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K O B A Y A S H I - H I T C H I N C O R R E S P O N D E N C E F O R 
T A M E H A R M O N I C B U N D L E S 

A N D A N A P P L I C A T I O N 

Takuro Mochizuki 

Abstract. — We establish the correspondence between tame harmonic bundles and 
fiL-poly stable parabolic Higgs bundles with trivial characteristic numbers. We also 
show the Bogomolov-Gieseker type inequality for /x^-stable parabolic Higgs bundles. 

Then we show that any local system on a smooth quasiprojective variety can be 
deformed to a variation of polarized Hodge structure. As a consequence, we can con­
clude that some kind of discrete groups cannot be a split quotient of the fundamental 
group of a smooth quasiprojective variety. 
Résumé (La correspondance de Kobayashi-Hitchin pour les fibres harmoniques modé­
rés et une application) 

Nous établissons la correspondance de Kobayashi-Hitchin entre les fibres harmo­
niques modérés et fibres de Higgs paraboliques //^-polystables dont les deux premiers 
nombres de Chern sont nuls. Ensuite, nous montrons que tout système local sur une 
variété quasi-projective lisse peut être déformé vers une variation de structure de 
Hodge polarisée. En conséquence, nous pouvons conclure que certains groupes dis­
crets ne peuvent pas apparaître comme quotient scindé d'un groupe fondamental 
d'une variété quasi-projective lisse. 
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CHAPTER 1 

I N T R O D U C T I O N 

1.1. Background 
1.1.1. Kobayashi-Hitchin correspondence. — We briefly recall some aspects 
of the so-called Kobayashi-Hitchin correspondence. (See the introduction of [38] for 
more detail.) In 1960's, M. S. Narasimhan and C. S. Seshadri proved the correspon­
dence between irreducible flat unitary bundles and stable vector bundles with degree 
0, on a compact Riemann surface ([47]). Clearly, it was desired to extend their result 
to the higher dimensional case and the non-flat case. 

In early 1980's, S. Kobayashi introduced the Hermitian-Einstein condition for holo-
morphic bundles on Kahler manifolds ([30], [31]). He and M. Liibke ([37]) proved that 
the existence of Hermitian-Einstein metric implies the polystability of the underlying 
holomorphic bundle. S. K. Donaldson pioneered the way for the inverse problem ([12] 
and [13]). He attributed the problem to Kobayashi and N. Hit chin. The definitive 
result was given by K. Uhlenbeck, S. T. Yau and Donaldson ([64] and [14]). We also 
remark that V. Mehta and A. Ramanathan ([40]) proved the correspondence in the 
case where the Chern class is trivial, i.e., the correspondence of flat unitary bundles 
and stable vector bundles with trivial Chern classes. 

On the other hand, it was quite fruitful to consider the correspondences for vec­
tor bundles with some additional structures like Higgs fields, which was initiated by 
Hitchin ([22]). He studied the Higgs bundles on a compact Riemann surface and the 
moduli spaces. His work has influenced various fields of mathematics. It involves a lot 
of subjects and ideas, and one of his results is the correspondence of the stability and 
the existence of Hermitian-Einstein metrics for Higgs bundles on a compact Riemann 
surface. 

1.1.2. A part of C. Simpson's work. — C. Simpson studied the Higgs bundles 
over higher dimensional complex manifolds, influenced by the work of Hitchin, but 
motivated by his own subject: Variation of Polarized Hodge Structure. He made great 
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innovations in various areas of algebraic geometry. Here, we recall just a part of his 
huge work. 

Let X be a smooth irreducible projective variety over the complex number field, 
and E be an algebraic vector bundle on X. Let (E,0) be a Higgs bundle, i.e., 0 is 
a holomorphic section of End(^) ® Qx satisfying 02 = 0. The "stability" and the 
"Hermitian-Einstein metric" are naturally defined for Higgs bundles, and Simpson 
proved that there exists a Hermitian-Einstein metric of (E, 6) if and only if (£", 0) is 
polystable. In the special case where the Chern class of the vector bundle is trivial, 
the Hermitian-Einstein metric gives the pluri-harmonic metric. Together with the 
result of K. Corlette who is also a great progenitor of the study of harmonic bundles 
([6]), Simpson obtained the Trinity on a smooth projective variety: 

(1) 
Algebraic Geometry 
polystable Higgs bundle 

(trivial Chern class) 
Differential Geometry 

harmonic bundle 
Topology 
semisimple 

local system 

If (E, 6) is a stable Higgs bundle, then (E,a-6) is also a stable Higgs bundle. Hence 
we obtain the family of stable Higgs bundles {(E, a · 0) | a G C*}. Correspondingly, 
we obtain the family of flat bundles { L a | a G C*}. Simpson showed that we obtain 
the variation of polarized Hodge structure as a limit lima_>o L a . In particular, it can 
be concluded that any flat bundle can be deformed to a variation of polarized Hodge 
structure. As one of the applications, he obtained the following remarkable result 
([55]): 

Theorem 1.1 (Simpson). — Let T be a rigid discrete subgroup of a real algebraic group 
which is not of Hodge type. Then V cannot be a split quotient of the fundamental 
group of a smooth irreducible projective variety. 

There are classical known results on the rigidity of subgroups of Lie groups. The 
examples of rigid discrete subgroups can be found in 4.7.1-4.7.4 in the 53 page of 
[55]. The classification of real algebraic group of Hodge type was done by Simpson. 
The examples of real algebraic group which is not of Hodge type can be found in the 
50 page of [55]. As a corollary, he obtained the following. 

Corollary 1.2. — SX(n, Z) (n > 3) cannot be a split quotient of the fundamental group 
of a smooth irreducible projective variety. 

1.2. Main Purpose 

1.2.1. Kobayashi-Hitchin correspondence for parabolic Higgs bundles 
It is an important and challenging problem to generalize the correspondence (1) 

to the quasiprojective case from the projective case. As for the correspondence of 
harmonic bundles and semisimple local systems, an excellent result was obtained by 
J. Jost and K. Zuo [29], which says there exists a tame pluri-harmonic metric on 

ASTÉRISQUE 309 



1.2. MAIN PURPOSE 3 

any semisimple local system over a quasiprojective variety. The metric is called the 
Corlette-Jost-Zuo metric. 

In this paper, we restrict ourselves to the correspondence between Higgs bundles 
and harmonic bundles on a quasiprojective variety Y. More precisely, we should 
consider not Higgs bundles on Y but parabolic Higgs bundles on (AT, Z}), where (X, D) 
is a pair of a smooth irreducible projective variety and a normal crossing divisor such 
that Y — X — D. Such a generalization has been studied by several people. In the 
non-Higgs case, J. Li [35] and B. Steer-A. Wren [62] established the correspondence. 
In the Higgs case, Simpson established the correspondence in the one dimensional 
case [52], and O. Biquard established it in the case where D is smooth [5]. 

Remark 1.3. — Their results also include the correspondence in the case where the 
characteristic numbers are non-trivial. 

For applications, however, it is desired that the correspondence for parabolic Higgs 
bundles should be given in the case where D is not necessarily smooth, which we 
would like to discuss in this paper. 

We explain our result more precisely. Let X be a smooth irreducible projective 
variety over the complex number field provided an ample line bundle L . Let D be a 
simple normal crossing divisor of X. The main purpose of this paper is to establish 
the correspondence between tame harmonic bundles and //^-parabolic Higgs bundles 
whose characteristic numbers vanish. (See Chapter 3 for the meaning of the words.) 

Theorem 1.4 (Proposition 5.1-5.3, and Theorem 9.4). — Let (E*,6) be a regular fil­
tered Higgs bundle on (X,D), and we put E := E\X_D. It is HL-polystable with 
trivial characteristic numbers, if and only if there exists a pluri-harmonic metric h of 
(E,0) on X — D which is adapted to the parabolic structure. Such a metric is unique 
up to an obvious ambiguity. 

Remark 1.5. — Regular Higgs bundles and parabolic Higgs bundles are equivalent. 
See Chapter 3. 

Remark 1.6. — More precisely on the existence result, we can show the existence of 
the adapted pluri-harmonic metric for //^-stable reflexive saturated regular filtered 
Higgs sheaf on (X,D) with trivial characteristic numbers. (See Sections 3.1-3.2 for 
the definition.) Then, due to our previous result in [44], it is a regular filtered Higgs 
bundle on (X, D), in fact. 

We are mainly interested in the /i^-stable parabolic Higgs bundles whose charac­
teristic numbers vanish. But we also obtain the following theorem on more general 
/^-stable parabolic Higgs bundles. 

Theorem 1.7 (Theorem 6.5). — Let X be a smooth irreducible projective variety of an 
arbitrary dimension, and D be a simple normal crossing divisor. Let L be an ample 
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4 CHAPTER 1. INTRODUCTION 

line bundle on X. Let (E*,0) be a µL-stable regular filtered Higgs bundle in codimen-
sion two on (A", D). Then the following inequality holds: 

x 
par-ch2 L{E*) 

JxP a r - c ? A E * ) 
2 rankE 

0. 

Such an inequality is called Bogomolov-Gieseker inequality. 

1.2.2. Strategy for the proof of Bogomolov-Gieseker inequality. — We 
would like to explain our strategy for the proof of the main theorems. First we 
describe an outline for Bogomolov-Gieseker inequality (Theorem 1.7), which is much 
easier. We have only to consider the case dimX = 2. Essentially, it consists of the 
following two parts. 

(1) The correspondence in the graded semisimple case : 
We establish the Kobayashi-Hitchin correspondence for graded semisimple 
parabolic Higgs bundles. In particular, we obtain the Bogomolov-Gieseker 
inequality in this case. 

(2) Perturbation of the parabolic structure and taking the l imit : 
Let ( C E, F, 0) be a given c-parabolic //^-stable Higgs bundle, which is not neces­
sarily graded semisimple. For any small positive number e, we take a perturba­
tion F(E) of F such that (CE, F^e\0) is a graded semisimple /x^-stable parabolic 
Higgs bundle. Then the Bogomolov-Gieseker inequality holds for (cE,F^e\0). 
By taking a limit for e —> 0, we obtain the Bogomolov-Gieseker inequality for 
the given (cE,F,0). 

Let us describe for more detail. 
(1) In [55], Simpson constructed a Hermitian-Einstein metric for Higgs bundle by 
the following process: 

(i) : Take an appropriate initial metric. 
(ii) : Deform it along the heat equation. 
(iii) : Take a limit, and then we obtain the Hermitian-Einstein metric. 

If the base space is compact, the steps (ii) and (iii) are the main issues, and the 
step (i) is trivial. Actually, Simpson also discussed the case where the base Kahler 
manifold is non-compact, and he showed the existence of a Hermitian-Einstein metric 
if we can take an initial metric whose curvatures satisfy some finiteness condition. 
(See Section 2.2 for more precise statements.) So, for a /x^-stable c-parabolic Higgs 
bundle (CE, F, 0) on (X, D), where X is a smooth projective surface and D is a simple 
normal crossing divisor, ideally, we would like to take an initial metric of E := cE\x_£> 
adapted to the parabolic structure. But, it is rather difficult, and the author is not 
sure whether such a good metric can always be taken for any parabolic Higgs bundles. 
It seems one of the main obstacles to establish the Kobayashi-Hitchin correspondence 
for parabolic Higgs bundles. 
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1.2. MAIN PURPOSE 5 

However, we can easily take such a good initial metric, if we assume the vanishing of 
the nilpotent part of the residues of the Higgs field on the graduation of the parabolic 
filtration. Such a parabolic Higgs bundle will be called graded semisimple in this 
paper. We first establish the correspondence in this easy case. (Proposition 6.1). 
(2) Let (CE, .F, 0) be a ̂ L-stable c-parabolic Higgs bundle on (X, D), where dimX = 
2. We take a perturbation of F(E) as in Section 3.3. In particular, {cE,F^e\6) is a 
//^-stable graded semisimple c-parabolic Higgs bundle, and the following holds: 

pa,i-c1(cE, F) par - C l ( c £ ,F ( e ) ) , 

x 
par-ch 2( c^, F) 

x 
par-ch 2 ( c £,F ( e ) ) C-e. 

Then we obtain the Bogomolov-Gieseker inequality for (CE^F^e\6) by using the 
Hermitian-Einstein metric obtained in (1). By taking the limit e —> 0, we obtain 
the desired inequality for the given ( c £ , F, 6). 

1.2.3. Strategy for the proof of Kobayashi-Hitchin correspondence. — Let 
X be a smooth projective surface, and D be a simple normal crossing divisor. Let L 
be an ample line bundle on X, and uo be the Kahler form representing ci(L). Roughly 
speaking, the correspondence on (X,D) as in Theorem 1.4 can be divided into the 
following two parts: 

— For a given tame harmonic bundle (i?, <9#, /i) on X - D, we obtain the \±E-
polystable parabolic Higgs bundle ( C E , JF, 0) with the trivial characteristic num­
bers. 

— On the converse, we obtain a pluri-harmonic metric of (E, OE,Q) on X — D for 
such (cE,F,0). 

As for the first issue, most problem can be reduced to the one dimensional case, 
which was established by Simpson [52]. However, we have to show the vanishing of 
the characteristic numbers, for which our study of the asymptotic behaviour of tame 
harmonic bundles ([44]) is useful. 

As for the second issue, we use the perturbation method, again. Namely, let 
(cE,F,0) be a /instable c-parabolic Higgs bundle on (X,D). Take a perturbation 
F^ of the filtration F for a small positive number e. We also take metrics appropriate 
oje of X — D such that lim e^o &e = u, and then we obtain Hermitian-Einstein metrics 
he for the Higgs bundle (E, 8E,0) on X — D with respect to uoei which is adapted to 
the parabolic structure F^e\ Ideally, we would like to consider the limit lime_+o 
and we expect that the limit gives the Hermitian-Einstein metric h for (E, 8E,0) with 
respect to which is adapted to the given filtration F. Perhaps, it may be correct, 
but it does not seem easy to show, in general. 

We restrict ourselves to the simpler case where the characteristic numbers of 
(cE1, F, 0) are trivial. Under this assumption, we show such a convergence. More 
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6 CHAPTER 1. INTRODUCTION 

precisely, we show that there is a subsequence {el} such that {(E, 8E, 0, h€i} con­
verges to a harmonic bundle (E', ', h!) on X - D, and we show that the given 
(CE, F, 6) is isomorphic to the parabolic Higgs bundles obtained from (Ef, 8E' , h'). 

Remark 1.8. — We obtained a similar correspondence for A-connections in [46]. Al­
though the essential ideas are same, we need some additional argument in the case of 
A-connections. 

1.3. Additional Results 

1.3.1. Torus action and the deformation of a (7-flat bundle. — Once The­
orem 1.4 is established, we can use some of the arguments for the applications given 
in the projective case. For example, we can deform any flat bundle to the one which 
comes from a variation of polarized Hodge structure. We follow the well known frame­
work given by Simpson with a minor modification. We briefly recall it, and we will 
mention the problem that we have to care about in the process. 

Let X be a smooth irreducible projective variety, and D be a simple normal crossing 
divisor with the irreducible decomposition D = \ J t e S D{. Let x be a point of X — D. 
Let r denote the fundamental group 7T\(X — Any representation of T can be 
deformed to a semisimple representation, and hence we start with a semisimple one. 

Let (E, V) be a flat bundle over X — D such that the induced representation 
p : r —> GL(E\X) is semisimple. Recall we can take a Corlette-Jost-Zuo metric of 
(E, V), as mentioned in Subsection 1.2.1. Hence we obtain a tame pure imaginary 
harmonic bundle (E,dE,@, h) on X — D, and the induced /iL-polystable c-parabolic 
Higgs bundle (CE, F,9) on (A, D), where c denotes any element of Rs. We have the 
canonical decomposition (CE,F,6) = @^(ci^, Fi, 6i)® m*, where each (cEi, Fi,0i) is 
/iL-stable. 

Let us consider the family of c-parabolic Higgs bundles (cE,F,t · 6) for t £ C*, 
which are //L-polystable. Due to the standard Langton's trick [33], we have the 
semistable c-parabolic Higgs sheaves (cEi,Fi,6i) which are limits of (cEl,Fi,t · 6j) 
in t —> 0. On the other hand, we can take a pluri-harmonic metric ht of the Higgs 
bundle {E1 dE->t-0) on X — D for each t, which is adapted to the parabolic structure. 
(Theorem 1.4). Then we obtain the family of flat bundles (E, Dj) , and the associated 
family of the representations {pt : T —> GL(E\X) 11 G C*}. Since (E, 8E, t · 0, ht) is 
tame pure imaginary in the case t G i^>o, the representations pt are semisimple. The 
family {pt 11 G C*} should be continuous with respect to t, and the limit lini£_>o Pt 
should exist, ideally. We formulate the continuity of pt with respect to t and the 
convergence of pt in t —» 0, as follows. Let V be a C-vector space such that rank(F) = 
rank(E'). Let hy denote the metric of V, and let U(hy) denote the unitary group for 
hy. We put i?(T, V) \— Hom(T, GL(V)). By the conjugate, U(hy) acts on the space 
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1.3. ADDITIONAL RESULTS 7 

R(T, V). Let M ( r , V, hy) denote the usual quotient space. Let 7r G L (y) : R(T, V) —> 
M(T,V,hy) denote the projection. 

By taking any isometry (E\x,ht\x) (V,hy), we obtain the representation p't : 
T —> GL(V). We put V(t) := 7r G L ( y ) (p { ) , and we obtain the map V : C* —> 
M ( r , V, hy). It is well defined. Then, we obtain the following partial result. 

Proposition 1.9 (Theorem 10.1, Lemma 10.2, Proposition 10.3) 
1. The induced map V is continuous. 
2. V({0 < t < 1}) is relatively compact in M(T,V,hy). 
3. If each (cEi, Fi,6i) is stable, then the limit \imt^o V(t) exists, and the limit flat 

bundle underlies the variation of polarized Hodge structure. As a result, we can 
deform any flat bundle to a variation of polarized Hodge structure. 

We would like to mention the point which we will care about. For simplicity, we 
assume (CE, F, 6) is /instable, and ( C E, F,t-0) converges to the //^-stable parabolic 
Higgs bundle (cE,F,0). Let {U} denote a sequence converging to 0. By taking 
an appropriate subsequence, we may assume that the sequence {(E, 8E, hti,ti • Oi)} 
converges to a tame harmonic bundle (Ef, 3E> ,h!' ,6') weakly in Lv

2 locally over X — D, 
which is due to Uhlenbeck's compactness theorem and the estimate for the Higgs 
fields. Then we obtain the induced parabolic Higgs bundle (CE'',F',6'). We would 
like to show that (CE, i 7 " , 6) and (cEf', F\ 0') are isomorphic. Once we have known the 
existence of a non-trivial map G : CE' —> C E which is compatible with the parabolic 
structure and the Higgs field, it is isomorphic due to the stability of (CE, F, 0). Hence 
the existence of such G is the main issue for this argument. We remark that the 
problem is rather obvious if D is empty. 

Remark 1.10. — Even if (cEi, Fi,6i) are not //^-stable, the conclusion in the third 
claim of Proposition 1.9 should be true. In fact, Simpson gave a detailed argument 
to show it, in the case where D is empty ([56], [57]). More strongly, he obtained the 
homeomorphism of the coarse moduli spaces of semistable flat bundles and semistable 
Higgs bundles. 

In this paper, we do not discuss the moduli spaces, and hence we omit to discuss the 
general case. Instead, we use an elementary inductive argument on the rank of local 
systems, which is sufficient to obtain a deformation to a variation of polarized Hodge 
structure. However, it would be desirable to arrive at the thorough understanding as 
Simpson's work, in future. 

Remark 1.11. — For an application, we have to care about the relation between the 
deformation and the monodromy groups. We will discuss only a rough relation in 
Section 10.2. More precise relation will be studied elsewhere. 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2006 



8 CHAPTER 1. INTRODUCTION 

Once we can deform any local system on a smooth quasiprojective variety to a 
variation of polarized Hodge structure, preserving some compatibility with the mon-
odromy group, we obtain the following corollary. It is a natural generalization of 
Theorem 1.1. 

Corollary 1.12. — Let T be a rigid discrete subgroup of a real algebraic group which 
is not of Hodge type. Then T cannot be a split quotient of the fundamental groups of 
any smooth irreducible quasiprojective variety. 

Remark 1.13. — Such a deformation of flat bundles on a quasiprojective variety was 
also discussed in [28] in a different way. 

1.3.2. Tame pure imaginary pluri-harmonic reduction (Appendix). — Let 
G be a linear algebraic group defined over C or R. We will discuss a characterization of 
reductive representations 7Ti(X — D,x) —> G via the existence of tame pure imaginary 
pluri-harmonic reduction. Here a representation is called reductive, if the Zariski 
closure of the image is reductive. Such a kind of characterization was given by Jost 
and Zuo ([29]) directly for G, although their definition of reductivity looks different 
from ours. It is our purpose to explain that the problem can be reduced to the case 
G = GL(n) by Tannakian consideration. Some results are used in Chapter 10. 

1.4. Outline 

Chapter 2 is an elementary preparation for the discussion in the later chapters. 
The reader can skip this chapter. Chapter 3 is preparation about parabolic Higgs 
bundles. We discuss the perturbation of a given filtration in Section 3.3, which is one 
of the keys in this paper. 

In Chapter 4, an ordinary metric for parabolic Higgs bundle is given. We follow 
the construction in [35] and [36]. Our purpose is to establish the relation between the 
parabolic characteristic numbers and some integrals, in the case of graded semisimple 
parabolic Higgs bundles. 

In Chapter 5, we show the fundamental properties of the parabolic Higgs bundles 
obtained from tame harmonic bundles. Namely, we show the stability and the 
vanishing of the characteristic numbers. In Chapter 6, we show the preliminary 
Kobayashi-Hitchin correspondence for graded semisimple parabolic Higgs bundles. 
Bogomolov-Gieseker inequality can be obtained as an easy corollary of this preliminary 
correspondence and the perturbation argument of the parabolic structure. 

In Chapter 7, we construct a frame around the origin for a tame harmonic bundle 
on a punctured disc. It is a technical preparation to discuss the convergence of a 
sequence of tame harmonic bundles. Such a convergence is shown in Chapter 8. We 
also give a preparation for the existence theorem of pluri-harmonic metric, which is 
completed in Chapter 9. 
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CHAPTER 2 

P R E L I M I N A R Y 

This chapter is a preparation for the later discussions. We will often use the 
notation given in Sections 2.1-2.2, especially. 

2.1. Notation and Words 

We use the notation Z, Q, i£ and C to denote the set of integers, rational numbers, 
real numbers and complex numbers, respectively. For a real number a, we put R>a '= 
{x G R | x > a}. We use the notation Z > a , Z> a , Q > a , etc. in a similar meaning. 

For real numbers a, 6, we put as follows: 

[a, 6] := {x G R\ a < x < b} [a,b[: = {x G R\a < x < b} 
]a, b] := {x G R \a < x < b} ]a, b[:= {x G R \ a < x < b} 

The notation Sij will be Kronecker's delta, i.e., Sij = 1 (i = j) and 6ij = 0 (¿ ^ ;'). 
A normal crossing divisor D of a complex manifold X will be called simple, if 

each irreducible component is non-singular. Let D = U i e s D i be the irreducible 
decomposition. For elements a G RS, a¿ will denote the z-th component of a (i G 5). 
The notation aE is often used to denote a vector bundle on A, and (fi) we often put 

E := aE/X-D. 
Let 1" be a manifold, E be a vector bundle on F, and be a sequence of sections 

of E. We say (fi) converges to / weakly in Ü¡ locally on 7, if the restriction {/Í\K} 
converges to f\K weakly in L^(K) for any compact subset K cY. 

Let {(EW,a ( < ) ,0W)} be a sequence of Higgs bundles on Y. We say that the 
sequence ((E(i),O(i), 0(i))) converges to (E^°°\d ,6^°°)) weakly in L\ (resp. in 
C1) locally on F, if there exist locally L^-isomorphisms (resp. C1 -isomorphisms) 
$W : E^ —> E^ on Y such that the sequences {^(dM)} and {^(9^)} 
weakly converge to O00 and 000 respectively in L1 (resp. C°) locally on F. 
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Let E be a vector bundle on Y with a hermitian metric h. For an operator F G 
End(E) 0 Qf;9, we use the notation F]

h G End(E) ® to denote the adjoint of F 
with respect to h. The notation F^ is often used, if there are no risk of confusion. 

Let (Si,ifi) (i = 1, 2,. . . , oo) be a pair of discrete subsets Si C R and functions 
(fi : Si —> Z>o- We say that {(Si.cpi) | i = 1, 2,...} converges to (SQO, <£oo)? ^ there 
exists io for any e > 0 such that (i) any b G Si (i > zo) is contained in ]a — e, a + e[ for 
some a G S^, (ii) ]C 6 e ^ 5 | a _ 6 | < e = ^ooO) is satisfied. 

2.2. Review of some Results of Simpson on Kobayashi-Hitchin Correspon­
dence 

2.2.1. Analytic stability and Hermitian-Einstein metric. — We recall some 
results in [51]. Let Y be an n-dimensional connected complex manifold which is not 
necessarily compact. Let a; be a Kahler form of Y. The adjoint for the multiplication 
of UJ is denoted by A w , or simply by A if there are no confusion. The Laplacian for UJ 
is denoted by A w . 

Condition 2.1 
1. The volume of Y with respect to UJ is finite. 
2. There exists an exhaustion function <j) on Y such that 0 sf-ídd<j) C · UJ for 

some positive constant C. 
3. There exists an increasing function R>o R>o such that a(0) = 0 and 

a(x) — x for x > 1, and the following holds: 
— Let / be a positive bounded function on Y such that A w / < B for some 

positive number B. Then sup y |/| < C(B) · a(^jY f^j for some positive 
constant C(B) depending on B. Moreover A^f < 0 implies A w / = 0. 

Let (E,8E,0) be a Higgs bundle on Y. Let h be a hermitian metric of E. Then 
we have the (1, 0)-operator 8E determined by dh(u,v) — h[pEU^v) + h{u,dEv). We 
also have the adjoint If we emphasize the dependence on / i , we use the notation 
8E,H and 0\. We obtain the connections Dh := 3E + &E and D 1 := Dh + 6 + 0̂ . 
The curvatures of 1}^ and B 1 are denoted by R(h) and F(/i) respectively. When we 
emphasize the dependence on they are denoted by R(dE,h) and F{dE,h). We 
also use i?(F, /i) and F ( E , h): if we emphasize the bundle. 

Condition 2.2. — F(/i) is bounded with respect to h and UJ. 

When Condition 2.2 is satisfied, we put as follows: 

degw(£,/i) - 1 
2TT Y 

tr(F(ft)) -c^1-1 - 1 
2TT 

trA(F(/i)) ujn 

n 
Note tiF(h) = trR(h). Recall that a subsheaf V C F is called saturated if the 
quotient F / V is torsion-free. For any saturated Higgs subsheaf V C E , there is a 
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Zariski closed subset Z of codimension two such that V\y-z gives a subbundle of 
E\Y~ZI o n which the metric hy of V\y_z is induced. Let ny denote the orthogonal 
projection of E\Y_Z onto V\y-z- Let try denote the trace for endomorphisms of V. 

Proposition 2.3 ([51] Lemma 3.2). — When the conditions 2.1 and 2.2 are satisfied, 
the intégral 

deg,, ( V, M - 1 
2TT 

tly(F{hy)) - U J 7 1 ' 1 

is well defined, and it takes the value in RU { —oo}. The Chern-Weil formula holds 
as follows, for some positive number C: 

deg,, ( V, M - 1 
2TT y 

tr ny o AwF(/¿) 
µ 

n 
C 

y 
E " TTy 2 

h 
dvol^ . 

ü/ere we put D" — ÔE + 6*. In particular, if the value deg^(V, /iy) is finite, ÔE^y) 
and [0, 7Ty] are L 2 . 

For any VA C E , we put / i^(V, hy) := degU;(V, fty)/ rank V . 

Definition 2.4 ([51]). — A metrized Higgs bundle ( E , 8 E J 0, h) is called analytic stable, 
if the inequalities nu(V,hy) < ^(E.h) hold for any non-trivial Higgs saturated 
subsheaves (V.Oy) C (E,9). 

The following important theorem is crucial for our argument. 

Proposition 2.5 (Simpson). — Let (Y,w) be a Kahler manifold satisfying Condi­
tion 2.1, and let (E,dE,@,ho) be a metrized Higgs bundle satisfying Condition 2.2. 
If it is analytic stable, then there exists a hermitian metric h = ho · s satisfying the 
following conditions: 

— h and ho are mutually bounded. 
— det(h) = det(/io). In particular, we have tr F(h) = trF(ho). 
— D"(s) is L 2 with respect to ho and u. 
— It satisfies the Hermitian-Einstein condition A^F( / i ) ± = 0 ; where F(h)1- de­

notes the trace free part of F(h). 
— The following equalities hold: 

(2) 
Y 

tr F(h)2 ωη-2 

Y 
tr F(ho)2 wn-2, 

(3) 
Y 

tr F(h)±2 ujn~2 

Y 
tr F(ho)2 ujn~2. 

Proof. — Condition 2.2 implies AC JF(/i) is bounded. Applying Theorem 1 in [51], we 
obtain the hermitian metric h satisfying the first four conditions. Due to Proposi­
tion 3.5 in [51], we obtain the inequality J y tr(F( / i ) 2 ) · ujn~2 < J y t r (F ( / i 0 ) 2 ) -ujn'2. 
Since we have assumed the boundedness of F(ho): we also obtain J Y tr(F( / i ) 2 ) -uon~2 > 
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j Y tr(F(/io) 2) · uJn~2 due to Lemma 7.4 in [51], as mentioned in the remark just be­
fore the lemma. Therefore, we obtain (2). Since we have trF(/io) = trF( / i ) , we also 
obtain (3). 

2.2.2. Uniqueness. — The following proposition can be proved by the methods 
in [51]. 

Proposition 2.6. — Let (Y,UJ) be a Kahler manifold satisfying Condition 2.1, and 
{E,8E,0) be a Higgs bundle on Y. Let hi (i = 1,2) be hermitian metrics of E 
such that K^FiJii) = 0. We assume that h\ and h2 are mutually bounded. Then the 
following holds: 

— We have the decomposition of Higgs bundles (E,6) (Εα,θα) which is or-
thogonal with respect to both of hi. 

— The restrictions of hi to E A are denoted by h%^a. Then there exist positive num­
bers ba such that h\^a = ba · h2^a-

Proof. — We take the endomorphism s\ determined by h2 = h\ · s\. Then we have 
the following inequality due to Lemma 3.1 (d) in [51] on X — D\ 

Au logtr(si) A„F(fci) A„F(h 2) 0. 

Here we have used A^F(/^) = 0. Then we obtain tr(si) < 0. Since the function 
tr(si) is bounded on Y, we obtain the harmonicity A w tr(si) = 0 due to Condition 2.1. 

We put D" = d + 0 and D' := OEJH + 0^h , where 6^h denotes the adjoint of 6 with 
respect to the metric h\. Then we also have the following equality: 

0 F(h2) F fa) D"{s-lD'Sl) -s^1D"s1 · s'1 · Dfsi s^D"Dr
Sl. 

Hence we obtain D"D's\ = D"s\ • sx
 1 · D's\. As a result, we obtain the following 

equality: 

S;1/2D"SI 
2 
ht 

dvol^ - 1 Au tr(D"D'si) dvoL A w tr(si) dvolu 0. 

Hence we obtain D" s\ = 0, i.e., ds\ — [0, si\ = 0. Since si is self-adjoint with respect 
to hi, we obtain the flatness (<9 + OE^H^SI = 0. Hence we obtain the decomposition 
E = Q)AESEA such that sa = 0 ba · id# a for some positive constants ba. Let 7iEa 

denote the orthogonal projection onto E A . Then we have d7TEa = 0. Hence the 
decomposition E = © A E 5 EA is holomorphic. It is also compatible with the Higgs 
field. Hence we obtain the decomposition as the Higgs bundles. Then the claim of 
Proposition 2.6 is clear. 

Remark2.7. — We have only to impose AuF(hi) = KuF{h2) instead of A u ; F(/i 2 ) = 0, 
which can be shown by a minor refinement of the argument. 
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2.2.3. The one dimensional case. — In the one dimensional case, Simpson es­
tablished the Kobayashi-Hitchin correspondence for parabolic Higgs bundle. Here we 
recall only the special case. (See Chapter 3 for some definitions.) 

Proposition 2.8 (Simpson). — Let X be a smooth irreducible projective curve, and D 
be a simple divisor of X. Let (E*,6) be a filtered regular Higgs bundle on (X,D). 
We put E — C E \ X _ D . The following conditions are equivalent: 

— (E*,0) is poly-stable with par-deg(.E*) = 0. 
— There exists a harmonic metric h of (E,6), which is adapted to the parabolic 

structure of E*. 

Moreover, such a metric is unique up to obvious ambiguity. Namely, let hi (i = 1,2) 
be two harmonic metrics. Then we have the decomposition of Higgs bundles (E, 6) = 
®(Ea,0a) satisfying the following: 

— The decomposition is orthogonal with respect to both of hi. 
— The restrictions of hi to E A are denoted by h^a. Then there exist positive num­

bers ba such that h\ia = ba · /i2,a-

Proof — See [52]. We give only a remark on the uniqueness. Let (E^OE^O) be 
a Higgs bundle on X — D, and hi (i = 1,2) be harmonic metrics on it. Assume 
that the induced prolongments CE(hi) are isomorphic. (See Section 3.5 for prolong-
ment.) Recall the norm estimate for tame harmonic bundles in the one dimensional 
case ([52]), which says that the harmonic metrics are determined up to boundedness 
by the parabolic filtration and the weight filtration. Hence we obtain the mutually 
boundedness of h\ and h^. Then the uniqueness follows from Proposition 2.6. 

2.3. Weitzenbôck Formula 

Let (Y, UJ) be a Kahler manifold. Let h be a Hermitian-Einstein metric for a Higgs 
bundle (E, <9#, #) on F. More strongly, we assume A w F(/i ) = 0. The following lemma 
is a minor modification of Weitzenbôck formula for harmonic bundles by Simpson 
([52]). 

Lemma 2.9. — Let s be any holomorphic section of E such that 6s = 0. Then we 
have A w log \ s\\ < 0, where A w denotes the Laplacian for UJ. 

Proof. — We have dd\s\\ d(s,dEs) (dEs, dEs) (s,dEdEs) {ÔES, dEs) 
(s,R(h)s). Then we obtain the following: 

99log H 2 , dd\s\2 

\s\2 

d\s\2-d\s\2 

\s\4 

(s,R(h)s) 
M 2 

(dEs, dEs) 
M 2 

d|s|2-<9|s|2 

N 4 
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We have R(h) = -(0+0 + 001") + F{h)^l^\ where F{h)^^ denotes the (1, l)-part of 
F(h). Hence we have the following: 

(4) Aw(s,ß(ft)s) Aw s, -θθ] - θ]θ s Au; s,F(h)WS 

-Aw(Os, Os) K{0s,6s) Aw (s,F(h)(1,1)s) -Aw(é» ts, eU). 

Here we have used A a ;F(/i) = A a ;F(ft)( 1 ' 1) = 0. Therefore we obtain the following: 

-IK s, R(h)s -1Aw(0s, 0s) - (0s)p) h 

On the other hand, we also have the following: 

-1A W 

(ös, ös) 
|s|2 

ö|s|2ö|s|2 

|s|4 
0. 

Hence we obtain Aw log |s|2 0. 

