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THE RENORMALIZATION THEOREM OF AMBROSIO
[after Ambrosio, DiPerna, Lions]

by Camillo DE LELLIS

INTRODUCTION

Consider the Cauchy problem for transport equations on R+ × Rn:

(1)


∂tu(t, x) + b(t, x) · ∇xu(t, x) = 0

u(0, x) = u(x) .

Here b : R+ × Rn → Rn is a given smooth vector field, u a given smooth initial
condition and u the unknown function. Smooth solutions of (1) are constant along
curves φ : [a, b] → Rn solving the system of ordinary differential equations φ̇(t) =

b(t, φ(t)). Indeed, differentiating g(t) = u(t, φ(t)) we find

dg

dt
= ∂tu(t, φ(t)) + φ̇(t) · ∇xu(t, φ(t)) = ∂tu(t, φ(t)) + b(t, φ(t)) · ∇xu(t, φ(t)) = 0 .

Thus, if Φ : R+ × Rn → Rn is the one–parameter family of diffeomorphisms solving

(2)


∂tΦ(x, t) = b(t,Φ(x, t))

Φ(0, x) = x

and Φ−1(t, ·) denotes the inverse of the diffeomorphism Φ(t, ·), then the unique solu-
tion u of (1) is given through the formula u(t, x) = u(Φ−1(t, x)). This is the classical
method of characteristics for transport equations. Our discussion justifies the name
transport equation: the quantity u is simply “transported” along the trajectories of
the ODE (2). It is therefore not surprising that these equations appear in the math-
ematical description of many phenomena in classical and statistical physics.
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When b is Lipschitz, existence and uniqueness of solutions to (2) are given by the
classical Cauchy–Lipschitz Theorem, but for less regular b this elegant and elementary
picture breaks down. On the other hand, many physical phenomena lead naturally to
consider transport equations where the coefficients b are discontinuous. The literature
related to this kind of problems is huge and I will not try to give an account of it here.
Let me just mention that in many of these problems one deals with coefficients which
typically have jump discontinuities, take for instance the theory of shock waves.

It is therefore desirable to have a theory of solutions for ODEs and transport equa-
tions which allows for non–smooth coefficients. The Sobolev spaces W 1,p (given by
functions u ∈ Lp with distributional derivatives in Lp) are probably the most popular
spaces of irregular functions in partial differential equations. In their groundbreaking
paper [28], motivated by their celebrated work on the Boltzmann equation, DiPerna
and Lions introduced a theory of generalized solutions for transport equations and
ODEs with Sobolev coefficients. Loosely speaking, this is done at the loss of a “point-
wise” point of view into an “almost everywhere” point of view. Though a generic
function u ∈W 1,p(Ω) might be extremely irregular, its singular set, at least in a suit-
able measure theoretic sense, has necessarily codimension higher than 1. In particular,
functions with jump discontinuities do not belong to W 1,p. Indeed, if the discontinu-
ities are along nice regular surfaces, the distributional derivatives are nothing more
than Radon measures.

A commonly used functional–analytic closure of such “jump functions” is the BV
space, i.e. the set of summable functions whose distributional derivatives are Radon
measures. The extention of the DiPerna–Lions theory to BV functions has been for
a while an important open problem. After some attempts by other authors leading
to partial results (see [33], [15], [21]; some of these works were motivated by specific
problems in partial differential equations and mathematical physics), Ambrosio solved
the problem in its full generality in [4]. This note is an attempt to illustrate the most
important ideas of the DiPerna–Lions theory and of Ambrosio’s result. In order to
focus on the main points, I will not consider the most general results proved so far.
Moreover, I will not follow the shortest proofs and often I will consider cases which
later on become corollaries of more general theorems.

In the first section, I discuss the first key idea of [28]: the notion of renormalized
solutions and its link to the uniqueness and stability for (1). In Section 2, I discuss
the hard core of the DiPerna–Lions theory for W 1,p fields: the so called commutator
estimate. In Section 3, following the ideas of Ambrosio, I push gradually the DiPerna–
Lions approach towards the BV case. The proof of Ambrosio’s Theorem is finally
achieved in Section 4 in two different ways, based on observations of Bouchut and
Alberti. Section 5 discusses the third key idea of [28], a sort of converse of the classical
theory of characteristics: appropriate results on transport equations can be used to
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infer interesting conclusions on ODEs. Section 6 surveys further results, conjectures
and open problems in three different directions of research. Section 7 contains the
proof of one technical proposition on BV functions used in Section 3.

1. RENORMALIZED SOLUTIONS

1.1. Distributional solutions

Let us start by rewriting (1) in the following way:

(3)


∂tu+ divx(ub)− udivxb = 0

u(0, x) = u(x) .

Here and in what follows I denote by divxb the divergence (in space) of the vector b.
Clearly any classical solution of (3) is a solution of (1) and viceversa. However, equa-
tion (3) can be understood in the distributional sense under very mild assumptions
on u and b. This is stated more precisely in the following definition.

Definition 1.1. — Let b and u be locally summable functions such that the distri-
butional divergence of b is locally summable. We say that u ∈ L∞loc is a distributional
solution of (3) if the following identity holds for every test function ϕ ∈ C∞c (R×Rn)

(4)
∫ ∞

0

∫
Rn
u [∂tϕ+ b · ∇xϕ+ ϕdivxb] dx dt = −

∫
Rn
u(x)ϕ(0, x) dx .

Of course for classical solutions the identity (4) follows from a simple integration by
parts. The existence of weak solutions under quite general assumptions is an obvious
corollary of the maximum principle for transport equations combined with a standard
approximation argument.

Lemma 1.2 (Maximum Principle). — Let b be smooth and let u be a smooth solution
of (3). Then, for every t we have supx∈Rn u(t, x) ≤ supx∈Rn u(x) and infx∈Rn u(t, x) ≥
infx∈Rn u(x). Hence ‖u(t, ·)‖L∞(Rn) ≤ ‖u‖∞.

Proof. — The lemma is a trivial consequence of the method of characteristics. Indeed,
arguing as in the introduction u(t, x) = u(Φ−1(t, x)), where Φ is the solution of (2).
From this representation formula the inequalities follow trivially.

Theorem 1.3. — Let b ∈ Lp with divxb ∈ L1
loc and let u ∈ L∞. Then there exists a

distributional solution of (3).
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Proof. — Consider a standard family of mollifiers ζε and ηε respectively on Rn and
R × Rn. Let bε = b ∗ ηε and uε = u ∗ ζε be the corresponding regularizations of b
and u. Then ‖uε‖∞ is uniformly bounded. Consider the classical solutions uε of

(5)


∂tuε + bε · ∇xuε = 0

uε(0, ·) = uε .

Note that such solutions exist because we can solve the equation with the method of
characteristics: indeed each bε is Lipschitz and we can apply the classical Cauchy–
Lipschitz theorem to solve (2). By Lemma 1.2 we conclude that ‖uε‖∞ is uniformly
bounded. Hence there exists a subsequence converging weakly∗ to a function u ∈
L∞(R+ × Rn). Let us fix a test function ϕ ∈ C∞c (R × Rn). Since the uε are classical
solutions of (5), the identity (4) is satisfied if we replace u, b and u with uε, bε and
uε. On the other hand, since bε → b, divxbε → divxb and uε → u locally strongly in
L1

loc, we can pass into the limit in such identities to achieve (4) for u, u and b.

1.2. Renormalized solutions

Of course the next relevant questions are whether such distributional solutions are
unique and stable. Under the general assumptions above, the answer is negative, as it
is for instance witnessed by the elegant example of [27]. However, DiPerna and Lions
in [28] proved stability and uniqueness when b ∈W 1,p ∩ L∞ and divxb ∈ L∞.

Theorem 1.4. — Let b ∈ L1(R+,W 1,p(Rn)) ∩ L∞ with bounded divergence. Then
for every u ∈ L∞ there exists a unique distributional solution of (3). Moreover, let bk
and uk be two smooth approximating sequences converging strongly in L1

loc to b and
u such that ‖uk‖∞ is uniformly bounded. Then the solutions uk of the corresponding
transport equations converge strongly in L1

loc to u.

In order to understand their proof, we first go back to classical solutions u of (3),
and we observe that, whenever β : R → R is a C1 function, β(u) solves

(6)

{
∂t[β(u)] + divx[β(u)b]− β(u) divxb = 0

[β(u)] = β(u) .

This can be seen, for instance, using the chain rule for differentiable functions, i.e.
∂tβ(u) + b · ∇xβ(u) = β′(u)[∂tu + b · ∇xu]. Otherwise, one can observe that, since
u must be constant along the trajectories (2), so must be β(u). Motivated by this
observation, we introduce the following terminology.

Definition 1.5. — Let b ∈ L1
loc with divxb ∈ L1

loc. A bounded distributional solution
of (3) is said renormalized if β(u) is a solution of (6) for any β ∈ C1. The field b is
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said to have the renormalization property if every bounded distributional solution of
(3) is renormalized.

