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476 CLUCKERS (R.) & HERREMANS (A.)

Résumé (Théorème fondamental des espaces vectoriels préhomogènes modulo pm.
Avec un appendice par F. Sato)

Soit K un corps de nombres avec anneaux d’entiers OK ; nous prouvons un ana-
logue, sur des anneaux finis de la forme OK/Pm, du théorème fondamental sur la
transformation de Fourier de l’invariante relative d’un espace vectoriel préhomogène.
Ici, P est un idéal premier assez grand de OK et m > 1. Dans l’appendice, F. Sato
donne une application des théorèmes 1.1, 1.3 et des théorèmes A, B, C de J. Denef
et A. Gyoja [Character sums associated to prehomogeneous vector spaces, Compos.
Math., 113 (1998), 237–346] à l’équation fonctionelle de L-fonctions de type Dirichlet
associées aux espaces vectorielles préhomogènes.

1. Introduction

We prove an analogue over finite rings of the fundamental theorem on the
Fourier transform of a relative invariant of prehomogeneous vector spaces. In
general, this fundamental theorem expresses the Fourier transform of χ(f),
with χ a multiplicative (quasi-)character and f a relative invariant, in terms
of χ(f∨)−1, with f∨ the dual relative invariant. Roughly speaking, M. Sato [18]
proved the fundamental theorem over archimedian local fields, J. Igusa [7] over
p-adic number fields, and J. Denef and A. Gyoja [5] over finite fields of big
enough characteristic. In [9], the regular finite field case is reproved. When the
prehomogeneous vector space is regular and defined over a number field K we
prove an analogue of the fundamental theorem over rings of the form OK/Pm,
where P is a big enough prime ideal of the ring of integers OK of K and m > 1,
see Theorem 1.1. This result is derived from the results of [5] by using explicit
calculations of exponential sums over the rings OK/Pm.

In [16], F. Sato introduces L-functions of Dirichlet type associated to regular
prehomogeneous vector spaces. In the appendix by F. Sato to this paper, our
results are used to obtain functional equations for these L-functions and, under
extra conditions, their entireness.

To state the main results, we fix our notation on prehomogeneous vector
spaces. Let (G, ρ, V ) be a reductive prehomogeneous vector space, meaning
that G is a connected complex linear reductive algebraic group, ρ : G→ GL(V )

is a finite dimensional rational representation, and V has an open G-orbit
which is denoted by Ω. Assume that (G, ρ, V ) has a relative invariant
0 6= f ∈ C[V ] with character φ ∈ Hom(G,C×), that is, f(gv) = φ(g)f(v) for
all g ∈ G and v ∈ V . We assume that f is a regular relative invariant, namely,
Ω = V \ f−1(0) is a single G-orbit. Writing ρ∨ : G → GL(V ∨) for the dual
of ρ, (G, ρ∨, V ∨) is also a prehomogeneous vector space, with an open G-orbit
which is denoted by Ω∨, and there exists a relative invariant 0 6= f∨ ∈ C[V ∨]

whose character is φ−1. Then Ω∨ = V ∨ \ f∨−1(0). The map F := grad log f is
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FUNDAMENTAL THEOREM MODULO pm 477

an isomorphism between Ω and Ω∨ with inverse F∨ := grad log f∨. One has
dimV = dimV ∨ =: n and deg f = deg f∨ =: d.

Let K be a number field with ring of integers OK . Suppose that (G, ρ, V )

is defined over K. We fix a basis of the K-vector space V (K) and we suppose
that f is in K[V ] and has coefficients in OK (with respect to the fixed K-basis
of V (K)). Similarly we suppose that f∨ is in K[V ∨] and has coefficients in OK
(with respect to the basis of V ∨ dual to the fixed basis of V ). Write V (OK) for
the points of V (K) with coefficients in OK (with respect to the fixed K-basis
of V (K)), and similarly for V ∨(OK). For I an ideal of O, write V (OK/I) for
the reduction modulo I of the lattice V (OK).

The Bernstein-Sato polynomial b(s) of f is defined by

f∨(gradx)f(x)s+1 = b(s)f(x)s.

Write b0 for the coefficient of the term of highest degree of b(s); one has b0 ∈ K.

The following theorem is an analogue of the fundamental theorem for pre-
homogeneous vector spaces.

Theorem 1.1. — Let m ≥ 2 be an integer, P be a prime ideal of OK above a
big enough prime p ∈ Z, χ be a primitive multiplicative character modulo Pm
(extended by zero outside the multiplicative units), and let ψ be a primitive
additive character modulo Pm. Write q := #(OK/P). For L ∈ V ∨(OK/Pm)

write
S(L) :=

∑
x∈V (OK/Pm)

χ
(
f(x)

)
ψ
(
L(x)

)
.

Then the following hold:

1) if f∨(L) 6≡ 0 mod P, then

S(L) = q
1
2mn

(∑
y∈OK/Pm χd(y)ψ(y)

q
1
2m

)
χ
(b0f∨(L)−1

dd

)
α(χ,m)n−1κ∨(L),

where κ∨(L) and α(χ,m) are 1 or −1;

2) if f∨(L) ≡ 0 mod P, then S(L) = 0.

The essential (and typical) content of this fundamental theorem is that the
discrete Fourier transform of the function χ(f) on V (OK/Pm) is equal to the
function χ(f∨)−1 on V ∨(OK/Pm) times some factors, and vice versa.

The first part of Theorem 1.1 is obtained by combining explicit calculations
of character sums of quadratic functions (§2) and of discrete Fourier trans-
forms (§4), a p-adic version of Morse’s lemma (§3), and results of [5]. The
second part of Theorem 1.1 is established by comparing the L2-norms of χ(f)

and of its discrete Fourier transform.
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478 CLUCKERS (R.) & HERREMANS (A.)

We also obtain explicit formulas for the constants κ∨(L) and α(χ,m) of
Theorem 1.1, by using work in [5] and elementary calculations. To state these
formulas we use the notion of the discriminant of a matrix, as in [5, 9.1.0].

