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NOTES & DÉBATS

IT’S NOT THAT THEY COULDN’T

Reviel NETZ (*)

It’s not that she couldn’t,
It’s not that she wouldn’t,
And you know–it’s not that she shouldn’t:
It’s just that she is
The laziest gal in town.

Cole Porter

ABSTRACT. — The article offers a critique of the notion of ‘concepts’ in the history
of mathematics. Authors in the field sometimes assume an argument from conceptual
impossibility: that certain authors could not do X because they did not have concept Y.
The case of the divide between Greek and modern mathematics is discussed in detail,
showing that the argument from conceptual impossibility is empirically as well as
theoretically flawed. An alternative account of historical diversity is offered, based
on self-sustaining practices, as well as on divergence being understood not in terms
of intellectual values themselves (which may well be universal) but in terms of their
rankings within different cultures and epochs.

RÉSUMÉ. — CE N’EST PAS QU’ILS N’AURAIENT PAS PU. — Cet article offre une
critique de la notion de “concepts” en histoire des mathématiques. Certains historiens
s’appuient parfois sur un argument mettant en avant une impossibilité conceptuelle,
du style: certains auteurs ne pouvaient pas faire X, parce qu’ils n’avaient pas le
concept Y. Nous discutons en détail ce que cela signifie dans le cas de la différence entre
mathématiques grecques et mathématiques modernes. Nous montrons que l’argument
de l’impossibilité conceptuelle est empiriquement et théoriquement peu solide. Pour
rendre compte de la diversité historique, l’article offre une alternative fondée sur des
pratiques qui s’auto-entretiennent et sur la notion de divergence interprétée non en
termes des valeurs intellectuelles elles-mêmes (qui pourraient bien être universelles),
mais des rangs que ces valeurs occupent dans différentes cultures et époques.
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Is mathematics always the same? If not, why? Historians of mathemat-

ics keep returning to these fundamental questions. The very question of

what is ‘the same’ in mathematics is not easy to answer. After all, math-

ematicians have always shown the surprising fact that things that appear

different are truly–seen under the appropriate perspective–the same: not

only in the twentieth century’s hunt for isomorphism, but starting with

such observations that the squares on the two sides of the right-angled

triangle are, in some sense, the same as the square on the hypotenuse. . . 1

It is thus natural, faced with an alien piece of mathematics, to show that

it is ‘the same’, in some mathematical sense, with a certain subset of

contemporary mathematics. This gives rise to the following set of objects:

OPM– an Old Piece of Mathematics,

CPM– a Contemporary Piece of Mathematics (to which OPM is equiva-

lent),

CM– the entirety of Contemporary Mathematics (of which CPM is no

more than a subset).

At this stage, the historian who wishes to say that mathematics is not

always the same has two related routes open. One is to argue that while,

from a certain perspective, OPM and CPM are indeed equivalent, they are

also different enough from each other to merit the label ‘different’.2 This

however seems weak on its own: no one ever denied the difference, but the

question is, why should this difference matter once the basic equivalence

is perceived? After all–is this not a mere matter of notation? Hence the

second route: to argue that CPM is a subset of CM for a good reason: the

way in which the mathematics of OPM was done made it impossible to do

any mathematics but OPM, and so the modern equivalent to OPM can

be CPM alone, and not CM as a whole. Mathematics is not always the

same because, at different periods, different kinds of mathematics were

possible. Transforming OPM into its contemporary equivalent, CPM, is

1 [Goldstein 1995] is a fundamental study of ‘the same’ in mathematics, dedicated to
the question: when are different mathematical proofs and propositions ‘the same’?

2 It is in fact difficult to define the ‘equivalence’ operative in this case. The standard
example–the equivalence of Euclid’s Elements II with algebraic equations–seems to
suggest a meaning of ‘equivalence’ along the following lines: historians of mathematics
often take two theorems to be equivalent when, from the perspective of the modern
mathematician, the proof of any of the theorems serves to show, simultaneously, the
truth of the other.
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misleading: it obscures the idiosyncratic features of OPM that blocked

it from becoming CM. No mere matter of notation, then: the difference

between OPM and CPM is historically explanatory.

Such was the form of the most famous twentieth century debate in

the historiography of mathematics. Unguru [1975] argued that Greek

mathematics differs from its modern equivalents; Freudenthal [1977] and

Weil [1978] had argued that this is a matter of notation only; Unguru

wrapped up the discussion in Unguru [1979] with wide-ranging historio-

graphical and indeed philosophical comments (more recently re-considered

and expanded in [Fried and Unguru 2001]). At the heart of Unguru’s

reply–which has now become, to varying degrees, the established view in

the community of historians of mathematics–lies the fundamental work

by Jacob Klein [1934/1936, 1968], Greek Mathematical Thought and the

Origins of Algebra. Klein’s thesis was that Greek mathematics, for deep

conceptual reasons, just could not become the same as modern mathemat-

ics, and must have had the form of dealing with the synthesis of isolated

geometrical problems (instead of systematic algebraic analyses). Why?

Because the Greeks did not possess the right kind of concepts: for alge-

bra, one needs second-order concepts that refer to other concepts, but the

Greeks had only first-order concepts, referring directly to reality. But let

us leave aside the details of Klein’s thesis and concentrate on the form

of the argument. Klein’s claim–the foundation of Unguru’s critique–was

that the difference in form between Greek mathematics and its modern

counterpart was historically explanatory: to wit, it explained why Greek

mathematics could not be modern. Why? Because modern mathematics,

in the Greek context, was conceptually impossible.

Once again: my interest in this article is not in the detail of Klein’s

historical thesis.3 I am interested in the form of the argument. I shall

call this the argument from conceptual impossibility. Its shape is: ‘for

conceptual reasons, X could not do Y’. In an important recent article,

‘Conceptual Divergence–Canons and Taboos–and Critique: Reflections on

Explanatory Categories’, Jens Hoyrup [forthcoming] had challenged the

very argument from conceptual impossibility. According to Hoyrup, we

3 I have discussed Klein’s thesis in detail in [Netz forthcominga], where I argue that
the difference Klein had noticed–between a more ‘isolated’ and ‘qualitative’ approach
in Greek mathematics as opposed to a more ‘systematic’ and ‘quantitative’ approach
in modern mathematics can be explained in terms of changing mathematical practice.
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are too hasty to speak of ‘possibility’ and ‘impossibility’, and we tend

to draw the border between them too neatly. This article is written so

as to support, qualify and I hope to complement Hoyrup’s. In the first

section I shall give several examples for what is typically taken to be

the fundamental divide between ancient and modern mathematics: the

more ‘algebraical’ or ‘arithmetical’ nature of modern mathematics. I shall

show that it’s not that they couldn’t: Greek mathematicians could, and did

on occasion, produce a more ‘arithmetical’ kind of mathematics. In the

second section I shall consider together the examples from the first section,

showing how, even absent the argument from conceptual impossibility, the

difference between ancient and modern mathematics remains important.

