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LINEARIZATION OF GROUP STACK ACTIONS AND
THE PICARD GROUP OF THE MODULI OF
SL,/u,-BUNDLES ON A CURVE
PAR YVES LASZLO (*)

ABSTRACT. — In this paper, we consider morphisms of algebraic stacks X — )
which are torsors under a group stack G. We show that line bundles on ) correspond
exactly with G-linearized line bundles on X (with a suitable definition of a G-
linearization). We use this fact to determine the precise structure of the Picard group
of the moduli stack of G-bundles on an algebraic curve when G is any group of type An.

RESUME. — Dans cet article, on considére les morphismes de champs algébriques
X — Y qui sont des torseurs sous un champ en groupes G. Nous prouvons que les fibrés
en droites sur ) correspondent exactement aux fibrés en droites sur X munis d’une
G-linéarisation (avec une définition convenable d’une G-linéarisation). Nous utilisons
ceci pour déterminer la structure exacte du groupe de Picard du champ des G-fibrés
sur une courbe algébrique lorsque G est un groupe algébrique (non nécessairement
simplement connexe) de type Ap.

1. Introduction

Let G be a complex simple group and G —» G the universal covering.
For simplicity, let us consider the moduli stack Mg (resp. M~) of degree
1 € m(G) principal G-bundles (resp. G-bundles) over a curve X. In
[B-L-S], we have studied the natural morphism

¢t : Pic(Mg) — PiC(Ma),
the group Pic(Mg) being infinite cyclic by [L-S]. It is proved in
[B-L-S] that the kernel of ¢ is naturally identified with the finite group
H} (X, m1(G)Y) reducing the study of Pic(Mg) to the computation of
the cardinality of Coker(t). Among other things, it has been possible to

(*) Texte regu le 18 aolt 1997, accepté le 10 septembre 1997.
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530 Y. LASZLO

perform this computation in the case where G = PSL, but not in the
case where G = SL,/u,, where s | r, although we were able to give par-
tial results. The reason was that the technical background to study the
descent of modules through the morphism p : M5z — Mg wasn’t at our
disposal.

The aim of this paper is to compute card Coker(:) when G = SL,./us.

It turns out to be that p is a torsor under some group stack, not far from
a Galois étale cover in the usual schematic picture. Let f : X — ) be a
torsor under a group scheme G. We know that a line bundle on X’ descends
if and only if it has a G-linearization (easy consequence of descent theory).
Now, the descent theory of Grothendieck has been adapted to the set-up
of fpgc morphisms of stacks in [L-M)]. If G is now only assumed to be a
group stack, there is a notion of G-linearization of line bundles on X’ (see
section 2). One obtains (theorem 4.1) that a line bundle on X" descends if
and only if it admits a linearization.

We then use this technical result to compute card Coker(:) when
G = SL,./us (theorem 5.7 and its corollary).

I would like to thank L. BREEN for having taught me both the notions of
torsor and of linearization of a vector bundle in the set-up of group-stack
actions and for his comments on a preliminary version of this paper.

Notations.

Throughout this paper, all the stacks will be implicitely assumed to be
algebraic over an algebraically closed field k and the morphisms locally of
finite type. We fix once and for all a projective, smooth, connected genus g
curve X and a closed point z of X. For simplicity, we assume g > 0 (see
remarks 5.6 and 5.10 for the case of P!). The Picard stack parametrizing
families of line bundles of degree 0 on X will be denoted by J(X) and the
jacobian variety of X by JX.If G is an algebraic group over k, the quotient
stack Spec(k)/G (where G acts trivially on Spec(k)) whose category over
a k-scheme S is the category of G-torsors (or G-bundles) over S will be
denoted by BG. If n is an integer and A = J(X), JX or BG,, we denote
by n4 the n*P-power morphism a — a™. We denote by J,, (resp. J,) the
O-fiber A x 4 Spec(k) of n4 when A = J(X) (resp. A = JX).

