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6. L U B I N - T A T E F O R M A L G R O U P S 

by 

Volker Meusers 

Abstract. — We give an exposition of the theory of formal complex multiplication in 
local fields after Lubin and Tate. We recall the construction of Lubin-Tate modules, 
the structure of torsion points of their generic fibre and explicit local class field theory. 
We follow the original exposition of Lubin and Tate, and the exposition in Neukirch's 
book. 

Résumé (Groupes formels de Lubin-Tate). — Nous donnons une exposition de la théorie 
de la multiplication complexe formelle dans les corps locaux d'après Lubin et Tate. 
On rappelle la construction des modules de Lubin-Tate, la structure de leurs modules 
de torsion de leur fibre générique et la théorie du corps de classes locale explicite. On 
suit l'article original de Lubin et Tate, et le livre de Neukirch. 

1. Construction of Lubin-Tate Modules 

Let K be a field complete with respect to some discrete valuation. Let OK be 
its ring of integers, p its maximal ideal. Assume the residue field OK /p to be finite 
and let q be the number of its elements. Prime elements of OK are denoted by 7r or 
7f. Let k be an algebraic closure of 0 ^ / p - Let Ksep be a fixed separable closure of 
K and Knr C Ksep the maximal unramified extension of K. Let M and C denote 
the completions of Knr and Ksep. Denote by OM (resp. Oc) the ring of integers of 
M (resp. C). Let C be the category of complete local noetherian OK-algebras with 
residue field k. 

Definition 1.1. — Let i: OK -> R be an 0K-algebra, e.g. 0 ^ , OM or k. A for-
mal Ox-module over is a pair (H^H) consisting of a (one-dimensional commu-
tative) formal group law H(X,Y) E R[[X, Y}} together with a ring homomorphism 
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1H OK —• Endft(iï') C ^[[î1]] given by sending an element a G OK to the endomor-
phism 7 / / (a)(T) G ^[[T1]] of H(X,Y). As a normalization condition we require that 
the Ox-algebra structure on R induced by the isomorphism 

OK Lie ( i f ) , a i — > 
97^(a)(T) 

dT r=o 
agrees with the structure given by i: OK —> -R, in other words we require 7#(a) (T) 
to be of the form 

7 f f ( a ) ( T ) = i ( a ) r + . - - e i î [ [ r ] ] . 

We write [a](T) for 7#(a) (T) and a = z(a) G R if no confusion is possible. 

For i2 G 6 write H(R) for the abelian group (m#, + / / ) where we have set 
x +H V — H(x,y) for x,y G TOR- This converges since i2 is assumed to be complete. 
This group is also an (ordinary) Ox-module by setting ax = a-nx = [a](x). Note that 
unless (H, JH) is the formal additive group, i.e., (Ga(X, Y) = X+Y, 7^ (a)(T) = aT), 
this 0^-module structure is not the standard structure on mp as an ideal of R. For 
a finite extension L\K with ring of integers O j r , G C and maximal ideal TTIL C OL we 
set H(L) — H(xnL)- Similarly for infinite extensions after completion. 

The goal of this section is to construct, as for ordinary complex multiplication (see 
Remark 3.5 below), a formal Ox-module (G, 7G) over OM such that 

G[p) = n Ker(a) = G[TT] 

is isomorphic to the kernel of the Frobenius G ® k —> (G<S>k)^ when reduced modulo 
the maximal ideal of OM- Lubin and Tate construct G as a base change G = Hn ®oK 
OM of a formal Ox-module Hn over OK, the so called Lubin-Tate module associated 
to the prime element TT G OK- As we will see Hn depends on the chosen TT while G 
will be independent of it. 
By our normalization condition 7C(TT)(T) is of the form 

7GW(T) = ^ T + - - - G 0 X [ [ T ] ] . 

The condition on the Frobenius requires that 

7G(TT)(T) = Tq mod TT. 

This justifies the following definition: 

Definition 1.2. — A power series f(T) = TTT H G Ox[PI] such that 

f(T) = TQ mod TT 

is called a Lubin-Tate series associated to TT. The set of Lubin-Tate series for TT is 
denoted by 9^. A formal Ox-module (H,^H) over OK with JH(TT)(T) G 3^ is called 
Lubin-Tate module. 
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Examples 1.3 
(1) The simplest example of a Lubin-Tate-series is 

f(T) = 7rT + Tq G 3^. 

