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SELMER COMPLEXES

Jan Nekovar

Abstract. — This book builds new foundations of Iwasawa theory, based on a system-
atic study of cohomological invariants of big Galois representations in the framework
of derived categories. A new duality formalism is developed, which leads to generalized
Cassels-Tate pairings and generalized p-adic height pairings. One of the applications
is a parity result for Selmer groups associated to Hilbert modular forms.

Résumé (Complexes de Selmer). — Ce livre construit de nouvelles fondations pour
la théorie d’Iwasawa, basées sur une étude systématique d’invariants cohomologiques
(vivant dans des catégories dérivées) pour les grosses représentations galoisiennes. On
développe un nouveau formalisme de dualité dont on déduit des accouplements de
Cassels-Tate généralisés et des hauteurs p-adiques généralisées. Une des applications
est un résultat de parité pour les groupes de Selmer attachés aux formes modulaires
de Hilbert.

© Astérisque 310, SMF 2006
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CHAPTER 0

INTRODUCTION

0.0. Big Galois representations
In this work we study cohomological invariants of “big Galois representations”
p: G — Autg(T),

where

(i) G is a suitable Galois group.

(ii) R is a complete local Noetherian ring, with a finite residue field of
characteristic p.

(iii) T is an R-module of finite type.

(iv) p is a continuous homomorphism of pro-finite groups.
We develop a general machinery that covers duality theory, Iwasawa theory, general-
ized Cassels-Tate pairings and generalized height pairings.

0.1. Examples

0.1.0. An archetypal example of a big Galois representation arises as follows. Let
K be a field of characteristic char(K) # p. For every K-scheme X — Spec(K) put
X = X @k K5P, where K3 is a fixed separable closure of K. Given a projective
system Xoo = (X4 )aes (indexed by some directed set I) of separated K-schemes of
finite type with finite transition morphisms Xg — X, put

H'(Xo) =lim H! (X4, Zp) = limlim H}, (X o, Z/p"Z),
« « n

where the transition morphisms are given by trace maps. This is a representation
of G = Gal(K*P/K), linear over the Z,-algebra generated by “endomorphisms” of
the tower X,,. In practice, H(X) is often too big and must be first decomposed
into smaller constituents. Omne can also use more general coeflicient sheaves, not
just Z/p"Z.



2 CHAPTER 0. INTRODUCTION

0.1.1. Iwasawa theory. — Let K. /K be a Galois extension (contained in K5°P)
with I' = Gal(K o/ K) isomorphic to Zj for some r > 1. Write Ko, = |J K4 as a union
of finite extensions of K. For a fixed separated K-scheme of finite type X — Spec(K),
consider the projective system X, = X @k K,. In this case

H'(Xo) — HLY(X,Zy) ®7, A,
where
A=12Z,[T] = Z,[X1,..., X,]
is the Iwasawa algebra of I' and G acts on A by the tautological character
xr:Gg — T — A"

(or its inverse, depending on the sign conventions). Thus 7' = H*(X,,) is a big Galois
representation of G = Gk over R = A.

0.1.2. Hida theory. — Let N > 1 be an integer not divisible by p (and such that
Np > 4). Let X, be the projective system of modular curves(?)

X1(Np) e -+ e— Xi(Np") e— Xy (Np™H1) e— -

over K = Q. The tower X, has many endomorphisms, namely Hecke correspon-
dences.

The Galois module H'(X4) is too big, but its ordinary part H'(X.)°*®, defined
as the maximal Z,-submodule on which the Hecke operator(®) T(p) is invertible, is of
finite type over the ordinary Hecke algebra h°'d, defined as the projective limit of the
ordinary parts of the Z,-Hecke algebras acting on Sa(I'1(Np")) (for variable r).

The ring h°™ is semilocal, in fact finite and free over A = Z,[I'] = Z,[X], where
I' =1+ pZ, (resp., I' = 1+ 4Z,, if p = 2) acts on X by diamond operators. If
we fix a maximal ideal m C h°'¢, then T = H'(X )% is a big Galois representation
of G = Gq over R = h3rd.

0.1.3. One can, of course, combine the constructions in 0.1.1-0.1.2.

0.2. Selmer groups

In the case when K is a number field and the projective system X, has good
reduction (i.e., each X, has) outside a finite set S of places of K containing all
places above p, then H*(X,,) is a representation of the Galois group with restricted
ramification Gg s = Gal(Kg/K), where Kg is the maximal extension of K which is
unramified outside S.

(1)There are two choices of transition morphisms; see e.g. [N-P] for more details.
(2) Again, there are two choices of T(p); which one is correct depends on the choice made in (1),

ASTERISQUE 310



0.3. BIG VS. FINITE GALOIS REPRESENTATIONS 3

In general, given a big Galois representation T' of Gk 5, the main objects of interest
are the following:

(i) (continuous) Galois cohomology groups H,..(Gk.s,T).
(ii) Selmer groups
SCI(GK’S, T) - H(}ont(GK757 T),
consisting of elements satisfying suitable local conditions in H} . (G,,T) for v € S
(where G, = Gal(K,/K,)).
Similar objects were first considered by R. Greenberg [Gre4] as a natural generaliza-
tion of Iwasawa theory.

Greenberg expressed hope that there should be a variant of the Main Conjecture
of Iwasawa theory in this context, i.e., a relation between the “characteristic power
series” of a big Selmer group and an appropriate p-adic L-function.

A big Galois representation p can be viewed as a family of “usual” Galois represen-
tations px : Gx,s — GLy(Z,), which depends analytically on the parameter A. One
of the main motivations of the present work was to develop a homological machinery
that would control the variation of the Selmer groups associated to the individual py’s
as a function of A. A statement such as the Main Conjecture for 7" should then imply
a relation between the Selmer group of p) and the special value at A of the p-adic
L-function in question.

0.3. Big vs. finite Galois representations

Every big Galois representation p : G — Autg(T) is the projective limit of Galois
representations p, : G — Autg(T/m™T") with finite targets. Using known properties
of p, one can sometimes pass to the limit and deduce results valid for p.

Consider, for example, a representation p : Gg — Autg(T) of Gk = Gal(K*P/K)
for a local field K (with finite residue field) of characteristic char(K) # p. Writing D
for the Pontrjagin dual functor

D(-) = Homeont(—, R/Z),
Tate’s local duality states that the (finite) cohomology groups

Hi(Gg,T/m"T) <—2— H> (G, D(T/m"T)(1))

are Pontrjagin duals of each other. Taking projective limit one obtains Pontrjagin
duality between a compact and a discrete R-module

HY(Gg.T) ~——— H> (G, D(T)(1)),

where
HY(Gg,T) = H!(Gk,T) =lim H (G, T/m"T).

SOCIETE MATHEMATIQUE DE FRANCE 2006



4 CHAPTER 0. INTRODUCTION

0.4. Compact vs. discrete modules

Attentive readers will have noticed that Greenberg [Gre2, Gre3, Gred| considers
Selmer groups for discrete Galois modules, while our T is compact. Let us investigate
the relationship between discrete and compact Galois representations more closely.
In fact, understanding the interplay between discrete and compact modules is at the
basis of the whole theory developed in this work.

Let us first consider the “classical” case of R = Z,. Given a representation

p:G — Autg (T),

where T' is free of finite rank over Z,, there are three more representations of G
associated to T, namely

A=T®z, Qp/Zy,
(0.4.1) T* =Homg, (T,Z,) = D(A),
A" =T"®z,Qp/Z, = D(T).
They can be arranged into the following diagram:

T<Q—>T*

(0.4.2) F D l@

A A*

Here 7 (—) = Homgz,(—, Z,) and ®(—) = (=) ®z, Qp/Zy.

What is the analogue of this construction for general R (or even for R = Z, if T
is not free over Z,)? Let us temporarily ignore the action of G and consider this
question only for R-modules. For R = Z,,, the tensor product

Tz, Qp/Z,

loses any information about the torsion submodule Ty, C T. On the other hand,

Tiors —= Tor2"(T, Q,/Zy).
This suggests that one should consider the derived tensor product

A= Tézp Q,/Z,
as a correct version of (0.4.1). In concrete terms, Q,/Z, has a natural flat resolution
(0.4.3) [Z, — Q)
(in degrees —1,0) and A is represented by the complex
T ®z, 2, — Qp) = [T — T ®z, Q).

again in degrees —1,0.
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0.4. COMPACT VS. DISCRETE MODULES 5

What is the analogue of (0.4.3) for general R? Fix a system of parameters of R,
i.e., elements 1, ..., 24 € m (where d = dim(R)) such that dim(R/(z1,...,2q)) = 0.
An analogue of (0.4.3) is then given by the complex

C*=C*(R.(2:) = |R— P Rs, — PRasa, —+ — Rayoa,

i<j
in degrees [—d, 0], with standard “Cech differentials”. This complex depends on the
chosen system of parameters. In order to remove this ambiguity it is necessary to
consider C* as an object of the (bounded) derived category D’(zpMod). In more
rigorous terms, if (y;) is another system of parameters of R, then there is a canonical
isomorphism
R—= HomD”(RMod) (C.(R7 (Lz))v C.(Rv (?/j)))'

Given T' € Dy(rMod), we then define

L
A=®(T)=TSC* =T @5 C*

(for the last equality note that C'* is a complex of flat R-modules).
The Pontrjagin dual of R

I = D(R)

is an injective hull of the (finite) residue field & = R/m; we abandon our earlier
convention about D and instead define

D(M) =Hompg(M,I)

for every R-module M. This functor coincides with Pontrjagin dual for Noetherian
(hence compact) or Artinian (hence discrete) R-modules.

We have, so far, defined analogues of the vertical and diagonal arrows in the dia-
gram (0.4.2). What about the horizontal arrow? A derived version of the adjunction
isomorphism

adj : RHomp(X&rY, Z) > RHomp(X, RHomp(Y, Z)),
applied to X =T,Y = C*, Z = I, shows that
Do ®(—) = RHompg(—, D(C*)).
The object of D*(rMod) represented by the complex
D(C*)

is known as the dualizing complex w € Dj?t( rMod) and the functor

2 (-) = RHompg(—,w)
as Grothendieck’s dual (if R = Z,,, then w = Z,,).

SOCIETE MATHEMATIQUE DE FRANCE 2006



6 CHAPTER 0. INTRODUCTION

To sum up, a general version of (0.4.2) is given by the following “duality diagram”

T ——m T*

(0.4.4) lq> > [q)

A A*
with T, T* € D,(zrMod), A, A* € D, ;(pMod),
D(-) = Hompg(—,1I)
2 (-) = RHompg(—,w)
L
() = (-)®rD(w)

Commutativity of this diagram (up to canonical isomorphisms) is equivalent to three
duality theorems: Matlis duality (id = D o D), Grothendieck duality (id = Z 0 2)
and local duality (Z = D o ® together with the isomorphism ®[—d] = RIM(my)-

The diagram (0.4.4) gives rise to a spectral sequence

(0.4.5) Ey) = Exth(D(H?(A)),w) = Exth (H ™ (T*),w) N N
— H™(9(T*)) = H™(T).

0.5. (Ind-)admissible R[G]-modules

In order to incorporate the Galois action into the diagram (0.4.4), it is necessary
to enlarge the category of Galois modules we consider. For example, T' ®pr C* has
components of the form

T Ry =lim [T-57-57 ] = | Top { |r e R},

n=1

This suggests that we should consider R[G]-modules M satisfying the following con-
dition (which makes sense for any topological group G):

Axiom 1. — M = |JM,, where M, C M are R[G]-submodules of M, which are of
finite type over R and such that the map G — Autr(M,) is continuous (with respect
to the pro-finite topology on the target).

As
D(@Ma> = HD(MQ),

there are cases when Axiom 1 is satisfied by M, but not by D(M). For this reason
we impose an additional, purely algebraic, condition:

Axiom 2. — Im(R|G] — Endg(M)) is an R-module of finite type.

ASTERISQUE 310



0.7. DUALITY FOR GALOIS COHOMOLOGY 7

An R[G]-module satisfying Axiom 1 and Axiom 2 (resp., only Axiom 1) will be
called admissible (resp., ind-admissible). Admissible modules form a full subcategory
( R[G]Mod) of (rjgiMod), which is stable under subquotients, finite direct sums, tensor
products and internal Hom’s. In particular, if 7" is admissible, so is T ® g R, for
every x € R.

The duality diagram

<@—,T*

T
(0.5.1) { [cp
A

S A*
then makes sense for T,T* € DR_ft(%}G}Mod), A A" € DR_COﬁ(‘}ﬁG]Mod).

0.6. Continuous cohomology

For an admissible R[G]-module M we define the complex of continuous (non-
homogeneous) cochains of G with values in M as

C‘(?ont(c;7 M) = 11_1’[} (ont(G M ) = llﬂ}l{_lr_ﬂc ()nt(G Ma/m M(X)

where each M, /m™M, has discrete topology. The functor M — C¢. (G, M) gives
rise to an exact functor

RTcont (G, =) : D*(HjgMod) — D*(rMod)

for * = + (resp., for x = +,b, if G is a pro-finite group satisfying cd,(G) < o0). In
fact, this construction requires only Axiom 1, and so it makes sense for ind-admissible
modules.

In the situation of (0.5.1), the functor RI'¢cont(G, —) commutes with ® (up to a
canonical isomorphism). For R = Z,, this statement boils down to the fact that there
exists a long cohomology sequence of continuous G-cohomology associated to

0—T —V—A—0,

where V =T ®z, Q.

0.7. Duality for Galois cohomology

The machinery behind the duality diagram (0.5.1) makes the passage from finite
to big Galois representations very easy. As we have seen in 0.3, classical duality
results for finite Galois modules imply a duality with respect to D, while compatibility
of RTcont (G, —) with @ is automatic; combining the two facts we obtain a duality with
respect to 2. The final outcome (cf. Chapter 5) is the following:

SOCIETE MATHEMATIQUE DE FRANCE 2006



8 CHAPTER 0. INTRODUCTION

0.7.0. Duality over local fields (Tate). — Let K be a local field (with finite
residue field) of characteristic char(K) # p and G = Gg. If T, T* € DY, f,(R[( ]Mod)
and A, A* € Db (Oﬁ( [(,K]Mod) are related as in (0.5.1), then the four objects
of Db (co )ft(I{MOd) in the diagram

RFCOnt(GK7 T) RF(:ont(GK7 T*(l)) [2]
D
d @
Rl con (Gx, A) Rl coni(Gi, A*(1)) 2]

are related as in (0.4.4).

0.7.1. Duality over global fields (Poitou- Tate). — Let K be a global field of
characteristic char(K) # p and S a finite set of primes of K containing all primes
above p and all archimedean primes of K. If p = 2, assume for simplicity that K has
no real prime (otherwise one would have to consider also Tate cohomology groups at
real primes). Denote by Sy the set of all non-archimedean primes in S; for v € Sy put
G, = Gk, and fix an embedding K — K,. Set Gk s = Gal(Kg/K), where Kg the
maximal extension of K unramified outside S. For every admissible G g g-module M
define the complex of continuous cochains with compact support by(®

C(.:,cont(GK,S7 M) = COIIG <C(‘ont(GK S ]\/[ @ (ont GU7 AI)) [_1]
vE S.,
This defines an exact functor
RFc,cont(GK,57 _) . D* (%(i[(;f\"s]MOd) — D*([{Mod)
(x = +,b). If T,7* € DY ft(nd[(] ]Mod) and A, A* € Db wft(R[GK S]Mod) are
related as in (0.5.1) (for G = Gk s), then the objects of D(m)ﬂ(RMod) in the diagram

7
RFcont<GK,S7T) RFC,COnt(GK,S7T*(1)) [3]

RFcont(GK,SyA) RFc,cont(GK,Sw *(1)) [3]

are related as in (0.4.4).

(3)This differs from the cochains with compact support as defined by Kato [Kal]. Our definition
makes the duality theorem work, while Kato’s definition, which incorporates cochains at all infinite
places, gives rise to objects naturally related to “zeta elements”.
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0.8. SELMER COMPLEXES 9

0.7.2. As in (0.4.5), the previous diagram gives rise to the following spectral
sequences:

B = Exty(HY 30y (Crc 5. T* (1)) = Extiy(D(Hop(Gres, A))w)
- H1+] (GK,SH T)

cont

By = Exty(Hoot (G5, T" (1)), w) = Extip(D(H] con (G5, A),w)
— HY (Gg.s,T).

c,cont

0.8. Selmer complexes

Let us keep the notation of 0.7.1. Selmer groups have been traditionally de-
fined as subgroups of elements of H'(Gk g, —) satisfying suitable local conditions
in H'(G,,—) (for v € S). In our approach we have no choice but to impose local
conditions on the level of complexes, rather than cohomology.

0.8.0. Let T, T*, A, A* be bounded complexes of admissible R[Gg,s]-modules,
which are related in the derived category as in (0.5.1). Local conditions for any
X e {T,A,T*(1), A*(1)} are given by a collection A(X) = (Ay(X))ves,, where each
A, (X) is a morphism of complexes of R-modules

7;‘)_(X) : U:»(X) I C(:ont,(G’lMX),

with U} (X) satisfying appropriate finiteness conditions.
The Selmer complex associated to the local conditions A(X) is defined as the total
complex

Cront (G5, X) = @Dyeq, Coon(Gos X)
Tot
@veSf U;- (X)
The corresponding object of the derived category will be denoted by

RI;(X) = R (Gr,s, X;A(X)) € D,(rMod), =
F(X) f(Gk.s (X)) (rMod) {CO]% X = A, 4%(1)
and its cohomology by I;T}(X) = ﬁ]’}(GK,&X; A(X)). If we put

U (X) = Cone(U} (X) — C¢

v cont(vaX))v
then the exact triangle

RI(X) — Rlcon (Gr.s. X) — P U, (X)
vESy
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gives rise to a long exact sequence

080.1) - — Q) H' (U, (X)) — Hy(X)
vESy . |
— Hlow(Gros. X) — @ H' (U, (X)) — -+

vESy

In particular, the canonical map
H% (X> — H(}()nL(GK,Sv X)

need not be injective.

0.8.1. In the present work we consider only Greenberg’s local conditions, defined
as follows (these are the only local conditions that can be handled by elementary
methods; the general case would require a heavy dose of crystalline machinery, which
is not yet available). Fix a subset ¥ C S containing all primes above p and put
=53

(i) For v € X, assume that we are given a morphism of complexes of admissible
R[G,]-modules X — X put

Uf(X) = C:

cont

(G’LH X:_)
(ii) For v € ¥’ we take the “unramified local conditions”

U (X) = Co(Go, X).

ur

Morally, these should defined as

“C. t(G’U/IlH T<0 C(:ont(l’vv X)) - C(:()Ilt (G’U/[’LM Cc.'ont(I’IH X)) ;) C. t(G’lH X)”’

con con

where I, C G, is the inertia subgroup. Unfortunately, there does not seem to be
a satisfactory general formalism of the Hochschild-Serre spectral sequence for con-

tinuous cohomology. As a result, we define C?,. by explicit formulas. For example,

ur

if X = XY is concentrated in degree zero, then
Cl.ll'(GU7 X) = Cgont (GU/I’LH (X(‘,)I”)
is quasi-isomorphic to the complex
R

in degrees 0, 1; here f, € G, /I, denotes the geometric Frobenius element.

0.9. Duality for Selmer complexes

In order to obtain a duality result similar to 0.7.1 for various RI #(X), it is necessary
to impose suitable “orthogonality constraints” on the local conditions. For example,
we require, for all v € S, the composite morphism of complexes

Uy (X) — Coone(Gu, X) =5 D(Clon (Gu, D(X)(1))) [-2] — D(U;(D(X)(1))) [-2]

v cont cont
(in which the map « underlies Tate’s local duality) to be a quasi-isomorphism.
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For Greenberg’s local conditions 0.8.1, this follows from a suitable orthogonality
of X;f and D(X)(1);.

v
This implies that the following pairs of Selmer complexes are related by Pontrjagin
duality:

(0.9.1) R (T) =2 RI';(A*(1))[3]
R (A) <——— RI(T"(1)) [3]

In general, (0.9.1) cannot be completed to a full duality diagram

RI,(T) «———— RI,(T*(1)[3]

(0.9.2) [‘I) < [fb

RI';(4) RI';(A"(1))[3],
as the local conditions need not be compatible with respect to ®. In other words,
there is an exact (= distinguished) triangle
S(UF (1)) — Uyt (A) — Brr, (®,7)
involving an “error term” Err, (®,T), which leads to another exact triangle
®(RT(T)) — RI((A) — P Err,(#,7).
vESy

For Greenberg’s local conditions 0.8.1 we have Err,(®,T) = 0 for v € X, but not
for v € ¥, in general. For example, assume that R = Z, and T is a free Z,-module
of finite rank, concentrated in degree zero. As before, A =V/T for V =T ®z, Q,.

The unramified local conditions at v € ¥’ are quasi-isomorphic to

UHX) =[x ELx ] (=T,

hence ®(UF(T)) is quasi—isomorphic to

[V L2yt i | = [(A7) g (A" )aiv]

It follows that Err,(®,T) is quasi-isomorphic to

A7)/ AT Y =P (AR /(AT Y| = [ (R )y B (10, T) o]

tors

The cohomology groups of Err, (®,T') are finite groups of common order

(O (Err, (@, 7)) = |H' (Brr (8, 7)| = | B (1, )}

tors

k)

equal to the “local Tamagawa factor” of T at v € ¥/, which appears in the formulation
of the Bloch-Kato conjecture in the language of [Fo-PR] (this is a generalization of
the “fudge factors” in the conjecture of Birch and Swinnerton-Dyer).
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Similarly, there is an error term for the horizontal arrow 2 in (0.9.2). Under a
suitable boundedness hypothesis, the arrow corresponds to a cup product

(0.9.3) RI(T)6r RT (T (1) — w]-3).

0.10. Comparison with classical Selmer groups

Let E be an elliptic curve over Q, with good reduction outside a finite set of primes
S D {p,o0}. The classical p-power descent on E gives rise to Selmer groups

Sel(Gq,s,—) C H'(Gq,s,—)
(for — =T =T,(E) or — = A = E[p™]), sitting in exact sequences
0 — E(Q)®Z, — Sel(Gq,s,.T) — T,II(E/Q) — 0
0— E(Q)®Qy/Z, — Sel(Gq s, A) — LI(E/Q)[p™] — 0.
We also use the notation
Sel(Gq,s,V) =Sel(Gq.s,T) @z, Qp

for V = V,(E) = T,(E) &2, Q.
Assume that F has ordinary reduction®) at p and, for simplicity, that p # 2. As
a representation of GG, = Gq,, the Tate module 7" is reducible. There is an exact
sequence of Z,[G,]-modules
0 —Tf—T—T, —0,
in which each Tpi is free of rank 1 over Z, and I, acts trivially on T} (i.e., T, is
unramified). Consider Greenberg’s local conditions for T', given by

UH(T) = {C(:()nt(GP>Tp+)7I v=p
Ceoni(Gy/1,,T'),  wveSp v#p.
One deduces from (0.8.0.1) an exact sequence (cf. 9.6.3, 9.6.7)
0 — HYG,,T;) — HHT) — Sel(Gq,s,T) — C — 0,
in which C is a finite group and
Z,, if E has split multiplicative reduction at p

HO(Gvap_) = {

0, otherwise.

In other words, FI} (T) is an “extended Selmer group” in the sense of Mazur, Tate
and Teitelbaum [M-T-T] and the term H°(G,, T, ) detects the presence of a “trivial
zero” of the p-adic L-function of E. This is one of the simplest instances of the fol-
lowing general principle: classical Selmer groups correspond to complex L-functions,
while Selmer complexes to p-adic L-functions.

D j.e., either good ordinary or multiplicative reduction.
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0.11. Iwasawa theory

The formalism of big Galois representations greatly simplifies Iwasawa theory. Let
K be a number field and S as in 0.7.1. Assume that we are given an intermediate
Galois extension K € Ko, C Kg with I' = Gal(Ko/K) = Z;, for some r > 1 (in fact,
one can treat in the same way also “tame Iwasawa theory”, when I' = Z, x A, for a
finite abelian group A). Put G = Gk s.

Writing Ko = |J K, as a union of finite extensions of K, we define the Iwasawa
algebra of ' over R as

R = R[I'] = lim R[Gal(K,/K)].

As in the classical case (R = Z,), any choice of an isomorphism I' = Z;, gives an
isomorphism of R-algebras
R R[X1,..., X,].
We denote by
xr:G — T «— R[]
the tautological character of G and by
t:R— R
the R-linear involution satisfying t(y) =~ ! for all v € T.
If M is an R[G]-module and n € Z, we define R[G]-modules M < n > and M* by
requiring that

(i) M <n>= M as an R-module; g € G acts by

IM<n> = Xl"(g)ngM'
(i) M* = M as an R[G]-module; v € T" acts by

e =1V = (" )mr.

0.12. Duality for Galois cohomology in Iwasawa theory

The main point is that cohomology of R-representations over Ko, can be expressed
in terms of cohomology of R-representations over K (cf. [Gre4, Prop. 3.2]; [Col,
Prop. 2]).

Let T, T* (resp., A, A*) be bounded complexes of admissible R[G]-modules, of
finite (resp., co-finite) type over R. In Iwasawa theory one is often interested in the
cohomology groups

Hi,(Koo/K,T)=lim H,, (Gal(Ks/Ka), T)

HZ(KS/KOCHA) = ll_H)l Héont

(Gal(Ks/Ka), A)
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(and their counterparts with compact support). An easy application of Shapiro’s
Lemma (cf. Sect. 8.3 and 8.4) shows that these are the cohomology groups of the
following objects of D(zFMod):
RFIW(KOO/K7T) = RFcont(GK,Sw?F(T))
RF(KS/KOO7 A): RFCOIlt(GK,Sa FF(A))a
where
Fr(T)=(T ®gr E) <—-1>
Fr(A) = Hompg cont (R, A) < =1 >
(and similarly for cohomology with compact support).
The crucial observation (cf. 8.4.6.6) is the following: if T', T*, A, A* are related

(over R) as in (0.5.1), then #p(T), F(T*), Fr(A), Fr(A*) are related by the duality
diagram

Fo(T) —T o Fp(T*)
(0.12.1) |5 = ¥
Fr(A) Fr(A7)

over R (here we use the notation 7 (—) = RHomp(—, wg), and similarly for ® and D).
Applying the Poitou-Tate duality 0.7.1 (over R) to (0.12.1), we obtain a duality
diagram in D(zMod)

Rl (Koo /K, T) -7 RI ¢ 1w (Koo /K, T*(1))"[3]
(0.12.2) F >5< |$
RI(Ks/Kx, A) RI.(Ks/Koo, A*(1))"[3]

and spectral sequences

(0.12‘3)
Ey? = Ext(D(H? (Ks/ Ko, A)),wp) = Ext(H 1] (Koo /K, T"(1)), wg)'
— H{}(Koo/K,T)
By = Bxty(D(H! (Ks/ Koo, A)) o) = Ext(H (Koo /K, T(1)),w5)"
HHJ( oo/K7T>

c,Iw

In the classical case R = Z, the ring R = Z,[I'] = A is the usual Iwasawa algebra.
The spectral sequence

By’ = Bxtiy(D(H' (Ks /Koo, A)), A) = H{}? (Koo /K, T)
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was in this case constructed in an unpublished note of Jannsen [Ja3] (who also con-
sidered the case of non-commutative T').

Back to the general case, recall that an R-module M is pseudo-null if it is
finitely generated and its support supp(M) has codimension > 2 in Spec(R). As
codimﬁ(supp(Eé’j )) = i, the spectral sequence FE, degenerates in the quotient
category (EMod) /(pseudo-null) into short exact sequences

0— By ' — HP(Kso/K.T) — E3™ — 0,

N N - N n—1 . . .
in which E2™ has no R-torsion and E2™ ! has support in codimension > 1.
2 2 P

0.13. Duality for Selmer complexes in Iwasawa theory

Given suitably compatible systems of local conditions U,f(X) along the tower of
fields { K, }, one can define Selmer complexes

R/ 1w(Koo/K, X), RT{(Ks/Ko,Y) (X =T,T*(1),Y = A4, A*(1)).

Although over each finite layer K, the diagram (0.9.2) may involve non-zero error
terms, the limit of these error terms over K, is very often pseudo-null (or co-pseudo-
null).

For example, Greenberg’s local conditions 0.8.1 induce similar local conditions
over each K,. If we assume that no prime v € ¥’ splits completely in K, /K, then
(cf. 8.9.9)

R 1 (Koo/ K, T) 2 RT (Koo /K, T*(1)) 3]
(0.13.1) [5 D F
RT;(Ks/Keo, A) RI(Ks /Koo, A*(1))'[3]

becomes a duality diagram without any error terms, if we consider the top
(resp., bottom) two objects in Dﬂ((ﬁMod)/(pseudo—null)) (resp., in D op(zMod/
(co-pseudo-null))).  Equivalently, for every prime ideal p € Spec(R) of height
ht(p) = 1, the localization of (0.13.1) at p is a duality diagram in D(EFMod). As
in 0.12, this leads to exact sequences of Rg-modules

rrd— * v T
(0.13.2)  0— Exty(Hy(Koo/ K, T*(1)),wg)y — Hi 5
— Homp (H} (Koo / K, T*(1)), wp) 5 —0,

(Ko/K,T)

in which X is a shorthand for (X*)z and

HY (Koo/ K, T*(1)) <5 D(H} (K5 /Koo, A)')
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(and similarly for " and A*(1)). If R has no embedded primes, then we obtain
isomorphisms

H (Koo /KT Extp(Hp (Koo /K, T (1)), wp)

n (zFMod)/(pseudo-null).

If there is a prime v € ¥’ that splits completely in K.,/K, then the above state-
ments hold for those prime ideals p € Spec(R) of height ht(p) = 1 which are not of
the form p = pR, where p € Spec(R) has ht(p) = 1 (cf. 8.9.8).

In particular, if R is regular and no prime v € ¥’ splits completely in Ko/ K, then
the R-modules

(D(H}(Ks/Kx, A))),,.. and (D(H}Ks/Ks, A*(1)))):

are pseudo-isomorphic. This is a generalization of Greenberg’s results ([Gre2,
Thm. 2]; [Gre3, Thm. 1]), according to which for R = Z,, and K,/ K the cyclotomic
Zp-extensi()11(5) the two A-modules in question have the same characteristic power
series (more precisely, Greenberg works with his “strict Selmer groups” S5"(K«)

tors

and ST ( 1)(Koo); their relation to our H } is explained in 9.6). A similar result for
Selmer groups of abelian varieties defined in terms of flat cohomology was proved by
Wingberg [Win].

If the complex T' = 0 T is concentrated in non-positive degrees, then one can say
much more: the horizontal arrow in (0.13.1) becomes an isomorphism after tensoring
with Rg, for any minimal prime q of R (Sect. 8.9.11-Sect. 8.9.12).

Greenberg [Gre2| also defined “non-strict” Selmer groups Sa 2 S%*. One of their
interesting features is the fact that a trivial zero over K can sometimes be detected
by the A-module S4(K) (but not by the Selmer group Sa(K) over K). Although
the Pontrjagin duals of S4(Ko) and H 1(K s/ K, A) may often have the same char-
acteristic power series, they need not be isomorphic as A-modules, as S%"(K) is a
subgroup of S (K ), but a quotient of Hf Ks/Kx, A) (cf.9.6.2-9.6.6). It seems that
in the presence of a trivial zero H }(K 5/ Koo, A) has better semi-simplicity properties
than Sa(K).

0.14. Classical Iwasawa theory

0.14.0. Traditionally, the main objects of interest in Iwasawa theory have been the
following:

(i) The Galois group Gal(M. /K ) of the maximal abelian pro-p-extension of K,
unramified outside primes above S.

() And assuming, in addition, that both D( (KS/KOO,A)) and D( (KS/KOO, *(1))) are tor-
sion over A = Z,[T'].
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(ii) The projective (resp., inductive) limit X (resp., As) of the p-primary parts
of the ideal class groups of Ok, .

(iii) The projective (resp., inductive) limit X/ (resp., A ) of the p-primary parts
of the ideal class groups of Ok, s, , where S, is the set of primes of K, above S.

These are closely related to RI'1y(Koo/K,T) and RI'¢1w(Ke/K,T) for T =
Z,,Z,(1) (with R = Z,, R = A = Z,[I']). Can one obtain anything interesting
from the general machinery (Sect. 0.12-Sect. 0.13) in this classical setup?

0.14.1. First of all, the spectral sequence 'F, in (0.12.3) for T = Z, and T = Z,(1)
gives very short proofs of the following well-known results (cf. 9.3):

(i) The Pontrjagin dual of AL contains no non-zero pseudo-null A-submodules.
(ii) If the weak Leopoldt conjecture holds for K, (i.e., H*(Ks/ Koo, Qp/Zp) = 0),
then Gal(My /Ko ) contains no non-zero pseudo-null A-submodules.

0.14.2. For I' = Z,, Iwasawa [Iw] constructed canonical isomorphisms in
(AMod)/(pseudo-null)

Exth(Xoo, A) == D(As), Exti(X.,A) == D(AL).

One expects analogous statements to hold for arbitrary I' = Z;, (cf. [McCa2]).

Our machinery gives only partial results in this direction, such as the following
(cf. 9.4-9.5):

(i) There is a canonical morphism of A-modules

o X! — Exty(D(AL),A).

(ii) Coker(a’) is almost pseudo-null in the sense that there is an explicit finite set P
of height one prime ideals p € Spec(A) such that Coker(a’), = 0 for all p € Spec(A),
ht(p)=1,p ¢ P.

(iii) The characteristic power series of D(A’ ) divides that of X/ .

Slightly weaker results can be proved for X, and A.

In 1998 the author announced a proof of the fact that Coker(a/) is pseudo-null.
Unfortunately, the argument for exceptional p € P turned out to be flawed, which
means that the claim has to be retracted.

0.14.3. Greenberg’s local conditions have built into them a fundamental base change
property (cf. 8.10.1)

— L " —
RI'f1w(Koo/ K, T)®pR — RI'y(T)

with respect to the augmentation map R — R. This can be interpreted as a de-
rived version of Mazur’s “control theorem” for Selmer groups, according to which the
canonical map

Sel(Gk s, E[p™]) — Sel(Gk.. s, E[p™])"
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has finite kernel and cokernel (assuming that I' = Z, and E has good ordinary
reduction at all primes dividing p).
More generally, there are canonical isomorphisms

— L L
(()1431) RFJ',IW(KOO/K, T)®§ R[[Gdl(L/K)]] - er’lw(L/K, T)
for arbitrary intermediate fields K C L C K.

0.14.4. A typical situation in which Mazur’s control theorem fails for the classical
Selmer groups but holds for the extended Selmer groups H }(—, E[p*)) is the following:
E is an elliptic curve defined over Q with multiplicative reduction at p and Ko, /K
is the anti-cyclotomic Z,-extension of an imaginary quadratic field K in which p is
inert. Note that a trivial zero is again lurking behind this example.

0.14.5. Our duality results also show that, in the classical case when R = Z, and
T = TY is concentrated in degree zero, the objects f{\f’”W(KOO/K, T') can often be rep-
resented by relatively simple complexes (see 9.7), which then control RT rw(L/K,T)
and the corresponding height pairings for all subextensions L/K of K., /K, thanks
to (0.14.3.1). These results were used, in the context of classical Selmer groups, in
the work of Mazur and Rubin [M-R2] on “organizing complexes” in Iwasawa theory
of elliptic curves.

0.15. Generalized Cassels-Tate pairings

One of the main applications of the duality theory for Selmer complexes is a con-
struction of higher-dimensional generalizations of Cassels-Tate pairings (cf. Chap-
ter 10). These pairings are used in 10.7 to prove several versions of the following
general principle (for Greenberg’s local conditions): the parity of ranks of extended
Selmer groups H }(T \) associated to a one-parameter family T’ of self-dual Galois rep-
resentations (with respect to a family of skew-symmetric isomorphisms 7\ = T (1)
respecting the local conditions) is constant. In [N-P, Ne3, Ne5] and in Chapter 12
we deduce from this principle parity results for ranks of Selmer groups associated to
modular forms, elliptic curves and Hilbert modular forms, respectively.

On should keep in mind the following topological analogue (see 10.1): if X is a
compact oriented topological manifold of (real) dimension 3, then Poincaré duality
with finite coefficients induces a non-degenerate symmetric pairing

HQ(X7 Z)tors X H2(X7 Z)tors — Q/Z

0.15.0. Let us return to the exact sequence (0.13.2), assuming in addition that

depth(Ry) = dim(Ry) = 1. Under this assumption the first term in (0.13.2) is canon-
ically isomorphic to

Homey ((178(Koo /K. T*(1))

L
fIw F) (EF)-tors’ Iﬁg) ’
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- ~ 0 SN o B\ /D . it o)
where IR_; —>_H (wg)p O (Frac(_Rp)/_Rp) dinotos the injective hull of the (Rj)
module Rg/pRg (e.g. I = Frac(Ry)/Rg, if Ry is a discrete valuation ring). As a
result, one obtains a non-degenerate bilinear form (cf. 10.3.3, 10.5.5)

7q rrd—q * ¢ -

(Ko KT (1 e (R KT D)) ) —
This pairing is of particular interest for ¢ = 2. In the self-dual case, i.e., when
there is a skew-symmetric isomorphism 7}, = T*(1), compatible with isomorphisms
(T = ((T*(1))F)p for all v € T, then the induced pairing

(0.15.0.1) (, ) (ffﬁlw(Koo/K, ) )

~9 . L -
P (EF)-tors % <I{f’IW(I<OO/I<7 T)_) (_ . IRF

P Rg) -tors

is skew-Hermitian (cf. 10.3.4.2).

0.15.1. All of the above makes sense in the absence of ' (i.e., for R = R and p = p),
when we obtain bilinear forms (cf. 10.3.2, 10.5.3)

(fgn),), o (e ),) o da,

Rp-tors
which can be degenerate (because of the presence of error terms in (0.9.2)).
In the self-dual case, the induced pairing

<ﬁ?(T)p>Rp_tors X (ﬁ;(T)p) — Ig,

Ry-tors
is skew-symmetric (cf. 10.2.5).

For R=17Z,, p = (p) and T = T,(E) (where F is an elliptic curve with ordinary
reduction at all primes above p), we recover essentially the classical Cassels-Tate pair-
ing on the quotient of Sel(Gk s, E[p™]) by its maximal divisible subgroup (combining
10.8.7 with 9.6.7.3 and 9.6.3).

Perhaps the simplest non-classical example comes from Hida theory (cf. [N-P]).
For simplicity, let us begin with an elliptic curve E over Q, with good ordinary
reduction at p (if p = 2, then the following discussion has to be slightly modified).
It is known that E is modular [B-C-D-T], hence L(FE,s) = L(fg, $) for a newform
fE € S2(To(N),Z), where N is the conductor of E.

Our assumptions imply that pt N and fg = fo is a member of a Hida family of
ordinary eigenforms®) f;, € Sy (I'o(N), Z,), for weights k € Z» sufficiently close to 2
in the p-adic space of weights Z, x Z/(p — 1)Z.

The Galois representations associated to various fi can be interpolated by a big
Galois representation

p: GQ’S — AutR(T),

(®)In this introduction we ignore the phenomenon of p-stabilization.
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where S consists of all primes dividing Np (and infinity) and R, T are as in (0.1.2).
Replacing T by a suitable twist ([N-P, §3.2.3]), one obtains a representation (also
denoted by T') with the following properties:
(i) There is a prime ideal P € Spec(R) with ht(P) = 1 such that
(T/PT) ®z, Qp — Vp(E).

Moreover, Rp is a discrete valuation ring, unramified over Apna.
(ii) T is self-dual, i.e., there is a skew-symmetric isomorphism

T =5 T*(1) = Homy (T, A)(1).
(ili) There is a self-dual exact sequence of Rp[Gq,]-modules
O—>T;—>Tp—>T7§ — 0,
in which Tg is free of rank one over Rp and there is an isomorphism T; / ’PT; =
Vp(E)* (compatible with that in (i)).
The corresponding big Selmer complex i:ﬁ%f(GQ, s,Tp) satisfies the base change
property 12.7.13.4(i)
— L e
(0.15.1.1) RFf(Tp)@RPRP/'P —>RFf(Vp(E)),
which gives an exact cohomology sequence
0 — H}(Tp)/P — Hj(Vy(E)) — H}(Tp)[P] — 0,
in which the middle term is equal to the classical Selmer group Sel(Gq,s, Vp(E)).
The existence of a canonical non-degenerate skew-symmetric pairing
ﬁ?(T”P)Rp-tors X ITI;(TP)RP-tors B FI‘&C(RP)/RP
then implies the following result (see 12.7.13.5).

0.15.2. Let FE be an elliptic curve over Q with a good ordinary reduction at p. Then:
i) There exists a canonical decreasing filtration by Q,-vector spaces on S =
P
Sel(Gq,s, Vp(E)):
S=8"28"2....
(ii) There exist non-degenerate skew-symmetric pairings
Si/Si+1 XSi/Si+1-——->Qp (221)
depending on the choice of an isomorphism I' = 1+¢Z, = Z,, and otherwise canonical

(where ¢ = p (resp., ¢ = 4) if p # 2 (resp., p = 2)).
(iii) The common kernel
s* =5

i>1
is equal to the “generic subspace of S”

Seet = Im(H}(Tp) — H}(V,(E))).
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In particular,
dimq, (5) = dimq, (S%") (mod2).

Above, dimq, (S#") = dimgy fl}(”f/), where .Z = Frac(Rp), ¥ = T ®r.% and
ﬁ} ¥) = H +(Tp) ®ry, £ is the Selmer group associated to the whole Hida family
passing through fg.

A similar result holds for extended Selmer groups H} of self-dual Galois represen-
tations associated to Hilbert modular forms (see 12.7.13.5).

The results of [N-P] show that certain non-vanishing conjectures for the two-
variable p-adic L-function of E would imply (at least for p > 3) that

0, if2]ords=1L(E,s)

dimq, (S&") =
o3 ) {1, if 2t ords—1 L(E, s)

(in the language of 12.7.13.5, ;}(Q, V') =0 (resp., = 1) for infinitely many P’, hence
dimq, (5%°") = dim F'* is also equal to 0 (resp., to 1)).

0.15.3. Self-duality in Iwasawa theory is more complicated; because of the presence
of the involution ¢, we obtain skew-Hermitian pairings (Sect. 10.3.4.2(ii)). In an im-
portant dihedral case it is possible to get rid of the involution and obtain, as in 0.15.2,
skew-symmetric pairings.

Consider, for example, the following situation. Let K = Q(\/ﬁ), D < 0, be an
imaginary quadratic field and K /K the anti-cyclotomic Z,-extension of K. This is
a dihedral extension of Q, i.e.,

' = Gal(Kw/Q) =T x {1,7},

where

1

2 =1, Tyl =471 (yel = 1Z,).

This implies that, for every R[['"]-module M, the action of 7 € I'* induces an iso-
morphism of R[[']-modules

T: M =5 M-
Applying this remark to M = ITI%IW(KOO/K, T,(E)), where E is an elliptic curve over
Q with good ordinary reduction at p, the non-degenerate skew-Hermitian pairing

< ’ ) : (ﬁ?,IW(KOO/K7 TP(E))p)Ap-tors X (E[]%,IW(KOO/K’ TP(E))p)AP-tors

— Frac(Ay)/Ap
from (0.15.0.1) (where R = Z,, R = A = Z,[I'], T = T,(E), p € Spec(A) =
Spec(Z,[T']), ht(p) = 1, p # (p)) induces a non-degenerate skew-symmetric pairing

( ’ ) : (ITI%IW(KOO/K’ TP(E))p)AP-tors X (HV’]%IW(KOO/K’ TP(E))P)Ap—tors

. Frac(Ay)/Ay,
(e,9) = (. 73). B
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This implies that, for each prime ideal p as above, we have

ﬁ,?,lw(KOO/K> T,(E))y — (E<Sel<GK'x;»S7E[poo])))p’
with
(DSel(Gre 52 EP™D)p) o cpors — ¥ BY
for some Ay-module Y of finite length. The control theorem 0.14.3 for Selmer groups

then gives a congruence analogous to that in 0.15.2 (iii)
(0.15.3.1) dimq, (Sel(Gk,s, Vp(E))) = rkaD(Sel(Gk s, E[p™])) (mod2)
(which holds in a general “dihedral” context; see 10.7.19).
If p # 2 and K satisfies the following “Heegner condition”
(Heeg) Every prime dividing Ng splits in K,
then everything works even for p = (p) (see 10.7.18). A recently proved ([Cor, Va])
conjecture of Mazur [Maz2] implies that, assuming (Heeg), the R.H.S. in (0.15.3.1)
is equal to 1. As shown in [Ne3], the congruence (0.15.3.1) for suitably chosen K
implies that
dimq, (Sel(Gq,s, Vp(E))) = orde=1 L(E,s) (mod2)
(still assuming that E has good ordinary reduction at p).
A generalization of this parity result to Hilbert modular forms is proved in
Chapter 12.
If
dimq, (Sel(Gk,s,Vp(E))) =1 (mod?2),
the congruence (0.15.3.1) together with the control theorem 0.14.3 imply that
dimq, (Sel(Gk s, Vp(E))) = [K': K],

for all finite subextensions K'/K of K /K (cf. 10.7.19). The phenomenon of system-
atic growth of Selmer groups in dihedral extensions was systematically investigated
by Mazur and Rubin [M-R3, M-R4] (cf. 12.12).

0.16. Generalized height pairings

0.16.0. Our formalism also gives a new approach to p-adic (in fact, R-valued) height
pairings, which greatly simplifies all previous constructions (due to many people,
including Zarhin, Schneider, Perrin-Riou, Mazur and Tate, Rubin, and the author;
see the references in [Ne2] and in Sect. 11.3 below). Let

J = Ker(R — R)
be the augmentation ideal of R; there is a canonical isomorphism
J)J*? = Tp=T®z, R
v —1 (mod J?) —— vy &1 (vel).
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Assume that I'g is flat over R. For T as in (0.12.1), denote Z(T) by T. The exact
triangle

T®rJ/J? —T/)J*T — T)JT — T &g J/J*[1]
is canonically isomorphic to

(0.16.0.1) T®rTr — T/J*T — T — T @ Tr[l].

Greenberg’s local conditions for T induce similar local conditions for each term
in (0.16.0.1); the corresponding Selmer complexes also form an exact triangle
in D%(rMod)

R (T) @r Tr — RI(T/J?T) — RI(T) — RI4(T) ©r Tr (1],

which can also be obtained by applying RT f(T)(gﬁ (—) to the exact triangle
J)J? — R)J? — R — J/J*[1].

The cup product (0.9.3) and the “Bockstein map”
B:RIf(T) — RTH(T) @ Tr[1]

induce a morphism in D}'ét( rMod)

RI(T)5 rRf(T"(1) — w ®r Tr[~2);

which is a derived version of the height pairing. In practice, the only interesting
component of this pairing is given by

h: HN(T) ®p HH(T*(1)) — H°(w) @5 g,

which can be written as

h(z ®@y) = Tr(B(x) Uy).

This construction makes sense also in the case when I' is a finite abelian group of
exponent p™ and R is an Z/p™Z-algebra. It is very likely that there is a similar
cohomological formalism behind real-valued heights.

There is also a more general version of this construction, which yields pairings

— L —
RT 1w (L/ K, T)®R[cai(r, k)] R f1w (L/ K, T7(1))"
@R R[Gal(L/K)] ®r Gal(Kuo/L)g 2]

for arbitrary subextensions L/K of Ko/K (assuming that Gal(K./L)r is flat
over R).
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0.16.1. This approach to height pairings has many advantages over traditional treat-
ments even in the simplest case when R = Z,, and T = T,(F), where E is an elliptic
curve over Q with ordinary reduction at p. For example,

(i) The pairing
h: ITI}(TP(E)) @R [TI}(Tp(E)) — 7y

has values in Z,; there are no denominators involved.

(ii) If E has split multiplicative reduction at p, then his a natural height pairing on
the extended Selmer group (Mazur, Tate and Teitelbaum [M-T-T] and their followers
used an ad-hoc definition).

(iii) Universal norms in I?}(TP(E)) (i.e., the image of ﬁ}ﬁIW(KOO/K, T,(E))) lie in
Ker(3), hence are automatically contained in the kernel of the height pairing.

0.16.2. The definition of £ in terms of the Bockstein map [ also sheds new light on
the formulas of the Birch and Swinnerton-Dyer type proved by Perrin-Riou [PR2,
PR3, PR4, PR5| and Schneider [Sch2, Sch3]. These formulas express (for I' = Z,,)
the leading term of the “arithmetic p-adic L-function” (i.e., of the characteristic power
series of det g ﬁff,IW(KOO/K, T)) as a product of the determinant of the height pairing
h with, essentially, the p-part of the various rational terms appearing in the conjecture
of Birch and Swinnerton-Dyer.

In our approach, such formulas boil down to the additivity of Euler characteristics
in a suitable exact triangle (see 11.7.11). For example, in the classical case R = Z,,
the leading term in question is equal, up to a p-adic unit, to the product of

3 v
~ ~ . (-1)
det(h) []|H}(T),,,.]
i=1
with a certain fudge factor. As in the classical case, all this works under the following
assumptions:

(i) The R-modules ﬁI},IW(Koo/K,X) (X = T,T*(1)) satisty suitable finiteness
properiies.
(ii) h is non-degenerate.

If (i) holds but (ii) fails, then it is necessary to consider also higher order terms
E, in the Bockstein spectral sequence and suitable higher order height pairings that
generalize the “derived heights” of Bertolini and Darmon [B-D1, B-D2].

In [PR3], Perrin-Riou considered the case of anti-cyclotomic Z,-extensions and
proved a suitable A-valued version of the formulas alluded to above. This result is
also covered by our machinery.

Burns and Venjakob [Bu-Ve] combined our approach to the formulas of the Birch
and Swinnerton-Dyer type with the formalism of non-commutative Iwasawa theory.
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0.17. Parity results

The symplectic pairings constructed in Chapter 10 can be used to generalize the
parity results proved in [Ne3] to Hilbert modular forms and abelian varieties of GL(2)-
type over totally real number fields. We refer the reader to Sections 12.1-12.2 for a
detailed description of our results, which include, for example, the following general-
ization of [Ne3, Thm. A] (see Corollary 12.2.10 below):

Theorem. — Let F be a totally real number field, Fy/F an abelian 2-extension, E an
elliptic curve over I which is potentially modular in the sense of 12.11.3(1) below™
and p a prime number such that E has potentially ordinary (= potentially good ordi-
nary or potentially multiplicative) reduction at each prime of F' above p. Assume that
at least one of the following conditions holds:

(1) J(E) ¢ Op.

(2) E is modular over F' and 2t [F : Q].

(3) j(E) € Op, E has good ordinary reduction at each prime of F' above p, the
prime number p is unramified in Fy/Q and p > 3. If E does not have CM, assume,
in addition, that Im(Gp — Aut(E[p])) 2 SLa(F,).

Then: for each finite Galois extension of odd degree Fy/Fy,
rkz E(Fy1) 4 corkz, HI(E/F1)[p™] = ords— L(E/Fy,s) (mod2).

These parity results can be combined with (generalizations of) (0.15.3.1), giving
rise to many situations in which Selmer groups “grow systematically” in the sense of
[M-R3]. See Sect. 12.12 for more details.

0.18. Contents

Let us give a brief description of the contents of each chapter of this work. In
Chapter 1 we collect the necessary background material from homological algebra.
We pay particular attention to signs, as one of our main goals is to construct higher-
dimensional generalizations of the Cassels-Tate pairing, and verify that they are skew-
symmetric. The reader is strongly advised to skip this chapter and return to it only
when necessary. In Chapter 2 we recall the formalism of Grothendieck’s duality the-
ory over (complete) local rings. In Chapter 3 we develop from scratch the formalism
of continuous cohomology for what we call (ind)-admissible R[G]-modules. Chap-
ter 4 deals with finiteness results for continuous cohomology of pro-finite groups. In
Chapter 5 we deduce from the classical duality results for Galois cohomology of finite
Galois modules over local and global fields (due to Tate and Poitou) the corresponding
results for big Galois representations. In Chapter 6 we introduce Selmer complexes in

(") Potential modularity of E seems to be well-known to the experts [Tay5]; a proof is expected to
appear in a forthcoming thesis of a student of R. Taylor.

SOCIETE MATHEMATIQUE DE FRANCE 2006



26 CHAPTER 0. INTRODUCTION

an axiomatic setting and prove a duality theorem for them (as a consequence of the
Poitou-Tate duality in our formalism). In Chapter 7 we investigate a generalization
of unramified cohomology (over local fields) in our set-up. In Chapter 8 we apply
Shapiro’s Lemma to deduce duality results in Iwasawa theory from those over num-
ber fields. Chapter 9 is devoted to applications to classical Iwasawa theory, namely
to p-parts of ideal class groups (resp., of S-ideal class groups). It also includes com-
parison results between the extended Selmer groups I?I}, Greenberg’s (strict) Selmer
groups and classical Selmer groups for abelian varieties. In Chapter 10 we construct
and study various incarnations of generalized Cassels-Tate pairings. We pay partic-
ular attention to the self-dual case, which is important for arithmetic applications.
In Chapter 11 we construct generalized p-adic height pairings and relate them to the
formulas of the Birch and Swinnerton-Dyer type. In Chapter 12, we apply the results
from Chapter 10 to big Galois representations arising from Hida families of Hilbert
modular forms of parallel weight, and also to anticyclotomic Iwasawa theory of C'M
points on Shimura curves. This allows us to deduce a far-reaching generalization of
the parity results from [Ne3].

0.19. Directions for further research

The fact that Selmer complexes ‘see’ trivial zeros of p-adic L-functions and satisfy
the base change properties (Sect. 0.14.3) and (0.15.1.1) indicates that they — and not
the usual Selmer groups — are the correct algebraic counterparts of p-adic L-functions.

It would be of some interest, therefore, to reformulate all aspects of Iwasawa theory
from this perspective.

0.19.1. Non-commutative Iwasawa theory. — It seems very likely that the
results discussed in 0.11-0.13 can be generalized to a fairly large class of non-
commutative p-adic Lie groups I'. One would expect the duality diagram (0.12.1)
to hold over B = R[I'] again with wp = wr ®r R (this time as a complex of
R-bimodules) and .Z 1, Fi- defined as in 8.3.1. Note that both.Z (M) and Fr(M) are
R-bimodules equipped with an involution compatible with the bimodule structure,
and the action of G = Gk ¢ commutes with one of the R-module structures. It
seems that this extra structure can be used to generalize the cohomological theory of
admissible R[G]-modules to the non-commutative setting.

0.19.2. Local Iwasawa theory. — It would be highly desirable to develop a the-
ory of local conditions at primes dividing p that would go beyond Greenberg’s local
conditions. Ome should view Perrin-Riou’s theory [PR6] interpolating the Bloch-
Kato exponential in the local cyclotomic Z,-extension as a first step in this direc-
tion. Another challenge is posed by the families of Galois representations arising from
Coleman’s theory of rigid analytic families of modular forms. It is clear that in this
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generality one would have to work with more general coeflicient rings R. In fact,
there should be a common generalization of 0.19.1 and 0.19.2, perhaps in the context
of “Fréchet-Stein algebras” introduced by Schneider-Teitelbaum [Sch-Te]. One can
also envisage a version of the theory involving directly étale cohomology of towers of
varieties, rather than Galois cohomology.

0.19.3. Euler systems. — The machinery of Euler systems is a powerful tool for
obtaining upper bounds for the size of (dual) Selmer groups. It would seem natural to
incorporate Selmer complexes into this theory, which would allow for the treatment
of trivial zeros.

In practice, elements of an Euler system are obtained from suitable elements of
motivic cohomology to which one applies the p-adic regulator or the p-adic Abel-
Jacobi map. It is a natural question whether one can, in the presence of a trivial zero,
canonically lift an Euler system from the Selmer group to its extended version PNI}
This can be done, for example, for the Euler system of Heegner points in the presence
of an “anticyclotomic trivial zero” ([B-D3, §2.6]).

0.20. Miscellaneous

0.20.1. An embryonic version of Selmer complexes appears in [Fol] (following a
suggestion of Deligne). The first consistent use of derived categories in Iwasawa
theory is due to Kato [Kal]; his approach has been incorporated into the general
formalism of Equivariant Tamagawa Number Conjecture [Bu-F11, Bu-F12]. Recent
articles of Burns-Greither [Bu-Gr], Burns-Venjakob [Bu-Ve], Fukaya-Kato [Fu-Ka]
and Mazur-Rubin [M-R1, M-R2, M-R3] are also closely related to our framework.

0.20.2. To our great embarrassment, it has proved impossible to keep the length
of this work under control, even though much of what we do is just an exercise in
linear algebra. This is a consequence of our early decision not to use any homotopical
machinery (such as infinite hierarchies of higher-order homotopies) in our treatment
of Selmer complexes, only brute force.

0.20.3. The idea of a ‘Selmer complex’ occurred to the author while he was staying at
Institut Henri Poincaré in Paris in spring 1997. It was further developed during stays
at the Isaac Newton Institute in Cambridge in spring 1998 and (again) at Institut
Henri Poincaré in spring 2000. During the visits at IHP the author was partially
supported by a grant from EPSRC and by the EU research network “Arithmetic
Algebraic Geometry”. Main results of this theory were presented in a series of lectures
at University of Tokyo in spring 2001; this visit was supported by a fellowship from
JSPS. The first version of this work was completed during the author’s visit at Institut
de Mathématiques de Jussieu in Paris in October 2001. The author is grateful to all
these institutions for their support. He would also like to thank D. Blasius, D. Burns,
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0. Gabber, R. Greenberg, H. Hida, U. Jannsen, B. Mazur, K. Rubin, P. Schneider,
A.J. Scholl, C. Skinner, R. Taylor and A. Wiles for helpful discussions and inspiring
questions, and to C. Cornut, D. Mauger, J. Oesterlé, L. Orton, J. Pottharst and the
referee for pointing out several inaccuracies in the text.

0.20.4. To sum up, this work gives a unified treatment of much of (commutative)
Iwasawa theory® organized around a small number of simple, but sufficiently gen-
eral principles. We hope that our attempt to Grothendieckify the subject will help
integrate it into a wider landscape of arithmetic geometry.

Selmer groups are dead.
Long live Selmer complexes!

(8)We consider only the algebraic side of the subject. The relation of Selmer complexes to p-adic L-
functions remains to be explored, but it is natural to expect that det RI'f 1, (Koo /K, T'), whenever
defined, should be closely related to a suitable analytic p-adic L-function.
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CHAPTER 1

HOMOLOGICAL ALGEBRA: PRODUCTS AND SIGNS

This chapter should be skipped at first reading. Sect. 1.1 and 1.2 collect basic
conventions involving signs, tensor products and Hom’s in derived categories. In
Sect. 1.3 we define and study abstract pairings between cones. Such pairings will
be used in Chapter 6 as a fundamental tool for developing duality theory for Selmer
complexes.

1.1. Standard notation and conventions

We follow the sign conventions of [B-B-M] (with one important correction;
see 1.2.8 below). We fix an abelian category C and work with the corresponding
category of complexes C(C).

1.1.1. Translations (= shifts). — For n € Z, the translation by n of a complex
X (resp., of a morphism of complexes f : X — Y) is given by
X[n]'i, — X—n—!—i7 3([711 — (—1)”(11;_", f[n]7 — fz+n
1.1.2. Cones. — The cone of a morphism of complexes f : X — Y is equal to
Cone(f) =Y @ X[1]
with differential
deone( ) = (dg, e
7
one 0 _dX
There is an exact sequence of complexes

0— YLCone(f)LX[l] — 0,

) Y@ Xt il g xit2,

in which j and p are the canonical inclusion and projection, respectively; the corre-
sponding boundary map

0:H(X[1]) = HTY(X) — H*F(Y)
is induced by fi*1.
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1.1.3. Exact (= distinguished) triangles. — These are isomorphic (in the de-
rived category D(C)) to triangles of the form

XLy LCone(f)—Bx 1],
or, equivalently, to ‘
Cone(f)[—1]pﬁ>]Xi>Yi>Cone(f).
The translation of an exact triangle

xLy Lz xn

is equal to ,

x L8y 2z 2y o,
1.1.4. Exact sequences. — For every exact sequence of complexes
(1.1.4.1) 0o—xLytz o,

the morphism of complexes

q: Cone(f) — Z
equal to g (resp., to zero) on Y (resp., on X[1]) is a quasi-isomorphism (Qis). The
corresponding map in the derived category

h: Z<Cone(f)—2X [1]
defines an exact triangle }
xLy Lz x
such that the map H'(h) : H'(Z) — H*(X[1]) = H'T1(X) is equal to the coboundary
map arising from the original exact sequence (1.1.4.1).
Assume that, for each i € Z, the epimorphism in C
gi: Y — 7t
admits a section
si: 28— Y  gis; =id.
Then there is a unique collection of morphisms in C
Bi: 20 — X

characterized by

vsi — sidy = fig1Pi.
As

di B = —Bipady,
the collection of maps # = (3;) is a morphism of complexes

B:7 — X[1].

The morphism of complexes

r=(s,—0): Z — Cone(f)
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is a section of g, which implies that the morphism of complexes
B=—-por:Z— X[1]
represents the ‘boundary’ map h in the derived category D(C).

1.1.5. Homotopies. — A homotopy a between morphisms of complexes f,g: X —
Y (i.e., a collection of maps a = (a* : X**1 — Y*) such that da + ad = g — f) will be
denoted by a: f~ g. Ifu: X' — X (resp.,v:Y — Y’) is a morphism of complexes,
then a xu = (a* o u'*! : (X')*! — Y?) (resp., vxa = (vioa® : X! — (Y')Y)) is
a homotopy a x u : fu ~ gu (resp., vxa : vf ~ vg). A second order homotopy «
between homotopies a,b : f ~ g (i.e., a collection of maps a = (af : X2 — Y?)
such that ad — da = b — a) will be denoted by « : a ~ b.
Assume that we are given complexes X*,Y*, Z* and collections of maps h = (h' :
XHL S yH) b = (W) : Y — Z%). Then
dh+hd: X* —Y* dh+hd:Y" — Z°
are morphisms of complexes,
(dh/ + h'd) x h, h' % (dh + hd) : 0 —~ (dh' + h'd) o (dh + hd)
are homotopies and
H="n0h:(dh'+hd)*xh — b % (dh + hd)

is a 2-homotopy between these homotopies.

1.1.6. Functoriality of cones ([Ve2, §3.1]). — Let tr1(C) be the category with
objects f: X — Y (morphisms of complexes in C) and morphisms (g, h, a)

.’71 a lh
X’ —,féﬂ»
s
where g : X — X', h : Y — Y’ are morphisms of complexes and a : f'g ~ hf is a
homotopy. The composition of
(g,h,a)

(XL)Y) s (X/f—/>Y/)(g/’h/’a/)(X”f—//>Y”)
is defined as (¢'g, h'h,a’ xg+h'*a), where h'xa : h' f'g ~ W'hf,a'xg: f"g'g ~ h'f'g.
A morphism ,
(9.ha) s (X5Y) — (X' Ly)
in tr1(C) defines a morphism of complexes
Cone(g, h,a) : Cone(f) — Cone(f")

given by

. i l . . . .
Cone(g, h,a)" = h C ) vie X L yrig XL
0 g7.+1
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In other words, “Cone” is a functor

Cone : tr1(C) — C(C).

1.1.7. Homotopies in tr1(C). — By definition, a homotopy
(bt ) : (g, h,a) — (¢',h,a")

between two morphisms

(g,h,a),(g',h',a): (XLY) = (X’LY’)
in tr1(C) consists of homotopies

b:g—~g, bV :h—~h
and a second order homotopy
a: fxb+a —b*f+a.

Such a homotopy in try(C) induces a homotopy

bV o« P
0 —p)° Cone(g, h,a) —~ Cone(g’,h',a’).

1.1.8. Assume that we are given the following cubic diagram of complexes:

A . u

o By
R
3
Ay
a
N
By
In other words, Aq,..., Bj are complexes in C; u, ..., #2 are morphisms of complexes
and h:vo fi ~ foou, ..., ky: foay~ (B0 fo are homotopies.

Assume, in addition, that the boundary of the cube is trivialized by a 2-homotopy
H=(H': A" = (B})Y), i.e.,

H:v xki+mxfi+Baxh—~koxu+h xay+ f5*L.
Then the triple (ki, ko, H) defines a homotopy

(k17k27H) : (f{afé?h/) © (alva%g) - (f{alvféa%hl*al +fé*£>
—_ (ﬁlfl)ﬁ?f?vm*fl +62*h) = (/817/82,m) © (f17f27h)7
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i.e., the diagram

2 f2,t
Cone(u) Y fak) Cone(v)
(a1,002,€) l(ﬁm@z,m)
/’ /)h,
Cone(u') U fak ) Cone(v')

is commutative up to homotopy.

1.1.9. A covariant additive functor F' : C — C’ induces a functor on complexes
F:C(C)— C(C') given by dj’,,(x) = F(d’ ). The identity morphisms define (for all
n € Z) canonical isomorphisms of complexes

F(X[n]) = F(X)[n].
For a contravariant additive functor F : C°P — C’ we define F': C'(C)°? — C(C’) by

ooy = (1) R,

1.1.10. If G : (C')°? — C" is another contravariant additive functor, then
darxy) = —G(F(dx)).

We define an isomorphism of complexes
G(F(X)) — (G o F)(X)

to be equal to (—1)¢ times the identity morphism in degree i.

1.1.11. Truncations. — If X is a complex, we use the usual notation for the
truncations

o X =[+ X"? — X"l — X' — 0 — 0 ]
T X =] X2 — x=1 —  Ker(dy) — 0 — 0 -]
oz X=[ 0 — 0 — Xt - X X
i X = 0 — 0 — Coker(diy!) — X' — X2 ..]

1.2. Tensor products and Hom

In the rest of Chapter 1, C = (gMod) will be the category of modules over a
commutative ring R. If X* is a complex and z € X*, we denote the degree of x
by T = 1.
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1.2.1. For complexes X = X*Y = Y* we define the complexes Hom¥y(X,Y) and
X ®prY by

Hom%z(X,Y)= H Hompz (X', V™)
i€Z
(X @rY)"= DX @rY"),
i€Z
with differentials
df=do f+(-1)7"'fod
dz®y)=de@y+ (—1)%r @ dy.
If Y = Y is concentrated in degree zero, then Hom%(X,Y) = F(X) for F(-) =
Hompg(—, Y?) (with the sign conventions of 1.1.9).

If Y is a bounded (resp., bounded below) complex of injective R-modules and X
is any (resp., bounded above) complex of R-modules, then Hom%(X,Y") represents
RHomp(X,Y).

An element f € Hom%(X,Y) satisfies
(1.2.1.1) df =0 <= fis a morphism of complexes f: X — Y

f=dg < gis ahomotopy g:0 — f.
There is also a “naive” version Hom}é“aive(X ,Y) of Hom%(X,Y), in which the differ-
ential of f: X* — Y7 is equal to
dnaivcf _ dof + (_l)jfod

1.2.2. Morphisms of complexes v : X — X'/, v: Y — Y’ induce morphisms
Hom"*(u,v) : Homp(X',Y) — Hom%j(X,Y')
f — vofou

and
uv: X®rY — X' QprY’
r@y  — u(z)@u(y)

1.2.3. Tensor products of complexes admit various symmetries, such as

Associativity isomorphism:

(X®rY)®rZ — XQr(Y®rZ)
Eey)ez — 0Y©2)

Transposition isomorphism:

812:X®RY b Y®RX
TRy — (D)W y®z
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Another transposition isomorphism:

~

SQgi(X@RA)@R(Y®RB) B (X®RY)®R(A®RB)

(z@a)®(y®b) — (-1)7(rey)®(@eb)
1.2.4. Lemma. — The following diagram is commutative:
(X®rA) ®r(Y®rB) 2 (X®rY)®r(A®rB)
$12 8120812

(VorB)er(Xerd) =5 (YorX)or (Bond)
Proof. — (=)D (1) = (—1)T(—1)7 (1) O

1.2.5. With the sign conventions of 1.2.1, the canonical isomorphism
Hom$ (X, Y)[n] — Hom%(X,Y[n])

does not involve any signs, i.e., it is given in all degrees by the identity maps.

1.2.6. The adjunction morphism on the level of complexes
adj: Homy(X ®r Y, Z) — Homy(X,Homy (Y, Z))
f — (2 (e flaey)
induces a morphism of R-modules
Home (,moa) (X ®r Y, Z) — Home(,mod) (X, Homy (Y, 7)),

which preserves homotopy classes (by (1.2.1.1)). Both of these maps are monomor-
phisms; they are isomorphisms, provided X and Y are bounded above and Z is
bounded below.

1.2.7. The evaluation maps

evi : Homz(X,Y)®r X — Y

fo — f(z)
and
evy : X Qg Homyk(X,)Y) — Y
2@ f — ()7 f(x)
are morphisms of complexes making the following diagram commutative:
evy

Homs(X,Y) 9 X <% vV
(1.2.7.1) 12 |

X @p Hom%(X,Y) <2 Y
We have adj(evy) = id under the adjunction morphism

adj : Home(,moa)(Homy(X,Y) ®r X,Y)
I HomC(RMod) (HOIIlIQ(X, Y)7 Hom}%(X, Y))
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More generally, there are evaluation morphisms

evi : Homy(X,Y) @ g Hom% (W, X) — Hom%i(W,Y)

9®f — gof
evg : Homyi (W, X) @ gp Homyk(X,Y) — Homy(W,Y)
fog — (=1)fgof

satisfying evy = evy o s15. Another generalization of evy is given by the morphism
Hom%(X,Y)®r (X ®rZ) — Y QprZ
fe@ez) — fl) @z,
which corresponds to
Hom¥%(Hom%(X,Y), Homyi(X ®r Z,Y ®r Z))
fr—f®idz

under the adjunction map.

1.2.8. The biduality morphism
ey : X — Hom%(Hom%(X,Y),Y)
is given on z € X by
ik, k%
€= ((_l)l T )kTGZ’
where
Xt — Hompg(Homp(X? Yitk) yith)
v o (a1 f — f(a)
is the usual biduality map. This corrects a sign error in [B-B-M, §0.3.4.2] — also
discovered by B. Conrad [Con] — where the authors give an erroneous sign (—1)°
instead of (—1)*; that would not make £y a morphism of complexes.
We have adj(evy) = ey under the adjunction morphism

adj : Home(unod) (X ©p Homk(X,Y),Y)
— Home(,mod) (X, Homy (Hom% (X, Y),Y)).

The statements of Lemmas 1.2.9-1.2.13, 1.2.16 below follow immediately from the
definitions; we leave the details to the reader (for the homotopy versions of 1.2.11-
1.2.13 it is sufficient to recall that adj preserves homotopy classes).

1.2.9. Lemma. — The following diagram (and a symmetric diagram, in which the roles

of evy and evy are interchanged) is commutative:

X @ Hom,(X,Y) 2y
ey ®id H
Hom$,(Hom%(X,Y),Y) ®g Homy(X,Y) =% Y.
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1.2.10. Lemma. — Assume we are given a morphism of complexes f @ X —
Hom%(X,Y); denote the composite morphism of complezes

Hom®(

X 2, Hom?, (Hom® (X, V), V)2 S gome (X, v)

by g. Then the following diagram is commutative:

X®rX X8I, X @k Homp(X,Y)
lf@idy l"v‘@
Hom%((X,Y)®r X BAEN Y.
1.2.11. Lemma. If the following diagram of morphisms of complexes is commutative
(resp., commutative up to homotopy)
XopY' -1, Xopx
l f@id lg
YorY b z,
80 8 i
X 9 Homs,(x7, 2)
lf llionx'(f’,id)
Y U Homs (Y, 2).
1.2.12. Lemma. — If the following diagram of morphisms of complexes is commutative

(resp., commutative up to homotopy)

XorY - Z

lf@g lh

X/ ®nr YI _u_) Z/,

50 18
0% adj(u) HOm;g(Ya Z) Hom—(ld’h), Hom}.—g(Y, Z/)
lf di! Hom*(g,id !
¥/ adj(u’) HOm;Q(Y,a Z/) M Hom}g(Y, Z/)'

1.2.13. Lemma. — Let A, B, B', U, U’, C be complexes of R-modules and
AerB-LU, AeprB-LU, B orC-'-B, U erC-5U
morphisms of complexes. If the diagram

M4 ®r B

(A®prB'Y®r C ——— A®p (B'®r O)
f'®id f

U @rC = U
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is commutative (resp., commutative up to homotopy), so is

adj(f)

A Hom%(B,U)
ladj(f )

Hom% (B, U") Hom?, (b,id)

|

Hom%(B' ®r C,U' @ C)

Hom (id,u)

HOHI};{(B/ ®r C, U)

1.2.14. Lemma. — If

XorY = Z

18120(f®g) lh

YorX 5 Z

is a commutative diagram of morphisms of complexes, so are

Y 2es Homs, (X, 2)
€z Hom® (f,id)
Hom% (Hom% (Y, Z), Z) Hom(2di(3).%) Hom% (X, Z).

and
X AR, Hom%(Y, Z)
lszo.f lHom'(id,h)
Hom3, (Hom?, (X, Z), ) Som Cditosid) g e (v, 2).

Proof. — Let y € Y7, z € X*. Then Hom"*(f,id) o adj(11) o g(y) sends z to u(g(y) ®
f(x)) = (=1)¥h(A(x @y)). In the notation of 1.2.8, the only component of €z (y) =
((—1)7*y;*)kez contributing to Hom*®(adj(\), k) o e2(y)(x) is (—1)7%y;*; its image in
Hom%(X, Z) also sends x to (—1)Yh(A(z ® y)). A similar argument works for the
second diagram: Hom*(id, k) o adj(A)(x) sends y to h(A(z ® y)) = (=1)Yu(g(y) @
f(z)), while the only component of ez o f(z) = ((—1)* f(2);*)rez contributing to
Hom*(adj(u) o g,id) o ez(f(x)) is (—=1)¥ f(x ')3*, the image of which in Hom%k (Y, Z)
sends y to (~1)9u(g(y) © f(z)) 0
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1.2.15. For each n € Z, the following formulas define isomorphisms of complexes:
Sp: X*[n]@rY* " (X*®rY*)[n]
TRQY— Ty
sp X @R (Y[n]) — (X" @rY")[n]
TRy+— ()" ®y
t, : Hom%(X*,Y*) — Hom%(X*[n],Y*[n])
fr— (=1 f.

1.2.16. Lemma. — Given a morphism of complexes u : A* g B* — C* and n € Z,
put

v=uln]o s, : A" @p (B*[]) (4" ©r BY)n]-"HC" [n).
Then adj(v) is equal to the composite map

A'afj(—quom}?(B‘, C')LHom}{(B' [n],C*[n]).

1.2.17. Tensor product of homotopies. — Assume that
fi: X —X', ¢g:Y—Y (1=1,2)
are morphisms of complexes and
w:fi = fo, vigr = g2
homotopies between them. Then the formulas
(u®v)i(z®y) = ulx) ®g1(y) + (~1)7 fo(a) @ v(y)
(u®v)z(z @y) = ul@) @ ga2(y) + (=17 filz) @ v(y)
define two homotopies
(u@v)j: fikg — fa®ge  (j=1,2)
between the morphisms
[i®g : X®rY — X' @pY".
The formula
a(z ®@y) = (~1)Tu(z) @ v(y)

defines a second order homotopy

a:(u®v); — (U v)s.
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1.2.18. If X,Y are complexes of R-modules, then the maps
rRyr— (-1 20y, yRr——yeux
define isomorphisms of complexes
Xor(Y[1]) = (XorY)[1], (Y[]))orX = (Y ®r X)[1],

which make the following diagram commutative:

~

Xop (Y1) — (X @T Y)[1]
s12 s12(1]

Y)erX - (YorX)1)

1.2.19. Lemma. — Assume that the following commutative diagram of morphisms of
complexes has exact rows and columns:

0 0

0 — A" A A TA 4

11 ./
3 ?

0

|

A

w KoL
0o — B & p 25 B — 0

3" . lj’ . la’

0o — ¢ & o 5 ¢

|

0

|

0 0

— 0

Then the diagram

HITN(C) L5 Heer) LS He(e) ZS HI(C)
l—a la“ la' o
Hq(A/) N H‘I(A) ﬁ, Hq+1(A//) PA, H‘H'l(A’) oa, Hq'H(A)

is also commutative, and if [¢"] € HI(C"), V)] € HI(B') are cohomology classes
salisfying pc|c’] = j'|V'], then there is a unique coset [a] + Im(0) € HI(A) + Im(0)
such that ila] = op[b']. This coset satisfies

dala) + "] € Im(940) = Im(9"dc).
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Above, 0, 0, 0", 04 and Oc denote coboundary maps associated to the original
diagram.

Proof. — This is a well-known fact, which can be verified by an explicit calculation.
O

1.3. Products

In this section we construct products in a slightly more general context than consi-
dered by Niziot ([Ni, Prop. 3.1]). The main difference is that we allow certain diagrams
to commute only up to homotopy. In what follows, R is a commutative ring and all
complexes are complexes of R-modules.

1.3.1. Assume we are given the following data:
1.3.1.1. Complexes A;, B;,C; (j =1,2,3).
1.5.1.2. Morphisms of complexes
A lne B (j=1.2.3).
1.5.1.8. Morphisms of complexes
Ua : A1 ®r Ay — As
Up :B; ®g By — Bg
Uc :Cy ®r Cs — Cs
1.8.1.4. A pair h = (hy, hy) of homotopies
hy:Uco(fi® fa) == faoUa
hg : Uc o(g1 ® g2) — gz o Up
We define new complexes F; by
E; = Cone(A]- @ Bjﬂcj)[—u, (j=1,2,3)
i.e.,
_an , -1
El=Ate B} e C} ",
d(aj, bj, Cj) = (daj,dbj, —fj((L]‘) + gj(bj) — d(ij).
An clement e; = (a;,bj,c;) has degree 2; = @; = b; = 1 +¢;.
1.3.2. Proposition. — Given the data 1.3.1.1-1.53.1.4, then
(i) For every r € R the formula

(a1,b1,¢1) Unp (a2, b2, ¢2) = (a1 Ua az, by Up ba, ey Ue (7 f2(az) + (1 — 1) g2(b2))
+ (=)™ (1 =) filar) +rgi(b)) Uc 2 = (hy(ar @ az) — hy (b @ ba)))
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defines a morphism of complezes
Urp : By @r Eo — Es.
(ii) For ri,re € R, the formula
k((ay,b1,c1) @ (az,ba, ca)) = (0,0, (=1)*(r; —ra) c1 Ue ca)

defines a homotopy k : Uy, j, ~> Uy, p.
(iif) If " = (W', hy) is another pair of homotopies as in 1.3.1.4, then

Uph — Upp t (a1, b1, ¢1) ® (az, ba, c2) — (0,0, (hy — h/f)((lq ®az) — (hg — h;)(bl ®b3)).
If o hy~~ h,’f, B:hg~ hfq is a pair of second order homotopies, then the formula
k((a1,b1,c1) @ (az,b2,c2)) = (0,0, a(a; ® az) — B(b1 ® b))

defines a homotopy k : U, , ~ Uy pr.

Proof. — Explicit calculation (cf. [Ni, Prop. 3.1]). O
1.3.3. Functoriality of products. — Assume we are given another piece of data
as in 1.3.1.1-1.3.1.4, namely morphisms of complexes
4,805,
products U, (for * = A, B,C') and homotopies h = (7Lf~., Ea), yielding complexes EJ—.
A morphism between the data
(Aj, B;, Cy, [, 95, Us, h) — (A5, By, Cy, [, G5, U, )

consists of the following:
1.3.3.1. Morphisms of complexes

oj Ay — ﬁj

B;:Bj— B;  (j=12.3)

v :Cp — G
1.53.3.2. Homotopies

ujfjooy —>yi0f;
. (j=12,3)
Uy :gjoﬁj — Y5 © gj
1.3.3.3. Homotopies
ka ZOAO(O{l ®0[2) —~ g3 0 Uy
ks :Up o (81 ® B2) —~ B3 0Up

kwigco(%@W)“ﬂ%OUc
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1.3.3.4. A second order homotopy K; between 0 and the composition of the six
homotopies associated to the faces of the following cubic diagram:

Ua

Al ® A A

@z I Qg
3
B ke BN
Ua /

[1®fa ﬁl @ZZ

fiof J
C; ®Cy / -

(u1 ®'u,%_
Y1872 /—

G ®62

Uc

In other words, K is a collection of maps
Kf = (K} : (Al QR Az)i — (53)i_2)
satisfying
dK; — de = —k,y * (fl ®f2) —’y;;*h,f +uz*xUg
+ fyx ko + Ef* (a1 ® ag) — Ug * (ug @ ug)y,

i.e., trivializing the boundary of the cube (the homotopy (u1 ® ug); was defined
in 1.2.17).

1.3.8.5. A second order homotopy
Ky = (K!: (B ®g B2)" — (C3)"7?)
satisfying an analogous condition, with (A, f, a, u) being replaced by (B, g, 83, v):
dKg — Kgd = —ky % (g1 ® g2) —y3 % hg +v3 xUp
+ gz x kg + hg * (/1 ® B2) — Uc * (v1 ® va)1,

Up

B ® By Bs

W
g3

91092 B, ® By

;1®;2 ‘
C1 @ Cy :

(v1®v%_
Y1872 ‘//_—

51 ®52

Ue
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1.3.4. Proposition
(i) Given the data 1.3.3.1-1.3.3.2, then the formula
pjlaj,bj,c;) = (aj(ay), Bi(b;), 75 (ci) + uj(az) — v;(b;))
defines a morphism of complexes
vi B —E;  (j=1,2,3)
(ii) Given the data 1.8.3.1-1.3.3.5 and r € R, the formula

H((ay,b1,c1) @ (az,ba,c2)) =
(kal(ar ® az), ka(by ® by), —ky (c1 @ (rfalaz) + (1 — 7)ga(b2))
+ (=) (1 =) filar) +rg1(b1)) @ (32)
+ (=)™ (c1)Uc (ruz(ag) + (1 — r)va(ba))
- (=1)™ ((1 —r)uy(ay) + m/l(bl))gc (72((32) + uz(az) — /I)Q(bg))
— Kf(a1 ® a2) + K4(b1 ® ba))
defines a homotopy
H: O,,j; o (p1 ® ) — 30Uy p,

i.e., the diagram

rh

By ®r Es N E3

lw@m l@os
O -

E\@rEy, —% Ej

is commutative up to homotopy.

Proof. — The first part is a special case of 1.1.6, while (ii) can be proved by a tedious,
but routine calculation. O

1.3.5. Transpositions. — Assume that, in addition to the data 1.3.1.1-1.3.1.4, we
are given the following objects:
1.3.5.1. Morphisms of complexes

Ta:Aj — A

Tp:B; — B;  (j=1,2,3)

1o :Cj — G

1.3.5.2. Morphisms of complexes
Uyt Ay ®@p Ay — Ag
Up : By ®g By — Bj
U/C Co@pr C1 — O
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1.3.5.3. A pair h' = (W}, hy) of homotopies
i Upo(fa® f1) = faolU)y
hy :Ug o (92 ® g1) — g3 o Up
1.8.5.4. Homotopies
U;:fioTy — Toof;
AN T R
ViigjoTp — Tc oy,

1.3.5.5. Homotopies
to: Uyo0s120(Ta®@Ta) — TaoUgy
tg: U/B 08120(TB®TB) —~ TgoUpg
ty: Ugosigo(Te ® Te) — Te o Ug

1.8.5.6. A second order homotopy H trivializing the boundary of the following cube:

A] & A2 Ua A:S
W\ ; Ta
I3 to
U/, 08
f1®f2 AL ® Ay Az /> As

fr@f2 hy [

C1 ®Cy Yo />C3 f3
(Ur®@U2)1 )1,}*3,2
C1 ®Cy Cs,

U'Cos]z
i.e., satisfying
dHf —Hfd: —t»y*(fl ®f2)—T0*}Lf+U3*UA + fyxtq

+ h/f * (812 o (TA ® TA)) - (U/C o 812) * (Ul ® Ug)l.

1.8.5.7. A second order homotopy H, trivializing the boundary of an analogous cube
in which (A, «, f) are replaced by (B, 3, g).

With these data, the formula
(ag,b2,¢2) Uy (a1, b1, ¢1) = (a2 Uy a1, b2 Ul by, c2 Up (rfi(ar) + (1= 7)g1(br))
+(=1)%((1 = ) faa2) +rga(b2)) Ug e1 — (Rp(az ® a1) — hy (b2 @ by)))
(for a fixed r € R) defines a morphism of complexes
U;xh/ : By ®pr By — Es.

The complexes
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morphisms of complexes

fi= 1595 = 95,05 = Ta, 5 = T, 7; = Tc,
uj = Uj,vj = Vj,Us = Uy 0512,Up = U 0512,Uc = Ug o 512,
homotopies
ka = t(,, kg = tg,k,y = t'y,hf = h/f *Slg,hg = h; * 812
and second order homotopies
Ky=Hy, Ky=H,

satisfy the conditions 1.3.3.1-1.3.3.5. Applying Proposition 1.3.4 and observing that
the following diagram of morphisms of complexes

“h

0,
Ey,®rE, ——— Ej

|2 ||
u

E> ®r Ey

is commutative, we obtain the following statement.
1.3.6. Proposition
(i) Given the data 1.3.5.1 and 1.5.5.4, then the formula
Tj(aj,bj,¢j) = (Talay), Tp(b;), To(cj) + Uj(a;) = Vj(b;))
defines a morphism of complexes
7, E; — Ej.

(ii) Given the data 1.3.5.1-1.8.5.7 and r € R, the diagram

Ur

Fy®rFEFy ——— FEj
18120(7—1 ®7T2) J,Tg
U’ - h!
Ey@rEy —5 Ej

is commutative up to homotopy.

1.3.7. Corollary. — Under the assumptions of Proposition 1.5.6(ii), the following

diagrams are commutative up to homotopy:
a'dj(ullfr,h’)Q,T2 .
Es —————————— Hom%y(E1, E3)
J/EE:; lHom'(Tl,id)

. . ” 7/Z—'
Hom 3, (Hom' (s, Es), By) o™ U T) g e (B, Ey)
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adj(Up p)

E] —_—> HOHI;?(EQ, E3)
1653 o7y lHonl'(id,E}
Hom® (adj(U] _,. ,/)07T2,id)
Hom§, (Hom% (E1, E3), E3) : Hom} (Es, E3).

Proof. — Apply a homotopy version of Lemma 1.2.14 to the diagram in Proposi-
tion 1.3.6 (ii). ‘ O

1.3.8. Bockstein maps. — Assume that, in addition to the data 1.3.1-1.3.4, we
are given an R-module I'p and the following objects:
1.8.8.1. Morphisms of complexes
Bjz:Zj — Zjl]@rTr  (j=1,2; Z=A,B,0)

1.3.8.2. Homotopies

uj fillloBja — Bjcofi
(j=1.2).
v :9;5 (1] o Bjp = Bjcoy;

Above, the map
filll@id: Aj[1]@rTr — Cj[1] @r Tk
is abbreviated as f; [1] (and similarly for g, [1]).
1.8.8.3. Homotopies
hz :Uz[1]o(ld ® B2, z) — Uz [1] o (f1,z ®id) (Z=A,B,C).
Again, we write Uz [1] instead of

Uz [1] ®id : (Z1 XR (Z2 [1])) QrIT'r — Z3 [1] ®rR.

