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8. C A N O N I C A L A N D Q U A S I - C A N O N I C A L L I F T I N G S 

by 

Stefan Wewers 

Abstract. — The present note gives a detailed account of the paper of Gross on 
canonical and quasi-canonical liftings. These are liftings of formal O-modules with 
extra endomorphisms, and thus correspond to CM-points in the universal deformation 
space. 

Résumé (Relèvements canoniques et quasi-canoniques). — Nous donnons un exposé dé-
taillé des travaux de Gross sur les relèvements canoniques et quasi-canoniques des 
(O-modules formels, qui correspondent aux points CM dans l'espace de déformations 
universel. 

The present note gives a detailed account of Gross' paper [G] on canonical and 
quasi-canonical liftings. We make heavy use of results of Lubin and Tate [LT2] and 
Drinfeld [D] which are reviewed in [VZ]. All the results presented here have been 
generalized to the case of arbitrary finite height by J. K. Yu [Yu]. 

I thank Eva Viehmann, Inken Vollaard and Michael Rapoport for careful proof-
reading and helpful discussions. 

1. Canonical lifts 

In this section we study canonical lifts of a formal Ok-niodule of height two with 
respect to a quadratic extension L/K. In particular, we prove the first main result 
of [G] which computes the endomorphism ring of the reduction of a canonical lift 
modulo some power of the prime ideal of OK-

2000 Mathematics Subject Classification. — 14L05, 14K22. 
Key words and phrases. — Formal (O-modules, canonical liftings, Lubin-Tate theory. 

© Astérisque 312, SMF 2007 



68 S. +WEWERS 

1.1. Throughout this note, K denotes a field which is complete with respect to a 
discrete valuation v, and whose residue class field is finite, with q = pf elements. We 
denote by O x the ring of integers of K. We fix a prime element TT of K, and we 
assume that V(TT) = 1. 

Let i : OK —> R be an Ox-algebra. Recall that a formal OK-module over R 
is given by a commutative formal group law F(X, Y) = X + Y + • • • G R^X, Y}} 
together with a ring homomorphism 7 : OK —> End#(F) such that the induced map 
OK —• End#(LieF) = R is equal to the structure map i. Whenever this is not likely 
to be confusing, we will omit the maps i and 7 from the notation. Given an element 
a G OK, we write [O\F(X) = i(a)X + - • • G R((X)) for the corresponding endomorphism 
of F. 

If Fi, F2 are two formal Ox-modules over R, we write Homfl(Fi, F2) for the 
group of homomorphisms a : F\ —» F2 of formal Ox-modules, i.e., Ox-hnear ho-
momorphisms of formal groups. Similarly, End#(F) denotes the (in general non-
commutative) ring of OxThiear endomorphisms of F. Note that End^(F) is an O x -
algebra. 

1.2. Let k be an algebraic closure of the residue class field of OK- We regard k as 
an Ox-algebra, and write a G k for the image of an element a G Ox-

Let G be a formal Ox-module over k and let a G k ((X)) be an endomorphism of 
G, with a ^ 0. By [VZ, Lemma 2.1], there exists an integer h = ht(a) > 0, called 
the height of a, such that a ( X ) = /^(A9 ), with ^ ' ( 0 ) 7̂  0. It is easy to check that 
the function ht : End^(G) —» Z>o U {00} (we set ht(0) : = 00) is a valuation on the 
Ox-algebra End^(G). We say that the formal Ox-module G has height h, if the 
endomorphism [TT]G has height h. In other words, the restriction of the valuation ht 
via the structure map O x —» Endfc(G) is equal to h~l • v. 

We recall the following fundamental result. 

Theorem 1.1. — For each natural number h, there exists a formal OK-module G over 
k of height h. It is unique up to isomorphism. The ring End^(G) is isomorphic to the 
maximal order OD of a division algebra D of dimension h2 over K, with invariant 
mv(D) = 1/h. 

Proof. — (Compare with [D], Proposition 1.7.) The existence of G follows from 
Lubin-Tate theory, as follows. Let L/K be the unramified extension of degree h. 
Extend the algebra map O x —» k to OL , which gives k the structure of an OL-
algebra. Let F be the Lubin-Tate module of OL with respect to the prime element 7r, 
i.e., the (unique) formal OL-module over OL such that [TT]F = ^X + XQ , see [LT1]. 
By restriction, we may regard F as a formal Ox-module. Then G := F®k is a formal 
Ox-module of height h over k. 

The uniqueness of G is more difficult. See e.g. [H, Theorem 21.9.1]. 
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8. CANONICAL AND QUASI-CANONICAL LIFTINGS 69 

Let us sketch a proof of the last statement of Theorem 1.1. Set H := End/C(G). 
We may assume that G is the reduction to k of the Lubin Tate module for OL, 
where L/K is unramified of degree h. Since the natural map OL = End(F) —> H is 
injective (see [VZ, Lemma 2.6]), we have OL C H. By construction, the group law 
G(X, Y) = X + Y + . . . and the endomorphisms [O\G(X) = a X + . . . , for a G O ^ , are 
power series with coefficients in ¥q. Moreover, we have [7T]G(^0 = XQ . Hence the 
polynomial II(X) := XQ defines an element II G H with II ^ = TT. One checks that 

n([a]G(X)) = K ] c ( n ( X ) ) , 

where a G Gal(L/K) is the Frobenius. From there, it is easy to see that the subalgebra 
OD •= £*L[n] °f H is the maximal order of a division algebra D of dimension h2 over 
K, with invariant 1/h. It remains to be shown that OD = H. 

Let a ( X ) = a X + . . . be an element of H. Since a commutes with [TT}G(X) = XQ , 
the coefficients of a lie in ¥qh = OL/KOL- Let a G OL be a lift of a. Then a — [a]c 
is an endomorphism of G with positive height, and therefore lies in the left ideal 
H • II C H. We have shown that the natural map 

OD — H/(H.U) 

is surjective. Now the desired equality OD = H follows from the fact (which is easy 
to prove) that H is complete with respect to the U-adic topology. • 

1.3. For the rest of this note, we fix a formal Ox-module G of height two over k. 
By Theorem 1.1, G is uniquely determined, up to isomorphism, and OD •= End/^G) 
is the maximal order in a quaternion division algebra D over K with invariant 1/2. 