1. Generalities. — Following [Br], for any diagram

-9,

A-h B ﬂ,\ c—-t.D

—_—

f
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LINEARIZATION OF GROUP STACK ACTIONS 531

of 2-categories, we will denote by
£xX:lof=Vfog (resp. Axh:foh=>goh)

the 2-morphism deduced from .

1.1. — For the convenience of the reader, let us prove a simple formal
lemma which will be usefull in section 4. Let A, B, C be three 2-categories.
Let diagram

(1.1.1)

be a 2-commutative diagram and let u : § = 6; be a 2-morphism.

LEMMA 1.2. — Assume that f is an equivalence. There exists a unique
2-morphism
px fl:dy = dy

such that (u* f~1) x f = p.

Proof. — Let €g, for k£ = 0,1 be the 2-morphism di o f = 6x. Let b be
an object of B. Pick an object a of A and an isomorphism « : f(a) = b.
Let ¢4 : do(b) = d1(b) be the unique isomorphism making the diagram

So(a) <22 dy o f(a) <2, dy(b)

| .

81(a) 2 d; 0 f(a) 29, 4, (b)

commutative. We have to show that ¢, does not depend on a but only
on b. Let o : f(a’) > b be another isomorphism. There exists a unique
isomorphism ¢ : @’ —> a such that ao f(1) = /. Then one has the equality
Por = di(a) o ® o do(a)~! where

® = [dyo f(1)] oer(a’) o par 0€g(a’) o [doo f(L)]—l.

The functoriality of €; and p ensures that one has the equalities
dy o f(1) o ex(a’) = ex(a) 0 8k (¢)

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



532 Y. LASZLO

and
fa = 61(1) © ptar 0 60(1) 7.
This shows the equality

® = €1(a) © pta 0 €0(a) !

which proves the equality ¢, = po. We can therefore define p; to be the
isomorphism ¢, for one isomorphism « : f(a) = b. We check that the
construction is functorial in b and the lemma follows. []

2. Linearizations of line bundles on stacks.

Let us first recall the notion of torsor in the stack context according
to [Br].

2.1. — Let f : X — Y be a faithfuly flat morphism of stacks. Let
us assume that an algebraic gr-stack G acts on f (the product of G is
denoted by mg and the unit object by 1). Following [Br], this means that
there exists a 1-morphism of Y-stacks m: G x X — X and a 2-morphism
p:mo (mg X Idxy) = mo (Idg xm) such that the obvious associativity
condition (see diagram (6.1.3) in [Br]) is satisfied and such that there
exists a 2-morphism € : mo (1 x Idx) = Idx which is compatible to y in
the obvious sense (see (6.1.4) of [Br]).

REMARK 2.2. — To say that m is a morphism of Y-stacks means that

the diagram
gxXx 2 X

NS
y

is 2-commutative. In other words, if we denote for simplicity the image of
a pair of objects m(g,x) by g-x. This means that there exists a functorial
isomorphism ¢g . : f(g-z) — f(z).

2.3. — Suppose that G acts on such another morphism f’ : X' — ).
A morphism p : X’ — X will be said equivariant if there exists a 2-
morphism
g:mo (Id xp) = pom/

which is compatible to u (as in [Br, (6.1.6)]) and € (which is implicit
in [Br]) in the obvious sense.

DEeFINITION 2.4. — With the above notations, we say that f (or X)
is a G-torsor over ) if the morphism pry xm : G x X — X xy X is an
isomorphism (of stacks) and the geometrical fibers of f are not empty.

TOME 125 — 1997 — n° 4



LINEARIZATION OF GROUP STACK ACTIONS 533

REMARK 2.5. — In down to earth terms, this means that if
vi f(z) — f(z')

is an isomorphism in Y (z,z’ being objects of X), there exists an object g
of G and a unique isomorphism (z, g-z) —> (z,z’) which induces ¢ by way
of gz (cf 2.2).

