14. AN ALTERNATIVE APPROACH USING IDEAL BASES

by

Stefan Wewers

Abstract. — We give another approach to the proof of the Gross-Keating intersection formula. This approach is based on the concept of *ideal bases* in the theory of anisotropic quadratic forms over \mathbb{Z}_p , and in the case p = 2 is drastically simpler than the proof given in the previous chapter.

Résumé (Une approche alternative à l'aide des bases idéales). — On donne une autre approche à la démonstration de la formule de Gross et Keating. Cette approche est basée sur la notion de bases idéales de la théorie des formes quadratiques anisotropes sur \mathbb{Z}_p , et est plus simple que la démonstration dans le chapitre précédent pour p = 2.

In this note we give an alternative proof of Proposition 1.5 and Proposition 1.6 of [**R**]. This proof uses the concept of *ideal bases* introduced in Section 6 of [**B**] and thus avoids the difficulties encountered in the case p = 2. In fact, our arguments work the same way for any p.

1. Homomorphisms between quasi-canonical lifts

1.1. Let p be a prime number and D the quaternion division algebra over \mathbb{Q}_p . The reduced norm gives an anisotropic \mathbb{Q}_p -valued quadratic form on D which we denote by Q. The function $v: D^{\times} \to \mathbb{Z}, \alpha \mapsto \operatorname{ord}_p Q(\alpha)$, is the standard normalized valuation on D.

Let $\boldsymbol{\psi} = (\psi_1, \dots, \psi_n)$ be an ordered tuple of linearly independent elements of D, and let $L \subset D$ be the \mathbb{Z}_p -lattice spanned by $\boldsymbol{\psi}$. The restriction of Q to L gives Lthe structure of an anisotropic quadratic \mathbb{Z}_p -module. We say that $\boldsymbol{\psi}$ is an *ideal basis* of L if

$$v(\psi_i) \leq v(\psi_j)$$
 for all $i \leq j$

²⁰⁰⁰ Mathematics Subject Classification. - 14L05, 11F32.

Key words and phrases. — Formal O-modules, quaternion algebras, modular intersection numbers.

and if

$$v\left(\sum_{i} x_i \psi_i\right) = \min_i v(x_i \psi_i)$$

for all $(x_i) \in \mathbb{Z}_p^n$. By [**B**], Lemma 6.4, this is equivalent to Definition 6.3 of *loc. cit.*. In particular, every sublattice $L \subset D$ has an ideal basis.

By [**B**, Proposition 6.6], an ideal basis is also optimal. Moreover, if ψ is ideal then the numbers $a_i := v(\psi_i)$, i = 1, ..., n, are the Gross-Keating invariants of L.

1.2. Let $K \subset D$ be a subfield which is a quadratic extension of \mathbb{Q}_p . Then there exists an element $\varphi \in K$ such that

$$\mathcal{O}_K = \mathbb{Z}_p \oplus \mathbb{Z}_p \cdot \varphi$$

and such that φ is a unit (resp. a uniformizer) if K/\mathbb{Q}_p is unramified (resp. if K/\mathbb{Q}_p is ramified). For such an element, we have

(1.1)
$$v(x+y\varphi) = \min\{2\operatorname{ord}_p x, 2\operatorname{ord}_p y + v(\varphi)\},\$$

for all $x, y \in \mathbb{Q}_p$. It follows that $(1, p^r \varphi)$ is an ideal basis of

$$\mathcal{O}_r = \mathbb{Z}_p \oplus \mathbb{Z}_p \cdot p^r \varphi_{\cdot}$$

the unique order in \mathcal{O}_K of conductor p^r , for all $r \geq 0$.

1.3. Let G be the unique formal group of height 2 over $k = \overline{\mathbb{F}}_p$. We identify the ring of endomorphisms of G with the maximal order \mathcal{O}_D of D. Note that for $\psi \in \mathcal{O}_D$ the integer $v(\psi)$ is equal to the *height* of the isogeny $\psi : G \to G$.

