7. FORMAL MODULI OF FORMAL \mathcal{O}_{K}-MODULES

by

Eva Viehmann \& Konstantin Ziegler

Abstract

We define formal \mathcal{O}_{K}-modules and their heights, following Drinfeld. To describe their universal deformations we introduce a formal cohomology group.

Résumé (Espaces de modules formels de \mathcal{O}_{K}-modules formels). - On définit les $\mathcal{O}_{K^{-}}$ modules formels et leurs hauteurs, suivant Drinfeld. Pour décrire leurs déformations universelles, on introduit un groupe de cohomologie formelle.

Notation. - Except in the proof of Lemma 2.1, all constant coefficients of power series are assumed to be 0 .

Acknowledgements. - During the preparation of Section 3 we profited from the talk given by S. Wewers in the ARGOS seminar. We thank I. Vollaard and W. Kroworsch for helpful comments on a preliminary version.

1. Formal modules

Let A, R be commutative rings with 1 and $i: A \rightarrow R$ a homomorphism. We also write a instead of $i(a)$ for the image of a under i.

Definition 1.1

1. A formal A-module over R is a commutative formal group law $F(X, Y)=X+$ $Y+\cdots \in R[[X, Y]]$ together with a ring homomorphism $\gamma: A \rightarrow \operatorname{End}_{R}(F)$ such that the induced map $A \rightarrow \operatorname{End}_{R}(\operatorname{Lie} F) \cong R$ is equal to the structure map i.
2. For $a \in A$ we write $\gamma(a)(X)=[a]_{F}(X)=a X+\cdots \in R[[X]]$ for the corresponding endomorphism of F. We will also use the notation $X+{ }_{F} Y$ instead of $F(X, Y)$.

2000 Mathematics Subject Classification. - 14L05, 14B12, 13D10, 14K15.
Key words and phrases. - Formal module, formal group, universal deformation.
3. A homomorphism of formal A-modules over R is a homomorphism $\varphi(X)$: $F(X, Y) \rightarrow G(X, Y)$ of formal group laws $F(X, Y), G(X, Y)$ over R such that $\varphi \circ \gamma_{F}(a)=\gamma_{G}(a) \circ \varphi$ for all $a \in A$. Denote by $\operatorname{Hom}_{R}(F, G)$ the set of homomorphisms from F to G.

Definition 1.2. - For $r \geq 2$ let $\nu_{r}=p$, if r is a power of a prime p, and $\nu_{r}=1$ else. Denote by

$$
C_{r}(X, Y)=\frac{1}{\nu_{r}}\left((X+Y)^{r}-X^{r}-Y^{r}\right)
$$

the modified binomial form of degree r.
Consider the functor which assigns to every A-Algebra R the set of formal A modules over R. It is represented by an algebra Λ_{A} which is generated by the indeterminate coefficients of the series F and $\gamma(a)$ and whose relations are those which are required by the condition that (F, γ) is a formal module. It has a natural grading: the degree of a coefficient is one less than the degree of the corresponding monomial in X, Y. It is induced by the action of \mathbb{G}_{m} on $\operatorname{Spf}(A[[t]])$. From this description (or by an elementary calculation) one sees that the grading is compatible with concatenation of power series. The elements of the form $a b$ with $\operatorname{deg} a, \operatorname{deg} b \geq 1$ generate a homogeneous ideal. Let $\tilde{\Lambda}_{A}$ be the quotient with induced grading $\tilde{\Lambda}_{A}=\bigoplus \tilde{\Lambda}_{A}^{n}$.

Denote by $\mathbb{G}_{a, R}$ the additive formal group law over R. With the canonical R-action $\gamma(a)=a X$, it becomes an R-module over R.

Lemma 1.3. - If A is an infinite field, then for each formal A-module over A there exists a unique isomorphism with $\mathbb{G}_{a, A}$ whose derivative at zero equals 1 . In this case there is a canonical isomorphism $\Lambda_{A} \cong A\left[c_{1}, c_{2}, \ldots\right]$ as graded algebras where $\operatorname{deg} c_{i}=i$.

To prove this lemma, one explicitly computes the desired isomorphism, compare [D, Prop. 1.2]. The c_{i} correspond to the coefficients of a homomorphism to the additive formal group law together with the standard A-module structure.

From now on let K be a complete discretely valued field with finite residue field \mathbb{F}_{q}, where $q=p^{l}$ for some prime p. Denote by \mathcal{O}_{K} the ring of integers of K. Let π be a uniformizer.

Theorem 1.4. - $\Lambda_{\mathcal{O}_{K}}$ and $\mathcal{O}_{K}\left[g_{1}, g_{2}, \ldots\right]$ are non-canonically isomorphic as graded algebras where $\operatorname{deg} g_{i}=i$.

