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MODULES OVER THE 4-DIMENSIONAL

SKLYANIN ALGEBRA

BY

THIERRY LEVASSEUR AND S. PAUL SMITH (*)

RESUME. — Cet article etudie les 'point modules' et 'line modules' sur 1'algebre
definie par E.K. Sklyanin dans [17]. Ces modules sont precisement les modules de
Cohen-Macaulay de multiplicite 1 et dimension de Gelfand-Kirillov 1 et 2 respective-
ment. II a ete demontre en [21] que les 'point modules' sont en bijection avec les points
d'une courbe elliptique E dans P3 augmentee de quatre autres points. On prouve ici
que les 'line modules' sont en bijection avec les droites secantes de E. On montre que
d'autres proprietes algebriques de ces modules sont consequences et/ou analogues de
proprietes geometriques de E et des quatre points. Par exemple, si deux droites non
concourantes sont sur une quadrique lisse contenant E, alors les deux modules corre-
spondant out Ie meme annulateur. On demontre egalement que 1'algebre de Sklyanin
peut etre definie a 1'aide des formes bilineaires s'annulant sur une certaine sous-variete
de P3 x P3.

ABSTRACT. — This paper studies point modules and line modules over the algebra
defined by E.K. Sklyanin in [17]. It was proved in [21] that the point modules are in
bijection with the points of an elliptic curve E in P3 together with four other points.
Here it is proved that the line modules are in bijection with the lines in P3 which
are secant lines to E. The point and line modules are precisely the Cohen-Macaulay
modules of multiplicity 1, and Gelfand-Kirillov dimension 1 and 2 respectively. Further
algebraic properties of these modules are shown to be consequences and analogues of
the geometric properties of the elliptic curve and the four points. For example, if two
lines lie on a smooth quadric containing E, and they do not intersect, then the two
corresponding line modules have the same annihilator. It is also shown that the Sklyanin
algebra may be defined in terms of the bilinear forms vanishing on a certain subvariety
of?3 x P3.
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36 T. LEVASSEUR AND P. SMITH

Introduction
The 4-dimensional Sklyanin algebra is the graded algebra

A = C[XQ,X^,X^,X^\

defined by the six relations :

XQXi - XiXQ = Oi(XjXk + X k X j } ,

XQXi + XiXQ = X j X k - X k X j ,

where {ij,k) is a cyclic permutation of (1,2,3), and (01,02,03) e C3

lies on the surface 01 + 02 + 03 + 010203 = 0. (One also excludes
a certain finite set of points on this surface — see § 1 for details.)
This two parameter family of algebras was defined and first studied by
E.K. SKLYANIN in 1982 [17]. Although the above succinct description
of A suffices for the purposes of this introduction, an alternative 'better'
definition (which explains the restriction on the o^) is given at the start
of section 1. There A will be defined in terms of an elliptic curve C/A,
and a point r G C/A which is not of order 4.

Sklyanin's initial study of A showed (among other things) that A has
various finite dimensional representations in spaces of theta functions,
and that A has two homogeneous central elements of degree two [17], [18].
Further algebraic properties of A were obtained in [21]. It was proved
there that A is a noetherian domain, and has the same Hilbert series as
the polynomial ring in four variables, namely (1 — t)~4. Furthermore, A
is a Koszul algebra of global homological dimension 4, and is regular in
the sense of Artin and Schelter [1]. The methods in [21] follow closely
those in [2] and [3]. Further homological properties of A were established
in [11]; in particular A is Auslander-regular.

The purpose of this paper is to begin a study of the representation
theory of A. All the results mentioned in the previous paragraph will play
a key role in our analysis. Following the ideas in [2] and [3], we study three
classes of A-modules : point modules, line modules and plane modules.
These are defined to be cyclic modules with Hilbert series (1 —t)~n where
n = 1,2,3 respectively. Thus the Hilbert series of a line module is the
same as that of the homogeneous coordinate ring of the projective line P1.
The point modules were classified in [21]. They are in bijection with the
points of a subvariety E U S of P3, where E is a smooth elliptic curve,
and S consists of four more points. If p e E U <S, we write M(p) for the
corresponding point module. It is rather easy to see that plane modules
are in bijection with the hyperplanes in P3. Thus our main interest is in
line modules.
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MODULES OVER THE 4-DIMENSIONAL SKLYANIN ALGEBRA 37

We will prove that the line modules are in bijection with the set
of lines in P3 which are secant lines of E (we note that E has no
trisecants). I f p , ^ C E, then M(p,q) denotes the corresponding line
module. Both M(p) and M(q) are quotients of M{p,q), and the kernel
of each of these surjections is again a line module. The line modules can
also be characterized by their homological properties. They are precisely
the Cohen-Macaulay modules ofprojective dimension 2, and multiplicity 1
(see § 1 for definitions).

As in [21], the proof of these results is closely related to the geometry
of E. The algebra A determines not just EUS (as the space parametrizing
the point modules), but also an automorphism a of E U S. It is shown
in [21] that a\s = Id and (T\E is translation p ^ p + r by a certain
point T G E.

For this paragraph, suppose that r is of infinite order. Then the
center of A is a polynomial ring €[^1,^2] m the two central elements
found by Sklyanin. The annihilator of M(j?, q) is generated by a non-zero
element f2 C Cf^i (B C^2- Moreover, up to scalar multiples, Q depends only
on p + q, so we write Ann M(p, q) = (^l(p + g)). Furthermore, if r, s e E,
then C^(r) = Cf^) if and only if either r = = s o r r + s = —2r. As an
indication of the parallels between the algebraic properties of A and the
geometric properties of E C P3 we will prove that, if z e E is fixed, then all
the secant lines through p and z—p lie on a common quadric containing E^
and all the line modules M(p, z — p ) have a common annihilator.

The results are presented as follows. Section 1 begins with a definition
of the Sklyanin algebra, and shows that the defining relations have a
succinct geometric description. This way of viewing the relations, and the
degree two central elements of A, will be extremely useful for us. Section 1
also contains background material on homological properties (e.g. the
Auslander condition) and Hilbert series of graded algebras. Section 2
gives a homological classification of point, line and plane modules : they
are precisely the Cohen-Macaulay modules of multiplicity 1. Section 3
examines the geometry of the secant lines of E^ and the quadrics on
which they lie. Section 4 proves that the line modules are in bijection
with the secant lines of E. Section 5 examines point modules, their finite
dimensional simple quotients, and their relationship to line modules. For
example, if p, q G E then there is a short exact sequence

0 -> M{p + T, q - r) ——> M(p, q) ——> M(q) -^ 0.

Section 6 describes the annihilators of the line modules.
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1. Preliminaries.

1.1. The defining equations of the Sklyanin algebra. — We now define
the Sklyanin algebra in a way which will be more useful than that given
in the introduction. From our point of view 1.2 (b) below is the best way
to define the Sklyanin algebra.

Fix, once and for all rf G C with Im(^) > 0, and write A = Z (B Z?7.
Let OQQ^ ^015 ^io; ^n De Jacobi's four theta functions associated to A, as
defined in WEBER'S book [24, p. 71]. In particular,

0ab(^+l)=(-l)X6(^),

Qab[z + y?) = exp(-7n77 - 2mz - Trib) Oab(z),

and the zeroes of 0ab are at the points j(l + b) + j(l + a)rj + A.
Furthermore 0n is an odd function, and the other 0ab are even functions.

Fix, once and for all T € C, such that r is not of order 4 in C/A.
Whenever {ab, ij, k£} = {00, 01, 10}, define

. ^\0li(r)0abW
aab = (-1) [ww\ 5

l2 = (^Ol? ^ = al0' It ls ^t difland set a\ = OQQ^ a^ = o^oi, ^3 = o^io- It is not difficult to show that
these satisfy a\ +Q /2+Q /3+Q /lQ /2Q /3 = 0, and {ai.Q^Q^r^—l^ 1} = 0-

Let V be a 4-dimensional vector space with basis XQ, x\,x^ ,x^. De-
fine A to be the quotient of the tensor algebra T(V), with defining rela-
tions as in the introduction. Thus A = T ( V ) / I where / is the graded
ideal generated by its six dimensional subspace of degree two elements,
namely I^ C V (g) V. There is another ideal in T(V) which is impor-
tant for us. In [17] SKLYANIN found two central elements in A^; see
also [21, § 3.9]. It will be convenient for us to take these central elements
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MODULES OVER THE 4-DIMENSIONAL SKLYANIN ALGEBRA 39

to be any two of the following :

^o = (1 + Q-3)^ + (1 + aiQ^I + (1 - ai)^

^1 = (1 + as)^ + (0103 - 03)^2 - (ai + o^i

^2 = (1 + o^s)^ + (<^3 - ̂ iQ^)^ - (^i + aiQ^J,

^3 = (1 - ̂ i)^ + (^i + Q'3)^? + ((^i + aiQ^)^!.

(The hypothesis that r ^ E^ ensures that none of the coefficients of
the x'j is zero.) We will write Z^ for the two dimensional space spanned
by these elements, and define B := A/{Z^) to be the algebra obtained
by quotienting out these elements. Define J to be the kernel of the map
T(V) —>- B. Thus J is generated by its 8-dimensional subspace Js ^ Ii-

For each ab <E {00, 01, 10, 11} define

9ab{^) = 7ab Oab{r) Oab{^)

where

-{•;_ i = yCri if ab = 00,11,
^"^ if a&=01,10.

Define ̂  : C/A -^ P(y*) = P3 by

3r{z) = (^ll(^)^0o(^)^0l(^)^lo(^))

with respect to the homogeneous coordinates XQ^X\^X^^X^. Write

E=j^C/A).

It follows from [21, §2.4] that E is defined by any two of the following
quadratic forms :

go = (1 + 0^3)^ + (1 + 03)^1 + (1 - o î

^1 = (1 + a^a^)x^ + (0203 - 03)^1 + (0203 + Q;2)^J,

^2 = (1 + Oi^)x^ + (03 - Q-2^3)^ + (02 + O^)^

^3 = (^2 - 1)^ + (^2 + Q/2Q/3)^ + (^2 + O l̂-

(The hypothesis that r ^ £^4 ensures that none of the coefficients of the x^
is zero.)

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



40 T. LEVASSEUR AND P. SMITH

We will show that the defining relations of A have a succinct description
in terms of the geometry of E. Consider V as linear forms on P(V*),
and V (g) V as bi-homogeneous forms on P(Y*) x P(Y*). We define the
following subvarieties :

eo =(1,0,0,0), e i=(0 , l ,0 ,0 ) ,

62 =(0,0,1,0), e3 =(0,0,0,1),

S= {ei\ 0 ^ z ^ 3 } ,

A5={(e,,e,) | 0 ^ z ^ 3 } ,

A^={(p,p+r) | p e E }

r=A<sUA^.

Thus r is the graph of the automorphism a of EUS which was introduced
in [21, §2.8]. Recall that a(p) = p + r for p e E, and cr(e^) = ei
for i = 0,1,2,3. The following is one of the main results in [21, § 2 and 3].

THEOREM 1.1. — The subvarieties of P(Y*) x P(Y*) defined by h
and J2 are V^h) = F, and V ( J ' z ) = A^.

THEOREM 1.2.
(a) /2 is the subspace of J^ consisting of those forms which vanish

on A<$. Thus 1^ is the subspace ofV^V consisting of those forms which
vanish on T = A^- U A<$.

(b) If f G J2 vanishes at two points of A,s then f € I^ -

Proof.
(a) Since 1^ vanishes on r, we need to show that if / G J^ vanishes

on A^, then / e I^- Let f^i and ^2 be preimages of the central
elements ^i and ^2 in V (g) V. Thus J^ = h © ̂ i ® C^2. Since
^1,^2 € ©o<z<3 ̂ (^^ ^ lrz) never vanish at all the points e^, if / e J2
and /(A^) =-0,-then / G h.

(b) The result follows from the fact that a non-zero element in
C^i © C^2 cannot be a linear combination of just two of the Xi 0 x^. [}

REMARKS:
1. — In section 3 it will be proved that the points ei G S are the

only points in P3 which lie on infinitely many secant lines of E. Thus S
is determined by E, and hence F C P3 x P3 is determined by E and T.
Therefore 1.2 (a) gives a succinct geometric description of the defining
relations of A.
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2. —We shall use 1.2 as a way of recognizing non-zero central elements
in As. If / G V^V vanishes on A^- but not on A<$, then the image of / in A
is a non-zero central element. Furthermore if two elements of J^ vanish at
a common point (e^e^) G A<s, then the elements are scalar multiples of
one another.

1.2. Homological properties of the Sklyanin algebra. — Let A; be a field.
For the sake of simplicity the algebras considered in this section will be
noetherian graded /^-algebras of the form A = k © Ai Q As © • • •. The
dimension of a ^-vector space E is denoted by dim E.

We denote by Mod(A), respectively Mod5 (A), the category of left or
right A-modules, respectively Z-graded A-modules. The subcategories of
finitely generated A-modules will be denoted by Modf(A) and Mod? (A),
respectively. Let M = Q)^Mm be in Mod5 (A) and p G Z. The shifted
module M[p] is defined by setting M[p]^ := Mp^rn' If M and N are in
Mod5 (A), then HOMA(M,TV) denotes the Z-graded group such that

HOMA(M, N)p = {(f) : M -^ N | (j) is A-linear and
0(M^) C Mm+p for all m}.

It is well known that if M e Mod? (A), then HC)MA(M, N) coincides with
the usual HomA(M, N). In that case the derived functors of H()MA(M, —)
and HomA(M, —) are the same, namely Ext^(M, —) .

When not otherwise specified a map M —^ N between modules of
Mod5 (A) will be an element of HOMA(M,7V)o, i.e. 0(M^) C Nm for
all m.

The projective dimension of M e Mod(A) is denoted by pd(M). The
algebra A is said to have finite global homological dimension if

d = sup{pd(M) | M C Mod(A)} is finite.

In this case we write gldim(A) = d. We say that A has finite injective
dimension if the left and the right A-module A both have finite injective
dimension. They are then equal (because A is noetherian) and we set
li == injdim(A).

Let AM be in Mod? (A) with p = pd(M) < oo. There exists a minimal
graded free resolution of length p of M. That is : P» —^ M —> 0, Pj; = 0 if
j > p, Pj = (j)^ Al—z]^, and 9j : P^+i —> Pj is given by a matrix where
the non-zero entries are elements of A of positive degree. We call

P.-^M ̂ 0

the minimal resolution of M.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



42 T. LEVASSEUR AND P. SMITH

The dual of M is an element M0 of the derived category D^A)
of bounded complexes of finitely generated graded right modules. It
is defined by 7?HomA(Af,A) and is represented by 0 ^- P^ ^- . . . ,
where P^ = HomA(P«,A). The cohomology of this complex gives the
groups Ext^(M,A) e Mod^(A). The Hilbert series of M is defined to
be hM(t) ''= ^^(dimM^f71 and is then equal to

^(-l)^p, (t) = ̂ (-l)3 [̂  a^hAW].
3 3 i

Let M = ©^ Mm be in Mod^(A). Define a function /M ••^ -> N by
/M(^) ^= Sm^^1311^^- From now on we shall assume that, for all
M e Mod^(A), the growth of JM, as defined in [9, chap. I], is a polynomial
of degree s. The Gelfand-Kirillov dimension of M, GKdim(M), is defined
to be

—— log/(n)s = limy,
logn

A module of Gelfand-Kirillov dimension s is said to be s-homogeneous
if every non-zero submodule is also of Gelfand-Kirillov dimension s. A
module is s-critical if it is of Gelfand-Kirillov dimension s and all its
proper quotients have strictly smaller Gelfand-Kirillov dimension.

We shall be interested in the case where hM(t) = 9M{t)(l — t)~d for
some fixed d G N and gM(f) € Z[^, t~1]. As in [3, 2.21] one can see that JM
has polynomial growth of degree s which is the order of the pole at t = 1
of hM(t)- Hence hM(t) = ̂ M(^)(I ~t)~8^ where gM(t) e Z[t,t~1], and the
multiplicity of M is defined to be e(M) := ^M(I) = [(I—^^M^)]^! ^ N.

