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7. FORMAL MODULI OF FORMAL Ox-MODULES

by

Eva Viehmann & Konstantin Ziegler

Abstract. — We define formal Og-modules and their heights, following Drinfeld. To
describe their universal deformations we introduce a formal cohomology group.

Résumé (Espaces de modules formels de O -modules formels). — On définit les Og-
modules formels et leurs hauteurs, suivant Drinfeld. Pour décrire leurs déformations
universelles, on introduit un groupe de cohomologie formelle.

Notation. Except in the proof of Lemma 2.1, all constant coefficients of power series
are assumed to be 0.

Acknowledgements. — During the preparation of Section 3 we profited from the talk
given by S. Wewers in the ARGOS seminar. We thank I. Vollaard and W. Kroworsch
for helpful comments on a preliminary version.

1. Formal modules

Let A, R be commutative rings with 1 and i : A — R a homomorphism. We also
write a instead of i(a) for the image of a under .

Definition 1.1

1. A formal A-module over R is a commutative formal group law F(X,Y) = X +
Y +--- € R[[X,Y]] together with a ring homomorphism v : A — Endg(F) such
that the induced map A — Endg(LieF’) 2 R is equal to the structure map 1.

2. For a € A we write y(a)(X) = [a]p(X) = aX + -+ € R[[X]] for the corre-
sponding endomorphism of F. We will also use the notation X +r Y instead of
F(X,Y).
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58 E. VIEHMANN & K. ZIEGLER

3. A homomorphism of formal A-modules over R is a homomorphism p(X) :
F(X)Y) — G(X,Y) of formal group laws F(X,Y),G(X,Y) over R such that
povr(a) = vg(a) oy for all @ € A. Denote by Hompg(F,G) the set of homo-
morphisms from F to G.

Definition 1.2. — For r > 2 let v, = p, if r is a power of a prime p, and v, = 1 else.
Denote by
1 : :
Co(X,¥) = (X +¥) = X"~ V")

the modified binomial form of degree r.

Consider the functor which assigns to every A-Algebra R the set of formal A-
modules over R. It is represented by an algebra A4 which is generated by the inde-
terminate coefficients of the series F' and v(a) and whose relations are those which
are required by the condition that (F,~) is a formal module. It has a natural grading:
the degree of a coefficient is one less than the degree of the corresponding monomial
in X,Y. It is induced by the action of G,, on Spf(A][t]]). From this description (or
by an elementary calculation) one sees that the grading is compatible with concate-
nation of power series. The elements of the form ab with dega,degb > 1 generate a
homogeneous ideal. Let A4 be the quotient with induced grading Ay = b AQ"

Denote by G, r the additive formal group law over R. With the canonical R-action
~v(a) = aX, it becomes an R-module over R.

Lemma 1.3. — If A is an infinite field, then for each formal A-module over A there
exists a unique isomorphism with G, 4 whose derivative at zero equals 1. In this
case there is a canonical isomorphism Aa = Alci,ca,...] as graded algebras where
degc; = 1.

To prove this lemma, one explicitly computes the desired isomorphism, compare
[D, Prop. 1.2]. The ¢; correspond to the coeflicients of a homomorphism to the
additive formal group law together with the standard A-module structure.

From now on let K be a complete discretely valued field with finite residue field
Fg, where ¢ = p! for some prime p. Denote by Ok the ring of integers of K. Let 7
be a uniformizer.

Theorem 1.4. — Ao, and Oklg1,92,...] are non-canonically isomorphic as graded
algebras where degg; = 1.

