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14. A N A L T E R N A T I V E A P P R O A C H U S I N G I D E A L B A S E S 

by 

Stefan Wewers 

Abstract. — We give another approach to the proof of the Gross-Keating intersec-
tion formula. This approach is based on the concept of ideal bases in the theory of 
anisotropic quadratic forms over Zp, and in the case p = 2 is drastically simpler than 
the proof given in the previous chapter. 

Résumé (Une approche alternative à l'aide des bases idéales). — On donne une autre 
approche à la démonstration de la formule de Gross et Keating. Cette approche est 
basée sur la notion de bases idéales de la théorie des formes quadratiques anisotropes 
sur Zp et est plus simple que la démonstration dans le chapitre précédent pour p = 2. 

In this note we give an alternative proof of Proposition 1.5 and Proposition 1.6 
of [R]. This proof uses the concept of ideal bases introduced in Section 6 of [B] and 
thus avoids the difficulties encountered in the case p = 2. In fact, our arguments work 
the same way for any p. 

1. Homomorphisms between quasi-canonical lifts 

1.1. Let p be a prime number and D the quaternion division algebra over Qp. The 

reduced norm gives an anisotropic Qp-valued quadratic form on D which we denote 

by Q. The function v : Dx α—> Z, —» oidp Q(α), is the standard normalized valuation 

on D. 

Let ψ= (ψ1 , . . . ,ψn ) be an ordered tuple of linearly independent elements of D, 

and let L C D be the Zp-lattice spanned by if). The restriction of Q to L gives L 

the structure of an anisotropic quadratic Zp-module. We say that ψ is an ideal basis 

of L if 

v(ψi) < v{ψi) for all i < j 

2000 Mathematics Subject Classification. — 14L05, 11F32. 
Key words and phrases. — Formal O-modules, quaternion algebras, modular intersection numbers. 

© Astérisque 312, SMF 2007 



172 S. W E W E R S 

and if 

V 

i 

xiwi min v(Xilj)i) 

for all (xi) G Z™. By [B], Lemma 6.4, this is equivalent to Definition 6.3 of loc. cit.. 
In particular, every sublattice L C D has an ideal basis. 

By [B, Proposition 6.6], an ideal basis is also optimal. Moreover, if t/> is ideal then 
the numbers ai := vfyi), i — 1, . . . , n, are the Gross-Keating invariants of L. 

1.2. Let K C D be a subfield which is a quadratic extension of Qp. Then there 
exists an element (p G K such that 

OK = ZP®ZP- (p 

and such that (p is a unit (resp. a uniformizer) if K/QP is unramified (resp. if K/QP 
is ramified). For such an element, we have 

(1.1) v(x + yip) — min{2 ordp x, 2 ordp y + v(<p)}, 

for all x, y G Qp. It follows that (1, pr</?) is an ideal basis of 

OR = Zp 0 Zp • p7^, 

the unique order in OK of conductor pr, for all r > 0. 

1.3. Let G be the unique formal group of height 2 over k — ¥p. We identify the ring 
of endomorphisms of G with the maximal order OD of D. Note that for ifj G OD the 
integer v(ip) is equal to the height of the isogeny ip : G G. 

Fix two positive integers r, s > 0, and let FriFs be quasi-canonical lifts of G of 
level r and s, with respect to the subfield K (Z D. We assume that Fr, Fs are defined 
over A, a complete discrete valuation ring which is a finite extension of the ring of 
Witt vectors over k. We denote by 

Hr,s := RomA(Fr,Fs) 

the group of homomorphisms of formal groups Fr —>• Fs. This is a free Zp-module of 
rank 2. It is also a right (resp. left) module under the order OR = End(iv) (resp. the 
order OS = End(Fs)). 

Reducing a homomorphism Fr —> Fs to the special fibre yields a Zp-linear embed-
ding Hrs ^ D. Via this embedding we may consider Hrs as a quadratic Zp-module. 

