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FAILURE OF CONVERGENCE OF THE LAX-OLEINIK

SEMI-GROUP IN THE TIME-PERIODIC CASE

BY ALBERT FATHI AND JOHN N. MATHER (*)

ABSTRACT. — For a time-independent Lagrangian, the so-called Lax-Oleinik semi-group
converges with an arbitrary continuous function as initial condition. Using twist maps, we
show that there is no such convergence for time-periodic Lagrangians.

RESUME. —— NON CONVERGENCE DU SEMI-GROUPE DE LAX-OLEINIK DANS LE CAS PERIO-
DIQUE EN LE TEMPS. — Pour un lagrangien dependant du temps le semi-groupe de Lax-
Oleinik converge pour toute condition initiale continue. En utilisant des applications deviant la
verticale, nous montrons que ce n'est pas le cas pour des lagrangiens dependant periodiquement
du temps.

Introduction
Let L:T x TM -^ M, ( t ^ x ^ v ) i-̂  L ( t ^ x ^ v ) be a time-periodic Lagrangian

satisfying the assumptions of [8], z.e., the manifold M whose tangent bundle
is TM is compact and smooth, the Lagrangian L is twice continuously diffe-
rentiable, the fiberwise Hessian of L is positive definite, L has uniformly super-
linear growth along the fibers, and the Euler-Lagrange flow is complete. Here,
as is usual T = R/Z.

Associated to this Lagrangian, there is a Hamiltonian H:TxT^M —> R, where
T*M is the cotangent bundle. For p e T^M, a cotangent vector at x € M, the
Hamiltonian H ( t ^ x ^ p ) is defined by:

H(t,x,p) = max p(v) — L(t,x,v).
veT^M
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474 A. FATHI, J.N. MATHER

In several domains (PDE, Dynamical Systems, Optimization and Control
Theory) it is important to understand the solutions of the Hamilton-Jacobi
Equation:

^-('.^)°».
where U is a function defined on an open set of R x M. The well-known method
of characteristics allows to find C2 solutions U with ^7|{o}xM a given C2 function
on M, the domain of definition of U is some (rather small) neighborhood of
{0} x M. Usually it is impossible to find a C2 solution U defined on R x M. There
is however a way to define weak (viscosity) global solutions, using T^~ :C°(M, R)0
defined for t > 0 by

pt
T^u(x) = infL(7(0)) + / L{s^(s)^(s)) ds}^

7 " J o )

where the infimum is taken over all continuous piecewise C1 paths 7: [0, t] -^ M
with ^(t) = x. It is not difficult to check that the function U: [0, +oo[ x M -^ R
defined by U(t,x) = T^u(x) is a solution of the Hamilton-Jacobi Equation on
each open set where it is smooth.

Since L is time-periodic, T^ = T^~ o Tf. Hence, {T^}^o,i,.. is a semi-group,
called the Lax-Oleinik semi-group. One would like to understand the behavior
of this non-linear semi-group as n —> +00.

The first author proved [4] the convergence of the full Lax-Oleinik semi-group
(z.e., [T^}t^o) in the time-independent case. For previous work by Namah and
Roquejoffre see [10], [II], [12], for different proofs and extensions of the result
contained in [4], see the work by Barles and Souganidis [3] and the work of
Roquejoffre [13].

In [4], the first author raised the question as to whether the analogous result
holds in the time-periodic case. This would be the convergence of T^u + nao,
as n -^ +00, n C N. Here, OQ G M is Mane critical value [6] which equals a(0),
defined earlier in [8]. It depends only on L.

In this paper, we provide examples with M = T where there is no such conver-
gence, thus answering this question negatively. In fact, there is no convergence
of the Lax-Oleinik semi-group for a generic Lagrangian L:T x TT —> R.

