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SYMMETRIES OF THE NONLINEAR
SCHRÖDINGER EQUATION

by Benôıt Grébert & Thomas Kappeler

Abstract. — Symmetries of the defocusing nonlinear Schrödinger equation are ex-
pressed in action-angle coordinates and characterized in terms of the periodic and
Dirichlet spectrum of the associated Zakharov-Shabat system. Application: proof of
the conjecture that the periodic spectrum · · · < λ−

k ≤ λ+k < λ−
k+1 ≤ · · · of a Zakharov-

Shabat operator is symmetric, i.e. λ±
k = −λ∓

−k for all k, if and only if the sequence

(γk)k∈Zof gap lengths, γk := λ+k − λ−
k , is symmetric with respect to k = 0.

Résumé (Symétries de l’équation de Schrödinger non linéaire). — Les symétries de
l’équation de Schrödinger nonlinéaire sont exprimées dans les variables action-angles
et caractérisées à l’aide du spectre périodique et du spectre de Dirichlet du système
de Zakharov-Shabat associé. Comme application, nous démontrons la conjecture sui-
vante : le spectre périodique · · · < λ−

k ≤ λ+k < λ−
k+1 ≤ · · · de l’opérateur de Zakharov-

Shabat est symétrique, i.e. λ±
k = −λ∓

−k pour tout k, si et seulement si la suite (γk)k∈Z
des longueurs des intervalles d’instabilité, γk := λ+k − λ−

k , est symétrique par rapport
à k = 0.
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604 GRÉBERT (B.) & KAPPELER (T.)

1. Introduction

The defocusing nonlinear Schrödinger equation NLS on the circle

(1.1) i ∂tϕ = −∂2xϕ+ 2|ϕ|2ϕ
can be viewed as a completely integrable Hamiltonian system of infinite dimen-
sion. Indeed, on the phase L2(S1;C), introduce the Poisson bracket

{F,G} := i

∫
S1

( ∂F

∂ϕ(x)
· ∂G

∂ϕ(x)
− ∂F

∂ϕ(x)
· ∂G

∂ϕ(x)

)
dx.

Equation (1.1) can then be written in Hamiltonian form as follows

∂ϕ

∂t
= {H, ϕ} = −i

∂H
∂ϕ

, ∂ϕ

∂t
= {H, ϕ} = i

∂H
∂ϕ

,

where the Hamiltonian H is given by (cf. [2])

H(ϕ) :=
∫

S1

(∣∣∣∂ϕ
∂x

∣∣∣2 + |ϕ|4
)
dx.

Consider the following symmetry operators, acting on L2(S1;C),

(1.2) S1(ϕ) := ϕ, S2(ϕ) = ϕ̌,

(1.3) Mαϕ := eiαϕ, Tτϕ := ϕ(τ + ·),
where ϕ̌ is defined by ϕ̌(x) = ϕ(−x). For convenience, we introduce S3 :=Mπ,
i.e. S3(ϕ) = −ϕ. Notice that the Hamiltonian H is invariant under S1,S2,Mα

and Tτ .
Denote by U(t) the solution operator of (1.1) for initial data in L2(S1;C) (or

some Sobolev space HN (S1;C)) (cf [1]). It is immediate that U(t) commutes
with S2,S3,Mα and Tτ and that

(1.4) U(t)S1 = S1U(−t).

Recall that NLS admits a Lax pair representation

dL
dt

= [L,A]

where L = L(ϕ) is the Zakharov-Shabat operator

(1.5) L(ϕ) := i
( 1 0
0 −1

) d
dx

+
( 0 ϕ
ϕ 0

)
and A is a (rather complicated) operator given in [2]. We remark that L(ϕ)
is unitarily equivalent to the well known AKNS-operator

(1.6) H(ϕ) :=
( 0 −1
1 0

) d
dx

+
(−q p

p q

)
where ϕ = −q + ip, a fact which will be used throughout the paper.
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SYMMETRIES OF THE NLS EQUATION 605

Denote by specper L(ϕ) the periodic spectrum of L(ϕ) when considered on
the interval [0, 2] and by spec±Dir L(ϕ) the Dirichlet spectra of L(ϕ) when consid-
ered on the interval [0, 1] (cf. Definitions (2.5) and (2.6) below). The operator
L(ϕ) is selfadjoint when considered with periodic or Dirichlet boundary condi-
tions. Hence both specper L(ϕ) and specDir L(ϕ) are real.
By elementary considerations one shows that

specper L(ϕ) = − specper L(ϕ), specperL(̌ϕ) = − specper L(ϕ),

specper L(Mαϕ) = specper L(ϕ), specperL(Tτϕ) = specperL(ϕ)

and expresses spec+Dir L(Sjϕ) for j = 1, 2, 3 in terms of spec−Dir L(ϕ).
Recall from [7] (see also [8]) that NLS admits global Birkhoff coordinates.

Denote by �2(Z;R2) the space of �2-sequences (xj , yj)j∈Z endowed with the
canonical Poisson bracket {xi, xj} = 0, {yi, yj} = 0 and {xi, yj} = δij .

