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12. INVARIANTS OF TERNARY QUADRATIC FORMS

by

Irene I. Bouw

Abstract. — This paper deals with Gross-Keating invariants of ternary quadratic
forms over Zy. The main technical difficulties arise in residue characteristic £ = 2. In
this case, we define the Gross—Keating invariants in terms of a normal form. We give
an alternative, less computational approach for anisotropic quadratic forms.

Résumé (Invariants de Gross—Keating pour les formes quadratiques ternaires)

Cet article concerne les invariants de Gross-Keating pour les formes quadratiques
ternaires sur Zy. Les difficultés principales n’apparaissent qu’en caractéristique rési-
duelle £ = 2. Dans ce cas, nous déterminons les invariants de Gross-Keating en termes
d’une forme normale. Pour les formes anisotropes nous donnons une approche plus
directe.

This note provides details on [GK, Section 4]. The main goal is to define and com-
pute the Gross-Keating invariants ay, aq, as of ternary quadratic forms over Z, (Def-
inition 1.2). If a1 = a2 mod 2 and ag > as we define an additional invariant € € {41}
(Definition 2.7, Definition 4.8). If £ # 2 every quadratic form over Z, is diagonaliz-
able, and it is easy to determine these invariants from the diagonal form (Section 2).
If £ = 2 not every quadratic form is diagonalizable. Moreover, even for diagonal
quadratic forms it is not straightforward to determine the Gross—Keating invariants.
We determine a normal form in Section 3 and compute the invariants in terms of
this normal form (Section 4). In Section 5 we determine explicitly when a ternary
quadratic form is anisotropic. A complete table can be found in Proposition 5.2 (non
diagonalizable case) and Theorem 5.7 (diagonalizable case). In Section 6, we give an
alternative definition of the Gross—Keating invariants for anisotropic quadratic forms.
The results of Section 6 are due to Stefan Wewers, following a hint in [GK, Section 4].

Our main reference on quadratic forms over Z; is [C, Chapter 8]. Most of the
results of this paper can also be found in the work of Yang, in a somewhat different
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114 [. I. BOUW

form. The Gross—Keating invariants are computed in [Y1, Appendix B|. The question
whether a given form over Zs is isotropic or not (Section 5) is discussed in [Y2].
I would like to thank M. Rapoport for comments on an earlier version.

1. Definition of the invariants q;

In this section we give the general definition of the Gross-Keating invariants a; of
quadratic forms over Z, which are used in [GK].

Let L be a free Z;-module of rank n and choose a (for the moment) arbitrary basis
¥ = {Y1,v2,...,9¥n}. For the application to [GK] we are only interested in the case
n = 3 of ternary quadratic forms. Let (L, Q) be an integral quadratic form over Zg,
that is,

Qx) = Q(Z ’I‘,l/)l) = Z bijrixy,  with by € Zy.

1<J

Put bj; = b;; for j > 7. If we want to stress the dependence of the b;; on the basis, we
write b;; () for b;;. We write (2,y) = Q(z +y) — Q(x) — Q(y) for the corresponding
symmetric bilinear form and B = ((v;,%;)) for the corresponding matrix. Note that

B = (Bij) , where B = { 37()]1;’ lfi; &<:Ijj
In the rest of the paper we only use the b;; and not the B;;, for simplicity. We denote
by ord the ¢-adic valuation on Z,. We always suppose that @ is regular, that is,
det(B) # 0.

Changing the basis multiplies the determinant of B by an element of (Z,)?. There-
fore the determinant is a well defined element of Z,/(Z;)*.

Lemma 1.1. — Suppose that either £ # 2 or n is odd. Define
1
A=AQ) = 3 det(B).
Then A € Zy.

Proof. — The lemma is obvious if ¢ # 2. Suppose that £ = 2 and n odd. Write
A=Y s 2°9d(0), where d(o) = (—1)*") T[]’ bin(;) and 6(c) + 1 is the number
of i € {1,2,...,n} which are fixed by o. The only problematic terms are those with
§(c) = —1. Suppose that o acts without fixed points on {1,2,...,n}. Then =1 # o,
since n is odd. The matrix ((¢;,1;)) is symmetric. It follows that d(o) = d(o'),
hence 29 d(c) 4 25 Vd(o~1) € Z,. O

We now come to the definition of the Gross—Keating invariants of a quadratic
form. Let @ = (¥1,%2,...,%,) be a basis of L. We write S(¢) for the set of tuples
v =(y1,Y2,-..,Yn) € Z" such that

(1.1) Y1 <y2 < < Yo %&sord(bij(¢)) for 1 <i<j<n.
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12. INVARIANTS OF TERNARY QUADRATIC FORMS 115

Let S = US(v). We order tuples (y1,...,¥yn) € S lexicographically, as follows. For
given (y1,...,Yn), (21,...,2n) € S, let j be the largest integer such that y; = 2; for
all i < j. Then (y1,...,yn) > (21,...,2n) if y; > 2;.

Definition 1.2. — The Gross-Keating invariants ap,...,a, are the maximum of
(y1,---,yn) € S. A basis ¢ is called optimal if (a1, ...,a,) € S(¥).

If ¢ is optimal, then
(1.2) a;+aj; <2ord(b;(¢p)) for 1<i<j<n, and a3 <az<---<ay.

Since A is well defined up to (Z,)?, the integer ord(A) is well defined. The following
lemma will be useful in computing the Gross—Keating invariants.

Lemma 1.3
(a) Suppose that n is odd, then

ord(A) > ay +ag + -+ ap.

(b) We have
ay = wrr;gll ord (z,y) .
(¢) Define p := min4 ord(det(A)), where A runs through the 2 by 2 minors of B.
Then
ay +az < p.

Proof. — This lemma is proved in [Y1, Lemma B.1, Lemma B.2]. Note that the
matrix 7" in [Y1] differs by a factor 2 from our matrix B. Let ¢ be an optimal basis.
We use the notation of the proof of Lemma 1.1.

First suppose that ¢ = 2. Write S for the set of equivalence classes in S, un-
der the equivalence relation ¢ ~ o~1'. The proof of Lemma 1.1 shows that A =
ZJGS(—1)5g“(”)25/(”)d(0), where §'(c) > 0. The choice of ¢ implies that

ord(2°)d(0)) = &' (o) + ord(H bw(,;)) > z": ot ag( 2T o) zn:a,;.
i i=1

=1

This proves (a) in this case.

If £ # 2, define ¢'(c) = 0 for all o € S,,. Then the proof works also in this case.

Since a; < az < --- < ay, it follows from (1.2) that ord(b;;(¢)) > a; for all i < j.
On the other hand, it is obvious that a; > ming 4y, ord (z,y). This implies (b).

Part (c) is similar to (a), compare to Lemma Bl.ii in [Y1]. Let i1,42,71,J2 €
{1,2,...,n} be integers such that i; # 42 and j; # ja. Write B(i1,i2;71,j2) for
the corresponding minor of B. After renumbering, we may suppose that i; # jo
and iQ 7é Jl Then det(B(il,iQ;jl,jg)) = ﬂ:(2abil’j1bi2,j2 - bil,j2bi2j1)7 where o €
{0,1,2} is the number of equalities i; = ji,i2 = j2 that hold. We conclude that
ord(det(B(i1,2;j1,72)) > (a; + ai, + aj, + a;,)/2 > a1 + az. (Here we use that
a1 <ag <+ <a, and i) # iz and j; # jo.) This proves (c). O
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116 I. I. BOUW

2. Definition of the Gross—Keating invariants for ¢ # 2

We start this section with an elementary lemma which holds without assumption
on /{.

Lemma 2.1. — Choose a basis ¥ = (Y1,...,%n) of L. Let y1,...,vm € L be linearly
independent. The following are equivalent.

(a) There exists Ym+1, ..., € L such that the (;) form a basis.