1. The Function h^
Our construction depends on results in [9]. In order to explain it, we need to

recall some definitions from [8].
We view a one form on M as a function on TM, linear along the fibers, and

furthermore as a function on T x TM, by ignoring the T-factor. If 77 is a closed
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FAILURE OF CONVERGENCE OF THE LAX-OLEINIK SEMI-GROUP 475

one form, L - n:T x TM -^ R is a Lagrangian, still satisfying the assumptions
of [8]. Moreover, it has the same Euler-Lagrange flow as L. Following [8], we set:

aL(c )=-mf{ f(L-ri)d^,

where c is the de Rham cohomology class of 77, and ^ ranges over all probability
measures invariant under the Euler-Lagrange flow associated L. This is indepen-
dent of the closed one form representing c. The case c = 0 gives Mane's critical
value, i.e., OQ = o^(0).

Following [9], we define a function h^: M x M -^ M, as follows:

M-^) = o-o + inf { f L{t^(t)^(t))dtV x, x ' C M.

The infimum is taken over all continuous piecewise C1 curves 7: [0,1] -^ M such
that 7(0) = x and 7(1) = x ' . In addition, we set

h^x, x ' ) = inf{^(.ro^i) + • • • + M^n-i, Xn)},

where the infimum is taken over all (xo,... ,Xn) e Mn+l such that XQ = x
and Xn = x ' \

h^^x^x') = liminf^^^,^);
n—roo

^l00 = ^l00"^0; and h^ = h}00. (We have changed the notation of [9]: if rj is a
closed 1-form on M whose cohomology class is c, then /^_^, h^_ , and h^_
were denoted h^ h^, and h^ there. Note that these depend on T^not just c1)
The function h]00 is always finite and continuous [9].

Can liminf always be replaced by lim in the definition of h^l This is related
to the question of the convergence of the Lax-Oleinik semi-group in the time-
periodic case. For, it is clear that T^u(x) + OQ = inf {u(y) + h^y^x)} and

_ 2/GM
T^u(x) + nao = ̂  {u(y) + h^{y,x)}. Moreover, if we set Uy(x) = h^y.x),

we have h^\y,x) = T^(uy)(x) + nao. Thus, the convergence of T^u + nao,
for all u C C°(M,IR), would imply the convergence of h^(y,x), as n -^ +00, for
all y , x G M.

We will construct examples where the convergence of h^(x, x) fails, and hence
the Lax-Oleinik semi-group does not converge.
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476 A. FATHI, J.N. MATHER

2. The Examples
We will construct examples of non-convergence in the case M = T.
We let L: T x TT — ^ R b e a time-periodic Lagrangian satisfying the hypotheses

of [8]. For p / q e Q, expressed in lowest terms, we let Mp/q C T x 7T denote the
union of all action minimizing periodic orbits which are periodic of period q and
rotation number p / q . Then Mp/q is a closed, non-void subset, invariant under the
Euler-Lagrange flow. Let TT denote the canonical projection of T x FT onto T x T.
The restriction of TT to Mp/q is injective. See [I], [5] or [8].

Following [8], we let
/^^i(M,IR) —>R

denote the conjugate of a^: H1 (M, R) —> R in the sense of convex analysis. Thus,

(3L(h) = -min{aL(c) - {c,h):c e H\M,R)} .

Note that both OL and /3^ are convex functions with super-linear growth.
We let Op denote the Legendre transform associated to f3 = {3^. Thus, for
h G 7:fi (M,R), we have that Cp(h) is the non-empty, convex, compact subset
of^M.M) defined by

C^h) = [c G H\M^):f3L(c) +^(c) = (c,^)}.

Note that ^(^) + o^(c) > (c, h}, for all c, /z.
In the case M = T, we have canonical identifications H\ (T, R) == IR and

^(T.M) == R. Bangert [2] proved:
• if uj is irrational, then C^(uj) is one point;
• if uj == p/9, then C^^p/q) is reduced to one point if and only if ^p/q :=

TT(M^) = T x T.
(See [7] for another proof, which the second author found after Bangert told

him his result.)
For a generic L, the invariant set Mp/q is a single orbit. In this case,

Sp/g is homeomorphic to a circle and by Bangert's theorem, C ^ ( p / q ) is an
interval [c-,C4.] (with c- < c+).