Theorem 1.1. — There exists a canonical diffeomorphism Φ

Φ : �2(Z;R2) −→ L2(S1;C)

such that
1) Φ is bianalytic;
2) the restriction of Φ to the weighted �2-space �2N (Z;R

2) (N ≥ 1) is a
diffeomorphism onto the Sobolev space HN(S1;C);
3) (xj , yj)j∈Z = Φ−1(φ) are Birkhoff coordinates for NLS and its hierarchy,

i.e. any Hamiltonian in the hierarchy is a function of the actions Ij := 1
2 (x

2
j +

y2j ) only.

In this article we use the explicit formulas for action and angle variables
given in [8] (see also [7]) to obtain

Theorem 1.2. — (i) The actions are left invariant by Mα and Tτ , i.e. for
any k ∈ Z

Ik(Mαϕ) = Ik(ϕ) and Ik(Tτϕ) = Ik(ϕ)

whereas Ik(ϕ) and Ik(ϕ̆) can be computed to be (j = 1, 2)

Ik(Sjϕ) = I−k(ϕ).

(ii) For k with Ik �= 0
θk(Mαϕ) ≡ θk + α (mod 2π),

θk(̌ϕ) ≡ θ−k(ϕ) (mod 2π),
θk(ϕ) ≡ −θ−k(ϕ) (mod 2π).

As a first application of Theorem 1.2 one obtains (cf. Proposition 4.1 in
Section 4 )
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606 GRÉBERT (B.) & KAPPELER (T.)

Corollary 1.1. — When evaluated at I = (Ik)k∈Z with Ik = I−k for all
k ∈ Z, the NLS frequencies ω = (ωk)k∈Z , ωk = ∂H/∂Ik, are symmetric, i.e.
ωk(I) = ω−k(I) for all k ∈ Z.

The main motivation for proving Theorem 1.2 and Corollary 1.1 comes from
an application to a KAM type theorem established in [5] (see also [6]).

As a second application, Theorem 1.2 is used to prove that the periodic spec-
trum is symmetric if and only if the sequence of the gap lengths is symmetric,
a conjecture, raised by several experts in the field. More precisely, denote by

specper L(ϕ) =
(
λ±

k (ϕ)
)

k∈Z

the periodic spectrum of L(ϕ) when considered on the inverval [0, 2] where the
numbers λ±

k (ϕ) are ordered so that

λ−
k (ϕ) ≤ λ+k (ϕ) < λ−

k+1(ϕ)

and let γ(ϕ) := (γk(ϕ))k∈Z be the sequence of gap lengths,

γk(ϕ) := λ+k (ϕ)− λ−
k (ϕ).

In Section 4 we prove the following

Theorem 1.3. — For ϕ ∈ L2(S1;C), the following assertions are equivalent:

(i) λ±
k (ϕ) = −λ∓

−k(ϕ) for any k ≥ 0 ;
(ii) γk(ϕ) = γ−k(ϕ) for any k ≥ 1.

2. Symmetries and spectra

2.1. Periodic spectrum. — The periodic spectrum of the Zakharov-Shabat
operator L(ϕ) is given by

specper L(ϕ) :=
{
λ ∈ C | ∃F ∈ H1

loc(R;C
2), F �≡ 0 with L(ϕ)F = λF

and F (x+ 2) = F (x), ∀x ∈ R
}
.

By [4], specper L(ϕ) consists of a sequence of real numbers (λ
±
k (ϕ))k∈Z, which

can be ordered in such a way that (for all k ∈ Z)

(2.1) λ−
k (ϕ) ≤ λ+k (ϕ) < λ−

k+1(ϕ)

and λ±
k (ϕ) ∼ kπ for |k| large. We have the following

Proposition 2.1. — Let ϕ ∈ L2(S1;C). Then, for any k ∈ Z,

(i) λ±
k (e

iαϕ) = λ±
k (ϕ), λ±

k (ϕ) = λ±
k (Tτϕ) (∀α ∈ R, τ ∈ R);

(ii) λ±
k (̌ϕ) = −λ∓

−k(ϕ), λ±
k (ϕ) = −λ∓

−k(ϕ).
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SYMMETRIES OF THE NLS EQUATION 607

Proof. — (i) For α ∈ R arbitrary, define Vα =
(
e−iα/2 0
0 eiα/2

)
. One easily verifies

that

(2.2) L(eiαϕ) = V −1
α L(ϕ)Vα

and L(Tτϕ) = TτL(ϕ)T−τ . Thus both, L(eiαϕ) and L(Tτϕ), are unitarily
equivalent to L(ϕ) and the claimed statement follows. To prove (ii) notice
that

(2.3) L(−̌ϕ) = −W−1L(ϕ)W

where W is the unitary operator defined by

W
(
Y
Z

)
:=

(
Y̌

Ž

)
, with

(
Y
Z

)
∈ L2loc(R;C

2).

Thus

(2.4) specper L(−̌ϕ) = − specper L(ϕ).