Definition 1.2. — For a symmetric (n, n)-matrix A with entries in a field k,
if tXAX = diag (a1, . . . , am, 0, . . . , 0) with X ∈GLn(k), tX its transposed,
and ai ∈ k×, put

∆(A) :=
m∏
i=1

ai ∈ k×/k×2,

with k×2 the squares in k×, and call it the discriminant of A.

Write kP for the finite field OK/P and k×P
2 for the squares in k×P . For

m > 1 and L in V ∨(OK/Pm) with f∨(L) 6≡ 0 mod P, denote by h∨(L) the
image in k×P/k

×
P

2 of the discriminant of the matrix (∂2 log f∨(L)/∂yi∂yj)ij ,
where {y1, . . . , yn} is the previously fixed K-basis of V ∨(K). Write χ 1

2
for the

Legendre symbol mod P. We then obtain

Theorem 1.3. — The following hold in case 1) of Theorem 1.1:

1) κ∨(L) = χ 1
2
(−d 2n−1 h∨(L))m;

2) α(χ,m) = 1 for m even;

3) α(χ,m) = G(χ 1
2
, ψ′)/

√
q for m odd, with ψ′ any additive character de-

fined by y 7→ χ(1 + πm−1
P y), πP any element in P of P-adic order 1,

χ 1
2
the Legendre symbol mod P, and G(., .) the classical Gauss sum.

Remark 1.4. — It is interesting to compare the formulas of Theorems 1.1
and 1.3 to the formulas for m = 1 given in [5]; it seems that for m = 1 the
formulas depend more on subtle information of the Bernstein-Sato polynomial
of f .

Acknowledgement. — The authors would like to express gratitude to Jan Denef
and Akihiko Gyoja for many helpful comments during the preparation of this
paper. We are indebted to Jan Denef for giving the essential outline of the
proofs of the main results, and to Fumihiro Sato for agreeing on writing an
appendix to this paper.
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2. Preliminaries on character sums

Let χ be a multiplicative character mod Pm, extended by zero for a ≡ 0

mod P. Say that χ is induced by a character χ1 mod Pn for n < m if
χ1(a mod Pn) = χ(a) for all a ∈ OK/Pm. Call χ primitive mod Pm if there
exists no such n < m and χ1 mod Pn such that χ is induced by χ1. Anal-
ogously, call an additive character ψ mod Pm on OK primitive if it is not
induced by a character ψ1 mod Pn for n < m. Let f be a polynomial in n vari-
ables over OK . If we evaluate

∑
χ(f(x)) mod Pm, with χ primitive mod Pm

for somem > 1, it is well known that only the critical points mod P contribute
to the sum, i.e. the elements c ∈ OK/Pm for which grad(f) c ≡ 0 mod P. The
following is an extension of this result.

Proposition 2.1. — Let P be a prime ideal of OK , m > 1 an integer, χ a
primitive multiplicative character mod Pm and f ∈ OK [x] a polynomial in n

variables. Define Sf as

(2.1) Sf =
∑

x∈(OK/Pm)n

χ
(
f(x)

)
.

Then
Sf =

∑
x∈(OK/Pm)n

vP(grad(f) x)≥ 1
2 (m−1)

χ
(
f(x)

)
,

where vP(grad(f) x) is the minimum of the P-valuations of ∂f/∂xj x
for j = 1, . . . , n. Moreover, the same formulas hold for an additive char-
acter ψ instead of χ.

Proof. — We treat the case that f is a function of one variable; the general
case is completely analogous. It suffices to prove that

Sf (i, c) :=
∑

x∈ OK/Pm

vP(f ′(x))=i

x≡c mod Pm−i−1

χ
(
f(x)

)

is zero for every i < 1
2 (m− 1) and every c ∈ OK/Pm−i−1. If f(c) ≡ 0 mod P,

then Sf (i, c) is trivially zero. Suppose f(c) 6≡ 0 mod P. Let πP be in P of
P-adic order 1. Writing f(x) as a polynomial in (x− c), we get the equalities

Sf (i, c) =
∑

x∈ OK/Pm

vP(f ′(x))=i

x≡c mod Pm−i−1

χ
(
f(c) + (x− c)f ′(c) + · · ·

)
(2.2)
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= χ
(
f(c)

) ∑
x∈ OK/Pm

vP(f ′(x))=i

x≡c mod Pm−i−1

χ
(

1 + (x− c)f
′(c)

f(c)

)
(2.3)

= qiχ
(
f(c)

) ∑
z∈ OK/P

χ(1 + πm−1
P zα) = 0,(2.4)

with α a unit in OK/P. Equality (2.3) comes from the fact that the P-valuation
of the terms of degree ≥ 2 in x − c are at least m. Indeed 2m − 2i − 2 ≥ m

if i ≤ 1
2 (m − 2) or i < 1

2 (m − 1). Either there are no terms in (2.3) and then
it is automatically zero, or, there are terms and then equality (2.4) follows
immediately. We conclude that the sum (2.4) is zero since we sum a non-trivial
additive character ψ(z) := χ(1 + πm−1

P αz) over OK/P; ψ is indeed non-trivial
since χ is primitive.

Definition 2.2. — Let P be a prime ideal of OK not containing 2 and let
m > 1 be an integer. Let χ, resp. ψ, be a primitive multiplicative, resp.
primitive additive, character mod Pm. Then, put

α̃(χ,m) :=
∑

x∈ OK/Pm

χ(1 + x2), α̃(ψ,m) :=
∑

x∈ OK/Pm

ψ(x2).

One can calculate the value of α̃(χ,m), using Proposition 2.1 in an elemen-
tary way, to obtain the following lemma.

Lemma 2.3. — With the assumptions and notation of Definition 2.2, the fol-
lowing hold
• α̃(χ,m) = q

1
2m if m is even;

• α̃(χ,m) = q
1
2 (m−1)G(χ 1

2
, ψ′) if m is odd. Herein, χ 1

2
is the Legendre

symbol mod P, ψ′ is any additive character defined by y 7→ χ(1+πm−1
P y)

with πP any element in P of P-adic order 1, and G(., .) is the classical
Gauss sum.

Similar formulas can be obtained for α̃(ψ,m) with ψ a primitive additive
character modulo Pm. This lemma and an induction argument yield the fol-
lowing proposition.

