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STRUCTURED BUNDLES DEFINE 

DIFFERENTIAL if-THEORY 

by 

James Simons & Dennis Sullivan 

Abstract. — Complex bundles with connection up to isomorphism form a semigroup 
under Whitney sum which is far from being a group. We define a new equivalence 
relation (structured equivalence) so that stable isomorphism classes up to structured 
equivalence form a group which is describable in terms of the Chern character form 
plus some finite type invariants from algebraic topology. The elements in this group 
also satisfy two further somewhat contradictory properties: a locality or gluing prop­
erty and an integrality property. There is interest in using these objects as pre­
quantum fields in gauge theory and M-theory. 

Résumé (Les fibres structurés définissent la K-théorie différentielle). — Les fibres complexes 
à connexion forment, à isomorphisme près, un semi-groupe sous la somme de Whit­
ney qui est loin d'être un groupe. Nous définissons une nouvelle relation d'équivalence 
(l'équivalence structurée) de manière à ce que les classes d'isomorphismes stable, à 
équivalence structurée près, forment un groupe qui puisse être décrit en termes de 
forme de caractère de Chern et de quelques invariants de type fini de la topologie al­
gébrique. Les éléments de ce groupe satisfont également à deux propriétés en quelque 
sorte contradictoires : une propriété de localité ou de gluing et une propriété d'inté­
gralité. Il semble intéressant d'utiliser ces objets en tant que champs pré-quantiques 
en théorie de gauge et en M-théorie. 

Let M be the category whose objects are smooth manifolds and whose morphisms 

are smooth maps. We assume the manifolds are either compact manifolds possibly 

with boundary or diffeomorphic to those obtained from these by deleting some or all 

of the boundary components. 

Let KA denote the contravariant functor on M to abelian groups defined by equiva­

lence classes of pairs (V, A) where V is a complex vector bundle and A is a connection 

on V. The equivalence relation is generated by stable isomorphisms of bundles with 

connection and by structured equivalence: namely any deformation of a connection 

A on a fixed bundle along any smooth path of connections so that the associated odd 

Chern Simons form is exact. Recall the exterior d of the Chern Simons form of a path 
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2 J. SIMONS & D. SULLIVAN 

of connections measures the change in the Chern Character form at the endpoints of 
the path. 

We want to compute i f A. Note an equivalence class in i f A has a precise total even 
form representing the Chern character plus some information related to a total odd 
cohomology class represented by Chern Simons forms which are closed but not exact. 

Let ch(if) denote the contravariant functor on M to abelian groups defined by 
considering pairs ([V],C) where V represents an element of the if-theory of complex 
vector bundles and C is a total closed complex valued even dimensional form so that 
C represents the Chern character of V in rational cohomology. 

We have the obvious map from ifA to ch(K) which assigns to the pair (V, A) of 
bundle with connection the pair ([V],C) where [V] is the class of the stable vector 
bundle V in Atiyah's if-theory and C is the differential form defined by the Chern 
Weil curvature construction representing the total Chern character. 

Let Torus be the functor on M to abelian complex Lie groups given by the odd 
cohomology with complex coefficients modulo the sublattice defined by considering 
all maps into G , the union over n of the n-dimensional complex linear groups, and by 
pulling back the desuspended Chern character class. This class is defined universally 
at level n defining G by desuspending the Chern character class of the bundle on 
suspension G defined using the identity map of G as a gluing function. 

Theorem 1. — The homomorphism from i f A to ch(if ) is onto. 

The kernel of the homomorphism is the abelian complex Lie group Torus. We have 
the natural short exact sequence: 

(1) 0 -> Torus —> i f A —> ch(if ) -+ 0. 

Let k denote the kernel of the natural map from KA to if, namely (V, C) —> [V]. 
Then from sequence (1), k maps with kernel Torus onto exact total even forms. 

Let O = total odd forms modulo all closed forms in the cohomology classes of the 
sublattice above defining Torus. Then O maps via d with kernel Torus onto exact 
total even forms. The construction of ifA shows the kernel k is naturally isomorphic 
to O. In the detailed paper [1], O is denoted Aodd(X)/ AG (X). 

Theorem 2. — There is the natural short exact sequence 

(2) 0 - > O ^ i f q q q A ^ i f ^ 0 . 

One may also show from the construction: 

Theorem 3. — ifA satisfies the Mayer- Vietoris property: if X is A union B with 
intersection C then given two elements a in i f A(A) and b in KA(B) which restrict to 
the same element c in KA(C), then there is an element x in KA(X) which restricts 
to a and to b respectively. 

Consider E = all total even forms in the cohomology classes of the Chern characters 
of complex vector bundles. By Theorem 1 the map ifA —• E is surjective. Now 
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consider k\ the kernel of this map from KA to E. Since KA satisfies the Mayer-
Vietoris property so does this kernel k'. One can show also that k' is a homotopy 
functor. Thus by Brown's representability theorem k' is represented by homotopy 
classes of maps into some space. Using this , the sequences above and side condition 1 
in Remark 1 below leads to 

Theorem 4. — The kernel of the surjection of KA onto E is naturally isomorphic to 
K-theory with coefficients in C/Z. Let us denote the latter by K(C/Z). Then we 
have the natural short exact sequence: 

(3) 0 - » K(C/Z) -> KA -> E 0. 

Now KA is not a homotopy functor, but the change produced by an infinitesimal 
deformation v of a map can be computed. This change u is in O = the kernel of 
(KA —> K) because K is a homotopy functor. We know that du is the lie derivative 
of the Chern character form. So the following is natural and indeed true for KA: 

Theorem 5. — The change in /* (x) for x in KA by an infinitesimal deformation v of 
a map f is obtained by contracting the Chern form of x byv and projecting it to O 
inside KA. 

Remark 1. — We have omitted two natural side conditions in the statements of The­
orems 2 and 4 which should be noted. 

1. The composition K{C/Z) —> KA —• K using (2) and (3) is the Bockstein map 
in the Bockstein exact sequence for K-theory. 

2. The composition O —> KA —> E using (2) and (3) is exterior d. 

Conjecture. — There is at most one functor KA up to natural equivalence satisfying 
Theorems 1, 2, 3, 4 and 5 and the side conditions 1 and 2 in Remark 1. 

The presence of the homotopy property expressed by Theorem 5 in the conjecture 
above was inspired by conversations with Moritz Wiethaup. This homotopy property 
was not needed in our axioms characterizing ordinary differential cohomology [2 ] . The 
details of the proofs of the results here will appear soon [1] . We close by expressing 
on this occasion our appreciation of and admiration for the geometer Jean Pierre 
Bourguignon. 
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EINSTEIN METRICS AND MAGNETIC MONOPOLES 

by 

Nigel Hitchin 

For Jean Pierre Bourguignon on his 60th birthday 

Abstract, — We investigate the geometry of the moduli space of centred magnetic 
monopoles on hyperbolic three-space, and derive using twistor methods some (in­
complete) quaternionic Kahler metrics of positive scalar curvature. For the group 
SU(2) these have an orbifold compactification but we show that this is not the case 
for SU(3). 

Résumé (Métriques d'Einstein et monopoles magnétiques). — Nous étudions la géométrie 
des espaces de modules des monopoles maghétiques sur le 3-espace hyperbolique 
et nous en dérivons quelques métriques kâhleriennes quaternioniques (incomplètes) 
de courbure scalaire positive, en utilisant des méthodes twistor. Celles-ci ont une 
compactification orbifolde pour le groupe SU(2) et nous montrons qu'il n'en est rien 
dans le cas du groupe SU(3). 

1. Introduction 

Over 20 years ago Jean Pierre Bourguignon and I were part of the team helping 

Arthur Besse to produce a state-of-the-art book on Einstein manifolds [3]. As might 

have been expected, the subject proved to be a moving target, and the contributors 

had to quickly assemble a number of appendices to cover material that came to light 

after all the initial planning. The last sentence of the final appendix refers to: "hyper-

kahlerian metrics on finite dimensional moduli spaces", and so it seems appropriate 

to write here about some of the results which have followed on from that, and some 

questions that remain to be answered. 

There is by now a range of gauge-theoretical moduli spaces which have natural 

hyperkahler metrics: the moduli space of instantons on R 4 or the 4-torus or a K3 

2000 Mathematics Subject Classification. — 53C28, 53C26, 51N30. 
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6 N. HITCHIN 

surface [16], magnetic monopoles on R 3 [2] and Higgs bundles on a Riemann surface 
[12]. The latter structure features prominently in the recent work of Kapustin and 
Witten on the Geometric Langlands correspondence [15]. Some of these metrics, 
in low dimensions, can be explicitly calculated, but even when this is not possible, 
the fact that these spaces are moduli spaces enables us to observe some geometrical 
properties which reflect their physical origin. In this paper we shall concentrate on 
the case of magnetic monopoles. 

For monopoles in Euclidean space R 3 , there exist in certain cases explicit formulae 
(for example [5]), but in general we cannot write the metric down. Instead we can 
seek a geometrical means to describe the metrics; such a technique is provided by 
the use of twist or spaces, spectral curves and the symplectic geometry of the space 
of rational maps. This is documented in [2]. We review this in Section 2, drawing on 
new approaches to the symplectic structure. 

We then shift attention to the hyperbolic version. The serious study of monopoles in 
hyperbolic space H 3 was initiated long ago by Atiyah [1], who showed that there were 
many similarities with the Euclidean case. Yet the differential-geometric structure of 
the moduli space is still elusive, despite recent efforts [18], [19]. One would expect 
some type of quaternionic geometry which in the limit where the curvature of the 
hyperbolic space becomes zero approaches hyperkahler geometry. In Section 3 we give 
one approach to this, and show, following [17], how to resolve one of the problems 
that arises in attempting this - assigning a centre to a hyperbolic monopole. 

The other problem, concerning a real structure on the putative twistor space, can 
currently be avoided only in the case of charge 2 and in Section 4 we produce, for 
the groups SU(2) and SU(3), quaternionic Kahler metrics on the moduli spaces of 
centred hyperbolic monopoles, generalizing the Euclidean cases computed in [2] and 
[8]. These metrics are expressed initially in twistor formalism, using the holomorphic 
contact geometry of certain spaces of rational maps, but we obtain some very explicit 
formulae as well. 

For SU(2), these concrete self-dual Einstein metrics, originally introduced in [14], 
have nowadays found a new life in the area of 3-Sasakian geometry, Kahler-Einstein 
orbifolds and manifolds of positive sectional curvature. We consider briefly these 
aspects in the final section, and suggest where new examples might be found. 

2. Euclidean monopoles 

All of the hyperkahler moduli spaces mentioned above arise through the hyper­
kahler quotient construction. Recall that a hyperkahler metric on a manifold M 4 n 

is defined by three closed 2-forms c ^ i , ^ ? ^ whose joint stabilizer at each point is 
conjugate to Sp(n) C GL(4n, R). If a Lie group G acts on M, preserving the forms, 
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then there usually exists a hyperkahler moment map \x : M -> a*<g)R3. The quotient 
construction is the statement that the induced metric on /i_1(0)/G is also hyperkahler. 

For the moduli space of monopoles we use an infinite-dimensional version of this. 
The objects consist of connections A on a principal G-bundle over R3 together with 
a Higgs field </>, a section of the adjoint bundle. There are boundary conditions at 
infinity [2], in particular that \\</>\\ ~ l — k/2r, which imply that the connection on the 
sphere of radius R approaches a standard homogeneous connection as R —• oo. The 
manifold M to which we apply the quotient construction then consists of pairs (A, 0) 
which differ from this standard connection by terms which decay appropriately, and 
in particular are in C2. This is formally an affine flat hyperkahler manifold where the 
closed forms U{ are given by 

<< Àl,<M ,(À2,02)) = 
'R3 

dxi A tr(Àii42) + 
R3 

*dx{ A [tr(0ii42) - tr(02^i)]. 

For the symplectic action of a group we take the group of gauge transformations which 
approach the identity at infinity suitably fast. 

The zero set of the moment map in this case consists of solutions to the Bogomolny 
equations FA = *cU</>, and the hyperkahler quotient is a bundle over the true moduli 
space of solutions - it is a principal bundle with group the automorphisms of the 
homogeneous connection at infinity. This formal framework has to be supported by 
analytical results of Taubes to make it work rigorously. 

When G = SU(2), the connection on a large sphere has structure group /7(1) and 
Chern class fc, which is called the monopole charge. The hyperkahler quotient is a 
manifold of dimension 4k which is a circle bundle over the true moduli space. It has 
a complete metric which is invariant under the Euclidean group and the circle action 
(completeness comes from the Uhlenbeck weak compactness theorem, one use of gauge 
theoretical results to shed light on metric properties). The gauge circle action in fact 
preserves the hyperkahler forms ^1,^2,^3, and its moment map defines a centre in 
R3. The (4k - 4) -dimensional hyperkahler quotient can then be thought of as the 
moduli space of centred monopoles. 

For charge 2, by using a variety of techniques [2], one can determine the metric 
explicitly. It has an action of SO(3) and may be written as 

qq Q = [abc] 2, •drj2 + a2, cw + .2_2 wwn + c2, 4 
where 

ab = -2k\ k' ,2 K 
dK 
dk 

bc = ab- 2( [k'K 2 ca = ab — 21 k'K i2 

V = -K' '•KK K(k) = 
-7T/2 

r0 

d<j> 

/ l - f c2s in2 4> 
and <7i, (72,(73 are the standard left-invariant forms on SO(3). 
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8 N. HITCHIN 

Differentiably, this manifold can be understood in terms of the unit sphere in the 

irreducible 5-dimensional representation space of SO(3). For each axis there is, up to 

a scalar multiple, a unique axially symmetric vector in this representation and these 

trace out two copies of R P 2 C 5 4 . The centred moduli space is the complement of one 

of these, the removed point being the axis joining two widely separated monopoles. 

The other R P 2 parametrizes axially symmetric monopoles, which are (for any value 

of charge) uniquely determined by their axis. 

For the group G = SU(3) we consider a Higgs field which asymptotically has two 

equal eigenvalues. On a large sphere the eigenspace is a rank two bundle with first 

Chern class again called the charge. When k = 2, Dancer computed this metric [7]. 

For centred monopoles it is eight-dimensional with an SO(3) x PSU(2) action, the first 

factor from the geometric action of rotations and the second from the automorphisms 

of the connection at infinity. Explicitly it can be written as follows: 

9 = 
1 

4 
xw 

[x(l +px)mimi + y(l +py)nirii + 2pxymirii] 

where 

mi w -fidfi + f2df2 rn2 = (A 2 f l ) >0"3 

ra3 ww 
1 

px [Pyf: 2 
3 

ww 1 +py. )A 2 10-2 + /3/1^2] 

777,4 w w 1 
1+px+py [(Pyf: »2 

'3 ww (1 +py] fl )<7l + /2/3^1 

ni w 
1 

py 
-pxf2df2 + (1 +px)fidf1) 

n2 
w 

1 

py 
{1+px) fl -pxfi lcr3 - /1/2^3] 

n3 ww ww /1 02 

Tl4 
1 

1 + px + py [Px, fl 1 + px f2> 
J3> www /2/3S1] 

with <Ji,Yii invariant one-forms on SO(3) x SU(2 , and 

/1 = -
Dcn(3D,fc) 

sn(3£>, k) 
/2 = -

Ddn(3D,k] 

sn(3D, k) 
fs = ~ 

D 

sn(3D, k) ' 

x = 
1 

D 3 

3D 

/0 

sn2 

u) 

dn 2 1̂  
-du y = 

1 

D3 

r3D 

0 
sn 2 u] du. 

and p = /1/2/3 for D < 2K/3. 

Clearly there are limits to extracting information from formulae like these. Never­

theless, the restriction to certain submanifolds can be useful. 
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EINSTEIN METRICS AND MAGNETIC MONOPOLES 9 

2.1. Twistor spaces. — Penrose's twistor theory provides a method for trans­

forming the equations of a hyperkahler metric into holomorphic geometry. The idea 

is that the three closed two-forms of a hyperkahler manifold M can be arranged as 

u\, 002 + ^ 3 which define a complex structure / for which 0J2 + 10J3 is a holomorphic 

symplectic two-form and uj\ a Kahler form. The other choices give complex struc­

tures J, K; more generally for a point x G S2, (x\I + x2 J + X3K)2 = — 1 and defines 

a complex structure. 

The twistor space is the product Z = M x S2. It has a complex structure ((x\I + 

X2J + X3K), I) where I is the complex structure on S2 = CP1. The projection 

p : Z —> CP1 to the second factor is holomorphic, and the fibre is M with the structure 

of a holomorphic symplectic manifold. There is a real structure (m, (xi,#2»#3)) —» 

(m, — (xi,X2,xs))- To recover the space M one sees that for m G M, (m,S2) is a 

holomorphic section of the projection p and M is then a component of the space of 

real sections. 

We shall describe here how to construct the twistor space for the moduli space 

of SU(2) monopoles on R3 (see [2]). This involves the link with rational maps. 

Consider a straight line x = a + tu and the ordinary differential equation along the 

line (Vu — i(j))s = 0. Since asymptotically <f> ~ diag(i, —i), there is a solution s0 which 

decays exponentially at +00. Choose another solution si with (so,si) = 1 using the 

SU(2)-invariant skew form. This is well-defined modulo the addition of a multiple of 

So- Now take sf0, a solution which decays at —00, then s'0 = aso + bsi. There are 

normalizations at infinity which make the coefficient b well-defined. 

Now take all lines in a fixed direction (1,0,0). We split R3 = C x R with co­

ordinates (z,t) = (xi + 1x21X3), and then write sfQ(z,t) = a(z)so(z,i) + b(z)si(z,i). 

The Bogomolny equations imply that the coefficients are holomorphic in z, and fur­

thermore the boundary conditions tell us that for a charge k monopole b(z) is a 

polynomial of degree k. Take p(z) to be the unique polynomial of degree k — 1 such 

that p(z) = a(z) modulo b(z) and define 

S(z) = 
p(z) 

b(z) 
ff 

ao + aiz-\ \-ak-\zk 1 

60 + bxz + . . . • • • + òfc.i^"1 + zk 

It is a theorem that this gives a diffeomorphism between the moduli space of 

monopoles and the space Rk of rational maps S : CP1 —• CP1 of degree k which take 

00 to 0. Note that the denominator vanishes when s'Q = aso - when a solution exists 

which decays at both ends of the line. Such lines are called spectral lines. 

We can carry out the above isomorphism for lines in any direction in R3 which 

yields a 2-sphere of complex symplectic structures. The set of spectral lines then 

forms a fc-fold cover of 52 which is called the spectral curve. It is more than just an 
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10 N. HITCHIN 

abstract Riemann surface, though: it sits naturally as an algebraic curve in the total 

space of 0(2), which we can identify with the space of straight lines in R 3 . 

In order to construct the twist or space we need to do two things: first identify the 

symplectic structure, and secondly see how to glue the different complex structures 

together to give a bundle over C P 1 . 

The original approach of the authors of [2] was to think more in terms of the physics 

of the monopoles rather than the geometry of rational maps. For charge k = 1 we 
know that the moduli space is flat S1 X R 3 , simply a gauge phase S and a centre, 

a point of R 3 . As a complex symplectic manifold this is C X C* with holomorphic 

symplectic form dz A dw/w. Now there are solutions to the Bogomolny equations 

(the original existence theorem of Jaffe and Taubes) which approximate k widely 

separated charge one monopoles, so it is reasonable to think that asymptotically the 

moduli space approximates the symmetric product S ^ i C x C * ) with symplectic form 

2 
k 

1 

dzi A 
dwi 

Wi 

This symmetric product is singular but R k gives in fact a smooth resolution of it: if 

S(z)=p(z)/q{z) and the zeros of a are 2i, . . . ,Zk, then 

S i-> ((zi,jp(zi)). ...,(zk,p(zk) 

is the map (note that p, q being coprime means that p{zi) Ï 0). 
It is shown in [2] that the symplectic form extends, but there is now a more at­

tractive way of defining this form (see ;i0],[22],[23l). Note that fixing all zi gives 

a Lagrangian submanifold, as does fixing all wi. In other words fixing the numera­

tor or denominator gives two transverse Lagrangian foliations. Given x G C define 

fx w = pi [x] )» 9x 'S) = Q x . Then from the previous remark the Poisson brack­

ets fxify\ 5 9x > 9y. vanish. We can determine the symplectic structure by Poisson 

brackets of the form fxi 9y] and this is defined in [10] by 

if xi 9y. ww 
p(x)q(y) -q\ [x)p(y) 

x-y 

which is the classical invariant known as the Bezoutian. Taking A; points in general 

give local coordinates to write down the form. Clearly as y —> x we get the Wronskian 

p'(x)q(x)-p(x)q'(x), so x and y don't have to be distinct. 

The expression in (2) consists of taking the points to be very special - the zeros 

Zi of the denominator - for then '.fznQzj} = {p{zi)q{zj) - q{zj)p(zi))/(zi - Zj] = 0 if 

i t¿ j and {fZi,gZi} = -p(zi)q'(zi) and hence the symplectic form is 

i 

1 

p(zi)q'(zi] 
dfZi A dgZi w< 

i 
dzi A 

dp(zi 

P(Zi 
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EINSTEIN METRICS AND MAGNETIC MONOPOLES 11 

since q ww = 0 implies q' Zi)dzi + dgz. = 0. 

To define the monopole twistor space we stick together two copies of at we must have over 
C* by the following patching: 

xw 
ww 

1 

c 
ww z 

Ĉ2 
ww 

1 
c2k ww ww p 

z 

>c2 
= e -2zj x<< 

(z) mod q z I. 

To see that this preserves the symplectic form note that if H :RkxC* is defined 

by 

H(s,o = 
l 
ww 

llm 
^nxw 

we obtain the Hamiltonian vector field 

dq{z) 

dt 
= 0 

dp(z) 

dt wp^m 
2z 

C 
P{z) mod q{z). 

The transformation law for p is obtained by integrating this. 

To find a holomorphic section of p:Z - CP1, the transformation rule for q(z 
shows that we must have x<< zk + ail c z ,k-l + + << :c: where «i(C) is a 
polynomial of degree 2i. The rule for <^*ù and the fact that p(z) Ï 0) means that on 
the curve 9 (^ ,0 = 0, the line bundle with transition function e -2z, X must be trivial. 

Globally, noting the transformation z I—• zt x<< this makes sense in the total space 

of the line bundle 0(2) over CP1. But the spectral curve of a monopole is defined 

by the equation at we must have and satisfies precisely this constraint (see [2]). Since the 

spectral curve determines the monopole we can, then, in principle find the metric on 

the moduli space from just two pieces of information - the spectral curve and the 

symplectic geometry of the space of rational functions. 

3. Hyperbolic monopoles 

If we replace R3 by hyperbolic space H3, then some features of the Bogomolny 

equations remain the same, others are radically different. The main complication is 

that, with the analogous boundary conditions, the SU(2) connection A has a limiting 

U(l) connection on the boundary two-sphere at infinity which is not homogeneous. 

In fact the solution is uniquely determined by its boundary value [17]. This means 

that there is no obvious C? metric to define on the moduli space, and no analogue 

of the hyperkahler quotient to suggest what sort of geometric structure the moduli 

space might have. Another difference is the appearance of an extra parameter, the 

mass m, defined as the limit of ||</>|| as R —> oo. In the Euclidean case one can rescale 

the metric to make m = 1 but in the hyperbolic case this will change the value of 

the curvature to -1/ra. It is convenient to have the curvature ofH3 fixed as —1 and 

vary the mass. Occasionally we shall consider a limit as m —• oo, and interpret it as 

a limit through hyperbolic metrics with curvature tending to zero. 
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Some features are quite similar to the Euclidean case and discussed in the original 
paper [1]. In particular, the two end-points give a parametrization of the geodesies in 
hyperbolic space by S2 x S2 \{x = y . We give this a complex structure by letting 
V be the standard 2-dimensional representation space of SL(2, C) (the isometries of 
H3 and take P(V)xP(V)\{x = y By considering the equation Vu - i<t> )s = 0 
along a geodesic we also obtain a spectral curve for an SU(2) monopole of charge k 
which is the divisor of a section of 0(fc,fe) on P ( V ) x P ( F ) , and is therefore given by 
H e SkV* (g) SkV* where SkV is the kth symmetric power of V. By reality H = Ht 
but it is shown in [17] that H actually defines a positive definite Hermitian form on 
SkV. 

The spectral curve satisfies a constraint analogous to that of a Euclidean monopole 
- instead of the triviality of the line bundle with transition function e~2z we have 
the triviality of Oik + 2m, —k - 2m ). Note that by removing the graph of complex 
conjugation from P(V) x P(Vy , this line bundle makes sense for any real value of ra. 
Nonetheless, there are special reasons for considering half-integral mass, in particular 
any formulas we derive will be algebraic in appropriate coordinates. 

Given the lack of any direct introduction of a metric structure on the moduli 
space, we shall attempt to use the spectral curve to generate a metric by twist or 
means. But problems arise even here. In the Euclidean situation the one-monopole 

space was fiat S1 x R3; in the hyperbolic case it is S1 xH3. This carries no SL(2, C)-
invariant Einstein metric. If one introduces singularities then, as pointed out by 
Kronheimer, the spectral curves for charge one Euclidean monopole moduli spaces 
generate non-trivial hyperkahler metrics of Ak ALF type, which is evidence for the 
type of geometry to be expected in general. In the hyperbolic case one obtains this 
way conformal structures related to LeBrun metrics [19] - non-trivial geometry but 
still not Einstein. These low-dimensional examples therefore provide no suggestions 
as to what geometry to expect. On the other hand, charge one is firmly rooted in 
the notion of a centre - each of these four-dimensional moduli spaces has a map 
to Euclidean or hyperbolic space which we can regard as assigning a centre to the 
monopole. The problem of centres for hyperbolic monopoles has a solution given in 
[17] which we describe (in slightly different terms) next. 

3.1. Centres. — Let e be a skew form on V preserved by SL(2,C). Hyperbolic 
space is the quotient SL(2, C)/SU(2) which we interpret as the space of Hermitian 
forms uj onV such that u2 = -2ee. Thus the standard SU(2) preserves the two forms 
(j = dzi A dzi + dzo A dz2 and e = dz\ A dz2. 

From uj we can form 

u®k G SkV* 0 SkV* 
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and, using the isomorphism y g* y * given by e, define the real-valued function 

h(uj) = H w<< )-

Theorem 3.1.— The function 

the centre of the monopole. 

h : H3 -+ R has a unique critical point which we call 

Proof. — First consider the meaning of a critical point. The derivative of h in the 

direction UJ is kH (UJ<S>UJ ,®fc-l i. But the volume form of UJ is fixed so using a Lagrange 

multiplier À a critical point corresponds to 

3 H äfc-l = Xu. 

Here H u® k-1 e V* <8>V* is the contraction of H G SkV* ® SkV* with u®k~l e 

Sk -l o*ùùùùw< - l V* using the skew form onF*. 

More explicitly, use a; at a critical point to identify 1 V = V*, then H G SkV®SkV. 

The contraction using u is now a contraction using the skew form e which gives 

H U® k-1 G V <S>V. The condition (3) says that this is a multiple of e"1 . In other 

words, if ' H e skv®Skv, the S2V component in the Clebsch-Gordan decomposition 

of this tensor product vanishes. Now we essentially follow [17], showing that this 

condition is the vanishing of a moment map. 

Choose a Hermitian metric UJ on V (hence an origin in Hd), then H can be consid­

ered as a self-adjoint endomorphism of SkV. Since it is positive definite, we can write 

it as H = Q*Q for an invertible endomorphism Q . Now consider the right action of 

SL(2, C) on Q. This gives the transformation H ^ A* H A on H which is the natural 

isometric action of hyperbolic isometries. 

Consider now EndSkV as a complex vector space with the right action of SU(2). 

Then the moment map is the projection of Q*Q onto the Lie algebra of SU(2) in 

EndS^V, and the vanishing of this is just the condition for a critical point above. 

Now, as shown in [17], an invertible Q is stable for the SL(2,C) action so by the 

theorem of Kempf and Ness there is a point on the SL(2, C) orbit of Q for which the 

moment map vanishes, and this point is unique modulo SU(2). Thus for any positive-

definite H, an isometry, well-defined modulo the stabilizer of the origin, takes it 

to another H whose centre is the origin: in other words a monopole has a unique 

centre. • 

Remark 3.2. — Widely separated monopoles have a spectral curve which approxi­

mates the union of twistor lines for k distinct points, so we may try and apply 

the definition of centre above in this case. We therefore have k Hermitian forms 

Hi G V ® y * and the function h is then given by the product 

h(w) = (H1,u)(H2,u)...(Hk,Lj). 
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If u is a critical point then we rewrite the form as Hermitian matrices. Replacing h 
by log /i, the condition (3) is 

(4 
k 

l 

Hi 
tv Hi 

= XI. 

To reinterpret this, we use the projective (Beltrami-Klein) model of H3. Let P be 
the three-dimensional real projective space of the four-dimensional vector space of 
Hermitian 2 x 2 matrices with the quadric denned by det H = 0. The interior of this 
quadric detiJ > 0) is hyperbolic space. The polar plane of the identity matrix is 
defined by tr H = 0 (which of course lies outside the quadric). Removing this plane 
gives an affine space where the hermitian matrices Hi are represented as vectors 
Hi/tv Hi. The centroid in the affine sense is 

1 k Hi 
xw 

l 
ti Hi 

and from (4) we see that with our definition this is the origin. 
Given two points, there is a hyperbolic isometry interchanging the two points and 

preserving the geodesic joining them and whose fixed point on the line is the hyperbolic 
midpoint. In the projective model this is a projective transformation which preserves 
the polar plane of that midpoint and is hence affine, so it fixes the affine midpoint. 
For two points, it follows that our centre coincides with the hyperbolic midpoint of 
the geodesic joining the points. 

3.2. Rational normal curves. — For a hyperbolic monopole, we can associate to 
the spectral curve a certain rational curve in projective space as follows. 

Given veV, define H 5 w<< eS Ik V*. Because H is invertible this defines a map 
of degree k from P(V) to P(SkV* I, or using the SL(2, C)-invariant isomorphism V = 
V*,to P(SkV). The spectral curve S thus naturally defines a curve C(S) c P(SkV) 
This is a rational normal curve: the image of v \-+ v®k is a canonical rational normal 
curve A in P(SkV) the diagonal when we identify SkP\ << = P SkV) and C(S) is 
its image under the projective transformation H. 

We lose information in passing from S to C(S) -
whole space. However: 

indeed for k = 1 C(S) is the 

Proposition 3.3. — The spectral curve of a centred monopole is uniquely determined 
by the rational normal curve C(S). 

Proof. — Suppose H and Hq define the same rational curve C(S) w< C(S0] and 
have the same centre. Rescale the forms H<Hn so that they have determinant one. 
Then H and H0 define invertible maps from A to C(S) and so differ by a projective 
transformation of A (this is the action of A G SL(2, C) on the representation space 
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SkV). Thus, considering H,H0 : SkV -> SkV* we have H0 = # A But H,Hq are 
Hermitian so 

HA = Ho = Ht AtH 

Equivalently, A is self-adjoint with respect to the Hermitian form H and in particular 
its eigenspaces are orthogonal with respect to H. But if A is not a scalar then its 

eigenspaces in SKV are one-dimensional and A acts as xww -2i for 0 i k. Since 
H and Hq are positive definite, /x > 0 and hence has a positive square root, so that 
A = B2 for B e SL(2,C) and 5 is self-adjoint with respect to H. But then 

H0(u,v) = H{u,B2v) = H(Bu,Bv) 

so Ho is obtained from H by the isometric action on H3 oî B £ SL(2, C). However, 
from the centring argument this means B e SU(2) and since it has positive eigenvalues 
B = 1 and H = H0. • 

The spectral curve ScP(V)xP(V] is constrained by the condition that the bundle 

0(k + 2m, —k - 2m) is trivial. This, as we shall see next, imposes a constraint on 
the curve C(S). Prom Proposition 3.3 we may consider monopoles with fixed centre, 

which means that we have a chosen isomorphism< cw<< and so can consider if as a 
linear map from Sk cc to Sk ̂ $* and the spectral curve S as lying in P(V) x P(V ). Its 
equation is then H cc k <<nbc p^^ 0 where the brackets denote the SL(2, C)-invariant 
bilinear form on SKV built from the skew form eon 7. 

Consider the map p : P(V) x PiS^V)cwwwP(SkV defined by symmetrizing v®q. 
This is a A;-fold covering (in terms of polynomials in u this is the map [z,q(u)) i-> 

{u-z)q(u) so the inverse image of r{u) is defined by the k roots zì) i. Now if fi <<< << 
Syml (w<g>q) then H fv® )k' W®k) = 0 so, restricted to the rational normal curve C(S), 

this map is the covering tt:S->P(V) ofP(V I by the spectral curve S cP(V)xP(V) 

with respect to projection on the second factor. 
For convenience set n = k 4- 2m. On the spectral curve S we have a non-vanishing 

section of O n, —n) . Let 0(E) = ic+0(n,-n) be the direct image sheaf on P(V), so 
that E is a rank k vector bundle. Then tautologically there is a section s oì E over 
P(Vr), which defines a section of the projective bundle P(E). 

Now 

7T*0(n, 0) = 7T*(0(n, -n) (8) O(0, n)) = 7T*(0(n, -n) (8) 7r*0(n)) = 7T*0(n, -n) <g> 0(n) 

so P(E) can also be written as P(7T*0(n,O) . We can then extend this definition to 
define a bundle En over P Sk V y taking the direct image of O(n,0) on P(V) x 
PiS^V) under the projection p to obtain a 2k — 1-dimensional manifold P(En). 
The constraint on the spectral curve S then defines a lift of the rational normal curve 
C(S) to a rational curve C in this projective bundle. 
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We calculate now the degree of the normal bundle of C. In the fibration P(En) -
P(SkV) the rational curve C is a section over C(S), so its normal bundle is an 

extension 
at we must NP + degTF - 2.have 

where Np is the normal bundle of C(S) in P [SkV . But C(S) has degree k and 
ci(TCPfc) = k + 1 so degiVp = k(k + 1) - 2. 

For TF, by Grothendieck-Riemann-Roch for the map S —> P(V), the degree of E 
is -k2 + k. The tangent bundle along the fibres Tp fits into the Euler sequence 

0 -> O -> p*E ® H -> TFcwxxx 0 

where i7 is the fibrewise hyperplane bundle xww$* is the tautological bundle). On 
s(P(V)) C P(E), H-1 coincides with the trivial subbundle of E consisting of mul­
tiples of the non-vanishing section, and hence is trivial. From the Euler sequence it 
follows that, restricted to the section 5 P(V)) , deg [Tp) = deg(E) = -k2 + k. Hence 

degiV = degNP + degTF = 2k - 2. 

Generically, we expect the holomorphic structure of this rank 2k — 2 normal bundle 
to be C2' !fc-2 ww in which case the full space of deformations of the rational curve 
has complex dimension 4k — 4. Indeed, if there is a real structure on the complex 
manifold, then this is the situation where the twistor theory for a 4k — 4-dimensional 
quaternionic manifold becomes a theory of rational curves [20], a particular case 
being hyperkahler geometry. One might therefore expect that the complex manifold 
we have defined gives some type of quaternionic geometry for the moduli space of 
centred monopoles. There is a problem though, which involves the real structure. 

By centring, we have a quaternionic structure on V and hence a real structure on 
P(S \, and we have a rational normal curve C(S) = H(A) depending on a spectral 
curve S which has a real structure. However, C(S) in general is not preserved by the 
real structure on Pi Sk ww I. In fact the reality condition on the spectral curve implies 
that C(S) = HHA), so uniese H = Hl we do not have reality for C(S). 

However for charge jfc = 2, the Clebsch-Gordan decomposition is 

S2V®S2V = S4V®S2V®1 

where S4 w<<<^$ are the symmetric forms and S2V the skew-symmetric forms on S2V. 
Centring sets the S2V component to zero and so here we do in fact have H = Hf. 

4. Charge 2 hyperbolic monopoles 

4.1. SU(2) monopoles. — The programme in Section 3.2 for constructing a twistor 
space has been carried out in [14] to yield a quaternionic Kâhler structure on the 
moduli space of centred charge 2 hyperbolic monopoles. Recall (see [3] Chapter 
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14) that a quaternionic Kahler manifold is of dimension 4n and has a rank three 
bundle Q of 2-forms egTF = 2k - 2. whose stabilizer at each point is conjugate to Sp(ri) • 

Sp(l) C GL(4n ,R). The ideal generated by the uj{ should be closed under exterior 

differentiation. The bundle Q can also be thought of as the imaginary part of a bundle 

of quaternion algebras. The standard example is quaternionic projective space HPn. 

The twistor space of a quaternionic Kâhler manifold is a complex manifold Z2n -1 

with a family of rational curves C with normal bundle C2n -2 1 and a holomorphic 

contact form; there must also be a real structure compatible with these. It is the 

contact form which is the new feature here, replacing the symplectic geometry in the 

hyperkahler case. 

Example 4.1. — A simple example is to take Z = P(T*CP n+l I, which has a canonical 

contact structure. Each rational curve is determined by a line L C CP »71+1. : using a< 
Hermitian metric on Cn +2 we take L1- to be the orthogonal projective (n - i; -
space and then for each x e L, the join x + L1- is a hyperplane in Cpn M with a 

distinguished point x on it - hence a point in P(T* CPn +i- . As x moves along the 

line L this defines a rational curve in Z. The corresponding; quaternionic Kahler 

manifold is the 4n-dimensional Wolf space U n + 2)/U(2)xU(n) - the Grassmannian 

of lines L in CP n+l 

Here is how to derive the metric from the twistor data. A contact structure on 

Z is given invariantly by a holomorphic section ip of T* 0 K~1/ x<< where L = K w<< n 

is a line bundle such that Ln ^ K -l 
1 

the anticanonical bundle. In this formalism 

(p A (dip) n-l is a well-defined section of the trivial bundle and is therefore allowed to 

be everywhere non-vanishing, the contact condition. If the normal bundle N of C is 

isomorphic to C2n -2 <<< then the degree of •k-x on C is 2n. Restricting cp to C gives 
a homomorphism from the tangent bundle Tc of the curve to K-1 n . These are both 

of degree 2 and we consider rational curves for which this is non-zero and hence an 

isomorphism. It follows that if : TZ K-1 <jjù^* Tc is a splitting of the sequence of 

bundles on C: 

0 —> Tc —• TZ —> iV —• 0. 

A tangent vector to the space of rational curves at a curve C is a holomorphic section 

Y of N, which using the above splitting we can regard as a subbundle of TZ\c- Again 

since N = C2n i-2 << , we have 

(5: H°(C, N) ^ H°(C, 0(1)) 0 H°(C, N(-1Y 

where O(l) = x<< 
c 
- l 12 

Now since (p is a contact form, dip restricted to the kernel of (p is a non-degenerate 

skew form with values in k-1- n which we have just identified with Tc = 0(2). 

Hence it defines a skew form on H°(C,N(-1)) I. There is a natural skew form (the 
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Wronskian) on H°(C, 0 (1) ) , and these two define a symmetric inner product on the 
tensor product, which from (5) is the tangent space to the space of rational curves. 

Remark 4.2. — Given a point x E C, there is, up to a constant multiple, a unique 
section v of 0 (1) which vanishes at x and so the sections of N which vanish at x 
are, in the decomposition (5), of the form s 0 v. Since {v,v) = 0 it follows from our 
description of the metric that such complex vectors are null. 

The above is not the approach of [14], which is heavily focused on an alternative 
viewpoint: centred charge 2 monopoles form a 4-dimensional manifold with an isomet­
ric action of SO(3), which has generically codimension one orbits. Differentiably, and 
equivariantly, this is the same space as the Euclidean two-monopole space mentioned 
in Section 2: the 4-sphere with a copy of RP2 removed. 

The ODE which defines the metric is a particular form of the Painleve VI equation. 
Together with some algebraic geometry [13],[14] it gives explicit formulae for the 
metric like the following (the charge 2, mass 2 case) 

9 = 
l + r + r2 

r(r + 2)2(2r + 1 ww dr2 xw 
r i - r 2 I2 

1 + r + r 2 fr + 2)(2r + l' 
wv + 

+ 
1 + r + r2 r(l + r + r 2' 

r + 2)(2r + 1 |2 
a 2 + 

r + 2)2(2r + 1 
ww 

where a ± , 02,03 form a standard basis of left-invariant forms on SO(3). (The interested 
reader should beware of typos in some of the formulae in [14], and cross-check with 
[24], for example). The above defines a self-dual Einstein 4-manifold with positive 
scalar curvature, which is how one interprets the quaternionic Kahler condition in 
four dimensions. 

The advantage of explicit formulas (in this case either algebraic or using elliptic 
functions) is that the behavior of the metric can be analyzed in more detail, and in 
[14] it is shown that, for all values of n, each of these (incomplete) metrics has an 
orbifold singularity of angle 27r/(n — 2) around the removed RP2. This is quite unlike 
the Euclidean moduli space, which is complete. Another feature is that, as n —» 00 
the metric approaches the Euclidean monopole metric, consistent with the idea that 
rescaling the mass to 1 is equivalent to changing the curvature to — 1/ra. 

In fact, the orbifold behaviour can be detected without calculating the metric, as 
can be seen by looking at the twistor space afresh. 

4.2. Orbifold twistor spaces. — We consider as in Section 3.2, for k = 2, the pro­
jective bundle P(En) -> P(S2V] obtained from the direct image of Oin, 0) under the 

projection p : P(V) x P(V) -> P(S2V), which in this case is just the quotient by in­
terchange of the two factors. These bundles were first introduced by Schwarzenberger 
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[21]. By Grothendieck-Riemann-Roch ci En) = (n- l)x,C2(En) = (ra(ra - l ) /2) x2 
where x is the positive generator of H2\ P(S2V),Z). In this case, the rational normal 
curve C(S) is a conic in P(S V) and the spectral curve is an elliptic curve, the double 
covering of C(S) over the four points of intersection with the conic A C P(S2V). 

The twistor space itself is not the whole of P cxw i, but an open subset. There is a 
divisor D C P(En) defined by the section of P(En) over P(V) x P(V) given by the 
kernel of the natural evaluation map 

x<< ev :p*En O(n,0). 

Because the lift C of C(S) is defined by a non-vanishing section of 0(n, -ra), CilD = 
0, and the twistor space Z is actually equal to P(En)\D. 

Given that the metric has an orbifold singularity around a copy of RP2, there must 
be a singular compactification of this twistor space by adding in a 2-sphere. We shall 
see this next by using algebraic geometry instead of differential geometry, by showing 
that D can be blown down to a rational curve. 

By the definition of D, the kernel of ev is naturally isomorphic on D to the tau­
tological bundle h-1 and so from e) H'1 s* A2i '•p*En -n,0) but c\ {En) = (n - l)x 
thus << P*En) ww n — l.n — 1) and hence h-1 ^^^x<< ( -1 ,71 -1 ). The cohomology class 
of D is of the form ah + bx where h = ci (ff), and as D intersects a generic fibre of 
P(En) in two points, a = 2. Since . # ^ ö ( l , - r a + l we have ~.h2 [D] = - 2 in- 1 and 
using h2 = Cl En) h - c2\ [E) we find b = ra. Hence D is a divisor of the line bundle 
H2®p*ö(n). Its normal bundle is therefore 

H2 (8) p*ö{n)\D = 0 (2 , -2ra + 2) 0 0(ra, ra) = 0(n + 2, -ra + 2). 

For ra > 2 the second degree is negative and we can therefore blow down the second 
CP1 factor in D ^ CP1 x CP1. For ra = 3 the resulting manifold is smooth, but for 
ra > 3 we have an orbifold singularity along a rational curve, locally modelled on a 
quotient of C3 by Z / ( r a - 2 ) acting as (zi,Z2,z3) (ZI,LJZ2,UZ3). 

Remark 4.3. — In the case ra = 3, the smooth blow-down is just CP3. Take a rational 
normal curve C C CP3 (a twisted cubic). It is well-known that through a generic point 
in CP3 there passes a unique secant to C. The secant intersects C in two points and 
so this defines a rational map from CP3 to the symmetric product S2C = CP2; the 
fibre is the secant itself. Blowing up C gives the projective bundle P{E3). Another 
way of looking at this is to view the family of secants as a map from S2C to the 
Grassmannian of lines in CP3 (its image is actually a Veronese surface in the Plucker 
embedding). The projective bundle is then the pull-back of the tautological bundle 
on the Grassmannian. 
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4.3. The contact form. — In the approach of [14], the contact form was defined 

using the Maurer-Cartan form of S0(3), but there is another way which makes con­

tact with the symplectic geometry of rational maps discussed earlier, and gives an 

alternative viewpoint on the twistor space. 

Consider an affine coordinate z on C C P{V) and a trivialization dz -nl 12 of O(n). 

Then for zi,z2) eCxCc P{V) x P(V) with z\ / z2- the fibre of the bundle En 

defined by the direct image sheaf of (5(n, 0) consists of a linear combination of dz~nl2 

at z\ and z2, and we can take local coordinates w\,w2 relative to this basis. On the 

complement of the divisor D we have wi and w2 non-zero. Define a one-form by 

(7) x<<ww >i - z2 
dwi 

Wi ww 
dw2 
w2 > 

+ n(dzi + dz2). 

Note first that this is invariant under the exchange of Z\ and z2 together with w\ and 

w2. Also, ip is homogeneous of degree 0 in the W{ and annihilates the Euler vector 

field 

W = wi 
d 

w<<< 
+ w2 

d 
' dw2 

and so descends to the projective bundle P(En). 

As in Section 2, we can associate to the data Zi,Z2ìW2ìW2 a degree 2 rational map 

S(z) = 
a0 + a\z 

b0 + biz + z2 

where the denominator is > - zx)(z - z2) and the numerator is the unique linear 

polynomial which takes the value w\ at z\ and w2 at z2. That part of the twistor 

space Z which lies over the open set of P(S V) consisting of quadratic polynomials 

with finite roots can then be interpreted as the quotient of the space of rational 

maps R2 by scalar multiplication. The form ip extends too, for it may be written as 

ip = ZTJOJ -h ndx where x = z\ + z2, UJ is the symplectic form described in Section 2.1 

and U is the vector field 

¿1 ~ Z2. 
d 

dzi xw 
d 

dz2j ww 

Using x = z\ + z2 and y = z\z2 as local affme coordinates on P[b V), we can write 

U =NP + degTF = 2k - 2. (4y — X ww d 
dy 

which is thus well-defined on the open set of P(S2V). It follows that w is well-defined 

even where Zi = z2. Moreover, 

(p Ad(p = —2ndz\ A dz2 A 
ww 

<< 
<< 

dw2 

w2 
= —InivjUJ A UJ 

and since UJ is symplectic this defines a contact structure. 
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Now consider the action of a Möbius transformation f(z) = (az + b)/(cz + d). It 

acts on w G ö(n, 0) over z by w i—• w(cz + c?ì A short calculation gives 

xvw<<< 
1 

'czi + cO(cz2 + d) 
(p. 

It follows that we can use the same description replacing oo by /(oo). In particular, 

taking the three points 0,1, oo G P(V), we cover P(S2V) by three corresponding 

affine open sets consisting of quadratic polynomials for which 0, or 1 or oo is not a 

root. It follows that ip extends as a line-bundle valued form over the whole of Z. 

Our conclusion is that the twistor space has an alternative description: it is covered 

by open sets each of which is isomorphic to the quotient of the space R2 of rational 

maps by scalar multiplication, where the identification preserves the contact structure 

7 • 

4.4. SU(3) monopoles. — We now approach the question of what the moduli space 

for a hyperbolic SU(3) monopole with minimal symmetry breaking looks like. The 

Euclidean case was dealt with by Dancer [7]. There is again a spectral curve involved, 

which for charge 2 is an elliptic curve, but this time it is unconstrained: instead we 

have a choice of data, which is a pair of sections of o(£ + i,-e) which are linearly 

independent at each point. This is a line bundle of degree 2 on an elliptic curve and 

so has a two-dimensional space of sections. When we centre the monopole we have 

five real degrees of freedom for the conic and an SU(2) gauge action which acts on 

the pair of sections, giving an 8-dimensional moduli space. 

We shall try and defined a quaternionic Kahler metric from a twistor space. As 

we have seen before, the direct image sheaves of 0(£+!,-£) and 0 ( 2 * + 1 , 0 ) have 

the same projective bundle, so a pair of sections of OU+1,-1) over the conic C(S) 

defines a section of Pi En®C2 , a 5-dimensional complex manifold, where n = 2£+l. 

These sections will be the twistor lines. 

Remark 4.4. — The linear independence condition means that the twistor lines lie in 

an open set o P(En®C2 , which gives an alternative description of Z as the principal 

PSL(2, C) frame bundle of P(En) 

We now have to introduce a contact form and here we take the lead from the 

Euclidean case treated by Dancer. In [8] he defines a symplectic form on the space of 

rational maps z t—• [fi(z)J2(z),f3(z)} of degree 2 from CP1 to CP2 which take oo to 

0,0,1] , so that A?/2 are linear and /3 x<< [z - zi)(z - z2). if A [z%) = Vi,h{zi) = Qi 

and z\ z2 then this form is, up to a constant, 

Ld — — 
1 

Zl Z2 
dz\ A dz2 + dz\ A 61 + dz2 /\02 + {z\ — z2)d6\ 
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where 

0i = 
qidp2 ~Pidq2 

PlQ2 -P2Qi 
02 = 

p2dqi - q2dpi 

PiQ2 -P2Q1 
Following the rational map description of P(En)\D, we can apply a similar argument 

here and define a one-form in the open set zi,z2 7^ 00 by 

8) = (zi - 22)(0i - 02) + nd(zi + z2) 

As in the previous case, the form ip may be written (p = IjjUJ + ndx and the fact that 

UJ is symplectic shows that this is a contact form on the quotient by the scalars acting 

on the rational maps. It has the same transformation properties as the contact form 

in the SU(2) case, and so extends. 
The twistor lines again cover C(S) c P(S2V) I. We know that S has two sections 

sus2 of 0(i+!,-£). In local coordinates Zl,Z2,Pl,P2,quq2), Pl,P2 are the values 

of si at zi,z2 and q\,q2 the values of 52, so the two sections give, in the rational map 

picture, the two numerators. 
There are now two group actions - a geometrical action of SO(3), the hyperbolic 

isometries fixing the centre, and a gauge action by PSU(2) which changes the basis 

of sections of 0{£+ !,-£) (part of the principal bundle action according to Remark 
4.4). 

