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SCHWARTZ’S THEOREM ON MEAN PERIODIC
VECTOR-VALUED FUNCTIONS

BY

FraNgols PARREAU and Y1TZHAK WEIT (*)

RESUME. — Nous exposons une preuve plus simple du théoreme de SCHWARTZ
sur les fonctions continues a valeurs dans C* .

ABSTRACT. — A simpler proof to SCHWARTZ'S theorem for C"V-valued continuous
functions is provided.

1. Introduction and preliminaries

The theorem of L. SCHWARTZ on mean periodic functions of one
variable states that every closed translation-invariant subspace of the
space of continuous complex functions on R is spanned by the polynomial-
exponential functions it contains [4]. In [2, VII], J.-J. KELLEHER and B.-A.
TAYLOR provide a characterization of all closed submodes of C"-valued
entire functions of exponential type which have polynomial growth on R.
By duality, their result generalizes Schwartz’s Theorem to C-valued
continuous functions.

Our goal is to provide a simple and a direct proof to this result.

C(R,C") denotes the space of continuous C"-valued functions on R,
with the topology of uniform convergence on compact sets. By a vector-
valued polynomial exponential in C(R,C"), we mean a function of the
form e**p(z), x € R, where A € C and p is a polynomial in C(R,C").

THEOREM. — Ewvery translation-invariant closed subspace of C(R,CN)
is spanned by the vector-valued polynomial-exponential functions it con-
tains.

(*) Texte recu le 16 mai 1988.
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320 F. PARREAU AND Y. WEIT

For the theory of mean-periodic complex functions, we refer the reader
to [4], [1], [3]. We need the following notations and results.

Let My(R) denote the space of complex Radon measures on R having
compact support. For u € MO(R) the Laplace transform f of p is the
entire function defined by ii(z) = [ e **du(z), 2z € C.

We remind that f € C(IR) is mean periodic if u *x f = 0 for some
uw € My(R), p # 0. For f € C(R), f~ is the function defined by
f(x)=f(z)ifz <0and f~(z) =0if z > 0. If f is mean-periodic,
u € My(R), p # 0 and pu * f = 0, then the function p * f~ has compact
support and the meromorphic function

F=(uxf)/i,

which does not depend on the choice of u, is defined to be the Laplace
transform of f ([3]).

The heart of our proof is the fact that F' is entire only if f = 0 (see
[3, Theorem X]).

The dual of C(R,C") is the space My(R,C") of C"-valued Radon
measures on R having compact supports. One notices that Mp(R) is an
integral domain under the convolution product and My(R,C") is a module
over My(R) with the coordinatewise convolution. We denote the duality by

N
p’] * f]
=1

for p = (p;) € Mo(R,CY) and f = (f;) € C(R,CV). If f is a vector-
valued polynomial-exponential with

we have

For any subset A of C(R,C") let
={pu€ My(R,C"); (u,f) =0 forall feA}.

If V is a translation-invariant closed subspace of C(R,C¥), Sp(V') denotes
the set of all vector-valued polynomial-exponentials that belong to V.
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By duality, V is spanned by Sp(V) if and omly if Sp(V)t c V*.
Since V is translation-invariant, V+ is a submodule of My(R,C") and
p = (p;j) € V* if and only if

N
S uixfi=0 forall f=(f;)eV.

Jj=1

2. Main result

In this section, V denotes a given translation-invariant closed subspace
of C(R,C"). We have to prove (i, f) = 0 for any u € Sp(V)* and f € V.
We need some more notation and three lemmas.

Let 0 < r < N be the rank of V+ as a module over My(R). That means
r is the greatest integer for which there exists a system (0¢)1<¢<, where
or=(0¢,j)1<j<N € VL for 1 < £ < r and with a non-zero determinant of
order r. We shall suppose given such a system with, say,

p=det(og;; 1<4,j<r)#0.
One notices that p is the non identically zero entire function given by
AN =det(pes(N); 1<6,j<7), AeC

Ifr =0, i.e. V1 = {0}, we take for p the Dirac measure at 0 and p()) = 1,
recC.
For p = (p;) € Mo(R,CV) let

Hr o oo fr Ky
01,1 cee O1p Ul,j .
Aj(p)=det| . . . ) (for 1 <j<N)
Or1 cee Opgr Opj
and
01,1 O1,r
O¢—1,1 -+« Og—1,r
Te(p) =det| py L (for1<£<r).
O¢+1,1 v+ Og415T
Ur,l O'T,T
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322 F. PARREAU AND Y. WEIT
From the definition of r, for any u € V+
(1) Aj(m)=0  (for1<j<N)