Proposition 2.4. — Use the assumptions and notation of Definition 2.2.
Let f be a polynomial in n variables over OK of the form

f(x) = a0 + a1x
2
1 + · · ·+ anx

2
n,

with a0, a1, . . . , an multiplicative units mod Pm. Then

Sf = χ(a0)χ 1
2
(an0a1 · · · an)mα̃(χ,m)n

with χ 1
2
the Legendre symbol mod P, and Sf as in (2.1).
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3. A p-adic analogue of the lemma of Morse

We prove an analogue of the Morse’s lemma (originally formulated for C∞

functions on real manifolds), for p-adic analytic functions. This lemma is nor-
mally stated as a local property, but here we can work with fixed (large) neigh-
borhoods. To deal with the fact that Zp is totally disconnected, we will use a
global notion of analycity for p-adic maps. Results in this section also hold for
finite field extensions of Qp.

By a p-adic manifold we mean a p-adic manifold as defined in [2] or equiva-
lently [20], Section 3.

Definition 3.1. — Let A ⊂ Znp be open.

— Call a function f : A → Zp globally analytic if there is a power series∑
cix

i ∈ Zp[[x]] which converges on A such that f(x) =
∑
cix

i for each x ∈ A,
with x = (x1, . . . , xn), i = (i1, . . . , in) and xi =

∏n
j=1 x

ij
j .

— Call f analytic if there is a finite cover of A by opens U such that the
restriction of f to each U is globally analytic. Similarly, call a map f : A ⊂
Znp → Zmp analytic if it is given by analytic functions on A. An analytic bijection
with analytic inverse is called bi-analytic.

— For an analytic function f : A ⊂ Znp → Zp, define the gradient of f
in a ∈ A as

grad(f) a =
( ∂f
∂x1 a

, . . . ,
∂f

∂xn a

)
and the Hessian of f in a as

Hs(f) a =
( ∂2f

∂xi∂xj a

)
ij
.

— Say that a is a critical point if grad(f) a = 0 and call the critical point
a ∈ A non-degenerate if det(Hs(f) a) 6= 0. Call a ∈ A a non-degenerate critical
point modulo p if grad(f) a ≡ 0 mod p and det(Hs(f) a) 6≡ 0 mod p.

LetM ⊂ Znp be a compact p-adic manifold of pure dimension d and f : M →
Zp an analytic function. Then there exists a finite disjoint cover ofM by opens
Ui and analytic isometries πi from Ui to open balls in Zdp such that the maps
f ◦ π−1

i are globally analytic, see e.g. [20], Section 3.

— Call a point a ∈ Ui ⊂M a critical point of f if πi(a) is a critical point of
f ◦ π−1

i as defined above. Similarly we speak of non-degenerate critical points
and non-degenerate critical point modulo p. This is independent of the choice
of Ui and πi.

The next lemma is a p-adic variant of the inverse function theorem.
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Lemma 3.2 (see [8, Cor. 2.2.1]). — Suppose that g1, . . . , gn ∈ Zp[[x1, . . . , xn]]

satisfy det(∂gi/∂xj 0)ij 6≡ 0 mod p and gi(0) ≡ 0 mod p for i = 1, . . . , n. Then
the map

g : (pZp)n −→ (pZp)n, x 7−→
(
g1(x), . . . , gn(x)

)
is (globally) bi-analytic.

The following is a p-adic analogue of the Morse’s lemma. The proof goes
along the same lines as in [10] and we refer to [10], Lemma 2.2 for the details.

Lemma 3.3 (Morse). — Let p 6= 2 and let f : (pZp)n → pZp be a globally
analytic map (thus f is given by a single power series in Zp[[x]]) such that 0 is
a non-degenerate critical point modulo p. Then there is a unique critical point c
of f and there is a (globally) bi-analytic map

T : (pZp)n −→ (pZp)n, x 7−→ T (x) = u

such that

f(x) = f(c) +
n∑
i=1

aiu
2
i , for all x ∈ (pZp)n,

with ai in Z×p . Moreover, χ 1
2
(H) = χ 1

2
(
∏
i ai) with H = 2−n det(Hs(f) c).

Proof. — The uniqueness of the critical point c is proved in Lemma 3.4 below.
We may suppose that f(0) = 0 and c = 0. We can write f(x) =

∑
i,j xixjhij(x)

with hij(x) ∈ Zp[[x]] and since p 6= 2 we can assume that hij = hji. Suppose by
induction that we have a (globally) bi-analytic map Tr−1 : (pZp)n → (pZp)n :

x 7→ u such that for each x ∈ (pZp)n

f(x) =
r−1∑
i=1

aiu
2
i +

∑
i,j≥r

uiujHij(u),

with Hij(u) ∈ Zp[[u]], Hij = Hji and ai ∈ Z×p . We have

det
(
Hs(f) 0

)
= λ det

(
Hij(0)

)
ij

with λ a unit in Zp, so det(Hij(0))ij 6≡ 0 mod p and after a linear change in
the last n − r + 1 coordinates we may assume that Hrr(0) 6≡ 0 mod p. Put
ar = Hrr(0). Then Hrr(u)/ar ≡ 1 mod p for each u ∈ (pZp)n. There is a
well-defined square root function √ : 1 + pZp → 1 + pZp which is (globally)
analytic. Put

g(u) =
»
Hrr(u)/ar

for u ∈ (pZp)n. Then, g is (globally) analytic on (pZp)n. We can now define a
(globally) analytic map T ′r−1 : (pZp)n → (pZp)n : u 7→ T ′r−1(u) = (vi) by

vi = ui if i 6= r and vr = g(u)
(
ur +

∑
i>r

ui
Hir(u)

Hrr(u)

)
.
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Clearly we have that det(∂vi/∂uj 0) = g(0) 6≡ 0 mod p, thus, the map T ′r−1 is
(globally) bi-analytic by Lemma 3.2. Put Tr = T ′r−1 ◦ Tr−1. We then obtain
for all x ∈ (pZp)n and v = Tr(x)

f(x) =
r∑
i=1

aiv
2
i +

∑
i,j>r

vivjH
′
ij(v),

with H ′ij(v) ∈ Zp[[v]]. This finishes the induction argument.
The equality χ 1

2
(det(Hs(f) 0) = χ 1

2
(
∏
i 2ai) follows by a classical argument

as in [10]. To finish the proof we only have to prove the Lemma below.