Proof. — First we show that A’é);l =~ Ok as Og-modules for all n > 2. For each i
let F; and [a]; denote the polynomials of degree i obtained from the universal formal
module by leaving out all summands of higher degree. We write

n—1
Fu(X,Y)=F, 1(X,Y)+ Y e XY™
i=1
and
la]n = [a]n—1 + h(a) X"
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7. FORMAL MODULI OF FORMAL Og-MODULES 59

Then the ¢; and h(a) generate A"@}l. As F is a formal group law, we obtain
Sl e XY = aCy(X,Y) (compare [H, Lemma 1.6.6]). Note that we need here
that we consider elements in Ao . and not in Ap, itself. In particular, A?D;l is
generated by « and h(a). The condition that v : Ox — End(F') is a homomorphism

implies that modulo (X,Y)"*! we have

[ab]n 1 (X) + h(ab) X™ = [a]n—1([b]n—1(X) + h(0)X™) + h(a) (0X)",

Fozr([aln—1(X) + h(@) X", [Bla-1(X) + (D) X™) + aCr(aX, bX)
= [a+bl—1(X) + h(a+b)X",

and

[a]n—1(Fr-1(X,Y) 4+ aCh(X,Y)) + h(a)(X +Y)"
= Fo_1([aln-1(X) + h(a) X", [a]n—1 (V) + h(a)Y™) + aCy(aX, aY).

In Ag;l this leads to the relations
(1.1) ah(b) +b"h(a) = h(ab)
(1.2)  h(a+b)—h(a)—h(d) = aC,(a,b)
(1.3) (" — a)a h(a) 1f n is n?t a power of a prime

hia)p’ iftn=p",
and these are all relations between the generators «, h(a) of ]\?9;1 If n is invertible
in Ok, then (1.3) shows that each h(a) is a multiple of o. If n is a power of p
(where ¢ = p') but not of ¢ itself, then there exists an a € Ok with a® — a ¢ (7).
From (1.1) we obtain (a™ — a)h(b) = (b™ — b)h(a), thus h(b) is a multiple of h(a).
Finally (1.2) shows that « is also a multiple of h(a). Now let n be a power of ¢q. By
choosing h(a) — (a™ — a)/7 and o+ p/7 we define an epimorphism of Ox-modules
A”@}l — Og. It is well defined as (1.1)-(1.3) are the only relations of A’é:{l. It remains
to prove that Ag}l is generated by h(m). Let M = ]\g;,l/(h(ﬂ)), and denote by T € M
the image of x € A’é;l Then (1.1) shows that 7h(b) = h(wb) = 7™ h(b), thus h(wd) =0
for all b € Ok. Besides, (1.3) shows (7" — w)a = h(m)p = 0, hence 7a = 0, and M
is an F,-vector space. As n is a power of ¢, (1.1) reduces to ah(b) + bh(a) = h(ab).
This shows

h{a) = h(a™) = na™th(a) =0
for all a. Then (1.2) implies that C,,(a,b)a = 0 for alla,b € F,. By [H, Lemma 21.3.2],
there is an 2 € F), with Cp,(x,1) # 0 in F,,. Thus @ = 0 and M = 0.

Hence in all cases Ag;l > Ok, and we have an epimorphism of graded algebras
Oxklg1,92,-..] = Ao, . Here g; is a lift of a generator of AEK The construction of the
isomorphism Ag = K|ci, ¢a,...] in Lemma 1.3 implies that the canonical morphism
Ao, ® K — Klci,ca,...] which is compatible with the grading is also surjective.
Comparing dimensions one sees that the epimorphism Og[g1,92,...] — Ao, is an
isomorphism. O
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60 E. VIEHMANN & K. ZIEGLER

2. Heights

Let Ok be as above and let R be a local Og-algebra of characteristic p with residue
field k.

Lemma 2.1. — Let F,G be formal O -modules over R and let « € Hompg(F, G)\ {0}.
Then there is a unique integer h = ht(a) > 0 and 8 € R[[X]] with a(X) = B(xa")
and 3'(0) # 0. The integer h is called the height ht(a) of «.

This lemma is analogous to the corresponding result over a field, compare [H,
18.3.1]. For a = 0 we set ht(a) = oo.