(b) The matriz (y1,...,%m), expressing the v; in terms of the basis P, contains a
m X m minor whose determinant is a p-adic unit.

(c) If Ele vy € L for some v; € Qy, then v; € Zy.

Proof. — This is straightforward. See also [C, Chapter 8, Lemma 2.1]. O

In particular, a vector & = ) . «a;; € L is part of a basis of L if and only if
min; ord(c;) = 0. We call such vectors primitive.
We have that

(21)  2(@y) =2Q+y) - Q) - QW] =@ +yz+y) - (z.2) = (y,y).
If ¢ # 2, this implies that

(2.2) Jminy ord (z,y) = min ord (z,x) .

In the rest of this section, we suppose that ¢ # 2. There is a « € L for which the
minimum in (2.2) is attained. This vector  is primitive. Lemma 2.1 implies that x
can be extended to a basis of L. We will see in Section 4 that (2.2) does not hold for
¢ = 2; this is the main reason why things are more difficult for ¢ = 2.

Proposition 2.2. — Suppose that { # 2. Then there exists a basis ¥ of L such that
Qz) = Q(Z ym/h) = Z biix?, where  ord(by1) < ord(baz) < -+ < ord(bpy).

Proof. — Our proof follows [C, Chapter 8, Theorem 3.1].
The discussion before the statement of the theorem shows that we may choose ¢,
such that

ord(Q(¢1)) = ord (w1,¢1) = mienLord (z,9) .
T,y

Here we use the equality (2.2).
Choose 2, ...,pn € L such that ¢ = {©1,92...,9,} is a basis of L. As before

we write Q(32, ¥ii) = Y01 <icj<p bij(@)ziz;. Then
Qz) =1 x-!»—b—lz—x -I—bl—nl 2+Q(x Zn)
11 1 2b11 2 2b11 n 250 94dn),

for some integral quadratic form Q in n — 1 variables.
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12. INVARIANTS OF TERNARY QUADRATIC FORMS 117

We define a new basis by 1 = ¢1, and ¥; = ¢; — (b1:/2b11)p1 for ¢ # 1. The
choice of 11 ensures that 1; € L, since e = ord(2b;1) < ord(by;). With respect to this
new basis, the quadratic form is

Q) = buw)et + QLo ).

i>2

The proposition follows by induction. O

Remark 2.3. — Cassels (|[C, Chapter 8, Theorem 3.1]) proves a stronger statement
than Proposition 2.2. Namely, he gives a list of pairwise nonisomorphic quadratic
forms such that every integral quadratic form is isomorphic to one of these. This
stronger statement implies that the definition of the invariants a,; of Proposition 2.6
does not depend of the choice of the orthogonal basis.

We can give a simpler definition of the invariants a; in terms of a basis ¥ as in
Proposition 2.2. If v € L is an element such that Q(vy) # 0, we may define a reflection
7, by

2 (x,7v)
T(x) =2 ) 5.
This is the reflection in the orthogonal complement of . Clearly, 7, is defined over
Z¢ if and only if ord (,v) = mingey ord (x,2). (In fact, this also holds for £ = 2.)
Since 7, is a reflection, it is clearly invertible. The following lemma is a partial analog
of Witt’s Lemma ([C, Corollary to Theorem 2.4.1]) which holds for quadratic forms
over fields.

Lemma 2.4. — Suppose that i, p € L satisfy
QW) = Q). ord(Q(W)) = ord(Q(¢) = mimord(Q(x)).

Then there exists an integral isometry o of (L, Q) such that o(y) = ¢. Moreover, o
may be taken as a product of reflections .

Proof. — This is [C, Lemma 8.3.3]. Our assumptions on ¢ and ¢ imply that
QY +¢) + Q¥ — ¢) = 2Q(¥) + 2Q(p) = 4Q(). Since ord(Q(¢)) = ord (¢, ¢) =

mingey, ord (z,z) =: e, it follows that one of the following holds:

(a) ord Qv+ ¢) =,
(b) ordQ(y — @) =e.

Since £ # 2, it is also possible that both hold. If (a) holds, then 7, is integral and
sends 1 to @. If (b) holds, define o = 7y_, 0 7y. O

Lemma 2.5. — Suppose u,v € Z,. Then ux? + va3 ~z, ¥ + uvad.
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Proof. — This is proved in the second corollary to [C, Lemma 8.3.3]. We give the
idea. Since ¢ # 2, there exists a,c € Zy such that a?u + c>v = 1. We may assume
that a is a unit. Then

defines the equivalence of the lemma. O

Proposition 2.6

(a) Let v = (1,1, ...,%,) be an orthogonal basis of L as in Proposition 2.2 Write
Q(z) = X, biz?. Then the invariants a; (Definition 1.2) satisfy

a; = ord(b;).

In particular, ¥ is optimal.
(b) Suppose that n is odd. Then

()I’d(A) =aiy+ -+ ap.

Proof. — Let ¢ be a basis such that the inequalities (1.2) hold. We claim that
ord (¢1,¢1) = a1. Part (b) of Lemma 1.3 implies that a1 = mingey, ord (z,2). The
choice of ¢ implies moreover that ord (¢1, 1) = mingey, ord (z, x). The definition of
ay implies therefore that a; = ord (1, ©1).

We apply the diagonalization process of the proof of Proposition 2.2 to the basis
. Define ¢ = 1 and v; = ©; — (b1;/2b11)p1 for i # 1. One computes that
b2

(¢j,91) =0, (j,5) = = + 2bj;, (thiy 1) = ———L 1 by,
2byy 1

for j # 1 and i # 1,j. The inequalities (1.2) imply that ord(¢;,v;) > a; and
2ord (v;,%) > a; + a;. Therefore the new basis also satisfies the inequalities (1.2).
This implies that there exists an orthogonal basis ¢ which satisfies (1.2). It follows
that the Gross-Keating invariants (a1, ..., a,) are the maximum of US(¢), where the
union is taken over the orthogonal bases and US(%)) is as in (1.1).

Let ¢ and 1 be two orthogonal bases. Write Q(z) = by23 + bazd + - - - + by22 with
respect to the basis 1 and Q(x) = dya? + doa3 + - - - + dp2? with respect to the basis
. We suppose that ord(b;) < ord(by) < --- < ord(b,) and ord(d;) < ord(dy) <--- <
ord(d,,). We suppose moreover that ¢ satisfies (1.2). (Such ¢ exists by the above
argument.) We have to show that 1 satisfies (1.2), also. Write C' = (¢;;) for the
change of basis matrix expressing ¢ in terms 1. As before, Lemma 1.3.(b) implies
that ord(by) = ord(d;) = a;. Write b; = ud;, for some unit w.

Suppose that ord(bz) > ord(b;). Then

n
— 2 — 2 a;+1
dy = by = clyby mod ¢4

j=1
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12. INVARIANTS OF TERNARY QUADRATIC FORMS 119

This implies that u is a quadratic residue. To prove the claim, we may therefore
assume that Q(v1) = Q(¢1) in this case.
Suppose that ord(b;) = ord(bz). Then Lemma 2.5 implies that @ is Zs-equivalent to
d123 +ubyx3 4+ bzx3 +- - . Hence also in this case we may assume that Q(¢1) = Q(¢1).
Lemma 2.4 implies that there exists an isometry o of ) which sends 1y to ¢;.
Then D := o~ 'C fixes ;. Write

1 D
D= B =
<0 Dg)’

where Dy is an (n — 1) x (n — 1) matrix. One computes that

2’y2b1 2’7D1
D'BD = .
Y <2ﬂ% *

2b; 0

0 2by,

Our assumption implies that D*BD is a diagonal matrix, with diagonal entries 2d;.
This implies that Dy = (0,...,0). We conclude that D restricts to an integral and in-

vertible map from the sublattice of L spanned by s, ..., %, to the sublattice spanned
by w2, ...,n. This implies (a).
Part (b) follows immediately from (a). O

Definition 2.7. — Suppose that n = 3 and ¢ # 2. Assume a; = a2 mod 2, and a3 > as.
Choose a basis ¥ = (11, %2,13) of L as in Proposition 2.2. Write b;; = ¢*u;. We
define an invariant € = e(¢) by the Legendre symbol

(2.3) e:(_?”>.