By expanding the A;(x) along the last column, (1) is equivalent to

r

(2) prp; = m(p)xoe;  (for 1 <j<N).
(=1

LEMMA 1. — Let A € C such that p(X) # 0. For a = (a;) € CV, the
vector-exponential e’ - o belongs to V if and only if

N
(3) Y abe;(A) =0 1<e<r

=1

Proof. — Let a € CY. We have e’ - o € V if and only if, for every
p=(p;) €V*,

N
(4) (e - a) =D o (A) = 0.

=1

This proves the “only if” part. Conversly, since p(A) # 0, (2) implies
that for any p € V' the equation in (4) is a linear combination of the
equations (3).

LEMMA 2. — Let p € My(R,CN). If {u, e’ -a) = 0 for all X € C
such p(A) # 0 and a € CV such that e** -a € V, then Aj(u) = 0 for
1<j<N.

Proof. — Let A € C with p(A) # 0. If p satisfies the hypothesis, the
solutions of (3) are solutions of (4), which implies that the determinants
Aj(p) (A) for 1 < j < N are equal to zero. Then, since p and the A;(u)
are entire functions and p # 0, the A;(u) are identically zero. Hence,
Aj(p)=0for1 <j < N.

Remark. — LemMA 2 shows that any p € Sp(V)* satisfies (1) and (2).
Ifr =0, Aj(u) = p; for 1 <j < N;hence Sp(V)*+ = {0} if v+ = {0}.

LEMMA 3. — Let A € C, m > 0 and pu € Sp(V)*t. There exzists
v € VL such that

PN =40 (for 1<j< N, 0<L<m).
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Proof. — Suppose the element (ﬂgz)(A))1<j<N,o<gAm of CN™ does not
belong to the subspace

M, m) = {77 (Mijsn,0se<m s v € VL]

Then there exists (age))lstN,()Skm such that

N m-—1
Z a(z)u(z) =0 forveV*t
j=1 ¢=0
and
N m-—1
Z a(f) (f) £0.
j=1 ¢=0
Then if

m—1
filz) = Zaz)x[ (for 1 < j < N),
=0

the polynomial-exponential f = (f;)i<j<n satisfies
(v, /=0 (for v € V1),

therefore f € Sp(V'), and
(. f) # 0,

and we have a contradiction, since y € Sp(V)*.

Proof of the THEOREM. — Let pu = (u;) € Sp(V)*, f = (f;) € V and

N
9= i f;
i=1

We have to prove that g = 0. By LEmmaA 2, A;(p) =0for 1 <j < N and
u verifies (2); therefore

N
p*Zuy*fg Z To(u) * Y005 % ;)
=1 j=1
For 1 < ¢ < r, since gy € V+, we have Z;\;lam * f; = 0. So
pxg=20.
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324 F. PARREAU AND Y. WEIT

Hence ¢ is mean-periodic and the Laplace transform G of g may be
defined by

G=(pxg™)/p.
By ([3, Theorem X]) it is enough to prove that G is entire.

If [a, b] is any interval that contains the supports of the p; (1 < j < N),
> wuj* f; (@) is equal to g(z) for < a and 0 for 2 > b. Thus the function

N
=1

has compact support. For 1 </ <r, let
N
he = ZO’[J * fi.
j=1

By the same argument, the functions h, have compact supports and,
by (2),

N r
So px > pixfy = 1o(p) xh.
j=1 =1
prg =Y Telp)xhet+pxs;
(=1
1« P
(5) G= EZ”(") ~he + 8.
(=1

The functions & and hy (1 € ¢ < r) are entire, as Laplace transforms
of compactly supported functions.

For any v € V*, since Y v x f; =0, Y v; * fj‘ has compact support,
and it follows by (2) that the function

(6) lA Z To(v) - he is entire.
Pi=

Let A € C and let m be the order of p at A\. By LEMMA 3, we can choose
v €V so that 27 (A) = 4 (A) for 1 < j < N, 0 < k < m. Then the
functions (#; — f1;)/p for 1 < j < N and the functions

(re(v) = 7e(n))  (for1<e<r)

| =
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are analytic at A. It follows from (5) and (6) that G is analytic at A.

Since A is arbitrary, G is entire. That completes the proof of the
Theorem.
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