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16. THE CONNECTION TO EISENSTEIN SERIES 

by 

Michael Rapoport & Torsten Wedhorn 

Abstract. — We consider the non-singular Fourier coefficients of the special value of 
the derivative of a Siegel-Eisenstein series of genus 3 and weight 2. We identify these 
coefficients with the arithmetic degrees of non-degenerate intersections of arithmetic 
modular correspondences. 

Résumé (Relation avec les séries d'Eisenstein). — Nous identifions les coefficients de Fou-
rier non-dégénerés d'une valeur spéciale de la dérivée d'une série de Siegel-Eisenstein 
de genre 3 et de poids 2 avec les degrés arithmétiques des intersections de correspon-
dances modulaires arithmétiques. 

Introduction 

In a previous chapter [Go2] an expression was obtained for the arithmetic inter-
section number of three modular correspondences (%ril • 7^2 • %Tl3)1 when their inter-
section is of dimension 0. This expression is quite complicated, and involves certain 
local representation densities f3e(Q) of quadratic forms and a local intersection multi-
plicity ap(Q). It is this expression that is the main result of [GK]. However, already 
in the introduction to their paper, Gross and Keating mention that computations 
of S. Kudla and D. Zagier strongly suggest that the arithmetic intersection number 
(%ni • %n2 • %n3) agrees (up to a constant) with a Fourier coefficient of the restriction 
of the derivative at s — 0 of a Siegel-Eisenstein series of genus 3 and weight 2. 

In the intervening years since the publication of [GK], Kudla has vastly advanced 
this idea and has in particular proved the analogue of this statement for the in-
tersection of two Hecke correspondences on Shimura curves [Ku3]. In fact, Kudla 
has proposed a whole program which postulates a relation between special values of 
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192 M. RAPOPORT & T. WEDHORN 

derivatives of Siegel-Eisenstein series and arithmetic intersection numbers of special 
cycles on Shimura varieties for orthogonal groups, comp. [Ku4]. 

The purpose of the present chapter is to sketch these ideas of Kudla and to derive 
from Kudla's various papers on the subject the statement alluded to in the introduc-
tion of [GK]. We stress that what we have done here is simply a task of compilation, 
since we do not (and cannot) claim to have mastered the automorphic side of the 
statement in question. We use the results of Katsurada [Ka] on local representation 
densities of quadratic forms, valid even for p = 2, to relate the local intersection mul-
tiplicities to the derivatives of certain local Whittaker functions, comp. [Wd2] . For 
p ^ 2 the corresponding calculations of representation densities are much older and 
are based on results of Kitaoka [Kit]. 

We thank S. Kudla for his help with this chapter. 

1. Decomposition of the intersections of modular correspondences 

1.1. To m G Z>o we have associated the Deligne-Mumford stack which parametrizes 
the category of isogenies of degree m between elliptic curves, 

Tm(S) = {f:E^E'\deg(f)=m}. 

Here E and E' are elliptic curves over S. Then Tm maps by a finite unramified 
morphism to the stack M(2) = M. Xspecz M- parametrizing pairs (E,E') of elliptic 
curves. 

Let now mi ,m2,m3 G Z>o and consider 

T(rai,ra2,ra3) = { f = U1J2J3) \ fi'- E —> E', deg/z = mx } , 

the fiber product of TmilTm2JTm3 over A4^2\ Denoting by Q the degree quadratic 
form on Hom(E, £"), we obtain a disjoint sum decomposition, 

(1 .1 ) r(rai, 7712,7713) = 
T 

TT. 

Here 

TT(S) = {f G H o m 5 ( £ , £ ' ) 3 I 
1 
2 

f , f) = T } , 

where (f, f) denotes the matrix (a^) with a{j = (fi, fj) = Q(fi + f3) -Q(fi)- Q(fj)-
Note that, due to the positive definiteness of Q, the index set in (1.1) is Sym3(Z)>0, 
the set of positive semi-definite half-integral matrices. 

Lemma 1.1. — Let T G Sym3(Z)>0; i-e., T is positive definite. Then there exists a 
unique prime number p such that TT is a finite scheme with support lying over the 
supersingular locus of M(2) = M(2) ®z Fp. 

Proof. — Let (E,Ef) G M(2) be in the image of TT- Since Hom(E,E') has rank at 
least 3, it follows that (E, E') has to be a pair of supersingular elliptic curves in some 
positive characteristic p. To see that p is uniquely determined by T, note that T is 
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16. THE CONNECTION T O EISENSTEIN SERIES 193 

represented by the quadratic space over Q corresponding to the definite quaternion 
algebra ramified in p. However, by [Ku3, Prop. 1.3], there is only one quadratic space 
with fixed discriminant which represents T. • 

1.2. In this chapter we consider, for T G Sym3(Z)>0, the number 

de^(TT) = lg(TT) • \ogp , 

where p is the unique prime in the statement of Lemma 1.1, and where 

i g  0 = 
£6TT(fp) 

e-l£. lg(Ott,£), 

with = I Aut(£)|. Our aim is to compare deg(7^) with the Tth Fourier coefficient 
of a certain Siegel-Eisenstein series of genus 3 and weight 2. 

