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13. DEFORMATIONS OF ISOGENIES OF FORMAL GROUPS
by

Michael Rapoport

Abstract. — Let (f1, f2, f3) : E — E’ be a triple of isogenies between supersingular
elliptic curves over F,. We determine when the locus of deformation of (f1, fo, f3)
inside the universal deformation space of (E, E’) is an Artin scheme, and in this case
we give a formula for its length. These results are due to Gross and Keating.

Résumé (Déformations d’isogénies de groupes formels). — Soit (f1, f2, f3) : E — E’ un
triplet d’isogénies entre des courbes elliptiques supersingulieres sur IF‘,,A Nous donnons
un critére pour le lieu de déformation de (f1, f2, f3) dans I'espace de déformations
universel de (E, E’) d’étre un schéma artinien, et nous donnons dans ce cas une
formule pour sa longueur. Ces résultats sont dis a Gross et Keating.

Let A and A’ be abelian varieties of the same dimension n over Fp. The universal
deformation space M of the pair A, A’ is the formal spectrum of a power series ring in
2n? variables over W (TF,). Given an isogeny f : A — A’ one may pose the problem of
determining the maximal locus inside M, where f can be deformed. More generally,
given an r-tuple f1,..., fr of isogenies from A to A’, one may ask for the maximal
locus inside M where f, ..., f, deform. And, one may ask when this maximal locus
is the spectrum of a local Artin ring, and if so, to give a formula for its length.

These questions are very difficult and it even seems likely that no systematic an-
swers exist in general. In this chapter we consider the case n = 1, 7.e., when A and A’
are elliptic curves. More precisely, we present the solution due to Gross and Keating
[GK] to this problem when A and A’ are supersingular elliptic curves. Their proof
is a clever application of results on quasi-canonical liftings and their endomorphisms.
Unfortunately, some parts of their proof are not so easy to implement in the case
p = 2, which requires special attention. In fact, I only managed to deal with the case
p = 2 by making use of the classification of quadratic forms over Zs, comp. [B], and
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140 M. RAPOPORT

using a case-by-case analysis. Fortunately, S. Wewers afterwards found a uniform ar-
gument for this part of the proof which makes use of deeper properties of anisotropic
quadratic forms over Zs. This proof is presented in the next chapter. We decided to
present both proofs because the more pedestrian approach here gives insight into the
subtleties of the Gross-Keating invariants in the case p = 2.

Let us comment on the general problem above in another example, the case of
ordinary elliptic curves, comp. [Me2]. The case when A and A’ are ordinary elliptic
curves has been known for a long time and is part of the Serre-Tate theory of canonical
coordinates, comp. [Mes, Appendix]. Let A and A’ be ordinary elliptic curves and
fix isomorphisms

Alp>]*t = Qp/Zy, A'[p™]*" = Qp/Zy,
which then induce, via the canonical principal polarization, isomorphisms
A[POO]O = @mu A/[poo]O = @m-
The isogeny f: A — A’ determines
(Z()7 Zl) S Zf,

where f is given by multiplication by z; on the étale part and by multiplication by
2o on the connected part of A[p>]. On the other hand, we have

M = Spf W(EF,)[[t,t]

(Serre-Tate canonical coordinates). Then setting ¢ = 1+t, ¢’ = 1+, the locus inside
M where f deforms is defined by the equation

cf. [Mes, Appendix, 3.3], comp. also [Me2, Example 2.3]. On the other hand, it is
easy to see that, for any r-tuple of isogenies fi1,...,f, : A — A’, the locus where
fi,..., fr deform is never of finite length, comp. [Go2, proof of Prop. 3.2]. These
remarks show that already the case n = 1 in the above-mentioned general problem
defies a uniform solution.

I wish to thank I. Bouw, U. Gortz, Ch. Kaiser, S. Kudla, S. Wewers and Th. Zink
for their help in the preparation of this manuscript, and the referee for his remarks.

1. Statement of the result

Let £ and E’ be supersingular elliptic curves over ]Fp. Denoting by W the ring of
Witt vectors of F,, the ring
R =W/[t,t]

is the universal deformation ring of the pair E, E’. Let E,E’ be the universal de-
formation of E,E’ over R. Let fi1,fs,f3 : E — E’ be a triple of isogenies. The
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13. DEFORMATIONS OF ISOGENIES OF FORMAL GROUPS 141

locus inside Spf R to which fy, fo, f3 deform is a closed formal subscheme. Let
I =minimal ideal in R such that fi, fo, fa: E— E’ lift to isogenies E——E' (mod T).
The problem in this chapter is: Determine

alfi, fo, f3) = lgw R/

(in particular, determine when this length is finite).
This problem reduces to a problem on formal groups, as follows. Let I' = E resp.
I = ' be the formal group over R corresponding to E resp. E’. By the Serre-Tate

theorem we have

I =minimal ideal in R such that fi, fo, f3: E— E’ lift to isogenies I' —T" (mod I).
Now E and E’ can both be identified with the formal group G of dimension 1 and
height 2 over F,, (which is unique up to isomorphism). In this way f1, f2, f3 become
non-zero elements of End(G) = Op. Here D denotes the quaternion division algebra

over Q,.
On Hom(E, E’) we have the quadratic form induced by the canonical principal

polarization,
QUf)="fof=degf .
This Z-valued quadratic form is induced by the Z,-valued quadratic form
Qx)=x-‘x
under the inclusion Hom(E, E’) C End(G). Here @ +— ‘2 denotes the main involution
on D characterized by (reduced trace)
tr(z) =2+ 'z

We also write Q(xz) = Nm(z) (reduced norm).

Let L = Z;,f 1+ prg +Z, f3 be the Z,-submodule of Op, with the quadratic form
() obtained by restriction. Then

I = minimal ideal in R such that L C Homp,(I',T").

Assume that (L, Q) is non-degenerate, i.e., L is of rank 3. Then to (L, Q) are associ-
ated integers 0 < a; < as < ag, the Gross-Keating invariants. Recall ([B, section 2])
that if p # 2 these invariants are characterized by the fact that in a suitable basis
e1, ez, e3 of L the matrix T = %((ei, e;))i,; 1s equal to

(1.1) T = diag(ui1p®*, uzp™®, uzp™) with uy, ug, uz € Z;, .

Here (x,y) = Q(xz +y) — Q(x) — Q(y) is the bilinear form associated to the quadratic
form Q.
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142 M. RAPOPORT

Theorem 1.1. — The length of R/I is finite if and only if (L, Q) is non-degenerate.
In this case, 1gy, R/I only depends on the Gross-Keating invariants (ay, az,az) and
equals a(Q) where

ap—1 (ay+ax2—2)/2
a(Q) = Z (i + 1)(a1 + as + az — 3i)p’ + Z (a1 +1)(2a; + as + az — 4i)p’
1=0 i=ay
a; +1 5 .
+ il 5 (a3 — az + 1)])(“'1‘“'/2)/2, if a1 = a (mod 2)
a;—1 (ay+az2—1)/2
Q) = Z (i 4+ 1)(a1 + as + az — 3i)p" + z (a1 + 1)(2a1 + a2 + az — 4i)p’,
=0 i=ay
if a1 # az (mod 2)
Remark 1.2. — Recall from [B, Lemma 5.3] that, since (L, Q) is anisotropic, not all

ai, a2, as have the same parity. Hence the RHS of the formulas above is an integer in
all cases.

Remark 1.3. The formulas above imply that the length of R/I only depends on
the isomorphism class of the quadratic module L. This can be seen in an a prior: way
as follows.

First of all, there is an action of (D*)? on the universal deformation ring R, given
by changing the identification of the special fibers of I',T” with G, G by a pair of
automorphisms of G. More precisely, an element d € D* defines a quasi-isogeny

"od. Here Frob denotes the Frobenius endomorphism

of GG, as the composition Frob™
and v = v(d) is the valuation of d. Since this is a quasi-isogeny of height 0, it is an
automorphism of G. Note however, that this is only a semi-linear automorphism, and
therefore also the induced automorphism by (d, d2) € (D*)? on R is only semi-linear.

It follows that for (dy,dz) € (D*)? with v(d;) = v(dz), the length of the deforma-
tion ring R/ for L = Z, fi +Zp,f‘z +7Z, f4 is equal to the length of the deformation ring
R/I' for L' = Z,,f']’ —I—Z,,f'é + Z,,f}g , where fL’ = (llﬂd;l. Hence it suffices to show that
for any two isometric ternary lattices L and L’ in Op, there exists (dy,dy) € (D*)?
with v(dy) = v(dz) and L' = dlLdQ_I.