I shall also return to set out in more detail Hoyrup’s account as well as

my own, complementary historiographical approach.

1. THE NON-ARITHMETICAL CHARACTER OF

GREEK MATHEMATICS

In what follows I draw upon several recent studies on Greek mathe-

matics that, taken together, show the inadequacy of the argument from

conceptual impossibility: wherever we look, we find exceptions to the rule

of the non-arithmetical character of Greek mathematics. The moral, how-

ever, is not that we should give up the picture of Greek mathematics as

non-arithmetical, but that we should give up the argument from concep-

tual impossibility.

What do we mean by the ‘non-arithmetical character of Greek math-

ematics’? Several different things: arithmetical and numerical questions

are less important than they are in other mathematical traditions; geo-

metrical objects (which are the focus of interest) are understood in a

non-quantitative way. Finally, the arithmetical system itself is patchy.

It completely lacks the coherent structure of its modern counterpart, both

in mathematical structure (where we have the well-understood logical

sequence from integers through positive rationals and reals, and through

negatives, to complex numbers) and in symbolism (where we use the deci-

mal positional system). To the Greek, numbers are mysterious and clumsy

to handle; to us, they are fully brought under the control of logic and are

easy to deal with. Let us begin to note some exceptions to this picture.
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1.1. Fractions

One central perceived difference between Greek and modern concep-

tions of number has to do with fractions. It has been argued in recent

studies that the Greeks did not possess the concept of a common fraction,

using instead either unit-fractions or ratios ([Knorr 1982], [Fowler 1992]).

What we refer to as ‘three over five’, a numerical value, would be for them

either unit fractions, that is, ‘a half and a tenth’ (a sum of numerical val-

ues) or a ratio, that is ‘the ratio of three to five’ (not a numerical value

at all, but a relation). There is a mass of evidence where Greek mathe-

maticians treat fractions in just this way–an evidence which seems to go

beyond notational differences into mathematical practice itself: common

fractions, unlike other representations of fractions, allow direct calculation

with fractions of the form ‘the nth of m multiplied by the qth of p gives

nqth of mp’. (This direct calculation serves to put ‘fractions’ on a par

with integers and in this way opens the way for the contemporary clear

logical structure.)

I move on to discuss a new study of this question by Jean Christianidis

[forthcoming]. Christianidis sets out from a quotation from David Fowler

that is very relevant to our concerns:

“Just one example of some operation such as the addition, subtraction,

multiplication, or division of two fractional quantities, expressed directly

as something like ‘the nth of m multiplied by the qth of p gives nqth

of mp’, and clearly unrelated, by context, to any conception in terms of

simple and compound parts, could be fatal to my thesis that we have

no good evidence for the Greek use or conception of common fractions.

I know of no such example” [Fowler 1987, pp. 264–265].

Christianidis then observes that Diophantus’ problem IV.36 contains

just that. Not indeed in numerical terms, but in terms of Diophantus’

‘syncopated algebra’. Still: Diophantus shows a clear sense of multipli-

cation of fractions where the numerator is multiplied by the numerator

and the denominator–by the denominator. Transcribing Diophantus’ syn-

copated algebra into symbolic algebra, the essence of Christianidis’ argu-

ment is that Diophantus, in IV.36, directly derives from the multiplication

of ‘(3x)/(x−3)’4 by ‘(4x)/(x−4)’ the form ‘(12x2)/(x2 +12−7x)’. While

4 The original for ‘(3x)/(x−3)’ was ‘number, three, in the part of: number, one, lacking
monads, three’, or perhaps (depending on how syncopated Diophantus’ original papyrus
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this is not quite the example Fowler was looking for (the terms in question

are general, ‘number’ and ‘monads’, rather than direct numerical terms),

it is clear that Diophantus could. If he could multiply a numerator by

numerator here, he certainly could do it elsewhere.

Notice how the entire discussion between Fowler and Christianidis is

framed by the argument from conceptual impossibility. To Fowler, a single

counter-example would be fatal. Why? Because his argument is that the

Greeks did not have the conception of a common fraction. To Christianidis,

a single example, even if not precisely the one Fowler was looking for,

is sufficient, because it shows the possibility of the practice.

Christianidis had clearly shown an important result: it’s not that they

couldn’t. To at least one Greek mathematician, in at least one context, it

was quite possible to multiply fractions by the separate multiplication

of denominators and numerators. Fowler was wrong, if indeed he did

conceive the issue in terms of the argument from conceptual impossibility.

In reality, I doubt that he did: but, even so, it is telling that his formulation

was in the radical terms of conceptual impossibility. For what would be

the alternative to conceptual impossibility? Chrsitianidis concludes as

follows: “This provides good evidence that Diophantus had knowledge

of the concept of common fraction as well as of the elementary rules of its

arithmetical treatment”. In other words, the alternative to conceptual

impossibility is, to Christianidis, its opposite–conceptual possibility–

offered as the conclusion of the discussion. But this depends on the very

argument from conceptual impossibility. If conceptual blocking is not a

crucial historical process, so that people in general can do more than they

usually do, then it is predictable that the difference between the ‘done’

and the ‘not done’ should be quantitative rather than qualitative: the

‘done’ is a matter of tendency. It would certainly be methodologically

wrong, to throw away the mass of evidence for the Greek treatment of

fractions in terms of unit fractions or ratios, in light of Christianidis’

example: tendencies are what we should look for, and the tendency

remains standing. Christianidis has done an enormously valuable service

in helping us to delineate the borders of this tendency, and in blowing

a hole in the argument from conceptual impossibility: yet the discoveries

was): ‘Ar, 3, in the part of: Ar, 1, L Mo, 3’.
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of Knorr and Fowler should still serve as basis for further analysis.5 The

task is to re-frame them without their foundation in the argument from

conceptual impossibility. I return to this task in section 2 below.

1.2. Arithmetized geometrical objects

In analytic geometry since Descartes, geometrical objects are under-

stood in explicit arithmetized terms: lines carry a value of length, which

we may represent as a variable but which is in principle a numerical value.

Thus it is possible to speak of the multiplication of lines as if it were the

multiplication of two numbers so that the parabola, for instance, becomes

the locus of the points satisfying an equation of the form y = ax2 + b.

This is the essence of Zeuthen’s interpretation of Greek mathematics as

geometrical algebra, [Zeuthen 1886], and the essence of Unguru’s critique

of geometrical algebra is that Greek geometrical objects are not like that.