Let M be in Mod^(A). The grade ofMis the element j(M) C NU{+oo}
defined by

j(M) := inf{z | Ext^(M, A) ^ 0}.

When injdim(A) < oo and M ̂  0 we have j(M) < oo, (see [10, thm 3.1]
for instance). We say that M is pure if j(N) = j(M) for all non-zero
submodules N of M. When n = j{M) we say that M is n-pure. We
abbreviate Ext^(M,A) by E\[M) or E^M).

DEFINITION. — The algebra A is Auslander-Gorenstein^ respectively
Auslander-regular, of dimension fi if :

(a) injdim(A) = fi < oo, respectively gldim(A) = [JL < oo, and
(b) for all M e Modj(A), and for all q > 0, J'(A^) > q for every

A-submodule A^ of E^M).
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REMARKS:

1. — Condition (b) is called the Auslander condition. It implies that
EP^^M)) = 0 for all p < q, which may be taken as the definition of a
Gorenstein ring in the commutative case. This condition is discussed in
detail in [6].

2. — By [8, thm 0.1] one can replace Modf(A) by Mod9 (A) in the
definition.

3. —Assume A is Auslander-Gorenstein. Then the grade number j(M)
is exact on short exact sequences : that is, if 0 —» M' —>• M —>• M" —> 0 is
exact then j(M) = inf^M^^M")}, (see [6, § 1.8]).

PROPOSITION 1.3 [11]. — Let A be Auslander-regular. Then A is a
domain and is regular in the sense of Artin-Schelter (cf. [1] and [2, 2.12]).

The following summarizes results in [5, chap. 2], [6, § I], [7], [10, §4],
and [12].

THEOREM 1.4. — Let A be an Auslander-Gorenstein algebra of dimen-
sion /^, and let M be a non-zero finitely generated A-module.

(a) There exists a convergent spectral sequence in Modf{A) :

^-9:=^(^(M))=^ir,

where W1 = 0 ifn ̂  0 and El0 = M. The resulting filtration on M has
the form :

0 = F^M C F^M C • • • C F1]^ c F°M = M.

(b) There is an exact sequence

0 -^ F^M/F^M -> EP(EP{M)) -^ Q{p) -^ 0

where Q(p) is a subquotient of Q)^^EPJ^^J^l(EPJ^'t'(M)) and satisfies
J'(0(P))^P+2.

(c) FFM is the largest submodule X of M such that j ( X ) > p. In
particular j(M) = max{p | FPM = M}.

(d) '̂(^(M) is pure and EP(EP(M)) is either 0 or p-pure.

REMARK. —When M e Mod9 (A) the spectral sequence in 1.4 (a) takes
place in Mod9 (A). Hence the filtration F*M consists of finitely generated
graded submodules of M.
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DEFINITION. — Let IJL be an integer. We say that A satisfies the Cohen-
Macaulay property (CM-property for short) if GKdimM + j(M) = ^ for
a l lO^MeMod^(A) .

REMARKS:
1. — If A satisfies the Cohen-Macaulay property, then GKdimA = fi.
2. — If (A,M ) is a commutative noetherian local ring, then A is

Cohen-Macaulay if and only if Kdim(M) + j(M) == Kdim(A) for all
0 T^ M G Mody(A) (here Kdim is the Krull dimension). This explains
the terminology in the definition.

COROLLARY 1.5. — Suppose that A is Auslander-Gorenstein of dimen-
sion p.. Let 0 7^ M G Modf(A) and suppose that GKdim(A) = fJi. If A
satisfies the Cohen-Macaulay property^ then:

(a) M is n-pure if and only if M is (/^ — n) -homogeneous
(b) The submodule FPM is the largest submodule of M of GK-

dimension <^ ^ — p.
(c) If N is a submodule of £^(M), then GKdim(A^) < ^ — q.

Proof. — The assertions follow easily from the definitions and from the
THEOREM 1.4. []

There is an example of an Auslander-Gorenstein algebra which is of
particular importance for us. For simplicity assume that k is algebraically
closed.

Let E be a smooth elliptic curve, C an invertible sheaf of degree > 3
on E^ a a ^-automorphism of E. As in [2], [4], or [21] one can construct
a graded algebra

B := B(E, a, r) = k e Bi e ̂ 2 e • • • ,
which for a = UE is the homogeneous coordinate ring of the projective
embedding E ^ P(^° (£;,/:)*). By [2] and [4] it is known that B is a
noetherian graded algebra generated by B\, GKdim(B) = 2, and B is a
domain.

The next two results are proved in [11].

PROPOSITION 1.6 [11]. — Let B = B(E,a,C) be as above. Then B is
Auslander-Gorenstein of dimension 2 and satisfies the Cohen-Macaulay
property.

REMARKS:
1. — This result (which is well known in the commutative case

viz. a = UE) is based on results of A. YEKUTIELI [25].
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2. — It is easily seen that if M 6 Mod^(B) then the Hilbert series
hM(t) is of the form qM(t)(l —t)~2 for some qM(t) ^ Z[^t~1].

DEFINITION. — An element f^ e A, is said to be normal if ^2A = AfL
Recall also that a sequence { f^ i , . . . , f ^} c A is a regular normalizing
(respectively centralizing) sequence if ^4-1 is a regular (i.e. non zero
divisor) normal (respectively central) element in the ring A/ ( f^ i , . . . , f^),
for all 0 < i <£- 1.

THEOREM 1.7 [11]. — Suppose that {^2i,...,f^} is a regular nor-
malizing sequence of homogeneous elements of positive degree in A.
If B = A/(f^i,..., f^) is Auslander-Gorenstein of dimension v and sat-
isfies the Cohen-Macaulay property, then A is Auslander-Gorenstein of
dimension ^ = v + £ and satisfies the Cohen-Macaulay property.

COROLLARY 1.8. — Suppose that A contains a regular normalizing
sequence {f2i,...,^} of homogeneous elements of positive degree, such
that B := A/(f^i, ..., ̂ ) ̂  B(E, a, C) for some triple (E, a, C) as above.
If gldim(A) < oo, then A is Auslander-regular of dimension £ + 2 and
satisfies the Cohen-Macaulay property : GKdim(M) + j(M) = £ + 2 for
allO^M eModj(A).

By [21, 5.4], COROLLARY 1.8 applies to the Sklyanin algebra. Since we
are mainly interested in modules over this algebra we isolate :

COROLLARY 1.9.— The ^-dimensional Sklyanin algebra is an Auslander-
regular ring of dimension 4 which satisfies the Cohen-Macaulay property.

REMARK. — There are some other cases where 1.8 can be applied.
In [2, § 2] some 'regular' algebras are introduced which have the property
A/(Q) ^ B(E,a,£) for a central element Q <E As and a triple (E,a,£)
with degC == 3. In [23], J.T. STAFFORD modifies the construction of the
Sklyanin algebra to construct some families of 'regular' algebras which
satisfy A/(^i,f^2) ^ B{E,(J,C)^ where {^1,^2} is a regular normalizing
(not centralizing in general) sequence of quadratic elements and deg C = 4.

For the rest of section 1 we make the following assumptions on A ;

(a) the Hilbert series of A is /u(^) = (1 -1)~^ ;
(b) A is Auslander-regular of dimension fi;
(c) A satisfies the Cohen-Macaulay property.

The 4-dimensional Sklyanin algebra satisfies these conditions.

As noticed in 1.3, A is then regular in the sense of Artin-Schelter and
by [3, §2.18] every M e Mod^(A) satisfies /IM^) = qM(t)(l -1)~8, for
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some qM(t) ^ Z[^~1] such that ^M(I) 7^ 0- Furthermore in this situation
s = GKdim(M) = p. — j{M) whenever M -^ 0.

I f O ^ M e Mod9 (A) with n = j(M), then we define the dual of M to be
A^ := ^(M). When A is Auslander-Gorenstein A^ is an n-pure graded
right module, so 1.4 (b) gives a natural map 0 —^ M/F^^M —> M^
This map generalizes the well known map from M modulo its torsion to
the bidual of M.

DEFINITION. — A non-zero module M € Mod? (A) is called Cohen-
Macaulay (CM for short) if pd(M) = j(M), i.e. E\{M) = 0 if
i^n=j(M).

PROPOSITION 1.10. — The duality M —> M^ gives a bijection between
left and right Cohen-Macaulay-modules of projective dimension n. In par-
UcularM^M^, hM^W = (-l)^-71^/^"1), and e(M^) =e(M).

Proof. — We first show that M^ is CM. We have E^{En{M)) = 0
if i < n by the Auslander condition and ^(^(M)) ^ 0 by 1.4. Thus
.7(71^) = n. We must prove ^'(A^) = ^'(^(M)) = 0 i f j > n . Recall
the spectral sequence of 1.4 :

f 0 if p ^ q,
E^ = EP{Eq{M)) => m^ =\

I M if p = q.

It follows that ^-g = 0 if p > q. If r > 2, the differential dr in the
spectral sequence gives :

7^j—r,—n+(r—l) ^r j^j,—n ^"r u<j-}-r,—n—{r—l)
-f-/y, 7 i-j^ 7 ±-J^

Since n^ (r - 1) ^ n, ̂ ^-^(M) = 0. Hence ^+r'-n±(r-l) = o for all
r > 2 and it follows that E^ = E3^ = . . . = E^ = 0 for all j > n.
Thus ^'(^(M)) = ̂ '-n = 0 i f j > n .

Because EP(M) = 0 when p -^ n, the filtration on M has the form :

M = F°M = ... = VM ^ F^^ = . • . = F^M = 0.

By 1.4 (b) M = ̂ M ^ ^vv = En(En{M)). Since M is CM we have
hM^(t) = (-l^hM^W. From [3, § 2.35, § 2.36] we deduce that /IM^) =
^Yt~^hM(t~1), and ^(M^) = (-^^(M) (recall /^ = n + GKdimM)
so the proof is complete. See also the remark after 1.12. []
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COROLLARY 1.11. — Let M G Mod5 (A) be a Cohen-Macaulay module.
Set n = j(M), and m = GKdimM. Then M is n-pure, {equivalently
m-homogeneous). Furthermore^ if e(M) == 1, then M is critical for
GK-dimension.

Proof. — By 1.9 M = (M^ = En(M^), so the first assertion follows
from 1.4 (d) and the CM-property. The second assertion is then obvious
by additivity of the multiplicity. []

LEMMA 1.12. — Let 0 —^ M7 —^ M —>• N —>• 0 be an exact sequence in
Mod5 (A). Suppose that j(M) = n, and j(N) = n + 1.

(a) // M and N are Cohen-Macaulay then so is M'.
(b) If M and M' are Cohen-Macaulay then so is N.

Proof. — Use the definition and the long exact sequence in cohomology
associated to 0 -^ M' -> M -> N -^ 0. []

REMARK. — Let P» —> M —>• 0 be the minimal resolution of a Cohen-
Macaulay module M. Then P^ —^ M^ —>• 0 is the minimal resolution
of A^, where P^ = HomA(F»,A). This follows from the following two
observations. Firstly, if

9, : P,+i = (^AHF.̂  —. P, =^A[-i}^

is the differential in P., its dual

9J : PJ =(^A[^\a'. - P,̂  = (DAr-^

is also given by a matrix where entries have positive degree. Secondly, by
definition of a CM-module, the complex (P,7, ̂ v) has cohomology only in
the top degree n = j(M) and this cohomology is A^.

From this remark and the fact that hA^t) = (1 —1)~1 1 , one obtains the
equalities /iMv(t) = (-l^-^-^/iM^"1) and ("(M^ = e(M) of 1.10.

We shall be interested in Cohen-Macaulay modules of multiplicity 1
over the Sklyanin algebra. It may be useful to recall the situation for a
commutative polynomial ring in jji variables (which satisfies the assump-
tions made after 1.9 which are in force for the remainder of this section).
Because there seems to be no suitable reference we include a proof of the
following :
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THEOREM 1.13. — Let A = A-[Xi,... ,X^\ be a polynomial ring in p,
variables, graded by setting degXi = 1. Let M be in Mod9 (A). Then the
following are equivalent:

(a) M is cyclic with Hilbert series tp{l — t)~d for some p e Z.
(b) there exists p e Z such that M\p\ ^ A/(Yi,... .V^-^) where

YI, ... ,y^-d are linearly independent elements of Ai.
(c) M is a Cohen-Macaulay module, GKdim(M) = d and e(M) = 1.

Proof. — Replacing M by a suitable shift M[p] if necessary, we can
assume that M = ®^>o Mm with MQ ^ 0.

(a) =^ (b). Write M ^ A / I for some graded ideal I . Since hM(t} =
(1 — t)~d we have dim Ji = ̂  — d. If { V i , . . . , V^-d} is a basis of 7i we get
a natural graded surjective map : A/ (Yi , . . . , Y^d) -^ M. Since these two
modules have the same Hilbert series, (j) is an isomorphism.

(b) =^ (c). This is easy and well known (for instance use 1.12 (b)).
(c) =^ (a). Notice that (a) and (c) remain true under base extension.

If k C L is a field extension, set

AL =L(g ) f cA=L[Xi , . . . , J ^ J , and
00

ML = L (S)k M = (]) (L 0^ M)m e Mod^(A^).
m=0

We make three useful observations. Firstly M is CM if and only if ML
is CM (because A c-^ AL is faithfully flat). Secondly /IM(^) = ^ML^)? so

GKdimM^ = GKdimM and e(M^) = e(M). Thirdly

ML/(X^ . . . . X^)ML ̂  L 0fc M/(Xi, . . . . X^M

so M is cyclic if and only if ML is cyclic.

Thus to prove the implication we may assume that k is an uncountable
field.

1. — If m = (mi,..., m^) e N^ with m\ < m^ < • • • < m^ we put

fm{X)=det[Xri}l^<,= "[[ X- II (X^-XD.
Ki<^ l<^<J^/-t

Since A: is uncountable we can find 0 7^ A G A: which is not a root of unity.
If we set A = (A, A , . . . , A) G W then fm(\) ̂  0 for all m as above.
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2. — Let M i , . . . , M t be proper ideals of A and assume Ai C IJ^i M ..
Choose A as above and notice that the set

S = {X^X, + A27^ + • . • + X^X^ | m e N}

is infinite. Since 5 C Ai C U^=i M ^ there exists ^ e {! , . . . ,^} such
that S D M ^ is infinite. Choose m = (mi < 7712 < . . . < rrin) G N^
such that ̂ i A^-X, C M ^ for all j G { 1 , . . . ,^}. Since fm(X) ^ 0 we
deduce that X, C M ^ for all %, that is M g = (Xi , . . . , X^).

3. — We now prove the implication by induction on d = GKdimM.
If d = 0, then dimM = e(M) = 1, hence M = MQ = A/(Xi,. . . ,X^).
If d > 1, denote by M i , . . . ,M ^ the associated prime ideals of M. Recall
that |j^ M ^ is the set of zero-divisors in M. Suppose Ai C |j*=i M ..
By part 2 we get M ^ = (Xi, . . . ,X^) for some £. It follows that
A/(Xi,.. . ,^) ^ M which implies pd(M) = /^, i.e. d = 0, which is
a contradiction. Therefore we can_ find a e Ai which is a non-zero divi-
sor in M. The graded module M = M/aM_is CM with Hilbert series
h^(t) = (1_^ t)hM(t), and M/(Xi,... ,X^)M = M/(X^ . . . ,X^M. By
induction M is cyclic, /i^-(^) = (1 - t)1-^ and from above we conclude
that M is cyclic and hM(t) = (1 - ̂ -d. [[

2. Homological characterization of point,
line and plane modules

Throughout this section we will assume that A is a C-algebra of finite
global dimension containing a regular normalizing sequence {^1,^2},
where ^1,^2 € A2 are such that B := A/^i,^) ^ B(E,a,C) (graded
isomorphism) for some (E, a, C) with C of degree 4. As we noticed after 1.8
the Sklyanin algebra is an example of such a ring; also see the remark
after 1.9.

