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12. INVARIANTS OF TERNARY QUADRATIC FORMS 

by 

Irene I. Bouw 

Abstract. — This paper deals with Gross-Keating invariants of ternary quadratic 
forms over ZL The main technical difficulties arise in residue characteristic l = 2. In 
this case, we define the Gross-Keating invariants in terms of a normal form. We give 
an alternative, less computational approach for anisotropic quadratic forms. 

Résumé (Invariants de Gross-Keating pour les formes quadratiques ternaires) 
Cet article concerne les invariants de Gross-Keating pour les formes quadratiques 

ternaires sur ZL. Les difficultés principales n'apparaissent qu'en caractéristique rési-
duelle l= 2. Dans ce cas, nous déterminons les invariants de Gross-Keating en termes 
d'une forme normale. Pour les formes anisotropes nous donnons une approche plus 
directe. 

This note provides details on [GK, Section 4]. The main goal is to define and com-
pute the Gross-Keating invariants ai1, a2 , a3 of ternary quadratic forms over zl (Def-
inition 1.2). If a1 = a2 mod 2 and a3 > a2 we define an additional invariant e { ± 1 } 
(Definition 2.7, Definition 4.8). If l≠  2 every quadratic form over TLn is diagonaliz-
able, and it is easy to determine these invariants from the diagonal form (Section 2). 
If £ — 2 not every quadratic form is diagonalizable. Moreover, even for diagonal 
quadratic forms it is not straightforward to determine the Gross-Keating invariants. 
We determine a normal form in Section 3 and compute the invariants in terms of 
this normal form (Section 4) . In Section 5 we determine explicitly when a ternary 
quadratic form is anisotropic. A complete table can be found in Proposition 5.2 (non 
diagonalizable case) and Theorem 5.7 (diagonalizable case). In Section 6, we give an 
alternative definition of the Gross-Keating invariants for anisotropic quadratic forms. 
The results of Section 6 are due to Stefan Wewers, following a hint in [GK, Section 4]. 

Our main reference on quadratic forms over Zi is [C, Chapter 8]. Most of the 
results of this paper can also be found in the work of Yang, in a somewhat different 
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114 I. I. B O U W 

form. The Gross-Keating invariants are computed in [ Y l , Appendix B]. The question 
whether a given form over Z2 is isotropic or not (Section 5) is discussed in [Y2]. 

I would like to thank M. Rapoport for comments on an earlier version. 

1. Definition of the invariants a% 

In this section we give the general definition of the Gross-Keating invariants ai of 
quadratic forms over Z^ which are used in [GK]. 

Let L be a free Z^-module of rank n and choose a (for the moment) arbitrary basis 
ip = {ipi, ip2, • • • 5 ^n}- For the application to [GK] we are only interested in the case 
n = 3 of ternary quadratic forms. Let (L,Q) be an integral quadratic form over Z^ , 
that is, 

Q(x) = Q xiwi bijXiXjj with bij G Z^ . 

Put bji = for j > i. If we want to stress the dependence of the bij on the basis, we 
write bij(ip) for bij. We write (x, y) = Q(x + y) — Q(x) — Q(y) for the corresponding 
symmetric bilinear form and B = ( (^ /0^) ) for the corresponding matrix. Note that 

B = {Bij) , where B^ = 
vij, id if <j, 
2bij, ifi=j. 

In the rest of the paper we only use the bij and not the B^, for simplicity. We denote 
by ord the £-adic valuation on Z^ . We always suppose that Q is regular, that is, 
d e t ( 5 ) ^ 0. 

Changing the basis multiplies the determinant of B by an element of (Zf )2. There-
fore the determinant is a well defined element of Zi/(Zf)2. 

Lemma 1.1. — Suppose that either £ ^ 2 or n is odd. Define 

A = A ( Q ) = 
1 
2 

det(B). 

Then A G Ze. 

Proof. — The lemma is obvious if £ ^ 2. Suppose that £ = 2 and n odd. Write 
A = J2aesn 26{a)d(o-), where d(a) = ( - l ) s s n M ]J^=1 bia{%) and 5(a) + 1 is the number 
of i £ { 1 , 2 , . . . , n } which are fixed by a. The only problematic terms are those with 
5(a) — — 1. Suppose that a acts without fixed points on {1, 2 , . . . , n). Then a~l ^ <r, 
since n is odd. The matrix ((ipi,^j)) is symmetric. It follows that d(a) = d(a~l), 

hence 25^d(a) + 25^]d(a~l) e Z£. • 

We now come to the definition of the Gross-Keating invariants of a quadratic 

form. Let xf> — (ipi,ip2, • • •, be a basis of L. We write S(ip) for the set of tuples 

y = (yi ,2/2, • • •, Vn) € ^n such that 

(1.1) Vi < V2 < • • • < 2/n, 
Vi + Vj 

2 
< ord(bij(ip)) for 1 < i < j < n. 
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Let S = US(x/>). We order tuples (yi,..., yn) G S lexicographically, as follows. For 
given ( y l , . . . , yn), ( 2 : 1 , . . . , 2n) G 5 , let j be the largest integer such that yi = zi for 
all i < j . Then (yll ...,yn)> (¿1, • • •, zn) if % > z3. 

Definition 1.2. — The Gross-Keating invariants ai,...,an are the maximum o 
(yl,..., 2/n) G 5. A basis 1/? is called optimal if (ai,..., an) G S(ip). 

If t/? is optimal, then 

(1.2) AI+ CLJ < 2 ord(bij(if>)) for 1 < i < j < n, and ai < a2 < • • • < an. 

Since A is well defined up to (Z£ ) , the integer ord(A) is well defined. The following 
lemma will be useful in computing the Gross-Keating invariants. 

Lemma 1.3 

(a) Suppose that n is odd, then 

ord(A) > a\ + «2 + V an-

(b) We have 

ai = min 
x,y£L 

oid (x. y). 

(c) Define p := min^ ord(det(A))7 where A runs through the 2 by 2 minors of B. 
Then 

Q>i + a2 < p-

Proof. — This lemma is proved in [ Y l , Lemma B.l, Lemma B.2]. Note that the 
matrix T in [Yl] differs by a factor 2 from our matrix B. Let (p be an optimal basis. 
We use the notation of the proof of Lemma 1.1. 

First suppose that £ — 2. Write § for the set of equivalence classes in Sn un-
der the equivalence relation a ~ <T_1. The proof of Lemma 1.1 shows that A = 

ecS {~lf^)26'^d{a), where ó'(cr) > 0. The choice of <p implies that 

ord(26'^d(cr)) =<J/(( j)+ordi 

i 
bia(i) > 

n 

i=l 

ai+ao(i) 

2 

n 

i=l 
a{. 

This proves (a) in this case. 
If £ ^ 2, define S'(a) = 0 for all a G Sn. Then the proof works also in this case. 
Since a\ < 02 < • • • < an, it follows from (1.2) that ord(6^-(y?)) > ai for all i < j . 

On the other hand, it is obvious that a\ > mmXjyeL ord (x, y). This implies (b). 
Part (c) is similar to (a), compare to Lemma Bl.ii in [Y l ] . Let ii)I2,ji,J2 £ 

{1 ,2 , . . . , n } be integers such that i\ ^ ¿2 and j \ ^ 32- Write B(i\^2\3x^32) for 
the corresponding minor of B. After renumbering, we may suppose that i\ ^32 
and i2 ^ ji. Then det(B(iu i2; j i , j2)) = ±{2abh,JIbi2,j2 ~ K^^JI), where a G 
{ 0 , 1 , 2 } is the number of equalities i\ = 31^2 = 32 that hold. We conclude that 
ord(det(i3(ii, %2\ j i , 3 2 ) ) > ( « ¿ 1 + Ui2 + a j i + a j 2 ) / 2 > fli + «2- (Here we use that 
« i < «2 < • • • < an and i\ ^ ¿2 and ji ^32-) This proves (c). • 
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2. Definition of the Gross-Keat ing invariants for £ ^ 2 

We start this section with an elementary lemma which holds without assumption 
on £. 

Lemma 2.1. — Choose a basis ip — (̂ i,...,wn of L. Let 7 1 , . . . , 7m G L be linearly 

independent. The following are equivalent. 

(a) There exists 7 m + i , . . . , 7n G L such that the (7^) form a basis. 
(b) The matrix ( 7 1 , . . . , 7m), expressing the 7^ m terms of the basis ij), contains a 

ra x ra minor whose determinant is a p-adic unit. 
(c) / / n 

2=1 
^ 7 i G L for some Vi G Q¿, ¿/¿en v¿ G Z¿. 

Proof — This is straightforward. See also [C, Chapter 8, Lemma 2.1]. 