2.4. A Priori Estimate of Higgs Fields 

2.4.1. On a disc. — We put X(T) := [z G C \ \z\ < T) for any positive number 
T. In the case T = 1, A ( l ) is denoted by X. We will use the usual Euclidean metric 
g = dz • dz and the induced measure dvol^. The corresponding Kahler form cu is 
given by \f^\dz A dz/2. Let A" denote the Laplacian —y^lA^dd = —2dzdz. By 
the standard theory of Dirichlet problem, there exists a constant C such that the 
following holds: 

— We have the solution ip of the equation A"ijj — K such that \ip(P)\ < C • ||/̂ ||L2 

for any L2-function K and for any P G I . 
Let (E,dE,0) be a Higgs bundle on X with a hermitian metric h. We have the 

expression 0 = f · dz. We would like to estimate of the norm |/| by the eigenvalues 
of g and the L 2-norm ||F(/i)||L2 := J x \F(h)\\g · dvol^. 

Proposition 2.10. — Let t be any positive number such that t < 1. There exist con­
stants C and C such that the following inequality holds on X(t): 

\f\l < c · e^c/\\F(h)\\L\ 

The constant Cf is as above. The constant C depends only on t, the rank of E and 
the eigenvalues of f. 

Proof. — Let us begin with the following lemma, which is just a minor modification 
of the fundamental inequality in the theory of harmonic bundles. 

Lemma 2.11. — We have the inequality: 

A"log|/| 2 
[/,/ fl 2 

h 
\f\l 

-5|F(/i)|h,9. 
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Proof. — By a general formula, we have the following inequality: 

- l A ^ l o g | / | 2 -1A W 

'/, [R(h),f] h 
\f\l 

We obtain the desired inequality from R(h) F(h)-[9,tf] F(h)-[f,p]-dz-dz. 

Let us take a function A satisfying A"A = 5\F(h)\h and \A\ < 5C'\\F(h)\\L2. Then 
we obtain the following: 

A"( log |/|2-^) A"Iog(|/|^.e-^) if,ñ 2 
h 

f\l 
For any Q G X, let ar(Q), . . . , arank(£)(Q) denote the eigenvalues of f\Q. We 

put v(Q) := Y J ^ { E ) \az(Q)\2 and /x(Q) := |/,Q|2 - v(Q). It can be elementarily 
shown that there exists a constant C\ which depends only on the rank of E, such that 
C\ · / i 2 < |[/, P]\2

H- Hence, the following inequality holds: 

A " log(e~A · \ f\l) - C i M 2 

\f\l 
We also have a constant C2 which depends only on the eigenvalues of / , such that 
v < C2 holds. 

Let T be a number such that 0 < T < 1, and 0 T : X(T) —> R is given by the 
following: 

<j)T(z) 
AT2 

T 2 - \z\2 2 
Then we have A" log^T — — 0T and 0T > 2. In particular, we have v < C2 · </>T/2 
The following lemma is clear. 

Lemma2.12. — Either one of \J\QW < C2 · 4>T{Q) or |/|q|2 < 2/i(Q) holds for any 
QeX. 

We take a constant C 3 > 0 satisfying C 3 > C2 and C 3 > 4 · C\ 1 , and we put 
C 3 := C 3 · e 5 C / H F ^ ^ 2 . We put S T := {P G X(T) | (e~A · |/|2)(P) > C 3 · 0r (P) } . 
For any point P G 5 T , we have \f(P)\2

h > C3 · eA^ • </>T(P) > C2 • </)T(P). Due to 
Lemma 2.12, we obtain the following: 

A"iog(e-A-\f\2
h)(P) Ci 

4 f(P)\l 
1 

c3 

e~A • \f\l (P) 

On the other hand, we have the following: 

A" log(C 3 -0r ) 
1 

C3 

Cs · (J)T 

Moreover, it is easy to see dSr H {\z\ = T} = 0. Hence, we obtain ^ = 0 by a 
standard argument. (See [1], [52] or the proof of Proposition 7.2 in [44].) Namely, 
we obtain the inequality e~A\f\2

h < C3 · e5C'^F^^ . 0 T on X(T). Taking a limit for 
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T —» 1, we obtain \f\\ elQC'\\F{h)\\L2 . . i - M 2 
- 1 on X. Then the claim of 

Proposition 2.10 follows. 

2.4.2. A Priori Estimate on a Multi-disc. — For a positive number T, we put 
Y(T) :— { ( z i , . . . , zn) \ \zi\ < T } . Let g denote the metric ^dzi · dzi of Y(T). Let 
UJ be a Kahler form on Y(T) such that there exists a constant C > 0 such that 
C~X • UJ < g < C • UJ. Let (E,8E,0) be a Higgs bundle with a hermitian metric h, 
which is Hermitian-Einstein with respect to UJ. For simplicity, we restrict ourselves 
to the case A^F(/i) = 0. We assume \\F(h)\\L2 < oo, where \\F(h)\\L2 denotes the 
L 2-norm of F(h) with respect to UJ and h. We have the expression 9 = f% * <^ for 
holomorphic sections fi G End(^) on Y(T). 

Lemma 2.13. — Take 0 < T\ < T. There exist some constants C\ and C2 such that 
the following inequality holds for any P G Y{T\): 

log|/d2(P) C1 F(h) L 2 c2. 

The constants C\ and C2 are good in the sense that they depend only on T, T\, ranki? ; 

the eigenvalues of fi (i = 1, 2,. . . , n) and the constant C. 

Proof. — We take a positive number T2 such that T\ < T2 < T. The induced 
Higgs field and the metric of End(^) are denoted by 0 and h. Then the metric h 
is a Hermitian-Einstein metric of (End(.E),0) such that K^F^h) = 0. Because of 
6(fi) = 05 we have the subharmonicity Awlog|/^|! < 0 due to Lemma 2.9. We use 
Theorem 9.20 in [18]. Note that A^u = —y/^lK^ddu is expressed as — ^ a1^dXidXju, 
where we use the real coordinate given by z% = xi + \f^\xrijri. (In terms of Chapter 9 
of [18], we consider the case b% — c = 0.) The matrix A — (caj) is symmetric and 
positive definite, and the eigenvalues are bounded uniformly, due to the condition 
C _ 1 · UJ < g < C · UJ. Hence, we obtain the following inequality for P G Y{Ti): 

log I/ ,I 2 ^(P)<C 3 

Y(T2) 
log+ \M2 · dvol3 . 

Here we put log +(y) := max{0, logy}, and C3 denotes a good constant. 
The (1, l)-part of F(h) is expressed as ^Fij - dzi · dzj. Due to Proposition 2.10, 

there exist good constants Cj (j — 4, 5) such that the following inequality holds for 
any point (zu...,zn) G Y{T2): 

log|/i| 2(zi, . . . ,z n) C4 

\wi\<T 
Fiìi{wlìz2ì... ,zn) 2 — Idwi A dwi 

1/2 
C 5. 

Then the claim of Lemma 2.13 follows. 
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2.5. Norm Estimate for Tame Harmonic Bundle in Two Dimensional Case 

2.5.1. Norm estimate. — We recall some results in [44]. We use bold symbols 
like a to denote a tuple, and ai denotes the i-th component of a. We say a < b for 
a,b G R2 if ^ < bt. We put X := {(zi,z2) G C2 | |̂ | < 1}, A := = 0} and 
D : = D\ U £>2- Let (E,dE,0,h) be a tame harmonic bundle on X — D. For each 
c = (ci, C2) G .R 2, we obtain the locally free sheaf C E on X with parabolic structure 
% E (i = 1, 2), as in Section 3.5. We also obtain the Higgs field 6 of C E * . The residue 
of 0 induces the endomorphism GrF ReSi(6) G End(* G r F ( E \ D J ) whose eigenvalues 
are constant on D{. Thus, the nilpotent part Mi of GrFRes^(#) is well defined. It is 
shown that the conjugacy classes oiMi\p are independent of P G A - Let -W denote 
the weight filtration of Mi on 1 GrF(E\Dl). 

We have two nitrations l F (i = 1, 2) on CE\Q. We put ̂ Gr F := 2 Gr F 1 Gr F (CE]0). 
The maps Mi induce the endomorphisms of - Gr F which are denoted by -Mi. Let -W 
denote the weight filtration of -Mi + -A/2. We also have the filtration induced by 
-W, which is denoted by the same notation. We can take a decomposition C E = 
e a, fc)Gfí2xZ2 ̂ (a,fe) satisfying the following conditions: 

- lFh{cE\Dx) ®a%<bU<Ji,k\D, and 1Fbl(cElo)n2Fb2(cElo) ®a<bUaMO 
- We have ±Wkí1 GrF(cElDl)) ai=ò Ua,k I Di Ua,k I D1 under the isomorphism 

1 Grf ( c£7, d l ) ©ai=ò Ua,k I Di · 
- We have ±Wkl n ^Wfc2 ^Gr F ( c ^| 0 ) Ol<k Ua,l under the isomorphism 

2-GrF
a{cE,0) 0fc Uaj. 

We take a holomorphic frame v = (vi,... ,vr) which is compatible with the decom­
position, i.e., for each vi we have (a(vi),k(vi)) G R2 x Z 2 such that vi G Ua(Vi)^(Viy 
Let / i ! be a hermitian metric of E given as follows: 

hi{vi,Vj) si,j • Zl -2ai(vi) Z2 -2a2{vz) log Zl 
ki(vi) log Z2 k2{vi) — k1(vi) 

We put Z : Ol, ¿2) Z2 

Lemma 2.14. — h and hi are mutually bounded on Z. 

2.5.2. Some estimate for related metrics. — We put X (C1X2) 1 
Di '= {Ci — 0} a n d D := Di U D2. Let 7r : X — D —> X — D denote the map given 
by TT(CI5 C2) = ((1(2,(2)· Then, we have 7r _ 1(Z) = X - D. Hence Lemma 2.14 is 
reworded as n*h and n*hi are mutually bounded. 

We give a preparation for later use. We put E := TT*E. For a = (ai,a2) G R2, 
we put a := (ai,ai + a2). Then, we put ir*Ua,k —'· t̂ a,fc- We put v := TT*V. We 
put ai(vi) := ai(^), a2(vi) = ai(i^) + ¿12(1^), kj(vi) := kj(vi). Then, is a section 

of Ua(v),k(v1). 
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Let x be a non-negative valued function on R such that x(t) = 1 (t < 1/2) 
and X(t) = 0 (t > 2/3). Let p(() : C* —> R be the function given by p(£) = 
—x(|C|) ' l°g |C|2- Then, we will use the following metrics later (Section 5.2) 

h0(vt,Vj) Si,3 
k 

Sk 2ak(vi) 

h4(vi, vj) h0(vi,vj) ,l + P(Ci) + p(C2) ki(vi) I + P(C2) k2(vi)-ki(vi) 

Then, hi and 7r*/i are mutually bounded. The curvature R(ho) is 0. Let UJ denote the 
Poincaré metric of X — D: 

UJ 

¿=1,2 

dSi . dSi 

2 log Ci 2 2 

Lemma2.15. — R{h\) and dh1 — dh0 are bounded with respect to (UJ, ht) (i = 0,1). 

Proof. - 31og(l + /9(C2)), aaiog(l + /o(<2)),01og(l +p(Ci) + p(C2)) and 9c>log(l + 
P(CI) + /KC2)) a r e bounded with respect to UJ. Then, the boundedness of R(hi) and 
dfn ~ dho follow. 

2.6. Preliminary from Elementary Calculus 

Take e > 0 and N > 1. In this section, we use the following volume form dvol^jv 
of a punctured disc A*: 

dvolÊ;7v €N+2 z 2e 2 1 ldz A dz 
z 2 

Let / be a function on a punctured disc A* such that ||/||22 ·= fA* \ f\2 -dvol^jv < oo. 
We use the polar coordinate z = r-e^~^e. For the decomposition f = fn(r)'ey/~^nd, 
we have \\f\\2

L2 = ^J2n \\fn\\L2l where ||/n||̂ 2 are given as follows: 

fn 2 L 2 

1 

0 
UP) 2 6n + 2p2e + p2 

ldp 
9 

Proposition 2.16. — Let f be as above. Then we have a function v satisfying the 
following: 

ddv f 
dz A dz 

z 2 v{z) C- z ee(N-l)/2 Z 1/2 L 2 · 
The constant C can be independent of e, N and f. 

Proof. — We use the argument of S. Zucker in [66]. First let us consider the equation 
du = f · dz/z. For the decomposition u = ^un(p) · e^~^n0, it is equivalent to the 
following equations: 

1 
2 r 

d 
dr n · un fni η G Ζ 
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We put as follows: 

Un 
2rn •r 

0 
P~N~LUp) ' dp n < 0] 

2rn r 
A p-^Upi'dp n > 0 

Then u un · e -ine satisfies the equation du = / · dz Jz. 

Lemma 2.17. — There exists C\ > 0 such that 

Unir) Ci fn L2 

e(AT+2)/2 . re 
2e-2n 1/2 

r l / 2 
1 n 1/2 

The constant C\ is independent of n, e, N and f. 

Proof. — In the case n < 0, we have the following: 

(5) un(r) 2rn 
• r 

0 
UP) 2 e 7 V + 2 p 2 e + p 2 i dp 

P 

1/2 

r 

0 
p-2n-l{eN+2p2e+p2ydp 

, 1/2 

We have the following: 
• r 

'0 
p~2n-l(eN+2p2t+p2)dp 

eN+2 . r2e-2n 
2e - 2n 

r-2n+2 

-2n + 2 
Hence we obtain the following: 

un(r) 2||/n||L* 
e(N+2)/2 . re 
2e-2n 1/2 

r 
2-2n 1/2 

In the case n > 0, we also have the following: 

M r ) I <2rn-||/„|U2 

A 
p - 2 n - l ( e i V + 2 p 2 C + p 2 ) d p 

1/2 

We have the following: 
•r 

A 
p-2n-leN+2 • p2c • dp 

EN+2 

- 2n + 2e 
r-2n+2e 

We also have the following: 

r 

A 
p~2n+1dp 

log r — log A (n = l ) 

(-2n + 2 ) - 1 ( r " 2 n + 2 - A - 2 - + 2 ) (n > 2) 
Therefore we obtain the following: 

\un(r)\ C-Wfnh* 
e(AT+2)/2 . re 
2e-2n 1/2 

r l / 2 
l + |n| 1/2 

Thus we are done. 
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Then let us consider the equation dv = u · dz/z. For the decomposition v = 
vn · e -Ind it is equivalent to the following equations: 

1 
2 r 

Ovn 

dr n-vn Un-, (n e Z ) . 

We put as follows: 

Vn(r) 
2r~n · ft p^Unip) - dp (n > 0) 

2 r - n P71 ^n(p) · dp (n < 0). 
Then we have dv = u · dz/z for v Vu - e -ln6 From Lemma 2.17, we obtain the 
following in the case n > 0: 

(6) v„{r) 2r~n 

0 
pn-1 6(JV + l)/2 £ 

2e - 2n 1/2 
p1'2 

î + M 1/2 dp' ||/η||ζ,2 

C2-||/n||L2-
e(7V+2)/2 

2e - 2n 1/2 
rE 

n + e 
1 

1 n 1/2 
rl/2 

n + 1/2 
We have a similar estimate in the case n < 0. Hence we obtain the following: 

\v(z) 
n 

vn(r) C 7 4 - ( e ^ - 1 ) / V + r 1 / 2 ) L2 

Thus the proof of Proposition 2.16 is finished. 

2.7. Reflexive Sheaf 
We recall some general facts about reflexive sheaves. See [21] and [41] for some 

more properties of reflexive sheaves. Let X be a complex manifold. Recall that 
a coherent Ox-module £ is called reflexive, if £ is isomorphic to the double dual 
£vv := Hom(7iom(£,Ox),öx) of £. Recall we can take a resolution locally on X 
(Lemma 3.1 of [41]): 

(7) 0 £ V0 Vi 0 
Here Vo is locally free and Vi is torsion-free. The following Hartogs type theorem is 
well known. 
Lemma 2.18. — Let Z be a closed subset of X whose codimension is larger than 2. 
Let f be a section of a reflexive sheaf £ on X \ Z. Then f is naturally extended to 
the section of £ over X. 

Proof. — We have only to check the claim locally. Let us take a resolution (7), and 
then / induces the section of / of Vo on X — Z. Due to the Hartogs' theorem, / can 
be extended to the section on X. Since it is mapped to 0 in Vi, we obtain the section 
of £ on X. 

The converse is also true. 
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Lemma 2.19. — Let T be a torsion-free coherent sheaf on X such that any section f 
of T on U — Z is extended to the section on U, where U denotes an open subset and 
Z denotes a closed subset with codimZ > 2. Then T is reflexive. 

Proof — We have the inclusion i : T —> JT V V , which is isomorphic outside of the 
subset ZQ C X with codim(Zo) > 2. Then, we obtain the surjectivity of i from the 
given property of T, and thus i is isomorphic. 

Lemma 2.20. — If S is reflexive, £ (g) OD is torsion-free for a divisor D . 

Proof — Take a resolution as in (7). Because of T o r ^ V i , ^ ) = 0, we obtain the 
injection £ <g> OD —> Vo ® OD, and hence £ (g) OD is torsion-free. 

Lemma 2.21. — If £ is a reflexive sheaf, 1~Lom(T,£) is also reflexive for any coherent 
sheaf T. 

Proof. — Let us check the condition in Lemma 2.19. Let U be a small open subset, 
on which we have a resolution V-1 a Ou

Or b T 0 on [/. Let / be a homomor-
phism T —> £ on U \ Z, where codim Z > 2. The morphism Ou

Or £ is naturally 
induced on U \ Z, which is naturally extended to the morphism <p Ou

Or £ on U 
by the Hartogs property. Since ip o a is 0, ip induces the extension of / . 

2.8. Moduli Spaces of Representations 

Let T be a finitely presented group, and V be a finite dimensional vector space over 
C. For a, / G GL(V), we put ad(a)(/) := a o / o a - 1 . The space of homomorphisms 
R(T,V) := Hom(T, GL(V)) is naturally an affine variety over C. We regard it as 
a Hausdorff topological space with the usual topology, not the Zariski topology. We 
have the natural action of GL(V) on R(T, V) given by ad. Let hy be a hermitian 
metric of V, and let U(hy) denote the unitary group of V with respect to hy. The 
usual quotient space R(T, V)/U(hy) is denoted by M(T,V,hy). Let 7TGL(V) denote 
the projection R(T, V) —> M(T, V, hy). 

More generally, we consider the moduli space of representations to a complex re­
ductive subgroup G of GUV). We put R(T,G) := Hom(r,G f), which we regard 
as a Hausdorff topological space with the usual topology. It is the closed subspace 
oiR(T,V). 

Let K be a maximal compact subgroup of G. Assume that the hermitian metric 
hy of V is i^-invariant. We put Nc(hy) := G U(hy) | ad(w)(G) = G} which is 
compact. We have the natural adjoint action of Nc{hy) on G, which induces the 
action on R(T,G). The usual quotient space is denoted by M(T,G,hy). Let TIG 
denote the projection R(T, G) —> M(T,G,hy). We have the naturally defined map 
$ : M(T,G,hy) —> M(T,V,hy). The map $ is clearly proper in the sense that the 
inverse image of any compact subset via $ is also compact. 
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A representation p G R(T, G) is called Zariski dense, if the image of p is Zariski 
dense in G. Let U be the subset of R{Y1 G), which consists of Zariski dense represen­
tations. Then the restriction of $ to hi is injective. 

Let p and p' be elements of R{T,G). We say that p and p' are isomorphic in G, 
if there is an element g G G such that ad(g) op = p'. We say // is a deformation of 
p in G, if there is a continuous family of representations pt : [0,1] x T —> G such 
that po = p and pi = p'. We say p' is a deformation of p in G modulo Nc{hv), if 
there is an element u G Nc{hy) such that p can be deformed to ad(u) o p7 in G. The 
two notions are different if Nc(hv) is not connected, in general. We also remark that 
p can be deformed to p' in G modulo Nc{hv), if and only if TTG(P) and KG(P') are 
contained in the same connected component of M(T, G, 

We recall some deformation invariance from [55]. A representation p G R(T, G) is 
called rigid, if the orbit G · p is open in R(T, G). 

Lemma 2.22. — Let p G i?(r,G) 6e a rigid and Zariski dense representation. Then 
any deformation p' of p in G is isomorphic to p in G. 

Proof. — If p is Zariski dense, then G · p is closed in -R(r, G). Hence it is a connected 
component. 
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P A R A B O L I C H I G G S B U N D L E A N D R E G U L A R 
F I L T E R E D H I G G S B U N D L E 

We recall the notion of parabolic structure, and then we give some detail about 
the characteristic numbers for parabolic sheaves. In Section 3.3, a perturbation of the 
filtration is given, which will be useful in our later argument. 

3.1. Parabolic Higgs Bundle 

3.1.1. c-Parabolic Higgs sheaf. — Let us recall the notion of parabolic structure 
and the Chern characteristic numbers of parabolic bundles following [35], [39], [51], 
[52], [62] and [65]. Our convention is slightly different from theirs. 

Let X be a connected complex manifold and D be a simple normal crossing divisor 
with the irreducible decomposition D = [jieS Di. Let c = (Q | i G S) be an element of 
Rs. Let £ be a torsion-free coherent Ox-module. Let us consider a collection of the 
increasing nitrations %T (i G S) indexed by ]c{ — l , c j such that (i) zJr

a{£) ^ £{~Di) 
for any a e]a - l , c j , (ii) *Ta{£) = f \ < 6 * W ) - W e P u t * G r f £ '= lTa{£) l'T<a{£). 
We assume that the sets {a |1 Gr^ £ ^ 0} are finite for any i. Such tuples of nitrations 
are called the c-parabolic structure of £ at D, and the tuple (5, {lT \ i G S}) is 
called a c-parabolic sheaf on (X,D). We will sometimes omit to denote c. We say 
(£, { ^ 1 i G 5}) is reflexive, if £ is reflexive. (See [21] and [41] for reflexive sheaves. 
See also Section 2.7.) 

Definition 3.1. — For a reflexive c-parabolic sheaf (£, {tJ:\ i G 5}) , we say that the 
parabolic structure is saturated, if £/lJr

a are torsion-free Or>i-modules for any i and a. 

We remark that each lTa are also reflexive. To see it, let us see the inclusion 
lTa —> l f a

v v S i n c e £ is reflexive, the inclusion lTa —* £ is extended to the 
injection %T^y —> £. (See the proof of Lemma 2.21.) Hence we obtain the inclusion 

llTa —> £llTa- The codimension of the support of %T^y jlTa is larger than 2, 
and £/lJ7

a is torsion-free as an (9^.-module. Hence we obtain J f a
v v ' l % T a = 0 
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We will use the notation instead of (£, {ZF}) for simplicity. When we emphasize 
c, we will often use the notation c £ and c£* instead of £ and In the case c = 
(0, . . . , 0), the notation °£* is used. We will also use the following notation. 

(8) Var{S*,Ì) a Gra (E) = 0 Var'(£*,%) V o r U Cil Ci 1 

(9) gap(£*,i) min a — b a,b G Var'(£*,i), a^b gap(£*) min gap (£*, i). 

Let us recall a Higgs field ([65]) of a c-parabolic sheaf on (X, D). A holomorphic 
homomorphism 6 : £ £ ® ^ ° ( l o g D ) is called a Higgs field of £*, if the following 
holds: 

— The naturally defined composite 02 — 0 AO : £ £ 0 f^ 0(logZ)) vanishes. 
- Θ^Τα) alFa®ttl¿\\ogD) 

Such a tuple (£*, 0) is called a c-parabolic Higgs sheaf on (X, D). 
A c-parabolic Higgs sheaf (E,0) on (X,D) is called reflexive and saturated, if 

the underlying c-parabolic sheaf is reflexive and saturated. A morphism between c-
parabolic Higgs sheaves is defined to be a morphism of the underlying sheaf which is 
compatible with the parabolic structures and the Higgs fields. 

Lemma 3.2. — Let (£*, 6) be any c-parabolic Higgs sheaf on (X, D). Then there exists 
the reflexive saturated parabolic Higgs sheaf (£^0r), such that we have the morphism 
(£*,#) —> {£1,0') which is isomorphic in codimension one, i.e. isomorphic outside 
of the subset with codimension two. Such (£^0f) is unique up to the canonical iso­
morphism. 

Proof. — Let £' denote the double dual of £. We have the canonical morphism 
£ —> £' which is isomorphic outside of the subset Z of codimension two. Let %T\ 
denote the subsheaf of £' which consists of the sections / of £' such that f\x-z £ %Fa. 
Such a subsheaf is coherent ([60]). We have £'{—Di) C %T\ for any a G]Q — 1, Cj\. We 
have the natural surjection 7r â : £' —> £'llT\, and the target is the (9/^-module. Let 
Ti}a denote the torsion part of £'llT\ as an (9^-module, and we put lT'a := 7r~"^(T â). 
Then, it is easy to see that \^T' | i G 5} gives the saturated c-parabolic structure of 
£'. The Higgs field 6 naturally induces the morphism £ —> £' ® ^°(logZ)). Due to 
the reflexivity of £ ' w e obtain 0' : £' —> £' 0 fi^°(log D) satisfying 02 = 0. It is easy 
to check 9(lF'a) C iTl

a <g> ft]f(logD). The uniqueness is clear. 

For a c-parabolic Higgs sheaves (Ei, 0*) (i = 1, 2) on (X, D), we obtain the sheaf 
of the morphisms Horn ( (£\ *, 0\ ), (£2 *, 02 ) ) · 

Lemma 3.3. — If {£2*^2) is reflexive and saturated, Hom[(£i *, 0i), (£2 *, #2)) is re­
flexive. 

Proof. — We have only to check the condition in Lemma 2.19. Let / be a section of 
Hom[[£i *, 0i), (£2*, #2)) o n U \ Z, where U denotes an open subset and Z denotes 
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a closed subset with codim(Z) > 2. Since £ 2 is reflexive, it is extended to the homo-
morphism / : £\ —> ^ on [/, which is compatible with Oi. We have the induced map 
if : %T{£\) —> £211 ̂ {£2)· The codimension of the support of Im(</?) is larger than 
2, and £2/lJr(£2) is a torsion-free ODi-module. Hence, we obtain Im(<p) = 0, i.e., / 
preserves the filtration. 

Assume X is projective. Let Y be a sufficiently ample and generic hypersurface of 
X. We put Dy := D C\Y, which is assumed to be a simple normal crossing divisor of 
Y. Let {£i*\Y,0iY) denote the induced parabolic Higgs sheaf on (Y, DY) by (£^*,6^). 
If £i* is reflexive and saturated, so is < *̂|y. (See Corollary 3.1.1 of [41].) 

Lemma 3.4. — Assume dimX > 2 and that £2* is saturated and reflexive. For any 
morphism f : (£1 *|y, 0\ Y) —> (£2*\Y, #2 Y)? we have F : (£\ *, 6\) —> (£2 *, 02) which 
induces f. 

Proof. — Let 0^Y : £^\Y —> £^\Y 0 (log D)\Y denote the restriction of 6i to 
Y. We have the induced morphism G : f o 0^Y — 62\Y o / : £i*\Y — > £2*\Y 0 
n^°(logD)|y. Because of fo0x Y — 02Y of = 0 in Hom(£i *\Y, £2 *\Y) ®QY°(log DY), 
G induces the map £i*\Y —> £2*\Y 0 0(—Y)\Y. We regard it as the section of 
J := 7iom[£i *, £2 *) 0 0(—Y)\Y. Since Q := Hom(£\ *, £2 *) is reflexive, we have 
E\X,Q 0 O(-Y)) = 0 (i = 0,1), if Y is sufficiently ample. (See the proof of 
Proposition 3.2 in [41].) Hence, we have H°(Y,J) = 0, i.e., G = 0. Then, the 
claim of the lemma follows from Generalized Enriques Severi Lemma (Proposition 3.2 
in [41]) and Lemma 3.3. 

Remark 3.5. — We also have the parallel notion of c-parabolic sheaves on smooth 
varieties with simple normal crossing divisors over a field k. 

Remark 3.6. — Sometimes, it will be convenient to consider nitrations l J r such that 
S(lT) = {a G R 11 Gr^(£) 7̂  0} is not contained in an interval ]Q — 1, Cj\ for some Q. 
In that case, we will call | i G S} a generalized parabolic structure. Higgs field is 
also defined as in the standard case, i.e., a holomorphic map 0 '.£ —> £®Q^(\ogD) 
such that 02 = 0 and 0(\Fa) C %Ta <g> ^°(logL>). 

3.1.2. The parabolic first Chern class and the degree. — For a c-parabolic 
sheaf £* on (X, D), we put as follows: 

wt(£*, i) 
a£]c¿ —l,c¿] 

a · rank D , 1 Grf (£). 

Here rank/). 1 Gr;f(£) denotes the rank as an (9^.-module. In the following, we will 
often denote it by rank2 Gr f (£), if there are no risk of confusion. The parabolic first 
Chern class of E* is defined as follows: 

par-c^*) ci(£) 
ies 

wt(£„i) · [Di] e H2(X,R). 
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Here [Dj\ denotes the cohomology class given by D{. If X is an n-dimensional compact 
Kahler manifold with a Kahler form a;, we put as follows: 

par-degj£*) 
x 

par-c1(£*) · cu71 , Mu;(£*) 
par-deg^*) 

rank£ 
If UJ is the first Chern class of an ample line bundle L, we also use the notation 
par-degL(£*) and /XL(£*)-

Lemma 3.7. — Let £^ (i = 1,2) be c-parabolic sheaves on (X, D), and let f : £^ —> 
£^ be a morphism which is generically isomorphic. Then, we have n(£^) < n(£^). 
If the equality occurs, f is isomorphic in codimension one. 

Proof. — By considering the restriction to a generic complete intersection curve, we 
have only to discuss the case dimX = 1. Let P be any point of D. We put Fa^ := 
lm(pFa(£^)ip —> for a e]c(P) - l,c(P)], which give the filtration F& of . 
We have the induced map f\p : £^p —> £^p which preserves the nitrations. We put 
I := Im(/| P ) , K := Ker( / ) P ) and C := Cok(/|P). Let F(K) (resp. F^\l)) denote 
the induced filtration on K (resp. I) by F^\ Let F(C) (resp. F^(I)) denote the 
induced filtration on C (resp. I) by F^2\ We put as follows: 

w(K) a-Grf ( iv ) , ω«(Ι) a - G r f } ( / ) , w(C) a • Grf (C) 

Then, we have — w^(I) < —w^2\l) and —w(K) < —iu(C)+ro, where rg = v&nkK = 
rankC It is easy to obtain the claims of the lemma from these relations. 

Remark 3.8. — For the parabolic first Chern class on algebraic varieties, we have only 
to replace the cohomology group and the integral by the Chow group and the degree 
of the 0-cycles. 

3.1.3. //^-Stability. — Let X be a smooth projective variety with an ample line 
bundle L over a field A:, and D be a simple normal crossing divisor of X. The / in­
stability of c-parabolic Higgs sheaves is defined as usual. Namely, a c-parabolic Higgs 
sheaf (£*,#) is called //^-stable, if the inequality par-degL(£^) < par-degL(£*) holds 
for any saturated non-trivial subsheaf £' C £ such that 9(£') C £' <S> ^ 1 , 0 ( log D). (Re­
call a subsheaf £' C £ is called saturated, if £ /£ ' is torsion-free.) Here the parabolic 
structure of £^ is the naturally induced one from the parabolic structure of £*. Simi­
larly, /iL-semistability and /iL-polystability are also defined in a standard manner. 

Let (£*\Q^) (i = 1,2) be /iL-semistable c-parabolic Higgs sheaves such that 
/iL(£i1 }) = Mz,(£i2)). Let / : {£^,0^) —> (£{^\0^) be a non-trivial morphism. 
Let (/C*, 6jc) denote the kernel of / with the naturally induced parabolic structure and 
the Higgs field. Let 1 denote the image of / , and J denote the saturated subsheaf of 
£(2) generated by I . The parabolic structures of £ ^ and £ ^ induce the parabolic 
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structures of 2 and 2, respectively. We denote the induced parabolic sheaves by 
(2*, #z) and (2*, Q~). 

Lemma3.9. — (/C*,0/c), (2*,0z) and (2*,<9j) are a/so semistable such that 
PL{K<*) — PL(2*) = /ic(2*) = IJ>L(£*^)- Moreover, 2* and 2* are isomorphic in 
codimension one. 

Proof. — Using Lemma 3.7 and /iL-semistability of (£* , #(^), we have µ(E(1)) < 
/i(2*) < /i(2*) < ¡1(8^). Since the equalities hold, the claim of the lemma follows. 

Lemma 3.10. — Let (£^\0^} (i = 1,2) 6e semistable reflexive saturated parabolic 
Higgs sheaves such that IIL(£*^) = PL(£^)' Assume either one of the following: 

1. One of(£?\0M) is iiL-stable, and rank(f = rank(£(2)) holds. 
2. Both of (£^\0^) are fiL-stable. 

If there is a non-trivial map f : (£i1],e^) —• {£i2),0^), then f is isomorphic. 

Proof. — If (£^,0^) is //^-stable, the kernel of / is trivial due to Lemma 3.9. If 
(E0,0(2))is /instable, the image of / and £ ^ are same at the generic point of X. 

Thus, we obtain that / is generically isomorphic in any case. Then, we obtain that / 
is isomorphic in codimension one, due to Lemma 3.7. Since both of £ ^ are reflexive 
and saturated, we obtain that / is isomorphic. 

Corollary 3.11. — Let (£*,#) be a HL-poly stable reflexive saturated Higgs sheaf. Then 
we have the unique decomposition: 

(ε*, θ) e 
3 

(E*

(j), 0(j)) O Cm(j). 

Here, (£^\ 0^) are /x^-stable with /JLL(£*^) = fJ>(£*)j and they are mutually non-
isomorphic. It is called the canonical decomposition in the rest of the paper. 

3.1.4. c-Parabolic Higgs bundle in codimension k. — We will often use the 
notation CE instead of £. We put as follows, for each i G S: 

lFa(cE\D.) Im l J r
a ( c E ) \ D . cE\Di 

The tuple {LJ~\ i G 5) can clearly be reconstructed from the tuple of the filtrations 
F:=(zF\ie S). Hence we will often consider (CE, F) instead of (CJ3, {\F | i G S}), 
when CE is locally free. We put D\ := f\e/ ^ f° r a n y subset / C 5, on which we 
have the induced filtrations 1 F := (lF\Dl | i G / ) of cE\Dj. 

Definition 3.12. — Let CE* = (CE,F) be a c-parabolic sheaf such that CE is locally 
free. If the following conditions are satisfied, CE* is called a c-parabolic bundle. 

— Each l F of cE\Di is the filtration in the category of vector bundles on 2^. 
Namely, 1 Gi^(cE\D.) = *F a /* F<a are locally free 0Drm°dules. 
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— The tuple of the filtrations F is compatible in the sense of Definition 4.37 
in [44]. (In this case, the decompositions are trivial.) Namely, for any sub­
set / C S we have a decomposition ©aG^/ Ua — c^|Dj locally on Dj, such that 

MiEI
 iFai/Di = Ob<aUb 

We remark that the second condition is trivial in the case dimX = 2. 

Remark 3.13. — Our compatibility condition of the parabolic filtrations are same as 
the "locally abelian" condition given in [27]. (See Corollary 4.48 of [44], for example.) 

The notion of c-parabolic bundle is too restrictive in the case dimX > 2. Hence 
we will also use the following notion in the case k = 2. 

Definition 3.14. — Let CE* be a c-parabolic sheaf on (X, D). It is called a c-parabolic 
bundle in codimension /c, if the following condition is satisfied: 

— There is a Zariski closed subset Z c D with codimx(Z) > k such that the 
restriction of CE* to (X — Z, D — Z) is a c-parabolic bundle. 

It is easy to observe that a reflexive saturated c-parabolic Higgs sheaf is a c-
parabolic Higgs bundle in codimension two. 

