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11. E N D O M O R P H I S M S OF Q U A S I - C A N O N I C A L LIFTS 

by 

Inken Vollaard 

Abstract. — We present Keating's result on the locus of deformation of an endomor-
phism of a quasi-canonical lifting. At the same time, this determines the endomor-
phism ring of the reduction of quasi-canonical liftings to Artin rings. 

Résumé (Endomorphismes de relèvements quasi-canoniques). — On donne le résultat 
de Keating concernant le lieu de déformation d'un endomorphisme d'un relèvement 
quasi-canonique. En même temps, ceci détermine l'anneau des endomorphismes de la 
réduction d'un relèvement quasi-canonique à des anneaux artiniens. 

In this paper we prove a lifting theorem for endomorphisms of a formal Ok-module 
to a quasi-canonical lift. For the canonical lift, a similar lifting theorem is proved 
in [ W w l j . This work is due to K. Keating ([Kl]) . 

I thank S. Wewers for helpful comments on this manuscript. 

1. Notation 

Let K be a complete discretely valued field, let OK be its ring of integers and let 
π be a uniformizing element of OK- We will assume that the residue field of OK is 

equal to the field ¥q of characteristic p. Denote by k an algebraic closure of Fq. Let 
L be a quadratic extension of K and let A = OLUR be the completion of the maximal 

unramified extension of OL- Denote by M the quotient field of A. 

Let Fo be a formal Ok-module of height 2 over k. By [ W w l ] Theorem 1.1, the 
ring of Ok-linear endomorphisms Endk Fo is isomorphic to the maximal order in 
a division algebra D of dimension 4 over K and invariant 1/2. We identify End & Fo 
with OD- Let F be the canonical lift of FQ over A with respect to an embedding 

oL oD. 
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106 I. VOLLAARD 

We consider a quasi-canonical lift F' of F0 of level s ( [ W w l , Def. 3.1]). By definition, 
End^' F' is an order OS := OK + TTSOL in OL- Note that a quasi-canonical lift of 
level 0 is a canonical lift and therefore can be defined over A. A quasi-canonical lift 
of level s > 1 can be defined over a totally ramified Galois extension M' jM of degree 

[M' : M] = 
qs + qs if L/K is unramified 

qs if L/K is ramified 

( [ W w l , Thm. 3.2]). Denote by A' the ring of integers of M' and denote by TT' 
a uniformizing element of A!. If s is equal to 0, the ring A1 is equal to A. Let 
es — e(A'/OK) be the ramification index of A' over OK, i-e-i 

es = 

2qs if L/K is ramified. 

qs + qs~x if L / K is unramified and s / 0. 

1 if L/K is unramified and s = 0. 

By [ W w l , Proposition 4.4 and Proposition 4.6], the endomorphism [K]F' is given by 
a power series 

(1.1) [TT]F' = TTX + • • - + uXq + • • - + vXq2 + • • • e A'[[X]\ 

with ?v (^) = 1 and iv(^) = 0. 
Denote by A'n = A'/(it')n+l the reduction of A; modulo ( 7 r / ) n + 1 and by = 

F' ®A, Arn the reduction of F' to A^. We obtain 

OS = EndA. F' c • • • C E n d ^ F ; c • • • C End/, F0 = OD 

( [VZ, Lem. 2.6]), hence we will consider E n d ^ F'n as a subring of End/e FQ = OD-
We write EndF^ instead of End^^ Fn. 

For n < es the ring A'/{irr)n is of characteristic p and one can define the height of 
the module F'n ( [VZ, Def. 2.2]). By construction, F'n is of height 1 if 0 < n < es and 
Fo is of height 2. Denote by ai the coefficients of [TT]F' - Then ^/(a^) > es if g { i, and 
v-K'(at) > es if q \ i and g'2 \ i. 

2. Results 

The goal of this paper is to compute the endomorphism rings End F'n as subrings 
oi OD- In the case of the canonical lift, these rings are calculated in [ W w l ] . Denote 
by a(k) the rational number 

a(k) = 
(qk-l)(q+l) 

g - 1 

for every integer k. We have a(0) = 0 and a(k) = (q + l)i k-i 
i=0 ql) for k > 1. 
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Theorem 2.1. — Let F' be a quasi-canonical lift of FQ of level s. Let I > 0 be an 

integer and let 

foe(OS + 7T1DOD) \ (OS + TTl+mdOD). 

Then fo lifts to EndF^ ! and not to Endi7^ with 

ni = ni(s) = m(L K, s) 

a i 
2 + 1 

a i-i 
2 

i-i 
2 + 1 

if I < 2s and I even 

if I < 2s and I odd. 

a(s-l) + qs-1 + ¿+1 
2 - s ) e s + l if I > I s - I . 