In particular, a vector a = atibi G L is part of a basis of L if and only if 

minj ord(oij) = 0. We call such vectors primitive. 
We have that 

(2.1) 2 (x, y) = 2[Q(x + y)- Q(x) - Q(y)\ = (x + y,x + y)- (x, x) - (y, y). 

If I 7̂  2, this implies that 

(2.2) mm 
x,yc L 

Did (x. y) — min ord (x. x) . 

In the rest of this section, we suppose that £ 7̂  2. There is a x G L for which the 
minimum in (2.2) is attained. This vector x is primitive. Lemma 2.1 implies that x 
can be extended to a basis of L. We will see in Section 4 that (2.2) does not hold for 
£ = 2; this is the main reason why things are more difficult for £ = 2. 

Proposition 2.2. — Suvnose that £^2. Then there exists a basis ib of L such that 

Q(x) = Q Xi^x 

i 

biiX^ , where ord(òn) < ord(ò22) < • • • < ord(ònn). 

Proof. — Our proof follows [C, Chapter 8, Theorem 3.1]. 
The discussion before the statement of the theorem shows that we may choose tpi 

such that 

ord(Q((/?i)) = ord ((/?i, (fi) = min 
x,ycL 

ord (x, y). 

Here we use the equality (2.2). 
Choose u?2, • • •, tpn £ L such that u> = \ipi, o?2 • • •, tpn} is a basis of L. As before 

we write Q( i xiei l< i<j i<n bij(ip)xiXj. Then 

Q(x) = on xi -f 
bl2 

2bn 
xo ^— 

bin 

26n 

2 

f Q(x2l . .. ,xn), 

for some integral quadratic form Q in n — 1 variables. 
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We define a new basis by ipi = <pi, and ipi = p>i — (b\i/2bn)(pi for i ^ 1. The 
choice of wl ensures that ipi G L, since e = ord(26n) < ord{bn). With respect to this 
new basis, the quadratic form is 

Q(x) = b11($)x\ + Q 
i>2 

xlibl 

The proposition follows by induction. 

Remark2.3. — Cassels ([C, Chapter 8, Theorem 3.1]) proves a stronger statement 
than Proposition 2.2. Namely, he gives a list of pairwise nonisomorphic quadratic 
forms such that every integral quadratic form is isomorphic to one of these. This 
stronger statement implies that the definition of the invariants ai of Proposition 2.6 
does not depend of the choice of the orthogonal basis. 

We can give a simpler definition of the invariants ai in terms of a basis tj) as in 
Proposition 2.2. If 7 G L is an element such that Q{^) ^ 0, we may define a reflection 
r7 by 

T*y(x) — x — 
2 ( x , 7 ) 

( 7 , 7 ) 

This is the reflection in the orthogonal complement of 7. Clearly, r7 is defined ove 
!Li if and only if ord (7 ,7 ) = min^^ ord (x, x) . (In fact, this also holds for £ = 2. 
Since r7 is a reflection, it is clearly invertible. The following lemma is a partial analoj 
of Witt's Lemma ([C, Corollary to Theorem 2.4.1]) which holds for quadratic form 
over fields. 

Lemma 2.4. — Suppose that ib,<p G L satisfy 

Q(V) = Q(<p), o r d ( Q M ) = o r d ( Q M ) = min 
xeL 

oid{Q(x)). 

Then there exists an integral isometry a of (L,Q) such that cr(ip) = (p. Moreover, a 
may be taken as a product of reflections r 7 . 

Proof — This is [C, Lemma 8.3.3]. Our assumptions on ip and p> imply that 
Qw+ if) + Q  -<p) = 2Q($) + 2Q{ip) = 4Q(^). Since ord(Q(^)) = ord (^) = 
m h w ^ ord (x, x) =: e, it follows that one of the following holds: 

(a) ordQ(x/j + cp) = e, 
(b) ordQ(ip — (p) = e. 

Since £ ^ 2, it is also possible that both hold. If (a) holds, then r̂ +(/7 is integral and 
sends i\) to (p. If (b) holds, define a — r^_^ or,/,. • 

Lemma 2.5. — Suppose u,v EZf . Then ux\ + vx\ ~ze %i + uvx\. 
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Proof. — This is proved in the second corollary to [C, Lemma 8.3.3]. We give the 
idea. Since I ^ 2, there exists a, c £ 7L£ such that a2u + c2v — 1. We may assume 
that a is a unit. Then 

C = 
a -cv 
c au 

defines the equivalence of the lemma. 

Proposition 2.6 

(a) Let iß = ( ^ i , ^2 , • • •, ißn) be an orthogonal basis of L as in Proposition 2.2 Write 
Q(x) = bixf. Then the invariants ai (Definition 1.2) satisfy 

a% = ord(6i). 

In particular, iß is optimal. 
(b) Suppose that n is odd. Then 

ord(A) = a\ + • • • + an. 

Proof. — Let cp be a basis such that the inequalities (1.2) hold. We claim that 
ord (<^i, (fi) = a\. Part (b) of Lemma 1.3 implies that a\ = m i n ^ L ord (x, x ) . The 
choice of cp implies moreover that ord ((/?i, cpi) = minxGL ord (x, x). The definition of 
a\ implies therefore that a\ = ord (cpi, c^i). 

We apply the diagonalization process of the proof of Proposition 2.2 to the basis 
cp. Define ip\ = cp± and tpz = (fi — (bii/2bn)<pi for i ^ 1. One computes that 

(rßj,ißi) = 0, (VuWi) = 

b21j 

26n 
+ 2bjj, [ißi,ißj) = -

bubij 

2bn 
+ hj. 

for j / 1 and i ^ l,j. The inequalities (1.2) imply that ord (iftj, tpj) > a3 and 
2 ord (0i, ipj) > CLZ + cij. Therefore the new basis also satisfies the inequalities (1.2). 
This implies that there exists an orthogonal basis tp which satisfies (1.2). It follows 
that the Gross-Keating invariants ( a i , . . . , an) are the maximum of US(i/>), where the 
union is taken over the orthogonal bases and US'(/0) is as in (1.1). 

Let cp and ip be two orthogonal bases. Write Q(x) = b\x\ + 62^2 H h bnx2n with 
respect to the basis tp and Q(x) — d\x\ + d2x\ + • • • + dnx2n with respect to the basis 
cp. We suppose that ord(&i) < ord(62) < • • • < ord(6n) and ord(c?i) < ord((i2) < • • • < 
ord(<in). We suppose moreover that cp satisfies (1.2). (Such cp exists by the above 
argument.) We have to show that ip satisfies (1.2), also. Write C = (cij) for the 
change of basis matrix expressing cp in terms ip. As before, Lemma 1.3.(b) implies 
that ord(6i) = ord(c?i) = a\. Write b\ — ud\, for some unit u. 

Suppose that o r d ^ ) > ord(&i). Then 

di = 
n 

j=l 
c2b3 = c ^ ò i m o d r i + 1 . 
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This implies that u is a quadratic residue. To prove the claim, we may therefore 
assume that Q(ipi) = Q(<fi) in this case. 

Suppose that ord(fri) = ord(&2)- Then Lemma 2.5 implies that Q is Z^-equivalent to 
d\x\Jrub2x\ + b?)x\ + • • •. Hence also in this case we may assume that Q{ip\) = Q(<£i). 

Lemma 2.4 implies that there exists an isometry a of Q which sends tpi to p)\. 
Then D := a~lC fixes ^ i - Write 

D = 
1 
0 D2 

B : = 

2&i 0 

0 26n 

where J^2 is an (n — 1) x (n — 1) matrix. One computes that 

DlBD = 272^i 
21D\ 

2-yD! 
* 

Our assumption implies that DlBD is a diagonal matrix, with diagonal entries 2aV 
This implies that D\ = ( 0 , . . . , 0). We conclude that D restricts to an integral and in-
vertible map from the sublattice of L spanned by ^ 2 , • • •, f/Vi to the sublattice spanned 
by <̂ 25 • • •, Pn- This implies (a). 

Part (b) follows immediately from (a). • 

Definition 2.7. — Suppose that n = 3 and £ ^ 2. Assume a\ = a2 mod 2, and a3 > a2. 
Choose a basis i/> — ( ^ 1 , ip2, ^ 3 ) of L as in Proposition 2.2. Write bu = £AIUI. We 
define an invariant e = e(t/?) by the Legendre symbol 

(2.3) € = 
-U\U2 

£ 

Lemma 2.8. — Assumptions and notations are as in Definition 2.7. 