Since hpW = (1 + t)\l - t)-2 = (1 - t2)2/^) we have HA^) =
(1 - t}~^. By 1.8 A is Auslander regular of dimension 4 and satisfies
the Cohen-Macaulay property. Furthermore, since B is generated by Bi,
the algebra A is generated by Ai. Hence if M = ®^>i Am is the
augmentation ideal we have : M = AiA = AAi.

The following proposition provides a version of [3, thm 4.1, cor. 4.2].

PROPOSITION 2.1. — Let 0 ^ M € Mod^(A), set n = j(M), and
m= GKdimM. Then

(a) n + m = 4;
(b) A^ = ̂ (M) is m-homogeneous and 6(71^) = e(M) ;
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(c) GKdim ̂ (M) < 4 - q and the following are equivalent:
(i) GKdimE^(M) = 4 - 9,

(ii) F^(M))^0,
(iii) GKdimN = 4. - q for some submodule 0 7^ N C M;

(d) T^ere ?5 a canonical map M -^ TW^ and an exact sequence

0 -^ M/ker(f) -^ Mvv -^ Q ̂  0

w^ ker (/) equal to the maximal submodule of M of GKdim < m, ana
GKdim Q < m - 2 ;

(e) The following are equivalent:
(i) pd(M) < 4,

(ii) the socle of M is Soc(M) = HomA(A/M ,M) = 0,
(iii) E^(M) = 0,
(iv) the torsion submodule of M is

T(M) := [x 6 M M ' x = 0 /or .some z} = 0 ;

furthermore E^^M) ^ ^(T^M)) 25 a finite dimensional vector space of
the same dimension as T(M) and E^M) ̂  £"(M/T(M)) for all i < 4;

(f) Ifm G {0,1,2}, A^ is Cohen-Macaulay. If m = 3, ^'(A^) == 0
/orj =0 ,3 ,4 ana ^(A^) C ^(^(M)) z5 a Jin^e dimensional vector
space.

Proof.
(a) This is the Cohen-Macaulay property.
(b) This follows from 1.4 and [3, § 2.8] using the inequality

GKdim E'1 (M) < 4 - q of (c).

(c) The inequality is 1.5 (c). By § 1.2,

GKdim E^M) = 4 - q ^=^ j(Eq{M)) = q
4=^ E^E^M)) is g-pure
^=^ FqM|FqJrlM ̂  0
^=^ M contains a submodule

of GK-dimension (4 — q).

(d) The map 0 is the composition of M/F^^ -^ A^ with the
natural projection M -^ M/F^^. Hence ker0 = Fn+lM, so (d) is a
consequence of 1.4 and 1.5.
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(e) This is proved in [3, § 2.46].
(f) We shall use the notation in the proof of 1.10. Recall that the

spectral sequence E^"9 => IP-9 implies ^-g = 0 if p - q -^ 0.
Furthermore E^^ = kerdr/imdr. If r > 2, then n + 1 — r < n
so ^-^-^-^ = o and E^ = ker(^). By the Auslander condition
EP{M^) = EP(En{M)) = 0 i f j 9 < n = 4 - m .

Suppose that p > n, and that m C {0,1,2} or equivalently n > 2.
If r > 2, then p + r > 4, so ^-^-^-^^ = Q because gldim(A) = 4.
It follows that ̂ -n = E^ = . • . = ̂ -n = 0.

Suppose that m = 3, or equivalently that n = 1. When p > 3 and
r > 2 the previous argument shows that ^'-n = • • • = Ep^~n = 0
because p + r > 5. Assume p = 2. If r > 3 then 2 + r > 5 s o 0 = E^~1,
whence

n Z^2,-l ^2,-1 T.^^2,-1 ^2 z^4, -2\U = A^ = • • • = ̂ 3 = ker(^ —> bj^ ) .

Thus E^~1 = E2(My) is a submodule of E^(El2(M)) = £^~2, hence is
finite dimensional by (e). []

We want to study Cohen-Macaulay modules with multiplicity 1. There
are two easy cases. If M is Cohen-Macaulay and GKdimM = 0 then
M ̂  k[p\, for some p G Z. If M is Cohen-Macaulay, and GKdimM = 4
then M ^ A[p], for some p G Z. Therefore we shall only consider the
case 1 < GKdimM < 3. If A is a commutative polynomial ring in four
variables, THEOREM 1.13 shows that these modules are (up to a shift)
in bijection with the linear subvarieties of P(A^) ^ P3. On the other
hand [3] describes such modules over a regular algebra A of dimension 3
with A/(f2) ^ B(E,a,C) where ^2 is a central cubic element and C has
degree 3. They can be classified (up to a shift) as follows :

• If GKdimM == 1, M is a 'point module', i.e. M is cyclic, and
hM(t) = (1~^)~ 1 - Point modules are parametrized by the points of
E c P2 ^ P(A^). See [3, § 6.17].

• If GKdimTV = 2, M is a 'line module', i.e. M is cyclic, and
hM^t) = (1 —1)~ 2 . Line modules are parametrized by the lines in P2 ^
P(A^).See[3,§6.1].

In view of these remarks we make the following definition :
DEFINITION. — Let M be in Mod9 (A). We say that :
• M is a plane module if M is cyclic and hM(t) = (1 — t)~3,
• M is a line module if M is cyclic and /ZM^) = (1 — ^)~2?
• M is a point module if M is cyclic and hM(t) = (1 — t)~1.
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A shift of a plane, respectively line or point, module is a cyclic module
with Hilbert series ^(1 - t)~\p e Z, i = 3,2,1 respectively. The main
result in this section is the following :

THEOREM 2.2.— The module M e Mod^(A) is a shift of a plane, respec-
tively line, respectively point, module if and only ifM is a Cohen-Macaulay
module, e(M) = 1 and GKdimM = 3, respectively 2, respectively 1.

The proof of THEOREM 2.2 occupies the rest of § 2. We shall examine
separately the different types of modules. Because of the following conse-
quence of 1.10 and 1.11, we will work with left A-modules unless otherwise
specified.

COROLLARY 2.3. — The duality M -^ M^ gives a bijection between left
and right shifted plane, respectively line or point, modules. These modules
are critical.

We first investigate the case of plane modules. PROPOSITION 2.5 below
is a particular case of [3, §2.43]. For the convenience of the reader we
include a proof of it in our setting. We first begin with a lemma taken
from [3, §2.41].

LEMMA 2.4. — Let f : ©,A[-%]^ —> (B.Aj-z]^ be an injective
linear map of degree 0 between finitely generated graded free modules.
Assume that the non-zero matrix entries of f all have positive degree.
Then bj < S,^-(a, - bi) for all j .

Proof. — The assumptions on / imply that

/((D^-^Qc^AM0..
i<j i<j

If X is the quotient of these two modules, then

hx(t) =(l-^)-4(^^-][>f).
i<^ i^j

Since [(1 - t)GKdlmxhx(t)}t=l = e(X) > 0, we have

0 < [(1 - tfhx{t)}t=, = ̂  a, - ̂  &,
i<j i<j

The result follows. []
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PROPOSITION 2.5. — If M G Mod^(A) ^e following are equivalent:
(a) M is a shift of a plane module;
(b) M ̂  (A/Aa)[p], for some p <E Z, w/iere 0 7^ a e Ai ;
(c) M ?5 Cohen-Macaulay, GKdimM = 3 an^ e(M) = 1.

Proof. — We may assume that M = MQ e Mi © M^ C • • • , and Mo ^ 0.
(a) =^ (b).—We have dimMo = 1, dim Mi = 3, and dirnAi = 4. Hence

there exists 0 7^ a e Ai such that aMo = 0. It follows that M = AMo is
a quotient of A/Aa. But A is a domain, so hA/Aa(t) = (1 -1)~3 = /IM^).
Thus M = A/Aa.

(b) =^ (c). — The short exact sequence 0 -^ A[-l] -^ A —> M -^ 0
is the minimal resolution of M and /IM^) = (1 - t)~3. This shows that
GKdimM = 3, e(M) = 1, and pd(M) = 1.

(c) ^ (a). — Let 0 -^ (^ A[-z]^ ^©^ A[-z]^ -. M -^ 0 be the
minimal resolution of M. As noticed in § 1,

0 ̂  (DA^ ̂ ^ OA[Z]^ ̂  Mv ̂  0
% i

is the minimal resolution of M^. By LEMMA 2.4 applied to / we have
aj <, ̂ ^j(bi - di). Therefore :

(*) ^ i(b, - a,} = ̂ (b, - a,) + ̂ (^ - a,) + ̂ (6, - a,) + .. .
»^l i^l i>2 i>3

^^a,>l .
j'^o

It follows from the presentation of M that

hM{t)=————^a,-b,)t^

' ) i>0

-(T^E^^EQ^-^))^-^
v / J>0 i^j

Since GKdimM = 3 and e(M) = 1, this implies that ^,>o(^ - ̂ ) = 0
and Ez^i^^ - ̂ ) = 1- By (*) it follows that I-xr^ = 1- Thus

E^o^-1-
But ao 7^ 0 because Mo 7^ 0. Hence ao = 1 and a^ = 0 if i > 1.

Thus 1 = Ez>i^(^ - ̂ ) = E^i^z- But E^o^- = 1 so &i = 1,
and bi = 0 if i ^ 1. Hence the minimal resolution takes the form
0 -^ A[-l] -^ A ̂  M -^ 0, which proves (a). Q

We now consider the point modules.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



54 T. LEVASSEUR AND P. SMITH

PROPOSITION 2.6. — Let M be a Cohen-Macaulay module, with
GKdimM = 1 and e = e(M). Then

(a) hM(t) = ̂ (Eo<z<d-i fit1 + et^l - t)-1) for some p e Z,d e N,
anc? /, G N such that 1 < f, < e - 1 for all i e {0,. • . , d - 1}.

(b) Ife= 1, thenhM^t) = ̂ (1 - fT^? e Z.
(c) Ife=2, thenhM(t) = tP(l +1^(1-t)-\ for some p e Z,d e^.

Proof. — By shifting the grading we may assume that M = ff) ^n M.
and that Mo 7^ 0. -

(a). — Since GKdimM = 1 we have hM(t) = g(t)(\ - t)~1, where
g(t) e Z[t]. Write ̂ ) = e4-(l-^)p(^), where p(t) G Z^] is of degree (d-1).
It follows that hM(t) = /o+/i^+-< ̂ ^-^^^-^^^(l-^-1, with /, e N,
and /o i- 0. We can choose d as small as possible with respect to this
property. For this choice we obviously must have fd-i -^ e.

Note that fj ^ 0 for all j e {0, • • • , d - 1}. If this doesn't hold choose j
minimal such that ^-i ^ 0, and fj = 0. Then AiA^_i c My: = 0 implies
M^_i c Soc(M); but M is Cohen-Macaulay so its socle is zero by 2.5 (e).
This contradiction shows that fj -^ 0.

Recall that A^ := E3(M) is a CM-module whose Hilbert series
is -t-^hM(t-1) by (1.10). Hence

HM- (t) =(e- fd-i)^-3 + (e - fd-^-2

+•••+(e- /o) t - 4 +^- 3 ( l -^) - l .

In particular e > fj for all j. Since e > fd-i and Soc(MV) = 0 we can
conclude as above that e > fj for all j. Hence 1 < fj < e - 1 for all j and
(a) is proved.

(b). — If e = 1 the condition 1 < fj < 0 forces d = 0, i.e.,

hM(t)=(l-t)-1.

(c). — If e = 2 it follows from 1 < fj < 2 that

hM(t) = 1 +1 + ... + ̂ -1 + 2^(1 - ̂ )-1 == (1 + ̂ )(1 - ̂ )-1. []

PROPOSITION 2.7. — Let M be in Mod^(A). Then the following are
equivalent:

(a) M is a shift of a point module;

(b) M is Cohen-Macaulay, and GKdim(M) = e(M) = 1.
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Proof.
(a) =^ (b). — As usual we may assume that M is a point module. Say

M = AVQ where VQ G Mo and hM(t) = (1 -1)~1. By 2.1 (e) it suffices to
show that Soc(M) = 0. Suppose that 0 ^ x C Soc(M)p. Then Ai^ = 0
and Mp = Cx == A^VQ, so A^VQ = 0 which is a contradiction.

(b) =^ (a). — By 2.6 (b) /IM^) = ^(1 - ̂ -1. We must show that M is
cyclic. Pick 0 7^ x e Mp. Since T(M) = 0 we know that A^a; = A^x -^ 0
for all n > 0. Thus A^rc = Mn+p and M = Ax. [\

To prove THEOREM 2.2 it remains to investigate the line modules.
We begin with a characterization of line modules which furnishes half
of the desired result : a shift of a line module is Cohen-Macaulay of GK-
dimension 2 and multiplicity 1.

PROPOSITION 2.8.
(a) If u,v e AI are linearly independent and A^u D A\v -^ 0 then

L = A/Au + Av is a line module.
(b) If L is a line module, then there exist linearly independent u, v C

AI such that A\u D A\v ^ 0 and L ̂  A/Au + Av.
(c) If L is a line module then L is Cohen-Macaulay, GKdimL = 2,

and e(L) = 1.

Proof.
(a). — Let 0 7^ a e AI satisfy au e A^v. Write M = A/Av and

u C Mi for the image of u. There is a surjective map '0 : A/Aa -^ Ail[l].
Since u and v are linearly independent Au is a non-zero submodule of the
plane module M. Since M is critical and GKdimM = 3 it follows that
GKdim(Azl) = 3. But A/Aa is also a plane module, so critical of GKdim 3.
Hence ^ is an isomorphism and

hL(t) = hM(t) - hAu(f) = (1 - t)-3 - 1(1 - t)-3 = (1 - t)-2.

Thus L is a line module.
(b). — If L is a line module then dimLi = 2 so there exist linearly

independent u,v e Ai such that uLo = vLo = 0. Hence there is a
surjective map cj) : A/Au + Av -^ L. However dimLs = 3, dim As = 10,
dimAin = dimAiz; = 4, so A\u n A^v -^ 0. By (1)

hA/Au^AvW = hL(t} = (1 - t)~2

so (j) is an isomorphism.
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(c) Write L = A/Au + Av as in (b). We must show that L is CM.
As in the proof of (1) write M = A/Av and u for the image of u. Then
M' = Au is a shift of a plane module and we have an exact sequence
0 - ^ M f ^ M - ^ L - > 0 where Mf and M are CM, j(M) = 1, and
j(L) = 2. By 1.12 (b) L is Cohen-Macaulay. D

COROLLARY 2.9.
(a) A line module L has a minimal resolution of the form

0 -^ A[-2] -^ A[-l] C A[-l] -^ A -. L -^ 0.

(b) The line modules are in bijection with those lines £ in P3 := P(A^)
such that i = V{u^ v) where -u, v G Ai are linearly independent elements
satisfying A\u D A\v -^ 0. The line module corresponding to such an £ is
M(£) :=A/Au+Av.

Proof.
(a). — Write L ^ A/Au + Av as in 2.8 and denote by (3 a non-zero

element in A\u Fl A\v. Define QQ by the matrix [^] and Q\ by [/3], It is
clear that this gives the minimal resolution of L.

(b). — If L and Lf are isomorphic line modules then AnnAi(A)) =
AnnAi(^o) so tne elements u,v € Ai and u' , v ' e Ai guaranteed by 2.8
span the same subspace of Ai and hence define the same line in P3. []

Remember that throughout this section we are assuming that As
contains a regular normalizing sequence {^1,^2} such that

A/(f2i,^2) :=B^B(E,a,C).
Our next goal is to prove a converse of 2.8 (c). Two preliminary results

are necessary before this is done in 2.12.
LEMMA 2.10. — Let 0 ^ M G Mody(A) be critical and let 0 7^ f2 be

a normal element of A. Then Q is a non-zero divisor in M if and only
if^M ^0.

Proof. — Since A is a domain we can define an automorphism a of A
by the formula ^a(a) = a^, for all a C A. Denote by °M the abelian
group M with A acting by a • x = a(a)x, for a e A, and x C M. Then
"M is a critical A-module and multiplication by f2 defines an A-module
map ^M -^ M with image ^M and kernel ̂  = {x G M | ̂  = 0}. The
isomorphism aM/K ^^IM shows that

GKdim(M/J<T) = GKdim(^M) < GKdim(M) if K ^ 0.