Fix two positive integers $r, s \ge 0$, and let F_r, F_s be quasi-canonical lifts of G of level r and s, with respect to the subfield $K \subset D$. We assume that F_r, F_s are defined over A, a complete discrete valuation ring which is a finite extension of the ring of Witt vectors over k. We denote by

$$H_{r,s} := \operatorname{Hom}_A(F_r, F_s)$$

the group of homomorphisms of formal groups $F_r \to F_s$. This is a free \mathbb{Z}_p -module of rank 2. It is also a right (resp. left) module under the order $\mathcal{O}_r = \text{End}(F_r)$ (resp. the order $\mathcal{O}_s = \text{End}(F_s)$).

Reducing a homomorphism $F_r \to F_s$ to the special fibre yields a \mathbb{Z}_p -linear embedding $H_{r,s} \hookrightarrow D$. Via this embedding we may consider $H_{r,s}$ as a quadratic \mathbb{Z}_p -module.

Proposition 1.1

- 1. As a right \mathcal{O}_r -module, $H_{r,s}$ is free of rank 1, generated by a homomorphism $\psi_1: F_r \to F_s$ of height |s r|.
- 2. The Gross-Keating invariants of $H_{r,s}$ are (|s-r|, r+s) if K/\mathbb{Q}_p is unramified and (|s-r|, r+s+1) if K/\mathbb{Q}_p is ramified.

Proof. — Replacing all isogenies by their duals, we may assume that $r \leq s$. Let F/A be the canonical lift of G with respect to the embedding $K \subset D$. By [**Ww1**, §4], we may identify F_r with the quotient of F corresponding to the superlattice $T_r \supset T := \mathcal{O}_K$ defined by

$$T_r := \mathbb{Z}_p \cdot p^{-r} + \mathcal{O}_K$$

(and similarly for F_s). By [**Ww1**, Corollary 2.3], this presentation of F_r , F_s yields an isomorphism of right \mathcal{O}_r -modules

$$H_{r,s} \cong \{ \alpha \in \mathcal{O}_K \mid \alpha T_r \subset T_s \}.$$

We let $\psi_1 \in H_{r,s}$ denote the element corresponding to 1 under this isomorphism. Clearly, the height of ψ_1 equals the index of T_r in T_s , which is s - r. To prove Part 1 of the proposition, it remains to show that $\alpha T_r \subset T_s$ if and only if $\alpha \in \mathcal{O}_r$. One direction is clear. For the other direction, fix $\alpha \in \mathcal{O}_K$ with $\alpha T_r \subset T_s$. In order to show that $\alpha \in \mathcal{O}_r$, we may add any element of \mathbb{Z}_p to α . Hence we may assume that $\alpha = x\varphi$, where $x \in \mathbb{Z}_p$ and φ is as in Section 1.2. Our assumption implies that

$$\alpha p^{-r} = x p^{-r} \varphi \in T_s = \mathbb{Z}_p \cdot p^{-s} \oplus \mathbb{Z}_p \cdot \varphi.$$

We conclude that $p^r | x$ and hence $\alpha \in \mathcal{O}_r$. This proves Part 1.

Set $\psi_2 := p^r \varphi \psi_1$. Clearly, (ψ_1, ψ_2) is the basis of $H_{r,s}$ corresponding to the ideal basis $(1, \varphi)$ of \mathcal{O}_r under the isomorphism $\mathcal{O}_r \cong H_{r,s}$. This isomorphism is not an isometry, but for $\psi = \alpha \cdot \psi_1 \in H_{r,s}$, with $\alpha \in \mathcal{O}_r$, we have

$$v(\psi) = v(\alpha) + (s - r).$$

Therefore, it follows from (1.1) that (ψ_1, ψ_2) is an ideal basis of $H_{r,s}$. By the choice of $\varphi \in K$ in Section 1.2, we get $v(\psi_2) = s + r$ (resp. $v(\psi_2) = s + r + 1$) if K/\mathbb{Q}_p is unramified (resp. ramified). This completes the proof of Part 2 of the proposition. \Box

1.4. We choose a uniformizer λ of the discrete valuation ring A. For $n \geq 0$ we set $A_n := A/(\lambda^{n+1})$. Let $H_{r,s,n}$ denote the subgroup of \mathcal{O}_D consisting of endomorphisms $\psi : G \to G$ which lift to a homomorphism $F_r \otimes A_n \to F_s \otimes A_n$.