(a) The invariant e(ip) does not depend on the choice of the orthogonal basis ip. 
(b) We have that e = 1 if and only if the subspace of L O Z Qi spanned by wl and 

ip2 is isotropic. 

Proof. — Let 1)) = ( ^ 1 , ip2, ^ 3 ) be a basis of L as in Proposition 2.6, in particular ip 
is orthogonal and the valuation of bi = (^ , ipi) /2 is equal to â , for i — 1, 2, 3. 

Suppose that a2 = a\ mod2 and a% > a2. Write a2 = a\ + 27. Write Q' for the 
restriction of Q to the sublattice of L spanned by w2 and if)2- Then Q'(x) = b\x\ + b2x\ 
is equivalent to £ai(xf + w i i ^ 2 7 ^ 2 ) (Lemma 2.5). It follows that Q' is isotropic if 
e = l and anisotropic if e = — 1. This proves (b). 

Let be another orthogonal basis and write Q( i XIIFI) = d\x\ +d2x\ +dzx\. We 
assume that ord(d^) = â . Write C for the matrix expressing cp in terms of if). The 
argument of the proof of Proposition 2.6 together with the assumption that a2 < 03 
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implies that there exists an isometry a such that 

a~1C = 
VA 

0 
0 

0 

V2 

0 

0 
0 

^ 3 , 

where the Vi are units. This shows that di = vfbi. The lemma follows. 

3. A normal form for quadratic forms over Z2 

Not every quadratic form over Z2 is diagonalizable. In this section we give a normal 
form for ternary quadratic forms over Z2, following [C, Section 8.4]. Cassels uses a 
slightly stronger notion of integrality, namely he supposes that bij/2 G Z^, for all 
i ^ j . However, this does not make any difference. 

Lemma 3.1. — Suppose £ = 2. Let Q be a regular quadratic form over Z2. Then Q is 
^-equivalent to a sum of quadratic forms of the form 

(3.1) 2eux2, 

for e G Z>o and u G Z j , and 

(3.2) 2e(b\x\ + uxix2 + b2xl), 

with e G Z>o; and w G Z2X . 

The equality (2.1) holds for £ = 2, but (2.2) does not. However, (2.1) implies that 

min 
x,y^L 

ord (x, y) + 1 > min ord (x, x) . 

Therefore minx YEL ord (x, y) equals either minxGL ord (x, x) or minxGL ord (x, x) — 1. 

Proof. — Let e = minx y cL ord (x, y). We distinguish two cases. 

(a) There exists a 7 G L such that ord ( 7 , 7 ) = e. 
(b) For all 7 G L we have that ord ( 7 , 7 ) > e. 

Suppose we are in case (a). Then o r d ( 0 i , ^ ) > e, by definition. We can now 
proceed as in the proof of Proposition 2.2. Namely, 2bn = 2Q(0i) = (^lj^i) . 
Therefore b\ 1 has valuation e — 1. For i ^ 1, we have that ord(6n) = ord ( ^ 1 , ipi) > e. 
Therefore 

ei=wi- bii w1 

is an element of L and ^ 1 , ^ 2 , . . . , cpn form a basis. With respect to this basis the 
quadratic form Q becomes Q(x) — bnx^ + Q (#2, • • •, xn), for some quadratic form Q 
in n — 1 variables. 

Suppose we are in case (b). Then ord (7, 7 ) > e for all 7 G L. We may choose 
^ 1 , ^ 2 G L such that ord (ipi, ip2) = e. The definition of e implies that ( ,0i+02)/2 0 L. 
Lemma 2.1 implies therefore that ^ 1 , ip2 can be extended to a basis 0 i , . . . , i/jn of L. 
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The choice of ipi and ijj2 implies that the determinant of the matrix 

2òii2~e 
h22~e 

bl22-e 

2b222~e 

is a unit in ILi. Therefore we can find X{, XJ2 such that 

-2\{bu - X32b12 + bij = 0, -2AJ2Ò22 - AJÒ12 + b2j = 0, 

for j = 3 , . . . , n. Define (fj = ip3 — X]_ipi — A^^- The choice of the Â  implies that 

(<Pj,^i) = ( ^ , ^ 2 ) = 0 , for j = 3, . . . , n . 
With respect to the basis (^i, ^2 , e3 • • • > V?n) the quadratic form Q becomes 

<2(x) = 2e(b11xl + Ò12X1X2 + b22x2) + ( ? ( x 3 , • • • ,xn). 

This proves the lemma. 

Lemma 3.2. — Let Q2{x) = b\\x\ + 612^1X2 + ^22^2 be a binary quadratic form over 
7L2 and L2 the corresponding free ^-lattice of rank two. 

(a) 7/"min(ord(&ii), ord(&22)) < ord(6i2) then Q2 is diagonalizable. 
(b) Suppose that Q2 is not diagonalizable. Then Q2 is anisotropic if and only if 

ord(6i2) = ord(6n) = ord(622). 
(c) Suppose Q2 is anisotropic and not diagonalizable. Then Q2 is equivalent to 

2e{x\ + x i x 2 + X 2 ) , 

for some e. 
(d) Suppose that Q2 is isotropic and not diagonalizable. Then Q2 is equivalent to 

2ex\x2, 

for some e. 

Proof. — Part (a) follows from the proof of Lemma 3.1. 
Suppose that Q2 is not diagonalizable. Then ord(6i2) < min(ord(6n), ord(&22))5 

by (a). Part (b) is an elementary Hilbert-symbol computation using [S, Theo-
rem IV.6]. 

Suppose that Q2 is anisotropic and not diagonalizable. Then (b) implies that e := 
ord(6i2) = ord(bn) = ord(622)- Part (c) now follows from an elementary computation. 

Suppose that Q2 is isotropic and not diagonalizable. There exists a primitive vector 
ipi such that Q ( V t ) = 0- Lemma 2.1 together with the fact that the quadratic form 
is nondegenerate, implies that there exists a vector ip2 £ L2 such that ^ 1 , ^ 2 form a 
basis of L2 and (T/t, I/J2) 7̂  0. After multiplying ip2 with a unit, we may suppose that 
C0i5 ̂ 2) = 2e, for some e > 0. 
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We claim that ord (^2, ^2 ) > ord ( 0 i , T/^). Namely, if ord (^2, ̂ 2) < ord ( ^ 1 , ^ 2 ) 
then Q2 is diagonalizable by (a), but this contradicts our assumptions. Therefore 

0 2 : = ^ 2 -
W>2,^2 

2 ( 0 1 , ^ ) 
•éi e L2. 

Now 0 i , -02 form a basis of L and ( 0 2 , V4) — 0- This proves (d). • 

Proposition 3.3. — Let (L,Q) be a ternary quadratic form over Z2. One of the fol-

lowing two possibilities occurs. 

(a) The form Q is diagonalizable; there exists a basis such that 

Q(x) = b\x\ + 62X2 + 6 3 X 3 , with 0 < ord(6i) < ord(62) < ord(63). 

(b) The form Q is not diagonalizable; there exists a basis such that 

Q(x) =  ¿l2Mlx2+2 / i2(^X2+X2X  +vx ) , with v G { 0 , 1 } , /i2 > 0 and m e Z2 . 

Proof. — This follows immediately from Lemma 3.1 and Lemma 3.2. • 

This classification is the same as the classification used (but not explicitly stated) 
in [ Y l , Appendix B]. Note that Yang's matrix T differs by a factor 2 from the matrix 
B we use. In particular, the invariant /3 used in [ Y l , Proposition B.4] satisfies ¡3 > —1 
rather than (3 > 0. 

4. The Gross—Keating invariants for £ — 2 

In this section we compute the Gross Keating invariants of ternary quadratic forms 
(L, Q) over Z2 in terms of the normal form of Proposition 3.3. The computation of 
the ai can be found in Proposition 4.1 (non-diagonalizable case) and Proposition 4.2 
(diagonalizable case). The computation of e can be found in Proposition 4.9. This 
section is based on [ Y l , Appendix B]. 

We start by considering quadratic forms which are not diagonalizable. Recall from 
Proposition 3.3 that if Q is not diagonalizable then there exists a basis i\) of L with 
respect to which we have 

(4.1) Q(x) — u\2lllx\ + 2^2{vx\ + X2X3 + ^x2), with v £ { 0 , 1 } , u\ G Z j • 

We do not suppose that \i\ < ji2. 