Proof. We first show that a(X) = B(X?") for some 3 with #(0) # 0. To do this
we assume o(X) # 0 with (0a/0X)(0) = 0 and show that a(X) = B(X?) for some
homomorphism 3 of (not necessarily the same) formal group laws. The claim then
follows by induction.
Partial differentiation of ()/(F(X Y)) = G(a(X),a(Y)) with respect to Y gives
1oJe} oG O
O (P ILX ) = S a(X), a¥) o (1),
Substituting Y = 0 and using (E)a/OX)(()) = 0 we obtain
Ja
0X
As (OF/9Y)(X,0) = 1+a; X +--- € R[[X]]*, we obtain 2%(X) = 0. Hence a(X) =

X
B(XP) for some 8 € R[[X]]. Let 0. F be the formal group law obtained from F' by

raising each coefficient to the pth power. Then an easy calculation shows that 3 is a
homomorphism from o, F' to G.
We now have to show that p™ is a power of q. Let a € Ok. Then

[a]a(a(X)) = a(la]p(X)) = F(0)i(a)?” XP" + -

and on the other hand

(X)—(X 0) = 0.

lala(a(X)) = F'(0)i(a) X" +
This implies 3'(0)(i(a) — i(a?")) = 0 with #(0) # 0, hence i(a) — i(a?") = i(a — a”")
maps to 0 in k. Thus a?” = a for all a € F, and p™ is a power of ¢. |

Definition 2.2. — The height of a formal Ox-module F over R is

ht(F) h  if [7]F has height h
1 =
oo if [7]p = 0.

Remark 2.3. — This definition is different from the definition of height of a formal
module given in [H], where it is defined as the height of the reduction of the module
over the residue field.

Lemma2.4. — Let R be as above and let (F,vyr) be the formal Og-module corre-
sponding to a homomorphism ¢ : Ao, — R. Then ht(F) = min{i|¢(gqi_1) # 0}.
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7. FORMAL MODULI OF FORMAL Og-MODULES 61

Proof. — In the proof of Theorem 1.4 we identified the generator g,i _; of ]\qo:l with
the coefficient of X' of [r](X). O

The following lemma reduces the examination of formal modules over fields and of
their deformations to formal modules of an especially simple form. For a proof see [D,
Prop. 1.7].

Lemma 2.5. Let (F,v) be a formal Ok -module of height h < oo over a separably
closed field k of characteristic p > 0. Then F is isomorphic to a formal module
(F'.~") over k with

F'(X)Y) = X+Y (moddegqh),
l[alp (X)) = aX (mod deg ¢"),
[mlr(X) = X7

Such modules are called normal modules.

Fix an integer h > 1 and let Fy be a formal Og-module of height h over k. Assume
that R is a local artinian Og-algebra with maximal ideal m and residue field k. Let
I < R be an ideal. We set R = R/I. If F' is a lift of Fy over R, we set F':= F ®pr R.

Lemma 2.6. Let F,G be lifts of Fy over R. Then the reduction map
(2.1) Hompg(F,G) — Homg(F, G)

18 1njective.

Proof. — The reduction map in (2.1) is the composition of finitely many maps
Homp, ,,(F ® Ry+1,G® Rpt41) — Homp, (F® R,,G R R,),

where R,, = R/I, with I, = INnm™. We may therefore assume that m-/ = 0. Then I is
a finite dimensional k-vector space, and we have I? = 0. Let a(X) = a; X +a X2 +. ..
be a homomorphism from F to G such that a(X) =0 (mod I). We get

a([r]r (X)) = [r]a(a(X)) = 0.

Since ht(Fp) < oo, we have [7]p(X) # 0 (mod m), thus @ = 0 which proves the
lemma. |

From now on we may consider Hompg(F,G) as a subset of Homy(F,G).

