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LINEARIZATION OF GROUP STACK ACTIONS AND

THE PICARD GROUP OF THE MODULI OF

SLr /^-BUNDLES ON A CURVE

PAR YVES LASZLO (*)

ABSTRACT. — In this paper, we consider morphisms of algebraic stacks X —> y
which are torsors under a group stack Q. We show that line bundles on V correspond
exactly with G-linearized line bundles on X (with a suitable definition of a Q-
linearization). We use this fact to determine the precise structure of the Picard group
of the moduli stack of (9-bundles on an algebraic curve when G is any group of type An.

RESUME. — Dans cet article, on considere les morphismes de champs algebriques
X —> y qui sont des torseurs sous un champ en groupes Q. Nous prouvons que les fibres
en droites sur V correspondent exactement aux fibres en droites sur X munis d'une
^-linearisation (avec une definition convenable d'une ^-linearisation). Nous utilisons
ceci pour determiner la structure exacte du groupe de Picard du champ des G-fibres
sur une courbe algebrique lorsque G est un groupe algebrique (non necessairement
simplement connexe) de type An.

1. Introduction
Let G be a complex simple group and G —^ G the universal covering.

For simplicity, let us consider the moduli stack M.G (resp. M.-) of degree
1 € 71-1 (G) principal G-bundles (resp. G-bundles) over a curve X. In
[B-L-S], we have studied the natural morphism

,: Pic(A^) — Pic(.Mg),

the group P\c{M.--) being infinite cyclic by [L-S]. It is proved in
[B-L-S] that the kernel of L is naturally identified with the finite group
H^{X,TT\{GY) reducing the study of Pic^Mo) to the computation of
the cardinality of Coker(^). Among other things, it has been possible to
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530 Y. LASZLO

perform this computation in the case where G = PSLy. but not in the
case where G = SLy.//^, where s | r, although we were able to give par-
tial results. The reason was that the technical background to study the
descent of modules through the morphism p : M.- —> MG wasn't at our
disposal.

The aim of this paper is to compute cardCoker(^) when G = SLr/fJis-
It turns out to be that p is a torsor under some group stack, not far from

a Galois etale cover in the usual schematic picture. Let / : X —> y be a
torsor under a group scheme Q. We know that a line bundle on X descends
if and only if it has a ^-linearization (easy consequence of descent theory).
Now, the descent theory of Grothendieck has been adapted to the set-up
of fpqc morphisms of stacks in [L-M]. If Q is now only assumed to be a
group stack, there is a notion of ^-linearization of line bundles on X (see
section 2). One obtains (theorem 4.1) that a line bundle on X descends if
and only if it admits a linearization.

We then use this technical result to compute card Coker(</) when
G = SLr/f^s (theorem 5.7 and its corollary).

I would like to thank L. BREEN for having taught me both the notions of
torsor and of linearization of a vector bundle in the set-up of group-stack
actions and for his comments on a preliminary version of this paper.

Notations.
Throughout this paper, all the stacks will be implicitely assumed to be

algebraic over an algebraically closed field k and the morphisms locally of
finite type. We fix once and for all a projective, smooth, connected genus g
curve X and a closed point x of X. For simplicity, we assume g > 0 (see
remarks 5.6 and 5.10 for the case of P1). The Picard stack parametrizing
families of line bundles of degree 0 on X will be denoted by J(X) and the
jacobian variety of X by JX. If G is an algebraic group over k, the quotient
stack Spec(fc)/G (where G acts trivially on Spec(A;)) whose category over
a ^-scheme S is the category of G-torsors (or G-bundles) over S will be
denoted by BG. If n is an integer and A = J(X), J X or BGm we denote
by UA the n^-power morphism a ̂  a". We denote by Jn (resp. Jn) the
0-fiber Ax A Spec(fe) of UA when A = J(X) (resp. A = JX).

1. Generalities. — Following [Br], for any diagram

g ^
A-^B ^x C-^D

~T^
TOME 125 — 1997 — ?4



LINEARIZATION OF GROUP STACK ACTIONS 531

of 2-categories, we will denote by

£ ^ \ : £ o f = = ^ j E o g (resp. \^h:foh==>goh)

the 2-morphism deduced from A.