Proposition 4.1. — Suppose that Q is given by (4-1)- Then 

(ai,a2,a3) = 
( / i l , / X 2 , / i 2 ) , if fli < \L2, 

(/¿2,/¿2, Mi), if u1 > u2 

Proof. — Lemma 1.3.(b) implies that a\ — min(/ii, ¡12)- We distinguish two cases. 
Suppose that ¡11 < p2. Then a\ = Hi and ord(A) = fii + 2/i2 > a\ + a2 + as 

(Lemma 1.3.(a)). Therefore 02 < (a2 + 0,3)/2 < ¡12- The existence of a basis ip as 
in (4.1) implies that ( /^, /¿2,^2) £ S(^). We conclude that 02 — 03 — ^2. 
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Suppose that /11 > ¡12- In this case we have that a\ = ¡12- Recall that we defined 
p as the minimum of the valuation of the determinant of the 2 x 2-minors of B. 
One computes that p = min(2/i2,1 + /¿1 + ¡12) — 2/i2, since we assumed that \i\ > 
¡12 + 1. Lemma 1.3.(c) implies that p > a\ + a2, hence a2 < ¡¿2- The existence of a 
basis tp as in (4.1) implies that (/¿2?/¿2? Mi) ^ S(tp). We conclude that ( 0 1 , 0 2 , 0 3 ) = 
(/i2,/i2,/ii). • 

We now consider diagonalizable quadratic forms Q. Contrary to the situation for 
£ 2, a basis tp which diagonalizes Q is not optimal (Definition 1.2). 

Proposition 4.2. — Suppose that Q is diagonalizable. Let tp be a basis of L such that 

(4.2) Q(x) — b\x\ + b2x\ + b^x\, with bi = i^2Mi, m G Zx2 and /ii < /i2 < / /3 . 

(a) Suppose that \i\ ^ /¿2 mod 2. T/z,en ( 0 1 , 0 2 , 0 3 ) = (/¿1, /¿2, /¿3 + 2). 
(b) Suppose that /¿1 = //2 mod 2. 

(i) IfuiJru2 = c2 mod 4 or/i3 < /¿2 + 1, ^en (oi,o2,a3) = (/ii,/x2 + l ,M3 + l)-
(ii) Otherwise, (oi,o2,o3) = (/¿1, /i2 + 2, /13) . 

The proof of this proposition is divided in several lemmas. We use the notation of 
Proposition 4.2. In particular, tp is a basis of L with respect to which Q is as in (4.2). 
Let cp be an optimal basis, i.e., suppose that the inequalities (1.2) hold. We write 
C = (cij) for the change of basis matrix expressing cp in terms of tp. We write the 
quadratic form Q in terms of the basis cp as Q(x) — X ^ < j dijXiXj. In other words, 
the dij are the coefficients of the matrix obtained by dividing the diagonal elements 
of ClBC by two. One computes that 

(4.3) ^ = ^ 6 1 + ^ 6 2 + ^ 3 . 

Lemma 4.3. — Suppose that Q is diagonal and \i\ ^ /¿2 mod 2. Then ( 0 1 , 0 2 , 0 3 ) = 

(/ii,/i2,M3 + 2). 

Proof. — We have already seen that a\ = ul Therefore it follows from the definition 
of the ai that 02 > /¿2- We claim that 02 = ¡12- Suppose that 02 > /¿2-

Write /¿2 = /¿1 + 27 + 1. The inequalities (1.2) imply that ord(d22) > 02 > M2 + 1 
and ord(d33) > 03 > 02 > //2 + 1- Since \i\ ^ ¡12 mod 2, it follows from (4.3) that 
ord(ci2) > 7 + 1 and ord(ci3) > 7 + 1. 

We first suppose that ¡13 > /¿2- Then ord(c22) > 1 and ord(c33) > 1. But this 
implies that det(C) = 0 mod 2. This gives a contradiction. 

If /¿2 = M3> we proceed similarly. In this case C22 = C32 mod 2 and C23 = C33 mod 2. 
This implies again that det(C) = 0 mod 2. We conclude that 02 = /¿2-

Since ord(A) = ord(det(5)) + 2 = /11 + /i2 + /¿3 + 2, it follows from Lemma 1.3.(a) 
that as < /¿3 + 2. To show that 03 = //3 + 2 it suffices to find a basis cp such that 
( / / 1 , /¿2, M3 + 2) G S(cp). We now construct such a basis. 
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Our assumptions imply that /13 is congruent to \i\ or fi2 (modulo 2). We suppose 
that /13 = ii\ mod 2. (The case ¡13 = fi2 mod 2 is similar.) Write \i2 = /¿1 + 27 + 1 
and /¿3 = /ii + 2A. We distinguish two cases: 

— ui + ii3 = 0 mod 4, 

— ?/] + 113 = 2 mod 4. 

In the first case define 

c = 
1 
0 
0 

0 

1 
0 

2A 
0 
1 

With respect to the new basis we have Q(x) = 6ix2^62X2+2A+16i£i£3 + (&3+22A6i)x2;. 
In the second case we define 

C = 

1 
0 
0 

0 
1 
0 

2A 
2 A - 7 

1 

With respect to the new basis we have Q(x) = 6i£2^&2X2 + 2A+16i£i£3 + (&3 + 22A6i + 
22(A~^)fr2)x2 + 2x~1+1b2x2X3. It is easy to check that the basis (p corresponding to C 
satisfies (1.2) for a\ = / 1 1 , a2 = \i2 and as = ¡13 + 2. This proves the lemma. • 

The proof of Lemmas 4.4, 4.5 and 4.6 follows the same pattern as the proof of 
Lemma 4.3. 

Lemma 4.4. — Suppose that Q is diagonalizable, /¿1 = \i2 mod 2 and ¡13 < /¿2 + 1. 

Then (ai, a2, a3) = (/¿1, /¿2 + 1, /¿3 + 1)-

Proof. — Since ai — 111 and ord(A) = /ii + /i2 + /-¿3 + 2 it follows from Lemma 1.3 
that a\ + 2a2 < «i + «2 + «3 < /¿1 + /-¿2 + M3 + 2 < Mi + 2/z2 + 3. This implies that 
«2 < M2 + 1. 

We now construct a basis cp such that (¿¿1, /¿2 + 1, /¿3 + 1) £ ^ (<£>)• The lemma follows 
from this. Let C be the corresponding change of basis matrix. Write \i2 = ¡11 + 27. 

If /¿2 = /i3 define 

C = 

1 
0 
0 

27 

1 
0 

27 

0 
1 

With respect to the new basis we have Q(x) = b\x\ + (2276i + b2)x\ + 27+16i(xix2 + 

X1X3) + (b3 + 22^!)x2 + 21+2761x2x3. 
If 113 — a2 + 1 and i/i + ^2 = 2 mod 4 define 

C = 

1 
0 
0 

27 

1 
0 

27 

1 
1 

With respect to the new basis we have Q(x) = bix\ + (b2 + 2276i)^2 + 27+16i(xix2 + 
X3) + (63 + 2276i + b2)xl + (227+16i + 262)x2x3. 
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If a3 = iii + 1 and u\ + U2 = 0 mod 4 define 

C = 
1 
0 
0 

27 
1 
1 

27 
1 
2 

With respect to the new basis we have Q(x) = bixl-\-(22lbi+b2-\-b3)x2-\-21+1bi(xix2Jr 
X!X3) + (463 + 22^h + b2)x2 + (227+16i + 262 + 4b3)x2x3-

In each of these cases one checks that (/¿1, /¿2 + 1, /¿3 + 1) £ S((f). • 

Lemma 4.5. — Suppose that Q is diagonal, \i\ = /¿2 mod 2 and u\ + U2 = 2 mod 4. 

Then (ai,a2,a3) = (MI ,M2 + 1 ,M3 + ! ) • 

Proof. — By Lemma 4.4 we may assume that /¿3 > ¡12 +2. We claim that a 2 < M2 + 1-
Suppose that a2 > [i2-\-2. As before, we suppose that cp is an optimal basis. As before, 
we write C = (cij) for the change of basis matrix and D — ClBC = (dij) for the 
matrix corresponding to the new basis. Write /¿2 = /¿1 + 27. 

The assumption a 2 > M2 + 2 implies that ord(d22) > a 2 > M2 + 2 and ord(d33) > 
a3 > a2 > [12 + 2. It follows from (4.3) that ord(ci2) > 7 and ord(ci3) > 7. Suppose 
that ord(ci2) = 7. Then ord(c22) = 1 and d22 = 2^(m + u2) ^ 0 mod2^2+2. This 
gives a contradiction. Similarly, we obtain a contradiction if ord(ci3) = 7. Therefore 
ord(cij) > 7 for j = 2,3 and ¿¿22 = ¿22^2 mod2M2+2. Since ord(d22) > M2 + 2 and 
ord(^2) = /¿25 we conclude that ord(c22) > 0. Similarly, d33 = c23&2 mod2M2+2; this 
implies that ord(c23) > 0. But then det(C) = 0 m o d 2 . This gives a contradiction. 
We conclude that 02 < M2 + 1-

To prove the lemma, we construct a basis cp such that (/¿1, /¿2 + 1, /¿3 + 1) £ S (<£>)• 
We distinguish two subcases: 

- /¿3 = Mi mod 2, 
— /x3 ^ //! mod 2. 

