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INVARIANT JETS OF A SMOOTH
DYNAMICAL SYSTEM

BY SOPHIE LEMAIRE

ABSTRACT. — The local deformations of a submanifold under the effect of a smooth
dynamical system are studied with the help of Oseledets’ multiplicative ergodic the-
orem. Equivalence classes of submanifolds, called jets, are introduced in order to
describe these local deformations. They identify submanifolds having the same ap-
proximations up to some order at a given point. For every order k, a condition on the
Lyapunov exponents of the dynamical system is established insuring the convergence
of the k-jet of a submanifold evolving under the action of the dynamical system. This
condition can be satisfied even by stable dynamical systems. The limit is a k-jet which
is invariant by the dynamical system.

RESUME (Les jets invariants d’un systéme dynamique). — Nous étudions les dé-
formations locales d’une sous-variété évoluant sous ’action d’un systéme dynamique
régulier. Afin de décrire ces déformations, nous introduisons des classes d’équivalence
de sous-variétés, appelées jets, qui identifient les sous-variétés ayant les mémes approxi-
mations en un point jusqu’a un certain ordre. Pour tout entier k, nous obtenons une
condition sur les exposants de Lyapounov du systeme dynamique assurant la conver-
gence des jets d’ordre k des images d’une sous-variété par le systeme. Cette condition
n’exclut pas les systemes dynamiques stables. La limite obtenue est un jet d’ordre k
invariant par le systéme dynamique.
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Introduction

One of the basic results for smooth dynamical systems is Oseledets’ multi-
plicative ergodic theorem [11] which describes the asymptotic behaviour of a
linear system. To obtain information on a smooth nonlinear dynamical sys-
tem, (¢¢)ter (T = Z or R), defined on a smooth manifold M, one may apply
Oseledets’ theorem to a linearization of the system. Under some assumptions,
the theorem asserts that there exist reals Ay > --- > A, and, for almost every
point = € M, a splitting of the tangent space T, M into measurable subspaces

T.M =F(z)® - & E.(x),

such that the nonzero vectors of a subspace F;(x) are expanded exponentially
fast by time evolution, with \; as asymptotic rate. The real \; is called the
i-th Lyapunov exponent of the dynamical system.

Pesin theory gives a nonlinear extension of Oseledets’ theorem by defining a
nonlinear analogue of the subspace

Vi=E1®---DE;

for i € {1,...,r} such that \; > 0. It is called the unstable manifold associated
with \; and consists of the points y satisfying

t@m% Log(d((ﬁ*t(‘%‘% ¢7t(y))) < =\

Another extension of Oseledets’ theorem can be obtained by noting that this
theorem gives information on the asymptotic behaviour of the tangent space
of a submanifold under the effect of a dynamical system. For instance, assume
that (¢, )nez is a smooth, reversible and ergodic dynamical system on R,
satisfying Oseledets’ theorem. If V' is a subspace whose dimension equals that
of V, for some s € {1,...,7} and such that VN@P;_, ,, E; = {0} almost surely,
then the tangent space at x of the submanifold

converges in probability to Vi(x), as n tends to infinity.

It is therefore natural to look for the asymptotic behaviour of higher-order
approximations. M. Cranston and Y. Le Jan have studied the second order ap-
proximation for isotropic Brownian flows in RY [8], [3] and for random walks
on diffeomorphisms of RY [9], [2]. Notably, they have established in [2] that
the condition, As11 — 2As < 0, implies the convergence in probability of the
second fundamental form of M, (z) at x. Thus, the second fundamental form
of M, (x) at x may converge even if A\; < 0, that is when no unstable mani-
fold is associated with As;. For example, the Lyapunov exponents of isotropic
Brownian flows in R? always satisfy the condition Ay — 2A; < 0. The aim of
this paper is to extend Oseledets’ theorem for higher-order approximations. By
analogy to jets of maps, equivalence classes of submanifolds, also called jets,
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INVARIANT JETS OF A SMOOTH DYNAMICAL SYSTEM 381

are introduced in order to describe any order approximations of a submani-
fold at a given point. A convergence result is proved for any order jets of a
submanifold evolving under the effect of the dynamical system (¢, )nez. This
result for the 2-jets corresponds to the one M. Cranston and Y. Le Jan have
established for the second fundamental form. However, the study of the third
approximation reveals the specificity of the second fundamental form. Indeed,
the second fundamental form of M, can be written as the partial sum of a
“geometric series” that converges when Ag11 — 2As < 0. In contrast, formulas
which characterize approximations of orders greater than two cannot be used
directly; a convergence result can be proved only after reorganizing these for-
mulas. The limits of the jets are in a way invariant by the dynamical system
and vary continuously on sets defined by Y.B. Pesin [12] as it is the case for
Oseledets’ spaces V;,i =1,...,r.

These results will be proved for random dynamical systems (RDS) as they
are defined by L. Arnold in [1]. RDS cover deterministic dynamical systems
as well as important classes of random processes (random walks in a group of
transformations [5], flows generated by a random or a stochastic differential
equation [7], etc.).

The paper is organized as follows. The first Section presents the setting and
the results for any order approximations: the generalization will be proved for
a local RDS in RY with a fixed point and the result for a general RDS on
a manifold will follow as a consequence. The first three approximations are
studied successively in Section 2, presenting the ideas and the inequalities on
which the proof of the asymptotic behaviour of any order approximations is
based. Finally, Section 3 gives the iterative process allowing to describe the
approximations for orders greater than two and to prove the convergence results
with the help of the inequalities established in Section 2.

1. A nonlinear extension of the Oseledets’ theorem

1.1. The local random dynamical system. — Let (2, .4,P) be a prob-
ability space and let 6 :  — Q be an invertible transformation such that P
is -ergodic. Throughout the paper, one considers a C> local RDS on R¥Y
(where N is an integer greater than one) over 6 which fixes 0. Such a sys-
tem can be generated by a measurable mapping ¢ : D — RY where D is a
measurable subset of Q x RY with the following properties: for all w € 2,

(i) D(w) := {z € RY such that (w,z) € D} is an open neighbourhood of 0
in RV,
(ii) ¢(w): D(w) — RV is a C*° diffeomorphism onto its image, which fixes 0.

The set of such applications will be denoted by C.
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Applications ¢,, for n € Z are then defined by
dO" o0 ifn>1,
on =< 1Id if n =0,
p~LO) o0 (O7Y) ifn < —1.
Each map ¢, is well-defined on a neighbourhood of 0 in RV and is a C*
diffeomorphism from a neighbourhood U,, of 0 onto another one.
The first derivative of ¢(w) at 0, denoted by A(w), generates a linear RDS
(Ay)nez over 0, where A, (w) is the first derivative of ¢, (w) at 0:
A1 A ifn>1
A, =< 1d if n=0,
A7) - AT O = A, (M) ifn < 1.
Oseledets’ theorem can be applied under the following integrability condition:
Log™ ||AXY] € LY(Q, P).

It gives information about the growth rate of ||A,v|| for each v € RY:

TueOREM 1.1 (V.L Oseledets [11], [10]). — There exist a @-invariant set
Q € A of full measure, reals A\; > -+ > A, Nand positive integers di, . .., d, with
di +---+d. = N, such that for all w € Q, there is a measurable splitting of
RY into RN = By (w) @ --- @ E,.(w), satisfying the following properties: for all
ie{l,...,r}

. dlm(El(w)) = di,

o Aw)E;(w) = E;(0(w)),

e n 1 Log||An(w)v|| converges to \; uniformly in v € E;(w) N SN=1 as

n tends to 400 or —oo

For i € {1,...,r}, the integer d; is called the multiplicity of the i-th Lya-

punov exponent \;.

1.2. A random family of submanifolds. — Fix s € {1,...,7r}. Denote
the subspace @;_, E; by E* and its dimension by d, i.e. d = > ., d;. The
restriction of an application £ € C to R? defines a parametrization of a random
family of d-dimensional submanifolds of RY passing through 0: for all w € Q,
there exists an open neighbourhood, W (w), of 0 in RY, such that

Vi (w) = &(w) (Up(w) N W (w) NRY)
is a d-dimensional submanifold of RY.

By applying the RDS (¢,,) between times —n and 0, one defines a random
family of d-dimensional submanifolds of R passing through 0, denoted by V,,:

Vi = (07")(Va(077)).
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The aim of this paper is to study the asymptotic behaviour of the approxima-
tions of the sequence (V,,), at 0.

1.3. Description of any order approximations of a submanifold. —

With the help of local parametrizations, equivalence classes of submanifolds will
be introduced in order to describe all submanifolds having the same contacts up
to some order at 0 (proofs of the statements are developed in the Appendix A).

1.3.1. Jets of maps. — For two Euclidean spaces E and F, let C§°(E, F)
denote the class of C*° maps defined on a neighbourhood of 0 in E with values
in F and let C§% (£, F') denote the subclass of maps in C§°(E, F') that fix 0.

DEFINITION 1.2. — Let k € N*. Two maps f,g € C§°(E, F') are said to “have
a contact of order at least k at 07 if f(0) = g(0) and if for all j € {1,...,k},
DI f(0) = D7g(0).

This relation is an equivalence relation on C§°(E, F'). The equivalence class
of a function f at 0 is denoted by j&(f) and called the “k-jet of f at 0. For
a subclass F of C§°(E, F), JE(F) will be the set of k-jets at 0 of applications
of F. The space J¥(F) is endowed with the distance dj defined by

di (45 (1) 3 (9)) = max(|[ £(0) = g(0)I|. [|D*f (0) = D*g(0) ||, € {1,....k})
for every f,g € F.

1.3.2. Parametrizations
DEFINITION 1.3. — Let S be a d-dimensional C* submanifold of RY, let z
in RY and let E be a d-dimensional subspace of RY. A map f € C5°(E,RY)
is called a “parametrization of S at x” if
(i) f is an homeomorphism from a neighbourhood U of 0 in E onto its image;
(ii) Df(0) is injective;
(iii) f(0) = ;
(iv) f(U) =V NS where V is a neighbourhood of 0 in RV,
The set of maps in C§°(E,RY) satisfying properties (i) and (ii) are called
embeddings and thus will be denoted by Embg®(E, RY) and the subset of maps
which also satisfy (iii) will be denoted by Embg°, (E,R"Y).

REMARK 1.4. — To shorthand the notations, R¢ will denote the vector sub-
space R? x {0}V 4 of RY for every d € {1,...,N}.

1.3.3. Contacts of a submanifold at 0. — Using jets of parametrizations, one
may define jets for smooth submanifolds of R™V:

DEFINITION 1.5. — Let k be a positive integer. Two C* submanifolds S
and S, of RV passing through 0 have a “contact of order at least k at 07 if
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there exist d € {1,..., N} and two parametrizations fi, fo € Embg%(R%, RY)
of S; and Sy at 0 such that j(’f(fl) = j(’f(fz).

This relation defines an equivalence relation on the set of C*° submanifolds
of RV passing through 0 (see Lemma A.5). The equivalence class of a C™
submanifold S will be denoted by j&(S) and called the “k-jet of S at 0”. The
set of all k-jets at 0 of C°° submanifolds of RY will be denoted by JF(RN).
If S is a C* submanifold of R" passing through 0 and h € Embg’, (RN RN),

then the k-jet of h(S) at 0 depends uniquely on j&(h) and j¥(S). Thus one can
define an operator x on J¥ (Embg (RN, RY)) x JF(RN) by setting

36 (£)-36(8) = jo (1(5))
for any f € Embg% (RN, RY) and for any C* submanifold S passing through 0.
Consider now a sequence (S,),, of d-dimensional C* submanifolds of RV

passing through 0.

DEFINITION 1.6. — The sequence of k-jets of S,, at 0 is said to converge to
the k-jet of a submanifold S at 0, if there exist a sequence of parametrizations
fn € Embg(RYRY) of Sy, at 0 and a parametrization f € Embgy(RY, RY)
of S at 0 such that (j&(f,))n converges to j&(f).

In Section A.3, it is shown that this definition is consistent and is equivalent
to the convergence in a complete metric space.

1.4. Statements of results

1.4.1. The asymptotic behaviour of the jets of the submanifolds V,, at 0. —
The description of the asymptotic behaviour of (5%5(V,,)), will use an auxiliary
sequence of submanifolds (U4, ), tangent to E° at 0 and defined as follows:

VneN, Up:=¢u(0")(Un(07")NE*(07"))
THEOREM 1.7. — Let k be an integer greater than one.  Assume that
Log™ ||A%Y|| and Log™ ||D?¢(0)|| for all j € {2,..., Kk}, lie in L (2, P).
o If \sy1—kAs <0, then the sequence (j§(Un))n converges P-almost surely.
The limit is a k-jet denoted by S, which is “invariant by the RDS”
in the sense that j§(¢).S*) = S*)(0) P-almost surely. A description of

the limits SYU) for j € {1,...,k} can be obtained iteratively (see Proposi-
tion 3.8).

o If \ey1 — kX < 0 and DEO)(RY) N @D;_,,, E; = {0} P-almost surely,
then the sequence (j& (Vn))n converges to S*) in probability.
REMARK 1.8. — When k = 1, the assumption A\s11 — kAs < 0 is satisfied.

Theorem 1.7 asserts that the tangent space Ty, converges in probability to £*°.
As a consequence of Oseledets’ theorem, one can get a more precise statement:
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let IT and II,, for every n € N be the orthogonal projection onto £* and TyV),
respectively.

o If DE(0)(RY) NP, Ei = {0} P-almost surely, then for all € > 0, the
sequence (e~ Asr1mAste) HHn —1II||)n, converges to 0 in probability.

A proof of this last statement will be presented in Section 2.1. Let us note
that VN @P;_,,, Es = {0} P-almost surely for almost every subspace V' in

the d- Grassmanman Gd(RN ), with respect to any diffuse probability measure
on Gd (RN)

REMARK 1.9. — For k = 2, Theorem 1.7 gives the same statement as the one
proposed by M. Cranston and Y.Le Jan [2]. The limit S@ is the set of C>
submanifolds passing through 0, whose tangent space at 0 is £® and whose
second fundamental form at 0 is defined by the following series:

> (11145 (0~ 62)D26(6)(0)(A ST, A_TT),

j=1

REMARK 1.10. — The proof of Theorem 1.7 for any order k uses the following
fact: to establish the convergence of the k-jets of a sequence (.S,) of submani-
folds at 0, it suffices to prove that the derivatives up to order k of a particular
parametrization at 0 of these submanifolds, called “the orthogonal parametriza-
tion”, converge (definition and properties of orthogonal parametrizations are
presented in the appendix A, Sections A.2 and A.3). The proof of the conver-
gence of the derivatives of an orthogonal parametrization of U,, and V,, at 0
is based on an expansion of the derivatives with the help of diagrams (see
Section 3). The aim of the development is to express the derivatives as a com-
bination of terms that converge under the assumptions of Theorem 1.7. The
study of the third derivative shows that such a development is not simply given
by derivation, but that the terms obtained by derivation have to be rearranged.

REMARK 1.11. — The limits SU) for j € {1,...,k}, are invariant by the RDS
since Un+1 = ¢(0~1) (U, (0~ 1)) for all n € N and the composition of two k-jets
defines a continuous map (Lemma A.1).

As 0 preserves the measure P, information on the asymptotic jets at 0 of the
submanifolds V,,(0™) = ¢,,(V,,) can be deduced from Theorem 1.7:

COROLLARY 1.12. — Let k be an integer greater than one. Assume
that Log™ ||A*'|| € LY, P) and that Log™ || D7¢(0)] e Ll(Q P) for all
G €2, . k}. If Asp1 — kX5 < 0 and DEO)(RY) N EP)_ s+1 = {0} P-almost

surely, then the k-jet of ¢, (Vy,) at 0 converges in law to S*
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1.4.2. Jets of the unstable manifolds. — When As > 0, the assumption on the
Lyapunov exponents, As11 — kAs < 0, is satisfied for every positive integer k.
With the help of Pesin theory [12], [13], one may give a geometric interpretation
of the limits S*):

COROLLARY 1.13. — Assume that for all k € N*, Log™ || D*¢*1(0)|| belongs
to LY(Q,P). If Ay > 0, then S®) is P-almost surely the k-jet at 0 of the local
unstable manifolds tangent to E° at 0.

