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A UNIFORM DICHOTOMY FOR GENERIC SL(2, R) COCYCLES
OVER A MINIMAL BASE

by Artur Avila & Jairo Bochi

Abstract. — We consider continuous SL(2,R)-cocycles over a minimal homeomor-
phism of a compact set K of finite dimension. We show that the generic cocycle either
is uniformly hyperbolic or has uniform subexponential growth.

Résumé (Une dichotomie uniforme pour des cocycles à valeurs dans SL(2,R) au-
dessus d’une dynamique minimale)

On considère des cocycles continus à valeurs dans SL(2,R) au-dessus d’un homéo-
morphisme minimal d’un ensemble compact de dimension finie. On montre que le
cocycle générique soit est uniformément hyperbolique, soit possède une croissance sous-
exponentielle uniforme.

1. Introduction

In this paper we will consider SL(2,R)-valued cocycles over a minimal home-
omorphism f : K → K of a compact set K. Such a cocycle can be defined
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as a pair (f,A) where A : K → SL(2,R) is continuous. The cocycle acts on
K × R2 by (x, y) 7→ (f(x), A(x) · y). The iterates of the cocycle are denoted
(f,A)n = (fn, An).

We say that (f,A) is uniformly hyperbolic if there exists ε > 0 and N > 0

such that ‖An(x)‖ ≥ eεn for every x ∈ K, n ≥ N . This is equivalent to the
existence of a continuous invariant splitting R2 = Eu(x) ⊕ Es(x) such that
vectors in Es(x) are exponentially contracted by forward iteration and vectors
in Eu(x) are exponentially contracted by backwards iteration – see [7, Prop. 2].

We say that (f,A) has uniform subexponential growth if for every ε > 0 there
exists N > 0 such that ‖An(x)‖ ≤ eεn for every x ∈ K, n ≥ N . This condi-
tion is equivalent to the vanishing of the Lyapunov exponent for all f -invariant
probability measures (see Proposition 1 below). We recall that the Lyapunov
exponent of the cocycle (f,A) with respect to an f -invariant probability mea-
sure µ is defined as

L(f,A, µ) = lim
1

n

∫
K

log ‖An‖dµ.

We say that a compact set K has finite dimension if it is homeomorphic
to a subset of some Rn. For instance, compact subsets of manifolds (assumed
as usual to be Hausdorff and second countable) have finite dimension. (For
definitions of dimension and results concerning embedding in Rn, see e.g. [6].)

Theorem 1. — Let f : K → K be a minimal homeomorphism of a compact
set of finite dimension. Then for generic continuous A : K → SL(2,R), either
(f,A) is uniformly hyperbolic or (f,A) has uniform subexpoential growth.

In the case where f is a minimal uniquely ergodic homeomorphism, Theo-
rem 1 is contained in [1], which shows that if f : K → K is a homeomor-
phism, then for any ergodic f -invariant probability µ, the generic continuous
A : K → SL(2,R) is such that either L(f,A, µ) = 0 or the restriction of (f,A)

to the support of µ is uniformly hyperbolic. In general a minimal homeomor-
phism may admit uncountably many ergodic invariant probability measures,
and in this paper we show how to treat them all at the same time. In the
perturbation arguments, one often allows for loss of control in some sets, and
this must be compensated by showing that such sets can be selected small. The
notion of smallness needed for our purposes involves simultaneous conditions
on all f -invariant probability measures.

It is unclear whether the hypothesis that K has finite dimension is actually
necessary. The following example shows that the minimality hypothesis cannot
be significantly weakened.
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Example 1.1. — Let S3 be identified with C2
∗/R+ (here C2

∗ = C2 r {(0, 0)}
and R+ = {r ∈ R; r > 0}). Fix some α ∈ R with α/2π irrational and let
f : S3 → S3 be given by

(z, w) 7−→
(

eiαz, eiα(z + w)
)

mod R+.

