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HISTORY OF THE THEORY OF NUMBERS:

AN HISTORICAL STUDY WITH

MATHEMATICAL IMPLICATIONS
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ABSTRACT. — In 1911, the research mathematician Leonard Dickson embarked on
a historical study of the theory of numbers which culminated in the publication of his
three-volume History of the Theory of Numbers. This paper discusses the genesis of this
work, the historiographic style revealed therein, and the mathematical contributions
which arose out of it.

RÉSUMÉ.—HISTORY OF THETHEORY OFNUMBERS DE LEONARDDICKSON:
ÉTUDE HISTORIQUE AVEC DES PROLONGEMENTS MATHÉMATIQUES.—En 1911,
le mathématicien Leonard Dickson s’est lancé dans une étude historique de la théorie
des nombres, qui a culminé avec la publication de son History of the Theory of
Numbers en trois volumes. Notre étude examine la genèse de ce travail, l’approche
historiographique qui la sous-tend et les contributions mathématiques qui en découlent.

In 1911, only a decade into what would become a forty-year-long career

in the mathematics department at the University of Chicago, Leonard

Dickson had a résumé which solidly identified him as a distinguished

mathematician. He had, for example, authored roughly 150 mathematical

papers (primarily in group theory at this point) and three books, served

as editor of the American Mathematical Monthly from 1902 to 1908 and

recently assumed this post for the Transactions of the American Math-

ematical Society, and passed swiftly through the ranks from assistant to

associate to full professor at one of the premiere mathematics institutions

in this country. Yet, in 1911, he threw what seems a rather twisted turn

into his professional plans by pursuing a historical project which would
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©C SOCIÉTÉ MATHÉMATIQUE DE FRANCE, 1999



160 DELLA D. FENSTER

interrupt his pure mathematical research for the better part of nine years.

That investigation? The title of this paper gives it away: he embarked

on a study of the history of the theory of numbers. This almost ninety-

year-old decision raises (raised?) a flurry of questions. In this paper, we

focus on the genesis of this work, the historiographic style revealed therein

by Dickson, and one of the surprising mathematical contributions which

arose out of it. An understanding of the origins of this work, however,

begins with an understanding of its author, the then thirty-seven-year-old

Leonard Dickson.

Born in Independence Iowa in 1874, Dickson spent his boyhood in

Cleburne, Texas and ultimately attended the University of Texas for

his undergraduate and master’s education.1 With his master’s degree in

hand and two years of teaching experience under his belt, Dickson chose

the strong Eliakim Hastings Moore, Oskar Bolza, and Heinrich Maschke

triumvirate at the young University of Chicago over the up-and-coming

Harvard with William Fogg Osgood and Maxime Bôcher as the place

to pursue his doctorate. Dickson’s mathematical career would ultimately

hinge on this decision [Fenster 1997, pp. 9–13].

At the time, Chicago, with its sights set on emulating the German

tradition of scholarship, stood in marked contrast to most American

institutions. Specifically, Moore, Bolza and Maschke formed the core of the

original far-sighted Chicago Mathematics Department which promoted

both research and teaching and which emphasized in its graduate program

the training of future productive researchers [Parshall & Rowe 1994,

pp. 363–426], [Fenster 1997, pp. 10–11].

While Dickson pursued a Ph.D. at the young Chicago from 1894

to 1896, the then group-theoretically minded Moore inspired him to write

a thesis on (what we would call) permutation groups [Dickson 1897].

Although group theory would remain among Dickson’s research inter-

ests throughout his career, he would add finite field theory, invariant

theory, the theory of algebras and number theory to his repertoire of

research interests. Dickson reflected Chicago’s influence—particularly that

of Moore—in more ways than in his research interests, however. The

1 [Bell 1938] and [Albert 1955] serve as the standard sources for biographical infor-
mation on Dickson. This author also consulted [University of Texas 1899, 1914] and
[Parshall 1991].
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department’s sustained commitment to research, high standards for pub-

lication, and their vision for the American (as opposed to New England)

mathematical community came to permeate Dickson’s mathematical per-

sona in these formative years. In the spring of 1900, the Chicago Mathe-

matics Department invited Dickson to join them as an assistant professor.

From this position, Dickson made significant contributions to the consol-

idation and growth of the algebraic tradition in America [Fenster 1997,

p. 21]. Specifically, Dickson spent forty years (all but the first two) of

his professional career on the faculty at Chicago where he directed 67

Ph.D. students, wrote more than 300 publications, served as editor of the

Monthly and the Transactions, and guided the American Mathematical

Society as its President from 1916–1918.

