Astérisque **312**, 2007, p. 87–98

9. CANONICAL AND QUASI-CANONICAL LIFTINGS IN THE SPLIT CASE

by

Volker Meusers

Abstract. — Following Gross we sketch a theory of quasi-canonical liftings when the formal \mathcal{O}_K -module of height two and dimension one is replaced by a divisible \mathcal{O}_K -module of height one and dimension one in the sense of Drinfel'd.

Résumé (Relèvements canoniques et quasi-canoniques dans le cas déployé). — Suivant Gross, on donne une théorie de relèvements quasi-canoniques dans le cas où le \mathcal{O}_{K} -module de hauteur deux et de dimension un est remplacé par un \mathcal{O}_{K} -module divisible de hauteur un et de dimension un au sens de Drinfel'd.

In this paper, we follow up on a remark by Gross $[\mathbf{G}]$ and discuss a theory of quasi-canonical liftings when the formal \mathcal{O}_K -module of height two and dimension one considered in $[\mathbf{Ww1}]$ is replaced by a divisible \mathcal{O}_K -module of height one and dimension one in the sense of Drinfel'd $[\mathbf{D}]$. In this situation the statements analogous to those in $[\mathbf{G}], [\mathbf{Ww1}]$ are easy consequences of Lubin-Tate theory and of a slight modification of the Serre-Tate theorem for ordinary elliptic curves, as discussed in the appendix to $[\mathbf{Mes}]$.

1. Formal moduli of divisible \mathcal{O}_K -modules

Let K be a field complete with respect to some discrete valuation. Let \mathcal{O}_K be its ring of integers, $\mathfrak{p} = (\pi)$ its maximal ideal. We assume the residue field $\mathcal{O}_K/\mathfrak{p}$ to be finite and let q denote the number of its elements. For any non-zero ideal $\mathfrak{a} \subset \mathcal{O}_K$ we set $N(\mathfrak{a}) := |\mathcal{O}_K/\mathfrak{a}|$, *i.e.*, $N(\mathfrak{p}^s) = q^s$. Let k be an algebraic closure of $\mathcal{O}_K/\mathfrak{p}$. Let M be the completion of the maximal unramified extension of K in some fixed separable closure K^{sep} . Denote the completion of K^{sep} by C. Let \mathcal{O}_M and \mathcal{O}_C be the rings of integers in M and C respectively.

Following $[\mathbf{D}, \S 4]$ a formal group is a group object in the category of formal schemes. For example any group scheme or any discrete group is a formal group in this sense.

2000 Mathematics Subject Classification. - 11G15, 14K07, 14K22, 14L05.

Key words and phrases. — Quasi-canonical liftings, complex multiplication, Lubin-Tate formal groups, Serre-Tate theorem.

For a formal group F let us denote by F° its connected component. Let $\widehat{\mathcal{C}}$ be the category of complete local noetherian \mathcal{O}_M -algebras with residue field k.

Definition 1.1. — Let $R \in \widehat{\mathcal{C}}$. A divisible \mathcal{O}_K -module over R is a pair F, where F is a formal group over R and $\gamma_F \colon \mathcal{O}_K \to \operatorname{End}_R(F)$ is a homomorphism such that F° is a formal \mathcal{O}_K -module of height $h < \infty$ in the sense of $[\mathbf{VZ}]$, and such that

$$F/F^{\circ} \cong (K/\mathcal{O}_K)^{\mathcal{I}}_{\mathrm{Spf}(R)}$$

for some $j < \infty$. The pair (h, j) will be called type of F.

To ease the notation, we will suppress the structure map γ_F of an \mathcal{O}_K -module F and simply write F.

Drinfel'd shows that a divisible \mathcal{O}_K -module over k is up to isomorphism given by its type (h, j) (see $[\mathbf{D}, \S 4]$).

Example 1.2. — For $K = \mathbb{Q}_p$, $\mathcal{O}_K = \mathbb{Z}_p$ the product group $G = \widehat{\mathbb{G}}_{m,R} \times (\mathbb{Q}_p/\mathbb{Z}_p)_R$ is an example of a divisible module of type (h, j) = (1, 1) over R.

If $R \in \widehat{\mathcal{C}}$ is artinian then the category of fppf-abelian sheaves on R with \mathcal{O}_{K} -structure is an abelian category, the category of \mathcal{O}_{K} -modules over R. It is useful to view the category of divisible \mathcal{O}_{K} -modules over R as a full sub-category of this category.

Definition 1.3. — Fix a divisible \mathcal{O}_K -module G over k. A deformation of G to $R \in \widehat{\mathcal{C}}$ is a pair (F, ψ) consisting of a divisible \mathcal{O}_K -module F over R together with an isomorphism $\psi: F \otimes_R k \xrightarrow{\cong} G$ of \mathcal{O}_K -modules.

