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16. THE CONNECTION TO EISENSTEIN SERIES

by

Michael Rapoport & Torsten Wedhorn

Abstract. — We consider the non-singular Fourier coefficients of the special value of
the derivative of a Siegel-Eisenstein series of genus 3 and weight 2. We identify these
coefficients with the arithmetic degrees of non-degenerate intersections of arithmetic
modular correspondences.

Résumé (Relation avec les séries d’Eisenstein). — Nous identifions les coefficients de Fou-
rier non-dégénerés d’une valeur spéciale de la dérivée d’une série de Siegel-Eisenstein
de genre 3 et de poids 2 avec les degrés arithmétiques des intersections de correspon-
dances modulaires arithmétiques.

Introduction

In a previous chapter [Go2] an expression was obtained for the arithmetic inter-
section number of three modular correspondences (7., - T, - Trny ), when their inter-
section is of dimension 0. This expression is quite complicated, and involves certain
local representation densities G¢(Q) of quadratic forms and a local intersection multi-
plicity a,(Q). It is this expression that is the main result of [GK]. However, already
in the introduction to their paper, Gross and Keating mention that computations
of S. Kudla and D. Zagier strongly suggest that the arithmetic intersection number
(T, - Ty - Ty ) agrees (up to a constant) with a Fourier coeflicient of the restriction
of the derivative at s = 0 of a Siegel-Eisenstein series of genus 3 and weight 2.

In the intervening years since the publication of [GK], Kudla has vastly advanced
this idea and has in particular proved the analogue of this statement for the in-
tersection of two Hecke correspondences on Shimura curves [Ku3]. In fact, Kudla
has proposed a whole program which postulates a relation between special values of
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192 M. RAPOPORT & T. WEDHORN

derivatives of Siegel-Eisenstein series and arithmetic intersection numbers of special
cycles on Shimura varieties for orthogonal groups, comp. [Ku4].

The purpose of the present chapter is to sketch these ideas of Kudla and to derive
from Kudla’s various papers on the subject the statement alluded to in the introduc-
tion of [GK]. We stress that what we have done here is simply a task of compilation,
since we do not (and cannot) claim to have mastered the automorphic side of the
statement in question. We use the results of Katsurada [Ka] on local representation
densities of quadratic forms, valid even for p = 2, to relate the local intersection mul-
tiplicities to the derivatives of certain local Whittaker functions, comp. [Wd2]. For
p # 2 the corresponding calculations of representation densities are much older and
are based on results of Kitaoka [Kit].

We thank S. Kudla for his help with this chapter.

1. Decomposition of the intersections of modular correspondences

1.1. Tom € Z~( we have associated the Deligne-Mumford stack which parametrizes
the category of isogenies of degree m between elliptic curves,
Tn(S) ={f: E — E'| deg(f) =m}.

Here E and E’ are elliptic curves over S. Then 7, maps by a finite unramified
morphism to the stack M) = M xgpecz M parametrizing pairs (E, E') of elliptic
curves.

Let now m1, ma, m3 € Z~o and consider

T (mi,mg,m3) = {f = (f1, fo, f3) | fi: B — E', deg f; = m; },
the fiber product of 7, T, , T, Over M@ Denoting by @Q the degree quadratic

form on Hom(E, E'), we obtain a disjoint sum decomposition,

(1.1) T (my,ma,ms) = [ [ 7
T

Here

T1(S) = { £ € Homg(E, E')? | %(f, £) =T,

where (f, f) denotes the matrix (a;;) with a;; = (fi, fj) = Q(fi + f;) — Q(fi) — Q(f).
Note that, due to the positive definiteness of @, the index set in (1.1) is Syms(Z)<,,
the set of positive semi-definite half-integral matrices.

Lemmal.1. — Let T € Symg(Z)Y,, ie., T is positive definite. Then there exists a
unique prime number p such that Tp is a finite scheme with support lying over the
supersingular locus of M}f) =M® @, Fy.