3. Deformations of modules, formal cohomology

Let F' be a formal Og-module of height h < oo over k, and let M be a finite
dimensional k-vector space. A symmetric 2-cocycle of F with coefficients in M is a
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62 E. VIEHMANN & K. ZIEGLER

collection of power series A(X,Y) € M[[X,Y]] and {6.(X) € M[[X]]}eco, satisfying

(3.1) A(XY) =AY, X)

(3.2) A(X,Y) + A(F(X ) 7) =AY, Z) + AX.F(Y. 2))

(3-3) o(X) +0a(Y) + A([a] p(X), [(1] (Y) = i(a)A(X,Y) + da(F(X,Y))

(34)  8u(X) + 0(X) + Allap(X), [P](X)) = dusn(X)

(3.5) i(a)op(X) + 0 ([b] p (X)) = dap(X).

For any ¥ € M|[[X]], the coboundary of W is the symmetric 2-cocycle (AY, {§¥}) with
(3.6) AY(X,Y) = W(F(X,Y)) - ¥(X)-W(Y)

(3.7) SYX) = W((ale(X)) — i) ¥(X).

The coboundaries form a subspace of the vector space Z2(F, M) of symmetric 2-
cocycles. The quotient of the symmetric 2-cocycles by the coboundaries is a k-vector
space denoted H?(F, M).

The following lemma is due to Keating, see [K2, Lemma 2.1].

Lemma 3.1. — A cocycle (A;{d.}) € Z%(F, M) is zero if and only if (X)) = 0.

Proof. — If the cocyle is zero, then clearly §,(X) = 0. Assume conversely that
0x(X) = 0. Substituting a = 7 in (3.3) gives

A([#]p(X), [7]r(Y)) = 0,
since 0,(X) =0 and i(w) = 0. As [7]p(X) # 0, this implies A(X,Y) = 0. Condition

(3.5) with a = 7 together with 6,(X) = 0 shows d,,(X) = 0. The same formula with
b = 7 and a arbitrary gives d,([7](X)) = 0. This implies that §,(X) = 0, so all
components of the cocycle are zero. O

In the following let R denote a local artinian Ok-algebra with maximal ideal m
and residue field k. Let I € m be an ideal with m/ = 0. Then [ is a k-vector space.
We set R = R/I. If Fy is a formal module over k and F is a lift of Fy over R, denote
by F = F ®r R the reduction modulo I. The reduction modulo m of power series
over R is denoted by -*

Proposition 3.2. — In the setting above let Fy be a formal Og-module over k and let
.G € R[[X.,Y]] be formal Ok -modules with F* = G* = Fy. For p(X) € R[[X]] let
? € R[[X]] be the image. Assume that P is a homomorphism from F to G. Then

1. There is an element of Z*(Fy, 1) defined by
A=p(F(X,Y))—ce(X)—¢ oY)
da = ¢(lalr (X)) —¢ lala(p(X)).

2. (A;{da}ta) =0 if and only if (X)) € Homg(F,G).

3. The class of (A;{64}a) in H?(Fy, I) is independent of the choice of the lift ¢ of
P. It vanishes if and only if p € Homg(F,G) C Homy(F,G). If (A;{d.}) is
the coboundary of ¥, the lift of © to a homomorphism over R is given by ¢ —g .
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7. FORMAL MODULI OF FORMAL Ox-MODULES 63

Proof. — Applying ¢ to the left hand side of the associativity law for F’

(3.8) X+ Y)4+rpZ=X+r Y +rZ)

and using the definition of A, we get

(3.9) P(X) 40 ¢(Y) +6 9(Z) +6 AX.Y) +6 AX +£ Y, 2),

Applying ¢ to the right hand side of (3.8), we get

(3.10) o(X)+a oY) +a o(Z) +a AX,Y +r Z) +6 A(Y, 2).

From (3.10) and (3.9) we obtain

(3.11) AXY)+c AX +r Y, Z2) = AX,)Y +r Z) +¢ AY, Z).

Using the assumption m - I = 0, we see that (3.11) implies the second cocycle rule
(3.12) AX, Y+ AX 4/ Y, 2) = AX,Y +5, Z2) + A(Y, Z).

The other cocycle rules are proved in a similar manner, replacing (3.8) by the com-
mutativity resp. the distributivity law of F. This proves 1.

