BULLETIN DELA S. M. F.

GAILLETZTER

LEONID MAKAR-LIMANOV

Rings of differential operators over rational
affine curves

Bulletin de la S. M. F., tome 118, n°2 (1990), p. 193-209
<http:/www.numdam.org/item?id=BSMF_1990__118_2_193_0>

© Bulletin de 1a S. M. E., 1990, tous droits réservés.

L’acces aux archives de la revue « Bulletin de la S. M. F. » (http://smf.
emath.fr/Publications/Bulletin/Presentation.html) implique I’accord avec
les conditions générales d’utilisation (http://www.numdam.org/legal.php).
Toute utilisation commerciale ou impression systématique est constitu-
tive d’une infraction pénale. Toute copie ou impression de ce fichier
doit contenir la présente mention de copyright.

NuMbDAM

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/


http://www.numdam.org/item?id=BSMF_1990__118_2_193_0
http://smf.emath.fr/Publications/Bulletin/Presentation.html
http://smf.emath.fr/Publications/Bulletin/Presentation.html
http://www.numdam.org/legal.php
http://www.numdam.org/
http://www.numdam.org/

Bull. Soc. math. France,
118, 1990, p. 193-209.

RINGS OF DIFFERENTIAL OPERATORS OVER
RATIONAL AFFINE CURVES

BY

GaiL LETZTER, LEONID MAKAR-LIMANOV (*)

RESUME. — Soit X une courbe algébrique irréductible sur C dont la normalisée
est la droite affine et telle sur le morphisme de normalisation est injectif. Soit.
D(X) l'anneau des opérateurs différentiels sur X. Nous étudions un invariant pour
lanneau D(X) des opérateurs différentiels sur X, noté codim D(X). En particulier,
nous montrons que D(X) 2 D(Y) implique codim D(X) = codim D(Y’). Cela permet
de distinguer dans certains cas les anneaux d’opérateurs différentiels de courbes non-
isomorphes. En outre, nous décrivons les sous-algebres ad-nilpotentes maximales de
D(X). Nous montrons que si B est une sous-algébre ad-nilpotente maximales de D(X),
alors B est un sous-anneau de type fini d’'un C[b] ou b désigne un élément du corps des
fractions de D(X); de plus, la cloture intégrale de B est C[b)].

ABSTRACT. — Let X be an irreducible algebraic curve over the complex num-
bers such that its normalization is the affine line, and the normalization map is in-
jective. Let D(X) denote its ring of differential operators. We find an invariant for
D(X) denoted as codim D(X). In particular, we show that D(X) = D(Y) implies
codim D(X) = codim D(Y’). This allows us to distinguish certain rings of differential
operators of non-isomorphic curves. We also describe the maximal ad-nilpotent subal-
gebras of D(X ). We show that if B is a maximal ad-nilpotent subalgebra of D(X), then
B is a finitely generated subring of C[b] for some element b of the quotient field of D(X)
and the integral closure of B is C[b].

1. Introduction

Let X and Y be irreducible algebraic curves over the complex num-
bers, C. Let D(X) and D(Y') denote their ring of differential operators,
respectively. (For definition see [9]). This paper is motivated by the follow-
ing open question.! Does D(X) = D(Y) imply that X 2 Y ? Let X denote

(*) Supported by a grand from the National Science Foundation. Texte regu le 29 juin
1989, révisé le 11 mai 19go.

G. LETZTER, L. MAKAR-LIMANOV, Dept. of. Mathematics, Wayne State University,
Detroit, Michigan 48202, USA

t G. LETZTER has now found nonisomorphic curves X and Y with isomorphic rings of
differential operators (see [4]).
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194 G. LETZTER, L. MAKAR-LIMANOV

the normalization of X. MAKAR-LIMANOV [5] shows that the set of ad-
nilpotent elements N(X) is exactly O(X) whenever O(X) is not a subring
of a polynomial ring in one variable over C. He thus answers the question
affirmatively for these curves. Let A! denote the affine line. PERKINS [8]
extends this result showing that D(X) = D(Y') implies X = Y whenever
X # Al or X = A but the normalization map 7 : X - X is not injec-
tive. Thus, in the paper, we are interested in curves X such that X = Al
and 7 : X — X is injective. STAFFORD [10] shows the conjecture holds
the following two examples of such curves : when X is the affine line A,

or when X is the cubic cusp y? = z°.

For the remainder of the paper, assume that X is a curve such that
its normalization is isomorphic to the affine line A! with an injective
normalization map. We may therefore assume that the coordinate ring
of X, denoted O(X), is a subring of a polynomial ring in one variable C[z]
such that the integral closure of O(X), written O(X), is equal to C|z].
Furthermore D(X) is a subring of C(z)[0] where [0,z] = 1. Here 0
is just §/0x and the element f,(z)0" + --- + fo(z) of D(X) sends
g(z) € O(X) to fu(z)g™(z) + -+ + fo(z)g(z) where g(™(z) denotes
the n'P derivative of g(z).

PERKINS studies rings that satisfy these conditions in [8]. He shows
that in many cases, D(X) contains maximal commutative ad-nilpotent
subalgebras not isomorphic to O(X). Thus, for these curves, the set N(X)
of ad-nilpotent elements does not determine O(X).