Given the twistor space we need to find the rational curves more explicitly, but there 
is a verv concrete wav of doing this in the case where n = 2Í+1 is an odd integer. The 

spectral curve is an elliptic curve S c P ( V ) x P ( W a divisor of 0(2 ,2) , and projects 
to a conic CIS) C P(S2V). Choose a point Po = x0,yo) e S c P(V) x P(V) and 
take the line { z 0 } x P(V) through this point. It intersects S in a point Qo = (xo,yi) 
and so the divisor class Po + Qo - 0 (1 ,0) . Now take the line P(V) X {№} which 
passes through Qo and intersects S again in Pi = (ari, 2/1) , and continue. We have the 
divisor classes 

P o + Q o ~ 0(1 ,0) Qo + Pi ~ 0(0 ,1) P i + Q i ~ 0 ( 1 , 0 ) . . . 

from which we get 

Po + Qo + • • • + Pi + Qi~ 0{l + 1,0) 

Qo + Pi + Qi + P2 + • • • + Q1-1 + Pi~ 0 (0 , ¿) 

and so 

Po + Q * ~ 0 ( * + W ) . 

Hence P¿ + Qo is the zero set of a section of this bundle on 5. 

Down in P [S2V we start at the image X0 e C{S[ of Po, draw a tangent to the 

diagonal conic A to meet C(S) at X±, and continue. The Poncelet problem of the 

"in-and-circumscribed polygon" to two conies is the closure condition for this process 

and was the basis of the explicit formulas in [131. [141. 
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The question we ask ourselves now is whether this twistor data generates an orbifold 

quaternionic Kahler metric in eight dimensions. The twistor space has an open orbit 

under the complexified action of SO(3,C) x PSL(2, C) but there seems no obvious 

way of equivariantly blowing down any lower dimensional orbits. In fact we shall see 

that there is no orbifold compactification in this case. We don't need to calculate the 

whole metric, just the induced metric on a certain totally geodesic submanifold. 

4.5. Axially symmetric monopoles. — For each charge and mass there is, for 

the group SU(2), a unique monopole which is symmetric about a given axis. For SU(3) 

this is no longer the case and we shall compute the metric restricted to a surface of 

revolution which represents all such axially symmetric monopoles. 

An axially symmetric spectral curve is of the form (W — /JLZ)(W — fi -1 ww = 0 and 

this defines the rational normal curve Z I—• w2 xw ß + ß 1)wz + z2 in the space of 

quadratic polynomials in w. The parameter fi is real or complex depending on whether 

ß + ß - l - 2 is positive or negative. 
k section of OU+1,-1) constructed as above and with 0&o,2/o) = OM) is given 

by 

(W — Li) (W — ß 3 W — fi '2£+ï 

(z-ß2) NP + degTF = 2k - 2. bnxwp^*ùù 

in the local trivialization dw~ <o^ùl '2, dz -e/2 On the branch w = az it has the form 
ae+1 (z-1 and on the branch w = M"1 z is a wx<< z — fi ,2£+2 ). This is a section 

of a line bundle of degree 2 on a (degenerate) elliptic curve which therefore has two 

linearly independent sections. Changing the initial point so, 2/0 ) it is clear that this 

space is spanned by the two sections si and s2 where 51 = 1 on each branch and 

52 = ^$cx<< z on the first branch and s2 = ß~{ wx<< z on the second. 
The geometrical S1 -action z \-> \z acts as [si,Xs2 and the gauge action is 

suso, > I—• A_1/25i, klp^ù* I, so coupling the two multiplies (si,s2) by A1/2. This 

lifting of the geometric circle action means that we can consider the metric on the 

fixed point set, which is a totally geodesic surface of revolution. 

To do the calculation we need to use coordinates for this data on a varying curve: 

we set ß = e2t (where t is real in the first instance) and on the first branch w = www u, z — 
e" ' u and on the second z = etu, w = e tu. Then u is a rational parametrization of 

the plane conic defined by the spectral curve: in fact u is an affine parameter on the 

diagonal conic A and we have transformed it by the hyperbolic isometry diagl ̂ *ùù xvw<< 
<< 

The real structure is given by u \—> —1/u. This provides a uniform parametrization 

of our family of conies. 

The twistor line for an axisymmetric monopole is then given, with n = 2£+l, by: 

zi = éu z2 = e tu pi = 1 p2 = 1 qi = e ió—nt U Q2 = e —ió+nt U. 
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recall that pi and qi are the values of s\ and s2 at Zi). Differentiating with respect 

to u, the tangent to the line is spanned by 

X = x<< 
d 

dzi 
+ Z2 

d 

dz2 
<bn,o 

d 

dqi 
+ Q2 

d 

dq2 << 

Differentiating with respect to t and 6, an infinitesimal variation of the twistor line 

is given by: 

Y = i z\ 
d 

dzi 
- z2 

d 

dz2 
cw< [io + ni w< 

d 

dqi 
oo (i<j) — ni) Q2 

d 

dq2 

At this stage we put into effect the description of the metric in Section 4.1. The 

tangent bundle of the rational curve C is defined by X and we must use the contact 

form to embed the normal bundle N in TZ. Thus Y is a section of TZ over C and 

Y — 
< Y 

<< X] 
X 

is a section of the normal bundle. 

We evaluate the contact form on the vectors X and Y to obtain 

(p(X) = 2u(ncosht — sinh £ coth nt) (p(Y) = 2z</>sinh£ cothnt. 

When i = 0, 6 = 1 the section of the normal bundle is then 

Y0 = -2i 
1 

<< << 
sinh t coth nt Zi 

d 

dz\ 
w<< Z2 

d 

dz2 
+ n cosh t << 

d 

dqi 
+ Q2 

d 

dq2 

and when ó = 0,i = 1 

Y1=z1 
d 

dz\ - z2 
d 

dz2 
— n << 

d 

dqi 
+ Q2 

d 

dq2 << 

On our two-dimensional submanifold, whose tangent space is spanned by d/dt and 

d/d(/), the area form is dip(Yi,Yo): 

9 n 
n sinh t cosh t cosech h2, J n t — coth n t 

dò A dt. 
n cosh t — sinh t coth nt 

To obtain the metric, we also need the conformai structure which, from Remark 4.2 

we can derive by considering complex variations of the twistor line which preserve a 

point. Our twistor lines are C*-invariant so we have to consider variations preserving a 

fixed point of the action. Unfortunately, this is where our local coordinates break down 

- we have to consider a description of the vector bundle En at a branch point of the 

covering p :P(V)xP(V)^P{S2V] restricted to the conic. The map p is the quotient 

by permuting the factors, so we can describe it as p(w,z) = [l,w + z,wz\ G CP2. 

The equation of the spectral curve is w2 cw< <n,j << wz + z2 = 0 and clearly any local 

function / (w,zg) NP + degTF = 2k - 2xww. z) + wh(z) modulo the equation of the curve, or 

more conveniently as 

fo(w + z) + (w- z)fx{w + z). 
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The direct image sheaf of O is then generated by 1 and w — z over the functions on 

the conic. 
We apply this now to our two sections xx<<,:: Of Ol NP + degTF = 2k - 2. . The first is equal to 

1 on both branches and gives / i = 0, fo = 1. The second is <chhh z if w — /jLZ and 

ß ;m-i; ]z il w = xx<< Z. This gives 

/o(ti) = 
1 cosh(2^ + l)t 

2 cosht 
-u fiW = 

1 sinh(2^ + l)t 

2 sinht << 

Thus a variation of the twistor line which keeps the point u = 0 fixed is obtained by 

fixing (again with n = 2£ + 1 ; 

e-i4> sinh nt 

sinht << 

It follows that the conformai structure is defined by 

dcj)2 + n coth nt — coth t 2 dt2. 

Prom (9), we conclude: 

Proposition 4.5. — The metric g restricted to the space of axially symmetric SU(3) 

monopoles is: 

n 
coth nt — n sinh t cosh t cosech 2 nt 

n cosh t — sinh t coth nt) (n coth nt — coth 
;d(/>2 + (ncothnt - coth t)2dt2). 

When, in the equation of the spectral curve. H + p, 1 < 2 then t becomes imaginary 
and we must replace the hyperbolic functions by the corresponding trigonometrical 
ones. Note that, near •ix = 1 (or t = 0), the metric is still regular and behaves like 

2n 
n2 - 1 

ww<<<< n2 - 1 

3 

2 
t2dt2). 

Fix n and consider the limit of the metric as t —• oo. We find that the metric 

approximates 
ne 1 

n-1 |2 
dó2 + in-l 2dt2 

and putting r2 — e 1 this gives 

n 
[n-1 << V2 do2 + 4. n - 1 ) ,2 ir2) 

which has an orbifold singularity: a quotient by Z '2(n - 1) . Here the spectral curve 

exactly corresponds to a pair of points, so the region is analogous to the orbifold 

singularity in the SU(2) case. 

At the other extreme, consider the metric on the trigonometric branch: 

n-
cot nt — n sin t cos t cosec 2 , nt 

n cos t — sin t cot nt) (n cot nt — cot t 
(dò2 + n cot nt — cot t) \2, 'dt2) 
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as t = ir/n — u for u small. Then we obtain 

w<<:k 
7T 
n 

# 2 xw<<p -2 du2; 

which is asymptotic to a cylinder. 
Now suppose the moduli space had an equivariant orbifold compactification. Then 

the fixed point set of the circle action would extend to a compact orbifold and in 
particular would have finite area. But the cylinder has infinite area and so an orbifold 
compactification is impossible. 

Remark 4.6. — Dancer explicitly wrote down the metric in the Euclidean case. If we 
fix t and <j> and put r = nt, then the metric ng as n —* oo has a limit which is 

r coth r — r cosech 2 w< 
r coth r — 1 

d<\>2 + cothr <xx 
1 
r. 

2 
dr2 << 

This is precisely Dancer's metric (see [7] Theorem 5.1, or put / i = —D coth 3D, f2 = 
fs = —D cosech 3D in the formula in Section 2.) Thus in the infinite mass limit, 
or as the curvature of hyperbolic space tends to zero, our metric approaches the 
known Euclidean monopole metric. In the Euclidean case, the metric is asymptotically 
cylindrical where ours has an orbifold singularity, and asymptotically conical (with 
vertex angle 7r/3) where ours is cylindrical. 

5. New metrics for old 

The relationship between these metrics and their physical origins in the study of 
monopoles on hyperbolic space is not at all clear. We have proceeded by analogy and 
used spectral data rather than the fields themselves to provide a route to the metric. 
On the other hand they provide us also with a means for constructing other solutions 
to Einstein's equations. As the reader may find in [3], when a quaternionic Kahler 
manifold has positive scalar curvature, its twistor space has a natural Kahler-Einstein 
metric. Thus the singular spaces obtained in Section 4.2 are Fano varieties with ex­
plicit Kahler-Einstein metrics. But one can go further - the principal SO(3) bundle of 
the rank three bundle Q of imaginary quaternions on a quaternionic Kahler manifold 
also has a natural Einstein metric. This is a 3-Sasakian metric (which also means that 
by rescaling the SO(3) orbits one can find yet another Einstein metric). The 4n + 3-
dimensional 3-Sasakian manifold is a principal 51-bundle over the twistor space. One 
should read about these in the recently published book of Boyer and Galicki [4], 
in many respects a worthy successor to [3]. (The authors of that book note that 
"3-Sasakian manifolds are never mentioned in Besse" which is quite true, though had 
Arthur Besse known Bar's result that the metric cone on a 3-Sasakian manifold is hy­
perkahler he would almost certainly have taken them more seriously). For our orbifold 
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examples, the 3-Sasakian manifold is actually smooth: the circle action is semi-free 
and has finite isotropy subgroup over the singular points of the twistor space. What is 
perhaps more interesting is that these 7-manifolds - as differentiate manifolds with 
a cohomogeneity one group action - have occurred in a completely different context, 
that of manifolds of positive curvature [11],[24]. A series of manifolds Pk and Qk 
were found to be candidates for having metrics of positive sectional curvature. These 
manifolds are the (2-fold) universal covers of the 3-Sasakian manifolds associated to 
the moduli spaces of hyperbolic charge 2 monopoles of mass (2k — l ) /2 and k respec­
tively. Quite recently, Dearricott (unpublished) and, independently, Ziller [24] have 
shown that P2 does indeed admit a positively curved metric. 

Prom [9], the sectional curvature of the 3-Sasakian metric on the 7-manifold will 
be positive if the sectional curvature of the 4-manifold is positive. For the Einstein 
metrics described above this is true when the two monopoles are well separated but not 
when they are close to an axially symmetric one. Indeed, the scattering of Euclidean 
monopoles described in [2] involves some negative curvature behaviour which seems 
likely to persist in the hyperbolic case. The positively curved examples on P2 are 
constructed by concretely deforming the 3-Sasakian metric. 

There may however be other self-dual Einstein structures on the 4-dimensional 
spaces. Indeed, one of the spin-offs of Dancer's work on SU(3) monopoles was a 
hyperkahler deformation of the metric (1), obtained as a hyperkahler quotient of the 
Euclidean SU(3) moduli space. In the hyperbolic SU(3) case described in Section 4.4 
we have an action of the rank two group SO(3) x PSU(2) and so we could attempt 
to take a quotient by a circle subgroup. Note that if the circle is in the gauge action 
PSU(2), then it has a commuting SO(3) action which descends to the quaternionic 
Kahler quotient, so already we know that this particular quotient is an SO(3)-invariant 
self-dual Einstein manifold. In fact this quotient is the SU(2) moduli space. To see 
this, recall [4] that from the twistor point of view quaternionic Kahler reduction 
proceeds by evaluating the contact form tp on the vector fields generated by the group 
action to get a section of 0* ^wx<< - l In . The twistor space of the reduction is the 
quotient of the zero-set of this by the complexified group action. In our case the 
gauge circle action is [PuP2,q\,q2t I—* (Pl,P2, ei9i m:: <vvv 02) which generates the vector 
field 

X = xww 
d 

dqi + Q2 
d 

dq2 
Evaluating the contact form (8) gives 

<p(X) = (z1 - z2) P2Ql +P1Q2 
P2Ç1 -PlV2' 

and the zero set of this is P2Q1 +P102 = 0. As a subset of P{ (En ® C2 the equa­
tion p2qi - piq2 = 0 is the quadric P(En) x CP1 and the complement is the SU(3) 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2008 



28 N. HITCHIN 

twistor space. The quotient twistor space is defined by P2qi + PiQ2 = 0 modulo 
NP + degTF = 2k - 2.NP + degTF = 2k - 2. The projection to PUP2Ì e P(En maps this 

isomorphically to the complement of Pi = 0 and P2 = 0 which is P(En) \ D, the 

twistor space for the SU(2) moduli space. 
A more general circle subgroup of SO(3)xPSU(2) will yield a quotient with only a 

circle action, but whether it is an orbifold metric or not requires further investigation 

which we have no time to pursue here. 
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GEOMETRY OF MODULI SPACES 

by 

Kefeng Liu, Xiaofeng Sun & Shing-Tung Yau 

Dedicated to Jean Pierre Bourguignon 

Abstract. — In this paper we describe some recent results on the geometry of the 
moduli space of Riemann surfaces. We surveyed new and classical metrics on the 
moduli spaces of hyperbolic Riemann surfaces and their geometric properties. We 
then discussed the Mumford goodness and generalized goodness of various metrics 
on the moduli spaces and their deformation invariance. By combining with the dual 
Nakano negativity of the Weil-Petersson metric we derive various consequences such 
that the infinitesimal rigidity, the Gauss-Bonnet theorem and the log Chern number 
computations. 

Résumé (Géométrie des espaces de modules). — Dans cet article nous décrivons certains 
résultats récents en géométrie de l'espace de modules des surfaces de Riemann. Nous 
parcourons un certain nombre de métriques classiques et nouvelles sur les les espaces 
de modules de surfaces de Riemann hyperboliques et leur propriétés géométriques. 
Ensuite nous discutons la bonté de Mumford et la bonté généralisée de différentes 
métriques sur l'espace de modules et leurs invariance de déformation. En combinant 
avec la négativité de Nakano duale de la métrique de Weil-Peterson nous en tirons 
différentes conséquences telles que la rigidité infinitésimale, le théorème de Gauss-
Bonnet et les calculs de nombres logarithmiques de Chern. 

1. Introduction 

In this paper we describe our recent work on the geometry of the moduli space 

of Riemann surfaces Mg. We will survey the properties of the canonical metrics 

especially the asymptotic behavior. 

This paper is organized as follows. In the second section we will briefly recall 

the deformation theory of Riemann surfaces. In the third section we will recall the 
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Ricci and perturbed Ricci metrics as welll as the Kahler-Einstein metric which were 

discussed in [5] and [6]. 

In the fourth section we will discuss the notion of Mumford goodness and our 

generalizations to the p-goodness and intrinsic goodness. We then discuss the relation 

of the goodness and the complex Monge-Ampere equation as well as the Kahler-Ricci 

flow. In the last section we will discuss the applications of these fine properties of the 

canonical metrics. 

2. Fundamentals of Teichmüller and Moduli Spaces 

We briefly recall the fundamental theory of the geometry of Teichmiiller and moduli 

spaces of hyperbolic Riemann surfaces in this section. Most of the results can be found 

in [5], [6], [7] and [18]. 

Let Mg,k t>e the moduli space of Riemann surfaces of genus g with k punctures 

such that 2g — 2 + k > 0. By the uniformization theorem we know there is a unique 

hyperbolic metric on such a Riemann surface. To simplify the computation, through 

out this paper, we will assume k = 0 and g > 2 and work on A4g. Most of the results 

can be trivially generalized to Aig,k-

We first recall the local geometry of Mg. For each point s G Mg, let Xs be the 

corresponding Riemann surface. By the Kodaira-Spencer deformation theory and 

Hodge theory, we know 

TaMg* <:;< XS,TXS) ^$$ if0'1! w<<ùù^^ ^^ 

It follows direct from Serre duality that 

T: Mg xw w^^p XS,K 2 
xs. ^^ 

By the Riemann-Roch theorem, we know that the complex dimension of the moduli 

space is n = dime Mg — 3# — 3. Given a Riemann surface X of genus g > 2, we 

denote by A the unique hyperbolic (Kahler-Einstein) metric on X. Let z be local 

holomorphic coordinate on X. We normalize A: 

(2.i: c^djlog A = A. 

Let Tg be the Teichmiiller space. It is well known that Tg is a domain of holomorphy 

and Mg is a quasi-projective orbifold. There are many canonical metrics on Tg. These 

are the metrics where biholomorphisms are automatically isometries and thus these 

metrics descent down to Mg. 

There are three complex Finsler metrics on Tg: The Teichmiiller metric || • | |T , 

the Kobayashi metric || • \\K and the Caratheodory metric || • \\c- Each of these 

metrics defines a norm on the tangent space of Tg. These metrics are non-Kahler. By 

ASTÉRISQUE 321 



GEOMETRY OF MODULI SPACES 33 

the famous work of Royden we know that the Teichmiiller metric coincides with the 
Kobayashi metric: 

xw T = I • K' 

We now describe the Kàhler metrics. The first known Kàhler metric is the Weil-
Petersson metric coWP. Since Tg is a domain of holomorphy, there is a complete 
Kàhler-Einstein metric on Tg due to the work of Cheng and Yau [2]. Since Mg is quasi-
projective, there exist a Kàhler metric on Mg with Poincaré growth. Furthermore, one 
has the Bergman metric associate to Tg and the Kàhler metric defined by McMullen 
[10] by perturbing the Weil-Petersson metric. 

In [5] and [6] we defined two new Kàhler metrics: the Ricci and perturbed Ricci 
metrics which have very nice curvature and asymptotic properties. These metrics will 
be discussed in the following sections. 

We now recall the construction of the Weil-Petersson metric. Let fai»-" ,sn) be 
local holomorphic coordinates on Mg near a point p and let Xs be the corresponding 

Riemann surfaces. Let p : TsMq ^H1 Xs, TX s ww #0,1 dSidzlxwwog be the Kodaira-
Spencer map. Then the harmonic representative of p d 

dsi ) is given by 

ww^^ P 
d 

xww 
woo^m f A - l dSidzl<og\ 

d 
dz 

® dz = Bi. 

dSidziigf^^log = - A -l ^^^w<< log À and let Ai = dzdi, then the harmonic lift Vi of d 
dsi is 

given by 

f2.3 Vi = 
d 

dsi 
+ ai 

d 
ldz' 

The well-known Weil-Petersson metric o;wp << c^^c, 
2 

-hßdsi A dsj on M g is the L2 
metric on Mg: 

'2.< ^^^ 
v,,nn 

s) = 
<<<< 

AiAj dv 

where dv = ^f^Xdz A dz is the volume form on Xs. It was proved by Ahlfors that 
the Ricci curvature of the Weil-Petersson metric is negative. The upper bound of 
the Ricci curvature of the Weil-Petersson metric was conjectured by Royden and was 
proved by Wolpert [16]. 

In our work [5] we defined the Ricci metric uT: 

;2.5) <<iipl —Rie ̂ ^w<< 

and the perturbed Ricci metric CJ~: 
T 

2.6 r w<a^^ + <hi^^^^ 

where C is a positive constant. These new Kàhler metrics have good curvature and 
asymptotic properties and play important roles in out study. 
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Now we describe the curvature formulas of the Weil-Petersson metric. Please see 

[5] and [6] for details. We denote by fq = AiAj where each A{ is the harmonic 

Beltrami differential corresponding to the local holomorphic vector field -J^. It is 

clear that fq is a function on X. We let • = —dzc\ be the Laplace operator, let 

T — ( • + l ) -1 be the Green operator and let eq — T(fq). The functions and fq 

are building blocks of these curvature formula. 

Theorem 2.1. — The curvature formula of the Weil-Petersson metric was given by 

(2.7) R ijkl 
^w<< 

<kk 
ddx fkl ww w<< fkj dv. 

This formula was first established by Wolpert [16] and was generalized by Siu [14] 

and Schumacher [13] to higher dimensions. A short proof can be found in [5]. 

It is easy to derive information of the sign of the curvature of the Weil-Petersson 

metric from its curvature formula (2.7). However, the Weil-Petersson metric is incom­

plete and its curvature has no lower bound. Thus we need to look at its asymptotic 

behavior. We now recall geometric construction of the Deligne-Mumford (DM) moduli 

space and the degeneration of hyperbolic metrics. Please see [5] and [16] for details. 

Let Mg be the Deligne-Mumford compactification of Mg and let D = Mg \ Mg. 

It was shown in [3] that D is a divisor with only normal crossings. A point y G D 

corresponds to a stable nodal surface Xy. A point p G Xy is a node if there is a 

neighborhood of p which is isometric to the germ {(u, v) \ uv = 0, \v\ < 1} C C2. 

Let pi, — - ^Pm £ Xy be the nodes. Xy is stable if each connected component of 

Xy \ {pi , • • • ,Pm} has negative Euler characteristic. 

Fix a point y G D, we assume the corresponding Riemann surface Xy has m nodes. 

Now for any point s G Mg lying in a neighborhood of y, the corresponding Riemann 

surface Xs can be decomposed into the thin part which is a disjoint union of m collars 

and the thick part where the injectivity radius with respect to the Kahler-Einstein 

metric is uniformly bounded from below. 

There are two kinds of local holomorphic coordinate on a collar or near a node. 

We first recall the rs-coordinate defined by Wolpert in [18]. In the node case, given 

a nodal surface X with a node p G X , we let a, b be two punctures which are glued 

together to form p. 

Definition 2.1. A local coordinate chart (U^u) near a is called rs-coordinate if 

u(a) = 0 where u maps U to the punctured disc 0 < \u\ < c with c > 0, and the re­
striction to U of the Kâhler-Einstein metric on X can be written as 

The rs-coordinate (V, v) near b is defined in a similar way. 
2|n|2(iog|u|; 2 du |2 

In the collar case, given a closed surface X , we assume there is a closed geodesic 

7 C X such that its length / = / ( 7 ) < c* where c* is the collar constant. 
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Definition 2.2. — A local coordinate chart (U,z) is called rs-coordinate at 7 if 7 C U 

where z maps U to the annulus c-1|£|i < \z\ < c\t\i, and the Kàhler-Einstein metric 

on X can be written as 

1. 

2 

7Г 
,log|t| \z\ 

1^ 
CSC 

w<<<m^ù 

log 1*1 

2 
\dz\2. 

The existence of collar was due to Keen [4]. We formulate this theorem in the 

following: 

Lemma 2.1. — Let X be a closed surface and let 7 be a closed geodesic on X such 

that the length I of 7 satisfies I < c*. Then there is a collar £1 on X with holomorphic 

coordinate z defined on O such that 

1. z maps ft to the annulus r 1 
xx c^^ 27Г2 I < \z\ < c} for с > 0; 

2. the Kàhler-Einstein metric on X restricted to ft is given by 

(2.8) 
1 
2 

9 9 О 
и Г CSC г 

\dz\ 2 

where и = i 
2ir> 

r = \z\ and г = ulogr; 

3. the geodesic 7 is given by the equation \z\ = e ni 
I , 

4. the constant c has a lower bound such that the area of Q is bounded from below 
by a universal constant. 

We call such a collar ft a genuine collar. 

Now we describe the pinching coordinate chart of Mg near the divisor D [18]. 
Let X0 be a nodal surface corresponding to a codimension m boundary point and let 
Pir " ,PM be the nodes of XQ. Then X$ = XQ \ {pi , • • • ,pm} is a union of punctured 
Riemann surfaces. Fix rs-coordinate charts (C/j, r}i) and (V ,̂ Q) at pi for i = 1, • • • , m 
such that all the Щ and V{ are mutually disjoint. Now pick an open set UQ С XQ 
such that the intersection of each connected component of XQ and UQ is a nonempty 
relatively compact set and the intersection UQ П (Ui U Vi) is empty for all i. Now pick 
Beltrami differentials z/m+i, • • • , vn which are supported in Uo and span the tangent 
space at X0 of the deformation space of XQ. Let A^_m с Cn_m be the polydisc of 
radius e. For t" = (tm+w- ,*n) € A?~m, let v(t") = ^xw 

mwwdSidzlog 
w^mm We assume 

\t"\ = n 
i=m+l I \u?) 

1 2 small enough such that bf*")! < 1. The nodal surface XQ tu 
is obtained by solving the Beltrami equation dw = v(t")dw. Since v(t") is supported 
in UQ, (Ui,r)i) and (V*,Ci) are still holomorphic coordinates on X^^u. By the theory 
of Ahlfors and Bers [1] and Wolpert [18] we can assume that there are constants 
<S, c > 0 such that when \t"\ < 5, rji and Q are holomorphic coordinates on X$j" 
with 0 < \rji\ < c and 0 < \Q\ < c. Now we assume t' = (*i,--- ,£m) has small 

norm. We do the plumbing construction on XQ^I to obtain Xt = Xt^tn. For each 

i = 1, • • • ,ra, we remove the discs {0 < \rji\ < ^ } and {0 < \Q\ < ^ } from Xoft" 
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and identify 
xc 

c 
ww^$$ ww<< with r 1**1 

c 
\Q\ < c} by the rule r/iQ = U. This 

defines the surface Xt. The tuple t = (t',t,f) = (£i,• • • , £m,£m+i, • • • , tn) are the local 

pinching coordinates for the manifold cover of Mg. We call the coordinates rji (or Q) 

the plumbing coordinates on lf)S and the collar <^^ 
c 

< \rji\ < c} the plumbing collar. 

Remark 2.1. — Prom the estimate of Wolpert [17], [18] on the length of short 

geodesic, we have ui = h 
2ir 

^^w< 7T logltiT 

In [5] and [6] we derived the precise asymptotic of the Weil-Petersson metric and 

its curvature. This is one of the key components in the proof of its goodness. We 

have 

Theorem2.2. — Let (£, s) = (£i,--- , £m,sm+i,--- ,sn) be the pinching coordinates 

near a codimension m boundary point in Mg. Let h be the Weil-Petersson metric. 

Then we have the asymptotic: 

1. hu = 2ur3\ti\2(l + O(u0)) and hfi = i u? 
2 |ti|2 (1 + O(uo)) forl<i< m; 

2. hij = 0(\titj\) and h.j = O 3 3 
uiuj \Utj\ if 1 < hj < m and i 7̂  J; 

3. hij = O( l ) and hfj = O( l ) , ifm + l<i,j< n; 

4. hij =0(\U\) andhfj=0 
<< 
\u\. 

ifi<m< j ; 

5. W =0(1^-1) andhil = 0 U3 
<^^ù if j < m < i 

where UQ = m 
.7 = 1 

o^^$ m w<<ppo «IL-

The precise estimates of the asymptotic of the full curvature tensor of the Weil-

Petersson metric, which will be used in the proof of its goodness, can be found in [5], 

[6] and [7]. 

3. Canonical Metrics on Mg 

Since the Weil-Petersson metric is incomplete and does not have bounded geometry, 

it is hard to use it to study the geometry of Mg. In [5] we introduced the Ricci metric 

LUt = —Ric(uWP) and the perturbed Ricci metric û R = uT + CuWP. It turns out that 

these new Kahler metrics have nice curvature and asymptotic properties. These new 

metrics are also closely related to the Kahler-Einstein metric. Especially the Ricci 

metric is cohomologous to the Kahler-Einstein metric as currents. 

To describe the curvature formulae of the Ricci and perturbed Ricci metrics, we 

need to introduce several operators. We first define the operator : C°°(XS) —• 

C°°(XS) by 

(3.1) &(/) = d (i(Bk)df) = -\-xdz{Akdzf) = -AkKtKoV) 

where KQ,KI are the Maass operators [16], [5], 
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It was proved in[5] that £k is the commutator of the Laplace operator and the Lie 

derivative in the direction vk: 

(3.2) (• + l)vk - vk(D + 1) = Dvk - vkBxw =bb::: 

We also need the commutator of the operator vk and vi. In [5] we defined the operator 

Qki:C™(Xs)^C°°(Xs<<<£)byCXX 

(3.3) (• + l)vk - vk(D + 1) = Dvk - vkB =(• + l)vk - vk(D + 1) = Dvk - vkB = 

where P : C°°(XS) -> r(A1'°(r°'1Xs)) is the operator defined by P(f) = dz(X~1dzf). 

The terms appeared in the curvature formulae of the Ricci and perturbed Ricci 

metrics are formally symmetric with respect to indices. For convenience, we recall 

the symmetrization operator defined in [51. 

Definition 3.1. — Let U be any quantity which depends on indices i,k,a and j,l,/3. 

The symmetrization operator a\ is defined by taking the summation of all orders of 

the triple (i,k,a). Similarly, o<i is the symmetrization operator of j and (3 and G\ is 

the symmetrization operator of j , I and ¡3. 

In [5] we derived the curvature formulae of the new metrics. These formulae, 

although very complicated, are integral formulae along the fibers of the universal 

curve. 

Theorem 3.1. — Let R{jkj and Pq^. ^e ̂ te curva^ure tensors of the Ricci and perturbed 

Ricci metrics respectively. In [5] we established the following curvature formulae of 

these metrics: 

R - - = - ha(3 ^ijkl 11 
w<< 

Xs 

(3.4) 

{mk(ei3)Meaß) + T(Ueilmß(ej} dv 

-h«ß 
1*1 

]xs 
Qki(eijKß dv 

+ TpqhaßW5 <ikl 
<xs 

£k{eiq)eaß dv l^^ùù 
'x. 

Qki(eijKß dvX<< 

Qki(eijQki(eijKß $^^ 
Qki(eijKß dvQki(eijKß dv 
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and 

P- - = - ha(3 ijkl n 
w<<< 

Xs 
{r(&(e,j))fi(ca5) + r(&(ey))^(caï)} di; 

<p^$$$wxx 
ù^^$$$< << 

Xs 
(• + l)vk - vk(w<< 

(3.5) 

+ rvqha^hl8 << £k(eiq)eap dv 
fxs 

xww 
Xs 

(• + l)vk - vk(D + 
1) = Dvk - vkB = 

(• + l)vk - vk(D + 1) = Dvkk<< 

Unlike the case of the Weil-Petersson metric from which we can see the sign of 

the curvature directly, the above formulae are too complicated. On one hand we can 

see that these metrics are Kahler from these formulae. On the other hand, we need 

to look at the asymptotic of the curvature of these new metrics. In [5] and [6] we 

computed the asymptotic of these new metrics and their curvature: 

Theorem 3.2. — Let UQ = w< 
'3 = 1 

Uj + << 
j=m+l 

<i^^ The Ricci metric has the asymp­

totic: 

1. Tii = 
3 

4TT2 

xww 

\U\2 
(1 + O(u0)) and rfi = 4TT2 

3 
l**|2 
<ww (1 + O(u0)), ifi < m; 

2. r,7 = O 2 2 
uiUi \UU\ 

(Ui + Uj) and = 0(\Utj\), ifij < m and i ^ j ; 

3. T.- = O ti? 
<< 

and r ww = 0(\ti\), if i < m and j > m + 1/ 

4. 7^ = 0 (1) , ifij>m + l. 

The holomorphic sectional curvature of the Ricci metric has the asymptotic: 

L Rilii = ~ 
ww 

87r4|ti|4 r(l + O ^ o ) ) ifi < m; 

2. ^ = 0(1) i f i > m . w j j i ù ù < < 

We also have a weak curvature estimate of the Ricci metric. Let 

Ai = 
Uj 
\u\ if i <m 

1 if i > m. 

Then 

L %fcz = 0<<(1) ifhx<<j,k,l<<>m; 

2.(• + l)vk - vk(D + = 0(AiAjAk<Ai)0(uo) if at least one of these indices i^j<<^kj is less than 

or equal to m and they are not all equal to each other. 

The asymptotic of the perturbed Ricci metric and its curvature can be found in [5] 

and [6]. Also, precise estimates of the full curvature tensor of the Ricci and perturbed 

Ricci metrics, which will also be used in the proof of their goodness, can be found in 

[7] and [8]. 
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As a simple corollary of the curvature formulae and asymptotic analysis, in [5] we 
first proved the equivalence of canonical metrics on M5: 

Theorem 3.3. — All the canonical metrics on the moduli space Mg: the Teichmuller-
Kobayashi metric, the Carathéodory metric, the induced Bergman metric, the asymp­
totic Poincaré metric, the McMullen metric, the Ricci metric, the perturbed Ricci 
metric and the Kàhler-Einstein metric are equivalent. 

The new metrics we defined have nice curvature properties which can be used to 
control the Kàhler-Einstein metric. In [5] and [6] we proved 

Theorem 3.4. — Let Mg be the moduli space of genus g > 2 Riemann surfaces. Then 

— The Ricci and perturbed Ricci metrics are complete Kahler metrics with Poincaré 
growth. 

— The Ricci and perturbed Ricci metrics as well as the Kàhler-Einstein metric 
have bounded geometry on the Teichmüller space Tg. 

— The Ricci and holomorphic sectional curvatures of the perturbed Ricci metric 
are bounded from above and below by negative constants. 

— All the covariant derivatives of the curvature of the Kàhler-Einstein metric are 
bounded. 

The finer asymptotic of these metrics, their local connection forms and curvature 
forms will lead to the Mumford goodness which is a set of growth conditions of these 
metrics and their derivatives modeled on the Poincaré metric on the punctured disk. 
These conditions will guarantee the behavior of the Chern forms of these complete 
metrics. 

4. Notions of Goodness 

In this section we will discuss various notions of goodness. The central idea is to 
control the Chern forms, as currents, of singular Hermitian metrics on holomorphic 
vector bundles over quasi-projective varieties. 

Let M be a compact complex manifold and let (E, h) be a Hermitian vector bundle 
over M. We denote by (zi, • • • , zn) the local holomorphic coordinates on M and by 
(ei, • • • , em) the local holomorphic frame of E. Let = /i(ea, ep) and denote by 9 
and O the local connection and curvature forms of h. Then we have 0% = dih^h1^ dzi 
and 91 - R? -dzi A dzn where di = 

OLII J 
d 

OZi 
and 

(• + l)vk - vk(D + 1) = Dvk - vkB =(• + l)vk -<< vk 
(• + l)vk - vk(D + 1) = sw<<(D + 1) = Dvk - vkB = 
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The k-th Chern form Ck(h) of h is given by the coefficient of the term tk in the 

polynomial det xww ii^$ 
2TT 

e It is well known that 

(4.1) [ck(h)i =ck(E) 

as cohomology classes. However, this is no long true in general when M is noncompact. 

One needs growth conditions on h and its derivatives. The class of noncompact 

manifolds we are interested in is the quasi-projective manifolds. 

The first condition was given by Mumford in [11] which we will describe now. Let 

Xn be a projective manifold of complex dimension n and let D C X be a divisor of 

normal crossings. Let X = X \ D. 

We cover a neighborhood of D C X by finitely many polydiscs 

{Ua = (An,(z1,~-,zn))}aeA 

such that Va = Ua\D = (A*)m X Afc"m. Namely, Ua H D = {zx • • • zm = 0} . We let 

U = IJaeA Ua and V = [jaeA Va- On each Va we have the local Poincaré metric 

w$*ùù<<< 
w<<o^^$$$ 

- 1 
2 

m 

\i=l 

1 

2 N 2 ( l o g M ) w< 
dzi A dzi + 

n 

i=m+l 

dzi A dzi 

The Mumford goodness is a growth condition on differential forms. We recall the 

following definitions from [11]: 

Definition 4.1. — Let rj be a smooth local p-form defined on Va. 

— We say rj has Poincaré growth if there is a constant Ca > 0 depending on rj 

such that 

(• + l)vk - vk(D + 1) xww 
V 

1=1 

\\ti\\lp 
P, OC 

for any point z £ Va and ti, • • • , tp G TZX. 

- We say 7] is good if both rj and drj have Poincaré growth. 

Now let E be a holomorphic vector bundle of rank k over X and let E be the 

restriction of E to X. Let h be a Hermitian metric on E which may be singular along 

the divisor D. 

Definition 4.2. — An Hermitian metric h on E is good if for all z G V, assuming 

z €Va, and for all basis (ei, • • • , Ck) of E over Ua we have 

(• + l)vk - vk(D + 1) = Dv m 
^^^w<< 

log | ^ | ) p for some C > 0 and p>l. 

— The local 1-forms [dh • h are good on Va. Namely the local connection and 

curvature forms of h have Poincaré growth. 

Remark 4.1. — It is easy to see that the definition of Poincaré growth is independent 

of the choice of local data. 
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We collect the main properties of good metrics in the following theorem which is 

due to Mumford. Please see [11] for details. 

Theorem 4.1. — Let X and E be as above. Then 

— A form n G AP(X) with Poincaré growth defines a p-current [rj] on X. In fact 

we have 

r 
x 

\rj A £| < OO 

for any^eAk~P(X). 

- If both rj E AP(X) and£ G Aq(X) have Poincaré growth, thenrjAt, has Poincaré 

growth. 

- For a good form rj G AP(X), we have d[rj] = [drj]. 

- Given an Hermitian metric h on E, there is at most one extension E of E to 

X such that h is good. 

- If h is a good metric on E, the Chern forms Ci(E,h) are good forms. Fur­

thermore, as currents, they represent the corresponding Chern classes Ci{E) G 

H2i(X,C)-

The most important feature of a good metric on E is that we can compute the 

Chern classes of E via the Chern forms of h as currents. Namely, with the growth 

assumptions on the metric and its derivatives, we can integrate by part, so Chern-Weil 

theory still holds. However, the Mumford goodness is very strong and hard to check. 

Also, there are only few examples. In [7] we showed that the canonical metrics on 

the moduli space of Riemann surfaces are Mumford good. 

We now give weaker notions of goodness which still have the major properties of 

Mumford good metrics. The definition of Mumford on Poincaré growth and good 

forms is quite local. We first give a global formulation of these growth conditions. 

Please see [7] for details. 

We call a Kàhler metric wp o n l a Poincaré type metric if ujp is equivalent to uopi0i 

when restricted to VA. 

Remark 4.2. — It is easy to see that 

— Any two Poincaré type metrics are equivalent. 

- The quasi-projective Kàhler manifold (X, UJP) is complete and has finite volume. 

Our first observation is 

Lemma 4.1. — A smooth form rj G Aq(X) has Poincaré growth if and only if\\ri\\Up < 

C for some constant C and a Poincaré metric on X. Namely rj has L°° bound with 

respect to Poincaré metrics. 
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Parallel to the Poincaré growth and good forms, we know define the p-growth and 

p-good forms by replacing the L°° norm by Lp norm. 

Definition 4.3. — Let p > 1 be a real number. A differential form 77 G Aq(X) has 

p-growth if 

llnlL eW(X,w„). 

The form rj is p-good if both 77 and dr\ have p-growth. 

We note here that the above definition is independent of the choice of up. To 

study the currents of p-growth forms, we need a special cut-off functions. In [9] we 

construct a desirable cut-off function: 

Proposition 4.1. — There exists e$ > 0 such that for all 0 < £ < s$, there is a function 

p£ such that 

1. 0 < pe < 1. 

2. For any open neighborhood N of D in X, there is e > 0 such that supp(l — p£) C 

N. 

3. For each e > 0, there is a neighborhood N of D such that p£\N = 0. 

4. p£' > Pe for e' < e. 

5. There is a constant C, independent of e such that 

-CUJP < V^iddp£ < Cup 

and |V'p£| < C. 

6 lim p£ = 1. 
e—»0 

The p-good forms have similar behavior to good forms. 

Lemma 4.2. — For p > 1, if rj G Aq(X) has p-growth, then rj defines a q-current. If 

77 is p-good, then d[rj] = [drj]. Furthermore, if rj, 7/ have p and p' growth respectively, 

then 77 A 7/ has pp 
P+P' 

growth. 

Now we can generalize the Mumford good metrics. Similar to Definition 4.2 we 

define 

Definition 4.4. — A Hermitian metric h on E is p-qood if 

ocp (det h) -1 <C w<< 
fi=l logici 

v2s for some C > 0 and s > 1 

2. The local 1-forms (dh • h 1) 7 
a 

are p-good on Va. 

We have 

Theorem 4.2. — For p large enough, if the Hermitian metric h on E is p-good, then 

the Chern forms of h represent the corresponding Chern classes of E: 

[Ci(h)}=Ci(E)€H2i(X,C)-w< 
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The p-goodness is essentially integral conditions which is much easier to check than 
the Mumford goodness. Since the most important part of controlling the growth the 
singular metric h is to study its Chern forms, we can just take this as a definition. 

Definition 4.5. — A Hermitian metric h on E is intrinsically good if the Chern form 
cAh) defines a 2i-current and 

[ci(h)]=ci(E). 

It turns out that the intrinsic goodness is preserved by the continuity method and 
the Kahler-Ricci flow. We have the following relation: 

good metrics p-good metrics for large p =>• intrinsic good metrics 

There are only few examples of Mumford good metrics. In [11] Mumford 
showed that the invariant metrics on Hermitian symmetric spaces are good. Later 
Wolpert [18] showed that the hyperbolic metric on the relative dualizing sheaf is 
good. In [15] Trapani proved that the metric on the logarithmic tangent bundle of 
Mg is good. In the last cases, the holomorphic bundle involoved are line bundles. In 
[71 and [81 we nrove: 

Theorem 4.3. — Let E = T ^ ( — \ogD) be the logarithmic tangent bundle of the DM 
moduli space and let E = E \M)9- Then the metrics on E induced by the Weil-
Petersson metric, the Ricci and perturbed Ricci metrics are good in the sense of 

Mumford. 

The moduli space Mg together with these metrics provide very interesting examples 
of good geometry. It is more interesting to study the goodness of the Kahler-Einstein 
metric since many consequences follows. 

5. The Monge-Ampere Equation and the Goodness 

As we described in last section, the Chern forms of various good singular Hermitian 
metrics represent corresponding Chern classes. Thus it is important to study the 
goodness of canonical metrics on the quasi-projective manifold X such as the the 
Kahler-Einstein metric. 

Let X be a quasi-projective manifold obtained by removing a normal crossing 
divisor D from a projective manifold X. Let E = T^(—logD) be the logarithmic 
tangent bundle and let E be the restriction of E to X. In this section we will consider 
Hermitian metrics on E induced from a Kàhler metric on X. 
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Let ujg be a Kahler metric on X. Let U, (zi, • • • , zn) be a chart of X such that 
U C\ D = {zi • — ZM = 0}. It is clear that a local frame of E is given by 

e = (ei, • • • ,en) = ô w< 
<oo ^sqq <<^$ 

a 
x<o 

d 
dzm+i 

^^$w< 
0 

9zn 
Let ft be the metric on E induced by ujg. Then under this frame we have 

(5.1) 9~ = 

zizj9{j hj<m 

(• + l)vk - vk(D + 1) 

Zjg-î j <m<i 

9ij i,j > m. 

By using the above frame and the local formula of the metric ft, we have 

Lemma 5.1. — The Chern forms of ft and ujg coincide. Namely, 

Cfc(ft) = ck(g). 

If we assume the background metric UJ9 has Poincaré growth, then the induced 
metric ft is good will imply that the metric g has bounded curvature. The converse 
is not true in general. But we can bound the Chern froms: 

Lemma 5.2. — / / LU9 is a Kahler metric on X with bounded curvature and has 
Poincaré growth, then the Chern forms of the metric ft on E induced by u)g are good 
in the sense of Mumford. 

In the case when ft is induced by the Kàhler-Einstein metric on X, to ensure the 
Chern forms of ft represent the correct Chern classes, we need control on the Kahler-
Einstein metric. 

The following result is a weaker version of our work. We state this version to 
illustrate the ideas. 

Theorem 5.1. — Let X be a projective manifold with d i m c ^ = n. Let D C X be a 
divisor of normal crossings, let X = X\D, let E = T-^{— log D) and let E = E \x > 

Let cjg be a Kahler metric on X with bounded curvature and Poincaré growth. 
Assume Ric(cjg) + ug = ddf where f is a bounded smooth function. Then 

— There exist a unique Kähler-Einstein metric uKE on X with Poincaré growth. 
— The curvature and covariant derivatives of curvature of the Kähler-Einstein 

metric are bounded. 
— If Lüg is intrinsic good, then UJke is intrinsic good. Furthermore, all metrics 

along the paths of continuity and Kähler-Ricci flow are intrinsic good. 

Remark 5.1. — In [8] we will prove a stronger version of the above theorem by re­
placing the L°° bound of the Ricci potential / by Lp bound. 
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On the other hand, if we know the existence and properties of the Kàhler-Einstein 

metric by other means, we can prove the above theorem by only assuming / £ 

L (X,U>g) 

Theorem 5.2. — Let UJ9 be a Kàhler metric on X with Poincaré growth and bounded 

curvature. Assume Ric(ujg)+ug = ddf where f € L1(X,UJ9) and there exist a Kàhler-

Einstein metric on X which is equivalent to uog. If ujg is intrinsically good, then UJKE 

is also intrinsically good. 

By combining Theorem 3.3, 4.3 and 5.2 we have 

Theorem 5.3. — Let p be the metric on the logarithmic tangent bundle over the moduli 

space Mg induced by the Kàhler-Einstein metric on Mg. Then p is intrinsically good. 

The intrinsic goodness of the Kàhler-Einstein metric will imply stability of the log 

tangent bundle and a strong Chern number inequality. As a consequence we proved 

in [6] and [7] 

Theorem 5.4. — The logarithmic tangent bundle E of the DM moduli space Adg is 

stable with respect to the canonical polarization. Furthermore, we have 

C!(E)2 < 
eg - 4 

Sg-3 
C2(E) 

We now briefly describe the proof of these two theorems. Please see [7] and [8] for 

details. 

We first deform the background ug along the Kàhler-Ricci flow for short time such 

that all the covariant derivatives of uog are bounded. In the case, the intrinsic goodness 

of ujg is also preserved. 

The existence of the Kàhler-Einstein metric follows from the Ck estimates of the 

complex Monge-Ampere equation 

(ug + ddy)n 

9 

= ev+f 

where we use Yau's generalized maximum principle. To prove that the intrinsic good­

ness of ug is preserved along the path of continuity, if we denote by g' the Kàhler-

Einstein metric, we need to show that 

Ck(g)-ck(gf) 

is the 0-current. Let R, R', T, V be the curvatures and connections of g and g' respec­

tively. 

We first deal with renormalized Chern character forms. For a Hermitian metric h 

on a holomorphic vector bundle E with curvature 6 , the fc-th Chern character form 
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is defined by 

chk(h) = Tr 
f-l 
2tt 

e 
k k 

To simplify the notation, we drop the constant 
2TT 

As differential forms we have 

chk(g) - chk(g') = d Tr 

k-l 

i=0 

R*-1-1 A (r - r') A Rn 

and 

r ; p

f c - r r f c = ^ V ; ^ . 

By the C2 and C 3 estimate we know 

Tr 

(k-\ 

\ i = 0 

R k - l - i A _ p/) A jj/i 

has Poincaré growth. Since both chk(g) and chk(g
f) has Poincaré growth it is easy to 

see chk(g) — chk(g') is the 0 current. 

This is proved by integration by part where we use the cut-off function as in 

Proposition 4.1. Finally, by the expression of ck{g) and ck(g') via chk{g) and chk(g') 

we see that ck(g) — ck(g
f) is also the 0 current. 