And, yet, this mathematical workhorse, who played billiards and bridge

by day and did mathematics from 8: 30 p.m. to 1: 30 a.m. every night

[Albers & Alexanderson 1991, p. 377], spent nearly a decade of his career

writing a three-volume, 1500-page history of the theory of numbers.

The lurking question is: why? Why did Dickson interrupt his own pure

investigations of mathematics to write a history of the theory of numbers?

Dickson’s most celebrated student, A. Adrian Albert, has suggested

that Dickson wrote the book to become more acquainted with number

theory. More precisely, Albert wrote, “Dickson always said that mathe-

matics is the queen of sciences, and that the theory of numbers is the

queen of mathematics. He also stated that he had always wished to work

in the theory of numbers and that he wrote his monumental History of the

Theory of Numbers so that he could know all of the work which had been

done in the subject” [Albert 1955, p. 333].

Dickson’s developing research interests substantiate this claim. Of the

200 papers he wrote prior to 1923, the year he published the third

(and final) volume of his History of the Theory of Numbers (hereinafter

History), only ten considered number-theoretic topics.2 In 1927, however,

his pure mathematical researches began to focus on additive number

theory, on the ideal Waring theorem, in particular. In a long series of

papers, he and his students provided an almost complete verification of the

theorem which loosely states that every positive integer is a sum of I

integral n-th powers for sufficiently large I. Moreover, Dickson guided

2 [Albert 1955, pp. 334–345] contains a bibliography of Dickson’s work.
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twenty-nine of his last thirty-two doctoral students in number-theoretic

dissertations [University of Chicago 1931, 1938, 1941]. These twenty-nine

students, along with Dickson’s contributions to the ideal Waring theorem

and three number theory texts he published in 1929, 1930, and 1939

[Dickson 1929, 1930, 1939] seem to indicate that if he intended for his

historical study to acquaint him with the subject so that he could work

in the field himself, he had certainly accomplished what he set out to do.

In some sense, given the time period under discussion, this connec-

tion between the history of mathematics and pure mathematical results

comes as no surprise. The early decades of this century, in fact, repre-

sented a “golden age for the history of mathematics” since “the historians

of mathematics were professional mathematicians working in good mathe-

matics departments” [Gray 1998, p. 54].3 Still, however, some members

of the mathematical community viewed those who wrote about math-

ematics, in contrast to those who “d [id ] something” in mathematics

(i.e. “proved new theorems” or “added to mathematics”), as “second-rate

minds” [Hardy 1940, p. 61]. With a solid reputation as a “powerful” [Mac

Lane 1992] and prolific research mathematician [Fenster & Parshall 1994,

pp. 185–186], Dickson apparently had no qualms about devoting time to

the history of mathematics for more than a third of his career.

He may, however, have had other reasons for undertaking this histor-

ical work. In his initial letter to the Carnegie Institution seeking inter-

est in the project, for example, Dickson outlined that “[i ]t would seem

desirable to have undertaken in this country something of the kind done

by the British Association, the Deutsche Mathematiker-Vereinigung, etc.,

in the preparation by specialists of note of extensive Reports each cover-

ing an important branch of science. . . I have already given a solid year’s

work to such an expository Report on the theory of numbers (integral and

algebraic),. . . ” [Dickson 1911]. Thus the British and German mathemati-

cal Report[s], and, in particular, the lack of similar offerings in America,

3 [Merzbach 1989, p. 642] also documents that “with one notable exception [David
Eugene Smith],” the historians of mathematics in America before World War I came
from “those trained in mathematics and allied fields rather than from historians.” From
post-World War I to 1930, the American historians of mathematics had strong ties
with—and leadership roles within—the American Mathematical Society [Ibid., p. 650].
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may have encouraged Dickson to write his own compendium on the sub-

ject of number theory. In the case of graduate training, it was not at all

unusual for the American mathematicians to look to the Europeans for

ideas [Parshall & Rowe 1994]. The initiative Dickson outlined in his let-

ter to Woodward, however, required not only an acquaintance with the

European literature but also an awareness of a perceived void in American

publications. Moreover, the opening sentence of his letter seems to sug-

gest that Dickson wanted to raise American mathematics to the European

standard in this particular realm.4

But Dickson himself gave another—more altruistic—reason for writing

what grew into this three volume History. In the preface to the second vol-

ume, Dickson asserts that he embarked on this historical study because “it

fitted with my conviction that every person should aim to perform at some

time in his life some serious useful work for which it is highly improbable

that there will be any reward whatever other than his satisfaction there-

from” [Dickson 1920, p. xxi]. Robert Carmichael extinguished any doubts

of Dickson’s sincerity in his review of this second volume for the Monthly.

