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9. C A N O N I C A L AND Q U A S I - C A N O N I C A L L I F T I N G S IN 

T H E SPLIT C A S E 

by 

Volker Meusers 

Abstract. — Following Gross we sketch a theory of quasi-canonical liftings when the 
formal Ok-module of height two and dimension one is replaced by a divisible O x -
module of height one and dimension one in the sense of Drinfel'd. 

Résumé (Relèvements canoniques et quasi-canoniques dans le cas déployé). — Suivant 
Gross, on donne une théorie de relèvements quasi-canoniques dans le cas où le Ok 
module de hauteur deux et de dimension un est remplacé par un ok-module divisible 
de hauteur un et de dimension un au sens de Drinfel'd. 

In this paper, we follow up on a remark by Gross [G] and discuss a theory of 
quasi-canonical liftings when the formal Ok-module of height two and dimension one 
considered in [ W w l ] is replaced by a divisible Ok-module of height one and dimension 
one in the sense of Drinfel'd [D]. In this situation the statements analogous to those 
in [G], [ W w l ] are easy consequences of Lubin-Tate theory and of a slight modification 
of the Serre-Tate theorem for ordinary elliptic curves, as discussed in the appendix 
to [Mes]. 

1. Formal moduli of divisible Ok-modules 

Let k be a held complete with respect to some discrete valuation. Let OK be its 
ring of integers, p = (TT) its maximal ideal. We assume the residue field OK/P to be 
finite and let q denote the number of its elements. For any non-zero ideal a C OK we 
set N(a) := |(Ok/a|, i.e., N(ps) = qs. Let k be an algebraic closure of OK/P- Let M 
be the completion of the maximal unramified extension of K in some fixed separable 
closure KSEP. Denote the completion of KSEP by C. Let OM and Oc be the rings of 
integers in M and C respectively. 

Following [D, §4] a formal group is a group object in the category of formal schemes. 
For example any group scheme or any discrete group is a formal group in this sense. 
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For a formal group F let us denote by F° its connected component. Let C be the 
category of complete local noetherian (9M-algebras with residue field k. 

Definition 1.1. — Let R G C. A divisible Ox-module over R is a pair F, where F is 
a formal group over R and jf • O x —» End#(F) is a homomorphism such that F° is 
a formal Ox-module of height h < oo in the sense of [VZ], and such that 

F / F ° = K / O K ) > S P F ( R ) 

for some j < oo. The pair (h,j) will be called type of F. 

To ease the notation, we will suppress the structure map 7 ^ of an Ox-module F 
and simply write F. 

Drinfel'd shows that a divisible Ox-module over k is up to isomorphism given by 
its type {hj) (see [D, §4]). 

Example 1.2. — For K = Qp, O x = ^ the product group G = Gm,R x (QP/^P)R is 
an example of a divisible module of type (h,j) = (1 ,1) over R. 

If G C is artinian then the category of fppf-abelian sheaves on R with O x -
structure is an abelian category, the category of Ox-modules over R. It is useful 
to view the category of divisible Ox-modules over R as a full sub-category of this 
category. 

Definition 1.3. — Fix a divisible Ox-module G over k. A deformation of G to R G 
C is a pair (F, ip) consisting of a divisible Ox-module F over R together with an 
isomorphism ip: F 0 x k -=> G of Ox-modules. 

The deformations of G to R G C form a category in a natural way. One checks 
that it is a groupoid and moreover that no object of this groupoid has non-trivial 
automorphisms. The last point is due to the fact that for a deformation F the 
isomorphism yj is part of the data. Nevertheless we often omit yb from the notation. 

Definition 1.4. — For any R G C let us denote by VQ(R) the set of isomorphism 
classes of the groupoid of deformations of G to R. Then VQ becomes a set-valued 
functor on C. 