Remark 2.2. — The rational number m of the theorem is an integer. Indeed, if L/K 
is ramified, the ramification index es is even. If L/K is unramified and / > 2s is even, 
then 

OS+TT1DOD = Os+irL+LOD. 

Theorem 2.3. — Consider the same situation as in Theorem 2.1. Then EndFn = 

OS+IT^OD where 

j(n). 

2k if n e}a(k - 1) + qk~l ; a(k)} for k < s. 

2k + 1 if n e}a(k);a(k) + qh] for k < s. 

k ifn e]a(s - 1) + qs~l + k/2 s)es;a(s - 1) + qs'1 + (^±1 _ s)6s] 

/or /c > 2s. 

Note that the above intervals form a disjoint cover of the set of positive integers. The 

integer j(n) is uniquely determined unless L/K is unramified and j(n) > 2s. In this 

case we have OS + 7TD^OD = OS + n^71^10D for every even j(n). 

Proof. — This theorem follows from Theorem 2.1. 

Remark2.4. — If F' is the canonical lift of FQ, i.e., if s = 0, Theorem 2.1 and 
Theorem 2.3 have already been proved in [ W w l ] Theorem 1.4. We obtain in this 
case 

EndFn = 0 L + 7 r £ 0 D 

and 

m(0) = l + 1 if L/K is ramified. 
l+l 

2 if L/K is unramified. 

3. Proofs 

We will assume in the following that s is greater or equal than 1. We will split 
the proof of Theorem 2.1 into two propositions similar to the proof of Theorem 1.1 
in [Vi]. 
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Proposition 3.1. — Let I < 2s + 1 and let s > 1. Let 

fo € (Os + 7T1DOD) \ (Os + T T ^ O D ) . 

T/ien /o /i/ts to E n d L ^ \ EndF^ with 

ni = 

a i + 1 

a i-i 
2 + Q 

i-i 
2 f 1 

if I < 2s and I even. 

if I < 2s and I odd. 

a(s - 1) + qs'1 + es + 1 if I = 2s + 1. 

Proposition 3.2. — Let s > 1 and let fo <G EndFr/?_1 \ EndF^ with n > e , - l 
9-1 

Then 
[TT] O /O ZZ/ÏS to EndF1^/_1 \ EndF^, with n' = n + es. 

Proof of Theorem 2.1. — Theorem 2.1 follows by induction from Proposition 3.1 and 
Proposition 3.2. Let / > 2s + 1 and let f0 G (OS + TT1DOD) \ (OS + T T ^ O D ) . Write 
fo = c + [7T]F0 ° #o with c G 0S and #0 G A^2OD \ (OS + TT1D'1OD). By induction #0 

lifts to EndF^_2_! \ EndL^_2 with 

ni-2 = a{s - 1) + q8-1 + 
l - l 

2 
-s)es + l 

2qs - 2 

q-1 + 
/ - 1 

2 
- s)es > 

e3-l 

By Proposition 3.2 the endomorphism [TT]F0 °9O, hence /o, lifts to Endi^,_1 \EndF^, 
with n! = ni-2 + es = nj. • 

Remark 3.3. — We now split the proof of Proposition 3.1 into two cases. As we will 
see below, we can use the results of [Vi] in the case n/ + 1 < es. Note that n\ is a 
strictly increasing sequence. 

An easy computation shows that there exists an integer ZQ such that n/0 + 1 < es < 
n/0+i. We obtain 

— ZQ = 2s if L/K is ramified and q > 3. 

- /0 = 25 - 1 if 

L/K is unramified and q > 3. 

L/K is unramified, q — 2 and s = 1. 

L/K is ramified and q = 2. 
- Zo = 2s — 2 if L/iv" is unramified, q — 2 and s / 1. 

Proof of Proposition 3.1 in the case of ni + 1 < es. — Since A'/ÔK is a totally ram-
ified extension of ramification index es, we obtain for n < es an isomorphism of 
0 ^-algebras 

A'/(wT = (OK/(K))W]/(*T 

= k[t]/(t)n. 
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Let /0 e (OS + 7rlD0D) \ (OS + TT^OD) with nt + 1 < es, i.e., with I < l0 (Rem. 3.3). 
Then Fni is a lift of FQ of height 1 over k[t]/(£)n*+1 and we will prove the proposition 
by using the results of [Vi]. 

