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GEOMETRIC REALIZATIONS OF SUBSTITUTIONS

BY CHARLES HOLTON and LUCA Q. ZAMBONI (*)

ABSTRACT. — Substitution dynamical systems are abstract objects, and it is
therefore natural to look for ways of representing them geometrically. In this paper
we give geometric realizations of a large class of substitutions. We only require that
the substitution be primitive and that the incidence matrix have an eigenvalue a
with 0 < \a\ < 1.

RESUME. — SYSTEMES DYNAMIQUES ENGENDRES PAR DES SUBSTITIONS. —
Les systemes dynamiques engendres par des substitutions sont des objets abstraits.
II est pourtant naturel de chercher a les representer geometriquement. Dans ce travail
nous donnons des representations geometriques d'une grande classe de substitutions.
Nous supposerons seulement que la substitution soit primitive et que la matrice de la
substitution a une valuer propre a. avec 0 < \a < 1.

1. Introduction
In [10] the authors associate a free geometric exotic Fs-action on an

M-tree to a primitive substitution on three letters. The dynamics of the
substitution is encoded in an interval translation mapping / : [0,1] —»
[0,1] on three intervals (this was first observed by M. Boshernitzan and
I. Kornfeld in [10]). Via a result of D. Gaboriau and G. Levitt in [9], copies
of the unit interval are glued together according to the orbit of / to obtain
an R-tree with an Pa-action by isometries. The "self similar" nature of the
substitution is used to conclude that the resulting Pa-action is both free
and exotic.
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150 C. HOLTON AND L.Q. ZAMBONI

The key feature in this construction is the geometric encoding of the
dynamics of T, in this case as a system of partial isometries. G. Rauzy [19]
discovered an isomorphism between a certain substitution dynamical
system and a Weyl automorphism on the torus I^/Z2. From a different
point of view, E. Bombieri and J. Taylor exhibit in [2] a connection
between algebraic number theory and the theory of quasicrystals by
geometrically encoding the dynamics of certain substitutions on a three
letter alphabet. In [4], M. Dekking develops a method of constructing
fractal tilings of the plane (including the famous Penrose tiling) using
substitutions. Many others, including P. Arnoux [I], M. Boshernitzan-I.
Kornfeld [3], S. Ferenczi [7], S. Ito-M. Kimura [13], and B. Solomyak [21]
have constructed various types of geometric realizations of substitutions.
M. Queffelec asks for which substitutions is it possible to find such a
geometric description. (See §VI.5 in [18].)

Let T be a primitive substitution on the alphabet A = { l , 2 , . . . , r }
fixing a point w^ € A^. Associated to r is the dynamical system (X,T),
where T is the one-sided shift on A^ and X the closure in A^ of the T-
orbit of w^. The primitivity condition assures that (X, T) is minimal and
does not depend on the choice of w^. Following [18] (see pages 140-141), a
complex geometric realization of r is a triple Q = (?(/, A, v) consisting of a
continuous function / : X —>• C, a nonzero complex number A of modulus
less than one, and a nonzero vector v = (^1,^2? • • • i ^ r ) ^ C7", such that
for each letter i C A and for each point w € X beginning in i one has

/(r(w)) = A/(w) and f(Tw) = f{w) + v,.

We call G a real geometric realization if f{X) C R. We show that associa-
ted to each left eigenvector Va of the incidence matrix Mr corresponding
to a nonzero eigenvalue a of modulus less than one is a complex geometric
realization G = ̂ (/.a,^), and every complex geometric realization of r
arises in this way. (See Theorem 3.4.)

To define the map /, we first define a complex valued function S on
the set A* of all (finite) words in the alphabet A by setting

r

S(u) = ̂  \U\iVi,

%=1

where \u\i is the number of occurrences of the letter i in u. Write w(n)
for the initial subword of w of length n. We show (Theorem 2.3) that
if 0 < \a\ < 1 then the sequence Sn '•= S(w^(n)) is bounded and its
closure, denoted f^, is a compact perfect subset of C. Otherwise, {Sn} is
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GEOMETRIC REALIZATIONS OF SUBSTITUTIONS 151

either unbounded or has finite range. The map / : X —> C is defined in
terms of 5' as follows : For w € -X, let wi, W2, ̂ 3,... be a sequence of tails
of the fixed point w^ converging to w. For each n > 1 there exist words
Un € A* with w^ = Un^ni and we set

/(w) = Um S(un).
n—>oo

If 0 < la] < 1 then this limit exists and does not dependent on the
choice of the tails w^. Thus, / is a uniformly continuous function on X
whose image is f^. (See Theorem 3.2.) This gives a natural decomposition
^ = f ^ i U f ^ 2 U . . . U f ^ where ̂  is the image under / of all points w in X
beginning in the letter i.

Consider, for example, the substitution r on three letters given by
1 i—> 12323, 2 i—> 121, 3 i—> 23.

Corresponding to the eigenvalue a ^ -.191487884 + .508851779z and
eigenvector Va = ((a — ^^(a — 1),2) of Mf. is a complex geometric
realization of r. The image set ^ is shown in Figure 1.1. The f^ in this
example have nonempty interiors and do not overlap.

Figure 1 . 1
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152 C. HOLTON AND L.Q. ZAMBONI

We also use S to define a function p : X x X —^ R^° as follows : For
w,w' C X, choose a sequence {a,n} of nonnegative integers such that

w(dn + n) = w^dr^w'^n},

and put
p(w,wf) = Urn |6'(w(an))|.

n —^rvi ' '

We show that if 0 < a| < 1 then this limit exists independent of the
choice of {fln} and defines a pseudometric on X whose associated metric
space X / p is isometric to f2. (See Theorem 3.1.)

In Appendix A we compare the sequence {Sn} to the sequence {6n}
given by

6n=n- (pi,p2,...,Pr-i) - (|w*(n)|i, w*(n)|2,..., \w^{n)\r-i) eV~1,

where p = (pi,p2? • • • -sPr) is the strictly positive eigenvector of Mr corres-
r

ponding to the Perron-Frobenius eigenvalue 0, normalized so that ̂  pz=l.
i=l

Rauzy (see [19] and [20]) showed (under certain technical conditions) that
the sequence {6n} is bounded and its closure provides an encoding of r.
As a consequence of Theorem 2.3 we are able to show that if M^- has r — 1
distinct eigenvalues of modulus less than one then {6n} is bounded. If,
however, Mr has an eigenvalue a ^- 0 with a\ > 1 and a is not a root of
unity, then {^n} is unbounded. The substitution in Example 4.7 has two
eigenvalues of modulus greater than one and therefore {6n} is unbounded,
yet the sequence {Sn} corresponding to the eigenvalue a w .445041868
is bounded and its closure f^ C R gives a geometric encoding of the sub-
stitution. (See Figure 4.4.)

