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KOBAYASHI-HITCHIN CORRESPONDENCE FOR
TAME HARMONIC BUNDLES
AND AN APPLICATION

Takuro Mochizuki

Abstract. — We establish the correspondence between tame harmonic bundles and
(r-polystable parabolic Higgs bundles with trivial characteristic numbers. We also
show the Bogomolov-Gieseker type inequality for py-stable parabolic Higgs bundles.

Then we show that any local system on a smooth quasiprojective variety can be
deformed to a variation of polarized Hodge structure. As a consequence, we can con-
clude that some kind of discrete groups cannot be a split quotient of the fundamental
group of a smooth quasiprojective variety.

Résumé (La correspondance de Kobayashi-Hitchin pour les fibrés harmoniques modé-
rés et une application)

Nous établissons la correspondance de Kobayashi-Hitchin entre les fibrés harmo-
niques modérés et fibrés de Higgs paraboliques pr-polystables dont les deux premiers
nombres de Chern sont nuls. Ensuite, nous montrons que tout systéme local sur une
variété quasi-projective lisse peut étre déformé vers une variation de structure de
Hodge polarisée. En conséquence, nous pouvons conclure que certains groupes dis-
crets ne peuvent pas apparaitre comme quotient scindé d’un groupe fondamental
d’une variété quasi-projective lisse.

© Astérisque 309, SMF 2006
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CHAPTER 1

INTRODUCTION

1.1. Background

1.1.1. Kobayashi-Hitchin correspondence. — We briefly recall some aspects
of the so-called Kobayashi-Hitchin correspondence. (See the introduction of [38] for
more detail.) In 1960’s, M. S. Narasimhan and C. S. Seshadri proved the correspon-
dence between irreducible flat unitary bundles and stable vector bundles with degree
0, on a compact Riemann surface ([47]). Clearly, it was desired to extend their result
to the higher dimensional case and the non-flat case.

In early 1980’s, S. Kobayashi introduced the Hermitian-Einstein condition for holo-
morphic bundles on Kahler manifolds ([30], [31]). He and M. Liibke ([37]) proved that
the existence of Hermitian-Einstein metric implies the polystability of the underlying
holomorphic bundle. S. K. Donaldson pioneered the way for the inverse problem ([12]
and [13]). He attributed the problem to Kobayashi and N. Hitchin. The definitive
result was given by K. Uhlenbeck, S. T. Yau and Donaldson ([64] and [14]). We also
remark that V. Mehta and A. Ramanathan ([40]) proved the correspondence in the
case where the Chern class is trivial, i.e., the correspondence of flat unitary bundles
and stable vector bundles with trivial Chern classes.

On the other hand, it was quite fruitful to consider the correspondences for vec-
tor bundles with some additional structures like Higgs fields, which was initiated by
Hitchin ([22]). He studied the Higgs bundles on a compact Riemann surface and the
moduli spaces. His work has influenced various fields of mathematics. It involves a lot
of subjects and ideas, and one of his results is the correspondence of the stability and
the existence of Hermitian-Einstein metrics for Higgs bundles on a compact Riemann
surface.

1.1.2. A part of C. Simpson’s work. — C. Simpson studied the Higgs bundles
over higher dimensional complex manifolds, influenced by the work of Hitchin, but
motivated by his own subject: Variation of Polarized Hodge Structure. He made great
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innovations in various areas of algebraic geometry. Here, we recall just a part of his
huge work.

Let X be a smooth irreducible projective variety over the complex number field,
and F be an algebraic vector bundle on X. Let (F,0) be a Higgs bundle, i.c., 6 is
a holomorphic section of End(E) ® Q;(’O satisfying #2 = 0. The “stability” and the
“Hermitian-Einstein metric” are naturally defined for Higgs bundles, and Simpson
proved that there exists a Hermitian-Einstein metric of (E, 6) if and only if (F, 6) is
polystable. In the special case where the Chern class of the vector bundle is trivial,
the Hermitian-Einstein metric gives the pluri-harmonic metric. Together with the
result of K. Corlette who is also a great progenitor of the study of harmonic bundles
([6]), Simpson obtained the Trinity on a smooth projective variety:

Algebraic Geometr Topolo
g . y Differential Geometry p . gy
(1) polystable Higgs bundle |« . — | semisimple
o harmonic bundle
(trivial Chern class) local system

If (E, 0) is a stable Higgs bundle, then (E, a-0) is also a stable Higgs bundle. Hence
we obtain the family of stable Higgs bundles {(E, a-0) | a € C*}‘ Correspondingly,
we obtain the family of flat bundles { L, | aeC *}‘ Simpson showed that we obtain
the variation of polarized Hodge structure as a limit lim,_,o L. In particular, it can
be concluded that any flat bundle can be deformed to a variation of polarized Hodge
structure. As one of the applications, he obtained the following remarkable result

([55]):

Theorem 1.1 (Simpson). Let T be a rigid discrete subgroup of a real algebraic group
which is not of Hodge type. Then I' cannot be a split quotient of the fundamental
group of a smooth irreducible projective variety.

There are classical known results on the rigidity of subgroups of Lie groups. The
examples of rigid discrete subgroups can be found in 4.7.1-4.7.4 in the 53 page of
[55]. The classification of real algebraic group of Hodge type was done by Simpson.
The examples of real algebraic group which is not of Hodge type can be found in the
50 page of [55]. As a corollary, he obtained the following.

Corollary 1.2. — SL(n,Z) (n > 3) cannot be a split quotient of the fundamental group
of a smooth irreducible projective variety.

1.2. Main Purpose

1.2.1. Kobayashi-Hitchin correspondence for parabolic Higgs bundles

It is an important and challenging problem to generalize the correspondence (1)
to the quasiprojective case from the projective case. As for the correspondence of
harmonic bundles and semisimple local systems, an excellent result was obtained by
J. Jost and K. Zuo [29], which says there exists a tame pluri-harmonic metric on
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1.2. MAIN PURPOSE 3

any semisimple local system over a quasiprojective variety. The metric is called the
Corlette-Jost-Zuo metric.

In this paper, we restrict ourselves to the correspondence between Higgs bundles
and harmonic bundles on a quasiprojective variety Y. More precisely, we should
consider not Higgs bundles on Y but parabolic Higgs bundles on (X, D), where (X, D)
is a pair of a smooth irreducible projective variety and a normal crossing divisor such
that Y = X — D. Such a generalization has been studied by several people. In the
non-Higgs case, J. Li [35] and B. Steer-A. Wren [62] established the correspondence.
In the Higgs case, Simpson established the correspondence in the one dimensional
case [52], and O. Biquard established it in the case where D is smooth [5].

Remark 1.3. — Their results also include the correspondence in the case where the
characteristic numbers are non-trivial.

For applications, however, it is desired that the correspondence for parabolic Higgs
bundles should be given in the case where D is not necessarily smooth, which we
would like to discuss in this paper.

We explain our result more precisely. Let X be a smooth irreducible projective
variety over the complex number field provided an ample line bundle L. Let D be a
simple normal crossing divisor of X. The main purpose of this paper is to establish
the correspondence between tame harmonic bundles and i -parabolic Higgs bundles
whose characteristic numbers vanish. (See Chapter 3 for the meaning of the words.)

Theorem 1.4 (Proposition 5.1-5.3, and Theorem 9.4). — Let (E..0) be a regular fil-
tered Higgs bundle on (X, D), and we put E := E\x_p. It is pr-polystable with
trivial characteristic numbers, if and only if there exists a pluri-harmonic metric h of
(E,0) on X — D which is adapted to the parabolic structure. Such a metric is unique
up to an obvious ambiguity.

Remark 1.5. — Regular Higgs bundles and parabolic Higgs bundles are equivalent.
See Chapter 3.

Remark 1.6. — More precisely on the existence result, we can show the existence of
the adapted pluri-harmonic metric for pz-stable reflexive saturated regular filtered
Higgs sheaf on (X, D) with trivial characteristic numbers. (See Sections 3.1-3.2 for
the definition.) Then, due to our previous result in [44], it is a regular filtered Higgs
bundle on (X, D), in fact.

We are mainly interested in the pj-stable parabolic Higgs bundles whose charac-
teristic numbers vanish. But we also obtain the following theorem on more general
jtr-stable parabolic Higgs bundles.

Theorem 1.7 (Theorem 6.5). — Let X be a smooth irreducible projective variety of an
arbitrary dimension, and D be a simple normal crossing divisor. Let L be an ample
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4 CHAPTER 1. INTRODUCTION

line bundle on X . Let (E,,0) be a puy,-stable reqular filtered Higgs bundle in codimen-
sion two on (X, D). Then the following inequality holds:

Jx par-c?  (E.)
-ch E)- =~ = "~ <
/X par-chy, . (E.) 2rank F =0

Such an inequality is called Bogomolov-Gieseker inequality.

1.2.2. Strategy for the proof of Bogomolov-Gieseker inequality. — We
would like to explain our strategy for the proof of the main theorems. First we
describe an outline for Bogomolov-Gieseker inequality (Theorem 1.7), which is much
easier. We have only to consider the case dim X = 2. Essentially, it consists of the
following two parts.

(1) The correspondence in the graded semisimple case :
We establish the Kobayashi-Hitchin correspondence for graded semisimple
parabolic Higgs bundles. In particular, we obtain the Bogomolov-Giescker
inequality in this case.
(2) Perturbation of the parabolic structure and taking the limit :
Let (oE, F,0) be a given c-parabolic py-stable Higgs bundle, which is not neces-
sarily graded semisimple. For any small positive number ¢, we take a perturba-
tion F9) of F such that (cE, F), 0) is a graded semisimple up,-stable parabolic
Higgs bundle. Then the Bogomolov-Gieseker inequality holds for (o F, F, 0).
By taking a limit for ¢ — 0, we obtain the Bogomolov-Gieseker inequality for
the given (.E, F,0).
Let us describe for more detail.
(1) In [55], Simpson constructed a Hermitian-Einstein metric for Higgs bundle by
the following process:

(i) : Take an appropriate initial metric.
(ii) : Deform it along the heat equation.
(iii) : Take a limit, and then we obtain the Hermitian-Einstein metric.

If the base space is compact, the steps (ii) and (iii) are the main issues, and the
step (i) is trivial. Actually, Simpson also discussed the case where the base Kahler
manifold is non-compact, and he showed the existence of a Hermitian-Einstein metric
if we can take an initial metric whose curvatures satisfy some finiteness condition.
(See Section 2.2 for more precise statements.) So, for a uy-stable e-parabolic Higgs
bundle (.F, F,0) on (X, D), where X is a smooth projective surface and D is a simple
normal crossing divisor, ideally, we would like to take an initial metric of E' := (Ejx_p
adapted to the parabolic structure. But, it is rather difficult, and the author is not
sure whether such a good metric can always be taken for any parabolic Higgs bundles.
It seems one of the main obstacles to establish the Kobayashi-Hitchin correspondence
for parabolic Higgs bundles.

ASTERISQUE 309



1.2. MAIN PURPOSE 5

However, we can easily take such a good initial metric, if we assume the vanishing of
the nilpotent part of the residues of the Higgs field on the graduation of the parabolic
filtration. Such a parabolic Higgs bundle will be called graded semisimple in this
paper. We first establish the correspondence in this easy case. (Proposition 6.1).

(2) Let (E, F,0) be a up-stable e-parabolic Higgs bundle on (X, D), where dim X =
2. We take a perturbation of F) as in Section 3.3. In particular, (oF, F), 0) is a
ir-stable graded semisimple e-parabolic Higgs bundle, and the following holds:

par-c,(cE, F) = par-c; (. E, F(E))7

‘/ par-chy (o E, F) — / par-chy (B, F)| < C -e.
X Jx

Then we obtain the Bogomolov-Gieseker inequality for (., F(),6) by using the
Hermitian-Einstein metric obtained in (1). By taking the limit ¢ — 0, we obtain
the desired inequality for the given (. £, F,0).

1.2.3. Strategy for the proof of Kobayashi-Hitchin correspondence. — Let
X be a smooth projective surface, and D be a simple normal crossing divisor. Let L
be an ample line bundle on X, and w be the Kahler form representing ¢; (L). Roughly
speaking, the correspondence on (X, D) as in Theorem 1.4 can be divided into the
following two parts:

— For a given tame harmonic bundle (E,dg,0,h) on X — D, we obtain the py-
polystable parabolic Higgs bundle (.F, F, ) with the trivial characteristic num-
bers.

— On the converse, we obtain a pluri-harmonic metric of (E75E, #) on X — D for
such (.E, F,0).

As for the first issue, most problem can be reduced to the one dimensional case,
which was established by Simpson [52]. However, we have to show the vanishing of
the characteristic numbers, for which our study of the asymptotic behaviour of tame
harmonic bundles ([44]) is useful.

As for the second issue, we use the perturbation method, again. Namely, let
(cE, F,0) be a ur-stable c-parabolic Higgs bundle on (X, D). Take a perturbation
F(© of the filtration F for a small positive number e. We also take metrics appropriate
we of X — D such that lim._. g w. = w, and then we obtain Hermitian-Einstein metrics
h. for the Higgs bundle (F,dg,0) on X — D with respect to w,, which is adapted to
the parabolic structure F©, Ideally, we would like to consider the limit lim, g he,
and we expect that the limit gives the Hermitian-Einstein metric h for (E, 9, §) with
respect to w, which is adapted to the given filtration F'. Perhaps, it may be correct,
but it does not seem easy to show, in general.

We restrict ourselves to the simpler case where the characteristic numbers of
(cE, F,0) are trivial. Under this assumption, we show such a convergence. More
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6 CHAPTER 1. INTRODUCTION

precisely, we show that there is a subsequence {¢;} such that {(E,@;,ﬁ,hq} con-
verges to a harmonic bundle (E’,dps,0',h') on X — D, and we show that the given
(cE, F,0) is isomorphic to the parabolic Higgs bundles obtained from (E’, 0y, 60', h').

Remark 1.8. — We obtained a similar correspondence for A-connections in [46]. Al-
though the essential ideas are same, we need some additional argument in the case of
A-connections.

1.3. Additional Results

1.3.1. Torus action and the deformation of a G-flat bundle. — Once The-
orem 1.4 is established, we can use some of the arguments for the applications given
in the projective case. For example, we can deform any flat bundle to the one which
comes from a variation of polarized Hodge structure. We follow the well known frame-
work given by Simpson with a minor modification. We briefly recall it, and we will
mention the problem that we have to care about in the process.

Let X be a smooth irreducible projective variety, and D be a simple normal crossing
divisor with the irreducible decomposition D = |J,.g D;. Let  be a point of X — D.
Let I denote the fundamental group m (X — D,x). Any representation of I' can be
deformed to a semisimple representation, and hence we start with a semisimple one.

Let (E,V) be a flat bundle over X — D such that the induced representation
p:I' — GL(E),) is semisimple. Recall we can take a Corlette-Jost-Zuo metric of
(E,V), as mentioned in Subsection 1.2.1. Hence we obtain a tame pure imaginary
harmonic bundle (E,dg,#,h) on X — D, and the induced jip-polystable e-parabolic
Higgs bundle (.E, F,0) on (X, D), where ¢ denotes any element of R®. We have the
canonical decomposition (¢F, F,0) = @,(cEs, F;,0;)® ™, where each (o E;, F;,0;) is
wr-stable.

Let us consider the family of c-parabolic Higgs bundles (CE7 F.t- 0) for t € C*,
which are pp-polystable. Due to the standard Langton’s trick [33], we have the
semistable c-parabolic Higgs sheaves (CEZ-,I?‘Z-, 9:) which are limits of (o£;, Fy,t - Oi)
in t — 0. On the other hand, we can take a pluri-harmonic metric h; of the Higgs
bundle (E,Jg,t-60) on X — D for each t, which is adapted to the parabolic structure.
(Theorem 1.4). Then we obtain the family of flat bundles (E,D}), and the associated
family of the representations {pt ' — GL(E;) ’t € C*}. Since (E, 0, t-0,h;) is
tame pure imaginary in the case t € R, the representations p; are semisimple. The
family {p; | t € C*} should be continuous with respect to ¢, and the limit lim; . p;
should exist, ideally. We formulate the continuity of p; with respect to t and the
convergence of p; in t — 0, as follows. Let V' be a C-vector space such that rank(V') =
rank(F). Let hy denote the metric of V, and let U(hy ) denote the unitary group for
hy. We put R(T', V) := Hom(I', GL(V)). By the conjugate, U(hy) acts on the space

ASTERISQUE 309



1.3. ADDITIONAL RESULTS 7

R(I, V). Let M(T,V, hy) denote the usual quotient space. Let mqrvy @ R(I', V) —
M (T, V, hy) denote the projection.

By taking any isometry (Ej;,h,) ~ (V,hy), we obtain the representation pj :
I' — GL(V). We put P(t) := maLv)(p;), and we obtain the map P : C* —
M(T,V, hy). It is well defined. Then, we obtain the following partial result.

Proposition 1.9 (Theorem 10.1, Lemma 10.2, Proposition 10.3)

1. The induced map P is continuous.

2. P({0 <t < 1}) is relatively compact in M(T,V, hy).

3. If each (cEi, ﬁ‘i, 571) is stable, then the limit lim;_o P(t) exists, and the limit flat
bundle underlies the variation of polarized Hodge structure. As a result, we can
deform any flat bundle to a variation of polarized Hodge structure.

We would like to mention the point which we will care about. For simplicity, we
assume (o F, F,0) is pp-stable, and (CE, F.t. 9) converges to the pp-stable parabolic
Higgs bundle (Cﬁ,f‘,g). Let {t;} denote a sequence converging to 0. By taking
an appropriate subsequence, we may assume that the sequence {(E, g, hy,, t;-0;)}
converges to a tame harmonic bundle (E’, 0/, h',0") weakly in L} locally over X — D,
which is due to Uhlenbeck’s compactness theorem and the estimate for the Higgs
fields. Then we obtain the induced parabolic Higgs bundle (.E’, F',6"). We would
like to show that (CE F, 67) and (oE', F’',0") are isomorphic. Once we have known the
existence of a non-trivial map G : (£’ — < E which is compatible with the parabolic
structure and the Higgs field, it is isomorphic due to the stability of (CE , f‘, (;) Hence
the existence of such G is the main issue for this argument. We remark that the
problem is rather obvious if D is empty.

Remark 1.10. — Even if (CEMIE',,():) are not pp-stable, the conclusion in the third
claim of Proposition 1.9 should be true. In fact, Simpson gave a detailed argument
to show it, in the case where D is empty ([56], [57]). More strongly, he obtained the
homeomorphism of the coarse moduli spaces of semistable flat bundles and semistable
Higgs bundles.

In this paper, we do not discuss the moduli spaces, and hence we omit to discuss the
general case. Instead, we use an elementary inductive argument on the rank of local
systems, which is sufficient to obtain a deformation to a variation of polarized Hodge
structure. However, it would be desirable to arrive at the thorough understanding as
Simpson’s work, in future.

Remark 1.11. — For an application, we have to care about the relation between the

deformation and the monodromy groups. We will discuss only a rough relation in
Section 10.2. More precise relation will be studied elsewhere.
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8 CHAPTER 1. INTRODUCTION

Once we can deform any local system on a smooth quasiprojective variety to a
variation of polarized Hodge structure, preserving some compatibility with the mon-
odromy group, we obtain the following corollary. It is a natural generalization of
Theorem 1.1.

Corollary 1.12. — Let T" be a rigid discrete subgroup of a real algebraic group which
is not of Hodge type. Then I' cannot be a split quotient of the fundamental groups of
any smooth irreducible quasiprojective variety.

Remark 1.13. —— Such a deformation of flat bundles on a quasiprojective variety was
also discussed in [28] in a different way.

1.3.2. Tame pure imaginary pluri-harmonic reduction (Appendix). — Let
G be a linear algebraic group defined over C or R. We will discuss a characterization of
reductive representations 7y (X — D, z) — G via the existence of tame pure imaginary
pluri-harmonic reduction. Here a representation is called reductive, if the Zariski
closure of the image is reductive. Such a kind of characterization was given by Jost
and Zuo ([29]) directly for G, although their definition of reductivity looks different
from ours. It is our purpose to explain that the problem can be reduced to the case
G = GL(n) by Tannakian consideration. Some results are used in Chapter 10.

1.4. Outline

Chapter 2 is an elementary preparation for the discussion in the later chapters.
The reader can skip this chapter. Chapter 3 is preparation about parabolic Higgs
bundles. We discuss the perturbation of a given filtration in Section 3.3, which is one
of the keys in this paper.

In Chapter 4, an ordinary metric for parabolic Higgs bundle is given. We follow
the construction in [35] and [36]. Our purpose is to establish the relation between the
parabolic characteristic numbers and some integrals, in the case of graded semisimple
parabolic Higgs bundles.

In Chapter 5, we show the fundamental properties of the parabolic Higgs bundles
obtained from tame harmonic bundles. Namely, we show the pp-stability and the
vanishing of the characteristic numbers. In Chapter 6, we show the preliminary
Kobayashi-Hitchin correspondence for graded semisimple parabolic Higgs bundles.
Bogomolov-Gieseker inequality can be obtained as an easy corollary of this preliminary
correspondence and the perturbation argument of the parabolic structure.

In Chapter 7, we construct a frame around the origin for a tame harmonic bundle
on a punctured disc. It is a technical preparation to discuss the convergence of a
sequence of tame harmonic bundles. Such a convergence is shown in Chapter 8. We
also give a preparation for the existence theorem of pluri-harmonic metric, which is
completed in Chapter 9.
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Once the Kobayashi-Hitchin correspondence for tame harmonic bundles is estab-
lished, we can apply Simpson’s argument of the torus action, and we can obtain some
topological consequence of quasiprojective varieties. It is explained in Chapter 10.
Chapter 10.2.3 is regarded as an appendix, in which we recall something related to
pluri-harmonic metrics of G-flat bundles.
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CHAPTER 2

PRELIMINARY

This chapter is a preparation for the later discussions. We will often use the
notation given in Sections 2.1-2.2; especially.

2.1. Notation and Words

We use the notation Z, Q, R and C to denote the set of integers, rational numbers,
real numbers and complex numbers, respectively. For a real number a, we put R~ :=
{z € R|z > a}. We use the notation Zsq, Z>q, Q~,, ¢tc. in a similar meaning.

For real numbers a, b, we put as follows:

[a,b] :=={z e Rla<z<b} [a,bi={z€eR|a<z<b}
la,b] . ={zx € Rla<x <b} Ja,bi={xe€ R|la<xz<b}

The notation ¢; ; will be Kronecker’s delta, i.e., §; ; = 1 (¢ = j) and d; ; = 0 (¢ # j).

A normal crossing divisor D of a complex manifold X will be called simple, if
each irreducible component is non-singular. Let D = J,c4 D; be the irreducible
decomposition. For elements @ € R, a; will denote the i-th component of a (i € S).
The notation 4 F is often used to denote a vector bundle on X, and we often put
FE = GE|X—D'

Let Y be a manifold, F be a vector bundle on Y, and {f;} be a sequence of sections
of E. We say {fi} converges to f weakly in L} locally on Y, if the restriction {f;| s}
converges to fjx weakly in LY(K) for any compact subset K C Y.

Let {(E@'),E(”,e(i))} be a sequence of Higgs bundles on Y. We say that the
sequence {(E(i)75(i),9(i))} converges to (E(w),g(oo)
C') locally on Y, if there exist locally L-isomorphisms (resp. C'-isomorphisms)
e . B®W — E(*) on Y such that the sequences {®(*) (5(1‘))} and {®®(9)}

weakly converge to 5(00) and 0(>) respectively in L¥ (resp. C°) locally on Y.

,00)) weakly in L} (resp. in
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Let E be a vector bundle on Y with a hermitian metric h. For an operator F' €
End(E) ® Q%% we use the notation F € End(E) @ Q%" to denote the adjoint of F
with respect to h. The notation F' is often used, if there are no risk of confusion.

Let (S;, ;) (i = 1,2,...,00) be a pair of discrete subsets S; C R and functions
@i+ S; — Z~o. We say that {(S’,-,(p,») |L =1,2,.. } converges to (Soo, Yoo ), if there
exists 7o for any € > 0 such that (i) any b € S; (i > ip) is contained in a — €, a + €[ for
some a € Seo, (ii) Zbesi,la—b|<e vi(b) = poo(a) is satisfied.

2.2. Review of some Results of Simpson on Kobayashi-Hitchin Correspon-
dence

2.2.1. Analytic stability and Hermitian-Einstein metric. — We recall some
results in [51]. Let Y be an n-dimensional connected complex manifold which is not
necessarily compact. Let w be a Kahler form of Y. The adjoint for the multiplication
of w is denoted by A, or simply by A if there are no confusion. The Laplacian for w
is denoted by A,,.

Condition 2.1
1. The volume of Y with respect to w is finite.
2. There exists an exhaustion function ¢ on Y such that 0 < \/=199¢ < C - w for
some positive constant C'.
3. There exists an increasing function R>o — R>¢ such that a(0) = 0 and
a(x) = x for x > 1, and the following holds:
— Let f be a positive bounded function on Y such that A, f < B for some
positive number B. Then supy |f| < C(B) - a(fy f) for some positive
constant C(B) depending on B. Moreover A, f < 0 implies A, f = 0.

Let (E,0p,0) be a Higgs bundle on Y. Let h be a hermitian metric of E. Then
we have the (1,0)-operator O determined by 9h(u,v) = h(ggu, v) + h(u, 5‘Ev). We
also have the adjoint 8. If we emphasize the dependence on h, we use the notation
Op,n and 0};. We obtain the connections D}, := 0p + 0p and D! := Dy + 0 + 6.
The curvatures of Dy and D! are denoted by R(h) and F(h) respectively. When we
emphasize the dependence on O, they are denoted by R(dg,h) and F(9p,h). We
also use R(E,h) and F(FE,h), if we emphasize the bundle.

Condition 2.2. — F(h) is bounded with respect to h and w.

When Condition 2.2 is satisfied, we put as follows:

V-1 4 vl w™

Eh):=—— [ tr(F(h)) w" " = —— [ trA(F(h)) - —

deg (B = Y [ ax(F(h) -0 = 2 [ a2
Note tr F'(h) = tr R(h). Recall that a subsheaf V' C E is called saturated if the
quotient E/V is torsion-free. For any saturated Higgs subsheaf V' C E, there is a
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Zariski closed subset Z of codimension two such that Vjy_z gives a subbundle of
E}y_z, on which the metric hy of Vjy_z is induced. Let 7y denote the orthogonal
projection of E|y_z onto Vjy_z. Let try denote the trace for endomorphisms of V.

Proposition 2.3 ([51] Lemma 3.2). When the conditions 2.1 and 2.2 are satisfied,

the integral
=,

deg,(V, hy) : try (F(hy)) - w™!

is well defined, and it takes the value in RU{—oc}. The Chern-Weil formula holds
as follows, for some positive number C':

deg  (V,hy) = /tr 7T\/OA F(h))-— —C/‘D”m/’} - dvol,,

Here we put D" = 0 + 0. In particular, if the value deg,,(V, hy) is finite, Op(my)
and [0, 7y are L*.

For any V C E, we put u,(V,hy) :=deg,(V,hy)/rank V.

Definition 2.4 ([51]). A metrized Higgs bundle (F, Jg,0,h) is called analytic stable,
if the inequalities u,(V,hy) < po(E,h) hold for any non-trivial Higgs saturated
subsheaves (V,0y) C (F, ).

The following important theorem is crucial for our argument.

Proposition 2.5 (Simpson). — Let (Y,w) be a Kahler manifold satisfying Condi-
tion 2.1, and let (E,0g,0,ho) be a metrized Higgs bundle satisfying Condition 2.2.
If it is analytic stable, then there exists a hermitian metric h = hg - s satisfying the
following conditions:

— h and ho are mutually bounded.
det(h) = det(hg). In particular, we have tr F(h) = tr F'(hg).
— D"(s) is L* with respect to hg and w.
It satisfies the Hermitian-Einstein condition A,F(h)*: = 0, where F(h)* de-
notes the trace free part of F(h).
The following equalities hold:

(2) /Y tr(F(h)Q) W2 = /Y tr(F(ho)2> CwT2,
(3) | /Y tr(F(mlz) W2 = /Y tr<F(h0)”) L2,

Proof. — Condition 2.2 implies A, F'(h) is bounded. Applying Theorem 1 in [51], we
obtain the hermitian metric h satisfying the first four conditions. Due to Proposi-
tion 3.5 in [51], we obtain the inequality [, tr(F(h)?) w2 < [, tr(F(hg)?) - w" 2.
Since we have assumed the boundedness of F'(hg), we also obtain [, tr(F(h)?)-w" ™% >
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fy tr(F(ho)?) - w2 due to Lemma 7.4 in [51], as mentioned in the remark just be-
fore the lemma. Therefore, we obtain (2). Since we have tr F'(hg) = tr F/(h), we also

obtain (3). O
2.2.2. Uniqueness. — The following proposition can be proved by the methods
in [51].

Proposition 2.6. — Let (Y,w) be a Kahler manifold satisfying Condition 2.1, and
(E,0p,0) be a Higgs bundle on Y. Let h; (i = 1,2) be hermitian metrics of E
such that A,F(h;) = 0. We assume that hy and hs are mutually bounded. Then the
following holds:
— We have the decomposition of Higgs bundles (E,0) = @(E,,0,) which is or-
thogonal with respect to both of h;.
— The restrictions of h; to E, are denoted by h; . Then there exist positive num-
bers b, such that hiq = bq - ho .

Proof. — We take the endomorphism s; determined by ho = h; - s7. Then we have
the following inequality due to Lemma 3.1 (d) in [51] on X — D:

Ay logtr(si) < |AuF(hy)| + |AuF (ha)| = 0.

Here we have used A, F(h;) = 0. Then we obtain A, tr(sl) < 0. Since the function
tr(s1) is bounded on Y, we obtain the harmonicity A, tr(s1) = 0 due to Condition 2.1.

We put D" = 0406 and D' = Op.n, + 911, where 0;1 denotes the adjoint of § with
respect to the metric hy. Then we also have the following equality:

0= F(hg) — F(h,l) = D"(sl_lD/sl) = —s;'D"s;-s7"' - D's; +57'D"D'sy.

Hence we obtain D" D’'sy = D”sy - 31_1 - D’s1. As a result, we obtain the following
equality:

/\SII/QD/’slﬁl dvol, = —v/—1 /Aw tr(D"D’sy) dvol, = — /Aw tr(sy) dvol, = 0.

Hence we obtain D”s; = 0, i.e., Os; = [9, 31] = (. Since s; is self-adjoint with respect
to hi, we obtain the flatness (5 + 0p.h, )S 1 = 0. Hence we obtain the decomposition
E = @,cq Ea such that s, = @b, -idg, for some positive constants b,. Let g,
denote the orthogonal projection onto E,. Then we have drp, = 0. Hence the
decomposition £ = @, ¢ F, is holomorphic. It is also compatible with the Higgs
field. Hence we obtain the decomposition as the Higgs bundles. Then the claim of
Proposition 2.6 is clear. O

Remark 2.7. —— We have only to impose A, F(h1) = A, F(hg) instead of A, F(h;) =0,
which can be shown by a minor refinement of the argument.
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2.2.3. The one dimensional case. — In the one dimensional case, Simpson es-
tablished the Kobayashi-Hitchin correspondence for parabolic Higgs bundle. Here we
recall only the special case. (See Chapter 3 for some definitions.)

Proposition 2.8 (Simpson). — Let X be a smooth irreducible projective curve, and D
be a simple divisor of X. Let (E*,H) be a filtered regqular Higgs bundle on (X, D).
We put E = cE\x_p. The following conditions are equivalent:

— (E.,0) is poly-stable with par-deg(E.,) = 0.
— There exists a harmonic metric h of (E,0), which is adapted to the parabolic
structure of E..

Moreover, such a metric is unique up to obvious ambiguity. Namely, let h; (i = 1,2)
be two harmonic metrics. Then we have the decomposition of Higgs bundles (E,0) =
D(E., 0,) satisfying the following:

— The decomposition is orthogonal with respect to both of h;.
— The restrictions of h; to E, are denoted by h; ,. Then there exist positive num-
bers b, such that hi o = by - ho .

Proof — See [52]. We give only a remark on the uniqueness. Let (E,dg,6) be
a Higgs bundle on X — D, and h; (i = 1,2) be harmonic metrics on it. Assume
that the induced prolongments E(h;) are isomorphic. (See Section 3.5 for prolong-
ment.) Recall the norm estimate for tame harmonic bundles in the one dimensional
case ([52]), which says that the harmonic metrics are determined up to boundedness
by the parabolic filtration and the weight filtration. Hence we obtain the mutually
boundedness of hy and hy. Then the uniqueness follows from Proposition 2.6. O

2.3. Weitzenb6ck Formula

Let (Y,w) be a Kahler manifold. Let i be a Hermitian-Einstein metric for a Higgs
bundle (E,dg,0) on Y. More strongly, we assume A, F(h) = 0. The following lemma
is a minor modification of Weitzenbock formula for harmonic bundles by Simpson

([52)).

Lemma 2.9. — Let s be any holomorphic section of E such that 0s = 0. Then we
have Ay log|s|? <0, where A, denotes the Laplacian for w.