Proof. - First we show that $\tilde{\Lambda}_{\mathcal{O}_{K}}^{n-1} \cong \mathcal{O}_{K}$ as \mathcal{O}_{K}-modules for all $n \geq 2$. For each i let F_{i} and $[a]_{i}$ denote the polynomials of degree i obtained from the universal formal module by leaving out all summands of higher degree. We write

$$
F_{n}(X, Y)=F_{n-1}(X, Y)+\sum_{i=1}^{n-1} c_{i} X^{i} Y^{n-i}
$$

and

$$
[a]_{n}=[a]_{n-1}+h(a) X^{n} .
$$

Then the c_{i} and $h(a)$ generate $\tilde{\Lambda}_{\mathcal{O}_{K}}^{n-1}$. As F is a formal group law, we obtain $\sum_{i=1}^{n-1} c_{i} X^{i} Y^{n-i}=\alpha C_{n}(X, Y)$ (compare [\mathbf{H}, Lemma 1.6.6]). Note that we need here that we consider elements in $\tilde{\Lambda}_{\mathcal{O}_{K}}$ and not in $\Lambda_{\mathcal{O}_{K}}$ itself. In particular, $\tilde{\Lambda}_{\mathcal{O}_{K}}^{n-1}$ is generated by α and $h(a)$. The condition that $\gamma: \mathcal{O}_{K} \rightarrow \operatorname{End}(F)$ is a homomorphism implies that modulo $(X, Y)^{n+1}$ we have

$$
\begin{aligned}
{[a b]_{n-1}(X)+h(a b) X^{n}=[a]_{n-1}\left([b]_{n-1}(X)\right.} & \left.+h(b) X^{n}\right)+h(a)(b X)^{n} \\
F_{n-1}\left([a]_{n-1}(X)+h(a) X^{n},[b]_{n-1}(X)+h(b) X^{n}\right) & +\alpha C_{n}(a X, b X) \\
& =[a+b]_{n-1}(X)+h(a+b) X^{n},
\end{aligned}
$$

and

$$
\begin{aligned}
& {[a]_{n-1}\left(F_{n-1}(X, Y)+\alpha C_{n}(X, Y)\right)+h(a)(X+Y)^{n}} \\
& \quad=F_{n-1}\left([a]_{n-1}(X)+h(a) X^{n},[a]_{n-1}(Y)+h(a) Y^{n}\right)+\alpha C_{n}(a X, a Y)
\end{aligned}
$$

In $\tilde{\Lambda}_{\mathcal{O}_{K}}^{n-1}$ this leads to the relations

$$
\begin{align*}
a h(b)+b^{n} h(a) & =h(a b) \tag{1.1}\\
h(a+b)-h(a)-h(b) & =\alpha C_{n}(a, b) \tag{1.2}\\
\left(a^{n}-a\right) \alpha & = \begin{cases}h(a) & \text { if } n \text { is not a power of a prime } \\
h(a) p^{\prime} & \text { if } n=p^{\prime \prime},\end{cases} \tag{1.3}
\end{align*}
$$

and these are all relations between the generators $\alpha, h(a)$ of $\tilde{\Lambda}_{\mathcal{O}_{K}}^{n-1}$. If n is invertible in \mathcal{O}_{K}, then (1.3) shows that each $h(a)$ is a multiple of α. If n is a power of p (where $q=p^{l}$) but not of q itself, then there exists an $a \in \mathcal{O}_{K}$ with $a^{n}-a \notin(\pi)$. From (1.1) we obtain $\left(a^{n}-a\right) h(b)=\left(b^{n}-b\right) h(a)$, thus $h(b)$ is a multiple of $h(a)$. Finally (1.2) shows that α is also a multiple of $h(a)$. Now let n be a power of q. By choosing $h(a) \mapsto\left(a^{n}-a\right) / \pi$ and $\alpha \mapsto p / \pi$ we define an epimorphism of \mathcal{O}_{K}-modules $\tilde{\Lambda}_{\mathcal{O}_{K}}^{n-1} \rightarrow \mathcal{O}_{K}$. It is well defined as (1.1)-(1.3) are the only relations of $\tilde{\Lambda}_{\mathcal{O}_{K}}^{n-1}$. It remains to prove that $\tilde{\Lambda}_{\mathcal{O}_{K}}^{n-1}$ is generated by $h(\pi)$. Let $M=\tilde{\Lambda}_{\mathcal{O}_{K}}^{n-1} /(h(\pi))$, and denote by $\bar{x} \in M$ the image of $x \in \tilde{\Lambda}_{\mathcal{O}_{K}}^{n-1}$. Then (1.1) shows that $\pi \overline{h(b)}=\overline{h(\pi b)}=\pi^{n} \overline{h(b)}$, thus $\overline{h(\pi b)}=0$ for all $b \in \mathcal{O}_{K}$. Besides, (1.3) shows $\left(\pi^{n}-\pi\right) \bar{\alpha}=\overline{h(\pi) p}=0$, hence $\pi \bar{\alpha}=0$, and M is an \mathbb{F}_{q}-vector space. As n is a power of q, (1.1) reduces to $a \overline{h(b)}+b \overline{h(a)}=\overline{h(a b)}$. This shows

$$
\overline{h(a)}=\overline{h\left(a^{n}\right)}=n \overline{a^{n-1} h(a)}=0
$$

for all a. Then (1.2) implies that $C_{n}(a, b) \bar{\alpha}=0$ for all $a, b \in \mathbb{F}_{q}$. By [H, Lemma 21.3.2], there is an $x \in \mathbb{F}_{p}$ with $C_{n}(x, 1) \neq 0$ in \mathbb{F}_{p}. Thus $\bar{\alpha}=0$ and $M=0$.

