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MICROLOCALISATION OF D-MODULES
ALONG A SUBMANIFOLD
PAR

TERESA MONTEIRO FERNANDES

RESUME. Soit X une variété analytique complexe. Dans [K-S1], Kashiwara et
Schapira ont défini et étudié un bifoncteur phom dans Db(X ) qui généralise le foncteur
de microlocalisation de [SKK]. A peu prés au méme moment, Kashiwara et Kawai on
introduit dans [K-K3] un bifoncteur dans la catégorie des systémes holonomes réguliers.
Si'on se donne un couple (M, N) de tels systémes, ce foncteur consiste & microlocaliser
le produit formel M X A le long de la diagonale de X x X, considérée comme un
D+ x-module.

Le but principal de cet article est de mettre en rapport les fonctorialités de la
spécialisation et de la microlocalisation ; nous montrons en particulier que le bifoncteur
de [K-K3], que nous notons phom, est ’analogue du bifoncteur de [K-S1] via le foncteur
de De Rham (Théoréme 3.2) dans le cadre des D-modules. Nous n’exigeons pas que M
et N soient holonomes réguliers puisque la propriété essentielle de phom(M,N) est la
régularité de M X NV le long de A.

ABSTRACT. — The analogues of specialisation and Fourier-Sato transform for
sheaves were introduced in the framework of systems of holomorphic differential
equations (D-Modules) by Kashiwara, Hotta, Malgrange, Verdier, Brylinsky et al.,
with a special insight for regular holonomic systems.

With these tools we study a bifunctor on a category of D-Modules which satisfy
a regularity condition and prove that it is the analogue of the bifunctor phom of
Kashiwara-Schapira. This category is larger than that of regular holonomic systems.

Introduction

Let X be a complex analytic manifold. In [K-S1] Kashiwara-Schapira
defined and studied a bifunctor phom in D?(X) which generalised the
microlocalisation functor of [SKK]. Around the same time, in [K-K3|
Kashiwara-Kawai introduced a bifunctor in the category of regular holo-
nomic systems. Given a pair of such systems (M, N), it consists of the
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294 T. MONTEIRO FERNANDES

microlocalisation of the formal product M K N along the diagonal
of X x X viewed as a Dy« x-module.

The main purpose of this paper is to study the functorial properties of
specialisation and the microlocalisation relating both points of view; in
particular we will show that the bifunctor of [K-K3] which we will denote
by phom, is the analogue of the bifunctor of [K-S1], via the De Rham
functor (THEOREM 3.2) in the framework of D-modules. Here we will not
ask M, N to be regular holonomic, since the main point of the definition
of phom(M,N) is the regularity of M X AN along A.

Furthermore, a simple example of the non holonomic case is given.

So we will keep throughout this paper the regularity point of view.
More precisely, we will stay in the following situation.

The manifold X is an m-dimensional complex manifold, Y is a d-
codimensional smooth submanifold. The functor of microlocalisation is
defined in the category of specialisable D-modules along Y (noted By).
The category Ry is the subcategory of By of regular modules along Y,
defined by Kashiwara in [K2].

Given M in By, one defines with [K2] a Dr, x-module vy (M) which
satisfies the fundamental relation Sol(vy (M)) =~ vy (Sol(M)). The vy in
the right term denotes the geometrical specialisation in D?(X) (cf. [SKK],
also [Vel], [Ve2]).

The first section is devoted to the study of vy in the category By
and its further relations with vy in D®(X). Although the 1-codimensional
case has been thoroughly studied in [Me], [Sa], we found useful to develop
here the higher codimensional case, and, as a main tool, we study the
behaviour of specialisation under normal deformation along Y. However
we don’t treat here the specialisation for complexes.

The reduction of the proofs to the so called elementary modules
(¢f. [K2], [Sa]) allows great simplification. THEOREM 1.6 concerning the
induced system in Y was obtained in codim 1 by other method (see [Ma2]).

In THEOREM 1.8 we prove that in the case of a smooth hypersurface Y,
the complex of nearby cycles 1y (M) (of Dy-modules) is the inverse image
of vy (M) (in the sense of D-modules) by the section s : ¥ — Ty X
associated to a local equation defining Y. This is the analogue of a theorem
of [K-S2], in the framework of D?(X).

We also study the behaviour of vy under smooth inverse image. The
behaviour under proper direct image was studied by SABBAH-MEBKHOUT
in [Me].

Since the specialisation of a D-module in By is monodromic as a
Dr, x-module one may define py (M) as the Fourier transform of vy (M)

ToME 123 — 1995 — ~n° 2



MICROLOCALISATION OF D-MODULES ALONG A SUBMANIFOLD 295

(cf. [K-H], [Br-Ma-V]). The section 2 is devoted to the study of puy and
its relation with the microlocalisation functor in D®(X).

In particular we prove that the restriction of uy (M) to Y (Y viewed
as the zero section of T} X) coincides with ' M, where i : Y — X is the
inclusion.

We also prove that although the projection 7 : Ty X — Y is not proper
the direct image of py (M) has coherent cohomologies given by Li* M
the proper direct image is isomorphic to “i' M ; of course the coherency is
also a consequence of [H-S].

The last section is devoted to the study of phom(-,-). Here we stay in
the differential case, but of course all the constructions would work for
microdifferential systems, with slight adaptation, that is, replacing the

V-filtration on Dx by the ring £ of microdifferential operators defined
by [K-K2], [K-O], where A = Ty X (see also [MF1] and [MF2]).

This paper was partially accomplished while I stayed in RIMS, Kyoto
University, under a Matsumae International Foundation Fellowship. There
I had very useful discussions with M. KAsHIwWARA. I am also very pleased
to thank P. ScHAPIRA and Claude SABBAH for their useful suggestions.

1. Specialisation of D-modules along a submanifold

Let X be an n-dimensional complex analytic manifold and let Y C X
be a d-codimensional submanifold. Let Dx denote the sheaf over X of
linear holomorphic differential operators of finite order.

We will call D x-module, or D-module for short, any sheaf of left modules
over Dx and note Mod(Dx) the abelian category whose objects are D-
modules.

Let f be a holomorphic map from the manifold X to the manifold Z.

o Let Dx_.z denote the (Dx, f~1Dz)-bimodule Ox ® f~'Dz and
10z

e Dz x denote the (f~1Dz, Dx)-bimodule

-1 —10®71
UP2) & £795T) @ Ox

X

(for a detailed study of these sheaves see [S], [SKK] and [K3]).
By definition given M a Dx-module and £ a Dz-module :

L
o the inverse imageis “f*L=Dx_; ® [f~IL,
f~ Dz

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



296 T. MONTEIRO FERNANDES
L
« the direct image is ff M =R/, (Dzhx ® M)
Dx
c L
o the proper direct image is ff M=Rf (DZ<—X Q M)
Dx

Let £ and £’ be two left-Dz-modules. Then we have a natural mor-
phism
fH (RHomp, (£, L)) — RHomp, (“f*L,=f*L').