Carmichael, a number theorist who not only wrote the review of Dickson’s

History for the Monthly, but also read the proof sheets for the entire sec-

ond and third volumes, described Dickson’s motivation in similar terms.

As Carmichael expressed it, “[i ]t is refreshing and inspiring to find a man,

when he pauses at a breathing place in the excellent performance of a great

task, willing to set forth in a quiet way the fact that he has been moved by

the highest and most unselfish ideal of duty” [Carmichael 1921, p. 78]. In

the end, though, as we will see, whether motivated by a desire to acquaint

himself with number theory, to publish an American report on the theory

of numbers, or to fulfill this “highest and unselfish ideal of duty,” this his-

torical initiative led Dickson to one of his most celebrated mathematical

contributions.

First, however, let’s take a closer look at Dickson’s History itself.

Dickson’s view of the role of the historian dictated how he both prepared

and wrote his book. As he saw it, “[w ]hat is generally wanted [in a

historical study] is a full and correct statement of the facts, not an

4 Throughout his career, Dickson remained avidly committed to establishing standards
of excellence for and in the community of American mathematicians. See [Fenster,
forthcoming].
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historian’s personal explanation of those facts. The more completely the

historian remains in the background, the better the history. Before writing

such a history, he must have made a more thorough search for all the facts

than is necessary for the conventional history” [Dickson 1920, p. xx]. For

Dickson, this “thorough” search required a trip overseas to visit European

libraries and collect various number theoretic references. The University

of Chicago, apparently, supported this type of international research

travel since they granted Dickson a leave of absence. For the necessary

funds, Dickson sought travel support for his research from the Carnegie

Institution of Washington, one of the new national agencies created to

promote what we now call basic research [Reingold & Reingold 1981, p. 7].5

From a purely pragmatic perspective, Dickson’s History confirms the

importance of recent “technical innovations” in the internationalization

of science [Parshall 1996, p. 293], [Lehto 1998, pp. 1–2]. Dickson could not

have undertaken—much less completed—his History without the recent

advances of the railroad to take him to the East Coast of the United

States, the steamship to carry him across the Atlantic and the telegraph

to aid him with his correspondence.

As for the presentation, a typical page from Dickson’s History reveals

the stylistic manifestation of Dickson’s historiographic view.

“Hrotsvitha, a nun in Saxony, in the second half of the tenth century, mentioned
the perfect numbers 6, 28, 496, 8128.

Abraham Ibn Ezra (1167), in his commentary to the Pentateuch, Ex. 3,
15, stated that there is only one perfect number between any two successive powers
of 10.

Rabbi Josef b. Jehuda Ankin, at the end of the twelfth century, recommended the
study of perfect numbers in the program of education laid out in his book ‘Healing
of Souls’.

Jordanus Nemorarius (1236) stated (in Book VII, props. 55, 56) that every
multiple of a perfect or abundant number is abundant, and every divisor of a perfect
number is deficient. He attempted to prove (VII, 57) the erroneous statement that
all abundant numbers are even.

Leonardo Pisano, or Fibonacci, cited in his Liber Abbaci of 1202, revised about
1228, the perfect numbers

22(22 − 1) = 6, 1

2
23(23 − 1) = 28, 1

2
25(25 − 1) = 496,

excluding the exponent 4 since 24−1 is not prime. He stated that by proceeding so,
you can find an infinitude of perfect numbers” [Dickson 1919, p. 5].

5 “Extending the Frontiers of Science” serves as the current motto of the Carnegie
Institution.
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True to his word, Dickson presented what he called “the facts”.

Hrotsvitha mentioned, Ezra stated, Rabbi Josef recommended, Nemorar-

ius stated, Fibonacci cited, etc. Dickson adhered to this style throughout

the entire three-volume series.

In some cases, however, the sum total of the facts departed from

the strictly internalistic style followed by Dickson, to use a modern

historiographic adjective, and revealed a much broader view of the theory

of numbers. As we saw above, Dickson included a twelfth-century rabbi

as a contributor to the development of perfect numbers and described

his contribution as one who “recommended the study of perfect numbers

in the program of education laid out in his book ‘Healing of Souls.’” The

preceeding page included more “facts” on the ethical importance of perfect

numbers.

“Iamblichus (about 283–330). . . remarked that the Pythagoreans called the
perfect number 6 marriage, and also health and beauty (on account of the integrity
of its part and the agreement existing in it).