3.1.5. The characteristic number for c-parabolic bundle in codimension 
two. — For any c-parabolic bundle CE* in codimension two, the parabolic second 
Chern character par-ch2( c^*) G HA(X,R) is defined as follows: 

(10) par-ch2(cI?*) ch2(cE) 

aeVar(cE*,i) 

a • Li* ci lGrF(cE) 

1 
2 

a£Var(cE*,i) 

a2 - rank 4 Gr? C E Di 2 

1 
2 

(i,j) E S2 

1^3 
PGlrr(DiDD7-) 

(ai,a3)eVar(cE*,P) 

a% -a3 -r&nkp Gi(a^aj)(cE) P 

Let us explain some of the notation: 
— ch2(cE) denotes the second Chern character of CE. 
— U denotes the closed immersion Di —> X, and L^ : # 2 ( A ) —• HA(X) denotes 

the associated Gysin map. 
— lii(Di fi Dj) denotes the set of the irreducible components of Di Pi Dj. 
— Let P be an element of I r r ( A H Dj). The generic point of the com­

ponent is also denoted by P. We put P21(a,b) : ~ lFa\p H jFh\P and 
pGrl := PFa/YJal<a

pFa>. Then r a n k p G r f denotes the rank of p GvP 

as an (9p-module. 
— We put Var(cE^P) := {a \pGiP(cE) / 0}. 
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— [Di] G H2(X,R) and [P] G H4(X,R) denote the cohomology classes given by 
Di and P respectively. 

If X is an n-dimensional compact Kahler manifold with a Kahler form UJ, we put 
as follows: 

par-ch2 J C E * ) par-ch 2( cK,) · ujn 2, par-c? ( c£*) par-c^c^) 2 · ujn 2. 

If UJ is the first Chern class of an ample line bundle L, we use the notation 
par-c2

 L( ci?*) and par-ch 2^L(CE*). In the case dimX = 2, we have the obvious 
equalities par-c2

 L(CE*) = par-c2 (ci?*) and par-ch2 L(CE*) = par-ch2(c£1*). 

Definition 3.15. — Let X be a smooth projective variety with an ample line bundle 
L, and let D be a simple normal crossing divisor. Let (CE*,0) be a /XL-polystable 
reflexive saturated c-parabolic Higgs sheaf on (X, D). We say that (CE*,0) has 
trivial characteristic numbers, if any stable component (cE^6F) of (CE*,6) satisfies 
par-degL( cF /*) = fx par-ch 2 j L ( c E'*) = 0 

3.2. Filtered Sheaf 
3.2.1. Definitions. — We recall the notion of filtered sheaf by following [52]. Let X 
be a complex manifold, and D be a simple normal crossing divisor with the irreducible 
decomposition D = [jieS Di. For a G RS, ai denotes the z-th component of a for 
i G S. A filtered sheaf on (X, D) is defined to be a tuple E* = [E, {CE | c G RS}) 
as follows: 

— E is a quasi coherent Ox-module. We put E := E\X_D. 
— C E are coherent O^-submodules of E for any c G Rs such that CE\X_D — E. 
— In the case a < 6, we have ai£ C where a < b means a-i < bi for all i € S. 

We also have \ J a e R s a E = E and a E = Ha<& 
— We have a>E — a E (g) Ox{— ̂ rij · as submodules of i£, where a' — a — 

(rij \ J E S ) for some integers . 
— For each c G Rs the filtration of C E indexed by ]Q — 1, Q] is given as follows: 

lFd(cE) 
CLi<d 
a < c 

aE. 

Then the tuple (cE,{L!F\i G S}) is a c-parabolic sheaf, i.e., the sets {a G 
]ci - 1, Ci]|1 Gr^(cE) ^ 0} are finite. 

Remark 3.16. — By definition, we obtain the c-parabolic sheaf CE* obtained from 
filtered sheaf E* for any c G Rs, which is called the c-truncation of E*. On the 
other hand, a filtered sheaf E* can be reconstructed from any c-parabolic sheaf CE*. 
So we can identify them. 
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Definition 3.17. — A filtered sheaf E* is called reflexive and saturated, if any c-
truncations are reflexive and saturated. 

A filtered sheaf E* is called a filtered bundle in codimension /c, if any c-truncations 
are c-parabolic bundle in codimension k. 

Remark 3.18. — In the definition, "any c" can be replaced with "some c". 

A Higgs field of E* is defined to be a holomorphic homomorphism 6 : E —> 
E 0 ft1'0 (log D) satisfying 0(CE) C CE ® nx°(\ogD). 

Let E^ (i = 1, 2) be a filtered bundle on (X, D). We put as follows: 
E := Hom(E{l\E{2)) aE feE f cE(1) c c + a £ ( 2 ) , Vc 

E := 0 £ ( 2 ) aE 
a i +01-2 <a 

a1E(1) O a2 E(2). 

Then (E, {aE}) and (22, {aE}) are also filtered bundles. They are denoted by 
Hom{E^\Ef)) and E^ <g> # i 2 ) . 

Let (22*, 0) be a regular filtered Higgs bundle. Let a and 6 be non-negative integers. 
Applying the above construction, we obtain the parabolic structures and the Higgs 
fields on Ta'b(E) := Hom(E®a, E®b). We denote it by (Ta>hE*,0). 

3.2.2. The characteristic numbers of filtered bundles in codimension two 
Let X be a smooth projective variety with an ample line bundle L, and let D be 

a simple normal crossing divisor. Let 22* be a filtered bundle in codimension two 
on (X,D). 

Lemma3.19. — For any c,cf G Rs, we have par-c1(c£'*) = par-c1(c/£1*) in 
tf2(X, R). 

Proof. — The j - t h components of c and c' are denoted by Cj and cf- for any j G S. 
Take an element i G S. We have only to consider the case Cj = c'3 (j ^ i). We 
may also assume c\ G Var(E*,i) and Q < c'{. Moreover it can be assumed that a is 
sufficiently close to c-. Then we have the following exact sequence of Ox-modules: 

0 cE C>E Grci c>E\D% 0. 
We put c := c- — 1. Then we have the following: 

(H) * G r f( c£)®ö ( A ) lGrF(c,E), lGrF(cE) 2 G r f ( c ^ ) , (c < a < c[) 

Therefore we have wt( ci2*,i) = wt (c/22*, i) — rank2 Grf ( C E ) . On the other hand, 
we have C\(C>E) = ci(c22) + c\(i*1 GrF(C>E)). There is a closed subset W C Di 
such that 1 GrF(C'E)\Di-w is isomorphic to a direct sum of ODI-W- We remark that 
H2(X, R) ~ H2(X \ W, 22), because the codimension of in X is larger than two. 
Then it is easy to check ci(7*2 G Y f ( c > E ) ) = rank* Grf ( C E ) • [Di]. Then the claim of 
the lemma immediately follows. 
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Corollary 3.20. — For any c, cl G RS, we have the following: 

par-degL(ci£*) = par-degL(c/i£*), 
x 

par-c? L(CE*) 
x 

par-c?>jL(c/-E*). 

In particular, the characteristic numbers par-degL(I£*) par-degL( c£*) and 

x Par-Ci,!^*) x par-c^ L(CE*) are well defined. 

Remark 3.21. — The ¡1 ̂ -stability of a regular filtered Higgs bundle is defined, which is 
equivalent to the stability of any c-truncation. Due to Corollary 3.20, it is independent 
of a choice of c. 

Proposition 3.22. — For any c^c' G RS
 ? we have the following: 

x 
par-ch2 L{CE*) 

x 
par-ch 2 > L( c/^*). 

In particular, x par-ch2 L(E*) x par-ch2 L(CE*) is well defined. 

Proof. — We have only to consider the case dimX = 2. We use the following lemma. 

Lemma 3.23. — Let Y be a smooth projective surface, and D be a smooth divisor of 
Y. Let T be an OJJ-coherent module. Then we have the following: 

x 
ch2(^*^) : degDJ^ 1 

2 
rank D (^) · (D,D). 

Proof. — By considering the blow up of D x {0} in Y x C as in [17], we can reduce 
the problem in the case Y is a projective space bundle over D. We can also reduce 
the problem to the case J 7 is a locally free sheaf on D. Then, in particular, we may 
assume that there is a locally free sheaf T such that T\B — T. In the case, we have 
the i^-theoretic equality i*T = T· (O - G(-D)). Therefore we have the following;: 

ch(^jF) ch(^) · (D - D2/2) rank T · D 1 
2 

rank T - D2 + c\ (J7) · D 

Then the claim of the lemma is clear. 

Let us return to the proof of Lemma 3.22. We use the notation in the proof of 
Lemma 3.19. We have the following equalities: 

(12) 
fx 

ch2(c,E) 
x 

ch 2 ( c £) + deg D î0 Gi%(c,E)] 
1 
2 

rank2Gr^(c,£)-L>2 

x 
ch 2 ( c £) + deg A C Grf( c £)) 1 

2 
rank*Grf (CE) • D2. 

Here we have used (11). We also have the following: 

c[-degDXGrF(c,E)) (c+1) deg D t0 Grf (c£7)) + rank* Grf (CE) • £>? 
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We remark the isomorphism p Gr P / a^(c>E) P ^r(c,a) (cE) and the following exact 
sequence: 

0 JGrF(cE) JGrF
a(dE) O 

PEDiDDj 
PG r(<,a)(c'£) 0. 

Hence we obtain the following equality: 
a-degDj(>GrF(c>E)) a • degDj C Grf (CE)) + a 

PeDiHDj 
rank pGrf C i a )( c£:). 

We have the following equalities: 
(13) 
1 
2 

c^-rank*Gr^( c /£).D 2 1 
2 

c2 rank*Grf (CE)-D? c 
1 
2 

rank 2 Gr^( c ^) -L> 2 . 

(14) c[ - a - rank p Grf c , a ) ( C '#) c · a · rank p Gr^ a^ (CE) a · rank p GrF
c^(cE). 

Then we obtain the following: 
(15) 

X 
par-ch 2 j L 

x 
par-ch2 L ( c £* ) deg^CGrfUß)) 1 

2 
rank*GrP( c£)-L>2 

- d e g D i C G r f ( c £ ) ) -(c+l)rank*Grf( c£)L> 2 

i =i PeDiDDj a 
a-rank p Grf c a ) ( c £) 

c 
1 
2 

rank*Grf(c£)L>2 

j = i S E Di M Dj a 
a-rank p Grf c a ) ( c £) = 0. 

Thus we are done. 

Definition 3.24. — Let (E*,0) be a /i/,-polystable reflexive saturated regular filtered 
Higgs sheaf on (X, D). We say that (E*, 6) has trivial characteristic numbers, if any 
stable component (E^,Q') of (E*,0) satisfies par-deg(-E^) = J X par-ch2(E^) = 0. 

3.3. Perturbation of Parabolic Structure 

Let X be a smooth projective surface over C with an ample line bundle L, and D 
be a simple normal crossing divisor with the irreducible decomposition D = [jies Di-
(Remark that each Di is smooth by definition of simple normal crossing divisor. See 
Section 2.1.) Let ( C E , F , 9 ) be a c-parabolic Higgs bundle over (X, D). Due to the 
projectivity of Di, the eigenvalues of Reŝ (0) G End(cE,|£).) are constant. Hence we 
obtain the generalized eigen decomposition with respect to Resf(#): 

lGvF(cE[Dt) ® 
a(EC 

PGr(<,a)(c'£) 

Let Mi denote the nilpotent part of the induced endomorphism Gr F Reŝ  (0) on 
*Grf( c £| D i ) . 
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Definition 3.25. — The c-parabolic Higgs bundle (CE, F, 0) is called graded semisim­
ple, if Mi are 0 for any i G S. 

For simplicity, we assume ci 0 Var(cE*^i) for any z, where c = (ci | i G S). 

Proposition 3.26. — Let e be any positive number satisfying e · 100 rank(E') < 
gap(cj£, F ) . There exists a c-parabolic structure F^ = (^F^ | i G S) such that the 
following holds: 

— (CE,F^) is a graded semisimple c-parabolic Higgs bundle. 
— We have wt(cE, F^e\ i) = wt(cE,F,i). (See Subsection 3.1.2 for wt.) In par­

ticular, we have par-cx (CE, F^) = par-c1( cE', F ) . 
— There is a constant C, which is independent of e, such that the following holds: 

x 
par-ch 2 ( c £,F ( e ) 

x 
par-ch2(c£', F) C-e, 

- gap( c £,F^) = e. 
Such (cE,F(e\6) is called an e-perturbation of (CE,F,6). 

Proof. — To take a refinement of the filtration lF1we see the weight filtration induced 
on 1 Gr F . Let rj be a generic point of Di. We have the weight filtration of the 
nilpotent map Mi:T] on 1 G r F ( C E \ D . ) j , which is indexed by Z. We recall the following 
general lemma. 

Lemma 3.27. — Let C be a smooth irreducible projective curve over C. The generic 
point of C is denoted by rj, and let K(rj) denote the corresponding field. Let V be an 
algebraic vector bundle on C. The fiber of V over r\ is denoted by V^, which is the 
K(rj)-vector space. 

If we are given a K(rf)-vector subspace C V^, then there exists the unique vector 
subbundle V ofV, whose fiber over rj is V'. 

Proof. — We put t := rankF and s := rankl^. Let G(t,s) denote the Grassmann 
variety of the s-dimensional subspaces of Cf. Let Q be any closed point of C. We 
take a local frame u\,..., ut of V on a Zariski neighbourhood of Q. Let A(Q) denote 
the local ring at Q in C. The fraction field of A(Q) is naturally isomorphic to K(rj). 
By using the frame u1,…ut we identify V<g>A(Q) and A{Q)®t. The K(rj)-subspace 

Vn of A(Q)®t (g) K(rj) — Kirf)®1 gives the morphism ip : Spec K(rj) —> G(t,s) over 
Spec(C). Since A is a discrete valuation ring and G(t, s) is proper, the morphism ip is 
uniquely extended to Tp : Spec(v4) —> G(t, s) by the valuative criterion for properness. 
(See Theorem 4.7 in [20], for example.) It gives the extension of Vn around Q. 

By using the lemma, we can extend Wn to the filtration W of 1 Gr F ( c ^|^.) in the 
category of vector bundles on Di due to the smoothness of Di and dimD^ = 1. By 
our construction, Mi(Wk) C Wk-2 and dimGrj^ = d imGr^. The endomorphism 
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ReSi(O) preserves the filtration W on 1 GrF (cE\Di), and the nilpotent part of the 
induced endomorphisms on Giw 1 G r ^ \ C E \ D I ) are trivial. 

Let us take the refinement of the filtration lF. For any a G]Q — 1,Q], we have 
the surjection na : iFa(cE)(Di) —> * G r F ( C £ | D J . We put lFajk ~ T T " 1 ^ ) . We use 
the lexicographic order on ]ci — 1, cA x Z. Thus we obtain the increasing filtration l F 
indexed by ]q — 1,q] X Z. The set Si (a,k) G]c2 - l,Ci] x Z PGr(<,a) = 0 is 
finite. 

Let ifi : Si —>]ci — 1, q] be the increasing map given by <^(a, k) :— a + /ce. We 
put as follows: 

iFb

(E) 

ifi (a,k) <b 
lF(a,k) 

Thus we obtain the c-parabolic structure F ^ — (lF^ | i G S). 
Let P be any point of Z .̂ Take a holomorphic coordinate neighbourhood 

(Up, Z\, z2) around P such that Up Pi Di = {zi = 0}. Then we have the expression 
0 = f\(zY,z2) · dzi/zi + f2(21,22) · dz2. Then, f0(0,z2) (j = 1,2) preserve the 
filtration %F^\ Therefore, it is easy to see that ( C E , F ^ e \ 0 ) is c-parabolic Higgs 
bundle on (X,D). By our construction, it has the desired property. Thus the proof 
of Proposition 3.26 is finished. 

The following proposition is standard. 

Proposition 3.28. — Assume that ( C E , F , 0 ) is fiL-stable. If e is sufficiently small, 
then the e-perturbation ( C E , F ^ e \ 0 ) is also HL-stable. 

Proof. — Let C E C C E be a saturated subsheaf such that 0 ( C E ) C C E 0 ^ 1 , 0 ( logD). 
Let F and F^ ^ be the tuples of the filtrations of C E induced by F and F ^ respec­
tively. There is a constant C, which is independent of choices of C E and small e > 0, 
such that \IIL(cE, F ) — /JLL(cE, F^ )̂| < C-e. Therefore, we have only to show the ex­
istence of a positive number 77 satisfying the inequalities IIL(CE, F) +rj < H L ( c E , F ) , 
for any saturated Higgs subsheaf 0 7̂  C E C C E under the \IL-stability of ( C E , F , 0 ) . 
It is standard, so we give only a brief outline. Due to a lemma of A. Grothendieck 
(see Lemma 2.5 in [19]) we know the boundedness of the family Q(A) of saturated 
Higgs subsheaves C E C C E such that degL( ci?) > —A for any fixed number A . 

Let us consider the case where A is sufficiently large. Then IJ,L(CE*) is sufficiently 
small for any C E 0 Q(A). On the other hand, since the family Q(A) is bounded, the 
function HL on Q(A) have the maximum, which is strictly smaller than HL(CE*) due 
to the //^-stability. Thus we are done. 
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3.4. Mehta-Ramanathan Type Theorem 
3.4.1. Statement. — We discuss the Mehta-Ramanathan type theorem for 
parabolic Higgs sheaves. Let X be an n-dimensional smooth irreducible projec­
tive variety over C with an ample line bundle L . For simplicity, we assume the 
characteristic number of k is 0. Let D b e a simple normal crossing divisor of X. 

Proposition 3.29. — Let (V*,0) be a parabolic Higgs sheaf over (X,D). It is fiL-
(semi)stable, if and only if (V*,6)\y is fiL-(semi)stable, where Y denotes a complete 
intersection of sufficiently ample generic hyper surf aces. 

We closely follow the arguments of V. Mehta, A. Ramanathan ([41], [40]) and 
Simpson ([55]). See the papers for more detail. 

3.4.2. W-operator. — In the following, let k denote a field of characteristic 0. 
Let X be a smooth projective variety over /c, with an ample line bundle L . Let 
V be a simple normal crossing divisor of X. Let W be a vector bundle on A\ A 
W-valued operator of a parabolic sheaf T4 on (X,V) is defined to be a morphism 
rj : V* —> K (g) W. A W-subobject of (K,^) is a saturated subsheaf F C V such 
that rj(F) C F 0 W. We endow F with the induced parabolic structure. A parabolic 
sheaf with a W-valued operator (V*,r)) is defined to be JIL-semistable if and only if 
ML(^*) < ML(K) holds for any W-subobject F* cV*. The //^-stability is also defined 
similarly. 

In general, we have the W-subobjects F* C K with the properties: (i) µL(G)< 
HL{F*) for any W-subobject G* of (V*,rj), (ii) if //L(G*) = /J>L(F*), we have rank(G) < 
rank(F). Such F* is uniquely determined, which can be shown by using an argument 
similar to the last part of the proof of Proposition 3.28. It is called the (3- W-subobject 
of (V*,r}). By a similar argument, we also obtain the Harder-Narasimhan filtration. 

3.4.3. Weil's Lemma. — In general, for a given projective variety X with a normal 
crossing divisor T> — Ujes ^j-> a Pa^r °f a n n e bundle C on X and a tuple a = (CLJ \ j G 
S) G RS is called a parabolic line bundle on (X,V). We can regard them as the 
a-parabolic sheaf on (X,V) in an obvious manner. Let Pic(X, V) denote the set of 
parabolic line bundles on (X,U). 

Let us return to the setting in Subsection 3.4.1. For simplicity, we assume 
Hl(X,Lm) = 0 for any m > 1 and i > 0. We put S m := H°{X,Lm) for m G Z > i . 
For m = ( m i , . . . , m n _ i ) G Z™ 1̂, we put 5 m := n ! = i Let Z m denote the corre­
spondence variety, i.e., Zm — {(#, s i , . . . , s n - i ) £ XxSm, | Si(x) = 0, 1 < i < n—l}. 
The natural morphisms Z m —> 5 m and Z m —> X are denoted by g m and p m , 
respectively. We put Zm := Z m Xx D and Zm := Zm Xx Dj. Recall that Zm are 
irreducible, because Zm is a vector bundle over Dj. Let Km denote the function field 
of Sm- We put Ym := Zm xSrn Km, Y% := Zm3 x S m Km and Y£ := Zm xSrri Km-
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The irreducible decomposition of Z^ Xsm Km is given by \Jj Zm Xs-^ Km- Recall 
the following result of Mehta and Ramanathan, by whom such a type of lemma is 
called Weil's Lemma. 

Lemma 3.30. — Assume n > 2. For m = ( r a i , . . . , ran_i) with each ni-, > 3 ; the 
natural map Pic(X,L>) —>Pic (y m , y^ ) is bijective. 

Proof. — Since we have the natural correspondence between the irreducible compo­
nents of D and Y^, the claim is obviously reduced to Proposition 2.1 of [41]. 

3.4.4. A family of degenerating curves. — As in [41], we fix a sequence of 
integers ( a i , . . . , oj n_i) with oti > 2. We put a :— Y\cti. For a positive integer m, 
let (m) denote (a™-> • · · ? &™-i)- Let V* be a coherent parabolic sheaf on (X, D). For 
each m, we can take an open subset Um C S(m) such that (i) Q^^{s) are smooth 
(s e Um), (ii) q^(s) intersects with the smooth part of D transversally, (iii) V* 
is a parabolic bundle on an appropriate neighbourhood of each Q^^(s) C X. In the 
following, we will shrink C/m, if necessary. In Section 5 of [41], Mehta and Ramanathan 
constructed a family of degenerating curves. Take integers I > m > 0. Let A be a 
discrete valuation ring over k with the quotient field K . Then there exists a curve C 
over Spec .A with a morphism (p : C —> X x Spec A over Spec A with the properties: 
(i) C is smooth, (ii) the generic fiber CK gives a sufficiently general K-valued point 
in U\, (iii) the special fiber Ck is reduced with smooth irreducible components C\ 
(i = 1,... ,al~rn) which are sufficiently general /c-valued points in C/m. We use the 
notation Dc to denote C Xx D. We also use the notation Dj^Ci Dj,cK

 a n d D^ci in 
similar meanings. Then, we obtain the parabolic bundle ip*(V*) on (C,Dc), which 
is denoted by V*\c- The restriction to CK and C£ are denoted similarly. Let W* 
be a parabolic subsheaf of V*\cK- Recall that W can be extended to the subsheaf 
W C V\c, flat over Spec A with the properties: (i) W is a vector bundle over C, 
(ii) W\ci —> V\Cz are infective. (See Section 4 of [41].) In particular, we have 

I k I k 
degL(det(W\cK)) = S degL(det(H /|Ci)). We have the induced parabolic structure of 
W\C^ as the subsheaf of K|c* ? f° r which w e have wt(W/*, DJ:cK) > wt(W|c**' -^cj.) 
for each Dj. Therefore, we obtain / /L(W*|C k ) — Si /^(^ic j . ,* ) - If the equality 
occurs, we have wt(W/*, D^CK) — wt(^|c**o Dj Cz) for any i and j , and VF* with the 
induced parabolic structure is the parabolic bundle. 
3.4.5. The arguments of Mehta and Ramanathan. — Let W be a vector 
bundle on X. Let (V*,rj) be a parabolic sheaf with a W-operator on (X, D). 

Lemma 3.31. — (V*,rj) is ^L-semistable, if and only if there exists a positive integer 
mo such that (V*, 77) | v"(rri) is a^so tiL-semistable for any m > mo. 
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Proof. — We have only to show the "only i f part. We reproduce the argument 
in [41]. First, assume (V*,?7)|y(m) is /XL-semistable for some m, and we show that 
(V*,TJ)\Y(1) is /iL-semistable for any I > m. We take a family of degenerating curves 
C as in Subsection 3.4.4. We have the W-subobject Wi^ C K | c K - We extend it 
to W C V\c- Note that it is naturally the W-subobject. Since we have HL(WI*) < 

E i i M ^ c j * ) a n d VL(V*\CK) = E i ^ ( K | c j ) ?
 w e obtain / i L (W z *) < M L ( K | C K ) -

Thus, we obtain the semistability of K | Y ( 0 · 
We will show that V* is not semistable if K | Y ( M ) are not semistable for any m. 

By shrinking UM appropriately, we may have W-subobjects W m * of plrM\V<-i v 

such that Wm/q-i (^ is the /3-W-subobiect of (VL 77). - i ,e>> for any 5 G I7 m . The 
restriction Wm*|y ( m ) is the (3-W-subobject of (K , ??)|y(m) · We have the parabolic line 
bundle £ m * G Pic(X, D) corresponding to det(WM,*)|Y ( M ) G Pic(F ( m), F ( ^ } ) . 

We put (5m \= VLiWm^Y ) . For / > m, we obtain /?/ < a / _ m · /3m by using 
a family of degenerating curves. Since we have f3m = am · /iz,(£m*)/rank(Wm), 
we obtain /XL(£Z*) / rankVFj < \IL (Cm * ) / rank Wm. On the other hand, we have 
/3m > Q^ m / iL (K) , and the sequence {/iL(An*)} is bounded. Since {wt(£ m ,Dj)} is 
finite, we may take a subsequence Q C {m} such that deg L (£ m ) , wt(£ m ,D J ) and 
rank(VKm) are independent of the choice of m G Q. 

Let us show that £ m (m G Q) are isomorphic. Take / > m in Q. We take 
a family of degenerating curves as above. We extend W\\cK to W on C. From 
A =jxl-m/3m, ft = fJLL(Wu) < E^L{Wn,) and /xL(W|cj*) < £* , we obtain 
ML(^|C**) ~ a n d thus ^ 1 ^ * a r e /^-W-subobjects of K|cj- ^ n particu­
lar, /iL(det(W|C» „)) = /iL(A*|c^)- W e a l s o obtain / i L (Wu) = ^ ML(W|C* *)> 
and hence vtt(W\C^, D^Cx) = wt(W\*, D^cK) — wt(£/*, Dj) . Hence we obtain 
degL (det(VF|Ci)) = degL(/^|c^), and thus — det(W). Since the parabolic 
weights are also same, we have det(W')* ~ £/*|c- Since C£ are sufficiently general in 
Um, we obtain A*|Y ( M ) — Cm*\Y{my a n d hence and £ m * are isomorphic. Now, 
let £* denote Li* (/ G Q). 

Let us show the existence of a W-subsheaf W of V, such that W,-i /cn = . -1 , x 
for a sufficiently large m. Such W will contradict with the semistability of (V ,̂ 77). 
Let U be an open subset of X on which V is a vector bundle. We may assume that 
codim(X — U) > 2. We put r = rank(Wm) for m G Q. Let G denote the bundle 
of Grassmann varieties on U, whose fiber over q G U consists of the subspaces of V\q 

with rank r. We have the natural embedding of G into the projectivization of /\R V\JJ. 
Let ^ C /\R V\u denote the cone over G. 

Let F denote the double dual of f\r V. We have the naturally induced saturated 
parabolic structure of F . Let Wora(£*, F*) denote the sheaf of homomorphisms from 
C* to F*, which is reflexive. We put H := H°(X, H.om(C*, F*)). For any <fi G iJ , 
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we put E(</>) := {x G U\(j)(x) G E}. Since (E(0) |0 G i f } is bounded family, we 
have q^)(s) ^ ^(^) f° r a sufficiently large m and 5 G C/m, unless E(</>) 7̂  U. On the 
other hand, there exists a non-trivial morphism </> G i f such that C E(0) for 
such m and s, due to the above consideration and General Enriques-Severi Lemma 
(Proposition 3.2 [41]). Hence, we obtain E(</>) = U for such <\>. The image of (/) 
naturally induces the saturated subsheaf W C V. If m is sufficiently large, we also 
obtain rj(W) C W 0 W. To see it, we recall the boundedness of the family S of the 
saturated subsheaves F of V such that deg(F) > C, for some fixed C (Lemma 2.5 
in [19]). So we can take a large m such that 77(F) C F 0 W (F G 5) if and only if 
7/(F|g-i(s)) C F|g-i( s) 0 W for a sufficiently general s G f /m . Thus we are done. 

Lemma3.32. — (V*,7/) is IIL-stable, if and only if there exists a positive integer mo 
such that ("V*, v)\Y(M) ^s a^so -stable for any m > mo-

Proof. — We reproduce the argument in [40]. First, let us see (V*, v)\q-1 (s) 18 simple 
for sufficiently large m if (V*, fj) is /instable. To show it, we have only to consider the 
case K is reflexive and saturated. Let 7rx>ra((V*, 77), (K , rj)) be the sheaf of endomor-
phisms of V which preserves the parabolic structure and commutes with 77. Then, it 
is easy to check Hom((V*,rj), (Vi, 77)) is reflexive by using Lemma 2.19, and hence the 
claim is shown by applying General Enriques-Severi Lemma. 

Let us recall the notion of socle of semistable objects, which is the direct sum of 
stable subobjects (See [40] for more precise. Recall we have assumed the characteristic 
of k is 0.) Assume that (V*, v)\Y(M) is stable for some m. Then, it can be shown that 
(V*,^)|y(z) is also stable for any / > m by using a family of degenerating curves and 
the socle of (V*, v)\Y(I) , instead of /3-W-subobjects. So we assume that ("V*, 77)|y(m) is 
not stable for any m, and we will show that (V*, 77) is not //^-stable. 

Let N be sufficiently large. By shrinking Um appropriately for m > TV, we may 
assume (i) (V*, 77)̂ -1 ^ is simple and semistable for any s G Um, (ii) the socle of 
(V*,n)*Ym is extended to l V m * C P^Kiq-^Urn)' ( m ) Wm*\q-^){a) i s t h e s o c l e o f 

( ^ V m ) ^ ) a i l y S G S i n C 6 ^* , 7 / ^(m)W ^ S i m P l 6 ' W m ^ PU)VW^)(Urn)' 
We have the parabolic line bundle £ m * on (X,D) corresponding to det(Wmj|c|y ) 
on ( F ( m ) , Y ^ ) . We have /iz,(£m,*) = rank(lVm) · /JLL{V*). Hence, we can take a 
subsequence Q C {m} such that ranklV m , wt(£ m *, Di) and deg(£m) are independent 
of m G Q. We put r := rank Wrn for m G Q. 

Let Gm denote the bundle of Grassmann varieties on Q^(Um), whose fiber over 
Q G {Um) consists of the subspace of (V) |g with rank r. We have the natural 
embedding of Gm into the projectivization of P*(m){/\r V) \ - 1 m y ^ m denote 
the cone over G m . 

Take mo G Q, and let E denote the set of £* G Pic(X, D) with //£,(£*) = r · 
such that there exists (j) : £*|y ( m o ) —> /\r K|y ( m o ) with 0(£|y ( m o )) C G m o and 
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f](lm(/)) C Im0 x W. By the same argument as the proof of Lemmas 2.7-2.8 of [40], 
it can be shown that E is finite. 

Let us show that L\ G E for any I G Q with / > TTIQ. Let C be a family of degen­
erating curves. We extend Wi\cK to W C V*. We have the inequalities /iz,(Wj*) < 
EML(V^|C£*), ^ L ( W \ C I ^ ) < <xmiJLL(V*) and the equality/i L (W/*) = alfjLL(V*). Thus, 
the inequalities are actually equalities. Hence, we have wt(det(W)|^i Z}^*) = 
wt(Ci*,Dj) and /iL(det(W)|C;> s | () = /iz,(A*|cj)- Therefore, we obtain £ U | C ~ 
det(W)*. In particular, A*|cj — det(VFj^i)*. Since CL

K are sufficiently general, 
we obtain £j * G F. 

Then, we can take a subsequence Q' C Q such that Cm* are isomorphic (m G 
The rest of the argument is same as the last part of the proof of Lemma 3.31. 

3.4.6. End of Proof of Proposition 3.29. — We have only to show the "only 
if" part. We reproduce the argument in [55]. Assume the /^-stability of (V*,6). Let 
Y = Y\ D · · · nYt be a generic complete intersection, where degL(Yi) are appropriately 
large numbers. We put Y& := Y1 n · · · D Y2 and Y ( 0 ) := X. We also put D(i) := 
F> H and £>(°) = F>. We put Ci := n L i ( d e S L ( ^ ) / Jx ci(L)n)- We Put W(i):= 
QY(i) (log D^)\Y. Let 6^ denote the induced W(i)-operation of K|Y- We may assume 
that (Kc|y, Oy )̂ is //^-stable due to Lemma 3.32. By applying the Mehta-Ramanathan 
type theorem to the Harder-Narasimhan filtration of we may have a constant B 
such that (i) it is independent of the choice of Y{ and a sufficiently large deg L(Yi), (ii) 
par-degL(F*) < B · G\ for any F* C K|Y- We show that (V*,0(i)) are /x^-stable by 
an induction. 

Assume that the claim holds for i — 1. Let F* be a W(i)-object of K|Y such that 
HL(E*) > /iL(Kc|y) = /ALC^*) ' Gi, and we will derive the contradiction. We put 
G := V/F, which is provided with the induced parabolic structure. Then, we have 
the induced map 0 : F* —> G*(—Yi). Let H denote the kernel. Let N denote the 
saturated subsheaf of G(—Yi) generated by F/H, provided with the induced parabolic 
structure. We have fi((F/H)*) < /JL(N*). Let J C E*(—Yi) denote the pull back of 
N via E(—Yi) —> G(—Yi) with the induced parabolic structure. We obtain the 
following: 

(16) B-Ci> par-degL(J(y i)«) > par-degL(F») + par-degL(N*(Yi)) 
> 2par-de g i(F*) - par-deg^ff*) + mnk(F/H) · deg i(C(r,)|y) 

> (2rank(F) · M ( K ) - B) • C\ + rank(F/#) · degL(0{Yi)lY) 

If degL(Yi) is sufficiently large, degL(0(Yi)\y) is much larger than C\. Hence 
rank(F/iFj must be 0, and hence F is actually a W^^-subobject, which contradicts 
with the /Zi-semistability of (V*/Y, 0(i-1). Thus the induction can proceed. 
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3.5. Adapted Metric and the Associated Parabolic Flat Higgs Bundle 

We recall a 'typical' example of filtered sheaf. Let E be a holomorphic vector 
bundle on X — D. If we are given a hermitian metric h of E, we obtain the Ox-
module cE(h) for any c G RS, as is explained in the following. Let us take hermitian 
metrics hi of O(Di). Let oi : O —> O(Di) denote the canonical section. We denote 
the norm of o~i with respect to hi by Icr^^. For any open set U C X, we put as 
follows: 

T(U,cE(h)) f€T(U\D,E) f h o 0~i — Cj—e 
hi Ve > 0 

Thus we obtain the (9x-module cE(h). We also put E(h) UccE(h). 

Remark 3.33. — In general, cE(h) are not coherent. 

Definition 3.34. — Let E* be a filtered vector bundle. We put E := E = E\X_D. 
A hermitian metric h of E is called adapted to the parabolic structure of 2£*, if the 
isomorphism E ~ E is extended to the isomorphisms cE(h) ~ C E for any c G RS. 

The following result is proved in [44]. 

Proposition 3.35. — Let (E, <9#, 0, h) be a tame harmonic bundle on X — D. Then, we 
obtain the c-parabolic Higgs bundle (cE(h)*,6) on (X,D) by the above construction. 

Proof. — By Theorems 8.58 and 8.59 in [44] (the A = 0 case), cE(h)* with the 
induced filtrations is a c-parabolic bundle. By Corollary 8.89 in [44], 9 is regular. 

3.6. Convergence 
We give the definition of convergence of a sequence of parabolic Higgs bundles. 

Although we need such a notion only in the case where the base complex manifold 
is a curve, the definition is given generally. Let X be a complex manifold, and 
D = [ J j e S Dj be a simple normal crossing divisor of X. Let p be a number which is 
sufficiently larger than dimX. Let b be any positive integer. 