We first define a class of Eisenstein series, among which will be the one appearing 
in our main theorem. 

2. Eisenstein series and the main theorem 

2.1 . Let B be a quaternion algebra over Q. We denote by V = VB the quadratic 
space defined by B, i.e., B with its norm form Q. We note that the idèle class 
character usually associated to a quadratic space, x ^ (x, (—l)n(n-1)/2 det(V))Q is in 
this case the trivial character x o (4 | n , and det(V) is a square). Let H = 0(V) be the 
associated orthogonal group. Let W = Q 6 , with standard symplectic form ( , ) whose 
matrix with respect to the standard basis is given by ( Q3 ) . Let G = Sp(VF) = Sp6, 
and denote by P = M.N the Siegel parabolic subgroup, with 

M = {m(a) = a 0 
0 ta-l I a G G L 3 } , 

N = {n(b) = 
1 

0 

b 
1 

I b e Sym3} 

Let K = Koo.Kf = f i 
V 

Kv be the maximal compact subgroup of G (A) with 

(2.1) KV = 
Sp6(Zp), if v = p < 00; 

{ ( a 
-b 

b 
a 

\a + ibe U3(M) } , if v = 00. 

We have the Weil representation cu of G(A) x H(A) (for the standard additive 
character ^ of A with archimedean component ^^(x) = exp(2nix) and of conductor 
zero at all non-archimedean places) on the Schwartz space 5(1^ (A)3) (the action of the 
elements P(A) x H(A) are given by simple formulae [We], comp. also (4.1) and (4.2) 
below). In the local version at a place v, we have a representation UJV of G(QV) xH(QV) 
cmS(V(Qv)3). 
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194 M. RAPOPORT & T. WEDHORN 

We have the Iwasawa decomposition 

G (A) = P(A)K = N(A)M(A)K 

[f g = nm(a)k G G(A), then 

\a(g)\ = |det(a)|A 

is well-defined. For a character \ of A x / Q x , we have the induced representation of 
G(A), corresponding to s G C, 

I(s, X) = { O G(A) -> C infinite function | 

<f>(nm(a)g) = X(det(a)) • \a(g)\*+2 • $(g) } . 

For if G S{V(A)3), we set 

*(g,s) = (w;(g)<p){0)-\a(g)\: 

In this way, we obtain an intertwining map 

(2.2) S(V(Af) — J(0,Xo), < p ^ $ ( 5 ) 0 ) . 

Note that \a(g)\ is a right K-invariant function on G(A), so O(g, s) is a standard 
section of the induced representation, i.e., its restriction to K is independent of s. 
We will also need the local version I(s,Xv) of the induced representation at a place v 
and the G(Qv)-equivariant map 

(2.3) <SCK?)— mxo,v). 

2.2. Returning to the global situation, we consider the Eisenstein series associated 
totpe S(V(A)3), 

E(g,SiO$) = 
ieP(Q)\G(Q) 

<$>{>yg,s). 

This series is absolutely convergent for Re(s) > 2, and defines an automorphic form. 
It has a meromorphic continuation and a functional equation with s — 0 as its center 
of symmetry. 

We will now make a specific choice of $ which will define an incoherent Eisenstein 
series. Let B = M2(Q) and let V(ZP) = M2{ZP) for any p. We let ipf = ®(pp = 
0char V(ZP), and let 4>/ = ®$p be the corresponding factorizable standard section. 
For we take the standard section uniquely determined by 

$ o c ( M ) =det(£)2, 

where k G i^oo is the image of k G Us(M) under the natural identification in (2.1). 
Then by [Ku3, (7.13)], is the image of the Gaussian (p^ under the local map 
(2.3) for v = oc, where the local quadratic space is V^, the positive-definite quadratic 
space corresponding to the Hamilton quaternion algebra over R, and where 

(2.4) (poo{x) = exp(-7r tr(rr,x)), x G (V+)3. 
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16. THE CONNECTION TO EISENSTEIN SERIES 195 

Since vloo <8> V(Af) does not correspond to a quaternion algebra over Q, the stan-
dard section $ = Ooo ® Of is incoherent in the sense of loc. cit., and hence (loc. 
cit, Theorem 2.2), 

£ ( ( / , 0 , * ) = 0. 

