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THE WAVE MAP PROBLEM.

SMALL DATA CRITICAL REGULARITY

[after T. Tao]

by Igor RODNIANSKI

1. INTRODUCTION

The purpose of this paper is to describe the wave map problem

✷φ = −φ (∂αφ · ∂αφ) ,(1)

φ|t=0 = φ0, ∂tφ|t=0 = φ1

where φ is a map φ : Rn+1 → Sm−1 ⊂ Rm, and its analogs for other target manifolds,

with a specific focus on the small data critical regularity results of T. Tao, contained

in the following

Theorem 1 ([30], [31]). — Let n ≥ 2 and s > n
2 . The solution of the Cauchy problem

(1) with initial data (φ0, φ1) ∈ (Sm−1, TSm−1) in (Ḣs, Ḣs−1) can be extended uniquely

to a global solution (φ(t), ∂tφ(t)) ∈ (Ḣs, Ḣs−1) on Rn+1 provided that the initial data

(φ0, φ1) has a sufficiently small (Ḣ
n
2 , Ḣ

n
2−1) norm:

‖φ0‖Ḣ n
2 (Rn)

+ ‖φ1‖Ḣ n
2

−1(Rn)
< ǫ.

These results imply that in dimensions n ≥ 3, despite the fact that the wave map

problem is supercritical relative to a conserved energy and there exist solutions

blowing up in finite time, its classical solutions with Sm−1 target can be extended

globally in time as long as the initial data has a small scale-invariant Ḣ
n
2 norm(1).

In the critical dimension n = 2 the result is particularly exciting as it implies that a

solution exists globally as long as it has a small energy.

(1)Here and in what follows we will denote the initial data by φ[0] = (φ0, φ1) and will say that

φ[0] ∈ Hs meaning (φ0, φ1) ∈ Hs ×Hs−1.
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The problem (1) arises as an Euler-Lagrange equation corresponding (formally) to

the critical points of the Lagrangian density:

(2) L [φ] =
1

2
(∂αφ · ∂βφ) mαβ ,

where mαβ is the Minkowski metric on Rn+1. The density L [φ] gives rise to the

Minkowski analog of the harmonic map problem on Rn, in which the energy density

is given by 1
2∇φ · ∇φ and the critical points, harmonic maps φ : Rn → Sm−1, satisfy

the equation

∆φ = −φ(∇φ · ∇φ).

The equation (1) belongs to the more general class of wave map problems, in which

φ is a map from an (n+ 1)-dimensional Lorentzian manifold (M , g) to a Riemannian

manifold (N , h). The map φ is a solution of the Euler-Lagrange equations:

(3) Dα∂αφ = 0,

corresponding to the Lagrangian density:

(4) L [φ] =
1

2
hij (∂αφ

i∂βφ
j) gαβ .

Here {φi} denote local coordinates on N . D is the pull-back of the Levi-Civita

connection on TN to the bundle φ∗(TN ). In terms of the local coordinates {φi}
this pull-back connection acting on sections of φ∗(TN ) reads:

Dα = ∇α + Γ
k

αj , Γ
k

αj = Γkij(φ)∂αφ
i ,(5)

where Γkij is the Christoffel symbol in the coordinates {φi} and ∇ is a covariant

derivative on TM . The wave-map equation (3) has the form:

(6) ✷gφ
k = −Γkij(φ) gαβ(∂αφ

i∂βφ
j).

In particular in the case of a wave map problem from Minkowski space (Rn+1,m) the

map φ verifies the equation

(7) ✷φ = −Γ(φ)(∂αφ, ∂
αφ).

The wave map problem appears naturally in solid-state physics, theory of topological

solitons, Quantum Field Theory and General Relativity:

Topological solitons. — One of the simplest non-trivial models with topological

soliton solutions is the (2 + 1) dimensional Lorentz invariant O(3) classical σ-model

which is nothing else but a (2 + 1)-dimensional wave map problem with S2 target. It

arises in the study of a continuum limit of an isotropic anti-ferromagnet, [8]. Topo-

logical solitons in this model are the static solutions (harmonic maps from R2 → S2

of the equation

✷φ = −φ(∂αφ · ∂αφ)
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which minimize the energy (conserved under evolution)

E[φ] =

∫

R2

(
|∂tφ|2 + |∇xφ|2

)
dx

in a given homotopy class. Such maps satisfy the Bogomol’nyi equation

∂iφ = ±ǫijφ× ∂jφ

and are thought to represent meta-stable particles, [1]. Here ǫij is an anti-symmetric

tensor in two dimensions. The important feature of this model, common to all

(2 + 1)-dimensional wave map problems, is its criticality. Both the equation and the

conserved energy E[φ] are invariant under scaling transformations φ(t, x) → φ(λt, λx).

The problem displays a fascinating interplay between the infinite dimensional wave

map dynamics defined by (1) and a finite dimensional dynamics generated by re-

stricting the full dynamics to the moduli space of static solutions (e.g. self-shrinking

(λ→ 0) of harmonic maps), see e.g. [20], ultimately leading to the existence of large

data solutions of (1) blowing up in finite time, [23].