1.3.8.4. A second order homotopy H trivializing the boundary of the following cubic
diagram:

B, a®id
A1 ® A, - Al @ A ®Tg
id® B,
G fill]®fz Ll
Uall) "
fr@fa A1®(A2[1])®FR 4 A;}[I]@FR
fre(f2(1]) %‘ >
fr.c®id
O @0y —= CljeCale 1]
-
f1®uy
N
id®p2,¢ "/_— hsll] /
Cl®(02[1])®FR C3[1]®FR,
Uc(1]

SOCIETE MATHEMATIQUE DE FRANCE 2006



48 CHAPTER 1. HOMOLOGICAL ALGEBRA: PRODUCTS AND SIGNS

i.e., such that

dHf — Hyd = Uc[l] *(ur ® fo) + f3[1] *ha+ fo[l] * (id ® ﬁ27A)
—Uc[1] * (fi @ uz) —he * (fi ® f2) — hy[1] * (1,4 @ 1d).

Above, we implicitly use the canonical isomorphisms from 1.2.18.

1.8.8.5. A second order homotopy H, trivializing the boundary of an analogous cube
in which (A, f,u) are replaced by (B, g,v).

1.3.9. Proposition
(i) Given the data 1.3.8.1-1.3.8.2, the formula

Bjelaz, by, c;) = (Bj.ala;), 85,8(b;). —Bj.c(c;) — ujlaz) +v;(b;))
defines a morphism of complexes
Bjg:Ey — Ej[llor s (j=1,2).

(ii) Given the data 1.3.8.1-1.3.8.5 and r € R, the diagram

Br,1®id
By ®p B 5 Bl @r B2 ®rTh
lid®ﬂw.2 lUr,h[I]
v X - Ui (1] .
E1 ®p (E2[l]) 9g T — E3[1]®rT'r
is commutative up to homotopy.
Proof. — The proof is analogous to that of Proposition 1.3.4. In (ii), we again use
the canonical isomorphisms 1.2.18. O

1.3.10. Proposition. — Given the data 1.5.5.1-1.8.5.7, 1.3.8.1-1.3.8.5 and r € R, the
diagram
3.1 ®id Ul
By or B A Bl @p By o Tr 228 Byl g s E3[1)®r R
S12 ||

3 id T T Uil
By or B2 By op By 0r Tr 22T By} 0n By 90 Tr =2 E3[1] @5 Tr

T3(1]
=

is commutative up to homotopy (above, T; are as in Proposition 1.3.6(i)).

Proof. — Combine Proposition 1.3.6(ii) and 1.3.9(ii) (using the canonical isomor-
phisms 1.2.18). O

ASTERISQUE 310



1.3. PRODUCTS 49

1.3.11. The morphisms f3; x arise naturally in the following context (for simplicity,
we suppress the index j from the notation). Assume that

0 — A7 oA I 4
e

o — ¢ % o % 0 — 0
T"
B

— 0

e

0 — B” 5 p 25 — 0

is a commutative diagram of morphisms of complexes with exact rows. Assume, in
addition, that in each degree i € Z the epimorphism

ol (X)) — X! (X =A4,B,C)
admits a section
st X — (XY (X =A4,B,0C).
Writing
E = Cone(A ® BQC) [—1]
(and similarly for E’, E”), then the maps
P = (Pas Pl pc '), ok = (0, 05,067)
define an exact sequence of complexes
0— E"P5E5E — 0
and
sip = (s, 55,50
is a section of o, (i € Z).
The recipe from 1.1.4 yields morphisms of complexes

Bx : X — X"[1] (X=A,B,C,E)
characterized by
(1.3.11.1) px[l]ofBx =dosx —sxod (X =A4,B,C,E)

and such that
XXX IX Bx X”[l]

is an exact triangle in the derived category. In order to express Og in terms of G4, G5
and O¢, we compute

d(sg(a,b,c)) — sg(d(a,b,c))
=d(sa(a),sg(b),sc(c)) — (salda), sp(db), sc(—dc — f(a) + g(b)))
= ((dsa—sad)(a), (dsp—spd)(b), —(dsc—scd)(c)—(f sa—sc f)(a)+(g s—scg)(D)).
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hence
(1.3.11.2) Be(a,b,c) = (Bala), B (b), —Bc(c) — ula) + v(b)),
where
A0 B
are morphisms of complexes characterized by
pcou=flosa—scof
pcov=g osg—scog.
As
—dero(flosa—scof)+ (f osa—scof)oda
=(dosc —scod)of—fo(dosa—saod)
(and similarly for (B,g) instead of (A, f)), the morphisms v and v are, in fact,
homotopies
w: ') Ba — oo f
v:g"[1]o B —~ Bcog.
In the special case when X"’ = X @gr T'r (X = A, B, C) we thus obtain the
data 1.3.8.1-1.3.8.2, as well as the formula for g from Proposition 1.3.9(i).
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CHAPTER 2

LOCAL DUALITY

In this chapter we recall the formalism of Grothendieck’s duality for R-modules
([LC, RDJ). At first reading there is no need to continue beyond 2.10.4 (the sub-
sequent sections are used in the construction of generalized Cassels-Tate pairings
in Chapter 10).

2.1. Notation

Throughout Chapters 2-11 (with the exception of Sect. 2.10), R will be a complete
Noetherian local ring with maximal ideal m and residue field k = R/m. The dimension
of R will be denoted by d (it is finite, as R is Noetherian and local). The total ring of
fractions of R will be denoted by Frac(R).

Denote by (rMod) the category of all R-modules, by (gMod)s (resp., (rRMod)coft)
the category of R-modules of finite (resp., co-finite) type (i.e., of modules satisfying the
ascending (resp., descending) condition for submodules) and (zkMod)g = (rMod)p N
(rRMod) copt the category of R-modules of finite length.

2.2. Dualizing functors

Let I be an R-module. The functor
D(—) =Hompg(—,I) : (kMod)°® — (gMod)
is dualizing if the canonical homomorphism
(2.2.1) e: M — D(D(M))

is an isomorphism for every M € (gMod)g.
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2.3. Matlis duality
2.3.1. Matlis Duality ([LC, Prop. 4.10]; [Br-He, Thm. 3.2.13])
(i) D is dualizing iff I is an injective hull of k (defined, e.g., in [Br-He, Def. 3.2.3]).
(ii) Fix such I (it is unique up to a non-unique isomorphism); the functor D is
then exact and induces equivalences of categories
(RN[Od)(H)p — (Rl\/IOd)ﬂ
(RMod)?f — (Rl\/[()d)wﬂ.

The map (2.2.1) is an isomorphism for every M in (gMod)y or (rRMod)cop.

2.3.2. From now on, I will be as in 2.3.1(ii). The functor D, being exact, can be
derived trivially. For every complex M* of R-modules and n € Z put

D,(M*) = Homy(M*, I[n]) = D(M*)[n]
(with the sign conventions of 1.2.1). It follows from 2.3.1(ii) that the canonical map
€=¢rm: M — D, (D, (M))

is an isomorphism for every M in Dy (rMod) or D, ,(rMod).

2.3.3. The simplest examples of I are the following:
(i) I=Rif R=kis a field.
(ii) I = K/R if R is a (complete) discrete valuation ring with fraction field K.
(iii) I = R[1/z1...24)/( ZLI R[1/zy...%i...2q)) if R = k[a1,...,24] is a power

series ring.

2.3.4. We shall often use the fact that for every projective (resp.. inductive) system
(My)nen of R-modules of finite (resp., co-finite) type such that M = lim M, (resp.,
M =lim M, ) is also of finite (resp., co-finite) type, the canonical map lim D(M,) —
D(M) (resp., D(M) — lim D(M,,)) is an isomorphism.
2.3.5. Lemma. — Let f: M — N be a homomorphism of R-modules. Then

(i) M=0 < D(M)=0.

(i1) The homomorphism € : M — D(D(M)) is injective.

(iii) f=0 < D(f) =0.
Proof. — If M # 0, choose non-zero x € M, y € I. By 2.3.1 applied to Rz there
exists an injective morphism Rz — [; it extends to a morphism f : M — I satisfying
f(z) # 0. This proves (i) and also shows that (x) # 0, proving (ii). As regards
(iii), the morphism f factors as f = gh with ¢ : f(M) — N injective ( = D(g)
surjective) and h : M — f(M) surjective (= D(h) injective). This implies that

D(f) =0 <= D(g)=0 < D(f(M))=0 <% f=0. O
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2.3.6. Lemma. — If M is an R-module of finite (resp., co-finite) type, then every
surjective (resp., injective) R-linear endomorphism f: M — M is bijective.

Proof. If M is of finite type, see ([Mat, Thm. 2.4]). If M is of co-finite type, the
previous statement applied to the dual endomorphism D(f) : D(M) — D(M) implies
that D(f) is bijective, hence so is f = D(D(f)). O

2.4. Cohomology with support at {m}
2.4.1. Every R-module M defines a quasi-coherent sheaf Mon X = Spec(R). Its
cohomology with support at the closed point {m} C X will be denoted by
Hi (M) = Hi,,(Spec(R), M).
An explicit complex representing
RI () (X, M) € D*(zMod)
can be constructed by using an exact triangle

(2.4.1.1) R (X, M) — RT(X, M) — R (X —{m}, M) — RT (4} (X, M) [1]

2.4.2. First of all, RI' (X , M) is represented by M in degree zero. To get a complex
representing RF(X - {m}JE[/), fix a system of parameters of R, i.e., a d-tuple of
elements x1,...,xq € m such that R/(z1,...,zq) has finite length. Then U = {U; =
Spec(Ry,) | i =1,...,d} is an open covering of X — {m} such that all intersections
Uy,N---NU;,, = SpCC(Ra;,“..._/,;lp) are affine. This implies that the Cech complex

Lp

C*(M) = C*(M, (x;)) = C* (U, M) with
CP(M,(x;)) = @ My, =CP(R,(z:)) @r M (0 < p<d)

1o < - <ip

and the standard differential
(0P Aiyvipyr = Z(_l)inU"'{;"'iz)}l (lo <+ <ipy1)

represents RI'(X — {m}, M).

2.4.3. It follows from (2.4.1.1) that RF{m}(X, ]W) can be represented by

C* (M) = C*(M, (z;)) = Cone(M—=C*(M, (z,)))[~1]
= Moo= ey,

where ¢ : M — @?le'xj is the canonical map. The complex C*(M) is concentrated
in degrees [0, d] and is equal to C*(R) @r M = M @ C*(R).
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2.4.4. For example, if R = Z,,, then C*(M) = []U M @z, Qp]
and H{ }( 1) =M @z, Qp/Z,.

0y (M) = Mg

2.4.5. There is an alternative description of C*(M) in terms of Koszul com-
plexes ([LC, §2]). For a commutative ring A, an A-module M and a sequence
v = (y1,...,yr) of elements of A, the Koszul complexes are defined inductively as

K3(A () = [A—"-4]
(in degrees 0, 1),

K/.L\(A7Y) = K;‘(A, (ylv s 7y7')) = KA(A> (‘/1)) @A K.:\(Av (yQa s ,?/7‘))
and
Ki(M,y) = K3(M, (y1,....yr)) = K4 (A, y) ®a M.
If M is a Noetherian A-module, then each cohomology group of K% (M,y) is a Noethe-
rian A/(y1,...,yr)A-module.

The morphisms K3 (A, (y})) — K3 (A4, (yf“)), given by the multiplication by y;
in degree i = 0, 1, define morphisms of complexes K% (M, y") — K4(M,y" "), where
vy = (¥, ...,y"). In the situation of 2.4.3, there is a canonical isomorphism of
complexes

linﬂK}?(]W, x") 5 O (M, x).
2.4.6. For every complex of R-modules M* we define C*(M*) = M* ®3, C*(R).
If M* has cohomology of finite type, ‘then C*(M?*) represents RI' () (X, M*), hence

HY(C*(M*)) = Hiyy (M?).

2.4.7. Lemma ([LC, §3.10, §6.4]). — For every M € (rMod)p and i > 0,
(i) H{m}(]V[) is an R-module of co-finite type.
(i) {m}(]u) =0 for i < depth(M).
(iti) Hy (M) =0 fori> dun(M)
(iv) dnn( (Hfm}(]\[)))
(v) Hipy (M) #0 fori = dlm( ) and i = depth(M).

2.5. Local Duality ([RD, Ch. V])

(i) There exists a dualizing complex w € D})z( rMod) (unique up to isomorphism)
with the property
) ~ I, i=d
Hi (w) —
tmy {0, i #d.

We fix an isomorphism Tr : Hfm}(w) ST
(ii) w can be represented by a bounded complex of injective R-modules w*, sup-
ported in degrees [0, d].
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(iii) For every R-module M of finite type and i € Z, the Yoneda pairing
Hiyy (M) x Ext (M, w) — H{ () =1
induces isomorphisms
H{, (M) = D(Bxtf "(M,w))
Ext (M, w) = D(H{y (M)).

(iv) A triangulated version of (iii): for every object M of D,(rMod) (resp.,

Dﬁ( rMod)) the canonical map
n : RHompg(M,w) — D(RT (1} (M)[d])

(defined in 2.8.1 below) is an isomorphism in Dy (gMod) (resp., D;Ft(RMod)).

2.6. Grothendieck Duality ([RD, Ch. V])

For every object M of Dy(rMod) (resp., D}%(R,Mod))7 2(M) := RHompg(M,w) is
an object of Dy,(rMod) (resp., Df;(rMod)) and the canonical map ¢ = &, : M —
2 (% (M)) is an isomorphism.

2.7. Remarks

(i) H{(w) = D(H?n:}f(R)) vanishes for ¢ > d — depth(R) (resp., ¢ < 0) by
Lemma 2.4.7(ii) (resp., 2.4.7(iii)) and is non-zero for ¢ = 0 and ¢ = d — depth(R) by
Lemma 2.4.7 (v). Furthermore, dim(H%(w)) < d — 4, by Lemma 2.4.7 (iv).

(ii) In particular, R is Cohen-Macaulay (i.e., depth(R) = d) iff v = H%(w) is
concentrated in degree zero (in which case w = D(H{,(R))).

(iii) R is Gorenstein (i.e., R is quasi-isomorphic to a bounded complex of injective
R-modules) iff v = R.

(iv) In order to stress their dependence on R we sometimes denote I, D, 9, w
by IR, DR, ,@R, WR.

(v) The hyper-cohomology spectral sequence

Ey = Exty(M, H’ (w)) = Ext'y 7/ (M, w)
implies that
Extf(M,w) = Homp(M, H’(w)) = Homp (M, D(H{,,(R))),

for every R-module M.

(vi) If depth(R,) = 1 for all p € Spec(R) with ht(p) = 1, then w = H%w) in
D((gMod)/(pseudo-null)), using the language of 2.8.6 below (this follows from 2.7 (i)—
ii) applied to the (non-complete — but see 2.10) localizations Ry).

SOCIETE MATHEMATIQUE DE FRANCE 2006



56 CHAPTER 2. LOCAL DUALITY

2.8. Relating D, ¥ and ¢
2.8.1. The functors

D :Dﬂ(RI\/IOd)Op — Dcoﬂ(Rl\/IOd)
9 :Dﬂ(RMOd)Op — th(R/l\/IOd)

(which map DT to DT) are related to
®(—) := Rl () (—)[d] : Dp(rMod) — D ,4(rMod)

(which maps D* to D%) as follows.
First of all, we have

o) = ((-)Er@ (R~ ) d).

The natural transformation of functors n: %2 = D o ®, defined by

7() = RHomp(~,w) — RHomp ((~)5 p®(R)[~d), w& r@(R)[~d)

= RHomp (®(—)[~d], ®(w)[~d)) A
i>RHomR(<I>(—),<I>(w))Pﬂm—n(l(tlzRI'IOHIR((I)(—)vI)
=Do (I)(_)a

is an isomorphism, by local duality 2.5.
The natural transformations

er:id= DoD, e,:id=% 0%

are isomorphisms, by Matlis and Grothendieck duality, respectively. As a conse-
quence, the natural transformations

LD o Do dLD 0P

£ 0072 Doy 02D

are isomorphisms, too. It follows from the fact that the composition
DE{*DDODODD*Eé D

is the identity (and from an analogous statement for &) that the following diagrams
of natural transformations are commutative:

02X 0909 92 DoDog id=——==DoD

\ ﬂﬁ@ \ HD*@Z) H&u MD*g
*2

DoQ Dod D oD 2 DodoP
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2.8.2. To sum up: the following duality diagram of functors

Z
D (rMod)?  «————— D (rMod)

j D | j
® ®
D, p(RMod)*P D}, (rMod)

(and its analogue without +, F) is commutative up to various natural isomorphisms
of functors:

ec;:id=> Do D (Matlis duality).
ec,:id=% 0% (Grothendieck duality).
en:2 = Dod (local duality).

2.8.3. In particular, ¢)(R) induces an isomorphism ®(R) = D(Z(R)) = D(w), hence
~ L ~ L
(=) = ((-)DrDW)[=d])[d] = (-)@rDw)

(the last arrow is given by s’_,[d], in the notation of 1.2.15). This can also be deduced
from the adjunction isomorphism

adj : RHomp (A, RHomp (B, C)) > RHomp (A@Lo #B.C)

(which is a derived version of 1.2.6; it holds in Dt (grMod) for all A, B € D~ (grMod),
C € DT (gMod)) applied to B = D(w) and C = I:

RHompz(—,w) — RHomp(—, D(D(w))) — RHOIHR((—)Q%RD(UJ),I).

For example, for R = Z,, we have I = Q,/Z,, w — Z, and C*(Z,) = [Z, — Q,] (in
degrees 0 and 1); this is quasi-isomorphic to Q,/Z, [—1]. If M is a free Z,-module of
finite type, then (M) = Homg, (M, Z,), ®(M) = M ®z, Q,/Z, and

D(®(M)) — Homgz, (M @z, Qp/Zyp, Qp/Z,) =2 (M).
2.8.4. All of the above makes sense on the level of complexes: fixing a system of

parameters z; of R and a bounded complex of injective R-modules w* representing w,

we have
O(X*) = (X* @r C*((xi), R))|d]
D(X*) = Homy(X*, 1)
2(X*) = Hompi(X°*, w*).
As I is injective, the isomorphism Tr can be represented by a quasi-isomorphism

Tr: ®(w*) — 1,
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unique up to homotopy. The morphisms n(X*), ¥ (X*),£(X*) are genuine morphisms
of complexes (of course, they are all quasi-isomorphisms). For example, n(X*) is given
by

2(X*) = Homy(X*,w*) — Homy(X* ®r C*(R),w* @r C*(R))

4 Homp((X* @ C*(R))[d), (v @ C*(R)[d) 2™ Homs, (@(X*), I)

2.8.5. For T' € Dy(rMod) put T* =2(T), A = ®(T) = RI'(n}(T)[d], A* = D(T).
Loosely speaking, we can think of these four objects as being related by the diagram

[

T T
® P
A A*

2.8.6. In the notation of 2.8.5, the hyper-cohomology spectral sequence of 2 applied
to T* is given by

Ey? = Extiy(H ™ (T%),w) = H/(2(T")),
i.€.,
(2.8.6.1) EY = Exthy(D(HY (A)),w) = HI(T).
It follows from local duality 2.5 and Lemma 2.4.7 (iii) (iv) that EY =0 fori < 0and
that supp(E5”) has codimension > i in Spec(R). By 2.7(v) we have

EY7 = Homp(D(H’(A)), H*(w)).

Recall that an R-module M of finite (resp., co-finite) type is pseudo-null (resp., co-
pseudo-null) if supp(M) has codimension > 2 in Spec(R) (resp., if D(M) is pseudo-
null).

It follows that, in the quotient category (zpMod)/(pseudo-null), the spectral se-
quence (2.8.6.1) degenerates to a collection of short exact sequences

(2.8.6.2) 0 — Exth(D(H "' (A)),w) — H)(T) — ExtG(D(H’(A)),w) — 0.

Recall also that, for each prime ideal p € Spec(R) with ht(p) < 1, the localization
M +— M, defines an exact functor (gMod)/(pseudo-null) — (z,Mod).

2.8.7. Proposition. — In the situation of 2.8.5 there are spectral sequences
Ey? = H{LS(HY(T)) = H'™(A)
By’ = H{ S (D(H/(A))) = D(H~"/(T)).
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Proof. — The first spectral sequence E, is just the hyper-cohomology spectral se-
quence for ®. It can be constructed explicitly as follows. Represent T by a complex
M* of R-modules; then A is represented by N* = (M* ®r C*(R))[d]. Filter N* by
the subcomplexes

FIN* = (M* ®p 03i+4(C*(R)))[d].
We have

grp(N*) = (M* @ C(R))[-i],
as C*(R) is a complex of flat R-modules. The corresponding spectral sequence satisfies

E{ = H/(M*) ®r C*"(R) = HY(T) @ C*H(R),

hence

Ey? = H3y (H(T))
as claimed. The second spectral sequence 'E,. is obtained from (2.8.6.1) by applying
D and using local duality 2.5 (iii). a

2.8.8. Lemma. — For every R-module M of finite type, the R-module EXt%(M, w)
(resp., H ?m}(M )) is torsion-free (resp., divisible). In particular, H°(w) is torsion-
free.

Proof. — We know from 2.7 (v) that Ext% (M, w) = Hompg (M, D(Hfm}(R))). IfreR
does not divide zero, then the exact sequence of local cohomology

H{ [ (R/rR) — H{\ (R)==H{y (R) — H{wy(R/rR) =0
(in which the last term vanishes by Lemma 2.4.7 (iii)) shows that multiplication by r on
D(H?m} (R)), and hence also on Ext% (M, w), is injective. It follows that multiplication
by r on H ?m} (M) = D(Ext%(M,w)) is surjective. The last statement is a consequence
of H%(w) = Ext%(R,w). O

2.8.9. As in 2.8.6, it follows from Lemma 2.4.7 (i) (iv) that E57,’E%7 in Proposi-
tion 2.8.7 are co-pseudo-null for ¢ # 0, —1. This implies that in the quotient cate-
gory (rMod)/(co-pseudo-null) the two spectral sequences degenerate into short exact
sequences

0 — H\py (HI(T)) —H(A) — HIHH(T)) — 0

0 — H\y (D(H? (A))) —D(H? (T)) — Hiz! (D () — 0,

(the second one being just D(2.8.6.2)). It follows from Lemma 2.8.8 and Lemma, 2.4.7
(iv) that H?m}(Hj (T)) (resp., Exty(D(H7~'(A)),w)) is the maximal R-divisible
(resp., R-torsion) subobject of H’(A) (resp., H?(T)) in (gMod)/(co-pseudo-null)
(resp., (rRMod)/(pseudo-null)).
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2.8.10. Much of the previous discussion can be reformulated in terms of an analogue
of the duality diagram 2.8.2 for appropriate quotient categories:
D, (rRMod/(pseudo-null))°? Dy, (rMod/(pseudo-null))

D
53] Fii)

D ,;(rRMod/(co-pseudo-null))°P D .,;(RMod/(co-pseudo-null))

2.8.11. It is sometimes convenient to use another normalization of ¥ and @, namely
24(—) =2(-)[d] = RHompg(—,w)[d] = RHomg(—,w|[d])
@ (=) = B(-)[~d) = RT {ny (=) = (-)End_a(R)
Then the map Tr defines a quasi-isomorphism Tr : ®_gz(w[d]) — I and the dia-
gram (2.8.2) is replaced by

D3 (pMod)  —Z4 —,  DF(zMod)

D
l‘l’ d {‘bd

D . (rRMod)°P DJ,(rMod),

coft
which is commutative up to natural isomorphisms of functors

Ng:Pqg=—=Do® 4, Yg:P_g==>DoPDy, E:P_q0P3=>D

€w[d]2id :N>@d0,@d, Ej:id:N>DOD.

Here ny is given by

P 4(~) = RHomp(—, w|d]) — RHomR((-)ééch,d(R),w[d}éRq»_d(R))

RHom(id, Tr
_—

— RHomp(®_y(—), ®_qg(w[d)) 'RHom p(®_a(—), 1)

=Do (I)—d(—)v
and 14, &, are defined as in 2.8.1, with ® (resp., Z) replaced by ®_, (resp., Z4).

Fixing the same data as in 2.8.4, we can define the functors ®_; and Z4 on the level
of complexes; this will be used in the following Lemma.

2.8.12. Lemma

(i) The morphism of complexes £4(R) : ®_43(Z4(R)) = ®_4(w[d]) — I is equal
to Tr.
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(ii) For every complex X* of R-modules with cohomology of finite type, the following
diagram of morphisms of complexes is commutative:

(X ®R@d(Xj) @rd_o(R) 29N 9,R)or <1>_d<1? = ®_q(Za(R))
14 Tr

X ®r (Z4(X)®@r P_a(R)) f
[

eva

id
X ®pr®_a(Za(X)) L) X ®r D(X)
Proof. — This follows from the definitions. O

2.9. Relation to Pontrjagin duality

In this section we assume that the residue field k£ = F- is a finite field of charac-
teristic p.

2.9.1. Under this assumption, every R-module M of finite type is compact, Hausdorff
and totally disconnected in the m-adic topology. The Pontrjagin dual of M is equal
to

A{D = H()chont(]\/[, R/Z) = Honl(:ont(M) QP/ZI))
lim Homg,, (M/m"M,Q,/Z,)

n

lim Hompg (M /m" M, Homz, (R/m", Q,/Z,))

n

—
mn

lim Homgz (M, Homg, (R/m", Q,/Z,))

Hompg (]VL lim Homg, (R/m", Qp/Z],)>

Hompg (M, RD)

Il

It follows from 2.3.1(i) and Pontrjagin duality that R” = I is an injective hull of k,
hence D(M) = MP for every R-module M of finite type.

2.9.2. Similarly, if N is an R-module of co-finite type equipped with discrete topo-
logy, then N = lim N[m"] and the adjunction isomorphism
n

NP = Homgz, (N, Qp/Z,) — Hompg(N,Homgz, (R, Q,/Z,))
factors through the submodule of the R.H.S. equal to
Homp (N, lim Homgz, (R/m", Q,, /z,,)) — Hompg(N, R?) = D(N)

Thus the functor D coincides with the Pontrjagin dual on both (gMod)s and
(RMOd)coft~
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2.10. Non-complete R

In this section we assume that R is local and Noetherian, but not necessarily
complete. As above, d = dim(R).

2.10.1. Denote by R:liLnR/m” the m-adic completion of R, with maximal
n

ideal @ = mR (similarly, put M= lim M/m" M for every R-module M). Recall that

R is faithfully flat over R ([Mat, Thm. 8.14(3)]). All statements in Sect. 2.2-2.4
and 2.4.7 (ii)-(iii), (v) are true for R.

2.10.2. Proposition

(i) An ingective hull Ip of k = R/m (= ﬁ/fﬁ) has a canonical structure of an
R-module. In fact, Ir = If.

(ii) For every R-module of finite type M we have

Dgr(M) = Homg(M,I) = Homﬁ(]\/f, I) = Dﬁ(m

(where I = Ir = Ig).
(iii) For every M as in (i), the canonical maps

~ ~ L\ ~
R () (M) < R () (M) @ R (= RE () (M)@rR) > RI 5y (M)

are isomorphisms. In particular, each Hfm}(M ) has a canonical structure of an R-
module.

(iv) For every M as in (ii), each H{im}(M’) is an Artinian R-module.

(v) For every R-module of finite length N the canonical map € : N — Dr(Dg(N))
is an isomorphism.

Proof. — For (i)—(iii), see [Br-He, Ex. 3.2.14, Lemma 3.5.4(d)]. For (iv), see [Br-Sh,
Thm. 7.1.3]. Finally, (v) follows from N = N. O

2.10.3. Dualizing complex. — An object wg of D?t(RMod) is a dualizing complex
for R if it can be represented by a bounded complex wy, of injective R-modules and
if it satisfies Grothendieck duality 2.6. If it exists, then wg is determined (up to
isomorphism) up to a shift wg — wg[n] ((RD, §V.3.1]).

If R is a quotient of a Gorenstein local ring then wg exists ([RD, §V.10]); the
converse also holds [Kaw].

2.10.4. Local Duality ([RD, Ch. V]). — Assume that wgr exists. Then

(i) The undetermined shift in the normalization of wg is uniquely determined by

the condition

Hi (won) = I, i=d
w e
{m} TR 0, i+d
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Fix an isomorphism Tr : H{, , (wr) = 1.
(ii) For every R-module M of finite type and i € Z, the Yoneda pairing

Hipy (M) x Ext§ " (M, wg) — H{y(wr) =1
induces isomorphisms

H{y (M) =5 Dg(Bxty (M, wr))

Extfy (M, wr) = Dr(H{n)(M)) = Dg(H{yy (M)).

(iii) Wp = WR ®R R= wRQ%RIA% is a dualizing complex for R.

(iv) R is universally catenary.

(v) For every prime ideal p € Spec(R), the localization (wg), is a dualizing complex
for Ry.

(vi) If " D R is a local ring, free of finite rank as an R-module, then wpr exists
and is isomorphic to Homg(R',wr) = RHompg(R',wr).

(vii) The statements of 2.7(i)-(iii), (vi) hold.
2.10.5. Lemma. Let Mbe an R-module of finite type. Then

(i) If m ¢ Ass(R), then HY{ (M) C Miors.

(ii) If dim(R) = 1, then Miors C H?m}(M).

(iii) If dim(R) = depth(R) = 1, then Miors = H?m}(M).

(iv) H{, (M) is R-divisible.

(v) If wr exists, then HO(wg) is torsion-free over R.

Proof. — The statements (i)-(ii) follow from the fact that

Mtors = Ker <]V[ — @ Mq)

q€Ass(R)
HY{\y (M) = Ker (M — II Mq>.

q€Spec(R)—{m}
Indeed, in (i) we have Ass(R) C Spec(R) — {m}, while in (ii) Ass(R) contains all
minimal prime ideals q C R, i.e., all elements of Spec(R) — {m}. The statement (iii)
is a combination of (i) and (ii). As regards (iv) and (v), Lemma 2.8.8 and Proposi-
tion 2.10.2 (iii) imply that Hfm}(M) is R-divisible and H'(wg) ®g R is torsion-free
over R; we conclude by the faithful flatness of Rover R (if » € R does not divide zero
in R, it is not a zero divisor in }A%) O

2.10.6. Example. — If dim(R) = 1 and R is not Cohen-Macaulay, then
Rtors = 0, H?m}(R) 7& 0.
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2.10.7. Lemma. — Assume that dim(R) = 1 and fizx x € m such that dim(R/zR) = 0.
(i) Let C* = [R;Z>RI] be the complex C*(R,x) (in degrees 0,1) from 2.3.3. Then

C*opC* = [R2NR, @ RSHR,

and the morphism of complexes u : C* — C* ®@p C* given by idg (resp., (idg,,idg,))
in degree 0 (resp., 1) is a quasi-isomorphism satisfying sio o u = u. The morphism
of complexes v : C* @ C* — C* given by idr (resp., by the projection on the first
factor) in degree O (resp., 1) satisfies vu = id and uv is homotopic to the identity.

(ii) If x is not a zero divisor in R, then the canonical map R, — Frac(R) is an
isomorphism.

Proof. — Easy exercise. O

2.10.8. Corollary. — Assume that dim(R) = 1. Then the morphisms of complexes
(X' RrC*) R (Y' Xnr C') BELEEN (X°*®g Y') QR (C' SR C')
Tid@u
(X*@rY*)®pC"*
define a functorial cup product
R (i (X) SRRy (V)-SR (o (XE0Y) (XY € Dy (5Mod))

such that the following diagram is commutative:

L U L
RT () (X)©rRT () (V) — RF{m}(X®RY)

lsm 1(512)*

L U L
RF{m}(Y)@)RRF{m}(X) — RF{m} (Y(X)RX)
Proof. — Combine Lemma 1.2.4 and Lemma 2.10.7. O

2.10.9. Assume that dim(R) = depth(R) = 1. Then the filtration o>,C* induces,
as in 2.8.7, a filtration on the complex X* @p C* representing RI'{,y(X*) (for every
complex X * of R-modules with cohomology of finite type). The corresponding spectral
sequence FE, from Proposition 2.8.7 for T = X = X* € D.ff,(RMOd) degenerates
(Fy = E) into short exact sequences

(2.10.9.1) 0 — H{p (H'™H (X)) — H{ny(X) — H{y (H' (X)) — 0

All terms in the above exact sequence are R-torsion (by Lemma 2.10.5(iii)) and the
first term is R-divisible (by Lemma 2.10.5 (iv)). This implies that the cup product on
cohomology

. . i L B
Hiwy (X) @r H{, (Y) — H{J} <X®RY) (XY € Dj,(rkMod))
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induced by the cup product U from 2.10.8 factors through
Uiy # Hipy (H'(X)) @ Hpy (H(Y)) — HiE} (XSgY)

ij - {m} R my {m} R )

i.e.,
. . i/ L
(2.10.9.2) Uig + H' (X )iors @ HY (Y )iors — {2 (XERY),
and satisfies
(21093) (812)*(.’11 Uij y) = (—1)ijy Uji Z.
We can drop the upper-boundedness condition if we deal not with objects of the
derived category, but with complexes of R-modules X*,Y*, Z* with cohomology of
finite type. We obtain products
Hipy(X*) @r H\ (Y*) — H3 (X @R Y")

factoring through

UIJ . Hi(X.)tors QR Hj(Y.)tors — HE;J}(X. QR Y.)
and satisfying (2.10.9.3). If
u: X*QrY* — 2°
is a morphism of complexes of R-modules, then the induced products

Uy O Uij b Hi(X.)t()rs XR Hj(Y.)tors — HEi?(Z‘)

depend only on the homotopy class of u.

2.10.10. Assume that dim(R) = depth(R) = 1 and that wg exists. In the hyper-
cohomology spectral sequence

By = Exty(H 7(X),wr) = H(2(X)) (X € Dy(rMod))
we have
By’ = Extiy(H(X), H(wr))

and Ey? =0 for i # 0,1, which gives short exact sequences
(2.10.10.1) 0 — BExtp(H 7T X), H(wRr)) — HY(Z(X))

— Homp(H 7 (X), H(wg)) — 0.
Applying Dg to (2.10.10.1) gives, by local duality 2.10.4(ii), the exact se-
quences (2.10.9.1) for i = —j + 1.
2.10.11. Lemma. — Assume that dim(R) = depth(R) = 1 and that wg exists. Then

(i) Jr := H(wg) ®r Frac(R)/R is isomorphic to Ig.
(ii) The exact sequence (2.10.10.1) is isomorphic to

0 — Homp(H I (X)iors, Ir) — HY(2(X)) — Hompg(H 7(X), H(wg)) — 0.
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(iii) H(2(X))tors is isomorphic to
Homp (H 7 (X )iors, Ir) — Homp(H 7YX ) ors, HY(wr) @ g Frac(R)/R).
Proof. — As R is Cohen-Macaulay, we have wp — H%(wg) in D(gMod). Fix z € m
which is not a zero divisor in R. The R-linear map « : Ir — Jg, induced by
R, — Frac(R) and
Tr)~ !
1™ Hl g () = Hiy (HOo5)) = Coker(H”(wg) — H'(wn) @ Ry)
is an isomorphism, since R, — Frac(R) is (Lemma 2.10.7(ii)). This proves the state-
ment (i).
If M is an R-module of finite type, so is N = BExtp(M,Hwg)). As
codimpg(supp(N)) > 1, we have
Exth(M, H(wgr) ®g Frac(R)) = N ®g Frac(R) = 0,
by Lemma 2.10.5 (iii). It follows that
[HU(WR) KRR Frac(R) — IR]
is an injective resolution of wg, which gives an isomorphism
Hompg(P, Ir) — Extp(P, H(wg))

for every torsion R-module P. Taking P = M, the long exact sequence of Ext’s
associated to
00— ]Vf/PLM/P — ]\/[/(P—I—:L‘M) — 0
shows that Ext}?‘(M/P7 HO(WR))/:L'EXt}—{(M/P, H%wgr)) = 0, hence Ext}z(M/P,
H°%wpg)) = 0 by Nakayama’s Lemma. It follows that
Exty (M, H(wg)) = Exth(Miors, H*(wr)) — Homp(Miors, IR).

Taking M = H~7+1(X) concludes the proof of (ii). Finally, (iii) follows from (ii) and
the fact that H°(wg) is torsion-free (Lemma 2.10.5(v)). O

2.10.12. Proposition. — Assume that dim(R) = depth(R) = 1 and that wgr ezists.
Given complexes of R-modules X*,Y* with cohomology of finite type and a morphism
of complezes

u: X*QprY* — wh(n]

where w is a bounded complex of injective R-modules representing wg ), denote by
R

Uiton—i : H'(X)tors O H' ™" (Y *Jtors — H] T (whn]) = H{pmy (k)
= Ir = H%wg) ®g Frac(R)/R
the cup products from 2.10.8 and (2.10.9.2) induced by u and Tr. Complete the map
adj(u) : X* — Homy(Y*,wh[n]) =2,(Y")
to an exact triangle in D (rMod)

X.adj(u)

——=2,(Y*) — Err — X"*[1].
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Then the morphism
adj(Ui,l—n—i) : Hi(X.)tors — HOHIR(HI—”#Z‘(Y.)mrsa IR) = D(H]An—i(y.)tors>

in (rRMod)a has the following properties:

(i) Ker(adj(U;1-n—;)) 4s isomorphic to a subquotient of H*~*(Err).
(i) If H=*(Err) is R-torsion, then Coker(adj(U;1—n—:)) (resp., Ker(adj(Us1-n—s)))
is isomorphic to a submodule (resp., a quotient) of H*(Err) (resp., of H*=1(Err)).

In particular, if H='(Err) = HY(Err) = 0, then adj(U;1—n—;) is an isomorphism.

Proof. — This follows from the Snake Lemma applied to the following diagram, in
which the first square is commutative up to a sign and the map f is the isomorphism
from Lemma 2.10.11 (ii):

Hi"Y(Err)

0___>H1Z(Xo)t0rs Hl(X’)——>H7(X.)/HZ(X.)tors 0
ladj(uhl_,,.,_,:)
D(H"" (Y *)iors) adj(u).
lf

0 —— Exth(H' =" (Y*),wp) —> H'(@,(Y*)) —= Exth(H~"" (Y*),wr) —> 0

Hi(Err) O

2.10.13. Torsion submodules

2.10.13.1. The R-torsion submodule of an R-module M is defined as
M p-tors = Miors = Ker(M — M ®p FYac(R)) ={meM]|(Fr{0in R) rm = 0}.

Note that

(i) If depth(R) = 0, then Frac(R) = R and Mp-tors = 0 for all M.
(ii) The set of r € R dividing zero is equal to the union of the associated primes
of R; thus

Miors = Ker (M — P M,,).

pEAss(R)

(iii) In particular,

(R/m)iors =0 <= m € Ass(R) <= depth(R) =0.
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(iv) Let . C R be a multiplicative subset of R. If r € R does not divide zero in
R, the same is true for its image under the canonical morphism R — R, which then
induces a homomorphism of R g-algebras

Frac(R) o = Frac(R) @ R — Frac(Ry).

Similarly, for every R-module M there is a canonical (injective) homomorphism

(Mli’.-tors)(y - (MV) Ry—tors'

(v) The maps in (iv) need not be isomorphisms, even if. = R—p for p € Spec(R).
For example, if dim(R) = 2, depth(R) = 0, dim(R,) = depth(R,) = 1, then
Frac(R), = R, # Frac(R,).
2.10.13.2. Recall Serre’s conditions
(R,) Ry is regular for all p € Spec(R) with ht(p) < n.
(Spn) depth(Rp) = min(ht(p),n) for all p € Spec(R).
The following implications hold ([EGAIV.2, §5.7-5.8]):

R is Cohen-Macaulay <= R satisfies (S,,) for all n > 0 = R satisfies (51)
<= R has no embedded primes <= R satisfies (Ry) and (S7)

<= Risreduced <= R is a domain.

2.10.13.3. Lemma. If R has no embedded primes, then

(i) There is a canonical isomorphism

Frac(R) — H R,.
ht(p)=0
(ii) The canonical map Frac(R)q — Frac(Rq) is an isomorphism, for each q €
Spec(R).
(iii) If A is a finite abelian group, then the canonical map Frac(R)[A] —
Frac(R[A]) is an isomorphism.

Proof

(i) Combine [EGAIL, §7.1.8-7.1.9] (cf. [Bou, §IV.2.5, Prop. 10(iii)] in the case
when R is reduced).

(i) Fix p € Spec(R) with ht(p) = 0. If p C q, then (Rp)q (= Ry, ®g Rq) = Ry =
(Rq)p. If p & q, then there is z € p, ¢ q. As r ® 1 = 1 ® x is simultaneously
nilpotent and invertible in Ry, @ g Rq, we have (Rp)q = 0. Applying (i) to both R and
R, we get isomorphisms

Frac(R)y — H (Rp)q = H Rq — Frac(Ry).

ht(p)=0 ht(p)=0
(p) N
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(iii) The map in question is injective for arbitrary R. In order to prove surjectivity,
we must show that, for every @ € R[A] which is not a zero divisor, the cokernel of
the injective multiplication map

mult,, : R[A] — R[A], mult,(z) = ax

satisfies
Coker(multy ) ® g Frac(R) 0.
This follows from (i) and the fact that
(g, (Coker(multy),) = ¢ g, (Ker(mult,),) = 0
for all p € Spec(R) with ht(p) = 0. O
2.10.13.4. Corollary. — If R has no embedded primes, then the canonical map
(AJR-tors)q — (]V[q)ﬁ’,rI -tors
is an isomorphism, for each R-module M and q € Spec(R).
Proof. — Localize the exact sequence
0 — Mp-tors — M — M ®g FI'&C(R)
at q and apply Lemma 2.10.13.3 (ii). O
2.10.14. Assume that wp exists, but impose no other conditions on R. In this case
the statement of Lemma 2.10.7 (i) holds if we replace C* by the following complex in
degrees 0, 1:
C' = [R;Frac(R)]

(note that C* = C" if dim(R) = depth(R) = 1, by Lemma 2.10.7(ii)).
Let X* and Y* be complexes of R-modules. The exact sequence

0 — H"'(X*) @ (Frac(R)/R) — H'(X* @R C") — H'(X")iors — 0,

together with the corresponding sequence for Y* and the construction of Corol-
lary 2.10.8, yield cup products

Uj t HY (X tors @ H (Y *)ors — H ™ ((X* @ Y*) @r C")
satisfying
(2.10.14.1) (s12)« (2 Ui y) = (=1)Vy Uj; z.
If wy, is a bounded complex of injective R-modules representing wr and
u: X*QrY* — whn]
a morphism of complexes, then u induces cup products

Uil—n—i: Hi(X.)tors QR Hl_n_i(Y.)tors - Hl(w;{ XRr 6.)7
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with the target sitting in an exact sequence
0 — H%wgr) ®r (Frac(R)/R) — H'(w} ®r C") — H'(WR)tors — 0.

If R is Cohen-Macaulay (resp., if depth(R,) = 1 for all p € Spec(R) with ht(p) = 1),
then H'(wg) is zero (resp., pseudo-null) and we obtain cup products

Uit—n—i t H(X*)tors @r H' 7" 7Y *)pons — H"(wpr) ® g (Frac(R)/R)

in (rkMod) (resp., in (rMod)/(pseudo-null)).

If R has no embedded primes, then it follows from Lemma 2.10.13.3 (ii) and Corol-
lary 2.10.13.4 that the localization of U; 1—,—; at each p € Spec(R) with ht(p) =1
coincides with the cup product from Proposition 2.10.12, applied to R,.

2.10.15. Assume that wp exists and depth(R,) = 1 for all p € Spec(R) with ht(p) =
1. In the category (rMod)/(pseudo-null), the hyper-cohomology spectral sequence

By = Extp(H 7(X),wp) = H(@(X)) (X € Dy(rMod))
satisfies

By = Extiy(H™(X), H'(wr))
(by 2.7(vi)) and E;J =0 for ¢ # 0,1. This yields an analogue of (2.10.10.1)
0 — Extrp(H 9(X), HY(wr)) — HY(2(X)) — Homp(H 7 (X), H(wg)) — 0
and an isomorphism
Extp(H 7H(X), H(wr)) = H'(2(X)) B-tors

in (RMod)/(pseudo-null) (using Lemma 2.10.5(v)).

2.10.16. Proposition. — Assume that wg exists and R has no embedded primes. Then,
for each X € Dy(rMod) and j € Z, there is an isomorphism in (rkMod) /(pseudo-null)

HomR(H_jJrl (X)Lorsa HO(WR) @R (FIdC(R)/R))
-, Ext}?(H*jH (X)), HU(wR)) AN Hj(@(X))torm

the localization of which at each p € Spec(R) with ht(p) = 1 coincides with the
isomorphism from Lemma 2.10.11 (111), applied to R,.

Proof. — The construction in 2.10.15 yields an isomorphism in (g Mod)/(pseudo-null)
H(Z(X))tors — Extp(M, H%(wr)),
where M = H7+1(X). For each p € Spec(R) with ht(p) = 1, the canonical map
Extp(M, H(wr)), = Extg, (My, H'(wr)p)
— Extp, (Mp) ry-tors: H'(WR)p) = Extp(Mp-tors; H(wR))y
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is an isomorphism (using Corollary 2.10.13.4 and the proof of Lemma 2.10.11 (ii)).
This yields a canonical isomorphism in (rkMod)/(pseudo-null)

Exth(M, H(wr)) = Extp(Mp-tors, H*(WR)).
The boundary map associated to the exact sequence
0 — H°wgr) — H°wr) ®r Frac(R) — H°(wgr) ®g Frac(R)/R — 0
gives an isomorphism in (gMod)
& : Homp(Mpg-tors, H(wr) ® g Frac(R)/R) —= Exth(Mp-tors, H (wRr)).
Then the composite isomorphism in (gkMod)/(pseudo-null)
HY(D(X))tors — Extp(M, H(wg)) — Ext(Mp-tors, H(wr))
£>H0mR(JV[R_t0rS, H®(wr) ®g Frac(R)/R)

has the required properties under localization at each p € Spec(R) with ht(p) = 1
(the minus sign comes from the fact that the map in 2.10.11 was defined using an
injective resolution, hence differs from that defined in terms of § by a sign). O

2.10.17. Proposition. — Assume that R is Cohen-Macaulay (resp., R has no embedded
primes) and that wg erists. Given complezes of R-modules X*,Y* with cohomology
of finite type and a morphism of complexes

u: X*@pY*® — win|
as in 2.10.14, let
Ui,l—n—i . Hi(X.)tors ®R Hl_n—i(y.)tors — HO(WR) ®R (FI‘d(,(R)/R)

be the cup products in (gMod) (resp., in (rRMod)/(pseudo-null)) defined in 2.10.14.
Complete the map

adj(u) : X* — Hom%(Y*,wxn]) =2,.(Y*)
to an exact triangle in D ((rRMod)/(pseudo-null))
XM (V) Brr — X°[1].

Then the morphism

adj(Ui1—n—i) : H' (X *)tors — Homp(H' ™" "(Y *)sors, H(wr) ®r (Frac(R)/R))
in (rRMod)/(pseudo-null) has the following properties:

(i) Ker(adj(U;1-n—;)) is isomorphic to a subquotient of H*~1(Err).

(ii) If H* =Y (Err) is R-torsion, then Coker(adj(U; 1—n—;)) (resp., Ker(adj(Ui1—n—s)))
is isomorphic to a subobject (resp., a quotient) of H'(Err) (resp., of H'~'(Err)).
In particular, if H=1(Err) = H(Err) =0 in (rRMod)/(pseudo-null), then adj(U; 1—n—i)
is an isomorphism in (rRMod)/(pseudo-null).
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Proof. — The proof of Proposition 2.10.12 applies, with Proposition 2.10.16 replacing
Lemma 2.10.11. O

2.10.18. Proposition. — Let X and Y be R-modules of finite type with support of codi-
mension > 1 in Spec(R). Assume that, for each prime ideal p € Spec(R) with
ht(p) = 1, there exists a monomorphism (resp., epimorphism, resp., isomorphism,)
of Ry-modules g, : Xy, — Y,. Then there exists a monomorphism (resp., epimor-
phism, resp., isomorphism) g : X — Y in (rRMod)/(pseudo-null).

Proof. — For each prime ideal p in the finite set
A(X) = {p € supp(X) | hi(p) = 1},
denote by f, : X — X, the canonical map. The kernel of
F=h:X — @ X
peEA(X)

is pseudo-null, and so is the cokernel of the canonical map

Im(f) — @ Im(fp).

peA(X)
It is enough, therefore, to consider only the case when A(X) = A(Y) = {p} and
X c X, 2y, 0.
There exists r € R —p such that - g,(X) C Y restricting the map - g, to X defines

the desired morphism of R-modules g : X — Y. O

2.10.19. Corollary. — If R satisfies (Ry) and X is an R-module of finite type with
codimp(supp(X)) = 1, then X is isomorphic in (rRMod)/(pseudo-null) to

X = P D@/,

ht(p)=11i>1
where n(p,i) = 0 and only finitely many n(p,i) are non-zero.

Proof. — For each prime ideal p € A(X) (using the same notation as in the proof of
Proposition 2.10.18), the localization R, is a discrete valuation ring, hence

Xy — @ (Rp/p' Ry) "
i>1

(where the sum is finite). The claim follows from Proposition 2.10.18 applied to X

Y= D Dwme o

pEA(X) ix1

and
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2.10.20. Lemma. Assume that dim(R) = depth(R) = 1 and that wgr exists. Let
M, N be R-modules of finite type and

h:M@r N — HO(UJR)
a bilinear form. Denote the corresponding adjoint maps by
a :=adj(h) : M — Homg(N, H(wg))
B :=adj(hosiy) : N — Hompg(M, H(wg)).
If, for each minimal prime ideal ¢ C R, the localization g is an isomorphism, then:
(i) For each minimal prime ideal q C R, 34 is an isomorphism.
(ii) Ker(a) = Miors, Ker() = Niors-
(iii) Dg(Coker(c)) = Coker(/3).
(iv) ¢r(Coker(w)) = ¢r(Coker(3)).
Proof
(i) We have H(wp)q = I, , hence hq : Mg ®p, Ng — IRr,, aq : Mg — Dg, (Nq);

thus
I?q ( q)

Bq: Ng——Dpg, (Drg, (Nq))————>DHq(M )

is an isomorphism by Proposition 2.10.2(v). As regards (ii), we have M5 C Ker(a),
since H%(wg) is torsion-free. On the other hand,

Ker(or) € Ker (M — 6 Mq> = Miors.

q
since all aq are isomorphisms.
(iii) According to (ii), the map « factors through

M /M ors — Homp (N, H(wg))
(and similarly for 3). Fixing an injective resolution
i H(wp) — wh,
for each Z = M, N the canonical map
Homp(Z/Ziors, HO(wR)) — Hompg(Z, HO(wR))
resp.,

Homp(Z/Zyors, HY(wr)) — Hom$%(Z/Ziorss W) = P(Z/ Ziors)
is an isomorphism (resp., a quasi-isomorphism, by Lemma 2.10.11). This implies that
we have an exact triangle in D (gpMod)

M/ Miore259 (N/Nyors) — Coker(a)
Applying &, we obtain another exact triangle

9 (Coker(a)) — 2(2 (N/Ntors))9 (e \7

D (M [ Miors)-
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As Z(a')oe = and € : N/Nyors — Z(Z(N/Niors)) is an isomorphism, we obtain
(again by Lemma 2.10.11) isomorphisms in D, (rMod)

Coker(3) — 2 (Coker(a))[1] — D(Coker(a)),
hence an isomorphism Coker(3) = D(Coker(«)) in (gMod). Finally, (iv) follows
from (iii). |
2.10.21. In the situation of Lemma 2.10.20, we use the following notation:

Cr(det(h)) := €r(Coker(a)) = €r(Coker(3)).

2.11. Semi-local R

2.11.1. Everything in Sect. 2.2-2.9 has a straightforward generalization to the case
when R is an equi-dimensional semi-local Noetherian ring, complete with respect to
its radical m. In this case R has finitely many maximal ideals my,...,m, and is
isomorphic to

R "5 Ry, X -+ X Ry, .
Similarly, every R-module M decomposes canonically as

M "5 My, @ @® My,

and the theory in 2.2-2.9 applies separately to cach Ry,-module My,,.

2.11.2. If R is of the form considered in 2.11.1, so is every finite R-algebra R’
(e.g. R = R[A] for a finite abelian group A).
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CHAPTER 3

CONTINUOUS COHOMOLOGY

In this chapter we develop a formalism of continuous cohomology for a certain
class of R[G]-modules. Our approach is purely algebraic; the fundamental objects are
the “admissible” R[G]-modules, even though the cohomology can be defined even for
“ind-admissible” modules (filtered inductive limits of admissible modules). Section 3.6
can be ignored; it is unrelated to the rest of the article.

3.1. Properties of R-modules of finite type

We shall repeatedly use the following standard facts about R-modules of finite type
([Bou, Ch. III]). Let f : M — N be an R-linear map between R-modules of finite
type; equip both M and N with the m-adic topology. Then

3.1.1. M and N are Hausdorff and linearly compact.
3.1.2. f is continuous.
3.1.3. Im(f) is closed in N.

3.1.4. f is strict, i.e., the quotient topology on Im(f) = M /Ker(f) coincides with
the topology induced from N.

3.1.5. If f is surjective, then it admits a continuous (not necessarily R-linear) section.

3.2. Admissible R[G]-modules

Let G be a group acting R-linearly on an R-module M. The action can be described
either as a map
Av G x M — M, Au(g,m) = g(m),
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or by the induced map

pu ¢ R[G] — Endgr(M), PM(ZTU/L‘)(TR) = Z’r'ig?;(m).

Throughout Chapter 3, G will be a (Hausdorff) topological group.

3.2.1. Definition. An R[G]-module M is admissible iff

(i) The image of pj; is an R-module of finite type; and

(ii) The map G -5 R[G] 8 Im(pya;) is continuous (if Tm(pa;) is equipped with
m-adic topology).
A morphism between admissible R[G]-modules M, N is an R[G]-linear map f : M —
N. Admissible R[G]-modules form a full subcategory (“I?f}(;]Mocl) of ( R[G]Mod).

3.2.2. Lemma. Let M be an admissible R|G]|-module. Then

(i) If N C M is an R-submodule of finite type, then R[G] - N is of finite type
over R.

(i1) M is the union of its R[G]-submodules that are of finite type over R.

(i) If N € M s an R|G]-submodule, then both N and M/N are admissible.

(iv) If f : H — G is a (continuous) homomorphism of topological groups, then
f*M (= M viewed as an H-module) is an admissible R[H]-module.

(v) If H < G is a closed normal subgroup of G, then M is an admissible G/ H -
module.

Proof
(i) R[G]- N is contained in the image of
Im(pas) ®r N — Endg(M) ©r M5 M.

(ii) This follows from (i).
(iii) The commutative diagrams

RG] % Endp(M) R[G] LR Endg(M)
le ln/ lPM/N l/f’
Endg(N) < Homp(N, M) Endp(M/N) < Homg(M, M/N)

show that both Im(py) and Im(pys/n) are of finite type over R. The map
Im(pp) — o' (Im(par)) = a(Im(py))

induced by «' is m-adically continuous by 3.1.2, hence G — Im(py) is continuous
by 3.1.4. The same argument works for G — Im(pp;/n)-
(iv) This follows from definitions.
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(v) The commutative diagram

Py H

RG] N R[G/H] 5 Endr(M*H)

[ Js

o3

Endr(M) — Homp (M, M)
shows that Im(pyn) = 371 (a(Im(par))) is of finite type over R. The composite map
GG H - T (pygon ) a(Im(par )
is continuous and the maps can, 3 (the latter is induced by f) are strict, hence

G/H — Im(py,n) is continuous. |

3.2.3. Corollary. — (24 .Mod) is an abelian category (satisfying (AB1), (AB2)). Its
R[G)

embedding into ( R[(;]Mod) preserves finite limits and finite colimits.

3.2.4. Lemma. — Let T (resp., A) be an R|G]-module of finite (resp., co-finite) type
over R. Equip T (resp., A) with m-adic (resp., discrete) topology. Then T (resp., A)
is an admissible R[G]-module iff the map Ap : G x T — T (resp., Aa : G x A — A)
18 continuous.

Proof. — Let M =T or A. If ppi: G — Im(ppr) is continuous, so is
Ans G ox M-PAD  (pag) x M-S M.
Conversely, assume that Ay is continuous. By 3.1.4 it is enough to check that pri :

G — Endg(T) is continuous. By a version of the Artin-Rees Lemma ([Bou, §II1.3
Prop. 2]) there is ng such that

Ker(Endg(T) — Hompg (T, T/m"*"™T)) C m"Endg(T) (Vn > 0).

By continuity of Ay, for each n > 0 there is a neighbourhood of unity U, € G such
that pas(Uy) acts trivially on T/m" 0T thus pr(U,) C 1 + m"Endg(T) and pri is
continuous.

If A4 is continuous, then there is, for each n > 0, a neighbourhood of unity V,, C G
stabilizing pointwise Am™]. Put T" = D(A) with G-action given by (g(t))(a) =
t(g~'(a)). Then, for g € V,, (9 — DT C Am"]* = m"7T. This means that
Ar is continuous, hence T is admissible. Admissibility of A follows from the next
Proposition. O

3.2.5. Proposition. — If M, N are admissible R[G]-modules, then both P = M ®p N
and Q@ = Homg(M, N) are admissible.

Proof. — The modules
Im(pp) C Im(Im(pM) @gIm(py) — Endr(M) ®@g EndR(N)i»EndR(P))
Im(pg) C Im(Im(par) @5 Im(pn) — Endg(M) @5 Endp(N)—SEndz(Q))
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are both of finite type over R (the maps a,3 are given by (a(f ® g))(z ® y) =
f@)®g(y); (B(f ®g))(q) =goqo f). The diagonal action

GMIID(/)M) x Im(pn) — Im(prr) ®r Im(pn)

is continuous, hence both ppi and pgi are continuous by 3.1.4. O

3.2.6. Proposition. Let M* be a bounded above complex of admissible R|G]-modules
with all cohomology groups H'(M*) of finite type over R. Then there is a subcomplex
N* — M* (of admissible R|G]-modules) such that

(i) Fach N* is of finite type over R.

(i1) The inclusion N*® — M?* is a quasi-isomorphism.

Proof. — If M? = 0 for all i then take N* = M*. If M7 # 0 but M* = 0 for i > j,
choose an R-submodule of finite type X7 C M7 that surjects onto H’(M?*). Then
NJ = R[G]- X/ C M is of finite type over R by Lemma 3.2.2(i). Put Y/7! =
d~Y(N7) D Z97! = Ker(d : M7~! — M7) and choose an R-submodule of finite
type X771 < Y71 such that dX7~! = dY7~! and that X?~! N Z7~! surjects onto
HI=Y(M*). Again N7=! = R[G] - X771 < Z77! is of finite type over R. We put
Y72 = d~'(N771) and continue this process. O

3.2.7. Corollary. Let A* be a bounded below (resp., bounded) complex of admissible
R[G]-modules with all cohomology groups H'(A*) of co-finite type over R. Then there
is a bounded below (resp., bounded) complex B* of admissible R[G]-modules of co-finite
type over R and a map of complexes A* — B* which is a quasi-isomorphism.

Proof. — Applying Proposition 3.2.6 to M* = D(A*) we get a subcomplex incl :
N°* — D(A*). For B®* := D(N*) the canonical map

A= D(D(A) 2D p(NY) = Bt
is a composition of two quasi-isomorphisms (using 2.3.2 and 3.2.6). If A* is bounded,

so is B*. O

3.2.8. Proposition. Denote by (*I‘gl[G]Mod) Rojt (resp., (%}G]Mod) R»(:()‘ft) the category
of admissible R[G]-modules of finite (resp., co-finite type) over R. Then the embed-
dings
E ad ad |
(e Mod) . " (flMod) — (G Mod)

R-coft
induce equivalences of categories
D*( (g Mod) Rogt) = Dj_ (51 Mod) (x = —,b)
D* ((??G}G]l\/[()d) R—Coft) i)D;Lcoﬁ(aI{i[G]l\/IOd) (* = +? b)

Proof. — Essential surjectivity follows from Proposition 3.2.6 and Corollary 3.2.7.
Full-faithfulness is a general nonsense ([Ve2, §111.2.4.1]). O
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3.3. Ind-admissible R[G]-modules

3.3.1. Definition. — Let M be an R|G]-module. Denote by S(M) the set of R[G]-
submodules M, C M satisfying

(a) M, is of finite type over R;

(b) The action App, : G X M, — M, is continuous (with respect to the m-adic
topology on M,).

3.3.2. Lemma

(i) If My € S(M), then N € S(M) for every R|G]-submodule N C M,.

(ii) If f : M — N is a homomorphism of R[G]-modules and M, € S(M), then
f(My) € S(N).

(iii) If Mo, Mg € S(M), then My + Mg € S(M).

Proof. All one needs to do is to check the condition (b) of the definition. In (i)
(resp. (ii)) the continuity of Ay (resp., Ag(az,)) follows from the continuity of Ap,
and the fact that the inclusion N — M, (resp., the surjection f : M, — f(M,))
is a strict map. The statement (iii) follows from (ii), as M, + Mg is the image of
My, ® Mz € S(M ® M) under the sum map ¥ : M &M — M. O

3.3.3. Corollary. - Let f : M — N be a homomorphism of R[G]-modules. Then
iy = |J M.
Mo, €S(M)
is an R[G]-submodule of M, j(j(M)) = (M) and f(5(M)) C j(N).

3.3.4. Definition. — An R[G]-module M is ind-admissible if M = j(M).

3.3.5. Proposition

(i) Ind-admissible R|G]-modules form a full (abelian) subcategory (}rg[da']adMod) of
( R[G]Mod), which is stable under subobjects, quotients, colimits and tensor products.

(ii) The embedding functor i : (;‘;f}}j‘dMod) — (R[G]Mod) is exact and is left adjoint
to j : (rgMod) — (‘I?I?[‘ié'j‘dIVIO(l)‘ .

(iii) The functor j is left exact and preserves injectives; the category (‘Ig[dc‘;]adMod)
has enough injectives.

(iv) Every admissible R[G]|-module is ind-admissible.

(v) An ind-admissible R|G]-module M is admissible iff Im(ppr) is an R-module of
finite type.

(vi) An R[G]-module M of finite (resp., co-finite) type over R is ind-admissible iff
it 1s admissible.

(vil) For M,N € (iR‘?f‘C}T”dMod), the canonical maps

~

Hom M,N) = lim Hom My, N)— lim lim Hom M. N,
Rrie)( ) D ric)(Ma, N) i Rria)( 3)

are both isomorphisms.
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(viii) The categories of ind-objects Ind((;‘\il[c]l\lod)

canonically equivalent to (}‘g[dc‘;“]“lMod).

and Ind(ad ]Mod) are

R-ft) R[G

Proof

(i) If M = j(M) is ind-admissible and N is an R[G]-submodule of M, then
both N = UV N M,) and M/N = UM,/(N N M,)) are ind-admissible
(M, € S(M)). This proves stability by subquotients. Every colimit lim M ()
is a quotient of the direct sum M = @ M(B). If each M(B) is ind-admissible,
sois M = JMB1)ay & -+ ® M(Bn)a,) (M(Bi)a, € S(M(53;))). Finally, if
M = j(M) and N = j(N), then M ®r N = JIm(M, ®r Ng — M ®@r N) =
J(M ®pr N).

(ii) The functors 4,7 form an adjoint pair almost by definition; ¢ commutes with
finite limits by (i).

(iii) As 4 is exact, its right adjoint j preserves injectives (and is left exact by
adjointness). For every ind-admissible R[G]-module M there is a monomorphism
(M) — J with J injective in ( R[(;]Mod); then M — j(J) is a monomorphism with
J(J) injective in (gt} Mod).

(iv) Use (i), Lemma 3.2.2(ii) and Lemma 3.2.4.

(v) If M is an ind-admissible R[G]-module, then the canonical map

w:lIm(prr) —  lim  Im(pas,
) Mo ES(M) ( )

is an isomorphism of R-modules. If, in addition, Im(pas) is an R-module
of finite type, then wu is a homeomorphism with respect to m-adic topolo-
gies on Im(ppr) and Im(par,); thus G — Im(pas) is continuous and M is
admissible.

(vi) This follows from (v).

(vii) The first arrow is an isomorphism by definition of colimits. As regards the
second arrow, note that

lim  Hompg(g) (M, Ng) — Hompgg) (M, N)
Ng€eS(N)

|5

%)

is an isomorphism, since the image of any R[G]-linear map M, — N is of finite type
over R, hence is contained in some Ng.

(viii) For a category C, an object of Ind(C) is a functor F : J — C, where J is a
small filtered category. Morphisms in Ind(C) are given by

Homypq ey (F. F') = lim lim Home (F(5), F'(5')).

T
In the special case of C = (%}G]MO(l), associating to F' the colimit l%)lF (j) in
(Rrjc)Mod) defines functors
Ind( (3 Mod) , )~ Tnd (i Mod) = (G Mod).
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It follows from (iv) (resp., (vii)) that S (resp., T' o S) is an equivalence of categories.
a

3.3.6. Lemma
(i) If M € (*]‘%d[G]Mod)R_ﬂ and N € (iR“[d(}‘TdMod), then Homp (M, N) € (‘Ig[%‘j‘dMod),
(i) If M € (}r{‘[dc';?dl\iod) and H <1 G is a closed normal subgroup of G, then M ¢
(il Mod).

Proof

(i) Write N = [JNg with Ng € S(N). The R[G]-modules Homp (M, Ng) are
all admissible (hence ind-admissible) by Proposition 3.2.5; it follows from Proposi-
tion 3.3.5 (i) that Homp (M, N') = lim Homp (M, Ny) is ind-admissible as well.

3

(ii) By Proposition 3.3.5(i), M is ind-admissible as an R[G]-module. The claim

follows from the fact that G — G/H is a quotient map (i.e., G/H has the quotient
topology). O

3.3.7. Proposition. — Let G = lim G/U be the pro-finite completion of G with the pro-
finite topology (U runs through all normal subgroups of G' of finite index). If k is finite,
then the action ppr : G — Autg(M) of G on every admissible (resp., ind-admissible)
R[G]-module M factors canonically through the natural map G — @; this makes M
into an admissible (resp., ind-admissible) R[é’]-module.

Proof. — If M =JM, (M, € S(M)) is ind-admissible, then each group Autp(M,)
is finite and the map
pym 2 G — lim Autr(M,) (C Autp(M))

is continuous with respect to the pro-finite topology on the target, hence factors
canonically through a continuous homomorphism G' — lim Aut r(My). Od

3.3.8. Corollary. — If the natural map G — G is continuous, then it induces equiva-
lences of categories

(g Mod) = (FieMod), (g Mod) == (g6 “Mod).

3.3.9. Proposition. — Let M* be a bounded above complex of ind-admissible R[G]-
modules with all cohomology groups H'(M*®) of finite type over R. Then there is
a subcomplex N* — M* (of admissible R[G]|-modules) such that

(i) Each N is of finite type over R.
(ii) The inclusion N* — M* is a quasi-isomorphism.

Proof. — The proof of Proposition 3.2.6 applies word by word. O

SOCIETE MATHEMATIQUE DE FRANCE 2006



82 CHAPTER 3. CONTINUOUS COHOMOLOGY

3.3.10. Proposition. — The embeddings

(erMod) ., = (BEFMod) , — (irMod) — (15*Mod)

induce equivalences of categories
D™ ((ieMod) ) = D™ (& "Mod) )= Dp s (o Mod) = Dp_ (561 “Mod)

R-/L) R-ft)

Proof. — As in 3.2.8. O

3.4. Continuous cochains

3.4.1. Let G be a topological group and M an ind-admissible R[G]-module.

3.4.1.1. Definition. (Non-homogeneous) continuous cochains of degree i > 0
on G with values in M are defined as
C(Iont(Gv ]\I) = hﬂ C(lzont (G* ]\[(1)7
M, €S(M)

where C? (G, M,) is the R-module of continuous maps G* — M, (M, is equipped
with m-adic topology). In other words,

(()nt(G A[”f) = h m Cconl (G ]\[ /mn‘]\[ﬂ)

3.4.1.2. The standard differential

(0¢)(g1s-- -2 git1) =

gl(j(g‘ sy Ji+1 +Z q]a"'»gljgj+1a"'7gi+l)+(_1)i_lc(gl7~~‘7gi)
maps C! (G, M,) to CZ;}L(G M) (by Lemma 3.2.4), hence
T C;ont(G A‘[) g CZ(J)rn]t(G 'A'[)

becomes a complex C2 (G, M) of R-modules.

3.4.1.3. Let M* be a complex of ind-admissible R[G]-modules. ~ We define

Ce (G, M*) to be the simple complex associated to C7 . (G, M?'): its compo-
nent of degree n is equal to
C(nont C A[ @ cont G"]\[l)

i+j=n

(if M* is bounded below, then the sum is finite and vanishes for n << 0) and the

restriction of the differential 5;&’{ to ¢V

cont
(d}\f') C<Ior1t(G7 M ) I CJ

cont

(G, M) is equal to the sum of
(G, M)
and

< ) 63\11 Cont(G ]\[Z) CJ+1(G ]\[ )

cont
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This sign rule implies that
(ont(G M [1] (G M )[ ]

3.4.1.4. Every morphism f : M* — N* of complexes of ind-admissible R[G]-modules
induces a morphism of complexes of R-modules

j C(.ont(Gﬂ A/[.) cont(G N )

(‘()nt

satisfying
C.

cont

(G, Cone(M* L5 N*)) = Cone(C,,, (G, M*)L=C

(out(G7 N.)>
3.4.1.5. Tt follows from Proposition 3.3.5 (i) that C¢, . (G, —) commutes with filtered

direct limits.

3.4.1.6. Given a continuous homomorphism of topological groups u : G’ — G, an
ind-admissible R[G] (resp., R[G'])-module M (resp., M’) and an R-linear map v :
M — M’ such that v(u(g’)m) = g'v(m) for all m € M, ¢' € G’, the pair (u,v) :
(G, M) — (G', M) induces a homomorphism

f (Ont(G A[) - C.

given by (f(¢)(g1, -+ 9i) = v(c(ulgr), .. ulg)))-

3.4.2. Proposition. — Let 0 — MMM — 0 be an exact sequence of R[G]-
modules, with M ind-admissible. Then M', M" are also ind-admissible and

(G, M)

0— C¢

“cont

(G7 M’ )_ﬁcc.ont(G M)—>C.

cont,

(G,M") — 0

18 an exact sequence of complexes of R-modules. More generally, the statement still
holds if we allow M, M', M" to be complexes of ind-admissible R[G]-modules.

Proof. — Ind-admissibility of M’, M" follows from Proposition 3.3.5(i). Clearly

Ker(a.) = 0 and fia, = 0. Writing M = lim M,, with M, € S(M), it is enough
«@

to consider the case of M of finite type over R. The surjectivity of 3, then follows

from 3.1.5 and the equality Ker(3,) = Im(«,) from the fact that « is strict. The

statement for complexes is a formal consequence of the statement for modules. O

3.4.3. Corollary. The canonical map of compleves v : [M'-">M] — M" (with M,
M" in degree zero) induces a quasi-isomorphism

t Clont (G [M' == M]) — Clopy (G, M)
Proof. — The first complex in the exact sequence
0~ Coon (G [MZSM]) — Cop (G M2 M]) — Copp (G, M") — 0
is acyclic, being equal (up to a shift) to the cone of the identity map on C2, (G, M").
O
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3.4.4. Proposition. — Let M* (resp., N*) be a complex of ind-admissible R[G|-modules
(resp., flat R-modules). Then the canonical morphisms
C(?on(,(G7 j\[.) @R N® — C(.ont(G' M @R N.)

N* WR C(:om,(Gv AI.) (()111 (G N* QR ]\/[ )

are isomorphisms of complexes.

Proof. — The morphisms in question are given by the following collections of maps:
C(I()nt (G [”) @R NV — C(lom (G’ M* @R Nb)
a@n — ((g1,90) — (=1D)Palgr, .. 9) @)
respectively,
Na ®R (Y(ont (G’ ]\jb) - Ccom (G’ N” QQR A[b)
nea — (91,4, 95) = n@algr, ..., 95))

(cf. 3.4.5.2 for the sign conventions). It is sufficient to treat the case when both
M* = M and N* = N consist of a single module in degree zero. N is admissible,
as G acts trivially on it; thus M ®pg N is ind-admissible by Proposition 3.3.5(i). By

Lazard’s Theorem [La], N = lim Ny is a filtered direct limit of free R-modules of
B
finite type. Writing M = liﬂ]\[ﬂ (M, € §(M)), we have

Cooi(G, M) @ N = lim(Cs,

‘cont _§ Jcont
C(.om(G M ®rN) = 11_§II1(C((mt(G, M, ®R Nﬁ))

((J ]\[,,() XR N/g)

However, as N3 — R™P) for some integer n(/3), the canonical map

Coont (G, My) @ RMP — €2 (G My g RM)

cont

is an isomorphism for trivial reasons. The same argument works also for the second
morphism. O

3.4.5. Cup products
3.4.5.1. Let A, B be ind-admissible R[G]-modules. The cup product

U: Céont(Gv A) ®R C;z.()l]t(G B) I (‘]Jrj (0 A ®R B)

cont

is defined by the usual formula

(@UB) (g1, i) = g1, -, 9) @ (g1 9)(B(Git1. - Givs))-
As
S(aUf) = (6a)UB+ (=1)'aU(sB),
the maps U define a morphism of complexes

U: C. (G7 A) ®R Ct;ont(G7 B) I Cc.ont(G7 A ®R B)

cont
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This product is associative (with respect to the associativity of X* ® Y* (1.2.3)):
(UB)Uy=aU(BU7).
3.4.5.2. Let A*, B* be complexes of ind-admissible R[G]-modules. Recall that

Céznt G A. @ (()nt G7Aa)7

i+a=m
with differential d = da + (=1)% on C! (G, A%), where da : Ci (G, A") —
Clont (G, A*F1) s induced by da : A* — AT and §: CF,, (G, A%) — CiHL(G, A is
the cochain differential. Similarly, d = dp + (=1)*§ on C7, . (G, BY) ¢ CLIN (G, B*).

The differential on C* = A* ®p B* is equal to de = da ® 1 + (=1)*1 ® dp on
A® @pr B ¢ C**t?. The individual cup products
U;Z]b : Cé(mt (G7 Aa) ®R Czonl,(G7 Bb) — C(L:F)njt (G7 A(I ®R Bb)
defined in 3.4.5.1 can be combined - with appropriate signs —- to the total cup product
— ib t
u=((-1)" Uy ).
The signs are chosen in such a way that

S(aUp) = (6a)UB+ (—1)4e@a U (6)

(deg(ar) = i+afora € C! (G, A%)). As before, this means that U defines a morphism
of complexes

u:Ce

((mt(G’ A ) OQR C(()llt(G B.) - C(onl (G7 A. ®R B.)
Again, this product is associative:
(aUB)Uy=aU(BU~)

for o € Cl (G, A%, B € CL (G, BY), v € CE_(G,C%), as (—1)P(-1)l+)e =
(~1)ie) (1,
3.4.5.3. Let A, B be as in 3.4.5.1. The formulas

T:C . (G A) — (G, A)
(T())(g1-- . 90) = (=)' g1 gilalg, o g0 )

define a morphism of complexes

Cont

T: C(.ont(G’A> - C(.()nt(G7A)
which is an involution (72 = id) and is functorially homotopic to the identity

(see 3.4.5.5 below for more details).
The transposition 7 satisfies the relation

(3.4.5.1) T(aUB) = (~1)9(TB) U (Ta)
(fOF ES Ccont(G A) /3 S cont(G> B))
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3.4.5.4. For A*, B* as in 3.4.5.2, the involutions 7 on C?

cont

(G, A*) commute with
both ¢ and d 4, hence define a morphism of complexes 7 : C¢, (G, A*) — C2... (G, A®)

(and similarly for B*). Again, 7 is an involution homotopic to the identity. The
formula (3.4.5.1) implies that o € C%_ (G, A*) and 3 € C7_ (G, BY) satisfy

(s12)(T (@ Uf} B)) = (=1)**(=1)(TB) U} (T o)
(where (s12) is induced by s12 : A* @ B* = B* @g A*); it follows that
(512)(T(@UB)) = (=) (=1)** (= 1)V (=1 (T B)U(T ) = (— 1) &) 46BN (T3) (T ).

In other words, the diagram
U

C’(.:ont(G7 A.) ®R Cf.:()nt, (G’ B.) - C(.ont(G? A. ®R B.)
J,SMO(T@T) J,TO(SH)*
C( ()nt(G B ) ®R Cc.'ont(G7 A.) L’ C(.(mt (G7 B. ®R A.)

is commutative (all four maps are morphisms of complexes).

3.4.5.5. A homotopy id ~ 7, functorial in both G and M, can be defined as follows.
Let G be any discrete group and Z[G]? the standard bar resolution of Z by free
Z[G)-modules:
Z[G)Y = D ZIG)- ol lgi]
g1;---:9i
with differentials

Algrl -+ 1gi] = grlgel -+ 1gi] +Z Y0gil - 1gigival -+ lgi] + (=1 gl -+ lgia].

The cochain complex C*(G, M ') of any complex of G-modules M* is equal to
Hom °ZE1(1]M (Z]G)2, M*).

The formula
Tl g = (=10 200 gilg M- 1gr '),

extended by Z[G]-linearity, defines an involutive morphlsm of resolutions 7 : Z[G]? —

Z[G)? lifting the identity on Z. It follows from general properties of projective res-

olutions that there is a homotopy a : id ~ 7T on Z[G]?. Moreover, any pair of

homotopies a,a’ : id ~ T on Z[G]? is related by a second order homotopy b : a ~ a’.
Fixing a homotopy a : id ~» T on Z[G]¥ defines a homotopy

Hom* ™" (a,idy;) : id — T

on C*(G, M), functorial in M. Let G = F be a free group on countably many gen-
erators g; (j € N). The values of a([g1]---]g:]). expressed in terms of the generators
gj, define universal formulas for a : id ~ 7 on Z[F]?, valid for every G. Then
Hom*"*°(a,idy) : id ~ 7 on C*(G, M) will be functorial in both G and M (as
in 3.4.1.6).
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If we fix another homotopy a’ : id ~» 7 on Z[F]?, then
Hom""aiv"(b, idas) : Hom""ai"e(a, idy ) —~ Hom"“"‘ivc(a/, idps)

is a second order homotopy, functorial in both G and M.

3.5. Continuous (hyper-)cohomology

3.5.1. Let G be a topological group and M (resp., M*) an ind-admissible R[G]-
module (resp., a complex of ind-admissible R[G]-modules).

3.5.1.1. Definition. — The continuous cohomology (resp., hyper-cohomology) of
G with values in M (resp., M*) is defined as

(‘ont(G M) (C. (G7 M))7 resp., c()nt(G ‘NI ) HZ(C:ont(Gv M.)>

cont

3.5.1.2. It follows from the exactness of lim that

AL
(()nt(G ]\/[) hﬂ} Hconr(G M(l)
MqeS(M)
More generally, 3.4.1.5 implies that H? (G, —) commutes with filtered direct limits.

3.5.1.3. Proposition. — The functors H! (G,—) (i > 0) form a §-functor on

(ig[‘g‘i*dl\/[od) with values in (RMod), satisfying H(‘)Ont(G, M) = MC.
Proof. — The fact that we have a J-functor follows from Proposition 3.4.2. The

cohomology in degree zero is equal to

(ont(G ]\/[) hIIl <onL(G Al )

Mo ES(M)

with
G, M,) = hm(Ma /m" M) = M¢

Cont ( @’

hence HY | (G, M) = MY as claimed. O

3.5.2. Any decreasing filtration on M* by subcomplexes FPM* of (necessarily ind-
admissible) R[G]-modules induces by Proposition 3.4.2 a filtration

FrCe (G, M*) =Ce (G, FPM*®)
satisfying
15 Ceont (G M*) = Cloni (G grp (M)
This filtration defines a spectral sequence with
(3.5.2.1) EPY = H{ (G grp (M*)),

which under suitable conditions on the filtration FPM?* converges to HPtY(G, M*).
We shall need the following two special cases of (3.5.2.1).
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3.5.3. The “stupid” filtration FPM*® = g5, M* given by

' MY, >
(055 M*)" = { -
0, 1< p

satisfies grf.(M*) = MP[—p] and gives rise to the first hyper-cohomology spectral
sequence
(3.5.3.1) Ipra = g (G, MP) = H" (G, M*),

cont

which is convergent if M* is bounded below.

3.5.4. The truncation filtration F~PM* = 7, M* on M* is defined by

0, i>p
(rapM*)' = ZP = Ker(MP-LMPHY), =
M?, 1< p
Its graded quotients are
(3.5.4.1) gt (M*) = {AJ—H/Z—P*&Z—P}

(with Z~P in degree —p). The cokernel of the map d in (3.5.4.1) is equal to HP(M?*).
Applying Corollary 3.4.3, the spectral sequence (3.5.2.1) becomes — after renumber-
ing — the second hyper-cohomology spectral sequence

(3.5.4.2) UEDT = HE, (G, HY(M*)) = HIM(G,M*),

cont, cont,

which is convergent if M* is cohomologically bounded below.

3.5.5. Proposition. — Let v : M* — N°* be a quasi-isomorphism of cohomologically
bounded below complezes of ind-admissible R|G]-modules. Then the induced map

Us C(:ont(Gv ]\/[.) - C:ont(G’ N.)
s again a quasi-isomorphism.
Proof. — The map u induces a morphism of convergent spectral sequences (3.5.4.2)

HET(]\/I.> N IIE,«(N.),
which is an isomorphism on F5. Hence the induced map on the abutments

HZ:ont(G“]\/‘[.) - Hi (G,N.)

cont
is an isomorphism as well. O
3.5.6. Corollary. — The functor
ct (i}g[dé?dl\/lod) —  C*(gMod)
Me —  Ce (G M®)

cont
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preserves homotopy, exact sequences and quasi-isomorphisms, hence defines an exact
functor
RT cont(G. —) : D (51 Mod) — D (zMod).
3.5.7. Asin 2.4.2, fix a system of parameters (x;) of R. The shifted tensor product
M* — (M* ®p C*((x:), R))[d]

with the bounded complex of flat R-modules C*((x;), R) defines functors (independent
of the choice of (z;))

@ : D* (% Mod) — D" (§5}Mod)
D*(Bi6i"Mod) — D* (3} Mod)
(for ¥ = @, +,—,b). U T € Dy (=), then ®(T) € Dp_.,p(—).
3.5.8. Proposition. — For every M € D7, B ft(‘,?”[dc,i‘dlvlod) the canonical map
(R cont (G, M)) — Rl cont (G, (M)
is an isomorphism in DT (rMod).

Proof. — Represent M by a bounded below complex M* of ind-admissible R[G]-
modules. The L.H.S. (resp., R.H.S) is represented by the complex (C2...(G, M*) ®p
C*(R))[d] (resp., C2, 1 (G, (M* ®@r C*(R))[d])). The statement follows from Proposi-
tion 3.4.4.
3.5.9. Let J* be a bounded complex of injective R-modules. The functor

M*® — Hom@%(M*, J*)

defined on complexes M* in ( Rd[(]Mod) preserves homotopies, exact sequences and
quasi-isomorphisms; it defines an exact functor

RHomp(—, J*) : D (§iMod)™” — D (i Mod)

which maps Di(R[G]Mod) to DqE(I‘?d[G]Mod).
If J'* is another bounded complex of injective R-modules and J* — J'* a quasi-
isomorphism, then the induced map

Hom$,(M*, J*) — Hom¥y(M*, J'*)
is also a quasi-isomorphism. As a result, we obtain a bifunctor
RHompg(—, =) : D (%gMod)” x D (inj — gpMod) — D (|5 Mod).
The same argument shows that Hom¥,(M*, J*) defines a bifunctor

RHompg(—, =) : D™ (igMod)™ x D*(gMod) — D* (§jMod). O
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3.5.10. Proposition. — For every ideal J C R, the functor

I ((rynieMod) — (rjMod)
associated to the canonical projection f: R — R/J has the following property

M e ((R/J)[G]M()d) is (ind-)admissible < f*M € (R[C;]Mod) is (ind-)admissible.

If true, then Co, (G, M) = Ce... (G, f*M).
Proof. This follows from the definitions and the fact that an R/.J-module N is of
finite type iff f*N is of finite type over R. O

3.6. Derived functor cohomology
3.6.1. Derived functors of (—)“

3.6.1.1. Denote by I'qer (G, —) (11'\}[‘}}3‘(‘1\10(,1) — (gMod) the (left exact) functor
M — MS%. As the category (i,gfi(';]‘dl\/lod) has enough injectives, the right derived
functor of I'yer (G, —),

R Tuer(G, =) = DT (Hig1"Mod) — D (rMod),

exists and can be computed using injective resolutions. The cohomological derived
functors

(iler(Gﬂ -) = Hi(R+F(1(3,»(G, =) (ilr?.fgtlldMod) — (rMod) (i 20)

form a universal d-functor.

3.6.1.2. The derived functor RT 4. (G, M) has the usual functoriality properties
with respect to pairs of morphisms v : G’ — G, v: M — M’ as in 3.4.1.6.

3.6.1.3. In particular, for a subgroup H C G equipped with induced topology and
g € G, the morphisms u : gHg~ ' — H, u(ghg™') = h, v : M — M, v(m) = gm,
induce the conjugation map

Ad(g) : R"Tger(H, M) — R Tger(gHg ', M).

If H < G is a normal subgroup of G, then the maps Ad(g) define an action of G
on RTTyer(H, M). The induced action on cohomology HY . (H, M) factors through

der
G/H (each h € H acts trivially on HY, (H, M) = M hence on all H}_(H, M), by
universality of this d-functor). More precisely, if J* is an injective resolution of M

in (ilg[‘il'ﬁdl\/lod) and h € H, then Ad(h) is represented by the identity morphism of

(J*)H: thus the action on R*Tq.,(H, M) factors through G/H.
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3.6.1.4. Still assuming that H is a normal subgroup of G, the conjugation maps
Ad(g) also act on the complex of continuous cochains Cg,,.(H, M). For every h € H
there is a homotopy s between Ad(h) and the identity map acting on C¢. . (H, M); it
is given by

(sn(@)(h1,. o hno1) =Y (=1)"te(hy, .. hica, bR by o h ™ i),

This implies that the action of G on RI'cont(H, M) factors through G/H.

3.6.2. Proposition
(i) There is a canonical morphism of functors ¢ : RTlaer(G, —) — Rl cont (G, —);
denote by 0L(—) : Hi (G,—) — H! (G, ,—) the corresponding morphism of

§-functors.

(i) If H < G is a normal subgroup of G, then 0 commutes with the action of G/H
on both sides.

(iii) Let n > 1. If 0% "(M) is an isomorphism for all M € (‘“ficj‘dl\/lod) and
H: (G,—) is effaceable on (%ijTdMOd) then 6% (M) is also an isomorphism for
all M.

(iv) HL (G, —) is effaceable on (j.r!‘[d(y]‘dl\/lod)

(v) 0%(M),0L,(M) are isomorphisms for all M.