In Section 4 we give an alternative characterization of f2 as the limit
set of a Mauldin-Williams type graph directed construction. (See [15].)
A primitive substitution r on A naturally determines a strongly connected
directed graph G with vertex set A. To each directed edge e from vertex i
to vertex j corresponds a similarity ge from f^ to ^ with coefficient
of contraction equal to a. We define a continuous surjection h from the
set of (rooted) infinite paths in G onto f^ (Theorem 4.3). Each point
x C f^ is thus coded (possibly nonuniquely) by h as an infinite path in G
beginning at vertex i. We use this to show that the Hausdorff dimension
of ^2 is bounded above by

ft = - log^- and T^(^) < oo.
log pi
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GEOMETRIC REALIZATIONS OF SUBSTITUTIONS 153

We give examples for which /3 is equal to the Hausdorff dimension of Q.
Suppose G is a real geometric realization of T, i.e., 0 C R. Associated

to Q is a system of partial isometries TQ = (I^i : Di —r Ri)^^ defined
as follows : I == [a, b] is the smallest closed interval containing f^, and
for each i € A, Di = [a^,^] is the smallest closed interval containing ̂ .
For x 6 Di set

(rc)<^ = a- + <?(%) = x + z^.

In Appendix B we derive an algorithm for computing the endpoints of
each Di. We deduce as a consequence of this algorithm that the eigen-
vector Va can be chosen so that each endpoint of Dz and each one
sided limit point of ^ is a polynomial in the eigenvalue a (with integer
coefficients). It is shown in [11] that if the intervals Di are nonoverlapping
and cover J, then Tg is either an interval exchange mapping or exotic in
the sense of [8]. In each case Q, is identified with the limit set loo of TQ
defined by D. Gaboriau in [8].

This work was largely motivated by earlier work of M. Boshernitzan
and I. Kornfeld on interval translation mappings. (See [3].) We thank
D. Mauldin and M. Urbanski for many useful conversations concerning
the material in Section 4. We also wish to thank the referee for valuable
comments and suggestions.

2. Dynamics of Primitive Substitutions
Let A == {1, 2 , . . . , r} and A* be the set of all words of finite length

in the alphabet A. We regard the empty word u^ as the unique element
of A* of length zero. Set A^~ = A* \ {u^}. We write |w| for the length of
w € A*. If 1 ̂  j <^ r, let \w\j be the number of occurrences of the letter j
in w, so that

r

^ H j = H-
j=i

Let A^ denote the set of all sequences in A. For n > 0 and w C ^N, let
w(n) G A* be the initial subword of w of length n. The natural topology
on A^ (the countable product of the discrete topology on A) is metrizable.
Specifically, we define the standard metric d on A^ by setting

d(w, w') = e'^ if w(n) = w^n) and w{n + 1) 7^ w'(n + 1).

DEFINITION 2.1. — A substitution T on the alphabet A is a mapping
r : A —> A^. The mapping r extends by concatenation to maps (also
denoted r) A* —> A* and A^ —> A^. A substitution r is called primitive

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



154 C. HOLTON AND L.Q. ZAMBONI

if there is a positive integer N such that for each pair ( i , j ) € A x A,
the letter j occurs in TN{i). In this work we consider only primitive
substitutions.

Fix a primitive substitution r on A. A sequence w* C A^ is called a
fixed point (of r) if r(w^) = w^, and a periodic point if ^(w^) = w^
for some m > 0. Although r may fail to have a fixed point, every
primitive substitution has at least one periodic point. Associated to r is
the topological dynamical system (X,T), where T denotes the one sided
shift on A^ and X the T-orbit closure of a periodic point w^ in A^. The
primitivity of r assures that (X, T) is independent of the choice of w*
and is minimal, i.e., each point x € X has a dense orbit in X. (See [18].)
Let W(r) be the set of all words in A* which occur in some periodic
point w^. Each nonempty word w G W(r) occurs in X with bounded
gap : given w there is a positive integer m such that for each x € X, each
subword u of x of length m contains w. (See [18].) For each nonempty
word w € W(r), let X^ denote the set of all sequences in X beginning
in w.

Let Mr == {rriij)rxr be the incidence matrix of r, i.e.,

m^ = H^k

and write M^ for its transpose. Because r is primitive, there exists N ^ 1
such that M^ is strictly positive. Given an eigenvector Va = {vi, ^2, • • • ? ^r)
in C7' of the matrix M^ corresponding to some eigenvalue a 6 C, we define
the function S = S(r, Va) : A* -» C by

r

(2.1) 5'(w) =^ |w|,^.
1=1

Thus 5(^0) = 0 and for each w, w' G A* we have

(2.2) ^wwQ^z^+S^w').

LEMMA 2.2. — If w e A* then S{r(w)) = aS{w).

Proof. —In view of equation (2.2), it suffices to consider the case where
w = j ^ A. We have

r r r
s{rU)) = Y^ kO') I ̂  = ̂  m^ = $^ m!̂  = av] = ̂ U)' D

i=l 1=1 1=1

THEOREM 2.3. — Let r be a primitive substitution on the alphabet
A = {l,2,...,r} fixing a point w^ C A^. Let a € C be an eigenvalue

TOME 126 — 1998 — N° 2



GEOMETRIC REALIZATIONS OF SUBSTITUTIONS 155

of the matrix M ,̂ and let Va == (^1,^25 • • • ̂ r) be a corresponding
eigenvector. Define S = S(r^Va) : A* —> C as in (2.1). For each n > 1,
let Sn = S(w^(n)). Then

g
1) lim — is equal to zero if and only if a is not equal to the Perron-

n—»-oo l i

Frobenius eigenvalue 0 of Mr'
2) // la] > 1 then the sequence {Sn} is unbounded.
3) If a = 0 then the sequence {Sn} has finite range.
4) If a is a root of unity then {Sn} is unbounded or has finite

range. If \a\ = 1 and a is not a root of unity then {Sn} is unbounded
(cf. Examples 2.8 and 2.9)

5) IfO < \a\ < 1 then the sequence {Sn} is bounded. Let f^ = f^T.^oO
be the closure of {Sn '- n ̂  1}. Then S} is a compact perfect subset ofC.
(cf. Example 2.4 below.)

EXAMPLE 2.4. — Let T be the substitution on A = {1,2,3} given by

r(l) = 132, r(2) = 112, r(3) = 32.

The eigenvalues of
/ I 2 0\

M, = 1 1 1
V o i/

are the roots of the polynomial

p{x) = x3 - 3x2 + x - 1.

Two are complex and the other is real. Let a w . 115353823 + .589742805?
be one of the complex roots. An eigenvector of M^. corresponding to a is

/ (a- l )2 \
^ = 2(a - 1) .

V 2 /

Since 0 < |a| < l , ^ 2 i s a compact perfect subset of C. As in [19], one can
show that ^2 corresponds to a Weyl automorphism on the torus R^Z2

and hence gives a tiling of the plane R2. (See Figure 2.2.)

