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ON THE SUPERADDITIVITY OF SECANT DEFECTS
BY

BARBARA FANTECHI (*)

RESUME. — Dans son article [Z2], M. ZAK a enonce un theoreme de super-additivite
pour les defauts secants de varietes projectives lisses; ensuite, M. ADLANDSVIK a donne
un contre-example. Dans cet article nous prouvons un theoreme semblable a celui de
ZAK, mais avec des hypotheses plus fortes; nous remarquons que tous les corollaires
enonces par ZAK restent vrais, et que Ie contre-exemple de ADLANDSVIK ne satisfait
pas les hypotheses supplementaires.

ABSTRACT. — In his paper [Z2], ZAK stated a theorem of superadditivity for
secant defects of smooth projective varieties; subsequently, ADLANDSVIK gave a
counterexample. In this paper we state and prove a theorem similar to ZAK'S but with
stronger hypotheses, we show that these do not hold for Adiandsvik's counterexample,
and we point out that all of ZAK'S corollaries are still implied by our version of the
theorem.

0. Introduction
The extrinsic properties of an embedded projective variety X, espe-

cially concerning linear projections, are related with the properties of its
secant varieties. We recall that the A;-th (or the (k — l)-th, depending on
the notation) secant variety of a given projective variety X in PN is the
closure in P^ of the union of the (k — l)-dimensional linear subspaces
generated by k points of X.

The interest for the properties of secant varieties arose first at the
beginning of the century, e.g. we can mention TERRACINI'S paper [T].
In recent years, some of these properties have been used in the proof of
various results in projective algebraic geometry; the most striking example
is ZAK'S classification of Severi varieties.

Another field of application is a new proof of linear normality for
smooth low-codimension projective varieties, (i.e. such that the dimension
is bigger or equal to twice the codimension); this result is important as
a first step in the direction of Hartshorne's conjecture (see [H]) that low

(*) Texte recu Ie 25 juillet 1989, revise Ie 5 fevrier 1990.
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86 B. FANTECHI

codimension varieties should be complete intersections.
In his paper [Z2, p. 168] ZAK stated a theorem of superadditivity for

secant defects of projective varieties. The "expected" dimension of the k-
th secant variety is equal to 1 plus the dimension of X plus the dimension
of the (k - l)-th secant variety, as long as the latter is not all of P N . The
difference beween the actual dimension and the expected dimension for the
A;-th secant variety is called the A;-th secant defect, and denoted by Sf, for
short. (For more precise definitions, we refer the reader to paragraph 1.)
ZAK deduced from his theorem another proof of (corollary, p. 170) linear
normality for smooth low-codimension varieties, and more generally he
gave estimates for the possible dimension of a nondegenerate embedding
for a smooth, projective variety of given dimension and first secant defect.

Subsequently, Adiandsvik ([A2], see also remark 3.6) gave a counte-
rexample to ZAK'S theorem, thus leaving open the question whether or
not his other results were correct.

In this paper we introduce the notion of almost smooth variety; it is a
projective variety X such that, for every x in X, its tangent star at x (the
union of the limits of secants with endpoints tending to x) is contained
in the closure of the union of the secants through x (cf. section 2). In
general the tangent star contains the tangent cone and is contained in the
Zariski tangent space; hence, in particular, every smooth variety is almost
smooth.

Following the ideas of ZAK, we prove (for notations see section 1) :

THEOREM 2.5. — Let X be an irreducible, closed subvariety ofPN and
let k, I , m be positive integers, with I + m = k, k < ko(X) and 2m < ko.
Assume ^(X) is almost smooth. Then 6k > Si + 6m.

Although our statement is a slightly weaker version of ZAK'S theorem we
remark (3.7) that it is strong enough to ensure the validity of all the main
results of ZAK'S paper, and in particular the linear normality result, and
the estimates of embedding dimensions. We also point out that the extra
hypothesis needed to make the proof work fails in fact for Adiandsvik's
counterexample.

This paper goes as follows : in section 1 we recall briefly definitions
and properties of secant varieties which will be used in the sequel; we
also introduce the necessary notation; in section 2 we state the main
theorem and give an outline of the proof and in section 3 we deal with some
technical lemmas, we describe Adiandsvik's counterexample and we recall
briefly how ZAK derived the linear normality result and the embedding
dimension estimates.
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I would like to thank Fabrizio CATANESE, who introduced me to this
subject and helped me during my thesis work.

