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13. D E F O R M A T I O N S O F I S O G E N I E S O F F O R M A L G R O U P S 

by 

Michael Rapoport 

Abstract. — Let (f1 , F 2 , F 3 ) : E —»• E' be a triple of isogenies between supersingular 
elliptic curves over Fp. We determine when the locus of deformation of ( f 1 , F 2 , F 3 ) 
inside the universal deformation space of (E, E') is an Artin scheme, and in this case 
we give a formula for its length. These results are due to Gross and Keating. 

Résumé (Déformations d'isogénies de groupes formels). — Soit (F1 , F2, F3) : E —> E' un 
triplet d'isogénies entre des courbes elliptiques supersingulières sur FP. Nous donnons 
un critère pour le lieu de déformation de ( f i , F 2 , F 3 ) dans l'espace de déformations 
universel de (E,E') d'être un schéma artinien, et nous donnons dans ce cas une 
formule pour sa longueur. Ces résultats sont dûs à Gross et Keating. 

Let A and A' be abelian varieties of the same dimension n over Fp. The universal 
deformation space M of the pair A, A' is the formal spectrum of a power series ring in 
2n2 variables over W(Fp). Given an isogeny f : A —» A' one may pose the problem of 
determining the maximal locus inside M, where f can be deformed. More generally, 
given an r-tuple f1,..., fr of isogenies from A to A', one may ask for the maximal 
locus inside M where f 1 , . . . , fr deform. And, one may ask when this maximal locus 
is the spectrum of a local Artin ring, and if so, to give a formula for its length. 

These questions are very difficult and it even seems likely that no systematic an-
swers exist in general. In this chapter we consider the case n = 1, i.e., when A and A' 

are elliptic curves. More precisely, we present the solution due to Gross and Keating 
[GK] to this problem when A and A' are supersingular elliptic curves. Their proof 
is a clever application of results on quasi-canonical liftings and their endomorphisms. 
Unfortunately, some parts of their proof are not so easy to implement in the case 
p = 2, which requires special attention. In fact, I only managed to deal with the case 
p = 2 by making use of the classification of quadratic forms over Z2, comp. [B], and 
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140 M. RAPOPORT 

using a case-by-case analysis. Fortunately, S. Wewers afterwards found a uniform ar-
gument for this part of the proof which makes use of deeper properties of anisotropic 
quadratic forms over Z2. This proof is presented in the next chapter. We decided to 
present both proofs because the more pedestrian approach here gives insight into the 
subtleties of the Gross-Keating invariants in the case p = 2. 

Let us comment on the general problem above in another example, the case of 
ordinary elliptic curves, comp. [Me2]. The case when A and A! are ordinary elliptic 
curves has been known for a long time and is part of the Serre-Tate theory of canonical 
coordinates, comp. [Mes, Appendix]. Let A and A' be ordinary elliptic curves and 
fix isomorphisms 

A[p°°r - Qp/Zp, A ' [ p ° T - QP/ZP, 

which then induce, via the canonical principal polarization, isomorphisms 

A[p°°}0 = Gm, Ä\p°°}° = Gm. 

The isogeny / : A —» Af determines 

(20,21) ^ %l 

where / is given by multiplication by z\ on the et ale part and by multiplication by 
ZQ on the connected part of A(poo) On the other hand, we have 

M = Spf W{Wp)lt,t'i 

(Serre-Tate canonical coordinates). Then setting q — 1 + £, q' — 1 + £', the locus inside 
A4 where / deforms is defined by the equation 

qZl = qZ(\ 

cf. [Mes, Appendix, 3.3], comp, also [Me2, Example 2.3]. On the other hand, it is 
easy to see that, for any r-tuple of isogenies / 1 , . . . , / r : A —» A'', the locus where 
/ 1 , . . . , / r deform is never of finite length, comp. [Go2, proof of Prop. 3.2]. These 
remarks show that already the case n = 1 in the above-mentioned general problem 
defies a uniform solution. 

I wish to thank I. Bouw, U. Görtz, Ch. Kaiser, S. Kudla, S. Wewers and Th. Zink 
for their help in the preparation of this manuscript, and the referee for his remarks. 

1. Statement of the result 

Let E and E' be supersingular elliptic curves over ¥p. Denoting by W the ring of 
Witt vectors of Fp, the ring 

R = w[[tJ}] 
is the universal deformation ring of the pair E,E'. Let E,E; be the universal de-
formation of E,E' over R. Let / i , / 2 , / 3 • E —• E' be a triple of isogenies. The 
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13. DEFORMATIONS OF ISOGENIES OF FORMA L GROUPS 141 

locus inside Spf R to which / 1 , / 2 , / 3 deform is a closed formal subscheme. Let 

I = minimal ideal in R such that / 1 , / 2 , / 3 : E —> E' lift to isogenies E — > E ' (mod I). 

The problem in this chapter is: Determine 

a ( / i , / 2 ) / 3 ) = l g w f i / J 

(in particular, determine when this length is finite). 

This problem reduces to a problem on formal groups, as follows. Let T = E resp. 

V = E' be the formal group over R corresponding to E resp. E'. By the Serre-Tate 

theorem we have 

1 = minimal ideal in R such t h a t / 1 , / 2 , / 3 : E—>& lift to isogenies L—>T' (mod / ) . 

Now E and E' can both be identified with the formal group G of dimension 1 and 

height 2 over ¥p (which is unique up to isomorphism). In this way / 1 , / 2 , / 3 become 

non-zero elements of End(G) = OD- Here D denotes the quaternion division algebra 

over QP. 

On Hom(^,E/) we have the quadratic form induced by the canonical principal 

polarization, 

<?(/) = 7 ° / = deg/ . 

This Z-valued quadratic form is induced by the Z„-valued quadratic form 

Q(x) — x • Lx 

under the inclusion Hom(E, E') C End(G). Here x ^ Lx denotes the main involution 

on D characterized by (reduced trace) 

tr(x) = x + Lx . 

We also write Q(x) = Nm(x) (reduced norm). 

Let L — Zp/i + Zp /2 + ^p/3 be the Zp-submodule of OD, with the quadratic form 
Q obtained by restriction. Then 

/ = minimal ideal in R such that L C Hornby/(T, V). 

Assume that (L, Q) is non-degenerate, i.e., L is of rank 3. Then to (L, Q) are associ-

ated integers 0 < ai < a2 < ^ 3 , the Gross-Keating invariants. Recall ([B, section 2]) 

that if p ^ 2 these invariants are characterized by the fact that in a suitable basis 

ci, 62, e3 of L the matrix T = 1 
2 1 (eiiej))i,j is equal to 

(1.1) T = ciicig(u1pai,U2pa2,u3pa3) with uuu2,u3 e Z*. 

Here (x, y) — Q(x + y) — Q(x) — Q(y) is the bilinear form associated to the quadratic 

form Q. 
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142 M. R A P O P O R T 

Theorem 1.1. — The length of R/I is finite if and only if (L, Q) is non-degenerate. 
In this case, \gwR/I only depends on the Gross-Keating invariants (ai, 0/2,0,3) and 
equals a(Q) where 

a(Q) = 
a i - l 

i=0 
(i + l)(ai + a2 + a3 - 3i)pl + 

( a i + a 2 - 2 ) / 2 

2 = a i 

(ai + l)(2ai + a2 + a3 - Ai)pl 

ai + 1 
2 

> 3 - a2 + l)p(fll+a2)/ , z/ai = a2 (mod 2) 

a(Q) = 
a i - l 

z=0 

?/ ai ^ a2 (mod 2) 

(z + l)(ai + a2 + a3 - 3i)p' + 
( a i + a 2 - l ) / 2 

z = a i 

(ai + l ) ( 2 a i + a 2 + a3-4z)pl , 

Remark 1.2. — Recall from [B, Lemma 5.3] that, since (L,Q) is anisotropic, not all 
ai, a2, <23 have the same parity. Hence the RHS of the formulas above is an integer in 
all cases. 

Remark 1.3. — The formulas above imply that the length of R/I only depends on 
the isomorphism class of the quadratic module L. This can be seen in an a priori way 
as follows. 

First of all, there is an action of (Dx)2 on the universal deformation ring R, given 
by changing the identification of the special fibers of r , r ' with G, G by a pair of 
automorphisms of G. More precisely, an element d G Dx defines a quasi-isogeny 
of G, as the composition Frob-7' o d. Here Frob denotes the Frobenius endomorphism 
and v = v(d) is the valuation of d. Since this is a quasi-isogeny of height 0, it is an 
automorphism of G. Note however, that this is only a semi-linear automorphism, and 
therefore also the induced automorphism by (<ii, ¿¿2) G (Dx)2 on R is only semi-linear. 

It follows that for ((¿1,^2) G (Dx)2 with v(d\) = i;(<i2), the length of the deforma-
tion ring R/I for L = Zp/i + Z p / 2 + Z p / 3 is equal to the length of the deformation ring 
R/I' for L' = Zpf[ + Z p / 2 + ^ / 3 ^ where /2' = difd^1. Hence it suffices to show that 
for any two isometric ternary lattices L and L' in Op, there exists (<ii,<i2) G (Dx)2 
with i>(<ii) = 17(^2) and iv7 = diLd^1. 

Fix a nondegenerate ternary form Q over Zp. We want to show that for any two 
isometries a,a' from Q to OD , there exists (¿¿1,^2) G (Dx)2 as above with Lr = 
diLd^1, where L resp. L; denotes the image of a, resp. a'. By [ W d l , Lemma 1.6], 
we may identify SO(D,Nm) with the group 

{(di,da) e (Dx)2 I Nm(d!) = Nm(d2)}/Qpx. 

