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15. CALCULATION OF REPRESENTATION DENSITIES

by

Torsten Wedhorn

Abstract. — We calculate for all primes p > 2 the local representation density of a
ternary quadratic form Q over Zj, in a quadratic space of the form NLH", where N is
a quadratic space of rank 4, H is the hyperbolic plane, and » > 0 is any non-negative
integer. Our principal tool is a formula of Katsurada. This defines a rational function
fo,~n in p~". We also determine the derivative of fg n and relate it to the arithmetic
intersection number of three modular correspondences.

Résumé (Calcul de densités de représentation). — On calcule, pour tous les nombres
premiers p > 2, la densité de représentation locale d’une forme quadratique ternaire Q
sur Zp dans un espace quadratique de la forme N_LH", ou IV est un espace quadratique
de rang 4, H est le plan hyperbolique, et r est un entier > 0. Notre outil principal
est une formule de Katsurada. Elle est donnée par une fonction rationnelle fo N en
p~". Nous déterminons également la dérivée de fo N et nous la relions au nombre
d’intersection arithmétique de trois correspondances modulaires.

Introduction

In this note we consider local representation densities of ternary quadratic spaces
and derivatives of associated rational functions. These results are used in [RW] to
relate the arithmetic intersection number of three modular correspondences (7, -
Ty - Tmy) to a Fourier coefficient of the restriction of the derivative at s = 0 of a
Siegel-Eisenstein series of genus 3 and weight 2. We also obtain an explicit formula
for the integers 5;(Q) which occur in [Go2].

Let Q and N be quadratic spaces over Z, of rank 3 and 4 respectively, and let H
be the hyperbolic plane over Z,. Denote by a,(Q, N L H") the local representation
density, compare [Wd1, 4.3]. This is a rational function fo n(X)in X =p™".
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180 T. WEDHORN

In the first section we consider the case that N is anisotropic and that r = 0:

(1) Let D be “the” quaternion division algebra over Q, and N = Op be its maximal
order endowed with the reduced norm. Then we compute o,(Q, N) for any
ternary form @ by a direct calculation (Theorem 1.1), following closely [GK,
section 6].

The value obtained is of course 0 if @ is isotropic, and for anisotropic @ we will
see that it does not depend on Q.

In general it is very difficult to compute local representation densities a,(Q, N),
and their computation has a long history. We give only a few references: For p # 2
a general explicit formula has been given by Hironaka and Sato [HS] for arbitrary
quadratic spaces @) and N over Zp. If the rank of @) is 2, Yang has given a formula
for a,(Q, N) in the case of p = 2 [Y1]. We will use a result of Katsurada [Ka] who
calculated a,(Q, N) for arbitrary p and @ in the case that N is an orthogonal sum of
copies of the hyperbolic plane H.

In the second section we are interested in the following values:

(2) Let N = H?. Then we specialize Katsurada’s formula for a,(Q,N L H") =
a,(Q, H™"2) to the case where @ is a ternary form and express it in terms of
a refinement of the Gross-Keating invariants (see [B]) of the ternary form Q.
This is done in 2.11.

(3) For @ (ternary and) isotropic we specialize this formula to 7 = 0 and therefore
obtain a,(Q, H?) (Proposition 2.1) (for @ anisotropic, a,(Q, H?) = 0).

(4) Finally we calculate for N = H? and for @ a ternary anisotropic quadratic form
the derivative %fQ,Hz(X) at X =1 (see 2.16).

We remark that the values obtained in (3) and (4) depend only on the Gross-
Keating invariants of the ternary form @ although the value in (2) depends on a
refinement of these invariants.

Acknowledgements. — 1 am grateful to T. Yang for spotting a mistake in an earlier
version of the manuscript.

1. Calculation of the representation density in the anisotropic case

1.1. We fix a prime number p, let D be “the” quaternion division algebra over Qy,
and denote by N = Op the maximal order of D which we consider as a quadratic
space of rank 4 over Z, with respect to the reduced norm. Let ) be any ternary
quadratic form over Z,. In this section we are going to calculate the representation
density o, (Q, N).

As N is an anisotropic quadratic space, @ is represented by N if and only if @ is
anisotropic. In this case the result is:
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15. CALCULATION OF REPRESENTATION DENSITIES 181

Theorem 1.1. — Let Q be anisotropic. Then
1
op(Q,N) =2(p+1)(1 + 1—))-

1.2. For the proof we quote the following lemma from [Ki] Theorem 5.6.4(e):

Lemma 1.2. — For any integer r € Z we have
ap(p"@Q, N) = ap(Q, N).

