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1. INTRODUCTION

Suppose that a countable group G acts freely and ergodically on the standard

probability space (X,µ) preserving the probability measure µ. We are interested in

several types of ‘isomorphisms’ between such actions. Two actions are said to be

(1) conjugate if there exist a group isomorphism and a measure space isomorphism

satisfying the obvious conjugacy formula;

(2) orbit equivalent if there exists a measure space isomorphism sending orbits to

orbits, i.e., the equivalence relations given by the orbits are isomorphic;

(3) von Neumann equivalent if the crossed product von Neumann algebras are

isomorphic.
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Note that the crossed product construction(1) has been introduced by Murray and von

Neumann [41], who called it the group measure space construction.

It is clear that conjugacy of two actions implies orbit equivalence. Since the crossed

product von Neumann algebra can be defined directly from the equivalence relation

given by the orbits, orbit equivalence implies von Neumann equivalence. Rigidity

results provide the converse implications for certain actions of certain groups. This

is a highly non-trivial matter. Dye [16, 17] proved that all free ergodic measure

preserving actions of groups with polynomial growth on the standard probability space

are orbit equivalent. This result was extended to all amenable groups by Ornstein

and Weiss [45]. Finally, Connes, Feldman and Weiss [10] showed that every ergodic

amenable probability measure preserving countable equivalence relation is generated

by a free Z-action and is hence unique. Summarizing, for amenable group actions

all information on the group, except its amenability, gets lost in the passage to the

equivalence relation.

Concerning the relation between orbit equivalence and von Neumann equivalence, it

was noted by Feldman and Moore [19] that the pair L∞(X,µ) ⊂ L∞(X,µ) ⋊G remem-

bers the equivalence relation. The abelian subalgebra L∞(X,µ) is a so-called Cartan

subalgebra. So, in order to deduce orbit equivalence from von Neumann equivalence,

we need certain uniqueness results for Cartan subalgebras, which is an extremely hard

problem. Connes and Jones [12] gave the first examples of non orbit equivalent, yet

von Neumann equivalent actions.

In this talk, we discuss Popa’s recent breakthrough rigidity results for Bernoulli

actions(2) of Kazhdan groups. These results open a new era in von Neumann algebra

theory, with striking applications in ergodic theory. The heart of Popa’s work is

his deformation/rigidity strategy: he discovered families of von Neumann algebras

with a rigid subalgebra but yet with just enough deformation properties in order for

the rigid part to be uniquely determined inside the ambient algebra (up to unitary

conjugacy). This leads to far reaching classification results for these families of von

Neumann algebras. Popa considered the deformation/rigidity strategy for the first

time in [54]. In [52], he used it to deduce orbit equivalence from mere von Neumann

equivalence between certain group actions and to give the first examples of II1 factors

with trivial fundamental group, through an application of Gaboriau’s ℓ2 Betti numbers

of equivalence relations [22]. Deformation/rigidity arguments are again the crucial

ingredient in the papers [48, 55, 56, 53] that we discuss in this talk and they are

applied in [29], in the study of amalgamated free products. These ideas may lead to

(1)The crossed product von Neumann algebra L∞(X, µ)⋊G contains a copy of L∞(X, µ) and a copy

of the group G by unitary elements in the algebra, and the commutation relations between both are

given by the action of G on (X, µ).
(2)Every discrete group G acts on (X, µ) =

Q

g∈G(X0, µ0), by shifting the Cartesian product. Here

(X0, µ0) is the standard non-atomic probability space and the action is called the Bernoulli action

of G.
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many more applications in von Neumann algebra and ergodic theory (see e.g. the new

papers [28, 58] written since this talk was given).

In the papers discussed in this talk, the rigidity comes from the group side and is

given by Kazhdan’s property (T) [15, 36] and more generally, by the relative property

(T) of Kazhdan-Margulis (see [26] and Valette’s Bourbaki seminar [63] for details): the

groups dealt with contain an infinite normal subgroup with the relative property (T)

and are called w-rigid groups. Popa discovered a strong deformation property shared

by the Bernoulli actions, and called it malleability. In a sense, a Bernoulli action can

be continuously deformed until it becomes orthogonal to its initial position. In order

to exploit the tension between the deformation of the action and the rigidity of the

group, yet another technique comes in. Using bimodules (Connes’ correspondences),

Popa developed a very strong method to prove that two subalgebras of a von Neumann

algebra are unitarily conjugate. Note that he used this bimodule technique in many

different settings, see [29, 46, 55, 56, 52, 51].

The following are the two main results of [48, 55, 56] and are discussed below. The

orbit equivalence superrigidity theorem states that the equivalence relation given by

the orbits of a Bernoulli action of a w-rigid group, entirely remembers the group and

the action. The von Neumann strong rigidity theorem roughly says that whenever a

Bernoulli action is von Neumann equivalent with a free ergodic action of a w-rigid

group, the actions are actually conjugate. It is the first theorem in the literature

deducing conjugacy of actions out of von Neumann equivalence. The methods and

ideas behind these far reaching results are fundamentally operator algebraic and yield

striking theorems in ergodic theory.

Some important conventions

All probability spaces in this talk are standard. All actions of countable groups G

on (X,µ) are supposed to preserve the probability measure µ. All statements about

elements of (X,µ) only hold almost everywhere. A w-rigid group is a countable group

that admits an infinite normal subgroup with the relative property (T).

Orbit equivalence superrigidity

In [48], the deformation/rigidity technique leads to the following orbit equivalence

superrigidity theorem.

Theorem (Theorem 4.4). — Let G y (X,µ) be the Bernoulli action of a w-rigid

group G as above. Suppose that G does not have finite normal subgroups. If the

restriction to Y ⊂ X of the equivalence relation given by G y X is given by the orbits

of Γ y Y for some group Γ acting freely and ergodically on Y , then, up to measure

zero, Y = X and the actions of G and Γ are conjugate through a group isomorphism.
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The theorem implies as well that the restriction to a Borel set of measure

0 < µ(Y ) < 1, of the Bernoulli action of a w-rigid group G without finite normal

subgroups, yields an ergodic probability measure preserving countable equivalence

relation that cannot be generated by a free action of a group. The first examples

of this phenomenon – answering a question of Feldman and Moore – were given by

Furman in [21]. Dropping the ergodicity, examples were given before by Adams in [1],

who also provides examples in the Borel setting.

Popa proves the orbit equivalence superrigidity for the Bernoulli action of G on X

using his even stronger cocycle superrigidity theorem: any 1-cocycle for the action

G y X with values in a discrete group Γ is cohomologous to a homomorphism of

G to Γ. The origin of orbit equivalence rigidity and cocycle rigidity theory lies in

Zimmer’s pioneering work. Zimmer proved in [66] his celebrated cocycle rigidity

theorem and used it to obtain the first orbit equivalence rigidity results (see Section 5.2

in [67]). Since Zimmer’s theorem deals with cocycles taking values in linear groups,

he obtains orbit equivalence rigidity results where both groups are assumed to be

linear (see [68]). Furman developed in [20, 21] a new technique and obtains an orbit

equivalence superrigidity theorem with quite general ergodic actions of higher rank

lattices on one side and an arbitrary free ergodic action on the other side. Note

however that Furman’s theorem nevertheless depends on Zimmer’s cocycle rigidity

theorem. We also mention the orbit equivalence superrigidity theorems obtained by

Monod and Shalom [39] for certain actions of direct products of hyperbolic groups.

An excellent overview of orbit equivalence rigidity theory can be found in Shalom’s

survey [61].

Zimmer’s cocycle rigidity theorem was a deep generalization of Margulis’ seminal

superrigidity theory [38]. In particular, the mathematics behind involve the theory of

algebraic groups and their lattices. On the other hand, Popa’s technique to deal with

1-cocycles for Bernoulli actions is intrinsically operator algebraic.

As stated above, Popa uses his powerful deformation/rigidity strategy to prove the

cocycle superrigidity theorem. Leaving aside several delicate passages, the argument

goes as follows. A 1-cocycle γ for the Bernoulli action G y X of a w-rigid group G,

can be interpreted in two ways as a 1-cocycle for the diagonal action G y X × X ,

either as γ1, only depending on the first variable, either as γ2, only depending on

the second variable. The malleability of the Bernoulli action (this is the deformation

property) yields a continuous path joining γ1 to γ2. The relative property (T) implies

that, in cohomology, the 1-cocycle remains essentially constant along the continuous

path. This yields γ1 = γ2 in cohomology and the weak mixing property allows to

conclude that γ is cohomologous to a homomorphism.

Let (σg) be the Bernoulli action of a w-rigid group G on (X,µ). Popa’s cocycle

superrigidity theorem covers his previous result [54, 57] identifying the 1-cohomology

group H1(σ) with the character group CharG. This result allows to compute as
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well the 1-cohomology for quotients of Bernoulli actions, yielding the following result

of [53].

Theorem (Theorem 5.3). — Let G be a w-rigid group. Then, G admits a continuous

family of non-stably(3) orbit equivalent actions.

Note that Popa does not only prove an existence result, but explicitly exhibits

a continuous family of mutually non orbit equivalent actions. The existence of a

continuum of non orbit equivalent actions of an infinite property (T) group had been

established before in a non-constructive way by Hjorth [27], who exhibits a continuous

family of actions such that every action in the family is orbit equivalent to at most

countably many other actions of the family.

Finally note that the first concrete computations of 1-cohomology for ergodic group

actions are due to Moore [40] and Gefter [23].

Von Neumann strong rigidity

The culmination of Popa’s work on Bernoulli actions is the following von Neumann

strong rigidity theorem of [56]; it is the first theorem in the literature that deduces

conjugacy of the actions from isomorphism of the crossed product von Neumann

algebras.

Theorem (Theorem 9.1). — Let G be a group with infinite conjugacy classes and

G y (X,µ) its Bernoulli action as above. Let Γ be a w-rigid group that acts freely

and ergodically on (Y, η). If

θ : L∞(Y ) ⋊ Γ → p(L∞(X) ⋊G)p

is a ∗-isomorphism for some projection p ∈ L∞(X)⋊G, then p = 1, the groups Γ and

G are isomorphic and the actions of Γ and G are conjugate through this isomorphism.

Note that in the conditions of the theorem, there is an assumption on the action

on one side and an assumption on the group on the other side. As such, it is not

a superrigidity theorem: one would like to obtain the same conclusion for any free

ergodic action of any group Γ and for the Bernoulli action of a w-rigid ICC group G.

Another type of von Neumann rigidity has been obtained by Popa in [52, 51],

deducing orbit equivalence from von Neumann equivalence. We just state the following

particular case. Consider the usual action of SL(2,Z) on T2. Whenever a free and

ergodic action of a group Γ with the Haagerup property is von Neumann equivalent

with the SL(2,Z) action on T2, it actually is orbit equivalent with the latter. One

should not hope to deduce a strong rigidity result yielding conjugacy of the actions:

Monod and Shalom ([39], Theorem 2.27) proved that any free ergodic action of the

(3)See Definition 4.2.
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free group Fn is orbit equivalent with free ergodic actions of a continuum of non-

isomorphic groups. Note that this also follows from Dye’s result [16, 17] if we assume

that every generator of Fn acts ergodically.

II1 factors and their fundamental group

Let G act freely and ergodically on (X,µ). Freeness and ergodicity imply that the

crossed product von Neumann algebra M := L∞(X,µ) ⋊G is a factor (the center of

the algebra M is reduced to the scalars) and the invariant probability measure yields

a finite trace on M . Altogether, we get that M is a so-called type II1 factor.

Another class of II1 factors arises as follows: for any countable group G, one

considers the von Neumann algebra L(G) generated by the left translation operators

on the Hilbert space ℓ2(G). The algebra L(G) always admits a finite trace and it is a

factor if and only if G has infinite conjugacy classes (ICC).

Let M be a II1 factor with normalized trace τ . The fundamental group of M ,

introduced by Murray and von Neumann [42], is the subgroup of R∗+ generated by the

numbers τ(p), where p runs through the projections of M satisfying M ∼= pMp. Mur-

ray and von Neumann showed in [42] that the fundamental group of the hyperfinite(4)

II1 factor is R∗+. They also write that there is no reason to believe that the funda-

mental group of every II1 factor is R∗+. However, only forty years later, this intuition

was proved to be correct, in a breakthrough paper of Connes [6]. Connes shows that

the fundamental group of L(G) is at most countable when G is an ICC group with

Kazhdan’s property (T). This can be considered as the first rigidity type result in

the theory of von Neumann algebras. It was later refined by Golodets and Nessonov

[24] to obtain II1 factors with countable fundamental group containing a prescribed

countable subgroup of R∗+. However, until Popa’s breakthroughs in [55, 52, 51], no

precise computation of a fundamental group different from R∗+ had been obtained.

Note in passing that Voiculescu proved in [64] that the fundamental group of L(F∞)

contains the positive rationals and that it was shown to be the whole of R∗+ by

Rădulescu in [59]. On the other hand, computation of the fundamental group of

L(Fn) is equivalent with deciding on the (non)-isomorphism of the free group factors

(see [18, 60]), which is a famous open problem in the subject.

Specializing the problem of Murray and von Neumann, Kadison [34] posed the

following question: does there exist a II1 factor M not isomorphic to M2(C) ⊗M?

This question was answered affirmatively by Popa in [52], who showed that, among

other examples, L(G) has trivial fundamental group when G = SL(2,Z) ⋉ Z2. For a

more elementary treatment of this example, see [51]. Note that Popa shows in [52]

that the fundamental group of L(G) = SL(2,Z) ⋉ L∞(T2) equals the fundamental

group of the equivalence relation given by the orbits of SL(2,Z) y T2. The latter

(4)The hyperfinite II1 factor is, up to isomorphism, the unique II1 factor that contains an increasing

sequence of matrix algebras with weakly dense union.
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reduces to 1 using Gaboriau’s ℓ2 Betti number invariants for equivalence relations,

see [22]. We also refer to the Bourbaki seminar by Connes [9] on this part of Popa’s

œuvre.

In [55], Popa goes much further and constructs II1 factors with an arbitrary count-

able fundamental group!

Theorem (Theorem 7.1). — Given a countable subgroup S ⊂ R∗+ and a w-rigid ICC

group G with L(G) having trivial fundamental group, there exists an action of G on

the hyperfinite II1-factor R such that the crossed product R ⋊G is a II1 factor with

fundamental group S.

The example par excellence of a group G satisfying the conditions of the theorem,

is G = SL(2,Z) ⋉ Z2. Again, Popa does not establish a mere existence result: the

actions considered are the so-called Connes-Størmer Bernoulli actions (see [13] and

Section 3 below).

Some comments on proving von Neumann strong rigidity

We explain how an isomorphism of crossed products forces, in certain cases, actions

to be conjugate.

In a first step, using the deformation/rigidity strategy, Popa [55] shows the following

result. Suppose that G y (X,µ) is the Bernoulli action of an infinite group G and

consider the crossed product L∞(X,µ) ⋊ G. It is shown (see Theorem 6.3 below)

that any subalgebra of L∞(X,µ) ⋊ G with the relative property (T) can essentially

be unitarily conjugated into L(G). Again leaving aside several delicate passages,

the argument goes as follows. A subalgebra Q ⊂ L∞(X,µ) ⋊ G with the relative

property (T) is viewed in two ways as a subalgebra of L∞(X×X,µ×µ)⋊G, where G

acts diagonally: Q1 only living on the first variable ofX×X and Q2 only living on the

second one. The malleability of the Bernoulli action implies that the subalgebras Q1

and Q2 are joined by a continuous path of subalgebras Qt. The relative property (T)

then ensures that Q1 and Q2 are essentially unitarily conjugate. The mixing of the

action is used to deduce that Q can essentially be conjugated into L(G).

Note in passing that the above result remains true when the ‘commutative’

Bernoulli action is replaced by a ‘non-commutative’ Connes-Størmer Bernoulli ac-

tion, which is the crucial ingredient to produce II1 factors with prescribed countable

fundamental groups.

Given an isomorphism θ : L∞(Y ) ⋊ Γ → L∞(X) ⋊ G, where G y X is the

Bernoulli action and the group Γ is w-rigid, the previous paragraph implies that θ

sends L(Γ) into L(G), after conjugating by a unitary in the crossed product. Using

very precise analytic arguments, Popa [56] succeeds in proving next that also the

Cartan subalgebras L∞(Y ) and L∞(X) can be conjugated into each other with a

unitary in the crossed product (see Theorem 8.2 below). Having at hand this orbit
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equivalence and knowing that the group von Neumann algebras can be conjugated

into each other, Popa manages to prove conjugacy of the actions.

An important remark should be made here. The results on Bernoulli actions dis-

cussed up to now, use the deformation property called strong malleability combined

with the mixing property of the action. So, they are valid for all strongly malleable

mixing actions. The result on the conjugation of the Cartan subalgebras however,

uses a much stronger mixing property of Bernoulli actions, called the clustering prop-

erty, which roughly means that the Bernoulli action allows for a natural tail. Note

in this respect the following conjecture of Neshveyev and Størmer [43]: suppose that

the abelian countable groups G and Γ act freely and weakly mixingly on the standard

probability space and that they give rise to isomorphic crossed products where the

isomorphism sends L(G) onto L(Γ); then, the Cartan subalgebras are conjugate with

a unitary in the crossed product(5).

Outer conjugacy of actions on the hyperfinite II1 factor

The deformation/rigidity technique first appeared(6) in Popa’s paper [54] on the

computation of several invariants for (cocycle) actions of w-rigid groups on the hy-

perfinite II1 factor. In fact, many ideas exploited in the papers [48, 55, 56, 53, 57] are

already present to some extent in the breakthrough paper [54].

Recall that two actions (σg) and (ρg) of a group G on a factor are said to be outer

conjugate if there exists an isomorphism ∆ such that the conjugate automorphism

∆σg∆
−1 equals ρg up to an inner automorphism.

The classification up to outer conjugacy of actions of a group G on, say, the hy-

perfinite II1 factor is an important subject. This classification has been completed,

first for cyclic groups by Connes [5, 3], for finite groups by Jones [31] and finally, for

amenable groups by Ocneanu [44]: any two outer(7) actions of an amenable group G

on the hyperfinite II1 factor are outer conjugate (even cocycle conjugate).

Away from amenable groups, Jones proved in [32] that any non-amenable group

admits at least two non outer conjugate actions on the hyperfinite II1 factor. Apart

from actions, one also studies cocycle actions of a group G on a factor N : families

of automorphisms (σg)g∈G such that σgσh = σgh modulo an inner automorphism

Adug,h, where the unitaries ug,h satisfy a 2-cocycle relation.

(5)It is crucial to have conjugation of the Cartan subalgebras through a unitary in the crossed

product, which is the hyperfinite II1 factor. Indeed, thanks to the work of Connes, Feldman and

Weiss [10], two Cartan subalgebras are always conjugate with an automorphism of the hyperfinite

II1 factor. But, there exist continuously many non inner conjugate Cartan subalgebras.
(6)The paper [54] circulated since 2001 as a preprint of the MSRI and is the precursor of the papers

[48, 55, 56, 53, 57] discussed above.
(7)An outer action is an action (σg) such that for g 6= e, σg is an outer automorphism, i.e., not of

the form Adu for a unitary u in the von Neumann algebra.
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In the previously cited works on amenable group actions, it is shown as well that any

cocycle action of an amenable group on the hyperfinite II1 factor is outer conjugate to

a genuine action. Popa generalized this result to arbitrary II1 factors in [50]. In [11],

Connes and Jones constructed, for any infinite property (T) group G, examples of

cocycle actions of G on the free group factor L(F∞) that are non outer conjugate to

a genuine action.

