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ON p-ADIC NEARBY CYCLES OF LOG SMOOTH FAMILIES
BY TAKEsSHI TSUJI (*)

ABSTRACT. — We prove isomorphisms between p-adic nearby cycles and syntomic
complexes for fs (= fine and saturated) log schemes log smooth over a p-adic henselian discrete
valuation ring. This is a generalization of the results of M. Kurihara in the good reduction case
and of K. Kato in the case of perfect residue field and semi-stable reduction. Combining with
a result of C. Breuil, we obtain a comparison theorem between p-torsion étale cohomology and
log crystalline cohomology for proper log smooth families.

RESUME. — SUR LES CYCLES PROCHES p-ADIQUES DE FAMILLES LOG LISSES. — On prouve
des isomorphismes entre des cycles proches p-adiques et des complexes syntomiques pour les fs
log schémas log lisses sur un anneau de valuation discréte hensélien p-adique. Ceci généralise
des résultats de M. Kurihara dans le cas de bonne réduction et de K. Kato dans le cas d’un corps
résiduel parfait pour la réduction semi-stable. En combinant avec un résultat de C.Breuil, on
obtient un théoréme de comparaison entre la cohomologie étale p-torsion et la cohomologie log
cristalline pour les familles propres et log lisses.

Introduction

Let K be a henselian discrete valuation field of characteristic 0 with residue
field k& (not necessarily perfect) of positive characteristic p. Let Ok denote the
ring of integers of K, and let (S, N) denote the scheme Spec(Ok) endowed with
the log structure defined by its closed point.

We consider an fs (= fine and saturated) smooth log scheme (X, M) over
(S,N). Let X, denote the maximal open subset of X on which the log
structure M is trivial and let (Y, My) denote (X, M) ®o, k. Let i (resp.j)
denote the immersion Y — X (resp. Xy — X). We denote by £,(7)(x,m) the
complex i*Rj Z/p"Z(r) € D*(Yey, Z/p"Z) for integers n > 1 and r. Then we
have the syntomic complex with log poles S, (r)(x,m) € D (Y, Z/p"Z) and the
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530 T. TSUJI

canonical morphism
a: Sn(r)(x,my — En(r)(x,0)

for integers 0 <7 < p—2 and n > 1 (see [Kal], [Ku], [Ka3], [T1] and [T2]). The
purpose of this paper is to prove that « induces an isomorphism (Theorem 5.1):

Sn(r)(X,M) - Tgrgn(r)(X,M)

This was already proven by K. Kato and M. Kurihara for a semi-stable scheme X
over S endowed with the log structure M defined by its special fiber and also
for its base change by any finite extension of Ok (loc. cit.).

We follow the same strategy as the Hyodo’s calculation [H| of the p-adic
vanishing cycles in the semi-stable reduction case. The key observation for our
proof is as follows (c¢f. Lemma 3.2 and Lemma 5.2): For a log blowing up (§3)
f:(X',M'"y - (X, M) whose fibers are of dim< 1 and y € Y, if the claim
is true at y and at all non-closed points of f~!(y), then it is also true at all
closed points of f~!(y). Using this fact, we are reduced to the good reduction
case with horizontal divisor at infinity. In the good reduction case, we prove the
claim by using spectral sequences and the calculation of p-adic vanishing cycles
by S.Bloch and K. Kato [Bl-Ka] (in the case without horizontal divisor).

Assume that Y is reduced, which is equivalent to saying that (Y, My) is
of Cartier type over (S, N) ® k and also to saying that (X, M) is universally
saturated over (S, N) (see [T3]). Then, combining the above isomorphism with
the explicit calculation of HY(S1(q)(x,a)) (0 < ¢ < p — 2) in Proposition
A15 for ¢ = r (see also Proposition A5, A10, A1l and Proposition 2.11), we
obtain a generalization of [Bl-Ka, Cor. 1.4.1] and [H, 1.7, Cor.] to H4(&1(q) (x,am))
(= i*R%5,.Z/pZ(q)) under the assumption 0 < g < p — 2.

We still assume that Y is reduced. Let K be an algebraic closure of K and
let O (resp. k) be the ring of integers (resp. the residue field) of K. Set

XZ:‘X(X)OK OI?’ )—(triv = Xiriv QK I?, }_/::Y@k k.

Let 7 and 7 denote the immersions ¥ — X and Xy — X respectively. Then,
by taking the inductive limit to an algebraic closure K of K (see the end of §2),
we obtain an isomorphism

Sn(r) x5y — T<rT RILL/P"ZL(7)

for integers 0 <r <p—2 and n > 1. Assume that X is proper over S. Then by
taking HZ, (Y, —) and using the proper base change theorem for étale cohomology,
we obtain an isomorphism

HE, (?’ Sn(r)()?,ﬁ)) = HE (Xuwiv, Z/p"L(r))
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ON p-ADIC NEARBY CYCLES OF LOG SMOOTH FAMILIES 531

for integers n > 1 and 0 < ¢ < r < p—2. Assume further that & is perfect and K
is absolutely unramified. In [Br], C.Breuil proved the isomorphism between
Hgt(_Y—',Sn(r)( % M))(—r) and the Galois representation associated to the g¢-th
crystalline cohomology of (X, M,,) over the PD-polynomial ring W, (u) with
the log structure L(u) at “u = 0" forn > 1and 0 < ¢ < r < p— 2 (see [Br
Thm. 3.2.4.1 and Prop. 3.2.1.7]). Composing these two isomorphisms, we obtain
a comparison theorem between the étale cohomology H, gt()—( triv, Z/p"Z) and the
log crystalline cohomology H. . ((Xn, Mn)/(Wy(u), L(u))) for 0 < ¢ < p—2
(see [Br, Thm. 3.2.4.7]).

This paper is organized as follows: In §1, we generalize the definition of p-
bases and some related results in [Ka5, §1] to fine log schemes. In §2, we define
the syntomic complex S,(r)x,m) (n > 1, r < p — 1) and construct the map
to £, (r)(x,m)- As in [Kab, §2], we allow embeddings not only into smooth fine
log schemes but also into fine log schemes with p-bases. This generalization is
necessary to define the syntomic complex in the case where & is not perfect.
Except this point, the definition and the construction are the same as [Ka3,
§5] and [T2, §§2.1, 2.2, 3.1]. So we only give an outline. In §3, we study the
behavior of the syntomic complex under log blowing ups. In §4, we prove the
main theorem in the case where X — S is smooth and M is defined by a
relative divisor with normal crossings by using [Bl-Ka, Cor. 1.4.1] mentioned
above, and then in §5, we reduce the general case to this special case using the
result of §3. In the Appendix, we give an explicit description of H9(S1(q)(x,am))
(0 < ¢ < p—2) and some following results necessary in §4 in the case where
(Y, My) is of Cartier type over {S,N) ® k. This is a log version of [Ku] and
we follow and generalize the method of [Ku]. In fact, this was already done
in [T1] in the case where k is perfect and the generalization to the imperfect
residue field case is straightforward. However, in [T1, §7], we treat some non-
constant coefficients as well and it makes the proof very hard to read. So, for
the convenience of the readers, I will give an outline here again in the constant
coefficients case, generalizing to the imperfect residue field case.

Notation. — Throughout this paper, we fix a prime number p and we
denote by the subscript n the reduction mod p™ of schemes, log schemes, etc.
Except §1, we use the following notation: Let K, k, Ok and (S, N) be as above.
We choose a uniformizer m of Og. We denote by K the completion of K with
respect to the discrete valuation and by O its ring of integers. By [EGA 1V,
Chap. 0, Thm. 19.8.6], there exists a discrete valuation subring W of O 7 which is
absolutely unramified and over which O is a finite totally ramified extension.
Furthermore, such a subring W admits a lifting of Frobenius. We choose and
fix such a subring W and a lifting of Frobenius 0. We denote by (V, My) the
scheme Spec(W|N]) = Spec(W|[T]) endowed with the log structure associated
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532 T. TSUJI

to the inclusion N — WN]. For each integer n > 1, let iy, be the exact closed
immersion (S, Ny) — (V,, My, ) over W,, defined by the morphism of monoids
N — I'(Sp, Ny,); 1 — 7, and let Fy, be the lifting of Frobenius of (V,,, My, )
defined by ¢ on W and the multiplication by p on N.

1. Logarithmic p-bases, differential modules with log poles
and PD-envelopes
To define the syntomic complex S, (r)(x,ar) for (X, M) as in the Introduction
without assuming that the residue field k is perfect, we first extend the definition
of p-bases in [Kab, §1] to fine log schemes.

DerinITION 1.1 (see [Kab, Def. 1.1, 1.2]). — 1) We say that a morphism
of schemes f:X — Y over I, is relatively perfect if the following diagram is
cartesian, where F' denotes the absolute Frobenius:

F
X — X

AV

Y —Y.

2) Let n be a positive integer. We say that a morphism of schemes f: X — Y
over Z/p"Z is relatively perfect if f is formally étale and its reduction mod p
is relatively perfect.

For a morphism of schemes over ), we have the following implications:
étale = relatively perfect = formally étale

(see [EGA IV, Chap.0, Thm. 21.2.7]). So the above definition is consistent.
Relatively perfect morphisms are stable under compositions and base changes.

Let us recall the definition of p-bases and a criterion for p-bases in [Kab].

DerINITION 1.2 (see [Kab, Def. 1.3]). — Let n be a positive integer and let
f:X — Y be a morphism of schemes over Z/p™Z. Then we say that a set (by)xea
of elements of I'(X,0x) is a p-basis of X over Y (or of f) if the morphism
X —Y Xgpec(z) SPec(Z[T]rex) defined by Ty +— by is relatively perfect.

ProposiTION 1.3 (see [Kab, Prop. 1.4]). — Let n be a positive integer, let X be
a scheme over Z/p"Z, and let (bx)xen be a set of elements of T'(X,0x). Then
the following two conditions are equivalent.

(1) (bx)xea forms a p-basis of X over Z/p™Z.
(ii) (bx mod p)rea forms a p-basis of X1 over F, and X is flat over Z/p"Z.

We extend the above definition of p-bases to fine log schemes as follows:

TOME 128 — 2000 — N° 4
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DeFINITION 1.4. — Let n be a positive integer and let f:(X,M) — (Y ,N) be
a morphism of fine log schemes over Z/p™Z.

1) We say that a pair of a set (by)xea of elements of I'(X,0x) and a chart
(Px — M,Qy — N,Q — P) of fis a p-basis of (X,M) over (Y ,N) (or of f) if
the kernel and the torsion part of the cokernel of Q8P — P®P are finite groups
of orders prime to p, and the morphism X — Y Xgpec(zjq)) SPec(Z[P][T]xen)
defined by the chart and T — b, is relatively perfect.

2) We say that (X, M) has p-bases over (Y ,N) locally (or f has p-bases locally)
if (X,M) has p-bases over (Y,N) étale locally on X and on Y.

By the criterion [Ka2, Thm. 3.5] of log smooth morphisms, we obtain the
following:

LEMMA 1.5. — Let n be a positive integer and let f:(X,M) — (Y,N) be a
morphism of fine log schemes over Z/p™Z. Then f has p-bases locally if and only
if, €tale locally on X, there exists a factorization

(X,M) —L (X', M) == (Y ,N)
of f such that h is smooth, g* M' =2 M and X — X' has p-bases (Def. 1.2).

Especially smooth morphisms of fine log schemes have p-bases locally.

ProposiTiON 1.6. — Let n be a positive integer.

1) Let f:(X,M) — (Y,N) and g:(Y',N’) — (Y ,N) be morphisms of fine
log schemes over Z/p"Z and let f':(X',M') — (Y’ ,N’) be the base change of f
by g in the category of fine log schemes. If f has p-bases locally, then f’ also has
p-bases locally.

2) Let f:(X,M) — (Y,N), g:(Y,N) — (Z,L) be morphisms of fine log
schemes over Z/p™Z. If f and g have p-bases locally, then go f also has p-bases
locally.

Proof. — (1) follows from Lemma 1.5. Let us prove 2). We may assume
that g has a p-basis (bx)xer, {P2y — N,Piz — L,Pi — P}. Then, by
Lemma 1.5 and [Ka2, Thm. 3.5], étale locally on X, f has a p-basis (c,)uenm,
{Ps,x - M,P,y — N,P, — P3} with the same chart P,y — N of N. Now
(bxa)aea U (cu)pem and {P3 x — M, P, z — L, P, — P, — P3} form a p-basis
of the composite g o f.

ExaMpLE 1.7. — 1) Let W be a complete discrete valuation ring such that p is
a uniformizer of W. Let (bx)xeca be a p-basis of the residue field k over Fy,, that
is, [Thea bf()‘) for functions A: A — {0,1,...,p — 1} with finite supports, form a
basis of k over kP. (Such a p-basis always exists [EGA IV, Chap. 0, Thm. 21.4.2].)
Then a lifting (by)xea of (ba)aeca forms a p-basis of W/p"W over Z/p"Z. This
follows from Proposition 1.3.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



534 T. TSUJI

2) Let W be as above and let (X, M) be a smooth fine log scheme over
Spec(W/p"W) with the trivial log structure. Then (X, M) has p-bases over
Z/p™Z locally. Indeed, étale locally on X, there exists a chart Px — M such
that the induced morphism X — Spec(W/p"W|P]) is étale, and this chart and
the p-basis (bx)aca in (1) obviously give a p-basis of(X, M) over Z/p"Z.