Fix a nondegenerate ternary form @) over Z,. We want to show that for any two
isometries 0,0’ from @Q to Op, there exists (dy,dz) € (D*)? as above with L' =
d; Ld.z_l, where L resp. L’ denotes the image of o, resp. ¢’. By [Wd1, Lemma 1.6],
we may identify SO(D, Nm) with the group

{(d1.d2) € (D*)* | Nm(d;) = Nm(d2)}/Q)"

By [Wd2, 1.3], the group SO(D, Nm) acts simply transitively on the set of isometries
o, hence there exists a unique (di,d2) € SO(D,Nm) with ¢’ = dladQ_l. The pair
(dy,dz) has the required properties.

To start the proof of Theorem 1.1, we first recall the following proposition.
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13. DEFORMATIONS OF ISOGENIES OF FORMAL GROUPS 143

Proposition 1.4. — Let ¢ € End(G) be an isogeny, i.e., 1 # 0. Let J be the minimal
ideal in R = W{t,t']] such that ¢ lifts to an isogeny I' — I'' (mod J). Then the closed
formal subscheme T of S = Spf R is a relative divisor over Spf W. In other words,
J is generated by an element which is neither a unit nor divisible by p.

Proof. This is the special case of [Ww1, Prop. 5.1], where (in the notation used
there) K = Q,. A different proof that 7 is a divisor is (at least implicitly) contained
in [Z, section 2.5]. O

Let us prove the first statement of Theorem 1.1. If (L, Q) is degenerate, then
L is generated by two elements. Hence the deformation locus is by Proposition 1.4
the intersection of two divisors on a regular 3-dimensional formal scheme and there-
fore cannot be of finite length. Now assume that (L, Q) is non-degencrate. Now
Hom(E, E') ® Z, = End(G), so we find isogenies f1, f2, f3 : E — E’ with Z,-span
equal to L. Let T = Spec W|t,t']]/J. Then fi, f2, f3 deform to isogenies from Er to
/.. Hence at any point ¢ of T' we have rg Hom(E;, E;) > 2, hence the elliptic curves
E; and E; are supersingular. Since supersingular points are isolated in the moduli
scheme, it follows that T is an Artin scheme, as was to be shown.

From now on we assume that (L, Q) is non-degenerate. Let 11,12, 13 be an optimal
basis of L. If p # 2, this means that the matrix of the bilinear form @ in terms of
this basis is diagonal as in (1.1).

Corollary 1.5. — Let T, C S be the locus, defined by the ideal I; in R, where v; lifts
to an isogeny T' — I'"(mod I;). Then

lew R/I = (T -T2 T3)s
Here on the RHS there appears the intersection product of divisors on a regular
scheme, defined by the Samuel multiplicity or via the Koszul complex of the equations

i of ['i7

x((g1, 92, 93)) = Z(—l)ilg(Hi(K-(91,g2,g3)))
(comp. [F, Ex. 7.1.2]).

Proof. — By our non-degeneracy assumption, the g; form a regular sequence in a
regular local ring. a

The corollary allows us to apply the intersection calculus of divisors on a regular
scheme. In particular, the RHS is multilinear in all three entries.

Theorem 1.1 will be proved by induction on a; + as + as. It will follow from the
following three propositions.

Proposition 1.6. — Let a3 < 1. Then

a(@)z{l el

2 CLQ:l.

Hence Theorem 1.1 holds true in this case.
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144 M. RAPOPORT

Proposition 1.7. — Let 13 = p - 4 with ¢4 € End(G). Then
(T T B3)s = (T - To- T3)s + (11 - To - Sp))s

Here T; (i = 1,2,3) resp. T{ denotes the deformation locus for 1; resp. ¢35 and S,y =
S xspt w Spf F, is the special fiber of S.

Proposition 1.8. — If ay = as(mod 2) then

ay—1 (a14az2—2)/2
(']'l - T 'S(p))S = Z 2(i + 1)p7? + Z 2(ar + 1)pi + (a1 + 1)p(a1+a2)/2
i=0 i:(ll

If a1 # az(mod 2) then

a;—1 . (a1+az2—1)/2 ,
(Ti T-Sp)s = Y, 20+ 1p'+ Y. 2(a+1)p
=0 i=ay

These propositions indeed imply Theorem 1.1. For this recall ([B, Cor. 5.8]) that
we can (and do) choose 3 such that v(¢3) = as. Here, as elsewhere, we denote
by v the valuation function on D. Now, if az > 1, then there exists ¢ € End(G)
with 13 = pus.

Lemma 1.9. — Let (¢1,12,13) be an optimal basis of the lattice L. Let th3 = py
with ¥4 € L and denote by L' the lattice generated by vn, 2, 15. Then the invariants
of L' are given in terms of the invariants (a1, az,a3) of L by

(a1, az,a3 —2)
(in some order so that they form a weakly increasing sequence).

This is obvious for p # 2 from the characterization in (1.1). For p = 2, the proof
is given in the appendix, using the classification of quadratic forms over Zs. An
alternative, more conceptual proof can be found in [B, Cor. 6.7].

Using this lemma, the above propositions give an inductive procedure for calculat-
ing (71 - 73 - T3)s. The formula in Theorem 1.1 follows from this calculation.

We now devote one section each to the proof of these three propositions. For
Propositions 1.6 and 1.7 the case p = 2 presents additional problems. In order not
to obscure the argument, the problems arising for p = 2 are relegated to the ap-
pendix to this chapter. In the chapter following this one, a variant of the proofs of
Propositions 1.6 and 1.7 is given which avoids any case-by-case considerations.

2. The induction start: Proposition 1.5

Since not all a; have the same parity, we have a; = 0. Hence 9/; is an automorphism
of G. Since I" is a universal deformation of G, the ideal I; in W{t,t']] defining the
deformation locus of ¢y is of the form I} = (¢’ — h(t)), for some h € W{t]. For I D I,
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13. DEFORMATIONS OF ISOGENIES OF FORMAL GROUPS 145

it follows that 1; lifts to an isogeny I' — I'' (mod I) if and only if “¢); o 4; lifts to an
endomorphism of I (mod I N W[t]]). Let
2 =" othy, p3 =" 0¢3 in End(G) .
We see that
Ti N T3 N T3 = locus in Spf W{t]] where @2 and @3 lift to endomorphisms of T

More precisely, for ¢ = 2 or ¢ = 3, let J; be the minimal ideal in W[t] such that ¢;
lifts to an endomorphism of I'(mod J;). Then 73 N 73 N 73 is isomorphic to the closed
formal subscheme of Spf W{t] defined by J2 + Js.

Now let p # 2. Then we have from the definition of an optimal basis

L

wi =—p; and Nm(p;) = ugu;p™ |, 1 =2,3 .

P23 = — P3p2 -
Let K = Qp(y/—uiugp®). Since ag < 1, we deduce from (2.1) that @2 generates the
ring of integers O. Hence I'(mod Js) is the canonical lifting of G relative to the

quadratic extension K of Q,, comp. [Ww1, Def. 3.1]. Applying the following lemma,
we obtain

(2.1)

p3 € I 0p \ (OK + Ha3+10D) s
with a3 = 1. Now applying [Ww1, Thm. 1.4], or [V], Thm. 2.1], we have

@l =1 ifay =0

s WE/(J2 + Ja) = {a32+ 1=2 ifay=1 0O

Remark 2.1. — The proof shows more generally Theorem 1.1 in the case where p # 2
and a; = 0: one appeals to [V], Thm. 2.1].

Lemma 2.2. — We allow p = 2. Let K be a quadratic extension of Q, contained in
D, which is unramified or tamely ramified. Let x € Op which anticommutes with K,
i.e., such that conjugation by x induces on K the non-trivial automorphism of K. Let
r=wv(x). Then

rell"Op \ (OK + HT_HOD)

Here II denotes a uniformizer of Op.
Proof. — We distinguish cases.

Case K/Qp, unramified. — In this case we can choose a uniformizer II of Op with
12 = p and anticommuting with K. Then

Op=0g® Ok -11

where the first summand commutes with K, and the second summand anticommutes
with K. Then
Ok +1I°Op = Ok @p[%]OK I
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146 M. RAPOPORT

Now if x anticommutes with K, then r = v(z) = 2t+1isodd and z ¢ O +1I""'Op =
Ok @pt+10K - I1.