Combining (2.4) and (i) we obtain λ±
k (̌ϕ) = −λ∓

−k(ϕ) for all k ∈ Z. Con-
sider λ ∈ specper L(ϕ) and choose F ∈ H1

loc(R;C
2), satisfying F (x + 2) =

F (x) for all x ∈ R and L(ϕ)F = λF. As λ is real, L(−ϕ)F = −λF and
thus −λ ∈ specper L(−ϕ). Combined with (i), this leads to λ±

k (ϕ) = −λ∓
−k(ϕ)

for all k ∈ Z.

2.2. Dirichlet spectra and divisors. — To study properties of the Dirich-
let spectra it is convenient to consider the AKNS operatorH(ϕ) instead of L(ϕ).
Let

Fj(x, λ;ϕ) :=
(
Yj(x, λ;ϕ)
Zj(x, λ;ϕ)

)
, j = 1, 2,

be the fundamental solutions of H(ϕ), i.e. the solutions to HF = λF such that

F1(0, λ;ϕ) =
( 1
0

)
, F2(0, λ;ϕ) =

( 0
1

)
.

For each x ∈ R and ϕ ∈ L2(S1;C), F1(x, λ;ϕ) and F2(x, λ;ϕ) are entire
functions of λ. The two Dirichlet spectra are defined as follows

(2.5) spec+Dir L(ϕ) =
{
λ ∈ C | Z1(1, λ;ϕ) = 0

}
,

(2.6) spec−Dir L(ϕ) =
{
λ ∈ C | Y2(1, λ;ϕ) = 0

}
.

It is proved in [4] that spec+Dir L(ϕ), resp. spec−Dir L(ϕ), consists of sim-
ple, real eigenvalues (µk(ϕ))k∈Z, resp. (νk(ϕ))k∈Z. The numerotation is chosen
in such a way that (µk(ϕ))k∈Z and (νk(ϕ))k∈Z are strictly increasing satisfy-
ing µk(ϕ) ∼ kπ and νk(ϕ) ∼ kπ for |k| large. Further introduce the func-
tion δ(λ;ϕ), defined by

(2.7) δ(λ;ϕ) = Z2(1, λ;ϕ)− Y1(1, λ;ϕ).
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Notice that for any k ∈ Z,

(2.8) δ
(
µk(ϕ);ϕ

)2 = ∆(
µk(ϕ);ϕ

)2 − 4,
where

(2.9) ∆(λ;ϕ) = Y1(1, λ;ϕ) + Z2(1, λ;ϕ)

is the discriminant.

Proposition 2.2. — Let ϕ ∈ L2(S1;C). Then
(i) µk(−ϕ) = νk(ϕ), νk(−ϕ) = µk(ϕ) for all k ∈ Z;

(ii) δ(λ;−ϕ) = −δ(λ;ϕ).

Remark. — For α �≡ 0, π (mod 2π), µk(eiαϕ) satisfies an equation involving
spec±Dir L(ϕ), the solution of which does not seem to be given in form of a closed
expression.

Proof. — For F =
(
Y
Z

)
∈ H1

loc(R;R
2) define

(2.10) F⊥ =
(

Z
−Y

)
.

If H(ϕ)F = λF we have
H(−ϕ)F⊥ = λF⊥.

Therefore

(2.11) F1(x, λ;−ϕ) = F⊥
2 (x, λ;ϕ)

and

(2.12) F2(x, λ;−ϕ) = −F⊥
1 (x, λ;ϕ).

Using (2.11)–(2.12) one easily gets (i) and (ii).

Proposition 2.3. — For ϕ ∈ L2(S1;C) and k ∈ Z,
(i) µk(ϕ) = −ν−k(ϕ) and νk(ϕ) = −µ−k(ϕ);
(ii) δ(µk(ϕ), ϕ) = −δ(ν−k(ϕ), ϕ).

Proof. — (i) For F =
(
Y
Z

)
∈ H1

loc(R;R
2) define

(2.13) F̃ =
(
Z
Y

)
.

If H(ϕ)F = λF , F̃ satisfies H(ϕ)F̃ = −λF̃ . Therefore

(2.14) F1(x, λ;ϕ) = F̃2(x,−λ;ϕ), F2(x, λ;ϕ) = F̃1(x,−λ;ϕ).

Using (2.14) and the asymptotics of µk and νk, one easily obtains (i).
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SYMMETRIES OF THE NLS EQUATION 609

(ii) From (2.14) one deduces δ(µk(ϕ);ϕ) = −δ(−µk(ϕ);ϕ) and thus (ii)
follows using (i).

Proposition 2.4. — For ϕ ∈ L2(S1;C) and k ∈ Z,

(i) µk (̌ϕ) = −ν−k(ϕ) and νk(̌ϕ) = −µ−k(ϕ);
(ii) δ(µk (̌ϕ), ϕ̌) = δ(ν−k(ϕ), ϕ).

Remark. — By Proposition 2.1, 2.3 and 2.4, ϕ̌ and ϕ have the same periodic
and the same Dirichlet spectra. They are only distinguished by

δ
(
µk(̌ϕ), ϕ̌

)
= −δ

(
µk(ϕ), ϕ

)
∀k ∈ Z.