Moreover, if f is smooth one obtains an isomorphism
fH(RHomp, (£,0z)) — RHomp, (“f*L,0x)

(cf. [S] and [K-S2] for a detailed study of these functors).

Let Y C X be a d-codimensional submanifold of X. As usual,
{Dx(m)}men will denote the filtration of Dx by the order and Vy(Dx)
(or V*(Dx) for short, once Y is fixed) the filtration

VE(Dx) = {P e Dx; P(I7) 17,
for every j such that 7, 7+ &k > 0}‘

(Here I denotes the defining ideal of Y.) Let
V*(Dx)

vERIDx)

] gI‘V(Dx) =
kez
e 7:Ty X — Y be the projection of the normal bundle to Y.
Then gry (Dx) ~ 7. Dz, x] where Dz, x] denotes the sheaf of homoge-
neous differential operators over Ty X ; € will denote the Euler operator
which acts by the identity on I/I? as well as any of its local representatives

in VO(D)()
Remark that VO(Dx) is a subring of Dy containing Ox.
Now let M be a coherent D x-module.
A filtration M = |J M7 is a good-V filtration if it satisfies :
J€Z _
i) V¥(Dx) MJ C MI*® for every j and k;

ii) VF(Dx) M7 = MI*F either for j > 0 and k > 0 or j < 0
and k£ <0;

iii) MY is a coherent V°(Dx)-module, for every j € Z.

TOME 123 — 1995 — N° 2
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DeFintTION 1.0. — A coherent Dx-module is specialisable along Y
if for every good-V filtration U*(M) on M there is locally a non zero
polynomial b € C[s] such that

b6 — k) U¥(M) c UFFL(M),

also classically called a Bernstein-Sato polynomial or a b-function of U*(M).

Let us denote by G any section of the canonical morphism C — C/Z.
We fix on C a total order < such that u < v entails u + m < v+ m for
every m € C, and such that m > 0, for m € N; it is well known (see [K2],
[Sa]) that if M is specialisable there exists a unique good-V filtration
Vg (M) admitting a b-function whose zeros are contained in G. Moreover
KAsHIWARA has shown in [K2] that for two such sections G and G’ the
modules

Drox ® 71°° gry,(M) and Dpr,x ® 71 gry,, (M)

[Ty X] Diry x1
are isomorphic over Dr, x, which entails :

DEFINITION 1.1 (see [K2]). — The specialised of M along Y, vy (M),
is the D1, x-coherent module

Dryx ® 77 gry,(M).

[Ty X)
Hereafter, G will stand for
{zeC;0<z2<1}
and if M is a specialisable D-module,
V(M) = VEM).
We also denote G = [0, 1].

Now let us recall that M is regular along Y in the sense of Kashiwara
if there exists locally a coherent Ox-module My C M and a non-zero
polynomial b(s) € C[s] of degree p such that :

1) M is generated by My, that is, M = Dx M,.
2) b(6) Mo C [Dx(p) N V1(Dx)] Mo.
In particular, if M is regular along Y, then M is specialisable.
Furthermore, the category of regular (specialisable) D-modules along Y

is a full abelian subcategory of the category of Dx-modules and the
functor vy (*) is exact.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



298 T. MONTEIRO FERNANDES

We will denote Ry (resp. By) the category of regular (resp. specialis-
able) D-modules along Y. The following result will be an essential tool :

ProposiTiON 1.2. — Let M € By. Then, locally on X, there exists
k € NU {0} and a surjective morphism L — M — 0 where L is the
cokernel of a matriz (N + q) x (N + q) of the form

R(O)I S lq
0 bOI+Q|IN,
—— \_T

where I is the identity matriz, resp. of order N and gq, b(s), R(s) € C[s]
and :

a) R(6) = (0 + codim Y, for some £ € NU {0};

)

b) b (0)e{zeC; k<z<k+1};
) The entries of Q belong to V(Dx);
)

S is a (g, N)-matriz with entries in Dx.

NoTAaTION. — Such a D-module £ is called elementary.

Proof. — Let b(s) be the Bernstein-Sato polynomial associated to G.
Let ko be an integer, ko > 0, such that V(M) = V1(Dx) VF(M), for
all k > ko. Consider M" = DxV*o (M) and choose vy, ...,vn € VF(M)
a familly of local generators of V5o (M) over VO(Dx). Since supp M’ is
contained in Y we may choose uq,...,u, in M such that the images
U1, ..., Uq generate M and that Iy@; = 0, hence (6 + codimY)¢ u; € M”
for some ¢. So we may choose S;; € Dx such that

N
(0+COdimY)ZUj:ZSij’Uj, izl,...,q.
Also,
b(6 — ko) vi = ZQ,W, for i=1,...,N,

with Q;, € V1(Dx), since VForI(M) = V1(Dx) VFo(M). The proposi-
tion follows because M is generated by vi,...,vn5 and uy,...,u,.

TOME 123 — 1995 — ~° 2
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Therefore, an elementary module is an extension
0 — DY/DIBO) + Q) — L — D% /D% (R(O)I) — 0,

with 571(0) C {z € C; k< 2 < k+ 1} and R~}(0) C Z~. Moreover, if £
is in Ry we may take Q;; € Dx(p) where p is the degree of b(s).

LEMMA 1.3. — Let L be of the form DN /DN (b(0)I + Q) without
assumption on b=1(0). Then the right multiplication by b(0)I + Q defines
an injective morphism DY — DY and so L is quasi-isomorphic to the
complezx

DY b(0)I+Q DY

Proof. — Let P, ..., Py € DV with P; # 0 for some i and let k be the
highest order of Pi,...,Py in the V-filtration; let P; € {Py,...,Pn}
be of exactly order k, that is, P; € V¥(Dx) and P; ¢ Vk*(Dy).
If [Py ... Px] [b(6)I + Q] = 0, then

N
Pib(0) = =) PrQu;
=1
is an element of V*+1(Dx), which is absurd. []

Denote by X® the real normal deformation of X along Y, with the
canonical projection p : X® — X and canonical morphism c : X®R LR
such that ¢71(0) ~ Ty X (see [K-S2] for details.) Let us recall that
we may consider local coordinates (x,y) in X such that Y is given by
z = (z1,...,24) = 0 and a system of local coordinates (z’,3',¢) in XR,
¢ € R such that p(z’,y', ¢) = (2'c,y’) and c is the projection on R. Remark
that ¢™1(R) = X®. Let us consider the open set Q = ¢~ }(R*) ¢ X® and
the commutative diagram of morphisms

Ty X <5 XR I,

" T4

Y =X
Then, for F* € Obj D(X) one defines Sato’s specialisation
vy (F*) :=s'Rj, p ' F*.