Proof. — We have 90|s|7 = 0(s,0ps) = (0ps,0rs) + (5,050ps) = (0rs,0ps) +
(s, R(h)s). Then we obtain the following:

9d|s|*  dls|*- dls]* _ (s, R(h)s) N (05, 0ps)  ls*-|s|*

001 2
olsh = T P M M o7
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We have R(h) = — (010 + 007) + F(h)"D | where F(h)D denotes the (1,1)-part of
F(h). Hence we have the following;:

(4) Au(s, R(h)s) = A, (s (—00" — 91‘9)3) + A (s, F(h)Ds)
= —Au(075,07s) — Ay (0s,05) + A (s, F(h) M Ds) = —A, (075, 07s).
Here we have used A, F(h) = A,F(h)"Y) = 0. Therefore we obtain the following:
V1AL (s, R(h)s) = V1A, (81s,61s) = — |61}

On the other hand, we also have the following:
e He 125 |2
_JTIAL ((ds,ds) IREIRCIE] )

P) BE
Hence we obtain A, log|s|? < 0. O

< 0.

S

2.4. A Priori Estimate of Higgs Fields

2.4.1. On a disc. — We put X(T) := {z € C||z| < T} for any positive number
T. In the case T =1, X(1) is denoted by X. We will use the usual Euclidean metric
g = dz - dz and the induced measure dvol,. The corresponding Kahler form w is
given by /—1dz A dZ/2. Let A” denote the Laplacian —v/—1A,90 = —20.0,. By
the standard theory of Dirichlet problem, there exists a constant C’ such that the
following holds:

— We have the solution ¢ of the equation A" = k such that [ (P)| < C' - ||| L2

for any L2-function s and for any P € X.

Let (F,0g,0) be a Higgs bundle on X with a hermitian metric . We have the

expression 8 = f - dz. We would like to estimate of the norm | f ‘ ,, Dy the eigenvalues

of g and the L*norm ||[F(h)| ., := [y [F(h)[} , - dvol,.

Proposition 2.10. — Let t be any positive number such that t < 1. There exist con-
stants C' and C’ such that the following inequality holds on X (t):

I3 < C -0 IFMIL:,

The constant C' is as above. The constant C depends only on t, the rank of E and
the eigenvalues of f.

Proof. Let us begin with the following lemma, which is just a minor modification
of the fundamental inequality in the theory of harmonic bundles.

Lemma 2.11. — We have the inequality:

1 2
A"log |f]f, < —W—{fl’z}—'h + 5 ()] n.g-
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Proof. — By a general formula, we have the following inequality:
_ . » [R(R),
—V/=1A,dd1og|f]; < —v—lAw(f[|—J(P‘2)f])—h.
h
We obtain the desired inequality from R(h) = F'(h)—1[0,0'] = F(h)~[f, f1]-dz-dz. O

Let us take a function A satisfying A”A = 5|F(h)|;, and |A| < 5C'||F(h)|[z2. Then

we obtain the following:
. 2
" 012 " 0|2 —A Hf’fTHh
A (10g|f|h_A) =A 10g‘([f|h'(:‘ ) < - |f‘2 :
h

For any @ € X, let a1(Q), ..., ank(p)(Q) denote the eigenvalues of fio. We
put v(Q) = 2 0y (Q)? and p(Q) =
shown that there exists a constant C; which depends only on the rank of E, such that
Cy-p? < Hf, j*]‘i Hence, the following inequality holds:

flolt — v(Q). Tt can be elementarily

2

. ’
A log(e - If}) £ =C1- 1
J1h

We also have a constant Cy which depends only on the eigenvalues of f, such that
v < Cy holds.

Let T be a number such that 0 < T < 1, and ¢r : X(T) — R is given by the
following:

4T?
) = T

Then we have A” log ¢ = —¢r and ¢r > 2. In particular, we have v < Cy - ¢ /2.
The following lemma is clear.

Lemma 2.12. — FEither one of |figlt < Cs - é7(Q) or |fiol? < 2u(Q) holds for any
Qe X.

We take a constant Cs > 0 satisfying Cs > Cy and 63 > 4-C ! and we put

Cy = Oy - PO IFMIL2 We put Sp = {PeX(T)| (e |f)(P) > Cs-dr(P)}.
For any point P € Sy, we have |f(P)|} > Cs - e*F) - ¢p(P) > Cy - ¢7(P). Due to
Lemma 2.12, we obtain the following:

Ch r,
— W@ S - R
On the other hand, we have the following:

A"log(Cs - ¢r) =

A"log(e - |f7)(P) <

1
e
Moreover, it is easy to see 9Sp N{|z| = T} = &. Hence, we obtain St = & by a
standard argument. (See [1], [52] or the proof of Proposition 7.2 in [44].) Namely,
we obtain the inequality e‘A|f|i < Oy - PO IFMI L2 ¢ on X(T). Taking a limit for

(Cs - ér).

SOCIETE MATHEMATIQUE DE FRANCE 2006



18 CHAPTER 2. PRELIMINARY

T — 1, we obtain |f|2 < e!0CIFMIL2 . Ty (1 —|22)"! on X. Then the claim of
Proposition 2.10 follows. O

2.4.2. A Priori Estimate on a Multi-disc. — For a positive number T', we put
Y(T) := {(21,...,2n) | |2i] < T}. Let g denote the metric 3" dz; - dz; of Y(T). Let
w be a Kahler form on Y (7') such that there exists a constant C' > 0 such that
C' w<g<C-w Let (E,0p,0) be a Higgs bundle with a hermitian metric h,
which is Hermitian-Einstein with respect to w. For simplicity, we restrict ourselves
to the case A, F'(h) = 0. We assume ||F(h)||L2 < oo, where |[F(h)| 2 denotes the
L2-norm of F(h) with respect to w and h. We have the expression # = S fi - dz; for
holomorphic sections f; € End(£) on Y/(T').

Lemma 2.13. — Take 0 < Ty < T. There exist some constants Cy and Cy such that
the following inequality holds for any P € Y (T1):

10g|f'|2(17) <Cp- HF(h)HLz + Ca.

The constants Cy and Cy are good in the sense that they depend only on T, Ty, rank E,
the eigenvalues of f; (i =1,2,...,n) and the constant C.

Proof. — We take a positive number T, such that T} < Ty < T. The induced
Higgs field and the metric of End(F) are denoted by 0 and h. Then the metric h
is a Hermitian-Einstein metric of (End(E),g) such that A,F(h) = 0. Because of
5(]‘,) = 0, we have the subharmonicity A, log | f1|,2, < 0 due to Lemma 2.9. We use
Theorem 9.20 in [18]. Note that A, u = —v/—1A,00u is expressed as — 5 a’:*jf)wiamj u,
where we use the real coordinate given by z; = x; +v/—1z,.,. (In terms of Chapter 9
of [18], we consider the case b' = ¢ = 0.) The matrix A = (a; ;) is symmetric and
positive definite, and the eigenvalues are bounded uniformly, due to the condition
C~!'-w < g <C-w. Hence, we obtain the following inequality for P € Y (T}):

08 A (P) < Ca- [ log” I dvol,.
Y (T2)
Here we put log" (y) := max{0,logy}, and C3 denotes a good constant.
The (1,1)-part of F(h) is expressed as Y F; ; - dz; - dz;. Due to Proposition 2.10,
there exist good constants C; (j = 4,5) such that the following inequality holds for
any point (z1,...,2,) € Y(T2):

1/2
IFLI(’wl,ZQ, . .,Zn)|2 vV —1dw1 A d@1> + 05.

wy|<T

log|f1]2(zl,...,zn) < (Cy - ([

Then the claim of Lemma 2.13 follows. Od
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2.5. Norm Estimate for Tame Harmonic Bundle in Two Dimensional Case

2.5.1. Norm estimate. — We recall some results in [44]. We use bold symbols
like a to denote a tuple, and a; denotes the i-th component of a. We say a < b for
a,be R?ifa; <b;. We put X := {(#1,22) € c? ‘ |z:] < 1}, D; = {z; = 0} and
D := D, UD,. Let (E,0g,0,h) be a tame harmonic bundle on X — D. For each
c=(c1,c2) € R?, we obtain the locally free sheaf .F on X with parabolic structure
'F (i =1,2), as in Section 3.5. We also obtain the Hig,gb field 0 of .E,. The residue
of # induces the endomorphism Gr’" Res;(0) € End(’ Gr" (E\p,)) whose eigenvalues
are constant on D;. Thus, the nilpotent part N of Gr’ Res;(0) is well defined. It is
shown that the conjugacy classes of N;| p are independent of P € D;. Let LW denote
the weight filtration of A} on ! GrF(E| Dy)-

We have two filtrations ‘F (i = 1,2) on ¢ E|. We put 2Grf =2 GI(I; ! Gra]( Eo).
The maps N; induce the endomorphisms of zGrg which are denoted by 2\j;. Let 2W
denote the weight filtration of 2N, 4+ 2M,. We also have the filtration induced by
Ly, which is denoted by the same notation. We can take a decomposition (F =
@(a,k)eRz «72 Ula,k) satisfying the following conditions:

~ "Fy(cEp,) = DBy, <p Uak| 0, and 'Fy, (cEj0) N2 Fy, (cEj0) = a<p Ua ko

— We have *W;,( Grf (:Eip,)) = @, —p.5y <k Uak| p, under the isomorphism

Gy (cBip,) = @,y Uak| D
— We have W, N 2W,, (ZGrg(cEw)) = @<k Uas under the isomorphism
2GI‘ E|()) @k a,l-

We take a holomorphic frame v = (vy, ..., v,) which is compatible with the decom-

position, i.e., for each v; we have (a(v;), k(v;)) € R? x Z? such that v; € Ua(v:) k(v:)-

Let iALl be a hermitian metric of E given as follows:

i—2a1(v,¢) 22|—2a2(1),1) (_ log |Zl |)k1(vq‘,) (_ log |Z2|)k2(m)—k‘1(vi)

hl(?)i,’l)j) = (Si’j . |Z1

We put Z = {(21,22) | [21] < |22|}.

Lemma 2.14. — h and /Azl are mutually bounded on Z.

2.5.2. Some estimate for related metrics. — We put X = {(¢1,¢) | 1G] < 1},

D; :={¢; =0} and D= D1 U Dg Let 7: X — D — X — D denote the map given
by m(¢1,(2) = (¢1G2,C2). Then, we have m ~1(Z) = X — D. Hence Lemma 2.14 is
reworded as 7*h and 7 h1 are mutually bounded.

We glve a preparation for later use. We put E = m*E. For a = (a1,az2) € R?,
we put @ := (ar,a1 + az). Then, we put 7*Uqsp = Ua,k We put v := 7m*v. We
putjil(%‘i) = a1(vi), a2(vi) = a1(vi) + az(vi), k;(V;) == k;(v;). Then, v; is a section
of Ua(w,) k()
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Let x be a non-negative valued function on R such that x(¢t) = 1 (t < 1/2)
and x(t) = 0 (t > 2/3). Let p(¢) : C* — R be the function given by p(¢) =
—x(|¢]) - log [¢]?. Then, we will use the following metrics later (Section 5.2)

ho (v, Uj) := 05 - H Kk|72ak(w)
k

ha(05,75) = ho(T,T) - (14 p(G) + p(G2)™ ™)+ (14 p(g)) =771
(

Then, hy and 7*h are mutually bounded. The curvature R(hg) is 0. Let & denote the

Poincaré metric of X — D:

o dG-d¢; d¢,
Z G (- log |G )2

Lemma 2.15. — R(hy) and Oy, — Oy, are bounded with respect to (@, h;) (i = 0,1).

Proof. — 9log(1+ p(C2)), 001log(1 + p(¢2)), Olog(1 + p(¢1) + p(¢2)) and 9D log(1 +
p(¢1) + p(¢2)) are bounded with respect to @. Then, the boundedness of R(h1) and
Oh, — O, follow. O

2.6. Preliminary from Elementary Calculus

Take € > 0 and N > 1. In this section, we use the following volume form dvol, x
of a punctured disc A*:

1V -1ldz Ndz
dvol, n := (6N+2 |22+ |2%) 1%

z
Let f be a function on a punctured disc A* such that || f||7. := [. |f]*-dvoley < oo.
We use the polar coordinate z = r-¢V~1?. For the decomposition f = S f(r)-eV 18,
we have || fl|3. =27 )", || fnll32, where || fn]|22 are given as follows:

2 ! 2 N42 2 o\ —1dp
1l :=/0 o) (N2 )

Proposition 2.16. — Let f be as above. Then we have a function v satisfying the
following:

dz Ndz
|2]2

200 = f - . )| <c- <|Z|66(N—1)/2 n |Z|1/2) A F e

The constant C' can be independent of €, N and f.

Proof. — We use the argument of S. Zucker in [66]. First let us consider the equation
Ou = f-dz/z. For the decomposition u = 3 u,(p) - eV=1n9 it is equivalent to the
following equations:

1 0
3 (raun -n- un> =fn, (neZ).

ASTERISQUE 309



2.6. PRELIMINARY FROM ELEMENTARY CALCULUS

We put as follows:

9pn jor p—n—lfn(p) -d

Up -

(n <0),

2r" [ p " ulp) -dp  (n>0).

Then u =Y uy

Lemma 2.17. — There exists C1 > 0 such that
(
€

N+2)/2 . e

- T

- eV=In? gatisfies the equation du = f - dz/Z.

172

[un(r)] < Cr - || fallLe -
|2 —
The constant Cy is independent of n, ¢, N and f.

Proof. — In the case n < 0, we have the following:

in1/2 +

(1+[n[)1/2

).

(5) fun(r)] < 20" < / ulp

do\ /2
N+2 26-1—/)2)_17'0)

r 1/2
% (/ p—2n—1( N+2p26 p2) d/)>
0
We have the following:
r o1, N42 2 9 d eN+2 . 7.26—27L T‘_27I'+2
/Op (7™ +p7)dp = 2¢ — 2n +—2n+2’
Hence we obtain the following:
(N+2)/2 e
€ o r
n <2 . .
fun(r)] < 2 fll2 <|26—2n|1/2 + |2—2n|1/2>
In the case n > 0, we also have the following:
r 1/2
un(r)] < 20" - || full L2 /A p 2N 2P 4 p?)dp
We have the following:
/ﬂr p~InT1eN+2 2 gl < N2 p—2n2e
Ja = | = 2n + 2¢| '
We also have the following:
- logr —log A (n=1)
/ p—2n+ldp _
A (—Qn + 2)—1(7.72714-2 _ A—2n+2) (TL > 2)
Therefore we obtain the following:
(N+2)/2 e 1/2
€ r r
<C-|fn

Thus we are done.
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Then let us consider the equation dv = w - dz/z. For the decomposition v =
S vy - eV it is equivalent to the following equations:

a n
3 < 011'0 +n- 1),,) =u,, (nez).

We put as follows:
r= e [ " un(p) - dp (n>0)
vp(r) =
e [ un(p) dp (n < 0).

Then we have 0v = w-dz/z for v:= 3 v, eV~ n® From Lemma 2.17, we obtain the
following in the case n > 0:

©) [ou(r)] < 2" //,‘ /)n—l e(N+1)/2 -p“ N p.l/z do- 1fullue
- Jo [2¢ — 2n|1/2 (1 +|n|)'/2 .

e(N+2)/2 7€ 1 rt/2
< Co -l fnllez - + :
- ' [2¢ —2n|Y2 In+¢|  (1+|n))/2n+1/2
We have a similar estimate in the case n < 0. Hence we obtain the following:

I<Z|vn )| < Cy - (€N D206 4 2) £,

Thus the proof of Proposmlon 2.16 is finished. O

2.7. Reflexive Sheaf

We recall some general facts about reflexive sheaves. See [21] and [41] for some
more properties of reflexive sheaves. Let X be a complex manifold. Recall that
a coherent Ox-module £ is called reflexive, if £ is isomorphic to the double dual
EVV = Hom(Hom(&, Ox), Ox) of €. Recall we can take a resolution locally on X
(Lemma 3.1 of [41]):

(7) 0—E&—Vy— V1 —0

Here V is locally free and V; is torsion-free. The following Hartogs type theorem is
well known.

Lemma 2.18. — Let Z be a closed subset of X whose codimension is larger than 2.
Let f be a section of a reflexive sheaf € on X \ Z. Then f is naturally extended to
the section of £ over X.

Proof. — We have only to check the claim locally. Let us take a resolution (7 ) and
then f induces the section of f of Vg on X — Z. Due to the Hartogs’ theorem, f can
be extended to the section on X. Since it is mapped to 0 in V;, we obtain the section
of £ on X. O

The converse is also true.

ASTERISQUE 309



2.8. MODULI SPACES OF REPRESENTATIONS 23

Lemma 2.19. — Let F be a torsion-free coherent sheaf on X such that any section f
of F on U — Z is extended to the section on U, where U denotes an open subset and
Z denotes a closed subset with codim Z > 2. Then F is reflexive.

Proof. We have the inclusion ¢ : F — FVV, which is isomorphic outside of the
subset Zy C X with codim(Zy) > 2. Then, we obtain the surjectivity of ¢ from the
given property of F, and thus ¢ is isomorphic. O

Lemma 2.20. — If £ is refiexive, £ ® Op is torsion-free for a divisor D.

Proof. Take a resolution as in (7). Because of Tor' (V1,0p) = 0, we obtain the
injection £ ® Op — Vg ® Op, and hence & ® Op is torsion-free. O

Lemma 2.21. — If € is a reflexive sheaf, Hom(F,E) is also reflexive for any coherent
sheaf F.

Proof. — Let us check the condition in Lemma 2.19. Let U be a small open subset,
on which we have a resolution V_; —— (9@97' L F—0onU. Let f be a homomor-
phism F — & on U \ Z, where codim Z > 2. The morphism O??" — & is naturally
induced on U \ Z, which is naturally extended to the morphism ¢ : (9??7' —EonU

by the Hartogs property. Since ¢ o a is 0, ¢ induces the extension of f. a

2.8. Moduli Spaces of Representations

Let I" be a finitely presented group, and V' be a finite dimensional vector space over
C. For a, f € GL(V), we put ad(a)(f) :=ao foa '. The space of homomorphisms
R(T, V) := Hom(I', GL(V)) is naturally an affine variety over C. We regard it as
a Hausdorff topological space with the usual topology, not the Zariski topology. We
have the natural action of GL(V) on R(I', V) given by ad. Let Ay be a hermitian
metric of V', and let U(hy) denote the unitary group of V' with respect to hy. The
usual quotient space R(I',V)/U(hy) is denoted by M(I',V,hy). Let mgy,v) denote
the projection R(I', V) — M(I",V, hy).

More generally, we consider the moduli space of representations to a complex re-
ductive subgroup G of GL(V). We put R(I",G) := Hom(I',G), which we regard
as a Hausdorff topological space with the usual topology. It is the closed subspace
of R(T', V).

Let K be a maximal compact subgroup of G. Assume that the hermitian metric
hy of V is K-invariant. We put N¢(hy) := {u € U(hv) | ad(u)(G) = G} which is
compact. We have the natural adjoint action of Ng (hv) on G, which induces the
action on R(I',G). The usual quotient space is denoted by M (T, G, hy). Let ng
denote the projection R(T',G) — M(T', G, hy). We have the naturally defined map
o M(T,G,hy) — M(T,V,hy). The map ® is clearly proper in the sense that the
inverse image of any compact subset via @ is also compact.
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A representation p € R(I',G) is called Zariski dense, if the image of p is Zariski
dense in G. Let U be the subset of R(I', G), which consists of Zariski dense represen-
tations. Then the restriction of ® to U is injective.

Let p and p’ be elements of R(T',G). We say that p and p’ are isomorphic in G,
if there is an element g € G such that ad(g) o p = p’. We say p’ is a deformation of
p in G, if there is a continuous family of representations p; : [0,1] x ' — G such
that po = p and p; = p'. We say p’ is a deformation of p in G modulo Ng(hy ), if
there is an element u € Ng(hy) such that p can be deformed to ad(u) o p’ in G. The
two notions are different if N (hy ) is not connected, in general. We also remark that
p can be deformed to p’ in G modulo Ng(hy ), if and only if 7g(p) and mg(p') are
contained in the same connected component of M (I", G, hy ).

We recall some deformation invariance from [55]. A representation p € R(T, G) is
called rigid, if the orbit G - p is open in R(T', G).

Lemma 2.22. — Let p € R(I',G) be a rigid and Zariski dense representation. Then
any deformation p’ of p in G is isomorphic to p in G.

Proof. — 1f p is Zariski dense, then G- p is closed in R(I', G). Hence it is a connected
component. O
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CHAPTER 3

PARABOLIC HIGGS BUNDLE AND REGULAR
FILTERED HIGGS BUNDLE

We recall the notion of parabolic structure, and then we give some detail about
the characteristic numbers for parabolic sheaves. In Section 3.3, a perturbation of the
filtration is given, which will be useful in our later argument.

3.1. Parabolic Higgs Bundle

3.1.1. c-Parabolic Higgs sheaf. — Let us recall the notion of parabolic structure
and the Chern characteristic numbers of parabolic bundles following [35], [39], [51],
[52], [62] and [65]. Our convention is slightly different from theirs.

Let X be a connected complex manifold and D be a simple normal crossing divisor
with the irreducible decomposition D = |J;cq Di. Let ¢ = (¢; | i € S) be an element of
R®. Let € be a torsion-free coherent Ox-module. Let us consider a collection of the
increasing filtrations *F (i € S) indexed by |¢; — 1, ¢;] such that (i) *Fu(€) D E(—D;)
for any a €]c; — 1, ¢;), (it) "Fa(€) = Nuep ‘Fo(E). We put I Grl € := 1 F,(E) ) Feal€).
We assume that the sets {a | g Grf £ # O} are finite for any 7. Such tuples of filtrations
are called the c-parabolic structure of £ at D, and the tuple (5, {iF|i € S}) is
called a c-parabolic sheaf on (X, D). We will sometimes omit to denote ¢. We say
(&, {'F|i € S}) is reflexive, if & is reflexive. (See [21] and [41] for reflexive sheaves.
See also Section 2.7.)

Definition 3.1. — For a reflexive c-parabolic sheaf (£,{'F|i € S}), we say that the
parabolic structure is saturated, if £ /¢ F, are torsion-free O p,-modules for any i and a.

We remark that each °F, are also reflexive. To see it, let us see the inclusion
‘Fa — 'FYV. Since € is reflexive, the inclusion ‘F, — & is extended to the
injection ‘FYV — £. (See the proof of Lemma 2.21.) Hence we obtain the inclusion
LFYY JiF, — €/ Fa. The codimension of the support of *FV /' F, is larger than 2,
and £/'F, is torsion-free as an Op,-module. Hence we obtain ‘FyV /'F, = 0
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We will use the notation &, instead of (£, {*#}) for simplicity. When we emphasize
¢, we will often use the notation £ and &, instead of & and &,. In the case ¢ =
(0,...,0), the notation °&, is used. We will also use the following notation.

(8)  Par(&s,i) :={a ‘iGrf(é’) #0}, Par'(E.,i) == Par(E.,i) U{ci, ¢ — 1},
(9) gap(&s,i) := min{|a—b| ’a, b e Par'(E.,i), a#b}, gap(E.) = I_Iéigl gap(&., ).

Let us recall a Higgs field ([65]) of a c-parabolic sheaf on (X, D). A holomorphic
homomorphism 0 : £ — £ ® Q;O(log D) is called a Higgs field of &,, if the following
holds:

— The naturally defined composite 02 = 0 A0 : & — E® Qi}o(log D) vanishes.

— 0("F,) C1F, ® QY (log D)

Such a tuple (&, 0) is called a c-parabolic Higgs sheaf on (X, D).

A c-parabolic Higgs sheaf (&,,0) on (X, D) is called reflexive and saturated, if
the underlying c-parabolic sheaf is reflexive and saturated. A morphism between c-
parabolic Higgs sheaves is defined to be a morphism of the underlying sheaf which is
compatible with the parabolic structures and the Higgs fields.

Lemma 3.2. — Let (€,,0) be any c-parabolic Higgs sheaf on (X, D). Then there exists
the reflexive saturated parabolic Higgs sheaf (EL,0"), such that we have the morphism
(E.,0) — (EL,0") which is isomorphic in codimension one, i.e. isomorphic outside
of the subset with codimension two. Such (EL,0") is unique up to the canonical iso-
morphism.

Proof. — Let &£ denote the double dual of £. We have the canonical morphism
£ — &' which is isomorphic outside of the subset Z of codimension two. Let ‘F}
denote the subsheaf of £ which consists of the sections f of £ such that fix_, € i F,.
Such a subsheaf is coherent ([60]). We have £'(—D;) C *F} for any a €]c; —1,¢;]. We
have the natural surjection m; , : & — &£’ /*F}, and the target is the Op,-module. Let
T; o denote the torsion part of &' )1 F}Y as an Op,-module, and we put *F), := 7rfal (Ti.a)-
Then, it is casy to see that {*F|i € S} gives the saturated e-parabolic structure of
&’. The Higgs field § naturally induces the morphism £ — &' ® Q;O(log D). Due to
the reflexivity of £, we obtain ¢’ : &' — &' ® Q;O(log D) satisfying 6% = 0. It is easy
to check O(*F!) C 'F! @ Q;’O(log D). The uniqueness is clear. O

For a c-parabolic Higgs sheaves (£;«,0;) (i = 1,2) on (X, D), we obtain the sheaf
of the morphisms Hom (&1 «,01), (E2+,02)).

Lemma3.3. — If (£2.,02) is reflexive and saturated, Hom((E1 «,01), (E2+,02)) is re-
flexive.

Proof. — We have only to check the condition in Lemma 2.19. Let f be a section of
Hom ((E1+,01), (E2+,02)) on U\ Z, where U denotes an open subset and Z denotes
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a closed subset with codim(Z) > 2. Since &; is reflexive, it is extended to the homo-
morphism f: &y — & on U, which is compatible with ;. We have the induced map
@ VF(E)) — &)1 F(E2). The codimension of the support of Im(yp) is larger than
2, and &/ F(E) is a torsion-free Op,-module. Hence, we obtain Im(p) = 0, i.e., f
preserves the filtration. O

Assume X is projective. Let Y be a sufficiently ample and generic hypersurface of
X. We put Dy := DNY, which is assumed to be a simple normal crossing divisor of
Y. Let (& .jy,0iy) denote the induced parabolic Higgs sheaf on (Y, Dy) by (i, ;).
If &« is reflexive and saturated, so is &; .y . (See Corollary 3.1.1 of [41].)

Lemma 3.4. —— Assume dim X > 2 and that €5 . is saturated and reflexive. For any
morphism f: (E1.y,01y) — (Ea4)y,02y), we have I : (£14,601) — (€24, 02) which
induces f.

Proof. — Let Oy : Eivyy — Eiy ®@ Q]X’O(log D)y denote the restriction of 6; to
Y. We have the induced morphism G : fofyy —fyy o f : Eny — Eny @
%" (log D)y . Because of foly —fzy o f =0in Hom(E .y, Eavy) 0y (log Dy ),
G induces the map &,y — &,y ® O(=Y))y. We regard it as the section of
J = Hom(& *,52*) ® O(=Y))y. Since G := Hom(& *,52*) is reflexive, we have
H'(X,G ® O(=Y)) = 0 (i = 0,1), if Y is sufficiently ample. (See the proof of
Proposition 3.2 in [41].) Hence, we have H°(Y,J) = 0, i.e., G = 0. Then, the
claim of the lemma follows from Generalized Enriques Severi Lemma (Proposition 3.2

in [41]) and Lemma 3.3. O
Remark 3.5. — We also have the parallel notion of c-parabolic sheaves on smooth

varieties with simple normal crossing divisors over a field k.

Remark 3.6. — Sometimes, it will be convenient to consider filtrations ! such that
S(F)={a€ R|"Grl () # 0} is not contained in an interval ¢; — 1, ¢;] for some c;.
In that case, we will call {"F |i € S} a generalized parabolic structure. Higgs field is
also defined as in the standard case, i.e., a holomorphic map 6 : £ — £® Qg(‘o(log D)
such that 62 = 0 and (*F,) C 'F, ® Q3" (log D).

3.1.2. The parabolic first Chern class and the degree. — For a c-parabolic
sheaf &, on (X, D), we put as follows:
wt (& 1) = Z a - rankp, ' Gr? (€).
a€le;—1,¢;)
Here rankp, * Gr? (€) denotes the rank as an Op,-module. In the following, we will

often denote it by rank’ Gr? (€), if there are no risk of confusion. The parabolic first
Chern class of &, is defined as follows:

par-c; (£.) = c1(€) = > _wt(&,,i) - [Di] € H*(X, R).
€S
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Here [D;] denotes the cohomology class given by D;. If X is an n-dimensional compact
Kahler manifold with a Kahler form w, we put as follows:
_ ar-deg, (€.
par-des (€)= [ pare,(€) 0" pu(e) = PSS
If w is the first Chern class of an ample line bundle L, we also use the notation
par-deg; (€,) and pr(Ex).

Lemma3.7. — Let Y (i = 1,2) be c-parabolic sheaves on (X, D), and let f : eW
£ bea morphism which is generically isomorphic. Then, we have /L(&Sl)) < /L(Efz)).
If the equality occurs, f is isomorphic in codimension one.

Proof. — By considering the restriction to a generic complete intersection curve, we
have only to discuss the case dim X = 1. Let P be any point of D. We put F(Si) =
Im(PF(ED) p — 8|(;,)) for a €]c(P) — 1, ¢(P)], which give the filtration F'(?) of €|(;)).
We have the induced map fp : 51(1]3) — El(f)) which preserves the filtrations. We put
I :=1Im(fjp), K := Ker(fjp) and C := Cok(f|p). Let F(K) (resp. FU(I)) denote
the induced filtration on K (resp. I) by F(). Let F(C) (resp. F®)(I)) denote the
induced filtration on C (resp. I) by F(?). We put as follows:

w(K) =Y a-Grf (K), w(I):=) a- (D), w(C) = > a-Grl(C)

Then, we have —w) (I) < —w®(I) and —w(K) < —w(C)+rg, where ry = rank K =
rank C. It is easy to obtain the claims of the lemma from these relations. O

Remark 3.8. — For the parabolic first Chern class on algebraic varieties, we have only
to replace the cohomology group and the integral by the Chow group and the degree
of the 0-cycles.

3.1.3. puy-Stability. — Let X be a smooth projective variety with an ample line
bundle L over a field &, and D be a simple normal crossing divisor of X. The pp-
stability of e-parabolic Higgs sheaves is defined as usual. Namely, a c-parabolic Higgs
sheaf (5*, 0) is called juz-stable, if the inequality par-deg, (1) < par-degy,(€.) holds
for any saturated non-trivial subsheaf & C & such that (&) € & @ Q°(log D). (Re-
call a subsheaf £ C £ is called saturated, if £/&’ is torsion-free.) Here the parabolic
structure of £, is the naturally induced one from the parabolic structure of £,. Simi-
larly, pp-semistability and py-polystability are also defined in a standard manner.
Let (S,Ei),G(i)) (i = 1,2) be pg-semistable c-parabolic Higgs sheaves such that
un(EDY = pr(E®). Let £: (€M, 00) — (£ 6®) be a non-trivial morphism.
Let (K., 0x) denote the kernel of f with the naturally induced parabolic structure and
the Higgs field. Let Z denote the image of f, and 7 denote the saturated subsheaf of
£®2) generated by Z. The parabolic structures of Eil) and E,EQ) induce the parabolic
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structures of Z and f, respectively. We denote the induced parabolic sheaves by
(Z.,0z) and (Z,,07).

Lemma 3.9. — (K.,0k), (Z.,07) and (f*,ﬁf) are also pr-semistable such that
pr(Ky) = po(Z) = po(Z,) = uL(&Si)). Moreover, I, and I, are isomorphic in
codimension one.

Proof. — Using Lemma 3.7 and pp-semistability of (E,Ei),O(i)), we have ,u(é’,ﬁl)) <

w(Zy) < u(i) < /L(Siz)). Since the equalities hold, the claim of the lemma follows. O

Lemma 3.10. — Let (&Ei), O(i)) (i = 1,2) be ur,-semistable reflexive saturated parabolic
Higgs sheaves such that ,uL(&El)) = ,uL(Eg)). Assume either one of the following:

1. One of (E,Ei), 0 is py-stable, and rank(E€M)) = rank(£(?)) holds.

2. Both of (Sii),ﬁ(i)) are fur,-stable.
If there is a non-trivial map f : (EM,00) —s (2,02, then f is isomorphic.

Proof. — If (&ﬁl),ﬂ(l)) is pp-stable, the kernel of f is trivial due to Lemma 3.9. If
(5£2),9(2)) is puz-stable, the image of f and £) are same at the generic point of X.
Thus, we obtain that f is generically isomorphic in any case. Then, we obtain that f
is isomorphic in codimension one, due to Lemma 3.7. Since both of S,Ei) are reflexive
and saturated, we obtain that f is isomorphic. O

Corollary 3.11. — Let (E.,0) be a p -polystable reflexive saturated Higgs sheaf. Then
we have the unique decomposition:

(€.0) = DED 09) 5 070

J

Here, (Eij),GU)) are jur,-stable with uL(&Ej)) = wu(&), and they are mutually non-
isomorphic. It is called the canonical decomposition in the rest of the paper.

3.1.4. c-Parabolic Higgs bundle in codimension k. — We will often use the
notation .F instead of £. We put as follows, for each i € S:

iFa (CE|D1) = 1Im (lfa (CE)|D1 —_— CE|Di) .
The tuple (77‘7-' |z € S) can clearly be reconstructed from the tuple of the filtrations
F := ("F|i € S). Hence we will often consider (.E, F) instead of (E, {'\F |i € S}),
when (F is locally free. We put Dy := ();; D; for any subset I C S, on which we
have the induced filtrations ' F := (*Fip, |i € I) of cE|p, .
Definition 3.12. — Let F. = (.E, F) be a c-parabolic sheaf such that .F is locally
free. If the following conditions are satisfied, . F, is called a c-parabolic bundle.