Proof

(i) Let M* be a bounded below complex in (‘Ig[dc]adMod) Fix a morphism of com-
plexes M* — J* which is a quasi-isomorphism and such that all J* are injective. Then
the morphism 0o (M*) in D™ (gMod) is represented by

(I — Con (G ) E2Cl (G M),

(ii) follows from the definitions and (iii) is a standard general nonsense.

(iv) Given M € (iﬁ[d(}"]‘dMod) we must show that there is a monomorphism v : M —
E in (ipd ?dMod) such that the induced map on cohomology wu, : HY (G, M) —

R[G
H},. (G, E) is zero. Fix cocycles ¢; € Cl,, (G, My;)) (for a suitable index set J and

M, ;) € S(M)) such that their classes in H! (G, M) generate H} (G, M) as an
R-module. Let E be the R-module E'= M & @, ; R with an R-linear action of G

given by

g(m.{ri}jes) = ( +ZTJC] {TJ}J€J> (9 € G).

JjeJ

For every finite subset Jo C J and M, € S(M), the R[G]-module

E(Jo, My) := <Ma + Y Ma(j)> s@PRCE

j€Jo Jj€Jo
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lies in S(E); as E = E(Jo, My), E lies in (i,’%’[d(-';"]“il\'l()(i). There is an exact sequence
in (‘}?‘f[‘i(}?‘iMod)
0— MLEL@R — 0,
JjeJ

with u (resp., v) being the canonical inclusion (resp., the projection). For every i € J,

g ule(g)) = (g - (0. {r, = {(1) b))

with values in F is a coboundary, hence u, is the zero map as required.
(v) 0%(M) = id; the statement about 8%, (M) follows from (iii) for n = 1 and (iv).
|

the cocycle

3.6.3. Let H < G be a closed normal subgroup of G. The functor Tge (G, —) is
equal to the composition of T'qer(G/H, —) with the functor

Paer(G,G/H, =) = (higi"™Mod) — (& Mod)

sending M to M. This functor preserves injectives, since it has an exact left adjoint,
namely f* for f: R[G] — R[G/H]. We have, therefore, a canonical isomorphism of
functors

R T4 (G, —) > R T4 (G/H, —) o R Tyer (G, G/H, —)
and the corresponding spectral sequence
(3.6.3.1) Ey) = Hi (G/H,R'Te,(G,G/H, M)) = H}7 (G, M)
(for M € (pigi‘Mod)).
3.6.4. Proposition. Let H < G be a closed normal subgroup of G. Denote by Resg. u
the forgetful functor
Resa i+ (g Mod) — (B3 Mod).
Then
(i) There is a canonical morphism of functors
Resg /i (1} © R' Tae(G,G/H, —) — R¥Taer(H. —) o Resg i

commuting with the action of G/H on both sides.
(ii) The induced maps on cohomology

RIT4ee (G, G/H, M) — H_(H, M)

are not isomorphisms in general, even for g = 1.
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Proof

(i) Denote the adjoint pair of functors from Proposition 3.3.5(ii) by iqg,jg. For
M e (ilg[dc';'i‘dMod) let J* be an injective resolution of ic;(M) in (pigMod); then je(J*)
(resp., ju(J*)) is an injective resolution of M (resp., of Resq g (M)). The inclusions
ja(J) C ju(J?) give rise to a morphism of complexes (ja(J*))¥ — (ju(J*))*, which
represents a morphism

RCSG/H’{I}(RJerQr(G, G/H, M)) — R+Fd(,r(H, RGS(LH(M))

in DT (gMod). This morphism does not depend on the choice of J* and has the
required functoriality properties.

(ii) Tt is sufficient to find G, H and M such that H} (H,M) = HL  (H,M) is
not an ind-admissible R[G/H]-module (since R'T4er(G, G/H, M) is ind-admissible).
For example, let p > 2 be a prime number, R = Z,, K = Qu(1p), Koo = Qp(ptp=),
G = Gal(K/K), H = Gal(K/Kw), I' = G/H = Gal(Kw /K) = Z,, M = Z,(1) =
lim gpn (K). In this case

!

cont,

(H,M) = li7<_1EnH1 (Gal(K/Kw), pipn ) = liTm(K;O ® Z/p"7Z)

cont(H7 M) is not
an ind-admissible Z,[I']-module. -

is a non-torsion module over the Iwasawa algebra Z,[I'], hence H!

3.6.5. The whole point of Proposition 3.6.4(ii) is that the forgetful functor Resq, g
need not preserve injectives. Such a pathological behaviour never occurs for discrete
groups and modules, when Resg y has an exact left adjoint Z[G] ®zg) (—). This
point is usually glossed over in standard treatments of the Hochschild-Serre spectral
sequence, such as [We, §6.8.2].

3.7. Localization

3.7.1. Let Ry =.7"'R be the localization of R at a multiplicative subset.” C R.
Put

L
WR gy ="'wr = wr g Ry = wp®rRy;

3

this is an object of Db( Mod) which can be represented by a bounded complex of

R
7
injective R g-modules w}, @r Ro (the localization M .7 " M preserves injectives).
Define
9Ry(—) = RHomRy(—,wF{y);
then the canonical map
e: M _’QRy(@Ry(M))
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is an isomorphism in Dy (g ,Mod) for every M € Dp(r_,Mod). We have

57 54
S 'RHomp(X,Y) = RH01111gy(V‘1X,y_1Y)

for X € D, (rMod), Y € D" (rMod) (resp., X € Dy(rMod), Y € D*(inj — gMod)).

3.7.2. Definition. — An R |G]-module M is admissible (resp., ind-admissible) if it is

admissible (resp., ind-admissible) as an R[G]-module.

Admissible (resp., ind-admissible) Rc/[G]-modules form a full subcategory
(%L[GIMod) of (‘}‘?fi[cll\'lod) (resp., (‘Igj[ﬁMod) of (ilg[d('ﬁdMod)). This notation is
slightly ambiguous; a priori, these categories depend not only on R, but also on R.
3.7.3. Lemma. — If M € ('R“f[g}Mod) is of finite type over Ry, then M 27N for

some N € (}Q’[‘ET(IMOd) Rft = (%}G]M()d) R-ft’

Proof. — The R g-module
M= lm M,= Ilm ¥ 'M,

1
Mo€S(M)  MaeS(M)
is Noetherian; thus M =.& "' N for some N = M, € S(M). O

3.7.4. Proposition
(i) All statements of Lemma 3.2.2, Corollary 3.2.3, Proposition 3.2.5-3.2.6, 8.4.4
hold if R is replaced by Ro.
(i) If M € Dt (iR‘f[dC}le\/Iod), then the canonical map
'y_lRFcom,(Gv M) — RF(tnnl,(Gvy_]M)

is an isomorphism in D* (g _,Mod).

Ry
Proof. — (i) is easy; (ii) follows from Proposition 3.4.4 applied to N = R. O
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CHAPTER 4

CONTINUOUS COHOMOLOGY OF PRO-FINITE
GROUPS

This chapter treats basic finiteness properties of continuous cohomology of admissi-
ble R[G]-modules in the case when G is a pro-finite group. Section 4.4 can be ignored;
it is unrelated to the rest of the article.

4.1. Basic properties

Throughout Chapter 4, G is a pro-finite group, i.e.,
G =limG/U,
U

where U runs through all open normal subgroups of G (they are all of finite index
in G).

4.1.1. Recall from Lemma 3.2.4 that an R[G]-module T (resp., A) of finite (resp.,
co-finite) type over R is admissible if and only if G acts continuously on T" equipped
with m-adic topology (resp., on A equipped with discrete topology). Assuming this
is the case, each of the G-modules M := T/m"T, Alm"|, A is discrete, which means
that

C(.:ont(Gﬂ J\j) = hﬂ C.(G/U7 ]\/[U) =C* (G’ ]VI)
U

is the usual complex of locally constant cochains, hence
Héont(G7 ]\/[) = HZ(Gv M) (L 2 0)
4.1.2. Lemma. — The canonical maps

lim O, (G, A[m"]) — €2, (G, A)

=2 Ycont
n
c:

cont

(G, T/m"™T)

cont

(G, T) — limC,
o
are isomorphisms of complezes.

Proof. — This follows from the definitions. O
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4.1.3. Corollary. — For each i > 0 there are canonical isomorphisms

li%;Hi(G, Am")) = HY(G,A) = H! (G, A)

cont

and an exact sequence

0 — lim WH" (G, T/m"T) — H.

cont

(G, T) — lim H'(G,T/m"T) — 0.

Proof. — lim is an exact functor. As regards lim, the projective system of complexes
n > C2 (G, T/m"T) is Mittag-Leffler (in fact surjective, by Proposition 3.4.2), so
the usual “universal coefficient theorem” ([We, §3.5.8]) applies. O

4.1.4. Lemma. — Assume that char(k) = p > 0 and that H < G is a closed normal
subgroup of G, with pro-finite order prime to p. Then the inflation map

inf : C(.tnut(G/Hv ]\[”) - C(?()nt(G7 ]\1)
s a quasi-isomorphism.
Proof. The inflation map is induced by the pair of morphisms G — G/H, M —

M (using Lemma 3.3.6(ii)). According to 3.5.1.2 we can assume that M = T is of
finite type over R. Corollary 4.1.3 further reduces to the case of M = T/m"T of
finite length over R. In this case M is a p-primary torsion discrete G-module and the
statement follows from the degeneration of the Hochschild-Serre spectral sequence
(4.1.4.1) EY = H(G/H,H'(H,M)) = H"™(G, M)

(Ey7 =0 for j #0). O

4.2. Finiteness conditions

4.2.1. Consider the following finiteness conditions on G:

(F) {r(H'(G,M)) < oo for every discrete R[G]-module M of finite length over
R and every i > 0.

(F') dimy H'(U, k) < oo for every open normal subgroup U < G and every i > 0.

By Shapiro’s Lemma, (F) for G implies (F') for every open subgroup of G; in
particular (F') implies (F’).

4.2.2. Lemma. — We have implications
(F) < (F) = H!,,,(G,T) = lm H (G, T/m"T) (Vi >0).
n

Proof. — Assume (F') holds. Given M as in (F), there is an open normal subgroup
U < G acting trivially on M. Then (F) follows from the Hochschild-Serre spectral
sequence (4.1.4.1), as G/U is finite and £r(H’ (U, M)) < oo by (F') and dévissage.
The converse is true by Shapiro’s Lemma, as observed in 4.2.1.
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Assuming that (F') holds, the @(1)-t0rrll in Corollary 4.1.3 vanishes, as n +—
H=YG, T/m"T) is a Mittag-Leffler system. d

4.2.3. Proposition. — If G satisfies (F), then H! (G, T) (resp., H: . . (G, A)) is of

cont

finite (resp., co-finite) type over R for every i > 0.
Proof. — Induction on d = dim(R). There is nothing to prove for d = 0. If d > 1,
choose # € m such that dim(R/zR) = d — 1. The R-module M = H! (G, T) =
lim M, is the projective limit of a surjective projective system of R-modules of finite
length M,, = Im(M — H(G,T/m"T)) satisfying m"M,, = 0. Denote by j, : M —»
M, the canonical projection. The exact cohomology sequences of

0 —T[z] —T- 2T —0

0— 2T —T —T/2T —0
(valid by Proposition 3.4.2) together with the induction hypothesis show that M /x M
is of finite type over R/xR. Fix an epimorphism (R/xR)* — M/xM and lift it to a
homomorphism of R-modules f: R* — M. Put N = Coker(f), N,, = Coker(j, o f),

K, = Ker(j, o f). The projective system N, /xN, consists of R-modules of finite
length, has surjective transition maps and its projective limit

lim(N,./xN,.) = (gmzv) /:1:(!ir_anN,,,> =0
vanishes, being a quotient of N/zN = 0. It follows that, for all n, N, /zN, = 0,
hence N,, = 0 by Nakayama’s Lemma. The projective systems of exact sequences
0 — m"R* — K,, — K,,/m"R* — 0, 0— m"R* — R — (R/m")* — 0

imply that
l%n(l) K, = li;_n(l) mPRe — !l,_ILIl(l) R — 0,
and the exact sequence
0— K, — R*— M, —0
yields
R — li_mMn(: M) — !i—m(l)Kn =0,
n n
proving that M is of finite type over R. Dually, P = H(G,A) = lim P, where
n
P, = Im(H*(G, A[m"]) — P) is an injective inductive system, and P[x] is of co-finite
type over R/zR. Fixing a monomorphism P[z] — (I[z])’ and extending it to a
homomorphism of R-modules ¢ : P — I°, the vanishing of

h,—?} (P, NKer(g))[m] C IIT)III (P, NKer(g))[z] C Ker(g)[z] =0

implies that all maps P, < P — I’ are injective; thus g : P — I is also injective, as
required. O
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4.2.4. Lemma. — If G satisfies (F'), then the canonical maps

lim D (C2o0 (G, T/m"T))L»D(lnn ce (G T/m”T))
( llIIl C'( ont (G7 A[m"«])> ‘L’ ll (C('()nt (G7 A[m" )>
are quasi-isomorphzsms.
Proof. The induced map on cohomology H ~%(u) is equal to the composition

limy D (H'(C T/m"T))L»D(hmH (@, T/m”T)) 2, D(H, (G, T))

The map u; (resp., uz) is an isomorphism by a combination of 2.3.4 and Proposi-
tion 4.2.3 (resp., by Lemma 4.2.2). Similarly, the composition of

D(H (G, A)" H (1 D(C2y (G Alm])) ) lim D(H'(G. Afm™)

is an isomorphism by 2.3.4 and v, is an isomorphism by the argument used in the
proof of the second implication in Lemma 4.2.2. O

4.2.5. Proposition. — If G satisfies (F), then the functor M — RIcont(G, M) maps
D (ki Mod) (resp., Dy, (61 "Mod) ) to Dy (rMod) (resp., D, (rRMod)).

Proof. — For M = T or A this is the statement of Proposition 4.2.3. The general
case follows from the hyper-cohomology spectral sequence (3.5.4.2). O

4.2.6. Lemma. If char(k) = p > 0 and cd,(G) = e < 00, then
(i) Hl (G, M) =0 for every i > e and every ind-admissible R[G]-module M.

(ii) If M* is a bounded below complex of ind-admissible R[G]-modules with
HY(M*) =0 fori > ¢, then H, (G, M*) =0 for every j > ¢+ e.
Proof

(i) By 3.5.1.2 we can assume that M = T is of finite type over R. It follows from
Corollary 4.1.3 that H¢  (G,M) =0 fori >e+ 1. For i = ¢ + 1 we have

HEW(G, M) = mn“)Hf (G, T/m"T) =0,

cont,

since n — H¢(G,T/m"T) is a surjective projective system.
(i) This follows from (i) and the spectral sequence (3.5.4.2). O

4.2.7. Corollary. — Under the assumptions of 4.2.6,
(i) The functor
RIcont (G, =) : DT (61" Mod) — D*(rMod)
maps D" (i} Mod) to Db(rMod).
(ii) If, in addition, G satisfies (F), then Rl cont(G,—) maps D, ft(m[d TdMod)
(resp., D}"%_coft(i]‘%‘[dé?dMod)) to Dy (rRMod) (resp., Dzoft(RMod)) for x = +,b.
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Proof. — Combine Proposition 4.2.5 and Lemma 4.2.6. O

4.2.8. Perfect complexes. — Let A be a Noetherian ring. Recall ([SGA6, Exp. I,
Cor. 5.8.1]) that a complex M* of A-modules is perfect (i.e., there exists a quasi-
isomorphism P* — M?*, where P* is a bounded complex of projective A-modules of
finite type) iff the following conditions are satisfied:

(a) (Vi € Z) HU(M?*) is of finite type over A.

(b) H{(M*) = 0 for all but finitely many i € Z.

(¢) The complex M* has finite Tor-dimension, ¢.e.,

(3c € Z) (VN € (uMod)) (Vi > ¢) Tor(M*,N) = 0.

Perfect complexes over A form a full subcategory D, ;(aMod) of Db(aMod). A
theorem of Serre and Auslander-Buchsbaum ([Br-He, Thm. 2.2.7]) implies that, for
our ring R,

Ris regular <= D, (rRMod) = D‘If’t(RMod).

One says that M* € D, ((aMod) has perfect amplitude contained in |a,b] (nota-
tion: M* € plabl

parf

P? =0 for every i < a and i > b. If this is the case, then

(aMod)) if the complex P* above can be chosen in such a way that

M* e D (4Mod) «— H(M*) = 0;

parf
more generally,

D[mb](Al\/IOd) n D[c,d](AMod) _ D[max(a,c),min(b,d)](AMOd)

parf parf parf

[a,b]
parf

([SGAS6, Exp. I, Lemma 4.13]). The functor RHom 4(—, A) maps D’ 2 (4Mod) into

DUt Mod).

parf

4.2.9. Proposition. — Assume that G satisfies (F'), char(k) = p > 0 and ¢d,(G) =
e < oo. Let.s be a multiplicative subset of R and R the corresponding localiza-
tion. If M* is a bounded complex of ind-admissible R[G]-modules such that M* ®p

Ry € Dl[)aa’ff] (RyMod) (if we disregard the G-action), then R cont(G, M*) ®p Roy €

plabel Mod) .

parf (Ry
Proof. — Tt follows from Corollary 4.2.7 that RIcon(G,M*®) is an object of
Djlit( rMod); it remains to verify that R cont (G, M*) ® g R ¢ has finite Tor-dimension
over Ry As explained to us by O. Gabber, this follows by a standard “way-out”
argument from the fact that R cont (G, —) commutes with filtered direct limits: let
N* be a bounded complex of R g-modules; consider the canonical map

et (Coont (G M) @ Ryp) @Ry N* — Clont (G, (M* @ Ryp) @1, N°).
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As R is flat over R, it follows from Proposition 3.4.4 that Aye is an isomorphism
of complexes whenever N*® is a complex of flat Rg-modules. Given an arbitrary
R g-module N, choose its resolution F'* by free R oo-modules:

= P P P N 0,
Fix k >> 0 and consider the truncated complex

Fp = (05 yF*): F7F — ... — FO
it satisfies

12

. R
(Vj <k—b) HI((M* @rRy)®n,, F7) = Tor;” (M* ©r Ry, N)
(V€ <k- b) H_['((C:Om(G, A[.) QR RV) ®R§/ Fl:)

R
= Tor,” (C2yn (G, M*) @ Ry, N).

‘cont
The cohomology of the bounded complex (of ind-admissible R[G]-modules)
B* = (M*@Rr Ry) DR I

satisfies

(Vj>b—k) [HI(B)#0=a<j<bl|.
It follows from Lemma 4.2.6 and the hyper-cohomology spectral sequence

Ey! = Ho (G, H(B")) = H.}1(G. B*)
that

By 40=[0<i<eand(a<j<borj<b-—k).

Using the fact that Ape is an isomorphism, we get
(Ml<k—-b-—e)
R
Torey (o

cont

(G,M*) @5 Ry, N) = Hl (G, B*) #£0 — —b—e < £ < —a,].

This finishes the proof that C¢,, (G, M*) @ R has perfect amplitude contained in
[a, b+ €], since k can be chosen arbitrarily large. |

4.2.10. Proposition. Let ¥ C R be a multiplicative subset. If G satisfies (F),
then RTUcont(G,—) maps D} 4 (pd2IMod) to D;;(RyMod). If. in addition,

R it \Ry [G]
char(k) = p > 0 and cdp(G) < o0, then Rl cont (G, —) maps Dl}%y_ﬂ(igi‘[?;}Mod) to
D}’t( R yMod) .
Proof. — Combine Lemma 3.7.3, Proposition 3.7.4 (ii), Proposition 4.2.5 and Corol-
lary 4.2.7. O
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4.3. The duality diagram: T, A, T*, A*
4.3.1. Let T € D;_ﬂ(i,g‘[(g*]‘dMod); put A = ®(T) € Dg_wﬂ(ifg[%*]‘dl\iod). Proposi-
tion 3.5.8 then implies that the canonical map

(4.3.1.1) B(RTcont (G, T)) — Rl eon(G, A)

is an isomorphism in D™ (zMod).

If we assume, in addition, that G satisfies (F'), then RIcont(G,T) (resp.,
Rl ont (G, A)) lies in DA;Q(RMod) (resp., D:Q)ﬂ(RMod)). Combining the spectral
sequence (2.8.6.1) with the isomorphism (4.3.1.1) we get a spectral sequence

(4.3.1.2) Ey = Exty(D(HZ,, (G, A)),w) = H7(G,T).

cont cont
4.3.2. The construction from 3.5.9 defines functors

2(—) = RHomp(—,w) : DI{_I-,I("I‘%G]MO(,i)(JP — DR_ft(%i[G]Mod)

D(-) = RHomp(—.1) : D (5iMod)*” «— Dp_..q (55 Mod)
which map D* (31, Mod) to D¥ (*}EI[G}Mod) (hence D° (%‘[G]Mod) to D® (‘}‘?f’[G]M()d)).

R[G]
Together with & these functors define a duality diagram

ac op 2 ac

D s (ijeyMod) Dp s, (e Mod)

D
@ P

ac op ac

DR»(:()ff,(R{G]MOd) DR-(:()ft (R%G]I\/Iod) s

commutative up to functorial isomorphisms defined by the same formulas as in 2.8.1.
This diagram makes sense for an arbitrary topological group G, not necessarily pro-
finite.

4.3.3. Proposition. — Let T € DE_ft(Eﬁ(}?dNIod) ;put A = ®(T). Assume that G sat-
isfies (F'). Then there are spectral sequences

Ey = Hi Y (HL, (G, T)) = HIY (G, A)

{m} cont cont
By = Bt (D(H,(G. A)) = D(HL (G.T)).

Proof. — Apply Proposition 2.8.7 to Rl¢ont(G,T), Rl cont(G, A) instead of T, A
(which is legitimate by 4.3.1). Of course, the spectral sequence 'E, is just D(4.3.1.2).
O

4.3.4. In the special case when R = Z,, and T is free over Z,, the spectral sequence
E57 degenerates (assuming (F')) into a short exact sequence

(4341) 00— Hgont(G7 T) ®Zp QP/ZP - Hgont(Gv A) - Hj+1(G7 T)tOI‘S - 0’

cont,
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which coincides — up to a sign — with a piece of the cohomology sequence of
0—T —V—A—0,
where V =T @z, Q,.

4.3.5. Applying 2.8.6 and 2.8.9 to RI'cont (G, T), Rl cont (G, A) instead of T, A (again
assuming (F')) we obtain exact sequences in (rMod)/(pseudo-null)

0 — ExtL(D(H? (G, A)),w) — H

cont (:(mL(G7 T) - EXt(;\’(D(H(]ont(G7 A))7 (.d) —0
resp., in (rkMod)/(co-pseudo-null)

0 — H{yy (Hloui (G T)) — Hlon(G. A) — H{}(HISL(G.T)) — 0

cont {m} cont,
0— H?m} (D(Hgont(G7 A))) —>D(Hgont(G>T)) - H?n:}l (D(H({(;l]é(G’ A))) - 0’
generalizing (4.3.4.1). Again, H?m}(H(’;Om(G,T)) (resp., ExtL(D(HZ\ (G, A)),w))

is the maximal R-divisible (resp., R-torsion) subobject of H? (G A) (resp.,
H? (G, T)) in (rRMod)/(co-pseudo-null) (resp., (rMod)/(pseudo-null)).

4.4. Comparing R™T'., and RI¢on

4.4.1. Proposition. If ¢dy(G) < 1, then 0g(M) : R T ger(G, M) — RIcont(G, M)
is an isomorphism for every M € (i,’g[‘g‘]“ll\"l()(l).

Proof. The functors H,,.(G.—) arc effaceable for ¢ = 1 (resp., i > 1) by Propo-
sition 3.6.2(iv) (resp., because they are zero, by Lemma 4.2.6 (i)). The claim follows
from Proposition 3.6.2(iii) by induction. O

4.4.2. Deﬁnitio-n. Denote by (i}“}[d(;‘?dMO(l){m} (resp.. (pigMod) {m}) the full sub-
category of (}.,?[d(‘;‘]“dMod) (resp., of (R[G]Mod)) consisting of objects M satisfying
M =U,5, M[m"].

4.4.3. For a given M € (};fl(}i‘dMod){m}, every M, € S(M) is an R-module of finite
length, hence it is discrete in the m-adic topology. This implies that the normal
subgroup U = Ker(G — Aut(M,)) < G, which acts trivially on M, is open in
G, hence M is a discrete G-module and C¢, (G, M) is the usual complex of locally

constant cochains. Using the language of [Bru], (%‘F(}TdMod is the category of

) o)
discrete modules over the pseudo-compact R-algebra

R[G] = lim R[G/U].
U

As in Proposition 3.3.5(ii) there is an adjoint pair of functors ', j/, where

i (Re"Mod) |, — (g6 Mod)
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is the (exact) embedding functor and j'(M) = U,,5, M[m"]. As in Proposition 3.3.5,
j' preserves injectives and (‘}'a‘[d(yi‘dMod) (m} has enough injectives of the form j'(J),
where J is injective in (i,';{i(,jldMod). The following statement is not an abstract non-

sense.

4.4.4. Proposition. — The embedding functor i’ : (”'[d adMod
serves injectives.

) (m} (iﬁ[dc‘;]‘dMod) pre-
Proof. — Let J be injective in (%‘f};“fdMod) (m}° We must show that for every diagram
in (il'?ffjék]‘dl\/lod) with exact row
0 — X 5 Y

g

J
there is a morphism ¢ : Y — J such that f = gu. A standard argument using Zorn’s
Lemma reduces the problem to the case when X and Y are of finite type over R. In
this case f factors through X/m"X for suitable n. By Artin-Rees Lemma, there is
k > 0 such that

Ker(up g : X/m" X — Y/mntry)

maps to zero in X/m"X . This implies that the projection X/m"** — X/m"X factors

through Im(uy,4x). In the diagram

u

0 — X — Y

| |

0 — Im(upyr) — Y/m""_kY

X/m"X

|

J
both Im(u, 1) and Y/m"T*Y are objects of (IR?[d(TdI\/IOd) (myi it follows that there is

h:Y/m"kY — J extending Im(u,,1) — J. The composition g : Y — Y/m"T+Y 2,
J satisfies gu = f as required. O
4.4.5. Lemma. — If G is a finite group, then

(1) (md adMOd) ( [Gll\/IOd)
(ii) Co (G, M) =C*(G,M), H!,,.(G,M)=H(G,M) (M € (R[G]Mod),i > 0).
(ii) (Vi > 1) Higne(G.~) is effaceable in (figi"Mod) = (grieMod).
(iv) (Vi = 1) H (G, —) is effaceable in (‘Ig[de‘dMod) m} = = (Rriq] Mod){m}.
(v) (Vi> 1) Howi(G, =) wanishes on injective objects of (rigMod) resp.,
(ricMod) (,
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Proof. The statements (i), (ii) follow from the definitions. As regards (iii) and (iv),
every M € ( R[G]Mod) embeds to the induced module Homp(R[G], M) which has
trivial cohomology. Finally, (v) follows from (iii) and (iv). O
4.4.6. Proposition. — Let G be a pro-finite group. Then
(i) If J is injective in (g “Mod) then (Vi > 1) H! .(G,J) = H} (G, J)=0.
(ii) The map

{m}’

()G(A[) : R+Fder(Gv ]\/[) B RFC"“"(G’ Aj)

is an isomorphism for every M € (i]‘s[‘lc';]“il\/lod) (m}-

Proof
(i) Let U < G be an open normal subgroup. The functor e (G, G/U,—) :
(ig[dc’f]“lMod) (my (il'?f["l(‘;";‘gjll\'lod) (mj Preserves injectives; thus

H(/L;ont(G’ ]) = hl} Hiox\t,(G/U* ']U) = 0 (VL 2 1)
U

by Lemma 4.4.5(v). The equality H} (G,J) = 0 (for i > 1) follows from Proposi-
tion 4.4.4.

(ii) Let J* be an injective resolution of M in (i,gf};?‘il\r'l()(l) (my- Then R¥Taer (G, M)
is represented by the complex (J*)¢ (by Proposition 4.4.4) and the canonical mor-
phism (J*)¢ — C2,..(G.J*) is a quasi-isomorphism by (i) and the spectral se-
quence (3.5.3.1). O

4.4.7. Lemma. Let H < G be a closed normal subgroup of G. Then
(i) The functor Resg g : (%F(}T"Mod) (my (ij'?‘[dl}"]‘dl\lod) (m) PrEServes injectives.

(ii) For every M € (i,'z‘[d(}‘]“dMod) (m} and j > 0 the canonical map RT3 (G, G/H, M)

— H&7{01~(H , M) is an isomorphism; it induces an isomorphism between the spectral
sequence (3.6.3.1) and the Hochschild-Serre spectral sequence (4.1.4.1).
Proof

(i) Given an injective object J of (i}%[('G'TdI\/Iod) (mpr @ monomorphism v : X — Y
in ('I.f;[dl}“]‘dMod) (m} and a morphism f : X — Resq. g (J), we must show that there is
g : Y — Resg u(J) such that gu = f. As in the proof of Proposition 4.4.4 one can
assume that both X and Y are of finite type over R. In this case there is a normal
open subgroup U < G such that HNU acts trivially on X and Y. We know that JY is
injective in (‘Igf}‘;‘;‘(ij]Mod){m}, hence Resg g (JY) is injective in (EfjlﬁglmU)]MOd){m}’
This implies that the composite map

f1o X = XUV LRese gy (J77Y) < Resg,u (JY)

extends to a map ¢’ : Y = YA — Resq y(JY) such that g'u = f'; this defines the
required map )
g:Y2Resq y(JY) — Resa u(J).
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(if) If J* is an injective resolution of M in (ij'%[d(}‘]‘dM()d) {m}’ then it follows from (i)
that the morphism in Proposition 3.6.4(i) is represented by the identity map id :
(JO)H — (J)H. O

4.4.8. Question. — Let H < G be a closed normal subgroup of G such that both
K = H and K = G/H satisfy the condition

(¥) K satisfies (F') and 0 (M) is an isomorphism for every M € (i;??[‘ﬁdMod).

Does it follow that G also satisfies (x)?

4.4.9. A positive answer to 4.4.8 in the simplest non-trivial case, when both H and
G/ H are topologically cyclic, would considerably simplify our treatment of unramified
local conditions in Chapter 7.

4.5. Bar resolution

4.5.1. Proposition. -— FEvery M € (ilg[dé"]ldl\/[od) has a canonical structure of an R[G]-
module, where

R[G] = lim R[G/U].
U

Proof. — Writing M = |JM, (M, € S(M)) and M, = @Ma/m7'LM(X, the state-

n
ment follows from the fact that each M,/m™M, is a module over R/m"R[G /U, »],
for a suitable open normal subgroup U, ., < G. O

4.5.2. The completed tensor products
R[G]® = R[G]®r - ®rR[G] = lm(R[G/U]@g - @r R[G/U])
U

=lim R[G/U x ---x G/U]=R[G x - - x G] = R[G']
U

form a pro-finite bar resolution
R[G]Z: - — R[G]®' — - — RIC]

of R by projective pseudo-compact R[G]-modules. For each M € (i}'%‘[dc‘;] 9Mod)
the complex

{m}’

Homjypt® | (R[G]2, M)

(where the subscript “cont” refers to homomorphisms continuous with respect to the
pseudo-compact topology on R[G'] and the discrete topology on M) is canonically
(G, M).

isomorphic to C¢,,
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4.5.3. Conjugation. — Let G be a discrete group. For each o € G, the formula

)\g, . g()[,(11| - |(]n] — (]OU[J_lg1U| e |(f_19n0]

defines an isomorphism
o : ZIG)® — Z]G)?
between the bar resolution of Z and itself. These isomorphisms lift the identity
id : Z — Z and satisfy A\sr = A\ Ay (0,7 € G). For every complex of G-modules
M = M-, the induced map Hom®()\,,id) on C*(G, M) = Hom'z’[“g]ive(Z[G]fi’,M) is
equal to the conjugation action Ad(o).
Both A\, and id lift the identity on Z. As the bar resolution is projective over Z[G],
there is a homotopy h, : id ~ A,, which induces homotopies h, (M) : id ~ Ad(c) on

C*(G, M), functorial in M. If we choose another homotopy A’ : id ~ A\,, projectivity
Y N J )

of the resolution implies that there is a 2-homotopy H, : h, ~» hl, which in turn
induces 2-homotopies H, (M) : hy (M) ~~ h. (M), functorial in M.
If o, 7 € G, then the same argument shows that there is a 2-homotopy Hy ; : hor ~

Ar * hy + hr, inducing 2-homotopies
Hy (M) : hor (M) — hoy (M) x Ad(7) + h (M),

functorial in M.

4.5.4. As in 3.4.5.5, one can apply the above construction in the “universal” case,
when G is a free group on countably many generators o, 7, go,g1,... One obtains
homotopies h, (M) and 2-homotopies H, (M) functorial in both M and G.

4.5.5. In fact, the formula 3.6.1.4 gives a choice of h,
n+41 .
ho t[gr] - lgn) — D> (=1 Mol lgs-alolo " gjol- - lo gnol,
Jj=1
which defines such a bi-functorial homotopy h(M) : id ~» Ad(c). Similarly, the
formula

Hor o lorl - lgal v— > (=DM gl gealrlr ger| - |7 giar]

1<k<i<n+2 T‘IUT|7'_10_191~107'| . |T_1O'_lgn0'7']

defines a bi-functorial 2-homotopy H, - (M).
More generally, if G is a topological group, then the above formulas define h, (M)

and H, (M) for arbitrary M € (i}r%’[d(;TdMod).

4.6. Euler-Poincaré characteristic

Assume that G is a pro-finite group satisfying (F') and T* a bounded below complex
in (i‘zd[G]Mod)R_ﬁ.
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4.6.1. The m-adic filtration F'T* = m*T* (i > 0) of T* gives rise to a spectral
sequence (3.5.2.1)
EM = HY(G,m'T* /w7 (i > 0)

with the following properties:
4.6.1.1. (3co) (¥r = 1) EH =0 whenever i + j < ¢g (as T* is bounded below).
4.6.1.2. (Vi,j) (r(E) < oo (as G satisfies (F)).
4.6.1.3. (Vi,j)(3ro =ro(i,j) = 1) (Vr = rg) EM = ELJ (by 4.6.1.2).
4.6.1.4. (Yq) (Vr =2 1) H? =D, EL97% is a graded module (with E49~¢ of degree
i) over gry, (R) = @5, m*/m"*!. The differentials (d9~") define a graded homomor-
phism d? : H? — HZ"! of degree r, and H,, | = Ker(d?)/Im(dd™").
4.6.2. Lemma

(i) Fach HY is a gry,(R)-module of finite type.

(i) (V) (31 = r1(q) > 1) (9 > 1) HI = HY,.
Proof

(i) As gre (R) is Noetherian, it is enough to consider the case r = 1. The hyper-
cohomology spectral sequence

B = P HY(G, T /m I TP) = EB HPY (G, m'T* /mT)
i>0 i>0
shows that we can assume that T* = T is a single module in degree zero.
The exact sequence of graded grs, (R)[G]-modules (discrete as G-modules)
0 — Ker(f) — gra(R) ©pym T/mT— @ m'T/m  T(= g3, (1)) — 0
i>0
gives an exact cohomology sequence

grn(R) ©pjm HY(G,T/mT) — H{ — H (G, Ker(f)),

so it is enough to show that H9"1(G, X) is a grs, (R)-module of finite type, for every
q and every graded gry, (R)[G]-submodule X of gry, (R) ® g/m T'/mT'. By dévissage, we
can assume that 7/mT is a simple R/m[G]-module. In this case X = J @/ T'//mT,
where J is a graded ideal in grg, (R), hence H"H (G, X) = J @p/m H (G, T/mT)
is, indeed, of finite type over gry (R).

(i) By (i), H{ is generated as a gry, (R)-module by @zlo EY77" for some ig. We
can then take

ry = max {ro(i,q — 1) | 0 <i <ip},

by 4.6.1.3. 0
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4.6.3. For each g and i > 0, put HY := (G,T*) and

((mt
F'H? .= Tm(HYL (G, m'T*) — H?) = Ker(HY — HY(G,T*/m'T*)).

Then each HY is an R-module of finite type (by Proposition 4.2.5) and the filtration
F'H1 satisfies

(4.6.3.1) F'HY = {1
(4.6.3.2) mF'HYC ' HT (i >0)
(4.6.3.3) (F'H =0

i>0

The last property holds by the vanishing of the lim (M_term in Corollary 4.1.3.
n

4.6.4. Lemma

(i) The spectral sequence E,. converges to the filtered R-module H''J, hence

gI'%(Hq) l Eé’(? ' E: 1(1(4)1
(ii) For each q the filtration F*H? is good in the sense of ([Bou, Def. 111.3.1]),

i.e., it satisfies (4.6.3.2) and (Fip) (Vi > ig) F'HI = m'~"0Fio 4,

Proof

(i) The spectral sequence E, comes from the complex C* = C2, (G, T*) equipped
with the filtration F'C* = C2, (G, m‘T*) (i > 0). As C* = F°C* and Niso F'C* =
0, convergence of E, follows from [McCl, Thm. 3.2].

(ii) The graded gry, (R)-module grs.(H?) is isomorphic to

i,q—1 Lq—r
Dre =DE =1
i20 120

hence of finite type over gry, (R). We conclude by ([Bou, Prop. I11.3.3]), which applies
thanks to (4.6.3.3). |

4.6.5. Hilbert-Samuel functions and multiplicities. — We recall some stan-
dard facts from [Mat, §13, §14], [Br-He, Ch. 4].
If N =D, N is a graded gry, (R)-module of finite type, put

= lp(N)t € Z[t].

i>0
If M is an R-module of finite type equipped with a good filtration F*M (i.e., such
that (Vi) mF'M C F''M and (3ig) (Vi > ig) F'M = mi~F)\) satisfying
M = F°M, put

FIM F* t) =Y Up(M/FM)E € Z[H].
i>0
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In particular, if F*M = m'M (i > 0) is the m-adic filtration, put
F(M,t) o= f(M,m* 1) = Lp(M/m T M)t

>0
These generating functions have the following properties:
4.6.5.1. (1=1t)f(M,F*,t) = P(gry(M),t).

4.6.5.2. Hilbert’s Theorem. — If N # 0, then P(N,t)(1 — t)%™W™) ¢ Z[t] and
P(N,t)(1 — )3, _; > 0.
The multiplicity of M, defined as

er(M) = (1 = )" f(M, )1 = (1= t)*P(gry, (M), t)]e=1 € Z,

(where d = dim(R)) satisfies
4.6.5.3. er(M) =0, if dim(M)<d

er(M) >0, if dim(M)=d
(by 4.6.5.2, as dim(M) = dim(grs, (M))).
4.6.5.4. If d > 1 and F* is any good filtration on M, then

er(M) = (1= ) f(M, F* t)]i=1.

4.6.5.5. ((Mat, Thm. 14.7))

er(M) =" ersp(R/p) Lryp(My).
ht(p)=0

4.6.5.6. In particular, if R is a domain, then

er(M) = er(R)rkr(M).
4.6.6. From now on, assume that 7 is bounded, char(k) =p > 0 and cdp(G) < oco.
This implies, by Lemma 4.2.6, that (3¢;) Y = 0 whenever i + j > ¢;, hence

H!=0 forq¢ [co,c1]
It follows from Lemma 4.6.2 (ii) that

(@) (4i§)  Ei = B,
Each HY and AY := Ker(d, : H! — HJ%!) is a graded grg, (R)-module of finite type;
for each » > 1 put

Fo(t) = S (~1)7 P(HE 1) = S (~1)1 ta(E) ¢

Gr(t) =D ()T P(AL 1) = > (=1)"" tp(A)t'.

According to 4.6.5.2, we have
(1= )F(1), (1 = 1)'G.(t) € Z[t].
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4.6.7. Proposition
(i) (Vr=1) Fopa(t) = (1 —t")G(t) + t"F.(¢).
(ii) If d > 1, then
(1= )'F (B = Y _(=1)? er(Hioy (G, T*)),

for every r > 1.

Proof
(i) This follows from the exact sequence

0 Az rj+r—1 El r.j+r—1 A’I,J E:il 0.

(i) By (i), the integer (1 — t)4F,(t)|;=1 does not depend on r > 1. For r > ry we
have E, = E., hence

Fp(t) =Y ()" tp(EY) =Y (=1)7 (1L —t)f(HI, F*,1),
.3 q
where HY = HJ (G, T*). We conclude by 4.6.5.4 (which applies, by Lemma 4.6.4 (ii)).
O

4.6.8. Lemma. — Assume that, as before, G satisfies (F), char(k) = p > 0 and
cd,(G) < 00. Assume, in addition, that there is ¢ € Q such that

(*c) Z(‘l)q dimy HY(G, M) = ¢ - dimy (M)
q
holds, for every discrete k[G]-module M with dimy (M) < co. Then, for every bounded
complex M* of discrete R|G]-modules of finite length over R, we have
S (1) "UR(HIUG, M*)) = ¢ (=1)Tr(MT).
q q
Proof. Easy dévissage. O

4.6.9. Theorem. — Assume that G satisfies (F'), char(k) = p > 0, ¢dp(G) < 0o and

(xc). If T* is a bounded complex in (%}G}Mod) Roft? then

Y (1) er(Hi (G =c Z Ter(TT).

q

Proof. — If d = 0, then er(—) = fr(—) and the statement reduces to that of
Lemma 4.6.8. If d > 1, then Proposition 4.6.7 (ii) gives

Z(_l)qe cont(G T )) - (]‘ - t)dFl(t)|t:1'

q
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However, Lemma 4.6.8 implies that
Fi(t) =Y (=) Lp(HY G m'T* /m™ Tt = ¢y (=1)Tp(m'T /m HT7) ¢!
q iq
=cy (=1)7 Plgry(T), 1),
q
hence

(1= t)*Fi(t)]e=1 = Y _(~=1)7er(T9). O
q
4.6.10. Corollary. If R is a domain, then

Y (D) rkp(Hi (G T) = ¢ Y (=1) rkp(T).

q q
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CHAPTER 5

DUALITY THEOREMS FOR GALOIS COHOMOLOGY
REVISITED

In this chapter we reformulate — and slightly generalize — Tate’s (and Poitou’s)
local and global duality theorems for Galois cohomology. As observed in 0.3, duality
with respect to the functor D follows automatically from the classical results for
finite modules (cf. 5.2.10); the full duality follows by applying the general result 3.5
Throughout Chapter 5 we assume that £ = F,» is a finite field of characteristic p.

5.1. Classical duality results for Galois cohomology

Let K be a global field of characteristic char(K) # p and S a finite set of primes of
K containing all primes above p and all archimedean primes of K (if K is a number
field). Denote by Sy the set of non-archimedean primes in S. In Sections 5.1-5.6, we
assume that the following condition is satisfied (the general case is tIedtcd in 5.7):

(P) If p=2, then K has no real prime.

Fix a separable closure K*°P of K. Let Kg be the maximal subextension of K%P /K
unramified outside S; denote Gg ¢ := Gal(Kg/K). For each prime v € S fix a sepa-
rable closure KJ°P of K, and an embedding K*? — K°P extending the embedding
K — K,. This doﬁnos a continuous homomorphism p, : G, = Gal(K3P/K,) 2y
G = Gal(K*?/K) 5 G.s, hence, for each M € (”‘[d ad Mod) a ‘restriction’ map

resy - Ccont (GK S A[) - C:()rlt(G'v’ ]\l)

Denote by M, := pi(M) € (i}'?'fléi‘fMod) the R-module M, equipped with the G,-action
induced by p,.

For v € S, our assumptions imply the following ([Se2, N-S-W]):
5.1.1. G, and Gk s satisfy the finiteness condition (F”).

5.1.2. ¢d,p(Gy) =cdp(Gr,s) = 2.
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5.1.3. For every n > 0, local class field theory defines an isomorphism
inv, : H*(Gy, Z/p"Z(1)) = Br(K,)[p"] — Z/p"Z
(where Z/p"Z(1) = pipn).

5.1.4. Local duality (Tate). — For every finite discrete Z/p"Z|G,]-module M,
the cup product

HY(Gy, M) x H* (G, Hom(M, Z/p"Z(1))) = H*(G,, Z/p"Z(1)) > Z/p"Z

is a perfect pairing of finite Z/p"Z-modules (i = 0,1, 2).

5.1.5. Reciprocity law. — The sum of the local invariants invg, = Zves_,‘ inv,
defines a short exact sequence

0 — HX(Gr5.Z/p"Z(1)) — @ HX(Go,Z/p"Z(1)) 52 /p"Z — 0.

veSy

5.1.6. Global duality (Poitou-Tate). — For every finite discrete Z/p"Z[G k. s]-
module M there is an exact sequence of finite Z/p"Z-modules

0 — HGx 5. M) — @ H(Gy. M) — H*(Gx.5,M*(1))" —
vESy

- HI(GKS’AJ) - @ HI(G'U»AJ) - H](GK.SvA/I*(l))* -

vESy

— H*(G.5,M) — € H*(Gy. M) — H*(Gx.5.M"(1))" — 0,
vESy

in which (—)* = Hom(—,Z/p"Z). The maps H (G s, M) — H'(G,, M) are induced
by res,; the maps H(G,, M) — H?> (G5, M*(1))* by res, and the pairing 5.1.4;
the remaining two maps will be defined in 5.4.3 below.

5.2. Duality for G,

5.2.1. It follows from 5.1.2-5.1.3 that for every R-module A with trivial action of
G, we have

inv, : H2 (G, A(1)) = A
Héont(GvaA(l)) =0 (7 > 2)

Here A(1) = A®z, Z,(1) = A®g R(1), which is admissible by Proposition 3.2.5.
This implies that the canonical map of complexes

(5.2.1.1) A[=2]-25750 Cf L (G A1)
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(in which i, is induced by the inverse of inv,) is a quasi-isomorphism. For A = I
there is a morphism of complexes
(5.2.1.2) I[-2)750 C2 L (G, I(1))
which is a homotopy inverse of (5.2.1.1).

More generally, if A® is a complex of R-modules with trivial action of G, then
there are canonical morphisms of complexes

C(.x)rlt(GU? A.(l)) = T()t(/[’ — C;ont(GU7 AL(]'))) - 7-1212 C(:ont(GU’ A.(l))
= Tot (i — T52 Coppe (Go, A'(1))) - A*[—2]

ont
defining a canonical map in D(rMod)
RFC()nt(Gva A.(l)) — A° [_2]

(since 4y, induced by the inverse of inv,, is a quasi-isomorphism).
If A® is a bounded below complex of injective R-modules, then 4, has a homotopy

inverse
(5.2.1.3) Ty =Ty ae 1 Ty Ol (Gy, A*(1)) — A*[=2],

unique up to homotopy.

5.2.2. Fix v € Sy, a bounded complex J = J* of injective R-modules and r, = ry g
as in (5.2.1.3) for A* = J. If X* is a bounded complex of admissible R[G,]-modules,
S0 is
D;(X*) = Hom%y(X*, J).
The evaluation map
eve: X*@p Dy(X*)(1) — J(1)

from 1.2.7 and the cup product defined in 3.4.5.2 induce a morphism of complexes

CC‘,ont(G’Uv X') ®R Cgont(G’Uv D](X.)(l))

U L]
CCOI]L

(Gor (1)) — 72 Coon (G, (1) =27 (2],
hence by adjunction (see 1.2.6) a morphism of complexes

g xe : Clong(Go, X°) — Homy (CF, (Go, Dy (X*)(1)), J[-2])
= D12 (Clom(Go, Dy (X7)(1))).
This construction gives a well-defined map in D*(xMod) (independent of the choice
of ry y)
ay,x : Rlcont(Go, X) — D ji—g)(RTcont (G, Dy (X)(1)))
for every X € D® (ade]Mod) (where D;(X) = RHompg(X,J) in the sense of 3.5.9).

R
In the same way, the evaluation map

evy: Dy(X*)(1)@r X* — J(1)
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gives rise to a morphism of complexes

(’YTI,X' : C(:ont(GU? DI(X.)(l» - DJ[—Q] (Cgont(GUv X.))
resp., to a morphism

ai],X ‘Rl cont(Gyy Dy (X)(1)) — DJ[—Q] (RT cont (G, X))

in D?(rMod).
The above cup products define, for each X € DI'("}ed[G“]Mod), morphisms in
Db(RMO(D

L
RF(:()nt(Gm X)@R RF(t()nt(G7n D/(X)(]-)) —J [_2]
L
RFcont(Gm DI(X)(1>)®R RFcont(va X) —J [_2]»

which induce pairings

(5.2.2.1) H

cont,

(Gm X)®r Hf.,om,(Gu, DI(X)(I)) - Hi+j_2('].)

H(l:()nL(G’U? D](X)(l)) ®R Hg()nL(Gva X) - Hi+j72(’].)

on cohomology.

5.2.3. We shall be interested only in the following two choices of J:

(A) J = I[n] for some n € Z (hence D; = D,, in the notation of 2.3.2) and all
cohomology groups of X are of finite (resp., co-finite) type over R.

(B) J = w*[n] for some n € Z (hence D; = Z,, in the notation of 2.8.11) and all
cohomology groups of X are of finite type over IR.

In both cases the canonical map
E=¢&yg: X — D](D](X))

is a quasi-isomorphism, by Matlis duality 2.3.2 and Grothendieck duality 2.6, respec-
tively.
5.2.4. Proposition. — Assume that either

(i) J =1I[n] and X € Dy (5o, Mod) or X € Dy, (i, Mod),

or

(i) J =w*[n] and X € D}, (%iq, Mod).

Then both maps o x, oy v are isomorphisms in D°(pMod).
, J,X

Proof. We consider only a; x; the statement for afL x can be proved along the
same lines (alternatively, one can use the compatibility result 5.2.7 relating the two
maps).

i)If A — B — C — A[l] is an exact triangle in D (%}Gv}l\/lod), then
(g4, 08,05 c) define a map between exact triangles

chont(Gva A) — chont(Gv» B) — RFcont(va C)
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and

Dji—2)(Rlcont(Gy, D(A)(1))) — Dyj—2)(RTcont (G, D(B)(1)))

— D ji—9) (Rl cont (G, D(C)(1))).
This means that a p is an isomorphism, provided «j 4 and « ;¢ are. Applying this
observation to truncations

T<io1 X — 17 X — HY(X)[-i] — (r<i1 X)[1]

we reduce to the case when X is a single module in degree zero. Lemma 5.2.5 below
further reduces to the case J = I. For X =T € (% Mod) , , (resp., X = A €
(%}01)]1\/I0(1) Reco ft) there is a commutative diagram

C(.:ont. (Gva T) L 117—111 C(.iﬂnt(GU’ T/mnT)
ar
sz(c(.:ont(G’U’ D(T>(1))) U4
ug

D—2 ( h_n} C(:(mt
n

(G, D(T/m"T)(l))) . llr_ln D_s (Cc.ont(Gm D(T/m"T)(l)))

in D?t(RMod) (resp.,
lim C¢,

n conL(Gﬂ’ A[mn]) Lo C(:ont(GU’ A)
li_I’I} DAQ (C(:orlt(G7H (D(A)/mnD(A))(l))) @A

n

wr

D—a (1 Gty (G (D(A)/m" DA (1)) ) —= D (Clops (G, D(A)(1)

3 b ang
in D, (rMod)). The maps
Uy = liTILn QpT/mnTs UG = li7ILI1 a1 Afmn]

are quasi-isomorphisms by 5.1.4 (and by the “universal coeflicient theorem” for projec-
tive limits of Mittag-Leffler systems of complexes, used in the proof of Corollary 4.1.3),
U1, Uz, Us, ug by Lemma 4.1.2 and us, u7 by Lemma 4.2.4. This implies that both o
and ay 4 are quasi-isomorphisms, as claimed.
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(ii) Lemma 5.2.5 below implies that we can assume that J = w*[d] (hence D; =
24). Represent X by a bounded complex X* of admissible R[G,]-modules. The
functoriality of the morphisms

. . I e .

ty A [_2] 7 Tx2 C(:(mt(Gm A (1>>
from 5.2.1 implies that, for any choices of r,, ; for J = I and J = w*[d], the following
diagram is commutative up to homotopy:

((b—d)* Tr

(G’Uv w.[d](l)) - ’(.:ont(G’IH @—(l(w.[d])(l)) — C(.tont(G’IH I(l))

l’w,mm ll"u.l
Trod _ 4[—2]

(w*[d])[-2] 1[-2]
This implies, by Lemma 2.8.12, that the complexes
A = C(:ont(G’wX.)v B = C::()nt<G'U7D(X.)(1))7 B/ = C(?om.(G’U’—@d(X.)(l))v

U=1I[-2], U'=(wd)[-2], C=C((z:),R)=2 a(R)

C.

cont,

and the maps f, f’ (resp., b,u) induced by U and r, ; (resp., by &4 : ®_40P4 — D)
satisfy the assumptions of Lemma 1.2.13, which in turn implies that the following
diagram in D?t(RMod) is commutative:

RI cont (G, X) X D_5(REcont (G, D(X)(1)))
law[,l],x lD--‘z((Ed(X))*)
Dwia)—2) (R cont(Go Za(X)(1))) D_5(REcont (G, @ a0 Za(X)(1)))
ln,l[—2] l[)_g(f)
D 50® g(RTeom(Go,Za(X)(1))) = D_30® 4(RTeom (G, Za(X)(1)))

The maps ng[—2], £4(X) are isomorphisms by 2.8.11,
i@ a(Rleont (G, Za(X)(1))) — @—a(Rleomt (G, Za(X)(1)))
is an isomorphism by Proposition 3.5.8 and «aj x is an isomorphism by (i); hence
Q[q),x 18 also an isomorphism.
It remains to prove the following Lemma. O

5.2.5. Lemma. — For every J, X* and n € Z (and a fized choice of v, ;) the map
@ gin).xe 5 equal to the composite map

.
CCOIN,

(Gos X*) 5D g1y (Clons (G, DS (X7)(1)))
LD g9 (Cone (G D (X*)(1))[0])
= D jin-2)(Clont (Go, Dy (X*)(1))).

Proof. — Apply Lemma 1.2.16 to A* = C¢2,,,(Gy, X*), B* = C2. (Gy, D (X*)(1)),
C* = J[-2] and u the map from 5.2.2 (the composition of r, ; with a truncated cup
product). O
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5.2.6. Theorem. — If T, T* € D% (% Hla ]Mod) A A" € Dl}%—co,ﬂ(R[(‘ ]Mod) are re-
lated by the duality diagram

2
T ¢+—+—> T~
D
) P
A A*
$0 are
@

RF(:()nt(Gv7 T) RF(:(mt(va T*(l)) [2]

chont(G’m A) chont (Gv» A*(l))[Q]

(in D?m )(rRMod)) and there is a spectral sequence

E;J = ]EXt?}?(HzA (Gﬂ’ T*( )) ) = ]EXtLR(D( cont(Glﬂ A)) ) HH.] (GU, T)

cont, cont

Proof. — We first explain the assumptions: start with T € DR ﬂ( RiG. ]Mod) and
put A = ®(T), T* = D(A), A* = D(T). Then the canonical maps ®(T*) — A*,
(Rl cont(Goy, T)) — Rl cont(Gy, A) and CD(RFCO,H,(GU,T*(I))) — RIcont(Gy, A*(1))
are isomorphisms by 4.3.1; this takes care of the vertical arrows. The diagonal and
horizontal arrows are given by the isomorphisms of Proposition 5.2.4. The diagram
is commutative up to the canonical isomorphisms from 2.8.1; the spectral sequence
follows by applying 2.8.6 to the diagram. O

5.2.7. Proposition. — Let f : X* — Y* be a morphism of bounded complexes of ad-
missible R[Gy]|-modules. Fix J and r, j as in 5.2.1-5.2.2. Then

(i) The composite map

’
e @J.D j(X)(1)
_

cont

(G, X502 (G, D (D (X)) D9 (Cons (G DS (X*)(1)))

resp.,

QD (X)(1)
-

C(:ont(GvaDJ(X.)(l)) DJ[72](C

Cont(GU?DJ(DJ( ))))

1((e0)«)
—I>DJ[ 2](Ccont(Gv7X ))

is equal to ag xe (resp., to o o).
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(ii) The following diagrams are commutative:

C:,()nt(Gm X.) 22 DJ[‘Q] (C(.:unt(G'U? D/(X.)(l)))
lf* lD,l[—EI((D.I(f)(I))*)

C(:()nL(GIHY.) J.L DJ['Q] (C(.:(mt(GUv D](Y.)(l)))
C(:om,(GUv D](X.>(1)) L DJ[*2](CL:0111,(G’U?X.))
[@snan. [Darear

C:()m,(GTH DJ(Y.)(I)) - DJ[—Q] (C(.:()m,(G”? Y.))
(iii) The composite map

/(.‘,Onl‘(G'U’ X.>L-2])DJ[“Z] (DJ[*Q] (C(.tom (GlH X.))>

Dyj-o(e) xo) . .
2D 19 (Coon (G Dy (X*)(1)))

resp.,

C(:ont(G’U’ D](X.)(]-))MD/[‘Z] (DJ[*Z] (C(':nnt(Gv7 DI(X.)(I))))
Dyi-2(ay xe) . .
T D ) (Clon (G, X))

is homotopic to aj xe (resp., to o'y o).

Proof

(i) The first statement follows from Lemma 1.2.12 and the following commutative

diagram (in which C*(X*) = C¢, . (G,, X*)):
CHX) @R CUDAXN) X ae D)) e
(e).®id l(f.r@li(i)* I

CH(Dy(Dy(X*)) @R CHD(X*)(1) 2 CDHDH(X) @r DAX)(1) T C(I(1))

(the second square is commutative by Lemma 1.2.9). Exchanging the factors in each
tensor product we obtain the second statement.
(ii) This follows from Lemma 1.2.11.
(iii) The diagram
(eva)«
C(X) @R CH(DAXT)(D) ~= CHX*@r Dy(X)(1) =2 (1)
l5120(7®7) l’]’o(sn)* lT
(0V1 *
CH(Ds(X)(1) ©p CHX) = CH D)D) @p X S (1)
is commutative by (1.2.7.1) and 3.4.5.4. We apply Lemma 1.2.14 and the fact that T
is homotopic to the identity. a
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5.2.8. Corollary. — If f : X — Y is a morphism in D° (%d[cleod), then
asx = Al p xym © (E1)x = Dy el x) oy,
Dyi—o (Ds(f)(1)u) casx = agy o fa
oy x = Dy_g((e1)) 0y p,x)1) = Dij—z)(asx) o€y,
O‘{I,X o (Dy(f)(1))x = DJ[—2](f*) © Offi,y
(equalities of morphisms in D*(rMod)).

5.2.9. Self-dual case. — If f: X — D,;(X)(1) is a morphism in D° ("}?fi[G“]Mod),
denote the morphism

X=LD,(D,(X)) = Dy (D,(X)(1) (1) 22 p s (x)(1)

by g. It follows from (1.2.7.1) and a derived version of Lemma 1.2.10 that the pairings
L
Uf . RF(:(mt(Gva X)®R RP(:()nt<Gv7 X)
1d® /. L (ev2)s
—’RF(:()nt (Gm X)@R RF(?OHL(G’LH DJ (X)(l))—)*] [_2]
L
Ug . RF('(mt (va X)(X)I? RF(:(‘)nt (Gv» X)

9 R ot (G X)E i R on (G, Dy (X)(1)) 257 [~2)
are related by
(5.2.9.1) Uy = Uy 0 s19.
In particular,

(5.2.9.2) g=xf=Usos1o=%U;.

5.2.10. On the level of cohomology, the diagonal arrows in Theorem 5.2.6 imply that
the cup product

Hl (G, T) x H2 Gy, A™(1) > H?

cont cont,

(Go, I(1)) — 1
induces isomorphisms

Hi

cont

Hgont(Gv’ A*(l)) Af:') D(HQ_j(vaT))

cont

(Gu,T) = D(HZ 0 (Gy, A%(1)))

cont

(and similarly for the pair T*(1), A). Note that, as remarked in 0.3, these isomor-
phisms follow immediately from 5.1.4 by a straightforward limit argument (a rather
pompous version of which was given in the proof of Proposition 5.2.4(i)). The only
reason for developing the cohomological machinery of Chapters 3-4 was a need to
relate cohomology of T and A, as in 4.3.2.
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5.2.11. Euler-Poincaré characteristic. — For every non-archimedean prime v
of K, the group G, satisfies the condition (*.) from Lemma 4.6.8 with

e —[K,:Qp), if K, is a finite extension of Q,
0, otherwise,

by Tate’s local Euler-Poincaré characteristic formula ([Se2, §11.5.7, Thm. 5]; [N-S-W,
Thm. 7.3.1]). As a result, Theorem 4.6.9 applies to G, and c.

5.3. Cohomology with compact support for G s

In this section we develop the theory of cohomology groups with compact support.
In fact, there are two possible definitions, which differ in their treatment of infinite
primes. We use the one appropriate for duality theory (see also the footnote in
Sect. 0.7.1).

5.3.1. Cochains with compact support

5.3.1.1. Definition. Let M* be a complex of ind-admissible R[Gk, s]-modules. The
complex of continuous cochains with compact support with values in M* is
defined as

C( ((mt(GK S M ) = Cone (C(.:()nt(GK’S’ A[ e} (onl va AI.)) [_1]7

vESy

where resg, = (res, )ves; -
5.3.1.2. More precisely, the ‘restriction’” map res, (v € Sy) is equal to

resy = PZ : C( sont, (G}\ s, M* ) (.:()nt(G7M [):(]\/j.))
If we choose another embedding K% «— K3P  then «, : G, — G is replaced by
o = Ad(o,) o a, (for some o, € Gk) and the map m(o,) : p5(M*) — pif(M*) is an
isomorphism of complexes of G,-modules. In the diagram

inf . %/ A Te ay . v
TeSy : (ont(GI\ S M+ ) - CconL(GKvﬂ' (A[ )) - cont(Gv7pv(AI ))
I lAd(o,,) lw(a,,)*

a'*

res; : C.ont(GK,Sv ]V[.) i’ C(.:ont(GK’ 71-*(]\/[.)) — C(:ont,(Gv? pv (A[ ))

C
the first (resp., the second) square is commutative up to homotopy (resp., commuta-
tive). Choosing bi-functorial homotopies h, (M*) : id ~» Ad(o) (e.g. those from 4.5.5),
we obtain homotopies

hy = alf x hy, (M*) *inf : res, — 7(0,) O r€Sy,
/
h = (hy)ves, 1 resg, — (m(0y).) o Tess; .
The corresponding morphism of cones

Cone(id, ((04)«), h) : Cone(resg, ) — Cone(resigf)
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is a homotopy equivalence, with homotopy inverse equal to
Cone(id, ((o; 1)), ') : Cone(ress, ) — Cone(ress, ),
where h' = (o x h,-1(M*) x inf)yes,. Indeed, this follows from 1.1.7 and the fact
that there is a 2-homotopy
B xid + ((o, ")) x h = (res, * (hy-1(M*) + Ad(o;t) * ho,(M*))), *inf —~ 0.
5.3.1.3. The cohomology of C¢ ... (Gk,s, M*) will be denoted by H{ ... (Gk.s, M*).

c,cont
As in 3.5.6, the functor M* — C? . (G K s, M*) preserves homotopy, exact sequences

and quasi-isomorphisms for cohomologically bounded below complexes, hence defines
an exact functor

RF(:,(:ont(GK,S«, _) : D+ (‘zl?lfjc_:a,:ig]MOd) B D+ (RMOd)
such that

(5311) RF(z,conL(GK,Sv ]\/j) — RF(?OI]L(GK‘Sv A/[)m’ @ RFcont(G’u, M)
vESy

is an exact triangle in D™ (gMod) for every M € DT (an[ded ]Mod) In particular,

there is an exact sequence
(5312) B H{ <ont(GK 5?]\/'[) - H(()nl (GK’S7 A[)

ress
f i
@ (ont GU7M) Hccont(GKbaM)
7J€~S_/

5.3.2. Lemma. Each of the three functors RIcont(Gr,s,—), RIcont(Gy, —),
RI¢ cont(Gr,s,—) maps D7, ft(‘,g[dGz;f ]Mod) (resp., D}}_mﬂ(}‘[‘ia‘"fs]l\lod)) to D}, (rRMod)
(resp., Di,p(rMod)), for « = +.,b.

Proof. — This is true for Rl'con(Gk,s,—) and RI'cont(Gy, —) by Corollary 4.2.7

and 5.1.1-5.1.2. The statement for RI'. cont(Gk,s,—) follows from the exact se-
quence (5.3.1.2). O

5.3.3. Cup products
5.3.3.1. Let A*, B* be complexes of ind-admissible R[G g s]-modules. We shall write
elements of
Ci,cont(GK,Sv A.) = Ccont GK s, A @ Céc_)—nt GU’ A* )
vESy
in the form (a,as), where a € Ci_(Gk s, A*), as = (ay)ves;, @y € Cio (G, A%);
deg(a,ag) =i = deg(a) = deg(ag) + 1. The differential is given by

d(a,as) = (da, —ress, (a) — das).
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5.3.3.2. The first cup product
MO8 ont(Gi o5, AY) @R Ol (G 5, BY) — Cf 0 (G s, A* @R B*)
is defined as
(a,as)cUb = (aUb,as Uress, (b))
and satisfies
d((a,as)Ub) = (d(a,as))Ub+ (—1)%& (q, ag)Udb.
5.3.3.3. The second cup product
Ue: Cooni (G5, A*) @R C2 o0 (G 5, BY) — C2 (G s, A* @ B*)
is defined as
aJe(b,bg) = (aUb, (—l)dog(“)resw(a) Ubs)
and satisfies
d(aU,(b,bs)) = (da)U.(b, bs) + (—1)48 @ a,(d(b, bs)).
5.3.3.4. The involutions 7 from 3.4.5.4 define morphisms of complexes

T: C{ (()nt(GK,Sv A.) — C( (()nt(GK‘Sv A.)
(a,as) = (T(a),T(as))
which are again involutions homotopic to the identity. As in 3.4.5.4, the following
diagram of morphisms of complexes is commutative (and the same is true if the roles
of .U and U, are interchanged):

O eont(Gr50 A") B Cooi (Gr 5, BY) =5 C2 (G5, A ® B*)
18120(7697) 170(812)*
Ceom (G5, B*) @1 Ot om (G5, AY) = Cloom(Gres, B* 9 A%)
5.3.3.5. The products .U,U. (resp., the involutions 7) are compatible with
the product U (resp., the involution 7) defined in3.5.4 (via the canonical maps

C( (ont(GK Sy ) Cc.ont(Gl\',Sa _>)

5.3.4. The statements of Propositions 4.2.9-4.2.10 and 4.3.3 also hold for the functor
RFC,(‘,Ont(GK,Sa - ) .

5.3.5. Euler-Poincaré characteristic. — If M is a finite discrete F,[Gk s]-
module, then Tate’s global FEuler-Poincaré characteristic formula ([N-S-W,
Thm. 8.6.14]) implies that

3
Z )? dimp, HY(Gk s, M) = dimg, (M").

=0 v|oo

A straightforward modification of the arguments in Sect. 4.6 gives the following result.
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5.3.6. Theorem. — IfT* is a bounded complex in (%i[(;K,S]MOd) R-ft” then

Z(_l)(l GR c (,ont(GK "7T )) - ZZ )G“)'

vloo q

5.3.7. For R finite and flat over Z,, (and not necessarily commutative), Flach [F12]
proved a more refined Euler-Poincaré characteristic formula.

5.4. Duality for Gk s

5.4.1. The sequence (5.3.1.2) together with 5.1.5 define an isomorphism

Gr.s,Z/p"Z(1)) = Z/p"Z.

c, cont(

As in 5.2.1 we get
H cona(Grc 5. A1) {A e
0 >3
for every R-module A with trivial action of G g, hence a quasi-isomorphism (induced
by inv;fl)
(5.4.1.1) A[-3]-5753 C2 (G5, A(L)).

Let A* be a bounded below complex of R-modules with trivial action of Gk g. For
each ¢ € Z the map

I‘esﬁ'f : C()nt (GI\ 5? @ I[(Zont GU? Al(]))

vESy

is injective, hence the canonical morphism of complexes
i
>3 Cc:,cont(GKqS7 A (1))

— Cone (T>2 C, ont(GK SvA (1»—) @ T>2 cont(GTHAi(l))> [_]‘]

vESy

is a quasi-isomorphism. This implies that the canonical map
(5412) T>3 Cc cont(GK,S? A.(l)) = Tot (’L = T>3 Cc.,cont(GKys7 Az(l)))

— Cone (TI;Z Ci(Gr s, A =, @ 759 Coont (G, A'(l))) [(—1]

vESy

is also a quasi-isomorphism.
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As in 5.2.2, fix a bounded complex J = J* of injective R-modules. We claim that
there is a homotopy equivalence ig making the following diagram commutative up to
homotopy:

resg N
7—1212 Cc.onl,(GK,Sv J(l)) o veSy 7->2 c:ont (Gm J(l)) o COHC(I‘QSSf)
i i
b))
@UESf '][_2] — *][‘2]

Indeed, fix vo € Sy and put ig = j o iy,. Then ig is a quasi-isomorphism, hence a
homotopy equivalence (as J[—2] is a bounded below complex of injectives).

Fix homotopy inverses r, j of i, (v € Sy) and also a homotopy inverse rg = rg, s of
is. Then rg o j is homotopic to ¥ o (r,, 7). Composing rg[—1] with the map (5.4.1.2)
we obtain a quasi-isomorphism

(5413) T>SC:(011t(GK,SM](1)) - ‘][_3]’

unique up to homotopy.

5.4.2. Let X* be a bounded complex of admissible R[G g s]-modules. As in 5.2.2,
the cup product .U, together with the evaluation map evy (resp., evy) and the
map (5.4.1.3) define morphisms of complexes

Brxe : Cf o (Gr s, X*) — Homy (C(',Om(GK s, Ds(X*)(1)),C cont(Gk s, ](1)))
- HOIH;\’,(C(.:(ml,(G[\’,Sv D](X.)( )) T>i Cr.((mt(GI"»S> '](1)))

Hom® (id,r )
—

HOIH.H,(CC.ont(GK,Sﬂ D/(X.)(l))’ J [_3])
= D3 (Coont(Gr.s. D(X*)(1)))

resp.,

C/B(,],X' : C(:,C()nt (GK,S’ DJ(X.)(l)) - HOIH}? (Ccont(GK 57 ) Cc. Cont(GKus'7 '](1)))
- HOIII;% (C(.:ont(GK,S7 X.) 7—> 3 C( (ont(GK Shye ( )))

MHOHI;{(CC.om(GK‘Sv X.)» J [_3})

= Dy-3)(Ceont(Gr.5. X*)),
hence canonical maps (independent of the choice of 1)
Brx Rl cont(Gr,5, X) — Dyi_3 (Rlcont (G5, D (X)(1)))
resp.,
By x t Rlccont(Gr.s: Ds(X)(1)) — Dy-g(Rleon (Gi5, X))
in D*(rMod) (for every X € D° (R[G ]Mod)).
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Similarly, using U, instead of .U, one obtains morphisms of complexes
ﬂcwl,X‘ : C(.:ont,(GK)S> X.) I DJ[—B] (C(:,cont(GK,Sa D](X.)(l)))
ﬁ;:,J,X' : C(:()nt(GK,Sv DJ(X.)(l)) - DJ[—3] (Cc.,conL(GK757 X.))
resp., morphisms
ﬁc,J,X : RFconL<GK,S, X) — DJ[73] (RFC,COIH}(GK,S) DJ(X)(l)))
/‘}:;’,I,X : RF(:(mt(GK,Sz DJ(X)(l)) — DJ[—3] (RF(:,(:Ont(GK,Sa X))
in D*(gpMod).
As in 5.2.2, U, and .U induce, for each X € Db(‘}%d[( ey Mod) cup products
L
RF(:,COIlt(GK,57 X)®R RFCOUt(GK,S’ DJ (X)(l)) —J [_3]
L
RFCO!lt(GK,S> X)(X)R RFC,(:Ont(GK,Sa DJ(X)(l)) —J [_3]
and pairings on cohomology

(5421) r(‘ont(GK S ) cont(GK éaDJ(X)( )) - Hl’+‘j_3(‘].)

H(l:nnt,(GK»S’ X) ®R Hﬁ,cont(GK,S’ DJ(X)(]-)) - Hi+j_3(‘].)’

as well as analogous products in which the roles of X and D ;(X)(1) are interchanged.

5.4.3. Proposition. — Assume that either

(i) J =1I[n] and X € Db ﬂ( friters S]Mod) or X € Dll')?—coft(%i[(;,\—,s]MOd%
or

(ii) J =w*[n] and X € D} 4, (%, Mod).

Then the maps f1.x, B x: Be,0,x, By x are isomorphisms in D®(rMod).

Proof. As in the proof of Proposition 5.2.4 one reduces to the case when M is a
finite discrete Z/p"Z[G k s]-module. In this case the statement is a variant of the
Poitou-Tate global duality theorem (5.1.6) ([Ni, Lemma 6.1]; [N-S-W, §8.6.13]).
This explains the origin of the non-obvious maps in 5.1.6: they are induced by the
cup products

H'(Gks, M) x H(Gg.s, M*(1)) —H3(Gr.5,Z/p"Z(1)) = Z/p"7Z
U HIN(Gros, M) x H 9 (Gy.s, M*(1))—H2(Gk.5, Z/p"Z(1)) = Z/p"Z. O
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5.4.4. Proposition. — If f : X — Y is a morphism in Db(‘}?‘}GK S]Mod), then

Beax = ﬁc J,Dy(X)(1) o(es)s = Dy3lc /51X) O EJ[-3]»
D3 ((Ds(f)(1))«) © Be,gx = Be.ay © fu
Brx =By p,x))© (€)= Dy—g) (Bl x) © €ap-3)5
D3/ ((Ds(f)(1))s) 0 cBux = cBuy © fu
Bigx = Dy—3((€1)«) 0 Besp,x)(1) = Dyj=3)(cfax) 0 €1-3,
ﬂé,,/,xo(D.I(f)( ))s = DJ[ (f )o /3( Y
Ay x =Dy (1)) 0 By, x)1) = Dy—3)(Be,5.x) 0 € 51-3)
By x o (Dy(f)1)e = Dyi_g(fe) 0 ey

(equalities of morphisms in D*(gMod)).

Proof. — This follows from a variant of Proposition 5.2.7, which is proved in th(\
same way as 5.2.7; the only difference is that the commutative diagram from 3.4.5

(with A* = X°*, B* = D;(X*)(1)) has to be replaced by an analogous dlagram
from 5.3.3.4. O

5.4.5. Theorem. — If T.T* € Dj’q,_ﬁ(;?d[([ g Mod), A, A" € Do (it Blow. Q]Mod) are
related by the duality diagram

T z T
D 3]
A A*

S0 are

RFcont(GK,S7 T) RF(‘:,Cont(GK,Sv T*(l))[?’]

P [
RFcont(GK.Sv A) RFC,Cont(GK,Sz A* (1)) [3]

(in D?co)ﬂ(RMod)) and there are spectral sequences

Ey? = Extip(H 0 (Grs, T (1)), w)
= Extiy(D(Hlo (Gr.s. A)),w) = H (G 5. T)
Ey? = Extp(Hoom (G5, T*(1)),w)
= Extly(D(H on (Gr.5, A)),w) = H, 00 (Gics, T).

Proof. — As in 5.2.6, everything follows from Proposition 5.4.3. O
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5.5. Duality for Poincaré groups
5.5.1. Recall ([Vel, §4]) that a profinite group G is a Poincaré group with respect
to a prime number p if the following two conditions are satisfied:
5.5.1.1. ¢dp(G) =n < oc.
5.5.1.2. The abelian groups D; defined by
D; = lim lim Homz(H" (U, Z/p™Z),Q,/Zy)

m U

(where U runs through all open subgroups of G and the transition maps are dual to

D, 0, i #En
Q,/Z,, i=n.

There is a natural action of G on each D;; under the above conditions G acts on

corestrictions) satisfy

D,, by a character

x:G— Z,.

5.5.2. Examples

(1) G is a compact p-adic Lie group with finite cd,(G).
(2) G =G, in 5.1. In this case n = 2 and x is equal to the cyclotomic character.

5.5.3. The main duality result for Poincaré groups ([Vel, Prop. 4.4]) states that
there is a canonical isomorphism
p: H'(G,D,) — Q,/Z,
such that for every finite p-primary discrete G-module M and i € Z the cup product
HY(G, M) x H"(G,Homgz(M, D,,))~—>H"(G, D)) — Q,/Z,
induces an isomorphism
H" (G,Homgz(M, D,)) = Homz(H' (G, M), Q,/Z,).

5.5.4. The results and proofs in Sect. 5.2 work for a general Poincaré group G

satisfying (F'). For example, a generalization of Theorem 5.2.6 yields a digram

D

RIcont (G, T) R cont (G, T*(X)) (7]
.
RFCOIlt(Ga A) RFCOHt(G7 A (X))[TL],

where M (x) denotes M with the G-action twisted by the character x (for every
Z,|G]-module M).
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A generalization of Proposition 5.2.4 gives canonical isomorphisms
RF(;(,m,(G, X) ;’ DJ (RF(:ont(G> D],G(X))) )

where

Dja(X)=D;(X)(x)n]

5.6. Localization

5.6.1. Let . C R be a multiplicative subset. Everything in Sections 5.2.1-5.2.2,
5.2.7-5.2.9,5.4.1 5.4.2 and 5.4.4 remains valid if we replace R by R
Instead of 5.2.3, we shall be interested in the following case:

5.6.2. J = wk’y[n] for some n € Z (hence D; =9 R 5/j’n) and all cohomology groups
of X are of finite type over R

5.6.3. Proposition. — Assume that J = w;?yj [n] for some n € Z. Then:
(i) For every X € D’,’?y/_f,,(‘}g/[m]Mod), the canonical map

Qg x - RF(:Ont(Gm X) — -@Rsﬂ,n—2 (RF(:(mt (Gm@ Ry,rL(X)(l)))
is an isomorphism in D}’t( R ijod) (and the same is true for o/; v ).
X o b ‘ ad 1) ) .
(if) For every X € D;‘);y“f"(;é‘f’lfw'x,slMOd)’ the canonical map

cﬁJ,X : RFC,C(mt(GK,Sa X) — -6/1?,’7/,71,—2 (RFC()nL(GK,Sa-@ Ry;,n(X)(l)))

Mod) (and the same is true for o3 ., Be.sx and 8. ; x ).

s an isomorphism in D;ﬁt( Re
Proof. By dévissage we reduce to the case when X is an admissible Ro[G,]-
module, of finite type over Ry Then X =.7'Y for some Y € (}‘%‘I[GU]MOd) R-ft by

Lemma 3.7.3, and « x is the localization
,V_IRFCOI“(GU, Y) —>cy71 (-@RJLAQ (RF(:Ont(G’U7~@R,71(Y)(1))))

of the isomorphism Qe n),Y from Proposition 5.2.4. The same argument applies in
the case (ii), with 5.4.3 replacing 5.2.4. |

5.7. In the absence of (P)

5.7.1. Assume that the condition (P) from 5.1 fails, i.e., p = 2 and K is a number
field with at least one real prime. In this case the global duality must also take
into account the Tate cohomology groups H {(G,, —) for real primes v (where G, =
Gal(C/R) has order two). The statements in 5.1 then have to be modified as follows:
for every real prime v,

5.7.1.1. G, and G g satisfy the finiteness condition (F).
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5.7.1.2. ¢d2(G,) = cd2(Gk,s) = 00
5.7.1.3. For every n > 1, local class field theory defines an isomorphism
inv, : H*(G,,Z/2"Z(1)) = Z/27Z.
5.7.1.4. Local duality. — For every finite discrete Z/2"Z[G,]-module M, the cup
product
HY(G,, M) x H*7'(G,,, Hom(M, Z/2"Z(1))) —H*(G,,Z/2"Z(1)) —> Z/2Z
is a perfect pairing of finite Z/2Z-modules (i € Z).

5.7.1.5. Reciprocity law. — The sum of the local invariants invg = ) ginv,
defines an exact sequence

0 — H*(Gx.5,2/2"2(1)) — @ H* (G, Z/2"Z(1)"5Z/2"Z — 0
vesS

(where inv, = 0 for each complex prime v).

5.7.1.6. Global duality (Poitou-Tate). — For every finite discrete Z/2"Z[G k5]
module M there is an exact sequence of finite Z/2"Z-modules

0 —H(Gr.s. M) — P H (G, M) ) H(G,, M)

vESy K,=R
—H*(Gg,s, M*(1))" —H"(Gk.5,M) — @ H'(G,,M) & QB HY(G,, M)
vESy
—H'(Gg.5, M* (1)) —H*(Gx.5,M) — @ H*(G,, M) ® EB H?*(G,, M)
vESy K,=R

H°(Gg s, M*(1))" — 0,
in which (=)* = Hom(—,Z/2"Z).
5.7.1.7. For each M as in 5.7.1.6 and ¢ > 2, the map
ress : H'(Gs. M) — @ H(G,. M)® @ H(G,.M)= @ H(G,, M)

UGSf K,=R K,=R

is an isomorphism.

5.7.2. In the present situation, the constructions in 5.3 should be modified as follows.
For each real prime v of K, the usual definition of the complete (Tate) cochain complex

Cs

cont

(Gy, M) of a Gy-module M extends naturally to complexes of G,-modules by
C™(Gy, M) = P CV (G, M)

i+j=n
and using the sign rules from 3.4.1.3. The standard cup products ([C-E, Ch. XII})

U: Cgont(va AI) ® Cc:ont(va ) - Ccont(GIM M ® N)
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extend, using the sign rules from 3.4.5.2, to the case of complexes of G,-modules

(5.7.2.1) u:Ce

cont

(Gy, M*) ® ®C:

cont

(GU’ N‘) — C(()nt(GU? M*® N.)

For every complex M* of ind-admissible R[G k s]-modules we define

6{ (()nt(GK S A[ )

Cone (C(ont(GK S ]\/[ l(‘bs @ (()nt G’U?]\/[ @ cont GU,M.))[‘”#

veSy
where the map res, for a real prime v is given by

C (GK S j\‘[ ) - C(()nt (G“A‘[ ) — C](.om(c;’?H AI.)

cont

The cohomology groups H( cont(GK.s,—) of C( cont(GK,s,—) lie in the exact sequence

(5722) . ﬁ({,(:ont(GK,Sﬂ AI.) ((mt(GK S M* )
“ss @ H(om G’l)v ]\[.) S @ ]/_\IZ(G“A[.) c <()nt(GK S M* )
veES)

The functor
M* — Cr ,cont (GK,S’ ]\[.)
gives rise to an exact functor
RT. cont (Gres. —) : DY (524 Mod) — D(iMod).

The formulas from 5.3.3.2-5.3.3.3 together with (5.7.2.1) define products

~

UC : C(:ont(GK,S7 ]\1.) ®R éc.t,('ont(GK S N.) ‘e, cont(GK S A[ ®R N )
CO : ég,cont(GK,57 M ) R C

(‘ont(GK 57N ) _ C (GK,S,]\'{. SR ]V.)7

c,cont

for any pair of complexes of ind-admissible R[G k s]-modules M*, N*.

5.7.3. Lemma
(i) If M* = M is concentrated in degree zero, then

(Vi >3) H. on(Gr.s,M)=0.

(i1) If A is any R-module with trivial action of Gk s, then invs induces an iso-
morphism

ﬁzs

c,cont

(Gr.s, A1) — A.

Proof. — By a standard limit procedure one reduces to the case when M is a fi-
nite discrete Z/2"Z[G i g]-module, in which case the statement follows from 5.7.1.7
and (5.7.2.2). Similarly, it is sufficient to consider only the case A = Z/2"Z in (ii),
when we conclude by 5.7.1.5, 5.7.1.7 and (5.7.2.2). O
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5.7.4. Proposition. — If M is a finite discrete Z/2"Z|G k. s]-module, then the cup prod-
ucts OC, .U induce perfect pairings of finite Z/2"Z-modules

H'(Gr,s, M) x H2G} (Gr,s, Hom(M, Z/2"Z(1)))
I f—\](:},cont(GK,S7 Z/an(l)) — Z/QnZ

H: ot (G5, M) x H7'(Gg 5, Hom(M, Z/2"Z(1)))

73
H(:,(:ont

(Gk.s,Z/2"Z(1)) — Z/2"Z
(for alli € Z).

Proof. This follows from 5.7.1.4, 5.7.1.6, 5.7.1.7 and the compatibility of the various
products involved. O

5.7.5. All constructions from 5.4 work in the present context, provided that

C?eont(Gr.s,—) (resp., RI¢ cont(Gk s, —)) is replaced everywhere by C¢ (G s, —)
(resp., RI'c cont(Gi,s, —)). The final result can be summed up as follows: if
T 7 T
D
‘lfb J/q)
A A*

is a duality diagram with T, T* € D%_ﬂ,(%‘%mﬂs]Mod) and A, A* € D’,’{_Coﬁ(%l[(;k,‘g]l\lod),
then

_@ —
RF(:OM(G}(,S, T) RF(ﬁ,Cont(GK‘Sv T*(l))['?)]

® ®
chont(G[\",Sv A) ﬁfc,COHL(GK,SvA*(l))B]
is a duality diagram in D(co)ﬂ(RMod).

5.7.6. As 2 - ﬁli(GU,]V[) = 0 for each real prime v and each G,-module M, the
canonical map in D(rMod)

RFc,cont(GK,S7 ]\/[.) — ﬁfe,(:(mt(GK,Sa M.) (M. S Db (l]lzlfic_::j:iS]MOd))

becomes an isomorphism in D®( (1 /2 Mod), where R[1/2] = R ©z, Qa.
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CHAPTER 6

SELMER COMPLEXES

Classical Selmer groups consist of elements of H! (G s, M) satisfying suitable local
conditions in H'(G,, M) at v € S. We work in the derived category, which means
that we have to modify this definition and impose local conditions on the level of
complexes rather than cohomology. This is done in Sect. 6.1-6.2. The main abstract
duality result, Theorem 6.3.4, is deduced from our version of the Poitou-Tate duality
(Theorem 5.4.5) using the cup products from Sect. 1.3. The symmetry properties of
these duality pairings are investigated in Sect. 6.5-6.6; they require additional data.
In Sect. 6.7 we introduce the main example of “elementary” local conditions, following
Greenberg [Grel, Gre2, Gre3).

The assumptions of 5.1, including (P), are in force.

6.1. Definition of Selmer complexes

6.1.1. Let X = X* be a complex of admissible R[G i g]-modules. Local conditions
for X are given by a collection A(X) = (A, (X))ves,, where each A, (X) is a local
condition at v € Sy, consisting of a morphism of complexes of R-modules

Zj(X) : U+( ) - C(‘ont(G’v’X)'
6.1.2. The Selmer complex associated to the local conditions A(X) is defined as

é}(GK,SyX§A(X)) =

Cone (Ccont GK Sv @ U @ cont GU?X )[ ]

vaj ve 9_,

usst (X)

(sometimes abbreviated as é}(X))7 where if(X) = (i (X))ves,. Denote by

RD 1(Gr,s, X; A(X)) (sometimes abbreviated as RI 7(X)) the corresponding object
of D(grMod) and by H}(GKYS,X;A(X)) (sometimes abbreviated as H}(X)) its
cohomology.
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If X and all UM (X) have cohomology of finite type over R, resp., of co-finite type
over R, resp., are cohomologically bounded above, resp., are cohomologically bounded
below, the same is true for C}(GK’S, X;A(X)).