We can generalize [Ka5, Lemma 1.8] on PD-envelopes to fine log schemes as
follows:

ProprosiTioN 1.8. — Let n be a positive integer, let (S,L) be a fine log
scheme over Z/p"Z and let (I,v) be a quasi-coherent PD-ideal of Og. Let
i:(X,M) — (Y,N) and i':(X,M) — (Y',N') be two closed immersions of fine
log schemes over (S,L) with the same source, and let f:(Y',N') — (Y ,N) be
an (S,L)-morphism with a p-basis (bx)rea, (Py» — N',Py — N ,h:P — P’)
such that foi' = 1. Let (cu)uem be a finite set of elements of P' whose image in
((P")8p /heP(PEP))QF), forms a basis, and suppose that there exist x5 € T'(Y ,0y)
and y, € I'(Y,N) whose images in I'(X,0x) and I'(X,M) coincide with the
images of by and c,. (Such sections always exist étale locally on Y.) Choose
such xy and y,. Assume that v extends to X. Let (D,Mp) and (D',Mp/) be
the PD-envelopes compatible with ~y (resp. the m-th infinitesimal neighbourhood
[Ka2, Rem. 5.8]) of (X,M) in (Y ,N) and in (Y',N’) respectively. Let u,, be the
unique section of Ker (O, — O%) such that ¢, = f*(y,) - uy in Mpr. Then, we
have an Op-PD-isomorphism (resp. Op-isomorphism)

Op(Tx,Su)ren,uem — Opry,  Tx,S, — by — f*(zx),u, — 1.

(7”6517- OD[T/\aSu])\EA,uEM/(JD : O[TA,S;L])\EA,HEM + (TA,Su))m o Op).

Proof. — In the case f*N = N’, A = (), h = id, we can easily reduce to the
case ¢ and i’ are exact closed immersions and then prove the claim in the same
way as in [Ka5, §1]. Hence we may assume that the morphism

Y' —Y Xgpee(z(P)) Spec(Z[P'][TA],\eA)

defined by the chart and T, — by is an isomorphism. Let z be any point
of X and let @ (resp.Q’) be the inverse image of Mz under the morphism
PeP — NEP — MEP (resp. (P')8P — (N.)8P — MEP). Then, there exists an étale
neighbourhood U — X of z such that Q@ — Mz and Q' — M; are extended
to charts (8: Qu — MIU’PY — N,P C Q) and (6": Qy — MlU,P{/, — N,
P’ C Q') respectively such that the composite

hgp ,

Qu ‘—LQ—’ Qy LM lu

coincides with 8. By shrinking U if necessary, we can choose an étale lifting
V =Y of U — X. Replacing (Y, N) and (Y’, N') by (V,va) and (V’,N’lv,)
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ON p-ADIC NEARBY CYCLES OF LOG SMOOTH FAMILIES 535

where V! =Y’ xy V, we may assume U = X. Furthermore, by replacing (Y, N)
(resp. (Y',N')) by Y Xgpec(zip)) Spec(Z[Q]) (resp. Y’ Xgpec(zipr)) Spec(Z[Q']))
endowed with the log structure defined by Q (resp. Q'), we may assume that i and
i/ are exact closed immersions and f*N = N’. In a Zariski open neighbourhood
of X in Y, we can choose sections v, € Oy, such that

¢u=f"(Yu) vy in N and dv, =v,- dlogc,
form a basis of 2}, /Y[Ta]ca- Hence the morphism
Y' — Y Xspec(zy SPeC(Z[Th, S,])

defined by Ty +— by, S, +— v, — 1 is étale. Thus we are further reduced to the
case P = P’. Now, in the second case, the claim is trivial. In the first case, we can
prove the isomorphism by verifying that the left hand side of the homomorphism
in question satisfies the universal property required for the right hand side. []

CoROLLARY 1.9. — Under the same notation as Proposition 1.8,

Qv (log(N'/N))

is a free Oy -module with a basis {dby}rea U {dlogc,}puem-
Proof.— Let (D, Mp) be the first infinitesimal neighbourhood of the diagonal

immersion A:(Y',N') — (Y', N') x(y,ny (Y', N'). Then, for the ideal Jp of Op
defining Y’, we have an isomorphism:

Jp = Qyy (log(N'/N)),
p5(z) — pi(2), P5(y)pi(y) ' — 1+— dx,dlog(y) (z € Oyr,y € N').

(See [Ka2, Rem. 5.8].) Hence the claim follows from Proposition 1.8 with i =
id(y/7N/), i = A and f =p1. D

CoOROLLARY 1.10 (¢f. [Ber-O, 6.4]).— Let n be a positive integer, let (S,L) be a
fine log scheme over Z/p™Z and let (I,7) be a quasi-coherent PD-ideal of Og. Let
(X,M) be a fine log scheme over (S,L) and let i be an (S,L)-closed immersion
of (X,M) into a fine log scheme (Y ,N) having p-bases over (S,L) locally.
Assume that v extends to X and let (D,Mp) be the PD-envelope of (X,M)
in (Y,N) compatible with v. Then there exists a canonical derivation d:Op —
Op Ry Q%,/S(log(N/L)) over S compatible with d: Oy — Q%,/S(log(N/L)) and
a canonical homomorphism dlog : ME — Op ®o, Qy,(log(N/L)) compatible
with dlog : N8 — Q%,/S(log(N /L)) characterized by the following properties:
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536 T. TSUJI

1) d is an integrable connection with log poles on Op as an Oy -module.
2) d(zl™) = zm=1 . dzx for x € Jp and m > 1.
3) dlog(u) = u~ldu for u € O3,

Proof.— We only give a construction of the homomorphisms. Let (D(1), Mp(1))
be the PD-envelope of (i,%):(X, M) — (Y,N) x(g,1) (Y, N) compatible with
v and let (P!, Mp1) be the first infinitesimal neighbourhood of the diagonal
immersion (Y, N) — (Y, N) x(g,z) (Y, N). Let Jp) be the ideal of Op () defi-
ning the exact closed immersion (D,Mp) — (D(1), Mp(;)) induced by the
diagonal immersion (Y,N) — (Y,N) x(g,1) (Y, N). Then, by Proposition 1.8
and the isomorphism in the proof of Corollary 1.9, the canonical morphism
Spec(OD(l)/J[g](l)) — P! induces an isomorphism

Op ®oy Qys(log(N/L)) = JD(l)/J[g](l))
1® dz,1® dlog(y) — p3(z) — pi(2), ps(W)pi(y) ' =1 (z € Oy,y € N).

We define d:Op — JD(l)/ D(l)

d(x) = py(z) — pi(z)

and dlog: M§ — JD(1)/ D(l)

dlog(y) = p5()pi(y) ' — 1. [

CoroLLARY 1.11. — Let n, (S,L) and (I,7) be the same as Corollary 1.10
and consider a commutative diagram

(XI,MI) _Z_> (YI,NI)

A

of fine log schemes over (S,L) such that X' — X is étale, f*M = M’', vy extends
to X, i and i’ are closed immersions, and (Y ,N) and (Y',N') have p-bases over
(S,L) locally. Let (D,Mp) and (D',Mp:) denote the PD-envelopes of i and &'
compatible with . Then the natural homomorphism of complezes:

(J][;_'] ®0y Q;//S(IOg(N/L)))I , — J[ ®(9y, Q3 /S(IOg(N /L))

s a quasi-isomorphism for any r > 0.
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ON p-ADIC NEARBY CYCLES OF LOG SMOOTH FAMILIES 537

Proof. — By considering the graph (g,id): (Y', N') — (Y, N) x(s,) (Y', N') of
the morphism g, we are reduced to the case g has p-bases locally. By the proof
of Proposition 1.6, 2) and Corollary 1.9, we have an exact sequence

0 — g*Qy/5(log(N/L)) — Qy. /5 (log(N'/L)) — Q3. y (log(N'/N)) — 0.

We may assume that g has a p-basis (bx)aea, (Pyr = N, Py — N,h: P — P’).
Choose a set {c¢,}em of elements of P’ whose image in ((P’)8P/h8P(P®P)) @ IF,
forms a basis. By taking an étale lifting Y — Y of X’ — X Zariski locally on
X’ and considering the fiber product of (Y", N |Y,,) and (Y',N’) over (Y,N),

we are reduced to the case X = X’. Then we may further assume that there
exist liftings zx € I'(Y,Oy) and y,, € I'(Y,N) of the images of by and ¢, in
I'(X,0x) and I'(X, M). Choose such z and y,, and let u, be the element of
I'(D’,1+Jp/) such that ¢, = ¢*(y,) -u, in I'(D’, Mp/). Then, by Proposition 1.8
and Corollary 1.9, Op/ is a PD-polynomial ring over Op with indeterminates
by — g*(zx), uy — 1, and

d(bx — g*(z)) =dbs, d(uu —1) = u, - dlogey
form a basis of Op ®o, Q%/,/y(log(Nl/N))- Set
{ti}ier := {bx — g"(2x) } U {u, — 1},
Fre = J5 " eo,, Q515 (log(N'/L)),
C?° := Op ®o,, Q*sz/s (log(N/L)),

q
Frett = 15" ®o,, N Op - dt) (< FTCY),
i€l
FrQa9 .— (a0 ®o., FT~n 092
D’ :
Then we have

Frol = @ Frome, qu(FTC‘Il,q2) c Frontlae @Frcm,qﬁl'
q1+92=q

We define d7"'** and diy? by the formula
B0) = 4 (o) + ),

where w € FTC®9%2, dP%(w) € FTC1+L%2 and d¥%?(w) € FrC%-%2+1 Then
(FTC**,dy,dry) forms a double complex whose associated simple complex is
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538 T. TSUJI

FTC* and the morphism in question factors through the complex (F"C*?°, d}’o).
Hence it suffices to prove that e: Jl[;_(ﬂ ®oy Q;’,/S(log(N/L)) — F"C?* is a
resolution. Since

FrC?* = (Op ®oy O, /5(l0g(N/L))) ®0, FT=9C*",

we may assume q = 0. Give a linear order on the index set I, and define the
homomorphisms k%: F7C%0 — [DT] and k9: FTC%1 — FrC%9~! (¢ > 1) by

K (aJT A2 = { a ifn=0,

0 otherwise,
(n:I — N finite support, a € Jg_m”), and

‘ a1, 2O g, AL A,
k9 (aHtEH(m cdbi, AN dtiq> = if n(é) = 0 for all 4 < 4y,
: 0 otherwise,
(n:I — N, finite support, a € J,[;"‘q"’—’”, iy € 1,4 < iy < -+ < iq). Then

K% = 1, ek® + k'd = 1 and dk? + k97'd = 1 (¢ > 1). This completes the
proof. |[]

2. Syntomic complexes

In this section, we say that an inductive system of fine log schemes
{(Xn, Mp)}n>1 over Z/p™Z is adic if the homomorphisms

(Xn, My) — (Xnq1, Myy1) ®zpni1z Z/p"Z
are isomorphisms for all n > 1. A morphism
u={u,}: {(XmMn)} - {(YmNn)}
of adic inductive systems of fine log schemes over Z/p"Z is a set of morphisms
Up: (Xn, Mp) — (Yo, M) such that the reduction mod p™ of u,y; coincides

with u,, for eachn > 1. We say that  is a closed immersion, smooth,. . . if each u,,
is a closed immersion, smooth, ...

We will define the syntomic complexes
Sn(r)x,m) € DT (X160, Z/p"Z) (r <p-—1)
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for a fine log scheme (X, M) over Z,) having the following property (cf. [Ka5, §2]):

Etale locally on X, there exists a closed immersion of {(X,,M,)} into an
adic inductive system of fine log schemes {(Z,, Mz, )} over Z/p"Z such that
(Zn, Mz,) has p-bases over Z/p™Z locally for every n > 1, which satisfies the
following condition:

2.1. — If we denote by (D,,, Mp, ) the PD-envelope of (X,,, M,) in (Z,, Mz,)
compatible with the canonical PD-structure on pZ/p"Z for n > 1, then J g]n is
flat over Z/p"Z and g QLIp"Z = Jl[)i]n forn>1,4>0.

Dnt1

LemMA 2.2 (cf [Ka5, Lemma 2.1]). — Let (X,M) be a fine log scheme
over Ly and let {(Xn,Myn)} — {(Zn,Mz,)} be an ezact closed immersion
of adic inductive systems of fine log schemes over Z/p"Z such that (Z,,Mz)
has p-bases over Z/p™Z locally for everyn > 1. If

o Zy, is locally noetherian for n > 1;

o X is flat over Zp);

e and for any x € X1, n > 1, Ker (Ogz, o — Ox, z) is generated by an

Oy, z-reqular sequence;

then the condition 2.1 is satisfied.

Proof. — The same as the proof of [Kal, I, Lemma 1.3, 2]. []

LemMma 2.3 (cf [Kab, Lemma 2.2]). — Let (X,M) be a fine log scheme
over Zp), and let

{in}:{(XnaMn)} — {(ZnaMZn)}v {Z:L}{(Xn,Mn)} - {(Z;L’MZ;‘)}

be closed immersions of adic inductive systems of fine log schemes over Z/p™Z
such that (Z,,Mz,) and (Z],,Mz:) have p-bases over Z/p"Z locally for every
n > 1. Then {in} satisfies the condition 2.1 if and only if {i,,} satisfies it.