Lines are elements within geometrical configuration, and they are not

associated with numerical values. It is typical that Greek mathematicians

do not say that ‘the length of this line is equal to the length of that line’

but instead say ‘this line is equal to that’, specifying a concrete relation

in geometrical space. As a consequence, geometrical objects are not sub-

ject to arithmetical operations: Greek mathematics does not refer to the

multiplication of lines but, concretely, to the rectangle contained by the

two lines. Thus conic sections are not the locus satisfying an equation,

but are a concrete spatial object, the result of cutting a cone by a plane,

which also happens to satisfy a relation between certain other geometri-

cal objects–concrete lines and squares. This is the argument of Fried and

Unguru [2001].

I deny none of this. But what to make of Archimedes’ usage in Sphere

and Cylinder, Book II? Within an appendix to the treatise (lost from the

main line of transmission of Archimedes’ work and reported in Eutocius’

commentary [Heiberg 1915, pp. 132–144]) as well as in an alternative

proof to the penultimate proposition, Archimedes’ text contains many

occurrences of expressions in which original wording is, e.g. ‘to apo tês

AB epi tên GD’ or, in more general:

to apo tês {two Greek letters} epi tên {two Greek letters}

5 Christianidis, indeed, does not deny this: his argument relates to Diophantus alone
and not to Greek arithmetic and logistic as a whole.
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‘The 〈square〉 on the 〈line〉 {two Greek letters} epi the 〈line〉 {two Greek

letters}’.
In other words this is an expression composed of three constituents:

1. the Greek mathematical formula for a square (‘the on the {two

letters}’)6, followed by

2. the preposition epi, followed by

3. the Greek mathematical formula for a line (‘the {two letters}’).
(Expression 1 is not always that of a ‘square’ and may sometimes be a

‘rectangle’: it is therefore used for areas in general.)

I have discussed this expression in [Netz 1999b] and herein I repeat

my conclusions: it is impossible, given the context and the phrasing, to

read the expression other than in terms of the arithmetical operation

of multiplication. That is: the preposition epi, in this context, means

precisely the same as what we mean by the expression ‘multiplied by’

so that Archimedes repeatedly speaks of ‘the area multiplied by the line’.

I also find it very unlikely to ascribe the presence of the expression here to

any textual corruption. In other words, we find a clear case where a Greek

mathematician–indeed, the greatest of Greek mathematicians, active

in the heyday of Hellenistic mathematics–explicitly makes geometrical

objects subject to arithmetical manipulation.

Once again, however, I do not believe such a counter-example should

make us discard Unguru and subscribe, finally, to Zeuthen’s interpreta-

tion: Unguru did clearly identify an important tendency in Greek math-

ematics; Fried and Unguru offer a much more sensitive analysis of the

ancient theory of conic sections than Zeuthen did. After all, the epi, at

least in Hellenistic mathematics, is indeed exceptional. This, in my view,

explains its very use by Archimedes. My argument in [Netz 1999b] was

simple: Archimedes deliberately had used in this passage–the very end

of Sphere and Cylinder, Book II–a strikingly different language, one that

served further to mark a remarkably complex stage of his treatise.

In other words: I suggest that Greek mathematicians were always very

well aware of the correspondence between the operation of constructing

an area or a solid out of given lines, and the operation of multiplying

numbers. Thus there was nothing impossible, conceptually, in referring to

6 Note that this formula (like most Greek mathematical formulae) is elliptic: the main
noun, ‘square’, is elided, and is understood (in the Greek) from the article.
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a solid as the ‘multiplication’ of an area by a line. While possible, however,

such an expression would also be exceptional and therefore would be read

off, by its audience, as carrying some special, extra-meaning; hence Greek

mathematicians would normally refrain from using this expression, unless

they wanted to make some special point with it–which Archimedes did

at the very end of Sphere and Cylinder, Book II.

The above account, as stated, might appear unsatisfactory. After all,

why would Greek mathematicians, to start with, use such expressions

only exceptionally? And am I saying anything different than ‘the Greeks

did not usually multiply areas by lines, because they did not usually

do that’? I return to discuss such general methodological questions

in section 2 below and, for the time being, I notice the similarity in

structure between the example seen in sections 1.1 and 1.2: a practice is

ascribed to the Greeks by Fowler or Unguru, based on some fundamental

conceptual grounds; a counter-example is provided by Christianidis or

Netz; the argument from conceptual impossibility dictates that, given the

counter-example, Fowler or Unguru’s overall account should be discarded.

However, since the account is obviously important and informative, it

seems better to discard the argument from conceptual impossibility and

to look for alternative methodologies.

1.3. Numerical geometrical objects

In the previous section we have seen an example where, surprising

to Unguru’s interpretation of Greek mathematics, geometrical objects are

brought under arithmetical operations. Even so, those geometrical objects

are not yet given numerical values: the square is multiplied by the line,

but this is not based on such statements as ‘let the area of the square

be sixteen monads, and the length of the line be four monads; so their

multiplication is 64 monads’. Such association of numerical values with

geometrical objects is indeed absent from Hellenistic mathematics.

That is–depending on whom we choose to define as ‘Hellenistic math-

ematician’, and whom we then choose to read. In a recent Ph.D. thesis,

[Tybjerg 2000]), Karin Tybjerg had finally took the trouble of reading

Hero as a mathematician. She points out a systematic duality in the

Metrica–Hero’s main work in ‘geometry’ (if this is indeed the appropriate

term). On the one hand, Hero appeals to the prestige of geometrical proof,
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invoking the authority of Archimedes and using terms such as ‘demonstra-

tion’ (apodeixis), clearly suggesting the authority of geometrical proof in

the Euclidean-Archimedean tradition. On the other hand, his approach

is based, throughout, on specific numerical values. (Tybjerg’s example is

Metr. I.6, 14.18–20: “Let ABG be an obtuse angled triangle having 13

units, BG 11 units and AG 20 units”.) These values are either assigned

the geometrical objects at the outset, or are assigned them mid-way as a

kind of further check on the validity of an otherwise geometrical argument.

Mostly the arguments are indeed fundamentally geometrical: the measure-

ments are proved using the tools we know from Euclid’s Elements. At the

ends of the first two books, however, Hero adds rules for the measurement

of ‘irregular’ objects: for instance, a statue may be measured by covering

it in cloth which is then taken off and measured as a surface. . . In other

words, Hero deliberately extends the scope of geometrical proof. I quote

from Tybjerg’s summary of this issue, in section 3.2: “Hero introduces the

Metrica as a continuation of Eudoxus’ and Archimedes’ work . . . [yet] he

offers a different form of demonstration that involves both a geometrical

part and an arithmetical procedure, where the result for a specific exam-

ple is calculated. These demonstrations are evaluated on the basis of their

usefulness and ease and are extended to include purely physical methods

of measurement.” Tybjerg associates this with Hero’s larger project, in

her interpretation: carving a domain for mechanics, distinct from that of

pure geometry on the one hand and the banausic arts on the other hand.