If we consider the complex normal deformation (the construction is
analogue with R replaced by C), denoted by X, of X along Y, one defines

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



300 T. MONTEIRO FERNANDES

Verdier’s specialisation functor in D?(X), which we will denote by vS()
(see [V1]) :

a) First we need to recall Deligne’s nearby-cycle functor associated
to a holomorphic function f: X — C

¥r() = RE (),
where ¢ and p are defined as follows :
Let (C,p) be a universal covering of C\{0} andN[)? (D, £)] the fiber
product X' = Xé(C with p : X’ — X and f : X’ — C the canonical

projections

B) ol ik

f

Yy <4 X — ., C

b) Let us now consider the commutative diagram associated to the
complex deformation X :

c10) = Ty X -«

. |

™
Y —+
Then, by definition,
Vy (F*) = yo(p* F*)
and it is easy to check that there is a natural morphism
Vy(F*) — vy (F*).

This morphism is injective when F'* = Ox and an isomorphism when F'*
is C-constructible (cf. [V1]).

REMARK 1. — For any Dx-module M one has natural isomorphisms
I) vy(RHompy,(M,Ox)) = (RHom-1p, (17 M,vy(0Ox))),

II) v (RHomp, (M,Ox)) — RHom,-1p, (17 M, 1% (0x)).

TOME 123 — 1995 — ~° 2
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To prove these assertions, we have to construct the morphisms, and,
by taking a locally free resolution of M, we then reduce to M = Dx.

Let us define the first so morphism I) and let II) as an exercise to the
reader. Keeping the notations of diagram A) above we get :

s 'Rjs p ' (RHompy (M, Ox))
= s Rjy (RHomy -1p, (P 7'M, p 71 0x))

=5 s7'RHom,-1p, (p7' M, Rj p 71 0x)
5 RHom,-1p, (7'M, vy (Ox)).

REMARK 2. — Let M be a regular Dx-module along Y. Then, by
Theorem 7.2 of [K-K3], the natural morphism

RHom,-1p, (17 M,v¢(0x)) — RHom,-1p, (77 M, vy (Ox))

is an isomorphism.

Consider the complex normal deformation X along Y. For a complex
of left D-modules F** set

Fle!] = (’))7[0_1]08;? F*

— this is the localised of F* along Y := c¢~1(0). Remark that the
localisation functor is exact since codimY = 1.
For a coherent Dx-module let us denote

L
& M).

MO=H ()M =H(05 & M)=H'(Dz . &
p~1Dx

X p~10x —-X

THEOREM 1.4. — Let M be a coherent Dx-module. Then :
1) HE(Lp*M[cY]) =0 for all k #0;
2) MO[c1] = HO(Ep*M(c™1]) is coherent and regular along Y ;

3) Suppose that M is specialisable along Y and consider M°[c™1]
endowed with the canonical V-filtration. Then, the Dy -modules vy (M)

and gr®(MO[c1]) are naturally isomorphic.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



302 T. MONTEIRO FERNANDES

Proof.
Assertions 1) and 2). Since the morphism p restricted to X — Y is
smooth, (’);(.[c_l] is flat over p~1Ox so, for all k # 0,

Hk(]Lp*M[cfl]) — Hk:(ON[Cvl] élé M)

X p~10x

Moreover Dy, [c™!] is isomorphic to Dg/Dy cDc[c™"] and so it is

a coherent left Dy-module and regular along Y. By taking a local free
resolution of M it then follows that M°[¢™!] is also regular along Y.

Assertion 3). Let us recall that M9 is endowed with a structure of left
D-module given in local coordinates (z',y’,c) such that p(z’,y',c) =
(@'c,y’), by

Dy (u®m) =u® Dy;m+ Dyu®m,
(A) Dy (u®@m) = (Dyu) ®m+ cu® Dy,m,
D.(u®m) = D.u®m+ Zz;u ® Dy, m,
(see [K-1]). In particular
cD(u®@m)=(cDJ)u®m+u® om.

We will note 6 = cD,..
Let us now remark that the canonical filtration along Y of D |
is the quotient of the V)j—ﬁltration on Dg. Let us note

o VE(M) the canonical filtration on M and
o MP[c™!] the image in M°[c™!] of @ ¢ O ®p-10, P~ (Va—t(M)).
tez

x[c7]

The action of Dy entails that if b(f) is the Bernstein-Sato polynomial of
{VF(M)}rez then b(cD, — k) MY[c™] € MY, [c71].

Hence M{[c™!] is contained in V*(MO[c™!]) where {VF(M°[c71])} is
the canonical V;,—ﬁltration on the regular D)?—module MOl

Let us now define a canonical morphism vy (M) 2, gr®(M°[c1)) -
for every i € Z let us denote ¢; the canonical isomorphism

0. %, “Ox
Y ~ i+1 -
1Oy

TOoME 123 — 1995 — N° 2
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Then one has
vw(M)=Dy ® plgr(M)Oy © p'gr(M)
[v] p~ 10y

:@L@L ® pt(grT{(M))

it1 ().
i€Z ¢t O0x p-1oy

and to get the morphism % we compose with the morphism

o X -1 . —i 0 or,.—1
i ® pogr (M) — g (M)
ieeg cit Ox ptoy ( )
_ Now if we consider the V-filtration on Dx shifted by £ € Z, i.e.,
VE(Dx) = V¥+{(Dx), we may define the morphism 1), analogue to 1 :

Dy =0; ® gr(D
Y Yp—loyg( X)

~ Ox ¢ —1,.—i+e
- 2662 Oy citl pf?oyp (gr™"(Dx))
P — g’ (Dx _x[c™").
Hence 1y = ¢ 9.

Finally, to prove that 1 is an isomorphism, let us remark that, since
M = gr®(MPO[c™1]) and M — vy (M) are exact functors, it is now enough
to consider M an elementary module, and therefore, by ProrPosiTiON 1.2,
consider the case where M is defined by a square matrix B(6)I + Q,
where @ is an element of My (V!(Dx)), such that B~1(0) = {~ codim Y’}
or B71(0) C [k, k + 1], for some k € N. In both cases M admits a filtered
free presentation (with a shift ¢) :

DY — DY — M0,
such that V¥(Dx )N — V¥(Dx)N — VF(M) — 0 is exact for all k € Z.