Fix a formal Ox-module HQ of height h = 1 over k. It has a trivial deformation 
space, i.e., VH0(R) = {point} for any R G C. More precisely T>H0 is representable 
by OM- This follows easily from the uniqueness of Lubin-Tate modules (see [Mel] ; 
see also Remark 1.11(h) for a far more general result of Drinfel'd). Let us denote by 
H the unique lift of HQ to OM- We assume, as we may, that H is given as the base 
change 

H = HF ®QK 0M, 
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where Hf is the Lubin-Tate module over O x corresponding to some fixed prime 
element TT £ OK and some fixed Lubin-Tate series / £ JRN. Recall from [Mel , 
Lemma 1.7] that the isomorphism class of H does not depend on these choices. 
Recall further that for any R £ C we have H(R) — xxir as a set. The Ox-module 
structure is given as follows: For q, q' £ H(R) and z £ OK we have q +H Q1 — H(q, qf) 
and z -H q = [z]f{q). We often omit the subscript H from the notation. 

Now fix some divisible Ox-module G over K of height H = 1 such that there is an 
isomorphism G/G° = (i^/Ox)/c- Fix an isomorphism of divisible O-modules 

r:G^H0x{K/OK)k 

where H is the unique lift of G° to OM as above. Two such isomorphisms differ by an 
element of the automorphism group of the right hand side. This group is described 
by the following easy but important lemma. 

Lemma 1.5 
(1) We have 

Hom0x,fc((K/Ox)fc,#o) = {0} = RomoK,k(HoAK/OK)k) 

and 
ENDOK,k(HO)= OK= ENDOK,k((K/0K)k). 

(2) IN PARTICULAR THERE IS A CANONICAL ISOMORPHISM 

O K X O K ^ ENDOK,(H0 x (KIOK)K). 

It induces an isomorphism 

OYKXOYK^ AUTOK,K(H0 x (K/0K)K). 

PROOF. — It clearly suffices to prove the first point. We have 
HOMOK,K((K/0K)K,HO) = ROMOK(K/OK,H0(K)) = {0} 

by adjunction and because HO(K) = { 0 } . We have 

HomOKHO, {K/0K)k) = Home^^tfo , {K/OK)1) = {0} 

because H0 is connected and (K/Ok)° = {0} . We have 

endOk, k(ho)=Ok 

because by Lubin-Tate theory every endomorphism of H0 is uniquely given by its 
differential at zero. We have 

ENDOK,k((K/0K)k)= ENDOK(K/0K) 

by adjunction. Since the natural map 

OK —>EVDOK(K/0K) 

is well known to be an isomorphism we are done. • 

We want to sketch a proof of the following theorem (compare the analogous state-
ment in [VZ, Theorem 3.8]): 
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Theorem 1.6 (Universal deformation). — For any R G C and fixed isomorphism r 
there is a natural isomorphism 

VR- VG(R) H(R). 

In particular VQ can be given the structure of an Ox-module (depending on r ( 
course). Since we assume H = Hf ®oK OM, the Ox-module structure is given b 
Lubin-Tate theory as recalled above. 

The proof will take up the rest of this section. One proceeds as in [Mes, appendix 
In the course of the proof we will identify both, T>G{R) and H(R) for R £ C artiniai 
with a certain Ext-group. So let us briefly recall the definition and some bas: 
properties of these groups. A careful discussion can be found in [Mt, chapter VII]. 

For objects M" and M' of an abelian category A let 

SxtA(M",Mf) 

denote the groupoid of extensions (M,p, i): M' ^ M -» M". It is well known that 
the map 

Honu ( M " , M ' ) ^8xtA(M"M'){{M,p,i)) 

e i d M -\-i o (p o p 

is an isomorphism of groups. In particular the automorphism group of (M,_p, i) is 
trivial if and only if Horn a (M", M') is. Let 

ExtA(M",M') 

be the class of isomorphism classes of 8xtj,{M",M'). Assume it to be a set. Some-
times we will not distinguish an extension from its isomorphism class. Using Baer-
addition Ext^(M",M7) becomes an abelian group in the usual way. For N' G A 
let 

(1.1) 5(M,P,O,iv,: Hom^(M/,A^/) E x t ^ ( M " , A O . 

be the boundary homomorphism 

Apply this in the case that A is the category of O^-niodules on some fixed artinian 
R G C. In this case the Ext-groups are in fact Ox-modules. 