The deformations of G to $R \in \widehat{\mathcal{C}}$ form a category in a natural way. One checks that it is a groupoid and moreover that no object of this groupoid has non-trivial automorphisms. The last point is due to the fact that for a deformation F the isomorphism ψ is part of the data. Nevertheless we often omit ψ from the notation.

Definition 1.4. — For any $R \in \widehat{\mathcal{C}}$ let us denote by $\mathcal{D}_G(R)$ the set of isomorphism classes of the groupoid of deformations of G to R. Then \mathcal{D}_G becomes a set-valued functor on $\widehat{\mathcal{C}}$.

Fix a formal \mathcal{O}_K -module H_0 of height h = 1 over k. It has a trivial deformation space, *i.e.*, $\mathcal{D}_{H_0}(R) = \{\text{point}\}$ for any $R \in \widehat{\mathcal{C}}$. More precisely \mathcal{D}_{H_0} is representable by \mathcal{O}_M . This follows easily from the uniqueness of Lubin-Tate modules (see [Me1]; see also Remark 1.11(ii) for a far more general result of Drinfel'd). Let us denote by H the unique lift of H_0 to \mathcal{O}_M . We assume, as we may, that H is given as the base change

$$H = H_f \otimes_{\mathcal{O}_K} \mathcal{O}_M,$$

where H_f is the Lubin-Tate module over \mathcal{O}_K corresponding to some fixed prime element $\pi \in \mathcal{O}_K$ and some fixed Lubin-Tate series $f \in \mathcal{F}_{\pi}$. Recall from [Me1, Lemma 1.7] that the isomorphism class of H does not depend on these choices. Recall further that for any $R \in \widehat{\mathcal{C}}$ we have $H(R) = \mathfrak{m}_R$ as a set. The \mathcal{O}_K -module structure is given as follows: For $q, q' \in H(R)$ and $z \in \mathcal{O}_K$ we have $q +_H q' = H(q, q')$ and $z \cdot_H q = [z]_f(q)$. We often omit the subscript H from the notation.

Now fix some divisible \mathcal{O}_K -module G over k of height h = 1 such that there is an isomorphism $G/G^{\circ} \cong (K/\mathcal{O}_K)_k$. Fix an isomorphism of divisible \mathcal{O} -modules

$$r: G \xrightarrow{\cong} H_0 \times (K/\mathcal{O}_K)_k$$

where H is the unique lift of G° to \mathcal{O}_M as above. Two such isomorphisms differ by an element of the automorphism group of the right hand side. This group is described by the following easy but important lemma.

Lemma 1.5

(1) We have

$$\operatorname{Hom}_{\mathcal{O}_K,k}((K/\mathcal{O}_K)_k,H_0) = \{0\} = \operatorname{Hom}_{\mathcal{O}_K,k}(H_0,(K/\mathcal{O}_K)_k)$$

and

$$\operatorname{End}_{\mathcal{O}_K,k}(H_0) = \mathcal{O}_K = \operatorname{End}_{\mathcal{O}_K,k}((K/\mathcal{O}_K)_k)$$

(2) In particular there is a canonical isomorphism

$$\mathcal{O}_K \times \mathcal{O}_K \longrightarrow \operatorname{End}_{\mathcal{O}_K,k}(H_0 \times (K/\mathcal{O}_K)_k).$$

It induces an isomorphism

$$\mathcal{O}_K^{\times} \times \mathcal{O}_K^{\times} \longrightarrow \operatorname{Aut}_{\mathcal{O}_K,k}(H_0 \times (K/\mathcal{O}_K)_k).$$

Proof. — It clearly suffices to prove the first point. We have

$$\operatorname{Hom}_{\mathcal{O}_K,k}((K/\mathcal{O}_K)_k, H_0) = \operatorname{Hom}_{\mathcal{O}_K}(K/\mathcal{O}_K, H_0(k)) = \{0\}$$

by adjunction and because $H_0(k) = \{0\}$. We have

$$\operatorname{Hom}_{\mathcal{O}_{K},k}(H_{0},(K/\mathcal{O}_{K})_{k}) = \operatorname{Hom}_{\mathcal{O}_{K},k}(H_{0},(K/\mathcal{O}_{K})_{k}^{\circ}) = \{0\}$$

because H_0 is connected and $(K/\mathcal{O}_K)^\circ = \{0\}$. We have

$$\operatorname{End}_{\mathcal{O}_K,k}(H_0) = \mathcal{O}_K$$

because by Lubin-Tate theory every endomorphism of H_0 is uniquely given by its differential at zero. We have

$$\operatorname{End}_{\mathcal{O}_K,k}((K/\mathcal{O}_K)_k) = \operatorname{End}_{\mathcal{O}_K}(K/\mathcal{O}_K)$$

by adjunction. Since the natural map

$$\mathcal{O}_K \longrightarrow \operatorname{End}_{\mathcal{O}_K}(K/\mathcal{O}_K)$$

is well known to be an isomorphism we are done.