1.1. — For the convenience of the reader, let us prove a simple formal
lemma which will be usefull in section 4. Let A, 25, C be three 2-categories.
Let diagram

(I.I.I)

be a 2-commutative diagram and let ^ : 60 ==> 6-^ be a 2-morphism.

LEMMA 1.2. — Assume that f is an equivalence. There exists a unique
2-morphism

^* f~1 : do ==> di

such that (p, * /-1) * / = IJL.

Proof. — Let e^, for k = 0,1 be the 2-morphism dk o f =^ 6 k ' Let b be
an object of B. Pick an object a of A and an isomorphism a : f{a) -^-> b.
Let (pa : do{b) -^-> d\(b) be the unique isomorphism making the diagram

c / \ ^o(o-) 7 f( \ do(a) , /,\^o(a) ——^ do of (a) ——-^ do(b)

P-a \ \ ^a
^ ^

c / \ ei(a) , ff\ dl(Q') .j / T \61(0) ———> d io / (a ) ———> di(&)

commutative. We have to show that (pa does not depend on a but only
on b. Let a' : /(a') —^ b be another isomorphism. There exists a unique
isomorphism i : a! —^-> a such that aof(i) = a ' . Then one has the equality
(pa' == c?i(a) o $ o ̂ (oO"1 where

^ = K o /M] o ^(aQ o ̂  o 6o(aQ-1 o [̂  o /(.)]-1.

The functoriality of Ci and IJL ensures that one has the equalities

dk o fW o Ck{a') = €k(a) o ̂ (^)

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



532 Y. LASZLO

and
^a = 6i(i) o ̂  o6o(i)~1.

This shows the equality

^ =el(a)o^oeo(a) - l

which proves the equality (pa = (pa' - We can therefore define fib to be the
isomorphism (pa for one isomorphism a : f(a} —^-> b. We check that the
construction is functorial in b and the lemma follows. []

2. Linearizations of line bundles on stacks.
Let us first recall the notion of torsor in the stack context according

to [Br].

2.1. — Let / : X —> V be a faithfuly flat morphism of stacks. Let
us assume that an algebraic ^r-stack Q acts on / (the product of Q is
denoted by mg and the unit object by 1). Following [Br], this means that
there exists a 1-morphism of y-stacks m : Q x X —> X and a 2-morphism
IJL : m o (mg x Id;r) => m o (Idg xm) such that the obvious associativity
condition (see diagram (6.1.3) in [Br]) is satisfied and such that there
exists a 2-morphism e : m o (1 x Id^) => Idjy which is compatible to fJi in
the obvious sense (see (6.1.4) of [Br]).

REMARK 2.2. — To say that m is a morphism of y -stacks means that
the diagram

g^^ —m-^ ^

\ /
y

is 2-commutative. In other words, if we denote for simplicity the image of
a pair of objects m{g, x) by g ' x . This means that there exists a functorial
isomorphism bg^ '• f(9'x) —> f(x).

2.3. — Suppose that Q acts on such another morphism /' : X' —> y.
A morphism p : X' —^ X will be said equivariant if there exists a 2-
morphism

q : m o (Id xp) =^ p o m '

which is compatible to p, (as in [Br, (6.1.6)]) and e (which is implicit
in [Br]) in the obvious sense.

DEFINITION 2.4. — With the above notations, we say that / (or <Y)
is a G-torsor over y if the morphism pr^ x m : G x ^ — > ^ X y X [ s a n
isomorphism (of stacks) and the geometrical fibers of / are not empty.

TOME 125 — 1997 — N° 4
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REMARK 2.5. — In down to earth terms, this means that if

^ '' fW —— f{x')

is an isomorphism in V {x, x ' being objects of X}, there exists an object g
of G and a unique isomorphism {x, g-x) -^ (x, x ' ) which induces L by way
of^, (c/.2.2).

EXAMPLE 2.6. — Let Mx{Gm) be the Picard stack of X. Then, the
morphism

Mx(Gm)—A^(Gm)

of multiplication by n € Z is a torsor under B/z^ x Jn(X) {cf. (3.1)).