1. Definitions and basic properties of secant varieties
We shall denote by P^ the TV-dimensional projective space over a

fixed algebraically closed field k. If X^...,Xn are subsets of P^, we
shall denote by (Xi, . . . ,Xn) their linear span, i.e. the smallest projective
subspace of P^ containing all the X/s.

Definition 1.1. — Let Xi , . . . ,X^ be irreducible subvarieties of P^,
and let

h= max {dim^i , . . . , Xn) \ Xj C Xj}-

We denote by S ( X ^ , . . . , Xn) the closure m X ^ x ' • ' x X n X P N o { the set

(*) [(x^...,Xn,z) | z e (x^...,Xn), dim^i, . . . , Xn) = h\ •

The projection of S{X^,... ,Xn) in PN will be called the join of
Xi , . . . , Xn and will be denoted by J(Xi, . . . , Xn).

Remark 1.2. — Let Xi,... ,Xn be irreducible subvarieties o/P^. Then
the following hold :

(i) S(X^,..., Xn) is irreducible ;
(ii) J ( X ] _ , . . . , Xn) is irreducible;
(hi) dimS(X^...,Xn)=h+^dimXj;
(iv) // Xi U ̂ 2 contains at least two distinct points

dim5(Xi,X2) = dimXi +dimX2 + 1.

Proof. — Let TT denote the natural map from S{X^,...,Xn) to
Xi x • • • x Xn.

(i) and (iii) both follow by observing that the open set defined
in (*) is a projective bundle of rank h over the set {(x^,...,Xn) \
dim(r r i , . . . , Xn) = h}, which is open in X x ' • • x X.

(ii) is a consequence of (i), and (iv) is a consequence of (iii). []

Definition 1.3. — J(Xi,. . . ,Xn) is said to be nondegenerate if

dim J(Xi, . . . , Xn) = dim S(X^ . . . , Xn).

LEMMA 1.4 (TERRACINI). — Let X , Y be irreducible subvarieties of
P^, x e X , y (E Y, z G ( x , y ) . Then the following hold :

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



88 B. FANTECHI

(l) TX,X C Tj^,Y),z ; Ty,y C Tj(^y)^.
(ii) J/ c/^ar A; = 0, there exists U open subset of J ( X , Y) such that

for all z (E U, for all x C X , for all y C Y such that z (E (x, y ) we have
(Tx,x,TY,y) = T J ^ ^ Y ) , Z '

Proof. — We can clearly restrict ourselves to an affine space AN.
We shall use the same symbol to denote both a projective variety and
its intersection with AN. Then we can define a dominant map (p :
X x Y x A1 -^ J(X, Y) by ^p(x, y , A) = \x + (1 - \)y. Now it is enough to
show that, for z / x and z -^ y , the image at (x, y , A) of the tangent space
of X x V x A1 via d(p is (Tx,x, Ty,y); in fact (i) follows immediately, and
(ii) follows by remarking that, in characteristic zero, the differential of a
dominant map is surjective. Let z = ̂ (x, y , A), Tx,x = V+x, Ty^y = W-\-y
with y, W vector subspaces of A^ ; then

^(^XxyxAi,(^,2/ ,A)) = [>(v + x) + (1 - \)(w + y) + p.(x - y ) \

such that v e V, w e TV, p. C T^i^ = A1}-

It is easy to verify that this is exactly {Tx,x,Ty,y}. []
TERRACINI'S proof can be found in [T]. This lemma can be easily

extended to the case of J(Xi,. . . ,X^), for any n.

Definition 1.5. — Let X in PN be an irreducible variety. We denote
S ( X , . . . , X) (k copies) by Sk(X) ; in the same way we denote J(X,. . . , X)
by • J k ( X ) . Jk(X) will be called k-th secant variety of X.

Notation 1.6. — We shall denote by Sk(X), or ^, the dimension of the
A;-th secant variety; we shall denote by ko(X), or A;o, the biggest k such
that Sk < N.

Definition 1.7. — If a i , . . . , 0 r are integers > 1 such that ^a^ = A;,
clearly

J(Jal(X),...,Ja-(X))=^(X).