Case K/Q,, tamely ramified. — In this case we can write Og = Zp[r| with T =u-p,
for u € Z;. Then

Op=0xk®O0k-j , j>=u eZI\L* ,
where the first summand commutes with K and the second summand anticommutes
with K. Then
Ok +1I°Op = O ®7°0Ok - j .

If z anticommutes with K, it lies in 7"Opf - j but not in 7" 1O - j, hence = ¢
OK+HT+10D=OK@T{'T+]OK~j. O

Remark 2.3. — In the case of wild ramification (p = 2) it can happen that x can be
corrected by an element of O to have higher valuation than r = v(x).

3. The induction step: Proposition 1.6.
It suffices to prove
(€ T)s=(C T5)s +(C-Sp))s
for every irreducible component C of 7; N 75. Let
J=minimal ideal in W{[t]] such that “t/y o ) lifts to an isogeny I' —T' (mod J)
J'=minimal ideal in W{[t']] such that 19 o “¢1 lifts to an isogeny I'' — I (mod J').
We have an obvious inclusion

TiNT < X = Spl (W[tl/D)ew (W(t']/J)

The proof of [Ww1l, Prop. 5.1] shows that J is generated by one element. Now
“ah1 01hs is not scalar. Hence the generator of J is not divisible by p, because otherwise
“4py 0 1hy would extend to the universal deformation of G over F,[t]], contradicting
[Vi, Thm. 1.1]. The same argument applies to J' instead of J. Hence all irreducible
components of X have dimension 1, and each irreducible component of 73 N 73 is also
an irreducible component of X. We now determine the irreducible components of X.

The endomorphisms ¢ = “1); 01hy and ¢’ = 1hy 0 “¢h1 generate quadratic extensions
K = Q,(p) resp. K' = Q,(¢') which are conjugate inside D.

Lemma 3.1. — The order Z,|p| in K has conductor [(a1 + az)/2].

Proof for p # 2. — In this case the fact that the v; form an optimal basis, i.e., diag-
onalize the bilinear form as in (1.1), implies that

ay+taz

tr(p) =0 , ¢* = —urugp
Hence Zylp] = Z, + p" Ok, with r = [(a1 + a2)/2]. O
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13. DEFORMATIONS OF ISOGENIES OF FORMAL GROUPS 147

We therefore obtain an equality of divisors on Spf W(t],

(a1 +az2)/2]
Spf W[t/ J= Y. Wile)
s=0

Here W5 () is the quasicanonical locus of level s, with respect to the embedding of K
in D defined by ¢. Hence Wq () is a reduced irreducible regular divisor such that the
pullback of T to Ws(p) has as its endomorphism algebra the order Os = Z,, + p*Ok
of conductor!) s in K. We may choose an identification

Walp) = Spf W, .

where Wy is the ring of integers in the ray class field extension M of the completion
M of the maximal unramified extension of K with norm group OJ.
Analogously we have

[(a1+a2)/2]
Spf Wt/ = > W)
s=0

We apply the following simple observation.

Lemma 3.2. — Let M be a discretely valued field. Let M C K C L be finite field
extensions such that K @y L = LMD (e.g. K/M Galois). For each field embedding
7 : K — L with 7|M = id, let I'; be the graph of the corresponding morphism
Spec O, — Spec Ok. Then

Spec Ok ®p,, O = UFT

Proof. — Obviously, the RHS is a closed subscheme of the LHS with identical generic
fibers. But the LHS is flat over Oy, hence is the closure of its generic fiber. O

Note that W, € Wy whenever r < s. The lemma implies that each irreducible
component of W,.(¢) N Ws(¢') is isomorphic to Spf W,,, where m = max{r, s}.
Hence each irreducible component of 7; 175 is isomorphic to Spf W for some s with
0<s< [((ll -I—(12>/2]

Proposition 3.3. — Let F,., Fs be quasi-canonical liftings of G of level v, s (with respect
to the quadratic extension K of Q) defined over the ring of integers O of a finite
extension of Frac W. Assume that 1,0y lift to isogenies F, — Fs over O. Let I
resp. I' be the minimal ideal in O such that s = py, resp. ¥4 lifts to an isogeny
F, — Fs(mod I) resp. F, — Fs(mod I'). Then I = pI’.

(U1t is more traditional to attribute the conductor p® to this order.
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Proof. — Perhaps replacing the isogenies by their duals, we may assume r < s. First
assume r = s. All quasi-canonical liftings of level r are conjugate under Gal(M, /M).
By [Ww1, Remark 3.3], there exists an isomorphism of the underlying formal groups
v Fs — F,
such that
poy=r7o¢
However, v is in general not an isomorphism of deformations of G, since v conjugates

the subfield K = Q,(¢) of D into the subfield K’ = Q,(¢’), hence v may be a
non-central element of D. Let

(3.1) u=Nm(y) € Z,
We set
pi=vyoy; € End(F,) , i=1,2,3 .
Then
pow,=w;op , =12 . O
Lemma 3.4. We have 2r < ag and 2r < as.
Proof for p # 2. — Since F, is a quasi-canonical lifting of level r, it suffices for the

first statement to show that the conductor of one of the orders Zy[¢1] resp. Zp[p2] is
at most as/2. Now v(y;) = a;. But ¢; is not traceless. Set

1 .
<P?=801:—§t1"(80i) , 1=1,2 .

Then ¢? is traceless and hence the conductor of Zy[p;] = Z,[¢?] is equal to [v(¢?)/2].
Hence it suffices to show

(3.2) v(p)) <asfori=1lori=2 .
We distinguish cases.
Case K/Q, unramified. — Then a, and as are even and
oi=Aph/? . N EOk L i=1,2 .
Then tr(g;) = (A + “\i)p®/? and
A= 50— )

Hence v(¢Y) = a; unless the residue class [A;] of A; lies in F),. But since the
diagonalize the bilinear form, we have

(3.3) Y1 09 = —“pg 0 Py

Hence not both [A\] and [A] can lie in F, whence the claim (3.2). Now if ag = 2r,
then 2r = as = a3. Hence a; would have to be odd, which is impossible.
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13. DEFORMATIONS OF ISOGENIES OF FORMAL GROUPS 149

Case K/Q, ramified. — Let m € Ok be a uniformizer with ‘r = —m. Let
o =N NeOg , i=1,2 .
Then
¢f = 5 (i = (=) - "A) ™
Hence v(¢?) = a; if a; is odd. Now the identity (3.3) implies
(=) Mg = —(=1)%2 - A"

Hence a; and ag have to have different parities which shows (3.2) in this case. Now if
az = 2r, then a; < 2r would have to be odd which contradicts 2r < ’u(go‘f) =a;. O

Lemma 3.5. — We have 3 € [10p \ (O + %=1 Op).

Proof for p # 2. — Again using that the v; diagonalize the bilinear form, we have
P3p = “pp3
Since v(p3) = ag, an application of Lemma 2.2 gives the result. O

We now apply [V1, Thm. 2.1]. Since a3 > 2r — 1, we are in the “stable range” of
that result. Hence [ is the n-th power of the maximal ideal of O, where

T 541
(3.4) n:Q‘I;)j'|O:W,.|+<a—3;———7')'|(’):W] .

Now v(¢4) = az — 2. Since a3 — 2 > 2r — 1, we are again in the stable range and the
ideal I’ is the n/-th power of the maximal ideal of O, where n' is given by (3.4) with
a3 replaced by as — 2. Hence n —n’ = |O : W|. This proves the proposition in the
case r = s.

To prove the general case, we use the following lemma. For the proof we refer to
[Ww1, Cor. 5.3]. Note that the element 71 appearing in the statement below has the
same valuation as a uniformizer of W11, by [Ww1, Cor. 4.8].

Lemma 3.6. — Let r < s and let F,, Fs and Fsy1 be quasi-canonical liftings of level
r, s, and s+ 1, all defined over O. Let w: Fy — Fsy1 be an isogeny of degree p defined
over O and write m in terms of a formal parameter

7r(X):7r1X+7T2X2+... , meO .

Let ¢ € End(G)\ {0} and let I(r,s) be the minimal ideal in O, such that v lifts to an
isogeny F, — Fy (mod I(r,s)). Let I(r,s + 1) be the minimal ideal in O, such that
wo lifts to an isogeny F,, — Fsy1 (mod I(r,s +1)). Then

I(r,s+ 1) =mI(r,s)
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|

The lemma shows that if the assertion of Proposition 3.3 holds for )y, s, 13,4} :

F, — Fj, it holds for mo ¢y, mo g, mo gy, mo 9y : F,. — Fyyq as well (note that

(11, %2,13) is an optimal basis of their Z,-span if and only if (7 o ¢, 7 0 s, w0 13)
is an optimal basis of their Z,-span). We note the following lemma.