Proof. — For F =
(
Y
Z

)
∈ H1

loc(R;R
2) we define

(2.15) F ∗(x) = F (1− x).

If H(ϕ)F = λF , then F ∗ satisfies

(2.16) H
(
−̌ϕ

)
F ∗ = −λF ∗.

By the definition of µk(ϕ), for any given k ∈ Z,

F1
(
1, µk(ϕ);ϕ

)
= Y1

(
1, µk(ϕ);ϕ

)( 1
0

)
.

Therefore

(2.17) F1
(
x,−µk(ϕ); −̌ϕ

)
=

1
Y1(1, µk(ϕ);ϕ)

F1
(
1− x, µk(ϕ);ϕ

)
.

Evaluated at x = 1, (2.17) leads to Z1(1,−µk(ϕ); −̌ϕ) = 0. In view of the
asymptotics of µk we conclude that µk(−̌ϕ) = −µ−k(ϕ). Statement (i) then
follows from Proposition 2.2 (i).
From (2.17) and (i), we deduce that

(2.18) Y1
(
1, µ−k(−̌ϕ); −̌ϕ

)
=

1
Y1(1, µk(ϕ);ϕ)

·

Further, the Wronskian identity (see [4])

(2.19) Y1(1, λ;ϕ) · Z2(1, λ;ϕ)− Y2(1, λ;ϕ) · Z1(1, λ;ϕ) = 1
implies that

(2.20) Z2
(
1, µk(ϕ);ϕ

)
=

1
Y1(1, µk(ϕ);ϕ)

·

Hence (2.18) and (2.20) yield

(2.21) δ
(
µ−k(−̌ϕ); −̌ϕ

)
= −δ

(
µk(ϕ);ϕ

)
.

Statement (ii) then follows by combining (2.21) and Proposition 2.2.
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3. Symmetries in action-angle coordinates

3.1. Actions. — Recall from [8] (see also [7]) that, for ϕ ∈ L2(S1;C), the
actions, Ik(ϕ), k ∈ Z, are defined by

(3.1) Ik(ϕ) :=
2
π

∫ λ+
k (ϕ)

λ−
k (ϕ)

(−1)k+1 µ∆̇(µ;ϕ)
|∆2(µ;ϕ)− 4|1/2 dµ

where ∆(µ;ϕ) is the discriminant given by

(3.2) ∆(µ;ϕ) = Y1(1, µ;ϕ) + Z2(1, µ;ϕ).

Proposition 3.1. — For ϕ ∈ L2(S1;C) and k ∈ Z

(i) Ik(eiαϕ) = Ik(ϕ), for all α ∈ R;
(ii) Ik(ϕ) = I−k(ϕ);
(iii) Ik (̌ϕ) = I−k(ϕ);
(iv) Ik(Tτϕ) = Ik(ϕ), for all τ ∈ R.

Proof. — Recall from [4] (cf. also [7]) that ∆2(µ;ϕ) − 4 has a representation
as an infinite product

∆2(µ;ϕ)− 4 = −4(λ+0 (ϕ)− µ)(λ−
0 (ϕ) − µ)(3.3)

×
∏

k∈Z∗

(λ+k (ϕ)− µ)(λ−
k (ϕ) − µ)

k2π2

where the above infinite product
∏

k∈Z∗ ak is computed as the limit of
the sequence (

∏N
k=1 aka−k)N≥1. Furthermore, for any µ in the open in-

terval (λ−
k (ϕ), λ

+
k (ϕ)), sign ∆(µ;ϕ) = (−1)k. Therefore ∆(. ;ϕ), and thus

(Ik(ϕ))k∈Z, are uniquely determined by specper L(ϕ). In particular, state-
ments (i) and (iv) follow from Proposition 2.1. To prove (ii) and (iii) notice
that, by Proposition 2.1, for ψ ∈ {ϕ, ϕ̌}, specper L(ψ) = − specper L(ϕ).
Therefore ∆(λ;ψ) = ∆(−λ;ϕ) and thus, by (3.1), one easily obtains for
any k ∈ Z, Ik(ψ) = I−k(ϕ).

3.2. Angles. — Denote by Σϕ the hyperelliptic Riemann surface,

y =
√
∆(λ;ϕ)2 − 4,

and let βj = βj(ϕ) (∀j ∈ Z) be Abelian differential 1-forms of the third kind
on Σϕ, uniquely determined by the normalization conditions (see [7], [8]),∫

ak

βj = 2π δkj ,

where for any k ∈ Z the cycle ak ≡ ak(ϕ) is a contour around [λ−
k , λ

+
k ] with

counterclockwise orientation on the sheet of the Riemann surface Σϕ deter-
mined by i

√
∆(λ;ϕ)2 − 4 > 0 for λ+0 < λ < λ−

1 . For k ∈ Z with Ik(ϕ) �= 0,
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SYMMETRIES OF THE NLS EQUATION 611

the angle θk(ϕ) is given by

(3.4) θk(ϕ) =
∑
j∈Z

∫ µ∗
j (ϕ)

λ−
j (ϕ)

βk(ϕ),

where µ∗
j (ϕ) denotes the point (µj(ϕ), δ(µj(ϕ);ϕ)) on Σϕ (cf. (2.8)). As path

of integration in (3.4) one chooses the straight line on the sheet of Σϕ containing
µ∗

j (ϕ), connecting λ−
j and µ∗

j (ϕ).