Given an element $\psi \in \mathcal{O}_D - H_{r,s}$, we define two integers,

$$l_{r,s}(\psi) := \max\{v(\psi + \phi) \mid \phi \in H_{r,s}\}$$

and

$$n_{r,s}(\psi) := \max\{m \mid \psi \in H_{r,s,m}\}.$$

We let e denote the absolute ramification index of the discrete valuation ring A.

Proposition 1.2. — There exists a constant $c_{r,s}$, only depending on (r,s), such that the following holds. If $l_{r,s}(\psi) \ge r + s - 1$ then

$$n_{r,s}(\psi) = c_{r,s} + \frac{e}{2} \cdot l_{r,s}(\psi).$$

Proof. — First we consider the case r = s. Then we may assume that $F_r = F_s$. This is the case studied in **[VI]**. By ă*loc. cit.*, Proposition 3.1, we have for $l_{r,s}(\psi) \ge 2r - 1$

(1.2)
$$n_{r,s}(\psi) = a(r-1) + p^{r-1} + \left(\frac{l_{r,s}(\psi) + 1}{2} - r\right)e + 1,$$

where $a(k) = (p^k - 1)(p + 1)/(p - 1)$. Hence the proposition is true for r = s.

For the general case, we may again assume that $r \leq s$. By induction on s, we will reduce to the case r = s. Suppose that the proposition is proved for some pair (r, s)with $r \leq s$. Let F_r , F_s , F_{s+1} be quasi-canonical lifts of level r, s, s + 1. We want to prove the proposition for the pair (r, s + 1). By Proposition 1.1.1, the group $H_{s,s+1}$ is generated, as a right \mathcal{O}_s -module, by a homomorphism $\beta : F_s \to F_{s+1}$ of height one. Moreover, the map $\psi \mapsto \beta \psi$ is an isomorphism of \mathbb{Z}_p -modules $H_{r,s} \xrightarrow{\sim} H_{r,s+1}$.

Let $\psi \in \mathcal{O}_D - H_{r,s+1}$ with $l_{r,s+1}(\psi) \ge s+r$. In a first step we will assume in addition that either r > 0 or that $l_{r,s+1}(\psi) \ge r+s+1$. It is no restriction of generality to assume that $v(\psi) = l_{r,s+1}(\psi)$. Then $v(\psi) > 0$ and we can write $\psi = \beta \psi'$, with $\psi' \in \mathcal{O}_D$. It follows from the assertions made in the preceding paragraph that we have

(1.3)
$$l_{r,s+1}(\psi) = l_{r,s}(\psi') + 1.$$

In particular, $l_{r,s}(\psi') \ge r + s$. On the other hand, [Ww1, Corollary 6.3], says that

(1.4)
$$n_{r,s+1}(\psi) = n_{r,s}(\psi') + e/e_{s+1},$$

where we use the following notation. Let $M = K \cdot W[1/p]$, and let \mathcal{O}_M be its ring of integers. By M_s we denote the ring class field of $O_s^{\times} \subset \mathcal{O}_K^{\times}$, by \mathcal{O}_{M_s} its ring of integers, and by e_s its absolute ramification index. Then \mathcal{O}_{M_s} is the minimal subring of A over which F_s can be defined. So for r > 0, the proposition follows from (1.3), (1.4) and induction.

Unfortunately, for r = 0 the above argument proves the claim only for the weaker bound $l_{r,s} \ge r + s = s$. The problem is that for s = 1 and l = 0 the element ψ is a unit in \mathcal{O}_D , and so we cannot divide by β and reduce to the case s = 0. However, the argument can be used to compute the value of the constant $c_{r,s}$. For instance, for (r,s) = (0,0) we have $c_{0,0} = e/2$ by (1.2), and so by (1.3) and (1.4) we get $c_{0,1} = e/e_1$. Therefore, the proposition is proved if we can show that for $l_{0,1}(\psi) = 0$ we have $n = n_{0,1}(\psi) = e/e_1$.