(2) In the cyclotomic case, i.e., for K = Qp, 0 ^ = Zp and TT — p G 7LV the 
polynomial 

/ ( T ) = (T + i )" - i = p T + P( . . . ) + T p e ^ . 

is a Lubin-Tate-series associated to TT = p. One easily checks that in this case the 
formal multiplicative group 

Gm(X,Y) = (l + X)(l + Y)-l 

is a Lubin-Tate module associated to f(T). 

The construction of Lubin-Tate-modules is based on the following lemma 

Lemma 1.4. — Let 7r, TT be two prime elements of M and f(T) G &n resp. g(T) G 3V-
LetL(Xu...,Xn) = n 

1=1 
aiXl be a linear form with coefficients in OM such that 

7 r L ( X i , . . . , Xn) = 7rL<7(Xi,..., Xn) 

where a is the continuous extension of the Frobenius in G a l ( K n r | i ^ ) to M. Then 
there exists a unique power series F(X\,..., Xn) G O M [ [ ^ I , • • •, Xn]] such that 

(i.i) F(X1,...,Xn) = L(Xu...,Xn)mod Xnf 

and 

(1.2) f(F(X1,.. .,Xn)) = F-(g(X1),.. .,g(Xn)). 

where ( X i , . . . , Xn) denotes the ideal generated by X\,.. ., Xn. If the coefficients of 
f.g^L lie in OK then F also has coefficients in OK. 

The idea of the proof is to construct F inductively modulo powers of the ideal 
generated by X\,..., Xn and then use the completeness of the power series ring. The 
induction starts with (1.1). For the induction step one plugs in (1.2) and uses that 
/ and g are Lubin-Tate series to see that the coefficients are in OM- See [N] for a 
detailed proof. 

We use the lemma to construct Lubin-Tate modules as follows: 
For f(T) G Ĵ TT let Hf(X, Y) be the unique solution of the equations 

Hf(X, Y)=X + Y mod (X, Y)2 

and 
f(Hf{X,Y)) = Hf(f(X),f(Y)) 

For each a G 0 ^ and f(T),g(T) G 3^ let [a]fig(T) be the unique solution of 

[a}fi9{T) = aT mod T2 

and 
f([a]fJT)) = \a]fJg(T)) 
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To simplify notations we shall write [a]f instead of [o]fj- The following theorem shows 
that the series Hf(X,Y) together with 7#f(a) (T) = [a]/(T) is in fact a Lubin-Tate 
module associated to / ( T ) . 

Theorem 1.5. — For any f(T) G 9 ^ the series Hf(X,Y) is a formal group law over 
OK, i-e., the following identities hold: 

HF(X,Y) = HF(Y,X) 

HF(HF(X,Y),Z) = HF(X,HF(Y,Z)) 

HF(X,0) = X 

HF(0,Y) = Y 

HF(X,[-L]F(X)) = 0. 

For g,h G 9 > and a, b G OK we have 

HF([A]F,G{X),[A]F,G(Y)) = [A]F,G(HG(X,Y)) 

[À\FJ[B]G,H(T)) = [AB]F,H(T) 

[A + B]FJT) = HF{[A]F,G{T),[B]F,G(T)) 

MAT) = F(T) 

[1UT) = T. 

In particular (Hf(X, Y), jHf) with 7 / / / (a)(T) = [a]f(T) is a Lubin-Tate-module such 
that 7# / (7 r ) (T) = f(T). For two series f(T),g(T) G 9"^ we have the canonical iso-
morphism 

Wf,g(T):HG = Hj 

of formal OK-modules over OK-

The equalities in the Theorem are all true modulo squares and follow from the 
uniqueness assertion of Lemma 1.4. For a detailed proof see [N, proof of Theo-
rem V.4.6]. 

Remark 1.6. — Although Hf does not depend on the particular choice / G 9r7r it does 
depend on the particular choice of the uniformizing element TT G OK- They become 
isomorphic over OM because of the following lemma. 

Lemma 1.7. — Let TT and TT be two prime elements of OK with TT — UTT for some unit 
u G 0K. Let a be the Frobenius of M as above. There exists some e G 0 ^ such 
that u — eG~x. Let f(T) G 9r7r and g(T) G 9 V be Lubin-Tate series. Then there 
exists a unique power series 0(X) G O a / [ [ ^ ] ] such that 0(X) = eX modulo (X)2 and 
f o 0 = 0a o g. Furthermore 0(X) induces an isomorphism Hg Hf of Lubin-Tate 
modules (defined over OM)-
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This is proved using Lemma 1.4. For a detailed proof see [N, Corollary V.2.3], and 
also [LT, Lemma 2]. 