Proposition 3.2. — For ϕ ∈ L2(S1;C), α ∈ R, and k ∈ Z with Ik(ϕ) �= 0,
θk(eiαϕ) ≡ θk(ϕ) + α (mod 2π).

Proof. — Denote by Rα the action of Mα expressed in Birkhoff coordinates,
i.e.

Rα = Φ−1MαΦ
where Φ is the Birkhoff map, ϕ = Φ((

√
2Ij eiθj )j∈Z). Notice that

Rα+β = Φ−1MαMβ Φ = RαRβ , R0 = Id,

and
d
dα

Rα = lim
β→0

Rα+β −Rα

β
= lim

β→0

Rβ − Id
β

Rα = i · Rα.

Hence Rα = eiαId and the claimed result follows.

Proposition 3.3. — For ϕ ∈ L2(S1;C),

(i) θk (̌ϕ) ≡ θ−k(ϕ) (mod 2π), for all k ∈ Z with I−k(ϕ) �= 0;
(ii) θk(ϕ) ≡ −θ−k(ϕ) (mod 2π), for all k ∈ Z with I−k(ϕ) �= 0.

Proof. — For k ∈ Z with Ik(−̌ϕ) �= 0 we have, by (3.4) and Proposition 2.1,

(3.5) θk(−̌ϕ) =
∑
j∈Z

∫ µ∗
j (−ϕ̌)

λ−
j (−ϕ̌)

βk(−̌ϕ) =
∑
j∈Z

∫ µ∗
j (−ϕ̌)

−λ+
−j(ϕ)

βk(−̌ϕ).

To compute the latter integral, introduce the map σ : C2 → C2 defined by

(3.6) σ(λ, y) = (−λ,−y).

Notice that for (λ, y) ∈ Σ−ϕ̌, σ(λ, y) ∈ Σϕ as ∆2(λ; −̌ϕ) = ∆2(−λ;ϕ) (cf. for-
mula (3.3) and Proposition 2.1), hence σ : Σ−ϕ̌ → Σϕ.
Changing coordinates according to σ, one has∫

σ(aj(−ϕ̌))

σ∗βk(−̌ϕ) =
∫

aj(−ϕ̌)

βk(−̌ϕ) = 2π δkj .

Furthermore, in view of Proposition 2.1, σ(aj(−̌ϕ)) and a−j(ϕ) are homol-
ogous cycles, hence one deduces from the last identity that∫

a−j(ϕ)

σ∗βk(−̌ϕ) = 2πδjk.
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As βk(ϕ) is uniquely determined by its normalization conditions we conclude
that

σ∗βk(−̌ϕ) = β−k(ϕ).

Further, using Proposition 2.2 and Proposition 2.4 we get

σ
(
µ∗

j (−̌ϕ)
)
= σ

(
µj(−̌ϕ), δ(µj(−̌ϕ); −̌ϕ)

)
= σ

(
−µ−j(ϕ),−δ(µ−j(ϕ);ϕ)

)
= (µ−j(ϕ), δ

(
µ−j(ϕ);ϕ)

)
= µ∗

−j(ϕ).

Therefore, by a change of variable of integration in (3.5) we obtain

(3.7) θk(−̌ϕ) =
∑
j∈Z

∫ µ∗
−j(ϕ)

λ+
−j(ϕ)

βk(ϕ).

By contour integration and the normalization conditions
∫

aj
βk = 2π δjk, we

get for any k ∈ Z,

(3.8)
∫ λ+

j

λ−
j

βk ≡ πδjk (mod 2π).

Therefore combining (3.4), (3.7) and (3.8) we obtain

θk(−̌ϕ) ≡ θ−k(ϕ) + π (mod 2π),

which leads to (i), using Proposition 3.2 with α = π.

In order to prove (ii), recall from Proposition 2.1 that λ±
j (̌ϕ) = λ±

j (ϕ).
Hence Σϕ̌ = Σϕ and βk (̌ϕ) = βk(ϕ) for any k ∈ Z. Further, by Proposition 2.3
and 2.4,

µj (̌ϕ) = µj(ϕ), δ
(
µj (̌ϕ); ϕ̌

)
= −δ

(
µj(ϕ);ϕ

)
.

From (3.4) it thus follows that

(3.9) θk(ϕ) =
∑
j∈Z

∫ f(µ∗
j (ϕ̌))

λ−
j (ϕ̌)

βk (̌ϕ)

where f(λ, δ) = (λ,−δ) is the involution on Σϕ̌ exchanging the two sheets.
Hence βk(ϕ) satisfies ∫

f(aj(ϕ))

βk(ϕ) = −2π δkj .

