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PURELY INFINITE C*-ALGEBRAS ARISING

FROM DYNAMICAL SYSTEMS

PAR

CLAIRE ANANTHARAMAN-DELAROCHE (*)

ABSTRACT. — We give a condition sufficient to ensure that the reduced C* -algebra
associated with an ^-discrete groupoid is purely infinite. As an application, we get
many examples of purely infinite (7*-algebras, from discrete groups of isometries of
hyberbolic metric spaces, or of Hadamard manifolds, acting on their limit set. The
expanding continuous surjective maps from a compact metric space onto itself provide
also interesting examples. Actually, many of the examples considered here give purely
infinite, simple, nuclear, separable C* -algebras, satisfying to the Universal Coefficient
Theorem. Therefore, they are completely classified by their K-iheory groups, thanks
to the recent work of Kirchberg.

RESUME. — Nous donnons une condition suffisante pour que la (7*-algebre reduite
associee a un groupoide r-discret soit purement infinie. Comme application, nous ob-
tenons de nombreux exemples de C7*-algebres purement mfmies, a partir de groupes
discrets d'isometries d'espaces metriques hyperboliques, ou de varietes de Hadamard,
agissant sur leur ensemble limite. Les surjections continues dilatantes d'un espace
metrique compact sur lui-meme sont une autre source interessante d'exemples. Beau-
coup d'exemples etudies ici produisent en fait des C'*-algebres purement infinies,
simples, nucleaires, separables, satisfaisant au theoreme des coefficients universels.
Celles-ci sont done entierement classifiees par leurs groupes de J^-theorie, d'apres Ie
travail recent de Kirchberg.

Introduction
The recent remarkable result ofE. Kirchberg [24] (see also [29]) concer-

ning the classification of simple purely infinite separable nuclear (7*-
algebras has drawn considerable attention to this class of algebras.
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200 C. ANANTHARAMAN-DELAROCHE

Previously, the work of J. Cuntz and W. Krieger [15] had brought
out interesting links between some of these algebras (now called Cuntz-
Krieger algebras) and the theory of topological Markov chains. Later,
J. Spielberg has shown that certain boundary actions of finitely generated
free products of cyclic groups yield a Cuntz-Krieger algebra by the crossed
product construction (see [33], [34]).

It is natural to expect that (7*-algebras arising from geometric contexts,
or dynamics, which prevent the existence of a tracial state are good
candidates to being purely infinite. From this observation, we give in
Section 2 a condition sufficient to ensure that the reduced G*-algebra
defined by an r-discrete groupoid is purely infinite. In the following
sections, we illustrate this result by a series of examples.

Section 3 is devoted to the case of r-discrete groupoids defined by ac-
tions of discrete countable groups on locally compact spaces. We show that
a non elementary group of isometries of a hyperbolic geodesic metric space
(in Gromov's sense), acting on its limit set, yields a simple purely infinite
C*-algebra as crossed product. This includes the interesting example of
non elementary fuchsian groups, as well as the case of word hyperbolic
groups acting on the boundary of their Cayley graphs. Moreover in these
two last examples we obtain a nuclear C*-algebra.

We show also that any lattice of a real connected semi-simple Lie
group G without compact factors and with trivial centre, acting on its
Furstenberg boundary G / P gives rise to a purely infinite simple nuclear
C*-algebra belonging to the bootstrap class AT for which the classification
by ^-theory is complete. Actually, it appears that there are plenty of
examples where the action on its limit set of a discrete group of isometries
of a complete simply connected Riemannian manifold with nonpositive
curvature, yields a simple nuclear purely infinite (7*-algebra as crossed
product.

In Section 4, we study the dynamical system formed by a compact
space X and a surjective local homeomorphism a. As pointed out by
J. Renault, there is an r-discrete groupoid which is quite well suited
to describe this situation. Its associated (7*-algebra will be denoted
by C*(X,a). When a is expanding and is such that its set of eventually
periodic points is dense with empty interior, we show that (7*(X,cr) is
purely infinite and nuclear. As particular examples we get the Cuntz-
Krieger algebras defined by subshifts of finite type satisfying condition (J)
of [15], as well as many (7*-algebras defined by subshifts which are not
of finite type. This family of examples includes also the C'*-algebras
associated with the differentiable expanding endomorphisms studied by
M.Shubin [31].
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PURELY INFINITE C*-ALGEBRAS 201

Our Section 1 is devoted to preliminaries on r-discrete groupoids. We
limit ourselves to this class of groupoids, in order to avoid the introduction
of Haar systems, though most of the basic facts could be defined in a
more general setting. This section is a survey of results essentially due
to J. Renault.

Most of the results of this paper had been previously explained in a first
draft [4]. M. Laca and J. Spielberg had also found independently similar
results in [25]. Here our work is written in the context of r-discrete grou-
poids, which is a natural framework to the description of many relevant
situations, including for instance foliated manifolds, and dynamical sys-
tems defined by local homeomorphisms. Our notion of locally contracting
groupoid (see Definition 2.1) is inspired by that of locally boundary action
in [25]. It appears in fact that the context of groupoids extends the scope
of applications of the results of [4] and [25], to the price of simpler proofs.

In view of Kirchberg's classification result, it is interesting to compute
the K-theory of the C* -algebras described in this paper. For instance,
in [4], this allowed us to check that the (7*-algebras obtained from non
elementary fuchsian groups of the first kind, acting on their limit set, are
Cuntz-Krieger algebras. Since C*(X, a) above is a crossed product B xip N,
where p is a proper corner endomorphism of 5, and B is an inductive
limit of (7*-algebras strongly Morita equivalent to commutative ones,
we may compute the K-theory of (7* (X, a) from the Pimsner-Voiculescu
exact sequence. Such computations, and applications, will be given in a
subsequent paper.

I am grateful to J. Renault for many stimulating discussions on the
subject. I wish also to thank G. Skandalis, who drew my attention to the
problems studied in this paper and to the reference [10], and F. Ledrappier
for useful conversations on manifolds with nonpositive curvature.