Lemma 3.7. — Let r < s and let F,, Fs11 be quasi-canonical liftings of level v, s + 1
defined over O. Then all isogenies ¢ : F,. — Fsy1 factor through an isogeny Fy —
Fqyy of degree p, where Fs is a quasi-canonical lifting of level s.

Proof. — This follows from the proof of Prop. 1.1 in [Ww2]. After choosing suitable
isogenies from the canonical lifting to F;. and to Fs41, we may assume that the Tate
modules of F,. and F;, are of the form

T’r' - (Zp : p—r + OK) : t, Ts+l = (Zp . p—(SH) + OK) -t.
Let Fy be defined by Ts = (Z), - p~* + Ok ) - t. Then (loc. cit.),

Hom(F,, Fsi1) ={ a € Ok | aT, C Tsy1}
={aeOk|aT, CT, }
={ae€Okl|aTl.CTs}.

Therefore all isogenies F, — Fy ;1 factor through F, — Fj. O

Using the previous two lemmas we now prove Proposition 3.3 by induction on the
difference s — r. Indeed, the induction step from (r,s) to (r, s + 1) is obvious, except
in the case (@ when the result ’1;3 : F, — Fs of dividing ¢35 : F;, — Fsy1 by 7 is
not of the form 13 = pz/;g, for a suitable 1/3’; : I, — F,. However, in this case we
have a3 = v(t3) = 2 and hence r = s = 0 and v(¢4) = 0. In this case the ideal I’
describes the locus where the quasi-canonical lifting F is isomorphic to the canonical
lifting F. By [Wwl, Cor. 4.7], the ideal I’ is equal to the n-th power of the maximal
ideal of O, where n = e/e; with e the absolute ramification index of O, and e; the
absolute ramification index of Wi. By [V1, Thm. 2.1], the ideal 1(0,0) is equal to the
e-th power of the maximal ideal of O. On the other hand, the element m, occurring
in Lemma 3.5 has valuation e/e; in O, cf. [Ww1, Cor. 4.8]. Hence I(0,1) = pI’, as
required.

4. Intersection with S(,): Proposition 1.7.
For the proof of Proposition 1.8 we will make use of the Kummer congruence ([KM,

13.4.6]). We first recall the statement.

(D] thank S. Wewers for pointing out this possibility, which I had overlooked.
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We denote by M the moduli stack of elliptic curves over Spec F,,. For integers a,b
with @ > 0, b > 0 and a + b = n, we form the fiber product stack M, ,

MxM — MxM

|

Ta
M — M

Here A denotes the diagonal morphism and the upper horizontal morphism sends
(E,E') to (E®"), E'®")). Here we denoted by E®") the pullback of E under the
a*™ power of the Frobenius morphism. Then M, classifies pairs (E, E’) with an
isomorphism o : E®") 5 *®"),

We consider the moduli stack M,y over Spec T, classifying isogenies ¥ — E’ of
degree p" (in [Go2], this stack is denoted by 7, r,). We obtain a morphism

Pa,b - Ma,b i M(p’”)

It sends (E, E’, ) to the composition isogeny
g gt~ pre®) [FY g
@
Letting a, b vary we obtain a morphism

S@ . H Ma,b — M(pn)
a+b=n
a>0,b>0
Theorem 4.1 (KM, 13.4.6]). — The morphism ¢ is an isomorphism outside the su-
persingular locus. The inverse image of a supersingular geometric point x € M (]I_?p)
n M(pn)(]Fp) consists of precisely one point T and the completed local ring of T is
isomorphic to
_ a b
F[x,Y] / J[ x™ —v?)

a+b=n
a>0,b>0

in such a way that M, is defined by the equation X7 —y? =o. o

Recall the ideal I; in W[t] defining the divisors T;, for ¢ = 1,2. By the Kummer
congruence there exist for i = 1 and 2 uniformizers t; of F,[t] and ¢, of F,[[t'] and
generators g; of I; such that

gi = (b= (1)) - (87 = ()"
Hence 7; N S(y) is the union of irreducible components V;, (¢ = 0,1,...,a;), where
Vi, is the divisor in S(,) = Spf F,[t,¢']] defined by " — (/)" "". Hence

)~...-(tfai — %) (mod p)

ay az

(4.1) (Ti T2 Spy)s = D> Vip - Va)s

p=0rv=0
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We write
ta=u-t1 , ueF[t]"
th=u't, , o B[]
Lemma4.2. — Let a; = az(mod 2). Then u(0),v'(0) € Fpe and u(0) # u/(0)P"*.
Lemma 4.3. — We have
Vi Vo) =p"

with n = min{a; — p+v,as — v+ p}.

It is an elementary matter to use Lemma 4.3 to calculate the sum on the RHS
of (4.1). The result is Proposition 1.8.

Proof of Lemma 4.3 (assuming Lemma 4.2). We must show
(4.2) lg Byt ']/t — ()" ", (ut)?” = (u' - )Py = pn
By symmetry it suffices to consider the following two cases.
Case 1: p<ay—p,v<as—v
Case 2: p<ay—p, ax —v < v.
In case 1 the LHS of (4.2) is equal to

lg Byl /(6 — 7" Pt — (e

p[l,+l/ . lg Fp[[fl]]/(u, ) t,pal - (ult/)paz—%) (i) pyﬁ-u-’—min{al—2/1,,&2——21/} — pn.
Here in (1) we used the formula ([Go2, Lemma 4.2])
lgg B/xy .. .xp = Z lga B/z;

valid for any A-algebra B and non zero divisors z,...,2, in B. In (2) we used
Lemma 4.2 which implies that if a; —2u = as —2v, then u(0) # u’(())”aTzV =/ (0)P"*.

In case 2, the LHS of (4.2) is equal to
lg Fyllt, /(= ") ('t = (at)? ) =
prep Y dg Byl /(=P it — (ut)? ") =

- V—ag ay] — L v—a 3
P g B/t — ) B e,

2v—ag

Here in (3) we used Lemma 4.2: if a3 — 2p + 2v — ag = 0, then a3 = 2p and a2 = 2v
are both even and w/(0) # u(0)?"" "% = (0). a
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Proof of Lemma 4.2. — Let £ = (a2 — a1)/2. Let
I =minimal ideal in W{[t, '] such that p‘s; lifts to an isogeny I'—T"(mod I}).

By the Kummer congruence we can choose uniformizers ¢; of F,[[t] and ¢} of F,[t']
and a generator ¢gi of I{ with

gi= (=) (=) (@~ #)(mod p)

Now ¢y = a o (p'y)1), where a € Aut(G). By the universal property of I' there
exists a unique W-algebra homomorphism h : W[[t] — W] such that « lifts to an
isomorphism

a:T — he(I)
Hence I is generated by g5 with

a ag—1 a

(43) gy = (hlt) — ") (bt — 7)o ()™ — ) (mod p)
The two elements g and go differ by a unit and
(4.4) go = (ut; — (WE)P?) - ((u-t1)P — (Wt)P™ ). - ((ut)P”* —u/t})(mod p)

The first factor on the RHS of (4.4) is irreducible and can only divide the first factor
of the RHS of (4.3). Hence the first factors differ by a unit. Let

(4.5) h(t1) =v -t (mod p) with v e F,[t]" ,

ap—1

and put ¢ = v(0). Comparing coeflicients we obtain
e = u(0)/u'(0)P"* .