In what follows, we will suppose that q > 2, ^p/q 7^ T x T, and 77 is a
closed one form on T such that the de Rham cohomology class [77] satisfies
c_ < [77] < c-4-, where Cft{p/q) = [c-,c+]. As we have just observed, there
exist examples satisfying these conditions: the condition Sp/g 7^ T x T holds for
generic L, and then c_ < €4-, by Bangert's theorem. Since L — 77 is a Lagrangian
satisfying the assumptions of [8], this will provide the required example.
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FAILURE OF CONVERGENCE OF THE LAX-OLEINIK SEMI-GROUP 477

Under these conditions, we will show that the Lax-Oleinik semi-group asso-
ciated to L — 77 does not converge. More precisely, we will show that there
exists x € T such that hr^_ ( x ^ x ) does not converge, as n —> oo.

Let
E^ = ̂ 9 n (o x T) c T.

We recall from [9] that h^{x, x) ^ 0 and h^{x, x) = 0 if and only ifx e S^.
Given x G S°/ , we let {(t mod. 1, Xf^Xt): t E 1R} be the unique orbit of the Euler-
Lagrange flow in Mp/q such that XQ = x.

THEOREM. — If x € S° an^ 0 < r < g, ^/ien

<?/^
V^7qoo+r/ \ Q
/ j L—7] ^ i r -1 ' ^ i r ) -- ^i
i=l

where fi is the greatest common divisor of r and q.

This theorem implies that for some 1 ^ i <: g//2, we have that î004^
(xinXir) > 0. On the other hand, we have that h^_ ̂ (xinXir) = 0 since
Xzr e E^/^. Thus,

\imsViph^^(xir,Xir) > h]00^\Xir, X i r ) > 0 = lim inf h^_^(xir, Xir).
n—>oo n-^-oo

It follows that lim^-^oo h'l^_ (xir^zr) does not exist. This provides the required
example.

The proof of this theorem is given in the following sections.

3. The Metric d^
We retain the notations of the theorem. Thus, we suppose that x € S° and

let {(t mod. l,Xt^Xt)'.t G M} be the unique orbit of the Euler-Lagrange flow
in Mp/q such that XQ = x. We suppose that c- < c < c+. For 0 ^ i,j <^ q — 1,
we set

d^(a^, X j ) == itj^_^\Xi^ X j ) + '^L—rfY^Jf ̂ i ) ' )

where 77 is a closed one form on T whose de Rham cohomology class is c. This
depends only on L and c, not on the choice of one form 77 within the cohomology
class c.

We will prove the following lemma in §4:
LEMMA. — If c- < c < c+, then d^ is a metric on the set {XQ, . . . ,a;g-i}, i.e.

d^(x^x,) > 0, d^x^x,) = d^x^x,),

d^x^Xk)<d^x^x,)+d^x^Xk)^
and d^(xi^Xj) = 0 if and only ifi = j .

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



478 A. FATHI, J.N. MATHER

More generally, for c_ ^ c ^ c+, we may present d^ as a special case of
a pseudo-metric introduced in [9]. Recall that in [9, §6], we associated to a
Lagrangian L:T x TM -^ R and a cohomology class c G ^(M.R) a function
dc:M x M -^ R. For what we do next, we need to make the dependence on L
explicit in the notation: we write d^ for dc. We let

Lq(t, x, x) = qL(qt, x, q^x}.

It is easily checked that d^ = d^.
In [9, §6], we observed that the restriction of dc to a set S0' (defined there)

is a pseudo-metric. Applied to d^ = d^\ this observation shows that d^ is a
pseudo-metric on {xo,... ,Xq} (which is a subset of S0'). In other words, all
the conditions for d^ to be a metric hold, except possibly the condition that
d^ (xi, Xj) =0 implies i = j.

