14. AN ALTERNATIVE APPROACH USING IDEAL BASES

by
Stefan Wewers

Abstract

We give another approach to the proof of the Gross-Keating intersection formula. This approach is based on the concept of ideal bases in the theory of anisotropic quadratic forms over \mathbb{Z}_{p}, and in the case $p=2$ is drastically simpler than the proof given in the previous chapter. Résumé (Une approche alternative à l'aide des bases idéales). - On donne une autre approche à la démonstration de la formule de Gross et Keating. Cette approche est basée sur la notion de bases idéales de la théorie des formes quadratiques anisotropes sur \mathbb{Z}_{p}, et est plus simple que la démonstration dans le chapitre précédent pour $p=2$.

In this note we give an alternative proof of Proposition 1.5 and Proposition 1.6 of $[\mathbf{R}]$. This proof uses the concept of ideal bases introduced in Section 6 of $[\mathbf{B}]$ and thus avoids the difficulties encountered in the case $p=2$. In fact, our arguments work the same way for any p.

1. Homomorphisms between quasi-canonical lifts

1.1. Let p be a prime number and D the quaternion division algebra over \mathbb{Q}_{p}. The reduced norm gives an anisotropic \mathbb{Q}_{p}-valued quadratic form on D which we denote by Q. The function $v: D^{\times} \rightarrow \mathbb{Z}, \alpha \mapsto \operatorname{ord}_{p} Q(\alpha)$, is the standard normalized valuation on D.

Let $\boldsymbol{\psi}=\left(\psi_{1}, \ldots, \psi_{n}\right)$ be an ordered tuple of linearly independent elements of D, and let $L \subset D$ be the \mathbb{Z}_{p}-lattice spanned by ψ. The restriction of Q to L gives L the structure of an anisotropic quadratic \mathbb{Z}_{p}-module. We say that ψ is an ideal basis of L if

$$
v\left(\psi_{i}\right) \leq v\left(\psi_{j}\right) \quad \text { for all } i \leq j
$$

2000 Mathematics Subject Classification. - 14L05, 11F32.
Key words and phrases. - Formal \mathcal{O}-modules, quaternion algebras, modular intersection numbers.
and if

$$
v\left(\sum_{i} x_{i} \psi_{i}\right)=\min _{i} v\left(x_{i} \psi_{i}\right)
$$

for all $\left(x_{i}\right) \in \mathbb{Z}_{p}^{n}$. By $[\mathbf{B}]$, Lemma 6.4, this is equivalent to Definition 6.3 of loc. cit.. In particular, every sublattice $L \subset D$ has an ideal basis.

By [\mathbf{B}, Proposition 6.6], an ideal basis is also optimal. Moreover, if $\boldsymbol{\psi}$ is ideal then the numbers $a_{i}:=v\left(\psi_{i}\right), i=1, \ldots, n$, are the Gross-Keating invariants of L.
1.2. Let $K \subset D$ be a subfield which is a quadratic extension of \mathbb{Q}_{p}. Then there exists an element $\varphi \in K$ such that

$$
\mathcal{O}_{K}=\mathbb{Z}_{p} \oplus \mathbb{Z}_{p} \cdot \varphi
$$

and such that φ is a unit (resp. a uniformizer) if K / \mathbb{Q}_{p} is unramified (resp. if K / \mathbb{Q}_{p} is ramified). For such an element, we have

$$
\begin{equation*}
v(x+y \varphi)=\min \left\{2 \operatorname{ord}_{p} x, 2 \operatorname{ord}_{p} y+v(\varphi)\right\} \tag{1.1}
\end{equation*}
$$

for all $x, y \in \mathbb{Q}_{p}$. It follows that $\left(1, p^{r} \varphi\right)$ is an ideal basis of

$$
\mathcal{O}_{r}=\mathbb{Z}_{p} \oplus \mathbb{Z}_{p} \cdot p^{r} \varphi
$$

the unique order in \mathcal{O}_{K} of conductor p^{r}, for all $r \geq 0$.
1.3. Let G be the unique formal group of height 2 over $k=\overline{\mathbb{F}}_{p}$. We identify the ring of endomorphisms of G with the maximal order \mathcal{O}_{D} of D. Note that for $\psi \in \mathcal{O}_{D}$ the integer $v(\psi)$ is equal to the height of the isogeny $\psi: G \rightarrow G$.