Since $l_{0,1}(\psi) = 0$, the endomorphism ψ is an automorphism of G. Let F_r^{ψ} denote the lift of G obtained from F_r by composing the isomorphism $F_r \otimes_A k \xrightarrow{\sim} G$ with ψ . Then ψ lifts to a homomorphism $F_r \to F_s$ modulo λ^n if and only if the two deformations $F_r^{\psi} \otimes A/(\lambda^n)$ and $F_s \otimes A/(\lambda^n)$ are isomorphic. This, in turn, means that $u(F_r^{\psi}) \equiv u(F_s) \pmod{\lambda^n}$ (here $u(F) \in A$ denotes the modulus of a lift of Gdefined over A). By [**Ww1**, Corollary 5.6], the valuation of $u(F_r^{\psi})$ (resp. of $u(F_s)$) is equal to e/e_r (resp. equal to e/e_s). Since $e_r = e_0 < e_s = e_1$, the maximal value that n can take is e/e_1 . This is what we still had to prove.

2. The modular intersection number

2.1. Let p be an arbitrary prime and $k = \overline{\mathbb{F}}_p$. Let G be the (unique) formal group of height 2 over k. We identify $\operatorname{End}_k(G)$ with the maximal order \mathcal{O}_D of the quaternion division algebra D over \mathbb{Q}_p . Let W = W(k) denote the ring of Witt-vectors over k. Let (Γ, Γ') be the universal deformation of the pair of formal groups (G, G). It is defined over the universal deformation space $S \cong \operatorname{Spf} W[[t, t']]$.

Let $L \subset \mathcal{O}_D$ be a sub- \mathbb{Z}_p -module of rank 3. We denote by Q the quadratic form induced on L by the reduced norm on \mathcal{O}_D . For $\psi \in L$ we define $v(\psi) := \operatorname{ord}_p Q(\psi)$. Choose an ideal basis (ψ_1, ψ_2, ψ_3) of (L, Q), see Section 1.1. Let $a_i := v(\psi_i)$. The numbers a_1, a_2, a_3 are the Gross-Keating invariants of L.

For i = 1, 2, 3, let \mathcal{T}_i denote the closed subscheme of \mathcal{S} corresponding to the ideal $I \triangleleft W[[t, t']]$ which is minimal for the property that ψ_i lifts to a homomorphism $\Gamma \rightarrow \Gamma'$ modulo I. The following proposition corresponds to Proposition 1.5 of [**R**].

Proposition 2.1. — If $a_3 \leq 1$ then $a_3 = 1$ and

$$(\mathcal{T}_1 \cdot \mathcal{T}_2 \cdot \mathcal{T}_3)_{\mathcal{S}} = \begin{cases} 1, & \text{for } a_2 = 0, \\ 2, & \text{for } a_2 = 1. \end{cases}$$

Proof. — Since Q is anisotropic, the a_i cannot have all the same parity. Therefore, $a_1 \leq a_2 \leq a_3 \leq 1$ implies $a_0 = 0$ and $a_3 = 1$. In particular, ψ_1 is an automorphism of G. It follows that $\mathcal{T}_1 \cong \operatorname{Spf} W[[t]]$, and that we may identify $\Gamma|_{\mathcal{T}_1}$ with $\Gamma'|_{\mathcal{T}_1}$ via ψ_1 . So for the rest of the proof, we assume that $\psi_1 = 1 \in \mathcal{O}_D$ and consider $\mathcal{T}_2, \mathcal{T}_3$ as closed subschemes of $\mathcal{S}' = \operatorname{Spf} W[[t]]$, the universal deformation space of G. For $i = 2, 3, \mathcal{T}_i$ is defined by the condition that ψ_i lifts to an endomorphism of Γ .