Lemma 3.4. — Let p 6= 2 and let f : (pZp)n → pZp be a globally analytic map
(i.e., given by a power series in Zp[[x]]) such that 0 is a non-degenerate critical
point modulo p. Then f has a unique critical point c ∈ (pZp)n and this is a
non-degenerate critical point.

Proof. — We can write

f(x) = f(0) +
∑
i

aixi + g(x)

with g(x) =
∑
ij xixjhij(x) for some hij ∈ Zp[[x]]. Since 0 is a non-degenerate

critical point of f modulo p, we see that ai ≡ 0 mod p and det(Hs(g) 0) 6≡ 0

mod p. By Lemma 3.2 the map

T : (pZp)n −→ (pZp)n, x 7−→ grad(g) x =
( ∂g
∂x1

(x), . . . ,
∂g

∂xn
(x)
)

is a bi-analytic bijection. A fortiori, there is a unique point c ∈ (pZp)n such that
T (c) = (−a1, . . . ,−an). Since grad(f) x = grad(g) x + (a1, . . . , an), the condi-
tion T (x) = (−a1, . . . ,−an) is equivalent with the condition grad(f) x = 0 for
x ∈ (pZp)n. Thus c is the unique critical point of f . Moreover, det(Hs(f) c) 6= 0

since det(Hs(f) c) ≡ det(Hs(f) 0) 6≡ 0 mod p.

Finally, we give an application of Morse’s lemma to calculate character sums
of polynomials.

Proposition 3.5. — Let p 6= 2, let f ∈ Zp[x1, . . . , xn] be a polynomial, and
let X be a smooth subvariety of AnZp

(smooth variety meaning a separated,
reduced, irreducible scheme of finite type and smooth over Zp). Let M be the
compact p-adic variety X(Zp) \ f−1(pZp) and write d for the dimension of M .
Let χ be a primitive multiplicative character mod pm, m > 1. Let c1, . . . , c`
in M be the critical points of f M : M → Zp and suppose that the critical points
c1, . . . , c` are non-degenerate modulo p. Put

Sf =
∑

x∈X(Zp/pmZp)

χ
(
f(x)

)
.
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Then the following holds

Sf =
∑̀
i=1

χ
(
f(ci)

)
χ 1

2

(
f(ci)

dHci

)m
α̃(χ,m)d,

with Hci
= 2−d∆(Hs(f)|ci

), α̃(χ,m) as in Section 2, and ∆ the discriminant
as defined in 1.2.

Proof. — That M is a compact p-adic variety follows from Hensel’s lemma,
by using Taylor expansions for the equations defining X around points in Znp
with different residues mod p. Similarly, there is a cover of M by finitely many
disjoint compact opens U such that for each U there is an analytic isometry
π : U → (pZp)d. For i = 1, . . . , r, let Ui be the open in this cover contain-
ing ci and we write πi for the corresponding isometry. By Proposition 2.1 and
Lemma 3.4 it follows that Sf =

∑`
i=1 Sf (ci) where

Sf (ci) =
∑

x∈(pZp/pmZp)d

χ
(
f ◦ π−1

i (x)
)
.

By Morse’s lemma we can find for each critical point ci a bi-analytic isometric
transformation Ti : (pZp)d → (pZp)d such that

f(x) = f(ci) +
d∑
j=1

aju
2
j for all x ∈ Ui and u = Ti(πi(x)),

with aj in Z×p and χ 1
2
(Hci) = χ 1

2
(
∏
j aj). We can now calculate

Sf (ci) =
∑

u∈(pZ/pmZ)d

χ
(
f(ci) +

d∑
j=1

aju
2
j

)
(3.1)

=
∑

u∈(Z/pmZ)d

χ
(
f(ci) +

d∑
j=1

aju
2
j

)
(3.2)

= χ
(
f(ci)

)
χ 1

2

(
f(ci)

d
∏
j

aj

)m
α̃(χ,m)d(3.3)

= χ
(
f(ci)

)
χ 1

2

(
f(ci)

dHci

)m
α̃(χ,m)d.

Equality (3.1) is clear. Also equality (3.2) is easy and follows by similar argu-
ments as in the proof of Proposition 2.1. Equality (3.3) comes from Proposi-
tion 2.4 and the last equality holds because χ 1

2
(Hci

) = χ 1
2
(
∏
j aj).
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4. Discrete Fourier transforms of characters of homogeneous polynomials

Let P be a prime ideal of OK and let πP ∈ P be of P-adic order 1.
Let L(x) =

∑n
i=1 aixi be a linear form on (OK/Pm)n, with m > 1 and

ai ∈ OK/Pm. Let f ∈ OK [x] be a homogeneous polynomial of degree d and
let χ, resp. ψ, be a primitive multiplicative, resp. primitive additive, character
modPm.

We will calculate the discrete Fourier transform of χ(f), defined by

S(L) :=
∑

x∈(OK/Pm)n

χ
(
f(x)

)
ψ
(
L(x)

)
.

After a linear change of variables one can assume that the P-valuation of a1

is minimal among the vP(ai). Write

k := vP(a1) and L(x) = πkP(a′1x1 + a′2x2 + · · ·+ a′nxn)

for some a′i ∈ OK/Pm. After applying the invertible linear transformation

(x1, . . . , xn) 7−→ (a′1x1 + · · ·+ a′nxn, x2, . . . , xn),

one reduces to the case that L(x) = πkPx1. This reduction is used in the proof
of the following result.

Proposition 4.1. — Let P be a prime ideal of OK and let πP ∈ P be of
P-adic order 1. Let L(x) =

∑n
i=1 aixi be a linear form on (OK/Pm)n, with

m > 1 and ai ∈ OK/Pm. Let f ∈ OK [x] be a homogeneous polynomial of
degree d and let χ, (resp. ψ), be a primitive multiplicative, (resp. primitive
additive, character modPm). Put k := mini=1,...,n vP(ai) and

S(L) =
∑

x∈(OK/Pm)n

χ
(
f(x)

)
ψ
(
L(x)

)
.