1.3. Proof of Theorem 1.1. — By Lemma 1.2 we can assume that the underlying
Zy,-module of the quadratic space @ is a sublattice A in Op such that A ¢ pOp.
Clearly any element of O(D,Nrd) preserves N and hence O(D, Nrd) acts on

Ay (Q.N) = {0 Q/p'Q — N/p'N | Nrd(0(x)) = Q(x) mod " }
for all » > 1. By definition (see [Wd1, 4.3]) we have
aP(Q’ N) = (pr)_G#APT (Q’ N)
for r sufficiently large.

The dual lattice of N = Op with respect to the pairing associated to the quadratic
form is NV = m~! C D where m is the maximal ideal of Op. We claim that the
induced action of SO(D, Nrd) on

B, (Q,N) = {o: Zf‘, — N/p"m~ !N | Nrd(o(z)) = Q(x) mod p" }

is transitive for r > 1. For this it suffices to show that SO(D, Nrd) acts transitively
on the set M of all isometries 6: @ — N. But by Witt’s lemma, O(D,Nrd) acts
transitively on M. For every such & the stabilizer in O(D,Nrd) is nothing but the
orthogonal group of the orthogonal complement of the quadratic Q,-space generated
by 6(Q). As this complement is a one-dimensional space, we see that SO(D, Nrd)
acts in fact simply transitively on M.

Using [Wd1, Lemma 1.6] we identify SO(D, Nrd) with

{(d,d") € D* x D* | Nrd(d) = Nrd(d') } Q.
This group contains the subgroup of index 2
G ={(d,d") € OF x OF | Nrd(d) = Nrd(d') }/Z;.

Therefore G acts with two orbits on B,-(Q, N). Let G be the quotient of G by the
subgroup generated by

{(d,d)eG|d=d =1 (modp"'N)}

and by 1+ p"~'Op, diagonally embedded in G. Then G acts faithfully with 2 orbits
on Bpr(Q,N). As

#Ap-(Q,N) = (#By (Q,N)) - (#(m™'/Op))?,
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182 T. WEDHORN

we see that

#A,(Q,N) = 2(#G)(#(m™1/Op))® = 2(p+ 1)*p*~"p°.

It follows that

ap(Q,N) =p~ " 2(p+1)*p" " =2(p+ 1)(1 + %).

2. Calculation of the representation density in the hyperbolic case

2.1. Again we fix a prime number p. For any element a € Q, we write ord(a) € Z
for the p-adic valuation of a.
We denote by H the quadratic space over Z, whose underlying module is ZZ and

whose matrix with respect to the standard basis is (2 (%)) This means that the
quadratic form is given by Zf) 3 (z,y) — xy. i

Note that H? = (M2(Z,), det).

Let (M, Q) be any quadratic space over Z,, of rank 3. In this section we will compute
the representation density a, (M, H™*2). In fact, there is a polynomial fas(X) € Q[X]

such that fa(p~™") = ap(M, H?>T") ([Ka]). We are interested in

(2.1) faur(1) = (M, H?)
and, for (M, Q) anisotropic, in
(22) o P (X e,

The first value is given in 2.12 and the second in 2.16.

2.2. We use the formulas by Katsurada [Ka] but we express them in terms of
the Gross-Keating invariants (cf. [B]) of the ternary space (M,Q), an invariant
£ =¢&(M) e {~1,0,1}, and an invariant n = n(M) € {£1}.

The invariant 7 is equal to +1 if (M, Q) is isotropic and equal to —1 if (M, Q) is
anisotropic.

The Gross-Keating invariants consist of a tuple of integers GK (M) = (a1, az, as)
such that 0 < a1 < as < a3. In addition, if a; = as mod 2 and ay < ag there is a
further invariant eqx (M) € {£1}.

In fact, we will not need the invariant egx (M) directly in the sequel, as £(T) is
a refinement. But we remark that the final expressions for (2.1) and (2.2) depend
only on n{M) (that is, whether (M, @) is isotropic or not) and on the Gross-Keating
invariants GK (M) and egx(M).