General Relativity. — The wave map problem on a curved (2 + 1)-dimensional

background with an H2 target arises in the U(1) symmetry reduction of the Einstein

vacuum equations. In this case one starts with a (M,g) Lorentzian (3+1)-dimensional

manifold with Ricci curvature

Rαβ = 0.

Under the assumption that (M,g) is invariant under the group action of U(1) which

orbits are space-like the metric g can be decomposed

g = e−2γg + e2γ(θ)2

where g is a Lorentzian metric on a (2 + 1)-dimensional manifold N = (Σ × R)

and θ = dx3 + Aadx
a with a = 0, 1, 2 local coordinates on N and x3 a coordinate

along the orbit. The equations Ra3 = 0 (and the assumption of triviality of the first

cohomology class of Σ) imply that

dA =
1

2
e−4γ ⋆ dω,

where ∗ is the Hodge dual relative to the metric g and a scalar function ω is called a

twist potential. The equation R33 = 0 implies that

✷gγ +
1

2
e−4γgab∂aω ∂bω = 0,

✷gω − 4gab∂aω ∂bγ = 0

which can be recognized as a wave map equation from (Σ× R, g) into the hyperbolic

space H2 with the metric

2(dγ)2 +
1

2
e−4γ(dω)2.
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Note that the wave map evolves on a dynamic background with the metric g, which

itself depends on the wave map. This coupling is determined by satisfying the re-

maining equations Rab = 0. The only result available in this fully nonlinear context

is a small data global stability in the expanding direction statement for solutions with

Σ a compact surface with genus greater than one, metric g = −dt2 + t2σ with σ a

metric of scalar curvature −1 on Σ and the wave map φ = 0, see [6].

Acknowledgments. — The author would like to thank Terry Tao for valuable

comments on this paper.

2. SUMMARY OF QUESTIONS AND RESULTS FOR THE WAVE

MAP PROBLEM FROM MINKOWSKI SPACE

Traditionally(2), as the wave map equation is a hyperbolic evolution problem, one

is interested in the questions of local and global in time existence and uniqueness

of solutions, existence of solutions blowing up in finite time and stability of static

or other “preferred”(3) solutions. The wave map equation from Minkowski space is

invariant under the scaling transformation φ(t, x) → φ(λt, λx), which also preserves

the Ḣ
n
2 Sobolev norm. On this basis and in view of a geometric nature of the problem,

our experience suggests that we could expect(4) that:

Local in time solutions exist and unique for any initial data φ[0] ∈ Hs with s > n/2.

Solutions with data with a small Ḣ
n
2 -norm can be extended globally in time.

Large data classical solutions can be extended globally in time for the (2 + 1)-

dimensional (critical) wave map problem, where the scale invariant space Ḣ1 coincides

with a conserved energy space, at least in the case of a target manifold of negative

curvature, in analogy with the harmonic map heat flow.

Large data classical solutions can be extended globally in time for the (1 + 1)-

dimensional wave map problem, where the scale invariant space Ḣ
1
2 is larger

(subcritical) than the energy space.

(2)The connection of the wave problem to QFT and GR may present an additional set of questions.
(3)An example of such a solution is φ = γ(u) where γ is a geodesic on (N , h) and u verifies the wave

equation ✷u = 0.
(4)Just on the basis of presented here “evidence” perhaps a more appropriate term here would be

“hope” as in some other problems these expectations have not been yet fulfilled or simply turned out

to be wrong. For the wave map problem these expectations are more grounded due to the referred

to above geometric origin of the problem, which makes available various cancellation properties (e.g.

the expression ∂αφ ·∂αφ is an example of a null form eliminating parallel interactions of free waves).
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Below we briefly (and incompletely, sometimes referring to just the final result) sum-

marize known results (a good survey of the wave map problem is given in [34]):

Existence and uniqueness of local in time solutions in Hs with s > n/2 is in [13], [15]

and [11] in dimension n = 1.

Small data global existence in Ḣ
n
2 × Ḣ

n
2 in dimensions n ≥ 2 is shown in [30], [31].

Extensions to other targets are in [14], [25], [21], [16], [17], [35].

Large data global existence for the (1+1)-dimensional wave map is established in [9],

[19].

Existence of large data solutions blowing up in finite time in dimensions n ≥ 3 is

shown in [24], [4].

Stability of a trivial constant wave map and geodesic wave maps is in [27] and stability

of certain (2 + 1)-dimensional spherically symmetric solutions is in [18].

For the critical (2 + 1)-dimensional wave map problem existence of solutions blowing

up in finite time was proved in [23] for the S2 target. The large data global existence

result is conjectured for the H2 target.

We should also mention that good results have been obtained for the large data critical

(2+1)-dimensional wave map problem for solutions with additional spherical or equi-

variant symmetry assumptions. It was shown in [7] (for geodesically convex targets),

[29] that large data global spherically symmetric solutions can be extended globally

and uniquely in time.