If P - d, then S(L) = 0 if k 6= 0 and

S(L) =
( ∑
y∈OK/Pm

χd(y)ψ(y)
)( ∑

x∈(OK/Pm)n

L(x)≡1 mod Pm

χ
(
f(x)

))
if k = 0.

Proof. — As explained in the previous discussion, we may assume that
L(x) = πkPx1, with πP ∈ P of P-adic order 1. We split up the sum depending
on the P-valuation of x1. Let us denote by Ajk the subsum of S(L) over the
elements x with vP(x1) = j. So, S(L) =

∑m
j=0Ajk, with

Ajk :=
∑

y∈(OK/Pm−j)×

x1=yπj
P

x̂∈(OK/Pm)n−1

χ
(
f(yπjP , x̂)

)
ψ(πj+kP y),
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where x̂ := (x2, . . . , xn). Rewrite qjAjk as∑
y∈(OK/Pm)×

x̂∈(OK/Pm)n−1

χ
(
f(yπjP , x̂)

)
ψ(πj+kP y)(4.1)

=
∑

y∈(OK/Pm)×

x̂∈(OK/Pm)n−1

χ
(
f(yπjP , yx̂)

)
ψ(πj+kP y)(4.2)

=

Ñ ∑
y∈OK/Pm

χd(y)ψ(πj+kP y)

éÑ ∑
x̂∈(OK/Pm)n−1

χ
(
f(πjP , x̂)

)é
.(4.3)

Equality (4.1) holds because only the value of y mod Pm−j is relevant. Equal-
ity (4.2) is just substituting x̂ = (x2, . . . , xn) by yx̂ = (yx2, . . . , yxn); since y is
a unit the set over which we sum does not change. The last equality uses that f
is homogeneous of degree d and the fact that χd(y) = 0 if y 6∈ (OK/Pm)×.

We want to prove that all Ajk are zero except when k = j = 0. Since P - d,
we have that χd is still a primitive character modPm. Therefore, there exists
an a ∈ OK/Pm such that a ≡ 1 mod Pm−1 and χd(a) 6= 1 (see Section 2).
By a classical argument, we obtain∑

y∈OK/Pm

χd(y)ψ(πj+kP y) =
∑

y∈OK/Pm

χd(ay)ψ(aπj+kP y)

= χd(a)
∑

y∈OK/Pm

χd(y)ψ(πj+kP y),

if j + k ≥ 1. Indeed, the first equation is just substituting y by ay, where a
is a unit. The second uses the fact that χd is multiplicative and since a ≡ 1

mod Pm−1, we have ay ≡ y mod Pm−k−j if j + k ≥ 1.

Since χd(a) 6= 1, we conclude that∑
y∈OK/Pm

χd(y)ψ(πj+kP y) = 0.

Note that when j + k ≥ m this sum is just
∑
y∈OK/Pm χd(y) which is directly

seen to be zero. This proves the proposition since only A00 is non-zero by equal-
ity (4.3). This argument can also be found in [24], Chapter VII, Prop. 13.

5. Applications to prehomogeneous vector spaces

We use the notation and the asumptions from the introduction.
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Proof of Theorem 1.1. — For any v∨ ∈ V ∨ let H(v∨) be the hyperplane in V
defined by v∨(x) − 1. By [5, Lemma 9.1.2] and [5, Lemma 9.1.7], for any v∨

with f∨(v∨) 6= 0, the restriction f|H(v∨)∩Ω has the point d−1F∨(v∨) as its
unique critical point and it is a non-degenerate critical point. The fact that
this holds for all v∨ with f∨(v∨) 6= 0 is a first order statement (in the language
of rings), and hence, the analogue statement is true over finite fields of big
enough characteristic. That is, for all prime ideals P of OK above big enough
primes p ∈ Z with residue field kP , for all v∨ ∈ V ∨(kP) with f∨(v∨) 6= 0,
the point d−1F∨(v∨) is the unique critical point of f|H(v∨)∩Ω(kP) and it is a
non-degenerate critical point.

Take a prime ideal P above a big enough prime p. Choose L ∈ V ∨(OK/Pm)

with f∨(L) 6≡ 0 mod P. Let L0 ∈ V ∨(OK) lie above L. Let c be d−1F∨(L0).
Let R be the valuation ring of the P-adic completion of K. Since P is supposed
to lie above a big enough prime p ∈ Z, we may suppose that d is invertible
in R, and hence, c lies in V (R). Make the plane H(L0) into a vector space by
choosing a zero point in H(L0)(OK). Take a basis of the lattice H(L0)(OK)

in H(L0) and take coordinates on H(L0) with respect to this basis. Let Hc

be 2−n+1 times the determinant of the Hessian in c of f|H(L0), expressed in
these coordinates. Since p ∈ Z is big enough and by the above discussion,
Hc lies in R and Hc mod P is nonzero in OK/P, and this is so uniformly
in L ∈ V ∨(OK/Pm).

Then,

S(L) =
( ∑
y∈OK/Pm

χd(y)ψ(y)
)( ∑

x∈V (OK/Pm)
L(x)≡1 mod Pm

χ
(
f(x)

))
(5.1)

=
( ∑
y∈OK/Pm

χd(y)ψ(y)
)
χ
(
f(c)

)
χ 1

2

(
f(c)n−1Hc

)m
α̃(χ,m)n−1(5.2)

= q
1
2mn

(∑
OK/Pm χd(y)ψ(y)

q
1
2m

)
χ
(b0f∨(L)−1

dd

)
κ∨(L)

α̃(χ,m)n−1

q
1
2 (n−1)m

,(5.3)

with κ∨(L) = χ 1
2
(f(c)n−1Hc)

m. Equality (5.1) follows from Proposi-
tion 4.1. We obtain (5.2) from Proposition 3.5. If we now use the fact
that f(c) = d−df(F∨(L)) = d−db0f

∨(L)−1 (see [5, Lemma 9.1.2] and [6,
Lemma 1.8]), equation (5.3) and thus case 1) of the theorem follows with
κ∨(L) = χ 1

2
(f(c)n−1Hc)

m and α(χ,m) = α̃(χ,m)n−1/q
1
2 (n−1)m.