If T is the matrix associated to (M, Q) and a Zy-base of M, we also write n(T),
GK(T), eai(T), and £(T).
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15. CALCULATION OF REPRESENTATION DENSITIES 183

2.3. Recall the Hilbert symbol (a, b), € {+1} fora,b € Q. It is uniquely determined
by the following properties (where a,b,b’ € Q,, u,v € Z;):

(a‘v b)p = (b7 a)P7
(av bb/)P = (av b)P("’? b/)zn
(p.p)p = (—1,p)p

and, for p odd, by

and, for p = 2, by

+1, if u=+1mod 8,
(u,2)2 = .

—1, otherwise,

+1, ifwuorv=1mod 4,
(U, U)Z = X

—1, otherwise.

2.4. For any symmetric matrix T € Sym,,(Q,) we denote by h(T") = hy(T) the
Hasse invariant of the associated quadratic space (M, Q). We use the normalization
in [Ki]. For m = 3 we have

h(T) = (=1)%», if (M, Q) is isotropic;
—(=1)%», if (M, Q) is anisotropic

by [Ki, 3.5.1]. Here d2, is the Kronecker delta.

2.5. In the next sections we recall some results from [B] (cf. also [Y1]). We start with
the case p > 2. In that case there exists a basis (e;) of M such that the matrix T" = (t;5)
associated to Q with respect to this basis (i.e., t;; = 2(Q(e; + ¢;) — Q(e;) — Q(e;)))
is a diagonal matrix. If we write t;; = u;p® for a; € Z and u; € Z;f, we can assume
that a1 < az < ag. Moreover, if a; = a;1 we can assume that u;17 = 1. Then the
Gross-Keating invariants are given as follows. We have

GK(T) = (al,ag,(lg).

If a1 = as mod 2 and as < a3, we have

ecx(T) = <_u;u2>~

We set
&) = (:%), if a1 = as mod 2;
0, if a; # ag mod 2.
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184 T. WEDHORN

Finally, let i,5 € {1,2,3} with ¢ # j and a; = a; mod 2 and define k € {1,2,3} by
{1,2,3}\ {i,5} = {k}. Then T is isotropic if and only if (—u;u;,p)p =1 or ax = a;
mod 2.

2.6. Now assume that p = 2. In the sequel K will denote one of the matrices

0o 1L 1 1
Hz( ) or y:( )
3 0 3 1

There exists a basis B of M such that the matrix T associated to @) with respect
to B is of one of the following forms.

Either @ is not diagonalizable (case A). Then we distinguish two subcases:
(A1) T = diag(u2®,2°K) where a < j3 are integers and u € Z . Then

GK(T) = (a, 3, ).
We set

T =
&) 0, if a; #Z as mod 2.

(A2) T = diag(2° K, u2”) where o < 3 are integers and u € Z . Then
GK(T) = (o, 0, 3).

In this case egx (T) is defined and we have

~ {1, if a1 = as mod 2;

+1 i K = H;
sy = {—1 K=Y

We set £(T) := eqi (T).
In the nondiagonalizable case A, T is isotropic if and only if K = H or a = 8
mod 2.

Now assume that T is diagonalizable over Zz (case B), i.e., there exists a basis such
that T = diag(u12°", u22%2,u32%8) where 0 < 3 < B2 < (33 are integers and u; € Z; .
Then there are four subcases (here our subdivision of cases is different from [R]):

(B1) 1 # (B2 mod 2. Then

GK(T) = (b1,52, 05 +2).
We set £(T) := 0.
(B2) 81 = 2 mod 2 and (ujug = 1 mod 4 or B3 = f3)). Then

GK(T)= (61,52 + 1,83 +1).
We set £(T) := 0.
(B3) 81 = B2 mod 2, B3 = B2 + 1, and ujuz = —1 mod 4. Then

GK(T) = (ﬂlaﬂ? + 1,63 + 1)
We set £(T) := (—ujug,2)2 where (, ) denotes the Hilbert symbol.

ASTERISQUE 312



15. CALCULATION OF REPRESENTATION DENSITIES 185

(B4) 1 = P2 mod 2, B3 > f2 + 1, and ujuz = —1 mod 4. Then
GK(T) = (ﬁ17ﬁ2 + 25 /63)
In this case egk (T') is defined and we have
eok (T) = (—urug, 2)2.
We set £(T) := eqr(T).
Finally, let 7, j € {1,2,3} with ¢ # j and ; = 3; mod 2 and define k € {1,2,3} by
{1,2,3}\ {4,j} = {k}. Then T is isotropic if and only if
(—urtg, —uity)s = (—ugug, 2)55 .
2.7. Going through the cases in 2.5 and 2.6 we see that there are the following
possibilities for the value of £ if T is anisotropic:
e If a; # as mod 2, we either have £ = 0 or we have £ = —1 and a3z = as + 1.
e If a3 = ay mod 2, we always have as # a3 mod 2 and £ = —1.
If T is isotropic, the possibilities for the value of £ are the following;:

e If a; # ay mod 2, we either have éz 0 or we have é =1land a3 =as +1.
e If a; = az mod 2, we either have £ = 1 or we have £ = —1 and az = a3 mod 2.