The k-equivariant (co-rotational) solutions of the wave map problem are considered

in the case when a target manifold is a surface of revolution. The results in [26] and

[28] imply that a solution blows up in finite time only if the energy concentrates (in

particular small energy implies regularity), blow-up can not occur at a self-similar

rate and at the blow-up a harmonic map can be “bubbled off”. We note that in the

case of the S2 target the equation for a k-equivariant wave map takes the form

∂2
t u− (∂2

r +
1

r
∂r)u+ k2 sin(2u)

2r2
= 0

for a single scalar function u satisfying the boundary conditions u(0) = 0 and

u(∞) = π.
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3. LOCAL SUBCRITICAL THEORY

We begin by discussing the framework for proving (subcritical) local existence and

uniqueness results for the wave map problem (7) as it already contains major elements

required for the (critical) small data global existence problem.

A general scheme for proving local existence and uniqueness in a Sobolev space Hs

can be loosely described as follows:

Identify a space X with the property that X contains solutions of the homogeneous

wave equation ✷w = 0 with initial data in w[0] ∈ Hs.

Assume a priori that a solution φ belongs to X and

(8) ‖φ‖X ≤ 2C0

for some constant C0.

Express φ via a representation

(9) φ = W (t)φ[0] − ✷
−1 (Γ(φ)∂αφ · ∂αφ)) ,

where w = W (t)φ[0] is a solution of the homogeneous wave equation ✷w = 0 with

initial φ[0] and v = ✷
−1F denotes a solution of the inhomogeneous problem ✷v = F

with zero initial data at t = 0.

Show that

(10) ‖✷−1 (Γ(φ1)(∂
αφ2 · ∂αφ3)) ‖X ≤ C

for arbitrary functions ‖φi‖X ≤ 2C0.

In the energy method, in which space X is chosen to be L∞t H
s, the representation

(9) reads

(11) φ(t) = W (t)φ[0] −
∫ t

0

W (t− s) (Γ(φ)∂αφ · ∂αφ)) (s) ds,

and the estimate (10) follows from the standard energy estimates for the wave

equation and a choice of a small time interval [0, T ] gives local well-posedness in

Sobolev spaces Hs with s > n
2 + 1.

The Strichartz method is based on (11) and combines the energy estimates for the

solution of the wave equation with the Strichartz estimates:

‖φ‖Lq
tL

p
x

. ‖φ[0]‖Ḣs + ‖✷φ‖L1
tḢ

s−1 ,

where

2

q
≤ (n− 1)(

1

2
− 1

p
), q ≥ 2, (n, q, p) 6= (3, 2,∞),(12)

1

q
+
n

p
=
n

2
− s.
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The space X = L∞t H
s ∩ L2

tW
1
∞ for n ≥ 3 and X = L∞t H

s ∩ L4
tW

1
∞ for n = 2. Local

existence and uniqueness of solutions with initial data in Hs with s > n
2 + 1

2 for n ≥ 3

and s > n
2 + 3

4 for n = 2 follow by iterating the wave map equation in the spaces

where the energy norm is complemented by the Strichartz norm ‖∂φ‖L2
tL

∞
x

for n ≥ 3

and ‖∂φ‖L4
tL

∞
x

for n = 2, see [22].

The Hs,δ method(5) is based on the iteration in the space X = Hs,δ with the norm

‖F‖Hs,δ = ‖(1 + |τ | + |ξ|)s(1 + ||τ | − |ξ||)δF̃ (τ, ξ)‖L2
τ,ξ

adapted to the symbol of ✷ (i.e., ✷Hs,δ = Hs−1,δ−1). For δ > 1/2 the space Hs,δ is

smaller than the intersection of energy space L∞t H
s and the LqtL

p
x Strichartz spaces

consistent with Hs regularity. Iteration in Hs,δ leads to the local existence and

uniqueness results in Hs with s > n/2, see [13], [15]. The key to this result is the

algebra property

Hs, 12+ ·Hs−1,− 1
2+ ⊂ Hs−1,− 1

2+,

and the null form estimate

Q0(H
s, 12+, Hs, 12+) ⊂ Hs−1,− 1

2+,

which both hold with s > n
2 . Here Hs, 12 + stands for the space Hs,δ with 1/2 < δ <

1/2 + s − n/2. The null form Q0(φ, φ) = ∂∂φ∂
αφ is precisely the expression arising

in the nonlinear term of the wave map problem. It has the property that for two

solutions of the homogeneous wave equation ✷φ = ✷ψ = 0 we have

2Q0(φ, ψ) = ✷(φψ).

In particular Q0 eliminates parallel interactions, between φ and ψ whose space-time

Fourier transform lies on the cone |τ |2 = |ξ|2. This special structure of the nonlin-

earity in the wave map problem is crucial for both the local existence and the small

data global existence results in low dimensions.

The challenge in strengthening these results to obtain a global scale-invariant crit-

ical statement lied in the fact that it would require a scale-invariant homogeneous

version of the space H
n
2 ,

1
2

‖F‖Ḣs,δ = ‖(|τ | + |ξ|)s(||τ | − |ξ||)δF̃ (τ, ξ)‖L2
τ,ξ
.