Let $\mathcal{O} = \mathbb{Z}_p[\psi_2] \subset \mathcal{O}_D$ denote the subring generated by ψ_2 . Since $(\psi_1 = 1, \psi_2)$ is an ideal basis of \mathcal{O} , we have

$$a_2 = v(\psi_2) = \max\{v(x + \psi_2) \mid x \in \mathbb{Z}_p\}.$$

If $a_2 = 0$, then it follows that $\mathcal{O} = \mathcal{O}_K$ is the maximal order of $K \subset D$, an unramified quadratic extension of \mathbb{Q}_p . Therefore, $\mathcal{T}_2 \cong \operatorname{Spf} W \subset \mathcal{S}'$ and $F := \Gamma|_{\mathcal{T}_2}$ is the canonical lift corresponding to the subfield $K \subset D$. Moreover, in the notation of §1.4 we have $l = l_{0,0}(\psi_3) = v(\psi_3) = a_3$. It follows from [**Ww1**], Theorem 3.3 (see the proof of Proposition 1.2) that $\mathcal{T}_3 \cap \mathcal{T}_2 \subset \mathcal{T}_2$ corresponds to the ideal $(p^n) \triangleleft W$, with

$$n = n_{0,0}(\psi_3) = \frac{l+1}{2}e = \frac{a_3+1}{2} = 1.$$

This proves the proposition for $a_2 = 0$.

If $a_2 = 1$, then $\mathcal{O} = \mathcal{O}_K$ is also the maximal order of K, but K/\mathbb{Q}_p is ramified. With the same arguments as above, it follows that $\mathcal{T}_2 \cong \operatorname{Spf} \mathcal{O}_M \subset \mathcal{S}'$ is the canonical locus corresponding to the subfield $K \subset D$. Applying again $[\mathbf{Ww1}]$, Theorem 3.3, we get

$$n = n_{0,0}(\psi_3) = \frac{l+1}{2}e = a_3 + 1 = 2$$

This proves the proposition for $a_2 = 1$.

2.2. The next proposition corresponds to Proposition 1.6 of [**R**].

Proposition 2.2. — Suppose that $\psi_3 = p\psi'_3$, for some $\psi'_3 \in \mathcal{O}_D$. Let $\mathcal{T}'_3 \subset \mathcal{S}$ be the closed formal subscheme corresponding to ψ'_3 and $\mathcal{S}_{(p)} \subset \mathcal{S}$ the special fiber. Then

$$(\mathcal{T}_1 \cdot \mathcal{T}_2 \cdot \mathcal{T}_3)_{\mathcal{S}} = (\mathcal{T}_1 \cdot \mathcal{T}_2 \cdot \mathcal{T}_3')_{\mathcal{S}} + (\mathcal{T}_1 \cdot \mathcal{T}_2 \cdot \mathcal{S}_{(p)})_{\mathcal{S}}$$

Proof. — Let (F_r, F_s) be a pair of quasi-canonical lifts of G of level r and s, with respect to the same subfield $K \subset D$. The set $H_{r,s} := \text{Hom}(F_r, F_s)$ is a sub- \mathbb{Z}_p -module of \mathcal{O}_D of rank two. We consider all pairs (F_r, F_s) such that $\psi_1, \psi_2 \in H_{r,s}$. Note that (ψ_1, ψ_2) is, by construction, an ideal basis of its linear span in $H_{r,s}$. Therefore, Proposition 1.1.1 shows that

$$a_1 \ge |r-s|, \quad a_2 \ge r+s+\epsilon$$

where $\epsilon = 0$ if K/\mathbb{Q}_p is unramified and $\epsilon = 1$ otherwise. We claim that

(2.1)
$$a_3 = l_{r,s}(\psi_3) := \max\{v(\psi_3 + \varphi) \mid \varphi \in H_{r,s}\}$$

(this notation was already used in the previous section). Indeed, since ψ_1, ψ_2, ψ_3 is an ideal basis of L we have

(2.2)
$$a_3 = v(\psi_3) = \max\{v(x_1\psi_1 + x_2\psi_2 + \psi_3) \mid x_1, x_2 \in \mathbb{Z}_p\}.$$