Lemma 2.8. — Assumptions and notations are as in Definition 2.7.

(a) The invariant e(v) does not depend on the choice of the orthogonal basis 1.
(b) We have that ¢ = 1 if and only if the subspace of L @z, Q¢ spanned by 11 and
1o 1S isotropic.

Proof. — Let 1 = (¢1, 132, 13) be a basis of L as in Proposition 2.6, in particular 1)
is orthogonal and the valuation of b; = (¢, ;) /2 is equal to a;, for i = 1,2, 3.

Suppose that as = a; mod 2 and az > as. Write as = a1 + 2v. Write Q' for the
restriction of @ to the sublattice of L spanned by t; and 5. Then Q'(z) = byx?+byx3
is equivalent to £91(x? + ujugf®'22) (Lemma 2.5). It follows that Q' is isotropic if
€ = 1 and anisotropic if ¢ = —1. This proves (b).

Let ¢ be another orthogonal basis and write Q(3°, z;¢;) = di2% +doa3 + dzz3. We
assume that ord(d;) = a;. Write C for the matrix expressing ¢ in terms of . The
argument of the proof of Proposition 2.6 together with the assumption that as < as
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120 I. I. BOUW

implies that there exists an isometry o such that

(%4 0 0
o 'C=10 vy, 0
0 0 V3
where the v; are units. This shows that d; = 1/2-21)2-. The lemma follows. O

3. A normal form for quadratic forms over Zo

Not every quadratic form over Z, is diagonalizable. In this section we give a normal
form for ternary quadratic forms over Zo, following [C, Section 8.4]. Cassels uses a
slightly stronger notion of integrality, namely he supposes that b;;/2 € Zg, for all
i # 7. However, this does not make any difference.

Lemma 3.1. — Suppose £ = 2. Let QQ be a regular quadratic form over Zs. Then @Q is
Zs-equivalent to a sum of quadratic forms of the form

(3.1) 2°ua?,

fore € Z>y and uw € 25, and

(3.2) 2¢(bya? 4 uxy o + box3),

with e € Z>o, and u € Z5 .

The equality (2.1) holds for £ = 2, but (2.2) does not. However, (2.1) implies that

min ord (z,y) + 1 > minord (x,x) .
z,yeL xeL

Therefore min, yer, ord (x,y) equals either ming ey, ord (2, ) or mingey, ord (x, ) — 1.

Proof. Let e = ming yer, ord (z,y). We distinguish two cases.

(a) There exists a v € L such that ord (vy,7v) = e.
(b) For all v € L we have that ord (v, ) > e.

Suppose we are in case (a). Then ord (11,%;) > e, by definition. We can now

proceed as in the proof of Proposition 2.2. Namely, 2b1; = 2Q(¢1) = (¥1,v1).
Therefore by has valuation e — 1. For i # 1, we have that ord(by;) = ord (1, ;) > e.

Therefore )
R N
Y; = wz <2b11> wl«

is an element of L and 1, a,...,p, form a basis. With respect to this basis the
quadratic form @ becomes Q(x) = by;2? + Q(x2. ..., xy), for some quadratic form Q
in n — 1 variables.

Suppose we are in case (b). Then ord (y,7v) > e for all v € L. We may choose
11,2 € Lsuch that ord (11, 12) = e. The definition of e implies that (¢1+v2)/2 & L.
Lemma 2.1 implies therefore that 1,1 can be extended to a basis ¥, ..., 1, of L.
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12. INVARIANTS OF TERNARY QUADRATIC FORMS 121

The choice of 91 and - implies that the determinant of the matrix
2b1127°¢ b1227¢€
b1227¢  2b9p27°
is a unit in Z,. Therefore we can find /\31.7 )\é such that

—2N by — Mbia +b1; =0,  —2M\bay — X big + byj = 0,

for j = 3,...,n. Define ¢; = 9, — A-{wl — /\%’(/)2. The choice of the /\{ implies that

(pj V1) = (¢j,¥2) =0, for j =3,...,n.
With respect to the basis (¢1, 12, @3, ..., ¢,) the quadratic form ) becomes

Qx) = 2‘3(b1]:xf + biox1 T2 + bngL‘%) + Q(:L'g, cey Tp).

This proves the lemma. O

Lemma 3.2. Let Qa(x) = byyx? + biox1@o + baox3 be a binary quadratic form over
Zo and Lo the corresponding free Zs-lattice of rank two.

(a) If min(ord(by1),ord(bez2)) < ord(bi2) then Q2 is diagonalizable.

(b) Suppose that Q2 is not diagonalizable. Then Q2 is anisotropic if and only if
ord(by2) = ord(b11) = ord(baz).

(c) Suppose Q2 is anisotropic and not diagonalizable. Then Q2 is equivalent to

2¢(x? + w0 + T3),

for some e.
(d) Suppose that Qo is isotropic and not diagonalizable. Then Qo is equivalent to

2°x 20,

for some e.

Proof. — Part (a) follows from the proof of Lemma 3.1.

Suppose that @2 is not diagonalizable. Then ord(b12) < min(ord(bi1),ord(b22)),
by (a). Part (b) is an elementary Hilbert-symbol computation using [S, Theo-
rem IV.6].

Suppose that @, is anisotropic and not diagonalizable. Then (b) implies that e :=
ord(b12) = ord(b11) = ord(baez). Part (¢) now follows from an elementary computation.

Suppose that Qs is isotropic and not diagonalizable. There exists a primitive vector
1 such that Q(¢1) = 0. Lemma 2.1 together with the fact that the quadratic form
is nondegenerate, implies that there exists a vector 1y € Lo such that 1y, form a
basis of Ly and (¢1,12) # 0. After multiplying 2 with a unit, we may suppose that
(11,12) = 2¢, for some e > 0.
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We claim that ord (12,%2) > ord (¥1,12). Namely, if ord (12, ¢2) < ord (31, 1)2)
then Q- is diagonalizable by (a), but this contradicts our assumptions. Therefore

T 1))
Py 1= CYORTS) (wh%)wl € Ly.

Now 1,945 form a basis of L and (¢4, 4) = 0. This proves (d). O

Proposition 3.3. — Let (L,Q) be a ternary quadratic form over Zo. One of the fol-
lowing two possibilities occurs.

(a) The form @Q is diagonalizable; there exists a basis such that
Qx) = ble + ngg + b;;x%, with 0 < ord(by) < ord(ba) < ord(bs).
(b) The form Q is not diagonalizable; there exists a basis such that
Qx) = uﬂ’“x%+2"2(1)$§—|—:L'2:L'3+vx§), with v e {0,1}, w; >0 and wuy €Z;.
Proof. — This follows immediately from Lemma 3.1 and Lemma 3.2. O

This classification is the same as the classification used (but not explicitly stated)
in [Y1, Appendix B]. Note that Yang’s matrix 7" differs by a factor 2 from the matrix
B we use. In particular, the invariant 3 used in [Y1, Proposition B.4] satisfies 3 > —1
rather than 3 > 0.

4. The Gross—Keating invariants for ¢ = 2

In this section we compute the Gross—Keating invariants of ternary quadratic forms
(L, Q) over Zsg in terms of the normal form of Proposition 3.3. The computation of
the a; can be found in Proposition 4.1 (non-diagonalizable case) and Proposition 4.2
(diagonalizable case). The computation of € can be found in Proposition 4.9. This
section is based on [Y1, Appendix B].