This brings us to the topic of [54]. Popa introduces two outer conjugacy invariants

for a (cocycle) action on a II1 factor: the fundamental group and the spectrum. These

invariants are computed in [54] for the Connes-Størmer Bernoulli actions, yielding the

following theorem.

Theorem (Theorems 10.3 and 10.6). — Let G be a w-rigid group. Then G admits a

continuous family of non outer conjugate actions on the hyperfinite II1 factor. Also,

G admits a continuous family of cocycle actions on the hyperfinite II1 factor that are

non outer conjugate to a genuine action.

Further remarks

We discussed in detail how Popa recovers information on a group action from the

crossed product algebra L∞(X,µ) ⋊ G. On the other hand, to what extent a group

von Neumann algebra L(G) remembers the group G? Very little is known on this

problem. Connes’ celebrated theorem [4] states that all the II1 factors L(G) defined

by amenable ICC groups G are isomorphic to the hyperfinite II1 factor. Indeed, they

are all injective(8) and Connes shows in [4] the uniqueness of the injective II1 factor.

Cowling and Haagerup [14] have shown that the group von Neumann algebras L(Γ)

are non-isomorphic if one takes lattices Γ in Sp(1, n) for different values of n.

Some group von Neumann algebras L(G) can we written as well as the crossed

product by a free ergodic action (but not all, since Voiculescu [65] showed that the free

group factors cannot be written in this way). We have for instance L(SL(n,Z)⋉Zn) =

L∞(Tn)⋊ SL(n,Z). Another example consists in writing the Bernoulli action crossed

product L∞(X,µ)⋊G as L(Z ≀G), where the wreath product group Z ≀G is defined as

the semidirect product Z ≀G := (
⊕

g∈G Z) ⋊G. Popa’s von Neumann strong rigidity

theorem then implies the following result. It can be considered as a relative version of

Connes’ conjecture [7], which states that within the class of ICC property (T) groups,

L(G1) ∼= L(G2) if and only if G1
∼= G2. Popa’s result ‘embeds injectively’ the category

of w-rigid ICC groups into the category of II1 factors.

(8)A factor M ⊂ B(H) is called injective if there exists a conditional expectation of B(H) onto M

(which of course need not be weakly continuous). A conditional expectation of a von Neumann M

onto a von Neumann subalgebra N is a unital, positive, N-N-bimodule map E : M → N .
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Corollary. — When G and Γ are w-rigid ICC groups, L(Z ≀ G) ∼= L(Z ≀ Γ) if and

only if G ∼= Γ. Moreover, L(Z ≀G) has trivial fundamental group for any w-rigid ICC

group G.

Popa’s von Neumann strong rigidity theorem is in fact more precise than the version

stated above. As we shall see in Theorem 9.1 below, the strong rigidity theorem allows

as well to compute the group OutM of outer automorphisms of M = L∞(X,µ) ⋊G,

where G is a w-rigid ICC group and G y (X,µ) its Bernoulli action. Then,

OutM ∼= CharG⋊
Aut∗(X,G)

G
,

where Aut∗(X,G) is the group of measure space isomorphisms ∆ : X → X for

which there exists a δ ∈ AutG such that ∆(g · x) = δ(g) · ∆(x) almost everywhere.

Writing ∆g(x) = g ·x, one embeds G →֒ Aut∗(X,G). Note moreover that Aut∗(X,G)

obviously contains another copy of G acting by Bernoulli shifts ‘on the other side’.

In [29], Ioana, Peterson and Popa apply the strategy of deformation/rigidity in the

completely different context of amalgamated free products, yielding the first examples

of II1 factors with trivial outer automorphism group. Much more is done in [29], where

actually a von Neumann version of the Bass-Serre theory is developed.
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2. PRELIMINARIES AND CONVENTIONS

Von Neumann algebras, traces, almost periodic states and group actions

Throughout M,M, N,N , A,A denote von Neumann algebras. Recall that a von

Neumann algebra is a non-commutative generalization of a measure space, the alge-

bras L∞(X,µ) being the abelian examples. By definition, a von Neumann algebra

is a weakly closed unital ∗-subalgebra of B(H) for some Hilbert space H . Whenever

M ⊂ B(H) is a von Neumann algebra, the commutant of M is denoted by M′ and

consists of the operators in B(H) commuting with all the operators in M. Von Neu-

mann’s bicommutant theorem states that M′′ = M and this equality characterizes
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von Neumann algebras among the unital ∗-subalgebras of B(H). A factor is a von

Neumann algebra with trivial center, i.e., M∩M′ = C1.

A state on a von Neumann algebra is a positive linear map M → C satisfying

ω(1) = 1. All states are assumed to be normal, i.e., continuous with respect to the

ultraweak topology on M (which is equivalent with requiring weak continuity on the

unit ball of M). Hence, normal states are the counterparts of probability measures

on (X,µ) absolutely continuous with respect to µ. A state ω is said to be tracial if

ω(xy) = ω(yx) for all x, y. A state is said to be faithful if the equality ω(x) = 0 for

x positive implies that x = 0. States are always assumed to be faithful.

The algebras denoted M,N,A are supposed to admit a faithful normal trace and if

we specify a state on M,N or A, it is always supposed to be a trace. The terminology

finite von Neumann algebra (N, τ) means a von Neumann algebra N with a faithful

normal trace τ .

An action of a countable group on (M, ϕ) is understood to be an action by automor-

phisms leaving the state ϕ invariant. We denote by (X,µ) the standard probability

space without atoms and an action of a countable group on (X,µ) is supposed to

preserve the probability measure µ.

If G acts on (M, ϕ) by automorphisms (σg), Mσ denotes the von Neumann sub-

algebra of elements x ∈ M satisfying σg(x) = x for all g ∈ G. The action (σg) is said

to be ergodic if Mσ = C1.

If ϕ is a faithful normal state on M, we consider the centralizer algebra Mϕ of ϕ

consisting of those x ∈ M satisfying ϕ(xy) = ϕ(yx) for all y. More generally, for a real

number λ > 0, a λ-eigenvector for ϕ is an element x ∈ M satisfying ϕ(xy) = λϕ(yx)

for all y ∈ M. We say that ϕ is almost periodic (or that (M, ϕ) is almost periodic),

if the λ-eigenvectors span a weakly dense subalgebra of M when λ runs through R∗+.

If this is the case, Sp(M, ϕ) denotes the point spectrum of ϕ, i.e., the set of λ > 0 for

which there exists a non-zero λ-eigenvector.

A finite von Neumann algebra (P, τ) is said to be diffuse if P does not contain a

minimal projection. A finite (P, τ) is diffuse if and only if P contains a sequence of

unitaries tending weakly to zero. Equivalently, P does not have a direct summand

that is a matrix algebra. For instance, the group von Neumann algebra L(G) (see

page 242 for its definition) is diffuse for any infinite group G.

Crossed products

Whenever a countable group G acts by ϕ-preserving automorphisms (σg) on

(M, ϕ), we denote by M⋊G the crossed product, generated by the elements a ∈ M
and the unitaries (ug)g∈G such that ugau

∗
g = σg(a) for all a ∈ M and g ∈ G.

We have a natural conditional expectation (see footnote on page 245) given by

E : M ⋊ G → M : E(aug) = δg,e a and we extend ϕ to a faithful normal state on

M ⋊G by the formula ϕ ◦ E. If ϕ is tracial, its extension is tracial.
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The crossed product M is a factor (hence, a type II1 factor) in the following (non-

exhaustive) list of examples. If A ⊂ M is an inclusion of von Neumann algebras, we

denote by M ∩ A′ the relative commutant consisting of elements in M commuting

with all elements of A.

• Suppose that G acts (essentially) freely on (X,µ) and put M = L∞(X) ⋊ G.

Then, M ∩L∞(X)′ = L∞(X) and M is a factor if and only if the G-action is ergodic.

• Suppose that the ICC group G acts on the finite (N, τ) and put M = N ⋊ G.

Then, M ∩ L(G)′ = NG and M is a factor if and only if the G-action on the center

of N is ergodic.

• Suppose that the group G acts on the II1 factor (N, τ) such that for all g 6= e,

σg is an outer automorphism of N , i.e., an automorphism that cannot be written as

Adu for some unitary u ∈ N . Putting M = N ⋊ G, we have M ∩ N ′ = C1 and in

particular, M is a factor.

1-cocycles and 1-cohomology

Let the countable group G act on (X,µ). We denote by g · x the action of an

element g ∈ G on x ∈ X and we denote by (σg) the corresponding action of G on

A = L∞(X) given by (σg(F ))(x) = F (g−1 · x). A 1-cocycle for (σg) with coefficients

in a Polish group K is a measurable map

γ : G×X → K satisfying γ(gh, x) = γ(g, h · x) γ(h, x)
almost everywhere. Two 1-cocycles γ1 and γ2 are said to be cohomologous if there

exists a measurable map w : X → K such that

γ1(g, x) = w(g · x)γ2(g, x)w(x)−1 almost everywhere.

Whenever K is abelian, the 1-cocycles form a group Z1(σ,K) and quotienting by

the 1-cocycles cohomologous to the trivial 1-cocycle, we obtain H1(σ,K). Whenever

K = S1, we just write Z1(σ) and H1(σ). Several important remarks should be made.

Suppose that the action of G on (X,µ) is free and ergodic.

• Write M = L∞(X) ⋊G. The group Z1(σ) embeds in Aut(M), associating with

γ ∈ Z1(σ), the automorphism θγ of M defined by θγ(a) = a for all a ∈ L∞(X) and

θγ(ug) = ugγ(g, ·). Passing to quotients, H1(σ) embeds into Out(M).

• H1(σ) is an invariant for (σg) up to stable orbit equivalence (see Definition 4.2).

• If (σg) is weakly mixing, the group of characters CharG embeds into H1(σ) as

1-cocycles not depending on the space variable x.

The fundamental group of a II1 factor

Let M be a II1 factor. If t > 0, we define, up to isomorphism, the amplification

M t as follows: choose n ≥ 1 and a projection p ∈ Mn(C) ⊗M with (Tr⊗τ)(p) = t.

Define M t := p(Mn(C) ⊗M)p. The fundamental group of M is defined as

F(M) = {t > 0 |M t ∼= M} .
It can be checked that F(M) is a subgroup of R∗+.
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In Theorem 9.1, a large class of non-isomorphic II1 factors with trivial fundamental

group is obtained. In Theorem 7.1, II1 factors with a prescribed countable subgroup

of R∗+ as a fundamental group, are constructed.

Quasi-normalizers and almost normal subgroups

Let Q ⊂ M be a von Neumann subalgebra of M . An element x ∈ M is said to

quasi-normalize Q if there exist x1, . . . , xk and y1, . . . , yr in M such that

xQ ⊂
k∑

i=1

Qxi and Qx ⊂
r∑

i=1

yiQ .

The elements quasi-normalizing Q form a ∗-subalgebra of M and their weak closure

is called the quasi-normalizer of Q in M . The inclusion Q ⊂ M is said to be quasi-

regular if M is the quasi-normalizer of Q in M .

A typical example arises as follows: let G be a countable group and H an almost

normal subgroup, which means that gHg−1 ∩ H is a finite index subgroup of H for

every g ∈ G. Equivalently, this means that for any g in G, HgH is the union of

finitely many left cosets, as well as the union of finitely many right cosets. So, it is

clear that for every almost normal subgroup H ⊂ G, the inclusion L(H) ⊂ L(G) is

quasi-regular.

There are some advantages to work with the quasi-normalizer rather than the

normalizer. In Lemma 6.5, the following is shown: let Q ⊂ M be an inclusion of

finite von Neumann algebras and let p be a projection in Q. If P denotes the quasi-

normalizer of Q in M , the quasi-normalizer of pQp in pMp is pPp. This is no longer

true for the actual normalizer.

More background material is available in the appendices. We discuss in Ap-

pendix A the basic construction 〈N , eB〉 starting from an inclusion B ⊂ N of a von

Neumann algebra B in the centralizer algebra of (N , ϕ) (in particular, for an inclusion

of finite von Neumann algebras). Appendix B deals with the relative property (T) and

its analogue for inclusions of finite von Neumann algebras. In Appendix C is studied

the relation between conjugating von Neumann subalgebras with a unitary and the

existence of finite-trace bimodules. Finally, Appendix D is devoted to (weakly) mixing

actions.

3. THE MALLEABILITY PROPERTY OF BERNOULLI ACTIONS

Popa discovered several remarkable properties of Bernoulli actions. The first one is

a deformation property, that he called strong malleability and that is discussed in this

section. This notion of malleability, together with its stunning applications, should

be considered as one of the major innovations of Popa.
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As is well known, the Bernoulli actions are mixing (see Appendix D for definition

and results) and this fact is used throughout. But, Popa exploits as well a very strong

mixing property of Bernoulli actions that he called the clustering property. This will

be used in Section 8.

Definition 3.1 (Popa, [55, 57]). — The action (σg) of G on (N , ϕ) is said to be

• malleable if there exists a continuous action (αt) of R on (N ⊗ N , ϕ ⊗ ϕ) that

commutes with the diagonal action (σg ⊗ σg) and satisfies α1(a ⊗ 1) = 1 ⊗ a for all

a ∈ N ;

• strongly malleable if there moreover exists an automorphism β of (N ⊗N , ϕ⊗ϕ)

commuting with (σg ⊗ σg) such that βαt = α−tβ for all t ∈ R and β(a ⊗ 1) = a ⊗ 1

for all a ∈ N and such that β has period 2: β2 = id.

Remark 3.2. — In [55, 56], Popa uses the term ‘malleability’ for a larger class of

actions: indeed, instead of extending the action from N to N ⊗ N , he allows for a

more general extension to Ñ , which can typically be a graded tensor square N⊗̂N .

This last example occurs when considering Bogolyubov actions. See remark 10.7 for

details.

Generalized Bernoulli actions

The main example of a strongly malleable action arises as a (generalized) Bernoulli

action. Let G be a countable group that acts on the countable set I. Let (X0, µ0) be a

probability space. The action of G on (X,µ) :=
∏
i∈I(X0, µ0) by shifting the infinite

product, is called the (generalized) Bernoulli action. The usual Bernoulli action arises

by taking I = G with the action of G by translation.

Convention 3.3. — For simplicity, we only deal with Bernoulli actions on the infi-

nite product of non-atomic probability spaces and we refer to them as Bernoulli

actions with non-atomic base. Most of Popa’s results also hold for Bernoulli actions

on products of atomic spaces. They are no longer malleable but sub-malleable, see

Definition 4.2 in [55] and Remark 4.6.

Write A0 = L∞(R/Z). To check that the generalized Bernoulli action is strongly

malleable, it suffices to produce an action (αt) of R on A0 ⊗ A0 and a period 2

automorphism β of A0 ⊗ A0 such that α1(a ⊗ 1) = 1 ⊗ a, β(a ⊗ 1) = a ⊗ 1 for all

a ∈ A0 and βαt = α−tβ for all t ∈ R. One can then take the infinite product of

these (αt) and β. Take the uniquely determined map f : R/Z →
]
− 1

2 ,
1
2

]
satisfying

x = f(x) mod Z for all x. Define the measure preserving flow αt and the measure

preserving transformation β on R/Z × R/Z by the formulae

αt(x, y) = (x+ tf(y − x), y + tf(y − x)) and β(x, y) = (x, 2x− y) .

For F ∈ L∞(R/Z × R/Z), write αt(F ) = F ◦ αt and β(F ) = F ◦ β.
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Popa gives a more functional analytic argument for the strong malleability of the

generalized Bernoulli action. Consider A0⊗A0 as being generated by two independent

Haar unitaries u and v. We have to construct a one-parameter group (αt) and a period

2 automorphism β such that α1(u) = v, β(u) = u and βαt = α−tβ. Conjugating αt
and β with the automorphism σ determined by σ(u) = u, σ(v) = vu (note that u

and vu are independent generating Haar unitaries), the first requirement changes to

α1(u) = vu and the other requirements remain. Taking log : T → ]− π, π], we can

now set αt(u) = exp(t log v)u, αt(v) = v and β(u) = u, β(v) = v∗.

Connes-Størmer Bernoulli actions

Apart from ‘classical’ Bernoulli actions, also the ‘non-commutative’ Bernoulli ac-

tions of Connes and Størmer [13] satisfy Popa’s malleability condition. These Connes-

Størmer Bernoulli actions provide the main non-commutative examples of malleable

actions.

Let G be a countable group acting on a countable set I. Let ϕ0 be a faithful normal

state on B(H) for some Hilbert space H (finite or infinite-dimensional). Define

(N , ϕ) :=
⊗

i∈I

(B(H), ϕ0) .

On (N , ϕ), G acts by shifting the tensor factors. To prove the malleability, one has to

produce an action (αt) of R on (B(H⊗H), ϕ0⊗ϕ0) satisfying α1(a⊗ 1) = 1 ⊗ a for all

a ∈ B(H). Denoting by P ∈ B(H ⊗H) the orthogonal projection on the symmetric

subspace densely spanned by the vectors ξ ⊗ µ + µ ⊗ ξ for ξ, µ ∈ H , we define

Ut = P + eiπt(1 − P ) and αt = AdUt. Note that Connes-Størmer Bernoulli actions

are not in an obvious way strongly malleable. In some cases however, a generalization

of strong malleability holds, see 10.7.

The state ϕ0 is of the form Tr∆ for some positive trace-class operator ∆. So, ϕ

is almost periodic and Sp(N , ϕ) is the subgroup of R∗+ generated by the ratios t/s,

where t, s belong to the point spectrum of ∆.

4. SUPERRIGIDITY FOR BERNOULLI ACTIONS

In this section, Popa’s very strong rigidity results for Bernoulli actions of w-rigid

groups are proved: according to the philosophy in the beginning of the introduction,

an orbit equivalence rigidity result deduces conjugacy of actions out of their mere orbit

equivalence. All these rigidity results follow from the following cocycle superrigidity

theorem.
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Theorem 4.1 (Popa, [48]). — Let G be a countable group with infinite normal sub-

group H such that (G,H) has the relative property (T). Let G act strongly malleably

on (X,µ) and suppose that its restriction to H is weakly mixing. Then, any 1-cocycle

γ : G×X → K

with values in a closed subgroup K of the unitary group U(B) of a finite von Neumann

algebra (B, τ), is cohomologous to a homomorphism θ : G→ K.

By regarding Γ ⊂ U(L(Γ)), the theorem covers all 1-cocycles with values in count-

able groups, which is the crucial ingredient to prove orbit equivalence rigidity results.

The superrigidity theorem for Bernoulli actions proved below, does not only deal

with orbit equivalence, but also with stable orbit equivalence. There are several ways

to introduce this concept, one of them being the following (see e.g. [21], where the

terminology of weak orbit equivalence is used).

