $S_{(I, i)}^{(n+1)}:=S_{I, i}^{(n+1)}$, where $(I, i) \in \mathbb{Z}_{>0}^{n+1}$ denotes the element naturally determined by I and i.

We have the lexicographic order on $\mathbb{Z}_{>0}^{n}$, which induces the order on $\mathcal{S}(n)$. Take a total order \leq_{1} on S_{0}, which satisfies the following condition for any n :

- Let $\alpha \in S_{I}^{(n)}$ and $\beta \in S_{J}^{(n)}$. If $I<J$ in $\mathcal{S}(n)$, we have $\alpha \leq_{1} \beta$.

We put $F_{\alpha} E:=\bigoplus_{\beta<1_{1} \alpha} E_{\beta}$ and $F_{<\alpha} E:=\bigoplus_{\beta<{ }_{1} \alpha} E_{\beta}$. Let E_{α}^{\prime} denote the orthogonal complement of $F_{<\alpha}(E)$ in $F_{\alpha}(E)$. We put $\rho:=\bigoplus_{\alpha \in S_{0}} \alpha \cdot \operatorname{id}_{E_{\alpha}}$ and $\rho^{\prime}:=\bigoplus_{\alpha \in S_{0}} \alpha$. $\mathrm{id}_{E_{\alpha}^{\prime}}$. We have $\left|\rho^{\prime}\right|_{h}^{2}=\xi$. The following lemma is shown in the proof of Simpson's Main estimate. (See [52] and the proof of Proposition 7.2 of [44].)

Lemma 7.6. - $\left|f_{0}-\rho^{\prime}\right|_{h} \leq K_{11} \cdot(-\log |z|)^{-1}$ holds on $X^{*}\left(T_{1}\right)$.
For $J \in \mathcal{S}(n)$, we put $E_{J}^{(n)}:=\bigoplus_{\alpha \in S_{J}^{(n)}} E_{\alpha}$ and $E_{J}^{\prime(n)}:=\bigoplus_{\alpha \in S_{J}^{(n)}} E_{\alpha}^{\prime}$. We have the natural decomposition $\operatorname{End}(E)=\bigoplus_{J_{1}, J_{2} \in \mathcal{S}(n)} \operatorname{Hom}\left(E_{J_{1}}^{\prime(n)}, E_{J_{2}}^{\prime(n)}\right)$. For $I \in \mathcal{S}(n-1)$ and $A \in \operatorname{End}(E)$, let $A_{n, I, i, j}$ denote the $\operatorname{Hom}\left(E_{I, i}^{\prime(n)}, E_{I, j}^{\prime(n)}\right)$-component.
Lemma 7.7. - We have $\left|\left[\rho^{\prime \dagger}, f_{0}\right]_{n, I, i, j}\right|_{h} \leq K_{30} \cdot(-\log |z|)^{-2}$ for $i \neq j$ on $X^{*}\left(T_{2}\right)$. Proof. - We put $\kappa:=\bigoplus_{i=1}^{k(I)} i \cdot \operatorname{id}_{E_{I, i}^{(n)}}$ and $\kappa^{\prime}:=\bigoplus_{i=1}^{k(I)} i \cdot \mathrm{id}_{E_{I, i}^{\prime(n)}}$. We also put $q:=\kappa-\kappa^{\prime} \in \mathcal{T}:=\bigoplus_{J_{1}>J_{2}} \operatorname{Hom}\left(E_{J_{1}}^{\prime(n)}, E_{J_{2}}^{\prime(n)}\right)$. First, we give some estimate of q.

Let $\varphi: X^{*} \longrightarrow X^{*}$ denote the map given by $\varphi(z)=z^{n}$. We remark that $\varphi^{*}\left(E, \bar{\partial}_{E}, \theta, h\right)$ satisfies Assumption 7.1 independently of n, if we replace C_{0} with a larger good constant. We put $\widetilde{\sim} \underset{\sim}{r}:=\varphi^{*} h$. We put $\widetilde{f_{0}}:=n \cdot \varphi^{-1}\left(f_{0}\right)$, i.e., $\varphi^{-1} \theta=\widetilde{f}_{0} \cdot d z / z$. Let $\widetilde{f}_{0}^{\dagger}$ denote the adjoint of \widetilde{f}_{0} with respect to \widetilde{h}. We also put $\widetilde{\rho}^{\prime}:=n \cdot \varphi^{-1}\left(\rho^{\prime}\right)$.

Let $F_{\widetilde{f}_{0}}$ denote the endomorphism of $\varphi^{-1} \mathcal{T}$ induced by the adjoint of $\widetilde{f_{0}}$, i.e., $F_{\widetilde{f}_{0}}(x)=\left[\widetilde{f_{0}}, x\right]$. Let $\pi_{\mathcal{T}}$ denote the orthogonal projection of $\varphi^{-1} \operatorname{End}(E)$ onto $\varphi^{-1} \mathcal{T}$. The composite of the adjoint of \tilde{f}_{0}^{\dagger} and $\pi_{\mathcal{T}}$ induces the endomorphism $G_{\tilde{f}_{0}^{\dagger}}$ of $\varphi^{-1} \mathcal{T}$.
Lemma 7.8 ${ }^{(1)}$. - $F_{\widetilde{f}_{0}}$ and $G_{\widetilde{f}_{0}^{\dagger}}$ are invertible on $X^{*}\left(T_{3}\right)$ and the norms of their inverses are dominated by a good constant.

Proof. - Let H denote the endomorphism of $\varphi^{-1} \mathcal{T}$ induced by the adjoint of $\tilde{\rho}^{\prime}$, and we put $H_{1}:=G_{f_{0}^{\dagger}}-H$. For any $\alpha \in S_{I}^{(n)}$ and $\beta \in S_{J}^{(n)}(I \neq J)$, we have $n \cdot|\alpha-\beta|>\operatorname{rank}(E)^{-1}$. Hence the norm of H^{-1} is dominated by a good constant. From $\left|\widetilde{f}_{0}-\widetilde{\rho}^{\prime}\right|_{\tilde{h}} \leq K_{31} \cdot(-\log |z|)^{-1}$, the norm of H_{1} is dominated by a sufficiently

[^0]small good constant on $X^{*}\left(T_{3}\right)$. We put $H_{2}:=H^{-1} \circ H_{1}$. Then, $\left(1+H_{2}\right)$ is invertible, and the norm of the inverse is dominated by a good constant on $X^{*}\left(T_{3}\right)$. Then, the claim for $G_{f_{0}^{\dagger}}^{-1}=H_{1}^{-1} \circ\left(1+H_{2}\right)^{-1}$ can be easily checked. The claim for $F_{f_{0}}^{-1}$ can be checked similarly.

We put $\widetilde{\kappa}:=\varphi^{-1} \kappa, \widetilde{\kappa}^{\prime}:=\varphi^{-1} \kappa^{\prime}$ and $\widetilde{q}:=\varphi^{-1} q$. We have $0=\left[\widetilde{f_{0}}, \widetilde{\kappa}\right]=\left[\widetilde{f}_{0}-\right.$ $\left.\widetilde{\rho}^{\prime}, \widetilde{\kappa}^{\prime}\right]+\left[\widetilde{f_{0}}, \widetilde{q}\right]$. Due to Lemma 7.6 and Lemma 7.8, we obtain the estimate $|\widetilde{q}|_{\widetilde{h}} \leq$ $K_{32}(-\log |z|)^{-1}$ on $X^{*}\left(T_{3}\right)$. From $\left[\widetilde{\kappa}, \widetilde{f}_{0}^{\dagger}\right]=\left[\widetilde{\kappa}-\widetilde{\kappa}^{\prime}, \widetilde{f}_{0}^{\dagger}\right]+\left[\widetilde{\kappa}^{\prime}, \widetilde{f}_{0}^{\dagger}\right]$, we obtain $\left|\left[\widetilde{\kappa}, \widetilde{f}_{0}^{\dagger}\right]\right|_{\widetilde{h}}^{2} \geq$ $\left|\pi_{S}\left(\left[\widetilde{\kappa}-\widetilde{\kappa}^{\prime}, \widetilde{f}_{0}^{\dagger}\right]\right)\right|_{\tilde{h}}^{2}=\left|G_{\tilde{f}_{0}^{\dagger}}(\widetilde{q})\right|_{\tilde{h}}^{2}$. Hence, we obtain $|\widetilde{q}|_{\tilde{h}}^{2} \leq K_{33}\left|\left[\widetilde{\kappa}, \tilde{f}_{0}^{\dagger}\right]\right|_{\widetilde{h}}$ on $X^{*}\left(T_{3}\right)$. Due to $\left[\widetilde{\kappa}, \widetilde{f}_{0}\right]=0$, we obtain the following:

$$
\Delta \log |\widetilde{\kappa}|_{\widetilde{h}}^{2} \leq-\frac{\mid\left[\widetilde{f}_{0}^{\dagger},\left.\widetilde{\kappa}\right|_{\widetilde{h}} ^{2}\right.}{|z|^{2} \cdot|\widetilde{\kappa}|_{\widetilde{h}}^{2}} \leq-K_{35} \frac{|\widetilde{q}|_{\widetilde{h}}}{|z|^{2}}
$$

We put $\xi^{\prime}:=\sum_{i=1}^{k(I)} i^{2}=\left|\widetilde{\kappa}^{\prime}\right|_{\widetilde{h}}^{2}$ and $k:=\log \left(\xi^{\prime-1}|\widetilde{\kappa}|_{\widetilde{h}}^{2}\right)$. Because of $k \leq \xi^{\prime-1}|\widetilde{q}|_{\widetilde{h}}^{2}$, we obtain $\Delta k \leq-K_{36} \cdot|z|^{-2} \cdot k$. By an argument in [52] (see also the proof of Proposition 7.2 of [44]), we obtain $k \leq K_{37} \cdot|z|^{\epsilon_{38}}$. Then, we can derive $|\widetilde{q}|_{\widetilde{h}} \leq$ $K_{39} \cdot|z|^{\epsilon_{38}}$ on $X^{*}\left(T_{40}\right)$. Hence we obtain $|q|_{h} \leq K_{39} \cdot|z|^{\epsilon_{38} / n}$ on $X^{*}\left(T_{40}^{n}\right)$.

Let us finish the proof of Lemma 7.7. First we show the estimate on $X^{*}\left(T_{40}^{n}\right)$. We have $0=\left[\kappa, f_{0}\right]=\left[\kappa^{\prime}, f_{0}\right]+\left[q, \rho^{\prime}\right]+\left[q, f_{0}-\rho^{\prime}\right]$. We have the following on $X^{*}\left(T_{40}^{n}\right)$:

$$
\left|\left[q, f_{0}-\rho^{\prime}\right]\right|_{h} \leq \frac{K_{41}|z|^{\epsilon_{38} / n}}{-\log |z|} \leq \frac{K_{42}|z|^{\epsilon_{38} / n}}{n}
$$

Recall we have $|\alpha-\beta| \leq(n-1)^{-1}$ for $\alpha \in S_{I, i}^{(n-1)}$ and $\beta \in S_{I, j}^{(n-1)}$. Hence we have $\left|\left[q, \rho^{\prime}\right]_{n, I, i, j}\right|_{h} \leq K_{43} \cdot|z|^{\epsilon_{38} / n} \cdot n^{-1}$. Therefore, we obtain $\left|\left[\kappa^{\prime}, f_{0}\right]_{n, I, i, j}\right|_{h} \leq$ $K_{44} \cdot|z|^{\epsilon_{38} / n} \cdot n^{-1}$, which implies $\left|\left(f_{0}\right)_{n, I, i, j}\right|_{h} \leq K_{44}^{\prime} \cdot|z|^{\epsilon_{38} / n} \cdot n^{-1}(i \neq j)$. Then, we obtain the estimate on $X^{*}\left(T_{40}^{n}\right)$:

$$
\left|\left[\rho^{\prime \dagger}, f_{0}\right]_{n, I, i, j}\right|_{h} \leq K_{45} \cdot|z|^{\epsilon_{38} / n} \cdot n^{-2} \leq K_{46} \cdot(-\log |z|)^{-2}
$$

On the other hand, $\left[\rho^{\prime \dagger}, f_{0}\right]_{n, I, i, j}$ is dominated by $K_{47} \cdot(-\log |z|)^{-1} \cdot n^{-1}$ on $X^{*}\left(T_{1}\right)$, which is obtained by the estimate of $f_{0}-\rho^{\prime}$ (Lemma 7.6) and our choice of $S_{I, k}^{(n)}$ $(k=i, j)$. Outside of $X^{*}\left(T_{40}^{n}\right)$, we have $K_{47} \cdot(-\log |z|)^{-1} \cdot n^{-1} \leq K_{48} \cdot(-\log |z|)^{-2}$. Thus we are done.

Let us finish the proof of Proposition 7.5. We have the following:

$$
R(h)=-\left[\theta, \theta^{\dagger}\right]=-\left(\left[\rho^{\prime},\left(f_{0}-\rho^{\prime}\right)^{\dagger}\right]+\left[f_{0}-\rho^{\prime}, \rho^{\prime \dagger}\right]+\left[\left(f_{0}-\rho^{\prime}\right),\left(f_{0}-\rho^{\prime}\right)^{\dagger}\right]\right) \cdot \frac{d z \cdot d \bar{z}}{|z|^{2}}
$$

The second term is estimated by Lemma 7.7. The first term is adjoint of the second term. The estimate of the third term follows from Lemma 7.6. Thus we are done.

7.2. Construction of Local Holomorphic Frames

Let $\left(E, \bar{\partial}_{E}, \theta, h\right)$ be a harmonic bundle of rank r on X^{*} as in Proposition 7.4. We will construct the desired holomorphic sections in Proposition 7.4. By considering the tensor product of the line bundle with the metric $|z|^{-c}$, we have only to discuss the case $a=0$. We use the metrics g and \widetilde{g} of X^{*} given as follows:

$$
g:=d z \cdot d \bar{z}, \quad \widetilde{g}:=\frac{d z \cdot d \bar{z}}{|z|^{2} \cdot(-\log |z|)^{2}}
$$

By considering a pull back via the map $\phi_{\gamma}: X^{*} \longrightarrow X^{*}$ given by $\phi_{\gamma}(z)=\gamma \cdot z$, we may assume the following, due to Proposition 7.5.

Assumption 7.9. - The norm of $R(h)$ with respect to h and g is dominated as follows:

$$
|R(h)|_{h, g} \leq C_{1} \cdot \frac{1}{|z|^{2} \cdot(-\log |z|+1)^{2}}
$$

The constant C_{1} is good.
Lemma 7.10. - There exists a C^{1}-orthonormal frame \boldsymbol{v} of E, for which $\bar{\partial}_{E}$ is represented as follows:

$$
\bar{\partial}_{E} \boldsymbol{v}=\boldsymbol{v} \cdot\left(-\frac{\Gamma}{2}+A\right) \cdot \frac{d \bar{z}}{\bar{z}}
$$

Here Γ is a constant diagonal matrix whose (i, i)-th components α_{i} satisfy $0 \leq \alpha_{r} \leq$ $\cdots \leq \alpha_{1}<1$, and A is a matrix-valued continuous function such that $|A| \leq C_{2}$. $(-\log |z|+1)^{-1}$. The constant C_{2} is good.

Proof. - ${ }^{(2)}$ Let (r, θ) be the polar coordinate of X^{*}. Let ∇ denote the unitary connection $\bar{\partial}_{E}+\partial_{E, h}$. Take an orthonormal frame of $E_{\mid \partial X(\gamma)}$ for some $0<\gamma<1$. Extend it to the orthonormal frame e of $E_{\mid X^{*}(\gamma)}$ by using the parallel transport along each ray towards the origin. Then the connection form of ∇ with respect to \boldsymbol{e} is of the form $A^{\prime}(r, \theta) \cdot d \theta$, and the curvature form is given by $d A^{\prime}(r, \theta) \wedge d \theta$. By Assumption 7.9, we obtain $\partial A^{\prime}(r, \theta) / \partial r=O\left((\log r)^{-2} \cdot d r / r\right)$. Hence, $A^{\prime}(r, \theta)$ converges to a function $A_{0}(\theta)$ for $r \rightarrow 0$, and $A^{\prime}(r, \theta)-A_{0}(\theta)=O\left((-\log r)^{-1}\right)$. We can take a gauge transform $g(\theta)$ for which $A_{0}(\theta)$ is transformed to $\Gamma \cdot d \theta$ for some Γ as in the claim of the lemma.
7.2.1. Preliminary for a construction. - We recall some results on the solvability of the $\bar{\partial}$-equation. For any real numbers b and M, we put $h(b, M):=h \cdot|z|^{2 b}$. $(-\log |z|)^{M}$. Let $A_{b, M}^{0,1}(E)$ denote the space of sections of $E \otimes \Omega^{0,1}$, which are L^{2} with respect to $h(b, M)$ and \widetilde{g}. Let $A_{b, M}^{0,0}(E)$ denote the space of sections f of E such that f and $\bar{\partial} f$ are L^{2} with respect to $h(b, M)$ and \widetilde{g}. The norm and the hermitian pairing

[^1]of $A_{b, M}^{p, q}(E)$ are denoted by $\|\cdot\|_{b, M}$ and $\langle\cdot, \cdot\rangle_{b, M}$. On the other hand, $|\cdot|_{b, M}$ denote the norm at fibers. In the following argument, B_{i} will denote good constants.

We use some arguments of $[\mathbf{4 4}]$ based on the ideas in $[\mathbf{2}]$ and $[\mathbf{8}]$. (But we change the signature here.) Recall the result in Section $2.8 .6^{(3)}$ of [44]. We take a sufficiently large good constant $N>1$, which depends only on C_{1} in Assumption 7.9. Let $\bar{\partial}_{E}^{*}$ denote the adjoint of $\bar{\partial}_{E}$ with respect to \widetilde{g} and $h(b, N)$. Let $A_{c}^{0,1}(E)$ denote the space of the C^{∞}-sections of $E \otimes \Omega^{0,1}$ whose support is compact. Then, the following inequality holds for any $\rho \in A_{c}^{0,1}(E)$:

$$
\left\|\bar{\partial}_{E}^{*} \rho\right\|_{b, N} \geq\|\rho\|_{b, N}
$$

Lemma 7.11 ([44]). - For any $f_{1} \in A_{b, N}^{0,1}(E)$, we have $f_{2} \in A_{b, N}^{0,0}$ satisfying $\bar{\partial} f_{2}=f_{1}$ and $\left\|f_{2}\right\|_{b, N} \leq B_{1} \cdot\left\|f_{1}\right\|_{b, N}$.

Proof. - Let $\widetilde{A}^{0,1}(E)$ denote the space of sections ρ of $E \otimes \Omega^{0,1}$ such that $\|\rho\|_{b, N}^{2}+$ $\left\|\bar{\partial}_{E}^{*} \rho\right\|_{b, N}^{2}<\infty$. It is the L^{2}-space, and we have the continuous inclusion $\widetilde{A}^{0,1}(E) \longrightarrow$ $A^{0,1}(E)$. Since $A_{c}^{0,1}(E)$ is dense in $\widetilde{A}^{0,1}(E)$ due to the completeness of $\left(X^{*}, \widetilde{g}\right)$, we have $\|\rho\|_{b, N} \leq\left\|\bar{\partial}_{E}^{*} \rho\right\|_{b, N}$ for any $\rho \in \widetilde{A}^{0,1}(E)$. Hence, $\widetilde{A}^{0,1}(E)$ can be the Hilbert space with the Hermitian pairing $\left(\rho_{1}, \rho_{2}\right) \longmapsto\left\langle\bar{\partial}_{E}^{*} \rho_{1}, \bar{\partial}_{E}^{*} \rho_{2}\right\rangle_{b, N}$.

We have $\left\langle f_{1}, \rho\right\rangle_{b, N} \leq\left\|f_{1}\right\|_{b, N} \cdot\|\rho\|_{b, N} \leq\left\|f_{1}\right\|_{b, N} \cdot\left\|\widetilde{\partial}_{E}^{*} \rho\right\|_{b, N}$ for any $\rho \in \widetilde{A}^{0,1}(E)$. Due to Riesz representation theorem, there exists $f_{3} \in \widetilde{A}^{0,1}(E)$ such that $\left\|\bar{\partial}_{E}^{*} f_{3}\right\|_{b, N} \leq$ $\left\|f_{1}\right\|_{b, N}$ and $\left\langle f_{1}, \rho\right\rangle_{b, N}=\left\langle\bar{\partial}_{E}^{*} f_{3}, \bar{\partial}_{E}^{*} \rho\right\rangle_{b, N}$ for any $\rho \in \widetilde{A}^{0,1}(E)$. We put $f_{2}=\bar{\partial}_{E}^{*} f_{3}$ which has the desired property.

On the other hand, if f is a holomorphic section of E, we have the subharmonicity $\Delta \log |f|_{b,-N} \leq 0$ by using the argument in Section 2.8 .7 of [44]. Hence, if we have $\|f\|_{b, N}<\infty$, the following holds around the origin O :

$$
\begin{align*}
\log |f(z)|_{b,-N}^{2} & \leq \frac{4}{\pi|z|^{2}} \int_{|w-z| \leq|z| / 2} \log |f(w)|_{b,-N}^{2} \cdot \operatorname{dvol}_{g} \tag{44}\\
& \leq \log \left(\frac{4}{\pi|z|^{2}} \int_{|w-z| \leq|z| / 2}|f(w)|_{b,-N}^{2} \cdot \operatorname{dvol}_{g}\right) \leq \log \left(B_{2} \cdot\|f\|_{b, N}^{2}\right)
\end{align*}
$$

Here, we have used $|f(w)|_{b,-N}^{2} \cdot(-\log |w|)^{2} \leq|f(w)|_{b, N}^{2}$. Hence, we obtain the following lemma.

Lemma 7.12. - For a holomorphic section f of E such that $\|f\|_{b, N}<\infty$, we have $|f|_{h} \leq B_{2}\|f\|_{b, N} \cdot|z|^{-b} \cdot(-\log |z|)^{N / 2}$.

We give one more elementary remark.

[^2]Lemma 7.13. - Let f be a holomorphic section of $b E$ on $X\left(\gamma^{\prime}\right)$. Then the maximum principle holds for $H(z):=|f(z)|_{h}^{2} \cdot|z|^{2 b} \cdot(-\log |z|)^{-N}$ on $X\left(\gamma^{\prime \prime}\right)$ for $\gamma^{\prime \prime}<\gamma^{\prime}$, i.e., $\sup _{X^{*}\left(\gamma^{\prime \prime}\right)} H(z)=\max _{\partial X\left(\gamma^{\prime \prime}\right)} H(z)$.

Proof. - We put $H_{\epsilon}(z):=|f(z)|_{h}^{2} \cdot|z|^{2 b+\epsilon} \cdot(-\log |z|)^{-N}$ for any $\epsilon>0$. We have $\Delta \log H_{\epsilon} \leq 0$ on $X^{*}\left(\gamma^{\prime}\right)$ and $\lim _{z \rightarrow 0} \log H_{\epsilon}(z)=-\infty$. Therefore, the maximum principle holds for $\log H_{\epsilon}$ on $X\left(\gamma^{\prime \prime}\right)$. Then it is easy to derive the maximum principle for H.
7.2.2. Construction. - Take $0<\eta \leq \eta_{0}$. Let Γ and $\boldsymbol{v}=\left(v_{1}, \ldots, v_{r}\right)$ be as in Lemma 7.10. We put $S(\Gamma):=\left\{\alpha_{1}, \ldots, \alpha_{r}\right\}$. Let T_{A} denote the section of $\operatorname{End}(E) \otimes$ $\Omega^{0,1}$ determined by \boldsymbol{v} and $A \cdot d \bar{z} / \bar{z}$, i.e., $T_{A}(\boldsymbol{v})=\boldsymbol{v} \cdot A \cdot d \bar{z} / \bar{z}$. We put $\bar{\partial}_{0}:=\bar{\partial}-T_{A}$. We put $f_{i}:=|z|^{\alpha_{i}} \cdot v_{i}$. Then we have $\bar{\partial}_{0} f_{i}=0$ and $\left|f_{i}\right|_{h}=|z|^{\alpha_{i}}$. In particular, we have $f_{i} \in A_{-\alpha_{i}+\eta, N}^{0,0}(E)$. Take $g_{i} \in A_{-\alpha_{i}+\eta, N}^{0,0}$ satisfying $\bar{\partial} g_{i}=T_{A}\left(f_{i}\right)$ and $\left\|g_{i}\right\|_{-\alpha_{i}+\eta, N} \leq$ $B_{1} \cdot\left\|T_{A}\left(f_{i}\right)\right\|_{-\alpha_{i}+\eta, N}$ as in Lemma 7.11. We put $F_{i}:=f_{i}-g_{i}$. Then we have $\bar{\partial} F_{i}=0$, $F_{i} \in A_{-\alpha_{i}+\eta, N}^{0,0}(E)$, and the following estimate:

$$
\left\|F_{i}\right\|_{-\alpha_{i}+\eta, N} \leq\left\|f_{i}\right\|_{-\alpha_{i}+\eta, N}+B_{1} \cdot\left\|T_{A}\left(f_{i}\right)\right\|_{-\alpha_{i}+\eta, N} .
$$

We have the following:

$$
\begin{equation*}
\bar{\partial}_{0} g_{i}=-T_{A}\left(g_{i}\right)+T_{A}\left(f_{i}\right) . \tag{45}
\end{equation*}
$$

Hence we obtain $g_{i} \in L_{1}^{2}(H)$ for any compact subset $H \subset X^{*}$, and the L_{1}^{2}-norm is dominated by $\left\|T_{A}\left(f_{i}\right)\right\|_{-\alpha_{i}+\eta, N}$ multiplied by some constant depending only on H. Hence for some number $p>2$ and some good constant $C^{\prime}(H, p)$, we have the following:

$$
\left\|g_{i}\right\|_{L^{p}(H)} \leq C^{\prime}(H, p) \cdot\left\|T_{A}\left(f_{i}\right)\right\|_{-\alpha_{i}+\eta, N}
$$

Due to (45), we have the following, for some good constant $C^{\prime \prime}(H, p)$:

$$
\begin{equation*}
\left\|g_{i}\right\|_{L_{1}^{p}(H)} \leq C^{\prime \prime}(H, p) \cdot\left(\left\|T_{A}\left(f_{i}\right)\right\|_{-\alpha_{i}+\eta, N}+\sup _{H}\left|T_{A}\left(f_{i}\right)\right|_{h, \tilde{g}}\right) . \tag{46}
\end{equation*}
$$

By a standard boot strapping argument, p can be arbitrarily large.
We put $\widetilde{\alpha}:=\operatorname{tr}(\Gamma)$ and $\widetilde{0}:=\sum_{b \in \mathcal{P a r}\left({ }^{\circ} E\right)} \mathfrak{m}(b) \cdot b$. Since we have $\operatorname{tr}(R(h))=$ $\operatorname{tr}(F(h))=0$, the induced metric $\operatorname{det}(h)$ of $\operatorname{det}(E)$ is flat. Hence we have a holomorphic section s of $\widetilde{0} \operatorname{det}(E)=\operatorname{det}\left({ }^{\diamond} E\right)$ such that $|s|_{h}=|z|^{-\widetilde{0}}$ and $\partial_{\operatorname{det}(E)} s=s \cdot(-\widetilde{0}) \cdot d z / z$. It is easy to see $n=\widetilde{\alpha}+\widetilde{0}$ is an integer by considering the limit of the monodromy of $\operatorname{det}(E)$ around the origin. We put $\widetilde{s}:=z^{n} \cdot s$, which gives the section of ${ }_{-} \operatorname{det}(E)$.