Suppose that /¿3 = /¿1 mod 2. Write M2 = Mi + 27 and M3 = Mi + 2A. Let be the 
basis of L corresponding to the change of basis matrix 

C = 
1 27 2A 
0 1 0 
0 0 1 

With respect to the new basis we have Q(x) — b\x\ + (227&i + b2)x2 + 21+1b\X\X2 + 
2x+1b1x1x3 + (63 + 22Xb1)x2 + 27+A+16ix2X3. 

Suppose that fi3 ^ /¿1 mod 2. Write ¡12 — Mi + 27 and /23 = /¿1 + 2A + 1. Let cp be 
the basis of L corresponding to the change of basis matrix 

C = 

1 
0 
0 

27 
1 

0 

2A 
2 A - 7 

1 
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With respect to the new basis we have Q(x) = b\x\ + {22lb\ + b2)x\ + 2lJrlb\Xix2 + 

2x+lblxlx?) + (63 + 22A6i + 22(A-^62)a:3 + (27+A+16i + 2A-7+162)x2X3. 
In each of these cases one checks that ( /¿1, /¿2 + 1, M3 + 1) G S(e). • 

Lemma 4.6. — Suppose that Q is diagonal, \i\ = \i2 mod 2, M3 > M2 + 2 andu\JrU2 '-
0 m o d 4 . Then (a i ,a2 ,a3) = (mi,M2 + 2,//3). 

Proof. — Write /¿2 = Mi + 27. We already know that ai = Mi- We claim that 
&2 < /¿2 + 2. Suppose <22 > /¿2 + 3. The same reasoning as in the beginning of the 
proof of Lemma 4.4 shows that we may assume that /¿3 > ¡12 + 4. If C22 = C23 = 0 
mod 2, we conclude as in the proof of Lemma 4.5 that det(C) = 0 mod 2. This gives 
a contradiction, hence either C22 or C23 is a unit. 

Suppose that C22 is a unit. (The argument in the case that C23 is a unit is similar, 
and we omit it.) Then ord(ci2) = 7. One computes that 

(4.4) d\2 = 2ci2cn6i + 2c2ic22^2 mod2^2+3. 

It follows from (1.2) that 2ord(di2) > a\ + 02 > Mi + M2 + 3 = 2/xi + 2 7 + 3. Hence 

(4.5) ord(di2) > Mi + 7 + 2. 

Recall that Lemma 1.3.(b) implies that ord(dn) = a\. 
First suppose that /¿1 < /¿2, that is 7 ^ 0. Since d\\ has valuation ai, c\\ is a unit. 

It follows from (4.4) that ord(di2) = Mi + 7 + 1- This contradicts (4.5). 
Now suppose that \i\ = M2- Since d\\ = c\2b\ + c l i ^ m o d 2 m + 1 . Since d\\ has 

valuation a\ = Mi, it follows that either 

(i) C12 = 1 mod 2 and c2i = 0 mod 2, or 
(ii) c\2 = 0 mod 2 and c2i = 1 mod 2. 

Since ord(di2) > Mi + 2, it follows from (4.4) that (i) holds and that en = 0 mod 2. 
One computes that 

d23 = 2ci2ci36i + 2c22c23^2 = 2ci36i + 2c23b2 mod2Ml+2, 

since C12 and C22 are units. It follows that C13 = C23 mod 2. But this implies tha 
det(C) = 0 mod 2. (In case u\ +1/2 = 4 mod 8 one could alternatively argue as in th 
proof of Lemma 4.5.) 

Let <p be the basis of L corresponding to the change of basis matrix 

C = 

1 
0 
0 

2 7 

1 

0 

0 
0 
1 

Then &22(y>) = 0 mod2/i2+2. With respect to the new basis we have Q(x) = b\x\ + 
(2276i + b2)xl + 2^1b1x1x2 + 63^3- Therefore (mi,M2 + 1,M3) G S((p). This proves 
the lemma. • 
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The following proposition is an immediate consequence of the computation of the 
invariants â . It illustrates that the ai satisfy similar properties for £ = 2 and £ ^ 2, 
which is not so clear from the definition. 

Proposition 4.7. — Let Q be a ternary quadratic form over 7L£ for £ > 2. Then 

ord(A) = a\ + a2 + a3. 

Proof. — For £ ^ 2 this is Proposition 2.6.(b). For £ = 2 the theorem follows from 
the Propositions 4.1 and 4.2. • 

In the rest of this section we define the Gross-Keating invariant e for £ — 2 and 
show that it is well defined (compare to Lemma 2.8). 

Definition 4.8'. — Suppose that a\ = a2 mod 2 and a3 > a2. Let cp be an optimal 
basis. We define e = e((p) by e = 1 if the subspace of L <g)%2 Q2 spanned by cpi and cp2 
is isotropic, and e = — 1, otherwise. 

Proposition 4.9. — Suppose that a\ = a2 mod 2 and a3 > a2. 

(a) The invariant e does not depend on the choice of the basis. 
(b) (i) / / Q is not diagonalizable we may write Q(x) = u\2^xx\ + 2il'2(yx\ + 

x2x3 + vx\) with v G { 0 , 1 } and /ii > /i2. In this case 

e = ( - l ) » . 

(ii) 7/Q 2s diagonalizable we may write Q(x) = u\l^xx\ + n22M2x2 + w32M3x3 
with  ¿l + n2 = 0 mod 4, /ii = ji2 mod 2 and /¿3 > fi2 + 2. IFe Zia^e £/ia£ 

e = (_i)(ui+u2)/4> 

Proof. — The fact that one of the two cases of (b) holds follows immediately from 
Propositions 4.1 and 4.2. 

Suppose that Q is not diagonalizable. Write Q(x) — u\2^x\ + 2M2(ra2 + x2x3 -f 
vx\), as in the statement of the proposition, and let ift be the corresponding ba-
sis. Write Q2 for the restriction of Q to the sublattice spanned by the basis vectors 
^2,^3. Lemma 3.2 implies that Q2 is isotropic if and only v = 0. This implies 
that e(V0 = (-l)v. 

We now show that e is well defined in this case. It suffices to show that e(cp) = 
e(t/)) for optimal bases cp and tp with respect to which Q is in a normal form as 
in Proposition 3.3. By assumption, Q is not diagonalizable. (In fact, it follows 
from Proposition 4.2 that no quadratic form Q(x) = u\2^xx\ + 2^[vx\ + x2x3 -f 
vx\) with v G { 0 , 1 } and fii > /i2 is diagonalizable. Hence we could have dropped 
this assumption from the statement of the proposition.) Write Q'(x) = u'l2^ilx\ + 
2^2[v'x\ + x2xs + Î /X3) for Q expressed with respect to the basis ip. Since A(Q) = 
A(Q') we have that u\(4v2 — 1) = i^/1(4(i;/)2 — 1), therefore v = vf implies that u\ = u[. 
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Hence, to show that e(cp) = e(/0), it suffices to show that v = v . We assume that 
v — 1 and v' = 0, and derive a contradiction. 

The basis vector (p2 is isotropic. Write <p2 = ciVa + c2ip2 + ^ 3 ^ 3 . The fact that 
Q((f2) — 0 implies that \i\ = \i2 mod2. Moreover, it follows that ord(cj) > (/¿1 — 

[i2)j2 > 0 for j = 2 ,3 . Since (f2 is primitive, it follows that c\ = 1 mod 2. An easy 
computation shows that ord (<p2, ipi) > /i2 for i = 1, 2, 3. In particular ord (ip2, (fs) > 

/¿2- But this contradicts the assumption that ord (ip2, (ps) = \i2. 

Next we assume that Q is diagonalizable, and let Q(x) be as in the statement 
of (b.ii). Write i/> for the corresponding basis of L. Let Q2 be the restriction of 
Q to the subspace spanned by ipi,ip2. Then Q2 is isotropic if and only if — det(Q) 
is a square ([S, Theorem IV.6]). It is easy to see that this happens if and only if 
ui + u2 = 0 mod 8. 

We now show that e is independent of the choice of the optimal basis in this case. 
Let (p be an optimal basis. Let C — (c^) be the corresponding change of basis matrix 
expressing cp in terms of w Write \i\ = \i2 + 27. 