We want to sketch a proof of the following theorem (compare the analogous statement in [VZ, Theorem 3.8]):

Theorem 1.6 (Universal deformation). — For any $R \in \widehat{\mathcal{C}}$ and fixed isomorphism r there is a natural isomorphism

$$\eta_R \colon \mathcal{D}_G(R) \xrightarrow{\cong} H(R).$$

In particular \mathcal{D}_G can be given the structure of an \mathcal{O}_K -module (depending on r of course). Since we assume $H = H_f \otimes_{\mathcal{O}_K} \mathcal{O}_M$, the \mathcal{O}_K -module structure is given by Lubin-Tate theory as recalled above.

The proof will take up the rest of this section. One proceeds as in [Mes, appendix]: In the course of the proof we will identify both, $\mathcal{D}_G(R)$ and H(R) for $R \in \widehat{\mathcal{C}}$ artinian, with a certain Ext-group. So let us briefly recall the definition and some basic properties of these groups. A careful discussion can be found in [Mt, chapter VII].

For objects M'' and M' of an abelian category \mathcal{A} let

 $\mathcal{E}xt_{\mathcal{A}}(M'',M')$

denote the groupoid of extensions $(M, p, i): M' \xrightarrow{i} M \xrightarrow{p} M''$. It is well known that the map

$$\begin{array}{rcl} \operatorname{Hom}_{\mathcal{A}}(M'',M') & \longrightarrow & \operatorname{Aut}_{\mathcal{E}xt_{\mathcal{A}}(M'',M')}((M,p,i)) \\ \varphi & \longmapsto & \operatorname{id}_{M} + i \circ \varphi \circ p \end{array}$$

is an isomorphism of groups. In particular the automorphism group of (M, p, i) is trivial if and only if $\operatorname{Hom}_{\mathcal{A}}(M'', M')$ is. Let

$$\operatorname{Ext}_{\mathcal{A}}(M'', M')$$

be the class of isomorphism classes of $\mathcal{E}xt_{\mathcal{A}}(M'',M')$. Assume it to be a set. Sometimes we will not distinguish an extension from its isomorphism class. Using Baeraddition $\operatorname{Ext}_{\mathcal{A}}(M'',M')$ becomes an abelian group in the usual way. For $N' \in \mathcal{A}$ let

(1.1)
$$\delta_{(M,p,i),N'} \colon \operatorname{Hom}_{\mathcal{A}}(M',N') \longrightarrow \operatorname{Ext}_{\mathcal{A}}(M'',N').$$

be the boundary homomorphism.

Apply this in the case that \mathcal{A} is the category of \mathcal{O}_K -modules on some fixed artinian $R \in \widehat{\mathcal{C}}$. In this case the Ext-groups are in fact \mathcal{O}_K -modules.

Definition 1.7. — Let $R \in \widehat{\mathcal{C}}$ be artinian. For any two \mathcal{O}_K -modules M' and M'' over R let

$$\operatorname{Ext}_{\mathcal{O}_K,R}(M'',M')$$

denote the \mathcal{O}_K -module of extension classes of M'' by M' constructed above.

Recall that we view the category of divisible \mathcal{O}_K -modules on artinian R as a full sub-category of the category of all \mathcal{O}_K -modules.

Lemma 1.8 (compare [Mes, I.2.4.3]). — Let $R \in \widehat{\mathcal{C}}$ be artinian. Given an extension of the form

$$H_R \stackrel{i}{\longleftrightarrow} F \stackrel{p}{\longleftrightarrow} (K/\mathcal{O}_K)_R$$

of \mathcal{O}_K -modules over R, then F is a divisible \mathcal{O}_K -module such that $F^{\circ} \cong H_R$ and $F/F^{\circ} \cong (K/\mathcal{O}_K)_R$. If one uses the isomorphism $r: G \xrightarrow{\cong} H_0 \times (K/\mathcal{O}_K)_k$ then F becomes a deformation of G to R. This association yields a functor between the groupoid of extensions of $(K/\mathcal{O}_K)_R$ by H_R and the groupoid of deformations of G to R.

Proof. — Since $(K/\mathcal{O}_K)_R$ is totally disconnected and H_R is connected it follows that $i: H_R \xrightarrow{\cong} F^\circ$. The snake lemma implies that p induces an isomorphism $p': F/F^\circ \xrightarrow{\cong} (K/\mathcal{O}_K)_R$. It follows that F is divisible. Since $H_R(k) = \{0\}$ the extension $H_R \hookrightarrow F \twoheadrightarrow (K/\mathcal{O}_K)_R$ yields an injective map $F(k) \hookrightarrow (K/\mathcal{O}_K)_R(k) = K/\mathcal{O}_K$. Since k is algebraically closed it is an isomorphism. This isomorphism gives us a canonical splitting map $(K/\mathcal{O}_K)_k \hookrightarrow F \otimes k$. Thus the extension is canonically split over k. Together with the identification $r: G \xrightarrow{\cong} H_0 \times (K/\mathcal{O}_K)_k$ we get an isomorphism $\psi: F \otimes k \xrightarrow{\cong} G$ such that the pair (F, ψ) is a deformation of G. One checks that it is functorial.

