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15. C A L C U L A T I O N OF R E P R E S E N T A T I O N D E N S I T I E S 

by 

Torsten Wedhorn 

Abstract. — We calculate for all primes p > 2 the local representation density of a 
ternary quadratic form Q over ZP in a quadratic space of the form NJ-Hr, where Af is 
a quadratic space of rank 4, H is the hyperbolic plane, and r > 0 is any non-negative 
integer. Our principal tool is a formula of Katsurada. This defines a rational function 
/Q,JV M P~r • We also determine the derivative of /Q,JV and relate it to the arithmetic 
intersection number of three modular correspondences. 

Résumé (Calcul de densités de représentation). — On calcule, pour tous les nombres 
premiers p > 2, la densité de représentation locale d'une forme quadratique ternaire Q 
sur ZP dans un espace quadratique de la forme N-LHr, où N est un espace quadratique 
de rang 4, H est le plan hyperbolique, et r est un entier > 0. Notre outil principal 
est une formule de Katsurada. Elle est donnée par une fonction rationnelle /Q,TV en 
p~r. Nous déterminons également la dérivée de /Q,TV et nous la relions au nombre 
d'intersection arithmétique de trois correspondances modulaires. 

Introduction 

In this note we consider local representation densities of ternary quadratic spaces 

and derivatives of associated rational functions. These results are used in [RW] to 

relate the arithmetic intersection number of three modular correspondences (7^ni • 

7^2 • Tm3) to a Fourier coefficient of the restriction of the derivative at s = 0 of a 

Siegel-Eisenstein series of genus 3 and weight 2. We also obtain an explicit formula 

for the integers /3i(Q) which occur in [Go2]. 

Let Q and TV be quadratic spaces over Zp of rank 3 and 4 respectively, and let H 

be the hyperbolic plane over Zp. Denote by ap(Q,N _L Hr) the local representation 

density, compare [ W d l , 4.3]. This is a rational function fq^(X) in X = p~r. 
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180 T. WEDHORN 

In the first section we consider the case that TV is anisotropic and that r = 0: 
(1) Let D be "the" quaternion division algebra over QP and N = OD be its maximal 

order endowed with the reduced norm. Then we compute ap(Q,N) for any 
ternary form Q by a direct calculation (Theorem 1.1), following closely [GK, 
section 6]. 

The value obtained is of course 0 if Q is isotropic, and for anisotropic Q we will 
see that it does not depend on Q. 

In general it is very difficult to compute local representation densities ap(Q,N), 
and their computation has a long history. We give only a few references: For p ^ 2 
a general explicit formula has been given by Hironaka and Sato [HS] for arbitrary 
quadratic spaces Q and N over Zp. If the rank of Q is 2, Yang has given a formula 
for ap(Q, N) in the case of p = 2 [ Y l ] . We will use a result of Katsurada [Ka] who 
calculated ap(Q, N) for arbitrary p and Q in the case that N is an orthogonal sum of 
copies of the hyperbolic plane H. 

In the second section we are interested in the following values: 
(2) Let ./V = H2. Then we specialize Katsurada's formula for ap(Q,N _L Hr) = 

ap{Q1Hr+2) to the case where Q is a ternary form and express it in terms of 
a refinement of the Gross-Keating invariants (see [B]) of the ternary form Q. 
This is done in 2.11. 

(3) For Q (ternary and) isotropic we specialize this formula to r — 0 and therefore 
obtain ap(Q,H2) (Proposition 2.1) (for Q anisotropic, ap(Q,H2) = 0). 

(4) Finally we calculate for TV = H2 and for Q a ternary anisotropic quadratic form 
the derivative u/ux fQ,H2(X) at X = 1 (see 2.16). 

We remark that the values obtained in (3) and (4) depend only on the Gross-
Keating invariants of the ternary form Q although the value in (2) depends on a 
refinement of these invariants. 

Acknowledgements. — I am grateful to T. Yang for spotting a mistake in an earlier 
version of the manuscript. 

1. Calculation of the representation density in the anisotropic case 

1.1. We fix a prime number p, let D be "the" quaternion division algebra over Qp, 
and denote by N = OD the maximal order of D which we consider as a quadratic 
space of rank 4 over 7LP with respect to the reduced norm. Let Q be any ternary 
quadratic form over 7Lp. In this section we are going to calculate the representation 
density ap(Q, N). 