We suppose that \i2 > / ¿1 , that is 7 > 0. (The case \i\ = \i2 is analogous and left to 
the reader.) We use the notation of the proof of Lemma 4.6. In particular, we write 
Q(x) — J2i<j dijXiXj for the representation of Q in terms of the basis cp. 

We showed in the proof of Lemma 4.6 that either c22 or C23 is a unit. Suppose 
that C22 = 0 mod2 and C23 = 1 mod 2. It follows that ord(^33) > as — /13 > \i2 + 3. 

Therefore (4.3) implies that ord(ci3) = 7. We showed in the proof of Lemma 4.6 

that en is a unit. Since d\s = 2c\\C\sb\ + 2c2ic2362 mod2M3+1, we conclude that 
2ord(<ii3) = 2 + 27 + 2/ii = + /JL2 + 2. (Here we use that 7 > 0.) But this 
contradicts 2 o r d ( d i 3 ) > a\ + as = /¿1 + M3 ^ Mi + M2 + 3. We conclude that C22 is a 
unit. Recall from the proof of Lemma 4.6 that this implies that c\2 = 1 mod 2 and 
C21 = 0 mod 2. Therefore the determinant of the submatrix 

C = 
en 

C21 

C12 
C22 

of C is a unit. We may define 

D = 
c-1 

0 

0 

1 

With respect to the basis corresponding to CD, the quadratic form Q becomes Q(x) = 

(61 + 52bs)x\ + (62 + S2bs)xl + 25ib3xix2 + x3(other terms), for certain ¿1,^2 £ ^ 2 -

Since ord(63) > ord(62) + 3 this implies that the subspace spanned by ipi and ip2 is 

isotropic if and only if the space spanned by 0i and ijj2 is isotropic. • 

5. Anisotropic quadratic forms 

The goal is to classify all anisotropic ternary quadratic forms over Z2, starting from 

the normal form of Proposition 3.3. We will see that for anisotropic forms we may 
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choose an optimal basis cp so that ord(Q(^)) = ai similar to what we had for £ ^ 2 
(Corollary 5.8). 

Proposition 5.1. — Let Q be a ternary quadratic form over Q£. Write Q(x) = b\x\ + 
62X2 + 6 3 X 3 . We denote by det(Q) = b\b2b3 the determinant of Q. Then Q is isotropic 
if and only if 

( - L , - D E T ( Q ) ) = 
i<j 

(bi,bj). 

Here (•, •) denotes the Hilbert symbol. 

Proof. — This is [S, Theorem IV.6.ii]. • 

Proposition 5.2. — Let Q be a ternary quadratic form over Z2 which is not diagonal-
izable. Let tp be an optimal basis such that Q(x) = u\2^x\ + 2^2(vx2 + x2x3 + vx\) 
with v G { 0 , 1 } . Then Q is isotropic if and only if v = 0 or \i\ = ji2 mod2. 

Proof. — If v = 0 then Q is obviously isotropic. Therefore suppose that v = 1. To 
decide whether Q is isotropic, we may consider Q as quadratic form over Q2. We have 
Q(x) ^Q2 u\2ilxx\ + 2M2(x2 + 3x2). The proposition follows from Proposition 5.1 by 
direct verification using the formula for the Hilbert symbol [S, Theorem 111.1]. • 

Lemma 5.3. — Let Q be a ternary quadratic form over Z£. We do not assume that 
£ = 2. Suppose that a\ = a2 = 03 mod 2. Then Q is isotropic. 

Proof. — If Q is not diagonalizable then the lemma follows from Proposition 5.2, 

since (ai, 0,2,0-3) e {( / i i , / i2 , / i2) , (M2,M2,Mi)}-
Suppose that Q is diagonalizable. Write Q(x) = ui£^x\ + u2£^2x\ + u^3x\. If 

£ 7̂  2 we have that \±i — a{ hence ¡11 = \i2 = ¡13 mod 2. To show that Q is isotropic, 
it suffices to consider Q over Q£. After multiplying the basis vectors by a suitable 
constant, we may assume that /¿1 = /¿2 = Ma = 0- The lemma now follows immediately 
from Proposition 5.1, since the Hilbert symbol is trivial on units for £ 7̂  2. 

Suppose that £ = 2 and Q is diagonalizable. Proposition 4.2 implies that \i\ = 
/¿2 = M3 mod 2 and u\ + U2 = 0 mod 4. As for £ ^ 2, it is no restriction to suppose 
that Q(x) — u\x\JrU2x\ + U3x\. One computes that this quadratic form is anisotropic 
if and only if u\ = U2 = U3 mod 4. Hence in our case Q is isotropic. • 

For future reference we record from the proof of Lemma 5.3 when a diagonal ternary 
form over Z2 is anisotropic. 

Lemma 5.4. — Let Q(x) = u\2llxx\ + U22^x\ + U32Pj?>X\ be a diagonal, ternary 
quadratic form over Z2. Suppose that ji\ = fi2 = ¡13 mod 2. Then Q is anisotropic if 
and only if u\ = u2 = U3 mod4. 
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Lemma 5.5. — Let Q(x) = u\2^xx\ + u22^x\ + u32^3x2 be a diagonal, ternary 

quadratic form over Z2. Suppose that pi = ¿¿2 mod 2 and ps ^ /ii mod 2. 

(a) Suppose that u\ = u2 = us mod 4. Then Q is anisotropic if and only ifu2 = ± ^ 1 
mod 8. 

(b) Suppose that the u% are not all equivalent modulo 4. Then Q is anisotropic if 

and only if u2 = ± 3 ^ i mod 8. 

Proof — The proof is similar to the proof of Lemma 5.3 and is left to the reader. • 

Notation 5.6. — Let Q be a ternary quadratic form with Gross-Keating invariants 
(ai, a2, as). For every l<i<j<3we define 

oi= ai + aj 
2 

where \a] is the smallest integer greater than or equal to a. 

Theorem 5.7. — Let Q(x) — u\l^xx\ Jru22ll'2x\ + US2Pj3X\ be a diagonal anisotropic 
quadratic form over Z2 with p\ < \i2 < /¿3. Then one of the following cases occurs. 

(a) Suppose p\ = /13 ^ p2 mod2 and u\ = 3n3mod8. Then (a\,a2las) = 
(/ii,/i2,/i3 + 2) and a\ ^ a2 mod2. There exists an optimal basis with respect 
to which 

Q(x) = 2aiu1x21 + 2a2u2xl + 2ôl3u1x1x3 + 2a3mxl. 

(b) Suppose pi = ps p2 mod2 and ni = W3 mod4. Then (a\,a2las) = 
(/ii,/i2,/i3 + 2) and ai ^ a2 mod 2. Moreover, u2 = u\ mod4 if us = u\ mod 8 
and u2 = —u\ mod 4 if us = hu\ mod 8. There exists an optimal basis with 
respect to which 

Q(x) = 2aiu1x{ + 2a2u2xl + 2ôl3u1x1x3 + 2Ô23u2x2x3 + 2a3u1vxj. 

Here v = (u\ -\-u2)/2 if u2 =  ¿l mod4 and v = (3ui + ^ / 2 if u2 = —ai mod 4. 
(c) Suppose pi ^ /i2 = /13 mod2. TTzen (a i ,a2 ,a3) = (pi,p2lps + 2) and a2 ^ ai 

mod 2. Tfte quadratic form with respect to an optimal basis is as in (a) and (b) 

with the role of x\ and x2 reversed. 

(d) Suppose pi = p2 mod2 and p2 = ps- Then (a\,a2las) — {p>i,p>2 + 1 ,^3 + 1) 
and a\ ^ a2 mod 2. Moreover, u\ = u2 = us mod4. There exists an optimal 

basis with respect to which 

Q(x) = 2aiUlxl + 2a2v2x\ + 26l3u1(x1x2 + £1X3) + 2b23uxx2xs + 2 a ^ 3 ^ . 

Here ^ = (ul + i^)/2 for i — 2, 3. 
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(e) Suppose fii = /12 mod2; /¿3 = /¿2 + 1 and u\ = u2 mod4. Then (01,02,03) = 

(¡11,112 + 1,M3 + 1) and <22 ^ ai mod 2. Moreover, U2 = ^ 1 mod 8 i/ u3 = ni 
mod4 and U2 = 5i£i mod 8 2 / ^ 3 = —ni mod4. There exists an optimal basis 
with respect to which 

Q(x) = 2aiU!xl + 2a2v2xl + 2ôl3u1(x1x2 + £1X3) + 2Ô23v2X2X3 + 2a3i;3x^. 

Here V2 = (ni + 162)/2 and ^3 = (i£i + 1*3)/2 (Vesp. (3 ¿l + t/3)/2,) depending on 
whether u3 = U\ mod 4 or not. 