In this paper, we obtain an invariant for D(X) and a nice description of
the maximal ad-nilpotent subalgebras of D(X). Set T' = C(z)[0] and set
0-degw = n where w = f,(2)0™ + -+ fo(z) is an element of T'. Define a
filtration on T by T; = {w € T' | 9-degw < ¢} and hence on any subring
R of T by R, = RNT;. (Note that this is the same filtration on D(X) as
the one defined by the order of the differential operator.) We may form
the associated graded ring 0-gr R = @ R;/R;—1. We define codim R to
be equal to dime d-gr C[z,d]/0-gr R for those subrings R of T such that
0-gr R C 0-grClz, 0.

Now assume that both X and Y are affine curves with normalization
equal to the affine line and injective normalization map. By [9], both
0-gr D(X) and 0-gr D(Y') are subrings of 0-gr C[z,d] and codim D(X)
and codim D(Y") are finite numbers.

Our main results are :
THEOREM. — Suppose that B is a mazimal ad-nilpotent subalgebra
of D(X). Then there ezists elements ' and @' in the quotient field of
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RINGS OF DIFFERENTIAL OPERATORS 195

C(x)[0] such that [0',2'] = 1, D(X) is a subring of C(z')[0'], D(X) N
C(2') = B, and the integral closure of B is C[z'|. Furthermore, 8-gr D(X)
is a subring of 8-gr Clz',d'] and

dim¢ d-grC[z',8']/0-gr D(X) = codim D(X).
CoroLLARY. — If D(X) = D(Y), then codim D(X) = codim D(Y).

This result permits one to distinguish many rings of differential opera-
tors. For example, set O(X,,) = C + z"C[z]. Then it will follow from the
CoROLLARY, that D(X,) = D(X,,) implies that n = m.

2. Graded Algebras of D(X)

In this section, @ and § are nonnegative real numbers with a + 3 > 0.
Define valuations V, g on C(z)[0] as follows. Set

Vo s (wn(x)a" Fwp_y (2)8" L 4t wo(x))

equal to max{ad, + fm | n > m > 0} where d,, = deg(wy(x)).
This extends the notion of valuations introduced by DIxMIER in [2] for
the Weyl algebra. For each valuation V, g we may define a filtration of
C(z)[d], and hence on any subring R of C(z)[0] as follows. Recall that
T =C(z)[0). Set T; = {# € T | Vop5(2) <4} and R, = RN T,;. We
may then define the associated graded algebra gr, ;R = @ Ri/R; 1.
Now the commutator [z:0?,2%0%] = (kj — i€)z*F~107+¢" 1+ terms with
z-degree less than i + k — 1 and O-degree less than j + £ — 1. Therefore
Va,6([2'07,2%0")) < a(i + k) + B(£ + j). It follows that gr, 5(C(z)[d]) is
a commutative algebra.

Note that when a = 0 and [ is positive, then the filtration defined
by Vo,g on D(X) is the same filtration on D(X) as the one defined by
O-deg in the introduction. We will write d-gr D(X) for gr, 3 D(X) and
0-deg for V; 5. Similarly, when 8 = 0 and « is positive the graded algebra
determined by V, o is the same as z-gr R determined by z-deg defined in
[8]-

Set gr, sz = z and gr, 30 = y. Since D(X) is just the first Weyl
algebra, A;, we have that 0-gr D(X) = C[z,y] where d-grz = z and
O-gr & = y. By [9, Proposition 3.11], it follows that d-gr D(X) is a subring
of C[z,y] and by [8, Lemma 2.3], z-gr D(X) is also a subring of C[z,y].
In the following lemma, we extend this to other gradings.

LEMMA 2.1. — Let R be a subring of C(z)[0)] such that 0-gr R C C[z,y].
Then the graded algebra gr, 5 R is a subring of Clz,y].
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196 G. LETZTER, L. MAKAR-LIMANOV

Proof. — If @ = 0 then gr, ;R = 0-grR. So we may assume
that o is positive. Let w be a typical element of D(X). Write w =
gm(x)0™ + - + go(z) where g;(z) € C(z) for 0 < 7 < m. Set degree
of g;(z) equal to d; for 0 < ¢ < m. Since d-gr R C Clz, y], it follows that
gm(z) C Clz] and thus d,, > 0. Set N = V, g(w). By the definition
of Vy 3, it follows that N = max{d,a +i6 | 0 < i < m}. Hence
8o (W) = Yocicm sy where v, = 0 if V, 5(z%0°) < N, and
vsz% is the leading term of gs(x) if Va (7% %) = N. We need to show
that whenever v, # 0, we have z%y* € C|z,y]. In particular, since
0 < s < m, we need to show that d; > 0 whenever v, # 0. Now
N =V, g{w) > Vo g(gm(2)0™) = dpa+mp. Hence dsa+3s8 > dpa+mp.
Recall that m > s,d,, > 0, and that a is positive. It follows that
ds > d,, > 0. The lemma now follows.

Define a linear map ¢ : C(x)[0] — C|z,d] as follows. Suppose that
w = gn(z)0™ + -+ + go(z) is an element of C(z)[d]. For each i such
that 1 < i < m, there exists a unique polynomial f;(z) such that
deg(gi(z) — fi(z)) < 0. Set

$(w) = fm(2)0™ + - + fo(2).