Hence in all cases $\tilde{\Lambda}_{\mathcal{O}_{K}}^{n-1} \cong \mathcal{O}_{K}$, and we have an epimorphism of graded algebras $\mathcal{O}_{K}\left[g_{1}, g_{2}, \ldots\right] \rightarrow \Lambda_{\mathcal{O}_{K}}$. Here g_{i} is a lift of a generator of $\tilde{\Lambda}_{\mathcal{O}_{K}}^{i}$. The construction of the isomorphism $\Lambda_{K} \cong K\left[c_{1}, c_{2}, \ldots\right]$ in Lemma 1.3 implies that the canonical morphism $\Lambda_{\mathcal{O}_{K}} \otimes K \rightarrow K\left[c_{1}, c_{2}, \ldots\right]$ which is compatible with the grading is also surjective. Comparing dimensions one sees that the epimorphism $\mathcal{O}_{K}\left[g_{1}, g_{2}, \ldots\right] \rightarrow \Lambda_{\mathcal{O}_{K}}$ is an isomorphism.

2. Heights

Let \mathcal{O}_{K} be as above and let R be a local \mathcal{O}_{K}-algebra of characteristic p with residue field k.

Lemma 2.1. - Let F, G be formal \mathcal{O}_{K}-modules over R and let $\alpha \in \operatorname{Hom}_{R}(F, G) \backslash\{0\}$. Then there is a unique integer $h=\operatorname{ht}(\alpha) \geq 0$ and $\beta \in R[[X]]$ with $\alpha(X)=\beta\left(X^{q^{h}}\right)$ and $\beta^{\prime}(0) \neq 0$. The integer h is called the height $\operatorname{ht}(\alpha)$ of α.

This lemma is analogous to the corresponding result over a field, compare $[\mathbf{H}$, 18.3.1]. For $\alpha=0$ we set $\operatorname{ht}(\alpha)=\infty$.

Proof. - We first show that $\alpha(X)=\beta\left(X^{p^{n}}\right)$ for some β with $\beta^{\prime}(0) \neq 0$. To do this we assume $\alpha(X) \neq 0$ with $(\partial \alpha / \partial X)(0)=0$ and show that $\alpha(X)=\beta\left(X^{p}\right)$ for some homomorphism β of (not necessarily the same) formal group laws. The claim then follows by induction.

Partial differentiation of $\alpha(F(X, Y))=G(\alpha(X), \alpha(Y))$ with respect to Y gives

$$
\frac{\partial \alpha}{\partial X}(F(X, Y)) \frac{\partial F}{\partial Y}(X, Y)=\frac{\partial G}{\partial Y}(\alpha(X), \alpha(Y)) \frac{\partial \alpha}{\partial X}(Y)
$$

Substituting $Y=0$ and using $(\partial \alpha / \partial X)(0)=0$ we obtain

$$
\frac{\partial \alpha}{\partial X}(X) \frac{\partial F}{\partial Y}(X, 0)=0
$$

As $(\partial F / \partial Y)(X, 0)=1+a_{1} X+\cdots \in R[[X]]^{\times}$, we obtain $\frac{\partial \alpha}{\partial X}(X)=0$. Hence $\alpha(X)=$ $\beta\left(X^{p}\right)$ for some $\beta \in R[[X]]$. Let $\sigma_{*} F$ be the formal group law obtained from F by raising each coefficient to the p th power. Then an easy calculation shows that β is a homomorphism from $\sigma_{*} F$ to G.

We now have to show that p^{n} is a power of q. Let $a \in \mathcal{O}_{K}$. Then

$$
[a]_{G}(\alpha(X))=\alpha\left([a]_{F}(X)\right)=\beta^{\prime}(0) i(a)^{p^{n}} X^{p^{n}}+\cdots
$$

and on the other hand

$$
[a]_{G}(\alpha(X))=\beta^{\prime}(0) i(a) X^{p^{n}}+\cdots .
$$

This implies $\beta^{\prime}(0)\left(i(a)-i\left(a^{p^{n}}\right)\right)=0$ with $\beta^{\prime}(0) \neq 0$, hence $i(a)-i\left(a^{p^{n}}\right)=i\left(a-a^{p^{n}}\right)$ maps to 0 in k. Thus $a^{p^{n}}=a$ for all $a \in \mathbb{F}_{q}$ and p^{n} is a power of q.

Definition 2.2. - The height of a formal \mathcal{O}_{K}-module F over R is

$$
\operatorname{ht}(F)= \begin{cases}h & \text { if }[\pi]_{F} \text { has height } h \\ \infty & \text { if }[\pi]_{F}=0\end{cases}
$$

Remark 2.3. - This definition is different from the definition of height of a formal module given in $[\mathbf{H}]$, where it is defined as the height of the reduction of the module over the residue field.

Lemma 2.4. - Let R be as above and let $\left(F, \gamma_{F}\right)$ be the formal \mathcal{O}_{K}-module corresponding to a homomorphism $\varphi: \Lambda_{\mathcal{O}_{K}} \rightarrow R$. Then $\operatorname{ht}(F)=\min \left\{i \mid \varphi\left(g_{q^{i}-1}\right) \neq 0\right\}$.

Proof. - In the proof of Theorem 1.4 we identified the generator $g_{q^{i}-1}$ of $\tilde{\Lambda}_{\mathcal{O}_{K}}^{q^{i}-1}$ with the coefficient of $X^{q^{i}}$ of $[\pi](X)$.