Proof.— The same as [Ka5, Lemma 2.2] using Proposition 1.8 instead of [Ka5,
Lemma 1.8]. []

Now let us define the syntomic complex. We follow faithfully the construction
in [Ka3, §5]. Let (X, M) be a fine log scheme over Z,) having the property
in the beginning of this section. Choose a hypercovering X* — X in the étale
topology and a closed immersion of {(X, M)} into an adic inductive system of
simplicial fine log schemes {(Zy,, Mzs)} over Z/p"Z with a lifting of Frobenius

{Fz}:{(25, Mz;) } — {(Z7, Mz)}

such that (Z},Mz») has p-bases over Z/p"Z locally for any n > 1 and
v > 0. Here M* denotes the inverse image of M on X°. Let (D}, Mp.) be
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the PD-envelope of (X};, M) in (Z}, Mz») compatible with the canonical PD-
structure on pZ/p"Z and let Jp» be the PD-ideal of Op. defining X,. Since
(Dy,, Mpy) is also the PD-envelope of (X{, MY) in (Z;,, Mzv), Fz» induces a
lifting of Frobenius Fp» of (Dy,, Mp). Since the closed immersion X7 — X/
(resp. XY — DY) is a nilimmersion, we regard sheaves on (XY)s (resp. (DY )st)
as sheaves on (X7¥)¢;. Let

(P:OD; = F;;(OD;) i OD;

denote the homomorphism induced by Fp» . Then we have <p(Jg]u ) Cp"Opy (0<
r <p—1) (see [Kal, I, Lemma 1.3, (1)]). On the other hand, b; the assumption
on (X, M) and Lemma 2.3, ng is flat over Z/p™Z and Jg], ®Z/p"Z = Jg],
for every n > 1 and r > 0. Hgnce, for0 <r<p-1, thgé exists a uniqu:s
homomorphism ¢,.:J [DT];L — Opy which makes the following diagram commute:

[r] b
E— v
JD;+T Opy,,

| L

g T op.

For an integer r < 0, we set

J[Eg,b =0px, @r=p "p.
Set
qu; = qu;; (log(Mzy))
to simplify the notation. Let ¢ also denote the homomorphism
Opy ®Oz;; qu; — Opy @0z w%;;

induced by Fz» and Fpy. Then ¢(Opr ®o,, wh.) C p'Opr ®o,, wh.. By
Corollary 1.9, Opv ®o,, w%, is flat over Z/p"Z, and hence we can define

vq:Opy ®0 w%,", — Opy R0y w%z
in the same way as ¢, for J [5,], above. Now, for an integer r < p — 1, we have a
morphism of complexes

ng:J,[;;“] ®0,e Wze — Obs Q0,4 wis
on the étale site (X7)s of the simplicial scheme X7 whose degree g-part is
Pr—q ® pq. We define Sp(1)(xe M+, (2%, M,e) t0 be the mapping fiber of

1-— (pr:J[DT;_.] ®Oz; LU.Z; — OD; ®oz; w.Z;'
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LEMMA 2.4 (cf. [Kal, I, Thm. 3.6]). —H(Sn(r)(xe, M), (22, Mpe)) = 0 for any
integers q > r.

Proof. — By the flatness of ng RO 4w w%.,, we are reduced to the case n = 1.

If n =1, ¢, is 0 in degree > r. Hence it remains to prove that
1-— QOT-:ZT(OD;' ®w‘Zi,) — 'HT(Opz ® w’Zi,)

is surjective when r > 0. Since ¢,(Opy @ wzv) C Z"(Opy ® wyy), it suffices to
prove that

1- (pT:OD;' ®w5f — (OD; ®w%i/)/BT(OD'f ®w.Zi')
is surjective. Since for a; € M zv,
or(dloga; A ... ANdloga,) =dlogaj A ... Adloga, mod BT(OD-II ®w'Zlu)

(cf.[T1, Lemma 7.1.4]), this follows from the surjectivity of 1 — ¢:Opr — Opv.
Note that we work on the étale site (X¥)er =2 (DY)st. [

For any non-decreasing map s:{0,1,...,v} — {0,1,...,u} the canoni-
cal morphism $7'Sp(r)(xv,Mv),(2v,Mzv) — Sn(T)(xm,Mu),(z0 My IS & quasi-
isomorphism by Corollary 1.11, where s denotes the morphism X! — XV cor-
responding to s. Hence S, (r)(X.7M.),(Z.,MZ,) is contained in the essential image
of the fully faithful functor

LY0*:D* (X 4, Z/p" L) — DT (X} 4, Z/p"Z),

where 6 denotes the canonical morphism of topoi (X31)Z; — X1.¢ (see [SD, Thm.
2.4.12, Cor. 3.3.5, Prop. 4.3.3]). We define the syntomic complex S, (r)(x,a) to
be the corresponding object

Re* (STL(T)(X',M'),(Z',MZ.))
of D (X} 40, Z/p"Z).

If we choose another X', {(X/*, M}*)} — {(Z,, Mz:+)} and {F3z:.}, then by
taking the fiber products

X”' =X Xx XI., (ZZ’,Mzg-) = (Z;zv MZ;) Xz/an (Z;:,MZ#),
Fzgo = FZ; X sz
and using Corollary 1.11, we obtain canonical quasi-isomorphisms
PI”_1 Sn('r)(X',M‘),(Z',MZ.) I Sn("')(X”‘,M”'),(Z”‘,Mzu.)a
(pr/)‘1Sn(r)(xf.’M/.)v(Z/.7MZ,,) — Sn(r)(xllo’Mllo)’(ZIl.vMZ”.)
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and hence a canonical quasi-isomorphism

RO, (Sn(7)(x0,m0),(2%,Mye)) — ROY(Sn(r)(xrre mrre), (278 Myie))
<L ROL (Sn(r)(X",M"),(Z",MZ/.))’

where pr, pr’, 8’ and 0” denote the canonical morphisms of topoi

(X1")a — (XDe, (X)a — (X1a,
(X1e — XDz, (X{)a — (Xa
This quasi-isomorphism satisfies the transitivity, and hence S,(r)(x ) is inde-

pendent of the choice of X*, {(X;, M)} — {(Z5,Mzs)} and {Fze} up to
canonical isomorphisms.

For another fine log scheme (X', M’) over Z, having the property in the
beginning of this section and a morphism f:(X',M’) — (X,M), we can
construct X'* — X', {(X;*,M]*)} — {(Z,2,Mz:)}, {Fz:}, a morphism
g*:(X*,M*) — (X'*,M'") covering f, and a morphism {(Z;,Mzs)} —
{(Z}2,Mz;+)} compatible with the closed immersions and the liftings of Fro-
benii. Then, we have a natural morphism

(g;)_l‘gN(r)(X‘,M‘),(Z‘,MZ.) —_— Sn(r)(xf.,M,.)’(Z,.,Mz,.)

and hence
Lfflsn(r)(X,M) e Sn(r)(X/,M')*

We can verify that this morphism is independent of all choices.

We can define a product
Sn(r)(xo,M#) (20, Mze) ® Su(r") (x0 M), (20 Mye) — Sn(T+1")(x0 Mo (20, M)
for any 0 < r,7’,r + 71’ < p—1 and a symbol map
(M, )8 <& 1+ Jps,, — M%EH] — Sn(1)(x+,Mm%),(z%, M) (1]

in the same way as [T2, §2.2] (¢f [Kal, I, §§2-3]). We can also define a
homomorphism

pipn (Oxs) — HO(Sn(1)(xe,00),(2,Mze))
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by € > log(£7"), where ¢ denotes a lifting of ¢ in Ops . By taking Rf,, we obtain

(2.5) Sn(r)(X,M) L Sn(rl)(X,M) — Sn(r + rl)(XwM)
O<rr,r+1r" <p-1),
(2.6) Mfil — Sn(L)x,m) (1],

@2.7) o (0x,) — Su(1) x,00)-

For (2.5), note Sn(r)x,m) € D°(Xi14,Z/p"Z) by Lemma 2.4 and L§* is
compatible with ®.

These structures are independent of the choice of X°, {(X;, M)} —
{(Z3,Mzs)}, {Fzs} and functorial on (X, M).

If there exist a closed immersion {(X,,M,)} — {(Z.,Mz,)} and {Fz,}
globally, then the syntomic complex S,(7)(x,m),(z,Mm5) (r < p — 1) is defined in
the same way as Sy, (7)(x+,ae),(z¢,M,.) @above and it is canonically isomorphic to
Sn(r)(x,m) in DT (Xy ¢, Z/p"Z). The isomorphisms are also compatible with the
product structures, the symbol maps and the homomorphisms from g, (Ox,, ).

Now let us return to the situation in the Introduction, and let K, k, Ok,
(S,N), (X, M), Xiriv, (Y,My), i, j and £,(r)(x,m) be as in the Introduction.
Then (X, M) have the property in the beginning of this section. Indeed, for W as
in the Notation, (S, N) and hence (X, M) are syntomic over Spec(W) with the
trivial log structure (see [Ka3, 2.5]). Therefore, by Lemma 2.2, the condition 2.1 is
satisfied for any closed immersion of {(X,,, M)} into an adic inductive system of
smooth fine log schemes {(Z,,, Mz, )} over Spec(W/p"W). Note that (Z,, Mz,)
has p-bases over Z/p"Z locally (Example 1.7). We will construct a canonical
morphism in DY (Y, Z/p"Z):

(2.8) Sn(m)(x,m) — En(r)(x,M)

for 0 < r < p — 2 compatible with the product structures and functorial on X.
Since the construction is essentially the same as [T2, §3.1], we only give an
outline referring the readers to [T2] for details.

First, in [T2, §1.5], we did not use the fact that the residue field k is
perfect. Hence, for an affine étale X-scheme U = Spec(A) with the log structure
My =M lu satisfying [T2] Condition 1.5.2, if we choose an algebraic closure

Frac(Ah) of the field of fractions Frac(A") of the p-adic henselization A" of A,
we obtain an (U, My)-fine log scheme (U, M) with an action of Gal(AR/AM),
a Galois equivariant PD-thickening of (U, M) into a fine log scheme (D, M)
over Z, with an action of Gal(A"/A"), where AP is the integral closure of A" in
the maximal unramified extension of

UL, = Spec(AL,,) := Xy x x Spec(A™).

triv
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(D,M 55) also has a canonical lifting of Frobenius F'5. We have

3

Acrys(A") = T(D, 0p), Fil” Agys(AF) = T(D, Jt

])A

|

S]

for r > 0 and an exact sequence
(2.9) 0 = Zp(r) — Fil" Agrys(AF) 2225 Aqys(AR) — 0

for 0 < r < p—2. Here J5 denotes the PD-ideal of O defining U and " denotes
the p-adic completion.

Choose X* — X, {(X;, M)} — {(Z;,Mzs)} and {Fzs } as in the definition
of Sp(r)(x,m)- For v > 0 and an étale scheme U — XV satisfying [T2,
Cond. 1.5.2], let (E%, Mg,) be the PD-envelope of ((_jn’Ml_/n) in

(ZZaMzz) i= (D, M55 ) Xzpnz (23, Mzy)

compatible with the PD-structure on J5 +pOp . (Note that we used the fiber
product over W,, and not over Z/p"Z in ["’,[‘2 §3. lT Then the liftings of Frobenii
F—n and Fzv induce a lifting of Frobenius F'z, on (E” Mz V) and the action

of Gal(Ak/A") on (D, M, ) induces an action of Gal(AR/AM) on (EY%, M5 v)-
Let Jgz, denote the PD-ideal of O By defining U,,. By Corollary 1.11, we have a
resolution

J}.)_] —_— J[ @0, . . 5, (log(Mgz, /M) gﬂ" 1 ®0,, Wiy

For an integer 0 < r < p — 1, we define the complex S, (r YU, My),(2¥,Mzv) With
an action of Gal(A"/A") to be the mapping fiber of

1 — QDT.F(E:L J[T .] ®0Zy UJZu) B F(En’OEV ®OZV wZV)
where ¢, is defined in the same way as the definition of S,,(7)(x« ame),(z¢,Mze)-
We regard S, (r)w,my),(zv,Mzv) 8 a complex of sheaves on (UL, )et. Then,
by (2.9), for an integer 0 < r < p — 2, we have a canonical resolution
Z[p"Z(r) — g"(r)(U,MU)v(ZUvMZV)
on (UM )e. On the other hand, there exists a natural homomorphism
(U7Z*S (T)(X" Mv),(Zv, Mzu)) - F(Utrlvvgﬂ(r)(UyMU)y(ZuvMZ"))’
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where i* denotes the morphism X°* ®o, k — X°*. We can define a product
structure on the complex é_‘n(r)(U, My),(Z¥,Mzv) iD the same way as that on
Sn(r)(xe,M*),(2*,M,.) and the above two morphisms are compatible with the
product structures.