Notice that if h : S3 → CP1 with h(z, w) = w/z is the usual Hopf fibration,
and g : CP1 → CP1 is g(w) = w + 1, then h ◦ f = g ◦ h. So f has a unique
minimal set, namely S = h−1(∞), where f acts as a irrational rotation. Let
A : S3 → SL(2,R) be any continuous map whose restriction to S is given by

(0, r eiθ) 7−→

(
cos(θ + α) − sin(θ + α)

sin(θ + α) cos(θ + α)

)(
2 0

0 1
2

)(
cos θ sin θ

− sin θ cos θ

)
.

Then (f |S,A|S) is uniformly hyperbolic: the associated splitting is such that
Eu and Es are orthogonal and Eu(0, r eiθ) is generated by

(
cos θ
sin θ

)
. This splitting

is topologically nontrivial, and hence cannot be extended to the whole S3.
It follows that (f,A) is not uniformly hyperbolic and does not have uniform
subexponential growth, and the same properties hold for any small perturbation
of A.

Using ideas from [2], [5], one can adapt the arguments of this paper to
deal with GL(d,R)-valued cocycles. The conclusion is that for a generic con-
tinuous A : K → GL(d,R) and for every f -invariant probability measure µ,
the Oseledets splitting relative to µ coincides almost everywhere with the finest
dominated splitting of (f,A).

Acknowledgements. — This research was partially conducted during the period
the first author served as a Clay Research Fellow. The paper was written while
the first author was visiting UFRGS partially supported by Procad/CAPES.
The second author is partially supported by CNPq (Brazil).

2. Uniform subexponential growth

Here we prove an equivalence stated at the introduction:

Proposition 1. — Let f : K → K be homeomorphism of a compact set K.
and A : K → SL(2,R) be a continuous map. Then the following are equivalent:

(a) (f,A) has uniform subexponential growth: for every ε > 0 there exists
N > 0 such that ‖An(x)‖ ≤ eεn for every x ∈ K, n ≥ N ;

(b) for every ε > 0 there exists n > 0 such that ‖An(x)‖ ≤ eεn for every
x ∈ K;

(c) L(f,A, µ) = 0 for every f -invariant probability µ.
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In the case that f is uniquely ergodic, the proposition follows from [4,
Thm. 1].

Proof of the proposition. — (a) ⇒ (b) is trivial; (b) ⇒ (c) follows from the
fact that L(f,A, µ) = infn n

−1
∫
K

log ‖An‖dµ.
We are left to prove (c) ⇒ (a). Assume that (a) does not hold. Then

there exists a sequence xk ∈ K, nk → ∞ such that ‖Ank
(xk)‖ ≥ eεnk . Let

µk = nk
−1∑nk−1

j=0 δfj(xk). Passing to a subsequence, we may assume that µk
converges to µ, which is f -invariant. We claim that L(f,A, µ) ≥ ε.

Let δ > 0 and s ∈ N be fixed. It is enough to show that∫
log ‖As‖dµ ≥ (ε− δ)s.

Let mk = bnk/sc. Let νk = (smk)−1∑smk−1
j=0 δfj(xk). Notice that νk → µ.

It is clear that if k is large then ‖Asmk
(f i(xk))‖ ≥ e(ε−δ)smk for 0 ≤ i ≤ s− 1.

Then ∫
log ‖As‖dνk =

1

smk

s−1∑
i=0

mk−1∑
j=0

log
∥∥As(f js+i(xk)

)∥∥
≥ 1

smk

s−1∑
i=0

log
∥∥Asmk

(
f i(xk)

)∥∥ ≥ s(ε− δ).
The result follows.

3. Perturbation along segments of orbits

In this section we assume that f : K → K is minimal with no periodic orbits
and A : K → SL(2,R) is a continuous map such that (f,A) is not uniformly
hyperbolic, but there exists an f -invariant measure such that L(f,A, µ) > 0.
The aim here is to establish Lemma 2 (see below).