As TV is an anisotropic quadratic space, Q is represented by N if and only if Q is 
anisotropic. In this case the result is: 
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15. CALCULATION OF REPRESENTATION DENSITIES 181 

Theorem 1.1. — Let Q be anisotropic. Then 

ap(Q,JV) = 2 ( p + ! ) ( ! + 
1 

V 

1.2. For the proof we quote the following lemma from [Ki] Theorem 5.6.4(e): 

Lemma 1.2. — For any integer r G Z we have 

ap(prQ,N) = ap(Q,N). 

1.3. Proof of Theorem 1.1. — By Lemma 1.2 we can assume that the underlying 
Zp-module of the quadratic space Q is a sublattice A in OD such that A (jL POD-

Clearly any element of 0(12, Nrd) preserves N and hence 0(D,Nrd) acts on 

Apr(Q,N) :={a: Q/prQ —> N/prN | Nrd(cr(x)) = Q{x) mod pr } 

for all r > 1. By definition (see [ W d l , 4.3]) we have 

ap(Q,N) = (pr)-6#Apr(Q,N) 

for r sufficiently large. 
The dual lattice of N = OD with respect to the pairing associated to the quadratic 

form is Nv = m_1 C D where m is the maximal ideal of OD- We claim that the 
induced action of S 0 ( D , Nrd) on 

Bpr{Q,N) :={a:Z3p —> N/p'm^N | Nrd(cr(x)) = Q{x) mod pr } 

is transitive for r > 1. For this it suffices to show that SO(D,Nrd) acts transitively 
on the set M of all isometries CF: Q —> N. But by Witt's lemma, 0(D,Nrd) acts 
transitively on M. For every such a the stabilizer in 0(D,Nrd) is nothing but the 
orthogonal group of the orthogonal complement of the quadratic Qp-space generated 
by cr(Q). As this complement is a one-dimensional space, we see that SO(D,Nrd) 
acts in fact simply transitively on M. 

Using [ W d l , Lemma 1.6] we identify SO(D,Nrd) with 

{ (d,d;) e DX x DX I Nrd(d) = Nrd(d') } / Q ^ . 

This group contains the subgroup of index 2 

G = { (d, d') eO*dxO*\ Nrd(d) = Nrd(d;) } / Z ^ . 

Therefore G acts with two orbits on Bpr(Q, N). Let G be the quotient of G by the 
subgroup generated by 

{ (d,d;) G G | d = d! = 1 (mod prNv) } 

and by 1 +PT~1ODP diagonally embedded in G. Then G acts faithfully with 2 orbits 
on Bpr(Q,N). As 

#Apr(Q,N) = (#BPR(Q,N)) • ( # ( m - V O D ) ) 3 , 
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182 T. W E D H O R N 

we see that 

#Apr(Q,N) = 2 ( # G ) ( # ( m - V O D ) ) 3 = 2(p+ l)2p6r-Jpe. 

It follows that 

ap(Q, N) = p-6r2(p + 1) V r _ 1 = 2(p + 1)(1 4 
1 

V 

2. Calculation of the representation density in the hyperbolic case 

2 .1 . Again we fix a prime number p. For any element a G Qp we write ord(a) G Z 
for the p-adic valuation of a. 

We denote by H the quadratic space over Zp whose underlying module is Zp and 

whose matrix with respect to the standard basis is ^ ? Q ^ • This means that the 

quadratic form is given by Zp 3 (x, y) ^ xy. 

Note that H2 ^ (M2(ZP), det). 
Let (M, Q) be any quadratic space over Zp of rank 3. In this section we will compute 

the representation density ap(M, iJr+2). In fact, there is a polynomial /M(X) G Q[X] 

such that fM{p~r) = OLJM.H2^) ([Ka]). We are interested in 

(2.1) fM(l) = ap(M,H2) 

and, for (M, Q) anisotropic, in 

(2.2) 
d 

dx IM{X)\X=I-

The first value is given in 2.12 and the second in 2.16. 

2 .2 . We use the formulas by Katsurada [Ka] but we express them in terms of 
the Gross-Keating invariants (cf. [B]) of the ternary space (M, Q), an invariant 
| = | ( M ) G { - 1 , 0 ,1} , and an invariant rj = n(M) G { ± 1 } . 

The invariant rj is equal to + 1 if (M, Q) is isotropic and equal to —1 if (M, Q) is 
anisotropic. 

The Gross-Keating invariants consist of a tuple of integers GK(M) = (ai, (22,03) 
such that 0 < a\ < a2 < a3. In addition, if a\ = a2 mod 2 and a2 < a3 there is a 
further invariant CGK(M) G { ± 1 } . 