(f) Suppose /ii = /¿2 mod2; /i3 = /¿2 + 1 and ul = —^2 mod4. T/ien ( 0 1 , 0 2 , 0 3 ) — 
(/ii, /¿2 + 1, /¿3 + 1) and oi = 02 mod2. Moreover, U2 = 3ni mod8. There exists 
an optimal basis with respect to which 

Q(x) = 2aiulx\ + 2a2v2^ + 25l3ni(xix2 + xix3) + 2623v23x2x3 + 2a3v3x23. 

Here v2 = (^i + u2 + 2u3)/2, v23 = (ui Jru2Jr 4^3)/2 and v3 = ^ 1 + 2n3. 
(g) Suppose /ii = /12 = /¿3 mod2 and ni = ^2 mod4 and fi3 > /12 + 2. Then 

(oi, 02, 03) = (/ii, /i2 + 1, /i3 + 1) and a2 ^ ai mod2. Moreover, u3 = u\ mod4. 
There exists an optimal basis with respect to which 

Q(x) = 2aiu1x\ + 2a2i;2x^ + 2<5l2mxix2 + 2(5l3i/iXix3 + 2Ô23uix2x3 + 2 a 3 ^ 3 -

Here Vi = (u\ + ui)/2 for i = 2,3. 
(h) Suppose fix = /12 ^ /¿3 mod 2 and iti = U2 mod4 and /i3 > ¿¿2 + 2. Then 

(01 , 02, 03) = (/ii, /¿2 -f- 1, /i3 + 1) and 02 ^ ai mod 2. One of the following two 
cases holds: 

u2 = ni mod 8 and 7/3 = u,\ mod 4, 
u2 = 5ni mod 8 and 03 = — u\ mod 4. 

There exists an optimal basis with respect to which 

Q(x) = 2aiuix\ + 2a2v2xl + 2Sl2u1x1x2 + 26l3u1x1x3 + 2(523v2^2^3 + 2a3v3z§. 

Here V2 = ( ^ 1 + ^ 2 ) / 2 and v3 = ^ 1 + ^ 3 ) / 2 (Vesp. ^3 = ( 3 ^ 1 + ^ 3 ) 7 2 ^ depending 
on whether u\ = u3 mod 4 or not. 

(i) Suppose /ii = /12 ^ fi3 mod2; /i3 > ¡12 + 2 and -02 = 3ÜI mod8. T/ien 
( 0 1 , 0 2 , 0 3 ) — (/ii,/i2 + 2 , / i3) and oi = 02 mod2. There exists an optimal basis 
with respect to which 

Q(x) = 2aiulx\ + 2 a 2 ^ 2 ^ + 2<5l2i/ixix2 + 2a3n3x^. 

Here V2 = (u\ +  ¿2)/2. 

Proof. — This follows from the results of Section 4 together with the Lemmas 5.4, 
5.5. • 

Corollary 5.8. — Suppose that Q is anisotropic. Then there exists an optimal basis cp 

such that 

OYd(bii(cp)) = a% 
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fori = 1,2,3. 

Proof — This follows immediately from Theorem 5.7 (diagonal case) and Proposi-
tion 5.2 (non-diagonal case). • 

In Section 6, we give a more conceptual proof of Corollary 5.8. In fact, we prove 
that any optimal basis has the property in Corollary 5.8. The following lemma gives 
a list of the small cases. 

Lemma 5.9. — Let Q be an anisotropic ternary quadratic form over Z2 and suppose 
that as < 1. Then one of the following possibilities occurs. 

(a) We have (ai, «22,^3) = (0,0,1) . In this case Q is not diagonalizable; it is of the 
form 

Q(x) = x\ + x\x2 + x\ + u32x\. 

(b) We have (a i ,a2 ,a3) — (0,1,1) and Q is not diagonalizable. Then Q is of the 
form 

Q[x) = u\x\ + 2{x\ + x2x3 + x2). 

(cj We have {a\, a2, as) — (U, 1 , 1 ) and Q is diagonalizable. 1 hen Q is as in 1 heorem 

5.7. (d) with a\ = ¿13 = 0 and a2 = as = #23 = 1. 

6. Alternative version of the Gross—Keating invariants for anisotropic 
forms 

We fix an arbitrary prime number £ and a free quadratic module (L, Q) over 
of rank n. We assume that (L,Q) is anisotropic, i.e., that Q(I/J) = 0 implies 0 = 
0. Under this assumption, there is an alternative definition of the Gross-Keating 
invariants and a very useful characterization of optimal bases; see the remark at 
the end of section 4 in [GK]. In this section we do not suppose that n = 3 to 
streamline some arguments. Recall that n > 5 implies that (L,Q) is isotropic ([S, 
Theorem IV.6]). Therefore the only additional case is anisotropic quadratic forms in 
four variables. 

We define a function v : L — > Z U { o o } b y the rule 

v(ïp) := ord^Q^) . 

For ijj G L and x G Zp we have 

(6 .1) v(xip) = 2 ord^(x) + V(I/J). 

Lemma 6.1. — The function v satisfies the triangle inequality 

(6.2) V(I/J + w ^ min(v(^), v^1)). 

Moreover, if the inequality in (6.2) is strict we have v(ijj) = v(ip'). 
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Proof. — If tp and tp' are linearly dependent the claim is obvious. We may hence 
assume that they are linearly independent. For x,y £ 7L£ we write 

Q(xtp + yip') — ax2 + y2b + cxy. 

Suppose that v(ip + ip') < v(tp),v(tp'). Then ord^(a + b + c) < ord^(a), ord^(6). The 
usual triangle inequality for ord^ implies 

ord^(c) = ord^(a + b + c) < ord^(a), ord£(6). 

Lemma 3.2.(b) implies that (L,Q) is isotropic. This and proves (6.2). The second 
assertion of the lemma follows from (6.2), applied to a suitable combination of the 
vectors ±tp, ±tp' and tp + tp'. • 

Remark 6.2. — If n < 3, one gets an alternative proof of Lemma 6.1 by noting that 
(L, Q) is represented by the quaternion division algebra D over Q^, equipped with its 
norm form. The function v is then the restriction of the standard valuation of D. 

Let tp = (ipi) be a basis of L. For i = 1 , . . . , n, let L^-i C L be the subspace (of 
rank i — 1) spanned by ip\,..., ^ ¿ - 1 - We define a function V{ : L/Li-i —» Z > o U { o o } 
bv the rule 

^(^ + Li-x) := max(v('0/)|^/ £ tp + L*_i). 

Note that Vi(tp) = oo if and only of tp £ L^-i-

Definition 6.3. — A basis tp = (tpi) of L is called ideal, if 

v(wsi)= ^(^ + Li-i) = min(^('0 + Li-i)) 
ipeL 

holds for z = 1 , . . . , n. 

It is clear that there exists an ideal basis of L. The next lemma gives a usefu 
characterization of an ideal basis. 

Lemma 6.4. — A basis tp = (tpi) of L is ideal if and only if 

(6.3) v(tpi) < v(tpj) for i < j , 

and for all (xi) £ ZJ? we have 

(6.4) v 
i 

Xi*Pi) = min v{Xitpi) 

Proof. — Let tp — (ipi) be a basis of L. If (6.3) and (6.4) hold, then one easily checks 
from Definition 6.3 that tp is ideal. 

Conversely, suppose that tp is ideal. The inequality (6.3) follows directly from 
Definition 6.3. It remains to prove (6.4). Fix (xi) £ Z™ and k with 1 < k < n. Set 

ek:= i<k xitpi. We claim that 

(6.5) v(cpk + xktpk) = mm(v(ipk), v(xktpk)). 

From this claim, (6.4) follows by induction. 
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For k = 1, the claim is obvious. To prove it for k > 1 we may assume that it holds 
for k' = k — 1. Also, by the triangle inequality (6.2), the left hand side of (6.5) is 
greater than or equal to the right hand side. Suppose that the left hand side is strictly 
greater than the right hand side. Then we have v(<pk) — v(xkipk)- Using (6.1), (6.3) 
and the claim for k' = k — 1, we find that ordp(xk) < ord^(x^) for all i < k. After 
dividing by Xk, we may therefore assume that Xk = 1- However, by the definition of 
an ideal basis we have 

v'(ek)= v(wk)>v(ek+wk) 
This contradicts our assumption and proves the claim. 

Let us fix an ideal basis ij) — (ipi,..., ipn) of L, and set 

a2 := vtyi), i = 1,... , n . 

We want to show that the ai are the Gross-Keating invariants of (L,Q). We first 
check that (a^) lies in the set S (Section 1). For this we write the quadratic form Q 
as follows: 

q 
i 

xiwi) 
i .1 

bii X^X j . 