In other words, we see here the same mechanism as suggested in

[Netz 1999b] for a small stretch of text in Archimedes, applied in this

case to an entire œuvre. Hero deliberately sets himself apart from Greek

mathematics in the Euclidean-Archimedean tradition, by making a choice

that, systematically, was not made by traditional geometrical authors. Of

course it was not conceptually impossible for Greek mathematicians to

conceive of geometrical objects as carrying numerical values: we see that

one author did just this, systematically. But it is surely significant that this

author is also different in several other ways. Assigning numerical values,

then, was not impossible but simply different. However, even difference in

itself is significant: it carries meaning and so would be used only in the

right context, where that difference is what the author wishes to convey.

Archimedes wished to be different at the end of Sphere and Cylinder,
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Book II; Hero wished to be different throughout.

1.4. A complete series of integers

The evidence usually given for the ‘patchy’ nature of the Greek numer-

ical system is that the Greeks not only failed to articulate our ‘rational’

numbers (in that they did not use our common fractions), but also failed

to articulate our integers. This is because the Greek sequence of integers

was apparently incomplete: the upshot of Euclid’s definitions of number

in Elements VII.1-2 is that 1 is a principle of all number, but is not a num-

ber itself. Thus the sequence of integers is 2, 3, 4, . . . I quote from Hoyrup

[forthcoming] whose treatment I am following:

“Here, it is often claimed (names and exact quotations are omitted for

reasons of charity) that the Greeks could not think otherwise. Since they

understood number as ‘collection of units’, they ‘failed to understand’

that 1 is a number.”

This then is yet another example of the argument from conceptual

impossibility. As Hoyrup shows, however, it is clear that Euclid himself

had occasionally thought of 1 as a number: a perfect number is defined

as a number equal to its parts and so, for six to be a perfect number (as

Euclid proves in Elements IX.36), 1 must be a number. This argument

by Hoyrup has deep consequences for the historiography of mathematics.

Just because historians cared so much for the questions of conceptual

possibility and impossibility, they also tended to pay the greatest attention

to the passages that promised insight into the conceptual foundations

of science: definitions and philosophical discussions. It turns out that

buildings do not necessary follow their foundations. To be precise: it

appears that Euclid has specific, extra-mathematical concerns governing

his definitions VII.1-2. It is typical of Greek mathematical definitions that

they act as a kind of shop-window where Greek mathematics interacts

with the wider intellectual world and heeds its concerns. Thus definitions

are offered even beyond mathematical necessity: they serve not merely

mathematical, but also wider philosophical goals. No one needs, within

mathematics, to have a definition of a ‘point’: but the prospective audience

of Elements I would feel cheated without a discussion of what ‘points’ are,

and so Euclid puts the mathematically inert definition, ‘a point is that
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which has no part’, at the very start of his work.7 The same might be the

case with Elements VII.1–2. Before proceeding with the mathematical

discussion, Euclid needs to answer the question ‘what is number’, and he

answers it in a way that makes sense to a philosophical audience. The

definition serves primarily a philosophical, not a mathematical goal, and

for this reason, indeed, can be safely ignored within the mathematical

practice itself (where, indeed, no explicit definition of number is required

at all–and where the reference to the sequence of integers 1, 2, 3, . . . may

be taken for granted as it makes the simplest arithmetical sense).

I shall return to discuss in section 2 below Hoyrup’s own interpretation

of this gap. For my immediate purposes I note the following. (1) Once

again, we find that there was no conceptual impossibility: the Greek could

think of 1 as a number (and as a consequence could envisage the entire

series of integers 1, 2, 3, . . .): apparently, this is what they standardly did.

(2) The choice whether to consider 1 as a number or not was significant:

one would think of 1 as a number in an arithmetical, but not in a

philosophical context. In other words, the choice was goal-dependent: for

philosophical purposes (e.g. for answering the question ‘what is number?’)

1 was not a number, for arithmetical purposes (e.g. for finding perfect

numbers) 1 was. (3) There also appears to be a certain hierarchy between

the goals: this may be seen in a context where both goals operate. The

introduction to Elements VII serves simultaneously a philosophical goal

(satisfying a philosophically educated audience) and an arithmetical goal

(preparing the ground for Elements VII–IX). For the definition of number,

the two goals diverge: the definition called for by philosophy differs from

that called for by arithmetic. It appears that the philosophical goal has

higher precedence: which is indeed to be expected given everything else

we know about the relative positions of philosophy and mathematics in

antiquity.

1.5. A decimal positional system

One of the major tools of modern mathematics–and one that makes

7 I have argued for this interpretation of Greek definitions in [Netz 1999a, chap. 3]. This
is of course not to deny that some Greek mathematical definitions, e.g. the definition of
‘being in the same ratio’ in Elements V, are motivated by mathematical concerns and
effectively serve as the axiomatic foundation for later arguments; for this axiomatic
function of Greek definitions see [Mueller 1991].



NOTES & DÉBATS 275

its arithmetization all that much easier–is the decimal positional system.

The system ‘carries on its sleeve’ its infinite extendibility and in this way

serves to present to the eye, in a very clear way, the nature of enumerable

infinity; above all, it is a superb tool for calculation. Its absence from

Greek mathematical practice may therefore be correlated with the overall

non-arithmetical character of Greek mathematics.

In subsections 1.1–1.4 above I gave examples where an established

position, based on the argument from conceptual impossibility, claims that

the Greeks did not have X, in the face of a counter-example. This is not the

structure of the example in this subsection. There is no standard argument

showing why the Greeks could not have a decimal positional numerical

symbolism. To the contrary: it is often suggested that Archimedes in

the Sand-Reckoner had come close to producing such a system.8 In a

paper [Netz forthcomingb] I argue that this was not the case: Archimedes’

Sand-Reckoner does not set forth a decimal positional system so that we

can say in general that Greek mathematics never did produce anything

resembling such a system. The thrust of this subsection is in my argument

why this did not take place. Since the Sand-Reckoner is the closest Greek

mathematics come, in the extant sources, to putting forward a decimal

positional system, its absence there may tell us about the deeper reasons

for its absence elsewhere. Once again, I argue, it’s not that they couldn’t:

Archimedes was capable of developing a decimal positional system and

preferred not to.