By changing coordinates according to f one then gets∫
aj(ϕ)

f∗βk(ϕ) = −2π δkj
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SYMMETRIES OF THE NLS EQUATION 613

and hence f∗βk(ϕ) = −βk(ϕ) for any k ∈ Z. Therefore, by a change of variable
of integration in (3.9), we get

(3.10) θk(ϕ) = −
∑
j∈Z

∫ µ∗
j (ϕ̌)

λ−
j (ϕ̌)

βk (̌ϕ) ≡ −θk (̌ϕ).

Combining (3.10) and (i) we obtain (ii).

Proposition 3.4. — Let ϕ ∈ L2(S1;C), τ ∈ R and k ∈ Z with Ik(ϕ) �= 0.
Then

θk(Tτϕ) = θk(ϕ) + 2πkτ.

Proof. — By continuity, it suffices to consider ϕ ∈ H1(S1;C). The translation
flow Tτϕ(·) = ϕ(τ + ·) is the Hamiltonian flow associated with the Hamiltonian
(see [2] or [4]).

(3.11) H1(ϕ) =
i

2

∫
S1
(ϕϕ′ − ϕϕ′)dx

which commutes with the NLS-Hamiltonian. Thus for ϕ = Φ((
√
2Ij eiθj )j∈Z)

and k ∈ Z with Ik �= 0
(3.12) θk(Tτϕ) = θk(ϕ) + wk(I)τ

where

(3.13) wk(I) :=
∂H1
∂Ik

(I)

is the k-th frequency of the translation flow. Since θk(T1ϕ) = θk(ϕ), there
exists for any I ∈ �1(Z;R≥0) with Ik > 0, an integer nk(I) ∈ Z such that
wk(I) = 2πnk(I). Furthermore, since wk(I) is continuous and nk(I) takes dis-
crete values, nk(I) does not depend on I, i.e. nk(I) ≡ nk. From Lemma 3.5
below we deduce that for a 1-gap potential ϕ with Ij(ϕ) = 0 for all j �= k and
Ik(ϕ) > 0 the frequency wk(I) is given by wk(I) = 2πk.

Remark. — We note that the identities ∂H1/∂Ik = 2πk (for all k ∈ Z) estab-
lished in the proof above together with H1(0) = 0 implies that the following
trace formula holds for any ϕ ∈ H1(S1;C)

H1(ϕ) =
∑
k∈Z

2kπ Ik.

Lemma 3.5. — For k ∈ Z,{
ϕ ∈ L2(S1;C) | γj(ϕ) = γδkj , j ∈ Z

}
=

{
ϕ(x) = ce2iπkx | c ∈ C, |c| = 1

2γ
}
.

Proof. — A straightforward computation proves that for ϕ ∈ L2(S1;C) and
j, k ∈ Z arbitrary,

(3.14) γj(e−2iπkxϕ) = γj−k(ϕ).
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Further one knows (cf. [4])

(3.15)
{
ϕ ∈ L2(S1;C) | γj(ϕ) = γδ0j, ∀j ∈ Z

}
=

{
ϕ(x) = c | c ∈ C, |c| = 1

2γ
}
.

Combining (3.14) and (3.15), Lemma 3.5 follows.

4. Applications

4.1. Symmetries of the Hamiltonian and its frequencies. — As already
mentioned in the introduction, the NLS Hamiltionian H is invariant under
S2. When H is expressed with respect to action variables, H = H(I), this
invariance of H leads to our first application. For I = (Ik)k∈Z , denote by J (I)
the sequence given by

J (I)k := I−k ∀k ∈ Z.

Denote the j-th frequency by

ωj :=
∂H
∂Ij

·

Proposition 4.1. — (i) H(J (I)) = H(I).
(ii) For any I = (Ik)k∈Z with J (I) = I it follows that ωj(I) = ω−j(I) for

any j ∈ Z.

Proof. — (i) follows from combining the two identities H(̌ϕ) = H(ϕ) and
I (̌ϕ) = J (I(ϕ)) (Proposition 3.1).
(ii) Write H as a function of rk := 1

2 (Ik+I−k) (k ≥ 0) and ρk := 1
2 (Ik −I−k)

(k ≥ 1). By (i), ∂H/∂ρk = 0 at points where J (I) = I.

4.2. Symmetric phase spaces. — For α ∈ R, introduce the subspace

(4.1) Pα :=
{
ϕ ∈ L2(S1;C) | eiαϕ̌ = ϕ

}
.

Notice that for α = π, respectively α = 0, Pα ∩ C∞ is the phase space
consisting of elements ϕ ∈ C∞ satisfying a generalized Dirichlet respectively
Neumann condition, i.e. for all k ≥ 0,

∂2kx ϕ(0) = ∂2kx ϕ(1) = 0 (Dirichlet),

∂2k+1x ϕ(0) = ∂2k+1x ϕ(1) = 0 (Neumann).

Next, introduce the subspace

Qα :=
{
ϕ ∈ L2(S1;C) | eiαϕ = ϕ

}
.