Proposition 1.9 (compare [Mes, appendix Prop.2.1]). — Assume $R \in \widehat{\mathcal{C}}$ to be artinian. Then the functor of the preceding lemma is an equivalence of groupoids and there is a natural isomorphism

$$\epsilon_R \colon \mathcal{D}_G(R) \xrightarrow{\cong} \operatorname{Ext}_{\mathcal{O}_K, R}((K/\mathcal{O}_K)_R, H_R).$$

Proof. — fully faithful: It is enough to see that every object in either groupoid has a trivial automorphism group. For deformations, this was noted above. For extensions, recall that the automorphism group is isomorphic to $\operatorname{Hom}_{\mathcal{O}_K,R}((K/\mathcal{O}_K)_R, H_R) = \{0\}$.

essentially surjective: Let F be a deformation of G to R. We need to define homomorphisms $i: H_R \hookrightarrow F$ and $p: F \twoheadrightarrow (K/\mathcal{O}_K)_R$ such that $p \circ i = 0$. For this we let p on R-valued points be defined as follows :

$$F(R) \longrightarrow F(k) = F \otimes k(k) \xrightarrow[r \circ \psi]{\cong} H_0(k) \times (K/\mathcal{O}_K)_k(k) \xrightarrow[\operatorname{pr}_2]{\cong} K/\mathcal{O}_K = (K/\mathcal{O}_K)_R(R).$$

Since K/\mathcal{O}_K is discrete the kernel of p equals F° . Because R is artinian local it follows that $F^\circ \otimes k = (F \otimes k)^\circ \cong G^\circ \cong H_0$. Since H_R is the unique lift of H_0 to R it follows that F° is isomorphic to H_R and we get the map $i: H_R \cong F^\circ \hookrightarrow F$. This proves the first assertion. The second follows by passage to isomorphism classes. \Box

To calculate the Ext-group, we use

Proposition 1.10. — For any artinian $R \in \widehat{C}$ the connecting homomorphism associated to the sequence $\mathcal{O}_K \hookrightarrow K \longrightarrow K/\mathcal{O}_K$ is an isomorphism

$$\delta_R \colon H(R) = \operatorname{Hom}_{\mathcal{O}_K, R}(\mathcal{O}_K, H_R) \xrightarrow{\cong} \operatorname{Ext}_{\mathcal{O}_K, R}((K/\mathcal{O}_K)_R, H_R).$$

Proof. — Assume $\mathfrak{m}_R^{n+1} = 0$ for some n >> 0. Then H is killed by \mathfrak{p}^n (compare [K, Lemma 1.1.2]). Associated to the short exact sequence

$$(\mathcal{O}_K)_R \xrightarrow{i} K_R \xrightarrow{p} (K/\mathcal{O}_K)_R$$

and H_R we have the boundary map (1.1)

$$\delta_{(K_R,p,i),H_R}$$
: Hom _{\mathcal{O}_K,R} (($\mathcal{O}_K)_R,H_R$) \longrightarrow Ext _{\mathcal{O}_K,R} (($K/\mathcal{O}_K)_R,H_R$).

If we identify H(R) with $\operatorname{Hom}_{\mathcal{O}_K,R}((\mathcal{O}_K)_R,H_R)$ this gives us the desired map δ_R . Because the prime element $\pi \in \mathcal{O}_K$ acts invertibly on K and nilpotently on H one sees easily that

$$\operatorname{Hom}_{\mathcal{O}_{K},R}(K,H) = \{0\} = \operatorname{Ext}_{\mathcal{O}_{K},R}(K,H).$$

By the exactness of the long Ext-sequence, it follows that δ_R is an isomorphism. \Box

Proof of Theorem 1.6. — Combining Proposition 1.9 and Proposition 1.10 we get the desired isomorphism for artinian $R \in \widehat{\mathcal{C}}$ as

$$\eta_R = \delta_R^{-1} \circ \epsilon_R.$$

For general R we can pass to the limit over its artinian quotients.

Remark 1.11

(i) How does one calculate the inverse of δ_R ? For R = k both sides are trivial and so is δ_k . In the general case δ_R^{-1} can be computed by an approximation process with respect to the "p-adic topology" on both $\operatorname{Ext}_{\mathcal{O}_K,R}(\mathcal{O}_K,H_R)$ and H(R). For details we refer to [**K**, page 151f], [**Mes**, appendix].