Aurelius Augustinus (354–430) remarked that, 6 being the first perfect number,
God effected the creation in 6 days rather than at once, since the perfection of the
work is signified by the number 6 . . .

Alcuin (735–804), of York and Tour, explained the occurrence of the number 6
in the creation of the universe on the ground that 6 is a perfect number. The second
origin of the human race arose from the deficient number 8; indeed, in Noah’s ark
there were 8 souls from which sprung the entire human race, showing that the
second origin was more imperfect than the first, which was made according to the
number 6” [Dickson 1919, p. 4].

Hence, as Derrick Lehmer pointed out in his review of this volume

for the Bulletin of the American Mathematical Society, “one is struck in

glancing through the book by the remarkable combination of superstition,

fancy, scientific curiosity, and patient, plodding experiment that has fig-

ured in advancing the science of the theory of numbers” [Lehmer 1920,

p. 125]. Dickson may or may not have minded this sort of comment made

about his book, but he certainly would have never drawn the conclusion

in the book itself. From our perspective today, we may further agree with

Lehmer that this book may not be so much a history itself, but, rather,

a list of references from which a history might be written [Lehmer 1920,

p. 132].

But Dickson—knowingly or otherwise—made other contributions to

the history of mathematics. In particular, the history he tucked into his
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works on the arithmetic of algebras had other aims than the compre-

hensive fact-reporting of his History. In this case, he seemingly intended

to use his history as a rhetorical device to persuade the audience of the

importance of his own contribution to the theory [Fenster 1998]. Dick-

son’s “history” thus introduces issues in the historiography of the his-

tory of mathematics. Ivor Grattan-Guinness’s “royal road to me” view of

mathematics seems to characterize Dickson’s presentation of the emerg-

ing theory of the arithmetics of algebras. As the rather pejorative name

implies, these types of accounts focus more on how older theories led to

an individual version of a theory than on how the theory developed in its

own right [Grattan-Guinness 1990], [Fenster 1998, p. 121].

A consideration of Dickson’s historical contributions necessarily calls

attention to the interplay between the history of mathematics and math-

ematical research. In particular, the differences in methodology between

the practicing historian and the practicing mathematician come to the

fore. If Dickson had written his History with the intentions of a histo-

rian, for example, he would have included more of a contextual setting

for his study and provided historical arguments. He, however, wrote his

History as a comprehensive literature review, precisely what a mathemati-

cian needs. Not surprisingly, Dickson interrupted—but did not stop—his

pure mathematical researches to write a compendium of the history of the

theory of numbers [Fenster 1999].

In fact, although Dickson had fairly focused research interests for

years at a time, he was never one to have his hand in one piece of the

mathematical pie at a time. He concurrently pursued his various interests

and, in 1920, he brought together two of these seemingly disparate areas of

mathematics in one of the most prestigious talks of his career, his plenary

address at the International Congress of Mathematics in Strasbourg

[Dickson 1921d]. By presenting one of these plenary lectures, Dickson

joined the ranks of mathematicians like Felix Klein, Giuseppe Peano,

Henri Poincaré, Émile Picard, Simon Newcomb, and Edmund Landau.

Knowing he would have a distinguished international audience before him,

Dickson must have carefully considered the topic of his lecture.

It came from the theory of numbers, that is, in Dickson’s words, from

“the literature. . . I had been examining minutely in the preparation and

publication of the first volumes of my History of the Theory of Numbers.
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I shall approach a few typical problems of the theory of numbers through

the medium of other branches of mathematics” [Dickson 1921d, p. 41 or

p. 579].6 Thus Dickson’s historical study of the theory of numbers inspired

his International Congress address. He chose, in particular, to apply

geometrical methods to the problem of finding all rational solutions of

certain Diophantine equations and to make use of the theory of algebraic

invariants in determining the integers for which a given binary cubic form

equals a square [Dickson 1921d, pp. 42–46, 55–56 or pp. 580–584, 591–

594]. He devoted the majority of his attention, however, to an application

problem involving algebraic and hypercomplex numbers.

He opened briefly by sketching the development of his ideas with

regard to this latter problem. “While seeking interesting material which

would illustrate this topic,” he explained, “I was led to the discovery

of a very simple general method of finding explicit formulas which give

all the integral solutions of homogeneous quadratic equations in several

variables. For equations in four variables, the method makes use of

some simple properties of integral algebraic numbers; while for equations

in six variables, use is made of properties of integral quaternio[n]s”

[Dickson 1921d, p. 41 or p. 579]. With a “method” for solving these types of

Diophantine equations which depended on properties of algebraic numbers

and hypercomplex numbers, Dickson seized the opportunity to establish

the relationship between the theories.