In fact, we will not need the invariant €GK{M) directly in the sequel, as £(T) is 
a refinement. But we remark that the final expressions for (2.1) and (2.2) depend 
only on r](M) (that is, whether (M, Q) is isotropic or not) and on the Gross-Keating 
invariants GK(M) and €GK(M). 

If T is the matrix associated to (M, Q) and a Zp-base of M , we also write 77(T), 
GK(T), CGK(T), and £(T). 
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15. CALCULATION OF REPRESENTATION DENSITIES 183 

2.3. Recall the Hilbert symbol (a, b)p G {=h l } for a , 6 G Q * . It is uniquely determined 
by the following properties (where a, b, b' G Q * , u, v G Z * ) : 

(a,b)p = (b,a)p, 

(a,bb')p = (a,b)p(a,b')p, 

(p,p)=(-1,p)p 

and, for p odd, by 

(u,p)p= u 

JP. 
(u,v)p = 1, 

and, for p = 2, by 

(u,2)2 = 
-hi, if w EE ± 1 mod 8, 

— 1, otherwise, 

(u,v)2 = 
+ 1, if i£ or Î; = 1 mod 4, 

— 1, otherwise. 

2.4. For any symmetric matrix T G Symm(Qp) we denote by h(T) — hp(T) the 
Hasse invariant of the associated quadratic space (M, Q). We use the normalization 
in [Kil. For m = 3 we have 

h(T) = 
(-l)*2p, if (M, Q) is isotropic; 

- ( - l ) * 2 * , if ( M , Q ) is anisotropic 

by [Ki, 3 .5 .1 ] . Here #2p is the Kronecker delta. 

2 .5 . In the next sections we recall some results from [B] (cf. also [Yl]) . We start with 
the case p > 2. In that case there exists a basis (e )̂ of M such that the matrix T = (tij) 
associated to Q with respect to this basis (i.e., tij = ^(Q(ei - f ej) — Q(ei) — Q(ej))) 
is a diagonal matrix. If we write tu — Uipai for ai G Z and ui G Z * , we can assume 
that ai < a2 < a3. Moreover, if ai = a^+i we can assume that Ui+i = 1. Then the 
Gross-Keating invariants are given as follows. We have 

GK(T) = (aua2,a3). 

If a\ = a2 mod 2 and a2 < a3, we have 

£GK(T) = 
' — U\U2 

P 

We set 

£(T)= 
— U \ U 2 

P 
if ai = a2 mod 2; 

if ai ^ a2 mod 2. 
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184 T. W E D H O R N 

Finally, let i,j G { 1 , 2 , 3 } with i ^ j and ai = aj mod 2 and define k G { 1 , 2 , 3 } by 
{ 1 , 2 , 3 } \ {i, j} = {A:}. Then T is isotropic if and only if {—UiUj,p)p = 1 or ak = a? 
mod 2. 

2.6. Now assume that p = 2. In the sequel if will denote one of the matrices 

H = 
0 
1 
2 

1 
2 
0 

or Y := 
D 
1 
2 

1' 
2 
1 

There exists a basis IS of M such that the matrix T associated to Q with respect 
to B is of one of the following forms. 

Either Q is not diagonalizable (case A). Then we distinguish two subcases: 
(AI) T = diag(?/2a, 2Bk) where a < (3 are integers and w G Z2X. Then 

GK(T) = (a,(3,(3). 

We set 

£(T)= 1, if ai = Û2 mod 2; 

0, if &i ^ &2 mod 2. 

(A2) T = diag(2aK, i ^ ) where a < (3 are integers and w G Z2X. Then 

GK{T) = (a, a,/?). 

In this case €GK(T) is defined and we have 

6C7X(T) = 
-fl ÏÏK = H; 

- 1 i f K = y . 

We set | ( T ) :=eGK(T). 
In the nondiagonalizable case A, T is isotropic if and only if K = H or a = (3 

mod 2. 

Now assume that T is diagonalizable over Z2 (case B), i.e., there exists a basis such 
that T = d i a g ^ j ^ 1 , u22^, i ^ 3 ) where 0 < (3X < (32 < (33 are integers and m G ZJ . 
Then there are four subcases (here our subdivision of cases is different from [R]): 
(BI) 0, ± Bo mod 2. Then 

GK(T) = (0i<02,03 + 2). 

We set £(T) := 0. 
(B2) /3i = (32 mod 2 and (mu2 = 1 mod 4 or (33 = (32)). Then 

G X ( T ) = (ft,/32 + l , A + l ) . 