Choose a sufficiently large algebraically closed field €2 of characteristic 0 and
denote by C* the Godement resolution with respect to all Q2-rational points. We
define Fy,(r)(xv,mv),(zv,Mzv) (t€SDP. Gn(T)(xv Mv),(zv,M4v)) tO De the complex of
sheaves on X, associated to the complexes of presheaves

\ L(Ufiy s tot C*(Sn(r)(w,mu), (27, Mav))) if Uy # 0,
U+— (reSp. F(Ut}iivv C* (Z/p"Z(’l")Xtm)|U:z_ ))
0 if Uy =0,
where U ranges over all affine étale X”-schemes satisfying [T2, Cond. 1.5.2] and

all étale X} -schemes. Then, as in [T2, §3.1], we have the following morphisms
of complexes of sheaves on (Xg)™:

i3S (1) (x0, M),z Mze) — Fn(T)(xe M), (22, Mye)
(1)
— Gn(r)(X',M‘),(Z',Mz-)
— 070" . " (Z/P" (1) X1, )
for 0 < r < p— 2, where 6 denotes the canonical morphism of topoi (Xg,)~ —
(X¢)” and (1) is a quasi-isomorphism. Taking R6,., we obtain the required

morphism (2.8). This is independent of the choice of X*, {(X;, M)} —
{(Zy,Mzs)}, {Fzs}, and functorial on (X, M) and (S, N).

We can also prove the following compatibility with the symbol maps in the
same way as in [T2, §3.2]. We have M® = j, 0%  and, from the Kummer
sequence, we obtain a morphism

(2.10) UM =i Ok, — Ea(l)x (1)
ProposiTION 2.11. — If p > 3, then the following diagram is commutative

o (20
MEE ) ——— Sn(1)(x,m)[1]

o
(2.10)

PTMEP ——— £,(1)(x,m[1]

for any integer n > 1.

By the same argument as [T2, Lemma 4.9.1], we obtain the following lemma:
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LEMMA 2.12. — The following diagram ts commutative:
(2.7)
ppn (Ox,,) —— H(Sn(1)(x, 1))

N
PG LI (L),

Finally let us consider the base change to an algebraic closure of K. Assume
that (X, M) is universally saturated over (S, N), which is equivalent to assuming
that the special fiber Y is reduced (see [T3]). Let K, O, X, 7 and 7 be as in the
Introduction. Then, by the same method as in the end of [T2, §2.1] (see also [Kal,
I, Rem. 1.7]), we can define the syntomic complex Sy (r) % 77, (r <p-1,n=>1)
of the base change of (X, M) to O as the “inductive limit” of the syntomic
complexes for all finite base changes of (X, M). By the same method as in
[T2, §3.1], we can define a morphism

(2.13) Su(r)x 1) — UV RRZ/p"L(r)

for 0 <r <p-—2,n>1 as the “inductive limit” of the morphisms (2.8) for all
finite base changes of (X, M).

3. Log blowing ups

In this section, we study the behavior of the syntomic complex under log
blowing ups.

For a ring R and a monoid P, we call the log structure on Spec(R[P])
associated to the inclusion P — R[P] the canonical log structure and we often
denote it by canlog.

Let P be a torsion free finitely generated saturated monoid and let (Z, Mz)
denote the scheme Spec(W[P]) endowed with the canonical log structure. Then,
we can associate to each proper subdivision f: F' — Spec(P) (¢f. [Kad, Def. 9.7]),
a log étale morphism of fs log schemes f:(Z',Mz) — (Z,Mz) (cf [Ka4,
Prop. 9.9]) which satisfies the following properties:

The underlying morphism of schemes of f is proper and surjective (cf. [Ka4,
Prop. 9.11]). Let Zi,;, denote the open affine subscheme Spec(W[P8P]) of Z.
Note that Zy., is the maximal open subset of Z on which the log structure Mz
is trivial. Then, Z,, := f~'(Zuiv) is the maximal open subset of Z’ on which
the log structure Mz is trivial, and the morphism f induces an isomorphism

Z| s — Zriv. Finally, the canonical morphism
(3.1) Oz, — Rf1.0z

is an isomorphism (see [Ka4, Thm. 11.3], [KKMS, Chap. I, §3, Cor. 1]).
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For each open affine subfan Spec(Q) C F, we have the corresponding
open fs log subscheme (Spec(W[Q]), canlog) C (Z’, Mz/). Indeed, (Z',Mz/) is
constructed by gluing these (Spec(W[Q)), canlog)’s. For a monoid @, we call the
morphism

F': (Spec(W[Q]), canlog) — (Spec(W[Q)]), canlog)

induced by 0: W — W and the multiplication by p on @, the canonical lifting of
Frobenius of (Spec(W[Q]), canlog). By gluing the canonical lifting of Frobenius
of (Spec(W[Q)), canlog) for each open affine subfan Spec(Q) C F, we obtain a
lifting of Frobenius F':(Z', Mz/) — (Z', Mz}, which we call the canonical lifting
of Frobenius of (Z', Mz).

Suppose that we are given an injective morphism of monoids A:N — P such
that the torsion part of the cokernel of h&P is of order prime to p, and we regard
(Z,Mz) (resp. (Spec(Zy)[P]),canlog)) as a smooth fs log scheme over (V, My )
(resp. (Spec(Zy)[N]), canlog)) by the morphism induced by h. Let

fx: (X', M') — (X, M)
be the base change of the log étale morphism
(ZI,MZ/) — (Spec(Z,)[P]), canlog)

associated to f: F — Spec(P) (cf.[Kad, Prop. 9.9]) by the morphism (S, N) —
(Spec(Z(y)[N]), canlog) defined by N — TI'(S, N);1 + w. We have an inductive
system of cartesian diagrams

fxn

(X;UML) — (Xn’Mn) D (SnaNn)

Loy Lo

(ZL,,Mz) ——— (Zn,Mz,) —— (Vo,My,)

for n > 1. Let g be the reduction mod 7 of fx.

LEMMA 3.2. — Let the notation and the assumption be as above.

1) For any integers n > 1 and r < p — 2, the canonical morphism

Sn(r)(x,my) — R (Sn(r)(x, M)

is an isomorphism.

2) For any integers n > 1 and r, the canonical morphism

gn(r)(X,M) — Rgy (Sn(r)(X’,M’))

s an isomorphism.
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Proof.— The claim (2) easily follows from the facts that the restriction of f to
the maximal open subsets of X and X’ on which the log. structures are trivial, is
an isomorphism, and that the underlying morphism of scheme of f is proper. We
prove 1). The claim is reduced to the case n = 1 by the commutative diagram:

", 11

Sn1(r)x ——— Salr)x ——— Si(r)x ——— Sp1(r)x]1]

L | |

Rg*Sn—l(T)X’ —_— Rg*sn('r)X' — Rg*sl(r)X’ — Rg*Sn—l('r)X'[l]’

where we abbreviate (X, M) (resp. (X', M")) to X (resp. X'). Using the canonical
lifting of Frobenius of (Z, Mz) (resp.(Z’,Mz')), we obtain a representation

S1(r)(x,m),(2,M7) (resp. S1(r)(x/,m7),(2, M) Of S1(7) (x,01) (resp. S1(r)(x7,m1))-
Since for s < p—2,

1
(Ps| -1 = p¥ s4.01)—1 =0,
JD1

S1(7)(x,M),(z,M5) 18 quasi-isomorphic to the mapping fiber of

L— oI5 IE Y @0, wy, — Op, /TB Y @0y, wy,.

The same assertion is true for S1(r)(x/,m),(z7,m,,)- Hence it suffices to prove

that
IEIET @o,, wh, — Re.(J51/IEY @0, wh)

z wZ;
are isomorphisms for ¢ > 0 and s = 0, 7 — q. We have isomorphisms
Ox, = 0z, /T°Oz, = J5 JIET 10 (1)) (s> 0
X1 Zl/ Z, — Dl/ D, H( ) ('S_ )1
Ox; = 0z /T Oz =I5} [I5H 1 (1)) (5> 0),
qu; = fl*qul’
where e is the absolute ramification index of K. On the other hand, since Z; and

Z are flat over Vi, T is a non-zero divisor in Oz, and Og;. Hence, from (3.1),
we obtain

Oz, /T°Oz, — Rg.(Oz;[TOg,).

We can derive easily the required isomorphisms from these facts. []

We use the following proper subdivisions in the proof of the main theo-
rem (85).
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THEOREM 3.3 (see [KKMS, Chap.I, Thm. 11]). — Let P be a torsion free
finitely generated saturated monoid. Then, there exists a proper subdivision
f:F — Spec(P) such that, locally on F, f is of the form Spec(Q) — Spec(P)
for a submonoid Q of P8P containing P and isomorphic to N" @ Z° for some
integers v > 0 and s > 0.

LEMMA 3.4. — Let d be an integer > 2 and put P = P, = P, = N%. Let
F be the fan obtained by gluing the two fans Spec(Py) and Spec(Ps) wvia the
isomorphism of affine open subfans

Spec(S; ' Py) = Spec(N @ Z @ N%~2) = Spec(Z & N @ N?~2) = Spec(S; ' P2),

where S = {(0,n,0,...,0) | n € N}, So = {(n,0,0,...,0) | n € N}, and the
middle isomorphism is the one defined by

NeZeNI227¢NgeNI—2

(n1,n2,n3, ...,nq) — (—ng2 + ni,n1,n3, ... ,ng).

Let hy: P — Py (resp. ha: P — Py) be the morphism which sends (ny,ng, ... ,nq)
to (n1 + na,n2,n3,...,n4) (resp. (n1,n2 +n1,n3,...,nq4)). Let f: F — Spec(P)
be the morphism obtained by gluing Spec(h1) and Spec(hz). Then f is a proper
subdivision of Spec(P).

Proof. — This follows from the fact h$® and h§P are isomorphisms, and,

for any ¢ € Hom(P®P,Z), (P) C N if and only if ¢ o (h§?)~1(P) C N or
po(h?) H(R)CN. [

The étale morphism (Z’, Mz/) — (Spec(W[N?]), canlog) associated to f: F —
Spec(P) in Lemma 3.4 is the blowing up along the intersection of the two
hyperplanes 77 = 0 and 75 = 0 endowed with the log structure defined by
the inverse image of of the union of the hyperplanes T; = 0 (1 < i < d), which
is a divisor with normal crossings on Z’. Here T; denotes the image in W[N¢9] of
the element of N% whose i-th component is 1 and other component is 0.

4. Preliminary Theorem

Let (X,M) be a smooth fs log scheme over (S,N). By Lemma 2.4, the
morphism (2.8) induces a morphism in D (Y, Z/p"Z)

(41) Sn("‘)(X,M) — TSTgn(T)(X,M)

forn>1land0<r<p-2.

In this section, we will prove the following special case of our main theorem:
Theorem 5.1.
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THEOREM 4.2 (cf. [T2, Thm. 3.4.3]. — Assume that X is smooth over S and
that there exists a reduced divisor D on X with normal crossings relative to S
such that, if we denote by Mp the log structure on X defined by D, there exists an
isomorphism (X, M) = (X,Mp) xs (S,N) over (S,N). Then, for any integers
n>1and 0 <r < p—2, the morphism (4.1) above is an isomorphism.

In the special case D = @, M. Kurihara proved in [Ku] a similar result for
syntomic complexes without log poles along the special fiber.

To prove Theorem 4.2, since the question is étale local on X, we may assume
(X7 M) = (Sv N) X Spec(Z) (SpeC(Z[NdD, CanlOg)

for an integer d > 0. Let (Z,Mz) be (V,My) Xspec(zy (Spec(Z[N%), canlog)
and let Fz be the lifting of Frobenius of (Z, Mz) induced by Fy and the
multiplication by N¢. We have an inductive system of cartesian diagrams
forn > 1:

(XnaMn) — (ZnyMZn)

Lo

(A%

(Snv Nn) —"L‘) (Vn7 MVn)~

Hence we can apply the results of the Appendix to (X, M), (Z,Mz) and Fy.
Note that the special fiber (Y, My) is of Cartier type over (S, N) Qo k-

Since we can use the result of Bloch-Kato [Bl-Ka] on H9(€:1(q)(x,um)) only
in the case where the divisor D at infinity is empty, we will reduce to that
case by describing H9(S1(q)(x,m),(z,m5)) and HI(E1(q)(x,m)) in terms of the
corresponding sheaves for X, the smooth components of D and their intersections
without divisors at infinity. We just follow the argument in [T2, §3.4] faithfully.
So we give only an outline.