Definition 1.7. — Let R G C be artinian. For any two Ox-modules M' and M" over 
R let 

E x t 0 x ^ ( M , , , M / ) 

denote the Ox-module of extension classes of M" by M' constructed above. 

Recall that we view the category of divisible Ox-modules on artinian R as a ful] 
sub-category of the category of all Ox-modules. 
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Lemma 1.8 (compare [Mes, 1.2.4.3]). — Let R G C be artinian. Given an extension 
of the form 

hr i F v 
(K/OK)R 

of OK-modules over R, then F is a divisible OK-'module such that F° = HR and 
F/F° ^ (K/OK)R- If one uses the isomorphism r: G ^> H0 x (KfOK)k then F 
becomes a deformation of G to R. This association yields a functor between the 
groupoid of extensions of (K/OK)R by HR and the groupoid of deformations of G to 
R. 

Proof — Since (K/OK)R is totally disconnected and HR is connected it follows that 
i: HR ^ F°. The snake lemma implies that p induces an isomorphism p': F/F° —* 
(K/OK)R- It follows that F is divisible. Since HR(k) = { 0 } the extension HR ^ 
F - » (K/OK)R yields an injective map F(k) ^ (K/0K)R(k) = K/0K- Since k 
is algebraically closed it is an isomorphism. This isomorphism gives us a canonical 
splitting map (K/OK)k c—» F (g) k. Thus the extension is canonically split over k. 
Together with the identification r: G ^ H0 x [KjO^k we get an isomorphism 
ip: F 0 k ^ G such that the pair (F, ip) is a deformation of G. One checks that 
it is functorial. • 

Proposition 1.9 (compare [Mes, appendix Prop.2.1]). — Assume R G C to be ar-
tinian. Then the functor of the preceding lemma is an equivalence of groupoids and 
there is a natural isomorphism 

eR: VG{R) = ExtOKA(K/OK)R,HR). 

Proof. — fully faithful: It is enough to see that every object in either groupoid has a 
trivial automorphism group. For deformations, this was noted above. For extensions, 
recall that the automorphism group is isomorphic to YiovaoK,R((K/®K)R, HR) = { 0 } . 

essentially surjective: Let F be a deformation of G to R. We need to define 
homomorphisms i: HR ^ F and p: F - » (K/OK)R such that p o i = 0. For this we 
let p on R-valued points be defined as follows : 

F(R)- F(k) = F®k(k) 
roip 

Ho(k) x (K/0K)k(k) 
pr2 

K/0K = (K/OK)R(R). 

Since K/OK is discrete the kernel of p equals F°. Because R is artinian local it follows 
that F° 0 k = (F 0 fc)° = G° ^ H0. Since HR is the unique lift of H0 to R it follows 
that F° is isomorphic to HR and we get the map i: HR = F° ^ F. This proves the 
first assertion. The second follows by passage to isomorphism classes. • 

To calculate the Ext-group, we use 

Proposition 1.10. — For any artinian R G C the connecting homomorphism associated 
to the sequence OK ^ K — » K/OK is an isomorphism 

6R: H(R) = HomOKAOK,HR) = ExtOK,R((K/0K)R,HR). 
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Proof. — Assume tn^+1 = 0 for some n » 0. Then H is killed by pn (compare [K, 
Lemma 1.1.21). Associated to the short exact sequence 

(Ok)r 
i 

Kr 
V 

(K/OK)R 

and Hr we have the boundary map (1.1) 

ô(KR,p,t),HR: Hornet7jR(((9x)x,Hr) ExtoKA(K/VK)R,HR). 

If we identify H(R) with Y{.ovcioK^{{Ok)r, Hr) this gives us the desired map Sr. 
Because the prime element n G Ok acts invertibly on K and nilpotently on H one 
sees easily that 

HomOKjfl(if,ff) = {0} = ExtOKMK^H)-

By the exactness of the long Ext-sequence, it follows that Sr is an isomorphism. • 

Proof of Theorem 1.6. — Combining Proposition 1.9 and Proposition 1.10 we get the 
desired isomorphism for artinian R G C as 

VR = Or1 ° eR-

For general R we can pass to the limit over its artinian quotients. 