Let L/K be a quadratic extension. Let TTL denote a prime element of L. By [S, 
§XIII.3, Corollaire 3], there exists a i^-linear embedding K : L ^ D. It is unique 
up to conjugation by elements of DX . We choose one such embedding and consider 
L, from now on, as a subfield of D. Note that OL C OD- Via this last embedding, 
we may regard G as a formal (9L-module over k. In particular, we obtain a map 
OL —> End(LieG) = k, which extends the canonical morphism OK —• k. 

Let A be the strict completion of OL with respect to A:. In other words, A is the 
completion of the maximal unramified extension of OL, together with a morphism 
A —• k extending the morphism OL k. 

Definition 1.2. — A canonical lift of G with respect to the embedding K : L ^ D is a 
lift F of G over A in the category of C^-modules. 

In more detail, a canonical lift is a formal Ox-module F over A, together with 
an isomorphism of Ox-modules A : F 0 k ^ G and an isomorphism of Ox-algebras 
7 : OL —> End(F), such that the following holds. First, the composition of 7 with the 
regular representation End(F) —> End(LieF) = A is the canonical inclusion OL C A. 
Second, the composition of 7 with the inclusion End(F) ^ End(G) — OD induced 
by A is equal to K. Note that 7 is uniquely determined by the lift F and the first 
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70 S. WEWERS 

condition. We will omit it from our notation and simply write [cl]f : F —» F for the 
endomorphism 7 (a) . Also, the fixed embedding k will mostly be understood, and we 
write [cl]g - G —• G for the endomorphism n{a). 

Since G has height one as an C^-module, it follows from [VZ, Theorem 3.8], that 
a canonical lift F is uniquely determined, up to ^-isomorphism, by the embedding 
k. On the other hand, using Lubin-Tate theory and the uniqueness statement of 
Theorem 1.1, we also conclude that a canonical lift F exists, for any choice of k. SO 
it is justified to speak about the canonical lift F of G, with respect to k. By choosing 
a suitable parameter X for F, we may always assume that 

[TTL]F(A) = ttlX + XQ2 \ 

where e is the ramification index of the extension L/K. 

1.4. Let F be the canonical lift of G over A, with respect to a fixed embedding 
k : L ^ D. For any positive integer n, we set 

An := A/nl^A, Fn := F ®A An, Hn := EndAn(Fn). 

Since Ol C HN for all 72, we may consider the rings HN as left (^-modules. We have 
a sequence of C^-linear maps, which are injective by [VZ, Lemma 2.6]: 

HN C—> Hn-i c—> • • • c — > HQ = OD-

We shall consider Hn as an C^L-submodules of OD- Since 4̂ is complete, we have 

nn>oHn = OL-

By [VZ, Proposition 3.2], we have an injective map 

Hn-\/Hn '—> H2(G, Mn), 

where M „ := K ) / K + 1 ) . 

Lemma 1.3. — Fix n > 1 and Ze£ a be an element of Hn-i — Hn. Then [kl}g 0 ct G 
i/n — i/n+i. 7n o /̂ier words, multiplication with ttl induces an injective homomor-
phism of Ol-modules 

Hn-i/HN C—> HN/Hn+i. 

Proof. — We may represent a by a power series a(X) G ^.[[A]], without constant 
coefficient, whose reduction modulo TT£ is an endomorphism of Fn-i. We write an 

:or the reduction of a modulo 7rL+1. Set 

e \— ci o [7T]F — F [7T]F O a. 

Since cen_i is an endomorphism of Fn_i, we have e = 0 (mod 7rL). Moreover, if 
(A, {ôa}) G Z2(G, Mn) denotes the cocycle associated to an by [VZ, Proposition 3.2], 
then we have 

e = 6n (mod7TL+1). 

A S T É R I S Q U E 312 



8. CANONICAL AND QUASI-CANONICAL LIFTINGS 71 

By assumption, the enolomorphism an_i of Fn-i cannot be lifted to an endomorphism 
of Fn. Therefore, Corollary 3.4 of [VZ] shows that e(X) = cXq + . . . , with c G 

K ) - « + 1 ) . 
Set 

e' := [TTL]F ° ® o [TT]F -F [TT]F O [7TL]F ° a. 

Since [TTL]F is an endomorphism of F, we actually have e' = [TTL\F ° e. Using our 
2 / C 

assumption {KL]F(X) = nLX + XQ and the congruence e = 0 (mod 7rL), we see 
that 

e' = 7rFcXq + • • • = 0 (mod TTL+1). 

By [VZ, Corollary 3.4], this implies that [TTL]F ° ctn is an endomorphism of Fn, 
i.e., [TTL] o a <E Hn. Moreover, if ( A ' , {Sfa}) G Z2(G, Mn+i) denotes the cocycle 
associated to [717,! o an+i, then we have 

e' = <j; ( m o d 7 r L + 2 ) . 

Since 7rLc G (TTL ) - (TT2 ), Corollary 3.4 of [VZ] shows that [TTL}F O an cannot be 
lifted to an endomorphism of Fn. This means that [TTL] 0 CY ^ Hn+\. • 

We can now prove the main result of this section (Proposition 3.3 in [G]). 

Theorem 1.4. — For n > 1 we have HN = OF + TTLOD. 

Proof. — Each group Hn is a submodule of the free rank-two OL-module OD and 
contains the direct factor OL C OD- Therefore, the quotients Hn-i/Hn are cyclic 
OL-modules. By Lemma 1.3, these quotients are killed by TTL- Hence Hn^i/Hn is 
either 0 or isomorphic to OL/^LOL- We claim that only the second case occurs. The 
case n = 1 is dealt with in the following lemma. 