We start by considering quadratic forms which are not diagonalizable. Recall from
Proposition 3.3 that if @ is not diagonalizable then there exists a basis 1 of L with
respect to which we have

(4.1)  Q(z) = w2 a? + 2"2(vah + woxz +vrd), with v € {0,1}, wuy € ZJ.
We do not suppose that g < ps.
Proposition 4.1. — Suppose that Q is given by (4.1). Then

(a1, a3, a3) = { (1, p2y i), if i < iz,
(2, pi2, 1), if o > pio.
Proof. — Lemma 1.3.(b) implies that a; = min(uy, p2). We distinguish two cases.
Suppose that g1 < pz. Then a; = py and ord(A) = py + 2ue > a1 + az + as
(Lemma 1.3.(a)). Therefore az < (a2 + a3)/2 < p2. The existence of a basis 1 as
in (4.1) implies that (u1, pe, p2) € S(¢). We conclude that as = az = pa.
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12. INVARIANTS OF TERNARY QUADRATIC FORMS 123

Suppose that g1 > po. In this case we have that a3 = ps. Recall that we defined
p as the minimum of the valuation of the determinant of the 2 x 2-minors of B.
One computes that p = min(2us2, 1 + p1 + p2) = 29, since we assumed that p; >
p2 + 1. Lemma 1.3.(c) implies that p > a; + ag, hence az < ps. The existence of a
basis ¢ as in (4.1) implies that (w2, p2, 1) € S(¥). We conclude that (a1,as2,a3) =
(k2, p2, pi1). O

We now consider diagonalizable quadratic forms ). Contrary to the situation for
¢ # 2, a basis © which diagonalizes @ is not optimal (Definition 1.2).

Proposition 4.2. — Suppose that Q is diagonalizable. Let 1 be a basis of L such that
(4.2) Qx) = blm% + b2m§ + bgfvg, with b; = w2, u; € 23 and py < p2 < pg.

(a) Suppose that py # ps mod2. Then (a1,as,a3) = (u1, g2, 13 + 2).

(b) Suppose that 1 = pe mod 2.
(i) Ifur+uz =2mod4 or uz < po+1, then (a1, a2, a3) = (p1, po+1, pz+1).
(ii) Otherwise, (a1,a2,a3) = (p1, g2 + 2, ps).

The proof of this proposition is divided in several lemmas. We use the notation of
Proposition 4.2. In particular, 1 is a basis of L with respect to which @ is as in (4.2).
Let ¢ be an optimal basis, i.e., suppose that the inequalities (1.2) hold. We write
C = (cy) for the change of basis matrix expressing ¢ in terms of 1. We write the
quadratic form @ in terms of the basis ¢ as Q(z) = 3_,; dijziz;. In other words,
the d;; are the coefficients of the matrix obtained by dividing the diagonal elements
of C*BC by two. One computes that

(4.3) dii = C%ibl + C%ibz + Cgibg.

Lemma 4.3. — Suppose that Q is diagonal and p1 # pe mod2. Then (ay,as,a3) =
(11, p2s piz + 2).

Proof. — We have already seen that a; = p;. Therefore it follows from the definition
of the a; that as > po. We claim that ag = py. Suppose that ag > .

Write po = g1 + 27 + 1. The inequalities (1.2) imply that ord(da2) > a2 > s + 1
and ord(dss) > a3 > ag > po + 1. Since puy # pz mod 2, it follows from (4.3) that
ord(ci2) > v+ 1 and ord(ey3) > v + 1.

We first suppose that pus > pa. Then ord(cez) > 1 and ord(esz) > 1. But this
implies that det(C') = 0 mod 2. This gives a contradiction.

If 1o = pg3, we proceed similarly. In this case coo = ¢32 mod 2 and co3 = ¢33 mod 2.
This implies again that det(C) = 0 mod 2. We conclude that as = puo.

Since ord(A) = ord(det(B)) + 2 = p1 + p2 + p3 + 2, it follows from Lemma 1.3.(a)
that az < ps + 2. To show that as = pg + 2 it suffices to find a basis ¢ such that
(p1, p2, i3 + 2) € S(p). We now construct such a basis.
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Our assumptions imply that ps is congruent to u; or ps (modulo 2). We suppose
that us = 1 mod2. (The case pg = pe mod 2 is similar.) Write po = g + 27 + 1
and pg = p1 + 2X. We distinguish two cases:

— 11 +uz = 0 mod4,

— uy + u3z = 2 mod4.

In the first case define

1 0 2*
cC=101 0
0 0 1

With respect to the new basis we have Q(z) = by 22 +box2+2*"1by 2 23+ (b3+222b; )23,
In the second case we define

10 22
C=|0 1 207
00 1

With respect to the new basis we have Q(x) = by x? +byz3 + 27y ag+ (b3+22’\b1 +
22 =Mby) a2 4 227 lhyaexs. Tt is casy to check that the basis ¢ corresponding to C
satisfies (1.2) for a1 = u1, a2 = p2 and az = pus + 2. This proves the lemma. O

The proof of Lemmas 4.4, 4.5 and 4.6 follows the same pattern as the proof of
Lemma 4.3.

Lemma 4.4. Suppose that Q is diagonalizable, py = po mod2 and ps < pg + 1.
Then (a1, az,as) = (p1, pe + 1, u3 + 1).

Proof. — Since a; = p1 and ord(A) = py + pa + ps + 2 it follows from Lemma 1.3
that a; + 2a2 < a1 +as +ag < py + po + pg + 2 < gy + 2p2 + 3. This implies that
az < po + 1.
We now construct a basis ¢ such that (p1, p2+1, us+1) € S(g). The lemma follows
from this. Let C be the corresponding change of basis matrix. Write po = p1 + 27.
If po = pg define

1 27 2
c=10 1 0
0 0 1
With respect to the new basis we have Q(z) = bya? + (227by + ba)x3 4+ 27 by (z122 +

x123) + (bs + 2271)1).’13% + 21+27b1$21’3.
If u3 = po + 1 and ug + ug = 2 mod 4 define

1 27 27
C=10 1 1
0 0 1

With respect to the new basis we have Q(z) = byz? + (by + 227b1 )2 + 277 1by (2129 +
T1T3) + (b3 +227hy + bg)x§ + (22’Y+1b1 + 2bg)xoxs.
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If usg = po + 1 and wg + ug = 0 mod 4 define

1 27 27
c=10 1 1
0 1 2

With respect to the new basis we have Q(x) = byz3+(227b; +ba+b3)25+27 by (21 72+
x1w3) + (4bs + 227p + bg)f% + (227-'_161 + 2by + 4b3).’1:2l'3.
In each of these cases one checks that (p1, pe + 1, u3 + 1) € S(p). O

Lemma 4.5. — Suppose that Q is diagonal, 11 = ps mod2 and u; + uy = 2 mod 4.
Then (a1, az,a3) = (u1, po + 1, ug + 1).

Proof. By Lemma 4.4 we may assume that pus > po+2. We claim that as < ps+1.
Suppose that ay > pa+2. As before, we suppose that ¢ is an optimal basis. As before,
we write C' = (¢;;) for the change of basis matrix and D = C'BC = (d;;) for the
matrix corresponding to the new basis. Write po = 1 + 2.

The assumption ag > po + 2 implies that ord(dsz) > as > po + 2 and ord(dss) >
az > az > po + 2. It follows from (4.3) that ord(ci2) > v and ord(cy3) > . Suppose
that ord(cia) = . Then ord(ce) = 1 and daa = 2#2(u; + ug) #Z 0 mod 2#2+2, This
gives a contradiction. Similarly, we obtain a contradiction if ord(c;3) = 7. Therefore
ord(eyj) > 7 for j = 2,3 and daa = c¢3,b2 mod 2#272. Since ord(das) > p2 + 2 and
ord(ba) = p2, we conclude that ord(cge) > 0. Similarly, dss = c33b2 mod 2#2+2; this
implies that ord(cez) > 0. But then det(C) = 0 mod2. This gives a contradiction.
We conclude that as < uo + 1.