Notice that eiαϕ = ϕ means that ϕ is of the form ϕ = eiα/2f(x) with f(x) a
real valued function.
Proposition 4.2 provides a charaterization of Pα and Qα in terms of action-

angle variables. Recall that Φ denotes the Birkhoff map,

ϕ = Φ
(
(
√
2Ikeiθk)k∈Z

)
.

tome 130 – 2002 – n
o
4



SYMMETRIES OF THE NLS EQUATION 615

Proposition 4.2. — The following statements hold:

(i) P0 =
{
Φ((

√
2Ikeiθk)k∈Z) | Ik = I−k, ∀k ≥ 1,

θk ≡ θ−k (mod 2π), ∀k ≥ 1 with Ik �= 0
}
;

(ii) For α �≡ 0 (mod 2π),

Pα =
{
Φ((

√
2Ikeiθk)k∈Z) | I0 = 0, Ik = I−k, ∀k ≥ 1,

θk ≡ θ−k + α (mod 2π), ∀k ≥ 1 with Ik �= 0
}
;

(iii) Qα =
{
Φ((

√
2Ikeiθk)k∈Z) | Ik = I−k, ∀k ≥ 1,

θk ≡ −θ−k + α (mod 2π), ∀k ≥ 0 with Ik �= 0
}
.

Proof. — (i) Let us denote by P̃0 the set on the right side of equality (i). If
ϕ ∈ P0, Proposition 3.1 and 3.3 imply ϕ ∈ P̃0. Conversely, if ϕ ∈ P̃0 then by
Proposition 3.1, 3.3 Ik (̌ϕ) = Ik(ϕ) for any k ∈ Z and θk (̌ϕ) = θk(ϕ) for any
k ∈ Z with Ik �= 0. Thus ϕ̌ = ϕ since Φ is one to one.

(ii) Let us denote by P̃α the set on the right side of the equality (ii). If
ϕ ∈ P̃α then, by Proposition 3.1, 3.2, 3.3, Ik(eiαϕ̌) = Ik(ϕ) for any k ∈ Z

and θk(eiα ϕ̌) = θk(ϕ) for any k ∈ Z with Ik �= 0, hence ϕ ∈ Pα. Conversely, if
ϕ ∈ Pα we have Ik(ϕ) = I−k(ϕ) for any k ∈ Z and θk(ϕ) ≡ θ−k(ϕ)+α (mod 2π)
for any k ∈ Z with Ik(ϕ) �= 0. In particular, if I0(ϕ) �= 0, θ0(ϕ) ≡ θ0(ϕ) +
α (mod 2π). As α �≡ 0 (mod 2π), it follows that I0(ϕ) = 0 and thus ϕ ∈ P̃α.

The statement (iii) is proved in a similar way.

Further, introduce the subspace

Eα :=
{
ϕ ∈ L2(S1;C) | eiα ϕ̌ = ϕ

}
and let E := E0. Notice that E is also given by

(4.2) E = {ϕ ∈ L2(S1;C) | Reϕ is even, Imϕ is odd
}

and recall from [4] that

E =
{
ϕ ∈ L2(S1;C) | specper L(ϕ) = spec+Dir L(ϕ) ∪ spec

−
Dir L(ϕ)

}
(4.3)

=
{
ϕ ∈ L2(S1;C) | ∀k ∈ Z, µk(ϕ) ∈ {λ+k (ϕ), λ

−
k (ϕ)}

}
.

Proposition 4.3. — One has

Eα =
{
Φ((

√
2Ikeiθk)k∈Z) | θk ≡ 1

2α (mod π), ∀k ∈ Z with Ik �= 0
}
.

Proof. — The statement is proved in a similar way as Proposition 4.2.
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Remark. — In particular for α = 0, Proposition 4.3, combined with (4.3),
shows that

{ϕ ∈ L2(S1;C) | specper L(ϕ) = spec+Dir L(ϕ) ∪ spec
−
Dir L(ϕ)

}
=

{
Φ((

√
2Ikeiθk)k∈Z) | θk ≡ 0 (mod π), ∀k ∈ Z with Ik �= 0

}
.

4.3. Symmetric spectrum. — In this subsection we present two spectral
results.
Recall from [4] that the sequence of the gap lengths,(

γk(ϕ)
)

k∈Z
=

(
λ+k (ϕ) − λ−

k (ϕ)
)

k∈Z
,

uniquely determines the periodic spectrum of L(ϕ). Similarly, the sequence of
actions (Ik(ϕ))k∈Z determines uniquely the periodic spectrum of L(ϕ).

Proposition 4.4. — For any ϕ, ψ ∈ L2(S1;C) the following statements are
equivalent:

(i) specper L(ϕ) = specper L(ψ);
(ii) Ik(ϕ) = Ik(ψ), for all k ∈ Z.

Before proving Proposition 4.4, we recall the following result from [4] (see
also [3] or [7])

Lemma 4.5. — For any ϕ0 ∈ L2(S1;C) there exists ϕ ∈ L2(S1;C) such that

(i) specper L(ϕ) = specper L(ϕ0);

(i) µk(ϕ) = λ−
k (ϕ) (= λ−

k (ϕ0)), for all k ∈ Z.