By [ W d 2 , 1.3], the group SO(D, Nm) acts simply transitively on the set of isometries 
cr, hence there exists a unique (<ii,<i2) G SO(D,Nm) with a' — dicrd^1. The pair 
(<ii,<i2) has the required properties. 

To start the proof of Theorem 1.1, we first recall the following proposition. 
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13. DEFORMATIONS OF ISOGENIES OF F O R M AL GROUPS 143 

Proposition 1.4. — Let ifj G End(G) be an isogeny, i.e., ip = 0. Let J be the minimal 
ideal in R = W p , £']] such that ip lifts to an isogeny T —» T' (mod J). T/zen £/ie closed 
formal subscheme T of S — Spf R is a relative divisor over Spf W. In other words, 
J is generated by an element which is neither a unit nor divisible by p. 

Proof. — This is the special case of [ W w l , Prop. 5.1], where (in the notation used 
there) K = QP. A different proof that T is a divisor is (at least implicitly) contained 
in [Z, section 2.5]. • 

Let us prove the first statement of Theorem 1.1. If (L,Q) is degenerate, then 
L is generated by two elements. Hence the deformation locus is by Proposition 1.4 
the intersection of two divisors on a regular 3-dimensional formal scheme and there-
fore cannot be of finite length. Now assume that (L, Q) is non-degenerate. Now 
Hom(£', Er) (8) Zp = End(G), so we find isogenies / i , / 2 , / 3 • E —» E' with Zp-span 
equal to L. Let T = Spec VK[[t, £']]/J. Then / i , / 2 , / 3 deform to isogenies from E^ to 
E^. Hence at any point t of T we have rg Hom(E^,Ej) > 2, hence the elliptic curves 
Et and E't are supersingular. Since supersingular points are isolated in the moduli 
scheme, it follows that T is an Artin scheme, as was to be shown. 

From now on we assume that (L, Q) is non-degenerate. Let ipi,ip2, ^ 3 be an optimal 
basis of L. If p ^ 2, this means that the matrix of the bilinear form Q in terms of 
this basis is diagonal as in (1.1). 

Corollary 1.5. — Let % c S be the locus, defined by the ideal Ii in R, where ipi lifts 
to an isogeny T —> T^mod IA. Then 

\gw R/I = (7Ï • T2 • %)s • 

Here on the RHS there appears the intersection product of divisors on a regular 
scheme, defined by the Samuel multiplicity or via the Koszul complex of the equations 
9i of 

X ( ( # l , # 2 , # 3 ) ) = (-iyig(Ht(K.(gi,g2,g3))) 

(comp. [F, Ex. 7.1.2]). 

Proof. — By our non-degeneracy assumption, the gi form a regular sequence in a 
regular local ring. • 

The corollary allows us to apply the intersection calculus of divisors on a regular 
scheme. In particular, the RHS is multilinear in all three entries. 

Theorem 1.1 will be proved by induction on a\ + a2 + 0,3. It will follow from the 
following three propositions. 

Proposition 1.6. — Let a3 < 1. Then 

a(Q) = 
1 a2 = 0 

2 02 = 1. 

Hence Theorem 1.1 holds true in this case. 
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Proposition 1.7. — Let tp% = p • tp3 with tp'3 G End(G). Then 

(Ti • T2 • T3)s = (T, • T2 • T3')s + (Ti • T2 • Sip))s • 

Here % (i = 1, 2, 3) resp. T3 denotes the deformation locus for tpt resp. tp3 and <S(p) = 
S xspf w Spf Fp is the special fiber of S. 

Proposition 1.8. — If a\ = a2(mod 2) then 

(Ti-T2- S(p))s = 
a i — 1 

¿=0 
2{i + l)pl + 

( a i + a 2 - 2 ) / 2 

i = CL\ 

2(ai + i y + (ai + l)p(ai+a2^2 

/ fa i # a2(niod 2) then 

(7i-T2' S(p))s = 

a\ — 1 

2 = 0 

2(2 + l)pl + 

( a i + a 2 - l ) / 2 

i—a\ 

2(ai + i y . 

These propositions indeed imply Theorem 1.1. For this recall ([B, Cor. 5.8]) that 
we can (and do) choose ipz such that v(ips) = as. Here, as elsewhere, we denote 
by v the valuation function on D. Now, if a% > 1, then there exists tp'3 G End(C) 
with ips = vxb'n. 

Lemma 1.9. — Let (tpi, ^2, ip^) be an optimal basis of the lattice L. Let tps = ptp3 
with ip3 G L and denote by U the lattice generated by ipi,ip2,ip3. Then the invariants 
of V are given in terms of the invariants (0 ,1 ,02 ,03) of L by 

( a i , a 2 , a 3 - 2) 

(in some order so that they form a weakly increasing sequence). 

This is obvious for p ^ 2 from the characterization in (1.1). For p = 2, the proof 
is given in the appendix, using the classification of quadratic forms over Z 2 . An 
alternative, more conceptual proof can be found in [B, Cor. 6.7]. 

Using this lemma, the above propositions give an inductive procedure for calculat-
ing (7i 'T2 '%)s- The formula in Theorem 1.1 follows from this calculation. 

We now devote one section each to the proof of these three propositions. For 
Propositions 1.6 and 1.7 the case p — 2 presents additional problems. In order not 
to obscure the argument, the problems arising for p = 2 are relegated to the ap-
pendix to this chapter. In the chapter following this one, a variant of the proofs of 
Propositions 1.6 and 1.7 is given which avoids any case-by-case considerations. 

2. The induction start: Proposition 1.5 

Since not all a% have the same parity, we have a\ — 0. Hence tpi is an automorphism 
of G. Since T7 is a universal deformation of G, the ideal Ii in VF[[t,t7]] defining the 
deformation locus of tpi is of the form Ii — (t' — hit)), for some h G W[[£]]. For I D h , 
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13. DEFORMATIONS OF ISOGENIES OF FORMAL GROUPS 145 

it follows that tpi lifts to an isogeny r —» V (mod I) if and only if Lipi o ipi lifts to an 
endomorphism of T (mod I fl VFp]])- Let 

(p2 = Lt/j1 o ifj2 , ^3 = Li>i ° ^3 in End(G) . 

We see that 

7i D T2 D % = locus in Spf Wp]] where (^2 and (/93 lift to endomorphisms of T. 

More precisely, for i = 2 or i = 3, let be the minimal ideal in Wp]] such that 
lifts to an endomorphism of T(mod Ji). Then 7i D T2 fl 73 is isomorphic to the closed 
formal subscheme of Spf VFp]] defined by J2 + J3-

Now let p 7̂  2. Then we have from the definition of an optimal basis 

( 2 . 1 ) 
Lifi — — (fi and N m ( ^ ) = u\Uipai , i — 2, 3 . 

VW3 = - ^ 3 ^ 2 • 

Let K = Qp(v/~uiu2pa2) . Since « 2 < 1, we deduce from (2.1) that (p2 generates the 
ring of integers OK- Hence T(mod J2) is the canonical lifting of G relative to the 
quadratic extension K of Q p , comp. [ W w l , Def. 3.1]. Applying the following lemma. 

WP obtain 
^3 ena30D\(0K +ua^+1oD) , 

with <23 = 1. Now applying [ W w l , Thm. 1 .4], or [VI, Thm. 2 . 1 ] , we have 

lg Wlty(J2 + Js) = 

a3 + l 
2 

= 1 if a2 = 0 

a3 + l = 2 i fa2 = l . • 

Remark 2.1. — The proof shows more generally Theorem 1.1 in the case where p ^ 2 
and ai = 0: one appeals to [VI, Thm. 2.1]. 

Lemma 2.2. — We allow p — 2. Let K be a quadratic extension of QP contained in 
D, which is unramified or tamely ramified. Let x G OD which anticommutes with K, 
i.e., such that conjugation by x induces on K the non-trivial automorphism of K. Let 
r = v(x). Then 

xeWOD\(0K + W+lOD) 

Here n denotes a uniformizer of OD • 

Proof. — We distinguish cases. 

Case K/QP unramified. — In this case we can choose a uniformizer II of On with 
n2 = p and anticommuting with K. Then 

OD = OK 0 OK • n 

where the first summand commutes with K, and the second summand anticommutes 
with K. Then 

OK + ^ O D ^ O K ^ P ^ O K - K -
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146 M. RAPOPORT 

Now if x anticommutes with K, then r = v(x) = 2 t + l is odd and x 0 0 K + n r + 1 0 D =Okopt+lOk .TT. 

Case K/Qp tamely ramified. — In this case we can write OK = Zp[7r] with 7 r 2 = u-p, 
for wGZpx. Then 

O D = O K 0 O K - Ì , j2 = u' e Z$\Z$>2 , 

where the first summand commutes with K and the second summand anticommutes 
with K. Then 

0K + TlSOD = 0K(B7rSOK-j 

If x anticommutes with K, it lies in nrOK • j but not in 7rr+1(9x • j , hence x 0 

(9K + W+XOD = Ok® nR+LOK • J- • 

Remark 2.3. — In the case of wild ramification (p = 2) it can happen that x can be 
corrected by an element of OK to have higher valuation than r — v(x). 

3. The induction step: Proposition 1.6. 

It suffices to prove 

(C-T3)s = (C-n)s + (C-Sip))s , 

for every irreducible component C of T\ n T2. Let 

J — minimal ideal in Wp]] such that Li\)\ o ip2 lifts to an isogeny T—>T (mod J) 

J' — minimal ideal in W[[£']] such that I/J2 o Ltpi lifts to an isogeny T' —>T7 (mod J7). 