The following lemma reduces the examination of formal modules over fields and of their deformations to formal modules of an especially simple form. For a proof see [D, Prop. 1.7].

Lemma 2.5. - Let (F, γ) be a formal \mathcal{O}_{K}-module of height $h<\infty$ over a separably closed field k of characteristic $p>0$. Then F is isomorphic to a formal module ($F^{\prime}, \gamma^{\prime}$) over k with

$$
\begin{aligned}
F^{\prime}(X, Y) & \equiv X+Y \quad\left(\bmod \operatorname{deg} q^{h}\right) \\
{[a]_{F^{\prime}}(X) } & \equiv a X \quad\left(\bmod \operatorname{deg} q^{h}\right), \\
{[\pi]_{F^{\prime}}(X) } & =X^{q^{h}} .
\end{aligned}
$$

Such modules are called normal modules.
Fix an integer $h>1$ and let F_{0} be a formal \mathcal{O}_{K}-module of height h over k. Assume that R is a local artinian \mathcal{O}_{K}-algebra with maximal ideal \mathfrak{m} and residue field k. Let $I \triangleleft R$ be an ideal. We set $\bar{R}=R / I$. If F is a lift of F_{0} over R, we set $\bar{F}:=F \otimes_{R} \bar{R}$.

Lemma 2.6. - Let F, G be lifts of F_{0} over R. Then the reduction map

$$
\begin{equation*}
\operatorname{Hom}_{R}(F, G) \rightarrow \operatorname{Hom}_{\bar{R}}(\bar{F}, \bar{G}) \tag{2.1}
\end{equation*}
$$

is injective.
Proof. - The reduction map in (2.1) is the composition of finitely many maps

$$
\operatorname{Hom}_{R_{n+1}}\left(F \otimes R_{n+1}, G \otimes R_{n+1}\right) \rightarrow \operatorname{Hom}_{R_{n}}\left(F \otimes R_{n}, G \otimes R_{n}\right),
$$

where $R_{n}=R / I_{n}$ with $I_{n}=I \cap \mathfrak{m}^{n}$. We may therefore assume that $\mathfrak{m} \cdot I=0$. Then I is a finite dimensional k-vector space, and we have $I^{2}=0$. Let $\alpha(X)=a_{1} X+a_{2} X^{2}+\ldots$ be a homomorphism from F to G such that $\alpha(X) \equiv 0(\bmod I)$. We get

$$
\alpha\left([\pi]_{F}(X)\right)=[\pi]_{G}(\alpha(X))=0 .
$$

Since $\operatorname{ht}\left(F_{0}\right)<\infty$, we have $[\pi]_{F}(X) \neq 0(\bmod \mathfrak{m})$, thus $\alpha=0$ which proves the lemma.

From now on we may consider $\operatorname{Hom}_{R}(F, G)$ as a subset of $\operatorname{Hom}_{\bar{R}}(\bar{F}, \bar{G})$.

3. Deformations of modules, formal cohomology

Let F be a formal \mathcal{O}_{K}-module of height $h<\infty$ over k, and let M be a finite dimensional k-vector space. A symmetric 2-cocycle of F with coefficients in M is a
collection of power series $\Delta(X, Y) \in M[[X, Y]]$ and $\left\{\delta_{a}(X) \in M[[X]]\right\}_{a \in \mathcal{O}_{K}}$ satisfying

$$
\begin{align*}
\Delta(X, Y) & =\Delta(Y, X) \tag{3.1}\\
\Delta(X, Y)+\Delta(F(X, Y), Z) & =\Delta(Y, Z)+\Delta(X, F(Y, Z)) \tag{3.2}\\
\delta_{a}(X)+\delta_{a}(Y)+\Delta\left([a]_{F}(X),[a]_{F}(Y)\right) & =i(a) \Delta(X, Y)+\delta_{a}(F(X, Y)) \tag{3.3}\\
\delta_{a}(X)+\delta_{b}(X)+\Delta\left([a]_{F}(X),[b]_{F}(X)\right) & =\delta_{a+b}(X) \tag{3.4}\\
i(a) \delta_{b}(X)+\delta_{a}\left([b]_{F}(X)\right) & =\delta_{a b}(X) . \tag{3.5}
\end{align*}
$$

For any $\Psi \in M[[X]]$, the coboundary of Ψ is the symmetric 2-cocycle ($\Delta^{\Psi},\left\{\delta_{a}^{\Psi}\right\}$) with

$$
\begin{align*}
\Delta^{\Psi}(X, Y) & =\Psi(F(X, Y))-\Psi(X)-\Psi(Y) \tag{3.6}\\
\delta_{a}^{\Psi}(X) & =\Psi\left([a]_{F}(X)\right)-i(a) \Psi(X) . \tag{3.7}
\end{align*}
$$

The coboundaries form a subspace of the vector space $Z^{2}(F, M)$ of symmetric 2cocycles. The quotient of the symmetric 2 -cocycles by the coboundaries is a k-vector space denoted $H^{2}(F, M)$.

