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4. A R I T H M E T I C I N T E R S E C T I O N N U M B E R S 

by 

Ulrich Görtz 

Abstract. — We define the arithmetic intersection number of three modular divisors 
and interpret it from the point of view of algebraic stacks. A criterion is given when 
the intersection of three modular divisors is finite. Furthermore, the final result about 
the arithmetic intersection numbers, as given by Gross and Keating, is stated and 
the strategy of its proof, carried out in the subsequent chapters, is explained. 

Résumé (Nombres d'intersection arithmétiques). — On définit les nombres d'intersection 
arithmétiques de trois diviseurs modulaires, et on donne une interprétation du point 
de vue des champs algébriques. On en donne un critère pour que cette intersection soit 
finie. En plus, on indique le résultat final sur les nombres d'intersection arithmétiques, 
comme donné par Gross et Keating, et la stratégie de sa preuve, effectuée dans les 
chapitres suivants. 

1. Introduction 

Let us recall some notation: Let m 1 be an integer. In [Vg] we have defined 

the modular polynomial l m e Z(j,j') (we regard j , j ' as indeterminates). We denote 

by Tm   SpecZfj , / ] the associated divisor. Write S = Spec Z[j, j'], and Sc = 

Spec C [ j , j ' ] . 

In this chapter, we will first prove a criterion for the intersection of three modular 

divisors over Spec Z to be finite, which is analogous to the criterion of Hurwitz in the 

complex situation (see [Vg]). 

In the second part we will prove, following [GK] and using results of later chapters, 

Gross' and Keating's explicit formula for the arithmetic intersection number: Fix 

positive integers m 1 , m2 and m3The arithmetic intersection number is, by definition, 

(Tm1 • Tm2 • Tm3)s := log#Z[j , j ' ] / j']/((em1,< m2,< m3)-
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16 U. GÖRTZ 

This number has a natural interpretation in the Arakelov theory for stacks (see below). 
In the proof, we use the properties of the invariants ap(Q) and (3i(Q) which will be 
established in later chapters. Altogether, this yields the proof of Theorem 1.2 in the 
introduction. 
Acknowledgments. — I am grateful to all the participants of the ARGOS seminar for 
discussions and for feedback on these notes. In particular, I want to thank I. Bouw 
for her comments. I also profited from discussions with S. Kudla. Finally, I thank the 
anonymous referee for a number of helpful remarks. 

2. Preliminaries, Notation 

2 .1 . Quadratic forms and lattices in quadratic number fields. — There is a 
dictionary between binary quadratic forms (over Z ) and lattices in quadratic number 
fields (see [BS] II §7.5, in particular Satz 4) . The exact statement we will use is the 
following. 

Let d < 0 be a square-free integer. Denote by C the set of Z-lattices in Q(Vd) up 
to homothety, and denote by T the set of positive definite primitive binary quadratic 
forms over Z which split in Q(y/d), up to proper equivalence. Then there is a bijection 

C —> T, L I — > 
N(ax + ßy) 

N(L) 

where N: Q(y/d) -> Q denotes the norm, N(L) = gcd(7V(/); I e L\ {0 } ) , and a,/3 is 
a basis of L such that \(a(3 — af3) > 0 (here 7 denotes conjugation). 

2 .2 . Stacks. — We mostly work with the coarse moduli space of (pairs of) elliptic 
curves, but in a few places it is more convenient to use the language of stacks. For 
the convenience of the reader, in this section we give a few references to the literature 
about the results that we need. A general reference is the book [LM] by Laumon 
and Moret-Bailly. See also Deligne's and Mumford's article [DM]. For the stacks 
that we are concerned with the main reference is the book [KM] of Katz and Mazur: 
although superficially the language of stacks is not used there, it is obvious that their 
results can be understood as results about stacks. 

We denote by Ai the moduli stack (over Z ) of elliptic curves; this is a Deligne 
Mumford stack. 

We denote by Tm the moduli space of isogenies of elliptic curves of degree m. 
(In [KM] , the notation [ra-Isog] is used.) This is a Deligne-Mumford stack, too, and 
furthermore, we have: 

Proposition 2.1. — The morphism Tm —> A4 is finite and flat, and is étale over Z l 

- m -
The morphism Tm —» Ai x Ai is finite and unramified. 

Proof. — The first assertion is just [ K M , 6.8.1], and the second one follows immedi-
ately from the rigidity theorem, see [ K M , 2.4.2]. • 
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4. ARITHMETIC INTERSECTION NUMBERS 17 

By relating the divisor Tm (inside the coarse moduli space) defined by the modular 
polynomials (pm to the space Tmi we get a description of the geometric points of Tm. 