— Bach 'F of cEp, is the filtration in the category of vector bundles on D;.
Namely, * Gr¥ (cBE\p;) = "Fa/'F<, are locally free Op,-modules.
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— The tuple of the filtrations F' is compatible in the sense of Definition 4.37
in [44]. (In this case, the decompositions are trivial.) Namely, for any sub-
set I C S we have a decomposition @, i Ua = ¢E|p, locally on Dy, such that
ﬂiEI iFai|Di = @bga Up.

We remark that the second condition is trivial in the case dim X = 2.

Remark 3.13. — Our compatibility condition of the parabolic filtrations are same as
the “locally abelian” condition given in [27]. (See Corollary 4.48 of [44], for example.)

The notion of c-parabolic bundle is too restrictive in the case dim X > 2. Hence
we will also use the following notion in the case k = 2.

Definition 3.14. — Let .F. be a c-parabolic sheaf on (X, D). It is called a e-parabolic
bundle in codimension k, if the following condition is satisfied:
— There is a Zariski closed subset Z C D with codimx(Z) > k such that the
restriction of E, to (X — Z,D — Z) is a ¢-parabolic bundle.

It is easy to observe that a reflexive saturated c-parabolic Higgs sheaf is a c-
parabolic Higgs bundle in codimension two.

3.1.5. The characteristic number for c-parabolic bundle in codimension
two. — For any c-parabolic bundle .F, in codimension two, the parabolic second
Chern character par-ch,(.E.) € H*(X, R) is defined as follows:

(10) par-chy(cFy) = cha(E) — E a- s ((21 (* Grf(cE)))
€S
a€Par(cE,i)

+ % Z a® - rank (* GrF (cE)) - [D:)?
P o
1 SR SRR A R ]

(i,j)es?  Pelrr(D;inDy)
i#j  (aia;)€Par(cEx,P)

Let us explain some of the notation:

chz(oF) denotes the second Chern character of F.

— 1; denotes the closed immersion D; — X, and ¢; . : H*(D;) — H*(X) denotes
the associated Gysin map.

— Irr(D; N Dj) denotes the set of the irreducible components of D; N D;.

— Let P be an element of Irr(D; N D;). The generic point of the com-

ponent is also denoted by P. We put PF, = "F, p N7F,p and

Parf = PFa/Zafga PE.,. Then rank” Grf denotes the rank of PGk

as an Op-module.

We put Par(cEs, P) == {a| PGrl( E) # 0}.

|
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— [D;] € H*(X,R) and [P] € H*(X, R) denote the cohomology classes given by
D; and P respectively.

If X is an n-dimensional compact Kahler manifold with a Kahler form w, we put
as follows:

par-chy (e ) := par-chy(cF) w2 par—c%,w(cE*) = par-¢; (¢ Fy)? - w

n—2

If w is the first Chern class of an ample line bundle L, we use the notation
par-ci (cE«) and par-chy ; (cE.). In the case dimX = 2, we have the obvious
equalities par—ciL(cE*) = par-ci(cE.) and par-ch, f (cE.) = par-chy(cE.).

Definition 3.15. — Let X be a smooth projective variety with an ample line bundle
L, and let D be a simple normal crossing divisor. Let (.Fx,0) be a ur-polystable
reflexive saturated c-parabolic Higgs sheaf on (X, D). We say that (.E.,f0) has
trivial characteristic numbers, if any stable component (oE%,6') of (oF.,0) satisfies
par-degy (¢ E'+) = [y par-chy (cE's) =0

3.2. Filtered Sheaf

3.2.1. Definitions. — We recall the notion of filtered sheaf by following [52]. Let X
be a complex manifold, and D be a simple normal crossing divisor with the irreducible
decomposition D = Ui€ g D;. For a € RS, a; denotes the i-th component of a for
i € S. A filtered sheaf on (X, D) is defined to be a tuple E, = (E, {.E|c € R®})
as follows:

— E is a quasi coherent Ox-module. We put £ := E|x_p.

— oF are coherent Ox-submodules of E for any ¢ € R?® such that Ex-p=EFE.

— In the case a < b, we have ¢ £ C p E, where a < b means a; < b; for all ¢ € S.
We also have (J,cps o = E and o F =, o E.
We have o E = oF ® Ox(—Y_n, - D;) as submodules of E, where a’ = a —
(n, [j € S) for some integers n;.
For each ¢ € R, the filtration *F of . E indexed by Jei —1, ¢;] is given as follows:

"Fa(eE) = ] oF.

aigd
a<c

Then the tuple (cE,{'F|i € S}) is a c-parabolic sheaf, i.e., the sets {a €
Jei — 1,¢i]|* Grl (cE) # 0} are finite.

Remark 3.16. — By definition, we obtain the c-parabolic sheaf .F, obtained from
filtered sheaf E, for any ¢ € R, which is called the c-truncation of E,. On the
other hand, a filtered sheaf F, can be reconstructed from any e-parabolic sheaf (E,.
So we can identify them.
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Definition 3.17. — A filtered sheaf E, is called reflexive and saturated, if any c-
truncations are reflexive and saturated.

A filtered sheaf E, is called a filtered bundle in codimension k, if any c-truncations
are c-parabolic bundle in codimension k.

Remark 3.18. — In the definition, “any ¢” can be replaced with “some ¢”.

A Higgs field of E, is defined to be a holomorphic homomorphism 6 : E —
E © QM0(log D) satisfying (. E) C E ® Q3°(log D).
Let E( (i = 1,2) be a filtered bundle on (X, D). We put as follows:
E := Hom(EW E®), oE = {fe E | f(CE(l)) CeraE?, Ve}.

E=EYgE®, oF = Z a B ® o, B,
a;+az<a
Then (E,{aE}) and (E,{aﬁ}) are also filtered bundles. They are denoted by
Hom(E", E®) and EV @ EP.
Let (E., ) be a regular filtered Higgs bundle. Let a and b be non-negative integers.
Applying the above construction, we obtain the parabolic structures and the Higgs
fields on T%*(E) := Hom(E®*, E® b). We denote it by (T**E,, 0).

3.2.2. The characteristic numbers of filtered bundles in codimension two

Let X be a smooth projective variety with an ample line bundle L, and let D be
a simple normal crossing divisor. Let E, be a filtered bundle in codimension two
on (X, D).

Lemma 3.19. — For any ¢,¢’ € R®, we have parc,(cE.) = par-c,(«FE.) in
H?*(X,R).

Proof. — The j-th components of ¢ and ¢’ are denoted by ¢; and ¢} for any j € S.
Take an element ¢ € S. We have only to consider the case ¢; = ¢ (j # i). We
may also assume ¢, € Par(E*, L) and ¢; < ¢;. Moreover it can be assumed that ¢; is
sufficiently close to ¢,. Then we have the following exact sequence of Ox-modules:

00— F— oF — iGri(c/E,Di) — 0.
We put ¢ := ¢ — 1. Then we have the following:
(11) *CGrF(B)o OD;) ~ Grl(oE),  TCtE(.E)~'Gil(«E), (c<a<d).
Therefore we have wt(cEy,i) = wt(e E,,i) — rank? Grl'(.E). On the other hand,
we have ¢ (¢ E) = c1(cE) + 1 (L*iGI‘E(c/E)). There is a closed subset W C D;
such that * Gr% (o E)|p,-w is isomorphic to a direct sum of Op,_w. We remark that
H?*(X,R) ~ H?*(X \ W, R), because the codimension of W in X is larger than two.

Then it is easy to check ¢; (1’ Grl (o E)) = rank? G’ (cE) - [D;]. Then the claim of
the lemma immediately follows. O
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Corollary 3.20. — For any c,c’ € RS, we have the following:
par-deg; (o F.) = par-degy (¢ Ex), / par—ciL(cE*) :/ par-ciL(c/E*).
X X

In particular, the characteristic numbers par-deg;(E.) := par-deg;(cF.) and
[x par-ci [ (E.) := [y par<? | (cE.) are well defined.

Remark 3.21. — The i -stability of a regular filtered Higgs bundle is defined, which is
equivalent to the stability of any c-truncation. Due to Corollary 3.20, it is independent
of a choice of c.

Proposition 3.22. — For any ¢, c’ € R?, we have the following:

/par-chQ’L(cE*)z/ par-chy ; (¢ Ex).
Jx X

In particular, [y par-chy ; (E.,) := [, par-chy ;(cEy) is well defined.
Proof. — We have only to consider the case dim X = 2. We use the following lemma.

Lemma 3.23. — Let Y be a smooth projective surface, and D be a smooth divisor of
Y. Let F be an Op-coherent module. Then we have the following:

/ cho (0. F) = degp F — %rankp(}') (D, D).
X

Proof. — By considering the blow up of D x {0} in Y x C as in [17], we can reduce
the problem in the case Y is a projective space bundle over D. We can also reduce
the problem to the case F is a locally free sheaf on D. Then, in particular, we may
assume that there is a locally free sheaf F such that ]T"| p = F. In the case, we have
the K-theoretic equality ¢, F = F. (O - O(—D)). Therefore we have the following:

~ . ~ 1 ~ ~
ch(t.F) = ch(F) - (D — D?/2) =rank F - D + <—§ rank F - D? + ¢, (F) - D) .
Then the claim of the lemma is clear. O

Let us return to the proof of Lemma 3.22. We use the notation in the proof of
Lemma 3.19. We have the following equalities:

(12) / chy(o E) = / chg(cE)+degDi(iGr§(c/E))—%rankiGrE(C/E)-Df
X . X K k2
= / cha(cE) + degp, (" GrY (CE))+%rankiGrf (cE) - D2

JX

Here we have used (11). We also have the following:

¢ - degp, (' Grfi (o E)) = (c+ 1) - (deg p,( Gr¥'(LE)) + rank’ G () - Df).
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We remark the isomorphism ¥ Grfz/ﬁ)(c/E) ~ P Gr{;)a)(cE) and the following exact
sequence: '
0—7Grf(cB) — Gl («BE) — @ TGrf, (E)— 0.
PeD;ND;

Hence we obtain the following equality:

a-degp (Y Gry (< E)) = a-degp (7 Gr} (cE)) +a- Z rank ” Gr(, ,)(cE).

PeD;ND;

We have the following equalities:
(13)
1 . ) 1 . 1 ) .
Ecgz-rank’ Grl(«E)-D? = 502 rank’ Gr¥'(.E)- D? + <( + 5) -rank® Grg («E)-DZ.

(14) ¢, -a-rank® Grf‘;;‘a) (¢E) =c-a-rank” Grf;a)(cE) +a-rank " Gr(, ) (cE).
Then we obtain the following:
(15)
/ par—chQ’L(c/E*)—/ par-chy ; (¢ £.) = degp, (* GrCF(CE))+§ rank* Gr!'(.E)-D?
b Jx

—degp, (*G1l (cE))—(c+1)rank’ Grl (. F)D? — Z Z Za-rankPGr{;’a)(cE)

j#i PeED;ND; a

1 2
+< —f—2) rank® Gr?'(.E)D? —I—Z Z Za rank ” Gr((,a)(cE)—O

j#i PeD;ND; a

Thus we are done. O

Definition 3.24. — Let (E.,0) be a uj-polystable reflexive saturated regular filtered
Higgs sheaf on (X, D). We say that (E.,#) has trivial characteristic numbers, if any
stable component (E,,0') of (E.,0) satisfies par-deg(E’,) = [, par-chy(E’) = 0.

3.3. Perturbation of Parabolic Structure

Let X be a smooth projective surface over C with an ample line bundle L, and D
be a simple normal crossing divisor with the irreducible decomposition D = |J ies D
(Remark that each D; is smooth by definition of simple normal crossing divisor. See
Section 2.1.) Let (.F, F,0) be a c-parabolic Higgs bundle over (X, D). Due to the
projectivity of D;, the eigenvalues of Res;(0) € End(cE| Di) are constant. Hence we
obtain the generalized eigen decomposition with respect to Res;(6):

¢ GI'(I; (CE|D1.) = @ ¢ GI’{:}:]’EG) (CE'DL) .
aeC

Let N; denote the nilpotent part of the induced endomorphism Grf Res;(0) on
LGrE(.Ep,).
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Definition 3.25. — The c-parabolic Higgs bundle (. F, F, 0) is called graded semisim-
ple, if N; are 0 for any i € S.

For simplicity, we assume ¢; & Par(cE,, i) for any i, where ¢ = (¢;|i € S).

Proposition 3.26. — Let ¢ be any positive number satisfying € - 100rank(E) <
gap(cE, F). There exists a c-parabolic structure F© = (iF(e) |z € S) such that the
following holds:
— (F, F(e)) is a graded semisimple c-parabolic Higgs bundle.
— We have wt(cE, F9 i) = wt(.E, F,i). (See Subsection 3.1.2 for wt.) In par-
ticular, we have par-c, (B, F'9) = par-c, (. E, F).
— There is a constant C, which is independent of €, such that the following holds:

/ par-chy (o E, F() —/ par-chQ(cE,F)‘ < C g
b X

— gap(cE,F(E)) =e.
Such (E, F(e),¢9) is called an e-perturbation of (E, F,6).

Proof. — To take a refinement of the filtration ' F', we see the weight filtration induced
on “Grf'. Let 7 be a generic point of D;. We have the weight filtration W), of the
nilpotent map A; ,, on * Gl (CE| Di) e which is indexed by Z. We recall the following
general lemma.

Lemma 3.27. — Let C be a smooth irreducible projective curve over C. The generic
point of C' is denoted by n, and let K(n) denote the corresponding field. Let V be an
algebraic vector bundle on C. The fiber of V' over n is denoted by V), which is the
K (n)-vector space.

If we are given a K (n)-vector subspace V,; C V|, then there exists the unique vector
subbundle V' of V., whose fiber over n is V.

Proof. — We put t := rank V and s := rank V. Let G(¢,s) denote the Grassmann
variety of the s-dimensional subspaces of C*. Let Q be any closed point of C. We
take a local frame uq,...,u; of V on a Zariski neighbourhood of Q. Let A(Q) denote
the local ring at @ in C. The fraction field of A(Q) is naturally isomorphic to K (7).
By using the frame u1, . .., u;, we identify V ® A(Q) and A(Q)®*. The K (n)-subspace
Vyof A(Q)®' @ K(n) = K(n)®* gives the morphism ¢ : Spec K (1) — G(t, s) over
Spec(C). Since A is a discrete valuation ring and G(t, s) is proper, the morphism ¢ is
uniquely extended to @ : Spec(A) — G(t, s) by the valuative criterion for properness.
(See Theorem 4.7 in [20], for example.) It gives the extension of V,; around Q. O

By using the lemma, we can extend W, to the filtration W of * Gr? (CE'|D1.) in the
category of vector bundles on D; due to the smoothness of D; and dim D; = 1. By
our construction, Nj(Wy) € Wy_o and dim Gr}' = dim Gr",. The endomorphism
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Res;(6) preserves the filtration W on ¢ Gr’ (cEp,), and the nilpotent part of the
induced endomorphisms on Gr'" * Gr* 1(CE| p,) are trivial.

Let us take the refinement of the filtration ‘F. For any a €l¢; — 1,¢;], we have
the surjection m, : iFa(cE,Dl) — iGrf(CEwi). We put iﬁ}l,k =7, Y (W). We use
the lexicographic order on ]¢; — 1, ¢;] x Z. Thus we obtain the increasing filtration iF
indexed by ]e; — 1,¢;] x Z. The set S; := {(a,k) €le; — 1,¢,] x Z ’iGrf;,k) # 0} is
finite.

Let ¢; : S, —]e¢; — 1,¢;] be the increasing map given by @;(a, k) := a + ke. We
put as follows:

in(e) _ U iF(a,k:)
wi(a,k)<b

Thus we obtain the c-parabolic structure F = (’7F(") | 1€ S).

Let P be any point of D;. Take a holomorphic coordinate neighbourhood
(Up, 21, 22) around P such that Up N D; = {z; = 0}. Then we have the expression
0 = fi(z1,22) - dz1/z1 + fa(z1,22) - dza. Then, f;(0,22) (j = 1,2) preserve the
filtration ‘F(9). Therefore, it is easy to see that (CE,F(f),O) is c-parabolic Higgs
bundle on (X, D). By our construction, it has the desired property. Thus the proof
of Proposition 3.26 is finished. O

The following proposition is standard.

Proposition 3.28. — Assume that (CE,F,G) is pp-stable. If € is sufficiently small,
then the e-perturbation (CE', F(‘), 0) is also py,-stable.

Proof. Let .E C .E be a saturated subsheaf such that G(CE) CE® 049(og D).

Let F and f‘(e) be the tuples of the filtrations of CE induced by F' and F© respec-
tively. There is a constant C, which is independent of choices of <E and small € > 0,
such that |,LLL(CE, ﬁ‘) - /.I,L(CE, f‘(e)ﬂ < C-e. Therefore, we have only to show the ex-
istence of a positive number 7 satisfying the inequalities pup, (cE, F) +1 < pp(cE, F),
for any saturated Higgs subsheaf 0 # B C E under the pip-stability of (cE, F,0).
It is standard, so we give only a brief outline. Due to a lemma of A. Grothendieck
(see Lemma 2.5 in [19]) we know the boundedness of the family G(A) of saturated
Higgs subsheaves E C oF such that deg L(CE) > —A for any fixed number A.

Let us consider the case where A is sufficiently large. Then i1, (cE,) is sufficiently
small for any .F ¢ G(A). On the other hand, since the family G(A) is bounded, the
function py, on G(A) have the maximum, which is strictly smaller than (- F.) due
to the ur-stability. Thus we are done. O
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3.4. Mehta-Ramanathan Type Theorem

3.4.1. Statement. — We discuss the Mehta-Ramanathan type theorem for
parabolic Higgs sheaves. Let X be an n-dimensional smooth irreducible projec-
tive variety over C with an ample line bundle L. For simplicity, we assume the
characteristic number of k is 0. Let D be a simple normal crossing divisor of X.

Proposition 3.29. — Let (V,,0) be a parabolic Higgs sheaf over (X,D). It is pr-
(semi)stable, if and only if (Vi,0)|y is pr-(semi)stable, where Y denotes a complete
intersection of sufficiently ample generic hypersurfaces.

We closely follow the arguments of V. Mehta, A. Ramanathan ([41], [40]) and
Simpson ([55]). See the papers for more detail.

3.4.2. W-operator. — In the following, let k£ denote a field of characteristic 0.
Let X be a smooth projective variety over k, with an ample line bundle L. Let
D be a simple normal crossing divisor of X. Let W be a vector bundle on X. A
Wh-valued operator of a parabolic sheaf V. on (X,D) is defined to be a morphism
n: Vi — Vi®W. A W-subobject of (Vi,n) is a saturated subsheaf F' C V such
that n(F) C F @ W. We endow F' with the induced parabolic structure. A parabolic
sheaf with a W-valued operator (Vi,n) is defined to be pp-semistable if and only if
wr(Fy) < pr (Vi) holds for any W-subobject Fy, C Vi. The up-stability is also defined
similarly.

In general, we have the W-subobjects F, C Vi with the properties: (i) pr(Gs) <
wr, (Fy) for any W-subobject G of (Vi,n), (i) if pr(Gy) = pr(Fy), we have rank(G) <
rank(F'). Such Fi is uniquely determined, which can be shown by using an argument
similar to the last part of the proof of Proposition 3.28. It is called the 8-W-subobject
of (Vi,n). By a similar argument, we also obtain the Harder-Narasimhan filtration.

3.4.3. Weil’s Lemma. — In general, for a given projective variety A with a normal

crossing divisor D = Ujes D;, a pair of a line bundle £ on X’ and a tuple a = (a;|j €
S) € R is called a parabolic line bundle on (X, D). We can regard them as the
a-parabolic sheaf on (X, D) in an obvious manner. Let Pic(X, D) denote the set of

parabolic line bundles on (X, D).

Let us return to the setting in Subsection 3.4.1. For simplicity, we assume
HYX,L™) =0 for any m > 1 and i > 0. We put Sy, := H°(X,L™) for m € Z>1.
Form = (mq,...,mp_1) € Z;L_ll, we put Sp, 1= H::l Sm,. Let Z,, denote the corre-
spondence variety, i.e., Zy, = {(az,sl, ceeySn—1) € X XSm, |sl(m) =0,1<i< n—l}.
The natural morphisms Z,,, — Sy, and Z,, — X are denoted by ¢, and pm,
respectively. We put Z2 := Z,,, xx D and Z,?,j = Zm Xx Dj. Recall that Z,?{ are
irreducible, because ng is a vector bundle over D;. Let K, denote the function field
of Sp. We put Yo, := Zp x5, K, Y,’,ff = Zﬁj Xs, Kmand Y, :=ZD xg K.
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The irreducible decomposition of Z,L,)l X, Km is given by Uj Z,?,j X8, Km. Recall
the following result of Mehta and Ramanathan, by whom such a type of lemma is
called Weil’s Lemma.

Lemma 3.30. — Assume n > 2. For m = (my,...,m,_1) with each m; > 3, the
natural map Pic(X, D) — Pic(Yp,, Y,2) is bijective.

Proof. — Since we have the natural correspondence between the irreducible compo-
nents of D and Y7, the claim is obviously reduced to Proposition 2.1 of [41]. |

3.4.4. A family of degenerating curves. — As in [41], we fix a sequence of
integers (a1,...,an—1) with a; > 2. We put « := [[a;. For a positive integer m,
let (m) denote (af",...,aM™ ;). Let Vi be a coherent parabolic sheaf on (X, D). For
each m, we can take an open subset Un C S(n) such that (i) g, ,f)(s) are smooth

(s € Uy), (i) q(_nll)(s) intersects with the smooth part of D transversally, (iii) Vi
is a parabolic bundle on an appropriate neighbourhood of each a, ,ll)(s) C X. In the
following, we will shrink U,,, if necessary. In Section 5 of [41], Mehta and Ramanathan
constructed a family of degenerating curves. Take integers [ > m > 0. Let A be a
discrete valuation ring over k with the quotient field K. Then there exists a curve C
over Spec A with a morphism ¢ : C — X x Spec A over Spec A with the properties:
(i) C is smooth, (ii) the generic fiber Ck gives a sufficiently general K-valued point
in Up, (iii) the special fiber Cy is reduced with smooth irreducible components C}
(i = 1,...,a!~™) which are sufficiently general k-valued points in U,,. We use the
notation D¢ to denote €' xx D. We also use the notation Dj.c, Dj oy and D; ci in
similar meanings. Then, we obtain the parabolic bundle ¢*(V.) on (C, D¢), which
is denoted by V,c. The restriction to Ck and C,i are denoted similarly. Let W,
be a parabolic subsheaf of V, ¢, . Recall that W can be extended to the subsheaf
W c Vic, flat over Spec A with the properties: (i) W is a vector bundle over C,
(ii) WICL — Vj¢i are injective. (See Section 4 of [41].) In particular, we have
deg L((i(&t(ﬁ/|c,()) =Y deg L(det(Ww,i)). We have the induced parabolic structure of
ﬁ//ch as the subsheaf of V¢ , for which we have wt(Wi., Dj ¢ ) > Wt(WICi.*’ D; ci)
for each D;. Therefore, we obtain ML(VT/*wK) < ZiuL(W/‘Cz,*). If the equality
occurs, we have wt(Wi., Dj ¢ ) = Wt(chi;*’ Dj c:i) for any i and j, and W, with the
induced parabolic structure is the parabolic bundle.

3.4.5. The arguments of Mehta and Ramanathan. — Let W be a vector
bundle on X. Let (Vi,n) be a parabolic sheaf with a W-operator on (X, D).

Lemma 3.31. — (V.,n) is up-semistable, if and only if there exists a positive integer
mg such that (V*,'I))|y(m) is also ur-semistable for any m > myg.
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Proof. — We have only to show the “only if” part. We reproduce the argument
n [41]. First, assume (Vi, 7))y, is pr-semistable for some m, and we show that
(Vs T])|y(’) is pp-semistable for any [ > m. We take a family of degenerating curves
C as in Subsection 3.4.4. We have the 3-W-subobject W . C Vi c,. We extend it
to W C V|c. Note that it is naturally the W-subobject. Since we have py (W) <
i (Wiei ) and pr(Vie) = 22, me(Vijer), we obtain pup(Wi) < pr(Viey)-
Thus, we obtain the semistability of Vy)y,, .

We will show that V, is not semistable if V, Yy are not semistable for any m.
By shrinking U,, appropriately, we may have W-subobjects W, . of p(m

*|‘1(m) m
such that W'm*lq (5) is the B-W-subobject of (V*,n)lq(_ 5) for any s € U,,. The
n) m)\°

restriction W'm*‘y(m is the S-W-subobject of (Vi ’f])|y(m). We have the parabolic line
bundle £, . € Pic(X, D) corresponding to det(Wi, +)|y,,., € Pic(Yim), Y(gl))

We put G, = /L[J(Wm7*|y(m)). For | > m, we obtain §; < o/™™ - 3,, by using
a family of degenerating curves. Since we have (3, = a™ - ur(Lny )/ rank(Wp,),
we obtain pr(L.)/rankW; < pp(Ly, )/ rankW,,. On the other hand, we have
Bm > a™ur(Vy), and the sequence {jur (L)} is bounded. Since {wt(L,,, D;)} is
finite, we may take a subsequence @ C {m} such that deg;(L.,), wt(Ly,, D;) and
rank(W,,) are independent of the choice of m € Q.

Let us show that £,, (m € Q) are isomorphic. Take [ > m in Q. We take
a family of degenerating curves as above. We extend Wjc, to W on C. From
B = o ™By, B = (W) < Z/‘L(chzt*) and ”L(chll*) < B, we obtain
“L(WICZ;*) = [Bm, and thus W/w;* are [-W-subobjects of V,ci. In particu-
lar, pr(det(Wici.)) = pr(Liyei). We also obtain pp(Wih) = > pur(Wei.),
and hence Wt(W|C,i*»Dj,C;) = wt(Wis, Djcr) = wt(Ly«, Dj;). Hence we obtain
dch(det(WCi)) = deg (Lyc;), and thus Lo =~ dct(W). Since the parabolic
weights are also same, we have det(W)* ~ L;,c- Since C} are sufficiently general in
U, we obtain Li.y,,,, =~ Lmuy,,,, and hence L;, and L,, . are isomorphic. Now,

let L. denote L. (I € Q).

Let us show the existence of a W-subsheaf W of V', such that VV‘qq (5) = Wm|q(‘ L (s)

for a sufficiently large m. Such W will contradict with the semistability of (Vi,7).
Let U be an open subset of X on which V is a vector bundle. We may assume that
codim(X — U) > 2. We put r = rank(W,,) for m € Q. Let G denote the bundle
of Grassmann varieties on U, whose fiber over q € U consists of the subspaces of V|,
with rank r. We have the natural embedding of G into the projectivization of A" Viu-
Let ¥ C A" Vi denote the cone over G.

Let F denote the double dual of A" V. We have the naturally induced saturated
parabolic structure of F. Let Hom(L., F.) denote the sheaf of homomorphisms from
L. to F,, which is reflexive. We put H := HO(X, Hom(ﬁ*,F*)). For any ¢ € H,
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we put Z(qS) = {x € U|o(x) € £}. Since {E(¢)|¢ € H} is bounded family, we
have ¢, ( ) ¢ X(¢) for a sufficiently large m and s € U, unless 3(¢) # U. On the
other hand there exists a non-trivial morphism ¢ € H such that q(m)( s) C X(¢) for
such m and s, due to the above consideration and General Enriques-Severi Lemma
(Proposition 3.2 [41]). Hence, we obtain X(¢) = U for such ¢. The image of ¢
naturally induces the saturated subsheaf W CV. If mis sufficiently large, we also
obtain n(W) € W ® W. To see it, we recall the boundedness of the family S of the
saturated subsheaves F' of V' such that deg(F) > C, for some fixed C' (Lemma 2.5
in [19]). So we can take a large m such that n(F) C F®@ W (F € S) if and only if

N(EFlg-1(s)) C Flg-1(s) ® W for a sufficiently general s € U,,. Thus we are done. |

Lemma 3.32. — (V,,n) is pr-stable, if and only if there exists a positive integer my
such that (Vi 77)|y<m) is also pr-stable for any m > my.

Proof. — We reproduce the argument in [40]. First, let us see (Vi, n)quwt)(s) is simple
for sufficiently large m if (Vi,n) is pr-stable. To show it, we have only to consider the
case V, is reflexive and saturated. Let Hom((Vi,n), (Vi,n)) be the sheaf of endomor-
phisms of V' which preserves the parabolic structure and commutes with 7. Then, it
is easy to check Hom((Vi,n), (Vi,n)) is reflexive by using Lemma 2.19, and hence the
claim is shown by applying General Enriques-Severi Lemma.

Let us recall the notion of socle of semistable objects, which is the direct sum of
stable subobjects (See [40] for more precise. Recall we have assumed the characteristic
of k is 0.) Assume that (Vi,n)y,,,, is stable for some m. Then, it can be shown that
(Vism)jy,, is also stable for any [ > m by using a family of degenerating curves and
the socle of (Vi,n))y,,,, instead of B-W-subobjects. So we assume that (Vi, 1)y, is
not stable for any m, and we will show that (Vi,n) is not uz-stable.

Let N be sufficiently large. By shrinking U,, appropriately for m > N, we may
assume (i) (V*,n)lq(:;)(s) is simple and semistable for any s € U,,, (ii) the socle of

(V*,’I])!y( ., 18 extended to Wp,. C pfm)qu( (Um)? (iil) W,

mxla, 1 L (s) is the socle of

(V*,n)'q—l () for any s € Up,. Since (Vi,n) (s) Are simple, W # p(m

90 !q my (Um)
We have the parabolic line bundle £,, . on EXZ , D) corresponding to de‘r(WTiL *>|Y(m>)
on (Y(m),Y(TDn)). We have pr (L) = rank(Wy,) - pr(Vi). Hence, we can take a
subsequence @ C {m} such that rank W,,,, wt(L,, «, D;) and deg(L,,) are independent
of m € Q. We put r := rank W,,, for m € Q.

Let G, denote the bundle of Grassmann varieties on a4 i)(Um), whose fiber over

Q< q(:i) (Un) consists of the subspace of pf,,, (V) (o With rank 7. We have the natural

embedding of G, into the projectivization of pfm) (/\r V)lq_l U Let @m denote
(my\Fm

the cone over G,,
Take mg € @, and let E denote the set of L, € Pic(X, D) with pr(L.) = 7 -
p1. (Vi) such that there exists ¢ : Ly, — N Vil¥Yimg, With (Lyy,,.)) C Gm, and
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n(Im ¢) C Im ¢ x W. By the same argument as the proof of Lemmas 2.7-2.8 of [40],
it can be shown that FE is finite.

Let us show that £; € E for any | € Q with | > mg. Let C be a family of degen-
erating curves. We extend Wj ¢, to W C V.. We have the inequalities (W) <

YL (Wics ), ne(Wies ) < apr(Va) and the equality pr, (W) = olpg (Va). Thus,

the inequalities are actually equalities. Hence, we have Wt(det<W)‘C,i*aDj,CZ_v) =
wt(Lis, Dj) and pp(det(W)ici ) = pr(Lisei). Therefore, we obtain £y, c ~
det(W).. In particular, £;,c: ~ det(Wc;)s. Since Cp are sufficiently general,
we obtain L;, € F.

Then, we can take a subsequence Q' C @ such that L, . are isomorphic (m € Q).

The rest of the argument is same as the last part of the proof of Lemma 3.31. O

3.4.6. End of Proof of Proposition 3.29. — We have only to show the “only
if” part. We reproduce the argument in [55]. Assume the pp-stability of (Vi,#). Let
Y =Y1N---NY; be a generic complete intersection, where deg; (Y;) are appropriately
large numbers. We put YO .=vin.-..n Y; and Y© := X. We also put D .=
DNY® and DO = D. We put Cy := [[;_, (deg, (Yi)/ [y c1(L)"). We put W) :=
Qy) (log D(i))|y. Let Gg) denote the induced W -operation of Vijy- We may assume
that (V,y, 0%9)) is pz-stable due to Lemma 3.32. By applying the Mehta-Ramanathan
type theorem to the Harder-Narasimhan filtration of V., we may have a constant B
such that (i) it is independent of the choice of ¥; and a sufficiently large deg; (Y;), (ii)
par-deg; (Fi) < B - C) for any F,. C V,)y. We show that (V,, 0™ are yuy-stable by
an induction.

Assume that the claim holds for 7 — 1. Let F, be a W(i’)—object of V*|y such that
prL(Fy) = pr(Viy) = po(Vi) - C1, and we will derive the contradiction. We put
G := V/F, which is provided with the induced parabolic structure. Then, we have
the induced map 6 : F, — G.(=Y;). Let H denote the kernel. Let N denote the
saturated subsheaf of G(—Y;) generated by F//H, provided with the induced parabolic
structure. We have pu((F/H),) < p(N.). Let J C E,(—Y;) denote the pull back of
N via E(-Y;) — G(-Y;) with the induced parabolic structure. We obtain the
following:

(16) B-Cy > par-deg (J(Y:).) > par-deg,(Fy) + par-deg, (N.(Y;))
> 2 par-deg (F.) — par-degy (H.) + rank(F/H) - deg (O(Yi))y)
> (2rank(F) - u(Vi) — B) - Cy + rank(F/H) - deg (O(Y;)y)
If degp (Y;) is sufficiently large, deg;(O(Y;)|y) is much larger than C;. Hence

rank(F/H) must be 0, and hence F' is actually a W(~1_subobject, which contradicts
with the p17-semistability of (V,y, 6¢=1)). Thus the induction can proceed.
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3.5. Adapted Metric and the Associated Parabolic Flat Higgs Bundle

We recall a ‘typical’ example of filtered sheaf. Let £ be a holomorphic vector
bundle on X — D. If we are given a hermitian metric h of E, we obtain the Ox-
module .E(h) for any ¢ € R®, as is explained in the following. Let us take hermitian
metrics h; of O(D;). Let 0; : O — O(D;) denote the canonical section. We denote
the norm of o; with respect to h; by |oi|n,. For any open set U C X, we put as
follows:

DU, B(R) = {f € T\ D, B)|fln = O[T loul;, ) ve > 0}.
Thus we obtain the Ox-module (E(h). We also put E(h) :=J,.E(h).
Remark 3.33. — In general, (FE(h) are not coherent.