Remark 1.11 
(i) How does one calculate the inverse of SrI For R = k both sides are trivial and 

so is 8k - In the general case S^1 can be computed by an approximation process with 
respect to the "p-adic topology" on both E x t o K , r { 0 k ? Hr) and H(R). For details we 
refer to [K, page 15If], [Mes, appendix]. 

(ii) In particular it follows from this theorem that the formal moduli space of the 
divisible module G = Ho x [KjO^h is representable by a formal power series ring in 
one variable over OM- More generally, Drinfel'd shows that the formal moduli space 
of a divisible module of type (h,j) over k is representable by a power series ring in 
h + j' — 1 variables (compare [D, Prop.4.51). 

Definition 1.12. — For R G C and fixed r, let F be a lift of G to R. Let us set 

q(F,r) = tjr( isom. class of F) G H(R). 

We simply write ^(i7) if 7F and r are understood. As in [ W w l ] , Definition 4.1 we 
refer to the element q(F) G H(R) = vkr as the formal modulus or coordinate of the 
lift F. 

Example 1.13. — If K — (Q)p, Ok — ̂ p, and H = Gm we are in the situation of [Mes], 
Appendix. If we let qTate(F) G 1 + Gm(i?) denote the coordinate introduced in [Mes], 
then the relations are simply 

qT,te{F) = l + q(F)el + GM(R). 

and 

^ e ( F r = (l + q(F)r = l + z^mq(F). 
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2. Lifting endomorphisms 

Let F and F' be deformations of G to R with coordinates q = q(F),q' — q(Ff) G 
H(R). We want to describe in terms of our chosen coordinates which endomorphisms 
po G EndoK,R(G) lift to homomorphisms p: F —> Fy'. 

Proposition 2.1 (compare [Mes, Appendix Prop.3.3]). — Let po: Fo —» FQ 6e gà/en 6y 
multiplication by z\ on (K/OK)R and by multiplication by zo on H(R). Then po lifts 
to a (necessarily unique) homomorphism p: F —> F' if and only if we have the equality 

ziq-z0q = 0eH(R)1 

where the last expression is more precisely written as [Z\]H(q) ~H [̂ o ] / / (#')• 

Sketch of proof — This follows from rigidity (see [VZ, Lemma 2.6], for formal O x -
modules) , the description of lifts in terms of extensions and the following well known 
and simple lemma applied to M' = Nf = H, M" = N" = K/OK and cp = zx 
and i\) = ZQ. • 

Lemma 2.2 (compare [CE, chap.XIV, exercise 18]). — Let 

M' 
i 

M 
p 

M" 

TV': 
1 

N 
v 

7/J 

•N" 

be a commutative diagram in an arbitrary abelian category. Then it can be completed 
by a homomorphism p: M —> N if and only if the extension obtained by pushing out 
the upper sequence along <p is isomorphic to the extension obtained by pulling back the 
lower sequence along -0. 

Example 2.3. — For reasons explained above (see [Mel , Example 1.3]), the analogous 
formula of [Mes], Appendix reads: 

( « T a t e ) ^ ( 9 T a t e ) ^ ° = ( 1 + ^ ) ^ ( 1 + ? ' ) - " ° = 1 + zlq -~Qm *>«') = 1-

Specialize to R = Oc- As a consequence of proposition (1.9) we can describe the 
ring of endomorphisms of a lift F of Fo to Oc-

Corollary 2.4. — Let F be a lift F of G to Oc with q = q(F, r) G H(Oc)- Then there 
are two cases: 

(i) If the annihilator of q in OK is zero then the endomorphism ring of F equals 
OK-

(ii) If the annihilator of q in OK is ps for some 0 < s < oo then the endomorphism 
ring of F, as a subring of the ring of endomorphisms of G, is strictly bigger then OK 
and is isomorphic to 

E n d o K , o c ( F ) 9* { ( * o , * i ) e OK x Ok\z0 - *i G ps} ç OK x OK-
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Proof. — This follows directly from the proposition with q = q'. Note that in this 

Oi -H q) -H Oo 'H q) = Oi -z0)-Hq = 0e H(R). • 

3. Quasi-canonical lifts in the split case 

We now show that the results on canonical and quasi-canonical liftings in [ W w l ] 
and [G] have analogues in the present case. To bring out this analogy we introduce 
the following definitions: 

Definition 3.1 
(i) Set L = K x K and OL = GK x OK- Embed K resp. OK diagonally into L 

resp. OL-
(ii) From Lemma 1.5 we get an C^-linear isomorphism 

«: OL E n d o ^ ( G ) . 