Definition 3.36. — Let 0 W , F{l\ 0 » ) (i = 1,2,...) be a sequence of c-
parabolic Higgs bundles on (X, D). We say that the sequence ((E(i), A(i), F(i), 0(i))) 
weakly converges to d(°°\ F ( o o ) , 0(°°)) in L\ on X, if there exist locally 
L^-isomorphisms O(i) : E^ —> E(00) on X satisfying the following conditions: 

- The sequence {$M(d^) - <9 ( o o )} converges to 0 weakly in L^_x locally on X. 
- The sequence {$M(0M) - 0(°°)} converges to 0 weakly in L\_x locally on X, as 

sections of End(£(°°)) 0 fi^logD). 
- For simplicity, we assume that <£̂ ) are C°° around D. 
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— The sequence { $ « ( ^ ( 0 ) } converges to J i n an obvious sense. More pre­
cisely, for any 5 > 0, j G S and a G]CJ — l,Cj], there exists mo such that 
rank^Fi o o ) = rank^ 'F^ and that JFa

(oo) and $ ( i ) ( J 'F a
( ^) are sufficiently close 

in the Grassmann varieties, for any i > m®. 

Lemma 3.37. — Let X be a smooth projective variety, and D be a simple nor­
mal crossing divisor of X . Assume that a sequence of c-parabolic Higgs bundles 
{{E^\d(L\F^\0^)} on (X,D) converges to (E^°°\ d{°°\ F ( o o ) , 0(°°)) weakly in L\ 
on X . Assume that there exist non-zero holomorphic sections of ( E ^ \ ) such 
that 0W(sW) = 0 and that G J F 0 ( E ^ ) for any P G D3 and j G 5. 

Then there exists a non-zero holomorphic section s^°°^ of [E^°°\ 8^°°^ such that 
0(oo)(s(oo)) = o a n d t h a t s(°o) G J F 0 ( E ^ ] ) for any P G D3 and j G 5. 

Proof. — Let us take a C7°°-metric h of #(°°) on X. We put t& := Since 
p is large, we remark that <3>̂  are C°. Hence we have maxpGx \t^(P)\j^. We may 
assume maxp ex t(i)(P) = 1. 

We have O(i)(A(i)) = d(oo) + a», and hence 0 ( o o )*W = -a*(*«). Due to \t&\ < 1 
and az —> 0 weakly in L v

h _ x , the L^-norm of £^ are bounded. Hence we can take an 
appropriate subsequence {t^ | i G 1} which weakly converges to in L v

h on X. In 
particular, {t^} converges to a section s^ in C°. Due to maxp |s(°°)(P)|^ = 1, the 
section s(00) is non-trivial. We also have A(00) s(00) = 0 in L v

h _ x , and hence s^ is a 
non-trivial holomorphic section of (E^°°\ d^). It is easy to see that s^00"1 has the 
desired property. 

Corollary 3.38. — Let (X, D) be as in Lemma 3.37. Assume that a sequence of c-
parabolic Higgs bundles , 5 W , F^\ 0^)} on (X,D) weakly converges to both 
( E , d E j F , 0 ) and (ER, 3E' ? F\ 9') in Lv

h on X . Then there exists a non-trivial holo­
morphic map f : (E,8E) —> (E'^OE1) on X which is compatible with the parabolic 
structures and the Higgs fields. 
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CHAPTER 4 

A N O R D I N A R Y M E T R I C F O R A P A R A B O L I C H I G G S 
B U N D L E 

In this chapter, we would like to explain about an ordinary metric for parabolic 
Higgs bundles, which is a metric adapted to the parabolic structure. Such a metric 
has been standard in the study of parabolic bundles (for example, see [4], [36] and 
[35]). It is our purpose to see that it gives a rather good metric when the parabolic 
Higgs bundle is graded semisimple. (If it is not graded semisimple, we need more 
complicated metric as discussed in [5] and [52].) After giving estimates around the 
intersection and the smooth part of the divisor in Sections 4.1 and 4.2, we see some 
properties of an ordinary metric in Section 4.3. 

4.1. Around the Intersection Di D Dj 

4.1.1. Construction of a metric. — We put X (zuz2) e C2 zi 
1 

Di := {zi — 0} and D = D\ U D2. Take a positive number e, and let uoe denote the 
following metric, for some positive number N: 

EN+2 m Zi 2e Zi 2 dzi · dzi 
zt 

2 
Let (CE*,0) be a c-parabolic Higgs bundle on (X,D). We put E := CE\X_D. We 

take a positive number e such that lOe < gap(ci£*). We have the description: 

θ = ή 
dz\ 
Z\ 

f2 

dz2 

z2 

fi e End{cE). 

We have Reŝ (#) = fi\Di-

Assumption 4.1 
- The eigenvalues of Resi(6) are constant. The sets of the eigenvalues of Reŝ (#) 

are denoted by Si. 
— We have the decomposition: 

cE e 
aeSixS2 

cE(x such that fi{cEa) C cEa. 
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There are some positive constants C and 77 such that any eigenvalue (3 of fi | E a 

satisfies \f3 — ai\ < C · l^l 7 7 for OL = (or, a^)-

Remark 4.2. — The first condition is satisfied, when we are given a projective surface 
X' with a simple normal crossing divisor D' and a c-parabolic Higgs bundle (c>Er*, 6') 
on (X',L>')> such that (X, D) C {X',D') and ( c£*,0) = (c/£"*, 0')|x- The second 
condition is also satisfied, if we replace X with a smaller open subset around the 
origin O = (0,0). 

In the following, we replace X with a smaller open subset containing O with­
out mentioning, if it is necessary. Let us take a holomorphic decomposition cEa = 
©aeH 2 Ua,a satisfying the following conditions, where bi denotes the i-th component 
of b. 

e 
b<a 

U(X,b\o 1Fa1 I O H 2Fa2 I O H cEa | 0 
bx<a 

Ua,b I Di cEa 1 £>. n 2 F a . 

We take a holomorphic frame v = (vi,..., vr) compatible with the decomposition, 
i.e., we have (a(vj), OL(VJ)) G R? x C 2 for each Vj such that ?jj G Ua(v ^a(Vjy Let /ig 
be the hermitian metric of C E for which v is orthonormal. Let ho be the hermitian 
metric of E such that ho(vl,vJ) = h'Q(vi,Vj) · l ^ l " 2 0 1 ^ · | z 2 r 2 a 2 ( ^ \ where a ^ ) 
denotes the j - t h component of a(vi). We put as follows: 

A = Ai +A2l Ai e — Q>i 
dzi 

ai 

1dUa,a . 

Then, we have dh0 = + A We also have R(ho) = R{h'0) = 0. 

4.1.2. Estimate of F (ho) in the graded semisimple case 
Proposition 4.3. — If (CE*,6) is graded semisimple in the sense of Definition 3.25; 

£/zen F (ho) is bounded with respect to uoe and ho-

Proof. — Since we have F (ho) = R(ho) + [0, 0̂ "] +<9ho0 + d0''', we have only to estimate 
[0,0^], dhO0 and 50t. We have the natural decompositions fi = for z = 1,2, 
where fie* £ End^E^). Since the decomposition of E1 = © E Q , is orthogonal with 
respect to ho, the adjoint f\ of with respect to ho preserves the decomposition. 
Hence we have the decomposition fj = © / / a , and fja is the adjoint of fia with 
respect to h0\ua^-

Let us show that [0,0^] is bounded with respect to /io and uoe. We put := 
fi-(Ba <*i-idc^ for z = 1, 2, and then we have [/,, f}} = © Œ [iV,, iVJ]. Since (CE*, 0) 
is graded semisimple, we have | D l i^Fa) C 1 E < a . We also have Ni | £>2 (2Fa) C 2 E a . 
Hence, we obtain \Ni\h < C · | ^ i | 2 e for some positive constant C. Similarly we can 
obtain the estimate |A2^o < C · |^2|2e- Thus we obtain the boundedness of [0,0^] 
with respect to ho and UJ€. 
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Let us see the estimate of dho0. We have the following, where a\ denotes the first 
component of ct: 

dho fi 
dz1 

Zi 
Oh0 

OL 
OLI · idEa 

dzi 
z1 

Oh0 iVi 
dz1 

Z\ 
A2, N± 

dzi 
zi 

The first term is 0. We put Q := dz\ A dz2/z\ · z2. Let us see the second term 
dh'QNi-dzi/zi =: G0-U. Then, G0 is a C°°-section of End(E') satisfying G0 \ D l C~Fa) C 
1F<a and GQ | D2 — 0· Let us see the third term [A2l N\] · dz2/z2 = : Gi · O. Then, 
G\ is a C°°-section of End(E') such that Gi\ Dt(%Fa) C lF<a. Hence, the second 
and the third terms are bounded. Thus we obtain the boundedness of dho0. Since 
dO^ is adjoint of dhQ0 with respect to /io, it is also bounded. Thus the proof of 
Proposition 4.3 is finished. 

4.2. Around a Smooth Point of the Divisor 

4.2.1. Setting. — Let Y be a complex curve, and L be a line bundle on Y. Let hi 
be a neighbourhood of Y in L . The projection L —> Y induces TT : U —> Y. Let 
a denote the canonical section of 7r*L. Let | · | be a hermitian metric of 7r*L. Thus, 
we obtain the function |a| : hi —> R. Let J 0 denote the complex structure of U as 
the open subset of L, and let J be any other integrable complex structure such that 
J — Jo = 0(|cr|). We regard U as a complex manifold via the complex structure J. 
The (0, l)-operator d is induced by J. 

Let (E, 8E) be a holomorphic vector bundle on U. We put Ey := E\Y, and let F 
be a filtration of Ey in the category of holomorphic vector bundles indexed by R. For 
later use, we also consider the case where F is not necessarily a c-parabolic filtration 
for any c G R, i.e., S(F) = {a | Gr^(E) ^ 0} is not contained in any interval ]c— 1, c] 
of the length 1. Thus E* = (E, F) may be a parabolic bundle in a slightly generalized 
sense (Remark 3.6). But, if F is not a c-parabolic filtration, we will assume (i) J = JQ 
and (ii) the decomposition E = (J) Eu (see Subsection 4.2.2) is given holomorphically. 
In the case F is a c-parabolic filtration, we have the number gap(F) := gap(F, F) 
as in Subsection 3.1.1. Otherwise, we put gap(F) := max{|a — b\ ^ 0 | a, b G S(F)}. 
Let e be a positive number such that lOe < gap(F). Let a; be a Kahler form of 
U. Take a small positive number C and a large real number N. Then, we put 
uje := UJ + C · eN\/^ldd\(j\2e, which gives a Kahler form of U \ Y. 

Let 6 be a Higgs field of E* in the sense of Remark 3.6. We put / := Res(#) G 
End(Ey). 

Assumption 4.4. — The eigenvalues of / are assumed to be constant on Y. (See 
Remark 4.2.) 
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4.2.2. Construction of a metric. — We construct a hermitian metric of E\U_Y 

adapted to the filtration, by following [35] and [36] essentially. (See also [4].) We 
have the generalized eigen decomposition Ey — 0 a G C G r ^ ( E y ) with respect to / . 
We also have the generalized eigen decomposition Grf(Ey) = 0 a G r ^ ^ ( E y ) of 
Grf (EY) with respect to G r F ( / ) . Then we put EyiU := Gr^' E (E y ) for u G R x C, 
and EY := 0 E y > . 

Let hf
0 be a (7°°-metric of E on hi. The holomorphic structure of E and the metric 

h'Q induces the unitary connection Vo of E on hi. We put hy := h^Y. We assume 
that the decomposition Ey = 0Gr^ (Ey ) is orthogonal with respect to hy. The 
holomorphic structure of Ey and the metric hy induce the unitary connection V E Y 

of Ey. Thus the connection V7T*EY is induced on T T * E Y . Then, we can take a C°°-
isometry & : 7r*Ey —> E such that Voo$ - &O7T*VEY — 0(|cr|) with respect to CJ, as 
in [35]. To see it, we take any isometry <J>' such that <£>jy is the identity. We identify E 
and n*E via <J>' for a while. Let u(E) be the bundle of anti-hermitian endomorphisms 
of E. We have the section A — Vo — V ^ * E Y of u(E)<g)^. We can take a C°°-section B 
of u(E) such that B — 0(\cr\) and V ^ ^ ^ ^ - i = 0(|cr|), which can be easily checked 
by using the partition of unity on Y. Then we obtain g"1 o V^* E Y 9 — Vo = 0(|cr|) for 
g = exp(B), which implies the existence of an appropriate isometry <I>. We identify 
E and 7r*Ey via such a $ as C°°-bundles. 

The metric hy induces the orthogonal decomposition GrE (Ey) = (&AER G(a,a) such 
that 0 a < & G{a,a) = FbGr^(E). We have the natural C°°-isomorphism QU ~ Ey ? u , 
and thus Ey ~ Ey. We identify them as C°°-bundles via the isomorphism. Let hyiU 

denote the restriction of hy to QU for u G R x C We put E n := 7r*£/u, and thus 
E = 0 E W and / i 0 = 7r*/iy = 07r* / i y n . We put as follows: 

(17) h0 : = 0 ^ * ^ , ( a , a ) - k r 2 a -

4.2.3. Estimate of R(h0). We put f : = 0 a - ^ E A ^ A · 

Lemma4.5. — R(ho,dE) is bounded with respect to uje and ho- More strongly, we 
have the following estimate, with respect to ho and CJ€ : 

(18) R(h0,dE) e 
ueRxc 

7r*R(hy,u,dÊYu) r-ddlog\o-\-2 + 0(\a\e). 

Proof. — Let d\ denote the (0, l)-part of 7r*Vjg . Let T denote the (0, l)-part of 
V 0 - 7r*VEY- We put S = 8Ey - dgY. We put Q = T + TT*S. Then, we have 
dE = di + Q. We have S(FA) C E < a 0 and T ( y = 0 in (End(E) 0 ft^)|y. 
Hence, we have Q = 0(|cr|4e). The operator di^o is determined by the condition 
dho(u, v) = ho{d\u, v) + /io(^, di:h0v) for smooth sections ^ and i ; of E. Similarly, we 
obtain the operator d\^'. 
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Let Q\IQ denote the adjoint of Q with respect to ho, and then dE,h0 = di,h0 — Qh0-
Hence we obtain R{dE,h0) = [ 5 i , 6 V 0 ] - diQ\Q + dljhoQ - [Q^QiJ- Since Q 
and Q\ are 0(\a\4e) with respect to uoe and ho, so is [Q,Q\^\- We have di^0Q = 

di,h'QQ+d^°Z l a l - 2 [ r , Q\- Since Q is sufficiently small, the second term is 0(\a\2e) with 
respect to cue and ho. Since Tjy is 0 in (End(P) 0 we have di^T = 0(|cr|2e) 
with respect to co£ and h0. Since ( d i ^ S) | y (P a ) C (P< a 0 ^^( logF) 0 ^ 0 , 1 )|y, 
we have di^S = 0(|cr|2e) with respect to /IQ and cj e. Thus, di:h0Q and the adjoint 
<9i<2l0 are also ^ ( M 2 6 ) w^n respect to cje and h0. We have [9i,9i 5^ 0] = p i ^ i , ^ ] + 
T · <9<91og |cr|-2. Since we have d\ + di^f

0 = ^ ^ * E Y our construction, we obtain 
\di,dlth>Q] = n*R(hY,dzY) + (d1,d1) + [dhh>0,dlih>j= 7r*R(hY,dSY) + 0(\v\2*) with 
respect to cue and /IQ- Thus Lemma 4.5 is proved. 

Corollary 4.6. — We have the following estimate with respect to ue: 

tYR(ho,dE) 
(a,a) 

7T* tr Ä(fty> ( a j a),9jB;V s ( a j a )) a · rank Gr £ (P) · <9<9 log | a | " 2 + O ( 1 ) 

4.2.4. Estimate of F(ho) in the graded semisimple case. — In this subsection, 
we assume that the filtration F (Subsection 4.2.1) is a c-parabolic filtration for some 
c e R. 

Proposition 4.7. — If (E*,0) is graded semisimple, F(ho) is bounded with respect to 
u€ and ho-

Proof. — We put po := © a · id# ( a a ) and ~p0 := ©o7 · id£ ( a a ) . Let P be any point 
of Y. Let (£7, z\,z2) be a holomorphic coordinate neighbourhood of (JA, J) around P 
such that U C\Y = {z\ = 0}. We are given the Higgs field: 

9 = h dzi 
z\ 

h · dz2. 

Since f2\y preserves the filtration P, f2 is bounded with respect to ho- It is easy to 
see [po,f2]\Y = 0· Hence [P07/2] is 0(|cr|2e) with respect to ho. We put f[ = f1— p0. 
Due to the graded semisimplicity of (E*,0), we have f[\Y(Fa) C F<a. Hence f[ is 
0(\a\2e) with respect to ho. Then it is easy to check the boundedness of [9,9^] with 
respect to uoe and ho, by a direct calculation. 

We have the following: 

0fi,ho(/l) 
dz\ 
z\ 

d1,h0(f1) dz\ 
z\ T , / i d log a 2 dz1 

¿1 
Qh0,f1 

dz\ 
z\ 

Then, d1h0fi- A • dz2 · dzi/21 is C°°-(2,0)-form of End(P), and A\Y(Fa) c P< a . 
Hence the first term is 0(\a\2e) with respect to ue and ho- Similarly, the same estimate 
holds for the second term. Since Ql = 0(|a|2e), the third term is 0{\a\e). 

We have dE,h0h ' dz2 = #1,^/2 · dz2 + [T, / 2 ] -Slog |cr|2 · cb2 - [Q{0, ¡2} · cb2. Since 
the first term is a C°°-2-form of End(P), it is 0(|<r|2e) with respect to uoe and ho- The 
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same estimate holds for the second term because of [r, f2](Ea) C F<a. Since Q*ho is 
(9(|cr|2e), the third term is 0(\a\e) with respect to ue and ho. Then Proposition 4.7 
is proved. 

4.2.5. Preliminary for the calculation of the integral. — Let hy — 0 hy,u 

be a hermitian metric of Ey for which ® Ey:U is orthogonal. We put h := ir*hY. We 
put A := dE,h0 ~ dE£-

Lemma 4.8. — We have the following estimates with respect to uoe: 

(19) tiA 
a 

a-rankGr^F) • d\og\a\~2 + 0(1) 

(20) tr(A-R(h0)) 
a,a 

7r*trR(Êya7Cnhy,a,a)-a-dlog\o-\ 2 

a,a 
rankEY.ata • a2 • ddlog\a\-2d\og\a\-2 tr 

'9Í 
T · d log o~ -2 Q] 0(1) 

(21) tr(A • R(h)) 
a,a 

7r*trR(Eya,a,hy 
a,a) 'd-d log 

a - 2 

- t r r-dlog|ff|- 2 Q,QÌ + 0(1) 

Proof. — We have 3 B , h o = dXK - Q\Q + T • 8 log |<x|-2 and dE$ = - Q l . We 
put P = d4h0 — 9j which is a C°°-section of ® End(.E„) £§> fi1,0. Thus, we have 
A = P + Q\ - Q{o + T · dlog \a\'2. Since QJ. and Q{o are bounded with respect to 
(cj e,/i), we obtain (19). 

Let us show (20). Since P Hh Q\Q is bounded with respect to ho and oje, we have 
the boundedness of tr((P + Qh0 ) · R(ho)) with respect to o;e. From (18), we obtain 
the following: 

(22) t r ( r · dlog\a\~2 · R(h0)) 
a,a 

n* ti R(Eya,a,hyaja) · a · <91og|a| 2 

a,a 
rank Py,a,a · a 2 · 99 log |a| 2 •dlog|a|-2 + 0 ( l ) . 

Let us see t r (Q l · P(/io)). We decompose it as follows: 

(23) trÍQi-foxAfc»]) t r ( Q i - ^ Q i o ) t r (Qi · 3i, f c oQ) tr (Qi-[Q,Ql 0 ] ) 

Since [di,di,h0] is bounded with respect to (cuei h), we obtain the boundedness of the 
first term. Recall Q\Q = (TT*S)IQ + T ^ q . Because of T|y = 0 in (End(P) ® fi0'1)^ and 
di,hoT = d1h0T + [r-aiog |cr|-2°r], we have d1MT\Y = 0 in ( E n d ^ g j f i ^ l o g y ) ® 

Because oidxT^ = ( d i ^ T ) ^ , it is easy to obtain 9 i T ^ = 0(|a|2e) with 
respect to (h,uje). We also have Th0 = 0(\a\2e) with respect to (/i,cje). Since 77*5 is 
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a section of 0 a > a / Hom(Eai0il Ea>iOC>) 0 ft0,1, we have 7r*S ô = 0(\a\2e) with respect 
to (h,uoe). Hence, and [Q^Q] are 0(\a\2e) with respect to (cje,h). Therefore, 
the fourth term in (23) is bounded. Because of 9i7r*S^o = (^i^o 7 r*^)l 0 ' 
9log |cr| 2 , 7r*S]yh , it is easy to obtain 9i7r*S^o = 0(\a\2e) with respect to (uje,h). 
Together with the estimate of diT^ above, we obtain the boundedness of 0\Q\Q with 
respect to (oje,h). Hence, we obtain the boundedness of the second term in (23). 
We have di^Q — + [F · 9log \o~\~2, Q], and di^Q is bounded with respect 
to (ue,h). Therefore, the third term is 0(1) + tr(Q[o[T · 9 log \(J\'2 , Q]). Thus we 
obtain (20). 

Let us show (21). Since P, Q l and Qh are bounded with respect to (o;e,fe), we 
havetr((P + Ql -Q^ o ) i i ( f t ) ) =0 (1 ) with respect too; e. We have iJ(fe) = {dlyd1^}-
9 i Q i + 9^(2 - [Q~iQ\- Because of d1 yT = 0(\a\2e) with respect to (oje,h) and 
a i > s i * 5 G © a > f l / Hom(P a , a ,P a , , a 0^^ 2 , 'we have tr(T·9 log |a|~2 ·9, ^Q) = 0(|a|2e) 
with respect to cue. By a similar reason, tr(T · 9log \a\~2diQ~) = 0(|<j|2e). Since we 
have [9i,9 x^] = 7r*P(P, fty) -f 0(|cr|2e) with respect to (h,cje), we obtain (21). 
Corollary 4.9. — Ŵ e /zave £/ae following estimates with respect to UJ€: 

(24) 
tr(A-.R(/i 0) + ¿-.R(£)) 

Ii 
7r*(trÄ(Ey,U)/iy,u) + trÄ(Ey,U )fty,u)) - a-Ölog|o-| 2 

Ii 
a 2 · rankPy,n · 9log |<7|"2 · 99log \a\~2 + O(l) 

Here, u = (a, ce). 

4.2.6. Estimate of a related metric. — For later use (Section 5.2), we consider 
a related metric in the case where one more filtration W is given on Gr^^(P) 
indexed by Z. The argument and the calculation are essentially contained in those 
of Section 3.A in [5]. Since our purpose is more restricted, the construction of the 
metric can be more rough. 

We put EUjk Grjf Gr^'E(Py) for (u,k) G (R x C) x Z and Ey := 
©P^/c. We put P(a,fc) Gr E(P) := 7r~1(VFfc), where 7ra denotes the projection 
P a Gr E (P) —> Gr^^x(P). The metric hy induces the orthogonal decomposition 
GrE

a(E) = ®^k)eRxCGa,*,k such that P ( M ) Gr E(P) = 0 ( f l | J f e ) < ( 6 f O ffa,a,fc. We have 
the natural C°°-isomorphism gUjk ~ Grjf Gr^'E(Py) for (it, fc) G (R x C) x Z. Thus, 
we obtain the C°°-identification of Ey and Ey. Let foy,u,/c denote the restriction of 
hy to Qu,k-

Via the identification $ : 7r*Py ~ P, we obtain the C°°-decomposition E = 
0^a,a,/c- Then, we put as follows: 

h1 e 
a,a,k 

7T*hY,a,a,k-\a\-2a-(-\og\a\2)k. 
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There exist some constants C and N such that C 1 · ho · (—log|cr|) N < hi < 
C-h0-(-log\a\)N. 

For appropriate constants Ci, we put UJ := CJ + C\ · dd\og(— log |cr|2), which gives 
the Poincaré like metric on hi \ Y. 

Lemma 4.10. — R(h\) is bounded with respect to UJ and hi (i — 0 ,1 ) . The difference 
9EM — dE,h0 is bounded with respect to UJ and ho-

Proof. — Under the identification Ey = Ey, we put S = 8EY — dEy. We put Sf := 
S — S. As before, we have 8E = d2 + Q and Q = T+-K*S. We also have d\ = <92-f 7r*S". 
Because of Tyy = 0 in (End(£)<g>fi^)|y, T and are 0(|cr|2e) with respect to (K,UJ) 

(i = 0,1). Because of S(F{a,k)) C F < ( a > f c ) ® Q^1, 5 and are 0 ( ( - l o g l ^ l ) " 1 / 2 ) 
with respect to (hi,uj). We also obtain 61 = 0(1) and = 0((— log |cr|)-1/2) with 
respect to (ho,uj). In particular, Q and Q\ are bounded with respect to (hi,uj) 
(¿ = 0,1). 

We put /C := 0 & / 2 · id# u fc. Then, we obtain the following: 

(25) 9ΕΜ D2M - Qh, d2M+IC-dlog(-iog\a\2)-Ql 

di,h0 + (7T*5')10 +ÌC-8log(- log |<r|2) - Q]
hi 

dE,ho + Ql + (n*S')lo + K • dlog(-log |a|2) - . 

It is easy to see that 7r*S' and (^S")^ a r e bounded with respect to ho- Thus, we 
obtain the boundedness of dE,hi ~ ^E.ho with respect to (UJ, /io). 

We decompose R(h{) as follows: 
(26) R(hi) Ö2,Ö2,/n -d2MQ-d2Ql Q, Qh1 

We decompose the second term as follows: 

(27) ^2,/iuQ /C.aiog(-log|a|2),Q 
c W + Γ · ^ l o g M - 2 , τ ^ 2 M + r . d i o g H - 2 , s 

Since 6Mog(— log \a\2) is bounded with respect to UJ, we have the boundedness of 
JC - <91og(— log |cr|2) with respect to (UJ, hi) (i — 0,1). Hence, the first term in (27) is 
bounded. The adjoint with respect to h\ also satisfies the same estimate. 

We have T = 0(\a\3e) with respect to (uj,ht) (i = 0,1) and [d2^Q,T}\Y = 0 in 
(End(E)^n^°(logD)^Q^1)lY. Hence [T · Slog |of, T] and [d2,K,T] are 0(\a\3e) 
with respect to (uj,hi) (i — 0,1). Their adjoints with respect to hi are also 0(|cr|2e) 
with respect to (UJ, hi). Therefore, we obtain the boundedness of the second term in 
(27) and the adjoint. 

Let S = A - dzi + B · dz2 be the expression for a local coordinate (U, zi, z2) such 
that zf^O) = Y H U. Then, we have A\Y = 0 and B\Y(F^k)) C F<(a,fc)- We have 
[r, i?]|y(Fa) C F<a. Thus [T · 9log \cr\~2, S], and the adjoint with respect to hi are 
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0(\a\2e) with respect to (uj,hi) (i = 0,1). We have [d2,hf
0, A - d z i ] | y = 0 in (End(£)® 

ft1'0 (log F) <g) For the expression [d2,h'0, Bdz2] = (Ci · dzi/zx + C2dz2) • dz2, 
we have C\\y = 0 and C2\y(F(a^) C P<(a,/c)- Hence, [d2^'Q,S] and the adjoint with 
respect to h\ are bounded with respect to both of (uu,hi) (i = 0,1). Therefore, we 
obtain the boundedness of the third term in (27) and the adjoint. Thus we obtain 
the boundedness of the second and third terms in (26). 

We have \B2,d2M] = [d2,d2^Q] + ddlog\a\~2 • T + dd\og(- log\a\2) · JC which 
is bounded with respect to (uj,h%) (i = 0,1). Thus we obtain the boundedness 
of iJ(fti). 

4.3. Global Ordinary Metric 

4.3.1. Decomposition and metric of a base space. — Let X be a smooth 
projective complex surface, and D be a simple normal crossing divisor with the ir­
reducible decomposition D = { J i e S D^. We also assume that D is ample. Let L be 
an ample line bundle on X, and UJ be a Kahler form which represents c\(L). For 
any point P G Di fl Dj, we take a holomorphic coordinate (Up, Zi, Zj) around P such 
that Up fl Dk = {zk = 0} (k = i,j) and Up ~ A 2 by the coordinate. Let us take a 
hermitian metric gi of 0(Di) and the canonical section O —> 0(Di) is denoted by 
Gi. We may assume \o~k\2

9k = \zk\2 (k = on Up for P G Di fl Dj. 
Let us take a hermitian metric g of the tangent bundle TX such that g = dzi- dzi + 

dzj · dzj on Z7p. It is not necessarily same as UJ. The metric g induces the exponential 
map exp : TX —> X. Let Nj)iX denote the normal bundle of Di in X. We can 
take a sufficiently small neighbourhood U[ of Di in N^^X such that the restriction 
of exp^/ gives the diffeomorphism of U[ and the neighbourhood Ui of Di in X. We 
may assume Ui D C/j = UpGDvnDj 

Let pi denote the diffeomorphism exp^/ : U[ —> Ui. Let iii denote the natu­
ral projection U[ —> D^. Via the diffeomorphism pi, we also have the C°°-map 
Ui —> Di, which is also denoted by TT̂ . On Up, Hi is same as the natural projec­
tion (zi,Zj) i—> Zj. Via pi, we have two complex structures Jjji and Jjj' on Ui. 
Due to our choice of the hermitian metric g, pi preserves the holomorphic struc­
ture (i.e., Ji/( — Jjji — 0) on Up. The derivative of pi gives the isomorphism of the 
complex bundles T(NDi(X))\Di ^ TD{ 0 NDtX ~ TX\D. on Dt. Hence we have 
Jm-Ju>=0(\a\). 

Let e be any number such that 0 < e < 1/2. Let us fix a real number N, which is 
sufficiently large, say TV > 10. We put as follows, for some positive number C > 0: 

UJE UJ 

i 
C-eN 1OO(oi)2

 g 

Proposition 4.11. — If C is sufficiently small, then UJ€ are Kahler metrics of X — D 
for any 0 < e < 1/2. 
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Proof. — We put fa := \o~i\2. We have -i-ddfa - l - e 2 - 0 f - d l o g fa-dlog fa 
— 1-e-fa-dd log fa. Hence the claim of Proposition 4.11 immediately follows from 

the next lemma. 

Lemma 4.12. — We put ft(e) el · t2e for 0 < e < 1/2 and for I > 1. The following 
inequality holds: 

(28) Me) 
I 

-logt2 

i 
e'1 (0<t< e~l) 

(29) Me) 1 
2 

i 
t (t > e~l) 

Proof. — We have //(e) = el~H2^ • (l + elogt 2). If t < e~\ we have e0 := Z x 
(—logt 2 ) - 1 < 1/2 and //( eo) = 0. Hence / t takes the maximum at e = eo, and we 
obtain (28). If t > e"1, we have //(e) > 0 for any 0 < e < 1/2, and thus ft(e) takes 
the maximum at e = 1/2. Thus we obtain (29). 

The Kahler forms UJ6 behave well around any point of D in the following sense, 
which is clear from the construction. 

Lemma 4.13. — Let P be any point of Di fl Dj. Then there exist positive constants 
Ci (i — 1, 2) such that the following holds on Up, for any 0 < e < 1/2: 

Ci • ue - 1 · e N + 2 
dzi · dzi 
Zi 2-2e 

dZj ' dZj 
zj 

2-2e — l(dzi · dzi + dzj · dzj) C2 -ve. 

Let Q be any point of D\, and (C7, w\,W2) be a holomorphic coordinate around Q such 
that U n Di = {wi = 0}. Then there exist positive constants Ci (i = 1,2) such that 
the following holds for any 0 < e < 1/2 on U: 

Ci · UJE -1-€N+2 
dwi - dwi 
w1 \2-2e — lydwi · dw\ + ^ 2 · dw2) < C2 · cj e. 

Lemma 4.14 (Simpson [51], Li [35]). — Let us consider the case e = 1/ra /or some 
positive integer m. Then the metric cue satisfies Condition 2.1. 

Proof. — We use the argument of Simpson in [51]. The first condition is easy to 
check. Since we have assumed that D is ample, we can take a C°°-metric | · | of O(D) 
with the non-negative curvature. We put (j) :— — log |o~|, where a denote the canonical 
section. Then \f^ldd(j) is a non-negative C7°°-2-form, and it is easy to check that the 
second condition is satisfied. 

To check the condition 3, we give the following remark. Let P be a point of DidDj. 
For simplicity, let us consider the case (z, j) — (1,2). We put Vp := {(C15C2) | \d\ < 1}· 
Let us take the ramified covering ip : Vp —> Up given by (£1, (2) 1—> (("f1, CT)- Then 
it is easy to check that UJ = (f~1uje naturally gives the C°°-Kahler form on Vp. If / 
is a bounded positive function on Up \ D satisfying A0Je (/) < B for some constant 
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B, we obtain A# (<£*/) < B on Vp — p~1(D fl Up). Since UJ is C°° on Vp, we may 
apply the argument of Proposition 2.2 in [51]. Hence A^ (y>*f) < B holds weakly on 
Vp. Then we can apply the arguments of Proposition 2.1 in [51], and we obtain an 
appropriate estimate for the sup norm of / . By a similar argument, we obtain such 
an estimate around any smooth points of D. Thus we are done. 

4.3.2. A construction of an ordinary metric of the bundle. — Let (CE*,6) 
be a c-parabolic Higgs bundle on (X, D). In the following, we shrink the open sets 
Ui without mentioning, if it is necessary. We put D° := Di \ U j ^ Dj. 

On each Di, we have the generalized eigen decomposition with respect to Res (̂̂ ): 

(30) cE\Di e 
OC 

i Gra (cE/Di) 

For each point P G Di fl Dj, we may assume that there is a decomposition cE\uP — 
@PUa,cL as in Section 4.1. Let pv be a holomorphic frame compatible with the 
decomposition. We take a C^-hermitian metric ho of C E such that pv is an or­
thonormal frame on Up and that the decomposition (30) is orthogonal. We have 
the induced unitary connections Vo,z and VCE]D. on cE\u. and cE\Di, respectively. 
Then, we can take a C°°-isomorphism L& : TT* (cE\Di) ~ C E on Ui such that (i) the 
restriction of *<I> to Di is the identity, (ii) the restriction of 2<I> to Up is given by the 
frames pv and T T * ( p v \ U p n D % ) , (hi) V 0 , i ° - o 7r*V c j B | £ ) ï =0(1^1^). ([35]. See 
also the explanation in Subsection 4.2.2.) We also obtain the orthogonal decompo­
sitions Gr^(ci?|p>.) = ©a6i2^(a,«) w ^ n r e spect to ho such that ^ Gr a (cE\Dj) = 
©a<6^(a,a)- They induce the C°°-decompositions cE\Vi = 0c#(a,a)-

We can take a hermitian metric ho oî E on X — D, which is as in Subsection 4.1.1 
on Up, and as in Subsection 4.2.2 on Ui \ (J Up. More precisely, we take a hermitian 
metric hoi oî cE\Do such that (i) the decomposition cE\Do = 0 1GU\D° is orthogonal, 
(ii) hDi(pvk,pv{) = Skti · \z3\-2a^Pv^ for each P G A n (j ^ 0- L e t 

denote the restriction of hp>% to %Qu\r>° · Then, /IQ is given by (17) on \D. We have 
ho{Pvk,pvi) = 4,/ · | ^ r 2 a î ( P v f c ) · |^-|-2a^P^) on Up \ D for P G DtnD3. Thus, 
we obtain the metric of E1 on Ui \ D. We extend it to the metric of E on X — D. 
Such a metric /io is called an ordinary metric, in this paper. The following lemma 
immediately follows from Proposition 4.3 and Proposition 4.7. 

Lemma 4.15. — If (CE*,0) is graded semisimple, then F(ho) is bounded with respect 
to ho and UJ€. 

4.3.3. Calculation of the integrals 

Lemma 4.16 
- 1 

2TT 

2 

X-D 
trÄ(fto) 2 

X 
par-c 2( c£*). 
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Proof. — Wehave (tr i?(/i 0)) 2 = (tr R(h0))2 + tr R(h0) • d tr A + tr R(h0) · 9 tr A. We 
have the following equality: 

- 1 
2TT 

2 

X - D 
tvR(ho))2 

X 
ci(cE)2. 