ExAMPLE 2.6. — Let M x(G,,) be the Picard stack of X. Then, the
morphism

Mx(Gm) — Mx(Gn)
of multiplication by n € Z is a torsor under Bu, x J,(X) (cf. (3.1)).

2.7. — Let L be a line bundle on X. By definition, the datum £
is equivalent to the datum of a morphism ¢ : X — BG,, (see [L-M,
prop. 6.15]). If £, £’ are two line bundles on X defined by ¢,¢, we will
view an isomorphism £ > L’ as a 2-morphism ¢ = £'.

DEeFINITION 2.8. — A G-linearization of L is a 2-morphism
Ailom = fopr,
such that the two diagrams of 2-morphisms

Lomo (mg x Idy) rﬁ‘é——>£omo(1dg xm)

Ax(mg xIdx)ﬂ ﬂA*(Idg xm)
(28.1) £opryo(mg x Idy) &L g pry o(Idg xm)
lo PTQHO Pra3 to mll’ Prag
and
Como(1xIdy) == ¢
(2.8.2) Ae(ixtd) |

e e ————— e
(strictly) commute.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



534 Y. LASZLO

REMARK 2.9. — If g7, g2 are objects of G and d is an object of X, the
commutativity of diagram (2.8.1) means that the diagram

[’(91'92)93 < cgl(gz'z)

zl lz
Ly -—~ ‘ng'x
is commutative and the commutativity of (2.8.2) that the two isomor-
phisms £;., ~ £, defined by the linearization )\ and e respectively are the

same.

3. An example.

Let me recall that a closed point  of X has been fixed. Let S be a
k-scheme. The S-points of the jacobian variety of X are by definition
isomorphism classes of line bundles on Xg together whith a trivialization
along {z} x S (such a pair will be called a rigidified line bundle). For the
convenience of the reader, let me state this well known lemma which can
be found in SGA4, exp. XVIII, (1.5.4).

LEMMA 3.1. — The Picard stack J(X) is canonically isomorphic (as a
k-group stack) to JX x BGp,.

Proof.—Let f : J(X) — JX x BG,, be the morphim which associates
« to the line bundle L on Xg the pair (L X Lﬁi}xs’ Li{z}xs) where X

denotes the external tensor product (this pair is thought of as an object
of JX x BG,, over S);

e to an isomorphism L — L’ on Xg its restriction to {z} x S.

Let f': JX x BG,, — J(X) be the morphism which associates

o to the pair (L, V) where L is a rigidified bundle on Xg and V a line
bundle on S (thought of as an object of JX x BG,, over S), the line
bundle L Kx, V;

e to an isomorphism (4,v) : (L,V) = (L/,V’) the tensor pro-
duct ¢ Kx, v.

The morphisms f and f’ are (quasi)-inverse to each other and are
morphisms of k-stacks. []

We will identify from now J(X) and JX X BG,,. Let £ (resp. P and 7)
be the universal bundle on X x J(X) (resp. on X x JX and BG,,) and
let © = (det RI'P)~! be the theta line bundle on JX. The isomorphism
L =5 PR T yields an isomorphism

(3.1.1) det RT L™ (m-z) = @~ R T(m+1-9),

ToME 125 — 1997 — n° 4



LINEARIZATION OF GROUP STACK ACTIONS 535

4. Descent of G-line bundles.
The object of this section is to prove the following statement.
THEOREM 4.1. — Let f : X — Y be a G-torsor as above. Let Picg()() be

the group of isomorphism classes of G-linearized line bundles on X. Then,
the pull-back morphism f* : Pic(Y) == PicY(X) is an isomorphism.

The descent theory of Grothendieck has been adapted in the case of
algebraic 1-stacks in [L-M], essentially in proposition (6.23).

Let X, — ) be the (augmented) simplicial complex of stacks coskeleton
of f (as defined in [De, (5.1.4)] for instance). By proposition (6.23) of
[L-M], one just has to construct a cartesian Op,-module L, such that Lo
is the O y-module L to prove the theorem. The n-th piece &, is inductively
defined by

X=X, X,=XxyX,—1 forn>0.