Proof of Theorem 2.3. — There is no loss of generality in assuming that
r(l) begins in 1 and that the fixed point w^ of r is given by lim T"^!).

n—>oo

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



156 C. HOLTON AND L.Q. ZAMBONI

Figure 2.2

Since T is primitive it follows that the dynamical system (X, T) is uniquely
ergodic. (See [16] or [18].) Define F : X -^ C by setting F(w) = ^
if w € X,, z.e., if w begins in the letter z G A. Then, for each n we have

n-l

5,=^F(T-(w.)).
i=0

By BirkhofTs ergodic theorem

lim ^ = { Fd^
n-^oo n J^

where (i is the unique r-invariant probability measure on X. For u € .44",
/^(X^) is equal to the frequency of u in w*. Moreover, if n = '̂ is an element
of A then l^(Xj) is equal to the j'-th component of the strictly positive
eigenvector p = (p\,p2-> • • -Pr) of the matrix Mr, corresponding to the
Perron-Frobenius eigenvalue 0, normalized so that Y,pi = 1 (cf. [18]).

i=l
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GEOMETRIC REALIZATIONS OF SUBSTITUTIONS 157

Thus, decomposing X == |j X^ we have
1=1

^̂  = f Fd^ = ̂ F(X^(Xi) = Y^v,pi.
v-^ -i—1 -.—1

lim
n—>oo u

This last sum is equal to 0 if and only if a ^- 6. An alternate proof of (1)
is given in Appendix A.

To prove (2) we suppose that la] > 1. Let u be an initial subword
of w^ with S(u) ^ 0. For each n >: 1, ^{u) is an initial subword of w^
and S^^u)) = ^S^u), and hence the sequence {Sn} is unbounded.

(3) follows immediately from Lemma 2.2.

To establish (4) and (5) we need :

LEMMA 2.5.— The range of{Sn} is either finite or for each letter j C A
there is a nonempty word w such that w^( |w| + 1) = wj and S(w) 7^ 0.

Proof. — This is clear since each letter j ^z A occurs in w^ with bounded
gap. D

Now suppose that a is an m-th root of unity and the range of {Sn}
is infinite. By Lemma 2.5 there is a nonempty word w such that w^
begins in wl and S(w) 7^ 0. We can assume that a = 1 and that w
is a subword of r(l), since replacing r with T771^ for suitable k > 1
changes neither the fixed point w^ nor the sequence {Sn}- For each
n > 1 the word rn(w)rn~l(w) • • -r(w) is an initial subword of w^ and
S(rn(w)rn~l(w) • ' • r(w)) = nS(w). Letting n —>• oo, we see that {Sn} is
unbounded.

Next, if | a | = 1 and a is not a root of unity then the range of {Sn}
is infinite. Thus we can find w as above and we may assume as before
that w is an initial subword of r(l). For each k >_ 1 we can find numbers
1 < ni < ri2 < " • < ^k with 1 - Re(Q/nJ) < 2"7. (This is because {a9}
is dense on the unit circle.) Then T^^u^T^-^w) • • -r^w) is an initial
subword of w^ and

^(T^W^-^W^-T^W))!

k k

= \S(w)\ . ^a^ ^ \S(w)\ . ^Re(^-)|
.7=1 J=l

> \S(w)\^(l-^)>(k-l)\S(w)\.
.9=1

Thus {Sn} is again unbounded, and (4) is proved.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



158 C. HOLTON AND L.Q. ZAMBONI

To prove (5) we assume that 0 < |a| < 1. Let K be the set of
all proper initial subwords (including the empty word) of the words
r(l) ,T(2), . . . , r (r) and set

C=max{|5'(n)| : u € K}.

We will show that the sequence {Sn} is bounded in absolute value by the
number C7/(l — \a\). The following lemma, due to J.-M. Dumont, is also
used in the proof of Theorem 4.3 :

LEMMA 2.6 (See [5].). — Let w € W(r) he an initial subword
of w^. Then^ there exist m >_ 1 and words 14,^2?. . . ,Hm+i ^ K and
Wi,W2,. . . ,w^+i € W(r) such that

1) |tAi| > 0 and \Wk\ > 0, k = 1 ,2, . . . ,m+ 1 ;
2) r(l) = niwi;
3) T(WA;(I)) = Uk+iWk+i, k == 1 ,2 , . . . , m, and

4) w=rrn(u^rrn-l(u-2)'-r{um)um+l'

Let w be any initial subword of w^. By Lemma 2.6, we can write

W = T7^!^-1^) • • • T(Um)Um^

with each u. € K. We have

m
_m-/c/,. \ \ | ^ V^ I C^i^n-h\s(w)\ = | ̂ 5^-^+1)) | ̂ l̂ - î))!

fc=0 A;=0
m m G
^la"1-"!^^)! ^C^|a|= ̂  |a ̂  |5(n,+i)| ^ G^ H^ < ̂
A;=0 k=0

0;

It remains to show that if 0 < |o;| < 1, then the set fl, defined in (5)
of Theorem 2.3 is a perfect subset of C. Let w be any initial subword of
w^ with S(w) -^ 0. Then the subsequence {S^r^w))}^ converges to
0. Next, let m > 1, and this time choose w to be an initial subword of
w* which is followed by 1 in w^ and with S{w) -^ 0 (Lemma 2.5). Then,
for each e > 0, there exists k > 1 such that 0 < [S^r^w))] < e and
rk{w}w^{m) in an initial subword of w^. Thus

0 < l^r^w))! = \S(rk(w)w^m))-S(w^m))\ < e,

which shows that Sm is also an accumulation point of the sequence
{Sn}. D
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COROLLARY 2.7. — Let r be a primitive substitution. Suppose that the
matrix Mr has a nonzero eigenvalue a of modulus less than one. Then no
fixed point w* C A^ of r is an eventually periodic sequence, and hence
no w € X is an eventually periodic sequence.

Proof. — Suppose to the contrary that r has a fixed point of the form
w* = UQUUU • • • . By (5) of Theorem 2.3 we must have S{u) = 0 (otherwise
the sequence {Sn} would be unbounded), and hence the range of {Sn} is
finite. This contradicts (5) of Theorem 2.3. Minimality of (X, T) allows
us to conclude that X contains no eventually periodic sequence. Q

We end this section with a few examples illustrating that each of the
three possibilities described in (4) of Theorem 2.3 occurs.

EXAMPLE 2.8. — Let A = {1,2,3,4} and set

r(l) = 1234, r(2) = 2312, r(3) = 3123, r(4) = 1231.

If we take the eigenvalue a = 1 and eigenvector (1, - - -1,1) of M*.
then the range of the sequence {Sn} is {0,1, j }. Writing

W* = lim T^l) = WiW2W3 • • • ,
n—>oo

we have w^i e {1,4}, wsn-^-2 = 2, and w^n = 3, and thus S^n = 0.
On the other hand, corresponding to the eigenvalue a = -1, is the

eigenvector (- j , ̂ , ̂  , 1). In this case the sequence {Sn} is unbounded.
In fact, w^(6) = 123423 is followed by 1 in w^, and 5'(w*(6)) = 1 ^ 0 .
It follows from the proof of Theorem 2.3 (4) that {Sn} is unbounded.