To prove the lemma, we construct a basis ¢ such that (ui, pue +1, 43+ 1) € S(ep).
We distinguish two subcases:

— p3 = pp mod 2,

— p3 # p11 mod 2.

Suppose that gz = p1 mod 2. Write po = p1 + 27y and pug = 1 + 2X. Let ¢ be the
basis of L corresponding to the change of basis matrix

1 2v 22
cC=l0 1 0
0 0 1

With respect to the new basis we have Q(x) = b1x? + (227by + ba)x3 + 27T bz 20 +
2’\+1b1x1x3 + <b3 + 22>‘b1)$§ + 2'Y+>‘+1b1$2273.

Suppose that pz # p; mod 2. Write ps = pg + 2y and pug = pu; +2A+ 1. Let ¢ be
the basis of L corresponding to the change of basis matrix

1 2v  2*
cC=|l0 1 2
0 0 1
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With respect to the new basis we have Q(z) = byz? + (227by + be)23 + 27 by w20 +
2)\+]b1.’1}1.’l:3 -+ (bg + 22)‘1)1 + 22()‘"Y)1)2):IJ§ + (27+)‘+1b1 + 2)‘_7+1b2).7/'2.’1?3.
In each of these cases one checks that (g, pue + 1, us + 1) € S(ep). O

Lemma 4.6. Suppose that Q is diagonal, 1 = o mod 2, ug > po+2 and uy +ug =
0 mod4. Then (a1, az,a3) = (u1, p2 + 2, 13).

Proof. Write pe = p1 + 2. We already know that a; = p1. We claim that
as < pg + 2. Suppose az > ps + 3. The same reasoning as in the beginning of the
proof of Lemma 4.4 shows that we may assume that puz > ps +4. If coo = co3 =0
mod 2, we conclude as in the proof of Lemma 4.5 that det(C) = 0 mod 2. This gives
a contradiction, hence either coo or o3 is a unit.

Suppose that cgs is a unit. (The argument in the case that ca3 is a unit is similar,
and we omit it.) Then ord(ci2) = . One computes that

(4.4) dia = 2¢19¢11b1 + 2691 C22bs mod 22713,
It follows from (1.2) that 2ord(di2) > a1 + az > p1 + p2 + 3 = 2u1 + 2 + 3. Hence
(4.5) ord(di2) > p1 + v + 2.

Recall that Lemma 1.3.(b) implies that ord(di1) = a1.
First suppose that p1 < pe, that is v # 0. Since d;; has valuation ay, ¢1; is a unit.
It follows from (4.4) that ord(di2) = p1 +~ + 1. This contradicts (4.5).
Now suppose that p; = po. Since di; = (:%le + (,'311)2 mod 2*1 11 Since dy; has
valuation a; = 1, it follows that either
(i) ¢12 =1 mod?2 and ¢o; =0 mod2, or
(ii) c12 = 0 mod 2 and c2; = 1 mod 2.
Since ord(di2) > p1 + 2, it follows from (4.4) that (i) holds and that ¢;; = 0 mod 2.
One computes that

— — 1142
dog = 2¢19¢13b1 + 2¢99¢93bs = 2¢13b1 + 2¢23b2 mod oHt s

since cj9 and cgo are units. It follows that ¢13 = co3 mod2. But this implies that
det(C) = 0 mod 2. (In case uj + uz = 4 mod 8 one could alternatively argue as in the
proof of Lemma 4.5.)

Let ¢ be the basis of L corresponding to the change of basis matrix

1 27 0
C=10 10
0 0 1

Then baz () = 0 mod 2#22. With respect to the new basis we have Q(z) = bjzi +
(227by + bo)xd + 29T b 220 + byad. Therefore (p1, p2 + 1, p3) € S(¢). This proves
the lemma. O
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The following proposition is an immediate consequence of the computation of the
invariants a;. It illustrates that the a; satisfy similar properties for ¢ = 2 and ¢ # 2,
which is not so clear from the definition.

Proposition 4.7. Let Q be a ternary quadratic form over Zg for € > 2. Then
ord(A) = a1 + ag + as.

Proof. For ¢ # 2 this is Proposition 2.6.(b). For ¢ = 2 the theorem follows from
the Propositions 4.1 and 4.2. O

In the rest of this section we define the Gross—Keating invariant € for / = 2 and
show that it is well defined (compare to Lemma 2.8).

Definition 4.8. Suppose that a; = a2 mod2 and a3 > as. Let ¢ be an optimal
basis. We define € = ¢(p) by € = 1 if the subspace of L &z, Q2 spanned by ¢ and 2
is isotropic, and € = —1, otherwise.

Proposition 4.9. Suppose that ay = as mod 2 and az > as.

(a) The invariant € does not depend on the choice of the basis.
(b) (i) If Q is not diagonalizable we may write Q(z) = w2 a? + 242 (vad +
roxg +vxd) with v € {0,1} and py > po. In this case

€= (-1)".

(ii) If Q is diagonalizable we may write Q(x) = u12M1 23 + ua2t2 23 + uz2Hs 23
with uy + us = 0 mod4, p1 = pe mod 2 and pz > puo + 2. We have that

€ = (—1)mtu)/e,

Proof. — The fact that one of the two cases of (b) holds follows immediately from
Propositions 4.1 and 4.2.

Suppose that @ is not diagonalizable. Write Q(x) = w1212 + 212 (vad + woxs +
va3), as in the statement of the proposition, and let 1) be the corresponding ba-
sis. Write Q)2 for the restriction of @ to the sublattice spanned by the basis vectors
¥g,%s3. Lemma 3.2 implies that Q2 is isotropic if and only v = 0. This implies
that e(¢p) = (—1)".

We now show that e is well defined in this case. It suffices to show that e(p) =
e(ep) for optimal bases ¢ and 1) with respect to which @ is in a normal form as
in Proposition 3.3. By assumption, @ is not diagonalizable. (In fact, it follows
from Proposition 4.2 that no quadratic form Q(z) = w12 2% + 22 (va3 + woxs +
vzd) with v € {0,1} and p1 > po is diagonalizable. Hence we could have dropped
this assumption from the statement of the proposition.) Write Q'(z) = uj2*1 2% +
242 (123 + maws + v'x3) for Q expressed with respect to the basis . Since A(Q) =
A(Q') we have that ui(4v? —1) = u (4(v")? — 1), therefore v = v’ implies that u; = u.
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Hence, to show that () = €(v)), it suffices to show that v = v'. We assume that
v =1 and v' = 0, and derive a contradiction.

The basis vector g is isotropic. Write o = 191 + c2tb2 + c31p3. The fact that
Q(¢2) = 0 implies that py = pe mod2. Moreover, it follows that ord(c;) > (1 —
w2)/2 > 0 for j = 2,3. Since g is primitive, it follows that ¢; = 1 mod2. An easy
computation shows that ord (v2, ;) > pe for i = 1,2,3. In particular ord (@2, p3) >
2. But this contradicts the assumption that ord (¢2, @3) = ua.

Next we assume that @ is diagonalizable, and let Q(z) be as in the statement
of (b.ii). Write 9 for the corresponding basis of L. Let Q2 be the restriction of
Q to the subspace spanned by 11,%2. Then Qs is isotropic if and only if — det(Q)
is a square ([S, Theorem IV.6]). It is easy to see that this happens if and only if
u1 + uz = 0 mod 8.

We now show that € is independent of the choice of the optimal basis in this case.
Let ¢ be an optimal basis. Let C' = (¢;;) be the corresponding change of basis matrix
expressing  in terms of . Write p1 = ps + 27.

We suppose that ps > pg, that is v > 0. (The case u1 = po is analogous and left to
the reader.) We use the notation of the proof of Lemma 4.6. In particular, we write
Qxz)=>, < dijxix; for the representation of Q) in terms of the basis ¢.