We define ^^•••^(X) to be ^(J^ (X) , . . . . J^X)).
We now want to choose in the varieties we just defined some "good"

open sets, where we shall be able in the following to construct explicitly
some useful maps.

Notation 1.8. — Let 5^(X) be the open set in Sk(X) defined as follows :

5^(X) = ^{x^,...,Xk,u} such that xi C X,

u ^ ( x ^ ...,^}, u^J^^X)}

TOME 118 —— 1990 —— N° 1



ON THE SUPERADDITIVITY OF SECANT DEFECTS 89

and let J^X) be its projection in P^. We remark that, for k < ko
J^X) ^ J^X), whence S^^X) and J^^X) are nonempty. From
now on, when we talk about secant varieties Sk(X) and J^X), we shall
always assume, unless explicitly stated, that k < ko(X) + 1.

Notation 1.9. — In the same way we define

^'•••'^(X) = {(^•••^r^) such that u C (^i , . . . ,^) ,

^eJ^X), ueJ^X)}-

We remark that S^X) is just 51'-'1 (X).
Remark 1.10.

(i) U ( x ^ . . . , x k , u ) C 6^(X), dim^i, . . . , ̂ ) = k - 1.
(ii) I f ( ^ i , . . . , ^ ) e^-^X), dim(^, . . . , ̂ ) = r - 1.
Prw/. — We give only the proof of (ii), (i) requiring just a small

change in notations. We know that there exist A^ c k, x^ C X such
that v, = Y,\ijXij with x^ C X. Assume that the v,'s are linearly
dependent, say ̂ ^v, = 0. We get E^A,^ = 0; thus the x^s are
linearly dipendent and u e J^W, a contradiction. Q

LEMMA 1.11. — -y{aj}j=i,...,r a^e positive integers and if we let

f dj if 1 < j < jo ;
^ = ^ ^ +^-+1 ^/J = J o ;

[^+1 ^/Jo < J < r - l ;

^en ^ere exists a natural surjective morphism

^ , ga^...^^ _^ 5'&1 '•••'6T-1(X).

Proof. —Let (^ i , . . . ,^,^) be a point of^-^X), with 2A = E^--
Define

f ^ if 1 < J < Jo ;
^ = ^ ^-^ + ^+1^+1. if J = Jo ;

I ^+i it Jo < J < r - 1;

and set ^(^i , . . . ,^,n) = (w i , . . . ,Wr-i,u). As u ^ J^^X), all of
the A/s are different from zero (they are also determined as a point
of projective (r - 1) space). Thus ^ is well defined, and its image lies
in the requested variety. Let now Q = (w i , . . . ,Wr-i,u) be a point in

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



90 B. FANTECHI

S^-^-^X), and assume that wj = E^i^^-, ̂  € ̂  Then if we
define

f ^j if 1 < J < Jo ;
E?=i^^j it .7= J o ;

^ —— ^ V^J-1 A • P • • 1
2^=a,_i ̂ J^- it J = JO + 1 ;

. w j - l it Jo <J '<y- l .

Clearly P = (v i , . . . ,Vr,u) is a point of S^-^^X) such that '0(P) = Q.
Thus the map '0 is surjective. []

COROLLARY 1.12.
(i) If (ai,...,a^) anrf (foi,...,^) are ordered sets of natural num-

bers, such that there exist CQ = 0 < c\ < ... < Cs = r with
bz = ^•=c,_i+i a.̂  we can define a natural surjective morphism ^ :
5ai,...,a,(^ -.^'•••^(X);

(ii) In particular, if ^[=1 a^ = k, there is a natural surjective map
from S^X) to ̂ -^(X).

(iii) 5 î,...,a,̂  ^ ^reducible.

Proof.
(i) follows from lemma 1.11 by an easy inductive argument;

(ii) is just a particular case of (i);
(iii) is an obvious consequence of (ii) and of remark 1.2(i). []

Definition 1.13. — We shall define the k-th secant defect of X to be

6 k ( X ) = S k { X ) + n + l - S k ^ { X ) .

Remark 1.14. — 6k = dim^J^X),^) - dlmJ(Jk(X),X)•, thus ^
"measures" how much the join of X and J^X) is degenerate. We now
want to identify the 6k with the dimensions of certain subvarieties of X.