Definition 4.2. — Let G y (X,µ) and Γ y (Y, η) be free and ergodic actions. A

stable orbit equivalence between these actions is given by a measure space isomorphism

π : A→ B between non-negligible subsets A ⊂ X and B ⊂ Y preserving the restricted

equivalence relations: π(A ∩ (G · x)) = B ∩ (Γ · π(x)) for almost all x ∈ A.

The compression constant of π is defined as c(π) := η(B)/µ(A).

The maps πi : Ai → Bi (i = 1, 2) define the same stable orbit equivalence if

π2(A2 ∩ (G · x)) ⊂ Γ · π1(x) for almost all x ∈ A1 .

Note that this implies that c(π1) = c(π2).

Suppose that πi : Ai → Bi (i = 1, 2) define the same stable orbit equivalence.

If, say, µ(A1) ≤ µ(A2), there exist φ in the full group(9) of the equivalence relation

given by the G-orbits and ψ in the full group of the equivalence relation given by the

Γ-orbits such that φ(A1) ⊂ A2 and π1 is the restriction of ψ ◦ π2 ◦ φ to A1.

If π : A→ B defines a stable orbit equivalence between the free and ergodic actions

G y (X,µ) and Γ y (Y, η), one defines as follows a 1-cocycle α : G × X → Γ for

G y X with values in Γ. By ergodicity, we can choose a measurable map prA : X → A

satisfying prA(x) ∈ G · x almost everywhere and denote p = π ◦ prA. Freeness of the

action Γ y Y , allows to define

α : G×X → Γ : p(g · x) = α(g, x) · p(x)
almost everywhere. Taking another π defining the same stable orbit equivalence or

choosing another prA, yields a cohomologous 1-cocycle.

Given a free and ergodic action G y (X,µ), there are certain actions that are

trivially stably orbit equivalent to G y X and we introduce them in Notation 4.3.

(9)The full group of the equivalence relation defined by G-orbits, consists of the measure space

automorphisms ∆ : X → X satisfying ∆(x) ∈ G · x for almost all x.
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The superrigidity theorem 4.4 states that for Bernoulli actions of w-rigid groups these

are the only actions that are stably orbit equivalent to the given Bernoulli action.

Notation 4.3. — Let G act freely and ergodically on (X,µ). Suppose that θ : G→ Γ

is a homomorphism with Ker θ finite and Im θ of finite index in Γ. Define

IndΓ
G(X, θ) := G\(X × Γ) where G acts on X × Γ by g · (x, s) = (g · x, θ(g)s) .

The action of Γ on IndΓ
G(X, θ) given by t · (x, s) = (x, st−1) is free, ergodic and

finite measure preserving. We also have a canonical stable orbit equivalence between

G y X and Γ y IndΓ
G(X, θ), with compression constant [Γ : θ(G)]/|Ker θ|.

Theorem 4.4 (Popa, [48]). — Let G be a countable group with infinite normal sub-

group H such that (G,H) has the relative property (T). Let G act strongly malleably

on (X,µ) and suppose that its restriction to H is weakly mixing.

Whenever Γ is a countable group acting freely and ergodically on (Y, η) and when-

ever π defines a stable orbit equivalence between G y X and Γ y Y , there exist

• a homomorphism θ : G→ Γ with Ker θ finite in G and Im θ of finite index in Γ ;

• a measure space isomorphism ∆ : Y → IndΓ
G(X, θ) conjugating the actions Γ y

Y and Γ y IndΓ
G(X, θ),

such that ∆ ◦ π defines the canonical stable orbit equivalence between G y X and

Γ y IndΓ
G(X, θ). In particular, the compression constant c(π) equals [Γ : θ(G)]/|Ker θ|.

Remark 4.5. — Several special instances of Theorem 4.4 should be mentioned. Sup-

pose that the action G y X satisfies the conditions of Theorem 4.4 and denote by R
the equivalence relation given by the G-orbits.

• If we suppose moreover that G does not have finite normal subgroups, we get

the following result stated in the introduction. If the restriction to Y ⊂ X of the

equivalence relation given by G y X is given by the orbits of Γ y Y for some group

Γ acting freely and ergodically on Y , then, up to measure zero, Y = X and the actions

of G and Γ are conjugate through a group isomorphism.

• The amplified equivalence relation(10) Rt can be generated by a free action of a

group if and only if t = n/|G0|, where n ∈ N \ {0} and G0 is a finite normal subgroup

of G. So, we get many examples of type II1 equivalence relations that cannot be

generated by a free action of a group. The first such examples were given by Furman

[21], answering a long standing question of Feldman and Moore.

(10)The amplified equivalence relation Rt is defined as follows. If t ≤ 1, we restrict R to a subset of

measure t. If t > 1, we take a restriction of the obvious type II1 equivalence relation onX×{1, . . . , n}.
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• The fundamental group of R is trivial. Note that this fundamental group is

defined as the group of t > 0 such that t is the compression constant for some stable

orbit equivalence between G y X and itself. If π : A→ B is a stable orbit equivalence

with compression constant t ≥ 1, Theorem 4.4 implies that t = n/|Ker θ|, where

θ : G→ G has finite kernel, satisfies n = [G : θ(G)] and where G y X is conjugate to

G y IndGG(X, θ). Since the action G y X is weakly mixing, the induction is trivial,

i.e., n = 1. This implies that t ≤ 1 and hence, t = 1.

• The outer automorphism group OutR = AutR/ InnR of R can be described

as follows. Recall first that AutR is defined as the group of orbit equivalences ∆ :

X → X of G y X with itself. The full group (see note on page 252) of R is a normal

subgroup of AutR and denoted by InnR. The subgroup Aut∗(X,G) ⊂ AutR consists

of those ∆ satisfying

∆(g · x) = δ(g) · ∆(x) almost everywhere,

for some group automorphism δ ∈ AutG. For our given R, OutR is the image of

Aut∗(X,G) through the quotient map AutR → OutR. Weak mixing then implies

that OutR ∼= Aut∗(X,G)/G.

Remark 4.6. — Let G be a group with infinite normal subgroup H with the relative

property (T). Let G y (X,µ) be a strongly malleable action whose restriction to H

is weakly mixing. Then, the conclusions of Theorems 4.1 and 4.4 hold as well for

all quotient actions G y (Y, η) provided that the quotient map X → Y satisfies a

relative weak mixing property, introduced by Popa in [48] (Definition 2.9). Indeed, if

for a measurable map w : X → K and a homomorphism θ : G → K, the 1-cocycle

G×X → K : (g, x) 7→ w(g ·x)θ(g)w(x)−1 actually is a map G×Y → K, then relative

weak mixing imposes that w is already a map Y → K.

Hence, the conclusions of Theorems 4.1 and 4.4 hold for all generalized Bernoulli

actions that are free and weakly mixing restricted to H , even starting from an atomic

base space.

In fact, Theorem 4.4 follows from the cocycle superrigidity theorem 4.1 and the

following classical lemma.

Lemma 4.7. — Let G y (X,µ) and Γ y (Y, η) be free ergodic actions that are

stably orbit equivalent. If the associated 1-cocycle is cohomologous to a homomorphism

θ : G→ Γ, then the conclusion of Theorem 4.4 holds.

Proof. — The proof of the lemma consists of two easy translation statements. In

the first paragraph, stable orbit equivalence is translated as measure equivalence (see

e.g. [21]): we get a natural space with an infinite measure preserving action of G×Γ.

In a second paragraph, the conclusion follows using the triviality of the cocycle.
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Let p : X → Y be the equivalence relation preserving map as in the construc-

tion of the 1-cocycle α above. Take symmetrically q : Y → X and the 1-cocycle

β : Γ × Y → G. We denote by g · x the action of G on X and by s ∗ y the action of

Γ on Y . Define commuting actions of G and Γ on X × Γ and Y ×G respectively, by

the formulae

g · (x, s) · t = (g · x, α(g, x)st) , s ∗ (y, g) ∗ h = (s ∗ y, β(s, y)gh) .

Following Theorem 3.3 in [21], we prove that there is a natural G × Γ-equivariant

measure space isomorphism Θ : X×Γ → Y ×G satisfying Θ(x, s) ∈ (Γ∗p(x))×G for

almost all (x, s). Indeed, take measurable maps X → G : x 7→ gx and Y → Γ : y 7→ sy
such that q(p(x)) = gx · x and p(q(y)) = sy ∗ y almost everywhere. Define

Θ : X × Γ → Y ×G : Θ(x, s) = (s−1 ∗ p(x), β(s−1, p(x))gx)

Θ−1 : Y ×G→ X × Γ : Θ−1(y, g) = (g−1 ∗ q(y), α(g−1, q(y))sy) .

The assumption of the lemma yields a homomorphism θ : G→ Γ and a measurable

map w : X → Γ such that α(g, x) = w(g · x)θ(g)w(x)−1 almost everywhere. So, the

map Ψ : X × Γ → X × Γ : Ψ(x, s) = (x,w(x)s) is a measure space isomorphism that

is equivariant in the following sense

Ψ(g · x, θ(g)st) = g · Ψ(x, s) · t .

So, Θ ◦ Ψ conjugates the new commuting actions g(x, s)t = (g · x, θ(g)st) on X × Γ

with the commuting actions on Y × G given above. In particular, the new action

of G on X × Γ has a fundamental domain of finite measure. Having a fundamental

domain forces Ker θ to be finite, while its being of finite measure imposes θ(G) to be

of finite index in G. Finally, the new action of Γ on the quotient G\(X×Γ) is exactly

Γ y IndΓ
G(X, θ) and Θ ◦ Ψ induces a conjugacy of the actions Γ y IndΓ

G(X, θ) and

Γ y Y .

There is a slightly more general way of writing ‘obviously’ stably orbit equivalent

actions, by first restricting G y X to G0 y X0, where G0 is a finite index subgroup

of G and G y X is induced from G0 y X0. Since the superrigid actions in this talk

are all weakly mixing, they are not induced in this way.

It remains to prove the cocycle superrigidity theorem 4.1. This proof occupies the

rest of the section and consists of several steps.

(0) Using the weak mixing property and the fact that U(B) is a Polish group with

a bi-invariant metric, restrict to the case K = U(B).

The 1-cocycle γ : G × X → U(B) is then interpreted as a family of unitaries γg ∈
U(A ⊗ B), where A = L∞(X,µ). Moreover, strong malleability yields (αt) and β

on A⊗A.
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(1) Using the relative property (T), find t0 > 0 and a non-zero partial isometry

a ∈ A⊗A⊗B satisfying

(∗) (γg)13(σg ⊗ σg ⊗ id)(a) = a(αt0 ⊗ id)((γg)13)

for all g ∈ H . We use the notation (a⊗ b)13 := a⊗ 1⊗ b and extend to u13 for

all u ∈ A⊗B by linearity and continuity.

(2) Using the period 2 automorphism given by the strong malleability and the weak

mixing property of the action restricted to H , glue together partial isometries,

in order to get (∗) with t0 = 1, i.e., a non-zero partial isometry a ∈ A⊗A⊗B

satisfying

(γg)13(σg ⊗ σg ⊗ id)(a) = a(γg)23

for all g ∈ H .

(3) Deduce from the previous equality, using the intertwining-by-bimodules tech-

nique, a non-zero partial isometry v ∈ A ⊗ B and partial isometries θ(g) ∈ B

such that

γg(σg ⊗ id)(v) = v(1 ⊗ θ(g))

for all g ∈ H .

(4) Using a maximality argument, glue together such partial isometries v in order

to get a unitary v satisfying the same formula.

(5) Use the normality of H in G and the weak mixing property of the action

restricted to H , to extend the formula to g ∈ G.

Lemma 4.8 covers step (0), Lemma 4.9 covers steps (1), (2) and (3), Lemma 4.10

covers step (4) and the final step (5) is done in the proof of the theorem.

To prove step (0) of the program, the essential property of the Polish group U(B)

that we retain is the existence of a bi-invariant metric d(u, v) = ‖u− v‖2.

Lemma 4.8. — Let G act weakly mixingly on (X,µ). Let G be a Polish group with

a bi-invariant complete metric d and let K ⊂ G be a closed subgroup. Suppose that

γ : G×X → K is a 1-cocycle. Let v : X → G be a measurable map and θ : G→ G a

homomorphism such that

γ(g, x) = v(g · x)θ(g)v(x)−1

almost everywhere. Whenever v0 ∈ G is an essential value of the function v, we have

v(x)v−1
0 ∈ K almost everywhere and v0θ(g)v

−1
0 ∈ K for all g ∈ G.

Proof. — Let v0 be an essential value of the function v. Changing v(x) into v(x)v−1
0

and θ into (Ad v0) ◦ θ, we assume that e is an essential value of v and prove that

θ(g) ∈ K for all g ∈ G and v(x) ∈ K almost everywhere.

Denote by d the bi-invariant metric on the G. Choose ε > 0 and g ∈ G. Take

W ⊂ X with µ(W ) > 0 such that d(v(x), 1) < ε/4 for all x ∈ W . Take k ∈ G such

that µ(k · W ∩ W ) > 0 and µ((gk)−1 ·W ∩ W ) > 0. If x ∈ k ·W ∩ W , we have

d(v(x), 1), d(v(k−1 ·x), 1) < ε/4. It follows that d(θ(k−1),K) < ε/2. In the same way,

ASTÉRISQUE 311



(961) RIGIDITY RESULTS FOR BERNOULLI ACTIONS 257

d(θ(gk),K) < ε/2. Together, d(θ(g),K) < ε. This holds for all ε > 0 and all g ∈ G

and hence, θ(G) ⊂ K.

Let ε > 0. The formula v(g · x) = γ(g, x)v(x)θ(g)∗ almost everywhere, yields that

{x ∈ X | d(v(x),K) < ε} is non-negligible and G-invariant, hence, the whole of X . It

follows that v(x) ∈ K almost everywhere.

We fix the following data and notations.

• Let G be a countable group with infinite normal subgroup H such that (G,H)

has the relative property (T). Let G act strongly malleably on (X,µ) and

suppose that its restriction to H is weakly mixing. Write A = L∞(X) and

write the action of G on A as (σg(F ))(x) = F (g−1 · x).
• Let γ : G×X → U(B) be a 1-cocycle with values in the unitary group of the

II1 factor (B, τ). Remark that we can indeed suppose that B is a II1 factor(11).

We write γg ∈ U(A⊗B), given by γg(x) = γ(g, g−1 ·x). The 1-cocycle relation

becomes

γg(σg ⊗ id)(γh) = γgh for all g, h ∈ G .

• We denote by (ρg) the following action of G by automorphisms of A⊗B:

ρg(a) = γg(σg ⊗ id)(a)γ∗g for all a ∈ A⊗B .

• We denote by (ηg) the unitary representation of G on L2(X)⊗L2(B) given by

ηg(a) = γg(σg ⊗ id)(a) for all a ∈ A⊗B ⊂ L2(X) ⊗ L2(B) .

• We denote, for every t ∈ R, by (πtg) the unitary representation on L2(X×X)⊗
L2(B) of G given by

πtg(a) = (γg)13(σg ⊗ σg ⊗ id)(a)(αt ⊗ id)((γg)
∗
13)

for all a ∈ A⊗A⊗B ⊂ L2(X×X)⊗L2(B). Recall the notation u13 determined

by (a⊗ b)13 = a⊗ 1 ⊗ b.

We cover steps (1), (2) and (3) of the program in the next lemma.

Lemma 4.9. — Let q ∈ A⊗B be a non-zero projection which is ρ|H-invariant. There

exist a non-zero partial isometry v ∈ A⊗B, a projection p ∈ B and a homomorphism

θ : H → U(pBp) such that vv∗ ≤ q, v∗v = 1 ⊗ p and

γh(σh ⊗ id)(v) = v(1 ⊗ θ(h))

for all h ∈ H.

(11)Any finite (B, τ) can be embedded, in a trace-preserving way, into a II1 factor, e.g. into
`

N

n∈Z(B, τ)
´

⋊ Z and U(B) is then a closed subgroup of the unitary group of this II1 factor.
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Proof

Step (1). Note that 1 is a π0
G-invariant vector. The relative property (T ) yields

a t0 = 2−n and a non-zero element a ∈ A ⊗ A ⊗ B such that a is πt0H -invariant and

such that ‖a − 1‖2 ≤ ‖q‖2/2. It follows that a(αt0 ⊗ id)(q13) 6= 0, which remains

πt0H -invariant. Taking the polar decomposition of a(αt0 ⊗ id)(q13), we get a non-zero

partial isometry a ∈ A⊗A⊗B which is πt0H -invariant and satisfies a∗a ≤ (αt0⊗id)(q13).

Moreover, Proposition D.2 yields

aa∗ , (α−t0 ⊗ id)(a∗a) ∈ (A⊗B)
ρ|H
13 .

So, we have a projection q̃ ∈ (A⊗B)ρ|H such that q̃ ≤ q and

a∗a = (αt0 ⊗ id)(q̃13) .

Step (2). Whenever a and b are πt0H -invariant, we have that a(αt0 ⊗ id)(b) is π2t0
H -

invariant and that (β⊗ id)(a) and (α−t0 ⊗ id)(a∗) are π−t0H -invariant. So, if we define

a1 = (αt0 ⊗ id)
(
(β ⊗ id)(a∗)a

)

we get that a1 is π2t0
H -invariant and satisfies

a1a
∗
1 = q̃13 and a∗1a1 = (α2t0 ⊗ id)(q̃13) .

Iterating the procedure yields at stage n a partial isometry b ∈ A ⊗ A ⊗ B which is

π1
H -invariant and satisfies bb∗ = q̃13 and b∗b = q̃23.

Step (3) Define the (non-zero) operator T ∈ B(L2(X)) ⊗B by

(Tξ)(x) =

∫

X

b(x, y)ξ(y) dµ(y) for all ξ ∈ L2(X) ⊗B .

We get

[T, ηh] = 0 for h ∈ H , q̃T = T = T q̃ , ‖(Tr⊗id)(T ∗T )‖ <∞ .

Taking a spectral projection P of T , we get a non-zero orthogonal projection P with

the same properties as T . It follows that the range of P is a finitely generated right

B-submodule of (L2(X) ⊗ L2(B))B which is stable under (ηh)h∈H .

As in Proposition C.1, we get n≥ 1, a non-zero projection p ∈ Mn(C)⊗B, a non-zero

partial isometry v ∈A⊗M1,n(C)⊗B and a homomorphism θ : H → U(p(Mn(C) ⊗B)p)

such that

γh(σh ⊗ id)(v) = v(1 ⊗ θ(h)) for h ∈ H , q̃v = v , v(1 ⊗ p) = v .

Since v∗v is (σh ⊗ Ad θ(h))-invariant for all h ∈ H , it follows from Proposition D.2

that v∗v = 1⊗ p0 for some non-zero projection p0 ∈ p(Mn(C)⊗B)p∩ θ(H)′. Since p0

commutes with θ(H), we can cut down by p0. Since moreover τ(p0) ≤ 1, we can move

p0 into the upper corner of Mn(C)⊗B and we have found a non-zero partial isometry

v ∈ A⊗ B, a non-zero projection p ∈ B and a homomorphism θ : H → U(pBp) such

that vv∗ ≤ q, v∗v = 1 ⊗ p and

γh(σh ⊗ id)(v) = v(1 ⊗ θ(h))

for all h ∈ H .
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We cover step (4) of the program in the following lemma.