Now consider two rational functions g, (z) and g2(x) such that ¢(g;(z)) =
fi(z) and ¢(g2(z)) = fa(x). Then clearly

deg()\lgl(a:) + Xoga(z) — (M1 filz) + )\gfg(x)> <0 and
d(A1g1(2) + A2g2(z)) = A f1(z) + A2 fo ().

It follows that ¢ is a well defined linear map from C(z)[d] to Clz, d].

CoROLLARY 2.2. — Let R be a subring of C(z)[0] such that §-gr R C
Clz,y]. If w is an element of R, then gr, 5 ¢(w) = gr, g5(w).

Proof. — This is clear since gr, s(w — ¢(w)) does not contain any
monomials z%y° with d, > 0.

Remark 2.3. — Note that ¢(R) is a linear subspace of the first Weyl
algebra A; = Clz,d], but, generally speaking, is not a subalgebra.

Nevertheless a, § gradings are defined on ¢(R) and gr, 5 ¢(R) = gr, s R.

Now
dim¢ Clz,y]/0-gr D(X) < oo (]9, 3.12]) and

dim¢ Clz,y]/z-gr D(X) < oo ([8, Lemma 2.5])

In the next proposition, we will show that these two finite numbers are
equal. We will later show that this codimension is an invariant for D(X).
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RINGS OF DIFFERENTIAL OPERATORS 197

PROPOSITION 2.4. — Suppose that R is a subring of C(z)[0] such that
0-gr R C C[z,y] and dime C[z,y]/0-gr R < oco. Then gr, 5 R is a subring
of C[z,y] and dimc¢ C[z,y]/ gr, s R = dimc C[z,y]/0-gr R.

Using COROLLARY 2.2 and REMARK 2.3, we may replace R by ¢(R)
and prove the following.

ProprosiTION 2.4'. — Suppose that R' is a linear subspace of the Weyl
algebra C[z, 9] and that dimc C[z,y]/0-gr R' < co. Then gr, 5 R' is a lin-
ear subspace of C[z,y| and dim¢ C[z,y]/ gr, g R' = dimc¢ Clz,y]/0-gr R'.

Before proving ProposiTioN 2.4', we need some additional notation
and lemmas. Set, for i > 0,

E;=Clz] + Clz]y + --- + Clz]y* and
B;,={we R'|d-grw € E;}.

Note that ;5 B; = R'. Set E = {J;5 Ei = Clz, y).

In ProposiTiON 2.4/, we assume that dimc E/d-gr R' < oo. Since
O-grw € E; if and only if w € B; for any w € R, it follows that
dim¢ E;/0-gr B; < oo for all ¢+ > 0, and that there exists an N > 0
such that dimc F;/d-gr B; = dimc E/d-gr R’ for all i« > N. Hence for
each ¢ > 0, there exists an integer M; > —1 such that for each m > M;
there exists a monic polynomial p; ., (z) of degree m in C[z] such that
pi.m(z)y" is an element of §-gr B;. Furthermore, for ¢ > N, we may assume
that M'i =-1.

We have the following lemmas.

LeEmMA 2.5

Suppose that R’ satisfies the conditions of PrRoPosiTION 2.4'. Suppose
that w = (az® + fiy1(2))0 + -+ + fo(z) is an element of By where
a € C—{0} and deg fi+1(z) < d. Then there ezists a w' € B;41 such that
w' = (ax? + gi11(2))0F! + gi(2)0* + - - - + go(z) and deg gx(z) < My, for
each k such thati+1 >k > 0.

Proof. — Let us use the following induction. Set w_; = w. Suppose
that

Wy = (amd + gz‘+1($))3i+l + ot gig(z)0F
+ fick—1(@)0F 4+ fo(@),

where degg;(z) < Mj, is deﬁned. There exists b € B;_r_1 such that
8-grb = (fi—k—1 — gi—k—1)y" "' where degg;_r—1 < M;_y_; by the
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198 G. LETZTER, L. MAKAR-LIMANOV

paragraph preceding the lemma. So we can define wi; as wg — b, and w'
as w;.

Let P; be the set of positive integers m such that there exists a nonzero
polynomial g; ., (z) of degree m in C[z] with ¢; ,,,(z)y" € 0-gr R'. Note that
if » is an integer such that n > M;, then n € P;. By LEMMA 2.5, it now
follows that for each m € P; there exists a monic polynomial p; ., (z) of
degree m € Clz| such that b; , = pim ()8 + gi—1(x)0" "1 + -+ + go(x) is
an element of B; with deg gx(x) < My for i —1 > k > 0. Furthermore, for
i > N, we may assume that p; ,,(z) = ™. Note that the set

{bim |t >0 and m € P;}
forms a basis for R’ over C, and
{Pim(z)y' i >0 and m € P}

forms a basis for d-gr R' over C. Thus if w € R', with d-grw = f(x)y,
then for i > k > 0, there exist fi(z) € C[z] with deg fx(z) < My, such
that f(z)0" + fi_1()0""' + - + fo(z) is an element of R’

Set M = max{M; | N > k > 0}. Then we may assume that
biym = Pi,m(7)0 +w; 1y, with 8-degw; ,, < min(i, N) and z-degw; , < M.