1. Locally compact groupoids

1.1 Basic definitions.
We refer to the work of J. Renault [35] for the detailed theory of

topological groupoids and of their associated (7*-algebras. In a concise
way, a groupoid is a small category with inverse. More explicitely:

DEFINITION I.I.I. — A groupoid consists of a set G, a distinguished
subset G° C G, two maps d,r:G ^—> G° and a law of composition
(71572) € G2 ̂  7172 € G, where

G2 = {(71,72) e G x G;^(7i) = r(72)},

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



202 C. ANANTHARAMAN-DELAROCHE

such that

1) c?(7i72) = ^(72), ^7172) = y(7i) for all (71,72) e G2;
2) d(a;) = r(x) = x for all x € G°;
3) 7^(7) = 7, r(7)7 == 7 for all 7 € G;
4) (7172)73 =7i(727s);
5) each 7 has a two-sided inverse 7~1, with 77"1 = r(7), 7-17 = d(^).
For x € G°, we denote by G{x) the isotropy subgroup r~l(x)^\d~l{x).

A subset V of G° which coincides with its saturation [V] = ̂ •(d"1^)) is
said to be invariant

DEFINITIONS 1.1.2. — A locally compact groupoid consists of a groupoid
G and a locally compact topology compatible with the groupoid structure:

1) 7 \—> 7~1 is continuous from G onto G;
2) (71,72) ^ G2 ^ 7172 is continuous, with G2 given the induced

topology.

We say that G is essentially free (or principal) if the set of all x € G°
whose isotropy group G{x) is reduced to {x} is dense in G°. When the
only closed invariant subsets of G° are the empty set and G° itself, we say
that G is minimal.

The groupoid G is said to be r-discrete if every 7 € G has an open
neighbourhood V such that r\y is an homeomorphism onto an open
subset of G°.

A subset S of a locally compact groupoid G is called a bisection if the
restrictions r\s and d\g are one to one.

Note that G is r-discrete if and only if it has a basis of open bisections
(see [35, p. 19]), and that in this case the fibers Gx = r^^x) are discrete
for all x C G°.

Let G be an r-discrete groupoid, and S a bisection. For x € r(S'), we put
c^sW = d(xS). This map as is an homeomorphism from r(S) onto d{S),
which is called the G-map associated with S.

We say that a measure ^ on G° is quasi-invariant if the induced measure

^^oA:/^y(^/(7))d/^)
r(7)=a;

is equivalent to

^•'f^ /(E^))^)-
d{^=x

This means also that for every open bisection S, the measures A \—> /^(A)
and A \—> {jL{as(A)) defined on r{S) are equivalent.
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PURELY INFINITE CT-ALGEBRAS 203

In this paper, we mainly consider second countable locally compact r-
discrete groupoids. They are very tractable, and include many interesting
examples. Among them we give the following ones.

1.2. Examples.
(a) Group actions. — To a discrete group F acting on the right on a

locally compact space X, is associated the groupoid G = X x r, with
the product topology, and the multiplication {x,t)(xt,s) = (x,ts). Here
G° = X, r(x, t) = x, and d{x, t) = xi. When F is countable, this groupoid
is essentially free if and only if the set of fixed points of any t, distinct of
the identity e, has an empty interior.

(b) Foliations. — Let (V, }=') be a foliated manifold with a transverse
faithful submanifold X. For the construction of the holonomy groupoid G
of the foliation, we refer to [13] and [14]. For simplicity we assume that G
is Hausdorff. We denote by G(X) the reduced groupoid

{reG; r(7)ex, d(7)ex}.

Then G(X) is a locally compact r-discrete groupoid, which is essentially
free by [18, Lemme 2.3].

(c) Local homeomorphisms. — Let X be a locally compact space, and
o". X —)• X a, continuous surjective map which is a local homeomor-
phism. J. Renault has constructed in [35] the following locally compact
r-discrete groupoid which is a useful tool for the study of the dynamical
system (X,cr). One takes

G={(x,n,y) G X x Z x X ; 3M>0, n = k - ̂  ak(x)=a£(y)}

with the range map, the source map, and the multiplication given respec-
tively by

r{x, n, y) = x, d{x, n, y) = y, (.r, m, y){y, n, z) = (x, m + n, z).

Then G° = X embedded in G by x i-> {x,0,x). Moreover G is given the
topology having as a basis of open sets those of the form

WV^^)={(x^k-^ay£oak(x))^ x e U } ^

where U and V are open subsets of X, and k,£ > 0 are such that a^
and (7^\y are homeomorphisms with the same open range (and (jy^ is the
inverse of cr^|y).

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



204 C. ANANTHARAMAN-DELAROCHE

We denote by
• 0^(x} the positive orbit {^{x} ; k > 0} of x^ and by

• 0(x) its full orbit |j (^)-l(0+(a;)).
^>o

Then G is minimal if and only if every orbit 0(x) is dense in X. We
remark also that the isotropy group G{x) of x is non trivial if and only if
its positive orbit 0^~(x) is finite.

When a is an homeomorphism, the map ( x ^ n ^ y ) \—f (x,n) is an
isomorphism from G onto the groupoid X x Z defined as in (a) by the
obvious Z-action on X.

1.3. The reduced (7*-algebra of a groupoid.
1.3.1. — Let G be a second countable locally compact r-discrete

groupoid (for simplicity). The set Gc(G) of all continuous functions
on G with compact support has a natural structure of involutive algebra
given by:

(/^)(7) = E A7i)^(72), n^-T^).
7i72=7

For simplicity, since there should not be any risk of confusion, we will
denote by fg the product of / and g in Gc(G), instead of f-kg. Note that
fo1' fi 9 € Gc(G°) this is the usual pointwise product.

Let Go(G°) be the algebra of continuous functions on G° that vanish at
infinity. Then Gc(G) is a Go (G°)-module, endowed with an inner-product
with values in Go(G°), as follows:

($/)(7) = ̂ )f o r^) for $ € Gc(G), / € Go(G°),

(^rf}(x)= ^ ^(7)77(7) for ^rj € Gc(G),rr G G°.
r(7)=a;

We denote by ^(G) the completion of the inner-product Go(G°)-module
Gc(G). It is a Hilbert G*-module over the commutative G*-algebra
Go(G°), and £(^(G)) will be the G*-algebra of bounded Go(G°)-linear
operators on ^(G) which admit an adjoint (see [26]).