The space Ḣ
n
2 ,

1
2 is not suitable (in fact it is not even well defined) for the solution

of the critical wave map problem in particular in view of the division and summation

(5)In the context of the well-posedness theory for hyperbolic equations the Hs,δ spaces were first

used in the work of Klainerman-Machedon [12]. They are closely connected with the Xs,b spaces

introduced and used by Bourgain for the Schrödinger and KdV equations in [2], [3].
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problems one faces in the process of constructing (i.e., proving a priori estimates) the

wave map via a representation (9)

φ = W (t)φ[0] − ✷
−1 (Γ(φ)(∂αφ · ∂αφ)) .

First we can modify the space Ḣ
n
2 ,

1
2 by improving its summability properties relative

to the distance to the cone ||τ |−|ξ|| while keeping the space scale-invariant. We assume

that the space-time Fourier transform F̃ (τ, ξ) has support in the region |ξ| ≈ 2k and

define

(13) ‖F‖
Ḣ

s, 1
2

,1

k

= 2ks
∑

j∈Z

2
j
2 ‖m(2−j ||τ | − |ξ||)F̃ (τ, ξ)‖L2

τ,ξ
,

where m is a smooth bump function supported on the interval [1/4, 4] and equal

to one on [1/2, 2]. The division problem arises already at the level of attempting

to implement the general existence scheme described above assuming that φ is a

linear combination of finitely many H
n
2 ,

1
2 ,1

k atoms. The summation problem requires

handling square summable combinations of H
n
2 ,

1
2 ,1

k pieces.

4. TATARU’S RESULT

In [32], [33] Tataru solved the division problem under the assumption that the

initial has a small critical Besov norm Ḃ
n
2
2,1 instead of a larger Sobolev space Ḣ

n
2 . The

summation problem was avoided by putting together the H
n
2 ,

1
2 ,1

k pieces in ℓ1. Such a

space is only consistent with free waves with initial data in the smaller Besov space

Ḃ
n
2
2,1. The solution of the division problem requires enlarging the atomic space built on

H
n
2 ,

1
2 ,1

k atoms by adding a component which lies in a null frame space. Without going

into much details, the null frame spaces are motivated by the following observation.

Let w be a unit frequency solution of the homogeneous wave equation ✷w = 0 whose

spatial Fourier support lies in an angular sector Ω. For simplicity we may assume

that w is a + wave and thus it can be represented as a superposition of the traveling

waves

w =

∫

Rn

eit|ξ|+ix·ξw0(ξ) dξ =

∫

Ω

∫

λ∼1

eiλ(t+ix·ω)w0(λω)λn−1dλ dω =

∫

Ω

wω(t+x·ω)dω,

where

wω(s) =

∫

λ∼1

eisλw0(λω)λn−1dλ.

For a fixed ω let uω = t+x ·ω denote a variable parametrizing the corresponding null

(i.e., the length of the tangent vector (1, ω) with respect to the Minkowski metric is

ASTÉRISQUE 311



(965) WAVE MAP 373

zero) direction and let xω denote the variables (t−x ·ω, x−x ·ω). Then the traveling

wave decomposition has the property that

(14)

∫

Ω

‖uω‖L2
uω
L∞

xω
. |Ω| 12 ‖w0‖L2

x

In addition for any θ 6∈ Ω

(15) ‖w‖L∞
uθ
L2

xθ
. dist(θ,Ω)−1‖w0‖L2

x

The iteration space(6) X is composed from the Xk atoms, where each space Xk con-

tains functions F with spatial Fourier support in the region |ξ| ∼ 2k and

‖F‖Xk
= inf

(
‖F0‖

H
n
2

, 1
2

,1

k

+
∑

ℓ∈Z+

‖Fℓ‖Yk,ℓ

)
,

where the infimum is taken with respect to all possible decompositions F = F0+
∑

ℓ Fℓ,

the functions Fℓ are supported at distance ≤ 2k−2ℓ from the cone τ2 = |ξ|2 in Fourier

space. Each of the spaces Yk,ℓ is also an atomic space, where

‖G‖Yk,ℓ
= 2

n
2 k inf

∞∑

m=1

|am|,

where the infimum is taken with respect to the decompositions G =
∑∞
m=1 amGm

and each atom Gm, in addition to the above requirements on its Fourier support, is

assumed to verify the following conditions. Let Kℓ denote a collection of (22ℓ(n−1))

spherical caps of size 2−ℓ covering the unit sphere of directions in ξ space and Pκ
denote the associated projection in Fourier space on the cap κ ∈ Kℓ. Then we require

that for each κ there exists an angle ωκ 6∈ 2κ such that
∑

κ∈Kℓ

(
2−2k(dist(ωκ, κ))

−2‖✷PκGm‖2
L1

uωκ
L2

xωκ

+ (dist(ωκ, κ))
2‖PκGm‖2

L∞
uωκ

L2
xωκ

)
≤ 1.