LEmmMA 2.6

Assume that R' satisfies the conditions of ProrosiTiON 2.4'. For each
m > 0, there exists a positive integer S,, such that for alli > S,,, there is
an element ¢; ., in R’ of the form p; m(x)0" + t; m with degp; m(z) =m
and 0-degt; m <t and x-degt; m < m. If m > M we may set Sy, = 0.

Proof. — If m > M, then we may take ¢;m = b;,m. So we may assume
that m < M. Consider the subset {b;m = p;m(2)0" +wim | i > 0} of R'.
Let Eyynv = {r € E | z-degr < M and y-degr < N}, and let V be the
vector space spanned by {w;, | > 0}. Set W = {z-grw |w e V}NE.
Note that W is a subspace of Ey n. It is clear that Ejs y and hence W
is a finite dimensional subspace of E. So there is an S,, > 0 such that W
is spanned by a subset of

{x-grw | w is in the span of the set {w; ., | Sy >4 > 0}}

It follows that for ¢ > S,,, there exist complex numbers ay,,, for
Sy > k > 0 such that

S
x-deg(wi,m — Z ak,mwk,m) <0 and
k=0
So,
0-deg (wi,m - Z ak,mwk,m) <0.
k=0

ToME 118 — 1990 — ~° 2



RINGS OF DIFFERENTIAL OPERATORS 199
We may now set ¢; ,, = by — S50 b
y €L Cim = Oim k=0 Ak mOk,m-
The next corollary follows immediately from LEMMA 2.6.

COROLLARY 2.7. — We have dime Clz, y]/z-gr R’ < co.

LEMMA 2.8
Let W be a linear subspace of A;. Then dimc W = dimc gr, s W.

Proof. — Suppose that W is a vector space and that
{W; | i is an integer }

is a filtration for W such that the vector spaces W; = 0 for ¢ < 0 and
W = U;>¢ Wi. Then clearly W and @ W;/W,;_, are isomorphic as vector
spaces. Hence dimc W = dim¢c @ W;/W,;_;. In particular if W is a linear
subspace of A;, then dim¢ W = dimc gr, s W.

We are now ready to prove PropPosiTION 2.4'.

Proof of ProposiTioN 2.4'. — Note that R’ is a linear subspace of
C[z, 9]. Hence, it follows from the definition of gr, 5 R’ that gr, 5z R’ is a
linear subspace of gr,, 5 C[z,d]. Thus we only need to prove the statement
about dimensions.

Set V,, = {z*y’ | ai+Bj < n} for all n > 0. Note that each V,, has finite
dimension and that (J,,5, Vo = Clz,y]. Set W, = {w € R | gr, gw € V,,}.
Since gr, s R' C Clz,y], we have that |J,», W, = R'. Suppose that
w € W,. We can write w = p(z)d* + ¢ for some p(z) € C[z] and k > 0
such that 8-deg(c) < k and adegp(z) + Bk < n. So d-grw = p(x)y* is
also in V,,. Thus 0-gr W,, C V,, for all n > 0.

Set L = aM + 3N. We will show that 8-gr W,, = 8-gr R'NV,, for alln >
L. Since 0-gr W, C V,,, it is clear that d-grW,, C 8-gr R' N V,,. Suppose
O-grw = p(x)y’ is an element of 9-gr R' NV,,. So adeg p(x) + Bj < n. By
LEMMA 2.5, we may find in R’ an element w = p(2)8? + gn(z)0N +--- +
go(x) and deg gx(z) < My, for each k such that N > k > 0. Now

Vas(gn(@)0N + -+ + go(z)) < aM + BN = L.

Hence V, g(w) < max{adegp(z) + Bj,L}. If adegp(z) + Bj > L, then
Va,s(w) = adegp(z) + Bj < n since p(z)y’ is an element of V,,. Hence
w € W,. If adegp(z) + Bj < L, then V, g(w) < L < n, hence again
w € W,,. Therefore 9-gr W,, = d-gr R’ NV, for all n > L.

Since Wy, is a linear subspace of C[z,d], by LEMMA 2.8, we have that

dim¢ W,, = dim¢ 0-gr W,, and
dim¢ W,, = dim¢ 80,5 Wh.
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200 G. LETZTER, L. MAKAR-LIMANOV

Furthermore, for all n > L, we have that dim¢ d-gr R’ NV,, = dim¢c W,, =
dimc gr, g Wy. Since dimc V,, is finite, it follows that dim¢ V,,/8-gr R' N
Vo = dim¢ Vi, / gr, s Wi for all n > L. Clearly

dim¢ Clz,y]/0-gr R = nlim dime¢ V,,/0-grR' NV, and
dime Clz,y]/ gra s R' = lim dime¢ V,./ gr, 3 Wa.

Therefore dim¢ C[r,y]/0-gr R’ = dim¢ Clz,y]/ gr, s R'.

By CoROLLARY 2.7, we have that dime C[z, y]/z-gr R’ < 00. So we may
apply the first part of the proof with = replaced by d and vice versa to
show that dimc C[z,y]/z-gr R’ = dim¢ Clz, y]/ gr, 5 R’ which completes
the proof of ProposiTION 2.4’ and therefore of PrRoPOSITION 2.4.