4. Proof that d^ is a Metric
In this section, we finish the proof of the lemma, by showing that d^(xi^ Xj) > 0

when i ̂  j and c_ < c < c+. In fact, we will show

d^x^Xj) = min(c+ - c, c - c_, \\{pi/q} - {pj/q}\\{c^ - c_)).

Here, {x} G T = R/Z denotes the residue class of x € M, and ||{rr}|| denotes
min{|a; — n|,n G Z}.

Let us write p(xi,Xj) for the right side above. To show that d^(xi,Xj) ^
p{xi^Xj\ it is enough to show that for any continuous piecewise C1 curve
7: [0, nq] -^ T such that 7(0) = ^(nq) = xi and ^(mq) == Xj for some 0 < m < n,
we have

rnq
(*) nga^(c)+ / (L - r])(t^(t)^(t)) dt > p(x,,x^.

Jo

Note that the left side of (*) is unchanged if we change 77 within a cohomology
class. Thus, it depends only on 7, L and c = [rj]. Now we fix 7 and L and consider
the left side of (*) as a function of c G [c_,c+]. Since [c_,c+] = C ^ ( p / q ) , the
function OL has constant slope p / q on [c_,c+], by convex duality. Hence, the
left side of (*) has constant slope np — [7] on [c_, c+], where [7] € ^i(T, Z) = Z
denotes the homology class of 7. Moreover, in view of the definition of o^, the
left side of (*) is non-negative on [c_,c+]. Hence, it is

> (np-[7])(c-c_), if [^]<np,

> ([7] - np) (c+ - c), if [7] > np.

In either of these two cases, the left side above is ^ min(c+—c, c—c_) > p(xi, xj).
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FAILURE OF CONVERGENCE OF THE LAX-OLEINIK SEMI-GROUP 479

The only case which remains is [7] = np. In this case, the slope of the left
side above (as a function of c e [c_,c+]) vanishes, by what we showed in the
previous paragraph. Thus, the left side of (*) is independent of 77, as long as
c- < c = [rj\ < c+. To analyze this case, we fix L and let o~(i,j) be the infimum
of the left side above over all continuous, piecewise C1 curves 7:[0,n^] — T
such that 7(0) = 'y(nq) = xi^ ^f(mq) = xj for some 0 < m < n and [7] = np.
Obviously, a(i + q,j) = (r(i,j + q) = a(i,j) and a(i, k) < a(i,j) + a(j, k).

In addition, a is symmetric: a(z,j) = a{j,i). For, if 7 is a curve as in the
definition of <7(z, j) , then 71 is a curve as in the definition of cr(j,z), where
7i(^) = ^(mq + t), for 0 < t < (n — m)q, and 71 (t) = 7(1 — (n — m)q), for
(n — m)q < t ^ nq. Moreover, the left side of (*) is the same whether the
integral is taken over 7 or 71.

Note that <7(z,j) depends only on ||{pz/^} — {p.7/9}||, which permits us to
introduce the notation

a[q\\{pi/q} - {pj/q}\\) = cr{ij).

For, by the symmetry just proved, it is enough to suppose that {pi/q} — {pj/q} =
{ p k / q } — { p £ / q } . We may also suppose that i — q < k < i and j < £ < j-\-q. Then
(i — k) + (-^ — j) = q. If 7 is a curve as in the definition of (r{i,j), we define 71
to be the curve consisting of five pieces, as follows:

1) 7i|[o,z-/c] ls action minimizing for L — rj with 71 (0) = rr/c, 71 (z — k) = x^
2) 7i\[i-k,i-k+mq] is defined by 71 (t + z - k) = 7(1);
3) 7i | [z-/c+m^-/c+(m+i)g] ^ action minimizing for L - r] with 71 (z - k + mq) =

7i(z -A-+ (m+ l)q) = x^
4) 7i|[2-fc+(m+i)^-fc+(n+i)g] is defined by 71(1 + i - k + q) = 7(1); and
5) 7i|[z-fe+(n+i)g,(n+2)g] is action minimizing with 71 (z - A; + (n + l)g) = .z-z

and 7i((n+2)<7) = a-A;.
Here, action minimizing means relative to curves on T2 with the same endpoints.