Consider the Fourier expansion of E(g,s,Q), 

E(g,s,<!>) = 
TGSym3(Q) 

ET{g,s,Q>), 

where 

s, <Ê>) = 

N(Q)\N(A) 

E(ng, s, $) • ijjrip) ldn, 

with 

(2.5) ^r(n(6)) = ^(tr(T6)), 6 G Sym3(A). 

For T e Sym3(Q) with det(T) ^ 0, the Fourier coefficient has an explicit expression 
as a product 

(2.6) ET{g,s,$) = n wt,v(gv,s,Ov), 

see [Ku3, (4.4)]. Here WT,v(9V,S,$V) is the local Whittaker function, cf. section 5. 
The local Whittaker functions are entire (cf. [Ku3, (4.2) and (4.3)]), and the product 
(2.6) is absolutely convergent and holomorphic in s = 0. More precisely, for Re(s) > 2, 
the identity (2.6) holds and for almost all places p, the local factor at p on the right 
hand side equals (p(s + 2)"1 • CP(2s + 2)"1 = (1 - p's~2) • (1 - p~2s~2), and for all 
places the local factor is an entire function. 

2.3. ForTeSym3(Q)>0 , l e t 

Diff (T, V) = {p | T not represented by V(QP) } . 

Then the cardinality |Diff(T, V)\ is odd, cf. [Ku3, Cor. 5.2]. Moreover we have 
WT,p(gP,0,&p) = 0 for p G Diff(T,V), cf. [Ku3, Prop. 1.4]. On the other hand, 
WT,oo(0<x),O,$oo) + 0, cf. [Ku3, Prop. 9.5]. Hence 

ordET(g,s,<S>)>\Dm(T,V)\. 
s=0 

In particular, if E'T(g, 0, <£) ^ 0, then Diff(T, V) = {p} for a unique prime number p. 

2.4. We may now formulate our main theorem. 

Theorem 2.1. — Let V = M2(Q) and let $ = Ooo ® Of be the incoherent standard 
section as above. Let T £ Sym3(Q)>o with Diff(T, V) = {p}. 

(i) IfT 4. Sym3(Z)v7 then TT = 0 and deg(TT) = 0 and EUg,Q,$) = 0. 
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(ii) Let T G Sym3(Z)v. Then TT has support in characteristic p. For g = 

( # 0 0 5 E, E . . . ) G G(A) with 

9oo = 
1 x 

1 

2,1/2 
2,-1/2 x , 2 / G S y m 3 ( R ) , 2 / > 0 , 

/E£ R = • ¿13 = x + G ¿33- TFTEN 

detfo) de^(TT) • qT = « • ̂ ( p , 0,O) 

where qT = exp(2ni tr (TT)) and where the negative constant K is independent 

ofT. 

Here f)3 = { r G Sym3(C) | Im(r) > 0 } is the Siegel upper half space. 
The proof of the theorem consists in calculating explicitly both sides of the identity. 

The first assertion of (i) is obvious and the second is a consequence of section 5 below, 
where the local Whittaker functions are related to local representation densities (see 
Proposition 5.2 below). The proof of (ii) will be reduced in section 3 to a statement 
about local Whittaker functions which will be taken up in sections 4 and 5. 

2 .5 . In the rest of this section we relate the adelic Eisenstein series to the classical 
Siegel-Eisenstein series, following [Kul , section IV.2]. By strong approximation, 

G(A) = G(Q)G(R)K. 

By our choice of which is right if/-invariant, the Eisenstein series E(g,s,$) is 
determined by its restriction to G(R) (embedded via g^ 1—» ( ¿ / 0 0 , e , e . . . ) in G(A)). 

We have 

G(Z) = G(Q) n (G(R).Kf). 

Also, P (Q) \G(Q ) = P ( Z ) \ G ( Z ) , hence for g = goo, 

(2.7) E (g,s,Q) = 
7eP(Q)\G(Q) 

$ o o ( 7 £ o o , s) • $f(l>s) 

= 
7 G P ( Z ) \ G ( Z ) 

$ o o ( 7 # o c , s ) . 

For our choice of and of g^ — 
= x 

1 

y1/2 

y - i / 2 , we have 

^ 0 0 ( 7 ^ 0 0 , 5 ) =det(y)s/2+1 -det(cT + d) 2 • | det(cr + d)\ s, 

where 

1 = 
a 

c 
b 
d 

GSp6(Z). 

Inserting this expression into the sum (2.7), one obtains from [Kul , IV.2.23], (for 

£ = Pn = 2), 

(2.8) E(g, s, $ ) = det(y) • £ciass(R, S ) , 
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16. THE CONNECTION TO EISENSTEIN SERIES 197 

where 

£ c l a s s ( T , s ) = d e t ( y W 2 

(c,d) 

det(cr + d)~2 • I det(cr + d)\-s 

is the classical Siegel Eisenstein series (the sum here ranges over a complete set of 
representatives of the equivalence classes of pairs of co-prime symmetric integer ma-
trices). 