(iii) The "completion of the maximal unramified extension" of L is given by ML = 
M x M whose "separable closure" is MSLEP = Msep x Msep. 

(iv) Set 

TL = Gal(Affp|ML) = Gal(Msep|M) x Gal(Msep|M). 

By Lubin-Tate theory we have a reciprocity isomorphism 

pf: Gal(Msep|M)ab = 
K 

It induces a reciprocity isomorphism 

pabl=(pab, pdbk):Tabl oi. 
(v) For any integer s > 0 let 

08 = 0K + PSOL = {Oo, *i) e OL\z0 -Zle ps} 

be the "order" containing OK of conductor ps or level s in OL-
(vi) For s > 1 let MS\M be the fixed field in Msep of the inverse image under 

the reciprocity isomorphism pf? of (1 + ps) C OK in Gal(Msep|A/f)), i.e., such that 
reciprocity gives an isomorphism 

pf: Gal(Ms|M) 0 A - / ( 1 + PS)-

Remark 3.2. — One easily sees that the map OH —> (9^ given by sending (x,y) G 0 £ 
to the quotient xy^1 G O ^ induces an isomorphism 

oi/o: Oxk/(l+ps) 
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If we let Ts C T|b be the inverse image of Oxs in r^b under p|b, then we have the 
following commutative diagram 

- n a b 
1 L 

pabl oi 

Vf IT s 
= 

o h o -

(<J,T)\-*<JT ] 

Gal(MJM) 
= • o^/ii + r) 

= (x,y) - sy-l 

where denotes isomorphisms. In this sense we may consider MS\M to be the "ring 
class field" of the "order" OS C OL. 

Definition 3.3. — A quasi-canonical lift of G of level s > 0 ( with respect to K) is a lift 
F of G to Oc already defined over the ring of integers of some finite extension of M , 
together with an O^-algebra isomorphism Os ^ EndoK,oc(F')- A quasi-canonical 
lift of level s = 0 is also called canonical. 

Proposition 3.4 (compare [ W w l , §1.3]). — Let F be a lift of G. Then the following 
statements are equivalent: 

(1) The lift F is canonical, i.e., defined over some finite extension of M and such 
that E n d c v , o c ( F ) = Endcv,fc(G) ^OKXOK. 

(2) The lift F is isomorphic to HQM X (K/OK)OM • 
In particular there exists a canonical lift and it is unique up to unique isomorphism. 

The formal modulus of a canonical lift Fcan is q(Fcan) = 0 and thus independent of 
the chosen isomorphism r. 

Proof. — Clearly, the lift F = HQM X (K/OK)OM 18 canonical. To show that any 
canonical lift is isomorphic to the product, note that the endomorphism ring of a 
canonical lift contains the images einf and eet of (1,0) G OL and (0,1) G OL- They 
satisfy e? f = elt = 1 and einf + eet = 1 and hence define a splitting 

F = Im(einf) x Im(eet) 

as claimed. Given two canonical lifts, the element (1,1) G OL induces a canonical 
isomorphism. For the last claim simply observe that the split extension is the image 
of 0 G H(Oc) under 5QC by construction. • 

Proposition 3.5 (compare [ W w l , §3] and [G, Prop.5.3]) 

(1) Quasi-canonical liftings Fs exist for all levels s > 0. 
(2) Liftings of level s are rational over the ring of integers OMs of Ms. Their 

isomorphism classes are permuted simply transitively under the action of the Galois 
group 

Gal(Ms|M) ^ OHO* * (0L/psOL)x/(0K/pT 
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which has order 

| G a l ( M S | M ) | = qs ( l -
l 
q 

1 

: s > 1 

: s = 0 

In particular Ms is the smallest extension of M over which a quasi-canonical lift can 
be defined. 