When b and u are not regular we cannot use the chain rule, neither the theory
of characteristics. Therefore, whether a distributional solution is renormalized might
be a nontrivial question. Actually, for quite general b, there do exist distributional
solutions which are not renormalized (see again [27]). The proof of Theorem 1.4 by
DiPerna and Lions consists of two parts, the first one, which is “soft” can be stated
as follows.

Proposition 1.6. — If b ∈ L∞ has the renormalization property and its divergence
is bounded, then the uniqueness and stability properties of Theorem 1.4 hold.

The second one, which is the “hard” part of the proof, states essentially that W 1,p

fields have the renormalization property.

Theorem 1.7. — Any b ∈ L1([0,∞[,W 1,p(Rn)) has the renormalization property.

We postpone the “hard part” to the next section and come first to Proposition 1.6.

Proof. — Uniqueness. Fix a u0 and let u and v be two distributional solutions of
(3). It then follows that w = u− v is a distributional solution of the same transport
equation with initial data 0. By the renormalization property so is w2, i.e.

(7)


∂tw

2 + divx(w2b) = w2 divxb

w2(0, ·) = 0 .

Integrating (7) “formally” in space we obtain

∂t

∫
Rn
w2(t, x) dx =

∫
Rn
w2(t, x) divxb ≤ ‖divxb‖∞

∫
Rn
w2(t, x) .

Since
∫
Rn w

2(0, x) dx = 0, by Gronwall’s Lemma we would conclude
∫
Rn w

2(t, x) dx = 0

for every t. We sketch how to make rigorous this formal argument. Assume for
simplicity ‖b‖∞ ≤ 1. Let T,R > 0 be given and choose a smooth cut–off function
ϕ ∈ C∞c (R×Rn) such that ϕ = 1 on [0, T ]×BR(0) and ∂tϕ ≤ −|∇xϕ| on [0, 2T ]×Rn.
Now let ψ ∈ C∞c (] − 2T, 2T [) be nonnegative and test (7) with ψ(t)ϕ(t, x). Define
f(t) =

∫
Rn w

2(t, x)ϕ(t, x) dx and use Fubini’s Theorem to get

−
∫ ∞

0

f(t)∂tψ(t) dt =

∫ ∞
0

∫
ψ(t)ϕ(t, x)w2(t, x) divxb(t, x) dx dt

+

∫ ∞
0

∫
ψ(t)w2(t, x)

[
∂tϕ(t, x) + b(t, x) · ∇xϕ(t, x)

]
dx dt .
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Note that the second integral in the right hand side is nonpositive, whereas the first
one can be estimated by ‖divxb‖∞

∫
f(t)ψ(t) dt. We conclude that f satisfies a “dis-

tributional” form of Gronwall’s inequality for t ∈ [0, 2T [. It can be easily seen that
this implies f = 0. Thus w = 0 a.e. on [0, T ] × BR(0), and by the arbitrariness of R
and T we conclude w = 0.

Stability. Arguing as in Theorem 1.3, we easily conclude that, up to subsequences,
uk converges weakly∗ in L∞ to a distributional solution u of (3). However, by the
uniqueness part of the Theorem, this solution is unique, and hence the whole sequence
converges to u. Since the bk and the uk are both smooth, u2

k solve the corresponding
transport equations with initial data u2. Arguing as above, u2

k must then converge,
weakly∗ in L∞, to the unique solution of (3) with initial data u2. But by the renor-
malization property this solution is u2. Summarizing, uk

∗
⇀ u and u2

k
∗
⇀ u2 in L∞,

which clearly implies the strong convergence in L1
loc.

2. THE COMMUTATOR ESTIMATE OF DIPERNA AND LIONS

In this section we come to the “hard part”, i.e. Theorem 1.7. We first prove a milder
conclusion, neglecting the initial conditions, which will be adjusted later.

Proposition 2.1. — Assume b ∈ L1(R+,W 1,p(Rn)) and let u ∈ L∞ solve

(8) ∂tu+ divx(ub)− udivxb = 0

distributionally on R+ × Rn. Then, for every β ∈ C1,

(9) ∂t[β(u)] + divx(β(u)b)− β(u) divxb = 0 .

2.1. Commutators

Let us fix u and b as in Proposition 2.1 and consider a standard smooth and even
kernel ρ in Rn. By a slight abuse of notation we denote by u ∗ ρε the convolution
in the x variable, that is [u ∗ ρε](t, x) =

∫
u(t, y)ρε(x − y)dy. Mollify (8) to obtain

0 = ∂tu ∗ ρε + [divx(bu)] ∗ ρε − [udivxb] ∗ ρε. We rewrite this identity as

(10) ∂tu ∗ ρε + b · ∇xu ∗ ρε = −Rε + [(udivxb) ∗ ρε − u ∗ ρε divxb]

where Rε are simply the commutators

(11) Rε = [divx(bu)] ∗ ρε − divx[b(u ∗ ρε)] .

Since Rε is a locally summable function, the identity (10) implies that ∂tu ∗ ρε is
also locally summable. Thus, u ∗ ρε is a Sobolev function in space and time, and we
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can use the chain rule for Sobolev functions (see for instance Section 4.2.2 of [30]) to
compute

∂t[β(u ∗ ρε)] + b · ∇x
[
β(u ∗ ρε)

]
= β′(u ∗ ρε)

[
∂tu ∗ ρε + b · ∇xu ∗ ρε

]
.

Inserting (10) in this identity we get

(12) ∂t[β(u∗ρε)]+b ·∇x
[
β(u∗ρε)

]
= β′(u∗ρε)

{
Rε+[(udivxb)∗ρε−u∗ρε divxb]

}
.

Now, the left hand side of (12) converges distributionally to the left hand side of (9).
Recall that ‖β′(uε)‖∞ and ‖u ∗ ρε‖∞ are uniformly bounded, whereas

[(udivxb) ∗ ρε − u ∗ ρε divxb] −→ 0

strongly in L1
loc. Therefore, in order to prove Proposition 2.1 we just need to show

that β′(u ∗ ρε)Rε converges to 0. This is implied by the following lemma.

Lemma 2.2 (Commutator estimate). — Let b ∈ L1(R+,W 1,p(Rn)), u ∈ L∞ and Rε
as in (11). Then Rε → 0 in L1

loc.

2.2. The commutator estimate of DiPerna and Lions

Proof of Lemma 2.2. — Without loss of generality we assume that the kernel ρ is
supported in B1(0). First we use the elementary identity

Rε = −
∑
i

(ubi) ∗ ∂xiρε +
∑
i

bi(u ∗ ∂xiρε)− u ∗ ρε divxb

and we expand the convolutions to obtain

(13) Rε(t, x) =

∫
u(t, y)(b(t, x)− b(t, y)) · ∇ρε(x− y) dy −

[
u ∗ ρε divxb

]
(t, x) .

Since ∇ρε(ξ) = ε−n−1∇ρ(ξ/ε), we perform the change of variables z = (x − y)/ε to
get

(14) Rε(t, x) = −
∫
u(t, x+εz)

b(t, x+ εz)− b(t, x)

ε
·∇ρ(z) dz−

[
u∗ρε divxb

]
(t, x) .

Next, fix a compact set K. By standard properties of Sobolev functions (see for
instance Section 5.8.2 of [29]), the difference quotients

(15) dε,z(t, x) =
b(t, x+ εz)− b(t, x)

ε

are bounded in Lp(K) independently of z ∈ B1(0) and ε ∈]0, 1[. We now let ε ↓ 0.
For each fixed z, dε,z converges strongly in Lp(K) to ∂zb. The functions uz,ε(t, x) =

u(t, x + εz) are instead uniformly bounded in L∞, and, by the L1–continuity of the
translation, they converge strongly in L1(K) to u.
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Therefore we conclude that Rε converges strongly in L1
loc to

R0(t, x) = −u(t, x)

∫
∂zb(t, x) · ∇ρ(z) dz −

[
udivxb

]
(t, x)

= −u(t, x)
∑
i,j

∂ib
j(t, x)

∫
zi∂zjρ(z) dz − u(t, x) divxb(t, x) .

Integrating by parts we have
∫
zi∂zjρ = −δij . So R0 = 0, which completes the proof.

2.3. The initial condition

In order to prove Theorem 1.7 we still need to show that β(u) takes the initial
condition [β(u)](0, ·) = β(u)(·). This is achieved with a small trick.

Proof of Theorem 1.7. — Consider b and u as in Theorem 1.7 and extend both of
them to negative times by setting b(t, x) = 0 and u(t, x) = u(x) for t < 0. It is
then immediate to check that ∂tu+ divx(bu) = udivxb distributionally on the whole
space–time R×Rn. On the other hand the proof of Proposition 2.1 remains valid if we
replace R+ with R (actually the proof remains the same on any open set Ω ⊂ R×Rn).
Therefore

∂t[β(u)] + divx[bβ(u)] = β(u) divxb

distributionally on R × Rn. We test this equation with a ϕ ∈ C∞c (R × Rn), recalling
that [β(u)](t, x) = β(u(x)) and b(t, x) = 0 for t < 0. We then conclude
(16)∫ ∞

0

∫
Rn
β(u)

[
∂tϕ+ b · ∇xϕ+ divxb ϕ

]
dx dt = −

∫
Rn
β(u(x))

∫ 0

−∞
∂tϕ(t, x) dt dx .