(ii) In particular it follows from this theorem that the formal moduli space of the divisible module $G = H_0 \times (K/\mathcal{O}_K)_k$ is representable by a formal power series ring in one variable over \mathcal{O}_M . More generally, Drinfel'd shows that the formal moduli space of a divisible module of type (h, j) over k is representable by a power series ring in h + j - 1 variables (compare [**D**, Prop.4.5]).

Definition 1.12. — For $R \in \widehat{\mathcal{C}}$ and fixed r, let F be a lift of G to R. Let us set

 $q(F, r) = \eta_R$ (isom. class of $F) \in H(R)$.

We simply write q(F) if γ_F and r are understood. As in $[\mathbf{Ww1}]$, Definition 4.1 we refer to the element $q(F) \in H(R) = \mathfrak{m}_R$ as the formal modulus or coordinate of the lift F.

Example 1.13. — If $K = \mathbb{Q}_p$, $\mathcal{O}_K = \mathbb{Z}_p$, and $H = \widehat{\mathbb{G}}_m$ we are in the situation of [**Mes**], Appendix. If we let $q_{\text{Tate}}(F) \in 1 + \widehat{\mathbb{G}}_m(R)$ denote the coordinate introduced in [**Mes**], then the relations are simply

$$q_{\text{Tate}}(F) = 1 + q(F) \in 1 + \mathbb{G}_m(R).$$

and

$$q_{\text{Tate}}(F)^{z} = (1+q(F))^{z} = 1 + z \cdot_{\widehat{\mathbb{G}}_{m}} q(F).$$

ASTÉRISQUE 312

2. Lifting endomorphisms

Let F and F' be deformations of G to R with coordinates $q = q(F), q' = q(F') \in H(R)$. We want to describe in terms of our chosen coordinates which endomorphisms $\rho_0 \in \operatorname{End}_{\mathcal{O}_K,R}(G)$ lift to homomorphisms $\rho: F \to F'$.

Proposition 2.1 (compare [Mes, Appendix Prop.3.3]). — Let $\rho_0: F_0 \to F'_0$ be given by multiplication by z_1 on $(K/\mathcal{O}_K)_R$ and by multiplication by z_0 on H(R). Then ρ_0 lifts to a (necessarily unique) homomorphism $\rho: F \to F'$ if and only if we have the equality

$$z_1q - z_0q' = 0 \in H(R)$$

where the last expression is more precisely written as $[z_1]_H(q) -_H [z_0]_H(q')$.

Sketch of proof. — This follows from rigidity (see [**VZ**, Lemma 2.6], for formal \mathcal{O}_{K} modules), the description of lifts in terms of extensions and the following well known
and simple lemma applied to M' = N' = H, $M'' = N'' = K/\mathcal{O}_K$ and $\varphi = z_1$ and $\psi = z_0$.

Lemma 2.2 (compare [CE, chap.XIV, exercise 18]). — Let

$$\begin{array}{ccc} M' & \stackrel{i}{\longrightarrow} M & \stackrel{p}{\longrightarrow} M'' \\ \varphi \\ \downarrow & & \psi \\ N' & & \psi \\ i' & N & \stackrel{p'}{\longrightarrow} N'' \end{array}$$

be a commutative diagram in an arbitrary abelian category. Then it can be completed by a homomorphism $\rho: M \to N$ if and only if the extension obtained by pushing out the upper sequence along φ is isomorphic to the extension obtained by pulling back the lower sequence along ψ .

Example 2.3. — For reasons explained above (see [Me1, Example 1.3]), the analogous formula of [Mes], Appendix reads:

$$(q_{\text{Tate}})^{z_1} (q'_{\text{Tate}})^{-z_0} = (1+q)^{z_1} (1+q')^{-z_0} = 1 + (z_1 q -_{\widehat{\mathbb{G}}_m} z_0 q') = 1.$$

Specialize to $R = \mathcal{O}_C$. As a consequence of proposition (1.9) we can describe the ring of endomorphisms of a lift F of F_0 to \mathcal{O}_C .

Corollary 2.4. — Let F be a lift F of G to \mathcal{O}_C with $q = q(F, r) \in H(\mathcal{O}_C)$. Then there are two cases:

(i) If the annihilator of q in \mathcal{O}_K is zero then the endomorphism ring of F equals \mathcal{O}_K .

(ii) If the annihilator of q in \mathcal{O}_K is \mathfrak{p}^s for some $0 \leq s < \infty$ then the endomorphism ring of F, as a subring of the ring of endomorphisms of G, is strictly bigger then \mathcal{O}_K and is isomorphic to

$$\operatorname{End}_{\mathcal{O}_K,\mathcal{O}_C}(F) \cong \{(z_0, z_1) \in \mathcal{O}_K \times \mathcal{O}_K | z_0 - z_1 \in \mathfrak{p}^s\} \subseteq \mathcal{O}_K \times \mathcal{O}_K.$$

Proof. — This follows directly from the proposition with q = q'. Note that in this case

$$(z_1 \cdot_H q) -_H (z_0 \cdot_H q) = (z_1 - z_0) \cdot_H q = 0 \in H(R).$$

3. Quasi-canonical lifts in the split case

We now show that the results on canonical and quasi-canonical liftings in $[\mathbf{Ww1}]$ and $[\mathbf{G}]$ have analogues in the present case. To bring out this analogy we introduce the following definitions:

Definition 3.1

(i) Set $L = K \times K$ and $\mathcal{O}_L = \mathcal{O}_K \times \mathcal{O}_K$. Embed K resp. \mathcal{O}_K diagonally into L resp. \mathcal{O}_L .