Remark 7.14. - We will show that $-\widetilde{\alpha}=\widetilde{0}$, i.e. $s=\widetilde{s}$ later (Lemma 7.17).
Let us consider the function \widetilde{F} determined by $\widetilde{F} \cdot \widetilde{s}=F_{1} \wedge \cdots \wedge F_{r}$. We put $H_{0}:=\left\{z\left|3^{-1} \leq|z| \leq 2 \cdot 3^{-1}\right\}\right.$.

Lemma 7.15. - There exists a small good constant B_{15} with the following property:

- Assume the following inequalities hold:

$$
\begin{equation*}
\sup _{H_{0}}|A|_{\tilde{g}}<B_{15}, \quad\left\|T_{A} \cdot f_{i}\right\|_{-\alpha_{i}+\eta, N}<B_{15}, \quad(i=1, \ldots, r) . \tag{47}
\end{equation*}
$$

Then, there exist $z_{0} \in\{z \in \boldsymbol{C}| | z \mid=1\}$ and a good constant $0<B_{16}<1 / 2$ such that $\widetilde{F}\left(H_{0}\right) \subset\left\{z \in \boldsymbol{C}\left|\left|z-z_{0}\right|<B_{16}\right\}\right.$.

Proof. - From (46) and (47), we obtain $\left|F_{1} \wedge \cdots \wedge F_{r}-f_{1} \wedge \cdots \wedge f_{r}\right|<4^{-1}$ holds on H_{0}, if B_{15} is sufficiently small. Since v_{1}, \ldots, v_{r} are orthonormal and f_{i} are given as $|z|^{\alpha_{i}} \cdot v_{i}$, we have $f_{1} \wedge \cdots \wedge f_{r}=\exp (\sqrt{-1} \kappa) \cdot \widetilde{s}$ for some real valued functions κ. If B_{15} is sufficiently small, κ is a sum of a constant κ_{0} and a function κ_{1} satisfying $\sup _{H_{0}}\left|\kappa_{1}(z)\right|<100^{-1}$ because of (47). Then the claim of the lemma follows.

For any number $0<\gamma<1$, let us consider the map $\phi_{\gamma}: X^{*} \longrightarrow X^{*}$ given by $z \longmapsto \gamma \cdot z$. We put $\left(E(\gamma), \bar{\partial}_{E(\gamma)}, \theta(\gamma), h(\gamma)\right):=\phi_{\gamma}^{*}\left(E, \bar{\partial}_{E}, \theta, h\right)$. It is easy to check Assumption 7.9 for $\left(E(\gamma), \bar{\partial}_{E(\gamma)}, h(\gamma)\right)$. We have the orthonormal frame $\phi_{\gamma}^{*} \boldsymbol{v}$ of $E(\gamma)$ for which we have the following:

$$
\bar{\partial}_{E(\gamma)}\left(\phi_{\gamma}^{*} \boldsymbol{v}\right)=\phi_{\gamma}^{*} \boldsymbol{v} \cdot\left(-\frac{1}{2} \Gamma+\phi_{\gamma}^{*} A\right) \cdot \frac{d \bar{z}}{\bar{z}}
$$

Note we have the following:

$$
\begin{equation*}
\left|\phi_{\gamma}^{*} A\right|_{h(\gamma), \tilde{g}} \leq C_{3} \cdot \frac{-\log |z|+1}{-\log |z|-\log |\gamma|+1} \cdot(-\log |z|+1)^{-1} \tag{48}
\end{equation*}
$$

Hence $\phi_{\gamma}^{*} \boldsymbol{v}$ satisfies the claim of Lemma 7.10. We put $f_{i}^{(\gamma)}:=|z|^{\alpha_{i}} \cdot \phi_{\gamma}^{*} v_{i}$. We construct the sections $g_{i}^{(\gamma)}$ and $F_{i}^{(\gamma)}$ as above. We also take $\widetilde{s}^{(\gamma)}$ and $s^{(\gamma)}$.

Lemma 7.16. - For $\eta>0$, there exists $\gamma_{1}=\gamma_{1}(\eta)>0$ such that the assumptions of Lemma 7.15 are satisfied for $\left(E\left(\gamma_{1}\right), \bar{\partial}_{E\left(\gamma_{1}\right)}, h\left(\gamma_{1}\right)\right)$ and $\phi_{\gamma_{1}}^{*} \boldsymbol{v}$.
Proof. - If γ is sufficiently small, then we may assume $\sup _{H_{0}}\left|\phi_{\gamma}^{*} A\right|_{\tilde{g}} \leq B_{15}$ due to (48). We also have the following:

$$
\begin{align*}
& \int\left|T_{\phi_{\gamma}^{*} A} \cdot f_{i}^{(\gamma)}\right|_{h(\gamma), \tilde{g}}^{2} \cdot|z|^{-2 \alpha_{i}+2 \eta} \cdot(-\log |z|)^{N} \cdot \operatorname{dvol}_{\tilde{g}} \tag{49}\\
& \leq B_{18} \cdot \int\left|\frac{-\log |z|+1}{-\log |z|-\log \gamma+1}\right|^{2} \cdot|z|^{2 \eta} \cdot(-\log |z|)^{N} \cdot \operatorname{dvol}_{\tilde{g}}
\end{align*}
$$

Since the right hand side converges to 0 in $\gamma \longrightarrow 0$, we can take γ_{1} such that the inequality $\left\|T_{\phi_{\gamma_{1}}^{*} A} f_{i}^{\left(\gamma_{1}\right)}\right\|_{-\alpha_{i}+\eta, N}<B_{15}$ holds.

Now we have the holomorphic sections $F_{1}^{\left(\gamma_{1}(\eta)\right)}, \ldots, F_{r}^{\left(\gamma_{1}(\eta)\right)}$ of ${ }^{\diamond} E\left(\gamma_{1}(\eta)\right)$, satisfying $\left|F_{i}^{\left(\gamma_{1}(\eta)\right)}\right|_{h\left(\gamma_{1}(\eta)\right)} \leq C(\eta) \cdot|z|^{\alpha_{i}-\eta}(-\log |z|)^{N}$. We put $a_{i}(\eta):=\max \left\{b \in \mathcal{P} \operatorname{ar}\left({ }^{\circ} E\right) \mid b \leq\right.$ $\left.-\alpha_{i}+\eta\right\}$, and then $F_{i}^{\left(\gamma_{1}(\eta)\right)}$ are sections of ${ }_{a_{i}(\eta)} E\left(\gamma_{1}(\eta)\right)$.

Lemma 7.17. -We have $\mathcal{P a r}\left({ }^{\circ} E\right)=S(\Gamma)$ which preserves the multiplicity. Hence, we have $-\widetilde{\alpha}=\widetilde{0}$.

Proof. - If η is sufficiently small, we have $a_{i}(\eta) \leq-\alpha_{i}$ and hence $\sum a_{i}(\eta) \leq-\widetilde{\alpha}$. We put $\gamma_{2}:=\gamma_{1}(\eta)$. Hence we obtain $\left|\bigwedge_{i=1}^{r} F_{i}^{\left(\gamma_{2}\right)}\right|_{h\left(\gamma_{2}\right)}=O\left(|z|^{\widetilde{\alpha}}\right)$, which implies \widetilde{F} is holomorphic on X, where \widetilde{F} is given by $\bigwedge_{i=1}^{r} F_{i}^{\left(\gamma_{2}\right)}=\widetilde{F} \cdot \widetilde{s}^{\left(\gamma_{2}\right)}$. Due to Lemma 7.15 and the maximum principle, we obtain $B_{20}^{-1} \leq|\widetilde{F}(z)| \leq B_{20}$ for $z \in X(2 / 3)$. Hence, we obtain $\sum a_{i}(\eta)=-\widetilde{\alpha}$.

We put $S(b):=\left\{i \mid-\alpha_{i}=b\right\}$ for $b \in \mathcal{P a r}\left({ }^{\wedge} E\left(\gamma_{2}\right)\right)$. For $i \in S(b)$, we have $F_{i}^{\left(\gamma_{2}\right)} \in{ }_{b} E\left(\gamma_{2}\right)$, which induces $\bar{F}_{i}^{\left(\gamma_{2}\right)} \in \operatorname{Gr}_{b}^{F}\left(E\left(\gamma_{2}\right)\right)$. From $B_{20}^{-1} \leq|\widetilde{F}(z)| \leq B_{20}$ for $z \in X(2 / 3)$, we have the lower estimate $\left.\left|\bigwedge_{i \in S(b)} F_{i}^{\left(\gamma_{2}\right)}{ }_{h\left(\gamma_{2}\right)} \geq C_{\delta}\right| z\right|^{-|S(b)| \cdot b+\delta}$ for any $\delta>0$. Hence we obtain the linearly independence of $\bar{F}_{i}^{\left(\gamma_{2}\right)}(i \in S(b))$. Then, it is easy to show that $F_{1}^{\left(\gamma_{2}\right)}, \ldots, F_{r}^{\left(\gamma_{2}\right)}$ give the frame of ${ }^{\diamond} E\left(\gamma_{2}\right)$ compatible with the parabolic structure, whose parabolic degrees are $-\alpha_{1}, \ldots,-\alpha_{r}$, respectively.

Now let us fix $\eta=\eta_{0}$. We put $\gamma_{3}:=\gamma_{1}\left(\eta_{0}\right)$. We have the holomorphic sections $F_{i}^{\left(\gamma_{3}\right)}$ of ${ }^{\diamond} E\left(\gamma_{3}\right)$ on X satisfying $\left|F_{i}^{\left(\gamma_{3}\right)}\right|_{h\left(\gamma_{3}\right)} \leq B_{30} \cdot|z|^{\alpha_{i}\left(\eta_{0}\right)-\eta_{0}}$. Since we have $s^{\left(\gamma_{3}\right)}=\widetilde{s}^{\left(\gamma_{3}\right)}$, the function \widetilde{F} determined by $F_{1}^{\left(\gamma_{3}\right)} \wedge \cdots \wedge F_{i}^{\left(\gamma_{3}\right)}=\widetilde{F} \cdot \widetilde{s}^{\left(\gamma_{3}\right)}$ is holomorphic on X. Thus, we have $B_{31}^{-1} \leq|\widetilde{F}(z)| \leq B_{31}$ for $z \in X(2 / 3)$ due to the maximum principle and Lemma 7.15.

The holomorphic sections $F_{i}^{\left(\gamma_{3}\right)}$ of ${ }^{\diamond} E\left(\gamma_{3}\right)$ on X naturally give the holomorphic sections \widehat{F}_{i} of ${ }^{\diamond} E$ on $X\left(\gamma_{3}\right)$. We take $\gamma_{0}<\gamma_{3}$ appropriately, and we put $F_{i}:=\widehat{F}_{i \mid X\left(\gamma_{0}\right)}$. It is clear that they satisfy the second and third claims of Proposition 7.4.

For each $a_{i}\left(\eta_{0}\right)$, we have the number $b_{i} \in U_{0}$ such that $a_{i}\left(\eta_{0}\right) \in \mathcal{P}\left(b_{i}\right)$. We obtain $F_{i} \in{ }_{b_{i}} E$. Then, the first claim of Proposition 7.4 follows from Lemma 7.13 and the third claim.

CHAPTER 8

SOME CONVERGENCE RESULTS

8.1. Convergence of a Sequence of Tame Harmonic Bundles

Let X be a smooth projective variety of an arbitrary dimension over \boldsymbol{C}, and D be a simple normal crossing divisor of X. Let $\left(E_{m}, \bar{\partial}_{m}, \theta_{m}, h_{m}\right)(m=1,2, \ldots$,$) be$ a sequence of tame harmonic bundles of rank r on $X-D$. We have the associated parabolic Higgs bundles $\left({ }_{c} E_{m *}, \theta_{m}\right)$ on (X, D).

Theorem 8.1. - Assume that the sequence of the sections $\left\{\operatorname{det}\left(t-\theta_{m}\right)\right\}$ of $\operatorname{Sym} \Omega_{X}^{1,0}(\log D)[t]$ are convergent. Then the following claims hold:

- There exists a subsequence $\left\{\left(E_{m i}, \bar{\partial}_{m}, \theta_{m}, h_{m}\right) \mid m \in I\right\}$ which converges to a tame harmonic bundle $\left(E_{\infty}, \bar{\partial}_{\infty}, \theta_{\infty}, h_{\infty}\right)$ on $X-D$, weakly in L_{2}^{p} locally on $X-D$, in the sense of Section 2.1. Here p denotes an arbitrarily large number.
- If we are given a parabolic Higgs sheaf $\left({ }_{c} E_{*}, \theta\right)$ such that $\left\{\left({ }_{c} E_{m *}, \theta_{m}\right)_{\mid C}\right\}$ converges to $\left({ }_{c} E_{*}, \theta\right)_{\mid C}$ for any generic curve C. Then we have a non-trivial holomorphic morphism $f:\left({ }_{c} E_{*}, \theta\right) \longrightarrow\left({ }_{c} E_{\infty^{*}}, \theta_{\infty}\right)$.

If $\left({ }_{c} E_{*}, \theta\right)$ is a μ_{L}-stable reflexive saturated parabolic Higgs sheaf, f is isomorphic. (See Lemma 3.10.)

Proof. - The first claim is well known. We recall only an outline. The sequence of sections $\left\{\operatorname{det}\left(t-\theta_{m}\right)\right\}$ of $\operatorname{Sym} \Omega_{X}^{1,0}[t]$ converges to $\operatorname{det}(t-\theta)$. Hence we obtain the estimate of the norms of θ_{m} locally on $X-D$ (See Lemma 2.13, for example). We also obtain the estimate of the curvatures $R\left(h_{m}\right)$ because of the relation $R\left(h_{m}\right)+\left[\theta_{m}, \theta_{m}^{\dagger}\right]=$ 0 . Therefore, we obtain the local convergence result like the first claim. (See [55] in the page 26-28, for example.) Thus we obtain the harmonic bundle ($\left.E_{\infty}, \bar{\partial}_{\infty}, \theta_{\infty}, h_{\infty}\right)$.

Let us show the second claim in Subsection 8.1.3 after some preparation.
8.1.1. On a punctured disc. - Let us explain the setting in this subsection. Let $X(\gamma)$ and $X^{*}(\gamma)$ denote the disc $\{z \in \boldsymbol{C}||z|<\gamma\}$ and the punctured disc $X(\gamma)-$ $\{0\}$. In the case $\gamma=1$, we use the notation X and X^{*}. We put $D:=\{0\}$. Let
$\left(E_{m}, \bar{\partial}_{m}, \theta_{m}, h_{m}\right)(m=1,2, \ldots, \infty)$ be a sequence of tame harmonic bundles of rank r on a punctured disc X^{*}. We have the associated parabolic Higgs bundles (${ }_{c} E_{m *}, \theta_{m}$) on (X, D) for $c \in \boldsymbol{R}$. Assume the following:

- $\left\{\left(E_{m}, \bar{\partial}_{m}, \theta_{m}, h_{m}\right) \mid m<\infty\right\}$ converges to $\left(E_{\infty}, \bar{\partial}_{\infty}, \theta_{\infty}, h_{\infty}\right)$ in C^{1} locally on Δ^{*} via the isometries $\Phi_{m}:\left(E_{m}, h_{m}\right) \longrightarrow\left(E_{\infty}, h_{\infty}\right)$.
- Assumption 7.1 is satisfied for any m. The constants are independent of the choice of m.
- There exists a finite subset $\left.U_{0} \subset\right] c-1, c\left[\right.$ and a function $\overline{\mathfrak{m}}: U_{0} \longrightarrow \mathbb{Z}_{>0}$ such that $\left\{\left(\mathcal{P} \operatorname{ar}\left({ }_{c} E_{m}\right), \mathfrak{m}\right) \mid m<\infty\right\}$ converges to $\left(U_{0}, \overline{\mathfrak{m}}\right)$ in the sense of Section 2.1. We put $u:=\sum_{b \in U_{0}} \overline{\mathfrak{m}}(b) \cdot b$.

Lemma 8.2. - We have holomorphic isomorphisms $\Psi_{m^{\prime}}:{ }_{c} E_{m^{\prime}} \longrightarrow{ }_{c} E_{\infty}$ on $X(\gamma)$ for some $\gamma<1$ and some subsequence $\left\{m^{\prime}\right\} \subset\{m\}$, with the following properties:
$-\Psi_{m}-\Phi_{m} \longrightarrow 0$ weakly in L_{1}^{p} locally on $X^{*}(\gamma)$.

- $\Psi_{m}\left(\theta_{m}\right)-\theta_{\infty} \rightarrow 0$ as holomorphic sections of $\operatorname{End}\left({ }_{c} E_{\infty}\right) \otimes \Omega^{1,0}(\log D)$ on $X(\gamma)$.
- Let $F^{(m)}\left({ }_{c} E_{m}\right)$ denote the parabolic filtrations of ${ }_{c} E_{m \mid D}$ induced by h_{m}. Then the sequence of the filtrations $\left\{\Psi_{m}\left(F^{(m)}\left({ }_{c} E_{m \mid D}\right)\right)\right\}$ converges to $F^{(\infty)}\left({ }_{c} E_{\infty}\right)_{\mid D}$ in the sense of Definition 3.36.

Proof. - After going to a subsequence, we may assume that Assumption 7.3 is satisfied for $\left(E_{m}, \bar{\partial}_{m}, \theta_{m}, h_{m}\right)(m<\infty)$ with some $\eta_{0}>0$. We take holomorphic sections $F_{1}^{(m)}, \ldots, F_{r}^{(m)}$ of ${ }_{c} E_{m}$ on $X(\gamma)$ with $b_{1}^{(m)}, \ldots, b_{r}^{(m)} \in U_{0}$ as in Proposition 7.4, with some $\gamma<1$. We may assume that $b_{i}^{(m)}$ are independent of m, which are denoted by b_{i}. There exists a subsequence $\left\{m^{\prime}\right\}$ such that $\left\{\Phi_{m^{\prime}}\left(F_{i}^{\left(m^{\prime}\right)}\right)\right\}$ are convergent weakly in L_{1}^{p} locally on $X(\gamma)^{*}$. The limits are denoted by $F_{i}^{(\infty)}$. They are holomorphic with respect to $\bar{\partial}_{\infty}$. We replace $\{m\}$ with the subsequence $\left\{m^{\prime}\right\}$, and we assume that the above convergence holds from the beginning.

For each $b \in U_{0}$, we put $\bar{b}(m):=\max \left\{a \in \mathcal{P} \operatorname{ar}\left({ }_{c} E_{m}\right)| | a-b \mid<\eta_{0}\right\}$. Then, we have $\left|F_{i}^{(m)}\right|_{h_{m}}<C \cdot|z|^{-\bar{b}_{i}(m)} \cdot(-\log |z|)^{N}$, where the constants C and N are independent of m. Since we have $\bar{b}_{i}(m) \rightarrow b_{i}$ for $m \rightarrow \infty$, we obtain $\left|F_{i}^{(\infty)}\right|_{h_{\infty}}<C \cdot|z|^{-b_{i}} \cdot(-\log |z|)^{N}$, and hence $F_{i}^{(\infty)} \in_{b_{i}} E_{\infty}$.

We put $\widetilde{c}(m):=\sum_{b \in \mathcal{P} \operatorname{ar}\left({ }_{c} E_{m}\right)} b \cdot \mathfrak{m}(b)$. The sequence $\{\widetilde{c}(m)\}$ converges to u. We have $C_{1}^{-1} \cdot|z|^{-\widetilde{c}(m)} \leq\left|\bigwedge_{i=1}^{r} F_{i}^{(m)}\right|_{h_{m}} \leq C_{1} \cdot|z|^{-\widetilde{c}(m)}$, and hence $C_{1}^{-1} \cdot|z|^{-u} \leq$ $\left|\bigwedge_{i=1}^{r} F_{i}^{(\infty)}\right|_{h_{\infty}} \leq C_{1} \cdot|z|^{-u}$. We put $S_{b}:=\left\{i \mid b_{i}=b\right\}$. For $i \in S_{b}$, we have $F_{i}^{(\infty)} \in{ }_{b} E_{\infty}$, which induces $\bar{F}_{i}^{(\infty)} \in \operatorname{Gr}_{b}^{F}\left(E_{\infty \mid D}\right)$. We have the lower estimate $\left|\bigwedge_{i \in S_{b}} F_{i}^{(\infty)}\right|_{h_{\infty}} \geq C_{\delta} \cdot|z|^{-\left|S_{b}\right| \cdot b+\delta}$ for any $\delta>0$, from which we obtain the linearly independence of $\bar{F}_{i}^{(\infty)}\left(i \in S_{b}\right)$ in $\operatorname{Gr}_{b}^{F}\left(E_{\infty \mid D}\right)$. Then, it can be shown that the sections $F_{1}^{(\infty)}, \ldots, F_{r}^{(\infty)}$ give a holomorphic frame of ${ }_{c} E_{\infty}$, which is compatible
with the parabolic structure, and $b_{i}^{(\infty)}$ are the degrees of $F_{i}^{(\infty)}$ with respect to the parabolic structure.

We construct the holomorphic map $\Psi_{m}:{ }_{c} E_{m} \longrightarrow{ }_{c} E_{\infty}$ on $X(\gamma)$ by the correspondence $\Psi_{m}\left(F_{i}^{(m)}\right)=F_{i}^{(\infty)}$. The first and third claims of the lemma are satisfied by our construction. Let K be any compact subset of $X^{*}(\gamma)$. Since $\Psi_{m}-\Phi_{m}$ converges to 0 in L_{1}^{p} on K, we have the C^{0}-endomorphisms G_{m} of $E_{\infty \mid K}$ for any sufficiently large m such that (i) $\Psi_{m \mid K}=G_{m} \circ \Phi_{m \mid K}$, and (ii) $G_{m} \rightarrow \mathrm{id}_{E_{\infty \mid K}}$ in C^{0} for $m \rightarrow \infty$. Then, $\Psi_{m}\left(\theta_{m}\right)_{\mid K}=G_{m} \circ \Phi_{m}\left(\theta_{m}\right)_{\mid K} \circ G_{m}^{-1}$ converges to $\theta_{\infty \mid K}$ in C^{0} on K. Hence, we also have the convergence of $\Psi_{m}\left(\theta_{m}\right)-\theta_{\infty}$ to 0 in C^{0} on any compact subset of $X^{*}(\gamma)$. The Higgs fields θ_{m} and the holomorphic frames $F_{1}^{(m)}, \ldots, F_{r}^{(m)}$ determine the matrix valued holomorphic $\Omega^{1,0}(\log D)$-forms Θ_{m}. Similarly, we obtain Θ_{∞}. Due to the above argument, we have the local convergence of Θ_{m} to Θ_{∞} on $X^{*}(\gamma)$. Since they are holomorphic, we obtain the convergence on $X(\gamma)$. Thus the second claim also holds.
8.1.2. On a curve. - Let us explain the setting in this subsection. Let C be a smooth projective curve with a finite subset $D_{C} \subset C$. Let $\left(E_{m}, \bar{\partial}_{m}, h_{m}, \theta_{m}\right)(m=$ $1,2, \ldots, \infty)$ be a sequence of harmonic bundles of rank r on $C-D_{C}$. We have the associated Higgs bundles $\left(c_{m *}, \theta_{m}\right)$, where $\boldsymbol{c}=(c(P) \mid P \in D) \in \boldsymbol{R}^{D}$. We assume the following:

- The sequence $\left\{\left(E_{m}, \bar{\partial}_{m}, h_{m}, \theta_{m}\right)\right\}$ converges to $\left(E_{\infty}, \bar{\partial}_{\infty}, h_{\infty}, \theta_{\infty}\right)$ in C^{1} locally on $C-D_{C}$ via isometries $\Phi_{m}:\left(E_{m}, h_{m}\right) \longrightarrow\left(E_{\infty}, h_{\infty}\right)$.
- For each i, a finite subset $U(P) \subset] c(P)-1, c(P)[$ and a function $\mathfrak{m}: U(P) \longrightarrow$ $\mathbb{Z}_{>0}$ are given, and $\left\{\left(\mathcal{P a r}\left(E_{m}, P\right), \mathfrak{m}\right) \mid m<\infty\right\}$ converges to $(U(P), \mathfrak{m})$.
By the first condition, the sequence $\operatorname{det}\left(t-\theta_{m}\right) \in \operatorname{Sym}^{\cdot} \Omega_{C}^{1,0}\left(\log D_{C}\right)$ converges to $\operatorname{det}\left(t-\theta_{\infty}\right)$. Around each point $P \in D_{C}$, we can take a coordinate neighbourhood V_{P} such that Assumption 7.1 is satisfied on V_{P} for any $m<\infty$, and that the constants are independent of m.