Since GKdim(^M) = GKdim(M) if ^M ̂  0, the result follows. D
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PROPOSITION 2.11.

(a) Suppose M e Mod9 (A) is 2 -homogeneous with e(M) = 1. Then M
is critical. Furthermore if ̂ M = 0, then ^2 is a non-zero divisor in M.

(b) Let M be a Cohen-Macaulay module, with GKdim(M) = 2 and
e(M) = 1. Then

hM(t)=tP(l+td)(l-t)-\l-t2)-l

where p C Z and d C N is odd.

Proof.
(a). — The first assertion is obvious. Suppose f^iM = 0 and that

0 T^ ^/ G M is such that f^2/ == 0- We may assume that y is homogeneous
of degree q. Then A^ = Ay is a B-module and

N = By ^ B/L[-q}

for some graded left ideal L of B. Since jS is a domain and GKdimI? =
GKdimA^ = 2 we must have L = 0. Thus /i^(^) == ^(1 +^)2/(1 -1)2

which implies e(N) = 4 which contradicts e(N) < e(M) = 1. Thus
^M ̂  0 and by 2.10 ̂  is a non-zero divisor in M.

(b). — Without loss of generality we may assume that M = ®^>o -^n?
and MQ -^ 0. By (a) and 2.10 one of the elements f2i, f^2 is a
non-zero divisor in M, say ^2- Set M = M/^M and notice that
h^(t) = (1 - t^hM^) so GKdimM == 1, and e(M) = 2. Denote by a
the automorphism of A defined by f^o^) = 0,^2 for a G A, and define
^M G Mod^(A) as in the proof of 2.10. It is clear that ^M is Cohen-
Macaulay and that there is an exact sequence

0 —^M -^ M[2] ̂  M[2] —> 0.

Thus, by 1.12 (b), M[2] is Cohen-Macaulay. From 2.6 (c) we deduce
h^(t) = (1 + ̂ )(1 - ̂ )-1, for some d G N. Therefore

/ ^M(^)=( l+ t d ) ( l -^ ) - l ( l -^ ) - l .

But /ZM(^) must have the form f(t){l —1)~4 for some f(t) C Z[^], whence
1 +1 divides 1 + ^d. Thus d is odd. Q
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PROPOSITION 2.12. — Let M be a Cohen-Macaulay module, with
d(M) == 2, and e(M) = 1. Then M is a shift of a line module.

Proof. — As usual we shift the grading and assume that M =
MQ (D Mi Q • • •, and MQ ^ 0. Write the minimal resolution of M in the
form

o — 9 AM6. -A^ 9 AMP ̂  9 AM- -^ M -. o.
% % %

By the remark after 1.12, the minimal resolution of M^ is

0 — QAH- -^ OAM- -^ (E)A[^ ̂  M" -. 0.
Z I I

Notice that c^ (resp. bi) is the number of elements of degree i (resp. —i)
in a minimal set of homogeneous generators for M (resp. M^). Since
M = ®^>o Mn it is easily seen that ao = bo = b\ = 0, and ai = b^ = ci
for all i < 0. Thus hM(t) = (1 - t)~4 ̂ ,>o(^ - ̂  4- c^.

By 2.11 (b), there is an odd integer d G N, such that

^)=(l+^)(l-^r2(l+^)- l

= 1 + t + 2t2 + 2t3 + • • • + \ (d - l)^-3 + j (d - l)^--2

+ j^+l)^"^ j ( d + 3 ) ^ + — .

We first have to show that d = 1, or equivalently that /IM(^) = (l""^)"2-
Suppose to the contrary that d >_ 3. Then dimMo = 1, and dimM2 = 2.
Since A^MQ ^ 0 it follows that c^ < 1. We will show in the next paragraph
that 63 < 1, but assume for the moment that this is true. By comparing
the coefficient of t2 in the two expressions for /IM(^) above, it follows
that &2 — <^2 4- C2 = 4. Therefore 4 < a^ + 4 = &2 + c^ < 2 which is absurd.
Thus d = 1.

Now we prove that b^ < 1. First we have

hM-(t)=t^hM(t-1)
=t-^^hM(t)
^_(rf+i) ̂ -d^ ^-(d-i) ^_ _

+ ^ (d - l)t-4 + j (d - l)t-3 + j (d + l)t-2 + . • . .

By 1.10 M^ is Cohen-Macaulay, GKdimA^ = 2 and e(MV) = 1.
By 2.11 (a) applied to A^, either f^i or ^2 is a non-zero divisor in M^
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Let ^ be this element. Let w i , . . . , w^ be elements of M^ which are part
of a minimal set of homogeneous generators for M^. Then the sum

^M^4+ ^ Cw,
Ki^b-2

must be direct and dimM^ = dim^2M^4. Hence

62 + dim M\ < dim M\ .

Thus

62 < dimM^ - dimM^4 = ̂  {d + 1) - ^ (d - 1) = 1.

It remains to prove that M is cyclic. Since M ̂  (A^)^ it is enough
to show that M^ is cyclic. Since HM^^I} = ^-2 + 2t~1 + • • ' , it follows
that 62 = 1, and bi = 0 if i > 3. But 60 = ^i == 0, so A^ is cyclic
generated by an element of degree 2 (cf. 2.9 (a)). []

PROPOSITION 2.13. — Let M be a point module. Then

M ^ A/Au + Av + Aw

for some u^v^w e Ai. Jn /ac^ a minimal protective resolution of M has
the form

0 —, A[-3] -^ A[-2]3 -^ A[-l]3 -90^ A[0] -^ M —. 0.

Proof. — Take a minimal resolution for M, say

o — O^H]'- ̂  ®A[-r ̂  QAM6'
i i i

^^AH]0- -^M—0.
I

The dual complex is a minimal resolution of A/^ by the remark after 1.12.
Recall that A^ is a shifted point module, generated in degree —3. Because
M and M^ are cyclic, 0,0 =- d^ = 1 and all other ai and c^ are zero. As
usual we have

hM(t) = hA(t) y^(az - bi + Ci - di)t\
i
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and thus Ez(-^ + ^)^ = -^t + 3t2. Because dim(Mi) = dim(Ai) - 3
and the resolution is minimal it follows that &i = 3; the same argument
applied to M^ shows that 02 = 3. The minimality of the resolution ensures
that bi = 0 for i < 0 and c, = 0 for i < 1. Therefore

E^-E
i>_2 i>3

C,f

In particular 63 = 0 so it remains to show that for all i > 3 we have
bi = Ci = 0. Suppose this is not the case.

Because A is noetherian, and M is finitely generated we can set
k := max{z | b, ̂  0}. Thus k > 3. Write

^-(BAH]^ ^:=A[-A;p,
K/c

^^(BAH^, C^-AI-A;]^.
K/c

Thus <9i : F ' C ̂  -^ F © (7. Since deg(<9i) = 0 and Gm = 0 for
m < k it follows that Q^F') C F. Since the resolution is minimal,
<9i(G") C M F © M G. But Gf is generated in degree k and M G" is zero in
degree k so ^(GQ c F. Thus ^(F' © G') C F.

On the other hand ©.AI-z]01 ^ A[0] so Oo(F) and <9o(GO are left
ideals of A. The minimality of the resolution ensures they are both non-
zero. Since A is a noetherian domain it follows that Oo{F) D Oo(G) ^- 0.
Hence there exists 0 7^ / e F and 0 7^ g e G such that <9o(/) = 8o(g). It
follows that / - g e ker(<9o) = im(<9i) but / - g ^ F. This contradicts the
conclusion of the previous paragraph, so the result follows. []

3. Quadrics and secant lines
This section gives proofs of the following properties of the quadrics

which contain E, and the secant lines of E. There is a pencil of quadric
hypersurfaces containing £', and each point of P3 \ E belongs to a unique
quadric in this pencil. Each line on one of these quadrics is a secant line
of E, and every secant line lies on some (in fact, a unique) quadric in
the pencil. There are exactly four singular quadrics in the pencil, say Qj
(0 < j < 3). Each Qj may be characterized as the unique quadric which
contains E and ej where ej is as defined in § 1.1. Furthermore, Qj is
defined by a rank 3 quadratic form so has a unique singular point, and
that point is ej. If p e Qj then the line through p and ej is contained
in Qj, so Cj lies on infinitely many secant lines of E, and Qj is the union
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of all the secant lines of E which pass through ej. In contrast any point
in P3 \ (E U 5) lies on at most two secant lines of E. Thus the points ej
are in very special position relative to E : they are the only points in P3\E
lying on infinitely many secant lines of E.

The map C/A —> E described in the introduction fixes the group
law on E, and the identity element 0 € E. The group law is related
to the geometry of the secant lines. Since E is a degree 4 curve, being an
intersection of two quadrics, any hyperplane in P3 meets E at four points
(counted with multiplicity). The sum of these four points of E is zero,
and conversely, if four points of E sum to zero then they are precisely
the points of intersection (counted with multiplicity) of some hyperplane
with E. Since E is not contained in any hyperplane, E has no trisecants,
so a secant line meets E at two points (counted with multiplicity, where
p C £r\E has multiplicity two if £ is tangent to £ ' a tp ) . I fp ,^e P3 we will
write £pq for the line through p and q. The subgroup E^ of -E, of points
of order 2, contains 4 elements. These elements may be labeled as ujj
(0 < j < 3) in such a way that if p, q € £', then £pq passes through ej
iff p + q = (^j- In fact, Qj is the union of all the secant lines £pq such
that p + q = u^j. Now suppose that Q is a smooth quadric in the pencil.
Hence Q ^ P1 x P1 and there are two families of lines on Q (all of which
are secant lines of E). There is a point z € E (determined by Q up to
sign) such that if p, q G E, then £pq lies on Q iff p + q = ±z. Moreover,
all those £pq such that p + q = z do not intersect, and £pq intersects Hpiqi
iffp+q=-(p/+q/).

All the results in this section are straightforward and rather elementary.
In fact they are all well-known to the average 19th century geometer; see
for example [16, art. 347]. Hence the point of this section is to state these
facts, and to provide proofs for the convenience of some readers.

If 0 7^ x e Ai, then E meets the hyperplane x = 0 at four points,
counted with multiplicity, and the corresponding degree 4 divisor on E
will be denoted by {x)o = pi +p2 +P3 +P4- There will be potential for
confusion, since the sum of points of £', in the group law on £', will also
be denoted by pi +p2 +P3 +P4- The context should make it clear whether
'+' denotes addition in E or in Div£'.

LEMMA 3.1.—Let Pi,p2;P35p4 ^ E. Then there exists 0 7^ u 6 A\ such
that (u)Q = pi + p2 + P3 + P4 if and only if the sum pi + p2 + ?3 + p4
in (E^ +) is zero.

Proof. — By Abel's theorem if p i , . . . ,py-, ^ i , . . . , qr € E, then

0(pi+•••+?,.) ^ 0 ( < 7 l + • • • + ^ ) < ^ P l + • • > + P r = q i + ' " + q r
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(on the LHS '+' is in DivE, on the RHS '+5 is in E). The four points
of E which lie on the plane XQ = 0 are the four z G C/A, such
that 0n(z) = 0, namely 0, |,, ^77, ^ + ^rj (the points of E^). Hence, if
j : E -^ P3 is the inclusion, then j*0p3 (1) ^ (9(0 + (j) 4- (j^) + (j + JT?)).
Therefore, if pi->p2^P3^P4 ^ ^? then they are the points of intersection
of a hyperplane and E iff 0(pi + p2 + ps +^4) ^ j*(9p3(l), that is, iff
Pl+P2+P3+P4=0+^+^+( j+^) ==0. D

REMARK. — It is easy to see that E has no trisecants. Suppose to
the contrary that £ is a trisecant. Since E = X D Y is an intersection
of quadrics, the defining equations of X and Y restricted to £ are
quadratic forms so either have two zeroes or vanish identically. However,
by hypothesis they must have at least three zeroes, so we are forced to
conclude that £ C X H Y = E. This is absurd.

Let g\ and g^ be any two (linearly independent) quadratic forms which
define E. To be definite we can take g\ and g^ to be the functions so
labelled in § 1.1. For each A = (\i,\2) € P1, define Qx := V(Ai^i +A2^).
This gives a pencil of quadrics, each of which contains E.

PROPOSITION 3.2.
(a) If Q is a quadric containing E, then Q = Q\ for some A G P1.
(b) Ifp C P3 \ E, then there is a unique A € P1 such that p € Q\.
(c) If A + ̂  then Qx H Q^ = E.
(d) If £ is a secant line of E, then there is a unique Q\ such that

£ c Q x .
(e) If i is a line lying on a quadric Q containing E then £ is a secant

line of E.

Proof.
(a). — By [21, 2.5], the polynomial ring modulo (^1,^2) is reduced. In

particular, if g is a quadratic form vanishing on E^ then g € ^/^1,^2) =
{91^92)^ so 9 is a linear combination of g\ and ^2-

(b). — Since p ^ £', either gi(p) 7^ 0 or g^^p) 7^ 0. Hence there is a
unique A = (Ai, A2) G P1 such that (\igi + A2^)(p) = 0. Of course, (c) is
an immediate consequence of (b).

(d). — The uniqueness of such a Q\ is guaranteed by (b). Set {p, q} =
£C\E (counted with multiplicity), and note that each g\ vanishes at both p
and q. Now fix r G £ \ E, and note that either gi(r) -^ 0 or g-2(r) ^ 0. So
there exists A = (Ai ,A2) 6 P1 such that Ai^i(r) + \292(r) = 0. But then
9\ = Ai^i + A2<72 vanishes at three points of £, and hence on all of £ since
deg(^) = 2.
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(e).—Let g be a quadratic form vanishing on E but not on Q. Then £nE
is given by the zeroes of the restriction of g to £. Since there are two such
zeroes, £ meets E with multiplicity 2. []

LEMMA 3.3. — Let p, g, r, s € £" &e such that £pq and £rs CL^ distinct.
Then £pq D £rs ¥" 0 ^/ a?2^ cm^/ ^/^ + 9 = ""(^ + s)-

Proof. — There is a plane containing both £pq and £rs if and only if
£pq n£rs 7^ 0- This happens if and only ifp, g, r, 5 are coplanar. The result
now follows from 3.1. []

PROPOSITION 3.4.
(a) For each j = 0,1,2,3 there is a unique quadric, Qj say, which

contains ej and E.
(b) Each Qj is singular, of rank 3, and these are the only singular

quadrics in the pencil of quadrics which contain E.
(c) The only singular point on Qj is e j .
(d) Ifp 6 Qj then the line £pe- lies on Qj. Furthermore, every line

on Qj passes through e j , and Qj is the union of the lines it contains.
(e) For each j , Qj is the union of all those secant lines of E which

pass through e j .

Proof.
(a). — This is a special case of 3.2 (b).
(b). — Since E is not contained in any hyperplane, E can not be

contained in any rank 2 quadric. Thus the denning equation of Qj is the
unique (up to scalar multiple) linear combination of g\ and (72 in which
the coefficient of x^ is zero. This is the equation denoted by gj in § 1.1.

A quadratic form q on P77', defines a singular variety iff rank(^) < n+1.
Hence a pencil \iqi-^\2Q2 generated by two quadratic forms, contains n+1
singular forms (given by the zeroes of the determinant of an (n+1) x (n+1)
matrix whose entries are linear in AI, As). Hence in our situation there are
four such, and these must be the Qj.

(c). — Since rank(gj) = 3 it has a unique singular point. Indeed, the
singular point of V(y^ + yj + yj) in coordinates yo, y\,ycl, ys is (1,0,0,0).