On the other hand, since ϕ is smooth, we can integrate by parts in t in the right hand
side of (16) in order to get −

∫
β(u(x))ϕ(0, x)dx. This concludes the proof.

3. THE BV CASE: THE COMMUTATOR ESTIMATE
OF AMBROSIO

Let us try to push the proof of DiPerna and Lions to the BV case (we recall here
that a function of bounded variation is simply a summable function whose distribu-
tional derivatives are Radon measures). Notice however that, in order to make sense
of a distributional solution of (3) as in Definition 1.1, we do need the additional as-
sumption divxb ∈ L1, because for a generic BV function the divergence is only a
Radon measure.

The only point where the strategy of DiPerna and Lions does not work is in the
proof of Lemma 2.2. There we can still conclude that the difference quotients (15) are
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bounded in L1
loc, but we cannot conclude that they converge strongly in L1

loc to ∂zb.
In fact, ∂zb is now a Radon measure, and dε,z converges to it weakly∗ in the space
of Radon measures (this weak∗ convergence is the one coming from duality with con-
tinuous functions through the Riesz Representation Theorem). However, though we
cannot conclude that Lemma 2.2 holds, we still get some information: the right hand
side of (12) is uniformly bounded in L1

loc, and hence converges (up to subsequences)
to a Radon measure µ. We include this statement in a lemma to which we will refer
later.

Lemma 3.1. — Let u ∈ L∞ and b ∈ L1(R+, BV (Rn)) with divxb ∈ L1. Assume that
∂tu+ divx(ub)− udivxb = 0 distributionally on R+ × Rn. Then, for every β ∈ C1,

(17) ∂t[β(u)] + divx(β(u)b)− β(u) divxb = µ

for some Radon measure µ.

3.1. Difference quotients of BV functions

In what follows we will denote by Dxb the distributional differential in the space
variables of the vector field b. That is, the matrix of distributional partial derivatives.
In order to go beyond Lemma 3.1, consider that, by the Radon–Nikodym decomposi-
tion, the distributional derivative Dxb, which is a measure, can be split into the part
which is absolutely continuous with respect to the Lebesgue measure and the singular
part. We denote them by Da

xb and Ds
xb. The Sobolev space W 1,1 is simply given by

those BV functions b for which the singular part Ds
xb vanishes. For such functions,

according to Proposition 2.1, the measure µ in (17) vanishes. It is therefore natural
to conjecture that, in the general BV case, µ is a singular measure.

In order to show this, we need a refined analysis of the difference quotients of
BV functions. We start by introducing a bit of terminology. First of all, we can
regard Dxb as a matrix of measures or as a matrix–valued measure. Since Da

xb is an
absolutely continuous function, we can write it as fL n+1, where L n+1 denotes the
n+ 1–dimensional Lebesgue measure, and f is a matrix–valued function. In this case
f is usually denoted by ∇xb in the literature (indeed it coincides with an appropriate
measure–theoretic notion of pointwise differential of b, see [12]).

Thanks to the Radon–Nikodym decomposition, a similar splitting holds for Ds
xb

as well. That is, we might write Ds
xb = M |Ds

xb|, where |Ds
xb| is the total variation

measure of Ds
xb (and hence a nonnegative measure), and M is a matrix–valued Borel

function. We are now ready to state the following

Proposition 3.2. — Let b ∈ BV (R × Rn,Rn) and let z ∈ Rn. Then the difference
quotients

b(t, x+ δz)− b(t, x)

δ
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can be canonically written as b1,δ(z)(t, x) + b2,δ(z)(t, x), where

(a) b1,δ(z) converges strongly in L1
loc to ∇xb · z as δ ↓ 0.

(b) For any compact set K ⊂ R × Rn we have

(18) lim sup
δ↓0

∫
K

∣∣b2,δ(z)(t, x)
∣∣ dx dt ≤ |Ds

xb · z|(K) .

(c) For every compact set K ⊂ R × Rn we have

(19) sup
δ∈]0,ε[

∫
K

(∣∣b1,δ(z)(t, x)
∣∣+
∣∣b2,δ(z)(t, x)

∣∣) dx dt ≤ |z||Dxb|(Kε)

where Kε = {(t, x) : dist ((t, x),K) ≤ ε}.

Loosely speaking, in this canonical splitting b1,δ(z) is converging towards the abso-
lutely continuous part of ∂zb, whereas b2,δ(z) is converging towards the singular part.
In order to understand why this decomposition is possible, consider the case when b
is a function of one real variable, and split its derivative b′ into the sum b′a + b′s of its
absolutely continuous part and its singular part. Let b1 be a primitive of b′a and b2 a
primitive of b′s. For instance we can define b1(x) = b′a([0, τ [) and b2(x) = b′s([0, τ [) for
τ positive and b1(x) = −b′a(]τ, 0]) and b2(x) = b′s(] − τ, 0]) for τ negative. The sum
of the difference quotients of b1 and b2 give the difference quotients of b, and it is,
actually, the splitting of Proposition 3.2. For instance, since b1 is a W 1,1 function, its
difference quotients converge strongly in L1 to its derivative, that is b′a: this gives (a).
The remaining points (b) and (c) follow in a similar way. The proof of the proposition
in the general case is perhaps the most technical part of this note, but it is based on
the 1–dimensional case sketched above through the “slicing theory” of BV functions.
The interested reader will find it in the appendix.

Remark 3.3. — The decomposition of the proof is canonical in the sense that we give
an explicit way of constructing b1,δ and b2,δ from the measures Da

xb ·z and Ds
xb ·z. One

important consequence of this explicit construction is the following linearity property:
If b1, b2 ∈ BVloc, λ1, λ2 ∈ R, and z ∈ Rn, then

(λ1b
1 + λ2b

2)i,δ(z)(t, x) = λ1b
1
i,δ(z)(t, x) + λ2b

2
i,δ(z)(t, x) .

3.2. The commutator estimate of Ambrosio

We now use the technical Proposition 3.2 to give a more careful estimate on the
commutators Rε. The idea is again to follow the proof of Lemma 2.2, but this time,
once arrived to (14), we will substitute the difference quotients of b with the splitting
given by Proposition 3.2. We will then show that the “b1,ε” cancels with the divergence,
whereas for the singular part “b2,ε” we will use the crudest estimate available. In order
to state the final result, we first need some notation.
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Definition 3.4. — For any η ∈ C∞c (Rn) and any n× n matrix M we define

Λ(M,η) =

∫
Rn
|∇η(z) ·M · z| dz .

We are now ready to state Ambrosio’s Commutators Estimate.

Proposition 3.5 (Commutators estimate). — Let b, u and β be as in Lemma 3.1.
Let ρ be any even convolution kernel and let M be the matrix–valued Borel function
such that Ds

xb = M |Ds
xb|. Then the measure µ of (17) satisfies the inequality

(20) |µ| ≤ CΛ(M,ρ)|Ds
xb| .

Proof. — Consider a continuous compactly supported test function ϕ and use the
computations of Subsection 2.2 in order to conclude

−
∫
ϕdµ = lim

ε↓0
−
∫
ϕβ′(u ∗ ρε)Rε =

∫
ϕβ′(u)udivxb

+ lim
ε↓0

∫
ϕ(t, x)[β′(u)u](t, x+ εz)

b(t, x+ εz)− b(t, x)

ε
· ∇ρ(z) dz dx dt

=

∫
ϕβ′(u)udivxb(21)

+ lim
ε↓0

∫
ϕ(t, x)[β′(u)u](t, x+ εz)b1,ε(z)(t, x) · ∇ρ(z) dz dx dt(22)

+ lim
ε↓0

∫
ϕ(t, x)[β′(u)u](t, x+ εz)b2,ε(z)(t, x) · ∇ρ(z) dz dx dt .(23)

We now use Proposition 3.2 to show that (22) vanishes and to estimate (23) with (a
suitable modification of) the right hand side of (20).

Indeed, from Proposition 3.2(a) and (c), and from the strong L1
loc convergence of

u ∗ ρε to u, the second integral in (22) converges to

(24)
∫
ϕ(t, x)β′(y(t, x))u(t, x)

∑
i,j

ej · ∇b(t, x) · ei
∫
zj∂ziρ(z) dz dx dt .

Arguing as in Subsection 2.2, (24) is equal to

−
∫
ϕ(t, x)u(t, x)β′(u(t, x)) tr∇b(t, x) dx dt .

On the other hand, tr∇b is just the absolutely continuous part of the divergence of b.
Since by assumption divxb is absolutely continuous, it coincides with its absolutely
continuous part. Therefore, (22) cancels with (21).