Lemma 8.3. - $\left\{\left({ }_{c} E_{m^{\prime}}, \boldsymbol{F}^{\left(m^{\prime}\right)}, \theta_{m^{\prime}}\right) \mid m^{\prime} \in I\right\}$ converges to $\left({ }_{c} E_{\infty}, \boldsymbol{F}^{(\infty)}, \theta_{\infty}\right)$ for an appropriate subsequence $I \subset\{m\}$ in the sense of Definition 3.36.

Proof. - We would like to replace $\Phi_{m^{\prime}}$ with $\Psi_{m^{\prime}}:{ }_{c} E_{m^{\prime}} \longrightarrow{ }_{c} E_{\infty}$ for an appropriate subsequence $\left\{m^{\prime}\right\} \subset\{m\}$. By shrinking V_{P} appropriately, we take the holomorphic maps ${ }^{P} \Psi_{m^{\prime}}:{ }_{c(P)} E_{m^{\prime}} \longrightarrow{ }_{c(P)} E_{\infty}$ on V_{P} for some subsequence $\left\{m^{\prime}\right\} \subset\{m\}$ for each point $P \in D_{C}$, as in Lemma 8.2. We replace $\{m\}$ with $\left\{m^{\prime}\right\}$.

Let $\chi_{P}: C \longrightarrow[0,1]$ denote a C^{∞}-function which is constantly 1 around P, and constantly 0 on $C-V_{P}$. Let $\Psi_{m}: E_{m} \longrightarrow E_{\infty}$ be the L_{1}^{p}-map given as follows:

$$
\begin{equation*}
\Psi_{m}:=\sum_{P} \chi_{P} \cdot{ }^{P} \Psi_{m}+\left(1-\sum_{P} \chi_{P}\right) \cdot \Phi_{m} . \tag{50}
\end{equation*}
$$

If m is sufficiently large, then Ψ_{m} are isomorphisms. We have the following:

$$
\begin{align*}
& \Psi_{m} \circ \bar{\partial}_{m}-\bar{\partial}_{\infty} \circ \Psi_{m}=\sum \bar{\partial} \chi_{P} \cdot\left({ }^{P} \Psi_{m}-\Phi_{m}\right) \tag{51}\\
&+\left(1-\sum \chi_{P}\right) \cdot\left(\Phi_{m} \circ \bar{\partial}_{m}-\bar{\partial}_{\infty} \circ \Phi_{m}\right)
\end{align*}
$$

Hence the sequence $\left\{\Psi_{m} \circ \bar{\partial}_{m}-\bar{\partial}_{\infty} \circ \Psi_{m}\right\}$ converges to 0 weakly in L^{p} on C. By construction, the sequence of the parabolic filtrations of ${ }_{c} E_{m *}$ converges that of ${ }_{c} E_{\infty *}$. We also have the convergence of $\Psi_{m}\left(\theta_{m}\right)-\theta_{\infty}$ to 0 weakly in L^{p} on C. Hence we obtain the convergence of $\left\{\left({ }_{c} E_{m}, \boldsymbol{F}^{(m)}, \theta_{m}\right) \mid m<\infty\right\}$ to $\left({ }_{c} E_{\infty}, \boldsymbol{F}^{(\infty)}, \theta_{\infty}\right)$ weakly in L_{1}^{p} on C.
8.1.3. The end of Proof of Theorem 8.1. - Let us return to the setting for Theorem 8.1. Let $\left(E_{\infty}, \bar{\partial}_{\infty}, \theta_{\infty}, h_{\infty}\right)$ be a harmonic bundle obtained as a limit. We obtain the parabolic Higgs bundle $\left({ }_{c} E_{\infty *}, \theta_{\infty}\right)$. We would like to show the existence of a nontrivial holomorphic homomorphism $\left({ }_{c} E_{*}, \theta\right) \longrightarrow\left({ }_{c} E_{\infty *}, \theta_{\infty}\right)$. Due to Lemma 3.4, we have only to show the existence of a non-trivial map $f_{C}:\left({ }_{c} E_{*}, \theta\right)_{\mid C} \longrightarrow\left({ }_{c} E_{\infty *}, \theta_{\infty}\right){ }_{\mid C}$ for some sufficiently ample generic curve $C \subset X$. We may and will assume that $c_{i} \notin \operatorname{Par}\left({ }_{c} E, i\right)$.

We have the convergence of the sequence $\left\{\left({ }_{c} E_{m *}, \theta_{m}\right)_{\mid C} \mid m\right\}$ to $\left({ }_{c} E_{*}, \theta\right)_{\mid C}$ on C. In particular, we have the convergence $\left\{\left(\mathcal{P a r}\left({ }_{c} E_{m \mid C}, P\right), \mathfrak{m}\right) \mid m<\infty\right\}$ to $\left(\mathcal{P a r}\left({ }_{c} E_{\mid C}, P\right), \mathfrak{m}\right)$ for any $P \in C \cap D$. The sequence $\left\{\left(E_{m}, \bar{\partial}_{m}, \theta_{m}, h_{m}\right)_{\mid C \backslash D}\right\}$ is convergent to $\left(E_{\infty}, \bar{\partial}_{\infty}, \theta_{\infty}, h_{\infty}\right)_{\mid C \backslash D}$ in C^{1} locally on $C \backslash D$. After going to a subsequence, we obtain the convergence of $\left\{\left({ }_{c} E_{m *},, \theta_{m}\right)_{\mid C} \mid m\right\}$ to $\left({ }_{c} E_{\infty *}, \theta_{\infty}\right)_{\mid C}$ weakly in L_{1}^{p} on C, due to Lemma 8.3. Thus we obtain the existence of the desired non-trivial map f_{C} due to Corollary 3.38. Thus the proof of Theorem 8.1 is finished.

8.2. Preparation for the Proof of Theorem 9.1

Let C be a smooth projective curve over C with a simple effective divisor D. Let $\left\{\left({ }_{c} E_{m *}, \theta_{m}\right)\right\}$ be a sequence of stable parabolic Higgs bundles on (C, D) with $\operatorname{par}-\operatorname{deg}\left({ }_{c} E_{m *}\right)=0$, which converges to a stable Higgs bundle $\left({ }_{c} E_{\infty *}, \theta_{\infty}\right)$. We take pluri-harmonic metrics $h_{0}^{(m)}$ of $\left(E_{m}, \bar{\partial}_{E_{m}}, \theta_{m}\right.$) adapted to the parabolic structure ($m=$ $1,2, \ldots, \infty)$ (Proposition 2.8), where $E_{m}:={ }_{c} E_{m \mid C-D}$. We put $\mathcal{D}_{m}:=\bar{\partial}_{E_{m}}+\theta_{m}$ and $\mathcal{D}_{m}^{\star}:=\partial_{E_{m}, h_{0}^{(m)}}+\theta_{m, h_{0}^{(m)}}^{\dagger}(m=1,2, \ldots, \infty)$.

Take a sequence of small positive numbers $\left\{\epsilon_{m}\right\}$. For each $P \in D$, let $\left(V_{P}, z\right)$ be a holomorphic coordinate around P such that $z(P)=0$. Let N be a large positive number, for example $N>10$. Let g_{m} be Kahler metrics of $C-D$ with the following form on V_{P} for each $P \in D$:

$$
\left(\epsilon_{m}^{N+2}|z|^{2 \epsilon_{m}}+|z|^{2}\right) \frac{d z \cdot d \bar{z}}{|z|^{2}}
$$

We assume that $\left\{g_{m}\right\}$ converges to a smooth Kahler metric g_{0} of C in the C^{∞}-sense locally on $C-D$.

In the following argument, $\|\rho\|_{h, g}$ will denote the L^{2}-norm of a section ρ of $E_{m} \otimes$ $\Omega_{C-D}^{p, q}$ or $\operatorname{End}\left(E_{m}\right) \otimes \Omega_{C-D}^{p, q}$, with respect to a metric g of $C-D$ and a metric h of E_{m}. On the other hand, $|\rho|_{h, g}$ will denote the norm at fibers.

Proposition 8.4. - Let $h^{(m)}(m<\infty)$ be hermitian metrics of E_{m} with the following properties:

1. Let $s^{(m)}$ be determined by $h^{(m)}=h_{0}^{(m)} \cdot s^{(m)}$. Then (i) $s^{(m)}$ is bounded with respect to $h_{0}^{(m)}$, (ii) $\operatorname{det} s^{(m)}=1$, (iii) $\left\|\mathcal{D}_{m} s^{(m)}\right\|_{h_{0}^{(m)}, g_{m}}<\infty$. (The estimates may depend on m.)
2. We have $\left\|F\left(h^{(m)}\right)\right\|_{h^{(m)}, g_{m}}<\infty$ and $\lim _{m \rightarrow \infty}\left\|F\left(h^{(m)}\right)\right\|_{h^{(m)}, g_{m}}=0$.
3. There exists a tame harmonic bundle $\left(E^{\prime}, \bar{\partial}_{E^{\prime}}, \theta^{\prime}, h^{\prime}\right)$ such that the sequence $\left\{\left(E_{m}, \bar{\partial}_{E_{m}}, \theta_{m}, h^{(m)}\right)\right\}$ converges to $\left(E^{\prime}, \bar{\partial}_{E^{\prime}}, \theta^{\prime}, h^{\prime}\right)$ in C^{1} locally on $C-D$.

Then, after going to a subsequence, $\left\{\left({ }_{c} E_{m *}, \theta_{m}\right)\right\}$ converges to $\left({ }_{c} E^{\prime}{ }_{*}, \theta^{\prime}\right)$ weakly in L_{1}^{p} on C.

Proof. - We may and will assume that $\left\{\left(E_{m}, \bar{\partial}_{E_{m}}, \theta_{m}, h_{0}^{(m)}\right)\right\}$ converges to $\left(E_{\infty}, \bar{\partial}_{E_{\infty}}, \theta_{\infty}, h_{\infty}\right)$ via the isometries $\Phi_{m}:\left(E_{m}, h_{0}^{(m)}\right) \longrightarrow\left(E_{\infty}, h_{\infty}\right)$, due to Theorem 8.1. First, let us show that $s^{(m)}$ are bounded independently of m.
8.2.1. Uniform boundedness of $s^{(m)}$. - For any point $P \in C-D$, let $S E\left(s^{(m)}\right)(P)$ denote the maximal eigenvalue of $s_{\mid P}^{(m)}$. There exists a constant $0<C_{1}<1$ such that $C_{1} \cdot\left|s_{\mid P}^{(m)}\right|_{h_{0}^{(m)}} \leq S E\left(s^{(m)}\right)(P) \leq\left|s_{\mid P}^{(m)}\right|_{h_{0}^{(m)}}$. Because of $\operatorname{det} s_{\mid P}^{(m)}=1$, we have $S E\left(s^{(m)}\right)(P) \geq 1$ for any P.

Let us take $b_{m}>0$ satisfying $2 \leq b_{m} \cdot \sup _{P} S E\left(s^{(m)}\right)(P) \leq 3$. We put $\widetilde{s}^{(m)}=$ $b_{m} \cdot s^{(m)}$ and $\widetilde{h}^{(m)}:=h_{0}^{(m)} \cdot \widetilde{s}^{(m)}$. Then $\widetilde{s}^{(m)}$ are self-adjoint and uniformly bounded with respect to both of $h_{0}^{(m)}$ and $\widetilde{h}^{(m)}$. We remark $F\left(\widetilde{h}^{(m)}\right)=F\left(h^{(m)}\right)$. We also remark that $h^{(m)}$ and $\widetilde{h}^{(m)}$ induce the same metric of $\operatorname{End}\left(E_{m}\right)$.

Recall the following equality (Lemma 3.1 of [51]):

$$
\begin{equation*}
\Delta_{g_{0}, h_{0}^{(m)}} \widetilde{s}^{(m)}=\widetilde{s}^{(m)} \sqrt{-1} \Lambda_{g_{0}} F\left(\widetilde{h}^{(m)}\right)+\sqrt{-1} \Lambda_{g_{0}} \mathcal{D}_{m} \widetilde{s}^{(m)}\left(\widetilde{s}^{(m)}\right)^{-1} \mathcal{D}_{m}^{\star} \widetilde{s}^{(m)} \tag{52}
\end{equation*}
$$

Because of $\left\|\mathcal{D}_{m} s^{(m)}\right\|_{h_{0}^{(m)}, g_{m}}=\left\|\mathcal{D}_{m} s^{(m)}\right\|_{h_{0}^{(m)}, g_{0}}<\infty$ and the boundedness of $\widetilde{s}^{(m)}$, we have $\int \Delta_{g_{0}} \operatorname{tr} \widetilde{s}^{(m)} \cdot \operatorname{dvol}_{g_{0}}=0$. Hence, we obtain the following inequality from (52)
and the uniform boundedness of $\widetilde{s}^{(m)}$ with respect to $\widetilde{h}^{(m)}$:

$$
\begin{array}{r}
\int\left|\mathcal{D}_{m} \widetilde{s}^{(m)} \cdot\left(\widetilde{s}^{(m)}\right)^{-1 / 2}\right|_{g_{0}, h_{0}^{(m)}}^{2} \operatorname{dvol}_{g_{0}} \leq A_{1} \int\left|\operatorname{tr}\left(\widetilde{s}^{(m)} \cdot \Lambda_{g_{0}} F\left(\widetilde{h}^{(m)}\right)\right)\right| \cdot \operatorname{dvol}_{g_{0}} \tag{53}\\
\leq A_{2} \cdot \int\left|\Lambda_{g_{0}} F\left(\widetilde{h}^{(m)}\right)\right|_{\widetilde{h}^{(m)}} \cdot \operatorname{dvol}_{g_{0}}=A_{2} \cdot \int\left|\Lambda_{g_{m}} F\left(\widetilde{h}^{(m)}\right)\right|_{\tilde{h}^{(m)}} \cdot \operatorname{dvol}_{g_{m}} \\
\leq A_{3} \cdot\left\|F\left(\widetilde{h}^{(m)}\right)\right\|_{\widetilde{h}^{(m)}, g_{m}}
\end{array}
$$

Here, A_{i} denote the constants which are independent of m, and we have used the inequality $\left|\operatorname{tr}\left(\widetilde{s}^{(m)} \cdot \Lambda_{g_{0}} F\left(\widetilde{h}^{(m)}\right)\right)\right| \leq\left|\widetilde{s}^{(m)}\right|_{\widetilde{h}^{(m)}} \cdot\left|\Lambda_{g_{0}} F\left(\widetilde{h}^{(m)}\right)\right|_{\tilde{h}^{(m)}}$. In particular, we obtain the following inequality for some constant A_{4} :

$$
\begin{equation*}
\left\|\mathcal{D}_{m} \widetilde{s}^{(m)}\right\|_{h_{0}^{(m)}, g_{0}}^{2} \leq A_{4} \cdot\left\|F\left(\widetilde{h}^{(m)}\right)\right\|_{\tilde{h}^{(m)}, g_{m}} \tag{54}
\end{equation*}
$$

We put $\widetilde{t}^{(m)}:=\Phi_{m}\left(\widetilde{s}^{(m)}\right) \in \operatorname{End}\left(E_{\infty}\right)$.
Lemma 8.5. - After going to an appropriate subsequence, $\left\{\widetilde{t}^{(m)}\right\}$ converges to a positive constant multiplication weakly in L_{1}^{2} locally on $C-D$.

Proof. - $\left\{\widetilde{t}^{(m)}\right\}$ is L_{1}^{2}-bounded on any compact subset of $C-D$ due to (54). By going to an appropriate subsequence, it is weakly L_{1}^{2}-convergent locally on $C-D$. Let $\widetilde{t}^{(\infty)}$ denote the weak limit. We obtain $\mathcal{D}_{\infty} \widetilde{t}^{(\infty)}=0$ from (54). By construction, $\widetilde{t}^{(\infty)}$ is also bounded with respect to $h_{0}^{(\infty)}$. Therefore $\tilde{t}^{(\infty)}$ gives an automorphism of $\left(c_{\infty *}, \theta_{\infty}\right)$. Due to the stability of $\left({ }_{c} E_{\infty *}, \theta_{\infty}\right), \widetilde{t}^{(\infty)}$ is a constant multiplication.

We would like to show $\widetilde{t}^{(\infty)} \neq 0$. Let us take any point $Q_{m} \in C-D$ satisfying the following:

$$
S E\left(s^{(m)}\right)\left(Q_{m}\right) \geq \frac{9}{10} \cdot \sup _{P \in C-D} S E\left(s^{(m)}\right)(P)
$$

Then we have $\log \operatorname{tr} \widetilde{t}^{(m)}\left(Q_{m}\right) \geq \log (9 / 5)$. By taking an appropriate subsequence, we may assume that the sequence $\left\{Q_{m}\right\}$ converges to a point Q_{∞}. We have two cases (i) $Q_{\infty} \in D$ (ii) $Q_{\infty} \notin D$. We discuss only the case (i). The other case is similar and easier.

We have $\operatorname{tr} \widetilde{s}^{(m)}=\operatorname{tr} \widetilde{t}^{(m)}$, which we do not distinguish in the following. We use the coordinate neighbourhood (U, z) such that $z\left(Q_{\infty}\right)=0$. For any point $P \in U$, we put $\Delta(P, T):=\{Q \in U| | z(P)-z(Q) \mid<T\}$. Let $g=d z \cdot d \bar{z}$ denote the standard metric of U. We have the following inequality on $U-\left\{Q_{\infty}\right\}$ (Lemma 3.1 of [51]):

$$
\Delta_{g} \log \operatorname{tr} \widetilde{s}^{(m)} \leq\left|\Lambda_{g} F\left(\widetilde{h}^{(m)}\right)\right|_{\widetilde{h}^{(m)}}
$$

Let $B^{(m)}$ be the endomorphism of E_{m} determined as follows:

$$
F\left(\widetilde{h}^{(m)}\right)=F\left(h^{(m)}\right)=B^{(m)} \cdot \frac{d z \cdot d \bar{z}}{|z|^{2}}
$$

Then we have the following estimate:

$$
\int\left|B^{(m)}\right|_{\widetilde{h}^{(m)}}^{2}\left(\epsilon_{m}^{N+1}|z|^{2 \epsilon_{m}}+|z|^{2}\right)^{-1} \frac{\operatorname{dvol}_{g}}{|z|^{2}} \leq A \int\left|F\left(\widetilde{h}^{(m)}\right)\right|_{\tilde{h}^{(m)}, g_{m}}^{2} \cdot \operatorname{dvol}_{g_{m}}
$$

Here A denotes a constant independent of m. Due to Lemma 2.17, there exist $v^{(m)}$ such that the following inequalities hold for some positive constant A^{\prime} :

$$
\bar{\partial} \partial v^{(m)}=\left|B^{(m)}\right|_{\widetilde{h}^{(m)}} \frac{d z \cdot d \bar{z}}{|z|^{2}}, \quad\left|v^{(m)}(z)\right| \leq A^{\prime} \cdot\left\|F\left(\widetilde{h}^{(m)}\right)\right\|_{\widetilde{h}^{(m)}, g_{m}}
$$

Then we have $\Delta_{g}\left(\log \operatorname{tr} \widetilde{t}^{(m)}-v^{(m)}\right) \leq 0$ on $U-\left\{Q_{\infty}\right\}$. Since $s^{(m)}$ and $\left(s^{(m)}\right)^{-1}$ are bounded on $C-D, \log \operatorname{tr} s^{(m)}$ is bounded on $C-D$. Hence, $\Delta_{g}\left(\log \operatorname{tr} \widetilde{t}^{(m)}-v^{(m)}\right) \leq 0$ holds on U as distributions. (See Lemma 2.2 of [52], for example.) Therefore, we obtain the following:

$$
\log \operatorname{tr} \widetilde{t}^{(m)}\left(Q_{m}\right)-v^{(m)}\left(Q_{m}\right) \leq A^{\prime \prime} \cdot \int_{\Delta\left(Q_{m}, 1 / 2\right)}\left(\log \operatorname{tr} \widetilde{t}^{(m)}-v^{(m)}\right) \cdot \operatorname{dvol}_{g}
$$

Here $A^{\prime \prime}$ denotes a positive constant independent of m. Then we obtain the following inequalities, for some positive constants $C_{i}(i=1,2)$ which are independent of m :

$$
\log (9 / 5) \leq \log \operatorname{tr} \widetilde{t}^{(m)}\left(Q_{m}\right) \leq C_{1} \cdot \int_{\Delta\left(Q_{m}, 1 / 2\right)} \log \operatorname{tr} \widetilde{t}^{(m)} \cdot \operatorname{dvol}_{g}+C_{2}
$$

Recall that $\log \operatorname{tr} \widetilde{t}^{(m)}$ are uniformly bounded from above. Therefore there exists a positive constant C_{3} such that the following holds for any sufficiently large m :

$$
\int_{\Delta\left(Q_{m}, 1 / 2\right)}-\min \left(0, \log \operatorname{tr} \tilde{t}^{(m)}\right) \cdot \operatorname{dvol}_{g} \leq C_{3}
$$

Due to Fatou's lemma, we obtain the following:

$$
\int_{\Delta\left(Q_{\infty}, 1 / 2\right)}-\min \left(0, \log \operatorname{tr} \widetilde{t}^{(\infty)}\right) \cdot \operatorname{dvol}_{g} \leq C_{3}
$$

It means $\tilde{t}^{(\infty)}$ is not constantly 0 on $\Delta\left(Q_{\infty}, 1 / 2\right)$. In all, we can conclude that $\tilde{t}^{(\infty)}$ is a positive constant multiplication. Thus the proof of Lemma 8.5 is finished.

Let $\left\{\widetilde{t}^{\left(m^{\prime}\right)}\right\}$ be a subsequence as in Lemma 8.5. It is almost everywhere convergent to some constant multiplication. Then we obtain the convergence of $\left\{\operatorname{det} \widetilde{t}^{\left(m^{\prime}\right)}=\right.$ $\left.b_{m^{\prime}}^{\mathrm{rank} E} \cdot \operatorname{id}_{\operatorname{det}(E)}\right\}$ to a positive constant multiplication, i.e., $\left\{b_{m^{\prime}}\right\}$ is convergent to a positive constant. It means the uniform boundedness of $\left\{s^{\left(m^{\prime}\right)}\right\}$ with respect to $h_{0}^{\left(m^{\prime}\right)}$.
8.2.2. Construction of maps. - By assumption, we are given C^{1}-isometries $\Phi_{m}^{\prime}:\left(E_{m}, h_{m}\right) \longrightarrow\left(E^{\prime}, h^{\prime}\right)$ for which $\left\{\left(E_{m}, \bar{\partial}_{E_{m}}, \theta_{m}\right)\right\}$ converges to $\left(E^{\prime}, \bar{\partial}_{E^{\prime}}, \theta^{\prime}\right)$. By modifying them, we would like to construct the maps $\Psi_{m}^{\prime}:{ }_{c} E_{m} \longrightarrow{ }_{c} E^{\prime}$ for which a subsequence of $\left\{\left(c_{m *}, \theta_{m}\right)\right\}$ converges to $\left(c E^{\prime}, \theta^{\prime}\right)$. The argument is essentially same as that in Subsections 8.1.1-8.1.2.