These introductory remarks also provided hints of Dickson’s more

general ideas regarding Diophantine analysis; in particular, he called for

broader approaches to the study of Diophantine equations. He expressed

this view candidly in the preface to the second volume of his History.

“Since there already exist too many papers on Diophantine analysis which

give only special solutions,” he declared, “it is hoped that all devotees of

this subject will in future refrain from publication until they obtain general

theorems on the problem attacked if not a complete solution of it. Only

in this way will the subject be able to retain its proper position by the

6 Here, knowingly or otherwise, Dickson continued in the spirit of the “zero-th” Chicago
Congress of 1893 where Hermann Minkowski joined the “branches” of number theory
and geometry. Specifically, Minkowski conveyed his now famous theorem concerning
the existence of a point with integral coordinates (other than (0, 0, 0)) in closed, convex
subsets in R3 that are symmetric about the origin. See [Minkowski 1896] and [Parshall
& Rowe 1994, pp. 316–317].
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side of other virile branches of mathematics” [Dickson 1920, p. xx]. From

Dickson’s perspective, then, the advancement of the subject depended on

the determination of complete—as opposed to partial—solutions.

Dickson, though, especially desired integral solutions. He made this

clear in his brief history of the development of these types of problems.

“Diophantine analysis,” he began, “was named after Diophantus, of

the third century, who proposed many indeterminate problems in his

arithmetic. . . He was content with a single numerical rational solution,

although his problems usually have an infinitude of such solutions. Many

later writers required solutions in integers (whole numbers), so that the

term Diophantine analysis is used also in this altered sense. For the case

of homogeneous equations, the two subjects coincide. But in the contrary

case, the search for all integral solutions is more difficult than that for all

rational solutions. In his first course in the theory of numbers, a student

is surprised at the elaborate theory relating the equation which in analytic

geometry represents a conic; but it is a real difficulty to pick out those

points whose coordinates are integral” [Dickson 1920, p. iii].

Dickson wrote these particular remarks in April of 1920. By the

time of his Strasbourg address in September, however, his view of the

difference between the determination of integral and rational solutions

for homogeneous Diophantine equations had changed. Specifically, he

“note[d ] the marked contrast between the problem of finding all the rational

solutions and that of finding all the solutions in integers, in spite of the

homogeneity of our equations” [Dickson 1921d, p. 46 or p. 584]. In less

than half a year, then, the problem of establishing the integral solutions

for a homogeneous Diophantine equation went from one of “coinciding”

with that of finding the rational solutions to the corresponding non-

homogeneous equation to one standing in “marked contrast” to it. Perhaps

Dickson intended for this comment to lure readers into the paper since it

seems to suggest a departure from the more standard approaches to these

types of problems.

Indeed, in Strasbourg,7 Dickson’s “very simple general method” did

provide new insight into Diophantine Analysis when he determined the

7 Six months later, in fact, he would generalize these results back in the United States
at an AMS meeting [Dickson 1921c]. See below.
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integral solutions for equations of the type

(1) x21 + x22 + x23 = x24 and x21 + · · · + x25 = x26.

For each equation, he transposed one square and expressed the resulting

difference of two squares as a product. In other words, he wrote the

equations in this form

(2a, b) x2 + y2 = zw and x2 + y2 + z2 + w2 = sn.

He thus reduced the Diophantine equations under consideration to expres-

sions concerning the sums of two and four squares.

For the first of these two equations, Dickson found the rational solutions

immediately.8 He employed concepts he had discussed at length in the first

volume of his History, namely, divisibility and primality. Specifically, he

divided x and y by z (for z �= 0) and expressed these rational numbers in

terms of a common denominator, that is,

(3)
x

z
=

n

m
, y

z
=

r

m
,

where m, n, r are integers without a common factor > 1. He then wrote

the resulting equation as

(4)
w

z
=

( x

z

)2
+
( y

z

)2
=

n2 + r2

m2
,

thus reducing the homogeneous equation (2a) to the corresponding non-

homogeneous equation in the customary way. By equating denominators

and introducing a “proportionality factor”9 ρ, he set z = ρm2, where ρ is

rational, and gave the resulting values for the variables as

(5) x = ρmn, y = ρmr, z = ρm2, w = ρ(n2 + r2).