2.8. By [Ka] there exists a polynomial fa;(X) = fr(X) € Q[X] such that fr(p~™") =
ap(M, H**"). We use the formulas from [Ka] to compute fr. Indeed, by loc. cit.
p- 417 and p. 428 we have

Jr(X) = 3p(T; X) Fp(T; X)

with 3,(T; X) = 2(T;p2X) and F,(T; X) = F,(T;p~2X) where 7,(T; X) and
F,(T; X) are the rational functions defined in loc. ¢it. p. 417 and p. 451 respectively.
Thus
(T3 X) = (1 —p2X)(1 — p 2X3).
The function Fp (T'; X) is more complicated. We will express it in the next sections
using the Gross-Keating invariants GK (T') and the invariant £(T).

2.9. By [Ka] we have
BT X) =) AR Can

~ } 5 8 /2—i—1
(2.3) + np(é’—Q)/2X6—6’+2 Z Z pI X iH2i
i=0  j=0

o I R e
+€2p6/2X5_5Z Z §JX1+J

i=0  j=0
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where 7, 9, 5, and &' are the invariants defined on p. 450 of loc. cit. (note that in
loc. cit. the definitions of § and d have to be interchanged).

2.10. Going through all the cases in 2.5 and 2.6 one sees that 7, d, §, and &' can be
expressed as follows (where GK(T) = (a1, az, a3) are the Gross-Keating invariants):

(2.4) . {—1—1 if T is isotropic,
—1 if T is anisotropic,

(2.5) 6 =ay +as + as,

(2.6) 6 =ay,

27) 5 {al + ag, if a1 = as mod 2,
a; +as+1, if a; # az mod 2,

2.11. If we set
B {2, if a3 = az mod 2,

- 1, if a; # as mod 2,

we can rewrite (2.3) using the invariants 7, (a1, az,as), and &:

_ a; (a1+a2—o)/2—1
BT, X)=> >  pHix"¥
i=0 j=0

a; (a1+as—o)/2—1

(28) + 7]2 Z p(al+0«2—0)/2—jX(lg+0‘+i+2j
=0 7=0

a1 az—ag+20—4

+ gzp(<11+a2—0+2)/2 Z Z éanz—0+2+i+j.
=0 7=0

2.12. We now specialize to r = 0, i.e., X = 1. In that case we have
ap(T, H?) = fr(1) = (1 = p~*)*F,(T, 1).
If we set (,(T) := F,(T, 1), it follows from (2.8) that

ar—1 (a1+az2—0)/2
Bo(T)=(L+n)(D_(+1p'+ Y  (a+1)p)
(2.9) i=0 i=a1
+ p(al+a2—0+2)/2 (a1 + 1)R§.
where y
0, ifeE=0
R 0, iffz—landag,;éagmod?;
¢ az — as + 20 — 3, ifé:l;
1, ifgz—l and a3 = as mod 2.
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2.13. If T is anisotropic we have o, (T, H?) = 3,(T) = 0, as a three dimensional
anisotropic space cannot be represented by a four-dimensional hyperbolic space. Al-
ternatively this follows also from (2.9): By (2.4) we have n = —1 and hence it suffices
to show that Ré = 0 if T is anisotropic. By 2.7 we are in one of the following two
cases:

(a) £=0;

(b) £ = —1 and ay # a3 mod 2.
In both cases we have Rg =0 by definition.