Recall that codimR is defined to be dime Clz,y]/0-grR.
ProposITION 2.4 implies that codim R = dim¢ Clz,y|/gr, s R for any
two nonnegative not both zero real numbers a and 3. We will eventually
show that codim R is an invariant of R.

3. Ad-Nilpotent subalgebras of D(X)

Suppose that D(X) = D(Y). Then D(X) contains a maximal commu-
tative ad-nilpotent subalgebra isomorphic to O(Y’). So it is interesting to
understand the maximal commutative ad-nilpotent subalgebras of D(X).
Let D denote the quotient field of the first Weyl algebra, A;. In this
section, we show that if B is a maximal commutative ad-nilpotent sub-
algebra of D(X), then there exists an element b € D such that B is a
subring of C[b].

LemMa 3.1. — Suppose that R is a subalgebra of D so that the quotient
ring of R is D, and that u is an element of D — C that acts ad-nilpotently
on R. Then there exists av € D such that [u,v] = 1. Furthermore, for any
v € D such that [u,v] = 1, we have R C Cp(u)[v] where Cp(u) denotes
the centralizer of u in D.

Proof. — Define Ry = Cp(u) and R, = {z € D | [z,u] € R;_1 }.

Now R C [J,>, R since u acts ad-nilpotently on R. Let a be a nonzero
element of R; — Ry. (Note that R; — Ry is nonempty since u ¢ C and C
is the center of R.) Then 0 # [u,a] = b € Ry. So [u,b"ta] = b }[u,a] = 1.
Set v = b~ la.

Clearly Ry C Cp(u). We will show by induction on 7 that

R; C Cp(u)v' + -+ Cp(u) forall i >0.
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RINGS OF DIFFERENTIAL OPERATORS 201

Assume that R;_; C Cp(u)v*"' +--- + Cp(u) and choose z € R;. Then
[2,u] € Ri—1, hence [z,u] = 3 5<,nei 1 frm(w)v™. Then
,Um+1

[Z— Z fm(u)m—ﬁyu =0.

0<m<i—1
Hence 2 — Y o< pneiy fm(w)v™ 1 /(m + 1) € Cp(u). Therefore
z € Cp(u)v' + -+ + Cp(u).
We may define the graded algebra v-gr Cp(u)[v] by setting v-gra =
uw;w* where @ = uw;v* +- - - +ug is an element of Cp(u)[v] with uy, € Cp(u)
fori> k> 0.

We will show that Cp(u) is in fact a rational function field in one
variable.

The next lemma is well known. See for example [3, Corollary 3.2].
LEMMA 3.2. — If f € D — C then Cp(f) is commutative.

LemmA 3.3. — If uw € D acts ad-nilpotently on R, where R is a
subalgebra of D such that the quotient ring of R is D, then there exists
z € D such that Cp(u) is isomorphic to a rational function field C(z).

Proof. — Let us call an element ¢ € D ad-nilpotent if it acts ad-
nilpotently on some subalgebra R(a) of D such that the quotient ring
of R(a) is D. By LEMMA 3.1, there exists an element v € D such that
[v,u] =1 and D = Cp(u)(v).

We will first assume that there exists an ad-nilpotent element a of D
with v-dega # 0. Now for each element ¢ € Cp(u), there exists elements
c1 = ci(c) and ¢y = c3(c) in R(a) such that ¢ = c;c;'. It is clear that
v-gr a acts nilpotently by Poisson bracket action on v-grc¢; and v-grey. Let
v-gra = aow", v-grey; = c1 ow™, and v-grea = c2 ow™. (Since ¢ € Cp(u),
it is clear that v-degc; = v-degcs.)

By the same arguments as in [5, Lemma 7], there exists an element b
in the algebraic closure of Cp(u) such that ¢; pw™ = (aow™)™ ™p; (b) and
ca,0w™ = (aow™)™ ™py(b) where p; (b) and p(b) are polynomials.

Since v-degc = 0, we have that ¢ = c;c;! = cl‘oc;‘é = p1(b)(p2(b)) 1.
Therefore Cp(u) C C(b). By Luroth’s theorem, Cp(u) is isomorphic to a
field of rational functions in one variable.

Now assume that v-dega = 0 for all ad-nilpotent elements. Consider
the standard generators £ and 9 for D. These are ad-nilpotent elements
of D since they act ad-nilpotently on C[z,d]. Therefore 1 = [0, z] has
negative v-degree which is impossible.
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202 G. LETZTER, L. MAKAR-LIMANOV

4. Codim is an invariant of D(X)

In this section R = D(X) for a curve X satisfying the conditions of the
introduction. Suppose that u and v are elements of D with commutator
[v,u] = 1 such that D(X) C C(u)[v] and v-gr D(X) is a subring of the
polynomial ring in two generators, v = v-gru and w = v-grv. We may
define codim,, , D(X) as dim¢ Clu, w]/v-gr D(X). In this section, we will
show that codim, , D(X) = codim D(X). So codim does not depend on
the embedding of D(X) inside of C(z)[d)].

Note that u-gr Clu, v] and v-gr C[u, v] are isomorphic polynomial rings.
We will identify these isomorphic rings and thus write u-gru = v-gru = u
and u-grv = v-gro = w.