Proposition 1.1 

1. As a right OR-module, HRS is free of rank 1, generated by a homomorphism 
VJI : Fr —>• Fs of height \s — r\. 

2. The Gross-Keating invariants of Hrs are (\s — r | , r + s) if K/QP is unramified 
and (Is — r|, r + s + 1) if K/QP is ramified. 
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Proof. — Replacing all isogenies by their duals, we may assume that r < s. Let 
F/A be the canonical lift of G with respect to the embedding K C D. By [ W w l , 
§4], we may identify Fr with the quotient of F corresponding to the superlattice 
Tr D T := OK defined by 

Tr :=Zp.p-r + 0K 

(and similarly for Fs). By [ W w l , Corollary 2.3], this presentation of Fr, Fs yields 
an isomorphism of right (9r-modules 

Hr,s ^{aeOK | aTr C Ts}. 

We let ipi G HriS denote the element corresponding to 1 under this isomorphism. 
Clearly, the height of ipi equals the index of Tr in Ts, which is s — r. To prove Part 1 
of the proposition, it remains to show that aTr C Ts if and only if a G Or. One 
direction is clear. For the other direction, fix a G OK with aTr C Ts. In order to 
show that a G Or, we may add any element of Zp to a. Hence we may assume that 
a = xtp, where x G Zp and (p is as in Section 1.2. Our assumption implies that 

ap~r = xp~rcp G Ts = Zp • p-s eZP'ip. 

We conclude that pr|x and hence a <E Or. This proves Part 1. 
Set ^ 2 : = pr(f^i- Clearly, ( ^ 1 , ^ 2 ) is the basis of Hrs corresponding to the ideal 

basis (l,(f) of Or under the isomorphism Or = Hr^s. This isomorphism is not an 
isometry, but for ip = a • fa G Hr^Sl with cv G Or, we have 

(̂VO = v(a) + (s — r ) . 

Therefore, it follows from (1.1) that ( ^ 1 , ^ 2 ) is an ideal basis of Hr,s. By the choice 
of (f G if in Section 1.2, we get v(ip2) = s + r (resp. ^ ( ^ 2 ) = s + r + 1) if K/QP is 
unramified (resp. ramified). This completes the proof of Part 2 of the proposition. • 

1.4. We choose a uniformizer A of the discrete valuation ring A. For n > 0 we set 
An := A/(An+1). Let HRSN denote the subgroup of OD consisting of endomorphisms 
ip : G —> G which lift to a homomorphism Fr (g) An —• Fs (g) An. 

Given an element ^ G (9D — i^r,s, we define two integers, 

lr,sW := max{^(^ + 0) I 0 G i^r,s} 

and 

rcr>s(^) := max{m | ^ £ # r , s , m } -

We let e denote the absolute ramification index of the discrete valuation ring A. 

Proposition 1.2. — There exists a constant cr^s, only depending on (r, s), such that 

the following holds. If lr,s(ip) > r + s — 1 then 

nrM) = cr« + 
e 
2 

lrs(w). 
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Proof. — First we consider the case r = s. Then we may assume that Fr = Fs. This 
is the case studied in [VI]. By âZoc. cit., Proposition 3.1, we have for lr,s(^) > 2r — 1 

(1.2)    ' ) =a{r-l)+pr-1 + 
/r>e(^) + l 

2 
— r e + 1, 

where a(k) = (pk — l)(p + l ) / (p — 1). Hence the proposition is true for r — s. 
For the general case, we may again assume that r < s. By induction on s, we will 

reduce to the case r = s. Suppose that the proposition is proved for some pair (r, s) 
with r < s. Let Fr, Fs, Fs+i be quasi-canonical lifts of level r, s, s + 1. We want to 
prove the proposition for the pair (r, s + 1). By Proposition 1.1.1, the group Hs^s+i 
is generated, as a right OS-module, by a homomorphism (3 : Fs —>• Fs+i of height one. 
Moreover, the map   ^ (   is an isomorphism of Zp-modules   :8 ^ HR,S+\. 