6. Rigidity and Gauss-Bonnet Theorem 

In this final section we discuss the applications of the curvature and asymptotic 

properties of the canonical metrics on the curve moduli Mg. 

The Weil-Petersson metric has many negative curvature properties. Ahlfors showed 

that its Riemannian sectional curvature is negative. Later, it was proved by Wolpert 

that the bisectional curvature of the Weil-Petersson metric is negative. In [12] Schu­

macher showed that the curvature of the Weil-Petersson metric is strongly negative 

in the sense of Siu. In [7] we proved that the Weil-Petersson metric is dual-Nakano 

negative from which we will derive Nakano-type vanishing theorems. 

We first recall the concept of dual Nakano negativity. Let (Em, h) be a holomorphic 

vector bundle with a Hermitian metric over a complex manifold Mn. The curvature 

of E is given by 

(• + l)ww^^^^vk - vk(D + 1) = Dvk - vkB = 

(E, h) is Nakano semi-positive if the curvature P defines a semi-positive form on the 

bundle E®TM- Namely, 

(6.1) P.-: ^CÌaCJP > О dxww 
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for all m x n complex matrix C. The metric h is Nakano positive if (6.1) is a strict 

inequality whenever C ̂  0. E is dual Nakano (semi) negative if the dual bundle with 

the induced metric (E*,h*) is Nakano (semi) positive. 

In [7] we showed 

Theorem 6.1. — Let Mg be the moduli space of Riemann surfaces of genus g > 2. 

Then (TKA , u w i s dual Nakano neqative. 

Let us briefly describe the idea. Please see [7] for details. By the definition of the 

dual-Nakano negativity, we only need to show that (T*Mg,h*) is Nakano positive. 

Let Rfikj be the curvature of Mg and Pfjkl be the curvature of the cotangent bundle. 

We first have 

P - - = 
mnkl 

(• + l)vk - v d 
+ 1) = Dvk - g 

Thus if we let akj <c 
^^c^<x^^x we have 

mnkl Qmkçril _ 

i,j,k,l 
RijklakJali -

i,j,k,l 
RkjilakJali = 

i,j,k,l 
Ri~jkìa^alk-

Recall that at X G Mg we have 

Rijkl 
'x 

(eijfkl + eiJkj> dv. 

By combining the above two formulae, to prove that the WP metric is Nakano negative 

is equivalent to show that 

(6.2) 
X 

(eijfki + eufkj) aiJaik dv>0 

and the left hand side of the above formula is strictly positive if A = [a^] ̂  0. 

We now describe the proof with the assumption that the matrix [a^] is invertible. 

The general case can be found in [7] which follows from the same idea. 

Recall that if we let • = — \~Ydzc\ be the Laplace operator with respect to the KE 

metric A on X and let T = ( • + l ) - 1 , then e.j = T ( / ^ ) where f^ = AiAj and Ai 

is the harmonic representative of the Kodaira-Spencer class ofw<<^ùwhere • • ss• ,tn) 

are local coordinates on Mg and z is the local coordinate on Xt. 

Let Bj = Yl7=i aijM- Then the inequality (6.2) is equivalent to 

(6=3] 
3,k 

R(BjìBkìAk,Aj) =w<< 

3,k X 
(T (BjAj) AkBk + T (BjBk) AkAj) dv > 0. 

Since {Ak} is a basis of the space H0il(X,Tx) and the matrix { a ^ } is an arbitrary 

invertible matrix, we need to show that the inequality (6.3) holds for any two bases 

{Ai} and {Bi}. Of course we can choose one basis, say {Ai}, and let the other basis 

vary freely. 
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Now we prove the inequality (6.3). Let \x = J \ BjAj. Then the first term in (6.3) 
is 

3,k X 
T (BjAj) AkBk dv = 

X 
T(fi)jl dv > 0. 

To check the second term, we let G(z, w) be the Green's function of the operator T. 
Namely, for any function / € C°°(X), we have T(f) = JxG(z,w)w<^^f(w) dv(w). Now 
we let 

H(z,w) = 
J 

(• + l)vk - vk(D + 

We know the second term of (6.3) is 

3,k FX 
T (BjBk) AkAj dv = 

3,k 
X 'X 

G(z,w)Bj(w)Bk(w)Ak^^(z)Aj^^(z) dv(w)dv(z) 

^nb 
X X 

G(z,w)H(z,w)H(z,wbv)dv^^(w)dv(z) > 0 

where the last inequality follows from the fact that the Green's function G is non-
negative which was proved by Wolpert in [16]. 

The asymptotic of Weil-Petersson , Ricci and perturbed Ricci metrics give us good 
control of the L2 cohomology with bundle twist. In [7] we showed 

Theorem 6.2. — Let Mg be the moduli space of genus g curves and let Mg be its 
Deligne-Mumford compactification. Then 

#*2) ({Mg,ur),^w<<{TMg,uWP)) ̂  H\Mgcxx,Tjtg{-\ogD)). 

Combining with the dual-Nakano negativity of the Weil-Petersson metric we have 

Theorem 6.3. — The Chern numbers of the log cotangent bundle T-^ (log D) of the 
moduli spaces of Riemann surfaces are positive. 

More importantly, we proved that the complex structure of the moduli space is 
infinitesimally rigid: 

Theorem 6.4. — When q / 3g — 3, the L2 cohomology groups vanish 

H$ ((Mg,uT), (Tjig(-\ogD),uWP)) = 0. 

One of the most important consequence of the curvature properties and goodness of 
the Ricci, perturbed Ricci and Kàhler-Einstein metrics is the Gauss-Bonnet Theorem 
on Mg. Together with L. Ji, we showed in [7] 

Theorem 6.5. — (Liu, Ji, Sun, Yau) The Gauss-Bonnet Theorem hold on the moduli 
space equipped with the Ricci, perturbed Ricci or Kàhler-Einstein metrics: 

Mg 
w<<$$$ôoo 

x<<< 
Cn(^f) = 

^$$w< 
Cn(VKE)=X(Mg) = 

B2g 
Mg -1) 
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Here x(Mg) is the orbifold Euler characteristic of Mg and n = 3g — 3. 

The computation of the Euler characteristic of the moduli space is due to Zagier. 

In the proof of the Gauss-Bonnet Theorem we used the fact that the curvature of 

the Ricci, perturbed Ricci and Kahler-Einstein metrics are bounded. However, the 

curvature of the Weil-Petersson metric is not bounded. However, as an application of 

the Mumford goodness of the Weil-Petersson metric and the Ricci metric we have 

Theorem 6.6. — We have 

X vxw!: (-log£>)) = 
'Mg 

Cn(^r) = 
JMQ 

cn(0JWP) = 
B2q 

4 0 ( 0 - 1 ) 

where n = 3q — 3. 

This theorem gave us the first log Chern number of the DM moduli space Mg. 

Corollary 6.1. — We have 

x(Mg,Tjz(-iogD)) = x(Mg) = 
B2g 

4 0 ( 0 - 1 ) ' 
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GRADIENT KAHLER RICCI SOLITONS 

by 

R o b e r t L. Bryant 

To Jean Pierre Bourguignon, on the occasion of his 60th birthday. 

Abstract. — Some observations about the local and global generality of gradient 
Kahler Ricci solitons are made, including the existence of a canonically associated 
holomorphic volume form and vector field, the local generality of solutions with a 
prescribed holomorphic volume form and vector field, and the existence of Poincaré 
coordinates in the case that the Ricci curvature is positive and the vector field has a 
fixed point. 

Résumé (Solitons gradients de Kähler-Ricci). — Nous proposons quelques observations 
sur les généralités locale et globale des solitons gradients de Kähler-Ricci, y compris 
l'existence d'une forme de volume holomorphe et d'un champ de vecteurs canonique-
ment associés, la généralité locale de solutions pour une forme de volume holomorphe 
et un champ de vecteurs donnés, et l'existence de coordonnées de Poincaré dans le 
cas où la courbure de Ricci est positive et le champ de vecteurs a un point fixe. 

1. Introduction and Summary 

This article concerns the local and global geometry of gradient Kahler Ricci soli­

tons, i.e., Kahler metrics g on a complex n-manifold M that admit a Ricci potential, 

i.e., a function / such that Ric(#) = V 2 / (where V denotes the Levi-Civita connection 

of M . 

These metrics arise as limiting metrics in the study of the Ricci flow gt = —2 Ric(#) 

applied to Kahler metrics. Under the Ricci flow, a gradient Kahler Ricci soliton on 

2000 Mathematics Subject Classification. — 53C55, 58G11. 
Key words and phrases. — Ricci flow, solitons, normal forms. 

Thanks to Duke University for its support via a research grant, to the NSF for its support via grants 
DMS-8905207, DMS-0103884, and DMS-0604195 and to Columbia University for its support via an 
Eilenberg Visiting Professorship. 

© Astérisque 321, SMF 2008 



52 R. BRYANT 

evolves by flowing under the vector field V / , i.e., 

1.1 g(t) = exp ( - t v / ) 
* [do 

In particular, if the flow of V / is complete, then the Ricci flow with initial value #0 

exists for all time. 

The reader who wants more background on these metrics might consult the ref­

erences and survey articles [3, 5, 10]. The references [8, 9, 6, 14] contain further 

important work in the area and will be cited further below. 

1.1. Basic facts. — Unless the metric g admits flat factors, the equation Ric(p) = 

V 2 / determines / up to an additive constant and it does no harm to fix a choice of / 

for the discussion. For simplicity, it does no harm to assume that g has no (local) flat 

factors and so this will frequently be done. Also, the Ricci-flat case (aka the Calabi-

Yau case), in which Ric(#) = 0, is a special case that is usually treated by different 

methods, so it will usually be assumed that Ric(#) ^ 0. (Indeed, most of the latter 

part of this article will focus on the case in which Ric (o) > 0) . 

1.1.1. The associated holomorphic vector field Z. — One of the earliest observa­

tions [2] made about gradient Kàhler Ricci solitons is that the vector field V / is 

the real part of a holomorphic vector field and that, moreover, J ( V / ) is a Killing field 

for g. In this article, I will take Z = | ( V / — i J ( V / ) ) to be the holomorphic vector 

field associated to g. 

1.1.2. The holomorphic volume form T . — In the Ricci-flat case, at least when M 

is simply connected, it is well-known that there is a ^-parallel holomorphic volume 

form T , i.e., one which satisfies the condition that i n 2 2 _ n T A T is the real volume 

form determined by g and the J-orientation. 

In § 2.2, I note that, for any gradient Kàhler Ricci soliton g with Ricci potential / 

defined on a simply connected M , there is a holomorphic volume form T (unique up 

to a constant multiple of modulus 1) such that i n 2~n e~f T A T is the real volume 

form determined by g and the J-orientation. Of course, T is not ^-parallel (unless g 

is Ricci-flat) but satisfies V T = \ df 0 T . 

This leads to a notion of special coordinate charts for (#, / ) i.e., coordinate 

charts ([ / , z) such that the associated coordinate volume form dz = dz1 A • • • A dzn 

is the restriction of T to U. In such coordinate charts, several of the usual formulae 

simplify for gradient Kàhler Ricci solitons. 

1.1.3. The T-divergence of Z. — Given a vector field and and volume form, the 

divergence of the vector field with respect to the volume form is well defined. It turns 

out to be useful to consider this quantity for Z and T . The divergence in this case is 

the (necessarily holomorphic) function h that satisfies Lz T = hT. 
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By general principles, the scalar function h must be expressible in terms of the first 

and second derivatives of / . Explicit computation (Proposition 4) yields 

1.2 2h = tig V 2 + | V / | I
2 = R (9, + | V / r , 

where R(g) = t r p ( R i c ( # ) ) is the scalar curvature of g. In particular, h is real-valued 

and therefore constant. Now, the constancy of R(g) + | V / | 2 had already been noted 

and utilized by Hamilton and Cao [6]. However, its interpretation as a holomorphic 

divergence seems to be new. 

1.2. Generality. — An interesting question is: How many gradient Kâhler Ricci 
solitons are there? Of course, this rather vaerue Question can be sharnened in several 

ways. 

The point of view adopted in this article is to start with a complex n-manifold M 

already endowed with a holomorphic volume form T and a holomorphic vector field Z 

and ask how many gradient Kahler solitons on M there might be (locally or globally) 

that have Z and T as their associated holomorphic data. 

An obvious necessary condition is that the divergence h of Z with respect to T 

must be a real constant. 

1.2.1. Nonsingular extension. — Away from the singularities (i.e., zeroes) of Z , this 

divergence condition turns out to be locally sufficient. 

More precisely, I show (see Theorem 2) that if H C M is an embedded complex 

hypersurface that is transverse at each of its points to Z , and go and fo are, re­

spectively, a real-analytic Kahler metric and function on then there is an open 

neighborhood U of H in M on which there exists a gradient Kahler Ricci soliton g 
with potential / whose associated holomorphic quantities are Z and T and such that g 
and / pull back to H to become go and / o - The pair (g, / ) is essentially uniquely 

specified by these conditions. The real-analyticity of the 'initial data' go and fo is 

necessary in order for an extention to exist since any gradient Kahler Ricci soliton is 

real-analytic anyway (see Remark 4) . 

Roughly speaking, this result shows that, away from singular points of Z , the local 

solitons g with associated holomorphic data ( Z , T ) depend on two arbitrary (real-

analytic) functions of 2n—2 variables. 

1.2.2. Singular existence. — The existence of (local) gradient Kahler solitons in a 

neighborhood of a singularity p of Z is both more subtle and more interesting. 

Even if the divergence of Z with respect to T is a real constant, it is not true in 

general that a gradient Kahler Ricci solition with Z and T as associated holomorphic 

data exists in a neighborhood of such a p. 
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I show (Proposition 6) that a necessary condition is that there exist p-centered 
holomorphic coordinates z = <<w<on a p-neighborhood U C M and real num­
bers hi,...<,h<n such that, on Uw<<, 

1.3 Z = h1z l 
d 

Bz1 
+ --- + hnzn d 

dzn' 

In other words, Z must be holomorphically linearizable, with real eigenvalues. ^ 
In such a case, if Lz T = hT where h is a constant, then h = hi + • • • + hn. I 

show (Proposition 7) that, moreover, in this case, one can always choose Z-linearizing 
coordinates as above so that T = dz1 A • • • A dzn. 

Thus, the possible local singular pairs (Z, T) that can be associated to a gradient 
Kahler Ricci soliton are, up to biholomorphism, parametrized by n real constants. 

Using this normal form, one then observes that, by taking products of solitons of 
dimension 1, any set of real constants (hi,..., hn) can occur (see Remark 9). Since, 
for any gradient Kahler Ricci soliton g with associated holomorphic data (Z, T) , the 
formula Ric(#) = LRe(^) g holds, it follows that if g is such a Kahler Ricci soliton de­
fined on a neighborhood of a point p with Z(p) = 0, then hi,..., hn are the eigenvalues 
(each of even multiplicity) of Kic(g) with respect to g at p. 

However, this does not fully answer the question of how 'general' the solitons are 
in a neighborhood of such a p. In fact, this very subtly depends on the numbers hi. 
For example, if the hi G R are linearly independent over Q, then any gradient Kahler 
Ricci soliton g with associated data (Z,Y) defined on a neighborhood of p must be 
invariant under the compact n-torus action generated by the closure of the flow of 
the imaginary part of Z. This puts severe restrictions on the possibilities for such 
solitons. 

At the conclusion of Section §3, I discuss the local generality problem near a 
singular point of Z and explain how it can best be viewed as an elliptic boundary 
value problem of a certain type, but do not go into any further detail. A fuller 
discussion of this case may perhaps be undertaken at a later date. 

1.3. The positive case. — In Section § 4,1 turn to an interesting special case: The 
case where g is complete, the Ricci curvature is positive, and the scalar curvature R(g) 
attains its maximum at some (necessarily unique) point p G M. 

This case has been studied before by Cao and Hamilton [6], who proved that this 
point p is a minimum of the Ricci potential / , that / is a proper plurisubharmonic 
exhaustion function on M (which is therefore Stein), and that, moreover, the Killing 
field J ( V / ) has a periodic orbit on 'many' of its level sets. 

(1) Of course, it is by no means true that every holomorphic vector field is holomorphically linearizable 
at each of its singular points. 
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For simplicity, the Ricci potential / will be be normalized so that f(p) = 0, so 

that / is positive away from p. 

I show (Theorem 3) that under these assumptions there exist global Z-linearizing 

coordinates z = (zl) : M —> Cn, so that M is biholomorphic to Cn (which generalizes 

an earlier result of Chau and Tarn [8]). (2) Moreover, as a consequence, it follows that 

every positive level set of / has at least n periodic orbits of J ( V / ) , a considerable 

sharpening of Cao and Hamilton's original results. 

This global coordinate system has several other applications. 

For example, I show that there is a Kahler potential <j> for g that is invariant under 

the flow of J ( V / ) and that this potential is unique up to an additive constant. (Which 

can be normalized away by requiring that (j)(p) = 0.) 

As another application, I show how to normalize the choice of Z-linearizing holo­

morphic coordinates up to an ambiguity that lies in a compact subgroup of U(n). 

This makes the function \z\ well-defined on M, so it is available for estimates. 

As an illustration of such use, I show that there are positive constants r and oi , 

a2, &i, 62, ci, and C2 such that, whenever x<<^*ù< 

ri.4 

ai log x< <;:!^^^^ < a2 log w< << 

h log I z < d(z,0] < b2 log I \z\ 5 

<:ù log Id \2 ̂ c<<<< <C2 f}og\z\\ 
.2 

<< 

I also give some bounds for a\ and a2- Perhaps these will be useful in further work. 

1.4. The toric case. — This section studies the geometry of the reduced equation 

in the case when a gradient Kaher Ricci soliton g defined on a neighborhood of 0 E Cn 

has toric symmetry, i.e., is invariant under the action of Tn, the diagonal subgroup 

of U(n). This may seem specialized, but, for example, if the associated holomorphic 

vector field is where h = (hi,..., hn) and the real numbers h±,..., hn have the 

'generic' property of being linearly independent over Q, then g has toric symmetry. 

Thus, metrics with toric symmetry are the rule when Z has a 'generic' singularity. 

I first derive the equation satisfied by the reduced potential, which turns out to 

be a singular Monge-Ampere equation. (The singularities are, of course, related to 

the singular orbits of the Tn-action.) I then show that, nevertheless, this singular 

(2) On 27 July 2004, about 12 hours before the first version of this article was posted on the arXiv, 
Chau and Tarn posted the first version of their article arXiv:math.DG/0407449 in which they prove, 
under the same hypotheses as in Theorem 3, that M is biholomorphic to Cn. I saw their posting 
just before I posted this article. Their method is different and does not produce Z-linearizing coor­
dinates, but has the advantage that it applies in the case of expanding solitons. In the second (much 
shortened) version of their article, posted on 2 August, 2004, they deduce their biholomorphism 
result from already-known results about automorphisms of complex manifolds. See [9]. 
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equation has good regularity and its singular initial value problem is well-posed in 

the sense of Gerard and Tahara [11]. 

As a consequence (Corollary 5) , it follows that, for any h G Rn, any real-analytic 

Tn_1-invariant Kahler metric on a neighborhood of 0 G Cn_1 is the restriction to Cn_1 

of an essentially unique toric gradient Kahler Ricci soliton on an open subset of Cn 

with associated holomorphic vector field Z = and associated holomorphic volume 

form T = dz. In particular, it follows that, in a sense made precise in that section, 

the toric gradient Kahler Ricci solitons on Cn depend on one 'arbitrary' real-analytic 

function of (n—1) (real) variables. 

Next, I show that the reduced (singular Monge-Ampere) equation is of Euler-

Lagrange type, at least, away from its singular locus, and discuss some of its con­

servation laws via an application of Noether's Theorem. (This is in contrast to the 

unreduced soliton equation, which is not variational). 

1.5. Acknowledgement. — This work is mostly based on notes written after 

a conversation with Richard Hamilton during a visit he made to Duke University 

in 1991. Section 4 is more recent, having been written after further conversations 

with Hamilton during a semester I spent at Columbia Universitv in the spring: of 

2004. 

It is a pleasure thank Hamilton for his interest and to thank Columbia Universitv 

for its hospitality. 

2. Associated Holomorphic Quantities 

In this section, constructions of some holomorphic quantities associated to a gra­
dient Kahler Ricci soliton g on a complex n-manifold Mn with Ricci potential / wil 

be described. 

2.1 . Preliminaries. — In order to avoid confusion because of various different con­

ventions in the literature, I will collect the notations, conventions, and normalizations 

to be used in this article. 

2.1.1. Tensors and inner products. — Factors of 2 are sometimes troubling and con­

fusing in Kahler geometry. 

For a and b in a vector space V, I will use the conventions a o b w< l 
2 

a (g) b + b 0 a) 

and a Ab = a <S) b — b® a. In particular, a (g) b = a o b + l 
2 a Ab. 

A real-valued inner product ( , ) on a real vector space V can be extended to Vc = 

C <S> V in several different ways. A natural way is to extend it as an Hermitian form, 

i.e., so that 

2.1 [Vi + ÎV2,Wi + i w 2 ) = [(VUW!) + (V2,W2)) + i ( ( V 2 , W l ) - (vi,W2)) 
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and that is the convention to be adopted here. 

If the real vector space V has a complex structure J : V —• V, then Vc = V^GV0 '1 

where V1,0 is the +i-eigenspace of J extended complex linearly to Vc while V0,1 is the 

(—i)-eigenspace of J. It is common practice to identify v G V with v1,0 = v — i Jv G 
V1'0, but some care must be taken with this. 

For example, an inner product (,) on V is compatible with J if (Jv, Jw) = (v, w) 

for all v,w G V. Note the identity 

(2.2; v ,1,0 
<w 

1,0' = 2\ cw<< 

For any J-compatible inner product (,) on V (or equivalently, quadratic form' 

there is an associated 2-form 77 denned by 

(2.3) T)(v, w) = (J<<<v, w). 

2.1.2. Coordinate expressions and the Ricci form. — Letx<<<$*sqqq z = f i> 
J : U -> Cn be a 

holomorphic coordinate chart on an open set U C M. The metric g restricted to U 

can be expressed in the form 

[2Ä g = gijàzloç<<\z3 

for some functions g^ = g^ on U. The associated Kahler form ft then has the 

coordinate expression 

w< n= y i jdz iAdz j<< . 

Note that gijdzi(S)dzj = g - 2iÜ. 

The Ricci tensor Ric(p) is J-compatible since g is Kahler, and hence has a coor­

dinate expression Ric(#) = RjkdzJodz* where Ä = Rkj- Its associated 2-form p is 
computed by the formula 

[2.6] P = i 
2 

ßijd̂ Adx<<<<̂ ' = -iddG 

where 

(2.T G = log det(̂ m̂mkj). 

While p is independent of the coordinate chart used to compute it, the function G 

does depend on the coordinate chart. 

The scalar curvature R(g) = tro(Ric(^)) has the coordinate expression 

(2.8) R(g) = 2JsRiS 

and satisfies <p^ùm x<< = 2n p A CI n-l 
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2.1.3. The gradient Kâhler Ricci soliton condition. — The following equivalent for­
mulation of the gradient Kâhler Ricci soliton condition is well-known: 

Proposition 1. — A real-valued function f on M satisfies Ric(#) = D2f if and only 
if p = \ dd f and D0,2f = 0. This latter condition is equivalent to the condition that 
the g-gradient of f be the real part of a holomorphic vector field on M. • 

2.2. The associated holomorphic volume form. — In this subsection, given a 
gradient Kàhler Ricci soliton g with Ricci potential / on a simply-connected complex 
n-manifold M, a holomorphic volume form on M (unique up to a complex multiple 
of modulus 1) will be constructed. 

2.2.1. Existence of special coordinates. — The following result shows that there are 
coordinate systems in which the Ricci potential is more closely tied to the local coor­
dinate quantities. 

Proposition 2. — If g is a gradient Kahler Ricci soliton on M with Ricci potential f, 
then M has an atlas of holomorphic charts (U,z) satisfying log det(^j) = —/. 

Proof. — To begin, let (U, z) be any local holomorphic coordinate chart on M, with 
quantities gij and G defined as above. 

Since / is a Ricci potential for g, i.e., Ric(o) = D2f, it follows from (2.6) and 
Proposition 1 that 

(2.9; -iddG = iddf. 

Thus, / 4- G is pluriharmonic. Assuming further that the domain U of the coordinate 
system z is simply connected, there exists a holomorphic function p on U so that 

;2.io; f = -G+p + p. 

Now let w be any other local coordinate system on the same simply connected do­
main U in M and write 

(2.ir w<< i 
2 

hij dw1 A dwJ. 

Then H = log det(hij) is of the form 

(2.12) H=G+J+J 

where J is the log-determinant of the Jacobian matrix of the change of variables from 
z to w, i.e., 

(2.13 dz1 A dz2 A • A dzn = eJ dw1 A dw2 A • • • A dwn . 

It follows that every point of U has an open neighborhood V on which there exists 
a coordinate chart w for which —H = f, the Ricci potential. • 
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Definition 1 (Special coordinates). — Let g be a gradient Kahler Ricci soliton on M 

with Ricci potential / . A coordinate chart (U,z) for which logdet(^j) = —/ will be 

said to be special for (#, / ) . 

Remark 1 (The volume form in special coordinates). — A coordinate chart (£/, z) is spe­

cial for (g, / ) if and only if the volume form of g satisfies 

(2.14; dvol^ x< 
1 

n! 
<^ùm 

x<< 

> 2 

n 
e ^ dz A dz. 

Theorem 1 (Existence of holomorphic volume forms). — Let M be a simply connected 

complex n-manifold endowed with a gradient Kahler Ricci soliton g with associated 

Kahler form Q, and a choice of Ricci potential f. Then there exists a holomorphic 

volume form T on M, unique up to muliplcation by a complex number of modulus 1. 

with the property that 

'2.15) dvolg ̂ ùù 
1 

n! 
<ww $*ù 

'in 

2 

n 
e~fT A T . 

Proof. — For any two (#, /)-special coordinate charts z and w on the same domain U, 

the ratio of their corresponding holomorphic volume forms is a constant of modulus 1. 

The volume forms of special coordinate systems are thus the sections of a flat 

connection Vo on the canonical bundle of M, i.e., the bundle whose sections are the 

holomorphic volume forms on M. Since M is simply connected, the canonical bundle 

of M has a global Vo-flat section T that is unique up to a multiplicative constant. 

By construction, T satisfies (2.15). Its uniqueness up to multiplication by a con­

stant of modulus 1 is now evident. • 

Definition 2 (Associated holomorphic volume forms). — Given a gradient Kahler Ricci 

soliton g with Ricci potential / , a holomorphic volume form T satisfying (2.15) will 

be said to be associated to the pair (g, /). 

Remark 2 (Scaling effects on T) . — Scaling a gradient Kahler Ricci soliton g by a con­

stant produces another gradient Kahler Ricci soliton and adding a constant to / will 

produce another Ricci potential for g. 

If T is associated to ( # , / ) , then, for any real constants A > 0 and c, the re­

form Ànec T is associated to ;A2 9, f+2c). 

2.3. The holomorphic flow. — Write the ^-gradient of / as Z + Z where Z is of 

type (1,0). Thus, Z w< l 2 
V / - i J ( V / ) ) . 
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2.3.1. The infinitesimal symmetry. — By the standard Kahler identities, Z is the 

unique vector field of type (1,0) satisfying 

2.16) df = -iZ^n. 

Writing Z — X — iY — X — i JX, it follows that, in addition to X being the one-half 

the gradient of / , the vector field Y = JX is ^-Hamiltonian. Thus, the flow of Y 

preserves ft. 

Since Z is holomorphic by Proposition 1, the flow of Y also preserves the complex 

structure on M. 

Hence, Y must be a Killing vector field for the metric g. 

Thus, a gradient Kahler Ricci soliton that is not Ricci-flat always has a nontrivial 

infinitesimal symmetry. 

Proposition 3. — The singular locus of Z is a disjoint union of nonsingular complex 

submanifolds of M, each of which is totally geodesic in the metric g. 

Proof — Since Z is holomorphic, its singular locus (i.e., the locus where it vanishes) 

is a complex subvariety of M. However, since this locus is also the zero locus of Y = 

—Im(Z), which is a Killing field for g, this locus is a submanifold that is totally 

geodesic with respect to g. In particular, it must be smooth and hence nonsingular 

as a complex subvariety. • 

2.3.2. Z in special coordinates. — Assume ([/, z) is a special local coordinate system. 

Since 

[2.\T dG = 9iJ dgij 

x<< 
dzk <^$*ùù 

the formula for Z in special coordinates is 

f2.18) Z = Ze-
d 

dze 
x<<< 23 

Ik <^$ùù dgi} 
dzk) 

d 
w<<< 

Thus, the equations for a gradient Kahler Ricci soliton in special coordinates are that 

the functions Ze defined by (2.18) be holomorphic. 

In fact, the expression in (2.18) can be simplified, since the closure of f2 is equivalent 

to the equations 

(2.19" 
dgij 

<^ù* 
x<< 

d9ik 
dzi ' 

Thus, 

'2.20) Zl = -2g 
w<<ù:; àgi-. 

dzk 
= -2 g ¿3 x<< d9ik 

dzi 
= 2 o « . 9fk 

dg Ik 

dzi 
= 2 

dg 
dzó ' 

where I have used the identity ^ù 
vm 9fk x<< $*ù and the identity 9ik9 ik w< ̂ *ùù and its 

derivatives. 
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2.3.3. The T-divergence of Z. — Since Z is holomorphic, the Lie derivative of T 

with respect to Z must be of the form h T where h is a holomorphic function on M 

(usually called the divergence of Z with respect to T) . 

Replacing T by AT for any A E C* will not affect the definition of ft, so the 

function ft is intrinsic to the geometry of the soliton. On general principle, it must be 

computable in terms of the first and second covariant derivatives of / , which leads to 

the following; interpretation of a result of Cao and Hamilton: 

Proposition 4. — The holomorphic function ft is real-valued (and therefore constant). 

Moreover, 

[2.21] 2ft = R(g) + 2\Z I2 

where R(g) is the scalar curvature of g and \Z\2 is the squared g-norm of Z. 

Proof. — In special coordinates, where T = dz1 A • • • A dzn, the function ft has the 

<<^$*ùmk 

2.22 ft = 
dZ£ 

dz£' 

Thus, by (2.20), 

(2.23) ft = 2 
dg ¿3 

dz* dzi' 

which shows that the holomorphic function ft is real-valued and therefore constant 

Moreover, since p = iddf, it follows that 

i 
2 

P i o t r T. 
l &; J o â 

Adzh = p = iddf = d Z-iQ 

[2.24 
x<< 2, 

a 9tk< 
w<< dzh 

<< i 
2 

^$ùù 
dz1 

dzi 
+ Z* dgek 

dzi 
dzj Adzk. 

In particular, in view of (2.19) and (2.18), 

'2.25 
R(g) = 2g 

<< 
Rjk = 2gfk 9ik 

dZl 

dzi 
+ Z" 

<$^^ 

dzi 
= 2h + 2g x<< z£ 

<^*m 

dzi 

= 2ft + 2Zl gfk Qgfk 
dz1 

= 2h-9i Ik zlzk = 2h-2 \Z 2 
5 

as claimed. • 

Remark 3 (Interpretations). — It was Cao and Hamilton [6, Lemma 4.1] who first 

observed that the quantity R(g) + |V/ |2 is constant for a (steady) gradient Kahler 

Ricci soliton. Since Z = | ( V / - i J ( V / ) ) , one has 2\Z\2 = |V / | 2 , so their expression 

is the right hand side of (2.21). 
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The interpretation of R(g) + |V/ |2 as the T-divergence of Z seems to be new. In 

fact, for any gradient Ricci soliton g (not necessarily Kahler) with Ricci potential / , 

one has the identity 

(2.26) x<< (e-̂  dvolg) = 2ft v<<<dvolg . 

where R(g) + | V / | 2 = 2h is a constant. This points out the importance of the modified 

volume form <<dvolg in the general case. 

In a sense, this constancy can be regarded as a sort of conservation law for the Ricci 

flow. Note that, since A / = R(g), this relation is equivalent to the equation A0(e^) = 

2ft e ' . 

2.4. Examples. — The associated holomorphic objects constructed so far make it 

possible to simplify somewhat the usual treatment of the known explicit examples. 

The following examples will be useful in later discussions in this article. 

Example 1 (The one-dimensional case: Hamilton's cigar). — Suppose that M is a Rie-

mann surface. Then T is a nowhere vanishing 1-form on M and Z is a holomorphic 

vector field on M that satisfies d (T(Z) ) = ftT, where ft is a constant. There are 

essentiallv two cases to consider. 

First, suppose that ft = 0. Then T ( Z ) is a constant, say T ( Z ) = c. 

If c = 0, then Z is identically zero, and, from (2.20) it follows that, in special 

coordinates z — (z1) the real-valued function g11 is constant. In particular, in special 

coordinates g = ^nld^1!2, so g is flat. 

If c 7̂  0, then Z is nowhere vanishing and, after adjusting T and the special 

coordinate system by a constant multiple, it can be assumed that c = 2, i.e., that 

T = dz1 and Z = 2 0/dz1. Then (2.20) implies that g11 = z1 + z1 + C for some 

constant C. By adding a constant to z1, it can be assumed that C = 0, so it follows 

that, in this coordinate system 

'2.27 9 = 
Idz1 |2 

<où^$**** 

Since M is supposed to be simply connected, one can take z1 to be globally defined. 

Thus M is immersed into the right half-plane in C in such a way that g is the pullback 

of the conformal metric defined by (2.27). Of course, this metric is not complete, even 

on the entire right half-plane. 

Second, assume that ft is not zero. Then T(Z) is a holomorphic function on M 

that has nowhere vanishing differential. Write T(Z) — hz1 for some (globally defined) 

holomorphic immersion z1 : M —> C. Then, by construction, T = dz1 and Z = 

hz1 d/dz1. By (2.20), it follows that 

[2.28] 911 x<< 
i 
2 

C + ft \z li2 
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for some constant c, so z1(M) C C must lie in the open set U in the w-plane on which 
c + ft^2 > 0. In fact, g must be the pullback under z1 : M —• U C C of the metric 

2.29 
2\dw\ I2 

c + h\w\ I2' 

This metric on the domain U C C is not complete unless both c and ft are nonnegative 
and it is flat unless both c and ft are positive. In this latter case, this metric is simply 
Hamilton's 'cigar' soliton [12]. 

Consequently, in dimension 1, the only complete gradient Kahler Ricci solitons are 
either flat or one of Hamilton's 'cigar' solitons (which are all homothetic to a single 
example). 

Note that, under the Ricci flow gt = — 2Ric(#), the metric (2.29) evolves as 

2.30; 9(t) = 
2\dw\ I2 

e2htc _|_ ̂  1^ I2 w<< 
2 d e~htw) i2 

c + ft e~htw\ i2 <^*mm -t) * 9o] 

where $(t)(w) — ehtw is the flow of twice the real part of Z = hwd/dw. 

Example 2 (Products). — By taking products of the 1-dimensional examples, one can 
construct a family of complete examples on Cn: Let fti,..., ftn and c i , . . . , cn be 
positive real numbers and consider the metric on C™ defined by 

(2.31 9 = 
n 

k=l 

2\dwk\ |2 

[Ck + ftfc \Wk\ 2\ ' 

This is, of course, a gradient Kahler Ricci soliton, with associated holomorphic volume 
form and vector field 

2.32 T = dw1 A dw2 A • • • A dwn, Z = 
n 

k=l 

x<<<$* d 
dwk 

The Ricci curvature is 

2.33 Ric(<?) = 
n 

k=l 

2ckhk \dwk\ I2 

ck + hk \wk\2 x2-

Although these product examples are trivial generalizations of Hamilton's cigar 
soliton, they will be useful in observations to be made below. 

Also, note that, even if the hk are not positive, as long as the Ck are positive, the 
formula (2.31) defines an incomplete gradient Kahler Ricci soliton on the poly cylinder 
defined by the inequalities Ck + hk\wk\2 > 0. 

Example 3 (Cao's Soliton). — One more case of an easily constructed example is the 
gradient Kahler Ricci soliton metric g on Cn that is invariant under U(n), discovered 
by H.-D. Cao [2]. The form of this metric can be derived as follows: 
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Suppose that such a metric g is given on Cn. (One could do this analysis on 

any U(n)-invariant domain in Cn, and Cao does this, but I will not pursue this more 

general case further here.) The group U(n) must preserve the associated holomorphic 

volume form T up to a constant multiple and this implies that T must be a constant 

multiple of the standard volume form dz1 A • • • A dzn. Since T is only determined 

up to a constant multiple anyway, there is no loss of generality in assuming that 

T = d^1 A - • -Adzn. Furthermore, the vector field Z must also be invariant under U(n), 

which implies that Z must be a multiple of the radial vector field. Since d(Z-"T) = h T 

where h is real, it follows that 

f2.34l Z = h 
n 

k=l 

w< d 
<^ùù 

Now, the condition that g be rotationally invariant with associated Kâhler form 

closed implies that 

(2.35} 9iï = a [r << c^*ù (r) Z ZJ 

for some function a of r = \z1\2+'"+\zn\2 that satisfies ra'(r)+a(r) > 0 and a(r) > 0 

(when n > 1). Thus G = logi a{r) n-l . ra'(r)+a(r)) in this coordinate system. Now, 
the identity G = —/, the equation (2.16), and the above formula for the coefficients 

of ft, combine to yield 

:2.36 8G = iZ^n = 
h 

2 
ra (r)+a(r), )dr = x<< 

h 

2 
8 ra(r)) 

Supposing that n > 1 (since the n = 1 case has already been treated), it follows 

that G + h 
2 •ra(r) must be constant, i.e., that 

(2.37; ai r n-l [ra(r) 
<< 
<^* t(h/2)ra(r) = a (o: n 

Upon scaling T by a constant, it can be assumed that a(0) = 1, so assume this from 

now on. Also, one can assume that h is nonzero since, otherwise, the solution that is 

smooth at r = 0 is simply a(r) = a(0) = 1, which gives the flat metric. 

The ODE (2.37) for a is singular at r = 0, so the existence of a smooth solution 

near r = 0 is not immediately apparent. 

Fortunately, (2.37) can be integrated by quadrature: Set b(r) = (h/2)ra(r) and 

note that (2.37) can be written in terms of b as 

;2.38; b r \n—1 e6 [r] 6' r c<< (h/2) nrn-l^ 

Integrating both sides from 0 to r > 0 yields an equation of the form 

(2.39) - 1 n ̂ *ùw< i!ebl <^* <$*ù M 
n-l 

k=0 

-b(r 
< 

fc! 
x<< 

h 

,2. 

n $ùù 

n ' 
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Set 

(2 .4CT F(b) = ( - l )n (n - l ) ! e6 x<<< ww 
n-l 

k=0 

-b k 

kl 
~ eb 

= (-l)n(n-l)!e6 

n n(n+l) 
+ . . . xw 

Now, F has a power series of the form Fib) = 0 
n 

bn 1 + n 
n+1 

6 + . " , so F can 

be written in the form F(b) ww 1 
n 

www n for an analytic function of the form f(b) = 
w (1 + 1 

n+1 w^*mm The analytic function / is easily seen to satisfy fib) > 0 for all b 

and to satisfy the limits 

' 2 . 4 1 ' lim 
ò—>+oo ' 

p^ùw< = 00 and lim f(b) 
o—• — oo 

<^*ù n n\. 

In particular, / maps R diffeomorphically onto (— vn!, oo) and is smoothly invertible. 

Of course, f (0) = 0. 

Since (2.39) is equivalent to x<<< n ^*ùù h 
2 r n 

1 
when ft > 0 it can be solved 

for r > 0 by setting Hr) = f-X h 
K2 r ), yielding a unique real-analytic solution with a 

power series of the form 

(2.42; b(r) = 
ft 

2 r — 
ft2 

4 (n+r 
2 

R = (-l)n(n-l)!e6 

Consequently, when ft > 0, the solution b is defined for all r > 0 and is positive 

and strictly increasing on the half-line r > 0. In particular, the function 

(2.43^ a(r) = 
2 b(r) 

ft R 
w<< 

ft 

2(n+r 
<^*mm 

is a positive real-analytic solution of (2.37) that is defined on the range 0 < r < oo 

and satisfies ra'(r) + a(r) = b'(r) > 0 on this range, so that the expression (2.35) 

defines a gradient Kahler Ricci soliton on Cn. 

An ODE analysis of this solution (which Cao [2] does) shows that when ft > 0 the 

resulting metric is complete on Cn and has positive sectional curvature. 

When ft < 0, the solution b(r) only exists for r < — ̂  y/n\. It is not difficult to 

see that the corresponding gradient Kahler Ricci soliton on a bounded ball in Cn is 

inextendible and incomplete. 

Chau and Schnürer [7] have shown that Cao's example is stable in a certain sense 

and hence is 'isolated' in an appropriately defined neighborhood in the space of Kähler-

Ricci solitons on Cn. 

3. Potentials and local generality 

In this section, the question of 'how many' gradient Kahler Ricci soliton metrics 

could give rise to specified holomorphic data (T, Z) on a complex manifold M will be 

considered. While this question is not easy to answer globally, it is not so difficult to 

answer locally. 
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Thus, throughout this section, assume that a complex n-manifold M is specified, 
together with a nonvanishing holomorphic volume form T on M and a holomorphic 
vector field Z on M such that d(Z - j T) = hT for some real constant h. 

3.1. Local potentials. — Suppose that U C M is an open subset on which there 
exists a function <j> such that 0 = ^ dd(j) is a positive definite (1, l)-form whose asso­
ciated Kàhler metric g is a gradient Ricci soliton with associated holomorphic data T 
and Z and Ricci potential f. 

By (2.16), 

;s.i) 

2df = -2iZ^n = Z-j {dd4>) = - Z - j (dot) 

= - Z - . (d(30)) = - Lz(d</>) + d(o0(Z)) 

= 5 ( a 0 ( z ) ) - ( L z ( ô 0 ) - a ( L z ( 0 ) ) ' 

By decomposition into type, it follows that 

3.2; d [V ~ d<t> 'Z) = 0. 

Consequently, F = 2 / - d<j)\ Z) = 2 / - AMZ) is a holomorphic function on U. 

3.2. Nonsingular extension problems. — Suppose now that p G U is not a 
singular point of Z. Then, by shrinking U if necessary, F can be written in the 
form F = dH(Z) for some holomorphic function H on the p-neighborhood U. Re­
placing <j) by (j)+H+H, gives a new potential for Q that satisfies the stronger condition 

3.3; d<t>(z) = d0(z) = 2/ . 

This function (j) is unique up to the addition of the real part of a holomorphic function 
that is constant on the orbits of Z. 

Of course, (3.3) implies that d(f>(Y) = 0, i.e., that (j) is invariant under the flow 
of y , the imaginary part of Z. 

3.2.1. Local reduction to equations. — In local coordinates z = z1) For which T = 
dz1 A • • • A dzn. one has / = — G so <\> satisfies the Monge-Ampere equation (3) 

(3.4) det 
d2ô 

= (-l)n(n-l)!e6 
e ^ X) = 1 

as well as the equation 

'3.5) dcf>(Y) = 0. 

Conversely, if 0 is a strictly pseudo-convex function defined on a p-neighborhood U 
that satisfies both (3.4) and (3.5), then the Kahler metric g whose associated Kahler 

(3) It is interesting to note that this equation is not of Euler-Lagrange type, even locally, unless Z = 0, 
i.e., the Ricci-flat case. Of course, in the Ricci-flat case, the variational nature of this equation is 
well-known. 
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form is ft = \ ddcj) is a gradient Kahler Ricci soliton on U with associated holomorphic 
form T and holomornhic vector field Z. 

Remark 4 (Real-analyticity of solitons). — Note that, because (3.4) is a real-analytic 

elliptic equation for the strictly pseudo-convex function </>, it follows by elliptic regu­

larity that <j> (and hence g) is real-analytic as well. 

Now, (3.4) and (3.5) are two PDE for </>, the first of second order and the second of 

first order. While this is an overdetermined system, it is not difficult to show that it 

is involutive in Cartan's sense. 

In fact, an analysis along the lines of exterior differential systems leads to the 

following result as a proper formulation of a 'Cauchy problem' for gradient Kahler 

Ricci solitons in the nonsinecular case: 

Theorem 2 (Nonsingular extensions). — Let Mn be a complex n-manifold endowed with 

a holomorphic volume form T and a nonzero vector field Z satisfying d ( Z - j T ) = hT 

for some real constant h. 

Let Hn~x C M be any embedded complex hypersurface that is transverse to Z, 
let fto be any real-analytic Kahler form on H, and let fo be any real-analytic function 
on H. 

Then there is an open H-neighborhood U C M on which there exists a gradient 
Kahler Ricci soliton g with associated Kahler form ft, holomorphic volume form T , 

holomornhic vector field Z, and Ricci potential f that satisfy^ 

(3.6: H*ft — ftoj and vw<<<<<^$ 

Moreover, g is locally unique in the sense that any other gradient Kahler Ricci soliton g 
defined on an open H-neighborhood U C M satisfying these initial conditions agrees 
with g on some open neighborhood of H in U C\U. 

Proof — The first step in the proof will be to construct a special set of local 'flow-
box ' coordinate charts adapted to the hypersurface H, the holomorphic form T , and 
the holomorphic vector field Z. 

To begin, note that, since, by hypothesis Zp does not lie in TpH C TPM for 

all p G H, the (n—l)-form Z - < T is nonvanishing when pulled back to H. 

Let p G H be fixed. Since H* (Z -J T ) does not vanish at p, there exist p-centered 

holomorphic coordinates w2,..., wn on a p-neighborhood V in H such that V*(Z 

T ) = dw2 A • • • A dwn. 

Since H is embedded in M , there exists an open neighborhood U C M of V C H 

with the property that U fl H = V and so that each complex integral curve C C M 

( 4) Notation: If P C Q is a submanifold, and is a differential form on Q, I use P*<f> to denote the 
pullback of to P. 
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of Z that meets U does so in a connected open disk U fl C that intersects H in a 
unique point. 

Consequently, there exist unique holomorphic functions 22,. . . ,zn on U satisfying 
dz2{Z) = . . . = dzn(Z) = 0 and V*(zj) = wJ for 2 < j < n. Moreover, there exists 
a unique function z on U with the property that z1 vanishes on V = U fl H and so 
that U*T = dz1 Adz2 A--- Adzn. Since the functions z1,..., zn have independent 
differentials on U, it follows that by shrinking V (and hence 17) if necessary, it can be 
assumed that (U, z) is a p-centered holomorphic coordinate chart whose image z(U) C 
Cn is a polycylinder of the form z{\ p% for some p 1 , . . . , pn > 0. By shrinking p1 if 
necessary, it can be arranged that w<<< > 0. 

By construction, Z = F(z)d/dz1 for some holomorphic function F defined 
on z U) c Cn. Thus, U*{ ' Z - j T ) = F (z)dz2 A ••• A dzn. Since y f Z - i T ) = 
dw2 A • • • A dwn, it follows that F ;o,™2,...,wn) = l for (o,w2, . . . ,wni G 
Moreover, since d ( Z -j T) = h T, it follows that dF/dz1 = h. Consequently, in these 
coordinates Z = (1+hz1) dldz1. 

Now write Z = X — iY, where X and Y are commuting real vector fields. The 
integral curves of Y are transverse to the hypersurface H and there exists a real 
hypersurface R C U that is the union of the integral curves of Y in U that pass 
through V = U fl H. The vector field X is everywhere transverse to R in U. 

Now let be a real-valued function on V such that V*(Qo) = ^ddi/jQ. Such 
an ^o_P°tential tp is unique up the the addition of the real part of a holomorphic 
function of w2,..., wn. Extend'-00 to a function ^ on by making it constant along 
the integral curves of Y. Similarly, extend V*(fo) to a function / i on R by making it 
constant along the integral curves of Y. 

Finally, consider the initial value problem for a function 0 on a neighborhood of R 
in U given by the real-analytic PDE 

:3.7 det 
d2<t> 

dzidzi 
)e*d* << = l 

subject to the real-analytic initial conditions 

'3.8 
(j)(z) = ^i(z) 

Lx(<j>)(z) = 2f1(z) 
for all z G R C U. 

It is easy to check that (3.7) and (3.8) constitutes a noncharacteristic Cauchy problem. 
Hence, by the Cauchy-Kovalewski Theorem, there exists an open neighborhood W C 
U containing R on which there exists a solution <j) to this problem. 

Now, the solution <f> produced by the Cauchy-Kovalewski Theorem is real-analytic 
and strictly pseudo-convex. By uniqueness in the Cauchy-Kovalewski Theorem, 0 
is the unique real-analytic solution. Since, as has already been remarked, elliptic 
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regularity implies that any strictly pseudo-convex solution of (3.7) must be real-

analytic, it follows that (j) is the unique solution of (3.7) that satisfies (3.8). 

By its very construction, the (1, l)-form Q = ^dd(f) is then the Kahler form of 

a gradient Kahler Ricci soliton metric on W C U that satisfies V*Q, = V*fio> that 

has W*Y and W*Z as the associated holomorphic volume form and vector field, 

respectively, and has / = ^d^tX) as Ricci potential, which, of course, satisfies V*f = 

V*f0. 
Now, if one replaces ib by ib + H + H for some holomorphic function H = 

H(w2,...,wn on V, then one finds that the solution 6 is replaced bv bv <b + 

H(z2,...,zn) + H(z2,...,zn), , so that Ct is unaffected. 