Lemma 2.2. — Let m > 1. A geometric point of Tm corresponds to a pair (E,Ef) of 
elliptic curves such that there exists an isogeny E —> E' of degree m. 

Proof. — In characteristic 0 this is basically the definition of Tm and (pm. In positive 
characteristic, we can prove this as follows: By mapping an isogeny to its source, we 
get a finite flat map from Tm to the moduli stack M. of elliptic curves (see [ K M , 
6.8.1]). In particular, Tm is flat over Z. 

Now we have a map to the coarse moduli space S of pairs of elliptic curves: 

F: Tm — > S, (E^E')^(j(E),j(E')), 

and we get a diagram 

%n,QP 
tm,zp 

imFQp im,Fzp 

div(em,qp) div(<£>mjZp) 

sqp Szp 

Since p y(pm(X,Y), div((pm) is flat over Zp, and because imFzp is flat over Zp, too, 
we get imF^p = div((pm). Obviously the geometric points of imi^p correspond to 
pairs (E, Er) of elliptic curves such that there exists an isogeny E —» E' of degree m, 
so the lemma is proved. • 

We can express the arithmetic intersection number of three 'divisors' Tm% in S := 
M. x M. in terms of the complete local rings of their 'intersection' X := Tmi x<s7̂ n2 x$ 
Tm3. (Note however that Tmi x$ Tm2 x$ Tm3 is not the coarse moduli space of X.) 

Proposition 2.3. — Let X := Tmi xs Tm2 xs T^. Then 

( T m i - T m 2 - T m 3 ) : = l o g # Z [ j , / ] / (eml, em2,em3) 

1 
2 

V 

log(p) • 
x cX(Fp) 

1 
#Aut^(x) 

•ig oXlX. 

Proof. — We may assume that the intersection Tmi D Tm2 D Tm3 is finite, since 
otherwise both sides are infinite. (See the next section for a precise criterion, when 
this is the case.) The complete local ring of a geometric point in M x M is the universal 
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18 U. GÖRTZ 

deformation ring of the corresponding pair of elliptic curves, and this ring is free of 
rank # Aut(E)# A u t ( E ' ) 

4 over the complete local ring in the corresponding point in the 
coarse moduli space. This gives us (see the remarks at the beginning of section 4 foi 
details) that the local contribution to the intersection number at a point (E,Ef) is 

(Tmi - Tnl2 - Tm3)(EE^ — 
fi,¿=1,2,3 

1 
2 # A u t ( £ ) # A u t ( £ ' ) ^gw®MxM,(E,E')/Ii 

where the sum extends over triples of isogenies fa: E —• E , deg fi = ml, and where I 
is the smallest ideal in OMXM,{E,E')I sucn that / i , / 2 , and / 3 lift to isogenies between 
the universal deformations of E, Er modulo I. 

Now if a triple / 1 , / 2 , / 3 corresponds to the point x G X(Fp), then OMXM,(E,E')/I — 
Ox,x- Another triple ( / 1 5 / 2 5 / 3 ) yields the same point in X if and only if there are 
automorphisms p of E and p' of E' such that / / = p' o fi o p~x for i = 1,2,3. 
Furthermore Aut^(x) is isomorphic to the group of (p, pf) G Aut(E) x A\it(Ef) such 
that fi = p' o fi op~x for i = 1,2,3. Hence by splitting up the sum above according to 
classes of triples which map to the same point in Af, we get the claimed equality. • 

2.3. Notation. — We recall the following notation from [Vg]. For an elliptic curve 
E, we let uE := | # Aut(E). 

Furthermore, given a ring and a quadratic space (L,D), for a quadratic form 
Q on RM we define the representation number RL(Q) as the number of isogenies 
(RM,Q) -+ (L, D). 

3. W h e n is Tmi H Tm2 fl Tm3 finite? 

We start with a lemma which guarantees the existence of elliptic curves such that 
the homomorphism module represents a given binary quadratic form. 

Lemma 3.1. — Let Q be a positive definite binary quadratic form over Z . Then 

there exist elliptic curves E, E' (with complex multiplication) over C such that Q = 

(Hom(E,E'),deg). 