(Here V*¥(M) is again the canonical V-filtration on M).
Hence we get a commutative diagram with exact rows

N N
e Y
g’ () — (DY _ ) v
B(6)
c¢ c*

g’ (DY _xle™)) Y g’ (DY _xle™') —— gr®(M°[c7Y])) — 0

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



304 T. MONTEIRO FERNANDES

Here § = Y #} Dy denotes the Euler field on T X.
i=1

Hence we only have to check that v, is an isomorphism, which is clear
since, for all £ € Z,
gt (D _x[c7']) 2 gr*(Ox [ [Da] = Oy f[Do] = Dy []

Let M be a specialisable Dx-module along Y. Let us endow M?°
with the filtration V¥(M?) analogous to that defined in the proof of the
preceding theorem, that is, the image of

Pcox & p VM),

i>0 p~10x

and consider the natural morphisms

MO — MO[cY], MY — VE(MO[c)),
and hence

MY/ MO N gr’ (M7 1]).

It is clear that V!(Dg ) My C M}, ;. Moreover

L3t MO = (MO =5 MO) — (MO, = MO)
is a quasi-isomorphism.

REMARK 1.— Let M be an elementary D-module. Since Dy _, 5 satisfies

the unique continuation principle as a sheaf on X and since the right
multiplication by a square-(N, N)-matrix of the form B(6) = b(0) I + Q
is injective (¢f. LEMMA 1.3) on Dg X e because p .. is smooth, we

conclude that B() is injective on Dy and hence “p* M —— MO,
X —-X QIS

LEMMA 1.4.1. — Let M be an elementary module. Then :

(a) ¢ is an isomorphism;

(b) M® — MO is isomorphic to M® /MY — MY/ MY that is, the
natural morpﬁism ¢

0 ¢ 0
M—l _— MO

| !

MO, M3
M? . MO

1S a quasi-isomorphism.

TOME 123 — 1995 — ~° 2
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Proof. — We may argue similarly to [Me]. Let us write M = DY /DY L.
By the preceding remark we get

k(DN
k
VDY D)

where VF(Dg _ ) is the image of @ Oz ¢ ® p~H(VF4(Dx)).
i>0 p~1Ox

Let us now prove that, for all k£ > 0,
VH(Dx _x) = VF(Dx _x[e™']).

This morphism is injective since left multiplication by c is injective on
Dx _ x (recall that Dy _, y is a flat left O 5 -module). ~

To see it is surjective we may consider local coordinates (z’,%/, c) in X©
and (y,z) in X such that p(z',v’,¢) = (¢, 2'c). Then we may write :

VEDy _x)={Pe€Dg_xi P = Y fidl D2 Df,
0<|Bs|+as|[<m
fi € O%, meN}.

Similarly,
VEDs _xle)={PeDy _x[c7); P = > fictk D DE,
0<j+ai+B;<m
fi€0g, meN}

and in Dg _ y[c7!]
fi ci+k D:Ii — fz Ci+k+la,‘| Dao;i_
Finally, remark that

(*) DY (BONVHDY_ ) =V*DY_,) L
Hence ¢ is an isomorphism.
Now let us prove that M —%s MO is quasi-isomorphic to
MO o M
M§ MY

We have to prove that M3 — M} is bijective. In that case, it follows from
that V¥(Dx _ x) = cVO(Dx_ x), for all k£ > 0, and from the relation (*)
above.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



306 T. MONTEIRO FERNANDES

For the purpose of this paper the main result of [K2] is an essential
tool :

THEOREM 1.5. — Let M be regular along Y. Then one has canonical
isomorphisms in D®(Y) :
(*) Z/y(RHOInDX (M,Ox)) . RHOID'DTYX(I/_)/(M),OTY)(),
(**) Vy (RHOI’HDX (Ox,M)) L RHOHIDTYX (OTY)(,I/_Y(M)).

Given the scope of this paper, we think useful to explain here these
morphisms. First of all, when Y is a smooth hypersurface defined by
an equation f, SABBAH in [Me]| defined and proved the isomorphisms,
for M € Ry :

¥y (RHomp, (M, Ox)) ~ RHomp, (gr’(M), Oy),
'¢)f (RHome (OX y M)) =~ RHOI’H'DY (Oy, gr()(M))a

and this was the main difficulty.

In fact, from REMARKS 1 and 2 we have

vy (RHomp, (M, Ox)) ~ vg (RHomp, (M, Ox))
~ wc(p_lR'Hompx (M,Ox))

~ e (RHomp_ (“p* M[c], 03))

(this last isomorphism holds because 1.(F*) only depends on the be-
haviour of F* out of ¢ =0 and p is smooth). It entails a natural isomor-
phism by the results in [Me] and THEOREM 1.4

RHomDTyX (grO(MO[C_l])v OTYX) > RHomDTyX (_V_Z(M)’ OTYX)7

which entails isomorphism (*).

The isomorphism (**) is deduced in the same way.

The following THEOREM 1.6 will also be a main tool : let ¢ : ¥ — X
denote the inclusion and let Dy _x denote the (Dy,i 'Dx)-bimodule
Oy ® i Dx. It is a well known fact (cf. [L-S]) that when M € By,

iilox
the induced system

L * L -—1
TM=My =Dy_x @ i~ M
i71DX

has Dy -coherent cohomologies.
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Let us denote by £ the inclusion of Y in Ty X by the zero section. It
is clear that if M € By then vy (M) is a Dr, x-module specialisable
along Y so L¢*vy (M) has Dy-coherent cohomology.

LEmMMA 1.5.1. — Let M € By. Then, for alli < —1

e Aff) —o.

Proof. — The question being local, we may assume that we are given
coordinates (¢, z’,y’) on X and (z,y) on X, such that Y = {(z,y), z = 0},
ple,z’,y’) = (cx’,y’) and (y',2’) are the coordinates on Ty X = c¢~1(0).
Then £(y) = (y,0).

For the sake of simplicity, we will assume codim Y = 1, the calculations
being easily generalised to d > 1.

So we want to prove that M9/ M ; 5 M9/M, ,, where z’ acts by
left multiplication, is an isomorphism.

Let b(6) be the Bernstein-Sato polynomial associated to the canonical
filtration on M, hence satisfying b=1(0) C [0,1[. Then 6 is a Dy-
isomorphism on gr=4(M) for every j > 1 since b(6+j)gr—4 (M) = 0
and b(j) # 0.