We now come to (23). Since β′ and u are both bounded, (23) can be estimated by

(25) C lim sup
ε↓0

∫
|ϕ(t, x)|

∫
|b2,ε(z)(t, x) · ∇ρ(z)| dz dx dt .
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Next, let S = ‖ϕ‖C0 , let Kσ be the closure of {(t, x) : |ϕ(t, x)| > σ} and rewrite (25)
as

(26) C lim sup
ε↓0

∫ S

0

∫
Kσ

∫
|b2,ε(z)(t, x) · ∇ρ(z)| dz dx dt dσ .

From Proposition 3.2(c), we know that

(27) lim sup
ε↓0

∫
Kσ

|b2,ε(z)(t, x) · ∇ρ(z)| dt dx ≤ |Ds
xb · ∇ρ(z)|(Kσ) .

Moreover, since for z outside the support of ρ the integral in (27) vanishes, the map

(σ, z)→
∫
Kσ

|b2,ε(z)(t, x) · ∇ρ(z)| dt dx

is bounded. Therefore, we integrate (26) first in (t, x) and use (27) and the dominated
convergence theorem to bound (26) with a constant time

(28)
∫ S

0

∫
|∇ρ(z) ·Ds

xb · z|(Kσ) dz dσ .

Let νz be the measure |∇ρ(z) ·Ds
xb · z| = |∇ρ(z) ·M · z||Ds

xb|. Then (28) is simply∫ ∫
|ϕ(t, x)|dνz(t, x) dz =

∫ ∫
|ϕ(t, x)| |∇ρ(z) ·M(t, x) · z| d|Ds

xb|(t, x) dz

=

∫
|ϕ(t, x)|

ï∫
|∇ρ(z) ·M(t, x) · z| dz

ò
d|Ds

xb|(t, x)

=

∫
|ϕ(t, x)|Λ(M(t, x), ρ) d|Ds

xb|(t, x) .

Summarizing, we get∫
ϕdµ ≤ C

∫
|ϕ(t, x)|Λ(M(t, x), ρ)d|Ds

xb|(t, x)

for any continuous compactly supported ϕ. This is indeed the desired claim (20).

3.3. Optimizing the choice of the kernel

Let us recollect what proved so far in this section. We started with a BV field b, a
distributional solution u of ∂tu+ divx (ub) = udivxb and a function β ∈ C1(R) and
we have proved that the distribution ∂t[β(u)] + divx[β(u)b]− β(u) divxb is a measure
µ satisfying

(29) |µ| ≤ CΛ(M,ρ)|Ds
xb| ,

for any choice of an even convolution kernel ρ ∈ C∞c (Rn).
Clearly our estimate is far from being optimal: the measure µ and the constant

C are both independent of the kernel ρ. We can therefore optimize in ρ. Since the
estimate (29) has a local nature, this optimization procedure is, in a certain sense,
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equivalent to vary the regularizing kernel in t and x. In order to state our optimized
estimate, we define the set of kernels

(30) K =
¶
η ∈ C∞c (B1(0)) such that η ≥ 0 is even, and

∫
B1(0)

η = 1
©
.

Theorem 3.6. — Let u, b, and β be as in Lemma 3.1. Then ∂t[β(u)]+divx[β(u)b]−
β(u) divxb = f |Ds

xb| for some Borel function f satisfying

(31) |f(t, x)| ≤ C inf
ρ∈K

Λ(M(t, x), ρ) for |Ds
xb|–a.e. (t, x).

Proof. — Let µ be as in (17). The inequality (29) implies its absolute continuity with
respect of |Ds

xb|. Therefore there exists a Borel function f such that µ = f |Ds
xb|.

There is only one technical subtlety to take into account. From Proposition 3.5 we
know that

|f(t, x)| ≤ Λ(M(t, x), ρ) for |Ds
xb|–a.e. (t, x)

whenever we fix a convolution kernel ρ. However, the set of measure zero where the
inequality fails might in principle depend on ρ. This gives no trouble as soon as we
infimize on a countable set of kernels K ′ (because a countable union of sets of measure
zero has measure zero!):

|f(t, x)| ≤ inf
ρ∈K ′

Λ(M(t, x), ρ) for |Ds
xb|–a.e. (t, x).

However, for any fixed matrix M , the map ρ 7→ Λ(M,ρ) is continuous for the W 1,1

topology. Therefore, if we choose K ′ to be any countable subset of K dense in the
W 1,1 topology, then the infimum over K ′ coincides with the infimum over K .

4. THE LEMMAS OF BOUCHUT AND ALBERTI

Our plan so far leads us to the following question: given a matrix M , what is the
infimum of the functional Λ(M,ρ) over the set of kernels K? One lower bound for
this infimum follows from a simple integration by parts:

Λ(M,ρ) ≥
∣∣∣∣∣
∫
B1(0)

∇ρ(y) ·M · y dy
∣∣∣∣∣ =

∣∣∣∣∣∣∑k,j Mjk

∫
B1(0)

yj
∂ρ

zk
(y) dy

∣∣∣∣∣∣
=

∣∣∣∣∣∣−∑k,j Mjk

∫
B1(0)

δjkρ(y) dy

∣∣∣∣∣∣ = |trM | .(32)

Now, in the case at hand, recall that M |Ds
xb| is the singular part of the derivative

Dxb. Therefore trM |Ds
xb| is just the singular part of the divergence, which by our

assumptions is zero. The proof that ∂t[β(u)] + divx[β(u)b] = 0 is therefore completed
by the following lemma, whose proof is due to Alberti:
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Lemma 4.1 (Alberti). — For any n× n matrix M we have

(33) inf
η∈K

Λ(M,η) =
∣∣trM ∣∣ .

However, Ambrosio’s original proof was instead based on the following special case
of Alberti’s Lemma.

Lemma 4.2 (Bouchut). — For any pair of vectors ξ, χ ∈ Rn we have

(34) inf
η∈K

Λ(χ⊗ ξ, η) = |ξ · χ| =
∣∣tr (χ⊗ ξ)

∣∣ .
Actually this statement does not appear in Bouchut’s work: the formulation above

is due to Ambrosio, who introduced the whole framework containing the Λ–estimate
for the commutators and the local optimization of the kernel. However the lemma is
inspired by the paper of Bouchut [15], where the idea of using a certain class of very
anysotropic kernels was used for the first time.

Let us informally explain why Lemma 4.2 suffices. When M |Ds
xb| is the singular

part of the distributional derivative of a BV function, M(t, x) is a rank–one matrix
for |Ds

xb|–a.e. (t, x). This result, which is probably the deepest one in the theory of BV
functions, is also due to Alberti (see [2]; for a recent brief, but nonetheless complete,
account of the proof, see [26]). In order to understand its statement, the reader might
check it on the easiest examples, i.e. functions which are piecewise constants. In this
case the result is a trivial fact: the hard core of Alberti’s result is that the same
property holds also when (part of) the distributional derivative of b is a fractal–type
measure.

In any case, by Alberti’s Rank–one Theorem, Bouchut’s Lemma is already sufficient
to prove the renormalization theorem of Ambrosio.

Theorem 4.3. — Let u, b, and β be as in Lemma 3.1. Then ∂t[β(u)]+divx[β(u)b]−
β(u) divxb = 0

Moreover, arguing exactly as in Subsection 2.3, we can adjust the initial condition
to conclude

Theorem 4.4. — Let b ∈ L1(R+, BV (Rn)) with absolutely continuous divergence.
Then b has the renormalization property.

Before coming to the proof of these lemmas, we want to point out an important
fact. As already said, we can regard the optimization procedure of Theorem 3.6 as an
implementation of the idea “a varying regularizing kernel approximates better than a
fixed one”. Then both Bouchut’s and Alberti’s Lemmas tell us that, close to points
where the singular part of Ds

xb is large, the optimal choice is a very anisotropic kernel.
As already said above, this intuition originated in Bouchut’s paper [15].
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4.1. Bouchut’s Lemma

The proof of Bouchut’s Lemma is very elementary and it exploits convolution
kernels which have a very simple structure, i.e. they are close to the indicator function
of a very thin rectangle, whose long sides are parallel to χ.

Proof of Lemma 4.2. — If d = 2 we can fix an orthonormal basis of coordinates
z1, z2 in such a way that ξ = (a, b) and χ = (0, c). Consider the rectangle rε =

[−ε/2, ε/2]× [−1/2, 1/2] and consider the kernel ηε = 1
ε1rε . Let ζ ∈ K and denote by

ζδ the family of mollifiers generated by ζ. Clearly ηε ∗ ζδ ∈ K for ε+ δ small enough.
Denote by ν = (ν1, ν2) the unit normal to ∂rε and recall that

(35) lim
δ↓0

∣∣∣∣∂(ηε ∗ ζδ)
∂zi

∣∣∣∣ ∗
⇀

|νi|
ε

H 1 ∂rε

in the sense of measures (here H 1 ∂rε denotes the usual 1–dimensional measure on
the boundary of rε).