We have an obvious inclusion 

TinT2 <—> x = spf {w[[q/j)®w(w[[t'yj') . 

The proof of [ W w l , Prop. 5.1] shows that J is generated by one element. Now 
Lipioijj2 is not scalar. Hence the generator of J is not divisible by p, because otherwise 
*"4>i ° ^ 2 would extend to the universal deformation of G over Fp [[£]], contradicting 
[Vi, Thm. 1 . 1 ] . The same argument applies to J7 instead of J. Hence all irreducible 
components of X have dimension 1, and each irreducible component of 71 fl T2 is also 
an irreducible component of X. We now determine the irreducible components of X. 

The endomorphisms (p = Lipi o ip2 and (p' = rb2 o ̂  generate quadratic extensions 
K = Qp(^) resp. K7 = Qp((pf) which are conjugate inside D. 

Lemma3.1. — The order Zp[(p] in K has conductor [(a\ + a2)/2\. 

Proof for p 7^ 2. — In this case the fact that the ^ form an optimal basis, i.e., diag-
onalize the bilinear form as in ( 1 . 1 ) , implies that 

tr(<p) = 0 , <p2 = -Ulu2pai+a2 

Hence Zp[ip] = Zp+pROK, with r = [(ai + a2)/2\. 
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13. DEFORMATIONS OF ISOGENIES OF F O R M A L GROUPS 147 

We therefore obtain an equality of divisors on Spf W [[£]], 

Spf W\[t]}/J = 
[ ( a i + a 2 ) / 2 ] 

s=0 
ws(e) 

Here Ws((p) is the quasicanonical locus of level s, with respect to the embedding of K 
in D defined by <p. Hence Ws((p) is a reduced irreducible regular divisor such that the 
pullback of T to Ws(<p) has as its endomorphism algebra the order OS — 7LV + PSOK 
of conductor(^ s in K. We may choose an identification 

WS(IF) = Spf W8 , 

where Ws is the ring of integers in the ray class field extension Ms of the completion 
M of the maximal unramified extension of K with norm group O*. 

Analogously we have 

spf WWYJ' = 

[ ( a i + a 2 ) / 2 ] 

s=0 

ws(e') 

We apply the following simple observation. 

Lemma 3.2. — Let M be a discretely valued field. Let M C K C L be finite field 
extensions such that K 0 M L = L^K:M^ (e.g. K/M Galois). For each field embedding 
r : K —• L with T\M — id; let TT be the graph of the corresponding morphism 
SpecC^ —» Spec OK- Then 

Spec OK ®OMOL = 
T 

Tr 

Proof. — Obviously, the RHS is a closed subscheme of the LHS with identical generic 
fibers. But the LHS is flat over OM, hence is the closure of its generic fiber. • 

Note that Wr C Ws whenever r < s. The lemma implies that each irreducible 
component of Wr(<^) D WS{(F') is isomorphic to Spf VKm, where m = max{r, s}. 
Hence each irreducible component of 7[ D T2 is isomorphic to Spf Ws for some s with 
0 < s < [(ai + a 2 ) / 2 ] . 

Proposition 3.3. — Let Fr,Fs be quasi-canonical liftings of G of level r,s (with respect 
to the quadratic extension K of Qp) defined over the ring of integers O of a finite 
extension of Frac W. Assume that ^ i , ^ lift t° isogenies Fr Fs over O. Let I 
resp. V be the minimal ideal in O such that ip3 — ptp'3, resp. ^ 3 lifts to an isogeny 
Fr Fs( mod I) resp. Fr —» Fs( mod / ' ) . Then I = pi'. 

^^It is more traditional to attribute the conductor ps to this order. 
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Proof. — Perhaps replacing the isogenies by their duals, we may assume r < s. First 
assume r = s. All quasi-canonical liftings of level r are conjugate under Gal (Mr/M). 
By [ W w l , Remark 3.3], there exists an isomorphism of the underlying formal groups 

7 : Fs —> Fr 

such that 

ip o 7 = 7 o (p 

However, 7 is in general not an isomorphism of deformations of G, since 7 conjugates 
the subfield K — QP{ip) of D into the subfield K' = Qp (</?')? hence 7 may be a 
non-central element of D. Let 

3.1) u = N111(7) £ Zxp • 

We set 

ei= 7 o à e End(Fr) , z = 1, 2, 3 

Then 

If O (fi = (Ci o <p , ¿ = 1,2 . 

Lemma 3.4. — Ŵ e foai;e 2r < a2 and 2r < 03. 

Proof for p ^ 2. — Since Fr is a quasi-canonical lifting of level r, it suffices for the 
first statement to show that the conductor of one of the orders Zp[(pi] resp. Zp[(/?2] is 
at most a2/2. Now v(<pi) = â . But (/̂  is not traceless. Set 

ei=ei- 1 
2 

tr(^) , i = 1,2 . 

Then is traceless and hence the conductor of Zp[pl] = 7Lv\p!\\ is equal to [u(</??)/2]. 
Hence it suffices to show 

(3.2) viytf) < a2 for z = 1 or i = 2 . 

We distinguish cases. 

Case K/QP unramified. — Then a\ and a2 are even and 

Vi = \iPai/2 , A , e ö * , z = l ,2 . 

Then t r (^ ) = (A, + ^)pa*/2 and 

1 
2 

; A , - ^ A , ) - ^ / 2 

Hence v{<$) = ai unless the residue class [Â ] of Xz lies in ¥p. But since the ^ 
diagonalize the bilinear form, we have 

(3.3) V i 0 ^2 = - V 2 0 • 

Hence not both [Ai] and [A2] can lie in ¥p whence the claim (3.2). Now if a3 = 2r, 
then 2r = a2 = 03. Hence a\ would have to be odd, which is impossible. 
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Case K/QP ramified. — Let TT G OK be a uniformizer with LTT = —TT. Let 

<Pi = \i7rai , A i G O j , i = l , 2 . 

Then 
eoi= 1 

2V 
yi-(-l)ai.yi).ttai 

Hence v(ipi) = ai if is odd. Now the identity (3.3) implies 

( - l )a i^A1A2 = - ( - l )a2-A1^A2 . 

Hence a\ and a2 have to have different parities which shows (3.2) in this case. Now if 
as = 2r, then a\ < 2r would have to be odd which contradicts 2r < v((fi) — a\. • 

Lemma3.5. — We have cp3 G Ua30D \ (OK + UA^LOD). 

Proof for p 7̂  2. — Again using that the ipi diagonalize the bilinear form, we have 

E3e=iee3 

Since v(tps) = o<3, an application of Lemma 2.2 gives the result. 

We now apply [VI, Thm. 2.1]. Since as > 2r — 1, we are in the "stable range" of 
that result. Hence I is the n-th power of the maximal ideal of O, where 

(3.4) n = 2 
pr - 1 

p - 1 
\0: Wr\ + 

a3 + l 
2 — r \0:W\ . 

Now v(tp3) — as — 2. Since as — 2 > 2r — 1, we are again in the stable range and the 
ideal V is the n;-th power of the maximal ideal of O, where n' is given by (3.4) with 
as replaced by as — 2. Hence n — n' — \0 : W\. This proves the proposition in the 
case r = s. 

To prove the general case, we use the following lemma. For the proof we refer to 
[ W w l , Cor. 5.3]. Note that the element TT\ appearing in the statement below has the 
same valuation as a uniformizer of Ws+\, by [ W w l , Cor. 4.8]. 

Lemma 3.6. — Let r < s and let Fr, Fs and Fs+i be quasi-canonical liftings of level 
r, s, and 5 + 1; all defined over O. Let TT : Fs —+ Fs+i be an isogeny of degree p defined 
over O and write TT in terms of a formal parameter 

7T(X) = TT1X + 7T2X2 + . . . , TTi G O . 

Let ijj G End(G) \ { 0 } and let 7(r, s) be the minimal ideal in O, such that Ì/J lifts to an 
isogeny Fr —> Fs (mod 7(r, s)). Let 7(r, s + 1) be the minimal ideal in O, such that 
TT o i\) lifts to an isogeny Fr —> Fs+i (mod 7(r, s + 1)). Then 

7(r, s + 1) = 7Ti7(r, s) 
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The lemma shows that if the assertion of Proposition 3.3 holds for ?/T,W2 ^ 3 , ^3 : 
Fr —» FSl it holds for TT o ^ 1 , 7 r o w2 7r o w3 7r o ^ 3 : Fr —>• Fs+i as well (note that 
(VT, ^2? ^3) is an optimal basis of their Zp-span if and only if (TT O I/JI , 7r O -02? ?r 0 ^3) 
is an optimal basis of their Zp-span). We note the following lemma. 

Lemma 3.7. — Let r < s and let Fr,Fs+\ be quasi-canonical liftings of level r, s + 1 
defined over O. Then all isogenies I/J : Fr —>• Fs+i factor through an isogeny Fs —• 
Fs+i 0 / degree p, where Fs is a quasi-canonical lifting of level s. 

Proof. — This follows from the proof of Prop. 1.1 in [Ww2]. After choosing suitable 
isogenies from the canonical lifting to Fr and to Fs+i, we may assume that the Tate 
modules of Fr and Fs+i are of the form 

Tr = (Zp • p~r + OK) • t, Ts+1 = (Zp • p-(s+1) + OK) •1 . 

Let Fs be defined by Ts = (Zp • + O K) • t. Then (loc. cit.), 

Hom(Fr,Fs+1) = { a e Ok \ aTr C Ts+1} 

= {aeOK\aTrcTr} 

= { a e OK I cvTr c Ts } . 