Lemma 4.10. — There exists a unitary element v ∈ A ⊗ B and a homomorphism

θ : H → U(B) such that

γh(σh ⊗ id)(v) = v(1 ⊗ θ(h))

for all h ∈ H.

Proof. — The proof is a straightforward maximality argument. Consider the set I
of partial isometries v ∈ A ⊗ B for which there exist p ∈ B and θ : H → U(pBp)

satisfying

v∗v = 1 ⊗ p and γh(σh ⊗ id)(v) = v(1 ⊗ θ(h))

for all h ∈ H . Partially order I by extension of partial isometries and let v be a

maximal element of I. Write v∗v = 1 ⊗ p. If vv∗ 6= 1, put q = 1 − vv∗. Then,

q ∈ (A ⊗ B)ρ|H and Lemma 4.9 yields a non-zero partial isometry w ∈ A ⊗ B,

a projection e ∈ B and a homomorphism θ : H → U(eBe) such that ww∗ ≤ q,

w∗w = 1 ⊗ e and

γh(σh ⊗ id)(w) = w(1 ⊗ θ(h))

for all h ∈ H . Since e � 1−p in the II1 factor B, we contradict the maximality v.

Proof of Theorem 4.1. — Using Lemma 4.8, it is sufficient to prove the existence of

a unitary v ∈ A⊗B and a homomorphism θ : G→ U(B) such that

(1) γg(σg ⊗ id)(v) = v(1 ⊗ θ(g))

for all g ∈ G. Take v and θ as given by Lemma 4.10. Fix g ∈ G and write

ṽ = γg(σg ⊗ id)(v) and θ̃(h) = θ(g−1hg) for h ∈ H .

Obviously, γh(σh ⊗ id)(ṽ) = ṽ(1 ⊗ θ̃(h)) for all h ∈ H . It follows that

(σh ⊗ id)(ṽ∗v) = (1 ⊗ θ̃(h)∗)ṽ∗v(1 ⊗ θ(h))

for all h ∈ H . Since ṽ∗v is a unitary, the same proof as the one for Proposition D.2,

yields a unitary u ∈ B such that θ̃ = (Adu)θ and ṽ = v(1 ⊗ u∗). So, for any g ∈ G,

we find a unique unitary element θ(g) ∈ U(B) such that (1) holds. By uniqueness, θ

is a homomorphism and we are done.

5. NON-ORBIT EQUIVALENT ACTIONS AND 1-COHOMOLOGY

The following theorem is an immediate consequence of Theorem 4.1.

Theorem 5.1 (Popa, Sasyk, [57]). — Let G be a countable group with infinite nor-

mal subgroup H such that (G,H) has the relative property (T). Let (σg) be the

Bernoulli action (with non-atomic base) of G on (X,µ). Then, H1(σ) = CharG.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2007



260 S. VAES

Through the following lemma, one can easily produce non-stable orbit equivalent

actions

Lemma 5.2. — Let G be a countable group and K a compact abelian group. Let

G×K act on (X,µ) and denote by (σgρk) the corresponding action on A = L∞(X).

Define B = AK , the algebra of K-fixed points. Denote by (σKg ) the restriction of (σg)

to B. Assume that

• (σg) is free and weakly mixing,

• (σKg ) is still free,

• H1(σ) = CharG.

Then, H1(σK) = CharG× Sp(K, ρ), where

Sp(K, ρ) = {α ∈ Char(K) | ∃u ∈ U(A), ρk(u) = α(k)u for all k ∈ K} .

Proof. — Whenever u ∈ U(A) and ρk(u) = α(k)u for all k ∈ K, we define ωg ∈ B by

the formula ωg = uσg(u
∗). Using the weak mixing of (σg), it is easy to check that we

obtain an embedding CharG×Sp(K, ρ) →֒ H1(σK). Suppose on the contrary that the

1-cocycle ω defines an element of H1(σK). We regard ω as a 1-cocycle for σ and since

H1(σ) = CharG, we find that ω is cohomologous to a character of G. Subtracting

this character from ω, we may assume that ωg = uσg(u
∗) for some unitary u ∈ U(A).

Since for any k ∈ K, ωg is K-invariant and since (σg) is weakly mixing, we conclude

that there exists α : K → S1 such that ρk(u) = α(k)u for all k ∈ K. But this means

that ω is given by an element of Sp(K, ρ).

The following proposition immediately follows.

Proposition 5.3 (Popa, [53]). — Let G be a countable group with infinite normal

subgroup H such that (G,H) has the relative property (T). Let Γ be any count-

ably infinite abelian group and K = Γ̂. Denote by (σg) the Bernoulli action of G

on L∞(X,µ) = ⊗g∈GL∞(K,Haar) and define (ρk)k∈K as the diagonal action on

L∞(X,µ) of the translation action of K on L∞(K). Define (σKg ) as the restriction

of (σg) to the K-fixed points L∞(X)K .

Then, (σKg ) is a free and ergodic action of G satisfying H1(σK) = CharG× Γ.

Remark 5.4. — It follows that any countable group G that admits an infinite normal

subgroup H such that (G,H) has the relative property (T), admits a continuous

family of non-stably orbit equivalent actions. Indeed, CharG being compact, an

isomorphism CharG × Γ1
∼= CharG × Γ2 entails a virtual isomorphism between Γ1

and Γ2. It is not hard to exhibit a continuous family of non virtually isomorphic

countable abelian groups.
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6. INTERTWINING RIGID SUBALGEBRAS OF CROSSED

PRODUCTS

The major aim of the rest of the talk is to prove Popa’s von Neumann strong

rigidity theorem for Bernoulli actions of w-rigid groups, deducing conjugacy of actions

out of their mere von Neumann equivalence. This is more difficult, but nevertheless

related to the orbit equivalence superrigidity Theorem 4.4. In particular, the crucial

Lemma 6.1 below, is the von Neumann counterpart to Lemma 4.9, covering steps

(1), (2) and (3) of the program on page 255. It states that in a crossed product

M := N ⋊ G by a malleable mixing action, a subalgebra Q ⊂ M with the relative

property (T), can be essentially conjugated into L(G).

But, the aim of this section is not only preparation to the von Neumann strong

rigidity theorem. The results are applied as well in the next section in order to

construct II1 factors with prescribed countable fundamental groups. For this reason,

we need to deal with actions on non-tracial (but almost-periodic) algebras.

We refer to page 243 for a rough explanation of the idea of the proof of Lemma 6.1.

It is another application of Popa’s deformation/rigidity strategy. The deformation

property of malleability is played against the relative property (T). For this, we need

the notion of relative property (T) for an inclusion Q ⊂ M of finite von Neumann

algebras (see Definition B.2). The mixing property of the action has several von

Neumann algebraic consequences that are used throughout and proved in Appendix D.

Finally, in order to actually conjugate (essentially) Q into L(G), Popa’s intertwining-

by-bimodules technique is used (see Appendix C).

Lemma 6.1. — Given a strongly malleable mixing action of a countable group G on

an almost periodic (N , ϕ), write N = Nϕ. Let Q ⊂ N ⋊ G be a diffuse subalgebra

with the relative property (T). Denote by P the quasi-normalizer of Q in N ⋊G and

suppose that there is no non-zero homomorphism from P to an amplification of N .

Then, there exist γ > 0, n ≥ 1 and a non-zero partial isometry v ∈ Mn,1(C) ⊗
(N ⋊G) which is a γ-eigenvector for ϕ and satisfies

v∗v ∈ P ∩Q′ , vPv∗ ⊂ Mn(C) ⊗ L(G) .

Proof. — In the course of this proof, we use the following terminology: given subal-

gebras Q1, Q2 of a von Neumann algebra, an element a is said to be Q1-Q2-finite, if

there exists finite families (ai) and (bi) such that

aQ2 ⊂
n∑

i=1

Q1ai and Q1a ⊂
m∑

i=1

biQ2 .

Hence, the Q-Q-finite elements are nothing else but the elements quasi-normalizingQ.

Step (1), using relative property (T). Take (αt) and β as in Definition 3.1. Write

Ñ = (N ⊗ N )ϕ⊗ϕ and M̃ = Ñ ⋊ G. Write M = N ⋊ G and consider M as a
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subalgebra of M̃ by considering N ⊗ 1 ⊂ N ⊗ N . Extend (αt) and β to M̃ . The

relative property (T) yields t0 = 2−n and a non-zero element w ∈ M̃ such that

xw = wαt0(x) for all x ∈ Q.

Step (2), finding a non-zero element a ∈ M̃ that is Q-α1(Q)-finite, using the period

2-automorphism β. Denote by P the ∗-algebra of Q-Q-finite elements in M . By

definition, P is the weak closure of P . Whenever y ∈ P , the element αt0(β(w∗)yw)

is Q-α2t0(Q)-finite. It suffices to find y such that β(w∗)yw is non-zero, since we can

then continue to find a non-zero Q-α1(Q)-finite element a in M̃ . Denote by p the

supremum of all range projections of elements yw, where y ∈ P . We have to prove

that pβ(w) 6= 0. By construction, p ∈ M̃ ∩ P ′ and pw = w. From Proposition D.5

(and here we use that there is no non-zero homomorphism from P to an amplification

of N), M̃ ∩ P ′ ⊂ M and so, p ∈ M . But, β acts trivially on M and we obtain

pβ(w) = β(pw) = β(w) 6= 0.

Step (3), using the intertwining-by-bimodules technique to conclude. Denote by

f ∈ 〈M̃, eα1(M)〉 ∩ Q′ the orthogonal projection onto the closure of Qaα1(M) in

L2(M̃) and remark that ϕ̂(f) < +∞. Denoting by F : 〈(N ⊗N ) ⋊G, e(1⊗N )⋊G〉 →
〈N ⋊G, eL(G)〉 the ϕ̂-preserving conditional expectation, it follows that

F(f) ∈ 〈N ⋊G, eL(G)〉 ∩Q′ with ϕ̂(F(f)) <∞ .

Moreover, F(f) 6= 0 since F is faithful.

>From Proposition C.1, we get γ > 0, n ≥ 1, p ∈ Mn(C)⊗L(G), a homomorphism

θ : Q→ p(Mn(C) ⊗L(G))p and a non-zero partial isometry w ∈M1,n(C) ⊗ (N ⋊G)

such that w is a γ-eigenvector for ϕ and xw = wθ(x) for all x ∈ Q. It follows

that w∗w ∈ p(Mn(C) ⊗ (N ⋊ G))p ∩ θ(Q)′, which is included in p(Mn(C) ⊗ L(G))p

by Theorem D.4. Also ww∗ ∈ M ∩ Q′ and hence, w∗Qw is a diffuse subalgebra of

p(Mn(C) ⊗ L(G))p. Applying once more Theorem D.4, we get w∗Pw ⊂ p(Mn(C) ⊗
L(G))p. Since obviously M ∩Q′ ⊂ P , we can take v = w∗ to conclude.

Remark 6.2. — If P is a factor, it is sufficient to assume malleability instead of strong

malleability. Indeed, looking back at the proof, let a ∈ M̃ be a Q-αt0(Q)-finite

element. Then, aαt0(ya) is Q-α2t0(Q)-finite for every y ∈ M̃ that quasi-normalizes

Q. Denote by P̃ the quasi-normalizer of Q in M̃ . It is then sufficient to show that P̃

is factorial, to obtain at least one y such that aαt0(ya) 6= 0. As in the proof above,

M̃ ∩ P ′ ⊂ M . Since P̃ contains P , it follows that M̃ ∩ P̃ ′ ⊂ M ∩ P ′ = Z(P ) = C1.

So, we are done.

In two cases, a unitary intertwiner v can be found. The first case is easy and follows

immediately: assume G to be ICC and the quasi-normalizer P to be a factor. It is

crucial to allow as well for an amplification in order to apply the result when dealing

with the fundamental group of the crossed product N ⋊G.
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Theorem 6.3 (Popa, [55]). — Given a malleable mixing action of an ICC group G

on an almost periodic (N , ϕ), write N = Nϕ and M = N ⋊ G. Let t > 0 and

let Q ⊂ M t be a diffuse subalgebra with the relative property (T). Denote by P the

quasi-normalizer of Q in M t. Suppose that P is a factor and that there is no non-zero

homomorphism from P to an amplification of N . Realize M t = p(Mn(C) ⊗M)p.

Then, there exist γ > 0, k ≥ 1 and v ∈ Mn,k(C) ⊗ (N ⋊G) a γ-eigenvector for ϕ,

such that

v∗v = p , q := vv∗ ∈ Mk(C) ⊗ L(G) , vPv∗ ⊂ L(G)tγ ,

where we have realized L(G)tγ := q(Mk(C) ⊗ L(G))q.

Proof. — Choose a projection q ∈ Mk(C) ⊗ Q with trace s where s = 1/t. Write

Qs := q(Mk(C) ⊗ Q)q and P s := q(Mk(C) ⊗ P )q. We consider Qs ⊂ P s ⊂ M .

Clearly, Qs is diffuse, Qs ⊂ M has the relative property (T) by Proposition B.6 and

P s is the quasi-normalizer of Qs by Lemma 6.5. So, Lemma 6.1 (with Remark 6.2)

yields a partial isometry v which is a γ-eigenvector for ϕ and satisfies v∗v ∈ P s,

vP sv∗ ⊂ L(G)γ . Since both P s and L(G) are factors, we can move around v using

partial isometries in matrix algebras over P and L(G) to conclude.

In the tracial case, assuming G to be ICC is sufficient.

Theorem 6.4 (Popa, [55]). — Given a strongly malleable mixing action of an ICC

group G on a finite (N, τ), let t > 0 and let Q ⊂ (N ⋊G)t be a diffuse subalgebra with

the relative property (T). Denote by P the quasi-normalizer of Q in (N ⋊ G)t and

suppose that there is no non-zero homomorphism from P to an amplification of N .

Then, there exists a unitary element v ∈ (N ⋊G)t such that vPv∗ ⊂ L(G)t.

Proof. — Write M = N ⋊ G. Below we prove the existence of a partial isometry

v ∈ M t satisfying v∗v ∈ P ∩Q′ and vPv∗ ⊂ L(G)t. Since any projection p ∈ P ∩Q′
of trace s yields an inclusion pQ ⊂ pPp ⊂ M st satisfying the assumptions of the

theorem, a maximality argument combined with the factoriality of L(G) then allows

to conclude.

Choose a projection q ∈ Mk(C) ⊗ Q with trace s where s = 1/t. Write Qs :=

q(Mk(C) ⊗ Q)q and P s := q(Mk(C) ⊗ P )q as in the proof of the previous theorem.

From Lemma 6.1, we get a partial isometry w ∈M satisfying w∗w ∈ P s ∩ (Qs)′ and

wP sw∗ ⊂ L(G). Let e be the smallest projection in P ∩ Q′ satisfying w∗w ≤ 1 ⊗ e.

Moving around w using partial isometries in matrix algebras over Q and L(G), we

find a partial isometry v ∈M t satisfying v∗v = e and vPv∗ ⊂ L(G)t.

Lemma 6.5. — Let Q ⊂ M be an inclusion of finite von Neumann algebras and p a

non-zero projection in Q. If P denotes the quasi-normalizer of q in M , then pPp is

the quasi-normalizer of pQp in pMp.
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Proof. — Denote by P̃ the quasi-normalizer of pQp in pMp. We only prove the inclu-

sion pPp ⊂ P̃ , the converse inclusion being analogous. Let z be a central projection

in Q such that z =
∑n
i=1 viv

∗
i with vi partial isometries in Q and v∗i vi ≤ p.

If now x ∈ M quasi-normalizes Q, we write p0 = pz and claim that p0xp0 quasi-

normalizes pQp. Indeed, if xQ ⊂∑r
k=1Qxk, it is readily checked that

p0xp0 pQp ⊂
∑

k,i

pQp v∗i xkp .

Since the central support of p in Q can be approximated arbitrary well by such

special central projections z, p0 approximates arbitrary well p and we have proved

that pPp ⊂ P̃ .

7. FUNDAMENTAL GROUPS OF TYPE II1 FACTORS

Recall that we denote the fundamental group of a II1 factor M by F(M) ⊂ R∗+
and that Sp(N , ϕ) ⊂ R∗+ denotes the point spectrum of the modular automorphism

group of an almost periodic state ϕ on N .

Theorem 7.1 (Popa, [55]). — Let G be an ICC group that admits an infinite almost

normal subgroup H with the relative property (T). Let (σg) be a malleable mixing

action of G on the almost periodic injective (N , ϕ). Denote M := Nϕ ⋊G. One has

Sp(N , ϕ) ⊂ F(M) ⊂ Sp(N , ϕ)F(L(G)) .

In particular, if L(G) has trivial fundamental group, F(M) = Sp(N , ϕ).

Proof. — As shown by Golodets and Nessonov [24], the inclusion Sp(N , ϕ) ⊂ F(M)

holds. Indeed, let s ∈ Sp(N , ϕ) and take an s-eigenvector v ∈ N , that we may

suppose to be a partial isometry. Write p = v∗v and q = vv∗. Then, p, q ∈ Nϕ ⊂M ,

ϕ(q) = sϕ(p) and Ad v yields an isomorphism of pMp with qMq. Hence, s ∈ F(M).

Suppose t ∈ F(M) and let θ : M → M t be a ∗-isomorphism. Since H is almost

normal in G, L(G) is contained in the quasi-normalizer of L(H) in M . Moreover,

L(H) is diffuse since H is infinite. So, it follows from Theorem D.4 that the quasi-

normalizer of L(H) in M is exactly L(G) and, in particular, a factor. Since Nϕ is an

injective von Neumann algebra with finite trace ϕ, it follows from Remark B.4 that

there is no non-zero homomorphism from L(G) to an amplification of Nϕ.

Write M = N⋊G, Q = θ(L(H)) and P = θ(L(G)). RealizeM t := p(Mn(C)⊗M)p,

where p is chosen in Mn(C) ⊗ L(H). By Proposition B.5, the inclusion Q ⊂ P has

the relative property (T). Increasing n if necessary, the previous paragraph and Theo-

rem 6.3 yield s ∈ Sp(M, ϕ) and v ∈ Mn(C) ⊗M such that v is an s-eigenvector for

ϕ, v∗v = p, q := vv∗ ∈ Mn(C) ⊗ L(G) and vPv∗ ⊂ q(Mn(C) ⊗ L(G))q. We claim

that this inclusion is an equality. Then, we have shown that L(G) and L(G)ts are
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isomorphic, which yields ts ∈ F(L(G)) and hence, t ∈ Sp(N , ϕ)F(L(G)). So, this

ends the proof.

Changing q to an equivalent projection in Mn(C) ⊗ L(G), we may assume that

q ∈ Mn(C) ⊗ L(H). Write Q1 ⊂ P1 ⊂M as

Q1 := θ−1
(
v∗(Mn(C) ⊗ L(H))v

)
and P1 := θ−1

(
v∗(Mn(C) ⊗ L(G))v

)
.