Lemma 1.5. — We have H\ / H0 = OD-

We will prove this lemma in the next subsection. Lemma 1.3 says that left multi-
plication with TTL induces an injective map Hn^i/Hn ^ Hn/Hn+i. So by induction 
on n, Lemma 1.5 and the arguments preceding it show that Hn/Hn+i = OL/^LOL 
for all n and that OD/HU is an 0L-module of length n, killed by TTL. The theorem 
follows immediately. • 

1.5. We are now going to prove Lemma 1.5. We distinguish two cases. 
Case 1: L/K is unramified. In this case, we may assume that TTL = TT and hence 

[TT]F = nX + Xq\ Then 

OD = OL 0 OL • II, 

where n = Xq, see the proof of Theorem 1.1. Let a = ^2i>qo,xXl G ^4i[[X]] be a 
lift of n with leading term Xq. Let (A , {Sa}) G Z2(G, M\) be the cocycle associated 
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to a. Using Taylor expansion, we see that 

öir(X)=a([ir]Fl(X))-fi((&(X)) \n}Fì(a(X)) 

= {a(X02) + IR-A'{X<}2)X) -Fl ( Tra{X) + A(xq2 ) 
= -TTX9 + • • • ^ 0. 

(Here we use the notation a' : = da/dX.) Therefore, by [VZ, Corollary 3.4], we have 

Case 2: L/K is ramified. Then TTL satisfies an Eisenstein equation over Ox? which 
we may normalize to 

IX\ + Ü7TL + 7T = 0, 

with a G TTOK- Assuming, as usual, that [7TL]F = TTLA + Xq, a short computation 
yields the congruence 

(1.1) [TT]F{X) = -7TLXq -Xq + . . . (mod TT). 

Let j G OD be an element which generates an unramified quadratic extension of K. 
We may assume that j(X) = uX +..., where u G k generates the quadratic extension 
of the residue class field of OK- Lift j to a power series a(X) = uX + • • • G ̂ 4i[[A]] 
modulo 7r, and let (A , {5a}) G Z2(G,M\) be the associated cocycle. Then uq ^ u 
(mod TTL). Using the congruence (1.1), we compute 

ön(X) = a([7T]Fl(X)) -Fl [ir]Fl(a(X)) 

= {u(-7TLXq — Xq ) + • • • ) _ F i ( — *La(X)q - a(X)q~ ) 

= 7TL(uq ~u)Xq + ... 

As in Case 1, we use [VZ, Corollary 3.4], to conclude that j 0 H\. 

2. Isogenies and Tate modules 

In this section we review the connection between the endomorphism ring and the 
isogeny classes of a formal Ox-module on the one hand, and lattices inside the Tate 
module on the other hand. These results will be used in the following section on 
quasi-canonical lifts. 

2 .1 . As in the previous sections, K denotes a field which is complete with respect to 
a discrete valuation and has a finite residue field of order q = pf. We let k denote an 
algebraic closure of the residue field of K. Furthermore, A is a flat local Ox-algebra 
which is a complete discrete valuation ring with residue field fc, and M is the fraction 
field of A. We fix an algebraic closure M of M. 

Let F be a formal Ox-module of finite height h over A (not necessarily a canonical 
lift). We write 

A ( F ) : = F(A/)tor = UnF[rrn] 
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8. CANONICAL AND QUASI-CANONICAL LIFTINGS 73 

for the torsion subgroup of F and 

T(F) := 
n 

F(ttn) 

for the Tate module of F. These are Ox-modules with a continuous, Ox-lmear action 
of G a l ( M / M ) . As Ox-modules, we have non-canonical isomorphisms 

A(F) ^ {K/GK)h, T(F) ^ OhK. 

Set V(F) := T(F) ®oK K', then we have a canonical short exact sequence of 
Gal(M/M)-0K-modules 

(2.1) 0 T(F) —> V(F) —> A(F) 0. 

Let A! be a finite extension of A, and let F be a formal Ox-module over A . An 
isogeny between F and F' defined over A! is a nonzero homomorphism a : F <S>A A' —> 
F' of formal Ox-modules. If such an isogeny exists, then we say that F' is isogenous 
to F (over A'). For simplicity, we shall write a : F —> F', and consider a as a power 
series in [[X]] whose coefficients generate a finite extension of A. We say that cx is 
defined over A! if a G A'pT]]. 

Given an isogeny a : F —> F' we obtain a diagram 

(2.2) 0 0 N 

0 - T ( F ) v(F) A ( F ) 0 

T(a) V(a) A(a) 

0 T ( F ' ) v(F') A ( F ' ) 0 

CokerT(a) 0 0 

with exact rows and columns. Note that N is equal to the kernel of a; it is a finite 
Ox-submodule. A trivial version of the snake lemma shows that we have a canonical 
isomorphism N = CokerT(a). 

The following theorem states that every finite Ox-submodule of A(F) arises as the 
kernel of an isogeny. More precisely: 

Theorem 2.1. — Let N c A(F) be a finite Ox-submodule, Tf C T the stabilizer of N. 

AF C M the fixed field of Tf and A' the valuation ring of M'. Then the formula 

a{X) : = 

z cN 
( X - F z ) c A ' l X ) 

defines an isogeny a : F —> F' over A'. It has the following properties. 

1. Ker(a) = N. 
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2. Let (3 : F —* F" 6e an isogeny with TV C Ker(/3). TTien £/&ere exists a unique 
isogeny 7 : F' —> F" u> /̂i ft = j o a. 

Proof. — See [H, §35.2]. 

2 .2 . It will be more convenient for us to reformulate Theorem 2.1 in terms of lattices 
T' C V(F) (instead of finite subgroups TV c A(F)) . Let F be a formal O^-niodule 
of finite height over A. Set T := T(F) and V := V(F). 

Corollary 2.2. — 1. Let T' C V be an Ox-lattice containing the lattice T 
(a superlatticej. Then there exists an isogeny a : F —>• F' such that 
T' = V{a)~1[T{F')). If T" is a superlattice of T' and (3 : F —» F" an isogeny 
with T" = V{(3)~1 [T{F")), then there exists a unique isogeny 7 : Ff —» F" such 
that [3 — 7 o a. 

2. Let T' C T be an OK-sublattice. Then there exists an isogeny a : F' —» F such 
that T' = Im(T(a)). If T" C T' is another sublattice, and (3 : F" —* F is an 
isogeny such thatT" — Im(T(/?)), then there exists a unique isogeny y : F" F' 
with (3 = a o 7 . 

Proof. — Given T' as in Part 1, we set TV := T'/T. Via the short exact sequence (2.1), 
we consider TV as a (finite) (Dx-submodule of V. Let a : F —» Ff be the isogeny 
with kernel TV, which exists by Theorem 2.1.1. Then the diagram (2.2) shows that 
T' — V(a)~l(T(Ff)). This proves the first assertion in Part 1. The second assertion 
follows from Theorem 2.1.2. 