In the following, we change the notation M and My to M° and M and use M
and Mz to denote the inverse images of N and My on X and Z respectively. Let
T: (1 < i < d) denote the image of 1 of the i-th component of N¢ in I'(Z, M%)
and also its images in I'(X, M?), ['(Z,0z) and I'(X, Ox). For each integer v > 1,
set

I, = {a: (a1, o) oy, €Z,1<a; < - < a, §d},

and for v = 0, set Iy := {@}. For » > 0 and a € I,, we define
(Xa, My) (resp. (Zy, Mz,)) to be the reduction mod (Ty,,...,Ts,) of (X, M)
(resp. (Z, Mz)). The lifting of Frobenius on Z induces the lifting of Frobenius
Fz, on (Z,,Mz,) compatible with the lifting of Frobenius Fy of (V, My).
We can apply the results of the Appendix to (Xo, My ), (Za, Mz, ) and Fz, .
First let us describe H7(E,(q)(x,mo0)) in terms of HI™¥(E,(q — v)(x.,m.))
(v > 0, € I,,). As in the Introduction, let X, denote the maximal open
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subset of X on which the log structure M? is trivial, let (Y, MY) denote the
special fiber (X, M%) ®0, k and let i (resp.j) denote the immersion ¥ — X
(resp. Xiriv — X). We will often regard étale sheaves on the special fiber Y,
of X, as those on Y. Set Xx := X ®o, K and let j; (resp. j2) denote the open
immersion Xy — Xk (resp. Xg — X). We have j = j3 o j1. We define the
weight filtration

W, H(En(q)(x,m0)) (v EZ)

to be the image of i* RYjo. (7<, Rj1+Z/p"Z(q)). Then, by the same argument as
the proof of [T2] Lemma 3.4.7, we obtain the following lemma using the (relative)

purity theorem for étale cohomology and the surjectivity of the symbol map [BI-
Ka, Thm. 1.4].

LEMMA 4.3. — Assume that the primitive p™-th roots of unity are contained in
K. Then, for each 0 < v < g, the symbol map i*(M° 8P)®1 — HI(E,(q) (x,m0))
(induced by (2.10) and cup products) induces a surjective homomorphism

(" MEP)®I™" @ (i*M° BP)®Y — W, H(En(q) (x,m0))-

Furthermore, there exists a unique tsomorphism

@ Hq_y(gn(q - V)(XQ,MQ)) e gr,‘jV H? (gn(Q)(X,MO))

a€cl,

which makes the following diagram commute:

@ Z‘*(Mgp)®q—v Z'*(Mgp)®q—v ® i* (MO gp)@u

a€l, i ) i

P HT (Enla = V) (Xa M) gry H(En(q) (x,m0))-

acl,

Here k denotes the homomorphism which sends a section a of the a-component
toa® (Ty, ® -+ @ Ty,), and the left vertical arrow is the composite of the
symbol maps (i* MEP)®1™Y — HI™¥(E,(q—V)(x,., M) with the natural surjective
homomorphism (i* M8P)®9=" — (3* MEP)®I~V,

Next let us describe Hq(Sn(q)(XyMO)Y(Z7Mg)) in terms of
HI(Snlq = V)Xo, Mo)(ZaMz,) (¥ 20, @ €L).

Let (Dy, M}, ) (resp. (Da,n, Mp, ,)) be the PD-envelope of (X,,, MY) (resp.
(Xayn, Man)) in (Zn, M3 ) (vesp. (Za,n, Mz, ,,)) compatible with the canonical
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PD-structure on pZ/p"Z, and let Jp, (resp.Jp, ,) be the PD-ideal of Op,
(resp. Op,, ) defining X, (resp. Xo ). If we denote by (E,, Mg,) the PD-
envelope of (S, Ny,) in (V,,, My, ) compatible with the PD-structure on pZ/p"Z,
then we have

(D, M, ) = (En, Mg,) X(v, mv,,) (Zn, M3,),
(Da,’mMDa,n) = (EnaMEn) X(Vn,MVn) (Za,n?MZa,n)'

This implies that, for v > 0, a € I, and r € Z, we have

S Tl 2

1<i<v

and, for 1 <3 <d, 8# a; (1 <i<v), Ty is a non-zero divisor on Jl[;]ﬂ .

We define the increasing filtration W, (v € Z,v > 0) on ng R0y,
Q% (log(M%, )) by Op,-submodules generated by

wAdlogTy, A...NdlogT,,

[r]

(we Jp, ®o,, QF H(log(Mz,)), 1 <og <+ <oy <s,u<v).

Then, the filtration W, is compatible with the differentials and ¢, (r < p —1)

and induces the filtration Wy, on Sn(r)(x m0),(z,mg) (1 < p—1) (cf. [D, 3.1.5]).
We have

WoSn(r)(x,m0),(2,m%) = Sa(r) (x,M),(2,M2)-

For v < 0, we set W, = 0. We see easily that the product structure of
Sn(r)(X,MO),(z,Mg) induces

W Sn(r) (x,m0),(2,m2) ® Wu’Sn(TJ)(X,MO),(Z,Mg)
— Wy Su(r + rl)(X,MO),(ZvM%)
for r,7' € Z such that 0 < r,7’,r + 7' < p — 1. Hence, from the symbol maps
MR — HY(Sn(D)(x,0m),(2,m2)) = H (WoSn(1)(x,m0),(2,m3))
M) &P — Hl(sn(l)(x,MO),(z,Mg ) = Hl(WISn(l)(X,MO),(Z,Mg )s
we obtain
- 0
(MER )®97Y @ (M, E)® — Hq(WVSn(q)(X,MO),(Z,Mg))
for0<v<qg<p-1.
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On the other hand, for any integers 0 < v < q and r, we have an isomorphism

(J{D] ®02n Qq log MZ ) = @ ng,n ®Oza,n Q%;fj" (log(MZO‘v"))
a€l,

which sends w Adlog Ty, A...AdlogT,, ,w € J . ®0,, OF (log(Mz,)) to the
inverse image of w in the a- component By V(dlogT) = 0 and ¢1(dlogT;) =
dlogT; (1 <14 < d), this isomorphism is compatible with the differentials and ¢,
(r <p—1) and induces an isomorphism of complexes (cf. [D, 3.1.5.2])

gry’ Sn(7) (x,m0),(2,M8) — @ Sn(T = V)(Xa,Ma),(Za, Mz, ) [ V]
aEIu
forr<p-—1,v>0.
We define the weight filtration W, (v € Z) on H(Sn(r)(x,mo0),(z,m2))
(¢ >0, <p—1) by the images of H‘I(W,,Sn(r)(X7M0),(Z,Mg)). Then, using the
surjectivity of the symbol map for (Xo, Ms) — (S,N) (Prop. Al5 for r = q),
we can prove the following lemma in the same way as [T2, Lemma 3.4.11].

LEMMA 4.4. — For any integers 0 < v < q < p — 2, the symbol map
(MJ B)® — HI(Sn(@)(x,m0),(z,m9)) (induced by (2.5) and (2.6)) induces a
surjective homomorphism

(M5 )®1 @ (M 5P)® — W, HY(Sn(q) (x, a0y, (2, M0 0))-

Furthermore, there erists a unique surjective homomorphism

EB HI™(Sn(q = V) (Xa, M), (Za, M2,)) — 8T HU(Sn (@) (x,m0), (2, M0 0))
a€l,

which makes the following diagram commute:

—v fint1 —v v
P (Mg, )® (MER,)®97" @ (MJE))®

a€l, l l

@ Hq-u(sn(q - V)(XQ,M,J),(Z,,,MZQ)) - ngH (’5 (Q)(x MO (Z, MY ))
QEIV

Here kn41 is defined in the same way as k in Lemma 4.3 and the left vertical
homomorphism is the composite of (Mgh,)®97" — (ME", )%™ with the
symbol mayp for (Xo,M,).

Now let us prove Theorem 4.2. The first half of the proof is the same as the
proof of [T2, Thm. 3.4.3, 1].
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Proof of Theorem 4.2. — We keep the notation and the assumption above.
The claim is reduced to the case n = 1 using the commutative diagram

",

Sn-1(r)x — Sa(r)x —— Si(r)x —— Sn—1(r)x[1]

R |

En1(r)x —— Enl(r)x —— &i(r)x —— En_a(r)x[1]

where we abbreviate (X, M) to X, and H(S,(r)(x,m0)) =0 (g > 7).

First we assume that K contains the primitive p-th roots of unity, and let g be
an integer such that 0 < ¢ < p — 2. Since the morphism (4.1) is compatible with
the symbol maps (Proposition 2.11) and the product structures, by Lemma 4.3
and Lemma 4.4, the homomorphism

HI(S: (q)(X,MO),(Z,Mg)) — HY(&1(q) (x,m9))

induced by (4.1) is compatible with the filtrations W,. To prove that it is an
isomorphism, it suffices to show that the composite:

—v Lemma 4.4
GB H(81(g = V) (X0, M) (20 M2,)) —— 8, (HI(S1(9) (x,m0),(2,13)))

a€l,

gTEV Hq(51 (Q)(X,MO))

% @ HI™(E1(g = V) (X0 M)
O(EIV

is an isomorphism. By Lemma 4.3 and Lemma 4.4, this is compatible with
the symbol maps. Hence, by comparing [Bl-Ka, Cor. 1.4.1] for X, — S with
Proposition A15 for (X4, M,) — (S,N) and r = ¢, we see that the above
composite is an isomorphism. Note that, with the notation in the Appendix, we
have wy, = QY , wy 1. = DY, 1oq €lC

By Lemma, 2.12 and Proposition A17, the homomorphism

HO(S1(r) (x,m0)) — HO(E1(r)(x,m0))

induced by (4.1) is an isomorphism for an integer 0 < r < p — 2. Since the
morphism (4.1) is compatible with the product structures, for integers r and ¢
satisfying 0 < ¢ <7 < p — 2, we have a commutative diagram

HO(S1(r — q)(x,m0)) @ HI(S1(q) (x,m0)) —— HI(S1(r) (x,m0))

HO(E1(r — @) (x,m0)) ® HI(E1(@) (x,m0)) —— HU(E1(r)(x .m9)),
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where the two vertical homomorphisms is the ones induced by (4.1). The
lower horizontal arrow is an isomorphism, and we already proved that the left
vertical one is also an isomorphism. Furthermore, by Corollary A16, the upper
horizontal one is also an isomorphism. Hence, for integers r and ¢ such that
0 < ¢ <r < p-—2, the homomorphism induced by (4.1)

HY(S1(r) (x,m0)) — HI(E(T)(x,m0))

is an isomorphism.

Next we consider the general case. By replacing K with an unramified
extension, we may assume that K((r)/(P=1)) contains a primitive p-th root
of unity. Set K’ := K (x'/®=1) and choose a (p — 1)-th root 7’ € K’ of . We
follow the notation before the statement of Lemma A18. Since K’/ K is a totally
tamely ramified extension of degree p — 1, we have

H(E () xeraa) T = HIE) e 00))-

On the other hand, by Proposition A19, we have

)Gal(K’ /K)

HA(S1(r) (x7,m70 =HI(S1(r)(x,m0))

for 0 < ¢ < r < p— 2. Thus the general case is reduced to the case where K
contains the primitive p-th roots of unity. []
|

5. Main theorem
Our objective in this section is to prove the following theorem:

THEOREM 5.1. — Let (X, M) be a smooth fs log scheme over (S,N). Then, for
any integers n > 1 and 0 < r < p — 2, the morphism (4.1) is an isomorphism.

Let n and r be integers such that n > 1 and 0 < r < p — 2. Let (X, M)
be a smooth fs log scheme over (S, N) and let (Y, My) denote the reduction
mod 7 of (X, M). Let y be a point of Y and let ¢ be an integer such that ¢ < r.
We denote by Cy, -((X, M), y,q) the following claim:

The homomorphism HY(S,(r)(x,m))y — HU(En(r)(x,m))y induced
by (2.8) is an isomorphism, and the homomorphism

HIT(Sn (1) (x,m))5 = HIPH(Er(T) (x,00)) g
induced by (2.8) is injective.

LEMMA 5.2. — Let n and r be integers such thatn > 1 and 0 <r < p—2. Let
fi(X',M'") - (X,M) be a morphism of smooth fs log schemes over (S,N) and
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let g denotes the reduction mod 7 of f. Let y be a point of Y := X ®o, k and
let q be an integer such that ¢ < r. Assume that the following conditions hold:

(0) The underlying morphism of schemes of f is proper.
(i) The dimension of g~ 1(y) is < 1.
(ii) The canonical morphisms

Sn(r)x,my) — R« (Sa(r)(xr,m1),  En(r)x,ar) — Rgu(En(r)(x7 M)

are isomorphisms.
(iii) The claim Cy »((X,M),y,q) is true.
(iv) For every non-closed point z of g~ (y), Cn (X', M’),2,q) is true.
(v) For every point w of g~ (y), the claim Cy, ((X',M"),w,q — 1) is true.

Then the claim C, ((X',M"),y’,q) is also true for every closed point y’
-1

of g7 (y)-
Proof. — From the morphism (2.8):

Sn(r)xr ) — Enlr) e,
we obtain a morphism of spectral sequences

B3 = R0, (HY(S.(r) ) —— R0, (Su(r) a0

!

ES® = R (HY(&n () (x7.017))) —— R*T00u (En(r)(x7.017))-

By the proper base change theorem for étale cohomology and the assumption (0),
we have isomorphisms

R, (H*(Sn(r)(x',m7))

Reg. (H*(En(r)(x/ 017)))

=4 Ragg* (Hb(sn(r)(x',M’))lyé)’

= R%gys (Hb(fn(T)(xuM'))Iy;)’

g
g
where gg:Yg’ — ¢ denotes the base change of g under § — Y. By the assump-

tion (i), these groups vanish if a > 2. Hence, using the assumption (ii), we obtain
the following morphisms of short exact sequences:

0 — R'gj. (Hq'l(Sn(T)X/)|Yg,) —>’}'{‘1(:.S‘n(7‘)x)?7 — Gy« (Hq(Sn(T)X’)|Yg,) —0

0 — Rlgy. (Hq—l(gn(r)xl)m) —HY(En(r)x); — 9ps (Hq(é’n(r)xf)lyg,) -0,
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0 —>ng5* (Hq(TH(T)X/)IYiI) S Hat! (Sf(r)x)g — Gy (Hq+1(in(7“)x/)|y;) — 0
0 — R'gy. (Hq(Sn(T)X/)!Yg,) — HIM (En(r)x) 5 — 9gs (Hq+1(£n(7')x')|yg,) — 0.