Thus, we can compute

lim sup
δ↓0

Λ(M,ηε ∗ ζδ) ≤ lim sup
δ↓0

∫
R2

(
|az1|+ |bz2|

)
|c|
∣∣∣∣∂(ηε ∗ ζδ)

∂z2

∣∣∣∣ dz1dz2

=
2|c|
ε

∫ ε/2

−ε/2

Å
|az1|+

|b|
2

ã
dz1 = |ac|ε

2
+ |bc| .

Note that bc = trM . Thus, if we define the convolution kernels λε,δ = ηε ∗ ζδ we get:

(36) lim sup
ε↓0

lim sup
δ↓0

Λ(M,ηε ∗ ζδ) ≤ |trM | .

For n ≥ 2 we consider a system of coordinates x1, x2, . . . , xn such that η =

(a, b, 0, . . . , 0), ξ = (0, c, 0, . . . , 0) and we define the convolution kernels

λε,δ(x) = [ηε ∗ ζδ](x1, x2) · ζ(x3) · . . . · ζ(xn) .

The conclusion of the lemma follows easily.

4.2. Alberti’s Lemma

The proof of Alberti’s Lemma is in a certain sense a generalization of Bouchut’s
proof. The basic idea is to take a convolution kernel which is concentrated on a very
long tube made of trajectories of the ODE γ̇ = M · γ.

Proof of Lemma 4.1. — By the identity ∇η(z) ·M · z = div (M · zη(z)) − trMη(z),
it suffices to show that for every T > 0 there exists η ∈ K such that

(37)
∫
Rn
|div(M · zη(z))| dz ≤ 2

T
.
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Given a smooth nonnegative convolution kernel θ with compact support, we claim
that the function

η(z) =
1

T

∫ T

0

θ(e−tM · z) e−ttrM dt

has the required properties. Here etM is the matrix
∑
i
tiMi

i! . That is, etM · z is just
the solution of the ODE γ̇ = M · γ with initial condition γ(0) = z, and e−ttrM is the
determinant of e−tM . The usual change of variables yields∫

η(z)ϕ(z) dz =
1

T

∫ T

0

∫
ϕ(z)θ(e−tM · z)e−ttrM dz dt

=
1

T

∫ T

0

∫
ϕ(etM · ζ)θ(ζ) dζ dt ,(38)

for any integrable bounded ϕ. Hence ηL d is the time average of the push-forward of
the measure θL d along the trajectories of γ̇ = M · γ. This is the point of view taken
in [6] to prove (37), for which we argue with the direct computations shown below.

Note that

div (M · zη(z)) =
1

T

∫ T

0

div (M · z θ(e−tM · z))e−ttrM dt .

A tedious but straightforward computation (see [25]) shows

div (M · zθ(e−tM · z))e−t trM = − d

dt

(
θ(e−tM · z)e−t trM

)
.

Thus∫
Rn
|div (M · zη(z))| dz =

∫
Rn

1

T

∣∣∣∣∣
∫ T

0

div (M · zθ(e−tM · z))e−t trM dt

∣∣∣∣∣ dz
=

∫
Rn

1

T

∣∣∣∣∣
∫ T

0

d

dt

(
θ(e−tM · z)e−t trM

)
dt

∣∣∣∣∣ dz
=

∫
Rn

1

T

∣∣θ(e−TM · z)e−T trM − θ(z)
∣∣ dz

≤ 1

T

Å∫
Rn
θ(e−TM · z)e−T trM dz +

∫
Rn
θ(z) dz

ã
=

1

T

Å∫
Rn
θ(ζ) dζ +

∫
Rn
θ(z) dz

ã
=

2

T
.

This shows (37) and concludes the proof.
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5. THE CONTINUITY EQUATION
AND REGULAR LAGRANGIAN FLOWS

Another major point of the DiPerna–Lions theory is that the classical road from
characteristics to transport equations can be reversed: the renormalization property
and the induced uniqueness and stability of weak solutions to transport equations can
be used to infer existence, uniqueness and stability of a suitable generalized notion of
flow for the ODEs (2). In his paper [4], Ambrosio has proposed a new way of looking
at this side of the DiPerna–Lions theory, based on the analysis of probability measures
on the space of paths. In the present note we follow yet another presentation, given
in [25].

We start by defining our generalized notion of flow.

Definition 5.1. — Let b ∈ L∞([0,∞[×Rn,Rn). A map Φ : [0,∞[×Rn → Rn is a
regular Lagrangian flow for b if

(a) for L 1–a.e. t we have |{x : Φ(t, x) ∈ A}| = 0 for every Borel set A with |A| = 0;
(b) the following identity is valid in the sense of distributions

(39)


∂tΦ(t, x) = b(t,Φ(t, x))

Φ(0, x) = x .

Note that assumption (a) guarantees that b(t,Φ(t, x)) is well defined. Indeed, if
b̂ = b L n+1–a.e., then b̂(t,Φ(t, x)) = b(t,Φ(t, x)) for L n+1–a.e. (t, x).

Ideally one could divide the DiPerna–Lions theory into two separate parts: how
to prove “renormalization–type” properties and which kind of “renormalization–type”
properties implies existence, uniqueness and stability of regular Lagrangian flows.
An example of this approach is given by the notes [25], where the two parts are
presented in completely independent ways. Instead, here we focus on the specific
theorem below, with the hope to keep the notation and details to a minimum and
highlight the mechanisms which link renormalized solutions to regular Lagrangian
flows.

Theorem 5.2. — Let b ∈ L1(R+, BV (Rn)) ∩ L∞ with bounded divergence. Then
there exists a unique regular Lagrangian flow Φ for b. Moreover, if bk is a sequence of
smooth vector fields converging strongly in L1

loc to b such that ‖divxb‖∞ is uniformly
bounded, then the flows of bk converge strongly in L1

loc to Φ.

During the proof of this theorem we will recover an important fact: the regular
Lagrangian flow is a suitable weak notion of characteristics for the transport equation.
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5.1. The density of a regular Lagrangian flow and the continuity equation

Denote by µΦ the measure (id ,Φ)#L n+1 ([0,∞[×Rn), i.e. the push–forward via
the map (t, x) 7→ (t,Φ(t, x)) of the Lebesgue n+1–dimensional measure on [0,∞[×Rn.
Such push–forward is simply defined by the property∫

[0,∞[×Rn
ψ(t, x) dµΦ(t, x) =

∫
[0,∞[×Rn

ψ(t,Φ(t, x)) dL n+1(t, x)

valid for every ψ ∈ Cc(R × Rm). Observe that (a) is equivalent to the absolute
continuity of µΦ with respect to the Lebesgue measure, and hence to the existence of
a ρ ∈ L1

loc([0,∞[×Rn) such that µΦ = ρL n+1.

Definition 5.3. — The ρ defined above will be called the density of the regular La-
grangian flow Φ.

When b is smooth and Φ is the classical solution of (39), t 7→ Φ(t, ·) is a one–
parameter family of diffeomorphisms. For each t let us denote by Φ−1(t, ·) the inverse
of Φ(t, ·). Then ρ can be explicitly computed as ρ(t, x) = det∇xΦ(t,Φ−1(t, x)) and
the classical Liouville Theorem states that ρ solves the continuity equation ∂tρ +

divx(ρb) = 0. Moreover, since Φ(0, x) = x, the initial condition for ρ is ρ(0, x) = 1.
This property remains true for regular Lagrangian flows and it is simply the special
case ζ = 1 in the following proposition.

Proposition 5.4. — Let Φ be a regular Lagrangian flow for a field b. Let ζ ∈
L∞(Rn) set µ = (id ,Φ)#(ζL n+1). Then there exists ζ ∈ L1

loc([0,∞[×Rn) such that
µ = ζL n+1. This ζ solves (distributionally)

(40)


∂tζ + divx(ζb) = 0

ζ(0, ·) = ζ .

Proof. — First of all, notice that µ ≤ ‖ζ‖∞µΦ. So µ is absolutely continuous and
hence there exists a ζ ∈ L1

loc such that µ = ζL n+1. Now, let ψ ∈ C∞c (R × Rn) be
any given test function. Our goal is to show that

(41) −
∫

[0,∞[×Rn
ζ(t, x)

(
∂tψ(t, x) + b(t, x) · ∇xψ(t, x)

)
dx dt =

∫
Rn
ζ(x)ψ(0, x) dx .

By definition, the left hand side of (41) is equal to

(42) −
∫
Rn
ζ(x)

ï∫ ∞
0

(
∂tψ(t,Φ(t, x)) +∇xψ(t,Φ(t, x)) · b(t,Φ(t, x))

)
dt

ò
dx .

The proof would follow if we could integrate by parts in t, since ψ(0,Φx(0)) = ψ(0, x)

and ψ(T,Φx(T )) = 0 for any T large enough (because ψ is compactly supported). On

ASTÉRISQUE 317



(972) THE RENORMALIZATION THEOREM OF AMBROSIO 193

the other hand this integration by parts is easy to justify for a.e. x, since (39) implies
that the curve t 7→ Φ(t, x) is Lipschitz for a.e. x.