Let p, : X, — X be the projection on the first factor. It is the simplicial
morphism associated to the map

_{A0—>Am

"o 0.
Let L, be the line bundle defined by the morphism (see (2.7))

(4.1.1) b X, -2 X —4 BG,,.

4.2.—Let 6; (resp. s;) be the face (resp. degeneracy) operators (see for
instance [De, 5.1.1]). By abuse of notation, we use the same notation for
6;, s; and their image by X'). The category (A,) is generated by the face
and degeneracy operators with the following relations (see for instance
the proposition VIL.5.2, p. 174 of [McL])

(4.2.1) 6;08j=6j4106, if i<y,

(4.2.2) sjos;=s;08541 if i<y,
biosj—1 if i<y,

(4.2.3) sj06;=4¢1 if i=j,i=j+1,
bi—10s; if i>j+1

Therefore, the datum of a cartesian Ox,-module £, is equivalent to
the data of isomorphisms

aj 6Ly —> L1, j=0,...,n+1,
,les;ﬁn+1 l)[,n, j:O,...,TL,

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



536 Y. LASZLO

(where n is a non negative integer) which are compatible with relations
(4.2.1), (4.2.2) and (4.2.32).

Let n be a non negative integer.
4.3. — We have first to define for j = 0,...,n + 1 an isomorphism
(o7 5;£n R £n+1~
The line bundle 6; Ly, is defined by the morphism £op,06; : Xy1 — BGp,
and p, o §; is associated to the map
{ Ao — Anya,
0+— 4;(0).
o If j # 0, one has therefore p, 0 §; = Pn41 and 6;[:” = Lp4+1. We
define o; by the identity in this case.

o Suppose now that j = 0. Let m, : X;,, — &} be the projection on the
two first factors (associated to the canonical inclusion A; — A,). The
commutativity of the two diagrams

Kpp1 —2 X, Ky —228, X
Tn41 l Pn l and l Tn41 T 61
X —2 L x X =—— X

allows to reduce the problem to the construction of an isomorphism
L — 61L
where §; : X1 — X for ¢ = 0,1 are the face morphisms or, what amounts

to the same, to the construction of a 2-morphism v : £0 8y = £ o0 §; (the
morphism «a; will be a; = v * m,41). Now the diagram

/ ] tobio

(4.3.1) Gxx B2 ¥ xy X

em‘ l todr

is strictly commutative and pry, xm is an equivalence by definition of a
torsor. According to lemma 1.2, the 2-morphism A induces a canonical
2-morphism

A* (pryxm)~! Loy = Lo

which is the required 2-morphism v.

TOME 125 — 1997 — ~° 4



LINEARIZATION OF GROUP STACK ACTIONS 537

4.4. — We then have to define for j = 0,...,n an isomorphism
,8]' : s;£n+1 = £n

The line bundle sjL is defined by the morphism £ o pp41 o s; and
Pn+1 0 S; is associated to the canonical inclusion Ag < A, which means
Pn+10 8j = Pn. Therefore, one has a canonical isomorphism s} L,4+1 = Ly
and we define §; to be the identity.

4.5. — We have to show that the data £, and o, 3;, for j > 0 define
a line bundle on the simplicial stack X, as explained in 4.2. Notice that
the fact that the definition of the 3; is compatible with relations (4.2.2)
is tautological (5 is the identity on the relevant £,,).