We set | ( T ) := 0. 
(B3) /3i = /?2 mod 2, /?3 = /?2 + 1, and uxu2 = - 1 mod 4. Then 

Gtf(T) = (/?i, & + l,/?3 + l ) . 

We set £(T) := (—U\u2,2)2 where ( , )2 denotes the Hilbert symbol. 
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15. CALCULATION OF REPRESENTATION DENSITIES 185 

(B4) ßx EE ß2 mod 2, ß3 > ß2 + 1, and I/IÎZ2 = - 1 mod 4. Then 

GK{T) = (ßuß2 + 2,ß3). 

In this case €GK(T) is defined and we have 

gk(T)= (-ulu2,2)2. 

We set £ ( T ) : = £ G K ( T ) . 
Finally, let i, j G {1 , 2, 3} with z ̂  j and & = ^ mod 2 and define fc G {1 , 2 ,3} by 

{1, 2, 3} \ (z, j} = lk\. Then T is isotropic if and only if 

(-UKUJ1-UIUJ)2 = (-UIUJ, 2)23k+ßj. 

2.7. Going through the cases in 2.5 and 2.6 we see that there are the following 
possibilities for the value of £ if T is anisotropic: 

• If a\ EE a2 mod 2, we either have £ = 0 or we have £ = — 1 and a3 = a2 + I. 
• If CL\ EE a2 mod 2, we always have a2 EE a3 mod 2 and £ = — 1. 

If T is isotropic, the possibilities for the value of £ are the following: 
• If ai EE a2 mod 2, we either have £ = 0 or we have £ = 1 and 0,3 = a2 + 1. 
• If ai EE a2 mod 2, we either have £ = 1 or we have £ = — 1 and a2 EE a3 mod 2. 

2.8. By [Ka] there exists a polynomial fM{X) = / T P O G Q [X] such that fT(p~r) = 
ap(M', H2Jrr). We use the formulas from [Ka] to compute fr- Indeed, by loc. cit. 
p. 417 and p. 428 we have 

fT(X)=%(T-X)Fp{T-X) 

with %(T;X) = 7p(T;p-2X) and Fp(T;X) = Fp{T-p~2X) where JP(T;X) and 
Fp(T; X) are the rational functions defined in loc. cit. p. 417 and p. 451 respectively. 
Thus 

%(T;X) = (l-p-"X)(l-p~'X'). 

The function FP(T; X) is more complicated. We will express it in the next sections 
using the Gross-Keating invariants GK(T) and the invariant £(T). 

2.9. By [Kal we have 

Fp(T;X) = 
S 

2 = 0 

5 7 2 - 2 - 1 

3=0 
pi+3 Xl+^ 

(2.3) +£2pO/2Xo-o 6 

i=0 

Ô'/2-I-L 

7 = 0 

p-jxi+2j 

+ (j2pS''2X~6'-S 
S 

2 = 0 

(5-25/+<5 

j = 0 
C3 X^+J 
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186 T. WEDHORN 

where 77, S, <5, and 5' are the invariants defined on p. 450 of loc. cit. (note that in 
loc. cit. the definitions of 5 and 6 have to be interchanged). 

2 .10. Going through all the cases in 2.5 and 2.6 one sees that 77, <$, 5, and 5f can be 
expressed as follows (where GK(T) — ( 0 1 , 0 2 , 0 3 ) are the Gross-Keating invariants): 

(2.4) 77 = 
+ 1 if T is isotropic, 

— 1 if T is anisotropic, 

(2.5) S = ai + a2 + o3, 

2.Ö o=al, 

(2.7) o' ai + a o , 11 ai = ao mod 2, 
o\ + a2 + 1, if ai ^ a2 mod 2, 

2 .11 . If we set 

o: = 
2, if ai : a2 mod 2, 

1, if ai =é a2 mod 2, 

we can rewrite (2.3) using the invariants 77, (ai, 0 2 , 0 3 ) , and £: 

Fp(T,X)= ai 

¿ = 0 

FAI + 0 0 - A)/2 — I 

3=0 

pi+j Xi+2j 

(2.8) + 77 
ai 

2 = 0 

(ai+a2—cr)/2 —z 

3=0 

(A1+A2-CR)/2-J J£A3+CR+I+2j 

_ | _ | 2 ^ ( a 1 + a 2 - ö r + 2 ) / 2 
ai 

2 = 0 

0 3 — a 2 + 2<T — 4 

J = 0 

¿7 J£<l2-<T + 2 + i+j 

2.12. We now specialize to r = 0, ie., X = 1. In that case we have 

ap(T,H2) = fT(l) = (l-p-2)2Fp(T,l). 