Let TT be the *-homomorphism of Gc(G) into /^(G)) defined by

M/)0(7) = E /(^"V)^) for /,^GGc(G).
r(70=r(7)
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PURELY INFINITE C"18-ALGEBRAS 205

Then the closure of 7r(Cc(G)) in /^(G)) is called the reduced C*-algebra
of the groupoid, and denoted by C^(G). Note that the norm of / € Cc(G)
in C^(G) is

||/||= SUpl|7T,(/)||
xeG°

where 71-3; is the representation of Cc(G) in the usual Hilbert space ^(G^),
defined by

M/)0(7) =E^'^W) for / e C,(G), ̂ (G-).
r{V)=x

The universal C'*-norm on Cc(G) defines the full C'*-algebra of the
groupoid, that will not be considered in this paper.

1.3.2. — Let us recall that, in the case of an r-discrete groupoid G,
the inclusion Cc(G) —> Co(G) extends to an injection C^(G) —> Co(G).
Therefore, the elements of C^(G) will be viewed as functions on G
(see [35, p. 99]). The subset G° is open in G, and Co{G°) is canonically
identified to an abelian subalgebra of C^{G). Moreover, the restriction
map E:C^(G) —> Co(G°) is a faithful conditional expectation (see [35,
p. 104]). Note also that C^(G) has a tracial state if and only if there
exists a finite invariant probability [i on G° (that is ^ o as == /^, for all
G-maps 5).

If we consider now an essentially free r-discrete groupoid G, we recall
also that C^{G) is simple if and only if G is minimal, by [35, Prop. 4.6,
p. 103].

1.3.3. — When G is defined by a group action a of F on X as
in example 1.2 (a), then C^(G) is the usual reduced crossed product
Co(X) >^ar r. In example 1.2 (b), the reduced (7*-algebra C^V, .77) associ-
ated by A. Connes to the foliation (see [13]) is isomorphic to the C*-tensor
product of C^{G{XV) by the (7*-algebra /C of all compact operators on a
separable Hilbert space (see [22]).

1.3.4. —Let a: X —> X be a continuous surjective map which is a local
homeomorphism, as in example 1.2 (c), and let G be the corresponding
r-discrete groupoid. We will denote by (7*(X,a) the C*-algebra that it
defines. In [35, p. 138], the Cuntz algebras On are exhibited as (7*-algebras
of such groupoids associated to subshifts of finite type. More generally,
the Cuntz-Krieger algebras can be described in this way, as well as many
other interesting examples.

A detailed study of the groupoid G gives a lot of informations on the
structure of G* (X, a), as we will see now. After having been initiated
in [35], this approach was considered by V.Azurmanian and A.Vershik
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206 C. ANANTHARAMAN-DELAROCHE

in [7], and later on by V. Deaconu. Let us point out that in Deaconu's
work [16], it is assumed that a is a p-fold covering, but in fact this
hypothesis is not necessary. For simplicity, we take X compact (otherwise
we must suppose that a is proper).

For n > 0, we set

Rn = {(^ y) e x x x; ^(x) = ̂ {y)}.

Notice that Rn is open in -Rn+i, and its topology is the one induced
by Rn+i' It follows that Go := Un^n endowed with the inductive
limit topology is an r-discrete principal groupoid. We denote by ~ the
equivalence relation that it defines. Of course, Go is the open sub-groupoid
of G consisting of its elements of the form (.r, 0, y ) (where we write (rr, y)
instead of (x,0,y)). More generally, for n € Z, we denote by Gn the
subset of G formed by the (x, n, yVs. Then G = |j Gn is a partition of G
by compact open sets. nez

For x e X , let p{x) be the number of z such that a(z) = x. By a
result of Eilenberg (see [2, Th. 2.1.1]), we know that the map x i-» p(x) is
continuous. The local homeomorphism a induces a *-endomorphism p of
B = G;(Go) by the formula

p(/)(^ = (pO^)^^))!/^^-^7 v/ e cc^'

Indeed we have

W)p(g))(x,y)

= (poa(x)^a(y))^ E^)/^)'^))^^)'^))

= (pca^o^))^ EA^)^)^^))
v^a[x)

=p(fg)(x,y).

Moreover, consider the element v of GcG) defined by

v(x,l,a(x)) = (poa( ; r ) ) ' 2 for a; e X,

v(x,n,y) = 0 otherwise.

Straightforward computations give

^=1, V^BVCB, vfv"=p(f) for/eGc(Go).
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PURELY INFINITE C^-ALGEBRAS 207

It follows that p can be extended to an injective *-endomorphism of B.
We have

w*(a''o'y)=^) if ̂ -^
vv* (x, n, y) = 0 otherwise.

Clearly, if a is non invertible, which will be our assumption from now on,
v is a non unitary isometry. Thus p is a proper corner endomorphism of B.

Now, for / G Cc(G) and k € Z, we denote by fj, the pointwise product
of / by the characteristic function of GA;. We put

^o=/o, Fk=fk^)^ F-^^fk for k>L

Then we have Fj, € C'c(Go) for all k, and

^Pfc = ^/c, PkF-k = F-k for A; ^ 0,

where pk = vk{v*)k. Moreover

f=^^)kF.^F^^FkVk

k>l k>l

is the unique decomposition of / as a finite sum with Fk € Cc{Go) for
all k e Z and

^fePfe = Fk, pkF-k = F^ for k ̂  1.

Prom this observation, it is not difficult to prove that C*(X, a) is cano-
nically isomorphic to the crossed product B x^N, which is the universal
C*-algebra generated by a copy of B and an isometry implementing p. In
particular, since B = limC;(^), where each C^{Rn) is strongly Morita
equivalent to a commutative C*-algebra, we see that G*(X, a) is nuclear.

1.4. Amenability.

The nuclearity of the G*-algebras defined by a groupoid is related to
amenability properties that will be introduced now.

DEFINITION 1.4.1. — We say that a r-discrete locally compact grou-
poid G is amenable if there exists a net (/,) in Cc(G) such that

1) E l /^l^lforal l^eG^ndz;
r(7)=a;
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208 C. ANANTHARAMAN-DELAROCHE

2) we have
lim ^ /,(y)/^-iy)=l

r^^r^)

uniformly on any compact subset of G.