Proof. — The construction of the local stable and unstable manifolds for
smooth random dynamical systems, follows from Theorem 5.1 of [14]. For the
unstable manifolds at 0, the statement is the following;:

THEOREM 1.14 (D. Ruelle, 1979). — Assume that for all k € N,
Log" [ D*¢*1(0)|| € L}(2, P).

There exist a O-invariant set Q" € A of full measure, measurable functions
B>a>0andy >1onQ" and a sequence ({p), of positive integers that
converges to infinity such that:

(1) if X\ is a positive real distinct from the Lyapunov exponents, then for all
we N,

Vi w,a) = {y € B(0,a(w)), Yn €N, [[¢p-n(w)y)] < Blw)e ™}
is a C™ submanifold of B(0,a(w)), tangent at O to the subspace
ViAW) ={v e RY, Tm - Log|Dogon(w)v] < -A}:
(ii) if y, z € V¥Mw,a) then for all n € N,
[6-n(@)(y) = d-n(@)(2)]| < ¥(W)lly - 2l;
(iii) for allp € N, V*Mw,a) C ¢y, (0~ w) (V207 (w), a)).

Let A € ]Ast1,As[ be a positive real. By property (iii), the k-jets
at 0 of the local unstable manifold V**(w,a) and of the submanifolds
b, (0~ rw) (VU (0~ w, ) coincide for every p € N and k € N*. By The-
orem 1.7, for every k € N*, the k-jet of ¢, (0~ w)(V" (0w, a)) at 0
converges in probability to S®*) (w), as p tends to infinity. Therefore, for every
k € N* the k-jet of V" (w, ) at 0 is P-almost surely equal to S (w). O

1.4.83. The case of a random dynamical system on a manifold. — Let
(M,{-,")z,z € M) be a C* Riemannian manifold of dimension N. One may
rewrite Theorem 1.7 in order to describe the asymptotic local deformations
of a random family of submanifolds of M under the action of a smooth RDS.
Let (¢n)nez be a smooth ergodic RDS on M. It is equivalent to consider a
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probability space (£2,.4,P), an invertible transformation 6 :  — € such that
P is #-ergodic, a C'*° diffeomorphism of M denoted by ¢ and to set

(@ Ho--0p ifn>1,
e 1O ) oo (7Y ifn< 1

One will assume that the RDS (5, )nez, has the following properties:

o there exists a probability measure p, on @ x M with marginal
P on €, which is invariant and ergodic for the skew product 6:
(w, z) = (bw, p(w)(2));

o Log® || Twp(w)®!|, belongs to L' (Q x M, ).

Thus by Oseledets’ theorem, there exist a f-invariant set Q2 of full [-measure,
reals \y > --- > A\, and positive integers di,...,d, with d; +---+d, = N,
such that for all (w,x) € Q, there is a measurable splitting of T, M into T, M =
Ey(w,2)® - -®E, (w, z), satisfying the following properties: foralli € {1,...,7}

o dim(E;(w,x)) = d;;

e Top(w)Ei(w, z) = EB;(0(w, z));

o (n7!Log||Ton(w)vl|z) converges to A; uniformly for v in Ej(w,z) such
that ||v||l, = 1, as n tends to +oco or —o0

1.4.5.1. Contacts of a submanifold of M. — The jets of maps between two
C* manifolds ¥ and ¥ are defined by taking local charts:

DEFINITION 1.15. — Let fi, f2 be C* applications mapping ¥ into 3, let
be a point of ¥ and let k € N*. Assume that fi(z) = fa(z). “f1 and fo have
a contact of order at least k at x” if for any chart ({,U) of ¥ at « and for any

chart (5, U) of ¥ at f1(z), jg(fofl o( 1) :jg(éofg o¢71).

The equivalence classes for this equivalence relation are also called the k-jets
at x. One proceeds similarily to define jets of a C'*° submanifold of M:

DEFINITION 1.16. — Let k € N* and let S and S be two C°° submanifolds of
M passing through a point z. “S and S have a contact of order at least k at x”
if for every chart (¢,U) of M at z, (S NU) and ((S NU) have a contact of
order at least k at 0.

The relation “having a contact of order at least k at x” is an equivalence
relation on the set of C'°° submanifolds of M passing through . The class
of a submanifold S of M for this relation will be called “the k-jet at = of S”
and denoted by j¥(S). The set of k-jets of all C> submanifolds of M will be
denoted by J*(M) and the set of k-jets at = by J¥(M).
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Actually, if there exists a chart (¢,U) of M at x such that ((SNU) and
¢(S NU) have a contact of order at least k at 0, then it is also true for any
other chart of M at x (see Lemma A.10).

One can define an operator * on J*(Diff**(M)) x J*(M) by setting

Gr ()5 (S) = G (F(S))
if f € Diff**(M), x € M and S is a C* submanifold of M passing through x.

It remains to define the convergence in J*(M). In the case M = R, the
natural way to define the convergence is to use parametrizations:

DEFINITION 1.17. — For every n € N, let S,, be a d-dimensional submanifold
of RV passing through a point z,,. “The sequence (j% (Sy))n converges to the k-
jet of a submanifold S at a point x” if there exists a sequence of parametrizations
fn € Emb3S, (R*RY) of Sy, at z, and a parametrization f € Embg, (R?, RY)
of S at = such that (j¥(f,)). converges to j&(f).

As usual this definition can be extended in the case of any manifold M by
introducing charts:

DEFINITION 1.18. — Let (z,,) be a sequence of points of M, let x € M and
let S,,, for n € N, denote a C'°*° submanifold of M passing through x,. “The
k-jet of Sy, at z,, is said to converge to the k-jet of a submanifold S at x as n
tends to +00” if (x,), converges to x and if, for every chart ((,U) of M at z,
the sequence (j(’?( (¢(SnNU)))n converges to jE(¢(SNU)).

mn)

Actually, it suffices to verify the criteria for one chart to prove the conver-
gence (see Lemma A.13).

1.4.3.2. Euzistence of the invariant jets. — Let C(M) denote the set of random
parametrizations of M, that is the set of measurable maps ( : D — M where
D is a measurable subset of Q x M x RN such that, for all (w,z) € Q x M:
e D(w,z):={z € R" (w,x,2) € D} is an open neighbourhood of 0 in RY;
o ((w,z): D(w,z) — M is a C° diffeomorphism onto its image satisfying
C(w,2)(0) = x.

Without loss of generality, one may consider a random parametrization
¢ € C(M) of M such that for all (w,z) € @ x M, D{(w,z)(0) is an isometry
from the Euclidean space (RY, (-,-)), onto (T, M, (-,-),). The subset of C(M),
which consists of applications having this property, will be denoted by Cq(M).

Let £ € C(M). For every n € N*| there exists a neighbourhood U, of 0 in
RY, such that ¢, o ¢ is a C* diffeomorphism from U,, onto its image. For
(w,2) € A x M, £(w, 2)(Up(w,z) NR?) is a C* d-dimensional submanifold of

TOME 129 — 2001 — N© 3



INVARIANT JETS OF A SMOOTH DYNAMICAL SYSTEM 389

M passing through . Applying the RDS (p,,) between times —n and 0, gives
a d-dimensional submanifold of M passing through z, denoted by V, ¢(w, x):

Vie(w,x) = pp(07"w) o §(§‘"(w, ac)) (Un(é_"(w, x))N Rd).

For ¢ € C(M), the map ®., defined by ¢~Y(f) o ¢ o ¢, belongs to C and gen-
erates a local RDS (@, ¢)nez over 0. Tts Lyapunov exponents are Ai,..., A,
and Oseledets’ spaces denoted by E¢;, i € {1,...,r} satisfy the equalities
E¢i = Do((E;) for alli € {1,...,r}. Applying Theorem 1.7 to the probability
space (Q x M, A® B(M), ), endowed with the transformation 6, and to the
local RDS (@, ¢)nez, gives asymptotic results for the jets of the submanifolds
Vi e(w,x) at z:

COROLLARY 1.19. — Let k € N* and let £ € C(M). Assume that
Log™ | Top(w)™![| € L' (2 x M, A® B(M), 1)
and that there exists ¢ € C1(M) such that Log™ | DI®¢(0)|| € L*(Q x M, ) for
all j €{2,...,k}.
If Asy1 — kXs <0 and DEO)RY) NP, E

the sequence (5%(Vy ¢(w,)))n converges in pmbabzlzty. The limit denoted by

S®) does not depend on & and is invariant by the RDS i.e. for p-almost every
(w,x) € A x M,

= {0} p-almost surely, then

Ji (p(w) * 8®(w,2) = S® (B(w), p(w)(2)).-

1.4.8.3. Continuity of the invariant jets. — Let us introduce the subsets de-
fined by Pesin [12] on which the Oseledets’ subspaces are continuous. For € > 0,
R >0and w € Q, let Ap(w) denote the set of points x in M satisfying the
following properties:

o (wz)e
o foreveryneZ, meZic{l,...,r} and v € E;(0™(w,x));

< RemAH(Inl+lml)e

(1) HTS@n(ém(wvx))“”<pm+n(w)(z) 10l () ()3
@ e @2l = BTl 00
e if I and J are two nonempty disjoint subsets of {1,...,r} then, for every

m € 7, the sinus of the angle v(E; (8™ (w, x)), E;(0™(w, z))) between the
vector spaces

E19mwx @E (w, ) andEJHmwx @E@mwx
el e

is greater than R—le~I™le,
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Let us note that for p-almost every (w,z) € € x M, there exists R € N*
such that € Ap ¢(w). These subsets are not invariant by the RDS (¢,,), but
have the following properties:

PROPOSITION 1.20. — Let0 < € < +min(\; —Ai1,7 € {1,...,7}) and R > 0.
For every w € Q,

e Ap(w) is a closed subset of M;

o there exists a real T > R such that o(w)(Ag.c(w)) C Ar.(8(w));

o The union Ac(w) = UpsoAre(w) ds invariant by the RDS, i.e.
p(w)(Ae(w)) = Ac(0(w));

o x+— Ei(w,x) is continuous in the subset Ap (w).

The proof of Proposition 1.20 is the same as Pesin’s proof of Theorem 1.3.1
in [12]. A continuity result for the invariant k-jet S (w,.) on Ag(w) can
be deduced by taking a particular parametrization ¢ € C;(M); ¢ will be the
composition of the C'*° exponential map associated to the C'*° Riemannian
metric of M (denoted by Exp) and a global trivialization of the tangent bundle
T M which is isometric on the fibers. Before stating the continuity result, let us
introduce a notation: ® will denote the map ¢ lifted by the exponential map
to TM; for (w,z) € Q x M,

Q(w,z) = Exp;(lw)(I) op(w) o Exp,

(there exists a measurable positive function ¢ such that, for each (w, z) € Qx M,
®(w,z) is well-defined on the §(w,x)-open ball of T, M centered at 0 and is
a C° diffeomorphism onto its image).

COROLLARY 1.21. — Let us assume that
/ Log+H(Tm<p(w))i1Hdu(w,x) and /Log+ supHDj@(w,x)(O)HdP(w),
Qx M Q zeM

are finite for every j € {2,...,k}. Let s € {1,...,r} and let d denote the
dimension of the subspace E* := @;_; E;.

If As1 — kXs < 0, then there exists a random k-jet of d-dimensional sub-
manifolds of M at = denoted by S (w, x) such that:

o SW) s invariant by the RDS (¢n)nez;

e For P-almost every w € Q, x — S®(w,z) is continuous in Ar(w), R
and € being positive numbers such that

) min (55X, 1(Ai = Aig1),i € {1,...,r —1}) if Xs >0,
€
min (ﬁ(k’/\s - )\5+1), i(/\z - )\i+1),i S {1,. ey, T = 1}) Zf/\s S 0.

The proof of Corollary 1.21 is postponed until Appendix B because it will
take up some details of the proof of Theorem 1.7.
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2. The first three approximations

2.1. Convergence of the tangent space of V,, at 0 toward E°. — Let
IT and II,, denote the orthogonal projections onto E° and TyV,, respectively.
The purpose of the subsection is to establish a lower bound for the convergence
speed of IL,, to II as n tends to +oo (Proposition 2.1). This lower bound will
be useful in the study of the asymptotic behaviour of any order approximations
of V,, at 0.

PROPOSITION 2.1. — Let € > 0. If DE(0)(R?) N @D;_, ., Ei = {0} P-almost
surely, then the sequence
( max ein(/\3+17/\3+6)7k(/\3+6)7€(7)\’+1+6)HA,g(Hn _ H)Ak(eik)lo
k,£e{0,...,n} n

converges in probability to zero.

The proof of Proposition 2.1 uses two consequences of Oseledets’ theorem.
First:

LEMMA 2.2. — Leti € {1,...,7}. The sequence (n~' Log || An(07™) g,0-) | )n
converges P-almost surely to ;.

Proof. — The sequence (Log | An(07")g,9-)l)n is subadditive since
A,(0~™ME;(07™) = E; for all ¢ € {1,...,7} and n € N. Thus, one may
apply Kingman’s subadditive ergodic Theorem [6]:

THEOREM 2.3 (J.F. Kingman, 1968). — Let (X,.A,m) be a probability space,
let T : X — X be a measurable transformation such that m is T-invariant and
let (fn)n>1 be a sequence of measurable functions from X to RU {—oo} such
that

() £ € LN(X, A m);
(i) (fn)n>1 is subadditive, i.e. for alln,m > 1, foym < fn + fm(T™).
There exists a measurable function, f: X — RU{—oo}, T-invariant satis-
fying:
o fTe LY (X,m);

e lim n7'f, = f m-almost surely;
n—-+o0o

. lirf n=t [ fo(z)dm(z) = inf, n=t [ fo(z)dm(z) = [ f(x)dm(z).

The sequence (n~'Log ||A7n(07") g, 0-)|l)n>1 has a P-almost surely limit
as n tends to +oo. Since P is f-invariant, its limit is almost surely equal to the
limit of the sequence (n~' Log || Ay g,]), i-e. A O

The second result required states that the angle between two subspaces F;
and FE; in Oseledets’ splitting does not decrease exponentially fast to zero (see
for example, [1] for a proof):

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



392 LEMAIRE (S.)

LEMMA 2.4. — For every i € {1,...,r}, let m; denote the projection onto E;
along @ ;,; Ej. Then

hrf — LogHm )H =0 P-almost surely.

Let us now return to the convergence of the tangent space of V,, at 0 to E*

and prove a preliminary result:

LEMMA 2.5. — Let € > 0.

1) Let k € {1,...,s}. The sequence (e_"(’\5+1_>"*‘+€)H(Hn - H)\EkH)n con-
verges to zero in probability.

2) The sequence (e~ "Ps+1= 2+ |1, —1I||),, converges to zero in probability.
3) Let te{s+1,...,d} and k € {1,...,d}. The sequence

( —n(Ar—max(Ag,As +e)||7r£( _ H)\Ek”)n
converges to zero in probability.

Proof. — To prove Lemma 2.5, fix a random basis (u1,...,uq) of DE(0)(R?).
The following notations will be used:

o for a random vector v and n € N, set v(™") = A, (6~")v(6~");
o for d random vectors (v1,...,vq), for any i € {1,...,d} set
=v1 A---Avg and yszl/\~-~/\vi_1 Avig1 A Avg.

1) Let k € {1,...,s} and let e( ) be a unit vector of Eg(w). It follows from
the equality (II — H n)e = (I-IL,)e that

le A ™ = [[1=Th)e Au| = (1 =TLa)e] - u™].