Definition 3.34. — Let E. be a filtered vector bundle. We put E = E = E]X—D-
A hermitian metric h of E is called adapted to the parabolic structure of E*, if the
isomorphism F ~ E is extended to the isomorphisms .E(h) ~ .E for any ¢ € RS

The following result is proved in [44].

Proposition 3.35. — Let (E,0g,0,h) be a tame harmonic bundle on X —D. Then, we
obtain the c-parabolic Higgs bundle (cE(h)«,0) on (X, D) by the above construction.

Proof. — By Theorems 8.58 and 8.59 in [44] (the A = 0 case), E(h), with the
induced filtrations is a c-parabolic bundle. By Corollary 8.89 in [44], 0 is regular. O

3.6. Convergence

We give the definition of convergence of a sequence of parabolic Higgs bundles.
Although we need such a notion only in the case where the base complex manifold
is a curve, the definition is given generally. Let X be a complex manifold, and
D= ies D; be a simple normal crossing divisor of X. Let p be a number which is
sufficiently larger than dim X. Let b be any positive integer.

Definition 3.36. — Let (E("),g(i)7 FO). 0) (i = 1,2,...) be a sequence of c-
parabolic Higgs bundles on (X, D). We say that the sequence {(E(i),g(l), FO, o)}
weakly converges to (E(C’O),g(m)7 F(OO), 0("0)) in Lﬁ on X, if there exist locally
LP-isomorphisms o) . B — F(°) on X satisfying the following conditions:

— The sequence {fb(i)(g(%)) — 5(00)} converges to 0 weakly in L}, locally on X.

~ The sequence {®) () —9(>)} converges to 0 weakly in L}_, locally on X, as

sections of End(E()) @ Q1(log D).
— For simplicity, we assume that ®®) are C*° around D.
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— The sequence {®() (YF®)} converges to 7 F(>) in an obvious sense. More pre-
cisely, for any § >0,j € S and a €)¢; — 1,¢], there exists mg such that
rank’ F{°) = rankJF( )5 and that JF(EOO) and & (J F( Y ) are sufficiently close
in the Grassmann varieties, for any ¢ > mg.

Lemma 3.37. Let X be a smooth projective wvariety, and D be a simple nor-
mal crossing divisor of X. Assume that a sequence of c-parabolic Higgs bundles

{(EW, 9", p L0} on (X, D) converges to (B>, 7, F(‘”) ,00)) weakly in L}
on X. Assume that there exist non-zero holommphz( sections s of (B, 5‘( ) such
that ) (s = 0 and that s()EJFO( |P) for any P € Dj and j € S.

Then there exists a non-zero holomorphic section s°°) of (E(‘X’),g(oo)) such that

00)(5)) = 0 and that 5|73 €/ Fy(E(”) for any P € D and j € 5.

Proof. — Let us take a C*®-metric h of E(*) on X. We put t() := ®0 ) (s®). Since
p is large, we remark that ®*) are C°. Hence we have maxpe x |t( )(P)[;. We may
assume maxpey [t (P)[; =

We have q><7">('5(")) R a;, and hence 7N = —a;(tM). Due to [tV < 1
and a; — 0 weakly in L}, the L}-norm of t@) are bounded. Hence we can take an
appropriate subsequence {t( 2 | i € I'} which weakly converges to 5(°) in LY on X. In
particular, {t()} converges to a section s(>) in C°. Due to maxp |s(°°)(P)|,~L =1, the
section s(®) is non-trivial. We also have 5(00)5(00) =0in Li)_l, and hence s(°) is a
non-trivial holomorphic section of (E(Oo),g(oo)). It is casy to see that s(°) has the
desired property. O

Corollary 3.38. — Let (X, D) be as in Lemma 3.37. Assume that a sequence of c-

parabolic Higgs bundles {(E(i),5(2)7F<i),9(i>)} on (X, D) weakly converges to both
(E,0p, F,0) and (E', 0, F',0) in LY on X. Then there exists a non-trivial holo-
morphic map f : (E,0p) — (E',0p/) on X which is compatible with the parabolic
structures and the Higgs fields.
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CHAPTER 4

AN ORDINARY METRIC FOR A PARABOLIC HIGGS
BUNDLE

In this chapter, we would like to explain about an ordinary metric for parabolic
Higgs bundles, which is a metric adapted to the parabolic structure. Such a metric
has been standard in the study of parabolic bundles (for example, see [4], [36] and
[35]). It is our purpose to see that it gives a rather good metric when the parabolic
Higgs bundle is graded semisimple. (If it is not graded semisimple, we need more
complicated metric as discussed in [5] and [52].) After giving estimates around the
intersection and the smooth part of the divisor in Sections 4.1 and 4.2, we see some
properties of an ordinary metric in Section 4.3.

4.1. Around the Intersection D; N D;

4.1.1. Construction of a metric. — We put X := {(21,2) € C? |2i] < 1},
D; :={z =0} and D = D; U Dy. Take a positive number ¢, and let w, denote the
following metric, for some positive number N:
dz; - dz;
Z(eN+2 Azl + lzf?) -
|2]
Let (cE.,0) be a c-parabolic Higgs bundle on (X, D). We put E := .Ejx_p. We
take a positive number € such that 10e < gap(.FE.). We have the description:
dz dz
0=fi-—+fr-—, fi€End(E)
21 22

We have Res;(0) = f;|p,-

Assumption 4.1
— The eigenvalues of Res; () are constant. The sets of the eigenvalues of Res;(6)
are denoted by S;.
— We have the decomposition:

cE= P cEa suchthat fi(cFa)C cEa-
aeSj[XSQ
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There are some positive constants C' and 7 such that any eigenvalue 3 of f;| g,
satisfies |3 — a;| < C' - |z]" for o = (a1, az).

Remark 4.2. The first condition is satisfied, when we are given a projective surface
X' with a simple normal crossing divisor D" and a c-parabolic Higgs bundle (o E', ")
on (X', D), such that (X, D) C (X', D’) and (cE.,0) = (' E'+,0")|x. The second
condition is also satisfied, if we replace X with a smaller open subset around the
origin O = (0,0).

In the following, we replace X with a smaller open subset containing O with-
out mentioning, if it is necessary. Let us take a holomorphic decomposition (F, =
Doc i Ua,a satisfying the following conditions, where b; denotes the i-th component
of b:

@ Uab)0="Fa,j0N*Fuy 0N cEajo, @ Ua,b| i = cEa|p, N'Fo.

b<a b, <a
We take a holomorphic frame v = (vy,...,v,) compatible with the decomposition,
i.e., we have (a(v;), a(v;)) € R* x C? for each v; such that v; € Ua(v;).a(v;)- Let hg
be the hermitian metric of .F for which v is orthonormal. Let hg be the hermitian
metric of E such that ho(vi,v;) = hi(vi,vj) - |21] 7200 - 25| 7202(v) " where a;(v;)
denotes the j-th component of a(v;). We put as follows:

dz;
A=A+ Ay, A = —a;— ) -id .

(3

Then, we have dp,, = dp; + A. We also have R(ho) = R(hy) = 0.

4.1.2. Estimate of F'(hy) in the graded semisimple case

Proposition 4.3. — If (.FE.,0) is graded semisimple in the sense of Definition 3.25,
then F(hqo) is bounded with respect to w. and hg.

Proof. — Since we have F(hg) = R(ho)+ 0, 0] +0p,0+00", we have only to estimate
[0,07], 9,0 and 90, We have the natural decompositions f; = @ fia for i = 1,2,
where fio € End(.E,). Since the decomposition of E = @ E, is orthogonal with
respect to hg, the adjoint )‘J of f; with respect to hg preserves the decomposition.
Hence we have the decomposition fj =& f;‘a, and fja is the adjoint of f;o with
respect to hou, .-

Let us show that [O,OT] is bounded with respect to hg and w.. We put N; :=
fi—@, i-id g, fori= 1,2, and then we have [f;, fﬂ =@, [Ni,N;]. Since (o E., 0)
is graded semisimple, we have Ny | p, (*F,) C 'Fc,. We also have Ny | p, (*F,) C 2F,.
Hence, we obtain |N1 < C - |21]*¢ for some positive constant C. Similarly we can
< C - |22]*. Thus we obtain the boundedness of [9,0}10]

Iho
obtain the estimate .Ngl ho
with respect to hy and we.
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Let us see the estimate of Jp,0. We have the following, where o denotes the first
component of a:

d d d d
On <f1 : ——Z1> = O, (§ - idg,, -——Z1> + Oy <N1—21> + [Az, Nl—zl} .
21 = 21 21 21

The first term is 0. We put Q := dz; A dza/z1 - z2. Let us see the second term
OnyN1+dz1/21 =: Go-§2. Then, G is a C*-section of End(E) satisfying G| p, (‘F,) c
1F_, and Go|p, = 0. Let us see the third term [Ag, Ni] - dza/22 =: Gy - §2. Then,
G, is a C*™-section of End(E) such that Gy|p,(*Fa) C ‘F<a. Hence, the second
and the third terms are bounded. Thus we obtain the boundedness of dp,6. Since
50};0 is adjoint of Jp,0 with respect to hg, it is also bounded. Thus the proof of
Proposition 4.3 is finished. O

4.2. Around a Smooth Point of the Divisor

4.2.1. Setting. — Let Y be a complex curve, and L be a line bundle on Y. Let U
be a neighbourhood of Y in L. The projection L — Y induces m : Y — Y. Let
o denote the canonical section of #*L. Let |- | be a hermitian metric of 7*L. Thus,
we obtain the function [J[ :U — R. Let Jy denote the complex structure of U as
the open subset of L, and let J be any other integrable complex structure such that
J — Jo = O(|o]). We regard U as a complex manifold via the complex structure J.
The (0, 1)-operator 9 is induced by J.

Let (E,0g) be a holomorphic vector bundle on U. We put Ey := E\y, and let F
be a filtration of E'y in the category of holomorphic vector bundles indexed by R. For
later use, we also consider the case where F' is not necessarily a c-parabolic filtration
for any c € R, i.c., S(F) = {a | crf(B) # 0} is not contained in any interval Jc—1, c]
of the length 1. Thus E, = (E, F) may be a parabolic bundle in a slightly generalized
sense (Remark 3.6). But, if F' is not a c-parabolic filtration, we will assume (i) J = Jy
and (ii) the decomposition F = @ F,, (see Subsection 4.2.2) is given holomorphically.
In the case F is a c-parabolic filtration, we have the number gap(F) := gap(E, F)
as in Subsection 3.1.1. Otherwise, we put gap(F') := max{|a — b| # 0]a,b € S(F)}.
Let € be a positive number such that 10e < gap(F). Let w be a Kahler form of
U. Take a small positive number C' and a large real number N. Then, we put
we i=w+ C - eVy/=190|7|¢, which gives a Kahler form of U \ Y.

Let 6 be a Higgs field of F, in the sense of Remark 3.6. We put f := Res(f) €

Assumption 4.4. — The eigenvalues of f are assumed to be constant on Y. (See
Remark 4.2.)
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4.2.2. Construction of a metric. — We construct a hermitian metric of Ej,_y
adapted to the filtration, by following [35] and [36] essentially. (See also [4].) We
have the generalized eigen decomposition Ey = @, ¢ GrE(Ey) with respect to f.
We also have the generalized eigen decomposition Grl (Ey) = @, Grgi)(Ey) of
Gr¥(By) with respect to Gr’'(f). Then we put Ev,u = Gri"¥(By) for u € R x C,
and Ey = @Eyﬂ.

Let hy be a C*°-metric of E on Y. The holomorphic structure of E and the metric
hy induces the unitary connection Vo of E on Y. We put hy := %IY' We assume
that the decomposition Fy = @ Gr®(Fy) is orthogonal with respect to hy. The
holomorphic structure of Ey and the metric hy induce the unitary connection Vg,
of Ey. Thus the connection V «g, is induced on 7*Fy. Then, we can take a C°-
isometry ® : 7* Ey — E such that Voo ® —®on*V g, = O(|o|) with respect to w, as
in [35]. To see it, we take any isometry ®' such that (I>1Y is the identity. We identify E
and 7 F via @’ for a while. Let u(E) be the bundle of anti-hermitian endomorphisms
of E. We have the section A = Vg—V . g, of u(E)®},. We can take a C*-section B
of u(E) such that B = O(|o|) and Vy+p, B— A = O(|o]), which can be easily checked
by using the partition of unity on Y. Then we obtain g~ 1oV, g— Vo = O(|o]|) for
g = exp(B), which implies the existence of an appropriate isometry ®. We identify
FE and 7*FEy via such a ® as C°°-bundles.

The metric hy induces the orthogonal decomposition GrE(Ey) =@.cr%0,0) juch
that @, G(a,a) = Fb GrE(E). We have the natural C*°-isomorphism G, ~ FEy,,,

and thus Fy ~ Ey. We identify them as C'°°-bundles via the isomorphism. Let hy
denote the restriction of hy to G, for u € R x C. We put E, := 7*G,, and thus
E=@E, and hj = m*hy = @ 7*hy,. We put as follows:

. N
4.2.3. Estimate of R(hp). — Weput I':= Pa-idg, .

Lemma4.5. — R(hg,0g) is bounded with respect to w. and hg. More strongly, we
have the following estimate, with respect to hy and we:

(18) R(ho,05) = P 7" R(hyw,05, ) +T-00loglo|~> +O(|o[).
ue RxC

Proof. Let 0, denote the (0,1)-part of Vg, . Let T denote the (0,1)-part of
Vo — *Vg,. We put S = 0, — gﬁy. We put Q@ = T + 7*S. Then, we have
Op = 01 + Q. We have S(F,) € F., ® Q' and Tjy = 0 in (End(E) ® )y
Hence, we have @ = O(|o|*). The operator d; j, is determined by the condition
Oho(u,v) = ho(D1u,v) + ho(u, 01 p,v) for smooth sections u and v of E. Similarly, we
obtain the operator 9 /.
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Let QILO denote the adjoint of @ with respect to hg, and then dg p, = O1,p, — QLU.
Hence we obtain R(dg,ho) = [01,01,n,] — 51@20 + O1,0,Q — [Q,QILO]. Since Q
and Q}:O are O(|o|*¢) with respect to w. and hg, so is [Q,QILO]. We have 01 ,,Q =
01,0, Q+0log|o| 2T, Q]. Since Q is sufficiently small, the second term is O(|o[*“) with
respect to w, and hg. Since T}y is 0 in (End(E) ® Qzl/{)|yv we have 0y, T' = O(|a|?)
with respect to w. and hgy. Since ((’)17h(/)S)'Y(Fa) C (Feo ® Q"0(logY) ® Qo’l)ly,
we have (91,%5' = O(|o|*¢) with respect to ho and we. Thus, 91 »,Q and the adjoint
z?_lQIm are also O(|o|*¢) with respect to w. and ho. We have [51, 81’;7,0] = @1, 81’%] +
I'- ddlog|o|~2. Since we have J; + Oy = V..p, by our construction, we obtain
[51, c‘)l,h(/)] = ﬂ*R(hy,ggy) + [51,51] + [(‘)1,11(/),817/%] =T R(hy, 0 ) + O(|J|26) with

respect to we and hg. Thus Lemma 4.5 is proved. O

Corollary 4.6. — We have the following estimate with respect to we:

tr R(ho,0p) = Z 7 tr R(hy,(a,a),gEy_(a‘”))—I—Z a-rank Gr!' (E)-901og |o| 2 +0(1)

(a,a)

4.2.4. Estimate of F(ho) in the graded semisimple case. — In this subsection,
we assume that the filtration F' (Subsection 4.2.1) is a c-parabolic filtration for some
ceR.

Proposition 4.7. — If (E.,0) is graded semisimple, F(ho) is bounded with respect to
we and hg.

Proof. — We put po := @a-idg, ,, and py = Pa-idg,,,. Let P be any point
of Y. Let (U, 21, 22) be a holomorphic coordinate neighbourhood of (L{ ,J ) around P
such that U N'Y = {z; = 0}. We are given the Higgs field:
dz
0= fi- ——1 + f2 - dzo.

Since fy)y preserves the filtration F, f 5 is bounded with respect to hg. It is easy to
see [po, fa])y = 0. Hence [po, f2] is O(|o|**) with respect to hg. We put fi = f1 — po
Due to the graded semisimplicity of (F,#), we have fl!Y( F,) C F.q. Hence f] is
O(|o|?¢) with respect to ho. Then it is easy to check the boundedness of [0, 6] with
respect to we and hg, by a direct calculation.

We have the following:

.o (f1) - dzl = Oy (f1) - ﬁﬂr 1] - dlog o2 - _zi_[QhU fl].&

Then, 0y 1y fi = A -dzg - dz1 /2 is C°-(2,0)-form of End(E), and Ay (F,) C F<q.
Hence the first term is O(|o|?¢) with respect to w, and hg. Similarly, the same estimate
holds for the second term. Since QILO = O(|o|?), the third term is O(|o|°).

We have dp p, fo - dzz = Oy f2 - dzz + [T, fo] - log|of? - dzo — [Q}, , fo] - d2a. Since
the first term is a C*>°-2-form of End(FE), it is O(|o|*¢) with respect to w, and hg. The
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same estimate holds for the second term because of [I', f2](Fy,) C F<q. Since Q;rm is
O(|o|?), the third term is O(|o|) with respect to we and hg. Then Proposition 4.7
is proved. O

4.2.5. Preliminary for the calculation of the integral. — Let ﬁy = @lALYu
be a hermitian metric of Ey for which @ Ey ,, is orthogonal. We put h := 7*hy. We
put A:=0pn, — 7.

Lemma 4.8. — We have the following estimates with respect to w,:

(19) tr A :Za-rankGrf(E) -dloglo|™? + O(1)

(20) (A Rho) Z?T tr R( Eyaa,hya o) a-0loglo|” 2

a,xx

+ Zrankﬁy,a,a -a®-90log|o|20log|o| 72 + tr(Q% - [ 0log|o| 2, Q]) +0(1)

a,x

(21) tr(A- R(h)) }:w tr R(Ey,q.0, hy,a,a) - a - 9log |o|

—tr(I- log |o| 2 [Q,Qi]) +0(1)

Proof. — We have O, = O1n, — Q}Lm +T - dlog|o|~2 and g5 =07 Q We
put P = 0y py — 31 7, which is a C*°-section of @ End(E,) ® Q9. Thus, WO have
A=P+Q-Qj,
(we, h), we obtain (19).

Let us show (20). Since P + QL“ is bounded with respect to hy and w., we have
the boundedness of tr((P + Qho) R(hg)) with respect to we. From (18), we obtain
the following:

5 and Q;rm are bounded with respect to

(22) tr(l" dlog |o| 2 Rho) ZW tI'R(Eyaa,hyaa) a-dloglo|?

a,x

+ Zrankﬁy,a‘a -a? - 90log|o| ™% - dlog|o] 2 + O(1).

a,a

Let us see tr QI - R(hp)). We decompose it as follows:
h

(23)  tr(QL - [01,010,]) — r(QL-01Q] ) + tr(QL - 914, Q) — tr(QL - [Q, Q) ))

Since [51, 1,1y ] 18 bounded with respect to (we,lAz), we obtain the boundedness of the
first term. Recall Q}:O (7 *S)hO +T ho Because of Tjy = 0 in (End(E) ® Q%!)}y and
OnT = 0y py T+ [I-0loglo| 2, T], we have 9y, Tjy = 0 in (End(E)@Q"0(log V) ®
Qo’l){y. Because of 51T;{0 = (81,h0T) ;rm’ it is easy to obtain nggO = O(|o]?¢) with

respect to E,we . We also have T] = O(|o|2¢) with respect to lAL,we . Since 7S is
ho
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a section of @ ., Hom(Eaa, Ear o) ® Q%1 we have W*S;;U = O(|o|?¢) with respect
to (ﬁ,we). Hence, Q;rm and [Q}LWQ] are O(|o|*¢) with respect to (we, h). Therefore,
the fourth term in (23) is bounded. Because of 5177*5;20 = (al,hg)w*s)zo + ([T
0log |a|_2,7r*S])T it is easy to obtain 5171'*820 = O(|o|?%) with respect to (w, h).

he?
Together with theoestimate of 51T;{0 above, we obtain the boundedness of 0, Q}:O with
respect to (we, h). Hence, we obtain the boundedness of the second term in (23).
We have 01,4,Q = 011, Q + [l - dlog|o|~2,Q], and 01,0, @ is bounded with respect
to (we,ﬁ). Therefore, the third term is O(1) + tr(QLU [T - dloglo|~2,Q]). Thus we
obtain (20).

Let us show (21). Since P, Q% and Q}:O are bounded with respect to (weﬁ), we
have tr((P+ Q% — QLO)R(Z,)) = O(1) with respect to w,. We have R(h) = [0, o 71—
ElQ% +0,;Q — [Q%,Q]. Because of 0, ;T = O(|o]?¢) with respect to (we,?z,) and
9,575 € @, . Hom(Ey q, By o) ®Q2, we have tr(I'-9log |U|_2'31,EQ) =O(|o]*)
with respect to w,. By a similar reason, tr(I" - dlog |0|‘251Q’%) = O(|o]?%). Since we

have [51,8113] = R(E, hy) + O(|o|2) with respect to (h,w,), we obtain (21). [
Corollary 4.9. — We have the following estimates with respect to w:
(24)

tr(A-R(ho) + A R(h)) =Y " (tr R(Ey,u, hyu) + tr R(Ey.u, hy.u)) -a-0log|o|

u

+ Za2 -rank By, - dlog|o| "2 - 9dlog|o| % + O(1)
Here, u = (a, ). “
4.2.6. Estimate of a related metric. — For later use (Section 5.2), we consider
a related metric in the case where one more filtration W is given on Gr&']ha)(E)
indexed by Z. The argument and the calculation are essentially contained in those
of Section 3.A in [5]. Since our purpose is more restricted, the construction of the
metric can be more rough.

We put E,p = Gr)’ GrPE(Ey) for (u,k) € (R x C) x Z and Ey :=

@D Eur. We put Fg i GrE(E) = n;Y(W), where 7, denotes the projection

F,CGr%(E) — Grﬁ;’Ea) (E). The metric hy induces the orthogonal decomposition

GrE(B) = D .1)erxc Ga,ak such that Fip ) GrE(E) = D (a.r)<(b,1) Ga,a.k- We have
the natural C*-isomorphism G, x ~ Gr} Gri"®(Ey) for (u, k) € (R x C) x Z. Thus,
we obtain the C*°-identification of Fy and Ey. Let hy ., denote the restriction of
hy to gu,k.
Via the identification ® : 7*Ey =~ FE, we obtain the C'°°-decomposition F =
P Eq k- Then, we put as follows:
hi = @ T hy,aak - o] 2% (= log|a|2)k.

a,o,k
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There exist some constants C and N such that C~! - hy - (—10g|0])_N < h; <
C - ho-(—logla|)¥

For appropriate constants C1, we put & := w + C - 99 log(— log |o|?), which gives
the Poincaré like metric on U \ Y.

Lemma 4.10. — R(hy) is bounded with respect to @ and h; (i = 0,1). The difference
Or,h, — O by 15 bounded with respect to @ and hy.

Proof. — Under the identification Ey = E’y, we put S = Op, — 5@/. We put 8 :=

S—S. As before, we have 0 = 02+Q and Q = T+7*S. We also have 01 = Oy +7*5".

Because of Tjy = 0 in (End(E)®Q}, )IY’ T and TJI are O(|o|?) with respect to (h;, @)

(i = 0,1). Because of S(F((, k) C F< ak) @O S and §,TLI are O((—loglo])~1/2)

with respect to (hy, ). We also obtain S = O( ) and g,t = O((~log|o|)~1/?) with
(

respect to (hg,&). In particular, Q and Qh are bounded with respect to (h;, @)
(i=0,1).
We put K := @ k/2-idg, . Then, we obtain the following:

(25) Op.h, = O2n, — @L = Oa,pe + K - Olog(—log|o]?) — QV;T”
= D1y + (1°8")], + K - dlog(— log|ol?) — Q},
= dpp + Q) + (775’ )h +K - 0log(—loglo|*) — Q] .

It is easy to see that #*S’ and (r* S')h() are bounded with respect to hg. Thus, we
obtain the boundedness of 0g n, — O n, with respect to (@, hg).
We decompose R(hy) as follows:

(26) R(hl) = W?a 82,/11] + a?,h]@ - —0_2@};1 - [é’ @;r?l]

We decompose the second term as follows:

(27) [82,}11 ) @] = I:’C : 010g(_ log |0|2)1 @]
+ [O2,n;, + T - Dlog lo| 72, T] + [02,1 + T - 0log lo| =2, §]

Since dlog(—log|o|?) is bounded with respect to @, we have the boundedness of
K - 0log(—log|o|?) with respect to (@, h;) (i = 0,1). Hence, the first term in (27) is
bounded. The adjoint with respect to h; also satisfies the same estimate.

We have T = O(|o[**) with respect to (@, h;) (i = 0,1) and [Dap;, T]jy = 0 in
(End(E) ® Q'°(log D) ® Qo’l)ly. Hence [I" - dlog|o|?, T] and [9y 4, T] are O(|o[*)
with respect to (@, h;) (i = 0,1). Their adjoints with respect to hy are also O(|a|?¢)
with respect to (w, h;). Therefore, we obtain the boundedness of the second term in
(27) and the adjoint.

Let S = A- dz, + B - dZ; be the expression for a local coordinate (U, z1, z2) such
that 271(0) = Y NU. Then, we have Ay = 0 and Bjy (Flax)) C Fe(ax)- We have
[, Bljy (Fa) C Feq. Thus [I' - dlog|o|~2, 5], and the adjoint with respect to h; are
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O(|o|*) with respect to (@, hs) (i = 0,1). We have [0 4, A-dz] y =0 in (End(E)®
QM9(ogY) ® Qo*l)ly. For the expression [82’%, Bdzs| = (C1 - dz1 /21 + Cadzy) - dZa,
we have Cy)y = 0 and CQ\Y(ﬁ(aJQ)) C l~7<(a7k). Hence, [821%, §] and the adjoint with
respect to h; are bounded with respect to both of (@, h;) (i = 0,1). Therefore, we
obtain the boundedness of the third term in (27) and the adjoint. Thus we obtain
the boundedness of the second and third terms in (26).

We have [02,02n,] = [02,00,,) + 00log|o|2 - T + 8dlog(—log|o|?) - K which
is bounded with respect to (@, h;) (i = 0,1). Thus we obtain the boundedness
of R(h1). d

4.3. Global Ordinary Metric

4.3.1. Decomposition and metric of a base space. — Let X be a smooth
projective complex surface, and D be a simple normal crossing divisor with the ir-
reducible decomposition D = |J,c ¢ Di. We also assume that D is ample. Let L be
an ample line bundle on X, and w be a Kahler form which represents ¢;(L). For
any point P € D; N D;, we take a holomorphic coordinate (Up, z;, z;) around P such
that Up N Dy = {zx = 0} (k = 4,5) and Up =~ A? by the coordinate. Let us take a
hermitian metric g; of O(D;) and the canonical section O — O(D;) is denoted by
oi. We may assume |og|2 = [2¢|? (k =i,5) on Up for P € D; N D;.

Let us take a hermitian metric g of the tangent bundle T'X such that g = dz;-dz; +
dzj-dz; on Up. It is not necessarily same as w. The metric g induces the exponential
map exp : TX — X. Let Np,X denote the normal bundle of D; in X. We can
take a sufficiently small neighbourhood U} of D; in Np, X such that the restriction
of exp|y gives the diffeomorphism of U] and the neighbourhood U; of D; in X. We
may assume U; NU;j = [[pcp,qp, Up.

Let p; denote the diffeomorphism expy; U/ — U;. Let m; denote the natu-
ral projection U/ — D;. Via the diffeomorphism p;, we also have the C*°-map
U; — D;, which is also denoted by ;. On Up, 7; is same as the natural projec-
tion (z;,2;) — z;. Via p;, we have two complex structures Jy, and Jy; on U;.
Due to our choice of the hermitian metric g, p; preserves the holomorplﬁc struc-
ture (i.e., Jur = Ju; = 0) on Up. The derivative of p; gives the isomorphism of the
complex bundles T'(Np,(X))p, ~ TD; ® Np,X ~ TX|p, on D;. Hence we have
Ju, = Ju: = O(|o]).

Let € be any number such that 0 < e < 1/2. Let us fix a real number N, which is
sufficiently large, say N > 10. We put as follows, for some positive number C' > 0:

wer=w+ Yy C-eV - V/=100]o: 2.

Proposition 4.11. — If C is sufficiently small, then w. are Kahler metrics of X — D
for any 0 < e < 1/2.
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Proof. — We put ¢; := |o;|2 . We have /=1-00¢5 = /=1-€*- ¢ - 0log ¢; - Olog ¢; +
V—1-¢€-¢¢-00log ¢;. Hence the claim of Proposition 4.11 immediately follows from
the next lemma. O

Lemma4.12. — We put f(e) := € -3¢ for 0 < e < 1/2 and for 1 > 1. The following
mequality holds:

l

l
L R -
*loth) e O<t<e™)

(28) fulo) < (

(29) fi(e) < (%)l o (t=el)

Proof. — We have f{(e) = =12 - (I 4+ elogt?). If t < e !, we have ¢ = | x
(—logt?)™t < 1/2 and f/(en) = 0. Hence f; takes the maximum at e = ¢, and we
obtain (28). If t > e~ !, we have f/(e) > 0 for any 0 < e < 1/2, and thus f;(¢) takes
the maximum at e = 1/2. Thus we obtain (29). O

The Kahler forms w, behave well around any point of D in the following sense,
which is clear from the construction.

Lemma 4.13. — Let P be any point of D; N D;. Then there exist positive constants
C; (i = 1,2) such that the following holds on Up, for any 0 < e < 1/2:

Crw. < VT N¥2 . (dz,; -dz; n dz; -de) + /——1(dzz- -dz; + dz; .dgj) <Oy - w,.

P2 T TP

Let Q be any point of Dy, and (U, w1, w2) be a holomorphic coordinate around @ such
that U N D; = {wy = 0}. Then there exist positive constants C; (i = 1,2) such that
the following holds for any 0 < e < 1/2 on U:

Jwy - dw

Cl we<vV—1- eNt2. ((|LU]|7212U:) + \/—l(dwl -dwy + dws - dﬁ}g) < (s - we.

wh
Lemma 4.14 (Simpson [51], Li [35]). — Let us consider the case € = 1/m for some
positive integer m. Then the metric we satisfies Condition 2.1.

Proof. — We use the argument of Simpson in [51]. The first condition is easy to
check. Since we have assumed that D is ample, we can take a C°°-metric |- | of O(D)
with the non-negative curvature. We put ¢ := — log |o|, where o denote the canonical
section. Then /—100¢ is a non-negative C*>°-2-form, and it is easy to check that the
second condition is satisfied.

To check the condition 3, we give the following remark. Let P be a point of D;ND;.
For simplicity, let us consider the case (i, j) = (1,2). We put Vp := {(¢1, &) | |G| < 1}.
Let us take the ramified covering ¢ : Vp — Up given by (¢1, () — (¢, ¢5*). Then
it is easy to check that @ = ¢~ 'w, naturally gives the C°°-Kahler form on Vp. If f
is a bounded positive function on Up \ D satisfying A, (f) < B for some constant
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B, we obtain Ag(¢*f) < Bon Vp —¢ {(DNUp). Since & is C* on Vp, we may
apply the argument of Proposition 2.2 in [51]. Hence A (cp* j) < B holds weakly on
Vp. Then we can apply the arguments of Proposition 2.1 in [51], and we obtain an
appropriate estimate for the sup norm of f. By a similar argument, we obtain such
an estimate around any smooth points of D. Thus we are done. O

4.3.2. A construction of an ordinary metric of the bundle. — Let (.E,,0)
be a c-parabolic Higgs bundle on (X, D). In the following, we shrink the open sets
U; without mentioning, if it is necessary. We put D} := D; \ |, i Dj-

On each D;, we have the generalized eigen decomposition with respect to Res;(6):

(30) cE|D, = @iGrE(CE1Di)

For each point P € D; N D;, we may assume that there is a decomposition .Fjy, =
@ PUqo as in Section 4.1. Let Pv be a holomorphic frame compatible with the
decomposition. We take a C'°°-hermitian metric 7;,0 of .E such that “v is an or-
thonormal frame on Up and that the decomposition (30) is orthogonal. We have
the induced unitary connections Vg ; and V,_ Ejp, O By, and FE|p,, respectively.
Then, we can take a C'*°-isomorphism ‘® : 7} (CEID,;) ~ .F on U; such that (i) the
restriction of ‘® to D; is the identity, (ii) the restriction of ‘® to Up is given by the
frames Pv and 7} (Poju,np, ), (iii) Vo0 '® — @ o TV 5 p, = O(loilg,). ([35]. See
also the explanation in Subsection 4.2.2.) We also obtain the orthogonal decompo-
sitions GrE (CE,DZ,) = @aeRiQ(a,Q) with respect to TLO such that *Fp GrE (CE|D1) =
PB.<t Y(a,a)- They induce the C*°-decompositions E|y, = @’;E((L,a).