We have OS -f TTDOD — OK + K1DOD for Z < 2s and by an easy computation 
OS + Tr%+1GD =OKJT 7T2DS+1OD if L/K is ramified. Hence [Vi] Theorem 1.1, shows 

that /0 lifts to EndFnj_1 \ EndFnr This proves the proposition in this case. • 

3 .1 . Let /0 be an element of EndF/7_1. By fn-i E A'n-l ((X)) we always denote the 
unique lift of /0 as an endomorphism of Fn_l. Let / G ̂ 47[[X]] be a lift of fn-i as a 
power series without constant coefficient. As we are interested in endomorphisms of 
formal groups, we make the general assumption that all power series in this article 
have no constant coefficient. We write fk for the residue class of the power series / 
in ^ [ [ X ] ] . Denote by e the commutator 

e = / o [ 7 r ] ^ — F' [ir]F,ofeA'[[X]] 

using the additive operation on A'((X)) induced by F'. Then e has coefficients in (TT')71 
because fn-i is an endomorphism of Fn_x. 

The main technique to prove the lifting theorem is the cohomology theory as 
in [VZ]. Denote by In the 1-dimensional k-vector space (n')71 / (n')n+l. Consider 
the cohomology group H2(F0lIn) as in [VZ] Chapter 3. For fn-\ G EndFn_1 one 
can define a cocycle (A, {Sa}) G H2(Fo,In). Then fn-\ lifts to EndFn if and only if 
(A, {Sa}) = 0, i.e., if and only if ón is a power series in Xq ([VZ] Prop. 3.2, Cor. 3.4). 
We have 

ô7T = emod {ix')n+l. 

Lemma 3.4. — The cohomology group H2(F0,In) is a k-vector space of dimension 1. 
For a cocycle (A, {ôa}) G H2(FQ, 1n); the element ôn = (3(Xq) is a power series in 
Xq and (A, {5a}) =É 0 if and only if p'{0) ^ 0. 

Proof. — By [VZ, Lemma 2.5], every formal module over k is isomorphic to a normal 
module. Then [VZ, Proposition 3.6], shows that H2(Fo,k) is a /c-vector space of 
dimension 1. A basis is given by a cocycle (A, {ôa}) such that 5^ ~ (3(Xq) is a power 
series in Xq with /3'(0) ^ 0. This proves the lemma. • 

Remark3.5. — Let /0 £ EndFn_x. By Lemma 3.4 the power series e is a power series 
in Xq modulo (7r7)n+1, 

(3.1) e = aXq + . . . mod (7r ' )n+1. 

Furthermore, ?v(a) > n and tv(^) = n if and only if /0 0 EndFn. 

Lemma 3.6. — Let fo G EndFn_1 and let k — min{n + es, 1 + qn}. Then [TI]F0 0 /0 
lifts to EndF^_r 

(i) / / 1 + qn < n + es, the endomorphism [TT]F0 0 /0 lifts to EndF^. 
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(ii) If k = n + es and fo ^ EndF^, the endomorphism [TT]F0 ° / 0 does not lift 
to EndF^. 

Proof — We use the notations of 3.1. By equation (1.1) we obtain 

W F ' 0 / 0 TT)F' -F' [K}2F, o / = [TT]F' O e 

(3.2) = Tre H h '^e9 H h ^e9 + . . . 

Since e has coefficients in (TT7)71, we have 

[TT]F> O e = 0 mod {ir')k. 

Thus [7T]F/_ o fk_1 commutes with [TT]F'_ , hence it is an element of EndF^_1 ([VZ, 
Cor. 3.11)! We obtain by (3.2) 

(3.3) SAWF* 0 fk-i) = *e + • • • + ueq + - • • + veq2 + . . . mod (TT')*+1. 

2 
If 1 + qn < n + es, the power series (3.3) is a power series in Xq as e is a powe 

series in Xq modulo ( 7 r ' ) n + 1 . Hence [7T]F0 0 / 0 lifts to EndF^. 
If k = n + es, we obtain 

M M F ^ 0 fk-i) = ™Xq + . . . mod (TT')^1 

with i v ( 7 r a ) = n + es. Hence [TT]^ ^ o /n/_1 does not lift to EndF^. 

Proof of Proposition 3.2. — Since n > e s - l 
q-l , we obtain min{n + es, l-\-qn\ = n + es = 

n . The proposition follows from Lemma 3.6. 

Proof of Proposition 3.1 in the case of n > es. By Remark 3.3 we have to prove 
the following cases. 

1. L/K unramified and I = 2s + 1. 
2. L/K ramified and / = 2s + 1. 
3. L/K ramified, q = 2 and I = 2s. 
4. L/K unramified, q — 2, I = 2s — 1 and s 7̂  1. 