First let us bound |le A u(" |. For a family of indexes (i1, ...,iq) € {1,...,7}4,
the p-vector e A (i, A -+ Am,)(u™) is equal to zero except when, for every
j €{1,...,r}, the number ¢; of projections in a subspace E; is smaller than d;
(the dimension of E;) and when the number of projections on the subspace Ej,
is smaller than dj — 1. If these two conditions are satisfied, then

D g <) didi+ Aepr — Mk
j=1 i=1

and
lleA (i A A md)(g("))H
e A AT A6 s, (07) A+ Ay (67 (w6
< [ ATAR O™ 8y anr o || -l 07w, (07
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By Oseledets’ theorem, for all € > 0, there exists a P-almost surely finite
random variable C¢, such that for all n € N,

<C. en(2§:1qj Ajte)

A% An(07™) (B, A (0-m)

Moreover, for all i € {1,...,r},

o1 —n
lim —Log(||m:(6~")[) = 0

n—-+oo n

P-almost surely. Thus, for all € > 0, there exists a P-almost surely finite random
variable C., such that for all n € N,

(3) ||e/\g(”)|| < C.exp (n(idj/\j+)\5+1—)\k+e>>.
j=1

Consider now ||u(™||~!. Let 7 denote the projection onto E* along D1 Ei
As the dimension of AYE* is equal to 1,

™| 7" = | a4, (0-")u(0~)|
< [|A%me || [ ATAR @) AT O (O]
< At || A AnB Y pae o | A% (O w(07))]
By Oseledets’ theorem,

’—1

.1 n
lim —LogH/\dAn(G IAdEs (6-m)

n—+oon

=D _djA;
j=1
P-almost surely. Thus, for all € > 0, there exists a P-almost surely finite random
variable C. such that for all n € N,
”Q(n)H—l < Ceen(—E;l)\idi—o—e) . H/\dﬂ_s(o—n)u(a_n)”—l'

By assumption, D¢(0)(RY) N @;_,,, Ei = {0} P-almost surely. Thus
Ams(uw) # 0 P-almost surely and the sequence (e™"¢|| A% 75(0~™)u(0~")||71)
converges to zero in probability. Therefore for all € > 0, there exists a sequence
of random variables (Ce ), that converges to zero in probability, such that for
alln € N,

(4) ”Q(n)”—l < Ce,ne"(_Z;l’\idi“).

In conclusion, for all € > 0 there exists a sequence of random variables (Ce p)n
that converges to zero in probability, such that for all n € N,

”(H - rI'rL)\E;C H < Ce,nen(ks+likk+36)'

2)Fix 0 <e<As—As41 and 0 < § < 1. For n € N, set
Ay s = {w € Q such that e "=+ =2F | ([ _II)IT|| > 6}.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



394 LEMAIRE (S.)

The first point of Lemma 2.5 states that P(A,,_5) converges to zero as n tends
to +00. On the other hand, Theorem A.4 established by T. Kato implies that
if w ¢ A,s, then

[T () = (@) | = || -TLy(@)TI(w)]| < GenPrre o),
Thus, the sequence (||IL,, —II]| e_n(’\‘**l_ASJFE))n converges to zero in probability.

3)Let £ € {s+1,...,d}, k € {1,...,d} and let e be a unit vector of Ej.
Then 7o (I1,, —II)(e) is equal to 7,11, (e). The decomposition of the vector IL,, (e)

on the basis (u™)1<i<q gives:

d
() = D (=) uf™ (e Au™M, u) - [lu®]

i=1

By Oseledets’ theorem, for every ¢ > 0, there exists a P-almost surely finite
random variable C¢, such that for all n € N,

e (u™)]| = [[An (6" yme (07" (us(6™™))|| < Ceen o).

A proof similar to the one used for upper bound (3) shows that
(5) [le A Q(n)MH < C.exp (n(Z)\jdj — max(Ag, As) + 6))
j=1

It follows from inequalities (4) and (5) that for all € > 0, there exists a sequence
of random variables (C¢ ), which converges in probability to zero, such that
for all n € N, ||mIL,(e)|| < Ceﬁne"(k’f_’“ax(“*kf)‘“). O

Let us derive Proposition 2.1 from Lemma 2.5:

Proof of Proposition 2.1. — Let k,¢ € {1,...,n}. It suffices to decompose
A_(IT,, — 1) A (6~*) using the projectors 7y, . .., 7, and to apply Lemmas 2.4,
2.5 and Oseledets’ theorem to each term of the decomposition:

e Ifi,j€{1,...,s}, then
HA—NTi(Hn — H)ijk(G_k)||

< HA_EIEi . ”m” (1L, — H)IE]'H . HAk(e_k)\Ej(ew)H ) Hﬂj(e_k)H
< O, el At FnAsri=2j+e)+h(Aj+e)

It follows from ¢,j < s and k < n that A\;(k —n) < Ag(k —n) and
—X; < =X. Thus

| A—emi(TL, — T Ag(075)| < Cope! (A4 Tn 0Ntk o)
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e Ifie{l,...,s} andj6{3+1 ...,7}, then
||A_g7Ti(Hn 7TJAk H

<A g | il - T = T (| 405 5,0 - [0
< O, !XTt =+ +h(X +€)

< Ce,nee(*/\s+€)+n(/\s+1*/\s+€)+/€(>\s+1 +e)

e Ifie{s+1,...,7} andje{l .., 7}, then
HA,gm(Hn M)m; Ar (6 H

<| N ARE) 00l I3 (675
< Ce,ne@(f)\i+e)+n()\i7max(kj,)\5)+e)+k(kj+e) )

i1

AslkE<n, (n—0N < (n—£0)As41 and
> if j <s, then —nmax(\;, As) + Ajk = (K —n)A; < (k—n)As.
> if j > s+ 1, then —nmax(\;, As) + A\jk < —nAg + EAgt1.
Thus
| A_gmi (L, = ) Ap(67F)|| < C et Aemrt Qo= At thQate),

Therefore, for all n € N and k,¢ € {0,...,n},
HAJ(Hn _ H)Ak(efk)H <C. neé(f&+1+e)+n(z\s+1f>\5+e)+k(>\5+e).

2.2. Asymptotic behaviour of the second order approximation. —
This section presents a proof of the announced results for the second order
approximation of V,, at 0. Let

e v, denote the restriction of ¢, (0~") to E*(6~") N U,(0~™) and

e 7, denote the restriction of ¢, (07™) 0 £(67™) to W(0~") N U, (6~™).

The orthogonal normalizations of v,, and -, at 0 designate the parametriza-
tions of U,, and V,, at 0 defined in a neighbourhood of 0 by

Y, :=vpo(dowv,) ol and T, :=~,o0 (,o0v,) ' oll,.

According to Lemma A.9, a sufficient condition for the k-jets of U;, (V, resp.)
to converge at 0 is that the sequence (D’Y,,(0)), ((D?’T,(0)), resp.) converges

forall j € {1,...,k}. Thus, to prove the convergence results for the 2-jets of U,
and V,, at 0, it remains to establish the following proposition:

PROPOSITION 2.6. — Assume that Log™ (|| A¥Y||) and Log™ (|| D?¢(0)||) belong
to L'(92, A, P).
o If \sr1 —2)s <0, then (D*Y,(0)), converges P-almost surely to

o0

S =3 "I A1 (6~ % D)D>¢(07F)(A_xIT, A_4IT).

k=1

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



396 LEMAIRE (S.)

o If Asy1 — 25 < 0 and DE(0)(RY) N P E; = {0} P-almost surely,

i=st1 i
then (DT,,(0)),, converges in probability to S®).

The following proof of Proposition 2.6 is an adaptation of M. Cranston and
Y.LeJan’s proof [2] to the general case of random dynamical systems. It
proceeds in three steps:

o computation of an expression of the second order derivatives of Y,
and I'y;

o proof of the convergence of (D2Y,,(0)),, when Asy1 — 2)\s < 0;
« proof of the convergence to zero in probability of (D?Y,,(0) — D?T,,(0))n,
when Asy1 —2Xs < 0 and DE(0)(RY) NE@D;_, ,, Ei = {0} P-almost surely.
2.2.1. Ezxpression of the second order derivative. — More generally, given an
integer n € N*, applications ¢; : Q — Diffg"(RY) for i € {1,...,n} and
a d-dimensional subspace W,, of RY, one may consider the restriction v, of
p10-- -0, to aneighbourhood Wn of 0 in W,, and its orthogonal normalization

v, = ¢n o (pn © wn)_l O Pn,

defined on a neighbourhood ﬁn of 0 in RY, where p, designates the orthogonal
projection of RY onto Im(D1),,(0)).

These maps will be used in two cases:

Case1: ¢p; = ¢p(07%) for i € {1,...,n} and W,, = E*(§~™). In this case,
v, ="7,.

Case 2: p; = ¢(07%) fori € {1,....,n—1}, ¢, = £(0~""V) and W,, = R9.
Then ¥,, =T',,_1.

To shorthand the notations, set:
pjo-rop, if0Lj<k<n—1,
* Vjk = e
Id ifj=k+1;
M "/}n,u = Pn © Yn;
o B%) = DFp(0) and %) = DFE(0)(DE1(0))®* for every k € N\ {0,1}.
For z € ﬁn

DV, (z) = Do (¥, © pu(2)) DUy, | (pn(2)) s

Dz‘l}n(z) = DQ%( ;,ﬁ o pn(z)) (D%Zﬁ (pn(z))pm D"/};ﬁ (pn(Z))pn)
+ Dpn (P, © Pa(2)) D>y, | (P (2)) (s )
The formula

D>y, (2) = =Dy, (2) D*n (¥ 1(2)) (D, | (2), Dby, (2))
implies that

(6) DQ\PTL(Z) = “n(z)Dan (¢;j opn(z)) (Dw;,ﬁ (pn(z))pn,Diﬁ;ﬁ (pn(Z))pn),
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where ki, (2) = I — Dby (¥, | 0P (2)) Dy, | (pn(2))pn. For z € W,,, the expres-
sion of D?1),,(2) in terms of the derivatives of the applications ¢; is

n

D*Yn(2) = Y D1 -1 (0kn(2)) D*0r (@4 1,0(2)) (Dprs1.n(2), Dors1n(2)).
k=1

As p,, is the orthogonal projection onto Im (D1, (0)),
kn(0) = I_Dwn(O)Dw;ﬁ (0)pn =1 —pn,
Djes1,1(0) Dy, (0)pn = Doy 1, (0)pn

Therefore,
0) = fin ¥ D1 k-1(0)D*@(0) (Dpy 1 (0)pn, Dy 1,(0)pn).-
In Case 1, the result is:
En:l —)Ap_1 (0~ *D)B@ (97F)(A_LIT, A_,II).
k=1

In Case 2, the result is:

DTy (0) = > (I-T1,) Ap 1 (0~ ) B (67%)(A_T0,, A_I1,,)
= (I T1) A (076D (07) (A TL, Ay TL).
2.2.2. Convergence of (D*Y,,(0)),. — Let us now assume that Log™ | B €

L'(Q,P). This assumption ensures that the sequence (|| B® (#~")]|),, does not
grow exponentially fast to infinity:

LEMMA 2.7. — Let (2, A,P) be a probability space endowed with a transfor-
mation T : Q — Q such that P is T-invariant. Consider a nonnegative random
variable Y defined on (Q, A,P). If Log™(Y) € LY(Q,P) then for all € > 0,
sup,,>o{Y (T")e~ "¢} is P-almost surely finite.

For all n € N, D2T,,(0) is the sum of the first n terms of the series:

i(l —I) Ag—1 (6~ FD)BP (07F) (A 411, A1)
k=1

To prove the convergence of (D?Y,,(0))., it is sufficient to show that this series
is P-almost surely bounded by a convergent geometric series.

Let € > 0. The norm of the k-th term of the series is bounded above by
(@ -I0)Ap_1 (6~ *=D)B@(97F)(A_4IL, A_, IT)|
<X =T A1 (0~ F=D) |- | BB (0 %) - | AT ||,
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By Lemma 2.7, sup,,c e~ "|| B (6~™)|| is P-almost surely finite. By Oseledets’
theorem, sup,,cy e~ ("] A_,II|| is P-almost surely finite. Thus, it remains
(1=T) Agy (6~

LEMMA 2.8. — For every € > 0, sup,sge "1 TI(I-I)A,(0~")|| is P-
almost surely finite.

Proof. — For each i € {1,...,r} and n € N, the projection m; onto E; along
@D, E; satisfies

w0 Ap(07") = Ap(07") omi(677).
Therefore,

[A-ID) A, (6~ = |1 -TD A, (07") T =) (")
< A0 sr,, mao—m |- [X=7*) (7).

By Lemmas 2.4 and 2.2,

sup e 2" ||T—7° (67" d TRt || A, ( -
supe”2"[|L—*(#7")[| and supe A er, s a0l
are P-almost surely finite. [l

It follows that there exists a P-almost surely finite variable C¢, such that for
all k e N:

@ —I0)Ap_1 (0~ F D) B@(07F)(A_LIL A4 IT)|| < CoebPerr=2XeFe),

Therefore, if A\s11 — 2As < 0, then the series
> A-I) A1 (07 F D) B (97F) (A4 I, A_ID)
k=1

is a P-almost surely convergent series. This ends the proof of the asymptotic
behaviour of (D?Y,,(0))y.

2.2.8. Convergence of (D*T',,(0) — D?Y,,(0)) toward 0. — Let n be an integer.
The difference between D?T,,(0) and D?Y,,(0) can be decomposed into six
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D*1,,(0) — D*Y,,(0)

ana —I) Ag—1 (6~ * D) B (07F)(A_x (11, — T0), A (1L, — IT))
k=1

+2) (1) Ap_1 (0~ *NB@(97F)(A_r (1T, — ), A_,II)

NE

ST
I

+ (H — ) A1 (0~ D)B@ (07F)(A_,II, A_,II)
k=

+22 1 —10,) A1 (0~ F=D)B@ (07F)(A_ (11, — 11), A_,IT)
k=1

- (H —I0,) A1 (0~ B@(07F)(A_, (1T, — II), A_(IT,, — II))
k=1
(I =T1) An (076 (07") (AL, Ay 11,,)
It follows from Proposition 2.1, Lemmas 2.8 and 2.7 that if A\s4; — 2Xs < 0,
then each of those six terms converges toward zero in probability. Indeed, fix

0 < €< 75(3Xs — Asy1) and let (Cen)rn denote a sequence of random variables
that converges to zero in probability:

1) The sequences

(ZHI M) A1 (0~ D) [ B0 - AL, — )7
and
(Dollar = ) Ax (6= [ B @) - [ AL, — 10| - | 4-p1]])

k=1
are bounded above by (C), (e?"As+17AsF€) 70 eh(“Asr1te)y,

2) The sequences

n

(0= s~ &) |- B 0 A1t — )] A1)

k=1

and
(SN =T Ay (6D ||| B (0 F) A1)
k=1

are bounded above by (O, ce™(As+17AsF€) §70  h(=As+de))
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3) The sequence

(ZHH ) A (0% D) [ BS (0~ A (11, — 1))

is bounded above by (O, ce3"As+17AsF6) 570 k(A =2Asr1t46))
4) As
[T-TD) A, (07" (67" (A, TT, A, TD) |
< 8||D%(O7)(0)] - |1 DEG™™)THO )HQ
x max (|| (I =T A, (07™) ], [ (IL, — ) A, (67")]])
¢ masx( A1 [ AL (IL, — D))

the sixth term can be bounded above by Ce ,, exp(n(As41 — 2As + 4¢)).

2.3. Description of the third order approximation. — By differenti-
ating several times the expression of D?W,, (Eq.6), one obtains formulas for
higher derivatives of ¥, as linear combinations of partial sums. But these
formulas cannot be used directly, since some of those partial sums do not con-
verge when Asy1 —kAs < 0. A study of the third derivative of W,, will illustrate
the “summation process” used to transform expressions of the derivatives in a
combination of partial sums which converge when As41 — kAs < 0.