The inclusion Q1 ⊂ M = N ⋊ G has the relative property (T), P1 is the quasi-

normalizer of Q1 and L(G) ⊂ P1. We have to prove that L(G) = P1.

By Theorem 6.3, there exist a w ∈ Mk,1(C)⊗M, an r-eigenvector for ϕ satisfying

w∗w = 1 and wP1w
∗ ⊂ L(G)r . Since L(G) ⊂ P1, Theorem D.4 yields w ∈ Mk,1(C)⊗

L(G). But then, L(G) = P1 and we are done.

Corollary 7.2. — Let G be an ICC group that admits an infinite almost normal

subgroup with the relative property (T). Suppose that L(G) has trivial fundamental

group. Let Tr∆ be the faithful normal state on B(H) given by Tr∆(a) = Tr(∆a)

and define (N , ϕ) =
⊗

g∈G(B(H),Tr∆), with Connes-Størmer Bernoulli action G y
(N , ϕ). Write M := Nϕ ⋊G.

Then, F(M) is the subgroup of R∗+ generated by the ratios λ/µ for λ, µ belonging

to the point spectrum of ∆. In particular, for every countable subgroup S ⊂ R∗+, there

exists a type II1 factor with separable predual whose fundamental group is S.

Popa showed in [52] that, among other examples, L(G) has trivial fundamental

group when G = SL(2,Z) ⋉ Z2. Note that Popa shows in [52] that the fundamental

group of L(G) = SL(2,Z) ⋉L∞(T2) equals the fundamental group of the equivalence

relation given by the orbits of SL(2,Z) y T2. The latter reduces to 1 using Gaboriau’s

ℓ2 Betti number invariants for equivalence relations, see [22].

It is an open problem whether there exist II1 factors with separable predual and

uncountable fundamental group different from R∗+.

8. FROM VON NEUMANN EQUIVALENCE TO ORBIT

EQUIVALENCE

The following is an immediate consequence of Theorem 6.4.

Proposition 8.1. — Let G be an ICC group with a strongly malleable mixing action

on the probability space (X,µ). Write M = L∞(X) ⋊G. Let Γ be a countable group

that admits an almost normal infinite subgroup Γ0 such that (Γ,Γ0) has the relative

property (T). Suppose that Γ acts on the probability space (Y, η).

Let p be a projection in L(G) and

θ : L∞(Y ) ⋊ Γ → p(L∞(X) ⋊G)p
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a ∗-isomorphism. Then, there exists a unitary v ∈ pMp such that vθ(L(Γ))v∗ ⊂
pL(G)p.

Proof. — We apply Theorem 6.4, observing that L(Γ) is included in the quasi-

normalizer P of L(Γ0) in L∞(Y ) ⋊ Γ. Using Remark B.4, it follows that there is no

non-zero homomorphism from P to an amplification of L∞(X).

From now on, specify G y (X,µ) to be the Bernoulli action. The following

preliminary result is proved: an isomorphism between crossed products sending one

group algebra into the other, makes the Cartan subalgebras conjugate. The final aim

is Theorem 9.1 below, which states that the actions are necessarily conjugate.

Theorem 8.2 (Popa, [56]). — Let G be an infinite group and, for µ0 non-atomic,

G y (X,µ) =
∏
g∈G(X0, µ0), its Bernoulli action. Let Γ be an infinite group that

acts freely and weakly mixingly on the probability space (Y, η). Write A = L∞(X) and

B = L∞(Y ). Let p be a projection in L(G) and

θ : B ⋊ Γ → p(A⋊G)p

a ∗-isomorphism. Suppose that θ(L(Γ)) ⊂ pL(G)p. Then,

• there exists a partial isometry u ∈ A ⋊G satisfying u∗u = p, e := uu∗ ∈ A and

uθ(B)u∗ = eA;

• the equality θ(L(Γ)) = pL(G)p holds.

Later on, Proposition 8.1 and Theorem 8.2 are combined to prove that the actions

of Γ and G are conjugate through a group isomorphism of Γ and G. The proof of

Theorem 8.2 certainly is the most technical and analytically subtle part of this talk.

Notations 8.3. — We fix several notations used throughout the lemmas needed to

prove Theorem 8.2.

• We fix an infinite group G and write A0 = L∞(X0), (A, τ) =
⊗

g∈G

(A0, τ0). For

every finite subset K ⊂ G, we write AKc :=
⊗

g/∈K

(A0, τ0). Write M = A ⋊ G and

denote by τ the tracial state on M .

• We use η : M → L2(M) to identify an element of the algebra M with its

corresponding vector in the Hilbert space L2(M).

• For a finite subset K ⊂ G, we denote by eǨ the orthogonal projection onto the

closure of span{η(AKcug) | g ∈ G} in L2(M) and we denote by pǨ the orthogonal

projection onto the closure of span{η(Auk) | k ∈ G \K} in L2(M).

• We do not write the isomorphism θ. We simply suppose that B⋊Γ = p(A⋊G)p

in such a way that L(Γ) ⊂ pL(G)p. Of course, τ is as well the trace on B ⋊ Γ, but

non-normalized.

• The elements of Γ are denoted by s, t and the action of Γ on B by (ρs)s∈Γ. The

elements of G are denoted by g, h and the action of G on A by (σg)g∈G.
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• Denote by (νs)s∈Γ the canonical unitaries generating L(Γ) and by (ug)g∈G the

canonical unitaries generating L(G).

We first explain the idea of the proof of Theorem 8.2. Elements in the image of eǨ
for K large are thought of as living far away space-wise, while elements in the image

of pǨ for K large are thought of as living far away group-wise. In order to show that

B can be conjugated into A, one shows first that sufficiently many elements of B

are not living far away group-wise. This suffices to construct a B-A-subbimodule of

L2(M) which is finitely generated as an A-module. To obtain elements of B that are

not living far away group-wise, two lemmas are used:

• if an element of B lives far away space-wise, it does not live far away group wise

(Lemma 8.4);

• if b ∈ B and sn → ∞ in Γ, the elements ρsn(b) are more and more living far

away space-wise (Lemma 8.5).

To pass from the approximate inequalities in Lemmas 8.4, 8.5 to exact inequalities,

the powerful technique of ultraproducts is applied. This allows to conjugate B into

A at least on the level of the ultrapower algebra. But this is sufficient to return to

earth and conjugate B into A.

Lemma 8.4. — For every ε > 0 there exist finite subsets K,L ⊂ G such that

‖pǨη(x)‖2 ≤ 3‖(1 − eĽ)η(x)‖ + ε

for all x ∈ B with ‖x‖ ≤ 1.

Proof. — We make the following claim.

Claim. For every a ∈ M with ‖a‖ ≤ 1 and every ε > 0, there exist K,L ⊂ G finite

such that

|〈a · η(x) · a∗, pǨη(x)〉| ≤ 3‖(1 − eĽ)η(x)‖ + ‖EL(G)(a)‖2 + ε

for all x ∈M with ‖x‖ ≤ 1. To deduce the lemma from this claim it is then sufficient

to prove that B contains unitaries a with ‖EL(G)(a)‖2 arbitrary small and to use the

commutativity of B in order to get a · η(x) · a∗ = η(x) for x ∈ B.

To prove the claim, choose a ∈ M with ‖a‖ ≤ 1 and ε > 0. By the Kaplansky

density theorem, we may assume that a ∈ span{AF0ug | g ∈ F1} for some finite

subsets F0, F1 ⊂ G. We may assume as well that e ∈ F1. Put L = F−1
1 F0 and

K = LF−1
0 . It is an excellent Bernoulli exercise to check that

eĽ(a · ξ) = eĽ(EL(G)(a) · ξ) for ξ ∈ Im eĽ, eĽ(ξ · a) = (eĽξ) · a for ξ ∈ Im pǨ .

Take x ∈M with ‖x‖ ≤ 1. We obtain that

(∗) |〈a · η(x) · a∗, pǨη(x)〉| ≤ ‖eĽ(a · η(x))‖ + ‖(1 − eĽ)
(
(pǨη(x)) · a

)
‖ .

In (∗), the second term equals

‖
(
(1 − eĽ)pǨη(x)

)
· a‖ ≤ ‖(1 − eĽ)η(x)‖ .
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The first term of (∗), is bounded by

(∗∗) ‖eĽ(a · (eĽη(x)))‖ + ‖(1 − eĽ)η(x)‖ .
In (∗∗), the first term equals

‖eĽ(EL(G)(a) · (eĽη(x)))‖ ≤ ‖EL(G)(a) · (eĽη(x))‖
≤ ‖EL(G)(a) · η(x)‖ + ‖(1 − eĽ)η(x)‖
≤ ‖EL(G)(a)‖2 + ‖(1 − eĽ)η(x)‖ .

We have shown that

|〈a · η(x) · a∗, pǨη(x)〉| ≤ 3‖(1 − eĽ)η(x)‖ + ‖EL(G)(a)‖2

for all x ∈M with ‖x‖ ≤ 1, which proves the claim.

It remains to show that, for every ε > 0, there exists a unitary u ∈ B such that

‖EL(G)(u)‖2 < ε. If not, it follows from Proposition C.1 that there exist n ≥ 1, a

projection q ∈ Mn(C)⊗L(G), a homomorphism θ : B → q(Mn(C)⊗L(G))q and a non-

zero partial isometry v ∈ M1,n(C)⊗pM satisfying v∗v ≤ q and bv = vθ(b) for all b ∈ B.

Using Theorem D.4, v∗v ∈ Mn(C) ⊗ L(G) and we may assume that v∗v = q. Then,

v∗Bv is a diffuse subalgebra of q(Mn(C)⊗L(G))q. Since the normalizer of B in pMp

is the whole of pMp, it follows from Theorem D.4 that v∗Mv ⊂ q(Mn(C) ⊗ L(G))q.

Since v∗Mv = q(Mn(C) ⊗M)q, this is a contradiction.

Lemma 8.5. — For every b ∈ B, ε > 0 and L ⊂ G finite, there exists K ⊂ Γ finite

such that

‖(1 − eĽ)η(ρs(b))‖ < ε

for all s ∈ Γ \K.

Proof. — We again make a claim.

Claim. For every a ∈ M with ‖a‖ ≤ 1, L ⊂ G finite and ε > 0, there exists K1 ⊂ G

finite such that

‖(1 − eĽ)η(vaw)‖ ≤ ε+ ‖(1 − pǨ1
)η(v)‖

for all v, w ∈ L(G) with ‖w‖ ≤ 1.

The lemma follows easily from the claim: given K1 ⊂ G finite and ε > 0, we can

take K ⊂ Γ finite such that ‖(1 − pǨ1
)η(νs)‖ < ε for all s ∈ Γ \ K. It remains to

observe that ρs(b) = νsbν
∗
s and νs ∈ L(Γ) ⊂ L(G).

To prove the claim, choose a ∈ M with ‖a‖ ≤ 1 and ε > 0. By the Kaplansky

density theorem, we may assume that a ∈ span{AFug | g ∈ G} for some finite subset

F ⊂ G. Given L ⊂ G finite, we put K1 = LF−1 and leave as an exercise to check

that

(pǨ1
η(v)) · (aw) ∈ Im eĽ for all v, w ∈ L(G).

The claim follows immediately.
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Lemma 8.6. — For every b ∈ B, EL(G)(b) =
τ(b)

τ(p)
p. Hence, L(Γ) = pL(G)p.

Proof. — We have to prove the following: if b ∈ B and τ(b) = 0, then EL(G)(b) = 0.

Take such a b ∈ B with τ(b) = 0. Since Γ acts weakly mixingly on B, we take a

sequence sn → ∞ in Γ such that ρsn(b) → 0 in the weak topology.

Combining Lemmas 8.4 and 8.5, we find a finite subset K ⊂ G and n0 such

that ‖pǨη(ρsn(b))‖2 ≤ ε for all n ≥ n0. Denote by f the orthogonal projection

of L2(M) onto the closure of η(L(G)). Since f and pǨ commute, we find that

‖pǨη
(
EL(G)(ρsn(b))

)
‖2 ≤ ε for all n ≥ n0. On the other hand, EL(G)(ρsn(b)) tends

weakly to 0 and belongs to L(G). Hence,

‖(1 − pǨ)η
(
EL(G)(ρsn(b))

)
‖2 → 0

when n→ ∞. We conclude that for n sufficiently large, ‖EL(G)(ρsn(b))‖2
2 ≤ 2ε. But,

for every n,

‖EL(G)(ρsn(b))‖2 = ‖νsnEL(G)(b)νsn‖2 = ‖EL(G)(b)‖2 .

It follows that ‖EL(G)(b)‖2
2 ≤ 2ε for all ε > 0, which proves that EL(G)(b) = 0.

Since pMp = B ⋊ Γ and L(Γ) ⊂ pL(G)p, it suffices to apply EL(G) to obtain that

pL(G)p = L(Γ).

Let us warm up the ultraproduct machinery to finish the proof of Theorem 8.2.

Notations 8.7. — We introduce the following notations.

• Let ω be a free ultrafilter on N and define the ultrapower algebra Mω, containing

Aω as a maximal abelian subalgebra. Denote by Aω∞ ⊂ Aω the tail algebra for the

Bernoulli action, defined as

Aω∞ :=
⋂

F⊂G
F finite

(AF c)ω .

Observe that Aω∞, as a subalgebra of Mω, is normalized by the unitaries (ug)g∈G.

• Denote by Aω∞ ⋊ G the von Neumann subalgebra of Mω generated by Aω∞ and

L(G).

• We define χ := Bω ∩ p(Aω∞ ⋊G)p.

Lemmas 8.4 and 8.5 can be reinterpreted to yield elements of χ.

Lemma 8.8. — The following results hold.

(1) A bounded sequence (bn) in B represents an element of χ if and only if

lim
n→ω

‖(1 − eĽ)η(bn)‖ = 0 for every finite subset L ⊂ G.

(2) When sn → ∞ in Γ and b ∈ B, the sequence (ρsn(b)) represents an element

in χ.
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(3) If a bounded sequence (bn) in B represents an element of χ, then bn − τ1(bn)p

tends to 0 weakly. Here τ1 := τ(·)/τ(p) denotes the normalized trace on pMp.

Proof

(1) If (an) ∈ Aω∞ and g ∈ G, clearly limn→ω ‖(1 − eĽ)η(anug)‖ = 0. Hence, the

same holds if we replace (anug) by any element of Aω∞ ⋊ G. Conversely, let b ∈ Bω

be represented by the bounded sequence (bn) in B such that (1) holds. For any finite

K ⊂ G, define zK ∈ Mω by the sequence
(∑

g∈K EA(bnu
∗
g)ug

)
. Our assumption

yields that zK ∈ Aω∞ ⋊G for all K. From Lemma 8.4 it follows that ‖zK − b‖2 → 0,

if K → G. Hence, b ∈ Aω∞ ⋊G.

(2) This follows using Lemma 8.5 and statement (1).

(3) Using Lemma 8.6, it suffices to check that bn − EL(G)(bn) tends to 0 weakly.

This is true for any (bn) in Aω∞ ⋊G.

In the next lemma, χ is shown to be sufficiently big.

Lemma 8.9. — One has pMωp ∩ χ′ = Bω.

Proof. — We first claim that the action (ρs)s∈Γ is 2-mixing (see Definition D.6). We

have to prove that for all a, b, c ∈ B,

|τ(aρs(b)ρt(c)) − τ(a)τ(ρs(b)ρt(c))| → 0

when s, t→ ∞.

Suppose that the bounded sequence (dn) represents an element d ∈ χ. By (3) in

Lemma 8.8, dn − τ1(dn)p→ 0 weakly and hence,

|τ1(adn) − τ1(a)τ1(dn)| → 0

for all a ∈ B. Fix a, b, c ∈ B and take sequences sn, tn → ∞ in Γ. From (2) in

Lemma 8.8, we get that the sequences (ρsn(b)) and (ρtn(c)) represent elements of χ.

Since χ is a von Neumann algebra, the sequence (ρsn(b)ρtn(c)) represents an element

of χ as well. Applying the previous paragraph to this sequence, we have proved

the claim. Combining the 2-mixing of the action (ρs)s∈Γ with Lemma D.7, we are

done.

Proof of Theorem 8.2. — We first claim that there exists a non-zero a ∈ p〈Mω, eAω〉+p
∩χ′ with τ̂(a) <∞. As usual, τ̂ denotes the semi-finite trace on the basic construction

〈Mω, eAω〉, see Appendix A.

There exists a finite subset K ⊂ G such that

lim
n→ω

‖pǨη(bn)‖ ≤ 1

2

for all (bn) in the unit ball of χ. Indeed, if not, write G as an increasing union of

finite subsets Kn and choose bn ∈ B with ‖bn‖ ≤ 1, ‖(1 − eǨn
)η(bn)‖ ≤ 1/n and

‖pǨn
η(bn)‖ > 1/2. This yields a contradiction with Lemma 8.4.
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Define the projection fK ∈ 〈Mω, eAω〉 as fK =
∑
g∈K u

∗
geAωug. Clearly

τ̂ (fK) <∞. Denote by a the (unique) element in the ultraweakly closed con-

vex hull of {bfKb∗ | b ∈ U(χ)}. By construction τ̂ (a) < ∞ and a ∈ χ′. To obtain the

claim, we have to show that a 6= 0. Whenever (bn) represents b ∈ U(χ), we have

τ̂ (eAωbfKb
∗eAω) = lim

n→ω
‖(1 − pǨ)η(bn)‖2 ≥ 3/4 .

Hence, τ̂ (eAωaeAω) 6= 0 and a 6= 0. This proves the claim stated in the beginning of

the proof.

It follows from Lemma 8.9 and Theorem C.3 that there exists a non-zero partial

isometry v ∈ Mω satisfying v∗v ∈ Bω, vv∗ ∈ Aω and vBωv∗ ⊂ Aω. Take partial

isometries vn ∈ M such that en := v∗nvn ∈ B, vnv
∗
n ∈ A and (vn) represents v. It

follows that there exists n such that

‖vnbv∗n − EA(vnbv
∗
n)‖2 <

1

2
‖en‖2

for all b ∈ B with ‖b‖ ≤ 1. Indeed, if not, we find a sequence of elements bn ∈ B with

‖bn‖ ≤ 1 and ‖vnbnv∗n−EA(vnbv
∗
n)‖2 ≥ 1

2‖en‖2. Since (bn) defines an element in Bω,

taking the limit n→ ω yields a contradiction.

If we write f = vnv
∗
n ∈ A, A1 := fA and B1 := vnBv

∗
n as subalgebras of fMf , we

have, after normalization of the trace, ‖b−EA1(b)‖2 ≤ 1
2 for all b ∈ B1 with ‖b‖ ≤ 1.

Hence, (4) in Proposition C.1 is satisfied and an application of Theorem C.3 concludes

the proof of Theorem 8.2.