The argument thus far has shown that every point p G H has an open neigh­

borhood C / c M o n which there exists a gradient Kàhler-Ricci soliton gu with the 

desired extension properties and associated holomorphic data. It has also shown that 

this extension is locally unique. Now a standard patching argument shows that there 

exists an open neighborhood U C M of the entire complex hypersurface H on which 

such an extension exists and is unique in the sense described in the statement of the 

theorem. • 

Remark 5 (Local generality). — Theorem 2 essentially says that the local gradient 

Kahler Ricci solitons depend on two real-analytic functions of 2n—2 variables, namely 

the potential functions (which is assumed to be strictly pseudo-convex but oth­

erwise arbitrary) and /o (which is arbitrary). There is, of course, some ambiguity 

in the choice of the holomorphic coordinates zl, but this ambiguity turns out to de­

pend on essentially n—2 holomorphic functions of n—l holomorphic variables, which 

is negligible when compared with two arbitrary (real-analytic) functions of 2n—2 real 

variables. 

3.3. Near singular points of Z. — The situation near a singular point of Z is 

considerably more delicate and interesting. 

3.3.1. Linear parts and linearizability. — Recall that, at a point p G M where Z 

vanishes, there is a well-defined linear map Z'p : TpM —• TpM (often called 'the linear 

part of Z at p') defined by setting Zf(v) = w if w = [V,Z](p) for some (and hence 

any) holomorphic vector field V defined near p and satisfying V(p) = v G TPM. 

In local coordinates z = [z1) centered on p, if 

3.9^ Z = Zj z) 
d 

dzi' 

where, by assumption ZJ (0) = 0 for 1 < j < n, then 

EWTfl x<< d 

dz1 (p, 
<^*ù 

dz1 
o 

d 

dzi Pi-
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The linear map Z'v : TpM —» TPM has a Jordan normal form and this is an important 

invariant of the singularity. In particular, the set of eigenvalues of Z' is well-defined. 

Proposition 5. — Let Z be the holomorphic vector field associated to a gradient Kàhler 

Ricci soliton g on M. At any singular point of Z, the linear part Z'p is diagonalizable, 

with all eigenvalues real. 

Proof. — If the data ( T , Z) is associated to a gradient Kâhler Ricci soliton g in a 

neighborhood of a singular point p of Z , then (2.24) shows that, in special coordinates 

centered on » , one has 

(3.11 
x< 
^*ùù <w Rjk [0] cw< 

dZi 

$^w< 0) . 

Because the matrices (<7ij(0)) and (i?i j(0)) are Hermitian symmetric and (pij(O)) is 

positive definite, one can choose the special coordinates so that (gij(0)) is a multiple 

of the identity matrix and ( i W O ) ) is diagonal. • 

Definition 3. — A holomorphic vector field Z on M is said to be linearizable near 

a singular point p if there exist p-centered coordinates w = (wl) on an open p-

neighborhood W and constants a* such that, on W, one has 

:3.12> Z = a)wj 
d 

dw1 ' 

The coordinates w = (wl) are said to be linearizing or Poincaré coordinates for Z 

near p. 

Not every holomorphic vector field is linearizable near its singular points, even if 

the linear part at such a point has all of its eigenvalues nonzero and distinct. 

Example 4 (A nonlinearizable singular point). — The vector field 

3.i3: Z = zl 
d 

dz1 + f2* 2 + wp^ùm d 

dz2 

on C 2 is not linearizable at the origin, even though its linear part there is diagonaliz­

able with eigenvalues 1 and 2. 

This nonlinearizability is perhaps most easily seen as follows: The flow $>(t) of the 

vector field Z is 

'3.14: 
m(z\z2) = 

w< z\ > e 2 t [z2 << [z1 ?t) 

In particular * ( t + 2 T T Ì ) ^ which would be true if Z were holomorphically 

conjugate to the linear vector field 

^*ùù •^(0,0) x<< <^*ù d 

dz1 + 2z2 
d 

dz2' 
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This phenomenon, however, does not happen for singular points of holomorphic 
vector fields associated to a gradient Kahler Ricci soliton: 

Proposition 6. — Let Z be a nonzero holomorphic vector field on the complex n-
manifold M that is associated to a gradient Kahler Ricci soliton g. Then Z is lin-
earizable at each of its singular points. Moreover, the linear part of Z at a singular 
voint is diaoonalizable and has all its eiaenvalues real. 

Proof. — Let p G M be a singular point of Z. The diagonalizability of the linear part 
of Z at a singular point and the reality of the corresponding eigenvalues has already 
been demonstrated, so all that remains is to show that Z is linearizable near p. 

To do this, write Z = X — iY where X and Y are, as usual, real vector fields. As 
has already been remarked, the vector field Y is an infinitesimal isometry of g. In 
particular, the flow of Y is complete in the geodesic ball Br(p) for some r > 0 and 
is a 1-parameter group of isometries of the metric g restricted to Br (p) that fixes the 
center p. It follows that there is a compact, connected abelian subgroup T C U(TPM) 
whose Lie algebra is an abelian subalgebra t C u(TpM) that contains Yp' : TPM —> 
TPM, the linearization of Y at p and is such that the 1-parameter subgroup exp(tYp') 
is dense in T. 

Let $ : T —> Isom (Br (p), g) be the homomorphism induced by the exponential 
map, i.e., such that 

(3.16 $(*0(expp(v)) = expp(k •w<< v) 

for all v G Br(0p) C TpM. Then is a holomorphic isometry of g for all k G T. 
Now let dp, be Haar measure on T and choose any holomorphic mapping tp : 

Br(p) TPM ~ cn with the property that %l>(j>) = 0 and iP'(p) : TpM T0(TpM) 
is the inverse of the exponential mapping exp' : T0p(TpM) TpM. (It may be 
necessary to shrink r to do this. 

Define a holomorphic mapping w : Br(p) —• TVM by the averaging formula 

(3.17: w(z) = 
T 

k-1 << &(k)z) dfi 

for z G Br(p). Then w(p) = CL and, by construction, w f&(k)z) = k • w(z) for 
all z G Br(p) and all k G T. Moreover, also by construction, &(k)z) = k • w(z) In 
particular, by shrinking r again, if necessary, it can be assumed that w defines a 
T-equivariant holomorphic embedding of Br(p) into TPM ^ Cn. 

In particular, the holomorphic mapping w : Br(p) —• TPM satisfies 

(3.18^ w(expty(*)) =exp(tYp,)(w(z)), 

for all real t. Since w is holomorphic and Y is the imaginary part of the holomorphic 
vector field Z , it follows that, for z G Br(p) and t complex and of sufficiently small 
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modulus, the identity 

'3.19] ™(exptz(2)) =exp(tZ'p)(w(z)) 

holds. In particular, the coordinate system w linearizes Z at p. • 

Remark 6 (The exponential map). — Of course, the exponential map expp : TPM —> M 

of g also intertwines the flow of Yp' on TPM with the flow of Y on M, but the 

exponential map is not generally holomorphic and so cannot be used to linearize Z 

holomorphically. 

Remark 7 (Complex vs. real flows). — The reader may want to remember that, for a 

holomorphic vector field Z = X — iY, the two real vector fields X and Y have 

commuting flows and that, moreover, the identity 

3.20) exP(a+i6)Z = exP2aX ° exP26F 

holds. (The factors of 2 are neglected in some references.) 

Corollary 1. — Let g be a gradient Kahler Ricci soliton on M and let Z be its asso­

ciated holomorphic vector field. Let p G M be a singular point of Z and let A G R* be 

a nonzero eigenvalue of Zf of multiplicity k > 1. Then there exists a k-dimensional 

complex submanifold N\ c M that passes through p, to which Z is everywhere tangent, 

and on which Y is periodic of period 47r/|A|. 

/te/warA: # (Nonuniqueness of the N\). — The reader should be careful not to con­

fuse the submanifolds N\ with the images under the exponential mapping of the 

eigenspaces of Z'p acting on TPM. Indeed, the N\ need not be unique. For example, 

for the linear vector field 

3.21; Z = zl 
d 

dz1 
+ 2z2 

d 

dz2' 

on C2, each of the parabolas ¿2 _ c/zl\2 = o for c G C is tangent to Z and the 

imaginary part of Z has period An on all of C2, so each could be regarded as N±. 

On the other hand, the line z1 = 0 is the only curve that could be regarded as N2, 

since this is the union of the 27r-periodic points of Y. 

Remark 9 (Existence at singular points). — Example 2 shows that diagonalizability 

with real eigenvalues is sufficient for a linear vector field to be the linear part of a 

vector field associated to a (locally defined) gradient Kahler Ricci soliton. 
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3.3.2. Prescribed eiqenvalues. — Let &(k)z) = k • w(z)n be a nonzero real vector 

and define 

3.22 x<<< fk G Zn I k • h = 0} = Zn n h± c Rn. 

Then Ah is a free abelian group of rank n — k for some 1 < k < n. The number k 

is the dimension over Q of the Q-span of the numbers hi,..., hn in R. Let AjJ" C Ah 

consist of the k G Ah such that k — (fei,..., knj with each fci nonnegative. 

Consider the linear holomorphic vector field 

f3.23 x<<< 
n 

<^*ù 

^ù** d 
x<< 

on Cn. Let Zh = Xh — iYh be the decomposition into real and imaginary parts. 

The closure of the flow of Yh is a connected compact abelian subgroup Th C U(n) of 

dimension k. (In fact, in these coordinates, Th lies in the diagonal matrices in U(n).) 

Note that and (hence) Xh are invariant under the action of Th. 

3.3.3. Normalizing volume forms. — In addition to knowing that Z can be linearized 

near a singular point, it will be useful to know that this can be done in such a way 

that it simplifies the coordinate expression for T as well: 

Proposition 7 (Volume normalization at Z-singular points). — Set h = /ii + • —h hn and 

let T be a nonvanishing holomorphic n-form defined on an open neighborhood U of 

the origin in Cn that satisfies d (Zh-.T) = ÄT. 

Then there exist Z\,-linearizing coordinates w = (wl) near the origin in Cn such 

that, on the domain of these coordinates T = dw1 A • • • A dwn. 

Proof. — There exists a nonvanishing holomorphic function F on U that satisfies 

3.24^ T = F(z) dz1 A •. • A dzn 

and the function F must be invariant under the flow of Z^. In particular, it follows 

that F has a power series expansion of the form 

;3.25 F(z) = c0 + 

k€A+\{0} 

^*ù zk 

where zk is the monomial V)fcl (zn\kn when k = ki,..., kn) and the Ck are 

constants, with c0 ^ 0 (since, by hypothesis F(0) ^ 0). 

Now, the series 

(3.26) G(z) = c0 + 

k€A+\{0} 

Ck 
x<<< zk 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2008 



74 R. BRYANT 

converges on the same poly cylinder that the series (3.25) does. The resulting holo­

morphic function G is evidently invariant under the flow of Zh and satisfies 

%2T G + z1 
dG 

dz1 
= F. 

Because G satisfies (3.27), the function w1 = z1G(z) satisfies 

'3.28) d ^ A d ^ A - ' - A dzn = F(z) dz1 A dz2 A • • • A dzn. 

Moreover, since G is Zh-invariant, the function w1 satisfies Lzh w1 = hiw1. 

Thus, replacing z1 by w1 in the coordinate chart results in a new Zh-linearizing 

coordinate chart in which T = dz1 A • • • A dzn. • 

Corollary 2 (Local normal form near singular points). — Let Z and T be a holomorphic 

vector field and volume form, respectively on a complex n-manifold M. Let p G M be 

a singular point of Z . 

// there exists a gradient Kahler Ricci soliton g with Ricci potential f on a neigh­

borhood of p whose associated holomorphic vector field and volume form are Z and T 

respectively, then there exists an h G Rn and a p-centered holomorphic chart z = (zl) : 

U —• Cn such that, on U, 

3.29 Z = hi z{ 
d 

dzi 
and Y = dz = dz1 A • • • A dzn. 

Proof. — Apply Propositions 6 and 7. • 

3.3.4. Local solitons near a singular point. — In view of Corollary 2, questions about 

the local existence and generality of gradient Kàhler Ricci solitons with prescribed Z 

and T near a singular point of Z can be reduced by a holomorphic change of variables 

to the study of solitons on an open neighborhood of 0 G Cn with Z = Zu for some h ^ 0 

and T = dz = dz1 A • • • A dzn. 

Proposition 8 (Solitons with a prescribed singularity). — Let <j) be a strictly pseudo-

convex function defined on a Th -invariant, contractible neighborhood of 0 G Cn that 

satisfies 

3.30 det 
d2(f> 

dztdzJ e 
l 
2 
d<f>( x<< = 1 

and 

(3.31 d<j>(Yh) = 0. 

Then Q, ̂ù i 
2 

dd(j) is the associated Kahler form of a gradient Kahler Ricci soliton with 

Ricci potential f = l 
21 

d(f)(Xh) whose associated holomorphic vector field and volume 

form are Zh and dz1 A • • • A dzn respectively. 
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Conversely, if g is a gradient Kahler Ricci soliton defined on a T^-invariant, 

contractible neighborhood of 0 € Cn and f is a Ricci potential for g that satis­

fies / (0 ) = 0 such that the associated holomorphic vector field and volume form arevvv 

and dz1 A • • • A dzn, respectively, then g has a Kahler potential 0 that satisfies (3.30) 

and (3.31). 

Proof — The first part of the proposition follows by computation, so nothing more 

needs to be said. It remains to establish the converse statement. 

Thus, consider a gradient Kahler Ricci soliton g defined on a Th-invariant, con­

tractible neighborhood U of 0 G Cn with Ricci potential / satisfying / (0 ) = 0 whose 

associated holomorphic volume form and vector field are T = dz and Z^, respectively. 

The metric g will necessarily be invariant under Th, as will its associated Kahler 

form Q,. Since Qn = n\\n2 2~ne~f T A T, it follows that / , too, must be invariant 

under Th. 

On U, there will exist some Kahler potential <j> so that Q = ^ddcj). By averaging <f> 

over Th, it can be assumed that <j> is Th-invariant. By subtracting a constant, it can 

be assumed that (f)(0) = 0. 

As has been already noted in § 3.1, the difference F = 2 / —d^(Zh) is a holomorphic 

function on U. By construction, F is also necessarily Th-invariant and vanishes at 0. 

Since 6 is Th-invariant, it follows that w<< ^*ùù = 0. Thus F = 2 / - (ty(Zh) = 2 / -

d0(Xh) is real-valued and holomorphic and therefore constant. Thus, F vanishes 

identically, i.e., / = l 
2 

d(j> Xh). 

Now, however, by construction, (j) satisfies (3.30) and, since (j) is invariant under 

the flow of Fhj it also satisfies (3.31). • 

Remark 10 (Analyticity in the singular case). — The equation (3.30) is a Th-invariant 

real-analytic Monge-Ampere equation whose linearization at a strictly pseudo-convex 

solution </> is given by 

(3.32] Au + 2 lXh u = 0 

where A is the Laplacian with respect to the metric g associated to O = ^ ddcj). Of 

course, this is an elliptic equation. 

It follows by elliptic regularity that any gradient Kahler Ricci soliton is real-

analytic, even in the neighborhood of singular points of Z. 

Example 5 (Existence with prescribed h). — By considering Example 2, one sees that, 

for any h, there is a sufficiently small ball around the origin on which there is at least 

one strictly pseudo-convex solution <j> to (3.30). 

3.3.5. A boundary value formulation. — Suppose now that 0 is a strictly pseudo-

convex solution of (3.30) defined on a Th-invariant bounded neighborhood D c C n 
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of 0 G Cn with smooth boundary 3D. Let g be the corresponding gradient Kahler 
Ricci soliton. 

Any solution u of (3.32) in D that vanishes on the boundary will also satisfy 

3.33) 0 = 
' D 

I Via I2 ! + l 
2 
R(g)u2 dvolg , 

as follows by integration by parts using the identities p = Lxh ft and dvolg = -^ftn. 
In particular, by shrinking D if necessary, it can be assumed that any solution u 

to (3.32) in D that vanishes on 3D must vanish on D. 
It then follows, by the implicit function theorem, that any Th-invariant function tp 

on dD that is sufficiently close (in the appropriate norm) to (p on 3D is the boundary 
value of a unique pseudo-convex solution <j> of (3.30) that is near </> on D. The 
uniqueness then implies that <j) must also be Th-invariant and so must, in particular, 
satisfy (3.31). 

Note that the metric g does not always uniquely determine <t> by the construction 
given in Proposition 8 since one can add to <j> the real part of any Th-invariant holo­
morphic function that vanishes at 0 G Cn. (Depending on h, there may or may not be 
any nonconstant Th-invariant holomorphic functions on a neighborhood of 0 G Cn.) 
However, this ambiguity is relatively small. 

Thus, local gradient Kahler Ricci solitons near 0 G Cn with prescribed holomorphic 
data (Z, T) = (Zh,dz) do exist and have a 'degree of generality' that depends on the 
number k. The most constraints appear when k reaches its maximum value n and 
the least when k reaches its minimum value 1. 

4. Poincaré coordinates in the positive case 

Throughout this section, M will be a noncompact, simply connected complex man­
ifold and g will be a complete gradient Kahler Ricci soliton with postive Ricci cur­
vature. Moreover, it will be assumed that the scalar curvature R(g) has at least one 
critical point. 

4.1, First consequences. — Cao and Hamilton [6, Proposition 4.2] prove the 
following useful result: 

Lemma 1. — The scalar curvature R(g) has only one critical point and it is both a 
local maximum and the unique critical point of f, which is a strictly convex proper 
function on M. 

Proof — Since R(g) + 2\Z\2 = 2h by Proposition 4, the function R(g) > 0 is bounded 
by the constant h and any critical point of R(g) is a critical point of \Z\2 = | | V / | 2 . 
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On the other hand, since V 2 / = Ric(g), which is positive definite, the formula 

(4.11 d l 
V2 V / 2' ( V / ) = V 2 / ( V / , V / ) = Ric(<7)(V/, V / ) 

shows that ^ | V / | 2 cannot have any critical point away from where V / = 0. Moreover, 

any point p where V / vanishes satisfies R(g)(p) = 2/i, which is the maximum possible 

value of R(g). 

Since V 2 / = Ric(#) is positive definite, the function / is locally strictly convex. 

Since g is complete, / can have at most one critical point, i.e., point where V / = 0, 

and it must be a nondegenerate minimum of / . 

By hypothesis, there does exist a (unique) critical point of / ; call it p. By adding 

a constant to / it can be assumed that f(p) = 0. It remains to show that / is proper, 

i.e., that /_1([a, b]) C M is compact for any closed interval [a, b] C R. 

Since R(g) + 2|Z|2 = 2h and since R(g) > 0, it follows that \Z\ < \/ft, so that Z 

has bounded length. In particular, writing 

(4.2 Z = X - ÏY = l 
2 

V / - iJ(v/V 

one has |X|2 = |Y|2 = i |Z |2 1 
2 

h, so X and Y have bounded lengths as well. Since g 

is complete, their flows are globally defined on M. 

Let 7 : R —» M be any nonconstant integral curve of V / , i.e., 7'(t) = V/ (7 (* ) ) Ï « 

for all t g R . Consider the function 4>{t) = f(y(t)). Straightforward computation 

yields <f>'(t) = |V / (7 ( i ) ) | 2 > 0 and 

4.3) 4>"{t) = 2Ric(9) (V/ (7( i ) ) , V / ( 7 ( i ) ) ) > 0, 

so <j) : R —> R is strictly convex and increasing. It follows that 0 increases without 

bound along 7. 

Since V 2 / is positive definite, the critical point p is a source singularity of the vector 

field V / . Let C / c M b e the open set that consists of p and all of the points q in M 

whose at-limit point under V / is equal to p. Since / strictly increases without bound 

on each integral curve of V / , it follows that / maps each integral curve of V / that 

lies in U diffeomorphically onto (0, 00). Moreover, for each c > 0, the set /_1(c) fl U 

is compact and diffeomorphic to 52n_1. Indeed, / : U —• [0,00) is proper. 

Now suppose that U ^ M. Then, by the connectedness of M, there exists a 

point q £ M \ U that is not in the interior of M \ U, i.e., a point q 0 U such 

that there exists a sequence qi G U that converges to q. This implies, in particular, 

that f(qi) > 0 converges to f(q) = c. Thus, c > 0 and, for i sufficiently large, 

qi must lie in /_1([0 ,c+l ] ) fl U, which has been shown to be compact and must 

therefore contain its limit points. Thus q lies in / -1 ( [0 , c+ l ] ) fl U, although, by 

construction, q £ U. Thus, U = M and / is proper, as claimed. • 
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Remark 11 (M is Stein). — As Cao and Hamilton remark, since p = iddf is the Ricci 
form of g, which is positive, the proof shows that / is a strictly plurisubharmonic 
proper exhaustion function on M. This implies that M is Stein and, as Cao points 
out in [4, Proposition 3.2], that M is diffeomorphic to R2n. 

However, as will be seen in Theorem 3, one has the stronger result that M is 
biholomorphic to Cn. 

The following result, also known to Cao and Hamilton, (5) gives constraints on the 
rate of growth of the Ricci potential. 

Lemma 2 (Growth of / ) . — Let p be the critical point of R(g) and let f be the Ricci 
potential, normalized so that f(p) = 0. There exist positive constants c\ and c<i such 
that, for all x G M, 

(4.4 1 -h (ci d(x,p] \2 - 1 < fix) < c2d(x,p). 

Proof — Since g is complete, there exists a geodesic joining p to x whose length 
is d(p, x). Let a : R —>• M be such a unit speed geodesic with a(0) — p and a(s) = x 
such that d(p, x) = s. 

Consider the function (j)(t) = / ( a ( t ) ) . By the Chain Rule, and the fact that a has 
unit speed, 

4.5 </>'(*) = Vf(a(t)) • a'(t) < |V/(a(t)) | < y/2h. 

Since 6(0) = 0, it follows that /(*) = /(«(«)) = 4>(s) < V2hs. Thus, one can 
take C2 = V2h. 

For the other ineaualitv, note that, again, bv the Chain Rule, 

(4.6 4>"{t) = V2f(a(t))(a'(t)<,a'(xwwt))<< = Riefe) ( « ( * ) ) ( « ' ( * ) , « ' ( * ) ) 

and the right hand side of this equation is positive since Ric(#) is positive. More­
over, if Amin(<7) > 0 denotes the minimum eigenvalue of Ric(g), which is a positive 
continuous function on M, it follows that 

[1.1] <f>"(t)>\min(g)(a(t))>0c<<.xw 

In particular, 0 is a convex function on R. 
Let 7*0 > 0 be sufficiently small that it is below the injectivity radius of g at p 

and sufficiently small that Xmm(g)(y) > ^Amin(^)(p) for all y lying within Bro(p). 
Let a= \ Xmin(g)(p) > 0. 

(5) H.-D. Cao, personal communication, 2 June 2004. 
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Then&(k)z) = k > a for \t\ < r0 while </>"(£) > 0 for |t| > r0. Because 0(0) = </>'(0) = 0, 

it follows that </>(t) > A(t) for all t G R where 

(4.8) A(t) = 
l 
2' 

at2 for |t| < r0; 

ar0|t| - l 
2 ar02 for |t| > r0. 

Since there exists a positive constant Ci such that 

lower bound follows. 

A(t) > Jl + (Clt)2-- 1 , the desired 

• 

Remark 12 (An alternative growth formulation). — Another formulation of Lemma 2 is 

that the function c: M \ {»} —• R defined by 

:4.9) c(x) = 
/ ( * ) ( / ( * ) + 2] 

d(x,p) 
> 0 

is bounded above and has a positive lower bound. 

The bounds of Lemma 2 can be simplified somewhat if one stays sufficiently far 

from p: 

Corollary 3. — For every r > 0, there exist positive constants c\ and c<i such that, for 

all x outside the ball of radius r, one has 

4.10) ci d(x,p) < f(x) < c2 d(x,p). 

Remark 13 (The growth rate of/). — For any vector v G T M , one has 

4.11) Bic(g)(v,v) < Amax(o) \v 2 

where Amax(<7) ' M —•> R is the maximum eigenvalue function for Ric(p). Since g 

is Kahler, the eigenvalues of Ric(#) occur in pairs and, since Ric(#) > 0, it follows 

that Amax(^) < \R{g). In particular, by Proposition 4, one has the more explicit 

inequality 

[4.12 R\dg)(v,v) < l 
2 R{g) H 2 < 1 

2 2h - V/l2) \v\2. 

Now let 7 : (0, oo) —• M be the arclength parametrization of a nonconstant integral 

curve of Vf , such that p is the limit of 7(5) a s s - 4 0+. Thus, |V/(7(5)) |7/(5) = 

V / ( 7 ( s ) ) for all s > 0. 

Let 6(s) = / (7(5)) . One then computes via the Chain Rule that 

(4.13) <P'(s) = \Vf(7(s))\<V2h. 

and hence that 

C4.14Ì 4>"(a) = Riete; 
V / ( 7 ( s ) ) V / ( 7 ( s ) ) 

| V / ( 7 ( s ) ) r | V / ( 7 ( S ) ) | 
w<< 
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By the positivity of Ric(#) and (4.12), this implies 

f4.15 0 < (f>"(s) < l 
2 

2h - (0'(s); 
2 

Moreover, it is clear that, as s —• 0+, the quantity on the right hand side of (4.14) 

has Amin(g)(0) > 0 as a lower bound for its infimum limit. Thus, the infimum limit 

of (f>"{s) as s —> 0+ is positive. 

From these relations, several conclusions can be drawn. The function </> is increasing 

and strictly convex up on (0, oo). On the other hand, since (j)' is bounded above, 

it follows that </> grows at most linearly. Moreover, there must be a sequence of 

distances —> oo such that (b"(sk) —• 0. Since, by (4.14) 

(4.16 <t>"{sk) > Amin(flf)(7(sfc)), 

it follows that \min(g)(l(sk)) —> 0 as k —• oo. 

4.2. Poincaré coordinates. — Let T be the associated holomorphic volume form 

on M, normalized so that T has unit size at p. This determines T up to a complex 

multiple of modulus 1. Let Z be the associated holomorphic vector field. 

Since Z vanishes at p, the eigenvalues of Z' are the eigenvalues of the Ricci tensor 

at p, which are real and positive, say hi,..., hn > 0. Set h = hi + - — + hn > 0, as 

usual. 

Theorem 3 (Poincaré coordinates). — There exists a global special coordinate system z : 

M —>• Cn that linearizes Z. In particular, M is biholomorphic to Cn. 

Proof. — By Proposition 6, there exists a small open ball U about p on which there 

exist p-centered holomorphic coordinates w = (wl) : U —• Cn that linearize Z. By 

shrinking U if necessary, it can be assumed that U = f~1 ([0, e)) for some small e > 0. 

Note that, since the wl linearize Z, the identity 

(4.17) wH x<<< (9) lù 
ehit ̂w<< 

q) 

holds for all q G U and all t G C in the connected domain containing 0 G C for 

which exptz(q) lies in U. In particular, this implies that 

(4.18 <^*ù 
,exP2tx' x<< ̂ *ù eM <^*ù <xx 

for all a G U and all £ G R in the interval containing 0 G R for which exp0+x(q) lies 

in U 

Now, for q G M distinct from p, write q = exp2t/x(<7/) f°r some qf e U and £' G R. 

Define 

(4.19 x<< 
Q) 

<< ehit m^c<< <<^m 

If exp2t,x(q') = exp2t„x(q") for some q" G and £7/ G R, then one sees from (4.18) 

that ehit"wi(q,f) = ehit wi(qf), so zl(q) is well-defined. 
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Since the flow of X is holomorphic and wl is holomorphic on U, the function z% : 

M —• C is also holomorphic. Moreover, by construction, 

4.20 w<< 
,exP2tX :«) << e' 

hit <^* 1) 

for all q G M , which implies that 

(4.21Ì w< ̂*c<< (q) = e ./lit $^** cc 

In particular, the Lie derivative of z% by Z is hiz1. 

The fact that the mapping z = (zl) : M —» Cn is one-to-one and onto now follows 

immediately since, as was observed in the proof of Lemma 1, the gradient flow lines 

of V / = 2X all have p as a-limit point and the flow of V / exists for all time. 

Finally, in these coordinates T = F(z) dz^-'-Adz71 for some nonvanishing entire 

holomorphic function F on Cn. However, since d ( Z - i T ) = / i Y , it follows immediately 

that dF(Z) = 0. Since all of the eigenvalues of Z'p are positive, this is only possible 

if F is a constant function. By scaling one of the zl by a constant, it can be arranged 

that F = 1. 

Thus, the resulting global coordinate system ( M , z) is special and linearizes Z , as 

desired. • 
Remark 14 (Previous results). — Chau and Tarn [8, Theorem 1.1] proved that M is 

biholomorphic to Cn under the additional hypothesis that all the eigenvalues hi are 

equal. In a very recent posting to the arXiv [8], they prove a result that implies that M 

is biholomorphic to Cn under the hypotheses of Theorem 3. However, their result does 

not provide Z-linearizing coordinates, which is the main purpose of Theorem 3. 

4.3 . Coordinate ambiguities. — The reader may find it surprising that any local 

Z-linearizing coordinates zl defined on a neighborhood of the Z-singular point p 

extend to global coordinates on Cn that are special for any gradient Kaher-Ricci 

soliton defined on Cn with positive Ricci curvature whose associated holomorphic 

vector field is Z. 

This is perhaps made less surprising by the following result: 

Proposition 9. — Let h = (hi,..., hn) G W1 be a vector with hi > 0 for 1 < i < n. 

Consider the vector field 

(4.22; c<< = hi zl 
d 

dz1 

on Cn. Then the set Gh of biholomorphisms é : Cn -> Cn that preserve Zh is 

a complex Lie group of dimension d^ where > n is the number of vectors k = 

[ki,..., kn) G Zn that satisfy ki>0 and k • h G {hi,..., hn}. 
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Moreover, ifU C Cn is any connected open neighborhood ofO G Cn, then any locally 

defined biholomorphismx<<(17,0) —• (Cn,0) that preservesx<<is the restriction to U 

of an element of Gh. 

Proof — Let U C Cn be an open neighborhood of 0 and let<<= (wi(z)) : U —• Cn 

be a local biholomorphism that preserves Z. Since Z has only one singular point, 

namely 0 G Cn , it follows that ip(0) = 0. Moreover, by construction, the functions wl 

must satisfy dwl(Z) = hiw1. It follows that each w% has a power series expansion 

about 0 G Cn of the form 

(4.23 wl = 
(k>0 I k-h=hi] 

<www 

Since the right hand side has only a finite number of terms, this power series is a 

polynomial and hence globally defined on Cn. It remains to see that it is invertible. 

Consider the n-form dw = dw1 A • • • A dwn. By the above analysis dw = F(z) dz 

for some polynomial F(z). By hypothesis, ip is a local biholomorphism, so F(0) ^ 0. 

Since Lzdw = (hi + • • • + hn)dw by construction, it follows that dF(Z) = 0, i.e., 

that F is Z-invariant. This implies that F is constant and hence nowhere vanishing. 

Now, by hypothesisw<<is locally invertible, with, say, a local inverse<<<(V,0) —> 

(Cn,0) . However, by construction, cxx preserves Z , so, by the argument given above, 
<< is also a polynomial mapping and hence extends to a global polynomial map­

ping 7T : (Cn,0) -> (Cn,0). Since ^ o TT : (Cn, 0) -> (Cn,0) is a polynomial mapping 

that is the identity on some neighborhood of 0, it must be the identity everywhere 

on Cn. In particular, 7r is the global inverse of tj) extended to Cn , which is now revealed 

to be an element of Gh, which is what needed to be shown. 

Finally, it is clear that, for any i and any choice of constants clk G C for (i, k) such 

that k G Zn satisfies kj > 0 for 1 < j < n and k • h = h*, the formula (4.23) defines a 

polynomial wl that satisfy Lz wl = hiW1. 

Moreover, for any choice ofw<<constants c = (c£) where (z, k) satisfies k G Zn 

with kj > 0 for 1 < j < n and k • h = hj, the corresponding collection of functions wl 

satisfies 

(4.24) dw1 A • • • A dwn = F{c{) dz1 A • • • A dzn. 

where F is a polynomial of degree n in the d parameters clk G C. 

As long as F(clk) ̂  0, the polynomial mapping ipc = (wl) is a local (and therefore 

global) biholomorphism of Cn that preserves Z and hence lies in Gh- Thus, the clk 

define global holomorphic coordinates on Gu that embed it into Cdh as an open set. • 

Remark 15 (The structure of Gh). — If /¿1 , . . . ,/x/c > 1 are the multiplicities of the 

eigenvalues (h i , . . . , hn), then Gh is the semi-direct product of a reductive subgroup 
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isomorphic to GL(/X!,C) x ...GL(/ifc,C) with a nilpotent subgroup biholomorphic 

to where u i = 4 - /ii2 Hk2-
When n = 1, one has Gh ~ C* = GL(1, C). When n = 2, one has either 

1. 4 = 2 if h = IhxM) with neither hi/h2 nor /12Mi an integer (in which 
case Gh = C* x C*); 

2. 4 = 3 if h = (hu h2) with either hi/h2 or /12/^1 an integer greater than 1; or 
3. 4 = 4 if h = (h, h) (in which case Gh = GL(2,C)). 

When n > 2, there is no upper bound for 4 that depends only on n. For example, 
when n = 3, one has dn 1 k) — & + 6 for any integer A; > 1. 

4.4. Global consequences. — Throughout this section, g will be a complete gra­
dient Kahler Ricci soliton on Cn with positive Ricci curvature whose associated vector 
field Z is given by (4.22) where h = (ft i , . . . , hn) and 

4.25 0 < hi < h2 < • • • < hn . 

The compact abelian group Th C U(n) will denote the closure of the orbit of Y, 
the imaginary part of Z. 

The existence of global linearizing coordinates for a gradient Kahler Ricci soliton 
gives elementary proofs and/or improvements of several known results. 

4.4.1. Periodic orbits. — The first result sharpens Theorem 1.1 of the article [6] of 
Cao and Hamilton. 

Proposition 10 (Periodic orbits of J ( V / ) ) . — For all c > 0, the flow of J(V/) pre­
serves the (smooth) level set f~l(c) C M and has at least n periodic orbits on / _1 (c ) . 

Proof — Since Z = \ ( V / — i J ( V / ) ) , and since hi > 0 for 1 < i < n, it follows that 
J ( V / ) is periodic of period 2ir/hi on the z*-axis. Moreover, since / increases without 
bound as \zl\ —• 00, this axis meets each level set f~x(c) for c > 0 in a circle. Thus, 
there are at least n distinct periodic orbits of J ( V / ) within each such level set. • 

4.4.2. An invariant potential. — As has already been seen, the metric g is invariant 
under Th. It turns out that one can canonically choose a Kahler potential for g: 

Proposition 11 (Canonical potentials). — There is a unique T^-invariant Kahler poten­
tial <\>: Cn -+ R satisfying Q = | ddcf) and <p(0) = 0. 

Proof — Since M = Cn, there exists at least one Kahler potential (j) for g, i.e., such 
that f] = ^ ddcj). Since Th is compact, by averaging (j) over Th, one can assume that (j) 
is Th invariant and by adding a constant, one can assume that 0(0) = 0. 

If (j) were also Th-invariant and satisfied = ^ dd<j>, then the difference 0 — 0 would 
be the real part of a Th-invariant holomorphic function H. In particular H would be 
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invariant under the flow of Y and hence of Z. However, as has already been seen, 

the only holomorphic functions on Cn that are invariant under the flow of Z are the 

constants. Thus <j> — 4> is constant. The normalization </>(0) = 0 then guarantees the 

uniqueness of 6. • 

4.4.3. Normalized linearizing coordinates. — The ambiguity in the linearizing coor­

dinates for the vector field Z represented by the group Gh can be used to simplify the 

potential for g. 

Theorem 4 (Normalized coordinates). — Let (j) be the unique Y^-invariant Kàhler po­

tential for g, normalized so that 0(0) = 0. Then there exists an element ^ G Gh, 

unique up to composition with an element of the compact group U(n) fl Gh, such that 

(4.26) 
w<<<^*ù 

z 1|2 + ••• + Z w< |2 •f Eïjki (z) )zizjzkzl 

for some real-analytic functions Eijki = Ejïki — Eîjik = Ekiij defined near 0 G Cn. 

Proof. — Let / be the Ricci potential for g, normalized so that / (0 ) = 0. Since / 

is Th-invariant and since, by (3.2), the difference 2 / — d<p(Z) is holomorphic and Th-

invariant, it follows by the same argument as above that 2 / — d(f)(Z) is constant and 

hence vanishes identically. Thus 

(4.27) dMZ) = dMX) = 2 / . 

Because (j) and / are real-analytic they have convergent power series expansions 

near 0 G Cn. Since / (0 ) = 0 and / has a critical point at 0, it has an expansion of 

the form 

4.28 / = l 
2-fij Z Z^ -\- fij Z Z^ + 1 

2 
fij Z Z^ + Oi \z\3)-

where fij = fji and fij = fjT. Because of the positivity of the hi and the invariance 

of / under the flow of Y, it follows that = 0 and (hi-hj)fij = 0 for all i and j . 

Moreover, since / is strictly convex up at the origin, the Hermitian form fijZlP is 

positive definite. 

Thus, by making a linear change of variables that preserves Z (i.e., by applying a 

transformation in GL(n, C) fl Gh), it can be arranged that 

4.29 / = l 
2 
<< <^* I2 + ••• + l 

2' 
w<< \zn |2 <p^ùm z\3 I. 

Next, consider the part of / that is pure in z or z, i.e., consider the expansion 

(4.30 / = l 
2 
w<< I*1 2 + ••• + 1 

2 hn zn 2 + 
k>0, |k|>3 

fkZ << + fkZ < 
+ fa z)zlzj. 

where /k G C and fij = fji vanishes at z = 0. The invariance of / under the flow of Y 

implies that fk = 0 for all k, so these 'pure' terms do not appear after all. 
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Finally, consider the part of the remainder that is linear in the variables z% or z% 

and vanishes at z — 0 to order at least 3, i.e., write 

(4.31 / = l 
2' 
w< \zk\2 + Q* << zi <^*m z) 

mm 
+ fzjkl1 x<< •z%zjzkzl, 

where Ql(z) is a holomorphic function of z that vanishes to order at least 2 at z = 0 

and fijkl — fjikl — fijlk fklij' 
Again, the fact that / is invariant under the flow of Y implies that Q% must sat­

isfy Lz Ql = hiQ1, i.e., that Ql has an expansion of the form 

(4.321 Q\z) = 

k>0 I k-h=hi} 

CkZ 

with cl = 0 unless |k| = ki + ••• + kn > 1. In particular, this implies that Ql is 

a polynomial in z since the right hand side of (4.32) can contain only finitely many 

terms. Now consider the change of variables defined by 

(4.33: wi = zi + 
2 

hi 
Q*(z) 

This transformation belongs to Gh by definition and satisfies 

(4.34) / = 1 
2 

hk \wk\ 2 4- /ijkl 
&(k)z) = k • w(z) 

for some functions f~h1 with the same symmetry and reality properties as the corre­

sponding fmi-

Since Lx 4> = 2 / and 0(0) = 0, it follows that 0 has a power series expansion 

4.35 0 = \wk\2 + EÏJki(w)wiwjwkw\ 

as desired. The uniqueness of the transformation ^ = (wl) up to composition with 

an element of U(n) fl Gh is now evident. • 

4.4.4. Totally geodesic submanifolds. — Since the fixed locus of an isometry of g must 

be totally geodesic, one has the following result: 

Proposition 12 (Geodesic subspaces). — / / hi has multiplicity p>i > 0 and has the prop­

erty that, for all k, hk ^ mhi for any integer m > 1, then the fii -plane in Cn defined 

by zj = 0 when hj ^ hi is totally geodesic. 

More generally, if Y has a periodic point q with period T > 0, then the union of 

the T-periodic points is a nontrivial totally geodesic linear subspace of Cn generated 

by the zl-axis lines for which hi is an integer multiple of An/T. • 

Remark 16 (Geodesic axes). — The reader might wonder whether or not the hypoth­

esis of hi having no 'supermultiples' is necessary in order for the /^-eigenspace of Zh 

in Cn to be totally geodesic. 

The answer is clearly 'yes' in general Z-linearizing coordinates: For example, if n = 

2 and h = (1, k) for some integer k, then, any of the curves z2 = \(zl)k could be taken 
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to be the ^1-axis in Zh-linearizing coordinates. They all have the same tangent space 

at the origin, so at most one of them could be geodesic for a given gradient Kahler 

Ricci soliton g defined near 0 G C2 with associated holomorphic vector field Z^. 

However, if one uses ^-normalized coordinates as provided by Theorem 4, there 

is a canonical CMi C Cn associated to the eigenvalue hi of multiplicity fii by the 

equations *J = 0 when hj ^ hi. It is still not clear to me whether this canonical 

subspace is totally geodesic unless hi satisfies the 'no supermultiples' condition. 

4.4.5. Growth of f in linearizing coordinates. — Now that global linearizing coordi­

nates are available, it makes sense to ask about the growth of the metric g and its 

related quantities in those coordinates. 

One particularly useful quantity to estimate will be the size of |V/ |2(*) as \z\ —• oo. 

Note that, because of (4.3), the function | V / | 2 is strictly increasing on the nonconstant 

flow lines of V / . On the other hand, |V/ |2 = 2h — R(g) is bounded by 2h. Define 

(4.36 x<<<^* lim inf 
|s|->oo 

v / |2 z) > 0 «BRI À+ = sup 
z 

IV/ |2 < 2ft. 

Proposition 13. — For any r > 0, there exist constants a\ > 0, a2 > 0, b\, and b2 

such that, for all z G Cn with \z\ > r, 

'4.37 x<< log 1*1 + 61 < /(*) < a2 log 1*1 + 62 . 

Explicitly, one can take 

(4.38) ai = 
1 

hn 
inf 

\z\=r 
|V/(z) |2(s)>0 and a2 = 

<^*ù 

hi 
< 2h 

fti" 

Proof. — Fix r > 0 and note that there exist constants mr > 0 and Mr > 0 such 

that 

(4.391 mr < f(z) < Mr when \z\ = r. 

Moreover, taking a\ and a2 as defined in (4.38) and using the fact that |V/ |2(z) and 

|*| both increase along the flow lines of V / , one sees that 

:4.40 hn^i < |V/(*) |2 < hia2 when \z\ > r. 

Now, the flow of V / = 2Re(Z) in Z-linearizing coordinates is 

(4.4r exptv/ * w< z n <^* w<<< i^ùmmm 
c<< 

so, since 0 < h\ < • • • < hn, it follows that 

(4.42) <^poo 
1*1 < exPtVf ^^xww w<< ehnt\z\. 

In particular, it follows that, for t > 0. 

(4.43) $*ù 
w 

hi 
(log |exptv/l z1 ,zn: - log u n . 
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and 

(4.44) 
1 

hn 
log( |exptv/ z1 ,zn I - log 1*1) <t. 

On the other hand, since Ly/ / = |V / | 2 , it follows that 

(4.45) f(z) + hn a1 t < /(exp£V/ *] zn < f(z) + h! a2t 

for alH > 0 and z satisfying \z\ = r. Combining this with the above inequality gives, 

for alH > 0 and z satisfying \z\ = r, 

(4.461 w< exptv/ <^ù w<< -a2 log|exptv/i (z1 ,zn < f(z)-a2 \og\z\. 

Since every w G Cn with \w\ > r is of the form w = exptVyr(*) for some t > 0 and z 

with \z\ = r, it follows that 

(4.47 f(w) < a2 log \w\ + (Mr - a2 logr) 

for all w G Cn with \w\ > r. Thus, taking b2 = Mr — a2 logr verifies the claimed 

upper bound on / . 

The lower bound follows by combining the lower bound on t with the lower bound 

on / : 

(4.48) mr -hai (log(|exptv/ z1 x<< - l o g N ) < /(exptv/i <^*ù x<< 

which gives 

EE!] (mr - ai logr) + ai log < f(w), 

for all w G Cn with \w\ > r. • 

Note that, as a function of r, the expression ai defined in (4.38) is increasing and 

its limit as r —* oo is A_//in-

Corollary 4. — For any e > 0, there exists r > 0 such that, for z G Cn with \z\ > r, 

(4.50 
x<<x 

hn 
— e log |*| < / ( * ) < 

<< 

<< 
<pml log|*|. 

In particular, there exist constants b\ > 0 one? b2 > 0 s^c/i&(k)z) = k • w(z) /or a// * G Cn 

with \z\ > r, 

[4.51] 6i log |*| < d(z,p) < b2 log |z|. 

Proof — The first statement follows by elementary reasoning from Proposition 13 

while the second follows by combining the first with Corollary 3. • 

Note that Corollary 4 implies that the ratio / ( * ) / log \z\ is bounded above and has 

a positive lower bound as 1*1 —» oo. Set 

(4.52 ß- = lim inf 
p^*ùùù 

f(z) 
log |*| 

and x<< lim sup 
| s | - k x > 

<^*,; 

log |*| ' 
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Then Corollary 4 implies 

;4.53) 
x<< 

<^* &(k)z) = k • w(z) < 
w< 

hi' 

Proposition 14. — One has the bounds p>- < 2n < in other words 

(4.54 lim inf 
cw<^m 

<^ù** 

log\z\ 
&(k)z) = k • w(z) 

x<<<^* 

^*vww 

log kl ' 

Proof. — Suppose these bounds do not hold and let R > 0 be fixed large enough so 

that there exist positive constants a\ and a2 where either a2 < 2n or else a\ > 2n 

and positive constants b\ and bo so that 

[4.55] ai log |*| < f(z) < a2 log |*| 

and 

(4.56) 6i log |*| <d (* ,0 ) <62log|* | 

hold whenever |*| > R. (Remember that, in these linearizing coordinates p = 0.) 

Let M > 0 be sufficiently large that d(*,0) < M when |*| < and consider any 

real number p that is larger than both logR and M/b2. 

Consider the ^-metric ball BblP(0). Since d(*,0) < b\p for * G £?blP(0), it follows 

that either |*| < R or &ilog|*| < i.e., |*| < ep. Since ep > i2, in either case it 

follows that |*| < ep. Thus BblP(0) is contained in the flat metric ball B®P(0). 

On the other hand, if |*| < ep, then either |*| < R or else d(*,0) < b2p. In the 

former case, d(*, 0) < M < 62P, by construction. In either case, * lies in the ^-metric 

ball Bb2P(0). 

Thus, one has inclusions 

(4.57; BblP(0) Q B°eP(0)CBb2P(0). 

Now, the volume form for g on Cn is 

(4.58) volp = e ^ volo 

where volo = in 2~ndz A d* is the volume form of the flat metric on Cn. 

Consequently, the volume of the g-metric ball Bb2P(0) is at least as large as the 

volume of the flat metric ball B®P (0) which is given by the integral 

\z\<eP 
e 

x<< volo <^* 
\z\<R 

e x<< volo + 
\z\=e" 

\z\=R 
e << volo 

'4.59Ì > 
\z\<R 

e x<< volo + 
\*\=ep 

\z\=R 
Z |"aavolo 

p^m 
\z\<R 

e << volo + vol >S2n-l 

's=R 

>s=ep 
S 2n-l-a2 ds 
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Now, if a,2 < 2n, then the above would imply 

f4.60i vol! ̂ p ( O ) , 0 ) > 
\z\<R 

e - / volo + 
vol ' g2n-\ 

2n — 0,2 
e 2n—02JP w< R 2n—a-2> 

< 

However, because g has positive Ricci curvature, by the Bishop Comparison Theo­

rem [13, Theorem 1.3] the volume of Bb2P(0) is bounded by a constant times p2n. 

Obviously, such a bound is not compatible with (4.60) for all p sufficiently large. 

Thus, a,2 > 2n. 

In the other direction, the volume of the ^-metric ball BblP(0) is at most as large 

as the volume of the flat metric ball B^P(0), which obeys the upper bound 

\z\<eP 
$*ùù 
xww 

volo = 
J\z\<R 

<^*m vol0 + 
\z\=R 

>\z\=eO 
e'* vol0 

4.61) < 
\z\<R 

e-' vol0 + 
z\=R 

\z\=e» 
\z -a1 volo 

cw<< 
\z\<R 

erf volo + voll [S2n-l 
' s—R 

s=ep 
S ,2n-l-ai j 

If ai > 2n, then this would imply 

4.62) vo\(BblP(0),g) < 
\z\<R 

<< volo + 
vol(52n"1) 

a\ — 2n 
^**mw<< _ e(2n-ai)/o 

and the right hand side is bounded as a function of p. Thus, vol[BblP(0),g) would 

be bounded, independent of p, which, because g is complete and of positive Ricci 

curvature on the noncompact manifold Cn, violates Theorem 4.1 of [13], which asserts 

that g must have at least linear volume growth. Thus a\ < 2n. • 

Remark 17 (Growth off in examples). — In the case of Hamilton's soliton (Ex­

ample 1) and, more generally Cao's soliton (Example 3), one has hi = hn 

and A_ = A+ = 2n/ii, so equality holds in the bounds of Proposition 14. 

On the other hand for the product examples (Example 2), 

(4.63) / ( * ) = 

n 

k=l 
log ï + (hk/ck)\zk\2) 

which satisfies 

;4.64) lim inf / ( * ) 

|*|-oo lOg |Z| 
= 2 while lim sup 

w<<< 

|Ä|_+oo 10g 1*1 
= 2n. 

In particular, note that this implies A_ < 2hn < 2h. 

Remark 18 (Growth of the potential 0). — Let <f) be the Th-invariant potential for g, 

i.e., ft = ^ ddcf), and assume that (j) is normalized so that (f)(0) = 0. 
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Since l_v/ <t> = / , it follows that (j) is determined in terms of / and that Corollary 4 

implies growth bounds for </> as well. For example, one sees that there exist positive 

constants r, ci, and c2 so that, whenever \z\ > r, one has 

(4.65) ci [log M 
2 <www$*ù <c2 log 1*1 ,2 

<ww 

It should be possible to derive C -bounds on <p (and hence on g) using the fact 

that </> satisfies an elliptic Monge-Ampere equation, but I do not see, at present, a 

good way to do this so as to get any useful information. 