When z = 0, the rational solutions of (2a) have x = y = 0 and hence are

given by (5) for m = 0 [Dickson 1921d, p. 47 or p. 585]. With this reduction

8 In [Dickson 1920, pp. 305–323], Dickson primarily surveyed the results concerning the
expression of integers (as opposed to rational numbers) as the sum of n squares.
9 [Dickson 1921d, p. 47 or p. 585]. Dickson did not refer to ρ as the “proportionality
factor” in his Strasbourg lecture. He used this term in two later publications, namely,
[Dickson 1921c] and [Dickson 1929].
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of the homogeneous Diophantine equation (2a) to the corresponding

non-homogeneous equation (4), Dickson determined all rational solutions

of (2a) for rational ρ’s and integersm, n, and r with no common factor > 1.

Ultimately, however, he desired integral solutions.

Typically, according to Dickson, “[s ]ome writers are in the habit of sup-

pressing the proportionality factor ρ [that is, restricting ρ ∈ Q to integral

values] and claiming without further examination that the resulting values

give general solutions in integers” [Dickson 1921c, p. 315 or p. 614]. But

Dickson showed immediately the “fallacy” of this approach by consider-

ing the solution x = 1, y = 3, z = 2, w = 5 in the form of (5). Dividing

y and z by x we see that r = 3n and m = 2n and n is a factor of r,

m, and n. Since r, m and n have no common factor > 1, n = ±1 and

m = ±2, r = ±3 and ρ = 1
2
. In particular, ρ is not an integer. In other

words, Dickson recognized that finding all integral solutions to (2a) went

beyond restricting the proportionality factor ρ to the integers.

As Dickson noted several months after the Strasbourg Congress,

“[i ]t has been regarded as self-evident by all writers,10 who have men-

tioned the topic, that the problem of solving a non-homogeneous equation

in rational numbers is equivalent to the problem of solving the correspond-

ing homogeneous equation in integers. . . there is nothing wrong with the

algebraic work [deduced from the typical transformation from the homo-

geneous to the non-homogeneous equation], nor with the facts deduced.

The fallacy lies in the failure to perceive that these facts do not warrant

the conclusion that, in the converse case, we have shown how to find all

integral solutions” [Dickson 1921b, p. 313 or p. 612, my emphasis].

Indeed, Dickson devoted the majority of his proof to establishing this

result. Moreover, he not only sought all integral solutions, but he also

desired “to obtain a formula which gives all the integral solutions of

equation (2a) for integral values of the parameters” [Dickson 1921d, p. 47

or p. 585].

Just how did Dickson find the integer solutions to x2 + y2 = zw? He

abandoned traditional number-theoretic approaches using divisibility and

10 Here, in a footnote, Dickson specifically cites Gauss as an example of one of these
writers. In § 300 of the Disquisitiones Arithmeticae, Gauss claimed that “it is thus
clear that the solution of this equation [ax2 + 2bxy + 2dx + 2ey + f = 0] by rational
numbers is identical with the solution by integers of the equation at2 + 2btu + cu2 +
2dtv + 2euv + fv2 = 0” [Gauss 1966, p. 356].
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primality and looked, instead, to the properties of the complex numbers.

In particular, he made use of the unique factorization of the Gaussian

integers and what he called “the well-known fact that the norm x2 + y2 of

the product

(6) x + yi = (m + qi)(n + ri)

of two complex numbers equals the product of their norms. Thus (2a) has

the solution:

(7) x = mn− rq, y = mr + nq, z = m2 + q2, w = n2 + r2 ”

[Dickson 1921d, p. 47 or 585]. Dickson assumed m, n, q, and r had no

common factor > 1. Incidentally, this agrees with the rational solutions

Dickson obtained earlier if you multiply these numbers by an arbitrary

rational number ρ and set q = 0. Thus, relying on the two properties

mentioned above, Dickson derived the expressions, up to an integral

multiplier, for integer solutions of x2+y2 = zw. Still, one piece of Dickson’s

work remained undone.

He needed to prove that all integral solutions are obtained when

an integer ρ is multiplied by integers of the form (7). To accomplish

this, he considered the products of the numbers (7) by an irreducible

multiplier s/p, where s, p ∈ Z. He showed that when these products are

integers, that is, when p divides the numbers in (7), then “the quotients

are expressible in the same form (7) with new integral parameters in place

of m, n, q, r ” [Dickson 1921d, pp. 7–8]. This proof hinged on the fact

that the complex integers follow the ordinary laws of divisibility. Thus,

true to his stated goal, Dickson determined all the integral solutions of

x2 + y2 = zw.

As promised in the introduction, the “method” used to find these

solutions employed “simple” properties of integral algebraic numbers:

norm, unique division, and (unique) factorization of complex integers.