2.7. — Let £ be a line bundle on X. By definition, the datum C
is equivalent to the datum of a morphism £ : X —. BGm (see [L-M,
prop. 6.15]). If C,C' are two line bundles on X defined by i,V\ we will
view an isomorphism C -^ C' as a 2-morphism t ==^ V .

DEFINITION 2.8. — A Q-linearization of C is a 2-morphism

A : f. o m => £ o pr^

such that the two diagrams of 2-morphisms

£ o m o (mg x Id )̂ ^ > Como (Idg xm)

A*(mgXldA')|[ Ji^^^ xm)

(2.8.1) ^
£ o pr2 o(mg x Id )̂ -( p 2S i o pr^ o(Idg xm)

1 1 I I
£ o pr^ o pr23 t o m o pr^

and

^ o m o ( l xld;f) —^ £

(2.8.2) A*(lxld^)| |

£ ====== i

(strictly) commute.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



534 Y. LASZLO

REMARK 2.9. — If gi,g2 are objects of Q and d is an object of X, the
commutativity of diagram (2.8.1) means that the diagram

w{gl•g2)x ^ ^ ^91(92 -x)

'[ ['•^ •^
r < ^___ r
*^X —92'X

is commutative and the commutativity of (2.8.2) that the two isomor-
phisms C\.x ^ f^x denned by the linearization A and e respectively are the
same.

3. An example.
Let me recall that a closed point x of X has been fixed. Let S be a

fe-scheme. The ^-points of the jacobian variety of X are by definition
isomorphism classes of line bundles on Xs together whith a trivialization
along {x} x S (such a pair will be called a rigidified line bundle). For the
convenience of the reader, let me state this well known lemma which can
be found in SGA4, exp. XVIII, (1.5.4).

LEMMA 3.1. — The Picard stack J(X) is canonically isomorphic (as a
k-group stack) to JX x BGm-

Proof. —Let / : J{X) —> J X x BGm be the morphim which associates
• to the line bundle L on Xs the pair (-L E3 L71 ^, L\s^\^s) where ^

denotes the external tensor product (this pair is thought of as an object
of J X x BGm over S ) ;

• to an isomorphism L —^ L' on Xs its restriction to {x} x S.
Let // : J X x BGm —> J(^) be the morphism which associates
• to the pair (L, V) where L is a rigidified bundle on Xs and V a line

bundle on S (thought of as an object of J X x BGm over S), the line
bundle L ̂ xs V ;

• to an isomorphism (£^v) : (L, V) -^ (L^V) the tensor pro-
duct £ ̂ xs v '

The morphisms / and /' are (quasi)-inverse to each other and are
morphisms of fe-stacks. []

We will identify from now J{X) and J X x BGm' Let C (resp. V and T)
be the universal bundle on X x J(X) (resp. on X x J X and BGm) and
let © = (detRrP)~1 be the theta line bundle on JX. The isomorphism
C —^ P ^ T yields an isomorphism

(3.1.1) detRT^^m'x) -^ Q-^ ^r^1-^.

TOME 125 — 1997 — N° 4



LINEARIZATION OF GROUP STACK ACTIONS 535

4. Descent of Q-line bundles.
The object of this section is to prove the following statement.

THEOREM 4.1. — Let f : X —> y be a Q-torsor as above. Let Pic^(^V) be
the group of isomorphism classes ofQ-linearized line bundles on X. Then^
the pull-back morphism /* : Pic(y) -2-^ Pic (^) is an isomorphism.

The descent theory of Grothendieck has been adapted in the case of
algebraic 1-stacks in [L-M], essentially in proposition (6.23).

Let X. —> y be the (augmented) simplicial complex of stacks coskeleton
of / (as denned in [De, (5.1.4)] for instance). By proposition (6.23) of
[L-M], one just has to construct a cartesian OD. -module £, such that CQ
is the 0^ -module C to prove the theorem. The n-th piece Xn is inductively
defined by

XQ = X, Xn = X xy Xn-i for n > 0.