Therefore all isogenies Fr —> Fs+i factor through Fr Fs. • 

Using the previous two lemmas we now prove Proposition 3.3 by induction on the 
difference s — r. Indeed, the induction step from (r, s) to (r, s + 1) is obvious, except 
in the case ^ when the result ^ 3 : Fr —> Fs of dividing ^ 3 : Fr —> i^s+i by TT is 
not of the form ^ 3 = p^3, for a suitable ipf3 : Fr —> Fs. However, in this case we 
have as = V(I/JS) = 2 and hence r = s — 0 and v(tp'3) = 0 . In this case the ideal I' 
describes the locus where the quasi-canonical lifting F\ is isomorphic to the canonical 
lifting F0. By [ W w l , Cor. 4.7], the ideal I' is equal to the n-th power of the maximal 
ideal of (9, where n = e/ei with e the absolute ramification index of O, and e\ the 
absolute ramification index of W\. By [VI, Thm. 2.1], the ideal 7(0, 0) is equal to the 
e-th power of the maximal ideal of O. On the other hand, the element i\\ occurring 
in Lemma 3.5 has valuation e/e\ in 0 , cf. [ W w l , Cor. 4.8]. Hence 7(0,1) = pVas 
required. 

4. Intersection with S(v\\ Proposition 1.7. 

For the proof of Proposition 1.8 we will make use of the Kummer congruence ( [KM , 
13.4.61). We first recall the statement. 

(2)l thank S. Wewers for pointing out this possibility, which I had overlooked. 
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We denote by JV[ the moduli stack of elliptic curves over Spec ¥p. For integers a, b 
with a > 0, b > 0 and a + b = n, we form the fiber product stack Aia,b, 

MxM M x M 

Ma,b M 

Here A denotes the diagonal morphism and the upper horizontal morphism sends 
{E,E') to (E^a\E'(pb)). Here we denoted by E ^ the pullback of E under the 
ath power of the Frobenius morphism. Then A4a,b classifies pairs (E, E') with an 
isomorphism a : E'(pa) E'^ph\ 

We consider the moduli stack A4(pn) over Spec Fp classifying isogenies E Ef oi 
degree pn (in [Go2], this stack is denoted by Tpn ?F ). We obtain a morphism 

ea,b M(pn) 

It sends (E, E'a) to the composition isogeny 

E Fa E(pa) 
a 

£ ' ( P ) 
t Fb 

E' 

Letting a, 6 vary we obtain a morphism 

cp : 
n.-\-h—n. 

a>0,6>0 

M a , 6 > M{pn) 

Theorem 4.1 ([KM, 13.4.6]). — The morphism cp is an isomorphism outside the su-
persingular locus. The inverse image of a supersingular geometric point x G M.(¥p) 
in A1(pri)(Fp) consists of precisely one point x and the completed local ring of x is 
isomorphic to 

Fp((x,u))/ 
a+b=n 

a>0,6>0 

{Xpa - Yp ) 

in such a way that M.a,b is defined by the equation Xpa — Yp = 0. 

Recall the ideal Ii in Wp]] defining the divisors %, for i = 1,2. By the Kummer 
congruence there exist for i = 1 and 2 uniformizers ti of Fpp]] and t\ of Fpp']] and 
generators gi of Ii such that 

9L EE (U - (t'tfai) • (t? - (t;)"0'" ) - . . . . ( i f - f j (mod p) . 

Hence % H 5(p) is the union of irreducible components Vip (¡1 — 0 , 1 , . . . , a^), where 

is the divisor in Stp\ = Spf Fpp, £']] defined by tp^ - (^)pa* *\ Hence 

(4.1) (Ti-T2- S(p))s = 

ai 

u=0 

«2 

i/=0 

vlu.v2v)s 
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We write 

t2 = u-t! , ue¥p[[t]]x 

tf2 = u'.t[ , u'eiïPWl* 

Lemma 4.2. — Let a± = a2(mod 2). T/ien u(0),u'(0) ^ ¥P2 AND ^(°) 7̂  u'(0)pa2. 

Lemma 4.3. — VKe have 

(V1/Ll-V2„) = p " , 

with n = min{ai — \±JrV,a2 — v + \±\. 

It is an elementary matter to use Lemma 4.3 to calculate the sum on the RHS 
of (4.1). The result is Proposition 1.8. 

Proof of Lemma 4-3 (assuming Lemma 4-2). — We must show 

(4.2) lgFp((t,t'))/(tpu-(t')pal-u,(ut)pu-(u'.-t')pa2-v)=pn . 

By symmetry it suffices to consider the following two cases. 
Case 1: p < a\ — /i, v < a2 — v 
Case 2: a < a\ — a. a2 — is < v. 

In case 1 the LHS of (4.2) is equal to 

lg Fp[[t,t']]/(t - t>vai^y\{ut - (u'tya2-2 )pay ^ 

P ^ • lg fplt'y(u • t'pai~2" - {u'tY2-2v) ( i ) P M + - + M I N { A 1 - 2 M , A 2 - 2 , } = pn 

Here in (1) we used the formula ([Go2, Lemma 4.21) 

lgA B/xi ...xn = 
i 

\gAB/xl , 

valid for any 74-algebra B and non zero divisors x i , . . . , x n in 5 . In (2) we used 
Lemma 4.2 which implies that if a\ — 2p = a2 — 2v, then u(0) ^ ^'(O)^2 " — ^(O)^2. 

In case 2, the LHS of (4.2) is equal to 

lg Fp[[t,t']]/((t - t ' ^ r , ( u > t > - ( u t f - 2 r - ) = 

p»-pa^-\g Fp[[t,t'y{t-t'vai-2u\u't' - (utf"~a2) = 

P<»-»+H . lg Fpp']]/(uY - Up2"~°2 • t'Pai^+^a2)(3=pa2-v+u=pn.. 

Here in (3) we used Lemma 4.2: if a\ — 2fi + 2v — a2 — 0, then a\ — 2\i and a2 = 2v 

are both even and u'(0) ^ w(0)^~a2 = u{0). • 
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Proof of Lemma 4-2. — Let £ = (a2 — ai) /2. Let 

I[ = minimal ideal in w((t,t')) t7]] such that p£ipi lifts to an isogeny T—>r'(mod 

By the Kummer congruence we can choose uniformizers t\ of Fpp]] and t[ of Fpp']] 
and a venerator ai of Ti with 

g[ = (h - if 2 ) • (*? - IT 2_ ) • . . . • (*? - *;)(mod p) 

Now ^ 2 = & o (p£ipi), where a G Aut(G). By the universal property of T there 
exists a unique VK-algebra homomorphism h : W[[t]] —• W p J such that a lifts to an 
isomorphism 

&:T - h*(T) 

Hence /2 is generated by g2 with 

(4.3) g>2 = (Mil) - i f " ) • (M*i)P " i f 2 " ' ) • • • • • (Hhf2 - *'i)(mod p) . 

The two elements gf2 and g2 differ by a unit and 

(4.4) g2 = (uh - (U't'Y2) -((u-hf- (u'ti)""2"1) • . . . • ((uhYa2 - u ' * i ) (mod p) . 

The first factor on the RHS of (4.4) is irreducible and can only divide the first factor 
of the RHS of (4.3). Hence the first factors differ by a unit. Let 

(4.5) h(ti) = v • ti (mod p) with v G Fppi]]x , 

and put c = v(0). Comparing coefficients we obtain 

c = u(0)/u'(0)pa2 , 

The remaining factors on the RHS of (4.4) are not irreducible: (uti)p^ — (u;t[)pa2 * 
is the pu-th power of an irreducible element, where v = min{/i, a2 — An analogous 
comparison of coefficients gives 

c = u(0)/u\0)pa2 2" , /i = 0 , . . . , a2 . 

It follows that ^'(0) G ¥P2 and by symmetry  ¿(0) G FP2. It remains to show c ^ 1. 
Now c is the induced action of a on the tangent space of the universal deformation of 
G over Fp. And a is given in terms of the formal group law by 

a(X) = aiX + a2X2 + . . . , OL% G ¥p . 

Then OL\ G FP2 = OD/ROD is the residue class of a. By the lemma below, the action 
of a on the tangent space of the universal deformation space is by multiplication by 
Oi\lóL\. Hence c = OL\JOL\. But OL\ 0 Fp and hence C = 1. Indeed, otherwise for any 
a G 7LV with residue class OL\ modulo p, we would have 

(4.6) v(ìjj2 - aplìpi) > v(il)2) . 

But the optimal basis ^ 1 , ip2, ^ 3 may be chosen so that tjj2 has maximal valuation in 
its residue class modulo Zpipi. Indeed, if p ^ 2, any optimal basis has this property 
(otherwise an easy application of Hensel's lemma would imply that L is isotropic). 
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If p = 2, we take the optimal basis constructed in table 1 of the appendix. By 
assumption a\ = a2(mod 2). Going through all cases in table 1, we see that this can 
only happen in cases A2 and B3 a). In the case A2, we have v(t/ji) > v(il)2) which 
contradicts (4.6). In the case B3 a), we get 

(ip2 - V V i , ^ 2 - a p V i ) = 2/32 O i + U2 + 4 (a2 - a) m), 

which has valuation a2 — v(ip2) = fo + 2, since in this case u\ + u2 = 4(mod 8). • 

Remark 4.4. — In fact, even for p — 2, it is true that any optimal basis has the 
property that jp2 has maximal valuation in its residue class modulo Zpipi. This 
follows from [B, Prop. 6.9]. 

Lemma 4.5. — Let a G Op = Aut(G), with action on Lie G given by (multiplica-
tion by) ai G ¥P2. The induced action of a on the tangent space of the universal 
deformation space of G over¥p is by multiplication by OL\/6L\. 