The following lemma is due to Keating, see [K2, Lemma 2.1].
Lemma 3.1. - A cocycle $\left(\Delta ;\left\{\delta_{a}\right\}\right) \in Z^{2}(F, M)$ is zero if and only if $\delta_{\pi}(X)=0$.
Proof. - If the cocyle is zero, then clearly $\delta_{\pi}(X)=0$. Assume conversely that $\delta_{\pi}(X)=0$. Substituting $a=\pi$ in (3.3) gives

$$
\Delta\left([\pi]_{F}(X),[\pi]_{F}(Y)\right)=0
$$

since $\delta_{\pi}(X)=0$ and $i(\pi)=0$. As $[\pi]_{F}(X) \neq 0$, this implies $\Delta(X, Y)=0$. Condition (3.5) with $a=\pi$ together with $\delta_{\pi}(X)=0$ shows $\delta_{\pi b}(X)=0$. The same formula with $b=\pi$ and a arbitrary gives $\delta_{a}\left([\pi]_{F}(X)\right)=0$. This implies that $\delta_{a}(X)=0$, so all components of the cocycle are zero.

In the following let R denote a local artinian \mathcal{O}_{K}-algebra with maximal ideal \mathfrak{m} and residue field k. Let $I \subseteq \mathfrak{m}$ be an ideal with $\mathfrak{m} I=0$. Then I is a k-vector space. We set $\bar{R}=R / I$. If F_{0} is a formal module over k and F is a lift of F_{0} over R, denote by $\bar{F}=F \otimes_{R} \bar{R}$ the reduction modulo I. The reduction modulo \mathfrak{m} of power series over R is denoted by $\cdot{ }^{*}$.

Proposition 3.2. - In the setting above let F_{0} be a formal \mathcal{O}_{K}-module over k and let $F, G \in R[[X, Y]]$ be formal \mathcal{O}_{K}-modules with $F^{*}=G^{*}=F_{0}$. For $\varphi(X) \in R[[X]]$ let $\bar{\varphi} \in \bar{R}[[X]]$ be the image. Assume that $\bar{\varphi}$ is a homomorphism from \bar{F} to \bar{G}. Then

1. There is an element of $Z^{2}\left(F_{0}, I\right)$ defined by

$$
\begin{aligned}
\Delta & =\varphi(F(X, Y))-{ }_{G} \varphi(X)-{ }_{G} \varphi(Y) \\
\delta_{a} & =\varphi\left([a]_{F}(X)\right)-{ }_{G}[a]_{G}(\varphi(X)) .
\end{aligned}
$$

2. $\left(\Delta ;\left\{\delta_{a}\right\}_{a}\right)=0$ if and only if $\varphi(X) \in \operatorname{Hom}_{R}(F, G)$.
3. The class of $\left(\Delta ;\left\{\delta_{a}\right\}_{a}\right)$ in $H^{2}\left(F_{0}, I\right)$ is independent of the choice of the lift φ of $\bar{\varphi}$. It vanishes if and only if $\bar{\varphi} \in \operatorname{Hom}_{R}(F, G) \subseteq \operatorname{Hom}_{\bar{R}}(\bar{F}, \bar{G})$. If $\left(\Delta ;\left\{\delta_{a}\right\}\right)$ is the coboundary of ψ, the lift of $\bar{\varphi}$ to a homomorphism over R is given by $\varphi-{ }_{G} \psi$.

Proof. - Applying φ to the left hand side of the associativity law for F

$$
\begin{equation*}
\left(X+{ }_{F} Y\right)+{ }_{F} Z=X+{ }_{F}\left(Y+_{F} Z\right) \tag{3.8}
\end{equation*}
$$

and using the definition of Δ, we get

$$
\begin{equation*}
\varphi(X)+{ }_{G} \varphi(Y)+{ }_{G} \varphi(Z)+{ }_{G} \Delta(X, Y)+{ }_{G} \Delta\left(X+{ }_{F} Y, Z\right) . \tag{3.9}
\end{equation*}
$$

Applying φ to the right hand side of (3.8), we get

$$
\begin{equation*}
\varphi(X)+{ }_{G} \varphi(Y)+{ }_{G} \varphi(Z)+{ }_{G} \Delta\left(X, Y+_{F} Z\right)+_{G} \Delta(Y, Z) \tag{3.10}
\end{equation*}
$$

From (3.10) and (3.9) we obtain

$$
\begin{equation*}
\Delta(X, Y)+_{G} \Delta\left(X+_{F} Y, Z\right)=\Delta\left(X, Y+_{F} Z\right)+_{G} \Delta(Y, Z) . \tag{3.11}
\end{equation*}
$$

Using the assumption $\mathfrak{m} \cdot I=0$, we see that (3.11) implies the second cocycle rule

$$
\begin{equation*}
\Delta(X, Y)+\Delta\left(X+F_{0} Y, Z\right)=\Delta\left(X, Y+_{F_{0}} Z\right)+\Delta(Y, Z) \tag{3.12}
\end{equation*}
$$

The other cocycle rules are proved in a similar manner, replacing (3.8) by the commutativity resp. the distributivity law of F. This proves 1 .