2.6. Using the comparison (2.8) between the adelic and the classical Eisenstein se-
ries, we obtain from Theorem 2.1 the following statement. We consider the Fourier 
exnansion of the classical Eisenstein series. 

^class( î" , S) = 

TGSym3(Z)V 

c(T,y,s)qT. 

Here r = x + iy G $)s and qT — exp(27rz tr (Tr)). 

Theorem 2.2. — Let T e Sym3(Z)^0. 

(1) Then c'(T) — (-§^c(T,y,s))\s=o is independent ofy. 

(2) 7/Diff(T, V) = {p}, then Tr has support in characteristic p and 

de^(Tr) = K • c'(T) 

for a negative constant K independent ofT. 

Corollary 2.3. — Assume that there is no positive definite binary quadratic form over 
7L which represents 7771,7772 and ms, so that the divisors Tmi, T^, and Tm3 intersect 
in dimension 0, cf [Go2, Prop. 3.2]. Then there exists a constant K independent of 
(7711,7772,7773) such that 

(^mi ' 7m2 ' ^ 1 3 ) — ft 

TGSym3(Z)^N 
diag(T) = (mi,m2,m3) 

c'(T) 

Proof — The hypothesis implies that in the disjoint sum (1.1) only positive definite 
T G Sym3(Z)v occur as indices, comp. [Go2, Prop. 3.5]. Therefore the assertion 
follows from Theorem 2.2. • 

3. Use of the Siegel-Weil formula 

3.1 . Let V be the quadratic space associated to a quaternion algebra B over Q. For 
dp G ̂ (V^A)3), there is the theta series 

O(g;h,e)= 

xev{®)3 

(uj(g)(p)(h lx), 
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and the corresponding theta integral over the orthogonal group H = 0(V) associated 
to V, 

I(g;e)= 

H(Q)\H(A) 

6(g, h; (p) dh. 

Here the Haar measure dh is normalized so that 

vol(#((Q>)\ff (A)) = 1. 

We will only consider the case in which the quadratic space V is anisotropic. If (p 
is if-finite, then I(g;<p) is an automorphic form on G(A). The Siegel-Weil formula 
[KR] states that, if <p gives rise to <j> via the map (2.2), then 

(3.1) E(g,0,$) = 2.I(g;<p). 

Let T G Sym3(Q) with det(T) ^ 0. Then the Tth-Fourier coefficient of I(g;(p) is 
equal to ( [KR, (6.21)]) 

I(g;e)= 

H(Q)\H(A) xev(Q)T 

(u(g)(p)(h lx)dh 

where 

V(QfT = {xeV(Q)3 I 
1 
2 

[x, x) = T } . 

3 .2 . We now return to the situation considered in Theorem 2.1. Let V — M2(Q) 
and let $ be the standard section defined in the previous section. We also fix T G 
Sym3(Q)>o with Diff(T, V) = {p}. Let V be the quadratic space associated to the 
definite quaternion algebra B — B(p) ramified at p, and unramified at all other finite 
primes. Note that V ( R ) = V^. We consider the standard section $ which is the 
image of (p — (foo (g) (pj 0 (pp under 

S(V(Af) — . J(0,Xo), 

where 0^ — epf, where (p^ — (p^ is the Gaussian (2.4) and where (pp — char V(ZP)3, 

with V(ZP) the maximal order of the division algebra B^ ® Qp. Hence «IQO = $oo» 

$ j = $ j and $ is a coherent standard section. Comparing the expressions (2.6) for 

the Fourier coefficients of E(g, «s, <Ë>) and E(g, «s, <I>), we can write, for g = g^ G G ( R ) , 

E'T(g,0,Q) = 
WriP(e,0,*p) 

WT,p(e,0,$p) 
Er(g ). 

We refer to Corollary 5.3 below for a proof of the fact that the denominator here is 
nonzero. Using the Siegel-Weil formula (3.1) for the anisotropic quadratic space V, 
we can rewrite this as 

(3.2) E'T(g,0,t>) = 2 
w't,p(e,o,Op) 

Wr,P(e,0,$p) 
It(g;e) . 
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16. THE CONNECTION TO EISENSTEIN SERIES 199 

Now the function (p^ is invariant under H(M). For 

9°o = 
1 x 

1 
y / 2 

y-l/2 a ? , 2 / e S y m 3 ( R ) , 2 / > 0 , 

the value of u;(#OO)<£OO at £ G y(M)3 with \{t,t) = T is equal to 

(u(goo)(poc)(t) = exp(27ri tr(Tr)) det(y). 

SinceH(R) = 0(Vr(R)) is compact, we may write using the product measure dh = 
dooh x dfh. 