We showed in the proof of Lemma 4.6 that either coo or co3 is a unit. Suppose
that coo = 0 mod 2 and ce3 = 1 mod 2. It follows that ord(dss) > az = pus > po + 3.
Therefore (4.3) implies that ord(c;3) = v. We showed in the proof of Lemma 4.6
that ¢q7 is a unit. Since dis = 2c¢11¢13b1 + 2912302 mod 243+ we conclude that
2ord(dyz) = 2+ 2y + 2u1 = w1 + p2 + 2. (Here we use that v > 0.) But this
contradicts 2 ord(dy3) > a1 + a3 = p1 + p3 > 1 + p2 + 3. We conclude that ¢y is a
unit. Recall from the proof of Lemma 4.6 that this implies that ¢;2 = 1 mod 2 and
c91 = 0 mod 2. Therefore the determinant of the submatrix

C,:<(l'11 C12>

C21 €22
ct o

D_( ) 1).

With respect to the basis corresponding to C'D, the quadratic form @ becomes Q(x) =
(by + 02b3)a? + (bg + 03b3)@3 + 26,bsz129 + x3(other terms), for certain 61,02 € Zsy.

Since ord(bsz) > ord(b2) + 3 this implies that the subspace spanned by ¢; and 3 is
isotropic if and only if the space spanned by 11 and 15 is isotropic. O

of C'is a unit. We may define

5. Anisotropic quadratic forms

The goal is to classify all anisotropic ternary quadratic forms over Zg, starting from
the normal form of Proposition 3.3. We will see that for anisotropic forms we may
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choose an optimal basis ¢ so that ord(Q(y;)) = a;, similar to what we had for ¢ # 2
(Corollary 5.8).

Proposition 5.1. — Let Q be a ternary quadratic form over Q,. Write Q(x) = byx? +
box3+bsxs. We denote by det(Q) = bybabs the determinant of Q. Then Q is isotropic
if and only if

(=1, = det(Q)) = [ [ (bi,0))-

i<j
Here (-, ) denotes the Hilbert symbol.
Proof. — This is [S, Theorem IV.6.ii]. O
Proposition 5.2. — Let QQ be a ternary quadratic form over Zs which is not diagonal-

izable. Let v be an optimal basis such that Q(z) = u12t 23 + 212 (va3 + zows + va3)
with v € {0,1}. Then Q s isotropic if and only if v =0 or u) = p12 mod 2.

Proof. — If v = 0 then @ is obviously isotropic. Therefore suppose that v = 1. To
decide whether @ is isotropic, we may consider @) as quadratic form over Qy. We have
Q(z) ~g, w2 x? + 242 (23 + 323). The proposition follows from Proposition 5.1 by
direct verification using the formula for the Hilbert symbol [S, Theorem III.1]. O

Lemma 5.3. — Let QQ be a ternary quadratic form over Zy. We do not assume that
¢ =2. Suppose that a1 = ag = az mod 2. Then Q is isotropic.

Proof. If @Q is not diagonalizable then the lemma follows from Proposition 5.2,
since ((11, az, a3) € {(ulv K2, ,LLQ)a (,u27 H2, :ul)}

Suppose that @Q is diagonalizable. Write Q(x) = uyl*1 x? + ugl2 22 + ugftsa3. If
¢ # 2 we have that u; = a; hence uy = po = ps mod 2. To show that @ is isotropic,
it suffices to consider @@ over Q. After multiplying the basis vectors by a suitable
constant, we may assume that p1 = ps = pus = 0. The lemma now follows immediately
from Proposition 5.1, since the Hilbert symbol is trivial on units for ¢ # 2.

Suppose that £ = 2 and Q is diagonalizable. Proposition 4.2 implies that p; =
to = pg mod 2 and uy + ue = 0 mod4. As for £ # 2, it is no restriction to suppose
that Q(x) = w123 +u2x3+uszi. One computes that this quadratic form is anisotropic
if and only if u; = ug = ug mod 4. Hence in our case @ is isotropic. O

For future reference we record from the proof of Lemma 5.3 when a diagonal ternary
form over Zs is anisotropic.

Lemma 5.4. — Let Q(z) = w12 2? + w2223 + uz2**x3 be a diagonal, ternary

quadratic form over Zs. Suppose that g = ps = pz mod 2. Then Q is anisotropic if
and only if up = us = uz mod 4.
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Lemma 5.5. — Let Q(z) = w12 2% + up2223 + uz2t2x3 be a diagonal, ternary
quadratic form over Zs. Suppose that py = py mod 2 and pg Z py mod 2.

(a) Suppose that uy = ug = ug mod4. Then Q is anisotropic if and only if us = +uy
mod 8.

(b) Suppose that the u; are not all equivalent modulo 4. Then Q is anisotropic if
and only if us = +3u; mod 8.

Proof. — The proof is similar to the proof of Lemma 5.3 and is left to the reader. [

Notation 5.6. Let QQ be a ternary quadratic form with Gross-Keating invariants
(a1,a2,as3). For every 1 <i < j <3 we define

a; + LL]‘~|

where [a] is the smallest integer greater than or equal to a.

Theorem 5.7. — Let Q(z) = u12M 2% + up2H2x3 + uz2t32% be a diagonal anisotropic
quadratic form over Zg with py1 < po < ps. Then one of the following cases occurs.

(a) Suppose 1 = pz # pemod2 and uy = 3uzmod8. Then (a1,az,a3) =
(o1, pras i3 + 2) and ay # az mod 2. There exists an optimal basis with respect
to which

Q(z) = 2 uy 2% + 2%2uyrs + W2 3 + 2%, x5,

(b) Suppose py = pz # pemod2 and uy = uzmod4. Then (ar,az,a3) =
(p1, 2, 3 +2) and ay # az mod 2. Moreover, us = u; mod4 if us = uy mod8

and uy = —u; mod4 if ug = bu; mod8. There exists an optimal basis with
respect to which

r) = 2% 2 Uy SuyT13 SUgxor3 Suyvrs.
2y a2 4 2%2ugxd + 203wy g w3 + 2% ugwaws + 2" uyvas

Here v = (uy +u2)/2 if ug = ug mod 4 and v = (3uy +u2)/2 if ug = —uq mod4.

(c) Suppose p1 # p2 = ps mod2. Then (a1, a2, as3) = (11, 2, s + 2) and ax # a;
mod 2. The quadratic form with respect to an optimal basis is as in (a) and (b)
with the role of x1 and xo reversed.

(d) Suppose 1 = pz mod2 and pa = ps. Then (a1, az,a3) = (1, p2 + 1, p3 + 1)
and a; Z az mod2. Moreover, uy = us = uz mod4. There exists an optimal
basis with respect to which
Q(z) = 2" uya? + 2“21)23:% + 25‘3u1(:z1x2 + x123) + 202841 woxs + 2“37}33:%‘

Here v; = (u1 +w;)/2 fori=2,3.
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(e) Suppose p1 = po mod2, puz = p2 + 1 and uy = ug mod4. Then (a1,a2,a3) =
(1, p2 + 1, u3 + 1) and az # ay mod2. Moreover, us = u; mod8 if us = u;
mod4 and us = Huy mod 8 if ug = —uy mod4. There exists an optimal basis
with respect to which

Qx) = 2‘“u1x% + 2“2112.773 + 251”'u1(x1:1:2 + x123) + 202300 w015 + 2‘“‘1}3:17%.

Here vy = (u1 + u2)/2 and vy = (uy +u3)/2 (resp. (3uy + uz)/2) depending on
whether us = u; mod4 or not.