2.3.1. Ezpression of the third order derivative of ¥,,. — Let us return to the
second order derivative of ¥,,. For z € R¥ sufficiently near 0,

D*Wy(2) = in(2) D*Yn () © Pi(2)) (D5 (0 (2))Pns Dy (0 (2)))-
With the following notations

@ (2) = D@j s (Qrt1n 0 ¥n| 0 pn(z))  for 1< jk <mn,
b;cn;?(z) = D™k (Prt1n © Ul opn(z)) for 0 <k <nandmeN\{0,1},
en(z) = Dzb;ﬁ( n(z))pn and kK (2) :=T1—a1n(2)en(2),

the expression of D?W,,(z) is
=Y k(@) ark 1 (0 (2) @kt 100 (2)en(2), Ghi1mn(2)en(2)).-
Before computing the derivative of z — D?W¥,,(2)(.,.) on a neighbourhood of 0,

let us begin with the derivatives of the elementary applications:
« the derivative of z — aj en(2)(0) is

(7) DCLJ k Zag {—1,n g n a[ k n( ) a2+1,n,n€n)7
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o the derivative of z — b;cm)(z)() is

,n

(8) Db () = b arsrmmens ),
o the derivative of z — e, (2) is

9) De,, = —leﬁfh (pn)Dzwn,H ("/};ﬁ (Pn)Pn, %ﬁ (pn)pn)

= - Z enal,krfl,nbgzl (ak+1,n,nena ak+1,n,nen)'
k=1
As a consequence,
(10) DK:TL() = - Z Knal,i—l,nbgi)l (a£+1,n,nen7 a2+1,n,nen(-)) .
(=1

Let us now compute D3V ,:

n

Dg\I/n - Z D(“n)(al,k—1,nb§€2,2L(ak+1,n,nena ak—i—l,n,nen))
k=1

n
+ Z KnD(al,kfl,n) (b](le (ak+1,n,nen7 ak:+1,n,nen))
k=1

n

+ Z Knal,krfl,nD(b](fZL)(ak:+l,n,nen7 ak:+l,n,nen)
k=1

n
+2 Z Knal,k—l,nbg; (D(ak+1,n,nen)7 ak+1,n,nen) .

k=1
Therefore,
n n k-1 n n
(11) DW= "1, +3> > 173, =3 > Iy,
k=1 k=1 (=1 k=1 ¢=1
where

1 . 3 3
Ik,n = K:nal,k—1,nb;,;(ak+l,n,nen)® 5

2 (2) (2) 2
Iz,k,n = ’inal,éfl,nbgm (a€+l,k:71,nbk7n(ak+1,n,nen)® 7a€+1,n,nen)a

3 — (2) (2) 2
Ié,k,n = ’inal,éfl,nbgm(a€+l,n,nena1,kfl,nbk,n(alﬂ»l,n,nen)@ aa€+1,n,nen)~

The convergence at 0 of the last two terms cannot be established separately.
Let us slightly modify expression (11) by introducing a new map @; i, », which
is equal t0 aj k.n — Ajn,n€n01kn for 1 <j <k <n. AtO,

@k (0) = Dj £(0) = D; 1 (0) D1y, 1 (0)pr Doy 1 (0)
= Doy i _1(0)(I—pn) D1 £ (0).
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Using the applications a; x,» gives

n n k—1 n

(12) D*W, = "I}, +3 17, -3 En: N1k,

k=1 k=1 (=1 k=1 (=k
with

20 () ( (2) 2
Ié,k,n = Hnal,é—l,nbg,n (aé—i-l,k—l,nbk,’n(ak+1,n,nen)® aa£+1,n,nen)~

The convergence of (D3W,,(0)),, will be the result of the convergence of the
three sums in (12).

2.3.2. Convergence of (D*Y,,(0)),. — Let us now assume that Log™* |[BY)|| €
LY(Q,P) for j € {2,3}. As for the second order approximation, the convergence
of the sequences (D37 ,,(0)),, and (D3T,,(0) — D3Y,,(0)),, are successively stud-
ied.

The expression of D37Y,,(0) is
k

n 1

(13) D3, (0) =) Ji +3 zn:

k=1 k=1

Te =32 ) Tk

1 k=1{=k

~
Il

where
Ji = (=T A1 (6~ * D) BP(67F)(A_,11)*?,
Tip = (=T A1 (677
B@ (07 (@g+1,5-1,n(0)) BP (077 (A_,I1)®2, A_,II),
T = (LT A1 (0~ B@(97) (A_I1A,_1 (6~ V)
B@(07F)((A_,I)®2, A_,II).
To shorthand the notations, let AM denote as11,1.,(0) in Case 1; namely,
Ap = A_y(I-TD)Ax(67%).

To bound the general terms of the three sums in (13), it remains to establish
upper bounds for || Ay || if £ < k and for ||A_I1Ax(0~%)| if £ > k. A bound for
| Ag x| can be deduced from the following corollary of the subadditive ergodic
theorem established by D. Ruelle [15, p. 288]:

THEOREM 2.9 (D. Ruelle, 1982). — Let (2, A,P) be a probability space, let
T:Q — Q be a measurable map preserving P and let (X,)n>1 be a sequence
of measurable functions from Q into RU {—oco}, such that X;" € L'(),P) and
(Xn)n>1 is subadditive. Let X : Q@ — RU{—o0} denote a T-invariant applica-
tion such that X+ € L*(Q,P) and lim,, .o ~X,, = X P-almost everywhere (the

existence of such an application follows from the subadditive ergodic theorem).
If Y > X is a T-invariant measurable finite-valued application, then for every
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€ > 0, there exists a measurable finite-valued function K. : Q@ — R, such that
for almost every w € Q and 0 < m < n,

Xpm (T™(w)) < (n —m)Y (w) + ne + K (w).
LEMMA 2.10. — For every € > 0, there exists a P-almost surely random vari-
able C¢, such that for all 0 < i < j
||A”|| < C el DAstat(iti)e
Proof. — Let € > 0. As A;(0~7)E*(0~7) = E* for every j € N, one obtains
Ay = ALI-I)A;(07)(I-m*(077))
= A (7)1 (679)) — ATTA (07 (T-n°(677).

Consider the first term. Theorem 2.9 (applied to the subadditive sequence
Log||An(07™) s  E.(0-n||)n) and Lemma 2.4 insure that there exists a P-
3 i(0-m)

i=s+1
almost surely random variable C¢, such that for all 0 < ¢ < j,

[ 4j=i (0N A =70 < [[Aj=i(0a;_., o9l - [A=7*(O77))]
< Cee(j*i)&+1+j6'
The second term can be bounded as follows:
HA,zHAJ (07])(1 —Ws(aij)) ||
<N Aipe |- [[4500)er_ o || - [T=7(077))]].

Thus there exists a P-almost surely random variable C¢ such that for every
0<i<j, ||[AIA; (0791 —m%(077))|| < Cee?PetrtaFil=Aste) O

The following lemma presents an upper bound of ||A_,I1A;(0~*)| for every
0<k<{¥:

LEMMA 2.11. — For every € > 0, there exists a P-almost surely finite random
variable C¢ such that for all 0 < k < ¢,

| AT (07F)]| < CoelhmOX (e,

Proof. — Let ¢ > 0 and k,/ € N. A decomposition of A_,IT1Ax(#~*) with
respect to Oseledets’ splitting gives

A TAR(07F) = T A miA(07F) + A JI(1—7%) Ax(67").
=1

For every i € {1,...,s},

A om0 < A Il - 46000 - [0~
S Ceeé(—Ai—i-e)—o—k()\i—i-e).
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If0<k</{ thenforie {1,...,s}, (k=X < (k—£)\s, whence

|Aem; Ap(07F)|| < Ceelb=OrsHHhE,

Moreover, for all £,k € N,

A1) A0 < A | A0, sl -7
S Ceee(f)\5+6)+k(ks+1+6)'

Therefore, for all 0 < k < £, ||A_(TTAR(6F)|| < Celk=OAsH(ktb)e, O

Inequalities given by Oseledets’ theorem and Lemmas 2.7, 2.8, 2.10 and 2.11
lead to the following bounds:

[T € Ceeirerr=3Astde) for all i € N*|
HJZQ;H < CeedPsr17206436) gi(=AsH4e) for all 1 <4 < j,

HJi?:jH < CLef(FAst46) giAsi1=2Xs44e) for )] 1 < j<i

It turns out that the sequences

(gnﬁ)n, (X2 20 o (X 1),

1<i<j<n 1<j<i<n

converge P-almost surely, if As41 — 3A; < O:

PROPOSITION 2.12. — If Log™ ||A*Y||, Log™ ||[B®| and Log™ |B®)| lie in
LY, P) and if As11—3Xs < 0, then (D37 ,,(0))n>0 converges P-almost surely to

SG) = ZJ1+3Z ;=3

1<i<j 1< <i

2.3.3. Convergence of (D3I, (0) — D3Y,,(0)),, to zero. — The expression of
D3T,,(0) is

= lei,nJrl + 32
k=1

k=1

E

—1
3
I@,k,n+1

M

Ié k,n+1 3

kmz

B

1 14=

: o~
Il

n
1 E
+In+1,n+1 + 3 IE n+1n+1 3 I n+1,k,n+1 3‘[ n+1l,n+1,n+1
= =1

—
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where, for 1 </, k <n
I} = (1-TL) Ay (076 0)BO (674) (A1,
Iy = (T=TL) A1 (07 B@ (07 (@0 41,041 (0)
B®@ (07’6)((/1,/@1_[”)@2,14,@1_[”)7

I pnsr = (I=TL) Aea (07 B (07 (A IL, A1 (0~ F7Y)
B@(07F) ((A_I1,)®%, A_I1,)

IrlL+1,n+1 = (I-1L,)An (9771)5(3) (ein)(A—an)@)g

I iimir = A-T1) A1 (07D B@ (07 (@g,n41,041(0)
DO (A-nlL,)®?, A_IL,,)

Bt = (T1) A (07")ER (67 AT A1 (67)

B@(07F) ((A_I1,)®2, A_,I1,,)

Ig+1,n+1,n+1 = (I _Hn)An(G_n)g(Q) (G_n)(AannAn(a_n)
R (07 ((A_nlL,) %2, AL,IL,).

As for the convergence of the second derivative of I';, at 0, one may prove that
if As41 — 3 < 0 then

o the sequences

(lei,n+1>n7 ( Z Iéz,/k,n+1>n7 ( Z Ig,k,n+1>
k=1

1<t<k<n 1<k<t<n "

converge respectively in probability to the sums

Z‘]li’ Z JZ2,IIW Z ']Zk;
k=1

1<i<k 1<k<l

o each term which derives from the nonlinear part of the initial parametriza-
tion &, that is

n n

1 Z 2/ 2: 3 3

In+1,n+1a IZ,n+1,n+1a In+1,k,n+1 or In+1,n+1,n+1
=1 k=1

converges to 0 in probability.

3. Proof of Theorem 1.7 for approximations of all orders

As for the second and third approximations, the description of higher ap-
proximations proceeds in three steps:
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o firstly, computation of an expression of the derivatives of ¥, using the
summation process introduced for the description of the third derivative;

« secondly, proof of the P-almost surely convergence of (D*Y,,(0)),, when
As+1 — kAs < 0. It will follow from the convergence of all sums in the
expression of the derivatives of W¥,, at 0;

« finally, proof of the convergence of (D*Y,,(0)— D*T,,(0)),, to zero in prob-
ability if A;11 — kAs < 0 and if DE(0)(RY) NP, E; = {0} P-almost
surely.

The upper bounds, required in these last two steps, have already been es-
tablished in Section 2: Lemmas 2.2, 2.7, 2.8, 2.10, 2.11 and Proposition 2.1.

3.1. Expression of the derivatives of ¥,, . — The derivatives of ¥,, will
be expressed with the aid of the applications a; jn, @i jn, €n, kn and b,(:;l),

where the integers i, j, k,m satisfy 1 < j <i<n, 1 <k <nandm>2. The
structure of the terms of the derivatives of ¥,, built with these four applications
will be described with the help of diagrams. Let us begin with some general
definitions about diagrams.

3.1.1. Diagrams. — A diagram consists of a finite set X whose elements
are called “nodes” and a finite number of subsets Fi,...,FE, of X x X
whose elements are called “links”. Such a diagram will be denoted by
D = (X,E1,...,E.). Let E denote the set of all links of D. A node y € X
is called a “descendant” of a node z € X, if there exists a path in F going
from x to y, i.e. a finite number of nodes = x1,...,x, = y such that for all
ie{l,...,r =1}, (ws,xit1) € E. If (z,y) € E, then y is called a son of x
and z is a “predecessor” of y. A node that has no predecessor is called a “root”.
A node that has no son is called a “leaf’ or a “terminal node”, otherwise it is
called an “interior node’. Finally, a subset S of X is said “closed in D” if every
descendant (for the diagram D) of an element of S belongs to S.

Two diagrams D' = (X', E{,...,E}) and D?> = (X? E},..., E?) are said
equivalent if there exists a one-to-one correspondence F between X! and X2,
such that for all i € {1,...,p}, (u,v) € E} if and only if (F(u), F(v)) € EZ.
Equivalent diagrams will not always be distinguished: a diagram D could just
as well represent an equivalence class of diagrams as an element of this class.

3.1.1.1. Trees. — The diagram D is called a “tree” if it has a unique root and
if for every y € X \ {z}, there is exactly one path in E connecting x to y.
A node z, with the exception of the root, has a unique predecessor denoted
by p().

3.1.1.2. Subclass D of diagrams. — The description of the derivatives of ¥,

will only use a particular class of diagrams having four types of links, denoted
by D: D is a diagram of the subclass D if D = (X, Fy, Es, I, I5) where Ey,
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E5, I and I are subsets of (X x X)\ {(z,z),z € X} satisfying the following
properties:

o T'= (X,E1 UE,) is a tree whose interior nodes have at least two sons
and such that (p(x),x) € Es if x is a leaf;

e I; and I are transitive and asymmetric sets, Io C I and if (z,y), (y, 2)
are elements of I; such that one of them belongs to Is, then (z,z2) € Is.

The root of T will be denoted by p(D), the set of interior nodes for the
diagram (X, Fy U E3) by i(D).

The set
i(D)" :=iD) \{p(D)}
can be split into two sets, i1(D) and i2(D) depending on whether the link
between a node x and its predecessor is in Ey or Es: for j € {1,2}, set
i;(D) = {z € i(D)* such that (p(x),z) € E;}.

For u € i(D), D, will be the subdiagram which is the restriction of the diagram
D to the node u and its descendants. The number of sons of u will be denoted
by m,,, the number of sons of u that are interior nodes by r,, the number of
sons of u that belong to i;(D) by ", the number of sons of u that belong
to ia(D) by r{?) and the number of sons of u that are leaves by £,.

To shorthand the notations, the following notations will be used for any
subset Y of X:

WY) =Y ni(D), m(Y):= > my,
vei(Y)
r(Y):= > 7, LY) = > 4.
vei(Y) vei(Y)
r@ )= o forx e {1,2}.
vei(Y)

When Y = X, the following notations will be used:

|ID| :=|X|, m(D):=m(X), £4D):=4X), r(D):=rX).
It may be seen that

D =14+m(D), [(D)|=r(D)+1 and [i(D)|<D)-1.

3.1.1.8. Height of a node. — A diagram D = (X, Fy, Es,I1,13) € D will be
endowed with a family i = (hy)uei(p) of integers indexed by the interior nodes
of D and satisfying h,, < h, if (u,v) € I1 and h,, < h, if (u,v) € I5. The integer
hy, of h will be termed the height of the node u in the labelled diagram (D;h).
The set of such families of integers will be denoted by H(D). Let

H,(D):= H(D)N{1,...,n}H)

for n € N*. A diagram endowed with a family of integers belonging to H, (D)
is said a “diagram of height at most n”.
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3.1.1.4. Graphic representation of a diagram of D. — The nodes of D will be
drawn as points such that if (x,y) € E; U Es, the ordinate of the point x is
smaller than the ordinate of y. A pair (z,y) will be represented by a simple line
between x and y if (x,y) € E1 and by a double line if (x,y) € E2. An element
(z,y) of I; will be drawn as an arrow from z to y, with two heads if (z,y) € I
and with one head if (x,y) € I \ I5. Such a representation is given Figure 1.