Here we abbreviate (X, M) (resp. (X', M")) to X (resp. X') to simplify the nota-
tion. By the assumptions (iii) and (v), the left and middle vertical homomor-
phisms in the first diagram are isomorphisms, and the middle vertical homomor-
phism in the second diagram is injective. Hence the right vertical homomorphism
in the first diagram is an isomorphism, and the left vertical homomorphism in
the second diagram is injective. Using the assumption (iv), we see that the homo-
morphism

Hq(Sn(T)(X/’M/)NYg' — Hq(gn(’f‘)(X/}M/))lyg/

induced by (2.8) is an isomorphism. Using the second diagram again, we find
that the right vertical homomorphism of the diagram is injective. Hence, using
the assumption (iv) again, we see that the homomorphism

Hq+l(sn('f‘)(x/7M/))|Y_, — Hq+l((€"(7')(X/VM/))|Y~,

induced by (2.8) is injective. []

LEMMA 5.3. — Let d be a positive integer and let x be a point of codimension e
(0 < e < d) of Spec(k[T1, ..., Tq]). Then there exist integers 1 < iy < -+ <
ig—e < d such that the image of x in Spec(k[T;,, ..., T;,_.]) is a generic point.

Proof. — The transcendental degree of the residue field k(z) over k is d — e
and the residue field is generated by the images of 71, ...,T,;. Hence there exist
1 <14 <+ <i4_e < d such that the homomorphism k[T;,,...,T;, .] — k(z)
is injective. []

DerINITION 5.4. — We say that a morphism of finitely generated saturated
monoids h:N — P is smooth (with respect to p) if it is injective and the order of
the torsion part of the cokernel is prime to p. For such a morphism h, we denote

by ("Z,Mxz) the fs log scheme (Spec(W[P]), canlog) regarded as a smooth fs
log scheme over (V,My ) by the morphism induced by h, and denote by

("X,"M) — (S,N)

the base change of (Spec(Z(,)[P]), canlog) — (Spec(Z,)[N]), canlog) induced
by h by the morphism (S,N) — (Spec(Z,)[N], canlog) defined by N — I'(S,N),
1 +— . We denote by (Y, My ) the reduction mod 7 of ("X ,"M).

Recall that (Z", M) has the canonical lifting of Frobenius compatible with
Fy (§3), which we denote by Fizx.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



558 T. TSUJI

We will use the following two special cases of Theorem 4.2:

ProrosiTioN 5.5. — Let (X,M) be a smooth fs log scheme over (S,N) and
letY be the reduction mod w of X. Then, for every pointy € Y of codimension 0,
the morphism

(Sn(r)x.an)y — (T<r€a(r)ix )y
induced by (4.1) is an isomorphism for any integersn > 1 and 0 <r <p—2.

Proof. — By [Ka4, Thms. 4.1 and 8.2], the ring Ox , is a discrete valuation
ring. (See also [T2, Lemma 1.5.1].) Let Og- be the henselization of Ox , and
put S’ := Spec(Ok-). Then the inverse image of M under the natural morphism
S’ — X coincides with the log structure defined by its closed point (cf. [Ka4,
Thm. 11.6]), which we denote by N'. If we denote by s’ the closed point of S,
the natural morphisms

Sn(r)(XJ\/I)Is’ —_— Sn(r)(s/,N/) and Sn(r)(X,M)ls’ — Sn(r)(s/7N,)
are isomorphisms. Hence the claim follows from Theorem 4.2 with (X, M) =
(S,N). [

PROPOSITION 5.6. — Let d be a positive integer and let h:N — N? be a smooth
morphism of monoids. Let e be an integer such that 0 < e < d— 1 and assume
m; >0andm; =0 (2 <i<e+1), where h(1) = (m1,ma, ... ,mgq). Let y be a
point of Y whose image under the composite

hy — (h2), = Spec(k[Nd]) N spec(k[Nd—eﬂ])

is the generic point, where the second morphism is the one defined by the
inclusion into the last d — e — 1 components N®=¢~1 — N¢. Then the morphism

(Sn(M)x,m) g — (T<ra(r)nx many)y

induced by (4.1) is an isomorphism for any integersn >1 and 0 <r < p—2.

Proof. — Let x:N4=¢ — N¢ be the morphism of monoids which sends the
first component to the first one and the other d — e — 1 components to the
last d — e — 1 components of N¢. Then h factors as N —— Ni—¢ 5 N¢ and
R is smooth. We regard ("X,"M) as an fs log scheme over (* X," M) by the
morphism induced by . Then

("x,"M) = (" X, M) x5 (Spec(Ox[N¢]), canlog).

Moreover the assumption on y implies that the image 3’ of y in MY is of
codimension 0. Let Og be the henselization of Ow x ,, and let N’ be the inverse
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image of " M under the natural morphism S’ := Spec(Ok-) LN Then, as in
the proof of Proposition 5.5, Ok is a discrete valuation ring and N’ is the log
structure defined by the closed point. Set

(le MI):: (hX7 hM) ><(h'X,hIM) (SlaN/)
=~ (S',N') x g (Spec(Ok/[N°]), canlog).

If we denote by Y’ the special fiber of X', the natural morphisms
Sn("')(hx,hM)ly' B Sn(T)(x/,M/) and gn(r)(hxth)lyl — gn(ﬂ(X’,M’)

are isomorphisms. Applying Theorem 4.2 to (X', M’) — (S’, N’), we obtain the
proposition. []

Proof of Theorem 5.1. — Since the question is étale local on X, we may assume
(X, M) = ("X,"M) for some finitely generated saturated monoid P and some
smooth morphism h:N — P (Definition 5.4). Let G denote the torsion part
of P8P, whose order is prime to p. Since P is saturated, we have G C P and
P~ (P/G) @ G (non-canonical). By adding the primitive #G-th roots of unity
to W and Ok, we may assume W|[G] is isomorphic to a finite product of W. By
considering each irreducible component of Spec(W[(P/G) @ G]) separately and
replacing the fixed m by 7 - { for some #G-th root of unity {, we may assume
G = {1}. Furthermore, by using Theorem 3.3 and Lemma 3.2, we can reduce to
the case where P = N for some integer d > 1.

If d = 1, the theorem follows from Proposition 5.5.

We fix integers d > 2, n > 1, and 0 < r < p — 2. We will prove the following
claim by induction on e > 0:

For any smooth morphism h:N — N? and any y € "Y such that the codi-
mension of {y} in "Y is < e, the stalk at y of the morphism (4.1) for ("X," M)
is an isomorphism.

If e = 0, the above claim follows from Proposition 5.5. Let e be a positive
integer and assume that the claim is true for e — 1. We will prove the claim
for e. Let h:N — N? be a smooth morphism and let y be a point of *Y such
that codim({y},”Y) = e. We will reduce the claim to Proposition 5.6 by using
Lemma 5.2.

The codimension of the image of y under Y — ("Z); = Spec(k[N%)) is e + 1.
Hence, by Lemma 5.3, we may assume that the first component of h(1) is non-
zero and the image of y under the composite

"y — ("Z); = Spec(k[N%]) — Spec(k[N?~¢~1))
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is the generic point, where the second morphism is the-one induced by the
inclusion into the last d — e — 1 components N¢—¢~1 — N¢,

It is easy to see that there exist an integer s > 0, a sequence of morphisms of
monoids

1 2 s—1 s
NG \ LN \C AR N

and a smooth morphism of monoids h°:N — N¢ satisfying the following
properties:
h=k® - r*s'h0.

Each k" is given by €; — ¢€; (i # a), €5 > €4 + €, for some integers a and b
satisfying 1 < a<e+ 1,1 <b<e+1, and a # b. The i-th components of
h9(1) vanish for all 2 < i < e+ 1 and the first component of h°(1) does not
vanish. Here ¢; denotes the element of N¢ whose i-th component is 1 and other
components are 0.

Choose such an integer and morphisms. Let h¥ denote the smooth morphism
of monoids k”k¥ 1. k'A% for 1 < v < 5. We have h®* = h. For 0 < v < s, we
write (X¥, M) (resp. (Y¥, My+)) for (*" X, M) (vesp. (" Y, Muvy)) to simplify
the notation. We have ("X,"M) = (X* M?*) and (*Y,Muy) = (Y*, Mys).
For 1 < v < s, let f, denote the morphism (X¥,M") — (XV~!, MV~1) of
smooth fs log schemes over (S, N) defined by «” and let g,, denote the reduction
mod 7 of f,.

Let y” be the image of y in Y” for 0 < v < s. For 0 < v < s, let ¢ denote
the composite

v

V¥ — (" Z); = Spec(k[N?]) — Spec(k[N4"¢"1]),

where the second morphism is the one defined by the inclusion into the last
d — e — 1 components N¥=¢~1 — N¢. By the choice of k”, we have ¢V~ 1¢g" = ¢
for 1 < v < s. Hence the image of y* under o" is the generic point for 0 < v < s.
Hence the codimension of y” in Y” is e for 0 < v < s and y” is a closed point of
(") My Hfor1<v<s.

Now we will prove that the stalk at y” of the morphism (4.1) for (X¥, M) is an
isomorphism by induction on v. For v = 0, the claim follows from Proposition 5.6.
Let v be an integer such that 1 < v < s and assume that the claim is true for v—1.
By the choice of k¥, Lemma 3.4 and Lemma 3.2, there exists a factorization

(X, M) 5 (X7, M) L (xvt mv )

of f¥ such that j¥ is an open immersion and f* satisfies the conditions (0), (i),
and (ii) of Lemma 5.2. By the induction hypothesis with respect to e (resp. v),
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the condition (iv) (resp. (iii)) also holds for y*~! € Y”~! and any integer ¢ < r.
Hence, by Lemma 5.2 and the induction on g, we see that C,, .((X¥, M"),w,q)

is true for any w € f—"_l(y”‘l) and any integer ¢ < r. Especially, the stalk at y”
of the morphism (4.1) for (X¥, M") is an isomorphism. []

Appendix. Calculation of syntomic complexes
in the imperfect residue field case

In this appendix, we will show that the calculation of
HI(Si(r)) (0<g<r<p-2)

in [T1, §7] (the case 9 is constant) still works in the case where the residue
field of the base field is not perfect. First we note that M. Kurihara allowed
imperfect residue field in his calculation [Ku] in the good reduction case, and
that we followed his method in [T1, §7]. Once we formulate the statement, the
generalization of the proof in [T1, §7] is completely straightforward. However, in
[T1, §7], we treated non-constant coefficients as well and it made the proof much
complicated. So we will give an outline of the proof here for the convenience of
the readers.

We consider a smooth fine log scheme (X, M) over (S,N). Let (Y, My)
(resp. (s, Ns)) denote the reduction mod 7 of (X, M) (resp. (S, N)). We assume
that (Y, My) is of Cartier type over (s, Ny). We also assume that there exist
smooth fine log schemes (Z,,, Mz, ) over (V,,, My, ) with isomorphisms

(Al) (Zn+1a MZn+1) X(Vn+17MVn (VH’MVn) = (Zm MZn)

+1)
over (V,, My, ), exact closed immersions ¢, : (Xp, My) — (Zn, Mz,) compatible
with the above isomorphisms (A1) which make the following diagrams cartesian

(X, Mp) —— (Zn, Mz,)

I

(Sny Nu) —s (Vi My, ),

and a system of liftings of Frobenius {Fz, :(Z,, Mz,) — (Zn,Mz,)} compa-
tible with the above isomorphisms (A1) and Fy,. Choose such (Z,, Mz, ), i,
and Fz,_ . For integers n > 1 and 7 < p — 1, we defined the syntomic complex
Sn(r)(x,m),(z,Mz) o0 Yet in §2.

Let (D,,Mp,) denote the PD-envelope of the exact closed immersion ¢,
compatible with the canonical PD-structure on p(Z/p"Z). Since the closed
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immersion Y — X, (resp.Y < D,,) is a nilimmersion, we regard a sheaf on
(Xn)et (resp. (Dr)et) as that on Y in the following. Set

wy, =9y ;(log(Mz,)) (q=0),
which is locally free over O, . In §2 we defined the Frobenius “divided by p”
(resp. p?)”
goT:JgL —Op, (r<p-—1) (resp. pgwy —wy o (g2 0)).

For integers n > 1 and r < p — 1, the complex S, () (x,n), (z,Mm5) On Y is the
mapping fiber of
1 - ()07':']%‘"—.] ®(DZn w.Zn - ODTL ®Ozn w.Zn’

where ¢, = ©,_, ® @, in degree q. We will write S,,(r) for S, (r)(x,m),(2,mz) tO
simplify the notation in the following.