Let u be a point in J^X), and let p, (p be the projections of Sk(X) on
the first factor X and on Jk(X), respectively. We denote ^^(n) by Z^,
and p(Zu) by Yu.

As S!k(X) is open in the irreducible variety Sk{X), if u is generic in
J^X) (in particular u C ^(X)) we have that ^{X^Z^ is a dense open
set in Zu.

LEMMA 1.15. — If u is generic in Jk(X), ]^^ ai = k, ai = 1, we
have Yu =pl(^l(^A)) where pi,^pa are the projections of S^'-^^X) on
the first factor X and on J^X), respectively.

Proof. — Let '0 : S^X) -> ^^•••^(X) be the surjective morphism
of COROLLARY 1.12. If u is generic, then Yu is the closure in X of

TOME 118 —— 1990 —— N° 1



ON THE SUPERADDITIVITY OF SECANT DEFECTS 91

p^^^u) D 5^(X)). In the same way, if u is generic, then p^^p^^u)) =
closure in X of p^^{u} H ^•••^(X)). We just have to show that
p^-^u) H 5^(X)) = pi(^1^) n ^•••^(X)). It is enough to remark
that the following diagram is commutative

S^X)

X ^ J^X)

and that '0 is surjective. []

LEMMA 1.16. — If u is generic in ̂ (X), then every component ofYu
has dimension 6k-i.
^ Proof. — Let Z^ be ^\u) C S^^^X), where ^i : ^^(X) -^
Jk(X) is the natural projection. We know that Yu is the image of the
closure of Z'^ via the projection on the first factor. Computing dimensions,
we immediately obtain that, for u generic, Z^ has pure dimension Ok-i.
Thus we are reduced to show that p : Z^ —> Yu, given by projection on
the first factor, is finite.

The inverse image in Z'^ of x C p(Z'u) are just the points (x,v,u)
with v C Jk~l{X) and u C (x,v}. It follows that v C Jk~l(X) D (x,u);
as u ^ Jk~l(X)^ this intersection contains at most a finite number of
points. Q

THEOREM 1.17. — The sequence 6^ is nondecreasing.
Proof.—See [Z2]. D

Remark 1.18. — Our definition of the A;-th secant variety coincides with
ZAK'S definition of (k — l)-th secant variety; his definition of secant defect
is the same as ours.

2. Statement and proof of the main theorem

Definition 2.1. — Let TT and (p be the projections of S2(X) on X x X
and J2(X)^ respectively. The tangent stara,t X in x is defined to be T^ ^ =
^(^(x^x)). If V C X is a subvariety, we let T'(X,Y) = U^r7^'-

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



92 B. FANTECHI

Definition 2.2. — X is said to be almost smooth if for all x G X we
haverj^CJ({^X).

Definition 2.3.
(i) r^crx,..

(ii) If X is smooth in re, 7^ ^ == Tx,x-

The statement can be found also in [Z 1]. The proof is in [J], where the
definition of tangent star was given for the first time. []

Remark 2.4. — It is easy to see that the tangent star contains the
tangent cone and is contained in the tangent space; further information
can be found in [J], and an alternative definition over the field of the
complex numbers can be found in [W].

THEOREOM 2.5. — Let k, I, m be positive integers, with I + m = k,
k < ko and 2m < ko. Assume ̂ {X) is almost smooth. Then 6k > 6i+6m-

Proof. — Consider the diagram

^^(X)

S^^iX) 5^+1(^)

yl

J^+^X)

where the (^'s are the natural projections, and A and fi are maps of the
type described in COROLLARY 1.12. It is easy to see that the generic fibre
of [L has pure dimension 6m, and that the generic fibre of A has pure
dimension 61. The proof is divided into two steps.

First step. — Let P C ^^^(X) be any point, P = ('^.z^+i,^), and
let

Z=Z(P)=\-1(\^-1(P))).

If we can show that A : /-^(P) —> A^"^?)) is finite, then we can deduce
that, for a generic P, Z has at least an irreducible component of dimension
6m+6i.