Part 2 of the proposition is a straightforward consequence of the definition of $\left(\Delta ;\left\{\delta_{a}\right\}\right)$. To prove 3., we continue with the notation used in the proof of 1 . Let $\varphi^{\prime}(X)$ be another lift of $\bar{\varphi}$, and let $\left(\Delta^{\prime} ;\left\{\delta_{a}^{\prime}\right\}\right)$ be the cocycle it defines. We can write $\varphi^{\prime}=\varphi+{ }_{G} \psi$, with $\psi \in I[[X]]$. Then

$$
\begin{aligned}
\varphi^{\prime}\left([\pi]_{F}(X)\right) & =[\pi]_{G}(\varphi(X))+{ }_{G} \delta_{\pi}(X)+{ }_{G} \psi\left([\pi]_{F}(X)\right) \\
& =[\pi]_{G}\left(\varphi^{\prime}(X)\right)+{ }_{G}\left(\delta_{\pi}(X)+{ }_{G} \psi\left([\pi]_{F}(X)\right)\right) .
\end{aligned}
$$

For the second equality we have used that $I \mathfrak{m}=0$. We conclude that $\delta_{\pi}^{\prime}(X)-\delta_{\pi}(X)=$ $\psi\left([\pi]_{F}(X)\right)$ is the π-component of the coboundary of ψ. Then Lemma 3.1 implies that the two cocycles differ by the coboundary of ψ. Hence $\left(\Delta ;\left\{\delta_{a}\right\}\right)$ and $\left(\Delta^{\prime} ;\left\{\delta_{a}^{\prime}\right\}\right)$ lie in the same class in $H^{2}\left(F_{0}, I\right)$. It follows from 2. that this class vanishes if and only if $\bar{\varphi} \in \operatorname{Hom}_{R}(F, G)$. This completes the proof of 3 . and the proposition.
Lemma 3.3. - In the setting of Proposition 3.2 let (F, γ) be a lift of F_{0} to R and let \bar{F} be the reduction to \bar{R}.

1. Proposition 3.2 defines a bijection between deformations of \bar{F} to R and cocycles in $Z^{2}\left(F_{0}, I\right)$. Its inverse is given by assigning to $\left(\Delta ;\left\{\delta_{a}\right\}\right)$ the deformation $F_{\Delta}(X, Y)=X+{ }_{F} Y+{ }_{F} \Delta(X, Y)$ and $\gamma_{\delta}(a)=\gamma(a)+_{F} \delta_{a}$.
2. Two cocycles are in the same cohomology class if and only if the corresponding deformations are isomorphic via an isomorphism which lifts the identity of \bar{F}.

Proof. - For the first assertion we have to check that $\left(F_{\Delta}, \gamma_{\delta}\right)$ is a formal module. From $I^{2}=0$ we obtain that the equations (3.1) to (3.5) also hold with F replaced by F_{Δ}. These equations immediately imply that $\left(F_{\Delta}, \gamma_{\delta}\right)$ is a formal module. For F_{Δ}, F and $\varphi=X$ we obtain the cocycle $\left(\Delta,\left\{\delta_{a}\right\}\right)$. Then the second assertion follows from Proposition 3.2, 3.

Corollary 3.4. - Let F_{0}, R, and I be as above with $\operatorname{char}(R)=p, \operatorname{ht}\left(F_{0}\right)=h$, and $\left(\Delta ;\left\{\delta_{a}\right\}\right) \in Z^{2}\left(F_{0}, I\right)$.

1. Let $g \leq h$. Then $\delta_{\pi}(X) \equiv 0\left(\bmod X^{q^{g-1}+1}\right)$ if and only if $\delta_{\pi} \in I\left[\left[X^{q^{g}}\right]\right]$.
2. The following are equivalent:
(a) The cocycle $\left(\Delta ;\left\{\delta_{a}\right\}\right)$ is the coboundary of some $\psi(X) \in I[[X]]$.
(b) $\delta_{\pi} \in I\left[\left[X^{q^{h}}\right]\right]$.
(c) Let (F, γ) be a lift of F_{0} to a formal \mathcal{O}_{K}-module over R. Then the identity of \bar{F} lifts to an isomorphism between (F, γ) and $\left(F_{\Delta}, \gamma_{\delta}\right)$.
If these conditions are satisfied, $\left(\Delta ;\left\{\delta_{a}\right\}\right)$ is the coboundary of $\psi=d \circ \beta^{-1}$ where $d\left(X^{q^{h}}\right)=\delta_{\pi}(X)$ and $\beta\left(X^{q^{h}}\right)=[\pi]_{F_{0}}(X)$.

Proof. - If $\delta_{\pi}(X) \equiv 0\left(\bmod X^{q^{g-1}+1}\right)$ then

$$
[\pi]_{F_{\Delta}}(X)=\delta_{\pi}(X)+_{F}[\pi]_{F}(X) \equiv 0 \quad\left(\bmod \left(X^{q^{g-1}+1}\right)\right),
$$

thus $\operatorname{ht}\left(F_{\Delta}\right)>g-1$. This shows that $\delta_{\pi}(X)=[\pi]_{F_{\Delta}}(X)-{ }_{F}[\pi]_{F}(X)$ is a power series in $X^{q^{g}}$. The other assertion of 1 . is trivial. The equivalence of (a) and (c) of 2. follows from Lemma 3.3. From Lemma 3.1 we see that $\left(\Delta ;\left\{\delta_{a}\right\}\right)=\left(\Delta^{\psi} ;\left\{\delta_{a}^{\psi}\right\}\right)$ for some ψ if and only if $\delta_{\pi}(X)=\delta_{\pi}^{\psi}(X)=\psi\left([\pi]_{F}(X)\right)=\psi\left([\pi]_{F_{0}}(X)\right)$. Here the last two equations follow from $I \mathfrak{m}=0$. As $\operatorname{ht}\left(F_{0}\right)=h$, this implies (b). On the other hand assume (b) and let $d\left(X^{q^{h}}\right)=\delta_{\pi}(X)$ and $\beta\left(X^{q^{h}}\right)=[\pi]_{F_{0}}(X)$. Then the π-component of the coboundary of $\psi=d \circ \beta^{-1}$ is δ_{π}.