We can take a hermitian metric hg of F on X — D, which is as in Subsection 4.1.1
on Up, and as in Subsection 4.2.2 on U; \ | JUp. More precisely, we take a hermitian
metric hp, of «Ejpe such that (i) the decomposition o F|pe = @igumg is orthogonal,
(ii) hDi(P’Uk,P’Ul) = 6k,l . ‘ZjlfQui"(ka) for each P € D; N Dj (7 #* ’L) Let hD,,,u
denote the restriction of hp, to iguw;. Then, hg is given by (17) on U; \ D. We have
ho(Pog, Pu)) = k- |z¢|‘2“'i(P’”’<) . |zj|_2“J(P“**) on Up\ D for P € D; N D;. Thus,
we obtain the metric of £ on Uz U; \ D. We extend it to the metric of £ on X — D.
Such a metric hg is called an ordinary metric, in this paper. The following lemma
immediately follows from Proposition 4.3 and Proposition 4.7.

Lemma 4.15. — If (oE.,0) is graded semisimple, then F(hg) is bounded with respect
to hy and we.

4.3.3. Calculation of the integrals

(2@1) | R’ = [ parcicr)

Lemma 4.16
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Proof. — We have (tr R(hg))2 = (tr R(/l;,o))2 +tr R(EO) -0tr A+tr R(ho)-0tr A. We
have the following equality:

(5 o= v

Due to (19), we obtain the following:

VoI S VL % :
< o ) ./X_DtrR(hO)'atrA‘ZW/DltrR(holDUCElDi).(_Wt(CE*’Z))

= Z Wt degD E|D Z Wt /X (CE) ’ [Dl]

We put Ep, o, := ! Grl®(E|p,), which is naturally isomorphic to ‘G, as C*-bundles.
Hence the metric hp, , on EDML is induced (Subsection 4.3.2). Then, we obtain the
following, using Corollary 4.6:

(32)
V1Y e i
( oy ) /X_DtrR(ho) OtrA=— Zwt i)y o . tr R(hp,us EDyu)

u

-\ 2 —1 n 2
+zi:wt(cE*,z) ——V27T/D 90 1og |01

We have the naturally induced parabolic structure of «E|p, at D; N{J iz Dj- Then
we have the following equality:

(33) / tr R(hp, u,ED ) = par-degp (cE|p, +)

= degp,(cF|p,) Zwt E..j) /[Di] - [Dj].
J#i X

We also have % [p, @01og o> = [ [Di]*. Thus we obtain the following:

(34) <—\/2;>2/X_D tr R(ho) - Otr A = —Zi:wt(cE*,i)/Xq(cE) - [Dj]

30D WHeBu i) - wh(eE. ) /X (D D))+ Y wileEny i) /X DiJ?

Then the claim of the lemma follows. O
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Corollary 4.17
2
v—1
(-2—) / (‘ch(ho))2 :/ par-c2 (.. ).
™ X-D X
Proof. — 1t follows from (tr F(ho))2 = (tr R(ho))2 and the previous lemma. O

Proposition 4.18. — If (E.,0) is graded semisimple, the following equality holds:

(%)2 /X tr(F(y?) =2 /X par-chy (o E. ).

Proof. — We have only to show the following two equalities:
35 / tth2:/ tr( R(ho)?).
(35) | u(Fmo?) = [ er(Ro)?)
2
v-=1
(36) v—o / tr(R(ho)2) =2 / par-chy (o E.).
2m X-D X

Let us show (35). By a direct calculation or the classical Chern-Simons theory, we
obtain the following equality:

(37)  tr(F(ho)?) = tr(R(ho)?) + 2tr(((9h09 + 6] - R(ho))
+d(tx((0+6},) - (9ns0 +6L,)) + (2/3) - tr((6+ 6],)°) ).

Since R(ho), On,0 and 50;0 are a (1,1)-form, a (2,0)-form and a (0,2)-form respec-
tively, we obtain the vanishing of the second term in the right hand side. It is easy
to obtain tr((6 + 6’;0)3) =0 from 62 = 0;3 =0.

We put Y;(8) := {ac €X \ los(z)| = min, |o; (z)] = 5} and Y (8) := |, Yi(6). From
the estimate in Sections 4.1-4.2, tr(9 . 50};0) and tr(@};n . (9h09) are bounded with
respect to we for some 0 < ¢’ < e. Hence, we obtain the following convergence:

lim tr(0- 96! ) = lim tr(o] - O0p,@) =0
6—0 Y (8) ( ho) §—0 Y (8) ( ho 0 )
Then, we obtain the formula (35):
Let us see (36). We put A := 0y, — ;. Then we have tr(R(ho)?) = tr(R(ho)?) +
dtr(A-R(ho) + A- R(/ﬁo)). The contribution of the first term is as follows:
2
) ~
( ) / tr(R(ho)?) = 2chy(cE).
X-D

27
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As for the second term, we obtain the following from Corollary 4.9:

(38)
<E>2/X_Ddtr</l R(ho)+ A R ho ) = Za degp, a:E(CE|D'i))

2

— a - par-degp). iGrf]E Ep,) a®rank Gr <Ep, D;)?.
: | | .

1,a,0 1,a,0

Here * Gl a( E\p, )* is the parabolic bundle on (D;, D; N U D ;) with the canoni-
cally induced parabolic structure. We have the following:

> par-degp, ( Toa(cEp,), ) = par-degp, ( Cry (cE|Dz)*)

= degp, (' Grf (cEp,)) — Z Z a; - rank (¥ Grg(cEw)) .
JF#, a€Par(.E,P)
PED;ND; a;=a
Then (36) immediately follows. O

4.3.4. The degree of subsheaves. — Let V be a saturated coherent Ox_p-
submodule of E. Let 7y denote the orthogonal projection of E onto V' with respect
to hg, which is defined outside the Zariski closed subset of codimension two. Let hy
be the metric of V induced by hg. The following lemmas are the special case of the
results of J. Li [35].

Lemma 4.19. — Oy is L? with respect to ho and w. if and only if there exists a
coherent subsheaf ¢V C oE such that (Vix_p =V.

Lemma 4.20. — deg,, (V, hy) = par-deg,, (Vi) holds.

Proof. — We give just an outline of a proof of Lemma 4.20. By considering the
exterior product of £ and V, we may assume rankV = 1. We may assume that
L is very ample. Let C be a smooth divisor of X with O(C) ~ L such that (i)
¢V is locally free on a neighbourhood of C, (ii) C intersects with the smooth part
of D transversally, (iii) ‘F is a filtration in the category of the vector bundles on
D; around C' N D;. We can take a smooth (1,1)-form 7 whose support is contained
in a sufficiently small neighbourhood of C, such that 7 and w represents the same
cohomology class. Then we have [tr R(hy)-w = [trR(hy)- 7. It can be checked

g [ tr R(hy) - 7 = par-deg,, (. Vi) by an elementary argument. O
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CHAPTER 5

PARABOLIC HIGGS BUNDLE ASSOCIATED TO TAME
HARMONIC BUNDLE

In this chapter, we show the fundamental property of the parabolic Higgs bundles
associated to tame harmonic bundles, such as py-polystability and the vanishing of
characteristic numbers. We also see the uniqueness of the adapted pluri-harmonic
metric. These results give the half of Theorem 1.4.

5.1. Polystability and Uniqueness

Let X be a smooth irreducible projective variety over C, and D be a simple normal
crossing divisor with the irreducible decomposition D = (J;cg D;. Let L be any ample
line bundle of X.

Proposition 5.1. — Let (E,0g,0,h) be a tame harmonic bundle on X — D, and let
(eF.,0) denote the associated c-parabolic Higgs bundle for any ¢ € RS. (See Sec-
tion 3.5.)
— (eEx,0) is pr-polystable, and par-deg; (.E.) = 0.
— Let (cEy,0) = @,(cEis, 0;) ® C") be the canonical decomposition (Corollary
3.11). Then we have the orthogonal decomposition h = @, h; ® g;. Here h; are
pluri-harmonic metrics for (E;,0g,,0;), and g; are hermitian metrics of cr.

Proof. — The equality par-deg; (.FE.) = 0 can be easily reduced to the curve case
(Proposition 2.8). It also follows from the curve case that (.FL,6) is p-semistable.
Let us show (cE., ) is pr-polystable. Let (.Vi,f0yv) be a non-trivial saturated
Higgs subsheaf of (o £, ) such that pr, (Vi) = pr(cE+) = 0 and rank(V) < rank(FE).
Recall that we have the closed subset Z C X such that .V|x_ is the subbundle of
cEx_z. The codimension of Z is larger than 2. We have the orthogonal projection
my : . — V on the open set X — (Z U D). Let C C X be any smooth curve such
that (i) C intersects with the smooth part of D transversally, (ii) CNZ = @. Let
fc denote the induced Higgs field of Ejc\p. Due to the result in the curve case, we
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obtain that my|c is holomorphic and that ¢ and 7y ¢ commute. Then, we obtain
that my|x_(puz) is holomorphic and that [ry,f] = 0. Since the codimension of Z
is larger than two, 7y naturally gives the holomorphic map £ — F on X — D,
which is also denoted by my. It is easy to see 73 = my, and that the restriction
of my to V is the identity. Hence we obtain the decomposition F = V & V', where
we put V! = Kermy. We can conclude that V and V' are vector subbundles of
E, and the decomposition is orthogonal with respect to the metric h. Since we have
[rv, 6] = 0, the decomposition is also compatible with the Higgs field. Hence we obtain
the decomposition of (E, g, 8, h) into (V,dv, Oy, hy )& (V',dy+, 0y, hy+) as harmonic
bundles. Then it is easy that (o F., 0) is also decomposed into (Vi, 0v) ® (V's, Ov/).
Since both of (¢Vi,0v) and (.V'.,6y/) are obtained from tame harmonic bundles,
they are up-semistable. And we have rank(V) < rank(FE) and rank(V’) < rank(F).
Hence the pz-polystability of (.F, ) can be shown by an easy induction on the rank.

From the argument above, the second claim is also clear. O

Proposition 5.2. — Let (¢F.,0) be a c-parabolic Higgs bundle on (X,D). We put
E = .E\x_p. Assume that we have pluri-harmonic metrics h; of (E,0p,0) (i =1,2),
which are adapted to the parabolic structures. Then we have the decomposition of Higgs
bundles (E,0) = @, (Eaq,0a) satisfying the following conditions:

— The decomposition is orthogonal with respect to both of h;. The restrictions of

h; to E, are denoted by h; .

— There exist positive numbers b, such that hi o = bg - hoq.
We remark that the decomposition (E,0) = @(FE.,0,) induces the decomposition of
the c-parabolic Higgs bundles (CE*,O) = @D (cFax,0a).

Proof. — Recall the norm estimate for tame harmonic bundles ([44]) which says that
the harmonic metrics are determined up to boundedness by the parabolic filtration
and the weight filtration. Hence we obtain the mutually boundedness of h; and hs.
Then the uniqueness follows from Proposition 2.6. (The Kahler metric of X — D is
given by the restriction of a Kahler metric of X. It satisfies Condition 2.1, according
to [51].) O

5.2. Vanishing of Characteristic Numbers

Proposition 5.3. — Let (E,0g,0,h) be a tame harmonic bundle on X —D, and (. Ex, 0)
be the induced c-parabolic Higgs bundle. Then we have the vanishing of the following
characteristic numbers:

/X par-chy 1 (cEx) =0, /X par-c} 1 (cE.) = 0.
Proof. — We may and will assume dim X = 2. Let hy be an ordinary metric for the

parabolic Higgs bundle (. E., #). We have only to show [tr(R(hg)*)= ftr(R(hg))2 =0.
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Let I(D) denote the set of the intersection points of D. Let m : X — X be a blow
up at I(D). We put D= 7~ Y(D). Let D; denote the proper transform of D;, and
let Dp denote the exceptional curve 7~ (P) We put S := S U I(D). Then, we have
D= Ule 3 D We take neighbourhoods U of D with retractions 7; : (71 - 51 for
1€ S as in Subsection 4.3.1.

We put E := 1 1(.E). On Elfm (¢ € S), we have the naturally induced filtration
{F. For any intersection point P € D; N Dj, we have the isomorphism El By =
Eip® Of)p' We have the filtrations *F and /F on <E|p. We take a decomposition
cEjp = @U, such that 'F,, N%F,, = @bga Up. Then, we put PFb(cE|P) =
@D, +b,<» Ub, which gives the filtration of (Ejp. The induced filtration on EI By 18

also denoted by ' F. The tuple of filtrations ( F | 1€ S) is denoted by F

We put 6 := 7160. Then (E F 9) is a generalized parabolic Higgs bundle in the
sense of Remark 3.6. The residue Res; 3 preserveb the filtration *F. On eachi € S the
residue Res; 0 induces the endomorphism of * Gr (E ) The eigenvalues are constant,
and hence the nilpotent part N; is well defined. The conjugacy classes of N | p are
1ndependent of the choice of P € D; ([44]). Thus, we obtain the weight filtration ‘W
on Gr (B ) We put F(a k) = T, L(*W},), where m, denotes the projection *F, —
i Gra (E )

Let P, denote the intersection point of D; and Dp for i € S and P € I(D). Around
]31-, we have the holomorphic frame ©*», as in Subsection 2.5.2. Namely, we take a
holomorphic frame v around P as in Subsection 2.5.1, (D; plays the role of Dl,
there) and we put '@ := 7= (Pv) around P;. We take a hermitian metric i, of E
such that %% around B are orthonormal with respect to h1 By using it, we take
C>-isomorphisms ®; : ™ E,D o~ E|U on U; (i € S) as in Subsection 4.3.2. Then,
we can take a hermitian metric h; which is as in Subsection 2.5.2 for the frame ¥ %
around 152», and as in Subsection 4.2.6 around D;.

Lemma5.4. — We have [tr(R(ho)?)= [tr(R(h1)2) and [tr(R(ho))* = [tr(R(h1))".

Proof - Let & denote a Poincaré like metric on X — D. Let ho be an ordmary metric
for (E F 0) as constructed in Subsection 4.3.2. Then, 7*hy and ho are mutually
bounded. Both of 7* R(hg) and R(ho) are bounded with respect to ho and @.

Let us see that Ag = 8@777_1,10 - 65,—,;0 is
Let us recall the description of Ay around P;. We take a holomorphic coordinate
neighbourhood (U, 21, z2) such that {z1 - 20 = 0} = U N (131 U 5p). We put D;- =
{#z; = 0}. We have two holomorphic decomposition |y = @ Us = @ U, such that
IRy = @ajgb UG|D; = EBaij ﬁaw;, where a; denotes the j-th component of a. We
put I'; = @Pa; -idy, and fj =@a;-idg, . Wehave 95 1\ =D1 =3 T -dz/z
and Og = Dy — 3°T'; - dz;/zj, where Dy (resp. Ds) is the (1,0)-operator of Ejy,

is bounded with respect to w and 7),0.
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preserving the decomposition EIU = P U, (resp. Ey = @U,). Then, we have
Ay = ST, = T;)dz;/z; + (D1 — D). Because of (I; — Fj)|D91Fa C JF., and
(D; — D2)|Dgl_jFa C IF, ® QY0 we obtain the boundedness of Ay with respect to
7 1hg and @, around ﬁi.

Let us recall the description of Ay around Q € D; (i € S). Let (U, z1, 22) be a
holomorphic coordinate around @ such that z; Y(0) = U N D;. We have two C*°-
decomposition Ejy = @ E, = @ E, such that 'F, = @, E, 5 = Do E,5,-
We put I' := @a - idg, and I' := Pa - idg . We have a description 9;-1p, =
O n-1hy — Ddz1/21 + O(1), where O(1) denotes the bounded one form with respect
to ho and w, and ) ;-1 is operator on EIU (not on EU\fh) such that 81,rlhg)|f),;
preserves the filtration *F. (See the proof of Lemma 4.5.) Similarly, we have o, =
5‘1,% — Tdz /z1 4+ O(1). For the expression 81’,,—1;16 — 31,%3 = By -dz1/z1 + By - dza,
we have BI@i =0 and B2|5¢ (*F,) C *F,. We also have (I" — I“)'f)iiFa C *F.,. Thus,
we obtain the boundedness of Or-14, — 95, . Now, it is easy to obtain [ tr(R(ho)?) =

[ tr(R(ho)?) and [ tr(R(ho))2 = ftr(R(ﬁO))Q.

Due to the lemmas 2.15, 4.5 and 4.10, R(iNLO), R(hy) and Ay = Op, — 8;10 are
bounded with respect to (ho,&). Hence, tr(Ao), tr(R(ﬁo)), tr(R(EO) - Ap), tr(R(h1))
and tr(R(h1) - Ao) are bounded with respect to @. Then, it is easy to show

/ tr(R(i;o)Q) = [tr(R(h1)?) and ftr(R(ﬁo))2 = ftr(R(hl))z. |

Due to the norm estimate (Lemma 2.14), h := 7*h and hy are mutually bounded.
We also have that R(h) is bounded with respect to h and @. Let s denote the self-
adjoint endomorphism of 7~ 1(E) with respect to h and hy, determined by h = hy - s.
We have 9; — 9, = s 'O, s and (s '0h,s) = R(iNL) — R(h1), which is bounded with
respect to h; and @.

Let us show the following equality for any test function x on X - D:

(40) /(s'lahl(x.s), 8;,,1(X~s))hl«& = /(X-g(s‘lahls), X's)-ﬁ—l—/@xﬁxtr(s)-@.

We have the following:
-1 . . — 9 -1 . . .
@ [ a8 oG9y, = [ (3 ante0). xes),
:/(Eax, X's)h1 +/<x~5(8_18h150), X«s)h] +/(5x~s'18hls, X'S)hl'

Moreover, we have the following:

(42) (Eax,x . s)h1 + (5)( As 0h,s, X s)h1 = tr(58X X -S)+ tr(9x - On, s X)
=-0(tr(@x- x-s)) - tr(@xdx - 5)-

Thus we obtain (40).
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Lemma 5.5. — s~10y, s is L? with respect to & and h.

Proof. — Let p be a non-negative valued function on R satisfying p(t) = 1 for ¢t < 1/2
and p(t) = 0 for t > 2/3. Take hermitian metrics g; of the line bundles O(D;) (i € S).
Let o; denote the canonical section of O(D;), and |o;| denote the norm function of o;
with respect to g;. We may assume |o;| < 1. We put xn = [[,cgp(—N"log|oi|?).
Then, dxn is bounded with respect to &, independently of N. By using (40), we
obtain [ |s Lo, (xws ‘ Iy dvolz < C for some constant C, and thus we obtain the
claim of the lemma. O

We put A; := s 19y, s, which is L? with respect to @ and h;. We have R(h1) =
R(h)—8A4;. Since we have tr R(h) = tr F(h) = 0, we have tr(R(hl))2 = —d(tr R(hy)-
tr Al). Since R(hq) is bounded with respect to @ and h;, we obtain that tr R(hy)-tr A;
is L? with respect to @. We also know that d(tr R(hy) - tr(A;)) is integrable. Then
we obtain the vanishing, due to Lemma 5.2 in [51]:

/(mz(hl))2 = /d(trR(hl) ‘trA) =
2

(Note that © satisfies the condition of the lemma.) Thus, we obtain [ par-c; (cFy)? =
- 2
(G002 [ (b R(ho))® = (%02 [ (tr R(h1))” = 0. .
Because of R(h) = —[0, 9;] and 0% = 0, we easily obtain tr(R(h)?) = 0. Thus we
obtain the following;:
tr(R(h1)?) + D (tr(Ar - R(h)) + tr(As - R(R)) ) =

From the boundedness of R(h1) and R(h) with respect to @ and h;, we obtain that
tr(A;-R(h1)) and tr(A;-R(h)) are L? with respect to @. Thus we obtain the vanishing,
by using Lemma 5.2 in [51] again:

/5<tr(A1 h1)) + tr(A -R(ﬁ))) =0.

Thus, we obtain [, par-chy(.E,) = £ )2 [tr(R(ho)?) = (%=2) [tr(R(h1)?) =
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CHAPTER 6

PRELIMINARY CORRESPONDENCE AND
BOGOMOLOV-GIESEKER INEQUALITY

In this chapter, we show the existence of the adapted pluri-harmonic metric for
graded semisimple pr-stable parabolic Higgs bundles on a surface (Proposition 6.1).
We will use it together with the perturbation of the parabolic structure (Section 3.3)
to derive more interesting results. One of the immediate consequences is Bogomolov-
Gieseker inequality (Theorem 6.5).

6.1. Graded Semisimple Parabolic Higgs Bundles on Surface

We show an existence of Hermitian-Einstein metric for pp-stable parabolic Higgs
bundle on a surface under the graded semisimplicity assumption, which makes the
problem much easier. Later, we will discuss such existence theorem for parabolic Higgs
bundle with trivial characteristic numbers in the case where the graded semisimplicity

is not assumed.

Proposition 6.1. — Let X be a smooth irreducible projective complex surface with an
ample line bundle L, and D be a simple normal crossing divisor. Let w be a Kahler
form of X, which represents c1(L). Let (cEy,0) be a c-parabolic Higgs bundle on
(X, D), which is ur-stable and graded semisimple. Let us take a positive number e
satisfying the following:

— 10e < gap(cE.), and e = m~! for some positive integer m.
We take a Kahler form we of X — D, as in Subsection 4.3.1. We put E = .E|x_p,

and the restriction of 6 to X — D is denoted by the same notation. Then there exists
a hermitian metric h of E satisfying the following conditions:
— Hermitian-Finstein condition A, _F(h) = a-idg for some constant a determined
by the following equation:

-1 -1 k(FE
) @ YRR o B [ e (0B,
X—-D 271' 2 X

2 2
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— h is adapted to the parabolic structure of cEx.
— deg,, (E,h) = par-deg,,(cFx).
— We have the following equalities:

'/;(Zpar-chQ(cE*) = (g)Q/X_Dtr(F(h)?)7

/Xpar-C?(cE*) = (g)z/x_Dtr(F(h))Q.

Proof. — Let us take an ordinary metric hgy for the parabolic bundle (.Ex,0) as in
Section 4.3. Note we have A,,_tr R(ho) = Ay, tr F'(hg). We put v; := wt(cEx, 7).

Let us see the induced metric det(hg) of det(E). Due to our construction, det(hg)
is of the form 7-|2;| 27 -|2;|~2% around P € D;ND;, where T denotes a positive C*-
metric of det (CE) e If P is a smooth point of D;. then the metric det(hg) is of the
form 7-|o|; 27, where T and ~; are as above. Therefore, tr R(ho) = R(det(hyg)) is C*
on X. If a is determined by (43), we have [, (tr Au, F(ho) — rank(E) - a) - w? = 0.
Recall € = m~! for some positive integer m. Then the following lemma can be shown
by a consideration of orbifolds.

Lemma 6.2. We can take a bounded C*°-function g on X — D satisfying the con-
ditions (i) Au.g = V—1A,, tr(F(ho)) — v—1rank(E) - a, where a is determined by
the equation (43), (ii) 0g, 0g, and 00g are bounded with respect to we.

We put ¢’ := g/rank E and h;, := hg - exp(—g’). We remark that the adjoints 6
for hg and h;, are same. We also remark that dp,,, — On, and R(h;,) — R(ho) are just
multiplications —0¢’ -idg and d9¢’ - id g respectively, which are bounded with respect
to we.

Lemma 6.3. — The metric h;, satisfies the following conditions:
— hin is adapted to the parabolic structure of o F..
— F(hiy) is bounded with respect to hi, and w..
— Let 'V be any saturated coherent subsheaf of E, and let my denote the orthogonal
projection of E onto V. Then Ony is L? with respect to hiy, and w,, if and only
if there exists a saturated coherent subsheaf .V of ¢E such that .Vix_p = V.
Moreover we have par-deg,, (Vi) = deg, (V, hin,v), where hiy, v denotes the
metric of V induced by hy,.
— tr Ay F(hin) =rank(F)-a for the constant a determined by the equation (43).
The following equalities hold:

(é—f)z/)(_])tr(F(hin)z) :/X2par-ch2(cE*),

<§>2/X_Dtr<F(hm))2:/Xpar-cf(cE*).
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Due to the third condition, (E, hin,0) is analytic stable with respect to we, if and only
if (cEx,0) is pur-stable.

Proof. — Since g’ is bounded and since hg is adapted to the parabolic structure, h;y,
is also adapted to the parabolic structure. We have F(hi,) = F(ho) + 09¢’ - idp.
Hence the boundedness of F(h;,) with respect to w. and ho follows from those of
F(ho) and 9dg’.

For any saturated subsheaf V' C FE, the orthogonal decomposition 77{’/" and 77‘}7’"
are same. Hence 571'}‘7" is L2, if and only if there exists a coherent subsheaf .V C E
such that Vjx_p =V, by Lemma 4.19. Let hoy and hi, v denote the metrics of
V induced by hg and h;,. We have tr F(h;, v) = tr F'(ho,v) + rank(V) - 99g’. Then
we obtain deg,, (V,ho,v) = deg,, (V,hin,v) from the boundedness of ddg’ and dg’
with respect to w.. Therefore the third condition is satisfied. The fourth condition
is satisfied by our construction. The fifth condition is also checked by using the
boundedness of F(hi,), F(hg), 99¢’ and dg’. O

Now Proposition 6.1 follows from Lemma 6.3 and Proposition 2.5. O

6.2. Bogomolov-Gieseker Inequality

We have an immediate and standard corollary of Proposition 6.1, as in [51].

Corollary 6.4. — Let X be a smooth irreducible projective surface with an ample line
bundle L, and let D be a simple normal crossing divisor of X. Let (cE.,0) be a
wr-stable c-parabolic graded semisimple Higgs bundle on (X, D). Then we have the
following inequality:

[y par-c(.E.)
chy(E,) — 2X—— D2 7% <,
/X par-chy(c ) 2rank F =0

Proof. — Let h be the metric of E as in Proposition 6.1. Then we have the following;:

R = = W AR CUR!

Then the claim follows from tr(F(h)“) > 0. (See the pages 878-879 in [51].) O

By using the perturbation of the parabolic structure, we can remove the assumption
of graded semisimplicity. We can also remove the assumption dim X = 2 by using
Mehta-Ramanathan type theorem.

Theorem 6.5 (Bogomolov-Gieseker inequality). — Let X be a smooth irreducible pro-
jective variety of an arbitrary dimension with an ample line bundle L, and let D be
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a simple normal crossing divisor. Let (E,,0) be a pp-stable regular Higgs bundle in
codimension two on (X, D). Then the following inequality holds:

fx par-ci 1 (E.)
-ch FE,)—-——1 21— <
/x pat=e Q’L( ) 2rank F <0

(See Subsection 3.1.5 for the characteristic numbers.)

Proof. — Due to the Mehta-Ramanathan type theorem (Proposition 3.29), the prob-
lem can be reduced to the case where X is a surface. Take a real number ¢; ¢
Par(E.,1) for each i, and let us consider the c-truncation (. E., d). Let F denote the
induced e-parabolic structure of .F. Let € be any sufficiently small positive number,
and let us take an e-perturbation F(©) of F as in Section 3.3. Since (cE, F(©, 0) is
pr-stable and graded semisimple, we obtain the following inequality due to Corol-
lary 6.4:

2 (€)
par-ci(.E, F'“)
ar-chy (o, F©) — 1% <0.
/Xparc 2B ) 2rank F -
By taking the limit in € — 0, we obtain the desired inequality. O
Corollary 6.6. — Let X be a smooth irreducible projective surface with an ample line

bundle L, and let D be a simple normal crossing divisor. Let (E.,0) be a py-stable
parabolic Higgs bundle on (X,D). Assume [, par-chy(E,) = par-deg, (E,) = 0.
Then we have par-c;(E,) = 0.

Proof. — par-deg (E.) = 0 implies [, par-c,(E.)-c1(L) = 0. Due to the Hodge
index theorem, it implies — [par-c?(E.) > 0, and if the equality holds then
par-c;(E.) = 0. On the other hand, we have the following inequality, due to

Theorem 6.5: I 2(12,)
_ Jx barci\&.) < _/ - E.N)=0
51a par-ch,(E.) .

Thus the claim follows. O
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CHAPTER 7

CONSTRUCTION OF A FRAME

We put X(T) := {2z € C||z| < T} and X*(T) := X(T) — {O}, where O denotes
the origin. In the case T = 1, we omit to denote T. Let (E,dg,0,h) be a tame
harmonic bundle on X*. Recall that the coeflicients a;(z) of P(z,t) := det(t— fo(2)) =
>~ a;(z) - t7 are holomorphic on X, where fy € End(F) is given by 0 = fo-dz/z. The
set of the solutions of the polynomial P(0,t) is denoted by Sp.

Assumption 7.1. — We assume the following:

1. We have the decomposition E = @, s, Fa, such that fo(Es) C Eq. In partic-
ular, we have the decomposition fo = @ foa-

2. There exist some positive numbers Tp < 1, Cy and €y such that |3 — o] <
Co - [2(Q)]° holds for any eigenvalue § of fo|o (Q € X*(Tp)).

3. We put £ := > rank(E,) - |af?>. We assume ¢ < K for a given constant
Ko.

a€Sy

Remark 7.2. — The conditions 1 and 2 are always satisfied, if we replace X by a
smaller open set. Moreover, it is controlled by the behaviour of the eigenvalues of fj.

We obtain the parabolic Higgs bundle (aE*,O) for a € R from (E, g, h), where
oF is as in Section 3.5 ([52]). In the case a = 0, we use the notation °E. Thus we
have the parabolic filtration F of , E|o and the sets Par(,E) := {b| Gr} (4E|0) # 0}.
For any b € Par(,E), we put m(b) := dim Grf(aEw). Recall det(,F) ~ zdet(E),
where @ is given as follows:

a= > m)-b

bePar (o E)

Let Uy be a finite subset of Ja — 1, a[, and let ny be a sufficiently small positive
numbers such that Uy Cla—1+10-19,a—10-n9[ and |b—c| > 10-n for any distinct
elements b, ¢ € Uy. We make an additional assumption.
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Assumption 7.3. — For any ¢ € Par(,F), there exists b € Uy such that |¢c — b| < no.

We put P(b) := {c € ’Par(aE)} ¢ —bl < m}. We obtain the decomposition
Par(oE) = [1,ey, P(b). We put b := max P(b).

In the following of this chapter, we say that a constant C is good, if it depends
only on Ty, Cy, €, Ko, no and r := rank(E). We say a constant C(B) is good if it
depends also on additional data B.

Proposition 7.4. — Let (E,0g,0,h) be a tame harmonic bundle on X* satisfying the
assumptions 7.1 and 7.3.

— There exist holomorphic sections F1,...,F. of FE on X(vo) with the numbers
bi,...,b. € Uy, such that |F;|n < Co - |z|_3i (=log|z|H)N holds. Here o, C1o
and N are good constants. We have #{b; = b} = #P(b).

- CitlzIm < A, Filh < C11+|2|7® holds for a good constant Cyy. In particular,
Fy, ..., F. give the frame of F.

— On any compact subset H C X*(vo), we have ||Fyullrr n < Ci2(H,p), where p
is an arbitrarily large number.

We will prove the proposition in the rest of this chapter.

7.1. A Priori Estimate of Higgs Field on a Punctured Disc

Let (E,0g, 0, h) be a tame harmonic bundle on X* as in Proposition 7.4. We know
that the curvature R(h) of O + O is bounded with respect to h and the Poincaré
metric § = |z|72(—log|z|)2dz - dZ on X*(T) for T < 1. ([52]. See also [44]). We
would like to show that the estimate is uniform, when we vary the set Sy boundedly.

Proposition 7.5. — |R(h)|h p < Ky holds on X*(T1) for some good constants Ty and
Klo.
Proof. — In the following argument, K;, ¢; and T; will denote good constants, and

A denotes the Laplacian —9,0z (up to the positive constant). Let £ be a line bundle
Ox- - e with the Higgs field 0, and the metric hz given by O¢(e) = e-8-dz/z (8 € C)
and hz(e,e) = 1. Since we have only to consider (E,0g,0,h) ® (L£,0z,h), we may
and will assume 0 < K} < £ < K.

By an elementary argument, we can take a decomposition Sy = Sz-(l) with the

0
following property: .
— Jay — x| < 1 for any aj, ay, € SIV.
— |aj — ag| > rank(E)~! for a; € Si(l) and ay € Sp — Si(l)‘
We put S(1) := {1,...,ko} C Zso. Inductively on n, we take a subset S(n) C Z%, and
a decomposition Sy = Hles(n) S}m as follows. Assume S(n) and S}n) (I € 8(n)) are

ASTERISQUE 309



7.1. A PRIORI ESTIMATE OF HIGGS FIELD ON A PUNCTURED DISC 71

already given. We can take a decomposition S}") = ]_[fi’l) S}ZH) with the following
property:

— o —ag] < (n+1)7! for oy, ap € S("H),

— |aj —ag| > (n+1)"1 - rank(E)~! for a; € S} n+1) and oy, € S(n) - Sgnfl).

Then we put S(n + 1) := {(I,i)|I € S(n), i =1,...,k(I)} and S((?jl) S(nﬂ),
where (I,7) € Z{' denotes the element naturally determined by I and i.

We have the 1ex1cographlc order on Z%, which induces the order on S(n). Take a
total order <; on Sy, which satisfies the following condition for any n:

— Let a € S;n) and 3 € Sgn). If I < J in 8(n), we have a <; 3.
We put Fo F := @ye o Ep and Feo B = @4, , Ep. Let E; denote the orthogonal
complement of Feo(E) in Fo(E). We put p:= @ g, @ - idp, and p’ := D g, @
idg, . We have |p’ |2 = ¢ The following lemma is shown in the proof of Simpson’s
Main estimate. (See [52] and the proof of Proposition 7.2 of [44].)