If we set 8JT) := FJT, 1), it follows from (2.8) that 

(2.9) 
BJT)=(l+n)( 

d\ — 1 

2 = 0 

(i + i y + 

(ai+a2-o-) /2 

i=ai 
(ai+l)pi 

+p(al+a2-o+2)/2(al+l)R£ 

where 

R£= 

0, if I = 0 

0, if £ = — 1 and a3 ^ 02 mod 2; 

03 — 02 + 2(7 — 3, if £ = 1; 

1, if £ = — 1 and 03 = 02 mod 2. 
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2.13. If T is anisotropic we have ap(T,H2) = (3P(T) = 0, as a three dimensional 
anisotropic space cannot be represented by a four-dimensional hyperbolic space. Al-
ternatively this follows also from (2.9): By (2 .4) we have 77 = —1 and hence it suffices 
to show that = 0 if T is anisotropic. By 2.7 we are in one of the following two 
cases: 

(a) I = 0; 
(b) £ = — 1 and a2 ^ a3 mod 2. 

In both cases we have R£ = 0 by definition. 

2.14. If T is isotropic, (2.9) gives Proposition 6.25 of [GK]: 

Proposition 2.1. — Let T be isotropic. Then: 

(1) If ai ^ a2 mod 2, we have 

ßP{T)=2\ 
a i — 1 

2 = 0 

(i + i y + 

( a i + a 2 - o - ) / 2 

i=ai 

al+l)pi 

(2) If ai = Ü2 mod 2 and Ç = 1, we have 

ßv(T) = 2i 
a i — 1 

2 = 0 
[i + l)pl + 

(ai+a2—<r)/2 

i=a\ (ai + l)p*) 
+ (a, +l)(a,-a2 + l)p(0l+02)/2. 

(3) / / a i = a2 mod 2 and £ = —1, we have 

ßP{T) = 2 
a i — 1 

2 = 0 
(i + i y + 

( a i - f a 2 - c r ) / 2 

i = a i 

(ai + i y ) 

+ (ai + iyai+a2j/2 . 

Proof. — We have r\ — 1, and by 2.7 we are in one of the following cases: 
(a) a\ ^ a2 mod 2 and £ = 0; 
(b) ai ^ a2 mod 2, £ = 1, and ¿¿3 = a2 + 1; 
(c) a\ = a2 mod 2 and £ = 1; 
(d) ai = ^2 mod 2, £ = —1, and a2 = as mod 2. 

In case (a), we have R^ = 0 by definition, and in case (b) we also have R^ = 
a>3 — o>2 + 2cr — 3 = 0. This proves (1). 

In case (c), we have Rg — a3 — a2 + 1 and therefore (2). 
In case (d), we have Rg = 1 which implies (3) • 

Corollary 2.2. — Set A(T) = \ det(2T) = 4det(T) and assume that T is isotropic. 
Then ßp(T) = 1 z/ordp(A(T)) = 0. 

S O C I É T É M A T H É M A T I Q U E DE FRANCE 2007 



188 T. WEDHORN 

Proof. — For p > 2 the equality ordp(A(T)) = 0 is equivalent to a\ — a2 — a3 = 0 
by definition of the Gross-Keating invariants (see 2.5). For p = 2 the condition 
ordp(A) = 0 implies that we are in case (AI) of 2.6 with a = ¡3 = 0 and K = H. 
Therefore we have again a\ — a2 = 0,3 = 0. Hence the corollary follows for all p from 
Proposition 2.1. • 

2 .15. From now on we assume that T is anisotropic. We are going to calculate 

/ T ( 1 ) = 
d 

d x 
fr(X)ix=i-

As T is anisotropic we have FV(T: 1) = 0 and therefore 

(2.10) & ( 1 ) = 7p(T, 1) 
d 

d x 
FP(T; X ) | x = i 

(2.11) = ( 1 - P " 2 ) 2 
d 

dX 
Fp(T] X)\x=i-

Using (2.8) we see that 

d 
dX 

FJT-X)lx=1=F1+F2+F3. 