Note that the sum of the left side of (*) over the first and fifth pieces vanishes,
since together they constitute an action minimizing periodic curve of rotation
number p / q . Likewise, the left side of (*) over the third piece vanishes. Finally,
the left side of (*) over the second and fourth piece is the same as over 7.
To summarize,

/-(n+2)g

(n+2)gaL(c)+ / (L-r/)(l,7i(l),7i(^))dl
Jo

equals the left side of (*). Moreover, 71 ((m + l)q) = ^, in view of the fact
that the third piece is action minimizing and (i — k) + (£ — j) = q. Thus,
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480 A. FATHI, J.N. MATHER

7i(0) = 71 ((^ + 2)^) = .r/c and 71 ((m + l)q) = xe. Moreover, [71] = (n + 2)p.
This proves a(A;,f) ^ cr(%,j) , and, of course, this inequality can be reversed by
the same argument with the variables interchanged.

Thus, ?(z) is defined for integers 0 ^ i ̂  ^q. We have ?(z) ^ 0 and 5(0) = 0.
We set a(q -i) == a(z), for 0 <, i < j q. Then 5(z) is defined for integers 0 ̂  i < q.
It is clear that a(i + j) ^ a(z) + 5(j) for 0 ^ z, j, z + j ^ g.

We will show next that 5(A:) = A;a(l), for 0 < k < ^q. This is obvious
for k < 1, so we assume that 1 < k ^ -jg.

For 0 < z < g, we let 0 ^ ? < q be such that pT = z (mod. 9). We let
fit: [0,q] — ^ T b e the action minimizing curve of period q and rotation number
p / q such that /^(O) == ^(q) = x,. We let 7: [0, n^] ̂  T be as in the definition of
a(0, A;)(= a(k)) with the further property that [7] = np. For topological reasons,
there are two possibilities:

• either t ^-> (t mod. q, 7^)) crosses t —^ (t mod. g, /^)) twice (once in [0, mq\
and once in [mq.nq]), for each 0 < i < k',

• or this happens for each k < i < q.

Suppose that the first of these two possibilities holds: We choose 0 < 5i <
• • • < Sk-i < mq such that 7(5,) = ^(sQ with 0 < s[ < q and s, - s[ C <?Z,
and mq < tk-i < • " < t^ < nq such that 7^) = /^(^) with 0 < i\ < q such
that t\ - ti G gZ. We define

7oM = ^

7M
/^i(^+5'i - si)

/xi(^-mog)

[ 7(^ + ^i - ̂ i - rnoq)

0 < ̂  5i,

Si < ^ < mo9,

mog < t < moq-\-t[,

moq + t[ <^ t ^ no^S

where mo = 1 + (si - s^/g and no = rno + n + (^ - ̂ i)/g.
For 0 < i < k - 1, we define

' ^i(t) 0 < t < S

^(t+Si-S^

/^+i(t + s^ - s,+i + Si - s[)

^i(t) = < ^+i(t-m,g)

7(^+^+1 -miq-t^)

s'i <: t <, 5,+i - Si + s^

Sz+i — Si + 5^ < t < rriiq,

rriiq <t< m,g+^,

rrizq + ^+1 ^ t,
^ ^m^+^i +^ -^+1,

t ^(t + ̂  - m,g - ̂ +i - t, + tz+i) ^9 + ^+i + ̂  - ̂ +1 < t < mq,
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FAILURE OF CONVERGENCE OF THE LAX-OLEINIK SEMI-GROUP 481