DP Prp

4

F1GureE 1. A diagram D with root p, p1,...,pr, designating the
non-terminal sons of p

3.1.1.5. Application associated with a diagram. — Let D = (X, Ey, Fa, 11, I3)
be a diagram in D endowed with a family A = (hu)uei(p) of heights smaller
or equal to n. With the help of the labelled diagram (D;h) one defines an
application f,,(D;h) by

fn(D7 h) = K:nal,hp—l,nbgzz‘;) (fn,hp (Dp1 ; h\Dpl )a teey

fn,hp (Dpr; h\DPT )(ahp+l,n,nen)®€p)
where
e p1,...,pr designate the non-terminal sons of the root p of D;
o the applications f, .(Dy, hjp,) for z € {1,...,n} are defined by induction
by
fn,z(Du; h\Du) = dz+1,hu71,nb§:?j;3 (fn,hu (Dul; h|Du1 )7 s
fn,hu (DUru 5 h’|Duru )7 (ahu+1,n,nen)®eu)
ifue iQ(D)7

fn,Z(DuQ h\Du) = az+1,n,nena1,hu—1,nb§1?;l;3 (fn,hu (Du1 ; h\Dul )7 ceey

fn,hu (Duru ; hIDuru )7 (ahu+1,n,nen)®£u)
if u € i1(D),
where u1,...,u,, designate the non-terminal sons of w.
Finally, for n € N and D € D, let

Fu(D):i= > fu(D;h).

heH, (D)
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Table 1 shows how to associate elementary applications of f,(D;h) with the
different parts of the diagram D.

Node Diagram Associated application
: o (mp)
Root p with height h, Kn@1,h,—1nb)
*p ”
Node u € i1(D) with
< X Bl
height h, and with Ohpyy+1,0,0€n 01k, —1,n0p, 5
predecessor p(u) /. u
* plu)
Node u € iy(D) with v _ ()
—_1nb
height h, and with Y., otttk
predecessor p(u) //
* pu)
o u
Leaf u with predeces- V/ Qhyyyy+1,m,n6n
sor p(u) .
p(u)

TABLE 1. Elementary applications associated with the different
nodes of a diagram

3.1.1.6. Examples. — The following examples show how the notations are
used.

The second order derivative of ¥, is:
D20,(2) = 3 ka2 (DB 001 (o) ks (Den(2)
Thus .
(14) D*W(2) = Y falUsh)(2) = Fu(U)(2)
h=1

where U is the diagram with two leaves represented in Figure 2.
The third order derivative of ¥,, is:

n
3 2 : (3) 3
D lI’n = /inal,kfl,nbk’n(ak+1,n,nen)®
k=1
n k—1
§ : () (=~ (2) 2
+3 ﬁnal,éfl,nbgm(a€+l,k:71,nbk7n(ak:Jrl,n,nen)@ aa€+1,n,nen)
k=1 /¢=1
n n
§ :E : (2) (2) 2
-3 ’inal,éfl,nbgm(a€+1,n,nena1,kfl,nbk,n(akﬂrl,n,nen)@ aa€+1,n,nen)
k=1/¢=k
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Therefore,
(15) D3W,, = F, (D) + 3F,(Ds) — 3F,(D3)

where Dy, Ds and Ds are the diagrams with three leaves represented in

FIGURE 2. Diagrams of the second and third derivatives of ¥,

The following proposition gives an expression of the derivatives of ¥, with
the help of diagrams: the k-th derivative of ¥,, can be written using only maps
associated with diagrams of D having k leaves.

PROPOSITION 3.1. — Let k € N\ {0,1}. The k-th derivative of ., is a linear
combination (independent of n and of the choice of the applications v;) of
maps F, (D) associated with a diagram D = (X, Ey, Es,I1,1s) € D having the
following properties:
(i) (X, E1 U Ey) is a tree having k leaves;
(ii) I and Is contain pairs of interior nodes and satisfy:
>z €i1(D) & (z,p(x)) € I1;
>z €i(D) & (p(a),x) € L.
Ezxpressions of the derivatives of W,, can be computed by induction with the
following two assertions:
1) D?W,, = F,(U) where U € D is the diagram with two leaves represented
in Figure 2.
2) The expression of DFW,, can be deduced from the expression of D*~1\,,
by replacing each term F, (D) in the expression of D*=1W,, by:

Fu(t1(D; p(D))) + Fu(ts(D; p(D))) — Fu(ta(D; p(D)))
+ Y (Fulta(Dsw)) — Fo(ts(D; )

u€l(D)

+ S (Ba(ti (D)) + Fu(ta(Dsw)) — Fo(ts(Diw)) + Fu(ts(D; w)))
u€ii (D)

+ S (Ba(ti (D)) + Fu(ta(Dsw)) — Fu(ts(Di ) — Fu(ta(D;w)))
u€iz(D)
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where t; for i € {1,...,5} are the transformations on the equivalence
classes of diagrams represented in Figures 3 to 6.

The subset of diagrams D € D having k leaves and satisfying property (ii)
is denoted by 7.

4,
Du,1 Du,u N Dul D

Uy,

%.

ou ou
Diagram D Diagram t;(D;u)
Ly Ly
Du, - Du., TS e Du, - Du,, T e
S U\ ou
XU 34
Diagram t3(D;u) Diagram t4(D;u)

F1GURE 3. Transformations at the root u

3.1.2. Proof of Proposition 3.1. — The proof proceeds by induction on the
order of the derivative of ¥,,. Formulas (14) and (15) show that the proposition

is true for k = 2 and k = 3.

Let k be an integer greater than 1. Assume that Proposition 3.1 is true for
the k-th derivative of W,,. To prove the proposition, it suffices to show that,
if D € Ty, then the derivative of the associated application F, (D) is a linear

combination (whose coefficients do not depend on n) of terms like F,, (D), where
D is a diagram belonging to Tj1.

3.1.2.1. Derivatives of applications associated with a node. — The derivative
of the application F, (D) associated with a diagram D € D, can be obtained
by going all over the nodes of D and summing all the terms that arise from the
derivatives of applications associated with each node, that is:

. /inal,hu,l,nbﬁsjl), if u is the root of the tree (X, Fy U E»);

. ahp(u)+1’n,nena1,h,u,1,nb§:::;37 if u is a node belonging to i1 (D);
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. dhp(u)Jthu,l,nb}lTi;L), if u is a node belonging to iz(D);

* Qh,,+1,n,nCn, if u is a leaf of the node p(u).

*w = p(u)
Diagram D
D, w, o " Dy, w, Loy u
bt ICRENNCN Y “ou.o\o °
w w
Diagram to(D;u) Diagram t3(D;u)

FIGURE 4. Transformations of the diagram D at a leaf u

The following four lemmas give the result of the derivatives of these four

types of applications. The derivatives of the elementary applications a;  n,

(m)
b+ en and k, have been already computed (Formulas (7), (8), (9) and (10)).

LEMMA 3.2. — Let j € N*, m € N\ {0,1} and v = (v1,...,v) € (RY)™.

m)

The derivative of the application z — /ﬁn(z)au_l,n(z)bgm (2)(v) is

D(“nal,j—l,nbgz’;) (E)) = Hnal,j—l,nbg‘f:ll+1) (Ea aj—‘—l,n,nen) [1}
Jj—1
+ Z Knal,éfl,nbéii (d€+1,jfl,nb§'2) (Q)a a€+1,n,nen) [3]
(=1 n
- Z Hnal,é—l,nbg?z (ai—o—l,n,nenal,j—l,nbg‘z) (2), a2+1,n,nen) . [4]
t=j
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D . D ] Ly D, D i '
U Uy, 5 ~— R u1 Uy, 5 A~ o .
% %
0 0 S
o
S 7
plu) © p(u)A o _j
Diagram t;(D;u) Diagram to(D;u)
Dul Dum ,_l;ua Dul Duru ,_L
0 .- o e I o e
* *
o o
U u
X AN J
/ /
pluy o) p(uf o'e)
Diagram t3(D;u) Diagram t5(D; u)

FIGURE 5. Transformations of the diagram D at a node u € i1 (D)

LEMMA 3.3. — Let v € RN and j € N*. The derivative of the application
2z ajnn(2)en(2)(v) is

n
D(aj,n,nen(v)) = Z &j,é—l,nbgi)l(aé—i-l,n,nen(v)aaé—i—l,n,nen) [2]
l=j5+1
d 2
- Z aj,n,nenal,é—l,nbgﬂ)l(a£+1,n,nen(v)7 a2+1,n,nen) [3]
=1
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Diagram D p(u)
Ly
Dy, Dy, Dy, — .
b
Un {e\
' ~ J
: 4
p(u) © p(u) o j
Diagram t1(D; u) Diagram t2(D; u)
Ly Ly
D um T e Du Duw T e
Sk 5
u 4\\«_\ u /,:P\
/ 4
p(u) o pluy I
Diagram t3(D;u) Diagram t4(D;u)

FIGURE 6. Transformations of the diagram D at a node u € i2(D)
LEMMA 3.4. — Let i,j € N* such that i < j, m € N\ {0,1} and let v =
(v1,...,vm) € (RN)™. The derivative of the application

2 Qjnn(2)en(2)ario1a(2)bY7 (2)(2)
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18
D(aj,n,nenal,i—l,nbgz) (Q)) = aj,n,nenal,i—l,nb§2+1)(Q, ai+1,n,nen) [1]
noa ) ) )
+ ZE:j Qj0—1,n g,n(aé—o—l,n,nenal,i—l,n in (2), aé—i—l,n,nen) [ ]
I Y Ant T b(2) . b(m) 3
D tmi jnn€n@l 1,00y, (@e41,0,0€001,i—1,00; ) (V)s Geg1nmen) (3]
i—1 b(z) ~ ) b(m) 5
+ Ze:]_ Aj.nn€ndl i—1,n g’n(a£+1,1—1,n in (Q)a aé—i—l,n,nen) [ ]

Proof. — For all i,j € N such that 0 < i < j:

n
2
D(ajnnenain(w) =Y 6501000 (@041 0000100 (1), G141 0nn)
=j
n

> b2 () )
Aj.nnCndli—1n ‘n Ap4+1,n,n€nl1,in(U), Af41,nnCn
(=1

4
} : (2)

+ Ajnn€ndl — 1,nbg’n (a2+1,i,n (U), aé—i—l,n,nen)
(=1

Replacing every term like ap ., With 1 <p < ¢ by Gp g0 + apn,nena1,q,n gives:

n
D(ajnnenain(w) =Y 010050 (@04100€n01 0.0 (1), G141 00n)

l=j
Jj—1
- . b(2)( (1) )
Q5.nn€ndll—1,mn ‘n Ap41,n,n€nl1,in (W), QG041 nnCn

{=i+1
i

(2) (~
+3 i men1e-1.mbyp o (@er1,in (W), Qi1 mnen)
=1

O

LEMMA 3.5. — Let i,j € N* such that i < j, m € N\ {0,1} and let v =
(v1,...,vm) € (RN)™. The derivative of the application

z — di,jq,n(Z)bﬁ)(Z)(y)
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S

D(@s,j-1,0b570 @) = @i j-1bn D (@, a541,mm60) (1]

4yl di’jil,nbéa(dé+1,j—1,nb§fz) (v), @e41,n,n€n) 2]
—- Y ai,n,nenal,ffl,nbg?rz(a’€+1,j*17"b§'2) (©), acs1,nmen) (3]

— S i1 by (Gt o1 nbS e (0), a1 mmen) 4]

Proof. — The formulas (7), (8) and (9) of the derivatives of the elementary
applications give:

J
D(aijn(v)) = Z ai,éfl,nbé?T)L(aé+1,j,n('U)a @¢4+1,n,n€n)
=i

n
E : (2)
- ai,éfl,nbgm(a€+l,n,nena1,j,n(U)aa€+1,n,nen)
=i
n
2 : (2)
+ ai,n,nenal,i—l,nbg’n (ai—ﬂ—l,n,nenal,jm (U)7 a2+1,n,nen)
(=1
Ej: (2)
2
- ai,n,nenal,éfl,nbgm(a€+1,j,n(v)aa€+1,n,nen)
(=1

The first two terms and the last two terms can be reorganized:

j
D(aijn(v)) = Z ai,é—l,nbgi)l(&é—i-l,j,n(U)a a041,n,n€n)
=i

n
2 : (2)
- ai,l—1,nbg,n(a2+1,n,nena1,j,n(v)a aé—i—l,n,nen)
(=541

n
§ : (2)
+ ai,n,nenal,é—l,nbg,n(aé—i-l,n,nenal,j,n(v)a aé—i—l,n,nen)
r=j+1
Ej : (2)
2) /1~
- ai,n,nenal,éfl,nbgm(a€+l,j,n(v)7 a€+1,n,nen)
l=1
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Rearranging the first term with the last term on one hand, and the second with
the third on the other hand, yields:

j
D(5,jn(v) = > aie-1mbia(@er15n(vV), acp1nen)

£=1i
i—1
_ . b(2)(~ (V) )
i nn€ndl L—1,n tn p41,5,n\V), G4+1,n,n€n
(=1

n

E : ~ (2)
- ai,éfl,nbg,n(a€+l,n,nenal,j,n(v)7 a€+1,n,nen)
{=j+1

O
3.1.2.2. Derivative of an application associated with a diagram. — Summing
the terms provided by the derivative of the application associated with each

node of a diagram D € 7y, leads to the following expression of the derivative
of F,,(D):

F,(D) = Fo(D(L: p(D))) + Fu(D(3 p(D))) = Fu(D(4: p(D)))
+ 3 (FuD@iw) - Fa(DG5w))

uel(D)

+ > (Fu(D(3w) + Fa(D(25w) = Fu(D(350)) + Fa(D(55w)))
u€ii (D)

+ Y (Fa(D5u) + Fu(D(25w) = Fu(D(3;0) — Fu(D(4;w)))
u€iz (D)

where D(i;u) for ¢ € {1,...,5} designate the diagrams obtained by a trans-
formation at the node u of D. More precisely, D(i;u) is the diagram which
corresponds to the term numbered [i] in Lemmas 3.2, 3.4, 3.5 or 3.3. It is
the result of the derivative of the application associated with the node u. The
numbers are chosen in order to group the terms obtained by a given type of
transformation on the diagram D.

REMARK 3.6. — For every i € {1,...,5}, the image of the equivalence class
of the diagram D by the transformation t; applied at the node u is equal to the
equivalence class of the diagram D(i;u).

The comparison of the new diagrams D(i;u) with the diagram D allows to
check that each diagram D(i;u) belongs to 7y11, if D lies in 7. This ends the
proof of Proposition 3.1.
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3.2. Convergence of the derivatives of Y,, at zero. — This subsection
is devoted to studying the asymptotic behaviour of (D*Y,,(0)),. The notations
are those used for the case 1 in Subsection 3.1; namely with ¢; = ¢(67%) for
every i € {1,...,n}. At point 0, the applications associated with diagrams do
not depend on n, thus n is omitted in the notations.

By Proposition 3.1, to prove the convergence result for (D*Y,(0)),, it suf-
fices to establish the following lemma:

LEMMA 3.7. — Let k > 2. Assume that Log® |BYD)| € LY(Q,P) for each
Je{l, ...k} If Asp1 — kAs <O, then the sequence (3, (py f(D;7)(0))n
converges P-almost surely, for every D € Ty.

Using Lemma 3.7 and Proposition 3.1, it is possible to compute the limit of
the sequence (D¥Y,,(0)):

PROPOSITION 3.8. — Let k > 2. Assume that Log™ ||A*'| and Log™ |BY)||,
for j € {2,...,k}, lie in L*(Q,P). Furthermore, assume that As11 — ks < 0.

1) The first k deriatives of T,, at 0 converge P-almost surely as n tends
to +oo.

2) Set F(D) = Y cpipy f(Dih)(0) for D € Uj_, T;. Forj € {2,...,k},
the limit SY) of (DI, (0)), can be determined by induction using the
following assertions:

e S@ = F(U) where U is the diagram in D having two leaves
(Fig. 2);

o for j € {3,...,k}, the expression of SY) can be deduced from the
expression of SU=Y) by replacing each application F(D) in SE=1)
by

F(t(D; p(D))) + F(t(D; p(D))) — F(ta(D; p(D)))
+ 3 (Fla(Diw) - Pts(D;w)))

u€l(D)

+ 3 (Fla(D;w) + F(t2(Dsw) — F(ts(Ds ) + F(ts(Ds )

u€ii (D)
+ > (Fa(Dsw) + Flta(Dsw) = F(ts(Dyw) — F(ta(Dsw))
u€iz(D)
where t; for i € {1,...,5} are the transformations on the equiva-

lence classes of diagrams represented Figures 3 to 6.