Thus constructed space X is shown to satisfy the following properties:

(1) X ⊂ C0
t Ḃ

n
2
2,1 ∩ C1

t Ḃ
n
2−1
2,1 and X contains solutions of the homogeneous wave

equation with (Ḃ
n
2
2,1 × Ḃ

n
2−1
2,1 ) initial data.

(2) X ·X ⊂ X and X · ✷X ⊂ ✷X – bilinear estimates.

5. TAO’S RESULT IN HIGHER DIMENSIONS

We now discuss the result contained in [30], in which the (Ḣ
n
2 critical) small data

global existence problem was completely solved for the wave map equation (1) on

Minkowski space Rn+1 for the Sm−1 target manifold in dimensions n ≥ 5. The

(6)The description given below is somewhat imprecise as some of the spatial Fourier localizations

should be in fact space-time Fourier localizations.
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solution of the problem is particularly elegant in this case as the iteration spaces are

essentially as in the Strichartz method.

5.1. Tools

A consistent theme in [30] is micro-localization. In this context it simply means that

all involved functions(7) are decomposed into parts each oscillating with frequencies in

a given dyadic interval and all interactions are viewed in terms of interactions between

such individual pieces. The framework for this is provided by the Littlewood-Paley

theory and paradifferential calculus. According to it an arbitrary function f(x) can

be decomposed with the help of the Littlewood-Paley projections Pk:

f =
∑

k∈Z

fk, fk = Pkf =

∫

Rn

eix·ξχ(2−k|ξ|)f̂(ξ) dξ

where ∑

k∈Z

χ(2−kr) = 1, ∀r 6= 0

and χ is a smooth non-negative cut-off function supported on [1/2, 2]. We set

f<k =
∑

m<k

fm, f>k =
∑

m>k

fm.

The following capture usefulness of such decompositions:

‖|∇|sfk‖Lp ∼ 2ks‖fk‖Lp , ∀ 1 ≤ p ≤ ∞,

‖|fk‖Lp . 2k(
n
q −

n
p )‖fk‖Lq , ∀ 1 ≤ q ≤ p ≤ ∞.

The first relation reflects the fact that fk oscillates at the frequency 2k, while the

second is called the Bernstein inequality and is simply a prototype of the Sobolev

inequality.

The product of two different Littlewood-Paley pieces f1
k1

and f2
k2

can be characterized

as follows(8):

If k1 > k2 then the Fourier support f1
k1
f2
k2

is essentially still contained in the

dyadic region |ξ| ∼ 2k.

If k1 = k2 then the Fourier support f1
k1
f2
k2

is essentially still contained in the

region |ξ| ≤ 2k.

(7)A wave map φ : Rn+1 → Sm−1 is viewed as an Rm-valued function with |φ| = 1.
(8)For simplicity of exposition we will make no distinction between the relations k1 > k2 and k1 ≫ k2.
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The analysis requires a micro-local version of the Strichartz spaces Sk adapted to

frequency localized functions and consistent with the critical Ḣ
n
2 regularity. Define

the norm in Sk by

(16) ‖ψ‖Sk
= sup

q,p
2( 1

q + n
p )k
(
‖ψ‖Lq

tL
p
x

+ 2−k‖∂tψ‖Lq
tL

p
x

)
,

where the sup is taken over all Strichartz admissible exponents described in (12). The

Strichartz estimates applied to a function ψk localized at the frequency 2k imply:

(17) ‖ψk‖Sk
. ‖ψk[0]‖

Ḣ
n
2

+ 2
n−2

2 k‖✷ψk‖L1
tL

2
x

In particular, one easily obtains the following strengthened version of the Strichartz

estimates: (∑

k∈Z

‖ψk‖2
Sk

) 1
2

. ‖ψ[0]‖
Ḣ

n
2

+ ‖✷ψ‖
L1

tḢ
n
2

−1 .

A very useful notion introduced in [30] is that of an σ-envelope: c = {ck}k∈Z ∈ ℓ2,

which has the property that

ck ≤ 2σ|k−k
′|ck′ , ∀ k, k′ ∈ Z.

Any ℓ2 sequence a lies under a σ-envelope c (for instance)

ck =
∑

k′∈Z

2−σ|k−k
′|ak′ .

In particular the sequence ‖φ[0]k‖Ḣ n
2

associated with initial data for the wave map φ

lies under a σ-envelope c with the property that
∑

k∈Z

c2k < ǫ2.

5.2. The setup

Existence, uniqueness and propagation of regularity(9) follow from proving esti-

mates in the space X = S(c) defined by the norm

‖φ‖S(c) = sup
k
c−1
k ‖φk‖Sk

.

This means that assuming that

‖φk‖Sk
≤ 2C0ck

for some sufficiently large constant C0 the result will follow if one can prove the

stronger estimate

‖φk‖Sk
≤ C0ck.