5.2. Uniqueness of solutions to the continuity equation

Next, let us assume that divxb is bounded in L∞. Then we would expect, formally,
that the density of Φ is bounded away from 0 and +∞. Indeed, assume that b and Φ

are both smooth and rewrite the continuity equation as ∂tρ + b · ∇xρ + ρ divxb = 0.
Fix x and differentiate the function ω(t) = ρ(t,Φ(t, x)) to get

dω

dt
(t) = ∂tρ(t,Φ(t, x)) + ∂tΦ(t, x) · ∇xρ(t,Φ(t, x))

= ∂tρ(t,Φt, x)) + b(t,Φ(t, x)) · ∇xρ(t,Φ(t, x)) = −divxb(t,Φ(t, x))ρ(t,Φ(t, x))

= −divxb(t,Φ(t, x))ω(t) .(43)

Since −‖divxb‖∞ ≤ −divxb(t,Φ(t, x)) ≤ ‖divxb‖∞ and ω(0) = 1, we can use Gron-
wall’s Lemma to conclude exp(−T‖divxb‖∞) ≤ ω(T ) ≤ exp(T‖divxb‖∞). But Φ(T, ·)
is surjective, because it is a diffeomorphism. Therefore we conclude

(44) exp(−T‖divxb‖∞) ≤ ρ ≤ exp(T‖divxb‖∞).

We cannot use this formal argument on the density of a general regular Lagrangian
flow. On the other hand, by a standard approximation procedure, we can show the
following Lemma.

Lemma 5.5. — Let b ∈ L∞ with bounded divergence. Then there exists a ρ̃ ∈ L∞loc

satisfying the bounds (44) and solving

(45)


∂tρ̃+ divx(ρ̃b) = 0

ρ̃(0, ·) = 1 .

Proof. — Let ϕ be a standard convolution kernel, and consider bk = b∗ϕk−1 . Consider
the densities ρk of the classical flows of bk. Equation (40) holds with b and ρ̃ replaced
by bk and ρk. On the other hand, for ρk we can argue as above and get the bounds
exp(−t‖divxbk‖∞) ≤ ρk(t, x) ≤ exp(t‖divxbk‖∞). Since ‖divxbk‖∞ ≤ ‖divxb‖∞,
there exists a subsequence of ρk which converges weakly∗ in L∞ to a ρ̃ satisfying
(44). Arguing as in Theorem 1.3 we obtain (45) by passing into the limit in the
continuity equations for ρ̃k.

If we knew the uniqueness of solutions to the continuity equation, this existence
result would become a proof of the formal bound (44) for the density of any regular
Lagrangian flow. As usual, we consider the case of b smooth in order to get some
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insight. Let ρ and ρ̃ be two smooth solutions of (45), with ρ̃ > 0, and define u = ρ/ρ̃.
Then we could use the chain rule to compute

∂tu+ b · ∇xu = ρ̃−2
{
ρ̃
[
∂tρ+ b · ∇xρ

]
− ρ
[
∂tρ̃+ b · ∇xρ̃

]}
.

Adding and subtracting ρ̃−2(ρρ̃divxb), we achieve

∂tu+ b · ∇xu = ρ̃−2
{
ρ̃
[
∂tρ+ divx(ρb)

]
− ρ
[
∂tρ̃+ divx(ρ̃b)

]}
= 0 .

But since u(0, x) = ρ(0, x)/ρ̃(0, x) = 1, we conclude u(t, x) = 1 for every t and x.
The computations above are very similar, in spirit, to the renormalization property.

It is therefore not a surprise that the theorem below follows from suitable modifications
of the proof of Theorem 4.4.

Theorem 5.6. — Let b ∈ L1(R+, BV (Rn)) ∩ L∞ with bounded divergence and let ρ̃
and ζ be L1

loc functions solving respectively (45) and (40). If ρ̃ ≥ C > 0, then u = ζ/ρ̃

is a distributional solution of

(46)


∂tu+ divx(ub)− udivxb = 0

u(0, ·) = ζ .

By minor modifications of the ideas of Section 1, Lemma 5.5 and Theorem 5.6 yield
the desired uniqueness for solutions of the continuity equations.

Corollary 5.7. — Let b be as in Theorem 5.6. Then there exists a unique ζ ∈ L1
loc

solving (40). Therefore, if Φ is a regular Lagrangian flow for b, the density of Φ

coincides with the density ρ̃ of Lemma 5.5 and hence satisfies the bounds (44).

5.3. Uniqueness and stability of regular Lagrangian flows

The uniqueness of solutions of the continuity equations yields easily the uniqueness
and stability of regular Lagrangian flows.

Proof of the uniqueness and stability parts in Theorem 5.2. — Uniqueness. Let
Φ and Ψ be two regular Lagrangian flows for b. Fix a ζ ∈ Cc(Rn) and con-
sider the unique solution ζ of (40). According to Proposition 5.4 we have
(id ,Φ)#(ζL n+1) = ζL n+1 = (id ,Ψ)#(ζL n+1). This identity means that∫

ϕ(t,Φ(t, x))ζ(x) dt dx =

∫
ϕ(t,Ψ(t, x))ζ(x) dt dx

for every test function ϕ ∈ Cc(R × Rn). But since ζ has compact support, one can
infer the equality even when ϕ(t, y) = χ(t)yi for χ ∈ Cc(R). So∫

Φi(t, x))χ(t)ζ(x) dt dx =

∫
Ψi(t, x))χ(t)ζ(x) dt dx
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for any pair of functions χ ∈ Cc(R) and ζ ∈ Cc(Rn). This easily implies Φi = Ψi a.e.

Stability. Consider a sequence {bk} as in the statement of the theorem and let
Φk be the corresponding classical flows. Fix a ζ ∈ Cc(Rn) and consider the ζk and
uk solving, respectively, the continuity equations and the transport equations with
coefficients bk and initial data ζ. Recall that, if ρk are the densities of Φk, then
ζk = ukρk. The uk are essentially bounded functions, and by the bounds in Subsection
5.2, the ρk are locally uniformly bounded. Therefore the ζk are locally uniformly
bounded and, up to subsequences, they converge, weakly∗ in L∞loc, to some ζ. Arguing
as in Theorem 1.3, this ζ must be the unique distributional solution of (40). So, fixing
a test function ϕ ∈ Cc(R × Rn) and arguing as in the uniqueness part, we get

lim
k↑∞

∫
ϕ(t,Φk(t, x))ζ(x) dt dx =

∫
ϕ(t,Φ(t, x))ζ(x) dt dx ,

where we are allowed to test with ϕ(t, y) = χ(t)yi: this gives the weak∗ convergence
of Φk to Φ in L∞loc. Testing with ϕ(t, y) = χ(t)|y|2, we conclude as well the weak∗

convergence of |Φk|2 to |Φ|2. This implies of course the strong L1
loc convergence.

5.4. Existence of regular Lagrangian flows

The proof of existence of regular Lagrangian flows follows from an approximation
argument. Indeed, let bk be a standard regularization of b, with ‖bk‖∞ + ‖divxbk‖∞
bounded by a constant C and bk → b strongly in L1

loc. Consider the flows Φk of
bk. By the bounds of Subsection 5.2, exp(−Ct) ≤ det∇xΦk(t, x) ≤ exp(Ct), which
translates into the bounds exp(−Ct)|A| ≤ |Φk(t, A)| ≤ exp(Ct)|A| for every Borel set
A. Assume for the moment that we could prove the strong convergence of Φk to a
map Φ. Then, clearly exp(−Ct)|A| ≤ |Φ(t, A)| ≤ exp(Ct)|A|, and hence Φ satisfies
condition (a) in Definition 5.1. It is then an exercise in elementary measure theory to
show that bk(t,Φk(t, x)) converges to b(t,Φ(t, x)) strongly in L1

loc. Since Φk solves
∂tΦ

k(t, x) = bk(t,Φk(t, x))

Φk(0, x) = x

it is straightforward to conclude that Φ solves (39) distributionally.
The main point is therefore to show the strong convergence of Φk. This follows

from the stability of the corresponding transport equations.

Proof of the strong convergence of Φk. — Consider, backward in time, the ODE

(47)


∂tΛ

k(t, x) = bk(t,Λk(t, x))

Λk(T, x) = x .
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Let Γk(t, ·) be the inverse of the diffeomorphism Λk(t, ·). If u ∈ L∞(Rn), then
uk(t, x) = u(Γk(t, x)) is the unique (backward) solution of the transport equation

∂tuk + divx(bkuk) = uk divxbk

uk(T, ·) = u(·) .

By Theorem 4.4 and Proposition 1.6, uk converges strongly in L1
loc to the unique

(backward) solution u of 
∂tu+ divx(bu) = udivxb

u(T, ·) = u(·) .