6.1.3. For v € Sy put

it
Uu ( ) Cone ([J+ ( )*(LC(.()M (GW X))

J(X)= P Uusx
veSy
There are exact sequences of complexes (with maps induced by obvious inclusions
resp., projections)
(6.1.3.1) 0— Co (G, X)[-1] — U (X)][-1] — U (X) —0

0 — Cfeont(Gr.5. X) — C3(Gr,5. X A(X)) — U (X) — 0

e cont(
0 — Ug (X)[-1] — C}(Gr.s. X AX)) — Clopy(Gr5. X) — 0,
which give rise to the following exact triangles in D(gMod):
(6.1.3.2) UHX) — Rlcon (G, X) — U, (X) — U,F(X)[1]
Ud (X)[=1] — R con(Gr 5. X) — RI(X) — U (X)
Ug (X)[-1] — RT4(X) — Rl eom (G5, X) — Us (X).

We know from Proposition 5.4.3 that RIc cont(Gr.s,X) is dual to Rlcont(Gk s,
D;(X)(1 ))[3] (under suitable assumptions). In order to deduce from (6.1.3.2) a duality
between RFf(X) and RFf(D/( )(1))[3], we must ensure that Ud (X) is (close to
being) isomorphic to the dual of Ug (D;(X)(1))[2]. Taking into account the duality
between RIcont(Gy, X) and Rl cont(Go, D (X )(1))[2], this boils down to a suitable
orthogonality relation between U,F (X) and U,f (D (X )(1)), for all v € Sy. This notion
of orthogonality is introduced and studied in Sect. 6.2.

It is essential to have a canonical duality map between RT #(X) and the dual
of ﬁf(D'](X)(l))[g]; this is why the additional data 6.2.1.3 enter the picture. The
duality map itself is constructed in Sect. 6.3, using the abstract cup products from 1.3.

6.1.4. In the special case when
Ug (X) — 11 Ug (X)

is a quasi-isomorphism (which is equivalent to

@ HZ(U:( (19(X @ (ont GW?X

vESy veESy

being bijective for i < 0 and injective for i = 1), the canonical map

T<0 RFf(GK,Sa X;A(X)) — 7<o Rl cont(Gk,5, X)
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is also a quasi-isomorphism, i.e.,
H} (G5 X: AX)) = Higy(Grs. X)  (Vi<0)

and

H}(Grs, X: A(X))
;) K()I‘ <H(§0nt(GK‘f’7 @ cr)nt vaX /( (X))*(Hl(U;(X)))>
vESy

coincides with a classical Selmer group given by the local conditions

(lt(X))* (H] (UJ(X))) g H(%()nt(G’lH X) (/U € Sf)

6.2. Orthogonal local conditions

Let J = J*, D; and 7, (for cach v € Sy¢) be as in 5.2.2.

6.2.1. Assume that X, X, are complexes of admissible R[G g g]-modules,
m: X1 @r Xo — J(1)
a morphism of complexes of R[G k s]-modules and
iT(X)  UN (X)) — Coue (G, X)) (t=1,2,veSy)
local conditions for X, Xo.
6.2.1.1. Typical examples of 7 are
vi: Dy(X2)(1) ®p Xo — J(1)

evy: X1 ®p Dy (X1)(1) — J(1).

In general, 7 factors as

adj(m)®id
_—

m: X ®r Xo Dy(X2)(1) @r Xo——25J(1)

and induces another morphism of complexes
Tos12: Xo ®p X1—2X) @r Xa——J (1),

which factors into

adj(mos)2)®id
e

mo sz Xo @r Xy Dy(X1)(1) @p X1—25J(1);

thus 7 also factors as

id®adj(mos;2)
e

m: X1 ®r Xo X1 ®r DJ<X1)(1)2’J(1)-
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6.2.1.2. For each v € Sy, denote by prod, (X1, X2, 7) the morphism of complexes

4
pr()dv(leXQ?ﬂ-) : U (X ) R U+(X2) = ®_*C((mt(GU7 Xl) ®R C’(ont(G?H Xz)

2t (G, X1 @ Xo) Ol (G, (1) =78, (G, J (1)),
6.2.1.3. Definition. — If there is a null-homotopy
hy = hy(X1, X2, ) : prod, (X1, Xo,7) — 0,
we say that A, (X1) is orthogonal to A, (X2) with respect to m and h,. Notation:
Ay(X1) Lrn, Ap(X2).

6.2.1.4. Definition. — We say that A(Xy) is orthogonal to A(X3) with respect to =
and hs = (hy)ves, (notation: A(Xy) Lrns A(X2)) if Ay(X1) Lan, Ay(X2) for all
veESy.

6.2.1.5. If the morphism prod, (X, Xo, 7) is equal to zero, which happens very often
in practice, then A, (X1) Lro Ay(X2).

6.2.2. Local cup products. — Fix v € S§; and assume that A,(X1) Lgp,
A, (X2).
Recall that, for i = 1,2, the complex

,“—
U, (Xi)[-1] = C0110<U,,+(X1:)  (X:)

v

Clou (G X)) [-1]

has differential
d(bi,c;) = (dbg, it (b)) — dc;)
(for by € U (X3), ¢ € Ot (G, Xi), j=bi =T + 1 = (bi. 7).

“cont

Denote by O = L.J,T = 7'1212 o m, o U the truncated cup product with values in

7‘>2 Ceoni(Gy, J(1)) from 6.2.1.2.
The formulas

(bi,c1) U p, be = (1U7 (ba) + hy (b ® ba)
by Ugn, (ba,ca) = (=107 (b)) ea + by (by © by)
(cf. Proposition 1.3.2(i)) define morphisms of complexes
Uz mn, t Uy (X1)[=1] @R UF (X2) — (11, C(:ont(GﬁﬂJ(l)))[_l]m‘][_:ﬂ
Uim £ U (X1) @ (U (Xo)[=1)) — (71 Gl (G J(1)) (-1 222
hence, by adjunction, morphisms of complexes
Uy = adj(Us ) Uy (X0)[=1] — D5 (U7 (X2))
Ut b, = adj(Us ) 2 Uy (X0) — Dy (U (X2)[-1]).

J[_3]7
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6.2.3. Error terms. — Assuming that A, (X1) Ly, Ay(X2), put
Err, (A, (X1), Ay(X2), m) = Cone(uy xp,)-
If A(Xl) Lrhs A(Xg), put

EI'I'(A(X]), A(X2)7 7T) = @ Errv(A’u(Xl): A?)(X2)7 7T).
vESy

6.2.4. Lemma. — Fiz v € Sy and assume that A, (X1) Lrn, Ao(X2). The following
diagram of morphisms of complezes is commutative and the vertical maps define a
morphism of exact triangles in D(rMod):

C(:ont(G’U? Xl)[_l] UU_ (Xl)[_l] U:_(Xl)
('1,].)(] [AI]
DJ[—3] (Cc.,ont(G’U»DJ(Xl)(l))) U—mihy Ut m by

D j-3)((adj(mosi2))«)

D -5 (i} (X2))

DJ [—3] (C(:ont(G?H XQ)) —— DJ [—3] (Uj— (XQ)) - DJ [—3] (Uv_ (XZ)[_”)
Proof. — This follows from Lemma 1.2.11 and the following equalities:

(07 01) U_’ﬂ,h“ bg =C L.Jﬂ ’L:—(bg)
(bl,(]) U rh, b2 = by Ut 7,he (bg,(]). |

6.2.5. We shall be interested only in the following two cases:

(A) The complexes X1, X are bounded, J = I[n] for some n € Z (hence Dy = D,,)
and - for i = 1 or 2 — all cohomology groups of X; (resp., of X3_;) are of finite (resp.,
co-finite) type over R.

(B) The complexes X, Xo are bounded, J = w*[n] for some n € Z (hence D; =
2,) and all cohomology groups of X, X9 are of finite type over R.

6.2.6. Lemma - Definition. —— Assume that one of the conditions (A) or (B) in 6.2.5 is
satisfied. Then the following two conditions are equivalent:

adj(m) : X1 — Dj(X2)(1) is a quasi-isomorphism
< adj(mos12) : Xo — D;j(X1)(1) is a Qis.
If they are satisfied, we say that w is a perfect duality.

Proof. — Applying Lemma 1.2.14 to f,g,h = id, A = 7, p = 7 0 s12, we see that
adj(m o s12) is equal to

Xo—1 Dy (D(X)(1))(1) 2288, b x)(1)
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and adj(m) is equal to

D j(adj(mos: 1
X, €y D,](D,](Xl)(]))(l) g (adj( 2))(1)

Dj(X2)(1).

The statement follows from the fact that both maps ¢; are quasi-isomorphisms,
by Matlis duality 2.3.2 (resp., Grothendieck duality 2.6) in the case 6.2.5(A)
(resp., 6.2.5(B)). O

6.2.7. Lemma - Definition. — Assume that one of the conditions (A) or (B) in 6.2.5
is satisfied and m is a perfect duality. If, for a fired v € Sy, we have Ay(X1) Lrp,
A, (X2), then the following two conditions are equivalent:

Ut . b, 48 @ quasi-isomorphism <= u_ »p, 15 a quasi-isomorphism.

If they are satisfied, we say that Ay (X1) and A, (X2) are othogonal complements of
each other with respect to m and h,; notation: Ay(X1) L1y p, Ay(X2). If they are
satisfied for all v € Sy, we write A(X1) LLyne A(X2).

Proof. Under the assumptions (A) or (B) of 6.2.5 the vertical arrow ay x[—1]
(resp., Dj—g((adj(m o s12))«)) in Lemma 6.2.4 is a quasi-isomorphism, by Proposi-
tion 5.2.4 (resp., by Definition 6.2.6). O

6.2.8. Corollary. Under the assumptions of 6.2.7,
Ay(X1) Llgn, Ay(X2) <= Err (A, (X1),A,(X2),7) — 0 in D(gMod).

6.3. Global cup products

We are going to apply results of Sect. 1.3 to Selmer complexes.

6.3.1. Assume that we are given X1, Xo, m and A(X) Lr s A(X2) asin 6.2.1. Our
goal is to define a morphism between the exact triangle

RIccont(Gr,s, X1) — RIp(X1) — Ud (X))
and the D j_z-dual of the exact triangle
Ug (X2)[~1] — RT(Xs) — Rlcon (G5, Xa).
Consider the data of the type 1.3.1.1-1.3.1.4 given by the following objects:

(1) Al :Cc.(’ml,(GK,Sv‘Xl) B] = U;F(Xl) Cl @ Cont vaXl)
vESy
Ap= C@ont(GK SvXQ) By = U;—(XZ) Co= @ com GU’XQ)
veESy
A3:TI2]2 Cc.ont(GK,S7 ‘](1)) By=0 C3= @ 7->2 cont va ]( ))
vESy

(2) 4 5 C; % B; given by f; = ress,, g; = i (X;) (j = 1,2), g3 = 0.
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(3) Products Ua, U induced by the truncated cup products L.J7T associated to 7
(cf. 6.2.2) and Up = 0.
(4) Homotopies h = (hy, hy) = (0, hg).

For these data,
Ej = C}(Grs, X;; A(X))) = C3(X;) (5 =1,2).

As in 5.4.1 we have a quasi-isomorphism r;[1] : F3[1] — J[—2], unique up to homo-
topy, which makes the diagram

C_’; —_— E;[l]

(ru.s) [

@,es, /-2 — J[-2]

commutative up to homotopy.
For every r € R, Proposition 1.3.2 gives cup products

Urrh = Upp - Fy®p By — E3L*J[—3],
hence, by adjunction, morphisms of complexes
Yr,r,hs = adj(Uﬂ',r,h) : 6}()(1) — DJ[—3] (6}()(2)) .

The homotopy class of v, , s is independent of the choices of r € R, (7,,5) and rg s

from 5.4.1. It may depend on the homotopies (h,), but it does not change if we

replace (h,) by homotopic homotopies (Tzv) ~ (hy) (via a second order homotopy).
Denote by

Yr,hg + R\ff(Xl) — DJ[_3] (,va—‘f(Xg))

the corresponding map in D(rMod).

6.3.2. If X, X, are bounded and UZ(X;) (j = 1,2) are both cohomologically
bounded above, then RI';(X;) (j = 1,2) both lic in D~ (gMod) and the cup product
U r.p induces (assuming that A(X;) Ly ng A(X2)) a cup product

— L —
(6.3.2.1) Ur hg * RFf(X1)®R RFf(Xg) — J[—3]
and pairings on cohomology

(6.3.2.2) Hj(Grs. X1;A(X1)) @k H}(Gi.s. Xo; A(Xp)) — H73(J*).
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6.3.3. Proposition. — Fiz r, ; and rsy. If A(X1) Lrns A(X2), then the following
diagrams of morphisms of complexes have exact columns and are commutative up to
homotopy (the vertical maps are those of 6.1.3 and their D j_3)-duals):

0 0
US%){— ) St D.,[x]%;m))
C3(Grs, X1 AXy)) ——" Dyi_y)(C3(Gr 5, X21 A(X2)))
Ceoni(Gr,s, X1) L, J-3(Ce ((}t(GK,SaXﬁ)
0 0
0 0

| ) l

C(‘ (()nt(Gi\ val) — D'][_:¥](C(.:()rll,(GKVS7XQ))

Yr.lhg

6}(GK,57X1§A(X1)) — DJ[—:;](G}(G'1\'.S~,X2;A(Xz)))

|

U:(f(]) frmhs, D yioa(Ug (X2)[-1])
0 0

Above, the maps . resp., .3 are equal to

Be.a.x,

ﬁ(f : Cc.ont(GK,fJ# )___—)DJ[ 3] (C(.t,C()nt(GK\S' D/(Xl)(l)))

D j—aj(adj(mosi2)« ) .
(C( (011!:(GK.S~, XZ))

Brx,

B C2eoni (G5, X1) =D 15 (Con (G5, Dy (X1)(1 )))
Dra ) (O (G X2)).
Proof. — This follows from Lemma 1.2.11 and the following formulas
(a1,0,¢1) Upp (a2,0,0) = (alu7T as,0,¢1Ux resgs, (az))
(a1,0,0) Up.p (a2,0,c2) = (alU,T az,0, (- 1)a1r(>ssj.(a1)L.J,, c2)
(0,b1,¢1) Ug.n (0,b2,0) = (0,0, 10y (id(b2)) + hs(by @ ba))
(0,62,0) Up (0. bz..¢2) = (0.0, (=) (i3 (6:)) 0 €2 + hs(bs @ b2))

(valid in our case, since Ug = 0 and hy = 0). a
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6.3.4. Theorem. — Assume that one of the conditions (A) or (B) in 6.2.5 is satisfied
and 7 is a perfect duality. If A(X1) Lrns A(X2), then there is an exact triangle in
D(rMod)

RI(X1)—"55D 5 (R f(X2)) — Err(A(X1), A(X2), 7).

In particular, the map
Vs RUp(X1) — D i3 (RTf(X2))
is an isomorphism in D(grMod) if and only if A(X1) LLrns A(X2).
Proof. — In the second diagram in Proposition 6.3.3, the map .8 is a quasi-
isomorphism by Proposition 5.4.3. This implies that Cone(vyr 1 hns) is isomorphic
in D(gMod) to Cone(uy xpy) = Err(A(X:), A(X2), 7), which proves the Theorem
(using Corollary 6.2.8). O
6.3.5. On the level of cohomology, Theorem 6.3.4 gives exact sequences
s HO M (Er) — HY(Xy) — HO (D, (RT(X2))) — H(Er) — -
(where Err = Err(A(X1), A(X2),7)). Under the assumptions of 6.2.5(A), we have
J = I[n] and
HT%(D;(RT4(X2))) = D(H} " 1(X2)).
Under the assumptions of 6.2.5(B), we have J = w*[n]. If, in addition, all cohomology
groups of Ud (X5) are of finite type over R, then RT'y(X>) € Dy (rRMod) and there is
a spectral sequence
By’ = Extly (H} "7 (Xy),w) = H'H73(Dy(RT4(X))),
which degenerates in the category (gMod)/(pseudo-null) into exact sequences
00— EQI’(I*l — H(I_B(D']<ﬁff(X2))) — Eg'q — 0.

The term £ is torsion-free over R (by Lemma 2.8.8), while codimp (supp(Ey 7 ")) >
1. In particular, there is a monomorphism in (gMod)/(pseudo-null)

(13 (D (RT(X2))) )

which is an isomorphism if R has no embedded primes.

— Ext}{ (ﬁ'}l_nAq(Xg), w),

R-tors

6.3.6. In the situation of 6.2.5(B), there is a straightforward generalization
of 6.2.6, 6.3.4 and 6.3.5, if we insist on adj(m) to be a quasi-isomorphism only
in D((rMod)/(pseudo-null)).

6.4. Functoriality of Selmer complexes

Let J be as in Sect. 6.2.
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6.4.1. Let X1, Xo, 7 be as in 6.2.1 and assume that Y1,Ys,p : Y1 @r Yo — J(1) is
another triple of the same kind. Consider the following data:

6.4.1.1. Orthogonal local conditions
A(X1) Lrnsx) A(X2), A1) Lrnsr) A(Y2).
6.4.1.2. Morphisms of complexes of R[G g s]-modules \; : X; — Y, (j = 1,2); set
A=A ®A: X ®p Xy — Y1 @rYo.
6.4.1.3. Morphisms of complexes of R-modules
B Ug(X;) — UL(Y;)  (=12).
6.4.1.4. Homotopies
vj i (Y)) 0 B = (\j)s 0 (X;) (5 =1,2).
6.4.1.5. A homotopy k: po X~ 7.
6.4.1.6. A second order homotopy
K hs(Y) % (81 @ Bs) — hg(X) Fhox (i5(X)) @i (X)) + U, % (v @ va)s

K" (UE (X)) @r US(X2) — @ (72 Crone(Go, J(1)))
veESy

2

Given 6.4.1.1-6.4.1.6, we obtain the following data of the type considered in 1.3.3:
(A, B;,Cj, f5,9j,Us, h) as in 6.3.1, (A;, B;,Cy, fj,Gj,Us, h) the corresponding ob-
jects for (Y1,Ys, p),

aj, v =), B;=0 (G=12), aszy=id, [3=0,
u; =0, v;=v; (=12), ugvy=0,
korky = ke, ky=0, K;=0 K,=K.
Applying Proposition 1.3.4, we obtain the following result.

6.4.2. Proposition

(i) The data 6.4.1.1-6.4.1.4 (it is not necessary to assume orthogonality of local
conditions at this point) define morphisms of complezes

(X)) = (). 85, v5) « C3(X;) — C3(Y)),
given by the formula in Proposition 1.8.4(i). The homotopy class of ¢(\;, B;,v;) is
unchanged if v; is replaced by v; related to vj by a second order homotopy v; ~ V4.

(ii) Given the data 6.4.1.1-6.4.1.6, the following diagram of morphisms of com-
plexes is commutative up to homotopy (for everyr € R):

_ ~ Un g (X)

C3(X1) @n C(Xa) I1=3]
o(A1)@p(A2) I

- ~ Uporhg(y

Cy(V1) g C3(Ya) S 1)
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6.4.3. Corollary. — Given the data 6.4.1.1-6.4.1.6, the following diagram is commu-
tative up to homotopy (for everyr € R):
5}(X1) D./[—s](é}(Xz))
l“"(m [u,[_s](«pm))
~ Yp.rihg(Y) e
Ci (Y1) s D -5 (C3(Y2)).

Yr,rhg (X)
_—

Proof. — Apply Lemma 1.2.11 to the diagram in Proposition 6.4.2 (ii). O

6.4.4. If we are given the data 6.4.1.1-6.4.1.3 such that hg(X) = hg(Y) = 0, m = poA
and i (Y;) o B; = (A\j)« 0is(X;) (j = 1,2) — which happens quite often in practice —
then we can take v; = 0 (j = 1,2), k = 0, K = 0. The formula in Proposition 1.3.4 (ii)
then gives H = 0, which implies that the diagrams in Proposition 6.4.2 (ii) and Corol-
lary 6.4.3 are commutative, not just commutative up to homotopy.

6.4.5. A special case of the functoriality data 6.4.1 occurs if we replace 7 by a
homotopic morphism of complexes 7’ : X ® g Xo — J(1). Taking
Y, =X,, AY;))=AX;), AN =id, gj=id, v;=0 (j=1,2),
p=m", k:n —m,
all we need in order to apply Proposition 6.4.2 are new homotopies
h! = hy (X1, Xo, ') : prod,, = prod, (X1, Xo,7') — 0
and a second order homotopy
K 1 hly — hg + ko * (i&(X1) @i (X2)).

For example, if u : J — J is homotopic to the identity via a homotopy ¢ : u ~~ id and
7w’ = p o, then we can take

k={xm, hl =pxh, K= (K,= —Chy)ves;

since
Ky —(dl +4d) x hy = h), — hy — —€x (dhy, + hyd) = € prod,,.

6.5. Transpositions

In order to exchange the roles of X; and X, in 6.2.1 we need additional data.

6.5.1. Definition. — Given X as in 6.1.1 and a local condition A,(X) at v € Sy, a
transposition operator for A,(X) is a morphism of complexes

7,"(X) : US(X) — US(X)
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such that the diagram

i (X)
U: (X) - Cc.:om, (Gm X)
TH(X) lT
T(X)
UJ<X) - C(ont (G717 X)

commutes up to homotopy (recall that 7 denotes the transposition operator defined
in 3.4.5.3-3.4.5.4).

6.5.2. Lemma. Assume that we are given 7 : X1 ®@r Xo — J(1) asin 6.2.1 and local
conditions A, (X;), j = 1,2 (for some v € Sy) that both admit transposition operators
T+

J(X;). Then the following two conditions are equivalent:
Ay(X1) Lan, Do(X2) for some hy <= Ay(X2) Lrosy.n, Au(Xy) for some hl.
Proof. — This follows from the fact that the following diagram and its analogue in

which the roles of X; and X, are interchanged are commutative up to homotopy
(by 3.4.5.4):

U (X1)@r U (X2) US(X2) @p U (X1)

lijy@oi}, lﬁ ®it

s120(T,F@T,))
120 LN

s120(T®RT
Cc.'ont (G’IH Xl) XR C(.-ont (G’Uv X2) : m C&)nt (Gl ) XZ) QR C( -ont (G’U’ ¢ )
L.Jw Oros 512
T>2 C’( sont (G'U’ ](1>) - 7—>2 (()nt (GW ](1>) O

6.5.3. Assume that we are given X, Xo, 7w as in 6.2.1. Consider the following addi-
tional data:

6.5.3.1. Orthogonal local conditions

A(Xl) —L7r,h5- A(Xz)> A(XZ) J—ﬂ'oslg,hfg A('«Xl)

6.5.3.2. For each Z = X, X, and v € Sy a transposition operator 7,7 (Z) : U (Z) —
US(Z): put TH(Z) = (1,7(Z))ves; -
6.5.3.3. For each Z = X1, X5 and v € Sy a homotopy

Viw :0(2) 0 T, (Z) = T oif (2);

put Vz = (Vz.)ves, (the existence of V follows from 6.5.3.2, by definition).
5.3.4. For each Z = X, X5 and v € Sy, homotopies
kz:id—~T onCs . (Gks,2Z)
kz, id = T,5(Z) onUS(2)
kzy:id =T onC: (G, Z)
satisfying

res, x ky = kg, xres,
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and such that there exists a second order homotopy

v v

i (Z) % kL + Ve = kzo* i} (Z).
6.5.3.5. For each v € Sy, a second order homotopy

Hy 7w ho(X1, Xoy ) + Un % (Vi o @ Vi ot
— Iy (X2, X1, m o s12) % (s12 0 (7,7 (X1) ® 7,7 (X2)))
i i . i—2
Hv . (U;—(X]) ®R qu_(XQ)) I (7-1212 C’(:om(Giu ‘](1))) :
6.5.4. Proposition
(i) Given the data 6.5.3.1-6.5.5.3, the formula

Tz(a,b,c) = (T(a), T (Z)(b), T (c) — Vz(b)) (Z = X1,X2)
defines a morphism of complexes
Tz : C3(Grs, Z; A(Z)) — C3(Gr.s, Z: A(Z)).

If, in addition, we are given 6.5.3.4, then Ty is homotopic to the identity.
(ii) Given the data 6.5.3.1-6.5.3.3 and 6.5.3.5, then the following diagrams com-
mute up to homotopy (for every r € R).

Ur

é}(Xl) @R 6’}(X2) — J[=3]
J/S]QO(']—‘,‘(1®TX2) ||
—~ ~ Uﬂo.<12.1 ~r.h! .
CH(Xa) @r Cj(X1) — (3]
~ Yrorhg e
C;(%1) . D= (C1(X2)

lﬁ,l[a;]OTxl b " _ ||
~ J=31rosy,1—r 0l 04X ~
D -3 (D=3 (C}(Xl ) - s D ji—3 (C}(Xz))

’ O'Tx‘2

~ RECEIPR SN

C3(Xo) D -3 (é}(Xl))
€J[—3) lDJ[—B](Txl)

- D3 (Vrrng) =~
D j—5(D -5 (C}(X2))) e Dii-#(C3(X0)

Proof
(i) This follows from 1.1.7.
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(ii) We are going to apply Proposition 1.3.6 to the data 6.5.3.1-6.5.3.4 together
with
Ta,Tc =T, Tp=T"(X))resp., TH(Xy),
Uy, Uy =Ur, Uz =0
Wy =0, hj=Dhy,
Uj=0 (j=1223),
V=0, Vi=Vx, (j=12),
ta =tg =1, =0,
Hp=0, Hy= (Hv)ves/»-
Proposition 1.3.6 then implies that the first diagram is commutative up to homotopy

(as T3 =T ~ id and U} _, s = Unosyy 1—rn7). Commutativity up to homotopy of the
second and third diagrams then follows from Corollary 1.3.7. (]

6.5.5. Corollary. Given the data 6.5.3.1-6.5.3.5 and r € R, the diagram
Ur rh

Cy(X1) @R C3(Xy) — J[-3]
| |
CH(Xa) @p C3(Xy) —20 J[-3]

is commutative up to homotopy and the composite maps
D=3 (Vmosygn—rnty)

D5 (CH(X))

€J[-3)

6’} (X1)——=D_3(D iy (57(X1 )

=~ EJ1-3 ~ Dyi—ay(yrrng) e
CHX2)—"=D ) (D5 (CH(X2)) ) —— 2Dy 5 (CH(X1))

are homotopic to Yrrpne and Vrosia,1—r,hly s respectively. Under the assumptions as
in (6.3.2.1), the corresponding cup products make the diagram

Uz hs © RFf(X])@RRFf(XQ) — ][—3]
!
o L
UFOSIZJI'I/S' : RFf(XQ)@RRFf(X]) — J[—iﬂ

commutative in D~ (rMod).

6.6. Self-dual case

6.6.1. Let X and A(X) be as in 6.1.1. Assume that we are given a morphism of
complexes of R[Gk g]-modules 7 : X ®p X — J(1) such that A(X) Lz, A(X) for
suitable homotopies hs = (hy)ves,, and that 7 := 7o 515 is equal to

' =mosiy=c-7. c==+1.
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This implies that L'),,/ =c- L.J,r and
A(X) Lo, AX), hg=c-hs.
The formula in Proposition 1.3.2(i) implies that the cup products
Urorhy Unr o p 5}()() @R 5}(X) — J[=3]
are related by

(6611) Unr by = €Uz ph.

6.6.2. Proposition. Under the assumptions of 6.0.1, assume, in addition, that Z =
X admits transposition operators T," (X) (v € Sy) and the data 6.5.3.53-6.5.3.5, where
6.5.5.5 consists of second order homotopies

H/u : T* hv + O?T * (VX,U ® VX.?))l v C h/v * (512 o (Z#(X) ®T+(X))) (/U € Sf)

v

Then the following diagram is commutative up to homotopy:

Uz rh

Cy(X)@r Cp(X) —Ts J[-3]
|
C3(X) @r C3(X) —mi=rt, J[-3]

and the morphism

Dyi—3)(Vm,rng) ~

Dyi3(CHX))

5’}(X) R D./[—:;](D.J[—:z](é}(X)))

is homotopic to ¢ - Yx1—rhs-

Proof. This is a special case of Corollary 6.5.5 for X; = X5 = X, if we take into
account (6.6.1.1). O

6.6.3. Corollary. — If, in addition, éj(X ) is cohomologically bounded above, then the
cup product (6.3.2.1)

— L —
Ur hs © RF[(X)QQRRFJ‘(X) — (][—3]
satisfies
Urhs = €+ (Unhs © 812)-
6.6.4. Hermitian case. — In 6.6.4-6.6.7 we assume that R is equipped with an

involution ¢, i.e., with a ring homomorphism ¢ : R — R satisfying ¢ ot = id.
For an R-module X, set X* = X ®p,, R; this is an R-module in which

rie@r)=xr’, (rz)or =z r)r’ (r,r" € R,z € X).
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For any R-modules X,Y there are canonical isomorphisms of R-modules

(6.6.4.1) (X)X, (x@r)@r — ur)r'z,
X'@rY"' = (X @R Y)", (zar)@yor)— (z@y) @,
(=t®id): R* = R®p, R — R, rx ' —(r)r,
Homp(X,Y)" = Homp(X", V"), for— (z@r — f(z)2rr').

For f : X — Y we denote by f*: X* — Y* the image of f ® 1 under the last
isomorphism in (6.6.4.1). With this notation, the isomorphism

[L . R _N_) (Rz)z N Rz,

is given by r — 1®@r. The functor X — X* extends in an obvious way to complexes of
R-modules, and the isomorphisms (6.6.4.1) also hold for X*®rY* and Hom%(X*,Y*).
Assume that we are given a morphism of complexes

v:J —J
(where J is as in 6.2) such that
I/L . ,] _N_) <Jz,>z, —_ JL
is a homotopy inverse of v.
6.6.5. Let X, A(X) beasin 6.1.1. The local conditions A(X) define local conditions
A(XY) = A(X)" for X4
L;g_(Xl) = [:r(X)[ : U{),_(X) - C(()nt( CR X) — C(()nt(G'UsXL)

and a canonical isomorphism of complexes

~ Lo~ Ne L

CHX) — CHX").
Assume that 7 : X®@r X" — J(1) is a morphism of complexes of R[G i s]-modules such
that A(X) Lxns A(XY) for suitable homotopies hs = (hy)ves,, and that 7 := 70519
is equal to

' =mosip=c-(vor'), c=+l1.
It follows that Uy = c - (v ( =)°) and
ACX') Lo, AX), By = (vo hy)
As in (6.6.1.1), the cup products
Ut s C3HX) @ C3H(X) — J[-3)]
Unrre + C3(X) @R CHX) — J[=3]

are related by
Uﬂ—f’r‘h/ =C- (l/ [e) (U‘fr,r,h)L)~
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6.6.6. Proposition. — Under the assumptions of 6.6.5, assume, in addition, that Z =
X admits transposition operators T,"(X) (v € Sy) and the data 6.5.3.3-6.5.3.4. Ap-
plying the functor M — M?*, we obtain the same data for Z = X*. Assume, further-
more, that the triple (X, X*, ) admits the data 6.5.3.3, i.e., second order homotopies
H,: T*hu—l—L.J,T*(Vx,U@VXW)l —~ - (voh!)x(s120(7,7 (X)®T,H(X"))) (v esSy).

Then the following diagram is commutative up to homotopy:

Oy X)orC3(X) —— — J[-3] = J[-3|
- L lsrzﬁv N TI/ lw
CHX) ®r C}X) e JH=3] = J'[-3].
Proof. — This is a special case of Corollary 6.5.5 for X; = X, Xy = X*. O

6.6.7. Corollary. — If, in addition, 5’}(X ) is cohomologically bounded above, then the
cup product (6.3.2.1)

— L —— .
Ur hs - RFf(X)@RRFf(X) — J[—3]

satisfies

U7T,hs =cC- (V o (Uﬂ,hs)l/ © 312)~

6.7. An example of local conditions

In this section we consider local conditions analogous to those studied by Greenberg
[Grel, Gre2, Gre3|. Let J be as in 6.2, X,Y complexes of admissible R[Gk,s]-
modules, and 7 : X ® Y — J(1) a morphism of complexes of R[Gk,s]-modules.

6.7.1. Fix v € Sy. Assume that we are given for Z = X,Y a complex of admissible
R[G,]-modules Z; and a morphism of complexes of R[G,]-modules

These data define local conditions

i+
AU(Z) : U:_(Z) = C(:ont(va Z:)“JU.—(-Z'LC(:OM(GUv Z)
Put .
Z; = Cone(ZjL(Z)»Z);
then UJ(Z) = CL.'ont(Glh Zv_)

6.7.2. Definition. — We say that X! 1, Y, if the morphism

JIT(X)®iT(Y)

XForY," X @pY-"-J(1)

is zero.
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6.7.3. Lemma

(i) Xf L Y)h = A,(X) Lo AL(Y).
(i) Xf L Y," <= Y,| L os, X

v

Proof. — This follows from the definitions. O

6.7.4. The morphism 7o (j7(X) ® j7(Y)) in 6.7.2 factors through X ®g Y,". By
adjunction we obtain a morphism of complexes

(6.7.4.1) X — Hom%y(Y,"

v o7

J(1)) = Dy(Y,h)(1).

If X\ L, Y., then (6.7.4.1) induces a morphism of complexes

(6.7.4.2) X, — Homy(Y,', J(1)) = D, (Y,)(1).

We say that X L1, Y, if (6.7.4.2) is a quasi-isomorphism.

6.7.5. We shall be interested only in the following two cases:

(A) The complexes X, Y, Xt Y.© are bounded, J = I[n] for some n € Z and
either all cohomology groups of X, X' (resp., of Y, Y,;) are of finite (resp., co-finite)
type over R, or all cohomology groups of X, X,/ (resp., of Y, Y,/) are of co-finite
(resp., finite) type over R.

(B) The complexes X, Y, X!, Y,F are bounded, J = w*[n] for some n € Z and all
cohomology groups of X, Y, X, Y.© are of finite type over R.

v v

6.7.6. Proposition. — Assume that one of the conditions (A) or (B) of 6.7.5 is satis-
fied, X+ L. Y5 and 7 is a perfect duality. Then

(i) X L1l Y," <= Y, Llses, X,f.

(i) X7 L1, Y = Ay(X) Llrg Ay(Y).

(ii) V5 L Lross, XiF = Ap(Y) Llros0 Ay(X).

(iv) Completing the morphism (6.7.4.2) to an exact triangle W, — X, —

D (Y;F)(1) — W,[1] in D (‘E}G“]Mod), then there is an isomorphism in D®(gMod)

v

Errv(Av(X)7 Av(Y)7 7T) L’ Rl—‘cont<Gv» Wv)

Proof. — The map (6.7.4.2) and the dual of its analogue for mos15 fit into a morphism
of exact triangles in DY (%}GU]MOd)

Xr —

X
(6.7.6.1) l l
Hom% (Y, , J(1)) — Homp(Y,J(1)) — Homyk(Y,', J(1)),

N X

v
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in which the middle vertical arrow is an isomorphism, since 7 is a perfect duality; this
proves (i). As regards (iv), applying the functor RI¢ont(Go, —) to (6.7.6.1) we obtain
a morphism of exact triangles in D°(pMod)

RT cont (Gm X;;F) — RIcont (GU7 X) — RIcont (Gv: Xu_ )

[ 1 I

RTcont (Go, Dy(Y,7)(1)) — Rlcon(Go, Dy(Y)(1)) — RIcont(Go, Dy(Y,5)(1)),
in which the middle vertical arrow is again an isomorphism. This gives isomorphisms
Err, (A, (X), A, (Y), ) = Cone(uy 0) — Cone(A)[—1] — Rl cont (G, Wy)
in D*(xMod), proving (iv) and (ii) (hence also (iii), if we replace 7 by 7o s15). O
6.7.7. Proposition. — Assume that we are given Zt — Z (Z = X,Y) satisfying

X5 Ly Y,P for all v € Sy, Assume that one of the conditions 6.7.5(A) or (B) is
satisfied. Then

R (X)—""=D,_5(RT(Y)) — €D Rlcom (G Ws),

vESy

where W, was defined in Proposition 6.7.6(iv), is an exact triangle in Djit( rMod)
(resp., D’Cfoﬂ(RMod)). In particular, if X} L1 Y.t for all v € Sy, then the map

Y0t RTf(X) — Dy (RT(Y))
is an isomorphism in D?t(IgMOd) (resp., Dgoﬂ(RMod)).

Proof. — Apply Theorem 6.3.4. O

6.7.8. Transpositions. — Assume that we are given Zf — Z (Z = X,Y) sat-
isfying X,/ L, Y, for all v € Sy. Then the following objects are the data of the
type 6.5.3.1-6.5.3.5:

AU(X) J-W,O AU(Y)v AU(Y) J—71'0812’0 AN(X)v 7:;+(Z) = T, VZ,U =H, =0,

kz.k% .k, given by a functorial homotopy id — 7.

1) satisfy the condition 6.7.5(B) with J =

6.7.9. Assume that X, Y, X" Y,} (v e S
=Y, T*(1)} =Y," and put

we. Write T'= X, T,F = X5, T*(1)

A=D(Y)1), A} =D(Y,))
A*(1) = D(X)(1),  A*(1)F = D(X;)(1).
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If X;f L1, Y,! forall v € Sy, then the previous discussion and Theorem 6.3.4 imply
that the Selmer complexes of T, A, T*(1), A*(1) are related by the duality diagram

RI;(T) RI';(T%(1))[3]
oo
RT;(A) RI;(A%(1))[3]

(in Df’c oyt rMod)). This diagram gives a spectral sequence

By’ = Extiy (H] ™/ (T"(1)),w) = Exty(D(H}(4)),w) = H{(T).

6.8. Localization

6.8.1. Let.” C R be a multiplicative subset. Everything in Sections 6.1-6.7 is still
valid for R, instead of R; the only difference is that references to 5.2.3 should be
replaced by those to 5.6.2. For example, the same proof as in 5.6.3 gives a localized
version of the duality Theorem 6.3.4.

6.9. In the absence of (P)

6.9.1. In the situation of 5.7, we must also consider the complexes CA'C'Om(GU, X) and
local conditions
US(X) — C¢

cont

(G’U7 X)

at all real primes v of K. Everything in 6.1 6.7 works with obvious modifications,
provided we consider only bounded complexes X,Y. The easiest method is to put
UF(X)=U}(Y) =0 for all real primes v; then the complex

P Erry(A,(X), Ay (Y),7)
K,=R

becomes acyclic in D (g /2 Mod), where R[1/2] = R ®z, Qo.

ASTERISQUE 310



CHAPTER 7

UNRAMIFIED COHOMOLOGY

Let v € Sy,v { p. The aim of this chapter is to define a suitable generalization
of unramified cohomology H! (G,, M). In the absence of a good Hochschild-Serre
spectral sequence on the level of complexes, we use explicit “small” complexes com-
puting continuous cohomology in this case. Unramified local conditions turn out to be
orthogonal with respect to the Pontrjagin duality (Proposition 7.5.5, 7.6.6), but not
with respect to the Grothendieck duality; generalized local Tamagawa factors appear
at this point (7.6.7-7.6.12). Combining unramified local conditions with those from
Sect. 6.7, we obtain Selmer complexes associated to the Greenberg local conditions;
these are studied in Sect. 7.8.

7.1. Notation

7.1.1. We use the standard notation: K3 (resp., K!) denotes the maximal
unramified (resp., tamely ramified) extension of K, contained in K5P and
I, = Gal(Ki*P/KY) (resp., I¥ = Gal(K:°?/K!)) the inertia (resp., wild iner-
tia) group. Put

G, =G,/I" = Gal(K!/K,)

I, =1,/I" = Gal(K!/K") (= the tame inertia group)

7.1.2. For M € (8-*Mod) we define the unramified local conditions A (M) to be

R[G,]
U (M) = Clon(Go/ Loy M) Cly (G, M),
The inflation maps induce isomorphisms
Héom(Gv/Iv, MIU)
MG i=0
— H&r(va M) = Ker(Hclont(Gv,M)&Hclont(lm M)) =1
0 1>1

(this is well-known for discrete modules; the general case follows by taking limits).
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We would like to define AY(M*) for a (bounded below) complex M* of ind-
admissible R[G,]-modules. The naive definition

inf . .
C(()ut( v/Ivv(A[ ) ) C(ont(vaAf )
is not very useful, as it does not factor through the derived category. Note that M!v is
quasi-isomorphic to 7<o Cg, . (1, M); it would be natural (especially from a perverse
point of view) to define AL(M*) as

(7121) “C(:ont ’!)/]11:7-<() C(.:()nt(ITH]\I.)) - C(.om 11/17”Czont<1’l”]\/I.))
- Cc.ont (G’Uﬂ ‘]\’I.)77 .
Unfortunately, we have not been able to make sense of the Hochschild-Serre spec-

tral sequence for continuous cohomology even in this very simple case. The prob-
lem is, as explained in 3.6.1.4, that in general 7<o C2, . (
of G,/I,-modules (let alone of ind-admissible R[G,/I,]-modules). Instead of in-
terpreting (7.1.2.1) literally, we use explicit “small” complexes quasi-isomorphic to

(G M ) for G — GmIva/Iv-

L,,M*) is not a complex

C()nt

7.2. Complexes C(M)

7.2.1. For every M € (‘,;‘[d( a‘]iMod) the inflation map

inf : C,

(ont(G“’ A/[t) - C( ont (GTH ]\[) (A/[, = ]\[“’”)

is a quasi-isomorphism, by Lemma 4.1.4. This means that it will be sufficient to

(G, M) for “tame” modules M = M? € (}';[dc“]lMod)

Fix a topological generator t = t, of I, = zZ /Z; (where | # p is the characteristic
of the residue field k(v) of v) and a lift f = f, € G, of the geometric Frobenius
element Fr(v) € G, /I, = 5,,/7,,. Then

Gy = (t) x (f)
has topological generators t and f, with a unique relation

tf = ftt, L =|k(v) = N(@).

consider only C¢

The element
0=fl+t+---+t-71) e Z[G,)
satisfies
Ot —1) = f(t- 1) = (t- 1)f
@-1t-1)=0-1(f-1).
For every G,-module M denote by C(M) the complex

C(M) = [M (=11 r o gy AmtD)

M]
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in degrees 0,1,2 and by C*t(M) (resp., C~(M)) the subcomplex of C(M) equal to
C*H (M) = [Mt:1~i_1—»Mt=1]
in degrees 0,1 (resp., the quotient complex equal to
O~ (M) = [M/(t— DM "1 - 1)M] - [M/(t— M-S v - 1)M}
in degrees 1,2). The canonical projections define a quasi-isomorphism
C(M)/CH (M)~ (M),
hence an exact triangle
Ct(M) — C(M) — C~ (M) — CT(M)[1].

On the level of cohomology this gives

~

HO(CH(M)) = HOCO(M))
0 — HYCHM)) — HYCM)) — HYC™(M)) — 0
H2(C(M)) =5 H2(C~(M)).

We are now going to define functorial quasi-isomorphisms

C(M)+Cn(Go, M)2C(M) (M € (3Mod)

satisfying A o u = id.

7.2.2. Let G = (o) be a topologically cyclic pro-finite group with a fixed topological
generator 0. Assume that the order of G is divisible by p>°; then cd,(G) = 1. In this
case the complex

o—1 ind-ad
[M=hn| (M € (gtrMod)
in degrees 0,1 is canonically quasi-isomorphic to Cg.,.(G, M). Indeed, writing M =

lim M, (Mo € S(M)) and M, = lim M, /p" M,, it is sufficient to construct functorial
quasi-isomorphisms

A: O (G M) — [M"_‘%M}

“cont

for discrete p-primary torsion G-modules M (such as M, /p™ M, above). The formulas
Ao =id, M(c)=c(o), A=0(i>1)

define such a A. There is another functorial quasi-isomorphism in the opposite
direction

(G, M),

B [M_ﬂ)j\/[] - C’c.ont
given by
po = id

(1 (m)(0*) = 1+ o+ +0" m  (a€Np)
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(with the convention that 1 + o + -+ ¢%~! =0 for a = 0). This formula defines the

values of py(m) only at 1,0,02%,..., but u;(m) extends uniquely by continuity to a

continuous 1-cochain (in fact a 1-cocycle).

As Ao p =id, the maps A, g induce mutually inverse isomorphisms in the derived
category.

All of the above applies, in particular, to G,/I, = (f) and I, = (t).

7.2.3. Proposition. — The formulas
/\0 =id
Ai(e) = (e(f), e(t))
L—2
No(z) = —2(t, f) + 2(f. ") + f D ta(t, i)
N=0  (i>2) =

define functorial quasi-isomorphisms

A Cooni(Gy, M) — C(M) (M € (g%j?Mod)).
Proof. — Asin 7.2.2 we can assume that M is a discrete p-primary torsion G,,-module.

Let us first explain the origin of the map A\. We begin with a morphism of complexes
X' ooy (G, M) — [M=2o O CET) 2yt ]
given by
N, = id

X () = (e(f)se(ft), - se(fth)e(t), .. e(th))

No(2) = (2(fot), 2(fot2), o 2(fotE), 2(t,t), oy 2(8, 270 2(8, f)).
The differentials are uniquely determined by § o A = X o ¢:
So(m) = ((f — V)ym, (ft — Dym, ..., (ftY = Dym, (t — D)m, ..., (t* — 1)m)
01(xoy ..y xL, Y1, -y y) = (f(y1) — 21 + o, ..., flyr) — zr + o,

ty1) —y2 + 1, Hyo—1) = yo + y1. t(zo) — zL + 1)

We want to construct A as a composition A = X’ o X for a suitable morphism of

complexes
N [ prdo, ppeer+1) o [@2L] — (M)

It is natural to require Ao = id, A\1(c) = (¢(f), ¢(t)), which implies that
/\gzlda )\/1/(1’07‘-~,$L»y17-~-’yL):(5507111)-

The condition A 0§ = § o A" forces us to define

L—2

" %

A5 (21, vz, up—,w) = —w+zp + f E tug 1.
i=0
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This leads to the formulas for A and at the same time shows that A is a morphism of
complexes.

Why is A a quasi-isomorphism? First of all, (Ag)« : MGv = Mt=1F=1 i5 an
isomorphism for trivial reasons. The Hochschild-Serre spectral sequence

EY = H(G,/T,, H (I,,M)) = H'"(G,, M)

simplifies to

0 — H'(Go/Ty, MT) — H' G, M) — H' (T, 1)

—50
and
(7.2.3.1) H*G,,M) -~ H(G,/T,,H" (I,,M))
(we have dropped the subscript “cont”, as we consider usual cohomology groups of
discrete modules).

The quasi-isomorphism

At (T,, M) — [M M]

cont
gives isomorphisms on cohomology (Xj), : MT» = M'=! and
A).: HYI,,M) = M/(t—1)M
[] —  c(t) (mod (t — 1)M).
Under (A})., the action of f on H'(I,, M) corresponds to the action of § (= the
action of Lf) on M/(t — 1)M, since
(723.2) (F+)() = F(e(f ) = Fe(th)) = F(L+t+ -+ 57 D)e(t) = O(e(t)).
Similarly, we have a quasi-isomorphism
A = Gl (GofTo, MT) — [T LT
Taken together, (/\{ , A1, Ab) induce a map of exact sequences

0 — HYG,/T, M) — HY G, M) — H\I,, M) — o

l(kl)* l(h)* l(Al)*

0 — HYCH(M)) — HY(C(M)) —  HYC(M)) —s 0.
This shows that (A1), is an isomorphism.

In degree 2, let us recall an explicit description of the isomorphism (7.2.3.1): for
every continuous 2-cocycle z' € C2, (G, M) there is a cohomologous 2-cocycle z =
2 + éc vanishing on G, x I,; such a 2-cocycle is called normalized. For fixed g € G,
the function

(z!]:h’_—)z( g )) cont(Iva)
depends only on the coset § = gI, € G,/I, and is a 1-cocycle. Furthermore, the
function
(§ i [Zg]) € Cclont(av/jvv HI(TM ]\/[))
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is again a 1-cocycle and its class in H'(G,/I,, H'(I,,, M)) corresponds to [z] = [2'] €
H?(G,, M) under (7.2.3.1).
This recipe, the formulas for A*, A and (7.2.3.2) give an isomorphism

H2 (@, M) = (M/(E = 1D)M)/(0 — 1)(M/(t = 1)M) = M/(t — 1,1 — )M
[z] —  2(t, f) (mod (t — 1,1 — ) M),
which coincides with —(A2),, since z is normalized. This finishes the proof that A is
a quasi-isomorphism. O
7.2.4. Proposition

(i) For every discrete p-primary torsion G,-module M, the formulas
po = id
(pa(m,m ) (fH) = (L4 f 4+ [ Dm 4 fC A+t 4+t !
(u2(m))(f°, f) = —f* (Lt 4+ A+ 04+ )m
(a,b,c,d € Ng) extend uniquely by continuity to a morphism of complezes
p:C(M) — Cs, (G, M).
(ii) The morphism u is a quasi-isomorphism and is functorial in M, hence defines

a functorial quasi-isomorphism

w:C(M) — C;,

cont

(G, M) (M € (5 Mod))

satisfying A o p = id.

Proof. -~ We leave it to the reader to check that the function py (m,m’) (resp., pz(m))
defined in (i) on a dense subset of G, (resp., G, x G,) extends by continuity to all
of G, (resp., G, x G,). In order to verify that ;1 commutes with differentials it is

enough to check this on the above dense subsets, which in turn follows from an explicit
calculation based on the following formulas:

tafb — fbtaLh
00 = fo(1 4t 4+t D)
Ot —1)=(t—1)f°
(Lt to = Pt 4+ 1@ D) (a,b € No).

It follows from the definitions that Aoy = id; thus u is a quasi-isomorphism. (See 7.4.8

for a more conceptual proof.) O
7.2.5. Corollary. The map p induces isomorphisms
(;UO)* : HO(C+<A[)) ;) H((:)ont<GU> M)

(1) : HY(CH(M)) = Hy (G, M)
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for every M € (il'z‘[%'a(]iMod). In other words,

ct(M) — o(M)-c

cont

(Gy, M)

is an alternative way of defining unramified local conditions AL (M).

7.2.6. Assume that G = Gy x - - - X G,., where each G; = (0;) is as in 7.2.2. Consider
the Koszul complex K* = K3 (A, x) for the sequence x = (61 —1,...,0,—1) over A =
Z,[G]. Then K*[r] is a A-free resolution of Z,, which implies ([Bru, Lemma 4.2 (i)])
that the complex

(7.2.6.1) Hom'zv;'ggﬁ"(m(f(' [r], M) = Homy 15y (K *[r], M)

is quasi-isomorphic to C2.. (G, M), for every discrete p-primary torsion G-module M.

By the usual limit argument (and functoriality of (7.2.6.1)), the same property holds

for all M € (i}‘z‘[dé"]‘dMod). For example, for r = 2, the complex (7.2.6.1) is equal to
(0'1 —1 02— 1)

[M——>M g pize2 ) ‘”M] .

7.2.7. Continuous homology of G = Z;,. — Self-duality of the Koszul complex
([Br-He, §1.6.10]) implies that the complex (7.2.6.1) is isomorphic to K* @y M =
K3 (M,x), hence

(7.2.7.1) HY (G, M)~ H(Kj(M,x)) = H,_;(G, M)

(cf. [Bru, §4.2(ii)]).
It is natural to generalize (7.2.7.1) and use it as a definition of continuous homology

(7.2.7.2) Hjcont(G, M) := H" I (K gy (M, x))

of any R[G]-module M (up to isomorphism, this is independent of the choice of
the ~;’s). For example,

Ho.cont (G, M) = Mg, Hyeont(G, M) —= MC.
If A is a discrete R[G]-module, then
(7.2.7.3) Hj cont(G, D(A)) — D(H’(G, A)),
where D(—) = Dgep(—).

7.3. Explicit resolutions (discrete case)

One can reinterpret the map g in terms of (a pro-finite version of) Fox’s free
differential calculus, which we now briefly summarize (see [Bro, Ex. I1.5.3, Ex. IV.2.3,
Ex. IV.2.4]).
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7.3.1. Let F' = F(S) be the free group on a set S (= generators), and T (= relations)
a subset of F'. Let N < F be the smallest normal subgroup of F containing T’
put G = F/N.
The augmentation ideal
Jrp = Ker(Z[F] — Z)

is a free left Z[F]-module with basis s — 1 (s € S). One defines partial derivatives

—dd_sF——)Z[F] (s€S)
by the formulas
f—1=2(9i>(s—1) (f € F).
s€S 9s

They satisfy the 1-cocycle identity
Ifife) , Of . ofi

ds Yos T as”
Denote by a +— @ the projections F' — G and Z[F| — Z[G]. The latter projection has
kernel JNZ[F] = Z[F]Jn (where Jy is the augmentation ideal of Z[N]). Tensoring
the exact sequence of Z[F]-modules

0 — PzFle,-2-2[F] —Z — 0
s€S

(in which 9;(es) = s — 1) with Z[G] (or, equivalently, taking its homology H,(N, —)),
we obtain an exact sequence of Z[G]-modules
(7.3.1.1) 0 — N P Z[Gle,~*Z[G] — Z — 0,

s€S

in which G acts on N by conjugation and

(7.3.1.2) i(n (mod [N, N])) = P <d—">e Ofes)=35—1

o \0s
(we use the standard isomorphism Jy /J% = N n—1 (mod J%) < n (mod [N, N])).

7.3.2. Define a surjective homomorphism of Z[G]-modules

n: @Z[G]e; — N9
teT
by

(7.3.2.1) n(e;) =t (mod [N, NJ).
Then we have
cd(G) <2 <= N is a projective Z[G]-module.

When is 1 an isomorphism? A necessary condition is that ¢d(G) < 2 and T being
a minimal set of relations of G. It is unclear when is this condition also sufficient. A
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classical result of Lyndon [Ly] states that, for T'= {t} consisting of one relation, we
have

7 is an isomorphism <= c¢d(G) <2 <= t#u" foranyu € Fyn > 2
For general T, if we assume that n is an isomorphism, then

(7.3.2.2) P z[Gle, -2~ P Z[Cle,~-2(G] (2 =ion)

teT sES

is a Z[G]-free resolution of Z (the “Lyndon-Fox resolution”).
Fix a section o : G — F' of the projection I' — G. Then the formulas

(7.3.2.3) ag:[]—1
d(o(g))
a1 [g] ’ E €s
g = ( Js >

a2t [g1, g2) ¥ a(g1)a(g2)a(g1g2) " (mod [N, N])
a=0 (i>2)

(extended by Z[G]-linearity) define a morphism of complexes

D1 0006 ZIG) - [91lg2lgs] — DBy, gec ZIG] lo1le] — D, ZIG] - l1] — Z[G)-[]
(e @ (a7
0 — Neb — @uesZGle, 2 Z[G)

from the bar resolution Z[G]¥ to the resolution (7.3.1.1).
If 7 is an isomorphism, then (™! o ag, a1, ap) give an explicit quasi-isomorphism
from Z[G]® to the Lyndon-Fox resolution (7.3.2.2). Applying Homz’[nc‘:’]"'e(—7 M) we
obtain functorial quasi-isomorphisms

[M_.@M @M] (G, M)

seS teT
for all G-modules M. Here
(7.3.2.4) d1(m) = ((8 — 1)m)ses

Ba((ma)ses) = (Mi)eer, 0, = <?£>m

7.4. Explicit resolutions (pro-finite case)

Consider now a pro-finite version of the constructions in 7.3.
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7.4.1. Let F = F(S) be the free group on a finite set S. Denote by F = lim F/U,
where U runs through all subgroups of finite index in F, the pro-finite completion of
F. The pro-finite group algebra

Z,[F] = lim Z,[F/U] = lim Z,/p"Z[F/U]
U n,U

has augmentation ideal

Jp =lim Jpy = lim Jpy @ Z/p"Z,
U n,l

\,
=

where
Jrju = Ker(Zy[F/U|] — Z,)

is the augmentation ideal of Z,[F/U].
7.4.2. Lemma. Jp is a free left Z,, [[}A?’ |-module with basis s —1 (s € S).
Proof. — Applying H,(U, —) to the exact sequence

0 — Jp®Z/p"Z — Z/p"Z]F| — Z/p"Z — 0,
we obtain an exact sequence

00— UQZ/p"L — (Jp/Jup) @ Z/p" L — Jpju @ Z/p"Z — 0.

The projective system [U%® @ Z/p"Z]y.,. is ML-zero, hence the map

liLn(JF/JUJF) ®RZ/p"ZL — !iI_H(JF/U ®QZ/p"Z) = Jg
n,U n,U

is an isomorphism. As Jp is a free Z,[F]-module with basis s — 1 (s € S), the
same is true for (Jp/JuJr) @ Z/p"Z as a module over Z/p"Z[F]/JyZ/p"Z[F) =
Z/p"Z|F/U]. The claim follows by taking the projective limit. O

7.4.3. Corollary. — The formula
af —
—-1= — J(s—1 F
f=S(F)e-n weh
s€S
defines maps (in fact, 1-cocycles)
0

G P — [P (ses).

7.4.4. For a given finite subset T' C F , let N < F be the smallest closed normal
subgroup containing T'; put G = F/N.
The kernel of the projection Z,[F] — Z,[G] is equal to JzZ,[N] = Z,[N]Jp.
Taking the completed tensor product of the exact sequence of Z,[F]-modules
0— Pz, [Flec2-Z,[F] — Z, — 0
s€S
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01(es) = s—1) with Z,[G] gives an exact sequence of Z,[G]-modules ([Bru, §5.2.2
P '4
7.4.4.1 0— N*3Z, D Z,[Gles—2-Z,[G] — Z, — 0,
P P P P
ses

in which N** = N/[N,N]¢ ([N, N]< denotes the closure of [N,N]), N*®Z, =
lim Nt /p" N and the maps i,d; are given by the same formulas as in (7.3.1.2).

7.4.5. According to [Bru, Lemma 4.2 (i)], cohomology of discrete Z,[G]-modules
(= discrete p-primary torsion G-modules) can be computed using arbitrary projective
pseudo-compact Z,[G]-resolutions of Z,. One such resolution is given by the pro-
finite bar resolution

Z,[G]® : - — Z,[G]® - BZ,[G] — -+ — Z,[G].

Fix a continuous section o : G — F of the projection F' — G. The formulas (7.3.2.3)
define a morphism of resolutions of Z,

a:Z,[G])° — {N“”@asz@zp[[G]]est,,[[G]] .
seS

The formula (7.3.2.1) defines a surjective homomorphism

n: @Z,,[[G]]ei — N?RQZ,,

teT
hence a morphism from the complex
(7.4.5.1) P z,[6le, 27" P 2,[Gle, 27, [G]
teT sES

to the resolution (7.4.4.1).
As in the discrete case we have ([Bru, Thm. 5.2])

cd,(G) €2 = Nab@)Zp is a projective pseudo-compact Z,[G]-module

Under what conditions is 7 an isomorphism? If G is a pro-p-group, then it is shown
in [Bru, Cor. 5.3] that

7 is an isomorphism <= cd,(G) < 2 and T is a minimal set of relations of G.

Whenever 7 is an isomorphism we obtain (as in 7.3.2) functorial quasi-isomorphisms

[ [M—§‘—> Py-2-P M] — €2, (G M)
sES teT

for all discrete p-primary torsion G-modules M (here ¢; are given by (7.3.2.4)). As
in 7.2.2, the maps p define corresponding quasi-isomorphisms for all M € (gf‘é?dl\/lod).
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7.4.6. Let us apply the previous discussion to G = G, with generators f, t, i.e., take
F = F(S)for S ={a,8}, T ={r=apla"'g'} (LeEN,ptL). Then F - G
sends o toa@ = f and S to B =t. Evory element g € G can be expressed uniquely as
g=f4"withaecZbe [1,42q C Z. We define a continuous section o : G — F
by o(f?°) = a®3®. A short calculation shows that
or
da

=1-apla™l, g—; =a(l +/j+...+5L—l) —aflalgt

or or
— | =1-t, =60-1.
<6> <d/3>
This implies that the complex (7.4.5.1) is given by

32((3;.) = (1 — t)(i” + (9 - 1)(1/3
O(eq)=f—1, Oi(eg) =t—1,

thus

hence the complex

{ QEBS M2 g? M}

coincides with
(f-1,t-1) (1—t,6—1)
___,

—M & M

C(M) = [M M]
7.4.7. Lemma. For the presentation G = G, = ﬁ/N considered in 7.4.6 the map
n: Z,[G] — N®®Z, is an isomorphism.

Proof. — As ¢dp(G) = 2, N“”@)ZP is a projective pseudo-compact Z,[G]-module;
thus 7 has a section and Z,[G] = (N**&Z,) ® X. We want to show that X = 0. Let
M be an arbitrary discrete p-power torsion G-module. The morphisms of complexes
of projective pseudo-compact Z,[G]-modules
) « P~ i O
ZPHGH? — L= [Nab@ZP - 69565' Z,,[[G]]es - Zp[[G]H
n
ok o
L2 = [Z]) [[G]]é’; —>2 seS Zp [[G]]es —>] Zp [[G]]]

induce morphisms of complexes
(G, M) = Hom%?ﬁgf’com(zp[[G]](g M)

Hom .Zn[?lC\']]](‘nont(Ll’ A[) Hom .Zn[a[lé‘v]]ecom(L% M)

CQ

cont

such that 7* = Aoa*. As both A and o* are quasi-isomorphisms (by Proposition 7.2.3
and cd,(G) = 2, respectively), so is #*. This means that Homz_ [a].cont(X, M) = 0
for all M. Writing X = lim X, with X, discrete p-power torsion and taking M = X,
we get idy € lim Homg, 1¢p.cont (X, Xu) = 0, hence X = 0. O
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1 1

7.4.8. As a corollary of Lemma 7.4.7 we obtain a morphism n~'a = (n~ ' oag, a1, )

from the pro-finite bar resolution of G, to the Lyndon-Fox resolution (7.4.5.1) and
functorial quasi-isomorphisms

p = Homy ¥ (™ ot id) : C(M) — C

Let us verify that p is indeed given by the formulas from Proposition 7.2.4. If g1 =
fotl, go = fet? with a, b, ¢, d € N, then
G192 = forPETD = o(g1)o(g2)0(9192) 7! = aBa BT e e
It follows immediately from the definitions that
9(o(g1)) 9(o(g2)) a1 b1
7 e, 2 Ves = (1 ... fa > Gl +t+---t R
(22D e, (AU Yoy — (1t £ 5w £201 4 10 e
which gives the formula for 1. A slightly tedious calculation shows that
an an o b—1 —1
— Je — = 14+t+---t 14+60+---6° t—1)eq + (1 —0)eg),
(5o Yen+ (55 Jes = 17t ooet 007 (0 = e + (1 = B)es)
verifying the formula for ps. In fact, this gives an alternative proof of Proposi-
tion 7.2.4.

(G, M).

7.4.9. Lemma. — For every ind-admissible R[G,]-module M there exists a homotopy
by © pA ~ id on C2,(Gy, M), which is functorial in M and for which there is a
2-homotopy by, * 1~ 0, again functorial in M.

Proof. It is enough to consider the case when M is a discrete p-primary torsion
G,-module. We have

_ e, naive -1 . _ e, naive .
= Homz,,[['é,,]](n a,id), A= Homzpﬂaul](’y, id),
where
R [Zpﬂav]]e;vi’ @ Zp[[—év]]esi’zpﬂév]] — Z,[G.]?
sES
is given by

@) =11 mlep) =1[fl, mle) =[t

L—2
valep) = <[t f1+ [£ 5]+ D et v=0 (i>2).
i=0
The map yon~ta: Z, [[.C—?U]]fé -7, [[ZJ-U]]f?’ is a morphism of projective pseudo-compact
z, [G,]-resolutions lifting the identity on Z,, which means that there is a homotopy
¢y : yon ta ~ id. For any such ¢,, the homotopy
by, = Hom* ™V (c,,id) : X —- id

has the desired properties. As n~'a o~ = id, both 0 and 5~ 'a % ¢, are homotopies
n~la ~ n~la. Again, projectivity of the pro-finite bar resolution implies that there
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exists a 2-homotopy H : n~'axc, ~ 0, which in turn induces the desired 2-homotopy
by x o ~ 0. Od

7.5. Duality

7.5.1. Cup products. — For M, N € (il‘g%?‘]jl\/lod) we define
U:C(M)®rC(N) — C(M ®pr N)
to be the composite morphism of complexes

C(M) @p C(N)—L21 e

cont

(G, M) @ Coppi (G, N)
5 Ceop (G, M @5 N)2C(M @ N).
Explicitly, the components of U
Uap : C“(M) ®r C*(N) — C*T*(M @g N)

are equal to

mUgn=men

I

mUp; (n,n') = (men,men’)
(m,m'YUign = (m® f(n),m @t(n))
mUpn=men

mUgyn=m®e® ft(n)

(m,m")Uy; (n,n') = —m/ @ t(n) + m & O(n’ Z fti(m') @ ft'(n)).
0<i<yj<L

7.5.2. Lemma. — For M,N € (‘Ig[dca‘]ll\/[od) the morphism of complexes

Ct (M) ®Rc+<N)—>C<M>®RC<N>—“—®“ Gt (Goy M) @R Clon (G, N)

.
C( ont

(G'H M QR N) — T>2 C onL(Gva M @R N)
s equal to zero.

Proof. — We must check that for every m € M!'=! and n € N'=! the 2-cochain
z = p1(m,0) U p(n,0) € C?, (G, M ®r N) is a coboundary. First of all, z is a

cont
cocycle, since both (m,0) and (n,0) are. For a, b, c,d € Ny we have

() = A+ f 4+ M) @ fH A+ f 4+ ()
(A4 -+ N m) @ o+ [ o ) ()
A+ f4 -+ N @A+ [+ + [N,

which implies that z is a normalized 2-cocycle (z(f*t?,t%) = 0). As Xa(2) = —z(t, f) =
0, the cohomology class of z vanishes. O
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7.5.3. The action of G, on py» factors through G, /I, = G,/I,;t=1,f=L"'on
ppn . It follows that, for every p-primary torsion abelian group A with trivial action
of G,, we have

C(A(1)) = [A 0 A g A ” A} .
The isomorphism inv,, from 5.1.3 is defined (up to a choice of a sign) as the composition
H(Gy, 2/p" 2(1)) < H(Go, 2/p"2(1) -2 /p"Z

(with A2(z) = —2(t, f) for a normalized 2-cocycle z).

7.5.4. Let M € (i;{}a]’]l\/[od); then D(M) € (*I‘?@”]Mod), too. The complex
C(D(M)(1)) is equal to

(Dt~ ") =1,1=L" "0p(ar))

—1 —1y_ —1y_
[D(M)(L PUD=LPE D7) by @ D(M) D(M)].
Fix r, as in (5.2.1.2). The truncated cup product

C(M) ®r C(D(M)(1)) — 722 Clopy (G, 1(1))—-1[-2]

induces, by adjunction, a morphism of complexes C(M) — D_5(C(D(M)(1))), which
gives rise, by Lemma 7.5.2, to a map of short exact sequences of complexes

0— C* (M) — C(M) —  C(M)/CH(M) =0

0— D_3(C(D(M)(1))/CT(D(M)(1))) — D2(C(DM)(1)) — Do(CHDM)1)) —0

7.5.5. Proposition. If M € (}é‘@ ]Mod) is of finite or co-finite type over R, then all

three vertical maps in (7.5.4.1) are quasi-isomorphisms.

Proof. The formulas for U, given in 7.5.1 together with 7.5.3 imply that the
induced maps on cohomology for the first (resp., third) vertical arrow in (7.5.4.1) are
given by

M= D(D(M) /(DY) = 1,1 = D(f 1) D(M))
MI=/(f ~ DML D((D(M)/ (¢t~ 1)D(M)PY D=

resp.,
(M/(t - 1)M)Lf=1ﬂ>D(D(M)D(f‘)=1/([;1D(f—l) 1)
M/t —1,1- Lf)M—ﬂ—»D(D(M)L_lD(f_l)ZI,D(t*I):1)7
hence all vertical arrows are quasi-isomorphisms. 0O
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7.5.6. Of course, Proposition 7.5.5 is nothing else than an “explicit” form of Tate’s
local duality in the tame case v { p. It can be reformulated as follows: for every
M € (%}G[,]Mod) of finite or co-finite type over R, the local conditions

AN(M): CH (MY — oMY e (G, M) s (G, M)

cont cont

and the corresponding local conditions for D(M)(1) are exact orthogonal complements:

AV (M) Lley, 0 AU (D(M)(1)).

7.5.7. Implicitly, we have used the equality

D(M'") = D(M)™V,
which holds for every admissible R[G,]-module M. This follows from the fact that
IV acts on M through a finite group of order prime to p, hence semisimply.

7.5.8. Duality for I,. — For every ind-admissible R[G,]-module M, set N = M7
There are functorial f-equivariant isomorphisms

HO(IU’ A[) — Nt:la H(l()m(L),]V[) o (N/(f - ]-)N)(_l)v

coming from the quasi-isomorphism 7.2.2

{NL1>N]—-»CLOH,;( CN) e (1, M)

cont
and the fact that ftf~! = t'/L. In particular, evaluation at t gives an f-equivariant
isomorphism
Hcont(]?’v A( )) ;) A

for any R-module A with trivial action of G,, and the cup products

U: Héont(l’va) X Hl Z(LHD(M>(1)) I Hcont([v>IR(1)) ;) IR (L = 07 1)

cont

induce isomorphisms

(7.5.8.1) Hy (1, M) = D(HL (1, D(M)(1))) (i = 0,1)
if M is of finite or co-finite type over R. If
Z

T «——F—— T
P (i}
A A~

is a duality diagram in Dy, ft( Hlc. ]Mod) then (7.5.8.1) yields, by the same argu-
ments as in the proof of Proposition 5.2.4, a duality diagram

Rl eont (I, T) R cont (Lo, T*(1))[1]
(7.5.8.2) @ 2 F’
RFcont([v,A) chont(Iva*(1>)[1]
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in D (co )ft( rMod), with the additional property that all morphisms between cohomol-
ogy groups induced by (7.5.8.2) are f-equivariant.

7.6. From modules to complexes

7.6.1. We extend the definition of C(M) to complexes using the sign rules of 3.4.1.3.
More precisely, let M* be a complex of ind-admissible R[G,]-modules; we put

oM = € omwy,
i+j=n
with differentials equal to the sum of
(dar)s : C(MYY — C(M*TYYI
and
(=1)i 6 - C(MYY — O(MY)IHL
In concrete terms,
C(M.) = M" fa ]wn—l fey Mn-l @ Mn—2

with differentials

d(Mp, M1, M, Mpy—2)
= (dmp,dmu_1 + (=1)"(f = L)my, dm;,_; + (=1)"(t — 1)m,,
dmy_s + (=1)"(t = Dmp—1 + (=1)"(1 = 0)m;,_,).
It follows that C(M*[1]) = C(M*)[1].
As both C(M*) and C,

*ont(Gv, M*) are defined using the same sign conventions,

the maps A, i from 7.2.3-7.2.4 define quasi-isomorphisms
. .« (A o A .
C(M )L)Ccont(GwM )—‘)C(M )

satisfying A o p = id. It also follows that Lemma 7.4.9 holds for bounded below
complexes of ind-admissible R[G,]-modules.
Similarly, applying the sign conventions of 3.4.5.2 to the cup product 7.5.1 we
obtain products
U:C(M*)®r C(N*) — C(M* ®r N°*).

7.6.2. In order to define an analogue of C* (M) for M* we need a slightly different
description of C(M*). Put
L(M*) = Cone(M’t;l>M‘) [~1],
i.€.,
L(Mo)n = M" o) Mn—l
with differentials

d(mp,mp—1) = (dmy, (1 — t)m, —dmp_1).
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The map
(f = 1,0 =1): (my,mp_1) — ((f = L)my, (6 = )mp_1)
commutes with the differential of L(M*); put

U(M*) = Conc(L(M‘)L_lig:l—)»L(M‘)) 1],
Explicitly,
UM )" =LM*)"® LM =M oM oM g M2

with differentials

d(mp, M1, My mp—2) = (dmy,, —dmy, - + (1 = t)ymy, —dm;,_ + (1 = f)m,,
dmp o+ (t —1)ml,_ 4+ (1 = 0)my,—1).

This implies that the map
(M M1, My My —2) > (M, (= 1) ml 1 (= 1) M1, mp—2)
defines an isomorphism of complexes
(7.6.2.1) U(M®) = C(M?*).
Put

U*(M'):Com(r@L(M') UZLom (e )[ 1]

(f—1,0-1)
T

U~ (M*) = Cone(rs1 L(M*) o1 L(M‘))[—l].

Then U+ (M*) is a subcomplex of U(M*) and the canonical map L(M*) — 71 L(M*)
induces a quasi-isomorphism

U(M®))U+(M*)-20= (M*).
If M* = M consists of a single module in degree 0, then 7<o L(M*) = M*=! and
Ut (M*) = [Ml/:ll;f)]wt=l:'
(in degrees 0,1); thus (7.6.2.1) induces an isomorphism
Ut (M*) = O (M),
hence also
U™ (M*) = C~(M).

This means that U*(M*) are generalizations of C*(M) to complexes.
We have canonical morphisms of complexes

(7.6.2.2) pt U (MU (M) =5 (M) 50

cont

(Gy. M)
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7.6.3. Note that

hence

Similarly,
Ut(ox1M*) =0, U (051 M*)=U(o1 M*)
U_(O'g_l ]\J') = 0, U+((T<_1 Af’) = U(O‘g_l ]\/1')
The quotient
T<i L(Af‘)/L(T<i41 ]\/[.)
is canonically quasi-isomorphic to H?®(M*)*=!; this implies that there are exact
triangles
L(t¢ 1 M*) — 7¢<o L(M*) — H%(M*)'=!' — L(1<_1 M*)[1]

and
(7.6.3.1) Ulrey M*) — UT(M*) — Ut (HO(M*)) — U(r<_1 M*)[1].
7.6.4. Lemma. — If M*, N* are complexes of ind-admissible R[G.,)-modules, then the
composite morphism of complexes
+tout — _
UH(M*) @5 UT (N2l (G, M*) @ Clopy (G, N*)

0 (G M @5 N*) — 75502 (G M®* @5 N*)

cont

is equal to zero.

Proof. — As UT(M*) = 7<1 Ut (<o M*), all we have to do is to check that the cup
product

(7.6.4.1) H' (U (M*)) @ H' (U (N*))—- H?

cont

(Gy,M* ®r N*)

vanishes, under the assumptions M* = 7¢o M*, N* = 7<o N*. The triangle (7.6.3.1)
gives exact sequences

H'(U(r¢-1 X*)) — HY(UF(X*)) — H'(U*(H*(X*))) — 0
for X = M, N. As cd,(G,) = 2, the map (7.6.4.1) factors through
H (UH(HO(M*))) @ H (U (H(N*))) =5 HZ, (Gy, H(M*) @ H(N*)),

which is a zero map, by Lemma 7.5.2. O
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7.6.5. Fix J asin 5.2.2 satisfying J = 03¢ J; then
7—1212 Cgont(va J(l)) =T>2 C(:ont<GU7 J(l))
Let M* be a complex of admissible R[G,]-modules. We define unramified local con-
ditions for M* to be
AYT(M®) - UT (M) =0 (M) = C((Me)"™)
L Clon (G (M) V) C

cont cont

(Gy, M*).
We use the notation
Cou(Go, M) = U (M),

It follows from Lemma 7.6.4 and 7.5.7 that

AJ(M®) Lev,0 AT(D(M*)(1))

AY (D (M*)(1)) Lev, o AYT(M?).
We shall simplify the notation and write
(7.6.5.1) Err)" (D, M*) := Err, (AY(M*), ALY (D (M*)(1)),eva).
7.6.6. Proposition. — Let M* be a bounded complex of admissible R[G\]-modules with
cohomology of finite (resp., co-finite) type over R. Then

AY(M®) LLev, 0 AY(D(M*)(1))

AY(D(M*)(1)) Llev,0 AYT(M®).
Proof. — By 7.5.7 we can assume that M* = (M*)!v. Put N* = D(M*)(1). By
Lemma 7.6.4, the composite morphism of complexes
UF(M*) — U(M*) — D_y(U(N*)) — D_o(U*(N"))

(the second arrow is defined by adjunction from the truncated cup product) is equal
to zero. We must show that the induced map

Faze t UM®)JUT(M*) — D_o(UF(N*))

is a quasi-isomorphism. By dévissage it is enough to treat the case when M*® =
M?[—i] is concentrated in degree i. If i < 0 then both sides vanish. If ¢ > 0 then
Ut(M*) =0, UT(N*) = U(N*) and fpse is nothing but the duality isomorphism
from Proposition 5.2.4 (i), composed with u. If i = 0 then

fare : O(MO)/CH (M) — D_o(CH(D(M°)(1)))

is an isomorphism by Proposition 7.5.5. O
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7.6.7. Proposition. — Let T = T* be a bounded complez of admissible R[G,]-modules
with cohomology of finite type over R. Then:

(i) There is an exact triangle in Dgoﬁ((RMod)/(co-pseuda—null))
(P(Cl:r(Giﬂ T)) B Cl.lr(G'U7 (I)(T))

— Cone((H{} (ko (T TN (Hl (1, 7)) ) -1,

where f, = Fr(v).

(ii) There is an isomorphism in Df?t((RMod)/(pseudo-null))

1
9 (Err"(2,T)) — Cone(ExtMHéom(L,, 7)) Exthy (Hl (L, T>,w>)-
(iii) For each q € Spec(R) with ht(q) =0,
Er)"(2,T), — 0 in D},(r,Mod).

(iv) Assume that p € Spec(R), Ry is a discrete valuation ring, each term Tg is free

of finite type over Ry, and HZ . (1,,T)y[p]/*=! = 0 (equivalently, Tam, (T',p) = 0,

in the language of 7.6.10.1 below). Then, for each uniformizer W € Ry, the canonical
(injective) morphism of complezes
Cl.lr(G’lM T)p/wcl.n‘(Gv? T)p - Cl.u'(G’U7 TF‘ /JTP)
is a quasi-isomorphism.
Proof. — By 7.5.7 we can assume that T' = T
(i) Put L* = L(T), C* = C*(R, (x;))[d] for a fixed system of parameters of R. The
spectral sequence

By = H{(H/ (L") = H'™(L* @ C*)
degenerates in C = (rkMod)/(co-pseudo-null) into exact sequences
0 — H{ \(H(L*)) — H/(L* ®r C*) — Hgn;}l(Hi“(L-)) — 0.
It follows that we have isomorphisms in C
HIi(L*®@rC*) j<0
H((r<o L") ®r C*) —  H{,, (H(L*)) j =0
0 J>0,
hence an exact triangle in D?(C)
(<0 L") @R O — 7o (L* ®©r C*) — H{{ (H'(L")) — ((r<o L*) @R C*)[1],
which is equal to

(<o L) — 70 ®(L*) — H{j(H'(L*)) — @(r<o L*)[1].
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The statement follows from the commutative diagram

®(reoL*) — 7o ®(L*) — H{J(H'(L) — @(r<o L*)[1]
(4

[0 [[E= [ -1 e=
(o L) — 7o ®(LY) — H{ J(HY(L) — (<o L*)[1]
(ii) Let X =2(T)(1). Applying D_» to the exact triangle
(U (@2(X)(1) U, (@ 02(X)(1)) — Em} (¢,2(X)(1))
(in which U;” = C* and the third term is defined to be Cone(u)) and using isomor-
phisms ® 02 = D, 2 = D o ®, we obtain another triangle
Do (el (2.2(X)(1))) — Do (U (D(X)(1)) — Z -5 (U @(X)(1))).

the second term of which is isomorphic to U, (X) (by Proposition 7.6.6). Applying,
in turn, Z _,, we obtain an exact triangle

US(@(X)(1) — 22U, (X)) — 2 o D(Err) (9,2(X)(1))),
which is nothing but
U (T) — 9o (U; (2(T)(1))) — 2 o D(Exl (2,T)).
This implies that

Ert"(2,T) > 2 o D(Ex™(®,T)), 2 (B2, T)) > D(Err™ (&, T)).

v

ur

Applying the formula for Err,

L

D(Hf‘;}‘(M)) L Exth(M, w)

(®,T) given in (1) and local duality

finishes the proof.

(iif) This follows from (i), as codimpg (supp(Ext (M, w))) > 1 for any R-module
of finite type M.

(iv) Replacing in the proof of (i) L* by L(T), and C* by [R, A Ry (in degrees
—1, 0), we obtain a commutative diagram

(<o L*) ®R, C* — 7<o(L* @R, C*) — H'(L*)[p] — (7<0L*) @r, C*[1]
E=) E=) = |

(r<0 L*) ®r, C* — 7<0(L* @R, C*) — H'(L*)[p] — (7<0l®) @r, C*[1]

in which f = f, and each row is an exact triangle. As f — 1 acts bijectively on

H(L*)[p] = H}

ont

(I, T)p[p] by assumption, the diagram implies that the canonical
morphism of complexes

Cl;r(G'UVT)p ®RP C' —_— CJT(GU,Tp/pr)

is a quasi-isomorphism. O
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7.6.8. Corollary
(i) If p € Spec(R) is a prime ideal with dim(R,) = depth(Ry) = 1, then there is
an isomorphism in Dy (r,Mod)

ur fu
Brrl" (@, T)y = Cone( H{yy (Hloua (1, T),) 25 iy (Hlony (1, T),) ) (2

(i) If every p € Spec(R) with ht(p) = 1 satisfies depth(R,) =1 (e.g. if R has no
embedded primes), then

HYErY(2,T)) =0 (Vi #1,2)
in (RMod)/(pseudo-null).
Proof. According to Lemma 2.10.11 (ii) there is an isomorphism
Pk, (W) — Dg,(W)[-1]
for every Ry-module W of finite length. Taking W = Exty(HZL (1. T),wr)p, we

obtain
Z Ry (W) — H?p} (H(lont(IU? T)p){_l]
by local duality. The result then follows from Proposition 7.6.7(ii). Finally, (ii) is an

immediate consequence of (i). O

7.6.9. For example, in the special case when R = Z, and T is a single module
concentrated in degree zero, free over Z,, then we have ®(T') = V/T, where V =
T ®z, Qp, and canonical quasi-isomorphisms

D(C3(G, T)) =25 Cone (VI 1 Loyl i ) (1]
Cie(Goy (1)) <25 Cone((v/ 1) =5 (v/ 1)1 ) 1),
which yield an exact triangle in D}’t(szod)
(C (G, T)) — CR(Go, O(T)) — Err(@,T),
with Erry)'(®,T') quasi-isomorphic to
Err)" (®,7T) 9, Cone(ZM )[—1],
where
Z = Coker (VI /T — (V/T)"") = H°(I,,,V/T)/div = H'(1,,T)
The Zy,-module Z is finite and

tors”®

H'(Err™(®,T))
- coker(zf'"—‘iz) = Coker(HL, (G, V) — HL(G,, V/T)) = H.(G,, V/T)/div;
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this implies that the cohomology groups H*(Erry"(®,T)) (i = 0,1) have the same
order, equal to the common order of the groups

HY(L,, T)"=', H.(G,,V/T)/div,

tors ur

which is nothing but the local Tamagawa factor appearing in one of the formulations
of the Bloch-Kato conjecture ([Fo-PR, §1.4.2.2]).

7.6.10. Local Tamagawa factors. — Let R be arbitrary and 7' = T'* as in Propo-
sition 7.6.7.

7.6.10.1. Definition. — For p € Spec(R) with ht(p) = 1, put
Tam, (T,p) = KRP(H?p}(]V[p)),

where

M=H (I, 7).

cont

7.6.10.2. If depth(R,) =1, then
H{py (My) = (My) ry-tors,
by Lemma 2.10.5 (iii).
7.6.10.3. If R has no embedded primes, then
(MR-tors)p — (Mp) Ry-tors»
by Corollary 2.10.13.4.
7.6.10.4. If I, acts trivially on T° and T, then
Hop (I, T) = H(T)(~1) & H'(T)(-1),
hence
Tam, (T, p) = (x, (H?p} (HO(T),{F])) + U, (Hfgp} (Hl(T);“?':l)).
In particular, if H?p}(Hi(T)p) =0 for ¢ = 0,1, then Tam, (7, p) = 0.

7.6.10.5. If R = Z,, p = (p) and T = T° is torsion-free over Z,, then (cf. 7.6.9)
Tam, (T, (p)) is equal to the p-adic valuation of the order of

(I, 75~}

Z,-tors’

i.e., of the local Tamagawa factor from [Fo-PR, §1.4.2.2].

1
H cont

7.6.10.6. Proposition 7.6.7 (more precisely, its proof) implies that

Tam,(T,p), i=-1,0

Cr, (H (2 (Exry"(2,T))),) = {0 i#—1,0.
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7.6.10.7. If depth(R,) = 1, then Corollary 7.6.8 implies that

' A Tam,(T,p), 1=1,2
O, (HH(Exr™(@,T)),) = {Oa‘“ (T.p) 27& o

7.6.10.8. It follows from 7.6.10.6 that

Err)'(2,T), — 0in D(g,Mod) <= Tam,(T,p) = 0.
7.6.10.9. If R has no embedded primes, then a combination of 7.6.10.2, 7.6.10.3,
7.6.10.8 shows that

Err™(2,T) = 0in D((gMod)/(pseudo-null)) <= H,.

cont

(L, T)g’:olrs is pseudo-null.

7.6.10.10. The local Tamagawa factor Tam, (7, p) is non-zero if and only if p €
supp(Ext (M, wr)), by local duality for R,. This implies that, for fixed v and 7', there
are only finitely many prime ideals p € Spec(R), ht(p) = 1, for which Tam,, (T, p) # 0.

7.6.10.11. It is proved in 10.2.8 below that
Tam, (T, p) = Tam, (T (1), p).

7.6.10.12. If R = O is the ring of integers in a finite extension F of Q, and T = T°
is torsion-free over O, let @ € O be a uniformizer and set V =T ®o F and A = V/T.
If VI» = 0, then the group HL . (I,,T) = Alv is finite, hence Tam,(T,(w)) =
lo (A%). In particular, if A’ =0, then Tam, (T, (w)) = 0.

7.6.11. Proposition. — In the situation of Proposition 7.6.7, assume that T = o<oT.

Then:

(1) Héont(IU’T) = H({ont('[’lHHO(T)) = HO(T)IU(_I)'

(ii) The error term Err,"(®,T) entering into the exact triangle in Dléoft(RMod)
O(C3 (G, T)) — CL(Gy, ®(T)) — Err)"(2,7)
is isomorphic (in DZO/L(RMOd)) to
Erryf (@, ) < Cone(7<1 ®(Hayny (I, 1) ET 1 ©(Hlge (1, 7)) ) [-2).