2.14. If T is isotropic, (2.9) gives Proposition 6.25 of [GK]:

Proposition 2.1. — Let T be isotropic. Then:
(1) If a1 # a2 mod 2, we have

a1 —1 (a1+az—0o)/2
BTy =2(3"G+1p'+ > (a+1)p).
=0 i=aq

(2) Ifa; = ap mod 2 and € = 1, we have

a;—1 . (al+a2—a)/2 4
Bo(M)=2(Y_(i+1p'+ Y (a1 +1)p)
1=0 i=ai

+ (a1 + 1)(ag — ag + 1)plata)/2,

(3) If a1 = ay mod 2 and € = —1, we have

a;—1 , (a14a2—0)/2 4
B =2(Y_(i+Dp'+ > (a1+1)p)

=0 i=ay

+ (a1 + plarta/2,

Proof. — We have n = 1, and by 2.7 we are in one of the following cases:
(a) a; # ag mod 2 and £ = 0;
(b) a3 ¢a2m0d2,§~:1, and a3z = as + 1;
(¢) a1 =azmod 2 and £ = 1;
(d) a1 = az mod 2, £~: —1, and as = a3 mod 2.
In case (a), we have R = 0 by definition, and in case (b) we also have Rg =
az — a2 + 20 — 3 = 0. This proves (1).
In case (c), we have R; = a3 —ap + 1 and therefore (2).
In case (d), we have Rz = 1 which implies (3) O

Corollary 2.2. — Set A(T) = }det(2T) = 4det(T") and assume that T is isotropic.
Then B,(T) = 1 if ord,(A(T)) = 0.
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Proof. — For p > 2 the equality ord,(A(T)) = 0 is equivalent to a; = az = az =0
by definition of the Gross-Keating invariants (see 2.5). For p = 2 the condition
ord,(A) = 0 implies that we are in case (Al) of 2.6 with « = 8 = 0 and K = H.
Therefore we have again a; = as = ag = 0. Hence the corollary follows for all p from
Proposition 2.1. O

2.15. From now on we assume that T is anisotropic. We are going to calculate

0
fr(1) = ﬁfT(X)lel-

As T is anisotropic we have F,,(T;1) = 0 and therefore

9
X
)

(2.10) Fr(1) = (T, 1) 55 Fp(T5 X)) x =1

(2.11) =(1- Fy(T5 X) x -1

2 9 p
0X
Using (2.8) we see that

Fy(T; X)) x=1 = F1 + Fy + F;.

X
Here
ay (a1+az—0o)/2—1i o
=Y > (i+2)pT
i=0 =0
a1 —1 3 (a1+a2—a)/2 a
_ 2 l _ 2
=Y S+ i+ > (e +1)(2 L
=0 l=a1
and

ajy (ar+az—0o)/2—1

—Z Z (az + o 4 i 4 2j)plar+az=o)/2=J

a1 (a1+a2 0)/2

:—Z > (a1 +axtaz+i—2j)p
Jj=t

a;—1
=~ Z (I+1) a1+a2+a3——l)
=0
(a1+az—0)/2 3
- Z (a1 + 1)(§a1 + ag + az — 31)p!

l:a1

Fy
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15. CALCULATION OF REPRESENTATION DENSITIES 189

and hence

al‘l

Fi+Fy, = Z(l—i— 1)(3[ —a] — ag —ag)pl
=0
(a1+a2—0')/2
+ Z (a1 + 1)(41 — 2a1 — az — a3)p',
l=a,

and

T a_12+ LA,

3
with
0, if € =0;
A — (a3—a2+20—3)(a1 + as +(l3), ifgzl;
¢ as —ag — 20 + 3, iffz—l,ag,ﬂéagmon;
3az —as + ay + 40 — 8, iffz—l,azzag,modl

2.16. We distinguish two cases. The first case is a1 # ag mod 2, i.e., 0 = 1. By 2.7
we either have £ = 0 and hence Aé =0 or we have £ = —1 and a3 = a3 + 1 and hence
again Aé = 0. Therefore we see that for a; # as mod 2 we have

0.1*1

0 =~ !
a—XFp(T,X)p(:l = ;(l—%—l)(?;l—al—az—ag)p
(212) (a1+a2—1)/2

+ Z (a1 +1)(4l — 2a; — as — ag)pl.
l:a1
The second case is a; = ag mod 2, i.e., 0 = 2. Then we have az Z a2 mod 2 and
hence

a;—1

o =~
ﬁFp(T;XNX:l = ; (l + 1)(3l —ay —ag — ag)pl

(a14+az2—2)/2
+ Z (a1 +1)(4l — 2a; — as — ag)pl

l:a1

(2.13)

(ar+az)/2®@ + 1 ! (
2

+p (12—&3—1).

Therefore we see by [R, Theorem 1.1] that in either case
9 -

8—XFp(T;X)|X:1 = —1g(O7r¢)-
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