We put $V_{P}^{*}:=V_{P}-\{P\}$. We will shrink V_{P} in the following argument if it is necessary. We may assume that Assumption 7.1 is satisfied on V_{P} for any $m<\infty$, and that the constants are independent of m. We have the convergence $\left\{\left(\mathcal{P a r}\left({ }_{c} E_{m *}, P\right), \mathfrak{m}\right)\right\}$ to $\left(\mathcal{P a r}\left({ }_{c} E_{\infty *}, P\right), \mathfrak{m}\right)$. Take $\eta>0$, and we may assume that Assumption 7.3 is
satisfied on V_{P} for any $m<\infty$, after going to a subsequence. By applying Proposition 7.4 to harmonic bundles $\left(E_{m}, \bar{\partial}_{m}, \theta_{m}, h_{0}^{(m)}\right)_{\mid V_{P}^{*}}$, we obtain holomorphic sections $F_{1}^{(m)}, \ldots, F_{r}^{(m)}$ of $c E_{m}$ on V_{P} with numbers $b_{1}^{(m)}, \ldots, b_{r}^{(m)}$ as in Proposition 7.4. We may assume $b_{i}^{(m)}$ are independent of the choice of m, which are denoted by b_{i}. For $b \in \mathcal{P a r}\left({ }_{c} E_{\infty}, P\right)$, we put $\bar{b}(m):=\max \left\{a \in \mathcal{P a r}\left({ }_{c} E_{m}\right)| | a-b \mid<\eta_{0}\right\}$. We put $\widetilde{c}(m):=\sum_{a \in \mathcal{P a r}\left(c^{\prime} E_{m}, P\right)} a \cdot \mathfrak{m}(a)$. Because of the uniform boundedness of $s^{(m)}$, we obtain $\left|F_{i}^{(m)}\right|_{h^{(m)}} \leq C \cdot|z|^{-\bar{b}_{i}(m)}(-\log |z|)^{N}$ and $C_{1} \cdot|z|^{-\widetilde{c}(m)} \leq\left|\bigwedge_{i=1}^{r} F_{i}^{(m)}\right|_{h^{(m)}} \leq$ $C_{2} \cdot|z|^{-\widetilde{c}(m)}$, where the constants are independent of m. After going to a subsequence, we may assume that $\left\{\Phi_{m}^{\prime}\left(F_{i}^{\left(m^{\prime}\right)}\right)\right\}$ are convergent weakly in L_{1}^{p} locally on V_{P}^{*}. The limits are denoted by F_{i}^{\prime}, which are holomorphic with respect to $\bar{\partial}_{E^{\prime}}$. We have $\left|F_{i}^{\prime}\right| h^{\prime} \leq C \cdot|z|^{-b_{i}}(-\log |z|)^{N}$ and $C_{1} \cdot|z|^{-\widetilde{c}} \leq\left|\bigwedge_{i=1}^{r} F_{i}^{\prime}\right|_{h^{(m)}} \leq C_{2} \cdot|z|^{-\widetilde{c}}$, where $\widetilde{c}:=\sum_{b \in \mathcal{P a r}\left({ }_{c} E_{\infty}, P\right)} \mathfrak{m}(b) \cdot b$. By the same argument as the proof of Lemma 8.2, we obtain that $F_{1}^{\prime}, \ldots, F_{r}^{\prime}$ gives a frame of ${ }_{c} E^{\prime}$ around P which is compatible with the parabolic structure. (In particular, we obtain $\mathcal{P a r}\left({ }_{c} E^{\prime}, P\right)=\mathcal{P a r}\left({ }_{c} E_{\infty}, P\right)$).

We obtain the holomorphic morphism ${ }^{P} \Psi_{m}^{\prime}:{ }_{c} E_{m \mid V_{P}} \longrightarrow{ }_{c} E^{\prime}{ }_{\mid V_{P}}$ by the correspondence ${ }^{P} \Psi_{m}^{\prime}\left(F_{i}^{(m)}\right)=F_{i}^{\prime}$. By our construction, (i) ${ }^{P} \Psi_{m}^{\prime}-\Phi_{m \mid V_{P}^{*}}^{\prime}$ converges to 0 weakly in L_{1}^{p} locally on V_{P}^{*}, (ii) ${ }^{P} \Psi_{m}^{\prime}\left(\theta_{m}\right)-\theta^{\prime}$ converges to 0 on V_{P} as holomorphic sections of $\operatorname{End}\left({ }_{c} E^{\prime}\right) \otimes \Omega^{1,0}(\log P)$ (see the last part of the proof of Lemma 8.2), (iii) the parabolic filtrations of ${ }_{c} E_{m \mid P}$ converges to the parabolic filtration of ${ }_{c} E^{\prime}{ }_{\mid P}$ via ${ }^{P} \Psi_{m}^{\prime}$. Then, we construct Ψ_{m}^{\prime} similarly to (50), which gives the convergence of $\left\{\left({ }_{c} E_{m *}, \theta_{m}\right)\right\}$ to $\left(c^{\prime} E_{*}^{\prime}, \theta^{\prime}\right)$.

CHAPTER 9

EXISTENCE OF ADAPTED PLURI-HARMONIC METRIC

9.1. The Surface Case

Let X be a smooth irreducible projective surface over \boldsymbol{C}, and D be a simple normal crossing divisor of X. Let L be an ample line bundle, and ω be a Kahler form representing $c_{1}(L)$.

Theorem 9.1. - Let $\left({ }_{c} E, \boldsymbol{F}, \theta\right)$ be a μ_{L}-stable \boldsymbol{c}-parabolic Higgs bundle on (X, D). Assume that the characteristic numbers vanish:

$$
\operatorname{par}-\operatorname{deg}_{L}\left({ }_{c} E, \boldsymbol{F}\right)=\int_{X}{\operatorname{par}-\operatorname{ch}_{2}(c E, \boldsymbol{F})=0}
$$

Then there exists a pluri-harmonic metric h of $(E, \theta)=\left({ }_{c} E, \theta\right)_{\mid X-D}$ which is adapted to the parabolic structure.

Proof. - We may and will assume $c_{i} \notin \operatorname{Par}\left({ }_{c} E, \boldsymbol{F}, i\right)$. We take a sequence $\left\{\bar{\epsilon}_{m}\right\}$ converging to 0 , such that $\bar{\epsilon}_{m}=N_{m}^{-1}$ for some integers N_{m} and that $\bar{\epsilon}_{m}<\operatorname{gap}(c E, \boldsymbol{F}) / 100 \operatorname{rank}(E)$. We take the perturbation of parabolic structures $\boldsymbol{F}^{\left(\bar{\epsilon}_{m}\right)}$ as in Section 3.3. We put $\epsilon_{m}=\bar{\epsilon}_{m} / 100$, and we take the Kahler metrics $\omega_{\epsilon_{m}}$ of $X-D$ as in Subsection 4.3.1. For simplicity of the notation, we denote them by $\boldsymbol{F}^{(m)}$ and $\omega^{(m)}$, respectively. We may assume that $\left({ }_{c} E, \boldsymbol{F}^{(m)}\right)$ are μ_{L}-stable.

Due to Corollary 6.6, we have already known par-c ${ }_{1}(c E, \boldsymbol{F})=\operatorname{par}^{2} \mathrm{c}_{1}\left({ }_{c} E, \boldsymbol{F}^{(m)}\right)=$ 0 . Thus, we can take a pluri-harmonic metric $h_{\operatorname{det} E}$ of $\operatorname{det}(E)$ adapted to the parabolic structure. Due to Proposition 6.1, we have the Hermitian-Einstein metric $h^{(m)}$ of $\left(E, \bar{\partial}_{E}, \theta\right)$ with respect to $\omega^{(m)}$ such that $\Lambda_{\omega(m)} F\left(h^{(m)}\right)=\operatorname{tr} F\left(h^{(m)}\right)=0$ and $\operatorname{det}\left(h^{(m)}\right)=h_{\operatorname{det} E}$, which is adapted to the parabolic structure $\left({ }_{c} E, \boldsymbol{F}^{(m)}\right)$. We remark that the sequence of the L^{2}-norms $\left\|F\left(h^{(m)}\right)\right\|_{h^{(m)}, \omega^{(m)}}$ of $F\left(h^{(m)}\right)$ with respect to $h^{(m)}$ and $\omega^{(m)}$ converges to 0 in $m \rightarrow \infty$, because of the relation $\left\|F\left(h^{(m)}\right)\right\|_{h^{(m)}, \omega^{(m)}}^{2}=$ C • par-ch ${ }_{2, L}\left(c E, \boldsymbol{F}^{(m)}\right)$ for some non-zero constant C. We will show the local convergence of the sequence $\left\{\left(E, \bar{\partial}_{E}, \theta, h^{(m)}\right)\right\}$ on $X-D$.
9.1.1. Local convergence. - In the following argument, B_{i} will denote positive constants which are independent of m. We use the notation $\|\rho\|_{h^{\prime}, \omega^{\prime}}$ to denote the L^{2}-norm of a section ρ of $E^{\prime} \otimes \Omega^{i, j}$ or $\operatorname{End}\left(E^{\prime}\right) \otimes \Omega^{i, j}$, where h^{\prime} and ω^{\prime} denote metrics of a vector bundle E^{\prime} and a base space. On the other hand, $|\rho|_{h^{\prime}, \omega^{\prime}}$ denotes the norms at fibers.

Let P be any point of $X-D$. We take a holomorphic coordinate $\left(U, z_{1}, z_{2}\right)$ around P such that $z_{i}(P)=0$ and that $\omega_{\mid P}=\sum d z_{i} \cdot d \bar{z}_{i}$ on the tangent space at P. We have the expression $\theta=\sum f_{i} \cdot d z_{i}$.

Let η be a positive number. If m is sufficiently large, we have $\left\|F\left(h^{(m)}\right)\right\|_{\omega^{(m)}, h^{(m)}} \leq$ η. Due to Lemma 2.13, there exists a constant B_{1}, such that $B_{1}^{-1} \cdot\left|f_{i}\right|_{h^{(m)}} \leq \eta$. Take a large number $B_{2}>B_{1}$, and we put $w_{i}:=B_{2} \cdot z_{i}, \widetilde{Y}(T):=\left\{\left.\left(w_{1}, w_{2}\right)\left|\sum\right| w_{i}\right|^{2} \leq T\right\}$, $\widetilde{g}:=\sum d w_{i} \cdot d \bar{w}_{i}$ and $\widetilde{\omega}^{(m)}:=B_{2}^{2} \cdot \omega^{(m)}$. Then, we obtain the following:

$$
\left\|R\left(h^{(m)}\right)_{\mid \widetilde{Y}(1)}\right\|_{h^{(m)}, \tilde{g}} \leq\left\|F\left(h^{(m)}\right)_{\mid \tilde{Y}(1)}\right\|_{h^{(m)}, \tilde{g}}+\left\|\left[\theta, \theta_{h^{(m)}}^{\dagger}\right]_{\mid \tilde{Y}(1)}\right\|_{h^{(m)}, \tilde{g}} \leq B_{3} \cdot \eta
$$

Let d^{*} denote the formal adjoint of the exterior derivative d on $\widetilde{Y}(1)$ with respect to \widetilde{g}. If η is sufficiently small, we can apply Uhlenbeck's theorem ([63]). Namely, we can take an orthonormal frame \boldsymbol{v}_{m} of $\left(E, h^{(m)}\right)_{\mid \widetilde{Y}(1)}$ such that the connection form A_{m} of $\bar{\partial}_{E}+\partial_{E, h^{(m)}}$ with respect to \boldsymbol{v}_{m} satisfies the conditions:
(i) : $d^{*} A_{m}=0$,
(ii) : $\left\|A_{m}\right\|_{L_{1}^{p}, \tilde{g}} \leq C(p) \cdot\left\|d A_{m}+A_{m} \wedge A_{m}\right\|_{L^{p}, \widetilde{g}}(p \geq 2)$, where $C(p)$ denotes the constant depending only on p.
By our choice of B_{2}, we also have the following:
(iii) : Let $\Pi^{(m)}$ denote the orthogonal projection of Ω^{2} onto the self-dual part with respect to $\widetilde{\omega}_{m}$. Then, $\left|\Pi^{(m)}\left(d A_{m}+A_{m} \wedge A_{m}\right)\right|_{\widetilde{\omega}(m)} \leq B_{4} \eta$ because of $\Lambda_{\widetilde{\omega}} R\left(h^{(m)}\right)=\Lambda_{\widetilde{\omega}}\left[\theta, \theta_{h^{(m)}}^{\dagger}\right]$.
From (i) and (iii), we have $\left|\left(d^{*}+\Pi^{(m)} \circ d\right)\left(A_{m}\right)+\Pi^{(m)}\left(A_{m} \wedge A_{m}\right)\right|_{\tilde{g}} \leq B_{5}$. If B_{2} and m are sufficiently large, $\widetilde{\omega}^{(m)}$ and \widetilde{g} are sufficiently close. Recall that $d^{*}+\Pi \circ d$ is elliptic, where Π denotes the orthogonal projection of Ω^{2} onto the self-dual part with respect to \widetilde{g}. Using the boot strapping argument of Donaldson for Corollary 23 in [13], we obtain that the L_{1}^{p}-norm of A_{m} on $\widetilde{Y}(T)(T<1)$ is dominated by a constant B_{6}. Let Θ_{m} be determined by $\theta\left(\boldsymbol{v}_{m}\right)=\boldsymbol{v}_{m} \cdot \Theta_{m}$. The sup norm of Θ_{m} with respect to \widetilde{g} is small, due to our choice of B_{2}. We also obtain the L_{1}^{p}-bound of Θ_{m} because of $\bar{\partial} \Theta_{m}+\left[A_{m}^{0,1}, \Theta_{m}\right]=0$, where $A_{m}^{0,1}$ denotes the $(0,1)$-part of A_{m}.

Lemma 9.2. - After going to a subsequence, $\left\{\left(E, \bar{\partial}_{E}, h^{(m)}, \theta\right) \mid m \in I\right\}$ converges to a tame harmonic bundle $\left(E_{\infty}, \bar{\partial}_{\infty}, h_{\infty}, \theta_{\infty}\right)$ weakly in L_{2}^{p} locally on $X-D$.

Proof. - Due to the above arguments, we can take a locally finite covering $\left\{\left(U_{\alpha}, z_{1}^{(\alpha)}, z_{2}^{(\alpha)}\right) \mid \alpha \in \Gamma\right\}$ of $X-D$ and the numbers $\{m(\alpha) \mid \alpha \in \Gamma\}$ with the following property:

- Each U_{α} is relatively compact in $X-D$.
- For any $m \geq m(\alpha)$, we have orthonormal frames $\boldsymbol{v}_{\alpha, m}$ of $\left(E, h^{(m)}\right)$ on U_{α} such that the L_{1}^{p}-norms of $A_{\alpha, m}$ are sufficiently small with respect to the metrics $\sum d z_{j}^{(\alpha)} \cdot d \bar{z}_{j}^{(\alpha)}$ independently of m, where $A_{\alpha, m}$ denote the connection forms of $\left(\partial_{E, h^{(m)}}+\bar{\partial}_{E}\right)$ with respect to $\boldsymbol{v}_{\alpha, m}$.
- Let $\Theta_{\alpha, m}$ be the matrix valued (1,0)-forms given by $\theta \cdot \boldsymbol{v}_{\alpha, m}=\boldsymbol{v}_{\alpha, m} \cdot \Theta_{\alpha, m}$. Then the L_{1}^{p}-norms of $\Theta_{\alpha, m}$ are sufficiently small with respect to $\sum d z_{j}^{(\alpha)} \cdot d \bar{z}_{j}^{(\alpha)}$, independently of m.
Let $g_{\beta, \alpha, m}$ be the unitary transformation on $U_{\alpha} \cap U_{\beta}$ determined by $\boldsymbol{v}_{\alpha, m}=$ $\boldsymbol{v}_{\beta, m} \cdot g_{\beta, \alpha, m}$. Once α and β are fixed, the L_{2}^{p}-norms of $g_{\beta, \alpha, m}$ are bounded independently of m. By a standard argument, we can take a subsequence $I \subset\{m\}$ such that the sequences $\left\{A_{\alpha, m} \mid m \in I\right\},\left\{\Theta_{\alpha, m} \mid m \in I\right\}$ are weakly L_{1}^{p}-convergent for each α, and that the sequence $\left\{g_{\alpha, \beta, m} \mid m \in I\right\}$ is weakly L_{2}^{p}-convergent for each (α, β). Then, we obtain the limit Higgs bundle $\left(E_{\infty}, \bar{\partial}_{\infty}, \theta_{\infty}\right)$ with the metric h_{∞} on $X-D$. From the convergence $\left\|F\left(h^{(m)}\right)\right\|_{L^{2}, h^{(m)}, \omega^{(m)}} \rightarrow 0$, we obtain $\left\|F\left(h_{\infty}\right)\right\|_{L^{2}, h_{\infty}, \omega}=0$, and hence $\left(E_{\infty}, \bar{\partial}_{\infty}, \theta_{\infty}, h_{\infty}\right)$ is a harmonic bundle. By using the argument of Uhlenbeck [63], we obtain locally L_{2}^{p}-isometries $\Phi_{m}:\left(E, h^{(m)}\right) \longrightarrow\left(E_{\infty}, h_{\infty}\right)$, via which $\left\{\left(E, \bar{\partial}_{E}, \theta, h^{(m)}\right)\right\}$ converges to $\left(E_{\infty}, \bar{\partial}_{\infty}, \theta_{\infty}, h_{\infty}\right)$ weakly in L_{2}^{p} locally on $X-D$. Since we have $\operatorname{det}(t-\theta)=\operatorname{det}\left(t-\theta_{\infty}\right)$ by construction, the tameness of $\left(E_{\infty}, \bar{\partial}_{E_{\infty}}, h_{\infty}, \theta_{\infty}\right)$ follows. Thus, Lemma 9.2 is proved.

We obtain the associated parabolic Higgs bundle $\left({ }_{c} E_{\infty}, \boldsymbol{F}_{\infty}, \theta_{\infty}\right)$. We would like to show that it is isomorphic to the given parabolic Higgs bundle (${ }_{c} E, \boldsymbol{F}, \theta$). For that purpose, we have only to show the existence of a non-trivial morphism f : $\left({ }_{c} E, \boldsymbol{F}, \theta\right) \longrightarrow\left({ }_{c} E_{\infty}, \boldsymbol{F}_{\infty}, \theta_{\infty}\right)$, because of the $\mu_{L^{\prime}}$-stability of $\left({ }_{c} E, \boldsymbol{F}, \theta\right)$ and the $\mu_{L^{-}}$ polystability of $\left({ }_{c} E_{\infty}, \boldsymbol{F}_{\infty}, \theta_{\infty}\right)$. Moreover, we have only to show the existence of a non-trivial map $f_{C}:\left(c E_{\infty}, \boldsymbol{F}_{\infty}, \theta_{\infty}\right)_{\mid C} \longrightarrow(c E, \boldsymbol{F}, \theta)_{\mid C}$ for a sufficiently ample generic curve $C \subset X$, due to Lemma 3.4. So we show that such f_{C} exists for almost all C, in the next subsections.
9.1.2. Selection of a curve. - Let L^{N} be sufficiently ample. We put $\mathcal{V}:=$ $H^{0}\left(X, L^{N}\right)$. For any $s \in \mathcal{V}$, we put $X_{s}:=s^{-1}(0)$. Recall Mehta-Ramanathan type theorem (Proposition 3.29), and let \mathcal{U} denote the Zariski open subset of \mathcal{V} which consists of the points s with the properties: (i) X_{s} is smooth, and $X_{s} \cap D$ is a simple normal crossing divisor, (ii) $\left({ }_{c} E, \boldsymbol{F}, \theta\right)_{\mid X_{s}}$ is μ_{L}-stable.

We will use the notation $X_{s}^{*}:=X_{s} \backslash D$ and $D_{s}:=X_{s} \cap D$. We have the metric $\omega_{s}^{(m)}$ of X_{s}^{*}, induced by $\omega^{(m)}$. The induced volume form of X_{s}^{*} is denoted by dvol ${ }_{s}^{(m)}$. We put $\left({ }_{c} E_{s}, \boldsymbol{F}_{s}^{(m)}, \theta_{s}\right):=\left({ }_{c} E, \boldsymbol{F}^{(m)}, \theta\right)_{\mid X_{s}}$. We have the metric $h_{s}^{(m)}:=h_{\mid X_{s}^{*}}^{(m)}$ of $E_{s}:=E_{\mid X_{s}^{*}}$. Since there exists m_{0} such that $\left({ }_{c} E_{s}, \boldsymbol{F}_{s}^{(m)}, \theta_{s}\right)$ is stable for any point $s \in \mathcal{U}$ and for any $m \geq m_{0}$, we have the harmonic metric $h_{s, 0}^{(m)}$ of $\left(E_{s}, \theta_{s}\right)$ adapted
to the parabolic structure $\boldsymbol{F}_{s}^{(m)}$ with $\operatorname{det} h_{s, 0}^{(m)}=h_{\operatorname{det} E \mid X_{s}^{*}}$ (Proposition 2.8). Let $u_{s}^{(m)}$ be the endomorphism of $E_{\mid X_{s}^{*}}$ determined by $h_{s}^{(m)}=h_{s, 0}^{(m)} \cdot u_{s}^{(m)}$. Then, $u_{s}^{(m)}$ is bounded, and it satisfies $\operatorname{det} u_{s}^{(m)}=1$. We put $\mathcal{D}_{s}:=\left(\bar{\partial}_{E}+\theta\right)_{\mid X_{s}}$.

Lemma 9.3. - For almost every $s \in \mathcal{U}$, the following holds:

- We have the following convergence in $m \rightarrow \infty$:

$$
\begin{equation*}
\left\|F\left(h_{s}^{(m)}\right)\right\|_{h_{s}^{(m)}, \omega_{s}^{(m)}} \longrightarrow 0 . \tag{55}
\end{equation*}
$$

- For each m, we have the finiteness:

$$
\begin{equation*}
\left\|\mathcal{D}_{s} u_{s}^{(m)}\right\|_{h_{s, 0}^{(m)}, \omega_{s}^{(m)}}<\infty \tag{56}
\end{equation*}
$$

Let $\widetilde{\mathcal{U}}$ denote the set of s for which both of (55) and (56) hold.
Proof. - Let us discuss the condition (55). Let us fix $s_{1} \in \mathcal{U}$. We take generic $s_{i} \in \mathcal{U}$ $(i=2,3)$, i.e., $X_{s_{1}}$ is transversal with $X_{s_{i}}(i=2,3)$ and $X_{s_{1}} \cap X_{s_{2}} \cap X_{s_{3}}=\varnothing$. Take open subsets $W_{i}^{(j)}(j=1,2, i=2,3)$ such that (i) $X_{s_{1}} \cap X_{s_{i}} \subset W_{i}^{(1)} \subset W_{i}^{(2)}$, (ii) $W_{i}^{(1)}$ is relatively compact in $W_{i}^{(2)}$. Take an open neighbourhood U_{1} of s_{1}, which is relatively compact in \mathcal{U}, such that X_{s} is transversal with $X_{s_{i}}(i=2,3)$ and $X_{s} \cap X_{s_{i}} \subset$ $W_{i}^{(1)}$ for any $s \in U_{1}$.

Take $T>0$, and we put $\mathcal{B}:=\{z \in C| | z \mid \leq T\}$. Let q_{i} denote the projection of $X \times U_{1} \times \mathcal{B}$ onto the i-th component. We put $\mathcal{Z}_{2}:=\left\{(x, s, t) \in X \times U_{1} \times \mathbb{P}^{1} \mid\left(t s_{2}+\right.\right.$ $(1-t) s)(x)=0\}$. The fiber over $s \in U_{1}$ via $q_{2 \mid} \mathcal{Z}_{2}$ is the closed region of the Lefschetz pencil of s and s_{2}.

We fix any Kahler forms $\omega_{U_{1}}$ and $\omega_{\mathcal{B}}$ of U_{1} and \mathcal{B}. The induced volume forms are denoted by dvol $U_{U_{1}}$ and dvol $_{\mathcal{B}}$. Then we have the following convergence in $m \rightarrow \infty$:

$$
\int_{\mathcal{Z}_{2}} q_{1}^{*}\left(\left|F\left(h^{(m)}\right)\right|_{h^{(m)}, \omega^{(m)}}^{2} \cdot \operatorname{dvol}_{\omega^{(m)}}\right) \cdot \operatorname{dvol}_{U_{1}} \longrightarrow 0 .
$$

We put $\mathcal{Z}_{2}^{\prime}:=\mathcal{Z}_{2} \backslash q_{1}^{-1}\left(W_{2}^{(2)}\right)$. Then the following convergence is obtained, in particular:

$$
\begin{equation*}
\int_{\mathcal{Z}_{2}^{\prime}} q_{1}^{*}\left(\left|F\left(h^{(m)}\right)\right|_{h^{(m)}, \omega^{(m)}}^{2} \cdot \operatorname{dvol}_{\omega^{(m)}}\right) \cdot \operatorname{dvol}_{U_{1}} \longrightarrow 0 \tag{57}
\end{equation*}
$$

Let $\psi: \mathcal{Z}_{2} \longrightarrow U_{1} \times \mathcal{B}$ denote the projection. For $(s, t) \in U_{1} \times \mathcal{B}$, we put $X_{(s, t)}:=$ $\psi^{-1}(s, t)=\left(t s_{2}+(1-t) s\right)^{-1}(0)=X_{t s_{2}+(1-t) s}$. On $X_{(s, t)}$, we have the induced Kahler form $\omega_{(s, t)}^{(m)}$, the induced volume forms $\mathrm{dvol}_{(s, t)}^{(m)}$ and the hermitian metric $h_{(s, t)}^{(m)}:=$ $h_{\mid X_{(s, t)}}^{(m)}$. The family $\left\{\operatorname{dvol}_{(s, t)}^{(m)} \mid(s, t) \in U_{1} \times \mathcal{B}\right\}$ gives the C^{∞}-relative volume form
$\operatorname{dvol}_{\mathcal{Z}_{2}^{\prime} / U_{1} \times \mathcal{B}}^{(m)}$ of $\mathcal{Z}_{2}^{\prime} \longrightarrow U_{1} \times \mathcal{B}$. There exists a constant A such that the following holds on \mathcal{Z}_{2}^{\prime} :

$$
\begin{align*}
A \cdot q_{1}^{*}\left(\left|F\left(h^{(m)}\right)\right|_{h^{(m)}, \omega^{(m)}}^{2}\right. & \left.\operatorname{dvol}_{\omega^{(m)}}\right) \tag{58}\\
& \geq\left|F\left(\operatorname{dvol}_{(s, t)}^{(m)}\right)\right|_{U_{1}}^{2(m)}, \omega_{(s, t)}^{(m)} \\
& \operatorname{dvol}_{\mathcal{Z}_{2}^{\prime} / U_{1} \times \mathcal{B}}^{(m)} \cdot \operatorname{dvol}_{\mathcal{B}} \operatorname{dvol}_{U_{1}}
\end{align*}
$$

Therefore, we obtain the following convergence for almost every $(s, t) \in U_{1} \times \mathcal{B}$, from (57):

$$
\begin{equation*}
\int_{X_{(s, t)}^{*} \backslash W_{2}^{(2)}}\left|F\left(h_{(s, t)}^{(m)}\right)\right|_{h_{(s, t)}^{(m)}, \omega_{(s, t)}^{(m)}}^{2} \operatorname{dvol}_{(s, t)}^{(m)} \longrightarrow 0 \tag{59}
\end{equation*}
$$

Let \mathcal{S} denote the set of the points $(s, t) \in U_{1} \times \mathcal{B}$ such that the above convergence (59) does not hold. The measure of \mathcal{S} is 0 with respect to dvol $U_{U_{1}} \times \operatorname{dvol}_{\mathcal{B}}$.