(3.3) 2 • JT(0; e = 2 det(2/) • gT • v o l ( # ( R ) , d^h) • J T ( £ / ) , 

IT(<Pf) = 

H(Q)\H(Af) x£V(Q)3T 

<ff(h 1x)dfh. 

3.3 . Let 

H' = { ~g = (g,g') G Bx x Bx | Nmfe) = Nm(</) } . 

Then H' acts on V via 

9 • x = {g.g') - x = g'xg x. 

This induces an exact sequence, where Gm lies in the center of H', cf. [ W d l , 
Lemma 1.6], 

(3.4) l - * G m - > f f ' ^ * S O ( V ) - > l . 

We fix the Haar measure on Hf(A) such that the measure induced by the exact 
sequence (3.4) on SO(V^)(A) is the Tamagawa measure, and with the standard Haar 
measure on the central idele group Ax which is the product of the local measures 

axe 
\xe\ 

with convergence factors \g = 1 — £ , so that vol(Zx) = 1. Let 

K' = H'(Af)n((Oè(g)Z)x x ( O é ® Z ) x ) . 

Proposition 3.1. — Let 

\TT\ = 

$ c Tt(fp) 
H1 

with e£ = I Aut(£)|. Then 

\TT\ = « i -lT(<Pf), 

where K\ — 2 vol(ÜT') 1. 

Proof. — We choose a finite set of double coset representatives hj G H'(Af) such 
that 

H'(Af) = 

j 

H'(Q)hjK'. 
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200 M. RAPOPORT & T. WEDHORN 

Since each double coset H'(Q)hjK' is stable under ZXQX = A^, we obtain a disjoint 
decomposition, 

SO(V) (A , ) = 
3 

SO(l/)(Q)pr(/li)pr(X'). 

Let 

f,j^H'(Q)nhJK'hj1. 

Note that vol(SO(V)(Q)\SO(V)(A)) = 2. We have 

H(Af) = SO(Vr)(A/) x / /2(A/) . 

Hence 

l=vol(O(10(Q)\O00(A)) 
1 
2 vol(SO(V0(Q)\O(V0(A)) 

1 
2 

vol(SO(y)(Q)\SO(y)(A))vol(/x2(A)) 

= vol(/i2(A)) 

and therefore 

v o l ( / / 2 ( Q ) W A ) ) = 
1 
2 

Let us normalize the Haar measure on /12 (M) by vol(/i2(^)) = 1- Then we get 
vol(u2(Q)\M2(Af)) = \. Then we obtain as in [Ku3, (7.28)1, 

IT((ff) = 

SO(V)(Q)\SO(V)(A/) 
,X2(Q)\M2(A/) 

xev(Q)3T 

(pf(h 1cx) dfhdc 

1 
2 

SO(V)(Q)\ SO(V)(Af) x£V(Q)3T 

<pf(h 1x)dfh 

i 
2 

SO(t/)(Q)\SO(y)(Q)pr(^)pr(K0 
xev(Q)3T 

(ff(h x)dfh 

1 

2 
vo\(m(K')) ' 

3 x£V(Q)3T 

1 

|r**| 
ef(hj-lx) 

Here Tj,r is the image of f'JX in Q X \ # ' ( Q ) = SO(Vr)(Q). Therefore we have \th x\ = 

I • | r^J. Note that Tj^x is trivial since x spans a three-dimensional subspace of the 

4-dimensional space V. 
(2) 

To make the connection with 7r , note that the supersingular locus of Mp can be 
written as a double coset space (cf. [Mi, 6]), 

(M(2))ss = h'(q)I h'(Af)/K' . 
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16. THE CONNECTION T O EISENSTEIN SERIES 201 

Here we chose (EQ,EQ) as a base point, such that K' is the stabilizer of the Tate 
module T{E$) x T(EQ) (completed by the Dieudonne module at p). To g = (g,gf) G 
H'(Kf) corresponds EG x EG> with the diagonal isogeny, 

(g,g'):E0xEo—+EgxEg,. 

The lattice H o m ( ^ , EG>) in V(Q) = Rom(E0, E0) ® Q is given by 

Kom(Eg,Eg,) = {yeB\ yg(f(E0)) C g'f{E0)} 

= {yeB\g,-1ygeV{±)} 

= {y£B\~g-ly£V{±)}. 

Hence we obtain 

\TT\ = 

[y,g}eH>(®)\(VZ(®)TxH>(Af)/K) 
<Pf(9 1 -V) 

j xev3(Q)T 

(pf{h1 1 -x) 

= 2 - v o l ( p r ( i Y , ) ) - 1 - / T  / ) . 

Since YO\{K') = vol(pr(/Y')), the result follows. 

3.4 . The next result will be proved in section 5.6. 