4.6. — In terms of 4, relation (4.2.1) means the following. We have the
two strictly 2-commutative diagrams
5;

6i
Xn+2 Xn—{—l Xn

Pnyy

X “—— BG,

and
[

8541
Xnyo — Xnt1 Xn

Ppi1
A‘ Pn

X< BGn

inducing the two 2-morphisms

a,-*&i

;0 (o %6;) 1 Lopp 0808 === L0pny1 06 == £0pnys
and

a;x6j541

ajpr10(;*8j41) :£opp08;06541 Loppy100;41 22 Vo pnta.
The relation (4.2.1) means exactly the equality
(421’) Q; O (ozj * 51) = 0410 (ai * 5j+1), for 4 < j

o If j = 0, the relation (4.2.1’) is just by definition of «; the condition
(2.8.1) (see remark 2.9).

e If j > 0, both isomorphisms o; and o4 are the relevant identities
and the relation (4.2.1') is tautological.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



538 Y. LASZLO

4.7. — The only non tautological relation in (4.2.3) corresponds to the
equality sp o §o = 1 in (A,) which means as before that ag * § is the
identity functor of £op,, = £op, oo sp. But, this is exactly the meaning
of the relation (2.8.2) (see remark 2.9).

5. Application to the Picard groups of some moduli spaces.

Let us choose three integers r, s, d such that
r>2 and s|r|ds.

If G is the group SL,/us we denote as in [B-L-S] by Mg(d) the
(connected) moduli stack of G-bundles on X of degree exp(2ind/r) €
HZ(X,pus) = ps and by Mgy, (d) the moduli stack of rank r vector
bundles and determinant O(d-z). If r = s (i.e. G = PSL,.), the natural
morphism of algebraic stacks

7 Mgy, (d) — Mcg(d)
is a Jr-torsor (see the corollary of proposition 2 of [Gr] for instance). Let

me explain how to deal with the general case.

5.1. — Let F be a rank r vector bundle on Xg endowed with an
isomorphism
7: D"/ 5 det(E)
where D is some line bundle. Let me define the SL,/us-bundle 7 (E)

associated to E (more precisely to the pair (E,7)).

DEFINITION 5.2.

o An s-trivialization of E on an étale neighborhood T' — X is a triple
(M, a,0) where

a: D —5 M?* is an isomorphism (M is a line bundle on T);
o: M® = Er is an isomorphism;
det(c) oa™/* : D"/* =5 det(E) is equal to 7.

o Two s-trivializations (M, a,0) and (M’,o’/,0’) of E will be said
equivalent if there exists an isomorphism ¢ : M —5 M’ such that
tsoa=dc.

The principal homogeneous space
T — {equivalence classes of s-trivializations of E7}

ToME 125 — 1997 — n° 4



LINEARIZATION OF GROUP STACK ACTIONS 539

defines the SL,/us-bundle 7(E)!. Now, the construction is obviously
functorial and therefore defines the morphism 7 : Mgp, (d) — Mg(d)
(observe that an object E of Msr, (d) has determinant O(ds/r - z)™/*).
Let L be a line bundle and (M, a,7) an s-trivialization of Er. Then,
(M ® Lya ® Ids,0 ® Idy) is an s-trivialization of £ ® L (which has
determinant (D ® L°)™/*). This shows that there exists a canonical
functorial isomorphism

(5.2.1) 7(E) = n(E® L)

In particular, 7 is Js-equivariant.

LeEMMA 5.3. — The natural morphism of algebraic stacks
7 Msgr, (d) — Mg(d)
is a Js-torsor.

Proof. — Let E, E’ be two rank r vector bundles on Xg (with deter-
minant equal to O(d-z)) and let ¢ : 7(E) —> w(E)’ be an isomorphism.
As in the proof of the lemma 13.4 of [B-L-S], we have the exact sequence
of sets

1 — ps — Isom(E, E') — Isom(n(E),n(E)") TEEL HL (X, ps)-
Let L be a ps-torsor such that mg g/(¢) = [L]. Then, 7(E ® L) is equal

to m(E), TeerL,rr = 0 and ¢ is induced by an isomorphism £ ® L = FE’
well defined up to multiplication by us. The lemma follows. []

5.4. — Let U be the universal bundle on X x Mgy, (d). We would like
to know which power of the determinant bundle D = (det RTU)~! on
Mgy, (d) descends to M¢(d). As in 1.3 of [B-L-S], the rank r bundle