Proof — Let (E,E') € M® be in the image of 7. Since Hom(F, E’) has rank at
least 3, it follows that (E, E’) has to be a pair of supersingular elliptic curves in some
positive characteristic p. To see that p is uniquely determined by T', note that T is
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16. THE CONNECTION TO EISENSTEIN SERIES 193

represented by the quadratic space over QQ corresponding to the definite quaternion
algebra ramified in p. However, by [Ku3, Prop. 1.3], there is only one quadratic space
with fixed discriminant which represents 7. O

1.2. In this chapter we consider, for T' € Symg(Z)Y,,, the number

deg(Tr) = lg(Tr) - logp

where p is the unique prime in the statement of Lemma 1.1, and where

lg(Tr) = Y e -1g(On¢),
EETT(FP)

with eg = | Aut(§)]. Our aim is to compare d/o?;(TT) with the T*" Fourier coefficient
of a certain Siegel-Eisenstein series of genus 3 and weight 2.

We first define a class of Eisenstein series, among which will be the one appearing
in our main theorem.

2. Eisenstein series and the main theorem

2.1. Let B be a quaternion algebra over Q. We denote by V' = Vp the quadratic
space defined by B, i.e., B with its norm form ). We note that the idele class
character usually associated to a quadratic space, 2 — (z, (—1)"*=1/2det(V))q is in
this case the trivial character xo (4 | n, and det(V) is a square). Let H = O(V) be the
associated orthogonal group. Let W = Q°, with standard symplectic form (, ) whose
matrix with respect to the standard basis is given by (. ). Let G = Sp(W) = Sp,
and denote by P = M.N the Siegel parabolic subgroup, with

M= o) = (5 1) leeGrak

N:p@p«;?)we@%y

Let K = Ko.Kf =[] K, be the maximal compact subgroup of G(A) with
(2.1) _ | SpalZa); ifv=p<oo
(%) latibeUs(R)}, if v = oo,

We have the Weil representation w of G(A) x H(A) (for the standard additive
character ¢ of A with archimedean component ¢ (z) = exp(27miz) and of conductor
zero at all non-archimedean places) on the Schwartz space S(V (A)?) (the action of the
elements P(A) x H(A) are given by simple formulae [We], comp. also (4.1) and (4.2)
below). In the local version at a place v, we have a representation w, of G(Q,)x H(Q,)

on S(V(Qu)?).
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194 M. RAPOPORT & T. WEDHORN

We have the Iwasawa decomposition
G(A)=P(A)K = N(A)M(A)K.
If g = nm(a)k € G(A), then
la(g)] = [ det(a)la
is well-defined. For a character x of A*/Q*, we have the induced representation of
G(A), corresponding to s € C,
I(s,x) ={®: G(A) — C K-finite function |
®(nm(a)g) = x(det(a)) - [a(g)|*** - (g) }.
For ¢ € S(V(A)3), we set

®(g,5) = (w(g))(0) - lalg)[*.
In this way, we obtain an intertwining map

Note that |a(g)| is a right K-invariant function on G(A), so ®(g,s) is a standard
section of the induced representation, i.e., its restriction to K is independent of s.
We will also need the local version I(s, x,) of the induced representation at a place v
and the G(Q,)-equivariant map

(2.3) S(V2) — 1(0, x0.0)-

2.2. Returning to the global situation, we consider the Eisenstein series associated
to v € S(V(A)?),
E(g,s,®) = Z ®(vg,s).
YEP(Q\G(Q)
This series is absolutely convergent for Re(s) > 2, and defines an automorphic form.
It has a meromorphic continuation and a functional equation with s = 0 as its center
of symmetry.

We will now make a specific choice of ® which will define an incoherent Eisenstein
series. Let B = M2(Q) and let V(Z,) = Ma(Z,) for any p. We let ¢y = @y, =
® char V(Z,), and let &5 = ®®,, be the corresponding factorizable standard section.
For ®., we take the standard section uniquely determined by

oo (k. 0) = det(k)?,

where k € K is the image of k € Uz(R) under the natural identification in (2.1).
Then by [Ku3, (7.13)], ® is the image of the Gaussian o under the local map
(2.3) for v = oo, where the local quadratic space is V5, the positive-definite quadratic
space corresponding to the Hamilton quaternion algebra over R, and where

(2.4) Voo(z) = exp(—7 tr(z,z)), z € (V)3
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16. THE CONNECTION TO EISENSTEIN SERIES 195

Since VI @ V(Ay) does not correspond to a quaternion algebra over Q, the stan-
dard section ® = ®o, ® Py is incoherent in the sense of loc. cit., and hence (loc.
cit., Theorem 2.2),

E(g,0,®) =0.