(f) Suppose p1 = pa mod 2, uz = po + 1 and uy = —us mod4. Then (a1, a2,a3) =
(p1, p2+ 1, u3+ 1) and a1 = az mod 2. Moreover, ug = 3u; mod 8. There exists
an optimal basis with respect to which

Q(z) = 2" uyx? + 2% vpa3 + 2013y (z129 + T1203) + 2% vgzx0x3 + 2032

Here vy = (uy + ug + 2u3)/2, veg = (u1 + uz + 4us)/2 and vs = uy + 2us.

(g) Suppose p1 = p2 = pzmod2 and uy = up mod4 and ps > po + 2. Then
(a1,a2,a3) = (p1, p2 + 1, u3 + 1) and az # a1 mod 2. Moreover, uz = u; mod 4.
There exists an optimal basis with respect to which

Qz) = 2”’1u1.1:% + 2"2'021‘% + 2002 2 g + 2980y g + 208wy zoms + 2“31)3;1:3.
Here v; = (u1 + ;) /2 fori=2,3.

(h) Suppose p1 = p2 # pzmod2 and u; = upg mod4 and psz > pe + 2. Then
(a1,a2,a3) = (u1,pe + 1, u3 + 1) and az # a3 mod 2. One of the following two
cases holds:

ugy = u; mod 8 and uz = u; mod4,
{ us = buy mod 8 and uz = —uy mod 4.

There exists an optimal basis with respect to which

Qz) = 2‘“u1x% + 2%20p22 + 201241 21 o + 29y w23 + 20209013 + 2“31)31‘3.

Here va = (u1 +u2)/2 and vg = (u1 +ug)/2 (resp. vs = (3ur +us)/2) depending
on whether w1 = us mod 4 or not.

(i) Suppose p1 = po # pzmod2, puz > pz + 2 and uz = 3u; mod8. Then
(a1,az2,a3) = (g1, p2 + 2, p3) and a; = az mod 2. There exists an optimal basis
with respect to which

Q) = 2% uya? + 2% w922 4 22w 2 20 + 2% ugal.
Here vy = (u1 + uz2)/2.
Proof. — This follows from the results of Section 4 together with the Lemmas 5.4,
5.5. |

Corollary 5.8. — Suppose that Q is anisotropic. Then there exists an optimal basis
such that

ord(bii(¢)) = a;

SOCIETE MATHEMATIQUE DE FRANCE 2007



132 I. I. BOUW

fori=1,2,3.

Proof. — This follows immediately from Theorem 5.7 (diagonal case) and Proposi-
tion 5.2 (non-diagonal case). O

In Section 6, we give a more conceptual proof of Corollary 5.8. In fact, we prove
that any optimal basis has the property in Corollary 5.8. The following lemma gives
a list of the small cases.

Lemma 5.9. — Let QQ be an anisotropic ternary quadratic form over Zs and suppose
that az < 1. Then one of the following possibilities occurs.
(a) We have (ay,a2,a3) = (0,0,1). In this case Q is not diagonalizable; it is of the
form
Q(x) = 23 + zym9 + 235 + uz223.
(b) We have (a1,a2,a3) = (0,1,1) and Q is not diagonalizable. Then Q is of the
form
Q(x) = wix} + 2(x3 + xox3 + 7).
(¢) We have (a1, az,a3) = (0,1,1) and Q is diagonalizable. Then Q is as in Theorem
5.7.(d) with a; = d13 =0 and az = a3 = d23 = 1.

6. Alternative version of the Gross—Keating invariants for anisotropic
forms

We fix an arbitrary prime number ¢ and a free quadratic module (L, Q) over Z;
of rank n. We assume that (L, Q) is anisotropic, i.e., that Q(v) = 0 implies ¢ =
0. Under this assumption, there is an alternative definition of the Gross—Keating
invariants and a very useful characterization of optimal bases; see the remark at
the end of section 4 in [GK]. In this section we do not suppose that n = 3 to
streamline some arguments. Recall that n > 5 implies that (L, Q) is isotropic ([S,
Theorem IV.6]). Therefore the only additional case is anisotropic quadratic forms in
four variables.

We define a function v : L — Z U {co} by the rule

v() == ord, Q(¢).

For ¢ € L and x € Z,, we have

(6.1) v(z)) = 2orde(x) + v().
Lemma 6.1. — The function v satisfies the triangle inequality
(6.2) v(y +4") > min(v(y), v(y)")).

Moreover, if the inequality in (6.2) is strict we have v(v¥) = v(¢').
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Proof. — If ¢ and v’ are linearly dependent the claim is obvious. We may hence
assume that they are linearly independent. For z,y € Z, we write

Q(xY +y') = ax® + y°b + cxy.
Suppose that v(y) + ') < v(w),v(¥’). Then orde(a + b+ ¢) < orde(a),ordy(b). The
usual triangle inequality for ord, implies
ordy(c) = orde(a+ b+ ¢) < orde(a), ord,(b).

Lemma 3.2.(b) implies that (L, Q) is isotropic. This and proves (6.2). The second
assertion of the lemma follows from (6.2), applied to a suitable combination of the
vectors 1, £’ and 1 + ). O

Remark 6.2. — 1If n < 3, one gets an alternative proof of Lemma 6.1 by noting that
(L, Q) is represented by the quaternion division algebra D over Q¢, equipped with its
norm form. The function v is then the restriction of the standard valuation of D.

Let ¥ = (1;) be a basis of L. For i =1,...,n, let L,_; C L be the subspace (of
rank ¢ — 1) spanned by 91, ...,¥;—1. We define a function 9; : L/L;—y — Zx¢ U {o0}
by the rule

0i( + Li—1) := max(v(y") ¢ € ¥+ L;_1).
Note that ©;(¢) = oo if and only of ¥ € L;_;.
Definition 6.3. — A basis v = (¢;) of L is called ideal, if
() = 0;(; + Li_y) = I/Inr[l(@,;('t/) +Li—1))
el
holds for i =1,...,n.

It is clear that there exists an ideal basis of L. The next lemma gives a useful

characterization of an ideal basis.

Lemma 6.4. A basis 1 = (¢;) of L is ideal if and only if

(6.3) v(hi) < oY) fori < j,
and for all (z;) € Z} we have
(6.4) v <Z bLll/)z) = minv(x;4;).

Proof. — Let ¢ = (1;) be a basis of L. If (6.3) and (6.4) hold, then one easily checks
from Definition 6.3 that 1) is ideal.

Conversely, suppose that 1 is ideal. The inequality (6.3) follows directly from
Definition 6.3. It remains to prove (6.4). Fix (z;) € Z} and k with 1 < k < n. Set
Ok = D ;cp Ti%;. We claim that
(6.5) v(pr + 2xtx) = min(v(er), v(zEYr))-

From this claim, (6.4) follows by induction.
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For k = 1, the claim is obvious. To prove it for £ > 1 we may assume that it holds
for ¥ = k — 1. Also, by the triangle inequality (6.2), the left hand side of (6.5) is
greater than or equal to the right hand side. Suppose that the left hand side is strictly
greater than the right hand side. Then we have v(¢y) = v(zrtbr). Using (6.1), (6.3)
and the claim for ¥’ = k — 1, we find that ordy(zx) < orde(z;) for all i < k. After
dividing by x, we may therefore assume that x, = 1. However, by the definition of
an ideal basis we have

vlpr) = v(t) = vl + ).

This contradicts our assumption and proves the claim. O
Let us fix an ideal basis ¥ = (¢1,...,%¢,) of L, and set
a; :==o(), i=1,...,n.

We want to show that the a; are the Gross—Keating invariants of (L, Q). We first
check that (a;) lies in the set S (Section 1). For this we write the quadratic form @

as follows:

i<j

We set a;; := orde(b;;). Note that a; = aj;.