Proof — By the dictionary between quadratic forms and lattices in imaginary 
quadratic number fields (see section 2), if Q is a positive definite binary quadratic 
form over Z and Q' — 1/2 q is the associated primitive form, then there exists d < 0, 
an order Rf = Z + fOq^y/d) - Q (v^) and an ideal a C Rf with Z-basis a, (3, such 
that 

Q'(x,y) = 
N(ax + ßy) 

N(a) 

A S T É R I S Q U E 312 



4. ARITHMETIC INTERSECTION NUMBERS 19 

For the elliptic curves C/Rfr and C/a we then have 

Hom(C/ i? /r ,C/a) = { 7 G C; jRfr Ç a} = a, 

and for 7 G H o m ( C / i ? / r , C / a ) , 

d e g 7 a : ^yRfr] = r - [a : ^Rf] — r 
N(y)+ 

N(a) = Qh)-

It has been shown already by Hurwitz that on Sc, two divisors Tmi and Tm2 
intersect in dimension 0 if and only if 7774777,2 is not a square; see [Vg]. In other 
words, they intersect in dimension 0 if and only if there is no unary quadratic form Q 
which represents both mi and 777,2. The following proposition gives us a completely 
analogous criterion for the intersection of three Tm's on S. 

Proposition 3.2. — The divisors Tmi, Tm2 and Tm3 intersect in dimension 0 if and 
only if there is no positive definite binary quadratic form over Z which represents mi, 
m2 and 777,3. 

In this case the support of Tmi fi Tm2 D Tm3 is contained in the zero cycle of pairs 
of super singular elliptic curves in characteristic p < 4mim2m3. 

Proof. — First suppose that mi, 777,2, ^ 3 are represented by the positive definite 
binary quadratic form F. Let E, E' be elliptic curves in characteristic 0 (with complex 
multiplication) such that Hom(.E, .E') = F. Then (E,EF) corresponds to a point of 
Tmi D Tm2 D Tm3, so this intersection must have dimension > 1. 

If, on the other hand, there is no positive definite binary quadratic form which 
simultaneously represents mi, m2 and 777,3, then for all points (E, E') of TmiCiT^PiT^ 
we must have rkHom(F, E') > 2, thus E and E' are supersingular, and in particular 
live in positive characteristic. 

Now fix a point (E, EF) G SYP which lies in the intersection Tmi fl Tm2 D Tm3. To 
complete the proof of the proposition, we have to show that p < 4mi777,2777,3. There 
exist isogenies fi G Hom(F, ER) of degree m ,̂ i — 1, 2, 3. 

Now consider the ternary quadratic form 

Q(xi1x2lx3) = deg(xi / i + X 2 / 2 + ^ 3 / 3 ) -

Since the matrix associated to Q is symmetric and positive definite, its determinant 
is smaller or equal than the product of the diagonal entries (see [Be, ch. 8, Thm. 5]), 
i.e., 

A := 
1 
2 

let Q < 4mim2m3. 

Note that A G Z (see [B] Lemma 1.1). 
Now the proposition follows from the following lemma. 

Lemma 3.3. — With notation as above, we have 

p\A. 
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20 U. GÖRTZ 

Proof. — Let us first assume that p > 2. 
We recall the following theorem on quadratic forms over Qp, see [Se, III Thm. 1, 

IV 2.1 and IV Thm. 6], for instance: 

Theorem 3.4. — If F is an anisotropic quadratic form of rank 4 over Qp, then its 
discriminant is a square, and its Hasse-Witt invariant ev is —1. 

Here, if we write F i 
'¿=1 aix\, ai G Qp, then 

ep= 
i<j 

[ai,CLj) G {1 , —1}, where (x,y) is the Hilbert symbol, 

(x,y) = ( -l )aB p - i 
2 

u 

p 

ß 
V 

p 

a 

, if x = pau, y = pßy, u, v G Z * , p / 2. 

Now Hom(£', £") (g) Q is isomorphic, up to scaling the form, to End(E) (g) Q with 
the quadratic form deg. But End(E) 0 Q is the quaternion algebra over Q ramified 
exactly at p and oo, and the degree form corresponds to the reduced norm (see [ W d l , 
2.2]). Hence det(deg \uom(E,E')) is a square. We also see that the quadratic form deg 
on Hom(E, E') is anisotropic over Qp, so its Hasse-Witt invariant ep is —1. 

Since the mi are not simultaneously represented by a binary quadratic form, the 
fi are linearly independent over Z . Now Hom(E, E') has square determinant and 
represents Q, so we have 

H o m ( £ , £ ' ) ® Q = Q ^ (A)> 

where (A) denotes the unary quadratic form x ^ Ax . Over Zp we can diagonalize Q: 

Q(x\, X2,xs) = ax\ + bx\ + cx\, a, 6, c G Zp 

Then A = 4afrc and ep = — 1 implies p|a6c, by the formulas above. 
For p = 2 the bound p < 4rai?7i2ra3 holds trivially, but the stronger assertion p|A 

is true in this case too. Namely, by [B] Prop. 4.7, the 2-adic valuation of A is equal to 
the sum a\ +a2 + a3 of the Gross Keating invariants of Q (see loc. cit.). Furthermore, 
since Q is anisotropic, the ai cannot all be 0 (loc. cit. Lemma 5.3). 