5. The toric case 

In this last section, some remarks will be made about the reduction of the gradient 

Kahler Ricci soliton equation in the 'toric' case, which will now be defined. 

Throughout this section, Tn will denote the maximal abelian subgroup of U(n) 

that consists of diagonal matrices. Although there is no symplectic form specified 

on Cn, the mapping un : Cn -+ Rn defined by 

(5.1 Hn z1 ^ùmm x<< (I*1! 
2 ,\zn 2 

will sometimes be referred to as the 'momentum mapping' of Tn. 

Definition 4 (Toric metrics). — A Tn-invariant Kahler metric g that is defined on a 

connected Tn-invariant open neigborhood of 0 6 Cn will be said to be toric. 

Remark 19 (Toric ubiquity). — While, at first glance, the toric condition seems to be 

rather special, note that any gradient Kâhler Ricci soliton g on a neighborhood of 0 € 

Cn that has (Z, T) = (Zh,d*) as its associated holomorphic data is invariant under 

the torus Th- If h is 'generic' in the sense that the real numbers hi,..., hn are linearly 

independent over Q, then Th = Tn and hence g is toric. 

Thus, in some sense, the toric case is 'generic' among complete gradient Kàhler 

Ricci solitons with positive Ricci curvature. 

5.1. Symmetry reduction in the toric case. — Assuming an n-torus symmetry 

allows one to reduce the number of independent variables in the gradient Kahler Ricci 

soliton equation (3.4). 

Proposition 15. — Let g be a toric gradient Kâhler Ricci solition defined on a con­

nected open neighborhood of 0 G Cn with a nonzero associated holomorphic vector 

field Z and holomorphic volume form T (defined with respect to a Ricci potential f 

satisfyinq f(0) = 0). Then 

1. The vector field Z is linearized in the coordinates z = zl , so that Z = Zh for 

some nonzero h = ;h i , . . . , f cn)€Rn; 
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2. The n-form T is cdz1 A • • • dzn for some nonzero constant c; and 

3. q has a unique Kahler potential satisfying 6(0) = 0 of the form 

'5.2) 4>lz) = u z1 |2 \z2 2 
5 zn\2) 

for some real-analytic function u defined on an open neighborhood of 0 G Mn. 

Moreover, u satisfies the singular real Monge-Ampere equation 

(5.3 det 
l<i,j<n 

r{ d 
xwww 

<;,, du 

dri 
exp 

1 
2 

n 

3 = 1 

hór3 
du 

dri 
,, c\ r r • • - r . 

where 

;5.4) 

n 

3 = 1 

du 

drò 
^*ù = \c\2 and 

du 

drJ 
(0) > 0, 1 < j < n. 

Conversely, for any nonzero h G M.n and any nonzero complex constant c, if u is a 

real-analytic function defined on an open neighborhood of 0 G Rn that satisfies (5.3) 

and (5.4), then the function (j) defined on a Tn-invariant neighborhood of 0 G Cn 

by (5.2) is the Kahler potential of a toric gradient Kahler Ricci soliton on the open 

neighborhood of 0 G Cn where it is strictly pseudo-convex. 

Proof. — To begin with, let me point out a fact that will be used several times in 

the following argument: Any TP-invariant holomorphic function defined on a con­

nected open neighborhood of 0 G Cn is constant there. This follows, for example, 

by examining the effect of Tn on the individual terms in the power series of such a 

function. 
Now, since g is toric, its associated holomorphic vector field Z is invariant under 

the action of Tn and hence must vanish at 0 G Cn and commute with each of the 

scaling vector fields Zi = z1-^. It follows easily that Z = Z^ for some h G Mn. (For 

the definition of Zh, see (3.23).) 

Let / be the unique Tn-invariant Ricci potential for g that satisfies / (0 ) = 0 and 

let T be a holomorphic volume form associated to g and / . Since T is uniquely 

determined up to a complex number of modulus 1, it follows that, under the action 

of Tn, T must transform multiplicitively by a character of Tn. It then follows easily 

that T = cd* for some nonzero constant c. 

Let (f) be the unique Tn-invariant Kahler potential for g that satisfies (j)(0) = 0. As 

has already been remarked, (j) is real-analytic and so can be expanded as a convergent 

power series in the variables z% and z\ However, Tn-invariance evidently implies that 

this power series can be collected in terms of the quantities r% = \zl\2. Thus, the 

existence of a function u satisfying (5.2) follows. 
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As argued in § 3.2, the quantity 2 / - <9</>(Zh) is a holomorphic function on a neigh­

borhood of 0 G Cn. By construction, it, too, is Tn-invariant and vanishes at 0 G Cn, 

which implies that it vanishes identically. Thus, 90(Zh) = d^(Xh) = 2f. 

The rest of the argument follows by substituting the formula (5.2) into (3.4), mul­

tiplying by r1 • • • rn, and rearranging terms, which gives (5.3). 

Note that the stated positivity conditions on the first derivatives of u are needed in 

order that the corresponding <j> be strictly pseudo-convex in a neighborhood of 0 G Cn 

and the relation with |c|2 follows by computing the coefficient of r1 • • • rn in the power 

series expansion of the left hand side of (5.3). 

The converse statement follows by computation. • 

Remark 20 (Normalizations). — Given a solution u to (5.3) that satisfies u(0) = 0, 

one can obviously scale in the individual coordinates so as to arrange that 

5.5) é = r1 + • • • + rn + 0! \r?) 5 
thereby reducing to the case \c\ — 1, so it suffices to consider this case. Note also 

that the resulting Kahler soliton g is already in the normalized form guaranteed 

by Theorem 4. 

Remark 21 (pseudo-convexity of toric potentials). — A Tn-invariant function 4> of the 

form (5.2), i.e., 0 = u o fj,n for some u defined on a domain V C Mn, is strictly 

pseudo-convex on the domain (//n)-1(F) C Cn if and only if the symmetric matrix 

xvvv Sij 
du 
Ori 

+ ^*<< 
d2u 

drldri 

is positive definite on the part of V that lies in the orthant defined by the inequali­
ties rl > 0. 

5.1.1. A singular initial value problem. — Although (5.3) is singular along the hy-

persurfaces rl = 0 in Rn, it turns out that the methods of Gerard and Tahara [11] 

can be used to prove an extension theorem. 

Theorem 5. — Let v be a real-analytic function on an open subset V C Rn_1 with the 

property that i/j = v o /in_i is strictly pseudo-convex on ,/¿71-1 - l V)cCn-\ 

Then there exists an open neighborhood U CW1 ofV x {(V and a real-analytic 

function u on U with the properties 

1. u [r\ ,rn"1 ,0) = V r1 << -1 for (r1 ^*ùù x<< ̂ *mm 

2. u satisfies (5.3) with \c\ = 1; and 
3. (j) = u o fin is strictly pseudo-convex on /in~1(t/') C Cn. 

Moreover, u is locally unique in the sense that any for any other pair (U, u) with 

these properties, there is an open neigborhood W of V x { 0 } contained inU C\U such 

that u and u agree on W. 
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Proof. — For the sake of clarity, write t = rn and let the lower case latin indices run 

from 1 to ra—1. Then after dividing both sides of (5.3) (with |c| = 1) by r1 • • -r""1 

and the exponential factor, this equation takes the form 

(5.7 det 
Sij 

du 
<ww 

^*ùù d2u 

drldri 

d(tut) 

x<<< 

<< di tut) 
dri 

(tdt 2u 

ù^$** 
w<< 

2 tut 1 — 
1 2 m —1 

o^mm 
x<< du p^ùm w 

Note the first crucial aspect of this equation, which is that the t-derivatives of u 

occur as either tut or t(tut)t = (tdt)2u, i.e., as the 'regular singular' versions of the 

t-derivatives at t = 0. 

Expanding the left hand side of (5.7) along the last column shows that this equation 

can be written in the form 

(5.8) 

det Sa 
ßri 

du 
opll 

d2u 

dr{dri 
[tdt )2u = te w pùl 

2 
tut] 1 2 n-1 

c<< 
^^*m fin. 

drJ 

w< Qij << 
du d2u 

dr ' dr2 

d [tut) d ù* 

dr1 dri 

where Qij = Qji are certain polynomials in the variables rl and the first and second 

derivatives of u with respect to the variables r \ 

In particular, note that the right hand side of (5.8) is an entire analytic function 

of the variables rl and t, the first and second derivatives of u with respect to the 

variables r% the expression tut and its first derivatives with respect to the r \ 

In what follows, it will be particularly important that this right hand side is also in 

the ideal generated by t and the quadratic expressions a(tutl d(tut) 
^x<< drò 

Now, set 

(5.9) << [r1,...,rn-1,t) = v(r\...,rn-1) + z{r\...,rn-\t) 

and define 

(5.10] F r1 ipm -1 w<< p^ùm Sij 
dv 
w<< + rj 

d2v 

drldrJ 

Note that, by hypothesis, det(Fi?(r,0)) ^ 0 for r G V C R71'1. In particular, the 

expression 

5.11 det F << w<< 
dz 
Qri 

+ rj 
d2z 

drldr3 5 

which is what the coefficient of (tdt)2u on the left hand side of (5.8) becomes when 

one substitutes u — v + z into that equation, is an analytic expression in r G V, t, 

and the partials of z that is non-vanishing on V when one sets t = z = 0. 
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Thus, substituting u = v + z into (5.8) and dividing by the determinant factor 

yields an equation for z of the form 

(5.12; tdt) |2 z = E r,t.z, 
dz 

w<<< 
,tzt, 

d2z 

dridri ' 

<9' ̂ *ùù 

Qri 

where the function E is 

1. real-analytic on an open neighborhood of V x {0} in V x R x Ri+n+2-"(n+i) and 

2. in the ideal generated by t and the products of pairs of the last in—1) variables 
(i.e., the 'slots' containing the entries d(tzt) 

m^* 
Now, turning to Chapter 8 of Gerard and Tahara [11], one sees that (5.12) is of 

the form to which their Theorem 8.0.3 applies. (6) Consequently, (5.12) has a unique 

real-analytic solution z(r,t) (denned on some neighborhood of V x { 0 } C Rn) that 

satisfies the initial condition 

5.13) z\ [r\ x< $*ù L,o: = 0 for (r1 cww -1> G V. 

Using this solution z to define u via (5.9), one sees that (5.7) has a correspondingly 

unique real-analytic solution satisfying the initial condition 

5.14) < (r1 m^ù* -1 ,0) = V r1: ,rn >,-l for (r1 w<< -1 ev, 

as claimed. The existence of an open neighborhood U of V x { 0 } such that 6 = uo un 

is strictly pseudo-convex on x<< ,-1 Vs C Cn is routine. • 

Corollary 5 (Singular initial value problem for toric solitons). — Let gf be a real-analytic 

toric Kahler metric on a Tn_1 -invariant, connected open neighborhood V C Cn_1 ofO. 

Then, for any h G Rn there exists a Tn-invariant open neighborhood C Cn 

of V x { 0 } and a toric gradient Kahler Ricci soliton g^ on whose pullback to V 

is g', whose associated vector field is Z^, and whose associated holomorphic volume 

form with respect to its Tn -invariant Ricci potential h vanishing at 0 G Cn is T = 

dz1 A • • • A dzn. 

Moreover, g^ is locally unique in that any extension of g' with these properties 

agrees with g^ on some open neighborhood ofVx { 0 } . 

Remark 22 (Contrast in initial value problems). — Note that Corollary 5 has a very dif­

ferent character from Theorem 2. Not only is the nature of the initial data different, 

but, in the case of Corollary 5, one is imposing initial conditions along a submani-

fold that is everywhere tangent to the holomorphic vector field Z = Zh, rather than 

(6) While I do not want to state their full theorem here, I will give the gist: The two properties listed 
for the function E are easily seen to imply that there exists a unique formal power series solution of 
the form z(r, t) = z\(r)t + Z2(r)t2 + • • • to (5.12). The main import of the quoted Theorem 8.0.3 
is that this series actually converges to an analytic solution on some open neighborhood of V x {0}. 
(The need for a theorem is caused by the singularity at t = 0, which renders the standard method 
of majorants ineffective in proving the convergence of the formal series.) 
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sverywhere transverse. The difference, of course, is that Corollary 5 addresses a sin­

gular initial value PDE problem that is, in many ways the analogue of the sort of ODE 

problem one encounters in the theory of regular singular points of ODE. 

Because the generalization of the ODE concept of 'regular singular point' to the 

:ase of PDE is very delicate (cf. the book of Gerard and Tahara), it is somewhat 

remarkable that this theorv actuallv applies in this case. 

5.1.2. A Lagrangian formulation. — While the reduced equation (5.3) is singular 

along the hypersurfaces r% = 0, it is regular on the open simplicial cone defined 

by rl > 0. Indeed, setting r% — ep\ the equation (5.3) with |c|2 = 1 can be written in 

the form 

(5.15) det 
l<i,j<n 

d2u 
w<<p^ùm e 

x< 
2 

du 
dp1 + ••• + h ri. du 

2 dpn = e 
< ùm^* x<< 

Setting Ui = J^i, this can be further rewritten into the form 

(5.16 e 
h. 
2 w< + ••• + hn 

2 Un dui &(k)z) = dun xw< e"1 + - + << dp' A---A dp". 

Thus, on R2n+1 with coordinates u,pl,Ui, if one defines the contact form 

(5.17 6 = du — Ui dp* 

and the closed ^-primitive (7) n-form 

(5.18: # = e 
' h-. 

2 m + ••• + hn 
2 Un dui A---A dun <p^*mm l+-+Pn dp1 A • • • A dpn, 

Then the solutions of the original equation (5.3) correspond to the integral manifolds 

of the Monge-Ampère ideal 

(5.19) 1= (0 ,d0,#) . 

Since \£ is closed and dO A \I> = 0, the (n+l)-form II = 6 A \P is closed and hence 

is the Poincare-Cartan form (see [1]) of a contact Lagrangian for the function u. 

In particular, it follows by Noether's Theorem that the symmetries of the Poincare-

Cartan form give conservation laws for the reduced equation. 

This is interesting because this system turns out to have a number of symmetries 

that are not apparent from the symmetries of the original equation. 

Remark 23 (Affine symmetries and equivalences). — For example, consider the affine 

transformations on M2n+1 of the form 

5.20 

u — s u + CLiBl pk + c , 

Ui = Al Uj + ai, 

= B) pj + 6* 

(7) If (M2n+1,0) is a contact manifold of dimension 2n+l, then an n-form $ on M is said to be 
9-primitive if dö A ̂  = 0 mod 0. 
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where Ap B1-, s ^ 0, â , b1, and c are real constants satisfying the n2+2n+l equations 

5.21 

4 
w< 

< ^ùm 
$*xw 

xw<p 
kùùùù 

= hj for 1 < j < n, 

i 
cw< 

= 1 for 1 < j < n, 
< 

ev 
hi 
2 

+ - + 2 On det < ^*mw< o^*mm det(S) . 

Such transformations, which constitute a Lie group of dimension n2 + 1, preserve the 

forms 6 and T up to constant multiples and hence preserve the system X. 

Obviously, the system depends on the vector h = (h\,..., hn). However, by leaving 

off the second of the above four conditions, one finds transformations that define 

equivalences between any two systems with h = hx + • • • + hn ^ 0 and any two 

systems with h = hx + • • • + hn = 0 but h ^ 0. The system corresponding to h = 0 

is, of course, the system that gives Ricci-flat toric Kahler metrics.) 

Remark 24 (Algebraic coordinates). — The function u is, in some sense, not that im­

portant, since only the derivatives of u appear in the formula for the metric. Thus, 

one can actually formulate the essential part of the exterior differential system as a 

system on R2n. 

Assuming that none of the hi are zero, one can coordinatize the system algebraically 

as follows: Set vi = e^hiUi. Then the form T can, after multiplying by a constant, be 

written in the form 

£.22) T = d^i A • • • A dvn — 
hi•• • hn 

2n 
dr1 A---A drn, 

and the contact condition that du — Ui dp1 = 0 can be replaced by the condition 

(5.23 
n 

i=l 

2 dvi 

hi Vi 
A 

dr1 
<< = 0. 
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SPECIAL LAGRANGIAN FIBRATIONS, MIRROR 

SYMMETRY AND CALABI-YAU DOUBLE COVERS 

by 

Denis Auroux 

To Jean Pierre Bourguignon on his 60th birthday, 
with my most sincere gratitude for the time 

he spent guiding me through the process 
of becoming a mathematician. 

Abstract. — The first part of this paper is a review of the Strominger-Yau-Zaslow 
conjecture in various settings. In particular, we summarize how, given a pair (X, D) 
consisting of a Kahler manifold and an anticanonical divisor, families of special La­
grangian tori in X \ D and weighted counts of holomorphic discs in X can be used 
to build a Landau-Ginzburg model mirror to X. In the second part we turn to 
more speculative considerations about Calabi-Yau manifolds with holomorphic invo­
lutions and their quotients. Namely, given a hypersurface H representing twice the 
anticanonical class in a Kahler manifold X, we attempt to relate special Lagrangian 
fibrations on X \ H and on the (Calabi-Yau) double cover of X branched along H; 
unfortunately, the implications for mirror symmetry are far from clear. 

Résumé (Fibrations lagrangiennes spéciales, symétrie miroir et revêtements doubles de Calabi-
Yau) 

La première partie de cet article concerne la conjecture de Strommger-Yau-Zaslow 
dans diverses situations. En particulier nous décrivons comment, étant donnés une 
variété kâhlerienne X et un diviseur anticanonique D, un miroir de X dans la catégorie 
des modèles de Landau-Ginzburg peut être construit en considérant une famille de 
tores lagrangiens spéciaux dans X \ D et en comptant des disques holomorphes dans 
X. La seconde partie est consacrée à des considérations plus spéculatives concernant 
les variétés de Calabi-Yau équipées d'une involution holomorphe et leurs quotients. 
Autrement dit, étant donnée une hypersurface H représentant le double de la classe 
anticanonique dans une variété kâhlerienne X, nous tentons d'établir un lien entre les 
fibrations lagrangiennes spéciales sur X \ H et sur le revêtement double de X ramifié 
le long de H, qui est une variété de Calabi-Yau ; malheureusement, les conséquences 
pour la symétrie miroir sont loin d'être évidentes. 
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Key words and phrases. — Mirror symmetry, special Lagrangian fibrations, Strominger-Yau-Zaslow 
conjecture, Calabi-Yau double covers. 
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1. Introduction 

The phenomenon of mirror symmetry was first evidenced for Calabi-Yau manifolds, 
i.e. Kahler manifolds with holomorphically trivial canonical bundle. Subsequently it 
became apparent that mirror symmetry also holds in a more general setting, if one 
enlarges the class of objects under consideration (see e.g. [14]); namely, one should 
allow the mirror to be a Landau-Ginzburg model, i.e. a pair consisting of a non-compact 
Kahler manifold and a holomorphic function on it (called superpotential). 

Our motivation here is to understand how to construct the mirror manifold, starting 
from examples where the answer is known and extrapolating to less familiar situa­
tions; generally speaking, the verification of the mirror symmetry conjectures for the 
manifolds obtained by these constructions falls outside the scope of this paper. 

The geometric understanding of mirror symmetry in the Calabi-Yau case relies on 
the Strominger-Yau-Zaslow (SYZ) conjecture [28], which roughly speaking postulates 
that mirror pairs of Calabi-Yau manifolds carry dual fibrations by special Lagrangian 
tori, and its subsequent refinements (see e.g. [10, 21]). This program can be extended 
to the non Calabi-Yau case, as suggested by Hori [12] and further investigated in [3]. 
In that case, the input consists of a pair (X, D) where X is a compact Kahler manifold 
and D is a complex hypersurface representing the anticanonical class. Observing that 
the complement of D carries a holomorphic n-form with poles along D, we can think 
of X \ D as an open Calabi-Yau manifold, to which one can apply the SYZ program. 
Hence, one can attempt to construct the mirror of X as a (complexified) moduli space 
of special Lagrangian tori in X\D, equipped with a Landau-Ginzburg superpotential 
defined by a weighted count of holomorphic discs in X. However, exceptional discs 
and wall-crossing phenomena require the incorporation of "instanton corrections" into 
the geometry of the mirror (see [3]). 

One notable feature of the construction is that it provides a bridge between mirror 
symmetry for the Kahler manifold X and for the Calabi-Yau hypersurface D C X. 
Namely, the fiber of the Landau-Ginzburg superpotential is expected to be the SYZ 
mirror to D, and the two pictures of homological mirror symmetry (for X and for D) 
should be related via restriction functors (see Section 7 of [3] for a sketch). 

In this paper, we would like to consider a slightly different situation, which should 
provide another relation with mirror symmetry for Calabi-Yau manifolds. The union 
of two copies of X glued together along D can be thought of as a singular Calabi-Yau 
manifold, which can be smoothed to a double cover of X branched along a hypersur­
face H representing twice the anticanonical class and contained in a neighborhood of 
D. This suggests that one might be able to think of mirror symmetry for X as a Z/2-
invariant version of mirror symmetry for the Calabi-Yau manifold Y. Unfortunately, 
this proposal comes with several caveats which make it difficult to implement. 
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Let (X,UJ, J) be a compact Kàhler manifold, and let H be a complex hypersurface 
in X representing twice the anticanonical class. Then the complement of H carries a 
nonvanishing section © of K®2 with poles along H. We can think of © as the square 
of a holomorphic volume form defined up to sign. In this context, we can look for 
special Lagrangian submanifolds of X \ H, i.e. Lagrangian submanifolds on which 
the restriction of © is real. The philosophy of the SYZ conjecture suggests that, in 
favorable cases, one might be able to construct a foliation of X \ H in which the 
generic leaves are special Lagrangian tori. Indeed, denote by Y the double cover of X 
branched along H: then F is a Calabi-Yau manifold with a holomorphic involution. 
If Y carries a special Lagrangian fibration that is invariant under the involution, then 
by quotienting we could hope to obtain the desired foliation on X \ H; unfortunately 
the situation is complicated by technicalities involving the symplectic form. 

Conjecture 1.1. — For a suitable choice of H, X\H carries a special Lagrangian foli­
ation whose lift to the Calabi-Yau double cover Y can be perturbed to a Z/2-invariant 
special Lagrangian torus fibration. 

If — Kx is effective, we can consider a situation where H degenerates to a hyper­
surface D representing the anticanonical class in X , with multiplicity 2. As explained 
above, this corresponds to the situation where Y degenerates to the union of two 
copies of X glued together along D. One could hope that under such a degener­
ation the foliation on X \ H converges to a special Lagrangian torus fibration on 
X \ D. Using the mirror construction described in [3], one can then try to relate 
a Landau-Ginzburg mirror ( X V , W ) of X to a Calabi-Yau mirror Yv of Y. The 
simplest case should be when KX\D is holomorphically trivial (which in particular 
requires c±(X)2 — 0). Then W : X v —> C is expected to have trivial monodromy 
around infinity (see Remark 2.11), so that dXy « S1 x Dy where Dy is mirror to D. 
It is then tempting to conjecture that, considering only the complex structure of the 
mirror (and ignoring its symplectic geometry), Yv can be obtained by gluing together 
two copies of the mirror Xw to X along their boundary S 1 x Dv. Unfortunately, as 
we will see in § 3.5 this is not compatible with instanton corrections. 

The rest of this paper is organized as follows. In Section 2 we review the geometry 
of mirror symmetry from the perspective of the SYZ conjecture, both in the Calabi-
Yau case and in the more general case (relatively to an anticanonical divisor). We then 
turn to more speculative considerations in Section 3, where we discuss the geometry 
of Calabi-Yau double covers, clarify the statement of Conjecture 1.1, and consider 
various examples. 

Acknowledgements. — I would like to thank Mohammed Abouzaid, Paul Seidel, 
Ludmil Katzarkov, and Dima Orlov for many fruitful discussions. I am also grateful 
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to Ron Donagi, whose interest in this topic prompted the writing of this paper, and 

to the referee for insightful comments. This research was partially supported by NSF 

grants DMS-0600148 and DMS-0652630. 

2. The SYZ conjecture and mirror symmetry 

2.1. Motivation. — One of the most spectacular mathematical predictions of 

string theory is the phenomenon of mirror symmetry, i.e. the existence of a broad 

dictionary under which the symplectic geometry of a given manifold X can be un­

derstood in terms of the complex geometry of a mirror manifold X v , and vice-versa. 

This dictionary works at several levels, among which perhaps the most exciting is 

Kontsevich's homological mirror conjecture, which states that the derived Fukaya 

category of X should be equivalent to the derived category of coherent sheaves of its 

mirror Xy [19]; in the non Calabi-Yau case the categories under consideration need 

to be modified appropriately [20] (see also [1, 13, 18, 26, 27]). 

The main goal of the Strominger-Yau-Zaslow conjecture [28] is to provide a ge­

ometric interpretation of mirror symmetry. Roughly speaking it says that mirror 

manifolds carry dual fibrations by special Lagrangian tori. In the Calabi-Yau case, 

one way to motivate the conjecture is to observe that, given any point p of the mirror 

X v , mirror symmetry should put the skyscraper sheaf Op in correspondence with 

some object Cp of the Fukaya category of X. As a graded vector space Ext*(O p, Op) 

is isomorphic to the cohomology of T n ; therefore the most likely candidate for Cp is a 

(special) Lagrangian torus in X, equipped with a rank 1 unitary local system (a flat 

U(l) bundle). This suggests that one should try to construct Xy as a moduli space 

of pairs (L, V) where L is a special Lagrangian torus in X and V is a flat unitary 

connection on the trivial line bundle over L. Since for each torus L the moduli space 

of flat connections can be thought of as a dual torus, we arrive at the familiar picture. 

When X is not Calabi-Yau but the anticanonical class —Kx is effective, we can 

still equip the complement of a hypersurface D G | — Kx | with a holomorphic volume 

form, and thus consider special Lagrangian tori in X \D. However, in this case, 

holomorphic discs in X with boundary in L cause Floer homology to be obstructed 

in the sense of Fukaya-Oh-Ohta-Ono [6]: to each object C = (L, V) we can associate 

an obstruction m 0(£), given by a weighted count of holomorphic discs in (X, L), and 

the Floer differential on CF* (£>,£) squares to mo(£') — mo(£). Moreover, even when 

the Floer homology groups HF*(C,C) can still be defined, they are often zero, so 

that C is a trivial object of the Fukaya category. On the mirror side, these features of 

the theory can be replicated by the introduction of a Landau-Ginzburg superpotential, 

i.e. a holomorphic function W : Xy —> C. Without getting into details, W can be 

thought of as an obstruction term for the B-model on X v , playing the same role as 
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mo for the A-model on X. In particular, a point of Xv defines a nontrivial object of 

the category of B-branes Dbsing(Xy, W) only if it is a critical point of W [18, 24]. 

2.2. Special Lagrangian fibrations and T-duality. — Let (X,u,J) be a 

smooth compact Kahler manifold of complex dimension n. If X is Calabi-Yau, 

i.e. the canonical bundle Kx is holomorphically trivial, then X carries a globally 

defined holomorphic volume form Cl G On'°(X): this is the classical setting for mirror 

symmetry. Otherwise, assume that K^1 admits a nontrivial holomorphic section cr, 

vanishing along a hypersurface D. Typically we will assume that D is smooth, or 

with normal crossing singularities. ThenW<<= cr-1 is a nonvanishing holomorphic 

(n, 0)-form over X \D, with poles along D. 

The restriction of Q to a Lagrangian submanifold L C X \ D does not vanish, and 

can be expressed in the formCW<<= ^vol^, where ijj G C°°(L,C*) and vo\g is the 

volume form induced on L by the Kâhler metric g = u(-,J-). 

Definition 2.1. — A Lagrangian submanifold L C X \ D is special Lagrangian if the 

argument ofS<WWis constant. 

The value of the constant depends only on the homology class [L] G Hn(X \ D, Z) , 

and we will usually arrange for it to be a multiple of TT/2. For simplicity, in the rest 

of this paragraph we will assume that fl^ is a real multiple of volp. 

The following classical result is due to McLean [23] (at least when xw= 1, which 

is the case in the Calabi-Yau setting; see § 9 of [17] or Proposition 2.5 of [3] for the 

case whereW<<<^ 1): 

Proposition 2.2 (McLean). — Infinitesimal special Lagrangian deformations of L are 

in one to one correspondence with cohomology classes in i?1(L,R). Moreover, the 

deformations are unobstructed. 

More precisely, a section of the normal bundle v € C°°(NL) determines a 1-form 

a = -LVUJ e fi1(L,R) and an (n - l)-form (3 = Lvlmft e On_1(^,^) . These satisfy 

/3 = ip *ga, and the deformation is special Lagrangian if and only if a and ¡3 are both 

closed. Thus special Lagrangian deformations correspond to "^-harmonic" 1-forms 

-LVOJ e HUL) = {ae n 1 ^ » ) ! da = 0, d*(i)a) = 0} (recall ^ G C°°(L,R+) is the 

ratio between the volume elements determined by Vt and g). 

In particular, special Lagrangian tori occur in n-dimensional families, giving a local 

fibration structure provided that nontrivial ^-harmonic 1-forms have no zeroes. 

The base B of a special Lagrangian torus fibration carries two natural affine struc­

tures, which we call "symplectic" and "complex". The first one, which encodes the 

symplectic geometry of X, is given by locally identifying B with a domain in HX(L, R) 
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(where L « Tn). At the level of tangent spaces, the cohomology class of — LVOJ pro­

vides an identification of TB with i71(L,R); integrating, the local affine coordinates 

on B are the symplectic areas swept by loops forming a basis of H\(L). The other 

affine structure encodes the complex geometry of X, and locally identifies B with a 

domain in i7n-1(L,R). Namely, one uses the cohomology class of ivlmtt to identify 

TB with ifn_1(L,R), and the affine coordinates are obtained by integrating Imfi 

over the n-chains swept by cycles forming a basis of Hn-i(L). 

In practice, B can usually be compactified to a larger space B (with non-empty 

boundary in the non Calabi-Yau case), by also considering singular special Lagrangian 

submanifolds that arise as limits of degenerating families of special Lagrangian tori; 

however the affine structures are only defined on the open subset B C B. 

Ignoring singular fibers and instanton corrections, the first candidate for the mirror 

of X is therefore a moduli space M of pairs (L, V ) , where L is a special Lagrangian 

torus in X (or X \ D) and V is a flat U(l) connection on the trivial line bundle over 

L (up to gauge). The local geometry of M is well-understood [ 1 1 , 2 2 , 8 , 3 ] , and in 

particular we have the following result (see e.g. §2 of [3] ) : 

Proposition 2.3. — M carries a natural integrable complex structure Jv arising from 

the identification 

T(L,V)M = {(v ,a) e C°°(NL) 0 n\L,R) \ - LVOJ + ia G Wi(L) <8> C}; 

a holomorphic n-form 

x^^$ 
(*>l,û!l),...,(v TI 5 7̂1 J cx 

L 
-tVluj + iai) A • • • A (-iVnv + iOLn), 

and a compatible Kahler form 

cww {v1,a1),(v2,a2) cxx 
x^^ 

Q2 A LVllmfí — ai A ¿V2ImO 

(this formula for UJv assumes that fLReQ, has been suitably normalized). 

The moduli space of pairs M can be viewed as a complexification of the moduli 

space of special Lagrangian submanifolds; forgetting the connection gives a projection 

map / v from M to the real moduli space B. The fibers of this projection are easily 

checked to be special Lagrangian tori in (M,u;v,Ov). 

The special Lagrangian fibrations / : X —• B (or rather, its restriction to the open 

subset f~1(B)) and fv:M-+B can be viewed as fiberwise dual to each other. In 

particular, it is easily checked that the affine structure induced on B by the symplectic 

geometry of / v coincides with that induced by the complex geometry of / , and vice-

versa. Giving priority to the symplectic affine structure, we will often implicitly equip 

B with the affine structure induced by the symplectic geometry of X , and denote 
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by By the same manifold equipped with the other affine structure (induced by the 
complex geometry of X, or the symplectic geometry of M ) . 

Thus, the philosophy of the Strominger-Yau-Zaslow conjecture is that, in first 
approximation (ignoring instanton corrections), mirror symmetry amounts simply to 
exchanging the two affine structures on B. However, in general it is not at all obvious 
how to extend the picture to the compactification B. The reader is referred to [28], 
[8], [22] for more details in the Calabi-Yau case, and to [12] and [3] for the non 
Calabi-Yau case. 

2.3. Mirror symmetry for Calabi-Yau manifolds. — Constructing a special 
Lagrangian fibration on a Calabi-Yau manifold is in general a challenging task, but 
there are a few situations where it can be done explicitly, for instance in the case of 
flat tori, or for hyperkahler manifolds. We give two well-known examples. 

Example 2.4 (Elliptic curves). — Consider an elliptic curve E = C/(Z 0 rZ) , where 
r = ry E iR+, equipped with the holomorphic volume form ft = dz and a Kahler 
form oo such that fEuo = A £ R+. (The reason why we assume r to be pure imaginary 
is that for simplicity we are suppressing any discussion of 5-fields). Then the family 
of circles parallel to the real axis {Im (z) = c} defines a special Lagrangian fibration 
on E, with base B ~ S1. One easily checks that the length of B with respect to the 
affine metric is equal to A for the symplectic affine structure, and 7 for the complex 
affine structure. The mirror elliptic curve Ev is obtained by exchanging the two affine 
structures on B; accordingly, it has modular parameter rv = i\ and symplectic area 
JEv ooy = 7. (The reader is referred to [25] for a verification of homological mirror 
symmetry for the mirror pair E,EV.) 

Example 2.5 (КЗ surfaces). — In the case of КЗ surfaces, special Lagrangian fibrations 
can be built using hyperkahler geometry. Let (X, J) be an elliptically fibered КЗ sur­
face, for example obtained as the double cover of CP1 x CP1 branched along a suitably 
chosen algebraic curve of bidegree (4,4): composing the covering map with projection 
to the first CP1 factor, we obtain an elliptic fibration / : X —• CP1 with 24 nodal 
singular fibers. Equip X with a Calabi-Yau metric p, and denote the corresponding 
Kahler form by uoj. Denote by ftj a holomorphic (2,0)-form on X , suitably normal­
ized, and let UOK = Re(fij) and ooj = lm(ftj): then (OOI,OOJ,OOK) is a hyperkahler 
triple for the metric g. Now switch to the complex structure / = g~~1ooj determined 
by the Kahler form 00/, and with respect to which ftj = 00j + гик is a holomorphic 
volume form. Since the fibers of / : X —> CP1 are calibrated by oo j , the map / is a 
special Lagrangian fibration on (X,ooi,fti). 

The affine structures on the base of / are only defined away from the singularities 
of the fibration. Thus the geometry of (X,uoi,fti) is characterized by a pair of affine 
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structures on the open subset B ~ b \ {24 points} of B ~ b . The monodromies of 

the two affine structures around each singular point are the transpose of each other, 
and each individual monodromy is coniugate to the standard matrix 

o i) 
The mirror of x^^ùù<<<< is another K3 surface, carrying a special Lagrangian 

fibration whose base differs from B by an exchange of the two affine structures. In 

fact, under certain assumptions (e.g., existence of a section) and for a specific choice of 

[UJJ], the mirror may be obtained simply by performing another hyperkahler rotation 

to get (X, -LJK, ^-K = wj + iui i; see e.g. § 7 of [ 1 5 ] . The reader is also referred to 

§ 7 of [8] for more details on the SYZ picture for K3 surfaces. 

In the above examples, one can avoid confronting heads-on the delicate issues that 

arise when trying to reconstruct the mirror from the affine geometry of B. In general, 

however, the compactification of the mirror fibration over the singularities of the affine 

structure and the incorporation of instanton corrections are two extremely challenging 

aspects of this approach. The reader is referred to [ 2 1 ] and [10] for two attempts at 

tackling this problem. 

Another even more important issue is constructing a special Lagrangian torus fi­

bration on X in the first place. When there is no direct geometric construction as in 

the above examples, the most promising approach seems to be Gross and Siebert's 

program to understand mirror symmetry via toric degenerations [9 , 1 0 ] . The main 

idea is to degenerate X to a union XQ of toric varieties glued together along toric 

strata; toric geometry then provides a special Lagrangian fibration on XQ, whose base 

is a polyhedral complex formed by the union of the moment polytopes for the com­

ponents of XQ. Gross and Siebert then analyze carefully the behavior of this special 

Lagrangian fibration upon deforming XQ back to a smooth manifold, showing how 

to insert singularities into the affine structure to compensate for the nontriviality of 

the normal bundles to the singular strata along which the smoothing takes place. 

Moreover, they also show that, in the toric degeneration limit, exchanging the affine 

structures on the base of the special Lagrangian fibration can be understood as a 

combinatorial process called discrete Legendre transform [9 ] . 

Remark 2.6. — The affine geometry of B is a remarkably powerful tool to understand 

the symplectic and complex geometry of X (and, by exchanging the affine structures, 

of its mirror). Namely, away from the singularities, the two affine structures on 

B = By each determine an integral lattice in the tangent bundle TB\ denoting these 

lattices by A for the symplectic affine structure and Av for the complex affine struc­

ture, locally X can be identified with either one of the torus bundles T*B/A* (with its 

standard symplectic form) and TBy/Av (with its standard complex structure). Thus, 

locally, an integral affine submanifold of B (i.e., a submanifold described by linear 
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equations with integer coefficients in local affine coordinates with respect to the sym­
plectic affine structure) determines a Lagrangian submanifold of X by the conormal 
construction. Similarly, an integral affine submanifold with respect to the complex 
affine structure By locally determines a complex submanifold of X (by considering its 
tangent bundle). More generally, tropical subvarieties of B or Bv determine piecewise 
smooth Lagrangian or complex subvarieties in X; whether these can be smoothed is 
a difficult problem whose answer is known only in simple cases. 

To give a concrete example, let us return to K3 surfaces (Example 2.5) and the 
corresponding affine structures on B ~ S2 \ {24 points}. Each singular fiber of the 
special Lagrangian torus fibration / : X —> CP1 has a nodal singularity obtained 
by collapsing a circle in the smooth fiber. The homology class of this vanishing 
cycle determines a pair of rays in B (straight half-lines emanating from the singular 
point), with the property that the conormal bundles to these rays compactify nicely 
to Lagrangian discs in X (possibly after a suitable translation within the fibers). 
Similarly, the nodal singularity determines a pair of rays in Bv (different from the 
previous ones), whose tangent bundles (again after a suitable translation) compactify 
to holomorphic discs in X. When two singularities of the affine structure lie in a 
position such that the corresponding rays in B (resp. in Bv) align with each other 
(and assuming the translations in the fibers also match), the line segment joining 
them in B (resp. By) determines a Lagrangian sphere (resp. a rational curve with 
normal bundle 0(—2)) in X. In the mirror XV the same alignment produces a 
rational —2-curve (resp. a Lagrangian sphere). In fact, using the hyperkahler structure 
on X and remembering that the elliptic fibration / is J-holomorphic, these spheres 
correspond to (special) Lagrangian spheres in (X,UJJ) which arise from the matching 
path construction and additionally are calibrated by LJK (resp. UJJ). 

2.4. Mirror symmetry in the complement of an anticanonical divisor. — 
We now consider special Lagrangian torus fibrations in the complement X \ D of an 
anticanonical divisor D in a Kàhler manifold X. We start with a very easy example 
to make the following discussion more concrete: 

Example 2.7. — Let X = CP1, equipped with any Kahler form invariant under the 
standard 51-action. Equip the complement of the anticanonical divisor D = {0, oo} , 
namely CP1 \ {0 ,oo} = C*, with the standard holomorphic volume form ft = dz/z. 
It is easy to check that the circles \z\ = r are special Lagrangian (with phase 7r/2). 
Thus we have a special Lagrangian fibration / : CP1 \ D —> B, whose base B is 
homeomorphic to an interval. As seen above, B carries two affine structures. With 
respect to the symplectic affine structure, the special Lagrangian fibration is simply 
the moment map for the 51-action on CP1 (up to a factor of 27r). Thus B is an open 
interval of length equal to the symplectic area of CP1, and can be compactified by 
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adding the end points of the interval, which correspond to the S fixed points, i.e. the 
points of D. On the other hand, with respect to the complex affine structure, B is an 
infinite line: from this point of view, the special Lagrangian fibration is given by the 
map z i—• log \z\. 

We can start building a mirror to X by considering the dual special Lagrangian 
torus fibration M as in § 2.2. M is a non-compact Kahler manifold and, after taking 
instanton corrections into account, it is in fact the mirror to the open Calabi-Yau 
manifold X\D. Thus, some information is missing from this description. As explained 
at the end of §2.1, adding in the divisor D very much affects the special Lagrangian 
tori X\D from a Floer-theoretic point of view, and the natural way to account for the 
resulting obstructions is to make the mirror a Landau-Ginzburg model by introducing 
a superpotential W : M —» C. 

Recall that a point of M is a pair (L, V ) , where L c X \ D is a special Lagrangian 
torus, and V is a flat connection on the trivial line bundle over L. Given a homotopy 
class (3 G 7r2(X, L), we can consider the moduli space of holomorphic discs in X with 
boundary on L, representing the class /3. The virtual dimension (over M) of this 
moduli space is n — 3 + //(/3), where /x(/3) G Z is the Maslov index; in our case, the 
Maslov index is twice the algebraic intersection number /3 • [D] (see e.g. Lemma 3.1 
of [3]). When fji(l3) = 2, in favorable cases we can define a (virtual) count np(L) 
of holomorphic discs in the class f3 whose boundary passes through a generic point 
p G L, and define 

(2.1) W(L,V) = 
/3€7r2(X,Z/ 

M(/3)=2 

x<< [L)za(L,V), where zp(L, V) = exP (~L^) hoi v (3/3). 

Thus, I f is a weighted count of holomorphic discs of Maslov index 2 with boundary 
in L, with weights determined by the symplectic area of the disc and the holonomy 
of the connection V along its boundary. 

For example, in the case of CP1 (Example 2.7), each special Lagrangian fiber 
separates CP1 into two discs, one containing 0 and the other one containing oo. The 
classes/?i and^^represented by these discs satisfy (3\ + =^^^^ [CP1], and hence the 
corresponding weights satisfy zpxzp2 = exp(— Jcpl w). One can check that npx = 
np2 = 1, so that using z = zp1 as coordinate on M we obtain the well-known formula 
for the superpotential, W = z + e~A z-1, where A is the symplectic area of CP1. 

While the example of CP1 is straightforward, several warnings are in order. First, 
unless X is Fano the sum (2.1) is not known to converge. More importantly, if L 
bounds non-constant holomorphic discs of Maslov index 0 (i.e., discs contained in 
X \ D), then the counts np(L) depend on auxiliary data, such as the point p G L 
through which the discs are required to pass, or an auxiliary Morse function on L. 
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An easy calculation shows that the weights z@ are local holomorphic functions on 

M (with respect to the complex structure defined in Proposition 2.3), and once all 

ambiguities are lifted the disc counts np(L) are locally constant, so that W is locally 

a holomorphic function on M. However, Maslov index 0 discs determine "walls" 

in M, across which the counts np(L) jump and hence the quantity (2.1) presents 

discontinuities. In terms of the affine geometry of the base of the special Lagrangian 

fibration, an important mechanism for the generation of walls comes from the rays 

in Bv (the base with its complex affine structure) that emanate from the vanishing 

cycles at the singular fibers of the special Lagrangian fibration: indeed, by definition 

any special Lagrangian fiber that lies on such a ray bounds a holomorphic disc in 

X \ D (see Remark 2.6). Intersections between these "primary" walls then generate 

further walls (which can be visualized as rigid tropical configurations in £?v). 

Fukaya-Oh-Ohta-Ono's results [6] imply that the formulas for W in adjacent cham­

bers of M differ by a holomorphic substitution of variables (see also Proposition 3.9 

in [3]). The guiding principle that governs instanton corrections is that the various 

chambers of M should be glued to each other not in the naive manner suggested 

by the geometry of B, but rather via the holomorphic gluing maps that arise in the 

wall-crossing formulas. Thus, the instanton-corrected mirror is precisely the analytic 

space on which the weighted count (2.1) of holomorphic discs in (X,L), and more 

generally the "open Gromov-Witten invariants" of (X,L) (yet to be defined in the 

most general setting), become single-valued quantities. The reader is referred to [21] 

and [10] for more details on instanton corrections. 

One final issue is that, according to Hori and Vafa [ 1 4 ] , the mirror obtained by 

T-duality needs to be enlarged. The holomorphic volume form ft has poles along D, 

which causes B equipped with the complex affine structure to have infinite diame­

ter (after adding in the singular fibers, Bv is complete). On the other hand, the 

fact that UJ extends smoothly across D means that, with respect to the symplectic 

affine structure, B has finite diameter, and compactifies to a singular affine manifold 

with boundary. The consequence is that, after exchanging the affine structures, the 

Kahler metric on the mirror is complete but its complex structure is "incomplete": 

for instance, in Example 2.7 the mirror of CP1 is naturally a bounded annulus (of 

modulus equal to the symplectic area of CP1), rather than the expected C*. Hori 

and Vafa's suggestion (assuming that X is Fano) is to symplectically "enlarge" X\D 

by considering a family of Kahler forms (u)k)k^>oo obtained by symplectic inflation 

along D, with the property that [ujk] = [to] + kci(X), and simultaneously rescaling 

the superpotential by a factor of efc; see also §4.2 of [3]. (In some cases, this process 

can also be viewed as a flow that should converge to a complete Ricci-flat metric on 

X \D.) However, this "renormalization" procedure does not seem desirable in the 

geometric setting considered in Section 3, so we do not consider it further. 
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We end here our discussion of the various delicate points that come up in the 

construction of the mirror and its superpotential, and simply refer the reader to [3] 

for more details. Instead, we return to examples. 

Example 2.8 (Toric varieties). — Let (X, u, J) be a toric variety of complex dimension 

n, and consider the toric anticanonical divisor D (i.e., the divisor of points where the 

T n-action is not free). Recall that X \ D is biholomorphic to (C*) n , and equip it 

with the holomorphic (n,0)-form ft — d\o%Z\ A • • • A d logz n , which has poles along 

D. Then the orbits of the standard T n-action define a special Lagrangian fibration 

on X \ D ~ (C* ) n . With respect to the symplectic affine structure, the base B of 

this fibration is the moment polytope for (X, UJ), or rather its interior, and the special 

Lagrangian fibration is simply given by the moment map. On the other hand, the 

complex affine structure on B naturally identifies it with R n ; from this point of view 

the special Lagrangian fibration is the Log map (zi,...s,znw<<) i-» (log \zi\,..s., log \zn\). 

Exchanging the two affine structures, the mirror of X is naturally a bounded do­

main in (C*) n (the subset of points whose image under the Log map lies in the 

moment polytope of X), equipped with a complete Kahler metric and a superpoten­

tial W defined by a Laurent polynomial consisting of one term for each component of 

D. Details can be found in [5] and [7] (see also §4 of [3] for a brief overview, and [1] 

for a partial verification of homological mirror symmetry). 

Example 2.9 (CP 2). — Consider CP 2 equipped with the Fubini-Study Kahler form 

UJQ. Let D C CP 2 be a smooth elliptic curve defined by a homogeneous polynomial of 

degree 3, and let ft be a holomorphic volume form on CP 2 with poles along D. 

Conjecture 2.9. — CP 2 \ D carries a special Lagrangian torus fibration over the disc 

with (generically) three nodal singular fibers. 

Tentatively, the construction of this special Lagrangian fibration proceeds as follows. 

Start with the toric setting, i.e. equip CP 2 with a holomorphic volume form with 

poles along the toric anticanonical divisor DQ consisting of the three coordinate lines 

(Qo = dx A dy/xy in an affine chart). As mentioned above, the orbits of the standard 

T 2-action define a special Lagrangian fibration on (C*) 2 = CP 2 \ DQ; with respect to 

the symplectic affine structure, the base Bo of this fibration is the moment polytope 

for CP 2 , i.e. a triangle. Deforming this situation to the case of a holomorphic volume 

form ft' with poles along a smooth cubic curve D' obtained by smoothing out the 

three nodal points of DQ modifies the structure of the special Lagrangian fibration 

near the three toric fixed points. A local model for what happens near each of these 

points is described in § 5 of [3] . Namely, if we replace ft0 by ft£ = dx A dy/ (xy — e), 

then the complement of the anticanonical divisor D£ formed by the conic xy = e and 

the line at infinity carries a special Lagrangian torus fibration with one nodal singular 
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fiber: the fibers are formed by intersecting the level sets of the moment map for the 

Abaction eie • fay) = [eiex, e~i9y] with the level sets of the function \xy — e\2, and 

the singularity is at the origin [3]. If s is small then this family is close to the toric 

family away from the origin. Therefore, general considerations about deformations 

of families of special Lagrangians suggest that, if the smooth elliptic curve D' lies 

in a sufficiently small neighborhood of Do, then (CP 2 \ Df,ujo,Clf) carries a special 

Lagrangian fibration with three nodal singular fibers. Prom the point of view of the 

affine geometry of the base B' of this fibration, the smoothing of each node of Do 

amounts to replacing a corner of the triangle Bo by a singular point in the interior of 

B' (so that B' is a singular affine manifold with boundary but without corners). This 

construction can be thought of as a special Lagrangian version of a trick studied by 

Margaret Symington [29]. 

The special Lagrangian fibers over points close to the boundary of B' lie in a 

tubular neighborhood of D' , and collapse to closed loops in D' as one approaches 

the boundary. Thus their first homology group is generated by a meridian m (the 

boundary of a small disc that intersects D' transversely once) and by a longitude £ 

(a curve that runs parallel to a closed loop on D'). The monodromy of the special 

Lagrangian fibration along dB' fixes m, but because the normal bundle to D' has 

degree 9 it maps £ to £ + 9m. Thus, in a suitable basis the monodromy along the 

boundary of B' can be expressed by the matrix ^ ^ (see equation (7.2) in [3]). 