Let $\mathcal{J}: U_{1} \times \mathcal{B} \longrightarrow \mathcal{V}$ denote the map given by $(s, t) \longmapsto t s_{2}+(1-t) s$. We have the open subset $\mathcal{J}^{-1}\left(U_{1}\right) \subset U_{1} \times \mathcal{B}$ and the measure of $\mathcal{S} \cap \mathcal{J}^{-1}\left(U_{1}\right)$ is 0 with respect to dvol $U_{U_{1}} \cdot \operatorname{dvol}_{\mathcal{B}}$. We have $\mathcal{S} \cap \mathcal{J}^{-1}\left(U_{1}\right)=\mathcal{J}^{-1}\left(\mathcal{J}(\mathcal{S}) \cap U_{1}\right)$, and hence the measure of $\mathcal{T}(\mathcal{S}) \cap U_{1}$ is 0 with respect to $\omega_{U_{1}}$. Namely, we have the following convergence for almost every $s \in U_{1}$:

$$
\int_{X_{s}^{*} \backslash W_{2}^{(2)}}\left|F\left(h_{s}^{(m)}\right)\right|_{h_{s}^{(m)}, \omega_{s}^{(m)}}^{2} \cdot \operatorname{dvol}_{s}^{(m)} \longrightarrow 0
$$

Similarly, we can show the following convergence for almost every $s \in U_{1}$:

$$
\int_{X_{s}^{*} \backslash W_{3}^{(2)}}\left|F\left(h_{s}^{(m)}\right)\right|_{h_{s}^{(m)}, \omega_{s}^{(m)}}^{2} \cdot \operatorname{dvol}_{s}^{(m)} \longrightarrow 0
$$

Then, we obtain that the condition (55) holds for almost all $s \in \mathcal{U}$.
The condition (56) can be discussed similarly. We give only an outline. Let $h_{i n}^{(m)}$ be an initial metric which was used for the construction of $h^{(m)}$. (See the proof of Proposition 6.1.) We remark that $h_{\text {in }}^{(m)}$ and $h^{(m)}$ are mutually bounded. Let $t^{(m)}$ be determined by $h^{(m)}=h_{i n}^{(m)} \cdot t^{(m)}$. Then, we have $\left\|\mathcal{D} t^{(m)}\right\|_{\omega^{(m)}, h^{(m)}}<\infty$ due to Proposition 2.5. We put $h_{s, i n}^{(m)}:=h_{i n \mid X_{s}^{*}}^{(m)}$ and $t_{s}^{(m)}:=t_{\mid X_{s}^{*}}^{(m)}$ for $s \in \mathcal{U}$. By an above argument, we obtain $\left\|\mathcal{D}_{s} t_{s}^{(m)}\right\|_{\omega_{s}^{(m)}, h_{s, i n}^{(m)}}<\infty$ for almost all $s \in \mathcal{U}$. On the other hand, let $\widetilde{t}_{s}^{(m)}$ be determined by $h_{s, 0}^{(m)}=h_{s, i n}^{(m)} \cdot \widetilde{t}_{s}^{(m)}$. We can use $h_{s, i n}^{(m)}$ as the initial metric for the construction of $h_{s, 0}^{(m)}$. Hence, we have $\left\|\mathcal{D}_{s} \widetilde{t}_{s}^{(m)}\right\|_{\omega_{s}^{(m)}, h_{s, i n}^{(m)}}<\infty$. Since we have $u_{s}^{(m)}=\widetilde{t}_{s}^{(m)-1} \cdot t_{s}^{(m)}$, the condition (56) is satisfied for almost $s \in \mathcal{U}$. Thus, the proof of Lemma 9.3 is finished.
9.1.3. End of the proof of Theorem 9.1. - Let us finish the proof of Theorem 9.1. Take $s \in \widetilde{\mathcal{U}}$, and we put $C=X_{s}$. We have the convergence of $\left\{\left(E, \bar{\partial}_{E}, \theta, h^{(m)}\right)\right\}$ to $\left(E_{\infty}, \bar{\partial}_{\infty}, \theta_{\infty}, h_{\infty}\right)$ weakly in L_{2}^{p} locally on $X-D$ via isometries $\Phi_{m}:\left(E, h^{(m)}\right) \longrightarrow\left(E_{\infty}, h_{\infty}\right)$. The restriction of Φ_{m} to $C \backslash D$ induce the
C^{1}-convergence of $\left\{\left(E, \bar{\partial}, \theta, h^{(m)}\right)_{\mid C \backslash D}\right\}$ to $\left(E_{\infty}, \bar{\partial}_{\infty}, \theta_{\infty}, h_{\infty}\right)_{\mid C \backslash D}$. By using Proposition 8.4, we obtain the convergence of $\left\{\left({ }_{c} E, \boldsymbol{F}^{\left(m^{\prime}\right)}, \theta\right)_{\mid C}\right\}$ to $\left({ }_{c} E_{\infty}, \boldsymbol{F}_{\infty}, \theta_{\infty}\right)_{\mid C}$ weakly in L_{1}^{p} on C for some subsequence. We also have the convergence of $\left\{\left({ }_{c} E, \boldsymbol{F}^{(m)}, \theta\right)_{\mid C}\right\}$ to $\left({ }_{c} E, \boldsymbol{F}, \theta\right)_{\mid C}$. Due to Corollary 3.38 , we obtain the desired non-trivial map $f_{C}:\left({ }_{c} E_{\infty}, \boldsymbol{F}_{\infty}, \theta_{\infty}\right)_{\mid C} \longrightarrow\left({ }_{c} E, \boldsymbol{F}, \theta\right)_{\mid C}$. Thus we are done.

9.2. The Higher Dimensional Case

Now the main existence theorem is given.
Theorem 9.4. - Let X be an irreducible projective variety over \boldsymbol{C} with an ample line bundle L. Let $D=\bigcup_{i} D_{i}$ be a simple normal crossing divisor of X. Let $\left(\boldsymbol{E}_{*}, \theta\right)$ be a μ_{L}-stable regular filtered Higgs bundle with $\operatorname{par}^{-\operatorname{deg}_{L}}\left(\boldsymbol{E}_{*}\right)=\int_{X}{\operatorname{par}-\mathrm{ch}_{2, L}}\left(\boldsymbol{E}_{*}\right)=0$. We put $E:=\boldsymbol{E}_{\mid X-D}$. Then there exists a pluri-harmonic metric h of $\left(E, \bar{\partial}_{E}, \theta\right)$, which is adapted to the parabolic structure. Such a metric is unique up to constant multiplication.

Proof. - We may assume that D is ample. We can also assume that L is sufficiently ample as in Proposition 3.29. The uniqueness follows from the more general result (Proposition 5.2). We use an induction on $n=\operatorname{dim} X$. We have already known the existence for $n=2$ (Theorem 9.1).

Let $\left(\boldsymbol{E}_{*}, \theta\right)$ be a regular filtered Higgs bundle on (X, D). Assume that it is stable with par-deg ${ }_{L}\left(\boldsymbol{E}_{*}\right)=\int_{X}$ par-ch $_{2, L}\left(\boldsymbol{E}_{*}\right)=0$. For any element $s \in \mathbb{P}:=\mathbb{P}\left(H^{0}(X, L)^{\vee}\right)$ determines the hypersurface $Y_{s}=\{x \in X \mid s(x)=0\}$. The subset $\mathcal{X}_{L} \subset X \times \mathbb{P}$ is given by $\mathcal{X}_{L}:=\left\{(x, s) \mid x \in Y_{s}\right\}$. Let \mathcal{U} be a Zariski open subset of \mathbb{P} which consists of $s \in \mathbb{P}$ such that $\left(\boldsymbol{E}_{*}, \theta\right)_{\mid Y_{s}}$ is μ_{L}-stable. Since L is assumed to be sufficiently ample, \mathcal{U} is not empty (Proposition 3.29). The image of the naturally defined map $\mathcal{X}_{L} \times_{\mathbb{P}} \mathcal{U} \longrightarrow X$ is Zariski open in X. The complement is denoted by W which consists of, at most, finite points of X due to the ampleness of L.

Let s be any element of \mathcal{U}. We have a pluri-harmonic metric h_{s} of $(E, \theta)_{\mid Y_{s}}$, which is adapted to the induced parabolic structure, due to the hypothesis of the induction.

Let $s_{i}(i=1,2)$ be elements of \mathcal{U} such that $Y_{s_{1}}$ and $Y_{s_{2}}$ are transversal and that $Y_{s_{1}, s_{2}}:=Y_{s_{1}} \cap Y_{s_{2}}$ is transversal to D. We remark that $\operatorname{dim} Y_{s_{1}} \cap Y_{s_{2}} \geq 1$. We may also assume that ($\left.{ }_{c} E, \theta\right)_{\mid Y_{s_{1}, s_{2}}}$ is μ_{L}-stable (Proposition 3.29). Hence $h_{s_{1} \mid Y_{s_{1}, s_{2}}}$ and $h_{s_{2} \mid Y_{s_{1}, s_{2}}}$ are same up to constant multiplication. Then, we obtain the metric h of $E_{\mid X-(D \cup W)}$ such that $h_{\mid Y_{s}}=h_{s}$.

Let P be any point of $X-(D \cup W)$. We can take a coordinate neighbourhood $\left(U_{P}, z_{1}, \ldots, z_{n}\right)$ around P such that (i) each hypersurface $\left\{z_{i}=a\right\}$ of U_{P} is a part of some Y_{s}, (ii) $U_{P} \subset X-(D \cup W)$. In the following, we will shrink U_{P} without mentioning. Since the restriction of h to $\left\{z_{i}=a\right\}$ is pluri-harmonic, we obtain the boundedness of θ and θ^{\dagger} with respect to h around P. (See Proposition 2.10, for example.)

For any $Q \in U_{P}$, let us take a path γ connecting P and Q, which is contained in some Y_{s}. Then, the parallel transport $\Pi_{P, Q}: E_{\mid P} \longrightarrow E_{\mid Q}$ is induced from the flat connection associated to the harmonic bundle $\left(E, \bar{\partial}_{E}, \theta\right)_{\mid Y_{s}}$ with $h_{\mid Y_{s}}$. The map $\Pi_{P, Q}$ is independent of the choice of γ and Y_{s}. From the frame of $E_{\mid P}$, we obtain the frame $\boldsymbol{v}=\left(v_{1}, \ldots, v_{r}\right)$ of $E_{\mid U_{P}}$. The trivialization gives the structure of flat bundle to $E_{\mid U_{P}}$. For the distinction, we use the notation (V, ∇) to denote the obtained flat bundle. The restriction of h, θ and θ^{\dagger} to U_{P} are denoted by the same notation. By the flat structure, we can regard the metric h as the map $\varphi_{h}: U_{P} \longrightarrow \mathrm{GL}(n) / U(n)$, and $\theta+\theta^{\dagger}$ can be regarded as the differential of the map. Let $d_{\mathrm{GL}(n) / U_{n}}$ denote the invariant distance of $\mathrm{GL}(n) / U_{n}$. Due to the boundedness of $\theta+\theta^{\dagger}$ with respect to h, there exists a constant C such that $d_{\mathrm{GL}(n) / U(n)}\left(\varphi_{h}(\gamma(0)), \varphi_{h}(\gamma(1))\right)$ is less than C times the length of γ for any path γ contained in some Y_{s}. In particular, h is a continuous metric of V.

Let H be the hermitian-matrices valued function whose (i, j)-th component is $h\left(v_{i}, v_{j}\right)$. Let $\Theta=\left(\Theta_{i, j}\right)$ and $\Theta^{\dagger}=\left(\Theta_{i, j}^{\dagger}\right)$ be determined by $\theta v_{i}=\sum \Theta_{j, i} \cdot v_{j}$ and $\theta^{\dagger} v_{i}=\sum \Theta_{j, i}^{\dagger} \cdot v_{j}$. We have $d \bar{H}=\bar{H}\left(\Theta+\Theta^{\dagger}\right) / 2$ and $\bar{\partial} \Theta+\left[\Theta^{\dagger}, \Theta\right]=0$ for the point-wise partial derivatives, which can be shown by considering the restriction of $\left(E, \bar{\partial}_{E}, h, \theta\right)$ to hyperplanes $\left\{z_{i}=a\right\}$. The equality holds as distributions, which follows from Fubini's theorem and the boundedness of \bar{H}, Θ and Θ^{\dagger}. In particular, H and Θ are locally L_{1}^{p}, and hence Θ^{\dagger} is also locally L_{1}^{p}. By a standard boot strapping argument, we obtain that H, Θ and Θ^{\dagger} are C^{∞} functions. In other words, h is a C^{∞}-metric of V, and θ^{\dagger} is a $C^{\infty}{ }_{-s e c t i o n ~ o f ~}^{\operatorname{End}}(V) \otimes \Omega^{0,1}$. We also obtain that the C^{∞}-structure of E and V are same because of $\bar{\partial}_{E}=d_{V}^{\prime \prime}-\theta^{\dagger}$, where $d_{V}^{\prime \prime}$ denotes the $(0,1)$-part of ∇. Thus, we obtain that h is a C^{∞}-metric of $E_{\mid X-(D \cup W)}$. The pluri-harmonicity of h is easily obtained.

Let P be any point of W. We take a holomorphic coordinate neighbourhood $\left(U_{P}, z_{1}, \ldots, z_{n}\right)$ around P such that $z_{i}(P)=0$ for any i and $U_{P} \simeq\left\{\left(z_{1}, \ldots, z_{n}\right)| | z_{i} \mid<\right.$ $1\}$ via the coordinate. We assume $U_{P} \cap W=\{P\}$, and we put $U_{P}^{*}:=U_{P}-\{P\}$. Let π_{i} denote the projection of U_{P} onto $Z:=\left\{\left(w_{1}, \ldots, w_{n-1}\right)| | w_{j} \mid<1\right\}$ by forgetting the i-th component. The origin of Z is denoted by O. We have the expression $\theta_{\mid U_{P}}=\sum_{i=1}^{n} f_{i} \cdot d z_{i}$. Since the eigenvalues of f_{i} are bounded on U_{P}, there exists a constant $C>0$ such that $\left|f_{i \mid \pi_{i}^{-1}(Q)}\right|_{h} \leq C$ for any $Q \in Z$ such that $Q \neq O$ and for any i. By the continuity, we obtain $\left|f_{i}\right|_{h} \leq C$ on U_{P}^{*}. Hence $\theta+\theta^{\dagger}$ is bounded on U_{P}^{*}.

We have the flat bundle $V:=E_{\mid U_{P}^{*}}$ with $\nabla:=\bar{\partial}_{E}+\partial_{E}+\theta+\theta^{\dagger}$. It is naturally extended to the flat bundle $(\widetilde{V}, \widetilde{\nabla})$ on U_{P}, and we can take a flat trivialization \boldsymbol{v} of \widetilde{V}. Let H, Θ and Θ^{\dagger} are given on U_{P}^{*} as above. They are bounded. We have the relation $d \bar{H}=\bar{H} \cdot\left(\Theta+\Theta^{\dagger}\right) / 2$ and $\bar{\partial} \Theta+\left[\Theta^{\dagger}, \Theta\right]=0$ on U_{P}^{*}. The equality holds as distributions on U_{P}, which follows from Fubini's theorem and the boundedness of \bar{H}, Θ and Θ^{\dagger}. By using an elliptic regularity argument, it can be shown that H, Θ and Θ^{\dagger} are C^{∞}. Let $d_{V}^{\prime \prime}$ denote the $(0,1)$-part of the flat connection of \widetilde{V}. We have
$\left(\widetilde{V}, d_{V}^{\prime \prime}-\theta^{\dagger}\right)_{\mid U_{P}^{*}} \simeq\left(E, \bar{\partial}_{E}\right)_{\mid U_{P}^{*}}$ which is extended to the isomorphism $\left(\widetilde{V}, d_{V}^{\prime \prime}-\theta^{\dagger}\right) \simeq$ $\left(E, \bar{\partial}_{E}\right)_{\mid U_{P}}$. Namely, $h_{\mid U_{P}^{*}}$ is naturally extended to the C^{∞}-metric of $E_{\mid U_{P}}$. Thus we obtain the tame harmonic bundle $\left(E, \bar{\partial}_{E}, \theta, h\right)$ on $X-D$.

Let \boldsymbol{c} be any element of \boldsymbol{R}^{S}. We obtain the parabolic Higgs bundle $\left({ }_{c} E(h)_{*}, \theta\right)$ on (X, D). (See Section 3.5 for the prolongment.)

Lemma 9.5. - There exists a closed subset $W^{\prime} \subset D$ with the following properties:

- The codimension of W^{\prime} in X is larger than 2.
- The identity of E is extended to the holomorphic isomorphism ${ }_{c} E_{\mid X-W^{\prime}} \longrightarrow$ ${ }_{c} E(h)_{\mid X-W^{\prime}}$.

Proof. - Let P be any general point of the smooth part of D. We can take a holomorphic coordinate neighbourhood $\left(U_{P}, z_{1}, \ldots, z_{n}\right)$ around P such that (i) U_{P} is isomorphic to $\left\{\left(z_{1}, \ldots, z_{n}\right)\left|\left|z_{i}\right|<1\right\}\right.$ via the coordinate, (ii) $z_{1}^{-1}(0)=D \cap U$, (iii) each $\pi_{1}^{-1}(Q)(Q \in Z)$ is a part of $Y_{s}(s \in \mathcal{U})$, where π_{1} denotes the projection of U_{P} onto $Z:=\left\{\left(z_{2}, \ldots, z_{n}\right)| | z_{i} \mid<1\right\}$. Let f be a holomorphic section of ${ }_{c} E$ on U_{P}. By the construction of the metric h, each restriction $f_{\mid \pi_{1}^{-1}(Q)}(Q \in Z)$ gives the local section of $\boldsymbol{c}\left(E_{\mid \pi_{1}^{-1}(Q)}\right)(h)$. By using Corollary 2.53 in [44], we can show that f gives the section of ${ }_{c} E(h)$ on U_{P}. Thus, the identity of E on $U_{P} \backslash D$ is naturally extended to the morphism $\varphi:{ }_{c} E \longrightarrow{ }_{c} E(h)$ around P. It is also easy to check the surjectivity of the specialization $\varphi_{\mid P}$ at P. Since both of ${ }_{c} E$ and ${ }_{c} E(h)$ are locally free, φ is isomorphic around P.

Since both of ${ }_{c} E$ and ${ }_{c} E(h)$ are locally free, they are isomorphic. In particular, we can conclude that h is adapted to the parabolic structure.

CHAPTER 10

TORUS ACTION AND THE DEFORMATION OF REPRESENTATIONS

We see that any flat bundle on a smooth irreducible quasiprojective variety can be deformed to a Variation of Polarized Hodge Structure. We can derive a result on the fundamental group.

We owe the essential ideas in this chapter to Simpson [55]. In fact, our purpose is to show a natural generalization of his results on smooth projective varieties. We will use his ideas without mentioning his name. This section is included for a rather expository purpose.

10.1. Torus Action on the Moduli Space of Representations

10.1.1. Notation. - We begin with a general remark. Let V and V^{\prime} be vector spaces over C, and $\Phi: V \longrightarrow V^{\prime}$ be a linear isomorphism. Let Γ be any group, and $\rho: \Gamma \longrightarrow \mathrm{GL}(V)$ be a homomorphism. Then Φ and ρ induce the homomorphism $\Gamma \longrightarrow \mathrm{GL}\left(V^{\prime}\right)$, which is denoted by $\Phi_{*}(\rho)$. We also use the notation in Subsection 2.8.
10.1.2. Continuity. - Let X be a smooth irreducible projective variety with a polarization L, and D be a normal crossing divisor. Let x be a point of $X-D$. We put $\Gamma:=\pi_{1}(X-D, x)$. Let $\left(\boldsymbol{E}_{*}, \theta\right)$ be a μ_{L}-polystable regular filtered Higgs bundle on (X, D) with trivial characteristic numbers. We put $E:=\boldsymbol{E}_{\mid X-D}$. Since $\left(\boldsymbol{E}_{*}, t \cdot \theta\right)$ are also μ_{L}-polystable, we have a pluri-harmonic metric h_{t} for $\left(E, \bar{\partial}_{E}, t \cdot \theta\right)$ on $X-D$ adapted to the parabolic structure, due to Theorem 9.4. Therefore, we obtain the family of the representations $\rho_{t}^{\prime}: \Gamma \longrightarrow \mathrm{GL}\left(E_{\mid x}\right)\left(t \in C^{*}\right)$. We remark that ρ_{t}^{\prime} are independent of the choice of pluri-harmonic metrics h_{t}.

Let V be a C-vector space whose rank is same as $\operatorname{rank} E$. Let h_{V} be a hermitian vector space of V. For any $t \in C^{*}$, we take isometries $\Phi_{t}:\left(E_{\mid x}, h_{t \mid x}\right) \longrightarrow\left(V, h_{V}\right)$, and then we obtain the family of representations $\rho_{t}:=\Phi_{t *}\left(\rho_{t}^{\prime}\right) \in R(\Gamma, \mathrm{GL}(V))$. We remark that $\pi_{\mathrm{GL}(V)}\left(\rho_{t}\right)$ are independent of choices of Φ_{t}. Thus we obtain the map $\mathcal{P}: \boldsymbol{C}^{*} \longrightarrow M\left(\Gamma, V, h_{V}\right)$ by $\mathcal{P}(t)=\pi_{\mathrm{GL}(V)}\left(\rho_{t}\right)$.

Theorem 10.1. - The induced map \mathcal{P} is continuous.
Proof. - We may and will assume that $\left(\boldsymbol{E}_{*}, \theta\right)$ is μ_{L}-stable for the proof. Let $\left\{t_{i} \in\right.$ $\left.\boldsymbol{C}^{*} \mid i \in \mathbb{Z}_{>0}\right\}$ be a sequence converging to t_{0}. We have only to take a subsequence $\left\{t_{i} \mid i \in S\right\}$ and a sequence of isometries $\left\{\Psi_{i}:\left(E_{\mid x}, h_{t_{i} \mid x}\right) \longrightarrow\left(E_{\mid x}, h_{t_{0} \mid x}\right) \mid i \in S\right\}$ such that $\left\{\Psi_{i *}\left(\rho_{t_{i}}\right) \mid i \in S\right\}$ converges to $\rho_{t_{0}}$. Since the sections $\operatorname{det}\left(T-t_{i} \cdot \theta\right)$ of Sym $\Omega^{1,0}[T]$ converges to $\operatorname{det}\left(T-t_{0} \cdot \theta\right)$, we may apply Theorem 8.1. Hence there exists a subsequence $\left\{t_{i} \mid i \in \bar{S}^{\prime}\right\}$ such that $\left\{\left(E, \bar{\partial}_{E}, h_{t_{i}}, t_{i} \cdot \theta_{i}\right) \mid i \in S^{\prime}\right\}$ converges to a tame harmonic bundle ($E^{\prime}, \bar{\partial}_{E^{\prime}}, h^{\prime}, \theta^{\prime}$) in L_{2}^{p} locally on $X-D$ via some isometries $\Phi_{i}:\left(E, h_{t_{i}}\right) \longrightarrow\left(E^{\prime}, h^{\prime}\right)\left(i \in S^{\prime}\right)$. It is easy to see that the representations $\Phi_{i \mid x *}\left(\rho_{t_{i}}\right)$ converges to ρ^{\prime} in $R\left(\Gamma, E_{\mid x}^{\prime}, h_{\mid x}^{\prime}\right)$, where ρ^{\prime} is associated to the flat connection $\bar{\partial}_{E^{\prime}}+$ $\partial_{E^{\prime}}+\theta^{\prime}+\theta^{\prime \dagger}$.