Now we prove case 2) of Theorem 1.1 with a technique of N. Kawanaka. The
function S : Hom((OK/Pm)n,OK/Pm)→ C, L 7→ S(L) is the discrete Fourier
transform of χ(f) : (OK/Pm)n → C, x 7→ χ(f(x)). By a classical result on
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L2-norms of Fourier transforms on finite abelian groups, it follows that

(5.4) ‖S‖22 = qmn
∥∥χ(f)

∥∥2

2
= qmnN1,

with N1 := #A and A := {x ∈ V (OK/Pm) | f(x) 6≡ 0 mod P}.
It follows from the formula in case 1), that |S(L)|2 = qmn for L ∈ A. Writing

B := V (OK/Pm) \A, one has

(5.5) ‖S‖22 =
∑
A

qmn +
∑
B

∣∣S(L)
∣∣2,

and hence, S(L) = 0 for L ∈ B.

Proof of Theorem 1.3. — The statement about α(χ,m) follows from equa-
tion (5.3) and Lemma 2.3. We recall that h∨(L) is defined in the introduction,
and that the number χ 1

2
(h∨(L)) is well-defined. We obtain the value of κ∨(L)

as an immediate corollary of [5, Lemma 9.1.7].

Appendix A

L-functions of prehomogeneous vector spaces
(by Fumihiro Sato)

In this note, we give an application of Theorems 1.1 and 1.3 in [3] (and
Theorems A, B, C in [5]) to the functional equation of L-functions of Dirichlet
type associated with prehomogeneous vector spaces, which is a generalization
of Theorem L in [16].

In the following we retain the notation in [3]. However, for simplicity, we
assume that K = Q, OK = Z and P = (p) with a rational prime p. Let χ
be a primitive Dirichlet character with conductor N > 1. We extend χ to
Z/NZ by χ(a) = 0 for a 6∈ (Z/NZ)×. Put m(p) = vp(N), the p-order of N ,
for any rational prime p. Since (Z/NZ)× is isomorphic to

∏
p|N (Z/pm(p)Z)×,

χ induces a primitive character χ(p) : (Z/pm(p)Z)× → C× for each p | N .
Let (G, ρ, V ) be a reductive prehomogeneous vector space defined over Q.

Let P1, . . . , P` be the fundamental relative invariants over Q, namely, the Q-
irreducible relatively invariant polynomials on V . We denote by φi (1 ≤ i ≤ `)
the rational character of G corresponding to Pi. The fundamental relative
invariants are determined uniquely up to a non-zero constant multiple in Q×
and any relative invariant in Q[V ] is a monomial of them.

We fix a basis of the Q-vector space V (Q) and take a relative invariant
f ∈ Q[V ] with coefficients in Z (with respect to the fixed Q-basis of V (Q)).
The character φ corresponding to f is defined over Q.

In the following we assume that
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A.1) f is a regular relative invariant, namely, Ω = V \f−1(0) is a singleG-orbit;
A.2) for every x ∈ Ω(Q), the group of Q-rational characters of the identity

component of Gx =
{
g ∈ G | ρ(g)x = x

}
is trivial.

We denote by G+ the identity component of the real Lie group G(R) and put
G+
x = G+ ∩Gx. Let Ω(R) = Ω1 ∪ · · · ∪ Ων be the decomposition into the con-

nected components (in the usual topology). By the assumption A.1), every Ωi
is a single G+-orbit. Let ΓN be an arithmetic subgroup of G(Q) which stabi-
lizes V (Z) and induces the identity mapping on V (Z)/NV (Z). Then the func-
tion V (Z) 3 x 7→ χ(f(x)) ∈ C is ΓN -invariant and factors through V (Z/NZ).
The L-functions Li(s;χ) (1 ≤ i ≤ ν) associated with (G, ρ, V ) and χ are de-
fined by

Li(s;χ) =
∑

x∈ΓN\(V (Z)∩Ωi)

µ(x)χ
(
f(x)

) ∏̀
j=1

∣∣Pj(x)
∣∣−sj

, s = (s1, . . . , s`) ∈ C`,

where µ(x) is the volume of the fundamental domain G+
x /(ΓN ∩G+

x ) with re-
spect to the normalized Haar measure on G+

x (for the normalization of the Haar
measure on G+

x , see [15], §4). By the assumptions A.1), A.2) and [13, Theo-
rem 1.1], the L-functions converge absolutely when the real parts of s1, . . . , s`
are sufficiently large.

We take a relative invariant f∨ of the dual prehomogeneous vector space
(G, ρ∨, V ∨) with coefficients in Z (with respect to the basis of V ∨ dual to
the fixed basis of V ) that corresponds to the character φ−1. Then f∨ and
(G, ρ∨, V ∨) satisfy the assumptions A.1) and A.2). Put Ω∨ = V ∨ \ f∨−1(0).
We may order the fundamental relative invariants P∨1 , . . . , P∨` of (G, ρ∨, V ∨)

such that the character corresponding to P∨i is φ−1
i .

Our final assumption is the following:

A.3) for every prime factor p of N with m(p) > 1 (resp. m(p) = 1), The-
orems 1.1 and 1.3 in [3] (resp. Theorems A, B, C in [5]) hold for χ(p)

and f .

Let ψ : Z/NZ → C× be an additive primitive character. By the Chi-
nese remainder theorem, ψ determines an additive primitive character
ψ(p) : Z/pm(p)Z→ C× for each p | N . For L ∈ V ∨(Z), let us consider the
character sum

S(χ, f ;L) =
∑

x∈V (Z/NZ)

χ
(
f(x)

)
ψ
(
L(x)

)
=
∏
p|N

∑
x∈V (Z/pm(p)Z)

χ(p)
(
f(x)

)
ψ(p)

(
L(x)

)
.

Then, by assumptions A.1) and A.3), we have

(A.4) S(χ, f ;L) = χ−1(f∨(L))
∏
p|N

κ∨p(L)g(χ(p), f),
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with L mod N ∈ Ω∨(Z/NZ) and where κ∨p(L) is the constant κ∨(L) = ±1

given for each (sufficiently large) p by Theorem 1.3 in [3] or Theorems B and C
in [5], and g(χ(p), f) is a constant independent of L whose explicit value can
be easily seen from Theorems 1.1 and 1.3 in [3] or Theorem A in [5] according
as m(p) > 1 or m(p) = 1. Put

κ∨(L) =
∏
p|N

κ∨p(L) and g(χ, f) =
∏
p|N

g(χ(p), f).