This notion is introduced in [35, p. 92] (see also [3] for the case of a
discrete group action). Let us recall now the notion of amenable measured
groupoid, defined as in [36], by means of a fixed point property.

Let p. be a quasi-invariant measure on G°, and E a separable Banach
space, and consider a Borel cocycle a from G into the isometry group
ofE.

An affine G-space (with respect to a) is a Borel field A = {Ax)x^G° of
compact convex subsets of the unit ball of £"*, such that

a^YAd^ = A^)

almost everywhere (see [36] for details).

DEFINITION 1.4.2. — The measured groupoid (G,/^) is said to be
amenable if every affine G-space A = (A^^o has a fixed point, i.e.
there is a Borel section x \-^ y(x), with (p(x) C Ay, a.e., such that

(^"^M^)) = ̂ (7)) a.e.

DEFINITION 1.4.3. —A r-discrete locally compact groupoid G is said to
be measurewise amenable if (G,/z) is amenable for every quasi-invariant
measure p, on G°.

The following proposition is true for any r-discrete groupoid (see [6]).
For simplicity, we give here the proof in the case of a discrete group action,
which is the only case considered in Section 3.

PROPOSITION 1.4.4. — Let r be a countable discrete group acting by
homeomorphisms on a second countable locally compact space X. The
following conditions are equivalent:

1) the action a of T on X is amenable'^

2) for each quasi-invariant measure p, on X, the crossed product von
Neumann algebra L°°(X^) x F is injective\

3) the action a is measurewise amenable'^

4) the full crossed product Co{X) x^ F is a nuclear C"-algebra',

5) the reduced crossed product Co{X) x^r is a nuclear C*-algebra.

TOME 125 — 1997 — N° 2



PURELY INFINITE CT -ALGEBRAS 209

Proof.
(1) =^ (2). — Let IJL be a quasi-invariant measure on X. We put

M=L°°(X,^)xr,

and ^ i—^ 2z(^) € M will be the unitary representation of F implementing
its action (still denoted by a) on L°°(X,^). We denote by ^(F) 0^ M
the self-dual right Hilbert M-module consisting of the families {f(t))t^r
of elements of M such that ^^r f^YfW ls cr-weakly convergent, with
inner product

{f^g)=Y,f(tYg(t)^M
ter

and obvious right M-action. Then the von Neumann algebra of all
bounded M-linear maps of the Hilbert M-module ̂ (g)^M is £(^(r))(g)M.

Since the action of F on X is amenable, there is a net (fi) of functions
fi ^ Cc{X x r) satisfying the conditions (1) and (2) of Definition 1.4.1.
We will view fi as a map, with finite support, from F into L°°(X, /^) C M,
in an obvious way. Then conditions (1) and (2) give immediately

Y,fi(tYfi(t)<l for all z,
t

lim {fi^cisfi) == 1 cr-weakly, for all 5 € r,%

where (a,/)(t) = a^/^-^)).
Let us denote by p the normal faithful representation of M into

^(F) (g)^ M defined by

(p(h)f)(t)=at-i(h)f(t), for all /i e L°° (X, / , ) , /€ ^2 (F) (g)^ M,

^(n(5))/)(t) = /(5-4), for all 56 r, / € ^(F) 0^ M,

and let w be the unitary in £(^(r)) (g) M defined by

{wf)(t) = u(tYf(t), for all / € ^(F) 0^ M.

Note that
^cr^r))^00^).

Let ̂  be the completely positive map y ̂  (w/^, ywfi) from ^(^(r))^
^^(X, ̂ ) into M, where fi is viewed as an element of^I^^M. We have
11^11 ^ 1 for all z. Using a standard compacity argument, we may suppose
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210 C. ANANTHARAMAN-DELAROCHE

that the net (^) converges to (/) in the topology of cr-weak pointwise
convergence. For s € r and h € L°°{X, fi), we have

^ (p(u(s)h)) = ̂  f,(tY u(t) at-^(h) u^s-H) f^s-H)
ter

=^fi{tru(s)hfi(s-lt)
ter

= (fi,Ssfi)u(s)h,

so that ( / ) o p{m) = m for all m e M.
Since (f> is a completely positive map from the injective von Neumann

algebra /:(^(r)) (g) L°°(X,^) onto M, we see that M is injective.

(2) =^ (3) follows from [38].

(3) =^ (4). — Let (TT, U) be a covariant representation of the dynamical
system (X,r,a) into a separable Hilbert space H. Then there exist a
quasi-invariant measure p, on X, a disintegration

^= r H{X)^{X)^
Jx

and for every (a;, 5) € X x F a unitary u(x, s): H(xs) —^ H(x) such that
(x, s) \-^ u(x, s) is a representation of the groupoid X x F and

(^fK)W=f(x)^x) for / € Co(X), ^ € { H(x)d^x),
J x
/•©

(U^){x) = r^x.sy^u^x.s)^) a.e. for ^ G / H(x)d^x),
Jx

where r(a',s) = d^(a;5)/d^(.r).
Since for n = 0,1,...,+00, the measurable set Xn formed by the

x G X with dim^f(.r) = n is r-invariant, (TT, (7) is a direct sum of
covariant representations in Hilbert spaces whose disintegration gives
fibers of constant dimension (a.e.). Therefore, we may suppose that

H=L2(X^)^K

where p, is a quasi-invariant measure, K is a Hilbert space, and (x^ s) ̂
u(x, s) is a Borel cocycle with values in the unitary group of K. By a close
inspection of the proof of Theorem 2.1 in [37], we see that it can be easily
adapted, in order to show that the amenability of the measured groupoid
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{X x r, jji) implies the injectivity of the von Neumann algebra generated
by7r(Co(X))U{£4; s C F}.

(4) => (5) is obvious, and
(5) =^ (l) has been proved in [3]. []

2. Locally contracting r-discrete groupoids
In this section, G is a second countable locally compact r-discrete

groupoid and we put A = C^.{G).

DEFINITION 2.1. — We say that G is locally contracting if for every non
empty open subset U of G°, there exist an open subset V in U and an
open bisection 6" with V C d(S) and as-i(V) ^ V.