We also have the non-trivial holomorphic map $f:{ }_{c} E^{\prime} \longrightarrow{ }_{c} E$ which is compatible with the parabolic structure and the Higgs fields due to Theorem 8.1. Since (${ }_{c} E_{*}^{\prime}, \theta^{\prime}$) is μ_{L}-polystable and $\left(c E_{*}, t_{0} \cdot \theta\right)$ is μ_{L}-stable, the map f is isomorphic. Then we have $f_{\mid x *}\left(\rho^{\prime}\right)=\rho_{t_{0}}$. By replacing f appropriately, we may assume $f: E^{\prime} \longrightarrow E$ is isometric with respect to h^{\prime} and $h_{t_{0}}$. Hence $\Psi_{i}:=\left(f \circ \Phi_{i}\right)_{\mid x}$ gives the desired isometries. Thus Theorem 10.1 is proved.

10.1.3. Limit

Lemma 10.2. - $\mathcal{P}\left(\left\{t \in \boldsymbol{C}^{*}| | t \mid<1\right\}\right)$ is relatively compact in $M\left(\Gamma, V, h_{V}\right)$.
Proof. - The sequence of sections $\operatorname{det}(T-t \cdot \theta)$ of $\operatorname{Sym}^{\cdot} \Omega^{1,0}[T]$ clearly converges to $T^{\mathrm{rank} E}$ when $t \rightarrow 0$. Hence we may apply the first claim of Theorem 8.1, and we obtain a subsequence $\left\{t_{i}\right\}$ converging to 0 such that $\left\{\left(E, \bar{\partial}_{E}, t_{i} \cdot \theta, h_{t_{i}}\right)\right\}$ converges to a tame harmonic bundle ($E^{\prime}, \bar{\partial}_{E^{\prime}}, \theta^{\prime}, h^{\prime}$) weakly in L_{2}^{p} locally on $X-D$. Then we easily obtain the convergence of the sequence $\left\{\pi_{\mathrm{GL}(V)}\left(\rho_{t_{i}}\right)\right\}$ in $M\left(\Gamma, V, h_{V}\right)$.

Ideally, the sequence $\{\mathcal{P}(t)\}$ should converge in $t \rightarrow 0$, and the limit should come from a Variation of Polarized Hodge Structure. We discuss only a partial but useful result about it.

Let us recall relative Higgs sheaves. In the following, we put $\boldsymbol{C}_{t}:=\operatorname{Spec} \boldsymbol{C}[t]$ and $\boldsymbol{C}_{t}^{*}:=\operatorname{Spec} \boldsymbol{C}\left[t, t^{-1}\right]$. For a smooth morphism $Y_{1} \longrightarrow Y_{2}$, the sheaf of relative holomorphic (1,0)-forms are denoted by $\Omega_{Y_{1} / Y_{2}}^{1,0}$. We put $\mathfrak{X}:=X \times \boldsymbol{C}_{t}$ and $\mathfrak{X}^{*}:=$ $X \times \boldsymbol{C}_{t}^{*}$. Similarly, $\mathfrak{D}:=D \times \boldsymbol{C}_{t}$ and $\mathfrak{D}^{*}:=D \times \boldsymbol{C}_{t}^{*}$. We put ${ }_{c} \widetilde{E}_{*}:={ }_{c} E_{*} \otimes \mathcal{O}_{C_{t}^{*}}$ which is \boldsymbol{c}-parabolic bundle on $\left(\mathfrak{X}^{*}, \mathfrak{D}^{*}\right)$. Then, $t \cdot \theta$ gives the relative Higgs field $\widetilde{\theta}$, which is a homomorphism ${ }_{c} \widetilde{E}_{*} \longrightarrow{ }_{c} \widetilde{E}_{*} \otimes \Omega_{\mathfrak{X}^{*} / C_{t}^{*}}^{1,0}\left(\log \mathfrak{D}^{*}\right)$ such that $\widetilde{\theta}^{2}=0$. Using the standard argument of S. Langton [33], we obtain the \boldsymbol{c}-parabolic sheaf ${ }_{c} \widetilde{E}_{*}^{\prime}$ and relative Higgs field $\widetilde{\theta}^{\prime}:{ }_{c} \widetilde{E}_{*}^{\prime} \longrightarrow{ }_{c} \widetilde{E}_{*}^{\prime} \otimes \Omega_{\mathfrak{X} / C_{t}}^{1,0}$ satisfying the following (see [65]):
${ }_{-} \widetilde{E}_{*}^{\prime}$ is flat over \boldsymbol{C}_{t}, and the restriction to \mathfrak{X}^{*} is ${ }_{c} \widetilde{E}_{*}$.

- The restriction of $\widetilde{\theta}^{\prime}$ to \mathfrak{X}^{*} is $\widetilde{\theta}$.
$-\left({ }_{c} \widehat{E}_{*}^{\prime}, \widehat{\theta^{\prime}}\right):=\left({ }_{c} \widetilde{E}_{*}^{\prime}, \widetilde{\theta}^{\prime}\right)_{\mid X \times\{0\}}$ is μ_{L}-semistable.

Let $\left({ }_{c} \widehat{E}_{*}, \widehat{\theta}\right)$ denote the reflexive saturated regular filtered Higgs sheaf associated to ($c^{E^{\prime}}, \widehat{\theta}^{\prime}$). (See Lemma 3.2.) We put $\widehat{E}:={ }_{c} \widehat{E}_{\mid X-D}$.

Proposition 10.3. - Assume that $\left({ }_{c} \widehat{E}_{*}, \widehat{\theta}\right)$ is μ_{L}-stable.
$-\left({ }_{c} \widehat{E}_{*}, \widehat{\theta}\right)$ is a Hodge bundle, i.e., $\left({ }_{c} \widehat{E}_{*}, \alpha \cdot \widehat{\theta}\right) \simeq\left({ }_{c} \widehat{E}_{*}, \widehat{\theta}\right)$ for any $\alpha \in C^{*}$.

- We have a pluri-harmonic metric \widehat{h} of a Hodge bundle $(\widehat{E}, \widehat{\theta})$ on $X-D$, which is adapted to the parabolic structure. It induces the Variation of Polarized Hodge Structure. Thus we obtain the corresponding representation $\widehat{\rho}: \pi_{1}(X-D, x) \longrightarrow$ $\operatorname{GL}\left(\widehat{E}_{\mid x}\right)$ which underlies a Variation of Polarized Hodge Structure.
- Take any isometry $G:\left(\widehat{E}_{\mid x}, \widehat{h}_{\mid x}\right) \simeq\left(V, h_{V}\right)$. Then the sequence $\left\{\pi_{\mathrm{GL}(V)}\left(\rho_{t}\right)\right\}$ converges to $\pi_{\mathrm{GL}(V)}\left(G_{*}(\widehat{\rho})\right)$ in $M\left(\Gamma, V, h_{V}\right)$ for $t \rightarrow 0$.
- In particular, the map $\pi_{\mathrm{GL}(V)}\left(\rho_{t}\right): C^{*} \longrightarrow M\left(\Gamma, V, h_{V}\right)$ is continuously extended to the map of \boldsymbol{C} to $M\left(\Gamma, V, h_{V}\right)$.

Proof. - The argument is essentially due to Simpson [55]. The fourth claim follows from the third one. Let $\left\{t_{i} \mid i \in \mathbb{Z}_{>0}\right\}$ be a sequence converging to 0 . Due to Theorem 8.1, there exists a subsequence $\left\{t_{i} \mid i \in S\right\}$ such that the sequence $\left\{\left(E, \bar{\partial}_{E}, h_{t_{i}}, t_{i} \cdot \theta\right) \mid i \in S\right\}$ converges to a tame harmonic bundle $\left(E^{\prime}, \bar{\partial}_{E^{\prime}}, h^{\prime}, \theta^{\prime}\right)$ weakly in L_{2}^{p} locally on $X-D$, via isometries $\Phi_{i}:\left(E, h_{t_{i}}\right) \longrightarrow\left(E^{\prime}, h^{\prime}\right)$. Let $\rho^{\prime}: \pi_{1}(X-D, x) \longrightarrow \mathrm{GL}\left(E_{\mid x}^{\prime}\right)$ denote the representation associated to the flat connection $\bar{\partial}_{E^{\prime}}+\partial_{E^{\prime}}+\theta^{\prime}+\theta^{\prime \dagger}$. Then we have the convergence of $\left\{\Phi_{i \mid x *}\left(\rho_{t_{i}}\right) \mid i \in S^{\prime \prime}\right\}$ to ρ^{\prime} in $M\left(\Gamma, \widehat{E}_{\mid x}, \widehat{h}_{\mid x}\right)$. Due to Theorem 8.1, we also have a non-trivial morphism $f:{ }_{c} \widehat{E}^{\prime} \longrightarrow{ }_{c} E^{\prime}$ which is compatible with the parabolic structures and the Higgs fields. It induces the morphism ${ }_{c} \widehat{E} \longrightarrow{ }_{c} E^{\prime}$ compatible with the parabolic structures and the Higgs fields. Then it must be isomorphic due to μ_{L}-polystability of (${ }_{c} E_{*}^{\prime}, \theta^{\prime}$) and μ_{L}-stability of $\left({ }_{c} \widehat{E}_{*}, \widehat{\theta}\right)$. In particular, $\left({ }_{c} \widehat{E}_{*}, \widehat{\theta}\right)$ is a μ_{L}-stable \boldsymbol{c}-parabolic Higgs bundle. The metric \widehat{h} of \widehat{E} is given by h^{\prime} and f. Thus the third claim is obtained.

Let us consider the morphism $\phi_{\alpha}: \boldsymbol{C}_{t} \longrightarrow \boldsymbol{C}_{t}$ given by $t \longmapsto \alpha \cdot t$. We have the natural isomorphism $\phi_{\alpha}^{*}\left(c_{c}, \widetilde{E}_{*}, \widetilde{\theta}\right) \simeq\left(c_{c} \widetilde{E}_{*}, \alpha \cdot \widetilde{\theta}\right)$ which can be extended to the morphism $\phi_{\alpha}^{*}\left({ }_{c} \widetilde{E}_{*}^{\prime}, \widetilde{\theta}^{\prime}\right) \longrightarrow\left({ }_{c} \widetilde{E}_{*}^{\prime}, \alpha \cdot \widetilde{\theta^{\prime}}\right)$ such that the specialization $\left({ }_{c} \widehat{E}_{*}, \widehat{\theta}\right) \longrightarrow\left({ }_{c} \widehat{E}_{*}, \alpha \cdot \widehat{\theta}\right)$ at $t=0$ is not trivial. Since $\left({ }_{c} \widehat{E}_{*}, \widehat{\theta}\right)$ and $\left({ }_{c} \widehat{E}_{*}, \alpha \cdot \widehat{\theta}\right)$ are μ_{L}-stable, the map is isomorphic. Hence $\left({ }_{c} \widehat{E}, \widehat{\theta}\right)$ is a Hodge bundle. Thus the first is proved.

Since $\left(\widehat{E}, \bar{\partial}_{\widehat{E}}, \widehat{\theta}\right)$ is a Hodge bundle, we have the action κ of $S^{1}=\{t \in \boldsymbol{C}| | t \mid=1\}$ on \widehat{E} such that $\kappa(t):\left(\widehat{E}, \bar{\partial}_{\widehat{E}}, \widehat{\theta}\right) \simeq\left(\widehat{E}, \bar{\partial}_{\widehat{E}}, t \cdot \widehat{\theta}\right)$ for any $t \in S^{1}$. The metric $\kappa(t)_{*} \widehat{h}$ is determined by $\kappa(t)_{*} \widehat{h}(u, v)=\widehat{h}(\kappa(t)(u), \kappa(t)(v))$, which is also the pluri-harmonic metric of $\left(\widehat{E}, \bar{\partial}_{\widehat{E}}, t \cdot \theta\right)$. Since $\left(\widehat{\boldsymbol{E}}_{*}, t \cdot \widehat{\theta}\right)$ is μ_{L}-stable, the pluri-harmonic metric is unique up to a positive constant multiplication. Hence we obtain the map $\nu: S^{1} \longrightarrow \boldsymbol{R}_{>0}$ such that $\kappa(t)_{*} \widehat{h}=\nu(t) \cdot \widehat{h}$. Let $\widehat{E}=\bigoplus \widehat{E}_{w}$ be the weight decomposition. For $v_{i} \in \widehat{E}_{w_{i}}\left(w_{1} \neq w_{2}\right)$, we have $\nu(t) \cdot \widehat{h}\left(v_{1}, v_{2}\right)=\kappa(t)_{*} \widehat{h}\left(v_{1}, v_{2}\right)=t^{w_{1}-w_{2}} \widehat{h}\left(v_{1}, v_{2}\right)$. Hence, we obtain $\widehat{h}\left(v_{1}, v_{2}\right)=0$ and $\nu(t)=1$. Namely, \widehat{h} is S^{1}-invariant, which means
$\left(\widehat{E}, \bar{\partial}_{\widehat{E}}, \widehat{\theta}, \widehat{h}\right)$ gives a Variation of Polarized Hodge Structure. Thus the second claim is proved.
Lemma 10.4. - Assume $\left({ }_{c} \widehat{E}_{*}, \widehat{\theta}\right)$ is not μ_{L}-stable. Let ρ_{0} be an element of $R(\Gamma, V)$ such that $\pi_{\mathrm{GL}(V)}\left(\rho_{0}\right)$ is the limit of a subsequence $\left\{\pi_{\mathrm{GL}(V)}\left(\rho_{t_{i}}\right)\right\}$ for $t_{i} \rightarrow 0$. Then ρ_{0} is not simple.

Proof. - Let $\left\{t_{i}\right\}$ be a sequence converging to 0 such that $\left\{\left(E, \bar{\partial}_{E}, t_{i} \cdot \theta, h_{t_{i}}\right)\right\}$ converges to a tame harmonic bundle $\left(E^{\prime}, \bar{\partial}_{E^{\prime}}, \theta^{\prime}, h^{\prime}\right)$ in L_{2}^{p} locally on $X-D$. We may assume that ρ_{0} is the associated representation to ($E^{\prime}, \bar{\partial}_{E^{\prime}}, \theta^{\prime}, h^{\prime}$). We have a nontrivial map $f:{ }_{c} E^{\prime} \longrightarrow{ }_{c} \widehat{E}$ compatible with the parabolic structures and the Higgs fields. If ρ_{0} is simple, then $\left({ }_{c} E_{*}^{\prime}, \theta^{\prime}\right)$ is μ_{L}-stable, and it can be shown that the map f has to be isomorphic. But it contradicts with the assumption that $\left({ }_{c} \widehat{E}_{*}, \widehat{\theta}\right)$ is not μ_{L}-stable.
10.1.4. Deformation to a Variation of Polarized Hodge Structure. - Let Y be a smooth irreducible quasiprojective variety over \boldsymbol{C} with a base point x. We may assume $Y=X-D$, where X and D denote a smooth projective variety and its simple normal crossing divisor, respectively. A representation $\rho: \pi_{1}(Y, x) \longrightarrow \mathrm{GL}(V)$ induces a flat bundle (E, ∇). We say that ρ comes from a Variation of Polarized Hodge Structure, if (E, ∇) underlies a Variation of Polarized Hodge Structure. For simplicity of the notation, we put $\Gamma:=\pi_{1}(Y, x)$.

Theorem 10.5. - Let $\rho \in R(\Gamma, V)$ be a representation. Then it can be deformed to a representation $\rho^{\prime} \in R(\Gamma, V)$ which comes from a Variation of Polarized Hodge Structure on Y.

Proof. - We essentially follow the argument of Theorem 3 in [55]. Any representation $\rho \in R(\Gamma, V)$ can be deformed to a semisimple representation $\rho^{\prime} \in R(\Gamma, V)$. Therefore we may assume that ρ is semisimple from the beginning. Let (E, ∇) be the corresponding semisimple flat bundle on $X-D$. We can take a Corlette-Jost-Zuo metric h of (E, ∇), and hence we obtain the tame pure imaginary harmonic bundle $\left(E, \bar{\partial}_{E}, \theta, h\right)$. Let $\left(\boldsymbol{E}_{*}, \theta\right)$ denote the associated regular filtered Higgs bundle on (X, D). We have the canonical decomposition (Corollary 3.11):

$$
\left(\boldsymbol{E}_{*}, \theta\right)=\bigoplus_{j \in \Lambda}\left(\boldsymbol{E}_{i *}, \theta_{i}\right) \otimes \boldsymbol{C}^{m(j)}
$$

We put $r(\rho):=\sum_{j \in \Lambda} m(j)$. Note that $r(\rho) \leq \operatorname{rank} E$, and we have $r(\rho)=\operatorname{rank} E$ if and only if $\left(\boldsymbol{E}_{*}, \theta\right)$ is a direct sum of Higgs bundles of rank one. We use a descending induction on $r(\rho)$.

We obtain the family of regular filtered Higgs bundles $\left\{\left(\boldsymbol{E}_{*}, t \cdot \theta\right) \mid t \in \boldsymbol{C}^{*}\right\}\left(t \in \boldsymbol{C}^{*}\right)$. In particular, we have the associated deformation of representations $\left\{\rho_{t} \in R(\Gamma, V) \mid t \in\right.$ $\left.\boldsymbol{R}_{>0}\right\}$ as in Subsection 10.1.2. We may assume $\rho_{1}=\rho$. We have the induced map $\mathcal{P}:] 0,1] \longrightarrow M\left(\Gamma, V, h_{V}\right)$ given by $\mathcal{P}(t):=\pi_{\mathrm{GL}(V)}\left(\rho_{t}\right)$, which is continuous due to

Theorem 10.1. The image is relatively compact due to Lemma 10.2 . We take a representation $\rho_{0} \in R(\Gamma, V)$ such that $\pi_{\mathrm{GL}(V)}\left(\rho_{0}\right)$ is the limit of a subsequence of $\left.\left.\left\{\pi_{\mathrm{GL}(V)}\left(\rho_{t}\right) \mid t \in\right] 0,1\right]\right\}$. We may assume that it comes from a tame harmonic bundle as in the proof of Lemma 10.2.
The case 1. Let $\left(\boldsymbol{E}_{*}, \theta\right)=\bigoplus\left(\boldsymbol{E}_{i *}, \theta_{i}\right)^{\oplus m_{i}}$ be the canonical decomposition. Assume that each family $\left\{\left(\boldsymbol{E}_{i *}, t \cdot \theta_{i}\right) \mid t \in \boldsymbol{C}^{*}\right\}$ converges to the μ_{L}-stable regular filtered Higgs sheaf. Then ρ_{0} comes from a Variation of Polarized Hodge Structure due to Proposition 10.3.

We remark that the rank one Higgs bundle is always stable. Hence the case $r(\rho)=$ $\operatorname{rank} E$ is done, in particular.
The case 2. Assume that one of the families $\left\{\left(\boldsymbol{E}_{*}, t \cdot \theta_{i}\right) \mid t \in \boldsymbol{C}^{*}\right\}$ converges to the semistable parabolic Higgs sheaf, which is not μ_{L}-stable. Then we have $r(\rho)<r\left(\rho_{0}\right)$ due to Lemma 10.4. Hence the induction can proceed.

10.2. Monodromy Group

We discuss the monodromy group for the Higgs bundles or flat bundles, by following the ideas in [55].
10.2.1. The Higgs monodromy group. - Let X be a smooth irreducible projective variety with an ample line bundle L, and D be a simple normal crossing divisor. Let $\left(\boldsymbol{E}_{*}, \theta\right)$ be a μ_{L}-polystable regular filtered Higgs bundle on (X, D) with trivial characteristic numbers. For any non-negative integers a and b, we have the regular filtered Higgs bundles $\left(T^{a, b} \boldsymbol{E}_{*}, \theta\right)$. (See Subsection 3.2.1 for the explanation.) Since we have a pluri-harmonic metric h of $\left(E, \bar{\partial}_{E}, \theta\right)$ adapted to the parabolic structure, the regular filtered Higgs bundles $T^{a, b}\left(\boldsymbol{E}_{*}, \theta\right)$ are also μ_{L}-polystable. In particular, we have the canonical decompositions of them. We recall the definition of the Higgs monodromy group given in [55]. Let x be a point of $X-D$.

Definition 10.6. - The Higgs monodromy group $M\left(\boldsymbol{E}_{*}, \theta, x\right)$ of μ_{L}-polystable Higgs bundle $\left(\boldsymbol{E}_{*}, \theta\right)$ is the subgroup of $\mathrm{GL}\left(E_{\mid x}\right)$ defined as follows: An element $g \in \operatorname{GL}\left(E_{\mid x}\right)$ is contained in $M\left(\boldsymbol{E}_{*}, \theta, x\right)$, if and only if $T^{a, b} g$ preserves the subspace $F_{\mid x} \subset T^{a, b} E_{\mid x}$ for any stable component $\left(\boldsymbol{F}_{*}, \theta_{F}\right) \subset T^{a, b}\left(\boldsymbol{E}_{*}, \theta\right)$.

Remark 10.7. - Although such a Higgs monodromy group should be defined for semistable parabolic Higgs bundles as in [55], we do not need it in this paper.

We have an obvious lemma.
Lemma 10.8. - We have $M\left(\boldsymbol{E}_{*}, \theta, x\right)=M\left(\boldsymbol{E}_{*}, t \cdot \theta, x\right)$ for any $t \in \boldsymbol{C}^{*}$, i.e., the Higgs monodromy group is invariant under the torus action.

Let us take a pluri-harmonic metric h of the Higgs bundle $\left(E, \bar{\partial}_{E}, \theta\right)$ on $X-D$, which is adapted to the parabolic structure. Then we obtain the flat connection $\mathbb{D}^{1}=\bar{\partial}_{E}+\partial_{E}+\theta+\theta^{\dagger}$. Then we obtain the monodromy group $M\left(E, \mathbb{D}^{1}, x\right) \subset \operatorname{GL}\left(E_{\mid x}\right)$ of the flat connection. (See Subsection A.1.4.)

Lemma 10.9. - We have $M\left(E, \mathbb{D}^{1}, x\right) \subset M\left(\boldsymbol{E}_{*}, \theta, x\right)$. For a tame pure imaginary harmonic bundle, we have $M\left(E, \mathbb{D}^{1}, x\right)=M\left(\boldsymbol{E}_{*}, \theta, x\right)$.

Proof. - A stable component $\left(\boldsymbol{F}_{*}, \theta_{F}\right) \subset\left(\boldsymbol{E}_{*}, \theta\right)$ induces the flat subbundle of $F \subset$ $T^{a, b}\left(E, \mathbb{D}^{1}\right)$. If $g \in M\left(E, \mathbb{D}^{1}, x\right)$, we have $T^{a, b} g\left(F_{\mid x}\right) \subset F_{\mid x}$. Hence, $M\left(E, \mathbb{D}^{1}, x\right) \subset$ $M\left(\boldsymbol{E}_{*}, \theta, x\right)$. In the pure imaginary case, a flat subbundle $F \subset T^{a, b}\left(E, \mathbb{D}^{1}\right)$ induces $\left(\boldsymbol{F}_{*}, \theta_{F}\right) \subset\left(\boldsymbol{E}_{*}, \theta\right)$. Therefore, we obtain $M\left(E, \mathbb{D}^{1}, x\right)=M\left(\boldsymbol{E}_{*}, \theta, x\right)$.
10.2.2. The deformation and the monodromy group. - For simplicity of the description, we put $\Gamma:=\pi_{1}(X-D, x)$. Let (E, ∇) be a semisimple flat bundle over $X-D$. We have a Corlette-Jost-Zuo metric h of (E, ∇), and thus we obtain a tame pure imaginary harmonic bundle $\left(E, \bar{\partial}_{E}, \theta, h\right)$ on $X-D$. The associated regular filtered Higgs bundle is denoted by $\left(\boldsymbol{E}_{*}, \theta\right)$, which is μ_{L}-polystable with trivial characteristic numbers.

As in Subsection 10.1.2, we have the pluri-harmonic metrics h_{t} for any $\left(E, \bar{\partial}_{E}, t \cdot \theta\right)$ $\left(t \in C^{*}\right)$. Hence we obtain the flat connections \mathbb{D}_{t}^{1} of E, and the representations $\rho_{t}: \Gamma \longrightarrow \mathrm{GL}\left(E_{\mid x}\right)$. We also obtain the monodromy group $M\left(E, \mathbb{D}_{t}^{1}\right) \subset \mathrm{GL}\left(E_{\mid x}\right)$.

Lemma 10.10. - We have $M\left(E, \mathbb{D}_{t}^{1}\right) \subset M\left(E, \mathbb{D}_{1}^{1}\right)$ for $t \in \boldsymbol{C}-\{0\}$, and $M\left(E, \mathbb{D}_{t}^{1}\right)=$ $M\left(E, \mathbb{D}_{1}^{1}\right)$ for $t \in \boldsymbol{R}-\{0\}$.

Proof. - It follows from Lemma 10.8 and Lemma 10.9.
We put $G_{0}:=M\left(E, \mathbb{D}_{t}^{1}, x\right)$ for $t \in \boldsymbol{R}_{>0}$ which is independent of the choice of t. Let $U\left(E, h_{t}, x\right)$ denote the unitary group for the metrized space $\left(E_{\mid x}, h_{t \mid x}\right)$. Due to Lemma A.16, G_{0} is reductive, and the intersection $K_{0, t}:=G_{0} \cap U\left(E, h_{t}, x\right)$ is a compact real form of G_{0}.