Choose u(x) = χ(x)xi, where χ is a smooth cut-off function. Since uk(t, x) =

χ(Γk(t, x))Γki (t, x), we infer easily the strong L1
loc convergence of the components Γki .

This implies that Γk converges to a map Γ strongly in L1
loc([0, T ]×Rn). On the other

hand, for any given x, Γk(·, x) is a Lipschitz curve with Lipschitz constant bounded
independently of k. It is then easy to see that Γk(t, ·) is a Cauchy sequence in L1(A)

for every bounded A and every t ∈ [0, T ]. In particular, Γk(0, ·) converges to some
map strongly in L1

loc.
Now, Γk(0, ·) is the inverse of Λk(0, ·), which in view of (47) is the inverse of

Φk(T, ·). Therefore we conclude that for each T there exists a map Φ(T, ·) such that
Φk(T, ·)→ Φ(T, ·) strongly in L1

loc. Again, using the fact that, for each x, Φk(·, x) is a
Lipschitz curve with Lipschitz constant bounded independently of k, it is not difficult
to see that Φk is a Cauchy sequence in L1(A) for any bounded A ⊂ R+ × Rn. This
concludes the proof.

6. BEYOND BV AND BEYOND RENORMALIZED SOLUTIONS:
FURTHER RESULTS, CONJECTURES AND OPEN PROBLEMS

6.1. Nearly incompressible BV fields

By nearly incompressible fields b we understand those fields for which there exists
a regular Lagrangian flow Φ satisfying the bounds c(t)|A| ≤ |Φ(t, A)| ≤ C(t)|A|,
for some continuous and nonvanishing functions c and C. At a first glance there
are at least two obstructions to build a theory of renormalized solutions for nearly
incompressible flows. On the one hand, it seems necessary to give a meaning to udivxb

in order to define distributional solutions u of (3). On the other hand, it is not clear
how to define nearly incompressible fields without referring to some flow.
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Both these issues can be naturally solved by using the continuity equation. In-
deed, we can define nearly incompressible fields as those b for which there exists a
distributional solution ρ̃ of (45). Moreover, there are appropriate versions of the renor-
malization property which use only the continuity equation and hence can be stated
without assumptions on the divergence of b. This point of view was first taken in [7]
and it has been systematically explored in [25]. The “soft” part of the DiPerna–Lions
theory can be extended naturally to this setting. Concerning the “hard” part, i.e. the
proof of the corresponding renormalization properties, the W 1,p case of this theory
follows from the DiPerna–Lions estimate for the commutators. The BV case is in-
stead still open. Indeed, the motivation in [7] was the following conjecture raised by
Bressan in [17].

Conjecture 6.1 (Bressan’s compactness conjecture). — Let bk : R × Rn → Rn be
a sequence of smooth vector fields and denote by Φk the corresponding flows. Assume
that ‖bk‖∞+ ‖∇bk‖L1 is uniformly bounded and that C−1 ≤ det(∇xΦk(t, x)) ≤ C for
some constant C > 0. Then the sequence {Φk} is strongly precompact in L1

loc.

Bressan’s conjecture was initially motivated by a problem in the theory of hyper-
bolic systems of conservation laws. However, in order to solve this problem one does
not need to tackle Conjecture 6.1: a milder statement, which is a corollary of Am-
brosio’s result, suffices (see [10] and [7]). At present, the best result available in the
direction of Conjecture 6.1 is contained in [11] and goes towards a theory of renor-
malized solutions for nearly incompressible BV fields. This paper makes strong use
of a refined theory of traces for transport equations, developed in [9].

6.2. Beyond BV fields

Can one hope for the renormalization property when b is in a space larger than
BV ? The counterexamples available in the literature show fields which are quite close
to be BV and do not have the renormalization property (see [27] and [22], both
inspired by an older construction of Aizenmann [1]). Moreover, these examples have
severe consequences on the possibility of building a general theory of existence for
hyperbolic systems of conservation laws on transport equations (see [23]).

Nonetheless there are still many interesting open problems in this direction. For in-
stance, in two dimensions and for divergence–free autonomous fields, renormalization
theorems are available even under very mild assumptions, because of the underlying
Hamiltonian structure (see [16], [31], [20]). In the recent paper [3] the authors have
given a necessary and sufficient condition for the renormalization property when b

is divergence–free, planar, autonomous and bounded. In particular, they produce a
striking example of such a b which does not have the renormalization property.
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A very interesting open question, naturally linked to Euler’s equations, is whether
the renormalization property holds for divergence–free fields b ∈ L∞(R, L2(R2)) when
the vorticity of b is a measure. Another open question is whether the renormalization
property holds for fields b with absolutely continuous divergence when the symmetric
part of the gradient is a measure. The property indeed holds when the symmetric
part of the gradient is in L1, see [19]. For a more general result in this direction, see
[9].

6.3. A direct Lagrangian approach

In the DiPerna–Lions theory, conclusions on the “Lagrangian point of view” are
recovered from theorems on the “Eulerian point of view”. A natural question is whether
one could get the same results directly, for instance proving a–priori estimates on
the solutions of the ODEs. Indeed, the whole theory of regular Lagrangian flows for
W 1,p fields with p > 1 can be recovered by proving appropriate estimates in the
Lagrangian formulation, as it has been recently shown in [24]. These estimates also
provide mild regularity properties for regular Lagrangian flows and distributional
solutions to transport equations. In a nutshell, if b ∈W 1,p and Φ is the corresponding
flow, the Lp norm of the difference of Φ(t, ·)−Φ(t, ·+v) can be estimated by a constant
(depending on the compressibility of b, and the Lp norm of ∇b) times | log(|v|)|−1.

The estimates of [24] were inspired by some computations of [13], where the authors
proved the approximate differentiability of regular Lagrangian flows. In turn, [13]
was inspired by another result of [32] on weak differentiability properties for regular
Lagrangian flows. See also [14] for a comparison among the various weak notions of
differentiability used in these papers.

The estimates of [23] quantify the compactifying properties of transport equa-
tions with Sobolev coefficients. In particular they imply the Lp version of a second
conjecture of Bressan on the mixing of flows (see [18]), which we state below.

Fix coordinates x = (x1, x2) ∈ [0, 1[×[0, 1[ on the torus T = R2/Z2 and consider
the set A =

{
(x1, x2) : 0 ≤ x2 ≤ 1/2

}
⊂ T. Given a smooth divergence–free field

b : [0, 1]× T→ R2 denote by Φ its flow. For a fixed κ ∈]0, 1/2[, we say that Φ mixes
the set A up to scale ε if for every ball Bε(x) we have

κ|Bε(x)| ≤ |Bε(x) ∩ Φ(1, A)| ≤ (1− κ)|Bε(x)| .

Conjecture 6.2 (Bressan’s mixing conjecture). — Under these assumptions, there
exists a constant C depending only on κ s.t., if Φ mixes the set A up to scale ε, then∫ 1

0

∫
T
|Dxb| dxdt ≥ C| log ε| for every 0 < ε < 1/4.
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7. APPENDIX: PROOF OF PROPOSITION 3.2

Proof. — Let e1, . . . , en be orthonormal vectors in Rn. In the corresponding system
of coordinates we use the notation x = (x1, . . . , xn−1, xn) = (x′, xn). Without loss of
generality we can assume that z = en. Recall the following elementary fact: if µ is a
Radon measure on R, then the functions

µ̂δ(τ) =
µ([τ, τ + δ])

δ
= µ ∗

1[−δ,0]

δ
(τ) τ ∈ R

satisfy

(48)
∫
K

|µ̂δ| dτ ≤ µ(Kδ)

for every compact set K ⊂ R, where Kδ denotes the δ–neighborhood of K.

Consider the measure Denb = Dxb · en, and the vector–valued function ∇xb · en.
Clearly this function is the Radon–Nikodym derivative of Denb with respect to L n+1

and we denote by Ds
enb the singular measure Ds

xb · en = Denb−∇xb · enL n+1.

We define

b1,δ(t, x
′, xd) =

1

δ

∫ xn+δ

xn

∇xb · en(t, x′, s) ds .

By Fubini’s Theorem and standard arguments on convolutions, we get that b1,δ →
∇xb · en strongly in L1

loc. Next set

b2,δ(t, x
′, xn) =

b(t, x′, xn + δ)− b(t, x′, xn)

δ
− b1,δ(t, x′, xn) ,

and, for L n–a.e. (t, x) ∈ R × Rn−1, define bt,y : R → R by bt,y(s) = b(t, y, s).

We recall the following slicing properties of BV functions (see Theorem 3.103,
Theorem 3.107, and Theorem 3.108 of [12]):

(a) bt,y ∈ BVloc(R,Rn) for L n–a.e. (t, y);
(b) if we let Dsbt,y + b′t,yL

1 be the Radon–Nikodym decomposition of Dbt,y, then
we have

∇xb(t, y, s) · en = b′t,y(s) for L n+1–a.e. (t, y, s)

and

|Ds
en |(A) =

∫
Rn
|Dsbt,y|(A ∩ {(t, y, s) : s ∈ R}) dt dy ;

(c) bt,y(s+ δ)− bt,y(s) = Dbt,y([s, s+ δ]).