The proof of Lemma 3.7 begins by calculating an upper bound for the norm
of the applications associated with the diagrams of D and taken at point 0.
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The upper bound follows directly from the inequalities established in Section 2
(Lemmas 2.7,2.8, 2.10 and 2.11): for all n € N*,

(16) Vjie{l,...,n}, me{2,...,k}, Hbg-fﬁ)(ﬂ)ll = |BM™ (679 < oimede,
(17) V4, 1< <n, [[£n(0)arjn(0)] = [|[I-T1)A;(677)|| < Cee?Petrte),
(18) Vi, 0<j<n, laj+1,nn(0)en(0)] = [[A-;II| < Ceed (Tt

(19) Vi, 0<i<j<n, ||ais1jn(0)] = [|[As;]| < CeeliDAarrtltie
Vi, 0<j<i<n, |ait1,nn(0)en(0)ar;n(0)] = [|A_IIA;(677)]
(20) < Cee(j—i)ks+(i+j)e,

where C, and Ce(m) for all 2 < m < k, are almost surely finite random variables.
Actually, two upper bounds are given in the following lemma, the first will allow
to prove Lemma 3.7 when A; < 0 and the second when A\; > 0:
LEMMA 3.9. — Lete >0 and D = (X, Eq, E2, I1, I2) be a diagram in Uf:z’];-
1) There exists an almost surely finite random variable Cc(D), such that for
all h € H(D):
1£(D; B)(0)|| < Co(D) exp ( 3 huau>
u€i(D)
where (aw)uei(py s a family of reals defined by:
sl + 7)Y+ (1= A1 + €2+ my)
if u € iz(D) U{p(D)},
)\s(]- — Ay — 7"7(11)) - 7"7(12))\54»1 + 6(2 + mu)
if u €y (D)
2) There exists an almost surely finite random variable Cc(D), such that for
all h € H(D):
|£Ds)O)] < Ca(DYexp (32 hu(Aalt = m) + €2+ ma)))
u€i(D)

Proof. — Let us begin by establishing that for every u € i(D)* and h € H(D),
the following inequality holds:

(22) || Sy (Dui bip )O)]| < Ce(Du)exp (7 huer)

vEI(Dy)

exp (hp(u)(_)\s]-{ueil(D)} — Ast1lucim)y +6) + hvav>
vEI(Dy,)

where Ce(Dy) = [T,eyp, ) (CHHCE™) exp(—Aaga (r(Dy) + 1)).

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



420 LEMAIRE (S.)

The proof is by induction on the number of interior nodes of D,,:
1) Assume that i(D,) = {u} (in this case, ¢, = m,). If u € i;(D), then
h, < hp(u) and
Py (Dus hyp, ) (0) = A, TLA, 1 (07" D) B (071 (A, I ).
Thus, the upper bounds previously enumerated yield:
(| Py (D 2y, ) (0) |
< Ay a0~ D) [ B9 | - A, T
< Ol Oma) g(hu=1=hp)Ast(hu—1+hp () e ghuetbuhu (—As+e)

< Cu(Dy) el (FAs+Hhu(hs (1=tu)+e(2+2))

If u € i3(D), then
fhp(‘u.) (Du; thu)(O) = Ahp(u)yh'uilB(mu) (0_hu)((A*hu H)®£u) :

Thus,
Hfhp(u) (Dus h\Du)(O)H
< Ay |l [|BO (07" || - || A, TT|
< C].+A€u C(mu) e(huflfhp(u))A3+1+(hu71+hp(u))6ehu6+euhu(fks +6)

< C. (Du)ehp(u)(_>\5+1+5)+hu(>\5+l_£u>\s+5(2+£u))

Therefore, the result holds if u is the unique interior node of D,,.

2) Let j > 1. Assume now that the result holds for interior nodes u of D
such that D, contains at most j interior nodes. Consider a node u of D such
that [i(D,)| = j + 1 and denote the non-terminal sons of u by g, ..., u,:

o If uw €i;(D), then
Frpwy (Dui hip, )(0) = Ay, TTAp, —1 (6~ "=D)
B (07" (f, (Duys hyp,,, )(0)
s i (D, s hyp, )(0), (A_p T1)®0).

P

o If u € ip(D), then
Frpiwy Dui hip, )(0) = Ay 5 <1 B (07") (fn, (Duys byp,, ) (0)
D) fhu (Dura h\DuT)(O)a (Aihu]:[)@@u)'

As Dy,,...,D,, have at most j interior nodes, the induction hypothesis can

be applied to them:
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o If uw €1i;(D), then

Hfhp(u) (Du; hyp,)(0) H < Ot Ce(m“) e(Pu=1=hp)) Xs+(hu—1+hy () )e

Pt b Xt TT | i, (D by, )O)|

=1
< Cﬁl+eu0(mu)e—xﬁ By (= AsF€)+Fhu (As (1—€,)+e(24£,))

HC ohu (rP (=46 +rP (= Asp14€))

exp ( Z hy av>

v€i(Du)\{u}

< CDu)exp (yay (A + )+ 0 hyaw).
vEI(Dy)

o If u €i3(D), then

[y (D i, JO)]| < OO et et b )

huettubu(=Aste) HHfhu (Du;s lp,,, )(O)H
=1
< Cel+@u Ce(mu) 67A3+1 ehp(u)(7A5+1+E)

r
ehu(As+1 —LuXs+e(2+2y)) H C. (Dui)
=1
ehu(rfbl) (_>‘S+5)+T(2)(_>‘5+1+5))+Ev6i(Du)\{u}hvav

< Ce(Du) exp (hp(u)( s+1 1 E Z h av)

v€Ei(Dy)

This closes the induction proof of inequality (22).
Let p denote the root of D and py, ..., p, the non-terminal sons of p. Then

F(D;h)(0) = A—T1)Ap,_1 (0~ Pe =) Blme) (g0 )
(fn,(Dpri hyp, )(0), ., fn,(Dp,s hyp,, )(0), (A_p, I1)®%).

Using that |[[(I—I1)Ap,—1 (0=~ D)|| < Ceelte=DAst1+9) gives:

Hf(D/N thp)(O)H < Cel+epce(mp)e(hpfl)(ks+1+5)+hp€+ephp(*)‘s+f)

LT 11fw, (Do yp,, ) (O)]
=1
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< Cl+ep C(mp)e*A8+1 ehp()‘s+1*€p)‘s+f(2+ep))

H Ce( hp(rfvl) (st +r5D ss1+€)+Lvei (D) (o) o
D)exp ( E h av>
vei(D)

where Ce(D) = [[,ei(p) (CLrt Ce(m“)) exp(—r(D)Ast1)-
The first upper bound is established.

To prove the second inequality, one goes back over the previous inequalities
replacing the Lyapunov exponent As11 by As in the bound of || A, n, || (since

hu > hy(y) for u € i3(D)) and in the bound of ||(I—II) A4y, 1 (6~ ("»=)||. Thus,
the second upper bound is based on the following inequalities:

| F(D; h)(0)]| < CEHe O™ e exp (B, ((1 — £)As + (2+ £y)e))

LT 117w, (Do by, )OI,

i=1

where p1,...,pr, denote the non-terminal sons of the root p and where for
every u € i(D)*,

([ f10) P hyp,)O)|| < < CHHtegim) e exp (P (—As +€))
exp (hu(As(1 = £u) + (2 + Lu)e HHfh (Dui byp,, ) (0)])-
O

3.2.1. Case Ag > 0. — Let us begin with the case Ay > 0 for which the
proof of Lemma 3.7 is straightforward. The second upper bound given by
Lemma 3.9 is sufficient to prove that, for every diagram D € Ufﬁ 7T;, the
sequence (e (py IF(D;h)(0)]]), converges P-almost surely when As > 0:

LEMMA 3.10. — Assume that As > 0 and 0 < € < %)\S, For every diagram
De Uz 5 T, the following sum is finite:

Z exp( Z B ( —My,) —|—e(2—|—mu))>.

heH(D) u€i(D)

Proof. — Ifu € (D), then A\s(1—my)+€(2+m,) < )\5(% — %mu) and m, > 2.
Thus, for all u € i(D), As(1 —my) + €2+ my) < —1As. O
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3.2.2. Case A\s < 0 and As11 — kAs < 0. — Let us now assume that A\; < 0
and As41 —kAs < 0. Using the first inequality given by Lemma 3.10, it remains
to prove that there exists € > 0 such that for all D € 7} the sequence

(5 e ¥ na)),

he€H, (D) u€ii (D)
converges, where (v, )yei(p) is a family of reals depending on ¢, defined by (21).

The following lemma gives a simple criterion to check whether such a geo-
metric sum converges:

LEMMA 3.11. — Let D = (X,E) be a diagram without cycle and let
8 = (Bu)uex be a family of reals indexed by X. For n € N*, let H,(D)
denote the set of families, h = (hy)uex, of positive integers smaller than n,
indexed by X and satisfying h,, < hy for all (u,v) € E. Let P(D) be the set of
non-empty subsets of X, closed in D. For J € P(D), let Q(J,3) denote the
set of subsets K of J such that ) . By = 0. There exists a constant C(3, D)
such that for alln € N*:

Z exp ( Z 6uhu> < C(B, D) max (1, max (n‘Q(‘w)‘ exp(nZﬂv)>>

JEP(D)

hEH (D) ueX veldJ

In particular, a sufficient condition for the sequence

(32 (3 o))

heHn (D) ueEX "

to converge is

VI eP(D), > B, <0.

veJ

Proof. — The proof is by induction on the number of roots of the diagram D.

1) The result holds if D has one node. Indeed,

n n if =0,
h=1 1—eB it 5 #0.
Thus,

Z e"? < C(B, D) max(1,nte=0em?)
h=1
where C(8, D) = /|1 — €#|15.20 + 1g=0.
2) Let k € N*. Assume that the result holds for all diagrams without cycle
and with at most k nodes. Consider a diagram D = (X, E) without cycle and
with k 4+ 1 nodes. As D has no cycle and has a finite number of nodes, it has
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at least one terminal node. Let u denote a terminal node of D and p(u) the set
(eventually empty) of the predecessors of wu:

p(u) = {ac € X, (z,u) € E}

The subdiagram D = (X, E), obtained by removing from D the node u and
every link (z,u) for x € p(u), is a diagram with no cycle and with &k nodes.
One may note that as u is a terminal node, {u} € P(D) and that if J € P(D),
then JU{u} € P(D).

Two cases will be distinguished depending on whether (3, is equal to zero or

not. Set
S, = Z exp ( Z hvﬂv)

heHn (D) veX
Case (8, = 0. — The sum is bounded by

Sn<n Z exp ( Z hvﬂv)
hE€H, (D) veX

Applying the induction hypothesis to the diagram D and the restriction of the
family 0 to X gives:

Su < C(Bx D) max (n, e 0200 ex (n;g))

If J € P(D), then JU {u} € P(D) and |Q(J,5)] +1 < |Q(J U {u},p)|.

Furthermore,
n = nlQUuLA exp (n 3 ﬂv).
ve{u}

Therefore, the result still holds for the diagram D and the family 8 when
ﬁu =0.

Case 3, # 0.
(a) Assume first that u has no predecessor. Then
5’11/
S, < (S 4 5@y &~
where
Sﬁll) = Z exp ( Z h,ﬁU) and S,(LQ) = Z exp ( Z hy By + nﬁu>.
hEH (D) veX h€Hn (D) veX

By the induction hypothesis,
Sﬁll) < C(ﬁlx, D) max (17 max) (le(‘]’ﬁ)l exp (nZﬁv>>>

JeEP(D ved
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and

Sy (2) < C(ﬂ‘X, )max( "Bumax (n‘Q(‘m ‘exp( Zﬂv +n6u>>>

JEP(D) el
As u has no predecessor, P(D) C P(D). Hence,
S, (1) < C(ﬂ‘X, D) max (1, max (n‘Q (.8) ‘exp( Zﬁ”)))

JeP(D)

If J € P(D) then JU{u} € P(D) and |Q(J, )| < |Q(JU{u},3)|. Furthermore
e = plR{u},6) ‘exp( Yo e{u} fv). Therefore,

S < C(Bx, D) max (1, mas (n'Q(‘]’ﬁ” exp (n%&)))

JeP(D
and the result still holds for the diagram D if u has no predecessor.
(b) Assume now that u has at least a predecessor denoted by x. Then,

max(1, e’)
[1 — efu|

SO = 3 e (D hby) explhufe).

h€H (D) vEi(D)

S, < (8P 4+ 83

where

The proof of the bound for ST(LQ) does not use the fact that « has no predecessor,
thus the bound for ST(L ) still holds.

To study Sn , one applies the induction hypothesis to the diagram D and
the family 3 = (6u)u€X7 where

sz{ﬁx—i_ﬁu ifo==a

By ifve D\ {z}.
One has
S{¥ < C(B, D) max (1 Jren}?(%) ( QA exp ( 1;]6”)))
Let J € P(D).

o If x ¢ J, then J € P(D) and

nQUA oxp (nZﬁv> =l exp (”Z @;)-

veJ veJ

eIfz e J, then 28, = 3 B, and JU{u} € P(D). Furthermore,
velJ veJU{u}

QU A)| < 1Q(J U {u}, B)], since for K € Q(J, B):
> if z ¢ K, then K € Q(J U {u}, B);
> if x € K, then K U {u} € Q(J U {u},f).
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Therefore,

nIQ(J,B)\eXp< Zﬂ ) < nlQUUTLA) ‘exp< Z ﬁv)

veJ veJU{u}

and

53)<C(ﬂ\xv )max(l, max (n‘Q Jﬂ‘eXp( Zﬁ”)))

JeP(D)

The result is also true when u has a predecessor. This closes the proof of
Lemma 3.11. |

Consider a diagram D = (X, FEy, Es,I1,I5) € T;; and fix a positive real €
smaller than (kAs — Xs11)/(4k). Let a = (aw)yei(p) denote the family of reals
defined by:

oy =N (1 -4, (1)) - T'l(j,2))\5+1 +€(2+my,) for u € i1 (D);

o oy =Ml A7)+ Aap1 (1= 1) + €2+ my) for u € iy(D) U {p(D)}.
Lemmas 3.9 and 3.11 insure that (3, (py [/ (D5 h)(0)]|)n converges if for
all J € P((X, 1)), the sum }_ ;v is negative. To shorthand the notations,

set
> a

u€i(K)
for any subset K of X.

Consider a set J € P((X,11)). As the expression of «,, differs depending
on whether u € i1(D) or u € ia(D) U {p(D)}, it will be useful to isolate the
nodes of i1(D). Let p1 := p(D) and let po,...,p, denote the elements of
i1(D). For v € X, let C(v) denote the subset of X which consists of v and its
descendants in the diagram (X, E»). Finally, set C* := C(p;) fori € {1,...,q}.
As (X, E1UEs) is a tree, the sets O, ..., C? define a partition of X into closed
subsets in the diagram (X, E). Thus, J is the disjoint union of the sets JNC*
for x € {1,...,¢}. One has to prove that

Z JOC 1Jﬂ0m7ﬁg<0.

As J is closed in (X, I1), a node in i5(D) whose predecessor belongs to J, is
also in J. Thus, for every z € {1,...,q}, if v € JNC* then i(C(v)) C JNC=.
This implies that if JNC?® # &, then there exist s, > 1 interior nodes, denoted
by of,..., v , such that J N C® is equal to the disjoint union Ujil i(C(vf)).