We begin with an adaptation of Lemma 3.4 from [5]:

Lemma 1. — For every ε > 0, there exists a non-empty open set W ⊂ K, and
m ∈ N such that:

• W , f(W ), . . . , fm−1(W ) are disjoint;
• for all x ∈W and any non-zero vectors v, w, there exists M0, . . . ,Mm−1

in SL(2,R) such that ‖Mj − A(f j(x))‖ < ε and Mm−1 · · ·M0(v) is
collinear to w.
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Proof. — By assumption, there exists a f -invariant measure µ with non-
vanishing exponents. We can assume µ is ergodic (and hence non-atomic).
Then [5, Lemma 3.4] gives m ∈ N and a set W which has all properties we
want, except it is not necessarily open. (Notice that [5] gives the perturbed
matrices in GL(2,R), but that is trivial to remedy.) Reducing W , we can
assume it to be a point. Using the continuity of A, it is easy to see that W
can then be slightly enlarged to become open.

Lemma 2. — Given ε > 0, there exists arbitrarily large N ∈ N such that for
every x ∈ K there exist L0, . . . , LN−1 in SL(2,R) satisfying∥∥Lj −A(f j(x))

∥∥ < ε and ‖LN−1 · · ·L0‖ < eεN .

Lemma 2 is an adaptation of Lemma 5.1 from [1]. We will prove it using
Lemma 1. If A ∈ SL(2,R) r SO(2,R), then let uA and sA be unit vectors such
that ∥∥A(uA)

∥∥ = ‖A‖ and
∥∥A(sA)

∥∥ = ‖A‖−1.

(Note that ‖.‖ always denotes euclidian norm.) These vectors are unique mod-
ulo multiplication by −1. Notice that uA is orthogonal to sA, and A(uA) is
collinear to sA−1 .

Proof of Lemma 2. — Let W and m be given by Lemma 1. Since W is open
and f is minimal, there exists m1 ∈ N such that

(1)
m1⋃
j=0

f j(W ) = K.

Let C > ε+ supx ‖A(x)‖. Take any N ∈ N be such that

C4m1+1 <
eεN√

2
·

From now on, let x ∈ K be fixed. We will explain how to find matrices Lj ’s
as in the statement of the lemma. Let

∆j =
‖Aj(x)‖

‖AN−j(f j(x))‖
, for 0 ≤ j ≤ N .

Then ∆N = ∆−1
0 and C−2 < ∆j+1/∆j < C2. It follows that there exists j0

such that C−1 < ∆j0 < C.
Due to (1), there exists j1 such that j0 ≤ j1 ≤ j0 +m1 and f j1(x) ∈W . We

can assume that j1 +m ≤ N , because otherwise we would have N < j0 + 2m1,
so ∥∥AN (x)

∥∥ = ∆N ≤ ∆j0C
4m1 ≤ C4m1+1 < eεN ,

and then there would be nothing to prove.

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



412 AVILA (A.) & BOCHI (J.)

Let X = Aj1(x) and Z = AN−j1−m(f j1+m(x)). Let M0, . . . , Mm−1 be
given by Lemma 1 so that ‖Mi −A(f j1+i(x))‖ < ε and Mm−1 · · ·M0(sX−1) is
collinear to sZ . For 0 ≤ j < N , let

Lj =

{
Mj−j1 if j1 ≤ j < j1 +m,

A
(
f j(x)

)
otherwise.

Write Y = Mm−1 · · ·M0, so LN−1· · ·L0 = ZY X. Notice Y X·uX is collinear
to sZ . So∥∥ZY X(uX)

∥∥ ≤ ∥∥Aj0(x)(uX)
∥∥ · Cj1−j0 · ‖Y ‖ · ∥∥Z(sZ)

∥∥
≤
∥∥Aj0(x)

∥∥ · Cm1+m · ‖Z‖−1

≤ C2m1+2m
∥∥Aj0(x)

∥∥ · ∥∥AN−j0(f j0(x))
∥∥−1

= C2m1+2m∆j0 < C4m1+1.