We are now going to prove Part 2 of the corollary. Let T' C T be a sublattice. 
Choose an integer n such that TxnT C T'. By Part 1 of the corollary, there exists an 
isogeny (3 : F —> Ff such that V(f3)~l (T(Ff)) = 7T~nTf. The kernel of (3 is isomorphic 
to 7r -nT/ /T, which is an Ox-niodule killed by 7rn. Therefore, Theorem 2.1.2 shows 
that there exists an isogeny a : F' —* F with ao(3 = [7rn]i?- By construction, we have 

Im(T(a)) = 7rn • V(ß)-l(T(F')) = T'. 

This proves the first assertion of Part 2. The proof of the second assertion is left to 
the reader. • 

2.3. Let F, T and V be as before. The faithful representation of End(F) on V 

extends to a faithful representation 

End°(F) := End(F) ®Qk K <—> EndK(V). 

We will from now on consider elements of End°(F) as elements of Endx(U). 
Let T',T" be Ox-superlattices of T inside V. Let a : F F' and (3 : F F" 

be the corresponding isogenies, as in Corollary 2.2.1. We identify V(F') and V(F") 

with V, ma the isomorphisms F(a) and V{[3). Then T7 = T(F') and T/; = T{F"). 
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Corollary 23. — The map which sends a homomorphism I/j : F' —> F" to the induced 
endomorphism ib : V = V(F') —• V(F") = V is a bijection 

RomiF^F") { ^ G End°(F) | tp(T') C T" } . 

Proof. — Let ip : F' —> F" be a homomorphism and 0 G Endx(^) the induced 
endomorphism of V. By definition, we have 0(T') C T". We have to show that yj G 
End°(F). Set 7 := 0 o a : F —> F". The isogeny 7 corresponds, ma Corollary 2.2.2. 
to the sublattice ip{T) C T". From the same point of view, the isogeny (3 : F —> F/; 
corresponds to the sublattice T C T". Choose an integer n such that 7rn0(T) C T. 
Then by Corollary 2.2.2, there exists an endomorphism 0 : F —• F such that /? o 0 = 
7 0 [7I"n]F- One checks that 0 = n11^, as elements of Endx(V^), which shows that 
0 G End°(F). 

Conversely, let 0 be an element of End°(F) C EndK{V) with $(T') C T". By 
definition, we can write 0 = 7r_n0 for some endomorphism 0 : F —> F. The isogeny 
a o [ 7 r n ] F : F F' (resp. the isogeny /3o0 : F —> F") corresponds, via Corollary 2.2.1. 
to the superlattice 7r_nF7 D T (resp. the superlattice 0~1(T//) D T). The assumption 
0(T') C T" together with <0 = 7r~n0 implies 7r"nT/ C 0-1(T"). Therefore, by 
Corollary 2.2.1, there exists an isogeny tp : F' —» F" with ip o a o [7rn]x = (3 o <p. By 
construction, -0 is the image of 0 under the embedding Hom(F/,F//) ^ Endx(^)-
This concludes the proof of the corollary. IZ 

3. Quasi-canonical lifts 

A quasi-canonical lift is a lift whose endomorphism ring is an order in a quadratic 
extension L/K. In this section we show that every quasi-canonical lift is isogenous to 
a canonical lift, and we determine the set of isomorphism classes of all quasi-canonical 
lifts together with its natural Galois action. 

3 . 1 . We now come back to the situation of Section 1. In particular, G is the (unique) 
formal Ox-module of height two over k. We fix a quadratic extension L/K, an O x -
linear embedding n : OL ^ O D '= End&(G). We denote by F the canonical lift of G 
with respect to n. Recall that F is defined over A, the strict completion of OL with 
respect to the map O x —» k induced by the OL-action on Lie(G). 

Let M denote the fraction field of i , M an algebraic closure of M and T := 
G a l ( M / M ) . We let T:=T(F) denote the Tate-module of F and V := T^qk K. Note 
that T has the structure of a free OL-module of rank one, and that the T-action on 
T is continuous and OL-linear. By Lubin-Tate theory, the resulting homomorphism 

(3.1) p : T = G a l ( M / M ) — > O* 

yields an isomorphism Tab ^ O^. Identifying T with the inertia subgroup 
of Gal(L/L), the homomorphism (3.1) is the inverse of the reciprocity map 
Lx -> Gal(L/L)ab of local class field theory, restricted to O * . See [LT1]. 
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Fix an integer s > 0. Let 

qs:= ok+ol.tts 

denote the order of OL generated by OK and the ideal OL • TTS . It is easy to see 
that every order of OL containing OK is equal to OtS, for some s. Let Ms/M be the 
ring class field of O * , i.e., the fixed field of the subgroup Ts C T, where Ts is the 
inverse image of O * C O^ under the inverse reciprocity homomorphism (3.1). In 
other words, we have 

Gal(Ma/M) ~ O L / O S X . 

An easy computation shows that, for s > 1, 

[Ms:M] = \öl/ö*\ = 
qs (q + 1), if LIK is unramified, 

qs, if L / i f is ramified. 

Definition 3.1. — A quasi-canonical lift of G of level s (with respect to the embedding 
K : OL ^ OD) is a lift F of G, defined over some finite extension A'/A, together with 
an Ox-algebra isomorphism 7 : OS ^ End(F'), such that the following holds. 

1. The composition of 7 with the representation End(F') End(LieF') = A' is 
the canonical embedding OS c—• A1'. 

2. The composition of 7 with the embedding End(F;) ^ OD is equal to the 
restriction 01 K to OS C OL-

To ease the notation, we will usually omit the isomorphism 7 and the embedding 
K from our notation. Note that a quasi-canonical lift of level 0 is the same thing as a 
canonical lift (which exists and is unique). For general 5, we have the following result. 

Theorem 3.2. — Let OM* denote the ring of integers of Ms. 

1. Let F' be a quasi-canonical lift of level s. Then there exists an isogeny 

a:F —> F' 

of degree qs, defined over OMs - It is unique up to composing a with an element 
of Aut (F) = (9L . In particular, F' can be defined over OMS-

2. The set of *-isomorphism classes of all quasi-canonical lifts of level s is a prin-
cipal homogeneous space under the action of Gal (Ms/M) . 