Let pn : ^n — ^ ^ b e the projection on the first factor. It is the simplicial
morphism associated to the map

Pn ''
• Ao -^ A^
•Oi—>0.

Let Cn be the line bundle defined by the morphism (see (2.7))

(4.1.1) £n : ̂ n -p^ X -^ BGm.

4.2. —Let 6i (resp. sj) be the face (resp. degeneracy) operators (see for
instance [De, 5.1.1]). By abuse of notation, we use the same notation for
6j^ Sj and their image by X). The category (A,) is generated by the face
and degeneracy operators with the following relations (see for instance
the proposition VII.5.2, p. 174 of [McL])

(4.2.1) 6i o 6j = ̂ -+1 o 6i if i ^ j ,

(4.2.2) Sj o si = Si o Sj-\-\ if % < jy,

{ ^o^'-i if % < j ,
(4.2.3) S j o 6 i = 1 if i = j , i = j + l ,

S i - ^ o s j if i > j + l .

Therefore, the datum of a cartesian 0^. -module C. is equivalent to
the data of isomorphisms

Oj : S^jCn -^ ^n+l, J = 0, . . . , n + 1,

f3j : S^Cn+l -^ ^n, J = 0, . . . , n,

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



536 Y. LASZLO

(where n is a non negative integer) which are compatible with relations
(4.2.1), (4.2.2) and (4.2.32).

Let n be a non negative integer.

4.3. — We have first to define for j = 0 , . . . , n + 1 an isomorphism

Oj : 8^Cn -^ ^n+1.

The line bundle KCn is defined by the morphism £op^o6j : ^n-\-\ —)> BGm
and pn o 6j is associated to the map

F A o —^+1,
t O^^(O).

• If j 7= 0, one has therefore pn o 6j = pn+i and S^Cn = ^n+i- We
define aj by the identity in this case.

• Suppose now that j = 0. Let TTn '• ^n —> ^i be the projection on the
two first factors (associated to the canonical inclusion Ai ^-> A^). The
commutativity of the two diagrams

•y SQ -y y Pn+1 y

^n+1 —————^ ^n ^n+l ——————^ ^

TTn+l Pn and TTn+1 <5l
-^ >> ' ^^i —-°—> x ^ ===== ^

allows to reduce the problem to the construction of an isomorphism

S^jC —^-> 6^C

where 61 '. X\ —^ X for i = 0,1 are the face morphisms or, what amounts
to the same, to the construction of a 2-morphism v '. i o SQ ===^ £ o 6\ (the
morphism aj will be Oj; == v * Tr^+i). Now the diagram

^ ^^mtorn ^^

^^^ ^o<$o
/-i i-> P1'-? ><7n ' \ f -\i(4.3.1) Q x ^ ———^ ^ xy ̂

is strictly commutative and pr^ xm is an equivalence by definition of a
torsor. According to lemma 1.2, the 2-morphism A induces a canonical
2-morphism

A * (pr^ xm)~1 : £ o So ===^ £ o 6^
which is the required 2-morphism v.

TOME 125 — 1997 — ?4



LINEARIZATION OF GROUP STACK ACTIONS 537

4.4. — We then have to define for j = 0 , . . . , n an isomorphism

f3j : S^Cn-^-l —^ f^n-

The line bundle s^C is defined by the morphism i o pn+i o sj and
pn+i 0 Sj is associated to the canonical inclusion AQ ^-> Ayi which means
pn+i ° Sj == pn- Therefore, one has a canonical isomorphism s^Cn+i = ̂ n
and we define f3j to be the identity.

4.5. — We have to show that the data jC, and a^ f3j^ for j> 0 define
a line bundle on the simplicial stack X^ as explained in 4.2. Notice that
the fact that the definition of the (3j is compatible with relations (4.2.2)
is tautological (f3j is the identity on the relevant Cn)'

4.6. — In terms of ^, relation (4.2.1) means the following. We have the
two strictly 2-commutative diagrams

and

inducing the two 2-morphisms
aj*6iat o (aj * 6i) : £ o p^ o 6j o 6i Q:J* ' > £ o ̂ +i o 6i =^=^ i o p^^JLi u \LX.j -1s Ui) . -C u p^ u Uj U Ui

and
/ c \ /i c c ai*6j+l /, c aj+l n

Q;^+io(az*^-+i) : topn o6i0 6j^ > iopn+\o6j^l ===> iopn+l'

The relation (4.2.1) means exactly the equality

(4.2.1') ai o (aj * Si) = o^+i o (a, * <^+i), for i < j.