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2015



200 C. DE LELLIS

Therefore, for any δ > 0 and for L n–a.e. (t, y) we have

b(t, y, xn + δ)− b(t, y, xn)

δ
=

bt,y(xn + δ)− bt,y(xn)

δ
=

Dbt,y([xn, xn + δ])

δ

= ÿ�(b′t,yL
1)
δ
(xn) + ÿ�(Dsbt,y)δ(xn)

= b1,δ(t, y, xn) + ÿ�(Dsbt,y)δ(xn) for L 1–a.e. xn.

Therefore∫
K

|b2,δ| ≤
∫
Rn

∫
{xn:(t,y,xn)∈K}

∣∣∣ÿ�(Dsbt,y)δ(xn)
∣∣∣ dxn dy dt

≤
∫
Rn
|Dsbt,y| ({xn : (t, y, xn) ∈ Kδ}) dy dt = |Ds

xb · en|(Kδ) ≤ |Ds
xb|(Kδ) .(49)

Letting δ ↓ 0, this gives (18).
Note moreover that∫
K

|b1,δ| ≤
∫
Rn

∫
{xn:(t,y,xn)∈K}

∣∣∣ÿ�(b′t,yL
1)
δ
(xn)

∣∣∣ dxn dy dt
≤

∫
Kδ

|∇xb · en|(t, y, xn) dy dt dxn ≤
∫
Kδ

|∇xb|(t, y, xn) dy dt dxn .(50)

Adding the bounds (49) and (50) we get (19).

REFERENCES

[1] M. Aizenman – “On vector fields as generators of flows: a counterexample to
Nelson’s conjecture”, Ann. Math. 107 (1978), p. 287–296.

[2] G. Alberti – “Rank one property for derivatives of functions with bounded
variation”, Proc. Roy. Soc. Edinburgh Sect. A 123 (1993), p. 239–274.

[3] G. Alberti, S. Bianchini & C. Gianluca – In preparation.

ASTÉRISQUE 317



(972) THE RENORMALIZATION THEOREM OF AMBROSIO 201

[4] L. Ambrosio – “Transport equation and Cauchy problem for BV vector fields”,
Invent. Math. 158 (2004), p. 227–260.

[5] , “Lecture notes on transport equation and Cauchy problem for bv vector
fields and applications”, Lectures of a course given in Luminy, October 2003.

[6] , “Transport equation and Cauchy problem for non-smooth vector fields”,
Lecture Notes of the CIME Summer school in Cetrary, June 27-July 2, 2005.

[7] L. Ambrosio, F. Bouchut & C. De Lellis – “Well-posedness for a class of
hyperbolic systems of conservation laws in several space dimensions”, Comm.
Partial Differential Equations 29 (2004), p. 1635–1651.

[8] L. Ambrosio & G. Crippa – “Existence, uniqueness, stability and differentia-
bility properties of the flow associated to weakly differentiable vector fields”, in
Transport Equations and Multi-D Hyperbolic Conservation Laws, Lecture Notes
of the Unione Matematica Italiana, Springer Verlag, Berlin-Heidelberg, 2008.

[9] L. Ambrosio, G. Crippa & S. Maniglia – “Traces and fine properties of a
BD class of vector fields and applications”, Ann. Fac. Sci. Toulouse Math. 14
(2005), p. 527–561.

[10] L. Ambrosio & C. De Lellis – “Existence of solutions for a class of hyperbolic
systems of conservation laws in several space dimensions”, Int. Math. Res. Not.
2003 (2003), p. 2205–2220.

[11] L. Ambrosio, C. De Lellis & J. Malý – “On the chain rule for the divergence
of vector fields: applications, partial results, open problems”, in Perspectives in
nonlinear partial differential equations, 2007, p. 31–67, Contemp. Math. 446,
Amer. Math. Soc., Providence, RI.

[12] L. Ambrosio, N. Fusco & D. Pallara – Functions of bounded variation and
free discontinuity problems, Oxford Mathematical Monographs, The Clarendon
Press, Oxford Univ. Press, 2000.

[13] L. Ambrosio, M. Lecumberry & S. Maniglia – “Lipschitz regularity and
approximate differentiability of the DiPerna-Lions flow”, Rend. Sem. Mat. Univ.
Padova 114 (2005), p. 29–50 (2006).

[14] L. Ambrosio & J. Malý – “Very weak notions of differentiability”, Proc. Roy.
Soc. Edinburgh Sect. A 137 (2007), p. 447–455.

[15] F. Bouchut – “Renormalized solutions to the Vlasov equation with coefficients
of bounded variation”, Arch. Ration. Mech. Anal. 157 (2001), p. 75–90.

[16] F. Bouchut & L. Desvillettes – “On two-dimensional Hamiltonian transport
equations with continuous coefficients”, Differential Integral Equations 14 (2001),
p. 1015–1024.

[17] A. Bressan – “An ill posed Cauchy problem for a hyperbolic system in two
space dimensions”, Rend. Sem. Mat. Univ. Padova 110 (2003), p. 103–117.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2015



202 C. DE LELLIS

[18] , “A lemma and a conjecture on the cost of rearrangements”, Rend. Sem.
Mat. Univ. Padova 110 (2003), p. 97–102.

[19] I. Capuzzo Dolcetta & B. Perthame – “On some analogy between different
approaches to first order PDE’s with nonsmooth coefficients”, Adv. Math. Sci.
Appl. 6 (1996), p. 689–703.

[20] F. Colombini, G. Crippa & J. Rauch – “A note on two-dimensional trans-
port with bounded divergence”, Comm. Partial Differential Equations 31 (2006),
p. 1109–1115.

[21] F. Colombini & N. Lerner – “Uniqueness of continuous solutions for BV
vector fields”, Duke Math. J. 111 (2002), p. 357–384.

[22] F. Colombini, T. Luo & J. Rauch – “Uniqueness and nonuniqueness for non-
smooth divergence free transport”, in Seminaire: Équations aux Dérivées Par-
tielles, 2002–2003, Sémin. Équ. Dériv. Partielles, École polytech., 2003, p. 21.

[23] G. Crippa & C. De Lellis – “Oscillatory solutions to transport equations”,
Indiana Univ. Math. J. 55 (2006), p. 1–13.

[24] , “Estimates and regularity results for the DiPerna-Lions flow”, J. reine
angew. Math. 616 (2008), p. 15–46.

[25] C. De Lellis – “Notes on hyperbolic systems of conservation laws and transport
equations”, Handbook of evolutionary differential equations, Vol. III, 2006.

[26] , “A note on Alberti’s rank-one theorem”, in Transport Equations and
Multi-D Hyperbolic Conservation Laws, Lecture Notes of the Unione Matematica
Italiana, Springer Verlag, Berlin-Heidelberg, 2008.

[27] N. Depauw – “Non-unicité du transport par un champ de vecteurs presque BV”,
in Seminaire: Équations aux Dérivées Partielles, 2002–2003, Sémin. Équ. Dériv.
Partielles, École polytech., 2003, p. 9.

[28] R. J. DiPerna & P.-L. Lions – “Ordinary differential equations, transport
theory and Sobolev spaces”, Invent. Math. 98 (1989), p. 511–547.

[29] L. C. Evans – Partial differential equations, Graduate Studies in Math., vol. 19,
Amer. Math. Soc., 1998.

[30] L. C. Evans & R. F. Gariepy –Measure theory and fine properties of functions,
Studies in Advanced Math., CRC Press, 1992.

[31] M. Hauray – “On two-dimensional Hamiltonian transport equations with Lploc

coefficients”, Ann. Inst. H. Poincaré Anal. Non Linéaire 20 (2003), p. 625–644.
[32] C. Le Bris & P.-L. Lions – “Renormalized solutions of some transport equa-

tions with partiallyW 1,1 velocities and applications”, Ann. Mat. Pura Appl. 183
(2004), p. 97–130.

[33] P.-L. Lions – “Sur les équations différentielles ordinaires et les équations de
transport”, C. R. Acad. Sci. Paris Sér. I Math. 326 (1998), p. 833–838.

ASTÉRISQUE 317



(972) THE RENORMALIZATION THEOREM OF AMBROSIO 203

Camillo DE LELLIS

Universität Zürich
Institut für Mathematik
Winterthurerstrasse 190
CH–8057 Zürich (Suisse)
E-mail : camillo.delellis@math.unizh.ch

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2015






	Introduction
	1. Renormalized solutions
	2. The commutator estimate of DiPerna and Lions
	3. The BV case: the commutator estimateof Ambrosio
	4. The Lemmas of Bouchut and Alberti
	5. The continuity equationand regular Lagrangian flows
	6. Beyond BV and beyond renormalized solutions: Further results, Conjectures and Open Problems
	7. Appendix: Proof of Proposition 3.2
	References