Also, ∥∥ZY X(sX)
∥∥ ≤ ‖X‖−1 · ‖Y ‖ · ‖Z‖

≤
∥∥Aj0(x)

∥∥−1
Cm1 · Cm · Cm1

∥∥AN−j0(f j0(x))
∥∥

= C2m1+m∆−1
j0

< C3m1+1.

We have shown that max(‖ZY X(uX)‖, ‖ZY X(sX)‖) < C4m1+1 < eεN/
√

2.
Since uX ⊥ sX , we conclude that ‖ZY X‖ < eεN , as wanted.

4. Tiling K

A Borel setX ⊂ K is said to be a zero probability set for the homeomorphism
f : K → K if µ(X) = 0 for every f -invariant probability measure µ.

Our goal in this section is to prove Lemma 3 below.

Lemma 3. — Let f : K → K be a homeomorphism of a compact set of finite
dimension with no periodic orbits. There exists a basis of the topology of K
consisting of sets U such that ∂U is a zero probability set.

To prove Lemma 3, we will need Lemmas 4 and 5.

Lemma 4. — Let f : K → K be a homeomorphism of a compact set of fi-
nite dimension. Then there exists d > 0, an embedding s : K → Rd and a
homeomorphism g : Rd → Rd such that s ◦ f = g ◦ s.
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Proof. — This result is well known, but we reproduce the proof for convenience.
We may assume thatK ⊂ Rn for some n. Let φ : Rn → Rn and ψ : Rn → Rn be
continuous extensions of f and f−1, respectively. Let d = 2n, s(x) = (x, f(x))

and g(x, y) = (y, x+ φ(y)− ψ(y)).

Lemma 5. — Let f : Rd → Rd be a homeomorphism and let S be a compact
manifold of dimension d − 1. For a generic continuous ψ : S → Rd, and for
every sequence of integers j0 < · · · < jd,

⋂d
k=0 f

jk(ψ(S)) is contained in the
set of periodic orbits of f .

Proof. — Let gi : Vi → Rd be a countable family of charts so that there are
exists a basis of the topology of S formed by sets Ui such that Ui ⊂ Vi. Given
sequences j = (j0 < · · · < jd) and i = (i0, . . . , id) such that Ui0 , . . . , Uid are
disjoint, let Uj,i be the set of continuous maps ψ : S → Rd such that⋂d

k=0
f jk ◦ ψ

(
Uik
)

= ∅.

Claim 1. — The set Uj,i is open and dense in C(S,Rd).

Assuming the claim for the moment, let us conclude the proof of the lemma.
Let ψ belong to the residual set

⋂
Uj,i. Assume that z ∈

⋂d
k=0 f

jk(ψ(S)) for
some j0 < · · · < jd. Let xk ∈ S be such that f jk(ψ(xk)) = z, for 0 ≤ k ≤ d.
If all xk where distinct then we could take chart domains Uik 3 xk with Ui0 ,
. . . , Uid disjoint. This would contradict ψ ∈ Uj,i. We conclude that at least
two xk’s coincide. It follows that z is a periodic point of f .

Now, the proof of the claim. Openness is clear; it remains to show denseness.
For simplicity of writing, let ik = k. Reducing the sets Vk if necessary, we can
assume they are disjoint (but still with Vk ⊃ Uk). By a small perturbation of ψ
supported on Vk, we may assume that f jk ◦ψ◦g−1

k is smooth in a neighborhood
of gk(Uk). In other words, letting L = g0(U0)×· · ·×gd(Ud) ⊂ (Rd−1)d+1, there
is a neighborhood W ⊃ L such that the map

G : W → (Rd)d+1, G = (f j0 ◦ ψ ◦ g−1
0 , . . . , f jd ◦ ψ ◦ g−1

d )

is smooth. Perturbing ψ again, we may assume that G is transverse to the
diagonal D =

{
(x, . . . , x) ∈ (Rd)d+1; x ∈ Rd

}
at L. Since the diagonal has

codimension d2 and W has dimension d2 − 1, this implies that G(L) does not
intersect D. That is,

⋂d
k=0 f

jk ◦ ψ
(
Uk
)

= ∅.