Remark 3.3. — The proof of this theorem will show that the action of Gal (Ms/M) on 
the set of *-isomorphism classes can be described as follows. Let (F7, A) be a quasi-
canonical lift of level s (with A : F' 0 k ^ G), and cr e T. Then the lift (F;, A)a is 
*-isomorphic to the lift (F7, [P(CT)-1]G< O A). Therefore, by Theorem 3.2.2, two quasi-
canonical lifts of the same level are always isomorphic as formal Ox-modules. 
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3.2 . Let a : F —» F' and ¡3 : F —» F" be two isogenies with source F. We say 
that cv and ¡3 are isomorphic if there exists an isomorphism of formal Ox-modules 
7 : F' ^ F" with ¡3 = 7 o a. 

Fix an isogeny a : F F'. To simplify the notation, we will identify V(F') 
with ma the isomorphism V(a). Then, by Corollary 2.2.1, a corresponds, up to 
isomorphism, to an Ox-superlattice T' D T in V. Moreover, by Corollary 2.3, a 
induces an isomorphism of Ox-algebras 

(3.2) End(F') ^ { 0 G L = End°(F) | <j>{T') C T' } . 

This exhibits End(F') as an order of OL-

Lemma 3.4. — Let T be a free O^-module of rank one, V := T &oK Let T' D T 
be an OK-superlattice in V. Then there exists a generator t of T (i.e., T = OL • t) 
and integers n, s > 0 such that 

n l - T ' = (0K-TT-s+0L)-t. 

Moreover, the multiplicator OT> of T1 is equal to the order OS C OL-

Proof. — For T' D T as in Part 1, define 

n := maxjn' | TT£ T' d T } , s := min{ s' I TTS nnLT C.T}. 

Then TTLT''/T is a cyclic Ox-module, generated by an element of the form 7r~s£. 
Moreover, any t with this property is a generator of T. It follows that irLTf = 
(OK • TT~S + OL) • t. The proof of the fact that OS is the multiplicator of T' is standard 
and left to the reader. • 

A superlattice T' D T is called minimal of level s if T' = (Ox •7r_s + OL)-t, for some 
generator t of T. The corresponding isogenies a : F —> F' are also called minimal of 
level s. We let Xs denote the set of isomorphism classes of minimal isogenies of level 
s. The Galois group T acts on XSl in a natural way. There is also an action of OL 
on Xs, given by composing a : F —> F' with the automorphism [a]p : F ^> F, for a cOxl. 

Proposition 3.5. — The actions of F and O^ on Xs are anti-compatible via the reci-
procity homomorphism p : F —> O ^ , i.e., /or cr G F there exists an isomorphism 
7cr : (F'Y F' such that the diagram 

W)-1}F 

F 
&o 

{F'Y 

F 
a 

1er 

Ff 

commutes. Furthermore, Xs is a principal homogeneous space under the induced 
action o /Gal (M5/M) ^ 0^/Osx. 
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Proof. — If the isogeny a : F —>• F' corresponds to the lattice T'', then a o [a\p : 
F —» F', for a G OL , corresponds to the lattice a"1 • T;. Therefore, it follows 
immediately from Lemma 3.4 that the action of O^ on Xs is transitive, and the 
stabilizer of each element is equal to Oxs . To see that this action is compatible with 
the Galois action, fix an element a G T. Clearly, the kernel of aa can be identified 
with (Tf/T)a = p(a) - T'/T. Since this is also the kernel of ao [P(CT)_1]F, the existence 
of 7a follows from Theorem 2.1. The proposition is proved. • 

Proof of Theorem 3.2. We first prove Part 1 of the theorem. Let F' be a quasi-
canonical lift of level s. Set T' := T(F') and V := T'®oKK. The isomorphism OS ^ 
End(F/) extends to an isomorphism L ^ End°(F/), which gives V the structure of 
an L-vector space of dimension one and identifies OS with the multiplicator of the 
lattice V C V. 

LetT" C T' be a maximal O^-submodule of rank one. Then T' = (OK-TR^-f Ol)-t 
for some generator t of Tn', by Lemma 3.4. Let a : F" —» F' be an isogeny with 
\m(T(a)) — T;/, see Corollary 2.2.2. By Corollary 2.3, a induces an isomorphism 

End(F//) = { 0 G End°(F') = L | 4>(T") = T" } = OL. 

Therefore, F/r = F as formal Ox-modules. Choosing an arbitrary isomorphism F" = 
F, we can regard a : F = F/; F; as an element of Xs. Since O^ acts transitively 
on Xs, by Proposition 3.5, we have proved Part 1 of Theorem 3.2. 

Now we prove Part 2 of the theorem. In view of Part 1 and Proposition 3.5, we 
only need to show the following. For every minimal isogeny a : F —• F' of level s, 
there exists an isomorphism A : F' 0 k ^ G which makes F' a quasi-canonical lift. 
For this, we may assume that the isogeny a is given, as a power series with coefficients 
in OM. by the formula of Theorem 2.1: 

a(X) : = 

7<GKER(A) 

(X-Fl). 

Here Ker(a) is simply considered as a subset of the maximal ideal of the ring of integers 
of M. Therefore, the reduction of a to k is a(X) = Xq . By the proof of Theorem 1.1, 
we may assume that II(X) := Xq is an endomorphism of G and lies in the normalizer 
of OL = End(F) C OD- In particular, a = II6' is an endomorphism of G. Therefore, 
F' (8) k is actually equal to G. We define the isomorphism A : F' 0 k ^ G as the 
identity and claim that (F7, A) is a quasi-canonical lift. 

By construction, we have an isomorphism 

(3.3) End(Fr) = { 0 G L = End°(F) | 0(T') = T' } ^ OS. 