(d). — Let Q be a rank 3 quadric in P3 defined by y\ + ?/j + yj
in suitable coordinates yo.yi.y-z^ Vs- Then e = (1,0,0,0) is the unique
singular point of Q. Let p = (po,pi,p2,P3) and q = (qo,qi,q2 ,qs)
be distinct points of Q such that £pq, the line through p and q, lies
on Q. Then for each (s,t) e P1,^ + tq G Qj. In particular, this gives
st{p\q^ +p2<72 +P3<73) = 0 because p, q G Qj. Thus pi^i +^2^2 +P3Q3 = 0.
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Hence ( p l p2 p3} (^ ^} = 0. If rank ( pl p2 p3 } = 2, then
\qi Q2 Q3 ) \^ ; \qi Q2 q3 )

its transpose is also of rank 2, and it is impossible for such a product
to be zero. Hence the rank is < 1. So we can choose s^t C P1 such that
spi + tq^ = 5p2 + tQ2 = sps + tqs = 0. Therefore sp + tq = (1,0,0,0), so e
lies on £pq.

To see that Q is the union of the lines it contains, suppose that
P = (POjPi^P2^P3) ^ Q and p ^ e. Then a typical point of the line £ep
through e and p is (.spo + t,sp^^sp^,sp^) for (s,t) C P1. It is clear that
y^ + y^ + ^/j vanishes at this point, so £ep ^ Q. In particular, p lies on a
line contained in Q.

(e). — If j^9 ^ E and ^pg passes through Cj, then the unique quadric
which contains £pq (such a quadric exists by 3.2 (d)) also contains ej. But
the only quadric containing ej is Qj, so ^p<? ^z Qj- D

COROLLARY 3.5. — Jfp e E, then the line £pey is a secant line of E. In
particular, each ej lies on infinitely many secant lines of E.

NOTATION. — The points of £"2 are labelled as follows :

^o=0, uj^ = j + i^, ^2 = ̂ , UJ^=\'

PROPOSITION 3.6. — Set Co = 0, Ci = \ + ̂ , €2 = h, Cs = i. Then :
(a) ^e eo^e^ of £2 ^ £4 ^^e (^ + £2 (j = O? I? 2 ,3) ;
(b) ifp e £', ^en £pej is tangent to E at p ̂  p G Cj + E^ ̂  2p = ̂ .

Proof. — The zeroes of ^a& occur at

\ (1 + a)77 + \ (1 - &) + {0, ̂  \r].\ + ̂ } + A.

Hence Co + E^ is the zero set of g\\; Ci + £2 is the zero set of goo; ^2 + £2
is the zero set of goi^ and (^3 + E^ is the zero set of ^10. It is clear that (a)
is true.

Let p = (po,Pi,P2,P3) ^ ^2. The line £peo is tangent to E at p iff tpeo
meets £ at p alone. Since eo = (1,0,0,0), £peo consists of the points

{(spo +^5pi,5p2^3) | (s,t) GP1}.

It follows from the denning equations of £1, that such a point of tpeo will
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lie on E if and only if 2stpo +12 = 0. Hence

£peo is tangent to E at p
4=^ the only solution (s,t) e P1 to the

equation 2stpo + ^2 = 0 is (s, t) = (1,0)
^==^Po =0
4=^ p = j'(^) where z is a zero of ^n
<<=^p(ECo+^2 =^2.

This proves (b) for j = 0. The proof for j = 1,2,3 is similar. Finally,
since 2<^ = ujj, it is clear that p e Cj + ^2 iff 2p = ̂ . []

PROPOSITION 3.7. — Let p,q e E. The line £pq passes through e^ if and
only ifp + q = ujy ; thai is, £pq C Qj if and only ifp + q = ujj.

Proof.
(=^) Suppose that ej e £pq. If p = ̂ -, then 3.6 (b) implies that q = Cj

also, whence p + q = 2Q = ujj. Suppose that p -^ Q. Then the lines £pq
and £^ej are distinct and intersect at ej. Hence they are contained in a
single plane. Therefore, by 3.1, p + q + (^ + Cj == 0^ whence p-\-q=ujj.

(<^=) Suppose that p + 9 = ujj. If p = ^-, then g = Cj too, so £pq is
tangent to E at <^, and 3.6 (b) shows this line passes through ej. Suppose
that p 7^ Cj- The three points p, g, ̂  lie on a common plane, H say. By 3.1
H meets £' at a fourth point, namely -(p + ^ + Cj) = Cj- Hence 7^ meets
^ at Cj with multiplicity 2, so H contains the tangent line to E at Q. But
this tangent line passes through e^-, so ej G H , whence £pe. C ̂ . But £pe.
is a secant line, so meets E at another point of E D H. Since p 7^ Cj? tnat

other point must be g. Hence £pe^ = £pq, and e -̂ e £pq. []

COROLLARY 3.8. — A line through two distinct points of S is not a
secant line of E.

Let Q C P3 be a smooth quadric. Then Q ^ P1 x P1 (via the Segre
embedding), so Pic(Q) ^ Z Q) Z, where the hyperplane section is (1,1) and
the intersection pairing is given by (m, n) • (m7, n') = mn' -\-nm'. There are
two families of lines on Q, corresponding under the isomorphism to those
of the form {p} x P1 and P1 x {q}. Lines in the first family correspond
to (1,0) in Pic(Q), and those in the second to (0,1). Each point of Q
lies on exactly two lines, one from each family. If Q' is any other rank 4
quadric in P3, then Q H Q' is a curve of class (2,2) in Pic(Q). Hence any
line on Q meets Q D Q' at two points.
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LEMMA 3.9. — Ifp e P3 \ (E U S) then p lies on at most two secant
lines of E. In fact if p lies on a smooth quadric containing E then p lies
on two secant lines, whereas if p lies on a singular quadric then p lies on
one secant line.

Proof. —Let Q be the quadric containing p and E. If Q is singular then
it follows from 3.4 that p lies on a unique secant line. If Q is smooth, then
by the above comments, p lies on two lines contained in Q, say £ and V ' .
Since E = (2, 2) in Pic(Q), both £ and V are secant lines of E. If V is any
secant line through p, then the quadric containing V also contains p, so
by uniqueness must be Q. Thus V C Q, so t" is either £ or V . Q

THEOREM 3.10. — Fix r,s e E such that r + s ^ E^. Let Q be the
unique quadric containing E and £rs' Then :

(a) Q is smooth'^
(b) every line on Q is a secant line of E ;
(c) if £ is a line on Q with £ D E = {p, 9}, then

(i) £ H £rs = 0 ̂ ^ P + q = r + s,
(ii) £ H ̂  7^ 0 <^ p + 9 = -(r + s) ;

(d) z/ p, g e ^, then £pq c Q <=^> either p + q = r + s, or
P-\-q = -(r + s).

Proof.
(a). — Since r + s e £"25 ^rs is not contained in any of the four singular

quadrics Qj by 3.7 (b). Hence Q is smooth.
(b). — This is contained in the remarks prior to 3.9.
(c) (ii). —This is 3.3.
(c) (i) (<^=). — Since r - \ - s ^ E ^ , p - } - q = r - ^ - s = ^ p - \ - q ^ -(r + s) so

by( i i ) ,^n^=0.
(c) (i) (=^>). — Since £ D £rs = 0, £ and £rs give the same element

of Pic(Q). Hence there is a line V on Q such that V • £ = V • £rs = 1.
Hence £ and ^/ are coplanar; let a = 0 be the plane containing £ and £ ' .
Similarly, there is a plane b == 0 containing £rs and ^'. If ^/ H E = {^, w},
it follows that the divisors on E consisting of the zeroes of a and b are
(a)o = p + ^ 4 - ^ + w , and (&)o = r + 5 + ^ + w . Hence the divisor of
the rational function a / b e C(E) is div(a/6) = p -\- q — r — s. By Abel's
theorem p - ^ - q = r - { - s m E .

(d) (=^). — This follows at once from (c).
(d) (<^=). — Since p e E c Q, and Q is the union of the lines it contains,

there is a line on Q passing through p. In fact there are two such lines, V
and V say, and they satisfy V - £rs = 1 and t" • £rs = 0.
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Suppose that p + q = r + s. Since V n ̂  = 0, if m £; = {p, t} then
p + ^ = r + 5 by (c) (i). Therefore t = q, so r = ̂ , and £pq C Q.

Suppose that p + q = -(r + s). Since ^/ n ̂  = 0, if ^ H £; = {p, ^} then
p + ^ = -(r + 5) by (c) (ii). Therefore t = q, so ^ = ̂ , and ̂  C Q. D

COROLLARY 3.11. — Given any quadric Q\,\ G P1, in the pencil of
quadrics containing E, there exists z\ e E such that, if p,q G E then
^pqCQx iffp-^q=±zx.

Proof. — Combine 3.4, 3.7 and 3.10. Q

4. Geometric classification of line modules
The main result in this section is that the line modules are in bijection

with the secant lines of E.

Throughout this section u and v will denote linearly independent
elements of Ai, and a and b will denote non-zero elements of Ai. We
shall make frequent use of 1.1 and 1.2.

PROPOSITION 4.1. — If A/Au + Av is a line module, then V(u,v) is a
secant line of E.

Proof. — By 2.8, A^u D A^v -^ 0, so there exist non-zero a, b C Ai such
that a ^ v — b^)u ^ I ' z . Since the proposition is only concerned with the
subspace of Ai spanned by u and v, we may replace u and v by any linear
combinations which are themselves linearly independent. In particular, we
can assume that there exist distinct ej,ek C S such that u(ej) = v(ek) = 0
and u{ek} -^ 0,-y(e^) ^ 0. By 1.1 a (g) v - b (g) u vanishes at (cj-.e^-) and
(e/c, Ck), so a(e^) = b(ek) = 0.

Let p C E. Since u{ej) = 0, if u(p) = 0 then so too is u(ujj - p) = 0
by 3.9. Hence there exist pi,p2, qi,Q2 ^ E such that the zeroes of u and v
on E are given by

/^ f (^0 = (Pi) + (^- - Pi) + (?2) + (^j - P2\

\ (^)o = (^i) + (^c - qi) + (92) + (^k - 92).

Suppose that u and v have no common zero on E. Since

a{p)v(p + r) - b{p)u(p + r) = 0

for all p ^ E, taking p to be each of the zeroes of u in turn, it follows that
(a)o = (pi - r) + (ujj - pi - r) + (p2 - r) + (^ -p2-r). Since these four
points are coplanar, their sum is zero. Hence 4r = 0. But this contradicts
the fact that r ^ E^. Hence u and v have at least one common zero.
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Suppose that u and v have exactly one common zero on E. With a
change of notation if necessary, we may assume that pi = qi' Therefore
{a^—pi,p2,^—p2}n{cc; /c—pi ,g2?^A;—92} = 0. It will be useful to rewrite
this as

(f) {ujj - pi - T,?2 - T, LOj -P-2-T}

H{^ - Pi - r,q'2 - T, <^k - q'2 - r} = 0.

Since a(p — r)v(p) — b(p — r)u(p) = 0 for all p G £', evaluating this at
the points p which are zeroes of only one of u and v, it follows that a
vanishes at u^j —pi — T, p2 — T, ujj — p2 — r, and b vanishes at u^k — Pi — T-s
q^ — T, u^k — 92 — T. Both a and b have a fourth zero on E which can be
determined from the other three zeroes by the fact that four points are
coplanar if and only if their sum is zero. Hence

(a)o = (^ - pi - r) + (p2 - r) + (^- - p2 - r) + (pi + 3r),

(6)0 = (uok - pi - r) + (92 - r) + (ujk - Q2 - r) + (pi + 3r).

Since a(ej) = 0, it follows that a(p) = 0 <^=^ ^^j — p) = O? f01" P ^ E.
Hence

(1) {^- -pi -r,p2 -^^j -P2 -T,pi +3r}
= {?! + ̂  ̂ j - P2 + T,?2 + T, ̂  - ?! - 3r}.

Similarly, since b(ek) = 0, it follows that

(2) {ujk -Pi-r,q'2- T, ujk - Q2 - T,pi + 3r}

= {Pi + T, 0;/c - ^2 + T, ^2 + T, UJk - Pi - 3r}.

Since pi + T belongs to the right hand side of both (1) and (2), it belongs
to the intersection of the left hand side of (1) with the left hand side of (2).
However, by (f) this intersection is {pi + 3r}. Hence pi + r = pi + 3r,
whence 2r = 0. This contradicts the fact that r ^ E^. Hence u and v have
at least two common zeroes on E. []

LEMMA 4.2. — Let n , ^ e A i define a secant line £ = V(u,v) of E.
Suppose that the divisor of the rational function u/v on E is

div(u/v) = (x + r) + (y + r) — (w + r) — (z + r).

(a) Define a symmetric and transitive relation ~ on E, by s ~ t if
s + 1 = —(x+y). If s ~ t, then there exists a unique plane a = 0, such
that (a)o =x-\-y-\-s-\-t.
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(b) ff 0 ¥- a ̂  ̂ i ^ such that (a)o = x + y - ^ - s + t , then there exists
a unique b C Ai 5^ ^W a^v-b^u vanishes on A^-; furthermore
(b)o = w + z + 5 + t .

(c) Le^ ̂  denote the equivalence relation generated by ~ i.e. s w t if
either s =t o r x - \ - y - { - s - } - t = 0 ; then there is a bijective map

^ : E / w — > { (a ,&) eP(Ai x A i ) | (a (g) v - 6(g) n)(A^) = 0},

^wen by (p(s) = (a,b) where a G Ai satisfies (a)o == ^+^+s+(-.r-^--5)
and 6 ?5 determined as in (b).

Proof.
(a).—If s ~ ^ then a;+2/+5+^ = 0, so there certainly exists 0 7^ a € Ai

(unique up to non-zero scalar multiple) such that (a)o =x-{-y+s+t.
(b) By Abel's Theorem x+y=w-\-z,sow+z+s-\-t=0. Hence there

exists 6 C Ai such that (b)o = w+z+s+t. Notice that b is only determined
up to a (non-zero) scalar multiple. Both a (g) v and b (g) u vanish at the six
points (a^+r), (2/,?/+r), (5,5+r), (t^+r), (w,w+r) , and (z,z+r).

By [21, 2.8], there are cubic forms / and g on E such that (u/v)0' = f / g ;
that is, ( f / g ) { p ) = (u/v){p + r) for all p C £1. Since E is a degree 4 curve
in P3, and / and g are forms of degree 3, both / and g have twelve zeroes
on E. However, since div(u/v) is as above, div(f/g) = x -}- y — z — w,
so / and g must have ten common zeroes on E\ let these common
zeroes be p i , . . . ,pio. Hence both ag and bf vanish at the sixteen points
x, y , 5, t, w, z, p i , . . . ,pio of £^. Replace b by a suitable scalar multiple of
itself, such that ag — bf vanishes at some seventeenth point of E. Since
the degree 4 form ag — bf now has seventeen zeroes on E, it is identically
zero on E. Hence (a (g) v — b (g) ^)(A-r) = 0.

If some other b' G Ai also satisfies (a 0 v — b' (g) ^)(AT-) = 0, then
((6 - V) (g) n)(A^) = 0. If b + &', then A^ C P3 x V(n), which is absurd
since E is not contained in a hyperplane.

(c). — There certainly is such a map (p. The injectivity of (p is clear : if
(p{s) = ̂ (5'), then (a)o = (a')o, whence {s,t} = {5',t'}, so the equivalence
classes of s and s ' coincide. To see that (p is surjective, suppose that
a,b e Ai are such that (a<S>v-b(^u){^r) = 0. Evaluating a^v-b^uoil
the points (rr, x + r) and (^/, ^/ + r) gives a(a;)v(a; + r) = a(y)v(y + r) = 0,
whence a(a;) = a(^/) = 0. So (a)o =x+y+s+tfoT some s, ^. []

REMARKS:
1- — By 1.2, the element av - bu determined by 4.2 is in the center

of A, so annihilates the line module A/Av + An.
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2. —We may restate part of 4.2 as follows. If V(u, v) = £pq and a, b e Ai
satisfy (a (g) v — b (g) ^)(AT-) == 0, then V(a, b) is a secant line £rs for some
r, 5 such that r + 5 = p + g + 2 r , and every such r and s may occur.

LEMMA 4.3. — Let p^q G E. Let u,v e Ai be linearly independent.
Then there exists at most one point (a, b) C P(Ai x Ai) such that
(a0v - b(S)u)(T) == 0.