The general case, where the cubic curve D is not necessarily close to the singular 

toric configuration Do C CP 2 , should follow from a suitable result on deformations 

of two-dimensional special Lagrangian torus fibrations with nodal singularities. (To 

our knowledge such a result hasn't been proved yet; however it should follow from 

an explicit analysis of the deformations of the nodal singularities and the implicit 

function theorem applied to the smooth part of the fibration. In our case one also 

needs to control the behavior of the fibration near the boundary of B.) 

When constructing the mirror, the singular fibers create walls, which require in-

stanton corrections. In the case of a cubic D' obtained by a small deformation of 

the toric configuration Do, the local model for a single smoothing suggests that the 

walls run parallel to the boundary of the base B'. In fact, the special Lagrangian 

fibers which lie sufficiently far from D' are Floer-theoretically equivalent to standard 

product tori. Thus, in the "main" chamber the superpotential is given by the same 

formula as in the toric case, W = x + y + e~A/xy in suitable coordinates (where 

A = / c p l u)\ in the other chambers it is given by some analytic continuation of this 

expression (see § 5 of [3] for an explicit formula in the case of smoothing a single node 

of DQ). In fact, ignoring completeness issues (e.g., looking only at \W\ <C 1), the 

overall effect of deforming DQ to a smooth cubic curve on the complex geometry of 
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the Landau-Ginzburg mirror is expected to be a fiberwise compactification. Simul­

taneously, the symplectic area of the fiber of the Landau-Ginzburg model, which is 

infinite in the toric case, is expected to become finite and equal to the imaginary part 

of the modular parameter of the elliptic curve D' (see also [41). 

Example 2.10 (Rational elliptic surface). — Let X be a rational elliptic surface ob­

tained by blowing up CP2 at the nine base points of a pencil of cubics, equipped 

with a Kahler form a). Let D C X be a smooth elliptic fiber (the proper transform of 

a cubic of the pencil), and let Cl be a holomorphic (2,0)-form on X with poles along 

D. We expect: 

Conjecture 2.10. — X \ D carries a special Lagrangian torus fibration over the disc 

with (generically) 12 nodal singular fibers. The monodromy of the affine structure 

around each singularity is conjugate to ^ ^, and the monodromy along 8Ê is trivial. 

The construction starts with (CP , D,uo, Q), where D c CP is an elliptic curve and 

Q is a holomorphic (2,0)-form with poles along D, as in Example 2.9 above. By 

Conjecture 2.9, we expect CP2 \ D to carry a special Lagrangian torus fibration with 

three nodal singular fibers. Now we blow up CP2 at nine points on the cubic D, to 

obtain the rational elliptic surface X. Pulling back Q, under the blowup map yields a 

holomorphic (2,0)-form l ion I , with poles along an elliptic curve D C X (the proper 

transform of D). On the other hand, the Kahler form u) on X is not canonical, and 

depends in particular on the choice of the symplectic areas of the exceptional divisors. 

We claim that, provided these areas are sufficiently small, the blowup should carry a 

special Lagrangian torus fibration with 12 nodal singular fibers. 

The local model for each blowup operation is as follows [2]. Consider a neighbor­

hood of the origin in C2 equipped with the standard symplectic form, the holomorphic 

volume form dxAdy/y with poles along C x { 0 } , and the family of special Lagrangian 

cylinders {Re x) = *1, 1 
2 

\y 2 w<< ¿2 C C x C*. Equip the blowup C2 with a toric 

Kahler form u>0 (invariant under the standard T2-action) for which the area of the 

exceptional divisor is e > 0, and the holomorphic volume form Q,Q obtained by pulling 

back dx A dy/y under the blowup map ir : C2 —> C2. The lift to C2 of the 51-action 

e%e - (x,y) = (x,eiey) preserves a>0 and fio; its fixed point set consists of on one hand 

the proper transform D0 of C x { 0 } , and on the other hand the point where the proper 

transform of { 0 } x C hits the exceptional divisor. Denote by \x : C2 —> R the moment 

map for this S^action, normalized to equal 0 on DQ and e at the isolated fixed point. 

Then it is easy to check that the submanifolds {Re(7r*x) = t i , \x — £2} C C2 \ Do are 

special Lagrangian with respect to o>o and ^0 [2]. This family of special Lagrangians 

presents one nodal singular fiber - the fiber which corresponds to (̂ 1,̂ 2) = (0, e) and 

passes through the isolated S1 -fixed point. Moreover, if e is small then away from 
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a neighborhood of the exceptional divisor this family is close to the initial family of 

special Lagrangians in C x C*. 

Even though the local model is only an asymptotic description of the geometry of 

the special Lagrangian fibration on CP 2 \D near a point of D, it should be possible to 

glue this local construction into the fibration of Conjecture 2.9, and thereby construct 

a special Lagrangian fibration on the rational elliptic surface X obtained by blowing 

up CP 2 at 9 points on the elliptic curve D. Each blow-up operation inserts a nodal 

singular fiber into the fibration; thus the base B of the special Lagrangian fibration 

on X presents 12 singular points. (The whole process can again be viewed as a special 

Lagrangian version of Symington's construction [29].) Prom the point of view of the 

symplectic affine structure, an easy calculation on the local model shows that each 

new singular point lies at a distance from the boundary of B equal to the symplectic 

area of the exceptional curve of the corresponding blowup; in fact the exceptional 

curve can be seen as a complex ray that runs from the singular point to the boundary 

of B. Moreover, the monodromy of the fibration along the boundary of B is trivial, 

reflecting the fact that the anticanonical divisor D C X has trivial normal bundle. 

The general case, where the exceptional divisors of the blowups are not assumed to 

have small symplectic areas, should again follow from a careful analysis of deforma­

tions of two-dimensional special Lagrangian torus fibrations with nodal singularities 

(with the same caveats as in the case of CP 2 ) . 

Remark2.11. — Assume D is smooth. Then the holomorphic (n,0)-form ft on X\D 

induces a holomorphic volume form Op = Res£>($!) on D: the residue of Q along D. 

It is reasonable to expect that, as is the case in the various examples considered above, 

in a neighborhood of D the special Lagrangian fibration on (X \ D,UJ,Q) consists of 

tori which are 51-bundles over special Lagrangian submanifolds of (D, u\D, QD)- AS 

a toy example, consider X = D x C, ou = UJD + \dz A dz, and Q, = flD A dz/z: then 

the product any special Lagrangian submanifold of D with a circle centered at the 

origin in C is easily seen to be special Lagrangian. We conjecture that the qualitative 

behavior is the same in the general case; see § 7 of [3] for more details. 

Assuming that this picture holds, the special Lagrangian fibration / : X \D —> B 

can be extended over the boundary of B by a special Lagrangian fibration on D. In 

particular, the boundary of B, with the induced affine structures, is the base Bry of an 

SYZ fibration on D. More precisely: with respect to the symplectic affine structure, 

the compactified base B is a singular affine manifold with boundary (and corners if 

D has normal crossings), and its boundary is Bp- With respect to the complex affine 

structure, Bw (after adding in the interior singular fibers) is a complete singular affine 

manifold, isomorphic to M+ x B^ outside of a compact subset. 
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As already seen in Example 2.9, near on the monodromy of the afhne structures 

on B is determined explicitly by the affine structures on 5 ^ and by the first Chern 

class of the normal bundle to D. Indeed, given a fiber of / near the boundary of B, 

i.e. an 51-fibered special Lagrangian L C X \ D, the action of the monodromy on 

Hi (L) can be determined by working in a basis consisting of a meridian loop linking 

D and n — 1 longitudes running parallel to D; from this one deduces the corresponding 

actions onx<<<<<< (monodromy of B) and ifn-1(L) (monodromy of JE?V). 

Next, we look at the mirror, and observe that near its boundary M consists of pairs 

(L, V) where L is an 51-fibered special Lagrangian contained in a neighborhood of 

D. Denote by S £ ^(X, L) the homotopy class of a small meridian disc intersecting 

D transversely once (with boundary the meridian loop), and let 2<$(L, V) be the 

corresponding weight as in equation (2.1). Then z$ is a holomorphic function on 

M near its boundary. (In fact, zs is the dominant term in the expression of the 

superpotential W near dM, as the meridian discs have the smallest symplectic area 

among all Maslov index 2 holomorphic discs.) By construction, the boundary of 

M corresponds to the case where the area of the meridian disc reaches zero, i.e. 

dM = {\zs\ = l}. 

Consider the complex hypersurface = {z$ = 1} (C dM). Geometrically, MB 

corresponds to limits of sequences of pairs (L, V) where L collapses onto a special La­

grangian torus A c D and the connection V has trivial holonomy along the collapsed 

S^-factor in L, i.e. is pulled back from a flat connection on the trivial bundle over A. 

Thus MD is none other than the SYZ mirror to D. Moreover, the restriction of z$ to 

dM induces a locally trivial fibration zs : dM —> S1 with fiber MD. The monodromy 

of this fibration can be realized geometrically as follows. Start with a pair (L, V) 

where L is almost collapsed onto A c D and V has trivial holonomy along the merid­

ian loop (so z§ G then we can change the holonomy of V along the meridian loop 

by adding to it a multiple of cr_1Vcr, where a is the defining section of D and V is a 

suitable connection on K^1. Prom there it follows easily that the monodromy of the 

fibration zs : dM —> S1 is a symplectomorphism of MD which geometrically realizes 

(as a fiberwise translation in the special Lagrangian fibration MD —• Bo dual to the 

SYZ fibration on D) the mirror to the autoequivalence — (g)xwp̂ ùùù of DbCoh(D). 

This rich geometric picture naturally leads to a formulation of mirror symmetry 

for the pairs (X, D) and (M, MD)\ see § 7 of [3] for details. 

3. Special Lagrangian fibrations and double covers 

3.1. Special Lagrangians and Calabi-Yau double covers. — Let (X,u,J) be 

a smooth compact Kahler manifold of complex dimension n, and let 5 be a nontrivial 
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holomorphic section of K^2. Unless otherwise specified we assume that the hyper­
surface H = 5_1(0) is smooth. G = s-1 is a nonvanishing section of K®2 over X\H, 
with poles along if, and locally ft = B1//2 is a nonvanishing holomorphic n-form, 
defined up to sign. The restriction of 6 to a Lagrangian submanifold L C X \ H 
does not vanish, and can be expressed in the form 77 vol2,, where rj G C°°(L,C*). By 
analogy with the situation considered previously, we make the following definition: 

Definition 3.1. — A Lagrangian submanifold L C X \H is special Lagrangian if the 
argument of rj is constant. (In fact © will usually be normalized so that rj is real). 

It is easy to see that, if L C X\H is an orientable special Lagrangian submanifold, 
then over L the holomorphic quadratic differential 6 admits a globally defined square 
root ft. Therefore Proposition 2.2 still applies in this setting; since ft\L = r^^volg, 
special Lagrangian deformations are now given by ?71/2-harmonic 1-forms on L. 

As before, the base B of a special Lagrangian torus fibration carries two natural 
affine structures, one arising from the symplectic geometry of X and the other one 
arising from its complex geometry. 

We now turn to the Calabi-Yau double cover of X branched along H, namely 
the unique double cover TT : Y —> X with the property that O = 7r*6 admits a 
globally defined square root ft G ftn>°(Y). More explicitly, the obstruction for 0 to 
admit a globally defined square root is given by an element of Hl(X \ H, Z/2) ~ 
Hom(7Ti(X \ i f ) , Z /2) , and we consider the branched cover with this monodromy. 

The complex geometry of Y is fairly straightforward, as the complex structure J 
and the holomorphic volume form ft are simply lifted from those of X via 7r. In 
particular, it is easy to check that ft is well-behaved along the ramification divisor. 
(To give the simplest example, consider the map z i—• z2 from C to itself: the pullback 
of 6 = z~xdz®2 is 9 = Adz®2, which has a well-defined square root ft = 2dz.) 

On the other hand, constructing a Kahler form on Y requires some choices, because 
the pullback form 7r*u is degenerate along the ramification locus H = 7r~1(iJ). One 
approach is to view Y as a complex hypersurface in the total space of the line bundle 
K^1 over X, equipped with a suitable Kahler metric. More directly, one can equip Y 
with a Kahler form UJ = n*uj + e A, where e > 0 is a sufficiently small constant and A 
is an exact real (1, l)-form whose restriction to the complex line Ker(c?7r) is positive 
at every point of the ramification locus. Any two forms obtained in this manner are 
symplectically isotopic; for example one can take A = —idd(j) where <f) : Y —> [0,1] 
is supported in a neighborhood of H, equal to 1 on H, and strictly concave in the 
normal directions at every point of H. 
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Thus, given a compact special Lagrangian submanifold L C X \ H, the two lifts 
of L are in general not special Lagrangian submanifolds of Y, even though the re­
striction of Q has constant phase, because they are not necessarily Lagrangian for 
Co. In very specific cases (for instance in dimension 1 or in product situations) this is 
not an issue, but in general one needs to deform the lift of L to a nearby special La­
grangian submanifold L C Y, whose existence is guaranteed by the unobstructedness 
of deformations (Proposition 2.2) as long as Co is sufficiently close to TT*LO. 

When considering not just one submanifold but a whole special Lagrangian fibra­
tion on X \ H, it is natural to ask whether the lifts can be similarly deformed to a 
special Lagrangian fibration on Y. Away from H and from the singular fibers, we can 
rely on an implicit function theorem for special Lagrangian fibrations which again fol­
lows from unobstructedness. In spite of the wealth of results that have been obtained 
on singularities of special Lagrangians and their deformations (see e.g. [ 1 6 ] ) , to our 
knowledge there is no general result that would yield a special Lagrangian fibration 
on Y from one on X\H. Nonetheless, it seems reasonable to expect that such a result 
might hold at least in low dimensions if the Kahler form on Y is chosen suitably and 
the family of special Lagrangians only presents generic singularities. 

Thus, Conjecture 1.1 can be stated more precisely as follows: 

Conjecture 3.2 

1. X carries a special Lagrangian fibration (or rather, foliation) f : X —• B, where 
B is a singular affine manifold with boundary (with two affine structures), such 
that the generic fibers of f are special Lagrangian tori in X \H, and the fibers 
of f above dB are special Lagrangians with boundary in H. 

2. Y carries a special Lagrangian torus fibration f :Y —• B, where B is a singular 
affine manifold without boundary (with two affine structures), obtained by gluing 
together two copies of B along their boundary. 

Note that the boundaries of the two copies of B are identified using the identity map, 
whereas the normal direction is reflected; thus this is an orientation-reversing gluing, 
and the resulting singular affine manifold B admits an orientation-reversing involution 
whose fixed point locus is the "seam" of the gluing. 

3 . 2 . Example: CP 1 and elliptic curves. — As our first example, we consider 
X = CP 1 equipped with any Kâhler form and a holomorphic quadratic differential O 
with poles at a subset H C CP 1 . 

We first consider the special case 6 = dz2/(z2 — a2), with simple poles at ±a and 
a double pole at infinity. Setting a = 0, we recover the classical situation discussed 
in Example 2.7, in which the circles centered at the origin are special Lagrangian. 
For arbitrary a, it follows from classical geometry that every ellipse with foci ±a 
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is special Lagrangian with phase тг/2 for Q = 6 1 / 2 = dz/y/z2 — a2. Thus we get a 

special Lagrangian foliation or ( L \ { ± a | by this family of ellipses, the sole noncompact 
leaf being the real interval (—a, a). The general case is less explicit but essentially 
amounts to modifying the special Lagrangian family in the same manner not only 
near zero but also near infinity. 

More precisely, equip CP 1 with a generic holomorphic quadratic differential 0 = 
z2 dz2/(z -a)<<(z- b<)(z - c ) ( z - < d<) with poles at H = {a, 6, c, d}. Then, for a suitable 
choice of phase, CP \ H admits a special Lagrangian foliation in which all the leaves 
are closed loops with the exception of two noncompact leaves, each connecting two 
of the points of H (say a and b on one hand, and с and d on the other hand). For 
instance, if a < b < с < d are real, then we have such a foliation (with phase тг/2) in 
which the two noncompact leaves are the real line segments (a, b) and (c, d). Indeed, 
after removing the two intervals [a, ft] and [c, d], the quadratic differential 0 admits a 
well-defined square root ft, which is a closed 1-form and hence has the same period 
(easily checked to be pure imaginary) on any homotopically nontrivial embedded 
curve. The general case follows from the same argument. 

From a symplectic point of view, the base В of this foliation is again an interval of 
length equal to the symplectic area of CP 1 . However, unlike the situation of Example 
2.7, the affine structure induced on В by the holomorphic volume form identifies it 
with a finite interval: if we normalize ft so that the integral of Im ft over each special 
Lagrangian fiber is 1, then the length of this interval is equal to f^Reft. 

The double cover of CP 1 branched at H is an elliptic curve Y, and the family 
of special Lagrangians in CP 1 \ H lifts to a smooth special Lagrangian fibration on 
Y. The base В ~ 5 1 of this fibration, and its two affine structures, are obtained by 
doubling В along its boundary. For instance, the symplectic area of Y (which is the 
length of В with respect to the symplectic affine structure, cf. Example 2.4) is twice 
that of CP 1 , whereas the integral of Reft over a section of the special Lagrangian 
fibration (which is the length of В with respect to the complex affine structure) is 
twice Jfe

c Re ft. 

Remark 3.3. — With respect to the complex affine structure, the base B of the special 
Lagrangian foliation on (CP 1 \ H, ft) is a finite interval, whereas the base B0 of the 
special Lagrangian fibration on ( C P 1 \ { 0 , oo} , ft0 = dz/z) has infinite size. The reason 
is that, as a, b —> 0 and c, d —> oo, the elliptic curve Y degenerates to a curve with two 
nodal singularities, and the base B of its special Lagrangian fibration degenerates to 
a union of two infinite intervals. On the other hand, the symplectic structure on Y, 
which determines the length of the base with respect to the other affine structure, is 
unaffected by the degeneration. 
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3.3. Example: Elliptic surfaces. — We revisit Example 2.10, and again denote 
by X a rational elliptic surface obtained by blowing up CP 2 at the 9 base points 
of a pencil of cubics, equipped with a Kahler form Co. We previously considered a 
holomorphic volume form fionl with poles along an elliptic fiber D. Now we equip 
X with a section © of K®2, with poles along the union H = D+ U D- of two smooth 
fibers of the elliptic fibration; for simplicity we assume that D± lie close to a same 
smooth fiber D, so that away from a neighborhood of D the quadratic volume element 
© is close to the square Cl®2 of the volume form considered in Example 2.10. 

Conjecture 3.4. — The special Lagrangian fibration on X\D constructed in Conjecture 
2.10 deforms to a special Lagrangian family on X \ H. The base B of this family is 
homeomorphic to a closed disc, and over its interior the fibers are special Lagrangian 
tori, with the exception of 12 nodal singular fibers. The fibers above dB are special 
Lagrangian annuli with one boundary component on J9+ and the other on D _ . 

We now explain the geometric intuition behind this conjecture by considering a 
simplified local model in which everything is explicit. The actual geometry of X near 
D differs from this local model by higher order terms; however the local model is 
expected to accurately describe all the qualitative features of the special Lagrangian 
families of Conjectures 2.10 and 3.4 in a small neighborhood of D. 

In a small neighborhood of the fiber D, the elliptic fibration X —> CP 1 is topologi-
cally trivial, and even though it is not holomorphically trivial, in first approximation 
we can consider a local model of the form E xU, where E is an elliptic curve (E ~ D) 
and U is a neighborhood of the origin in C (with coordinate z). In this simplified 
local model, the holomorphic volume form Cl can be written in the form dw Adz/z, 
where dw is a holomorphic 1-form on E (in fact, the residue of Ct along D), the sym­
plectic form Co is a product form, and the special Lagrangian family of Conjecture 
2.10 consists of product tori, where the first factor is a special Lagrangian circle in 
(E, dw) and the second factor is a circle centered at the origin. 

We now equip ExU with the quadratic volume element 0 = (dw Adz)®2 /(z2 — e 2 ) , 
with poles along H = E x { ± e } . Then the previous family of special Lagrangians 
deforms to one where each submanifold is again a product: the first factor is still a 
special Lagrangian circle in (E, dw), and the second factor is now an ellipse with foci 
at ±e (in the degenerate case, the line segment [—e,e]). 

The bases of these two special Lagrangian fibrations on ExU, equipped with their 
symplectic affine structures, are naturally isomorphic, as each ellipse with foci at ±e 
can be used interchangeably with the circle that encloses the same symplectic area (in 
fact, the corresponding product Lagrangian tori in E x U are Hamiltonian isotopic 
to each other). In this sense, passing from X \ D to X \ H (i.e., from B to B) is 
expected to be a trivial operation from the symplectic point of view. However, the 
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complex affine structures on B and B are very different: from that perspective B is 

"complete" (its boundary lies "at infinity", since the affine structure blows up near OB 

due to the singular behavior of £1 along D), whereas B has finite diameter. This is 

most easily seen in terms of the local model near D, which allows us to reduce to the 

one-dimensional case (see Remark 3.3). 

Finally, we consider the double cover Y of the rational elliptic surface X branched 

along H. It is easy to see that Y is an elliptically fibered K3 surface, carrying a 

holomorphic involution under which the holomorphic volume form Q = (71-*©)1/2 is 

anti-invariant. By Conjecture 1.1 we expect that Y, equipped with a suitably chosen 

Kahler form in the class [ir*u], carries a special Lagrangian fibration with 24 nodal 

singular fibers, whose base B ~ S2 is obtained by doubling B along its boundary. 

In fact, it is well-known that such a fibration can be readily obtained using hyper-

kahler geometry as in Example 2.5. Indeed, consider an elliptically fibered K3 surface 

with a real structure for which the real part consists of two tori. For example, let 

Y' be the double cover of C P 1 x C P 1 branched along the zero set of a generic real 

homogeneous polynomial of bidegree (4,4) without any real roots. Composing the 

covering map with projection to the first C P 1 factor, we obtain an elliptic fibration 

/ : Y ' —> C P 1 with 24 singular fibers. Complex conjugation lifts to an involution 1 on 

Y' which is antiholomorphic with respect to the given complex structure J, and whose 

fixed point locus is the trivial (disconnected) double cover of MP 1 x R P 1 (i.e., two tori). 

The involution ¿ maps each fiber of / to the fiber above the complex conjugate point 

of C P 1 , and in particular it interchanges pairs of complex conjugate singular fibers. 

Equip Y' with a Calabi-Yau metric, such that the Kahler form UJJ is anti-invariant 

under L (this is guaranteed by uniqueness of the Calabi-Yau metric if one imposes 

[uj\ to be the pullback of a Kahler class on C P 1 x C P 1 and hence anti-invariant). 

Denote by Clj a holomorphic (2,0)-form on Y'\ then t*flj is a scalar multiple of Qj, 

because dimH°j2(Y) — 1. So after normalization we can assume that x<<= —fij, 

i.e. UK '•= Re(fij) is anti-invariant and uj := Im(fij) is invariant. 

Now switch to the complex structure I determined by the Kahler form ui. Then ¿ 

becomes a holomorphic involution, and the holomorphic volume form Qj = UJJ + IUJK 

is anti-invariant. Since the fibers of / : Y' —> C P 1 are calibrated by uj, the map / is 

a special Lagrangian fibration on (Y',UJJ, fij), compatible with the involution t. 

It seems likely that this construction can be used as an alternative approach to 

Conjecture 3.4, by considering the quotient of this special Lagrangian fibration by the 

involution L. 

Remark 3.5. — The elliptic surface X contains nine exceptional spheres, arising from 

the nine blow-ups performed on C P 2 ; these spheres intersect H in two points, so their 

preimages in the double cover Y are rational curves with normal bundle 0(—2). These 
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curves can be seen by looking at the complex affine structures on the bases B and B 
of the special Lagrangian fibrations on X and Y, as discussed in Remark 2.6. Namely, 
the exceptional curves in X correspond to complex rays that run from singularities 
of the affine structure of B to its boundary (as in Example 2.10). Doubling B along 
its boundary to form B creates alignments between pairs of singular points lying 
symmetrically across from each other. For at least 9 of the 12 pairs of points (those 
which correspond to the blowups) the corresponding complex rays match up to yield 
—2-curves in Y. 

3.4. Example: CP 2 and K3. — We now revisit Example 2.9, and now equip CP 2 

with a section © of K®2 with poles along a smooth curve H of degree 6. We assume 
that H lies in a small neighborhood of a cubic J9, i.e. it is defined by a homogeneous 
polynomial of the form p = a2 — eq, where a 6 H0(O(3)) is the defining section of D 
and e is a small constant. Thus, away from a neighborhood of D the quadratic volume 
element © is close to the square Q®2 of the volume form considered in Example 2.9. 

Conjecture 3.6. — The special Lagrangian fibration on CP 2 \ D constructed in Con­
jecture 2.9 deforms to a special Lagrangian family on CP 2 \ H. The base B of this 
family is homeomorphic to a closed disc, and over its interior the fibers are special 
Lagrangian tori, with the exception of three nodal singular fibers. The fibers above dB 
are special Lagrangian annuli with boundary on H, with the exception of 18 pinched 
annuli (with one arc connecting the two boundaries collapsed to a point). 

While we do not have a complete picture to propose, the rough idea is as follows. 
Looking at the defining section p = <r2 — eq of H, away from the zeroes of q we can 
think of H as two parallel copies of D, and special Lagrangians are expected to behave 
as in the previous example. Namely, near D a special Lagrangian in CF2\D looks like 
the product of a special Lagrangian A (~ S1) in D with a small circle in the normal 
direction, and the corresponding special Lagrangian in CP 2 \H should be obtained by 
replacing the circle factor by a family of ellipses whose foci lie on if. In the degenerate 
limit case, the ellipses become line segments joining the two foci, forming an annulus; 
when A passes through a zero of q, the corresponding line segment is collapsed to a 
point, giving a pinched annulus. 

In fact, we are unable to provide an explicit local model for this behavior on X\H. 
However, Conjecture 3.6 can be corroborated by calculations on a local model for the 
double cover Y of X branched along H. 

Near a point of D, we can consider local coordinates (u, v) on a domain in C 2 

such that D is defined by the equation u = 0, and H is defined by the equation 
u2 — eq(v) = 0 for some holomorphic function q. The corresponding section of Ky2 is 
given by © = u2-eq(v))h<<-1(duAdv)m w < < As e —• 0, this converges to the square of the 
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holomorphic volume form u~1 du A dv, for which the cylinders {Rev = a, |-u|2 = r} 

are special Lagrangians (the circle factor corresponds to the direction normal to D, 

while the other factor corresponds to a local model for a special Lagrangian in D). 

In this local model the double cover of C 2 branched along H is the hypersurface 

Y C C 3 defined by the equation z2 = u2 — eq{v). The pullback of © under the 

projection map (z.u.v) i—> (u,v) admits the square root 

Û = z 1 du Adv = и 1 dz Adv. 

It is worth noting that Q is the natural holomorphic volume form induced on Y by 
the standard volume form of C 3 : denoting by / = z2 — u2 + eq(v) the defining function 
of Y, we have df A Q, = dz A du A dv. We equip Y with the restriction of the standard 
Kahler form UJQ = \ dz A dz + I du A du + \ dv A dv, which differs from the pullback of 
the standard Kahler form of C 2 by the extra term г 

2 
dz Adz = г 

2 дд и2 - eq( 'v)\2. We 
claim that the (possibly singular) submanifolds 

La,b = \(z, u, v) e Y I Re (v) = a, Re luz) = b) a, b) e R 2 

are special Lagrangian with respect to ft and UQ. Indeed, the vector field ^(z,u,v) = 
(iu,iz,0) is tangent to the submanifolds La^, and the 1-forms ¿^1111П = Redv and 
L^LUo = —dRe(uz) + \dv A dv both vanish on La^- Moreover, Laj> is singular if and 
only if it passes through a point (0,0, vo) with i>o a root of q. 

The involution (z,u,v) 1—> (—z,u,v) maps La^ to Ьа-ъ- Thus, the special La­
grangian fibration (z,u,v) 1—> (Rev, Re (uz)) descends to a family of submanifolds in 
C 2 , parameterized by the quotient of R 2 by the reflection (a,b) \-> (a,—b), i.e. the 
closed upper half-plane. The image of La ъ under this projection is 

La,b = (u,v) e С 2 I Re (v) = a, Re(u< >u2 - eq(v)) = ±b}, 

and behaves exactly as described above: fixing a value of v (i.e., a point of D), the 
intersection of La^ with C x {v} is an ellipse with foci the two square roots of eq(v) 
(i.e. the two points where H intersects C x {v}). For b = 0 the ellipse degenerates to 
a line segment; when v is a root of q the ellipses become circles and the line segment 
collapses to a point. However, a quick calculation shows that La$ is not Lagrangian 
with respect to the standard Kahler form on C 2 . 

Thus, it may well be easier to construct a special Lagrangian fibration on the 
double cover of C P 2 branched at H (namely, a K3 surface) than on C P 2 \ H. In fact, 
as in the previous example, the easiest way to construct such a fibration is probably 
through hyperkahler geometry, starting from an elliptically fibered K3 surface with a 
real structure for which the real part is a smooth connected surface of genus 10. Let 
P be a real homogeneous polynomial of bidegree (4,4) whose zero set in R P 1 x R P 1 

consists of nine homotopically trivial circles Ci,...,Cg bounding mutually disjoint 
discs Di, and let Y' be the double cover of C P 1 x C P 1 branched along the zero set 
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of P (over C). Then complex conjugation lifts to a J-antiholomorphic involution i of 

Y\ whose fixed point locus is a connected surface of genus 10, namely the preimage 

of MP1 x MP1 \ (Di U • • • U D9) (whereas the fixed point set of the composition of i with 

the nontrivial deck transformation consists of 9 spheres, the preimages of D i , . . . , Dg). 

After performing a hyperkahler rotation as in § 3.3, we obtain a new complex structure 

J on Y' with respect to which ¿ is holomorphic and the elliptic fibration induced by 

projection to a CP 1 factor is special Lagrangian. 

Remark 3.7. — The curve H C CP 2 bounds a number of Lagrangian discs, arising 

as relative vanishing cycles for degenerations of H to a nodal curve. For instance, 

considering a degeneration of H to two intersecting cubics singles out 9 such discs. 

The preimages of these discs are Lagrangian spheres in the double cover Y, and can 

be seen by looking at the symplectic affine structure on the bases B and B of the 

special Lagrangian fibrations on CP 2 and Y. Namely, B is obtained by doubling B 

along its boundary, and 18 of its singular points are aligned along the "seam" of this 

gluing. The rays emanating from these singular points run along the seam, and match 

with each other to give rise to Lagrangian spheres. 

Remark 3.8. — Consider a singular K3 surface Yo with 9 ordinary double point sin­

gularities, obtained as the double cover of CP 2 branched along the union Ho of two 

intersecting cubics. The singularities of Yo can be either smoothed, which amounts to 

smoothing HQ to a smooth sextic curve, or blown up, which is equivalent to blowing up 

CP 2 at the 9 intersection points between the two components of HQ. These two pro­

cedures yield respectively the K3 surface considered in the above discussion, and the 

K3 surface considered in § 3.3. Yo admits a special Lagrangian fibration whose base 

Bo presents 9 singularities with monodromy conjugate to ^ w<<;̂ ^̂ v̂iewing Bo as two 

copies of a disc glued along the boundary, these 9 singularities all lie along the seam of 

the gluing. Smoothing Yo replaces each ordinary double point by a Lagrangian sphere, 

and resolves the corresponding singularity of BQ into a pair of singular points aligned 

along the seam. Blowing up Yo replaces each ordinary double point by an exceptional 

curve, and resolves the corresponding singularity of Bo into a pair of singular points 

lying symmetrically across from each other on either side of the seam. 

3.5. Towards mirror symmetry for double covers. — Conjecture 3.2 suggests 

that a mirror Yv of the Calabi-Yau double cover Y of X branched along H can be 

obtained by gluing two copies of the mirror of X \ H along their boundary. From 

the point of view of affine geometry, we start with a special Lagrangian fibration 

/ v : M —> 2? (T-dual to the special Lagrangian fibration on X\H), and glue together 

two copies of M using an orientation-reversing diffeomorphism of dM which induces 

a reflection in each fiber of / v above dB. 
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Arguably the "usual" mirror of X arises from considering the complement of an 
anticanonical divisor D, rather than the hypersurface H. Consider a degeneration of 
H under which it collapses onto D (with multiplicity 2). At the level of double covers, 
this amounts to degenerating Y to the union of two copies of X glued together along 
D. By Moser's theorem, this deformation affects the complex geometry of Y but not 
its symplectic geometry. Hence, the special Lagrangian fibrations on X\H and X\D 
can reasonably be expected to have the same base B, as long as we only consider the 
symplectic affine structure. (The complex affine structures are very different: in the 
case of X \ D the complex affine structure blows up near the boundary of B, while in 
the case of X \ H it doesn't. See e.g. Remark 3.3.) So, as long as we only consider 
the complex geometry of the mirror and not its symplectic structure, it should be 
possible to construct the mirror of Y simply by gluing two copies of the mirror of 
X \ D (which is also the mirror of X without its superpotential). 

Remark 3.9. — What we are considering is a special case of a more general construc­
tion, in which one degenerates a Calabi-Yau manifold to a reducible configuration of 
manifolds of negative Kodaira dimension. For instance, as pointed out by the referee, 
one could extend the example of § 3.3 to that of a K3 surface degenerating to a union 
of two (different) rational elliptic surfaces glued together along a smooth elliptic fiber. 

As pointed out by the referee, given a degeneration of Y to two copies of X glued 
together along D (or another reducible configuration), one can try to build a Calabi-
Yau metric on Y by truncating and gluing together complete Ricci-flat metrics on 
the open pieces X \ D (in the example of §3.3 those exist by the work of Tian and 
Yau). This differs somewhat from our perspective, where the Káhler metric on Y is 
not required to be Ricci-flat (i.e., Y is only "almost Calabi-Yau"), and hence it can 
be obtained more directly from a non-singular Káhler metric on X. 

A complication arises when the normal bundle to D is not holomorphically trivial. 
In that case, the family of special Lagrangians in X \ H presents additional singular­
ities at the boundary of B\ these singularities are not directly visible in the special 
Lagrangian fibration on X \ D. An example of this phenomenon is presented in § 3.4 
(compare Conjecture 3.6 with Conjecture 2.9). Thus, when building B out of two 
copies of the base B of the special Lagrangian fibration on X \ D, we need to intro­
duce extra singularities into the affine structure along the seam of the gluing. This is 
essentially the same phenomenon as in Gross and Siebert's program (where singular­
ities of the affine structure also arise from the nontriviality of the normal bundles to 
the codimension 1 toric strata along which the smoothing takes place). 

For simplicity, let us just consider the case where D has trivial normal bundle. 
In that case, the discussion in Remark 2.11 implies that the boundary of the (un­
corrected) mirror M of X \ D is the product of S1 with a complex hypersurface 
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Mo C dM (the uncorrected SYZ mirror to D). In fact, we have a trivial fibration 
zs : dM « MB X S1 —» 51, where 2<$ is the weight associated to the homotopy class of 
a meridian disc (collapsing to a point as the special Lagrangian torus L collapses onto 
a special Lagrangian submanifold of D, whence \z$\ = 1 on dM). The orientation-
reversing diffeomorphism (p : dM —> dM used to glue the two copies of M together 
corresponds to a reversal of the coordinate dual to the class of the meridian loop. 
More precisely, view a point of dM as a pair (A, V) where A is a special Lagrangian 
torus in D and V is a flat unitary connection on the trivial bundle over Ax S1 (here 
we use the triviality of the normal bundle to D to view nearby special Lagrangians 
in X \ D as products A x S1 rather than 51-bundles over A). Then the gluing dif­
feomorphism ip is given by (A, V) > (A, V), where V is the pullback of V by the 
diffeomorphism (p,el9) i-> (p, e~lG) of A x S1. Thus, under the identification of dM 
with MD x S1, the diffeomorphism <p is the product of the identity map in Mp and 
the complex conjugation map Zs i-> Zs = zs -1 from 51 to itself. 

At this point it would be tempting to conclude that, if KX\D IS holomorphically 
trivial, then a mirror of Y can be obtained (at least as a complex manifold) by gluing 
together two copies of the mirror of X along their boundary 51 x MD, to obtain a 
Calabi-Yau variety with a holomorphic involution given near the "seam" of the gluing 
by zs i—> z^1. Unfortunately, in the presence of instanton corrections this seems to 
always fail; in particular, the fibers of z$ : dXw —» S1 above two complex conjugate 
points are not necessarily biholomorphic. The following example in complex dimension 
2 (inspired by calculations in [2]) illustrates a fairly general phenomenon. 

Example 3.10. — We consider again the local model for blow-ups mentioned in Ex­
ample 2.10, modified so the special Lagrangian fibers are tori rather than cylinders 
[2]. Start with C* x С equipped the holomorphic volume form d log x Ad log у with 
poles along С* x {0}, and blow up the point (1,0) to obtain a complex manifold X 
equipped the holomorphic volume form Q = 7r*(dloga:Лdlogy), with poles along the 
proper transform D of С* x {0}. Observe that the 51-action егв • (x,y) = (х,егву) 
lifts to X, and consider an 5x-invariant Kahler form cu for which the area of the 
exceptional divisor is e. Denote by /л : X —> Ш the moment map for the 51-action, 
normalized to equal 0 on D and e at the isolated fixed point. The S1 -invariant tori 
x<<<p^$$ [log |7Г*Ж| =*i, fJL = t2[ define a special Lagrangian fibration on X\D, with 
one nodal singularity at the isolated fixed point (for (ti,t2) = (0,c)) [2]. 

The base B of this special Lagrangian fibration is a half-plane, with a singular 
point at distance e from the boundary (and nontrivial monodromy around the sin­
gularity), as pictured in Figure 1; we place the cut above the singular point in order 
to better visualize wall-crossing phenomena near the boundary of B. The complex 
rays emanating from the singular point (one of which corresponds precisely to the 
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exceptional divisor of the blowup) are responsible for wall-crossing jumps in holomor-

phic disc counts, and split the mirror M into two chambers, which are essentially the 

preimages of the left and right halves of the figure. 

U 

z z 

V 

e ez 1v 1 

u \ wall 

FIGURE 1. A special Lagrangian fibration on the blowup of C* x C 

Denote by z (= z$) the holomorphic coordinate on M which corresponds to the 

holomorphic disc {TT*X = e*1, fi < £2} in (A", Lti,t2)» ^ can ^e thought as a complex­

ified and exponentiated version of the downward-pointing affine coordinate pictured 

on Figure 1. In one of the two chambers of M , denote by u the holomorphic coordi­

nate that similarly corresponds to the leftward-pointing affine coordinate represented 

in the figure. For instance, if we partially compactify X to allow ir*x to become zero 

(i.e., if we had blown up C2 at (1,0) rather than C* x C), then u becomes (up to a scal­

ing factor) the weight associated to a disc that runs parallel to the x-axis. Similarly, 

denote by v the holomorphic coordinate in the other chamber of M corresponding 

to a rightward-pointing affine coordinate, normalized so that, if we ignore instanton 

corrections, the gluing across the wall is given by u = v~x. 

Imagine that Ltlj2 m the "left" chamber (t\ < 0) bounds a holomorphic disc with 

associated weight u (such a disc doesn't exist in X , but it exists in a suitable partial 

compactification), and increase the value of t\ past zero, keeping ¿2 less than e: then 

this holomorphic disc deforms appropriately (and its weight is now called v~x), but it 

also generates a new disc with weight e~ez~1v~1, obtained by attaching an exceptional 

disc (the part of the exceptional divisor where fi > ¿2) as one crosses the wall. This 

phenomenon is pictured on Figure 1 (where the various discs are abusively represented 

as tropical curves, which actually should be drawn in the complex affine structure). 

Thus the instanton-corrected gluing is given by u = v~l + e~ez~1v~1, i.e., 

(3.1) uv = 1 + e ez x. 
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Actually the portion of the wall where £2 > e also gives rise to the same instanton-
corrected gluing, so that the corrected mirror is globally given by (3.1); see [2]. 

Now replace D by the union H = D+ U D- of two disjoint complex curves, e.g. 
the proper transforms of two complex lines intersecting transversely at the blown up 
point (1,0), and consider the double cover Y of X branched along H. (We leave the 
details unspecified, as the construction should arguably be carried out in a global 
setting such as that of Conjecture 3.4 rather than in the local setting.) 

Conjecture 1.1 suggests that Y should carry a special Lagrangian fibration whose 
base (considering only the symplectic affine structure) is obtained by doubling B along 
its boundary. Pictorially, this corresponds to flipping Figure 1 about the horizontal 
axis and gluing the two pictures together. On the mirror, before instanton corrections 
this amounts to reflecting the z variable via z 1—> and gluing M and its reflected 
copy along their common boundary \z\ = 1. However, the gluing via z z~x is not 
compatible with the instanton corrections discussed above; this is because when we 
cross the wall there are now two different exceptional discs to consider. Namely, Y 
contains a —2-curve C (the preimage of the exceptional curve in X ) , corresponding 
to the alignment between the walls that come out of the two singular fibers on either 
side of the seam. Special Lagrangian fibers which lie on the wall intersect C in a 
circle and split it into two Maslov index 0 discs, which both contribute to instanton 
corrections. A careful calculation shows that the instanton-corrected gluing is now 

3.2 uv = w<<p ^w<<ik^m 1 + e —6, z . 
Thus the instanton-corrected mirror to Y does carry a holomorphic involution defined 
by z i-> but restricting to the subset \z\ < 1 does not yield the instanton-corrected 
mirror to X. 
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C H A R A C T E R I Z A T I O N O F T H E R A D O N - N I K O D Y M 

P R O P E R T Y I N T E R M S O F I N V E R S E L I M I T S 

by 

Jeff Cheeger & Bruce Kleiner 

Abstract. — In this paper we clarify the relation between inverse systems, the Radon-
Nikodym property, the Asymptotic Norming Property of James-Ho [10], and the 
GFDA spaces introduced in [51. 
Résumé (Caractérisation de la propriété de Radon-Nikodym en termes de limites inverses) 

Dans cet article nous clarifions la relation entre les systèmes inverses, la propriété 
de Radon-Nikodym, la propriété normative asymptotique de James-Ho [10] et les 
esDaces GFDA. introduits dans 151. 

1. Introduction 

A Banach space V is said to have the Radon-Nikodym Property (RNP) if every 
Lipschitz map / : R - V is differentiable almost everywhere. By now, there are 
a number of characterizations of Banach spaces with the RNP, the study of which 
goes back to Gelfand [7]; for additional references and discussion, see [1, Chapter 5], 
[8]. Of particular interest here is the characterization of the RNP in terms of the 
Asymptotic Norming Property; [10, 8]. 

In this paper we will show that a variant of the GFDA property introduced in [5] 
is actually equivalent to the Asymptotic Norming property of James-Ho, and hence 
by [10, 8], is equivalent to the RNP. In addition, we observe that the GFDA spaces 
of [5] are just spaces which are isomorphic to a separable dual space. 

Definition LI. — An inverse system 

1.2) Wi x< w2 
02 

<< 
<v;ù 

b,,; ^^ 
. . . , 
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separable dual space. 
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is standard if the W^s are finite dimensional Banach spaces and the &'s are linear 
maps of norm < 1. We let TTj : lim W{ -+ Wó denote the projection map. 

Definition 1.3. — Let ^w<^^< be a standard inverse system and V C lim Wi be a 

subspace. The pair ; i imWi,^ has the Determining Property if a sequence VkiCV 
converges strongly provided the projected sequences xww<mù }cWj converge for every 
j , the sequence Vk\ is bounded, and the convergence c<<o^m - \\vk\ is uniform 
in fc. A Banach space U has the Determining Property if there is a pair {Km WUV) 
with Determining Property, such that V is isomorphic to U. 

We have: 

Theorem 1.4. — A separable Banach space has the RNP if and only it has the Deter­
mining Property. 

Since a Banach space has the RNP if and only if every separable subspace has 
the RNP, Theorem 1.4 yields a characterization of the RNP for nonseparable Banach 
spaces as well. 

To prove the theorem, we first observe in Proposition 2.8 that the inverse limit 
lim Wi is the dual space of a separable Banach space. Then, by a completely elemen­
tary argument, we show that a Banach space has the Determining Property if and 
only if it has the Asymptotic Norming Property (ANP) of James-Ho [10]. Since a 
separable Banach space U has the RNP if and only if it has the ANP [10, 8], the 
theorem follows. We remark that there is a simple direct proof that if V has the ANP 
for the Determining Property), then everv Lipschitz map f : R —> V is differentiable 
almost everywhere. 

Characterizations of the RNP using inverse limits are useful for applications; see 
[5], the discussion below concerning metric measure spaces, and [6]. 

Relation with previous work. — In slightly different language, our earlier paper 
[51 also considered pairs ;iimWi,V) , where limWj is the inverse limit of a standard 

inverse system, and V C limW^ is a closed subspace. A Good Finite Dimensional 

Approximation (GFDA) of a Banach space V, a notion introduced in [5], is a pair 

\imWuV] with the Determining Property such that w<< v : V - Wi is a quotient 

map for every i. 
It follows immediately from Lemma 3.8 of [5] that if (lim W ,̂ V) is a GFDA of V, 

then V = lim W{. Since such inverse limits are dual spaces by Proposition 2.8, V 
is a separable dual space in this case. Conversely, using the Kadec-Klee renorming 
Lemma [11, 12], it was shown in [5] that every separable dual space is isomorphic to 
a Banach space which admits a GFDA. Thus, a Banach space admits a GFDA if and 
only if it is isomorphic to a separable dual space. 
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Applications to metric measure spaces. — We will call a metric measure space 
xwww a PI space if the measure is doubling, and a Poincare inequality holds in the 
sense of upper gradients [9, 4]. In [5], differentiation and bi-Lipschitz non-embedding 
theorems were proved for maps / : X —> V from PI spaces into GFDA targets V, 
generalizing results of [4] for finite dimensional targets. As explained above, it turns 
out that these targets are just separable dual spaces, up to isomorphism. 

As an application of the inverse limit framework, we will show in [6] that the 
differentiation theorem [5, Theorem 4.1] and bi-Lipschitz non-embedding theorem [5, 
Theorem 5.1] hold whenever the target has the RNP. 

Acknowledgement. — We are very grateful to Bill Johnson for sharing an obser­
vation which helped give rise to this paper. We are much indebted to Nigel Kalton 
for immediately catching a serious error in an earlier version. 

2. Inverse systems 

In this section, we recall some basic facts concerning direct and inverse systems, 
and the duality between them. Then we show that inverse limits of standard inverse 
systems are precisely duals of separable spaces. 

The following conventions will be in force throughout the remainder of the paper. 

Definition 2.1. — An standard direct system is a sequence of finite dimensional Banach 
spaces [Ei] and 1-Lipschitz linear maps Li : Ei —» Ei+\. 

Definition 2.2. — An standard inverse system is a sequence of finite dimensional Ba­
nach spaces wwww<< ww and 1-Lipschitz linear maps 0. : Ww _> W.m 

Definition 2.3. — A standard direct system is isometrically injective if the maps ti : 
Ei —• Ei+i are isometric injections. 

Definition 2.4. — A standard inverse system is quotient if the maps 0. : Wi+1 - Wi 
are quotient maps. 

By a quotient map of normed spaces, we mean a surjective map TT : U V for 
which the norm on the target is the quotient norm, i.e. for every veV, 

M l = inf{ l id i I u e 7T - l (v) < 
We will refer to the maps ^ and Oi as bonding maps. 
There is a duality between the objects in Definitions 2.1 and 2.2, respectively, 2.3 

and 2.4: if Ei, Lit \ is a standard direct system, then <;;:mp is a standard inverse 
system and conversely; similarly, isometrically injective direct systems are dual to 
quotient systems. To see this, one uses the facts that the adjoint of a 1-Lipschitz map 
of Banach spaces is 1-Lipschitz and the the adjoint of an isometric embedding is a 
quotient map. (This follows from the Hahn-Banach theorem.) In particular, since 
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the spaces in our systems are assumed to be finite dimensional (hence reflexive) every 
inverse system arises as the dual of its dual direct system and conversely. The same 
holds for quotient inverse systems. 

We now recall the definitions of direct and inverse limits. 
Given a standard direct system (Ei, Li, we form the direct limit Banach space 

limE^ as follows. We begin with the disjoint union UiEi, and declare two elements 

e G Ei, e' G Ei> to be equivalent if their images in Ej coincide for some j > max cw^^wx 

Since the bonding maps are 1-Lipschitz, the set of equivalence classes inherits an 
obvious vector space structure with a pseudo-norm. The direct limit lim Ei is defined 
to be the completion of the quotient of this space by the closed subspace of elements 
whose pseudo-norm is zero. Clearly, there are 1-Lipschitz maps 

Ti: Ei^ lim Ei, 

which in the case of isometrically injective direct systems, are isometric injections. 
The union gg<<^ù sxxww is dense in lim Ei. 

The inverse limit lim Wi of a standard inverse system w<<:;ùù is defined as follows. 

The underlying set consists of the collection of elements Wi e UiWi which are 
compatible with the bonding maps, i.e. Oi{wi) = wl-1 for all i, and which satisfy 
sup; K l < oo. This is equipped with the obvious vector space structure and the 
norm 

(2.5) | | { ^ } | | := lim K U . 
J—•oo 

The map 

;2.6) TTj : lim Wl Wj 

given by 

^•({wt}) = 
is 1-Lipschitz, and 

lim 
j—>oo 

M{m})\\ = \\{wi}\\. 