Let us begin by computing a bound of a(C(v)) for all v € i(D):

a(C()) = Ass1 (JH(C W) = 1@ (C(v)) = A (L(C () + P (C(v)))
+e(m(C(v) + 2[i(C(v))]) if v € (D) U {p(D)},
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a(C(0) = Aot ((CW)] — 1= 1 (C@)) + A, (1 — £Cw) — rV(Cw))
+e(m(C) + 2R(C)]) it € (D).
As C(v) is closed in the diagram (X, Es), the number of its interior nodes
satisfies [i((C(v))| = 14+ 73 (C(v)). Thus, if v € i2(D) U {p(D)},
a(C(v)) = Ast1 — As (L(C () + P (C(v))) + e(m(C(v)) + 2[i(C(v))])
and if v € i;(D),
a(C’(v)) = )\5(1 —£(C(v)) — r(l)(C’(v))) + €(m(C’(v)) + 2|i(C’(v))|).
As As11 < Ag <0, for all v € i(D),
(23)  a(C(v)) < A(1—€(C(v)) — r(l)(C’(v))) + €(m(C(v)) + 2[i(C(v))]).
It happens that £(C(v)) 4 () (C(v)) > 1 for all v € i(D). Indeed, let
D(v) = (X(v), E(v))
denote the subdiagram of (X, Ey U E3) such that the set of nodes X (v) is the
union of C'(v) and of the sons of the elements of C'(v), and such that the set of
links is
E(v) = (E1 U Ex) N (X (v) x X (v)).

The diagram D(v) is a tree whose interior nodes have at least two sons and
whose terminal nodes are either leaves of (X, E; U Es), or elements of i1 (D).
Thus, £(C(v)) + r(C(v)) is the number of leaves of D(v). It is greater than
the number of interior nodes of D(v), that is greater than one.

It follows from inequality (23) that for all z € {1,..., ¢},
(24) a(JNC) <A1 — (TN C®) —rM (TN CT))

+e(m(J NC*) +2[i(J N CT))

and the upper bound is positive.

The upper bound in (24) can be improved when J N C? is a subset of
iao(D) U {p(D)}: f JNC* # @ and JNC* C is(D) U {p(D)}, then

a(JNC%) < Agy1 — A (BTN CT) +rD (TN C7))
+e(m(JNC%) +2i(J N C")|)
(25) < Aot — As (1= £(C%) +rD(C7)) + €(m(C*) + 2[(C™)]).
As the diagram (X, Ey U E3) has k leaves, for every z € {1,...,q},
rW(C7) +0(C%) < k.

Indeed, suppose to the contrary that there exists ig € {1,...,q} such that
r(D(C) + ¢(C%™) >k + 1. Then

q

(D) =>_(UCh) +rM(Ch) - (¢-1)

i=1
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is greater than or equal to k+1+2(¢—1)—(¢—1) = k+g¢, that is contradictory
to the fact that (X, E1 U E2) has k leaves.

On the other hand,
m(C*)+2[i(C*)| < m(D)+2[i(D)| = 14 3|i(D)|+£(D) < 46(D) —2 = 4k —2.
As € is taken smaller than (kAs — Asy1)/(4k), the right term in (25) is negative.

The condition “JNC?* is a subset of iy(D)Up(D)” is satisfied whether z = 1,
orz € {2,...,q} and JNC? is strictly included in i(C*). Thus «(J) is bounded
by

) < Aort = A(U(CY) +7D(CH) + e(m(CH) +2[(CH)) Lincr 2o

+ Zq: (Ast1 = As(1 = £(C) — rD(C™))
v=2 +e(m(C%) + 2[(C")) Lincrg{e.i(c)}

+ (A1 =£(C™) =M (C™)) + e(m(CT) + 2[i(C™)])) Ligeeycu-
=2

The following lemma describes the subsets J N C*:

LEMMA 3.12. — A subset J € P((X,11)) satisfies at least one of these two
assertions:

(i) JNCt # o;

(ii) there exists an index ¢ € {2,...,q} such that J N C* ¢ {2,1(C%)}.

Proof. — Assume that for every £ € {2,...,q}, C*'NJ # @ = i(C%) C J.
One has to show that under this assumption, J N C! # @&. Let v € J. As
(X, E1 U Ey) is a tree with root p; € i(C1), there exists a path (z1,...,z,) in
(X, E1 U E») going from p; to . Thus, to prove that C1 NJ # @, it suffices to
establish the following property:
(%) If there exists a path in (X, E1 U E2) connecting a node in i(C') with a
node in J, then C*' N J # @.

This property can be proved by induction on the number of nodes lying in
i1(D) in a path that connects a node of i(C!) with a node of J.

1) Let = (21,...,2,) be a path in (X, E; U Es) such that z; € i(C?),
z, € J and z; € i2(D) U {p(D)} for all i € {1,...,r}. Then the set i(C?)
contains the path z. Therefore, C1 N J # @.

2) Let j € N. Assume that (x) holds for every path having j nodes that be-
long to iy (D). Consider a path (z1,...,z,) in (X, ByUF,) such that z; € i(C"),
xr € J and such that j 4+ 1 nodes belong to i1 (D). Set

t:=max{i € {1,...,7} such that z; € iy(D)}.
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If 2, € i(C"), then C'NJ # @. Otherwise, there exists £ € {2,...,q} such
that z, € i(C*). In this case, C* N J # @ and the assumption implies that
i(C*) C J. By construction, x; € i(C%) C J and z; € i1(D). It follows that
(x¢,24—1) € Iy C I and as J is closed in (X, 1), z;—1 € J. Hence, the path
(w1,...,24_1) in (X, By UE,) relates a node 21 € i(C!) to anode z;_; € J and
contains j nodes that belong to i;(D). Then, the induction hypothesis implies
that C' N J # @. O

Lemma 3.12 and the fact that the right term of (25) is negative imply that

a(J) < max {Asﬂ — X (U(C7) + 7D (C9)) + e(m(C7) +2[i(C7)))

<j<q
30 (1= £(C7) = 1D (C)) + em(C) + 2(C7))) .

r=2
x#j

As Y0 (VO™ +4(C*) —1)+1=qg—1+k—qg+1=Fkand
q
> (m(C) +2[i(C7)]) = m(D) + 2|i(D)| < 4k — 2,
=1
it turns out that a(J) < Asp1 — kAs + (4k — 2)e < 0.
According to Lemma 3.11, the following lemma is established:

LEMMA 3.13. — Assume that As11 — kAs < 0 and that As < 0. Fiz e > 0
smaller than (kXs — Asy1)/(4k) and set

Al A1)+ (1= rP)Aep1 + €24+ my) if u€izy(D)U{p(D)},
N, =
A=y =) = rPA +e2+my)  ifuciy(D).

For every D € Ty, the following sum is finite:

(X oo X ma))

heH (D) u€ir (D)

3.3. Convergence of the derivatives of I';, at zero. — Let us assume
that for j € {1,...,k}, Log™(|BY|) € L'(Q, A, P) and that

DEO)RY N D Ei = {0}
1=s+1
P-almost surely. The aim of this subsection is to prove that, if As11 — kg <0,
then (D*T,,(0) — D¥Y,,(0)),, converges to zero in probability.

Recall that T, is the orthogonal normalization of 1,41 in the Case 2, i.e.
when ¢,, 11 is the restriction of ¢,,(0~™)0£(6~") to a neighbourhood of 0 in R,
whereas T,, is the orthogonal normalization of 1, in the Case 1, i.e. when
¢ is the restriction of ¢, (67™) to a neighbourhood of 0 in E*(6~"). As the
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derivatives of the two applications, T, and I',,, will be used simultaneously,
the number 1 or 2 will be added in the notations of the applications F), (D),
fn(D;h), a; jn, etc. whether they are defined in the Case 1 or 2.

By Proposition 3.1, there exists a family of reals {¢(D)} per,, such that for
all n € N*,
DFY,(0) = > e(D)F(1;D)(0), D*T,(0) = > e(D)Fus1(2; D)(0).
DeTy DeTy,
Each term F,,11(2; D)(0) can be split into the sum of two terms:

Fro(2D)(0) = > fug1(2;D;h)(0),
heH, (D)

F1(2D)(0) = > fa1(2; D5 2)(0).
heH,+1(D)\Hy (D)

The first term, F!,;(2;D)(0) does not depend on the derivatives of £ of or-
ders greater than 1. For every D € 7y, the convergence to 0 of the sequences
(Fl,1(2;D)(0) — F,(1;D)(0))n and (F?2_,(2;D)(0)), will be successively es-
tablished.
8.3.1. Convergence of (F},,(2; D)(0)— F,(1; D)(0))y, to 0. — For h € H,(D),
the expression of f,+1(2;D;h)(0) can be deduced from the expression of
fn(1;D;h)(0) by replacing each projector II by a projector II,,. Thus, the
splitting of
o each vector @; ;»(2)(0) into the sum of the vector
1,0 (2)(0) = @i, (1)(0) = Ay (IT — I1,) A; (67)
and the vector a@; j,(1)(0) = A_;(I-I1)A4;(6779),
e each projector p,(2)(0) = II,, into the sum of p,(2) — p,(1) = 1I,, — II
and p, (1) = II,
in the expression of Fy,11(2;D)(0), gives an expression of F1 ,(D;2)(0) —
F,,(D;1)(0) which is a combination (independent of n) of terms that contain
at least one operator II,, — II. To describe these terms set:

@ign(1) == A (Il =11,,)A;(077), a;;(0) := A_;(I-I)A;(677),
Fn(1) := 11, —II, Fn(0) :=1-11,
en(1) :=11, — 11, €,(0) :=1I.

A diagram D € 7 is now endowed with a family of heights h € H,,(D) and
with two families of integers, denoted by

X = (Xu)uei(D) and 7= (TU)uei(D)a

such that for all u € i(D), x,, € {0,1} and 7, € {0,...,4,}.
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It remains to define the map associated with such a labelled diagram. First,
for u € i1(D) set

Iy (D BUDL i X 1Du i D) 7= Ay 0y €0 (Xu) Ay —1 (07 71)
B (07") (g (Duys BiD,, 3 X Duy 311Dy s+
9nhi(Du,, s lip,, iX|D., iT|D., )
(Aop, (IL, = ID)) 7, (A, I 7))
and for u € iy(D)
In by (Du;h\Du;X\Du;T\Du) = Qhygyy hu—1 n(Xu)
mu 6 fu (gnh Du17h|Du17X|Du1aT\D ) )
9nhi(Du,, s D, iX|D,, TD,, )
(Ap, (I, — 107, (A, S T)),
where uq, ..., u,, designate the non-terminal sons of the node w.
The multilinear application g, (D; h; x; 7), associated with (D;h; x;7) is de-
fined by
D:hiv:t) = Ap, (6 (hp —1))
gn( I 5X7T) Rn (XP)
Blme )(9 )(Qn,hp(Dp1§h|Dp1§X|Dpl§7'|D,,1),-~-,
9nhy(Dp,, s PiD,, i XD, i TID,,, )
(Aop, (I, = )77, (A_y, )@ o)),

where p1, ..., pr, designate the non-terminal sons of the root p of D.
With these notations, F, (2; D)(0) — F,(1; D)(0) can be expressed as

Fro(2D) = Fu(,D)0) = > B06T) D gn(Dihix;7)
(x,1)EQ(D) heH (D)
where

e (x,7) € Q(D) if and only if X = (Xu)uei(p) and T = (Tu)uei(p) are
two families of integers indexed by the interior nodes of D, satisfying
the following properties: for all u € i(D), x, € {0,1}, 7, € {0,..., 0y}
and Zuei(D) (Xu + Tu) > 15

« B067) = Ilueip) Cr for (v, 7) € QD).

The following lemma gives two upper bounds of the norm of the applications
gn (D5 h; x; 7):

LEMMA 3.14. — Let D = (X, Ey, By, I, Ib) € Ul_, T; and (x,7) € Q(D).

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



432 LEMAIRE (S.)

1) For all 0 < € < A\s — X511, there exists a sequence of random variables
(Cn,e)n, converging in probability to 0, such that for all n € N and all
h e H,(D):

l|gn (D; b x; 7)|| < Cn,eeXp( > ﬁuhu)

u€i(D)
where

. Aot (1= 7)Y = A(ly +757) + €3+ 2my) if u € iy(D),
b —)\54_17‘1(‘2) + (1 =4, — n(})) +e(B+2my) ifucix(D)U{p(D)}.
2) For all 0 < € < As — As41, there exists a sequence of random variables

(Ch.e)n, converging in probability to 0, such that for all n € N and all
he H,(D): :

l|gn (D; b x; 7) || < Cn,eeXp( > Buhu)

u€i(D)

where By = As(1 — my,) + €(3 + 2my,) for all u € (D).

Proof. — Set x(D) = >, xuwand 7(D) = > 7.
uei(D) w€i(D)

In addition to the usual bounds:
Vie{l,...,n},me{2,... k}, HB(m)(ij)H < Ce(m)eje7
Vi, 1<j<n, [[Ra(0)A;(077)] = |1 -I1)A;(677)|| < Cee?Per1+9),
Vi, 1<j<n, [[A_jen(0)] = [|[A-TI]| < Cee/ ),
Vi, 7, 0 <i<j<n,
1,50 (0)]] = | A—i (L —I1) A; (677 )|| < CeeVmDAr1+ U+,
Vi, 7, 0 < j<i<n,
[A-ia(0)45(079) | = [ A-TLA; (677)] < Coeli=I 50,
(where C. and ct™ for m € {2,...,k} denote P-almost surely finite random
variables) the proof is based on the bound given by Proposition 2.1. Namely,

for every e > 0 there exists a sequence of random variables (C¢ ), converging
to zero in probability such that for all n € N, and ¢,k € {0,...,n}

HA,g(Hn — ) A (e—k)H <. neno‘s“_>‘S+E)+k(>‘5+E)+£(_>‘5+1+€).

Fix 0 < e < As—Asy1,n € Nand h € H,(D). Let us begin by establishing the
following bound for the norm of the application gy p,,, (Du; hpyi XDy T\ )
for all u € i(D)*:
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If w € i;(D), then

(26) ”gn,hp(u)(Du;h\Du;X\Du§T|Du)’
< Cﬁ;fglpu)w(Du)Ce(Du) exp (hp(u)(_)\s + 26))
exp (hu(—AsJ,_l’/‘,E;) + (1 —my + 7‘1(;)) +e(3+ 2mu))).

If u € i(D), then

27) || gn.hp e, Dui by X Do 70, ||
< CX(PIFTDIC (D) exp (Rpguy (—Asi1 + 2€))
exp (hu(As41(1 — @) = No(my — ) + (3 + 2my,))).

where Cc(D,,) is a P-almost surely finite random variable.

Let u be a node in iy (D),
|90 (P Byps X103 70 ) ||
< HA—hpm (I, — H)Ahu—l(ai(huil))uxu
At A 2605 B 6| 01, — T

Tu
A, 1= T [ lgn.h (Dusi Byp,, s X1, 57100, )|
=1

where uq,...,u,, designate the non-terminal sons of the node w.
It follows that:
19,k s (Dui Pip, XD TID)
S Cex%—i_TuCe(mu)Cel_Xu_‘—éu_Tue_AS
exp ((XU + TU)R(AS-‘:-l - As + 6)) exp (hp(u)(_)\s—O—lXu - (1 - Xu)As + 6))
exp (hu()\s(l —Tu—Lly) — Asp17Tu +€(2+ Eu)))

Tu
TT 9w (Duci b1 < xi0 270
=1

As As11 — As + € < 0, and as the height of a node is lesser or equal to n,
n()\erl - )\s + 6)Xu S hp(u) ()\s+1 - )\s + E)Xua

N(Ast1 — As + 6)7u < hu(Ast1 — As + €)Tu-

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



434 LEMAIRE (S.)

Therefore,
(28)  lgn,hpcy (Dus D3 X D3 7D, |

S C€X71;l+7'u Ce(mu)cg-f)(u +ly—Tu ef)\‘s

1lgnn. (Dusibyp, s XD, i 71D, )|| XD (P (= As + 26))

i=1
exp (hu(As(1 = €u)Tu + €(3 + 244,))).
Let u be a node in iy(D),

|9,y 0y P D X D03 0|

<A p, ([ = T Ap, 1 (67 P 1) xe
1Ay | B (07| [ A, (T = TD)[| ™| A, TE 7
[Tlgnn.(Duis b, s x10,, 57100 |-
=1
Thus,

||gnahp(u) (DU7h|Du7X|Du7T|Du)||
< Cz<z+7'u C(mu)Cl—Xu—O—Eu—Tu
eXp(_Xu/\s - (1 - Xu)/\s+1 + (Xu + Tu)n()\s—o—l —As + 6))

H Hgn,hu (Dui; h|Dui ; X\Dui ; T\Dui )” exp (hp(u) (_)\s+1 + E))
=1

exp (hu()\s(xu + 7w —ly) F Asp1(1 — xu — 7u) +€(2+ fu))).