We will give later many examples of locally contracting groupoids.

REMARK. — Clearly, S above is not contained in G°, since as is not
the identity map, and replacing S by S' \ G° we will always assume that
SnG°=9.

For any open bisection <?, we denote by -^s its characteristic function.
Although it does not belong to A in general, for every continuous function
h with compact support in d(S), note that

7 1-̂  (X^)(7) = Xs(^)h(d(^)}

belongs to Cc{G). Moreover, we have

. , ^ x fhoas{^) i f7€r(5 ' ) ,
{Xshxs-^W == \ /

10 otherwise.

By a slight abuse of notation, we set

Xshxs-1 = ho as

in this case. We have h o as € Cc(G°), and the support Supp ho as of
h o as is a s-i (Supp h).

PROPOSITION 2.2. — Let G be a locally contracting r-discrete groupoid^
and let f be a non zero positive element of Co(G°). Then there exist an
infinite projection p in A = C^(G) and X > 0 in R such that \p < f.

Proof. — We note first that, with our assumption, it is very easy to
get projections in A. Following an idea of [12], we begin by constructing
scaling elements, that is elements x € A with x*xx = x.
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Let V be an open subset of G° and S an open bisection in G \ G° with
V C d(S) and as-i(V) ^ V. Choose h:G° -^ [0,1], continuous with
compact support in V, and set x = \sh. Then

a;*a; = /^2 and xx* = \s h2 Xs-1 = h2 o as.

Therefore, taking h equal to 1 on a neighbourhood of ag-i (V), we get
hh o as = h o as, since Supp h o as = a^-i(Supp h). It follows that
x*xxx* = x x * , and thus x*xx = x.

In A, we put
v^x^^-x^y^.

Then z?*'y = 1, and

vv* =1- (a;*a; - xx* - x(l - x^x)^2 - (1 - a;*^)1/2^*).

Hence
p = x*x - xx* - x(l - x*xY/2 - (1 - x^xY^x*

is a projection in A. Moreover, we have p ^ 0 since x*x — xx* is non zero
with support in G° and x(l — x*x)1/2 + (1 — x*xY^x* is a function with
support in G\ G°.

Now, given a positive function g in Co(G°), which is equal to 1 on
a non empty open subset U of (7°, we can easily construct x such that
gx = xg = x by taking the. above V contained in U. Then we have

gp = pg = p.

To achieve the proof of proposition 2.2, we need to show that p is
infinite. Using an idea of M. Laca and J. Spielberg [25], we construct, in
the same way as x above, a new scaling element y with py = yp = y . Then

w=^/+(l-2/*i/)1 /2)

will be a partial isometry in A with w*w = p and

ww* = p - y * y + y y * + y(l - y^y)^2 + (1 - 2/*?/)172!/*

strictly less than p since ?/*2/ — y y * — y(l — y*y)1^2 — (1 — y^yV^y* ^ 0.
For the construction of y , we choose a positive function g/ e Co(G°),

equal to 1 on a non empty open set, such that g ' x * x = g ' and g ' x x * = 0.
Then we take the scaling element y such that g ' y = y g / = y. It follows
that x*xy = 2/a;*a; = y and ^/.r = a;*^/ = 0, and hence py = yp = y. \]
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LEMMA 2.3. — Let G be an essentially free r-discrete groupoid. Given a
compact subset K of G\ G° and a non empty open subset U o/G°, there
exists a non empty open subset V ofU such thatr^^nd^^nK = 0.

Proof. — There exist open bisections S [ , . . . , S^ in G \ G° and, for
i = 1,..., 7i, an open set 5', with Si C Si C 5,', such that K c |j Si. We

i=l
set ai = asi. Let u € U with trivial isotropy. For each i with u € r{S^),
we denote by 7^ the element of S[ such that r(^i) = u. Since d{^i) -^ u,
there exists a neighbourhood Vi of u with ai(Vi) n V; = 0. Put

v=(^\ [jr^n^v^
^r(^) ^r(^)

and consider 7 € r^V) D J^. Let i such 7 e Si. Since r(7) € r(^) H V,
we have -^ € r(S^) and ^(7) ^ V. Therefore r-^V) H d-^y) H ̂  = 0. Q

PROPOSITION 2.4. — Let G be a r-discrete groupoid, essentially free
and locally contracting. Then every non zero hereditary sub-C*-algebra of
A = C^{G) contains an infinite projection.

Proof. — Let a € A+ and a ^ 0. We will construct an infinite
projection p, and a real A > 0 such that Xp <^ a. We may suppose
that \\E{a)\\ = 1. We first choose b e A+ H Cc(G) with

\\a-b\\<^

Then &o = ^(^) satisfies ||&o|| > |, and &i = b - bo has its compact
support J<" contained in G\G°. Let

£ / = { / y e G ° ; 60(7) >|}.
Using Lemma 2.3, we consider an open subset V of U with

r-l(v)nd-l(V)nK=9.
Let f :G° —> [0,1] be a continuous function with compact support in V,
such that {7, /(7) = 1} has a non empty interior. Since

(^i/)(7)=/o^(7)/o^(7)M7),

we see that fbf = fbof. By the previous proposition (and its proof), we
may find a projection p and a partial isometry w with w*w = p, ww* < p,
and p/ = p. Then we get

w*bw = w^fbofw > Iw*/2^ == |j9,

w*aw > w^bw — \'p > ^p.
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It follows that w*aw is invertible in pAp. We denote by c its inverse and
we put u = c^^w^a1/2. We have uu" = p and u*u < \\c\\a. Therefore u*u
is an infinite projection in the hereditary sub-(7*-algebra of A generated
by a. D

REMARK 2.5. — Note that the assumption of Proposition 2.4 is fulfilled
when G is a r-discrete, essentially free, minimal groupoid with a G-map
as having a non isolated fixed point £o which is an attractor in the
following sense: one may find a neighbourhood W of £o such that for
every neighbourhood U of £o there exists n > 0 with (as^^W) C U. We
will give in the two next sections several examples where this situation
occurs.

3. Purely infinite transformation group C7*-algebras

Let us first recall that a C*-algebra is said to be purely infinite if each
of its non zero hereditary sub-(7*-algebras contains an infinite projection.