Proof of Proposition 4.4. — As the actions are defined in terms of spectral
data, statement (i) implies (ii). Conversely, assume that Ik(ϕ) = Ik(ψ) for
any k ∈ Z. According to Lemma 4.5, there exists a potential ϕ0 in L2(S1;C)
with specper L(ϕ0) = specper L(ϕ) so that µk(ϕ0) = λ−

k (ϕ0) for any k in Z

and hence, by the definition of θk,

(4.4) θk(ϕ0) ≡ 0 (mod 2π) for any k ∈ Z with Ik(ϕ0) �= 0.
Similarly there exists ψ0 in L2(S1;C) with specper L(ψ0) = specper L(ψ) and

(4.5) θk(ψ0) ≡ 0 (mod 2π) for any k ∈ Z with Ik(ψ0) �= 0.
As (i) implies (ii) one knows that Ik(ϕ0) = Ik(ϕ) and Ik(ψ0) = Ik(ψ) for
any k ∈ Z. As Ik(ϕ) = Ik(ψ) for any k ∈ Z by assumption it then follows
Ik(ϕ0) = Ik(ψ0) for any k ∈ Z. Combined with (4.4)–(4.5) it then follows
from the uniqueness of the Birkhoff map that ϕ0 = ψ0. This implies that
specper L(ϕ) = specper L(ψ) as claimed.

In Theorem 4.1, and 4.2 below, we prove that the periodic spectrum is
symmetric if and only if the sequence of the actions is symmetric (Theorem 4.1)
or, if and only if the sequence of the gap lengths is symmetric (Theorem 4.2).
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Theorem 4.1. — For any ϕ ∈ L2(S1;C), the following two statements are
equivalent:

(i) λ±
k (ϕ) = −λ∓

−k(ϕ), for all k ∈ Z;

(ii) Ik(ϕ) = I−k(ϕ), for all k ∈ Z.

Proof. — In view of the formula for the actions, (i) implies (ii). Conversely,
assume (ii) holds. As the Birkhoff map is bijective, there exists ϕ0 ∈ L2(S1;C)
such that Ik(ϕ0) = Ik(ϕ), for all k ∈ Z, and θk(ϕ0) ≡ θ−k(ϕ0) (mod 2π) for
any k ∈ Z with Ik(ϕ0) �= 0. By Proposition 4.2 (i), it follows that ϕ̌0 = ϕ0. By
Proposition 2.1 (ii), this then implies that specper L(ϕ0) is symmetric. Since
ϕ0 and ϕ are isospectral by Proposition 4.4, specper L(ϕ) is symmetric.

Theorem 4.2. — For any ϕ ∈ L2(S1;C), the following two statements are
equivalent:

(i) λ±
k (ϕ) = −λ∓

−k(ϕ), for all k ∈ Z;

(ii) γk(ϕ) = γ−k(ϕ), for all k ∈ Z.

Proof. — Clearly, (i) implies (ii). Conversely, assume that ϕ ∈ L2(S1;C) satis-
fies γk(ϕ) = γ−k(ϕ) for any k ∈ Z. By Lemma 4.5 there exists ϕ0 ∈ L2(S1;C)
with specperL(ϕ0) = specper L(ϕ) so that µk(ϕ0) = λ−

k (ϕ0) for any k ∈ Z.
Hence θk(ϕ0) = 0 for any k ∈ Z with Ik(ϕ0) �= 0. As γk(ϕ0) = γ−k(ϕ0)
for any k ∈ Z we deduce from Proposition 2.1 (ii) that γk(ϕ0) = γk(ϕ̌0) for
any k ∈ Z and hence specper L(ϕ0) = specper L(ϕ̌0) (cf. [4]). By Theorem 4.1
one concludes that Ik(ϕ0) = Ik(ϕ̌0) for any k ∈ Z. Apply Proposition 3.1 to
conclude that Ik(ϕ) = I−k(ϕ0) for any k ∈ Z. Together with the identities
θk(ϕ0) = θ−k(ϕ0) (= 0) for any k ∈ Z with Ik(ϕ0) �= 0 it then follows from
Proposition 4.2 (i) that ϕ0 ∈ P0, i.e. ϕ0 = ϕ̌0, and thus by Proposition 2.1 (ii),
specper L(ϕ0) is symmetric. As specper L(ϕ) = specper L(ϕ0), the claimed result
then follows.

4.4. Additional symmetries of the spectrum. — Theorem 4.2 suggests
that the 0’s gap plays a special role for symmetry properties of the spectrum.
Indeed, if we consider the action ρ of Z on L2(S1;C) given by ρ(j)ϕ(x) =
e−2πijxϕ(x), one verifies easily (cf. (3.14)) that the following statements are
equivalent

(i) λ±
j+k(ϕ) = −λ∓

j−k(ϕ) + 2jπ, for all k ∈ Z;

(ii) γj+k(ϕ) = γj−k(ϕ), for all k ∈ Z.
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