This concludes the proof of the lemma, and thus the proof of the proposition, as 
well. • 

We conclude this section by the following proposition which reformulates the cri-
terion we obtained above in terms of ternary quadratic forms. 

Proposition 3.5. — Let 1711,171211713 be positive integers. The following are equivalent: 
(1) There exists no positive definite integral binary quadratic form Q which repre-

sents m\, m2, and m%. 
(2) Every positive semi-definite half-integral symmetric matrix T with diagonal 

entries mi, 7712, m% is non-degenerate, i.e., detT 7^ 0. 
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(As usual, by half-integral we mean that the entries outside the diagonal lie in ^Z, 
and the diagonal entries are integers. We denote the set of half-integral symmetric 
n x n matrices by Sym(Z)v.) 

Proof. — Given a positive semi-definite T G Sym(Z)v with detT = 0, we get a Q as 
in (1) as follows: There exists an x G Z3 such that lxTx = 0, and we may assume 
that x is not divisible, i.e., that it generates a direct summand in Z3. Choosing a 
complement, we get a positive-semidefinite binary quadratic form which represents 
the vrti. It could happen that this form is degenerate, but then we can clearly find a 
positive definite form which still represents all the three mi. 

On the other hand, given a Q as in (1), choose XI,yi, such that Q(xl,yi) = m2, 
i = 1,2,3. The matrix (xy\ xy\ xy\ ) defines a map Z3 Z2, and expressing the ternary 
quadratic form which we get as the composition of this map with Q, we obtain a 
positive semi-definite half-integral symmetric matrix T with diagonal (mi, 7712,1713) 
which is obviously degenerate. • 

4. A formula for the intersection number 

From now on, we assume that Tmi, Tm2 and Tm3 intersect in dimension 0. We want 
to explain the final formula which we get for the intersection number, see Theorem 
4.3 below. The proofs of the main steps will follow in later chapters. 

We write 

(Pmi ' tm2 ' ^1713)S 

V 

n(p) logp, 

with 
n(p)= lgzp Zp(j,j')/(eml,em2,em3) 

(and n(p) — 0 for p > 4mim2m-3). 
Furthermore, n(p) is the sum of the intersection multiplicities in points (E, Ef) 

given by pairs of supersingular elliptic curves in characteristic p. Denote by j^E\j^E ^ 
their j-invariants. 

Let W = W{¥p) be the ring of Witt vectors of Fp, let j{E\j{E,) G W be lifts of 
j ( E ) ^ j ( E ) ^ respectively, and let 7̂ 0 be the completion of W[j, j'} in the ideal m = 
(p,j-j{E),j'-j{E,)). Then 

R*<*W[\j-j<E\j'-ïE\ 

On the other hand, if R denotes the universal deformation ring of the pair (E,Er), 
then R = W[[t,t% and R0 is isomorphic to the ring jRAut(£;)xAut(£;/) of mvariants 
under the finite group Aut(E) x Aut(E/) (cf. [ K M , 8.2.3]). Since R0 is regular, v3 is 
free over RQ (see [Ma, Theorem 23.1]) and since ± i d are the only automorphisms of 
the whole universal deformation, we have rkji0R = UEUE1-

We denote by (E, E') the universal pair of elliptic curves over Spf R. 
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22 U. GÖRTZ 

Lemma 4.1. — In R, the modular polynomial (pm factors as follows: 

em = 
f : E ^ E ' isoe. of 

degree m, mod ±1 

em,f, 

such that for each f, (y>m,f) C R is the smallest ideal ICR such that f lifts to an 
isogeny f: E —> E' modulo I. 

Proof. — Let / : E —> E' be an isogeny of degree m. Then its deformation functor 
Deff is pro-represented by a closed subscheme of Spf R (by the rigidity theorem), and 
this closed subscheme is a divisor, say div((^mj), (fmj £ R- (This is proved in [ K M , 
(6.8)] if m is a power of p, but the proof given there works in general. If p does not 
divide m, then Def/ is actually smooth.) 

Claim. — / / / and g are isogenies E —» E' of degree m, then the elements ipmj and 

^Pm.g are coprime unless f — ±g. 