Let $\hat{\mathcal{O}}_{K}^{n r}$ be the completion of the maximal unramified extension of \mathcal{O}_{K}. Denote by $\hat{\mathcal{O}}_{K}^{n r}[[t]]=\hat{\mathcal{O}}_{K}^{n r}\left[\left[t_{1}, \ldots, t_{h-1}\right]\right]$ the power series ring over $\hat{\mathcal{O}}_{K}^{n r}$ in $h-1$ variables. Let $k=\hat{\mathcal{O}}_{K}^{n r} /(\pi)$.

Lemma 3.5. - Let $\left(F, \gamma_{F}\right)$ be a normal \mathcal{O}_{K}-module over k of height $h<\infty$. Then there exists a formal \mathcal{O}_{K}-module (Γ, γ) over $\hat{\mathcal{O}}_{K}^{n r}[[t]]$ which over k reduces to F with the following property: For $1 \leq i \leq h-1$ denote by $\left(\Gamma_{i}, \gamma_{i}\right)$ the reduction to $\hat{\mathcal{O}}_{K}^{n r}[[t]] /\left(t_{1}, \ldots, t_{i-1}\right)$. Then

$$
\begin{equation*}
\gamma_{i}(\pi)(X) \equiv \pi X+t_{i} X^{q^{i}} \quad\left(\bmod \operatorname{deg}\left(q^{i}+1\right)\right) . \tag{3.13}
\end{equation*}
$$

Proof. - The module F corresponds to a map $\bar{\varphi}: \Lambda_{\mathcal{O}_{K}} \cong \mathcal{O}_{K}\left[g_{1}, g_{2}, \ldots\right] \rightarrow k$ with $g_{i} \mapsto 0$ for all $i<q^{h}-1$. Let $\varphi: \Lambda_{\mathcal{O}_{K}} \rightarrow \hat{\mathcal{O}}_{K}^{n r}$ be a lift with the same property. We choose

$$
f_{i}= \begin{cases}t_{j} & \text { if } i=q^{j}-1 \text { with } 1 \leq j<h-1 \\ \varphi\left(g_{i}\right) & \text { else. }\end{cases}
$$

Let Γ be the formal \mathcal{O}_{K}-module corresponding to the map $\Lambda_{\mathcal{O}_{K}} \rightarrow \hat{\mathcal{O}}_{K}^{n r}[[t]]$ which maps g_{i} to f_{i}. Then for $\left(\Gamma_{i}, \gamma_{i}\right)$ we see that $g_{q^{i}-1}$ is the first generator which is mapped to a nonzero element in $\hat{\mathcal{O}}_{K}^{n r}[[t]] /\left(t_{1}, \ldots, t_{i-1}\right)$. From the description of $\tilde{\Lambda}_{\mathcal{O}_{K}}^{q^{i}-1}$ in the proof of Theorem 1.4 we see that $\gamma_{i}(\pi)(X)$ has the desired form.

Note that a proof of this result can also be found in [GH, Section 12].
Let $\left(F, \gamma_{F}\right)$ be a normal formal \mathcal{O}_{K}-module of height $h<\infty$ over k. Let (Γ, γ) be the deformation over $\hat{\mathcal{O}}_{K}^{n r}[[t]]$ defined in Lemma 3.5. Let $\left(\Gamma^{i}, \gamma^{i}\right)$ be the reduction of (Γ, γ) to $k\left[\left[t_{i}\right]\right] /\left(t_{i}\right)^{2}=R_{i}$ and let $\left(F, \gamma_{F}\right)_{R_{i}}$ be the base change of $\left(F, \gamma_{F}\right)$ to R_{i}.

Proposition 3.6. - For F as above we have $\operatorname{dim}_{k} H^{2}(F, k)=h-1$. The cocycles $\left(\Delta^{i} ;\left\{\delta_{a}^{i}\right\}\right)$ associated to the pairs of deformations $\left(F, \gamma_{F}\right)_{R_{i}}$ and $\left(\Gamma^{i}, \gamma^{i}\right)$ with values in $t_{i} R_{i} \cong k$ satisfy

$$
\begin{equation*}
\delta_{\pi}^{i} \equiv t_{i} X^{q^{i}} \quad\left(\bmod \operatorname{deg} q^{i}+1\right) \tag{3.14}
\end{equation*}
$$