Note first of all that Greek mathematicians, after all, were acquainted

with a form of the decimal positional system, namely the abacus. The

ancient Mediterranean abacus–the normal instrument for any calculation

in Archimedes’ world–simply was a decimal, positional system. We must

of course bear in mind the nature of the instrument: unlike the Eastern

abacus (with its beads carried along pre-determined wires) the Mediter-

ranean abacus consists simply of small counters moved along surfaces

which, in the surviving archeological evidence, are usually not marked

by particular values. In other words, the instrument consists of a series

of scratches dividing rows to which the calculator assigns, for the given

8 E.g. [Mugler 1971, p. 129]: “Pour s’affranchir de son côté des limites imposées à
la numération par le langage courant, Archimède invente un système de notations
comparable à nos systèmes de puissances de 10.”
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calculation, values such as ‘units’, ‘fives’, ‘tens’ and onwards. (One typ-

ically distinguishes odd, 10n positions, from even, 5 · 10n positions: this

may serve perhaps so as to make the maximum number of counters on

a single position no more than five–a number with important cognitive

significance.) The essence of the calculation algorithms is that, when you

have two counters in a 5 · 10n position, you may remove them and put a

single counter on the position to (e.g.) their left; or, when you have five

counters in a 10n position, you may remove them and put a single counter,

once again, on the position to (e.g.) their left.9 The crucial thing to notice

is that the system is fully positional, including the central property that

position is a relative, not an absolute term.10 Calculation is blind to the

question, whether a position stands for ‘fives’, for ‘fifties’ or for ‘five hun-

dreds’: it merely distinguishes the odd and even sequence of positions.11

It would be preposterous to claim that Greek mathematicians–or

indeed practitioners in general–had the concept of the decimal positional

system as long as they dealt with counters on surfaces, but had lost that

concept as soon as they had applied themselves to papyrus. It is probably

best to avoid talking of ‘concepts’ at all; but if we wish to use the word

than we should say the Greeks did have the ‘concept’ of the decimal

positional system. However, it remains true that Greeks did not write

numbers down with a decimal positional system. The most efficient Greek

written numerical system–and the one common in Archimedes’ own time–

was that of alphabetical numerals. This uses as symbols the sequences α–θ
for 1–9, ι–| for 10–90, ρ–} for 100–900. M may represent ‘myriad or ‘ten

thousands’ (the largest number in Greek natural language). Combinations

of such symbols (with a special tag to represent that a numeration counts

9 See the discussion of the cognitive history of the abacus in [Netz 2002]. The best
overall treatment of the archeology as well as the mathematics of the Greek abacus is
[Schärlig 2001], while the central study remains the series of publications [Lang 1957,
1964, 1965, 1968].

10 As pointed out in [Hoyrup forthcomingb], it is this remarkable semiotic property
which makes algorithms so effective with positional systems.

11 It should be noted that the abacus does contain a representation for zero (otherwise,
indeed, the algorithms could never work)–namely, the empty slot. This representation
does not become written, because the Greeks chose not to write down in a direct way
the abacus. As soon as the abacus got written down, the decimal positional system
we are acquainted with was invented, zero and all. That is: there was no conceptual
breakthrough required in order to invent the sign ‘zero’, all it took was the decision,
to represent the abacus in writing.
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not units but thousands) can easily represent numbers up to a few millions.

This was sufficient for any Greek practical purpose though obviously very

limited as far as very large numbers are concerned.

When, in the Sand-Reckoner, Archimedes wishes to introduce a new

system for the representation of large numbers, the most natural thing for

him to do would have been to create a written correlate of the abacus–in

other words, a system equivalent to our decimal positional system.12 This

however is not what he did. Instead, he developed the following system.

The numbers from one to myriad myriads are called ‘first numbers’.

(Myriad myriads are what we call now a hundred million.) The last of

these first numbers, then, is myriad myriads. We take this as a ‘monad’ or

‘unit’ of the second numbers. We may consider then the myriad myriads

monads of the second numbers: this Archimedes takes as the monad of the

third numbers. With this repeated, we have finally arrived at the notion of

the myriad myriad numbers. Myriad myriad monads of this we consider as

a monad of the first numbers of the second period. (It turns out that until

now we have dealt only with numbers of the first period.) This second

period, too, has first, second, third and fourth numbers. . . and myriad

myriads monads of its myriad myriad numbers would serve, naturally, as

the monad of the first numbers of the third period–continuing in such a

way until we reach myriad myriad monads of the myriad myriad numbers

of the myriad myriad period. This is the largest number represented in

Archimedes’ system.

That this is not the decimal positional system is apparent from the

fact that Archimedes’ system stops. Instead of an equivalent of a decimal

positional system (which Archimedes had right under his nose, in the

abacus) Archimedes had developed a highly artificial system, which serves

no obvious mathematical or scientific purpose (and indeed was never used

by anyone in antiquity). What is the goal then? This is stated very clearly

by Archimedes himself:

“Some [...] think that there exists no named number of such a size that

exceeds its 〈i.e. the number of the sand’s〉 multitude. [...] But I shall try

to show to you that certain of the numbers named by us and published

12 It is not without interest to point out that our own decimal positional system arises
essentially as a written counterpart of the abacus: see [Herreman 2001] for discussion
of the semiotics of the abacus.
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in the work ‘Against Zeuxippus’ exceed not only the number of the sand

having a magnitude equal to the filled-up earth, but also the 〈number〉
of the 〈sand〉 having a magnitude equal to the cosmos” [Heiberg 1913,

216.2–218.1].

Some people believe that (not-P), and Archimedes is going to show

that (P). The work should–and does–revolve around this statement P

which we may extract as follows:

“The number of sand13 is among named numbers.”

In other words, the goal of Archimedes in the Sand-Reckoner is to name

a fabulously large number. Once this goal is understood it is immediately

obvious why Archimedes did not even consider anything equivalent to our

decimal positional system in the Sand-Reckoner. The decimal positional

system provides typographic symbols, but not names.

(a) ‘A Thousand Myriads of the Seventh Numbers’, Archimedes’ esti-

mate of the number of sand in the Sand-Reckoner, is clearly a name, but

(b) 100000000... (with 63 zero signs)

is not: (a) is a series of natural Greek words, arranged in an easy to

parse form, while (b) is an opaque and unpronouncable sequence of ad-

hoc typographic symbols.

The Sand-Reckoner is a treatise addressed to King Gelon, that is,

not to a professional scientist; Archimedes’ position in this treatise is

comparable, then, to that of Euclid in the introduction to Elements VII.