The remaining factors on the RHS of (4.4) are not irreducible: (ut;)?" — (u't})
is the p”-th power of an irreducible element, where v = min{y, az — p}. An analogous

pu 2—p

comparison of coefficients gives

an—2pu

¢ = u(0)/u’'(0)* , w=0,...,a2

It follows that u'(0) € F,2 and by symmetry «(0) € Fp.. It remains to show ¢ # 1.
Now c is the induced action of o on the tangent space of the universal deformation of
G over F,. And « is given in terms of the formal group law by

aX) =X +taX?+... | o EFP .
Then a; € F2 = Op/IOp is the residue class of a. By the lemma below, the action
of o on the tangent space of the universal deformation space is by multiplication by

ai/aq. Hence ¢ = aq/@;. But ay € Fp, and hence ¢ # 1. Indeed, otherwise for any
a € Z, with residue class a;; modulo p, we would have

(4.6) v(thy — ap®ipr) > v(3h2)

But the optimal basis 11, 99, 3 may be chosen so that s has maximal valuation in
its residue class modulo Z,:. Indeed, if p # 2, any optimal basis has this property
(otherwise an easy application of Hensel’s lemma would imply that L is isotropic).
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If p = 2, we take the optimal basis constructed in table 1 of the appendix. By
assumption a; = az(mod 2). Going through all cases in table 1, we see that this can
only happen in cases A2 and B3 a). In the case A2, we have v()1) > v(12) which
contradicts (4.6). In the case B3 a), we get

(2 — ap"hr, 2 — ap“tp1) = 2% (uy + uz +4 (a® — a) wy),

which has valuation as = v(y2) = 2 + 2, since in this case u; + ug = 4(mod 8). O

Remark 4.4. — In fact, even for p = 2, it is true that any optimal basis has the
property that 1, has maximal valuation in its residue class modulo Z,v,. This
follows from [B, Prop. 6.9].

Lemma4.5. — Let a« € OF = Aut(G), with action on Lie G given by (multiplica-
tion by) o € Fp2. The induced action of o on the tangent space of the universal
deformation space of G over F, is by multiplication by a;/d;.

Here we denote by x — & the non-trivial automorphism of F ..

Proof (comp. [Z, Lemma 78]). — The tangent space can be canonically identified
with

Hom(Lie ‘G, Lie G)
For ¢ € Hom(Lie *G, Lie G) we have

au(p) = a1 0 potar’

Identifying *G with G replaces ‘a; by the residue class of ‘a;, i.e., by a;. O

A. Appendix: The case p =2

In sections 2 and 3 we made the assumption p > 2. In this appendix we treat the
case p = 2. In this case one has to take into account the delicate theory of quadratic
forms over Zy. We will proceed according to the following table. The table gives

— the normal form of the quadratic space (L,Q) in terms of a suitable basis

e1, e, e3 (we give the matrix T' = (%(ei, ej)))s

— an optimal basis ¥y, Y3, Vs,

— the Gross-Keating invariants (ay, az,as) of (L, Q).

We go through all cases of anisotropic ternary lattices, according to the table in [Y1,
appendix B], comp. also [B, Thm. 5.7].
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Table 1

A) T = diag (u12%,2°(21)), @ >0,8> —1, « = f mod 2
(the condition o = # mod 2 is due to the anisotropy of 7', comp. [B, section 5]).
1) a <+ 1. Then ¢; = e, = ez,193 = ez and

GE(T)= (o, 8+ 1,8+1)
2) a> B+ 1. Then 91 = ez, 92 = e3,13 = e; and
GK(T)=(+1,8+1,q)

B) T = diag(u;12°%, 1222, u32%) with 0 < 81 < B2 < 3
This matrix is anisotropic if and only if

(—1,upus) = (urug, urus) - (2, urug) 9 - (2, uyug)? 02

cf. [Y2], or [B, section 5].
1) B2 # (1 mod 2. Then ¢ = eq, 12 = 2,93 = c1e1 + c2e2 + €3 for suitable
c1,Co € Zo, and

GK(T) = (B, 82,83 +2)

2) B = (1 mod 2 and (3 < B2 + 1. 4
a) B3 = (2. Then 9 = e1,¢y = 275 ey eg, 13 = 277 ey + e
and

GK(T) = (/617/82 + 1,ﬂ3 + 1)
b) B3 = B2+1 and w3 = ug mod 4. Then ¥ = e1,¢2 = 97257 -e1+ea,

Ba—B1

Y3 =272 -e +eg+ ez and

GK(T)= (81,82 + 1,85+ 1)

c) B3 =02+1and u; = —uz mod 4. Then ¢y = ey, P2 = 9725 -e1+
B2—h1

ex+es, P33 =272  -e1 + ez + 2e3 and
GK(T) = (B1,62+ 1,83+ 1)

3) B2 =1 mod 2 and B3 > (2 + 2.
a) u; = —ug mod 4. Then ¢ = e, P2 = 2[52;[11 -e1 + ez, 3 = ez and

GK(T) = (51,82 +2,03)

b) u; = ug mod 4. Then; = ey, Py =2
for suitable ¢y, ¢y € Zo, and

GK(T)= (61,2 +1,03+1) .

Ba—B1
7 -e1teq, YP3cier+coeates

SOCIETE MATHEMATIQUE DE FRANCE 2007



156 M. RAPOPORT

A.1. The induction start. — Let ag <1, i.e., a; = 0 and a3 = 1. We follow the
proof of Proposition 1.6 in each of the following cases.

. T = diag (11127 21 (i ;) ), hence GK(T) = (0,0,1) .

Then @y = “4hy 01Pa = ‘ez 0 €3 and
tr(p2) = (e2,e3) =1 and Nm(pg) =1 .

Hence K = Q2(p2) = Q2[X]/(X% — X + 1) is an unramified extension of Qo, and
Ok = Zs|p2). Therefore I'(mod J3) is a canonical lifting relative to K.
Now 3 = “4h1 0P = ‘ez 0 €1 and

tr(ps) =0 and Nm(ps) =u; -2 .
Furthermore
tr(p2 0 ‘p3) =tr(‘esoego‘egoer) = Q(ez) - tr(‘ezoer) = (er,e3) =0 .

Hence —p2 0 3 + w3 0wy = 0, i.e., @3 anticommutes with K. Since K/Qq is
unramified, an application of Lemma 2.2 gives

w3 € IIOp \ (OK + HQO]_)) .

Hence, applying [Ww1, Thm. 1.4],

1+1 3+1

which proves the claim in this case.

. T = diag (ul, <? ;) ) , hence GK = (0,1,1) .

Then o = “1p1 0 1hy = ‘e; 0 ea and
tr(p2) = (e1,e2) =0 and Nm(p2) =u; -2 .

Hence K = Qa(p2) = Q2[X]/(X? + u12) is a ramified extension of Qy, and Ok =
Zs|p2]. Therefore I'(mod J3) is a canonical lifting relative to K.
Now @3 = “1h1 013 = “e; o e3 and

tr(ps) =0 and Nm(pz) =ug-2 .
Furthermore
tr(gpo 0 ‘pz) =tr(*egoeroe;oes) =uy - (e2,e3) =ug -2 .
Hence
(A.1.1) 02003+ 93003 = —up -2 .

We use the presentation of D resp. Op from [G, Prop. 4.3]. Namely, assume that
the different D of K/Q; has valuation equal to e. Then

(A.1.2) D=K&oK-j,
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where j anticommutes with K and where j2 € Z5 satisfies v(j2 — 1) = 2(e — 1). Let
7 be a uniformizer in K. Then o :=772(1 + j) € OF and

(A.1.3) Op=0g®0Or - .
In the case at hand the extension K/Q, is wildly ramified, with different D of valuation
e = 3. Hence v(j? — 1) = 4. As uniformizer 7 we take @s.
Write ¢3 = a + ba. Then
P2 03 + p3 0 ps = (am + brar) + (am + ba)
= (am + bt + b)) + (am + bt —brty)
=2 (amr+brt) .
Comparing with (A.1.1) we get
ar +br ! = —uy
Hence v(b) = 1, i.c., p3 € IOp \ (O + I12Op). Applying [Ww1, Thm. 1.4], we
obtain
lg W[t] /(J2+J5) =1+1=2=az+a3 ,
which proves the claim in this case.
° T = diag(uy, uz,u3z) , hence GK(T) = (0,1,1) .
Then o = “4hy 0 by = ey 0 (€1 + €2) = “e; 0o ex + uy - 1, hence
tr(pe) =u1 -2 , Nm(ps)=us-(us+u1) .

Hence K = Q2(p2) = Q2[X]/(X?% —2u1 X +uy - (ug + u1)). Since T is anisotropic we
have uy + u; = 2 mod 4. Hence we are dealing with an Eisenstein polynomial and
Ok = Zs[pa].

Now 3 = “1p1otp3 = ‘ejo(e1+e3) = “ejoes+uy-1. At this point it is advantageous
to consider instead of 3 the endomorphism ¢4 = ‘ej oes. It is obvious that the locus
where ¢y and @3 deform is the same as the locus where o and ¢§ deform. Now

tr(ph) = (e1,e3) =0 and Nm(ps) = ujug .