• If j = 0, the relation (4.2.1') is just by definition of aj the condition
(2.8.1) (see remark 2.9).

• If j > 0, both isomorphisms Oj and Oj+i are the relevant identities
and the relation (4.2.1') is tautological.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



538 Y. LASZLO

4.7. — The only non tautological relation in (4.2.3) corresponds to the
equality SQ o So = 1 in (A.) which means as before that OQ * 60 is the
identity functor of £ opn = i opn ° ̂ o ° 5o. But, this is exactly the meaning
of the relation (2.8.2) (see remark 2.9).

5. Application to the Picard groups of some moduli spaces.
Let us choose three integers r, s, d such that

r ^ 2 and s \ r | ds.

If G is the group SLr/^s we denote as in [B-L-S] by Mc(d) the
(connected) moduli stack of G-bundles on X of degree exp(2z7rd/r) €
Hj^X.^s) = ^s and by Ms^{d) the moduli stack of rank r vector
bundles and determinant 0(d-x). If r = s (i.e. G = PSLy.), the natural
morphism of algebraic stacks

7r:.MsL.(cO —>Mc{d)

is a J^-torsor (see the corollary of proposition 2 of [Gr] for instance). Let
me explain how to deal with the general case.

5.1. — Let E be a rank r vector bundle on Xs endowed with an
isomorphism

T : D^8 -^ det(E)

where D is some line bundle. Let me define the SL^/^^-bundle 7r(E)
associated to E (more precisely to the pair {E,r)).

DEFINITION 5.2.
• An s-trwialization of E on an etale neighborhood T —> Xs is a triple

(M, a, a) where

oc: D —^ M8 is an isomorphism (M is a line bundle on T);
a : M®7' —^ ET is an isomorphism;
det(cr) o a^8 : D^8 -^ det(E) is equal to T.

• Two 5-trivializations (M,a,a) and (M^o^cr') of E will be said
equivalent if there exists an isomorphism i : M -^4 M' such that

The principal homogeneous space

T i—> {equivalence classes of s-trivializations of Er}

TOME 125 — 1997 — ?4



LINEARIZATION OF GROUP STACK ACTIONS 539

defines the SL^/^^-bundle 7r(E)^ Now, the construction is obviously
functorial and therefore defines the morphism TT : MsL^{d) -^ Mc(d)
(observe that an object E of Msi^(d) has determinant 0(ds/r • x ^ / 8 ) .
Let L be a line bundle and (M,a,r) an 5-trivialization of ET. Then,
(M (g) L,a (g) Id^,a (g) Idi,) is an s-trivialization of E 0 L (which has
determinant {D 0 L^/5). This shows that there exists a canonical
functorial isomorphism

(5.2.1) TT(E) -^7r(£'(g)L)

In particular, TT is ^-equi variant.

LEMMA 5.3. — The natural morphism of algebraic stacks

^•-MS-LM——^G(d)

is a Js-iorsor.

Proof. — Let E, E' be two rank r vector bundles on Xs (with deter-
minant equal to O(d'x)) and let L : 7r{E) -^ 7r(£;y be an isomorphism.
As in the proof of the lemma 13.4 of [B-L-S], we have the exact sequence
of sets

1 ̂  ̂  __ Isom(^,^) -. Ison^),^/) ^-^ ^(X^,^).

Let L be a /^-torsor such that T T E ^ E ' ^ ) = [L]. Then, 7r(E (g) L) is equal
to TT(^), TTE^L^ = 0 and i is induced by an isomorphism E 0 L -^4 E/

well defined up to multiplication by /^. The lemma follows. []
5A — Le^ U be the universal bundle on X x MsLr.(d). We would like

to know which power of the determinant bundle V = (detRFU)-1 on
A^SL,(O descends to Mc(d). As in 1.3 of [B-L-S], the rank r bundle

^^e(r-l)^!-.^

on X x ^(X) has determinant O(d'x) and therefore defines a morphism

/ : J(X) = J X x BGm —— MSLM

which is J^-equivariant.