EXAMPLE 2.9. — Consider the substitution

r(l) = 12, r(2) = 14, r(3) = 2, r(4) = 3.

The characteristic polynomial of Mr is

t r4-^-^-^+l=(^+^(-l+v /13).r+l)(^+j (-l-V^+l).

The roots of the first quadratic factor are

^ l-VT3±V2-}-<2Vl3i
4

which have modulus one. One readily verifies that a is not a root of
unity. In this example, the Perron-Frobenius eigenvalue 0 w 1.7220838
is a Salem number.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



160 C. HOLTON AND L.Q. ZAMBONI

3. Geometric Realizations of Primitive Substitutions

Let T be a primitive substitution on the alphabet A = { l , 2 , . . . , r }
fixing a sequence w^ € A^. We may assume that w^ begins in 1, so that
w^ = lim T^I). Let (X,T) be the associated dynamical system defined

n—>oo
in Section 2.

Throughout this section we assume that Mr has a nonzero eigen-
value a of modulus less than one. By Corollary 2.7 no element of X is a
periodic sequence. Let v^ be an eigenvector of M^ corresponding to a,
S = S(r,Va) : A* -^ C as in (2.1), and ^ the closure of {Sn} as in (5)
of Theorem 2.3.

THEOREM 3.1. — For u,w € X, let 01,02, . . . be any sequence of
nonnegative integers such that u(an + n) •==- n(o^)w(n) for each n. Set

p(u,w) = lim \S{u(dn))\

Then this limit exists independent of the choice of sequence {071}. Moreo-
ver^ the function p : X x X —> R defines a pseudometric on X with the
following property :

W.weX, p(r(n),r(w)) = \a\p(u,w),

and if u(l) = w(l), then p(Tu, Tw) = p{u, w).

We show that this pseudometric p is never equivalent to the standard
metric on X. Indeed there exist w,w' C X with p(w,w') = 0 and
w(l) -^ w'(l). (See Proposition 3.17.)

The associated metric space X / p is isometric to f^ :

THEOREM 3.2. — For w € X , let {wn} be a sequence of tails of w^
converging to w in the standard metric. There exist (unique) nonnegative
integers 01,03,. . . such that^ for each n >_ 1, w^ = w^(o^)w^. Set

f(w) = lim S'(w^(on)).
n—>oo ' '

Then this limit exists independent of the choice of sequence {w^}. Hence,
f : X —> C is a uniformly continuous function on X (with respect to
the standard metric) and the image of f is ^. Moreover, for w, w' G X,
f(w) = f{w') if and only if p(w,w') == 0.

DEFINITION 3.3. — Let r be a primitive substitution. A complex
geometric realization of r is a triple Q = Q(f,X,v) consisting of a

TOME 126 — 1998 — N° 2
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continuous map f : X -^ C, a nonzero complex number \ of modulus
less than one, and a nonzero vector v = (v^.v^,... ,Vr) e C7", such that
for alii G A and for all w € Xi,

/(r(w)) = \f{w) and f(Tw) = f(w) + v,.

We call Q a real geometric realization if f(X) C M.

THEOREM 3.4. — Let r be a primitive substitution. Then to each
eigenvalue a of the matrix Mr with 0 < |a| < 1 and to each eigenvector v a
ofM1, corresponds a geometric realization Q •= G(f,a,v^), where the map
f : X -» C is given by Theorem 3.2. Conversely, if Q = Q(f,\,v) is a
complex geometric realization ofr, then X is an eigenvalue of M^,v is an
eigenvector of M1, corresponding to A, and f is given by Theorem 3.2.

REMARK 3.5. — The key in proving each of the above theorems involves
establishing the "recognizability" of long initial subswords o fw^ .A precise
formulation of this recognizability is given in Proposition 3.10. Our proof
of Proposition 3.10 is largely due to the work of J.C.Martin in [14].
A similar idea is also found in B. Mosse's proof of Theorem 4.1 in [17]
and a slightly different formulation of this proposition appears in [12].

The following lemma is a special case of a result of B. Mosse :

LEMMA 3.6 (cf. Theorem 2.4 in [17]). — There is a positive integer L
such that w^ does not begin with any nonempty subword repeated L times.

Fix L as in the preceeding lemma.

. COROLLARY 3.7. — Ifw^(n) is an initial subword of ww^(n) for some
w e W(r) with n > L\w\, then w is the empty word.

Proof.—If \w\ > 0, then w^ begins with the nonempty word w repeated
at least L times, contradicting the choice of L. []

Let wo G A^. We say that u = u^ • • • uj,, each HI e A, minimally n-
covers WQ ifr^) = Arn(wo)B for some A,B e A* with |A| < Ir^i)]
and \B\ < ̂ (u^.

Fix M <E N such that T^I) contains at least L copies of each letter
of A, i.e., IT^I)^- ^ L for each j e A.

LEMMA 3.8. — If u = u\u^'"Uk, each Ui e A, minimally n-
covers r l̂), then the subwords A ofr"^) and B ofr"^) such that
Tn(u)=ArM+n(\)B are unique.
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Proof. — Suppose that r71^) = ArM+n(l)B = GT^+^I)^ with A
and C initial subwords of r^ni). It suffices to show that A = (7. We may
assume that A = Cw for some subword w ofr^iAi). Then CTMJt'n{\) is an
initial subword of (7wTM+n(l), and thus TM+n(l) is an initial subword
ofwr^^l). Since

r^l)! ̂ Ir^i)! ^L|w| ,

it follows from Corollary 3.7 that w must be the empty word, and hence,
A=C. D

LEMMA 3.9. — There is an integer P such that if w is any subword
ofw^ with \w\ > P then

IT^W)! ^ T^^l)] ^^max^a)].
Oi^^A.

Proof. —Using the primitivity of r, choose P such that if w is a subword
ofw* with \w\ >, P, then w|a ^ 1^(1)1 a + 2 for each a € A D

PROPOSITION 3.10. — There exists N € N such that if

w,(k + N) = w^k)w^N)

for some A; € N, then there exists j C N such that w^(k) = r{w^{j)). In
other words^ the subword proceeding an occurrence in w^ of a sufficiently
long initial subword of w^ is in the image ofr.