Fix two positive integers $r, s \geq 0$, and let F_{r}, F_{s} be quasi-canonical lifts of G of level r and s, with respect to the subfield $K \subset D$. We assume that F_{r}, F_{s} are defined over A, a complete discrete valuation ring which is a finite extension of the ring of Witt vectors over k. We denote by

$$
H_{r, s}:=\operatorname{Hom}_{A}\left(F_{r}, F_{s}\right)
$$

the group of homomorphisms of formal groups $F_{r} \rightarrow F_{s}$. This is a free \mathbb{Z}_{p}-module of rank 2. It is also a right (resp. left) module under the order $\mathcal{O}_{r}=\operatorname{End}\left(F_{r}\right)$ (resp. the order $\mathcal{O}_{s}=\operatorname{End}\left(F_{s}\right)$).

Reducing a homomorphism $F_{r} \rightarrow F_{s}$ to the special fibre yields a \mathbb{Z}_{p}-linear embed$\operatorname{ding} H_{r, s} \hookrightarrow D$. Via this embedding we may consider $H_{r, s}$ as a quadratic \mathbb{Z}_{p}-module.

Proposition 1.1

1. As a right \mathcal{O}_{r}-module, $H_{r, s}$ is free of rank 1, generated by a homomorphism $\psi_{1}: F_{r} \rightarrow F_{s}$ of height $|s-r|$.
2. The Gross-Keating invariants of $H_{r, s}$ are $(|s-r|, r+s)$ if K / \mathbb{Q}_{p} is unramified and $(|s-r|, r+s+1)$ if K / \mathbb{Q}_{p} is ramified.

Proof. - Replacing all isogenies by their duals, we may assume that $r \leq s$. Let F / A be the canonical lift of G with respect to the embedding $K \subset D$. By [Ww1, §4], we may identify F_{r} with the quotient of F corresponding to the superlattice $T_{r} \supset T:=\mathcal{O}_{K}$ defined by

$$
T_{r}:=\mathbb{Z}_{p} \cdot p^{-r}+\mathcal{O}_{K}
$$

(and similarly for F_{s}). By [$\mathbf{W} \mathbf{w} \mathbf{1}$, Corollary 2.3], this presentation of F_{r}, F_{s} yields an isomorphism of right \mathcal{O}_{r}-modules

$$
H_{r, s} \cong\left\{\alpha \in \mathcal{O}_{K} \mid \alpha T_{r} \subset T_{s}\right\}
$$

We let $\psi_{1} \in H_{r, s}$ denote the element corresponding to 1 under this isomorphism. Clearly, the height of ψ_{1} equals the index of T_{r} in T_{s}, which is $s-r$. To prove Part 1 of the proposition, it remains to show that $\alpha T_{r} \subset T_{s}$ if and only if $\alpha \in \mathcal{O}_{r}$. One direction is clear. For the other direction, fix $\alpha \in \mathcal{O}_{K}$ with $\alpha T_{r} \subset T_{s}$. In order to show that $\alpha \in \mathcal{O}_{r}$, we may add any element of \mathbb{Z}_{p} to α. Hence we may assume that $\alpha=x \varphi$, where $x \in \mathbb{Z}_{p}$ and φ is as in Section 1.2. Our assumption implies that

$$
\alpha p^{-r}=x p^{-r} \varphi \in T_{s}=\mathbb{Z}_{p} \cdot p^{-s} \oplus \mathbb{Z}_{p} \cdot \varphi
$$