9. STRONG RIGIDITY FOR VON NEUMANN ALGEBRAS

Suppose that G acts on (A, τ) by (σg)g∈G and Γ on (B, τ) by (ρs)s∈Γ. A conjugation

of both actions is a pair (∆, δ) of isomorphisms ∆ : B → A, δ : Γ → G satisfying

∆(ρs(b)) = σδ(s)(∆(b)), for all b ∈ B and s ∈ Γ. Associated with the conjugation

(∆, δ) is of course the obvious isomorphism of crossed products θ∆,δ : B⋊Γ → A⋊G.

Whenever G acts on (A, τ) and α : G → S1 is a character, we have an obvious

automorphism θα of the crossed product A ⋊ G defined as fixing pointwise A and

θα(ug) = α(g)ug.

Theorem 9.1 (Popa, [56]). — Let G be an ICC group acting and G y (X,µ) its

Bernoulli action (with non-atomic base). Let Γ be a countable group that admits an

almost normal infinite subgroup Γ0 such that (Γ,Γ0) has the relative property (T).

Suppose that Γ acts freely on the probability space (Y, η). Let p be a projection in

L∞(X) ⋊G and

θ : L∞(Y ) ⋊ Γ → p(L∞(X) ⋊G)p
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a ∗-isomorphism. Then, p = 1 and there exist a unitary u ∈ L∞(X)⋊G, a conjugation

(∆, δ) of the actions through a group isomorphism δ : Γ → G and a character α on G

such that

θ = Adu ◦ θα ◦ θ∆,δ .

Theorem 9.1 admits the following corollary stated in the introduction.

Corollary 9.2. — Let G be a w-rigid group and denote by MG := L∞(X) ⋊G the

crossed product of the Bernoulli action G y (X,µ) with non-atomic base. Then, for

w-rigid ICC groups G and Γ, we have MG
∼= MΓ if and only if G ∼= Γ. Moreover, all

MG for G w-rigid ICC, have trivial fundamental group.

The corollary is an immediate consequence of Theorem 8.2 and the orbit equiv-

alence superrigidity Theorem 4.4. Indeed, let G and Γ be w-rigid ICC groups with

Bernoulli actions on (X,µ) and (Y, η), respectively. If p is a projection in L∞(X)⋊G

and θ : L∞(Y )⋊Γ → p(L∞(X)⋊G)p is a ∗-isomorphism, we have to prove that p = 1

and that Γ and G are isomorphic. Combining Proposition 8.1 and Theorem 8.2, we

may assume that p ∈ L∞(X) and θ(L∞(Y )) = L∞(X)p. Hence, θ defines a stable

orbit equivalence between Γ y Y and G y X . So, Theorem 4.4 allows to conclude.

Refining the reasoning above, Theorem 9.1 is proved. First, taking a further re-

duction, it is shown that we may assume that the action Γ y Y is weakly mixing. So,

Proposition 8.1 and Theorem 8.2 can be applied and yield a stable orbit equivalence

of Γ y Y and G y X . Associated with this stable orbit equivalence is a cocycle. The

unitary that conjugates L(Γ) into L(G) (its existence is the contents of Proposition

8.1) is reinterpreted as making cohomologous this cocycle to a homomorphism into

U(L(G)). Using the weak mixing property through an application of Lemma 4.8, the

homomorphism can be assumed to take values in G itself. This yields the conjugacy

of the actions.

Proof of Theorem 9.1. — Write A = L∞(X) and B = L∞(Y ). Write M = A ⋊ G

and identify through θ, B ⋊ Γ = p(A ⋊G)p. First applying Proposition 8.1, we may

assume that p ∈ L(G) and L(Γ) ⊂ pL(G)p. We claim that there exist a finite index

subgroup Γ1 ⊂ Γ and a Γ1-invariant projection p1 ∈ B ∩L(G) such that the Γ-action

on B is induced from the Γ1-action on p1B obtained by restriction, and such that the

Γ1-action on p1B is weakly mixing.

Whenever V ⊂ B is a finite-dimensional Γ-invariant subspace, it follows from

Theorem D.4 that V ⊂ pL(G)p. Also, B ∩ L(G) is a Γ-invariant von Neumann

subalgebra of B. By the ergodicity of the Γ-action on B, this invariant subalgebra is

either diffuse or atomic. If it is diffuse and since it commutes with B, it would follow

from Theorem D.4 that B ⊂ pL(G)p and hence, pMp ⊂ pL(G)p, a contradiction.

So, B ∩ L(G) is atomic, hence finite-dimensional, and it suffices to take a minimal

projection p1 ∈ B ∩ L(G). This proves the claim.
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It now suffices to prove the theorem under the additional assumption that the

action of Γ on B is weakly mixing. We apply Theorem 8.2. Conjugating again, we

obtain the following situation: a projection q ∈ A and a partial isometry v ∈M such

that vv∗ = p ∈ L(G), v∗v = q and B ⋊ Γ = q(A ⋊ G)q in such a way that B = qA

and vL(Γ)v∗ = pL(G)p. The theorem follows from Proposition 9.3 below.

In the proof of Theorem 9.1, we used the following proposition. It is a weaker

version of Theorem 5.2 in [56], but sufficient for our purposes. It also provides a

generalization and simpler proof for the main result in [43] by Neshveyev and Størmer.

Proposition 9.3 (Popa, [56]). — Let G be an infinite group that acts freely and

weakly mixingly on (X,µ). Let Γ be an infinite group that acts freely on (Y, η). Write

A = L∞(X) and B = L∞(Y ). Suppose that q is a projection in A such that

B ⋊ Γ = q(A⋊G)q with B = qA .

Suppose that there exists a partial isometry v ∈ A⋊G satisfying v∗v = q, vv∗ = p ∈
L(G) and vL(Γ)v∗ = pL(G)p.

• If G has no finite normal subgroups, q = 1.

• If q = 1, there exists w ∈ U(L(G)) such that, writing ṽ = wv, ṽ normalizes

B = A and ṽνsṽ
∗ = α(s)uδ(s) for some α ∈ Char(Γ) and some group isomorphism

δ : Γ → G.

We write this rather pedantic formulation of the proposition, to cover at the same

time its application in the proof of Theorem 9.1 (where G is ICC and hence, without

finite normal subgroups) and the result of [43] (where G is an any abelian group, but

q = 1 from the beginning).

Proof. — We make use of the canonical embedding η : A ⋊ G → A⊗ℓ2(G) of the

crossed product into the Hilbert-W∗-module A⊗ℓ2(G) given by η(uga) = a⊗ δg−1 for

all g ∈ G and a ∈ A. Here (δg)g∈G is the canonical orthonormal basis of ℓ2(G). We

identify A⊗ℓ2(G) = L∞(X, ℓ2(G)) and we make act L(G) on ℓ2(G) on the left and

the right: ugδh = δgh and δhug = δhg. At the same time, we regard L(G) ⊂ ℓ2(G).

Denote S1G := S1 ×G that we identify in the obvious way with a closed subgroup

of U(L(G)). We identified Y ⊂ X such that Γ acts on Y , B = L∞(Y ), A = L∞(X)

and q = χY . We have the orbit equivalence q(A ⋊G)q = B ⋊ Γ with B = qA. This

yields a one-cocycle γ : Γ × Y → S1G given by

η(zνs)(x) = η(z)(s ∗ x) γ(s, x)
for all z ∈ A⋊G and where we use s ∗ x to denote the action of an element s ∈ Γ on

x ∈ Y . We claim that the partial isometry v makes γ cohomologous to a homomor-

phism.

Observe that EL(G)(vav
∗) = τ(p)−1τ(a)p for all a ∈ B. Indeed,

EL(G)(vav
∗) = τ(p)−1EvL(Γ)v∗(vav∗) = τ(p)−1vEL(Γ)(a)v

∗ = τ(p)−1τ(a)p .
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We first study the function w := τ(p)1/2η(v) ∈ L∞(Y, ℓ2(G)). Suppose that w0 ∈
L(G) is an essential value of this function. We find a decreasing sequence of non-zero

projections qn in B such that ‖τ(p)1/2η(v)qn − qn ⊗ w0‖∞ → 0, where we use the

uniform norm for functions in L∞(X, ℓ2(G)). So, we have a sequence εn → 0 such

that ‖(τ(p)1/2v − w0)qn‖2 ≤ εn‖qn‖2, where we use the norm of L2(M). In L1(M),

we obtain that τ(qn)−1‖τ(p)vqnv∗ − w0qnw
∗
0‖1 → 0. Applying EL(G) it follows that

‖p− w0w
∗
0‖1 → 0 and hence w0w

∗
0 = p. We have shown that for almost all y ∈ Y ,

w(y) ∈ L(G) and w(y)w(y)∗ = p .

Since we can replace v by w∗0v, we may assume that p is an essential value of the

function w.

Define the homomorphism π : Γ → U(pL(G)p) : π(s) = vνsv
∗. For every s ∈ Γ,

vνs = π(s)v. Applying η, this yields,

(2) w(s ∗ x) γ(s, x) = π(s) w(x) for almost all x ∈ Y .

If q = 1, Lemma 4.8 yields that π(s) ∈ S1G for all s ∈ Γ and w(x) ∈ S1G for

almost all x ∈ X . The latter implies that v normalizes the Cartan subalgebra A = B.

The former allows to define the group isomorphism δ : Γ → G and the character

α : Γ → S1 such that π(s) = α(s)δ(s) for all s ∈ Γ. So, we are done in the case q = 1.

It remains to show that p = 1 when G has no finite normal subgroups. The orbit

equivalence allows as well for an inverse 1-cocycle: define W = {(g, x) ∈ G× Y | x ∈
Y, g · x ∈ Y }. We use the notation g · x to denote the action of an element g ∈ G

on x ∈ X . Then, the 1-cocycle µ : W → S1Γ is well defined and related to γ by the

formula

g = γ(µgroup(g, x), x) µscal(g, x)

for almost all (g, x) ∈ W . Here we split up explicitly µ = µscalµgroup. Plugging the

previous equality into (2) yields

(3) w(g · x) ug = π(µ(g, x)) w(x) for almost all (g, x) ∈W .

Since p is an essential value of the function w and since π takes values in the unitaries

of pL(G)p, arguing exactly as in the proof of Lemma 4.8, yields that for any g ∈ G,

pug is arbitrary close to a unitary and hence, ug and p commute for all g ∈ G. So, p

is a central projection in L(G) and it follows that w(x) ∈ U(pL(G)p) for almost all

x ∈ Y . Conjugating equation (3) with v∗, implies that the cocycle µ : W → S1Γ is

cohomologous, as a cocycle with values in U(L(Γ)), to the homomorphism g 7→ v∗ugv.

It follows from Lemma 4.8 that v∗ugv ∈ S1Γ for all g ∈ G. On S1Γ, the trace τ takes

the values 0 and τ(p)S1. Hence, for all g ∈ G, we have

τ(ugp) = τ(ugvv
∗) = τ(v∗ugv) ∈ {0} ∪ S1τ(p) .

We also know that p is a central projection in L(G). It is an excellent exercise to

deduce from all this that p is of the form
∑

g∈K β(k)uk for some finite normal subgroup
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K ⊂ G and an AdG-invariant character β ∈ CharK. Hence, K = {e}, p = 1 and we

are done.

10. OUTER CONJUGACY OF w-RIGID GROUP ACTIONS ON

THE HYPERFINITE II1 FACTOR

We discuss some of the results of Popa [54] on (cocycle) actions of w-rigid groups

on the hyperfinite II1 factor. As explained in the introduction, the paper [54] is the

precursor to all of Popa’s papers on rigidity of Bernoulli actions.

Definition 10.1. — A cocycle action of a countable group G on a von Neumann

algebra N consists of automorphisms (σg)g∈G of N and unitaries (ug,h)g,h∈G in N

satisfying

σgσh = (Adug,h)σgh , ug,h ugh,k = σg(uh,k)ug,hk , σe = id and ue,e = 1 ,

for all g, h, k ∈ G.

A cocycle action (σg) of G on N is said to be outer conjugate to a cocycle action

(ρg) of G on M if there exists an isomorphism ∆ : N → M such that ∆σg∆
−1 = ρg

mod InnM for all g ∈ G.

Note that a stronger notion of conjugacy exists, called cocycle conjugacy, where it

is imposed that ∆σg∆
−1 = (Adwg)ρg, with unitaries (wg) making the 2-cocycles for

σ and ρ cohomologous. In the case of an outer conjugacy between cocycle actions on

a factor, the associated 2-cocycles are only made cohomologous up to a scalar-valued

2-cocycle.

Cocycle actions on a II1 factor can be obtained by reducing an action by a projec-

tion. Let (σg) be an action of G on the II1 factor N . Whenever p is a non-zero projec-

tion in N , choose partial isometries wg ∈ N such that wgw
∗
g = p and w∗gwg = σg(p).

This is possible because (σg) preserves the trace and hence, p and σg(p) are equivalent

projections since they have the same trace. Define

(4)

σpg ∈ Aut(pNp) : σpg(x) = wgσg(x)w
∗
g and ug,h ∈ U(pNp) : ug,h = wgσg(wh)w

∗
gh .

It is easily checked that (σpg ) is a cocycle action of G on the II1 factor pNp and that

its outer conjugacy class does not depend on the choice of wg.

Definition 10.2. — Let (σg) be an action of the countable group G on the II1 fac-

tor N . Whenever t > 0, the cocycle action (σtg) of G on N t is defined by reducing the

action (id⊗ σg) of G on Mn(C)⊗N by a projection p with (Tr⊗τ)(p) = t, as in (4).

The fundamental group F(σ) of the action σ is defined as the group of t > 0 such

that (σtg) and (σg) are outer conjugate.
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It is clear that F(σ) is an outer conjugacy invariant for (σg). The following theorem

computes the fundamental group for Connes-Størmer Bernoulli actions of w-rigid

groups.

Theorem 10.3 (Popa, [54]). — Let (N , ϕ) be an almost periodic von Neumann al-

gebra and suppose that N := Nϕ is a II1 factor. Suppose that the countable group G

admits an infinite normal subgroup H with the relative property (T) and that (σg) is

a malleable action of G on (N , ϕ) whose restriction to H is weakly mixing.

If we still denote by (σg) the restricted action of G on the II1 factor N , then

F(σ) = Sp(N , ϕ).

Proof. — If s ∈ Sp(N , ϕ), we take a non-zero partial isometry v ∈ N which is an

s-eigenvector for ϕ. Denote p = v∗v and q = vv∗. Then, Ad v outer conjugates (σpg)

and (σqg). Since s = ϕ(q)
ϕ(p) , it follows that s ∈ F(σ).

Conversely, suppose that s ∈ F(σ). We have to prove that s ∈ Sp(N , ϕ). We may

clearly assume that 0 < s < 1 and take a projection p ∈ N and elements wg ∈ N

such that ϕ(p) = s, wgw
∗
g = p and w∗gwg = σg(p) for all g ∈ G and such that

ρg(x) = wgσg(x)w
∗
g defines a genuine action of G on pNp that is conjugate to (σg).

We only retain that (ρg) is a genuine action and that its restriction ρ|H is weakly

mixing.

Let (αt) be the one-parameter group on N ⊗N given by the malleability of (σg).

As in the proof of Lemma 4.9, the relative property (T) yields t0 = 1/n and a non-zero

partial isometry a ∈ (N ⊗N )ϕ⊗ϕ such that aa∗ ≤ p⊗ 1, a∗a ≤ αt0(p⊗ 1) and

(wg ⊗ 1)(σg ⊗ σg)(a) = aαt0(wg ⊗ 1) for all g ∈ H .

Weak mixing of σ|H on N and of ρ|H on pNp implies that aa∗ = p ⊗ 1 and a∗a =

αt0(p ⊗ 1). Taking b := aαt0(a) · · ·α(n−1)t0(a), we get a partial isometry b ∈ (N ⊗
N )ϕ⊗ϕ satisfying bb∗ = p⊗ 1, b∗b = 1 ⊗ p and

(wg ⊗ 1)(σg ⊗ σg)(b) = b(1 ⊗ wg) for all g ∈ H .

Continuing as in the proof of Lemma 4.9, Step (3), we obtain the following data: a

non-zero partial isometry v ∈ pN⊗M1,n(C) which is a γ-eigenvector for ϕ and satisfies

v∗v = 1 as well as wg(σg ⊗ id)(v) = v(1 ⊗ θ(g)) for all g ∈ H , where θ : G → U(n)

is a projective representation. The ergodicity of ρ|H yields vv∗ = p and hence, Ad v

conjugates the actions ρ|H and (ρg ⊗ Ad θ(g))g∈H . Since 1 ⊗ Mn(C) is an invariant

subspace of the latter, weak mixing of ρ|H imposes n = 1. Since vv∗ = p, v∗v = 1

and v is a γ-eigenvector, we conclude that s = 1/γ ∈ Sp(N , ϕ).

In Section 3, Connes-Størmer Bernoulli actions were shown to be malleable and

mixing. The following corollary is then clear.
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Corollary 10.4. — Let G be a countable group that admits an infinite normal sub-

group with the relative property (T). Let Tr∆ be the faithful normal state on B(H)

given by Tr∆(a) = Tr(∆a) and define (N , ϕ) =
⊗

g∈G(B(H),Tr∆), with Connes-

Størmer Bernoulli action G y (N , ϕ). Write R := Nϕ and denote by (σg) the

restricted action of G. Then, F(σ) is the subgroup of R∗+ generated by the ratios λ/µ

between λ, µ in the point spectrum of ∆.

In particular, G admits a continuous family of non outer conjugate actions on the

hyperfinite II1 factor R.

In Theorem 10.3 the following question was studied: when is the cocycle action

(σtg) outer conjugate to (σg)? Another natural question is: when is the cocycle action

(σtg) outer conjugate to a genuine action? The following remark shows that (σtg) is

always outer conjugate to a genuine action when (σg) is a Connes-Størmer Bernoulli

action on the centralizer of ⊗g∈G(B(H), ϕ0) for ϕ0 non-tracial. On the other hand, for

ϕ0 the trace on M2(C) and t not an integer, (σtg) is not outer conjugate to a genuine

action, see Theorem 10.6 below.

Remark 10.5. — Let (N , ϕ) be an almost periodic factor with N := Nϕ a type II1
factor and ϕ non-tracial (note that this implies that N is a factor of type IIIλ with

0 < λ ≤ 1). Suppose that the group G acts on (N , ϕ) and denote by (σg) the

restriction of this action to N . Then, for any t > 0, (σtg) is outer conjugate to a

genuine action.

For simplicity of notation, suppose t ≤ 1 and let p ∈ N be a projection with

ϕ(p) = t. We can write a series t =
∑

n γn with γn ∈ Sp(N , ϕ). Write p =
∑

n pn
for some mutually orthogonal projections pn in N with ϕ(pn) = γn. Take partial

isometries vn ∈ N such that vn is a γn-eigenvector for ϕ and v∗nvn = 1, vnv
∗
n = pn.

Define for g ∈ G, the element wg ∈ N as

wg :=
∑

n

vnσg(v
∗
n) .

It is easy to check that wgw
∗
g = p, w∗gwg = σg(p) for all g ∈ G and wgσg(wh) = wgh

for all g, h ∈ G. Writing σpg(x) = wgσg(x)w
∗
g for x ∈ pNp, it follows that (σpg) is a

genuine action of G on pNp and a way to write (σtg).