Proof. — Fix P as in Lemma 3.9. For each positive integer n, let Un
be the set of all subwords of w^ which minimally n-cover r^l). Note
that \Un\ < r1^ for each n and U\ C U^ C U^ C • - •. It follows that
the sequence U\^ U^^U^^... is eventually constant. Fix no ^ ^ such that
U^=i Un = Un^ Set N = IT^+^^I)! , and suppose that

w^{k + N) = w^(k)w^(N)

for some k > 0. Let s be the least positive integer for which

IT^+^OO)! >k,

and let t be the least positive integer for which

^^(w^))! ^ k - ^ N .
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For i = 5, s + 1, . . . , t, let Uz be the i-th letter of w^, and note that

w^k)=rno^l{w^s-l))E

for some initial subword E of r^^^Us). Observe that UsUs-^-i... Ut is an
element of L^o+i = ^no? so tnat

r"0 (n^+i... Ut) = ATno+M(l)B

and
T^+^A+I ... ̂ ) = CT^+^I)?,

where A and C are initial subwords oir^^Us) and T^"^^), respectively,
and B and D are tails of r^^Ut) and r^0"^^), respectively. It follows
from Lemma 3.8 that C = r(A). Now,

w^k)w^(N) = T^^W^S - l))Ew,(N)

is an initial subword of

T^ (W^t)) = T71^1 (W,(5 - 1)^^+1 . . . Ut)

= ̂ ^(w^s - l))Cw^{N)D.

Therefore, Ew^{N) is an initial subword of Cw^{N)D with both C and E
initial subwords of r^^^s). Thus, there is a subword w of ^^{us}
such that either C = Ew or E = Cw. In either case, we find that w*(7V)
is an initial subword of ww^ {N). Since

7v^L|Tno+ l(^,)| >.L\ w\

w must be the empty word, by Corollary 3.7. Hence, C = E.
Clearly, T^W,,^)) is an initial subword ofw,,, and A, by definition, is

an initial subword of r^Us). Then r^w^s — 1))A is an initial subword
of w^. Setting j = IT^W^S — 1))A|, we obtain

w^k) = r^^w^s - 1))E = r^^w^s - 1))G
^T^^^-I^^T^O)),

as required. []

REMARK 3.11. — Proposition 3.10 remains valid when we replace r
with rk for k >_ 1, as each fixed point of r is a fixed point of r k ' .
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Proof of Theorems 3.1, 3.2 and 3.4' — Fix w e X and let wi, W 2 , . . . ,
01,02,. . . and / be as in the statement of Theorem 3.2.

We show first that the limit (3.2) exists. By (5) of Theorem 2.3, there
is a bound B for |6n|. Let e > 0, and fix k € N such that \ak\B < e.
By Proposition 3.10 and Remark 3.11, there is a natural number Q
such that if w*(n + Q) = w*(n)w*(Q), then w^(n) = rk(w^{b)) for
some integer b ^ 0. By primitivity of r there exists n\ > Q such that
w(ni) = w(n\—Q)w^.{Q). Since the Wi converge to w, there is an integer 722
such that w^(ni) = w(n\) for each i >_ n^. Observe that, for % >_ n^,

w*(o^)w(ni - Q)w^(Q) = w^o^w^ni) = w^ai + ni).

Thus, by Proposition 3.10 and Remark 3.11, for each i > n^, there exists
an integer bi > 0 such that

T^W*^)) = w,,(o,)w(ni - Q).

We have, for i > n^^

|5(w.(a,))+^(w(m-Q))| = |5(w,(a,)w(m-Q))|

= |a^(w,(^))| ^ \ak\B<e,

so that S{w^(di)) is a Cauchy sequence. Thus, the limit exists and / is
well defined.

Having established that the limit in (3.2) exists and is independent
of the choice of tails {wn}^=^ converging to w, it follows that the limit
in (3.2) defines a continuous, hence uniformly continuous, function / on X.
If w is a tail ofw*, then /(w) = S'(w'), where w* = w'w. Thus, f(X) = fl.

LEMMA 3.12. — Ifu C X , then f(r{u)) = af(u).

Proof. — Let u^, u ^ ^ . . . be sequence of tails of w^ converging to n, and
choose a sequence ai, 02 , . . . of nonnegative integers such that, for each n,
w^ = w^(an)un . Note that r(u) = lim r(un)' Since

n—>oo

w^ = r(w*) = r(w^(an)}r(un),

we have

f{r{u)} = lim S{r(w^an))) = Jim^^(w,(a^)) = af(u). D

LEMMA 3.13. — If u G X begins in the letter i C *A, then

foT(u)=f{u)+S^.

TOME 126 — 1998 — N° 2



GEOMETRIC REALIZATIONS OF SUBSTITUTIONS 165

Proof. — Let u\,u^^... be sequence of tails of w^ converging to u,
and choose a sequence 01,03,03,... of nonnegative integers such that
w^ = w^(dn)un for each n. Note that T(un) converges to T(u) and
w^ = w^{dn + l)r(z^), so that

foT(u)= lim 5'(w^(an+l))
n—)-oo

= lim (5(w*(a»)) + 5(?)) = f(u) + S(i),
n—>oo /

as required. []

Lemmas 3.12 and 3.13 conclude the proof of the first part of Theo-
rem 3.4. To prove the converse, suppose that Q = <?(/, A, -y) is a geometric
realization of r. Set Sv : A* —> C by

r

Sv{u) = ̂  \U\iVi

i=l

where Vz denotes the iih entry of v. Then, for u C W(r), Sv(u) can be
computed in terms of / by Sv(u) = f{w') — f(w) where w and w' are tails
ofw>i< with w = uw''. Then, for each i C A it follows that Sv(r(i)) = XSv(i)
so that A must be an eigenvalue of M^ and v a corresponding eigenvector.
This concludes the proof of Theorem 3.4.

The next proposition completes the proof of Theorem 3.2.

PROPOSITION 3.14.—For allu.w € X, the limit p(u^w) defined in (3.1)
exists and is equal to \f(w) — f(u)\.

Proof. — Let {dn} be the sequence of nonnegative integers given in
Theorem 3.1. Since r is primitive, there exist bn such that

W^(bn + On + n) = W^(bn)u(an + n)

for each n G N. Then

w^(bn + an + n) == w^{bn)u(dn + n)
= w^(bn)u(a,n}'w{n)

= W^(bn + On)w(n)

so that

lim S(w^(bn 4- On)) == /(^) and lim S(w^(bn)) = f{u).
Ti—>00 IT,—>00
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Thus,

\f(w)-f(u)\ = | lim ,?(w*(^+0)- lim 5(w,(^))|
n—^oo n—>oo

lim S{w^(bn)u(an)) - lim (5(w* (&„))) [
ri—^OO n—>-00 'n—>oo n—>OQ

lim {S(w,(bn)) + S(u(an))) - lim (5(w, (&„))) |
ri—^oo n—»'oo •n—>oo n—^oo

lim 5'(n(an)) = lim \S{u(dn))\ = p(u,w). Q
n—>oo ' n—>oo

It follows from Proposition 3.14 that p : X x X —^ M^0 of Theorem 3.1
defines a pseudometric on X.

COROLLARY 3.15. — For all u,w € X , p(r(n),r(w)) = \a\p(u,w).

Proof. — One has :

p(r(H),r(w))= \f{r(u))-f(r(w))\ = \a\ • \f(u)-f{w)\

= \a\p(u,w). Q

COROLLARY 3.16. — Ifu^w € X begin in the letter %, then

p(T(u),T(w)) =p(u,w).