An inverse limit limWf has a natural inverse limit topology, namely the weakest 

topology such that every projection maj TTj : limWi Wj is continuous. Thus a 

sequence .vk] C lim Wi converges in the inverse limit topology to v G lim Wi if and 

only if for every i, we have TTi(̂ fc) —> TTi(^) as k —> 00. 
If www C lim and {vk) invlim v G lim Wi, then 

[2.7) \\v\\ < liminf ||vfc||. 
k 

Also, every norm bounded sequence xww C lim Wi has a subsequence which converges 

with respect to the inverse limit topology; this follows from a diagonal argument, 
because WiiVk, is contained in a compact subset of Wi, for all i. 
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Proposition 2.8. — Given a standard inverse system W A ) j j } , there is an isometric 
isomorphism 

[2.9] C:\im Wi = (\imW*y . 

In particular, lim Wi is the dual of the separable Banach space lim W*. 

Proof. — Pick a compatible sequence w<< elimWi. We get a map 

u w ; Rww 

by sending (j) e W/ to </>(XJ). Since Xi is compatible with bonding maps and 

\<P(xj)\<u\\ \\Xj\\< №|| \\{Xj}l 

this defines a linear functional of norm < l i t e } on lim W*. Therefore we get a 
1-Lipschitz map 

C : limWi —y l imW; * 
<< 

We now verify that C is an isometry. 
Pick << G lim Wi, and choose n G N such that k „ | | > H fa) Il - e . i f ó e w : w < c has 

norm 1 and VkiVkiCVCV then 

l|C(fc))|| ||T„(0)|| > C(te))(rnW) = 4>(xn) = \\xn\\ > \\(xi)\\ - e, 

where <x << W* << lim w; is the canonical 1-Lipschitz map described above. This 

shows that C is an isometric embedding. 
If $ G (limW7)*, then we define e wr = Wi to be the composition 

W* —> lim W* R. 

This defines a compatible sequence << € limWj, such that l(*i)ll = 11*11 and 

C((*i)) =xw Hence C is onto. ff 

Corollary 2.10. — VkiCV1) A separable Banach space Y is isomorphic to the direct limit 
of an isometrically injective direct system [Ej. Li). 

2) The dual space y * of the separable Banach space Y ras in 1) is isometric to 
the inverse limit lim E\ of the a quotient inverse system Vkw<<iCV 

Proof. — To see that 1) holds, start with a countable increasing sequence E\ C 
E2 C • • • C Y of finite dimensional subspaces whose union is dense in Y, and take 
the bonding maps ¿i : Ei —> Ei+i to be the inclusions. Clearlv the inclusion maps 
Ei^Y induce an isometry limü^ —» Y. 

Assertion 2) follows from 1) and Proposition 2.8. 
Let C be the isometry in Proposition 2.8. 

• 
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Lemma 2.11. —VkiCV1) Suppose [Vk) C lim Wi is a sequence such that № ) } c 
(UmW? weak converges to some y G (limH?) m mm Then {v^ is convergent 
with respect to the inverse limit topology, and its limit Voo G lim Wi satisfies 
C(^oo) = y; in particular, y G C(lim Wi). 

2) / / H } C lim Wi converges in the inverse limit topology, and has uniformly 
bounded norm, then w<<ùmm is weak convergent. 

Proof. — Assertions 1) and 2) follow readily from the assumption that the Wi are 
finite dimensional together with the density of compatible sequences in lim Wi. • 

3. The proof of Theorem 1.4 

The proof of Theorem 1.4 is based on the Asymptotic Norming Property, which 
we now recall. 

Let Y denote a separable Banach space and V CY* a separable subspace of its 
dual. (Here w<< need not be separable. 

Definition 3.1. — The pair Y\V has the Asymptotic Norming Property (ANP) if 

a sequence Vk, C V converges strongly provided it is weak* convergent and the 
sequence of norms <nnlm \ converges to the norm of the weak* limit. 

A Banach space U is said to have the Asymptotic Norming Property if there is a 

pair $$x<<< with the ANP such that U is isomorphic to V. 

Theorem 3.2 ([10, 8]). — For separable Banach spaces, the RNP is eguivalent to the 
ANP. 

Hence to prove Theorem 1.4, it suffices to show that for separable Banach spaces, 
the ANP is equivalent to the Determining Property. By Corollary 2.10, every separa­
ble Banach space Y is isometric to the direct limit of a standard direct system, and 
Y* is isometric to the inverse limit of the dual inverse system. Hence the proof of 
Theorem 1.4 reduces to: 

Proposition 3.3. — Let w<<<< be a standard inverse system, and V be a closed 

separable subspace of lim Wi. Then the pair [limWuV) has the ANP if and only 

if it has the Determining Property. Here we are identifying lim Wi with the dual of 

]imW*, see Proposition 2.8. 

Proof. — Let Vk C V be a sequence with bounded norm. By Lemma 2.11, the 
sequence Vk is weak* convergent if and only if it converges in the inverse limit 
topology. Therefore, to prove the equivalence of the ANP and the Determining Prop­
erty for the pair iimWi,V) , it suffices to show that when 

3.4 Vk 
w* w G lim Wi, 
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the sequence of norms w<< converges to the w\ if and only if the convergence 
<< Ы11 - 1Ы1 is uniform in k. Although this is completely elementary, we will 
write out the details. 

We have 

¡3.5) N11 - IMI = ( N i l - IM**)II) + (IM**)II - hiMW) + (IMuOii - H | ) • 

Assume first that lim^oo \\vk\\ = \\w\\. Given e > 0, there exists I\ such that 

I N I - IMuOII < e/3, for i > h. By (3.4) there exists K\ such that k/i(vfe) -
w<< » I I < e / 3 , for к> Кг. Also, there exists K2 such that H I - H I < e/3, if 
k > K2. Set K = max KUK2). 

From ;3.5; , with i = Ji, we get vk\\ - lk/i(vfc)|| < e, for all k > K. Since, \\vk\\ -
vbnùm is a nonnegative decreasing function of i, this implies, \vk\\ - hi(vk)\\ < e , 
for all i>I^^^^>K^ww. 

Finally, there exists I2 such that Vfc||-Ikt(vfc)|| < e foralU x J2, FFk =wxcvvvxww 
Thus, if i > max 7i , /2) then \\vk\\ - l|7ri(vfe)|| < e, for all k. 

Conversely, suppose the convergence K K ) | | ^ \\vk\ is uniform in k. Given e > 0, 
there exists / such that Vk\\ - hi(vk)\\ < e/3, for i > I and all k. Also, there exists 
h such that H | - ||7Ti(w)|| < e/3, for i > Ix. Set V = max(7,/i). By (3.4), there 
exists K such that hr(vk) - 7Tr(w)\\ < e/3. 

From '3.5), with i = I', we get \\\vk\ - \\w\\ \ < e, for all k> K. • 

4. A variant of the Determining Property 

In this section we discuss a variant of the Determining Property, which was in­
troduced in [5] (with a different name). A compactness argument implies that it is 
equivalent to Definition 1.3, see Proposition 4.6. 

For the remainder of this section, we fix a standard inverse system VkiCV and 
a closed subspace : V C lim Wi. 

Definitional. — A positive nonincreasing finite sequence 1 > pi > - • • > PN is 
e- determining if for any pair v,v' e V, the conditions 

(4.2) Ml - N(«)ll < Pi • N > \\v'\\-hi(v')\\<Pi-\\v% 1 < i < N, 

and 

[4.3! \irN(v) - irN(v')\\ < M'1 • maxi N U M I ) , 

imply 

'4.41 \v — v'\ < e • max(||î;||, \\v'\\). 

Observe that by dividing by maxi «il. Ii«'ID. it suffices to consider pairs v, v' for which 
maxf IMIJ \\V'\ = 1. 

This leads to the alternate definition of the Determining Property: 
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Definition 4.5. — The pair VkiggggCV has the Determining Property if for every e > 0 
and every infinite nonincreasing sequence 

1 > Pi > • • • > Pi > • • • 
with pi —> 0, some finite initial segment Pi > • • • > PN is e-determining. 

Proposition 4.6. — The pair {\\mWi,V satisfies Definition 1.3 if and only if it 
satisfies Definition 4-5. 

Proof. — First we show that the property in Definition 4.5 implies the property in 
Definition 1.3. So assume that the sequence w<< is bounded and the convergence, 
kt(vfc)ll K l l is uniform in k. 

Suppose that there exists a sequence, a positive sequence, Pi 0, such that IK << 
7Ti(vk)\\ < Pi. By applying the condition in Definition 4.5 to this sequence and using 

convergence in the inverse limit topology together with '4.3 it is clear from f4.4 that 
we obtain strong convergence. 

Without loss of essential loss of generality, we can assume Vk\ < 1 for all k. Since 
the convergence, ww is uniform in A:, it follows that there exists a strictly 
increasing sequence, VkiCVVkiCV such that for all fc, we have 

M l - \\*Ne(vk) < B 
e ' 

Then \Vk\\ ~ \\ni(vk)\\ < Pi, for the sequence, pi given by 

Pi = 
1 [Ni<i<Ni+1). 

Conversely, suppose that the property in Definition 1.3 holds, but not the property 
in Definition 4.5. Then for some decreasing sequence [Pi. C (0,oo) with pi —> 0, and 
some e > 0, there are sequences {VkhWk) C V, such that for all k < oo, 

(4.7" IMI, K l l < 1 , 

(4.8) max(||«fe|| - ||7Ti(t;fc)||, \\v'k\\ - H^K)! ! ) < Pi for 1 < i < k, 

(4.9 Iki(ffc) — T*(«fc)ll < 
1 

<<x 

(4.10~ \\vk-v'k\\ >e. 

By the Banach-Alaoglu theorem, we can pass to weak* convergent subsequences, 
with respective limits and v'. From [4.9) , it follows that ||7Ti(t;fc)|, \\\ -

It follows from ;4.7), (4.8), that the sequences, wi \wk\\ are bounded and the 
convergence TtK)| | -> Inibii, lk tK) l l \Wk\ is uniform in k. Since we assume the 
property in Definition 1.3, it follows Vk -> ^oo, V'k -> v'ao, is actually strong. Since, 
VkiC<<V this contradicts (4.10). • 

We remark that proof of the implication Definition 1.3 => Definition 4.5 is similar 
to the proof of Proposition 3.11 in [5]. 

||7Ti(t;fc)||, \\v'k\\ -
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5. GFDA versus A N P 

We conclude with some remarks about the relation between the ANP and GFDA's; 
see the introduction and [5]. 

Suppose F is a separable Banach space and (Y*,V] has the ANP. By Lemma 
2.10, we may realize Y* - up to isometry - as the inverse limit of a quotient system 

||7Ti(t;fc)||, \\v' 
Viewing V as a subspace of lim Wi, one might be tempted to modify the inverse 

system to produce a GFDA of V. For instance, one could restrict the projection maps 
TTj : lim Wi Wj to V, and replace Wj with ||7Ti(t;fc)||, \\v'k\\ -However, the resulting 

maps *3 v vv V - 7Tj ( V) will usually not be quotient maps. One could also try 

renormmg the spaces 7Tj( 'V] CWj so that the restrictions x<< v << V ||7Tgvvv V) become 
quotient maps. This will typically destroy the Determining Property, however. In 
any case, V will not admit any GFDA unless it is a separable dual space, whereas 
many Banach spaces with the RNP are not separable dual spaces. 

In fact, there are seperable spaces with the RNP which are not isomorphic sub-
spaces of dual spaces with the RNP; see [13] , [2]; compare also [3]. We are indebted 
to the referee for providing these references. 
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TEST CONFIGURATION AND GEODESIC RAYS 

by 

X i u x i o n g C h e n &; Y u d o n g Tang 

Dedicated to Professor J. P. Bourguignon, 
with affection, gratitude and admiration 

Abstract. — This paper presents recent research findings on the connection between 
test configuration and geodesic ray in Kähler metric space. The purpose was to gain 
insight on the degeneration of Kähler metrics along geodesic rays. A result associating 
every smooth test configuration a C 1 , 1 geodesic ray is proved and exemplified with 
toric degenerations. Furthermore, we show that the ¥ invariant agrees with Futaki 
invariant, thus acts as a good substitute in general C 1 , 1 geodesic rays without a 
background test configuration. Based on the assumption of simple test configuration, 
we extend Donaldson's correspondence between solutions of Monge-Ampère equation 
and holomorphic discs. Results indicate that Chen and Tian's analysis on Monge-
Ampère equation via holomoprhic discs could apply in simple test configuration. 

Résumé (Configuration de test et rayons géodésiques). — Cet article présente les dernières 
découvertes sur la connexion entre la configuration de test et les rayons géodésiques 
dans les espaces métriques kâhleriens. Un résultat qui associe à chaque configuration 
de test lisse un C1'1-rayon géodésique est démontré, et nous fournissons des exemples 
avec des dégénérations toriques. D'autre part, nous montrons que l'invariant ¥ s'ac­
corde avec celui de Futaki, et forme ainsi un bon substitut dans le cas de C1'1-rayons 
géodésiques généraux sans configuration de test. En nous basant sur l'hypothèse d'une 
configuration de test simple, nous étendons la correspondance de Donaldson entre les 
solution de l'équation de Monge-Ampère et les disques holomorphes. Les résultats 
indiquent que l'analyse de Chen et Tian sur l'équation de Monge-Ampère par le biais 
des disques holomorphes pourrait s'applique dans les configurations de test simples. 

1. Introduction 

The purpose of this paper is to explore the connection between geodesic rays in 

the space of Kâhler metrics and test configurations in algebraic manifold [15]. This 

2000 Mathematics Subject Classification. — 53C55. 
Key words and phrases. — Monge-Ampère equation, test configuration, geodesic ray, Futaki invariant, 
¥ invariant, toric degeneration. 
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is a continuation of [9] in some aspects. In [7], the first named author and E. Calabi 

proved that the space of Kâhler potentials is a non-positive curved space in the sense 

of Alexanderov. As a consequence, they proved that for any given geodesic ray and 

any given Kâhler potential outside of the given ray, there always exists a geodesic ray 

in the sense of metric distance (L2 in the Kâhler potentials) which initiates from the 

given Kâhler potential and parallel to the initial geodesic ray. The initial geodesic 

ray, plays the role of prescribing an asymptotic direction for the new geodesic ray out 

of any other Kâhler potential. When the initial geodesic ray is smooth and is tamed 

by a bounded ambient geometry, the first named author [9] proved the existence of 

relative C1,1 geodesic ray from any initial Kâhler potential. (These definitions can be 

found in Section 2.) Similarly, as remarked in [9], a test configuration should play a 

similar role. One would like to know if it induces a relative C1'1 geodesic ray from any 

other Kâhler potential in the direction of test configuration. In [3], Arezzo and Tian 

proved a surprising result that for a smooth test configuration with analytic (smooth) 

central fiber, there always exists a general fiber sufficiently closed to the central fiber, 

such that there exists a smooth geodesic ray initiated from that fiber metric, and be 

asymptotically closed to the test configuration (or approximating to some analytic 

metric in the central fiber). A natural question, motivated by Arezzo-Tian's work, is 

if there exists a relative geodesic ray from arbitrary initial Kâhler metric which also 

reflects the same geometry (i.e., degenerations) of the underlying test configuration. 

In section 3, we prove 

Theorem 1.1. — Every smooth test configuration induces a relative C1'1 geodesic ray 

from any Kâhler potential in the given class. ^ 

Test configurations can be viewed as algebraic rays, which are geodesies in a finite 

dimensional subspace( with new metric) of space of Kâhler metrics. The geodesic rays 

induced by a test configuration are the rays parallel to the algebraic ray. They auto­

matically have bounded ambient geometry introduced by the first named author [9]. 

Theorem 1.2. — For simple test configuration^, if the induced geodesic ray is smooth 

regular ^ , then the generalized Futaki invariant agrees with the ¥ invariant ^ . 

In 1982, E. Calabi asked if there always exists an extremal Kahler metric in every 

Kahler class [5]. This is a very ambitious conjecture which includes his famous con­

jecture on Kahler Einstein metric ( when the first Chern class has a definite sign) as 

t1) Following ideas of [9], the smooth assumption can be reduced to a lower bound of the Riemannian 
curvature of the total space. 
<2) Definition 2.3. 
(3) Definition 2.1, it is also equivalent to Definition 6.2 in this case. 
(4) The ¥ invariant is defined bv the first named author f9l. 
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a special case. It was soon pointed out by Levine [19] that Calabi's conjecture can 

not hold for general Kahler class. However, it is understood among the experts that, 

with some modification, Calabi's conjecture might hold for general Kahler manifolds. 

Unfortunately, it is truely subtle and elusive to search/fromulate a correct statement 

regarding the existence of constant scalar curvature Kahler (cscK) metrics. 

The generalized Futaki invariant or algebraic Futaki invariant is an algebraic no­

tion which relates to the stability of projective manifolds. In the late 1990s, S. T. 

Yau conjectured that the existence of Kahler Einstein metrics in Fano manifolds is 

equivalent to some form of Stability of the underlying polarized Kahler class. Even 

though what stability notion to use is also part of puzzle, this is indeed a fundamental 

conjecture with respect to Kahler Einstein metrics. According to G. Tian [34] and 

Donaldson [12], this equivalence relation should be extended to include the case of 

the constant scalar curvature (cscK) metric in a general Kahler class. In [34] , G. 

Tian introduced the notion of K-Stability and in the same paper, he proved that the 

existence of K E metric implies weak K stability. In [13], Donaldson proved that, in 

algebraic manifold with discrete automorphism group, the existence of cscK metrics 

implies that the underlying Kahler class is Chow-Stable. In this paper, Donaldson 

actually formulated a new version (but equivalent) of K-Stability in terms of weights 

of Hilbert points. In Kahler toric varieties, the existence of cscK metrics implies that 

the underlying Kahler class is Semi-K stable [15]. Now it is a well-known conjec­

ture that the existence of constant scalar curvature metrics, is equivalent to the K 

stability of the underlying complex polarization ( the so called "Yau-Tian-Donaldson 

conjecture ) . 

In [9], the first named author used the ¥ invariant to define geodesic stability. 

Theorem 1.2 states that geodesic stability in the algebraic manifold, is a proper gen­

eralization of K stability, at least conceptually. The first named author believes that 

the existence of KE metrics is equivalent to the geodesic stability introduced in [9]. 

Note that the geodesic stability introduced in [9] is a mild modification of a similar 

concept of S. K. Donaldson [12]. 

The Yau-Tian-Donaldson conjecture is a central problem in Kahler geometry now. 

Through the hard work of many mathematicians, we now know more about one di­

rection ( from existence to stability), cf. Tian [34], Donaldson [16] , Mabuchi [22], 

Paul-Tian [23], Phong-Sturm [24], Chen-Tian [10]... But on the direction from al­

gebraic stability to existence, few progress has been made though. However, in toric 

manifolds, there has been special results of Donaldson [15] and Zhou-Zhu [37]. 

There is a recent intriguing work by V.Apostolov, D.Calderbank, P.Gauduchon and 

C.W.Tonnesen-Friedman [2]. They constructed an example which is suspected to be 
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algebraically K stable (5), but admits no extremal Kâhler metric. Perhaps one might 

speculate that, the geodesic stability aforementioned is one of the possible alternatives 

since it appears to be stronger than K stability and it is a non algebraic notion in 

nature. 

The converse to Theorem 1.1 is widely open. In other words, it is hard to com-

pactify a geodesic ray. The rays induced by any test configuration is very special in 

many aspects. For instance, generally speaking, the foliation of a smooth geodesic 

ray is a family of open strips which cover the base punctured disc. However, for the 

smooth geodesic rays induced from a test configurations, the strips always close up 

as punctured disc, or we may say that, the orbits are periodic. Unfortunately, hav­

ing a periodic orbit does not appear to be enough to construct a test configuration. 

It would be a very intriguing problem to find a sufficient condition so that we can 

"construct" a test configuration out of a "good" geodesic ray. 

Question A. — Is there a canonical method to construct some test configura­
tion/algebraic ray such that it reflects the same degeneration of a geodesic ray? 
What is natural geometric conditions on the "good" geodesic ray? 

Our second main result is to establish the correspondence between smooth regulai 

solutions of Homogeneous complex Monge-Ampere equation ( H C M A ) on simple test 

configurations and some family of holomorphic discs in an ambient space W which 

will be explicitly constructed. We prove, in section 5: 

Theorem 1.3. — There is a one to one correspondence between smooth regular solu­
tions of HCMA on simple test configuration M. and families of holomorphic discs in 
W with proper boundary condition. ^ 

Note that in the case of disc, S. K. Donaldson [14] and S. Semmes [30] established 

first such a correspondence between the regularity of the solution of the H C M A equa­

tion and the smoothness of the moduli space of holomorphic discs whose boundary lies 

in some totally real sub-manifold. The theorem above is a generalization of Donald­

son's result. Following this point of view, the regularity of the solution is essentially 

the same as the smoothness of the moduli space of these holomorphic discs under 

perturbation. As in [14], we proved the openness of smooth regular solutions in 

Section 6. 

Theorem 1.4. — Let p(t) be a smooth regular geodesic ray induced by a simple test 

configuration. Then there exists a parallel smooth regular geodesic ray for any initial 

point sufficiently close to p(0) in C°° sense. 

(5) Generalized K stable for extremal Kahler metrics, cf. [32]. 
(6) In a followup work, we expect to extend this to all smooth test configurations. 
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An immediate corollary is that the smooth geodesic ray constructed by Arezzo-

Tian is open for small deformation of the initial Kahler potential. One may wonder 

what about the closeness of these solutions? Note that the first named author and 

Tian [10] studied the compactness of these holomorphic discs in the disc setting and 

we believe that the technique of [10] can be extended over here. 

In Section 7, as a special case, we explore the geodesic rays induced by toric de­

generations [15]. In particular, we found plenty of geodesic rays whose regularity is 

at most C1'1 globally. We prove: 

Theorem 1.5. — The geodesic ray induced by a toric degeneration has the initial di­

rection equal to the extremal function in the polytope representation. 

More interestingly, we can write down the geodesic ray explicitly in polytope repre­

sentation. Thus, the various invariants and energies can be calculated explicitly. This 

should have general interest since there are very few non-trivial examples of geodesic 

segments or rays in the literature. 

Acknowledgments. — Both authors are grateful to G. Tian for many insightful 

discussions. The first named author is grateful to S. K. Donaldson for many discus­

sions in this subject. 

The first named author has been lecturing on these theorems since spring of 2007. 

In particular, he lectured in a week long conference on geometric analysis (June 17-22, 

2007) held at Luminy, Prance. 

When we are ready to post our paper, the authors noticed Phong-Sturm's work [27] 

which overlaps with our theorem 1.1. 

2. Preliminary 

2.1. Geodesic rays in Káhler potential space. — Let (M,ÜJ, J) be a com­

pact Káhler manifold of complex dimension n. This means J is an integrable com­

plex structure and the symplectic form UJ is compatible with J. In another word, 

(JÜ(J-, J-) = (JÚ(-, •), and g = ̂ ^^s<<J-) is a metric. 

In local complex coordinates za = xa + iya, denote the metric g = ÜJ(-,J-) by 

gapdza <g> dz@. Then gap is the complexification of the real metric g^. 

By definition, u =<< w< 
2 

ga$dza Adz?. Let 

(1) H = {</>£C°°(M):gaß + 
d2(j) 

dzadzp 
> 0 } . 

It follows from the dd lemma that H is the moduli space of all Kahler metrics in the 

class [a;] 
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H is an infinite dimensional manifold with formal tangent space TH^ = C°°{M). 

T. Mabuchi [211 defined a metric as the following: Let 01,02 G TH<j>. 

(2] 01,02 >UJ4> ^^ 
M 

0102«/J ùù^^ 
^^ù 

0102 
^0 
n! ùù 

M 
0102 

+ iddd) n 

nl ^^ 

This metric was also defined in S. Semmes [29] and S.K. Donaldson [12]. Under this 

metric, the geodesic equation for curve 6{t) G H is the following: 

(3' 0 " 00 
a/3 

0a 0* = 0. 

It is just the Euler-Lagrange equation of the energy EU(t)) ^^ 
^^ 
'o 02 

ùù 

n\ v 
According 

to Semmes [29], the geodesic equation can be transferred into a Complex Monge-

Ampère equation: Let 0,1 xS1 a Riemann surface. Now 0 is originally defined 

for t G [0,1]. Extend 0 to be S1 invariant function on E. Let z = t + is be complex 

coordinate of E, xbb 3 a n be a local coordinates on M. Then the geodesic 

equation is transformed into 

(4) det 
9*3 + 0a^ 0az 

02^ <t>zz 
= 0. 

In another word, it is n + i<9<90) ,n+l = 0 on M x E. where 0 = 7r*o; is the Dull back 

of uj bv the proiection 7r : M x E M. 

A geodesic segment connecting two points 0o and 0i is the solution of the following 

Drichelet boundary value problem. 

(5) det 9OL$ + 0a^ 0CKZ 

0z^ 0zz 
= 0 on M x E, 

(6) 0 ^ùù 0o on M X 0 X s1 5 

(7) 4> ùù^^ <f>I on M x 1 x s1. 

Definition 2.1. — Smooth regular solution: We call 0 a smooth regular solution (some­

times smooth solution for simplicity) of the Monge-Ampère equation, if 0 is smooth 

and if 9a3 + 0a^ : > 0 hold on all fibers. 

In [8], The first named author proved the existence of a C1'1 solution to above 

equation. He used the continuity method to solve det = ef equation, and proved the 

following: For every e > 0, there is a unique smooth solution 0e with \dd(j)e\ < C. The 

C only depends on the background metric and the manifold. In fact, his proof works 

for Monge-Ampère equation on general compact complex manifold with boundary. 

He also proved the uniqueness of the limit when e —> 0. Notice that the uniqueness 

is expected since H is negatively curved space. T. Mabuchi [21], S. Semmes [29] 

and Donaldson [12] showed that H is negatively curved in formal sense and later, 
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the first named author and Calabi [7] proved it is negatively curved in the sense of 

Alexander ov. 

The regularity beyond C1,1 is missing. Our example in section 7 shows a solution 

with no global C3 bound. A similar setup [14] to the geodesic equation is concerned 

Monge-Ampère equation o n M x D instead of M x (IxxxxxIn that setup, Donaldson 

showed that there exists boundary value such that there is no smooth regular solution. 

In this direction, a deep analytic result is [10]. The first named author and Tian 

characterized the singularity in detail by analyzing the holomorphic discs associated 

to a solution. 
In the geodesic ray case, the equation holds on M x [ 0 , o o ) x ; S1 instead of MxIxS1xx 

Bv chaneine: variable: z = e 1 (t+is) the strip 0,oo I x S1 goes to a punctured disc. 
The equation becomes [tl+iddcj)) |7l+L = O o n M x D - 0 .^hdddd The well posed question for 

geodesic ray is a "starting potential, as well as prescribing an asymptotic direction. 

This "asymptotic direction" is usually given by either a known geodesic ray with 

bounded geometry or a smooth test configuration. In [9], we study the existence of 

geodesic ray with given geodesic ray as "asymptotic direction." Part of the goal of this 

paper is to established the existence result with respect to test configuration and to 

explore the relation of geodesic rays with test configurations. 

2.2. Test configuration and equivariant embedding. — Test configuration 

is defined first by Donaldson [15]. He used test configurations to study the relation 

between stability of projective manifolds and the existence of extremal Kahler metrics. 

Test configuration is parallel to the notion "special degeneration" introduced by Tian 

[34] earlier. Both notions describe a certain degeneration of Kahler manifolds. As 

discussed already in [12], the geodesic ray represents also degeneration of Kahler 

metrics. Therefore, it is natural to relate these notions together. 

Following Donaldson's definition, 

Definition 2.2. — Let L —> M be an ample line bundle over a compact complex man­

ifold. A test configuration M. consists of: 

1. a scheme Ai with a C*—action. 

2. a C*— equivariant line bundle C —> M. 

3. a flat C*—eauivariant man tt : M —> C, where C* acts on C bv multiolication. 

Any fiber Mt dd 71 -1 dd for t 7^ 0 is isomorphic to M. The pair 7 / , Mi is 

isomorphic to [C\Mt,Mt, for some r > 0, in particular, Lr,M' ^^ ,Li,M1). 

Test configuration is more explicit in the view of equivariant embedding [28]. 

Without loss of generality, assume r = 1. For large k, Ck —• M —• C can be 

embedded into o(i; pN X C c equi-variantly. It means there is a C* ac­

tion on Oil pN x C /nr which restricts to the C* action of the embedded 
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Ck -> M -> C. In fact, the embedding of each fiber M* is just the Kodaira embed­
ding by the linear system xxx MuCk hhh Moreover, one can make the S action on 
0(1] -+PN x C ^ C w < < unitary. 

In the rest of the paper, we always treat test configurations as equi-variantly em­
bedded with r = l,fc = 1. Therefore, we work on a subspace of PN x C. Also, 
in geodesic ray problem, there is no loss of generality to only look at truncated test 
configuration M —> D. 

At last, we define a special kind of test configuration. 

Definition 2.3. — Simple test configuration: A test configuration M C PN x D is 
called simple if the total space is smooth (M is a smooth sub-manifold of PN x D) 
and the projection ir : M —> D is submersion everywhere. 

By definition, the central fiber of a simple test configuration is automatically 
smooth. 

3. Relative C11 geodesic ray from smooth test configuration 

3.1. Existence. — As mentioned before, test configuration represents some degen­
eration of a Kâhler manifold along a C* action. Geodesic ray represents a degeneration 
of Kâhler metrics along a punctured disc. So it is natural to relate the truncated test 
configuration to a geodesic ray. We have the following theorem: 

Theorem 3.1. — A smooth truncated test configuration M —• D induces a relative 
C1'1 geodesic ray from any given initial point p eH. 

The existence is a direct application of the first named author's result [8]. The key 
ingredient of this theorem is the boundary estimate in [8]. For Homogenous complex 
Monge-Ampere equation, there is an extensive literature in the subject (cf. [4], [18], 
[35]...). 

At present, we assume that the total space of the test configuration is smooth. We 
expect that these results can be extended to singular test configurations accordingly. 
For instance, in [9], the first named author took another approach to construct the 
geodesic ray. Using techniques in [9], the smoothness condition here can be reduced 
to a uniform lower bound of the Riemannian curvature of the total space. 

Proof. — Consider a smooth test configuration over a disc: (C -* M -+ D) ^ 
(0(1) PN x D D) Assume the total space is smooth, i.e, , M C PN x D is 
smooth. Let Q be the Fubini-study metric on PN x D. Actually, it means the pull 
back of Fubini-study metric on PN by projection: PN xD^ PN. 
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Now solve the equation 

(8) <<xx :,,^^^$$$ ,n+l ^$^^ 0 on M, 

(9) ib = 0 on dM. 

According to [8], this equation has aC1,1 solution (it is not exactly the same situation 

as in [8], but the techniques are the same). The following shows that: This solution 

corresponds to a geodesic ray in the Kahler class CI (L). 

The C* action on M induces a biholomorphic map i : (L i ,Mi) x (D-0) -

[C,M) - Mq. NOW i maps (e,x,z) 6 (L i ,Mi) x (D - 0) to z o (e,x, 1) C ( £ , M ) . zo 

is the C* action of test configuration, and (e,x, 1) G (Li, Mi) . The map i pulls the 

equation to 

(10) ^n;;:^^ù ^^^lhhh hhk >n+L = 0. 

on Mi x (D - 0) , with boundary condition i*V> = 0 on Mi x S1. 

Let u = Q\Mi, and 7T : Mi x (D - 0) —• Mi be the projection, then 

Proposition 3.2. — TO = THHT*U;+V-1031o /or some smooth function rj. 

Proof. — Let h be the Fubini-Study hermitian metric on Oil) —> p * . So Q = 

-V^ìddìogh and bcccww= -yj^lddlogfh. Note TT*O; = - v ^ î ô ô l o g h i . hi is the 

pull back of the hermitian metric on line bundle L\ —» Mi by trivial projection 

TT : (Li, Mi) x ( D - 0 ) -> (L i ,Mi ) . So TO = TT*U;+V-1031og ZU 
1 i* h and ?7 = log Ali xx^m 

• 

Proposition 3.3. — xww^$ùùùmm is a geodesic ray. 

Proof. — We have shown TO = TT*U;+V-1031o \n+L = 0 on M x (D - 0). It remains to 

show the S1 invariance of (p. First, we check the S1 invariance of rj. By assumption, 

S1 action on Oil) —> PN x C is unitary. So the h is preserved by S1 action. This 

immediately implies that V = log hi 
i*h 

is S1 invariant. Now we check é. é is 51 

invariant because the boundary condition ip = 0 is S1 invariant, and the uniqueness of 

Monge-Ampère solution. In another word, for the unique solution, the S1 symmetric 

on the boundary will force the S1 symmetry in the interior. Now both 77 and I/J are 

51 invariant, so is (p. • 

Back to the proof of the theorem 3.1: At this moment, we have associated a 

relative C1,1 geodesic ray to the test configuration. The ray starts from a fixed point 

p, because we solved the equation with boundary condition tp = 0. However, for 

another arbitrary point q, one can go back to the equation 8, solve ip = ip0 on dM 

and obtain the relative C1'1 ray from q. ipo is the S1 extension of the potential 

difference between q and p. • 
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In [3], Arezzo and Tian constructed an analytic geodesic ray from a test configura­

tion when the central fiber is analytic. Such test configurations in [3] are simple test 

configuration (cf. Defi. 2.3). Using the openness Theorem 6.5, we know that there 

are smooth geodesic rays near the ray they constructed. 

When the test configuration is simple (cf. Defi. 2.3), one may expect some better 

regularity of the induced geodesic ray. Using the correspondence in section 5, the 

techniques developed by the first named author and Tian in [10] would apply. We 

expect a similar regularity result here: For any boundary condition 4> G Ck,a, there 

sxists nearby perturbation 0e, \(j)e — 0|cfe.<* < e? such that the HCMA with boundary 

yalue 4>e has a almost smooth solution (7\ When the test configuration is not simple, 

bad regularity may appear, maybe due to lack of the correspondence in section 5. 

For example, in the case of toric degenerations: The total space is smooth when the 

total polytope is delzant, but the central fiber is never smooth. The geodesic ray 

is piece wise smooth and has no global C3 bound. The singularity set on polytope 

representation has real codimension 1. 

Back to the question raised in the introduction: given a geodesic ray, how to 

construct a test configuration which represents the same degeneration? Donaldson's 

construction of toric degenerations [15] is very inspiring: He chose piecewise linear 

functions to approximate an arbitrary direction. A piecewise linear function can lead 

to a well defined test configuration. In principle, one might view the degenerations 

represented by a test configuration are dense in all possible geometrical degenerations. 

Donaldson's construction suggests a way to choose a good approximation, which re­

flects the same character of degeneration. 

3.2. Special cases: geodesic line and Toric variety. — One example of geodesic 

ray is the geodesic line generated by a holomorphic vector field. Let M be a Kah-

ler manifold with Kahler form uo. Let X be a holomorphic vector field such that: 

X = w<< d 
dwa 

for some real potential / . It is well known that Im(X) is killing vector 

field. Let a(t) be the flow generated by Re(X) = Vw/ . Then, the 1-parameter family 

<<o It) = a t)* is a geodesic line, t G —00, 00). 

Nontrivial example of geodesic rays can be explicitly constructed in toric varieties. 

For a toric variety, there is an associated polytope. More specifically, there is a 

biholomorphic map / : M° î^ùmmm '2mZn -* P° x Tn. Here M° is an open dense 

subset of M where the toric action is free. P is a polytope in Rn satisfying Delzant 

conditions. Represent a toric-invariant Kahler metric as UJ\M° = iddf, then there is 

a map f from 

w<< '2mZn -+p° X rj-\n 
5 v (u,v) IX = 

df 
du 

oom^ùm 
I. 

(7) For definition of almost smooth solution, see the first named author and Tian [10]. 
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Under this map , the Kahler form u is translated into dxAdy. The complex structure 

is translated into 

h ) j = 
0 G 

G"1 0 
dd 

where 

w<< ^l 
d2g 

dxidxj 1 and g ̂ ^^vcc + f lhh ̂ ^ X<i Uì, at x = 
df 
du' 

In another word, in the symplectic chart, the complex structure has a potential g. 

This transformation is really helpful for the geodesic equation. The geodesic equa­

tion, in the polytope representation, is linear for complex structure potential g(t). In 

other words, 

(12) 9 (t) = 0. 

This immediately implies the existence of smooth geodesies segment connecting any 

two toric metrics. It is just the linear interpolation of the two end potentials. 

4. Connection between algebraic notions and geometric notions 

4.1. Algebraic ray and geodesic ray. — Test configurations can be viewed as 

algebraic rays. The induced geodesic rays are parallel to the algebraic ray. 

Definition 4.1. — Two rays pi(t) and p2(t) in the space of Kahler metrics are called 

parallel if pi(t) — P2(t) is uniformly bounded. 

The equality <p = rj + i*ip can be interpreted geometrically, rj represents the degen­

eration of the metric from the algebraic C* action, ip is the difference between the 

algebraic ray and the differential geometric ray. Notice that i\) is C1,1 bounded. We 

will elaborate above statement in the following: 

Recall that w<<p^^ ̂̂ ^bv L i , M / o^mm 'O(l) ,PN is embedding. The group GL(N + 

1,C) acts on (0(1),PN). If one looks at the dual bundle of 0(1) (i.e. the universal 

bundle e, x j e vvv + 1 X pN : e = Xx] 5 the action is simply A ̂ 6, x Ae, Ax), y A e 

GL(N + 1,C). The natural dual map between Oil) and universal bundle passes the 

action from one to the other. 

Consequently, the action acts on the Hermitian metric of 0 (1) , thus on its cur­

vature. The following lemma shows that this action preserves the positivity of the 

Hermitian curvature. 

Lemma 4.2. — Let A G GL(N +1, C) and h be the Fubini-Study hermitian metric on 

0(1). Then, -idd\ogA*h > 0. 
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Proof. — It suffices to prove that the action preserves the negativity of curvature 

on the universal bundle. Under the action A, the metric of e = XQ, XI, Xpj e 

0(—1) changes into ||Ae||2 from standard Fubini-Study metric ||e||2. Notice that the 

action A~l\ UA for U e U(N + l) is transitive on PN and this action preserves A*h. 

Thus, one only need to show the negativity at one point. Let's consider the point 

V = A-1 ; i ,o , . . . ,o ; 
7 

and e = (Xo,TO = TT*U;+V l,Xi+i...,XN ). At this point p, we have 

:i3) fddq -ìaaiogiiAe |2 ^mm - 1 
n 

<<;;,, k,l^i 

mw<< AjidXkAdXi<<. 

To show the positivity, it suffices to show that the null space of the matrix Ajk,j ^ 

l,fc<<ppi must be empty. If v = a0, . . . ,ai_i,ai+i, . . .a^ is a null vector, then the 
vector Av* must be of form [c ? 0,0,0, . . , 0 ) , because of non-sineularitv of A. Bv 

scaling c = 1, A will map two vectors to (1,0, ...,0) I, which is a contradiction. • 

As a consequence, the GL(N + 1, C) action induces a finite dimensional subspace 

HN C H. Note that HN consists of those metrics obtained by the GL{N + 1,C) 

action. 

The space HN is a symmetric space. Its dual is the unitary group U(N + 1). 

Under the natural metric of symmetric spaces, the C* action (as a 1-parameter family 

of metrics) is a geodesic ray in HN- It is interesting to consider the limit of these 

algebraic rays when one raises the dimension of ambient space PN(we can raise the 

power k of Ck and do Kodaira embedding, then pull the ray back to the class ci(L) 

by dividing out the scalar k). First, it is easy to derive that all the embedding induces 

the same geometric geodesic ray. 

Lemma 4.3. — Different embedding of a test configuration into projective spaces in­

duce the same geodesic ray provided the rays start at the same point. 

Proof. — By different embedding, one essentially raises the power k of Ck -+ M -> D 

first. Then, we use sections of H°(M,£k^ to embed Ck —> M into 0(1) ->PN xD. 

The Fubini-Study metric naturally induces a metric on Ck, which has curvature in 

class kci(C). To get a geodesic ray in the Kahler class ci(L), one takes the k-th. root of 

the Fubini metric on Ck to get a Hermitian metric hk on C. Notice that log fr*: 
xww is the 

potential difference of the background metric Q>k and fin. When we solve the Monge-

Ampère equation, by uniqueness of the solution, the potential difference log hk 
wii^m 

goes 
into the difference between the C1'1 solutions (f>k and (/>n, such that the ray potential 

rjk + i*(ßk = rin + i*(j)n. • 

As k —> co, it is expected that these algebraic rays converge to some geometric 

geodesic rays. This is a natural extension of the classical problem: Use Bergman 
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metrics to approximate a given Kahler metric. There is extensive literature on this 

topic, cf. Tian [33], Zelditch [36], Lu [20], Phong-Sturm [25] and Song [31]. 

4.2. Bounded ambient geometry and test configuration. — In [9], the first 

named author introduced the notion of "bounded ambient geometry" to study geodesic 

rays. Briefly speaking, a geodesic ray is called to have bounded ambient geometry if 

the following holds: There exists a metric g on M x S1 x [0, oo) such that the ray has 
aC1-1 relative potential under g, and g has uniformly bounded curvature. 

The geodesic ray induced by a smooth test configuration always has bounded am­

bient geometry. To see this, one restricts the metric Q, + idz A dz to the punctured 

part M — Mo. Since Q + idz A dz has bounded geometry on the restriction 

clearly has bounded geometry. The punctured part is holomorphically identified with 

M x S1 x [0,oo). Thus the ray has bounded ambient geometry. Actually, it is a 

stronger version of bounded ambient geometry since the metric g on M x S1 x [0, oo) 

can be compactified into a fibration over a disc. In general, this is not necessarily 

true. 

In [9], it is proved that: Let p(t) be a geodesic ray with bounded ambient geometry, 

then for any other potential 0o> there is a unique relative C1'1 geodesic ray starting 

from (f>o and parallel to p(t). Alternatively, we can use this to derive the existence of 

geodesic rays, based on the algebraic ray. 

4.3. Futaki invariant, ¥ invariant and geodesic stability. — The classical 

definition of Futaki invariant is the following: Let M be a Kahler manifold with 

Kahler metric UJ. Let X be a holomorphic vector field on M. Let h be the solution 

of Ah = R - R. Futaki invariant is a linear functional: T(X) bb; 'm X(h)ujn. The 

definition is independent with the metric u chosen in a fixed class. In particular, when 

X = <ww d 
wwi^m 

TO = TXW M www h aLü pmm p^^ 
w<<<^mm \UJN. 

Ding and Tian [11J generalized the Futaki invariant to a class of singular varieties. 

Briefly speaking, they embed the variety into a projective space PN, and consider 

the restriction of ambient holomorphic vector fields tangent to the variety on regular 

points. Also they consider the restriction of ambient Fubini-study metric u) and define 

Futaki invariant in similar fashion. 

In test configuration, Donaldson's algebraic definition of Futaki invariant is: Let 
C —• M —> D be a test configuration. Consider the C* action on the central fiber 

Lq —> MQ, and its powers L% —• MQ. Let ¿4 = d i m i ^ = dim#°(M0;L§) and Wk be 

the weight of the C* action on highest exterior power of Hk. Then F(k) = wk/kdk 

has an expansion 

(14) F(k) = F0 + F1k - L F2k -2 
-hTO = fqq^^ 
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The coefficient F\ is called the Futaki invariant of the C* action on (L0,M0). He 

proved that if the central fiber is smooth, then the algebraic Futaki invariant agrees 

with the classical Futaki invariant. 

Using Futaki invariant, Donaldson defined stability. A pair (L, M) is K-stable if: 

For each test configuration for (L ,M) (i.e, ( Iq ,Mi ) = (L ,M)) , the Futaki invariant 

of the C* action on (Lo, Mq) is less than or equal to zero, and the equality only occurs 

when the configuration is a product configuration. 

This algebraic definition agrees with an early geometric definition of K-stability 

by Ding and Tian. In [11], they used a C* action of PN to obtain the limit of the 

varieties Mt, then studied the Futaki invariant of the limiting variety MQ. The spirit 

is similar to Donaldson's setup of test configuration. 

Notice that in test configuration, the stability is to check the Futaki invariant of 

the central fiber. However, one would like to have some criterion that doesn't need a 

specific central fiber. Just as the bounded ambient geometry only concerns behavior 

before reaching the limit, the ¥ invariant is a nice notion parallel to Futaki invariant 

and doesn't need a specific central fiber. 

Definition 4.4. — [9] For a smooth geodesic ray p(t), ¥ invariant is defined to be 

15^ ¥ = lim 
£—•00 

dE 

dt 
w< lim 

<hy^m 

dp 

dt 
[R - R) ujn. p 

The K-engery is convex along geodesies. So HE 
dt is monotone and the limit exists 

'either it is positive 00 or a finite number). 

The first named author defined the notion of geodesic stability by ¥ invariant: M 

is weakly geodesically stable if every geodesic ray has nonnegative ¥ invariant. M 

is geodesically stable if every geodesic ray has positive ¥ invariant. Conceptually, 

this is parallel to K-stability for test configurations. However, geodesic rays represent 

all possible geometrical degenerations. Therefore, it would not be a total surprise if 

geodesic rays detect some instabilities that test configuration method can't detect. 

To clarify this analogy further, we prove the following. 

Theorem 4.5. — For simple test configuration, if the induced geodesic ray is smooth 

regular, then ¥ invariant agrees with Futaki invariant ^ . 

Proof. — By definition of simple test configuration, the central fiber is smooth. Fol­

lowing [15], the algebraic Futaki invariant is exactly the classical Futaki-invariant 

applying to holomorphic vector field (induced by the C* action) in the central fiber. 

Denote the associated HCMA on M by [tl + iddc/) IN+l = 0, è is the smooth regular 

solution. Let coc be the restriction of 'tl + iddcj) on Mq. The S1 action of the C* action 

(8) It is the same up to a sign. 
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is a Hamiltonian action on Mo- Let / be the hamiltonian potential. In another word, 

df = ivuc, where v is the S1 action vector field. The Futaki-invariant of the C* action 

is 

1 6 v =< f< R - R w < C< 

Now we look at ¥ = Hind<<oo dp 
dt 

R-R] mxww 

The C* action induces a diffeomorphism i : M-M0-*Mx[0,oo)xSw<<1<.< Identify 

M x [0, oo) x S1 with M — Mn this way, then 

'IT lim 
£—•00 

% ( Up <hh^mm lim 
£—•00 

i* Rp — RUJC • 

So it suffices to show, 

(18) lim 
£—•00 

i* 
dp 

at 
= — / + const. 

The assumption è is smooth regular means Mx[0,oo hdd > 0 for all fiber MT C M. 

So it induces a smooth foliation F by holomorphic discs on A4. ^ Translate into 

M x [0,co) x S1, U F is a foliation by holomorphic punctured discs. i*F in turns 

induces an S1 action on M x [0,00) x 51 , which is moving along the leaf of i*F in 51 

direction. By identifying the fiber Mt with Mte 1 0\ = 1) trivially in M x [0,oo) xS1 , 

the S1 action is Hamiltonian action with hamiltonian dp 
dt ' 

under the symplectic form 

ujp. In M x [0,oo) x S1 notice that the identification between M+ and M+o preserves 
the symplectic form since Mx[0,oo)xS1. for 1*1 - 1 . 

Translate this into the context oî M, we have: If we identify the fiber Mt with 

Mte hi M, via the 51 action of the (7* action, then the S1 action induced by foliation 

F(on M) is hamiltonian action with hamiltonianift + Xn+!t under symplectic form i*ujp. 

Now we take limit towards the central fiber. Under this limit, the central fiber M0 

should be identified with itself via the S1 rotation of the C* action. Also, originally, 

the 51 action induced by F is trivial on Mo- But, under the identification (which is 

distorted in M0), the limit S1 action should be the reverse of S1 action of the C* 

action on central fiber. 

At last, we can take the limit of 2* dp 
öt 

Because the leaf vector on M x [0,00) x S1 

is a 
dt gf dp 

at->/5 
d 

dza and 

(19: 
d2P 

dt2 
ww gf 

dp 

dt ß 

'dp 

dt. 
a 

= 0 

So the dp 
dt is constant along leaves. Therefore, when passing into M, the i* 

dp 
dt is 

constant alone: leaves of F. But F is foliation of discs and well defined on the central 

fiber, so i* dp 
dt 

converges smoothly as moving towards the central fiber in M. The limit 

(9) See 5.2 for foliation induced by smooth regular solution of HCMA. 
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of the hamiltonian i* d¿_ 
dt 

is the hamiltonian of the limiting action. So linu 7* -•oo 1 dp 
dt 

w<< 
—f + const, and the theorem is proved. • 

5. Monge-Ampère equation on Simple test configurations 

Following Donaldson's idea [14], we want to extend the correspondence in [14] to 

the case of Monge-Ampère equation on simple test configurations. 

But to explain the background and the motive, we start with a review on Don­

aldson's result. M is a Kâhler manifold with a given Kâhler form LJ. We solve the 

equation TT*uj + iddó n+l wwc O o n M x D with boundary condition è = ÓQ on M x OD. 
7T is the natural projection to M. 

Donaldson and Semmes independently constructed the following manifold W —> M. 

W is glued by local holomorphic cotangent bundle over M. There exists a lifting of M 

into W for every Kâhler metric u + iddcf). If one take the lifting of M x D into W xD 

by the solution u + iddcf), then one will obtain a family of holomorphic discs. These 

discs are the lifting of the foliation induced by the degenerated form TT*OJ + iddcf). 

Conversely, if one has the family, then it can induce a solution to Monge-Ampère 

equation. This correspondence is powerful. It relates the regularity of a solution of 

HCMA equation to the regularity of moduli space of holomorphic discs in the sense 

of Fredholm theory. 