Here we denote by x \-+ x the non-trivial automorphism of ¥P2. 

Proof (comp. [Z, Lemma 78]). — The tangent space can be canonically identified 
with 

Hom(Lie *G, Lie G) . 

For <p G Hom(Lie *G, Lie G) we have 

a*((p) = OL\ o ip o ta1 1 

Identifying fG with G replaces 1OL\ by the residue class of La, i.e., by a\. 

A . Appendix: The case p = 2 

In sections 2 and 3 we made the assumption p > 2. In this appendix we treat the 
case p = 2. In this case one has to take into account the delicate theory of quadratic 
forms over 7L2. We will proceed according to the following table. The table gives 

— the normal form of the quadratic space (L, Q) in terms of a suitable basis 
6 1 , 6 2 , 6 3 (we give the matrix T = (^(e^, e^))), 

— an optimal basis ^i, 7/̂ 2, ^ 3 , 
— the Gross-Keating invariants (ai,a2,as) of (L, Q). 

We go through all cases of anisotropic ternary lattices, according to the table in [ Y l , 
appendix B], comp. also [B, Thm. 5.7]. 
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Table 1 

A) T = diag (?xi2a, 2 ^ ( 2 i ) ) , a > 0,ß > - 1 , a = ß mod 2 
(the condition a = ß mod 2 is due to the anisotropy of T, comp. [B, section 5]). 

1) a < ß + 1. Then = e i , V>2 = e2,^3 = e3 and 

GK(T) = (a , /? + ! , / ? + ! ) 

2) a > /3 + 1. Then 0r = e2, 02 = e3, 03 = ei and 

Gür(T) = ( /3+ ! , / ? + ! , a ) 

B) T = diag(wi2^,ifc22^,u32^3) with 0 < ft < ft < ßs 
This matrix is anisotropic if and only if 

( - 1 , u2u3) = (u^ums) • (2, Ulu2)ßl+ß3 • (2,Ulu3)ßl+ß* , 

cf. [Y2], or [B, section 5]. 
1) ß2 ^ ft mod 2. Then 0r = ei, 02 = ^2, ^3 — ciei + c2ß2 + e3 for suitable 

c i , c2 G Z2, and 

G K ( T ) = ( f t , f t , f t + 2) 

2) ft = A mod 2 and ft < ft + 1. 

a) ft = #2- Then 0r e i , ^ 2 = 2 
Bl-b2 

2 ei + e2,03 = 2 
/32-/3i 

2 • e i + e 3 

and 

G K ( r ) = ( f t , f t + l , f t + l ) 

b) ft = ft + 1 and Tii = i^2 mod 4. Then - 0 i = e i , ib2 = 2 
/32-/3i 

2 ei + e2, 
^3 = 2 

8n-8i 
2 ei + e2 + e3 and 

GK(T) = ( f t , ft + l , f t + l ) 

c) ft = ft + 1 and wi = —Î/2 mod 4. Then 0 i = ei, -02 = 2 
ßo.-ßi 

2 e i + 

Ê2 + e3, 03 = 2 
/32- /3 i 

2 • ei + e2 + 2e3 and 

GK(T) = (ßuß2 + l,ß3 + l) 

3) do = 8A mod 2 and ft > 3?. + 2. 

a) = —î 2 mod 4. Then T/T = ei, 02 = 2 2 • ei + e2, 03 = e3 and 

Giv(T) = ( f t , f t + 2 , f t ) 

b) ifci = ii2 mod 4. Then 0 i = ei, ^ 2 = 2 
. /32- /3 i 

2 ei+e2, /03Ciei-r-c2e2+e3 
for suitable c\.c2 G Z2 , and 

Gif(T) = (ft,/?2 + l , Ä + l) . 
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A . l . The induction start. — Let a3 < 1, i.e., ai = 0 and as — 1. We follow the 
proof of Proposition 1.6 in each of the following cases. 

T = diag (T/12,2-1 
'2 Is 

1 2 
hence GK(T) = (0,0,1) 

Then (f2 — Lipi ° ip2 = L^2 ° es and 

tr((p2) = (e2,e3) = 1 and N m ( ^ ) = 1 

Hence K — Q2(ip2) = Q2[X]/(X2 — X + 1) is an unramified extension of Q 2 , and 
OK — Z2[ip2]. Therefore T(mod J2) is a canonical lifting relative to K. 

Now (fs = ^ 1 0 ^ 3 — Le2 0 ei and 

tr((^3) = 0 and N111(^3) = ?ii • 2 . 

Furthermore 

trUp2 0 V 3 ) = tr('e3 o e2 o 'e2 o ei) = Q(e2) • tr('e3 o ei) = (ei, e3) = 0 . 

Hence —(f2 0 ^ 3 + ^ 3 0 V 2 = 0, i.e., (/?3 anticommutes with K. Since K/Q2 is 
unramified, an application of Lemma 2.2 gives 

<p3 eUOD\(0K + U20D) . 

Hence, applying [ W w l , Thm. 1.4], 

lg Wlty(J2 + J3) = 
1 + 1 

2 
= 1 = 

«3 + 1 
2 

which proves the claim in this case. 

T = diag lui, 
2 1 
1 2 

, hence GK = (0,1,1) . 

Then <̂ 2 = ^ 1 0 ̂ 2 = 6ei o e2 and 

tr((^2) = (ei, e2) = 0 and N m ( ^ ) = u\ • 2 

Hence K — Q 2 ( ^ 2 ) = Q2[X}/(X2 + u\2) is a ramified extension of Q2, and OK = 
^2[^2]- Therefore r(mod J2) is a canonical lifting relative to i^. 

Now Lps = Lipi o = 6ei o e3 and 

tr((/?3) — 0 and Nm((/?3) = u\ • 2 . 

Furthermore 

tr((^2 0 V 3 ) = tr(Ae2 o ei o ' e i o e3) = 1x1 • (e2, e3) = iti • 2 . 

Hence 

(A. l . l ) ¥2 0 ^ 3 + ^ 3 0 ^2 = -^1 • 2 . 

We use the presentation of D resp. 0£> from [G, Prop. 4.3]. Namely, assume that 
the different V of K/Q2 has valuation equal to e. Then 

(A.1.2) D = K®K-j , 
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where j anticommutes with K and where j2 G ZX2 satisfies v(j2 — 1) = 2(e — 1). Let 
7r be a uniformizer in K. Then a := n~2(l + j) G 0 £ and 

(A.1.3) OD = OK^OK'OL . 

In the case at hand the extension K/Q2 is wildly ramified, with different V of valuation 

e — 3. Hence v(j2 — 1) = 4. As uniformizer 7r we take (p2. 

Write (fs = a + ba. Then 

^ 2 0 ^ 3 + ^ 3 0 ^ 2 = (ÛTT + bircv) + (a7r + &a7r) 

= (air + 67T 1 + bn 1 j ) + (a7r + bix — bir j) 
= 2 • (aTT + for-1) 

Comparing with (A. 1.1) we get 

air + b7v 1 = — u\ . 
Hence = 1, i.e., (p3 G n O D \ (OK + n2(9D). Applying [ W w l , Thm. 1.4], we 
obtain 

lg W[[t}} /(J2 + J 3 ) = 1 + 1 = 2 = a2 + a3 , 

which proves the claim in this case. 

T = diag(^1, ^ 2 , us) , hence GK(T) — (0,1,1) . 

Then <̂ 2 = wl o ip2 — Le\ o (ei + e2) = 6ei o e2 + u\ • 1, hence 

tr(<p2) = u\ • 2 , N m ( ^ ) = M r ( w 2 + ^i) • 

Hence if = Q2(y?2) = Q 2 [ X ] / ( X 2 — 2'UiAT + 'Ui • (u2 + ^ i ) ) - Since T is anisotropic we 

have u2 + u\ = 2 mod 4. Hence we are dealing with an Eisenstein polynomial and 

OK = Z2[y>2]. 
Now <£?3 = ^ 1 ow3 = 6ei o (ei +e3) = 6ei 063 + ^ 1 • 1. At this point it is advantageous 

to consider instead of <ps the endomorphism (p3 — le\ oe3. It is obvious that the locus 
where (f2 and (p3 deform is the same as the locus where (f2 and (p3 deform. Now 

tr((^3) = (ei ,e3) = 0 and Nm((/?3) = U1U3 . 

Furthermore 

tr(V2 o (p3) = tr('(ei + e2) o ei o ^ 1 o e3) 

= ^ 1 • ((ei,e3) + (e2,e3)) 

= 0 . 

Hence 

L(f2o(p3- (p3ocp2 =0 . 
Hence if3 anticommutes with K. Writing, as in the previous case, D — K © K • j we 

have 

OD = OK © OK • a 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2007 



158 M. R A P O P O R T 

Here a = TT x(l + j ) G OD- Indeed, TT = (f2 is a uniformizer for K and the different 
T> has valuation e = 2. Writing ip'3 = a + ba we get 

a + ba = (a-\-bn l)+bTT 1 • j . 

Hence a + bn 1 = 0. Since (/?3 G Op it follows that the valuation of b is equal to 1, 
hence 

^ e n o D \ ( o K + n2oD) . 

Applying now [ W w l , Thm. 1.4], we get 

lg WM/(J2 + J3) = 1 + 1 = a2 + a3 , 

which proves the claim in this case. The induction start is now complete. 

A . 2 . The induction step: L e m m a 3 .1 . — In this section we prove Lemma 3.1. 
We go through all cases of the table. 