Consider the Fourier expansion of E(g, s, ®),

E(g787q)) = Z ET(Q,S,@),

T€Sym;(Q)
where
Er(g,s,®) = / E(ng,s,®) - r(n)"tdn,
N(Q\N(A)
with
(2.5) Gr(n(b) = Y(t(Th)), b€ Symy(A).

For T € Sym;(Q) with det(T") # 0, the Fourier coefficient has an explicit expression
as a product

(26) ET(9387¢) = HWT,v(gw S»q)v)a

see [Ku3, (4.4)]. Here Wr ,(gy, s, ®y) is the local Whittaker function, cf. section 5.
The local Whittaker functions are entire (cf. [Ku3, (4.2) and (4.3)]), and the product
(2.6) is absolutely convergent and holomorphic in s = 0. More precisely, for Re(s) > 2,
the identity (2.6) holds and for almost all places p, the local factor at p on the right
hand side equals (p(s +2)7! - (25 +2)"' = (1 —p~ %) - (1 — p~2*72), and for all
places the local factor is an entire function.

2.3. For T € Sym;(Q)>o, let

Diff (T, V) = {p | T not represented by V(Q,) }.

Then the cardinality |Diff (7, V)] is odd, cf. [Ku3, Cor. 5.2]. Moreover we have
Wrp(gp,0,®@,) = 0 for p € Diff(T,V), cf. [Ku3, Prop. 1.4]. On the other hand,
Wr o0(goos 0, Poo) # 0, cf. [Ku3, Prop. 9.5]. Hence

or(g Er(g,s,®) > |Diff (T, V)].

S=

In particular, if Ef.(g,0,®) # 0, then Diff(T, V) = {p} for a unique prime number p.
2.4. We may now formulate our main theorem.

Theorem 2.1. — Let V = M3(Q) and let ® = ®, ® Py be the incoherent standard
section as above. Let T € Symg4(Q)so with Diff (T, V') = {p}.

(i) If T € Syms(Z)V, then Tr = & and (TcE(TT) =0 and Ef(g,0,2) = 0.
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196 M. RAPOPORT & T. WEDHORN

(i) Let T € Syms(Z)Y. Then Tp has support in characteristic p. For g =
(goos €5€...) € G(A) with

1 z\ [y'/?
Joo = < 1) (J y]/2> ) T,y € Sym?,(R)vy >0,

let T = goo - ilg = + iy € H3. Then
det(y) deg(Tr) - 47 = k- Efp(g,0,®),

where g7 = exp(2mi tr(T7)) and where the negative constant k is independent
of T.

Here 93 = {7 € Sym;3(C) | Im(7) > 0} is the Siegel upper half space.

The proof of the theorem consists in calculating explicitly both sides of the identity.
The first assertion of (i) is obvious and the second is a consequence of section 5 below,
where the local Whittaker functions are related to local representation densities (see
Proposition 5.2 below). The proof of (ii) will be reduced in section 3 to a statement
about local Whittaker functions which will be taken up in sections 4 and 5.

2.5. In the rest of this section we relate the adelic Eisenstein series to the classical

Siegel-Eisenstein series, following [Kul, section IV.2]. By strong approximation,
G(A) = G(QG(R)K.

By our choice of ®, which is right Ky-invariant, the Eisenstein series E(g, s, ®) is

determined by its restriction to G(R) (embedded via goo — (goo,€,e...) in G(A)).
We have

G(z) = GQ) N (G(R).K).
Also, P(Q)\G(Q) = P(Z)\G(Z), hence for g = goo,

(2.7) E(g,s,®) = > Pac(V900r5) - Pf(7, )
+EP(Q\G(Q)

= > Pe(V900:9)-

YEP(Z)\G(2)

) 1 =z y1/2
For our choice of &, and of g, = ( 1) ( y‘1/2>’ we have

Do (Vgoos 8) = det(y)%Jrl - det(er + d)'2 - | det(er + d)| 7%,

v = (Z Z) € Spg(Z).

Inserting this expression into the sum (2.7), one obtains from [Kul, IV.2.23], (for
t=p,= 2)7
(28) E(gv S, (I)) = dEt(y) : Eclass(T, 3)7

where
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16. THE CONNECTION TO EISENSTEIN SERIES 197

where
Eclass (1, 8) = det(y)*/* Y _ det(er +d) 2 - [ det(er + d)|~*
(c,d)
is the classical Siegel Eisenstein series (the sum here ranges over a complete set of
representatives of the equivalence classes of pairs of co-prime symmetric integer ma-
trices).