To prove the claim, suppose that / and g are given such that Pmj and ipm,g are 
not coprime. Then div((^m,/) and div((pm^) have a common component C. Now 
C <g) Q must have dimension 1, so End(E ®Spf R C) = End(E' ®Spf R C) = Z 

By definition of (7, we have isogenies / , E 0sPf i? C —> E' <g)sPf # C of degree m. 
Since 7 ° / and * / o g are elements in End(E ®sPf R C) = Z of the same degree, we 
see that f = ±g. This proves the claim. 

Thus we get for the scheme-theoretic union 

U 
. / mod ±1 

Def f — div( n 
/ mod ±1 

emf). 

Since 

U 
/ mod ±1 

Def/(5) = div(^m)(5) 

for all S —> Spf i?, we obtain that (after possibly changing one of the <£m,/'s by a unit) 

em = n 
/ mod ±1 

em,f , 

Lemma 4.2. — Let A be a ring, B an A-algebra, and let x\,..., xn £ B. If none of 

the XI is a zero-divisor, then 

\gAB/(xi • • -XN) = 
N 

I=L 

\gAB/{Xi). • 

We can write 

{Tmi • Tni2 • Tm3) 

v 

log(p) 
[E,E')s.s. in char p 

(tml . tm2. tm3)(E.E'), 
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4. ARITHMETIC INTERSECTION NUMBERS 23 

and by applying Lemma 4.1 to cprni for i = 1,2,3, and applying lemma 4.2 successively, 
we get that the local contribution in a point (E, E') is 

t m l .  7  2 ' ) ( E , E > ) = l g W R o / ( < e m l , e m 2 , e m 3 ) 

= 
fl f2 F3 

1 

UEUE> 
lg5/(eml,fl, em2,f2,em3,f3) 

(4.1) = 
/¿,¿=1,2,3 

1 

uEuE> 
lgwr/I 

where the sums are over isogenies fi : E —» E' of degree mj, up to ± 1 , and where / is 

the smallest ideal in R such that / i , / 2 and / 3 lift to isogenies fi : E —> E' mod / . 

We write, using the notation of [R], 

OL{h,f2,f3) = kwR/L 

By the theorem of Serre-Tate, this global question about elliptic curves can be 
reduced to a local question about formal groups. This is the reason why we study 
deformations of isogenies between formal groups in detail in the following chapters. 

From [R, Theorem 1.1] we get that a ( i i , / 2 , / 3 ) depends only on the Zp-

isomorphism class of the ternary quadratic form Q: ( £ 1 , ^ 2 , £ 3 ) 1—» d e g ( ^ x ^ ) . We 
thus write ap(Q) instead of a ^ / i , / 2 , / 3 ) . Loc. cit. gives an explicit expression for 
ap(Q) in terms of the coefficients of Q. The number of occurrences of Q in (4.1) 
is ^Rnom(E,E') (Q) (because we count the isogenies up to ± 1 , but the representa-
tion number counts each triple ( / 1 , / 2 ? / 3 ) ) - Furthermore, for a positive definite 
ternary form Q, Ru0m(E,E')(Q) = 0 unless Q is isotropic over Qi for all £ ^ p, 

and anisotropic over Qp. The reason is that Hom(E1 E') 0 Q = End(E) 0 Q, and 
End(E) ® Q£ ^ M2(Qi) for £ ^ p, and End(£) ® Qp is a division algebra (see [ W d l , 
2.2]). On the other hand, in the latter case there exists a pair of supersingular 
elliptic curves E, E' in characteristic p, such that Q is represented by Hom(E', E') 

(see [ W d l , Proposition 3.2]). 

We have now 

n{p) = 
8 

(E,E') supers ingular ( Q 

Rftom{E,E')(Q) 

UEUE> 
xp(q) 

) 
Further Corollary 4.4 in [ W d l ] states that there are invariants F3G(Q) G Z > i which 

depend only on the isomorphism class of the ternary form Q over Z^, such that 

(4.2) 

{E,E') s.s. 

Rllom(E,E')(Q) 

UEUE> 
= 4 

£ I A 
l=p 

HQ). 

The invariants f3i are computed explicitly in [Wd2 , Proposition 2.1]. Altogether, we 
get the following theorem. 
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Theorem 43. — IfTmi, Tm2 and Tm3 intersect in dimension 0, then 

(Tmi -Tmz -Tm^s = log # Z [ j , / ] / ( ^ m i , Pm2 , ^ m 3 ) = 

p 
n(p) logp 

with 

n(p) = 
1 

2 
q V £| A l=p 

3i(Q) 

I 

aP(Q), 

where the sum runs over all positive definite ternary quadratic forms Q over Z with 

diagonal ( m i , ra2,7TI3) which are isotropic over Q# for all £ ^ p. 

In this way we get a very explicit formula for the intersection numbers. 
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