Replacing n(As41 — As + €) by hy(Ast1 — As + €) gives:
(29) 9n,hp ey (Dui Byp,s X D5 71D |

Xu+Tu (VM) (1 —=Xu+H b —Tu
Sce,n Ce Ce

exp(_Xu)\s - (]- - Xu))\s+1) HHgn,hu (Dui;h|Dui 3 X| D, T| D, )H
i=1

exp (hp(u)(—)\s+1 + 26)) exp (hu(—)\sﬁu + Asy1 +e(3+ 2€u))).

The bound of ||gn h, ., (Du; M p,; X|D.; T/, )|l can be established by induction

on the number of non-terminal descendants of w, with the help of inequali-

ties (28) and (29).

Let p denote the root of D and ry,...,7, the non-terminal sons of p. To

establish the first bound for g, it remains to consider the part of g depending
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on the height of the root:
|90 (D5 1y x5 7) |
< (| (I — T A, 1 (6 o) e (LT Ap, -y (6~ P D) |
1B 0 )| - | A, (1T, = D[ [[ A, T

Tp
HHgn,hp (Dp.: h|D,,z. »X|D,,» TID,, ) ||
=1
< Cé%+7p06(mp)061*Xp+€p*Tp e*Xp)‘s*(lep))\erl
Tp

HHgth (D,.; thpi 1 XID,,3 T|D, ) || (Xt To)n(Aep1=Aate)

i=1
exp (ho(As(Xp + Tp — L) + Asp1(1 — Xp — Tp) + €(2+ £,)))

Therefore,

[9n (Ds s x:7) |
< C’g(%“'ﬂ) C’E(mp)cel—Xp“'éﬁ—"'p e—XpAs—(l—Xp)As-%—l

Tp
exp (hp(As+1 = Asly + €3+ 265))) T[Nl 9n0, (D Bip, i Xi0,, 5710, |-
=1

Inequalities (26) and (27) and the fact that (x,7) € Q(D) provide the first
inequality for ||g.(D; h; x;7)||-

To deduce the second inequality, it suffices to note that when u € i2(D), hyp(y)
is smaller than h,. This allows to bound Asi1(hy — Ppeu)) By As(Pu — hpeu))
for u € i3(D). In this way, a unique bound of ||gn7hp(u) (Duship,; X (Do 7D ||
is obtained for all u € i(D):

|91y 0y (Do Byps X003 T2 ) ||
S CEX;LL—Q—‘ru Ce(mu)cel—xu+2u—ru e—)\s ehp(u)(—)\5+2£)

exp (hu(As(1 — £u)Ty + €(3 + 20,)))

Tu
1o (Duis ip, s X155 710,

i=1
In the same way,
Jon(Ds x| € € O G
exp (hp(/\s(l —0,) +e(3+ 2€p)))

Tp

[T lgnn, (Do Bip,,: Xi0,, 5710, 0

=1
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In Subsection 3.2, it has been shown that for a positive and small enough €
o D nem, (p) XP(Xuci(p) hubu) converges if Ay > 0;
. EheHn(D) exp(zuei(D) hyfu) converges if A; < 0 and As41 — kAs < 0.

Therefore, according to Lemma 3.14, for every D € 7, and (x,7) € Q(D),
the sequence (EheHn(D) gn(D; h; x;T))n converges to zero in probability if
dst1 — kXs < 0and Df(O)(Rd)ﬂ@z:SH E; = {0} P-almost surely. This closes
the proof of the convergence to 0 of (F},(2;D)(0) — F,,(1;D)(0)),, for every
diagram D € Tj.

3.3.2. Convergence to zero of (F2,,(2; D)(0)),. — Let D € T;,. To prove that
the sequence (FZ2,,(2;D)(0)),, converges to 0 in probability, let us introduce

n
an auxiliary sequence

Fry1(D) = > far1(D;h),
heHn+1(D)\Hn(D)

that can be deduced from the expression of F? (2, D)(0) by replacing each
projector IL,, by a projector II:

Fas1(Dsh) = (1=T0) Ay, (97 e=D)pi") (2)(0)
(fat1m, (Dpys hip, ) Fasin, (Do, hyp, ), (Ap, IT)%)

where p1, ..., pr, designate the non-terminal sons of the root p and,
o if w € i1(D) then

Frtt iy (Dui hyp,) = Afhp(u)HAhufl(ai(huil))b;:Zu)(2)(0)
(Fosth(DussByp,, )y oo fagtn, (Du s by, ) (Aop, TS0,
e if u € i(D) then
Fat e (Dui hip.) = Any hu 16 (2)(0) (Fasn, (Dusi by, )
oo S (Dushyp, )y (Ap, I,
where uq, ..., u,, designate the non-terminal sons of the node .

The convergence to zero of the sequences (F,(D)), and (F,(D) —
F2(2;D)(0)),, will be successively studied.

5.5.2.1. Convergence of (Fy(D))n to zero. — The expressions of f,11(1; D; h)(0)
and f,,11(D;h) only differ in the terms

b (o) = L BUVOT ) =1,
i gm (g=m) if i = 2.

Therefore, as in Lemmas 3.9, one may assert that for all e > 0, there exists
a P-almost surely finite random variable C¢, such that for all n € N* and
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h € Hy(D),
@l < (- TT e @ ) Ceexp (3 auha)
u€i(D),hy=n u€i(D)

where

o ay = As(1 —my) +€(2+my) if uei(D) and As > 0;

o oy = A(ly A1)+ (1= 1) Neg1 + €2+ my) if u € i(D) U {p(D)}

and A; < 0;
oy =N (1 -4, — 1"7(11)) — m(f))\s“ +e(24+my) if u€iy(D) and Ay <0.

Therefore, to prove that (F,11(D)), converges to zero in probability, it

suffices to show that the sequence (X ,cp, .\ (p)\m,(p) EXP(Xyei(p) Muhu))n
converges to zero.

Set J(D;u;n) := {h € H(D), h, = n} for u € i(D). According to Lemmas
3.10 and 3.13, whether A; > 0or A; <0, thesum 3, 7 py exp(Xyei(p) Cuhu)
is finite provided that As11—kAs < 0 and that € > 0 is small enough. Therefore,
for every u € i(D), the sequence (S(u;n)), defined by

S(u;n) = Z exp ( Z hyoy, + nozu>,
heJ(Dju;n) vei(D)\{u}
converges to zero. But Hy,41(D)\ Hn(D) C U, ei(py J(D;u;n+1), whence the
sequence (X yepr, | (p)\m, (D) XP(Xuei(p) Qultu))n converges to zero.

3.8.2.2. Convergence of (F2(2;D)(0) — Fn(D)), to zero. — The difference

between F2,(2; D)(0) and F,,41(D) can also be decomposed as follows:

F2a(2D)(0) = Fopr(D) = > B0GT) Y. Ga(Dihix;7)

(x,7)EQ(D) heH,, (D)

where §,,(D; h; x;7) is the multilinear application defined by

G (D b X 7) = () Anp—1 (6~ 2~ D)b" (2)(0)
(Gnhy (Do Byp, 5 XID,, i TID, )5 - - - ,Qn,hp(Dprp;h\Dprp§X|Dm,,§7'|Dpr,,),
(A—h,, (IT,, — H))@Tp’ (Aith)®(@p*Tp)),
(p1,-..,pr, are the non-terminal sons of the root p). As usual, if u € i,(D)
then the map g .(Du; hp,; X|D,; T|D,) is defined by:
Gnhpiy (Dui DL X Dui TIDL) = Ahypi en(Xu)An, 107" ))bi’f“)@)(O)
(Gnhe (Duys hiDy 3 XDuy 3 TiDuy )+ - s Gty (D hD., iX|Du,, iT|Du,. )
(Ap, (T, = I0)®™, (A, )@ eT0))

u
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and if u € i3(D) then the map g, .(Du; hp,; X|p.; T|D,) is defined by:

Tty ey (D By X1Du3 D) = @y a1 ()OS (2)(0)
(Gn.ha(Duys D, 5 XD, 31Dy )5+ <5 G (P, s Py, 5 XD
(A_p, (IL, — I0))®7e (A_p, D)@ 7))

wr i TDuy, )

(u1,...,u,, designate the non-terminal sons of the node w).

For 0 < € < As — Ast1, (x,7) € Q(D) and h € H,(D), the norm of the
application g, (D; x; T; h) is bounded above by

|gn(Dsx; )| < Cen [T lE™ (67 eXP( > ﬂuhu>
u€i(D),hy=n u€i(D)
where
e Bu=Xs(1—my)+¢€(3+2my,) if u €i(D) and \s > 0;

o Bu=-As(ly +78) + (1= )1 + €3+ 2my,) if u € ia(D) U {p(D)}
and A; < 0;

o Bu=As(1 =Ly — 1) = P Ne1 + (34 2my) if u € i1 (D) and A, < 0;

o (Cen)n is a sequence of random variables that converges in probability
to zero.

When Asy1 — kXAs < 0, and € > 0 is small enough, the sum
> (X a)
heH (D) u€i(D)
is finite. Therefore, one may conclude that
> [|n(D; x; 73 h)H)n
hEHn+1(D)\Hn(D)

converges to zero in probability for every D € 7j and (x,7) € Q(D).

This closes the proof of the convergence to zero in probability of
(D*T,(0) — D¥Y,,(0)) when Ag1 —kAs < 0 and DE(0)(R)NEP;_, ., Ei = {0}
P-almost surely.

Appendix A

Description of the contacts of submanifolds

The objective of this appendix is to introduce equivalence classes of sub-
manifolds that play the same role as jets for maps and to state some of their
elementary properties.
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A.1. Properties of the jets of maps. — Let us start by recalling some
properties of the jets of maps.
LEMMA A.1. — Let E, F and G be three Euclidean spaces.

1) There exists a unique application, Co, defined on the product
I (CSO(E, F) x J§ (C5(F. G))
such that for all f € C§H(E, F) and g € C§Y(F, G),

Co(36 (), 45 (9)) = db (g © f)-
Furthermore, Co is continuous.

2) Denote by Diff °(E) the set of local diffeomorphisms of C5%(E, E). There
exists a unique map, Inv, defined on J§(Diff (E)) such that for all f in
DIffy* (),

Inv (5 (£)) = do (f ).
Furthermore, Inv is continuous.

Proof. — These two properties are a consequence of Faa-di-Bruno’s formula:

Let E, F and G be three Fuclidean spaces, let f be a C*° map defined on a
neighbourhood U of 0 in E with values in F', let V' be an open set of F' such
that f(U) CV and let g : V — G be a C*™ map. The map go f is C® on U
and for oll k e N*, z € U

(30)  DM(fog)(x) =) CiDIf(g(x))((Dg(x))®",.... (D g(x))*®),
q€li

where

Ii={q=(q1,--.,a) €N, q1 +2q2- - + kqw = k},

lal =1+ + a,
k! 1

q __ —
Ci= Tl @ gm0 ().

By this formula, if f € JE(f) and g € j¥(g), then gof e j&(go f). Therefore,
there exists a unique map Co, defined on J§(C5%(E, F)) x J§(C5% (F, G)), such
that for all f € C§5(E,F) and g € C54(F.G), jg(g o f) = Co(45(f). j5 (9))-
Faa-di-Bruno’s formula also shows that the map Co is continuous.

If f € Diff°(E), then Faa-di-Bruno’s formula gives an iterative formula
for the derivatives of f=1 at 0: Df~1(0) = (Df(O))fl and for each k > 2,
DF f=1(0) is equal to

_ Z CZ D|‘1|f—1(0) ((Df(O)Df_l(O))®ql . (Dkf(o)(Df—l(O)@)k)@qk))
g€l
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where

In={q=(q1,..-,ar) € Ir, lq| < k}.
Thus, if f € j&(f) then f~' € j¥(f~1); there exists a unique map Inv, defined
on JE(Diffg°(E)) such that for every f € Diffg°(E), 55(f 1) = Inv(j§(f)). The
iterative formula shows that Inv is continuous. O

A.2. Orthogonal parametrization of a submanifold at 0. — This sub-
section contains a description of a particular class of parametrizations for sub-
manifolds of RV.

DEFINITION A.2. — Let S be a C°° submanifold of RY passing through 0
and let f € C§%(T0S, RY) be a parametrization of S at 0. “f is an orthogonal
parametrization of S at 07 if f € C5°(TpS,RY) and if the orthogonal projection
of f on the tangent space Tp.S of S at 0 is equal to the identity on TpS.

For example, consider the unit circle S = {(z,y) € R?, (z + 1) +¢% = 1}.
Its tangent space at 0 is the vector space R(0,1). The map -y, defined by
v((0,t)) = (V1 =12 —1,¢) for all t €] — 1, 1], is an orthogonal parametrization
of S at 0.

An orthogonal parametrization of S at 0 can be constructed with the help
of a parametrization f € Cng(E,RN ) of S at 0 as follows: let p denote the
orthogonal projection on 7yS. There exist a neighbourhood U of 0 in E and
a neighbourhood V of 0 in T3S, such that p o f is a diffeomorphism from U
onto V. Then the map g, defined on V by g(y) := fo(po f)~!(y) forally € V,
is an orthogonal parametrization of S at 0. The map gop € C$°(RY,RY) will
be called the “orthogonal normalization of f” and will be denoted by n, (f).

The following lemma states two properties of orthogonal normalizations:

LEMMA A.3. — Let E be a subspace of RN and let g1, go € EmbeO(E,]RN).

1) If g1 and g2 are two parametrizations of a C°° submanifold S of RN at 0,
then their orthogonal normalizations coincide on a neighbourhood of 0 in
RY.

2) There exists a unique map N1, defined on J§(Embg5(E,RY)), such that
for all f € Embgsy(E,RY), NLGE(f) = jb(n.(f). The map No is
continuous.

Proof. — 1) Let p be the orthogonal projection of RY onto 7),S. There exists
a neighbourhood U, of 0 in E such that:

e g1 and go are homeomorphisms from U onto their images V3 N S and
Vo N S, where Vi and V5 are two neighbourhoods of 0 in RY;

e po gy and p o go are diffeomorphisms from U onto their images.
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Set V =ViNVa, U; = g; "(U) for i € {1,2}, and W = p~*(U; N Uy). There
exists a homeomorphism A : Uy +— Us, such that g o h = g1 on U;. Thus, the
orthogonal normalizations of g; and g are well-defined on W and

ni(g1) =g2oho(pogroh)  op=ni(g)

2) Due to Lemma A.1, it remains to show that there exists a unique map
P, defined on J§(C5%(E,RN)) satisfying j§(p(f)) = P(j§(f)) for all f in
Embg% (E,RY), and to prove that P is continuous.

First, if f,f € EmbeO(E7RN) have a contact of order at least one, then

p(f) = p(f). Therefore P is well-defined. The fact that P is continuous will be
established by proving that if f, f € Embg5 (£, RY) satisfy

|Df(0) = Df(0) <1,

then [|p(f)—p(f) < |Df(0)—Df(0)|| < L. Actually, according to the following
theorem, it suffices to prove that ||(L—p(f))p(f)Il < [[Df(0) — Df(0)].

THEOREM A.4 (T.Kato [4]). — Let P and Q be two orthogonal projections in
an Fuclidean space. Set

8(P, Q) := max{|(z,y)|,2 € Im(P),y € Im(Q) and ||z|| = [|y|| = 1}.
If dimIm(P) = dim Im(Q) and §(1 — P,Q) < 1, then |