LEMMA A2 (cf. [T2, Lemma 2.4.6]). — For a1,...,aq € MP  , the image

of a1 ® -+ ® @g in HY(Sn(q)) under the symbol map (MEY)®1 — HI(S,(q))
(induced by (2.5) and (2.6)), is the class of the cocycle

(dlogal A...Ndlogag,
q

}:(—l)i‘lp‘1 log(a¢p,,,(a;) " )dlogai A ... Adloga;_;
=t Api(dlogair1) A ... A pi(dlog aq))
€ (Op, ®o,, wh ) ® (Op, ®o,, wh ),
where @; denote the images of a; in MSY .

Proof. — Straightforward. []

Let (U, My) denote the scheme Spec(Z[N]) = Spec(Z[T]) endowed with the
log structure associated to the inclusion N — Z[N] and let (¢, M;) denote the
reduction mod (p,T') of (U, My).

We have a canonical morphism (V, My ) — (U, My) defined by id :N — N,
and the following two squares are cartesian:

l |

(Sa Ns) — (‘/7 MV)

| |

(t, Mt) I (U, MU)
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We define the sheaf wi on Y to be qu/t(log(My /M,;)), and define the sub-
sheaves Z{ and B} of w{ by

Z3 = Ker (d%:w} — w§1,+1), By = Irnauge(dq*l:t.ugf1 —wi).

Since we assume that (Y, My) — (s, N;) is of Cartier type, we have Cartier
isomorphisms as follows:

THEOREM A3 (cf. [Ka2, Thm. 4.12]). — For each integer q > 0, there exists
an isomorphism
C™hwd = HI (W)

characterized by

C~'(adlog(by) A dlog(bz) A ... A dlog(by))
= the class of aPdlog(by) A dlog(ba) A ... A dlog(by)

(a € Oy and by,bs, ... by € My).

Proof. — By the characterization, the question is étale local on Y. Hence
we may assume (Y, My) = (Y, M) X(¢,um,) (s, Ns) for a fine log affine scheme
(v, Ms;) smooth of Cartier type over (¢, M). (Use [Ka2, Thm. 3.5].) For a finitely
generated subfield &k’ of k, let (s’, Ny/) denote Spec(k’) with the inverse image
of M; and set _

(YI,MY/) = (Y,M)";) X(t,Mi) (S,,Ns/).
Then the theorem is true for (Y’, My-) by [Ka2, Thm. 4.12]. Since I'(Y,w},) =
lim ,, [(Y’,w}/), this implies the claim for (Y, My). Note that, if we regard wy,
as quasi-coherent Oy/-modules by the action z — aPz (a € Oy/), w}, is a
complex of Oy /-modules and C~! becomes Oy -linear. []

We define the sheaf wY log U0 be the subsheaf of abelian groups of w{ which
is generated by local sectlons of the form

dlog(bi) A dlog(b2) A ... Adlog(by) (b1,b2,...,by € My).

THEOREM A4 (cf. [T1, Thm. 6.1.1]). — Let the notation and the assumption
be as above. Then, for each integer ¢ > 0, the following sequence is exact:

1-c~!
0— qu,log Z1q/ Hq(w;’) — 0.

Proof. — The claim is trivial except the exactness in the middle. (The
surjectivity in the right is reduced to that of 1 — C~1:w{ — w}/Z]. Note
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that we work on Yg.) We are reduced to the special situation as in the proof
of Theorem A3. Suppose (1 — C~1)(z) = 0 for an affine étale scheme U over Y’
and z € T'(U, Z{). Then, with the notation in the proof of Theorem A3, there
exist &, an affine étale scheme U’ over Y’ with U =2 U’ xy+Y and 2’ € I'(U’, Z{.)
such that the image of ' in I'(U, Z}) is  and (1 — C~1)(z') = 0. Since the
claim is true for (Y’, My+) by [T1, Thm. 6.1.1], z’ € I'(U’,wy ,,) and hence
z € T(U,wy 150)- (]

Now let us give the statement of the main results.

Following [Ku|, we define the descending filtration U™ (m € N) on S;(r) for
an integer 0 < r < p — 2 as follows: First we define the filtration U™ (m € N)
on Op, (resp. ngl (r<p-—2)) by

T™Op, + JB|  (resp. Tmxtmer+im/mop, 4+ jph).

Note Jgi = T"Op, + Jl[gi (0 < r < p— 2). Here e denotes the absolute
ramification index of Ok and, for z € R, [x] denotes the smallest integer > z.

We see easily that the sheaves U™(Op,) ® wg, (rgsp. (7’“(]1[;1_‘1]) ® wy ) are
compatible with the differentials and give a filtration U™ (m € N) on the complex
Op, ® wy, (resp. J[Drl_'] ® wy, ). Finally, for an integer 0 < r < p — 2, it is easy
to see that the morphisms 1,p,:J 1[;;'] ®wy, — Op, @ wy are compatible
with U*. Thus we obtain the filtration U* on the complex S;(r).

ProposiTION A5 (cf [Ku, Prop. 4.3], [T1, Prop. 7.3.5]). — Let the nota-
tion and the assumption be as above. Let r and q be any integers such that
0<q<r<p-—2. Then, for each integer m > 0, the sheaf Hq(grg S1(r)) has
the following structure:

1) If m <ep(r—q)/(p—1) orm > ep(r — q+1)/(p — 1), then
H? (gr%” Si(r)) =0.
2) If m =ep(r — q)/(p — 1), then there exists an exact sequence

0 — Ker (1 - a,g(r_Q)C'_I:Z;’,_1 — HI (wy))
— H(grF Su(r))
— Ker (1-a}" 907128 — HY(wy)) — 0,

where ag = (NOA/W(—W) -p~! mod p) € k.
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3) Suppose ep(r —q)/(p—1) <m <ep(r—q+1)/(p—1). Then:
3-1) If pt m, there exists an exact sequence

—2 _ m _ _
0—wl?/zi7% — ’Hq(gra Si(r)) — w& /B 0.
3-2) If p | m, there exists an exact sequence
0— wi2/287% — NI (grgl Si(r)) — wit)zZ8t 0.

ProposITION A6 (cf. [Ku, Lemma 4.2], [T1, Prop. 7.3.4]). — Let r and q be
integers such that 0 < g < r < p—2. Then, for m € N, the following sequence is
exact:

0 — HUT™ 81 (r)) — HUU™S1(r)) — H (g2 Si(r)) — 0.

Furthermore, H{(UPS,(r)) = 0.
We first give a proof of Proposition A6 assuming Proposition A5.

Proof. — For the first claim, it suffices to prove the surjectivity in the right.
By Proposition A5, we may assume ep(r—q)/(p—1) <m < ep(r—q+1)/(p—1)
and it is enough to prove HItH(U™+1S;(r)) = 0 in this case. We will prove

HITH(U™S,(r)) =0 for m > ep(r—q)/(p—1).

For m > ep(r—q)/(p—1) (& m > e(r — q) +m/p), the complex [7"’J[DT1_'] Ruwy,
coincides with U "Op, ®@wy, in degree > ¢ and

@T—q’([’jml OD1) c (7ml+10D17 <)07‘—q’([’jep(9D1) =0
for m’ > ep(r — q)/(p — 1) and ¢’ > ¢. Hence
11— ﬁmJl[;:’] Quwy, — (7’"(’)[)1 ® wy,

is an isomorphism in degree > ¢, which implies HqH(ﬁmSl (r)) = 0. We see the
second claim similarly (and more easily). []

To prove Proposition A5, we will prepare for several lemmas. For a com-
plex K*, we denote hy BI(K*) (resp. Z¢(K*)) the image (resp.kernel) of
di=1: K971 — K9 (resp.d?:K? — K%'!). Note that the subsheaves T™w}
(resp. T'”cu%1 /U1) are compatible with the differentials and give a subcomplex
T™wy, (resp. me'Zl/Ul) of wy, (resp. w’Zl/Ul).
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LEmMA A7 (cf. [T1, Lemma 7.4.3]). — Let m be a non-negative integer.

1) From the reduction mod T of the short exact sequence

q—1 NdlogT q

q
0—>(A)ZI/U1 — Wz, Wz, — 0

and the Oz, -linear isomorphism
q ~ m, g m+1, .q
Oy ®o,, wy, — T"wy [T wy,

induced by the multiplication by T™ on w%l for each integer ¢ > 0, we obtain a
short exact sequence of complexes:

(AT7.1) 0— wy[-1] — T"wy, /T wy, — wy — 0.

Furthermore, for each integer ¢ > 0, the connecting homomorphism H(wy,) —
HI(w3) of the long exact sequence associated to (A7.1) is the multiplication
by (—1)9m.

q

2) The homomorphism g: quI — wy, induces an isomorphism:
Chwd [Twl 5 HI(wy, /Twy,).

3) If pfm, HI(T™wy, [T+ wy ) = 0.

4) If p | m, the multiplication by T™ on w%l for @ > 0 induces an isomorphism
of complexes
wy, [Twy, — TTwy [T Wy, .

Proof. — We can prove this in the same way as [T1, Lemma 7.4.3] using
Theorem A3 and an analogue of [T1, Lemma 7.1.4] for (Z,,Mz,) (n > 1)

and ¢q. []

LemMmA A8 (cf. [T1, Lemma 7.4.6], [T2, Lemma 2.4.5]). — Let m be a non-
negative integer.

1) If pt m, there is a short exact sequence
0—wd?/287% — BYT™wy, /T wy) — wi/BE — 0

which is characterized by the following properties: For x € Oz, and aq, ... ,aq_1
in M2°, the image of
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d(T™z - dlog(ay) A ... A dlog(ag—1) mod T™) € BY(T™wy, /T™  wy,)
in wd '/ BE is zdlog(ar) A ... A dlog(@g—T1), and
d(T™z-dlog(a1)A. . .Adlog(ag—2)Adlog(T) mod T™ ) € BY(T™wy, /T™  wy, )
is the image of Zdlog(a@) A ... A dlog(ag—z) € w¥ 2/Z37% where @; denote the
images of a; in M3® and T denotes the image of z in Oy .

2) If p | m, there is a short exzact sequence

0—wl?/28% — BIT™wy, /T wy) — w25 -0

which is characterized in the same way as 1).

3) For a € k*, the homomorphism

1—a?-C 29wy, [Twy,) — HY(wy, /Twy,)

is surjective, where C~1 is as in Lemma A7, 2). Its kernel K is the subsheaf of
abelian groups of Z%(wy, /Twy ) generated by local sections of the form

z - (dlog(a1) A ... Adlog(ag) mod T'),
(z € Ker (1 —aPp:0y — Oy), ay, ... ,a, € M3")
and there ezists a short exact sequence
0 — Ker (1 —aPC™": ZE " — HTH (w}))
— K — Ker (1 —a?C™": Z} — HI(wy)) — 0

which is characterized by the following properties: For aq,...,aq € M%‘]’ and
z € Ker (1 — aPp: Oy — Oy), the image of

z - (dlog(a1) A... Adlog(a,) mod T) € K
in the right term is x - dlog(ai) A ... A dlog(ay), and
z - (dlog(ar) A ... Adlog(ag—1) A dlog(T) mod T') € K

is the image of the section x - dlog(ai) A ... Adlog(ag_1) of the left term, where
a@; denote the images of a; in Mg’.
Proof. — We can prove this in the same way as [T2, Lemma 2.4.5] using

Lemma A7 and Theorem A4. Note d(zP) = paP~'dz = 0 in Q} for z € k and
that 3) is reduced to the case a = 1 by the commutative diagrams

q 1—a?C™ ! al e a/ e . 1—aPC~ ! ar e .
Zy HY(wy) A (WZI/T“‘)ZI) — H (wzl/Twzl)
b*”Tz sz“’ b‘pTz sz*”
1-¢c~! 1-C~*
zZy ——— Hi(wy), 2wy, [Twy,) ——— HI(w*/Twy,),

where b = a!/(P~1) which exists étale locally on Spec(k). []
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LEMMA A9 (cf.[T1, Lemma 7.4.4]). — Let q and r be integers such that
0<q<r<p-—2. Then the homomorphism
HA(gr (1) — g2 (r): H (gr2 (5 @0, w3,)) — HI(er2 (O, Goy, wh,))
1s surjective and its kernel is as follows:

1) If m < ep(r —q)/(p—1) orm > ep(r —q+ 1)/(p — 1), then the kernel
vanishes.

2) If m = ep(r — q)/(p — 1), then the kernel is isomorphic to the kernel of
1-af" 9. 01 Z9(wy, [Twy,) — HI(Wy, [Twy,),
where C~1 is as in Lemma AT, 2) and ag = (No~;w(—7) - p~* mod p) € k*.
K

3) Ifep(r—q)/(p—1) < m < ep(r—q+1)/(p—1), then the kernel is isomorphic
to BY(T™wy /T™ 1wy ).

Proof. — First note
grQU}(OD1 ®(’)Zl w.Zl) = me.Zl/Terlw.Zl
and m Z e(r —q) +m/p & m Z ep(r —q)/(p—1).
Ifm>ep(r—(¢g—1))/(p—-1), lNImJ[g:'] ®wy, coincides with [7"‘(’)[)1 Rwy,
in degree > g — 1 and
Orq(U™I5~) c U™ Op,.
Hence the morphism in question is the identity.
If ep(r — g)/(p—1) < m < ep(r — (g = 1))/(p = 1), U™} @ wy, coincides
with U™Op, ® wy, in degree > ¢ and
d (O IET @ uwh ) c U I T @ wh
In the case m > ep(r — q)/(p — 1), we have
r—g(U™IE ) c U™ 0p,
and obtain 3).