Theorem 3.2. — The lengths of the local rings OTT € at all points £ G 7 r (Fp) are all 
equal to 

l g ( 0 T T J = -
2 

( P - 1 ) 2 

W't,p(e,O,Op) 

Wr,P(e,0,$P) 
(logp)"1. 

3 .5 . We will now prove Theorem 2.1 using Theorem 3.2. Let 

H' = {g = (g,g) e GL2 x GL2 | det(g) = det(</)}, 

K' = H'(Af) n (GL2(Z) <8> GL2(Z)). 

Then if' is an inner form of if'. 
We now fix Haar measures on H'(A) and on H'(A) following [Ku3, p. 573]. More 

precisely, in loc. cit. Kudla defines for any quaternion algebra B over Q a Haar 
measure on (B ® A)x which is decomposed, i.e., the explicit product of local Haar 
measures on (B ® Qv)x for all places v. By our fixed choice of Haar measure on Ax, 
we therefore also obtain a decomposed Haar measure on H(B)/(A)1 where 

H{B)' = {g = (g,gf) G Bx x Bx | Nm(g) = N m ^ ) } . 

By loc. cit., the induced Haar measure on SO(V(B))(A) is the Tamagawa measure, 
as required above. 
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We apply this construction to B = M2(Q) and to B = B = B&\ the definite 
quaternion algebra, ramified at p and unramified at all other finite places. Then we 
have for these Haar measures (comp. [Ku3, Lemma 14.10]), 

v o i ( j g 

v o l ( ^ ) 
= (P - 1 ) 2 

and 
v o l ( i f ' ) 

vol(K') 
= ( p - l ) 2 . 

Hence 

qT • O W ( T T ) = qT \K(OTT) • l o g p 

= qT lg(OrTi,)- |TT|. logp 

2 

(p — 1) • vo\(Kf) 
• 2 -

WriP(e,0,*p) 

WT>P(e,0,$p) 
• qT • IT(<Pf) 

2 

vol(K') 
E't(g,o,O) det(y)-l v-l , 

where we used (3.2) and (3.3) in the last step, and where v — vol(HCR), d^k). This 

Droves the main theorem with the negative constant K = — 2 
vo\(K') 

v-l 

4. The Wei l representation 

4 .1 . The remainder of this chapter is devoted to the proof of Theorem 3.2. This is 
a purely local statement. 

We fix a prime number p and change our notation: We replace V by V 0 Qp, G 
by G 0 Qp, t/j by its localization ipp (of conductor zero), etc. At the same time we 
consider a more general situation. 

4.2 . Instead of the quadratic space associated to a quaternion algebra, we now let 
V be any Qp-vector space and ( , ) a symmetric nondegenerate bilinear form on V. 

Then Q[x) = i}(x,x) is a quadratic form on V. 
We assume that n := dim(V) is even. In fact, we will only need the case V — B _L 

Hr where B is a quaternion algebra over Qp endowed with the reduced norm, and 
where Hr is the orthogonal sum of r copies of the hyperbolic plane H. 

We denote by det(V) the image in Qp/(Qp)2 of the determinant of the matrix 
{(yi,Vj))ij where (i>i, . . . , vn) is some basis of V. As in 2.1 we have the quadratic 
character \ v °f Qp associated to V given by 

Xv(x) - (x,(-l)n^/2det(V))p = ( ^ ( - l ^ d e t ^ t ^ O p , 

where ( , )p denotes the Hilbert symbol. 
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4.3 . Let (W, ( , )) be the space Q2RRI endowed with the standard symplectic form 
whose matrix with respect to the standard basis is given by (_°j ) . We consider 
W as vector space of row vectors, in particular the canonical GL2m-action is from the 
right. To prove Theorem 3.2 we will need only the case m = 3. 

As in 2.1 we denote by P = MN the Siegel parabolic subgroup of G = Sp2m(Qp) 
over Q P where M = { m(a) = 

a 
0 

0 
ta'1 I a G GLm(Qp) }, 

7V = {n(6) = Im 
o 

b 

Im 
I b e Symm(Qp) } . 

Let K = Sp2m(Zp) C G the standard maximal compact subgroup and set 

w := 
0 

h-rn 
dm 

0 
eG. 

4.4. In the sequel we let a G GLm act on Vm = V <g> via right multiplication, 
which we denote by x \—> xa. 

Moreover for x, y G V771 we set 

(x,y) := {{xl,yJ))lJ G Symm(Qp). 