Proof. — One has :

p(Tu,Tw) = \f(Tu) - /(Tw)| = \f(u) + Vi - /(w) - v,\

= \f{u)-f(w)\ =p(^w). D

This concludes the proof of Theorem 3.1. []

Theorem 3.2 implies that each point x € f^ is encoded by a point w € X.
This yields a natural decomposition ^ = ^ U ^ U . . . U ^ r where
Qi = f(Xi). Thus, if x € ^, then x is encoded by a point w e X
with w(l) = %. Two points w,w' € X sufficiently close in the standard
metric are close with respect to p; however, the following proposition
shows that p is never a metric.

PROPOSITION 3.17. — There exist distinct letters i,j e A such that
^i n ̂  ̂  0.

Proof. — Suppose to the contrary that for all i ̂  j, we have ̂ 0^=0.
Choose e > 0 such that for all points x^y € ^ if \x — y\ < e then x and y
belong to the same ^. There exists a positive integer TV such that for
all w,w' € X if w(N) = w^N) then p(w,w/) = |/(w) - f(w')\ < e.
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It follows from Theorem 3.4 that for all w, w' € X if w{N) = w'(AQ then
w(n) = w'(n) for all n > N. In particular, this would imply that the set X
is finite, contradicting that it surjects via / onto the perfect set ^2. []

REMARK 3.18.—It is important to understand the extent of information
lost when considering the complex geometric realization of a substitution
rather than the original system. Let tj be the restriction to f^ of the
translation x ^—> x + vj. Ifx € f^ and r(i) == i\i^.. .if, then the partial
isometry ̂  • • • t^t^ is defined at ax and sends it to atz(x). Thus, if there
exists only one word in the tj sending ax to ati(x) then the value of r{i)
can be found from the geometric realization. One case where this occurs
is when the generators are independent in the sense of [8]. The authors
in [11] give a criterion which assures that the generators be independent.

4. The Graph Directed Construction
Let T be a primitive substitution on the alphabet A = { l , 2 , . . . , r }

fixing the sequence w^ = lim^-^oo ̂ (l) m A^. Let Va be an eigen-
vector of M^ corresponding to an eigenvalue a with 0 < \a\ < 1 and
Q == Q(f^ a, Va) the associated complex geometric realization from Theo-
rem 3.4. Denote by fl, the image of /. The substitution r naturally deter-
mines a strongly connected directed graph G with vertex set .4, and Q
associates similarities ge '. ^t(e) —)> ^o(e) to each directed edge e, where t(e)
and o(e) denote the terminal vertex and the initial vertex of the directed
edge e, as follows.

Define a directed graph G = G{r)
• with vertex set V(G) == A and
• with edge set E(G) = {(ij) : j € A and 0 ^ i < \r{j)\}.

We interpret (z,j) € E(G) to be a directed edge from (T'1 o r(j)){l) to j.

EXAMPLE 4.1. — Consider T defined by

r(l) = 12, r(2) = 13, r(3) = 2.

The graph G = G{r) is shown in Figure 4.3.

,̂ (0,3) (1,1)-^,^ (0,1)

3 1"-^

Figure ^.3
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LEMMA 4.2. — The graph G is strongly connected.

Proof. — This follows immediately from the primitivity of r. []

To each edge (i,j) € E(G), we associate a contraction

9(iJ) '• ^J ——^ ^(^OTO-))^)

given by
g^(z)=az+S((r(j))(i))

where 5' = 6'(r, v^) is given by equation (2.1). We check that g^j^ is well
defined : If z C f^j, then there is a point w C Xj with f(w) = z, and
T' o r(w) e X(/rzor(j-))(i). By Lemmas 3.12 and 3.13, we have

(4.1) f{T1 o r{w)) = 5((r(w))(z)) + /(r(w))

=S((r(j)){i))+af(w)

=S{(r(j))(i))+az=g^(z).

Hence, 9{i^{z} € ^(rzor(j))(i) as required.

For p € N, let G'(p) be the set of directed paths of length p in G and G°°
the set of (rooted) infinite directed paths in. G.

THEOREM 4.3. — Fix for each j G A a representative X j G f2j. Define
h: G°° -^ C by

(4.2) h((injn)^=l) =J™^^(^l,J•l)0^2j2)o•••o^njn)(^•J•

Then

1) h is well defined^ uniformly continuous (with respect to the standard
metric on G°°) and independent of the choice of the x j .

2) h(G°°) = ̂ .

Proof. — Let (zn^n)^i € G°°. It follows from (4.1) that each of the
compositions considered in (4.2) is well defined. We have

h((injn)^=i) = ̂ lim (̂̂ ) og^j,) o ... og^^(xjj
m= ̂  (E^"1^^))^)) + amx^)1=1

00

^^-^((TO,)^)).

^=1
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Thus the limit in (4.2) exists and is independent of the choice of the Xj.
To see that h is uniformly continuous we observe that if {i'ni J'n)'^! e G°°
with {it,3t) = (.i'£,J't) for each i <, m then

\h((injn)^)-h((i^j^)\

^^EH"1^^)!^^^)!
where the right hand side depends only on m and tends to 0 as m —^ oo.

To establish (2) we first note that since ^ is closed,

h{(injn)^)

= ̂ l̂̂ 'l) ° 9{i2j2) ° • • • ° ̂ n,Jn)(^n) ^ ^(T-l Or(ji))(!) C ̂ ,

so that h(G°°) c f2.
Now h(G°°) is closed (/^ is continuous and G°° is compact). To prove

^ C ^(G00) it suffices to show that /(T^w,,)) € /i(G00) for each N, since
the set of tails of w^ is dense in X. Fix TV e N. Applying Lemma 2.6
to the initial subword w = w^(N) of w^ there exist m ^ 1 and words
14, ̂ 2 , . . . , ZAyn+i, wi, W 2 , . . . , Wyn+i € W(r) satisfying conditions (1)-(4)
of Lemma 2.6. Conditions (2) and (3) assure that

(|^^+i|,w^(l)),(|n^ ,w^-i(l)) , . . . , ( |H2 | ,wi( l ) ) , ( |^ i | , l ) e G(m+l),

while condition (4) gives

z^r^7^11 oror'^i o T o . - . o r ^ 1 1 or(w*).
Since (0,1) is an edge from 1 to 1 in G, it follows that

(7=( |^+ i | ,W^( l ) ) , . . . , ( |H2 | ,Wi( l ) ) , ( |m | , l ) , (0 , l ) , (0 , l ) , . . . eG°° .