Proposition 6.5. — For 1 < i< j <n we have

a; + a;
ij = 2
Proof. — The case i = j being trivial, we may assume that ¢ < j. Our proof is by

contradiction. First we assume that 2a;; +1 < a; +a;. We set ¢ := max(a;; —a; +1,0)
and look at the right hand side of

Q(£C1/)i =+ 1/)_7') = bii[ZC + bjj + b,]gC

The three terms of this sum have f-valuation a; + 2¢, a; and a;; + ¢, respectively. By
our choice of ¢ we have

a;j + ¢ < min(a; + 2¢, a;).
It follows that
V(Y + ;) = az; + ¢ < min(v(CY;), v(;))-
This contradicts the triangle inequality and excludes the case 2a;; +1 < a; + a;.

It remains to exclude the case 2a;; + 1 = a; + a;. Since a; < a; we have ¢ =
a;j —a; > 0. Let 2 € Z) be a f-adic unit. Then

(66) Q(gcl'll)l + I/J]) = b“[QCl‘Q + bjj + b,-jﬁcx‘
By our choice of ¢ we have

a; +2c=a; —1=a; +c
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We see that on the right hand side of (6.6), the first and the last term have the
minimal valuation a; — 1, while the middle term has valuation a;. Therefore, for an
appropriate choice of x, we get

vz +pj) > a; > min(v(Ca;), v(1;)).
But this contradicts Lemma 6.4, (6.4). The proposition follows. |

Proposition 6.6. — An ideal basis is also optimal (Definition 1.2). Moreover, if 1 =
(1;) 1s an ideal basis of L, then (a; := v(y;)) are the Gross Keating invariants

of (L, Q).
Proof. — The previous proposition says that (a;) is an element of S. It remains to
show that (a;) is a maximal element, with respect to the lexicographical ordering.

Let ¢’ = (¢!) be an arbitrary basis of L, and let (a}) be an element of S(v’)
(Section 1). We will show that aj, < aj, for k = 1,...,n, which proves the proposition.
Write

i = Zmiﬂ/}j, with (xij) € GL,,(Zy).
J
The condition (a}) € S(v') together with Lemma 6.4 shows that
(6.7) al <o) = 111]_111((1,\,' + 2orde(xij)).
Using that (z,;) is invertible, one shows that there exists at least one pair of indices
(ij) with k <1 and j < k such that z;; is a unit. Applying (6.7) and (6.3) we get
aﬁv <a, < a; < ay.

This is what we had to prove. O

Corollary 6.7. — Let ¢ = (1;) be an ideal basis of L and (y;) € Q} with y; # 0. Set
P = (), where ) = yip; € L @z, Qu, and let L' denote the Z¢-lattice spanned
by . Let (a;) be the Gross-Keating invariants of L.

(a) The basis ¥" of L' is ideal.

(b) The Gross—-Keating invariants of L' are the numbers

! 2 1
a; = a4 or Z(yi),
i7l some o1 d@? .

Proof. — Choose an integer r such that {"y; € Zy, for all i. For (x;) € Z}, Lemma 6.4

shows that
v (Z xiw;) = (Z Erxiyidji) —2or
miinzv(frxiyiwi)) —2r

= miin(v(:ciwg)).
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Again by Lemma 6.4 we conclude that 4’ (in some order) is an ideal basis of L’. This
proves (a). Part (a) of the corollary follows now from the previous proposition. O

Remark 6.8. — Corollary 6.7 (a) is false without the assumption that (L,Q) is
anisotropic. Consider, for instance, the (isotropic) quadratic form Q(z) = 2?2 —x3+423
over Zgy. Dividing the last vector of the standard basis by 2 we obtain the quadratic
form Q'(z) = 2% — 23 + 23. According to Proposition 4.2(b), the Gross-Keating
invariants of @ are (0,2, 2), while the invariants of Q" are (0,1, 1).

Proposition 6.9. Let (L,Q) be an anisotropic free quadratic module over Zy. Then
every optimal basis is an ideal basis.

The proof of this proposition uses the following lemma.

Lemma 6.10. — Let (ay, ..., ay) be the Gross—Keating invariants of (L, Q), and let 1
be an optimal basis. Then v(;) = a;.

Proof. Let @ be an optimal basis and suppose that v(;) > a;, for some i. It
follows from the definition of the Gross—Keating invariants (Definition 1.2) that there
exists a j # i such that

ord(b;;) = (a; + a;)/2.
In particular, we have that a; = a; mod 2. Lemma 5.3 implies thercfore that a) #
a; mod 2 for all k # 4,7, since (L,Q) is anisotropic. (The case that n = 4 ecasily
reduces to the case that n = 3 by using the existence of an ideal basis.)

Consider the restriction @1 of Q to Ly = (4, 1;). We distinguish three cases. First
suppose that a; = a;. Then (L, Q1) is isotropic by Lemma 3.2.(b).

Next we suppose that a; < aj. Then ¢ < j. We have already seen that ay #
a; mod 2 for all k£ # i, j. Renumbering the indices, if necessary, we may assume that
a; < aj+1 and aj—1 < aj. Define (@;) by @; = a; + 1 and a; = a; — 1, and a, = ay, for
all k #4,7. Then (ay) € S(¢). This contradicts the definition of the Gross Keating
invariants.

Finally, we suppose that a; > a;. Then i > j. If v(y;) > a;, we interchange 4
and j and obtain a contradiction by the previous case. Therefore v(¢;) = a;. Since
a; = aj mod 2, Lemma 3.2.(b) implies that L; is isotropic. This gives a contradiction.

We conclude that v(v;) = a; for all i. O
Proof of Proposition 6.9. — Let 1 be an optimal basis which is not ideal. Lemma 6.10
implies that v(y;) = a; for all i. Let k be minimal such that there exists a

p = Ziﬁ;l x); € L with v(p) # min;(z;4;). Lemma 6.4 implies that k exists. It
follows from the triangle inequality that v(p) > min;(z;4;). Write ¢ = E::ll ;.
The choice of k implies that v(@) = min;«g v(z;9;). Since v(p) = v(P + xYr), we
conclude from Lemma 6.1 that v(p) = v(xptr). This implies that

(6.8) 2ord(x;) + a; > 2ord(xy) + ak.
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In particular, ord(x;) > ord(xy), for all i. Therefore it is no restriction to assume
that xj is a unit.
We define a new basis ¢ = (¢;) by ¢; =; if i # k and ¢ = ¢. Write
Q(Z ,7/71901‘) = sz‘j’yi?/j-
t 1<g

One computes that

B‘ _ 2f17jbjj + Zq‘,;ﬁj b“’I‘l fOI‘j < /C,
ik = ZL bijfl;i fOI‘j > k.

Equation (6.8) implies that ord(bjx) > (a; + ax)/2. Therefore ¢ is again an opti-
mal basis. But v(px) = v(p) > min;v(z;10;) = v(zkyr) = ax. This contradicts
Lemma 6.10. O

Lemma 6.11. — Let M C L be a sublattice, i.e., a sub-Zg-module of rank n. Let
by,..., by be the Gross-Keating invariants of (M,Q|ar). Then b; > a;.

Proof. — We choose ideal bases (¢1,...,%,) for L and (¢1,...,¢y,) for M. Then
a; = v(¢;) and b; = v(p;). Let us fix an index ¢ € {1,...,n} and show b; > a;. For
an element @) = Zj xj1); of L, we set )’ := Z]‘<1‘, xj1; and ¢ = ijv: xj1;. Then
P =1 +¢" and v(y)") > a;. Since the vectors ¢!, ..., ¢} lie in a subspace of rank

i — 1, there exist xy,...,x; € Z¢, not all zero, such that ngi 2 = 0. Then
. _ P
Jj<i Jj<i

Applying Lemma 6.4 (6.4) to the left hand side and the triangle inequality (6.2) to
the right hand side, we conclude that

min(b; 4+ 2ordy(x;)) = min(v(¢]) + orde(x;)) > min(a; + 2orde(x;)).
J<i J<i J<i

For the index j for which ordy(z;) takes its minimal value we get a; < b; < b;. This
proves the lemma. O
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