Second step. — We show that, for P generic, the map from Z to Yu
induced by the projection of ^^(X) on the second factor is generically
finite on an irreducible component of dimension 61 +6m- We already know

TOME 118 —— 1990 —— N° 1



ON THE SUPERADDITIVITY OF SECANT DEFECTS 93

that, for u generic in JkJ^l(X), Yn has pure dimension <^, so the theorem
follows.

Proof of the first step. — Let Q € A^-^P)); we want to show
that the set {R e ^^(X) t.c. \(R) = Q^(R) = P} is finite. Let
Q = (^+i^m^), the possible Rs are 4-tuples (vi,x,Vm,u) where the
only unknown element is x\ we must also have x e X H (^m+i^m) and
as (^+1,^) ^ X, we have only a finite number of choices for x.

Proof of the second step. — We must show that the map from Z to Yu is
generically finite on its image. Let R e Z be the 4-tuple {v[, y , Vrn.u). The
result will thus be obtained by showing that the map from Z to Yu given
by R -^ y is generically finite. We shall factor this map in the following
way :

Z R

pi

S l - k ( X ) x J m ( X ) (Q/,^),^)

P2

5^(X) (y,vk,u)

P3

Yn y

where the map pi is defined by setting Vk(R) = (y , u) H (v[, v^n) (see again
COROLLARY 1.12). We now prove that pi and ^3 are finite; LEMMA 3.5 will
show that, if P is generic, p^ is generically finite, at least on an irreducible
component ofpi(Z) of dimension Si + 6m'

The proof of the finiteness of pi is elementary. Consider

Z' = {(R,R') such that R c Z, X(R) = A^), ^R') = P}.

Let R = {vi,x,Vrn,u). It is enough to show that Z ' -^ ^^(X) x ^(X)
given by (R.R') —^ pi(R) is finite. We can describe the situation in the
figure 1 next page.

We notice that, once y,Vk,u,Vm have been fixed, we have for x only a
finite number of possible choices, as we must have x € (^m^m+i) H X,
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Figure 1

and this set consists of a finite number of points. For a similar reason
we have a finite number of choices for ^+1; in fact this point must
be in (u.Vrn) H ^(X). We finally get v[ = (vk.Vm) H (i/,^+i). Thus
Z' -> S^^X) x ^(X) is finite, whence pi is. The finiteness of ^3
can be shown in a similar way; in fact, u is fixed, and we must have
Vk € (u,y) D Jk{X), which is again a finite set. []

3. Some technical lemmas

The basic idea in the proof of LEMMA 3.1 is due to ZAK; we point
out the need for the almost smoothness of Jm(X). See also Remark 3.6.
LEMMAS 3.2 and 3.5 may essentially be found in [Z 2] although in a more
implicit form.

LEMMA 3.1. — Let X be an almost smooth variety in P^, Y a
subvariety. If J(X,Y) is degenerate, T'(X,Y) = J(X,Y).

Proof. — Let n = dimX, m = dimV. By hypothesis, T'{X,Y) C
J(X, Y); as J(X, Y) is irreducible, if they do not coincide we must have
dimT^X.V) < dimJ(X,Y). Let t = dimr'(X,y). If t = n + m the
theorem is proved. Thus we can assume t < n + m. Let L be a linear
subspace of dimension N-t-1, not intersecting X nor T'{X, Y) ; we want
to show that L does not meet J(X,Y). It follows that dimJ(X.y) = t
and the theorem is proved.

Let us consider the linear projection with center L. Applying it to both
factors we get a regular map p : Y x X —^ P^ x P^. The dimension of
the image is n + m > t:, the theorem of FULTON and HANSEN (see [F-L])

TOME 118 — 1990 —— N° 1



ON THE SUPERADDITIVITY OF SECANT DEFECTS 95

implies that the inverse image of the diagonal Ap is connected.
We now remark that our thesis, J(X, Y) D L ^- 0, is equivalent to

jy^Ap) = Ay. Arguing by contradiction, assume that W is an irreduci-
ble component ofp'^Ap) different from Ay ; by the connectedness theo-
rem, we can assume that TVDAy -^ 0. Let (w,x) be any point in lV\Ay ;
we have (w,;r) HL 7^ 0. With the same notations as in Definition 2.1, this
can be expressed as (^(Tr'^w, x)) D L / 0. W \ Ay is an open, dense sub-
set of W \ thus for every point Q in W, we have ip(7^~l{Q)) D L -^ 0. In
particular, let (y, y ) be a point in W D Ay ; we have (^(Tr"1^, y)) H L / 0,
thus T^X, V) H L / 0, contradiction. Q

LEMMA 3.2. — Let I, m, k be positive integers such that I + m = k,
k < ko, 2m < ko. Assume that J^X) is almost smooth and that
v C ./^(X) is generic. We denote by p, y the projections of S^'^X)
on the first factor J^X) and on J^X), respectively. We also denote by
Y^ =p(^p~l(v)). With these hypothesis, ifY is an irreducible component
ofY^, J(V,X) is nondegenerate.