(9)Restriction on the parameter σ limits propagation of regularity to the values of Sobolev exponent

n/2 < s < n/2 + σ. It is not however standard that a propagation of regularity in a Sobolev space

Hs with s > n/2 immediately implies the same statement in all higher Sobolev spaces.
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As opposed to the local existence scheme one is not able to prove the estimate

‖✷−1
(
Γ(φ1)(∂αφ2 · ∂αφ3)

)
‖S(c) ≤ C0

for functions ‖φi‖S(c) ≤ 2C0. The problem requires renormalization!

5.3. Micro-linearization of the wave-map equation

The next step is to project the wave map equation

✷φ = −φ(∂αφ · ∂αφ)

on the frequency 2k with the help of Littlewood-Paley projection Pk thus deriving an

equation for φk
✷φk = −

∑

k1,k2,k3

Pk (φk1(∂αφk2 · ∂αφk3)) .

Using scale invariance each φk can be seen to satisfy the same equation as φ0

(18) ✷φ0 = −
∑

k1,k2,k3∼0

P0 (φk1(∂αφk2 · ∂αφk3 ))

and it suffices to prove that

‖φ0‖S0 ≤ C0c0.

(This is where the envelope idea becomes very helpful.)

Next one says that F is an acceptable error term if ‖F‖L1
tL

2
x
≤ ǫC3

0c0 and thus by

Strichartz estimates (17) its contribution to the ‖φ0‖S0 is less than the allowed C0c0
and thus can be discarded.

The main contribution of the nonlinear term in (18) is identified by rewriting (18)

in the form

(19) ✷φ0 = −2φ<0(∂αφ<0 · ∂αφ0) + F,

and claiming that the term F is an acceptable error. Before tackling F one sets the

following

Rules of the game: place the terms with a higher frequency in the norm requiring

fewer(10) derivatives (e.g. L2
tL

4
x) and terms with a lower frequency in the norm

requiring more (e.g. L∞t L
∞
x ). Almost all estimates will appear as if they have “extra

room” and thus are not scale invariant. This is merely an illusion due to the fact that

we measure low and high frequency relative to a fixed benchmark frequency. That is,

a low frequency will mean k < 0 while the high frequency will mean that k > 0. The

actual gain occurs only through relative ratios of frequencies of functions involved in

the products and is entirely consistent with an overall scale invariance.

(10)The number of derivatives is reflected in the exponential factors placed in front of the Strichartz

norms in the definition of Sk in (16). For example the L2
tL

4
x norm “costs” only 1/2+n/4 derivatives

while the L∞
t L∞

x norm requires n/2 derivatives.
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Using the paradifferential calculus rules for products described above, one sees that the

error term essentially contains(11) low-high-high, high-high-high, high-low-high and 0-

low-low interactions. For example, the low-high-high interaction can be handled as

follows (with the help of the envelope properties):
∥∥∥
∑

k2∼k3>0

φ<0(∂αφk2 · ∂αφk3)
∥∥∥
L1

tL
2
x

.
∑

k2∼k3>0

‖φ<0‖L∞
t L∞

x
‖∂αφk2‖L2

tL
4
x
‖∂αφk3‖L2

tL
4
x

.
∑

k2∼k3>0

2−(k2+k3) n−2
4 ‖φk2‖Sk2

‖φk3‖Sk3

. ǫC2c0
∑

k2∼k3>0

2−(k2+k3) n−2
4 +σk2 . ǫC2c0

provided that σ is sufficiently small. Similarly for the high-low-high interactions
∥∥∥
∑

k1∼k2>0,k3<0φk1 (∂αφk2 · ∂αφk3)
∥∥∥
L1

tL
2
x

.
∑

k1∼k2,k3<0

‖∂αφk3‖L∞
t L∞

x
‖φk1‖L2

tL
4
x
‖∂αφk3‖L2

tL
4
x

.
∑

k1∼k2>0,k3<0

2k3−k12−(k1+k3) n−2
4 × ‖φk1‖Sk1

‖φk2‖Sk2
‖φk3‖Sk3

. ǫ2C3c0.

The remaining cases can be treated in a similar fashion.

The principal term φ<0(∂αφ<0 ·∂αφ0) cannot be iterated away by means of Strichartz

estimates (or even with the help of more sophisticated spaces and estimates) as can be

seen from the following argument. The term φ<0 has to be placed in L∞t L
∞
x , which

means that one needs an estimate

‖∂αφ<0 · ∂αφ0‖L1
tL

2
x

. ‖φ<0‖L2
tL

p
x
‖φ0‖L2

tL
r
x

.

(∑

k<0

‖φk‖2
Sk

) 1
2

‖φ0‖S0,

where 1/2 = 1/p+1/r. By a scaling argument the term with φ<0 requires p ≥ 2n. The

condition 1/2 = 1/p+ 1/r then implies that r ≤ 2n/(n− 1). However the admissible

Strichartz exponents (q, r) with q = 2 lie in the range [2n−1
n−3 ,∞] inconsistent with

r ≤ 2n/(n− 1).