Furthermore
tr(“wg 0 @3) = tr(“(e1 + ea) 0 €1 0 ‘e 0 e3)
=uy - ((e1,e3) + (e, e3))
=0 .
Hence

‘p2005 —Piopr =0 .
Hence ¢4 anticommutes with K. Writing, as in the previous case, D = K & K - j we
have
Op=0g®0k -
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Here o = 7= 1(1 + j) € Op. Indeed, T = 3 is a uniformizer for K and the different
D has valuation e = 2. Writing ¢4 = a + ba we get

a+ba=(a+brt)y+br '

Hence a + br~! = 0. Since ¢} € OF it follows that the valuation of b is equal to 1,
hence

cpg e I1Op \ (OK + HzOD) .

Applying now [Ww1l, Thm. 1.4], we get
lg W[t]/(Ja+J3) =1+1=az+as ,

which proves the claim in this case. The induction start is now complete.

A.2. The induction step: Lemma 3.1. — In this section we prove Lemma 3.1.
We go through all cases of the table.

Case A1: Here tr(p) = 0 and Nm(yp) = up - 20H°+1,
Since a + B+ 1 is odd, we get K = Qa(v/~u12) and O = Za[\/—u;2] and, since

a+p3 a4+

o =27 -m where 7 = y/—u;2 is a uniformizer, Zs[p]Z> + 272 - Og. Hence the
(Y_‘Fﬂ . I:a+(/3+l):| _ I:(l]-l-(l,g:l
2 = 2 2 -

conductor of Zs[p] is equal to

Case A2: Here tr(p) = 29! and Nm(yp) = 2203+,

Hence K = Q2[X]/(X? — X + 1) is an unramified extension and Ox = Z[¢],
where ¢ is the residue class of X. Then ¢ = 28%! . ¢ and Za[p] = Zo + 2°+! - Ok has
conductor 4+ 1 = [(ﬁ“);r(ﬁﬂ)} [afez],

Case B1: Here tr(¢) = 0 and Nm(yp) = ujus - 281+02
Since £ + (2 is odd, we have K = Qq(v/—uju22) and Ok = Za[v/—ujus2]. Now

B1+B2—-1

Zaolp) =Zo+ 2~ 2 - Ok has conductor ﬂ‘+§2_1 = [ﬂ‘;[b} = [“1'2"‘1‘2].

B1+B82

Case B2 a): Here tr(p) = u; -27 = -1 and Nm(p)u; - 290752 (ug + ug).
Now by the anisotropy condition on 7" we have u; + us = 2 mod 4, hence K =
Q2[X]/(X?% - 2u1 X + ui(uy + ugz)) is defined by an Eisenstein polynomial and Ok =

B1+B2

Zso|m], where 7 denotes the residue class of X. Then 9272 -7 and Zso[p] = Zy +
9275 . Ok has conductor ok o [51“[232*1)} = [eafaz],

Case B2 b): This is identical with the previous case.
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B1+82

Case B2 c): Here tr(¢) = u1-27 2 1 and Nm(p)u? - 251702 4 qyuy - 281102 gy -
201+83441 201482 (Qu3 + ug + uy).

Hence K = Q2[X]/(X? — 2u1 X + uq - (2uz + ug + u1)), which is defined by an
Eisenstein equation since u; + us = 0 mod 4. Hence Ok = Zy[r], where 7 is the
residue class of X and ¢ = 9752 1 and Zolp] = Zoy + 952 Ox has conductor

B1+062 [ﬁ1+ﬁ2+1} _ [a1+a2]
2 2 2 :

B1+82

Case B3 a): Here tr(¢) =272 ~+1.u; and Nmp = 200552y (uy + o).

Hence K = Qo[X]/(X? — 2u; X + uy - (u; + u2)). Now since 7' is anisotropic, it
follows that u; + us = 4 mod 8. Hence writing u; + ue = 4n with n € Z; , we have
K = Qa[X1]/(X? —u1 X1 +u1n). Hence K/Qy is unramified and Ok = Zy[€], where &
denotes the residue class of X;. Now ¢ = 2‘31;/12 +t1.¢ and Zy [p] = Za+ QWH Ok
ﬁl‘;ﬁ‘z + 1/31‘*'(/2324‘2) _ [(1'1'511'2].

has conductor

Case B3 b): Here the trace and norm are as in the previous case, but this time
K = Qa[X]/(X? = 2u1 X + uy - (w3 + uz)) is defined by an Eisenstein polynomial.

Hence Ok = Za[r] where 7 is the residue class of X and ¢ = 25 1 and Z, [¢] =

3, +8: ) -
Zo + 97 - Ok has conductor ﬁl;m ﬁﬁ'(gﬁl) = [‘“;“2].

This proves the assertion in all cases. O

By symmetry we also obtain that ¢’ = 1 o “4); generates an order of conductor
[—‘“;“2] in K'.

A.3. The induction step: Lemmas 3.4 and 3.5. — We first prove Lemma 3.4.
We go through all cases, making use of the results in section A.2. Again we wish to
bound the conductors of the orders Zs[p1] resp. Za[ps].

Case Al: Here K = Q2(v/—u12) and Ok = Zo[r] with 7 = /—u;2. Then ‘7 = —7
and thereby this case is like the ramified case for p # 2. We have

O =2y O Zom R

the decomposition into traceful and traceless elements. In particular, tr(Ok) C 2-Zs.
Let

o 1 .
g@i:goi—itr(goi) , 1=1,2 .
Then Zs[;] = Zs[7] has conductor £ (v(¢§) — 1). Let
gDi:)\i‘Wai s /\ZGOIX(

Then
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Writing A; = a + br we have a € Z; and

i+ = 2a

Ai — N =2bm .
Hence v(¢7) = a; if a; is odd and v(pf) > a; if a; is even. Now according to our
table, a; and ay have different parity which implies that r < (az — 1)/2. This shows

the result in this case.

Case A2: Here K = Q2[X]/(X? — X + 1) and OgZsy[€], where € is the residue class
of X. In this case, Zs[p;] = Ok or tr(y;) € 2Zo. In the first case r = 0 and the claim
is obvious. Now let tr(yp;) € 2Z, for i = 1 and ¢ = 2, and consider
o 1
T COR
Then writing ¢ = a + b€ we have 0 = tr(¢y) = 2a +b. Hence ¢ = a- (1 — 2§)
and v(¢7) = v(a) = v(b) — 2. The conductor of Zs[p;] = Za[¢3] is equal to Lv(b) =
30(¢9) + 1. Now
i =N 242 N\ €0

1
o7 =5 =) 22
Hence v(¢?) = a;—2 if the residue class [A;] of A; lies in Fy\F3, and is larger otherwise.
Hence if [\;] € F4 \ Fo, then r < &, hence 2r < as.
But not both [A1], [A2] can lie in Fy. Indeed,
P10y = "Ny Mg 20 TAR)/2 =Xy Ny 20!

On the other hand ‘¢ o o = u - ¢, where u € Z is as in (3.1), and where ¢ is as
in the previous section. Now ¢ = 29t1¢. Taking the residues modulo 2°+!, we prove
the claim.

Now assume 2r = ao = a3. Then a1 < 2r has to be odd, which contradicts the fact
that a; = as =+ 1.

Case B1: Here K = Qa(v/—ujue2) and O = Zso[r), with m = /—uju22. This case

is completely analogous to case Al.

Case B2 a): Here K = Q2[X]/(X?% — 2u1 X +uy - (u1 + uz)) and Ok = Za[r] where

7 denotes the residue class of X. Then 7 is a uniformizer satisfying an Eisenstein

equation. Hence tr(Of) C 2Z;. We again consider ¢} = ¢; — 5 tr(¢;). Then writing

0 = a+ br we have 0 = tr(¢]) = 2a + 2bu; = 2(a + buy). Hence ¢ =b- (—u; +7)

and v(¢¢) = v(b). The conductor of Zs[p;] = Zs[f] is equal to $v(b) = Lv(¢). Now
Lpi:)\Z”Tl'ai s )\iEOIX( .

Let us write

2uy —m=n-7 , ne 0k
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Then n =1+ n -7 with g € O. We have
tr(pi) = A - 4N - (pm)®
= (A + A -
Hence
@; = % (A = Ain®) -
Let A; =1+ [\] -7 (mod 72). Then ‘\; = 1 — [Ai]m (mod 72). If a; is odd, we get
i — A% = (14 [(N]m) — (1= [Ni]m) - (1 + mm)(mod 72)
= -7 (mod 72) .