Theorem 10.6 (Popa, [54]). — Suppose that the countable group G admits an infi-

nite normal subgroup H with the relative property (T). Denote by (σg) the Bernoulli

action of G on R = ⊗g∈G(M2(C), τ). For t > 0, the cocycle action (σtg) is outer

conjugate to a genuine action if and only if t ∈ N0.

Observe moreover that it follows from Theorem 10.3 that, for different values of

t > 0, the cocycle actions (σtg) are mutually non outer conjugate.
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Proof. — Given (σtg) outer conjugate to a genuine action (ρg), we can start off in

the same way as in the proof of 10.3, but we do not know anymore that ρ|H is

weakly mixing (or even, that ρ is ergodic). So, in order to make the passage from

‘an intertwiner for αt0 ’ to ‘an intertwiner for α1’, we need the extra data of strong

malleability, as in the proof of Lemma 4.9. But, the Connes-Størmer Bernoulli action

(σg) is not strongly malleable in the sense of Definition 3.1 in an obvious way. So,

we need a more flexible notion, essentially replacing tensor products by graded tensor

products, see Remark 10.7 below.

Let t > 0 and suppose that (σtg) is outer conjugate to a genuine action. So, we

can take k ∈ N, a projection p ∈ R ⊗ Mk(C) with (τ ⊗ Tr)(p) = t and partial

isometries wg ∈ R ⊗ Mk(C) such that wgw
∗
g = p, w∗gwg = (σg ⊗ id)(p) and such

that ρg(x) = wg(σg ⊗ id)(x)w∗g defines an action of G on Rt := p(Mk(C) ⊗R)p. Let

q ≤ p be any non-zero projection in Rt invariant under ρ|H . We shall prove that q

dominates a non-zero projection q0, invariant under ρ|H and with (τ ⊗ Tr)(q) ∈ N.

This of course proves that (τ ⊗ Tr)(p) ∈ N.

Combining Remark 10.7 and the proof of Lemma 4.9, we find a non-zero partial

isometry v ∈ R ⊗ Mk,n(C) and a projective representation θ : G → U(n) such that

v∗v = 1, vv∗ ≤ q and such that wg(σg ⊗ id)(v) = v(1 ⊗ θ(g)) for all g ∈ H . Putting

q0 = vv∗, we are done.

Remark 10.7. — The Connes-Størmer Bernoulli action (σg) of the group G on N :=

⊗g∈GM2(C) satisfies the following form of strong malleability: the II1 factor N is

Z/2Z-graded, the action (σg) commutes with the grading and the graded tensor square

N ⊗̂N is equipped with a one-parameter group of automorphisms (αt) and a period

2 automorphism β, all commuting with the grading and satisfying

α1(x ⊗̂ 1) = 1 ⊗̂ x , β(x ⊗̂ 1) = x ⊗̂ 1 and βαtβ = α−t for all x ∈ N, t ∈ R.

To check that the Bernoulli action indeed admits such a graded strong malleability,

it suffices to construct the grading and (αt), β on the level of M2(C) and take the

infinite product.

More generally however, for any real Hilbert space HR, one considers the complexi-

fied Clifford ∗-algebra Cliff(HR), generated by self-adjoint elements s(ξ), ξ ∈ HR with

relations

s(ξ)2 = ‖ξ‖2 for all ξ ∈ HR and ξ 7→ s(ξ) R-linear.

The ∗-algebra Cliff(HR) admits an obvious Z/2Z-grading such that the elements s(ξ)

have odd degree. Also, Cliff(HR) has a natural tracial state yielding the hyperfinite

II1 factor after completion if HR is of infinite dimension. Clearly, any orthogonal

representation on HR extends to an action on Cliff(HR) preserving the grading. Fi-

nally, we have a canonical isomorphism Cliff(HR ⊕KR) ∼= Cliff(HR) ⊗̂ Cliff(KR).
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If one notes that Cliff(R2) ∼= M2(C), one defines αt and β on Cliff(R2 ⊕R2) by the

formulas

αt (s

(
ξ

η

)
) = s(

(
cos πt2 − sin πt

2

sin πt
2 cos πt2

)(
ξ

η

)
) and β (s

(
ξ

η

)
) = s

(
ξ

−η

)
.

The above procedure shows that also the so-called Bogolyubov actions are strongly

malleable in a graded way.

APPENDIX A

THE BASIC CONSTRUCTION AND HILBERT MODULES

Let (N , ϕ) be a von Neumann algebra with almost periodic faithful normal state

ϕ and let B ⊂ Nϕ be a von Neumann subalgebra of the centralizer algebra. A

particularly interesting case, is the one where ϕ is a trace and where we consider

an inclusion B ⊂ (N, τ). We briefly explain the so-called basic construction von

Neumann algebra 〈N , eB〉, introduced in [62, 2] and used extensively by Jones [33] in

his seminal work on subfactors. We refer to [8, 25, 33] for further reading and briefly

explain what is needed in this talk.

The basic construction 〈N , eB〉 is defined as the von Neumann subalgebra of

B(L2(N )) generated by N and the orthogonal projection eB of L2(N ) onto L2(B) ⊂
L2(N ). It can be checked that 〈N , eB〉 consists of those operators T ∈ B(L2(N ))

that commute with the right module action of B: T (ξb) = T (ξ)b for all ξ ∈ L2(N )

and b ∈ B.

The basic construction 〈N , eB〉 comes equipped with a canonical normal semi-finite

faithful weight ϕ̂ satisfying

ϕ̂(xeBy) = ϕ(xy) for all x, y ∈ N .

If ϕ is a tracial state, ϕ̂ is a semi-finite trace.

Let (B, τ) be a finite von Neumann algebra with faithful tracial state τ . Whenever

K is a right B-module, the commutant B′ of B on K is a semi-finite von Neumann

algebra that admits a canonical semi-finite trace τ ′, characterized by the formula

τ ′(TT ∗) = τ(T ∗T ) whenever T : L2(B) → K is bounded and right B-linear.

Observe that for every bounded right B-linear map T : L2(B) → K, the element TT ∗

belongs to B′ and T ∗T belongs to B, acting on the left on L2(B).

When B is a factor, one defines dimB(K) := τ ′(1) and calls dimB(K) the coupling

constant. It is a complete invariant for countably generated B-modules, which means

the following: if dimB(K) = +∞, K is isomorphic to ℓ2(N) ⊗ L2(B) as a right B-

module and if dimB(K) = t and p ∈ Mn(C) ⊗B is a projection with (Tr⊗τ)(p) = t,

then K is isomorphic with pL2(B)⊕n as a right B-module.
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When (B, τ) is an arbitrary finite von Neumann algebra with faithful tracial state

τ , the situation is slightly more complicated. If EZ denotes the center valued trace,

i.e., the unique τ -preserving conditional expectation EZ : B → Z(B) of B onto the

center of B, we know that EZ(xy) = EZ(yx) for all x, y ∈ B and that p � q if and

only if EZ(p) ≤ EZ(q) whenever p and q are projections in B. Moreover, whenever

the Hilbert space K is a right B-module and τ a faithful tracial state on B, we denote

by B′ the commutant of B on K as above and construct a normal, semi-finite positive

linear map

E′Z : (B′)+ → { positive elements affiliated with Z(B) }

satisfying E′Z(x∗x) = E′Z(xx∗) for all x and such that

E′Z(TT ∗) = EZ(T ∗T ) whenever T : L2(B) → K is bounded and right B-linear.

The positive affiliated element E′Z(1) of Z(B) provides a complete invariant for count-

ably generated right B-modules. First note that the B-module K is finitely generated,

i.e., of the form pL2(B)⊕n for some projection p ∈ Mn(C) ⊗ B, if and only if E′Z(1)

is bounded. In that case E′Z(1) = (Tr⊗EZ)(p).

Note that τ ′ = τ ◦ E′Z . So, if τ ′(1) < ∞, it follows that E′Z(1) is not necessarily

bounded, but τ -integrable. This implies that E′Z(1)z is bounded for projections z ∈
Z(B) with trace arbitrary close to 1. So, we have shown the following lemma.

Lemma A.1. — Let K be a right B-module and τ a normal faithful tracial state

on B. Denote by τ ′ the canonical semi-finite trace on the commutant B′ of B on

K. If τ ′(1) <∞, there exists for any ε > 0 a central projection z ∈ Z(B) with

τ(z) ≥ 1 − ε and such that the B-module Kz is finitely generated, i.e., of the form

pL2(B)⊕n for some projection p ∈ Mn(C) ⊗B.

Returning to the basic construction for the inclusion B ⊂ N , with B ⊂ Nϕ, we

observe that the restriction of ϕ defines a tracial state on B and that 〈N , eB〉 is the

commutant of B on L2(N ). Using the previous paragraph, 〈N , eB〉 comes equipped

with a canonical semi-finite trace ϕ′. If ϕ is tracial on N , it is easily checked that

ϕ̂ = ϕ′. If ϕ is no longer a trace, but an almost periodic state, we denote by pγ the

orthogonal projection of L2(N ) on the γ-eigenvectors for ϕ. Note that pγ belongs to

〈N , eB〉 because B ⊂ Nϕ. It is easy to check that

ϕ̂(x) =
∑

γ∈Sp(N ,ϕ)

ϕ̂(pγxpγ) and ϕ′(x) =
∑

γ∈Sp(N ,ϕ)

γ−1ϕ̂(pγxpγ)

for all x ∈ 〈N , eB〉+. In particular, ϕ̂ is tracial and a multiple of ϕ′ on pγ〈N , eB〉pγ ,
for all γ ∈ Sp(N , ϕ).
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APPENDIX B

RELATIVE PROPERTY (T) AND II1 FACTORS

A countable group G has Kazhdan’s property (T) if every unitary representation

of G that admits a sequence of almost invariant unit vectors, admits a non-zero

G-invariant vector. More generally, a pair (G,H) consisting of a countable group

G with subgroup H is said to have the relative property (T) of Kazhdan-Margulis

[26, 15, 36, 37], if every unitary representation of G that admits a sequence of almost

invariant unit vectors, admits a non-zero H-invariant vector. The main example is

the pair (SL(2,Z) ⋉ Z2,Z2).

A countable group G is said to be amenable if the regular representation on ℓ2(G)

admits a sequence of almost invariant unit vectors. Hence, an amenable property (T)

group is finite and an amenable group does not have an infinite subgroup with the

relative property (T).

Below, we need the following alternative characterization of relative property (T)

due to Jolissaint (see Theorem 1.2(a3) in [30]). The pair (G,H) has the relative

property (T) if and only if every unitary representation of G admitting a sequence

of almost invariant unit vectors, admits a non-zero H-invariant finite dimensional

subspace.

The notion of property (T) has been defined for II1 factors by Connes and Jones

[11]. Unitary representations of groups are replaced by bimodules (Connes’ corre-

spondences, see [7, 49]). Popa [52] defined the relative property (T) for an inclusion

of finite von Neumann algebras Q ⊂ P and we explain it in this appendix.

A P -P bimodule is a Hilbert space H with a left and a right (normal, unital) action

of P . We write xξ, resp. ξx for the left, resp. right action of P on H .

Terminology B.1. — Let (P, τ) be a von Neumann algebra with a faithful normal

tracial state τ . If K is a P -P -bimodule and (ξn) a sequence of unit vectors in K, we

say that

– (ξn) is almost central if ‖xξn − ξnx‖ → 0 for all x ∈ P ;

– (ξn) is almost tracial if ‖〈ξn, ·ξn〉 − τ‖ → 0 and ‖〈ξn, ξn·〉 − τ‖ → 0.

A vector ξ is said to be Q-central for some von Neumann subalgebra Q ⊂ P if

xξ = ξx for all x ∈ Q.

Definition B.2 (Popa, [52]). — Let (P, τ) be a von Neumann algebra with a faithful

normal tracial state τ . The inclusion Q ⊂ P is said to have the relative property (T)

if any P -P bimodule that admits a sequence of almost central almost tracial unit

vectors, admits a sequence of almost tracial Q-central unit vectors.
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Remark B.3. — One might wonder why almost traciality is assumed in the definition

of relative property (T). In applications (as the ones Popa’s work), it is crucial that

an inclusion Q ⊂ P with the relative property (T) remains relative (T) when cutting

down with a projection ofQ (see Proposition B.6). Now look at the following example:

we take a II1 factor P , two von Neumann subalgebras Q1, Q2 ⊂ P and we consider

the inclusion of Q1 ⊕ Q2 ⊂ M2(C) ⊗ P . If one would define naively the relative

property (T) by imposing that any P -P bimodule admitting almost central vectors,

admits a non-zero Q-central vector, then the inclusion Q1 ⊕Q2 ⊂ M2(C) ⊗ P would

have the relative property (T) if one of the inclusions Q1 ⊂ P , Q2 ⊂ P has the

relative property (T). And hence, Proposition B.6 would not hold.

Remark B.4. — A finite von Neumann algebra (P, τ) with faithful normal tracial state

τ is said to be injective (or amenable) if the coarse Hilbert P -P -bimodule L2(P ) ⊗
L2(P ) defined by a ·ξ ·b = (a⊗1)ξ(1⊗b) contains a sequence of almost central almost

tracial vectors. It is then clear that an injective (P, τ) does not contain a diffuse

subalgebra Q ⊂ P with the relative property (T). More generally, if Q ⊂ P is diffuse

with the relative property (T), there is no non-zero normal homomorphism from P

to an injective finite von Neumann algebra.

A lot can be said about relative property (T) in the setting of von Neumann

algebras, see the papers of Peterson and Popa [47, 52]. In this talk, only two easy

results are shown, which suffices for the applications in the rest of the talk.

Proposition B.5. — Let G be a countable group with subgroup H. Then, (G,H)

has the relative property (T) if and only if the inclusion L(H) ⊂ L(G) has the relative

property (T) in the sense of Definition B.2.

Proof. — First suppose that (G,H) has the relative property (T). Let K be an L(G)-

L(G)-bimodule with an almost central almost τ -tracial sequence of unit vectors (ξn),

for some faithful normal tracial state τ on L(G). Define the representation π(g)ξ =

ugξu
∗
g of G on K. Choose ε > 0. Using the stronger version of relative property (T),

we can take a π(H)-invariant unit vector ξ and n ∈ N such that

‖ξ − ξn‖ <
ε

3
, ‖〈ξn, ·ξn〉 − τ‖ < ε

3
, ‖〈ξn, ξn·〉 − τ‖ < ε

3
.

Since a π(H)-invariant vector is L(H)-central, we have found an L(H)-central unit

vector ξ satisfying

‖〈ξ, ·ξ〉 − τ‖ < ε , ‖〈ξ, ξ·〉 − τ‖ < ε .

It follows that K admits a sequence of almost tracial L(H)-central vectors.

Conversely, suppose that the inclusion L(H) ⊂ L(G) has the relative property (T)

in the sense of Definition B.2. Let π : G → U(K0) be a unitary representation of

G that admits a sequence (ξn) of almost invariant unit vectors. As stated above,

it is sufficient to prove that K0 admits a non-zero finite-dimensional π(H)-invariant
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subspace. Define K = ℓ2(G) ⊗ K0, which we turn into an L(G)-L(G)-bimodule by

the formulas

ug · (δh ⊗ ξ) = δgh ⊗ π(g)ξ and (δh ⊗ ξ) · ug = δhg ⊗ ξ

for all g, h ∈ G, ξ ∈ K0. It is clear that (δe⊗ξn) is a sequence of almost central almost

tracial unit vectors. So, K admits a non-zero L(H)-central vector µ. Considering µ as

an element in ℓ2(G,K0), we get that µ(hgh−1) = π(h)µ(g) for all h ∈ H, g ∈ G. Take

g ∈ G such that µ(g) 6= 0. Since µ ∈ ℓ2(G,K0), we conclude that {hgh−1 | h ∈ H}
is finite. But then, the linear span of {µ(hgh−1) | h ∈ H} is a finite-dimensional

π(H)-invariant subspace of K0.

Proposition B.6. — Let P be a II1 factor and Q ⊂ P an inclusion having the

relative property (T). If p ∈ Q is a non-zero projection, pQp ⊂ pPp has the relative

property (T).

Proof. — Write Q1 = pQp and P1 = pPp. Since P is a II1 factor, we can take partial

isometries v1, . . . , vk ∈ P satisfying v1 = p, v∗i vi ≤ p and
∑k
i=1 viv

∗
i = 1. Let K1 be a

P1-P1-bimodule admitting the almost central almost tracial sequence of unit vectors

(ξn). Define K as the induced P -P -bimodule: put a scalar product on PpK1 pP by

the formula

〈xξy∗, aµb∗〉 = 〈ξ, (x∗a)µ(b∗y)〉 for all x, y, a, b ∈ Pp, ξ, µ ∈ K1 .

Up to normalization, the sequence
∑k

i=1 viξnv
∗
i is almost central almost tracial in

the P -P -bimodule K. Hence, K admits an almost tracial sequence (µn) of Q-central

vectors. Up to normalization, (pµn) = (µnp) defines an almost tracial sequence of

pQp-central vectors in K1.

The above proposition remains valid when (P, τ) is just von Neumann algebra with

faithul tracial state τ , but the proof becomes slightly more involved.

APPENDIX C

INTERTWINING SUBALGEBRAS USING BIMODULES

The fundamental problem in the whole of this talk is to decide when two von

Neumann subalgebras P,B ⊂ M can be conjugated one into the other: uPu∗ ⊂ B

for some u ∈ U(M). The usage of the basic construction in this respect goes back

to Christensen [2], who used it to study conjugacy of uniformly close subalgebras.

A major innovation came with the work of Popa [55, 52], who managed to prove

conjugacy results for arbitrary subalgebras, still using the basic construction.

Roughly, Proposition C.1 below says the following. Let P,B ⊂ M be von Neu-

mann subalgebras of a finite von Neumann algebra (M, τ). Then, the following are

equivalent.
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• A corner of P can be conjugated into a corner of B.

• L2(M) contains a non-zero P -B-subbimodule which is finitely generated as a

B-module.

• The basic construction 〈M, eB〉 contains a positive element a, commuting with P

and satisfying 0 < τ̂ (a) < +∞, where τ̂ is the canonical semi-finite trace on 〈M, eB〉.
The relation between the second and the third condition is clear: the orthogonal

projection pK onto a P -B-subbimodule K of L2(M) belongs to 〈M, eB〉 ∩ P ′ and

τ̂ (pK) <∞ is essentially equivalent to K being a finitely generated B-module.

We reproduce from [55, 52] two results needed in this talk.

Proposition C.1 (Popa, [55, 52]). — Let (M, ϕ) be a von Neumann algebra with an

almost periodic faithful normal state ϕ. Let P,B ⊂ Mϕ be von Neumann subalgebras.

Then, the following statements are equivalent.

(1) There exist n ≥ 1, γ > 0, v ∈ M1,n(C) ⊗M, a projection p ∈ Mn(C) ⊗B and

a homomorphism θ : P → p(Mn(C) ⊗ B)p such that v is a non-zero partial isometry

which is a γ-eigenvector for ϕ, v∗v ≤ p and

xv = vθ(x) for all x ∈ P .