Part 2 of the proposition is a straightforward consequence of the definition of
(A;{d.}). To prove 3., we continue with the notation used in the proof of 1. Let
©'(X) be another lift of g, and let (A’; {d.}) be the cocycle it defines. We can write
¢ =@ +¢ 1, with ¢ € I[[X]]. Then

' ([r]r (X)) = [7la(@(X)) +6 6x(X) +c Y([7]r (X))
= [m]a(¢' (X)) +6 (0(X) +c ¥([7]r (X))

For the second equality we have used that Im = 0. We conclude that /(X )—d,(X) =
Y([r] (X)) is the m-component of the coboundary of ¢». Then Lemma 3.1 implies that
the two cocycles differ by the coboundary of 1. Hence (A;{d,}) and (A’; {4, }) lie in
the same class in H?(Fp, I). It follows from 2. that this class vanishes if and only if
@ € Hompg(F,G). This completes the proof of 3. and the proposition. O

Lemma 3.3. — In the setting of Proposition 3.2 let (F,~) be a lift of Fy to R and let
F be the reduction to R.

1. Proposition 3.2 defines a bijection between deformations of F' to R and cocycles
in Z?(Fy,I). Its inverse is given by assigning to (A;{d.}) the deformation
FA(X,Y)=X+rY +r A(X,Y) and vs(a) = v(a) +F da.

2. Two cocycles are in the same cohomology class if and only if the corresponding
deformations are isomorphic via an isomorphism which lifts the identity of .

Proof. — For the first assertion we have to check that (Fa,7s) is a formal module.
From I? = 0 we obtain that the equations (3.1) to (3.5) also hold with F replaced by
Fa. These equations immediately imply that (Fa,~s) is a formal module. For Fa, F
and ¢ = X we obtain the cocycle (A, {d,}). Then the second assertion follows from
Proposition 3.2, 3. |

Corollary 3.4. — Let Fy, R, and I be as above with char(R) = p, ht(Fy) = h, and
(A;{0.}) € Z3(Fy, I).
1. Let g < h. Then 6,(X) =0 (mod X7 '+1) if and only if 6, € I[[X"’]).
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2. The following are equivalent:
(a) The cocycle (A;{d4}) is the coboundary of some (X)) € I[X]].
(b) &, € I[[X9"]).
(¢) Let (F,~) be alift of Fy to a formal Ok -module over R. Then the identity
of F lifts to an isomorphism between (F,~) and (Fa,7s).
If these conditions are satisfied, (A;{0,}) is the coboundary of » = do3~' where

d(XT") = 6:(X) and B(X") = [n] 1, (X).
Proof. — If 6,(X) =0 (mod X '+1) then
(7] ra (X) = 0:(X) +p [7]p(X) =0 (mod (X7 "+1)),

thus ht(Fa) > ¢g — 1. This shows that 0,(X) = [7]py (X) —F [7]p(X) is a power
series in X9°. The other assertion of 1. is trivial. The equivalence of (a) and (c) of 2.
follows from Lemma 3.3. From Lemma 3.1 we see that (A;{d.}) = (AY;{5¥}) for
some v if and only if 6, (X) = §¥(X) = (7] (X)) = ¥([7]r, (X)). Here the last two
equations follow from Im = 0. As ht(Fp) = h, this implies (b). On the other hand
assume (b) and let d(X7") = §,(X) and B(X") = [7]p (X). Then the m-component
of the coboundary of ¢ = do 371 is 4. O

Let O% be the completion of the maximal unramified extension of Ok . Denote
nr

by O [[t]] = O [[t1, - .., th_1]] the power series ring over O in h — 1 variables. Let
k=0 /().

Lemma 3.5. — Let (F,vp) be a normal Ok -module over k of height h < co. Then
there exists a formal Oy -module (T,7) over OW([t]] which over k reduces to F
with the following property: For 1 < i < h — 1 denote by (I';,7v:) the reduction to
O ([t]])/(ty, ... tic1). Then

(3.13) %(m)(X) = 71X + ;X9 (mod deg(q’ + 1)).