Proof of Lemma 3. — By Lemma 4, we can assume that K ⊂ Rd and
f : K → K is the restriction of a homeomorphism f : Rd → Rd.

Let x0 ∈ K, and let ε > 0. We need to show that there exists an open set
U ⊂ Rd containing x0 and of diameter at most 4ε, such that µ(∂U) = 0 for
every f -invariant probability µ supported on K.
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Let B be the closed unit ball in Rd, and let S = ∂B. Let φ : B → Rd be given
by φ(y) = x0 + εy. By Lemma 5, there exists a continuous map ψ : S → Rd
such that ‖ψ(y) − φ(y)‖ < ε for every y ∈ S and such that for every x ∈ K,
the set of ` ∈ Z such that f−`(x) ∈ ψ(S) has cardinality at most d + 1. By
the Ergodic Theorem, µ(ψ(S)) = 0 for every f -invariant probability measure.
Let U be the connected component of x0 in Rd r ψ(S). Then the diameter
of U is at most 4ε and ∂U ⊂ ψ(S), so U has all the desired properties.

5. Proof of Theorem 1

Let f : K → K be a minimal homeomorphism of a compact set of finite
dimension. From now on, we assume that f does not have periodic points;
otherwise the result is obvious.

The idea of the following lemma and its proof come from [3].

Lemma 6. — For any N ∈ N, there exists an open set B ⊂ K such that:

• the return time from B to itself via f assumes the values N and N + 1

only;
• ∂B has zero probability.

Proof. — Given N , there exists n1 ∈ N such that if n ≥ n1 then there
are `, `′ ≥ 0 satisfying n = `N + `′(N + 1). By Lemma 3 and the fact that
f has no periodic points, we can take an open set U such that ∂U has zero
probability and U , f(U), . . . , fn1(U) are disjoint. Then, for some n2 > n1,⋃n2
n=0 f

n(U) = K. For each n ∈ N, let

Un = U ∩ f−n(U) r
n−1⋃
j=1

f−j(U),

that is, the set of points x ∈ U such that the first return time to U is n. Notice
that ∂Un has zero probability. For each n between n1 and n2 for which Un 6= ∅,
consider the tower of height n with base Un. Then break this tower into towers
of heights N or N + 1. In this way we cover K with finitely many towers of
heights N or N + 1. Let B be the union of the bases of the towers. Since B is
a finite union of iterates of Un’s, we have that ∂B has zero probability.

Lemma 7. — If L is a compact set with zero probability then for every ε > 0,
there exists an open set V ⊃ L and n0 ∈ N such that

(2)
1

n
#
{
j ; 0 ≤ j ≤ n− 1, f j(x) ∈ V

}
< ε for all x ∈ K, n ≥ n0.
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Proof. — Otherwise there exist ε > 0, xk ∈ K, open sets Vk ⊂ K and in-
tegers nk → ∞ such that V k+1 ⊂ intVk,

⋂
Vk = L and µk(Vk) > ε, where

µk = nk
−1∑nk−1

j=0 δfj(xk) (here δx is the Dirac mass on x). If µ is a weak-∗
limit of the probability measures µk then µ is f -invariant. Moreover, we have
µ(Vk) ≥ lim inf µj(Vj) ≥ ε for every k. We conclude that µ(L) ≥ ε, contra-
diction.

Proof of Theorem 1. — The set UH of continuous A : K → SL(2,R) such that
(f,A) is uniformly hyperbolic is open. For any ε > 0, let Uε be the set of A’s
such that there is n1 ∈ N such that 1

n1
log ‖An1

(x)‖ < ε for all x ∈ K; then Uε
is also an open set. If A ∈

⋂
ε>0 Uε then (f,A) has uniform subexponential

growth, by Proposition 1. So to prove the theorem it suffices to show that Uε
is dense in the complement of UH .