Proof. — By 1.2 (a (g) v — & (g) n)(r) = 0 iff av = bu. Hence we must
show that there is at most one b G P(Ai) such that bu € Av (such b then
uniquely determines a, and hence determines (a,^) e P(Ai x Ai)).

Consider u e A/A?;. Since A/Av is a plane module, it is 3-critical.
If bu € Av, there is a surjective map A/A& —> Au. Since A/A6 is also
3-critical, this map must be an isomorphism; hence b is unique up to
(non-zero) scalar multiples. []

PROPOSITION 4.4. — Let p, q € E. Suppose that u, v G Ai are 5^c/i ^/ia^
V(n, v) = £p^r,q-^r and dw(u/v) = (x + r) + (y + r) - (w + r) - {z + r).
If s ^ E, and y?(s) = (a,&) € P(Ai x Ai) where (p is as in 4.2, then
av —bu G As ?5 a central element. Furthermore, av —bu = 0 z/ and on^/ z/
(a)o = a;+?/+(p+2r)+(<7+2T). Jn ^a^ ca^e (&)o = w+^+(j?+2T)+(^+2r).

Proof. — By 4.2 and 1.2 av — bu is central. By 4.3 there is at most one
pair (a, b) C P(Ai x Ai) such that av = bu. Hence it is enough to show
that (a, b) = (p{p + 2r) satisfies (a (g) v - b (g) u)(T) = 0. By 1.2 and 4.2 it
therefore suffices to prove that (a 0 u — b 0 v)(e^, e^) =0 for two ei G S.

There are at least two i such that p + 2r 7^ u0i — p — 2r and
p + r ^ u j i — p — r . For such an z, e^ lies on the secant lines -^p+2T,c^-p-2r
and ^p+T-^_p_T. Since p + 2r 7^ c^ — p — 2r and p + r ^ o ^ — p — T there
are scalars A, ^, /^, p such that

e, = A(p + 2r) + /^ - p - 2r) = f,(p + r) + p(cc;, - p - r).

All these scalars are non-zero, since e^ ^ J^. Now

a(e,)v(e^) - 6(e,)^(e^)

= (Aa(p + 2r) + /^a(c^ - p - 2r)) (^(p + r) + pv(uji - p - r))

- (A&(j? + 2r) + ̂ {uj, -p- 2r)) (^(p + r) + pu(uji - p - r))

== /^p(a(^ — p — 2r)v{uji — p — r) — b{uji — p — 2r)u(uji — p — r)).

But (a (g) v — b (g) ^)(AT-) = 0, so this expression is zero, and the result
follows. []
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THEOREM 4.5. — The isomorphism classes of line modules are in
bijection with the secant lines of E.

Proof. — By 2.8 and 4.1, if M is a line module, then M ̂  A/AU + Av
where u, v € Ai are such that £ = V{u, v) is a secant line of E. Conversely,
if u,v C Ai are such £ := V{u,v) is a secant line of E, then by 4.4 there
exist 0 ^ a, b eAi such that av = bu 7^ 0, so A\u D A\v -^ 0. By 2.8
A I An + Av is a line module.

To show that distinct secant lines give non-isomorphic line modules,
let V(u,v) and V(u1,v1) be distinct secant lines. If

(p : A/Au + Av —> A/A?/ + Av'

is a (graded) isomorphism of the corresponding line modules, then (p maps
the degree 0 part to the degree 0 part; say (^(1) = e C (A/An' + Ai/)o.
But Ann(l)i = Cu + Cv and Ann(e)i = Cn' + Cz/. However, since the
lines are distinct Cu + Cv 7^ Cn' + Cv', so the line modules cannot be
isomorphic. Q

PROPOSITION 4.6. — Let M(p, q, r, s) be a plane module. Then there is
a short exact sequence

0 -^ M(p+r,g+T,r-r ,5-T)[- l ] —> M{p,q,r,s) —> M(p,q) -^ 0.

Proof. — Let u,v € Ai, be such that (n)o == p + g + ^ + 5 , and
V(^ z>) = ̂ . Thus M(p, q) ̂  A/Au + Av, giving an exact sequence

0—^Av ——> A/Au ——> A/Au + Av -» 0.

By 4.3 and 4.4 there is a unique a G IP(Ai) such that av G A\u. Since
plane modules are 3-critical, the map A/Aa -^ Av is an isomorphism.
By 4.2 and 4.4, (a)o = (p + r) + {q + r) + (r - r) + {s - r). This proves
the result. []

REMARK. —Iterating this proposition, M(p, g, r, s) contains a submod-
ule isomorphic to M(p+niT, q-^n^r^ r+^sT, 5+n4r) if (ni, ^2? ̂ 3^4) € ^4

satisfies n\ + 713 + ^3 + ^4 = 0-
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5. Point modules
The first result in this section, namely (5.2), shows that i f p e E U S

then the corresponding point module is M(p) ̂  A/Au + Av + Aw where
n, v, w C AI are linear forms such that V(u, v, w) = {p}. It is obvious from
the definition of M(p) that there is a surjective map

A/Au + Av + Aw ——> M(p),

since M(p) = ©^ Cej and rr e Ai acts via x ' e^ = x(p -jr)e^-i.
The main result in this section is that if p, q e £', then there is a short
exact sequence

0-^M(p+T,g- r ) ——>M(p,q) ——> M(p) -^ 0.

LEMMA 5.1. — Let p e E, and let W C A-^ be the subspace vanishing
at p. Then J C AW whence A/AW ^ B / B W .

Proof. — Consider Ai (g) Ai as bihomogeneous forms on P3 x P3. Then

v(h + Ai (g) w) = v(h) n v(Ai (g TV) = r n (P3 x {p}) = (j^.p).

Since J2 + Ai (g) TV vanishes at a unique point of P3 x P3, it is of codimen-
sion < 1 in Ai (g) Ai. Hence any function vanishing at (p0,p) lies in
J2 + Ai (g) W. In particular, as ^(A^-) = 0, J^ C h + Ai (g) IV. []

REMARK. — The lemma does not apply to ei e S, because J^ does not
vanish at (e,, e,). In fact, if e, e <S, then M(e,) is not a B-module. Hence
there are two cases in the proof of th e following proposition, depending
on whether or not p e E.

PROPOSITION 5.2.—Letp € EUS. Then the point module corresponding
to p is M(p) = A/AW where W C Ai is the subspace vanishing at p .

Proof. — Let p e E. There is a surjective map A/AW -> M(p), so
it suffices to show that dim(An+i / AnW) = 1 for all n > 1 (we did the
case n = 1 in (5.1)). Since A/AW ^ B/BW it is enough to show that
dim(B^i/BnW) = 1 for all n > 1.

Let i : E -^ P3 be the inclusion, and let C = z*(9(l). Define

Cn = C, (g) CT*(/:) (g) • • • (g) (a71-1)*^).

^ [21, §3], it follows that Bn-^-i/BnW is the cokernel of the map
H°(E, rj 0 W -^ H°{E, r^+i) which is the restriction of the map

H\E^ £,) 0 H\E^ C) -. H°(E^ £,) 0 H\E^ C^) -. H°(E^ C^i).

TOME 121 — 1993 — ?1



MODULES OVER THE 4-DIMENSIONAL SKLYANIN ALGEBRA 73

Note that W = H°{E^C(—p)). Hence we wish to show that the cokernel
of the map

H\Cn) 0 H°(£{-p)) —— H\Cn) 0 H^C^-pY^

— — — H ^ C n ^ ^ - p Y ' ) ———H°(E^n^ )

is of dimension 1.
Apply Cn ® — to the sequence

o ̂  c^-pY' -^ ̂  -^ c^lc^-pY' -^ o
and take cohomology. Since deg(Cn ̂  C^-pY") > 0 (actually = 4n + 3),
^{Cn 0 ̂ (—pYn) = 0 and we have an exact sequence

0 - H^Cn^-pY^ ——— ^°(£n+l) ——— H^Cn^/^-pY^ - 0.

These spaces have dimensions 4n+3, 4n+4, and 1 respectively. Hence it
suffices to prove that the cokernel of the map

H\Cn) ̂  H^^-pY^ —— H°{£n ̂  ̂ -pY')

is zero. Apply [13, thm 2 (b)] with F = Cn, L = C^-pY" and i = 0, to
conclude that this cokernel is indeed zero (the hypothesis of Mumford's
theorem only needs to be checked for i = 1, and by degree arguments it
is satisfied).

Now suppose that p = ei e S. Let Wz := Cxo C • • • © Cxi C • • - C Cxs
be the subspace of Ai vanishing at ei. A careful examination of the
defining relations of A shows that AWi is a 2-sided ideal, and that
A/AWi ^ C[xi\. In particular, there is a surjective map C[xi] —> M(e^),
and because the Hilbert series are the same this map is an isomorphism.
Thus, A/AWi ^ M{ei) as required. D

A more elementary proof of 5.2 follows from 2.13.

LEMMA 5.3. — Let p, q C E. Then there is a short exact sequence

0 —> K —> M(p, q) —> M{p) —> 0

where the kernel K is a shifted line module.

Proof. — Let u,v,w € Ai be such that £pq = V(u,v), and such
that V(n,v,w) = {p}. Thus M(p) ^ A/Au + Av + Aw, and M(p,q) ^
A/AH+AV. This shows the existence of a surjective map M(p, q) -> M(p)
with kernel K ^ Aw, the submodule ofA/Au+Av generated by the image
of w. Its Hilbert series is (1 - t)~2 - (1 - t)~1 = 1(1 -1)~2, so Aw is a
shifted line module. Q
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REMARKS:

1. — If p + q ^ E-z, then ,̂g meets E U S only at p and 9, so the
only point modules which are quotients of M(p,q) are M(p) and M(q).
However, i f p + ^ = c ^ e £ ' 2 , then £pq passes through the point e, e «S,
so M{ei) is a quotient of M(p, q). This describes all the ways in which a
point module can arise as a quotient of a line module.

2. — Our notation obscures the fact that there is only one surjection
(up to scalar multiples) from M(p,p) to M(p). This is implicit in the proof
of 5.3 : p determines Cu + Cv + Cw, the subspace of A\ vanishing at p,
so if £pp = V(u,v), then the kernel of any map M(p,p) —^ M(p) must
contain Cw = (Cu + Cv + Cw)/{Cu + Cv).

3. — Next we determine the line module K in 5.3. This is done in 5.5,
and 5.7 describes the kernel of the map M(p,cc^ — p ) —> M(e^).

LEMMA 5.4. — Let p, q 6 E. The elements of £2 may be labelled
E^ = {uji,ujj^k^(} in such a way that:

(a) p + q i {^i^j}, ^i + ̂  ^ {p - q,p - q - 2r} and
(b) there exists 0 7^ n € Ai 5nc^ ^/m^ ('u)o = p + q + (^ — .p) + (^ — 9)

and u(ej} 7^ 0.

Proof. — If p + g ^ £2 then (a) is easily satisfied. On the other hand if
p + q = ujn then {cc^ + c^j, cc^ + ̂ k^j + ̂ fc} consists of 3 distinct elements,
so one of these is not in {p — q,p — q — 2r}. Again (a) holds.

Now pick 0 / u G Ai with the zero locus as in the statement of the
lemma. Now u(ej) = 0 if and only if either p-{- q == ujj or p-\- (uji — q) = ujj.
Since these possibilities are excluded by (a), (b) is also true. [\

THEOREM 5.5. — Let p, q € E. Then there is a short exact sequence

0 —> M(p + T, q - r)[-l] —> M{p, q) —> M(p) —> 0.

Proof. — Choose c<^,c^j G E^ and u G A\ as in 5.4. Thus

(^)o == (?) + (q) + (cj, - p) + (^ - g).

Define 0 ^ ?;, w G Ai by ('y)o = (p) + (g) + ((^j — p) + (cc^- — ^) and
(w)o = (p) + (^ — p) + (^j — p) + (^ + ^j + ?)• The careful choice
of uji and ujj ensures that u^v^w are linearly independent. Therefore
V(u^v,w) == {p}, and the secant lines V{u,v) == £pq^ V(u,w) = ^p^,-p
and V('y,w) = £p^^p are pairwise distinct. By 5.3, Aw C A/Au + Av is
the line module to be determined. By 4.4 there exist non-zero elements
a*, y , 6, b' e Ai such that xw — bu = yw — b'v = 0. Furthermore, since
div('u/w) = (q) + (u^i — q) — (ujj — p) — (^ + ̂  + p) we must have
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(x)o = (q - r) + (uji - q - r) + (p + r) + (cj, - p + r). Similarly
Q/)o = (Q ~ r) + (^j - <7 - r) + (p + r) + (c^- - ,p + r). Notice that x
and ?/ are linearly independent : if not then {x)o = (y)o so

(^ - q - r) + (^ - p + r) = (^- - g - r) + (^- - p + r),

whence uji — q — r = ujj — p + r contradicting our choice of uj^ and ci;j.
Therefore Aw ^ A/Ax + A^/ and V(x, y) = £p^r,q-r- D

The next result should be compared with [14, thm 3.2].

PROPOSITION 5.6. — Suppose that p — q ^ Z • 2r. Then M(p,q) has a
basis {cij | (%, j ) G N2} w^ ^e property that'.

(a) M(p, q)n has basis {e^- | i + j^ = n} ;
(b) Ad, ̂  M(p + (j - z)r, 9 + (z - j ) r ) ;
(c) Aeij has basis {ei^-kj-^-f. \ k^£ > 0} ;
(d) ifx G Ai, ^en o-e^ C Ce^+ij © Ce^j+i;
(e) if x G Ai, ^/ien .re^ G Ce^+ij if and only if x(q + {i — j)r) = 0,

and xeij C Ce^j+i %/ and only if x(p + (j — %)r) = 0.

Proof. — Write M = M(p,g), and pick 0 7^ eoo ^ ^o- Clearly (a) is
true for n = 0, and (b) is true for i = j = 0. The truth of (c) and (d) will
follow from the way in which the basis is constructed

Since p ^ g, there are short sequences

0 -. K{p) —— M(p, q) —— M{p) -^ 0,

0 ̂  K(q) —— M(p, q) —— M(<?) ̂  0

where, by 5.4, K{p) = Aeoi ^ M(p + r, q - r) and ^(9) = Aeio ^
M(p — r,g + r), for some eoi,eio C Mi. The elements eoi and ^10 are

linearly independent, because if not, then

M{p) ̂  M/Aeoi = M/Aeio ^ M(^),

whence p = q (which contradicts the hypothesis on p and q). Since
dim(Mi) = 2, it follows that {eol^io} is a basis for Mi. This proves (a)
for n = 1, and (b) for z + j = 1.

Since p — g ^ Z ^ r . p + T ^ g — T, so the previous paragraph may be
applied to Aeoi ^ M(p+T, q—r). Hence there exist 6025 ̂ n e M2 such that
Aieoi = Ceo2 0 Ceii, and Aeo2 ^ M(p + 2r, q - 2r) and Aen ^ M(p, 9).
Similarly, there exist e'n.eso e M2 such that Aieio == Ceso 0 Ce'n, and
Ae2o ^ M(p - 2r, g + 2r) and Ae'n ^ M(p, ^).
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We will now show that Cen = Ce'n. By 6.1 there exists a central ele-
ment 0 G As such that ^M(p, q) ̂  0. Then 0 7^ f^eoo ^ ^2. Since a point
module associated to a point of E is a B-module, f^M(j?) = ^M(q) = 0.
Hence ^eoo ^ Aeoi FlAeio. Let ZA, ^ € Ai be such that £pq = V(u^ v). Then
ueoo = veoo = 0. Since Aen ^ M(p,q), we also have ven = i^n = 0.
On the other hand, if ue^ = ve^ = 0, then ^p+2r,g-2r = ^(^5 ̂ ) == ^pq;
this forces {p + 2r, ̂  — 2r} = {p, g} which is impossible, since r ^ £2
and p — q ^ Z.2r. Hence Cen is the unique 1-dimensional subspace of
Aieoi which is annihilated by u and v. But, since ^ is central, f^eoo is
also killed by u and v, so Cen = C^eoo. Similarly, Ce^ = Cf^eoo. Thus
Cen = Ce^, and we can take e'n = en in the previous paragraph.