2.6. Using the comparison (2.8) between the adelic and the classical Eisenstein se-
ries, we obtain from Theorem 2.1 the following statement. We consider the Fourier
expansion of the classical Eisenstein series,

Eclass(Ta 3) = Z C(T7 Y, 5) qT-
TeSymy(Z)V
Here 7 = z + iy € H3 and ¢7 = exp(2mi tr(T'7)).
Theorem 2.2. — Let T € Symg(Z)Y,.
(1) Then (T) = (%C(T,y, 5))|s=0 is independent of y.
(2) If DIff(T,V) = {p}, then Tr has support in characteristic p and
deg(Tr) = - /(T)

for a negative constant k independent of T .

Corollary 2.3. — Assume that there is no positive definite binary quadratic form over
Z which represents my, mg and ms, so that the divisors T, , Tn,, and Tp,, intersect
in dimension 0, ¢f. [Go2, Prop. 3.2]. Then there exists a constant k independent of
(m1,ma, m3) such that

(Tml : Tmz ° Tm3) =k- Z CI(T)
TESyms(Z)\;o
diag(T)=(m1,mz2,m3)

Proof. — The hypothesis implies that in the disjoint sum (1.1) only positive definite
T € Symy4(Z)Y occur as indices, comp. [Go2, Prop. 3.5]. Therefore the assertion
follows from Theorem 2.2. a

3. Use of the Siegel-Weil formula

3.1. Let V be the quadratic space associated to a quaternion algebra B over Q. For
@ € S(V(A)3), there is the theta series

0(g.h; @)= > (wlg)@)(h'a),

eV (Q)3
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198 M. RAPOPORT & T. WEDHORN

and the corresponding theta integral over the orthogonal group H = O(V) associated
to V,

lgd)= [ oghip)dn
H(Q)\H(A)
Here the Haar measure dh is normalized so that
vol(H(Q)\H(A)) = 1.

We will only consider the case in which the quadratic space V is anisotropic. If @
is K-finite, then I(g;@) is an automorphic form on G(A). The Siegel-Weil formula
[KR] states that, if ¢ gives rise to ® via the map (2.2), then

(31) E(gvo,&)):2'[(g§¢)'

Let T € Symy(Q) with det(T) # 0. Then the T*'-Fourier coefficient of I(g;®) is
equal to (KR, (6.21)])

Bge) = [ X wan
A@\A(s) *€V(@F
where .
V@ = (2 € V(@ | La.a) =T}

3.2. We now return to the situation considered in Theorem 2.1. Let V = M2(Q)
and let ® be the standard section defined in the previous section. We also fix T €
Syms(Q)so with Diff (T, V) = {p}. Let V be the quadratic space associated to the
definite quaternion algebra B = B(®) ramified at p, and unramified at all other finite
primes. Note that V(R) = V. We consider the standard section ® which is the
image of ¢ = Poo ® ¢ ® pp under
S(V(A)B) - I(O’ X0)7

where ¢f = ¢, where oo = oo is the Gaussian (2.4) and where $), = char V(Z,)?,
with V(Z,) the maximal order of the division algebra B®) ® Q,. Hence ®,, = P,

[IS? = <I>’} and ® is a coherent standard section. Comparing the expressions (2.6) for
the Fourier coefficients of F(g, s, ®) and E(g, s, fi)), we can write, for g = g, € G(R),

Wy ,(e,0,®,)
Wr (e, 0,®,)

We refer to Corollary 5.3 below for a proof of the fact that the denominator here is

El(g,0,®) = - Er(g,0,®).

nonzero. Using the Siegel-Weil formula (3.1) for the anisotropic quadratic space v,
we can rewrite this as

W4 (e,0,®
(3.2) Eb(g,0,®) =2 Wr,p(€0,25)
WT,p(e7 0’ q)p)

Ir(g;9).
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16. THE CONNECTION TO EISENSTEIN SERIES 199

Now the function (@, is invariant under H(R). For

1 =z 1/2
Joo = ( 1) (y y,1/2> 3 T,y € SymS(R)vy > 07

the value of w(goo)Poo at t € V(R)? with L(t,t) = T is equal to
(W(goo)Poo)(t) = exp(2mi tr(T'7)) det(y).
Since H(R) = O(V(R)) is compact, we may write using the product measure dh =
dooh X dgh,
(3:3) 2 Ir(g; ) = 2det(y) - " - vOl(H (R), dooh) - Ir($y),
where

o= [ X st
A@\A(Ay) =€V @F

3.3. Let
H ={j=(g,9') € B x B* | Nm(g) = Nm(g') }.

Then H' acts on V via

g-x=1(9,9") x=gzg".