Lemma 7.6. — |fo—p'|n < K11~ (—log|z|)_1 holds on X*(Ty).

For J € 8(n), we put Egn) =D, S0 E, and Ej ) =@, csm Ei. We have the
J
natural decomposition End(E) = @, s,esn) Hom(EJ(ln), Ef,(:)) For I € S(n—1)
and A € End(E), let A,, 1;; denote the Hom(E}(’?), E}{?))—Component.

Lemma 7.7. — We have |[p'", fo] < Ko (—loglz])~2 fori# j on X*(T2).

n,I,i,j'

Proof. — We put x := EBf(Il)z 1dE(n) and k' = @Z 11 id ,u,) We also put

g =k—rK €T =@y Hom(EJ(") E' (n)) First, we give some estimate of q.
Let ¢ : X* — X* denote the map given by p(z) = 2". We remark that
©*(E, g, 0, h) satisfies Assumption 7.1 independently of n, if we repldce Co_with a

larger good constant. We put b= p*h. We put f(] =n-p~ Y (fo),i.e., p 10 = fo dz/z.

Let fo denote the adjoint of fo with respect to h. We also put o' :=mn-p (o).

Let F 7 denote the endomorphism of ¢~ !7 induced by the adjoint of fo, ie.,
Fr(z) = [fo, z]. Let w7 denote the orthogonal projection of ¢~ End(E) onto ¢ '7T.
The composite of the adjoint of fg and 77 induces the endomorphism G 7t of p~17.
Lemma 7.8("). — Fs and fo are invertible on X*(T3) and the norms of their in-

verses are dommated by a good constant.

Proof. — Let H denote the endomorphism of ¢~!'7 induced by the adjoint of p/,
and we put H, := fo — H. For any a € S}n) and 3 € SS") (I # J), we have

v o = B| > rank(E )~!. Hence the norm of H ! is dominated by a good constant.
From lfo—p p'l; < Kz1 - (—log|z|)~!, the norm of H; is dominated by a sufficiently

(9 The communication with the referee clarified a confusion, for which the author is obliged.
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small good constant on X*(73). We put Hy := H~'o H;. Then, (1+ Hy) is invertible,
and the norm of the inverse is dominated by a good constant on X*(73). Then, the
claim for G;fl = H;'o(1+4 Hs)™! can be easily checked. The claim for Ff_ol can be

checked simi(l)arly. O

We put % := ¢ 'k, & := ¢ 'k and ¢ := ¢ 'q. We have 0 = [ﬁ),%] = [fo —

PR+ [,]70, q]. Due to Lemma 7.6 and Lemma 7.8, we obtain the estimate |q]; <

Ksz(—log|z])~! on X*(T3). From [, f§] = [R—#, f§]+[%', f{], we obtain |[%, /][> >
~ o, T2 2 . o

‘ws([n—m’,fg])h = leJ (@)[5, Hence, we obtain [g]2 < Ka|[r, ngE on X*(T3). Due

to [E, fo] = 0, we obtain the following:

2
Alog |72 < —“0’—“1"2

212 - &I
We put ¢ = ngl) i? = |7€'|% and k := log(f’_1|}€|%). Because of k < §’_1|?ﬂ%,
we obtain Ak < —Ksg - |z|7? - k. By an argument in [52] (see also the proof of
Proposition 7.2 of [44]), we obtain k < K37 - [2|*%. Then, we can derive |g}; <
Ksg - |2]% on X*(Tyo). Hence we obtain |g|, < Kzg - |2]#/™ on X*(T}).

Let us finish the proof of Lemma 7.7. First we show the estimate on X*(T}}). We
have 0 = [k, fo] = [/, fo] + [q,p'] + [, fo — p']. We have the following on X*(T2):

K41|z|€38/n - K42!Z|€38/n
—loglz] — n

llg, fo— P, <

Recall we have |a — 3] < (n — 1)7! for a € S}Z_l) and 3 € ng_l). Hence we
have |[q,p’]n51yi’j w < Kus - |z|s8/™ . p~1. Therefore, we obtain H“/’fo]n,l,i,jb; <
Kys - |z|538/" -n~!, which implies |(f0)n,1,i,j|h < Kj,- |z|€38/" -n~1 (i # j). Then, we
obtain the estimate on X*(T}}):

|[,0/T7f0]n,1?i’j|h < Kas - |2|/™ n™2 < Kyg - (— log|z|)_2.

On the other hand, [p'T, fo] . ; is dominated by Ka7-(—log|z])~tn~t on X*(T1),

which is obtained by the estimate of fo — p’ (Lemma 7.6) and our choice of S}"k)
(k =1i,7). Outside of X*(T}), we have K47 - (—log|z|)™! - n~! < Kyg - (—log|z|) 72
Thus we are done. O

Let us finish the proof of Proposition 7.5. We have the following;:
dz-dz
R(h) = ~[0.0] = =([¢', (fo—= )]+ [fo—r's o'+ [(fo =), (fo=0)])- T

The second term is estimated by Lemma 7.7. The first term is adjoint of the second
term. The estimate of the third term follows from Lemma 7.6. Thus we are done. [
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7.2. Construction of Local Holomorphic Frames

Let (E,0g,0,h) be a harmonic bundle of rank » on X* as in Proposition 7.4. We
will construct the desired holomorphic sections in Proposition 7.4. By considering the
tensor product of the line bundle with the metric |z|~¢, we have only to discuss the
case a = 0. We use the metrics g and g of X* given as follows:

g:=dz-dz, 5::—_—dz~dz 5
|2]2 - (—log|z])

By considering a pull back via the map ¢, : X* — X* given by ¢,(z) =7 - z, we
may assume the following, due to Proposition 7.5.

Assumption 7.9. — The norm of R(h) with respect to h and g is dominated as follows:
1

22 (—loglz| + 1)

IR(h) Ih,g S Cl

The constant C; is good.

Lemma 7.10. — There exists a C*-orthonormal frame v of E, for which Og is repre-
sented as follows:

— r dz
Opv =v- <—§+A) - —
Here T is a constant diagonal matriz whose (i,1)-th components «; satisfy 0 < a, <

< g <1, and A is a matriz-valued continuous function such that |A] < Cs -

(—log|z| +1)~. The constant Cs is good.

Proof. — @ Let (r,0) be the polar coordinate of X*. Let V denote the unitary
connection Og + Og,n. Take an orthonormal frame of Elox(v) for some 0 < v < 1.
Extend it to the orthonormal frame e of E|x«(,) by using the parallel transport
along each ray towards the origin. Then the connection form of V with respect
to e is of the form A'(r,0) - df, and the curvature form is given by dA’(r,0) A d6.

By Assumption 7.9, we obtain 0A'(r,0)/0r = O((log r)=2. dr/r). Hence, A'(r,0)
converges to a function Ag(0) for r — 0, and A'(r,0) — Ag(0) = O((=logr)~1'). We
can take a gauge transform g(f) for which Ag(0) is transformed to I" - df for some I’
as in the claim of the lemma. O

7.2.1. Preliminary for a construction. — We recall some results on the solv-
ability of the 0-equation. For any real numbers b and M, we put h(b, M) := h-|z|? -
(—log|z|)™. Let Ag}\/[(E) denote the space of sections of E®Q%!, which are L? with
respect to h(b, M) and g. Let Ag:&(E) denote the space of sections f of E such that
f and Of are L? with respect to h(b, M) and §. The norm and the hermitian pairing

() The author thanks the referee who explained this simple proof.
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of Ap'3(E) are denoted by || - [lp,; and (-, -)p,ar. On the other hand, |- [5,n denote
the norm at fibers. In the following argument, B; will denote good constants.

We use some arguments of [44] based on the ideas in [2] and [8]. (But we change
the signature here.) Recall the result in Section 2.8.6(3) of [44]. We take a sufficiently
large good constant N > 1, which depends only on Cj in Assumption 7.9. Let 5*,3
denote the adjoint of dp with respect to g and h(b,N). Let A%}(E) denote the
space of the C*®-sections of E ® Q%! whose support is compact. Then, the following
inequality holds for any p € A% (E):

95ell, = llells.n

Lemma 7.11 ([44]). — For any f1 € Ag”}v(E), we have fy € Ag”g, satisfying Ofy = fi
and || f2lls,n < Bi- || fillo,n-

Proof. — Let A%1(E) denote the space of sections p of E ® Q%! such that pll7 v +
5*Ep||§’N < 00. It is the L%-space, and we have the continuous inclusion EO*I(E) —
A%(E). Since AY1(F) is dense in ZO*I(E) due to the completeness of (X*,7), we
have ||pllp.n < |1Ogpllon for any p € A%1(E). Hence, A% (E) can be the Hilbert

space with the Hermitian pairing (p1, p2) — <5}p1,5’;3p2>b7,v‘

We have (f1,p)o.n < [ fillon - lollo,y < [fallo,y - 19gpllo.n for any pe AVL(E).
Due to Riesz representation theorem, there exists f3 € A%1(E) such that |0 f3lls,n <
If1llb.n and (fi.p)on = (Dpfs,Tpphon for any p € A%H(E). We put f, = Jpfs
which has the desired property. O

On the other hand, if f is a holomorphic section of F, we have the subharmonicity
Alog|flp,—n < 0 by using the argument in Section 2.8.7 of [44]. Hence, if we have
(I flls,n < oo, the following holds around the origin O:

4 :
(44) log |f(Z)|%,—N < 5 / log |f(w)|§7_N - dvol,
m|z| lw—z|<|z|/2
4 .
<tog( - [ )2y - dvol, | < log(Bs - /1)
122 Jlw—z1<)21/2

Here, we have used |f(w)[}_y - (—log|w|)* < [f(w)]} 5. Hence, we obtain the fol-
lowing lemma.

Lemma 7.12. — For a holomorphic section f of E such that ||f|ls,n < 00, we have
[fln < Bal|flle.v - 217" - (~ log|2)™/2.

We give one more elementary remark.

() The inequality (2.30) loc. cit. should be (O0gn, pn)a, N + (5*En,5*En)a,N > ||77||i,N.
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Lemma 7.13. — Let [ be a holomorphic section of yE on X (v'). Then the maximum
principle holds for H(z) := |f(2)|? - |2|?* - (= log|z])™N on X(v") for v" <+, i.e.,
SUp y+ (4) H(2) = maxgx () H(z).

Proof. — We put H.(z) == |f(2)|? - |2|?**¢ . (—log|z])~ " for any € > 0. We have

AlogH, < 0 on X*(¢') and lim,_,0log H.(z) = —oo. Therefore, the maximum
principle holds for log He on X (v"). Then it is easy to derive the maximum principle
for H. =

7.2.2. Construction. — Take 0 < n < 9. Let I' and v = (v1,...,v,;) be as in
Lemma 7.10. We put S(T') := {1, ..., }. Let T4 denote the section of End(E) ®
Q%! determined by v and A-dz/z, i.e., Ta(v) = v-A-dz/Z. We put g := 0—Ta. We

put f; := |2 - v;. Then we have dof; = 0 and |f;|n = |2|*. In particular, we have
. 0,0 0,0 ticfoine Do — Y

fi€ A2, N(E). Take g; € AZ, v satistying 0g; = Ta(f;) and ’giH—u_,;+n,N <
B - ”TA (‘fi)H—aﬂ+7) n asin Lemma 7.11. We put F; := f; —g;. Then we have 0F; = 0,
I e A(i’gi v (E), and the following estimate:

||Fi’|-(x,;+71,N < ||fiH—ai+n,N + By ||TA(fi)||—al+n,N'
We have the following:
(45) dogi = —Ta(gs) + Ta(fi)-

Hence we obtain g; € L?(H) for any compact subset H C X*, and the L?-norm is
dominated by ||Ta(fi)||-a,+n,~ multiplied by some constant depending only on H.
Hence for some number p > 2 and some good constant C'(H, p), we have the following:

90l o2z < C'(H.p) - ”TA(f’:)I'—m+?7»N

Due to (45), we have the following, for some good constant C”(H, p):

(46) loillgany < € ) - (ITAU s +500|Ta ()] 5).

9i

By a standard boot strapping argument, p can be arbitrarily large.

We put @ := tr(I') and 0 := 2 bepar(ep) M) - b. Since we have tr(R(h)) =
tr(F(h)) = 0, the induced metric det(h) of det(E) is flat. Hence we have a holomorphic
section s of gdet(E) = det(°E) such that |s|, = |z|‘6 and Ogey(g)s = 8 - (=0) - dz/z.
It is easy to see n = « +0is an integer by considering the limit of the monodromy of
det(E) around the origin. We put §:= 2" - s, which gives the section of _zdet(E).

Remark 7.14. — We will show that —a = 0, i.c. s = 3 later (Lemma 7.17).

Let us consider the function F determined by F. 5= Fy A ANF.. We put
Ho:={z|37' <[z <2-371}.
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Lemma 7.15. — There exists a small good constant Bys with the following property:

— Assume the following inequalities hold:

(47) SIl_Ilg)lAI-gv < Bl5, HTA . fi“—(li-f-’f],N < 815, (L = 1, e ,T‘).

Then, there exist zg € {z € C | |z| = 1} and a good constant 0 < Byg < 1/2 such
that F(Ho) C {Z S Cl |Z — Z0| < Blﬁ}.

Proof. — From (46) and (47), we obtain |F1 AN ANF.—fi AN A f,«‘ < 47! holds
on Hy, if Bys is sufficiently small. Since vy, ..., v, are orthonormal and f; are given
as |z|% - v;, we have fy A+ A f,. = exp(\/:_ln) - § for some real valued functions k.
If By5 is sufficiently small, x is a sum of a constant k¢ and a function x; satisfying
supg, |k1(z)| < 1007" because of (47). Then the claim of the lemma follows. O

For any number 0 < v < 1, let us consider the map ¢, : X* — X* given by
2z — v+ z. We put (E('y),gE(y),H('y),h('y)) = (b;(E,_éE,G,h). It is easy to check
Assumption 7.9 for (E(’Y),EEmb h(’y)). We have the orthonormal frame ¢3v of E(v)
for which we have the following:

~ 1 dz
Ony) ($30) = P10 - (—QF + ¢§A> =

Note we have the following:

—log|z| +1 -1
48 ~A - <Cs- (-1 1) .
( ) |¢’Y lh(’y),g— 3 —10g|2|—10g|'y|+1 ( 0g|z|+ )
Hence ¢ v satisfies the claim of Lemma 7.10. We put fi(") = |z|* @2 v;. We construct

the sections glﬁ) and FZM) as above. We also take 507 and s(7).

Lemma 7.16. — For n > 0, there exists v1 = y1(n) > 0 such that the assumptions of
Lemma 7.15 are satisfied for (E(’yl),gg(%), h('yl)) and ¢35 v.

Proof. — 1If ~ is sufficiently small, then we may assume sup Ho'gb;A‘g < Bj5 due to

(48). We also have the following:

g

SBls'/

Since the right hand side converges to 0 in v — 0, we can take ; such that the
inequality || Ty: ]| < Bis holds. m

2 %, N
(49) /IT¢;A 'fimlh(y);‘ |z| 7227 (—log|z|)" - dvoly
2

— 1
lOg'Z|+ ,IZIQU. (_10g|z|)N-dVOl§.

—log|z] —logy +1

—a;+n,N

Now we have the holomorphic sections £\ FO ) of B( (), satisfying
S N
|Fi(71(n))|h(71(n)) < C(n)-]2|*~"(~1log|z|)" . We put a;(n) := max{b € Par(°E) |b<
—a; + 77}, and then Fi(% M) are sections of as(mE(r(n)).
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Lemma 7.17. — We have Par(°E) = S(I') which preserves the multiplicity. Hence,
we have —ax = 0.

Proof. — 1If n is sufficiently small, we have a;(n) < —a; and hence > a;(n) < —a.
We put 72 := v1(n). Hence we obtain |A\]_, Fi(72)|h(72) = 0(|z|%), which implies F is
holomorphic on X, where Fis given by A/_, Fi('m = F -5, Due to Lemma 7.15
and the maximum principle, we obtain By < |F(2)| < By for z € X(2/3). Hence,
we obtain > a;(n) = —a.

We put S(b) := {i| — a; = b} for b € Par(°E(72)). For i € S(b), we have
Fi(W) € pE(72), which induces FEW) € Grf'(E(v2)). From By < |F(2)| < By for
z € X(2/3), we have the lower estimate | A\;c g Fi(72)|h(72) > Cs|z|719®I0+9 for any

d > 0. Hence we obtain the linearly independence of FEW) (i € S(b)). Then, it is easy
to show that Fl(”), ..., F" give the frame of °E(72) compatible with the parabolic
structure, whose parabolic degrees are —a;, ..., —a,, respectively. O

Now let us fix n = 9. We put v3 := v1(n0). We have the holomorphic sections Fi(%)
of °E(y3) on X satisfying |Fi(73)|h(73) < Bsg - |z|*m0)=m0  Since we have s(73) = 3(73),
the function F determined by FI(%) AREEWAY Fi(%) = F 509 s holomorphic on X.
Thus, we have Bj;' < |F(z)| < By for z € X(2/3) due to the maximum principle
and Lemma 7.15.

The holomorphic sections Fi(%) of °E(~3) on X naturally give the holomorphic
sections F; of °F on X (v3). We take v < 73 appropriately, and we put F; := F, | X (v0)-
It is clear that they satisfy the second and third claims of Proposition 7.4.

For each a;(no), we have the number b; € Uy such that a;(ny) € P(b;). We obtain
F; € ,E. Then, the first claim of Proposition 7.4 follows from Lemma 7.13 and the
third claim. O
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CHAPTER 8

SOME CONVERGENCE RESULTS

8.1. Convergence of a Sequence of Tame Harmonic Bundles

Let X be a smooth projective variety of an arbitrary dimension over C, and D
be a simple normal crossing divisor of X. Let (Ep, Om,0m, hm) (m = 1,2,...,) be
a sequence of tame harmonic bundles of rank » on X — D. We have the associated
parabolic Higgs bundles (¢Ep«,0m) on (X, D).

Theorem 8.1. — Assume that the sequence of the sections {det(t — 6,,)} of
Sym’ Q;&O(log D)[t] are convergent. Then the following claims hold:

— There exists a subsequence {(E,,;,,(T)mﬂm,hm) | m € I} which converges to a
tame harmonic bundle (Eoo,goo,é)oo,hoo) on X — D, weakly in LY locally on
X — D, in the sense of Section 2.1. Here p denotes an arbitrarily large number.

— If we are given a parabolic Higgs sheaf (cEx,0) such that {(CEm*,Om)w} con-
verges to (cEx, 0))c for any generic curve C. Then we have a non-trivial holo-
morphic morphism f: (cEx,0) — (cFoox;bo0)-

If (cEx,0) is a py-stable reflexive saturated parabolic Higgs sheaf, f is iso-
morphic. (See Lemma 3.10.)

Proof. — The first claim is well known. We recall only an outline. The sequence of

sections {det(t — 0,,)} of Sym Qy°[t] converges to det(t — #). Hence we obtain the

estimate of the norms of 6,, locally on X — D (See Lemma 2.13, for example). We also

obtain the estimate of the curvatures R(h,,) because of the relation R(hy,)+[0m, 0f ] =

0. Therefore, we obtain the local convergence result like the first claim. (See [55] in

the page 26-28, for example.) Thus we obtain the harmonic bundle (Ew, Oso, foos Poo)-
Let us show the second claim in Subsection 8.1.3 after some preparation.

8.1.1. On a punctured disc. — Let us explain the setting in this subsection. Let
X(v) and X*(7y) denote the disc {z € C||z| < v} and the punctured disc X (v) —
{0}. In the case v = 1, we use the notation X and X*. We put D := {0}. Let
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(Em,gm, Oy ) (m=1,2,...,00) be a sequence of tame harmonic bundles of rank
r on a punctured disc X*. We have the associated parabolic Higgs bundles (. Fp, «, 05n)
on (X, D) for c € R. Assume the following:

- {(Em,gm,ﬁm,hm)lm < oo} converges t0 (Eoo, Ooo, Ooo, hoo) in C' locally on
A* via the isometries @, : (B, Am) — (Eso, hoo)-

— Assumption 7.1 is satisfied for any m. The constants are independent of the
choice of m.

— There exists a finite subset Uy CJe — 1,¢[ and a function m : Uy — Z~¢ such
that {(Par(cEm), m)|m < co} converges to (Up, M) in the sense of Section 2.1.
We put u := 3,y m(b) - b.

Lemma 8.2. — We have holomorphic isomorphisms U, @ Epr — Es on X(7)
for some v < 1 and some subsequence {m'} C {m}, with the following properties:

- U, — ®,,, —> 0 weakly in LY locally on X*(7).

— U, (0,) — oo — 0 as holomorphic sections of End(.Ew) @ QM0(log D) on X (7).

— Let FU"™)(,E,,) denote the parabolic filtrations of cBm|p induced by hy,. Then
the sequence of the filtrations {\Ilm(F(m)(cEmw))} converges to F(>) (cBoo)iD
in the sense of Definition 3.36.

Proof. — After going to a subsequence, we may assume that Assumption 7.3 is satis-
fied for (Ep, Om,O0m, hm) (m < c0) with some 19 > 0. We take holomorphic sections
Fl(m), ey F,(m) of .E,, on X (v) with bgm), RN b € Uy as in Proposition 7.4, with
some v < 1. We may assume that bgm) are independent of m, which are denoted by
b;. There exists a subsequence {m’} such that {@,n/(ﬂ(m,))} are convergent weakly
in L locally on X (y)*. The limits are denoted by F, i(oo). They are holomorphic with
respect to O. We replace {m} with the subsequence {m'}, and we assume that the
above convergence holds from the beginning.

For each b € Uy, we put b(m) := max{a € Par(.E,,)||a—b| < no}. Then, we have
| Fi(m)
m. Since we have b;(m) — b; for m — oo, we obtain |Fz-(°°)|hm < C-lz|7b - (~log|z|)V,
and hence Fi(oo) € p, Foo.

We put ¢(m) := 3 cpar(.i,,) b m(b). The sequence {c(m)} converges to u. We
have C7' - |2|~<m) < |AL_, Fi(m)|hm < Cp - |27 and hence C;' - |z|™* <
IAi_s Fi(oo)|hoo < Cp-lzI™* We put Sy := {i|b; = b}. For i € S,, we have

(00)

Fi(oo) € yEs, which induces F,”’ € Grf (Ex|p). We have the lower estimate

l/\iesh Fi(oo)|h(><> > Cs - |2|7191049 for any § > 0, from which we obtain the lin-

., < C-z| 7% . (=log|z|)V, where the constants C' and N are independent of

m

early independence of FEOO) (i € Sp) In Grf(Eoom). Then, it can be shown that

the sections Fl(oo), R FT(OO) give a holomorphic frame of .E.,, which is compatible
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with the parabolic structure, and bl(-oo) are the degrees of Fi(oo) with respect to the
parabolic structure.

We construct the holomorphic map ¥, : cFEpm — ¢Foo on X () by the correspon-
dence W, (F{™) = F°. The first and third claims of the lemma are satisfied by
our construction. Let K be any compact subset of X*(v). Since ¥,,, — ®,, converges
to 0 in L} on K, we have the C%-endomorphisms G, of E ik for any sufficiently
large m such that (i) ¥, x = Gm © @k, and (i) G, — idg_ . in CY for m — oo.
Then, ¥y (0m)(x = Gm © Pm(0m)|x © G, converges to O in C° on K. Hence,
we also have the convergence of W, (0,,) — 0 to 0 in C° on any compact subset of
X*(y). The Higgs fields 6, and the holomorphic frames Fl(m), ceey F™ determine
the matrix valued holomorphic Q19(log D)-forms 6,,,. Similarly, we obtain ©,. Due
to the above argument, we have the local convergence of ©,, to O, on X*(). Since
they are holomorphic, we obtain the convergence on X (). Thus the second claim
also holds. O

8.1.2. On a curve. — Let us explain the setting in this subsection. Let C be a
smooth projective curve with a finite subset Do C C. Let (Ep, Om, b, 0m) (m =
1,2,...,00) be a sequence of harmonic bundles of rank r on C' — Dc. We have the
associated Higgs bundles (. Ey, «, 6,,), where ¢ = (¢(P)|P € D) € RP. We assume
the following:

— The sequence {(Em,gm, hm,Om)} converges t0 (Eoo, 0o, Moo, 00) in C* locally
on C — D¢ via isometries @, : (B, b)) — (Eso, hoo)-
— For each i, a finite subset U(P) C]e(P) — 1,¢(P)[ and a function m : U(P) —
Zsq are given, and {(Par(Ey,, P),m) |m < oo} converges to (U(P), m).
By the first condition, the sequence det(t — 6,,,) € Sym’ Qé’o(log D¢) converges to
det(t — 0 ). Around each point P € D¢, we can take a coordinate neighbourhood Vp
such that Assumption 7.1 is satisfied on Vp for any m < oo, and that the constants
are independent of m.

Lemma 8.3. — {(cEm',F(m/),emf) |m’ € I} converges to (CEOO,F(OO),OOO) for an
appropriate subsequence I C {m} in the sense of Definition 3.36.

Proof. — We would like to replace ®,,,s with Vs : E,,,y — <F« for an appropriate
subsequence {m’} C {m}. By shrinking Vp appropriately, we take the holomorphic
maps “W,, 1 o(pyEm: — c(p)yEoo on Vp for some subsequence {m'} C {m} for each
point P € D¢, as in Lemma 8.2. We replace {m} with {m’}.

Let xp : C — [0, 1] denote a C'*°-function which is constantly 1 around P, and
constantly 0 on C' — Vp. Let ¥,, : E,;, — E be the L{-map given as follows:

P P
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If m is sufficiently large, then ¥, are isomorphisms. We have the following:
(51) W, 00m — 0o 0V, = ngp (P, — B,)

+ (1—pr) : (cbmoém—éooo@m)

Hence the sequence {\Ifm 0 O — Ooo © \Ilm} converges to 0 weakly in LP? on C. By
construction, the sequence of the parabolic filtrations of . F,, « converges that of ¢ Fog .
We also have the convergence of W,,(0,,) — 0 to 0 weakly in L on C. Hence we
obtain the convergence of {(cEm7 F(m)7 Om) | m < oo} to (cho, F) 900) weakly in
LY on C. |

8.1.3. The end of Proof of Theorem 8.1. — Let us return to the setting for The-
orem 8.1. Let (Fw, oo, 0o, heo) be a harmonic bundle obtained as a limit. We obtain
the parabolic Higgs bundle (. Foox, 00 ). We would like to show the existence of a non-
trivial holomorphic homomorphism (CE*, 0) — (cho*, 900). Due to Lemma 3.4, we
have only to show the existence of a non-trivial map fe : (CE*, 9) c (cho . 000) c
for some sufficiently ample generic curve C C X. We may and will assume that

¢; & Par(oE,1).

We have the convergence of the sequence {(.:Em*,Om)I o|m} to (CE,MH)l o on
C. In particular, we have the convergence {(Par(cEm|c,P), m) ‘ m < oo} to
(Par(cE)c, P),m) for any P € C' N D. The sequence {(Em,(‘jmﬁm,hm)|C\D} is
convergent to (Eu, 0o, oo, hoo)jc\p in C' locally on C'\ D. After going to a subse-
quence, we obtain the convergence of {(CE,,,L*, , Bm)lc | m} to (CEoo,f7 900)‘0 weakly
in L} on C, due to Lemma 8.3. Thus we obtain the existence of the desired non-trivial
map fo due to Corollary 3.38. Thus the proof of Theorem 8.1 is finished. O

8.2. Preparation for the Proof of Theorem 9.1

Let C be a smooth projective curve over C with a simple effective divisor D.
Let {(cEms«,0m)} be a sequence of stable parabolic Higgs bundles on (C, D) with
par-deg(cFm«) = 0, which converges to a stable Higgs bundle (¢FEoox, ). We take
pluri-harmonic metrics h((]m) of (Ep, Og,, , 0m) adapted to the parabolic structure (m =
1,2,...,00) (Proposition 2.8), where E,, := cE,,jc—p. We put D, := 0g,, + 0., and

*x . T _
Dy, = 8Emyh(()vn) + Gm,h((,’”) (m=1,2,...,00).

Take a sequence of small positive numbers {e,,}. For each P € D, let (Vp, z) be

a holomorphic coordinate around P such that z(P) = 0. Let N be a large positive

number, for example N > 10. Let g,, be Kahler metrics of C' — D with the following
form on Vp for each P € D:

. dz -dz

(e 2Lz + |Z|2)W~
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We assume that {g,,} converges to a smooth Kahler metric gg of C in the C*°-sense
locally on C' — D.

In the following argument, ||p||s,q will denote the L%-norm of a section p of E,, ®
Q%1 or End(E,,) ® Q%Y ), with respect to a metric g of C' — D and a metric h of
E,. On the other hand, |p|s,q will denote the norm at fibers.

Proposition 8.4. — Let h(™ (m < 00) be hermitian metrics of E,, with the following
properties:

1. Let s™ be determined by h™ = h{™ - s(™ . Then (i) 5™ is bounded with
respect to hém), (ii) det s(™ = 1, (iii) HDms(m)“h’(m) g < 00 (The estimates
may depend on m.) C

2. We have ||F(h(m))l|h(m),gm < 00 and lim,, o ||F(h(m))||h(m),gm =0.

3. There exists a tame harmonic bundle (E',0p/, 0, h') such that the sequence
{(Em,éEm,e,,,,,h<m>)} converges to (E',0p/,0',h') in C* locally on C — D.

Then, after going to a subsequence, {(cEm,0m)} converges to (cE'«,0") weakly in LY
on C.

Proof. — We may and will assume that {(Em,gEm,Hm,hém))} converges to
(Foo, OB, 000, hoo) via the isometries ®,, : (Em,h(()m)) — (Fso,hoo), due to
Theorem 8.1. First, let us show that s(™ are bounded independently of m.

8.2.1. Uniform boundedness of s(™. — TFor any point P € C — D, let

SE(s(™)(P) denote the maximal eigenvalue of sl(;'f) . There exists a constant

0 < Cy < 1 such that Cy - |s|(17f)|h(()m) < SE(s™)(P) < |s|(;n,')
det sl(;',l) =1, we have SE(s(™)(P) > 1 for any P.

Let us take by, > 0 satisfying 2 < b, - supp SE(s(™)(P) < 3. We put 3™ =
by, - 5™ and hm) = h(()m) -30m) . Then 3™ are self-adjoint and uniformly bounded
with respect to both of hgm) and (™. We remark F(h(™) = F(h(™). We also
remark that 2™ and h(™ induce the same metric of End(Ep,).

Recall the following equality (Lemma 3.1 of [51]):

) - Because of
0

(52) A 50 = 500 ZTN gy F(R™) + V=TA 4, D, 5™ (30) " Dy 50m).

go,hém)

Because of ||Dms(m)||h<m) o = ||Dms(m)||h(m> g0 < 00 and the boundedness of 3m),
0 Im 0 )

we have [ Ay, tr3(™).dvoly, = 0. Hence, we obtain the following inequality from (52)
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and the uniform boundedness of 5™ with respect to h(m);

(53) /]D 3m . (3~ 1/2!g i dvolg, §A1/|tr(§(m)~Ag0F(7L(m>))|.dvolgo

< A, - / |Ago F(R™)];- (.., - dvoly, = Ay - / |Ag,, F(hT™)]5 ., - dvoly,,

< As - ”F(h(m))HEw),gm'
Here, A; denote the constants which are independent of m, and we have used the
inequality |tr(3(™) - Ag, F( h(m) )| < 5™ |Aq0F( |- In particular, we
obtain the following 1nequa11ty for some constant Ay:

(54) [P g gy < As IF R,

We put t™) := &,,(3(™) € End(EL).

Lemma 8.5. After going to an appropriate subsequence, {.{(m)} converges to a pos-
itive constant multiplication weakly in L? locally on C' — D.

Proof. — {t™} is L?-bounded on any compact subset of C'— D due to (54). By
going to an appropriate subsequence, it is weakly L?-convergent locally on C' — D.
Let () denote the weak limit. We obtain Doot(°) = 0 from (54). By construction,
(>°) is also bounded with respect to hgoo). Therefore (> gives an automorphism of
(¢Eosox,0x0). Due to the stability of (¢Foox, fo0), t(>°) is a constant multiplication.

We would like to show £(>) 2 0. Let us take any point Q,, € C — D satisfying the
following;:

SE(s™)(@n) > 15+ sup SE(s)(P)
10 pec-pD
Then we have log tr %V(m)(Qm) > log(9/5). By taking an appropriate subsequence, we
may assume that the sequence {Q,,} converges to a point Q. We have two cases
(i) Qo € D (ii) Qoo & D. We discuss only the case (i). The other case is similar and
easier.