The work addresses a non-mathematical audience and is attentive to

non-mathematical goals. The very notion of the ‘number of sand’ arises

from a well-known literary trope [Nisbet and Hubbard 1970, p. 321], and

the treatise as a whole reads, in places, as a piece of literary prose

rather than technical science. This explains, I believe, its goal, which

cannot be defined in pure mathematical terms either: for the notion of

a ‘name’ is not mathematical but semiotic. Once again, we see that

when mathematics intersects with extra-mathematical interests and goals,

the extra-mathematical seems to take precedence: and so, at the point

where a Greek mathematician comes closest to inventing an original and

more effective numerical system, the result is not equivalent to a decimal

positional system and is in fact mathematically useless. To sum up: the

13 ‘The number of sand’ is the number of grains of sand it would take to fill up a
universe whose size is based on a very generous estimate.
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Greeks did have the concept of a decimal positional symbolism. They

could develop it in writing; as far as the extant sources reveal, they did

not. This may be because other goals had to them, at the crucial moments,

higher precedence. I return to discuss this explanatory model in section 2

below.

1.6. The mathematics of calculation

There is very little calculation one needs to perform as one reads

through Greek mathematics. Discussions are either in ‘pure’ arithmetic as

in Euclid’s Elements VII–IX, at most with some examples, calling typically

for no calculation at all; or they are geometrical to the exclusion of any

numerical values. The exceptions in, say, Hero, typically involve simple

numerical values at the level of the elementary school. Some astronomical

calculations, as well as some exceptions in geometry (e.g. Archimedes’

Measurement of the Circle) or arithmetic (e.g. Diophantus’ Arithmetic)

can be mentioned. Even in those cases, calculation itself is hidden from the

eye: the mathematician announces the terms and the operation and then

announces the result. The reader might wish to check, for instance, that, in

a right-angled triangle, if the hypotenuse stands to one side in the ratio 2:1

or 306:153 then the ratio between the sides is almost indistinguishable

from 265:153.14 But the checking is of limited importance in the argument

itself where the most important thing for Archimedes appears to be the

validity of the technique for deriving close boundaries on the ratio between

the perimeter and the diameter of the circle. What we hardly see in extant

Greek mathematics is an interest in calculation as such. The value of

persuasive proof seems to be higher than that of precise calculation.15

Since the two are in inherent tension (calculation is opaque and prone to

mistakes), it is natural that calculation should give way to persuasion so

that, on the whole, we predict that Greek mathematicians would devote

most of their energies to the study of qualitative features of geometrical

configuration (where proof is most compelling), rather than to numerically

rich mathematical objects (where the need for complex calculation would

14 As Eutocius does in his commentary to Archimedes’ Measurement of the Circle:
[Heiberg 1915, p. 234 7–16].

15 This stress on proof would follow from standard pictures of Greek intellectual life,
especially following Lloyd’s work on the cultural and political setting of Greek science:
see especially [Lloyd 1979, 1990].
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tend to dilute the compelling power of proof). This is indeed the picture

as it emerges from the extant sources.

As a consequence, we also expect that certain mathematical sciences

would be left completely on the sideways of Greek science. Combinatorics,

in particular, has calculation as its soul: the point of an argument in

combinatorics is to show how a number is found, the fun is in actually

finding it. The absence of combinatorics from the extant sources on Greek

mathematics was thus taken to be meaningful, giving rise to verdicts as

following (I use the quotation from a path-breaking study by Fabio Acerbi,

to which I shall immediately turn): ‘The Greeks took no interest in these

matters [= combinatorics]’, [Biggs 1979, p. 114]. In other words, the view

used to be that they couldn’t.

In [Acerbi 2003], renewed attention is paid to an obscure passage in

Plutarch, De Stoicorum Repugnantiis [1047C-E]: “But now he [Chrysip-

pus] says himself that the number of conjunctions produced by means

of ten assertibles exceeds a million, though he had [not] investigated the

matter carefully? Chrysippus is refuted by all the arithmeticians, among

them Hipparchus himself who proves that his error in calculation is enor-

mous as in fact affirmation gives 103049 conjoined assertibles and nega-

tion 310954.”16 It was very recently observed by mathematicians that

the numbers in question can be interpreted in technical combinatorical

terms, [Stanley 1997], [Habsieger et al. 1998], and Acerbi has shown how

Hipparchus could have obtained them as correct answers to the problem

extractable from Chrysippus’ statement. Since the numbers are the cor-

rect answer to the mathematical question, it is effectively proved that

Hipparchus had worked out the relevant piece of combinatorics: as shown

by Acerbi, this is a remarkable feat of ingenuity, which however is quite

feasible given quite elementary mathematical tools.

Once again, then, we see a claim of impossibility–followed by a counter-

example, and a very striking one at that. Of course it is now clear that

Biggs was wrong and it turns out that Hipparchus, at least, was interested

in combinatorics. But views such as Biggs’ are convincing, to start with,

only as long as we believe that different cultures are characterized by

conceptual blocks that define what they can and cannot do. Absent that

16 I emend the text as I believe we now have to: the manuscripts have 310952 but the
mathematical analysis by Acerbi makes 310954 an almost certain reading.
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belief, we should not for a moment follow such categorical claims as ‘the

Greeks did not have X’.

But what should we do about a counter-example such as Acerbi’s? Shall

we simply give up on the very notion of differences between cultures–

admit, finally, that mathematics is always the same? In fact, Acerbi’s

counter-example reminds us of a central methodological concern regarding

the past: namely, the selective nature of the survival of evidence. We

happen to know about Hipparchus’ treatise through a rather irrelevant

claim in a philosophical treatise; the mathematical text itself left no

trace in the surviving sources. How many other such works were lost

and how much of our picture of the past–the sense that different cultures

are different–is not simply a product of this optical illusion of aleatory

survival?

Of course we should always be humble in the realization of our

ignorance. Yet it is also important to note that survival, after all, is not

aleatory. What made works survive? The fact that there were readers

interested in them: the fact that they were valued. The pattern of survival

of evidence for past cultures is the result of the overlay of patterns of past

values: to survive, a work had to be valued enough, often enough. Such,

apparently, was the case with Greek geometry–it was valued enough,

often enough. Such was not the case with Greek combinatorics. So that,

finally, we are back at the starting-point, substituting Biggs’ absolute

claim that the Greeks (all Greeks!) did not value combinatorics with a

qualified, relative claim: many Greeks valued combinatorics less than they

did geometry. History is greatly affected, I believe, by such hierarchies of

value: I now move on to discuss such methodological claims in greater

detail.

2. DISCUSSION: THE CHOICES MATHEMATICIANS MAKE

As the reader realizes by now, I believe we should be critical of the

very notion of ‘concepts’. Let me begin with a few general words on what,

I believe, may be the historiographical background.