We conclude that $p^{r} \mid x$ and hence $\alpha \in \mathcal{O}_{r}$. This proves Part 1.
Set $\psi_{2}:=p^{r} \varphi \psi_{1}$. Clearly, $\left(\psi_{1}, \psi_{2}\right)$ is the basis of $H_{r, s}$ corresponding to the ideal basis $(1, \varphi)$ of \mathcal{O}_{r} under the isomorphism $\mathcal{O}_{r} \cong H_{r, s}$. This isomorphism is not an isometry, but for $\psi=\alpha \cdot \psi_{1} \in H_{r, s}$, with $\alpha \in \mathcal{O}_{r}$, we have

$$
v(\psi)=v(\alpha)+(s-r)
$$

Therefore, it follows from (1.1) that $\left(\psi_{1}, \psi_{2}\right)$ is an ideal basis of $H_{r, s}$. By the choice of $\varphi \in K$ in Section 1.2, we get $v\left(\psi_{2}\right)=s+r$ (resp. $v\left(\psi_{2}\right)=s+r+1$) if K / \mathbb{Q}_{p} is unramified (resp. ramified). This completes the proof of Part 2 of the proposition.
1.4. We choose a uniformizer λ of the discrete valuation ring A. For $n \geq 0$ we set $A_{n}:=A /\left(\lambda^{n+1}\right)$. Let $H_{r, s, n}$ denote the subgroup of \mathcal{O}_{D} consisting of endomorphisms $\psi: G \rightarrow G$ which lift to a homomorphism $F_{r} \otimes A_{n} \rightarrow F_{s} \otimes A_{n}$.

Given an element $\psi \in \mathcal{O}_{D}-H_{r, s}$, we define two integers,

$$
l_{r, s}(\psi):=\max \left\{v(\psi+\phi) \mid \phi \in H_{r, s}\right\}
$$

and

$$
n_{r, s}(\psi):=\max \left\{m \mid \psi \in H_{r, s, m}\right\}
$$

We let e denote the absolute ramification index of the discrete valuation ring A.
Proposition 1.2. - There exists a constant $c_{r, s}$, only depending on (r, s), such that the following holds. If $l_{r, s}(\psi) \geq r+s-1$ then

$$
n_{r, s}(\psi)=c_{r, s}+\frac{e}{2} \cdot l_{r, s}(\psi)
$$

Proof. - First we consider the case $r=s$. Then we may assume that $F_{r}=F_{s}$. This is the case studied in $[\mathbf{V l}]$. By ăloc. cit., Proposition 3.1, we have for $l_{r, s}(\psi) \geq 2 r-1$

$$
\begin{equation*}
n_{r, s}(\psi)=a(r-1)+p^{r-1}+\left(\frac{l_{r, s}(\psi)+1}{2}-r\right) e+1, \tag{1.2}
\end{equation*}
$$

where $a(k)=\left(p^{k}-1\right)(p+1) /(p-1)$. Hence the proposition is true for $r=s$.
For the general case, we may again assume that $r \leq s$. By induction on s, we will reduce to the case $r=s$. Suppose that the proposition is proved for some pair (r, s) with $r \leq s$. Let F_{r}, F_{s}, F_{s+1} be quasi-canonical lifts of level $r, s, s+1$. We want to prove the proposition for the pair $(r, s+1)$. By Proposition 1.1.1, the group $H_{s, s+1}$ is generated, as a right \mathcal{O}_{s}-module, by a homomorphism $\beta: F_{s} \rightarrow F_{s+1}$ of height one. Moreover, the map $\psi \mapsto \beta \psi$ is an isomorphism of \mathbb{Z}_{p}-modules $H_{r, s} \xrightarrow{\sim} H_{r, s+1}$.