Now M<2 = A^eoo = Aieoi + Ai^io = Ceo2 + Cen + Cc2o. Since
dim(Af2) = 3, {eo2? en? ^20} is a basis for M^. Hence (a) is true for n = 2,
and (b) is true for i + j'' = 2.

We proceed by induction. Suppose we have obtained e^ for all %4-j < n,
that (a) is true for all m < n, and that (b) is true for all i + j ^ n.
We apply the earlier arguments to Aie^-^. This gives elements e^^n-i
and e^_^i in Mn+i such that Ai^-z = Ce^^n-i + ̂ 'i,n-w
The previous argument applied to A-^e^^-i and A\Ci-\^-i-\-\ shows
that we can take ei^n-i-^-i = ^iri-i-\-i' H611^ we have elements e^^-^+i
(0 ^ i <, n+ 1), such that

Ae^n-z+i ^ M(p + (n + 1 - 2z)r, g - (n + 1 - 2z)r),

and A\Ci^-i = Ce^+i^-^ + Ce^-^-i-i. (Notice that we needed to use
the fact that p — q ^ Z2r.) Since Mn-^-i = AiMyi, it follows that
{eo ,n+i , ( ° i ,n - - -,^,1,6^+1,0} spans M^+i, and since dim(Mn+i) = n + 2,
it is actually a basis. This proves (a) for n 4-1, and (b) for i + j = n + 1.
Hence (a) and (b) follow by induction. []

REMARK. — If p — q € Z • 2r, then M(p, 9) contains a submodule
isomorphic to M{p1\p') for some p', and the arguments we have just used
fail — indeed there is only one submodule of M(p' , p ' ) such that the
quotient is isomorphic to M(j/), so we are unable to obtain eoi and eio
as in the proof of the proposition.

The basis has the property that if ^l € A2 is central, then f^j C
Ce^+ij+i for all i,j (since f2 annihilates every point module M{p)
withp C E).

THEOREM 5.7. — Let p, q G E be such that p + q = ̂ i € £'2. T/ien there
is a short exact sequence

0 ̂  M(p - r,g - r)[-l] —— M(p,q) —— M(e,) -^ 0.
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Proof. — Let u^v^w e Ai be such that V(u^v) = £pq and V(u,v^w) =
{ei}. By 5.3, the kernel of the surjection M(p,q) -^ M(e^) is K ^ Aw
contained in A/Au + Av. Thus the kernel is isomorphic to M(£) where £
is the line V(x, y)^ and x, y G Ai satisfy a:w, ^/w G AIZA + A\v.

We can choose u^v^w such that V(iA,'?;),V('u,w) and V('y,w) are three
distinct secant lines of E. For example, choose u^v^w such that

(u)o =p-}-q-\-r-{-s,
(^)o =p-\-q-\-rf + s^
(w)o = r + s + r' + 5'

with r^s^r1\s' in general position subject to r + 5 = r ' + 5' = o^. Now
apply 4.4 to these three secant lines. This gives x^y^b^V e A\ such that
xw — bu == ?/w — &'v == 0. Since w is not zero at p or ^ but both u
and 'y are, it follows that (x)o and (?/)o both contain (p — r) 4- (q — r).
Thus V{x, y) = ip-r,q-r as required. []

We now study the finite dimensional simple quotients of point modules.
First consider a graded algebra A = C © Ai (D As 9 • • • generated by Ai,
with dim(Ai) < oo.

By [2] the point modules for A are parametrised by a space F which is an
inverse limit of projective varieties. Furthermore, there is a map a : T —> F
such that if p G r, and M(p) is the corresponding point module, then
M(p~a) is isomorphic to the submodule M^p)^ = ®.>i M(p)j of M(p).
ThMsM{p)^k^M(pa~k).

Fix a basis XQ^ ... ,a^_i for Ai, and consider these as a system of
homogeneous coordinates on P(A^). Suppose (as is the case for the
Sklyanin algebra, and the 3-generated 3-dimensional regular algebras
of [1]) that there is an embedding F —^ P(A^), such that a is an
automorphism of F, and for each p € F, M(p)o and M(p)i have bases eo
and ei with the property that a^eo = ^i(p)^i to1' all %. Then M{p) has
a basis CQ, e i , . . . such that xej = x(p°' ^e^+i for all x C Ai, and all j.
This assumption applies in 5.8 and 5.9.

The point modules for the Sklyanin algebra are parametrised by E U S
[21, §2], and the automorphism is given by a(p) = p + r if p C E,
and cr(e^) = €i. Hence if p G E then M(p) has basis e -̂ such that
xej = x{p — jr)ej-\-\ for all x G Ai.
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LEMMA 5.8. — Let M = M(p) = Aeo be a point module as above Let
a e N.

(a) Let N be a submodule of M which does not contain any ei. If
dim(M/N) = a, then p^ = p for some b e { 1 , . . . , a} ; in particular \(a)p\
divides b.

(b) Suppose that \(a)p\ = a, and N is a submodule of M such that
dim(M/N) = a. Suppose that N ' ^ N is a submodule of M. If N ' ^ M
then N ' contains some ej.

(c) Suppose that \{a}p\ = a. For each 0 7^ A c C, N = A(eo - AeJ
is a proper submodule of M with basis {e, - Xe^a \ i > 0}. Furthermore,
M/N is simple with basis {eo, e i , . . . , e^-i}.

W V \{(T)P\ = oo? then the only simple quotient of M(p) is the trivial
module.

Proof.
(a). — Choose b minimal such that N contains an element of the form

e = E^=o Vz+j with ^Afc ^ 0. Clearly 1 ̂  b < a. Let XQ,X^ . . . , Xn-i
be a basis for Ai. For each k, N contains

xke= ^ ^^^""^e^+i.
0<3<b

Consider the 2 x n matrix, the rows of which are the homogeneous
coordinates of the points pa~^ and p^"1"6, namely

x=^Pa~^~j))^^<n-r
If rank(X) = 2, then ^(p^Mp^"') - ̂ (^"^(p^"') + 0 for
some k and £. Hence N contains the element

(x^p^'^xk - x^p^'^x^e
which is a linear combination of e,+i,... ,e,+b+i with the coefficient of
6,4-1 non-zero, and the coefficient of e^+i equal to zero. This contradicts
the minimality of b, so we conclude that rank(X) = 1. Hence the rows are
scalar multiples of each other. Therefore p^ = p^\ whence p = p^.

(b). — Suppose that TV' does not contain any Cj. Then din^M/TV') =
d < a and (a) applies to M / N ' . That is, a = \(a}p\ divides b for some
b C {1,..., d}. This is impossible.

(c). — Define ^ : M(p) -^ M(p)>a by ^(e,) = e,^. Because p^ = p,
^ is A-linear. Thus N = im(l - \(p) has basis

{(l-A(^)(e,) | z > 0} = {e, - Ae,+a i > 0},
and M/N has basis as claimed.
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Suppose that TV' ^ N is a submodule. If TV' contains some e^-, choose
the minimal such j. lij > a, then ej-a—^j € IV C TV' implies ej-a ^ N ' .
Hence j < a. But then ea e TV', whence eo ^ N^ so N ' = M. Hence by (b)
M/N is simple.

(d). — Suppose that M/N is a simple quotient of M. If N contains e^,
then M/N is trivial, since M/Aej = M/M^3 has a composition series
all of whose factors are the trivial module. Hence if M/N is a non-
trivial simple quotient, then (a) applies, and this contradicts the fact
that \(a)p\ = oo. Q

PROPOSITION 5.9.—Let M{p) be a point module as above. The following
are equivalent:

(a) ̂  =p',
(b) M(p) has at least one non-trivial 1-dimensional quotient module;
(c) for all X G Cx ^ M{p)/A(eo — Aei) is a 1-dimensional A-module;
(d) Ann(eo) is ^ two-sided ideal^ and A/Ann(eo) is a polynomial ring

in one variable.

Proof.
(c) =^ (b) is obvious, and (a) <^> (c) by 5.8 (c).
(b) <^ (a). —Let M(p)/N be a non-trivial 1-dimensional module. Since

every composition factor of M(p)/Aei is the trivial module, e^ ^ N. Hence
?=?- by 5.8 (a).

(d) =^ (b). — The Hilbert series of M(p) ^ A/Ann(eo) is (1 -1)~1, so
M{p) ^ C[X] has plenty of 1-dimensional quotients.

(a) =^ (d). — We have M(p) = M(pa~k) ^ M(p)>k, so Ann(eo)
annihilates every e^. Thus Ann(eo) = AnnM(p) is a two-sided ideal,
and A/Ann(eo) ^ C[X], the only ring with Hilbert series (1 -1)~1. D

We now return to the Sklyanin algebra, and observe that 5.9 applies to
the four points e^, since e^ = ei.

PROPOSITION 5.10. — Let {ij,k,£} == {0,1,2,3}. For each %, define

Ii := Axj + Axk + Axa.

Then M(e,) ^ A/J,, and Ii = AnnM(e,).

Proof. — It follows at once from the defining relations that Ii is a two-
sided ideal, and that A / I i ^ C[xi}. It is obvious that Ii C Ann(M(e^)o),
so the result follows. []
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THEOREM 5.11. — If r is of infinite order, then AnnM(p) = (^1,^2)
for all p G E.

Proof. — Set J = AnnM(p). Since M(p) is critical, J is a prime ideal
(this well known result can be proved by combining [9, prop. 5.6] with
the argument in [22, prop. 3.9]). By the remarks after [21, cor. 2.8],
J D (^1,^2)- Suppose the result is false.

Then A / J is prime of GK-dimension 1, so by [19], it is a finite module
over its center. By Goldie's theorem A / J has a simple artinian ring of
fractions, Q say. Since M(p) is a faithful A/J-module, Q ^ A / J M(p) ̂  0,
whence Q embeds in a direct sum of copies of this. Therefore A/J embeds
in a (finite) direct sum of copies of M(p). In particular, a finite dimensional
simple A/J-module is also a quotient of M(p). However, by 5.8 (d), the
only such module is the trivial module. Hence A/J has a unique finite
dimensional simple module. This is absurd since dim(A/J) == oo, and A/J
is a finite module over its center (for example, it contradicts [20]). D

6. Annihilators of line modules
Write Z2 = C^i © Cf^ for the linear span of the two central elements

in A2 described in [21, § 3.9], and in section 1 above.

We summarize the results in this section. THEOREM 6.3 proves that
if p, q <E E, then there exists a unique (up to scalar multiple) non-
zero element of Z^ which annihilates M{p,q). We write ^(p,q) for this
element. It is best to think of fl(p,q) as an element of the projective
space P(Z2) ^ P1. and we shall usually do this. Next 6.5 and 6.6 show
that f2(p, q) depends only on p+q, so we prefer to write ^(p, q) = ̂ {p+q).
It is then proved that ^(r) = Q(r') if and only if either r = r ' or
r + r' = -2r. Finally 6.13 proves that every element of P^) is of the
form ^(r); that is every element of Z^ annihilates some line module. It
is also shown that if r is of infinite order then AnnM(p,q) is generated
byf2( j?+g) .

LEMMA 6.1. — If M is a line module, then Annz2M is a ^--dimensional
subspace of Z^. That is, M is annihilated by a unique (up to scalar
multiples) non-zero homogeneous central element of degree 2.

Proof. — Let M = A/Au + Av. Since V(u, v) is a secant line, 4.4 shows
that there exists 0 ^ a, b G A, such that av - bu is a non-zero central
element of A annihilating M.

Now we show that M cannot be annihilated by both Oi and ^2-
If it were, then M would be a B-module. However, B is a domain
of GK-dimension 2, so any cyclic B-module of GK-dimension 2 must
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be isomorphic to B itself. But B and M have different Hilbert series
soM^B. Q

PROPOSITION 6.2. — Let 0 ̂  ̂  C Z2. T/ien A = A/(^) zs a ^omam.

Proof. — Suppose not. Then there are non-zero homogeneous elements
a,b e A such that ab e (^), but a ^ (Q) and 6 ^ (^). Choose
such a and 6, such that deg(a) + deg(b) is minimal. Choose ^/ such
that Cf2 e TO' = c^i e 0^2.

Claim : ̂ e image of f^ m A is regular.

Proof : if not then ^ I ' x = ^y for some x,y with x ^ (^l}. Write
f^ = Aif^i + A2^2, and ^ = /^i + ^2^2. Thus

(Ai^i + \^)x == (/^i^i + ^2^2)^
=^> (Airr - ̂ i?/)f2i = (fi^y - X^x)^
===^ ^y - \2x = f2iz,

and AI.T - ̂ y = ̂ z for some z € A, since (f^i, ^2) is a regular sequence
in A. In particular ^z= (Ai^i +\^)z = Xi^y - >2x) + \2(\ix - ̂ y)

= (Ai/^2 - ̂ lA2)2/. Since ^ and ^/ are linearly independent, f ' 2 )
\^1 ^2/

is invertible, whence y = X^z for some 0 7^ A e C. Hence '̂.r = A^2f^
so a; = Af^^ G (^). This contradiction proves the claim.

Since A/(^,f2') = A/(^,^) is a domain, either a C (f^) or
& C (f^, ̂ /). Suppose that a = ^c+^'d. By cancelling off high order terms,
we can assume that deg(c) = deg(d) = deg(a) - 2. Now ^c& 4- ^db =
ab G (f^), so ^/^ e (^). By the previous paragraph, db e (n). But
deg(d) + deg(6) < deg(a) + deg(&), and b ^ (f2), so by choice of a, b
it follows that d € (^). Therefore, a (= f2c + ̂ d) is also in (Q). This
again is a contradiction, so a ^ (f^'). Therefore b G (^2,^'). A similar
argument shows that b € (^2). This too is a contradiction, and we are
forced to conclude that no such a and b exist. Thus A is a domain. []

REMARK. — We will prove in 6.12 that the center of A/(f2) is a
polynomial ring in one variable when r is of infinite order.

THEOREM 6.3. — Suppose that r is of infinite order. Then the anni-
hilator of a line module is generated by a non-zero homogeneous central
element of degree 2.

Proof. — Let p,q e E, and set I = AnnM(p,q). Since M(p) is a
quotient ofM(p, q), and AnnM(p) = (^i, ̂ 2) by 5.9 we have I C (^i, ̂ 2).
By 6.1, there exists 0 ^ 0 G A2 central, such that 0 G I . By the
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uniqueness of f2, we have I -^ (^1,^2). However, A/(f2) is prime of GK-
dimension 3, and since I is also prime (because M(p, q) is critical), we
conclude that (^) = I . \\

Write f^(p, q) for "the" element determined by 6.3. Thus when r is of
infinite order AnnM(j>, q) = (^(p,q)). The rest of this section is devoted
to getting more precise information about f2(p, q). In particular, it will be
shown that it depends only on p + q, so will be denoted by Q(p + q) once
that has been done.

Define non-zero central elements ^(cc^), i = 0,1, 2,3, in As as follows :

^(o;o) = (1 + a-^xi + (1 + aia3)rr| + (1 - ai).rj,
^(0:1) = (1 + a^)x^ + (aio-3 - 03)^1 + (ai + o^i,
^(^2) = (1 + aiQ^)^ + (03 - a^a^)x^ - (ai + a^a^)x^,
^3) = (1 - ai)^ + (ai + 03)^ + (o/i + aiQ/3)a:|.

These are the only degree two central elements of "rank 3" i.e. which are
linear combinations of only three of the x2.

PROPOSITION 6.4. — If i is a secant line passing through e^, then ^t(uji)
annihilates the line module M{£). In particular, all line modules corre-
sponding to lines on the singular quadric Q(w^), are annihilated by the
central element ^(cc^).

Proof. — Write £ = V(u,v\ and let av — bu € A^ be a non-zero
central element annihilating M{£). Since av — bu is central it is a linear
combination of x'j with j = 0,1, 2,3. Say av - bu = ̂  p^jx2 Then

a^v—b^u— y ^ ^ l j x j ̂  X j ^ ^2 •

Since e, G £, u{ei) = v{ei} = 0. Therefore, a 0 v and b (g) u both vanish at
(e^, Ci), as do all the elements of 1^. Therefore (J^^jXj 0 ̂ j)(e^ ei} = 0,
so p,i = 0. But there is a unique (up to scalar multiple) non-zero central
element in As, whose coefficient of x2 is zero, namely ^2(^). Hence
av —bu = ̂ (^), up to a scalar multiple. []

After 6.4, one can say, somewhat inaccurately, that the singular
quadrics correspond to the singular central elements.