Denote I¢ = 0% c'. We have an epimorphism :

0
M;
0
Mj

Tt 1 .y
— D7 ® p (e TM).
g I p~10y

We finally define

=Y (c®Dy) o (1®6;),

i>0

where 07! is the inverse of @ in gr/~*(M) which satisfies z'z'~! =

2’12 =id. []
We can prove the analogue of Theorem 4.2.3 (iv) of [K-S] :

THEOREM 1.6. — For every Dx-module in By one has a natural
isomorphism in D°(Dy)

Lix M Lor vy (M),
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Proof. — Let X denote the complex normal deformation of X along Y’
and p: X — X, ¢c: X — C the canonical morphisms such that Ty X is
isomorphic to the hypersurface ¢~!(0). So we have a commutative diagram

‘| [

and hence Li* M ~ L¢*Lj* Ly* M| for any Dx-module M. So we have to
define, for M € By, a natural morphism

(*) H(M):Le*Lj*]Lp*M - ]Le*l/_y(M)
The construction of this morphism and the proof that it is an isomor-
phism will relie on the preceding lemma and on THEOREM 1.4. We have
MO, o MO
0 —0)
Mg Mi

M o (M2 = M) — (

and this defines a morphism in

~ MO MO
by . Lix p 40 -1 ¢ 0
D(Dy). M _)(MB —_)M(l))

Hence a morphism

M(ll c Mg )

-1 e Mo

M3 M}

in D°(Dy). By Lemma 1.5.1 the right term is quasi-isomorphic to

Lex(MY/MY). To get the morphism 6(M) we compose with
Ler(MY/MY) — Le* (gr®(MO[e 1)) 2 Be* (vy (M)).

Notice that (-) is natural in the following sense. Let f : M — N be
a Dx-linear morphism of modules in By such that f is compatible with
the canonical filtrations, i.e., f(V*(M)) C V*(N). Then the diagram

]L,L-*N

LpeLjxLys pq —, LprLjx A0 _>11,€*(

Li* M

(M) l J, O(N)

Ly (M) s My (V)

ToME 123 — 1995 — ~° 2



MICROLOCALISATION OF D-MODULES ALONG A SUBMANIFOLD 309

is commutative in D?(Dy). In fact 1 ® f induces natural morphisms
L— N,  VkeLZ.

By LEMMA 1.4.1 and THEOREM 1.4 with REMARK 1, (M) is an iso-
morphism when M is an elementary module. We will now argue by
reduction to this case. So we have to prove that (M), is an isomorphism
for any y € Y so we may consider a (filtered) resolution of M by
elementary modules L;, ¢ < 0, which we denote by L, :

c—L;— Liy — -+ — Lyg — M —0.

Hence we get a commutative diagram

A ) ) QIS .
(---—> *Li —— WL, — o — Iy Lo)y————> Lix M,

0(L;) J, O(Li—1) j, 6(Lo) j, (M) l

(= vy (L) = My (Lica) — - = My (L)), o L vy (M),
in D®(Y), where 6(L;) are isomorphisms and A; and A; are morphisms
of complexes. We want to prove that (M) induces isomorphisms in the

cohomology, and this is equivalent to proving that
O(L.)y : “i* L., — “* vy (L.),
induces an isomorphism of the cohomology of the single complexes
S(Li* L,), and S(L€* vy (L.))y.
We will use the following result :

LEMMA 1.6.1. — Let O be an abelian category and

L.:(...__,Liﬁi_)Li_l__,..._,LO_,())’

G.=(--~——>Gi~A—i>Gi_1—»---%GOHO)

be two double complezes in O, that is, L; and G; are complezes in O,
A, A,+1 =0, A;A41 =0 and A, A; are morphisms of complezes.

Let 0, : L, — G, be a morphism of double complexes, such that
0, : Ly — G; is a quasi-isomorphism for all i € Z. Then 0, induces a
quasi-isomorphism of the single complezes S(L,) — S(G,).

Proof. — This is an immediate consequence of Thm 1.9.3 of [K-S]. (]
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We shall consider the following commutative diagram :

QIS

LE*]Lj*]Lp* L. Le*L]*Lp*M

QIS
Le* Lj* L(.)
QIS

Lg*(..._,(LQ L,Lg’o)_,...)

i,—1

QIS

e (vy (M)

Here, the left vertical arrows are morphisms of double complexes which
satisfy the assumption of LEMMA 1.6.1. Hence the theorem. []

As an easy application, we recover the following Cauchy-Kowalewski
Theorem, proved by [L-MF] in the larger class of fuchsian systems
along Y, by other methods.

COROLLARY 1.7. — Let M € Ry. Then the natural morphism
RHomp, (M, Ox)jy — RHomp, (“i* M, Oy)
s an isomorphism.
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Proof. — By the properties of vy () and because M € Ry, we have

RHOHIDX (M,Ox)|y >~ Vy (RHOIHDX (M, OX))IY

~ RHomp,, « (vy (M), O7y x) |y

O, RHomp, (“¢* vy (M), Oy) ~ RHomp, (“i* M, Oy).

Since the morphism (*) is defined, to prove it is an isomorphism we
may suppose that M is elementary and, after specialisation, it is enough
to consider

)N__EZﬁ__ Vi

vy ( = M,, a€eC.

- B DTyX( é — a)”
It is an easy exercise to verify that for a module Ma of that form one has :

0 ifa¢N={0,1,...},

Hom Mav @ =
Pry x (Mo, Orex)1y {o¥ ifa €N, M=#{BeN, | =a},

o 0 ifadN*
EXtDTyX (Ma, OTYX) IY ~ OM f c N*
y o .

Similarly,
. { 0 if o ¢ N*,

May = DY —DY ifaeN. [

The case of a hypersurface.

We now will supose that Y is a smooth hypersurface defined by f = 0,
dfjy # 0. In this case df defines a function f : Ty X — C and we
denote by s the section of Ty X — Y given by f_l(l) (ef. [K-S2]). Let M
be a D-module on By and consider (M) the coherent Dy-module of
nearby-cycles defined by KasHiwara [K2| (when M is endowed with
the good V-filtration associated to G = {z € C; 0 < z < 1} we have

)y (M) = grg(M)).