(ii) From Lemma 1.5 we get an \mathcal{O}_K -linear isomorphism

$$\kappa \colon \mathcal{O}_L \xrightarrow{\cong} \operatorname{End}_{\mathcal{O}_K,k}(G).$$

(iii) The "completion of the maximal unramified extension" of L is given by $M_L = M \times M$ whose "separable closure" is $M_L^{\text{sep}} = M^{\text{sep}} \times M^{\text{sep}}$.

(iv) Set

$$\Gamma_L = \operatorname{Gal}(M_L^{\operatorname{sep}}|M_L) = \operatorname{Gal}(M^{\operatorname{sep}}|M) \times \operatorname{Gal}(M^{\operatorname{sep}}|M).$$

By Lubin-Tate theory we have a reciprocity isomorphism

$$\rho_K^{\mathrm{ab}} \colon \operatorname{Gal}(M^{\mathrm{sep}}|M)^{\mathrm{ab}} \xrightarrow{\cong} \mathcal{O}_K^{\times}.$$

It induces a reciprocity isomorphism

$$\rho_L^{\rm ab} = (\rho_K^{\rm ab}, \rho_K^{\rm ab}) \colon \Gamma_L^{\rm ab} \xrightarrow{\cong} \mathcal{O}_L^{\times}.$$

(v) For any integer $s \ge 0$ let

$$\mathcal{O}_s = \mathcal{O}_K + \mathfrak{p}^s \mathcal{O}_L = \{(z_0, z_1) \in \mathcal{O}_L | z_0 - z_1 \in \mathfrak{p}^s\}$$

be the "order" containing \mathcal{O}_K of conductor \mathfrak{p}^s or level s in \mathcal{O}_L .

(vi) For $s \geq 1$ let $M_s|M$ be the fixed field in M^{sep} of the inverse image under the reciprocity isomorphism ρ_K^{ab} of $(1 + \mathfrak{p}^s) \subset \mathcal{O}_K^{\times}$ in $\text{Gal}(M^{\text{sep}}|M))$, *i.e.*, such that reciprocity gives an isomorphism

$$\rho_K^{\mathrm{ab}} \colon \operatorname{Gal}(M_s | M) \xrightarrow{\cong} \mathcal{O}_K^{\times} / (1 + \mathfrak{p}^s).$$

Remark 3.2. — One easily sees that the map $\mathcal{O}_L^{\times} \to \mathcal{O}_K^{\times}$ given by sending $(x, y) \in \mathcal{O}_L^{\times}$ to the quotient $xy^{-1} \in \mathcal{O}_K^{\times}$ induces an isomorphism

$$\mathcal{O}_L^{\times}/\mathcal{O}_s^{\times} \xrightarrow{\cong} \mathcal{O}_K^{\times}/(1+\mathfrak{p}^s).$$

If we let $\Gamma_s \subset \Gamma_L^{ab}$ be the inverse image of \mathcal{O}_s^{\times} in Γ_L^{ab} under ρ_L^{ab} , then we have the following commutative diagram

where " \cong " denotes isomorphisms. In this sense we may consider $M_s|M$ to be the "ring class field" of the "order" $\mathcal{O}_s \subseteq \mathcal{O}_L$.

Definition 3.3. — A quasi-canonical lift of G of level $s \ge 0$ (with respect to κ) is a lift F of G to \mathcal{O}_C already defined over the ring of integers of some finite extension of M, together with an \mathcal{O}_K -algebra isomorphism $\mathcal{O}_s \xrightarrow{\cong} \operatorname{End}_{\mathcal{O}_K,\mathcal{O}_C}(F')$. A quasi-canonical lift of level s = 0 is also called canonical.

Proposition 3.4 (compare $[\mathbf{Ww1}, \S1.3]$). — Let F be a lift of G. Then the following statements are equivalent:

(1) The lift F is canonical, i.e., defined over some finite extension of M and such that $\operatorname{End}_{\mathcal{O}_K,\mathcal{O}_C}(F) = \operatorname{End}_{\mathcal{O}_K,k}(G) \cong \mathcal{O}_K \times \mathcal{O}_K.$

(2) The lift F is isomorphic to $H_{\mathcal{O}_M} \times (K/\mathcal{O}_K)_{\mathcal{O}_M}$.