Hence in this case v(¢f) = a; — 1. We get r < %(a,; —1). Since ay or ay are odd, we
obtain the assertion.

Cases B2 b) and ¢): These cases are identical to the previous one.

Case B3 a): In this case K = Qq[X]/(X? — u1 X + u1n), for some n € Z. Hence
K/Q is unramified and Ok = Z3[€], where £ is the residue class of X. This case
is similar and almost identical to case A2). If tr(p;) & 2Zo, then Zs[p;] = Ok and
r = 0 and the claim is obvious. If tr(p;) € 2Z, for ¢ = 1 and ¢ = 2, we consider
again ¢; = @; — %tr(gpi). Writing ¢f = a + b§ we get 0 = tr(pf) = 2a + bu;. Hence
©° = a(l —2u; '¢) and v(¢?) = v(a) = v(b) — 2. The conductor of Zs[p;] = Za[p?] is
equal to $v(b) = Sv(¢?) + 1. Now

i = Aj- 20""/2 , A € O;;-
o 1 a;
pi =5 =) -2 i

Hence v(pg) = a,; —2 if the residue class [A;] of A; lies in Fy\Fo, and is larger otherwise.
If [\;] € Fq\ Fa, then r < a;/2, hence 2r < az. But not both [A], [A2] can lie in Fa.
Indeed,

B1+82 41

Loy oy =M Ay - 2(0Fa2)/2 — N, 2T Biisa g

=u-py=u-2" 2 £ .

. . B1+8 .
Taking the residue modulo 272 -1 we get the claim.

Now assume 2r = as = a3z. Then a; < 27 has to be odd which contradicts the

condition that a; = 31 has to have the same parity as 82 + 2 = ay = 2r.

Case B3 b): This is again identical to cases B2 a)—c).
The Lemma 3.4 is proved. O

We now turn to the proof of Lemma 3.5. Again we inspect the various cases.

Case A1: We write D = K ® K - j as in (A.1.2) in section A.1, where j anticommutes
with K and where j2 € Z5 satisfies v(j2 — 1) = 2(e — 1), where the different D has
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valuation e. Then Op = Ok ® Ok - b, where o = w—(€=1) . (1+75) € OF, cf. (A.1.3).
In the case at hand e = 3, hence a = 772(1 + j). Now
(A.3.1) 0o tps + Loz 0 2Pt tg,
where €; = vy o e;. This follows from ¢ = “4); o 19 and the definitions ey, o = es,
13 = e3. Now writing ‘o3 = a + ba for suitable a,b € Ok and writing ¢ = 2% - 7 with
§ = 1(a+ ), we get from (A.3.1)

2° . w(a+ba) + (a + ba) - 22728+ . gy

i.e., 22 (am + br~1) = 20F1 .46, hence
B—a

(A.3.2) b=2"7 -‘é;m — an?

Now v(*€1) = «, hence the first summand of the RHS of (A.3.2) has valuation 5 + 1.
Since v(p3) = B+ 1, it follows v(b) = 5+ 1 = ag, which proves the claim in this case.

Case A2: Here we write Op = O ® O -II where II? = 2 and where I anticommutes
with K. In this case we have

B+ vy

po 3+ “pz0p2 €1

Writing ‘@3 = a + bIl and @2+ . ¢ we obtain
2[34—1(2(1‘5 + b(f + Lé—) . H) — 2/ﬁ+l . Lél
i.€.,
2(15 +0ll = L6~1
Now v(*é1) = v(*¢3) = «. This implies v(bII) = «, hence @3 € TI**Op \ (Ox +
Ies+10p), since az = a.
Case B1: This case is similar to case Al, except that the identity (A.3.1) is replaced
by
polpz+ pzop2-‘ézop .
Now ¢ = 207 with § = (8 + f2)/2. Writing as in case Al) ‘@3 = a + ba, where
a=n"2(1+j), we get
2 (am + bty = 20F ey
i.e.,
b="'ésm% —an? .
Now the first summand of the RHS has valuation 3 + 2 and U((;f-;) = (33 + 2. Hence
v(b) = B3 + 2, which proves the claim, since (3 + 2 = as.
Case B2 a): In this case the valuation of the different is equal to 2 and hence o =
7=t (1+j). Now
pops —p30p2-‘egesiey
Writing ‘@3 = a 4+ ba and ¢ = 207 with § = (81 + (2)/2, we get
(A.3.3) 20(((ma 4+ b) + bj) — ((ra +b) + br = - “7j)) = 2 - “ezez'é;
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Therefore, since ‘m = 2u; — m,

25+1j -b- (]. — u171'_1) =2 L€2€3Lél

Comparing valuations we obtain v(b) = 3 + 1 = a3, which proves the assertion in
this case.

Case B2 b): Here again a = 7~ !(1 + j), and the same equation (A.3.3) holds. The
case is identical with the previous case.

Case B2 c): The same again.

Case B3 a): This case is similar to case A2. We write Op = Og ® Ok -1I as in that
case. Now

po'ps —‘pzop=—2 ‘ezer’es
We write ‘@3 = a+bIl and ¢ = 29-¢ where § = W—H and ¢ satisfies €2 —u1E+uin =
0 for some n € Z. Then
20 ((ag + bEI) — (ag + b ‘D) — 2+ "ezex'éy
Now & — € = 26 — u, hence
20010 (26 —uy) = —2 - ‘esen'és

Comparing valuations we get v(b) = 83 — 1 = ag — 1. Hence 3 € II*30p \ (Ok +
%+ Op), as claimed.

Case B3 b): This case is similar to cases B2 a)—c). Again the valuation of the different
is equal to 2 and a = 771(1 + j). Now

@ o LSOS _ ’/303 o 302 . L82€3Lé1
Writing ‘@3 = a + ba and ¢2° - 7 with § = (81 + 2)/2 as in case B2 a), we get just
as in that case
26+1 ] . b(l — U17T_1) = 21’62631'(‘3‘1

Comparing valuations we get v(b) = 3 + 1 = a3, which proves the assertion in this
case. O

A.4. Lemma 1.9. — The proof of Lemma 1.9 for p # 2 was very easy. By contrast,
the case p = 2 is quite elaborate and uses more information than used so far on the
construction of an optimal basis. We go through all cases of the table 1. It turns out
that in the passage from the type T of L to the type T” of L’ a number of things can
happen, as can be read off from the following table.
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Table 2
Type T Type T’
Al a#p B1
a=0 B2 b)
A2 A2
Bl [y <B33-2 Bl
Pa=p03—1 B2 b) or ¢)
Bo = (33 Al or B2 a)
B2a) (i< fs B3 b)
B1 =5 B2 b) or c)
B2b) () < 3 B3 a)
B1 = P A2
B2 C) b1 < Ba B3 a)
B = P2 A2
B3a) f(3>p2+4 | B3a)
Bs<fh+4 | B2c)
B3b) fB3>p2+4 | B3b)
Bs=p2+3 | B2Db)
B3 = P2+ 2 B2 d.)

The calculations exhibit in fact not only the type of T” but also the precise normal
form of T” from which one can then read off the Gross-Keating invariants of 77. In
all cases, the assertion of Lemma 1.9 is confirmed.
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Since these calculations in the 16 cases are quite tedious, we will sometimes be
brief.

Case Al: Here GK = (o, 8+ 1,8+ 1), and (¢1,%2,¢3) = (e1, ez, e3). Hence wg%eg,

SO
4 1
T' = diag <u12°‘, 96-1 )
1 1
Since
g1 (41 . oB—1 o of—1
2 11 ~ diag(3-277°,3-2777)
we obtain

7 diag(u; -2,3-2071,3.2071) ifa#4
diag(3-2°971,3.297L uy - 29) if a = 4.

Hence if a # 3, and since o = 3 mod 2, then T" is of type Bl and GK(T") = (o, 8 —
1,8+1) as asserted. If « = 3, then T" is of type B2 b) and GK(T") = (a—1, o, e +1),
as asserted.

The case A2 is entirely similar.

Case B1: In this case GK(T) = (1,032,085 + 2) and (¢1,92,13) = (e1,ea,cre1 +
coeo + e3) for suitable ¢1,co € Zo. If B2 < 3, then by [Y1, proof of Lemma B.6],
both coefficients ¢; and ¢ are divisible by 2. Hence L’ is generated by (ey, ez, %63).
Hence the matrix of L’ in terms of this basis is

T' = diag(u1 2%, 122 ug2%72) .