Proof. — The proof is divided in two steps.
First step. — It is enough to show that ./(^(X^Y) is nondegenerate.
Secondstep. — ./(^(X^Y) is nondegenerate.
Proof of the first step. — As v is generic, we may assume that (p~l{v) H

^^(X) is dense in ^-l( /y). As 2m <, ko, we know that ^^^(X) is
nonempty and dense in (^^^^(X). We denote by ^i and ^2 the natural
maps from S^^-^X) to ̂ ^(X) and 5m+l'm-l(X), respectively (see
COROLLARY 1.12 for the definition). We have a commutative diagram

S^^'^X)y \
^^(X) 5'm+l'm-l(X)

where the $'s are the projections on the last factor. Let S(Y, X, ̂ ^(X))
be the set S^^-^X) H S(Y,X,Jm-l(X)), and let ^i and ^2 be the
restrictions of ^i and ^2 to 5(V,X, J^^X)).
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With similar notations we get the commutative diagram

^(y.x.j—^x))
^l/^ \^2

S(Y, J^X)) S(J{Y, X), J771-1^)

^l^^ / V I

Wn
Now we want to show that ^2 is generically finite if (^i is. Let Q be a
generic point in S(J(Y,X), ̂ ^(X)). We may assume ^{Q) generic in
J(y,X), whence ^^(^(Q)) finite. Thus it is enough to show that i f P e
§{Y, J^X)) is such that <^i(P) = ^(Q), then the set ̂ \P)^\Q) is
finite. Let (y,x,u,w) = R e 5(y,X, ̂ -^X)) be such that ^i(fi) = P,
'02 (-R) = Q? with P, Q fixed. In this case y is determined by P, u by Q
and w by both of them. I f Q = (^,n,w), we must have x ^ Xr\{y,z). But
by genericity y ^ X ; this implies that the intersection contains a finite
number of points.

Proof of the second step. — Now we must show that J(Jm{X),Y) is
nondegenerate. By LEMMA 3.1 it is enough to show that F^J^X), V)) -^-
J^W.Y). By TerracinFs lemma 1.4 T'^W.Y) C Tjk^^. Now
v is generic, thus we can assume it is smooth; as fc <, ko, Tjk^\y is a
proper linear subspace, while (JV^X^y)) 3 (X) = PN and therefore{J(Jm(x)^Y))=pN. n

Remark 3.3. — Let I < k < ko be positive integers. The natural map
S^-^X) -^ J\X) is dominant.

Proof. — Assume it is not. This means that if vi € J^X) is generic,
we have J({^}, J^(X)) C Jk-l{X). Consider 6'(^(X), J^(X)), and
denote by p, (p the projections on J^(X) x Jk~l(X) and on Jk{X),
respectively. Our assumption implies that there is a nonempty open
set U in J\X) x J^-^X) such that ^(p-^U)) C J^-^X). It follows
that (^(^(X),^-^))) C ^-^X), thus J^-^X) = ^(X); this
contradicts the hypothesis k < ko. \]

Remark 3.4. — Let Fi C J^^X) x J^(X) x Jm(X) be defined by

FI = {(^m+i^^^m) such that 3.r C X, vi C J^X),

with (a;,^,^+i) e ^^(X), (^,^,^) C ^^(X)}.
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LetT be the image o/Ti via the natural projection o/J7714"1^) x J^X) x
^(X) on the product of the first two factors. Then Fi is irreducible and
Fi —^ r is generically finite.

Proof.