We prove here the analogue of [K-S2, p. 352]. Let h : Ty X — C be
given by '

h=f —1.
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Then h = 0 is an equation for the image of Y by s. So

Ls* vy (M) & {ry(M) L vy (M)},

where h multiplies to the left. It is easy to see that h is injective and we
get a commutative diagram
h
vwM) —— wM)

I 1

0 ——— g'WM)

which defines a morphism
g10(M) — Us” vy (M).
THEOREM 1.8. — Let M be in By. Then the morphism
gr®(M) — Es* vy (M) (depending on f)
is an isomorphism.
Proof. — Let p € Y. In local coordinates we may assume that X is

an open set in C™ with the coordinates (t,y1,...,¥n—1) and Y defined
by ¢t = 0. Let (y,7) be the induced coordinates in Ty X ; in this situation,

df = dt, f(y,7) =7 s(y) =(y,1)

Once again it is enough to prove the theorem for elementary D-modules
and hence for modules defined by a) B(f) and b) R(0)I, following the
notation of PrRoposITION 1.2. In such situations, decomposing vy (M) in
direct sums we are led to consider vy (M) =~ Dy, x/Dr, x(6 — )P and
we shall study the complex

degree —1 degree 0
Dry x -1 Dry x ‘
Dryx (T D; — )P Dr,x(t D, — a)P

By using the division theorem of Weierstrass we obtain

_ Dty x
DTyX(T-DT — a)P + (T — 1) DTyX

~ Dy ~pp(M). []

Inverse and direct image.

coker(t — 1)

We will study now the behaviour of the specialisation under inverse
image recalling the result of [Me] for direct images.
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TuEOREM 1.9 (Inverse image). — Let f : X — Z be a smooth
holomorphic map, Y’ C Z a submanifold, Y = f~1(Y"') and let M € By~
(resp. M € Ry+). Then f*M is in By (resp. f*M € Ry) and

(A) vy (f* M) = (T f)* vy (M),
where T f is the induced map
Ty X — Ty Z.
Proof. — Since f is smooth, Ox is flat over Oz and so

0/ p* ~ f* ~
KU M) & ' M=0x & M.

Let {M7} be a good V-filtration on M with b-function b(s) € C[s].
Then
(f M)J =0x ® M

1o,

are VO(Dx)-coherent since they are coherent modules over the coher-
ent subring Ox ® f~'V9(Dy) of VO(Dx). Obviously, all conditions of
[0z

good V-filtration are satisfied by (f* M)’ with b(s) as b-function. Further-
more, '
(M)
— ~ 0y ® M
(f*M)]'H Y —1OYxf gr ( ),
which implies (A).
Let now M € Ry, My C M be a coherent sub-Oz-module such that
M =DzMjg and b(s) € Cls] of degree M such that
(B) b(6) Mo C (Dz(m) NV (Dz)) M.

It is clear that Mvo = Ox ® f Mg is Ox-coherent and gener-
710z
ates f*M; clearly, b(s) satisfies the regularity condition (B) with respect

to Mo. D

Having THEOREM 1.4 in account we think that THEOREM 1.9 may be
generalised to non smooth case (of course with restrictions).

In order to study direct images, let us recall the result by SABBAH-
MEBKHOUT in [Me].
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THEOREM 1.10.— Let f : X — Z a holomorphic map, Y’ a hypersurface
of Z andY = f~1(Y'). Assume thatY is a smooth hypersurface. Let M
be in By, and assume that M = Dx Mgy, Mg a coherent sub-O x-module
and that f is proper on supp M. Then, for every i,

/ M € By,
f

Moreover, the canonical filtration of f;M is induced by the canonical
filtration of M.

By adapting the proof of the preceding theorem, one may consider a
different situation. Let f be transversal to Y’, that is the graph of f
in X x Z is transversal to X x Y'. In that case, Y = f~1(Y”’) is a smooth
submanifold of X and codimY = codimY”.

THEOREM 1.11. — Let f : X — Z be a proper holomorphic map
transversal to Y'. Let M € By ; then we have :

J
1) for all j, / M is specialisable along Y';
f
J J
%) VY(/ M):/ oy (M),
f Ty

2. Microlocalisation of D-modules

In this section we will define the functor of microlocalisation uy (%) in
the category By by means of the formal Fourier transform for D-modules
(¢f. [H-K], [Br], [Br-Ma-V]) and obtain fundamental relations with the
geometrical microlocalisation in D®(X) (still denoted by uy (¥)).

We begin by recalling the Fourier transform in the category of D-
modules over a holomorphic vector bundle.

Let Y be a complex analytic manifold and E = Y be a holomorphic
vector bundle on Y. Let us denote D|g) C 7« Dg the sheaf of differential
operators polynomial in the fiber variables. Let 6 denote the Euler field
on E. A m.(Dg) or a Dig-left coherent module M is monodromic
if M is generated by local sections satisfying b(f)u = 0 for some non-
zero b(f) € C[A]. We denote this abelian subcategory by Mon(Dg).
Obviously, if M is in By, vy (M) is monodromic.

Let E’ be the holomorphic dual bundle. Let us consider local coordi-
nates y in Y, (y,z) in E and (y,£) in E'. Let us consider Q/y the sheaf
of relative differential formsto r: £ — Y.
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Then the Fourier transform F is canonically defined as an isomorphism
of sheaves over Y by

F
(H) Qv @ Dipy ® Uy ——— Di

dr ® P(y,Dy) ®dr®~! +— P(y,D,),

0
b dr @1 @dr® ! —r —,
y J 35]
9 ®-1
dr ® 8_73 ®dr — —&;.

Let M be a Digj-coherent module. Then the isomorphism F above
gives rise to an exact functor from Mon(D(g)) to Mon (D) by setting

F(M) = QE/Y(? M,

where Qp/y ® M is regarded as Qg/y ® D[E] ® QE/Y—moduIe and via
the isomorphisin (H) a Dg-module. Oy

Let M be a monodromic w,Dg-module and let M’ be the D[E]—
submodule of the sections u such that there exists (locally) a nontrivial
polynomial b(8) € Clf], satisfying b(f)u = 0. We can see that M’
is coherent : let us consider local sections wu,...,u,, with u; € M,
generating M over Dg. Set

Therefore M"” C M’ and M" is Djg)-coherent. So we have

PE@ M'=M=Dg @ M’
Dig) Digj

and since Dy is faithfully flat over Djg) we get M” = M’. It then makes
sense to define

F(M)=Dg @ F(M').

DIE]

A sheaf of C-vector spaces over E is monodromic if it is locally constant
along the orbits C*n, where n € E —Y.

REMARK. — Monodromic sheaves define an abelian full subcategory of
the category of sheaves of C-vector spaces.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



316 T. MONTEIRO FERNANDES

An object K € D®(FE) is monodromic if the sheaves H!(K) are
monodromic. We will denote Mon(E) the subcategory of D®(E) formed
by monodromic complexes.