Due to (19), we obtain the following: 

(31) 

- 1 
2TT 

2 

X - D 
tvR(h0) - dtiA 

i 

- 1 
2TT Di 

tr R(h0\Di, cE\Di) · (-wt( c£*,z)) 

wt( c£*,z) · deg A ( c P| A ) 
i 

wt(cE*,i) 
X 

c i ( c P ) - [ A ] 

We put EDUU := 1 Gr^'E(P|£>J, which is naturally isomorphic to lQu as (7°°-bundles. 
Hence the metric h]jijU on EDUU is induced (Subsection 4.3.2). Then, we obtain the 
following, using Corollary 4.6: 

(32) 

- 1 
2TT 

2 

X-D 
tiR(ho) -dir A 

i 
wt(cE*,i) 

u 

- 1 
2TT D, 

tr R(hDi,ui EDÌ,U) 

i 
wt( cP*,z) 2 - 1 

2TT FD, 
ôdlog led 2 

We have the naturally induced parabolic structure of CE\DÎ at Di PI U j ^ i ^ i - Then 
we have the following equality: 

(33) 
U 

- 1 
2TT D* 

tvR(hD^u,EDzjU) = par-degD.(c2S|Di*) 

deg D i ( c P| D J 
j = i 

wt(cE*J) 
x 

Di Dj 

We also have ^1 
2TT DÌ ö91og|a2|2 = / X [ A ] 2 Thus we obtain the following: 

(34) - 1 
2TT 

2 

X —D 
tiR(ho) · dtr.A 

i 
wt( c P*,i ) 

x 
c i ( c E ) . [ A ] 

i j = 1 
wt( c P*,i ) · wt(c£7*,j) 

X 
A ; Dj 

2 
wt( cK«,i) 2 · 

X 
Di 

2 

i 
wt(cE*,i) 

X 
c i ( C £? ) - [A ] 

i j 

wt (cE*, i) .wt(cE*,j) 
X 

Di Dj 

Then the claim of the lemma follows. 
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Corollary 4.17 
- 1 

2TT 

2 

X - D 
tv F{h0) 2 

x 
par-c 2( cK,). 

Proof. — It follows from (tr F(h0)) = (tri?(ft0)) and the previous lemma. 

Proposition 4.18. — If (E*,0) is graded semisimple, the following equality holds: 

- 1 
2TT 

2 

X — D 
tr F(h0)2 2 par-ch2( cP*). 

Proof — We have only to show the following two equalities: 

(35) 
X — D 

tr F(ho)2 

X-D 
tr R(h0)2 

(36) - 1 
2TT 

2 

R X - D 
t r ( p ( / i 0 ) 2 ) = 2 

X 
par-ch2(c£*)-

Let us show (35). By a direct calculation or the classical Chern-Simons theory, we 
obtain the following equality: 

(37) tv(F(h0)2) tr(R(h0)2) + 2tr '9Η0Θ + 3Θ{Ο R(h0) 

d ^((o + 0l)-(dhoe + del) (2/3)-tr((ö + C ) 3 

Since R(ho), dho0 and 99^ are a (l ,l)-form, a (2, 0)-form and a (0, 2)-form respec­
tively, we obtain the vanishing of the second term in the right hand side. It is easy 
to obtain tr((0 + 0JJ 3 ) = 0 from <92 = 0+2 = 0. 

We put Yi(S) := {x G X \(Ji(x)\ = min^ 1^(^)1 = <jj and Y(5) := \ J i Y i ( s ) - F r o m 

the estimate in Sections 4.1-4.2, tr(0 · 99^) and tr(0^ o · c\0#) are bounded with 
respect to o;e/ for some 0 < ef < e. Hence, we obtain the following convergence: 

lim 
Y (5) 

t r ( 0 - c < ) lim 
(5̂ 0 Y (à) 

t r ( < - dh09) 0 

Then, we obtain the formula (35): 
Let us see (36). We put A := dho - C\Q. Then we have tr (R(h 0 ) 2 ) = tr(R(ho) 2) + 

dtr(A- R(ho) + 4̂ · R(ho)). The contribution of the first term is as follows: 

- 1 
2TT 

2 

' X — D 
tr(R(ho)2) = 2ch 2 ( c £). 
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As for the second term, we obtain the following from Corollary 4.9: 
(38) 

- 1 
2TT 

2 

X-D 
dtv A • R(h0) + A • R(h0) 

i,a,a 
a • degDi 'G4 E ( cÊ| D t ) 

i,a,a 
a · par-degDi 

% G r f ,a(c^|Dj*, 
i,α,α 

a2 ran^Grf;^ cE\Di 

X 
Di 2 

Here 1 GrF^(cE\Dt) ^ is the parabolic bundle on (Z^, Di fl Uj>^ ^ j ) with the canoni-
cally induced parabolic structure. We have the following: 

(39) 
cn 

par-degD. 'G4E(cÊ|Dt) par-degDi 'G4E(cÊ|Dt) 

deg D iCGrf( C JE;| D i)) 

PeDlnDj 

aeVar(cE,P) ai=a 

cij · rank P G r £ ( c £ 1 0 ) 

Then (36) immediately follows. 

4.3.4. The degree of subsheaves. — Let V be a saturated coherent OX-D~ 
submodule of E . Let ny denote the orthogonal projection of E onto V with respect 
to ho, which is defined outside the Zariski closed subset of codimension two. Let hy 
be the metric of V induced by ho. The following lemmas are the special case of the 
results of J. Li [35]. 

Lemma 4.19. — dny is L 2 with respect to ho and uje if and only if there exists a 
coherent subsheaf C V C C E such that c V \ X - D — V· 

Lemma 4.20. — deg^e (V, hy) = par-deg^(cV*) holds. 

Proof. — We give just an outline of a proof of Lemma 4.20. By considering the 
exterior product of E and V, we may assume rankF = 1. We may assume that 
L is very ample. Let C be a smooth divisor of X with 0 ( C ) ~ L such that (i) 
C V is locally free on a neighbourhood of C, (ii) C intersects with the smooth part 
of D transversally, (iii) L F is a filtration in the category of the vector bundles on 
Di around C D Di. We can take a smooth (1, l)-form r whose support is contained 
in a sufficiently small neighbourhood of (7, such that r and UJ represents the same 
cohomology class. Then we have J tr R(hy) · UJ = j tr R(hy) · r. It can be checked 

- 1 
2TT 

tr R(hy) - T = par-deg^( cK) by an elementary argument. 
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CHAPTER 5 

P A R A B O L I C H I G G S B U N D L E A S S O C I A T E D T O T A M E 
H A R M O N I C B U N D L E 

In this chapter, we show the fundamental property of the parabolic Higgs bundles 
associated to tame harmonic bundles, such as /i^-polyst ability and the vanishing of 
characteristic numbers. We also see the uniqueness of the adapted pluri-harmonic 
metric. These results give the half of Theorem 1.4. 

5.1. Polystability and Uniqueness 

Let X be a smooth irreducible projective variety over C, and D be a simple normal 
crossing divisor with the irreducible decomposition D = \ J i e S Di. Let L be any ample 
line bundle of X. 

Proposition 5.1. — Let (i?, <9#, /i) be a tame harmonic bundle on X — D, and let 
(CE*,0) denote the associated c-parabolic Higgs bundle for any c G Rs. (See Sec­
tion 3.5.) 

— (CE*,6) is /iL-polystable, and par-deg L( cE*) = 0 . 
— Let (CE*,0) = (&i(cEi*,0i) 0 Cp^ be the canonical decomposition (Corollary 

3.11). Then we have the orthogonal decomposition h = 0^ hi 0 gi. Here hi are 
pluri-harmonic metrics for (Ei, dEi, Oi), and gi are hermitian metrics of Cp^. 

Proof — The equality par-degL(ci?*) = 0 can be easily reduced to the curve case 
(Proposition 2.8). It also follows from the curve case that (CE*,0) is //^-semistable. 

Let us show (CE*,9) is \iE-polystable. Let (cV*,0y) be a non-trivial saturated 
Higgs subsheaf of (CE*,6) such that /XL (CK) = I^L(CE*) = 0 and rank(y) < rank(E'). 
Recall that we have the closed subset Z C X such that cV\x-z is the subbundle of 
CE\x_z. The codimension of Z is larger than 2. We have the orthogonal projection 
7ry : E —> V on the open set X — (Z U D). Let C C X be any smooth curve such 
that (i) C intersects with the smooth part of D transversally, (ii) C fl Z — 0. Let 
0c denote the induced Higgs field of E\Q\D- Due to the result in the curve case, we 
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obtain that 7Ty\c is holomorphic and that OQ and ^y\c commute. Then, we obtain 
that Ky\x-(Duz) is holomorphic and that [TIV,#] = 0. Since the codimension of Z 
is larger than two, ny naturally gives the holomorphic map E —> E on X — D , 
which is also denoted by Try. It is easy to see ix\ = Try, and that the restriction 
of Try to V is the identity. Hence we obtain the decomposition E = V 0 V , where 
we put V = Ker7iv. We can conclude that V and V are vector subbundles of 
E, and the decomposition is orthogonal with respect to the metric h. Since we have 
[ny, 0} = 0, the decomposition is also compatible with the Higgs field. Hence we obtain 
the decomposition of (E, dE^0,h) into (V, dy, 6y, hy)(B(Vf, dy, 6y>, hy) as harmonic 
bundles. Then it is easy that (CE*, 6) is also decomposed into (CV*, Oy) 0 (CVOy). 
Since both of ( cV*,#v) and (cV'*,0v') are obtained from tame harmonic bundles, 
they are /iL-semistable. And we have rank(V) < rank(E') and rank(V) < rank(E'). 
Hence the \iL-polystability of (CE, 9) can be shown by an easy induction on the rank. 

From the argument above, the second claim is also clear. 

Proposition 5.2. — Let (CE*,6) be a c-parabolic Higgs bundle on ( X , D ) . We put 
E := cE\x_£>. Assume that we have pluri-harmonic metrics hi of (E, dp^O) (i = 1, 2), 
which are adapted to the parabolic structures. Then we have the decomposition of Higgs 
bundles (E,0) = Q)a(Ea,Qa) satisfying the following conditions: 

— The decomposition is orthogonal with respect to both of hi. The restrictions of 
hi to Ea are denoted by / i ^ a . 

— There exist positive numbers ba such that h\^a = ba · ^2,a-
We remark that the decomposition (E,0) = Q)(Ea,9a) induces the decomposition of 
the c-parabolic Higgs bundles (CE*,6) = @(cEa^,0a). 

Proof. — Recall the norm estimate for tame harmonic bundles ([44]) which says that 
the harmonic metrics are determined up to boundedness by the parabolic filtration 
and the weight filtration. Hence we obtain the mutually boundedness of h\ and h2-
Then the uniqueness follows from Proposition 2.6. (The Kahler metric of X — D is 
given by the restriction of a Kahler metric of X. It satisfies Condition 2.1, according 
to [51].) 

5.2. Vanishing of Characteristic Numbers 

Proposition 5.3. — Let ( E , 8 E , 0, h) be a tame harmonic bundle on X — D , and ( C E * , 6 ) 
be the induced c-parabolic Higgs bundle. Then we have the vanishing of the following 
characteristic numbers: 

x 
par-ch 2 L (<.£*) 0 

x 
par-c2

 L ( A ) = 0. 

Proof. — We may and will assume dimX = 2. Let ho be an ordinary metric for the 
parabolic Higgs bundle (CE*,6). We have only to show jtr(R(ho)2) = jtr(i?(feo)) = 0. 
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Let 1(D) denote the set of the intersection point s of D. Le t TT : X —> X b e a blow 
up a t 1(D). W e put D := it~l(D). Le t Di denote the proper transfor m o f an d 
let Dp denot e the exceptional curve TT~1(P). W e put S := S U 1(D). Then , we have 
D =  UiegDi. W e take neighbourhoods Ui of Di with retraction s 7^ : —> Di for 
i G S, as in Subsection 4.3.1. 

We pu t E 1 := 7r_1(cE'). O n E^_ (i £ S), we have the naturally induce d filtration 
%F. Fo r any intersection poin t P G Di n Dj, w e have th e isomorphis m E^p ~ 

CE|P 0 .  W e have the filtrations  %F an d i F o n cl£|p. W e take a decomposition 
cE\P = ®Ua suc h tha t lFai 0 2Fa2 = ®b<aUb. Then , w e put pFb(cE\P) := 

© 5 1 + ^ 2 < 5 ^ 6 , whic h gives the filtration  o f cE\p. Th e induced filtration  o n E^p i s 
also denoted by pF. Th e tuple of filtrations  (lF | i G 5) is denoted by JF. 

We pu t 6 :— TT~16. Then (E,F,6) i s a generalized paraboli c Higgs bundle in the 
sense of Remark 3.6. Th e residue Res^ 0 preserves the filtration lF. O n each i G 5, the 
residue Res ^ 0 induces the endomorphism of 1 Grp(E). Th e eigenvalues are constant , 
and henc e the nilpotent par t J\fi i s well defined. Th e conjugacy classes of Mi \ p are 
independent o f the choice of P G Di ( [44] ) . Thus , we obtain the weight filtration  lW 

on ' G r f (E). W e put F,A k) := KN (lWk), wher e 7r a denotes the projection lFa —> 

¿Grf(£;). 
Let Pi denote the intersection point of Di and Dp for i E S and P E 1(D). Around 

Pi, w e have the holomorphic frame p%v1 as in Subsection 2.5.2 . Namely , we take a 
holomorphic fram e Plv aroun d P a s in Subsection 2.5.1 , (Di plays the rol e of D\, 

there) an d we put Plv : = TT~1(PÌ1V) around Pi. W e take a hermitian metri c hi o f E 

such tha t p'lv aroun d Pi are orthonormal wit h respec t t o h\. B y using it , we take 
C°°-isomorphisms &i : ix*E^. ~  o n Ui (i G S) a s in Subsection 4.3.2 . Then , 
we ca n take a hermitian metri c hi whic h is as in Subsection 2.5.2 for the frame p%v 

around Pi, and as in Subsection 4.2.6 around Di. 

Lemma5.4.^ We have J tv (R(h0)2) = J tv (R(hi)2) and Jtv(R(h0))2 = Jtr(R(hi))2. 

Proof. — Let UJ denote a Poincaré like metric on X — D. Le t ho be an ordinary metri c 
for (E,F:6) a s constructe d i n Subsectio n 4.3.2 . Then , 7r*/io an d ho are mutuall y 
bounded. Bot h of ir*R(ho) and R(ho) are bounded with respec t to ho and UJ. 

Let u s se e that AQ =  <9 g n~iho ~ ^Èh0 18 bounded wit h respec t t o UJ and ho. 

Let u s recal l th e descriptio n o f Ao around Pi. W e take a  holomorphi c coordinate 
neighbourhood (U, zi,z2) suc h that {zi • z2 = 0 } = U D (A U Dp). W e put D'- := 

{ZJ = 0}. W e have two holomorphic decomposition E\u — 0 Ua — 0 Ua suc h that 
J^ò = @ a j < b ^ o \ D ' j ~ ®aj<b^o.\D'^ wher e aj denote s the j-th component of a. We 
put T J = 0 a j ; • idc/a and f  j =®ar i d ^ . W e have dè^_1{ho) = Vi - J^Tj • dzj/zj 

and <9 g ̂ Q =  —  Yl^j ' dzj/zj, wher e Vi (resp. V2) is the (1 , 0)-operator of E\u, 
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preserving the decomposition E\u — 0 Ua (resp. Ejj — 0 [ / a ) . Then, we have 
A0 = E ( f j - Tj)dzj/zj + (Vi - V2). Because of ( f 3 - T3)LD^FA C 3 F < A and 
(T>i — T>2)\n/JFA C J F a 0 fl1'0, we obtain the boundedness of AQ with respect to 

' j ^ 
7r _ 1/io and 5, around P̂ . 

Let us recall the description of Ao around Q £ Di (i £ S). Let (t/, 2:1,22) be a 
holomorphic coordinate around Q such that 2;1"1(0) = £7 fl Di. We have two C°°-
decomposition E\v = @Ea = @Ea such that L F H = 0 a < 6 ^ a j ^ = 0 a <6^a|rV 
We put T := 0 a · id£;a and T := 0 a · id^ . We have a description dn-ihQ = 
d\^-^h'Q — Tdzi/zi + 0(1), where O(l) denotes the bounded one form with respect 
to ho and UJ, and 9 i j 7 r - i ^ is operator on E\u (not on Ev^) such that ^-1^0. 
preserves the filtration L F . (See the proof of Lemma 4.5.) Similarly, we have C\Q = 
dx ,̂ — tdzi/zi + 0(1). For the expression di^-i^ — dx ,̂ — Bi - dz\jz\ + B2 · ̂ 2 , 
we have = 0 and P 2 | D , ( ' F « ) C * F « - W E A L S O H A V E ~ R ) | D / F ^ C * F < « - T H U S ' 
we obtain the boundedness of dn-iho — C\Q. NOW, it is easy to obtain J t r (P( / i 0 ) 2 ) = 
/ t r ( i2 ( f t 0 ) 2 ) and Jtr(R(h0))2 = / t r ( i ? ( f t 0 ) ) 2 . _ 

Due to the lemmas 2.15, 4.5 and 4.10, R(ho), R{hi) and A 0 := dhx — C\Q are 
bounded with respect to (ho,uj). Hence, t r ( A 0 ) , tr (P( / i 0 ) ) , tr(P(/^ 0) · Ao), tr(P(fei)) 
and tr(P(/ i i ) · Ao) are bounded with respect to UJ. Then, it is easy to show 
ftr(R(h0)2) = /tr(/?(fci) 2) and ftr(R{h0))2 = / t r ( # ( f t i ) ) 2 . 

Due to the norm estimate (Lemma 2.14), h n^h and / i i are mutually bounded. 
We also have that R(h) is bounded with respect to h and UJ. Let 5 denote the self-
adjoint endomorphism of 7r _ 1(P) with respect to h and hi, determined by h = hi · s. 
We have c\ — — s~1dh1s and 9(s _ 1 9/ l l s) = P(/i) — R(hi), which is bounded with 
respect to hi and UJ. 

Let us show the following equality for any test function x on X — D: 

(40) (s ^ ( x - s ) , ^ ( x - s ) ) ^ - ^ (X'd(s 1dhls), X-S)-UJ dx-dx-tr(S)-UJ. 

We have the following: 

(41) (s 1dhl(x-s), dhl{x-s))hi d s 1 · dhl (x · s) X · 5 
hi 

ddx, x-s 
hi 

X · d s 1dhls0 X · s 
hi 

dx-s 1dhls, x-s 
hi 

Moreover, we have the following: 

(42) ddx, x · s 
hi 

dxAs 1dhls, x-s 
hi 

tr(ddx · x · s) + tr(dx · dhls · x) 

- 9 t r ( 9 x - x - 5 ) tr(<9x<9x-s) 

Thus we obtain (40). 
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Lemma 5.5. — s 1dh1s is L 2 with respect to UJ and h. 

Proof. — Let p be a non-negative valued function on Ft satisfying p(t) = 1 for t < 1/2 
and p(t) = 0 for t > 2/3. Take hermitian metrics gi of the line bundles O(Di) (i G S). 
Let Gi denote the canonical section of G(Di), and denote the norm function of o~i 
with respect to gi. We may assume \o~i\ < 1. We put \N ·= p[—N~x \og\o~i\2). 
Then, d\N is bounded with respect to UJ, independently of TV. By using (40), we 
obtain J\s~1dh1 (XN$)\hi dvol^ < C for some constant C, and thus we obtain the 
claim of the lemma. 

We put A\ := s~1dh1s, which is L 2 with respect to UJ and h\. We have R(hi) — 
R{h)-dAi. Since we have tri?(/i) = t rF ( f t ) = 0, we have tr(R(hi))2 = -d(trü(fti)-
tr A i ) . Since R(h\) is bounded with respect to UJ and h\, we obtain that trií(/ii)-tr Ai 
is L 2 with respect to UJ. We also know that d(tvR(hi) • tr(Ai)) is integrable. Then 
we obtain the vanishing, due to Lemma 5.2 in [51]: 

(trR(hi))2 d(trR(hi) - ir A) = 0 . 

(Note that UJ satisfies the condition of the lemma.) Thus, we obtain f par-Ci (CE*)2 

-1 
2TT 

2 trR(ho) 2 -1 
2TT 

2 tvR(hi) 2 0. 
Because of R(h) (9,6>í" and 02 = 0, we easily obtain tr(i?(/i) 2) = 0. Thus we 

obtain the following: 
tr(R(hi)2) d tr(Ai.R(hi))+tr(Ai.R(h)) 0 

From the boundedness of R(h\) and R(h) with respect to UJ and hi, we obtain that 
tr(Ai -R(hi)) and tr(Ai-R(h)) are L 2 with respect to 5. Thus we obtain the vanishing, 
by using Lemma 5.2 in [51] again: 

d tr Ai -R(hi)) + t r ( A i · R(h)) 0. 

Thus, we obtain J x par-ch2(c^*) -1 
2TT 

2 tr(,R(/io)2) -1 
2TT 

2 tr(i?(/i!) 2 ; 0. 
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CHAPTER 6 

P R E L I M I N A R Y C O R R E S P O N D E N C E A N D 
B O G O M O L O V - G I E S E K E R I N E Q U A L I T Y 

In this chapter, we show the existence of the adapted pluri-harmonic metric for 
graded semisimple /instable parabolic Higgs bundles on a surface (Proposition 6.1). 
We will use it together with the perturbation of the parabolic structure (Section 3.3) 
to derive more interesting results. One of the immediate consequences is Bogomolov-
Gieseker inequality (Theorem 6.5). 

6.1. Graded Semisimple Parabolic Higgs Bundles on Surface 

We show an existence of Hermitian-Einstein metric for /instable parabolic Higgs 
bundle on a surface under the graded semisimplicity assumption, which makes the 
problem much easier. Later, we will discuss such existence theorem for parabolic Higgs 
bundle with trivial characteristic numbers in the case where the graded semisimplicity 
is not assumed. 

Proposition 6.1. — Let X be a smooth irreducible projective complex surface with an 
ample line bundle L , and D be a simple normal crossing divisor. Let UJ be a Kahler 
form of X, which represents C\(L). Let (CE*,0) be a c-parabolic Higgs bundle on 
(X,D), which is HL-stable and graded semisimple. Let us take a positive number e 
satisfying the following: 

— 10e < gap( cP*) ; and e = m~1 for some positive integer m. 
We take a Kahler form uje of X — D, as in Subsection 4.3.1. We put E — cE\x_D, 
and the restriction of 6 to X — D is denoted by the same notation. Then there exists 
a hermitian metric h of E satisfying the following conditions: 

— Hermitian-Einstein condition AUeF(h) — a-id^; for some constant a determined 
by the following equation: 

(43) a · 
- 1 

2TT 
ranki? 

2 X-D 
UJ2 = a - 1 

2TT 
rank(P) 

2 x 
UJ2 par-deg^(c£*). 
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— h is adapted to the parabolic structure of CE*. 
- deg {h,h) = p a x - d e g w ( c £ . ) . 
— We have the following equalities: 

X 
2 par-ch2(cE^) = 

, / V - 1 

2тг 

2 

X-D 
tr F ( h ) 2 

X 
p a r - C i ( c £ * ) = 

/ - 1 
2тг 

2 

X-D 
tv(F(h))2. 

Proof. —  Le t u s tak e a n ordinar y metri c ho fo r th e paraboli c bundl e (CE*,6) a s i n 
Section 4.3 . Not e w e have AUe t r R(ho) =  AW e tr F(ho). W e put 7^ : = wt(cE*,i). 

Let u s se e the induce d metri c det(fto ) o f det(E). Du e t o ou r construction , det(/io ) 
is of the for m r-\zi\~2li • \zj\~2lfj aroun d P G DiHDj, wher e r denote s a  positive C°°-

metric of det(c£')|[/^. I f P i s a  smooth poin t o f D i . the n the metri c det(/io ) i s of th e 
form T- \o~i\g211, wher e r an d 7^ are a s above . Therefore , t r R(ho) = R(det(ho)) i s C°° 

on X . I f a i s determined by (43) , we have JX_D (t r AUeF(ho) —  rank(E) •  a) •  UJ2 = 0 . 
Recall e  = m_ 1 fo r som e positive intege r m. The n th e followin g lemma ca n b e show n 
by a  consideratio n o f orbifolds. 

Lemma 6,2. —  We can take a bounded C00 -function g on X — D satisfying the con­

ditions (i ) A^e g =  \f^lKUJe tr(F(/io) ) —  \[—Trank(£?) •  a; where a is determined by 

the equation (43) , (ii ) <9g 7 dg, and ddg are bounded with respect to u;e. 

We pu t g ' : = g / ranki? an d hin : = h o •  exp(—#'). W e remark tha t th e adjoint s 0 
for /1 0 an d hin ar e same . W e also remark that dhin — dh0 an d R(hin) — R(ho) ar e just 
multiplications —dg' • id^ an d ddg' • I&E respectively , whic h ar e bounde d wit h respect 
to UJE. 

Lemma 63. —  The metric h{n satisfies the following conditions: 

— hin is adapted to the parabolic structure of CE*. 

— F(hin) is bounded with respect to h{n and uje. 

— Let V be any saturated coherent subsheaf of E , and let ny denote the orthogonal 

projection of E onto V. Then dny is L2 with respect to h{n and uoe, if and only 

if there exists a saturated coherent subsheaf CV of CE such that cV\x-D — V \ 

Moreover we have par-deg^(cK ) =  deg^ e (V, hiny), where hiny denotes the 

metric of V induced by hin. 

— tr KUeF(hin) — rank(E ) •  a for the constant a determined by the equation (43) . 
— The following equalities hold: 

2тг 

2 

X-D 

tr F(hin)2 
X 

2par-ch2(c.E*), 

J-л 
2тг х - D 

tr F(hin) 
2 

X 
р а г - с ^ с К к ) . 
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Due to the third condition, (E, hin, 6) is analytic stable with respect to uoe, if and only 
if (CE*,6) is pL-stable. 

Proof. — Since g' is bounded and since ho is adapted to the parabolic structure, hin 

is also adapted to the parabolic structure. We have F(hin) = F (ho) + ddg' · id#. 
Hence the boundedness of F(hin) with respect to uoe and ho follows from those of 
F {ho) and ddg'. 

For any saturated subsheaf V C E, the orthogonal decomposition 7Ty° and 7Tyn 

are same. Hence dnv
in is L 2 , if and only if there exists a coherent subsheaf CV C C E 

such that CV\X-D — V, by Lemma 4.19. Let hoy a n d hiny denote the metrics of 
V induced by ho and hin. We have tr F(hiny) = tr F(hoy) + rank(V) · ddg'. Then 
we obtain deg ê (V, hoy) = deg^ (V, hiny) from the boundedness of ddg' and dg' 
with respect to uoe. Therefore the third condition is satisfied. The fourth condition 
is satisfied by our construction. The fifth condition is also checked by using the 
boundedness of F(hin), F (ho), ddg' and dg'. 

Now Proposition 6.1 follows from Lemma 6.3 and Proposition 2.5. 

6.2. Bogomolov-Gieseker Inequality 

We have an immediate and standard corollary of Proposition 6.1, as in [51]. 

Corollary 6.4. — Let X be a smooth irreducible projective surface with an ample line 
bundle L , and let D be a simple normal crossing divisor of X. Let (CE*,6) be a 
PL-stable c-parabolic graded semisimple Higgs bundle on (X,D). Then we have the 
following inequality: 

x 
par-ch 2( ci^) x par-c^cK,) 

2 rank E 
0. 

Proof. — Let h be the metric of E as in Proposition 6.1. Then we have the following: 

x 
par-ch2(ci?*) x par-cf (CE*) 

2 rank E 
- 1 

2TT 

2 

X — D 
tr F(h)±2 

Then the claim follows from tr F(h)±2 0. (See the pages 878-879 in [51].) 

By using the perturbation of the parabolic structure, we can remove the assumption 
of graded semisimplicity. We can also remove the assumption dimX = 2 by using 
Mehta-Ramanathan type theorem. 

Theorem 6.5 (Bogomolov-Gieseker inequality). — Let X be a smooth irreducible pro­
jective variety of an arbitrary dimension with an ample line bundle L , and let D be 
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a simple normal crossing divisor. Let (E*,6) be a fi^-stable regular Higgs bundle in 
codimension two on (X,D). Then the following inequality holds: 

x 
par-ch2 L(i£*) x par-c? L ( E * ) 

2 rank E 
0. 

(See Subsection 3.1.5 for the characteristic numbers.) 

Proof. — Due to the Mehta-Ramanathan type theorem (Proposition 3.29), the prob­
lem can be reduced to the case where X is a surface. Take a real number Ci £ 
Var{E^1 i) for each z, and let us consider the c-truncation (CE*, 6). Let F denote the 
induced c-parabolic structure of CE. Let e be any sufficiently small positive number, 
and let us take an e-perturbation F^ of JF as in Section 3.3. Since (CE,F^€\8) is 
//^-stable and graded semisimple, we obtain the following inequality due to Corol­
lary 6.4: 

x 
par-ch 2 ( c £,F ( e ) ) x par-c 2 ( c £,F^) 

2 rank E : 0. 

By taking the limit in e —> 0, we obtain the desired inequality. 
Corollary 6.6. — Let X be a smooth irreducible projective surface with an ample line 
bundle L , and let D be a simple normal crossing divisor. Let (E*,6) be a fiL-stable 
parabolic Higgs bundle on (X,D). Assume J x par-ch2(i£*) = par-degL(i£*) = 0. 
Then we have par-c1(£?*) = 0. 

Proof. — par-degL(i2*) = 0 implies J x par-c^-E*) · C\(L) = 0. Due to the Hodge 
index theorem, it implies — J par-c2(E*) > 0, and if the equality holds then 
par-c-^E*) = 0. On the other hand, we have the following inequality, due to 
Theorem 6.5: 

x 
par-c? (E*) 
2 rank E x 

par-ch2(E*) = 0. 

Thus the claim follows. 
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CHAPTER 7 

C O N S T R U C T I O N O F A F R A M E 

We put X(T) := {z G C \ \z\ < T} and X*(T) := X(T) - {O}, where O denotes 
the origin. In the case T — 1, we omit to denote T. Let (E,dE,@,h) be a tame 
harmonic bundle on X*. Recall that the coefficients CLJ(Z) of P(z, t) := det(t—fo(z)) = 

CLj(z) - tJ are holomorphic on X, where fo G End(E) is given by 0 — fo · dz/z. The 
set of the solutions of the polynomial P(0,t) is denoted by So-

Assumption 7.1. — We assume the following: 
1. We have the decomposition E = 0 a G s o Ea, such that fo(Ea) C Ea. In partic­

ular, we have the decomposition fo = 0 / o a -
2. There exist some positive numbers To < 1, Co and eo such that \j3 — a\ < 

Co • \z{Q)\eo holds for any eigenvalue f3 of fa, Q (Q G X*(T0)). 
3. We put ^ := ^2aeSo rank(^Q,) · \a\2. We assume ^ < K0 for a given constant 

K0. 

Remark 7.2. — The conditions 1 and 2 are always satisfied, if we replace X by a 
smaller open set. Moreover, it is controlled by the behaviour of the eigenvalues of fo. 

We obtain the parabolic Higgs bundle (aE*,6) for a G R from (E,dE,h), where 
a E is as in Section 3.5 ([52]). In the case a = 0, we use the notation °E. Thus we 
have the parabolic filtration F of aE\o and the sets Var(aE) := {6 | GTF(aE\o) 7̂  0}· 
For any b G Tar{aE), we put m(b) := dimGrf ( a£jo). Recall det(0.E) ~ adet(E'), 
where a is given as follows: 

a 
beVar(aE) 

m(b) · ò. 

Let Uo be a finite subset of ]a — l ,a[, and let 770 be a sufficiently small positive 
numbers such that Uo C]a — 1 + 10 · 770, a — 10 · rjo[ and \b — c\ > 10 · 770 for any distinct 
elements 6, c G Uo- We make an additional assumption. 
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Assumption 7.3. — For any c G Var(aE), there exists b G U0 such that \c — b\< r]0. 

We put V(b) := {c G Var(aE) | |c — b| < TJQ}. We obtain the decomposition 
Var(aE) = Uteuo V(b)- W e P u t 1 : = maxP(6). 

In the following of this chapter, we say that a constant C is good, if it depends 
only on T 0 , Co, eo, i^o, ?7o and r := rank(F). We say a constant C(B) is good if it 
depends also on additional data B. 

Proposition 7.4. — Let (F, c^, /i) be a tame harmonic bundle on X* satisfying the 
assumptions 7.1 and 7.3. 

— There exist holomorphic sections Fi,..., Fr of a E on X(7o) with the numbers 
bi,..., br G UQ, such that \Fi\h < Cio · \z\~bl · ( - log \z\2)N holds. Here 7 0 ; C i 0 

and N are good constants. We have = b} = #V(b). 
— Ci1-\z\~a < \/\l=1Fi\h < C\\-\z\~a holds for a good constant C n. In particular, 

F i , . . . , Fr give the frame of aE. 
— On any compact subset H C X*(7o), we have \\Fi\H\\Lp^h < Ci2(H,p), where p 

is an arbitrarily large number. 

We will prove the proposition in the rest of this chapter. 

7.1. A Prior i Estimate of Higgs Field on a Punctured Disc 

Let (E, dE,0,h) be a tame harmonic bundle on X* as in Proposition 7.4. We know 
that the curvature R(h) of &E + OE is bounded with respect to h and the Poincaré 
metric g = \z\~2{- log\z\)~2dz · dz on X*(T) for T < 1. ([52]. See also [44]). We 
would like to show that the estimate is uniform, when we vary the set So boundedly. 

Proposition 7.5. — \R(h)\h~ < K10 holds on X*(7\) for some good constants T\ and 
ivio. 

Proof. — In the following argument, ki, ei and Ti will denote good constants, and 
A denotes the Laplacian —dzb\ (up to the positive constant). Let C be a line bundle 
Ox* · e with the Higgs field Oc and the metric he given by 0c(e) = e · ¡3 • dz/'z (/3 € C) 
and h/:(e,e) = 1. Since we have only to consider (F,<9#,#, h) ® (£,#£,/i/:), we may 
and will assume 0 < K\ < £ < K2. 

By an elementary argument, we can take a decomposition So 'ko 
v=1 

Si

(1) 

with the 
following property: 

OLj - ak 1 for any ot3,cxk G S^\ 
OL3- - ak 

• rank(E') 1 for a3 G S^ and ak G So — S^\ 
We put 5(1) := { 1 , . . . , ko} C Z > 0 . Inductively on n, we take a subset S(n) C Z> 0 and 
a decomposition So = LI/eS(n) SjU^ as follows. Assume S(n) and Sj^ (I G S(n)) are 
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already given. We can take a decomposition sin^ Hi) 
i=l 

Q(n+1) with the following 
property: 

aj - ak n + 1 -1 for a3, ak G S (n+1) 
J i 

aj - ak n + l -1 rank(^)" 1 for a3 G S\n/l) and ak G SJ n ) - SJn+1)  

Then we put S{n + 1) := { ( / , i) \ I G S(n), i = 1,..., *(/)} and SJn+1 := SJn+1 where (/, z) G Z>Q 1 denotes the element naturally determined by I and i. 

We have the lexicographic order on Z > 0 , which induces the order on S(n). Take a 
total order < i on So, which satisfies the following condition for any n: 

— Let a G s } n ) and /3 G 5^n). If I < J in S(n), we have a < i /?. 
We put FaE := 0 / 3 < i a £y3 and F<aE := 0 / 3 < i a £73. Let E'a denote the orthogonal 
complement of F<a(E) in Fa(E). We put p := 0 a G 5 o a · i d ^ and // := @ a e S o a · 
i d ^ . We have {p'W — £. The following lemma is shown in the proof of Simpson's 
Main estimate. (See [52] and the proof of Proposition 7.2 of [44].) 