Hence the image of the natural injection End(F;) ^ End(LieF;) = OMS is an OK~ 
algebra isomorphic to OS. It must therefore be equal to OS. Let 7 : OS —> End(F;) be 
the resulting isomorphism. Then Condition 1 of Definition 3.1 holds by construction. 
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Let K' : OS ^ OD be the composition of 7 with the embedding End(F') ^ OD 
induced by the identification F' ® k = G. We have to show that K' is equal to 
the restriction of K to OS (see Condition 2 of Definition 3.1). Tracing back the 
definitions, we see that n' = (tv\os)a is the conjugate of K\QS by a — IIs G OD- Since 
we assumed II to lie in the normalizer of the image of K, we have already proved 
that K' and K\OH have the same image and are equal up to composition with an 
element of G&\(L/K) = Z / 2 . However, if L/K is ramified, then the assumption that 
II normalizes OL already implies that II G OL, and we get K,' — K\OS as desired. 
Now assume that L/K is unramified. Then it suffices to show that KF and K\QS 
agree modulo the maximal ideal OD • LL But this is a consequence of Condition 1 of 
Definition 3.1. This concludes the proof of Theorem 3.2. • 

4. Canonical subgroups 

The main result of this section is Proposition 4.6 which computes the valuation of 
the formal modulus of a quasi-canonical lift. The heart of the proof of this proposition 
is the study of canonical subgroups and their behavior under isogenies. The relevance 
of canonical subgroups was first pointed out in [L]. 

4 .1 . We continue with the notation used in the last section. In particular, A is 
the completion of the maximal unramified extension of OL and M the fraction field 
of A. We choose an algebraic closure M of M and let v : M —>• Q U { 0 0 } denote the 
exponential rank-one valuation with V(TT) = 1. 

Let M'/M be some finite extension, and let A' denote the valuation ring of M'. 
Throughout this section, we will implicitly assume that the extension M'/M is 'suf-
ficiently large'. In practice this will mean that sometimes we have to enlarge M' in 
order to make certain torsion points Af'-rational. 

For the moment, we fix an arbitrary lift F of the formal Ox-module (7, defined 
over A' (not necessarily the canonical lift). By [VZ, Theorem 3.8], F is isomorphic to 
the pullback of the universal deformation F of G via a unique O^-algebra morphism 
Runiv —•» A. Moreover, Runiv can be written as a power series algebra OxIM- (The 
proof of this result in [VZ] does not provide us with a natural choice of the parameter 
?i, but this is irrelevant for us by Remark 4.2 below. See [HG] for a more explicit 
choice of the parameter u.) 

Definition 4.1. — The image of the parameter u under the morphism Runiv —> A! 
corresponding to F is denoted by u(F) and is called the formal modulus of the lift F. 
The rational number v(F) := min{v(u(F)), 1} is called the valuation of F. 

Remark 4.2. — It is clear that the valuation v(F) is actually independent of the choice 
of the parameter u. Therefore, v(F) depends only on the isomorphism class of F as 
a formal Ox-module, and not on the chosen isomorphism A : F 0 k ^> G. Indeed, 
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a unit 7 G GD induces an automorphism 7 of the universal deformation space of G 
(which sends the pair (F, A) to the pair (F, 7 o A)). Applying the automorphism 7 
amounts to replacing the parameter u by u' : = */*u. 

Definition 4.3. — A sub-Ox-module H C F[TT} of length one is called a canonical 
.Qii.hnrnii.'n i f 

v(x) > v(y) 

for all x G H and y G F[TT] — H. 

Note that a canonical subgroup, if it exists, is unique. We may therefore speak 
about the canonical subgroup of F . The two last definitions are related to each other 
in the following manner. 

Proposition 4.4 

1. Write [TT]F = •2>1 
at X1, with ai G A!. Then v{F) = mm{v(aq), 1 } . 

2. The lift F has a canonical subgroup if and only if 

v(F) < Q 
q+l 

Proof. — It follows from the proof of [VZ, Theorem 3.8], that we can choose for the 
parameter u defining the isomorphism Rnniw ^ 0^r[u] the gth coefficient of [TT]F, 
where F is the universal deformation of G. Therefore, Part 1 of the proposition is 
a direct consequence of the definition of v(F). Now Part 2 is easily seen by looking 
at the Newton polygon of [TT]F- Indeed, the slope filtration on the set F[TT] — { 0 } is 
also a filtration of Ox-modules. But as an Ox-module, F [ 7 r ] has length two, so there 
can be at most two finite negative slopes. Also, breaks occur only at i = l,q2 and 
possibly at i — q. Since v{ai) = 1 and v(aq2) — 0, we have a break at i = q if and 
only ifv(F) < q/(q + l). • 

4.2 . Fix a lift F of G defined over A' and a sub-Ox-module H C F[TT] of length one. 
Let a : F —» F' be the isogeny with kernel H, defined by Theorem 2.1. Recall that a 
is given by the power series 

(4.1) a(X) := U(X-F x). 
xeH 

Let us choose an isomorphism A7 : F' 0 k ^ G. We will use Xf as an identification, 
i.e., we will regard F' as a lift of G. As in Section 3.2, one can choose X' in such 
a way that a 0 k gets identified with the isogeny II = Xq : G -+ G. However, this 
choice is not at all canonical. In what follows, we are mainly interested in relating 
the two valuations v(F) and v{F'). By Remark 4.2, the choice that we have made is 
irrelevant for this problem. 

Let (3 : F —> F' be the unique isogeny such that [TT]F = P 0 OL. Then H' := ker(/3) 
is equal to the image of F[TT] under the isogeny a. Clearly, Hf is an Ox-module of 
length one. 
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Proposition 4.5 

1. Suppose that H is the canonical subgroup of F. There are two cases: 
(a) Ifv(F) < 1 then v(F') = q • v(F) and H' is not canonical. 

(b) / / 1 < v(F) < q 
9+1 

thenv(Ff) = l — v(F) and H' is the canonical subgroup 

2. Suppose that H is not the canonical subgroup of F. Again we have two cases: 

(a) Ifv(F) < q 
q+1 then v(F') = q -1 • v(F). 

(b) Ifv(F)> 9+1 
then v(F') = 1 / ( 0 + 1). 

In both cases, Hf is the canonical subgroup of F1. 

Proof. — Suppose that H is canonical. By Proposition 4.4, we have v(F) < q/(q + l)-
Moreover, the proof of this proposition shows that the Newton polygon of [TX]F has 
exactly two finite negative slopes, namely 

si = -
l-v(F) 

q-1 
S2 = ~ 

v(F) 

q2 — q 

Here s± is the slope above the interval [1, q] and corresponds to the canonical subgroup, 
whereas 5 2 is the slope above [q,q2]. 