We also keep the notation F' for the Fourier-Sato transform

Mon(E) — Mon(E")

(see [Br-Ma-V] and [H-K]). Let us recall how it is defined (cf. [K-S] for
detailed study). If A is a subset of E, the polar A° is

= {y € E'; #(y) €n(A) and (z,y) >0, Vz € 77 7 (y) ﬂA}.

Let us consider p;, p2 the projections

ExE"

/\
\/

P={(z,y) e EXE'; (,y) = 0}.

and

Then the Fourier-Sato transform is the functor
F =Rpy, oRTpop;,

which is well defined from Dy, (E) to Dy, (E’). Here, Dy, (E) denotes
the full subcategory of D*(E) whose objects have R*-conic cohomology
groups.

In particular, F' is defined from Mon(FE) to Mon(E").

Then the geometrical microlocalisation is just the composition of F
with vy in D®(X). Hereafter we will apply these notions to the following
situation : Y is a submanifold of X, E =Ty X 55 Y and E' = T3 X.

DerFINITION 2.1. — Let M € By ; the microlocalised of M along Y,
py (M), is the Dry x-module F(vy (M)).

REMARK. — In [Br-Ma-V] (¢f. [H-K] as well) Brylinski-Malgrange-
Verdier proved that the functors Sol(x) = RHomp(%,O) and DR(*) =
RHomp(O,*) commute with Fourier-Sato transform in the category

of regular holonomic Dig-modules. Actually, the same result holds
for vy (M) with M € By.
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PROPOSITION 2.2. — Let M € By ; then Sol(vy (M)) and DR(vy (M))
are monodromic.

Proof. — By the preceding remark we may restrict the proof to
elementary modules by already classical arguments. After specialisation
we may assume vy (M) ~ Dg/Dg(60 — «)?, where o € C and p € N, and
the proposition follows. []

Because vy (M) is monodromic we can use the results of [Mal], [H-K]
and obtain :

THEOREM 2.3. — Let M be in By. Then
F (Sol(z (M) = Sol (uy (M) [~ codim Y,
F(DR(vy(M))) ~ DR(puy (M))[~codimY] in D°(TyX).
By THEOREM 1.5 we also conclude :

COROLLARY 2.4. — Let M € Ry. Then
Sol(py (M)) =~ py (Sol(M))[codim Y],
DR (py (M)) = py (DR(M))[codimY] in D°(TyX).

To end this section, our aim is to show that, using the category By,
it is possible to obtain the parallelism between geometrical and formal
microlocalisation as it was the case between geometrical and formal
specialisation.

It is not within our scope to exhaust all possible relations; nevertheless,

we find useful to prove two results on inverse images, which are the
analogue of Theorem 4.3.2 of [K-S].

Let M € Mod(Dx), Y a d-codimensional submanifold of X,4:Y «— X
the inclusion, and denote

D(M) := RHomp, (M,Dx)[n] (n=dimX),
Lit M .= D(Y* D M).
Let m denote the projection T3 X — Y and £ the immersion of ¥
in T3 X by the zero section. For F* € D¥(X) we have :

R, iy (F*) ~i' F* ~ 1y (F*),

Ry py (F*) =~ RTy (py (F*)) ~ i7' F* @ wy|x.
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Let us note for short
YV =TyX, Y =T:X.
THEOREM 2.5.— Let M € By . Then there are natural isomorphisms in
D+ (Mod(Dy)) :
a) Li' M L,]LE*M—X(M);

b) [ (M) B

c) / py (M) <& Bt M.

™

Proof. — We have to define the morphisms and once this is done, check
that they are isomorphisms by reducing to the case M elementary. Let
us start by b). By definition,

L
[ a4 =Re @y g+ & uy(a0).

The isomorphism (H) given by Fourier transform induces a Dy-linear

isomorphism ¢! vy (M) — A py (M) which extends to an isomorphism
1 L ~ 1 L
T (Dy_y D®_ vy(M)) = ¢ (Dy_y- ® py (M)).
Y Y
More precisely, this isomorphism is defined as follows :
Lgx vy (M) ~ ¢! [(Dy_*y DQE VY(M))]
¥
L L
~ p—1 N ®-1 )
~/ [(quy gﬂ?ly)ée;(fzwy 2 l/y(M))]

v

The last isomorphism follows from that by Fourier-transform we have
Do @ Qov ~ 05 ® Dy
vrs Yy Yy 5 7Y
as sheaves on Y.
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By THEOREM 1.6, the left side is isomorphic to “i* M. To achieve the
proof of b) we will need the following :

LEMMA 1. — The cohomology of [. py (M) is RT-conic.
Proof. — Since the statement is of local nature, we may suppose

Dy~

>, aG(C,
D{,*(@ —a)i”

py (M)

where  is the Euler field of T3: X — Y. Therefore, in this situation :

F =Dy gy & py(M) & (Dy_y- 5Dy 5).
— D{,*—— QIS — —
In local coordinates (z1,...,%4,¥Y1,---,Yn—d) in X such that
Y:{(l"y); xlz...:xd:()},

we have Dy, _ g+ ~Oy+«[Dy, --- Dy, ] and
. 6 +a+d
F QZIS 0?'[Dy1 "'Dyn—d] — OY‘[Dyl : "Dyn-d]a

where 6 + a + d acts on Oy« by the left. Hence the conclusion of the
lemma. []

Therefore,

and b) follows.

Note also that LEMMA 1 entails
c L
| wr(m =Ry (0, 7. B ay(a).
™ Y *

To treat a) and c) we recall that by the results in [Me], [H-K] and [Mal],
duality and specialisation commute in By, and duality and Fourier formal
transform commute in Mon(D ). With these facts in mind, it is not a
too hard task to define the morphisms a) and c¢). To prove that they are
isomorphisms we will prove :
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LEMMA 2.

1) Let M be given by
I S
DY((O) + Q)
with b™1(0) € {z € C; k<2< k+1, k € N} and Q € V1(Dx)VN*NV.
Then
L' M =0.
2} Let M be given by
DY .
——t— ezZt.
Yo+ 7

Then Y“i* M[d] is quasi-isomorphic to DM 2, DM | where

M={aeN; |a|=j-1}.