Here 

Fi = 
ai 

2 = 0 

(ÛI +a2 — cr)/2 — i 

3=0 

(i+2j)pi+j 

a i - l 

/=0 

3 

2 
[l + l)lpl + 

( a i + a 2 - c r ) / 2 

/ = a i 

( a i + l ) ( 2 Z -
ai 
2 

IP1, 

and 

F2 = -
al 

¿=0 

(a1+a2-cr)/2-i 

3=0 

(a3 + (J + i + 2 j y a i + a 2 - ^ / 2 - J 

-
a i 

2 = 0 

( a i + a 2 - c r ) / 2 

j = 2 

(ai + a2 + a3 + i - 2j)p3 

-
a i —1 

1=0 
(/ + l ) ( a i + a2 + a3 -

3 
2 

l)pl 

-
( a i + a 2 - a ) / 2 

Z = ai 
(ai + l j 

3 
2 

ii + a2 + a3 - 3/)p* 
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15. CALCULATION OF REPRESENTATION DENSITIES 189 

and hence 

Fi + F2 = 
01 —1 

/ = 0 

(Z + l ) ( 3 Z - a i -a2 - a 3 y 

+ 
(ai+a2 — cr)/2 

l=ai 

(ai + 1)(4Z - 2ai - a2 - a3)p , 

and 

F3 =p(ai+a2-<r+2)/2 ai + 1 
2 A£ 

with 

A£ 

0, if | = 0 ; 

(as - a2 + 2a - 3)(ai + a2 + a3), if £ = 1; 

a2 - a3 -2a + 3, if £ = — 1, a2 ^ a3 mod 2; 

3a3 — a2 + ai + 4a - 8, if £ = — 1, a2 = a3 mod 2. 

2.16. We distinguish two cases. The first case is a\ ^ a2 mod 2, z.e., <J = 1. By 2.7 

we either have £ = 0 and hence Ag — 0 or we have £ = — 1 and a3 = a2 + 1 and hence 

again — 0. Therefore we see that for ai ^ a2 mod 2 we have 

(2.12) 

9 
dX 

PP(T; X W = i = 
ai — 1 

/ = 0 
(Z + l ) ( 3 Z - a i - a 2 - a 3 y 

+ 
(oi-ha2-l)/2 

l—a\ 

(a1 + l)Ul - 2oi - a2 - a3)pl . 

The second case is ai = a2 mod 2, i.e., a = 2. Then we have a3 ^ a2 mod 2 and 

hence 

(2.13) 

<9 

dX 
FJT-X\x=i = 

a± — 1 

/ = 0 

(Z + l ) ( 3 Z - a i - a 2 - a 3 y 

+ 
(oi+a2-2)/2 

l=a\ 

(ai + 1)(4Z - 2ai - a2 - a3)p* 

+ p(ai+a2)/2 ai + 1 

2 
(a2 - a3 - 1). 

Therefore we see by [R, Theorem 1.1] that in either case 

d 

dX 
Fp(T;X) |X=i = - lg(OrT^). 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2007 



190 T. WEDHORN 

References 

[B] I. I. Bouw - Invariants of ternary quadratic forms, this volume, p. 113-137. 
[GK] B. GROSS & K. KEATING - On the intersection of modular correspondences, Inven-

tions Math. 112 (1993), p. 225-245. 
[Go2] U. G Ö R T Z - Arithmetic intersection numbers, this volume, p. 15-24. 
[HS] Y. HIRONAKA & F . SATO - Local densities of representations of quadratic forms over 

p-adic integers (the non-dyadic case), J. Number Theory 83 (2000), no. 1, p. 106-136. 
[Ka] H. KATSURADA - An explicit formula for Siegel series, Amer. J. Math. 121 (1999), 

no. 2, p. 415-452. 
[Ki] Y . KlTAOKA - Arithmetic of quadratic forms, Cambridge University Press, 1993. 
[R] M . R A P O P O R T - Deformations of isogenies of formal groups, this volume, p. 139-169. 
[RW] M . R A P O P O R T & T. W E D H O RN - The connection to Eisenstein series, this volume, 

p. 191-208. 
[Wdl] T. W E D H O R N - The genus of the endomorphisms of a supersingular elliptic curve, 

this volume, p. 25-47. 
[Yl] T. Y A N G - Local densities of 2-adic quadratic forms, J. Number Theory 108 (2004), 

no. 2, p. 287-345. 

T . WEDHORN, Institut für Mathematik der Universität Paderborn, Warburger Straße 100, 33098 
Paderborn, Germany • E-mail : wedhorn@math.uni-paderborn.de  
Url : www2 .math.uni-paderborn.de/people/torsten-wedhorn.html 

ASTÉRISQUE 312 