We have tr 3(™ = trt(™) which we do not distinguish in the following. We use the
coordinate neighbourhood (U, z) such that z(Q) = 0. For any point P € U, we put
A(P,T):={Q € U||z2(P) — 2(Q)| < T}. Let g = dz - dz denote the standard metric
of U. We have the following inequality on U — {Qo} (Lemma 3.1 of [51]):

Ay logtrst™ < |AgF(E(Tn))|ﬁ(m)'

Let B(™) be the endomorphism of E,, determined as follows:

~ dz - dz
F(himY = p(pm)y = gim) .
(#) = () = B - S,
Then we have the following estimate:
2 . —1dvol
/|B<m>|ﬁ(m) (D22 +12)%) - |29 < A/]F h(m) - dvoly,, .
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Here A denotes a constant independent of m. Due to Lemma 2.17, there exist v(")
such that the following inequalities hold for some positive constant A’:

3 m m dz - dz m 7 (m

o™ = |B( )ITL("‘)W—’ 'v( )(z)’ < A HF(h( )
Then we have Ay (logtr t™ —v(™) <0 on U — {Qx}. Since s(™ and (s(™)~! are
bounded on C' — D, log tr s™) is bounded on C — D. Hence, AV (log trt(m) — v(m)) <0
holds on U as distributions. (See Lemma 2.2 of [52], for example.) Therefore, we
obtain the following:

log tr 7™ (@) — 0™ (Qn) < A" - /
A(Qm,1/2)

Here A” denotes a positive constant independent of m. Then we obtain the following
inequalities, for some positive constants C; (i = 1,2) which are independent of m:

)”E(nn,gm

<log tr ™ — v(m)) -dvoly .

log(9/5) < log tr £ (Qy) < C - / log tr£™ - dvol, +C.
v A(Q7VL>1/2)
Recall that logtr (™) are uniformly bounded from above. Therefore there exists a
positive constant C3 such that the following holds for any sufficiently large m:

/ — min(0, log tr t™)) - dvol, < Cs.
A(Qm,1/2)
Due to Fatou’s lemma, we obtain the following:

/ —min(O,logtrt °°)) -dvoly < Cs.
A(Qosy1/2)

It means £(°) is not constantly 0 on A(Qu,1/2). In all, we can conclude that £(>°) is
a positive constant multiplication. Thus the proof of Lemma 8.5 is finished. O

Let {ﬁml)} be a subsequence as in Lemma 8.5. It is almost everywhere convergent
to some constant multiplication. Then we obtain the convergence of {det i) =
br2rk B idgey(my } to a positive constant multiplication, i.e., {bny/} is convergent to a

positive constant. It means the uniform boundedness of {s™)} with respect to hém,).

8.2.2. Construction of maps. — By assumption, we are given Cl-isometries
@/, (Em, hm) — (E',1') for which {(E.,,0p,,,0m)} converges to (E',0p,0'). By
modifying them, we would like to construct the maps ¥/ : .F,, — E’ for which
a subsequence of {(cEm*, Om)} converges to (¢F',,0"). The argument is essentially
same as that in Subsections 8.1.1-8.1.2.

We put V5 := Vp —{P}. We will shrink Vp in the following argument if it is neces-
sary. We may assume that Assumption 7.1 is satisfied on Vp for any m < oo, and that
the constants are independent of m. We have the convergence {(Par(cEms, P), m)}
to (’Par(cho*,P),m). Take n > 0, and we may assume that Assumption 7.3 is
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satisfied on Vp for any m < oo, after going to a subsequence. By applying Proposi-
tion 7.4 to harmonic bundles (E,,, Oy, Om, hém) )|VS’ we obtain holomorphic sections
Fl(m), ..., F\™ of .E,, on Vp with numbers bgm), ...,b™ as in Proposition 7.4. We
may assume bgm) are independent of the choice of m, which are denoted by b;. For
b € Par(cEw, P), we put b(m) := max{a € Par(cEn)|la — bl < no}. We put
c(m) == 3 epar(.k,,p) @ M(a). Because of the uniform boundedness of s(M) | we
obtain [ | < C - [2] 750 (= log|z)V and C1 - 2] < [N, F™)|, ) <
Cy - |2|7%™) | where the constants are independent of m. After going to a subse-
quence, we may assume that {@%(Fi(ml))} are convergent weakly in LY locally on
V. The limits are denoted by F/, which are holomorphic with respect to Op. We
have |F/|p < C - |z[7% (= log|2[)N and C1 - |2|7¢ < |AL_, Fl|,om <Ca- |2|~¢, where
€= pepar(eBa,p) M) - b. By the same argument as the proof of Lemma 8.2, we
obtain that FY,..., F! gives a frame of ¢F’ around P which is compatible with the
parabolic structure. (In particular, we obtain Par(.E’, P) = Par(cFoo, P)).

We obtain the holomorphic morphism P\I/;n e E |v by the corre-
(Fi(m)) = F!. By our construction, (i) ¥/ — &’

] Py
spondence W’ ml

m vy converges to
0 weakly in LY locally on V5, (ii) PW/ (0,,) — @' converges to 0 on Vp as holomor-
phic sections of End(.E") ® Q'°(log P) (see the last part of the proof of Lemma 8.2),
(iii) the parabolic filtrations of . F,, p converges to the parabolic filtration of .E'|p
via PW! . Then, we construct W/, similarly to (50), which gives the convergence of

{(cEm*»em)} to (CE/*>9/)‘ (]
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CHAPTER 9

EXISTENCE OF ADAPTED PLURI-HARMONIC
METRIC

9.1. The Surface Case

Let X be a smooth irreducible projective surface over C, and D be a simple
normal crossing divisor of X. Let L be an ample line bundle, and w be a Kahler form
representing ¢ (L).

Theorem 9.1. — Let (CE, F, 0) be a pp-stable c-parabolic Higgs bundle on (X, D).
Assume that the characteristic numbers vanish:

par-deg; (.E, F) = / par-chy (. E, F) = 0.
X

Then there exists a pluri-harmonic metric h of (E,0) = (cE,0),x —p which is adapted
to the parabolic structure.

Proof. — We may and will assume ¢; ¢ Par(.FE,F,i). We take a sequence
{€n} converging to 0, such that &, = N;ll for some integers NV, and that
€n < gap(cF, F)/100rank(FE). We take the perturbation of parabolic structures
F®m) a5 in Section 3.3. We put €, = &,/100, and we take the Kahler metrics we,,
of X — D as in Subsection 4.3.1. For simplicity of the notation, we denote them by
F™ and w(™)| respectively. We may assume that (CE', F(m)) are pr-stable.

Due to Corollary 6.6, we have already known par-c, (. E, F) = par-c, (o E, F™) =
0. Thus, we can take a pluri-harmonic metric hget g of det(E) adapted to the
parabolic structure. Due to Proposition 6.1, we have the Hermitian-Einstein metric
h(™) of (E, 0, ) with respect to w™) such that A F(h(™) = tr F(h™) = 0 and
det(h(m)) = hqet &, Which is adapted to the parabolic structure (.E, F (m)). We re-
mark that the sequence of the L2-norms || F(h(™)||,om) ,om) of F(h(™)) with respect to
R(™) and w(™ converges to 0 in m — oo, because of the relation HF(h(""))||i(m)’w(m):

C -par-chy (cE, F (m)) for some non-zero constant C'. We will show the local conver-
gence of the sequence {(E,_a_E, 0, h(m))} on X — D.
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9.1.1. Local convergence. — In the following argument, B; will denote positive
constants which are independent of m. We use the notation ||p||5/ .+ to denote the
L2-norm of a section p of E' ® Q% or End(E’) ® Q%7, where b’ and w’ denote metrics
of a vector bundle E" and a base space. On the other hand, |p|j o+ denotes the norms
at fibers.

Let P be any point of X —D. We take a holomorphic coordinate (U, z1, z2) around
P such that z;(P) = 0 and that wp = ) dz; - dZ; on the tangent space at P. We
have the expression 6 = > f; - dz;.

Let n be a positive number. If m is sufficiently large, we have ||F(h(m))||w(m),h«m) <
n. Due to Lemma 2.13, there exists a constant By, such that By - | fi| o) < 7. Take
a large number By > By, and we put w; := By - 2;, ?(T) = {(wl,wg) I ST w2 < T},
g := > dw; - dw; and &™) := B - w(™. Then, we obtain the following:

“R(h(m))ﬁ(l)Hh(m),g < HF(h(m))|x7(1)Hh(m>,~ + “[979;2(7,.»]”7(1)“,1(1”)@ <Bs-n

Let d* denote the formal adjoint of the exterior derivative d on 17(1) with respect to
g. If n is sufficiently small, we can apply Uhlenbeck’s theorem ([63]). Namely, we can
take an orthonormal frame v,,, of (E , h(m)) (1) such that the connection form A,, of
Op + O pom With respect to vy, satisfies the conditions:
(i) : d*A,, =0,
(ii) : |[Amllzrg < C(p) - [[dAm + Am A Am|Lr,g (p > 2), where C(p) denotes the
constant depending only on p.

By our choice of Bg, we also have the following;:

(iii) : Let T1(™ denote the orthogonal projection of Q2 onto the self-dual part
with respect to @,,. Then, |H(m) (dAm + Am A Ap)|
AGR(W™) = Az(0,6! 1.

From (i) and (iii), we have | (d* +I1(™ od) (Am)+H(’”)(Am/\Am)]5 < Bs. If By and m
are sufficiently large, @™ and g are sufficiently close. Recall that d* +1IIod is elliptic,
where IT denotes the orthogonal projection of Q2 onto the self-dual part with respect
to g. Using the boot strapping argument of Donaldson for Corollary 23 in [13], we
obtain that the L{-norm of A4,, on Y(T) (T < 1) is dominated by a constant Bs.
Let ©,, be determined by 6(vy) = v, - ©4. The sup norm of 6, with respect to
g is small, due to our choice of By. We also obtain the L¥-bound of ©,, because of
00,, + [A%1,©,,] =0, where A%! denotes the (0, 1)-part of A,,.

m

< B4n because of

o(m)

Lemma 9.2. — After going to a subsequence, {(E,0g,h(™,0)|m € I} converges to
a tame harmonic bundle (Eso, Ooo, hoo, Oo0) weakly in L% locally on X — D.

Proof. — Due to the above arguments, we can take a locally finite covering
{(Ua,zga),zéa))’a € I'} of X — D and the numbers {m(a)|a € T'} with the
following property:
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— Each U, is relatively compact in X — D.

— For any m > m(«), we have orthonormal frames v, m of (E, h(m)) on U, such
that the LY-norms of A, ,, are sufficiently small with respect to the metrics
> dzj(»a) - dZ;‘l) independently of m, where A, ,,, denote the connection forms of
(Op pom + Op) with respect to Vo, m.

— Let O, be the matrix valued (1,0)-forms given by 6 - vo,;m = Va,m - Oam-
Then the LY-norms of ©,, ,,, are sufficiently small with respect to > dz](a) 'dzj(a),
independently of m.

Let gg,a,m be the unitary transformation on U, N Uz determined by va., =
V8,m * §3,a,m- Once o and 3 are fixed, the LY-norms of gg o,m are bounded indepen-
dently of m. By a standard argument, we can take a subsequence I C {m} such that
the sequences {Aqm |m € I}, {Oam|m € I} are weakly L}-convergent for each
a, and that the sequence { Ja,8,m Im el } is weakly Lb-convergent for each («, 3).
Then, we obtain the limit Higgs bundle (Fu, 0o, 000 ) With the metric hoo on X — D.
From the convergence HF(h(m))HL‘Z,h(m),wm) — 0, we obtain HF(}LOO)HLZ,}L(X;,W =0,
and hence (Eu, 00,000, hoo) is a harmonic bundle. By using the argument of
Uhlenbeck [63], we obtain locally Lb-isometries ®,, : (E,h(™) — (Ey, hso), via
which {(E,—é‘_E,O,h(m))} converges t0 (Fuo, Ooos oo, hoo) weakly in LY locally on
X — D. Since we have det(t — ) = det(t — ) by construction, the tameness of
(EOO,EEOQ, hoos Us) follows. Thus, Lemma 9.2 is proved. O

We obtain the associated parabolic Higgs bundle (cho, F, ()OO). We would like
to show that it is isomorphic to the given parabolic Higgs bundle (.E, F,6). For
that purpose, we have only to show the existence of a non-trivial morphism f :
(E,F,0) — (cho, FOO,F)OO), because of the pp-stability of (.E, F,0) and the pp,-
polystability of (¢Fusc, F'oo,000). Moreover, we have only to show the existence of
a non-trivial map fc : (cFoos Foo,000)jc — (F, F,0))c for a sufficiently ample
generic curve C' C X, due to Lemma 3.4. So we show that such f¢ exists for almost
all C, in the next subsections.

9.1.2. Selection of a curve. — Let LV be sufficiently ample. We put V :=
HO(X,LY). For any s € V, we put X, := s 1(0). Recall Mehta-Ramanathan type
theorem (Proposition 3.29), and let U denote the Zariski open subset of V which
consists of the points s with the properties: (i) X, is smooth, and X, N D is a simple
normal crossing divisor, (ii) (c£, F',0)|x, is pr-stable.

We will use the notation X} := X;\ D and D, := X; N D. We have the metric
wi™ of X , induced by w(™). The induced volume form of X is denoted by dvolgm).
We put (Es, FI™ . 0,) = (CE,F(m),9)|XS. We have the metric h{™ = hf;; of
Es := Ej|x-. Since there exists mq such that (.FEs, Fgm),ﬁs) is stable for any point

s € U and for any m > mg, we have the harmonic metric h%) of (Es,6,) adapted
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to the parabolic structure F{™ with det hgg) = hget g|x- (Proposition 2.8). Let

u{™ be the endomorphism of E! x+ determined by h{m) = hg’mo) ~u{™ . Then, u{™ is

bounded, and it satisfies det u™ = 1. We put D, := (0 + 0))x

Lemma 9.3. — For almost every s € U, the following holds:

— We have the following convergence in m — oo:
m
(55) [ER™ )]y om — 0.
— For each m, we have the finiteness:

(56) 1Dsul™ ] o < 00
Let U denote the set of s for which both of (55) and (56) hold.

Proof. — Let us discuss the condition (55). Let us fix s; € U. We take generic s; € U
(i =2,3), i.e., X, is transversal with X, (i = 2,3) and X,, N X, N X,, = . Take
open subsets Wi(j) (j = 1,2, i = 2,3) such that (i) X,, N X, C WL-(I) C Wj(z), (ii)
Wi(l) is relatively compact in VV;Z). Take an open neighbourhood U; of sy, which is
relatively compact in U, such that X is transversal with X, (i = 2,3) and X;NX;, C
Wi(l) for any s € U,.

Take T > 0, and we put B:= {z € C ’ |z2| < T}. Let g; denote the projection of
X x U; x B onto the i-th component. We put Zs := {(:1:, s,t) € X x Uy x P! ‘ (tss +
(1—1)s)(z) = 0}. The fiber over s € U, via gz z, is the closed region of the Lefschetz
pencil of s and ss.

We fix any Kahler forms wy, and wg of U; and B. The induced volume forms are
denoted by dvoly, and dvolg. Then we have the following convergence in m — 00:

/ a (‘F(lz(m))mm) om) -dvolw(m)) -dvoly, — 0.
Jz, '

We put Z} := 25\ q; 1(VVQ(Z)). Then the following convergence is obtained, in partic-
ular:

x* m 2
(57) / 7 (’F(h( N iom ‘dVOlw(m») - dvoly, — 0.
pats ’

Let ¢ : Zy — Uy x B denote the projection. For (s,t) € Uy x B, we put X, ) :=

(s, t) = (t32+(1—‘t)5)A1(0) = Xisy+(1-t)s- On X(44), we have the induced Kahler

form wgmt)), 1(mt) and the hermitian metric hgs t) =

hl(;?() . The family {dvol(m) | (s,t) € Uy x B} gives the C*-relative volume form

the induced volume forms dvo
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dvol( Z4/U, B of 2, — Uy x B. There exists a constant A such that the following
holds on Z4:

(58) A-q <|F(h(m>)|i(m)’w(m) dvolw(m)) dvolU,

(m) .
> |F |h§:,,t)v (m dvolz )y, g - dvols dvoly,

Therefore, we obtain the following convergence for almost every (s,t) € Uy x B, from
(57):

F} ,"l) m m 1 0.
(59) /X: t)\W2(2)‘ ( Ys,t) |h< ™ ™) dvo( )_4

Let S denote the set of the points (s,t) € U; x B such that the above convergence
(59) does not hold. The measure of S is 0 with respect to dvoly, x dvolg.

Let J : Uy x B — V denote the map given by (s,t) — tsg + (1 — t)s. We have
the open subset 7~ (U;) C Uy x B and the measure of SNJ ~1(U) is 0 with respect
to dvoly, - dvolg. We have SN J 1 (U;) = J1(J(S) NU1), and hence the measure
of T(S)NUj is 0 with respect to wy,. Namely, we have the following convergence for
almost every s € Uy:

/ (2)]F( m) |h<m) ) - dvol (m) __, 0.
X:\W

Similarly, we can show the following convergence for almost every s € Uy:
/ IF( (m ’;(M) (m dVOl(m) —s 0
(2)
X3\W;,

Then, we obtain that the condition (55) holds for almost all s € U.

The condition (56) can be discussed similarly. We give only an outline. Let
be an initial metric which was used for the construction of h("™). (See the proof of
Proposition 6.1.) We remark that A and A are mutually bounded. Let t(™)

m

be determined by h(™) = h(m) t(™). Then, we have HDt(m)H
Proposition 2.5. We put A" = (™ and ¢{™ = 1‘((;?) for s € U. By an above

$,in zn|X

(m)
hinL

wim) o) < 00 due to

argument, we obtain “D t( )|| () ) < oo for almost all s € U. On the other hand,

let #0™ be determined by h(m) h(m) 7™ We can use h{™ as the initial metric

S§,1n s,an

for the construction of hs o - Hence, we have HDsts ”w(m) pm) < 00 Since we have
s 1"s,in

ul™ =7 =1 ™ the condition (56) is satisfied for almost s € U. Thus, the proof
of Lemma 9.3 is finished. 0

9.1.3. End of the proof of Theorem 9.1. — Let us finish the proof of
Theorem 9.1. Take s € Zj{, and we put C = X,;. We have the convergence of
{(E,05,0,h(™)} to (Ex, 0,050, hoo) weakly in L} locally on X — D via isome-
tries ®,,, : (B, h™) — (Es,ho). The restriction of ®,, to C'\ D induce the
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C'-convergence of {(E,a 0, h('"))|c\D} t0 (Eoo, 0o’ Ooos hoo)jc\p- By using Proposi-
tion 8.4, we obtain the convergence of {(CE, F(m/), 9)‘0} t0 (cFoos Foos 0o0)|c weakly
in LY on C for some subsequence. We also have the convergence of {(CE , F (m) , 0)|C}
to (cE,F,0)c. Due to Corollary 3.38, we obtain the desired non-trivial map
Jo : (eBoo, Foo,0o0)jc — (B, F,0)c. Thus we are done. O

9.2. The Higher Dimensional Case
Now the main existence theorem is given.

Theorem 9.4. — Let X be an irreducible projective variety over C with an ample line
bundle L. Let D = J; D; be a simple normal crossing divisor of X. Let (E*,G) be
a py-stable regular filtered Higgs bundle with par-deg; (E.) = [ par-ch, ;(E,) = 0.
We put E := E\x_p. Then there exists a pluri-harmonic metric h of (FE, 0g,0),
which is adapted to the parabolic structure. Such a metric is unique up to constant
multiplication.

Proof. — We may assume that D is ample. We can also assume that L is sufficiently
ample as in Proposition 3.29. The uniqueness follows from the more general result
(Proposition 5.2). We use an induction on n = dim X. We have already known the
existence for n = 2 (Theorem 9.1).

Let (E.,0) be a regular filtered Higgs bundle on (X, D). Assume that it is stable
with par-deg, (E.) = [ par-chy ; (E.) = 0. For any element s € P := P(H°(X,L)")
determines the hypersurface Y, = {z € X ‘ s(z) = O}. The subset X7, C X xPis given
by XL, := {(z,s) ! x € Ys}. Let U be a Zariski open subset of P which consists of s € P
such that (E.,0)y, is ur-stable. Since L is assumed to be sufficiently ample, I/ is not
empty (Proposition 3.29). The image of the naturally defined map X; xpU — X
is Zariski open in X. The complement is denoted by W which consists of, at most,
finite points of X due to the ampleness of L.

Let s be any element of . We have a pluri-harmonic metric h, of (E,0)y,, which
is adapted to the induced parabolic structure, due to the hypothesis of the induction.

Let s; (i = 1,2) be elements of U such that Y,, and Y, are transversal and that
Ys, s, := Y5, NY,, is transversal to D. We remark that dimY,, NY,, > 1. We may
also assume that (c£,0)y, ., is pr-stable (Proposition 3.29). Hence hy, |y, ., and
Ry Y., ., are same up to constant multiplication. Then, we obtain the metric i of
ElX—(DUW) such that hIYS = hg.

Let P be any point of X — (D U W). We can take a coordinate neighbourhood
(Up,21,...,2,) around P such that (i) each hypersurface {z; = a} of Up is a part
of some Y;, (ii) Up € X — (DU W). In the following, we will shrink Up without
mentioning. Since the restriction of h to {z; = a} is pluri-harmonic, we obtain the
boundedness of § and 0 with respect to h around P. (See Proposition 2.10, for
example.)
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For any @@ € Up, let us take a path v connecting P and @, which is contained
in some Y;. Then, the parallel transport Ilpq : Ejp — E|q is induced from the
flat connection associated to the harmonic bundle (E, 0, 0))y, with hjy,. The map
IIp,p is independent of the choice of v and Y;. From the frame of E\p, we obtain the
frame v = (v1,...,v,) of E|y,. The trivialization gives the structure of flat bundle
to Ejy,. For the distinction, we use the notation (V,V) to denote the obtained flat
bundle. The restriction of h, # and 6 to Up are denoted by the same notation. By
the flat structure, we can regard the metric h as the map ¢, : Up — GL(n)/U(n),
and 6 + @' can be regarded as the differential of the map. Let dgL(n)/u, denote the
invariant distance of GL(n)/U,. Due to the boundedness of  + 6% with respect to
h, there exists a constant C' such that dgr,(n) () (0r(7(0)), @r(7(1))) is less than
C times the length of v for any path 7 contained in some Y;. In particular, A is a
continuous metric of V.

Let H be the hermitian-matrices valued function whose (i, j)-th component is
h(vi,v;). Let © = (0,;) and OF = ((—)I]) be determined by fv; = Y~ 0;; - v; and
Ofv; = (—);’i'vj. We have dH = H(©+0")/2 and 00+[61, 0] = 0 for the point-wise
partial derivatives, which can be shown by considering the restriction of (E, g, h, )
to hyperplanes {z; = a}. The equality holds as distributions, which follows from
Fubini’s theorem and the boundedness of H, © and ©f. In particular, H and © are
locally LY, and hence ©1 is also locally L. By a standard boot strapping argument,
we obtain that H, © and OF are C™ functions. In other words, h is a C*°-metric of
V, and 67 is a C>-section of End(V) ® Q%'. We also obtain that the C™-structure
of E and V are same because of g = df, — 07, where df, denotes the (0, 1)-part of
V. Thus, we obtain that h is a C*°-metric of Ex_(puw). The pluri-harmonicity of
h is easily obtained.

Let P be any point of W. We take a holomorphic coordinate neighbourhood
(Up, 21, ..., 2,) around P such that z;(P) = 0 for any i and Up ~ {(21,...,2,) | |2i] <
1} via the coordinate. We assume Up N W = {P}, and we put U} := Up — {P}. Let
7; denote the projection of Up onto Z := {(w1,...,w,—1)||w;| < 1} by forgetting
the i-th component. The origin of Z is denoted by O. We have the expression
Ou, = D1y fi - dz. Since the eigenvalues of f; are bounded on Up, there exists a
constant C' > 0 such that |fi|7r"_’—1(Q)|h, < C for any @ € Z such that @ # O and for
any i. By the continuity, we obtain |fi|, < C on U}. Hence 6 + 61 is bounded on Up.

We have the flat bundle V := Ew, with V := 0g + 0 + 0 + 01, It is naturally
extended to the flat bundle (V, V) on Up, and we can take a flat trivialization v of
V. Let H, © and O are given on Up as above. They are bounded. We have the
relation dH = H - (© + 61)/2 and 90 + [07,0] = 0 on Uj. The equality holds
as distributions on Up, which follows from Fubini’s theorem and the boundedness of
H, © and ©f. By using an elliptic regularity argument, it can be shown that H, ©
and ©F are C. Let d{, denote the (0,1)-part of the flat connection of V. We have
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(\7,d"’, - HT)lU; ~ (E,5E)|UP which is extended to the isomorphism (V,d’(, —0") ~
(E,EE)WP. Namely, by is naturally extended to the C*-metric of E|y,. Thus we
obtain the tame harmonic bundle (E,dg,0,h) on X — D.

Let ¢ be any element of R®. We obtain the parabolic Higgs bundle (. E(h).,#) on
(X, D). (See Section 3.5 for the prolongment.)

Lemma 9.5. — There exists a closed subset W' C D with the following properties:

— The codimension of W' in X is larger than 2.
— The identity of E is extended to the holomorphic isomorphism cF\x _w: —

cE(h) | X—-W’-
Proof. — Let P be any general point of the smooth part of D. We can take a
holomorphic coordinate neighbourhood (Up, 21, . . ., 2, ) around P such that (i) Up is

isomorphic to {(z1,...,2n)||2z:| < 1} via the coordinate, (ii) 2;7*(0) = DN U, (iii)
cach 7, 1(Q) (Q € Z) is a part of Y; (s € U), where 7 denotes the projection of
Up onto Z := {(z2,...,2n)||2i] < 1}. Let f be a holomorphic section of .E on Up.
By the construction of the metric h, each restriction f‘,n_;l(Q) (Q € Z) gives the local
section of C(ElﬂT](Q)><h)' By using Corollary 2.53 in [44], we can show that f gives
the section of . E(h) on Up. Thus, the identity of E on Up \ D is naturally extended
to the morphism ¢ : . F — FE(h) around P. It is also easy to check the surjectivity
of the specialization ¢|p at P. Since both of .E and (E(h) are locally free, ¢ is
isomorphic around P. O

Since both of .FE and .E(h) are locally free, they are isomorphic. In particular, we
can conclude that h is adapted to the parabolic structure. O
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CHAPTER 10

TORUS ACTION AND THE DEFORMATION OF
REPRESENTATIONS

We see that any flat bundle on a smooth irreducible quasiprojective variety can be
deformed to a Variation of Polarized Hodge Structure. We can derive a result on the
fundamental group.

We owe the essential ideas in this chapter to Simpson [55]. In fact, our purpose
is to show a natural generalization of his results on smooth projective varieties. We
will use his ideas without mentioning his name. This section is included for a rather
expository purpose.

10.1. Torus Action on the Moduli Space of Representations

10.1.1. Notation. — We begin with a general remark. Let V and V’ be vector
spaces over C, and ® : V — V' be a linear isomorphism. Let I" be any group,
and p : I' — GL(V') be a homomorphism. Then & and p induce the homomorphism
I' — GL(V”’), which is denoted by ®,(p). We also use the notation in Subsection 2.8.

10.1.2. Continuity. — Let X be a smooth irreducible projective variety with a
polarization L, and D be a normal crossing divisor. Let x be a point of X — D. We
put I' := 7 (X — D,x). Let (E.,0) be a ur-polystable regular filtered Higgs bundle
on (X, D) with trivial characteristic numbers. We put E := E|x_p. Since (E,,t-0)
are also py-polystable, we have a pluri-harmonic metric hy for (E, Op,t- f)on X — D
adapted to the parabolic structure, due to Theorem 9.4. Therefore, we obtain the
family of the representations pj : I' — GL(Ej;) (t € C*). We remark that p; are
independent of the choice of pluri-harmonic metrics h;.

Let V be a C-vector space whose rank is same as rank F. Let hy be a hermitian
vector space of V. For any t € C*, we take isometries ®; : (Ej, hy|z) — (V,hv),
and then we obtain the family of representations p; := ®;.(p;) € R(T',GL(V)). We
remark that mqr,v)(p¢) are independent of choices of ®;. Thus we obtain the map
P:C" — M(T,V, hy) by P(t) = ﬂGL(V)(pt)-
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Theorem 10.1. — The induced map P is continuous.

Proof. — We may and will assume that (E.,#) is pz-stable for the proof. Let {t; €
C”*|i € Z>o} be a sequence converging to to. We have only to take a subsequence
{ti|i € S} and a sequence of isometries {¥; : (Ej;, he;|2) — (Ea, iy (o) |1 € S}
such that {W¥;.(py,) |i € S} converges to py,. Since the sections det(T — ¢; - ) of
Sym’ QO[T converges to det(T — to - 6), we may apply Theorem 8.1. Hence there
exists a subsequence {ti ‘L € S’} such that {(E,EE, hti,ti-ﬂi) ‘z’ € S’} converges to
a tame harmonic bundle (E’,dg/,h/,0") in LY locally on X — D via some isometries
Qi : (B, hy,) — (E',1) (i € §"). Tt is easy to see that the representations ®; |, . (p;)
converges to p' in R(I', B, h{,), where p is associated to the flat connection Opr +
Op +0 +6'1.

We also have the non-trivial holomorphic map f : .E’ — FE which is compatible
with the parabolic structure and the Higgs fields due to Theorem 8.1. Since (. E.,0")
is pup-polystable and (. Ex, to-6) is pp-stable, the map f is isomorphic. Then we have
fiz+(p") = pt,- By replacing f appropriately, we may assume f : E' — E is isometric
with respect to b’ and hy,. Hence ¥, := ( fo <I>i) e gives the desired isometries. Thus
Theorem 10.1 is proved. O

10.1.3. Limit
Lemma 10.2. — P ({t € C*||t| < 1}) is relatively compact in M(T,V,hy).

Proof. — The sequence of sections det(7 —t - @) of Sym’ Q1°[T] clearly converges to
T2k E when t — 0. Hence we may apply the first claim of Theorem 8.1, and we
obtain a subsequence {t;} converging to 0 such that { (E,0p,t; -0, hy, } converges
to a tame harmonic bundle (E’,0g, ', h') weakly in L% locally on X — D. Then we

easily obtain the convergence of the sequence {WGL(V)(pti } in M(T,V, hy). O

Ideally, the sequence {P(t)} should converge in ¢ — 0, and the limit should come
from a Variation of Polarized Hodge Structure. We discuss only a partial but useful
result about it.

Let us recall relative Higgs sheaves. In the following, we put C; := Spec C]t]
and C; := Spec C|t,t!]. For a smooth morphism ¥; — Y2, the sheaf of relative
holomorphic (1, 0)-forms are denoted by Qif’:)/Yg' We put X := X x C; and X*

X x C}. Similarly, ® := D x C; and D* := D x C;. We put B, := E. ® Oc:
which is e-parabolic bundle on (X*, ©* ) Then, ¢ - 0 gives the relative Higgs field 9,
which is a homomorphism E, — Q;O er (log®*) such that 92 = 0. Using
the standard argument of S. Langton [33] we obtain the c-parabolic sheaf E’ and
relative Higgs field 0 : E. — E. ® Q Jc, satisfying the following (see [65]):

— CE; is flat over C, and the restriction to X* is CE*.
— The restriction of 8’ to X* is 0.
— (EL,0) = (CEi’el)lXx{O} is pr-semistable.
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Let (CE*7 9) denote the reflexive saturated reguldr filtered Higgs sheaf associated to
(cE',8"). (See Lemma 3.2.) We put E := cE|X D-

Proposition 10.3. — Assume that (E,, 5) is pr,-stable.

- (¢ E*,(?) is a Hodge bundle, i.e., (¢ E*,oz 0) (¢ E*,g) for any o € C*.

— We have a pluri-harmonic metric h of a Hodge bundle (E 9) on X — D, which is
adapted to the parabolic structure. It induces the Variation of Polarized Hodge
Structure. Thus we obtain the corresponding representation p : m (X —D,z) —
GL(E@) which underlies a Variation of Polarized Hodge Structure.

— Take any isometry G : (E\Iwﬁlw) ~ (V,hy). Then the sequence {WGL(V)(pt)}
converges to maL(v) (G*(ﬁ)) in M(T,V,hy) fort — 0.

— In particular, the map mwgrovy(pe) + C* — M(T,V,hy) is continuously ex-
tended to the map of C to M(T',V, hy).

Proof. — The argument is essentially due to Simpson [55]. The fourth claim fol-
lows from the third one. Let {¢;]|i € Zso} be a sequence converging to 0. Due
to Theorem 8.1, there exists a subsequence {t;|¢ € S} such that the sequence
{(E, O, he, ti - 9) |z € S} converges to a tame harmonic bundle (E’, 0p:, 1, 6")
weakly in L% locally on X — D, via isometries ®; : (E, hy,) — (E',1/). Let
pm(X —D,z) — GL(Efx) denote the representation associated to the flat con-
nection dp + Opr + 0’ + 0’1, Then we have the convergence of {®;,.(ps,)|i € 5"}
to p/ in M(T, E’,,;,EL,,,). Due to Theorem 8.1, we also have a non-trivial morphism
f: CE' — E’ which is compatible with the parabolic structures and the Higgs
fields. It induces the morphism . E— <E' compatible with the parabolic structures
and the Higgs fields. Then it must be 15011101ph1c due to pp-polystability of (.E.,0")
and gy -stability of ( E*,H) In particular, (cE*,O) is a pr-stable e-parabolic Higgs
bundle. The metric h of E is given by h’ and f. Thus the third claim is obtained.

Let us consider the IIlOrphinl ¢q : Cy — Cy given by t — « - t. We have the
natural isomorphism ¢7, ( E*, 0) ( E*, a~9~) which can be extended to the morphism
Gr(EL0) — (E., o 9’) such that the specialization (cEy,0) — (cEx, - 0) at
t = 0is not trivial. Since (. E*, 5) and (. E*, - é\) are i y-stable, the map is isomorphic.
Hence (. E 0) is a Hodge bundle. Thus the first is proved.

