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THE PROBLEM OF LP-SIMPLE SPECTRUM
FOR ERGODIC GROUP AUTOMORPHISMS

BY

A. IWANIK (*)

RESUME. — Soit T un automorphisme d'un groupe abelien compact metrisable.
L'isometrie inversible U^f = f oT n'admet pas de fonction cyclique dans 1'espace L^
pour p > 1. D'autre part, il existe une fonction cyclique pour la norme spectrale
dans L1.

ABSTRACT. — Let T be an ergodic automorphism of a compact metric abelian
group. Then the invertible isometry operator Urf = f oT admits no L^-cyclic vector
in any L19 space, p > 1. There exits a cyclic vector for the spectral norm in L1.

1. Introduction

Let T be an invertible measure preserving transformation of a proba-
bility space {X,B,m). The associated unitary operator Urfix) = f(Tx)
acts on L^(m}. The same formula defines an invertible isometry

UT : L^m) —> 27(m)
for any 1 < p < oo. A function / € -L^m) is said to be L^- cyclic if the
linear span of the functions U^f {n e Z) is dense in L^m). If there exits
an Z^-cyclic function then T is said to have simple spectrum. Analogously,
we say that T has L10-simple spectrum if there exists an L^-cyclic vector
for UT in LP(m).

J.-P. THOUVENOT raised the question whether the Bernoulli automor-
phism has L1-simple spectrum. Without solving the problem we present
some related results. We shall show that, like for p = 2, the ergodic group
automorphisms have no L^-cyclic vectors for p > 1 (THEOREM 1). Next
we prove that there does exist a cyclic vector for a certain norm weaker
than the Z^-norm (THEOREM 2).

(*) Texte recu Ie 6 avril 1990.
A. IWANIK, Institute of Mathematics, Technical University, 50-370 Wroclaw, Pologne.
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92 A. IWANIK

2. LF(G) is not finitely generated

Thoughout the paper we consider an ergodic continuous group auto-
morphism T of a compact metric abelian group G endowed with its prob-
ability Haar measure dx. Let G be the dual group. The dual automor-
phism T is denned by the formula

(f^(x)=^(Tx), ( 7CG) .

By the ergodicity assumption each T-orbit

0(7) ={^7:^1}, ( ^ e G \ { l } ) ,

is infinite.

It is known that each 0(7) is a Sidon set in G, hence a A(p)-set for
any 1 < p < oo (see [K], Lemma 3 and [L-R]). Consequently, the set

^=0(7i)U—UO(7^

where 71,... ,7^; C G, is a A(j?)-set so, for any 2 < q < oo, there exists a
constant Cq such that

\\9\\,<CM\^

whenever g e Lq(G) with supp^ C E.

Now let 1 < p <: 2 and q > 2 with p~1 + q~1 = 1. We define

W) ={geL^G): supple E } '

If / € LP(G} and g 6 L^(G) then by ParsevaPs identity and Holder
inequality we get

|EA7)^(7) ^11/IIJ^.
^eE

It follows that 11/11 \\E\\^ < GJI/Hp < oo. Consequently, if PEJ denotes
the function determined by the formula

(WM^7' •'eE•.10 otherwise,

then PE becomes a continuous projection from L^G) onto L^(G).
Clearly, PE is well defined on LP(G) for any p > 1.
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PROBLEM OF SIMPLE SPECTRUM 93

Apart from UT we shall consider the operator UT acting on co(G) by

UT^)=^T-^).

By a direct computation we have (UT/Y = UT/ for any / C ^(G).
Since E is r-invariant, we obtain

UTPEf=PEUTf^ (/e27(G)).

In other words, the following diagram commutes

LP(G) UT ) 27 (G)

P E \ \ PE
4' •J--

^(G) ^^ ^)

THEOREM 1. — Let p > 1 and /i,...,/r ^e an?/ ^m^e collection
in LP(G). Then the linear span of the functions U^fj (n C Z, j = 1 , . . . , r)
is not dense in LP(G).

Proof. — Fix any k > r and let E be the union of k disjoint orbits,

E = 0(71) U • • • U 0(7,), (71,..., 7, e G \ {1}).

The unitary operator UT restricted to L2 JG) has simple Lebesgue
spectrum since £/r7 = ^7. Consequently,

UT Li(G)

has Lebesgue spectrum of multiplicity k so the invariant subspace gener-
ated by the r < k vectors PEJI , • • • , Ppfr is not dense in L^{G). By look-
ing at the diagram we infer that the functions Uffj, (n € Z, j = 1, . . . , r)
cannot be linearly dense in L^G).