Lemma 7.6. fo-p' h Κ η log I z I -1 holds on X*(T{). 

For J G S(n), we put E^ := @aeSw Ea and £ j ( n ) := 0 a e < ^ ) We have the 
natural decomposition End(£1) = ©j l 5 j 2 G < s( n ) Hom(Ej™\ Efj^). For / G S(n - 1) 
and A G End(i£), let Anj^j denote the Hom(E'j™\ E'j7^)-component. 

Lemma 7.7. We have A / o n,I,i,j h Kso log I z I -2 for i = J on X*(T 2 ) . 

Proof. — We put K := 0 ^ a · i d ^ ) and := 0^+* z · id^/^). We also put 

q -= K — K' G T : = 0 J l > j 2 Hom(E'j™\ E1}^). First, we give some estimate of q. 
Let tp : X* —> X* denote the map given by (p(z) = zn. We remark that 

(p* (E, OE, 0, h) satisfies Assumption 7.1 independently of n, if we replace Co with a 
larger good constant. We put h := ip*h. We put fo := n-cp~1(fo): i.e., (p~16 = fo-dz/z. 
Let /Q denote the adjoint of /o with respect to h. We also put /7 := n · (p~1(p/). 

Let F J q denote the endomorphism of (f~1T induced by the adjoint of /o, i.e., 
Fjo(x) = [/o?#]- Let 7rr denote the orthogonal projection of End(i£) onto cp~1T. 
The composite of the adjoint of /Q and 7TT induces the endomorphism Gjt of (p~1T. 

Lemma 7.8 ^\ — Fp and Gp are invertible on X*(Tz) and the norms of their in­
verses are dominated by a good constant. 

Proof. — Let H denote the endomorphism of tp~LT induced by the adjoint of pr, 
and we put H\ := Gp — H. For any a G S\n^ and ¡3 G Sj1^ (I ^ J), we have 
n · \a — (3\ > rank(.E) - 1 . Hence the norm of H~x is dominated by a good constant. 
From |/o — p'l^ < if31 · (— log |z|)_1, the norm of Hi is dominated by a sufficiently 

(°)The communication with the referee clarified a confusion, for which the author is obliged. 
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small good constant on X*(T 3 ) . We put H2 := H 1oHi. Then, {l + H2) is invertible, 
and the norm of the inverse is dominated by a good constant on X*(T 3 ) . Then, the 
claim for G~/ = fff1 o (1 + ff2)_1 can be easily checked. The claim for Ff can be 
checked similarly. 

We put K := ip 1 K , K' := tp ld and q := (p xq. We have 0 = [/o,tt] — [fo — 
p',/5'] + [/o?5]- Due to Lemma 7.6 and Lemma 7.8, we obtain the estimate \q\~ < 
^ ( - l o g M ) - 1 onX*(T 3) . From = [K-*',]§]+ we obtain \[KJI)\\ > 

{Ksifi-Xj^ll = \GP0@)\l- H e n c e ' we obtain \q\\ < fl\\~ onX*(T 3 ) . Due 
to [£, fo] = 0, we obtain the following: 

Alog|«|| 
(f0, k) 2 

h 
\z\2-mi 

K35 

(q)h 

\A2 

We put £' := i2 = \K'\1 and A; := l o g ^ ' - 1 ^ ) . Because of k < ^"MSIf, 
we obtain Afc < —K3Q • \z\~2 • k. By an argument in [52] (see also the proof of 
Proposition 7.2 of [44]), we obtain k < • \z\tis. Then, we can derive < 
K39 • \z\e3S on X*(T40)- Hence we obtain < K3g • \z\c™/n on X*(T 4

n
0). 

Let us finish the proof of Lemma 7.7. First we show the estimate on X*(T™0). We 
have 0 = [K, f0] = [K', fo] + [q, p'] + [q, fo - p'\- We have the following on X*(T4"0): 

[q,fo-p'i h 
K41\z\e™/n 

log |̂ :| 
i v 4 2 U | e 3 8 / n 

n 

Recall we have \a — (3\ < (n — 1) 1 for a G and (3 G Sj- . Hence we 
have \ [q,p']nJiiJ\h < K43 · \z\^/n · n'1. Therefore, we obtain | [«', / 0 ] n J l J \ h < 
K44 · |z|e38/n · n - 1 , which implies \(f0)n,i,i,j\h < K44 · k | e 3 s / n • n " 1 (i ^ j ) . Then, we 
obtain the estimate on X*(TJQ): 

(à+, f0) 
n,I,i,j h K43 \z\638/n -n~2 < K46 log |̂ | -2 

On the other hand, [p^, / 0 ] n 7 . .̂ is dominated by K47-(— log 12; |) 1-n 1 onX*(T i ) , 
which is obtained by the estimate of fo — p' (Lemma 7.6) and our choice of 
(k = ij). Outside of X*(T 4

n
0), we have K47 · ( - log · n " 1 < K48 · ( - log\z\)~2. 

Thus we are done. 

Let us finish the proof of Proposition 7.5. We have the following: 

R{h) 0, 0+ 

y, (fo-ρ'γ fo-p', P N ( /o-p ' ) , (fo-p')] 

dz · dz 
\z\2 

The second term is estimated by Lemma 7.7. The first term is adjoint of the second 
term. The estimate of the third term follows from Lemma 7.6. Thus we are done. 
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7.2. Construction of Local Holomorphic Frames 

Let (E, /i) be a harmonic bundle of rank r on X* as in Proposition 7.4. We 
will construct the desired holomorphic sections in Proposition 7.4. By considering the 
tensor product of the line bundle with the metric \z\~c, we have only to discuss the 
case a = 0. We use the metrics g and g of X* given as follows: 

9 dz · dz, 9 
dz · dz 

M 2 - ( - i o g M ) 
By considering a pull back via the map </>7 : X* —> X* given by 4>

1(z) = 7 · z, we 
may assume the following, due to Proposition 7.5. 

Assumption 7.9. — The norm of R(h) with respect to h and g is dominated as follows: 

R(h) \h,g Ci 
1 

\A2 log|z| + l 2 

The constant C\ is good. 

Lemma 7.10. — There exists a C1-orthonormal frame v of E, for which &E is repre­
sented as follows: 

ÖEV - v r 
2 

A dz 
z 

Here T is a constant diagonal matrix whose (i,i)-th components c\i satisfy 0 < ar < 
• - - < a 1 < 1; and A is a matrix-valued continuous function such that \A\ < C2 · 
(— log \ z\ + l ) - 1 . The constant C2 is good. 

Proof. — (2) Let (r, 0) be the polar coordinate of X*. Let V denote the unitary 
connection 8E + dE,h- Take an orthonormal frame of E\QX^ for some 0 < 7 < 1. 
Extend it to the orthonormal frame e of E \ X * ^ by using the parallel transport 
along each ray towards the origin. Then the connection form of V with respect 
to e is of the form A'(r,0) · dO, and the curvature form is given by dA'(r,Q) A dO. 
By Assumption 7.9, we obtain dA/(r10)/dr — O^(logr) - 2 · dr/r^j. Hence, A'(r,0) 
converges to a function A0(6) for r —» 0, and Af(r, 6) — AQ(6) = log r ) _ 1 ) . We 
can take a gauge transform g(9) for which AQ(9) is transformed to T · d9 for some V 
as in the claim of the lemma. 

7.2.1. Preliminary for a construction. — We recall some results on the solv­
ability of the <9-equation. For any real numbers b and M , we put h(b, M) := h- \z\2b · 
( - log\z\)M. Let Al^M(E) denote the space of sections of ^(g)^ 0' 1, which are L 2 with 
respect to h(b, M) and g. Let AQ®M(E) denote the space of sections f of E such that 
/ and df are L 2 with respect to h(b, M) and g. The norm and the hermitian pairing 

(2)The author thanks the referee who explained this simple proof. 
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of A^Q
M(E) are denoted by || · \\b,M and (·, -)b,M- 0 n the °ther hand, | · |65M denote 

the norm at fibers. In the following argument, B{ will denote good constants. 
We use some arguments of [44] based on the ideas in [2] and [8]. (But we change 

the signature here.) Recall the result in Section 2.8.6^ of [44]. We take a sufficiently 
large good constant N > 1, which depends only on C\ in Assumption 7.9. Let dE 

denote the adjoint of BE with respect to g and h(b,N). Let A^L(E) denote the 
space of the (7°°-sections of E (g) Q0,1 whose support is compact. Then, the following 
inequality holds for any p G A®:1(E): 

dEP b,N P b,N 

Lemma 7.11 ([44]). — For any f\ G AQ
h

,1
N(E), we have fi G A^°N satisfying dfc = fi 

and ||/2||6,A/ < Bi · \\fi\\b,N-

Proof — Let A°'1(E) denote the space of sections p of E ® Q0,1 such that HPIÎ AT + 
ll^PlIb N < 0 0 · ^ is t n e £2-space, and we have the continuous inclusion A°'1(E) —> 
A°^(E). Since A°C

,1(E) is dense in A°^(E) due to the completeness of (X*,#), we 
have \\p\\b,N < 0EP\WN for any p G A°^(E). Hence, A°^(E) can be the Hilbert 
space with the Hermitian pairing (P\, P2) 1—> (dEPi^dEp2)b,N-

We have (fup)b,N < \\fi\\B,N · \\p\\b,N < \\fi\\b,N • 0*EP\\b,N for any p_G A°^(E). 
Due to Riesz representation theorem, there exists fs G A0^(E) such that ||b,iv < 
||/I||6,JV and (fi,p)b,N = (d*Ef3,d*Ep)biN for any p G l 0 ' 1 ^ ) - We put f2 = dEh 
which has the desired property. 

On the other hand, if / is a holomorphic section of E, we have the subharmonicity 
A log I / I^ -AT < 0 by using the argument in Section 2.8.7 of [44]. Hence, if we have 
||/||b,iv < 00, the following holds around the origin O: 

(44) log\f(z)\l_N 

4 
7T\Z\2 

\w-z\<\z\/2 
l og l /Hlb . - iv - d v o l s 

log 
4 

Trìzi2 \w-z\<\z\/2 
fW b-N * dvol<? fog(^2 ' \\f\\îiN) 

Here, we have used \f(w)\l^_N · (-log|w|)2 < 1/(^)1^· Hence, we obtain the fol­
lowing lemma. 

Lemma 7.12. — For a holomorphic section f of E such that ||/||&,iv < cxo7 we have 
\f\h<B2\\f\\b,N-\z\-h-(-\og\z\)Nl\ 

We give one more elementary remark. 

(3)The inequality (2.30) loc. cit. should be (##77, dEr])a,N + {d*Er],d*Er])aiN > |M|JJIV. 
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Lemma 7.13. — Let f be a holomorphic section of ^E on X(^yf). Then the maximum 
principle holds for H{z) := \f{z)\2

h · \z\2b • (-\og\z\)~N on X{^f") for 7" < 7', i.e., 
sup x * ( 7 „ } H(z) = max 9 X ( y/ ) H(z). 

Proof. — We put He(z) := \f(z)\2
h · |z|25+e · ( - l o g ^ l ) - ^ for any e > 0. We have 

AlogiJ e < 0 on X*(y) and limz^o\og He(z) — —00. Therefore, the maximum 
principle holds for logHe on X{^n). Then it is easy to derive the maximum principle 
for H. 

7.2.2. Construction. — Take 0 < 77 < 770. Let T and v = (v\,... ,vr) be as in 
Lemma 7.10. We put S(T) := { a i , . . . , a r } . Let TA denote the section of End(E') 0 
H 0 ' 1 determined by v and A-dz/z, i.e., TA(v) = v-A-dz/z. We put <90 :=d — TA- We 
put fi := · Vi. Then we have dofi — 0 and = \z\ai. In particular, we have 
fi G A°!°az+r)^N(E). Take g i G A° ' ° . + r ? j i V satisfying % = TA(fi) and ||^||_q.+77jN < 
B\' ]^A{fi)\\_a.+rj N as in Lemma 7.11. We put Fi := fi—g%. Then we have dFi = 0, 

G ^4°_'^.+R? JV(F), and the following estimate: 

Fi -ai+η,Ν / i — OLÌ+I),N 
B1 Ì A ( / Ì ) — a*+77,iV" 

We have the following: 

(45) Qo9% -TAM + TAUÌ). 

Hence we obtain gi G L\(H) for any compact subset H C X*, and the L^-norm is 
dominated by \\TA{fi)\\-OLi-\-rilN multiplied by some constant depending only on H. 
Hence for some number p > 2 and some good constant C'(H,p), we have the following: 

9i LP(H) C'(H,p) TA(fi) — ai+r},N 
Due to (45), we have the following, for some good constant C"{H,p): 

(46) 9i L1(H) C"(H,p) · TA(fi) — ati+r),N sup 
H 

TA(fi) h,g, 

By a standard boot strapping argument, p can be arbitrarily large. 
We put a := tr(T) and 0 := J2beVar(<>E) m W ' -̂ Since we have tr(R(h)) = 

tr(F(h)) = 0, the induced metric det(h) of det(E) is flat. Hence we have a holomorphic 
section s of Qdet(F) = det(°E) such that \s\h — \z\~° and <9det(£)s = s · (—0) · dz/z. 
It is easy to see n = a + 0 is an integer by considering the limit of the monodromy of 
det(E') around the origin. We put s := zn · s, which gives the section of _a;det(F). 

Remark 7.14. — We will show that —a = 0, i.e. s = s later (Lemma 7.17). 

Let us consider the function F determined by F · s = F\ A · · · A Fr. We put 
H0 := j ^ - 1 < |*| < 2 -3 - 1 } . 
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Lemma 7.15. — There exists a small good constant Bi$ with the following property: 
— Assume the following inequalities hold: 

(47) sup 
H0 

A 9 B15, TA-h -ai+ri,N B\5, ( z = l , . . . , r ) . 

Then, there exist ZQ £ {z € C \ \z\ = 1} and a good constant 0 < BIQ < 1/2 such 
that F(H0) C {z e C | \z - zQ\ < B 1 6 } . 

Proof. — From (46) and (47), we obtain |Fi A · · · A Fr - f± A · · · A fr | < 4" 1 holds 
on Ho, if .B15 is sufficiently small. Since v\,..., vr are orthonormal and fi are given 
as \z\ai · Vi, we have f\ A · · · A fr = exp(y^Tft) · s for some real valued functions K. 
If Bis is sufficiently small, K is a sum of a constant K0 and a function m satisfying 
sup^o |^i(z)| < lOO - 1 because of (47). Then the claim of the lemma follows. 

For any number 0 < 7 < 1, let us consider the map 0 7 : X* —> X* given by 
z 1—> 7 · z. We put (#(7),<9E(7),#(7),/I(7)) := <j)*(E,dE,0,h). It is easy to check 
Assumption 7.9 for (£(7), <?£(7), ̂ (7))· We have the orthonormal frame 0*v of £(7) 
for which we have the following: 

gE(y) (Oyv) Oyv 1 
2 

r + (p;A 
dz 
z 

Note we have the following: 

(48) 4>;A HI),9 C3 

logici + 1 
log k l log|7| + l 

- i o g k l + i - 1 

Hence 0* v satisfies the claim of Lemma 7.10. We put f^ := \z\ai-<j>* Vi. We construct 
the sections g^ and Fi as above. We also take 3 ^ and s^\ 

Lemma 7.16. — For 77 > 0, there exists 71 = 71(77) > 0 such that the assumptions of 
Lemma 7.15 are satisfied for (£'(71), c?£(7l), /i(7i)) and 0 7 l v. 

Proof. — If 7 is sufficiently small, then we may assume sup#0 |<̂ *J4|~ < B15 due to 
(48). We also have the following: 

(49) rn Al) 2 I |-2ai+2r7 - l o g |̂ | N dvol^ 

#18 
- l o g U I + i 

-log|z| log 7 + 1 
2 

z 2rj ' - l og AT dvol^. 

Since the right hand side converges to 0 in 7 —> 0, we can take 71 such that the 
inequality rn All) -ai+rj,N holds. 

Now we have the holomorphic sections F^7l^\ ..., Fr11^ of °£'(71 (77)), satisfying 
l^ ( 7 l W ) U ( 7 i W ) < ^ ( ^ • I z l ^ - ^ - l o g l z l ) ^ . We put (̂77) := max{6 E Par(^E) | 6 < 
—oti + 77}, and then f / 7 1 ^ ^ are sections of a.^E{^\(r\)). 
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Lemma 7.17. — We have Var(°E) = S(T) which preserves the multiplicity. Hence, 
we have —a = 0. 

Proof. — If 77 is sufficiently small, we have ai(rj) < —cxi and hence ^^(77) < —a. 
We put 72 := 71(77). Hence we obtain |A[=i \ h(j2) = ^ ( l z l a ) ' which implies F is 
holomorphic on X , where F is given by /\I=i ^/ 7 2^ = ^ ' ^ 7 2 ^ Due to Lemma 7.15 
and the maximum principle, we obtain B^ < \F(z)\ < B20 for z G X(2/3). Hence, 
we obtain ^ai(rj) — —a. 

We put S(b) := {i \ - at = 6} for 6 G ^ar(°F( 7 2 ) ) . For i G 5(6), we have 
F^ G 6^(72), which induces F [ 1 2 ) G Grf (£ ( 7 2 ) ) . From B^1 < \F(z)\ < B20 for 
z G X(2/3), we have the lower estimate | /\zeS{b) ^ ( 7 2 ) U ( 7 2 ) > Cs\z\-^b^b+s for any 
S > 0. Hence we obtain the linearly independence of F[^ (i G S(b)). Then, it is easy 
to show that F[12\...,F^2) give the frame of °E ,(72) compatible with the parabolic 
structure, whose parabolic degrees are — or , . . . , — ari respectively. 

Now let us fix 77 = 770. We put 73 := 71 (770). We have the holomorphic sections F^13^ 
of ^(73) on X satisfying | F / 7 3 ) U( 7 3 ) < B30 · \z\Mm)-vo. Since we have = , 
the function F determined by F [ 1 3 ^ A · · · A F^ — F · is holomorphic on X. 
Thus, we have B^ < \F(z)\ < B3\ for z G X(2/3) due to the maximum principle 
and Lemma 7.15. 

The holomorphic sections F^13^ of 0E{^3) on X naturally give the holomorphic 
sections Fi oi^E on ^(73). We take 70 < 73 appropriately, and we put Fi := Fi \ x ( 7 o ) . 
It is clear that they satisfy the second and third claims of Proposition 7.4. 

For each (̂770), we have the number bi G Uo such that «¿(770) G V{bi). We obtain 
Fi G i.E. Then, the first claim of Proposition 7.4 follows from Lemma 7.13 and the 
third claim. 
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CHAPTER 8 

S O M E C O N V E R G E N C E R E S U L T S 

8.1. Convergence of a Sequence of Tame Harmonic Bundles 

Let X be a smooth projective variety of an arbitrary dimension over C, and D 
be a simple normal crossing divisor of X. Let (Em, <9m, 0 m , hm) (m = 1,2,...,) be 
a sequence of tame harmonic bundles of rank r on X — D. We have the associated 
parabolic Higgs bundles (c^m*,#m) on (X,D). 

Theorem 8.1. — Assume that the sequence of the sections {det(t — # m ) } of 
Sym' f^°(logD)[t] are convergent. Then the following claims hold: 

— There exists a subsequence {(EmidrniOrn,hrn)\m G / } which converges to a 
tame harmonic bundle (FQO, SQO, #OO, HOQ) on X — D , weakly in L v

2 locally on 
X — D , in the sense of Section 2.1. Here p denotes an arbitrarily large number. 

— If we are given a parabolic Higgs sheaf (CE*,0) such that {( C JEm = | c, 6m)\c} con­
verges to (C-E7*, 0)\c for any generic curve C. Then we have a non-trivial holo­
morphic morphism f : {CE*,0) —> (ĉ oo*,^oo)-

If (CE*,Q) is a iiL-stable reflexive saturated parabolic Higgs sheaf, f is iso­
morphic. (See Lemma 3.10J 

Proof. — The first claim is well known. We recall only an outline. The sequence of 
sections {det(£ — # m ) } of Sym' converges to det(t — 6). Hence we obtain the 
estimate of the norms of 6m locally on X — D (See Lemma 2.13, for example). We also 
obtain the estimate of the curvatures R(hm) because of the relation i?(/im) + [#m, 8m} = 
0. Therefore, we obtain the local convergence result like the first claim. (See [55] in 
the page 26-28, for example.) Thus we obtain the harmonic bundle (£̂ oo, <9oo, #oo, hoc). 

Let us show the second claim in Subsection 8.1.3 after some preparation. 

8.1.1. On a punctured disc. — Let us explain the setting in this subsection. Let 
X(l) and X*(7) denote the disc {z G C \ \z\ < 7} and the punctured disc ^(7) — 
{0}. In the case 7 = 1, we use the notation X and X*. We put D := {0}. Let 
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( F M , dm, 6m, hm) (m = 1, 2, . . . , oo) be a sequence of tame harmonic bundles of rank 
r on a punctured disc X * . We have the associated parabolic Higgs bundles ( C F M *, 0m) 
on ( X , D) for c G R. Assume the following: 

— {(Em, dm, Om, hm) \m < oo} converges to (E^, d^, Ooo, hoc) in C1 locally on 
A* via the isometries <I>m : ( F M , hm) —> (£00, ^00)· 

— Assumption 7.1 is satisfied for any m. The constants are independent of the 
choice of m. 

— There exists a finite subset UQ C]C — 1, c[ and a function m : UQ — > Z>o such 
that { (Var( c Em), tn) | m < 00} converges to (Uo,m) in the sense of Section 2.1. 
We put u:=^2heUom{b)-b. 

Lemma 8.2. — We have holomorphic isomorphisms : cEm' —> cEoo on X(j) 
for some 7 < 1 and some subsequence {mf} C {m}, with the following properties: 

— tym — &m —> 0 weakly in L\ locally on X*(7) . 
— \I/m(0m) — 0̂0 —• 0 as holomorphic sections o/End( c£oo)®f£1 , 0(logD) onX(^). 
— Let F ( M ) ( C F M ) denote the parabolic filtrations of cEm\D induced by hm- Then 

the sequence of the filtrations { \ I / m ( F ^ ( C F M | D ) ) } converges to F^ 0 0)( cEOO)|D 
in the sense of Definition 3.36. 

Proof. — After going to a subsequence, we may assume that Assumption 7.3 is satis­
fied for (Em, dm, Om, hm) (m < 00) with some 770 > 0. We take holomorphic sections 
F 1

( M ) , . . . , F R
( M ) of cEm on X ( 7 ) with ^ m ) , . . . , 6fm ) G U0 as in Proposition 7.4, with 

some 7 < 1. We may assume that b^™^ are independent of m, which are denoted by 
bi. There exists a subsequence {m'} such that {<I>m/(F^M ^)} are convergent weakly 
in L\ locally on X(7)*. The limits are denoted by F^°°\ They are holomorphic with 
respect to doo. We replace {m} with the subsequence {ra'}, and we assume that the 
above convergence holds from the beginning. 

For each 6 G t/o, we put b(m) := max{a G Var(cEm) \ \a — b\ < 770}. Then, we have 
IF/ 7 7 1^ \hm < C ' I z I ~ ^ ( M ) · ( - log IzI) N , where the constants C and N are independent of 
m. Since we have bi(m) —» 6i for ra —» 00, we obtain 1 ^ Fi(00) < C-1^|—6i -(— log 1̂ 1)̂ , 
and hence F^°°^ G ^EOQ. 

We put c(ra) := ^2beVar(cEni) b ' m{°)- The sequence {c(m)} converges to u. We 
have C7 1 · |z|-^m) < | A [ = i ^ ( m ) L m < Ci · |z|"^m), and hence C^1 · \z\~u < 

l A L i ^ 0 0 ^ < c i · \z\~u- W e P u t : = {ilk = b}- F o r i G 5*> w e h a v e 

F / 0 0 ^ G 6^00, which induces G Grf (EOO|D)- We have the lower estimate 
\AieSb

Fl°°)\h > cs ' \z\-\Sb\'b+6 for any S > 0, from which we obtain the lin­
early independence of F^ 0 0^ (i G Sb) in Grf (£OO|.D)- Then, it can be shown that 
the sections F ^ 0 0 ^ , . . . , F^ 0 0^ give a holomorphic frame of cEoo, which is compatible 
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with the parabolic structure, and b^00^ are the degrees of F^°°^ with respect to the 
parabolic structure. 

We construct the holomorphic map ^ m : c P m — > CEOQ on X(^y) by the correspon­
dence ^ m ( p / m ^ ) = F^°°\ The first and third claims of the lemma are satisfied by 
our construction. Let K be any compact subset of X*^). Since \Pm — <£m converges 
to 0 in L\ on K , we have the C°-endomorphisms GM of E ^ K for any sufficiently 
large m such that (i) ^m\K = Gm o §m\K, a n d (ii) Gm —» i d ^ ^ in C° for m —• 00. 
Then, ^m(6 )

m)|K = G m o §m{0m)\K 0 G^1 converges to O^K in C° on i f . Hence, 
we also have the convergence of \I/m(0m) — #00 to 0 in C° on any compact subset of 
X*(7). The Higgs fields 6m and the holomorphic frames i ^ m \ . . . , Fr™"* determine 
the matrix valued holomorphic n 1 , 0(log Z})-forms 6 m . Similarly, we obtain Goo- Due 
to the above argument, we have the local convergence of G m to G^ on X*(j). Since 
they are holomorphic, we obtain the convergence on X{~f). Thus the second claim 
also holds. 

8.1.2. On a curve. — Let us explain the setting in this subsection. Let C be a 
smooth projective curve with a finite subset De C C. Let ( P m , dm, hmi 6m) (m — 
1, 2,. . . , 00) be a sequence of harmonic bundles of rank r on C — Dc- We have the 
associated Higgs bundles (cPm*7#m), where c = (c(P) \ P E D) E RD. We assume 
the following: 

- The sequence { ( P m , <9m, ftm, 6m)} converges to (£00, <9oo, h^, 6^) in C1 locally 
on C - Dc via isometries $ m : (Emi hm) —> (P^, hoo). 

- For each i, a finite subset U(P) c]c(P) - l,c(P)[ and a function m : U(P) —> 
Z>o are given, and { (Par(P m , P), m) \ m < 00} converges to (J7(P),m). 

By the first condition, the sequence det(t — 6m) £ Sym* 0^° (log Dc) converges to 
det(£ — OOQ). Around each point P E Dc1 we can take a coordinate neighbourhood Vp 
such that Assumption 7.1 is satisfied on Vp for any m < 00, and that the constants 
are independent of m. 

Lemma 8.3. — {(cEmi, F{rn'\ 6m>) \ mf E / } converges to (cPoo, P ( o o ) , 6>oo) /or an 
appropriate subsequence I C {m} m £/ie sense of Definition 3.36. 

Proof. — We would like to replace $ m / with \£m/ : cPm' —> cPoo for an appropriate 
subsequence {m'} C {m}. By shrinking Vp appropriately, we take the holomorphic 
maps p^m' c(P)Em' —> c{P)Eoo on Vp for some subsequence {mf} C {m} for each 
point P E Dc, as in Lemma 8.2. We replace {m} with {m'}. 

Let XP : C —> [0,1] denote a C°°-function which is constantly 1 around P, and 
constantly 0 on C — Vp. Let \ l / m : Em — > Poo be the L^-map given as follows: 

(50) Wm 

P 
XP·P* m 1 

P 
XP <$>m-
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If m is sufficiently large, then ^ m are isomorphisms. We have the following: 

(51) wm O dm ~ <9oo ° ̂ rn OXp r m ^rn} 

1 XP $m ° dm ~ doo O <Prn 

Hence the sequence (wm o dm — doo o \£m} converges to 0 weakly in L p on C. By 
construction, the sequence of the parabolic filtrations of cEm * converges that of cEoo *. 
We also have the convergence of ^ m ( ^ m ) — #oo to 0 weakly in L p on C. Hence we 
obtain the convergence of { ( c E m , F^m\0m) \ m < oo} to ( c£oo, F^°°\ OOO) weakly in 
L \ on C. 

8.1.3. The end of Proof of Theorem 8.1. — Let us return to the setting for The­
orem 8.1. Let (EQO, doo, #oo5 ôo) be a harmonic bundle obtained as a limit. We obtain 
the parabolic Higgs bundle (cEoo*, #00)· We would like to show the existence of a non-
trivial holomorphic homomorphism ( c£*, 0) —> (cEoo*, #00)· Due to Lemma 3.4, we 
have only to show the existence of a non-trivial map fc : (c£* i®)\c —* (c^°° *> ^°°) \c 
for some sufficiently ample generic curve C C X. We may and will assume that 
ct g Par(cE,i). 

We have the convergence of the sequence { ( c Em*, dm) j C | to (CE*,#)|C on 
C. In particular, we have the convergence {(Var( cEm\ci P),m) | m < 0 0 } to 
(Var(cE\C,P),ra) for any P G C n D. The sequence {(Em, dm, 0m, hm)\c\D} i s 

convergent to (Eoo, doo, #00, ôo)|c\D hi C1 locally on C\D. After going to a subse­
quence, we obtain the convergence of {(cEm*, ,@m)\C | m} to (cEoo*, $oo)\C weakly 
in L\ on (7, due to Lemma 8.3. Thus we obtain the existence of the desired non-trivial 
map fc due to Corollary 3.38. Thus the proof of Theorem 8.1 is finished. 

8.2. Preparation for the Proof of Theorem 9.1 
Let C be a smooth projective curve over C with a simple effective divisor D. 

Let {(cEm*,9m)} be a sequence of stable parabolic Higgs bundles on (C,D) with 
par-deg(cl£m*) = 0, which converges to a stable Higgs bundle (c£oo*, #00)· We take 
pluri-harmonic metrics h0

m of (Em, <9#m, # m ) adapted to the parabolic structure (m = 
1, 2 , . . . , 00) (Proposition 2.8), where Em '= cEm\c-D- We put Vm '>= dEm + 0m and 
V*m •= dEm,h^ + 0m,h^ ( m = X' 2' • ' * ' °0)-

Take a sequence of small positive numbers {e m } . For each P G D, let (Vp,z) be 
a holomorphic coordinate around P such that z(P) — 0. Let TV be a large positive 
number, for example N > 10. Let gm be Kahler metrics of C — D with the following 
form on Vp for each P G D: 

FN+2 m Z 2em Z 2 dz · dz 

z 2 
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We assume that {gm} converges to a smooth Kahler metric go of C in the C°°-sense 
locally on C — D. 

In the following argument, ||p||/i,y will denote the L 2-norm of a section p of Em ® 
^c-D o r End(Pm) 0 ^C-D> w ^ h respect to a metric g of C — D and a metric h of 
Em- On the other hand, \p\h,g will denote the norm at fibers. 

Proposition 8.4. — Let (m < oo) be hermitian metrics of P m with the following 
properties: 

1. Let s(m) be determined by h^ = h0m s(m\ Then (i) sm is bounded with 
respect to h^, (ii) dets^m^ = 1 ; (hi) ||£>ms(m)II (m) < oo. fTfte estimates 
may depend on m.) 

2. We have ||P(/i(m))L(™),sm < oo and lim \\F(h^)\\him),gm=0. 
3. There exists a tame harmonic bundle (P ;, <9p/, 6', h') such that the sequence 

{ ( P m , <9pm, # m , / i ( m ) ) } converges to (E'\3E', \h') in C1 locally on C — D. 

Then, after going to a subsequence, (cEm*,0m)) converges to (cE'*,Qf) weakly in L\ 
on C. 

Proof. — We may and will assume that { ( P m , <9#m, 0 m , h^ )} converges to 
(Poo, dtfoojfloo, ôo) via the isometries $ m : ( P m , ^ m ) ) —• (#00,^00), due to 
Theorem 8.1. First, let us show that ŝ m̂  are bounded independently of m. 

8.2.1. Uniform boundedness of s^m\ — For any point P G C — P, let 
SE(s(m^)(P) denote the maximal eigenvalue of s^™K There exists a constant 
0 < Ci < 1 such that d · |s[p\(m) < SE(s^){P) < l ^ p ^ - ) - Because of 
dets[p } = 1, we have SE(s^)(P) > 1 for any P. 

Let us take bm > 0 satisfying 2 < 6 m · supP SE(s^)(P) < 3. We put s(m) = 
&m sm and /^m) := h^ · s m̂\ Then s(m) are self-adjoint and uniformly bounded 
with respect to both of h{

0
m) and ft(m). We remark F(h^) = F(h^). We also 

remark that / i ^ 7 7 1 ^ and / r m ) induce the same metric of End(Pm). 
Recall the following equality (Lemma 3.1 of [51]): 

(52) A , (m)S m̂' s(m) - 1 A , 0 P ( ^ ) ) - l A 5 0 P m ^ ( ^ ) ^S*™) . 

Because of ||£>ms(m) |L (m ) = ||Pms ( m ) I L M < 00 and the boundedness of s(m\ 
we have J A^0 tr s(m) -dvol^0 = 0. Hence, we obtain the following inequality from (52) 
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and the uniform boundedness of s m̂) with respect to h^: 

(53) X>ro3<m) · ( 2 < M ) ) - 1 / 2 2 
, (m) 

ao,h0 

dvol s o Ai t r ( ^ m ) · AgoF(h{m))) • dvol g o 

A2 
Ago F (h(m)) l(m) • dvol g o A2 A 9 mF(/i<m>) him) • dvol S m 

^ • | | ^ ( m ) ) | U , S m . 
Here, Ai denote the constants which are independent of m, and we have used the 
inequality |tr(3<m) • AgoF(h^))\ < |3<m)|S(m) · \AgoF(h^)\~h(m). In particular, we 
obtain the following inequality for some constant A^. 

(54) Dms(m) 2 
K ',30 A4 F(him)) h(m) ,gm 

We put £(m) := $m(s<m)) G E n d ^ ) . 

Lemma 8.5. — After going to an appropriate subsequence, {t^m^} converges to a pos­
itive constant multiplication weakly in L\ locally on C — D. 

Proof. — { t ( m ) } is Lj-bounded on any compact subset of C — D due to (54). By 
going to an appropriate subsequence, it is weakly L^-convergent locally on C — D. 
Let t(00) denote the weak limit. We obtain V^t^ = 0 from (54). By construction, 
t(00) is also bounded with respect to . Therefore t(00) gives an automorphism of 
(c^oo*^oo)- Due to the stability of (c-E'oo*? 0<x>), is a constant multiplication. 

We would like to show t(00) ^ 0. Let us take any point Qm G C — D satisfying the 
following: 

SE(sW)(Qm) 
9 
10 sup 

Pec-D 
SE(sW)(P). 

Then we have logtr t^m^(Qm) > log(9/5). By taking an appropriate subsequence, we 
may assume that the sequence {Qm} converges to a point Qoo- We have two cases 
(i) Qoo G D (ii) Qoo 0 D- We discuss only the case (i). The other case is similar and 
easier. 