In particular there exists a canonical lift and it is unique up to unique isomorphism. The formal modulus of a canonical lift F_{can} is $q(F_{can}) = 0$ and thus independent of the chosen isomorphism r.

Proof. — Clearly, the lift $F = H_{\mathcal{O}_M} \times (K/\mathcal{O}_K)_{\mathcal{O}_M}$ is canonical. To show that any canonical lift is isomorphic to the product, note that the endomorphism ring of a canonical lift contains the images e_{\inf} and e_{et} of $(1,0) \in \mathcal{O}_L$ and $(0,1) \in \mathcal{O}_L$. They satisfy $e_{\inf}^2 = e_{et}^2 = 1$ and $e_{\inf} + e_{et} = 1$ and hence define a splitting

$$F \cong \operatorname{Im}(e_{\operatorname{inf}}) \times \operatorname{Im}(e_{\operatorname{et}})$$

as claimed. Given two canonical lifts, the element $(1,1) \in \mathcal{O}_L$ induces a canonical isomorphism. For the last claim simply observe that the split extension is the image of $0 \in H(\mathcal{O}_C)$ under $\delta_{\mathcal{O}_C}$ by construction.

Proposition 3.5 (compare [Ww1, §3] and [G, Prop.5.3])

(1) Quasi-canonical liftings F_s exist for all levels $s \ge 0$.

(2) Liftings of level s are rational over the ring of integers \mathcal{O}_{M_s} of M_s . Their isomorphism classes are permuted simply transitively under the action of the Galois group

$$\operatorname{Gal}(M_s|M) \cong \mathcal{O}_L^{\times}/\mathcal{O}_s^{\times} \cong (\mathcal{O}_L/\mathfrak{p}^s\mathcal{O}_L)^{\times}/(\mathcal{O}_K/\mathfrak{p}^s)^{\times}$$

which has order

$$|\operatorname{Gal}(M_s|M)| = \begin{cases} q^s \left(1 - \frac{1}{q}\right) & : s \ge 1\\ 1 & : s = 0 \end{cases}$$

In particular M_s is the smallest extension of M over which a quasi-canonical lift can be defined.

(3) The formal modulus $q(F_s) \in H(\mathcal{O}_{M_s}) = H(\mathcal{O}_C)$ of a quasi-canonical lift of level s is a uniformizing element of \mathcal{O}_{M_s} . In particular, for $s \geq 1$ the \mathcal{O}_K -modules F_s and F_{can} are not isomorphic over $\mathcal{O}_{M_s}/\mathfrak{m}_{M_s}^2$.

Proof. — For the first point recall that it follows from Lubin-Tate theory that $H(\mathcal{O}_C)_{\text{torsion}} \cong K/\mathcal{O}_K$ as \mathcal{O}_K -modules. Thus there are elements $q_s \in H(\mathcal{O}_C)$ with annihilator \mathfrak{p}^s for any given $s \ge 0$. This implies the existence of a lift F_s/\mathcal{O}_C with formal modulus q_s . By Corollary 2.4 the endomorphism ring of F_s is isomorphic to \mathcal{O}_s . If s = 0 then $F_{can} = H \times K/\mathcal{O}_K$ is a canonical lift and it is clearly defined over M. If $s \ge 1$ then the stabilizer of the formal modulus q_s , *i.e.*, 1 + Ann (q_s) , equals $1 + \mathfrak{p}^s \subset \mathcal{O}_K^{\times}$. Thus again by Lubin-Tate theory its isomorphism class is stable under the Galois group Gal($M^{\text{sep}}|M_s$) since the identification of $\mathcal{D}_{F_0}(\mathcal{O}_C)$ with $H(\mathcal{O}_C)$ is compatible with the action of Gal($M^{\text{sep}}|M$). Since deformations have no non-trivial automorphisms, this induces a Galois action on the chosen lift F_s/\mathcal{O}_C itself. It follows that F_s descends to a formal \mathcal{O}_K -module over $\mathcal{O}_{M_s} = \mathcal{O}_C \cap M_s$.

For the second point note that the first isomorphism follows from Remark 3.2. One checks easily that the natural map

$$\mathcal{O}_L^{\times}/\mathcal{O}_s^{\times} \longrightarrow (\mathcal{O}_L/\mathfrak{p}^s\mathcal{O}_L)^{\times}/(\mathcal{O}_K/\mathfrak{p}^s)^{\times}$$

is an isomorphism. For $s \ge 1$ it follows from Lubin-Tate theory that

$$|\mathcal{O}_K^{\times}/1 + \mathfrak{p}^s| = N(\mathfrak{p})^{s-1}(N(\mathfrak{p}) - 1) = |\operatorname{Gal}(M_s|M)|$$

as claimed .