This induces an exact sequence, where G,, lies in the center of H’, cf. [Wd1,
Lemma 1.6],

(3.4) 1 -Gy — H 2 S0(V) — 1.

We fix the Haar measure on H’(A) such that the measure induced by the exact
sequence (3.4) on SO(V)(A) is the Tamagawa measure, and with the standard Haar
measure on the central idele group A* which is the product of the local measures
A fix%ﬁ with convergence factors Ay = 1 — 1, so that vol(Z*) = 1. Let

K' = H(Af)N (053 Z)* x (05 @ 2)%).

Proposition 3.1. — Let

|TT| = Z e,;._l

feTT(]Fp)
with e¢ = | Aut(€)|. Then

|Tr| = k1 - Ir(&y),
where k1 = 2 vol(K')~1.
Proof. — We choose a finite set of double coset representatives h; € H'(A £) such
that
H'(Ag) =[] H (@h,;K".
J
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200 M. RAPOPORT & T. WEDHORN

Since each double coset I:I’(Q)hj K’ is stable under ix(@x = A;f, we obtain a disjoint
decomposition,

_ H SO(V)(Q)pr(hy)pr(K’).

Let

I = H'(Qnh;K'h; .
Note that vol(SO(V)(Q)\SO(V)(A)) = 2. We have

H(Ag) = SO(V)(Ag) x pa(Ag).
Hence

1 = vol(O(V)(Q)\O(V)(A))
- 5vol(SO(V)(@)\O(f/)(A))

:%VOI(S (V)(Q@\SO(V)(A)) vol (12 (A))
= vol(u2(A))
and therefore

vol(2(@)\u2(4)) = 3.

Let us normalize the Haar measure on pz(R) by vol(pz2(R)) = 1. Then we get
vol(p2(Q)\p2(As)) = 1. Then we obtain as in [Ku3, (7.28)],

Ir(py) = / / > s ex)dshde
SO(VY(@N\SO(V)(A[) H2(@\p2(As) TEV(QF

= % / > @r(hla)dsh

SO(7)(@\ SO(V)(as) =€V (@7

= %Z / Z gbf(h_lx)dfh

7 SO(V)(@\SO(V) (@pr(h; )pr(f(’) 2V (Q%

:% vol(pr(K Z Z s(hy tz).

T 2@ | le

Here T'; , is the image of f;,x in Q*\H'(Q) = SO(V)(Q). Therefore we have |T; .| =
- lf‘;xl Note that T'; . is trivial since z spans a three-dimensional subspace of the
4-dimensional space V.

To make the connection with 77, note that the supersingular locus of M,(,z) can be
written as a double coset space (cf. [Mi, 6]),

(M®P)>* = H'(Q\H'(Ag)/K".
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16. THE CONNECTION TO EISENSTEIN SERIES 201

Here we chose (Ep, Eg) as a base point, such that K’ is the stabilizer of the Tate
module T(Ey) x T'(Ey) (completed by the Dieudonné module at p). To § = (g,4') €
H' (Ay) corresponds Ey x Ey with the diagonal isogeny,

(9,9"): Eo x Ey — E4 x Eg.
The lattice Hom(E,, Ey) in V(Q) = Hom(FEy, Eyp) ® Q is given by
Hom(Ey, Ey) = {y € B | yg(T(Eo)) C ¢'T(Eo) }
={yeBlgdlygeV(2)}
={yeBli'yeV@)}
Hence we obtain

|Tr| = > Gr(a ")

[y, 9l€ B (@\(V* (@1 x H (Af)/K)

=X > erlhyta)

J zev3(Q)r
=92. vol(pr(R”))_1 I (Py).