Their classes form a basis for $H^{2}(F, k)$.
Proof. - Equation (3.14) immediately follows from (3.13). Corollary 3.4, 2. shows that the π-components of coboundaries are power series in $X^{q^{h}}$. Thus (3.14) implies that the classes of the cocycles $\left(\Delta^{i} ;\left\{\delta_{a}^{i}\right\}\right)$ are linearly independent in $H^{2}(F, k)$. Let $\left(\Delta ;\left\{\delta_{a}\right\}\right) \in H^{2}(F, k)$. Then by Corollary 3.4, 1., δ_{π} is of the form $\beta\left(X^{q^{g}}\right)$ with $\beta^{\prime}(0) \neq 0$. If $g<h$ we subtract a suitable multiple of $\left(\Delta^{g} ;\left\{\delta_{a}^{g}\right\}\right)$ to annihilate the coefficient of $X^{q^{g}}$. In this way we can inductively represent the cocycle ($\left.\Delta ;\left\{\delta_{a}\right\}\right)$ as a linear combination of the $\left(\Delta^{i} ;\left\{\delta_{a}^{i}\right\}\right)$ plus a cocycle whose π-component is congruent to 0 modulo $X^{q^{h-1}+1}$. Hence by Corollary 3.4, the cohomology class is a linear combination of the classes of the $\left(\Delta^{i} ;\left\{\delta_{a}^{i}\right\}\right)$.

Definition 3.7. - Let R be a local ring with maximal ideal \mathfrak{m}. For a power series f with coefficients in R let f^{*} be the reduction modulo \mathfrak{m}. A $*$-isomorphism between \mathcal{O}_{K}-modules F, G over R is an isomorphism $\varphi \in \operatorname{Hom}_{R}(F, G)$ with $\varphi^{*}(X)=X$.

Let F be a fixed \mathcal{O}_{K}-module of height $h<\infty$ over $k=\hat{\mathcal{O}}_{K}^{n r} /(\pi)$. We consider the functor \mathcal{D}_{F} which assigns to each complete local noetherian $\hat{\mathcal{O}}_{K}^{n r}$-algebra R with residue field k and maximal ideal \mathfrak{m} the set of $*$-isomorphism classes of formal $\mathcal{O}_{K^{-}}$ modules over R that modulo \mathfrak{m} reduce to F.

Theorem 3.8 (Universal deformation). - Let $\left(F, \gamma_{F}\right)$ be an \mathcal{O}_{K}-module over k of height $h<\infty$. Then \mathcal{D}_{F} is represented by $\hat{\mathcal{O}}_{K}^{n r}[[t]]$.

Proof. - As k is separably closed, Lemma 2.5 shows that we may assume (F, γ_{F}) to be normal. Let (Γ, γ) be the deformation over $\hat{\mathcal{O}}_{K}^{n r}[[t]]$ of Lemma 3.5. Let $\left(\Phi, \gamma_{\Phi}\right) \in$ $\mathcal{D}_{F}(R)$ for some complete local noetherian $\hat{\mathcal{O}}_{K}^{n r}$-algebra R with residue field k and maximal ideal \mathfrak{m}. As R is complete, it is enough to show that for each $r \in \mathbb{N}$ the following holds: If the projection Φ_{r} of Φ to R / \mathfrak{m}^{r} corresponds to a homomorphism $\varphi_{r}: \hat{\mathcal{O}}_{K}^{n r}[[t]] \rightarrow R / \mathfrak{m}^{r}$, then there is a unique lift $\varphi_{r+1}: \hat{\mathcal{O}}_{K}^{n r}[[t]] \rightarrow R / \mathfrak{m}^{r+1}$ of φ_{r} corresponding to Φ_{r+1}.

Let ψ be any lift of φ_{r} to $R / \mathfrak{m}^{r+1}[[X]]$. Then the pair of deformations $\psi(\Gamma, \gamma)$, $\left(\Phi_{r+1}, \gamma_{\Phi_{r+1}}\right)$ corresponds to an element of $H^{2}\left(F, \mathfrak{m}^{r} / \mathfrak{m}^{r+1}\right)$, hence to a uniquely defined linear combination of the Δ^{i} with coefficients a_{i} in $\mathfrak{m}^{r} / \mathfrak{m}^{r+1}$. Let $\varphi_{r+1}\left(t_{i}\right)=$ $\psi\left(t_{i}\right)+a_{i}$. Then by Corollary 3.4, the deformations Φ_{r+1} and $\varphi_{r+1}(\Gamma, \gamma)$ of F over R / \mathfrak{m}^{r+1} are isomorphic via an isomorphism which lifts the given isomorphism over R / \mathfrak{m}^{r}. As the classes of the Δ^{i} are linearly independent, φ_{r+1} is unique.

References

[D] V. G. Drinfel'd - Elliptic modules, Math. USSR Sbornik 23 (1974), no. 4, p. 561-592.
[GH] B. H. Gross \& M. J. Hopkins - Equivariant vector bundles on the Lubin-Tate moduli space, in Topology and representation theory (Evanston, IL, 1992), Contemp. Math., vol. 158, Amer. Math. Soc., 1994, p. 23-88.
[H] M. Hazewinkel - Formal groups and Applications, Academic Press, 1978.
[K2] K. Keating - Lifting endomorphisms of formal A-modules, Compos. Math. 67 (1988), p. 211-239.
E. Viehmann, Mathematisches Institut der Universität Bonn, Beringstr. 1, 53115 Bonn, Germany E-mail : viehmann@math.uni-bonn.de
K. Ziegler, Mathematisches Institut der Universität Bonn, Beringstr. 1, 53115 Bonn, Germany E-mail : zieglerk@uni-bonn.de