The last point also follows from Lubin-Tate theory (see [Me1]), for one knows that $N_{M_s|M}(-q_s) = \pi$ and hence

$$v_{M_s|M}(q_s) = \frac{1}{[M_s:M]} v_M(N_{M_s|M}(q_s)) = \frac{1}{[M_s:M]}$$

as claimed. Therefore $q_s \in \mathfrak{m}_{M_s} \setminus \mathfrak{m}_{M_s}^2$ for $s \ge 1$. But the canonical lift has formal modulus $q_{can} = 0 \in \mathfrak{m}_{M_s}^2$. It follows that $q_s \not\equiv q_{can} \mod \mathfrak{m}_{M_s}^2$.

Remark 3.6

(i) The degree formula in the proposition can be written in a uniform way as

$$|\operatorname{Gal}(M_s|M)| = N(\mathfrak{p}^s) \prod_{\mathfrak{l}|\mathfrak{p}^s} \left(1 - \left(\frac{L}{\mathfrak{l}}\right) \frac{1}{N(\mathfrak{l})}\right)$$

where one formally sets

$$\left(\frac{L}{\mathfrak{l}}\right) = +1, -1, 0$$

according as l = p is split (our case), inert or ramified (the cases treated in [**Ww1**]) in the extension L|K.

97

(ii) Let E_0 be an ordinary elliptic curve over $\overline{\mathbb{F}}_p$. Then one knows that its endomorphism ring is isomorphic to some order $\mathcal{O} \subset L$ in some imaginary quadratic field L. Let $c_0 \in \mathbb{Z}$ be the conductor of \mathcal{O} . It is known that p does not divide c_0 . Set $c_s = p^s c_0$ and $\mathcal{O}_s = \mathbb{Z} + p^s \mathcal{O}$. Let $M_s | L$ be the ring class field of the order \mathcal{O}_s . For example if $c_0 = 1$ and s = 0 then $M_s = M$ is the Hilbert class field of L, *i.e.*, the maximal unramified abelian extension of L. In this situation one has Deuring's lifting theorem (compare [L, chap.13,§4,§5]). It guarantees the existence of an elliptic curve E_s over M_s with complex multiplication by \mathcal{O}_s and such that the reduction of E_s at some prime of degree one over p is isomorphic to E_0 (same notational conflict as in the local case). The j-invariants of the different curves E_s are permuted simply transitively by the Galois group $\operatorname{Gal}(M_s | M)$. By the well known formula for the class numbers of orders in imaginary quadratic fields (see [S, exercise 4.12]) the Galois group has order

$$|\operatorname{Gal}(M_s|M)| = \frac{h(\mathcal{O}_s)}{h(\mathcal{O})} = \frac{|\mathcal{O}_s^{\times}|}{|\mathcal{O}^{\times}|} \cdot \frac{c_s}{c_0} \prod_{l \mid \frac{c_s}{c_0}} \left(1 - \left(\frac{L}{l}\right)\frac{1}{l}\right).$$

where the symbol $\left(\frac{L}{l}\right)$ is defined as in (i). The extra factor $\frac{|\mathcal{O}_{s}^{\times}|}{|\mathcal{O}^{\times}|}$ is due to the presence of nontrivial automorphisms in this situation. It is trivial for $L \neq \mathbb{Q}(i)$, $\mathbb{Q}(e^{\frac{2\pi i}{3}})$. This statement of a global nature is thus completely analogous to the local statement of Proposition 3.5.

References

- [CE] H. CARTAN & S. EILENBERG Homological algebra, 1956.
- [D] V. G. DRINFEL'D Elliptic modules, Math. USSR, Sb. 23 (1974), p. 561–592.
- [G] B. H. GROSS On canonical and quasi-canonical liftings, *Invent. Math.* 84 (1986), p. 321–326.
- [K] N. KATZ Serre-Tate local moduli, in Surfaces algebriques, Sémin. de géométrie algébrique, Orsay 1976-78, Springer Lect. Notes Math., vol. 868, 1981, p. 138–202.
- [L] S. LANG *Elliptic functions*, Addison-Wesley, 1973.
- [Mes] W. MESSING The crystals associated to Barsotti-Tate groups: with applications to Abelian schemes, Springer Lect. Notes Math., vol. 264, 1972.
- [Me1] V. MEUSERS Lubin-Tate formal groups, this volume, p. 49–55.
- [Mt] B. MITCHELL Theory of categories, 1965.
- [S] G. SHIMURA Introduction to the arithmetic theory of automorphic functions, Princeton Univ. Press, 1971.
- [VZ] E. VIEHMANN & K. ZIEGLER Formal moduli of formal \mathcal{O}_K -modules, this volume, p. 57–66.
- [Ww1] S. WEWERS Canonical and quasi-canonical liftings, this volume, p. 67–86.

V. MEUSERS, Mathematisches Institut der Universität Bonn, Beringstr. 1, 53115 Bonn, Germany *E-mail* : meusers@math.uni-bonn.de