First step. — Fi is irreducible. Let I^ C ^^(X) x X x P^ be the
closure of the set {((^,i;^,^)^^m+i), such that Vrn+i € (vm,x)}-
Then T^ is clearly a line bundle over the open set {vrn / x}. Thus T^
is irreducible. Now let TT^ be the map from Fa to ^^(X) induced by
the projection of ^^(X) x X x P^ on the last factor; its image is dense
in ^^(X) by Remark 3.3. Thus there is an open set T^ in T^ such
that ^(r^) C J^+^X). Now the thesis follows, because the natural map
r^ —^ FI is surjective by definition.

Second step. — I\ —^ r is generically finite. This follows from
LEMMA 3.2. In fact, assume that the dimension of the generic fibre is
at least one. For v generic in Jk(X), Vm+i generic in an irreducible com-
ponent Y of Y^, we can find a subvariety of J^X) (of dimension at least
one) such that, for all Vrn in the subvariety, the line (vm+i^m) meets X. It
follows that the mapping 5(X, Y) —^ <7(X, Y) is not generically finite; but
by the lemma these are two irreducible varieties of the same dimension, a
contradiction. []

LEMMA 3.5. — Let P e ̂ '^^(X) be generic. With the notation intro-
duced in the proof of THEOREM 2.5, there exists an irreducible component
of Z(P) of dimension 61 + 6m such that p^ is finite on the image of that
component via pi.

Proof. — We denote by A the subset of ^-^(X) x S^^^X) defined
by A = {(P,R) such that \(R) e A^-^P))}. Let TT : A ^ 6'^'m+l(X)
be the map induced by the natural projection. We remark that Tr'^P) =
{P} x Z(P). We may associate to It a point Vk ^ ^{X) in the same way
we used to define pi in the proof of THEOREM 2.5. Thus we define a map
a : A —)- r given by (P, R) —> (vrn-\-i^k)- Let r be the open set in r over
which FI —^ r is finite, and let U C Slfl'm(X) be an open set such that if
an irreducible component of Z(P) meets U its dimension is 61 + 6m-

We define A' C A by A' = {(P, R) such that R e U}. Our thesis follows
by showing that 7r(A' H a'^F)) is dense in 5^m+l(X).

In fact, if P C ^'^(X) is generic, then TT-^P) H A' H a-\r) is
nonempty, and thus we can choose -R G Z(P) lying in this intersection.
The component of Z(P) containing R has dimension 6i-\-8m by hypothesis;
on the other hand, if we let p\ (R) = ((i/,^,n),^^), the picture in §2 shows
that (vm+i^k.Vm) ^ Fi. R e ^"^(r) now implies (vm+i^k) ^ F so that,
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for every y , the possible choices for v^n are just a finite number.

Assertion. — There exists an irreducible subvariety Ao of A with the
following properties :

(i) 7^(AQ)=Sl^l(X);
(h) a(Ao) is dense in T ;
(iii) Ao H A' ̂  0.

We first show that the lemma follows from the assertion. Let A* be an
irreducible component of A containing Ao. Then A* H a'^F) and A* H A'
are open dense subsets of A*; thus their intersection is dense in A*. It
follows that TT(A* H a-^r) H A') is dense in 7r(A*) = S^^^X).

Proof of the assertion. — Let Ao = {(P,R) such that P = p.(R)}. Ao
is clearly irreducible, because it is isomorphic with 6^1'm(X).

(i) follows from the fact that /^^(X)) = 5^m+l(X).
(ii) Let ^ : F2 -^ Jk^{X) be defined as

^((vi,Vm,Vk),X,Vrn-^l) = (vi.Vm-^-l) H (Vk,x).

Reasoning as in Remark 3.4, we obtain that ^(F^) is dense in J^^X).
It is easy to see that

a(Ao) D the image in F of -^(J^+^X)) C I^.

(iii) Let R e U; it follows that (p.(R),R) € Ao H A'. Q

Remark 3.6. — The hypothesis X almost smooth in THEOREM 2.5 is
necessary.

Proof. — We give an explicit example, due to Adiandsvik (who studied
it in [Al] and pointed it out as a counterexample in [A2]). It is a
smooth variety X such that theorem 2.5 does not hold for X with
k = 4, / = m = 2, and such that J2(X) is not almost smooth. Let X
be the rational normal scroll in p^2. To construct it explicitly we give
a morphism ^ : P1 —^ L where L is a line in P^2 and (p(to,t^_) =
(^0^1,0 , . . . , 0), and another morphism ^ : P1 —^ A where A is a rational
normal curve of degree n, with -0(^i) = (0,0, ̂ ,^~1^,... ,^). We set

x= u<^)^w).
teP1

Clearly (A) is a linear subspace of dimension n not meeting L, and X is
contained in J(A,L).