F=L8"D g 17" (d-x)
on X x J(X) has determinant O(d-z) and therefore defines a morphism

f : j(X) =JX x BGm — MSLT(d)

which is Js-equivariant.

t We see here a G-bundle as a formal homogeneous space under G.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



540 Y. LASZLO

The vector bundle
F'=0%"V g £77/4(dx)

on X x J(X) has determinant [£~!(ds/r - z)]"/*. The G-bundle 7(F’) on
X x J(X) defines a morphism f’: J — Mg(d). The relation

LR (Idx xsz)* *x(F)=F
and (5.2.1) gives an isomorphism
m(F) = (Idx xs7)*m(F')
which means that the diagram
I(X) —L— Msr,(d)

(5.4.1) s | , |
J(X) —L— Mqg(d)

is 2-commutative. Exactly as in 1.3 of [B-L-S], let me prove the

LEMMA 5.5. — The line bundle f*D* on J(X) descends through sy if
and only if k multiples of s/(s,r/s).

Proof.— Let x = r(g—1) —d be the opposite of the Euler characteristic
of (k-)points of Mgy, (d). By (3.1.1), one has an isomorphism

f*Dk -~ @kr(r—l) X Tkx.

The theory of Mumford groups says that ©*"("=1) descends through s
if and only if k is a multiple of s/(s,r/s). The line bundle 7*X on BG,,
descends through spg,, if and only if kx is a multiple of s. The lemma
follows from the above isomorphism and from the observation that the
condition s | r | ds forces sy to be a multiple of s. []

REMARK 5.6. —If g = 0, the jacobian J is a point and the condition on
© is empty. The only condition in this case is that ky is a multiple of s.

Let me recall that D is the determinant bundle on Mgy, (d) and
G =SL,/us.

THEOREM 5.7.— Assume that the characteristic of k is 0. The integers k
such that D¥ descends to Mg(d) are the multiple of s/(s,7/s).

By the proposition 1.5 of [BLS], one gets the

TOME 125 — 1997 — n° 4



LINEARIZATION OF GROUP STACK ACTIONS 541

COROLLARY 5.8. — The natural morphism
Pic(M¢(d)) — Pic(Mst,(d)) = Z-D

makes the Picard group of Mg(d) an extension of Z = Z-D/(57/9) by
HL(X,Z/dZ) = (Z/dZ)%.

Proof of the theorem.— By lemma 5.5 and diagram (5.4.1), we just have
to prove that D* effectively descends when k = s/(s,/s). By theorem 4.1
and lemma 5.3, this means exactly that D has a J;-linearization. We
know by lemma 5.5 that the pull-back f*DF has such a linearization.

LEMMA. — The pull-back morphism
Pic(Js x Msr,. (d)) — Pic(Ts x J(X))
18 injective.

Proof. — By lemma 3.1, one is reduced to prove that the natural
morphism

Pic(Bus x Mgy, (d)) — Pic(Bpus x J (X))
is injective. Let X be any stack. The canonical morphism X — X x B
is a ps-torsor (with the trivial action of us on X). By theorem 4.1, one

has the equality
Pic(X x Bus) = Picts(X).

Assume further that H°(X, ©) = k. The later group is then canonically
isomorphic to

Pic(X) x Hom(pus, Grm) = Pic(X) x Pic(Bpus).
Eventually, we get a functorial isomorphism
(5.9.1) tx : Pic(X x Bus) — Pic(X) x Pic(Bpus).

By [L-S], the Picard group of Mgy, (d) is the free abelian group Z-D and
the formula (3.1.1) proves that

f* : PiC(MSLr (d)) — PiC(j(X))

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



542 Y. LASZLO

is an injection. The diagram

Pic(MsL, (d)) x Pic(Bus) — Pic(J (X)) x Pic(Bpus)

tm | Ly |2

PiC(MSLr (d) X B,u's) PlC(j(X) X B:u's)

is commutative and the lemma, follows from this commutative diagram. []

Let H (resp. H ) be the line bundle on J; x Mgy, (d) (resp. Js x J (X))
H = Hom(m},D*, pr D¥)
(resp. Hz = Hom(m} f*D*, prs f*DF)).