(iii) If HY . (I,,T) is zero or a Cohen-Macaulay R-module of dimension d =
dim(R), then Errd"(®,7) 5 0 in D%, ,(rMod).
(iv) The cohomology groups of Erry' (®,T') sit in the following exact sequences:

o JHR D/ (=), i<
0, if j>1
H T HP=! i <0
_

— HI(Ert™(®,T)) — { ™ 0,
' 0, if >0
where we have abbreviated H := H} (I, T).
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(v) The following statements are equivalent:

Ertl (®,T) = 0 in D’,p(rMod) <=
(Vq:(),,d—l) (Y(,IH(I (H]

{m} cont

(Lo D) HY (Y (1, T))

cont

s an isomorphism

= (Vg=0,...,d—1) Ker(ag) =0.

Proof. — As before, we can assume that T = T'v. The statement (i) follows
from (3.5.4.2) and Lemma 4.2.6, as cd,(I,) = 1. As regards (ii), let C'* be as in the
proof of Proposition 7.6.7. The assumption T' = o< T implies that L(T) = o<; L(T)
and ®(T) =T ®@p C* = 0<o ®(T'). Tensoring the exact triangle in Djﬁt(RMod)

T<o L(T) — L(T) — H[~1] — (7<0 L(T")) [1]
(in which H = HY(L(T)) = H}

cont

(I,,T)) with the complex C* (of flat R-modules)
yields an exact triangle in Df’:oﬂ( rMod)

(T<o L(T)) ®p C* — L(T) ®p C* — H @ C*[~1] — (1<0 L(T)) @r C*[1].
As C* = 0¢oC*, applying the truncation 7¢( we obtain another exact triangle in
Df’:oﬂ(RMod)

(<o L(T)) ©r C° — 7<0 (L(T) @R C*)
— (1< 1 (H®Rr C*))[-1] — (1<0 L(T)) ®r C*[1],
which is equal to
® (<0 L(T)) — 7<0 (L((T))) — (1<—1 ®(H)) [-1] — @ (7<0 L(T)) [1];
we conclude as in the proof of Proposition 7.6.7(i).

(iii) If H = H}

cont

d = dim(R), then the complex

(I,,T) is zero or a Cohen-Macaulay R-module of dimension

T<1 ®(H) = (7<a—1 RL(m}(H)) [d]
is acyclic, by Lemma 2.4.7 (ii).

The statement (iv) is a consequence of (ii), and the first equivalence in (v) follows
from (iv). The non-trivial implication ‘=" in (v) follows from Lemma 2.3.6. O
7.6.12. Corollary. Under the assumptions of Proposition 7.6.11,

(i) There is an isomorphism in DJIZt(RMod) (using the notation of (7.6.5.1))

£l

@(Errsr(@,T)) :_) Cone(T>1@(Hclont(IlHT)) TEIQ(H(}ont(I'WT))) [1]
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(ii) The cohomology groups of W := P (Err, (2,T)) sit in the following exact se-
quences:

0 — ]Eth?_/'_l(HawR)/(fu_l)v ij}O
0, if <0
Ext},* (H,wr)"=1, if j> -1

- HY (W) —
0, ifj<-—1

(iii) The following statements are equivalent:

Errl (2,T) = 0 in D}(rkMod) <=
‘ : Fol L
(Vg=1,....d) o) Exth(Hlp (I, T),wr) *—Exth(Hlon (1o, T), wr)
18 an isomorphism

— (Vg=1,...,d) Cokcr(a;) =0.

Proof. — As W = D(Ertl'(®,T)) by the proof of Proposition 7.6.7(ii), it is enough
to apply D to the statements of Proposition 7.6.11 and use local duality 2.5. O

7.6.13. It follows immediately from the definitions that the functor
M*— Ut (M)
respects quasi-isomorphisms and homotopies. As a result, it defines a functor

RI\:(Gy, =) : D* (B Mod) — D*(gMod), * = +,b.

7.7. Transpositions

Fix v € Sf, v { p. We are going to construct transposition operators satisfy-
ing 6.5.3.1-6.5.3.5 for the local conditions A}".

7.7.1. Lemma
(i) For every complex of ind-admissible R[G.,]-modules M*, the map

C(M*) e (G, M*) 50, (G, M*)25C(M*)

cont
18 equal to Ao p = id.
(ii) For every M € (izg[%i(]iMOd) the map

cron Lo, (@, M)-TsCe, (G, M)

cont

is equal to pt : CT(M)—=-C(M)-L-C

cont

(G, M).

SOCIETE MATHEMATIQUE DE FRANCE 2006



182 CHAPTER 7. UNRAMIFIED COHOMOLOGY

Proof

(i) It is sufficient to consider the case when M*® = M € (g%‘“]iMod). Then the state-

ment is trivial in degree 0. In degree 1, we have to check that —g(uy (m,m/)(g~ 1)) =m
(resp., =m/) for g = f (resp., g = t), which follows from the fact that

D(o(g=1)) = D(o(9)~1) = —o(g) ' =—g "

for (9, D) = (f,0/9a) (resp., (9, D) = (t,0/03)).

In degree 2 we use the fact that us(m) vanishes on G, x I,; thus

Ay o T opa(m) =X ((g9.9') — —gg' (n2(m)(g5 . 91 ")) = —f" (ua(m) (==, f71)).

Asn:=o(t Do(f Do Lf1) = p~La"!Ba satisfies

<%>ea + (3—;;)(’/3 ="l = t)ea + (6 — Leg),
we have
pa(m)(tE 7Y = —f 7 m), Ao T opa(m) = —ft“(—f 1 1 m)) = m.

(ii) We only have to check what happens in degree 1. For m € M*=! the continuous
1-cochain pq(m, 0) satisfies

pr(m, 0)(f°) = (14 f+ -+ 4 Hm
for a,b € Ny. This implies that p;(m,0) is a 1-cocycle, hence
—g(u1(m, 0)(g™")) = pa(m,0)(g). O
7.7.2. Assume that J = J* is as in 7.6.5, i.e., satisfies J* = 030 J*. Let X,Y be
bounded complexes of admissible R[G,]-modules and 7 : X ® g Y — J(1) a morphism

of complexes of R[G,,]-modules. The following data 7.7.2.1-7.7.2.5 define transposition
operators for the local conditions A}F(X), AW (Y), satisfying 6.5.3.1-6.5.3.5.

7.7.2.1. Put h, = hi, = 0; then 6.5.3.1 holds by 7.6.5.
7.7.2.2. Define T,H(Z) =1id (Z = X,Y).
7.7.2.3. By Lemma 7.7.1(i), AT . = Ay = id; thus the formula

Vg = infxb, x (T 0i} (2)) (Z=X,Y)
(in which b, : pA ~ id is as in 7.4.9) defines a homotopy

Vg i (Z) = infouv = infopl o Tuv — inf oTpuv = T oinfopv = T o i (Z).
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7.7.2.4. For each Z = X,Y, let kz and kz, be the functorial homotopies id ~» T
induced by a homotopy a from 3.4.5.5; then res, x kz = kz, * res, by functoriality.
We define k;v = (0. We must show that there is a second order homotopy

Vi —o kg *id (Z).

As
+

v

Vzo =infxby * Tpv, kz, xi
(where kz:,, 1 id ~ T on C2 (G, Zt) is also induced by a), it is sufficient to show

that there is a second order homotopy

(Z) = inf xkzt , * pv

by x T — kz.p% 1
for tame Z = Z'. By construction, the L.H.S. (resp., the R.H.S.) is equal to

o,lla.iv(?(

Hom N taoT xcy,idg) i p=p T — Tp

resp.,
o,naiVO( —1

Hom N axa,idg) i p—~ T,
in the notation of 7.4.9 (resp., 3.4.5.5). It is enough to observe that the homotopies
7/_1& 0T * ¢y, n_la *a: T/_la — T}_loz oT
between the morphisms of pseudo-compact Z, [G,]-resolutions of Z,
_ _ — 18 — 0. — o —=
nlta, nlao T 1 Zy[G]7 — {Zp[[Gv]]e/r_i"@ZPHGvHeS_l—)ZP[[Gv]]
ses
are 2-homotopic, as both morphisms 7~ a,n~ta o 7 lift the identity on Z, and the
resolutions are projective.

7.7.2.5. We have h, = h!, = 0 by definition. The homotopy
hi=Ur % (Vxw ® Vg1 10— 0
is between the zero maps
U (X) @r U (V)7L Clon (Go T (1)),

However, the domain (resp., the target) of 0 is concentrated in degrees < 2 (resp.,
> 2, since J = 039 J), hence h = 0. This means that we can take

H, =0.
We can summarize the previous discussion in the following statement.

7.7.3. Proposition. — Let J = 03 J be a bounded complex of injective R-modules, X
and Y bounded complexes of admissible R|G,]-modules and 7 : X ®pY — J(1) a
morphism of complexes. Then the unramified local conditions A (X), A¥(Y) admit
transposition operators satisfying 6.5.3.3-6.5.3.5 (with h, = h), =0).

SOCIETE MATHEMATIQUE DE FRANCE 2006



184 CHAPTER 7. UNRAMIFIED COHOMOLOGY

7.8. Greenberg’s local conditions

In this section we develop the theory of Greenberg’s local conditions. These seem
to be the only local conditions that can be handled by ‘elementary’ methods.

7.8.1. Fix a subset ¥ C Sy containing all primes above p and put £’ = Sy — X. We
are going to combine the local conditions of the type considered in 6.7 (for v € ¥)
with those from 7.6.5 (for v € ¥’). The corresponding Selmer complexes are then
analogues of Greenberg’s Selmer groups [Gre2, Gre3, Gre4|.

We consider J = J* of the form J = I or J = w* = 030 J (cf. 2.5(ii)). Let r,
(v e Sf) be asin 5.2.2. For each v € ¥’ fix f, and ¢, as in 7.2.1.

7.8.2. Let m: X @rY — J(1) be as in 6.2.1; we assume that 7 is a perfect duality
in the sense of 6.2.6 (in particular, the complexes X, Y are bounded). Assume that
we are given, for each v € 3,

inz):zH — 2 (Z=X,Y)

as in 6.7.1, which satisfy 6.7.5(A) or (B) (in particular, the complexes X", Y, are

bounded) and such that X,/ L1, Y," for all v € ¥. As we have fixed f,, ¢, for all
v € X/, we can define the following local conditions for Z = X, Y
{C:O,H(G,,, Z5) = Coou(G 2), (vED)

A’l} Z) =
(2) Ce (G, Z)— Ce (G, 7), (veyx)

ur cont
Our assumptions imply that Rwl';f(X), ﬁF,(Y) € D’(rMod).
7.8.3. By Proposition 6.7.6,
(W0 ES) AuX) Llro Au(Y), Au(Y) Llrosso Au(X).
By 7.6.5 and Proposition 7.6.6,
o {AU(X) Llao Ay(Y), Ap(Y) Llgos,0Ap(X), if J=1
Ap(X) Lro Au(Y), Au(Y) Lrosn.0 Au(X), it J=w".
According to 6.7.8 and Proposition 7.7.3, the local conditions A, admit transpositions

satisfying 6.5.3.1-6.5.3.5.

7.8.4. The general machinery of 6.3 and 6.5 then defines, for each r € R, cup
products

Uniro : CHX) @R C3HY) — J[-3)]
Urosizro : C3HY) @ CH(X) — J[-3]
such that
7.8.4.1. The homotopy class of Ur ;.o (resp., Uros,s,r0) does not depend on r € R.

7.8.4.2. Usrosys.r0 © $12 18 homotopic to Uz 110, hence to Uy, g, for all r,7/ € R.
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7.8.4.3. 1f J = I, then the adjoint morphism in D*(xMod)
7m0 = adj(Ur r0) - RTH(X) — Doy (RT(Y)
is an isomorphism.
7.8.4.4. If J = w*, then there is an exact triangle in D®(zxMod)
R (X)—25Dy_y (RT(Y)) — @D Brr, (AF(X), A¥(Y), 7).
veER!

More generally, if one assumes only that X;t 1, Y,F (v € ), then one has to add to
the third term of the triangle the sum

D Erry (A (X), Ay (Y), 7),

IS

given by the formulas from Proposition 6.7.6(iv).

7.8.4.5. In D*((rMod)/(pseudo-null)), the error terms Err, (AY (X ), A¥(Y), ) (v €
¥’) are given by the formulas in Proposition 7.6.7 (ii) and Corollary 7.6.8 (cf. 7.6.10.6—
7.6.10.9). In particular, they vanish after localizing at each prime ideal q € Spec(R)
with ht(q) = 0.

7.8.4.6. If X = o¢o X, then the error terms Err, (A} (X), AV(Y),7) (v € ¥') in
D}’L(RMOd) are given by the formulas in Corollary 7.6.12.
7.8.5. In practice, it is often the case that the canonical maps
T<0 X —X

T X, — XS (ved)

are all quasi-isomorphisms. If true, then it follows from Lemma 4.2.6 that the maps
T<2 CC.,ont(GK,S» ) - Cront(GK,Sv X)
T2 U (X) — US(X)  (veSy),

and hence
73 C3(Grs, X A(X)) — C3(Grs, X; A(X)),

are also quasi-isomorphisms.

7.8.£./ Theorem (Euler-Poincaré characteristic). — The Fuler-Poincaré characteristic
of RT'f(X) is equal to

ST (1) er(HIX)) =
SN (1) er (XN%) =Y (K, - Qp]Z Ter((X,)9).

vloo olp
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Proof. — The middle exact triangle in 6.1.3 implies that the L.H.S. is equal to the

sum of
(1) =Y (=1)%er (H con(Gr.5, X))
and
S @ =3 Y (1) er(HUUS (X))
vESy vESs g
However,
=33 (=1)7er (X))

vjco q
by Theorem 5.3.6, while (2), = 0 for v € ¥’. Finally, for v € X, we have
(20 = 3 (1) e (Héone(Gos X)) = 0 3 (=17 er((X))
q q
with
o = _[Kv : Qp]a v | p
Y 0, v1p,
by 5.2.11. O

7.8.7. Corollary. — Assume that:

(i) df, = [K, : R]7VY (=1)7er ((X9)C") does not depend on v | oo.

(ii) df = >, (=1)%er ((X;))9) does not depend on v | p.
Then

> (DT er(H}(X)) = [K : QJ(dL - df).
q

7.8.8. Proposition (Change of S). Let X be an ind-admissible R[G i s]-module and
S" D S a finite set of primes of K. Then:

(i) The canonical morphisms of complexes

inf : C Grs,X)— C: Gk s, X),

Lonf(
res C(:Ont(GK,.S7 @ Cont G”/]” X)
veS'—S

(the second depending on the choice of embeddings K — K, for allv € S' — S) give
rise to an exact triangle

inf,res
RFC()!lt(GK,57 ) ( ) chont(GK S’ @ RFur(GwX)
veS'—S (0.inf)
Y ? @ RFcont(GvaX)~

veS' =S
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(ii) Assume that we are given local conditions A,(X) for all v € Sy. Defining
UN(X) = C3.(Gy, X) for all v € 8" — S and keeping the given local conditions for
v € Sy, there is a canonical isomorphism

RF(GK,Sv X (AU(X))’UES/') — RF(GK,SHX; (A’U(X))NES})'

Proof. By a standard limit argument we can assume that X = M is a p-
primary torsion discrete G g g-module. As recalled in 9.2.1 below, M defines an
étale sheaf M, on Spec(Ok ) and RI'cont(Gk,s, M) is canonically isomorphic to
RI'(Spec(Ok.s), Met). The statement of (i) then follows from the excision triangles
for étale cohomology (cf. [Mi, p. 214]):

P RI(,) (O} M) — RI(Spec(Ok 5), Mer) — RI(Spec(Oi 1), Mer),
veS'—8S

RI'(,) (0%, My) — RI(O!, M) — RI(Spec(K,), M) (veE S —8)

v

(where OZ’ denotes the henselianization of Ok g at v), if we take into account canonical
isomorphisms

RP(027 Met) ;) RFCOI]t(G7)/ITH ]\/[)7 RF(SPCC(KU)a Met) ;’ chonL(Gau M)

The statement (ii) is a straightforward consequence of (i). O

7.8.9. Corollary-Deﬁilition. — Under the assumptions of Proposition 7.8.8(ii), the
cohomology groups H} (GK,S/,X;(AU(X)),)ES}) do not depend — up to a canoni-
cal isomorphism — on the choice of S'. We shall denote them by Hj’»(K X)) =
H (K, X; A(X)).

7.8.10. Localization. — The above discussion works whenever R is replaced by
R ¢, under the assumption 6.7.5(B), localized at.#. For example, if.# = R—yp for p €
Spec(R) with ht(p) = 1, then everything in 7.6.10 holds if T is a bounded complex of
admissible R, [G,]-modules with cohomology of finite type over R,. Another example
is provided by the following Proposition.

7.8.11. Proposition (Euler-Poincaré characteristic: self-dual case)

Assume that, in the situation of 7.8.6, R is an integral domain with fraction field
K = Frac(R) of characteristic char(K) = 0, all complezes X = H°(X) and X, =
HY(XF) (v € ) are concentrated in degree zero and all morphisms X7 — X (v €
¥) are injective. Put V = X ®@r K, V¥ = XF @p K (where X, = X/X, v €
Y). Assume, in addition, that V is a simple K[Gk s]-module and that there ewists
a non-degenerate skew-symmetric Gk g-equivariant bilinear form V @ V. — K(1),
which induces isomorphisms of K[G,]-modules

Vi 5 Hom)C(V;):Fa ’C)(l)

v
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for allv € ¥. Then, for each homomorphism x : Gg g — R*,
tkp HHX ® x) = tkp H} (X @ x) = tkp H}(X @ x ') = rkg H}(X @ x ")
(with respect to Greenberg’s local conditions given by X.©F @ x resp., X, @ x71).
Proof. For o € {x,x '}, put
hi = dimg ﬁ;ﬁ(V @ a) =rkp ﬁ}l(X ® ).

Self-duality of V' and of the local conditions V" (v € ¥) imply that, by the localized
duality theorem (cf. 7.8.4.4-7.8.4.5),

(7.8.11.1) ITI}I(V ® x) — Homg (ITI;A(’(V @x '),K) = hi= hii?.

For each v € ¥, V' is a Lagrangian (= maximal isotropic) subspace of V; it follows
that

(Vo |p) dimg(V," @ a) =dimg(V)/2 = rkr(X)/2.
Self-duality V' = V*(1) implies that, for each real embedding K — R, the corre-
sponding complex conjugation acts on V' by a matrix with eigenvalues +1, —1, each
with the same multiplicity dimy(V)/2 = rkr(X)/2; thus

(Vo | o) [K,: R} Hdimg HY(G,,V @ a) = dimg(V)/2 = tkr(X)/2.

Applying Corollary 7.8.7, we obtain (using 7.8.5)
3

(7.8.11.2) D=1, =0 (a=x.x")
q=0
Howcever,
(7.8.11.3) h) =h) (=h})=0,
because V is an irreducible representation. Combining (7.8.11.1)(7.8.11.3), we obtain
1 _ 32 1 _ g2
hx = ]LX = h’x*‘ = hx*"
as required. O
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CHAPTER 8

IWASAWA THEORY

In this chapter we study continuous cohomology in towers Ko /K, where
Gal(K/K) = I' = Z7 x A, for a finite abelian group A.  Our main tool is
Shapiro’s Lemma, which allows us to reduce to statements about cohomology over
K, but replaces R by the bigger coefficient ring R[I']. Once we establish a corre-
spondence between the duality diagrams over K and over K., (Sect. 8.4) and the
compatibility of the Greenberg local conditions with Shapiro’s Lemma (Sect. 8.5-8.8),
we can apply the duality formalism over K to the induced modules and obtain — after
an analysis of the local Tamagawa factors — Iwasawa-theoretical duality results
(Sect. 8.9). In Sect. 8.10 we study an abstract version of “Mazur’s Control Theorem”;
in our context it is a consequence of a fundamental base-change property of Selmer
complexes (Proposition 8.10.1).

Throughout Chapter 8 we assume that the residue field of R is a finite field of
characteristic p.

8.1. Shapiro’s Lemma

Let us recall basic facts about Shapiro’s Lemma ([Vel, §1.1-3]; [Bro, §111.6.2,
Ex. 111.8.2)).

8.1.1. Let U C G be an open subgroup of a pro-finite group G. For every discrete
U-module X, the induced module
Ind§(X) = {f: G — X | f locally constant, f(ug) = uf(g) Yu € U, Vg € G}

is a discrete G-module with respect to the (left) action

g+ F)g") = fld'g).
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The inclusion U — G and the map
op : Indf(X) — X
fr—f1)
define a morphism of pairs (G, Ind$ (X)) — (U, X) in the sense of 3.4.1.6, hence a
morphism of complexes (functorial in X')

sh:C*

cont,

(G, Ind5 (X)) — C,

cont

(U. X).

Shapiro’s Lemma asserts that sh is a quasi-isomorphism.
If X,Y are discrete U-modules, then there is a commutative diagram

Cgont(Gv IIld(C/; (X)) Wz C(.T()llt,(G’ Indg(y)) — C:,ont, <G> Il’ldg(X Xz Y))
lsh@sh J«Sh
C;oxlt(U> X) ®Z C(.:(mr,<U? Y) i) Cc.'mlt(U7 X ®Z Y)’

in which the upper horizontal arrow is induced by the map

df(X) ©z Ind§(Y) — d{(X ®@zY)
f1® fo = (g fi(g9) @ f2(9))-

8.1.2. Restriction. — If V C U is another open subgroup of G, then there is
an inclusion Ind$(X) ¢ Ind$/(X) making the following diagram of morphisms of
complexes commutative:

Coon (G IndF (X)) 5 €20y (U, X)
incl, res
C(.:(mt((;v Il’ldg(X)) i’ /(:ont(‘/v X)

8.1.3. If X is a discrete G-module, then there are two other natural discrete G-
modules isomorphic to Ind(X) (more precisely, to Ind{}(Xg), where Xp is equal to
X as a set, but viewed as an U-module), namely

Xy = Z|G/U] %z X = {Zﬁ@m |8 €G/Uxs€ X}
vX = Homgz(Z|G/U|,X) — {a: G/U — X}

with G-action

g(B@z)=gB® gz, (9a)(B) = glalg™'P))-
Denote by d3 : G/U — Z Kronecker’s delta-function

1 pg=p

6s(8') = {0 544
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Then the following formulas define G-equivariant isomorphisms, functorial in X:

md{ (X) = y X, fr—(gU — g(f(g™")))
XU;?UX, Zﬁ@mw—»Zxﬁéﬁ
Indf}(X) = Xy, f— Y gUueg(flg™).
gUeG/U

We use the above isomorphisms to pass freely between Indg(X ), Xy and yX. The
map dy from 8.1.1 will then be, indeed, identified with Kronecker’s delta-function
oy Xy — X, (SU(Z[))(X).T/}) =xy.

8.1.4. Corestriction. — Fix a section U\G, o — @ of the canonical projection
G — U\G (i.e., a set of coset representatives G = |JU®@;). For every discrete G-
module X, the formula

(cor(e))(g1s---gn) = Y @ 'e(@g(agn) ..., agr - Ga 192 (@G gn) ")
acU\G

defines a morphism of complexes

(G, X)

cont

cor: Ce (U, X) — Cs,

inducing the corestriction maps on cohomology (see [Bro, §111.9(D)], for a conceptual
explanation of this formula). In fact, the homotopy class of cor is independent of any
choices: if cor’ corresponds to another section o — @', then the formula

(R 1)) (g1, - gn) =

n—1
dooat > (~Dic(agi(@g) . agi s giig(@g o g)
aclU\G =0 . )

OG- G g (AT it )

L AgTgntgn (@G gn) )

agy - - ‘gi—lgi(agl .. ..(]1',’)7

defines a homotopy h : cor ~ cor’.
If V C U is another open subgroup of G, fix coset representatives

G=Jva. U=]Jvp,.
t J
Then the composition of the corresponding corestriction morphisms

(V, X) <500 (U, X)<50 (G, X)

C’.
cont cont

cont

is equal to the corestriction map associated to the coset decomposition

G = UVBﬁzu

(2]
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8.1.5. Lemma. — For every discrete G-module X, the composite morphism
. ~ . G sk . or .
C('()nt (Ga UX) — Ccont (G> IndU (X))—l)c(:(ml, (U7 X)L)Ccont(G’ X)

(where cor depends on a fized section of G — U\G) is homotopic to the map induced
by
Tr:ipX — X, ar— Y a(B).
BEG/U

Proof. — The formula

(R" ()91, gn-1) =

n—1

S > (=0'elor,- g0 (@gT g0 agT - Gigi @G g
aceU\G 1=0

Lo Qgr ... \(17),—2((]n71(agl . -g'rl,71)~1)(ﬁ_1),

ht(c) = Z c@hH@h,
acU\G
defines a homotopy h : Tr, ~ cor o sh. O

8.1.6. Functoriality. — Let V' C U be open subgroups of G. The previous dis-
cussion gives the following functoriality properties of Ind{}(X ), uX and Xy, (for vari-
able U).

8.1.6.1. Restriction. — The map res is induced by the inclusion Indg(X) —
Inde(X), which corresponds to the map

vX — v X
induced by the canonical projection
pr: Z|G/V] — Z[|G /U]
resp., to the trace map

Tr: Xy — Xy, gUR2z+— Z guV ® x.

uwelU/V
8.1.6.2. Corestriction. — The homotopy class of cor corresponds to the homotopy
class of the map
CC.OHL(G7 VX) — C;,()nt(Gv UX)

induced by
Tr: Z[G/U| — ZIG/V], gUr— > guV,
welU/v
resp., to the map
Ceont (G Xv) — Cooni (G, Xv)
induced by

pr: Z|G/V] — Z|G/U].
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8.1.6.3. Conjugation. — If U < G is an open normal subgroup of GG, then the
formula

(Ad(gU)f)(g) = (U £)(d) = 9(flg7"9)

defines a (left) G//U-action on Ind$(X) commuting with the action of G. This Ad-
action of G/U corresponds to the action

(“Ya)(g'U) = a(g'gU)

on g X (resp., to the action

9U( Z hU@:I:MJ) = Z hg™'U @ zhy

RUEG /U hUEG/U

on Xy;) and corresponds via sh to the homotopy action of G/U on C¢, (U, X), defined
in 3.6.1.4.
More precisely, for each g € G, the commutative diagram of morphisms of pairs

(incl,can)

(G, Ind (X)) (U, X)
(id,Ad(gU))

(G, Indf (X)) (Ad(g™").9)
(Ad(g').9)

(G nd% (X)) 2 () x)

induces a commutative diagram of morphisms of complexes

Cont (G Indf} (X)) > Clouy (U, X)
Ad(gU).
’C.(mt(G7 IIld[C]:(X)) Ad(g)
Ad(g)
sh .
C(.:ont(Gv Indg(X)) - Ccont(U7 X)

In the left column, the two vertical maps commute with each other. A homotopy
hg :id ~ Ad(g) from 4.5.3 induces a homotopy

(sho Ad(gU).) x hg : sho Ad(gU). —~ sh o Ad(gU). o Ad(g)
= sh o Ad(g) o Ad(gU). = Ad(g) o sh.
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8.1.6.4. Products. — If, in the situation of 8.1.6.3, G/U is abelian, then X be-
comes a Z[G/U][G]-module, with G (resp., G/U) acting as in 8.1.3 (resp., in 8.1.6.3).
Let (Xu )" be the following Z[G/U][G]-module: as a G-module, (Xy)* = Xy, but gU
acts on (Xy7)* as g 'U acted on Xy. The map

mu : Xu @zicv) (Yu)' — Z[G/U] @z (X @zY)
(U] @2 @ [g2U] @y — (9297 Ul @z @y
is a morphism of Z[G/U|[G]-modules, provided we let G (resp., Z|G/U]) act trivially
(resp., by multiplication) on the factor Z[G/U] on the R.H.S. If G/V is also abelian,
then the diagram
Xv @z (Yv) 5 Z[G/V] @z (X ®zY)
lpr@pr l])l‘@i(l

Xu @ziqu) (Yo) = Z[G/U] 0z (X ©zY)

is commutative.

8.1.6.5. Lemma. — If G/U is abelian, then the diagram

C(?.om,((;’ XU) ¥z C‘g()nt(("ﬂ (}/U)I) ;l‘& (v(mn([] ) 2Dz C(out((]? Y’) —-U_’ ((‘um(U X Xz },)
Su '

Z[G/U) @z Cop(G X ®2Y) —— Ce (G X @2Y)

Uo(muy ).
e

Ceont (G Xv) @zi6/0) Coone (G (YU)')

is commutative up to homotopy.

Proof. — This follows from Lemma 8.1.5 and the commutative diagram
Ceone(U, X) ©27 Copy (U, Y) = Co (U X ®zY)
sh()"()ah] ““]
Ceoont (G, Xy) @z Ceo i (G (Yu)") S Cooni(G, Xy 9z Yu) - . Ceont (G (X ®zY)u)
Tr.

Uo(muy )«

Cr.,()m,(G’ XU) ®Z[G/U] Ccont(G (YU) ) Z[G/U] Xz Cconl (G X Rz Y) —(,"'_> :,om(Gw X Kz Y)

where

q: Xu®zYy — (X ®@z2Y)u

is the morphism of G-modules given by the formula

q:» Bergef ®yﬁ/'—>25®$ﬁ®yﬁ o
5.6
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8.1.7. Semilocal case

8.1.7.1. Assume that a : G — G is a continuous homomorphism of pro-finite groups
and U <1 G is an open normal subgroup of G. Then U = a~}(U) is an open normal
subgroup of G and o : G/U — G/U is injective.
Fix coset representatives o; € G of
G/U = Uol G/0) =Ja(@/0)s; !
i
and set, for each 1,
Qo ELG;M(W)

a1 GJU-5G/U—"0

G,
SGONGY))

For every discrete G-module X, the above coset decomposition yields a decomposition
of the G-module a*(Xy/) into a direct sum

" (Z|G/U]) 9z X) = @a (Z[e(G /U)o, 97 X) z@a*(XU)i;

denote by pr; : a*(Xy) — a*(Xy); the projection on the i-th factor. The isomor-
phism of G-modules

o @0 o (Xpy)i — af (Z[a;(G/U)] @z X),

together with the canonical identification

a; (Z[oi(G/U) @z X) — (o] X)gr

a;(GU) @z — [gU] @z,
give a G-isomorphism
a*(Xv)i = (e X) g

Putting all w; = w! o pr; together, we obtain a G-isomorphism

w=(w): " (Xu) = Pla; X
8.1.7.2. The commutative diagram of morphisms of pairs

(Ad(a; "),04) sh
—

(G, Xv) (G, Xv)  —— (UX)
(av,id) . (avg,id)
(6’ at (XU)) (id,w:) (6’ (OéfX)U) S_h, (ﬁ, Ot:X)

induces a commutative diagram of morphisms of complexes

oG xy) 2L ove xy) S o X)

I I

C* (G, (" (X)) —2— (G (X)) 2o (T, arX).
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This implies that the following diagram
(G Xy) —— @, C(C. (0] X))
J,Sh lsh
CrU.xX) M @ eU,arx)
is commutative up to the homotopy h = (o] osh o hy,); : () osh ~» show o o,
which induces a quasi-isomorphism (functorial in X)

(8.1.7.1) Cone(sh, show, h) : Cone(a™) — Cone((a])).

Above, h, denotes fixed bi-functorial homotopies h, (M) : id ~» Ad(c), e.g. those
from 4.5.5. As any two choices of h, (M) are 2-homotopic, it follows from 1.1.7 that
the homotopy class of the quasi-isomorphism (8.1.7.1) does not depend on the choice
of he.

8.1.7.3. Conjugation

8.1.7.3.1. Fix g € G. Then we have, for each i,

g lo; = ‘ll,;](fg(,;)(.l(gi), u; €U, g, €G.

The G-isomorphisms o; : a* X — o X give rise to morphisms of complexes
-1

((—",,, )« T )%
Flg)i : C* (T, gy X )— 2000 (T, 0 X ) 220, Lo (T 0 X) 0T, 0 X)

g(1)
and

F(g) = EB(“ (U, X) —>@C'(U,a;‘X),
functorial in X.

8.1.7.3.2. The faces of the cubic diagram

C"(G, X[/) woa™ @i (7'(@, (”TX)‘(—/)

woAd(gU) . ow !

h
(o)) /

Ad(gU). (/‘,’0((]’X) @1 C“(U,(Y:X)

Ad(g)

C* (G, Xp) =2 (@ (ar X)p) S|P

(a])

@, C*(U,a: X)
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commute up to the following homotopies:

(=0
h = ((af osh)xhe,); (as in 8.1.7.2)
m= —((F(g)ioay,)*hy)i (asajo Ad(g) = F(g)i 0 oy ;) © Ad(u;))
ki1 = (shoAd(gU).) * hy (as in 8.1.6.3)
ky = —((F(g)i osh)x hg,); (as show; 0o Ad(gU)« = F(g)i o sh o wy(;y o Ad(g;))-
8.1.7.3.3. Lemma. — The boundary of the cube in 8.1.7.3.2 is trivialized by a 2-
homotopy

(af)x k1 + mxsh+ F(g)xh —kaxa® —h*(Ad(gU).) — 0.

Proof. — This can be proved, e.g., by a brute force calculation based on the existence
of bifunctorial 2-homotopies H, (M) from 4.5.5. The details of the unilluminating
calculation are omitted. O
8.1.7.3.4. Corollary. The following diagram
Cone(sh,show,h
Cone(a™) one(sh show,h) Cone((a]))
l(}onn(Ad(gU)*,Ad(gU)*,D) Cone(Ad(g),F(g),m)
Cone(sh,st Jh
Cone(a™) Conelsh show,h) Cone((a)))
is commutative up to homotopy.
Proof. This follows from 1.1.8 and Lemma 8.1.7.3.3. O

8.1.7.4. Restriction
8.1.7.4.1. Assume that V < G, V C U is another open normal subgroup of G; put
V = a (V). Fix coset representatives 7; € G of
G|V = UT, (G/V) = G/V)r .
J
Then
G = UVT, ! UUm a(G)

J
and for each j we have Ut; a(G) = Uo; a(G) for unique i = 7(j). In particular,
T = uijaia(gij), U5 € U, gij eG (l = 71'(7))

Set
B G GAd(T7 )G

and define a morphism of complexes (functorial in X)

(rij) @ (U, 0;X) — @ C*(V, 8, X)
J
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by
TT * (‘71‘_1)* 77 * Ad(ﬁrjl) TT *
rij 1 C°(U, i X)———C* (U, 0" X)—————C*(U,a* X)
S0 (V0 X) O (T, B X).

8.1.7.4.2. The faces of the cubic diagram

C*(G, Xu) = ®, C*(G. (] X)p)
sh wyoTr, 0w, 1 sh
7
(o .
Tr. (U, X) ’ ®, C*(U.a’ X)
res ’ >
C’(G‘, X\) wyoa® R

ki >
sh /

(V. X)

)

V.3 X)

commute up to the following homotopies:
(=0
ky= 0
h = ((af osh) xhy,); (as in 8.1.7.2)
h' = ((8; osh)xhs,); (as in 8.1.7.2)
m = ((Bjores)xhy,); (asro(a))=(8])oresoAd(ui;))
ko= —((rosh)xhg, ); (

(above, 1 = 7(j)).

as ShOUJV7 OTI'* - ToShOwUL OAd(le))

8.1.7.4.3. Lemma. — The boundary of the cube in 8.1.7.4.2 is trivialized by a 2-
homotopy
mxsh+rxh—kyxa* —h' xTr, — 0.

Proof. — Again, this can be proved by an explicit calculation, the details of which
are omitted. O
8.1.7.4.4. Corollary. — The following diagram

Cone(wy o a*) _Conelshosholy) Cone((a7))

Cone(Tr*,wvoTr*owal,O) Cone(res,r,m)
Cone(wy 0a*) 2B Cone((37))

is commutative up to homotopy.
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Proof. — This follows from 1.1.8 and Lemma 8.1.7.4.3. O

8.1.7.5. Corestriction

In the notation of 8.1.7.4.1, there is a similar construction of ‘corestriction’ mor-
phisms

c: PV, B X) — PCU, a; X),
J i

yielding the cubic diagram

C'(G,Xv) wy o @ (v. /"* ) )

sh 1
wyopr, ow,

h
) /

pr. C*(V, X) @, C*(V,5;X)

cor

/
(G, Xu) =~ o @é, (o} X)7)
*1/

C*(U. X)

(a])

and the square
Cone(sh,sh,h)
_Zoressa)

Cone(wy o a*) Cone((537))
lCone(pr*,wU opr, ow;l ,0) Cone(cor,c,m)
Cone(sh,sh,h
Cone(wy o a*) Conelehehih) | Cone((af)),

commutative up to homotopy. The details are omitted.

8.1.7.6. The constructions in 8.1.7.1-8.1.7.5 have the following useful variant. As
the action of o, ! defines an isomorphism of G-modules

ol X ot X,
Yo w;) yields a G-isomorphism

o (Xy) = @(a*X)U—

the modified map @ = (o

If we use consistently & instead of w, then the map F(g) has to be replaced by
F(g) = (F(g)i)i, where

Ad(gz

F(g)i : C*(U,a*X) i) — o (T, 0 X),,

SOCIETE MATHEMATIQUE DE FRANCE 2006



200 CHAPTER 8. IWASAWA THEORY

where each subscript refers to the corresponding summand in the direct sum

@(ny — @a*X.
i

Similarly, the map r;; has to be replaced by
7y C*(U, (x*X)iAM)C'(U, @ X)—C*(V,a" X);.
If o is injective, then the morphisms of pairs
(iyo; ') (oo X) — (U,a" X)

induces an isomorphism of complexes

C*(oia(U)o;

K3

LX) = 00U, 0 X).

The latter complex is isomorphic to C*(U, of X), via 0; : a* X — af X.

8.2. Shapiro’s Lemma for ind-admissible modules

Recall that R is assumed to have finite residue field of characteristic p. Let U C G
be as in 8.1.
8.2.1. For M € (i]?‘f[d(}']‘dMod) we define R[G]-modules
My =M ®g R[G/U], uvM = HOII]]{(R[G/U], ]\[)

with the G-action given by the formulas in 8.1.3. These modules have the following
properties:

(i) If the action of G on M is discrete, then My (resp., ¢ M) coincides with the
corresponding object defined in 8.1.3.

(ii) The formulas in 8.1.3 define an isomorphism My, =y M, functorial in M.

(iii) The functors M — My and M — M commute with arbitrary direct and
inverse limits.

In particular, if M is of finite type over R, then the canonical maps

]\IU/m"']\JU = (]W/m"]\/f)uﬁ My = ll_IIl(]W/m”]\[)U

are isomorphisms (and similarly for ¢ M).
These observations imply that My, y M € (ilg[dé“]‘dl\/lod).

8.2.2. Writing M = lim M, and each M, as M, = liLnMa/m"]\/[a, Shapiro’s
M,ES(M) n

Lemma applied to each M,/m"M, (and the fact that M,/m"M, is a surjective
projective system) gives quasi-isomorphisms

Cc.ont<G7 (A/[a)U) - liLnCc.ont(G7 (A/[a/mn]\'Ja)L/)
i O (G Ind G (M /m" My, )5 1im 2 (U, Mo /m" M) = Coon (U, M)
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and

L]
Ccont

(Gv (Afa)[])s_h’ hi} cC:

cont,

(U7 ]\[Ot) = C(.'ont(U7 Al)

cont

G, My) = limC?,
( U) liy
The same argument applies to M.

8.2.3. The definitions above extend in an obvious way to complexes M* of ind-
admissible R[G]-modules. If at least one of the following conditions is satisfied:

(A) M* is bounded below;
(B) ¢dp(G) < o0,

then both morphisms

L]
C(:ont

(G7 A[(.J) - C(:()nL(Uv ]\/[.) — ‘:ont(Ga U—A/[.)

are quasi-isomorphisms (using the spectral sequence (3.5.3.1)).

8.2.4. Put Ry = R[G/U] and denote by
t: Ry — Ry

the R-linear involution induced by the map g — ¢~ on G/U. Both My and ;M are
(left) Ry [G]-modules, with the action of Ry given by the Ad-action of G/U described
in 8.1.6.3.

If G/U is abelian, then the action of x € Ry on My = M ®pr Ry (resp., on
uM = Homp(Ry, M)) is given by id ® ¢(z) (resp., Hom(z,id)).

8.2.5. Lemma. — Assume that G/U is abelian. Then

(i) Ry is an equidimensional (of dimension d) semilocal complete Noetherian ring.

(ii) If M is an (ind-)admissible R|G]-module, then y M, My are (ind-)admissible
Ry [G]-modules.

(iii) If M is of finite (resp., co-finite) type over R, then yM, My are of finite
(resp., co-finite) type over Ry .

Proof. — Everything follows from the fact that Ry is a free R-module of finite type.
O

8.2.6. Corollary. — If G/U is abelian, then both functors M — My, M — y M map
(iﬁ_}G]Mod) no. o (3 [G]Mod) fy . (and similarly for ind-ad), with + = ft, coft. Under
the canonical quasi-isomorphisms

C’c.ont (G7 j\J(/)i)C:ont(U’7 A[)(ih—cc.ont (G7 U]\[)
the action of Ry on My,yM corresponds to the homotopy action of G/U
on Coon (U, M).
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8.3. Infinite extensions

8.3.1. Let H < G be a closed normal subgroup of G. Put I' = G/H,
% ={U c G | U open subgroup, U D H}
R = R[I'] = lim R[G/U].
] i) [G/U]

For every M € (;’%FC}"]‘(‘Mod% the Ry|G]-modules My (resp., y M) for variable U € %
form a projective (resp., an inductive) system with transition maps induced by the
projections pr: Ry — Ry (for V.C U, U,V € %). Denote by

e/dzr(]\/f) = lim ]\Ju, FF(]\[) = lim U]Vf
54 Uel

the corresponding limits; they are both (left) R[G]-modules. We define .#p(M?*),
Fr(M*) for a complex M* of ind-admissible R[G]-modules by the same formulas
(termwise).

8.3.2. Lemma

(i) If M* is a complex of ind-admissible R[G]-modules, sois Fp(M*) and the canon-
ical map

li.g} C(:OHL(G7 UAI.) - C(:(mt(G7 FF(M.))
U

s an isomorphism of complexes.
(11) If M is contained in (i}‘?‘[d(}]adMod) (my? 50 is Fr (M) and the composite morphism

liT> C(;ont(Gv U]\/[)s_h’ h{#} CC.,ont(Uv A[)Leic(.:ont<H’ ]\/])

18 an quasi-isomorphism. The same is true for complexes M* of such modules, pro-
vided they satisfy 8.2.3(A) or (B).

Proof. — 1t is enough to consider only the case M* = M.

(i) Fr(M) is ind-admissible, since each M is; then apply 3.4.1.5.

(ii) Fr(M) is supported at {m}, since each yM is; in particular, both M and
Fr(M) are discrete G-modules. The map res is an isomorphism by [Se2, §1.2.2,
Prop. 8] and sh is a quasi-isomorphism. O

8.3.3. Corollary. — If M* is a complex in (;{‘[dc'é]"dMod) , satisfying 8.2.3(A) or (B),

{m
then there is a canonical quasi-isomorphism

Cgont(Gv FF(]W.)) - Cc.ont(Hv AI.)

such that the R-action on Fr(M*) corresponds to the homotopy action of G/H =T
on the R.H.S.
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8.3.4. For any M e (ird2dMod) the complexes C2, (G, My) form a projective
R[G] cont

system indexed by U € %, with surjective transition maps. The projective limit

LiTm C(:ont (G7 ]\/‘[U)

is a complex of R-modules; denote by
RI' (G, H; M) € D(Mod)
the corresponding object of the derived category and by
Hi (G, H;M)=H'RI'(G, H; M))

its cohomology. The same notation will be used for complexes M* of ind-admissible
R[G]-modules (the subscript “Iw” stands for “Iwasawa” — this notation is due
to Fontaine).

8.3.5. Proposition. — Let M € (3t}"Mod). Then

(i) There is a spectral sequence

By’ = lim O (Hl,, (U M)) = H{7(G, H; M).

cont
,cor

(ii) If M is of finite type over R and if G satisfies (F'), then E;] =0 fori#0 and

i (G H; M) = lim Hoyy (U, M).
,cor

(i) Assume that M is of finite type over R, % contains a cofinal chain Uy D Uz D
Us D --- and the pro-finite order of T is divisible by p>°. Then HP (G, H; M) = 0.

Proof

i) Consider the two hyper-cohomology spectral sequences for the functor lim and
p—
the projective system Cg, (G, My):
B = ;%nm Cloui(G My) = HY —1EY = 1im @ (H? (G, My)).

cont —

U

For each i, the projective system C?_ (G, My ) is “weakly flabby” in the sense of [Je,
Lemma 1.3(ii)], as

Céont(Gﬂ MU) - Ci

cont

(G7 MV)

lim
U

is surjective for every V' € %. This implies that IEf’j = 0 for j # 0, hence H" =
H™(i— IE{’O) = H{ (G,H;M). By Lemma 8.1.5, the transition maps in

UEid =, Jim @ (H!

cont(U7 ]\/[))
cu

are given by the corestriction, as claimed.
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(ii) The same argument as in (i) yields a spectral sequence

EY = thnl O (HZ,, (U, M/w™ M) = H{T(G, H; M).
As G satisfies (F'), the projective system C(mt(U M/m"M) (indexed by % x N)
consists of R-modules of finite length, hence E” =0 for i # 0 ([Je, Cor. 7.2]). Tt
follows that

Hijw(G, H; M) = EY7 =limlim (H, (U, M /0" M)) < lim H’

ity Al c ()nt «— "Tcont
U n U

(U, M)

(the last isomorphism by Lemma 4.2.2).
(ili) As M is of finite type over R, the sequence of invariants

MY C MY C
stabilizes: MY» = N for all n > ng. This implies that

HI(:N(GvHv A[) = liII c()uL(U7l7]\[) !1_111 N7
n,,(‘m n>=ng

with the transition maps given by the multiplication by [U,, : U,/] (n’ = n = ng). For
fixed n > ng, the power of p dividing [U,, : U,/| tends to infinity as n’ — oo, hence
Im (HIUW(G, H;M)— HY (U,, J\I)) C m [Un:Uy] N =0,
n'>zn
proving the claim. O
8.3.6. In 8.3.5(i) we can replace M by a complex M* of ind-admissible R[G]-
modules, provided 8.2.3(A) or (B) holds. In 8.3.5(ii) we have to assume, in addition,

that M* has cohomology groups of finite type over R (cf. proof of Proposition 4.2.5).
This implies that RI'1 (G, H; —) induces an exact functor

RI'.(G, H; =) : D*(Ri¢i"Mod) — D*(zMod)

for * = + (resp., for * = +, &, provided cd,(G) < o0).

8.4. Infinite Abelian extensions

We retain the notation and assumptions of 8.3.

8.4.1. In practice one is usually interested in the case when I' = G/H is a p-adic Lie
group. In this paper we consider only the case of abelian I'. According to Lemma 4.1.4,
cohomological invariants do not change if T' (resp., G) is replaced by its pro-p-Sylow
subgroup I'(p) (resp., by the inverse image of I'(p) C G/H in G). Without loss of
generality we shall, therefore, assume that

F:FOXA,
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where A is a finite abelian group and [y is isomorphic to Z; for some r > 1. In this
case
1_2 == RHF]] - -E() ®R R[A], ﬁo = RHF()]]
A choice of an isomorphism I’y = Z;, (i.e., a choice of a Z,-basis 71,...,7 of o)
gives an isomorphism of rings
Ry = R[X1,...,X,], v~ 1+ X,
In particular, R is an equidimensional semilocal complete Noetherian ring, of dimen-
sion d 4+ 7. Let m C R be the radical of R.
8.4.2. Denote by
xr:G— T < R[[]* (CR")

the tautological one-dimensional representation of G over R[I'].

For every (R[I'))[G]-module M and n € Z we construct new (R[I'])[G]-modules

M < n > resp., M* as follows: as an R[[']-module, M < n > coincides with M, but
the action of G is given by

gr<n> = xr(9)"gm (9 € G).
M coincides with M as an R[G]-module, but the action of R[I'] is given by
Tppe = l,(:L')M (T S R[F])

A more functorial definition of M* is M ®pr), RI[T], as in 6.6.4. With this notation
(which applies, in particular, to R[G]-modules), we have

M<n>'5 M <-n>.
8.4.3. Injective hulls. — We first relate I to Ig.

8.4.3.1. Lemma. — As an R[G]-module, Fr(Ir) < 1 > is isomorphic to the Pontrjagin
dual of R (the action of G on Ir and R being trivial).

Proof. — As in 2.9, fix an isomorphism of R-modules
In R = lir_III;Homz,,(R/m"R, Q,/Z,).
This induces an isomorphism of R[G /UJ-modules
Hompg(R[G/U], Ir)
— liTn;HomR/mnR(R/m"R[G/U], Homgz, (R/m"R,Q,/Zy,))

5 lim Homg, (R/m"R(G/U), Q,/Z,),

hence an isomorphism of R-modules between

FF(IR) = 1}1671“{1/ HOII]R(R[G/U],IR)
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(cf. 8.2.4) and
l(i]_n} Homz, (R/m"R[G/U],Qp/Zy),
n
which is nothing but the Pontrjagin dual of

lim R/ m" RIG/U) = R

The action of g € G on Fr(IR) is given by

(g% N)x) =g(flg"" (@) = flg" (@) = fxr(9) ') = xr(9) ' f(@),
hence G acts trivially on Fr(Ig) <1 >. |
8.4.3.2. Corollary. — The R-module T = I := Fr(Ig) < 1 > is an injective hull
of R/m over R.
8.4.4. The functor %
8.4.4.1. Proposition. Let M € (Efi(}i“jl\'locl). Then

(i) If M is of finite type over R, then there are canonical isomorphisms of R[G]-
modules

Fr(M) = (M epT) < 1>,
Fr(M) > (MepR)< 1> (MerR) <1 >,
functorial in M. In particular, Zv(M) is of finite type over R.

(it) If M e (RiGiMod) . then Fr(M) € (pridMod) o

(iii) If M is of co-finite type over R, then Fy (M) is of co-finite type over R.

Proof
(i) The canonical map of R-modules
(8.4.4.1.1) N ®grR =N @glim Ry — lim (N ®p Ry)
U U

is an isomorphism for every R-module N of finite type. For N = M, the natural
action of R[G] on # (M) = lim (M ®p Ry ) is the following (cf. 8.1.3 and 8.2.4):
U
x € R acts by id @ «(x)
g € G acts by g ® xr(g).
this implies that (8.4.4.1.1) and ¢ induce the following isomorphisms of R[G]-modules:
1d®e

Fr(M)=(MorR)<1> 5M@rR)<—1>.

The statement about # (M) is proved in the same way.
(ii) This follows from Lemma 8.3.2.
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(iii) It is sufficient to treat the case I' = I'g, when R = Ry is local (cf. proof
of Lemma 8.2.5). We must show that dimy(Fr(M)[m]) < oo (here k¥ = R/m =
R/m). As Fr(M[m])[m] = Fr(M)[m], we can assume that M = M[m] and hence, by
dévissage, that M = k. In this case dimy(Fr(k)[m]) = 1 by Lemma 8.4.3.1 applied
to R =k. d

8.4.4.2. Proposition. — For every M € (‘“[d ‘dMod)
complexes

Rt the canonical morphism of

Cooni(G,.Fr(M)) — 11m Cooni (G, My)
is an isomorphism, hence inducing an i.s‘omorphzsm
RIcont(G,.Zr(M)) = RI'1y (G, H; M)
in Dt (gMod).
Proof. — We must show that the two projective limit topologies on

Fr(M) = lim.Zp(M)/@"F (M) — IT'Jl_mJWU/m"]\/[U
n n
coincide (the first (resp., second) isomorphism follows from the fact that # (M) is
m-adically (resp., m-adically) complete). We can assume that I' = I'p, in which case
R=Ro > Ry —1,...,v — 1] is local, with m = mR + (v — 1,...,7 — 1). Put
Jy = Ker(R — R[G/U]); then

My /m"My =.Zr(M)/(Ju +m"R)Fr(M)

and the claim follows from the fact (used in the proof of the isomorphism RS
R[y1 —1,...,7 — 1]) that the systems of ideals {m" },en and {Ju + m"R} 1 n)ew xN
of R are cofinal in each other. O

8.4.4.3. It follows from Lemma 8.3.2 and Proposition 8.4.4.1 that the functors Fr
and Zr derive (for each * = @, +, —, b) trivially to exact functors

Py D*((R[(]MOd)R.(-oﬂ) - D*((%%G]I\A()d) oft)
Fr: D*((igMod) ) — D (g Mod) g 1)
hence, using Proposition 3.2.8, to functors
Fr: DE-coﬂ(R[G Mod) ~ ((R[G]MOd)R-coft) Dy, coft(R[G]MOd) (x=+.b)
1 Dipp(igMod) = D*((gMod) ) — Dg (FgMod) — (+ = =),

Proposition 8.4.4.2 implies that there is a canonical isomorphism in D (zMod)

Rl cont (G, r(M)) — R (G, H; M), (M € D%, (% Mod)).
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8.4.5. Relating the functors F/r and .# . — Our next goal is to investigate the
relationship between the functors Fr,.# r and the duality diagrams 2.8.2 over the rings
R and R. We denote the functors (Dg,% g, ®r) (resp., (Dy, 7, ®5)) appearing in

these diagrams by (D, 2, ®) (resp., (D,Z7,®)).
8.4.5.1. Lemma. For every M € ("[‘E{[G]Mod) there are canonical isomorphisms

of R[G]-modules

R-coft

Fr(M) = Hompz(D(M) @r R, 1) < =1 > D((D(M) ®r R) < 1 >)
— D(Zr(D(M))")
Do Fr(M) -5 10.FroD(M).
Proof. — The first isomorphism is given by

Fr(M) = lim Homp(R[G /U], Homg(D(M), I))

o
~= lim Homg(R[G/U] ©r D(M),I) — lim Hompg(D(M),Homp(R[G /U], I))
] T
— Hompz(D(M),lim Homp(R[G /U], I)) = Hompz(D(M),T < —1 >)
U

= Homp(D(M) @ R, 1) < —1 >,
using Lemma 8.4.3.1 (and the fact that the direct limit can be interchanged with
Homp, since D(M) is of finite type over R). The second isomorphism follows by
applying D and the isomorphism ¢ : id = Do D.
8.4.5.2. Fixy; (i=1,...,7) asin 8.4.1 and put X; = v; — 1 € Ry. Fix a system of
parameters x1, ..., xq of R then z1,...,x4, X1,..., X, form a system of parameters

of Ry. Let C%(I'g) be the following complex in degrees [0,7] (and differentials as
in 2.4.3):

[ﬁo — PRo)x, — PRo)x,x, — -+ — (Ro)x,-.x, |

i i<y
put C3,(T') = Cy(To) @r R[A]. d
8.4.5.3. Lemma
() H(CH(To)) = 0 for i 1.
(it) H"(Cy(Ty)) is a free R-module.
(ii) C*(Ro, (x, X)) is isomorphic to C*(R,x) @ Cy(Ly).
(iv) The complex C*(R,(x,X)) = C*(Ro,(z,X)) @r R[A] is isomorphic to
C*(R,xz) @r Cy(I).

(i)-(ii) Cy(To) = liTrqK-'ﬁ0 (Ro, (X™)) and each Koszul complex K (Ro, (X™)) is

quasi-isomorphic to Ro/(X], ..., X?)Ro[—r].
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(iii) Both sides are isomorphic to li%K%z” (Ro, (x™, X™)); (iv) follows from (iii).
O
8.4.5.4. Lemma. — If M, N are R-modules, then there is a canonical isomorphism of
R[A]-modules
Homp(M[A], N) — Homp (M, N)[A]*

given by the formula

fr— ( Z(m — flm®0§))® 5) )

SEA
Above, M[A] = M ® g R[A] and A acts on the L.H.S. by (0« f)(m& ') = f(m®46d).

Proof. — Direct calculation. O

8.4.5.5. Lemma. — There are isomorphisms of R-modules
Ip ®p H’(C;?(F)) = ]ﬁ() QR R{A] = IE'

Proof. — As remarked in the proof of Lemma 8.4.5.3, H"(C%(I'g)) is isomorphic to
the inductive limit

lim B /(X7 ..., X2)Ro,

n
where the transition map is given by the multiplication by X --- X,. The pairings

( R )n :ﬁo/(XT’,...,X?)ﬁo ®1g§()/(X{L,..‘,X;l)EU — R

f ® g— Res x, :..._x,,.:om
satisfy

(f (mod (X{'..... X")).g)n = (f, X1+ Xog)ns1.
Tensoring them with I, the corresponding adjoint maps define an isomorphism of
projective systems

(En/(X{L, ey X,,',l')ﬁo)ngl L (HOIIIR (IR QOR (FU/(X{L, ey X,'l)ﬁo), IR))”>1 .

Applying the same argument to the Artinian rings R/m! instead of R and passing to
the projective limit with respect to (n,1), we obtain an isomorphism of Rg-modules
between Ry and the Pontrjagin dual of the discrete Ro-module Ir @r H"(Ch(Io)).
Applying Pontrjagin duality again, we obtain an isomorphism
]1?, QR H7(C].?(F0)) = Iﬁu’
which implies that
IR@r H'(CR(T)) =Ig®r H' (CR(Ty)) ®@r R[A] = IE(} ®r R[A].

Finally, it follows from Lemma 8.4.3.1 and 8.4.5.4 that there are isomorphisms of

R-modules

I — Homg (Ro[A], Ir) — I, @R R[A]LE‘_@LIEO ®@r R[A]l. O
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8.4.5.6. Lemma. — There are isomorphisms in D° (Eo Mod) (resp., in DP (EMOd) )
~ L — ~ L __ —
wg, — WRORR) = wr ®r Ry, wi — WRORR = wr ®r R.
Proof. The isomorphisms
L ~ ~
C'(R, (.’t))@RwR —>IR[—d], Ir ®Rr HT<C;;(F())) —->IE0

in D*(grMod) (resp., in (EjMod)) together with Lemma 8.4.5.3 yield an isomorphism
in Dl():oft.(ﬁ(, Mod)

L — — L L
- <wR®RR0> [—d — 7] = C*(Ro, (z, X))@, (wr r o)
— (C* (R, @)Erwn)ErCi(To) = Inl-d @ H (CHT)|-1] = Fg,[-d— 1),

-0

hence an isomorphism in D]’it (ﬁ Mod)
wRG[éRﬁo = ’@ﬁo o Dg odg (w;g(!é)]?ﬁo) = D%, (Ro) = WE,-
As R = Ry[A] is free of finite rank over Ry, we have
wi — Homp, (R, wg,) = Homp(R[A], R) @ wg, -
By Lemma 8.4.5.4 we have isomorphisms of R[A]-modules
Hompg(R[A], R) = R[A]'—R[A]
(“relative Gorenstein property of group rings”), which gives the second isomorphism.

0

8.4.6. Comparison of the duality diagrams over R and R
8.4.6.1. Let X,Y be bounded complexes in (;‘?fl[G]l\'Iod) Reft’
from 8.1.6.4 to all U € % and passing to the projective limit, we obtain a morphism

of (bounded) complexes in (%i[ G]Mod)ﬁ_ "

Applying the discussion

m :(QF(X) ®—E(Q}‘F(Y)’* — T‘Z@R (X ®R Y)

(with G acting trivially on the factor R on the R.H.S.). This pairing can also be
written explicitly (with a slight permutation of the factors) as

(XoprR)<1>ez((Y@rR)<1>)"

MEBEd (X @p R) < -1 > @5(Y ®r R) < 1>= (X ®p Y) ®g R.
8.4.6.2. Dualizing complexes. — For each S = R, R, fix a complex w§ = 050 w3
of injective S-modules representing wg. There exists a quasi-isomorphism (unique up
to homotopy)

gp:wk@RR—»wR,

which we fix, once for all.
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8.4.6.3. Given X and Y as in 8.4.6.1 and a morphism of complexes
T: X®rY — wi(1),

we obtain a morphism of complexes
7 Fr(X) 0g Fr(Y) "R ar (X 0r V) EER 9p wh(1)—2owi(1).
The corresponding adjoint map is equal to

id®adj(m)<—1>—
——

adj(7) : Fr(X) — Re@r X < -1 > R®p Homx(Y,wh(1)) < —1 >

= Hon1~(R QrY < 1> R@pwh(l))

= Hom%(Fr(Y)", R®g wR(l))—LHom%(ﬁzp(Y)",w’ﬁ(l))A

8.4.6.4. Lemma. There exist functorial isomorphisms

LoFroP(X) T oFr(X), ToFr(X) -5 Frod(X) (X €Dy y(%igMod)).

Proof. — By Proposition 3.2.6 there exists a bounded complex Y in (";éi[G]Mod) R-ft
and a quasi-isomorphism f : Y — 2(X) = Homy(X,w}). Applying 8.4.6.3 to the
pairing

T: X Qg y el x ®R@(X)£»wk,

we obtain a morphism of complexes
adj(7) : Fr(Y)" — Hom{(Fr(X),wg) = P o Fr(X),

hence a morphism in D% Mod)

R ft(R[G]

ty—1
ax : Lo Frod(X) =Fr@ (X)) LTV,

37:[‘(Y)L adj(7)

————9 0 Fr(X),
which is functorial in X. In order to prove that ax is an isomorphism, we can
disregard the action of G, i.e., consider only X € D?t(Rl\io(i), Fr(X) = X®rR
and replace ¢ by the identity map. As we are dealing with “way-out functors” ([RD,
81.7]), standard dévissage reduces the claim to the fact that agp = ¢ is an isomorphism
in D?f(EMOd)
As regards the second isomorphism, we combine ax with Lemma 8.4.5.1, obtaining
functorial isomorphisms
Fro®(X) =5 DotoFroDo®(X) — DoroF 0P (X) — DoZoFr(X) — ®oFr(X).
O
8.4.6.5. Corollary. — If, in the situation of 8.4.6.3,
XY Homs, (Y, wiy (1) — W — X[1]
is an exact triangle in D%_ﬂ(R[G]MOd) then
adj(m
Fr(x) L

U Homsy(Fr (Y ), wiy(1)) — Fr(W) — Fr(X)[1
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ad

is an exact triangle in DR ﬂ(R[G]

Mod). In particular,
7 is a perfect duality over R <= T is a perfect duality over R.

8.4.6.6. The isomorphisms from Lemma 8.4.5.1 and 8.4.6.4 can be summarized as
follows.

IfT,T* € D’,’{_ﬂ(mc ]Mod) and A, A* € DR m/,(R[( ]Mod) are related by the duality
diagram

T T
D
|(1) |(I)
A A*
over R, then Z (1), #r(T*) € Di’{ ﬁ(l‘;}(]Mod) and Fr(A), Fr(A*) € D’I’{ mﬁ(l‘;i[C]Mod)
are related by the duality diagram
7

e__
©l
S
—
&l

over T{

8.4.6.7. Proposition
(i) Let T € D*((j51Mod)
are canonical isomorphisms

)i put A= ®(T) € Dy, (g Mod). Then there

6(]Rlﬂlw((;, H; T)) — $(RFCOIW (ng‘\r(T))) = RF(:()nt(G7 FI‘ (A)) ;’ RF(:onL(H7 A)
in D+( Mod)
(ii) Let T € DY%. ﬁ(R[(]Mod) put A = ®(T) € DY%. mﬁ( fiite ]M()d) If G satisfies

(F) (resp., if G satisfies (F) and cdp(G) < o0), then the above isomorphisms take
place in D:roﬂ (zMod) (resp., in Dmﬂ( Mod) ) and there is a spectral sequence

By’ = Exth(D(H]

cont

(H, A)),wp) = HIJ(G,H;T) = lim H.}(U,T)
Ucar

(all terms of which are R-modules of finite type).

Proof. — Represent T by a bounded below complex T in (";ﬁG]Mod) Rt Lemma 8.4.6.4

applied to each component of T then yields an isomorphism
D o.Zp(T) — Fro®(A)

in DR COﬂ(R[G]Mod) The statement of (i) follows from 4.3.1, applied to the pair
Fr(T) and Fr(A) over R, while (ii) follows from (i) and 4.3.1. O
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8.4.6.8. A variant of the above spectral sequence for R = Z, and T consisting of
a single module was constructed by Jannsen [Ja3], who also considered the case of
non-abelian I' = G/H.

8.4.7. Dihedral case
8.4.7.1. Assume that we are given the following dihedral data.
8.4.7.1.1. An exact sequence of pro-finite groups
l—G—G" — {£1} — 1
such that
8.4.7.1.2. H is a normal subgroup of G,
8.4.7.1.3. The quotient exact sequence of groups
l —T —TI" — {+1} — 1

(in which I't = G*/H) is split and —1 € {1} actson T ast:g— g L.

The last condition can be reformulated by saying that there exists an element
7€' =T such that
(8.4.7.4) =1 ryr =471 (yel).
If M is an R[['"]-module, then the map

m — 7(m) (me M)
defines an isomorphism of R[I']-modules
M = M.

The same is true for complexes of R[I"*]-modules.

In particular, if T € (%}GﬂMod) Rojt’ then RI't (G, H;T) can be represented not
just by C2. (G, Zr(T)), but by Cs, (G, Z 1 (T)), where

Fr+(T)=1mT @p RIGT /U™,
T

where U™ runs through all open subgroups of G containing H. Similarly, for every
M e (i,'g[déi‘}Mod) ()’ RT cont(H, M) can be represented by Ce_ . (GT, Fr+ (M)), where

cont

Fr+ (M) = lim Homp(R[GT /U], M).
+

<

Applying the previous discussion to the complexes C2 . (G, Z+(T)) and

cont
Ceo i (GT Frs+ (M)) we obtain the following statement.

8.4.7.2. Proposition. — Assume that we are given the dihedral data 8.4.7.1.1-8.4.7.1.5.

If T ¢ D’,’%_ft(‘}‘{d[GﬂMod) and M € D+((}?‘T[‘jé4%1\/[od){m}), then the action of T

from (8.4.7.4) gives isomorphisms
RI, (G, H;T) — Rl (G, H; T), R cont(H, M)" = R cons(H, M)
in DT (zMod).
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8.4.8. Descent
8.4.8.1. Proposition
i) For every M € D% ((ind-2dMod there is a spectral sequence
R[G] {m}

Ey’ = H o (T, Hlop (H, M)) = H. 3l (G, M),

cont
(i) If T =To = Z}, then for every T € D+((‘}_{1[G]1\Iod)

isomorphism in DT (gMod)

ppy) there is a canonical

L ~
RI1 (G, H; T)&5R —> Rl con (G, T)

(where the product is taken with respect to the augmentation map R — R), which
induces a (homological) spectral sequence

B} = H;com (T, Hi (G H: T)) = Hoi' (G, T)

cont

(where H; cont (T, =) was defined in (7.2.7.2)). If G satisfies (F'), then each term ’Eﬁj
18 an R-module of finite type.

Proof

(i) This is just the Hochschild-Serre spectral sequence for discrete G-modules.

(ii) Represent T by a bounded below complex in (;‘é‘[G]Mod which will also be

)R—ft’
denoted by T. The elements 41 — 1,...,7,. — 1 form a regular sequence x in R and
the augmentation map defines an isomorphism R/xR — R. For each i = 0,...,r, let
H; C T be the subgroup topologically generated by v, ...,7; and put R; = R[['/H;]
(e.g., Ro =R, R, = R). For each i = 1,... 7, the tautological exact sequence

0— ﬁi_1ll-:l>ﬁi,1 — FL — 0

yields, upon tensoring with 7', an exact sequence of complexes in (%(} C]Mod)
0— »;O/\[‘/Hiv] (T)%—_lhgf:r/H)il (T) i ’-QZF/H? (T) — 0,
hence an exact sequence of complexes of R;_;-modules
~i—1 . ;
(ngr‘/hh_l (T))r—>ccont<G’yF/Hi—1 (T))
- Cc.om(G’*ng/H, <T)) — 0,

(8.4.8.1.1) 0—C;,

cont

which can be rewritten as an isomorphism of complexes
. g ) i—l5 ~ .
CCOIlt(G’yF/Hi——l (T)) ®§1_1 Ri*lw—)Ri—l] I Ccont<G7<’ozF/Hi (T))

(with the complex [y; —1: R; 1 — R;_,] supported in degrees —1,0). This yields a
canonical isomorphism in D (3 Mod)

L — ~
Rl—‘cont(Gva/Hi_l(T))®}_{i_1Ri I chont(Gvng/Hi (T))
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Iterating this construction r-times, we obtain the desired isomorphism

L L ~
RI'w(G, H;T)®zR = Rl cont (G, Z r(T)) 2R — RIlcont(G, T)

in D(grMod).

The augmentation map f : R — R defines an exact functor f* : (rkMod) — (EMod)
(f*M = M as an abelian group, with 7 € R acting on f*M by f(7)). As the Koszul
complex K'ﬁ(ﬁ, x) is an R-free resolution of f*R[—r], we obtain from the previous
result an isomorphism in D (zMod)

,f*RFcont.(Gs T) L’ RF(:()llt(GngF(T)) ®§ K'E(Rv X) [T]a

where the R.H.S. is represented by the complex
K* = Cc.onl,(G“gl‘(T)) R K’}%(E7 X)['I']
= C(.:(mt(Ga‘gzr(T) ®—E K.E(ﬁ? X))[f] = Kﬁ(cgont(G"gF(T))’x)[r]'

The stupid filtration o3; on K;_{(T%’ x) induces a finite decreasing filtration F'K* on
K*. The corresponding spectral sequence (3.5.2.1) is given by

By = K (H,

cont,

(G,.7r(T)),x) = H' (G, K*) = H'}(G,T).

cont cont

It follows from (7.2.7.2) that
’E;j = H—i,cont (F, H}

cont

(G, Fr(T))) = H i cont(T, H}, (G, H; T)),
which proves the result if we pass to the homological notation ’EZ"; ='E, 73,
Finally, if G satisfies (F), then each cohomology group M7 = HI (G, Zp(T))

is an R-module of finite type, hence the cohomology groups of the Koszul complex
K%(]Wj, x) are R/xR-modules of finite type. O

8.4.8.2. Corollary. — Assume that T = Zy and T € D ((%‘%G]Mod) Then

R—ft)'

(i) If T = Z,, then 'E? ='E> degenerates into short exact sequences

0 — Hi (G, H:T), — H. (G.T) — H (G, H;T)" — 0.

cont
(ii) Ifcdy(G) =e < oo and 7<, T = T, then

B2, = H{MGHT) s HOG,T).

8.4.8.3. Proposition. — Assume that T € D7 ((%l5Mod) pp) LetT' CT =G/H be

a closed subgroup of T isomorphic to Z;/ (r' <r)and H' C G its inverse image in G.
Then there is a canonical isomorphism in D* (gr/rgMod)

L ~
RIy (G, H; T)&5R[T/T'] =5 RT1 (G, H'; T)
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(where the product is taken with respect to the canonical map induced by the projection
I' = T'/T"), which induces a (homological) spectral sequence

B2 = Hicon (I Hy) (G, H:T)) = Hy[ 7 (G T),

Proof. This follows from the same argument as in the proof of Proposi-
tion 8.4.8.1(ii) if we replace x = (y1 — 1,...,% — 1) by x' = (v — 1,...,7. — 1),
where 7/, ..., 7. are topological generators of [, as R/x'R = R[T'/T"]. O

8.4.8.4. Corollary. — Under the assumptions of 8.4.8.3,

(i) If T = Z,, then 'E? ='E> degenerates into short exact sequences

0 — H{ (G, H;T);, — RT1 (G, H';T) — HiFY(GH;T)

— 0.
(ii) If ed,(G) = e < 00 and 7<, T = T, then

'Ef o = H{I(G H;T), — H{[™(G,H";T).

8.4.8.5. Proposition. Assume that T' = Z7

p’

G satisfies (F) and c¢dp(G) < oo. Let
p € Spec(R); denote by p € Spec(R) the inverse image of p under the augmentation
map R — R. If T € Db((%’[(;]l\lod) R_ﬂ) satisfies Rl cont (G, T)y =0 in D.I;t(jg,pl\/l()d),
then R cont(G,-Z (1)) 50 4n D"f’t (E;MO(I)'

Proof. — According to Proposition 8.4.8.1 (ii), there is a spectral sequence in (anod) i

E?; = Hicon(T, H )y = Heg!(G.T), = 0,

cont

where we have denoted

H™7 = Heho (G, Z0(T)) € (gMod) .

cont,

If, for some j € Z, we have Eél = 0, then we deduce from 7.2.7 and Lemma 8.10.5
below (applied to B = Ry, M = (H7),) that E7; = 0 vanishes for every i > 0. As
the spectral sequence has only finitely many non-zero terms and Ef ; =0tfori <0,
induction on j shows that

(VjeZ) 0=FE2, =(H )y =(H")r = (H)/.

where J = Ker(R[I'] — R) denotes the augmentation ideal. As J C p, Nakayama’s
Lemma implies that Hﬁ_ 7 =0 for all j € Z, as claimed. O

8.5. Duality theorems in Iwasawa theory

Assume that we are in the situation of 5.1, with K a number field (totally imaginary
if p = 2, because of the condition (P)).
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8.5.1. Notation. — Assume that K. /K is a Galois extension contained in Kg,
with Galois group Gal(K«/K) = TI' = I'o x A, where Ty = Z (r > 1) and A is
a finite abelian group. The results of 8.4 then apply to G = Gg.s = Gal(Kg/K)
and H = Gal(Kg/Ky). We shall use a simplified notation RI'y (K /K,—) for
RI'.(Gk.s,Gal(Ks/Kw); —) and H{,(Ks/K,—) for its cohomology, even though
these objects depend, in general, also on S.

Let {K,} be the set of all finite extensions of K contained in K; put I'y =
Gal(Ko/Ky). If v is a prime of K, then v, (resp., v ) will usually denote a prime
of K, (resp., of K ) above v.

8.5.2. Let v € Sy. As I is abelian, the decomposition (resp., inertia) group of any
prime ve | v in Ko /K is independent of veo; denote it by I', (resp., I(I',)). Both
groups I(I",) C T',, are closed subgroups of I" and the quotient I', /I(I",)) is isomorphic
to Z, or Z/p"Z, for some n > 0. The subgroups I(I',) (v € Sy) generate a subgroup
of finite index in I", since the maximal abelian extension of K unramified at all finite
primes is finite over K. If v € Sy and v { p, then I(I',) C I'z -tors = A, by class field
theory. In particular, there is v € Sy such that v | p and |I(I',)| = co. If there is only
one prime v above p in K, then (I': I(I',)) < oc.

8.5.3. Semilocal theory
8.5.3.1. Let K'/K be a finite Galois subextension of Kg/K. Denote by S’ the set
of primes of K’ above S; then G/ s = Gal(Kg/K'). For fixed v € Sy we can apply
the general discussion in 8.1.7 to the groups U = Gy = Gal(K/K') < G = Gk =
Gal(K/K) and G = G, = Gal(K,/K,). As in 5.1, the fixed embedding of K — K,
defines an injective homomorphism o = a, : G < G and a prime v}, € S} above v;
then U = G = Gal(K,/K 1’,(,)).

For each o € G, the subgi‘oup U, = ca(U)o~! € U depends only on the double
coset Uoa(G) € U\G/a(G), and is equal to the decomposition group Go@uy) C U of
the prime o(v})). Fixing coset representatives o; € G (with o9 = 1)

G =JUoia(@)

as in 8.1.7, the set of primes {v' | v} in K coincides with {v; = o;(v})}. For every
complex X of discrete G-modules we have, as in 8.1.7.6, isomorphisms of complexes

(8.5.3.1) C* (G )y X) = C*(U, 0" X) = C*(U, 0} X),

induced by the morphisms of pairs («;, O'i_l) resp., (id, ;). The results of 8.1.7 then
give, for every complex X of discrete G g s-modules, the following:

8.5.3.2. A quasi-isomorphism (8.1.7.1)[—1]
sh. : C2(Gk.s,Xvu) — C(Grr 51, X),
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which is functorial in X, the homotopy class of which is independent of any choices,
and which makes the bottom half of the following diagram with exact rows commu-
tative up to homotopy (the top half is commutative in the usual sense):

0— D.cs, C*(Go, Xu)[-1] — C2(Gk.s. Xv) — C*(Gks,Xu) — 0

| u H
0 — Bes, Do C(Go. Z[G, /G| 0z X)[-1] — C2(Gks, Xv) — C*(Gks,. Xu) — 0

sh[—1] lsh,- sh

0— Dores, O (G, X)[=1] — G5, X) — C*(Gkr s, X) — 0
8.5.3.3. For each g € Gk g, 8.1.7.3 gives a morphism

Ad(g)e = (Ad(g). F(g),m)[-1]: C:(Gkr s/, X) — C2(G k5. X),
which is functorial in X and makes the following diagrams commutative up to homo-
topy:
0 — @1/65} C(Gy,X)[-1] — C:Gkr5,X) — C*(Gkr5,X) — 0

lF(y)[*l] l/\d(a)r lAd(r/)
0 — @'U’GS‘//. C.(GUI’X)[_l] e C(‘.,<GK',S’7X) — C.(GK/’SI’X) —_ O

C(.:(GK‘SvXU) l’ C:(GK’,SHX)

lAd(gU)* lAd(g)z»
C:(Grs, Xu) —2 CHGrrs X)

8.5.3.4. If K C K’ C K" are two finite Galois subextensions of Kg/K, 8.1.7.4-
8.1.7.5 give restriction and corestriction morphisms of complexes

res. : C;(GK/ysr,X) -HC;(G["//’S//,X)
core : C2(Gren gr, X)—C2(Grr 50, X),

which are functorial in X and make the following diagrams commutative up to ho-
motopy:

0 e ®’U/ES}C.(GU17X)[_1] — CC.(G[\",S’sX) —_— C.(GK',S’»X) —_— 0

Jrres[vl] lres,; lms

0 — @pesy O X)) — G X) — C*(Grorsr X) — 0,
O E— ®v”€S’f'C.(Gv”’X)[_1] e CC.(GK”,S'HX) — C‘(GK”,S”7X) — O

lcor[fl] J,COFC lcor

0 — Bes, (G X)-1] — CCGrsnX) — C(CGrrsnX) — 0
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C:(Gr.s. Xu) 25 C2(Grrsn X)  CiGrs, Xy) 25 C2(Ggrsr, X)

lTT* lfesu lpf* lcorc

C:(Grs, Xv) —2u C2(Grngn, X),  CiGrs, Xu) —2  C2HGxrsr, X)

8.5.3.5. As all morphisms in 8.5.3.2-8.5.3.5 are functorial in X, they induce mor-
phisms valid for arbitrary ind-admissible R[Gk s]-modules X (more generally, for
complexes of such modules).

8‘.5.4. For every bounded below complex T (resp., M) in (%}GK‘S]Mod) Rt (resp., in
(ind-ad Mod) {m}), we denote

R[G k. s]
c, lw( /K T) C(. cont(GK»S’ r (T))
’(.(KS/KOOVA[) C;(()IIL(GK»S’FF(‘Z\']))’

The corresponding objects of D (FMod) will be denoted by RT¢ 1w (Koo/K,T)
(resp., RI'.(Ks/Ky,M)) and their cohomology by H(L 1w (Koo/K,T) (resp.,
Hi(Kgs/Ko, M)). This is in line with the notation Ry (Ko /K,T) (from 8.5.1)
for the object of D(zMod) represented by Cgo.(Gk,s,-Zr(T)). Similarly, let
RI(Ks/Ks, M) be the object of D (zMod) represented by Cg..(Gk. s, Fr(M))
and H"‘(KS/KOO, M) its cohomology. As in 8.5.1, the notation for RI. 1y, is slightly
ambiguous, since S does not appear explicitly.

8.5.5. Proposition

(i) For every bounded below complex M in (‘R!‘E} ad ]Mod) the morphisms sh,

{m}’
induce isomorphisms of R-modules

hﬂ;HC Cont(GK' S’y ) ll_l'I)l H(' cont (GK S‘,MU)

res U, Tr,

— h(r]n Hc cont(GK,Sa U]W) - cit,cont(KS/KOOv ]\/[)
(ii) For every bounded below complex T in ("}{}GK‘S]Mod) Rft? the canonical mor-
phism of complexes
C: aont(G F(Aj)) - @ C(‘ Cont(G’ MU)

s an isomorphism, and the morphisms sh. induce isomorphisms of R-modules

liLnHi,cont(GKCS“T) — l}in H(Z;,cont,(GKyS>TU) — Hé,]w(KOO/Kv T)

cor P,

Above, K'/K runs through finite subextensions of Koo/K and U = Gal(K/K').

Proof. —— This follows from 8.5.3.2-8.5.3.4 and the corresponding statements for
Ceoni(G,—) and H! (G, —) (with G = Gk,5,Gy), proved in Lemma 8.3.2, Proposi-

cont

tion 8.3.5 and Proposition 8.4.4.2. O
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8.5.6. Theorem. — If T,T* € DY ﬂ(,‘?d[( ]Mod), A A" € Di’z_mﬂ(*}éi[GK_S]Mod) are
related by the duality diagram

#HT*

T
D
A A*
over R, then
RIy (Koo /K. T) R (Koo /K, T*(1))"[3]

D
P D

RI(Kg/Kn, A) RI.(Kg/Koc, A*(1))'[3]

are related in the same way in D[(’m I (El\"l()(l) and there are spectral sequences

E;”j:Ext%(ﬁ(Hj(Ks/Koo,A)),w,‘,) Exti (H, WK /K T (1)), wg)"
— H1(Ky/K,T)

By = Ext(D(H! (Ks/ K, A)),wg) = Exth(Hp (Koo /K, T*(1)),wg)"
- H%Jrj (Koo/ K. T).

c,lw

Proof. By Proposition 3.2.8 we can assume that T, T* (resp., A, A*) are represented
by bounded complexes of admissible R[Gk s]-modules, of finite (resp., co-finite) type
over R. The statement then follows from Theorem 5.4.5 applied to the duality dia-
gram 8.4.6.6, if we take into account 8.3.2, 8.3.5, 8.4.4.2 and 8.5.5. O

8.5.7. The following fact was implicitly used in 8.5.6: for every X € D(ﬁMod) and
i € Z there is a canonical isomorphism
Ext’ (X, wg)" — Ext4 (X', wg).

This follows from the fact that the isomorphism ¢ : R = R of R-modules induces
isomorphisms in D (ﬁMod)

w§:w®}gﬁ;w®3§' = (wﬁ)L
and
2(X) " D(XY).
8.5.8. Over each finite subextension K, /K of K. /K, the pairing
vo : T @rT*(1) — wg(1)
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induces cup products (5.4.2.1)
(ot Heeont (G50 T) O Hlon (G50, T7(1) — H™ 73 (wp)
(where S, denotes the set of primes of K, above S). The pairing
Zr(T) @ Fr(T*(1)" — wr(l)
(cf. 8.4.6.3) induces, in turn, products on the projective limits
(,): (hm H( cont(Gro5.,T)) ® (hm H! (Gk.s.,T (1)))L — H"™ 3 (wp)
= H"" 3 wp) @g R =lim (H" 73 (wg) @ R[Gal(K,/K)])

—
«

(and similarly for the products in which the roles of cohomology and cohomology with
compact support are interchanged).

8.5.9. Proposition. — In the situation of 8.5.8,
<(~/L'a)a (1/(v)> = ( Z <:17(w Uy(¥>(v @ [U]>
occGal(Ky/K) o

(where o acts on H. (G, s..T*(1)) by conjugation,).

S

Proof. — This follows from the proof of the corresponding local statement 8.11.10
and the commutative diagrams 8.5.3.3-8.5.3.4. O

8.6. Local conditions and Shapiro’s Lemma

Let K and S be as in 8.5.

8.6.1. Assume that K ¢ K’ C K" are finite Galois subextensions of Kg/K. For
each v € Sy, the fixed embedding K — K, induces primes v{, and v{ of K’ and K",
respectively, with completions K, C K 1’,, CK ,,’,'(/)/ C K, and absolute Galois groups

G =Gal(K,/K,) > U = Gal(K,/K!, )DV:G&I(FU/K;%)‘

Both U and V are normal in G. As in 8.5.3, we have an injective homomorphism
a: G — G = Gal(K/K) such that U = o }(U) and V = o~ 1(V), where U =
Gal(K/K') >V = Gal(K/K").

8.6.2. Let X = X°* be a complex of ind-admissible R[G]-modules. We shall abuse
the notation and write X for a* X, i.e., for the same object, but viewed as a complex
of R[G]-modules via the map a : G — G. As in 8.2, we let X;7 = X @ R[G/U] (and
similarly for Xy7).
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Assume that we are given the following local conditions (i.e., morphisms of com-
plexes of R-modules)

iy (Xp) - U (Xp) — Coone(G. X77)
i (Xy) 1 US (X)) — Ceon (G, X7)
iy (X)) : U:[C)(X) — O (U, X)
it (X)) UL (X) — Con(V, X)

together with the following data:

8.6.2.1. Morphisms of complexes
sht : Ul (Xg) — U,:(T] (X)
sh™ : Uf (Xy) — Uv*[,’,(X),
which are quasi-isomorphisms and make the diagram
U (Xp) " Coons(@ X)
(

v -

U+ X) — C(.:(mt,(Uﬂ X)

(and its variant with U replaced by V and v{, by v{j) commutative.

8.6.2.2. For cach § € G a morphism of complexes
Ad"(9) : U,y (X) — U (X)
0 0

such that the faces of the following cubic diagram

i v (75
IJJ(X[?) (’(.'unt((" X(_/)
sh = sh
Ad(gU).
0 _=>
7 + " / _
Ad(gD). U,”’/y(X) Cn(T,X)
=4
C(:ont (6’ XU) 7 Ad(g)
e
i,
- C‘(’ont(U* X)
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commute up to the indicated homotopies and the boundary of the cube is trivialized
by a 2-homotopy

zj, xky +mxsht — ko *i;r —~ 0.
0
8.6.2.3. A morphism of complexes
A+t +
res” 1 U (X) — U,U(,),(X)
such that each face of the following cubic diagram is commutative:

i —

Ul_f— (XU) - C(.’om,(Gv Xl_l)
sht - sh
Tr.
i, -
. U (X) ‘ Clont(T.X)
res”
it —
U (Xv) L (G X)
sht sh
it
(j:?( (X) . C;ont (V’ X)

8.6.2.4. A morphism of complexes
+ .7t +
cor” : Ugy (X)) — UU{’(X)
such that the faces of the cubic diagram

UF(X) ' Coon (G X7)

“cont

pr sh

7
i,
pr U (X)

/tzont (Vv X)

Ceon (U, X)
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(in which the vertical arrow cor is defined using fixed coset representatives U = |J Va&;)
are commutative up to the indicated homotopies and the boundary of the cube is
trivialized by a 2-homotopy

it *ky +mash? —kyxif —~ 0.
0

8.6.3. Fixing coset representatives o;,7; € G of
G = U Uoia(G U Vo

as in 8.1.7 (with o9 = 79 = 1), we obtain from 8.5.3 isomorphisms of complexes

@ (nnt GU/ ? X @ (()nL U7 (-‘Y*X) AL) @ C(.:nm, (U7 Q;X)

v'|v
@ (ont G17”7X @C(onl V 58 X _’ @ (om 718;X)
v v

(where v' € S, v" € S").