LemMA 4.1. — Suppose that R C C(u)[v] C D, where [v,u] = 1, such
that the quotient ring of R is D, the graded algebra v-gr R is a subset of
Clu, w], and codim, , R is finite. Then there exist elements v’ and v’ of D
such that u-grv' = w and u-gru’ = —u, the commutator [u',v'] is 1, and
the ring R is a subring of C(v')[u']. Moreover, there is an isomorphism
from u'-gr C[u',v'] to u-gr Clu, v] which restricts to an isomorphism from
the graded algebra u’-gr R to u-gr R, and codim, ,» R = codim, , R.

Proof. — Define subalgebras R; of R for i > 0 as follows :
R; = {z € R | u-deg(z) < 1}.
(The following argument is similar to [8, Theorem 2.7].) Now

u-gr[f(v)u', g(v)] = u-gr(—if(v)g' (v)u'"') fori>0.

Also u-gr R is a subset of C[u,w] by LEMMA 2.1. Hence, it is easy to
see that Ry is a maximal commutative ad-nilpotent subalgebra of R.
Furthermore the map which sends z to u-grz is an isomorphism of Ry
to u-gr Ry = wu-gr R N C[w]. By assumption, codim, , R < oo, hence
dim¢ Clw]/u-gr Ry < oo. So the integral closure of u-gr Ry is Clw], and
thus the integral closure of Ry is C[v'] for some v’ € D with u-grv’ = w
and Ry = RN C[v'] for some v' € D with u-grv’ = w and Rp = RNC[v'].
Note that u-gr p(v') = p(w) for any polynomial p(t) € C[t].

By LEmma 3.3, Cp(v') is a rational function field in one variable. Let
us check that Cp(v') = C(v'). Let f € Cp(v'). Then u-deg f = 0, because
otherwise [v', f] # 0, and u-gr f = r(w) where r(w) € C(w). Therefore
f =r@)+ fi where u-deg fi < 0. But f; € Cp(u) and can not have a
negative degree. Hence f; is 0. Now, according to LEMMA 3.1, there exists
a v’ € D such that [/,v'] =1 and R C C(v')[u'].

ToME 118 — 1990 — ~° 2



RINGS OF DIFFERENTIAL OPERATORS 203

Suppose that u-gru’ = f(w)u'. Since u-grv’ = w, we must have
u-gr[u',v'] = —if(w)ut~! unless i = 0. If 4 = 0, then either [u/,v'] =
0 or u-deglu’,v'] < —1. Since [u',v'] = 1, it follows that i # 0.
Hence —if(w)u*~! must equal 1. Therefore i = 1 and f(w) = —1 and
u-gru’ = —u.

Suppose that z is an element of R C C(v')[u']. We may write
z = f(v)(u') + e where u'-dege < j, and f(v') is a polynomial,
and j > 0. Since u-degv’ = 0 and u-degw’ = 1, we must have that
u-dege < j and u-grz = u-gr f(v')(v')?. Since u-gr f(v') = f(w)

and w-gru’ = —u, it follows that u-grz = f(w)(—u)’. Hence the
isomorphism from w'-grC[u/,v’] to u-gr Clu,v] which sends u'-gru’ to
u-gru' = —u and u'-grv’ to u-grv’ = w restricts to an isomorphism

from u'-gr R to u-gr R. Since codim,, , R is finite, by PRoPOSITION 2.4, we
have that codim,, , R = dim¢ C[u, w]/u-gr R. It follow immediately that
codim,, , R = codim,/ , R.

For the next three lemmas, assume that R is a subring of C(u)[v] C D,
where u and v are elements of D whose commutator is 1, and that
v-gr R C Clu,w] with codim, , R < oo. Write Ry for the ad-nilpotent
subalgebra {z# € R | u-grz = 0}. We may define valuations V, s and
corresponding graded algebras on R as in Section 1 using  and v instead
of x and 9. For example, V, g(uv’) = ai + B3j.

LeEMMA 4.2. — Suppose that v is an ad-nilpotent element of R that is
not contained in C(u) and is not contained in Ry. Then there ezist positive
integers n and m and complex numbers A and v such that u-grr = (Au)”
and v-grr = (yw)™. Furthermore, Vi, (1) = mn.

Proof. — Since r is not an element of C(u) and is not an element
of Ry, it follows that u-degr > 0 and v-degr > 0. We will argue as in
[2, Lemma 8.7]. We may write

r= Y ouu'v’ + fr(w® + -+ fo(u)
120,520

where deg f;(u) < 0 for k > j > 0. Clearly, v-degr > k. Let n be the
smallest nonnegative integer such that o;0 = 0 for all j > n. Let m be
the smallest nonnegative integer such that o¢y = 0 for all £ > m. We
claim that g; ; = 0 for all pairs 4, j such that mi + nj > mn.

Assume the claim is false. Then there exist positive real numbers «
and (8 and a pair of positive integers ¢ and j with o;; # 0, such that
8T, 57 = o ju'w’. Without loss of generality, o;,; = 1. First assume ¢ > j.
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Now there exists a monic polynomial p(t) such that p(u) € R. Since both
o and 3 are positive, we have that gr, 3 p(u) = u? where d = degp(u).
Note that gr,, 5[r, p(u)] = dju*~'*%w 1. Suppose that

8rq 3 ad? (p(u)) = ax wkl=1)+d  k(G-1)
Then
8ra,5ad; ! (p(u)) =
o [(k(i— 1)+ d)j —ik(j — 1)]u(k+l)(i—1)+d W F+DG-1).