It is easy to verify that, for k > 2, Jk{X) = ./(J^A),!/). Thus
ko = [n/2] + 2, as secant varieties to a curve are nondegenerate (see
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[ZAK 2] for a proof). For 2 < k < A;o, we have Sk = 2^ + 1. As 5i = 2, we
get ^i = 0, ̂  = 1 for 2 < k < ko — 1. In particular if n » 0, ^2 = ^4 = 1
contradicting the theorem.

Now we want to show that ^(X) is not almost smooth. To do this,
we shall give explicitly a point R e ^(X) and a point Pi e Tj^^. ̂
not contained in J(R,J2(X)). Let i? e L be any point, P,Q e J^A),
-PI ^ (P^Q)^ PI ^ Jr2(^-)• Choose a system of coordinates such that
PI = AP + Q. Then for all (^i) e P1 \ {(0,1)} we have

(toP + ̂ , -^ + ̂ , Pi) C ^(J2^)).

As 5'2(J2(X)) is closed, (R,R,Pi) C ^(J^X)) and thus Pi e T^^^.
On the other hand

WJ^X)) = JGR.L.J^A)) = ̂ L.J^A)).

Now Pi by hypothesis is not contained in J^(A) ; as it lies in (A), it cannot
be contained in J(L, J^A)), thus it is not contained in J(R, J2(X)). \]

For the reader's convenience, we now briefly recall one of ZAK'S esti-
mates and we point out why they all stay valid.

COROLLARY 3.7. — Let X be an almost smooth projective variety of
dimension n in PN, spanning all ofPN, and let 6 = 8\. Then the following
hold :

(i) forO <k <, ko, 6k > k6 ;
(ii) denoting by square brackets the integer part of a number, we have

N ^ f([n/6})

where

f(k)=(k+l)(n+l)-(k^l} 6 - 1 .

Proof.
(i) This follows from THEOREM 2.5 by induction (apply theorem

with m = 1); in the smooth case this result is the first corollary, p.170
in [Z 2].

(ii) In the smooth case, this is THEOREM 3 of [Z2]. We recall that our
ko is the same as the one employed there. Now it is enough to remark
that this estimate is in fact deduced by the corollary we just mentioned
and not by the superadditivity theorem. This works also for the other
estimates (e.g. THEOREM 4 and 4' of [Z2]). []

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



100 B. FANTECHI

BIBLIOGRAPHY

[Al] ADLANDSVIK (B.). — A characterisation of Veronese varieties by
higher secant varieties, Preprint University of Berg en, 1984.

[A2] ADLANDSVIK (B.). — Letter to F.L. Zak, September 1986.
[F-L] FULTON (W.), LAZARSFELD (R.). — Connectivity and its applica-

tions to algebraic geometry, Algebraic Geometry, pp. 26-92, Berlin,
Springer-Verlag, 1978, (Lecture Notes in Math., 862).

[H] HARTSHORNE (R.). — Varieties of small codimension in projective
space, Bull. Amer. Math. Soc., t. 80, 1974, p 1017-1032.

[J] JOHNSON (K.W.). — Immersion and embedding of projective varie-
ties, Ada Math., t. 140, 1978, p 49-74.

[T] TERRACINI (A.). — Sulle Vk per cut la varieta degli Sh (h + l)-seganti
ha dimensione minore delPordinario, Rend. Circ. Mat. Palermo,
t. 31, 1911, p 392-396.

[W] WHITNEY (H.). — Complex Analytic Varieties. — USA, Addison-
Wesley, 1972.

[Zl] ZAK (F.L.). — Projections of algebraic varieties, Math. USSR Sb.,
t. 44, 1983,p 535-544.

[Z2] ZAK (F.L.). — Linear systems of hyperplane sections on varieties of
low codimension, Functional Anal. Appl., t. 19, 1985, p 165-173.

TOME 118 —— 1990 —— N° 1