The historiography of conceptual structures is, perhaps, no more than

the benign version of the history of mentalities. Not that long ago, the

view used to be that, for instance, Greek science is explicable as expressing

a certain Greek mentality that aspired at the abstract, etc. Lloyd [1990]
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is now the locus classicus for the attack on such views which, at the end

of the day, are nothing but the product of colonialist, racist prejudice.

Enlightened history of ideas in the twentieth century has always abhorred

this reduction to ‘mentalities’, but what would be the alternative to that?

Just to say that ‘everyone is and always has been the same’ is just to

give up on the job of the historian. In the history of mathematics, this

would be to say that mathematics is always the same–that the differences

are merely those of notation. Yet there is a strong intuition that different

mathematical cultures are different: and so, as ‘mentalities’ are cast away,

‘concepts’ are brought in. Concepts are, then, the politically correct

version of mentalities. It seems to me that, in authors such as Klein,

concepts do precisely the same job mentalities were supposed to do: they

are taken to constitute the ‘mode of thought’ of a group of individuals,

without any historical account of why these mental possibilities should

be indeed limited in that particular way. The only–laudable–difference

between ‘concepts’ and ‘mentalities’, is then political: ‘concepts’ do not

carry with them any suggestion of inherent inferiority on the part of the

conceptually challenged. Otherwise ‘concepts’, in the sense of the ‘mode

of thought’ of a group, are just another way of extending the arbitrary

historiography of mentalities.

Hoyrup has set out in his article ‘Conceptual Divergence–Canons and

Taboos–and Critique’ to criticize this very historiography of ‘modes of

thought’. He does not do this by dismissing the notion of the ‘concept’

as such, but by relativising and qualifying it. There is indeed another,

more historically realistic way to consider concepts: as tools. It is clear

that as people produce artifacts–such as treatises–they have recourse

to several tools that are culturally available: clay tablets or papyrus; or

certain methods, terms and theoretical assumptions. So it is clear that the

notion of the ‘tool’ can be extended from material objects, to cognitive

and indeed theoretical objects. There is just so much you can do with

the differential and integral calculus, which you cannot do without it: in

this sense it makes absolute sense to speak of the possibilities opened up

by ‘conceptual tools’. Hoyrup qualifies this in two ways. First, there is

no clear-cut way to define the possibilities opened up by a tool, whether

material or cognitive. There is always a grey area of what a tool can

do, depending on which task you put it to: grey area which is not fully
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determined by the tool itself–so that a dialectic of tools and tasks ensues.

So it’s not that they couldn’t, quite: rather, it is that they gradually

could. This (Marxist) historiography has been pursued by Hoyrup himself

as well as by other authors (especially Peter Damerow17) always with

great insight and interest.

Yet the entire historiography of tools is ultimately, I find, unsatisfac-

tory–unless, that is, we subscribe to the notion that intellectual progress

must follow a certain pre-established order.18 For otherwise, how do we

explain the basic claim, that ‘they diverged from us in that they had tool X

and not tool Y’–how do we account for the fact that working with tool X,

they did not invent tool Y? Is it because that they couldn’t? Indeed this is

plausible if we assume a certain route where concept A is necessary before

you can contemplate concept B which is necessary before you contemplate

concept C. But without this assumption of a natural order of conceptual

tools–an assumption which, in cool reflection, seems much too strong–the

historiography of conceptual tools collapses back into the historiography

of concepts. It is once again saying that they couldn’t.

Hoyrup’s second qualification of the historiography of conceptual tools–

and the main argument of his article–is as follows. Many divergences

in mathematical practice do not arise, in fact, from any conceptual

divergence, but they rather represent the taboos of representation, or the

result of philosophical critique (it is in this context that Hoyrup discusses

Euclid’s definition of number). People, in different cultures, may share

exactly the same concepts; only that they would prefer not to express

themselves in a certain way, avoiding for instance mention of ‘1’ as a

number, for a reason which is essentially that of superficial, stylistic

preference.

The evidence Hoyrup marshals for the origin of the divergence between

kinds of mathematics in such taboos of representation is that, in fact,

we can find exceptions (sometimes systematic) to the rules. (Hoyrup

analyses this with evidence from the Ancient Near East in particular.)

It appears that to Hoyrup, any strong tendencies that are not the product

of conceptual impossibilities are to be ascribed to explicit codification–

17 See [Damerow, Freudenthal, McLaughlin and Renn 1992], [Damerow 1996].

18 This is precisely the assumption made by Damerow or Freudenthal, based on
Marxian and/or Piagetian principles.
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to an explicit manual of style telling the authors how they should write.

I doubt this (and I shall immediately sketch below an alternative account)

but I wish to note the more fundamental point of agreement I share

with Hoyrup. Namely: these divergences, to which counter-examples can

so often be found, are to be excluded as any evidence for ‘modes of

thought’.

The implication, to Hoyrup, seems to be that they are therefore of less

importance for the history of mathematics itself. His view, if I understand

it correctly, is that the taboos on allowed forms are somehow external

to the mathematical thinking itself: this is where mathematicians pay

lip-service to rules that are more or less imposed from the outside in a

mechanical way.

Here is where I differ from Hoyrup. My argument in this paper is that

such taboos of representation are in fact of great historical consequences

and, finally, can do a great deal of the task the history of conceptual

structures was taken to fulfill. In fact, they can account for mathematics’

not always being the same. To make the argument, I shall sum up the

evidence covered in section 1 above.

First–contrary to claims made in the literature–Christianidis had

shown that Greeks were capable of dealing with fractions in operations

such as ‘the nth of m multiplied by the qth of p gives nqth of mp’. This

could be taken in two ways. First–the argument Christianidis makes–

this shows that there was no conceptual block preventing Greeks from

articulating operations with fractions. But in the absence of conceptual

blocks, we should not expect total absence but merely relative scarcity.

This is what we in fact see: Christianidis’ example from Diophantus is

indeed remarkable for its isolation. The formulation I prefer, then, is that

the Greeks did not articulate operations with fractions–although there

was no conceptual block preventing them from doing so.

Second, I have shown the example from Archimedes’ Sphere and

Cylinder, Book II, where Archimedes uses, effectively, the expression

‘the area multiplied by the line’. Once again: what we see is that the

Greeks did not articulate geometrical relations in terms of arithmetical

operations, although there was no conceptual block preventing them from

doing so. The discussion for Archimedes suggested why this might be the

case: in Archimedes’ context, the arithmetical presentation of geometrical
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relations would have been marked and therefore would be avoided in the

unmarked setting. This, magnified to the level of entire treatises or even

genres, can be re-told for Hero’s geometrical work: it appears, following

Tybjerg’s study, that Hero systematically sets numerically geometrical

objects, so as to set his work apart from geometry in the Euclidean-

Archimedean tradition: numerical values are marked and thus carry a

meaning.