Now (k(: = 1)+ d)j —ik(j — 1) = (i — )k + dj > 0 for all £k > 0 since
1 > j. This contradicts the fact that r is ad-nilpotent.

Now assume that ¢ < j. Consider a nonconstant element z € Ry.
Recall that Ry sits inside a polynomial algebra C[v'] where v' € D where
u-grv’ = w. So z = ¢(v') for some nonconstant polynomial ¢(t). Since
both a and 3 are positive, it follows that gr, 5z = w* where k = degq(t).
The argument now follows as in the preceding paragraph.

We have shown that o; ; = 0 for all pairs of positive integers 7 and j
such mi +nj > nm. In particular, u-grr = o, ou", and v-grr = oo, w™,
and Vi, ,(r) = mn.

LEMMA 4.3. — Suppose that r is an ad-nilpotent element of R that
is not contained in C(u) and is not contained in Ry. Set n = u-degr

and m = v-degr. Then one of the following two statements hold where
XA, v,y are elements of C, and i is an integer such that n > i > 0.

(1) If n > m, then n is a multiple of m and
Bl T = (()\u)”/m + 'yw)m.

(2) If m > n, then m is a multiple of n and
8l m T = (Au+ (yw)™™)".

Proof. — By LEMMA 4.2, both n and m are positive. So there exist
nonzero complex numbers o; and o such that u-grr = oyu™ and v-grr =
oow™. Now by LEMmA 2.1, gr,, . R C C[u,w], and by ProposITION 2.4,
dim¢ Clu, w]/ gr,, , R < co. Hence we may apply the arguments of [2,
Lemma 7.3] to the ad-nilpotent element r of R.

In the next lemma, we will show that codim R is independent of the
choice of generator for C(u).
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LeMMmA 4.4. — Suppose that uy and vy are elements of D whose
commutator is 1 such that C(u) = C(u1), the ring R is a subring of
C(w1)[w1] C D, and that vi-gr R C Cluy,w;] with codimy, ,, R < oo.
Then codim, , R = codim,, ,, R.

Proof. — Set B = RN C(u) = RN C[y]. Since C(u;) = C(u) and
v1-gr R C Cluy,w;], we have that B = RN C(u;) = R N Cluy]. By
assumption, both codim, , R and codim,, ,, R are finite. Hence both
dim¢ Clu]/B and dim¢ Clu;]/B are finite. Therefore the integral closure
of B in C(u) is C[u] and is also C[u;]. So C[u] = C[u;] and there exist
integers a and B such that v = au; + B. Since [v1,u1] = 1, we have
that [av — v1,u] = 0. So v + g(u) = alv; for some g(u) € C(u).
Set v2 = v + g(u). Note that [ve,u] = 1 and R C C(u)[vs]. Now
fu)w' = f(u)(va — g(u))’, hence v-gr R = vo-gr R and codim, , R =
codim, ,, R. Without loss of generality, we may assume that v = v and
that v = a~!v;. The isomorphism of C[u,w] to C[u;,w;] which sends u
to au; and w to o 'w; clearly induces an isomorphism from v-gr R to
u-gr R. The result now follows.

We are now ready to show that codim D(X) is an invariant of D(X).

THEOREM 4.5. — Suppose that X is an affine curve such that the
normalization of X is the affine line, with the normalization map 7 :
XX injective. Then for any pair of elements u and v in D, such that
[v,u] = 1, the ring D(X) is a subring of C(u)[v], and v-gr D(X) is a
subring of the polynomial ring with generators v-gru and v-grv, we have
that codim,, , D(X) = codim D(X).

Proof. — Now D(X) is a subring of C(z)[0] and codim D(X) =
codimg o D(X). Assume that w and v are elements of D such that
[v,u] = 1, the ring D(X) is a subring of C(u)[v], and v-gr D(X) is a
subring of the polynomial ring C[u,w] where v-gru = u and v-grv = w.
Let r be a nonconstant ad-nilpotent element of D(X) contained inside
C(u). Set z-degr = n and 9-degr = m. We will induct on ¢t = m + n.

If m = 0, then r is an element of C(z) and the result now follows by
LEMMA 4.4.

If n = 0, then 7 is an element of {z € D(X) | z-degz = 0}, and the
result follows from LEMMA 4.1 and LEMMA 4.4. Hence the theorem holds
for t = 0.

So we may assume that both n and m are positive.

First assume that n > m. By LEmMMA 4.3, n is a multiple of m and
there exist elements A, and  of C such that gr,, , 7 = ((Az)"/™ + yy)™.
Hence

r=(z)™++9)" +¢c

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



206 G. LETZTER, L. MAKAR-LIMANOV

where Vi, n(c) < mn and z-dege < n and d-degc < m. Set 9, =
0 — (v)"'(Az)™™ and x; = z. Note that ((Az)™™ + ~48)™ = (v8,)™.
Furthermore (8) = (81 + (7)~'(Az;)™/™)%. Tt follows that d;-degc < m
and O;-degr = m. Also z;-dege < (m — l)n/m < n. Since r =
(701)™+c, we have that z;-degr < n. By LEMMA 4.4, codim,, 5, D(X) =
codim, 3 D(X). Now 0;-degr + x1-degr < t, hence the result now follows
by induction for this case.