5.4. The renormalization procedure

One begins with an anti-symmetrization trick, used previously in the context of

regularity theory for harmonic maps in [10], [5]. Recall that φ takes values in a unit

sphere Sm−1 ⊂ Rm and write relative to the standard coordinates on Rm

φi<0(∂αφ
j
<0∂

αφj0) = Bijα ∂
αφj0.

(11)We will consistently ignore all the terms arising from the commutators with the Littlewood-Paley

projections.
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The m×m matrices Bα can be anti-symmetrized as follows. The expression

∂αφ
i
<0(φ

j
<0∂

αφj0) = ∂αφ
i
<0(∂

αφj<0φ
j
0) − ∂αφ

i
<0∂

α(φj<0φ
j
0).

Both of the terms on the right hand side above are error terms similar to F0 satisfying

a good L1
tL

2
x estimate. In the first term a derivative has been successfully transferred

to a lower frequency making in a 0-low-low term. On the other hand the expression

(φj<0φ
j
0) = P0(|φ|2) + P0(high-high)

can be identified, modulo terms contributing to an acceptable error term, with the

projection of |φ|2 on the unit frequencies. Since φ ∈ Sm−1 we have |φ| = 1 and

P0(|φ|2) = 0.

This argument allows one to replace

φi<0(∂αφ
j
<0∂

αφj0) = Bijα ∂
αφj0 = Aijα ∂

αφj0,

where Aα are the anti-symmetric matrices

Aα = φ<0(∂αφ<0, ·) − ∂αφ<0(φ<0, ·)

and (·, ·) is the standard scalar product on Rm. This anti-symmetry property is crucial

for the following renormalization procedure. The unit frequency part of the wave-map

φ is replaced by a new dynamic variable

w = Uφ0

with U an almost orthogonal matrix nonlinearly dependent on φ. The map w verifies

the equation

✷w = −2UAα∂
αφ0 + 2∂αU∂

αφ0 + ✷Uφ0

and this change of variables is motivated by the attempt to eliminate the troublesome

term Aα∂
αφ0 by setting

(20) ∂αU = UAα.

Solubility of the above transport equations depends on the Frobenius condition(12)

(21) ∂αAβ − ∂βAα + [Aα, Aβ ] = 0.

Given the explicit form of Aα the condition (21) is not satisfied. However,

∂αAβ − ∂βAα + [Aα, Aβ ] = [Aα, Aβ ] ≈ ∂φ<0 · ∂φ<0 .

(12)Equation (20) would suggest that A is a trivial O(n) connection, which of course requires that its

curvature vanishes. It turns out indeed that A is a low frequency portion of the pull-back connection

φ∗(∇) on the bundle φ∗(TSm−1) over Rn+1.
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is quadratic in the derivatives of a low frequency part of φ (and thus in particular only

of size ǫ2). The equation (20) is then solved approximately with the defect giving rise

to an acceptable error term. The construction is recursive with(13)

Uk := (Pkφ(P<kφ, ·) − P<kφ(Pkφ, ·))U<k,
U<k := I +

∑

k′<k

Uk′

This construction can be motivated by the following argument. In the original equa-

tion for φ0 the term Aα∂
φ
0 can be replaced by ∂αΛ∂αφ0 with

Λ =
∑

k<0

(Pkφ(P<kφ, ·) − P<kφ(Pkφ, ·))

at the expense of generating an error term with an acceptable L1
tL

2
x bound: the

difference between Aα and Ãα = ∂αΛ involves terms where derivatives transferred to

terms with lower frequencies. The equation (20) then reads

∂αU = ∂αΛU

with the solution given by

U = eΛ = e
P

k<0(Pkφ(P<kφ,·)−P<kφ(Pkφ,·)) ≈
and thus if we set

U<k = e
P

k′<k(Pk′φ(P<k′φ,·)−P<k′φ(Pk′φ,·))

we have

Uk =
(
e(Pkφ(P<kφ,·)−P<kφ(Pkφ,·)) − I

)
e

P

k′<k(Pk′φ(P<k′φ,·)−P<k′φ(Pk′φ,·))

≈ (Pkφ(P<kφ, ·) − P<kφ(Pkφ, ·))U<k.
It remains to show that the remaining terms on the right hand side of the equation

for w are acceptable error terms so that

(22) ✷w = F

and that the transformation U preserves the space S0. The latter follows from the

estimates

‖U‖L∞
t L∞

x
. 1, ‖U‖L∞

t L∞
x
, ‖∂αU‖L∞

t L∞
x

. ǫ.

The standard(14) Strichartz estimates applied to the equation (22) imply that

‖w‖S0 . ‖w[0]‖L2 + C3
0ǫc0 . ‖φ[0]0‖L2 + C3

0ǫc0 . 2c0

and the desired estimate for φ0 follows.

(13)For technical reasons the sum in the second definition should extend only to a finite large negative

integer −M .
(14)not quite, as the Fourier support of w is not supported on unit frequencies, since φ0 has been

distorted by U . This can be corrected however without too much difficulty.
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6. TAO’S RESULT IN LOWER DIMENSIONS

The (critical) small data global existence result for the wave map problem with the

Sm−1 target for the remaining dimensions 2 ≤ n ≤ 4 is contained in [31]. Given the

space constraints it is very difficult to do the justice to that paper here. The proof is

a true tour de force. We will only give a (superficial) description of the spaces used

in the proof.