Let $\psi \in \mathcal{O}_{D}-H_{r, s+1}$ with $l_{r, s+1}(\psi) \geq s+r$. In a first step we will assume in addition that either $r>0$ or that $l_{r, s+1}(\psi) \geq r+s+1$. It is no restriction of generality to assume that $v(\psi)=l_{r, s+1}(\psi)$. Then $v(\psi)>0$ and we can write $\psi=\beta \psi^{\prime}$, with $\psi^{\prime} \in \mathcal{O}_{D}$. It follows from the assertions made in the preceding paragraph that we have

$$
\begin{equation*}
l_{r, s+1}(\psi)=l_{r, s}\left(\psi^{\prime}\right)+1 \tag{1.3}
\end{equation*}
$$

In particular, $l_{r, s}\left(\psi^{\prime}\right) \geq r+s$. On the other hand, [$\mathbf{W} \mathbf{w} \mathbf{1}$, Corollary 6.3], says that

$$
\begin{equation*}
n_{r, s+1}(\psi)=n_{r, s}\left(\psi^{\prime}\right)+e / e_{s+1} \tag{1.4}
\end{equation*}
$$

where we use the following notation. Let $M=K \cdot W[1 / p]$, and let \mathcal{O}_{M} be its ring of integers. By M_{s} we denote the ring class field of $O_{s}^{\times} \subset \mathcal{O}_{K}^{\times}$, by $\mathcal{O}_{M_{s}}$ its ring of integers, and by e_{s} its absolute ramification index. Then $\mathcal{O}_{M_{s}}$ is the minimal subring of A over which F_{s} can be defined. So for $r>0$, the proposition follows from (1.3), (1.4) and induction.

Unfortunately, for $r=0$ the above argument proves the claim only for the weaker bound $l_{r, s} \geq r+s=s$. The problem is that for $s=1$ and $l=0$ the element ψ is a unit in \mathcal{O}_{D}, and so we cannot divide by β and reduce to the case $s=0$. However, the argument can be used to compute the value of the constant $c_{r, s}$. For instance, for $(r, s)=(0,0)$ we have $c_{0,0}=e / 2$ by (1.2), and so by (1.3) and (1.4) we get $c_{0,1}=e / e_{1}$. Therefore, the proposition is proved if we can show that for $l_{0,1}(\psi)=0$ we have $n=n_{0,1}(\psi)=e / e_{1}$.

Since $l_{0,1}(\psi)=0$, the endomorphism ψ is an automorphism of G. Let F_{r}^{ψ} denote the lift of G obtained from F_{r} by composing the isomorphism $F_{r} \otimes_{A} k \xrightarrow{\sim} G$ with ψ. Then ψ lifts to a homomorphism $F_{r} \rightarrow F_{s}$ modulo λ^{n} if and only if the two deformations $F_{r}^{\psi} \otimes A /\left(\lambda^{n}\right)$ and $F_{s} \otimes A /\left(\lambda^{n}\right)$ are isomorphic. This, in turn, means that $u\left(F_{r}^{\psi}\right) \equiv u\left(F_{s}\right)\left(\bmod \lambda^{n}\right)$ (here $u(F) \in A$ denotes the modulus of a lift of G defined over A). By [$\mathbf{W} \mathbf{w} \mathbf{1}$, Corollary 5.6], the valuation of $u\left(F_{r}^{\psi}\right)$ (resp. of $u\left(F_{s}\right)$) is equal to e / e_{r} (resp. equal to e / e_{s}). Since $e_{r}=e_{0}<e_{s}=e_{1}$, the maximal value that n can take is e / e_{1}. This is what we still had to prove.

2. The modular intersection number

2.1. Let p be an arbitrary prime and $k=\overline{\mathbb{F}}_{p}$. Let G be the (unique) formal group of height 2 over k. We identify $\operatorname{End}_{k}(G)$ with the maximal order \mathcal{O}_{D} of the quaternion division algebra D over \mathbb{Q}_{p}. Let $W=W(k)$ denote the ring of Witt-vectors over k. Let $\left(\Gamma, \Gamma^{\prime}\right)$ be the universal deformation of the pair of formal groups (G, G). It is defined over the universal deformation space $\mathcal{S} \cong \operatorname{Spf} W\left[\left[t, t^{\prime}\right]\right]$.