Case AI: Here tr(^) = 0 and Nm(^) = m • 2a+/3+1 
Since a + (3 + 1 is odd, we get K = Q2W ~u\2) and OK = Z 2 [ v ^ i 2 ] and, since 

m = 2 
a + 0 

2 • 7T, where TT = J—u\2 is a uniformizer, Z 2 M Z 2 4-
c* + £ 

2 • Ox- Hence the 

conductor of Z2 [if] is equal to a+0 
2 

A+(0+D 
2 

AI+A2 
2 

Case 4 2 ; Here tr(^) = 2^+1 and Nm(^) = 22^+l\ 
Hence K = Q2[X}/(X2 — X + 1) is an unramified extension and O x = Z 2 [ £ ] , 

where £ is the residue class of X. Then cz> = 2^+1 • £ and Z O M = ZO + 2/3+1 • O x has 

conductor 3 -+ 1 = (/3+l) + (/3+l) 
2 

AI +A? 
2 

Case £ 7 : Here tr(^) = 0 and Nm(<p) = uiu2 • 2^1+/̂ 2. 
Since ft + ft is odd, we have K = 0 2 ( V — u \ U o 2 ) and O x — Z2 [ A / ^ + Ô Ô ^ I . Now 

Z 2 M = Z2 + 2 
/3i+/32-L 

2 O x has conductor /31+02-1 
2 

01+02 
2 

Q 1 + Q 2 " 

2 

Case B2 a): Here tr(y?) = u\-2 
3I+/32 

2 f l and Nm(^)wi • 2^1+f32(u1 + u2). 

Now by the anisotropy condition on 1 we have + u2 = 2 mod 4, hence K = 

Q 2 P ^ ] / ( X 2 — 2u\X + t 6 i + U2)) is defined by an Eisenstein polynomial and O x = 

Z O M , where 7r denotes the residue class of X. Then w2 1 ? • 7r and Z 2 M = Z2 + 

2 
1̂ + tfo 

2 O x has conductor Bl,b2 
2 

/3i + (/32 + l) 
2 

a i + a 2 ' 

2 

Case B2 b): This is identical with the previous case. 
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Case B2 c): Here tr(<z?) = ui-2 
01 + 02 

2 f l and Nm(^)w? • 2^1+/32 + uxu2 • 2(3l+(32 +- mu3 • 

B i + B 3 u i 2 ^ + / 3 2 ( 2 ? i 3 + u 2 +- Tii) . 
Hence if = Q 2 [ X ] / ( X 2 — 2u\X + ul • (2^3 + u2 + m)), which is defined by an 

Eisenstein equation since u\ +- u2 = 0 mod 4. Hence Ok = Z o M , where TT is the 

residue class of X and (p — 2 01 + 02 
2 7T and Z 2 M = Z2 + 2 01 + 02 

2 • 0i<- has conductor 
tfi+02 

2 
/5i+/52 + l 

2 
AI +A2 " 

2 

Case 5 5 aj: Here t r M = 2 
01 +/39 

2 
•fl ui and Nm(/9 = 2^1+^2 • 1 /1 (^1 + ^ 2 ) . 

Hence if = Q2[AT]/(X2 — 2uiX + ^ 1 • (u\ + 1^2))- Now since T is anisotropic, it 

follows that u\ + u2 = 4 mod 8. Hence writing ui + u2 = Arj with 77 G Z £ , we have 

if = Q 2 [ X i l / ( X 2 - ^ i X i + ^ i 7 7 ) . Hence if /Q2 is unramified and O k = Z2f£l, where £ 

denotes the residue class of A i . Now cp = 2 01 +09 
2 

+ 1 £and Z 2 M = Z2 + 2 01+02 
2 +l Ok 

has conductor 01+02 
2 • f l 0i + (#2+2) 

2 
rai+a2 " 

2 

Case 5 5 6 :̂ Here the trace and norm are as in the previous case, but this time 
if — Qo\X]/(X2 — 2uiX -\- ^ • (ui + uo)) is defined bv an Eisenstein polynomial. 

Hence OK — Z o M where 7r is the residue class of X and <p = 2 3i + /3o 
2 • TT and Z2 M = 

Z2 + 2 9i +02 
2 OK has conductor 01+02 01+(#2 + 1) 

2 2 
Q1+Q2 

2 

This proves the assertion in all cases. • 

By symmetry we also obtain that <p' = ib2 o ^1 generates an order of conductor 
dì +a2 

2 
in if'. 

A . 3 . The induction step: Lemmas 3.4 and 3 .5 . — We first prove Lemma 3.4. 
We go through all cases, making use of the results in section A.2. Again we wish to 
bound the conductors of the orders 7L2\p)\\ resp. Z2[(p2}. 

Case Al: Here if = Q 2 ( v / 3 ^ ) and OK = Z2[TT] with vr = ^ u ^ 2 . Then LTT = -TT 
and thereby this case is like the ramified case for p ^ 2. We have 

OK = Z2 0 Z2TT , 

the decomposition into traceful and traceless elements. In particular, XX(OK) C 2 -Z2-

Let 

eio=ei- 1 

2 
tr((pz) , i = 1,2 . 

Then Z2[(^i] = Z2[(p°] has conductor 1 
2 vitf) - 1). Let 

ei=yi.ttai, yicOxk 

Then 

eoi= 
1 

2 
' A i - f - l V ^ A O - T r * , z = l , 2 . 
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Writing Â  = a + bix we have a G Z * and 

A2 + 'A, = 2a 

A, - LXl = 2bn . 

Hence v(<p°) = â  if â  is odd and v(ip°) > â  if a* is even. Now according to our 
table, a\ and a2 have different parity which implies that r < (a2 — l ) / 2 . This shows 
the result in this case. 

Case A2: Here K = Q2[X]/(X2 - X + 1) and OxZ2[£], where f is the residue class 
of X . In this case, Z2[(^] = OK or tr (^) G 2Z2. In the first case r — 0 and the claim 
is obvious. Now let tr (^) G 2Z2 for i — 1 and i = 2, and consider 

eoi=ei -
1 
2 

tr(^) . 

Then writing <p° = a + 6£ we have 0 = tr((p°) — 2a + 6. Hence c/?° = a • (1 — 2£) 
and v(ip°) = v(a) = v(b) — 2. The conductor of Z2[(/^] = Z2[(^°] is equal to \v(b) = 
^ ( ^ ° ) + 1. Now 

ei=yi.2ai/2, yi c Oxk. 

ei= 
2 

A,- - LXA • 2a*/2 . 

Hence v(ip°) = ai — 2 if the residue class [Â ] of Â  lies in F4\F2, and is larger otherwise. 
Hence if [Xi] G F4 \ F2, then r < ^ , hence 2r < a2. 

But not both [Ai], [A2] can lie in F2. Indeed, 

<P! o p2 = 'Ai - A2 . 2^+a*>'2 = 'AiA2 • 2^+1 . 

On the other hand Lipi o < 2̂ = u • ip, where u G Z2 is as in (3.1), and where ip is as 
in the previous section. Now <p = 2^+1£. Taking the residues modulo 2/3+1, we prove 
the claim. 

Now assume 2r = a2 = a3. Then a\ < 2r has to be odd, which contradicts the fact 
that a\ = a2 — [3 + 1. 

Case #7 ; Here K = Q2(>/—^1^22) and OK — Z2[7r], with TT = A/—U\U22. This case 
is completely analogous to case AI . 

Case B2 a): Here K = Q2[A"]/(X2 - 2uxX + ux •ul + u2)) and G>x = Z2[TT] where 
TT denotes the residue class of X. Then TT is a uniformizer satisfying an Eisenstein 
equation. Hence tr (OK) C 2Z2. We again consider p\ = ipi — ^ t r ( ^ ) . Then writing 
(p? — a + bn we have 0 = tr(<^°) = 2a + 2bui = 2(a + frai). Hence (p° = b • (—u\ + TT) 
and i>(<£°) = v(6). The conductor of Z2[(/^] = Z2[(^°] is equal to \v(b) = |v(<£°). Now 

^ = A Z . ^ , A , G ( 9 * . 

Let us write 

2^1 - 7T = T] • 7T , V e OK . 
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Then 77 = 1 + 771 • 7T with RJI G OK. We have 

tr (^) = Xi • 7Ta< + 'Ài • (r/7T)a* 

= (\I + L\IRIAI)"IRAI . 

Hence 

eoi= 1 
2 

yi-iyinai).ttai. 

Let = 1 4- [Ai] • 7T (mod n2). Then 6Ai = 1 — [\i]ir (mod 7r2). If ai is odd, we get 

Xt - LXiTfai = (1 +  ) - (1 - [\i]7r) • (1 + r / i7r ) (mod TT2) 

= r/i • 7r (mod 7r2) . 

Hence in this case v(ip°) = ai — 1. We get r < \{a% — 1)- Since a\ or a2 are odd, we 
obtain the assertion. 

Cases B2 b) and c): These cases are identical to the previous one. 

Case B3 a): In this case K — Q 2 [ X ] / ( X 2 — u\X + u\r\\ for some n G Z j . Hence 
K/Q2 is unramified and OK = Z2[£], where £ is the residue class of X . This case 
is similar and almost identical to case A 2 ) . If t r ( ^ ) ^ 2Z2, then Z2[(^i] = OK and 
r = 0 and the claim is obvious. If t r ( ^ ) G 2Z2 for i = 1 and i = 2, we consider 
again ip° = (fi — I tr((^i). Writing <£>° = a + 6£ we get 0 = tr(</?°) = 2a + fa/i. Hence 
^ ° = a ( l - 2 ^ r 1 0 and v(<£?) = v(a) = v(6) - 2. The conductor of Z 2 [ ^ ] = Z2[^°] is 
equal to \v(b) = ^v(ip°) 4- 1. Now  

Qi — Li. 2ai/2 ; Li E OXK 

eoi = 1 
9, 

Xi -L\A'2ai'2 . 