Since vol(K') = vol(pr(K')), the result follows. O

3.4. The next result will be proved in section 5.6.

Theorem 3.2. — The lengths of the local rings O, . at all points £ € Tr(F,) are all

equal to
2 W’;‘J)(ea Oa q)P)

(p - 1)2 WT,p(ea 07 (i)p)

- (logp)~".

lg(OTT,e ) =

3.5. We will now prove Theorem 2.1 using Theorem 3.2. Let
H' ={§=(9,9') € GLy x GLy | det(g) = det(g")},
K' = H'(Ay) N (GLy(Z) @ GLy(Z)).
Then H' is an inner form of H'.
We now fix Haar measures on H'(A) and on H'(A) following [Ku3, p. 573]. More
precisely, in loc. cit. Kudla defines for any quaternion algebra B over Q a Haar
measure on (B ® A)* which is decomposed, i.e., the explicit product of local Haar

measures on (B ® Q,)* for all places v. By our fixed choice of Haar measure on A,
we therefore also obtain a decomposed Haar measure on H(B)'(A), where

H(B) ={j=(g,9') € B* x B* | Nm(g) = Nm(g")}.

By loc. cit., the induced Haar measure on SO(V(B))(A) is the Tamagawa measure,
as required above.
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202 M. RAPOPORT & T. WEDHORN

We apply this construction to B = M3(Q) and to B = B = B® the definite
quaternion algebra, ramified at p and unramified at all other finite places. Then we
have for these Haar measures (comp. [Ku3, Lemma 14.10]),

vol(K))
1 f(l/’ = (p - 1)2
vol(K})
and
vol(K'
( - ) — (p _ 1)2
vol(K)
Hence
q" - deg(Tr) = ¢" 1g(O1;.) - logp
= qT lg(OTT,g) ’ ITT| ~logp
2 W (e, 0,®
= _ __.9. T f’). T Ip(@y)
(p—1)% - vol(K') Wr (e, 0,®p)
2
- _ = . E/ ¢ -1 —1
VOl(K/) T(gaoa )det(y) v,
where we used (3.2) and (3.3) in the last step, and where v = vol(H (R), dsoh). This
proves the main theorem with the negative constant xk = —W vt

4. The Weil representation

4.1. The remainder of this chapter is devoted to the proof of Theorem 3.2. This is
a purely local statement.

We fix a prime number p and change our notation: We replace V by V ® Q,, G
by G ® Qp, 9 by its localization ¢, (of conductor zero), etc. At the same time we
consider a more general situation.

4.2. Instead of the quadratic space associated to a quaternion algebra, we now let
V be any Q,-vector space and (, ) a symmetric nondegenerate bilinear form on V.
Then Q(z) = (x,z) is a quadratic form on V.

We assume that n := dim(V') is even. In fact, we will only need the case V=B L
H" where B is a quaternion algebra over Q, endowed with the reduced norm, and
where H" is the orthogonal sum of r copies of the hyperbolic plane H.

We denote by det(V) the image in Q) /(Q))? of the determinant of the matrix
((vi,vj))ij where (v1,...,vy) is some basis of V. As in 2.1 we have the quadratic
character xv of Q, associated to V' given by

xv (@) = (&, (=1)"" V2 det(V)), = (, (=1)"2 det((v3,v7))is ),

where ( , ), denotes the Hilbert symbol.
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16. THE CONNECTION TO EISENSTEIN SERIES 203

4.3. Let (W,(, )) be the space Q%m endowed with the standard symplectic form
whose matrix with respect to the standard basis is given by (—(I)m I(')’" ) We consider
W as vector space of row vectors, in particular the canonical GLg,,-action is from the
right. To prove Theorem 3.2 we will need only the case m = 3.

As in 2.1 we denote by P = M N the Siegel parabolic subgroup of G = Sp,,,, (Q))

over Q, where

M = {(mia) = (g ta‘;) | a € GLu(Q,) ),

v=(uw) = (2 ) Ivesma @)

Let K = Spy,,(Z,) C G the standard maximal compact subgroup and set
0 In
w = (_ L. 0 > €q.

4.4. In the sequel we let a € GL;, act on V™ =V ® Q} via right multiplication,
which we denote by x — za.
Moreover for z,y € V™ we set

(z,y) := (%4, 95))ij € Sym,,,(Qp).