We put $V:=E_{\mid x}$ and $h_{V}:=h_{1 \mid x}$. We denote G_{0} and $K_{0,1}$ by G and K respectively, when we regard it as the subgroup of $\mathrm{GL}(V)$. Then we can take an isometry ν_{t} : $\left(E_{\mid x}, h_{t \mid x}\right) \simeq\left(V, h_{V}\right)$ such that $\nu_{t}\left(G_{0}\right)=G$ and $\nu_{t}\left(K_{0 t}\right)=K$ for each t. Such a map is unique up to the adjoint of $N_{G}\left(h_{V}\right)$. Thus we obtain the family of representations $\widetilde{\rho}_{t}:=\nu_{t *}\left(\rho_{t}\right) \in R(\Gamma, G)\left(t \in \boldsymbol{R}_{>0}\right)$.

Lemma 10.11. - The induced map $\pi_{G}\left(\widetilde{\rho}_{t}\right): \boldsymbol{R}_{>0} \longrightarrow M\left(\Gamma, G, h_{V}\right)$ is continuous.
Proof. - Let M^{\prime} denote the subset of $M\left(\Gamma, G, h_{V}\right)$ which consists of the Zariski dense representations. The natural morphism $M^{\prime} \longrightarrow M\left(\Gamma, V, h_{V}\right)$ is injective, and the image of $\pi_{G}\left(\widetilde{\rho}_{t}\right)$ is contained in M^{\prime}. Hence the claim of the lemma follows from Theorem 10.1 and the properness of $M\left(\Gamma, G, h_{V}\right) \longrightarrow M\left(\Gamma, V, h_{V}\right)$.

Lemma 10.12. - The image $\left.\pi_{G}\left(\widetilde{\rho}_{t}\right)(10,1]\right)$ is relatively compact in $M\left(\Gamma, G, h_{V}\right)$.
Proof. - It follows from Lemma 10.2 and the properness of the map $M\left(\Gamma, G, h_{V}\right) \longrightarrow$ $M\left(\Gamma, V, h_{V}\right)$.
10.2.3. Non-existence result about fundamental groups. - Let Y be a smooth irreducible quasiprojective variety. We put $\Gamma:=\pi_{1}(Y, x)$. Let V be a finite dimensional \boldsymbol{C}-vector space. Let G be a reductive subgroup of $\mathrm{GL}(V)$. We see the convergence of $\pi_{G}\left(\widetilde{\rho}_{t}\right)(t \rightarrow 0)$ in a simple case.

Lemma 10.13. - Let ρ be an element of $R(\Gamma, G)$. We assume that there exists a subgroup Γ_{0} such that $\rho_{\mid \Gamma_{0}}: \Gamma_{0} \longrightarrow G$ is Zariski dense and rigid. Then we can take a deformation $\rho^{\prime} \in R(\Gamma, G)$ of ρ which comes from a Variation of Polarized Hodge Structure on Y.

Proof. - We take a tame pure imaginary pluri-harmonic bundle $\left(E, \bar{\partial}_{E}, \theta, h\right)$ whose associated representation gives ρ, and we take the deformation $\pi_{G}\left(\widetilde{\rho}_{t}\right)$. Let us take $\rho_{0} \in R(\Gamma, G)$ such that some sequence $\left\{\pi_{G}\left(\widetilde{\rho}_{t_{i}}\right)\right\}$ converges to $\pi_{G}\left(\rho_{0}\right)$. We remark that $\rho_{0 \mid \Gamma_{0}}: \Gamma_{0} \longrightarrow G$ is also Zariski dense and rigid (Lemma 2.22). If ρ_{0} comes from a Variation of Polarized Hodge Structure, we are done. If ρ_{0} does not come from a Variation of Polarized Hodge Structure, we deform ρ_{0} as above, again. The process will stop in the finite steps by Theorem 10.5.

The following lemma is a straightforward generalization of Lemma 4.4 in [55]. (See also Lemma A.16, where we will see the argument of Lemma 4.4 can be generalized in our situation.)

Lemma 10.14. - Let $\rho: \Gamma \longrightarrow G$ be a Zariski dense homomorphism. If ρ comes from a Variation of Polarized Hodge Structure, then the real Zariski closure W of ρ is a real form of G, and W is a group of Hodge type in the sense of Simpson. (See the page 46 in [55].)

The following lemma is essentially same as Corollary 4.6 in [55].
Proposition 10.15. - Let G be a complex reductive algebraic group, and W be a real form of G. Let $\rho: \Gamma \longrightarrow G$ be a representation such that $\operatorname{Im} \rho \subset W$. Assume that there exists a subgroup $\Gamma_{0} \subset \Gamma$ such that $\rho_{\mid \Gamma_{0}}$ is rigid and Zariski dense in G. Then W is a group of Hodge type, in the sense of Simpson.

Proof. - We reproduce the argument of Simpson. Since $\rho\left(\Gamma_{0}\right)$ is Zariski dense in G, W is also the real Zariski closure of $\rho\left(\Gamma_{0}\right)$. We take a deformation ρ^{\prime} of ρ, which comes from a Variation of Polarized Hodge Structure as in Lemma 10.13. Then there exists an element $u \in N(G, U)$ such that $\operatorname{ad}(u) \circ \rho_{\mid \Gamma_{0}} \simeq \rho_{\mid \Gamma_{0}}^{\prime}$ due to Lemma 2.22. Let W^{\prime} denote the real Zariski closure of $\rho^{\prime}\left(\Gamma_{0}\right)$, which is also the real Zariski closure of
ρ^{\prime}. It is a group of Hodge type (Lemma 10.14). Since W and W^{\prime} are isomorphic, we
are done. are done.

Corollary 10.16. - Let Γ_{0} be a rigid discrete subgroup of a real algebraic group, which is not of Hodge type. Then Γ_{0} cannot be a split quotient of the fundamental groups of any smooth irreducible quasiprojective variety.

Proof. - It follows from Lemma 10.14 and Proposition 10.15. (See the pages 52-54 of [55]).

APPENDIX

G-HARMONIC BUNDLE

A.1. G-Principal Bundles with Flat Structure or Holomorphic Structure

We recall the Tannakian consideration about harmonic bundles given in [55] by Simpson.
A.1.1. A characterization of algebraic subgroup of GL. - We recall some facts on algebraic groups. (See also I. Proposition 3.1 in [11], for example.) Let V be a vector space over a field k of characteristic 0 . We put $T^{a, b} V:=\operatorname{Hom}\left(V^{\otimes a}, V^{\otimes b}\right)$. Let G be an algebraic subgroup of $\mathrm{GL}(V)$, defined over k. We have the induced G action on $T^{a, b} V$. Let $\mathcal{S}(V, a, b)$ denote the set of G-subspaces of $T^{a, b} V$, and we put $\mathcal{S}(V)=\coprod_{a, b} \mathcal{S}(V, a, b)$.

Let g be an element of $\mathrm{GL}(V)$. We have the induced element $T^{a, b}(g) \in \mathrm{GL}\left(T^{a, b} V\right)$. Then, it is known that $g \in \operatorname{GL}(V)$ is contained in G, if and only if $T^{a, b}(g) W \subset W$ holds for any $(W, a, b) \in \mathcal{S}(V)$. Suppose G is reductive. Then there is an element v of $T^{a, b}(V)$ for some (a, b) such that g is contained in G if and only if $g \cdot v=v$ holds.

We easily obtain a similar characterization of Lie subalgebras of $\mathfrak{g l}(V)$ corresponding to algebraic subgroups of GL (V).
A.1.2. A characterization of connections of principal G-bundle. - Let k denote the complex number field \boldsymbol{C} or the real number field \boldsymbol{R}. Let G be an algebraic group over k. Let P_{G} be a G-principal bundle on a manifold X in the C^{∞}-category. Let $\kappa: G \longrightarrow \mathrm{GL}(V)$ be a representation defined over k, such that the induced morphism $d \kappa: \mathfrak{g} \longrightarrow \operatorname{End}(V)$ is injective. We put $E:=P_{G} \times{ }_{G} V$. We have $T^{a, b} E:=$ $\operatorname{Hom}\left(E^{\otimes a}, E^{\otimes b}\right) \simeq P_{G} \times_{G} T^{a, b} V$. We have the subbundle $E_{U}=P_{G} \times_{G} U$ of $T^{a, b} E$ for each $U \in \mathcal{S}(V, a, b)$. A connection ∇ on E induces the connection $T^{a, b} \nabla$ on $T^{a, b} E$. Let $\mathcal{A}_{G}(E)$ be the set of the connections ∇ of E such that the induced connections $T^{a, b} \nabla$ preserve the subbundle E_{U} for any $(U, a, b) \in \mathcal{S}(V)$.

Let $\mathcal{A}\left(P_{G}\right)$ denote the set of the connections of P_{G}. If we are given a connection of P_{G}, the connection ∇ of E is naturally induced. It is clear that the connection
$T^{a, b} \nabla$ preserves $E_{U} \subset T^{a, b} E$ for any $(U, a, b) \in \mathcal{S}(V)$. Hence we have the map $\varphi: \mathcal{A}\left(P_{G}\right) \longrightarrow \mathcal{A}_{G}(E)$.

Lemma A.1. - The map φ is bijective.
Proof. - Since $d \kappa$ is injective, the map φ is injective. Let us take a connection $\nabla \in \mathcal{A}_{G}(E)$ and a connection ∇_{0} which comes from a connection of P_{G}. Then $f=\nabla-\nabla_{0}$ is a section of $\operatorname{End}(E) \otimes \Omega^{1}$. Since $T^{a, b} f$ preserves E_{U} for any (a, b) and $U \subset \mathcal{S}(V, a, b), f$ comes from a section of $\operatorname{ad}\left(P_{G}\right) \otimes \Omega^{1} \subset \operatorname{End}(E) \otimes \Omega^{1}$.
A.1.3. K-Reduction of holomorphic G-principal bundle and the induced connection. - Let G be a linear reductive group defined over C. Let P_{G} be a holomorphic G-principal bundle on X. Let $\kappa: G \longrightarrow \mathrm{GL}(V)$ be a representation defined over \boldsymbol{C}, such that $d \kappa: \mathfrak{g} \longrightarrow \operatorname{End}(V)$ is injective. We put $E:=P_{G} \times{ }_{G} V$. Let K be a compact real form of G. Let $P_{K} \subset P_{G}$ be a K-reduction in the C^{∞}-category, i.e., $P_{K} \times_{K} G \simeq P_{G}$. Then the connection of P_{K} is automatically induced. We have the canonical G-decomposition for each (a, b) :

$$
\begin{equation*}
T^{a, b} V=\bigoplus_{\rho \in \operatorname{Irrep}(G)} V_{\rho}^{(a, b)} \tag{60}
\end{equation*}
$$

Here $\operatorname{Irrep}(G)$ denotes the set of the equivalence classes of irreducible representations of G. Each $V_{\rho}^{(a, b)}$ is isomorphic to the tensor product of the irreducible representation ρ and the trivial representation $\boldsymbol{C}^{m(a, b, \rho)}$. The decomposition (60) is same as the canonical K-decomposition. Take a K-invariant hermitian metric h of V. It induces the hermitian metric $T^{a, b} h$ of $T^{a, b} V$, for which the decomposition (60) is orthogonal. The restriction of $T^{a, b} h$ to $V_{\rho}^{(a, b)}$ is isomorphic to a tensor product of a K-invariant hermitian metric on ρ and a hermitian metric on $\boldsymbol{C}^{m(a, b, \rho)}$. The metric h induces the hermitian metric of E, which is also denoted by h. From the holomorphic structure $\bar{\partial}_{E}$ and the metric h, we obtain the unitary connection $\nabla=\partial_{E}+\bar{\partial}_{E}$. The induced connection $T^{a, b} \nabla$ on $T^{a, b} E$ is the unitary connection determined by $T^{a, b} h$ and the holomorphic structure of $T^{a, b} E$. Then it is easy to see that $T^{a, b} \nabla$ preserves E_{U} for any $U \in \mathcal{S}(a, b, V)$. Hence the connection ∇ comes from P_{G}. Since ∇ also preserves the unitary structure, we can conclude that ∇ comes from the connection of P_{K}.
A.1.4. The monodromy group. - We recall the monodromy group of flat bundles $([55])$. Let X be a connected complex manifold with a base point x. The monodromy group of a flat bundle (E, ∇) at x is defined to be the Zariski closure of the induced representation $\pi_{1}(X, x) \longrightarrow \mathrm{GL}\left(E_{\mid x}\right)$. It is denoted by $M(E, \nabla, x)$. Let us recall the case of principal bundles. Let G be a linear algebraic group over \boldsymbol{R} or C, and P_{G} be a G-principal bundle on X with a flat connection in the C^{∞}-category. Take a point $\widetilde{x} \in P_{G \mid x}$. Then we obtain the representation $\rho: \pi_{1}(X, x) \longrightarrow G$. Then the monodromy group $M\left(P_{G}, \widetilde{x}\right) \subset G$ is defined to be the Zariski closure of the image of ρ. We obtain the canonical reduction of principal bundles $P_{M\left(P_{G}, \widetilde{x}\right)} \subset P_{G}$. The
monodromy groups of flat vector bundles and flat principal bundles are related as follows. Let $\kappa: G \longrightarrow \mathrm{GL}(V)$ be an injective representation. Then we have the flat bundle $E=P_{G} \times_{G} V=P_{M\left(P_{G}, \widetilde{x}\right)} \times_{M\left(P_{G}, \widetilde{x}\right)} V$. Via the identification $V=E_{\mid x}$ given by \widetilde{x}, we are given the inclusion $M\left(P_{G}, \widetilde{x}\right) \subset \mathrm{GL}\left(E_{\mid x}\right)$. Clearly $M\left(P_{G}, \widetilde{x}\right)$ is same as $M(E, \nabla, x)$ and it is independent of the choice of \widetilde{x}. Hence we can reduce the problems of the monodromy groups of flat principal G-bundles to those for flat vector bundles.

For a flat bundle (E, ∇), let $T^{a, b} E$ denote the flat bundle $\operatorname{Hom}\left(E^{\otimes a}, E^{\otimes b}\right)$ provided the canonically induced flat connection. Let $\mathcal{S}(E, a, b)$ denote the set of flat subbundles U of $T^{a, b} E$, and we put $\mathcal{S}(E):=\coprod_{(a, b)} \mathcal{S}(E, a, b)$. Let g be an element of $\mathrm{GL}\left(E_{\mid x}\right)$. Then g is contained in $M(E, \nabla, x)$ if and only if $T^{a, b} g$ preserves U_{x} for any $(U, a, b) \in \mathcal{S}(E)$. If $M(E, \nabla, x)$ is reductive, we can find some (a, b) and $v \in T^{a, b} E_{\mid x}$ such that $g \in M(E, \nabla, x)$ if and only if $g \cdot v=v$. Hence there exists a flat subbundle $W \subset T^{a, b} E$ such that $g \in M(E, \nabla, x)$ if and only if $T^{a, b} g_{\mid W}=\operatorname{id}_{W}$.

A.2. Definitions

A.2.1. A G-principal Higgs bundle and a pluri-harmonic reduction. - Let G be a linear reductive group defined over \boldsymbol{C}, and K be a compact real form. Let X be a complex manifold and P_{G} be a holomorphic G-principal bundle on X. Let $\operatorname{ad}\left(P_{G}\right)$ be the adjoint bundle of P_{G}, i.e., $\operatorname{ad}\left(P_{G}\right)=P_{G} \times_{G} \mathfrak{g}$. Recall that a Higgs field of P_{G} is defined to be a holomorphic section θ of $\operatorname{ad}\left(P_{G}\right) \otimes \Omega^{1,0}$ such that $\theta^{2}=0$.

Let $P_{K} \subset P_{G}$ be a K-reduction of P_{G} in C^{∞}-category, then we have the natural connection ∇ of P_{K}, as is seen in Subsection A.1.3. We also have the adjoint θ^{\dagger} of θ, which is a C^{∞}-section of $\operatorname{ad}\left(P_{G}\right) \otimes \Omega^{0,1}$. Then we obtain the connection $\mathbb{D}^{1}:=\nabla+\theta+\theta^{\dagger}$ of the principal bundle P_{G}.

Definition A.2. - If \mathbb{D}^{1} is flat, then the reduction $P_{K} \subset P_{G}$ is called pluri-harmonic, and the tuple $\left(P_{K} \subset P_{G}, \theta\right)$ is called a G-harmonic bundle.

Let V be a \boldsymbol{C}-vector space. A representation $\kappa: G \longrightarrow \mathrm{GL}(V)$ is called immersive if $d \kappa$ is injective, in this paper. Take an immersive representation $\kappa: G \longrightarrow \mathrm{GL}(V)$ and a K-invariant metric h_{V}. From a G-principal Higgs bundle $\left(P_{G}, \theta\right)$ with a K-reduction $P_{K} \subset P_{G}$, we obtain the Higgs bundle $\left(E, \bar{\partial}_{E}, \theta\right)$ with the hermitian metric h.

Lemma A.3. - Let $\left(P_{G}, \theta\right)$ be a G-principal Higgs bundle, and $P_{K} \subset P_{G}$ be a K reduction. The following conditions are equivalent.

1. The reduction $P_{K} \subset P_{G}$ is pluri-harmonic.
2. For any representation $G \longrightarrow \mathrm{GL}(V)$ and any K-invariant hermitian metric of \boldsymbol{C}-vector space V, the induced Higgs bundle with the hermitian metric is a harmonic bundle.
3. There exist an immersive representation $G \longrightarrow \mathrm{GL}(V)$ and a K-invariant hermitian metric of \boldsymbol{C}-vector space V, such that the induced Higgs bundle with the hermitian metric is a harmonic bundle.

Proof. - If $G \longrightarrow \mathrm{GL}(V)$ is immersive, then a connection of P_{G} is flat if and only if the induced connection on $P_{G} \times{ }_{G} V$ is flat. Therefore the desired equivalence is clear.
A.2.2. A flat G-bundle and a pluri-harmonic reduction. - Let G be a linear reductive group over \boldsymbol{R} or \boldsymbol{C}, and let $\left(P_{G}, \nabla\right)$ be a flat G-bundle over a complex manifold X. If a K-reduction $P_{K} \subset P_{G}$ is given, we obtain the connection ∇_{0} of P_{K} and the self-adjoint section $\varphi \in \operatorname{ad}\left(P_{G}\right) \otimes \Omega^{1}$ such that $\nabla=\nabla_{0}+\varphi([\mathbf{7}])$, which can be shown by a Tannakian consideration as in Subsection A.1.3, for example. Let $\nabla_{0}=\nabla_{0}^{\prime}+\nabla_{0}^{\prime \prime}$ and $\varphi=\theta+\theta^{\dagger}$ be the decomposition into the $(1,0)$-part and the $(0,1)$ part. The connection ∇_{0} induces the connection on $\operatorname{ad}\left(P_{G}\right)$, which is also denoted by $\nabla_{0}=\nabla_{0}^{\prime}+\nabla_{0}^{\prime \prime}$. From $\nabla_{0}^{\prime \prime}$ and the complex structure of X, the $(0,1)$-operator of $\operatorname{ad}\left(P_{G}\right) \otimes \Omega^{1,0}$ is induced, which is also denoted by $\nabla_{0}^{\prime \prime}$.

Definition A.4. - A reduction $P_{K} \subset P_{G}$ is called pluri-harmonic, if $\theta^{2}=0$ and $\nabla_{0}^{\prime \prime}(\theta)=0$ hold.

Let V be a vector space over \boldsymbol{C}. Let $\kappa: G \longrightarrow \mathrm{GL}(V)$ be a representation, which induces the flat bundle $\left(E, \nabla_{E}\right)$. We take a K-invariant metric h_{V}, which induces the metric h_{E} of E. We obtain the decomposition $\nabla_{E}=\bar{\partial}_{E}+\partial_{E}+\theta_{E}+\theta_{E}^{\dagger}$ as in Section 21.4.3 of [44]. They are induced by $\nabla_{0}^{\prime \prime}, \nabla_{0}^{\prime}, \theta$ and θ^{\dagger}, respectively. Thus, if $P_{K} \subset P_{G}$ is pluri-harmonic, we have $\theta_{E}^{2}=\bar{\partial}_{E} \theta_{E}=0$. Recall that they imply $\bar{\partial}_{E}^{2}=0$. Hence, $\left(E, \nabla_{E}, h\right)$ is a harmonic bundle. On the contrary, if κ is immersive and $\left(E, \nabla_{E}, h\right)$ is a harmonic bundle, we obtain the vanishings $\theta^{2}=\nabla_{0}^{\prime \prime} \theta=0$. Hence, $P_{K} \subset P_{G}$ is pluri-harmonic. Therefore, we obtain the following lemma.

Lemma A.5. - The following conditions are equivalent.

1. The reduction $P_{K} \subset P_{G}$ is pluri-harmonic, in the sense of Definition A.4.
2. For any representation $\kappa: G \longrightarrow \mathrm{GL}(V)$ and any K-invariant metric of a vector space V over \boldsymbol{C}, the induced flat bundle with the hermitian metric is a harmonic bundle.
3. There exist an immersive representation $\kappa: G \longrightarrow \mathrm{GL}(V)$ and a K-invariant metric of a vector space V over \boldsymbol{C}, such that the induced flat bundle with the hermitian metric is a harmonic bundle.

Let $\pi: \widetilde{X} \longrightarrow X$ denote a universal covering. Take base points $x \in X$ and $x_{1} \in \widetilde{X}$ such that $\pi\left(x_{1}\right)=x$. Once we pick a point $\widetilde{x} \in P_{G \mid x}$, the homomorphism $\pi_{1}(X, x) \longrightarrow$ G is given. If a K-reduction $P_{K} \subset P_{G}$ is given, we obtain a $\pi_{1}(X, x)$-equivariant map $F: \widetilde{X} \longrightarrow G / K$, where the $\pi_{1}(X, x)$-action on G / K is given by the homomorphism
$\pi_{1}(X, x) \longrightarrow G$. If $P_{K} \subset P_{G}$ is pluri-harmonic, then F is pluri-harmonic ([67]) in the sense that any restriction of F to holomorphic curve is harmonic.
A.2.3. A tame pure imaginary G-harmonic bundle. - Let G be a linear reductive group over \boldsymbol{C}. Let \mathfrak{h} denote a Cartan subalgebra of \mathfrak{g}, and let W denote the Weyl group. We have the natural real structure $\mathfrak{h}_{\boldsymbol{R}} \subset \mathfrak{h}$. Hence we have the subspace $\sqrt{-1} \mathfrak{h}_{R} \subset \mathfrak{h}$. We have the W-invariant metric of \mathfrak{h}, which induces the distance d of \mathfrak{h} / W. Let $B\left(\sqrt{-1} \mathfrak{h}_{\boldsymbol{R}}, \epsilon\right)$ denote the set of the points x of \mathfrak{h} / W such that there exists a point $y \in \sqrt{-1} \mathfrak{h}_{R} / W$ satisfying $d(x, y)<\epsilon$.

Let $\left(P_{K} \subset P_{G}, \theta\right)$ be a G-harmonic bundle on Δ^{*}. We have the expression $\theta=$ $f \cdot d z / z$, where f is a holomorphic section of $\operatorname{ad}\left(P_{G}\right)$ on Δ^{*}. It induces the continuous $\operatorname{map}[f]: \Delta^{*} \longrightarrow \mathfrak{h} / W$.

Definition A. 6

- A G-harmonic bundle $\left(P_{K} \subset P_{G}, \theta\right)$ is called tame, if $[f]$ is bounded.
- A tame G-harmonic bundle ($P_{K} \subset P_{G}, \theta$) is called pure imaginary, if for any $\epsilon>0$ there exists a positive number r such that $[f(z)] \in B\left(\sqrt{-1} \mathfrak{h}_{\boldsymbol{R}}, \epsilon\right)$ for any $|z|<r$.

Lemma A.7. - Let $\left(P_{K} \subset P_{G}, \theta\right)$ be a harmonic bundle on Δ^{*}. The following conditions are equivalent.

1. It is tame (pure imaginary).
2. For any $\kappa: G \longrightarrow \mathrm{GL}(V)$ and any K-invariant metric of V, the induced harmonic bundle is tame (pure imaginary).
3. For some immersive representation $\kappa: G \longrightarrow \mathrm{GL}(V)$ and some K-invariant metric of V, the induced harmonic bundle is tame (pure imaginary).

Proof. - The implications $1 \Longrightarrow 2 \Longrightarrow 3$ are clear. The implication $3 \Longrightarrow 1$ follows from the injectivity of $d \kappa: \mathfrak{g} \longrightarrow \mathfrak{g l}(V)$.

Let X be a smooth projective variety, and D be a normal crossing divisor.
Definition A.8. - A harmonic G-bundle $\left(P_{K} \subset P_{G}, \theta\right)$ on $X-D$ is called tame (pure imaginary), if the restriction $\left(P_{K} \subset P_{G}, \theta\right)_{\mid C \backslash D}$ is tame (pure imaginary) for any curve $C \subset X$ which is transversal with D.

Remark A.9. - Tameness and pure imaginary property are defined for principal G Higgs bundles.

Remark A.10. - Tameness and pure imaginary property are preserved by pull back. We also remark the curve test for usual tame harmonic bundles.

Let us consider the case where G is a linear reductive group defined over \boldsymbol{R}, with a maximal compact group K. We have the complexification G_{C} with a maximal compact group $K_{\boldsymbol{C}}$ such that $K=K_{\boldsymbol{C}} \cap G$.

Definition A.11. - Let $\left(P_{G}, \nabla\right)$ be a flat bundle. A pluri-harmonic reduction ($P_{K} \subset$ $\left.P_{G}, \nabla\right)$ is called a tame pure imaginary, if the induced reduction $\left(P_{K_{C}} \subset P_{G_{C}}, \nabla\right)$ is a tame pure imaginary.