As the problem is shifted to the lower dimensions the dispersion properties of the wave

equation become weaker and one starts “losing” various key Strichartz estimates (e.g.

L2
tL

4
x in dimensions n ≤ 4 and even the L2

tL
∞
x in dimensions n ≤ 3). This eventually

means that the renormalization procedure has to be combined with a refinement of

ideas that led to the solution of the division problem. In particular the null structure

of the nonlinearity, which did not have much effect on the higher dimensional problem,

becomes crucial. In the iteration procedure the Strichartz based spaces are replaced

by a combination of the H
n
2 ,

1
2 and null frame spaces. The iteration space X = S(c),

associated with an envelope c = {ck}, is built of the following parts:

‖φ‖S(c) = ‖φ‖L∞
t L∞

x
+ sup

k
c−1
k ‖φ‖S[k].

The first L∞ component is very important for the algebra property and reflects the

fact that the wave map φ ∈ Sm and thus |φ| = 1. The dyadic spaces S[k] in turn are

defined by the norm

‖φ‖S[k] := ‖∇x,tφ‖L∞
t Ḣ

n
2

−1 + ‖∇x,tφ‖
Ḣ

n
2

−1, 1
2

,∞

k

+ sup
±

sup
ℓ>0

(∑

κ∈Kℓ

‖Pk,±κQ±<k−2ℓφ‖2
S[k,κ]

) 1
2

.

The first term on the right represents the usual energy space. The second is an Hs,δ

type space where the index ∞ reflects an ℓ∞ norm with respect to a dyadic distance

to the cone |τ |2 = |ξ|2. The last ingredient is a null frame space built with the help of

the Fourier projections Pk,±κ and Q±j restricting the Fourier transform of a function

to the region of (τ, ξ) with |τ±|ξ|| ∼ 2j (coming from the Qj action) |ξ| ∼ 2k (coming

from Pk part) and a spherical cap ξ/|ξ| ∈ κ of size 2−ℓ for κ ∈ Kℓ. Finally the space

S[k, κ] is defined by the norm

‖φ‖S[k,κ] = 2
nk2
2 ‖φ‖NFA∗[κ] + |κ|− 1

2 2
k
2 ‖φ‖PW [κ] + 2

nk
2 ‖φ‖L∞

t L2
x
,

where

‖φ‖NFA∗[κ] = sup
ω 6∈2κ

dist(ω, κ)‖φ‖L∞
uω
L2

xω
,
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is motivated by the property (15) of free waves, and the space PW [κ] is an atomic

Banach space whose atoms are functions φ with

‖φ‖L2
uω
L∞

xω
≤ 1

for some ω ∈ κ and its definition is motivated by the property (14).

One of the important new ingredients is an appearance of a true trilinear estimate

which deals with the nonlinearity φ(∂αφ · ∂αφ) and provides an exponential gain in

the ratio of frequencies in the case where the frequency of the first term is larger than

one of the other two frequencies.

7. EXTENSIONS TO OTHER TARGET MANIFOLDS

The work in [30], [31] has already had a serious impact on the field. In particular a

lot of effort has been concentrated on the extension of the (critical) small data global

existence result to other target manifolds.

In a more intrinsic interpretation of the wave map problem it is cast as a system

of equations for the derivatives of the wave map φ. For a given orthonormal ea on

(N , h) denote

φaα = h(∂αφ, ea).

We set Aabα = h(∇φ∗(∂α)ea, eb) to be the pull-back of the Levi-Civita connection ∇ on

(N , h) to the bundle φ∗(TN ), represented by anti-symmetric matrices Aα. Then if

φ is a wave map the components Φ = (φaα) satisfy the equation

(23) ✷Φ = −2Aα · ∂αΦ + E,

where E is a term cubic in Φ. The problem (23) can be micro-linearized similar

to (19). The low frequency of the connection Aα is split with the help of a Hodge

decomposition and a Coulomb gauge. Its gradient part then renormalized following

Tao’s approach. This led to an extension of Tao’s result to a large class of target

manifolds in dimensions n ≥ 5 in [14]. Intuitively, in this picture, the procedure of a

Hodge decomposition and renormalization corresponds to a choice of an orthonormal

frame ea with the property that the connection Aα, α = 0, ..., n satisfies the Coulomb

gauge condition
∑n

i=1 ∂
iAi = 0. This was made even more explicit in [25], where Tao’s

work was extended to more general targets in dimensions n ≥ 4. The geometric choice

of a global Coulomb gauge avoided a micro-linearization of the equation. Similar

extension for n ≥ 4 was obtained in [21]. In [16], [17] the results were extended to

general targets in dimensions n ≥ 3 and a hyperbolic space H2 in dimension n ≥ 2.

In [35] the result was extended to targets isometrically embedded (with bounded

geometry) into Rm in dimensions n ≥ 2.
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