By calling his method “new,” Dickson seems to imply that his approach

to this problem represented an innovative contribution to the study of

Diophantine equations. As Dickson had noted earlier, Diophantus, for

example, “knew how to express the product of two sums of two squares as

a sum of two squares in two ways,” namely

(8) (m2 + q2)(n2 + r2) = (mn± rq)2 + (mr ∓ nq)2

[Dickson 1920, p. vii].
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Hence, although Dickson arrived at the solution to zw = x2 + y2

by using properties of integral complex numbers, he found a result he

conceived of as dating back to Diophantus himself. But although Dickson

called his method “new,” he did not explicitly mention that his approach

to finding the solutions to zw = x2 + y2 was actually equivalent to the

study of properties of Z[i], a method already familiar to Gauss. Perhaps

by “new” Dickson meant the generalization of this method used in solving

equations of the form x21 + · · ·+x25 = x26 (see below). Or maybe by “new”

he meant his emphasis on a complete determination of integral solutions.

Interestingly, in his History, Dickson did not include advances made by

Gauss using properties of the Gaussian integers in his discussion of the

development of the “two-square theorem” [Dickson 1920, pp. 225–257]. It

is possible, then, that he viewed his approach as unique since it relied less

on properties of primes and congruences for specific cases in the style of

his predecessors and more on arithmetic properties of algebraic numbers

for general results.11

Whatever his reasoning, he immediately applied an analogous method

using attributes of the integral quaternions to deduce all integral solutions

to x21+· · ·+x25 = x26. For this part of his work, he relied on Adolf Hurwitz’s

arithmetic of quaternions [Hurwitz 1896]. Specifically, as Dickson put it,

he needed “a right-hand (as well as a left-hand) greatest common divisor

of any two integral quaternions. Here a quaternion is called integral if

its four coordinates are either integers or all halves of odd integers.

The latter possibility would seem to present a difficulty in applying such

an arithmetic of quaternions to the study of the integral solutions of

this Diophantine equation; but we shall see that this difficulty is easily

overcome. . . ” [Dickson 1921d, p. 51 or p. 589].12 Dickson overcame this 2

in the denominator by restricting the definition of an integral quaternion

to one with integer coordinates and defining a corresponding arithmetic

which depended on odd norms.

11 Dickson’s generalization of these results in [Dickson 1921a, p. 354 or p. 620] seems
to support this claim further. There, he asserts, “[w ]e shall see that the theory of
algebraic numbers is admirably adapted to the complete solution of N [ = x2−my2 or
x2 + xy + ky2] = zw in integers.”
12 For the genesis of the definition of the concept of an integral quaternion, see
[Fenster 1998].
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Dickson fully developed these ideas the following year in his “Arith-

metic of Quaternions” [Dickson 1921b]. As the title suggests, he consid-

ered not only the notion of an integral quaternion but also the attendant

concepts of prime, greatest common divisor, and unique factorization of

integral quaternions. He clearly spelled out the motivation behind his

research in this direction when he wrote that “[q]uaternions have recently

been applied to the solution of several important problems in the theory of

numbers. For this purpose it is necessary to make a choice of the quater-

nions which are to be called integral” [Dickson 1921b, p. 225 or p. 397].

Thus, with the integral quaternions a necessary component in the search

for solutions to certain Diophantine equations, Dickson found himself com-

pelled to come to terms with the arithmetic of this specific algebra initially

and with more general algebras later.13

His theory of the arithmetic of algebras hinged on the determination of

a set of integral elements which led to an arithmetic analogous to that of

the ordinary integers. As Dickson described it in the introduction to his

celebrated text on the subject, Algebras and their Arithmetics,

“[t ]he chief purpose of this book is the development for the first time

of a general theory of the arithmetics of algebras, which furnishes a direct

generalization of the classic theory of algebraic numbers. The book should

appeal not merely to those interested in either algebra or the theory of

numbers, but also to those interested in the foundations of mathematics.

Just as the final stage in the evolution of number was reached with the

introduction of hypercomplex numbers (which make up a linear algebra),

so also in arithmetic, which began with integers and was greatly enriched

by the introduction of integral algebraic numbers, the final stage of its

development is reached in the present new theory of arithmetics of linear

algebras” [Dickson 1923b, p. vii].

Inasmuch as his previous efforts to define a set of integral elements

in an arbitrary algebra formed “the final stage in the evolution of num-

ber,” this book included the associated theory of arithmetic. Moreover,

although the quaternions may have initially lured him into this subject,

the generalization of the algebraic numbers represented a key component

in the measurement of his theory’s success.