We have t r ^ m ) = tr ? m ) , which we do not distinguish in the following. We use the 
coordinate neighbourhood (U, z) such that z(Qoo) = 0. For any point P G 17, we put 
A(P, T) := {Q G U | \z(P) - z(Q)\ < T}. Let g = dz · dz denote the standard metric 
of U. We have the following inequality on U — {Qoo} (Lemma 3.1 of [51]): 

A G l o g t r ^ AgF(h^m)) him)-
Let B^ be the endomorphism of Em determined as follows: 

F{h{m)) F(h{m)) B(m) dz - dz 
M 2 

Then we have the following estimate: 

ß(™>) 2 eZ+1\z\^ + \zf l dvolg 
\A2 

A F(tfm)) 2 H(M),GM dvol 5 m . 
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Here A denotes a constant independent of m. Due to Lemma 2.17, there exist ?/m) 
such that the following inequalities hold for some positive constant A!\ 

c W m ) B(m) 

h(m) 
dz · dz 

\z\2 

v^m){z) A' F(h{m)) h(m) ,gm 

Then we have A^logtr?™) - i;(m)) < 0 on U - {Qoc}. Since s<m) and ( s^ ) ) " 1 are 
bounded o n C - D , logtr is bounded on C-D. Hence, A^ (log tr ? m ) - v ^ ) < 0 
holds on U as distributions. (See Lemma 2.2 of [52], for example.) Therefore, we 
obtain the following: 

logtT^m\Qm)^v^m\Qm)<A,f 

A(Qm,l/2) 
logtr?™) -v{m) dvol^ 

Here A" denotes a positive constant independent of m. Then we obtain the following 
inequalities, for some positive constants d (i — 1, 2) which are independent of m: 

log(9/5) logtr? m >(Q m ) d 
fA(Qm,l/2) 

logtr? m ) -dvol 5 +C 2 . 

Recall that logtr? 7 7 2) are uniformly bounded from above. Therefore there exists a 
positive constant d such that the following holds for any sufficiently large m: 

A(Qm,l/2) 
min(0,logtr? m ) ) · dvol^ < C 3. 

Due to Fatou's lemma, we obtain the following: 

A(Qoo,l/2) 
min(0, logtr? 0 0 ) ) · dvol^ < d-

It means ?°°) is not constantly 0 on A(Qoo, 1/2). In all, we can conclude that ?°°) is 
a positive constant multiplication. Thus the proof of Lemma 8.5 is finished. 

Let { ? m )} be a subsequence as in Lemma 8.5. It is almost everywhere convergent 
to some constant multiplication. Then we obtain the convergence of { de t ? m ) = 
bmfkE · iddet(£;)} to a positive constant multiplication, i.e., {6 m/} is convergent to a 
positive constant. It means the uniform boundedness of {s^171)} with respect to h^1 \ 

8.2.2. Construction of maps. — By assumption, we are given CMsometries 
^ : (Em,hm) (E',h') for which {(Em,dEm,0m)} converges to (E',dE>, 0')· By 
modifying them, we would like to construct the maps : c P m —> cEf for which 
a subsequence of {( cPm*,0m)} converges to (CE'*,Q'). The argument is essentially 
same as that in Subsections 8.1.1-8.1.2. 

We put Vp \— Vp — {P}. We will shrink Vp in the following argument if it is neces­
sary. We may assume that Assumption 7.1 is satisfied on Vp for any m < oo, and that 
the constants are independent of m. We have the convergence { (Par( c P m * , P), m)} 
to (Par(cPoo*, P), m). Take 77 > 0, and we may assume that Assumption 7.3 is 
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satisfied on Vp for any m < oo, after going to a subsequence. By applying Proposi­
tion 7.4 to harmonic bundles (Em, <9m, 0 m , h^)^*, we obtain holomorphic sections 
F [ M \ . . . , Fr

(m) of cEm on Vp with numbers 6^m\ .. . , 6 ^ as in Proposition 7.4. We 
may assume bi

(m) are independent of the choice of m, which are denoted by b{. For 
6 G Var^cEoQ, P), we put 6(m) := max{a G Par(cEm) | |a — 6| < 770}. We put 
c(m) := X] a e-p a r( c£;m p) « · m(a). Because of the uniform boundedness of s m̂\ we 
obtain \ F J m ) \ h ( m > <C-\z\-~b^(-\og\z\)N and Q · \z\~^ < | A [ = 1 Ft

{m)\h(m) < 
C2 · |z|~c(m), where the constants are independent of m. After going to a subse­
quence, we may assume that {<I>^(i^m ^)} are convergent weakly in L\ locally on 
Vp. The limits are denoted by F[, which are holomorphic with respect to ÔE'- We 
have \F!\h. < C · |z|-b<(-log\z\)N and d • \z\~~c < |A[ = 1 F /| h ( m ) < C 2 · |*|-* where 
c := 5^5Gp a r( c £; o o p) m(^) ' &· By the same argument as the proof of Lemma 8.2, we 
obtain that F[,..., F'R gives a frame of CE' around P which is compatible with the 
parabolic structure. (In particular, we obtain Var(cE'', P) — Par(cEoo, P)). 

We obtain the holomorphic morphism p^'m : cEm\vP — > cE'\yp by the corre­
spondence P^F

RN(F^RN">) = F[. By our construction, (i) p^'rn — &m\y* c o n v e r g e s to 
0 weakly in L\ locally on Vp, (ii) p^'rn(0rn) — 6' converges to 0 on Vp as holomor­
phic sections of End( c F / ) 0 SI1 ,0(log P) (see the last part of the proof of Lemma 8.2), 
(iii) the parabolic filtrations of cEm\p converges to the parabolic filtration of CE'\P 

via p ^' r n - Then, we construct Wm similarly to (50), which gives the convergence of 
{ ( cF m * ,# m ) } to (CE"*,0'). 
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E X I S T E N C E O F A D A P T E D P L U R I - H A R M O N I C 
M E T R I C 

9.1. The Surface Case 

Let X be a smooth irreducible projective surface over C, and D be a simple 
normal crossing divisor of X. Let L be an ample line bundle, and uo be a Kahler form 
representing C\(L). 

Theorem 9.1. — Let (cE,F,0) be a /LLL-stable c-parabolic Higgs bundle on (X,D). 
Assume that the characteristic numbers vanish: 

par-degL( c£ ,,F) 
x 

par-ch 2( c£,F) = 0. 

Then there exists a pluri-harmonic metric h of (E,0) = (CEI6)\X-D which is adapted 
to the parabolic structure. 

Proof. — We may and will assume Ci Var(cE, F,i). We take a sequence 
|em} converging to 0, such that em = TV" 1 for some integers Nm and that 
em < gap( cP, i r')/100rank(P). We take the perturbation of parabolic structures 
F^€ m) as in Section 3.3. We put em = em/100, and we take the Kahler metrics ujEm 

of X — D as in Subsection 4.3.1. For simplicity of the notation, we denote them by 
F^ and oj(m\ respectively. We may assume that (CE,F^) are ^-stable. 

Due to Corollary 6.6, we have already known par-c 1( cP, F) = par-^ 
0. Thus, we can take a pluri-harmonic metric hdetE of det(E') adapted to the 
parabolic structure. Due to Proposition 6.1, we have the Hermitian-Einstein metric 
h^ of {E,dE,0) with respect to o/m> such that ku{m)F(h^) = tr F(h^) = 0 and 
det(/i(m)) = /idet£o which is adapted to the parabolic structure (CE, F^). We re­
mark that the sequence of the L -norms ||P(ft(m))IU(m) (̂m) of F(ft(m>) with respect to 
h^ and u / m ) converges to 0 in m —> oo, because of the relation ||F(/i^m))||^(Tn) ( m ) = 
C · par-ch2 L(CE, F^) for some non-zero constant C. We will show the local conver­
gence of the sequence \(E, 8E-> 0, h^)\ on X — D. 
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9.1.1. Local convergence. — In the following argument, Bi will denote positive 
constants which are independent of m. We use the notation (p)h,w to denote the 
L 2-norm of a section p of E' <g> Qt,j or End(E") <g> O2'-7, where h! and UJ' denote metrics 
of a vector bundle E' and a base space. On the other hand, |p|h',cy denotes the norms 
at fibers. 

Let P be any point of X — D. We take a holomorphic coordinate (U,z\,Z2) around 
P such that Zi(P) = 0 and that UJ\p = ^dzi · dzi on the tangent space at P. We 
have the expression 0 = ^ fi · dzi. 

Let r] be a positive number. If m is sufficiently large, we have H-FX 7̂77̂ )!!̂ ™) (̂m> < 
77. Due to Lemma 2.13, there exists a constant Bi, such that B^1 · \fi\h(™) < 77. Take 
a large number B2 > B\, and we put Wi := B2 · Zi, Y(T) := {(wi, W2) \ \ wi\2 < T}, 
9 dwi · dWi and UJ^ := B\ · a / m ) . Then, we obtain the following: 

^ ( m ) ) | y ( i ) him),g ^ ( m ) ) | v ( i ) h(^):g 61 6h(m) (Y(1) h(m),g Bs-T] 

Let d* denote the formal adjoint of the exterior derivative d on 1̂ (1) with respect to 
g. If 77 is sufficiently small, we can apply Uhlenbeck's theorem ([63]). Namely, we can 
take an orthonormal frame vm of (E1, h^)such that the connection form Am of 
9E + dE^h(m) with respect to vm satisfies the conditions: 

(i) : d*Am = 0, 
(ii) : \\Am\\LVg C[p) dAm + Am A Am\\Lp,g (p > 2), where C(p) denotes the 

constant depending only on p. 
By our choice of B2, we also have the following: 

(iii) : Let n( m ) denote the orthogonal projection of onto the self-dual part 
with respect to c j m . Then, \U^(dAm + Am A Am)\~{m) < B4f] because of 
A S Ä ( f t ( - ) ) = A 2 [Ö, e\{m)}. 

From (i) and (iii), we have | (d*+n^ od)(Am) + n^ m ) (A m AAm)\~ < B$. If B 2 and m 
are sufficiently large, UJ^ and g are sufficiently close. Recall that d* + I I o d is elliptic, 
where I I denotes the orthogonal projection of ft2 onto the self-dual part with respect 
to g. Using the boot strapping argument of Donaldson for Corollary 23 in [13], we 
obtain that the L^-norm of Am on Y(T) (T < 1) is dominated by a constant BQ . 
Let 0 m be determined by 6(vm) = vm · ©m- The sup norm of O m with respect to 
g is small, due to our choice of B2. We also obtain the L^-bound of G m because of 
<9©m + [Am1, ©m] = 0, where Am

l denotes the (0, l)-part of Am. 

Lemma 9.2. — After going to a subsequence, {(E, 0) | m G / } converges to 
a tame harmonic bundle (Eoo, <9oo, / i ^ , 6oo) weakly in L\ locally on X — D. 

Proof. — Due to the above arguments, we can take a locally finite covering 
{(Uaiz[a\z{

2
a))\a G T} of X - D and the numbers {m(a)\a G T} with the 

following property: 
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— Each Ua is relatively compact in X — D. 
— For any m > m(ce), we have orthonormal frames va:Tn of (P, h^) on Ua such 

that the L^-norms of AaiTn are sufficiently small with respect to the metrics 
^2 · dZj^ independently of m, where 4̂a,™ denote the connection forms of 
(dE^h{m) + dE) with respect to vajm. 

— Let B a , m be the matrix valued (l,0)-forms given by 0 · va_rn = va^rn · O a , m . 
Then the L^-norms of 6 a , m are sufficiently small with respect to dz^ -dz^\ 
independently of m. 

Let gp^a,m be the unitary transformation on Ua fl Up determined by va^m = 
vp,m ' g/3,a,m- Once a and ¡3 are fixed, the L^-norms of gp,a,m are bounded indepen­
dently of m. By a standard argument, we can take a subsequence / C {m} such that 
the sequences {^4a,m | w& £ I } , {®a,m | m G / } are weakly L^-convergent for each 
a, and that the sequence {ga,/3,m | m G / } is weakly L^-convergent for each (a,/?). 
Then, we obtain the limit Higgs bundle (Poo, <9oo, #oo) with the metric on X — D. 
From the convergence \\F{h^)\\L2Mrn)^{rn) 0, we obtain ||^(ftoo)||L2>/looja; = 0, 
and hence (Poo, <9oo, #oo, ôo) is a harmonic bundle. By using the argument of 
Uhlenbeck [63], we obtain locally Lf-isometries <£m : ( P , / i ^ ) —> (Poo,^oo), via 
which {(P, dE, 0, h^)} converges to (Poo, <9oo, #oo, /loo) weakly in L\ locally on 
X — D. Since we have det(£ — 0) = det(£ — #oo) by construction, the tameness of 
(Poo, ^Eon, ôo, #oo) follows. Thus, Lemma 9.2 is proved. 

We obtain the associated parabolic Higgs bundle (cPoo, Poo, #oo) · We would like 
to show that it is isomorphic to the given parabolic Higgs bundle ( CP,P,#). For 
that purpose, we have only to show the existence of a non-trivial morphism / : 
(CP, P, (9) —> (cPoo, Poo, #oo), because of the //^-stability of ( CP, P, #) and the 
polystability of (cPoo, Poo, #oo)- Moreover, we have only to show the existence of 
a non-trivial map fc ' (cPoo, Poo, #oo)|c —• (cP,P,#)|c f° r a sufficiently ample 
generic curve C C X, due to Lemma 3.4. So we show that such fc exists for almost 
all C, in the next subsections. 

9.1.2. Selection of a curve. — Let L N be sufficiently ample. We put V := 
P°(X, L N ) . For any s G V, we put X s := s _ 1 (0). Recall Mehta-Ramanathan type 
theorem (Proposition 3.29), and let U denote the Zariski open subset of V which 
consists of the points s with the properties: (i) Xs is smooth, and Xs fl D is a simple 
normal crossing divisor, (ii) (CE,F,6)\xs is /XL-stable. 

We will use the notation X* := Xs\ D and D s := I s fl D. We have the metric 
u4m) of X*, induced by u / m ) . The induced volume form of X* is denoted by dvol^m\ 
We put ( cP s ,P^m ) ,6> s) := ( CP, P ( m ) , 6>) )Xs. We have the metric hs

(m) := fcf$! of 
P s := P|x*. Since there exists mo such that ( c P s , p ( m \ # s ) is stable for any point 
s G U and for any m > mo, we have the harmonic metric hs

(m) of (ES,0S) adapted 
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to the parabolic structure Fs
(m) with deth^ = h^etE\x* (Proposition 2.8). Let 

ui™"* be the endomorphism of E\x* determined by = · uim\ Then, is 
bounded, and it satisfies detu^ = 1. We put Vs := (dE + 0)\xs-

Lemma 9.3. — For almost every s <ElA, the following holds: 

— We have the following convergence in m —> oo; 

(55) F (h™) 
h (m) (m) 0. 

— For each m, we have the finiteness: 

(56) Vsu^ 
h(m) (m) CO. 

Let Z// denote the set of s for which both of (55) and (56) hold. 

Proof. — Let us discuss the condition (55). Let us fix si G U. We take generic G ZY 
(i = 2, 3), i.e., XSl is transversal with X 5 i (i — 2, 3) and X S l D X S 2 H X S 3 = 0. Take 
open subsets W$j) [j = 1,2, z = 2,3) such that (i) X3l n X S z C w f } c w f \ (ii) 
V^/1^ is relatively compact in W^2\ Take an open neighbourhood U\ of si , which is 
relatively compact in Z//, such that X s is transversal with XSi (i = 2, 3) and XsDXSi C 
W^ for any s EUi. 

Take T > 0, and we put B :— {z G C | \z\ < T } . Let ̂  denote the projection of 
X x Ui x B onto the z-th component. We put Z 2 := {(x, s, t) G X x U\ x P 1 | (£s2 + 
(1 — £)s)(x) = 0}. The fiber over s G U\ via g2 | z 2 *s ̂ n e cl° s ed region of the Lefschetz 
pencil of s and s2. 

We fix any Kahler forms UJJJ1 and CJE oiU\ and ¿3. The induced volume forms are 
denoted by dvol^ and dvofg. Then we have the following convergence in m ^ oo: 

2̂ 
* 

Qi 
F(ft ( m>) 2 

fc(m))U;(m) dvol̂ cm) dvolc/i 0. 

We put Z 2 := Z 2 \ q1
 l(W^). Then the following convergence is obtained, in partic­

ular: 

(57) 
z2 

* F(/z ( m ) ) 2 
fc(m))U;(m) dvol̂ cm) dvolc/! 0. 

Let ^ : Z 2 —> C/i x B denote the projection. For (s,£) eUi x B, we put X( s,t) := 
7/)_1(s,£) = (ts 2 + (l-£)s) 1(0) = X t S 2 + ( i _ t ) s . On X( S j t ) , we have the induced Kahler 
form Ws

(m) the induced volume forms dvolj™^ and the hermitian metric hs
(m) := 

Hs
(m). The family { d v o l ^ | (s,t) G (7i x B} gives the C°°-relative volume form 
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dvol^?^ x B of Z'2 —> Ui x 13. There exists a constant A such that the following 
holds on Z2. 

(58) A-ql F(h(m)

t) 2 
fc(m))U;(m) dvolw(m) dvolUl 

F(h(m)

t) 2 u(m) (m (s,t)' (s,t) 
dvol z2/U1xB. dvolB dvolU1 

Therefore, we obtain the following convergence for almost every (s,t) £ U\ x /?, from 
(57): 

(59) 
X (s,t)\ W2

(2) 

F(h(m)

t) 2 
u(m) (m) M S 0. 

Let 5 denote the set of the points (s,t) e Ui x B such that the above convergence 
(59) does not hold. The measure of S is 0 with respect to dvol^ x dvol#. 

Let J :U\ x B —> V denote the map given by (5, t) 1—> ts2 + (1 — t)s. We have 
the open subset J~l(U\) C U\ x B and the measure of SP\ J~l(U\) is 0 with respect 
to dvolc/i · dvol#. We have S D J~l(Ui) — J ~ x (J{S) DUi), and hence the measure 
of T(S) D(7i is 0 with respect to wui. Namely, we have the following convergence for 
almost every s G U\. 

xt\w^2) 

F(h^) 2 
u(m) (m) dvol i m ) 0. 

Similarly, we can show the following convergence for almost every s G U\\ 

Χ*\^3(2) 

F(h[^) 2 
hs

(m),ws

(m) dvol i m ) 0 

Then, we obtain that the condition (55) holds for almost all s ÇLU. 
The condition (56) can be discussed similarly. We give only an outline. Let hs

(m)  

be an initial metric which was used for the construction of /z^m\ (See the proof of 
Proposition 6.1.) We remark that hi

(m) and h(m) are mutually bounded. Let 
be determined by h(m) = hi

(m) t^m\ Then, we have \\Vt^ || (̂m) h(rn) < 00 due to 
Proposition 2.5. We put h[™l := h^x* and ts

(m):= hi
(m) for s G U. By an above 

argument, we obtain (|7̂ ŝ
m̂ || (m) (m> < 00 for almost all s G U. On the other hand, 

^s ' s,in 
let ? s

m ) be determined by h(™J = ^ • ^ • We can use h^n as the initial metric 
for the construction of . Hence, we have ||Psr̂ m̂ || (m) , (m> < 00. Since we have 
Tii77^ = 1 · 4 m \ the condition (56) is satisfied for almost s eU. Thus, the proof 
of Lemma 9.3 is finished. 

9.1.3. End of the proof of Theorem 9.1. — Let us finish the proof of 
Theorem 9.1. Take s G and we put C = Xs. We have the convergence of 
{(£, 0E, 0, / i ( m ))} to (£"00, <9oo, #oo, hoc) weakly in L\ locally o n l - D via isome-
tries $ m : (E,h^) —> (#00,^00)· The restriction of $ m to C \ D induce the 
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^-convergence of { (£ , <9, 0, /i ( m ))|c\D} to (£oo, doo, 0oo, ftoo)|c\D- By using Proposi­
tion 8.4, we obtain the convergence of { ( c £ , F ^ m \0)|c} to ( c£oo, £oo, ôo)|c weakly 
in on C for some subsequence. We also have the convergence of {(CE, 2^m\ 6)\c} 
to (c2£, F, 0)\c- Due to Corollary 3.38, we obtain the desired non-trivial map 
fc · (c#oo, ̂ 00,000)|c —> {cE,F,0)\C- Thus we are done. 

9.2. The Higher Dimensional Case 

Now the main existence theorem is given. 

Theorem 9.4. — Let X be an irreducible projective variety over C with an ample line 
bundle L . Let D = [Ji Di be a simple normal crossing divisor of X. Let (22*, 0) be 
a /JLL-stable regular filtered Higgs bundle with par-degL(22*) = J X par-ch2 L(22*) = 0. 
We put E := E\x_p>. Then there exists a pluri-harmonic metric h of (E1, <9#,0); 

which is adapted to the parabolic structure. Such a metric is unique up to constant 
multiplication. 

Proof. — We may assume that D is ample. We can also assume that L is sufficiently 
ample as in Proposition 3.29. The uniqueness follows from the more general result 
(Proposition 5.2). We use an induction on n = dimX. We have already known the 
existence for n = 2 (Theorem 9.1). 

Let (22*, 0) be a regular filtered Higgs bundle on (X, D). Assume that it is stable 
with par-degL(£*) = J X par-ch2 L ( £* ) = 0. For any element s G F := P(iJ°(X, L ) v ) 
determines the hypersurface Ys = {x G X | s(x) = 0}. The subset C X xP is given 
by XL := {(x, s) \x G Ys}. Let U be a Zariski open subset of F which consists of s G F 
such that (22*, 0)\Y8 is /iL-stable. Since L is assumed to be sufficiently ample, U is not 
empty (Proposition 3.29). The image of the naturally defined map XL X^U —> X 
is Zariski open in X. The complement is denoted by W which consists of, at most, 
finite points of X due to the ampleness of L . 

Let s be any element of hi. We have a pluri-harmonic metric hs of (E, 0)|vs, which 
is adapted to the induced parabolic structure, due to the hypothesis of the induction. 

Let Si (i = 1,2) be elements of U such that YSl and YS2 are transversal and that 
F S l ) S 2 := YSl D YS2 is transversal to D. We remark that d imy s i fl F S 2 > 1. We may 
also assume that (CE, 0)\ys S2 is /iL-stable (Proposition 3.29). Hence hSl \ ysi s 2 and 
hS2 \YS1 s2

 a r e s a m e UP to constant multiplication. Then, we obtain the metric h of 
E\X-(DUW) such that h\Ys = hs. 

Let P be any point of X — (D U W). We can take a coordinate neighbourhood 
([/p, z\,..., zn) around P such that (i) each hypersurface {z^ = a} of Up is a part 
of some y s , (ii) Up C X — (D U W). In the following, we will shrink Up without 
mentioning. Since the restriction of h to {zi = a} is pluri-harmonic, we obtain the 
boundedness of 6 and 0^ with respect to h around P. (See Proposition 2.10, for 
example.) 
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For any Q G f/p, let us take a path 7 connecting P and Q, which is contained 
in some YS. Then, the parallel transport Hp,Q : E\p —> E\Q is induced from the 
flat connection associated to the harmonic bundle (E,dE,0)\Ya with h\ya. The map 
np?Q is independent of the choice of 7 and YS. From the frame of E\p, we obtain the 
frame v = (v\,..., vr) of E \ U P . The trivialization gives the structure of flat bundle 
to E \ u P . For the distinction, we use the notation (V, V) to denote the obtained flat 
bundle. The restriction of ft, 6 and 0t to Up are denoted by the same notation. By 
the flat structure, we can regard the metric ft as the map y>h : Up —> GL(n)/U(n), 
and 9 + 9^ can be regarded as the differential of the map. Let ^GL(n)/f/Tl denote the 
invariant distance of GL(ri)/Un. Due to the boundedness of 9 + 9^ with respect to 
ft, there exists a constant C such that c?GL(n)/c/(n) (^(7(0)), ^(7(1))) is less than 
C times the length of 7 for any path 7 contained in some YS. In particular, ft is a 
continuous metric of V. 

Let H be the hermitian-matrices valued function whose ( i , j ) - th component is 
h(vi,Vj). Let 0 = (0i,j) and 6* = (0\j) be determined by 0vi = X] 0j,i · Vj and 
0t v . = X ;e t We have (iP = # ( 0 + 0+)/2 and d0 + [0+, 0] = 0 for the point-wise 
partial derivatives, which can be shown by considering the restriction of (E, 3E, ft, 9) 
to hyperplanes {zi = a}. The equality holds as distributions, which follows from 
Fubini's theorem and the boundedness of H, 0 and 0^. In particular, H and 0 are 
locally L\, and hence 0^ is also locally L\. By a standard boot strapping argument, 
we obtain that H, 0 and 0^ are C°° functions. In other words, ft is a (7°°-metric of 
V, and 0+ is a C°°-section of End(V) ® fi0'1. We also obtain that the C°°-structure 
of E and V are same because of 8E = dy — 6̂ , where dy denotes the (0, l)-part of 
V. Thus, we obtain that ft is a C°°-metric of F|X-(DUW)- The pluri-harmonicity of 
ft is easily obtained. 

Let P be any point of W. We take a holomorphic coordinate neighbourhood 
(Up, z i , . . . , zn) around P such that zi(P) — 0 for any i and Up {(z\,..., zn) \ \zi\ < 
1} via the coordinate. We assume Up CiW = {P}, and we put Up := Up — {P}- Let 
TTi denote the projection of Up onto Z := {(wi,. . . ,wn-\) \ \WJ\ < 1} by forgetting 
the z-th component. The origin of Z is denoted by O. We have the expression 
0\uP ~ Yl7=i ' dzi- Since the eigenvalues of fi are bounded on Up, there exists a 
constant C > 0 such that \fi\7X-1{Q)\h — ^ f ° r a n y Q ^ Z such that Q ^ O and for 
any i. By the continuity, we obtain < C on Up. Hence 9 + 9^ is bounded on Up. 

We have the flat bundle V := E \ U P with V := dp + dp + 9 + 6̂ · It is naturally 
extended to the flat bundle (V, V) on [7p, and we can take a flat trivialization v of 
V. Let H, 0 and 0^ are given on Up as above. They are bounded. We have the 
relation dH = H · (0 + 0 f)/2 and ¡90 + [0 f ,0 ] = 0 on Up. The equality holds 
as distributions on Up, which follows from Fubini's theorem and the boundedness of 
H, 0 and 0^. By using an elliptic regularity argument, it can be shown that H, 0 
and 0^ are C°°. Let dy denote the (0, l)-part of the flat connection of V. We have 
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(V,dy — 0^)\u*p — {E,OE)\UP which is extended to the isomorphism (V,dy — 9^) ~ 
(E,dp)\uP- Namely, h\uP is naturally extended to the C°°-metric of E\Up. Thus we 
obtain the tame harmonic bundle (E, dp, 9, h) on X — D. 

Let c be any element of Rs. We obtain the parabolic Higgs bundle (cE(h)*,9) on 
(X,D). (See Section 3.5 for the prolongment.) 
Lemma 9.5. — There exists a closed subset Wf C D with the following properties: 

— The codimension ofW in X is larger than 2. 
— The identity of E is extended to the holomorphic isomorphism CE\X_W> —> 

cE(h)\x_w>. 

Proof. — Let P be any general point of the smooth part of D. We can take a 
holomorphic coordinate neighbourhood (Up, z\,..., zn) around P such that (i) Up is 
isomorphic to {(zi,... ,zn) \ \zi\ < 1} via the coordinate, (ii) zf 1 (0) = D D U, (hi) 
each TT^1(Q) (Q £ Z) is a part of Ys (s £ IX), where TT\ denotes the projection of 
Up onto Z := {(z2, • · ·, zn) \\zi\ < 1}. Let / be a holomorphic section of C E on Up. 
By the construction of the metric h, each restriction f^-i^ (Q £ Z) gives the local 
section of c(E^-i^)(h). By using Corollary 2.53 in [44], we can show that / gives 
the section of cE(h) on Up. Thus, the identity of E on Up \ D is naturally extended 
to the morphism ip : C E —> cE(h) around P. It is also easy to check the surjectivity 
of the specialization tp\P at P. Since both of C E and cE(h) are locally free, up is 
isomorphic around P. 

Since both of C E and cE(h) are locally free, they are isomorphic. In particular, we 
can conclude that h is adapted to the parabolic structure. 
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T O R U S A C T I O N A N D T H E D E F O R M A T I O N O F 
R E P R E S E N T A T I O N S 

We see that any flat bundle on a smooth irreducible quasiprojective variety can be 
deformed to a Variation of Polarized Hodge Structure. We can derive a result on the 
fundamental group. 

We owe the essential ideas in this chapter to Simpson [55]. In fact, our purpose 
is to show a natural generalization of his results on smooth projective varieties. We 
will use his ideas without mentioning his name. This section is included for a rather 
expository purpose. 

10.1. Torus Action on the Moduli Space of Representations 

10.1.1. Notation. — We begin with a general remark. Let V and V be vector 
spaces over C, and Ø : V —> V be a linear isomorphism. Let T be any group, 
and p : T > GL(V) be a homomorphism. Then 4> and p induce the homomorphism 
T —> GL(V'), which is denoted by $*(/?). We also use the notation in Subsection 2.8. 

10.1.2. Continuity. — Let X be a smooth irreducible projective variety with a 
polarization L, and D be a normal crossing divisor. Let x be a point of X — D. We 
put r := 7Ti(X — D,x). Let (E*,Q) be a PL-polystable regular filtered Higgs bundle 
on (X, D) with trivial characteristic numbers. We put E := E\X_D. Since (E*, t · 0) 
are also /iL-polystable, we have a pluri-harmonic metric ht for (E, <9#, £ · 0) on X — D 
adapted to the parabolic structure, due to Theorem 9.4. Therefore, we obtain the 
family of the representations p't : T —> GL(E\X) (t G C*). We remark that p't are 
independent of the choice of pluri-harmonic metrics ht-

Let V be a C-vector space whose rank is same as rank E. Let hy be a hermitian 
vector space of V. For any t G C*, we take isometries $t (E\x,ht\x) —> (V,hy), 
and then we obtain the family of representations pt := ®t*{Pt) £ R{T, GL(V)). We 
remark that 7rQL(vr)(pt) are independent of choices of $ f Thus we obtain the map 
V : C* M ( r , V, hv) by V{t) = TTGUV) {(H). 
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Theorem 10.1. — The induced map V is continuous. 

Proof. — We may and will assume that (E*,9) is /i^-stable for the proof. Let {U G 
C* | i G Z>o} be a sequence converging to to- We have only to take a subsequence 
{U\i G S} and a sequence of isometries : (wi (E\X, ht. \ x ) — > (E\X, hto \ x) | i G S} 
such that {tyi*(pti) \i £ S} converges to pto. Since the sections det(T — ti · 0) of 
Sym' fi1,0[T] converges to det(T — to · 0), we may apply Theorem 8.1. Hence there 
exists a subsequence {ti | i G Sf} such that { ( E , 8 E , htx,U-6i) | i G S'} converges to 
a tame harmonic bundle ( E F , <9#/, ft/, <9') in L\ locally o n l - D via some isometries 
<$>i : (E, hti) — > (E'', ft') (i G S"). It is easy to see that the representations $i\x*(pti) 
converges to p' in R(T, E^X, ftjx), where p' is associated to the flat connection &E' + 
^z + e' + fl't. 

We also have the non-trivial holomorphic map / : C E ' —> C E which is compatible 
with the parabolic structure and the Higgs fields due to Theorem 8.1. Since (CE£, 0') 
is /XL-polystable and (CE*,to · 0) is //L-stable, the map / is isomorphic. Then we have 
f\x*{pf) — Pt0- By replacing / appropriately, we may assume / : E' —> E is isometric 
with respect to h! and hto. Hence ^ := (/ o $i)^x gives the desired isometries. Thus 
Theorem 10.1 is proved. 

10.1.3. Limit 
Lemma 10.2. — P({t £ C* | \t\ < 1}) is relatively compact in M(T,V,hv)-

Proof — The sequence of sections det(T — t • 6) of Sym' fi1,0[T] clearly converges to 
T r a n k E when t 0. Hence we may apply the first claim of Theorem 8.1, and we 
obtain a subsequence {ti} converging to 0 such that {(E,dE,ti · 0,htl)} converges 
to a tame harmonic bundle ( E F , OE'.O' , h') weakly in L\ locally on X — D . Then we 
easily obtain the convergence of the sequence WGUv)(pti)\ in M(T, V, fty). 

Ideally, the sequence {P(t)} should converge in t —» 0, and the limit should come 
from a Variation of Polarized Hodge Structure. We discuss only a partial but useful 
result about it. 

Let us recall relative Higgs sheaves. In the following, we put CT '= SpecC[t] 
and C\ := SpecC[£, t - 1 ] . For a smooth morphism Y\ —> I2, the sheaf of relative 
holomorphic (l,0)-forms are denoted by f ^ 0 ^ . We put X := X x CT and X* := 
X x C*. Similarly, 2 := D x CT and £* := D x C\. We put CE* := CE* <g> Oc*t 

which is c-parabolic bundle on (£*,£)*). Then, t · 0 gives the relative Higgs field 0, 
which is a homomorphism CE* —> CE* ® fi^'?/c* (log 35*) such that 02 = 0. Using 
the standard argument of S. Langton [33], we obtain the c-parabolic sheaf CE^ and 
relative Higgs field 0' : CE^ —> CE^ ® ^][(jCt satisfying the following (see [65]): 

- cEl is flat over Ct, and the restriction to X* is CE*. 
- The restriction of 0f to X* is 0. 
- (cK,Qf) := (c^i,^)|xx{o} i s /^L-semistable. 
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Let (CE*,Q) denote the reflexive saturated regular filtered Higgs sheaf associated to 
(CE',9'). (See Lemma 3.2.) We put E := CE\X_D. 

Proposition 10.3. — Assume that (CE*,9) is p^-stable. 

— (CE*,6) is a Hodge bundle, i.e., (cE*,a · 0) ~ (CE*,6) for any a G C*. 
— We have a pluri-harmonic metric h of a Hodge bundle (E, 9) on X — D , which is 

adapted to the parabolic structure. It induces the Variation of Polarized Hodge 
Structure. Thus we obtain the corresponding representation p : TT\{X — D 1 X) —> 
GL(Ej x) which underlies a Variation of Polarized Hodge Structure. 

— Take any isometry G : (E\x,h\x) ~ (V,hy). Then the sequence {7rQL(y)(Pt)} 
converges to 7TGL(V) (G*(j5)) in M(T, V, hy) for t —> 0. 

— In particular, the map TTGL(v)(pt) ' C* —> M(T,V,hy) is continuously ex­
tended to the map of C to M(T, V, hy). 

Proof. — The argument is essentially due to Simpson [55]. The fourth claim fol­
lows from the third one. Let {U\i 6 Z>o} be a sequence converging to 0. Due 
to Theorem 8.1, there exists a subsequence {U\i G S} such that the sequence 
{(E,dEihti,ti · 0) | i G S} converges to a tame harmonic bundle (Ef, 8E' , h!, 9') 
weakly in L v

2 locally on X — D , via isometries $i : (E, hti) —> {E1\h'). Let 
p' : 7Ti(X — D,x) —> GL(E|x) denote the representation associated to the flat con­
nection &E' + 8E' + 9' + 0'^. Then we have the convergence of {$i\x*(pti) \ i G 
to p' in M(T, E\x, h\x). Due to Theorem 8.1, we also have a non-trivial morphism 
/ : CE' —> CE' which is compatible with the parabolic structures and the Higgs 
fields. It induces the morphism CE —> CE' compatible with the parabolic structures 
and the Higgs fields. Then it must be isomorphic due to //L-polystability of ( c£*, 9') 
and PL-stability of (CE*,0). In particular, (CE*,9) is a /iL-stable c-parabolic Higgs 
bundle. The metric h of E is given by h' and / . Thus the third claim is obtained. 

Let us consider the morphism (pa : Ct —> Ct given by t \—> a · t. We have the 
natural isomorphism 0* (CE*, 6) ^ (CE*, a -9) which can be extended to the morphism 
<j)*a(cE^Q') —> (cE^a-O') such that the specialization (CE*,Q) —> (cE*,cv · 9) at 
t = 0 is not trivial. Since (CE*, 9) and (CE*, a-9) are /iL-stable, the map is isomorphic. 
Hence (CE, 9) is a Hodge bundle. Thus the first is proved. 