Hence v(<Pi) = ai — 2 if the residue class [Ai] of Ai lies in F4\F2, and is larger otherwise. 
If [Ai] G F4 \ F2, then r < a2/2, hence 2r < a2. But not both [Ai], [A2] can lie in F2. 
Indeed, 

V i o <p2 = % A 2 - 2 ^ a ^ ' 2 = LXXX2 • 2 
01 +Po 

2 
+ 1 = u • tD2 = u • 2 

01 +0o 
2 +l.£. 

Taking the residue modulo 2 
01+02 

2 f l , we get the claim. 

Now assume 2r = a2 = a3. Then a\ < 2r has to be odd which contradicts the 
condition that a\ — 8\ has to have the same parity as 82 4- 2 = a2 = 2r. 

Case B3 b): This is again identical to cases B2 a)-c). 

The Lemma 3.4 is proved. • 

We now turn to the proof of Lemma 3.5. Again we inspect the various cases. 

Case AI: We write D = K 0 K • j as in (A.1.2) in section A. l , where j anticommutes 
with K and where j2 G Z - satisfies v(j2 — 1) = 2(e — 1), where the different V has 
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valuation e. Then OD = 0K^0K-5a, where a = vr^6"1) • ( 1 + j ) G O * , cf. (A.1.3). 
In the case at hand e = 3, hence a — 7 r ~ 2 ( l + j). Now 

(A.3.1) ^ o V 3 + V 3 0 ^ + 1 ^ e i , 

where e\ — 7 o e\. This follows from (/? = iwi o ̂ 2 and the definitions i/^iei, ^ 2 = e2, 
^ 3 = e3 . Now writing ^ 3 — a + ^ f°r suitable a, 6 G OK and writing (f — 2s - TT with 
S = \{a + /?), we get from (A.3.1) 

26 • 7r(a + 6a) + (a + 6a) • 2(5TT2/3+1 • l~ex , 

i.e., 2(5+1(a7r + for-1) = 2^+1 • Lëu hence 

(A.3.2) 6 - 2 
/ 3 - a 

• Lë\Tï — an2 . 

Now v(Lei) — a, hence the first summand of the RHS of (A.3.2) has valuation / 3 + 1 . 
Since v((fs) = (3 + 1, it follows v(b) = (3 + 1 = a3l which proves the claim in this case. 

Case A2: Here we write OD = OK © OK • II where n2 = 2 and where n anticommutes 
with K. In this case we have 

eoie3+ie3oe2B+l.iei . 

Writing L&3 = a + 6n and (p2^+1 • £ we obtain 

20+1(2a£ + 6(£ + i O - n ) = 2 / 3 + 1 - 4 e i , 

z.e., 
2a£ + 6n = ^ 1 . 

Now v{Le-i) = v(Lcp3) = a. This implies v(bTT) = a, hence <p3 G Ua30D \ iOK + 
na3+10D), since a3 = a. 

Case BI: This case is similar to case A l , except that the identity (A.3.1) is replaced 

by 
V 0 V 3 + V 3 o (̂ 2 • ' ë3 o cp . 

Now </? = 257r with ^ = Bl -I- /#2)/2. Writing as in case A l ) L(p3 = a + 6a, where 
a = 7r~2(l + j ) , we get 

2<m-(a7r + 67r-1) = 2 m - t ë 3 - 7 r , 

z.e., 
6 = 'ë37r2 - a7r2 . 

Now the first summand of the RHS has valuation (33 + 2 and v{ip3) = f33 + 2. Hence 
v(6) = ^3 + 2, which proves the claim, since j33 + 2 = 03. 

Case aj: In this case the valuation of the different is equal to 2 and hence a = 

TT-1 • (1 + j ) - Now 

<p 0 V 3 - V 3 0 ^2 • 'e2e3'ei . 

Writing Lip3 = a + 6a and = 2^7r with 5 = [f3\ + /?2)/2, we get 

(A.3.3) 2(5(((7ra + 6) + bj) - {{na + 6) + 67T-1 • ATTJ)) = 2 • ̂ 3 ^ 1 . 
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Therefore, since lix = 2u\ — 7r, 

25+l j • b - (I - mil'1) = 2-Le2e3Le1 . 

Comparing valuations we obtain v(b) = (33 + 1 = a3, which proves the assertion in 
this case. 

Case B2 b): Here again a = TT_1(1 + j ) , and the same equation (A.3.3) holds. The 
case is identical with the previous case. 

Case B2 c): The same again. 

Case BS a): This case is similar to case A2. We write OD — OK © OK • n as in that 
case. Now 

ip o Lcp3 - Lcp3 o ip = - 2 • 'e3e2'ei . 

We write L(p3 = a+bU and cp — 2s-£ where S = 01+02 
2 

f 1 and £ satisfies £2—ui£+uiri 

0 for some 7/ G Z2 . Then 

26 • ((of + 6£n) - (a£ + b • AfII)) - 2 • ̂ 3e2'ei . 

Now £ — ̂  = 2£ — ui, hence 

2 ( 5 - 6 - n - ( 2 £ - ^ i ) = -2^e3e26ei . 

Comparing valuations we get v(b) = (53 — 1 = a3 — 1. Hence (^3 G na3(9c> \ (Ox + 
IP3+1 OD), as claimed. 

Case BS b): This case is similar to cases B2 a)-c). Again the valuation of the different 
is equal to 2 and a — 7r_1(l + j). Now 

ipoL<p3- L(p3 o cp2 • 'e2e3'ei . 

Writing Lip3 = a + ba and cp26 • 7r with S = (Bl + /32)/2 as in case B2 a), we get just 
as in that case 

26+1 • j -6(1 -urn'1) = 2Le2e3Le1 . 

Comparing valuations we get v(b) = j33 -f 1 = a3l which proves the assertion in this 
case. • 

A . 4 . Lemm a 1.9. — The proof of Lemma 1.9 for p / 2 was very easy. By contrast, 
the case p — 2 is quite elaborate and uses more information than used so far on the 
construction of an optimal basis. We go through all cases of the table 1. It turns out 
that in the passage from the type T of L to the type T' of L' a number of things can 
happen, as can be read off from the following table. 
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Table 2 

T y p e T Type T' 

A l a ^ ß 
a = ß 

B l 
B2 b) 

A2 A2 

B l ß2<ßs~2 

ß2=ßs~l 
ß2=ß3 

Bl 
B2 b) or c) 
A l or B2 a) 

B2 a) ft < ß2 

ßl=ß2 

B3 b) 
B2 b) or c) 

B2 b) ßx < ß2 

ßi = ßi 

B3 a) 
A2 

B2 c) ßx < ß2 

ßl = ß2 

B3 a) 
A2 

B3a) / 3 3 > Ä + 4 

ßs < ß2 + 4 

B3 a) 
B2 c) 

B3 b) ß3 > ß2 + 4 

ßs = ß2 + 3 
ß3 = ß2 + 2 

B3 b) 
B2 b) 
B2 a) 

The calculations exhibit in fact not only the type of T1 but also the precise normal 
form of T' from which one can then read off the Gross-Keating invariants of T'. In 
all cases, the assertion of Lemma 1.9 is confirmed. 
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Since these calculations in the 16 cases are quite tedious, we will sometimes be 
brief. 

Case Al: Here GK = (a,/3 + l,/3 + 1), and (^i, ^ 2 , ^ 3 ) = (e i ,e 2 , e 3 ) . Hence ^ 3 | e 3 , 
so 

T' = diag ( u ^ ^ - 1 
4 1 
1 0 

Since 

2 /3 - i '4 
1 

D 
1 

- d i a g ( 3 - 2 ^ 1 , 3 - 2 / 3 - 1 ) 

we obtain 

T'-
diag(?ii • 2 a , 3 • 2 ^ " \ 3 • 2f3~1) iîa^(3 

diag(3 • 2a~\3 • 2 ° - \ ̂  • 2 a ) if a = (3. 

Hence if a / ¡3, and since a = /3 mod 2, then T" is of type Bl and GK{T') = (a, ft — 
1,(3+1) as asserted. If a = (3, then T' is of type B2 b) and GK(T') = ( a - l , a , a + l ) , 
as asserted. 

The case A2 is entirely similar. 

Case Bl: In this case GK(T) = (Pi,/32,f3s + 2) and ( ^ 1 , ^ 2 , ^ 3 ) = (ei ,e2 ,ciei + 
C2e2 + 63) for suitable ci ,c 2 G Z 2 . If #2 < t h e n by [ Y l , proof of Lemma B.6], 
both coefficients c\ and c2 are divisible by 2. Hence L is generated by (ei ,e2, 1 

2 33 

Hence the matrix of 1/ in terms of this basis is 

T' = d iag( i i 1 2 / 3 l ,^ 2 2 / 3 2 ,^ 3 2 / 3 3 " 2 ) . 

So if (32 < Ps- 2, the type of T is Bl and GK(T') = (/?i,/?2,/%) as asserted. If 
/32 = P3- 1, then T' is of type B2 b) or c) and GK(T') = ( £1 , / ? 2 , £3) as asserted. 

If /?o = /fe, then by [ Y l , proof of Lemma B.61, we have 2 I c i . On the other hand, 
we have 2 I Co in this case, because otherwise the valuation of 1 5 ^ 3 ) would be 
/32 < a 3 — P2 + 2 which is impossible. Hence 1/ is generated by e i ,e 2 

1 
2 e 2 + e 3 ) . 