where m, = l-(4+i -5,+i+5,-^)/g, and n, = m,+l-(^-^+^+i -t^)/q,
for 0 < z < k — 1. Note that m^ is the least integer > (s^+i — «z + 4)/9 an(^ ̂
is the least integer > mi + (^i — ^+1 + ^)/^. Finally, we define

f ^k-iW 0<^4_ i ,

7(t + Sk-i - 4-i) 4-i ^ ^
7/c-i(T) = ^ ^ rrik-iq + (4-1 - ̂ -^

p.k-i(t + 4_i - rrik-iq - 4-i + ^-9) fnk-iq 4- (4-i - mg) <, t,
t < rik-iq,

where m/c-i = m-(s/,_i -4-i)/9 a^ ̂ -i = ^/c-i -^+(4-i -^_i)/g+l.
The sum over 0 < i < k of the left side of (*) over 7^ is the left side of (*)

over 7. Moreover, 7^ satisfies the conditions of the definition of a(z^z + 1). Now
assume that for every e > 0, there exists a curve 7 as in the definition of (T(O, k)
with [7] = np, the left side of (*) is < cr(0, k) + e, and the first possibility holds.
In this case, the argument we have just given shows that

k-l

a{k) + € = a(0, k) + e >, ]^/r(z, z'̂ Tl) = ka{l).
i=0

Thus, a(A;) + 6 ^ A:a(l). Since this holds for every 6 > 0, it follows that
cr{k) > ka(l). Since the opposite inequality holds, we obtain (f(k) = ka(l),
in this case.

If this case does not hold, then for every e > 0, there exists a curve 7 as in the
definition of a(0, k) with [7] = np, the left side of (*) is < a(0, k) + e, and the
second possibility holds. When this happens, the argument we have just given
shows that

a(k)^(q-k)a{l).

However, since k < ^q and cf{k) <: ka{l), we see that this is impossible unless
q = 1/^ when we again have cr(k) = ka'(l).

This concludes the proof that a(k) = ka(l), when 0 < k <^ ^q.
Next, we show that c+ — c- = qcr(Y). We let 7: [0,n^] — ^ T b e a continuous,

piecewise C1 curve such that 7(0) = ^(mq) = 7(n^) = ^o, for some 0 < m < n.
Thus, 7 is the concatenation 7 == 7o * 71, where 70 = 7\[o,mq] ana 7i = 7|[mq,n9]-
We impose the further condition on 7 that [70] == mp+1 and [71] = (n-m)p-l.
By what we showed in the beginning of this section, the left side of (*),
taken over 70 is > c+ — c; taken over 71 it is > c — c_. Thus, taken over 7,
it is ^ (C+ — c) + (c — c_) = c-(- — c_. Moreover, it is easily seen that the infimum
of the left side of (*), taken over such 7, is c+ — c_.
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482 A. FATHI, J.N. MATHER

On the other hand, the argument above which shows that a(k) = ka(Y) also
shows that this infimum is qa{l). Thus, c+ - c- = qa(l).

Thus, we have shown d^x^Xj) > p(^,^-), in all cases. The opposite
inequality follows easily from what we did above.

5. End of the Proof of the Theorem
Clearly,

^^(^(g-r^^g-r)) + ̂ l^(^(g-r) ̂ (z+l)(g-r))

•̂  7(n+l)g/ \
^ ^L-n (^(g-r)^(z+l)(9-r)).

Summing, we get

9/At q/fi

^T^^-r^X^} > ̂ ^(X^^X^^)

z=l i=l

> d^XQ.Xq^r) = p(xQ,Xq-r) > 0.

Here, we have used E^l^(^(9-r)^(z+i)(Q-r)) = 0, which holds because
XQ,X^^ ... ,Xq = XQ is minimizing and periodic.

Since n is an arbitrary positive integer, it follows that

q/l^ q/p,

Yhq^r{x,r,Xir) = ̂ ^^(^(g-r^^g-r)) ^ p(xQ,Xq-r) > 0.
i=l i=l

as required. []
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