Let $L \subset \mathcal{O}_{D}$ be a sub- \mathbb{Z}_{p}-module of rank 3 . We denote by Q the quadratic form induced on L by the reduced norm on \mathcal{O}_{D}. For $\psi \in L$ we define $v(\psi):=\operatorname{ord}_{p} Q(\psi)$. Choose an ideal basis $\left(\psi_{1}, \psi_{2}, \psi_{3}\right)$ of (L, Q), see Section 1.1. Let $a_{i}:=v\left(\psi_{i}\right)$. The numbers a_{1}, a_{2}, a_{3} are the Gross-Keating invariants of L.

For $i=1,2,3$, let \mathcal{T}_{i} denote the closed subscheme of \mathcal{S} corresponding to the ideal $I \triangleleft W\left[\left[t, t^{\prime}\right]\right]$ which is minimal for the property that ψ_{i} lifts to a homomorphism $\Gamma \rightarrow \Gamma^{\prime}$ modulo I. The following proposition corresponds to Proposition 1.5 of $[\mathbf{R}]$.

Proposition 2.1. - If $a_{3} \leq 1$ then $a_{3}=1$ and

$$
\left(\mathcal{T}_{1} \cdot \mathcal{T}_{2} \cdot \mathcal{T}_{3}\right)_{\mathcal{S}}= \begin{cases}1, & \text { for } a_{2}=0 \\ 2, & \text { for } a_{2}=1\end{cases}
$$

Proof. - Since Q is anisotropic, the a_{i} cannot have all the same parity. Therefore, $a_{1} \leq a_{2} \leq a_{3} \leq 1$ implies $a_{0}=0$ and $a_{3}=1$. In particular, ψ_{1} is an automorphism of G. It follows that $\mathcal{T}_{1} \cong \operatorname{Spf} W[[t]]$, and that we may identify $\left.\Gamma\right|_{\mathcal{T}_{1}}$ with $\left.\Gamma^{\prime}\right|_{\mathcal{T}_{1}}$ via ψ_{1}. So for the rest of the proof, we assume that $\psi_{1}=1 \in \mathcal{O}_{D}$ and consider $\mathcal{T}_{2}, \mathcal{T}_{3}$ as closed subschemes of $\mathcal{S}^{\prime}=\operatorname{Spf} W[[t]]$, the universal deformation space of G. For $i=2,3, \mathcal{T}_{i}$ is defined by the condition that ψ_{i} lifts to an endomorphism of Γ.

Let $\mathcal{O}=\mathbb{Z}_{p}\left[\psi_{2}\right] \subset \mathcal{O}_{D}$ denote the subring generated by ψ_{2}. Since $\left(\psi_{1}=1, \psi_{2}\right)$ is an ideal basis of \mathcal{O}, we have

$$
a_{2}=v\left(\psi_{2}\right)=\max \left\{v\left(x+\psi_{2}\right) \mid x \in \mathbb{Z}_{p}\right\} .
$$

If $a_{2}=0$, then it follows that $\mathcal{O}=\mathcal{O}_{K}$ is the maximal order of $K \subset D$, an unramified quadratic extension of \mathbb{Q}_{p}. Therefore, $\mathcal{T}_{2} \cong \operatorname{Spf} W \subset \mathcal{S}^{\prime}$ and $F:=\left.\Gamma\right|_{\tau_{2}}$ is the canonical lift corresponding to the subfield $K \subset D$. Moreover, in the notation of $\S 1.4$ we have $l=l_{0,0}\left(\psi_{3}\right)=v\left(\psi_{3}\right)=a_{3}$. It follows from [$\mathbf{W w} \mathbf{1}$], Theorem 3.3 (see the proof of Proposition 1.2) that $\mathcal{T}_{3} \cap \mathcal{T}_{2} \subset \mathcal{T}_{2}$ corresponds to the ideal $\left(p^{n}\right) \triangleleft W$, with

$$
n=n_{0,0}\left(\psi_{3}\right)=\frac{l+1}{2} e=\frac{a_{3}+1}{2}=1 .
$$

This proves the proposition for $a_{2}=0$.
If $a_{2}=1$, then $\mathcal{O}=\mathcal{O}_{K}$ is also the maximal order of K, but K / \mathbb{Q}_{p} is ramified. With the same arguments as above, it follows that $\mathcal{T}_{2} \cong \operatorname{Spf} \mathcal{O}_{M} \subset \mathcal{S}^{\prime}$ is the canonical locus corresponding to the subfield $K \subset D$. Applying again [Ww1], Theorem 3.3, we get

$$
n=n_{0,0}\left(\psi_{3}\right)=\frac{l+1}{2} e=a_{3}+1=2
$$

This proves the proposition for $a_{2}=1$.
2.2. The next proposition corresponds to Proposition 1.6 of $[\mathbf{R}]$.