We set ciij := ord^fr^). Note that ai = an. 

Proposition 6.5. — For l<i<j<nwe have 

o>ij > 
Oi + Oj 

2 

Proof. — The case i = j being trivial, we may assume that i < j . Our proof is by 
contradiction. First we assume that 2a^ + 1 < + aj. We set c := max(a^ — ai + 1 , 0) 
and look at the right hand side of 

Q(lcwi+wj) = viil2c +bjj+bijlc. 

The three terms of this sum have £-valuation ai + 2c, aj and aij + c, respectively. B> 

aij + c < min(a^ + 2c, a?). 

It follows that 

v[£c^)l + i/jj) = ai3 + c < min(v(£cilJi), v(i/jj)). 

This contradicts the triangle inequality and excludes the case 2a^ + 1 < + aj. 
It remains to exclude the case 2a -̂ + 1 = ai + a3. Since < aj we have c := 

O'ij — cii > 0. Let x £ Zf be a ^-adic unit. Then 

(6.6) Q(£cxipi + ^ - ) = bu£2cx2 + 6ij + fr^x. 

By our choice of c we have 

at + 2c = a7 — 1 = a^- + c. 
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We see that on the right hand side of (6.6), the first and the last term have the 
minimal valuation a3- — 1, while the middle term has valuation a3. Therefore, for an 
appropriate choice of x, we get 

v(£cxïpi + tpj) > dj > min(v (£cxtpi), v(tp3)). 

But this contradicts Lemma 6.4, (6.4). The proposition follows. • 

Proposition 6.6. — An ideal basis is also optimal (Definition 1.2). Moreover, if tp — 

(tpi) is an ideal basis of L, then (ai := v(tpi)) are the Gross Keating invariants 

of(L,Q). 

Proof. — The previous proposition says that (ai) is an element of S. It remains to 
show that (ai) is a maximal element, with respect to the lexicographical ordering. 

Let tp' = (tp[) be an arbitrary basis of L, and let (a[) be an element of S(tp') 
(Section 1). We will show that a'k < ak for k — 1, . . . , n, which proves the proposition. 
Write 

wi= 
3 

%ij ̂ Pj i with (xij) G GLN(Z£). 

The condition (a'-) G S(tp') together with Lemma 6.4 shows that 

(6.7) a[ <v(tp[) = min((2j + 2ovà£(xij)). 
j 

Using that (x^) is invertible, one shows that there exists at least one pair of indices 
(ij) with k < i and j < k such that x^ is a unit. Applying (6.7) and (6.3) we get 

Q>'k — ai — aj — ak-

This is what we had to prove. • 

Corollary 6.7. — Let tp = (tpi) be an ideal basis of L and (yi) G Qnl with yz ^ 0. Set 
tp' := (tp'i), where tp[ := yitpi G L ®z£ Qi, and let L' denote the 7L£-lattice spanned 
by tp'. Let (ai) be the Gross-Keating invariants of L. 

(a) The basis tp' of L' is ideal. 
(b) The Gross-Keating invariants of L' are the numbers 

a[ := al + 2ord^(?/2), 

in some order. 

Proof. — Choose an integer r such that £ry% G Z^, for all i. For (x^) G Z ^ , Lemma 6.4 
shows that 

v 
i 

XitpA = v 
i 

^rxxyttpi \ - 2r 

= min [v(£rXiyitpi)) - 2r 

= min v(xitp[)). 
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Again by Lemma 6.4 we conclude that tp (in some order) is an ideal basis of V. This 
proves (a). Part (a) of the corollary follows now from the previous proposition. • 

Remark 6.8. — Corollary 6.7 (a) is false without the assumption that (L, Q) is 
anisotropic. Consider, for instance, the (isotropic) quadratic form Q(x) = x\ — x\+/±x\ 
over Z 2 . Dividing the last vector of the standard basis by 2 we obtain the quadratic 
form Qf(x) =x21- x22+ x23 According to Proposition 4.2(b), the Gross-Keating 
invariants of Q are (0, 2, 2), while the invariants of Qr are (0,1,1). 

Proposition 6.9. — Let (L,Q) be an anisotropic free quadratic module over Z^. Then 
every optimal basis is an ideal basis. 

The proof of this proposition uses the following lemma. 

Lemma 6.10. — Let ( a i , . . . , an) be the Gross Keating invariants of (L, Q), and let ip 
be an optimal basis. Then v(ijji) = ax. 

Proof. — Let \j) be an optimal basis and suppose that v(t/ji) > az, for some i. It 
follows from the definition of the Gross-Keating invariants (Definition 1.2) that there 
exists a j ^ i such that 

ord(bij) = (ai + aj)/2. 

In particular, we have that a% = a3- mod 2. Lemma 5.3 implies therefore that a^ ^ 
Oi mod 2 for all k 7̂  i,j, since (L,Q) is anisotropic. (The case that n = 4 easily 
reduces to the case that n = 3 by using the existence of an ideal basis.) 

Consider the restriction Q\ of Q to L\ = (ipi, ipj). We distinguish three cases. First 
suppose that ai = a3. Then (L\,Q\) is isotropic by Lemma 3.2.(b). 

Next we suppose that ai < aj. Then i < j . We have already seen that a^ ^ 
ai mod 2 for all k ^ i,j. Renumbering the indices, if necessary, we may assume that 
ai < a^+i and aj-i < aj- Define (ai) by di = ai + 1 and a3 = aj — 1, and dk = a^ for 
all k ^ i,j. Then (dk) G S(ip). This contradicts the definition of the Gross Keating 
invariants. 

Finally, we suppose that a% > aj. Then i > j . If v(ijjj) > aj, we interchange i 
and j and obtain a contradiction by the previous case. Therefore v(t[)j) = a3. Since 
ah = a3 mod 2, Lemma 3.2.(b) implies that L\ is isotropic. This gives a contradiction. 
We conclude that v(ipi) = ai for all i. • 

Proof of Proposition 6.9. — Let i\) be an optimal basis which is not ideal. Lemma 6.10 
implies that v(ipi) = ai for all i. Let k be minimal such that there exists a 
if = Yli=i xir[lJi G L with v((f) 7̂  mmi(xii/jt). Lemma 6.4 implies that k exists. It 
follows from the triangle inequality that v(ip) > min^(x^). Write (p = Yl^i xi1JJi' 

The choice of k implies that v((p) = mm^k v(xi^i). Since v(ip) = v((p + Xk^k)-> we 
conclude from Lemma 6.1 that v((p) = vixh^k)- This implies that 

(6.8) 2ord(xz) + ai > 2ord(xk) + a&. 
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In particular, ord(a^) > ord(xk), for all i. Therefore it is no restriction to assume 
that Xk is a unit. 

We define a new basis cp = Up A by (pz = tpi if i ^ k and cp^ = (p. Write 

Q 
i 

wiei 

i<j 
bijViVj. 

One computes that 

b3k = 
2X 1 b n n —\~ i=j bijXt for j < k, 

'i b%jX{ for j > k. 

Equation (6.8) implies that ord(bjk) > (a3 + ak)/2. Therefore cp is again an opti-
mal basis. But v(cpk) = v(cp) > min^ v(xiipi) = v(xkipk) = o>k- This contradicts 
Lemma 6.10. • 

Lemma 6.11. — Let M c L be a sublattice, i.e., a sub-TLa-module of rank n. Let 
6 i , . . . , bn be the Gross-Keating invariants of (M, Q\M)- Then b{ > a{. 

Proof. — We choose ideal bases (tpi,..., tpn) for L and (cpi,..., <pn) for M. Then 
ax = v(ipi) and bt — v(cpi). Let us fix an index i G { 1 , . . . , n } and show bi > a{. For 
an element tp = ^ . x3tp3 of L, we set tp' : = ^23<t Xjtpj and tp" := Yl3>i xjtlJ3- Then 
ip = ip' + W/' and v(tb") > a7. Since the vectors ^ , . . . , <z?'- lie in a subspace of rank 
i — 1, there exist X i , . . . , xi G Z^, not all zero, such that '3<i Xjcp'- = 0. Then 

3<i 
Xjipj — 

j<i 
x3ip"3. 

Applying Lemma 6.4 (6.4) to the left hand side and the triangle inequality (6.2) to 
the right hand side, we conclude that 

min(ò? + 2ord^(x?-)) > 
3^ 

mini 
3<i 

v(ip-) +ordi(Xi)) > min (at + 2orde(xj)). 

For the index j for which orde(xj) takes its minimal value we get ai < bj < bi. This 
proves the lemma. • 
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