Therefore, the inequality ' \leq ' in (2.1) follows from the inclusion $\langle \psi_1, \psi_2 \rangle \subset H_{r,s}$. On the other hand, [**B**, Corollary 6.7], shows that (2.2) still holds if we allow $x_1, x_2 \in \mathbb{Q}_p$. Hence the inequality ' \geq ' follows from the inclusion $H_{r,s} \subset \langle \psi_1, \psi_2 \rangle \otimes \mathbb{Q}_p$, proving the claim. We conclude that $l_{r,s}(\psi_3) = a_3 \geq a_2 \geq r + s + \epsilon$. In fact, we even have

(2.3)
$$l_{r,s}(\psi_3) \ge r + s + 1.$$

For if K/\mathbb{Q}_p is unramified, then a_1 and a_2 are even and so a_3 must be odd.

By [**B**], Corollary 6.7, $(\psi_1, \psi_2, \psi'_3)$ is again an ideal basis of its linear span (in some order). Therefore, we can apply the same argument to ψ'_3 . We get

(2.4)
$$l_{r,s}(\psi_3) = l_{r,s}(\psi_3) - 2 \ge r + s - 1.$$

For $\alpha \in \mathcal{O}_D^{\times}$, let F_r^{α} denote the deformation of G obtained by composing the identification $F_r \otimes k \xrightarrow{\sim} G$ with α . Define $\mathcal{C}_{r,s} = \mathcal{C}(F_r, F_s) \subset \mathcal{S}$ as the closed subscheme where $\Gamma|_{\mathcal{C}_{r,s}} \cong F_r^{\alpha}$ and $\Gamma'|_{\mathcal{C}_{r,s}} \cong F_s^{\alpha}$, for some $\alpha \in \mathcal{O}_D^{\times}$. It follows from the results of **[Ww1]** that $\mathcal{C}_{r,s} \cong \operatorname{Spf} \mathcal{O}_{M_t}$, where $t = \max\{s, r\}$. Moreover,

$$\mathcal{T}_1 \cdot \mathcal{T}_2 = igcup_{(F_r,F_s)} \mathcal{C}_{r,s}$$

is the decomposition into irreducible components. To prove the proposition it therefore suffices to show that

(2.5)
$$(\mathcal{C}_{r,s} \cdot \mathcal{T}_3)_{\mathcal{S}} = (\mathcal{C}_{r,s} \cdot \mathcal{T}'_3)_{\mathcal{S}} + (\mathcal{C}_{r,s} \cdot \mathcal{S}_{(p)})_{\mathcal{S}}$$

ASTÉRISQUE 312

for all pairs (F_r, F_s) . We also may assume that $r \leq s$. Then $(\mathcal{C}_{r,s} \cdot \mathcal{S}_{(p)})_{\mathcal{S}} = e_s$ is the ramification index of \mathcal{O}_{M_s} over W. Moreover, in the notation of the last subsection, we have

(2.6)
$$(\mathcal{C}_{r,s} \cdot \mathcal{T}_3)_{\mathcal{S}} = n_{r,s}(\psi_3), \quad (\mathcal{C}_{r,s} \cdot \mathcal{T}'_3)_{\mathcal{S}} = n_{r,s}(\psi'_3).$$

However, by (2.3), (2.4) and Proposition 1.2 we have $n_{r,s}(\psi_3) = n_{r,s}(\psi'_3) + e_s$. This proves (2.5) and finishes the proof of the proposition.

References

[B] I. I. BOUW – Invariants of ternary quadratic forms, this volume, p. 113–137.
[R] M. RAPOPORT – Deformations of isogenies of formal groups, this volume, p. 139–169.
[VI] I. VOLLAARD – Endomorphisms of quasi-canonical lifts, this volume, p. 105–112.
[Ww1] S. WEWERS – Canonical and quasi-canonical liftings, this volume, p. 67–86.

S. WEWERS, IWR, Im Neuenheimer Feld 368, 69120 Heidelberg, Germany E-mail:stefan.wewers@iwr.uni-heidelberg.de