We define the local condition for X at each v’ = o;(v})) to be the composition of

+ U+(X)—>C'

1;“ U() cont

(U.X)=C:

cont,

(U,a*X)
with the inverse of the isomorphism (8.5.3.1)
C‘ sont (G“' X) = 0L<)rlt(Ua (Y*X)

(and similarly for the local condition at each v = 7;(v()).
The isomorphism

wy Q*(X(/) — @(“*X)U

(resp., its analogue wy for Xy) together with i (Xg) (resp.. i) (Xy7)) define local
conditions at v for Xy (resp., Xv).

8.6.4. Putting together the diagrams from 8.1.7.2-8.1.7.5 (modified in accordance
with 8.1.7.6) and 8.6.2.1-8.6.2.4, we obtain the following generalizations of 8.5.3:

8.6.4.1. A quasi-isomorphism
shy : C3(Gr.s. Xus A(Xp)) — CHGrorsr, X3 A(X)),

which is functorial in X, the homotopy class of which is independent of any choices,
and such that the following diagram with exact columns is commutative up to homo-

topy:
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0

|

@wes' (ont((\'u B X)[ ]

— 0o
iz
=

Docs, Coont(Go, Xv)[-1]
C3(Gr.s, Xus A(Xy)) She C3 (G s, X A(X))
Coon (G5, X0) & Bpes, Ur (Xu) 0 Coyi(Groris X) 0 By, U (X)
| j

8.6.4.2. For cach g € G g a morphism of complexes
Ad(g)s : CH(Grr 5, X A(X)) — CHGrer 50, X; A(X)),

which is functorial in X and makes the following diagrams commutative up to homo-

topy:
0 0
F(g)[—-1]
@v’es’f C(ont(Gv 7X)[ ] '—1—> @u’es’ (ont(Gv 7X)[ 1]
C(Grer s, X: A(X _Ada)r O (Grer s, X: A(X
f K’,S; 5 ( )) — f( K’,S’, ) ( ))
o (Ad(g),Ad™ (g)) .
Ccont(GK’,S’v X)® EBv’eS} UlT(X) A Ccont(GK/ s, X) )EBU es) U (X)
0 0
~ sh ~
C3(Gr.s: Xui A(Xp)) —5  C3(Grrs, X A(X))
lAd(g(])* lAd(g)f

~ Sh ~
C3(Grs, Xu; AXp)) —5 C3(Grr s, X3 A(X))

8.6.4.3. Morphisms of complexes

resy : C3(G i s X A(X)) —CHG x5, X3 A(X))
cory : C3(Gren s, X A(X))—C3H(Gro s, X3 A(X)),

which are functorial in X and make the following diagrams commutative up to ho-

motopy:
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0 0

. J’ res[—1] . J’

@1/’65}- CCOM(GUI ) X)[_l] Gav”ES}’ C(:()nl,(G’U” ) X)[_l]
C3(Grer,sr X5 A(X) — C(Greon,sr, X3 A(X))
l res,res™
C(?()nt(GK/,S'» X) D @u’eb"f IJJ (X> _( ) C(.:()nt(GK/QS”’ X) ® @’U”ESI/ UJ’ (X)
0 0
~ sh ~
C3 (G5, Xus AXp)) —5  CHGro s, X3 A(X))
Tr. res s

-~ Sh_[ =~

C3 (G5, XviAXy)) —5  CHGxrgr, X A(X))

cor[—1]
—_—

@W’GS}( CC.,(mt(GU” ’ X) {_' 1] @/()’ES} Cgont (G’U/ ) X) {_ 1]

~ cory ~
—

C}(GK'/Y‘S‘/',X;A(X)) C;(GK/’S/’X,A(X))

Lo

C(.t(mt (GK”»S“’ X) @ ®17”ES}/ v"(X) C(.:ont (GK/,S/? X) D @’U’GS} U:;(X)

| |

0

(cor,cort)

Shf

C3(Grs. XviAXy)) — CHGrorsn, X;A(X))

JV pr. l cory

=~ Shf

C3(Grs, Xvi A(Xy)) —5  C3Gro s X5 A(X)).

8.6.4.4. Lemma

(i) Forg,9' € Gk,s, the action of Ad(gg')s on 6’}(GK/,5/,X; A(X)) is homotopic
to Ad(g)roAd(g')s. If g € G5 C Gk,s, then Adﬁg)f is homotopic to the identity.

(ii) cory oresy is homotopic to [K" : K'] -id on C}(G k1 s/, X; A(X)).

(ili) If K”/K' is a Galois extension, then the action of respocory on C3(Grr sm,
X; A(X)) is homotopic to ZaeGaI(K,,/K,) Ad(c) ¢, where 0 € G 50 is any lift of o.
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(iv) If K"/K' is a Galois extension of degree d = [K" : K'|, then ress induces
isomorphisms
ﬁ}(GK’,SU ){7 A(X)) ®R R[l/d] ;P (ﬁ}(GK”,S”yX; A(X)) ®R R[l/d])G“'l(K /K )
Proof

(i) This follows from the last diagram in 8.6.4.2 and equalities Ad(gg'U) =
Ad(gU)Ad(¢'U), Ad(U) = id.

(ii)-(iii) Combine the third and the last diagram in 8.6.4.3 with the formulas pr o
Tr=[U:V]-id, Tropr =3 ¢y Ad(V).

(iv) This follows from (ii) and (iii). O

8.7. Functoriality of the unramified local conditions

Before proceeding further we must clarify various functorial properties of the ob-
jects studied in Chapter 7. Fix v € Sy not dividing p and consider the group
G = G, = (t) x (f) introduced in 7.2.1 (i.e., tf = ftl, where L = (" is a power
of the residue characteristic £ # p of v); in order to emphasize dependence on f and ¢,
we include them in the notation. Throughout Sect. 8.7, M will be a p-primary torsion
discrete G-module and M* a bounded below complex of such modules.

8.7.1. Dependence on f,t. — Any change of topological generators of G is given
by
fr=rtt =t (A€Z/Z, Be(Z/Z)").

If A€ Ny and B € N, then the formulas

ao(m)=m, ag(m)=0+t+ - +t8"Hm

ar(mm’)=(m+ f(L+t+-+t"Dm/, A4+t +---+t5Hm')

define a morphism of complexes

a=alf,t;f,t): C(M, f,t) — C(M, f',t)
(where C'(M, f,t) = C(M) was defined in 7.2.1) such that the composition

Y

C(M, f,t)-2=C(M, f',t")-5C*(G, M)

is equal to ps¢ (defined in 7.2.4). For general A, B one can define a by continuity,
or by using the pro-finite differential calculus from 7.4. The sign conventions of 7.6
yield morphisms of complexes

a: UM, ft) == C(M*, f,t)"C(M*, 'ty = UM, f,t).
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The morphisms « are transitive in the following sense. If
f// _ f’(f/)A/ " (f/)B’
(hence f” = ft2" " = 8" with A” = A+ BA’, B” = BB'), then the matrix equality

(1 f’(1+t/+---+(t’)A/‘1)> (1 f(1+t+.,.+tA~1)>

0 T4t 4+ () 0 14t+-- B
(U f( AT
SN0 1t tB

a(,f/., tli f//7 l‘,”) o Oz(f, t; f/» t/) _ (Y(f, t: f/,7 t”).

In particular, each a(f,t; f',t') is an isomorphism of complexes.

implies that

8.7.2. Restriction. — Let U = (t%) x (f4), where A,B € N and (L,B) = 1.

This is an open subgroup of G' with a similar structure: f/ = f4 and ¢’ = t? satisfy

t'f = f'(¢)" with L’ = LA, The formulas
reso(m) =m, resi(m,m’) = (14 f+--+ fA Dm, (1 +t 4 - +t5"Hm'),
resp(m) = (14t 4+ +t2"H1+0+---+6Hm
define a morphism of complexes
ves : CO(M, f.t) — C(M, f4,t5B)
making the following diagram commutative:

C(M, f,t) - Co(G.M)

J/ res J/ res

C(M, fA¢8) 2 oo M.
8.7.3. Restriction - unramified case. — Assume that B = 1, i.e., U = () x (f*)
(A € N). In this case U = (') x (f') is an open normal subgroup of G with

fr=rt o=t = (@ =14,

0 = L+t 4 () =0t

The formula
res = (id,id, 1+ f+ -+ f47 140+ + 007

defines a morphism of complexes

ves: U(M*, f.t) — U(M*, 1),
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which maps the subcomplex Ut (M*, f, 1) to Ut (M*, fA,t), reduces to the map res
from 8.7.2 if M* = M, and makes the following diagram commutative:

UM, f,t) 5% oG, M*)

l res lres

UMt fA 8 O U M),
8.7.4. Corestriction - unramified case. — Under the assumptions of 8.7.3, the

formula
cor=(1+f+-+ 2L 140+ 4641 id,id)
defines a morphism of complexes
cor: U(M®, fA4t) — U(M*, f,1),

which maps the subcomplex Ut (M*, fA,t) to U (M*, f,t). A short calculation
(based on the formulas in Proposition 7.2.4(i) and its proof) shows that the diagram

HpA 4
—

U(M*, fA 1) C*(U, M*)

J/(JOI‘ j/COI‘

UM f,t) 5% C(G,M*)

commutes, where the right vertical arrow cor is defined using the coset representatives
a, =fT"0<i<A).

8.7.5. Shapiro’s Lemma- unramified case. — Still keeping the notation

of 8.7.3, we define a morphism of complexes
sh: UM, f,t) — U(M*, f4,t)

to be the composite map

UM, f,8) -0 (Mg, 12,6 2250 (e, 1A 1),

where 6y was defined in 8.1.3. As p commutes with res and is functorial in M*, it
follows from 8.1.3 that the following diagram is commutative:

UM, f.t) 5 oG, M)
lsh lsh
o A HrA . .
U(M A0 — C (U,M ).

We know that both horizontal arrows and the right vertical arrow are quasi-
isomorphisms; thus the left vertical arrow is also a Qis.
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8.7.6. Shapiro’s Lemma for U™ - unramified case. — The restriction of the
morphism sh from 8.7.5 to the subcomplex UT (Mg, f,t) defines a morphism of
complexes

LU (Mg, £ 1)U (M, £ )0 (M, £,

We claim that sh™ is also a quasi-isomorphism. By dévissage and (7.6.3.1), it is
enough to consider the following two cases:

(i) M* =7>_1 M*, in which case UT(M*) = U(M*) and we can apply 8.7.5.

(ii) M* = M° = M: putting N = M'=!, we have (My)'=! = Ny, and it remains
to check that the composite morphism

} (id, 14 f 4+ f27 1 { (6v,0v)

] A_q A
g: [NU d Ny Nyl NU] [NUf INU]

is a quasi-isomorphism. This follows from the fact that the quasi-isomorphism g
from 7.2.2 (with respect to o = f) maps g to

o res e (6u )«
h: C*((f), Nu)—=C*({(f*), Nu)=—=C*((f"), Nu).
8.7.7. Conjugation - unramified case. — For each g € G, the morphism of com-
plexes
Ad . . A Ky ) Ad(g) ° . A
(9) : UM®, f4 )=2500 (U, M )= C(UM) U(M*, f7.1)

maps the subcomplex Ut (M, f4,t) to itself.

8.7.8. As all morphisms in 8.7.1-8.7.7 are functorial in M*, they extend, by the usual
limit procedure, to the case when M* is a complex of ind-admissible R[G,]-modules.

8.8. Greenberg’s local conditions in Iwasawa theory

8.8.1. Let¥ C Syand ¥’ = Sy—X beasin7.8.1, and Ko /K asin 8.5.1. Throughout
sections 8.8-8.9 we assume that the following condition holds:

(U) Each prime v € ¥’ is unramified in K /K.
This condition is automatically satisfied if A = 0. As in 7.8, fix f, and ¢, for each
veX.

8.8.2. Let T’ (resp., M) be a bounded below complex in (i, ]Mod)R_ﬂ (resp.,
in (ilg[dc‘ffs]l\/lod) {m}). Assume that we are given, for each v € £, a bounded below

complex T, (resp., M) in (R[G Mod) Roft (resp., in (;‘%‘[‘Eﬁl\/{od) {m}) and a morphism

of complexes of R[G,]-modules Tv+ — T (resp., M,; — M).
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8.8.3. The data from 8.8.2 define Greenberg’s local conditions

A (Z) _ C(:ont(Gva Z'j—) _— gont(GUV Z)7 (’U c E)
v C* (Gv? Z) — C:,om(Gm Z)7 (’U c E/)

ur

for Z=T,M, Ty, My, %r(T), Fr(M) (where U is an open subgroup of G = Gk).

Recall that we have fixed an embedding K — K, for each v € S . HK'/K isa
finite subextension of K /K and v{ | v the prime of K’ induced by K — K,, then
G, C Gy and we can define Greenberg’s local conditions at vy for Z =T, M by

Ay (Z) = Cc.,ont(Gv[,v Zy) — Cc.,om,(Gv(,v Z), (veX)

“ oGy Z) — Con (G 2). (v E D).

8.8.4. We must check that the local conditions for Z = T', M defined in 8.8.3 satisfy
the properties 8.6.2.1-8.6.2.4 (for K C K' C K" C K&).

8.8.4.1. This is straightforward for v € ¥: in this case Ad"(g) = Ad(g), sh™ = sh,
rest = Tr,, cor™ = pr,, all homotopies in 8.6.2.4 are zero, while in 8.6.2.2 we have
m = 0 and ki, ko are as in 8.1.6.3 (bi-functorial). Finally, the boundaries of the cubes
in 8.6.2.2 and 8.6.2.4 are both trivialized by the zero 2-homotopy, as

it xky +masht — ko xif =
0

in both cases.

8.8.4.2. Assume that v € ¥’ and write f = f,, t = t,. Let X = X* be a complex
in (iR"[dé‘""ffl\{od). It will be enough to verify 8.6.2.1-8.6.2.4 in the case when X is
a complex of discrete p-primary torsion G,-modules, provided that all morphisms,
homotopies and 2-homotopies are functorial in X.

As in 7.5.7, we can assume that the wild inertia IV acts trivially on X; it is then
sufficient to consider a variant of 8.6.2.1 8.6.2.4, in which G > U D V are replaced by
their quotients by I'V. We shall abuse the notation and denote these quotients again

by G,U,V. Note that the assumption (U) implies that
G=x(f), T=0) =Y, V=)x ")

for some A, A’ € N.
The morphisms sh™ (resp., resT) satisfying 8.6.2.1 (resp., 8.6.2.3) were defined
in 8.7.6 (resp., 8.7.3).

8.8.4.3. Conjugation. — For g € G the morphism
Ad™(g) = Ad(g) : UH (X, f4 1) — UH (X, [ 1)

was defined in 8.7.7. As the inclusion Ut (X, f4,t) — U(X, f4,t) commutes with
Ad(g) and sh (and everything in sight is functorial in X), it is enough to consider the
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following cubic diagram, which involves U(X) instead of Ut (X)

1ot

U(Xp, f1) c

.
cont

(G. Xp)

sh

Ad(gl).

0
Fopas C

“cont

Ad(gl). U(X, f4 1)

Ad() %

Ceon (G X7) | Ad@)

cont

(U.X)

Hypa

UX. [ 1) Ceon(U. X)

(and also check that k; preserves UT(—)). The faces of the cube are commutative up
to the following homotopies:

m = bx (Ad(g) o pypay) (where b: pipa, 0N ~ id is as in 7.4.9)
ki = (Apagosh)xhgx (uge 0 Ad(gU).) (as Ad(g) osh = Xya 0 Ad(g) o gy, o sh)
ko = (sho Ad(gU).) * hy (as in 8.1.6.3).

We now check that the homotopy k1 maps
UN(Xg, f.t) CU(Xg, [ t)
to
Ut (Xg, fA0" ! cUXp A0

As o2 U (=) =0and o<1 U' (=) = o<1 U(—), we only have to consider the case
i = 1. However, the inclusion ki (U*(—)") C U (—)° follows from

dky (U (=)Y) = (dky + k1)U (=) cUT(-)".
Finally, it remains to verify that the homotopy
hoi=pigay*ky — ko x g +m*sh
is 2-homotopic to zero. We have 2-homotopies
ppa gk ky —kyxpp e = ((ppay 0 Apay —id) osh) x by x (Ad(GU)x 0 piy)
= —((db+bd)osh)xhg* (Ad(GU ). opif,) — —bx(d(shxhg)+ (shxhg)d) o Ad(GU ) opuy
=bx (sho (id = Ad(g)) o Ad(gU) © ),

hence
h —~ b« (sho Ad(gU). o i) = b* (jupa sosho Ad(gU).),
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which is 2-homotopic to zero, by Lemma 7.4.9. This completes the verification
of 8.6.2.2.

8.8.4.4. Corestriction. — In order to verify 8.6.2.4, it is enough, as in 8.8.4.3,

to consider the following cubic diagram (in which f/ = fA, f" = AN = Lot
ll/l = IU/f,,t7 ,U,// = /’Lf”,t)
U(Xe: f1) : Ceon (@, X77)
sh sh
Pr.
7
pr, [](Xa f”v t) - C :«mt(vv X)
cor />
((ont(F *) A
i
e C(.tont (Uv X)v
in which the morphism
cor : C(()nt(v X) R C(.()nt(U X)

is defined in terms of the coset representatives (f”)~% 0 <i < A’

We shall give the details only in the case when G = U (i.e., A= 1, f = f'), and
leave the general case to the reader.

The faces of the cube are commutative up to the following homotopies:

m =0 (by 8.7.4)
ki = hx*res (with & defined below)
ko = defined as in 8.1.5

In order to define ki, it is enough to consider the case when X is concentrated in
degree zero. The first step is to construct a homotopy

h: (07)« o pr, — cor o (dy7)« o res

between

C(Xe [ 0) 20 (X, £, S50, 1, 1)

and
(6)

C( Xy, f1 )50 ( Xy, [/ 1) —20(X, f7 1) -"50(X, f 1),
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Writing an arbitrary element of Xy as

A'—1

z= Y ((IYV]®w;, z;=0,,p) X,
=0

the homotopy h is given by the formulas

A1 A'—1
ho(z,a') = Z Spniv (L f/ 4+ (f1) ) = Z (x4 flaja+- 4 () )
j=0 =0
A'—1
W)= (0.3 (140 4+ 0Y Deay)
j=0

(note that we are considering only the special case when f’ = f, hence ¢’ = 6). Having
constructed h, we define

ki1 = hxres : shopr, — cor o sh,
where
res : C(Xv, f,t) — C(Xv, f', 1)

was defined in 8.7.3-8.7.4. The same argument as in 8.8.4.3 shows that k; maps
Ut (=) to Ut ()L
We claim that we can take zero for the 2-homotopy in 8.6.2.4, i.e.,

w ok ki —kyxp=0.

Indeed, in degree 1,
A —1

= 2 v
hence we have (for z, 2" € X37)

A1
k9 o juy (2,2’ Z 6fjv L+ f+-+ 7 hz) = h(x,2).

In degree 2, let g = f%t* with a,b € Ng. Then

A -1

Zéfv (fFig(F i)™ = (9, (F79)™Y),

where

(f7ig) ' =W 0<jl) <A, j(i)=i—-a (modA).
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If z = po(x) (for x € X57), then the formulas in 7.2.4(i) give

A'—1
(k3 o pa(x)) (fotb) = Z Spp(fo(l+t+- o+t )+ 0+ + 67D )
A1
=fr0 Attt )Y (IO 0 T
J=1
= ((uy o kD)(@)(f"),

as claimed. This concludes the verification of 8.6.2.4.

8.8.5. In analogy to 8.5.4, we define
Ci 1Ko/ K, T) = C}(Gr,5. Fr(T): A(Fr(T)))
CH(Ks/ Koo, M) = C3 (G5, Fr(M); A(Fr(M))).
The corresponding objects of D(zMod) will be denoted by ﬁff,lw(Koo/K, T)

(Eesp., ﬁff(Kg/Km,N[)) and their cohomology by fI}JW(KOO/K,T) (resp.,
Hy(Ks /Koo, M)).

8.8.6. Proposition
i) For every bounded below complex M in (i2d2d Mod , the morphisms sh
R[GKk,s] {m} f

induce isomorphisms of R-modules
hﬁ;ﬁ}(GK',suM;A(M)) «— lim H}(GK,S,MU;A(MU))

res U,Tr)

= lim Hy(Greis 0 M; Alu M) = Hi(Ks/ Koo, M).

(ii) For every bounded below complex T in (?%d[GK,s]MOd)R'ﬂ’ the canonical mor-
phism of complexes

C3 (G, Fr(T); A(Fp(T))) lim C3(Gr.s,Tu; A(T))

is an isomorphism, and the morphisms shy induce isomorphisms of R-modules

l(%f;l H} (G5, Ty A(T)) < 1 O_TLI Hj(Gr5,Tv; A(Ty)) = Hj 1, (Koo /K, T).

Above, K'/K runs through finite subextensions of Koo/K and U = Gal(K/K').

Proof. — This will follow from 8.6.4 (which applies in our case, thanks to 8.8.4) in
the same way as Proposition 8.5.5 does from 8.5.3.2-8.5.3.4, once we check that the
canonical maps

U (Zr(T)) — im U (Ty) — %@UJ((T/TR"T)U) (v e Sy)

T
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are all isomorphisms (the local conditions for Z = (T/m"T)y are defined as in 8.8.3).
For v € ¥ this follows from Proposition 8.3.5 and 8.4.4.2. For v € ¥/, it is sufficient
to observe that the condition (U) from 8.8.1 implies that

L(Ty) = L(T)y, LZr(T)) =Fr(L(T). O

8.8.7. Proposition. — Let X be a bounded below complex in ("E}GK_S]Mod) equipped
with Greenberg’s local conditions defined by X7 — X (where X,/ is a bounded below
complex in (7;11[(;”]1\10(1), for each v € ¥). Let K'/K be a finite Galois subextension of
Kg/K, of degree d = [K' : K] which is not a zero divisor on R, such that all primes
v € X are unramified in K'/K. Then, for each homomorphism x : Gal(K'/K) —
R[1/d]*, the maps i} @id : X} @ x — X @ x define Greenberg’s local conditions for
X ® x and there are canonical isomorphisms

-1

~ ~ [~ X
Hj(Gres. X @ MX © X)) @ B[1/d) = (Hj(Gros. X AX)) @r R[L/d)
where we denote, for any R[1/d][Gal(K’/K)]-module M,

MY =MD = {zeM|(VgeGal(K'/K)) g(x)=x"(g)z}.

Proof. This follows from Lemma 8.6.4.4 (iv) applied to X ® g @ R[1/d] ® x, as there
is a canonical isomorphism of Gal(K'/K)-modules

ITI}'(GK/,S/, X ®r@R[1/d @ x; A(X @r @R[1/d] @ X))
= Hiy(Gr s, X; A(X)) @ @R[1/d] ® x

(with respect to the Ad-action on the cohomology groups I;T}) O

8.8.8. Proposition (self-dual case). — Assume that we are in the situation of 7.8.11
(in particular, R is an integral domain with fraction field K of characteristic zero,
all complexes X and Xt are concentrated in degree zero, and there exists a skew-
symmetric isomorphism between V = X ®r K and V*(1) := Homg(V,K)(1), for
which each subspace V,F := X.f @r K CV (v € X) is mazimal isotropic). Let K'/K
be as in 8.8.7. Then:

(i) For each homomorphism x : Gal(K'/K) — K*, we have (using the notation
from 7.8.9 and 8.8.7)
dimg HH(K', V)X = dimg HH(K', V)X " = dimg H}(K', V)X = dimg H}(K', V)X
(ii) Assume that there exists an intermediate field K C Ky C K’ such that 2 {
[K': Ki| and Gal(K,/K) is an abelian group of order 2" (t > 0). If K, = K, set
U={K}. If Ki #K,set U={L|LC Ky, [L:K]=2}. Then

dimg Hj(K',V) = > dime Hj(K,Vey)= > dime Hj(L,V) (mod2).
x:Gal(K,/K)—{£1} LeU
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Proof

(i) Combine Proposition 7.8.11 with the isomorphisms FI; (K,V @ x*H) 5
I?[}(K’, V)X™" from Proposition 8.8.7.

(ii) As every finite group of odd order is solvable, there exist fields K C Ky C
K, Cc Ky C --- C K, = K’ such that each Galois group G; = Gal(K,1/K;)
(i =0,...,n—1) is abelian (and 2 { |G;| for ¢ > 0). After adjoining to R suitable
roots of unity, we can assume that all characters of Gy, ..., G,_1 have values in £*.
In the sum

dimy PNI}(KH],V) = Z dimg I}}-(KH],V)X,
x:Gi—K*

1

the contributions of x and x ' are the same, by (i); thus

dimg ITI}(IQH, V) = Z dimg I?}(KHI, V)X (mod2).

XiG—KC*

x=x"1

If i > 0, then the only character of G; satisfying xy = x~! is the trivial character, for
which H} (K1, V)! = Hj(K;,V), by Lemma 8.6.4.4. It follows that

dimg [:T}(Km V)y=...=dimg ﬁ}(Kl, V) (mod 2),

which proves the claim if Ky = K. If Ky # K, then the set of characters of Gg

satisfying x = x ! consists of the trivial character and the characters 7, /K Go =

Gal(L/K) = {£1} (L € U), hence

dimg fI}(Kl V) = Z dimg ﬁ}(K, V& x)
X:G()—’{:tl}
=dimg Hj(K,V)+ > dimg Hp (K, Vs
LeU
= (1 = |U]) dimg f]}([\”, V) + Z dimg Ifl}(L7 V) (mod 2),
LeU
which proves the claim, since r > 1 and 1 — |U| =2 — 2" =0 (mod 2). |

8.8.9. Proposition. — Let X,Y be bounded below complexes in (7?(%(;1(,511\/{0(1) equipped
with Greenberg’s local conditions defined by Z} — Z (Z = X,Y ), where Z} is a
bounded below complez in (%d[G“]Mod), for each v € ¥. Let K'/K be a finite Galois
subextension of Ks/K such that all primes v € ¥' are unramified in K'/K. Let
m: X®rY — w(l) be a morphism of complexes such that (Vv € ¥) X, L, Y,.

Then, for each g € Gal(K'/K), the diagram
C3 (G5, X3 AX)) @ O3 (Grere, Y A(Y)) w*[-3]
lAdf(g)®Adf(g) I
Ci{(Grersr X; A(X)) 05 C3(Grers, YIAY)) —= o[-

1s commutative up to homotopy.

Ur 0
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Proof. — Replacing K’ by the fixed field of the cyclic group generated by g, we
can assume that Gal(K’/K) is abelian. In this case the statement follows from
Lemma 8.1.6.5 combined with 8.8.4 and the fact that the maps inv, commute with
corestrictions (cf. 9.2.2 below). O

8.9. Duality theorems in Iwasawa theory revisited

Assume that we are in the situation of 8.8.1. In particular, each prime v € ¥’ is
unramified in K /K.

8.9.1. As in 8.4.6.2, fix a bounded complex w}, = oxowy; (resp., W = 020 w%) of

injective R-modules (resp., injective R-modules) representing wgr (resp., wg) and a
quasi-isomorphism

Y wh@prR —w

R
Assume that we are given the following data:

8.9.1.1. Bounded complexes T, T*(1) in (%l[cl\__s]l\'lod) and T,7, T*(1)} (v € %)

R_ﬁ v v
: ad /
in (;?([G“]Mod) Rt

8.9.1.2. Morphisms of complexes of R[G,]-modules

iz z} — z (veX; Z=T,T"(1)).

8.9.1.3. A morphism of complexes of R[Gk, s]-modules
T @R T (1) — wi(l),
which is a perfect duality in the sense of 6.2.6, i.e., such that its adjoint
adj(m) : T — Hom%(T* (1), wg(1))

is a quasi-isomorphism.

8.9.2. For Z =T,T*(1) consider

Fr(Z)=(Z@rR)< 1>, Fr(2)f =Fr(Z))=(Z] ®rR) < -1> (veEY).

v

Then.Z(Z) (resp., Z1(Z)]) is a complex in (aﬁd[GK,s]MOd)ﬁ-ft (resp., in (j‘—%d[G“]Mod)

r -ft ﬁ_ﬂ)'
The morphisms j, (Z) induce morphisms of complexes of R[G,]-modules

I (Fr(2): Fr(2)) — Fr(Z)  (veX Z=T.T(1)).
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As in 8.4.6.1, 8.4.6.3, 7 induces a morphism of complexes of R[G ,s]-modules

7 Zr(T) @ Fr(T*(1)) = (T ®r R) < -1 > @5((T*(1) @g R) < —1 >)*
S48 @R R) < —1 > @5(T* (1) ®r B) <1 >
= (T®rR) @ (T*(1)®r R) — (T®rT*(1)) @r R
TRid

wh(1) ©p R—"—wk(1),

the adjoint of which is equal to
adj(7) : Fr(T) = (T ®r R) < -1 >
MHOIH}Q(T*(I) ®r R,wh ®r R(1)) < —1>
— Hom%(T*(1) ®r ﬁ,w‘ﬁ(l)) <-=1>.
By Corollary 8.4.6.5, 7 is again a perfect duality. In other words, the data 8.9.i 1=
8.9.1.3 induce the same kind of data for #r(T') and Fp(T*(1))", this time over R.

8.9.3. Lemma. — Fixv e X. Then:

() 7] Lx T*(1)f = Fr(D)f L= (Fr(T*(1)")].
(i) T LLr T*(1)) = Fr(D1)f Lix (Fr(T*(1)")5.

Proof. — The statement (i) is trivial and (ii) follows from Corollary 8.4.6.5. a

8.9.4. Let T,7,T*(1); (v € X) be as in 6.7.1. We apply the construction
from 6.7.9 and define bounded complexes A, A*(1) (resp., A}, A*(1)] (v € %))
in ('(IL%d[GK,s]MOd)R—coﬁ (resp., in ((;?(}G,,]MOd) R,-(:ojt) by

A=D(T(1))(1), A*(1)=D(T)(1), A =D(T"(1);)1), A*(1); =D(T,)(1).

Applying D to the canonical morphisms T*(1) — T*(1), and T" — T, we obtain
morphisms of complexes of R[G,]-modules

AF — A, AT(1)F — A*(1).
In the notation of 6.7.4, we have

(8.9.4.1) TF Llew, A5(1)F, Af Lley, TH(1)F,

v
with respect to the evaluation morphisms

evy : T ®g A*(l) — IR(]-)
vi: A®pT*(1) — Ig(1).
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8.9.5. For Z=A,A*(1) and v € &, put
Fr(2)} = Fr(Z)).
It follows from Lemma 8.4.5.1 that the adjoint of the evaluation morphism
evy 1 Fr(T) @ Fr(A* (1))
=(T®rR)<-1> @Eh%lHom;z(R[G/U] < 1>, A*(1))"
— tim Hom (RIG/U). In) (1) = I5(1)
is a quasi-isomorphism
adj(eva) : Fr(T) — Homyk(Fr(A*(1))", I5(1));
a similar statement holds for
evy : Fr(A) @g Fr(T7(1)) — Ix(1).
Combining Lemma 8.4.5.1 with (8.9.4.1) shows that, for each v € %,
Fr(T)y Llev, (Fr(A™ (1)) Fr(A)) Llew, (Zr(T7 (1))

v v

8.9.6. Assume, from now on until the end of Section 8.9, that
TF L. T*(1); (Vv € %).

For each v € 3, define
W, € Dy (e, Mod)

as in Proposition 6.7.6 (iv); it sits in an exact triangle
W, — T, g (1 (1)) (1) — WL 1.
According to Corollary 8.4.6.5,

— adj(m =y * L 7
Fr(Wy) — Fr(1;) 2L (F (17 (1)) (1) — Fr(W)[1]
is an exact triangle in DR ﬂ( “i[ ]Mod).

Applying the discussion in 7.8 and 8.8 to Zp(T), ZF(T*(1))", Fr(A), Fr(A*(1))"
(for which we consider the unramified local conditions Al at all v € ¥'), we obtain
the following (below, D = D5 and 7 = 93):

8.9.6.1. Isomorphisms in D;ZL (ﬁMod) (resp., Di):ofl, (ﬁMod))
RT 1y (Koo /K, T) < D(RT (K / Koo, A*(1)) ) [-3]
RT(Ks/ Koo, A) > D(RE (Koo /K, T (1)) [-3].
8.9.6.2. Induced isomorphisms on cohomology

Hj 1 (Koo /K, T) = D (K /Kooy A(1))

H}(Ks /Koo, A) < D(H1 (Koo /K, T7(1) ).
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8.9.6.3. A pairing in D}’»t(ﬁMod)

(8.9.6.3.1) R 1 (Koo /K, T) ©% R f 10 (Koo / K, T*(1)) — wr[-3],

whose adjoint map sits in an exact triangle in D;'-L (ﬁMod)

(8.9.63.2) RIf1w(Koo/K,T) e@‘(f{?f,lw( o/ K, T*(1)) ) — @ Enm,,
UESJ

where the error terms Err, are as follows:
(Vv e€¥) Err, = B (2,71 (T)) = Err, (A (F(T)), AW (Fr(T*(1))"),7T)
are as in Proposition 7.6.7 (ii) and Corollary 7.6.8;
(V'U € E) Err'u - RFCOI!L(GYH‘(/?F(WU))7
by Proposition 6.7.6 (iv).
8.9.6.4. T} L1, T*(1) for all v € ¥, and § € Spec(R) with ht(g) = 0, then the
localization of (8.9.6.3.2) at q induces isomorphisms
7 ~ o 3 ok v
(8.9.6.4.1) I (Ko/K.T)g —>9ﬁ3((1{j (Koo /K, T*(1)) )a)
r13—7 /1~ * L

= D (Koo /KT (1)), )
It follows that
(89.6.4.2) O, (1 (Koo /K T)g) = b (0 (Koo /KT (1)) )
In particular, if I =Ty 5 Z, and R is a domain, then
(8.9.6.4.3) corkg HY (K /Koo, A) = tkgg Hj 17 (Koo /K, T*(1))

=rkp ij,lw( /K, T)
= cork H} 7/ (K / Koo, A*(1)).

8.9.7. Error terms and local Tamagawa factors for .Z (7). — We are going
to investigate the error terms in 8.9.6.3 under the assumption (U) from 8.8.1 (which
is automatically satisfied if A = 0). As ' = Ty x A, Ty = Z, (r > 1), we have
R = R[A][X4,..., X,] (Xi =~ —1). Our first goal is to show that the cohomology

groups of Err™ (for v { p) are very often pseudo-null over R. We use repeatedly the
fact that <@F(T) = 5’71“0 (?A(T))

8.9.7.1. Lemma

(i) {p € Spec(R) | ht(p) = 0} = {pR | p € Spec(R[A]), ht(p) = 0}.
(ii) Let M € (giaMod)s and p € Spec(R[A]), ht(p) = 0.
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Then:
p € supp(M) <= p:=pR € supp(M ®R[A] R)
and
(M @pia) R)5) = Lria), (My).
Proof

(i) Note that, for every ideal I C R[A], R/IR = (RIA]/D[X1,...,X,]. Ifp €
Spec(R) has ht(p) = 0, put p = R[A] NP € Spec(R[A]). Then pR C p, hence
pR = p. If there is q € Spec(R[A]) with q € p, then R € pR = p, which contradicts
ht(p) = 0; thus ht(p) = 0. Conversely, if p € Spec(R[A]) has ht(p) = 0 and p = pR,
then R/p = (R[A]/p)[X1,...,X,] is a domain, hence p € Spec(R). If ht(p) # 0,
then there is § € Spec(R), § € b, ht(§) = 0. By the above argument, § = qR for
q =qnN R[A], ht(q) = 0. As q C p, we have q¢ = p, hence § = qR = pR = p; this
contradiction proves that ht(p) = 0.

(ii) We have

M, #0 <= M/pM #0 <= (M @ga) R)/(pR)(M @pia} R) #0
= (M ®gja) R),z #0,
which proves the first statement. By dévissage, it is enough to check the equality of
lengths for M = R[A]/p, in which case both sides are equal to one. O
8.9.7.2. Proposition. — Let j > 0. Given M € (rMod) s with codimpg(supp(M)) > j
feAutr(M) andu € R’ let No, Ny be the R-modules defined by the exact sequence
0— Ny — M @p RIZNM @g R — Ny — 0.
Fori=0,1, let
B; = supp(N;) N {p € Spec(R) | ht(p) < j}.
(i) If u € R[A]*, then N; = M; ®pa) R and
B; = {pR | p € Spec(R[A]), ht(p) = j,p € supp(M;)},
where My, My are the R[A]-modules defined by the exact sequence
0— My — M®g R[A]—>]\I ®pr R|A] — M; — 0.
For each p = pR € B,
(i ((Ni)g) = Crial, (Mi)y).
(ii) If, for each mazimal ideal ma of R[A], u (modmaR) € (R/maR)* =
(R[A]/ma)[ X1, ..., X, ]* is not contained in (R[A]/ma)*, then both sets By, By are
empty.

Proof. — If j > d, then M = 0 and there is nothing to prove. If j < d, then there is
an ideal I C Anng(M) with dim(R/I) = d — j. Replacing R by R/I, we can assume
that j = 0.
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(i) As R is flat over R, we have N; = M, ®@R[A] R; the rest of the statement follows
from Lemma 8.9.7.1.

(ii) Let p € Spec(R[A]), ht(p) = 0; put p = pR. We must show that (N;)z = 0
for i = 0,1 (again using Lemma 8.9.7.1(i). The R[A]-module M[A] := M ®@r R[A]
admits a filtration 0 = My € M; C --- C M, = M[A] with graded quotients
M1 /My = R[A]/qq, for some q; € Spec(R[A]). By dévissage, we can assume
that M[A] = R[A]/q.. If q; # p, then (M ®r R), = (M[A] ®pga) R)p = 0 by
Lemma 8.9.7.1(ii). If g; = p, then we can replace R[A] by R[A]/p, hence assume that
R[A] is a domain and p = (0). In this case f € R[A]*, Ny =0 and

Ny =R/(u—f"")R,
which is R-torsion; thus (Ny) ) = 0. d
8.9.7.3. Proposition

(i) For each non-archimedean prime v { p of K which is unramified in Ko /K, there
is an isomorphism in D®((zFMod)/(pseudo-null)) (using the notation of (7.6.5.1))

2 (Bt (2,7 1(T)))
-~ Z1, (—@R[A] (EI‘I‘;J,I‘(@R[A],fA(T)))), |Fv| < o0 (<:> r, CcA)
0, Ty = oc.
(ii) If p € Spec(R), ht(p) = 1 and Err)' (2,7 (T))5 is not acyclic (i.e., not iso-
morphic to 0 in D(TzFMOd))’ then
Py CA, p=pR, peSpec(R[A]), ht(p) =1

and
Tam, (Z(T),p) = Tam,(F a(T),p) # 0.

Proof. — As v is unramified in K,/K, we have
(89731) H(}ont(I”’yF(T)) ;)“g/l\r(Hclont(Iv’T))'

Let N be an R-module of finite type and P, — N a resolution of N by free R-modules
of finite type. Then P, ®r R is a free resolution of N ® R, hence

Hom%(P,,w}) ®r R — Hom*(P, ®r R,wk @r R)
gives a canonical isomorphism in D(zMod)
(8.9.7.3.2) 2(N)9r R~ 2(N ®r R).
Applying this observation to N = HZ _ (I,,T), we obtain isomorphisms of R[G/I,]-
modules
Ext(Fr(N),wg) — Exti(N @r R,wg) < 1>
= (Exth(N,wr) @r R) < 1 >—5 Zr(BExth(N,wr))".
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Let M :ilzxt}{(N,wR), f=f," € Autg(M) and u = the image of f; ! € T, under
I'y —TI'— R . It follows from the above observation and Proposition 7.6.7 (ii) that
7 (B, (7,7 0(T))) = Erry (AY(Z (1)), A (Fr(T(1))"),7)
is isomorphic in D ((FMod)/(pseudo-null)) to the following complex in degrees —1,0:
K* = {]\/f QR Emkf QR T?}

If II'y| < oo, then 'y, C A, u € R[A]* and K* is isomorphic to

Both statements (i), (ii) in this case follow from Proposition 8.9.7.2(i) (for j = 1) and
Proposition 7.6.7 (i), this time applied to R[A] and .Z A (T).

If |I'y| = oo, then there is a Z,-basis 7y,...,7 € I' and n > 0 such that u =
Su/AP" = su/(1+ X1)P", with 6 € A, v’ € Z;. Applying Proposition 8.9.7_.2(ii) with
j =1, we deduce that the cohomology groups of K* are pseudo-null over R. U

8.9.7.4. Corollary. — For each non-archimedean prime v {p of K which is unramified
in Koo/ K, there is an isomorphism in the category D”((ﬁMod) / (pseud()-null))
"{ITFU(EHBF(-O/IE[A]a*(iA(T)))7 ITy| < o0

0, T, | = oc.

B (7, Fr(T)) < {
Proof. Apply Z to the statement (i) in Proposition 8.9.7.3 (and use (8.9.7.3.2)). O

8.9.7.5. For each q € Spec(R[A]) and M € (FMod), we put My = M @ ga) R[Ag:
this is an Rq (=R ®pg(a) R[A]q)-module.
8.9.7.6. Proposition. - Assume that T = o<oT and v {p is a non-archimedean prime
of K, unramified in K /K.
(i) If II',| < oo, then there is an isormorphism in D}’t (ﬁMod)
9Bty (@, F1(T))) = Fry(Z pia) (B} (2 pia). 7 a(T))))-
(11> If H(]:(mt(‘['l”‘gA(T)) = Hl (IU? HO()J/:A(T))) :> HO(<QA(T)>LY<_1) is zero or

cont,

a Cohen-Macaulay R[A]-module of dimension d = dim(R) = dim(R[A]), then
Bl (7,7 1(T)) — 0 in Db (zMod).
(i) If q € Spec(R[A]), ht(q) = 0, then
Err) (7,7 0(T))q = 0 in D}, (5 Mod).

(iv) The following statements are equivalent (cf. Corollary 7.6.12(iii)):

Erl (7,7 (1)) — 0 in D} (gMod)
— ETFEY(QR[A],yA(T)) = 0in bet(R[A]MOd)~
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(v) If dim(R) = 1, then
Err™(2,Zr(T)) =0 in D}’t (zgMod) <= (Vma € Max(R)) Tam,(# a(T), ma) = 0.
Proof. — We apply Proposition 7.6.11 and Corollary 7.6.12 to #(T') = Fp,(Fa(T)) =
o<oZr(T) over R. Combining (8.9.7.3.1)-(8.9.7.3.2), we obtain
7217 (Hlgui (Lo, Fr(T))) = Fr (1512 (Hegn (10, T)))
Corollary 7.6.12(i) then yields an isomorphism in Dﬂ(ﬁMod)

(8.9.7.6.1) 7 (En™(@,7r(T)))
= Cone(f, ' @ xry(fo) ' = 1: 7217 gia)(H) @pia) B — 7217 piaj(H) @ ria) R)[1]
(where H = HY,.(I1,,Z A(T))).

(i) If || < oo, then xr,(fo) = 1, hence (8.9.7.6.1) and the flatness of R over R
imply (using Corollary 7.6.12 (i) again, this time for # A (T') over R[A]) that

9 (EI'I':fr(§7»7I‘(T))) - Erry (2 ria), # a(T)) ®pia) R,

as required.

(ii) In this case the complex 7512 pia] (Hlon (In.Z a(T))) is acyclic.

(iii) The complex 712 gia) (Hlon (Lo, F a(T ))Cl is acyclic, by Lemma 2.4.7(iv)
and local duality 2.5

(iv) Put, for (‘,a(th q=0,

= EXt(;{[A] (H(}om,([uv-?A(T»)aWR[A]) c (H[A]I\/lod)ﬂ.
According to Corollary 7.6.12 (iii), we have
Erry (2 pia), Za(T)) — 0 <= (Yg=1,...,d) Coker(f, ' —1: M, — M,) =0,

Ert™ (7, Fp(T)) =50 <= (Vg=1,...,d) Coker(f,* @ xr,(fo) ' —1:
M, ®@pgja) R — M, @Rja R) = 0.

However, as xr,(f») — 1 is contained in the radical m of R, Nakayama’s Lemma
implies that

Coker(f, ' @ xr,(fo) ' = 1: My @pia) R — My @pia) R) =0
< 0= Coker(f,'®1—1: M, ®pa) R/T — My @pa] R/)
= Coker(f, ' = 1: My @p(a) RIA]/m — My @ ga) R[A]/m)
= Coker(f, ' —1: M, — M,) =0,

where we have denoted by m the radical of R[A].
(v) Combine (iv) with 7.6.10.8 (for p = ma). O

8.9.7.7. Proposition. — Assume that v € X and qo € Spec(R[A]); denote by p €
Spec(R) the inverse image of qo under the projection map R = R[A][To] — R[A].
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(1) ]f RFcont(vat();A(Wv))
= 0 in Dj, (EFMOd)'

(ii) If W, = H°(W,) is concentrated in deqree 0 and R (G, Z A(Wy))go — 0 in
D})t(R[A]qu\/IOd), then Rrur(vagzI‘(Wv))_ — 0 in th( I\/IOd)

0 50 4n D})r,(R[A]qU Mod), then Rlcont(Go, Fr (W)

Proof. — We use the fact that #p(W,) = .Z1,(#a(W,)). The statement (i) follows
from Proposition 8.4.8.5 applied to R[A] instead of R, p = q9, G = G, and T =
F A(Wy).

As W, is concentrated in degree 0, we have

RE (G, Z A (W) = R con(Gu/ Lo, F 4 (W) ™),
RIw (G, Zr(Wy)) = Rlcont(Gy /Lo, Zr(W,) ™).
On the other hand, the assumption (U) from 8.8.1 implies that
Fr(W)l = Fr(Wy") = Fry(Fa(Wo)") = Fry(Fa(W));

we apply again Proposition 8.4.8.5 with G = G, /I, and T =.Z o (W/[lv). O

8.9.8. Theorem. — Denote
Sbaa = {pR | p € Spec(R[A]),ht(p) =1, (v € ¥') |T| < o0, Tam, (Z A(T),p) # 0}.

Let p € Spec(R), ht(p) = 1, p ¢ Spaa. Assume that, either:
(i) VweX) T, L1, T*(1)}; or:

v’

({i) T =Tgx A =T, xTy xA, Ty > Z,, q0 € Spec(R[A]), ht(q0) = 0, p =
qoR+ (7 —1)R € Spec(R), (Vv € ¥) RIcont(Go, Z a(Wy)), = 0in D?t(R[A]qOMOd)~

Then the localized duality map

q0

R (Koo /K. T)y — P ((RT o (Koo /K. T7 (1)) )) [ 3]

is an isomorphism in D}t( Mod) inducing ezxact sequences of Eg-modules of finite
type

0 — (Bxty(Hj i (Koo /K, T(1)),05)" )5

— H 1 (Koo / K, T — (Bxtig(H 7 (Koo /K, T7 (1), wg) ) — 0.

Proof. — We apply 7.8.4.4 with X =.Z(T) over R; for each v € 3 (resp., v € &),
the localization at p of the error term Err, vanishes, by Proposition 8.9.7.7 (resp.,
Proposition 8.9.7.3 (ii)). O
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8.9.9. Theorem. — Assume that T,) L1, T*(1)} (Vv € £). If Spaa = @ (e.g., if
(Vv e X)) |T'y| = 00), then

RE 1o (Koo /K, T) 2 RT (Koo /K, T*(1))[3]
D v D
RI;(Ks/Koo, A) R (Ks /Koo, A*(1))"[3]

is a duality diagram in D?t((ﬁlvlod)/(pseudo—null)) (top row) resp., Dgoﬁ((ﬁMod)/
(co-pseudo-null)) (bottom row), inducing exact sequences in (FMod) /(pseudo-null)
0 — Exth(Hy (Koo /K, T*(1)),w5)

— [} 1 (Koo K. T) — Ext(H 1) (Koo/ K, T7(1)).05)" — 0.

These sequences yield monomorphisms in (ﬁMod) /(pseudo-null)
g ~4—j * L
Hi 1 (Koo/ K, Ty — Exty(Hy (Koo /K, T*(1)), wg)
which are isomorphisms if R has no embedded primes.

Proof. — This follows from Theorem 8.9.8. O

8.9.10. Recall that we have established in 8.9.6.2 isomorphisms of R-modules

B (Koo K. T) 5 D(H} 7 (Ks /Koo, A*(1)))

)y (Koo K, T*(1)) = D(H} 7 (Ks/Koo, A) ).
8.9.11. Theorem. — Assume that T,) L1, T*(1)7 (Vv e X) and T = 0<oT. Then,
for each q € Spec(R[A]) with ht(q) = 0, the localized duality map

Rl 1w (Koo/K, T)CI — PRl 1w(Koo /K, T*(l))‘)q[—B]
s an isomorphism in D‘lf’t( r,Mod), inducing a spectral sequence

By = (Extiy(H{ (KooK, (1)), wg)), = H{H (Koo /K, T),.

Proof. — We apply 7.8.4.4 with X =.Zp(T) over R; by Proposition 8.9.7.6(iii), the
error terms vanish after tensoring with R[A];. The spectral sequence is obtained
from 2.8.6, by applying the same tensor product. O

8.9.12. Theorem. — Assume that T = o<oT and (Vv € ) T,) L1, T*(1)}. For
veEYX, set Hy=HL  (I,,Za(T)). If

(Vv eX)(Vg=1,...,d)
Coker(f, ! — 1: Exth \\(Hy,wria]) — Exth 5 (Ho,wppa)) =0
[A] [A]
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(if d = dim(R) = 1, then this condition is equivalent to (Vv € ¥')(Vma €
Max(R[A])) Tam,(Fa(T),ma) = 0), then

RIf 1w (Koo /K, T) RI /1 (Koo /K. T*(1))"[3]
D
D @
RI;(Ks/Kx, A) RT(Ks/Ka, A*(1))[3]
1s a duality diagram in D?w ) (ﬁMod), inducing a spectral sequence
= Exto(H{ (Koo /K. T*(1)).wg) = H} 5L (Ko /K, T).
Proof. This time the error terms vanish in D.’,’L (ﬁMod), thanks to Proposi-
tion 8.9.7.6 (iv) and Corollary 7.6.12 (iii). 0
8.9.13. As in 8.5.8, the pairings
T ORTH1) — wh(1), 7 Fr(T) @ Fr(TH(1) — wi(l)
define — for each finite subextension K,/K of Ko /K — cup products (6.3.2.2)
( s >” : f]}(GK“‘S”,T) Xr ﬁ;(GK,,S'“.T*(l)) N Hi+j*3(w}_{)
and
() s (M (G s, 1)) @ (i (G, s, T () — HY )
— HiT 3 (wp) @z R = lim (H"‘ﬂ*:ﬂ(m) @ r R[Gal( Q/K)])

8.9.14. Proposition. — In the situation of 8.9.13,

<(4L'a)v (Ya)) = ( Z <517m‘7yr¥>a ® [0]>

ceGal(K/K)

[e3

(where o acts on H’ (Gh 5., T*(1)) by the conjugation action from 8.6.4.2).

Proof. — As in the proof of 8.5.9, one reduces to the proof of the corresponding local
statement 8.11.10, this time using 8.6.4.2-8.6.4.3. |

8.9.15. Theorem. — The Fuler-Poincaré characteristic of l/:{\l:f’lw(Koo/K, T) is equal
to

ST (1) (2 (Ko /K. T)) =
' SN 1) e ((T99) = STIK = Q) S (1) e ((T7)7).

vjoo q v|p q
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Proof. — This follows from Theorem 7.8.6 and the fact that
en(M ®p R) = egr(M),
for every R-module M of finite type. O

8.9.16. Corollary. — Under the assumptions (i)-(ii) of Corollary 7.8.7,

S 1) e (Y (Koo /K, T)) = [K 5 Q) — ;).

q

8.10. Control Theorems

The goal of this section is to prove analogues of Mazur’s control theorem for classi-
cal Selmer groups in our context, generalizing the results of 8.4.8. We assume that we
are in the situation of 8.8.1 with I' = T’y = Z,, (hence the condition (U) from 8.8.1 is
automatically satisfied). Let T and T, be as in 8.8.2; throughout Section 8.10 we as-
sume that the complexes T" and T,/ are bounded. The key point is the following exact
control theorem for Selmer complexes, from which we deduce in Proposition 8.10.4 (ii)
and 8.10.8(ii) somewhat less precise control results for cohomology groups.

8.10.1. Proposition. There is a canonical isomorphism in D?(rMod)
,.\_/ L o
RI 1w (Koo /K, T)2R — RI4(T)

(where the product is taken with respect to the augmentation map R — R) and a
(homological) spectral sequence

E?; = Hi cont (D H, 7 (Koo /K, T)) = H,;"7(T),
i which each term Ef) is an R-module of finite type.

Proof. The same argument as in the proof of Proposition 8.4.8.1(ii) applies: the
exact sequences (8.4.8.1.1) for G = Gk ,5,G, (v € Sf) and analogous sequences for
the local conditions U} (=) (v € Sy) yield an exact sequence

N i—1 X, e
0 — CHF 1y, (T)>—=C(Fr/u,_,(T)) — C}(Fr/u,(T)) — 0,
and we conclude as in the proof of 8.4.8.1 O

8.10.2. Corollary. — If U = Z,, then there are natural exact sequences

0 — H},\ (Koo/ K, T) — H}(T) — H} 1 (Koo /K, T) — 0.

8.10.3. Consider the following condition:
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8.10.53.1. The canonical maps

Tg()T—>T

T<0 TJL — Tt (1) (S Z)

v

are all quasi-isomorphisms.
If satisfied, then the same holds for .#(T) and .Zr(T,"). This implies, by 7.8.5,
that the maps

(8.10.3.2) <3 R (T) — RI4(T)
T<s RI (Koo /K, T) — RI 1w (Koo /K, T)

are also quasi-isomorphisms, hence

HYT) = H}(H"(T)) > D(HYD(H(T))(1)))

~

H} 1o (Koo / K. T) = H} 1\ (Koo /K, HO(T)) < D(H(Ks/ Koo, D(H(T))(1)))"

(for the induced Greenberg’s local conditions HY(T,) — H(T) (v € ¥)). In particu-
lar, H l:;’]W(K oo/ K, T) is an R-module of finite type. The spectral sequence from 8.10.1
yields an isomorphism

(8.10.3.3) H} 1 (Koo /K, T), > H}(T).

8.10.4. Proposition. — Assume that 8.10.3.1 is satisfied.
(1) If & C R is a multiplicative set such that ]?I;Z’(T)y =0, then:
(1) (VL 2 0) (E,Z,v3>7 = Hi,cont(rv ITI?,IW<K’OO/I(-, T))&ﬁ =0.
(ii) After localizing at., the canonical map
edge : H3 1 (Koo/ K. T). — H}(T)
(which is an edge map in the spectral sequence E™) becomes an isomorphism,
i.e.,
Ker(edge) » = Coker(edge) oo = 0.
(2) In particular, taking. = R —p with p € Spec(R), then
supp p(Ker(edge)) U suppp(Coker(edge)) U suppR(EZ_z;) C suppp (I};(T))
Proof. — Tt is sufficient to prove (1). By (8.10.3.2), the assumption 8.10.3.1 implies
that the spectral sequence E” from Proposition 8.10.1 satisfies E?] =0forj<-3or
i <0. As
E§ 5 = Hj 1 (Ko /K. T),
and the map in (ii) is an edge homomorphism for F,., it follows that the statement (ii)
is a consequence of (i) (for i = 1,2). In order to prove (i), consider

M = H} 1 (KooK, T) .

ASTERISQUE 310



8.10. CONTROL THEOREMS 251

This is an R g-module of finite type satisfying
Mr — (E§,43)y — g}}(T)y =0.

The claim (i) then follows from 7.2.7 and the following Lemma, applied to M, B = Ry
and t; =y —1(1<i<r). O

8.10.5. Lemma. — Let B be a commutative ring, M a B-module of finite type and
ti,...,tp, € Endp(M) mutually commuting endomorphisms (i.e., t;t; = t;t; for all
i,7). View M as a module over B’ = B[Th,...,T,], with T; acting as t;. Then: the
Koszul complex K* = K3, (M, (Th,...,T,)) is acyclic <= H"(K*) =0.

Proof. — The implication ‘=" is trivial. In order to prove ‘<=", it is enough to show
that the localization K, is acyclic, for each maximal ideal m C B'. If Ty, ..., T, € m,
then the assumption H"(K*) = M/(Ty,...,T,)M = 0 implies that M/mM = 0,
hence M = 0 (= K* = 0) by Nakayama’s Lemma. If, for some i =1,...,r, T; ¢ m,
then T; is invertible in B}, hence K}, is acyclic ([Br-He, Prop. 1.6.5(c)]). O

8.10.6. The above results admit a dual formulation. Assume that A (resp., A},
v € X)) is a bounded complex in (%d[GK’S]Mod) (resp., in (%J[G“]Mod)), with cohomology
of co-finite type over R, and A} — A (v € ¥) is a morphism of complexes of R[G,]-
modules. Define A7 as in 6.7.1.

According to Proposition 3.2.6 there exists a bounded complex T* in

(?%d[GK,s]MOd) R-ft and a quasi-isomorphism
T — D(A).
For each v € 3, the complex
F, = Cone(T" ® D(A,) — D(A))[-1]
in (‘}?‘%G"]Mod) is bounded, has cohomology of finite type over R and sits in a diagram

F, — D(4,)
| |
T* — D(4),
in which both horizontal arrows are quasi-isomorphisms and the cones of the two
vertical arrows are canonically isomorphic. Applying Proposition 3.2.6 once again,
there exists a bounded complex (T*(1)). in (%d[GU]Mod)
(T*(1)f = Fu(1).
The duality results 7.8.4.3 and 8.9.6.1 give isomorphisms

(8.10.6.1) RIj(A) = Dgr(RT(T*(1)))[-3]

Rt and a quasi-isomorphism

RT(Ks/ Koo, A) = Dg(RT g (Koo /K. T"(1)))'[-3]
in Db ( RMod) and D (EMod), respectively.
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Applying Dz to the Koszul complex K'E(CN'} (ﬁ"p(T*(l)))7 x) appearing implicitly
in the proof of Proposition 8.10.1 and using (7.2.7.3) together with (8.10.6.1), we
obtain isomorphisms in D° (EMod)

RIf(A) 5 K3(C3(Ks/Koo, A)) — Rl com (I, C3(Ks /Ko, A)),
hence a spectral sequence
(8.10.6.2) By = Hip (U, HY(Ks /Koo, A)) = H;H(A)
dual to E}" (in particular, each E;j is an R-module of co-finite type). By construc-
tion, the edge homomorphisms of E™ and E, are dual to each other, i.e., the diagram

~

H}(A) — Dr(H;~(T*(1)))

(8.10.6.3) |

TTi - o~ T3 PN

Hy(Ks/Koo,A) — Dp((H} 14 (Keo/K, T*(1)) )r)
is commutative.
8.10.7. Consider the following condition:
8.10.7.1. The canonical maps

A—> T>0 A
AY — 150 A (vex)

are all quasi-isomorphisms.
If 8.10.7.1 holds, then the maps

(8.10.7.2) RT(A) — 750 R (A)
R (Kg/Koo. A) — 750 RT (K /Koo, A)
are quasi-isomorphisms, 7*(1) and (T*(1)); satisfy 8.10.3.1 and
HP(A) = HY(H(A)), HY(Ks/Kx,A) = H)(Ks/Ko, H°(A)).
In particular, HY(Kg K, A) is an R-module of co-finite type. Combining (8.10.3.3
b
with (8.10.6.3), we obtain an isomorphism
~ o~ r
(8.10.7.3) H}(A) = HY(Ks/Ku, A) .
8.10.8. Proposition. Assume that 8.10.7.1 is satisfied.
(1) If ¥ C R is a multiplicative set such that D(ﬁ?(A)){y =0, then:
. ) —i,0 i ~
(i) (vi =0) (D(E, ))V = D(H}ow (F,H}’(KS/KOO7A)))y =0.
(ii) The kernel and cokernel of the canonical restriction map
- ~ r
vesg__ it Hf(A) — Hj(Ks/Ko, A)
(which is an edge map in the spectral sequence E,.) satisfy

D(Ker(resk__/i)) o = D(Coker(resk /i) = 0.
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(2) In particular, taking .¥ = R — p with p € Spec(R), then

suppR(D(Ker(reSKW/K))) U suppR(D(Coker(resKm/K))) U SUPPR(D(E;O))
C suppg(D(HY(A))).

Proof. — This follows from Proposition 8.10.4 applied to 7*(1) and the commutative
diagram (8.10.6.3). O

8.10.9. The results in 8.10.1, 8.10.4, 8.10.8 can be further generalized as follows: in
8.10.9-8.10.12, we do not require that A = 0, but instead assume that the condition
(U) from 8.4.8 is satisfied, and that I C I is a closed subgroup isomorphic to I'" = Z;/
for some r’ < r. Put K/ = (K)" and R = R[T/T].

8.10.10. Proposition. There is a canonical isomorphism in D° (E/Mod)

. L — . —
(8.10.10.1) RT 1w (Koo/ K, T)&5R —> RT 1 (K /K, T)
(where the product is taken with respect to the canonical projection R = R[] — R =
R[T'/T']) and a (homological) spectral sequence

B2 = Hicon (U, H} (Koo /K. T)) = H, 17 (KL, /K, T),

in which each term ’EL2 ;s an R -module of finite type. The pairings (8.9.6.3.1) are
compatible with respect to the isomorphisms (8.10.10.1).

Proof. — The proof of Proposition 8.10.1 applies, with the same modification as in
the proof of Proposition 8.4.8.3. The compatibility with the pairings (8.9.6.3.1) follows
from the definitions. O

8.10.11. Proposition. — Assume that 8.10.5.1 is satisfied. If. C R is a multiplicative
set such that H} 1 (K. /K, T)g =0 (recall from 8.10.3 that H} (KL /K, T) is an
R-module of finite type), then:

(l) (VZ > 0) (/EZQ,—’K) SR R}ﬂ = Hi,(:(mt(rl, ﬁ?’IW(KOO/K, T)) Qr Rsﬂ =0.
(ii) The canonical map

edge : H} 1 (Koo /K. T),, — H} (Kl /K,T)
(which is an edge map in the spectral sequence 'E™ ) satisfies
Ker(edge) ®r Rg = Coker(edge) ®r Ry = 0.

Proof. — As in the proof of Proposition 8.10.4, apply Lemma 8.10.5 to B = Ry,
M:H?,Iw(Koo/K,T)@RRy and ti:’}/z{—l (1 éigr’), 0
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8.10.12. Proposition. — Assume that 8.10.7.1 is satisfied.
If. C R is a multiplicative set such that

(Dr(Hf(Ks/Kl, A))) ©r Ry =0,

then:

. , —i,0 ; ~

() (¥i > 0) (D (T5")@rRoy = (D (Hiy (', HY(K's Ko, A)))) @1 Ry = 0.

(ii) The kernel and cokernel of the canonical map

TeSK. /K!_ ﬁ}(KS/Kéo,A) — ITI}(KS/KOO,A)F
satisfy
(D (Ker(resk_ jx:_))) ®r Ry = (Dg (Coker(resg_ k1)) ®r Rgp = 0.

Proof. — As in 8.10.6 there is a spectral sequence
,_E;j = H(Z;ont(r/’ ﬁ}<K5/KOO’ A)) - I}?—J(KS/K{)o? A)

such that the edge homomorphisms of ‘E™ and 'E,, are related by the following
commutative diagram:

~

Hi(Ks/Kly, A) > Dy (H3L(KL /K, T*(1)))

(Ko /Koo ) 0 Dg((H Koo/ K, T (1)) Y1)

The statement follows from Proposition 8.10.11 applied to T*(1). O

8.10.13. Proposition. Assume that 8.10.3.1 is satisfied and H ?(T) = 0. Then:
(i) H}p, (Koo/K,T) = 0.
(ii) The canonical map
‘F‘[}%,IW(KO@/K? T)F/ - ﬁ%,lw(Kc/)o/K’T)

is an isomorphism.

Proof

(i) M = f[?’IW(KOO/K, T) is an R-module of finite type satisfying Mp = fI%(T) =0
(using (8.10.3.3)), hence M = 0 by Nakayama’s Lemma.

(ii) Apply Proposition 8.10.11 with.& = {1}. O
8.10.14. Proposition. — Assume that 8.10.7.1 is satisfied and I?})(A) =0. Then:

(i) HY(Ks/Koo, A) =0.
(ii) The canonical map

~ ~ Ind
vesi_ it Hj(Ks/KL,, A) — H}(Ks/Koo, A)

18 an isomorphism.

ASTERISQUE 310



8.11. IWASAWA THEORY OVER LOCAL FIELDS 255

Proof

(i) N = ITI})(KS/KOO,A) is an R-module of co-finite type satisfying D(N)r =
D(NT) = ﬁ(f[})(A)) =0 (by (8.10.7.3)); Nakayama’s Lemma implies that D(N) = 0,
hence N = 0.

(ii) Apply Proposition 8.10.12 with . = {1}. O

8.11. Iwasawa theory over local fields

8.11.1. Assume that F is a local field of characteristic char(F') # p, with finite
residue field kp. Let Fo/F be a Galois extension with I' = Gal(Fo/F) = To X A,
where Ty = Z, (r > 1) and A is a finite abelian group. If char(kp) # p, then
r = 1 and F is a finite abelian extension of the unique unramified Z,-extension of
F; thus the only ‘interesting’ case is when F is a finite extension of Q. As usual,
put Gp = Gal(F*°?/F) and G = Gal(F*P/F).

8.11.2. If
T 4 T
® ®
A A*
is a duality diagram with T, T* € D® ((%}GF]Mod)R_ﬂ) and A, A* € D? ((?{d[GF]MOd)R-coﬂ,) ,

then the functors .# and Fr from 8.3 8.4 define a duality diagram over R

72
F(T) Fr(T*)

(8.11.2.1) |5 [5

Fr(A) Fr(A*)*

X

with Zp(T), Fr(T*)€ D® ((%}GF]MOd)E-ﬂ and Fr(A), Fr(A*)e Db ((%}GF]MOd)E-cof)'
Define

R (Foo/F,T) = Rl cont(Gr, Fr(T)).

As in the global case, we have

~

Ceont(Gr, Fr(A)) — Im C% (GF, , A)

cont

H o (G, Fr(A)) = lim H;

cont

(GFa ’ A) - Héont(GFoo ’ A)

HIlW(FOO/F’ T) = Hl(RFIW(FOO/FV T)) —N—} !iLnHéont(GFa7T)a
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where F,,/F runs through all finite subextensions of Fi,/F. Applying Theorem 5.2.6
to (8.11.2.1) we obtain a duality diagram

RI' (Fs /F,T) RI'w(Foo/F.T*(1))[2]
(8.11.2.2) F 2 ®
RFcont(Gva A) RF(:ont(GFoc, A*(l))L[2]

in D?CO )t (ﬁMod). On the level of cohomology, (8.11.2.2) yields isomorphisms

(8.11.2.3) Hi (Foo /F,T) = D(H% ' (Gp_, A*(1)))

cont

and a spectral sequence

(8.11.2.4) By’ = Bxto(H{, ! (Foo/F, T (1)), wg) = Extio( D(HZ,, (Gr.., A)), wg)
— H{(Fao/F,T).
For simplicity, we shall use in the rest of Sect. 8.11 the following notation:
El(_) :EXtiﬁ(_vwﬁ)v HIiw(_) :HIiW(FOO/Fv_)'

Note that the isomorphisms (8.11.2.3) are obtained from Tate’s local duality isomor-
phisms over F,

HéonL(GF T) _N_) D(HQ_i (GF"’A*(]‘)))

|
o) cont

by taking the projective limit.

8.11.3. Lemma. — If T is concentrated in degree zero, then:

() (Vi #1,2) Hi,(T)=0.

(ii) HZ(T) = D(H°(GE,,A*(1))") is an R-module of finite type of dimension
< d=dim(R).

(i) (Vg < 1) E9(HE,(T)) =0,

Proof

(i) The group H}, (T) vanishes for i < 0 (resp., i > 2) as 7<oT = 0 (resp., as
70T = 0 and ¢d,(GF) = 2). Finally, H{ (T') = 0 by Proposition 8.3.5 (iii).

(ii) The statement (ii) is just (8.11.2.3) for ¢ = 2, combined with the fact that
D(H(GF,.,A*(1))) is a quotient of D(A*(1)) = T(—1). As dim(HZ,(T)) < d, local
duality over R and Lemma 2.4.7 (iii) show that

D(E*(H},(T))) = Hyt ™ "(H}, (1)) = 0
for g < 7. O
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8.11.4. Proposition. — If both T and T*(1) are concentrated in degree zero, then:
(i) There is an exact sequence
0 — B (HE(T*(1))" — Hy, (T) — E°(Hi(T"(1)))
— B2(H{,(T*(1)))" — H(T) — E'(H},(T*(1)))
— B (H{(T* (1)) — 0O

L

L

and isomorphisms
E(Hy,(T*(1)) — BT (HE(T(1))  (¢>2).

(ii) If r > 1, then HZ (T) is pseudo-null over R.

(iti) If r > 1 and R is regular, then H} (T) injects into EU(HIIW(T*(I)))L =
Homp(HL, (T*(1)), H(wg)) and is torsion-free over R.
Proof

(i) This follows from the spectral sequence (8.11.2.4) and the vanishing of Hf, (Z)
(Z=T,T*(1)) for ¢ # 1,2.

(ii) The statement (ii) follows from Lemma 8.11.3(ii). As regards (iii), regularity
of R (hence of R) implies that E'(M) = 0 for any pseudo-null R-module M; we
conclude by (ii) and the fact that H°(wg) is torsion-free over R. |

8.11.5. Proposition. — If R = O is a discrete valuation ring (finite over Z,), I = Z,
(r > 1), T is supported in degree zero and is torsion-free over O, then:
(i) There are isomorphisms of R-modules
0, g#rr+1
ET(HE,(T*(1)))" =5 { HY(Gp,T), q=r
HO(GFoovA)/B7 q:"._'_lv
where B is the mazimal O -divisible submodule of H*(Gr_, A).
(ii) The torsion submodule of H{,(T) is isomorphic to
~ HO(GFOO,T), r=1
Hllw(T)ﬁ-t,ors - {
0, r> 1.

(iii) HL,(T) contains no non-zero pseudo-null R-submodules.

Proof. — The proof of Lemma 9.1.6 below applies in the present situation and
yields (i). As To-tors = 0, T*(1) is also concentrated in degree zero, hence the exact
sequence from Proposition 8.11.4 (1) gives

HO(GFOO,T), r=1

Hllw(T)E-tors ;) El (HI2W<T*(1)))L — {0 r>1

using (i). Finally, as H2 (T*(1)) is R-torsion, (iii) follows from 9.1.3 (vi). O
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8.11.6. Universal norms. — We define
NOOHciont(GFv T)
=Im (HIW(T)F — Hc(mt GF, ﬂlm cont GFu’ ) = Hlont(GFv ))7

where F, are as in 8.11.1. By (8.11.2.3), there is an isomorphism
(8.11.6.1) D(H! . (Gp,T)/Noo) — Ker(HZ i (Gp, A*(1)—5HZ ' (Gr., A*(1))).

cont cont

If T is concentrated in degree zero, so is A*(1), hence
(81162) ( cont(GFvT)/N — H<lont(F7 HO(GFva*(l)))v

by the Hochschild-Serre spectral sequence (note that A*(1) is a discrete G'p-module).

8.11.7. Proposition. — Assume that T € D}, (%, Mod) and T' = Zj. Then:

(i) There is a (homological) spectral sequence

E2; = Hicont(T, H (1)) = Higni’ (Gp,T),

cont
i which all terms Ef ; are R-modules of finite type.
(ii) If 7<oT = T and ¥ C R is a multiplicative set such that D(HO(GF7
D(H(T))(1))) 5 =0, then, for all i,
(Vi< —2) (E})e=0
and the localization at.? of the canonical map H} (T)r — HL . (Gp,T) is an isomor-
phism of Re-modules. In particular, if codimp (suppg (D(H(Gp, D(H(T))(1))))) =
1, then
COdimR(SuppR(H(}()nt(GFV T)/NOO)) = L

Proof. — Proposition 8.4.8.1(ii) gives (i). As 7«07 — T and cd,(Gr) = 2, we have
H] (T) =0 for j > 2. The remaining statements follow by the same argument as in
the proof of Proposition 8.10.4 (ii). O

8.11.8. Corollary. — Let R = O, T' = Z and T be as in Proposition 8.11.5. If
H(Gp,T*(1)) =0, then the group H! . (Gr,T)/Nw is finite.

Proof. This is a special case of Proposition 8.11.7, but it can be proved more
directly as follows: the assumption H°(G g, T*(1)) = 0 is equivalent to the finiteness
of

H(Gp, A*(1)) = H*(T, H(GF.., A*(1)))
(where A* = D(T)). Lemma 8.10.5 then implies that
HY(T, H(GF.., A*(1)))
is finite, too. We conclude by (8.11.6.2). O
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8.11.9. Over each finite subextension F,, /F of F /F, the pairing
evy : T@rT*(1) — wg(1)
induces cup products (5.2.2.1)
(ot Hion(Gro, T) @ Higy (Gr,, T*(1)) — H™H 2 (wr).
Similarly, the pairing
Vo Fr(T) @ Fr(T* (1) — wg(l)

(cf. 8.4.6.3) induces products on the “Iwasawa cohomology”
() s (tim Hig (G 1)) @ (i o (Gr, T7(1)) — H 7 )

= H" % (wg) ®p R = lim (H' % (wr) ®r R[Gal(F,/F)]) .
8.11.10. Proposition. In the situation of 8.11.9,

<(wa)> (3/(1)) = < Z <x¢170yﬂ>a ® [U]>

c€Gal(F. /F) o

(where o acts on H? (G, ,T*(1)) by conjugation).

Proof. — As the pairing (, ) is R-bilinear, it suffices to check that the coefficient
at [1] in the projection of the L.H.S. to H'*/=2(wg) ®p R[Gal(F,/F)] is equal to
(Za,Ya),- This, in turn, is a consequence of Lemma 8.1.6.5 and the fact that the
local invariant maps inv, commute with corestriction (cf. 9.2.2 below). O

8.12. In the absence of (P)

8.12.1. The discussion in 6.9 applies to R and Z(X), Zr(Y)".
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CHAPTER 9

CLASSICAL IWASAWA THEORY

In this chapter we apply the duality results from Chapter 8 to classical Iwasawa
theory, obtaining new results on ideal class groups in Zj-extensions of number fields
(Sect. 9.4-9.5). In Sect. 9.6 we compare groups arising in our theory to classical Selmer
groups and in Sect. 9.7 we show that well-behaved perfect complexes naturally appear
in this context. These results were used in the work of Mazur and Rubin [M-R2] on
“organizing modules” in Iwasawa theory of elliptic curves.

Let Koo/K be as in 8.5.1 (hence we also assume that (P) from 5.1 holds).

9.1. Generalities

9.1.1. We consider the following special case of 8.5: R = O is the ring of integers in

a finite extension F of Q, and I' = Z7 (r > 1); we fix a prime element @ € O. In

this case I = F/O and the ring R = R[I"] is equal to the usual Twasawa algebra
A=0[l] = O0[Xy,...,X,],

which is a regular ring of dimension dim(A) = = + 1. This implies that wy — A

(by 2.7 (iii), since regular local rings are Gorenstein).

9.1.2. In the category (AMod)/(pseudo-null), every A-module of finite type M is
isomorphic to

b
A e @A/FN (fi e A={0}).
=1
The element

chary (M) = chara (M) = f1 -+ fp (mod A*) € Frac(A)*/A*

(“the characteristic power series of M”) depends only on the isomorphism class of M
in (AMod)/(pseudo-null).
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9.1.3. For every A-module of finite type M and ¢ > 0, put

E'(M) = Ext} (M, A)
(EY(M) is the “Iwasawa adjoint” of M). These A-modules have the following proper-
ties.

(i) E*(M) is a A-module of finite type.

(ii) codlmA(bupp(El(M))) > 1.

(iii) E*(M) =0 for i < dim(A) — dim(M).

(iv) E°(M) is a reflexive A-module.

(v) The canonical map EY( M )—E M) is an isomorphism in (4 Mod )/(pseudo-null).

(vi) B (Mmrs) has no non-zero pseudo-null submodules.

(vii) EY(Miors) is isomorphic to Moy in (4 Mod)/(pseudo-null).

(viii) If M is a Cohen-Macaulay A-module, then E‘(M) = 0 for i # dim(A) —
dim(M).

(ix) If M = A/(x1,...,xq)A is the quotient of A by a regular sequence of length
a, then E¢(M) = M.

For (i), take a finitely generated free resolution of M (ii), (iii) and (viii) follow from
Lemma 2.4.7 (ii)—(iv) and Local Duality 2.5; (vi) and (vii) are proved in [PR1, Ch. I,
Prop. 8|, while (ix) follows from the Koszul resolution of M. As the kernel (resp.,
cokernel) of the canonical map ¢ : M — E°(EY(M)) is torsion (resp., pseudo-null),
the exact sequence of Ext’s together with (vi) and (vii) prove (iv). Finally, the exact
sequence of Ext’s together with (ii) show that, for each z € A — {0}, E*(M/M;ors)/x
is pseudo-null; it follows that E'(M/M,..) itself is pseudo-null, proving (v).

9.1.4. Let T be a free O-module of finite type equipped with a continuous O-linear
action of Gk s. Then the O[Gk s]-modules
T* = Homep (T, O)
A* =Home (T, F/O) =T" @0 F/O
A =Homp(T*,F/O) =T @0 F/O

are related by the duality diagram

T T*
® ®
A A

over O.
According to Theorem 8.5.6, there is a spectral sequence

(9.1.4.1) By = E'(H2 [0 (Koo /K, T7(1)))" = E'(Da(H’ (Ks /Ko, A)))
= H{ (Koo/ K, T).
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Above, Dx(M) coincides with the Pontrjagin dual of M, for every A-module
of finite or co-finite type. The A-action on Dp(M) = Homp(M,Dx(A)) =
Homo cont (M, F/O) is given by (A - f)(m) = f(Im).

Similarly, there is a spectral sequence
(9.1.4.2) By = E'(H} (Koo /K, T*(1)))" = EY(Da(HI(Ks/ Koo, A)))

= H{ (Ko /K, T).

Together with 9.1.3(ii), these spectral sequences imply that
corky H(Ks/ Koo, A) = tkp Hi (Koo /K, T)
corky H)(Ks/Koo, A) = tka H? | (Koo /K, T)

9.1.5. Lemma

(i) B2 =0 for j #1,2.
(ii) The spectral sequence 'E,. induces isomorphisms of A-modules

B (Hiy(Koo/ K, T*(1))) = H¢1o(Koo/ K, T)

B'(Hi\ (Koo /K, T*(1))) = E'*(Hp (Koo /K, T*(1))) (i >3)
and an exact sequence
0 — B HE(Koo/K. T7(1))) — HZ 1 (Koo /K, T)"

— EY(H}\(Koo/ K. T"(1))) — E*(H{(Kx/K,T"(1)))
— Hl 1 (Koo /K. T)" — E'(Hyy (Ko /K. T"(1)))
— B3 (H} (Koo/K. T*(1))) — 0.
(iif) (cf. [Gre2, Prop. 4]) Dy (H?*(Ks/Ke, A*(1))) is a reflezive A-module.

Proof

(i) As cdp(Grk,s) = 2, we have B =0forj#1,2,3. Put Ty = U, H°(Gal(Kg/
K.),T) C T; then H (Kso/K,T) = HP (Koo/K,Tp). The transition maps in the
projective system H°(Gal(Kgs/K,),Ty) are given, ultimately, by the multiplication
by [Kp : Ka]. Hence HY (Koo /K, Ty) = 0 and Ey* = 0.

(ii) This follows from (i).

(i) By (i), Da(H(Ks/Ko, A*(1))) = M

c,Iw

(Koo/K,T)" is isomorphic to

E°(HE (K /K,T*(1))), which is reflexive by 9.1.3(iv). a
9.1.6. Lemma. — There is a canonical isomorphism of A-modules
0, 1#Err+1
By = { T8 i=r

Ak~ |B. =141,
where B = T%~ @0 F/O is the mazimal O-divisible submodule of A%~ .
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Proof. — Let M = Dy (AGKx). We distinguish three cases:

(i) A%r~ = H%(Gal(Ks/Kx), A) is finite.
(ii) A9k~ = A.
(iii) The general case.

(i) As M is a A-module of finite length, we have E*(M) = 0 for i # dim(A) = r+1,
by 9.1.3(iii). Local duality implies that

EH"I(]\[) AN DA(H?E}(]\’[)) = DpA(M) = AC K

(ii) As an O-module, M = Dj(A) = T* is free of finite rank. Thus E‘(M) = 0 for
1 # dim(A) — 1 = r, by 9.1.3(viii). The exact sequence of Ext’s associated to

0~ MPSM — M/p"M — 0
together with case (i) give
E"(M)/p"E" (M) = E™(M/p"M) == A[p"],
hence

E"(M) =5 Wm E"(M)/p"E" (M) = T,(A) = T.
o P

(iii) Note that B is a A-submodule of A%~ . The exact sequence of Ext’s associated
to

0 — Dy (A9%> /B) — M — Dx(B) — 0
together with cases (i) and (ii) give isomorphisms
E™tY(M) =5 BTN (Dy (A9~ /B)) = A%~ /B
ET(M) < E'(DA(B)) > T,(B) = T~
EY(M) =50  (i#rr+1). a

9.1.7. Corollary. — There is a canonical isomorphism of A-modules

TCre  p=1

0, r> 1.

~

Hllw(KOO/Ka T)tors ;’ EZLO _> {

9.2. Cohomology of Z,(1)

In this section, O = Z,,.
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9.2.1. Every finite discrete G s-module M determines an étale sheaf M on
Spec(Ok g). If the order of M is a unit in Ok g, then the spectral sequence

E;] = liigHi(Gal(L/K), HI(Spec(Op.8)et; Met)) = H' (Spec(Of,s)ets Met),
T

in which L runs through finite subextensions of K¢/ K, degenerates into isomorphisms
By = H' (G 5, M) = H'(Spec(Ok,s)et, Met).
More precisely, there is a canonical isomorphism
RI'(Spec(Ok.s)et, Met) — Rl cont (G i 5, M)

in DV (Ab).
The exact sequence of sheaves

0 — ppn — Gm—p——>Gm — 0

on Spec(Ok g)et and the standard description of the Brauer group Br(K) yield the
following exact sequences (cf. [Schl]):

pipr (K) ——H(GK,s, pipn)
0— Ok.s®Z/p"Z —H"(Gk s, ppn) — Pic(Ok s)[p"] — 0

0 — Pic(Ox.s) © Z/p"Z —H*(Gr 5, pipr) — @D Z/p"Z-Z/p"Z — 0.

veESy

Passing to the inductive (resp., projective) limit with respect to n, we obtain

(9.2.1.1) HGx.5,Qp/Zp(1)) == iy (K)
0 — Ok.s ® Qp/Zy —H'(Gk.5,Qp/Zy(1)) — Pic(Ok,5)[p™] — 0
0 —H*(Gk.s5,Qp/Zp(1)) — P Qp/Zy-—Qp/Zy — 0
vESy

H'(Gr,s,Qp/Zy(1)) =0 (i >2).
resp.,

(9.2.1.2) s ®Zy —H i (Gr s, Zp(1))

0 — Pic(Or,s)[p™] — H (G5, Zp(1) — @D Zy—Zy — 0
’U€Sf
Héont(GK,S>ZP<1)) =0 (Z 7é 17 2)
In particular,
ccont(GK S'a ) - rkZpH(?OIlt<GK7S’ ZP(]')) = ,Sf| -1
I'kz Hc cont(GK S Z ) - rkZpH(}ont(GK,S’ Zp(l)) =r +ra2+ 'Sf| -1

rkZpHg,cont(GK,S7 ZP) = rkszfc;lZ(GK»S’ Zp(l)) = O (q # 17 2)3

I“kz
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hence

Z(_l)q rkszg,(:orlt(GKﬁ? ZP) =7 +7r2= Z rkZpHcOont(Gm ZP)’
q v]oo

b

in line with Theorem 5.3.6.

9.2.2. Write K, = |J K, as a union of finite extensions of K. Let S, be the set of
all primes of K, above S. If K, C Kg and wg € Sg lies above v, € S, then the
corresponding local Brauer groups are related by

Br((Ka)vu) o Br((K@)w/,) BI‘((KQ)U(‘) S Br((Kﬁ)wﬁ)

vy, MV g vy, llllvwﬁ

Q/Z Naf Q/Z Q/Z AL Q/Z,
where nas = [(Kg)uw, : (Ka)v,|. Put

E, = 0%, s, ®Zy, A, =Pic(Og,s,)p™]

! . / ! . ! ! . /
Eoo:h_%gEa’ Aoozl_l(__>1¥n‘4(x7 Xoo:Lla_mAa
It is well-known that X/ and Dx(AL) are torsion A-modules of finite type ([Grel,
proof of Thm. 1]).
Applying (9.2.1.1)-(9.2.1.2) to each K, and using the above description of the

transition maps for the local Brauer groups, we obtain the following exact sequences
(and isomorphisms):

(9.2.2.1) H'(Ks/Keo,Qp/Zp(1)) = 0 (i>2)
HO(KS/KOCH Q,/Zy(1)) — pp (Koo)
0— E_ ©®Qp/Z, — H' (Ks/Ke,Qp/Zp(1)) — AL, — 0
(

H*(Ks/Koo, Qp/Zp(1)) == @D Da(A).
1YESI

(9.2.2.2) Hi(Koo/K,Zy(1) = 0 (i #1,2)
Hi\ (Koo / K, Zy(1)) = lim E,

0— X/, — HE(Kw/K,Z,(1)) — P Ay — Z, — 0,
UGSf

where I, C I' is the decomposition group of any prime v, of K. above v, and
A, = Z,[T'/T,]. In particular, the A-module
(9.2.2.3) Dp(H*(Ks/Koso, Qp/Zp(1)))

= D A B (Koo / K Zy(1)/HEy (Koo / K Zp (1) ors

veSy
ry=0
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is free and
9.2.2.4 0 — X' — H2 (Koo/K,Z,(1))tors — Ay —Z, — 0
[s] Iw P P

'ueSf
L'y #0

is an exact sequence of torsion A-modules.

9.3. Pseudo-null submodules

9.3.1. Proposition (cf. [Gre2, Prop. 5]). — If, in the notation of 9.1, H*(Ks/Kx, A) =
0, then DA(HY(Ks/Kso, A)) has no non-zero pseudo-null submodules.

Proof. —— Lemma 9.1.5 (ii) applied to T*(1) instead of T' (combined with the fact that
E°(—) is torsion-free) yields isomorphisms
DA(H' (Ks /Koo, A))tors = HZ 1y (Koo /K, T*(1))jors
2 BYHE (Koo /K, T)) = B (HE, (Koo /K, T)yo10),
where the last equality follows from
rkp H2 (Koo /K, T) = tky DA(H*(K 5/ Koo, A)) = 0.
We conclude by 9.1.3 (vi). O

9.3.2. Corollary (INg, Thm. 3.1]). — Let My, be the maximal pro-p-abelian extension
of Koo, unramified outside the primes above S. If H*(Ks/Koo, Qp/Zp) = 0 (i.e.,
if Koo satisfies the “weak Leopoldt conjecture”), then Gal(Mso/Koo) has no non-zero
pseudo-null submodules.