The bootstrap class At is defined as the smallest class of (7*-algebras
containing the separable commutative ones, which is closed under stable
isomorphisms, inductive limits, extensions and crossed products by Z
or R. These (7*-algebras satisfy to the Universal Coefficient Theorem.
Therefore, the purely infinite, simple, nuclear (7*-algebras belonging to
the class AT are completely classified by their K-theory (see [24] and [29]).

For all the basic facts on hyperbolic metric spaces, we refer to [20]
and [19]. Let X be an hyperbolic space in Gromov's sense. We suppose
that X is geodesic (i.e. every pair of points in X can be joined by a geodesic
segment) and proper, which means that the closed balls are compacts.
Let r be a countable group of isometries of X. The set of points in the
hyperbolic boundary 9X of X which are limit points of the orbit Yx does
not depend on the choice of x G X. This set, called the limit set of F, will
be denoted L(T). One says that F is non elementary if L(T) has at least
three points, and in this case L(T) is a compact perfect metric space.

PROPOSITION 3.1. — Let X be an hyperbolic, geodesic, proper metric
space, and let V be a non elementary group of isometries of X. We suppose
that r has no fixed point in 9X and we denote by a the natural action of
r on L(T). Then C{L{F)) xiayF is a simple purely infinite C*-algebra.

Proof. —Since every t € r has at most 2 fixed points in 9X, the action a
is essentially free. Moreover it is minimal (see [19, p. 153]), and therefore
C7(L(r)) x^r-r is a simple G*-algebra. It follows from [20, §8.2.F], that
for every non empty open subset U of L(T) there exits an hyperbolic
element t e F such that U contains its attractive fixed point t4"00. Let V+
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be an open neighbourhood of ^+00 and V- an open neighbourhood of the
repulsive fixed point t~°° of t, with V+ D V- = 0. By [19, th. 16, p. 147],
there exists no > 1 such that ^{QX \ V-) C V+ for all n > no- Hence, the
action of F on L(T) is locally contracting. []

In particular the above proposition can be applied to any complete
simply connected Riemannian manifold X with sectional curvature less
than a real K < 0. Let us mention that if moreover the curvature is
bounded below, then the action of F on 9X is amenable (see [32]).

Consider now a group r with a finite system S of generators (where
we suppose S symmetric and not containing the neutral element e of r).
Recall that F is said to be hyperbolic if its Cayley graph <?(r, 5), endowed
with the word metric, is hyperbolic (this property does not depend on
the choice of S). We denote by QY the boundary of <?(r,S') (which is
also independent of S, up to quasi-conform equivalence), and remark
that <9F is the limit set of F acting by translations on Q(T,S). Let us
point out that here r is non elementary if and only if it does not contain
a cyclic subgroup of finite index (see [19, p. 129]) and that, in this case,
9F is a perfect compact space of finite dimension without any point fixed
by r [19, p. 154]). This class of groups includes the free groups and the
fundamental groups of the Riemannian compact manifolds with strictly
negative curvature.

PROPOSITION 3.2. — Let r be a non elementary hyperbolic group and
denote by a its action on its boundary 9F. Then C(9F) XarF is a simple
purely infinite nuclear C*-algebra.

Proof. — We only have to remark that C(9T)) x^rF is nuclear, and
this follows from the result of S. Adams [1] showing that the action of r
on <9F is measurewise amenable. []

Let us now consider the particular case of proposition 3.1 where X is the
hyperbolic Poincare upper half-space H2. Here the group of orientation
preserving isometries of X is PSL(2, M), and 9X is the real projective line
P^M), canonically isomorphic to PSL(2,M)/P, where P is the parabolic
subgroup of all upper triangular matrices.

A fuchsian group r is a discrete subgroup of PSL(2, R). When F is non
elementary, then either L(T) = P^M) or L(T) is the Cantor discontinuum.
The group r is said to be of the first kind in the first case. Note also that
a fuchsian group F is a lattice in PSL(2,R) (i.e. a discrete subgroup of
finite covolume) if and only if it is finitely generated and of the first kind.

PROPOSITION 3.3. — Let T be a fuchsian group of the first kind, and let
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a be its natural action on the boundary P1 (M) of the Poincare upper half-
space. Then C^P ÎR)) Xar r is a simple purely infinite nuclear C*-algebra
in the bootstrap class M.

Proof.—That (^(P^R)) x^r F is simple purely infinite is a consequence
of Proposition 3.1, since P^M) = L(T). Moreover, by [30], we know that
(^(P^M)) xi^r-r is Morita equivalent to the crossed product

C(r\PSL(2,M)) xP,

which is nuclear and belongs to the class At because P is a solvable
group. D

We will now show that this result can be extended to any lattice of any
real connected, semi-simple Lie group G without compact factors, and
with trivial centre.

PROPOSITION 3.4. — Let r be a lattice of a real connected^ semi-simple
Lie group G without compact factors^ and with trivial centre. Let P be a
minimal parabolic subgroup of G. Let us denote by a the natural action
off on the Furstenberg boundary G/P. Then C(G/P) xiay-r is a simple
purely infinite nuclear C*-algebra in the bootstrap class At'.

Proof. — As in Proposition 3.3, C(G/P) Xar F is Morita equivalent to
Co(r\(?) x P which is nuclear in the class AT. The lattice r acts minimally
on the compact space G/P by [27, Lemma 8.5]. Moreover, the action is
essentially free since any 7 7^ e in F has a finite number of fixed points. It
follows that C(G/P) xiar-r is simple. It remains to show that the action
is locally contracting. For the proof, the paper [10] has been useful to us.

Consider a Cartan decomposition of the Lie algebra Q of G

5 = ^ © P ,

and let a be a maximal abelian subalgebra of p. Let us denote by E the set
of roots of (g, a), and for A 6 S, let Q\ be the corresponding root space.
Choose a Weyl chamber a+ in a, and denote by S+ the set of positive
roots. We put

H = ^ S A ,
A(=S+

and we denote by A and N the analytic subgroups of G with Lie algebras
a and n respectively. As usual, KAN is the Iwasawa decomposition of G.
Finally, M and M' are the centralizer and the normalizer of a in K^ so
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that M' / M is the Weyl group of G. We denote by P the minimal parabolic
subgroup MAN of G, and the Furstenberg boundary G/P by B.