Consider the matrix defined by the basis e 2 
1 
2 

e 2 + 63) of the lattice V of rank 2 
generated by e 2 and 1 (e2 + e 3 ) , 

X7' 
ix22^2 

* 
c 2 i x 2 2 ^ - 1 

(c22u2 + u3) 2B2-2 

We determine when T' is diagonalizable by determining the valuations of the ideal 
in Z 2 , 

s{L') = 
1 

2 
L',L'\ resp. ra(L') = i c e i ' ) • 

Now 

ord s(L) = min{/?2, /? 2 - 1, ovd(c2u2 + 163) + (32 - 2} = (32 - 1 
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And 

ord n(L) = min{/32, P2,oià(c\u2 + u3) + (32 - 2} 

{ P2 — 1 if ^ 2 = ^ 3 mod 4 

/?2 if u2 = —us mod 4. 

Hence, by [ Y l , Prop. B.3], 

T'-
diag(?7i2^2 1,rj22^2 x) if w2 = 713 mod 4 

2 0 2 - i 2 

1 

1 

2, 
if 77 2 —7X3 mod 4. 

Here 771,772 G Z x . For the total matrix T' we get that if u2 = u3 mod 4, then 
V ~ diag (7I12^,7712^-1,7722^-1) is of type B2 a) and GK(T') = (Pi,P2,P2) as 
asserted. If u2 = —7X3 mod 4, then T' ~ diag \ u\l"x ,2r'2 2 

1 
1 

2 
is of type A l and 

GK(T) = (Pi, fo, P2) as asserted. 

Case £ 2 a): In this case Gi^(T) = (Pi, P2 + l, P2 + l) and (ibuib2,ib3) = (ex,Tex + 
e2, 27ei + 6 3 ) , where 7 = 1 

2 /82-/81). 
If 7 > 0, then 1/ is generated by the elements ei, e2, ^ 3 and it follows that T" = 

d iag^]^1 , 7 i32^2-2 ,7 i22^2) . Now by the anisotropy condition we have 

(-\,u2u3) = (uiu2,uiu3) , 

hence m = u3 mod 4. Therefore T' i softypeB3b) and GK(T') = (/3i,/32-l,/32 + l ) , 
as asserted. 

If 7 = 0, i.e., Pi = P2 = P3 =: P, then 1/ is generated by ei, e2, \ (e\ + 6 3 ) and has 
matrix with respect to this basis equal to 

r = 
ul2b 

* 
* 

0 
u22? 

* 

u22^ 
0 

(7X1+7i3)2^-2 

Now u\ = u3 mod 4, hence by an argument similar to the one used in the case 

BI when p2 = p3, the lattice generated by e\ 
1 
2 

6 1 + 6 3 ) is diagonalizable to 
diag(7/i2/3-1,7722/3-1). Hence V ~ diag(7/12^"\ rj22^-\ u22$) is of type B2 b) or c) 
and GK(T') = (P-l,P,P + 1), as asserted. 

Case B2 b): In this case GK(T) = (Pi,p2 + l,P2 + 2) and ( ^ 1 , ^ 2 , ^ 3 ) = ( e i , 2 ^ i + 
e2,27ei + e2 + 6 3 ) , with 7 = \(p2 - Pi). 

If 7 > 0, then V is generated by ei, e2. 1 
2 ' 

62 + 6 3 ) , and has matrix with respect to 
this basis equal to 

T' = 

 ¿l2/3l 

* 
* 

0 
u22^ 

* 

0 
no!?*-1 

(7i2 + 27i3)2^-2/ 
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By an argument similar to the one used in the case Bl when /32 = p3, we see that 
T ~ diag(?ii2/3l,7/i2/32-2,7/22/32+1), hence T is of type B3. We claim that T is of 
type B3 a), so that GK(T') = (/3i,/32,/32 + 1)? as asserted. But rji = —u2 = —u\ 

mod 4, whence the assertion. 
There still remains the case when 7 = 0, i.e., Pi = /32 =• P and Ps = /3 + 1. 

Then L' is generated by ei, e2, \ {e\ + e2 + e3). Let L' be the sublattice generated by 
/ 2 = \(ei + e2 + e3) and f3 = \{e2 - ex + e3). Then 

1 

2 : / 2 , / 2 ) = 
1 

2* 
/ 3 , / 3 ) = ^ i 2 ^ 2 + ^ - 2 + ^ - 1 

= (u1+u2 + 2u3)2ß-2 

= n-2^ 

Now 77 G ZX . Indeed, by the anisotropy condition we have 

(-l,u1u3)(2,uiu2) . 

It follows that if ui = ±u2 mod 8, then u\ = u3 mod 4 and if ui = ±3u2 mod 8, then 
u\ = —u3 mod 4. In either case u\ + u2 + 2ti3 ^ 0 mod 8. Similarly, 

1 

2 
; / 2 , / 3 ) = - ^ 2 ^ " 2 + ix22^-2 + ix32/3-1 = (u2 - Ul + 2iz3)2^2 

^ K ; ^ " 1 , with*; G Z * . 

Now an argument similar to the one used previously shows that the quadratic space 

1/ is equivalent to 2^_1(2 2 ) . The orthogonal complement of V in L ®z2 Q2 is the 

line 

(LY = Q2 • ( - 2 
^3 

u2 
e2 + e3) . 

Now V is generated by e\ + e2 and f2 and f3. Hence one easily calculates that 

(LY n L' = Z2 • / , 

where f — —2 
u2 

39 + e-x. Now 

1 

2 ( / , / ) = 
^3 
u2 

2 
2 ^ 2 + ^ + 1 = A - 2 ^ + 1 , AGZ2X . 

Hence Z2 • / + L' has valuation (/3 + 1) + 2(/3 — 1 ) , equal to the valuation of L'. 

Hence V = Z2f + V is equivalent to diag (A • 2^+1, 2/3~1 (2 * ) ) , is of type A2 and 

GK(T') = (/3, /3, /3 + 1 ) , as asserted. 

Case B2 c): Here GK(T) = (px,p2 + l,/32 + 2) and ( ^ 1 , ^ 2 , ^ 3 ) = (ei,27ei + e2 + 

e-*. 27ei + eo + 2e-A where 'Y = 1 
2 /32- /3i ) . 

When 7 > 0, this is similar to previous cases with L' generated by e\, \e2, e3. In this 

case V = diag(^12^,^22/32-2,7i32/32+1) is of type B3 a) and GK(T7)(/3i,/32,/32 + 1 ) , 

as asserted. 
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When 7 = 0, i.e.,fo = P2 =: P and P3 = P + 1, then L' is generated by ei, | ( e i + 
e2), e3. Now the quadratic space generated by e\ and \(e\ + e2) has matrix 

T7 = 
ulB2 

* 
ul2b-l 

( T X I + T Z 2 ) 2 ^ 

Now O i + 772)2^~2 = 77 • 2^ with 77 G Z2. By the usual argument V ~ 2/3~1 ' 2 
1 

1 and 
hence V ~ diag(7x32/3+1,2/3-1 2 

1 
1 
2 is of type A2 with GK(Tf) = (P,P,P + 1), as 

asserted. 

Case BS a): In this case GK(T) = (Pi, p2 + 2, p3) and ( ^ 1 , ^ 2 , ^ 3 ) = (ei, 27ei +e2, e3) 
WITH 7 = I ^ - f t ) . 

Now L7 is generated by ei, e2, ^e3 and has matrix T7 = diag^^^1, 7i22^2, u32^3~2). 

If p2 + 2 < /33 - 2, then T7 is of type B3 a) and GK(T) = (/3i,/32 + 2,/33 - 2), as 
asserted. Let p3 — 2 < p2 + 2. Since not all CK-invariants can have the same parity, 
we have pi = p2 mod 2. Hence p3 = P2 + 3, and T7 = diag(i7i2^, T/22^2, 7i32^2+1) is 
of type B2 c) and GK(Tf) = (Pi, p2 + 1, /?2 + 2), as asserted. 

Case 5 5 6); In this case GK(T) = (Pi, /32 + l, /33 + l) and OI,T/;2,^3) = (ei,2 
/3o-/3i 

2 ei-f 

e2,ciei + c2e2 + e3J tor suitable Ci,c2 G Ŝ2. In this case we need to extract more 

information about the coefficients ci,c2 from [ Y l , proof of Lemma B.8]. If p3 = Pi 

mod 2, then c\ = 2^^l and c2 = 0. Hence V is generated by ei,e2, ^e3, hence its 

matrix is V = diag(ui2^, u22^, u32^-2). If p3 - 2 > p2 + 2, then T7 is of type B3 

b) and GK(T') = (pi,p2 + 1, /33 - 1), as asserted. If /33 = /32 + 2, then T7 is of type 

B2 a) and GK(T') = ( A , # 2 + l,/33 - 1), as asserted. 
If p3 ^ pi mod 2, then by loc. cit., c\ — 2 

(3i - 1 
2 and c2 = 2 03-02-l 

2 Now 

p3 > P2 + 3, hence c\ and c2 are divisible by 2. Hence L7 is generated by ei, e2, \e3, 

and its matrix is V = d i a g ^ ^ 1 , u22^2, u32^~2). If p3 > p2 + 4, then T7 is of type 
B3 b) and GK(T') = (Pi,p2 + 1,P3 - 1), as asserted. If p3 = p2 + 3, then T7 is of 
type B2 b) and GK(T') = (pi,p2 + l,/33 - 1), as asserted. 

Lemma 1.9 is now proved in all cases. • 
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