4.5 . Associated to the quadratic space V and the fixed additive character t\) there is 
a Weil representation ujy of G on the vector space <S(Vm) of Schwartz functions on 
Vm. For g = (acbd) G G, tp G S(Vm), and x e Vm we have by [Ku2, Prop. 4.3] (cf. 
also [Rao, Lemma 3.2], and [We]), 

(wv(9)(<pMx)='r(V,w,g) 

Vm/Kev(c) 
^(tr( 

1 
2 

{xa, xb) + (#6, yc) -f 
1 

2 
^yc, yd))) (p(xa + yc) dgy 

where ^(V^ip^g) is a certain 8 root of unity depending on V, if), and g such that 
^y(V,ip,e) = 1 and where dgy is a suitable Haar measure. We make this more explicit 
in three special cases: 

(4.1) (u)y(m(a))ip)(x) = xv(det a)\ det a\n^2(p(xa), 

(4.2) (cjv(n(b))(f)(x) = ip 
1 

2 
tr((x,x)b))cp(x), 

(4.3) W ^ - M ì ^ f x ) = 7 0 0 
yva 

if)(-tr((x, y)))(p(y)dy 
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where in (4.3) dy is the Haar measure on Vm which is self dual for Fourier transform 
and where ^(V) = 7(V, I/J, w~l) is the 8th root of unity explicitly given in [Ku3, A.4]. 

5. Local Whittaker functions and representation densities 

5 .1 . We keep the notation of section 4 and assume from now on that m = 3 and 
hence G — Sp6(Qp), and n = 4. 

For s G C let I(s, \v) be the degenerate principal series representation of G induced 
from P, i.e., I(s, xv) consists of i^-finite functions <£(•, s): G —> C such that 

$(nm(a)g,s) = xv(det a)\ det a\s+2<$>(g, s) 

for all n G N, a G GL3(QP), and g G G. 
We also set for T G Sym3((Q)p), as in (2.5), 

WT: N —> C x , ^T(n(b)) = ^(tr(T6)). 

5 .2. For 5 G C, $ G J(s, x v ) , T £ Sym3(Qp) with det(T) 7̂  0, and g G G we define 
the local Whittaker function by 

WT(q,s,o) = 
A/" 

<$>(w-ln(b)g, s) ^T(n(b))-1 db 

where db is the Haar measure on Sym3((Q)p) which is selfdual with respect to the 
pairing 

i>N : Sym3(Qp) x Sym3(Qp) C, (b, b') x/>(tr(bb')). 

As the conductor of ip is zero, we have 

(5.1) {be Sym3(Qp) I r/jN(b,bf) = 1 for all b' G Sym3(Zp) } = Sym3(Zp)v. 

Therefore 

voU(Sym3(Zp))voU(Sym3(Zp)v) = 1. 

As the index of Sym3(Zp) in Sym3(Zp)v is 23Ô2p, we obtain 

(5.2) voU(Sym3(Zp)) =2~(3/2^. 

It is known that WT(<7, s, 3>) converges for Re(s) > 2 and admits a holomorphic 
continuation to the entire complex plane, if <I> is standard, i.e., if its restriction to K 
is independent of s [Ku3, Prop. 1.4]. Moreover, we will see in Proposition 5.2 below 
that Wrfe, s. <E>) is a polvnomial in v~s'. 
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5.3. For ip G S(V3) we set 

*(g,s) =(wj(g)tp .\a{g)\*. 

It follows from (4 .1 ) and (4.2) that $(g,s) G I(S, x v ) - I*1 this way, we obtain a 
G-equi variant map similar to (2.2), 

S(V3) l ( 0 , x v ) , e - * (5 ,0 ) . 

5.4. For r > 0 we denote by the Hr the quadratic space Q2rp whose associated bilinear 

form has the matrix ^ (j gr) with respect to the standard basis, and set 

Vr = V ± Hr. 

It is known [Ku3, Lemma A.2] that cuyr = uoy (g) ujur as representations of G on 
S(V3) = S(V3)^S(H3). 

We also recall Lemma A.3 from [Ku3] (see also [Ral, Remark II.3.2]): 

Lemma 5.1. — Let (p® G S(H3) be the characteristic function of M2r,3(Zp) and (p G 
S(V3) with associated $(g,s) G I(s,xv)- SetipW = eoeor e s(y^ = S(V3)®S{H3). 
Then we have for all g G G and r > 0 

*(5)r) = (wvr(ffV[r])(0). 

5 .5. We fix a Zp-lattice L of V such that ( , ) is integral on L. Choose a Zp-basis 
of L and let Sr be the matrix associated to the quadratic form on Vr = V © ifr 
with respect to the chosen basis of L and the standard basis of Hr. In particular, 
the matrix of the bilinear form ( , ) with respect to the chosen base of L equals 
2S0. 