Next, we need to recall some facts on the Bruhat decomposition of G.
For each w € W\ we choose a representative s^ C M'. Then G is the
disjoint union

U Ps^P
wew

If w is the longest element in TV, we know that Ps^jP is an open subset
of G, and that the other terms are submanifolds of lower dimension (see
[21, p. 407]). It follows in particular that

G/P= J 7V^,
wew

where bw = 5^P, and Nbw is open. Denoting by N the opposite subgroup
SwNs^ of TV, we have also

B = (J s^Nb^ = \J Nb^
w^W w^W

where Nbe is open in B.
Let (3 and 0 be the Killing form and the Cartan involution on 5, and

denote by || . || the norm defined by the inner product

(x,y)^-/3(x,^r) ons.
Then M acts isometrically on Q by Ad. The elements of A+ = exp a+
centralize m © a, expand n and shrink n, in the decomposition

^ = n e m e a 6 > n .

Therefore, given to ^ ^4+? there exists A €]0,1[ such that

|| Ad to X\\ ^A||X||

for X € n. Note that the diffeomorphism ( / ) : X \—> (expX)be from n onto
Nbe is equi variant:

(exp{AdtoX))be = to(expX)be

for all X € n. It follows that, given a neighbourhood U of be in 5, there
exist an open neighbourhood V of be contained in U\ and no >_ 0 such
that %(F) ^ V for all n ^ no.
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To conclude, we need the following crucial fact (see [11, Appendice]):
any lattice in G contains an element i\ of the form gtog~1 where g € G
and to 6 MA-\-. Then, let U be a non empty open subset of B. Since the
r-action on B is minimal, there is t^ € r with t^gbe € U. By the above
observations, we may find an open subset V of Nbe ̂ \g~lt^lU and n > 0
with %(F7) ^ V. Putting V = W, we get t^t^(V) ̂  V. D

Actually, other discrete isometry groups of manifolds with nonpositive
curvature yields purely infinite (7*-algebras. For more details on this
paragraph, we refer the reader to [17], [8] and [9].

Let us recall that a Hadamard manifold X is a complete, simply
connected Riemannian manifold of nonpositive curvature. For such a
manifold, there is a notion of point at infinity, and the set OX of these
point has a natural topology which turns it into a compact space. Let F
be a discrete group of isometrics of X. The action of F extends to an
action on the boundary QX. As for hyperbolic metric spaces, the limit
set L(T) of r is the closed subset of QX defined as the set of limit points
of an orbit of F in X. When r is such that vol(T \ X) < +00, we have
L(F) = 9X.

A Hadamard manifold is called a visibility manifold if for every two
different points x, y € 9X, there is a geodesic linking x to y . There are visi-
bility manifolds whose curvature is not strictly negative (see [17]). How-
ever, many of the properties of a complete simply connected Riemannian
manifold with curvature strictly less than K, < 0 remain true for visibility
manifolds. In particular, if r is a discrete group of isometries of a visibility
manifold X, the number of fixed points in 9X of any t G F \ {e} is < 2
(see [9, p. 85]). If moreover vol(F \ X) < +00, the action of F on 9X
is minimal and locally contracting by [8, th. 2.8 and th.2.2]. Therefore
we have

PROPOSITION 3.5.—LetF be a discrete group of isometries of a visibility
manifold X , such that vol(r \ X) < +00, and denote by a the natural
action of T on 9X. Then C(9X) xiarP is a simple purely infinite (7*-
algebra.

PROBLEM 3.6. —Let X be a Hadamard manifold without flat de Rham
component, and let r be a discrete group of isometries of X, such that
vol(F \ X) < +00.

• Is the reduced crossed product C(9X) x^r r a simple purely infinite
<7*-algebra?

• Is it a nuclear (7*-algebra?
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4. Purely infinite C*-algebras associated with expanding maps

DEFINITIONS 4.1. — Let X be a compact metric space and a: X —^ X
a continuous surjection. We say that a is expansive if there is a constant
c > 0 such that x -^ y implies d(c^n{x),o•n(y)) > c for some integer n > 0.
If moreover a is open, we say that a is an expanding map.

By a result of W. Reddy, it is known (see [2, Th. 2.2.10]) that if
a: X —> X is a continuous expanding surjection, then there exist a com-
patible metric d' and constants 60 > 0, A > 1, such that

d'{a(x}^{y}}>\d\x^

whenever d'(x^ y) < 60. In particular, an expanding map is a local homeo-
morphism.

An element x C X is said to be eventually periodic if its positive orbit
is finite, that is, if there are two integers p 7^ q with ^(x) = aq(x).

PROPOSITION 4.2.—Let X be a compact metric space and a: X —> X an
expanding continuous surjection. We suppose that the eventually periodic
points of a form a dense set with empty interior. Then (7*(X,a) is
nuclear, purely infinite and belongs to the bootstrap class Af'.

Proof. — Since x G X has a non trivial isotropy if and only if it is
eventually periodic, we see that the groupoid G defined by the dynamical
system {X^a) is essentially free. To prove that it is locally contracting,
we consider a non empty open subset U of X. Let y e U and k > 0
such that ^(y) = x is periodic, and denote by p its period, that is the
smallest integer p > 1 with o'p(x) = x. Replacing U by a smaller open set
if necessary, we may suppose that U = r(S), where S is an open bisection
of the form ^(£7, U ' ^ k — O): this means that a•k\u is an homeomorphism
onto U' and as = o•k\u.

Since a is expanding, there exist a compatible metric d and 60 > 0,
A > 1, such that d(x,y) < 60 implies d(a(;r),cr(^)) > \d(x,y). Let W be
an open neighbourhood of x contained in U ' with the following properties:

(a) O'P^ is an homeomorphism onto an open set W;
(b) for £ = 0 , . . . ,p, and ^i, z^ e (/(TV), we have d(^i, z ' z ) < 60.
It follows that

d(z^,Z2) < .^(a^i),(/(^)) for z^z^ € W.
^

In particular, we get

d(x, z) < 1 d{x, a-P{z)) for all z € W.
XP
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Denote by T the bisection

W^0-p)={(ap(z)^-p^)^ zeW}.