Now we define the L-functions associated with (G, ρ∨, V ∨) by

L∨i (s;χ−1) =
∑

L∈ΓN\(V ∨(Z)∩Ω∨
i

)

µ∨(L)κ∨(L)χ−1
(
f∨(L)

) ∏̀
j=1

∣∣P∨j (L)
∣∣−sj

.

Assumptions A.1), A.2) and [13, Thm. 1.1] again imply that these L-functions
converge absolutely when the real parts of s1, . . . , s` are sufficiently large. The
abscissa of absolute convergence is independent of χ and N .

To describe analytic properties of the L-functions, we need some more nota-
tional preliminaries. Let b(s) = b(s1, . . . , s`) be the Bernstein-Sato polynomial
defined by

(A.5)
(∏̀
i=1

P∨i (gradx)
)∏̀
i=1

Pi(x)si = b(s)
∏̀
i=1

Pi(x)si−1.

It is known that the function b(s) is a product of inhomogeneous linear forms
s1, . . . , s` of integral coefficients (see [18]). We also need the Bernstein-Sato
polynomial bf (s) of f , which is defined by

f∨(gradx)f(x)s+1 = bf (s)f(x)s.

It is known that the roots of bf (s) are negative rational numbers.
Each of the assumptions A.1) and A.2) implies that there exists a δ =

(δ1, . . . , δ`) ∈ ( 1
2Z)` such that the relative invariant

∏`
i=1 Pi(x)2δi corresponds

to the character det ρ(g)2 (see [19, Prop. 8] or [18, Prop. 11] for A.1) and [15,
Lemma 4.1] for A.2)).

Finally we recall the fundamental theorem of the theory of prehomogeneous
vector spaces over the real number field R. For i = 1, . . . , ν and s with
Re(s1), . . . ,Re(s`) > 0 , we define a continuous function |P (x)|sΩi

on V (R) by

∣∣P (x)
∣∣s
Ωi

=
{ ∏`

j=1 |Pj(x)|sj (x ∈ Ωi),

0 (x 6∈ Ωi).

The function |P (x)|sΩi
depends holomorphically on s and is extended to a tem-

pered distribution on V (R) depending meromorphically on s ∈ C`. We denote
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the tempered distribution by the same symbol. We can also define the tem-
pered distributions |P∨(L)|sΩ∨

i
on V ∨(R) quite similarly. Then the fundamental

theorem reads

(A.6)
∫
V (R)

∣∣P (x)
∣∣s−δ
Ωi

exp
(
2πiL(x)

)
dx =

ν∑
j=1

γij(s)
∣∣P∨(L)

∣∣−s
Ω∨

j

,

where γij(s) (i, j = 1, . . . , ν) have elementary (but not explicit) expressions in
terms of the gamma function and the exponential function (see [17], [15]).

Theorem A.1. — 1) The L-functions Li(s;χ) and L∨i (s;χ−1) multiplied by
b(s − δ) have analytic continuations to holomorphic functions of s in C` and
satisfy the following functional equation

g(χ, f) · L∨j (δ − s;χ−1) = Nd1s1+···+d`s`

ν∑
i=1

γij(s)Li(s;χ),

where di (1 ≤ i ≤ `) is the degree of the fundamental relative invariant Pi
and γij(s) is the same as above.

2) Assume that χ satisfies at least one of the following conditions:

• m(p) ≥ 2 for some p dividing the conductor N of χ;
• the order of χ(p) for some p | N with m(p) = 1 is different from the
reduced denominators of the roots of the Bernstein-Sato polynomial bf (s).

Then the L-functions Li(s;χ) and L∨i (s;χ−1) are entire functions of s in C`.

Since the proof of the theorem is almost the same as the one of Theorem 2
and Corollary 1 of [15], we shall give only an outline of the proof.

Denote by A the ring of adeles of Q and by A0 =
∏′
p<∞Qp the ring of

finite adeles of Q. Denote by Φp(xp) the characteristic function of V (Zp) and
put Φ0(x0) =

∏
p<∞ Φp(xp) for x0 = (xp) ∈ A0. The function Φ0(x0) is the

characteristic function of
∏
p<∞ V (Zp). Let Φ∞(x∞) be a rapidly decreasing

C∞-function on V (R) and define a function Φχ on V (A) by

Φχ(x) = Φ∞(x∞)
∏
p|N

χ(p)
(
f(xp)

)
Φ0(x0)

(
x = (x∞, x0) ∈ V (A)

)
.

The function Φχ is a Schwartz-Bruhat function on V (A) and the Poisson sum-
mation formula implies the identity

(A.7)
∑

x∈V (Q)

Φχ
(
ρ(g)x

)
=
∣∣det ρ(g)

∣∣−1

A

∑
L∈V ∨(Q)

Φ̂χ
(
ρ∨(g)L

) (
g ∈ G(A)

)
,

where Φ̂χ is the Fourier transform of Φχ, which is defined by an additive char-
acter of A/Q of conductor 1, more specifically, the additive character whose
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p-component is of conductor 1 and coincides with ψ(p)(Nx) on p−m(p)Zp if p
divides N . It is easy to see that

(A.8) Φ̂χ(L) = N−nS(χ, f ;NL0)Φ0(NL0)Φ̂∞(L∞),

with L = (L∞, L0) ∈ V ∨(A) and n = dimV . We note here that the function
S(χ, f ;L) originally defined on V ∨(Z) can naturally be extended to a function
on
∏
p<∞ V ∨(Zp). By the usual technique of unfolding, we have∫

G+/ΓN

∏̀
j=1

∣∣φj(g∞)
∣∣sj

∑
x∈Ω(Q)

Φχ
(
ρ(g∞, 1)x

)
dg∞(A.9)

=
ν∑
i=1

Li(s;χ)
〈
|P (x)|s−δΩi

,Φ∞
〉
.