Now assume that n < m. By LEMMA 4.1, there exist elements z; and
O; in D such that D(X) C C(0))[#1], [#1,01] = 1, z1-grd = z1-gr oy,
T-grT = —x1, T1-grR = z-gr R, and codimy, ,, B = codim; 5 R. It
follows that z;-degr = z-degr = n. If J;-degr < m, then the proof
follows by induction.

Otherwise 0,-degr > m > m and we may apply the methods used
above repeatedly to find elements 92 = 0, and z2 = z; + g(81) where
g(01) € C(0;) such that zo-degr = n and 93-degr < m. The proof again
follows by induction.

We are now able to obtain a nice description of the maximal ad-
nilpotent subalgebras of D(X).

CoROLLARY 4.6. — Suppose that X is an affine curve such that the
normalization of X is the affine line, with the normalization map 7 :
X — X injective. Suppose that B is a mazimal ad-nilpotent subalgebra of
D(X). Then there exists an element u in D such that B is a commutative
finitely generated algebra with integral closure Clu] and the centralizer of
B in D(X) is the rational function field C(u).

Proof. — By LEMMA 3.3 and LEMMA 3.4, there exists u in D such
that Cp(B) = C(u) and B C Clu]. By LEMmA 3.1, there exists v in D
such that D(X) C C(u)[v]. Recall that the set of ad-nilpotent elements
of D(X) is strictly larger than the maximal commutative ad-nilpotent
subalgebra O(X) of D(X). Since B is commutative, B cannot contain all
the ad-nilpotent elements of D(X). Hence D(X) contains an ad-nilpotent
element s not contained in B. By [8, Lemma 1.7], v-gr s = Aw™ for some
A € C and n > 0. Since s acts ad-nilpotently on D(X), it is clear that
v-gr D(X) C Clu,w]. By THEOREM 4.5, dim¢ Clu]/B is finite hence the
integral closure of B is Clu]. By Eakin’s theorem [6, Section 35], B is
finitely generated.

The invariant codim D(X) can be used to distinguish rings of differen-
tial operators.

COROLLARY 4.7. — Suppose that X and Y are both affine curves with
normalization equal to the affine line and with injective normalization
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maps. If D(X) = D(Y), then codim D(X) = codim D(Y').

Proof. — Consider both D(X) and D(Y) as subalgebras of C(z)[9]
using the standard embedding. Let ¢ be an isomorphism which maps D(Y")
to D(X). Set u = ¢(z) and v = ¢(9). Clearly u and v satisfy the conditions
of THEOREM 4.5. Therefore codim D(Y) = codim,, , D(X) = codim D(X).

5. Examples

In this section, we will consider two families of curves. We will calculate
codimensions to show that their rings of differential operators are mutually
nonisomorphic.

Recall that X is a monomial curve if O(X) is generated by monomi-
als ¥ as an algebra over C. Let A be the subset {k | ¥ € O(2)} of the
integers. Define the set A — i to be {k —i | kK € A} where 7 is an integer.
MussoN gives a complete description of D(X) in [7]. In particular,

D(X) =)z fi(x0)C[zd]
kez
where

fed)= [ (@-a).

a€A—(A—k)

Let X,, be the monomial curve with O(X,,) = C+z"C|z] as coordinate
ring, where n is a positive integer. Then by the previous paragraph, we
have

D(X,) = _ 2" fi(20)C[z0]

kez
where the polynomial f; is 1 for i = 0 and i > n; the polynomial f; is 0

for 1 <7 <n—1; the polynomial f; is

(z0) [ @d-k) for —1>i>—(n-1)
n—i>k>n
and the polynomial f; is

(z0) H (z0 — k) H (z0—k) for i < —n.

n<k<—i —i<k<n—i
Note that if g(z0) is a monic polynomial in C[zd)], then
O-gr g(z0) = 2°0% where d = deg g(z0).

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



208 G. LETZTER, L. MAKAR-LIMANOV

Hence 0-gr D(X,) = 3¢z 9+Clzy] where
go=1;
gi=xly for 1<i<n-1; gi=a' for i>n;
gi=zytl for —n+1<i<-1; g =y" for i< —n.

A basis for Clz,y]/0-gr D(X,) is just z,z2,...,2" 1 y,9%...,y" L.
Therefore codim D(X,,) = 2(n — 1). By CoroLLARY 4.7, D(X,,) is iso-
morphic to D(X,,) if and only if O(X,) = O(Xn).

Now set Ys, = C+Cz%+---+Cz?C|z] for n > 1. A similar calculation
shows that codim D(Ys,) = n(n + 1). Therefore D(Y5,) = D(Y5,,) if and
only if O(Y2,) = O(Yam).

Consider just the curves X4 and Y;. Now O(X,) = C + z*C[z] and
O(Yy) = C+Cx?+z*C[z]. Clearly O(X4) is not isomorphic to O(Yy). But
codim D(X,) = codim D(Y;) = 6. Therefore codim does not distinguish
between these two rings of differential operators. We should add that it
has now been shown that D(X4) and D(Y}) are actually isomorphic rings
even though O(X4) and O(Y}y) are not isomorphic (see [4]).
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