Since (E, g 6) is a Hodge bundle, we have the action x of S* = {t € C||t| = 1}
on E such that w(t) : (E, 8E7® (E,dp,t - é) for any t € S'. The metric x(t),h
is determined by x(t). h( v) = h( ( )(u), £(t)(v)), which is also the pluri-harmonic
metric of (E' 0 7, 10). Since (E'*, t@’\) is pr-stable, the pluri-harmonic metric is unique
up to a positive constant multiplication. Hence we obtain the map v : S' — R+
such that r(t),h = v(t) h. Let B = @ E. be the weight decomposition. For
vi € By, (w1 # wy), we have v(t) - h(vy,va) = k() h(vi,ve) = = w2 b0y, vg).
Hence, we obtain ﬁ(vl, v2) = 0 and v(t) = 1. Namely, h is S'-invariant, which means
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(E, 5@, 67,71) gives a Variation of Polarized Hodge Structure. Thus the second claim
is proved. O

Lemma 10.4. Assume (CE*,g) is not uy-stable. Let py be an element of R(T,V)
such that mqy,(vy(po) is the limit of a subsequence {WGL(V)(pti)} fort; — 0. Then pg
18 not simple.

Proof. — Let {t;} be a sequence converging to 0 such that {(E,0g,t; - 0,hy,)} con-
verges to a tame harmonic bundle (E',0g:, 6, h') in L% locally on X — D. We may
assume that pg is the associated representation to (E’ LOp, 0 0 ). We have a non-
trivial map f : (B — CE compatible with the parabolic structures and the Higgs
fields. If pg is simple, then (o F.,0') is pr-stable, and it can be shown that the map
f has to be isomorphic. But it contradicts with the assumption that (CE'*, 5) is not
Jr,-stable. O

10.1.4. Deformation to a Variation of Polarized Hodge Structure. — Let
Y be a smooth irreducible quasiprojective variety over C with a base point x. We
may assume Y = X — D, where X and D denote a smooth projective variety and its
simple normal crossing divisor, respectively. A representation p : 71 (Y, 2) — GL(V)
induces a flat bundle (E,V). We say that p comes from a Variation of Polarized
Hodge Structure, if (E, V) underlies a Variation of Polarized Hodge Structure. For
simplicity of the notation, we put I := 71 (Y, x).

Theorem 10.5. — Let p € R(T,V) be a representation. Then it can be deformed
to a representation p' € R(T', V) which comes from a Variation of Polarized Hodge
Structure on Y .

Proof. We essentially follow the argument of Theorem 3 in [55]. Any represen-
tation p € R(I', V) can be deformed to a semisimple representation p’ € R(I',V).
Therefore we may assume that p is semisimple from the beginning. Let (F, V) be the
corresponding semisimple flat bundle on X — D. We can take a Corlette-Jost-Zuo
metric h of (E,V), and hence we obtain the tame pure imaginary harmonic bun-
dle (E,0g,0,h). Let (E.,0) denote the associated regular filtered Higgs bundle on
(X, D). We have the canonical decomposition (Corollary 3.11):
(E..0) = P(E..0:) 0 ™.
jeEA

We put r(p) := ;.5 m(j). Note that r(p) < rank £, and we have r(p) = rank E' if
and only if (E.,#) is a direct sum of Higgs bundles of rank one. We use a descending
induction on r(p).

We obtain the family of regular filtered Higgs bundles { (E,,t-0) [t € C*} (t € C*).
In particular, we have the associated deformation of representations {p; € R(T', V) |t €
R~} as in Subsection 10.1.2. We may assume p; = p. We have the induced map
P :0,1] — M(I',V,hy) given by P(t) := mgrv)(p:), which is continuous due to
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Theorem 10.1. The image is relatively compact due to Lemma 10.2. We take a
representation py € R(T, V) such that mgyvy(po) is the limit of a subsequence of
{wGL(V)(pt) l t €]0, l]} We may assume that it comes from a tame harmonic bundle
as in the proof of Lemma 10.2.

The case 1. Let (E.,0) = @(E;.,0;)®™ be the canonical decomposition. Assume
that each family {(E;.,t-6;)|t € C"} converges to the pp-stable regular filtered
Higgs sheaf. Then pg comes from a Variation of Polarized Hodge Structure due to
Proposition 10.3.

We remark that the rank one Higgs bundle is always stable. Hence the case r(p) =
rank E is done, in particular.
The case 2. Assume that one of the families {(E.,t-6;) |t € C*} converges to the
semistable parabolic Higgs sheaf, which is not p-stable. Then we have r(p) < r(po)
due to Lemma 10.4. Hence the induction can proceed. O

10.2. Monodromy Group

We discuss the monodromy group for the Higgs bundles or flat bundles, by following
the ideas in [55].

10.2.1. The Higgs monodromy group. — Let X be a smooth irreducible projec-
tive variety with an ample line bundle L, and D be a simple normal crossing divisor.
Let (E.,0) be a ur-polystable regular filtered Higgs bundle on (X, D) with trivial
characteristic numbers. For any non-negative integers a and b, we have the regular
filtered Higgs bundles (T“°E.,,f). (See Subsection 3.2.1 for the explanation.) Since
we have a pluri-harmonic metric h of (E,0g,6) adapted to the parabolic structure,
the regular filtered Higgs bundles T**(E.,#) are also up-polystable. In particular,
we have the canonical decompositions of them. We recall the definition of the Higgs
monodromy group given in [55]. Let « be a point of X — D.

Definition 10.6. — The Higgs monodromy group M (E.,,0,x) of ur-polystable Higgs
bundle (E., 6) is the subgroup of GL(E|,) defined as follows: An element g € GL(E);)
is contained in M (E,,#, z), if and only if T%"g preserves the subspace F, C T"’"’Em
for any stable component (F.,0p) C T**(E,,#0).

Remark 10.7. — Although such a Higgs monodromy group should be defined for
semistable parabolic Higgs bundles as in [55], we do not need it in this paper.

We have an obvious lemma.

Lemma 10.8. — We have M(E,,0,z) = M(E,,t-0,z) for anyt € C*, i.e., the Higgs
monodromy group is invariant under the torus action.
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Let us take a pluri-harmonic metric h of the Higgs bundle (E,dg,0) on X — D,
which is adapted to the parabolic structure. Then we obtain the flat connection
D! = g +0r+0+6'. Then we obtain the monodromy group M (E, D', z) C GL(E);)
of the flat connection. (See Subsection A.1.4.)

Lemma 10.9. — We have M(E,D',z) C M(E.,0,x). For a tame pure imaginary
harmonic bundle, we have M(E, D', x) = M(E,,0,x).

Proof. — A stable component (F.,0r) C (E,,0) induces the flat subbundle of F' C
T**(E,DY). If g € M(E,D',z), we have T%g(F,) C F|,. Hence, M(E,D!,z) C
M(E.,0,z). In the pure imaginary case, a flat subbundle F ¢ T%*(E,D') induces
(F.,0r) C (E.,0). Therefore, we obtain M (E,D ) = M(E.,0,x). O

10.2.2. The deformation and the monodromy group. — For simplicity of
the description, we put ' := m(X — D, z). Let (F,V) be a semisimple flat bundle
over X — D. We have a Corlette-Jost-Zuo metric h of (E, V), and thus we obtain
a tame pure imaginary harmonic bundle (E,Jg,0,h) on X — D. The associated
regular filtered Higgs bundle is denoted by (FE., ), which is py-polystable with trivial
characteristic numbers.

As in Subsection 10.1.2, we have the pluri-harmonic metrics hy for any (E, g, t-0)
(t € C*). Hence we obtain the flat connections D} of E, and the representations
pt : T — GL(E);). We also obtain the monodromy group M(E,D;) C GL(E,).

Lemma 10.10. We have M(E,D}) C M(E,D}) for t € C — {0}, and M(E,D}) =
M(E,D}) fort e R— {0}.

Proof. — Tt follows from Lemma 10.8 and Lemma 10.9. OJ

We put Go := M(E,D},z) for t € R~ which is independent of the choice of t.
Let U(E, hy,x) denote the unitary group for the metrized space (E|,,h;|,). Due
to Lemma A.16, Gq is reductive, and the intersection Ko := Go NU(E, hy,z) is a
compact real form of Gy.

We put V' := Ej, and hy := h;|,. We denote G and Ko 1 by G and K respectively,
when we regard it as the subgroup of GL(V). Then we can take an isometry vy :
(Ejgshiy o) =~ (V, hy) such that 14(Go) = G and v;(Kg;) = K for each ¢. Such a map
is unique up to the adjoint of Ng(hy ). Thus we obtain the family of representations
pr = vi(p) € R(I',G) (t € R>o).

Lemma 10.11. — The induced map wg(pt) : Rso — M(I', G, hy) is continuous.

Proof. — Let M’ denote the subset of M(I',G, hy) which consists of the Zariski
dense representations. The natural morphism M’ — M(T', V| hy) is injective, and
the image of m(p¢) is contained in M'. Hence the claim of the lemma follows from
Theorem 10.1 and the properness of M (I', G, hy) — M(L,V, hy ). O
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Lemma 10.12. — The image wc(p:)(]0,1]) is relatively compact in M (T, G, hy).

Proof. — Tt follows from Lemma 10.2 and the properness of the map M (T, G, hy) —
M(T,V, hy). O

10.2.3. Non-existence result about fundamental groups. — Let Y be a
smooth irreducible quasiprojective variety. We put I' := 7, (Y, z). Let V be a finite
dimensional C-vector space. Let G be a reductive subgroup of GL(V'). We see the
convergence of mg(pt) (t — 0) in a simple case.

Lemma 10.13. — Let p be an element of R(I',G). We assume that there exists a
subgroup I'g such that pip, : I'o — G is Zariski dense and rigid. Then we can take
a deformation p' € R(I,G) of p which comes from a Variation of Polarized Hodge
Structure on Y .

Proof. — We take a tame pure imaginary pluri-harmonic bundle (E,dg, 6, h) whose
associated representation gives p, and we take the deformation 7 (p:). Let us take
po € R(T,G) such that some sequence {7 (pt,)} converges to mg(po). We remark
that pg |, : [o — G is also Zariski dense and rigid (Lemma 2.22). If py comes from
a Variation of Polarized Hodge Structure, we are done. If pg does not come from a
Variation of Polarized Hodge Structure, we deform po as above, again. The process
will stop in the finite steps by Theorem 10.5. O

The following lemma is a straightforward generalization of Lemma 4.4 in [55]. (See
also Lemma A.16, where we will see the argument of Lemma 4.4 can be generalized
in our situation.)

Lemma 10.14. — Let p: ' — G be a Zariski dense homomorphism. If p comes from
a Variation of Polarized Hodge Structure, then the real Zariski closure W of p is a
real form of G, and W is a group of Hodge type in the sense of Simpson. (See the
page 46 in [55].)

The following lemma is essentially same as Corollary 4.6 in [55].

Proposition 10.15. Let G be a complex reductive algebraic group, and W be a real
form of G. Let p: I' — G be a representation such that Imp C W. Assume that
there exists a subgroup I'o C I' such that pyr, is rigid and Zariski dense in G. Then
W is a group of Hodge type, in the sense of Simpson.

Proof. — We reproduce the argument of Simpson. Since p(I'y) is Zariski dense in
G, W is also the real Zariski closure of p(I'p). We take a deformation p’ of p, which
comes from a Variation of Polarized Hodge Structure as in Lemma 10.13. Then there
exists an element u € N(G,U) such that ad(u) o pjp, ~ pfro due to Lemma 2.22. Let
W’ denote the real Zariski closure of p'(T'g), which is also the real Zariski closure of
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p'. It is a group of Hodge type (Lemma 10.14). Since W and W' are isomorphic, we
are done. a

Corollary 10.16. — Let I'y be a rigid discrete subgroup of a real algebraic group, which
is not of Hodge type. Then Iy cannot be a split quotient of the fundamental groups of
any smooth irreducible quasiprojective variety.

Proof. — 1t follows from Lemma 10.14 and Proposition 10.15. (See the pages 52-54
of [55]). O
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APPENDIX

G-HARMONIC BUNDLE

A.1. G-Principal Bundles with Flat Structure or Holomorphic Structure

We recall the Tannakian consideration about harmonic bundles given in [55] by
Simpson.

A.1.1. A characterization of algebraic subgroup of GL. — We recall some
facts on algebraic groups. (See also I. Proposition 3.1 in [11], for example.) Let V be
a vector space over a field k of characteristic 0. We put TV := Hom(V® V®?),
Let G be an algebraic subgroup of GL(V'), defined over k. We have the induced G-
action on T**V. Let S(V,a,b) denote the set of G-subspaces of T%*V | and we put
S(V)=1l,,SV,a,b).

Let g be an element of GL(V). We have the induced element 7%*(g) € GL(T**V).
Then, it is known that g € GL(V) is contained in G, if and only if T%(¢)W C W
holds for any (W, a,b) € S(V). Suppose G is reductive. Then there is an element v
of T**(V) for some (a,b) such that g is contained in G if and only if g - v = v holds.

We easily obtain a similar characterization of Lie subalgebras of gl(V') correspond-
ing to algebraic subgroups of GL(V).

A.1.2. A characterization of connections of principal G-bundle. — Let &
denote the complex number field C or the real number field R. Let G be an algebraic
group over k. Let Pg be a G-principal bundle on a manifold X in the C'°°-category.
Let K : G — GL(V) be a representation defined over k, such that the induced
morphism dk : g — End(V) is injective. We put E := Pg xg V. We have T%"F :=
Hom(E®® E®Y) ~ Pg xg T*"V. We have the subbundle Eyy = Pg xg U of T**E
for each U € S(V, a,b). A connection V on F induces the connection T’V on T**E.
Let Ac(E) be the set of the connections V of E such that the induced connections
T**V preserve the subbundle Ey; for any (U, a,b) € S(V).

Let A(Pg) denote the set of the connections of Pg. If we are given a connection
of Pg, the connection V of E is naturally induced. It is clear that the connection
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T**V preserves Eyy € T*YE for any (U,a,b) € S(V). Hence we have the map
¢ : A(Pg) — Ac(E).

Lemma A.l. The map ¢ is bijective.

Proof. — Since dk is injective, the map ¢ is injective. Let us take a connection
V € Ag(E) and a connection Vo which comes from a connection of Pg. Then
f =V —Vyis a section of End(E) ® Q. Since T%*f preserves Ey for any (a,b) and
U c 8(V,a,b), f comes from a section of ad(Pg) ® Q! C End(E) ® Q'. a

A.1.3. K-Reduction of holomorphic G-principal bundle and the induced
connection. — Let G be a linear reductive group defined over C. Let Pg be a
holomorphic G-principal bundle on X. Let x : G — GL(V) be a representation
defined over C, such that dk : g — End(V) is injective. We put E := Pg xg V. Let
K be a compact real form of G. Let Py C Pg be a K-reduction in the C*-category,
i.e., Pk Xg G ~ Pg. Then the connection of Pk is automatically induced. We have
the canonical G-decomposition for each (a, b):

(60) v = Vv
pElrrep(G)

Here Irrep(G) denotes the set of the equivalence classes of irreducible representations
of G. Each Vp(""b) is isomorphic to the tensor product of the irreducible representation
p and the trivial representation C™®"#) The decomposition (60) is same as the
canonical K-decomposition. Take a K-invariant hermitian metric h of V. It induces
the hermitian metric T%%h of T®bV | for which the decomposition (60) is orthogonal.
The restriction of T%’h to V,,(“’b) is isomorphic to a tensor product of a K-invariant
hermitian metric on p and a hermitian metric on C™®%?) The metric h induces the
hermitian metric of E, which is also denoted by h. From the holomorphic structure
Or and the metric h, we obtain the unitary connection V = dg + dz. The induced
connection T%*V on T*E is the unitary connection determined by T%’h and the
holomorphic structure of T%?E. Then it is easy to see that T%*V preserves Ey for
any U € S(a,b, V). Hence the connection V comes from Pg. Since V also preserves
the unitary structure, we can conclude that V comes from the connection of Pg.

A.1.4. The monodromy group. — We recall the monodromy group of flat bun-
dles ([55]). Let X be a connected complex manifold with a base point x. The
monodromy group of a flat bundle (E, V) at z is defined to be the Zariski closure of
the induced representation 7 (X, z) — GL(E),). It is denoted by M(E,V,x). Let
us recall the case of principal bundles. Let G be a linear algebraic group over R or
C, and Pg be a G-principal bundle on X with a flat connection in the C*°-category.
Take a point = € Pg|,. Then we obtain the representation p : 71 (X, z) — G. Then
the monodromy group M (Pg,Z) C G is defined to be the Zariski closure of the image
of p. We obtain the canonical reduction of principal bundles Py (p, 7 C Pa. The
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monodromy groups of flat vector bundles and flat principal bundles are related as
follows. Let k : G — GL(V') be an injective representation. Then we have the flat
bundle £ = Pg xg V = Purps,z) Xm(pe, V- Via the identification V = E, given
by Z, we are given the inclusion M(Pg,z) C GL(E);). Clearly M(Pg,T) is same
as M(E,V,z) and it is independent of the choice of Z. Hence we can reduce the
problems of the monodromy groups of flat principal G-bundles to those for flat vector
bundles.

For a flat bundle (E, V), let T%*E denote the flat bundle Hom(E® 2, E®?) pro-
vided the canonically induced flat connection. Let S(F,a,b) denote the set of flat
subbundles U of T%*E, and we put S(F) := L. S(E,a,b). Let g be an element of
GL(E);). Then g is contained in M (E, V, z) if and only if T"’g preserves U, for any
(U,a,b) € S(E). If M(E,V,z) is reductive, we can find some (a,b) and v € T“”’E{w
such that g € M(F,V, ) if and only if g - v = v. Hence there exists a flat subbundle
W C T*E such that g € M(E, V,z) if and only if T%’g,y = idw.

A.2. Definitions

A.2.1. A G-principal Higgs bundle and a pluri-harmonic reduction. — Let
G be a linear reductive group defined over C, and K be a compact real form. Let
X be a complex manifold and Pg be a holomorphic G-principal bundle on X. Let
ad(Pg) be the adjoint bundle of Pg, i.e., ad(Pg) = Pg X ¢ g. Recall that a Higgs field
of Pg is defined to be a holomorphic section # of ad(Pg) ® Q19 such that 62 = 0.

Let Px C Pg be a K-reduction of Pg in C*-category, then we have the natural
connection V of P, as is seen in Subsection A.1.3. We also have the adjoint 87 of 6,
which is a C>-section of ad(Pg)®@0Q%!. Then we obtain the connection D! := V+60+07
of the principal bundle Pg.

Definition A.2. — If D' is flat, then the reduction Px C Pg is called pluri-harmonic,
and the tuple (Pg C Pg,0) is called a G-harmonic bundle.

Let V be a C-vector space. A representation x : G — GL(V) is called immersive if
dk is injective, in this paper. Take an immersive representation x : G — GL(V') and
a K-invariant metric hy. From a G-principal Higgs bundle (Pg, 6) with a K-reduction
Py C Pg, we obtain the Higgs bundle (E,dp,6) with the hermitian metric h.

Lemma A.3. — Lel (Pg,0) be a G-principal Higgs bundle, and Py C Pg be a K-
reduction. The following conditions are equivalent.
1. The reduction Pg C Pg is pluri-harmonic.
2. For any representation G — GL(V) and any K-invariant hermitian metric
of C-vector space V', the induced Higgs bundle with the hermitian metric is a
harmonic bundle.
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3. There exist an immersive representation G — GL(V') and a K-invariant her-
mitian metric of C-vector space V', such that the induced Higgs bundle with the
hermitian metric is a harmonic bundle.

Proof. — If G — GL(V) is immersive, then a connection of P is flat if and only
if the induced connection on Py xXg V is flat. Therefore the desired equivalence is
clear. Od

A.2.2. A flat G-bundle and a pluri-harmonic reduction. — Let G be a linear
reductive group over R or C, and let (Pg,V) be a flat G-bundle over a complex
manifold X. If a K-reduction Px C Pg is given, we obtain the connection Vg of
Pr and the self-adjoint section ¢ € ad(Pg) @ Q! such that V = Vg + ¢ ([7]), which
can be shown by a Tannakian consideration as in Subsection A.1.3, for example. Let
Vo = Vi + Vil and ¢ = 6+ 6" be the decomposition into the (1,0)-part and the (0, 1)-
part. The connection V( induces the connection on ad(Pg), which is also denoted
by Vo = V{ + V§. From V{ and the complex structure of X, the (0, 1)-operator of
ad(Pg) ® QMY is induced, which is also denoted by Vj.

Definition A.4. A reduction Px C Pg is called pluri-harmonic, if > = 0 and
0(8) = 0 hold.

Let V' be a vector space over C. Let k : G — GL(V) be a representation, which
induces the flat bundle (E, V). We take a K-invariant metric hy, which induces the
metric hp of E. We obtain the decomposition Vg = 0 + 0p + 0 + OTE as in Section
21.4.3 of [44]. They are induced by V{§, Vi, 6 and 07, respectively. Thus, if Px C P
is pluri-harmonic, we have 62, = Opfr = 0. Recall that they imply Bi = (. Hence,
(E,VE,h) is a harmonic bundle. On the contrary, if £ is immersive and (E, Vg, h)
is a harmonic bundle, we obtain the vanishings #? = V{8 = 0. Hence, Px C Pg is
pluri-harmonic. Therefore, we obtain the following lemma.

Lemma A.5. — The following conditions are equivalent.

1. The reduction Px C Pg is pluri-harmonic, in the sense of Definition A.4.

2. For any representation k : G — GL(V) and any K -invariant metric of a vector
space V over C, the induced flat bundle with the hermitian metric is a harmonic
bundle.

3. There exist an immersive representation k : G — GL(V) and o K -invariant
metric of a vector space V over C, such that the induced flat bundle with the
hermitian metric is a harmonic bundle.

Let 7: X — X denote a universal covering. Take base points € X and x; € X
such that 7(z1) = . Once we pick a point T € Pg,, the homomorphism m (X, z) —
G is given. If a K-reduction Py C Pg is given, we obtain a m (X, x)-equivariant map
F:X — G/K, where the m (X, x)-action on G/K is given by the homomorphism
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m(X,z) — G. If Px C Pg is pluri-harmonic, then F is pluri-harmonic ([67]) in the
sense that any restriction of F' to holomorphic curve is harmonic.

A.2.3. A tame pure imaginary G-harmonic bundle. — Let G be a linear
reductive group over C. Let h) denote a Cartan subalgebra of g, and let W denote the
Weyl group. We have the natural real structure hg C h. Hence we have the subspace
V—=1br C h. We have the W-invariant metric of b, which induces the distance d of
h/W. Let B(\/—_le, e) denote the set of the points x of h/W such that there exists
a point y € /—1hr/W satisfying d(x,y) < e.

Let (Px C Pg,0) be a G-harmonic bundle on A*. We have the expression § =
f+dz/z, where f is a holomorphic section of ad(Pg) on A*. It induces the continuous
map [f]: A* — h/W.

Definition A.6
— A G-harmonic bundle (Px C Pg,0) is called tame, if [f] is bounded.
— A tame G-harmonic bundle (Px C Pg,6) is called pure imaginary, if for any
€ > 0 there exists a positive number r such that [j(z)] € B(\/—_lhR, e) for any
lz| < r.

Lemma A.7. — Let (Px C Pg,0) be a harmonic bundle on A*. The following condi-
tions are equivalent.
L. It is tame (pure imaginary).
2. For any k : G — GL(V) and any K -invariant metric of V., the induced har-
monic bundle is tame (pure imaginary).
3. For some immersive representation £ : G — GL(V) and some K-invariant
metric of V, the induced harmonic bundle is tame (pure imaginary).

Proof. — The implications 1 = 2 = 3 are clear. The implication 3 = 1 follows
from the injectivity of dr : g — gl(V). |

Let X be a smooth projective variety, and D be a normal crossing divisor.

Definition A.8. — A harmonic G-bundle (Px C Pg,0) on X — D is called tame (pure
imaginary), if the restriction (Px C Pg, 0)|c\ p is tame (pure imaginary) for any curve
C C X which is transversal with D.

Remark A.9. — Tameness and pure imaginary property are defined for principal G-
Higgs bundles.

Remark A.10. — Tameness and pure imaginary property are preserved by pull back.
We also remark the curve test for usual tame harmonic bundles.

Let us consider the case where G is a linear reductive group defined over R, with
a maximal compact group K. We have the complexification G¢ with a maximal
compact group K¢ such that K = KN G.
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Definition A.11. — Let (Pg, V) be a flat bundle. A pluri-harmonic reduction (Px C
Pg, V) is called a tame pure imaginary, if the induced reduction (Pk. C Pgs, V) is
a tame pure imaginary.

Lemma A.12. — Let (Px C Pg,0) be a harmonic bundle on X — D. The following
conditions are equivalent.
1. It is tame (pure imaginary).
2. For any k : G — GL(V) and any K-invariant metric of V, the induced har-
monic bundle is tame (pure imaginary).
3. There exist an immersive representation k : G — GL(V) and a K-invariant
metric of V' such that the induced harmonic bundle is tame (pure imaginary).

A.3. Semisimplicity and Pluri-Harmonic Reduction

A.3.1. Preliminary. — Let X be a smooth irreducible quasiprojective variety with
a base point x. We put I' := m1(X,x) for simplicity of the notation. Recall the
existence and the uniqueness of tame pure imaginary pluri-harmonic metric ([29],
[45]), which is called the Corlette-Jost-Zuo metric. Let (E,V) be a semisimple flat
bundle, and let p : I' — GL(E),) denote the corresponding representation. We have
the canonical decomposition of E|,:

by, = @ Eyg -
xEIrrep(T")
Here Irrep(T") denotes the set of irreducible representations, and E\.  denotes a I'-
subspace of E), isomorphic to x®™0) - Correspondingly, we have the canonical de-
composition of the flat bundle (E, V):
(E.,V)= & E.
x€Irrep(I")

The flat bundle F is isomorphic to a tensor product of a trivial bundle C"™ and a
flat bundle L, whose monodromy is given by x.

Lemma A.13

— There exists a Corlette-Jost -Zuo metric hy of Ly, which is unique up to positive
constant multiplication.

— Under the isomorphism (E, V) ~ @ L,@C™X)  any Corlette-Jost-Zuo metric
of (V,V) is of the following form.:

@ hy @ gy
X

Here g, denote any hermitian metrics of C™ X In other words, the ambiguity
of the Corlette-Jost-Zuo metrics is a choice of hermitian metrics gy of cm
once we fix hy.
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— The decomposition of flat connection V = 0 + 0 + 0 + 01 is independent of a
choice of gy.

Proof. The first claim is proved in [29]. (See also [45].) The second claim eas-
ily follows from the proof of the uniqueness result in [45]. (See the argument of
Proposition 2.6). The third claim follows from the second claim. O

We also have the following lemma (see [50] or [45])

Lemma A.14. — If there exists a Corlette-Jost-Zuo metric on a flat bundle (E,V),
then the flat bundle is semisimple.

We have the involution xy — X on Irrep(F) such that x ®pr C = x®YX. If X = x,
we have the real structure of L,. If ¥ # x, we have the canonical real structure of
L,®C =L, ® Ly

Let us consider the case where a semisimple flat bundle (E,V) has the flat real
structure Fr such that £ = Egr ®g C. Let + : E — E denote the conjugate with
respect to Er. Then (E, V) is isomorphic to the following:

Priec™¥o@P (L, oLy) e C™W.

X=X X#X
The real structure of (E, V) is induced from the real structures of L, (¥ = x) and
L, ® C (X # x). For a hermitian metric h of F, the hermitian metric ¢*h is given by
*h(u,v) = h(e(u), (v)). Then the following lemma is clear.

Lemma A.15. — When (E,V) has a real structure, there exists a Corlette-Jost-Zuo
metric of (E,V) which is invariant under the conjugation. The ambiguity of the
metric is a choice of the metrics of the vector spaces C™X).

A.3.2. Pluri-harmonic reduction of the principal bundle associated with
the monodromy group. — Let Gy C GL(E|;) denote the monodromy group
M(E,V,z). We obtain the principal Gp-bundle Pg, with the flat connection. If the
flat bundle (E, V) is semisimple, we have a Corlette-Jost-Zuo metric h of (E, V). Let
U = U(E;, h;) denote the unitary group of the metrized vector space (E|,, h);), and
we put Ko :=GoNU.

Lemma A.16. — G is reductive, and Ko is a compact real form of Gy.

Proof. — The argument was given by Simpson (Lemma 4.4 in [55]) for a different
purpose. We reproduce it here with a minor change for our purpose. We have the
xelrrep(r) Lx ® C™(**X) " The decomposition
is orthogonal with respect to the induced Corlette-Jost-Zuo metric T%%(h). Namely,
T%*(h) is of the form @ ") hy®h(a,b, x), where h, denotes a Corlette-Jost-Zuo

metric of Ly, and h(a,b, x) denotes hermitian metric of cmlabx),

canonical decomposition T**(F) = @

x€lrrep
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For any f € End(E),;), let fT denote the adjoint of f with respect to h|y. For
any ¢ € Go, we have the unique expression g = u - exp(y), where u € U and
y = y'. The decomposition is compatible with tensor products and g-invariant
orthogonal decompositions. It follows that T%bu and T%Py preserves the compo-
nents Ly, @ C™@%X)  Namely, we have the decomposition T%%¢ = (P T%9)
T4y = (@ T%), and Ty = (D T*y),.

Let k be an isometric automorphism of (C"L(“’b”’), h(a,b,x)). Then, (T**g), and
idy, ,, ®k are commutative. Hence, (T%u), and id Ly, @K are commutative, and thus
(T%bu), is induced by the automorphism of Ly, Similarly, (T*y), is induced by
the endomorphism of L,|,. Hence, Ly|, @ H, is preserved by (T%bu), and (T*y),
for any subspace H, C C™@5X) - Since any Go-invariant subspace of T E), is of
the form @ L, ® Hy, we obtain u € GoNU = Ko and y € go C End(E|;), where
go denotes the Lie subalgebra of End(FE),) corresponding to Gp.

Let 7 : GL(E|,) — GL(E|,) be the anti-holomorphic involution such that 7(g) =
(97)~'. We obtain that 7(g) = u - exp(—y) is contained in Go. Namely, 7 gives the
real structure of Gy. Since we have the decomposition g = u - exp(y) for any g € Gy,
K intersects with any connected components of Gy. Let Gg denote the connected
component of Gy containing the unit element. It is easy to see that KoNGY is maximal
compact in G, and hence Ky is maximal compact of Gy. Since Ko N G is the fixed
point set of TGy, we obtain that K{ is a compact real form of GY. Thus Ky is a
compact real form of Gy. Since K is maximal compact, Gy is reductive. O

Let us consider the case where (F,V) has the real structure. We have the real
parts Eg|, C E|, and Gor := Go N GL(ER|.). We take a Corlette-Jost-Zuo metric
of h which is invariant under the conjugation ¢. We put Kog = GorN Ko = GorNU.
The map ¢ induces the real endomorphism of End(E),) given by ¢(f) =10 fou.

Lemma A.17. Ky g is maximal compact in Gy R.

Proof. — We use the notation in the proof of Lemma A.16. Since h, is invariant
under the conjugation ¢, U is stable under ¢, and 7 and ¢ are commutative. Let g
be an element of Gog. We have the decomposition g = u - exp(y) as in the proof
of Lemma A.16, where u denotes an element of Ky and y denotes an element of go
such that y' = y. Since 1(g) = g, we have t(u) - exp(t(y)) = u - exp(y). Since we
have t(u) € «(U) = U and (1(y))" = t(y") = —t(y), we obtain ¢(u) = u and i(y) = y.
Namely u € Kor and y € gor. Then we can show Kog is maximal compact in Gyr,

by an argument similar to the proof of Lemma A.16. O
Proposition A.18. — Assume that (E,V) is semisimple. Then there exists the unique

tame pure imaginary pluri-harmonic reduction Prx, C Pg,. Assume (E,V) has the
flat real structure, moreover. Then, it is induced from the pluri-harmonic reduction

Of PGOR‘
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Proof. Let h be a Corlette-Jost-Zuo metric of (E,V). For any point z € X, let
M(E,V,z) denote the monodromy group at z, and U(E|., h).) denote the unitary
group of E|, with the metric h),. Then the intersection M(E,V,z) N U (K., h.) is
a maximal compact subgroup of M(FE,V,z), due to Lemma A.16. Hence they give
the reduction Pg, C Pg,, which is pluri-harmonic. By using a similar argument and
Lemma A.17, we obtain the compatibility with the real structure, if (F, V) has the
flat real structure. The uniqueness of the pluri-harmonic reduction follows from the
uniqueness result in Lemma A.13. Hence we are done. O

A.3.3. Characterization of the existence of pluri-harmonic reduction. —
Let G be a linear reductive algebraic group over C or R. Let X be a universal
covering of X. The following corollary immediately follows from Proposition A.18.

Corollary A.19. — Let Pg be a flat G-principal bundle over X . Assume that the image
of the induced representation I' — G is Zariski dense in G. Then there exists the
unique tame pure imaginary pluri-harmonic reduction of Pg. Correspondingly, we
obtain the I'-equivariant pluri-harmonic map X—aG /K.

Proposition A.20. — Let Pg be a flat G-bundle on X. The monodromy group Gy is
reductive if and only if there exists a tame pure imaginary pluri-harmonic reduction
P C Pg. If such a reduction exists, the decomposition V = Vi + (6 4+ 07) does
not depend on a choice of a pluri-harmonic reduction Px C Pg, and there is the
corresponding T -equivariant pluri-harmonic map X —aG /K.

Proof. — If a pluri-harmonic reduction exists, the monodromy group is reductive
due to Lemma A.7 and Lemma A.16. Assume G is reductive. Let Ky be a maximal
compact group of Go. Then we have the unique tame pure imaginary pluri-harmonic
reduction Pk, C Pg,. We take K such as K NGy = Ky. Then the pluri-harmonic
reduction Px C Pg is induced, and thus the first claim is proved. The second claim
is clear. O
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