PROPOSITION 6.5. — Let £ and i' be lines lying on a common quadric
containing E, and suppose that £ D V = 0. Then there exists a non-zero
central element ̂  € As which annihilates both M(£) and M{t').
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Proof. — Write £ H E = {p,q} and V H E = {p1', q1}. By 3.4 (d), Q is
smooth, so by 3.10 (c), p + q = p ' + q1. Choose any x,y,z,w G E such
that {x, y} -^ {z, w} and x - { - y + p - } - q = z - { - w - { - p - ^ - q = 0 . Then there
exist linear forms IA, v, u' ^ v ' e Ai such that

(u)o = (^) + (y) + (p) + (q),
(v)o = (z) + (w) + (p) + (g),

(n')o = (^) + (?/) + (?') + (^/),
(^)o = (^) + (w) + {?') + (^/).

Thus ^ = £pq = V(u, v) and V = ̂ ^ = V(u', v'}.

Choose r G E^ such that r ^ {p, 9}+£'2? and such that r is not a zero of
u^v^u' or z/. Replace uf and ^/ by non-zero scalar multiples of themselves
such that {u-u'^r} = (v-v'^r) = 0. Then (u-u'^Q = (.r) + Q/) + (r) + (r)
and (v — v'}^ = {z) + (w) + (r) + (r) for some r G E. In particular,
V(n—'?/,'?;—?/) == £rr ls secant line of£1, and since r+r = —(.r+^/) = j)+9,
this line also lies on Q by 3.10 (d).

Apply 4.4 to ^rr- There exist 0 7^ a, b € Ai such that

(a (g) (v - ?;7) - b 0 (^ - ̂ ))(r) = 0.

In fact, we must have (a)o = (x — r) + (y — r) + (r + r) + (r + r), and
(^)o = (^—^)+(^;—^)4-(7 '+/r)+(7'+^). in particular, av—bu= avf—bu'
in A.

Now apply 4.2 to V(^z, v) = £pq. There exists A G C such that

( a ( ^ v - \b(S)u)(^r) =0.

Similarly there exists A' G C such that

(a(g)2/-V6(W)(A^) =0.

Hence &(g)((A- l)u - (A7- 1)^) vanishes on A^.. Thus (A-1)^-(A'-1)^
vanishes on E^ and since £' spans P3, (A — l)u = (A7 — l)u'. However,
(n)o 7^ (^)o since ^ ̂  ^/. Therefore A = A' = 1.

Therefore (a 0 ̂  - b 0 n)(A^-) = (a 0 ̂  - & 0 ̂ )(A^) = 0, so GW - bu
is central in A. Since V(zA, v) = £pq and r + T ^ {p + T, ^ + r} it follows
from 4.4 that av — bu -^ 0. Therefore av —bu is a non-zero central element
of A. Hence the result. []
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COROLLARY 6.6. — Let z e E. Then there exists a non-zero element,
Q.(z) say, in Z^, such that fl{z)M{p,q) = 0 whenever p + q = z. In
particular, fl(p + q) annihilates M(p, q).

Proof. — Suppose that z = p + q = r + s. Set £ = £pq and V = £ r s ' If
z = uji, then £ and i' both pass through e^, so 6.4 shows that there exists
0 ^ ^ e ^2 such that ^M(£) = QM(^) == 0. If z e E^ then £ and V lie
on the smooth quadric Q(z), and by 3.10 do not intersect. Hence by 6.5,
there exists 0 7^ ^ € Z^ such that ^M(£) = ̂ M(^) = 0. The notational
definitions give f^(p + q)M{p, q) = 0. []

We now turn to the problem of deciding exactly when two line modules
are annihilated by the same homogeneous degree two central element.
The result we prove in 6.9 (d) is that M(p,q) and M { p ' , q ' ) have the
same homogeneous degree two central annihilator if and only if either
p + q = p ' + q' or (p + q) + {?' + q ' ) = -2r. The proof begins with a lemma
which contains most of the technicalities.

LEMMA 6.7. — Let r, r1 G E. Pick uji € E^ such that r -^ uj^ and r ' ^ ̂ .
Suppose that r + r1 ̂  0. Let p <E E be such that

2p^ {2 r+ r / , r+2 r / , r+ r / +cc ;„ r -2T , r / -2T} .
Define :

q=xf =r -p , x = q ' =r' -p, y = y ' = p - (r + r ' ) ,
w = w' = uji - p, z = p + uji - r, z ' = p + uji - r ' .

Then :
(i) w ^ {x.y.q};

(ii) y ^ {p,q,x,z}\
(iii) z1 (f. {q, y} ;
(iv) q - r ^ {p + r,q + r} ;
(v) q' - r ^ {p + T, g' + r}

(vi) 0 =p-h<7+a;+^ =p+(/+a/+^/ = p + g + w + ^ = p+^'+w'+z'.
Proof. — All the following conclusions contradict the hypotheses :

(i) w = x =^ r ' = uji :
w = y =^ 2p = r + r' + ̂  ;
w = q => r = uji.

(ii) y = p = ^ r - \ - r f = 0 :
y = q =^ 2p = 2r + r7;
^ = z => r' = a;,;

y = x =^ 2p = 2r' + r.
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(iii) z ' = q =^ 2p = r + r ' + ̂  :
Z' = y =^ r = Wi ;

(iv) < 7 - T = p + T = ^ 2 p = r - 2 r :
q - r = q - { - r = ^ 2 r = 0 ;

(v) g' - T == p + T =^> 2p = r' - 2r :
q' - r = q' + r =^ 2r = 0.

(vi) This is straightforward. []

PROPOSITION 6.8. — Let r, r 1 C £'. Suppose that r -^ r' and r + r' 7^ 0.
Tften f2(r) = ̂ (r') (up to scalar multiple) if and only ifr + r' = -2r.

Prw/. — Choose ^i,p,q,x,y,w,z,q',x'\y'\w1\z' e E as in 6.7. Thus
^(r) = f2(p + 9) and ^(r') = f2(p + </).

By 6.7 (vi) we can pick u = u ' , v, v ' e Ai such that

(u)o =p-^-q-\-x+y,

(v)o =p-{-q-\-w-\-z,

<y)o =p+g /+^ /+^^
(^)o =p+a;+w /+^ / .

Each of these linear forms is determined up to a scalar multiple. By 6.7 (i),
the planes u = 0 and v = 0 are distinct. Thus £ = V(u, v) and V = V(u', v ' }
so ^2(r) e A^v + Ai-u and ^(r') e A^' + A^u'.

By 6.7 (ii), 2;(2/) ^ 0 and by 6.7 (i), (ii), (iii), v ' ( y ) ^ 0. Hence
we can, and do, pick v and v ' such that (v - v / ) ( y ) = 0. Therefore u
and v - v ' have two (distinct) common zeroes on E, namely y and p.
However v{a) = 7/(e,) = 0 since p + w = p ' + w' = ^. Therefore
(v - ̂ )(ez) = 0. In contrast n(e,) ^ 0 because w = ̂  - p ^ {x,y,q}.
Therefore V(u, v - v ' ) = ipy is a secant line of E.

Let a = a' e Ai be chosen such that

(a)o = (a')o = (x - r) + (^/ - r) + (9 - r) + (p + 3r).

By 6.7 q - r ^ {p + T, g + r} so by 4.2 and 4.4 applied to V(^, v) = £pq,
there exists b e Ai such that f2(r) = av-bu. Similarly there exists V C Ai
such that ^(r') = a'z;' - b ' u ' .

Therefore ^(r) - ^(rQ = a(v - v ' ) - (b - b'}u, since u = u ' , so
fl(r) = ̂ ( r ' ) if and only if (a (g) (v - v^ - (b - V) (g) u) (F) = 0. However

(a(S)(v- v1) -(b- b1) (g) u)(Ar) = 0,
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since av-bu and a'v'-Vu1 are both central. Consideration of (a)o, together
with 4.4 applied to V(u,v) = £py, shows that

(a (g) (v - v'} - (b - b') (g) u)(F) = 0

if and only if y - r e [p + r,y + r}. Since r ^ E^ it follows that
av-bu = a!v' - b'u' if and only if -2r =p-y. Equivalently ^(r) = ^(r')
if and only if r + r ' = —2r. []

COROLLARY 6.9. — Let r, r' € £'.
(a) 7/r + r' = -2r, ^en ̂ (r) = ̂ (rQ.
(b) Ifr^E\E^ then^(r)^^{-r).
(c) If^{r) = ̂ (r'), ^/ien e^/ier r =r/, or r + r' = -2r.
(d) Q(r) = ̂ (r') z/ and only if either r = r' or r + r' = —2r.

Proo/.
(a). — The result is true if r = r ' , so suppose that r -^ r ' , Since r ^ E^,

r + r' ̂  0, so 6.8 applies. Hence ^(r) = ^(r').
(b). — Set s = -2r - r, and s ' = -2r + r. Thus s + s7 = -4r ^ 0,

and s -^ s ' because r ^ ^2, so by 6.8 Q.(s) -^ ^(^/). However, by (a)
^l(s) = ̂ 2(r) and f^(5') = ^(-r), hence the result.

(c). — Suppose that ^(r) = ^(r') and r -^ r1. If r + r' 7^ 0, then 6.8
applies, proving that r + r' = -2r. On the other hand, if r + r' = 0, then
r € £2 by (b). This in turn implies that r = r ' , a contradiction.

(d). — This follows from (a) and (c). Q

THEOREM 6.10. — Letp,q,p'\q' c E. If r is of infinite order then

AnnM(p, q) = AnnM(pf, </)

if and only if either p + q = p ' + q' or (p + q) + ( p ' + </) = —2r.

Prw/. — This is a consequence of 6.3 and 6.9 (d). []

For completeness we also describe the annihilator of a plane module
when r is of infinite order.

PROPOSITION 6.11.—Suppose that r is of infinite order. Let M{p, g, r, s)
be a plane module. Then AnnM(p, q, r, s) = 0.

Proof. — Set M = M(p, q, r, s), and J = Ann(M). Let I = {^(p + q)).
Then J C J, since M(p, q) is a quotient of M. Since A/J is prime, and
GKdim(A/J) = 3, either J = 0 or J = I . If J = 0 we are finished, so
suppose that J = I . By 6.2 A/J is a domain. But M is a quotient of A / J
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of GK-dimension 3, so A / J ^ M. However, A / J = A/flA with ̂  C A2, so
^A/jW = (1 — ^2). ^A(^) 7^ (1 — ^)~3 = hM{t). This contradiction shows
that J = 0. D

The next result answers a question of SKLYANIN [17, p. 269].

PROPOSITION 6.12. — Suppose that r is of infinite order. Then the
center of A is Z(A) = €[^1,^2].

Proof. — Consider B = A/^i.f^)- By [21], B is a noetherian domain
of GK-dimension 2. Hence if the center of B is strictly larger than C,
then B satisfies a polynomial identity by [20]. Hence by [9, §10.3]
GKdim(A/AnnM(j?)) = GKdimM(p) = 1, which contradicts 5.11. Hence
the center of A is contained in C + (f^i, ^2).

First we show that the center of A = A/(f2i) is C^^]- Suppose not.
Pick a homogeneous w € A of minimal degree such that w is central,
but w ^ C[^2]- By the previous paragraph the center of A is contained in
C+ (^2)5 so we can write w = Q.^w'. But A is a domain by 6.2, so w' is also
central in A. However, deg(w') < deg(w), so w' e C^]- Hence w C €[^2]
also.

Suppose the result is false. Pick a homogeneous central element z of
minimal degree such that z ^ C^i,^]- Since z G (f2i ,f^2) we can
write z = QiOi + ^2^2. Moreover, since (^1,^2) is a regular sequence
on A, we may choose 01,02 such that deg(z) == max{deg(ai), deg(a2)}.
The image of z is central in A/(^2i), so 02 C €[^2] + (^i). Hence we
can write 02 = b^ + ^102 where b^ G €[^2]- Similarly, we can write ai =
&i + ^2Ci where &i e C[^i]. Therefore z = f^i + ^2^2 + ^1^2(^1 + 02).
But ^2A ^ C[!T^] is central, and since A is a domain, it follows that ci +02
is central. However, deg(a^) > deg(c^), so deg(ci+C2) < deg(z). Therefore
ci +C2 € C[f^i, ^2]- Hence z € C[^i, ̂ 2] also, which contradicts our choice
ofz. D

Our final result, which completes the circle of ideas in this section,
shows that every non-zero element of Z^ annihilates some line module.
The proof is rather unsatisfactory, because it does not show the real reason
this happens. It would be good to find another proof. One possibility is to
describe the action of A on a general M(p, q) in an explicit way using the
basis in 5.6. That would then allow one to explicitly calculate the action
of the central elements f^ on the generator eoo, and thus determine the
annihilator f^(p + q).

The key technical points in the proof of 6.13 are as follows. Firstly, the
Grassmannian of d-planes in the vector space W is denoted by G(d, W).
The map G{d,W) -^ G(dimlV - d,W*) given by U ^ U1- is an
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isomorphism of varieties. If m e N, and V is a fixed subspace of W,
and V is the subset of G(d, W) consisting of those subspaces U such that
dim(U H V) = m, then the map Y -^ G(m, V) given by U ^ U H V
is continuous. If m € N, and Y is the subspace of G(d, W) x G(d, W)
consisting of pairs (^i, ^2) such that dim(£/i + U^) = m, then the map
Y -^ G(m, W) given by (£/i, U^} ̂  U^ + U^ is continuous.

We will denote the linear span of points p, q, r e P3 by pqr.

THEOREM 6.13. — Every element of Z^ annihilates some line module.

Proof. — We must show that the map E -^ P^) ^ P1 given by
z i-̂  ^t(z) is surjective. Define an equivalence relation on E by z ~ z '
if either z = z ' or z + z ' = -2r. The projection from eo to a general
hyperplane in P3 sends the singular quadric Qo, and hence E, to a smooth
conic. By 3.4 and 3.6, the fibres are ±z. Identifying the conic with P1, gives
a morphism g : E -^ P1. Hence the map z ̂  g(z^r) is a morphism whose
fibres are precisely the equivalence classes. Thus E / r ^ ^ P1.

By 6.10 there is an injective map / : E / r ^ —> P(Z^) given
^ /O) = ^0). Since we are working over C, P1 is homeomorphic to
the 2-sphere S2, so we have an injective map f : S2 -^ S2 which we wish
to show is surjective. If / is continuous, then / must be surjective. To see
this, first recall that a continuous bijective map from a compact space to a
Hausdorff space is a homeomorphism. If / is not surjective, then its image
is contained in a disc 6'2 - {p} so there would be a copy of S2 inside the
disc. This is impossible. Hence the rest of the proof is devoted to showing
that / : E / r ^ -^ P(Z2) is continuous.

Let z, z ' e E. Our goal is to show that if z ' is 'close to z ' then ^{z'}
is 'close5 to f2(>). Fix some p,q,r,s € E in general position, such that
p + q = z. Fix u,v e Ai such that Cu = pqr-L, Cv = pqs1- and
V(u,v) = £pq. Since the addition law on E is continuous, there exist
p ' , q ' G E which are close to p and q respectively, and p ' + q' = z ' . It
follows that the lines Cu' = p ' q ' r ^ and €V = p7^"1 are close to Cu
and Cv respectively in P(Ai).

Since V(u,v) and V(u1\v') are secant lines

dim(Ain + Aiv) = dim(Ai?/ + A^) = 7.

Therefore A^u + A^v and A^u' + A^v' are close to each other in G(7, A^).
The fact that these are secant lines also implies Z^ D (A^u + A^v) and
^2 H (Ai^' + Ai?/) are lines in P^) which are close to each other. But
these lines are precisely ^(z) and f2(^) respectively. Hence the result. Q
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