Pick an element y E F[TT] — H; then v(y) = — S2 = v(F)/(q2 — q). It follows 
from (4.1) that the element z := a(y) G H' has valuation 

viz) = 
x cH 

v(y - F x) = q • v(y) = 
v(F) 

q - l 

Now if v(F) < 1/q then v(z) < l/(q — q). This means that —v(z) is equal to the 
slope of the Newton polygon of [K]F' above the interval [q, q2]. We conclude that 

v(F') = (q2 - q) -v(z) - q • v(F) 

and that Hr is not the canonical subgroup of F'. On the other hand, if v(F) > 1/q 
then v(z) > l/(q2 — q). Therefore, v(z) is equal to the slope above the interval [l,g]. 
We conclude that 

v(F') = 1 - (q - 1) • v(F) = 1 - v(F) 

and that H' is the canonical subgroup of F'. This finishes the proof of Case 1. The 
proof of Case 2 is similar and left to the reader. • 

4 .3 . Let us now assume that the lift F is the canonical lift of G with respect to some 
fixed embedding K : L D. Note that we have v(F) — 1 if L/K is unramified and 
v(F) — 1/2 if L/K is ramified. In the former case, F has no canonical subgroup, 
whereas in the latter case the canonical subgroup of F is the kernel of [TTL\F-

For s — 1 , 2 , . . . , we define isogenies as : F —• FS inductively, as follows. First, 
choose a non-canonical (9x-submodule H C F[TT] of height one. Set F\ := F/H and 
let a i : F —> F\ be the natural projection. For s > 1, choose a non-canonical O x -
submodule HS C FS[TI} of height one, set FS+\ := FS/HS and let &s+1 : F —» Fs+i be 
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the composition of as with the natural projection Fs —* Fs+i. As we have seen in the 
last section, we can see Fs as a lift of G in such a way that the isogeny as reduces to 
the endomorphism IIs : G —» G modulo the maximal ideal of A!. This choice is by no 
means canonical; however, for the statement of the next proposition, the choice that 
we have made is irrelevant, see Remark 3.3 and Remark 4.2. 

Proposition 4.6. — The lift Fs is quasi-canonical of level s, and we have 

v(Fs)= 
1 

qs-1(q+1) 
1 

2qs' 

if L/K is unramified and s > 1, 

if L/K is ramified. 

Proof. — We proceed by induction over s. We start the induction at s = 1 if L/K is 
unramified and at s = 0 in the ramified case (one has to be careful with the notation: 
plugging in s — 0 into Fs should be understood as F). If L/K is unramified, then 
v(F) = 1 > q/(q + 1), and Proposition 4.5, Case 2(b), shows that v(Fi) = l/(q + 1). 
This is indeed as in the statement of the proposition. The statement of the proposition 
is also true for s = 0 if L/K is ramified. 

Suppose now that s > 1 or that L/K is ramified. Then v(Fs) < q/(q + 1), so 
Proposition 4.5, Case 2(a), shows that 

v(Fs+1)= v(Fs) 

q 
We see that the formula for v(FS) follows by induction. 

Since FS is isogenous to F, it is a quasi-canonical lift of some level. By construction, 
the isogeny as : F FS has degree qs. Let n be the maximal integer such that as 
factors over [TTL] ' F —> F. The proof of Theorem 3.2 shows that FS is quasi-canonical 
of level s' := s — 2n/e. 

Suppose n > 0. By the induction hypothesis, i v is quasi-isogenous of level sf. 
Therefore, by Remark 3.3, FS' and FS are isomorphic as formal Ox-niodules. But 
then we have v(FS) = v(FS'). This gives a contradiction with the formula for v(Fs) 
which we have already proved. We conclude that n = 0, i.e., that FS is quasi-canonical 
of level s. • 

Corollary 4.7. — Let FS be a quasi-canonical lift of level s and OMJA be the smallest 
extension over which it can be defined. Then the formal modulus u(FS) G OMs of FS 
is a uniformizer for the valuation ring OMS-

Proof. — It follows from Theorem 3.2 that OMS is the ring of integers of the extension 
MS/M, the ring class field of O*. Moreover, we may assume that FS is the lift 
constructed before Proposition 4.5. Therefore, the formula for v(FS) in Proposition 4.5 
shows that the valuation of u(FS) is equal to the reciprocal of the degree [MS : M\. 
This concludes the proof. • 
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Corollary 4.8. — Let Fs and Fs+i be quasi-canonical lifts of level s and 5 + 1 , respec-
tively. Let (3 : Fs —> Fs+\ be an isogeny of height one. Then H := ker(/3) is not the 
canonical subarouv, and 

v(Lie((3))=v(Fs+1). 

Proof. — We note that /3 identifies Fs+i with the quotient Fs/H. It follows from the 
proof of Proposition 4.6 that H is not the canonical subgroup of Fs and that therefore 
the nonzero elements x G H have valuation 

v(x) = 
v(Fs) 

q - q 

Set b := Lie(/3). The formula for (3 in terms of H (see Theorem 2.1) shows that 

v(b) = 
xeH-{o} 

v(x) -
v(Fs) 

q 

By Corollary 4.7, this is equal to v(Fs+i). 

5. Some complements 

We prove some technical results which are needed in [R]. 

5 .1 . Let K and k be as before. Let G be the formal Ox-module of height two over 
k, with endomorphism ring OD- We have seen in [VZ] that the formal cohomology 
group H2(G, k) has dimension h — 1 = 1. Therefore, the universal deformation ring 
of G is W\i\ (where W — O1^ is the completion of the maximal unramified extension 
of OK). 

Let A be a complete local Ox-algebra with residue field k and I <] A an ideal 
with m,4 - 7 = 0. Set A :— A/1. Let F,F' be two deformations of G over A and 
a : F0^4 —>• F'®Aa, homomorphism which is defined modulo I. Then the obstruction 
for lifting a to a homomorphism a : F —» F' is an element of the /c-vector space 

H2(G,I)^ H2(G,k) ®k I. 

Indeed, as in [VZ, Section 3], a lift a(X) £ ^.[[^]] of a as a power series defines a 
cocycle (A; 6a), 

A(X,Y) := a(X +F Y) -F, a(X) -F, a(Y), 

Sa(X) := a([a}F(X)) -F, [a}F,(a(X)). 