Lemma A.12. - Let $\left(P_{K} \subset P_{G}, \theta\right)$ be a harmonic bundle on $X-D$. The following conditions are equivalent.

1. It is tame (pure imaginary).
2. For any $\kappa: G \longrightarrow \mathrm{GL}(V)$ and any K-invariant metric of V, the induced harmonic bundle is tame (pure imaginary).
3. There exist an immersive representation $\kappa: G \longrightarrow \mathrm{GL}(V)$ and a K-invariant metric of V such that the induced harmonic bundle is tame (pure imaginary).

A.3. Semisimplicity and Pluri-Harmonic Reduction

A.3.1. Preliminary. - Let X be a smooth irreducible quasiprojective variety with a base point x. We put $\Gamma:=\pi_{1}(X, x)$ for simplicity of the notation. Recall the existence and the uniqueness of tame pure imaginary pluri-harmonic metric ([29], [45]), which is called the Corlette-Jost-Zuo metric. Let (E, ∇) be a semisimple flat bundle, and let $\rho: \Gamma \longrightarrow \mathrm{GL}\left(E_{\mid x}\right)$ denote the corresponding representation. We have the canonical decomposition of $E_{\mid x}$:

$$
E_{\mid x}=\bigoplus_{\chi \in \operatorname{Irrep}(\Gamma)} E_{\mid x, \chi}
$$

Here $\operatorname{Irrep}(\Gamma)$ denotes the set of irreducible representations, and $E_{\mid x, \chi}$ denotes a Γ subspace of $E_{\mid x}$ isomorphic to $\chi^{\oplus m(\chi)}$. Correspondingly, we have the canonical decomposition of the flat bundle (E, ∇) :

$$
(E, \nabla)=\bigoplus_{\chi \in \operatorname{Irrep}(\Gamma)} E_{\chi}
$$

The flat bundle E_{χ} is isomorphic to a tensor product of a trivial bundle $\boldsymbol{C}^{m(\chi)}$ and a flat bundle L_{χ} whose monodromy is given by χ.

Lemma A. 13

- There exists a Corlette-Jost-Zuo metric h_{χ} of L_{χ}, which is unique up to positive constant multiplication.
- Under the isomorphism $(E, \nabla) \simeq \bigoplus_{\chi} L_{\chi} \otimes C^{m(\chi)}$, any Corlette-Jost-Zuo metric of (V, ∇) is of the following form:

$$
\bigoplus_{\chi} h_{\chi} \otimes g_{\chi} .
$$

Here g_{χ} denote any hermitian metrics of $C^{m(\chi)}$. In other words, the ambiguity of the Corlette-Jost-Zuo metrics is a choice of hermitian metrics g_{χ} of $C^{m(\chi)}$, once we fix h_{χ}.

- The decomposition of flat connection $\nabla=\partial+\bar{\partial}+\theta+\theta^{\dagger}$ is independent of a choice of g_{χ}.

Proof. - The first claim is proved in [29]. (See also [45].) The second claim easily follows from the proof of the uniqueness result in [45]. (See the argument of Proposition 2.6). The third claim follows from the second claim.

We also have the following lemma (see [50] or [45])
Lemma A.14. - If there exists a Corlette-Jost-Zuo metric on a flat bundle (E, ∇), then the flat bundle is semisimple.

We have the involution $\chi \longmapsto \bar{\chi}$ on $\operatorname{Irrep}(\Gamma)$ such that $\chi \otimes_{\boldsymbol{R}} \boldsymbol{C}=\chi \oplus \bar{\chi}$. If $\bar{\chi}=\chi$, we have the real structure of L_{χ}. If $\bar{\chi} \neq \chi$, we have the canonical real structure of $L_{\chi} \otimes \boldsymbol{C}=L_{\chi} \oplus L_{\bar{\chi}}$.

Let us consider the case where a semisimple flat bundle (E, ∇) has the flat real structure $E_{\boldsymbol{R}}$ such that $E=E_{\boldsymbol{R}} \otimes_{\boldsymbol{R}} \boldsymbol{C}$. Let $\iota: E \longrightarrow E$ denote the conjugate with respect to $E_{\boldsymbol{R}}$. Then (E, ∇) is isomorphic to the following:

$$
\bigoplus_{\bar{\chi}=\chi} L_{\chi} \otimes \boldsymbol{C}^{m(\chi)} \oplus \bigoplus_{\bar{\chi} \neq \chi}\left(L_{\chi} \oplus L_{\bar{\chi}}\right) \otimes \boldsymbol{C}^{m(\chi)}
$$

The real structure of (E, ∇) is induced from the real structures of $L_{\chi}(\bar{\chi}=\chi)$ and $L_{\chi} \otimes \boldsymbol{C}(\bar{\chi} \neq \chi)$. For a hermitian metric h of E, the hermitian metric $\iota^{*} h$ is given by $\iota^{*} h(u, v)=\overline{h(\iota(u), \iota(v))}$. Then the following lemma is clear.

Lemma A.15. - When (E, ∇) has a real structure, there exists a Corlette-Jost-Zuo metric of (E, ∇) which is invariant under the conjugation. The ambiguity of the metric is a choice of the metrics of the vector spaces $C^{m(\chi)}$.
A.3.2. Pluri-harmonic reduction of the principal bundle associated with the monodromy group. - Let $G_{0} \subset G L\left(E_{\mid x}\right)$ denote the monodromy group $M(E, \nabla, x)$. We obtain the principal G_{0}-bundle $P_{G_{0}}$ with the flat connection. If the flat bundle (E, ∇) is semisimple, we have a Corlette-Jost-Zuo metric h of (E, ∇). Let $U=U\left(E_{\mid x}, h_{\mid x}\right)$ denote the unitary group of the metrized vector space $\left(E_{\mid x}, h_{\mid x}\right)$, and we put $K_{0}:=G_{0} \cap U$.

Lemma A.16. - G_{0} is reductive, and K_{0} is a compact real form of G_{0}.
Proof. - The argument was given by Simpson (Lemma 4.4 in [55]) for a different purpose. We reproduce it here with a minor change for our purpose. We have the canonical decomposition $T^{a, b}(E)=\bigoplus_{\chi \in \operatorname{Irrep}(\Gamma)} L_{\chi} \otimes C^{m(a, b, \chi)}$. The decomposition is orthogonal with respect to the induced Corlette-Jost-Zuo metric $T^{a, b}(h)$. Namely, $T^{a, b}(h)$ is of the form $\bigoplus_{\chi \in \operatorname{Irrep}(\Gamma)} h_{\chi} \otimes h(a, b, \chi)$, where h_{χ} denotes a Corlette-Jost-Zuo metric of L_{χ}, and $h(a, b, \chi)$ denotes hermitian metric of $C^{m(a, b, \chi)}$.

For any $f \in \operatorname{End}\left(E_{\mid x}\right)$, let f^{\dagger} denote the adjoint of f with respect to $h_{\mid x}$. For any $g \in G_{0}$, we have the unique expression $g=u \cdot \exp (y)$, where $u \in U$ and $y=y^{\dagger}$. The decomposition is compatible with tensor products and g-invariant orthogonal decompositions. It follows that $T^{a, b} u$ and $T^{a, b} y$ preserves the components $L_{\chi \mid x} \otimes \boldsymbol{C}^{m(a, b, \chi)}$. Namely, we have the decomposition $T^{a, b} g=\left(\bigoplus T^{a, b} g\right)_{\chi}$, $T^{a, b} u=\left(\bigoplus T^{a, b} u\right)_{\chi}$ and $T^{a, b} y=\left(\bigoplus T^{a, b} y\right)_{\chi}$.

Let κ be an isometric automorphism of $\left(C^{m(a, b, \rho)}, h(a, b, \chi)\right)$. Then, $\left(T^{a, b} g\right)_{\chi}$ and $\operatorname{id}_{L_{\chi \mid x}} \otimes \kappa$ are commutative. Hence, $\left(T^{a, b} u\right)_{\chi} \operatorname{and}_{\operatorname{id}_{L_{\chi \mid x}}} \otimes \kappa$ are commutative, and thus $\left(T^{a, b} u\right)_{\chi}$ is induced by the automorphism of $L_{\chi \mid x}$. Similarly, $\left(T^{a, b} y\right)_{\chi}$ is induced by the endomorphism of $L_{\chi \mid x}$. Hence, $L_{\chi \mid x} \otimes H_{\chi}$ is preserved by $\left(T^{a, b} u\right)_{\chi}$ and $\left(T^{a, b} y\right)_{\chi}$ for any subspace $H_{\chi} \subset C^{m(a, b, \chi)}$. Since any G_{0}-invariant subspace of $T^{a, b} E_{\mid x}$ is of the form $\bigoplus L_{\chi \mid x} \otimes H_{\chi}$, we obtain $u \in G_{0} \cap U=K_{0}$ and $y \in \mathfrak{g}_{0} \subset \operatorname{End}\left(E_{\mid x}\right)$, where \mathfrak{g}_{0} denotes the Lie subalgebra of $\operatorname{End}\left(E_{\mid x}\right)$ corresponding to G_{0}.

Let $\tau: \mathrm{GL}\left(E_{\mid x}\right) \longrightarrow \mathrm{GL}\left(E_{\mid x}\right)$ be the anti-holomorphic involution such that $\tau(g)=$ $\left(g^{\dagger}\right)^{-1}$. We obtain that $\tau(g)=u \cdot \exp (-y)$ is contained in G_{0}. Namely, τ gives the real structure of G_{0}. Since we have the decomposition $g=u \cdot \exp (y)$ for any $g \in G_{0}$, K_{0} intersects with any connected components of G_{0}. Let G_{0}^{0} denote the connected component of G_{0} containing the unit element. It is easy to see that $K_{0} \cap G_{0}^{0}$ is maximal compact in G_{0}^{0}, and hence K_{0} is maximal compact of G_{0}. Since $K_{0} \cap G_{0}^{0}$ is the fixed point set of $\tau_{\mid G_{0}^{0}}$, we obtain that K_{0}^{0} is a compact real form of G_{0}^{0}. Thus K_{0} is a compact real form of G_{0}. Since K_{0} is maximal compact, G_{0} is reductive.

Let us consider the case where (E, ∇) has the real structure. We have the real parts $E_{\boldsymbol{R} \mid x} \subset E_{\mid x}$ and $G_{0 \boldsymbol{R}}:=G_{0} \cap \mathrm{GL}\left(E_{\boldsymbol{R} \mid x}\right)$. We take a Corlette-Jost-Zuo metric of h which is invariant under the conjugation ι. We put $K_{0 \boldsymbol{R}}=G_{0 \boldsymbol{R}} \cap K_{0}=G_{0 \boldsymbol{R}} \cap U$. The map ι induces the real endomorphism of $\operatorname{End}\left(E_{\mid x}\right)$ given by $\iota(f)=\iota \circ f \circ \iota$.

Lemma A.17. - $K_{0 \boldsymbol{R}}$ is maximal compact in $G_{0 \boldsymbol{R}}$.
Proof. - We use the notation in the proof of Lemma A.16. Since $h_{\mid x}$ is invariant under the conjugation ι, U is stable under ι, and τ and ι are commutative. Let g be an element of $G_{0 \boldsymbol{R}}$. We have the decomposition $g=u \cdot \exp (y)$ as in the proof of Lemma A.16, where u denotes an element of K_{0} and y denotes an element of \mathfrak{g}_{0} such that $y^{\dagger}=y$. Since $\iota(g)=g$, we have $\iota(u) \cdot \exp (\iota(y))=u \cdot \exp (y)$. Since we have $\iota(u) \in \iota(U)=U$ and $(\iota(y))^{\dagger}=\iota\left(y^{\dagger}\right)=-\iota(y)$, we obtain $\iota(u)=u$ and $\iota(y)=y$. Namely $u \in K_{0 \boldsymbol{R}}$ and $y \in \mathfrak{g}_{0 \boldsymbol{R}}$. Then we can show $K_{0 \boldsymbol{R}}$ is maximal compact in $G_{0 \boldsymbol{R}}$, by an argument similar to the proof of Lemma A.16.

Proposition A.18. - Assume that (E, ∇) is semisimple. Then there exists the unique tame pure imaginary pluri-harmonic reduction $P_{K_{0}} \subset P_{G_{0}}$. Assume (E, ∇) has the flat real structure, moreover. Then, it is induced from the pluri-harmonic reduction of $P_{G_{0 R}}$.

Proof. - Let h be a Corlette-Jost-Zuo metric of (E, ∇). For any point $z \in X$, let $M(E, \nabla, z)$ denote the monodromy group at z, and $U\left(E_{\mid z}, h_{\mid z}\right)$ denote the unitary group of $E_{\mid z}$ with the metric $h_{\mid z}$. Then the intersection $M(E, \nabla, z) \cap U\left(E_{\mid z}, h_{\mid z}\right)$ is a maximal compact subgroup of $M(E, \nabla, z)$, due to Lemma A.16. Hence they give the reduction $P_{K_{0}} \subset P_{G_{0}}$, which is pluri-harmonic. By using a similar argument and Lemma A.17, we obtain the compatibility with the real structure, if (E, ∇) has the flat real structure. The uniqueness of the pluri-harmonic reduction follows from the uniqueness result in Lemma A.13. Hence we are done.

A.3.3. Characterization of the existence of pluri-harmonic reduction. -

 Let G be a linear reductive algebraic group over \boldsymbol{C} or \boldsymbol{R}. Let \widetilde{X} be a universal covering of X. The following corollary immediately follows from Proposition A.18.Corollary A.19. - Let P_{G} be a flat G-principal bundle over X. Assume that the image of the induced representation $\Gamma \longrightarrow G$ is Zariski dense in G. Then there exists the unique tame pure imaginary pluri-harmonic reduction of P_{G}. Correspondingly, we obtain the Γ-equivariant pluri-harmonic map $\widetilde{X} \longrightarrow G / K$.

Proposition A.20. - Let P_{G} be a flat G-bundle on X. The monodromy group G_{0} is reductive if and only if there exists a tame pure imaginary pluri-harmonic reduction $P_{K} \subset P_{G}$. If such a reduction exists, the decomposition $\nabla=\nabla_{K}+\left(\theta+\theta^{\dagger}\right)$ does not depend on a choice of a pluri-harmonic reduction $P_{K} \subset P_{G}$, and there is the corresponding Γ-equivariant pluri-harmonic map $\widetilde{X} \longrightarrow G / K$.

Proof. - If a pluri-harmonic reduction exists, the monodromy group is reductive due to Lemma A. 7 and Lemma A.16. Assume G_{0} is reductive. Let K_{0} be a maximal compact group of G_{0}. Then we have the unique tame pure imaginary pluri-harmonic reduction $P_{K_{0}} \subset P_{G_{0}}$. We take K such as $K \cap G_{0}=K_{0}$. Then the pluri-harmonic reduction $P_{K} \subset P_{G}$ is induced, and thus the first claim is proved. The second claim is clear.

BIBLIOGRAPHY

[1] L. V. Ahlfors - An extension of Schwarz's lemma, Trans. Amer. Math. Soc. 43 (1938), p. 359-364.
[2] A. Andreotti \& E. Vesentini - Carlman estimates for the Laplace-Beltrami equation on complex manifolds, Inst. Hautes Études Sci. Publ. Math. 25 (1965), p. 313-362.
[3] T. Aubin - Nonlinear analysis on manifolds. Monge-Ampère equations, SpringerVerlag, Berlin-New York, 1982.
[4] O. Biquard - Sur les fibrés paraboliques sur une surface complexe, J. London Math. Soc. 53 (1996), no. 2, p. 302-316.
[5] ___ Fibrés de Higgs et connexions intégrables: le cas logarithmique (diviseur lisse), Ann. Sci. École Norm. Sup. 30 (1997), p. 41-96.
[6] K. Corlette - Flat G-bundles with canonical metrics, J. Differential Geom. 28 (1988), p. 361-382.
[7] \qquad , Nonabelian Hodge theory, in Differential geometry: geometry in mathematical physics and related topics (Los Angeles, CA, 1990), Part 2, Proc. Sympos. Pure Math., vol. 54, Amer. Math. Soc., Providence, RI, 1993, p. 125-144.
[8] M. Cornalba \& P. Griffiths - Analytic cycles and vector bundles on noncompact algebraic varieties, Invent. Math. 28 (1975), p. 1-106.
[9] P. Deligne - Équations différentielles à points singuliers réguliers, Lecture Notes in Math., vol. 163, Springer-Verlag, Berlin-New York, 1970.
$[10] \quad$, Un théorème de finitude pour la monodromie, in Discrete Groups in Geometry and Analysis, Birkhäuser, 1987, p. 1-19.
[11] P. Deligne, J. S. Milne, A. Ogus \& K. Shih - Hodge cycles, motives, and Shimura varieties, Lecture Notes in Math., vol. 900, Springer-Verlag, Berlin-New York, 1982.
[12] S. K. Donaldson - A new proof of a theorem of Narasimhan and Seshadri, J. Differential Geom. 18 (1983), p. 269-277.
[13] \qquad , Anti self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles, Proc. London Math. Soc. 50 (1985), p. 1-26.
[14] \qquad , Infinite determinants, stable bundles and curvature, Duke Math. J. 54 (1987), p. 231-247.
[15] , Twisted harmonic maps and the self-duality equations, Proc. London Math. Soc. 55 (1987), p. 127-131.
[16] K. Fukaya - The gauge theory and topology, Springer-Verlag, Tokyo, 1995, in Japanese.
[17] W. Fulton - Intersection theory, second ed., Springer-Verlag, Berlin, 1988.
[18] D. Gilbarg \& N. Trudinger - Elliptic partial differential equations of second order, second ed., Springer-Verlag, Berlin, 1983.
[19] A. Grothendieck - Techniques de construction et théorèmes d'existence en géométrie algébrique IV : Les schémas de Hilbert, in Séminaire Bourbaki, IHP, Paris, 1961, exposé 221.
[20] R. Hartshorne - Algebraic geometry, Springer-Verlag, New York-Heidelberg, 1977.
[21] , Stable reflexive sheaves, Math. Ann. 254 (1980), p. 121-176.
[22] N. Hitchin - The self-duality equations on a Riemann surface, Proc. London Math. Soc. 55 (1987), p. 59-126.
[23] G. Hochshild - The structure of Lie groups, Holden-Day, 1965.
[24] L. Hörmander - An introduction to complex analysis in several variables, North-Holland Publishing Co., Amsterdam, 1990.
[25] D. Huybrechts \& M. Lehn - Framed modules and their moduli, Internat. J. Math. 6 (1995), p. 297-324.
[26] S. Ito - Functional Analysis, Iwanami Shoten, Tokyo, 1983, in Japanese.
[27] J. Iyer \& C. Simpson - A relation between the parabolic Chern characters of the de Rham bundles, math.AG/0603677.
[28] J. Jost, J. Li \& K. Zuo - Harmonic bundles on quasi-compact Kaehler manifolds, math.AG/0108166.
[29] J. Jost \& K. Zuo - Harmonic maps of infinite energy and rigidity results for representations of fundamental groups of quasiprojective varieties, J. Differential Geom. 47 (1997), p. 469-503.
[30] S. Kobayashi - First Chern class and holomorphic tensor fields, Nagoya Math. J. 77 (1980), p. 5-11.
[31] , Curvature and stability of vector bundles, Proc. Japan Acad. Ser. A Math. Sci. 58 (1982), p. 158-162.
[32] __ Differential geometry of complex vector bundles, Princeton University Press/Iwanami Shoten, Princeton, NJ/Tokyo, 1987.
[33] S. LangTon - Valuative criteria for families of vector bundles on algebraic varieties, Ann. of Math. 101 (1975), p. 88-110.
[34] J. Li - Hitchin's self-duality equations on complete Riemannian manifolds, Math. Ann. 306 (1996), p. 419-428.
[35] , Hermitian-Einstein metrics and Chern number inequalities on parabolic stable bundles over Kähler manifolds, Comm. Anal. Geom. 8 (2000), p. 445-475.
[36] J. Li \& M. S. Narasimhan - Hermitian-Einstein metrics on parabolic stable bundles, Acta Math. Sin. (Engl. Ser.) 15 (1999), p. 93-114.
[37] M. Lübke - Stability of Einstein-Hermitian vector bundles, Manuscripta Math. 42 (1983), p. 245-257.
[38] M. Lübke \& A. Teleman - The universal Kobayashi-Hitchin correspondence on Hermitian manifolds, math.DG/0402341, to appear in Mem. Amer. Math. Soc.
[39] M. Mardyama \& K. Yokogawa - Moduli of parabolic stable sheaves, Math. Ann. 293 (1992), p. 77-99.
[40] V. Mehta \& A. Ramanathan - Restriction of stable sheaves and representations of the fundamental group, Invent. Math. 77 (1984), p. 163-172.
[41] , Semistable sheaves on projective varieties and their restriction to curves, Math. Ann. 258 (1992), p. 213-224.
[42] V. Mehta \& C. S. Seshadri - Moduli of vector bundles on curves with parabolic structures, Math. Ann. 248 (1980), p. 205-239.
[43] T. Mochizuki - Asymptotic behaviour of tame nilpotent harmonic bundles with trivial parabolic structure, J. Differential Geom. 62 (2002), p. 351-559.
[44] _ Asymptotic behaviour of tame harmonic bundles and an application to pure twistor D-modules, to appear in Mem. Amer. Math. Soc., the final version is available from http://www.math.kyoto-u.ac.jp/~takuro/twistor.pdf.
[45] , A characterization of semisimple local system by tame pure imaginary pluri-harmonic metric, math.DG/0402122, to appear as a part of [44].
[46] ___ Kobayahi-Hitchin correspondence for tame harmonic bundles and an application II, math.DG/0602266.
[47] M. S. Narasimhan \& C. S. Seshadri - Stable and unitary vector bundles on a compact Riemann surface, Ann. of Math. 82 (1965), p. 540-567.
[48] R. Palais - Foundations of global non-linear analysis, Benjamin, 1968.
[49] J. Poritz - Parabolic vector bundles and Hermitian-Yang-Mills connections over a Riemann surface, Internat. J. Math. 4 (1993), p. 467-501.
[50] C. Sabbah - Polarizable twistor D-modules, Astérisque, vol. 300, Soc. Math. France, Paris, 2005.
[51] C. Simpson - Constructing variations of Hodge structure using Yang-Mills theory and application to uniformization, J. Amer. Math. Soc. 1 (1988), p. 867-918.
[52] , Harmonic bundles on non-compact curves, J. Amer. Math. Soc. 3 (1990), p. 713-770.
[53] , Mixed twistor structures, math.AG/9705006.
[54] , The Hodge filtration on nonabelian cohomology, in Algebraic geometry (Santa Cruz 1995), Proc. Sympos. Pure Math., vol. 62, Amer. Math. Soc., Providence, RI, 1997, p. 217-281.
[55] \qquad , Higgs bundles and local systems, Publ. Math. I.H.ÉS. 75 (1992), p. 595.
[56] \qquad , Moduli of representations of the fundamental group of a smooth projective variety, I, Publ. Math. I.H.É.S. 79 (1994), p. 47-129.
[57] \qquad , Moduli of representations of the fundamental group of a smooth projective variety, II, Publ. Math. I.H.É.S. 80 (1994), p. 5-79.
[58] \qquad private communication, 2003, fall.
[59] , Formalized proof, computation, and the construction problem in algebraic geometry, math.AG/0410224.
[60] Y. T. Siu \& G. Trautmann - Gap-sheaves and extension of coherent analytic subsheaves, Lecture Notes in Math., vol. 172, Springer-Verlag, Berlin-New York, 1971.
[61] Y. T. Siu - Techniques of extension of analytic objects, Lecture Notes in Pure and Appl. Math., vol. 8, Marcel Dekker, Inc., New York, 1974.
[62] B. Steer \& A. Wren - The Donaldson-Hitchin-Kobayashi correspondence for parabolic bundles over orbifold surfaces, Canad. J. Math. 53 (2001), p. 13091339.
[63] K. Uhlenbeck - Connections with L^{p} bounds on curvature, Comm. Math. Phys. 83 (1982), p. 31-42.
[64] K. Uhlenbeck \& S. T. Yau - On the existence of Hermitian Yang-Mills connections in stable bundles, Comm. Pure Appl. Math. 39 (1986), p. 257-293.
[65] K. Yokogawa - Compactification of moduli of parabolic sheaves and moduli of parabolic Higgs sheaves, J. Math. Kyoto Univ. 33 (1993), p. 451-504.
[66] S. Zucker - Hodge theory with degenerating coefficients: L^{2} cohomology in the Poincaré metric, Ann. of Math. 109 (1979), p. 415-476.
[67] K. Zuo - Representations of fundamental groups of algebraic varieties, Lecture Notes in Math., vol. 1708, Springer-Verlag, Berlin, 1999.

[^0]: ${ }^{(0)}$ The communication with the referee clarified a confusion, for which the author is obliged.

[^1]: ${ }^{(2)}$ The author thanks the referee who explained this simple proof.

[^2]: ${ }^{(3)}$ The inequality (2.30) loc. cit. should be $\left\langle\bar{\partial}_{E} \eta, \bar{\partial}_{E} \eta\right\rangle_{\boldsymbol{a}, N}+\left\langle\bar{\partial}_{E}^{*} \eta, \bar{\partial}_{E}^{*} \eta\right\rangle_{\boldsymbol{a}, N} \geq\|\eta\|_{\boldsymbol{a}, N}^{2}$.