Proof. — We have
DA(Gal(Moo/Kroo)) — Hl(KS/Kom Qp/zp)ll

(the involution ¢ appears, because of different sign conventions for the I'- and A- action
on Di(—)). Apply Proposition 9.3.1 with 7' = Z,,. |

9.3.3. Proposition. — Dp(AL_) has no non-zero pseudo-null submodules.
Proof. — By (9.2.2.1), Dy (AL,) is contained in
DA(HI(KS/KOO’ QI)/ZP(I)))tOYS — ch,IW(KOO/K7 ZP):ors
> B (Hiy (Koo /K, Zp(1))),

where the last isomorphism follows from the spectral sequence (9.1.4.2) for T’ = Z,,. As
the quotient H2 (Koo /K, Zp(1))/HE (Koo/ K, Zp(1))tors is free over A (by (9.2.2.3)),
it follows that

B! (HIZW(KOO/K’ Zp(l))) =E! (lew(KOO/K, Zp(l))tor5)§
we again conclude by 9.1.3 (vi). d
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9.3.4. Greenberg ([Gre6, Thm. 2]) recently proved the following generalization of
Proposition 9.3.1 (and of Lemma 9.1.5(iii)): denote, using the notation of 9.2.2,

IH](KOCHA) = Ker<H7(KS/KOO’A) - @ Hii)c,u(KOOVA)>

vESy

Hj

loc,v

(Koo, A) = lim @ H (G, A) = HI (G, Fr(A))

Vo |V

HI}W((KOO/K)”7T) = ll_III @ Hg()rlt(Gl’(y7T) = Hgont(GU’“ng‘(T))'
* Ve |V

Then the A-module D (II%(K 4, A)) is reflexive; furthermore, if I*(Ky, A) = 0,
then Dy(H'(Ks/Kox,A)) has no non-zero pseudo-null submodules. We present
in 9.3.5-9.3.7 below an alternative proof of Greenberg’s result.

9.3.5. Lemma
(i) The sequence

0— mz(KOO7A) - HQ(KS/KOWA) - @ Hl%)c,v(KoovA) —0

vESy
s exact.
(if) For each v € Sy, the Pontrjagin dual of Hﬁ)(w(Koo, A) is a free A-module of
rank
0, Iy #0
“ ko HY(G,, T*(1)), Ty = 0.

(iii) The composite map (induced by the isomorphism from the proof of
Lemma 9.1.5 (iii))

Hi, (Koo/ K. T) — E°(E°(H{, (Koo /K, T)))
= EY(DA(H?(Ks /Koo, A))) — @D E°(Da(Hiye (Koo, A))) — A"
roch

(where v = s, Uv) is surjective.

(iv) The sequence obtained by applying E° o Da to the exact sequence from (i) is
exact.
Proof

(i), (ii) The Poitou-Tate exact sequence 5.1.6 yields, in the limit over all finite
subextensions K, /K of K /K, an exact sequence

0 — I*(Ks, A) — H*(K5/K, A)

o @D HE (Ko, A) — Da (HY, (Koo K, T (1)) — 0;
'UESf
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the A-module H?, (K. /K,T*(1)) vanishes, by (the proof of) Lemma 9.1.5(i). The
same argument also shows that the A-module Dy(HY . (Koo, A)) = HY (Koo/K)w,
T*(1))* vanishes if T, # 0. If T, = 0, then H ((Koo/K),, T*(1)) = Zr(H(G,,
T+(1))) is a free A-module of rank w,.

(iii) After applying ¢ o Dy, it is enough to show that the map

@D 10Dy o B (Fr(HO(G,. T*(1)))'

'ueSf
I'y=0

=P Fr(20(H(G,.T* (1)) = P Fr(H(Gy, A"(1))aiv)

'UCSf ’UESf
[y=0 Cy=0
R @ HI((J)C,'l)(KOO’A*(]-)) —>H<}(K5/K007A*(1))
vesy
ry=0

(where we have used Lemma 8.4.6.4 for the first equality) is injective; this follows
from the exact sequence

0— H(Kg/Koo, A"(1)) — @D Hpye (Koo, A"(1)) — H}(Ks/ Koo, A*(1))
’UESf
and the fact that there exists v € Sy for which I'y, # 0.
(iv) We must show that the map
E°(Dp(H*(Ks/Koo, A)))
— @ E°(Da(HR, (Koo, A) = @ E°(Da(Hiye,, (Koo, A)))
vES) vesy

Py=0

is surjective; this follows from (iii). |

9.3.6. Proposition ([Gre6, Thm. 2]). — The A-module DA(IH2(KOO, A)) is reflexive (in
particular, I*(Ko, A) = 0 <= corky HI*(K, A) =0).

Proof. — By Lemma 9.3.5, there is an exact sequence
(9.3.6.1) 0 — A" — DA(H*(Ks/ Koo, A)) — DA(IIT* (Ko, A)) — 0;
moreover, the sequence obtained by applying E° to (9.3.6.1)

(9.3.6.2) 0 — E°(Dp(II* (Ko, A)))
— E°(DA(H*(Ks/Kso, A))) — E°(A*) — 0

is also exact. As E9(A%) = A" is a free A-module, it follows that the double dual
of (9.3.6.1)

0 — E°(E°(A")) — E°(E"(DA(H?*(Ks/Kx, A))))
— E°(E°(DA(III* (K, A)))) — 0
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is also exact. As both A* and Dp(H?(Kg/K o, A)) are reflexive (by Lemma 9.1.5 (iii)),
we deduce from the Snake Lemma that the third module D (IIT*(K 4, A)) is also
reflexive. O

9.3.7. Proposition. — If II*(K .., A) = 0, then:

(1) HE(Koo/ K, T)/HE (Koo/K, T )tors — A“ is a free A-module of rank u.

(ii) There is an isomorphism of A-modules (Dp(H'(Kg/Koo, A)))
El (Hizw(KOO/K* T)tors) .

(iii) (|Gre6, Thm.2]) The A-module DA(H'(Ks/K o, A)) has no non-zero pseudo-
null submodules.

tors

Proof
(i) The assumption II?(K .., A) = 0 implies, thanks to Lemma 9.3.5 (i) (ii), that
rka Hiy (Koo /K, T) = corky H*(Ks/Kx, A) = Y corky H, (Koo, A) = u.
’UESf

According to Lemma 9.3.5(iii), there exists a surjection H? (Koo/K,T) — AY; its
kernel must be equal to H IQW(KOo /K, T)tors-
(i) Tt follows from Lemma 9.1.5 (ii) that

(DA(H'(Ks/Kx. A))), = HZ 1 (Kxo/K. T)i s = E'(Hf (Koo /K, T)).

tors c,Iw tors

On the other hand, (i) implies that E'(HZ (K~ /K. T)) = EY(HE, (Koo /K, T)tors)-
(iii) This follows from (ii), by 9.1.3(vi). O

9.4. Relating A’ and X/
9.4.1. It is generally expected that X/, and Dj(AL) are isomorphic in (xMod)/

oo
(pseudo-null); in particular, their characteristic power series should coincide.

It is known that D (A’_) is isomorphic to E'(X/,) in (\Mod)/(pseudo-null) (resp.,
in (AMod)), provided r =1 ([Iw, Thm. 11]) (resp., [S¢| =1 ([McCa2, Thm. §])).
In this section we define a canonical homomorphism of A-modules

o X[, — ENDA(AL)),
show that Coker(«’) is very close to being pseudo-null and that
chary (Da(AL)) | chara(XL).
9.4.2. Denote by F*H[} (K/K,Z,(1)) the filtration induced by the spectral se-
quence (9.1.4.1) for T' = Z,(1):
Ey’ = E'(Da(H)(Ks /Koo, Qu/Z,(1)))) = Hy,” (Koo /K., Zy(1)).
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As codimy (supp(E47)) > i and
B2 0, | i#0
A-free, =0
by (9.2.2.1), we have F'HE (Koo /K, Zp(1)) = HE (Koo /K, Zp(1))tors-

271

The terms E4° can be determined from Lemma 9.1.6: writing ppe (Koo) = ppm

with m € NU {oco} and
0, m=o0
E =
1, m<oo,

gio_ [0 itrte
2 Z,/p"Z,(1), i=r+¢

then

(with the convention Z,/p>Z, = Z,). The spectral sequence E, induces a map

d: lew(KOO/Ka Zp(l))tors - E‘;Yl

with pseudo-null kernel and cokernel. More precisely, the previous discussion and the

exact sequence
< ) dit 4
Eé’o - lew(KOO/Kv Zz)(l))tors—*EQLl"Z_’Eg’o
imply the following result (cf. [McCa2, Thm. 13]).

9.4.3. Lemma

(i) If r+¢e # 2,3, then § is an isomorphism.
(i) If r+¢e=2 (resp., r+¢ = 3), then there is an exact sequence

Zy /0" Zp(1) — HE (KooK, Zp(1))iora—— By — 0
resp.,
: (S T
00— HIZW(KOO/K> ZP(I))t()rs—>E21’l — Zp/p Zp<1).
9.4.4. We shall use the following notation:
Y = Dr(EL ® Qp/Zyp)
Sur = {v € Sy | v is unramified in K /K}

Zyy = @ Av

vESur
Iy #0
ZzKer( @ A, ——>Zp>.
veSFT, #0

The canonical projection Z — Z,,, is surjective; denote its kernel by Z;am.
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9.4.5. The map ¢ is a bridge between two exact sequences:
0 - Xéo LA wa(Kw/Kv Zp(l))tors z—l’ Z —0
(9.4.5.1) o la
E2(Y) — E'(Da(Al)) < Eyt — B(Y) —0
The top (resp., bottom) row is equal to (9.2.2.4) (resp., to E*oDj applied to (9.2.2.1)).
We define

o : Xty — EM(DA(AL)

to be the composite map o/ = jod oi.
Conjecturally, both Ker(a’) and Coker(a’) are pseudo-null. The morphism § is
invertible in the category (4 Mod)/(pseudo-null), hence defines a morphism

5! .
v El(Y) - E§’1—>H12W(KOO/A, Zy(1))tors — Z
in the latter category. The statement that Ker(a') is pseudo-null (resp., Coker(«') is

pseudo-null) is equivalent to Ker(y) =0 (resp., Coker(v)=0) in (AMod)/(pseudo-null).

9.4.6. Definition. - A prime ideal p € Spec(A) with ht(p) = 1 is exceptional if there
is v € Sy — Sy such that T'y, = (y,) 5 Z,and 7y, — 1 €p.

9.4.7. Proposition. — If p € Spec(A) with ht(p) = 1 is not exceptional, then
Coker(a’), = 0.

Proof. — We must show that Coker(y), = 0. The assumption on p implies that
(Zyam)p = 0, which means that it is enough to show that the composite map

Yur ¢ EI(Y)_’Y—’Z — Zur

has Coker(vy,) = 0 in (yMod)/(pseudo-null).
For each v € Sy there is a semi-local version of the spectral sequence F,., namely

(9.4.7.1) "EY = E (m( P B ((Koo)rvx,Qp/Zp(l))»

Voo |U

= Hii:j((KOO/K)1Jv Zp(l))v
where we denote

@ Hj((KOO)vx» _) = h%}@ Hj((Ka)'uuv_)-

Voo |V Vo |V

AsT, 5 Z;(“) with 0 < r(v) < r, the ring A, is a quotient of A by a regular sequence
of length r(v). Asin (9.2.2.1) and 9.4.2, we have

UEi‘Q _p\,_) 0, i # 0 or FU 7é 0
? A, i=0.T,=0.
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The invariant maps inv,_ for v, | v together with a choice of v | v induce an
isomorphism

~

HIQW((KOO/K>U7 Z[J(l)) I Avv

which implies that
H{\ (Koo /K)u, Zp(1)), T #0
FYHE (Koo /K )y, Zp(1)) = {0 I P S

As in the global case, we have ppe ((Koo)v,,) = Hpmen for some m(v) € N U {oo}.
Put

then
g {0 .
Z,/p"WZ,[0/T,],  i=r()+e).
The exact sequence

7;E§,0 . FIH%W((Koo/K)mZp(l)) UE] 1 d UEQ}O

implies that, in the case r(v) = 1, §, is an isomorphism in (AMod)/(pseudo-null).
Fix v € Sy;. For each K, the valuations v, | v define surjective maps

@ H (y Vo) Q[)/Zp (U(’) @ Qp/zzn

Vo v Vo v

which induce in the limit, after dualization, injective maps

By Ay — DA(@Hl((KG)vquP/ZP(l))> .

Vo |V

In the global situation, the composite map

Bl ©Q)/Z, — P P H (K)o, Q/Z,(1)" D P Q/Z,

VESur va |V VESur v |v
is also surjective, giving rise to an injective map
3 P AL @b H(( z Y
A Ka)va: Qp/Zp(1)) .
VESur VESur Va v
The induced maps on E' sit in the following commutative diagram:

HE (Koo /K. Zy()iors — @ esy FUHE((Koo/K)u Zp(1) = @ sesue A = Zun

J(5 1(5”)
1

) vppl,
L, - @ffgo Ezl
. Je
EY(Y) zo) D es ' (A)

v #0
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For each v € Sy, the condition I', # 0 implies that r(v) = 1; thus 4, is an iso-
morphism. We know that Ker(d) and Coker(d) are pseudo-null. This is also true for
Coker(E'(f)), by the injectivity of 3, hence also for Coker(E'(3,)). As E'(A,) = A,
(by 9.1.3(ix)), it follows that the composite map E'(f,) o (&,) has pseudo-null ker-
nel and cokernel. Putting all this together, we see that the composite morphism
in (AMod)/(pseudo-null)

ENY) — Ey' " HE (Koo | K, Zp(1))iors — @D F'HE (Koo/K,Zy(1)) = Zur,

2
which is equal to 7,r, has Coker(+y,,) = 0. This proves the claim. O
9.4.8. Corollary. — If, for every v € Sy ramified in K~ /K, we have T, = Z;(U) with
r(v) > 2, then the map
o X! — EY(Dx(AL))
has pseudo-null cokernel.

Proof. — Under these assumptions, Z;., is pseudo-null and there are no exceptional
p € Spec(A). O

9.4.9. Ranks

9.4.9.1. Definition. Let A be a Noetherian domain with fraction field F', and M an
A-module of finite type. The rank of M is

tka(M) = dimp(M @4 F).
If rka (M) = 0 and p € Spec(A) has height ht(p) = 1, put
ep(M) =L, (M,) < 0.
9.4.9.2. Let I' =T x I/, where 'y = Z,, and I" = Z;_l (r > 1). Fix a topological

generator vy € o; then A = A'[[yo — 1], where A’ = Z,[I"]. For each n > 0, put
Wn = 'ygn, Up = Wn/wn—1 (where w_; = 1). Then each (v,) is a prime ideal in A with

tka (A/vnA) = p(p™).
If p € Spec(A) and ht(p) = 1, then
17 p:(l/i)v Oglgn

ep(Zp[T/p"To]) = ep(A/wnh) = .
0, otherwise.

9.4.9.3. Lemma. — Let M be a A-module of finite type. For each n > 0 we have
k7L
(Miors) ) == D A/ (™) (m(n,i) > 1).

i=1
Then, for each n > 0,
(1) 0<ky < e(un)(MtOTS)‘
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(ii) szo(l/j)kj divides chary(Miors)-
(i) rka (M /wn M) = p" rka (M) + Y 7_o k; o(p?).
(iv) rka (M /w, M) = p" tka (M) + O(1) for n — oo.

Proof

(i), (ii) chary(Miors) is divisible by [] u]e»", where e; = e, (Miors) = Zf’zl m(j,4) >
k; = 0.

(iii) Fix n > 0. In (AMod)/(pseudo-null), M is isomorphic to A* @ M; & Ms, where
a =rka(M), My, Mz are A-torsion,

n kj
My =P P A/

7=0 i=1
and supp(Ms) N {vo,...,vn} = @. Then
rka (M Jwn M) =Y kyrkar (AvA) = Y kj(p)),
j=0

Jj=0
rka (Ma/wa Ma) =0, ko (A" /w,A%) = pTa.

The equality (iii) follows. Finally, (iv) is an immediate consequence of (iii). O

9.4.9.4. Proposition. — Let M be a A-module of finite type, where A = Z,[T'], T’ = Z;,
r > 1. Assume that we are given a finite collection {I’, C T | v € S’} of non-zero
closed subgroups of I', an integer a > 0 and a real number C' > 0 such that

<O Y [T\I/T|

veS’

l"kzp(M[‘ry) — a[P : Fa]

holds for every open subgroup Iy, of I'. Then rkx (M) = a.

Proof. — Induction on r. If r = 1, then Ty, = p"T', [ : Ty] = p™ and [T, \I'/T,| =
O(1) (for each v € S’), hence rkz (Mynr) = p"a + O(1); the result then follows from
Lemma 9.4.9.3(iv).

Assume that r > 1 and the statement has been proved for » — 1. Choose a decom-
position I' = I’y x TV as in 9.4.9.2 such that we have, for all v € S’, T, ¢ I'g. Fix
n > 0 and put M’ = Mynr,, viewed as a A’-module. For every open subgroup I
of TV we have

\rkzp(M{a%) —ap"[I" : ]| = |rkg, (Mpnroxry,) = afl' : (p"To x T)
<C Y ((P"To\Lo) x (TH\IM)/To| < p"C Y [TH\I/TY

veSs’ veS’
where T, = Im(I', < I' — I'/Ty = I'") # 0. The induction hypothesis implies that
rkar (M /wn, M) = rka (M) = ap™, hence rky (M) = a, by Lemma 9.4.9.3 (iv). O
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9.4.9.5. Proposition. — Let A = Z,[T'] = A'[yo — 1] be as in 9.4.9.2. Assume that M
is a A-module of finite type, b > 0 an integer, {I', CT' | v € S’} a finite set of closed
subgroups of T and {X, | v € S’} a collection of (right) T,-sets such that

() rkz, (Mp,) = b[[: Ta] + D [(X, x (Ta\D)/T| = 1

veS’
for each open subgroup 'y, of T'. Put

a=b+ > |X,.

ve S’
Fp=0

Then
(i) For each n >0,

-1, r=1
rka/ (M /w, M) = p"a + Z (Xy x (p"To\l'0))/T| +
ves! 0, r> 1.
“#anl‘u

(ii) rka(M) = a.
(iii) If | X,| =1 for each v € S’, then
rka (M /w, M) = p™a + Z kip(p’) (vn = 0),
j=0
where
-1, r=1,n=0

0, otherwise,

kp — k7n,+1 = |{U es’ | 'y €Ty, [FO : F’v] :P"H + {

and charp(Miors) is divisible by ]_[,,120(1/71)"’"

Proof. — Induction on r. If r =1, then I = T'y, A’ = Z,,, p"T'c =T, is open in T,
[[:T,] =p™ and M/w,M = My, hence (i) is just (x). For v € S’ we have

a?

v " v Xv 3 F’u =0
o G0 (" T\D))/T| {| |
n—o00 pr

0, Ly #0;
applying Lemma 9.4.9.3(iv) gives (ii). The statement (iii) follows from (i) and
Lemma 9.4.9.3 (iii).

Assume that r > 1 and the statement holds for 7 — 1. Fix n > 0 and put M’
M/w, M = Mpnr,, viewed as a A’-module. The assumption () 1mphes that we have,
for every open subgroup F’B of TV,

I'kZp(Mll“;,) = rkz, (Mpnr,xr,) = ap™ [I7: T] + Z ag(v) —1
ves’
Iy #0

with
ag(v) = [(Xy x (p"To\Lo) x (TZ\I))/T,].
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Fix v € S’ such that ', # 0. If I';, C Iy, then [y : I',] < 0o and
ag(v) = [I": T - |(Xo x (p"To\Lo))/Tu|.
If 'y, Z Ty, then T, := Im(T', — I' — T'/Tg = I") # 0 and
ag(v) < p"| Xy [LH\I/To|.

Applying Proposition 9.4.9.4 to M and A, we obtain (i). The statements (ii) and (iii)
follow from (i) by the same argument as in the case r = 1. O

9.4.9.6. In the remainder of Sect. 9.4.9, let O be as in 9.1.1, I' = Z7 (r > 1) and
A =O0[I'] = O[Xy,...,X,] (X; =~ —1). For each open subgroup I', C T, set
Jo = Ker (A — O[I'/T4]);

then
A/ Jo =O[l/T,], rko(A/Ja) = (T :Ty).

9.4.9.7. Proposition. Let Ty, C T be an open subgroup. For each A-module of finite
type M, define

Xa(M) =Y "(=1)'tko Tor} (M, A/ Ja).
i=0
(i) The integer xo(M) is well-defined.
(ii) If 0 = M’ — M — M" — 0 is an ezact sequence of A-modules of finite type,
then xo(M) = Xo (M) + xao(M").
(iii) If f € A — {0}, then xo(A/fA) =0.
() Xa(A) = (I': T).
(v) xXa(M) =1kpa(M) (T : Ty,), for each A-module of finite type M.

Proof. — There exists a set of topological generators v1,...,7,. of I' and integers
ni,...,n, = 0such that T, is topologically generated by 7 ' e 7,"3"". This implies
that the ideal J, is generated by the regular sequence x = (x1,...,x,), where

i L
x; =P —1; thus M®xA/J, is represented by the Koszul complex K3 (M, x)[r].
The statements (i) and (ii) follow from this description of Tor(M,A/J,) =
H™(Kx(M,x)), while (iii) is a consequence of (ii), applied to the exact sequence
The formula xo(A) = tko (A/J,) = (T : T'y) is immediate. In order to prove (v), note
that there exists a filtration

M=MyDODM D---DM =0

by A-submodules such that each graded quotient M,/M;, is isomorphic to A or
A/ fiN (f; € A—{0}). Applying (ii) (iv), we deduce that

Xo(M) = ixa(]wj/]%jﬂ) =(T:T,) irkA(Mj/MjH) =(T:T,)rka(M). O
§=0 j=0
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9.4.9.8. Proposition. — Let M be a A-module of finite type.
(i) If tka(M) =0, then
. rtko(Mr,)
lim ———2= = (.
F:r_rzo (T:Ty) 0
(ii) For each i > 1,
_ tko Tor}(M,A/J,)
1“1;130 (T':Ty) =0
. tko(Mr,)
1 153
(i) P20 (T':Ty)

Above, I, runs through all open subgroups of T".

= rka (M).

Proof. — We apply dévissage in the following form: if
0— M — M-—M'—0

is an exact sequence such that (i) (resp., (ii)) holds for M’ and M", then it also holds
for M.

(i) If M is O-torsion, then (i) holds for trivial reasons. By dévissage, we can
replace M by M/Mo-tors, hence assume that M has no O-torsion. Fix a uniformizing
element 7 € O and set k = O /7O, A = A/wA = k[['], M = M /7M. The assumption
Mo-tors = 0 implies that rk5(M) = 0; as rko (My,) < dimg(Mr,), it is enough to

show that

dimy, (Ml ) 2o

n
ralo (T':Ty)

There exists a filtration
M:N[)DNl D+ DNy =0
by A-submodules such that each graded quotient N;/N;;; is isomorphic to A/g;A
(g; € A — {0}). By dévissage, it is sufficient to consider the case M = A/gA (g €
A—{0}). Wehave A = k[X,..., X,] (X; = v;—1). After renumbering the topological
generators vy; of I', we can assume that
C := dimy (K/(g, Xo, ... ,X,r)) = dimy, (M/(Xg, . ,X,-)M) < 0.

An induction argument then shows that
(Vn; > 1) dimg (M/(X7, ..., X )M)
<dimy (M/(X52,..., X )M) < C(ng — 1)+ (n, — 1) < Cny -+ - n,.

If T, is topologically generated by fyfai (i=1,...,7), then J,A = (Xfa1 LX)

and o _
i dimg (Mr,) _ dimy (M /J, M) - C
r.—o (I':Ty) parttar p

b

which proves (i).
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(ii) Fix ¢ > 1. Filter M as in the proof of Proposition 9.4.9.7 (v); by dévissage, we
reduce the proof of (ii) to the case M = Aor M = A/fA (f e A—{0}). f M =Aor
(M = A/fA and i > 2), then Tor®(M,A/J,) = 0. In the remaining case M = A/fA
and i = 1, the exact sequence

0 — Tor™(M,A/Ja) — AJJa—toM)J0 — Mr, — 0
implies that rke Tor® (M, A/J,) = rko (Mr, ), hence (i) follows from (i).

(iii) As Mp, = M @5 A/J, = Tory (M, A/J,), the statement follows from (ii) and

Proposition 9.4.9.7 (v). ]

9.4.9.9. Note that the statements of Proposition 9.4.9.4 and Proposition 9.4.9.5 (ii)
follow directly from Proposition 9.4.9.8 (iii).

9.4.10. We now return to the extension K /K and the A-modules
Y = DA(EcLo ® Qp/zp)

Z=Ker | P A — 2,
uESf
Iy #0

For a number field L, we use the standard notation 71 (L) (resp., r2(L)) for the number
of real (resp., complex) primes of L.
9.4.11. Proposition
(i) For every open subgroup ', C T, the canonical map
io : B, © Qp/Zy — (Bl © Qp/Zyp)
has finite kernel and cokernel.

(ii) rka(Y) =r1(K) +ro(K) 4+ {v € Sy | T, = 0}].
(iii) We have the divisibility of characteristic power series

charp (Z) | charp (Yiors)-
Proof

(i) The following diagram is commutative and has exact rows and columns:

0
H(Ta, pipee (Koo))
0 — E,©Qp/Z, — H'(Ks/Ka,Qp/Zy(1) — A, — 0

la

0 — (BL®Qp/Zy)" — H'(Ks/Kw,Qp/Zy(1))"" — (AL)™

H2(Fav pp= (Koo))
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By the Snake Lemma (and the finiteness of A!), it is enough to show that
HI(Ty, pip= (Koo)) is finite for j = 1,2. This is clear if ppe € Koo I pipe C Koo,
then the cyclotomic character

Xo i Ta = T — Autg, (up=) = Z,

has infinite image Im () — Z,. The Hochschild-Serre spectral sequence
E;,J = ( /ch ( s IU/P"“)) = Hi+j(r(¥7 /J'P:’“)
for T/, = Ker(xa) C I'y degenerates into exact sequences
0— HJ 1( on:“ ) Lo /I, — HJI(FUH:“‘P%) - Hj(riwll“l) )F"/Fy — 0,
in which
HI (), ppe ) = (Np*)@(yy;])v
with T, /T, acting via Xx,. This implies that the groups
HI (Do, iypee) = (e (K0)) (3 7)
are finite for all j > 0.
(ii) The statement (i) together with Dirichlet’s theorem on units imply that

(9.4.11.1) 1kz, (V) = tkz (O 5.) = (r (K)+m2(K))[T : Ta]+ > [Ta\D/Ty |~
vESy

holds for every open subgroup Iy, of T (note that r;(K,) = [K, : K| r;(K), thanks
to the assumption (P)); apply Proposition 9.4.9.5 (ii).

(iii) Put 8’ = {v e Sy [Ty = Zp}; for v € S’ let

s .= 1N (T, ®z, Qp) CI'®z, Q)

be the saturation of T, in I'. Put S” = {I** | v € S’} and let 7 : S” — S” be the
map 7(v) = I'2t,

Fix Ty € §”; for every v € 7' (T'y) we have I', = p™(“)T for suitable n(v) > 0.
Then

1, if r>1
cha,rA(Z) = H H w"(/”)(l_‘()) . { ) N
ToeS"” ver—1(Ty) ﬁ? if I' = <FY> — Z;D>

where w, ([y) = ’yg” — 1, for a fixed topological generator vy of I'g. The desired
divisibility

chary (Z) | charp (Yiors)
then follows from Proposition 9.4.9.5 (iii) and the formula (9.4.11.1). O

9.4.12. Proposition. — The characteristic power series chary (X)) is divisible by
chary (E*(Da(AL,))) = chara(Da(AL,)).

ASTERISQUE 310



9.5. RELATING A, AND X 281

Proof. — The map ¢ in the diagram (9.4.5.1) is an isomorphism in (sxMod)/
(pseudo-null), hence
chary (X2, chara(Z) = chara(E'(Y)) chara (E' (DA (AL,)))

= charp (Yiors) chary (Da(AL)).
However, chary (Z) divides chara (Yiors), by Proposition 9.4.11 (iii). O

5. Relating A, and X
9.5.1. For every finite subextension K, /K of K /K, put
E,=0% ®17, Ao = Pic(Ok, ) [p™]
and let
Ex = lia_n;Ea, Ao = li(_ir)lAa, Xoo = li%gnAa.

In the case when r = 1, Iwasawa ([Iw, Thm. 11]) showed that there is a surjective
morphism of A-modules
Ase — DA(B' (X)),

with pseudo-null kernel.
In this section we construct a canonical morphism in (,Mod)/(pseudo-null)

a: Xoo — EHDA(A))
and show that Coker(«) is close to zero in (A Mod)/(pseudo-null).
9.5.2. From now on, let Sy = {v | p}. We first relate Pic(Og)[p™] to ﬁ}(GK}S,
Qp/Z,(1); A(Q,/Z,(1))) for appropriate local conditions A(Q,/Zy(1)).

For each v | p the valuation v defines a morphism of complexes

T<1Coont (Go, Z/p"Z(1))

— HY(Gy 2/p"2(V)[-1) = K} © Z/p 21" Z/p" 2]~ 1];

put
U (Z/p"Z(1)) = Cone (t<1Clone (G, Z/p"Z(1)) 2247,/ p Z[1]) [-1].
This complex is equipped with a canonical morphism
iy U (Z/p"Z(1)) — Clon(Go, Z/p"Z(1));
put
U, (Z/p"Z(1)) = Cone(—i).

The Pontrjagin dual of U, (Z/p™Z(1)) is quasi-isomorphic to C¢,,(Gv /I, Z/p"Z)[2],
hence to the complex

[Z/p”Z Foot Z/p"Z] {Z/p"ZLZ/p"Z} = Z/p"Z[2) & Z/p"Z[1]
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(in degrees —2, —1). It follows that U, (Z/p"Z(1)) is quasi-isomorphic to
Z/p"Z|-2|® Z/p"Z[-1].
Passing to the inductive (resp., projective) limit with respect to n, we obtain local
conditions A(Qp/Zyp(1)) (resp., A(Zy(1))). The exact triangles
RI;(Gr.s, X (1)) — Rleon (G5, X (1))
—’@ 2l® X[-1]) (X =2,,Q,/Zy)

v|p
together with (9.2.1.1)-(9.2.1.2) give
(9.5.2.1) Hf(GK 5. Qp/Zp(1

(1)) = pp= (K)
0— Ok ®Qp/Z, — H}Gr,s.Qp/Zy(

(

(

1
H¥(Gre.s,Qp/Zy(1
Hf(GK b?Qp/Zp 1

— Qy/Z,

)

)) — Pic(Ok)[p™] — 0
)

) = (i #0,1,3),
resp.,

(9.5.2.2) H}(Gk.s,2,(1

=0 (i#1,2,3).

9.5.3. The corresponding local conditions in the limit over K, /K are equal to
U, (Fr(Qp/Zp(1)))
= Cone (chgom (G, Fr(Qy/Z,(1))) 21 m@Qp/ZP ])[ 1]

Ve |V

resp.,

UJ(%(ZM)))=Cone<fglc;om<av,%<z D=2 i () 2, - )

Vo |V

For K, C Kg, the transition maps

& (Qp/zﬁ @ Qp/Zp> e, @( @ zﬁzp)

Vo |V wg|va Vol \wglva
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are given by the ramification indices e(wgs | vo) (resp., the inertia degrees f(wg | va)).
It follows that

Lo ~ 40 I(I'y) #0
H' (U, (Fr(Qp/Zy(1)) —hm@Q”/Z {DA(AU), I(T,) =0

Ve |V

HY U, (Fr(2Z !_@z AR

Vo |V

{o, [y : I(Ty)] =
Ao, [0y I(T,)] <

Combined with the functoriality of the local Brauer groups (cf. 9.2.2), this gives
isomorphisms in D (yMod)

DA(A)[_1]®DA(A)[_2]7 r,=0

(9.5.3.1) Uy (Fr(Qp/Zp(1))) > { Da(A,)[—1], Ly, #0=I(T,)
0, I(I',) #0
resp.,
i M@ [P ()] <o
(9.5.3.2) U, (Zr(Zp(1))) {Av[—2], T, - I(Ty)] =

9.5.4. For each v | p there are canonical isomorphisms in D (4 Mod)
(9.5.4.1) DA(Ny) — Ay[=7(v)]
P (Ay) = Da(Ay)[r(v)],
where ', = Z;(v). Put
Sex = {v | p : 7(v) = 1, v is ramified in Koo /K}.

9.5.5. Lemma

(1) Ifv is unramified in Koo/ K, then there is a canonical isomorphism in D(,Mod)

72Uy (Zr(Z,(1)))) — Da(Uy (Fr(Qp/Zp(1))))-

(i1) If v is ramified in Ks/K and r(v) > 1, then there are isomorphisms in
D((AMod)/(pseudo-null))

(U, (Fr(Zp(1)))) — Da(Uy (Fr(Qp/Zp(1)))) — 0.
(iii) If v € Sex, then there are isomorphisms in D(xMod)
Z:(U; (Fr(Z,(1)))) — A @ A[1], Da(Uy (Fr(Qp/Zy(1)))) — 0.

Proof. — This follows from (9.5.3.1)-(9.5.3.2), (9.5.4.1) and the fact that A, is
pseudo-null if r(v) > 1. d
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9.5.6. The Selmer complexes ﬁf‘f(KS/Koc, Q,/Z,(1)) (resp., ﬁf-,IW(KOO/K,
Z,(1))) represented by C3(Gk s, Fr(Qp/Zp(1)); A) (resp., by C3(G ks, 7 r(Zy(1));
A)) — for the local conditions defined in 9.5.3 — have cohomology equal to

Hj(Ks/ Koo, Qp/Zp(1)) = ha_I_Qﬁf(GK”,SMQp/ZP(l))
Hj (Koo / K, Zy (1)) = lim (G, 5 Zp(1)):
It follows from (9.5.2.1)-(9.5.2.2) that we have
(9.5.6.1) H)(K /Koo, Qp/Zp(1)) — pp= (Kso)
0 — Bo — HHKs/Ko,Qp/Zp(1)) — A — 0
Hy(Ks/Ko,Qp/Zp(1)) = 0 (i>1),

resp.,
(9.5.6.2) H} (Koo /K, Zy (1)) — lim F,

0} (Koo /K, Zp(1)) = Xo

H} 1 (Koo /K. Z (1)) = Z,

Hy o (Koo/K,Zy(1)) = 0 (i #1,2,3).
9.5.7. The exact triangles in D(,Mod)

/RT‘/(K’S/Koov Q,/Z,(1)) — RIcont (GK,& FI«(QI)/ZP“)))
— DU, (Fr(Qy/Z,(1))

v|p

RFf IW(KOO/K Zp(l)) — RFCont(GK 3771“( @U /F(Zp(l)))

v|p
together with the canonical isomorphisms
Dy (chont (GK,Sa FF(Q[}/Zp(l)))) — Dy ((I)A (RFcont (GR S 7/ F( 1)))))
j (RFCont (GK S ,fr(z (1))))
and Lemma 9.5.5 yield an exact triangle in D ((xMod)/(pseudo-null))

DA (RTf(Ks/ Koo, Qp/Z(1))) — 25 (RT g 10( Koo/ K, Zy (1))

— D (o).

VE Sex

Applying 25 we obtain another exact triangle in D((yMod)/(pseudo-null))

(9.5.7.1) R 1w (Koo /K, Zy(1)) — W — P (A[-1]& A [-2)),
VE Sex
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in which
W =7 (Da(RL(Ks /Koo, Qp/Zy(1))))-
9.5.8. The hyper-cohomology spectral sequence
Ey! = B (Da(H}(Ks/ Koo, Qp/Zy(1))) = H™ (W)
satisfies N
Ey) =0 (j#0,1), codimy (supp(Ey”)) = i.

In particular, we have isomorphisms in (yMod)/(pseudo-null)

HI(W) = 0 (j#0,1,2)

H?*(W) = EY
Combining F%(9.5.6.1) with the cohomology sequence of the triangle (9.5.7.1), we
obtain a diagram in (AMod)/(pseudo-null)

(9.5.8.1)
0

EY(Dx (B © Qp/Zp))

@ A — Xoo — H2(W) - @1165(\,( AU - Zl"__)o

VESex TV

El(DA(Aoo))

|

0
with exact row and column. This diagram defines a morphism in (, Mod)/(pseudo-null)
a: Xoo — H*(W) — EY(Dp(Awx)).

9.5.9. Proposition. — If p € Spec(A) with ht(p) = 1 is not exceptional (in the sense
of 9.4.6), then Coker(a), = 0.

Proof. — The assumption on p implies that
<@M>ﬂ.
VESex P
The statement follows by localizing the diagram (9.5.8.1) at p. O

9.5.10. Corollary. — If, for every v € Sy ramified in Koo /K, we have I'y, = Z;(U) with
r(v) = 2, then the map
a: Xoo — BY(DA(Ax))

is an epimorphism in (AMod)/(pseudo-null).

SOCIETE MATHEMATIQUE DE FRANCE 2006



286 CHAPTER 9. CLASSICAL TWASAWA THEORY

Proof. — Under these assumptions there are no exceptional p € Spec(A). O

9.6. Comparison with classical Selmer groups

9.6.1. Let O, T, 7T*, A, A* beasin 9.1.4;put V=T e F, V* =T"®0 F. Assume
that we are given, for each v € ¥ = {v | p}, an F[G,]-submodule V,; C V. Put

TH=TAVF, A* =V /THcV/T=A X;=X/X; (X=TV,AveY)
and, for each v | p,
V*(1)y = Homp(V,7, F)(1), T*(1); = Homo (T;F,0)(1), A*(1)y = V*(1);/T*(1), .

These data induce Greenberg’s local conditions for X = T,V, A (and also for X =
T*(1),V*(1), A*(1)) with

Con (GU,X ) (’U S E)
U0 = oo 1 )
C(ont( IJ/I1J7X ”) ('U ex ),

where ¥/ = {v € Sy ; v {p}, hence the corresponding Selmer complexes RI #(X) and
their cohomology groups H }(X ). Greenberg [Gre2, Gre3| defined his Selmer groups
(resp., strict Selmer groups) as

SX(K) = Ker(Hc}ont(GK,SvX) @ cont IU7X @ @ (ont(IU’X >

VEX veEY!
SS“( ) Ker<Hgont(GK757 @ cont, GU’X ) D @ (()nt I'IMX))'
veEYD veX!

9.6.2. These groups satisfy the following properties: there is an exact sequence

0 — SY(K) — Sx(K) — @ Hion (Go/ Lo, (X)),

vlp
isomorphisms
S1(K) 80 F = Sv(K), S{(K) o P = SP°(K)
and canonical injective maps
Sr(K) @0 F/O — Sa(K), Si"(K) @0 F/O — S§"(K)

with finite cokernels.

9.6.3. Lemma. — For each X =T,V, A there is an ezxact sequence
O—->]?{/19(X)—>XGK——>® “—)Hf(X)—>S§(tr(K)—>O.
vlp
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Proof. — This follows from the exact triangle

ﬁ\ff(X) — RF(:ont(GK,S7X) — @ Uv_(X

UESf
and the fact that U, (X) (defined in 6.1.3) is quasi-isomorphic to Cg,,(Gv/ Iy,
H(,lont(I’WX))[_l] (resp., Cgont(vaXvA)) 1f v Tp (resp., v | p) D
9.6.4. Corollary. IfVEGx =0, then
corko (HHA)) (= dimp (H}(V))) = corko (S5 (K)) + @) dimp ((V,7)9").

vlp

corko (H}(A)) > corko (Sa(K)).

Proof. — Combine the exact sequence of Lemma 9.6.3 with the statements from 9.6.2
and the equality

dimp (HY (Gy /1o, (V,))) = dimp ((V,))CY). O

9.6.5. Let K C Ko C Kg, with I' = Gal(K/K) = Z7, (r > 1). We define
Sa(Koo) =lim Sa(Ka), SEN(Ke) = hm S (Ka),

where K,, as usual, runs through all finite subextensions of K. /K. The exact

sequence of Lemma 9.6.3 yields, in the limit, an exact sequence

(9.65.1) A%~ — PP A)T~ — Hj(Ks/Koo, A) — 53 (Koc) — 0.

v|p Voo |V

For each v | p there is an isomorphism of A,-modules

Dy, ( @ (Au)c"’“> = D((A)%=) @0 A

thus

(9.6.5.2) corkp f[}-(KS/KOO, A) = corkp S (Koo) + EB dimp ((V,7)%).
vlp
I'y=0
If we write, as usual, I', = Z;(U), then there is an isomorphism in (yMod)/
(pseudo-null)
r(v) =2
mfhv) ®O AU’ T(’U) =1

v

0,
D((A’U) )®OA —>{D((A_)G

9.6.6. Proposition. — The canonical surjective map
B HNKs/Koo, A) — S3(Ko)

has the following properties.
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(i) If (V,7)%o= =0 for all primes v | p, then

Dy (Ker(3)) ® Q = 0.

(ii) Assume that no v | p splits completely in Ko /K, and that (V, )%~ =0 for
all primes v | p s’atzsfqu r(v) = 1. Then Dy(Ker(3)) is A-pseudo-null.

(iii) If (A;)% =0 for all primes v | p, then (A7)%v= =0 for allv | p and (3 is an
'llsomorph/,,sm.

Proof. — The statements (i) and (ii) follow from the discussion in 9.6.5. As re-
gards (iii), for each v | p, N := D((A )¢ 'x) is a A,-module of finite type satisfying
Np, = D((A;)%") = 0; thus N = 0 by Nakayama’s Lemma, hence (A4;)%"

Voo —
v v

D(N) = 0. The exact sequence (9.6.5.1) then implies that Ker(3) = 0. O

9.6.7. Abelian varieties. — In the rest of 9.6 we let O = Z,, F' = Q,. Let B
be an abelian variety over K with good reduction outside Sy. Then T = T,(B) is
a representation of G s and the Weil pairing identifies 1™ ( ) with T, (E), where B
denotes the dual abelian variety; hence A = B[p™] and A*( B[pm] Let S be any
finite set of primes of K containing all primes of bad redll(,tlon of B and all primes
dividing poo. Put, as before, ¥ = {v | p}, &' =5y - &

9.6.7.1. The classical Selmer groups for the p™-descent

Sel(B/K,p") = Ker <H1(GK,S, B[p"]) — @ Hl(GU,B[p"])/Im((S,,,.n)>

vESy

are defined by the local conditions
Im (8, : B(K,) @ Z/p"Z — H'(G,, B[p"))) .

The corresponding discrete and compact Selmer groups

Sel(B/K,p™) = lim Sel(B/K,p") = Ker (HI(GK,S, A)— P HY(G.. A) /LU(A)>

" vESy

S,(B/K) :lm Sel(B/K,p") = K()r(Hl(GKS,T) —_— @ Hl(Gv,T)/LU(T)),

ve Sf
where we have put

L,(A) =lim Im(6,,,) = Im (B(K,) ® Q,/Z, — H'(G,, A))

Ly(T) =lim Im(0y,n) = Im (B(Kv)®zp Cont(GlHT))
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depend only on the Gk s-modules A = B[p*>] and T = T,(B), respectively. More
precisely, they coincide with the Bloch-Kato Selmer groups

Sel(B/K.,p™) = HI(K, A),  S,(B/K) = H}(K.T)
([B-K, §3.11]). If v { p, then

(9.6.7.1) Ly(A) =0, Ly(T) = Hip(Go, T).

9.6.7.2. We shall consider only the following “elementary” case:
L={v|p} =%, UL,

where
(Ord) (Vv € %,) B has good ordinary reduction at v.
(Tor) (Vv € ¥;) B has completely toric reduction at v.

Under this assumption, for each v | p there is a canonical sub-Q,[G,]-module
Vb=V =T®z, Qp as in 9.6.1, with V7 arising from the kernel of the reduction
map at v (resp., from a p-adic uniformization by a torus) in the case (Ord) (resp.,
(Tor)).

In either case, V,” = V/V,! is an unramified G,-module. For v € ¥;, the geometric
Frobenius element f, acts on V,;” by an element of finite order, while for v € 3, all
eigenvalues of f, acting on V,~ are v-Weil numbers of weight —1 (see 12.4.8.1 below).

The dual abelian variety Bis isogeneous to B, which implies that, for each v € %,
(resp., v € ), B also has good ordinary (resp., completely toric) reduction at v. This
means that the same construction defines sub-Q,[G,]-modules V*(1) — V*(1) =
(1) ®z, Qp = Tp(g) ®z, Qp (v € X), which coincide with the abstract modules
defined in 9.6.1.

Any polarization A : B — B defines an injective morphism of Z,[G i, s]-modules
T =Ty(B) — T*(1) = T,,(E) with finite cokernel. For each v | p, the sub-Z,[G,]-
module 7,7 C T is mapped into T*(1).;5, again with finite cokernel. In other words,

v

the Weil pairing associated to A defines a skew-symmetric bilinear form
Vaq, V— Qpl),
which induces isomorphisms of Q,[G i, s|-modules
V — V(1) = Homq, (V, Q)(1)
resp., of Q,[Gy]-modules
V,E 5 (V)" (1) = Homg, (V,7, Q,)(1).

The following results are well-known (cf. [Co-Gr, Gre5|); we record them for the
sake of completeness.
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9.6.7.3. Lemma
(i) There are exact sequences
0— STS“tr( ) — S (B/K - @ cont va )tors®® cont GmT /H (GTMT)
olp vex’
0 — Sel(B/K,p>®) — S3"(K) — @Im Ya,, Ah)
ol HY(G,, A)) /dives @ HL(G., A).
veY!

(i) For each v € ¥, the groups H}  (G,,T)/H..(G,,T) and H}.(G,, A) are fi-
Tam, (T, (p))

nite, of common order equal to p
(iii) For each v | p,
He i (G, T ) ore — HGy, Ay)/div
D (Im (H'(G, A}) — H'(Gy, A)) /div) C H"(Gy, A*(1);)/div.
(iv) The groups
Sp(B/K)/Sp™(K), Si"(K)/Sel(B/K,p™)
are finite.

Proof
(i) For v | p,
Ly(A) =Im (H'(G,, A}) — H' (G, A)) 4,
(cf. [Greb, Prop. 2.2 and pp. 69-70] in the case dim(B) = 1). Replacing B by B and
applying Tate’s local duality, we obtain
Lo(T) = Ker (H .y (G, T) — Hlypi(Gy, T, ) /tors) .

cont

Combining these expressions with (9.6.7.1), we obtain (i).

(ii) The self-dual Q,[G,]-module V' = V*(1) is known to satisfy the weight-
monodromy conjecture (see, e.g., [Ja2, §5, §7]), which implies that V&» = 0, hence
H! (G,,V)=0 (= H..(G,, A) is finite). Applying the duality isomorphism

D( cont(Gv’T /H&I(G”l)7T)) = HLllr(G A*( ))

the statement then follows from 7.6.9 and 7.6.10.11.
(iii) The isomorphism in the first row is standard. By Tate’s local duality, the
L.H.S. of the second row is isomorphic to

Im (Hclont(G1)7T*(1)) - Hcont(GU7T*( ) ))tors
< Hclont(vaT ( ) )tors —HO(GU,A*( ) )/le

(iv) This is a consequence of (i)—(iii). |

ASTERISQUE 310



9.6. COMPARISON WITH CLASSICAL SELMER GROUPS 291

9.6.7.4. For K /K as in 9.6.5, put
Sel(B/K) = lim Sel(B/Ka,p™), Sp(B/Ks) =lim Sy(B/Ka);

o i
then
(9.6.7.1) Sel(B/ Ko, p™®) C SV (Ks), lim S5 (Ka) C Sp(B/Koo).

@
9.6.7.5. Proposition. — Assume that each v | p is ramified in Koo /K. Then:
(i) There exist exact sequences of A-modules of finite type

0 — lim S5 (Ko) — Sp(B/Koo) — € D(HL(Gu, A*(1))) @2, A

ven’
'y=0

D D(H:(Go, A)) Bz, A — Da(S3"(Koe)) — Da(Sel(B/Koo,p)) — 0.

et ur
Ty=0
(ii) Put
¢ = max{Tam, (T, (p)) | v € X', v splits completely in K./ K}.
Then
(SR SEB K, ™)) = 1 (Sy(B/Ke)/lim S3(K)) = 0.
In particular, if Tam, (T, (p)) = 0 for all v € X' that split completely in Ko /K, then

Sel(B/Koo,p™°) = S (Koo),  Sp(B/Koo )—hm SS(Ky).

Proof

(i) Fix v | p, a finite sub-extension K,/K of K. /K and a prime v, | v of K.
Our assumption implies that, possibly after replacing K, by a finite extension con-
tained in K, there exists a Z,-extension Ko, = FF C F; C --- C Fo = Un F, C
w (Gal(F,/F) = Z/p"Z), which is totally ramified at v,. As the G,-modules
~,A*(1), are unramified, the corestriction maps in the projective systems

(HO(Gvn»A;))nzlv (HO(Gvn ) A*(l);))n21

(where v, denotes the unique prime of F,, above v,) are given by multiplication
by p, hence the corresponding projective limits vanish. It follows that, if we apply
Lemma 9.6.7.3(i), (iii) over each finite sub-extension K,/K of K. /K and pass to
the limit, the terms corresponding to v | p will disappear and we shall be left (using
Tate’s local duality) with the exact sequences

1)’

0 — lim S5 (Ka) — Sp(B/Koo) — @D M, (A*(1
« veX!
P M.(A) — DA(SH(Koo)) — Da(Sel(B/ Ko, p™)) — 0.

veX!
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Here we have used the notation

MU(X) = Dy (hi)n @ H&r(Gu“:X)>»

Vo |V

for each v € ¥’ and any p-primary torsion discrete G,-module X. Fix v € ¥/; as v is
unramified in K,,/K, we have either I',, = Z,, or', =0.

If T, = Z,, then the tower of local fields (K,),, exhausts the maximal pro-p-
unramified extension of any fixed (K, )y, ; this implies that M, (X) = 0 (for any X
as above).

If I', = 0, then v splits completely in K /K, hence

’Uw(]

M,(X) = D(H}(G.,, X)) ®z, A.

The statement (i) is proved.

(ii) This follows from (i), as the groups H! (G, X) (X = A, A*(1)) have common
order, equal to pT#m(T5(P)) (for each v € %'). O
9.6.7.6. Lemma

(i) Ifve %, then H(G,,V, ) =0 and the group H°(G,, A, ) is finite.
(ii) If v € Xy, let T, be the torus over K, associated to B and denote by t(v)
(0 < t(v) < dim(B)) the dimension of the mazimal K,-split subtorus of T,. Then

H()(Gv, V;)_) - (Q?ft(v)7 H()(Gq;, A;) AN (QD/ZP)(Dt(v)~
(iii) We have

rkz, H}(T) = corkz, Sel(B/K.p™) + > t(v).
vED,:

Proof

(i) All eigenvalues of f, acting on V,~ have absolute values (Nv)~'/2, hence there
are no f,-invariants.

(ii) This follows from the fact that 7, is isomorphic, as an G,/I,-module, to
X.(T,) ®z Z,, where X,(T,) is the cocharacter group of the torus 7. Finally, (iii)
follows from (i) (ii) and the exact sequence from Lemma 9.6.3 (as V& = 0). O

9.6.7.7. Corollary. — If dim(B) =1, i.e., if B = F is an elliptic curve, then

tkg, H}(T) =
corkz Sel(E/K,p>) + |{v € ¥, | E has split multiplicative reduction at v}|.

9.6.7.8. Proposition. — For K /K as in 9.6.5,
corkp S5 (K ) = corkp Sel(B/ Koo, p™).
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Proof. — In view of the proof of Proposition 9.6.7.5 (i), it is enough to show that, for
each prime v | p which is unramified in K /K, the A-module

N, = lim P H(G,,, A*(1);)/div (Ka = | Ka, [Ka : K] < o0)
(x,corvulv

satisfies tka(N,) = 0. If ', = 0, then N, = A ®z, (H°(G,, A*(1);)/div) is killed
by some power of p. If T’y # 0, then T',, = Z, and N, is a Z,[I'/T";]-module of finite
type, hence rka (V,) = 0. O

9.7. Duality and perfectness

The notation from 9.6.1 is in force.

9.7.1. For each intermediate field K C L C Ko, put I'' = Gal(K./L), T =
Gal(L/K) =T/TL, A, = O[I'L]. Greenberg’s local conditions associated to the data
from 9.6.1 define “Selmer complexes”

RI;(Ks/L,Y) € D% (x,Mod), RTji.(L/K,Z)€ Db(x,Mod)

Y =AA"(1); Z=T,T%(1)),
which do not, in fact, depen(i on S (by Proposition 7.8.8), and whose cohomology
groups H} (Ks/L,Y) (resp., H},IW(L/K, Z)) are equal, respectively, to the inductive
(resp., projective) limit of fI}(L’, Y) (resp., of I?}(L/, 7)), where L' /K runs through
all finite subextensions of L/K (by Proposition 8.8.6).

We also put
RI 1w (L/K,V) = RE 1 (L/K,T) @2, (AL ® Q) € D% (1, eqMod)

(and similarly for V*(1)). These Selmer complexes have the following properties.

9.7.2. Proposition

(i) There is an isomorphism
Da, (R 1 (L/K,T)) 5 RT(Ks/L, A*(1))"[3].

(ii) RT 1w (L/K, Z) € D5 (3, Mod) (Z =T, T*(1)).
(iii) If [L : K] = oo, then HY (L/K,Z)=0 (Z=T,T*(1)).
(iv) If HY(K,A*(1)) = 0, then HY(Ks/L,A*(1)) = 0 and RT1(L/K,T) €
DI (a,Mod).

(v) If fIJQ(KS/L,A*(l)) is finite, then ﬁ\ff,lw(L/K, V) e plo2 (AL@qMod).

parf

Proof
(i) See 8.9.6.1.
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(i) By definition, RT fiw(L/K, Z) is represented by the complex
Cone (X1 D X2 D Xé — Xg) [—1],

where
X, = Cc.ont(GK,S"grL ), @ cont (Gv, Fr, (Z;;’_))7
v|p
@ cont Gv/Iv"gZFL (ZI 7 @ cont(Gv, T, (Z)).
vey, vESy

As each O-module Z,Z;, Z!» is free, the corresponding Ap-modules %, (Z),

v

Fr, (ZF), Fr,(Z) are also free. Applying Proposition 4.2.9, we obtain that
X1, Xo, X3 € DI%2(,, Mod), X3 € DI%!(,, Moq)

parf parf
(as c¢dp(Gk,s) = cdp(Gy) = 2, cdp(Gy/1,) = 1), which proves the claim.
(iii) This follows from the fact that the projective limit of the groups fI?(L’ ,Z) C
HOY(L', Z) vanishes, by Proposition 8.3.5(iii) (cf. the proof of Lemma 9.1.5 (i)).
(iv) It follows from Proposition 8.10.14 that ﬁ})(KS/L, A*(1)) = 0, which in turns
implies the vanishing of

H} 1 (L/K.T) — D(HY(Ks/L. A*(1)))" = 0.
As noted in 4.2.8, this is sufficient to prove the claim. The same argument proves (v),
as
H} 1 (L) K. V) = D(H}(Ks/L, A1) © Q = 0
in this case. O
9.7.3. Proposition. — Let K C L' C L C K be arbitrary intermediate fields. Then:
(i) There is a canonical isomorphism in Dﬂ’,’-t( A, Mod)
— L ~
RFf‘IW(L/K, Z) ®A1,AL/ — RFfVIW(L//K, Z) (Z =T, T*(l))
(ii) There are natural pairings in D‘lf’t( A, Mod)
— L x
RIfiw(L/K,T)®@5, R f 1w (L/K, T*(1))" — Ar[-3],
compatible with the isomorphisms from (i). Denote by
aT ﬁffy[w(L/K, T) — '@AL (ﬁf/‘71w(L/K, T*(l)))b{—:’)]

the corresponding adjoint map.
(iii) The map

ay =ar ®Q: Rl (L/K,V) — 1, eq(RT 1 (L/K,V*(1))) [-3]

is an isomorphism in D%(r,eqMod).
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(iv) The following conditions are equivalent:

ar s an isomorphism in Dj’?t( AL Mod)
— (VweY) Tam,(T,(w)) (= Tam,(T*(1),(w))) =

Proof
(i) Applying Proposition 8.10.10 to K, = L, L’, we obtain canonical isomorphisms

__ L o L L
RIy1w(L/K, Z)@r, AL — (RFf,Iw(Koo/K, Z) ®AAL>®AL Ap

~ L o
— RI'fiw(Koo/K, Z) @A — Ry (L' /K. Z).

(ii) These are the duality pairings (8.9.6.3.1) (cf. Proposition 8.10.10).

(iii) This is a special case of Theorem 8.9.11.

(iv) Proposition 8.9.7.6(iv), (v) and Theorem 8.9.12 apply to the extension L/K.
In particular,

a is an isomorphism in D}’t(A,‘Mod) — (WweY) Err,(@a,,Zr,(T) =0
— (WweY) Em,(2,T)=0 < (Mwe¥) Tam,(T,(w)) =0 0O

9.7.4. Proposition

(i) If HO(Kb/L A) is finite, then RFfIW(L/K V) e Dparf](AL?BMOd)'

(i) If HO(Kg/L,Y) Y = A/A*(1)) are finite, then RIj1w(L/K,Z) €
D2y, eqMod) (Z =V, V*(1)).

parf

Proof

(i) According to Proposition 9.7.2(v) (applied to A and V*(1)), we have
RT ;1w (L/K,V*(1)) € Dg;f[] (AL®QMod). Applying 24, [—3] and using the du-
ality isomorphism of Proposition 9.7.3 (iii), we obtain the claim.

The statement (ii) follows from (i) and Proposition 9.7.2(v). |

9.7.5. Proposition. — Assume that (Vv € ¥') Tam, (T, (w)) = 0. Then:
(i) IfHY(K, A) =0, then HY(Ks/L, A) = 0 and RT .1, (L/ K, T) € D25 (1, Mod).

parf

(i) IjH}’(K,Y) =00 (Y = A, A*(1)), then Hf (Ks/L,Y)=0 (deFj,IW(L/K, Z)e
D2y Mod) (Z =T, T*(1)).

parf
Proof. — The proof of 9.7.4 applies, using Proposition 9.7.2 (iv) and 9.7.3 (iv) instead
of 9.7.2(v) and 9.7.3 (ii). O

9.7.6. Proposition (Self-dual case). — Assume that there exists an isomorphism of
F[Gr s]-modules j : V = V*(1) which is skew-symmetric (ie., j*(1) = —j) and
satisfies j(V,7) =V*(1)} (v e X). Then:
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(i) j induces an isomorphism in D;’.t( AL@qMod)
ot RTp1o(L/K, V) =5 R (L) K, V*(1)).

(ii) The induced pairing

—— L —_—
U: R 1 (L/K, V) ®p, R 1 (L/ K, V)

id®j« T N * L
R (LK, V) @, RE (LK V(1) — A [-3]
is skew-Hermitian, i.c., satisfies U" o s12 = —v'oU, in the notation of Corollary 6.6.7.
(iii) If HY(Ks/L, A) is finite, then RT p1(L/K, V) € D% (1, sqMod).

(iv) If f[?(KS/L, A) is finite and corky, (IA{T}(KS/L, A)) =0, then
(Vi #2) Hp(L/K.V) =0,
the Ap, @ Q-module
H3 1 (L/K,V) <= Dy, (H}(Ks/L, A)) ©Q
1s torsion and f{\f‘f’lw(L /K, V) can be represented by a complex
Cone(M —=M)[-2],
where M is a free A, @ Q-module of finite type and u an injective endomorphism

of M.

Proof. The statement (i) is trivial and (ii) follows from Corollary 6.6.7 (which

applies thanks to 7.7.2).
(i) As A*(1) (resp., A*(1)F, v € %) differs from A (resp., from A}) by a finite
group, H}Q(KS/L, A*(1)) is also finite, hence (iii) follows from Proposition 9.7.4 (ii).
(iv) By (iii), the A, ® Q-modules of finite type H' := fl},IW(L/K, V') vanish for
i # 1,2, and H' is torsion-free. On the other hand, the duality isomorphisms 9.7.2 (i)
and 9.7.3(iii) imply that

rka,eq(H'Y) = tka,aq(H?) = corky, (HHKs/L, A)) = 0,

hence H' = 0 vanishes and H? is a torsion A; ® Q-module. It follows that
ﬁf,lw(L/K, V) can be represented by a complex [PIL)Pz] (in degrees 1,2),
where P!, P? are projective (hence free) Ay ® Q-modules of the same rank (hence
isomorphic to each other) and Ker(u) = 0. d

9.7.7. Proposition (Integral self-dual case). — In the situation of 9.7.6, assume that
J(T) =T*(1) (hence j(T.)F) = T*(1)} for allv € X). Then:

(i) j induces an isomorphism in D%(x, Mod)

ot RT 1w (L/K, T) == RT j 1 (L/K, T*(1)).
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(ii) The induced pairing

~ L —
U: RFf,Iw(L/K,T) NS er Iw L/K,T)[

985 RT 1w (LK, T) S, R 1 (LK, T(1)) — Ap[—3]

is skew-Hermitian. -
(iti) If H}(K,A) = 0 and (Vv € ¥') Tam, (T, (w@)) = 0, then Rl p1w(L/K,T) €
DL (n, Mod). .
(iv) If, under the assumptions of (iii), corky, (HI(KS/L, A)) =0, then
(Vi £2) Hin(L/KT)=0,

the A -module
fIw(L/K T = D/\l ( ;(KS/LvA))L

is torsion and RT' fiw(L/K,T) can be represented by a complex
Cone(M—=M)[-2],

where M is a free Ap-module of finite type and u an injective endomorphism of M.

Proof. The proof of Proposition 9.7.6 applies, using 9.7.5 instead of 9.7.4. O

9.7.8. More general local conditions. — In Sect. 9.6 and 9.7.1-9.7.7, we con-

sidered only Greenberg’s local conditions for ¥ = {v | p}. It is often useful to

consider Greenberg’s local conditions associated to an arbitrary intermediate set
{v|p} C X CSy: define, for each v € ) =% — {v | p},

VX =T,V,A) X[ =0, X=X,
(VX =T*(1),V*(1),A*(1)) X[ =X,, X, =0.
We incorporate % into the notation by writing
R x(L,X), RIUjx(Ks/LY), RIjis(L/K.Z)

for the Selmer complexes associated to such local conditions (and we drop ¥ from the
notation if ¥ = {v | p}).

9.7.9. Proposition. — Assume that, for each finite extension K' of K contained in
Koo, each v € P and each prime v' | v of K', we have

*) HOGu, V) =0 (G = Gal(R,/KD)).
Then, for each intermediate field K C L C Ko
(i) If [L: K] < oo, then the canonical maps
RTx(L,V) — RI (L, V),
RI;(L,V*(1)) — Ry (L, V(1))

are isomorphisms in D?t( rMod).
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(ii) If p € Spec(AL ® Q) is contained in the augmentation ideal of A, @ Q, then
the canonical maps

RIf1ws(L/K,V)y — R (L/K, V)g,
R 1 (L/K,V*(1))5 — RT 1y s(L/K, V*(1))y

are isomorphisms in Dj}t (A qMod).
(iii) For each j € Z and each minimal prime ideal § € Spec(Ay), the ranks

tk(n,)r Hf s (L/ K. D)g = thin g (Hy 3 o (L/ K T7(1) )
= tk(a,); (Da, (Hf 5 (Ks /L, A)) = tkia, (Do, (H7 5 (Ks /L A(1)) ")

do not depend on ¥ (and vanish for j #1,2).

q

Proof
(i) There are exact triangles in Dfil( pMod)

ﬁf’,i}([q V) I fEff(Lﬂ V) - @ @Rrur(va V)

veL(P) wlv

RI;(L,V*(1)) — RT;s(L,V* (1) — P 2~ (@Rrur G“,,V)) [—2],
veYP) w|v
where G, = Gal(K,/Ly,) and RI (G, V) = RIcont(Guw/Lw, V). As

dim H (G,V) = dim H°(G,,V), the assumption (*) for K’ = L implies that
R (G, V) = 0.
(ii) There are exact triangles in D?t(AngQMod)

RI 1w s(L/K,V) — R (L/K, V) — P REwW(Go. Zr(V))

veX(P)
RI /1w (L/K, V*(1)) — R 10.5(L/K, V(1))
- @ —@AL®Q(Rrur(Gva‘gF(V)))L[_2]'

veX(P)

Write T'y, = Gal(L/K) as a product 'y, = I'z, g x Ay, where |Ap| < oo and I'f, g = Z;.
Applying (the proof of) Proposition 8.9.7.7(ii) with R = O, I'g = I'9, A = Ay,
W, = T and all minimal prime ideals qo € Spec(Ay), and using the assumption (*)
with K’ = L''r0, we obtain

(Vo € £P)) RI(G,, Zr(V))z = 0.

(iii) This follows from (ii), 8.9.6.1 and (8.9.6.4.2). O
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9.7.10. Let B be an abelian variety defined over K, which has good reduction outside
Sy, and such that {v | p} = X, U, in the notation of 9.6.7.2. The assumption of
Proposition 9.7.9 are then satisfied for T = T,(B) (V = V,(B) = V*(1)), since V,
satisfies the monodromy-weight conjecture for each v { p (as remarked in the proof of
Lemma 9.6.7.3(ii)).

9.7.11. In the situation 9.7.7 (iv), it was proved in [M-R2, Prop. 6.5] that the duality
isomorphism ap can be represented by a skew-Hermitian pairing on the module M,
provided that p # 2 and M is “minimal” in a suitable sense.
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CHAPTER 10

GENERALIZED CASSELS-TATE PAIRINGS

Let K and S be as in 5.1. In this chapter we reformulate the duality results
from Chapters 6 and 8 in terms of generalized Cassels-Tate pairings. The general
mechanism is very simple: in the situation of 6.2.5(B) with n = 0, the discussion
in 6.3.5 gives homomorphisms (under suitable finiteness assumptions on the local
conditions)

Hi(X1) Retors — Bxt (H}(Xa),wr) (47 =4)
with controlled™) kernels and cokernels. Observing that, for every R-module M of
finite type, the group Ext}{(.M, wR) is very close™ to Homp(Mp-iors, H*(WR) @R
(Frac(R)/R)), we obtain bilinear forms

H(X1) Retors ®r H}(X2) — H%wg) ®g (Frac(R)/R)  (i+j =4)

in (rkMod)/(pseudo-null) (sometimes even in (RMod)) with controlled kernels. These
pairings — at least for ¢ = j = 2 — are natural generalizations of the Cassels-Tate
(and Flach [F11]) pairings in our context. In the self-dual case, we obtain skew-
symmetric (or skew-Hermitian) pairings, from which we deduce various parity results
(Sect. 10.6-10.7).

R-tors

10.1. A topological analogue

10.1.1. Assume that X is a connected compact oriented topological manifold of
dimension D. The cohomology groups H¢(X,Z) are finitely generated abelian groups;
the exact sequences

0 — H(X,Z)®Z/nZ — H(X,Z/nZ) — H ™ (X,Z)[n] — 0
give, in the limit,

(10.1.1.1) 0 — HY(X,Z)®Q/Z — H'(X,Q/Z) — H""'(X,Z)

tors 0

(M At least if R has no embedded primes
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and

H(X,Z) :=lim H'(X,Z/nZ) > H'(X,Z) ® Z.
For m/|n, Poincaré duality and the orientation HP(X, A) = A give perfect pairings

Hi(X,Z/mZ) x HP={(X,Z/mZ) — Z/mZ

|

H{(X,Z/nZ) x HP X ,Z/nZ) — Z/nZ,
which induce in the limit Pontrjagin duality
H'(X,Q/Z) x HP™Y(X,Z) — Q/Z.
The orthogonal complement of the maximal divisible subgroup
H'(X,Q/Z)y, = H'(X.Z) 2 Q/Z C H'(X,Q/Z)
is the torsion subgroup

HPU(X.Z)y. . = HP7/(X,2)

Z-tors Z-tors®

As a consequence, we obtain perfect pairings of finite abelian groups

< ? >i+1,D—i : HH_] (X> Z) X HD_i(X* Z)tors - Q/Z

tors

More precisely, Poincaré duality identifies (10.1.1.1) with the Pontrjagin dual of

0« (HP~Y(X,Z)/tors) ® Z — HP {(X,Z) — HP'(X,Z)

tors 0

10.1.2. The pairing (a,b),,; p_; can be described in terms of cocycles as follows.
Represent a (resp., b) by a (singular) cocycle o € Z'1 (X, Z) (vesp., B € ZP~1(X,Z)).
There exist n > 1 and o € C'(X,Z) (resp., 3/ € CP~1=1(X,Z)) such that na = do’,
nB3 =df3'. Then

dUB, BUuaeCP(X,Z)
d’ UB) =n(aUp), d(f Ua)=n(BUa)c CP(X nZ).
This means that

%(a/ U ) (mod CP(X,Z)), (F'Ua) (mod CP(X,Z))

1
n
are elements of ZP (X, LZ/Z); their cohomology classes in

HP <X, lZ/z> -, lZ/z cQ/Z
n n

are equal to (a,b);,, , , and (b,a)p_; 41, respectively.
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10.1.3. As
d(B'0’) = n(BU') +(~1)P (B Ua) = (<1 (@ U) +(~1)P~ n( Ua)
is a coboundary in C” (X, Z), we have
(_l)i(D_i)<a’b>/i,+l,D—i + (=1)P N, a)p_iiv1 =0,
hence
(10.1.3.1)  (b,a)p_;,11 = (wl)(D_i)(”l)(a,b>i+1,D_1; = (_1)D(i+1)<a7b>i+l,D~i'
In particular, if D = 2n — 1, then the pairing

(o s HY(X,Z) oy ¥ HY(X,Z) oy — Q/Z

tors
satisfies
<b7 a’)n,n = (_]‘)n<a7 b>n7’n

10.1.4. The pairings (, ), ;
composition of two cup products in the derived category.
For every complex A® of abelian groups put

can be described in a more abstract way in terms of a

RI\(4) = A" @7 [2720Q), HI(4") = H'(RT(4%)),
where the complex [Z — Q)] is in degrees 0, 1. This defines an exact functor
RT : D*(zMod) — D*(zMod) (x=2,+,—,b).
The cohomology sequence associated to the exact sequence of complexes
0— (A"®Q)[-1] — RIN(A*) — A* — 0

gives
0— H A ® Q/Z — H{(A*) — H'(A*)iors — 0.

For A, B € D™ (zMod), the same construction as in 2.10.7-2.10.8 defines a canonical
product

L L
RF[(A)@ZRFg(B) — RI <A®2B>.
The induced cup products
i j iti (4L
Hi(A) ®z H} (B) — H! (A@zB)
factor through
i j itj [ 4L
H (A)tors Rz HY (B)tors — H! <A®ZB> .
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10.1.5. Applying this construction to A = B = RI'(X,Z) and the truncated cup
product

RT(X,Z)EzRI(X, Z) — 75 RI(X,Z) < Z[-D),
we obtain products
(10.1.5.1) RIYWRT(X,Z))&zRIYRI(X, Z)) — RIYWZ[-D]) = Q/Z[-D — 1]
and
Uirt,p—i : H'H(X, Z) o, @2 HP7H(X, Z) oy — HPTH(Z[-D]) = Q/Z.
Alternatively, there are canonical isomorphisms in D(zMod)
RI(RI'(X,Z)) — RI'(X,[Z — Q]) = RI'(X,Q/Z[-1]),
and the product (10.1.5.1) is induced by
Q/Z[-1)52Q/2[-1] = Q/Z[-1]
and
RI(X, Q/Z[~1))$zRI(X, Q/Z[~1]) — 7p+1 RI(X, Q/Z[~1)) = Q/Z[-D1].
10.1.6. Lemma. — The pairings
(3 Vig1.pir Yisr.pi s HTHX,Z), o ©2 HP7HX, Z),,, — Q/Z
from 10.1.2 (resp., 10.1.5) are related by U = (—1)P~1( ).
Proof. In the notation of 10.1.2,
a=a®l+(-1)"d ® % B=Bx1+ (-8 @
are cocycles of degrees i +1 (resp., D —1) in RI'(C*(X, Z)) lifting « (resp., ). Using
the notation from Lemma 2.10.7 (i), the cup product a U; 1, p—; b is represented by

~ 3 ; 1
vosy(a® ) = v(a@ﬁ@ lel+ (- awf ele ;+

(—1)P+1 ’®/)’® ! ®1+( )’d@ﬁ’@%@%)
=(aUB) @1+ (-1 aup)® L
As aUpB € ZPTH(X,Z) = dCP (X, Z), it follows that a U;+1 p—; b is represented by
(—1)D_i%(auﬁ’) (mod CP (X, Z)),
hence
aUip1,p—i b= (-1)P7{(—1)HDEP==0 g a)p_ it
(—1)P (=)= () EDE0 G by
(=17 Ha,b) iy o .
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10.2. Abstract Cassels-Tate pairings

In this section we construct generalized Cassels-Tate pairings, mimicking the dis-
cussion in 10.1.4. Throughout 10.2, we assume that R has no embedded primes
(<= R satisfies (S1)).

10.2.1. Assume that J = w§(n| for some n € Z (hence D; = %,). Let X1, X, be
bounded complexes of admissible R[Gk g]-modules with cohomology of finite type
over R, and

m: X1 ®prXo — J(l)
a morphism of complexes of R[G g g]-modules. Finally, assume that we are given
orthogonal local conditions

A(X1) Lrng A(X2)
such that the complexes U ; (X:) (i = 1,2) have cohomology of finite type over R.

10.2.2. Under the assumptions of 10.2.1, the Selmer complexes é}(XJ =
C~’J°,(GK,5,X14;A(X¢)) (i = 1,2) also have cohomology of finite type over R. Re-
call from 6.3.1 the cup products

Un,rh éf(Xl) ®R 6’}(X2) — J[=3] = wg[n — 3] (r € R)
and their adjoints
Y,rhs = adj(Un rn) : 6;‘(X1> — Homjp (5}(X2)7w;{[n - 3])

The construction from 2.10.14 applied to U . defines cup products (independent
ofr € R)

Urhgi : Hi(X1) o ®r HH(X) — H%(wr)@g (Frac(R)/R) (i+j =4-n)

R-tors R-tors

in (kMod)/(pseudo-null) (or even in (RMod), if R is Cohen-Macaulay). Furthermore,
we obtain from 2.10.15-2.10.17 isomorphisms in (gMod)/(pseudo-null)

HO(wR) R (Frac(R)/R)) AN Ext}i; (H}(XQ),WR)
<5 H'(Dyp5(RT5(X2))) (i+j=4-n)

HOIIIR (ﬁj} (Xz)

R-tors’
R-tors’

the composition of which with
adj(Ur s ig) - Hp(X1) o

— HomR(ﬁ}(XQ)R-tors’ H°(wg) ®p (Frac(R)/R)) (i+j=4-n)
coincides, up to a sign, with the restriction of the map

(Yrrhs)s - Hy(X1) — H'(Dyp—g (RF(X2))-
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10.2.3. Theorem. — Under the assumptions of 10.2.1, let i + j = 4 — n and Err =
Err(A(X1), A(X2), 7). Assume that 7 is a perfect duality in the sense of 6.2.6. Then,
in the category (rRMod)/(pseudo-null),

(i) Ker(adj(Ur hg,ij)) is isomorphic to a subquotient of H'~1(Err).

(ii) If H'='(Err) is R-torsion, then Coker(adj(Ur hs.i.;)) (resp., Ker(adj(Usx ng.ij)))
is isomorphic to a subobject (resp., a quotient) of H'(Err) (resp., of H~(Err)).

In particular, if H='(Err) = H'(Err) = 0 in (gkMod)/(pseudo-null), then
adj(Unr hg.ij) 15 an isomorphism (again in (gMod)/(pseudo-null)).

Proof. — This follows from Proposition 2.10.17 applied to Uy, 5, and Theorem 6.3.4.
a

10.2.4. Proposition. — Assume that, in addition to 10.2.1, the local conditions A(X;)
(i = 1,2) admit transposition data 6.5.3.1-6.5.3.5. Then the cup products associated
tom and wo s12: Xo ®p X1 — X1 ®pr Xo — J(1) are related by

T Unhsig Y = (=17 Y Urosp g i (i+j=4-n).
Proof. This follows from Corollary 6.5.5 and (2.10.14.1). |

10.2.5. Proposition (Self-dual case). — Assume that, in 10.2.1, X; = X, A(X;) =
AX) (i =1,2), 7" :==mos12 = ¢ 7 with c = £1 and A(X) admit transposition
operators as in Proposition 6.6.2. Then

T U hgig Y = c(—l)“ YUnr hs,ji T (i+j=4—n).

In particular, if n = 0, then the bilinear form

Unhg22 t HHX),  @p H}(X),  — H°wr) @r (Frac(R)/R)
is symmetric (resp., skew-symmetric) if c = +1 (resp., ¢ = —1).
Proof. Combine Proposition 6.6.2 and Proposition 10.2.4. O

10.2.6. In the case n =0, the formula
YUrhsji®=c(=1)' 2 Urnsijy  (i+j=4)
in Proposition 10.2.5 should be compared to (10.1.3.1) for D = 3:
(ba);; = (=1)"{a,b),; (i+j=4).

The extra factor ¢ comes from the fact that X is identified with its dual D;(X)(1) =
2(X)(1) by using the bilinear form m of parity c.
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10.2.7. Hermitian case
10.2.7.1. Assume that R is equipped with an involution ¢ : R — R, and that
v:J"— Jis as in 6.6.4; denote by

vy : H(wgr)" — H%(wg)

the map induced by v[—n]: J'[-n] = (w})" — J[—n].
Assume that we are in the situation of 6.6.5, i.e.,

(X1, A(X1)) = (X,A(X)), (X2, A(X2)) = (X, AX)"),  AX) Lans AX)'
and
mosig=c-(vom'), c==l.
It is sometimes more convenient to view the cup products from 10.2.2

®rH}(X) — H(wr)@r(Frac(R)/R)  (i+j=4-n)

~ L
U‘n’,hs,’i,j : Hf(X)

R-tors R-tors

as Hermitian pairings
rri r7d

< ’ >7"7h57in7‘ : Hf(X)R—tOrSXHf(X)R-t()rs - HO(‘«(}R)@R(FI'H.(‘(R)/R) (7+7 = 4_”)

satisfying

<(¥x76y>7r’h,g,i,j = au(f) (z, y>7|—,hs,i7j (o, 3 € R).

10.2.7.2. Proposition. — Assume that X is as in 10.2.7.1 and admits transposition
operators as in Proposition 6.6.6. Then

(z, y>7T,hg,i,j =c(-1)7 (r. ® 1/)((1'/, x>ﬂ,h‘q,j,¢) (i+j=4-n).
In particular, if n = 0, then the Hermitian form
() =0 Vmnann  HIX) o x HHX),, — H%wr) @r (Frac(R)/R)
satisfies
(az, By) = auPB)(z,y), (z,y) =c (@)(y,z)) (a,B€R).

Proof. — Combine Proposition 6.6.6 and (2.10.14.1). O
10.2.8. Duality of error terms. — For v 1 p, let X,Y be bounded complexes
of admissible R[G,]-modules with cohomology of finite type over R and 7 : X ®p
Y — wg(1) = 0x0wk(1) a morphism of complexes of R[G,]-modules. Assume that

p € Spec(R) satisfies dim(Ry,) = depth(R,) = 1 and 7, : X, ®p, Y, — (wh)p(1) is a
perfect duality over R,. By Corollary 7.6.8(i), there are isomorphisms in Dj,(r,Mod)

ur ur ~ fo—1
e, (AY (X0, AL (V) m)p < [ Hiyy (Hlo (T, X)) =5 H G (o (T, X), )

cont

ur ur ~ fo—1
e, (AY(Y), A (X), 7 0 512)p > [Hyy (Hiowe (s Y),) 25 Hgy (Hlo (1, Y), )]
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where the complexes on the R.H.S. are in degrees 1, 2. The duality theory for I,
described in 7.5.8 comes from the cup product

(10281) C(:ont(I’U? X) ®R Cgont(‘[m Y) - C(.:out(LM w;{(l))
L] . Qis L]
- 7_1211 C(:()nt (I'U: wR(l))—) wR[_ll'
Localizing (10.2.8.1) at p, the construction in 2.10.7-2.10.9 gives rise to products
Uij H?p}(H(l;ont<Lu X)p) @R, H?p} (HJ

1 . ~
C()nt(]’l/v Y)p) - H{p}((wl?,)p) - IRp
(i+j=2),
which induce f,-equivariant isomorphisms of R,-modules of finite length

(10282) H?p}(Héont(IU’X)p) L) DRp(H?p}(Hj (Lmy)p)) (1+} - 2),

cont

by a localized version of the duality (7.5.8.2) and Proposition 2.10.12. Using the
fv-equivariance of (10.2.8.2) for i = j = 1, we obtain isomorphisms

(10.2.8.3) HY9(Err, (A} (X), Ay (Y), m)p)
S Dy (B, (A (Y), A¥(X), mos1a)y)) (g = 1,2).
Comparing the lengths (over R,) of the both sides in (10.2.8.3), we obtain
Tam, (X, p) = Tam, (Y, p).

10.3. Greenberg’s local conditions

In this section we investigate the abstract pairings from Sect. 10.2 in the context
of Greenberg’s local conditions (including Iwasawa theory). Throughout 10.3, we
assume that R has no embedded primes.

10.3.1. Everything in 10.2 works under the assumptions of 7.8.2: let J = w} =
ox0J, X1 =X, Xo=Y and 7: X ®p Y — J(1) be as in 6.7.5(B) (in particular, all
complexes X, Y, Xf, Y, are bounded) and X L, Y, for all v € ¥. Under these

v

assumptions, the local conditions A(Z) (Z = X,Y’) defined in 7.8.2 satisfy
A(X) Lro A(Y)
and admit transposition operators satisfying 6.5.3.1- 6.5.3.5, by 7.8.3.
If 7 is a perfect duality, then the cohomology of the error terms Err, (AW (X),
AM(Y), ) for v € ¥ are given in (RMod)/(pseudo-null) by 7.8.4.5. In particular,
P H (Err, (A (X),A,(Y), 7)) =0 (Vi#1,2)
ved!
in (RMod)/(pseudo-null).
If # is a perfect duality, then the error terms Err,(A,(X),A,(Y),n) for
v € ¥ are given by Proposition 6.7.6(iv). In particular, if X, L1, Y,*, then
Err, (A, (X), Ay (Y),7) = 0 in D?(gMod).
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10.3.2. Specializing the results of 10.2.2-10.2.4, the cup products
Urro i C3(X) @r C3(Y) — J[-3] =wp[-3]  (r€R)
give rise to pairings
Un,0,6,5 ﬁ}(X) QR I?(;(Y)
in (rkMod)/(pseudo-null) (or even in (gkMod), if R is Cohen-Macaulay), satisfying
(10.3.2.1) 2Ur0ii¥= (=1 yUrosp0jix  (i+j=4).

— H(wg) ®g (Frac(R)/R)  (i+j=4)

R-tors R-tors

The kernels and cokernels of the adjoint maps
adj(Ur0,i5) : Hp(X) o

— HomR(ij.(Y)

} H°(wgr) ®p (Frac(R)/R)) (i+j=4)

R-tors’
are as in Theorem 10.2.3.

If K'/K is a finite Galois subextension of Kg/K in which all primes v € ¥ are
unramified, then

(10.3.2.2) (Vg € Gal(K'/K)) Ads(g)(x) Ur0,i; Ads(9)(y) = © Ux 0, Ys

by Proposition 8.8.9.

In the self-dual case, i.e., if YV
with ¢ = %1, then Proposition 10.2.
symmetric) if ¢ = +1 (resp., ¢ = —1

X,V =X) (veX)and nosy =c 7

= v
5 implies that Uy g2.2 is symmetric (resp., skew-

10.3.3. Iwasawa theory

10.3.3.1. Let K,,/K beasin8.8.1, with' = Gal(K,,/K) = Tox A, where 'y = z,
(r > 1) and A is a finite abelian group. We assume that the condition (U) from 8.8.1 is
satisfied, i.e., each prime v € ¥’ is unramified in K /K (this is automatic if ' = I'y).
The ring B = R[I'] is equipped with the canonical R-linear involution + : R — R
induced by v — 77! (y € I'). As R = Ry[A] with Ry = R[['0] = R[Xy,..., X, ], it
follows from Lemma 2.10.13.3 (iii) that Frac(R) = Frac(Ry)[A].

As in 8.4.6.2, we fix, for cach S = R, R, a complex wg = oxowy of injective S-
modules representing wg. There exists a quasi-isomorphism (unique up to homotopy)
prwhp®p R — Wi -

Fix ; then there exists a morphism of complexes of R-modules

v (w’ﬁ)L — w’ﬁ

(again unique up to homotopy) making the following diagram commutative:
Wk OR R’ (w'—)'/

lid@L fl/
o]

wk@Rﬁ — Wk

Fix such a morphism v; then the map v* : wh — (w’E)L is a homotopy inverse of v.
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The induced maps on cohomology
v H(wh)" = H*(wp) ®r R — H"(wp) ®r R = H* (%)
are equal to id ® ¢. By abuse of language, we shall denote v,, as well as
ve @ (H(wg) @ (Frac(R)/R))" — H(wy) @5 (Frac(R)/R),
by .

10.3.3.2. We need a slightly stronger version of the assumptions 6.7.5(B): we require
that, in each degree i € Z, the components X*, Y (XF)! (Y,F)! (v € X) are of finite
type over R. The recipe 8.9.2 then defines Greenberg’s local conditions for

Fr(Z2)=(Z@rR) < —-1>, Fr(Z)=(ZorR)<-1> (Z=X,Y)

over R, together with a pairing
. F(rm o — .
7 Fr(X) @ Zr(Y) 2w (1) @r B2 wz (1),
under which
Fr(X)) Ls (Fr(Y)), (vex).

As in 6.6.5, we have
AZr(Y)) = AZFr(Y)), CHZPr(Y)) = CHFr(Y))"
If 7 is a perfect duality, so is 7, by Corollary 8.4.6.5; if, in addition, X,/ L 1, X
(v € ), then
Fr(X)F L= (Zr(Y)).

v
10.3.3.3. As R has no embedded primes, the ring R has the same property. This
implies that the theory from 10.2 (as specialized in 10.3.1-10.3.2) applies to .#p(X),
Fr(Y)" and 7: the cup products

L J—

Ur.ro : CHP (X)) @ CHI(Y)) — wi[-3]  (r€R)
induce pairings
R-tors
— H%(wg) @5 (Frac(R)/R) (1+j=4)
in (gMod)/(pseudo-null) (or even in (FMod), if R — hence R — is Cohen-Macaulay).
Similarly,

U0,y © Hi (Koo /K. X )5 @g H} 1 (Koo/K.Y)

R-tors

Tos12:Y QR XX XR Y—ﬂﬁwh(l)

gives rise to
F (mosi12)
_ZATene)

wr(l)®r Eﬂw'—(l)

T O S12 yr(Y) ®E<QF(X)L =

and - using the notation from 6.6.4 — cup products

(Urssizro) : CHIL(Y)) @5 CHIr(X)) — wi[-3] (r €R)
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and

L o Hip(Ke/K, X)

R-tors R-tors

— (H(wp) ®f (Frac(®)/R))"  (i+j=4).