Let   G 0])-   )8+1 with 1 ^+\( ) > s+r . In a first step we will assume in addition 
that either r > 0 or that /r,s+i(V;) > r + s + 1. It is no restriction of generality to 
assume that  ( ) = lr,s-\-i(^)- Then v(^) > 0 and we can write   = (  ', with 
 ' £ OD- It follows from the assertions made in the preceding paragraph that we 
have 

(1.3) U i W = M ^ ' ) + i-

In particular, 1 ^( ') > r + s. On the other hand, [ W w l , Corollary 6.3], says that 

(1.4) ?V;S+i(V0 =    ' ') +  /  ^ +   

where we use the following notation. Let M =   • W[l/p], and let    be its ring 
of integers. By Ms we denote the ring class field of  *     , by     its ring of 
integers, and by es its absolute ramification index. Then OMS is the minimal subring 
of A over which Fs can be defined. So for r > 0, the proposition follows from (1.3), 
(1.4) and induction. 

Unfortunately, for r = 0 the above argument proves the claim only for the weaker 
bound lriS > r + s = s. The problem is that for s = 1 and / = 0 the element   is a 
unit in On, and so we cannot divide by (3 and reduce to the case s = 0. However, 
the argument can be used to compute the value of the constant cr?s. For instance, 
for (r, s) = (0,0) we have co,o = e/2 by (1.2), and so by (1.3) and (1.4) we get 
co,i = e/ei. Therefore, the proposition is proved if we can show that for /0,1 (VO = 0 
we have n =     ) = e/ei-

Since ¿0,1 (VO — 0, the endomorphism ^ is an automorphism of G. Let Fwr denote 
the lift of G obtained from Fr by composing the isomorphism Fr ®A   ^ G with 
 . Then   lifts to a homomorphism Fr —> Fs modulo An if and only if the two 
deformations Ff (8) A/(Xn) and Fs 0 A/(\n) are isomorphic. This, in turn, means 
that u(F^) = u(Fs) (mod An) (here u(F) G A denotes the modulus of a lift of G 
defined over A). By [ W w l , Corollary 5.6], the valuation of u(Ff) (resp. of u(Fs)) is 
equal to e/er (resp. equal to e/es). Since er = eo < es = ei, the maximal value that 
n can take is e/e\. This is what we still had to prove. • 
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2. The modular intersection number 

2 .1 . Let p be an arbitrary prime and k = ¥p. Let G be the (unique) formal group of 
height 2 over k. We identify End/e(C) with the maximal order On of the quaternion 
division algebra D over Qp. Let W — W(k) denote the ring of Witt-vectors over k. 
Let ( I \ r " ) be the universal deformation of the pair of formal groups (G, G). It is 
denned over the universal deformation space S = Spf W[[t, t']]. 

Let L C OD be a sub-Zp-module of rank 3. We denote by Q the quadratic form 
induced on L by the reduced norm on OD- For ip G L we define v(^) •= ordp Q(I/J). 
Choose an ideal basis (i/^, ip2, V^) of (L,Q)i see Section 1 .1 . Let â  := v(ipi). The 
numbers ai, a2, 03 are the Gross-Keating invariants of L. 

For i = 1, 2, 3, let % denote the closed subscheme of *S corresponding to the ideal 
I< W[[t, t']] which is minimal for the property that ^ lifts to a homomorphism T —> F' 
modulo I. The following proposition corresponds to Proposition 1.5 of [R]. 

Proposition 2.1. — If as < 1 then as — 1 and 

(Ti • T2 • Ts)s = 
1, 

2, 

for a2 — 0, 

for ao = 1. 

Proof — Since Q is anisotropic, the ai cannot have all the same parity. Therefore, 
&i < 02 < as < 1 implies ao = 0 and a3 = 1. In particular, ipi is an automorphism 
of G. It follows that 71 = Spf and that we may identify r|Tl with T'\Tl via 
-01. So for the rest of the proof, we assume that tpi = 1 G OD and consider 72,73 
as closed subschemes of S' = Spf W [[£]], the universal deformation space of G. For 
i = 2, 3, % is defined by the condition that ^ lifts to an endomorphism of Y. 

Let O = ZpfV^] C OD denote the subring generated by ip2- Since (0i = 1,^2) is 
an ideal basis of O, we have 

a2 = v(ip2) = m&x{v(x + 02) | x G Zp}. 