As Dickson intended for his Algebras and their Arithmetics to reach a

13 For the details of this work see [Fenster 1998, pp. 136–152].
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wide audience, he devoted the first eight chapters to the development of

the general theory of algebras. In particular, he called attention to Wed-

derburn’s structure theorems of algebra which had previously remained

“somewhat overlooked” [Birkhoff 1938, p. 287].14 Moreover, Dickson’s def-

inition of a set of integral elements generally gained acceptance “in the

extensive German development of a unitary theory of ideals, by Emil

Artin, Helmuth Hasse, the late Emmy Noether, B.L. van der Waerden,

and others” [Birkhoff 1938, p. 287]. Thus Dickson’s work had strong ties

to key mathematical ideas from the past, a broad presentation which

brought many aspects of the general theory of algebras into focus, and

links with the (future) work of the influential German algebraists. His

impressive theory earned him the AAAS Prize (American Association for

the Advancement of Science) in 1924 and the Cole Prize in 1928 for his

book on the subject [Dickson 1923b], [Fenster 1998].

Conclusion

Dickson’s 1920 reflections in his History of the Theory of Numbers

on the general development of mathematics capture well his sense of

mathematical progress. “[C ]onventional histories [of mathematics],” he

declared, “take for granted that each fact has been discovered by a natural

series of deduction from earlier facts and devote considerable space in

the attempt to trace the sequence. But men experienced in research know

that at least the germs of many important results are discovered by

a sudden and mysterious intuition, perhaps the result of subconscious

mental effort, even though such intuitions have to be subjected later

to the sorting processes of the critical faculties” [Dickson 1920, p. xx].

Although this comment expresses Dickson’s general view of the evolution

of mathematical results, it seems to apply equally well to his own specific

path from the study of algebras to that of their arithmetics, since, a priori,

there was no natural route from Diophantine equations to the arithmetic

14 From Dickson’s perspective, Wedderburn’s structure theorems for rational algebras
included: “[e]very semi-simple algebra is either simple or is a direct sum of simple
algebras, and conversely; [the principal theorem:] every algebra which is neither
nilpotent nor semi-simple is the sum N + S of its unique maximal nilpotent invariant
sub-algebra N and a semi-simple sub-algbra S” [Dickson 1928, p. 97 or p. 471] and
“every simple algebra A is a direct product of a simple matrix algebra and a division
algebra D; this may be understood to mean that all elements of A can be expressed as
matrices whose elements belong to D” [Dickson 1924, p. 250 or p. 594].
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of algebras. The joining of these seemingly disparate areas required some

“intuition” which had grown from a near decade-long study of the history

of the theory of numbers combined with close to twenty years of thoughts

on algebras themselves. Moreover, the prestigious invitation to deliver a

plenary lecture at the 1920 Strasbourg Congress may well have served to

prompt Dickson’s solidification of ideas on a variety of subjects, among

them, the determination of solutions to certain Diophantine Equations.

Dickson’s tersely written History, then, led to far more than self-

satisfaction. At the time of its publication, and to some extent even

now, it provided an invaluable source for those interested in number

theory—professional and amateur alike—especially for those lacking ade-

quate library facilities [Carmichael 1919, p. 397]. Moreover, as one reviewer

asserted, it supported those “who still believed in mathematics for math-

ematics’ sake” at a time when practical mathematical applications were

held in high esteem [Lehmer 1919–1920, p. 125]. And, soon after its pub-

lication, for one young aspiring mathematician by the name of Richard

Guy, Dickson’s History proved “better than . . . the whole works of Shake-

speare and heaven knows what else” [Albers & Alexanderson 1993, p. 136].

Perhaps most importantly, however, the timely opportunity to deliver a

plenary address at the 1920 International Congress planted the seeds for

this altruistic historical study to grow into professional gold in the form

of a theory of the arithmetic of algebras.

Thus this look at Dickson’s History calls attention to the interplay

between the history of mathematics and mathematical research. In par-

ticular, the differences in methodology between the practicing historian

and the practicing mathematician come to the fore. No historian would

have ever written Dickson’s History. Dickson researched and wrote with

the perspective—and aims—of a mathematician. Ultimately, it seems, his

comprehensive study of number theory led him to isolate problems of

interest and seek solutions of increasing generality. Not surprisingly, he

spent the final decade of his mathematical career focused on establishing

and generalizing a celebrated, unsolved number-theoretic problem [Dick-

son 1936]. This study, then, highlights not only how Dickson conceived of

a historical study of number theory but also how he used the history of

mathematics to inform his mathematical researches.
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