(Urssiz,0,,i) H},IW(KM/Ka Y)

As in 10.2.7.1, it is sometimes convenient to view Uz o ; ; and (Usssiz,0,5,:) as Hermi-
tian pairings

(1033.0) Dzt HjaBoo/ K X)X HY 1 (Koo /K Y )

R-tors R-tors
— H%wg) ®% (Frac(R)/R)
(, >jroTlg,0,j,i : H},IW(KOO/K7 Y)E_tors X H},IW(KOO/Kv X) Eovors

— (H(wp) ®5 (Frac(R)/R))"
satisfying

(az, ﬁy>ﬁ,o,i,j = a(B) (z, y>ﬁ,0,i,j
(By, al>l;m—.>1207: =(B) a (y, 17>;oTu,0,j,¢ (a, B € R;i+j= 4)

In order to avoid any confusion, we stress that the action of ¢(8) « in the second
formula is with respect to the R-module structure (—)* on the R.H.S.

10.3.3.4. Lemma. — The following diagram is commutative:
F(r —
7 FrX) @pFr(Y) @ wperR U e
lsm Tid®b v(1)
— ¢, . ; F (mosi2)" . o @ (1) o\t
(mos) : Fr(Y) @ Fr(X) wy(l)®g R —— (wﬁ) (1).
Proof. — Commutativity of the left (resp., right) square follows from the commutative
diagram
ﬁ@ﬁ RL id®e E
J,sn TL
FL ®§E (id®¢) RL
(resp., from 10.3.3.1). O

10.3.3.5. Proposition. — Under the assumptions of 10.3.3.2, the Hermitian pair-
ings (10.3.3.1) are related by

(o, BY)z 0,15 = (=17 o((By, aﬂ?):an,o,j,i) (i4+j=4).

Proof. — As in the proof of Corollary 6.5.5, the existence of transposition operators
for Zp(X) and Zr(Y)", together with Lemma 10.3.3.4, imply that the following
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diagram is commutative up to homotopy (for any r € R):

U0 : Cy(Zr(X) e C3(Fr(Y)) —  wi[-3]

Lﬂu Tu[—(i]
(Usssza-ro)' : CHIL(Y)) @ CHIP(X)) —  (w)'[-3].

The result follows by applying (2.10.14.1). O
10.3.3.6. Alternatively, one can reformulate the formula in Proposition 10.3.3.5 as
2 Um0,y = (DY 0 (y (Uresiz050) @) (i+]=4),

where

w € Hjp,(Koo/K, X) y € Hip, (Kuo/K,Y)

L
R-tors’ R

(i+j=4).

R-tors

10.3.4. Self-dual case

10.3.4.1. Back to the situation of 10.3.1, assume that ¥ = X, A(Y) = A(X) and
m: X ®r X — J(1) satisfies

TOS1g =C-T, c==*£1.
10.3.4.2. Proposition
(i) The pairings
Uro.ig  Hp(X) o @R HYX) o — HO(wr) ©r (Frac(R)/R)  (i+j =4)

satisfy
T Ur 0,0 =c(—1)TyUpoj;x (i+j=4).
In particular, Ug o2 2 is symmetric (resp., skew-symmetric) if c = +1 (resp., ¢ = —1).
(i) If X, XS (v € ) satisfy the assumptions of 10.5.5.2, then the pairings
B

UF,O,’i,j : ﬁ},IW(KOO/K7 X) ®E H},Iw(KOO/K’ X)R-tors

— H°(wp) @5 (Frac(R)/R) (i+j=4)

R-tors

satisfy
x Ur0,,j ¥ = c(=1)" 1 (y (Urssi3,0,,0) ) (i+j=4).
In particular, Uz 2.2 is symmetric Hermitian (resp., skew-Hermitian) if ¢ = +1
(resp., c=—1).
Proof

(i) This is a special case of Proposition 10.2.5.
(ii) The statement follows from 10.3.3.6, since

ToS12 =C T, Usssz,0.4,i = C Um0
Alternatively, one can apply Proposition 10.2.7.2, as

Tosig=vo(Tosz) =c-(vo7). O
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10.3.5. Iwasawa theory - dihedral case. — Let X,Y and 7 be as in 10.3.3.2.

10.3.5.1. Assume that K., /K extends to a dihedral Galois extension Ko,/K™, i.e.,
[K: KT] =2 and 't = Gal(K/K™) is a semi-direct product It = I' x {1, 7} for
some 7 € 't — I" such that

?=1 7Ty t=y"  (yeD)

(which is then true for every 7 € Tt —T).
We also assume that Greenberg’s local conditions for X,Y are defined over K+, in
the following sense:

10.3.5.1.1. There is a finite set of primes ST of KT such that
S={v: (3" €St}

(hence Ks/K™ is a Galois extension).

10.3.5.1.2. Both X and Y are (bounded) complexes of (admissible) R[Gal(Kg/K™)]-
modules and the morphism 7 is Gal(Kg/K T)-equivariant.

10.8.5.1.3. For a suitable subset &+ c ST,

Y={veS;: (Tt ext)ovp™}, Y={veSs;: (e S}r -3 vjotl.
10.3.5.1.4. (VZ = X,Y) (Vo € £1) there is a (bounded) complex of (admissible)
R[G,+]-modules Z,:Q_ and a morphism of complexes of R[G,+]-modules

j;_(Z) : Z,j_+ —Z
such that, for each v € ¥, v|v™, the restriction of 7, (Z) to G, C G+ coincides with
I (2).
10.3.5.1.5. Each prime v € ¥/ is unramified in K/K™.

10.3.5.2. In order to simplify the notation, put GT = Gal(Kg/K™), G = Ggs =
Gal(Kg/K); denote by p : G — I'* the canonical projection and fix 7 € p~ (7).
The tautological character

xr:GT R
satisfies
(@) =1, xe(@g7 ) =xrlg") (9€0C).
The R-algebra
(10.3.5.1) RI']=Re&Rr=R&7TR

is equipped with an involution ¢, induced by 4+ — (y*)~! (y* € '), which extends
ton R.
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10.3.5.3. For Z = XY, Shapiro’s Lemma gives a quasi-isomorphism
+
sh: Cgont (G+7 Indg (,?F(Z))) - Cc."ont(G"gZF(Z))
(and similarly for .#p(Z)"). Recall that

Fr(Z)=(Z®rR) < -1>, Fr(Z2)=(Z@rR)<-1>.
Denote by .Z 1+ (Z) the following complex in (%d[ o +]Mod)ﬁ_ o

Fr+(Z)=Z@g R[],
with 7 € R and gt € Gt acting by
rz@a)=z207ra, g (z®a)=g" 2z®ap(g") ", (€ Z, a€ R[I'"])
respectively. Note that %+ (Z)" is canonically isomorphic to
Z g R[TT],
where r € R and g* € G* act by
rz®@a)=z20ur)a, ¢ (z®a)=g z®ap(gT) " (z€ Z, a€ R[TT]).
The decomposition (10.3.5.1) defines canonical isomorphisms of R[G]-modules
Fri(Z) =5 (Z@prR) < ~1>a(Zor R)T< 1>
L (Z@RR) < 1>0B(Z@rR)<1>7

Fri(Z) 5 (ZepR)<-1>0(Z@rR)r<—1>

S (ZorR)<-1>d(ZorR)<1>T.
10.3.5.4. Lemma

(i) For Z = X,Y, the formula f — f(1)+ (7 '®1)f(7)(1®7) defines isomorphisms

of complezes in (%][GHMOd)ﬁ-ﬂ

mdS (Z®rR) < —1>) (= ndS (Fr(2)) =5 Fre(2)
mdg ((ZerR) <-1>) (=dg (Fr(2)") > Fre(2)

mdé (X @rY)@r R) > (X @ Y) ®p R /T,

which make the following diagram commutative:

mdS (X @pB) < —1>) @zdl (Y @ ) < —1>) —2UE, 148" (X @ Y) @1 R)
4 1§

Fri(X) @5 Fre (Y)* —red (X ®Y)®R RI/T.
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Above, the map prod is given by
prod : (z ® (a1 + a27)) ® (y ® (b1 + ba7)) — (z @ y) ® (a1(b1) + aze(b2)7)
(aj,b; € R).
(ii) The formulas
ux 1 ¢ ® (a1 + aa7) — . Q (t(az) + t(ar)7)
vy 1Y ® (by + baT) —— y @ (1(b2) + 1(b1)T)
define isomorphisms of complezes of R[G"]-modules
ux : Fr+(X) = Fre(X), vy : Fre(YV) 5 Fri(Y)
satisfying vy = ugl (Z = X,Y ) and making the following diagram commutative:
Fr+(X) @ Fr+(Y) (X ®rY)®g R[TT/T]
JUX‘XWY idxey®(®T)
Fri(X) g Fre(Y) 220 (X @pY)®r B CH/T).

prod

Proof
(i) Let f € Indg+((Z ®r R) < —1 >); then f : Gt — Z ®g R is a function
satisfying

flggt) =(gexrle) DNfg") (g€ G, gt e Gh),
on which g € GT acts by (g;" * f)(g1) = f(
(

T+ f)1) = f(7), (g+ (1) = (g®xr(9)~")f(1),
F=N@ =@ D), (9T = f(Te7 7)) = (Tg7 " @ xr(9) (7).
(g € G). Putting

gtg). In particular,

i) =fW+F o) fFAeT) = fi+ for,
where f; € Z @ R are equal to
h=fQ), fo=F"'e)fF),

then

JExf)=fO+F oD@ e )f()(1er) =T 1)(fo+ fi1) =T j(f)

jlgxf)=(g@xr(9) i+ (g@xr(@)far =g*i(f)  (g€G).
This shows that the (bijective) map

j:dS (Z®rR) < —1>) — Fri(2)

is a homomorphism of R[G*]-modules, hence an isomorphism. The same argument
also works for
jmdS (Z@rR) < —1>) =5 Fre(2)".
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The corresponding statement for (X ®p Y) ®r R is just one of the isomorphisms
from 8.1.3.
As regards the commutativity of the diagram involving prod, let

fx emdS (X @rR)<—1>), fyemds (YorR)<-1>).
Writing

J(fx) =u +uer, wi=fx(1), we=(T"'®1)fx(T) € X@r R

Jfy)=v+ver, v =fy(l), w=F'@l)fy(F)eYerR,
we must express the values

wy = f(1), we = Fleo7'eol)fF e (X®rY)®r R
of the function
e =fxgHelda)fyg") (9" eGh)
in terms of w;, v;. As
wy = w1 @ (Id @ vy, we = ue @ (id ® t)ve,

the formula for prod which makes the diagram commutative follows.
(ii) Clearly uz ovz =id, vz o uz = id. The remaining statement follows from the
commutativity of the following diagram:

prod : (x® (a1 + az27)) @ (y @ (b1 + ba7)) — (2 ®@y) ® (a1t(by) + age(b2)T)
lu,x Rvy Tid®(L®T)
prod’ : (2 ® (t(a2) + ¢(a1)7) @ (y @ (t(b2) + ¢(b1)7)) — (2 @y) ® (bat(az) + bie(a)T). O

10.3.5.5. In this section we show that the assumptions 10.3.5.1.1-10.3.5.1.5 allow
us to replace Selmer complexes 6’; (#r(Z)) (Z = X,Y) by certain generalized Selmer
complexes CN'}(G'F,(?N (2)).

As a first step we define, for each v™ € ST, local conditions A+ (Zp+(Z)) (Z =
X,Y) by

USi(Zr+(2)) =Ct

cont

(G1J+7<(%\F+(Z:_+)) - C’(;ont(G’U"'WQNF+ (Z))7
(vt ext)

U (Zr+(2) = Coi(Gor . T r+(Z)) — Ceny(Gor, Fr+ (2)),

(vt e S;f - ¥71)
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and the corresponding generalized Selmer complex for Gt by

5;«<G+,%+<Z>>=Cone(o;om<c+,%+ Ne @ UL(Fr(2)
v+€S+

IOSS?. (10+)
- @ cont(GvJW‘g.F"'(Z)) [_1]

v‘LES+

(and similarly for #r+(Z)").

Lemma 10.3.5.4 together with a variant of the theory from 8.6-8.8 (which applies
thanks to the assumptions 10.3.5.1.1-10.3.5.1.5) give functorial quasi-isomorphisms
of complexes of R-modules

sht: CHGT, Fri(Z)) <= CHGT, IdS (F1(2)) 200 (P (2))
(Z = X,Y).

It follows from Lemma 10.3.5.4 (i) that the morphisms of complexes 7 : X g Y —
wy(1) and
F (m)

Fr(X) 0 Fr(V) 2w (1) @ B2 we (1)

induce products

Y

T T (X) @ Fre (V) — wi(1) @5 BV /T (1) @ RIEH/T)

and

Ct;ont(Gv"'?gzr"'( )) C<;011t(G gZF"'(Y) ‘
— (W eg BIT/TN-2 (07 € $)),

~

with respect to which
Upi(Fre (X)) Les o US (Fre(Y))  (vT e Sh).

Applying the construction from 6.3.1 and using 8.5.3, we obtain cup products (r € R)

L

Urt ot CHG, T s (X)) @5 CHGT, F e (V)

— 7>3C0ne <Ccont(G+’ wk(1) @5 R /T])

—) @ cont vJr Wi ( )®RR[F+/F] )[ ]

v+€S+

S—hc>7>3 Cc.,cont(GK»S7 w.ﬁ(l)) - w.ﬁ[“?)]
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such that the diagram

L Uzt r0

CHGH, Fr (X)) @5 CHGH Fre (V) —5 we[-3]
lsh}@sh}’ ||
=~ =~ 2 Uz, r,0
C}(Fr(X)) @ CHFr(Y)) —  wx[-3]

is commutative up to homotopy. This implies that the pairings Uz ; ; from 10.3.3.3
can also be defined using Uz+ , o instead of Uz ;..

10.3.5.6. Lemma. The following diagram is commutative up to homotopy:
~ ~ v U?+‘7,w
CH(G, Fr+ (X)) 05 CHGT, Fre(Y)) — Wy
(ux )+ @(vy )« v[-3]
~ v ~ (U7_¢.»7,Y ))" oL .
CH(G*, Zr+(X)) @ CHGH, Fri (V) ——— (wp)'[-3].
Proof. — Using the previous discussion, the statement follows from Lemma 10.3.5.4 (i)

and Proposition 6.4.2. Note that the action of 7 on R[T'"/T'] in the right vertical arrow
in 10.3.5.4(ii) corresponds to the homotopy action of Ad(7) on 753 C2 .. (G k. s, J (1)),
which makes the following diagram commutative up to homotopy:
. Qis
T23 Cc,cont(GK,Sa J(l)) =5 J[_?’]
lAd(T) I

T>3 Cc.,cont(GK,S> J(l)) gi J[_3] U

10.3.5.7. Corollary. — The pairings
Ur0,i,j ﬁ},lw(KOO/Kv X)Frors OF JEI;,IW(KOO/K7 X) & -tors
— H(wg) @5 (Frac(R)/R) (i+j=4)
satisfy
w Uz 0,y = t(ux(2) (Uro,g) oy () (i4]7=4)
Proof. — This follows from Lemma 10.3.5.6 and (2.10.14.1). O

10.3.5.8. Proposition (Self-dual dihedral case). — If, under the assumptions 10.53.5.1.1-
10.3.5.1.5, Y = X, A(Y)=A(X) and 7 : X @r X — wh(1) satisfies

mMOoS|g =C-T, C:j:].7
then the formula
(@, 9)ij =2 Uroijux(y)  (i+j=4)
defines R-bilinear pairings
( y )i»j : H}’IW(KOO/K7 X)R—-tors ®§ H;,IW(KOO/K7 X)ﬁ-tors
— H%wg) @ (Frac(R)/R)  (i+j=4)
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n (ﬁMod)/(pseudo-null) (or even in (EMod), if R is Cohen-Macaulay) satisfying
(@, 9)iy = (=1 (y,2);0  (i+7=4).
In particular, (, )22 18 a symmetric (resp., skew-symmetric) bilinear form if c = +1
(resp., c = —1).
Proof. — Combining Corollary 10.3.5.7 with Proposition 10.3.4.2, we obtain
(%, )i = @ Us,0,,5 ux(y) = t(ux (x)(Ur,0,i,5)"y)

= ¢(=1)7 y Uz 0,5, ux(z) = c(=1)" (y,2) - O

10.3.5.9. It is very likely that the conclusions of Corollary 10.3.5.7 and Proposi-

tion 10.3.5.8 still hold if the assumption 10.3.5.1.5 is weakened (it was included above
in order to apply 8.7.6).

10.3.5.10. There is an alternative way of constructing R-bilinear generalized
Cassels-Tate pairings on I?}‘JW(KOO/K, ~)Ftore It the dihedral situation of 10.3.5.1.
Mimicking the definition of an invariant bilinear form on irreducible two-dimensional
representations of a dihedral group, we define a (R-bilinear) pairing

N Fri(X)@gFr+(Y) — (X®rY)®r R
by the formula
(10.3.5.1) Mz ® (a1 +Ta2) @y @ (by + 7b2)) = 2 @ y ® (a1e(b2) + t(az)by).
It is easy to check that this pairing is, indeed, R-bilinear, symmetric
(10.3.5.2) Ao s12 = (s12®id) o A
and Gt -invariant
Vgt € GT) (¢t @id)or=Ao (gt @g™).
If we denote by T the composite pairing

7 Fre(X) @5 Fre (Y)—2(X @ Y) @ R—24

wi(D) @5 B2 (1),
then we have, for each v+ € £,

Fre(X L) L Fra (VD).
If 7 is a perfect duality, so is 7, by Corollary 8.4.6.5. If, in addition,

+ +
Xv+ Lln Y;)Jr’

then

Fre(X5) Lz Fra (V)

(again by Corollary 8.4.6.5).
The cup products (r € R)

Urr 0t OHGT, Fre (X)) @ CHGH, Fra (V) — wi-3]
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together with the quasi-isomorphisms sh; from 10.3.5.5 give rise to R-bilinear pairings

U 0,0 H e (Koo/ K X) g % Hp (Koo /KLY )

R-tors R-tors

— H°(wg) @ (Frac(R)/R) (i+j =4)

in (FMod)/(pseudo-null) (or even in (zMod), if R is Cohen-Macaulay).

In the self-dual case, when Y = X, A(Y) = A(X) and mos;9 = ¢-7 (¢ = £1), the
symmetry property (10.3.5.2) implies that 7 os12 = ¢-7'. Applying Proposition 10.2.5,
we deduce that

e Ur 045y =c(~1)"yUp o iz (i+j=4).

In particular, the pairing Uz ¢ 2.2 is R-bilinear symmetric (resp., skew-symmetric) if
¢ = +1 (resp., if c = —1).

10.4. Localized Cassels-Tate pairings

In this section we drop the earlier assumptions on R (i.e., R can have embedded
primes), but we fix a prime ideal p € Spec(R) satisfying dim(R,) = depth(R,) =1
and consider only Selmer complexes localized at p.

10.4.1. We fix wy = ozow} as usual and put wy = (wk)p -~ this is a bounded
complex of injective Ry-modules representing wg, . Let Y1, Y2 be bounded complexes
of admissible R,[Gk,s|-modules (in the sense of 3.7.2) with cohomology of finite type
over R, and

m(p): Y1 @r, Yo — wi [n](1)  (n€Z)

a morphism of complexes of R,[G g, s]-modules. Assume that we are also given or-
thogonal local conditions

A(Y1) Lrpynsp) A(Y2)

such that UZ(Y;) (i = 1,2) have cohomology of finite type over R,. Under these
assumptions, the Selmer complexes C}(Y;) = C}(Gk,s,Yi; A(Y;)) (i = 1,2) also have
cohomology of finite type over R,.

10.4.2. Example. — 1f 7 : X, ®r Xo — wy[n|(1) and A(X;1) Lrpe A(X2) are as
in 10.2.1, then the localizations

(Ye, A(Ya), m(p), hs(p)) = (Xi)p, A(X:)p, 7, (hs)p)

satisfy the assumptions of 10.4.1 and
Ci(Yi) = C}(Xi)p (i=1,2).
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10.4.3. Under the assumptions of 10.4.1, a localized version of the cup products
from 6.3.1

Un(pyrn - C3(Y1) @R, C3(Ya) — wh [n—3]  (r € Ry)
together with the construction in 2.10.7-2.10.9 define cup products

UW(P)vhS(P)»iJ : H}(Yl)Rp—tors ®RP H}(YQ)Rp—tors
— H%wg,) ®r, (Frac(Ry)/Ry) — I, (i+j=4-n)

in (r,Mod) (independent of r € Ry). If, in Example 10.4.2, R has no embedded
primes, then Uy .p (for 7 € R) and Ug(pyng(p),i,; are obtained from the corre-
sponding products Ur ., and Ux pe 4,5 from 10.2.2 by localizing at p.

If w(p) is a perfect duality in the sense that the map

adj(m(p)) : Y1 — Homjp (Yz,wp, [n)(1)),
or, equivalently,
adj(m(p) o s12) : Yo — Homp (Y1,wf, [n](1)),
is a quasi-isomorphism (cf. 6.2.6), then the adjoint map
Yr(p)rshs(p) = adj(Un(py,rn) - é';(Yl) — Homp, (5}(Y2),w}cp [n —3])
appears in the following exact triangle in th( r,Mod):

Y (p),rihg(p)

RT; (Y1) "5 g, (R (Y2)) [0 — 3]
— Brr(A(V1), A(Ya), n(p)) — RIp(Y1)[1].
Again, in the situation of 10.4.2, we have Y (p) rhs(p) = (Yr,rhs)p (if 7 € R) and
Err(A(Y1), A(Yz), 7(p)) = Err(A(X1), A(X2), 7)p.
Lemma 2.10.11 gives isomorphisms of R,-modules
_— HOwn,) ®n, (Frac(R,)/Ry))
= Exty, (HA(Y2),wr,) — H'(Z g, (RT;(Y2))[n — 3])

Dr, (H}(Ya),, ,.,.) — Homp, (H}(Y2)

Ry -tors’
(i+j=4-mn)

R,-tors

the composition of which with
adj(Un(p) hsp).i.g) * Hi ) o _ore — Dy (Hy(YV2) ) i+ =4=n)
coincides, up to a sign, with the restriction of the map
(Yr(p)rhs(p))x : Hp (Y1) — H'(Z g, (RT(Y2))[n — 3]).

10.4.4. Theorem. — Under the assumptions of 10.4.1, let i +j = 4 — n and Err =
Err(A(Y1), A(Y2), w(p)). Assume that w(p) is a perfect duality. Then, in the category
(RpMOd),

(i) Ker(adj(Ur(p) ns(p).ij)) is isomorphic to a subquotient of H*~*(Err).

SOCIETE MATHEMATIQUE DE FRANCE 2006



322 CHAPTER 10. GENERALIZED CASSELS-TATE PAIRINGS

(i) If H'"Y(Err) is Ry-torsion, then Coker(adj(Ur(p) hs(p),i,j) (respectively,
Ker(adj(Ur(p),hs(p),i,j))) @ isomorphic to a submodule (resp., a quotient) of H'(Err)
(resp., of H"1(Err)).

In particular, if H=(Err) = HY(Err) = 0, then adj(Ur hs.ij) 45 an isomorphism of
Ry -modules.

Proof. — This follows from Proposition 2.10.12 applied to Ux(p),r.4- O

10.4.5. Under the assumptions of 10.4.1, the pairings Uy (p) ng(p),i,; Satisfy the obvi-
ous analogues of 10.2.4-10.2.7, with the same proofs.

10.5. Greenberg’s local conditions - localized version

Let R,p,w}, and Wk, be as in 10.4.

10.5.1. A special case of the data from 10.4.1 is the following: Y7 = X(p), Y2 = Y (p)
and 7(p) : X (p)®g, Y(p) — wk, (1) are as in 10.4.1, Sy = XU are as in 7.8, and for
each Z = X(p), Y (p) and v € ¥ we are given a bounded complex of admissible R, [G,]-
modules Z; with cohomology of finite type over R, and a morphism of complexes of
R, [Gy]-modules
Nz zH — 2 (v e
we assume that
X(p)y Loy Y(P)7  (vel)
These data define the usual local conditions (Z = X(p), Y(p))
C(:OIIL(GU’ Z’l-)‘r) I C:'Ont(G'U7 Z)7 (/U e 2)
A (Z) = ,
Cix(Go, Z) — Cei (G, 2), (ved)
satisfying
AX(p)) Lrepy0 AY (p)),

which admit transposition operators satisfying a localized version of 6.5.3.1-6.5.3.5.
If w(p) is a perfect duality, then the error terms

Err, = Err, (A, (X(p)), Au(Y(p)), 7(p))

in Dy(r,Mod) are as follows:
Forv € &,
Err, . RIcont(Go, W),

where W, sits in an exact triangle
Wy, — X(p)y — Zr, (Y (p)y) — Wu[l]

in D (%dp [GU]Mod), by a localized version of Proposition 6.7.6 (iv).
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For v € ¥/,
Brry < [Hyy (Hlons (Lo, X () 275 Hiyy (o (1, X (9))) .

where the complex on the R.H.S. is in degrees 1,2, and

, Tam, (X (p),p), =12
ng (Hl(EI'I'U)) — a‘m’U( (p) p) 7
0, 1#1,2,
by a localized version of 7.6.10.7.
10.5.2. Example. — Let 7 : X ®p Y — w§(1) be as in 10.3.1; then the localized data

(X(p), Y (p), 7(p), X(0)F, Y (p)3) = (Xp, Yoo s (X ), (V1))
are as in 10.5.1 and

Err, = Err, (A(X), A(Y), 7)p (v e Sy).

10.5.3. Under the assumptions of 10.5.1, we obtain from 10.4 bilinear forms
in (r,Mod)

Un(p),0,i,j ﬁ}(X(P))Rp_tom ®R, f[}(y(t‘))
satisfying the formula (10.3.2.1). The kernels and cokernels of the adjoint maps
adj(Un().0.00) * HHX(0) g _yre — Dy (HYY (), ) (i =4)

are as in Theorem 10.4.4.

ptors " Ir 45 =1)

10.5.4. Iwasawa theory. — Let I' = Gal(K . /K) and R = R[I'] be as in 10.3.3.
Fix ¢ and v as in 10.3.3.1. Let Ry € Spec(R) be a prime ideal satisfying dim(Rg) =
depth(ﬁ;) = 1. One can obtain data of the type 10.5.1 over R as follows.
10.5.4.1. Assume that p € Spec(R), p D R Np and we are given the data
from 10.5.1 (except that we do not assume that dim(R,) = depth(R,) = 1) such
that all Z(p)*,(Z(p)}) (Z = X.Y, v € X, i € Z) are of finite type over Ry. Then a
localized version of the recipe in 8.9.2 defines Greenberg’s local conditions for
fip(Z(p))F = (Z(p) @r ﬁ)ﬁ < —1>= (Z(p)@r, Rp) < —1>
Fr(Z(); = (Z(p) ©r R )5 < ~1 >= (Z(p) ©r, Ry) < 1 >,
together with a pairing
() : Zr(X(p))y O, Fr(Y(p)y — i (1),

under which

(Zr(XP)g), Lem (Fr(Y()y), (veX).

Above, (=) is a shorthand for ((—)")-
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10.5.4.2. Lemma. In the situation of 10.5.4.1, assume that the localization of m(p)
at the prime ideal ¢ = RNp € Spec(R) is a perfect pairing w(p)q : X(p)q®@r, Y (p)q —
wh, (1) over Rq and (X (p)7)q LLr(p), (Y(p)F)q for allv € X. Then 7(p) is a perfect
pairing and

n

(Zr(XM)5), Llem (Fr(Y(p))y),  (Fwex).
Proof. — This follows from the flatness of Rg over Ry and the fact that
Fr(Z(p))g <1>=(Z(p)q) ®r, Ry,
Fr(20)8); <1> = (2@ or, By (Z=X.Y). =

10.5.4.3. Alternatively, given 7 : X ®p Y — w§(1) and Z} (Z = X, Y, v € ) as
in 10.3.1, we can localize Z (X ), #r(Y)* and 7 from 10.3.3.2 at p.

10.5.5. Under the assumptions of 10.5.4.1 (resp., 10.5.4.3), we can apply 10.5.3 and
obtain bilinear forms in (ﬁFMod) (for i +j5=4)

(10.5.5.1)  Unp),0.15 (A} 1 (K oo/ K XO0D)0) ) vons® e (s Koo/ K YD) 1o

SN Iﬁ?
resp.,
(10.5.5.2)  Usp0i 0 (Hj 1w (Koo/ K, X )H) (B )-tors DTy (H}’IW(KOO /K,Y)"J_) (Ry)-tors
— IEF’

All results in 10.3.3-10.3.5 hold (with the same proofs) for the pairings (10.5.5.1)—
(10.5.5.2).

If R has no embedded primes (and if the data 10.5.4.1 are of the kind considered
in 10.5.2), then the pairings (10.5.5.1)-(10.5.5.2) are obtained from those in 10.3.3.3
by localizing at p.

10.6. Discrete valuation rings with involution

10.6.1. An involution on a (commutative) ring O is a ring isomorphism ¢ : O — O
satisfying ¢ o ¢ = id. A typical example is the standard involution on R = R[I].

10.6.1.1. If O is a discrete valuation ring with prime element w € O, then each in-
volution ¢ : O — O maps the maximal ideal @O to itself, hence induces an involution
1, on the residue field k = O/wO and ((w)/w € O is a unit; denote by € € k* its
image in k*, which satisfies

e-u(e) = 1.
If we replace w by w’ = uw (v € OF), then ¢ is replaced by € = (w(U)/u)e, where
u € k* denotes the image of u in k*.
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10.6.1.2. If 1 = id, then ¢ = %1, hence
((w) = +w (mod w?).
10.6.1.3. Lemma. — If 1, =id, e =1 and 2 € O, then ¢ = id.

Proof. — Assume that t(u) # u for some u € OF; then t(u) = u + vw", where
v € O* and n > 1. This implies that 0 = v&@™ + 1(v)(w)” = 2vw™ (mod w™ 1),
which is impossible. Thus ¢ acts trivially on O* and also on w, as ((w) = (1 + w)
—(1) = w. O

10.6.1.4. If 1, # id, then k is a quadratic Galois extension of k, = k‘*=!, with
Gal(k/ky) = {id, tx}. Hilbert’s Theorem 90 implies that there is @ € k* satisfying
€ = /i (u); replacing w by w’ = uw (where u € O™ is any lift of w € k*), we have

(@) = @' (modw™).

10.6.2. A typical example of a discrete valuation ring with involution is the localiza-
tion O = Ry of R = R[I'] at a regular prime ideal p € Spec(R) satisfying ht(p) = 1
and «(p) = p.

10.6.3. In particular, assume that R is an integral domain, flat over Z,, and that
L5 Z, (y—1). If
f=(v-D"+a(y-1)"1 + - +a, € Rjy—1] (a1,...,a, €m)

is an irreducible distinguished polynomial of degree n > 1, then p = (f) is a prime
ideal p € R = R[I'] = R[y—1] satisfying ht(p) = 1 and pN R = (0). The localization
O = ﬁ; = R[y — 1]y is a discrete valuation ring with prime element f. Factorizing
f into linear factors

f=0—a)- (v —an)

over a suitable finite extension of Frac(R), we have

p=1(p) = Z(f) :={ar,...,an} ={a7",...,a;'}.
There are three mutually exclusive cases:
10.6.3.1. 1€ Z(f) =p=(y—1), k =Frac(R), tx =id, e = —1.
10.6.83.2. —1€Z(f)=p=(y+1),p=2, k=Frac(R), 1, =id, e =-1=1.
10.6.8.3. {£1}NZ(f) =2 = v Z vy~ (mod fO) = 1, # id.
10.6.4. Lemma. — Let O be a discrete valuation ring with involution v. Assume that

either 2 € O, or that O 1is complete. Then there exist a prime element w € O and
e = £1 satisfying 1(w) = ew.
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Proof. — According to 10.6.1.2 and 10.6.1.4 there exist ¢ = £1 and a prime element
wo € O satisfying «(wg) = ewp (modw?). If 2 € OF, then the elements z4. :=
wo * et(wp) satisfy ((r1c) = tex L, and at least one of them is a prime element of
O. If O is complete, it is enough to construct a sequence of prime elements @, ws, . . .
satisfying

W = @yt (modwi ™), (@) = cw, (mod wdt?) (n >1),

as w = limw,, will have the desired property. Given w, (n > 0), put v = («(w,) —
ewy,)/w" 2 € O. Ifu g OF, let w, 1 = w,. If u€ OF, denote by @ € k* its image

n
in k*. The exactness of the sequence

id—1ty k id+ep L id—eg k id+1p

implies that there exists @ € k satisfying (¢""'i; — id)@ = —eu. The element
Wptl1 = @Wn + awﬁ*z (where a € O is any lift of @) has the desired properties,

as Wn11 = wy (modwyt?) and

n+2)n+2

U Tny1) — €@ni1 = (u—ea)w™ 2 + u(a)(cwy, + uw?

= (u+e™i(a) — ca)w ™ =0 (mod wf ™). O
10.6.5. Lemma. — Let O be a discrete valuation ring with fraction field F, w € O
a prime element and k = O/wO the residue field. Assume that ¢ € {£1} and
t: O — O is an involution satisfying 1(w) = ew (modw?). Let N be an O-module
of co-finite type and
(,Y):NxN— F/O
a skew-Hermitian form, i.e., a bi-additive map satisfying

Az, py) = M(p)(z,y),  (y.2) = —({z,y)) (VA ,p€ O, Va,y € N).

Assume that the kernel of (, ) is equal to Ng;v (= the mazimal O-divisible submodule
of N). Then:

(i) The k-vector space F' := N[w| has a canonical decreasing filtration
Fl ) F? ...

by the k-subspaces FV = N[w]Nw! "I N.
(ii) F*° =5, F/ = N[w] N Naiy.
(iii) The formula
<wj_1:r,wj‘1y>jw =w’ ((z,y) (modw 7)) € O/wO =k (z,y € N[=’])
defines an (—¢&’)-Hermitian form
T N

i.e., a bi-additive map satisfying

</\337Ny>j,w = /\Lk(ﬂ)<way>]‘,wv <y7x>j,w = —Eij(<a:7y>j’w) (VA p € k, Va,y € F7),
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with kernel equal to FI*Y, hence a non-degenerate (—&?)-Hermitian form
(v )jw:8p X grp — k

on grl, = FJ/Fitt,
(iv) If we replace w € O by another prime element w' satisfying v(w') =
ew’ (modw'), then
() =7 )
where u € k* is the image of @' [w € OF in k* (it satisfies 1 (u) = u).
(v) Assume that 1 = id and &/ = 1. If 2 € O* (more generally, if the pairing
(', ) is alternating, i.e., if (x,x) = 0 for all x € N), then (, ). _ 1is a symplectic

(= alternating and non-degenerate) form on gri., hence

dimg (F7) = dimy, (F/*') (mod 2).

J, ™

(vi) Assume that ¢ =id. If 2 € O (more generally, if the pairing ( , ) is alternat-
ing), then
(Vi >1) dimg(F’) = dimg(F>) (mod 2).
In particular,
dimy, (N[w])(= dimg(F')) = corke (N)(= dimg(F°°)) (mod 2).

Proof. — Elementary linear algebra. O

10.6.6. Lemma (Dihedral case). — In the situation of 10.6.5, assume that we are given
a bijective additive map T : N — N satisfying 7 o7 = id and

T(Az) = (N 71(2), (rz,7Yy) = ({x,y)) (VA€ O, Va,y € N).
Then:

(i) The formula (z,y) = {(x,7y) defines an O-bilinear skew-symmetric pairing
(,):NXxN — F/O with kernel Ngiy .
(ii) The filtration FJ on F' = N(w] is T-stable and the pairings (, ); . satisfy

(T, 7)o = ul(@,y); o) 2,y € grp).
(i) If 2 € O (more generally, if the pairing (, ) is alternating), then
(Vj > 1) dimg(F7) = dimg(F*°) (mod 2).
In particular,

dimy, (N[w@]) (= dimg(F1)) = corke (N) (= dimy (F*)) (mod 2).

Proof. — (i) and (ii) follow from the definition of ( , ), while (iii) is a consequence of
Lemma 10.6.5 applied to the pairing (, ) and the trivial involution id. O

SOCIETE MATHEMATIQUE DE FRANCE 2006



328 CHAPTER 10. GENERALIZED CASSELS-TATE PAIRINGS

10.6.7. The conclusion of Lemma 10.6.6 (iii) can be proved without introducing the
pairing ( , ), at least in the following special case.

10.6.8. Lemma. — In the situation of 10.6.6, assume thate = —1, 1, = id and 2 € O,
For n,n" = & denote by (, )], the restriction of (, ), , to (grp)" X (gr)"", where
(grh)F = (grl)"=%. Let j > 1; then:

() 1245, then (,)1E = (. )72 =0 and
(0 )yt (@)t x ()™ — &
is a non-degenerate k-bilinear form. In particular,
dimk(grfp)+ = dimy,(gr},)”,  dimg(gr}) = 2dimg(gr},)* =0 (mod 2).

(ii) If 2|7, then (, );L; =(, )J_; =0 and { ; )j‘; (resp., (, )J_;) is a symplectic
(= alternating and non-degenerate) form (mv(gr"F)+ (resp., on (gry.)~ ). In particular,
dimk(gri‘)i =0 (mod 2), dirnk(gr‘;,) =0 (mod 2).

(iii) We have
(Vi>1) dimg(F?) = dimg(F>) (mod 2).
In particular,

dimg (N[w]) (= dimg (F1)) = corke (N) (= dimy,(F>°)) (mod 2).

Proof
(i), (ii) As

(ro,7y), L = (@y), o = (1)), . (z.y€er))

and —1 # 1 in k, it follows that (, >1]7',f_; = 0if i/ # (—1)7y. This implies, by non-
;”7; are non-degenerate if ' = (—1)7n.
e

degeneracy of (, ), _, that the pairings (, )
Finally, if 2[4, then the pairing (, );  (hence each (, )

Lemma 10.6.5 (iii), hence alternating (as 2 # 0 in k).

) is skew-symmetric by

The statement (iii) is an immediate consequence of (i) and (ii). O

10.7. Skew-Hermitian and symplectic pairings on generalized Selmer
groups

10.7.1. In this section we investigate skew-Hermitian and skew-symmetric pairings
arising from the constructions in 10.1-10.5. In self-dual situations, the localizations
of generalized Cassels-Tate pairings at regular prime ideals of height one give rise to
pairings of the type considered in Lemma 10.6.5, from which one can deduce various
parity results. As we shall see in 11.8, in the special case 10.6.3.1 the corresponding
pairings on the graded pieces ngI} can be identified with (higher) height pairings.
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10.7.2. Symplectic pairings revisited. — In the situation of 10.6.5, the O-
module N is isomorphic to

N = (F/0) & D (0/=")™,
i1
with n; > 0 and only finitely many n; non-zero,

Ngiv — (F/O)*, s = corko(N)

and

Assume that ¢+ = id and that the pairing (, ) is alternating (which is automatic
if 2 € O*). The existence of the symplectic forms on the graded quotients gr’. implies
that
n; =0 (mod 2) (Vi>1).
In particular, if (, ) is non-degenerate, then s = 0 and
NS MaoM, M= @(O/wi)m/g
i1

Note that M can be chosen to be a Lagrangian (= maximal isotropic) submodule
of N.

If the form {, ) is merely skew-symmetric (i.e., (z,y) = —(y,z) for all z,y € N)
and non-degenerate, then 2(, ) is alternating, but possibly degenerate, with kernel
N’ C N annihilated by 2. By the previous remark, we have

~

N/N'" = M' & M'.

Denoting the image of the map
M' «— N/N' — N
n+ N +— 2n

by M C N, then
MeMCN, 2-(N(MeM))=0.

10.7.3. The abstract linear algebra construction from Lemma 10.6.5 appears in sev-
eral contexts, e.g. as the “Jantzen filtration” in representation theory [Jan] (as pointed
out to us by L. Clozel). For us, the most important example comes from the classical
descent theory on elliptic curves.

Let E be an elliptic curve over a number field K and S a finite set of primes of
K, which contains all primes above p, all archimedean primes and all primes of bad
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reduction of E. The classical Selmer group for the p™-descent on E (over K) is defined
by the following cartesian diagram:

Sel(E/K, p") —  HYGgs, E[p"])

Bues E(Ky) @ Z/p"Z — @D, H' (G, E[p")).

Passing to the limit,
Sel(E/K,p™) = lim Sel(E/ K, p")
is a Z,-module of co-finite type sitting in ag exact sequence
0 — E(K) ®Qp/Zp — Sel(E/K, p>) — HI(E/K)[p™] — 0,

where III(E/K) is the Tate-Safarevic group of E over K. The image of the canonical
map -

Im|[Sel(E/K,p") — Sel(E/K,p>)] =: Sel(E/K,p")
coincides with Sel(E/K,p>)[p"] and sits in an exact sequence

0 — (E(K)/tors) ® Z/p"Z — Sel(E/K,p") — HUI(E/K)[p"] — 0.
Putting
r=1kz(E(K)), s, =max{j>0](Z/p"Z) CSel(E/K,p")}

(for each n > 1), then

81282 2 Z 8ng = Sng+l = " = S0 = T
Sel(E/K,p™) == (Qu/Zp)* & @ (Z/p'2)% 1,
i>1
800 — 1 = corkg, (HI(E/K)[p™])
(as III(E/K) is conjecturally finite, it is expected that s, = 7).

The integer s, (for fixed p) is classically called “the number of n-th descents”. It
was first observed by Selmer that, in all available examples, the integers s; — s;4+1 (as
well as s; — r) always turned out to be even. Selmer’s observation concerning s; —
s;+1 was conceptually explained by Cassels [Ca2], who constructed a non-degenerate
alternating pairing (subsequently generalized by Tate)

(,):Sel(E/K,p™) x Sel(E/K,p™) — Q,/Z,

with kernel Sel(E/K,p™)qiy. The filtration F7 on F' = Sel(E/K,p™)[p] =
Sel(E/K,p) (constructed as in Lemma 10.6.5, with O = Z,,, ¢ = id and w = p) then
coincides with

(10.7.3.1) Fi =Im {ével(E/K,pj) . Sel(E/K, p)},

i.€.,

S; = dimz/pz(Fj)
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is equal to the number of first descents that can be “extended” to j-th descents. The
fact that F? (defined by (10.7.3.1)) is the kernel of a suitable alternating form on
F! was first established in a special case in [Cal]; this was the starting point of the
general construction of ( , ), given in [CaZ2].

10.7.4. Lemma. — Let N be an R-module of finite length and
(,):NxN—Igp
a symplectic pairing (i.e., (x,x) =0 for all x € N and the adjoint map
j=adj({,)): N — D(N)

is an isomorphism). Then:

(i) For each Lagrangian (mazimal isotropic) submodule M C N, the map j induces
an isomorphism
N/M —= D(M).
(ii) £r(N) =0 (mod 2).

Proof

(i) Lagrangian submodules exist (since N is Noetherian); let ¢ : M < N be one of
them. As M is isotropic, the (surjective) map

D(4)

N—2-D(N)2LD(M)

factors through
j't N/JM — D(M).

If £+ M € Ker(j') and x ¢ M, then M + Rz 2 M is also isotropic - contradiction.
Thus j' is injective.
(i1) Cr(N) = Ca(M) + £r(D(M)) = 2r(M). O

10.7.5. Abstract self-dual case. — Pairings of the kind considered in 10.6.5
and 10.7.4 naturally arise in the following context.
Consider the following assumptions:

10.7.5.1. p € Spec(R) satisfies dim(Ry) = depth(R,) = 1.

10.7.5.2. In 10.4.1, we have YV; = Y, A(Y;) = A(Y) (i = 1,2), n(p) : Y ®g, ¥ —
wh, (1) satisfies 7(p) o 512 = —m(p) and the local conditions A(Y) L) nep) AY)
admit (a localized version of) the transposition data as in 6.6.2.

10.7.5.3. H'(Err(A(Y), A(Y),w(p))) =0 for i =1,2.
10.7.5.4. 2 is invertible in Ry.

10.7.5.5. R, is a discrete valuation ring.
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10.7.6. Proposition
(i) Under the assumptions 10.7.5.1-10.7.5.3, the pairing (, ) = Ux(p),hs(p)2,2 O
N = H‘%(Y)

e -tors 18 @ non-degenerate skew-symmetric Ry-bilinear form
» ~tors

(,):NxN —Ig,,
ie., (z,y) = —(y,x) for all x,y € N and the adjoint map adj((, )) : N — Dpg,(N)
18 an tsomorphism.

(ii) Under the assumptions 10.7.5.1-10.7.5.4, {, ) is a symplectic pairing as in
Lemma 10.7.4 (over Ry) and

{r,(N) =0 (mod2).

(iii) Under the assumptions 10.7.5.2-10.7.5.5, (, ) is a symplectic pairing as in
Lemma 10.6.5 (over O = Ry ) with Ngiv = 0 and

N-=MoM

for a suitable Lagrangian submodule M C N.
(iv) Under the assumptions 10.7.5.2-10.7.5.3, 10.7.5.5, there is an Ry-submodule
M C N such that

M@&MCN, 2-(N/(M®M))=0.

Proof

(i), (ii) A localized version of Proposition 10.2.5 implies that the pairing (, ) is
skew-symmetric (hence alternating, under the assumption 10.7.5.4). It is also non-
degenerate, by Theorem 10.4.4 and the assumption 10.7.5.3.

The remaining statements follow by applying Lemma 10.6.5, 10.7.4 and the discussion

in 10.7.2. O
10.7.7. Self-dual Greenberg’s local conditions. — Consider the following as-
sumptions:

10.7.7.1. p € Spec(R) satisfies dim(R,) = depth(R,) = 1.

10.7.7.2. In 10.5.1, we have X (p) =Y (p), X(p)] =Y (p); (v € X), n(p) : X
X(p) = wp, (1) satisfies m(p) 0 s12 = —(p) and X(p)F La) X(p)F (veX).
).

10.7.7.3. Hi _ (G,,W,)=0 (i=1,2; veEYX), Tam,(X(p),p)=0 (ve
10.7.7.4. 2 is invertible in R,,.

(p) ®r,

10.7.7.5. Ry is a discrete valuation ring.

10.7.7.6. In each degree i € Z, the Ry-modules X (p), (X (p);)" (v € ) are torsion-
free.
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10.7.8. Under the assumptions 10.7.7.2-10.7.7.6, fix a prime element @w € R,. Then
Xpp) = X(p) ®r, Rp/w

is a complex in (j‘%d[GK S]Mod), which can also be viewed as a complex in (?j‘%/p)[cx o] Mod).
The complex of continuous cochains C¢, (G s, X)) is the same in both cases, by
Proposition 3.5.10. The same is true for

(Xp))a = X (p)J ®r, Rp/w
as complexes of G,-modules (v € ¥). The maps
Jo (X)) + X))y — Xy (veX),

induced by 7,7 (X (p)), define Greenberg’s local conditions for X[, the Selmer com-
plex é;(X[p]) and the corresponding object ﬁf‘f(X[p]) € D(,(pyMod), where x(p) =
R, /w = Frac(R/p) is the residue field of p.

By Proposition 7.6.7(iv), the assumptions 10.7.7.3 and 10.7.7.6 give an exact
triangle

RT (X (p)->RT (X (p) — RT (X)) — RT (X (p))[1]
in D(g,Mod). The corresponding cohomology sequence yields short exact sequences
(10.7.8.1) 0 — H}(X(p)) ®r, Rp/w — H}j(Xpp) — Hi™ (X (p))[w] — 0,
which imply that RT(X[y)) € Dy (s(pyMod).

10.7.9. Proposition. — Under the assumptions 10.7.7.2-10.7.7.6,

(i) The k(p)-vector space F* := f[}(X[p]) has a canonical decreasing filtration by
subspaces F* D F? D ... satisfying

F = () F/ = H{(X(p)) ®r, Ry/w.

j>1
11 ere are natural sSymplectic pairings
ii) Th tural symplecti ring
(3 )y : 8T X g% — K(P)
depending on w, with
2-j
(3 Vjwr = (@' /w (modw))” 7 (, )

(iii) dimy.(p) (H} (X)) = dimyp) (F>) (mod2).
(iv) If H?(X[p]) =0, then

dimy, () (H} (X)) = tkr, (HHX(p))) (mod2).
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Proof. — By Proposition 10.7.6 (iii), (, ) = Ur(p),0,2,2 is a non-degenerate alternating
pairing
(,):NxN — Frac(Ry)/R,
on
72
N = (Hf (X(p)))Rp—tors'
Applying Lemma 10.6.5 to this pairing, we obtain a filtration F7 on N[w] and sym-
plectic pairings on its graded quotients. Taking the pull-back of these objects by the
canonical map
H}(Xpp) — H(X(p))[w] = N[w]
from (10.7.8.1), we obtain the statements (i)-(iii).
N As regards (iv), the assumption H‘(;(XM) = 0 implies (again by (10.7.8.1)) that
H }(X (p)) is torsion-free, hence free, over Ry; thus

dim,, ) (F>) = tkp, (H}(X (p))). O

10.7.10. Note that p contains a unique minimal prime ideal q C p, and

rkRp (ﬁ}(X(p))) = diInFrn(:(R,,) (ﬁfl”(X(p) ®Rp FraC(RP)))
depends only on
X(q) = X(p) @r, Frac(Ry) = X(p)q
(a complex of admissible Rq[G i g]-modules) and
X@§ = (XE)?), (e
10.7.11. Self-dual dihedral case in Iwasawa theory. — Consider the following
assumptions:
10.7.11.1. We are given K+ ¢ K C K, as in 10.3.5.1.
10.7.11.2. In 10.3.3.2, we have X =Y, X =Y, (v € 8), 7: X @p X — wi(1)

v

satisfies T o 515 = —m, X;F L. Xt (Vv € ) and the conditions 10.3.5.1.1-10.3.5.1.5
are satisfied for X, X\ (v € %).

10.7.11.3. p € Spec(R) is a prime ideal satisfying dim(Ry) = depth(Rg) = 1; put
go = R[A]Np € Spec(R[A]) and q = qo N R € Spec(R).

10.7.11.4. 1If q is not a minimal prime ideal of R (= ht(q) = 1), then Tam, (¥ a(X),
qo) = 0 for all v € ¥’ satisfying I, C A.

10.7.11.5. 2 is invertible in Rg.
10.7.11.6. ﬁg is a discrete valuation ring.

10.7.11.7. The localization of m at q is a perfect pairing 74 : Xq ®r, Xq — wj_ (1)
over Rq and (X;F)q LLr, (X;)q forallve X.

ASTERISQUE 310



10.7. SKEW-HERMITIAN AND SYMPLECTIC PAIRINGS 335

10.7.11.8. The localization of 7 at q is a perfect pairing mq : Xq ®r, Xq — Wk, (1)

over Ry.

10.7.11.9. (Vv € £) Rlcons(Go, F a (W,

in an exact triangle in Db(R (Gl Mod)
Wy — (Xn_)q —>‘@Rq ((X+)q) - Wv[l]-

ht(qo) =0, 9 = qo N R € Spec(R).

)) o = 0in D.?t(R[A]qOMod), where W, sits

10.7.12. Proposition

(i) Under the assumptions 10.7.11.1-10.7.11.5, 10.7.11.7 (resp., 10.7.11.1
10.7.11.7), there is a symplectic pairing over ﬁg

(,):NxN— I, (resp., N x N — Frac(Ry)/Rp)
on
N = (ﬁ;,IW(KOO/K,X))(_RF)_M - ((ﬁ(f{[}(KS/KOO,D(X)(l))t))a)(ﬁg)_mrs

as i Lemma 10.7.4 (resp., in Lemma 10.6.5, with O = Eg and Ngiv = 0) and
/,EF(N) =0 (mod2) (resp., there is a submodule M C N satisfying M & M = N ).

(ii) Under the assumptions 10.7.11.1, 10.7.11.2, 10.7.11.4, 10.7.11.6-10.7.11.7
(resp., 10.7.11.1, 10.7.11.2 10.7.11.8-10.7.11.10 (= 10.7.11.6)), there is a non-
degenerate skew-symmetric pairing

<, > N x N — Frac(ﬁg)/ﬁg
and a submodule M C N satisfying
MaeMCN, 2 (N/(MaoM))=0.

Proof. — A localized version of Proposition 10.3.5.8 (and a choice of 7,7 as in 10.3.5.2)
defines a skew-symmetric pairing

<7>:(’)2’2:NXN_)I§F’

which is non-degenerate by Theorem 10.4.4, Theorem 8.9.8 and the relevant assump-
tions of 10.7.11 (using Lemma 10.5.4.2). The rest follows from Lemma 10.6.5, 10.7.4
and the discussion in 10.7.2. O

10.7.13. Consider the following global version of the assumptions from 10.7.11:
10.7.18.1. = 10.7.11.1

10.7.13.2. = 10.7.11.2

10.7.13.3. R (hence also R) has no embedded primes.

10.7.13.4. T, is infinite for each v € 3.

10.7.13.5. 2 is invertible in R.
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10.7.13.6. R (hence also R) satisfies (R;).

10.7.13.7. The condition 10.7.11.7 is satisfied for all prime ideals q € Spec(R) with
ht(q) = 0.

10.7.13.8. The condition 10.7.11.7 is satisfied for all prime ideals q € Spec(R) with
ht(q) = 1.

10.7.14. Proposition. — Under the assumptions 10.7.13.1-10.7.153.8 (resp., 10.7.13.1-
10.7.13.3, 10.7.13.6 -10.7.13.7), the R-module of finite type

N = (Hf (Koo K X0) gy = (DU} (s Ko, DE)D))) 1
has a subobject M — N in (zMod)/(pseudo-null) such that
M&eM -~ N
in (zMod) /(pseudo-null) (resp.,

2 (N/(M@®&M&N')) =0, N’L@@ R/—z a(p,i)
peA =1

in (FMod) /(pseudo-null) ), where
A= {p € Spec(R) | ht(p) = 1, (3p € Spec(R)) ht(p) =

In particular, if T =Ty = Z,, then

=]l
—

A= {pR|p € Spec(R), ht(p) = 1}.

Proof. Assume that 10.7.13.1-10.7.13.8 hold. By Corollary 2.10.19, N is isomor-
phic in (FMod)/(pseudo-null) to

N= P D@

PeESpPec(R) 121
ht(p)=1

The conditions 10.7.11.1-10.7.11.6 (resp., 10.7.11.7), follow from 10.7.13.1-10.7.13.6
(resp., from 10.7.13.7-10.7.13.8 applied to g =p N R). As

Ny = @D (Ref5' )" ™,

i1
Proposition 10.7.12 (i) implies that each exponent n(p,i) is even, hence
NS MaeM
n (zFMod)/(pseudo-null), where

M= @ @ (E/ﬁi)n(ﬁ’i)m.

PESpec(R) 12 1
ht(p)=1
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If we only assume 10.7.13.1-10.7.13.3 and 10.7.13.6-10.7.13.7, then Proposi-

tion 10.7.12(ii) shows that, for each p ¢ A, there is an (Rj)-submodule
M(p) @ M(p) C Ny
satisfying
2 (Ng/(M(p) ® M(p))) = 0.
Writing
M(p) = P (Re /P Ry)" ",

i>1

Proposition 2.10.18 and Corollary 2.10.19 then show the existence of the required
M — N, isomorphic to

M= P RO O
ht(p)=1
PEA

10.7.15. Theorem. — Assume that 10.7.11.1-10.7.11.2 hold and that X = H°(X) and
X}t = HYX}) (Vv € ) are concentrated in degree zero. Let qo € Spec(R[A]) be a
minimal prime ideal such that 10.7.11.8-10.7.11.9 hold for ¢ = qo N R € Spec(R).
Assume, in addition, that k(qo) = R[Al]q, i a field of characteristic char(k(qo)) # 2
and f}?(KO,X)qO =0, where Ko := K10 and f[}(KO,X) = fI}(K,,%?A(X)). Denote
by § = qoR the unique minimal prime ideal of R containing qo (= k(q) = Rg is a
field containing k(qo)). Then:

(i) Denoting by v : R[A] — R[A] (resp., t : R — R) the standard involution, then
dimny, (o) HHEo, X )qy = dimy () H} (Ko, X)q,
= dimy,(g,) (JZII}(KO,X)L)qO = dimy(qy) (ﬁ%(KO,X)L)qO
dimy,q) H} 1o (Koo / K, X)g = dim,q) H? 1, (Koo /K, X)g
= dim ) (1o (Koo/ K, X)) = dimygq) (HF g, (Koo /K, X))
(ii) The dimensions from (i) satisfy
dimy, (o) HF (Ko, X )qo > dimy ) H? 1 (Koo/ K, X)g
dimy(qy) HF (Ko, X )qy = dimyg) Hf 1 (Koo/ K, X)g (mod 2).
In particular, if A =0 (= Ko =K, qo = q) and R is a domain (—> q = (0)), then
tkp (H}(X)) = tkp (H}(X)), tkp(Hjy(Koo/ K, X)) = tkg(HF 1 (Koo/ K, X))
ki (H (X)) > rlegg(Hf 1 (Koo / K, X)),

tkp (H3(X)) = tkp(H} 1 (Koo/ K, X)) (mod 2).
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(iii) Let Ty, C To be an open subgroup, K{ = Kcl;é’, A" = Ty/T} and qf €
Spec(R[AxA']) a minimal prime ideal above qo € Spec(R[A]) such that HY(Kg, X)q, =
0, where f[}(Ké,X) = fl;(K,EZAxA/(X)). Assume that (Vv € X) RIcont(Go,
Faxa (Wy))q, Z0in D?t(R[AxA’]q/ Mod). Assume, in addition, that the field x(qo)

0
has characteristic zero. Then r(qy) = R[A x Al is a field of finite degree over
k(q0) and
dimns(ag) H 7 (K, X)q, = dimeop) H7 (G, X
dimy(q) HF (K, X)qy = dimy gy H3 1, (Koo /K, X )5 = dimy(q0) H3 (Ko, X)qo, (mod 2)
dimyq) H(K, X) g, = dimy ) H? 1y (Koo / K, X )5

Proof

(i) The assumption 10.7.11.1 yields, by 10.3.5.4-10.3.5.5, isomorphisms of R[A]-
modules (resp., of R-modules)
(10.7.15.1) H}(Ko, X) > H)(Ko, X),

H}‘IW(KOO/IQX)' = H}’IW(KOO/K,X)‘
According to Theorem 8.9.8, localizing the morphism
Yra - ﬁf(gA(X)) — RHOI‘IIR[A] (l’{\ff(ng(X)),wR[A])L[—?)]

at o, we obtain isomorphisms

(10.7.15.2) HY (Ko, X)q, — Hom,{(qo)((f{;_j(Ko,X)")qo,K(qo)),

which proves the first half of (i). In order to prove the second half, fix a chain of
subgroups I'p D I'y D -+ D I', = 0 satisfying I[';/T41 — Z, (i = 0,...,r — 1) and
put Koo,i = Kgo' (Ko = Koo,O C - C Koo,r = Koo)a R, = R[[F/Fl]] = R[[Fo/FZH[A],
q; = C[oRL (Ro = R[A], RT = ﬁ)

For each i = 0,...,r — 1, we denote by p;4+1 € Spec(R;4+1) the inverse image of g;
under the augmentation map Riy1 = R;[I';/T';11] — R;. Then Sipq := (Rij1)p,,, I8
a discrete valuation ring with residue field x(q;) := (R;)q, (and uniformizing element
v; — 1, for any topological generator v; of I'; /T;1).

According to Theorem 8.9.8, the localization of the morphism

vt RT (Koo /K, X ) — RHomp (R f 1 (Koo /K, X),w5) " [-3]

at p, € Spec(R) is an isomorphism. Localizing further at the minimal prime ideal
q C p,, we obtain isomorphisms

)ag)

Tt (Koo / K, X )g == Homy ) ((H} 13 (Koo / K, X)) o 5(@);

the second half of (i) follows.
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(ii) Denote, for each i =0,...,r,
N; = H} 1 (Kooi/ K, X) € (rMod) .
A localized version of Proposition 10.3.5.8 yields, for each ¢ = 0,...,7 — 1, a skew-

symmetric (hence alternating, as char(x(q;)) # 2) Si+1-bilinear form

(10.7.15.3) ((Nz‘+1)m+1)si+1-tors X ((Niﬂ)p,.yﬂ)sm_tors — Frac(Si11)/Sit1-
The assumptions on qg imply, by Lemma 10.5.4.2, that
(V’L =0,...,7— 1) (V’U S E) =QF/I‘7;+1(X1_;‘—)W+1 J_erl =QF/Fi+1(Xj>p,;+1~
The cohomology sequences of
i—1
0— ‘gzr/rwrl (WU)FY—)<96\F/F1:+1 (WU) - 'gl—‘/ri(Wv) —0

give rise to exact sequences

0— HgonL(vaylw/Fi-H (Wv))lﬂq‘+1/pi+1 B Hgont(G'U"gZF/Fi(WU))qi
— Hj+1(Gv»e@F/Fi+1(W1)))pi+1 [pi"r]] I 0

cont,

According to the assumptions, the middle term vanishes for ¢ = 0 (and all j). Induc-
tion on 4, together with the Nakayama Lemma, imply that

~

(V7 =0,...,7r— 1) chont,(G7uf§ZF/1".,;+1(VVv)) — 0,

Pit1
hence

@ Errv(A(‘ng/Fi+1 (X))7 A(‘QF/FHI (X))’ 7Ti+1)|911+1 =0.
vEY

As pir1 # pRi41 for any p € Spec(R;), we also have
P By (A(Fryr,,, (X)), AFryr,,, (X)) Tit1)pess = 0.
vesy
It follows from Theorem 10.4.4 that the pairing (10.7.15.3) is non-degenerate, hence
((Nit1)piss) pore — Mig1 © My
for some S;4+1-module M;4; of finite length. As I?;’(KO,X)% =0 (by (10.7.15.2) for
j =0 and (10.7.15.1)), Proposition 8.10.11 implies that the canonical map
(Nit1)r, v — N

becomes an isomorphism after localizing at q;, hence

~

(Nit1)pigr /Pir1(Nig1)piyy — (Ni)g,-
As

(Nit 1 )piss — o8+ @ Myt @ Mg,
where

ait1 = tks (Nig1)piyr = dimy(q,, ) (Nit1)qipq
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it follows that
(107154) a; = dlmﬁ(ql)(Nz)q, - (J,Z‘+1-‘r2 diIn,{(qz)(Mi+1/pi+1Mi+]) = Ui+1 (HlOd 2)
and a; > a;41.
By induction, we deduce that
ag Zay = - 2 ar
ap = dimy(q0) H} (Ko, X)q = a, = dimq) H} (Koo /K, X)g (mod 2),
proving (ii).

(iii) The prime ideal qf = q; N R[A’] € Spec(R[A']) defines a tautological char-
acter y : A" — (R[A’]q(/)/)*. Replacing K|, by the fixed field of Ker(x) and using
Lemma 8.6.4.4 (iv) (which applies, since [K{, : K] is invertible in £(qo) = R[A]q4,), we
reduce to the case when A’ is cyclic. In this case we have

KCKyCK)CKuwiCKx
for a suitable choice of I'y, ..., I, as in the proof of (ii). Let p’ € Spec(R;) be the
inverse image of q(, under the canonical surjection
Ry = R[I'/T1] = R[Gal(Kw 1/K)] — R[Gal(K{/K)] = R[U/T{] = R[A x A'];
then ] := (R1)p is a discrete valuation ring with residue field R[A x A'lg, = k(qp).
The same argument as in the proof of (ii) then shows that

(N1)p) g1-pors — M1 & M}

and
(N1 )y /0 (N1)p = H (K, X) g,
hence
dim,c(q()) ﬁf(K{), X)q(/) = diHlK(ql)(Nl)q] + 2dim,{(q])(M{/p’]V[{)

= dimy(q,)(N1)q, = a1 = a, = dim, (g fI‘f’IW(KOO/K, X)g (mod2)

and
dlmh(qij) H;(K(/)v X)q{] Za) = ar = dinln(ﬁ) H?,IW(KOO/K7 X)Ev

by (10.7.15.4). O

10.7.16. An important special case in which the results of 10.7.14-10.7.15 apply is
the following: R = O is a discrete valuation ring with fraction field F as in 9.1.1, R =
O[r] = A = O[A][X4,...,X,], X = T is as in 9.1.4, Greenberg’s local conditions
are given by exact sequences of O[G,]-modules

0—T —T—T;, —0 (veEY)
(with T, free over O) and 7 comes from a skew-symmetric bilinear form

j:T®cT— OQ)
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satisfying j(T," ®o T,F) = 0 (for all v € ¥) and inducing an isomorphism
adj(j) ®id : V =5 Homp (V, F)(1) = V*(1),
where V =T ®p F. For each v € ¥, this isomorphism induces an exact sequence of
F[G,])-modules
(10.7.16.1) 0 — W, — V7 — Hompg(V,", F)(1) — 0,
where VF = TF @0 F. As in 8.9.4, define
A*(1) = Homo (T, F/O)(1) =T*(1) ®o F/O,
A = Homp (T*(1),F/O)(1) =T ®0 F/O
and, for each v € X, Greenberg’s local conditions
T*(1)F = Home (T.F,0)(1), A} = Homo (T*(1),,F/O)(1) =T, @0 F/O C A
A*(1)F = Home (T, , F/O)(1) = T*(1)} @0 F/O C A*(1),
Ay = AJAT, AT, = AT()/AT ()]
for A, T*(1), A*(1). The map adj(j) : T — T*(1) is injective and its cokernel is O-
torsion. It induces maps A — A*(1) and, for each v € ¥, T,F — T*(1)f, AY —
A*(1)*, hence also
RT;(X) — RI;(X*(1), (X=T,AY=T)
RT1(Koo/K,Y) — R 1 (Koo / K, Y*(1)).
The exact sequences (10.7.16.1) give rise to exact triangles
(10.7.16.2) Vi — V) — W)

in D*(pic,;Mod) (v € X). It follows that, for each finite subextension L/K of Ko /K,

there is an exact triangle
(10.7.16.3) RI (L, V) — RLH(L,V* (1)) — P PRI cont (G, W (1))
vES wlv
in D*(pMod) (where G, = Gal(K /L)), and an exact triangle
(10.7.16.4) RI 1 (Koo/K, V) — R 10 (Koo /K, V*(1))
— P RIcont(Go, Zr(W; (1))
vEY

in D}l?t(A®QMod), where ﬁ\ff,lw (Ko /K, V) = ﬁf“w(Koo/K, T)®o F (and similarly
for V*(1)).

We are going to apply Theorem 10.7.15 to X =T, X;f = T,;f and 7 = j, assuming
that the conditions 10.7.11.1-10.7.11.2 are satisfied. )

More precisely, let T’y C Ty be an open subgroup, K{ = K50 and

(10.7.16.5) X:A — (O, X :A'=Ty/T) — (0O)*
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a pair of characters with values in the ring of integers O’ of a finite extension F” of
F. For every O[A]-module M (resp., every O[A x A’]-module N) put

MY =M ®ojajx O NN = N @ojaxa v 0"
Then
qo := Ker(x : O[A] — O),  gf:=Ker(x x ' : O[A x A'] — O')
are minimal prime ideals as in Theorem 10.7.15, satisfying (by Proposition 8.8.7)
(10.7.16.6)  H}(Ko,V)qy @n(qo) F' =  H}(Ko, V)™ = HIK,V@x™?),
(K, V)ay @niap) /= HYIG V)N = HI(KV @ (0x X)),

10.7.17. Theorem. — In the situation of 10.7.16, assume that 10.7.11.1-10.7.11.2 hold
and

(V/U € Z) (VUO | v in KO) H(?(mt(va WU) = H?ont(GUm W:(l)) = 0.
Then, for any pair of characters x,x’ as in (10.7.16.5), we have:

(i) For each j € Z, the canonical maps
H} (Ko, V)X — H} (Ko, V*(1))™
Hi 1 (Koo K V)Y @00 Frac(AX) — HY | (Koo / K,V (1))%) @400 Frac(AX)

are isomorphisms.
(ii) We have

~ ~ — -1
dim s B (Ko, V)™ = dimp H2(Ko, V)™ = dimp B (Ko, V)™

= dimpr H? (Ko, X

(x x Y
)

) ~ (x) ~
= rkA(x>H,2°,Iw(Koo/Ka T) * :rkA(x'l)Hfl‘Iw(KOO/Kv T)
x™h

rhpoo H o (Koo/ K, T
= rkA(X")ﬁ?,Iw(KOO/K» T)

(iii) If ﬁ})(K(),V)(X) =0, then
(x) _ I'kA<x>ﬁ}71w(Koo/K, T)(x) (mod 2),

dim g/ ﬁ}(Ko, V)(X) > rkA(X)ﬁ}’IW(KOO/K, T)(X).

dimp H} (Ko, V)
In particular, if A =0, then
rko HHT) = tko HHT), vkp H} (Koo/K,T) = rky H} 1, (Koo/ K, T)

tko HHT) = tka H} (Koo /K, T) (mod2), tko H}(T) > rky H} 1, (Koo/ K, T).
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(iv) Assume that
(Vv € B) (Vg | v in K{) H(O(mt(GUO, W,) = mm(Gﬂ(J Wy (1)) =0.
Then, for each j € Z, the canonical map
IR, V)Oo) — B,V (1))
is an isomorphism. If, in addition, ﬁ})(K(’), V)(XXX,) =0, then
Oexx) ™t

dim e ALK, V) = dimpr B2 (K4, V) = dimp HA(K, V)

- ry—1
= dimp H)%(K(/), V)(XXX :

and
. ~ 1 (xxx") ~1 (x)
dimp Hy (K, V) = rkyoo Hy 1 (Koo / K, T) = dimp- Hf(Ko, V)™ (mod2)

dimps BHED V)N >ty o Y (Koo /KT

(v) Assume that ﬁ?(K{), V)X =0, dimp I}}(Ko, V)(X) =1 (mod?2) and

(Vo € B) (Vog | v in Kg)  Hogn(Guy, Wo) = Heony (G, Wy (1)) = 0;

then dim g ﬁ}(Ké,V)(X) > K} : Ko).

Proof. — This is a special case of Theorem 10.7.15. However, in view of the impor-
tance of the congruence
dim g f-j}(K{), V)(XXX )= dimp f[}(Ko, V)(X) (mod 2)

for the arithmetic applications proved in Chapter 12 below, we repeat the key argu-
ments in this simplified setting.
(i) Fix a prime vy of Ky above v € ¥. By assumption, the cohomology groups
HY (G, Wi(1)) and H2 (G, WS (1)) = HO (G, W,)* vanish; the Euler char-
acteristic formula (Theorem 4.6.9 and 5.2.11)
2

> (1) dimp HE i (G, Wi(1) = 0

q=0
implies that H! . (G,,, W (1)) also vanishes. The first half of (i) then follows from
the exact triangle (10.7.16.3) for L = K{. Proposition 8.4.8.5 applied to the extension
Ko/Ko, R=0,p=(0) and T =.FA(T(W,)*(1)) (where T(W,)*(1) C Wr(1) is an
arbitrary G,-stable O-lattice) shows that Rl cont (G, Z (W, (1)) @4 Frac(A) = 0;
the second half of (i) then follows from (10.7.16.4).

(ii) This follows from (i), the duality isomorphisms
HI(Ko, V) = Hompr (B9 (Ko, V(1) X, F)

so/ K, T) @4 Frac(A) = Homp (H} 1) (Koo /K, T*(1)),A)" @4 Frac(A)

H} Iw(
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and the fact that the action of 7 (= a lift of the non-trivial element of Gal(K/K™))

interchanges the eigenspaces for x and y~!.

(iv) As x'(T'o) is a finite cyclic group, x’ factors through a quotient T'y of T'g, which
is isomorphic to Z,. We can then replace K. by the fixed field of Ker(I'y — fo) and
assume that To = Z,, hence Ker(x') = p"I'y for some n > 0. Let p’ € Spec(A’) be
the augmentation ideal of A’ := O'[Iy]. Proposition 10.7.12(ii) implies that there is
an exact sequence of A;J,—modules

o (x) br
(10.7.17.1) 0—X&X — (H]%’IW(KOO/K, ) ),,/ — ()T —0,

where
r = I‘kA;( (f_jf,lw(KDO/K, T)(X)> > 0.
p/

Thanks to the assumptions

(xxx)

~ ( ) ~
HY (Ko, V)™ = HY(K}. V) 0,

Proposition 8.10.4 applies with R = O and.¥ = R — {0} to the extensions K. /Ky
and K, /K{; one obtains isomorphisms

T (x) ~ (x)
<H?"W(K°°/K’ Tr, ) Bor F' = Hj(Ko, V)

(xxx")

(xxx)
p"To ’

(3 1Ko/ KT ) @00 B H3 (G, V)

The exact sequence (10.7.17.1) then implies that

(x)

dimp H3(Ko, V)" =7+ 2dimp (Xp,)

(xxx") /
)

dimpr HF (Ko, V = 7+ 2dimp (X)X,

hence
dim pr A2 (Ko, V)™ )0

=r = dimp ﬁ?(K{), Vv mod 2).

As [TI;%(KO, V)(X) is dual to

xhH (x)

~ . (x™ ~ ~ 5 .
(Ko, Vo)™ = Hi (Ko, V)" 5 Hi (Ko, V)

(the last isomorphism being given by the action of 7) and I:T]%(K(’), V)(XXX ) is dual to

~ e 0T~ CoxxX')™t ~ (xxx")

we obtain the desired congruence

(xxx")
(

dim g ]:j}(KO,V)(X) = dimp I;T}(K(’),V) mod 2).
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(v) We can assume that F’ contains the values of all characters of A’ =
Gal(K{/Ky); then

(x><x
Hf K()? @Hf(Km )

where y’ runs through all characters of A’ . As

(xxx") x)
) )

dimp HY K.,V = dimp HY(Ko, V)" =1 (mod?2
A f

by (iv), it follows that

i)Y = 1= (A = (K - Ko,
X/

as claimed. O

10.7.18. For example, if K is an imaginary quadratic field and K, /K its anticyclo-
tomic Z,-extension, then K = Q and we are in the situation considered in [Ne3].
If X% = {p} and S]T consists of all rational primes dividing pN, where N > 1 is an
integer not divisible by p such that all primes dividing N are unramified (resp., split)
in K/Q, then the condition 10.3.5.1.5 is satisfied (resp., the condition 10.3.5.1.5 is
satisfied and no prime in ¥’ splits completely in K,/ K).

If E is an elliptic curve over Q with good ordinary reduction at p and N is the
conductor of E, then T' = T),(F) and A = E[p*] are as in 10.7.16 (for O = Z,, F' =
Q,), with j given by the Weil pairing and 7, = T,(£ ®z, Fp), where £ is a proper
smooth model of E over Z,.

The Selmer group H } (A) (resp., the A-module fI}(K s/Ks, A)) differs from
Sel(E/K,p>) (resp., from

Sel(B/ Koo, p) = lim Sel( B/ K o, p),
where K,/K are the finite subextensions of K.,/K) by a finite group (resp., by
a A-module killed by a power of p), by Proposition 9.6.6 combined with Proposi-
tion 9.6.7.5. As the group H’(Gk s, A) = E(K)[p™] is finite, the assumptions of
Theorem 10.7.17 (1)~ (iii) are satisfied and the congruence in 10.7.17 (iii) becomes

(10.7.18.1) corkz, (Sel(E/K,p™)) = corka (Sel(E/ Ko, p™)) (mod?2),

as in [Ne3, Thm. B] (assuming that each prime dividing N is unramified in K/Q).
More precisely, if all primes dividing N are split in K/Q, then Proposition 10.7.12
implies that

(DA(Sel(E/ Ko, p™))) — M®&MaoN'

in (yMod)/(pseudo-null), where 2" - N’ = 0 for some n > 0 (in particular, N’ = 0 in
(aMod)/(pseudo-null) if p # 2); this proves ([Ne3, Lemma 2.5]).

A-tors
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It may be useful to spell out explicitly the following special case of Theorem 10.7.17
(which generalizes the congruence (10.7.18.1)) in a situation considered by Mazur and
Rubin ([M-R3]).

10.7.19. Proposition. — Let K™ C K C K be asin 10.3.5.1, withT = Gal(K /K) =
Z;; set A =Z,[T']. If E is an elliptic curve over K+ with good ordinary reduction at
all primes above p, then

corkz, Sel(E/K,p™) = corkp Sel(E/K,p™) (mod2)
corkz, Sel(E/K,p>) = corkp Sel(E/K,p™).
If, in addition, corkz, Sel(E/K,p>) =1 (mod2), then
corkz, Sel(E/K'.p>) > [K': K],
for each finite subextension K'/K of Kso/K (cf. [M-R3, Thm. 3.1]).

Proof. — Fix a finite set ST of primes of KT containing all archimedean primes, all
primes above p and all primes at which E has bad reduction. Consider Greenberg’s
local conditions associated to the data 10.3.5.1.2-10.3.5.1.4 with R =Z,, X =Y =
Ty(E) =T, n:Ty(F) ®z, Ty(E) — Z,(1) given by the Weil pairing, X = S}' and,
for each v+ € ST,

N T,(E)}, defined in 9.6.7.2, o™ |p
Tp( )1,+ =

0, vt tp.
As ¥ = @, we do not have to worry about the condition 10.3.5.1.5. As V =
T ®z, Qp = V,(E) = V*(1) satisfies the monodromy-weight conjecture at each

non-archimedean prime not dividing p ([Ja2, §5, §7]), we have
H°(G,,V) = HG,,V*(1)) =0, (Gy = Gal(K,/Ly))

for each finite extension L/K and each non-archimedean prime w | v { p of L. In
particular, the assumption of Theorem 10.7.17 is satisfied for Ky = K and each v € ¥
(note that W, = 0 if v | p, while W,, =V, if v { p).

Applying Theorem 10.7.17 (iii) (observing that f]?(K, V) c H(Gg,V) = 0), we
obtain, using the notation from 9.7.8,

rkz, H} o (K, Ty(E)) = tka H} 1, (Koo /K, Ty(E)) (mod?2),
tkz, Hj (K, T)(E)) > tka H} 1y 5 (Koo/ K. T,(E)).
On the other hand, Proposition 9.7.9 (i) together with Lemma 9.6.7.6 (iii) show that

tkz, H} (K, Ty(E)) = tkg, H}(K.T,(E)) = corkz, Sel(E/K, p™).
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Similarly, Proposition 9.7.9(iii) together with (8.9.6.4.3), (9.6.5.2) and Proposi-
tion 9.6.7.8 imply that

rka ﬁ},IW,Z(KOO/K7 T, (E)) = rka ff},lw(KOO/K» T,(E))
= corkyp I?I}(KS/KOO, E[p™]) = corkp S§"(K ) = corkp Sel(E/K o, p™).

If corkz, Sel(E/K,p>) = 1 (mod2), then Theorem 10.7.17(v) combined with the
previous discussion yields the inequality corkz, Sel(E/K',p>) > [K' : K]. O

10.7.20. In Chapter 12, we generalize Proposition 10.7.19, as well as the main parity
result of [Ne3], to the case of Hilbert modular forms.

10.8. Comparison with the Flach pairing

For simplicity, assume that the condition (P) from 5.1 holds.

10.8.1. Let R = O, F = Frac(O) and T, A,T*(1), A*(1) be as in 9.1.1-9.1.4. Set
V=T®&oF, V*(1) = T*(1) ®o F' and assume that we are given, for each v € Sy,
F[Gy]-submodules V,F € V, V*(1)} € V*(1) satisfying V" Loy, V(1)) set T,F =
TNV T =T*(1)NnV*1)}.

We denote the inclusions T < V, T*(1) — V*(1) (resp., X} — X, for X =
T,V,T*(1),V*(1)) by i (resp., by i}). For each function f with values in V, we
denote by f° the corresponding function with values in V/T = A (and similarly for

V*(1) and V*(1)/T*(1) = A*(1), resp., F and F/O).
10.8.2. These data define Greenberg style Selmer groups

S(X) = Ker| H'(Gx,5,X) — @D H'(Go, X)/LE(X)|, (X = A,A47(1))
vESy

where
Lj(A) =Im (Hclont(Gva ‘/v-’_) - Hl(va A)) B}
L;F(A*(l)) = Im (H(}()nt,(GU’ V*(l)j) — Hl(G’lN A*(l))) .

10.8.3. For example, assume that O = Z,, B is an abelian variety over K with
good reduction outside Sy satisfying {v | p} = £, U, (in the notation of 9.6.7.2),
T =T,(B), T*(1) = T,(B), A = B[p™] and A*(1) = B[p™]. If we define V,*, V*(1):
as in 9.6.7.2 if v | p (resp., set V.7 = V*(1)} = 0 if v { p), then we have, for each
S Sf,

L (A) =Im (B(K,) ® Qy/Z, — H'(G,, A))
(and similarly for A*(1) and B), hence

S(A) = Sel(B/K,p>), S(A*(1)) = Sel(B/K, p™).
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10.8.4. The data from 10.8.1 also give rise, for each X = T,V,T*(1),V*(1), to
Selmer complexes
C3(X) == C}(Gr.s, X A(X))
associated to the local conditions
Ay(X) 1 Con (G, XJ—) — Ol (Go, X).
We denote their cohomology groups by H }(X ).

10.8.5. Flach’s pairing. — Flach’s construction [F11] yields an O-bilinear pairing
(2 )it S(A) X S(A*(1)) — F/O,
In order to define this pairing, fix cohomology classes
[a] € S(A4), [a'] € S(A*(1))
represented by 1-cocycles
a€CYGkgs,A), da=0, o €C'(Ggs,A (1)), da’ =0.
Lift these cocycles to 1-cochains
a; € Co (Gr s, V), b eCl(Gks, V(1))
then
day = —i(ag), dby = —i(by), ag€ C% (Grs,T), by€C% (Gr.s, T*(1)).
The definition of S(X) implies that there exist, for each v € Sy, elements
(10.8.5.1) af, € Cl(Gu, V1), Apw € CLL (G, V)=V, Ai, € Clon(Gy,T)

cont

b, € Clone(Go, VF(1))), Bow € Clopy (G, V(1)) = VF(1),
By € Clon(Gy, T*(1))

satisfying

res,(a;) = fij(a,iv) +dApy + (A1), dafv =0

res, (b)) = —ij(btq,) +dBy, +i(B1y)s dbiv =0.
The coboundary of the 3-cochain

day Uby € C3 (Gk.s,F(1))
satisfies
d(day Uby) = i(az Uby) € i (C, (Gk,s,0(1))),

which means that (da; U b1)° (= the image of da; U b; modulo cochains with values
in O(1)) is a 3-cocycle:

(da; Uby)° € C3 (G5, F/O(1)), d(da;Uby)°® =0.
As H3(G .5, F/O(1)) = 0, there exists ¢ € C2(Gk,s, F/O(1)) such that
—az U bcf = (da1 Ubl)o = de.
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For each v € Sy, the 1-cocycle
By = =it (b],) + dBoy € Clon (G, VF(1)),  df, =0
is a lift of res, (b1)° € CL (Gy,V*(1)/T*(1)). As
d(res,(a1) U B,)° = —resy (az) U B2 = —resy, (ag U bS) = res, (de) = d(res, (),
the 2-cochain
o 1= (resy(ar) U By)° — res,(e) € C2 (G, F(1)/O(1)), dec, =0
is a 2-cocycle. Flach defined

(10.8.5.2) ([o], [0 ) pracn = Y inVu(cy) € F/O

vESy

(and showed that this element depends only on [a] and [¢/]).

10.8.6. The pairing from 10.2.2. — The choice of the cocycles in (10.8.5.1)
determines 2-cochains

= (a2,0,(A1,0)) € CHGrs,T), dx=0,
y = (b2,0, (Bl,v)) € 6?(GK,57T*(1))7 dy =0,
where we have used the notation from 1.3.1 and 6.3.1:

C7 (G5, T) = Coons(Gris, T) @ €D Cions (G T) © € Citad (G, D),

veESy vESy

with the differentials given by
d(tn, (t ) (tn-1,)) = (dty, (dt;:,v)v (—resy(tn) + ij(t;u —dtn_1,0)).

The formula
i(z) = (i(a2), 0, (i(A10))) = (=d(a1),0, (vesy(ar) + iy (af ) — dAo,)) = dX,
X = (~ay, (a],), (Ao,))
shows that i(z) € dé}(GKYS, V') is a coboundary, hence the class of x is contained in
[«] € Ker(HH(T) — H}(V)) = H{(T)sors.

Similarly, the class of y satisfies [y] € ﬁ}%(T*(l))tors. We wish to relate the product
of [z] and [y] under the pairing

Uz o = Uev2,0,2,2 . g?(T)tors X ﬁ?(T*(l))tors — F/O
(which was defined in 10.2.2) to the product (10.8.5.2).
10.8.7. Proposition. — In the situation of 10.8.5-10.8.6,

(2] V2.2 [y] = —([e], [& ) prach-
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Proof. — Let C* = [O ;1>F] be the complex from Lemma 2.10.7 (i) (in degrees 0,1).
The tensor product complex C}(T) ®o C* has differentials

CHT)& CF (V) — CPHH(T) & CFH(V)

(xnaXn—l) (d-Ln7 (—l)n L (-Ln) + an 1)
which means that the pair
a=(z,X) € (CHT) o C*)?
is a 2-cocyle lifting = € CN’Jf(T) Similarly,
b=(y,Y) € (CHT" (1)) @0 C*)*, Y = (=by, (b],): (Bo.)),

is a 2-cocyle lifting y € éf(T*(l)) In order to compute [x] Uz 2 [y], we must first
determine v(s23(a Ub)), where v is the map defined in Lemma 2.10.7 (i) and the cup
product a U b is computed using the product

Uro : C3(T) ®o CHI™ (1)) — C2(O(1)),
from Proposition 1.3.2(i), for any fixed value r € O:
v(s93(aUD)) = (x Upoy, T Upo Y) € (C2(O(1)) @0 C*)*.

Taking r = 1, we compute

X Ul,O Yy = (a27 07 (Al,v)) Ul,O (627 Oa (Bl,v))
= (a2 Uba, (A;,, Utes, (b)) € CF (G5, O(1))
U0 Y = (az,0, (A1) Uro (=b1, (b ), (Bow))
= ( —as U by, (—Al,v U I“(;‘S,,(bl))) S Cf,cont(GK,S, F(l))

The next step is to reduce v(s23(aUb)) modulo cochains with values in O(1), obtaining
a 3-cocycle

v(s23(aUb))° = (—ag Uby, (—A1, Uresy(b1)))” € C2 (G5, F(1)/O(1)),
d(v(s23(aUb))?) = 0,
whose image under the isomorphism
HE om (Gr,s, F(1)/O(1)) — F/O
gives the desired product [z] Uz 2 [y]. As
(= azUbr, (—A1, Ures,(b1)))°
= (—az UB], (—A1, U B.)%) = d(=,0) + (0, (resu(e) = (A10 U G)°)),

we have

[2] Uz 2 [y] = Y invy(ey),

’UGS,‘
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where N
ey =res,(e) — (A1, UBy)° € C2 (G, F(1)/O(1)), de, = 0.
However,
(Vo€ Sy) e+ ey = ((dAo, — i (af,) U 