My fourth example, based on Hoyrup, is different in character. Hoyrup

had shown that the Euclidean (and philosophical) definition of number

to exclude unity is ignored in mathematical practice. This however is not

representative of any deeply held conviction shared by Greeks as such:

the exclusion of unity is the standard position to take for philosophical

purposes, while unity is typically included for mathematical purposes.

Cultures, then, display an array of practices, depending on the goals

of the practice; significantly, the philosophical goal takes precedence in

the ‘mixed’ practice of mathematical definition (that is simultaneously

‘philosophical’ and ‘mathematical’), creating a gap between the definition

and the proofs.

A similar hierarchy explains, I believe, my fifth example: the Greek

failure to articulate a written decimal positional system (although the

concept was easily available in the abacus practice). Greek writing was

dominated by verbal, indeed literary values: when Archimedes sat down

to introduce a new numerical system, it was important not that it would

be an efficient tool for calculation, but that it would be a able to name,

in a natural language sense, fabulously large numbers.

Finally, the very marginality of calculation-heavy science in the ancient

Greek world is explicable on such grounds. As Acerbi has shown, fairly

sophisticated combinatorics was developed in the ancient world. However,

I would argue that it was always secondary in importance relative to the

main form of Greek mathematics, in geometrical proof–the genre where

the art of persuasion is brought to perfection.

Examples 1–3 point at the following principle of markedness:

Cultural activities show a variety of more and less common practices:

the less common practices, just by their scarcity, become marked and

therefore carry a meaning; they are thus used only so as to carry that

meaning, a choice that further perpetuates their scarcity, markedness and
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meaning.

I have offered this principle in [Netz 1999a, chapter 2], using it to explain

the phenomenon of self-perpetuating conventions. I have described in that

book the strong tendency of Greek mathematicians to follow a certain

canonical form of writing, which however is sufficiently often violated to

show that there was no active constraint forcing anyone to follow the form;

instead, the convention was self-perpetuating in the obvious way described

above. In my discussion in section 1.2 above I referred to the seemingly

‘tautological’ nature of this principle, which comes down to saying that

people ‘do not usually do what they do not usually do’. I am not afraid

of the tautology: tautologies, after all, are true. This particular tautology

is also informative, because it should be taken in a dynamic sense: people

keep on doing what they usually do, just because this is what they usually

do–so that deviating from the norm becomes marked.

The principle of markedness explains, however, the self-perpetuation

of conventions rather than their origin. To understand this, we need to

see why cultural practices in a given culture tend, to start with, to have

a certain pattern of distribution: this being done more often than that.

Examples 4–6, I believe, go some way towards explaining that. The moral

arising from the examples may be summed up as the principle of hierarchy

of values:

In a cultural activity, the choice of preferred practices is determined by

a hierarchy of values which is typical to that particular activity.

There are many values brought to bear on any particular activity, and

depending on the different value, different practices might be expected. For

the sake of efficient calculation, typographic representations of numbers

are preferable; for the sake of proximity to natural language, verbal

representations are preferable. Without the principle of hierarchy of values

we might expect a balanced distribution of the practices but, in fact, this

is not what we see. Practices are determined not by the totality of values

brought to bear, but by the most important of such values: the value of

efficient calculation is important to Archimedes–but, in the context of a

literary treatise, it is trumped by an even more important value, that of

proximity to natural language. Since the values rule out each other, one

must give way to the other and so, naturally, the one higher up in the

hierarchy is the only one visible in the practice. Thus practices do not do



NOTES & DÉBATS 287

sometimes this, sometimes that: they tend to do the very same thing over

again–because they express not just any value felt by the practitioners,

but rather they express a much narrower set of dominant values.19

We can therefore put forward the following explanation of the non-

arithmetical nature of Greek mathematics. Greek literary production is

marked by a hierarchy of values always related to a certain ‘literary’

or ‘verbal’ preference: literature is ranked above science, inside science

philosophy is ranked above mathematics; persuasion (to the Greeks, the

central verbal art) is ranked above precision and natural language above

other symbolic domains. Hence it is easy to understand Euclid’s deference

to philosophy in his definition of number. More significant, inside Greek

mathematical writings, the qualitative statements of geometrical demon-

stration–that allow the persuasive texts we are familiar with (though

short on numerical information)–become the norm against which arith-

metical representations of the same object come to be seen as marked.

Hence Archimedes’ multiplication of areas by lines, as well as Hero’s geom-

etry, are deliberately marked. On the whole, the articulation of the repre-

sentation of the numerical system inside mathematical writing is blocked

by the higher ranking of verbal representations (hence there are few vari-

ations on the standard form of representation, and those from the late

author Diophantus, already active in a rather different milieu; while we

can see why Archimedes himself had never articulated a decimal posi-

tional system). Finally, any number-rich science was marginalized simply

because it did not serve the main value of Greek mathematical writing.

The main outcome of the principle of hierarchy of values is that one

can predict considerable cultural variety, on the basis of strong universals.

There is no need to assume that different practices, in different cultures,

are based on different values, let alone concepts: everyone values both

efficiency in calculation and proximity to natural language, everyone

values both precision and persuasion. In practice, however, one must rank

19 In historiographical practice, of course, we need in principle to give a complete
sociological account why, for practitioners in a certain setting, this hierarchy of values
obtained and not another; otherwise, if we merely state that, say, ‘the Greek hierarchy
of values was?’ we are open to all the methodological criticism against any history
of mentalities. In this article I always mean ‘the Greek hierarchy of values was?’ as
provisional shorthand for ‘in the setting of high-culture texts of the Hellenistic period,
the hierarchy of values was? and this is explicable in principle given the social setting
of high-culture writing at the period’.
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one’s values somehow and it is only natural that, in different social and

cultural contexts, different rankings would ensue. This subtle difference

in ranking can then give rise to sharp differences in practice: some

things become more common than others, more natural than others. This

immediately gives rise to the principle of markedness so that the pattern

of the practice is immediately endowed with meaning and is thus further

sharpened; also, to a large extent, it is self-perpetuating. In this way we

come up with an account where mathematics is not always the same, while

people are: which forms, I believe, the historian’s intuition.
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Benôıt (Paul), Chemla (Karine), Ritter (Jim), eds., Histoire des Fractions,
Fractions d’Histoire, Boston: Birkhäuser, pp. 133–147.
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