If m = ep(r — q)/(p — 1), we obtain 2) from Lemma A7, 4), Lemma A8, 3)
and
(pr_q(Te(T—tI)) = (b 4+ a¥TP 4 -+ aP_ T~ VP 4 (Te)Phyr—a,
where T¢ + p(ae_17T° ' + -+ + a1T + ag) (a; € W) denotes the Eisenstein
polynomial of m over W.

If m < ep(r —q)/(p — 1) and p 1 m, both sides of the homomorphism in
question vanish by Lemma A7, 3).

If m <ep(r—gq)/(p—1) and p | m, the claim 1) is reduced to Lemma A7, 2)
using Lemma A7, 4) and the above description of ¢, _,(T¢"~9). []
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Now we immediately obtain Proposition A5 combining Lemma A9 with
Lemma AS8.

For integers 0 < q < r < p — 2, we define the filtration um (m € N) on
H?(S1(r)) to be the image of H¥(U™S1(r)). By Proposition A6, we have

(A10) gr M (Si(r)) = H? (gr’ﬁ” Si(r)) (m>0),
(A11) UPH?(S:(r)) = 0.

For £ € U™H(Sy(r)) and 2’ € U™ HY (S1(r')) (where m,m’,q,¢ > 0 and
0 < 77,7+ 1 <p—2)the product z-z’ is contained in U™+m H4+4 (S; (r+r')).

Assume that K contains a primitive p-th root of unity. Then it is easy to see
ap € (k*)P~1. (See the proof of Proposition A17 below.) Choose a (p — 1)-th root
by € k of ag. Then, by Theorem A4, for integers ¢ > 0 and u > 0, we have an
isomorphism

(A12) WY log 5 Ker (1—af*C™:2) - Hi(wy)), wr— by " w.

By Proposition A5 and (A10), for each integer 0 < r < p — 2, we have an
isomorphism
(A13) HO(Sl(T')) Pl fjepr/(P~l)(H0(Sl(r)))

s gD (HO(8,(r))) < Z/pZ.

In the last isomorphism, we use (A12) with ¢ =0, u = .
Define the descending filtrations U™ and V™ (m € N) on (M5P)®1 as follows:
Forq=0,U°=Zand V™ =U™*! =0 for m > 0.
For ¢ = 1, U(MSP) = MSP, VO(MEP) = (1 + 70x,) - 7N, U™(MEP) =
1+ 71™0Ox, for m > 1, and V™(MEP) = U™ MEP for m > 1.
For q > 2,

U™ (M5?)®1 = (image of U™(M5")) @ (M§?)®(1~D),
Vm(Mng)éz’q = Um+1(Mégp)®q
+ (image of U™(M5®)) ® (M5*)®(1=2) @ (rM).

(See [H, 1.4]). Here and hereafter, we denote by the same letter 7 the images of
m € T(S,N) = O \{0} in T'(X, M) and T'(Xn, M) (n > 1).

As in [T2, Lemma 2.5.2], we see that the image of U™(MEP)®? under the
symbol map is contained in U™H4(S;(q)). Hence, for integers r and ¢ such that
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0 < ¢<r<p-2,and for integers m > 0, using the symbol map and (A13), we
obtain a map
(Al4) U™(MS®)®1 — Z/pZ ® U™ (M5®)®1
— gerr=0/e=D (KOS, (r — q))) ® U™ (HI(S1(q)))
—, ger(r—a)/(p=1)+m (HA(S1(7))).
ProposiTioN A15 (cf. [T1, Lemma 8.4.4], [T2, Prop. 2.4.1]). — Let the
notation and the assumption be as above. Let q and r be integers such that

0 < q<r<p-2. Then, for every integer m > 0, the homomorphism (Al4) is
surjective and it is related to the description in Proposition A5 as follows.

1) If m =0, by (A12) and (A10), we get an exact sequence:

0— wg/_,}og — grg(r_q)/(p_l) (Hq(Sl(r))) - ‘*’;1/, log 0.

The map (A14) induces the following surjective maps:

UO(MEP)®! — wi ogr @1 ® - ®ag — dlog(@i) A... Adlog(a),

Vi MEP)®T — w?{,log, a4 ® - ®ag_1 @7 r— dlog(ar) A ... ANdlog(ag—1),
where a; denote the images of a; in MyY.

2) Suppose 1 < m < ep/(p—1). If pt m (resp.p | m), by (A10), we get an
ezact sequence:

0 — wi /2872 — gV (a8, (r))) — T /BET — 0

(resp.0 — w‘}"’fQ/Z}qf2 — gr%p(r_q)/(p_le(Hq(Sl (r)) — <,‘)§1,‘1/Z3q,_1 —0).
The map (A14) induces the following surjective maps:
U™MSP)® — Wi B (resp. w1271,
I+7"r)®a1® - ®ag—1+— (bap(T*Q)a’cdlog(a—l) A ... Ndlog(ag=1));
V™ (MEP)® — wi /B,
I+71"2)®a1® - Qag_2Q7T+—> (b(;p(r*q)a_cdlog(a—l) A. .. ANdloglag=3)),

where @; denote the images of a; in My® and T denotes the image of x € Ox,
m Oy.
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Proof. — Set mg := ep(r — q)/(p — 1) and denote by ¢ the image of 1 € Z/pZ
in
G (S0 = ) = (7 )
under (A13). Then ¢ = T™b;7" ™% (mod fmeHJl[;l—q]). By Lemma A2, the

image of a1 ® - - - ®agy (resp. a1 ® - - - ®aq—1 ®7) by (Al4) is the class of a cocycle
of the form

(c-dlogdi A...Adlogag,*) (resp.(c-dlogai A...Adlogag—1 AdlogT,x)),
where a; denote liftings of a; in Mz,. Its image in
H? (gr2° S1(r)) = Ker (1 - af "~ C™": 29wy, /Twy,) — HO(wy, /Tw, )
(Lemma A9, 2) is
by """ Vdlogay A ... Adlogdag mod T
(resp. bgp(r_q)dlog a1 A...ANdlogag—1 AdlogT mod T).

Now the claim 1) follows from Lemma A8, 3). If a; = 14+ 7™z for z € Ox, and
a; =14+ T™Z for a lifting £ € Oy, of z, then the image in

M (gro ™™ S (r)) = BUT™ Mwy, [T Wy, )

(Lemma A9, 3) is
d(T™ by P Dgdlogdy A ... A dloga, mod T™o+™ 1)
(resp. d(T™o+mb P Dzdlogds A ... Adlogig_y1 A dlog T mod Tmo+m+1)).

Hence the claim 2) follows from Lemma A8, 1), 2). []

CoroLLARY A16. — If K contains a primitive p-th root of unity, for any
integers q and v such that 0 < q <r < p — 2, the homomorphism

HO(S1(r — q)) @ HY(S1(q)) — HI(Si(r))

induced by the product structure is an isomorphism.

We still assume that K contains a primitive p-th root of unity and denote by
Z/pZ(r)y the constant sheaf on Ye; associated to p,(K)®".
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Prorosition Al17. — If K contains a primitive p-th root of unity, for any
integer 0 < r < p — 2, the homomorphism Z/pZ(r)y — H°(S1(r)) induced
by (2.7) and (2.5) is an isomorphism.

Proof. — Choose a primitive p-th root ¢, € K of unity and put
U= NIA(/KO(CP)(_”) “(1=-G)H e WG]

where K denotes the field of fractions of W. Then, since Nk, (¢,)/x,(1—p) = P,
we have ag = N, (c,)/ Kk, (1) mod p. We choose u mod (1 — ;) as by. We assert
that the image of (¥" in H°(S1(r)) coincides with the image of 1 € Z/pZ
under (A13). Set

— Na _x) . ¢/ (=1 *
v'_NK/Ko(Cp)( ) m € OF,

where e = [K: Kp]. We have
Gp=1—uty 7¢/=-D,

If we choose a lifting w of —u~'v in k[T, we obtain a lifting 1+w-T% -1 € O,
of {p, and the image of (, in H°(S;1(1)) is

log((1+w - T/@=D)P) = 3(=1)i~1(i — 1)! (w? - T/ (p — 1))
21 € gre/v=1) g, = gre/P-D o,

By looking at the Eisenstein polynomial of m over Ky((p), we see v = —1 mod 7
and hence w mod T = by '. Hence the above element is congruent to by *T¢?/(P—1)
modulo UP¢/(P=D+10p, . Now the assertion follows from the remark in the
beginning of the proof of Proposition A15. []

Again, we consider a general K, that is, we don’t assume that K contains
a primitive p-th root of unity. Let Og+ be a totally ramified extension of Ok
of degree d. Let (S’, N’) denote the scheme Spec(Og-) with the log structure
defined by the closed point. Assume that there exists a prime 7’ of Ok such
that (7')¢ = . Choose such a prime n'. Let (V’, My/) denote the scheme
Spec(W[N]) = Spec(W|[I"]) endowed with the log structure associated to the
inclusion N — W[N] and define the exact closed immersion iy;:(S;,N;) —
(Vs My ) in the same way as iy, , using 7'. We have a cartesian diagram

(Svlfu erz) E— (Vri’ MV,{)

| IR

(Sn»Nn) D — (Vna MVn)v
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where the morphism (*) is defined by the multiplication by d on N. Let
(X', M') denote the base change of (X, M) by (S',N') — (S,N), and let
(Zy,,Mz;) and {Fz; } denote the base changes of (Z,, Mz,) and {Fz,} under
the morphism (%) above. Then one can apply the above arguments to Ok, 7/,
(X', M'"), (Z},, Mz, ) and {Fz: }. We denote by  the corresponding things. Since
(Y, My:) = (t', My) x(4,m,)(Y,My) and t’ = t,Y' =Y, we have w3, = wy. So
we identify w},, with wy.. Then the filtrations U™ on H9(Sy(r)) and HI(Sy(r)')
and the description of gr%" given by Proposition A5 and (A10) have the following
relations:

Lemma A18 (¢f. [T1, Lemma 7.5.3, 3]). — Let r and q be integers such that
0 <q<r<p-—2. Then the canonical homomorphism H(S1(r)) — HI(S1(r)")
sends U™ into U™ for m € N. Furthermore, if ep(r — q)/(p — 1) < m <
ep(r —q+1)/(p — 1), the following diagram is commutative:

0— Ki—— gr%LHq(Sl(T)) — Ky —0

Lo | B

0— K ——»gr’and HI(S(r)) —— K5 — 0.
Here

K1 =Ker (1 - ag(r_‘;')C’_lzZ-f,~1 — HT (wy))
(resp. wg,_Q/Zf,Q, resp. wl 272372,
K2 = Ker (1 - ag(r'q)C_l:Z;I, — HY(wy))
(resp. wd™'/BE! resp. wl /237,
if m =ep(r —q)/(p—1)
(resp.m > ep(r —q)/(p— 1), ptm,

resp.m > ep(r —q)/(p — 1), p | m).
Kl = wg,bl/Z;’fl ifm>ep(r—q)/(p—1),p|md

and Ky = Ko otherwise, and pr denotes the canonical projection or the identity.
Especially, if K' is tamely ramified over K, we have isomorphisms:
gr%‘ (HI(S1(r))) — gr%m (HY(S1(r)")) (meN).

Proof. — The first claim is trivial by 7' = (7")¢ and the second claim follows
from dlogT =d-dlogT'. []
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ProprosIiTiON A19. — Let the notation and the assumption be as above, and
assume d = p — 1 and that K’ contains a primitive p-th root of unity. Then, for
any integers r and q such that 0 < q <1 < p— 2, the canonical homomorphism

HI(S1(r)) — HO (S (r)) SO

s an tsomorphism.

Proof. — By Proposition A15, the filtration U* on H%(S1(r)’) is independent
of the choice of a uniformizer of K’, and hence it is Gal(K'/K)-stable. Since
[K': K] =p—1is prime to p, by Lemma A18, it remains to prove

Gal(K'/K) _

grg”rmO HI(S1(r)) 0

for mo = ep(r — ¢) and an integer 0 < m < ep such that (p — 1) { (mo + m).
Let Xcyclo (resp. xnv): Gal(K'/K) — F;, be the cyclotomic character (resp. the
character defined by x./(g) = g(«')(’') ™! mod 7). Then, since (¢, —1)- (') ~¢ €
O%, we have

chclo(g) = Q(Cp - 1)(Cp - 1)_1 mod 7rl = Xﬂ"(g)e'

The action of Gal(K'/K) on grg‘ﬁ'm H?(S1(r)"), by Proposition A15 and Propo-
sition A17, is given by the character

r—q m _ (r=a@)p. m _  mo+m
Xeyclo " X' = Xeyclo Xa! = Xqr ’

which is trivial if and only if (p — 1) | (mo + m). (Precisely speaking, we need
the fact that we may replace --- @ m by --- ® w - u for any u € 1+ 70k in
Proposition A15). []
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