Let (p G S(V3) be the characteristic function of L3 with associated <1> = $(g, s) G 
I{siXv)- Then the local Whittaker function Wr(e, s, $ ) interpolates the local repre-
sentation densities: 

Proposition 5.2. — For all integers r > 0 we have 

WT(e, r, $ ) = 2-(15/2)^ | det S0\3/HV)ap(T, Sr), 

where we denote by ap( , ) the local representation density as normalized in [ W d l , 
(4.4)1. In varticular. Wr(e. s. <&) is a, nolunomial in X — r>~s. 
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Proof. — The right hand side is a polynomial in X = p~r [Kit] and the left hand 
side is an entire function in r. Hence it suffices to show the identity for r > 2. Now 
we have 

Wr(e ,r , <£>) = 

Sym3((g)p) 

$(w~1n(b),r)w(- tr(TM) db 

( 5 T ) 

Sym3(Qp) 

( a ; y r ( ^ - 1 n ( 6 ) ) e r M ) ( 0 ) ^ ( - t r ( T 6 ) ) ^ 

(4_3) 

Sym3(Qp) 

1(V) 

v3 
r 

w 
1 

2 
tr(6(y, y))) • er (y) dy w ( - tr(TM) d& 

y(V 
£—•00 

p - 'Sym3(Zp) V3 

w(tr(b( 1 

2 
2 / , y ) - T ) ) ) ^ M ( y ) d 2 / d 6 

5.1 
y(v) t—>-oo 

voU(p * S y m 3 ( Z p ) ) • 

è(3/,3/)-TGp* Sym3(Zp)v 

p[r](y)dy 

(5 2) 
7 ( n 

t oo 
2-(3/2)(52p 6t 

y G M 2 R + 4 , 3 ( 2 P ) 

tySry-Tep1 Sym3(Zp)v 

dy 

Now { y G M 2 r + 4 , 3 ( ^ p ) I Z/S'r?/ - T e p Sym3(Zp)v } is a union of 

Âpt (T, 5r) := # { y G M2r+4,3(Zp/2p*Zp) | 'ySry - T G p* Sym3(Zp)v } 

cosets for 2ptM2r+4,3(Zp). Moreover, by the definition of dy (4.3) we have 

vol^(M2r+4,3(Zp)) = 1 det 2^|3/2 

- | d e t 2 5 0 | 3 / 2 

= 2 - 6 ^ | d e t 5 0 | 3 / 2 , 

and hence 

vol^(2ptM2r+4,3(Zp)) = 2 - 6 ^ | d e t 5 0 | 3 / 2 2 - 3 ( 4 + 2 ^ ^ p - t 3 ( 4 + 2 r ) . 

Therefore Wrfe, r, O is equal to 

7 ( y ) 2 - 6 ^ P | d e t Sn |3/22(-(3/2)-3(4+2r))52p 
t- oo 

6t-t3(4+2r)yi (T)5r). 

   ? 

Now we have 

Àpt (T, Sr) = 23(4+2r^» Apt (T, 5r ) 

with 

A t p ( T , Sr) = # { y € M 2 r + 4 , 3 ( Z p / p % ) I 4ySry - T e / Sym3(Zp)v } . 
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By definition we have 

ap(T, Sr) = 
t—+oo 

p6t-^4+2^Apt(T,Sr) 

and this proves the proposition. 

Corollary 5.3. — For $ as in Proposition 5.2, Wr(e ,0 , <£>) / 0 ?/ and only if T is 
represented by So. 

5.6. We will now prove Theorem 3.2. 
As CYP(T, Sr) is a rational function in X = p~r, it follows from Proposition 5.2 that 

(5.3) W 4 ( e , 0 , $ ) = -log(p)2-(15/2)&"|det50|3/27(^) 
d 

dX 
ap(T, Sr)\x=i-

Let D be the division quaternion algebra over Qp and denote by OD its maximal 
order. We denote by 5 = So (resp. S — So) the matrix associated to the quadratic 
space V = M2(Zp) (resp. V = OD) endowed with the reduced Norm. Then we have 
(see e.g., [ W d l , (4.5) and (4.6)]) 

|det(S„)| =24*2", 

|det(50)| =2iS*p-2. 

Moreover we have by the explicit formulas in the Appendix of [Ku3] 

7(V) = - 7 ( V ) . 

Using the notation of Theorem 3.2, we therefore have by Proposition 5.2 and (5.3) 

(5.4) 
W't,p(e,O,Op) 

WT,P{e p) 
l o g p ) 1 = P3 

a 
ax ap{T, Sr)\X=i 

ap(T,So) 

But now by [Wd2, Theorem 1.1 and 2.16] we have 

(5.5) ap(T, S0)=2(p+l)2p-1 

and 

(5.6) 
d 

dX 
MT,Sr)lx=1 = -p~4(P2 - l)2lg(0TT,c). 

Therefore we have 

lg(Orr,«)log(p) 
(5.5) 
(5.6) 

P4 

(p2 - l )2 

2 ( p + D 2 
8 

dX (T,Sr)\x=i 

P ap(T,S0) 

(5=4) _ 2 
(p-l)2 Wt(e,O,Op) 

which proves the theorem. 
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