1 We see here a (^-bundle as a formal homogeneous space under G.
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540 Y. LASZLO

The vector bundle

pi ^oe(r-i) ̂ c-^^d'x)

on X x J{X) has determinant [C~1 {ds / r ' x)Y/ s. The G-bundle 7r(.F') on
X x J{X) defines a morphism f '. J -> Mc(d). The relation

/;0(ldxx^)**(^')=^

and (5.2.1) gives an isomorphism

TT(^) = (Idx x^)*7r(^)

which means that the diagram

J{X) ——f-—— MSLM

(5.4.1) ^ ^
jr(x) —f-— A^G^)

is 2-commutative. Exactly as in 1.3 of [B-L-S], let me prove the

LEMMA 5.5. — The line bundle f*Vk on J(X) descends through sj if
and only ifk multiples of s / ( s ^ r / s ) .

Proof. — Let ^=r(p- l ) -dbe the opposite of the Euler characteristic
of (fe-)points of M-sLr-W- By (3.1.1), one has an isomorphism

r*pfc _^ Qfcr(r-l) ^J-kx^

The theory of Mumford groups says that Q^7'-1) descends through sj
if and only if A; is a multiple of s / { s , r / s ) . The line bundle T^ on BGm
descends through SBGm ^ an(^ o^^y ^ ^X ls a multiple of s. The lemma
follows from the above isomorphism and from the observation that the
condition s \ r \ ds forces s\ to be a multiple of s. []

REMARK 5.6. — If g = 0, the jacobian J is a point and the condition on
Q is empty. The only condition in this case is that k\ is a multiple of s.

Let me recall that P is the determinant bundle on MSL^W and
G=SL^.

THEOREM 5.7.—Assume that the characteristic ofk is 0. The integers k
such that P^ descends to M.G{d) are the multiple of s/(s^r/s).

By the proposition 1.5 of [BLS], one gets the

TOME 125 — 1997 — N° 4



LINEARIZATION OF GROUP STACK ACTIONS 541

COROLLARY 5.8. — The natural morphism

PIC(MGW) ——PIC(MSLM) =^

makes the Picard group of Adc^d) ̂  extension of Z == Z-P5^5'7'/^ by
ffJJX.Z/dZ) -^ (Z/dZ)2^.

Proof of the theorem.—By lemma 5.5 and diagram (5.4.1), we just have
to prove that 2^ effectively descends when k = 5/(s, r / s ) . By theorem 4.1
and lemma 5.3, this means exactly that P^ has a ^-linearization. We
know by lemma 5.5 that the pull-back f*^ has such a linearization.

LEMMA. — The pull-back morphism

Pic(^ x MSLM} —— Pic(^ x J(X))

is injective.

Proof. — By lemma 3.1, one is reduced to prove that the natural
morphism

Pic(B^ x MSLM} —> Pic(B^ x J(X)}

is injective. Let X be any stack. The canonical morphism X —> X x B^s
is a /^s-torsor (with the trivial action of f^s on X). By theorem 4.1, one
has the equality

Pic(A'xB^) =Pic^(<Y).

Assume further that HQ{X^ 0} = k. The later group is then canonically
isomorphic to

PicGT) x Hom(^.G^) = Pic(^) x Pic(B^).

Eventually, we get a functorial isomorphism

(5.9.1) LX : Pic(^ x B^s) -^ Pic(^) x Pic(B^).

By [L-S], the Picard group of A^SL^(^) is the free abelian group Z-P and
the formula (3.1.1) proves that

/* : Pic(A^sL.(rf)) — Pic(W))
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is an injection. The diagram

Pic{MsL^d)) xPic(Bf^s) c—^ Pic(J(X)) x Pic(^)

^ ? t-j ?
Pic(.MsL.(rf)xB/^) ————— Pic(.7(X) x B^)

is commutative and the lemma follows from this commutative diagram. []

Let H (resp. 7~ij) be the line bundle on Js xMsL^W (resp. JsXJ(X))

n=Hom(m^T>k,p^Vk)

(resp. ̂  = nom(m^rV\p^ /*^)).