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



94 A. IWANIK

3. Cyclic function for a weaker norm

For the rest of this paper we consider the spectral norm

1 1 / 1 1 ^ = 11/IL
on ^(G). The convergence in || • ||̂  is simply the uniform convergence
of Fourier coefficients, and clearly \\f\\p < ||/||^ for any / e I/1(G?).
Evidently, UT is a || • ||̂  isometry

Our aim is to prove the existence of a || • ||^-cyclic function for UT
acting on ^(G).

First we shall identify G \ {1} with the product space N x Z where
(z,j) represents the character T'^i for a fixed cross section 71,72,... of
the infinite T-orbits in G. Now UT restricted to co(N x T) becomes the
translation operator S on co(N x Z),

(^)(zj)=^,j+i).
We shall often write ^(j) = $(z,j).

LEMMA. — A vector ^ e co(N x Z) is co-cyclic with respect to S iff for
every fi C ̂ (N x Z)

^ ̂  * S,z = 0 => [L = 0.
Proof. — First note that $ is cyclic iff the operator

K :^(Z) — ^ c o ( N x Z )
defined by (J<TA)(%,j) = (A * ̂ z)(j) has a dense range. Equivalently, ^ is
cyclic iff the adjoint operator

jr :^ (NXZ) —^^°°(z)
is one-to-one. But for any A C ^(Z) and /A e ^^N x Z) we have

(^A,^)=^(A*^)0)/^,j)
^j

-EE^)^^'-^^^')
ij n

=EEA(TC)^*^)(n)
n i

= (A,E^*^)'
i

where ^(j) = ^(—j). This means

K^=^^^^.
i

Since ^ is cyclic iff $ is cyclic, we obtain the desired condition.
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COROLLARY. — If f c 1^(0) has absolutely convergent Fourier series
then f is not L1 -cyclic for UT-

Proof. — Suppose to the contrary that / e ^(C?) and / is ^-cyclic.
Then / is co(G)-cyclic for UT' By identifying G\ {1} with N x Z as above,
we would obtain a Co(N x Z)-cyclic vector ^ = /) N x z € ^ ( N x Z) for S.
Since clearly ^ ^ 0 for every i e N, we can define a nonzero vector ^ in
^(N x Z) by letting /^i = ^2, ^2 = -^i and ^ = 0 for z > 2. Now

^ ̂  * ̂  = 0

which contradicts the Lemma.

We prove now the existence of a || • ||^-cyclic function.

THEOREM 2. — There exists f C L'2(G) such that the linear span of the
functions Uff (n C Z) is dense in || • \\y.

Proof. — Since UT^- = 1 and

^{f+UTf+'"+U^-lf)-^ J f { x ) d x

in -^(G), it suffices to find a || • ||^-cyclic vector for the subspace

{feLl(G):^f(x)dx=0}^

Equivalently, we shall find a C()(N x Z)-cyclic vector $ e ^(N x Z) for 6'.

Let Q i ^ Q ^ ^ - - - be disjoint countable dense subsets of the unit inter-
val (0,1). For each Qn pick an atomic probability measure fn whose set
of atoms coincides with Qn- Now fix a convergent series ^dn < oo,
with dn > 0, and define

9n(t) = an1^n([^t})

for 0 < t < 1. The functions gn are right continuous and the set of
discontinuity points of gn coincides with Qn.

Moreover, the functions

hn(e27^^t) = gn(t)^ ( 0 < ^ < 1 ) ,

satisfy the conditions

^ IIM2 ^ ̂  IIMoo = ^^n < 00.
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(We can identify [0,1) with T and gn with hn.)

Now we let ^n = hn, where the Fourier transform is taken in the sense
of the T-Z duality. We shall show that ^ is co(N x Z)-cyclic. By the LEMMA
it suffices to prove that any ^ e ^(N x Z) which satisfies

^ /^n * ̂ n = 0
must in fact vanish. Let Un e (7(T) be such that Un = p.n' Then

(hnUnY = hn^Un= /in* P'n-

The condition ̂  ̂  * ̂  = 0 now implies

^hnUn=0 a.e.,

where the series converges in ^(T). Since \hn\ < dn and \Un\ < ||^||,
the series converges uniformly. By the right continuity of the gn the
sum ̂  hnUn is also right continuous. This implies

^^hn{x)Un{x) = 0

everywhere. To end the proof we show that the latter condition forces
HI = ̂ 2 = • • • = 0,

whence /x = 0. To see this suppose, to the contrary, that e.g. u\ ̂  0. Then
there exists an arc J C T with

\Ul(x)\ ^ £ > 0

for re € J. We have
, Y-^ ^n,^--L^

n>2 x

on J . The latter series is uniformly convergent en J, so its sum is
continuous at each continuity point of all the fay^s, n > 2, in particular on
Qi n J . On the other hand, each of these points is an atom of ^i hence a
discountinuity for Ai, a contradiction.

Acknowledgements : I would like to thank S. FERENCZI for bringing the
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