By the identities (A.4) and (A.8), we also have∫
G+/ΓN

∏̀
j=1

∣∣φj(g∞)
∣∣−sj

∑
L∈Ω∨(Q)

Φ̂χ
(
ρ∨(g∞, 1)L

)
dg∞

= NΣ`
j=1djsj−ng(χ, f)

ν∑
i=1

L∨i (s;χ−1)
〈
|P∨(L)|s−δΩ∨

i
, Φ̂∞

〉
.

Now Theorem A.1 can be proved in the same manner as in [15, §6] by using
these integral representations of the L-functions, the Poisson summation for-
mula (A.7), and the fundamental theorem (A.6) over R. We note here that the
Poisson summation formula (A.7) is used in the form∑

x∈Ω(Q)

Φχ
(
ρ(g)x

)
=
∣∣det ρ(g)

∣∣−1

A

∑
L∈Ω∨(Q)̂

Φχ
(
ρ∨(g)L

)
+ I(Φχ, g),

where

I(Φχ, g) =
∣∣det ρ(g)

∣∣−1

A

∑
L6∈Ω∨(Q)̂

Φχ
(
ρ∨(g)L

)
−
∑

x 6∈Ω(Q)

Φχ
(
ρ(g)x

)
.

The contribution of I(Φχ, g) to the integral representation contains the infor-
mation on the poles of the L-functions and is in general very hard to calculate
explicitly. However, if we take a test function of the form

Φ∞(x∞) =
( ∏̀
`=1

P∨` (gradx)
)

Φ′∞(x∞)

for a C∞-function Φ′∞ with compact support in Ω(R), then I(Φχ, g) vanishes
and, by using (A.5), we can prove the first assertion of Theorem A.1. If the
assumption of the second assertion of Theorem A.1 is fulfilled, then Theo-
rem 1.1, 2) in [3] and Remark 5.2.3.3 in [5] imply the vanishing of I(Φχ, (g∞, 1))

for g∞ ∈ G+ and arbitrary Φ∞ with compact support in Ω(R). The second
assertion of Theorem A.1 follows immediately from this observation.
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Remark A.2. — The simplest example of the L-functions considered in
this note is the Dirichlet L-function, which is the L-function associated with
(GL1, ρ, V (1)), where ρ is the standard 1-dimensional representation of GL1.
Further examples of the L-functions associated with prehomogeneous vector
spaces have been studied in [21], [4], [11], [12], [22] and [23]. It is noteworthy
that, unlike the case of the Dirichlet L-functions, the L-functions Li(s;χ) may
have poles even for non-trivial χ, if χ does not satisfy any one of the conditions
in Theorem A.1, 2) (for concrete examples, see [4, Thm. 6.2], [11, Thm. 4.2]
and [12, Thm. 5]). It is an interesting problem to determine the conditions
on χ under which Li(s;χ) has actually poles.
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(1982), p. 437–483.

[16] , “On functional equations of zeta distributions”, Adv. Stud. Pure
Math. 15 (1989), p. 465–508.

[17] M. Sato – “Theory of prehomogeneous vector spaces”, Sugaku no Ayumi
15 (1970), p. 85–157, notes by T. Shintani.

[18] , “Theory of prehomogeneous vector spaces (algebraic part)—the
English translation of Sato’s lecture from Shintani’s note”, Nagoya Math.
J. 120 (1990), p. 1–34, Notes by Takuro Shintani, Translated from the
Japanese by Masakazu Muro.

[19] M. Sato & T. Kimura – “A classification of irreducible prehomogeneous
vector spaces and their relative invariants”, Nagoya Math. J. 65 (1977),
p. 1–155.

[20] J-P. Serre – “Quelques applications du théorème de densité de Cheb-
otarev”, Inst. Hautes Études Sci. Publ. Math. 54 (1981), p. 323–401.

[21] H. M. Stark – “L-functions and character sums for quadratic forms. I”,
Acta Arith. 14 (1967/1968), p. 35–50.

[22] T. Ueno – “Elliptic modular forms arising from zeta functions in two
variables attached to the space of binary Hermitian forms”, J. Number
Theory 86 (2001), p. 302–329.

[23] , “Modular forms arising from zeta functions in two variables at-
tached to prehomogeneous vector spaces related to quadratic forms”, 2004,
to appear in Nagoya Math. J., p. 1–37.

[24] A. Weil – Basic number theory, Die Grundlehren der mathematischen
Wissenschaften, Band 144, Springer New York, Inc., New York, 1967.

tome 135 – 2007 – no 4

http://smf.emath.fr/Publications/Bulletin/135/html/smf_bull_135_475-.html#11
http://smf.emath.fr/Publications/Bulletin/135/html/smf_bull_135_475-.html#12
http://smf.emath.fr/Publications/Bulletin/135/html/smf_bull_135_475-.html#13
http://smf.emath.fr/Publications/Bulletin/135/html/smf_bull_135_475-.html#14
http://smf.emath.fr/Publications/Bulletin/135/html/smf_bull_135_475-.html#15
http://smf.emath.fr/Publications/Bulletin/135/html/smf_bull_135_475-.html#16
http://smf.emath.fr/Publications/Bulletin/135/html/smf_bull_135_475-.html#17
http://smf.emath.fr/Publications/Bulletin/135/html/smf_bull_135_475-.html#18
http://smf.emath.fr/Publications/Bulletin/135/html/smf_bull_135_475-.html#19
http://smf.emath.fr/Publications/Bulletin/135/html/smf_bull_135_475-.html#20
http://smf.emath.fr/Publications/Bulletin/135/html/smf_bull_135_475-.html#21
http://smf.emath.fr/Publications/Bulletin/135/html/smf_bull_135_475-.html#22
http://smf.emath.fr/Publications/Bulletin/135/html/smf_bull_135_475-.html#23
http://smf.emath.fr/Publications/Bulletin/135/html/smf_bull_135_475-.html#24

	1. Introduction
	2. Preliminaries on character sums
	3. A p-adic analogue of the lemma of Morse
	4. Discrete Fourier transforms of characters of homogeneous polynomials
	5. Applications to prehomogeneous vector spaces
	Appendix A. L-functions of prehomogeneous vector spaces  (by Fumihiro Sato)
	Bibliography