Since (E, <9g, 9) is a Hodge bundle, we have the action K of S1 = {t G C \ \t\ = 1} 
on E such that K(t) : (E,dfi,6) ~ (12, <9g,£ · 9) for any t G 5 1 . The metric n(t)*h 
is determined by K,(t)*h(u,v) — h(K,(t){u),K{t)(v)), which is also the pluri-harmonic 
metric of (E, <9g, t-9). Since (E*,t-0) is /iL-stable, the pluri-harmonic metric is unique 
up to a positive constant multiplication. Hence we obtain the map v : S1 —> R>o 
such that K,(t)*h = v(t) • h. Let E = Q) Ew be the weight decomposition. For 
Vi € EWi (wi ^ w2), we have v(t) • h(vi,v2) = n(t)*h(vi,v2) = tWl~W2h(vi, v2). 
Hence, we obtain h(vi,v2) — 0 and v(t) — 1. Namely, h is S1 -invariant, which means 
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(E, dp, 6, h) gives a Variation of Polarized Hodge Structure. Thus the second claim 
is proved. 

Lemma 10.4. — Assume (CE*,0) is not HL-stable. Let po be an element of R(T,V) 
such that 7TGL(y)(po) is the limit of a subsequence {7TGL(v)(/°ti)} for ^ —> 0. Then po 
is not simple. 

Proof. — Let {ti} be a sequence converging to 0 such that { ( E , 8 E , U · 0,htx)} con­
verges to a tame harmonic bundle (£", 8E', 0'·> h') in L\ locally on X — D. We may 
assume that po is the associated representation to (E*,8E',6',hf). We have a non-
trivial map / : C E ' —> C E compatible with the parabolic structures and the Higgs 
fields. If po is simple, then (CE^,6') is /i^-stable, and it can be shown that the map 
/ has to be isomorphic. But it contradicts with the assumption that (CE*,6) is not 
/iL-stable. 

10.1.4. Deformation to a Variation of Polarized Hodge Structure. — Let 
Y be a smooth irreducible quasiprojective variety over C with a base point x. We 
may assume Y = X — D, where X and D denote a smooth projective variety and its 
simple normal crossing divisor, respectively. A representation p : ni(Y,x) —> GL(V) 
induces a flat bundle (E, V). We say that p comes from a Variation of Polarized 
Hodge Structure, if (E, V) underlies a Variation of Polarized Hodge Structure. For 
simplicity of the notation, we put T := ni(Y, x). 

Theorem 10.5. — Let p G R(T, V) be a representation. Then it can be deformed 
to a representation p' € R(Y, V) which comes from a Variation of Polarized Hodge 
Structure on Y. 

Proof. — We essentially follow the argument of Theorem 3 in [55]. Any represen­
tation p G R(T,V) can be deformed to a semisimple representation p' G R(T,V). 
Therefore we may assume that p is semisimple from the beginning. Let (E, V) be the 
corresponding semisimple flat bundle on X — D. We can take a Corlette-Jost-Zuo 
metric h of (E, V), and hence we obtain the tame pure imaginary harmonic bun­
dle ( E , 8 E , 0 , K ) . Let (E*,9) denote the associated regular filtered Higgs bundle on 
(X, D). We have the canonical decomposition (Corollary 3.11): 

(E*, 0) ® 
j E A 

Ei*, Oi (g)C m ( j ) . 

We put r(p) := ] C j G A m 0 ) - ^°^ e ^ n a t r(p) — r a n k ^ , and we have r(p) = rank^E if 
and only if (E*, 0) is a direct sum of Higgs bundles of rank one. We use a descending 
induction on r(p). 

We obtain the family of regular filtered Higgs bundles { (£*, t-0) \ t G C*} (t G C*). 
In particular, we have the associated deformation of representations {pt G R(T, V) \ t G 
Ryo} as in Subsection 10.1.2. We may assume p\ = p. We have the induced map 
V :]0,1] —> M(Y,V,hy) given by V(t) := ^Gh{v)(Pt), which is continuous due to 
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Theorem 10.1. The image is relatively compact due to Lemma 10.2. We take a 
representation po G R(T,V) such that TTGL(V)(PO) is the limit of a subsequence of 
{7TGL(V)(Pt) 11 G]0,1]}. We may assume that it comes from a tame harmonic bundle 
as in the proof of Lemma 10.2. 
The case 1. Let (22*,$) = 0(2^*, (9^) 0 M I be the canonical decomposition. Assume 
that each family {(Ei*,t · 0i)\t G C*} converges to the //£-stable regular filtered 
Higgs sheaf. Then p0 comes from a Variation of Polarized Hodge Structure due to 
Proposition 10.3. 

We remark that the rank one Higgs bundle is always stable. Hence the case r(p) = 
ranki? is done, in particular. 
The case 2. Assume that one of the families {(E*,t · 0i) \ t G C*} converges to the 
semistable parabolic Higgs sheaf, which is not //^-stable. Then we have r(p) < r(po) 
due to Lemma 10.4. Hence the induction can proceed. 

10.2. Monodromy Group 
We discuss the monodromy group for the Higgs bundles or flat bundles, by following 

the ideas in [55]. 

10.2.1. The Higgs monodromy group. — Let AT be a smooth irreducible projec­
tive variety with an ample line bundle L, and D be a simple normal crossing divisor. 
Let (E*,0) be a //L-polystable regular filtered Higgs bundle on (X,D) with trivial 
characteristic numbers. For any non-negative integers a and 6, we have the regular 
filtered Higgs bundles (Ta'52£*,#). (See Subsection 3.2.1 for the explanation.) Since 
we have a pluri-harmonic metric h of (E,8E,0) adapted to the parabolic structure, 
the regular filtered Higgs bundles Ta,5(2£*,#) are also //L-polystable. In particular, 
we have the canonical decompositions of them. We recall the definition of the Higgs 
monodromy group given in [55]. Let x be a point of X — D. 

Definition 10.6. — The Higgs monodromy group M(2£*,#,a;) of //L-polystable Higgs 
bundle (22*, 0) is the subgroup of GL(E\X) defined as follows: An element g G Q\J(E\X) 
is contained in M(E*, 0, x), if and only if Ta,hg preserves the subspace F\X C T A , B E \ X 

for any stable component (F*,0F) C Ta>b(E*,0). 

Remark 10.7. — Although such a Higgs monodromy group should be defined for 
semistable parabolic Higgs bundles as in [55], we do not need it in this paper. 

We have an obvious lemma. 

Lemma 10.8. — We have M(E*, 0, x) — M(E*,t-6, x) for any t E C*, i.e., the Higgs 
monodromy group is invariant under the torus action. 
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Let us take a pluri-harmonic metric h of the Higgs bundle (E,dE,0) on I - D, 
which is adapted to the parabolic structure. Then we obtain the flat connection 
P 1

 =dE
JrdE

JrO^-e]. Then we obtain the monodromy group M(E,B1,x) C GL(E\X) 
of the flat connection. (See Subsection A. 1.4.) 

Lemma 10.9. — We have M(E,B)l,x) c M(E*,0,x). For a tame pure imaginary 
harmonic bundle, we have M(E,'D1,x) = M(E*,0,x). 

Proof. — A stable component (F*,6F) C (E*,6) induces the flat subbundle of F C 
T a ' 6(i£, D 1 ) . If g G M(£,B\x) , we have Ta*g(F\x) C F\x. Hence, M(E, D 1 , x) C 
M(E*,Q,x). In the pure imaginary case, a flat subbundle F C Ta'b(E,B1) induces 
{F^0F) C (E*,0). Therefore, we obtain M(£',D 1,x) = M(E*,6,x). 

10.2.2. The deformation and the monodromy group. — For simplicity of 
the description, we put V :— TT\(X — D,x). Let (E, V) be a semisimple flat bundle 
over X — D. We have a Corlette-Jost-Zuo metric h of (E, V), and thus we obtain 
a tame pure imaginary harmonic bundle (E,dE,6,h) on X — D. The associated 
regular filtered Higgs bundle is denoted by (2£*, 0), which is /i£-polystable with trivial 
characteristic numbers. 

As in Subsection 10.1.2, we have the pluri-harmonic metrics ht for any (E, dE,t-Q) 
(t G C*). Hence we obtain the flat connections Dt of E, and the representations 
pt : T —> GL(^|X). We also obtain the monodromy group M{E,D\) C GL(E\X). 

Lemma 10.10. We have M(E, B}) c M(E, B\) forteC- {0}, and M(E, D t
:) = 

M(E,B\) forte R — {0}. 

Proof. — It follows from Lemma 10.8 and Lemma 10.9. • 

We put Go := M(£",Bj,x) for t G -R>o which is independent of the choice of t. 
Let U(E,ht,x) denote the unitary group for the metrized space (E\x,ht\x). Due 
to Lemma A.16, Go is reductive, and the intersection Koj : = Go fl U(E,ht,x) is a 
compact real form of Go-

We put V E\x and hy := hi\x. We denote Go and Ko,i by G and K respectively, 
when we regard it as the subgroup of GL(V). Then we can take an isometry vt : 
{E\x,ht\x) ^ (V, hy) such that vt(Go) = G and ut(Kot) = K for each t. Such a map 
is unique up to the adjoint of Nc(hy). Thus we obtain the family of representations 
Pt~vtMeR(r,G) ( t e f l > 0 ) . 

Lemma 10.11. — The induced map ircipt) · R>o — > M(T,G,hy) is continuous. 

Proof. — Let M' denote the subset of M(T,G,hy) which consists of the Zariski 
dense representations. The natural morphism M' —> M(T,V,hy) is injective, and 
the image of ircipt) is contained in M'. Hence the claim of the lemma follows from 
Theorem 10.1 and the properness of M(T, G, hy) —• M(T, V, hy). 
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Lemma 10.12. — The image 7TG(pt)(]0,1]) is relatively compact in M(T,G,hv)-

Proof. — It follows from Lemma 10.2 and the properness of the map M(T, G, hy) 
M(T,V,hv). 

10.2.3. Non-existence result about fundamental groups. — Let Y be a 
smooth irreducible quasiprojective variety. We put V := TI\(Y,X). Let V be a finite 
dimensional C-vector space. Let G be a reductive subgroup of GL(V). We see the 
convergence of ircipt) (t ^ 0) in a simple case. 

Lemma 10.13. — Let p be an element of i?(r,G). We assume that there exists a 
subgroup To such that p\ro : To —> G is Zariski dense and rigid. Then we can take 
a deformation p' G R(T, G) of p which comes from a Variation of Polarized Hodge 
Structure on Y. 

Proof. — We take a tame pure imaginary pluri-harmonic bundle (E, dEl 0, h) whose 
associated representation gives p, and we take the deformation ncipt)- Let us take 
po G R(T,G) such that some sequence {^G{ptl)} converges to TÏG(PO)- We remark 
that po i r 0

 : To — > G is also Zariski dense and rigid (Lemma 2.22). If po comes from 
a Variation of Polarized Hodge Structure, we are done. If po does not come from a 
Variation of Polarized Hodge Structure, we deform po as above, again. The process 
will stop in the finite steps by Theorem 10.5. 

The following lemma is a straightforward generalization of Lemma 4.4 in [55]. (See 
also Lemma A. 16, where we will see the argument of Lemma 4.4 can be generalized 
in our situation.) 

Lemma 10.14. — Let p : T —> G be a Zariski dense homomorphism. If p comes from 
a Variation of Polarized Hodge Structure, then the real Zariski closure W of p is a 
real form of G, and W is a group of Hodge type in the sense of Simpson. (See the 
page 46 in [55].) 

The following lemma is essentially same as Corollary 4.6 in [55]. 

Proposition 10.15. — Let G be a complex reductive algebraic group, and W be a real 
form of G. Let p : T —> G be a representation such that Imp C W. Assume that 
there exists a subgroup T0 C T such that p\rQ is rigid and Zariski dense in G. Then 
W is a group of Hodge type, in the sense of Simpson. 

Proof. — We reproduce the argument of Simpson. Since P(TQ) is Zariski dense in 
G, W is also the real Zariski closure of p(To)- We take a deformation p' of p, which 
comes from a Variation of Polarized Hodge Structure as in Lemma 10.13. Then there 
exists an element u G N(G, U) such that ad(^) o p\Fo ~ p j F o due to Lemma 2.22. Let 
W' denote the real Zariski closure of //(To), which is also the real Zariski closure of 
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p'. It is a group of Hodge type (Lemma 10.14). Since W and W are isomorphic, we 
are done. 

Corollary 10.16. — Let r 0 be a rigid discrete subgroup of a real algebraic group, which 
is not of Hodge type. Then To cannot be a split quotient of the fundamental groups of 
any smooth irreducible quasiprojective variety. 

Proof. — It follows from Lemma 10.14 and Proposition 10.15. (See the pages 52-54 
of [55]). 
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G - H A R M O N I C B U N D L E 

A . l . G-Principal Bundles with Flat Structure or Holomorphic Structure 

We recall the Tannakian consideration about harmonic bundles given in [55] by 
Simpson. 

A. 1.1. A characterization of algebraic subgroup of GL. — We recall some 
facts on algebraic groups. (See also I . Proposition 3.1 in [11], for example.) Let V be 
a vector space over a field fc of characteristic 0. We put Ta'bV := Hom(V®a, V®b). 
Let G be an algebraic subgroup of GL(V), defined over fc. We have the induced fr­
action on Ta,bV. Let <S(V, a, b) denote the set of G-subspaces of Ta,bV, and we put 
S(V) = UaLBS(V,a,b). 

Let g be an element of GL(V). We have the induced element Ta'b(g) G GL(Ta'bV). 
Then, it is known that g G GL(V) is contained in G, if and only if Ta>b(g)W C W 
holds for any (W,a,b) G S(V). Suppose G is reductive. Then there is an element v 
of Ta,b(V) for some (a, b) such that g is contained in G if and only if g · v = v holds. 

We easily obtain a similar characterization of Lie subalgebras of $l(V) correspond­
ing to algebraic subgroups of GL(V). 

A. 1.2. A characterization of connections of principal G-bundle. — Let k 
denote the complex number field C or the real number field R. Let G be an algebraic 
group over fc. Let PQ be a G-principal bundle on a manifold X in the G°°-category. 
Let K : G — > GL(V) be a representation defined over fc, such that the induced 
morphism OIK : Q —> End(V) is injective. We put E := PQ XG V. We have T a , b E := 
Hom(E^a

1E®h) ~PGxG TA'BV. We have the subbundle Ev = PG xG U of T a ' b E 
for each U G S(V, a, 6). A connection V o n E induces the connection T a ' 6 V on Ta,bE. 
Let AG(E) be the set of the connections V of E such that the induced connections 
T a ' 6 V preserve the subbundle EJJ for any (U.a.b) G S { V ) . 

Let A ( P G ) denote the set of the connections of P G . If we are given a connection 
of P G , the connection V of E is naturally induced. It is clear that the connection 
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T a ' 6 V preserves Ev C Ta'bE for any (£/, a, 6) G 5(1/). Hence we have the map 
<p:A(PG) ^ A G ( E ) . 

Lemma AA. — The map up is bijective. 

Proof. — Since dn is injective, the map up is injective. Let us take a connection 
V £ AG{E) and a connection Vo which comes from a connection of PG- Then 
/ = V - Vo is a section of End(E) 0 Vt1. Since Ta'bf preserves E\j for any (a, b) and 
[/ C S(V, a, 6), / comes from a section of ad(Pc) ® SI1 C End(E) 0 fi1. 

A. 1.3. K-Reduction of holomorphic G-principal bundle and the induced 
connection. — Let G be a linear reductive group defined over C. Let P G be a 
holomorphic G-principal bundle on X. Let K : G — > GL(V) be a representation 
defined over C, such that dn : Q — > End(V) is injective. We put E := PG X G ^ - Let 
K be a compact real form of G. Let PK C PG be a i^-reduction in the C00-category, 
i.e., PK ><K G ~ PG- Then the connection of PK is automatically induced. We have 
the canonical G-decomposition for each (a, b): 

(60) rpa,by e 
/9£lrrep(G7) 

T/(a,6) 

Here Irrep(G) denotes the set of the equivalence classes of irreducible representations 
of G. Each Vpa'b^ is isomorphic to the tensor product of the irreducible representation 
p and the trivial representation c m ( a ' 5 ^ ) > x n e decomposition (60) is same as the 
canonical ^-decomposition. Take a if-invariant hermitian metric h of V. It induces 
the hermitian metric Ta,bh of Ta,bV1 for which the decomposition (60) is orthogonal. 
The restriction of Ta,bh to V^ a'^ is isomorphic to a tensor product of a i^-invariant 
hermitian metric on p and a hermitian metric on (Jm(a^b^p) m The metric h induces the 
hermitian metric of E , which is also denoted by h. From the holomorphic structure 
dp and the metric / i , we obtain the unitary connection V = &E + dp- The induced 
connection T a ' 6 V on TA'BE is the unitary connection determined by Ta,bh and the 
holomorphic structure of TA'BE. Then it is easy to see that T a , b V preserves EJJ for 
any U G <S(a, 6, V). Hence the connection V comes from PQ. Since V also preserves 
the unitary structure, we can conclude that V comes from the connection of PK-

A. 1.4. The monodromy group. — We recall the monodromy group of flat bun­
dles ([55]). Let X be a connected complex manifold with a base point x. The 
monodromy group of a flat bundle (E, V) at x is defined to be the Zariski closure of 
the induced representation ni(X,x) — > GL(E\X). It is denoted by M{E, V,x) . Let 
us recall the case of principal bundles. Let G be a linear algebraic group over R or 
C, and PG be a G-principal bundle on X with a flat connection in the G°°-category. 
Take a point x G PQ\X- Then we obtain the representation p : TTI(X,X) — > G. Then 
the monodromy group M(PG, X) C G is defined to be the Zariski closure of the image 
of p. We obtain the canonical reduction of principal bundles PM(PG,X) C PG- The 
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monodromy groups of flat vector bundles and flat principal bundles are related as 
follows. Let K, : G —> GL(V) be an injective representation. Then we have the flat 
bundle E = PG XGV — PM{PG,X) X M ( P G , X ) V- Via the identification V = E\x given 
by x, we are given the inclusion M(PG,X) C GL(£'| x). Clearly M ( P G , X ) is same 
as M(E,V,x) and it is independent of the choice of x. Hence we can reduce the 
problems of the monodromy groups of flat principal G-bundles to those for flat vector 
bundles. 

For a flat bundle (E, V), let Ta'bE denote the flat bundle Hom(E®a, )h) pro­
vided the canonically induced flat connection. Let S(E, a, b) denote the set of flat 
subbundles U of Ta,bE, and we put S(E) := JJ^ a B^ S(E, a, b). Let g be an element of 
G~L(E\X). Then g is contained in M(E, V, x) if and only if Ta'bg preserves Ux for any 
(U, a, b) G S ( E ) . If M(E, V, x) is reductive, we can find some (a, b) and v G Ta>bE{x 

such that g G M ( P , V, x) if and only if g · v = v. Hence there exists a flat subbundle 
W C Ta'bE such that g G M(E, V, x) if and only if Ta*g\W = idw. 

A.2. Definitions 

A.2.1. A G-principal Higgs bundle and a pluri-harmonic reduction. — Let 
G be a linear reductive group defined over C, and K be a compact real form. Let 
A be a complex manifold and PQ be a holomorphic G-principal bundle on X. Let 
ad(Pc) be the adjoint bundle of PQ, i.e., ad(Pc) = Pc XG0- Recall that a Higgs field 
of PQ is defined to be a holomorphic section 6 of ad(Pc) ® Q 1 ' 0 such that 02 = 0. 

Let PK C PG be a K-reduction of PQ in G°°-category, then we have the natural 
connection V of PK, as is seen in Subsection A. 1.3. We also have the adjoint 0^ of 6, 
which is a G°°-section of ad(PG)0^ 0 , 1. Then we obtain the connection D 1 := V+0+0 
of the principal bundle P r̂. 

Definition A.2. — If D 1 is flat, then the reduction PK C PG is called pluri-harmonic, 
and the tuple (PK C PG, 0) is called a G-harmonic bundle. 

Let V be a C-vector space. A representation K : G —> GL(V) is called immersive if 
OIK is injective, in this paper. Take an immersive representation K : G —> GL(V) and 
a ^-invariant metric hy. From a G-principal Higgs bundle (PG, 0) with a i^-reduction 
PK C PG , we obtain the Higgs bundle (E, 8E,0) with the hermitian metric h. 

Lemma A3. — Let (PG,9) be a G-principal Higgs bundle, and PK C PG be a Pre­
reduction. The following conditions are equivalent. 

1. The reduction PK C PG is pluri-harmonic. 
2. For any representation G —> GL(V) and any K-invariant hermitian metric 

of C-vector space V, the induced Higgs bundle with the hermitian metric is a 
harmonic bundle. 
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3. There exist an immersive representation G —> GL(V) and a K-invariant her­
mitian metric of C-vector space V, such that the induced Higgs bundle with the 
hermitian metric is a harmonic bundle. 

Proof — If G —> GL(V) is immersive, then a connection of PG is flat if and only 
if the induced connection on PG XG V is flat. Therefore the desired equivalence is 
clear. 

A.2.2. A flat (7-bundle and a pluri-harmonic reduction. — Let G be a linear 
reductive group over R or C, and let ( P G , V ) be a flat (7-bundle over a complex 
manifold X. If a K-reduction PK C PG is given, we obtain the connection Vo of 
PK and the self-adjoint section cp G ad(Pc) <8> such that V = Vo + <p ([7]), which 
can be shown by a Tannakian consideration as in Subsection A. 1.3, for example. Let 
Vo = Vo + Vo and cp = 6 + 6^ be the decomposition into the (1, 0)-part and the (0,1)-
part. The connection Vo induces the connection on ad (PG), which is also denoted 
by Vo = V 0 + VQ- From V 0 ' and the complex structure of A , the (0, l)-operator of 
ad(Pc) <S> Q1'0 is induced, which is also denoted by VQ . 

Definition AA. — A reduction PK C PG is called pluri-harmonic, if 02 = 0 and 
Vo'(60 = 0 hold. 

Let V be a vector space over C. Let K : G —> GL(V) be a representation, which 
induces the flat bundle (E, VE)- We take a if-invariant metric hy, which induces the 
metric hF of E. We obtain the decomposition V 'E — 9E + 9E + OE + as in Section 
21.4.3 of [44]. They are induced by VQ, V 0 , 0 and 6\ respectively. Thus, if P K C P G 

2 
is pluri-harmonic, we have 02

E — OEOE = 0- Recall that they imply dE = 0. Hence, 
{E, V 'E ,h ) is a harmonic bundle. On the contrary, if n is immersive and (E, VE,h) 
is a harmonic bundle, we obtain the vanishings 02 = VQ0 = 0. Hence, PK C PG is 
pluri-harmonic. Therefore, we obtain the following lemma. 
Lemma A.5. — The following conditions are equivalent. 

1. The reduction PK C PG is pluri-harmonic, in the sense of Definition AA. 
2. For any representation n : G —> GL(V) and any K-invariant metric of a vector 

space V over C, the induced flat bundle with the hermitian metric is a harmonic 
bundle. 

3. There exist an immersive representation n : G —> GL(V) and a K-invariant 
metric of a vector space V over C, such that the induced flat bundle with the 
hermitian metric is a harmonic bundle. 

Let 7T : X —> X denote a universal covering. Take base points x G X and x\ G X 
such that TT(XI) = x. Once we pick a point x G PG\XI the homomorphism 7Ti(X, X) —> 
G is given. If a if-reduction PK C PG is given, we obtain a 7Ti(A, x)-equivariant map 
F : X —> G/K, where the m (A, x)-action on G/K is given by the homomorphism 
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TTI(X, x) —> G. If PR C PG is pluri-harmonic, then F is pluri-harmonic ([67]) in the 
sense that any restriction of F to holomorphic curve is harmonic. 

A.2.3. A tame pure imaginary G-harmonic bundle. — Let G be a linear 
reductive group over C. Let f) denote a Cart an subalgebra of cj, and let W denote the 
Weyl group. We have the natural real structure \)R C f). Hence we have the subspace 
\f—1\)R C f). We have the V^-invariant metric of I), which induces the distance d of 
l)/W. Let B(\^1\)R1 e) denote the set of the points x of \}/W such that there exists 
a point y G V—I^R/W satisfying d(x,y) < e. 

Let (PK C PG,^) be a G-harmonic bundle on A*. We have the expression 6 = 
f -dz/z, where / is a holomorphic section of ad(Pc) on A*. It induces the continuous 
map [/] : A* —+ t)/W. 

Definition A.6 
— A G-harmonic bundle (PK C PG,0) is called tame, if [/] is bounded. 
— A tame G-harmonic bundle (PK C PG,Q) is called pure imaginary, if for any 

e > 0 there exists a positive number r such that [/(^)] G B(y/^lt)R, e) for any 
\z\ < r. 

LemmaA.7. — Let (PK C PG,0) be a harmonic bundle on A*. The following condi­
tions are equivalent. 

1. It is tame (pure imaginary). 
2. For any n : G —> GL(V) and any K-invariant metric of V, the induced har­

monic bundle is tame (pure imaginary). 
3. For some immersive representation K, : G —> GL(V') and some K-invariant 

metric ofV, the induced harmonic bundle is tame (pure imaginary). 

Proof. — The implications 1 2 3 are clear. The implication 3 1 follows 
from the injectivity of dn : g —> $l(V). 

Let X be a smooth projective variety, and D be a normal crossing divisor. 

Definition A.8. — A harmonic G-bundle (PK C PG, 0) on X — D is called tame (pure 
imaginary), if the restriction (PK C PG, @)\C\D is tame (pure imaginary) for any curve 
G C X which is transversal with D . 

Remark A.9. — Tameness and pure imaginary property are defined for principal G-
Higgs bundles. 

Remark A.10. — Tameness and pure imaginary property are preserved by pull back. 
We also remark the curve test for usual tame harmonic bundles. 

Let us consider the case where G is a linear reductive group defined over R, with 
a maximal compact group K . We have the complexification GQ with a maximal 
compact group Kc such that K = KQ H G. 
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Definition A.ll. — Let (PG, V) be a flat bundle. A pluri-harmonic reduction (PK C 
PG, V) is called a tame pure imaginary, if the induced reduction (PKC C P G g , V) is 
a tame pure imaginary. 

Lemma A.12. — Let (PK C PG,#) be a harmonic bundle on X — D . The following 
conditions are equivalent. 

1. It is tame (pure imaginary). 
2. For any κ, : G —> GL(V) and any Κ-invariant metric of V, the induced har­

monic bundle is tame (pure imaginary). 
3. There exist an immersive representation κ : G —> GL(V) and a Κ-invariant 

metric of V such that the induced harmonic bundle is tame (pure imaginary). 

A.3. Semisimplicity and Pluri-Harmonic Reduction 

A.3.1. Preliminary. — Let A be a smooth irreducible quasiprojective variety with 
a base point x. We put T := TTI(X,X) for simplicity of the notation. Recall the 
existence and the uniqueness of tame pure imaginary pluri-harmonic metric ([29], 
[45]), which is called the Corlette-Jost-Zuo metric. Let (£", V) be a semisimple flat 
bundle, and let p : T —> GL(E\X) denote the corresponding representation. We have 
the canonical decomposition of E\x: 

E/x Θ 
XGlrrep(r) 

Ε\χ,χ· 

Here Irrep(r) denotes the set of irreducible representations, and E\x^x denotes a T-
subspace of E\x isomorphic to ^®m(x). Correspondingly, we have the canonical de­
composition of the flat bundle (E, V): 

(£.V) θ 
XGlrrep(T) 

Ex. 

The flat bundle Ex is isomorphic to a tensor product of a trivial bundle C171^ and a 
flat bundle L x whose monodromy is given by \. 

Lemma A. 13 
— There exists a Corlette-Jost -Zuo metric hx of L x , which is unique up to positive 

constant multiplication. 
- Under the isomorphism (E, V) ~ 0 X LX®CRN<YX\ any Corlette-Jost-Zuo metric 

of (V, V) is of the following form: 

Θ 
χ 

hx®gx. 

Here gx denote any hermitian metrics of Cm(x). In other words, the ambiguity 
of the Corlette-Jost-Zuo metrics is a choice of hermitian metrics gx of CM(X\ 
once we fix hx. 
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— The decomposition of flat connection V = d-\-d + 6-\-6^ is independent of a 
choice of gx. 

Proof — The first claim is proved in [29]. (See also [45].) The second claim eas­
ily follows from the proof of the uniqueness result in [45]. (See the argument of 
Proposition 2.6). The third claim follows from the second claim. 

We also have the following lemma (see [50] or [45]) 

Lemma A.14. — / / there exists a Corlette-Jost-Zuo metric on a flat bundle (E,V), 
then the flat bundle is semisimple. 

We have the involution \ \—> \ on Irrep(T) such that x ®R C = x 0 \. If x = x, 
we have the real structure of L x . If x ^ we have the canonical real structure of 
L x 0 C — L x 0 

Let us consider the case where a semisimple flat bundle (E1, V) has the flat real 
structure ER such that E = ER ® A C. Let i : E —> E denote the conjugate with 
respect to ER. Then (E, V) is isomorphic to the following: 

e 
x=x 

L X ® C m ( x ) © ® 
X̂ X 

( ¿ x e % ) ®cm{x). 

The real structure of (E, V) is induced from the real structures of L x (x = x) and 
L x (g) C ( x ^ x ) . For a hermitian metric h of E, the hermitian metric u*h is given by 
i*h(u,v) = h(t(u), t(v)). Then the following lemma is clear. 

Lemma A.15. — When (E, V) has a real structure, there exists a Corlette-Jost-Zuo 
metric of (E, V) which is invariant under the conjugation. The ambiguity of the 
metric is a choice of the metrics of the vector spaces . 

A.3.2. Pluri-harmonic reduction of the principal bundle associated with 
the monodromy group. — Let Go C GL(E'|X) denote the monodromy group 
M(E,V,x). We obtain the principal Co-bundle PG0 with the flat connection. If the 
flat bundle (E, V) is semisimple, we have a Corlette-Jost-Zuo metric h of (E, V). Let 
U = U(E\X, h\x) denote the unitary group of the metrized vector space (E\x, h\x), and 
we put Ko := Go H U. 

Lemma A.16. — Go is reductive, and KQ is a compact real form of Go-

Proof. — The argument was given by Simpson (Lemma 4.4 in [55]) for a different 
purpose. We reproduce it here with a minor change for our purpose. We have the 
canonical decomposition Ta'b(E) = 0 x G i r r e p ( r ) ^x ® CM^A,B,X\ The decomposition 
is orthogonal with respect to the induced Corlette-Jost-Zuo metric Ta,b(h). Namely, 
Ta,b(h) is of the form 0 x G i r r e p ( r ) hx®h(a, b, x), where hx denotes a Corlette-Jost-Zuo 
metric of L x , and ft(a, 6, x) denotes hermitian metric of CM^A,B,X\ 
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For any / G End(E\x), let /"·" denote the adjoint of / with respect to h\x. For 
any g G Go, we have the unique expression g = u · exp(y), where u G U and 
y — y\, The decomposition is compatible with tensor products and ^-invariant 
orthogonal decompositions. It follows that Tα'5^¿ and Ta'by preserves the compo­
nents L x \ x <g> C m ( a ' 6 ' x ) . Namely, we have the decomposition Ta'bg = ( 0 T a ' ^ ) x , 
Ta'bu = (®Ta'bu)x and Ta>by = (®Ta'by)x. 

Let K, be an isometric automorphism of (C™^a'b'p\h(a,b,x)). Then, (Ta,bg)x and 
idLX|X are commutative. Hence, (Ta,bu)x and idjLx|cc ®^ are commutative, and thus 
(Ta>bu)x is induced by the automorphism of L x \ x . Similarly, (Ta,by)x is induced by 
the endomorphism of L x \ x . Hence, L x \ x 0 Hx is preserved by (Ta,bu)x and (Ta,by)x 

for any subspace Hx C Cm<yaib'x\ Since any Go-invariant subspace of Ta'bE\x is of 
the form 0 L X | X <g) i i x , we obtain u G Go fl C/ = i f o and y G 0o C End(E\x), where 
go denotes the Lie subalgebra of End(P|x) corresponding to Go-

Let r : GL(E\X) —> GL(E\X) be the anti-holomorphic involution such that r(g) = 
(g^)~l. We obtain that r(g) = u · exp(—y) is contained in Go- Namely, r gives the 
real structure of Go- Since we have the decomposition g — u · exp(y) for any g G Go, 
KQ intersects with any connected components of Go- Let GQ denote the connected 
component of Go containing the unit element. It is easy to see that KQHGQ is maximal 
compact in GQ, and hence KQ is maximal compact of Go- Since KQ H Gg is the fixed 
point set of T|Go, we obtain that K® is a compact real form of GQ. Thus KQ is a 
compact real form of GQ. Since KQ is maximal compact, Go is reductive. 

Let us consider the case where (E, V) has the real structure. We have the real 
parts ER\X C E\x and GQR := Go H GL(ER\X). We take a Corlette-Jost-Zuo metric 
of h which is invariant under the conjugation i. We put KQR = GQRHKQ = GQRPIU. 
The map i induces the real endomorphism of End(P|x) given by t(f) = L o f o L. 

Lemma A. 17. — i f OR is maximal compact in GQR. 

Proof. — We use the notation in the proof of Lemma A. 16. Since h\x is invariant 
under the conjugation L, U is stable under i, and r and i are commutative. Let g 
be an element of GQR. We have the decomposition g — u · exp(y) as in the proof 
of Lemma A. 16, where u denotes an element of KQ and y denotes an element of $Q 
such that = y. Since t(g) = g, we have ¿(̂ ¿) · exp(7(?/)) = u · exp(y). Since we 
have L(U) G L(U) = U and (¿(2/))"'" = t(y^) = —^{y)i w e obtain ¿(1/) = u and ¿(7/) = y. 
Namely u G i f OK and y G 0OK- Then we can show i f OK is maximal compact in GOR, 
by an argument similar to the proof of Lemma A. 16. 

Proposition A.18. — Assume that (E, V) is semisimple. Then there exists the unique 
tame pure imaginary pluri-harmonic reduction PK0 C PG0 • Assume (E, V) has the 
flat real structure, moreover. Then, it is induced from the pluri-harmonic reduction 
ofPc0R-
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Proof. — Let h be a Corlette-Jost-Zuo metric of (E, V). For any point z £ X, let 
M(E, V, z) denote the monodromy group at z, and U(E\ZJ h\z) denote the unitary 
group of E\z with the metric h\z. Then the intersection M(E, V, z) D U(E\z,h\z) is 
a maximal compact subgroup of M(E, V,z), due to Lemma A.16. Hence they give 
the reduction PK0 C PG0? which is pluri-harmonic. By using a similar argument and 
Lemma A.17, we obtain the compatibility with the real structure, if (E,S7) has the 
flat real structure. The uniqueness of the pluri-harmonic reduction follows from the 
uniqueness result in Lemma A. 13. Hence we are done. 

A.3.3. Characterization of the existence of pluri-harmonic reduction. — 
Let G be a linear reductive algebraic group over C or R. Let X be a universal 
covering of X. The following corollary immediately follows from Proposition A. 18. 

Corollary A. 19. — Let PQ be aflat G-principal bundle over X. Assume that the image 
of the induced representation T —> G is Zariski dense in G. Then there exists the 
unique tame pure imaginary pluri-harmonic reduction of PG- Correspondingly, we 
obtain the T-equivariant pluri-harmonic map X —> G I K . 

Proposition A.20. — Let PG be a flat G-bundle on X. The monodromy group Go is 
reductive if and only if there exists a tame pure imaginary pluri-harmonic reduction 
PK C PG- If such a reduction exists, the decomposition V = VK + (0 + 6^) does 
not depend on a choice of a pluri-harmonic reduction PK C PG, and there is the 
corresponding T-equivariant pluri-harmonic map X —> G/K. 

Proof — If a pluri-harmonic reduction exists, the monodromy group is reductive 
due to Lemma A.7 and Lemma A. 16. Assume Go is reductive. Let KQ be a maximal 
compact group of Go. Then we have the unique tame pure imaginary pluri-harmonic 
reduction PK0 C PG0- We take K such as K fl Go = KQ. Then the pluri-harmonic 
reduction PK C PG is induced, and thus the first claim is proved. The second claim 
is clear. 
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