Fix ε > 0 and A /∈ UH . We can assume that (f,A) has positive exponent
for some invariant probability, otherwise (by Proposition 1) f ∈ Uε already.
We will find Ã close to A such that Ã ∈ Uε.

Let c > 0 be such that ‖A‖ + ε < ec. Let N ∈ N be given by Lemma 2
(notice hypotheses from §3 hold). We can assume εN > c. Then let B ⊂ K be
the set given by Lemma 6. Let δ > 0 be small enough so that

0 ≤ j ≤ N, d(x, y) < δ =⇒
∥∥A(f j(x)

)
−A

(
f j(y)

)∥∥ < ε.

Cover the closure of B by open sets W1, . . . , Wk with diameter less than δ.
By Lemma 3, we can take each Wi so that ∂Wi has zero probability. Let
Ui = Wi r

⋃
j<iW j .

Let B` be the set of points in B whose first return to B occurs in time `;
then B = BN tBN+1. Let

L =
N+1⋃
`=N

`−1⋃
i=0

∂(B` ∩ Ui) .

Then L has zero probability. By Lemma 7, there exists an open set V ⊃ L and
n0 ∈ N such that

(3)
1

n
#
{
j ; 0 ≤ j ≤ n− 1, f j(x) ∈ V

}
<

ε

N + 1
for all x ∈ K, n ≥ n0.

For each ` = N or N + 1 and i = 1, . . . , k, we choose a point x`,i in B` ∩Ui.
Applying Lemma 2, we find L`,i,0, . . . , L`,i,N−1 so that∥∥L`,i,j −A(f j(x`,i))

∥∥ < ε, ∀j = 0, . . . , `− 1

and ‖L`,i,N−1 · · ·L`,i,0‖ < eεN . In the case ` = N + 1, define also

L`,i,N = A
(
f j(x`,i)

)
.

So for any `, ‖L`,i,`−1 · · ·L`,i,0‖ < e2ε`.
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We want to define a map Ã : K → SL(2,R). Begin defining

Ã = L`,i,j on the set f j
(
B` ∩ Ui r V

)
,

where N ≤ ` ≤ N + 1, 1 ≤ i ≤ k, and 0 ≤ j ≤ ` − 1. (Notice these sets are
disjoint.) It remains to define Ã on the rest of K. The map A−1Ã is already de-
fined on a compact subset of K, and takes values on the (ec+1)ε-neighborhood
of Id in SL(2,R). That domain is homeomorphic to R3 (provided ε is not too
big), so by the Tietze’s extension theorem we can continuously extend A−1Ã

to the whole K. So we obtain Ã : K → SL(2,R) with ‖Ã−A‖ < ec(ec + 1)ε.

Now let n > max(n0, (N + 1)/ε). Fix x ∈ K. We will give an upper bound
for ‖Ãn(x)‖. Write

n = p+ `1 + `2 + · · ·+ `r + q

in a way such that 0 ≤ p, q ≤ N + 1, N ≤ `i ≤ N + 1, and the points

x1 = fp(x), x2 = fp+`1(x), . . . , xr = fp+`1+···+`r (x)

are exactly the points in the segment of orbit x, f(x), . . . , fn−1(x) that belong
to B. We have ∥∥An(x)

∥∥ ≤ e2c(N+1)
r∏
i=1

∥∥A`i(xi)∥∥.
We will use the bounds∥∥A`i(xi)∥∥ ≤

{
e2ε`i if xi ∈ B r V ,

ec(N+1) if xi ∈ V .

By (3), there are at most (ε/(N + 1))n points xi that belong to V . So∥∥An(x)
∥∥ ≤ e2c(N+1) ·

(
ec(N+1)

)(ε/(N+1))n · e2ε
∑

`i < e(3c+2)εn.

This proves that Ã ∈ U(3c+2)ε.
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