2. Torsion points of the Generic Fibre 

Now fix some f G We want to describe the structure of torsion points of the 
generic fibre of Hf(C) as a Galois module. Recall that for every separable algebraic 
extension K C L C C we set Hf(L) = Hf(QL). If L1 C L then Hf{L{) C Hf(L). If 
L\L\ is Galois then Gal(L|Li) operates naturally on Hj{L) in a manner compatible 
with the Ox-module structure. This results from the fact that the Galois group 
operates continuously on OL and that Hf is defined over Ox Q 0LX- In this way 
Hf(L) becomes a Gal(L|Li) x Ox-module. For another g G 3^ the canonical map 
induced by [l]j^(T) is an isomorphism of Gal(L|Li) x Ox-modules. It commutes 
with the inclusions Hf{L\) C Hf(L). 

Set 

Af= 
m > 0 

Hf(C)[pm]cHf(C) 

Then Ay is a torsion Ox-module, i. e., the union over its sub-modules Af^m — A/[pm]. 
It is clear that the Galois extension K C i^-,™ := K(Af[m]) does not depend on 
/ G 3^. Let us denote its Galois group by G^,™, — G^L^^K). 

Theorem 2.1. — Let n be a prime element of OK o,nd f G 3 ^ . 
(1) The OK-module Af is divisible. 
(2) For each m, the OK-module Af^m is isomorphic to O x / p m -
(3) The OK-module Af is isomorphic to K/OK-
(4) For each r G Gn there exists a unique uT G 0K such that rX — [uT]f(X) for every 
X in Af. 
(5) The map r I-> uT is an isomorphism of Gn onto the group 0K, under which the 
quotients G^^m of Gn correspond to the quotients 0K/(1 + pm) of 0K. 

See [LT] for a proof. 

Example2.2. — In the cyclotomic case we get 1 + Af^m = tip-™, 1 + Af = fipoo. We 
have Gm(Qp) = pZp with addition given by the identification with 1 + pZp C Z * 
as a multiplicative subgroup. In this case the multiplicative structure is given by 
exponentiating, i.e., 

(a)f(t) = 
oo 

n = l 

a 

n 
Tn =(l+T)a - l 

for a G Zp. 
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3. Local Class Field Theory 

Let 7T G OK be a fixed prime element. Since is totally ramified over K , it is 
linearly disjoint from Knr over K, and the Galois group Gal(L7rXnr|i;f) is the product 
of Gyp = Ga^L^lK) and Gal(Knr\K). For each prime 7r in OK, we can therefore define 
a homomorphism 

p^: Kx —> GaliL^K^lK) 

such that 
(1) For each unit u G QK, the automorphism p^{u) is the identity on Knr, and on 
the reciprocal r"1 of the element rn G corresponding to w by the isomorphism of 
the theorem; and 
(2) p7r(7r) is the identity on Ln and is the Frobenius automorphism a on Knr. 

Thus for an arbitrary element a = UTY171 G K X we have, by definition: 

p^a) =am on KnT 

and 

\ P « W = [ii_1]/(A) for A G A / . 

Theorem 3.1. — TTie /ieZd L^Knr and the homomorphism pn are independent ofir. 

This follows easily from Lemma 1.7. See [LT] for a detailed proof. 

Corollary 3.2. — The field L^Knr is the maximal abelian extension of K, and pn is 
the reciprocity law homomorphism for it, i.e., 

pv(a) = {a,LnKnr\K) 

for every a G Kx. 

See [LTl for a proof. 

Remark 3.3. — Note that while both the field Ln and the reciprocity map pn can be 
defined in terms of a Lubin-Tate series alone, the proofs depend heavily on the extra 
structure given by the associated Lubin-Tate module. 

Example 3.4. — In the cyclotomic case we get for a = upVp^ G Q * that 

(a,QP(C)IQp)(C-i) = [ ^ - 1 ] / ( C - i ) 

or 

(a,Qp(C)IQP)C = C"1 

if ( = 1 -f À is a primitive pm-th root of unity or in other words À = ( — 1 G A/,m. 

Remark 3.5. — There are strong analogies with the classical theory of complex multi-
plication and explicit reciprocity laws for imaginary quadratic fields. In fact for every 
single statement presented here, there is an analogous one if one replaces the Lubin-
Tate modules by elliptic curves with complex multiplication. See for example [L]. 
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