(3) The formal modulus q(FS) G H{OMs) = H{Oc) of a quasi-canonical lift of 
level s is a uniformizing element of' OMs- In particular, for s > 1 the OK-nnodules FS 
and FCAN are not isomorphic over OMJ^M . • 

Proof — For the first point recall that it follows from Lubin-Tate theory that 
H(Oc)torsion — K/OK as (^-modules. Thus there are elements qs G H(Oc) with 
annihilator ps for any given s > 0. This implies the existence of a lift Fs/Oc with 
formal modulus qs. By Corollary 2.4 the endomorphism ring of FS is isomorphic to 
Os. If s = 0 then FCAN = H x K/OK is a canonical lift and it is clearly defined over 
M. If s > 1 then the stabilizer of the formal modulus qs, i.e., 1 + Ann(gs), equals 
1 + ps C OK. Thus again by Lubin-Tate theory its isomorphism class is stable under 
the Galois group G a l ( M S E P | M S ) since the identification of VFo(Oc) with H(Oc) is 
compatible with the action of G a l ( M S E P | M ) . Since deformations have no non-trivial 
automorphisms, this induces a Galois action on the chosen lift Fs/Oc itself. It 
follows that FS descends to a formal (D^-module over OMS = @c H Ms. 

For the second point note that the first isomorphism follows from Remark 3.2. One 
checks easily that the natural map 

Osl/Oxs 
oL/psoLr/(oK/ps)x 

is an isomorphism. For s > 1 it follows from Lubin-Tate theory that 

| 0 * / 1 +ps\= Nipy-'iNip) - 1) = I Gal(M8|M)| 

as claimed . 
The last point also follows from Lubin-Tate theory (see [Mel]) , for one knows that 

NMS\M(-qs) = 7T and hence 

vmsIm(qs)= 1 
[M8 : M] V M ( N M 3 \ M ( Q s ) ) = 

1 

[M8 : M] 

as claimed, therefore qs G vnMs\™>M for s > 1. But the canonical lilt has formal 
modulus qcan = 0 G m2ms . It follows that qs ^ qcan mod m|7 . • 

Remark 3.6 
(i) The degree formula in the proposition can be written in a uniform way as 

| G a l ( M S | M ) | =A^(ps) 
I\PS 

L 

I 

1 

N(l) 

where one formally sets 
L 

{ 
= + 1 , - 1 , 0 

according as [ = p is split (our case), inert or ramified (the cases treated in [WwlJ) 
in the extension L\K. 
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(ii) Let EQ be an ordinary elliptic curve over ¥p. Then one knows that its endomor-
phism ring is isomorphic to some order O C L in some imaginary quadratic field L. 
Let CO G Z be the conductor of O. It is known that p does not divide CQ. Set cs — psco 
and Os = Z + psO. Let MS\L be the ring class field of the order Os. For example 
if CO = 1 and 5 = 0 then MS = M is the Hilbert class field of L, i.e., the maximal 
unramified abelian extension of L. In this situation one has Deuring's lifting theorem 
(compare [L, chap. 13,§4,§5]). It guarantees the existence of an elliptic curve ES over 
MS with complex multiplication by Os and such that the reduction of ES at some 
prime of degree one over p is isomorphic to EQ (same notational conflict as in the local 
case). The j-invariants of the different curves ES are permuted simply transitively 
by the Galois group Gal(Ms|M). By the well known formula for the class numbers 
of orders in imaginary quadratic fields (see [S, exercise 4.12]) the Galois group has 
order 

|Gal (Ms|M) | = 
h(pa) 

KO) 
\o*\ 
\o-\ 

cs 

CO 
I c0 

H L 

I 

1 

I 

where the symbol ( j ) is defined as in (i). The extra factor | ^ | is due to the presence 

of nontrivial automorphisms in this situation. It is trivial for L ^ Q(i), Q ( e ^ ) . This 
statement of a global nature is thus completely analogous to the local statement of 
Proposition 3.5. 
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