(2) There exists a non-zero element w ∈ M such that Pw ⊂∑n
k=1 wkB for some

finite family wk in M.

(3) There exists a non-zero element a ∈ 〈M, eB〉+ ∩ P ′ with ϕ̂(a) < ∞. Here

〈M, eB〉 denotes the basic construction for the inclusion B ⊂ M, with its canonical

almost periodic semi-finite weight ϕ̂.

(4) There is no sequence of unitaries (un) in P such that ‖EB(aunb)‖2 → 0 for all

a, b ∈ M.

Of course, if one wants to deal as well with the non-separable case, one should take

a net instead of a sequence in statement (4).

Proof

(1) ⇒ (2). Taking a non-zero component of v, this is trivial.

(2) ⇒ (3). Since P and B are in the centralizer algebra Mϕ and ϕ is almost

periodic, we can assume that w,w1, . . . , wn are all γ-eigenvectors for ϕ. Note that,

whenever w ∈ M is a γ-eigenvector, the projection of L2(M) onto the closure of wB

yields a projection f ∈ 〈M, eB〉 and f is the range projection of weBw
∗. It follows

that ϕ̂(f) ≤ γ. In the same way, the projection onto the closure of
∑n

k=1 wkB has

finite ϕ̂-weight. Hence, the projection f onto the closure of PwB in L2(M) satisfies

the requirements in (3).

(3) ⇒ (1). If pγ denotes the orthogonal projection of L2(M) onto the γ-spectral

subspace of ϕ, we know that ϕ̂(a)=
∑
γ ϕ̂(pγapγ) and we can replace a by pγapγ 6= 0.

Taking a spectral projection of the form χ[δ,+∞[(a), we obtain an orthogonal projec-

tion f ∈ 〈M, eB〉+∩P ′ with ϕ̂(f) <∞ and the range of f contained in the γ-spectral
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subspace of ϕ. Hence, the range of f is a non-zero P -B-sub-bimodule of L2(M)γ with

finite trace over B. Cutting down by a central projection of B (see Lemma A.1), we

get a P -B-sub-bimodule H ⊂ L2(M)γ which is finitely generated over B. Hence, we

can take n ≥ 1, a projection p ∈ Mn(C) ⊗B and a B-module isomorphism

ψ : pL2(B)⊕n → H .

Since H is a P -module, we get a homomorphism θ : P → p(Mn(C) ⊗ B)p sat-

isfying xψ(ξ) = ψ(θ(x)ξ) for all x ∈ P and ξ ∈ H . Define ei ∈ L2(B)⊕n as

ei = (0, . . . , 1, . . . , 0) and ξ ∈ M1,n(C) ⊗ H as ξi = ψ(pei). The polar decomposi-

tion of the vector ξ yields an isometry v ∈ M1,n(C) ⊗M belonging to the γ-spectral

subspace for ϕ. A direct computation shows that xv = vθ(x) for all x ∈ P , as well as

v∗v ≤ p.

(1) ⇒ (4). Suppose that we have all the data of (1). If (un) is a sequence

of unitaries in P such that ‖EB(aunb)‖2 → 0 for all a, b ∈ M, it follows that

‖(id ⊗ EB)(v∗unv)‖2 → 0 when n → ∞. But, ‖(id ⊗ EB)(v∗unv)‖2 = ‖(id ⊗
EB)(v∗v)θ(un)‖2 = ‖(id ⊗ EB)(v∗v)‖2. We conclude that v = 0, a contradiction.

(4) ⇒ (3). By (4), we can take ε > 0 and K ⊂ M finite such that for all unitaries

u ∈ P , maxa,b∈K ‖EB(aub)‖2 ≥ ε. Define the element c =
∑
b∈K beBb

∗ in 〈M, eB〉+.

Note that ϕ̂(c) < ∞. Let d ∈ 〈M, eB〉+ be the element of minimal L2-norm (with

respect to ϕ̂) in the L2-closed convex hull of {ucu∗ | u ∈ U(P )}. By uniqueness of the

element of minimal L2-norm, it follows that d ∈ 〈M, eB〉+ ∩ P ′ and by construction

ϕ̂(d) <∞. It remains to show that d 6= 0. But, for all u ∈ U(P ), we have
∑

a∈K

ϕ̂(eBa ucu
∗ a∗eB) =

∑

a,b∈K

‖EB(aub)‖2
2 ≥ ε2 .

It follows that
∑
a∈K ϕ̂(eBada

∗eB) ≥ ε2 and d 6= 0.

Lemma C.2. — Let M be a finite von Neumann algebra and B ⊂ M a maximal

abelian subalgebra.

• If q ∈ M is an abelian projection, there exists v ∈ M satisfying v∗v = q and

vMv∗ ⊂ B.

• If M is of finite type I and P0 ⊂ M an abelian von Neumann subalgebra, there

exists a unitary u ∈M such that uP0u
∗ ⊂ B.

Proof. — We do not provide a full proof of this classical lemma: see paragraph 6.4

in [35] for the necessary background. The following indications shall allow the reader

to fill in the proof.

For the first statement, it suffices to find a projection in B which is equivalent

with q, i.e., v ∈ M with v∗v = q and vv∗ ∈ B. Since B is maximal abelian, we have

vMv∗ ⊂ B.

For the second statement: since M is of finite type I and L∞(X) = B ⊂ M is

maximal abelian, the partial isometries in M normalizing B induce an equivalence
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relation with finite orbits on X . Taking a fundamental domain for this equivalence

relation, we can easily conclude. Of course, a proper proof can be given in operator

algebraic terms: if M is of type In and B ⊂ M maximal abelian, we can write 1 as

the sum of n equivalent abelian projections contained in B. Embedding P0 ⊂ P ⊂M

with P maximal abelian, we can do the same with P and then, P and B are unitary

conjugate.

Theorem C.3 (Popa, [52]). — Let (M, τ) be a finite von Neumann algebra and

P0, B ⊂M abelian subalgebras. Suppose that B is maximal abelian and P := M ∩ P ′0
abelian (hence, maximal abelian). The following statements are equivalent.

(1) There exists a non-zero v ∈ M such that P0v ⊂∑n
k=1 vkB for some finite set

of elements (vk) in B.

(2) There exists a non-zero a ∈ 〈M, eB〉+ ∩ P ′0 satisfying τ̂ (a) <∞. Here 〈M, eB〉
denotes the basic construction for the inclusion B ⊂ M and τ̂ is the canonical semi-

finite trace on it.

(3) There exists a non-zero partial isometry v ∈ M such that v∗v ∈ P ,

p := vv∗ ∈ B and vPv∗ = Bp.

If moreover M is a factor and P and B are Cartan subalgebras, a fourth statement

is equivalent:

(4) There exists a unitary u ∈M such that uPu∗ = B.

Proof. — Given Proposition C.1, it suffices to prove that (2) implies (3) as well as

(4) under the additional assumption that M is factorial and P and D are Cartan.

Using Proposition C.1, we take n ≥ 1, a projection p ∈ Mn(C) ⊗ B, a non-zero

partial isometry w ∈ M1,n(C) ⊗M and a homomorphism θ : P0 → p(Mn(C) ⊗ B)p

such that xw = wθ(x) for all x ∈ P0. We can replace p by an equivalent projection

in Mn(C)⊗B and take p = diag(p1, . . . , pn). Then, diag(p1B, . . . , pnB) is a maximal

abelian subalgebra of the finite type I algebra p(Mn(C) ⊗ B)p. Since P0 is abelian,

Lemma C.2 allows to suppose that θ(P0) ⊂ diag(p1B, . . . , pnB). Hence, we can

cut down θ and w by one of the projections (0, . . . , pi, . . . , 0) and suppose from the

beginning that n = 1.

Write q := w∗w, e := ww∗ ∈ P and A := pMp ∩ θ(P0)
′. Then, q ∈ A and

qAq = w∗(eMe ∩ (Pe)′)w = w∗Pw, which is abelian. Since A is finite and pB ⊂ A

maximal abelian, Lemma C.2 gives u ∈ A satisfying uu∗ = q and u∗Au ⊂ pB.

Writing v = u∗w∗, we have vPv∗ ⊂ B and v∗v = e. Write f := vv∗ ∈ B. Hence,

eP ⊂ v∗Bv ⊂ eMe. Since v∗Bv is abelian, it follows that eP = v∗Bv and so,

vPv∗ = fB.

Assume now that M is a factor and that P,B ⊂ M are Cartan subalgebras.

Whenever u1 is a unitary in M normalizing P and u2 is a unitary in M normalizing

B, u2vu1 moves as well a corner of P into a corner of B. A maximality argument

yields (4).
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APPENDIX D

SOME RESULTS ON (WEAKLY) MIXING ACTIONS

An action of a countable group G on (A, ϕ) is said to be ergodic if the scalars

are the only G-invariant elements of A. Equivalently, the multiples of 1 are the only

G-invariant vectors in L2(A, ϕ). Stronger notions of ergodicity are the mixing and

weak mixing properties.

Definition D.1. — An action of a countable group G on (A, ϕ) is said to be

• mixing if for every a, b ∈ A, ϕ(aσg(b)) → ϕ(a)ϕ(b) when g → ∞;

• weakly mixing if for every a1, . . . , an ∈ A and ε > 0, there exists g ∈ G such

that |ϕ(aiσg(aj)) − ϕ(ai)ϕ(aj)| < ε for all i, j = 1, . . . , n.

For the convenience of the reader, we prove the following classical equivalent char-

acterizations for weakly mixing actions.

Proposition D.2. — Let a countable group G act on the finite von Neumann algebra

(A, τ) by automorphisms (σg). Then, the following statements are equivalent.

(1) The action (σg) is weakly mixing.

(2) For every a1, . . . , ak ∈ A with τ(ai) = 0, there exists a sequence gn → ∞ in G

such that σgn(ai) → 0 weakly for all i = 1, . . . , k.

(3) C1 is the only finite-dimensional invariant subspace of L2(A).

(4) C1 is the only finite-dimensional invariant subspace of A.

(5) For every action (αg) of G on a finite von Neumann algebra (M, τ),

(A⊗M)σ⊗α = 1 ⊗Mα.

(6) The diagonal action of G on A⊗A is ergodic.

Proof. — The implications (1) ⇒ (2) ⇒ (3) ⇒ (4), as well as (5) ⇒ (6), being obvious,

we prove two implications below.

(4) ⇒ (5). Suppose that X ∈ (A⊗M)σ⊗α. Denote by η the canonical embeddings

M → L2(M) and A → L2(A). Define the Hilbert-Schmidt operator T : L2(M) →
L2(A) : Tξ = η

(
(id ⊗ ωξ,η(1))(X)

)
. Note that the image of T is contained in η(A)

and that TT ∗ commutes with the unitary representation (πg) on L2(A) given by

πgη(a) = η(σg(a)). Moreover, TT ∗ is trace-class. Taking a spectral projection, we

find a G-invariant finite-dimensional subspace of A. By (4), the image of T is included

in Cη(1), which means that X ∈ 1 ⊗Mα.

(6) ⇒ (1). Suppose that (σg) is not weakly mixing. We find ε > 0 and a1, . . . , an
with τ(ai) = 0 and

∑n
i,j=1 |τ(a∗jσg(ai))|2 ≥ ε for every g ∈ G. Define the vector

ξ =
∑n
i=1 ai ⊗ a∗i in L2(A⊗A). Let ξ1 be the element of minimal norm in the closed

convex hull of {(πg ⊗ πg)ξ | g ∈ G}. Since for any g ∈ G,

〈ξ, (πg ⊗ πg)(ξ)〉 =

n∑

i,j=1

|τ(a∗jσg(ai))|2 ≥ ε
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we conclude that ξ1 6= 0. Moreover, by the uniqueness of ξ1, we get that ξ1 is (πg⊗πg)-
invariant. By construction ξ1 is orthogonal to 1 and we have obtained a contradiction

with (6).

Lemma D.3. — Let (M, ϕ) be an almost periodic von Neumann algebra and

P ⊂ B ⊂ Mϕ von Neumann subalgebras of the centralizer algebra Mϕ. Suppose that

there exists a sequence of unitaries (un) in P such that

‖EB(aunb)‖2 → 0 whenever a, b ∈ KerEB ,

where EB : M → B is the ϕ-preserving conditional expectation. If x ∈ M is such

that Px ⊂∑n
k=1 xkB for a finite family of elements xk ∈ M, then x ∈ B.

More generally, any P -B-sub-bimodule of L2(M) that is finitely generated as a

B-module, is contained in L2(B).

Proof. — Let H0 ⊂ L2(M) be a P -B-subbimodule that is finitely generated as a

B-module. We have to prove that H0 ⊂ L2(B). Cutting down with a central pro-

jection in Z(B) and using almost periodicity, we may assume that H0 is generated

by the entries of a γ-eigenvector ξ ∈ (M1,n(C) ⊗ M)p, with p ∈ Mn(C) ⊗ B and

θ : P → p(Mn(C) ⊗ B)p a homomorphism satisfying aξ = ξθ(a) for all a ∈ P . We

have to prove that all entries of ξ belong to L2(B).

In the polar decomposition of ξ, the positive part |ξ| commutes with θ(P ) and is

affiliated with Mn(C) ⊗ Mϕ. So, cutting down ξ by spectral projections of |ξ|, we

may moreover assume that ξ ∈ M1,n(C) ⊗M. Our assumptions imply that

‖(id ⊗ EB)(ξ∗unξ) − (id ⊗ EB)(ξ)∗ un (id ⊗ EB)(ξ)‖2 → 0 .

Since unξ = ξθ(un) and θ(un) ∈ Mn(C) ⊗B, it follows that

(id ⊗ EB)(ξ∗ξ) = (id ⊗ EB)(ξ)∗(id ⊗ EB)(ξ) .

This implies that the entries of ξ belong to B and we are done.

Theorem D.4 (Popa, [55]). — Suppose that G acts mixingly on an almost periodic

(N , ϕ) and write M = N ⋊ G. Let p ∈ Mn(C) ⊗ L(G) a projection with (non-

normalized) trace t and write L(G)t = p(Mn(C) ⊗ L(G))p, Mt = p(Mn(C) ⊗ M)p.

If P ⊂ L(G)t is a diffuse von Neumann subalgebra, any P -L(G)t-sub-bimodule of

L2(Mt) that is finitely generated as an L(G)t-module, is contained in L2(L(G)t).

So, under the conditions of Theorem D.4, if x ∈ Mt such that

Px ⊂
n∑

k=1

xkL(G)t

for a finite family xk ∈ Mt, then x ∈ L(G)t.
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Proof. — We claim that whenever (xn) is a bounded sequence in L(G) that weakly

tends to 0,

‖EL(G)(axnb)‖2 → 0

when n→ ∞, for all a, b ∈ Ker(EL(G)). Here EL(G) : M → L(G) is the ϕ-preserving

conditional expectation. It suffices to prove the claim when a, b ∈ N with ϕ(a) =

ϕ(b) = 0. Writing xn =
∑

g∈G xn(g)ug, we have

‖EL(G)(axnb)‖2
2 =

∑

g∈G

|xn(g)ϕ(aσg(b))|2 .

Take C > 0 such that ‖xn‖ ≤ C for all n. Choose ε > 0. Since (σg) is a mixing

action, take K ⊂ G finite such that |ϕ(aσg(b))|2 ≤ ε/(2C2) for all g ∈ G \K. Since

xn tends weakly to 0, xn(g) → 0 for every g. Hence, take n0 such that for n ≥ n0,∑
g∈K |xn(g)ϕ(aσg(b))|2 < ε/2. Since

∑
g |xn(g)|2 ≤ C2 for all n, we obtain that

‖EL(G)(axnb)‖2
2 ≤ ε for all n ≥ n0, which proves the claim.

It is then clear that any sequence of unitaries (un) in P tending weakly to 0 satisfies

the conditions of Lemma D.3 with B = L(G)t and M = M t.

Proposition D.5 (Popa, [55]). — Suppose that G acts mixingly on the almost

periodic (N , ϕ) and arbitrarily on the almost periodic (A, ψ). Consider the diagonal

action on A ⊗ N . Write M = Aψ ⋊ G and M̃ = (A ⊗ N )ψ⊗ϕ ⋊ G. Let P ⊂ M

be a diffuse subalgebra such that there is no non-zero homomorphism from P to an

amplification of Aψ. If x ∈ M̃ and Px ⊂∑n
k=1 xkM , we have x ∈M .

Proof. — Write A = Aψ. It follows from Proposition C.1 that there exists a sequence

of unitaries (un) in P such that ‖EA(unug)‖2 → 0 for all g ∈ G. Let E : (A⊗N )⋊G →
A ⋊ G be the unique state-preserving conditional expectation. By Lemma D.3, it

suffices to check that ‖E(aunb)‖2 → 0 for all a, b ∈ KerE. It moreover suffices to

check this last statement for a, b ∈ N with ϕ(a) = ϕ(b) = 0. Writing un =
∑
g un(g)ug

with un(g) ∈ A, we have

‖E(aunb)‖2
2 =

∑

g∈G

|ϕ(aσg(b))|2 ‖un(g)‖2
2 .

We conclude the proof in exactly the same way as the proof of Theorem D.4.

Finally, the notion of a 2-mixing action is introduced. Definition D.1 of a mixing

action comes down to the notion of a 1-mixing action.

Definition D.6. — An action of a countable group G on (A, ϕ) is said to be

2-mixing if

ϕ(aσg(b)σh(c)) → ϕ(a)ϕ(b)ϕ(c) when g, h, g−1h→ ∞.
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Note that any 2-mixing action is mixing and satisfies

|ϕ(aσg(b)σh(c)) − ϕ(a)ϕ(σg(b)σh(c))| → 0 when g, h→ ∞.

Conversely, this last statement characterizes 2-mixing actions.

Lemma D.7. — Let (σg)g∈G be a free 2-mixing action of a countable group G on

(X,µ). Write A = L∞(X,µ). For every ε > 0, there exists a finite partition of 1 in

A given by 1 = q1 + · · · + qn with qi projections in A and satisfying

(5) lim sup
g→∞

∥∥∥
n∑

k=1

σg(qk)xσg(qk)
∥∥∥

2

2
≤ ε‖x‖2

2

for all x ∈ A⋊G with EA(x) = 0.

Proof. — Choose ε > 0. Combining freeness and the mixing property, we take a finite

partition of 1 in A given by 1 = q1 + · · · + qn with qi projections in A and satisfying
n∑

k=1

τ(qkσg(qk)) ≤ ε

for all g 6= e. We claim that (5) holds for all x ∈ A⋊G with EA(x) = 0. It is sufficient

to check this for x =
∑
h∈F ahuh for some finite subset F ⊂ G not containing e. Then,

∥∥∥
n∑

k=1

σg(qk)xσg(qk)
∥∥∥

2

2
=

n∑

h∈F,k=1

τ(a∗hahσg(qk)σhg(qk)) .

When g → ∞, the right hand side is arbitrary close to
n∑

h∈F,k=1

τ(a∗hah)τ(σg(qk)σhg(qk)) =

n∑

h∈F,k=1

τ(a∗hah)τ(qkσg−1hg(qk)) ≤ ε‖x‖2 .

So, we are done.
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