We have d(x,aT(z/)) < \~pd{x,z/) for all z ' € W. Therefore, choosing r
with

B(x, r) = { z ' ; d{x, zf)<r}cWfn U\

we see that B(x^r) is contained, for all k > 0, in the domain of
definition of a (7-map, which will be denoted aj^k, and satisfies a^k ( z ' ) =
(or)^^) for z1 € B(x^r). Since x is non isolated in X, we may find
an open neighbourhood V of x contained in B(x^r) and k > 1, with
arfe(F') §y'. Then we set

y^a^yOc^,
and since

ark oas(V) g as(V),

we conclude that there exists a well defined G-map a^ with V C y^)
and OR(V) ̂  V.

That C*(X,a) is nuclear in the class J\T follows from 1.3.4. []

Let us consider the finite set of symbols (or states) S = {! , . . . , N}
with N >_2. Let S^TY) be the set of sequences of the form x = (^)%>o
where Xi C S. The set {! , . . . , N} is equipped with the discrete topology,
and ̂ (N) with the product topology, which makes it a Cantor set. For
x,y € S^IV), we put

v(x,y)

Then

' +00 if x = y ,
min{A; > 0, Xfc 7^ Vk} otherwise.

d:(x,y)^ e-^^

is a distance on S^TY), compatible with the topology. The full one-sided
TV-shift (S'^TV),^) consists of the compact space ̂ (N) upon which the
shift transformation acts by the formula

(cr(.r))^ = Xn+i for n € N.

Clearly, whenever d{x^y) < 1, we have d(a(x),a(y)) > ed(x,y), and
therefore (S'^TV),^) is expanding.

A subshift (X, a) is defined as a closed shift-invariant subspace X of
S^TV), together with the restriction of a to X. Recall that a word is a
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finite sequence w = (wi , . . . , Wk} of elements of the alphabet 5'. There is a
list F of forbidden words such that X is defined as the subset of elements
of Yj~^~(N) that do not contain a word of F' as a string of consecutive
symbols. A word which appears as a string of consecutive symbols in
a sequence x e X is called admissible. We denote by W the set of all
admissible words for X. The concatenation of two words w and v is
denoted wv. We say that two admissible words wi and w^ are equivalent,
and we write Wi ~ w^ if

{v c w; w^v e W} = {v e w; u^ c w}.

PROPOSITION 4.3.—Let {X ,cr) 6e a subshift and W its list of admissible
words. Let us suppose that

1) for all i € 5, the word reduced to the letter i is admissible, and there
exists j with ( j i ) ~ (z) in W',

2) (X,a) has a point which is not eventually periodic',

3) given w^.w^ € H ,̂ there is a word v such that w\v ~ W2 in W.

Then C*(X,a) %5 a simple, nuclear, purely infinite C*-algebra in the
class At.

Proof. —First, a : X —> X is surjective, thanks to the condition 1). The
assumption 3) implies obviously that every full orbit 0{x) is dense in X.
Using the minimality of the system, and assumption 2), we see that there
is a dense set of points which are not eventually periodic. The groupoid
defined by (X, a) is therefore essentially free and minimal, and (7* (X, a) is
simple. Note that (X, cr) is expanding. To conclude, it is enough to prove
that there is an eventually periodic point, but this is obvious since there
are words w and v in W with wv ~ w. In fact, wvv is also admissible, and
by repeating v infinitely many times, we construct an eventually periodic
element in X. []

It is very easy to construct examples which fulfill the condition of
Proposition 4.2. The most famous ones are taken among subshifts of finite
type (SJ[, a), where A = (a^j) is a N x N matrix whose entries are either
zeros or ones and

S^ = {x C ̂ (N) ; a^^ = 1 for i € N}.

The matrix A is called irreducible if for all i,j there is an m > 0 such
that (A772)^- > 0. Clearly, when A is an irreducible matrix which is
not a permutation matrix, the conditions 1) to 3) of Proposition 4.3 are
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satisfied for (SJ[,cr). In fact, when the less stringent property (J) of [15]
is satisfied, we see also that (7*(SJ[, cr) is purely infinite, as a consequence
of Proposition 4.2. As observed by J. Renault, C7*(SJ[, a) is isomorphic to
the Cuntz-Krieger algebra OA defined by A.

Let us give now an example of subshift, not of finite type, which
also yields a purely infinite simple (7* -algebra. We take N = 2 and
the forbidden words are those beginning and ending by 2, with only the
symbol 1 inside, repeated an odd number of times. Here also, it is easily
checked that the assumptions of Proposition 4.3 are fulfilled.

EXAMPLE 4.4. — Let M be a compact Riemannian manifold. Then a
differentiable map a: M —> M is expanding if and only if there exist A > 1
and c > 0 such that

||Î || ̂  cA"|H|

for any tangent vector v and n > 1. The differentiable expanding maps on
a compact manifold M without boundary have been studied by M. Shub
in [31]. We note that the existence of such an expanding map imposes
serious restrictions on the manifold: its universal covering is diffeomorphic
to a space R71, and its Euler characteristic is zero. M. Shub has also proved
that any differentiable expanding map a has a dense positive orbit, and a
dense set of periodic points. It follows that (M, a) satisfies the properties
of Proposition 4.2.

Well known examples of such differentiable expanding maps are
constructed as follows. We take M == R^/Z71 and we consider a matrix
A G Myi(Z) having all its eigenvalues of absolute value strictly greater
than 1. Obviously, this linear map on R^ induces an expanding map on M.
Morever, every full orbit 0(x) is dense, that is, (M, /) is a minimal dyna-
mical system.

REMARK 4.5. — Although we have not considered in details here the
case of the reduced G*-algebra defined by a foliation, let us mention that,
as a consequence of Proposition 2.4, we get:

PROPOSITION.—Let (V ̂ ) be a minimal foliation (i.e. such that every
leaf is dense in V). We suppose that there exist a leaf F and a loop 7
in -F, whose base point is an attractor (in the sense of Remark 2.5)
for the element of the pseudogroup of holonomy of T associated to 7.
Then C^(V ̂ } is simple and purely infinite.
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