The cohomology class of this cocycle is independent of the chosen lift a. It vanishes 
if and only if there exists some lift a which is a homomorphism F —± F'. If this is the 
case, then the lift which is a homomorphism is unique. 

Let F be the universal deformation of G over [[£]], and let F' be another universal 
deformation over W[[£']]. Hence the pair (F,F') is defined over the formal scheme 
S = Spf i?, where R := Wlt,t% 
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Proposition 5.1. — Let a : G —» G be an isogeny, i.e., a 7̂  0. Le£ J 6e the minimal 
ideal of R such that a lifts to an isogeny F —• F' modulo J. Then the closed formal 
subscheme T of S defined by J is a relative divisor over Spf W. 

Proof — We have to show that J is generated by one element which is neither a unit 
nor divisible by p. Suppose, for the moment, that a 0 OK and set L = K(a) C D. Let 
M be the completion of the maximal unramified extension of L and F\ the canonical 
lift of G with respect to OL C OD (which is defined over OM)- There is a unique 
homomorphism of O^-algebras if : t f p , t'j —> OM which induces the identity on k, 
such that the pair (Fi ,Fi) is *-isomorphic to the pullback of the pair (F, Ff) via tp. 
By construction, J is contained in the kernel of (p. This shows J 7̂  R, at least if 
a 0 K. The case a G K is handled in a similar way. 

Suppose that J C (n). This means that a lifts to an isogeny F —» F7 over /e[[£,£7]]. 
Setting £7 = 0, the isogeny a would then induce an isogeny between F 0>w/[[t]] k((t)) 
and G ®k k((t)). But F 0>u7p]] k((t)) has height /1 — 1 = 1 (see [VZ]) and is therefore 
not isogenous to the height-two module G ®fc k((t)). This gives a contradiction and 
shows that J ^ (7r). 

Let m denote the maximal ideal of R. Set A := R/mJ and / := J/mJ. Then 
m • J = 0, and A = A/I = R/J. Clearly, a lifts to a homomorphism F ® A Ff ® A 
but not to a homomorphism F<S>A —» F''0 A The responsible obstruction is a nonzero 
element in 

H2(G,I) = H2(G,k) ®kI = I-

Let / be the image of this obstruction in I. The element / depends on the choice ol 
an isomorphism H2(G,k) = k, but the ideal ( / ) < A does not. Clearly, a lifts to a 
homomorphism F 0 A! —» F' (g) A7 over the ring .A7 = A/(f). This implies / = ( / ) . 
Now Nakayama's Lemma shows that J is generated by one element. The proposition 
is proved. • 

5.2. Let A be the ring of integers of a finite extension of the fraction field of W. Let 
À denote a uniformizer of A. For each positive integer n, we set An := A/(An+1) and 
Mn := (\n)/(\n+l). 

Let Fi, F2, F3 be three lifts of G over A. We define 

Hn := Hom(Fi 0 An, F2 0 An), < : = H o m ( F i ^ 4 , F 3 ® 4 ) . 

As for endomorphisms, the natural reduction maps Hn,H'n —» End(G) = OD ARE 
injective. We will consider and H'n as subsets of O/}. Note that Hn and are in 
fact sub-Ox-modules of OD- The obstruction theory reviewed above gives injective 
maps 

K>n Hn-i I Hn ^ H2 (G, Mn ) , K!n:H'n_JH'n^H2{G,Mn). 

Proposition 5.2. — Let a : G —> G 6e an isogeny defined over k which does not lift 
to a homomorphism F\ —» F2. Le£ n 6e £/ie unique positive integer such that a G 
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Hn^i — Hn. Let (3 : F2 —-» F3 be an isogeny defined over A, and let m denote the 
valuation of b := Lie(/3) G A. We make the following assumptions: 

1. (3 has height one. 
2. m < (q — l)n. 

then B o & c h'n+m-l- h'n+m 

Proof. — (compare with the proof of Lemma 1.3) We may represent a as a power 
series with coefficients in A without constant coefficient such that ojn_i, the reduction 
of a modulo An, is a homomorphism F\ 0 An-\ —» F2 0 An_\. We define 

c := B o(tt)fl - f2(tt)f2 o & 

Then e = 0 (mod An). Moreover, we have e = 5n (mod An+1), where (A , { £ a } ) 
denotes the cocycle associated to an. The assumption a ^ Hn implies e(X) = cXq + 
. . . , with ORDA(c) = n. Similarly, define 

e : = [3 O a O [7T]FI — F3 [TT]F3 0 0 a-

Then e' = /? O 6. Write / 3 0 0 = 
¿1 

BIX1. It follows from Assumption 1 that the 
Newton polygon of ¡3 has slope —m/(q — 1) over [ 1 , . . . , g]. This means that 

ordA(6,) > 
q - i 

q - 1 
• m, i = 1 , . . . , g 

(with equality for i = l,q). Now Assumption 2, together with an easy calculation, 
shows that 

e' = (3 O e = 6 lCX9 + • • • = 0 (An+m). 

Since ORDA(fric) = n + m, we conclude as in the proof of Lemma 1.3 that ¡3 O a G 

Corollary 5.3. — Suppose that Fi,F2lFs are quasi-canonical liftings of G of level 
r, s, 5 + 1 fw^/i respect to some embedding n : L ^ D). Suppose that r < s. Suppose, 
moreover, that A is the minimal OK-algebra over which the lifts Fi^F2,Fs can be 
defined. (By Theorem 3.2 and Corollary 1^.1, A is the ring of integers of the ring class 
extension ofOs+\.) 

Let a : G —• G be an element of OD and f3 : F2 —> F3 an isogeny of height one, 
defined over A. We assume that a does not lift to a homomorphism F\ —> F2. Let n 
be the maximal integer such that a can be lifted to a homomorphism F\ —* F2 modulo 
\n. Then (3 O a can be lifted to a homomorphism F\ —» F3 modulo An+1, but not 
modulo An+2. 

Proof. — It follows from Corollary 4.8 that ORDA(Lie(/5)) = 1. Hence we can apply 
Proposition 5.2, which proves the corollary. • 
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