So if By < B3 — 2, the type of T" is B1 and GK(T") = (b1, 02, 03) as asserted. If
B2 = 3 — 1, then T” is of type B2 b) or ¢) and GK(T") = (81, B2, 33) as asserted.

If B2 = B3, then by [Y1, proof of Lemma B.6], we have 2 | ¢;. On the other hand,
we have 2 f ¢o in this case, because otherwise the valuation of %(’l/)g, ¥3) would be
B2 < a3 = f2 + 2 which is impossible. Hence L’ is generated by ey, es, %(62 + e3).
Consider the matrix defined by the basis es, %(62 + e3) of the lattice L' of rank 2
generated by es and %((52 + e3),

T, U22ﬂ2 CQUQQﬂz_l
* (C%UQ + U3)2ﬁ2_2
We determine when 7" is diagonalizable by determining the valuations of the ideals
in ZQ,
- 1 ~ - - -
s(L') = §(L’,L'), resp. n(L') = (Q(z), z € L") .
Now

ord s(L) = min{fa, B2 — 1, ord(caug + uz) + B2 — 2} =062 —1 .
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And
ord n(L) = min{ By, B2, ord(cius + uz) + fo — 2}
B {[52 —1 if us = uz mod 4

o2 if us = —us3 mod 4.

Hence, by [Y1, Prop. B.3],

diag(m 2P2-1 7/22"2_1) if uy = uz mod 4

T ~ 2 1
9B2—1 (1 ) if uo = —us3 mod 4.

Here 1y,m5 € Z*. For the total matrix 77 we get that if us = wusz mod 4, then
T' ~ diag(u; 2% 17,2271 19920271) is of type B2 a) and GK(T') = (B, B2, 32) as
asserted. If up = —ug mod 4, then 77 ~ diag (u;2°,2%271(2 1)) is of type Al and
GK(T') = (f1, B2, B2) as asserted.

Case B2 a): In this case GK(T) = (f1, f2+1, 02+1) and (1,12, 13) = (e1,27e1+
€2,2%ey + e3), where v = %([32 - f1).

If v > 0, then L’ is generated by the elements ey, e, %(’33 and it follows that 7' =
diag(u12°", u32%2=2 152%). Now by the anisotropy condition we have

(=1, ugug) = (uruz, uruz) ,
hence u; = uz mod 4. Therefore T is of type B3 b) and GK (T") = (81,82 —1, f2+1),
as asserted.
Ify=0, i.e., 81 = P2 = 33 =: 3, then L’ is generated by ey, s, %(61 + e3) and has
matrix with respect to this basis equal to

up 2P 0 w201
T = * w28 0
* * (uy + ug)2°~2
Now w1 = uz mod 4, hence by an argument similar to the one used in the case

Bl when (s = (3, the lattice generated by e, %(el + e3) is diagonalizable to
diag(n;12°~1,1722°71). Hence T" ~ diag(m2°~1, 122071 uy2) is of type B2 b) or c)
and GK(T') = (8 —1,3,8+ 1), as asserted.

Case B2 b): In this case GK(T) = (81, B2+ 1,82 + 2) and (91, 92,93) = (e1,27e1 +
62,2761 + e + 63), with Y= %(ﬁz — ﬁl)

If v > 0, then L’ is generated by ey, e, %((32 + e3), and has matrix with respect to
this basis equal to

w2’ 0 0
T = * ug2P2 up2P2 -1
* * (ug + 2u3)2%2 2
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By an argument similar to the one used in the case B1 when (2 = 33, we see that
T’ ~ diag(u20v, 17127272 15202+ hence T' is of type B3. We claim that 7" is of
type B3 a), so that GK(T") = (51,082,062 + 1), as asserted. But n, = —us = —uy
mod 4, whence the assertion.

There still remains the case when v = 0, i.e, f; = f2 =: B and 83 = 3 + 1.
Then L' is generated by ey, s, %(cl +ea+e3). Let L’ be the sublattice generated by
fo= %(61 + ez +e3) and f3 = %(62 — ey + e3). Then

%(.f27f2) = %(f?,,f:s) = 1277 4 2P 72 2P
= (uy + ug + 2u3)2°~?2
=72

Now 7 € Z*. Indeed, by the anisotropy condition we have
(=1, uru3)(2, uusg)

It follows that if u; = +us mod 8, then uy = u3 mod 4 and if u; = +3us mod 8, then
u1 = —ug mod 4. In either case u; + us + 2us # 0 mod 8. Similarly,

1, . _ _ _ -

5(]‘2,]‘3) = w2772 402072 2%t = (ug — uy + 2u3)2° 72

=x-2°71 | with k € ZJ

Now an argument similar to the one used previously shows that the quadratic space
L’ is equivalent to 2°71(%4). The orthogonal complement of L' in L ®z, Q, is the
line

(L)Y =Q.- (_2u_3€2 + e3)
u

Now L’ is generated by e + ey and fo and f3. Hence one easily calculates that
(LY nL =27y f

where f = —25%’262 + e3. Now
1 us )\ 2
S = (i) 2042 L yg20tt — N 28 N ez

Hence Zy - f + L' has valuation (8 + 1) + 2(8 — 1), equal to the valuation of L.
Hence L' = Zof + L' is equivalent to diag (A - 2°+1,2671(21)), is of type A2 and
GK(T') = (8,8,8 + 1), as asserted.

Case B2 ¢): Here GK(T) = (01,02 + 1,02 + 2) and (¢1,¢2,193) = (e1,2%e1 + e +
es,2%e1 + es + 2e3), where v = %(52 - 0).

When v > 0, this is similar to previous cases with L’ generated by eq, %62, e3. In this
case T' = diag(u12%, up2”272 u32%2+1) is of type B3 a) and GK(T")(B1, B2, B2 + 1),
as asserted.
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When v =0, i.e.,f; = o =: 3 and B3 = § + 1, then L’ is generated by e, %(61 +
€2),e3. Now the quadratic space generated by e; and %(61 + e3) has matrix

7:, . U12’3 71,126_1
U (ug up)282

Now (u1 + u2)2772 = - 27 with n € Z,. By the usual argument 7" ~ 2°~1(%1) and
hence T ~ diag (u32?t!,2°71(21)) is of type A2 with GK(T") = (8,3, + 1), as
asserted.

Case B3 a): In this case GK(T) = (01, f2+2, 83) and (Y1, %9, 13) = (e1,27e1 +€2, €3)
with v = (82 — B1).

Now L' is generated by ey, e, %(23 and has matrix 7" = diag(u; 2%, u527, 71,32/33_2).
If B +2 < B3 — 2, then T” is of type B3 a) and GK(T") = (01,02 + 2,33 — 2), as
asserted. Let 3 —2 < 32 + 2. Since not all GK-invariants can have the same parity,
we have ) # 2 mod 2. Hence 33 = 2 + 3, and T" = diag(u;2”, ug2%2, u3272+1) is
of type B2 ¢) and GK(T") = (81, B2 + 1, B2 + 2), as asserted.

Bo—B1

Case B3 b): In this case GK(T) = (01, f2+1, B3+1) and (1,92, 13) = (e1,27 2 e1+
€2, c1€1 + caea + e3) for suitable ¢y, ¢y € Zo. In this case we need to extract more
information about the coefficients ¢1, ¢ from [Y1, proof of Lemma B.8]. If 83 = 3,
mod 2, then ¢; = 975 and ¢y = 0. Hence L’ is generated by eq, e, %(23, hence its
matrix is 77 = diag(u12%, 272, u32%372). If B3 — 2 > By + 2, then T" is of type B3
b) and GK(T') = (81,02 + 1,83 — 1), as asserted. If 33 = B2 + 2, then T is of type
B2 a) and GK(T") = ((h, 02 + 1,33 — 1), as asserted.

If B3 # (1 mod 2, then by loc. cit., ¢; = 9% and o = 2
B3 > P2 + 3, hence ¢; and cg are divisible by 2. Hence L’ is generated by ey, e, %63,
and its matrix is 77 = diag(u12%", u9272, u32%3=2). If B3 > (2 + 4, then T is of type
B3 b) and GK(T') = (61,02 + 1,83 — 1), as asserted. If 33 = 8o + 3, then T” is of
type B2 b) and GK(T") = (61,82 + 1,83 — 1), as asserted.

B3—Bg—1
2

Now

Lemma 1.9 is now proved in all cases. O
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