If a2 = 0, then it follows that O = OK is the maximal order of K C D, an unramified 
quadratic extension of Qp. Therefore, 72 = Spf W C S' and F :— r|r2 is the canonical 
lift corresponding to the subfield K C D. Moreover, in the notation of §1.4 we have 
I = ¿ 0 , 0 ( ^ 3 ) = ^ ( ^ 3 ) = II follows from [ W w l ] , Theorem 3.3 (see the proof of 
Proposition 1.2) that 73 D 72 C 72 corresponds to the ideal (pn) < W, with 

n = ^ 0 , 0 ( ^ 3 ) = 
/ + 1 

2 e — 
a3 + l 

2 
= 1. 

This proves the proposition for a2 = 0. 
If a2 = 1, then O — OK is also the maximal order of K, but K/Qp is ramified. 

With the same arguments as above, it follows that 72 = Spf OM C SF is the canonical 
locus corresponding to the subfield K C D. Applying again [ W w l ] , Theorem 3.3, we 
ffet 

n = n0,oW>3) i -f- 1 
2 

3 = as + 1 = 2. 

This proves the proposition for a2 = 1. 
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2.2. The next proposition corresponds to Proposition 1.6 of [R]. 

Proposition 2.2. — Suppose that ^ 3 = pw'3, for some ^ 3 £ ®D- Let T3 C S be the 
closed formal subscheme corresponding to ip'3 and S(p) C S the special fiber. Then 

(71 • T2 • T3)S = (71 • T2 • T3')s + (71 • T2 • 5(p))5. 

Proof. — Let (Fr,Fs) be a pair of quasi-canonical lifts of G of level r and 5, with 
respect to the same subfield K C D. The set Hr,s := Hom(Fr, Fs) is a sub-Zp-module 
of OD of rank two. We consider all pairs (Fr,Fs) such that ^ I , ^ £ #r,s- Note 
that (-01, ^ 2 ) is, by construction, an ideal basis of its linear span in HriS. Therefore, 
Proposition 1.1.1 shows that 

ai > \r — s\, a2 > r + s + e, 

where e = 0 if K/Qp is unramified and e = 1 otherwise. We claim that 

(2.1) a3 = lr,s{ip3) := max{v(^3 + <p) | <p G #r,s} 

(this notation was already used in the previous section). Indeed, since tpi,ip2^3 is 
an ideal basis of L we have 

(2.2) a3 = v(ip3) = max{?j(xi^i -f x2^2 + ^ 3 ) I ^ 1 , x2 G Zp}. 

Therefore, the inequality in (2.1) follows from the inclusion (ipi,ip2) C Hr,s. On 
the other hand, [B, Corollary 6.7], shows that (2.2) still holds if we allow x\,x2 G Qp. 
Hence the inequality follows from the inclusion Hrs C (ipi, ^ 2 ) Qp, proving the 
claim. We conclude that /r,s(^3) = a3 > a2 > r + s + e. In fact, we even have 

(2.3) IrA^s) > r + s + l. 

For if K/Qp is unramified, then a\ and a2 are even and so a3 must be odd. 
By [B], Corollary 6.7, ( ^ 1 , ijj2, ip3) is again an ideal basis of its linear span (in some 

order). Therefore, we can apply the same argument to ipf3. We get 

(2.4) IrA^s) = IrAfo) - 2 > r + s - l . 

For a G 0 ^ , let F* denote the deformation of G obtained by composing the 
identification Fr®k ^ G with a. Define Cr?s = C(Fr, Fs) C S as the closed subscheme 
where r|Cr>a = Fra and T'\CrtB = Fsa, for some a G Op. It follows from the results of 
[ W w l ] that Cr,s = Spf 0 M t , where £ = max{s ,r} . Moreover, 

7i • T2 = 

(Fr,Fs) 

Crs 

is the decomposition into irreducible components. To prove the proposition it there-
fore suffices to show that 

(2.5) (CR,S • T3)s = (Cr,s • T3f)s + (Cr,s • <S(»))<s 
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for all pairs (Fr, FS). We also may assume that r < s. Then {CR,S • S^)s = es is the 
ramification index of OMS over W. Moreover, in the notation of the last subsection, 
we have 

(2.6) (CR,A - T3)S = nr,a(^3), (Cr,s • T£)S = nrM). 

However, by (2.3), (2.4) and Proposition 1.2 we have nr>s(^3) = nr?s('03) + es. This 

proves (2.5) and finishes the proof of the proposition. • 
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