By (4.1) and (1) of Theorem 4.3, we have

h^ = J^o ga^ ° " " ° ̂ (^+1) 0 ^(0,1) 0 ^(0,1) 0 • • • ^a(n)=(0,l) (0)

=Pa(l) ° ' - - °^ (m+l ) (0 )

= /(^lnm+ll o T o ri^i o r o . . . o r^11 o r(w*))
= /(w),

where cr(%) denotes the zth edge of the infinite path a. Thus /(T^w,,)) is
an element of h{G°°) as required. []
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Theorem 4.3 gives an alternate symbolic representation of points in f2
in terms of infinite paths in G. Each point x G f^ is coded (possibly
nonuniquely) by an infinite path a € G°° whose initial vertex is equal to i.
The characterization of the limit set f^ given in Theorem 4.3 is analogous
to the Mauldin-Williams graph directed construction [15] for the directed
graph G = G(r) with respect to the similarity maps g ^ j ) ' In [15] the
authors assume the existence of nonoverlapping open sets {Ji} (indexed by
the vertices of G) having nonempty interiors and satisfying the following
conditions (commonly referred to as the "open set condition" or OSC) :
For each directed edge e in G, the similarity ge maps J^e) into Jo{e) 9LI1<^
i fe and e' are distinct edges with o(e) = o(e') then <7e(^(e)) ^d 9 e ' { J t ^ e ' } )
are nonoverlapping. Although in [15] the associated limit set is defined in
terms of the {Jz}^ it is not difficult to see that this same limit set can
be generated in a pointwise manner as in Theorem 4.3. The importance
of OSC is that it gives an exact value of the Hausdorff dimension of the
limit set fL In the absence of OSC we have only an upper bound on the
Hausdorff dimension :

THEOREM 4.4. — The Hausdorff dimension of f2 is bounded above by
the number ^-^log |a|
where 0 is the Perron-Frobenius eigenvalue of the incidence matrix Mr.
Moreover^ 'H^(P) < oo.

Proof. — For each directed path a in G, put

Ja = 9a{l) °9a{2) ° ' ' • ° Pa( \a\) (^(o-)),

so that diam(Jo-) = \a\ ^l diam(f^cr)) goes to zero as \a\ —>• oo. Thus,

|j Ja=^
<7GG(p)

for each p. It follows that

H^fl) < liminf V" (la^maxdiam^
p—>oo z-^ v ieA

<T(SG'(p)

= maxfdiamf^)^ liminf Y^ -—
i^A p^oo ^ OP

<7GG(p)

= max(diam ̂  lim inf #^G(P^ .
ieA p—^oo
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Since the number of paths in G of length p is equal to the sum of the
entries of the matrix Mf and lim Q~PMP. exists (Proposition V.7 in [18],)

, p—>oowe get
7 )̂ < oo.

Thus, the Hausdorff dimension of f2 is bounded above by /3. []

REMARK 4.5. —We are interested in a condition which guarantees that
the map / given by Theorem 3.2 be one-to-one off a set of /^-measure
zero, where JJL is the unique T-invariant probability measure on X. We
state some partial results here. The proofs can be found in [12], which is
an extension of the material of this section.

• If ^^(f^) > 0 then the restriction of / to each Xi is one-to-one off a
set of measure zero.

• If ^^(f^) > 0 and the substitution r has only one periodic point
then / is one-to-one off a set of measure zero.

We do not know whether the condition TY^(f^) > 0 guarantees that /
is one-to-one off a set of /^-measure zero.

Theorem 4.4 suggests that some properties of f^ depend only on the
incidence matrix Mr rather than on the actual substitution. For example,
as an immediate consequence of Theorem 4.4 :

COROLLARY 4.6. — // \a\0 < 1, then ̂  is a Cantor set. If a G C \ M
and |a[2^ < 1, then Q has no interior.

EXAMPLE 4.7. — Let T be defined by

r(l) = 12, r(2) = 13, r(3) = 2.

Let Q be the geometric realization of r corresponding to the eigenvalue
a w .445041868 and eigenvector

/l-a'\
Va = \ -Ot

\ -1 /

of M^ corresponding to a. The Perron-Frobenius eigenvalue of Mr is
0 w 1.80193774. Since \a\0 < 1, ^ is a Cantor set. An argument
similar to that in §5 of [3] shows that the Hausdorff dimension of fl is
equal to f3 = -log(9/log |a| ^ .727361811 and that 0 < 7^(Q) < oo.
(See Figure 4.4.)
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^2̂̂

u ^ 1 1+a-Q 2

Figure 4-4

EXAMPLE 4.8. — Let T be defined by

r(l) = 14, r(2) = 3, r(3) = 12, r(4) = 2.

Let ^ be the geometric realization of r corresponding to the eigenvalue
a w .332923890 + .670769077% of Mr and eigenvector

/ a3 - a \

{ a \
^ = ^

of M^. The Perron-Frobenius eigenvalue is
a^O < 1, Q has no interior. (See Figure 4.5.)

1.51287640. Since

EXAMPLE 4.9. —Let r be the substitution given in Example 2.4. Let Q
be the geometric realization of r corresponding to the complex eigen-
value a and eigenvector Va given in Example 2.4. As in [19], one can show
that ^ has a nonempty interior, and hence the Hausdorff dimension of f2
is equal to f3 = 2.
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 •*" *»?^ y^ ^ ,4..-^ ^ ̂^ ""̂ .̂te^
^

^. ^ ^ ̂  ,,» »r*
^^ ^^ ^ ^^ -
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Figure ^..5

Appendix A
Let r be a primitive substitution on A = {1, 2 , . . . ,r} fixing a point

w* G ^N. Let 6^ be the Perron-Frobenius eigenvalue of Mr and p =
(pi,p2? • • • ,Pr) the strictly positive eigenvector of Mr (corresponding to 0),

r
normalized so ^ pi = 1. We consider the sequence {<^J^ defined by

z=l

(A.I) 6n =n- (j?l,P2,...,Pr-l)

- (|w,(n)|i, |w*(n) |2 , . . . , |w*(n)|^_i) eM7"1.
Under certain conditions {^} is bounded and its closure provides a
geometric encoding of the dynamics of r. (See [19] and [20].)

Let Va = {vi,V2T " ,Vr) ^ C7^ be an eigenvector of M^ corresponding
to an eigenvalue a -^ 0, and define S = S{r, v^) : A* —> C as in (2.1). We
make no assumptions on the modulus of a. To compare the behavior of
the sequence {Sn} of Theorem 2.3 with that of {6n}, define

(A.2) ^ =n(pi ,p2, . . . ,Pr) - ( |w^(n) | i , \w^(n)\^,..., \w^(n)\r) e W.

We note that {^n}^=i is bounded if and only {<US^=i is bounded. In fact,
r-l

w^(n)\r =n-^ w^(n)\i,
1=1
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r-1
and pr = 1 — ̂  pi. Taking the dot product of both sides of (A.2) with v^
yields i=l

(A.3) Sn=-{v^,6n)

since (va.p) = 0.

REMARK A.I. — Dividing both sides of (A.3) by n and taking the
limit as n goes to infinity gives another proof of (1) of Theorem 2.3 since

lim ^ =0. (See [18].)
n—^oo n

THEOREM A.2. — If Mr has r — 1 distinct eigenvalues of modulus less
than one then {6n} is bounded. On the other hand, if for some eigenvalue
a ^ 0 the associated sequence {Sn} is unbounded, then so is {Sn}. In
particular, if Mr has an eigenvalue a ̂  0 with \a\ >_ 1 and a is not a
root of unity, then the sequence {Sn}^-^ is unbounded.