Proposition 2.2. - Suppose that $\psi_{3}=p \psi_{3}^{\prime}$, for some $\psi_{3}^{\prime} \in \mathcal{O}_{D}$. Let $\mathcal{T}_{3}^{\prime} \subset \mathcal{S}$ be the closed formal subscheme corresponding to ψ_{3}^{\prime} and $\mathcal{S}_{(p)} \subset \mathcal{S}$ the special fiber. Then

$$
\left(\mathcal{T}_{1} \cdot \mathcal{T}_{2} \cdot \mathcal{T}_{3}\right)_{\mathcal{S}}=\left(\mathcal{T}_{1} \cdot \mathcal{T}_{2} \cdot \mathcal{T}_{3}^{\prime}\right)_{\mathcal{S}}+\left(\mathcal{T}_{1} \cdot \mathcal{T}_{2} \cdot \mathcal{S}_{(p)}\right)_{\mathcal{S}}
$$

Proof. - Let $\left(F_{r}, F_{s}\right)$ be a pair of quasi-canonical lifts of G of level r and s, with respect to the same subfield $K \subset D$. The set $H_{r, s}:=\operatorname{Hom}\left(F_{r}, F_{s}\right)$ is a sub- \mathbb{Z}_{p}-module of \mathcal{O}_{D} of rank two. We consider all pairs $\left(F_{r}, F_{s}\right)$ such that $\psi_{1}, \psi_{2} \in H_{r, s}$. Note that $\left(\psi_{1}, \psi_{2}\right)$ is, by construction, an ideal basis of its linear span in $H_{r, s}$. Therefore, Proposition 1.1.1 shows that

$$
a_{1} \geq|r-s|, \quad a_{2} \geq r+s+\epsilon
$$

where $\epsilon=0$ if K / \mathbb{Q}_{p} is unramified and $\epsilon=1$ otherwise. We claim that

$$
\begin{equation*}
a_{3}=l_{r, s}\left(\psi_{3}\right):=\max \left\{v\left(\psi_{3}+\varphi\right) \mid \varphi \in H_{r, s}\right\} \tag{2.1}
\end{equation*}
$$

(this notation was already used in the previous section). Indeed, since $\psi_{1}, \psi_{2}, \psi_{3}$ is an ideal basis of L we have

$$
\begin{equation*}
a_{3}=v\left(\psi_{3}\right)=\max \left\{v\left(x_{1} \psi_{1}+x_{2} \psi_{2}+\psi_{3}\right) \mid x_{1}, x_{2} \in \mathbb{Z}_{p}\right\} \tag{2.2}
\end{equation*}
$$

Therefore, the inequality ' \leq ' in (2.1) follows from the inclusion $\left\langle\psi_{1}, \psi_{2}\right\rangle \subset H_{r, s}$. On the other hand, $[\mathbf{B}$, Corollary 6.7$]$, shows that (2.2) still holds if we allow $x_{1}, x_{2} \in \mathbb{Q}_{p}$. Hence the inequality ' \geq ' follows from the inclusion $H_{r, s} \subset\left\langle\psi_{1}, \psi_{2}\right\rangle \otimes \mathbb{Q}_{p}$, proving the claim. We conclude that $l_{r, s}\left(\psi_{3}\right)=a_{3} \geq a_{2} \geq r+s+\epsilon$. In fact, we even have

$$
\begin{equation*}
l_{r, s}\left(\psi_{3}\right) \geq r+s+1 \tag{2.3}
\end{equation*}
$$