4.5. Associated to the quadratic space V and the fixed additive character v there is
a Weil representation wy of G on the vector space S(V™) of Schwartz functions on
VM. Forg=(2Y%) € G, peS(V™), and x € V™ we have by [Ku2, Prop. 4.3] (cf.
also [Rao, Lemma 3.2], and [We]),

(wv(9) (@) (@) =7V, 9)
1 1
e leaah) + (aboye) + 5 (v wd) el + ye) dyy
Vvm /Ker(c)
where (V, 4, g) is a certain 8" root of unity depending on V, 1, and g such that

v(V,1,e) = 1 and where d,y is a suitable Haar measure. We make this more explicit
in three special cases:

(a.1) (v (m(a))o) ) = xv (det o) detal"*i(za),
(42) (v ((B)p)(x) = ¥ (7)) (),
(13) (vl Ne)w) = V) [ wl=trl(e. ) () dy
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where in (4.3) dy is the Haar measure on V"™ which is self dual for Fourier transform
and where y(V) = v(V, 1, w™1) is the 81 root of unity explicitly given in [Ku3, A.4].

5. Local Whittaker functions and representation densities

5.1. We keep the notation of section 4 and assume from now on that m = 3 and
hence G' = Spg(Qp), and n = 4.

For s € Clet I(s, xv) be the degenerate principal series representation of G induced
from P, i.e., I(s, xv) counsists of K-finite functions ®(-,s): G — C such that

®(nm(a)g,s) = xv(deta)| det a|*T2®(g, s)

for all n € N, a € GL3(Q,), and g € G.
We also set for T' € Symg(Q)), as in (2.5),

Yr: N — C*, Yr(n(b)) = Y(tr(Th)).

5.2. Fors € C, ® € I(s,xv), T € Symy(Q,) with det(T) # 0, and g € G we define
the local Whittaker function by

Wr(g,s,®) = /N ®(w n(b)g, s)Pr(n(b)) " db

where db is the Haar measure on Sym;(Q,) which is selfdual with respect to the
pairing

Y Symy(Qp) x Sym;(Q,) — C, (b, ") — P(tr(bd')).
As the conductor of 1 is zero, we have

(5.1) {be Symy(Q,) | ¥n(b,b) =1 for all b € Symy4(Z,) } = Symy(Z,)".

Therefore

volgy (Syms(Z,) )volay(Syms(Z,)Y) = 1.

\

As the index of Sym4(Z,) in Syms(Z,)" is 23927 we obtain

(5:2) volay(Symy (Z,)) = 2~ 3/2)%20,

It is known that Wr(g, s, ®) converges for Re(s) > 2 and admits a holomorphic
continuation to the entire complex plane, if ® is standard, i.e., if its restriction to K
is independent of s [Ku3, Prop. 1.4]. Moreover, we will see in Proposition 5.2 below
that Wr(e, s, ®) is a polynomial in p~*.
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5.3. For p € S(V?) we set

®(g,5) = (w(9)p)(0) - |a(g)]*.

It follows from (4.1) and (4.2) that ®(g,s) € I(s,xv). In this way, we obtain a
G-equivariant map similar to (2.2),

S(Vg) - I(OvXV)7 P <I>(g,0)

5.4. For r > 0 we denote by the H, the quadratic space fo whose associated bilinear

form has the matrix 3 ( I(I‘ 10) with respect to the standard basis, and set

V., =V 1 H,.

It is known [Ku3, Lemma A.2] that wy, = wy ® wy, as representations of G' on
S(V;?) =S(V?) @ S(H}).
We also recall Lemma A.3 from [Ku3] (see also [Ral, Remark I1.3.2]):

Lemma 5.1. — Let ©° € S(H?2) be the characteristic function of Ma,3(Z,) and ¢ €
S(V3) with associated ®(g,s) € I(s,xv). Set pl"l = p2¢? € S(V?) = S(VHRS(H?).
Then we have for all g € G andr >0

®(g,7) = (wv,(9)#)(0).

5.5. We fix a Z,-lattice L of V such that (, ) is integral on L. Choose a Z,-basis
of L and let S, be the matrix associated to the quadratic form on V,, = V & H,
with respect to the chosen basis of L and the standard basis of H,. In particular,
the matrix of the bilinear form ( , ) with respect to the chosen base of L equals
2Sy.