Proof. — This is an exercise of filtrations on Dy ._x having in mind the
action of b(f) on the graded rings. ]

Let us now prove ¢). We may assume

Dy -
Dy-(0+a+dp
and we get a commutative diagram

[ wrm

s
~ | as

(RFY (O?*[Dyl e .Dyn—d]) M)

py (M) =~

aeC,

RIy (O« [Dy, - Dynfd]))
T QIS — T QIS

b
(RU (O3 [Dy -+ Dy, ) - RCpy (O [Py, -+ Dy, )

e,
because of the regularity of the operator (é — )P along Y. Finally, we
see that

[ HX(M) =~ RHomp . < *_ a) ’BYlff*[_d]) %C[Dyl ++ Dy, ]

SNIEY

D
Dy «(

~ RHomp,, (Z!(Ef—?*_—ay)oy) %(C[Dy1 oDy, 4]
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(see [L-MF]). Hence, by LEMMA 2 we have

=0 ifO[¢Z+,
C/ py (M)  dis Dy — DY if acZy
" l T

deg. —1 deg. 0.

The proof of a) is similar. []

REMARK 3. — Actually, we obtained here a very useful result : let
E 55Y be a holomorphic fiber bundle, M a monodromic Dg-module.
Then f7r M has coherent cohomologies. Of course this can also be proved
using the theorem for smooth direct images of [H-S].

REMARK 4. — As pointed out in REMARK 1 one defines a natural
isomorphism

Hy (RHOHIDX (M7 OX)) - RHOIH,;‘. —1Dx (ﬁ' —1M7 /'LY(OX))

for any coherent D-module M, in D*(T*X).

Let now f: X — Z be a holomorphic map, Y’ C Z a smooth manifold
such that Y = f~}(Y”’) is a smooth manifold of X. Let us consider the
associated maps py and wy defined by

TeX 2y x18,2 2L, 2.

Then, using THEOREM 1.9 and adapting the proof of THEOREM 2.5, we
obtain :

THEOREM 2.6. — Assume that f is smooth. Let M € By:. Then,
mn Db(DT;X), we have

py (F* M) g/ & pyr (M).

Py
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3. Application to the functor phom for D-modules

We will consider a subcategory of the category of pairs of Dx-modules
satisfying a regularity condition :

Let p1 : X x X — X and p2 : X x X — X be the first and the
second projections. One defines an exact bifunctor (i.e., exact in the two
variables) in Mod(Dx) x Mod(Dx), noted K, by : given M and N two
D-modules,

MR N =Dxxx ® (pr' M@p;' N)

] 'Dx® Py 'Dx
C
(see [SKK]).

Denote by A the diagonal of X x X and identify X to A. Then we may
identify TX (X x X) to T*X by the first projection. Finally let us denote
by M* the left Dx-module D(M) & %t

X

Consider the full abelian subcategory of the pairs (M, N) such that
M* B N is regular along A and denote it by Ra. This category is larger
than the category of pairs of regular holonomic systems, considered in
[K-K3], as shown by the following simple example.

ExAMPLE.
Let X = X' =C".
Let A € C and M be the Dx-module regular along Y = {0} c C"
given by M = Dx /Dx (8 — \), where 6 =Y, z; Dy,.
Let N be the Dx/-module given by N'= Dx//Dx: x| + -+ + Dx/ .
Then M* N = Dxxx+ u, where the generator u satisfies
(Z(mi — &) Dy, + A+ l)u —0.

i=1

Remark that 6 = Y7 (z; — @) Dy, is a vector field tangent to A and
6 € VR(Dxxx-) acting by the identity on In/I%. Hence, M* & N is
regular along A.

DEFINITION 3.1. — Let (M, N) € Ra. One sets
phom(M, N) = pa(M* B N)
(regarded as a Dr»x-module).
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Let us now consider the following sheaves on T X ; for further details
we refer to [SKK], [KS] :

i} &x is the sheaf of microdifferential operators of finite order;

ii) Given Y a submanifold of X, of codimension d,

C¥x = ny (Ox)ld],

iii) &} = ua(Qxxx)[n]; this is the sheaf of rings of microlocal
€
operators.

If 7 : T*X — X is the projection, then 7~ !Dx is a subsheaf of rings
of E;Ré.

Given a Dx-module M, we will note

MR =¢6R o M.

7T_1'DX
THEOREM 3.2. — Let (M,N) € Ra. Then one has an isomorphism

RHome, (€x ® M, N®) ~DR(phom(M,N)) in D*(T*X).

n-1Dx

Proof. — For the sake of simplicity let us denote M the € x-module

Ex ® wIM.

W‘I'DX

Since RHome, (M, N¥) ~ RHome, ,, (MRN*), C% xxx), We are led
to prove that if M is a regular D-module along a submanifold Y of X of
codimension d, one has an isomorphism :

(*) RHome, (M, C¥, ) = DR py (M*).

Let us define this morphism and check it is really an isomorphism.
From REMARK 4, for an arbitrary D-module M one has an isomorphism

RHome, (M, C%,y) =~ uy (RHomp, (M, Ox))[d].
The right member is by definition
F(I/y(RHOIn'DX (M, Ox))) [d],
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hence
RHome, (M, C¥(x) = F (vy (DR(M")))(d]
~ F(DR(vy(M?*)))[d] by THEOREM 1.5
~ DR(F(vy(M*))) by THEOREM 2.3
~ DR py (M*). (]

REMARK 5. — Actually we proved, in a joint paper (with E. ANDRoO-
NIKOF, see [A-MF]), that, for M € Ry, one has an isomorphism

RHome, (M, C¥ ) < RHomg, (M,C¥),

where Ci/, is a subsheaf of the sheaf C¥, y defined in [A].

Additional Notations

X : a complex manifold.

Ty X : the normal bundle to Y, where Y is a submanifold of X.

Ty X : the conormal bundle to Y.

Db(X) : the full subcategory of the derived category of sheaves of
abelian groups on X, formed by the complexes with bounded
cohomology.

D, = 0/0x : partial derivation in the z-variable.

Ox : the sheaf of holomorphic functions on X.

Qx : the sheaf of differential forms of maximum degree on X.

Ts(F) : 444" F where i : S — X in the inclusion (here S is a locally
closed subset of X).

RTs(F) : the right derived functor of I'g.

Ly (F) : lim Homo, (Ox /1™, F), where Y is an analytic subset
of X and I is the defining ideal of Y.

RL[y(*) : right derived functor of I'[y(x).

By : the sheaf of hyperfunctions on a real analytic variety, i.e.,

RT3 (Ox)[dim M]®Or, with X the complexification of M
and Or,s the orientation of sheaf on M.
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By x : RT'[y}(Ox)[d], with d = codimension of ¥ and where Y is
a submanifold of X.

B¥ix : RT'y (Ox)|d].

Hompg (A, B) : the sheaf of R-homomorphisms from A to B, where A
and B are sheaves of left R-modules and R is a sheaf of

rings.
A®B : the tensor product of A and B over R, where A (resp. B)
B is a sheaf of left R-modules (resp. right R-modules).
L
% : the left derived functor of %.
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