For if K / \mathbb{Q}_{p} is unramified, then a_{1} and a_{2} are even and so a_{3} must be odd.
By [$\mathbf{B}]$, Corollary $6.7,\left(\psi_{1}, \psi_{2}, \psi_{3}^{\prime}\right)$ is again an ideal basis of its linear span (in some order). Therefore, we can apply the same argument to ψ_{3}^{\prime}. We get

$$
\begin{equation*}
l_{r, s}\left(\psi_{3}^{\prime}\right)=l_{r, s}\left(\psi_{3}\right)-2 \geq r+s-1 \tag{2.4}
\end{equation*}
$$

For $\alpha \in \mathcal{O}_{D}^{\times}$, let F_{r}^{α} denote the deformation of G obtained by composing the identification $F_{r} \otimes k \xrightarrow{\sim} G$ with α. Define $\mathcal{C}_{r, s}=\mathcal{C}\left(F_{r}, F_{s}\right) \subset \mathcal{S}$ as the closed subscheme where $\left.\Gamma\right|_{\mathcal{C}_{r, s}} \cong F_{r}^{\alpha}$ and $\left.\Gamma^{\prime}\right|_{\mathcal{C}_{r, s}} \cong F_{s}^{\alpha}$, for some $\alpha \in \mathcal{O}_{D}^{\times}$. It follows from the results of $[\mathbf{W w} \mathbf{1}]$ that $\mathcal{C}_{r, s} \cong \operatorname{Spf} \mathcal{O}_{M_{t}}$, where $t=\max \{s, r\}$. Moreover,

$$
\mathcal{T}_{1} \cdot \mathcal{T}_{2}=\bigcup_{\left(F_{r}, F_{s}\right)} \mathcal{C}_{r, s}
$$

is the decomposition into irreducible components. To prove the proposition it therefore suffices to show that

$$
\begin{equation*}
\left(\mathcal{C}_{r, s} \cdot \mathcal{T}_{3}\right)_{\mathcal{S}}=\left(\mathcal{C}_{r, s} \cdot \mathcal{T}_{3}^{\prime}\right)_{\mathcal{S}}+\left(\mathcal{C}_{r, s} \cdot \mathcal{S}_{(p)}\right)_{\mathcal{S}} \tag{2.5}
\end{equation*}
$$

for all pairs $\left(F_{r}, F_{s}\right)$. We also may assume that $r \leq s$. Then $\left(\mathcal{C}_{r, s} \cdot \mathcal{S}_{(p)}\right)_{\mathcal{S}}=e_{s}$ is the ramification index of $\mathcal{O}_{M_{s}}$ over W. Moreover, in the notation of the last subsection, we have

$$
\begin{equation*}
\left(\mathcal{C}_{r, s} \cdot \mathcal{T}_{3}\right)_{\mathcal{S}}=n_{r, s}\left(\psi_{3}\right), \quad\left(\mathcal{C}_{r, s} \cdot \mathcal{T}_{3}^{\prime}\right)_{\mathcal{S}}=n_{r, s}\left(\psi_{3}^{\prime}\right) \tag{2.6}
\end{equation*}
$$

However, by (2.3), (2.4) and Proposition 1.2 we have $n_{r, s}\left(\psi_{3}\right)=n_{r, s}\left(\psi_{3}^{\prime}\right)+e_{s}$. This proves (2.5) and finishes the proof of the proposition.

References

[B] I. I. Bouw - Invariants of ternary quadratic forms, this volume, p. 113-137.
[R] M. RAPOPORT - Deformations of isogenies of formal groups, this volume, p. 139-169.
[Vl] I. Vollaard - Endomorphisms of quasi-canonical lifts, this volume, p. 105-112.
[Ww1] S. Wewers - Canonical and quasi-canonical liftings, this volume, p. 67-86.
S. Wewers, IWR, Im Neuenheimer Feld 368, 69120 Heidelberg, Germany E-mail: stefan.wewers@iwr.uni-heidelberg.de