Let ¢ € S(V3) be the characteristic function of L3 with associated ® = ®(g, s) €
I(s,xv). Then the local Whittaker function Wr(e, s, ®) interpolates the local repre-
sentation densities:

Proposition 5.2. — For all integers r > 0 we have
Wr(e,r, ®) = 27(15/2)%2 | det .S’0|3/2'y(V)ap(T, Sr)s

where we denote by ap,( , ) the local representation density as normalized in [Wd1,
(4.4)]. In particular, Wr(e, s, ®) is a polynomial in X = p~5.
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Proof. — The right hand side is a polynomial in X = p~" [Kit] and the left hand
side is an entire function in r. Hence it suffices to show the identity for r > 2. Now
we have

Wr(e,r,®) = / ®(w'n(b), r)y(— tr(Th)) db

Symg(Qp)
a (wv, (w™ ' n(5)) ") ()~ tr(Th)) db
Sym;(Qyp)
(4.3) 1 v
s / 2(V) / 9 (5 (b, 1)) - ¢ (y) dy s (— tr(T8)) db
Symi(Q,,
= thm / /Qﬁ tr(b -T))) -l (y) dy db
p~t Symgy(Zy) Vy
vy jim voldburt Symy(Z,)) - / o (y) dy
yev?
—é—(y,y)—TGpt Symg(Zp)Y
(5:2) (3/2)82p,6
="V )tl_IngQ P dy.

yEMar14.3(Zp)
tySry—Tep' Symy(2Zy)Y

Now {y € Moy y4.3(Zp) | 'ySry — T € p* Symy(Z,)Y } is a union of
Ap (T, Sr) == #{y € Mars43(Zp/20'Zp) | 'ySry — T € p* Symy(Z,)" }
cosets for 2p'Ma,14,3(Z,). Moreover, by the definition of dy (4.3) we have
volay(Mar44,3(Z,)) = | det 28,32
= | det 25, [%/2
= 27992 | det Sy |*/2,

and hence

VOldy(thM2T+4,3(Zp)) — 2—662p| det S()|3/22_3(4+2r)62”p_t3(4+2r).
Therefore Wy (e, r, ®) is equal to
(V)2 662pldetS 13/22( (3/2)—3(4427))d2p lim th t3(4+2T)A (T, ST)

t—oo
Now we have
Ay (T, Sy) = 2364+200 A (T S,)
with

Ape (T, Sy) = #{y € Moy ya3(Zy/p'Zy) | 'yS,y — T € p* Symy(Z,)" }.
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By definition we have
ap(T, ) = lim p*~BE20A,(T, 5,)
and this proves the proposition. O

Corollary 5.3. — For ® as in Proposition 5.2, Wr(e,0,®) # 0 if and only if T is
represented by Sp.

5.6. We will now prove Theorem 3.2.
As a, (T, Sy) is a rational function in X = p~", it follows from Proposition 5.2 that

0
(5.3) Wi(e,0,®) = — log(p)2~(15/2%r| det So|3/27(V)a—Xap(T, Sr)jx=1-

Let D be the division quaternion algebra over @, and denote by Op its maximal
order. We denote by S = Sy (resp. S = Sp) the matrix associated to the quadratic
space V = Ma(Z,) (resp. V = Op) endowed with the reduced Norm. Then we have
(see e.g., [Wd1, (4.5) and (4.6)])

| det(So)| = 2%,
| det(Sp)| = 2492 p=2.
Moreover we have by the explicit formulas in the Appendix of [Ku3]

(V) =—=(V).

Using the notation of Theorem 3.2, we therefore have by Proposition 5.2 and (5.3)

W (e,0,® D o (T, 8,)x—
(5.4) Trple 2) og gyt — po2x e 5=t

Wr (e, 0,0p) ap(T, So)
But now by [Wd2, Theorem 1.1 and 2.16] we have
(5.5) ap(T, So) =2(p+1)*p~"
and

9 44,2 2

(5.6) ax (L Sr)ix=1=—p7" (" — 1)"lg(Orr.¢)-

Therefore we have

5t 2p+ 1) Fxop(T,S)x=
6 (-1 p ay (T, So)
GaH 2 Wr(e, 0, ®p)

(p—1)* Wr(e,0,d,)

1g(O7;.¢) log(p)

which proves the theorem.
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