Note that I > 2. Let f0 be an element of (OS + IT1DOD) \ (OS + nL^LOD). Write 
/ 0 = c + [TTJFO 0 #o with c G ös and go £ TT^T^D \ ( o s + T T ^ Ö D ) - Since elements of 
OS lift to EndF', it is enough to show that [TT]F0 0 go satisfies the claim. As go is an 
element of i?DS~XOD \ {OS + TT2DSOD), it lifts to E n d F ^ \ EndF^ with n = nz_2. We 
have 

(3.4) n = a(s - 1) + 0s"1 + 1 = 
2qs - 2 

q-1 

In the first case, we obtain n/_2 > e . s -1 

q-i 
and the claim follows from the case I = 2s — 1 

from Proposition 3.2. 

Now consider the other cases. Note that in these cases n + 1 < es (Rem. 3.3). 
Let n' — n\. We have to show that [TT}F0 0 go lifts to EndF7/̂ /_1 \ EndF^,. An easy 
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calculation shows that in each case n = qn + 2. By equation (3.4) we see that 
es + n = qn in the second case, and es + n > qn + 2 in the other cases. Now we 
can use Lemma 3.6 (ii) to see that TT O g0 lifts to EndF^,_1. Let / i n ' - i £ EndF?^/_1 
be a lift of [TT]F^ ° go- It remains to show that hn'-i does not lift to EndF^,, i.e., 
8^(hn'-i) G ̂ / [ [ X ] ] is not equal to zero modulo (X)q2. 

Let hnt G A1, [[X]} be a lift of hni-\ as a power series. Then hn' = [TT]f> ogn, +F, ip 

with a power series ip = bX + • • • G (TT,)u ~1[[X]]. Using the notation of 3.1, we obtain 

M ^ n ' - l ) = M ^ F ' , ° 9n'-l) + F', ^ ° H f , " F ' , WF', ° ^ 
n — 1 n' ri ' n' n' (3.5) = [n]F> oe+F> \j)oW\F, raod(7r')n+1-

By (3.1) we obtain from equation (3.5) 

M h n ' - i ) = ( ™ + H ^ 9 + • • • mod (7T/)n,+1. 

It is sufficient to prove the following claim. 
Claim. — We have 

na + bu ^ Omod (7r ' )n '+1. 

Indeed, we have Sn(hn>-i) = 0 mod (^')n since hni-\ is an endomorphism. We 
obtain from equation (3.5) that 

Mftn/_i) = (ué + ' • ' + veq2 + . . . ) +F/7 (bvXq2 + . . . ) mod (TT')"' 

= (uaq + bv)Xq2 + . . . mod (TT')7*', 

hence we have 

(3.6) uaq + bv = 0mod (ivf)n'. 

Since vn'(a) = n (Rem. 3.5) and n' = qn -f 2, we obtain that v^^b) = n' — I. 

We first consider the last two cases. In these cases, we have es + n > n'. Therefore 
ira = 0 mod (7r')n +1 and the claim is satisfied. Thus the proposition is proved h 
these cases. 

Now consider the second case. Let 

g = aX + -- G Af[[X}}, 

Since n -f 1 < es, we obtain from the definition of e 

e = u(a- aq)Xq + . . . mod (7r ' )n+1, 

hence 

a = u(a — cvq). 

As v^'ia) = n, we have vlï'(a) = n — 1. 
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Using equation (3.6), we obtain 

TT a + bu = na — v 1u2a = irua — v luq+2aq mod {ir')n +1. 

The idea is to analyze the solutions of the equation 

(3.7) ira - v~luq+1aq = 0 mod (TT')71''. 

There are q different solutions of this equation for a G ( 7 r / ) n _ i / ( 7 r / ) n . We will identify 
these solutions as first coefficients of endomorphisms corresponding to elements of OS. 

Consider the following general situation. Let fo and fo be two elements of TTDS+1OD 

which are not equivalent modulo TTDS^2OD' AS before, we write fo = [TT]^ o g0 and 
fo = HF' °9O' We obtain 

90-g'o^ TT^-'OO \ rr2DSOD = TT^-'OD \ (OS + 7T2D80D). 

Hence the endomorphism go — g'o hfts to EndF'n_Y \ EndF'n. Write g = aX + . . . and 
g' = afX + . . . as before. We obtain i v ( a — a') = n — 1, hence a and a' are not 
equivalent modulo (^')n• Thus different equivalence classes of endomorphisms belong 
to different equivalence classes of coefficients. As L/K is a ramified extension in the 
division algebra D, we have 

(Os n T&+1OD)/T&+*OD = {(OK + irSOL) n n2ns+10D)/iT2Ds+20D 

= Trs+10L/(n^+20D n TTS+1OL) 

= OL/TTLOL F9. 

Thus the q different solutions of (3.7) correspond to the equivalence classes of endo-
morphisms of OS in Endi7^,. By our assumption [TT]^ O g0 £ OS + TTDS^2OD, hence 
equation (3.7) is not satisfied which proves the claim. • 
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