Proof. — If Mr has r — 1 distinct eigenvalues of modulus less than one,
then it follows from (5) of Theorem 2.3 that {6n} is bounded. In fact, we
see from (A.3) that the projection of {6n} onto the the space perpendicular
to p is bounded. It also follows from (A.3) that if for some eigenvector Va
the associated sequence {Sn} is unbounded, then so is {6n}. The rest
follows from (2) and (4) of Theorem 2.3. Q

In Example 4.7, Mr has two eigenvalues of modulus greater than one
and therefore the sequence {6n} is unbounded. However, the sequence
{Sn}, associated to the nonzero eigenvalue a of modulus less than one, is
bounded and its closure provides an encoding of r.

REMARK A.3.—Example 2.9 shows that if the characteristic polynomial
of Mr is irreducible and 0 is a unitary Salem number, then {6n} need not
be bounded.

In case r = 3, Sn and 6n differ by a linear mapping of M2. Identifying C
with M2 we have

., ^01-03 02 -a3\ ( K(n)|i\ /as\
n {h-b, ^-b^^w^n)^)^71^)

where a^ and bi denote the real and imaginary parts, respectively, of the
entry ^ of v^. Thus, multiplying both sides of (A.I) by the matrix

/ ai - 03 a^- a3\
\ bi - ^3 ^2 - h )
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yields

( Oi - 03 02 - 03 '\ . _ /r Oi - 03 ^2 - ̂ 3 ^ /' pi -\ ^ 03 ^ _ ^

^1-^3 ^ - ^ J ' ^ l - ^ ^ - ^ A ^ ' Y ^ J n<

Since (va^p) = 0 it follows that

/Oi -03 02 -03\ ^Pl^ ^ _ ( ̂ \
V ^ i - ^ 3 b ^ - h j ^ p ^ } V & 3 7

and hence
c _ ( a3~ a! ^3 ~ ̂ 2} c
^n — 1 r, T, r L j °^

V 03 - Oi 03 - 02 /

as required.

Appendix B
Assume that M^- has a real eigenvalue a with 0 < |a| < 1. Let

Va = (z>i, ^25 • • . ̂ r) be a real eigenvector of M^ and (? the corresponding
real geometric realization of Theorem 3.4. For each o 6 A, let Da C M
be the smallest closed interval containing f^o. We give an algorithm for
computing the endpoints of the intervals Da.

Fix o e A We first compute the right endpoint of Da. Replacing r
by r2 if necessary, we can assume that a > 0. Recall from Section 4 that
for each point x € f^a there is an infinite path 7 e C?°° beginning at the
vertex o of G with ^(7) = ^. (See Theorem 4.3.) Thus

supf2a = h{a) = max{/i(7) : 7 € G°°, 0(7) = o}

for some path a with o(a) = o.
For each directed edge e = (^.7), set £(e) = S(r(j)(i)). Recall from

Section 4 that (i^j) represents a directed edge from (T'1 o r(j))(l) to j.
By Theorem 4.3

00

h(a)=^an-le(a(n))
n=l

where a(n) denotes the nth edge of cr. It follows from maximality of h{a)
that for all n C N,

£(a{n)) = max{^(e) : e G E(G), o{e) = o{a(n)), t(e) = t(a(n))}.

For each pair of vertices i and j of G for which there is a directed
edge from i to j, choose a directed edge e^ € £'(G) (from z to j) which
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maximizes £. Let Umax be the directed graph with vertex set A and with
edge set {e^-}. In other words, Umax is obtained from G by erasing all
but one directed edge between any ordered pair of vertices and retaining
one that maximizes the weight function £. In view of the above remarks,
we can assume that a is an infinite path in Umax- Moreover, since any
ordered pair of vertices in Umax is joined by at most one directed edge,
we may regard a as a sequence {^n}^=o °^ vertices in Umax-

Let q be the least positive integer such that tp = tq for some p < q.
Since

00

h(a)=h{{tn)^)=^an£(et^)
n=0

is maximized, it follows that for each A:,

sup^^a"-^^).

This implies
00 00

^,n-tE"""^"^) ='Ean~9^et^)•
n=p n==g

Hence, we may assume that the sequence (tn) becomes periodic at tp, with
period q — p.

We compute h(a) = supf^a as follows : First consider the finite set
-Pmax of all triples of the form (6, ai, 02) where b is a vertex of Umax 5 ̂
is a simple loop in Umax based at 6, and a\ a geodesic in Umax from a to
the loop determined by 02 whose terminal vertex is b. In case a = b, we
take a\ to be the empty path.

Then

svip^a=m^{w(a^+a\al\w(a^^a\(T2\n : (6,^1,02) G P ,̂}
n=0

where for each path 7,
H

w(7) = ̂ ^-^(n)).
n=l

Note that if each entry of v^ is a rational function in a, then so is sup Qa
for each letter a e A.

We define analogously a subgraph H^m of G to obtain a similar
characterization of inff^- A similar argument also shows that each one
sided limit point of ^2 can be represented by an eventually periodic path
in G of the form a\ a-z a^ a ^ ' • • where 02 is a simple loop in G.
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As a consequence of this algorithm, we have :

THEOREM B.I. — There is an eigenvector VQ all of whose entries are
polynomials in a such that each endpoint of Di and each one sided limit
point of ̂  is a polynomial in a.

Proof. — We first choose Va so that each entry is a rational polynomial
in a. Then, by the above algorithm we can clear denominators to ensure
that each entry of v^ and each endpoint of Di is a polynomial in a.
Finally, as each one sided limit point of f^ is encoded by an infinite path
in G of the form a^a^a'z • • • , where a^ is a simple loop in G, the result
follows. []

We illustrate this algorithm with an example.

EXAMPLE B.2. — Let T be the substitution given in Example 4.7. That
is, r(l) = 12, r(2) = 13, and r(3) = 2. Fix the eigenvector

/i-^\
Va = \ -Ct\ -1 /

of M^ corresponding to the eigenvalue a w .445041867.
In this case G == Hmm = Umax- The graph G together with the £- value

of each edge is shown in Figure B.I.

Figure B.I

Then, supf^i is the largest of the numbers

/i(llllllll...) = 0, /i(123232323...) = a2, ^(12121212 .. .) = a.

Similarly, sup f^2 ^s the largest of

/i(21212121 . . . )=!, /i(23232323...) = a, /i(21111111...) = 1 - a2,
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and sup ̂ 3 is the largest of

/i(32111111...) = -2a2 - a + 2,
^(321212121...) = 1+a-a2 ,

/i(32323232...) =1.

Since H^^ = T^max? it follows that the infimum of each f^ is the smallest
member of each of the sets of numbers given above. Thus,

Di = [0, a], D2 = [a, I], Da = [1,1 + a - a2].
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