Let us choose a ^-linearization Aj- of /*PA;. It defines a trivialization
of the line bundle Tij. The equi variance of / implies (c/. 2.3) that there
exists a (compatible) 2-morphism

q : HIM ° (Id x/) ==^ f o mj

making the diagram

J, x J{X) mj ) J{X)

ldxf[ [ f
Js X MSL.W -"^ MSLM

2-commutative. The 2-morphism q defines an isomorphism from the pull-
back m^P^ on Js x J{X) to m^/*^). The pull-back of pr^P^ on
Js x J(X) is tautologically isomorphic to pr^/*^). The preceding
isomorphisms induce an isomorphism

(idxfyn-^Hj.
The later line bundle being trivial, so is (Idx/)*?^. The lemma above
proves therefore that 7Y itself is trivial. Each (A;-) point j of Js defines a
morphism

MSLM -^ Js x MSLM (resp. J{X) -. Js x J(X))^

let me denote by Hj (resp. /*^) the pull-back of U (resp. (Id x/)*7^)
by this morphism. The pull-back morphism

H°(Js x MSLM^) —— II°{Js x J(X), (Id x/)*^)
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can be identified to the direct sum

As

(5.9.2)

® H°{MsLM^)-^H°(J(X)^rH,).
jeJsW

H°(MSLM.O) =H°(J(X)^0) = fe ,

this morphism is a direct sum of non-zero homomorphisms of vector spaces
of dimension 1 and therefore an isomorphism. In particular, a linearization
\j of fT^ defines canonicaly an isomophism

A ,̂ .,* ^rik ^ * ^r>kM : m^D —> pr2 P

such that (Id x/)*A^ == \j.
Explicitely, \j^ is characterized as follows. Let x be an object of

A^SL^(^) over a connected scheme 5' and g an object of Js{S) = Js(^)-
The preceding dicussion means that the functorial isomorphisms

\^x):V^-^^

are determined when x lies in the essential image of /. In this case,
let us choose an isomorphism f (x ' ) —^ x (inducing an isomorphism
g ' f { x ' } —^ g ' x } . Then, the diagram of isomorphisms of line bundles on S

Lxf = Lf{xt}

\j{g,x')

Lg-x' L ^•f{x') 'g-x'f^g-x')

is commutative (where L =Vk and L' = y*^).
Now, the pull-back of Xj^ on Js x J^} satisfies conditions (2.8.1)

and (2.8.2). Using (5.9.2) and the equivariance of / as above, this shows
that Xj^i is a linearization. For instance, keeping the notation above, let us
verify condition (2.8.2). We have to check that the isomorphism i of L
induced by e is the identity. As above, it is enough to check that on J'(X).
With a slight abuse of notations, the two diagrams

Lx L^ ———> Lx14, == L
and

L^
A^(l,rc)

^'(^)

\7(1,^)

r q^^'
=^/(l^ /) ————^

—^ ^x
^\

AM(I,^)

^l-^Q
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are commutative (the commutativity of the first diagram follows from
the equivariance of / and the commutativity of the second diagram
follows exactly from the definition of b). Because \j is a linearization,
condition (2.8.2) shows that the diagram

is commutative. It follows that the equality L = Id will follow from the
commutativity of the diagram

Lf(l•xf) ——> Lf^)

(5.9.3) <?i,^ [ ||

Li.f{x') —e-^ Lf^y

But q is compatible with e as required in 2.3. The diagram
/(l.^) -^ /(^)

q l ' x f [
l./(^) -^ f{x1)

is therefore commutative from which the commutativity of (5.9.3) follows.
One would check condition (2.8.1) in an analogous way. []

REMARK 5.10. — In the case g = 0, the condition is an in remark 5.6.

REMARK 5.11. — This linearization can be certainly also deduced from
a careful analysis of the first section of [Fa], but the method above seems
simpler.
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