Proof. — The module F corresponds to a map @ : Ao, = Oklg1,92,-..] — k with
gi — 0 for all i < ¢" —1. Let ¢ : Ao, — O be a lift with the same property. We
choose
) tj ifi=¢ —1withl<j<h-1
i =
w(gi) else.

Let T be the formal Og-module corresponding to the map Ao, — O [[t] which
maps g; to f;. Then for (I';,v;) we see that g,y is the first generator which is
mapped to a nonzero element in O [[t]]/(t1, ..., ti_1). From the description of Ag;l
in the proof of Theorem 1.4 we see that ~y;(7)(X) has the desired form. O

Note that a proof of this result can also be found in [GH, Section 12].

Let (F,~vr) be a normal formal Og-module of height h < oo over k. Let (T',v) be
the deformation over O%[[t]] defined in Lemma 3.5. Let (I',4%) be the reduction of
(T',7) to k[[t:]]/(t:)*> = R; and let (F,vr)g, be the base change of (F,vr) to R;.
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Proposition 3.6. — For F as above we have dimy H?(F, k) = h — 1. The cocycles
(A% {56L}) associated to the pairs of deformations (F,yr)r, and (I',~") with values
in t;R; = k satisfy

(3.14) 68 = ;X9 (mod degq’ + 1).
Their classes form a basis for H*(F, k).

Proof. — Equation (3.14) immediately follows from (3.13). Corollary 3.4, 2. shows
that the m-components of coboundaries are power series in X " Thus (3.14) implies
that the classes of the cocycles (A% {6:}) are linearly independent in H?(F, k). Let
(A;{8.}) € H?(F,k). Then by Corollary 3.4, 1., d, is of the form B(X9") with
B'(0) # 0. If g < h we subtract a suitable multiple of (AY;{§?}) to annihilate the
coefficient of X°. In this way we can inductively represent the cocycle (A;{6,}) as a
linear combination of the (A% {d%}) plus a cocycle whose m-component is congruent
to 0 modulo X% '*1. Hence by Corollary 3.4, the cohomology class is a linear
combination of the classes of the (A% {4%}). O

Definition 3.7. — Let R be a local ring with maximal ideal m. For a power series f
with coefficients in R let f* be the reduction modulo m. A x-isomorphism between
Og-modules F, G over R is an isomorphism ¢ € Hompg(F,G) with ¢*(X) = X.

Let F be a fixed Og-module of height h < oo over k = (’}’}(’ /(7). We consider
the functor Dp which assigns to each complete local noetherian O} -algebra R with
residue field & and maximal ideal m the set of *-isomorphism classes of formal Og-

modules over R that modulo m reduce to F'.

Theorem 3.8 (Universal deformation). — Let (F.vyr) be an Og-module over k of
height h < co. Then Dr is represented by O [[t]].

Proof. — As k is separably closed, Lemma 2.5 shows that we may assume (F,~vpg) to
be normal. Let (I',~) be the deformation over @77 [[t]] of Lemma 3.5. Let (®,vq) €
Dr(R) for some complete local noetherian A?{—algebra R with residue field £ and
maximal ideal m. As R is complete, it is enough to show that for cach r € N the
following holds: If the projection ®, of ® to R/m" corresponds to a homomorphism
@r = O [[t]] — R/m”, then there is a unique lift o, : O [[t]] — R/m"t! of @,
corresponding to @, .

Let 1 be any lift of ¢, to R/m"1[[X]]. Then the pair of deformations ¢ (T, ),
(®r41,7®,,,) corresponds to an element of H*(F,m"/m"*1), hence to a uniquely
defined linear combination of the A’ with coefficients a; in m”/m"™*1. Let ¢, y1(t;) =
¥(t;) + a;. Then by Corollary 3.4, the deformations ®,..1 and ¢, 1(I',v) of F over
R/m"1 are isomorphic via an isomorphism which lifts the given isomorphism over
R/m"”. As the classes of the A’ are linearly independent, ¢, is unique. O
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