Let us choose a Js-linearization Ay of f*DF. It defines a trivialization
of the line bundle H 7. The equivariance of f implies (cf. 2.3) that there
exists a (compatible) 2-morphism

g:mpmo(ldxf) = fomy
making the diagram
T x J(X) —"F— J(X)

st | ¥

Js X Msr, (d) > Mgy, (d)

2-commutative. The 2-morphism ¢ defines an isomorphism from the pull-
back m},D* on J, x J(X) to m¥%(f*DF¥). The pull-back of prj D* on
Js x J(X) is tautologically isomorphic to pri(f*D¥). The preceding
isomorphisms induce an isomorphism

(Id x f)*H =5 H,.

The later line bundle being trivial, so is (Id x f)*H. The lemma above
proves therefore that H itself is trivial. Each (k-)point j of J; defines a
morphism

Mst, (d) = Js x Mst, (d)  (resp. T(X) — T x T(X));

let me denote by H; (resp. f*H;) the pull-back of H (resp. (Id x f)*H)
by this morphism. The pull-back morphism

H®(J, x Msi, (d),H) — H°(J, x J(X),(Id x f)*H)
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can be identified to the direct sum
@ H'Mst.(d),H;) — H(T(X), f*H;)-
j€Ts (k)
As

(5.9:2) H®(Msr, (d),0) = H(J(X),0) =k,

this morphism is a direct sum of non-zero homomorphisms of vector spaces
of dimension 1 and therefore an isomorphism. In particular, a linearization
Az of f*D* defines canonicaly an isomophism

A s miDF =5 pry DF
such that (Id x f)*Ap = Ag7.
Explicitely, Axq is characterized as follows. Let = be an object of

Mgy, (d) over a connected scheme S and g an object of Js(S) = J5(k).
The preceding dicussion means that the functorial isomorphisms

are determined when z lies in the essential image of f. In this case,

let us choose an isomorphism f(z’) —> z (inducing an isomorphism
g-f(z') =5 g-z). Then, the diagram of isomorphisms of line bundles on S

L, = Lyy —— L,

A7 (9,2") J W“)

99,2’
Lyo = Ligay == Loja) — Lga

is commutative (where L = D and L' = f*DF).

Now, the pull-back of Apq on Js x J(X) satisfies conditions (2.8.1)
and (2.8.2). Using (5.9.2) and the equivariance of f as above, this shows
that Aaq is a linearization. For instance, keeping the notation above, let us
verify condition (2.8.2). We have to check that the isomorphism ¢ of L
induced by € is the identity. As above, it is enough to check that on J(X).
With a slight abuse of nota.tions, the two diagrams

L’I/ = Lf(z-r) Ly —— L,
As(1e) mu\ @
Am(l,z)
91
Li 1 = Lf(]. zl) ‘—-—-—> Ll f(z’) —_— Ll .z Ll z
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are commutative (the commutativity of the first diagram follows from
the equivariance of f and the commutativity of the second diagram
follows exactly from the definition of ¢). Because Ay is a linearization,
condition (2.8.2) shows that the diagram

/ /
!

Aﬂ(lr;\ [ <)

Ll-m’

is commutative. It follows that the equality « = Id will follow from the
commutativity of the diagram

Ly — L)
(5.9.3) a | |
Lyj@y — Ly

But ¢ is compatible with € as required in 2.3. The diagram
fra) = f(@)
e | H
L&) —— f(')

is therefore commutative from which the commutativity of (5.9.3) follows.
One would check condition (2.8.1) in an analogous way. []

REMARK 5.10. — In the case g = 0, the condition is an in remark 5.6.

REMARK 5.11. — This linearization can be certainly also deduced from
a careful analysis of the first section of [Fa], but the method above seems
simpler.
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