The construction of Donaldson and Semmes works for a product manifold like 

M x D. However, a test configuration of real interest is not a product space. So the 

previous construction would not work here directly. We solve this problem by taking 

a new point of view on the old construction: View W x D as a global construction 

over M x D. Then we can derive an analogy in non-product case. This viewpoint 

might potentially be generalized to other cases. 

5.1. Construction of W —• M. — Recall a test configuration is simple (Defi. 2.3) 

if: The total space M is smooth (M. is a smooth sub-manifold of PN x D) and the 

projection 7T : Ai —» D is submersion everywhere. 

From the definition, any simple test configuration is a fibration over the disc. Each 

fiber is smooth because n : M —• D is submersion evervwhere. 

Let M be a simple test configuration. We solve Q + iddcf) n+l = 0 on M. Since 

7T : M —> D is submersion everywhere, so M is locally product space. To see this 

explicitly in the complex coordinates: First, choose a complex coordinate Mx[0,oo)x 

for U C M. The projection z = z Mx[0,oo)xS1 is holomorphic and dz 
dxi 

^ 0 by assump­

tion of submersion. Now one can easily cook up a tuple Z, X{. ? Xin. such that the 

transition between Z, Xix , 1 Xin and w<<< 5 %n is non-degenerate. {2^ Xix ,. ' Xin. 
is the product holomorphic coordinate we are looking for. 
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In the future, such product coordinate is denoted by (z,w) with z G D and w G Mz. 

Cover M with local product charts Ui. On Ui, suppose that the Ç} = iddpi- Write 

T*M/T*C over Ua by local coordinates {z,w,q) We glue these charts together, and 

define the transition between Mx[0,oo over Ua and v,x,p) over Up: 

20 

z = V, 

xw www ^^^ppp as defined in M. 

^^^^ ̂  
^ 

$$p 
^^^^ 

dwj 
+ 

^^^$ IP/3 - POL 
dwj ^^ 

One can verify these local charts (z,w,q) glue up to a complex manifold W —• .M. 

Define a form 6 on each fiber of W —• -D, 

211 e \Wt xw dqi A di¿;¿. 

Here 6 is well defined only on the fiber, so 0|w"t is a family of forms. 

The real part of © is a symplectic form on Wt. So Wt is a symplectic manifold and 

we can talk about Lagrangian sub-manifolds of Wt. 

Definition 5.1. — For a Lagrangian sub-manifold Lt, Lt is called LS-submanifold if 

0|z,t is non-degenerate. Lt is called LS-graph if it is LS-submanifold and also be a 

graph over Mt. 

By straightforward calculation, one can see: Locally, LS-graphs are of forms d(j) for 

some real potential <j> on Mt, and Q\Lt = dd(j). Our main result in this Section is: 

Theorem 5.2. — Let M be a simple test configuration. There is an associated manifold 

W M. such that: 

1. A smooth solution J> of (Q + idd<p] vn+l = 0,0 = 00 on dM. induces a family 

of holomorphic discs G : M x D -> M -> W factoring through the foliation 

on M, such that the image of G\ ̂ ^$p is a LS-graph in Wz —> Mz for all z and 
Mx[0,osqo ùù*:: is a totally real sub-manifold ofW. 

2. If a family of holomorphic discs G : MxD -> W respects the projection W —> D, 

i.e, TTOG: M x D - x + D w w is a projection to D. Also assume it satisfies the 

boundary condition G\ ::w^^ ̂̂  ̂ ^^$^^ for z G 3D, where AZĵ 0 is the lifting of Mz 

by metric Q + idd(j)qqo, then the image of G xww is a LS-submanifold in Wz for all 

z. Moreover, if assuminq these imaqes are LS-qraphs, then the family projects 

to a foliation of M and induces a smooth solution <b to (ii + iddcj) IN+l = 0 with 

(p = 0o on dM. 

Following Donaldson [14], we prove this theorem by discussion from both side of 

this correspondence in next two subsections. 
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5.2. One side of the Correspondence. — Now suppose there is a smooth so­

lution ó for fíi + iddó) \n+l — 0 on M, (j) = 4>o on dM, with Í2 + iddó positive on 
Mt. 

In local product coordinates [z,w] of M, write Q + iddó = iddi. Since iî + iddci) 

has rank n, it has a 1-complex dimension kernel. Let X = w< 
dz + 77A d 

w<< 
be in kernel 

of iddf, then 

22) 3 3 / 
9 

<9¿ 
+ sss^^ 

d 

xww 
k^m (Vafa0 + fzï) aw? (Va faz +^^^$w<< <ipp 

= 0. 

Thus, 

¡23; Mx[0,oo^^)x fz(3 
vxx 
cww^^ 

[24] fzz <<<w b^^ faz' 

A direct calculation shows 

(25) X,X] w< 
drf 

dz 
<< << 

drf 

dwa 

d 

dm? << 
dif 

dz 
<< 

m^ù drf 
cw<< 

d 

dwa 

= 0. 

This means that the kernel distribution is holomorphically parametrized by z G D. 

Therefore a smooth regular solution implies a foliation of M by holomorphic discs. 

The M can be lifted to a graph in W, using the form + iddcj). On local product 

charts Ui, £1 = iddpi, we can lift M to graph d(pi + 0) in each fiber. The lift is well 

defined globally due to the way we glue W. 

In [14], Donaldson showed in the lifting of M, the foliation is lifted up to a family 

of holomorphic discs in W. More importantly, these holomorphic discs take boundary 

value in a totally real sub-manifold A^0. The same technique can be extended to our 

case. 

Theorem 5.3. — For a simple test configuration, the smooth solution of the HCMA 

equation induces a foliation of holomorphic discs on M which can be lifted up to a 

family of holomorphic discs with in W. These discs have boundary in a totally real 

sub-manifold. 

Proof. — As above. • 

5.3. The other side of the correspondence. — It is reasonable to consider the 

reverse correspondence locally. We have the following theorem: 

Theorem 5.4. — Suppose G : DxU ^ W is a smooth map which respects the pro­
jection and holomorphic in D. Assume for all r G dD, U is mapped to be LS-graph 
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and this LS-graph family has a global potential <fo. Then for each r G D, G maps U 

to an immersed LS-submanifold in W. Moreover, if assuming these LS-submanifolds 

are LS-graphs (10^, then this family induces a smooth solution to the Monge-Ampère 

equation with boundary condition (j> = (fo­

in above theorem, U is an open set of real dimension 2n. G:DxU —> W is smooth 

and respects the projection. In another word, for TT : Ww<<ùD, TTOG is identity on 

D. G is holomorphic in D variable. For each r G dD, U is mapped to be a LS graph 

over MT and this LS-graph family have a global potential (fo. This just means these 

LS-graphs are lifting of M using ft + idd(j)Q on the boundary. 

Proof. — Consider G*6 on D x U. 6 is well defined on fibers Wt, so G*6 is well 
defined on fibers Ut'mDxU. We should view G*6 as a family of forms on U+. Denote 

real coordinates on U by qj, write G*e = <Tjk ~\~ÌSjk )dqjAdqk. It is straightforward to 

show vvn,;o^^^^ is holomorphic function over D: Let w<< be coordinates on D x U. Let 

v,x,p) be a local coordinates in W. The map G is V = z, X = x{ z,q ,p = p <p< ). G 

is holomorphic, so dx 
dz 

xww dp 
FIR = 0. Now Q\wt = dpi Adxi,G*@\ut xxw dpi dxi 

dqó dqk 
dqj Adqk, 

therefore d 
dz Jjk + iSjk ^^ d dpi dxi 

dz dqj dqk 
= 0. 

On the boundary r G dD, G maps U to LS-graphs. But 0 is purely imaginary on 

LS-graphs. Thus, G*Q is also purely imaginary. A holomorphic function on the disc 

with pure imaginary value on 3D must be constant, so Mx[0)xS1. must be constant 

on every disc in DxU. This also implies the Jacobi of the map G( FR, •) : U WT is 

non-degenerate, since the pull back image G*0 is non-degenerate. It follows that the 

image G(r. U) is an immersed LS-submanifold. 

Now assume G(TM) is actually a LS-graph, i.e, the projection TT o Gir. -) is dif-

feomorphism. Following [10], we find a global potential for this family of LS-graphs 

(modulo the local potential of the background metric). 

First, consider the case when U is a very small open ball. Let Da be a small 

open set in D. Without loss of generality, G maps DaxU into a single chart in W. 

Since they are LS-graphs, one can solve a real potential (pa for this family in the local 

product chart by d(pa 
dxi = Pi- (fa is unique up to a smooth function in z G D. 

Choose a finite covering Da c D, and make U so small such that DaxU all fit 
in single charts in W. This can be done if one fixes a finite chart covering of W —> D 

in first place and then replace U by small subset if necessary. Solve the potential wn 

respectively in each DaxU, and the geometry of >V implies 01 Vet-Pa] = d - Pß 
on every fiber Mt of M. So on each fiber, the difference Va - Pa) po - Pß] I must 

be constant. It follows that Va - Pa differ with (pp — p/3 by a smooth real function of 

(10) Thanks to Song Sun, we noticed that the interior LS graphs are exact because the boundary LS 
graphs are exact. For definition of exact LS graphs, cf, Donaldson [14]. 
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z on intersection. The fact Hx{p,S) = 0, (S is the sheaf of C°° functions) implies 

one can adjust cpa by function of z such that Wot - Pa = Pß - Pß-Therefore they give 

the global potential <t> = Vot- Poe- <t> is unique up to a function of 2 on D. 

The next step is to make 0 satisfy the boundary condition mMx[0,oo Let X = 
d 
dz + ww d_ 

p^ùm be the tangential vector of the foliation noG : D xU —> M. There exists 

a 1-1 form Çt' on M. such that ix^' = 0 and its restriction to Mt is idd(fa Mx[0,oo)xS 

Locally, Çl' = i\ d2<p 
r. 

>dwaWB 

dwadwß -h (adwadz + (@dWßdz-\- hdzdz , where ̂ ^b c^^bb cwwmp^^ 

and ft <<nbbx 
<Pa0-

Let ^^$<< be coordinates on DxU, q as real coordinates. {ziw/ are local coordinates 

on M. We have rf xx dwß 
x 

. Let p be local potential for background metric Q, and 

<Z> = 0 + Ó. The disc family in W is holomorphic implies oo 0(F 
dv dwa 

= o, therefore 

wwcc 0 = 
9 eta 

dv dwa 
xww 

9 V 

dwadz 
+ 

d2y 

dwaüWß 
rf 

So CQ x d2v 
xxqq<^ùù FI' = z( ùùùp^^ ft — (Pzz)dzdz) ww<< dd ^w<^mmù + (ft - P** - (ßzz)dzdz) << 

O + ¿990 + z(ft — — ózz)dzdz. 

On the other hand, Q,' is a closed form. To see this: Let i : M+ —» M be the 

embedding of fibers, then i*dQ! = di <<ppo = 0. It suffices to show ixdQ,1 = 0 since the 

restriction of dVt' to the fiber is zero already. Now we show ixdQ,' Mx^^$<<[0,oo)xS1ww. 

Lxttf = 0. Notice that iif is determined by O k , and the condition ix^f = 0. 

If we can show 0|x,t and X are preserved by X-flow, then immediately we obtain 

LxQ' = 0 by uniqueness. The fact 0|x,t is preserved follows G*0 is constant along 

leaves and the fact X is preserved follows \X, X] = 0. So fi' is closed form on M, and 
ww (ft - Pzz - 4>zz. dzdz = — — iddcf) is closed. This implies ft - Pzz- <t>zz is just a 

function of z. Also, since VL' and f2 and 0 are globally defined, so Mx[0,oo)(j)Zz)<<dzdz< 

is defined globally and doesn't depend on the local representation. Therefore, the 

function ft - Pzz - fizz-is globally defined, since dzdz is defined on the whole disc. 

fNotice that the z stands for a coordinate in a local product chart, so in different 

product charts, 6ZZ is not the same though the function 0 is the same.) 

Now let H = ft - pzz - <j)zz. H is defined globally on ir o G{D x U , but solely 

depends on z G D. One can solve the following equation on disc: 

n,nn ùù^^iii = H 

with 0' = 00 - 0 on the dD. Now replace 0 by 0 + 0', then one get Ü' = n + iddcj) and 

0 = 0o on dD. (Note that in different local charts. (z,w] and v,x) in A4, where z, v 

project down to the same disc variable. dzzó' = dVy(j)' \ since 0' is constant fiber-wise.) 

This finishes the proof of finding potential 0 if U is sufficiently small. 
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Now for arbitrary £/, one can always decompose it into small open balls Ui which 

admit potential fa. Let p be a local potential for the 0 on M . Then on the leaf, we 

have 

Lemma 5.5. — We have :A(p + (j>i) = XX(p + 0 0 = 0 . 

Proof. — Let / = p +ift + w<< 

28) xxf = xtf)f* + ddf(x,x) 

= 0. • 

This implies AI [<t>i-<t>j = 0 on the leaf. Now with the extra condition 4>i = <t>j = 00 

on the dD, it implies 4>% = <i>3 on the intersection. The global potential is immediately 

obtained from this. • 

Remark 5.6. — The above correspondence is constructed only on simple test config­

urations. In these configurations, central fiber are smooth. However, we believe the 

techniques should work for some mild singularities in the central fiber. 

Another point is that the correspondence has nothing to do with the C* action. 

6. Openness of super regular solution 

In simple test configurations, we can study regularity of the solution <j> by the 

associated holomorphic disc family in W -> MS11^ Donaldson's definition [14] of 

super regular discs and the linearized model could be extended to our case as well. In 

detail, 

Definition 6.1. — In the moduli map G : D x U -* W, a disc G <<w;, is called super 

regular at z G D if d( 7ToGz[ x ' TU —» TM is isomorphism. A disc G(D,x) is called 

super regular if it is super regular at every z G D. 

Definition 6.2. — A geodesic ray induced from a simple test configuration is called 

super regular if the disc family in W is super regular. (12\ 

For a disc Gx = G( <<<^^ in the moduli map G : D x U -> W, one can consider 

the holomorphic perturbation of Gx that satisfies the totally real boundary condition 

the boundary is in the A<A, i.e., the lifting; of M+,t G dD by + iddcj)) ). Also, we 

normalize the perturbation such that it preserves the projection property. In another 
word, TTOG : DxU D is identity on D variable. Following Donaldson [14], the 
linearized problem is 

(n) However, the existence so far only requires smoothness of total space. 
(12) I.e.: the solution is smooth regular to the Monge-Ampère equation on the test configuration M. 
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Theorem 6.3. — In the moduli map G : D xU -> W corresponding to a smooth 

solution 6, the linearized perturbation equation for a disc G(;X is 

'291 v wwx Su H- Au on dD, 

30 du xxx 0, 

31 dv lùù 0, 

where S and A are maps from dD to complex symmetric matrices and positive her­

mitian matrices respectively; while u,v are Cn valued functions on D. 

Proof. — The idea is the same to Donaldson [14]: Trivialize the exact sequence 

0-> (TT O GX)*(T*M) - G*(TW) - (TT O GX)*(TM) - 0. • 

In [141, it is showed that the problem is Predholm and the index is 2n. Conse­

quently, if the disc is regular in Fredholm sense, then G : D x U W is indeed an 

open set in the universal moduli space. 

Regarding on the criterion of regularity for a disc, a mild modification of Donald­

son's argument leads to the following: 

Theorem 6.4. — If a disc is super regular at any point p G dD, then the disc is regular. 

Proof. — We look at the linearized model since the general case can be reduced to 

this simple model. 

First, define Ct\ xwww vc u\v2 c u\vx This is a symplectic form for s ̂ ^ ^^^xxw e C2n 

In particular, for Si,S2 £ kerds^, ^ si(r),s2(r is real and independent of r. To 

see this, just notice that ¿0(51,52) is holomorphic function and on dD, ift(si,S2) = 

i ww Mx[0,oo)xS1. w u\ Sui + Aui = i{ ww Au2 ^^ u\ Aui is real. 

The super regularity at p G dD means there are 2n elements Sj = {Uj,Vj G ker ds,A 

such that Uj (p) form a i2-basis for Cn. By continuity, it implies uj (r) form a i^-basis 

for Cn in a neighborhood r G Up. 

We claim 5^(r) are generically C-linearly independent. It is equivalent to claim 
detf Sj\l<j<2n has discrete zeros. Notice det is holomorphic, so the zeros are either 

discrete or the whole disc. Suppose it is the whole disc for contradiction. In the 

neighborhood Up, assume the maximal rank of Sj\l<j<2n for r G Up is achieved at p 

without loss of generality, and the rank is k < 2n. Assume 5i,52, ...,Sk form a basis 

for span{si) at p, then near w<pmmmm AiSf, 1 < i < k. Xi is holomorphic, since it 

satisfies \is\sj ^v<< Òk+V Sj,l hi k. In another word, it is obtained by solving the 

holomorphic matrix equation A [SÌSJ. ^^ sk-uàà)=^^ Now one finds holomorphic functions 

A i , A f e , Afc+i — —1, Afc-I_2 — 0, ...,A2n — 0 near p, such that IKsi = 0. On the 

boundary dD near » , 

f32 0 = ' (TT O GX)*(T*M) - G*(TW) - (TT O GX)*(TM) - 0w<<<<. 

ASTÉRISQUE 321 



TEST CONFIGURATION AND GEODESIC RAYS 161 

So Y XjUj = 0 and we also have 7^ XjUj = 0, so 

(33) E 9 ( A J ) « J = 0 = I:»(A;-)uJ-. 

Since Uj form i?-basis near p, one has Xj = 0 on dD near p, which contradicts the 
choice of A,-. Therefore, the det Sj\l<j<2n<< has discrete zero. 

Now suppose the ker ds a has dimension strictly greater than 2n. Then one can 
choose sn not in span] Si ,1 < i < 2n. Now in the 2n + 1 dimensional vector 
space Spanish, iCt as a skew form, must be singular. So there is a vector 5 G 
span [s0, ...,s2n) such that iQ,(s,span <<nn,;!^^^^ = 0. Notice we proved «1, S2n 
form a C-basis generically, this implies 5 = 0 generically on D. Thus it implies 5 = 0, 
contradiction. • 

In particular, since the holomorphic discs associated to smooth solution q> are 
automatically super regular, above theorem proves that they are all regular and the 
moduli space M m the map G ' . D x M ^ W w < < is a compact connected component of 
the universal moduli space. It readily implies the following theorem. 

Theorem 6.5. — Openness: If the equation [n + idd(t) Vn+l = 0, <j) = 0o on dM admits 
a smooth solution 6 with Q + idd6 > 0 on fibers, then for any small perturbation 
6<t>o G C°°(dM), the new boundary value problem still has smooth solution 6' which 
is close to 4> in C°°{M) and (il + iddtf] > 0 on fibers. 

Proof. — We refer the proof to [14], which essentially asserts that compact families 
of regular normalized discs are stable under small perturbations. • 

7. Geodesic ray from Toric degenerations 

7.1. Basics of Toric degeneration. — For toric varieties, there has been extensive 
literature in extremal metrics. Abreu [1] initiated to study complex geometry on 
toric variety by symplectic coordinates. Afterwards, there has been much work in 
extremal metrics on toric variety, c.f. Donaldson [15], Zhou-Zhu [37], Gabor [32]. 
For completeness, we describe Donaldson's construction of Toric degenerations [15] 
in the following: 

Let P C Rn be a polytope associated to a toric variety M. For simplicity, let us 
assume P is Delzant. Let f be a rational piecewise linear function on M. One can 
associate it with a polytope P = { (x ,y ) :xeP,0<<<y<K-w<f}<<c ÍT+1, K = max/ . 
By re-scaling P, we can assume P is integral. In other words, all vertices of P are 
integral points. 

It is a classical fact that P as above induces a toric variety M with a positive line 
bundle C. Each integral point p in P corresponds to a section sv of C —> M. The 
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correspondence is compatible with addition of integral points in M and multiplication 

of sections in C. In other words, if p\ + P2 = P3xxp^^^^then sPlsP2 = sP3sP4. 
One can view Ad as a sub-variety in PN by Kodaira embedding: x G M,x —• 

«i(aO : s2(a:) : ... : sAx)... i runs through the integral points of P. So M C PN is 

defined by homogeneous equations F(Xi) = 0. These equations are induced by the 

relations of Si, or equivalently, by the relations of the integral points in P. 

There is a map TT : M ^^$^^^P1, defined by (TT O GX)*(T*M) - G*(TW) - (TX<<<< 

t i , t n , tn+i), o — ( t i , £ n , tn+i + 1) G P. Also, there is a natural C* action on 

JM from the torus rpn-+ 1 << w<< x C*. It transforms section sp toift + Xn+!t is the height 

of p. i.e, p = (¿1 ,£n , ). So the C* action can be lifted to TT : A4 —> P1 by defining 

t o fx : 2/1 = [a; : £d on P1 < 
The toric degeneration is just 

construction in detail. 

M — 7T—1 (fl : 01) . The following example shows the 

Example. — Let P = [0,2] G R be the base polytope. / = max{0, x — 1) is the 

piece wise linear function on P. P = :[0,1] x [0,11) M{1 < x < 2,x + y < 2} . Denote 

the integral points X = fu, 0), Y = (1,0), Z = (2,0), U = (0,1), V = (1,1). Then the 

toric degenerations is the sub-variety in P4 defined by 

(34] XZ = Y2,XV = UY 

The C* action on M. is t : X : Y : Z : U : V] [X : F : Z : tU : tV] I. Notice that in 

order to get nontrivial test configuration, we only consider the part ww<<^^^^^^ [1:0]) . 

In another word, we consider the asvmototic direction when t —• oo on C*. 

The central fiber is defined by [Y:V] = [0: 1]. . It is the toric variety associated 

to the segment y=l,x€ [0,1 and x G [l,2],x + y = 2. Geometrically, the central 

fiber is the union of two P1 which intersect at one point. Notice that the ambient 

space M is smooth here, so the induced geodesic ray has ambient bounded geometry 

automatically. 

7.2. Explicit calculation of the C1,1 geodesic ray. — We calculate the induced 

geodesic ray of previous example. The idea is to first calculate the geodesic segment 

connecting the fiber at 1 : 1] to the fiber at [1 : e%t G Rx S1. Then, taking the 

limit of these segments when t —> oo, we obtain a geodesic ray. 

Equipped with the natural background metric of P4, the fiber at w = [1 : é) G P1 

has metric potential l 
2 logi XI2 + IYI2 + IZI2 + I!7I2 + IVI2Y . Pulling this metric to the 

fixed fiber M at w = [1 : 1] G P1 , the potential becomes 

35 
1 

2 
log (IXI2 + IFI2 + \Z\2 + e2t\U\2 + e2t\V\2). 
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Since the fiber M is at 

potential is 

[1 : 1], so Y = V,X = U. After proper normalization, the 

(36) 
1 

2 
log (Ixf + iyf + ^ + i)-1!^2). 

Now we calculate the geodesic segment connecting these two metrics. 

Choose \A, B] as standard P1 coordinate on M . Thus, , X — B2, Y = AB, Z = A2. 

Using C* = RxS1 coordinate of P1, A = ey.B = l,yeRxS1. The Kahler potential 

is 

;37) w<<<< 
l 

2 
log' (1 + e2y + e4y (e2t + 1) <bbn ww 

One can verify that the Legendre transform of fto,t maps R to (0,2) for each fixed t. 

Notice that in polytope representation, the geodesic is just a straight line of convex 

functions. Now by straightforward calculation, one just computes the two end points 

associated to the two metrics in polytope representation and then take the linear 

interpolation. Passing to limit, one gets the C1,1 ray in polytope representation 

(38) ut = UQ + £max(0, x — 1) , £ e [ 0 , oo). 

In the standard picture of M x [0, oo), we transform the ut by Legendre transform 

and get the potential 

[39 ht (y) w<< 

kk^$^^ when y loe2 
4 ' 

h0\ log 2 
4 + v-

LNO-9 
4 5 when log 2 

4 y 
log 2 

4 
w,,;^ùù 

HO1 [y-t ^xww when log 2 
4 + t <y-

One can verify that ht—ho,t is uniformly bounded. This confirms that the geometric 

ray is parallel to the algebraic ray. 

It is natural to extend this observation to general toric degenerations. 

Theorem 7.1. — Let M be a toric degeneration with extremal piece wise linear func­

tion f. Suppose the ambient polytope P is integral and the base P is delzant. Then 

the induced geodesic ray is u = UQ -\- tf in polytope representation. 

Proof. — Similar to the previous set up, we calculate the geodesic segment connecting 

the fiber at [1,1] to the fiber at [1, e*]. Then we pass the directions of these geodesic 

segments to the limit as t —• oo. 

Under the (C*)n coordinates of M = MM.II, the projective coordinates can be 

represented by ... : exp 1 
XiVi) . Let Xi,Xn, Xn_|_i) = p be coordinates of 

those integral points in P. Therefore, after proper normalization, the metric potential 

of the algebraic ray is: 

40 xww ookk 
1 
w<< log 

peP 

exp 21 —Kt + Xn+\t + 
n 

1 
XiVi) 
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K = m a x / , p = ( X i , . . . , X n + i ) G P are integral points. 

Let x = ( X i , x n e P. Assume the extremal function / = ckxk + d near x. 

i.e, we consider x in interior of a single definition domain of / . Under the Legendre 

transform of ho t ? the pre-image y of x satisfies 

(41) 
w<< <<j exp2( - i f t + Xn+!t + 1 

xww ww iVi] 
— Xj. 

oo^$<< exp 2 (TT O GX)*(T*M) 
ww ww I2/T 

In particular, we denote the pre-image of x at time t = 0 by 

By the Legendre transform, the potential ut in polytope representation is: 

(42) ut Xj = x y - ft0,t-

So, the limit direction is: 

(43) lim 
ut - u0 

t <<< lim 
£ — • 0 0 

]xk(Vk ~ Vk) ww 
1 
2 log ww exp 2 ift + Xn+!t oo^ù 

ivEP 
exp 2 p 

4\ ^xx^ 
t 

If we can prove lim Vk~Vk 

t 
= and lim 

ww 
1 
2 

log www E X P 2 - K T + X N X X + 1 H 
N 

/ 1 xw<< 
jpEP 

E X P 2i 
> N 

/ 1 <<xxx 
xx = d, 

then the theorem is proved. Now, we prove that the second is an implication of the 

first. Assuming lim Vk-Vk 

t 
= c*., i.e, yk - Vk = ckt + ekt where ek —> 0 as t —> 0 0 . We 

have the following 

<ccxx< - Kt + xn+1t + 
n 

1 

w<< << ift + X<<wn+!t 
n 

1 

ift + Xn+!t xw 

45) + - d + 

n 

1 

£{Xi t + 

n 

1 

wwlm^ù 
ift + Xn+ 

For integral points p in the area where / = ckxk + d, the xww<^ù = - K + X n + i + 

<< << <<c + d Xn+i - h (X < 0, where h( [X] = h X\,..., Xn is the height of P 

over the base point (Xi,..., Xn i.e, / i ( X ) = K - / ( X ) . For integral points p not 

in the area where / = ckxk + d, by definition of / = maxi ift + Xn+!t fi are linear 

functions), it is clear that L(p) < — S for a fixed J > 0 Therefore, 

(461 

peP 

exp 2 —Kt + Xn_|_i£ -f-

n 

1 

ww<< 

w<<< exp I - 2 d t 

\peA 

exp 2 —Jpt] exp 2 

n 

1 

<uyyy + 
peB 

exp 2 

n 

1 

yyy^^ 

B contains integral points p in P such that their projection X i , X n are in the 

area where / = ckxk + d and Xn+i = h(X). A contains the rest integral points in P 

but not in B. The condition P is integral guarantees that B is not empty. 
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Now we can calculate 

xww l 
2 

log xw expw 2 [ — Kt-\-Xn+\t-\-̂^^^ 
1 

^^j 

ww exp 2 n 
a 

xiVi: 
;48) lim 

t—>oo ww 

1 
2 

log A6XP2 '—5pt) exp (2 XiVi) + ^^ exp [2 1 xww 

(49) ^^ d 4- lim 
^<<^jj 

*^* exp2( 1 ww^^ 
^^ 

50) ^^^^ d. 

So it remains to prove lim^oo Vk-Vk 
t 

<<vcc 
Let y'k = yk - ckt, our purpose next is to prove y' is uniformly bounded for t 

sufficiently large. The equation 41 can be rewritten as: 

'51 Xk = ww 
vvn,, exp [2] www^^ + xxww exp (2 ww^mm exp I xxwaa 

^^ 9xp! 2 ^^^^^^ + A exp >(2 X ^ - ) exp(-Äpt) 

Define a map (f) : y' —> x by xk = ww Xkexp I 2 aaii^^ 
•. Let Pf C P be the polytope 

B exp 2 xxww 
where / = ckxk + d. We need the following lemma: 

Lemma 7.2. — (j) : Rn P' is a diffeomorphism from Rn to the interior of P' 

Proof. — The lemma is a special case of a more general fact: Let S = JPl,-,Pmj be 

a set of arbitrary points in Rn. Pi = XL kkm^^ ). If the convex hull P spanned by S 

has dimension n, then the map: 

(52; 6: yi,-,ysddn, dd \ X \ , d x n ) d \,xk = ,s 
ffdd exp 2 x<< 

/5 exp -(2: <oo^$$ 

is a diffeomorphism from Rn to the interior of P. 

Notice that B projects to be a grid G on P'. G contains all the vertices of Pf due 

to the integral condition of P. P' is convex since / is convex. So P' is the convex 

hull spanned by G. Therefore, the above fact applies exactly. • 

Now, using this lemma, we can prove limt_,oo Vk-Vk 
t 

= ck: Choose a small closed 

ball Bp C P' near p = X\,Xnddj . The pre-image è 1(BV) is bounded closed set in 

Rn. Now consider the family of maps <j>t : y' —* x defined by equation 51. Notice 

that each <j>t is a diffeomorphism since equation 51 is just another form of equation 

41, which defines the standard identification between Rn and P. 

Since (j)~1(Bp) is bounded, it is straightforward from the equation 51 that: For any 

e > 0, there exists T such that \Mv) - 4<<>{y) < e for y G ó - l Bp) and t > T. Thus 

the image </>t{ uu^^ùm <<< ) is a ball close to Bp and contains p for t sufficiently large. 

So above argument proves: For any Bp contains p and lies in interior of P', there 

exists T > 0 such that y' = <j> -1 
t 

dd eò-H Bp) for t > T. Since 6 - l [Bp) is bounded, 

53̂  lim 
£—•00 

Vk - yk 
t 

$ùùùù + lim 
£—•00 

Vk -Vk 

y 
= ck. • 
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These geodesic rays show some bad regularity. In general, they behave like the 
following: First, they break the manifold M into several pieces. As time evolves, they 
will tear these pieces apart, but keep metrics on each part. The space between the 
teared parts has degenerated metrics and zero volume. In particular, one can verify 
that the 2nd derivative of these rays are piece wise smooth function on fibers. At the 
broken points, these 2nd derivatives have jumps, so there is no global C3 bound for 
the relative geodesic rav potential. 
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FLEXIBILITY OF SINGULAR EINSTEIN METRICS 

by 

Rafe M a z z e o 

Dedicated to Jean Pierre Bourguignon on his 60th birthday. 

Abstract. — This is a survey of a collection of related results about the deformation 
properties of Einstein metrics on a certain class of spaces with stratified singular 
structure. The results in low dimensions are particularly clean, and are motivated 
by applications in hyperbolic and convex geometry. The three-dimensional setting is 
related to an old conjecture by Stoker about flexibility of convex hyperbolic polyhedra, 
and we report on a partial answer. We also review some of the analytic methods used 
to prove these results. 

Résumé (Flexibilité des métriques d'Einstein singulières). — Cet article constitue un 
compte-rendu d'une collection de résultats autour des propriétés de déformation des 
métriques d'Einstein sur une certaine classe d'espaces à structure singulière strati­
fiée. Les résultats en basse dimension sont particulièrement intéressants, et ils sont 
motivés par des applications en géométrie hyperbolique et convexe. La configuration 
3-dimensionnelle est reliée à une vieille conjecture de Stoker sur la flexibilité des 
polyèdres convexes hyperboliques et nous proposons une réponse partielle. Nous 
examinons également certaines méthodes analytiques utilisées pour démontrer ces 
résultats. 

1. Introduction 

The construction and study of canonical metrics on smooth Riemannian manifolds 

is a longstanding central theme in geometric analysis. The term 'canonical' can be 

interpreted in many ways; we shall take it here to mean Einstein, so we study metrics 

satisfying R i c p = Xg for some constant A. Beyond the basic existence questions, 

one of the main problems in this subject is to understand whether a given Einstein 

metric is rigid or flexible, i.e. admits nontrivial deformations amongst Einstein metrics. 
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As a rule of thumb, negative curvature usually implies rigidity of while positive (or 

even just nonnegative) curvature often allows 'flexibility'. Our goal here is to discuss 

how Einstein metrics on a certain class of stratified singular spaces are sometimes 

flexible precisely because of the geometry of the singular set. There are several well-

known instances of this, for example the classical problem of determining the flexibility 

of convex polyhedra in space forms, to which some of the theory discussed below 

is directly applicable. This provides one motivation for the more general study of 

Einstein metrics on stratified spaces proposed here. 

This paper is intended as a brief survey of some small part of a broader subject, 

focusing on one interesting class of stratified spaces - the iterated cone-edge spaces 

- and presenting some recent results about the local deformation theory of Einstein 

metrics on these, particularly in low dimensions where it is closely related to many in­

vestigations in geometric topology concerning the class of 'cone-manifolds' introduced 

by Thurston. The new results reported here are parts of various ongoing collabora­

tions by the author with Gregoire Montcouquiol, Prank Pacard and Hartmut Weiss, 

and are also very closely related to his work with Olivier Biquard. The intention is to 

indicate the beginnings of a coherent 'story', and one which seems worthy of further 

development, albeit from a very personal point of view. Due to limitations of space 

and the author's expertise, we do not touch on many interesting situations where 

singular Einstein metrics have already been studied by others, e.g. for metrics with 

special holonomy, particularly in complex geometry. Finally, we also do not discuss 

any global aspects of this moduli problem, in particular the compactification theory, 

though this is likely to be both important and very interesting. 

Let us first mention a few facts about Einstein metrics on smooth manifolds. Re­

call that a deformation of an Einstein metric g is a (smooth) one-parameter family of 

metrics gt with go = g; it is called a trivial deformation if there exists a one-parameter 

family of diffeomorphisms <j>t of the underlying manifold such that gt = <fit9o- In other 

words, the moduli space £(M) of Einstein metrics on a given manifold M is the space 

of all metrics satisfying the Einstein condition modulo diffeomorphisms. (Just as for 

surfaces, one may mod out by all diffeomorphisms or by those isotopic to the iden­

tity, but since our focus is on local aspects of the deformation problem, we do not 

emphasize this here.) As usual, it is more convenient to study an auxiliary equation 

whose solution space yields all (nearby) Einstein metrics without the diffeomorphism 

redundancy; this is done by introducing an auxiliary gauge condition to make the 

problem elliptic; we describe this later. There is a well-known result due to Koiso 

[22] which states that if M is compact, then £(M) is a finite dimensional analytic 

set. (This means that it can be covered by neighbourhoods, each of which is identified 

by a real analytic diffeomorphism with the zero set of an analytic function in a finite 

dimensional Euclidean space.) The subtlety in proving this, and the reason that its 
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conclusion is not more specific (e.g. with respect to the dimension or smoothness o: 

the moduli space) is that when the manifold is compact, the deformation theory is 

either trivial or obstructed. Indeed, one standard approach to such a result is to applj 

an implicit function theorem, for which one needs surjectivity of the linearization ol 

the relevant operator, and if this holds, then the space of solutions of the nonlineai 

geometric problem is locally parametrized by elements of the nullspace of this lin­

earization. (We describe this in greater detail in §6 below.) This linearization is s 

self-adjoint elliptic operator, so when M is compact, its surjectivity is equivalent to its 

injectivity. Thus if the linearization is surjective, it is injective too and the Einsteir 

metric is rigid; on the other hand, if the linearization has nontrivial nullspace, then it 

has cokernel too, so the implicit function theorem does not directly apply. There is s 

standard trick to handle situations of this sort, known as Ljapunov-Schmidt reduction 

but one can then only deduce much less precise conclusions. 

Despite the fact that the 'formal dimension' of the moduli space of Einstein metrics 

on a compact manifold is zero, there are many manifolds M for which £(M) is pos­

itive dimensional and sometimes even smooth. The best known examples in highei 

dimensions are the families of flat tori, and less trivially, the family of Calabi-Yau K2 

surfaces, for which very detailed results may be obtained using algebraic geometric 

techniques. Also worthy of note are the recent results of [11] about the existence o1 

smooth high dimensional families of Einstein metrics on the sphere, all far from the 

standard metric, obtained using an integrable systems approach. On the other hand, 

as suggested above, if M is compact and the sectional curvatures of g are everywhere 

nonpositive, and negative somewhere, then g is rigid; this can be proved using the 

Bochner technique. The special case where (M, g) is locally symmetric was proved in 

various settings of increasing generality by Weil, Calabi, and Matsushita-Murakami. 

For quite different reasons it is known that the standard metric on the sphere is alsc 

rigid. We refer to the outstanding expository monographs [6], [21], and the collection 

[23], for more about these facts and their proofs. 

When the manifold is noncompact or incomplete, this rigidity or deformation the­

ory has a very different flavour. At one end is the study of the asymptotic boundary 

problems associated to Einstein metrics with certain types of asymptotically sym­

metric geometries, in particular the much-studied case of asymptotically hyperbolic 

Einstein metrics (also called Poincaré-Einstein metrics), see [17], [24], [2], as well 

as the work by Biquard on complex and quaternionic analogues, [8], [7], and more 

recently, some 'higher rank' analogues studied by the author in collaboration wtih 

Biquard, [9], [10]. As the name 'asymptotic boundary problem' suggests, complete 

Einstein metrics with these various types of asymptotic conditions come in infinite 

dimensional families, and the emphasis changes to parametrizing them by some ap­

propriate type of boundary data, which in these cases are the associated parabolic 
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geometries on the ideal boundary at infinity. The parabolic geometry associated to an 
asymptotically real hyperbolic Einstein metric is a conformal structure on the bound­
ary of the geodesic compactification. The classical analogue of this, when dim M = 3 
and M is a quasiFuchsian convex cocompact hyperbolic manifold, was developed by 
Ahlfors and Bers; here, hyperbolic structures satisfying these hypotheses are in bijec-
tive correspondence with the space of conformal structures on the boundary at infinity, 
which is then a compact surface with two components. In the asymptotically complex 
or quaternionic settings, the parabolic geometries are the CR and quaternionic CR 
structures; for the higher rank cases, the relevant asymptotic boundary structures are 
somewhat less familiar but quite explicit, see [9]. There is also some recent progress 
by Anderson on the boundary problem in the usual sense for incomplete Einstein 
metrics on manifolds with boundary [3]. 

Of a different nature is the study of Einstein metrics which are asymptotically 
locally Euclidean (ALE), or which satisfy other more intricate but related asymptotic 
conditions, but which in any case are complete and have polynomial volume growth. 
Almost all known examples of these are metrics with restricted holonomy group, e.g. 
Kahler-Einstein or even hyperKahler, and that extra structure provides a substantial 
key to unlocking their properties. These have only finite dimensional deformation 
spaces, which are in some cases very well understood; we refer again to [21] for more 
on this. 

On the other hand, there does not seem to have been any systematic study of Ein­
stein metrics on various classes of spaces with 'geometrically structured' singularities, 
e.g. manifolds with conic points, edges and iterated edges, or more general stratified 
spaces, despite their ubiquity 'in nature'. As indicated above, we focus on the local 
rigidity/flexibity question, and in particular how geometric data at the singular locus 
can provide at least some of the moduli parameters. There is nothing approaching 
a comprehensive understanding of this phenomenon yet; rather, we simply present 
several recent results in this area in order to explain what is possible with current 
techniques and to emphasize this as an interesting area of study. 

To be more specific, we first recall a particular class of Riemannian stratified spaces 
obtained by an iterated coning procedure and a class of Riemannian metrics on their 
principal smooth strata which induce metrics on each of the substrata. The general 
problem we pose is to study Einstein metrics in this class of singular spaces. In suc­
cessive sections we consider this problem in the two, three, and higher-dimensional 
settings. Not surprisingly, the results are of decreasing specificity. The case of conic 
surfaces is certainly well-motivated through its association with marked Teichmuller 
theory, and serves as an excellent test-case for refining techniques for the more gen­
eral settings. The results on this discussed here are joint work with H. Weiss. The 
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three-dimensional case has also appeared in many other guises before, in particu­

lar through the study of 'cone-manifolds' (or conifolds as we shall call them) by 

Thurston and many others, cf. the exposition in [14]. There is another application, 

however, concerning deformations of three-dimensional convex hyperbolic polyhedra; 

one result discussed here, obtained recently with G. Montcouquiol, answers the in­

finitesimal version of an old question due to Stoker in polyhedral geometry, and is of 

independent interest to that community. The local version of this same question has 

been treated more recently, using methods from geometric topology, independently 

by Montcouquiol and Weiss. There is quite a large literature about various aspects 

of these three-dimensional problems, however, and we shall mention only a few other 

related results. Finally, the situation in higher dimensions is much less complete; we 

discuss one result concerning isolated conic singularities, with Pacard and Weiss, and 

another (very special) set of examples of Einstein metrics bending along codimension 

two edges, but can mostly point to what are likely to be the tractable interesting 

directions. The final section contains some discussion of the analytic underpinnings 

of the proofs of these results: first, a reminder of one convenient gauge choice, and 

second, an overview of the analysis of elliptic operators in the conic and iterated edge 

settings. I am grateful to all these collaborators for allowing me to report on these 

ongoing projects here. I have also learned much from conversations with Steve Kerck­

hoff and Igor Rivin, and through my long-standing collaboration with Frank Pacard. 

Finally, the referee provided some very helpful comments about the exposition and 

relevant literature. 

2. Iterated cone-edge spaces 

Let (TV, h) be a compact stratified Riemannian space with top-dimensional stratum 

an open dense subset. We refer to [35] for generalities on stratified spaces; by Rieman­

nian we mean that each stratum S carries a Riemannian metric /is, which extends 

smoothly to the closure of this stratum, and that this collection of metrics satisfies the 

obvious compatibility relationships: if S\ and S2 are any two strata with ¿ : Si - So, 
then t*hs2 = hSl. We are interested in the subclass consisting of iterated cone-edge 

spaces; these are spaces obtained locally by an iterated coning process, starting from 

smooth compact manifolds. First, recall that the (complete) cone over AT, C(N) , is 

the space [0,oo)r x J V ) / ~ , where ~ is the equivalence relation collapsing {0} x N 

to a point, endowed with the metric dr2 + r2h. The truncated cone where r < 1 is 

denoted CAN). Any singular stratum S C N induces a singular stratum C(S) in 

C(N), with dim CIS) = dim S + 1. Now we can make the 
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Definition 2.1. — We define, for each k > 0, the class Xk of compact iterated cone-

edge spaces of depth k. This is done by induction on k. An iterated cone-edge space 

of depth 0 is a compact smooth manifold. A stratified space M lies in Xk if for any 

p G M, if S is the open singular stratum containing p and dim 5 = £, then there exists 

a neighbourhood U of p in M diffeomorphic to the product' VxCAN) where V cRe 

is an open Euclidean ball diffeomorphic to a neighbourhood in S and N G Xj for some 
j < k. We assume furthermore that the integer n = £ +dim C(N) is independent of 

the point p G M; this number is called the dimension of M. 

If dim S > 0, then we say that the stratum S is an edge in M with link N; some 

neighbourhood of S in M is diffeomorphic to a bundle of cones over S with fibre C(N). 

If dim 5 = 0, then we call it a conic point, but note that if N is itself singular, then 

there are edges of lower depth which terminate at this point. 

An iterated cone-edge metric g on M is by definition one which respects this diffeo-

morphism, i.e. is locally quasi-isometric to one of the form g 

h is an iterated cone-edge metric on N and K is a metric on 

~ dr2 + r2h + K, where 

S. 

To simplify the name a bit, we shall often call these iterated edge spaces. They are 

much simpler than general stratified spaces, both geometrically and analytically. To 

our knowledge, they were first singled out for the tract ability of analysis on them in 

Cheeger's famous paper [12]. 

We shall be discussing Einstein metrics on iterated edge spaces, but one should 

note that the precise definition of an Einstein metric on such a singular space is not 

necessarily clear. Obviously any such metric g should be Einstein on the principal 

open stratum, but it is not clear whether one should also require special conditions 

on the restrictions of these metrics to the lower dimensional strata. This might be 

clarified, for example, by examining what it means for a metric on an iterated edge 

space to be critical for the Einstein-Hilbert action. In the low dimensional cases we 

shall be focusing on mostly, this issue does not arise, while the higher dimensional 

examples discussed in §5 are so special that they are not necessarily indicative of the 

general case. In any case, this seems like an important issue to clarify. 

3. Surfaces with conic singularities 

The simplest setting for our general problem is the existence and deformation the­

ory of compact constant curvature surfaces with isolated conic singularities. This can 

be approached by various different methods, but we follow one modelled on the pre­

sentation developed by Tromba [41] to study Teichmuller theory on compact surfaces 

without singular points since it generalizes to higher dimensions more readily. 
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We first recall some facts about 'marked Teichmüller theory'. Let M be a com­

pact, oriented two-dimensional surface with genus 7. Any conformal class [g] on M 

contains a constant curvature metric go which is unique after some choice of normal­

ization (when 7 > 1, it is unique if we fix the curvature to be —1; on the other hand, 

requiring that the area equals 1, say, yields a unique solution for 7 > 1; for 7 = 0 there 

is the usual nonuniqueness due to the Möbius group). For 7 > 1, the genus 7 Riemann 

moduli space 1Z1 is thus identified with the space of all constant curvature metrics 

(completed in some Banach topology) with area 1 modulo the space of all diffeomor-

phisms (of appropriate regularity); the genus 7 Teichmüller space Xy is the quotient of 

the same space of metrics by the identity component of this group of diffeomorphisms, 

i.e. the subgroup of diffeomorphisms which are isotopic to the identity. Finally, the 

marked Teichmüller ùspace^^$w<is the quotient of the same space of metrics by the 

still smaller subgroup of diffeomorphisms which are isotopic to the identity and which 

fix a specified collection of points Pfc} C M, C M. When x ( M ) - k < 0, it again 

follows from the classical uniformization theorem that in each marked conformal class 

there is a unique complete, hyperbolic, finite area metric. When X(M) - k = 0, this 

uniformizing metric is flat. These metrics are the ones most commonly associated to 

marked conformal structures. 

Another choice of canonical metric in this setting is obtained as follows: given 

a conformal class c on M, a collection of distinct points [Pi,-..,Pfc} C M, and a 

collection of positive numbers [«1,XWWWW , find a metric with constant curvature K 

on M Pfc} C M, which has an isolated conic singularity at each »7, with specified 

cone angle 2-KOLJ there. 

In two dimensions, the local geometry of a constant curvature metric around a 

conic point is quite simple. Define the function SIIKW to be the unique solutions to 
the initial value nroblem /" + Kf = 0 I satisfying SIIK 0) = 0, sn K ;o) = 1. Then the 

metric 

g = dr „2 -f sn 
2 
K' Icx dy 2 

5 0 < r < 7*0, y e R/27TO; 

is a two-dimensional conic metric with curvature K and cone angle 27ra; when K < 0 

we can take <<ml^^ 00, while R0 < 7ty VK when K > 0. There is another useful 

representation, 

9 ww< 
^ 

w<< 12/3 dz 2 
7 

a = l + /3, 

in local holomorphic coordinates near 0 in the disk in C; here (j) is some explicit 

function (which equals 0 when K = 0). More generally, if <\> is any reasonably smooth 

function, we say that a metric of this form has isolated conic singularity at 0 with 

cone angle 2na = 2TT(1 + 8). 

This existence problem translates into finding a solution of the following semilinear 

elliptic PDE. Let g be any fixed metric in the conformal class c, and fix a function 
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Zi K x^^ Are^^a M, a) = 2TTI which depends smoothly on the pj and Pj, is everywhere 

positive and smooth away from the pj, and such that near each of these points, in a 
local holomorphic coordinate z, equals z\ 2ft- dz 2 . Now write 

g = Z(p1,...,pk,p1,...,pk)g; 

the metric we seek can be written 

g = e 2*g 

and it has curvature Kq = K if and only if 

(3.r QK x Are  
20 = 0. 

The solvability of (3.1) in general, i.e. for arbitrary values of the cone angle pa­

rameters (3j > —1, is not known. One immediate constraint is obtained by applying 

the Gauss-Bonnet formula to the surfaces with boundary M Pfc} C M, and letting 

e ,0; this shows that if a solution exists, then 

3.2 K x Area M, a) = 2TTI w<<ù^^ + 
k 

o^ùù 
Pj) 

Since the term on the right, which we call the conic Euler characteristic, changes sign 

as the cone angles vary, it is more convenient to fix the area and let K be determined 

by (3.2). Solutions are obtained easily when K < 0 using barrier techniques, but we 

pass out of this regime as soon as some of the Pj become sufficiently large. There is a 

complete existence theory when K > 0 only if we restrict each /3j to lie in the interval 

- i , o , corresponding to each cone angle lying in the interval 0,2TT 

Theorem 3.1. — Suppose that each pj G (—1,0). Then there is a solution of (3.1) if 

and only if for each i = 1 , . . . , k, 

3.3 w<< M) + Pi 
<<llù 

< 2 + 0i, 

and moreover, if we require its area to eaual 1, then this solution is unique. The Gauss 

curvature K of this solution is equal to the conic Euler characteristic xww M) + ¡3j. 

Notice that by adding /?• to each side, (3.3) is equivalent to 

X M + 

k 

3 = 1 
Pj < 2(1 +PA: 

since Pi e (-1,0), the right hand side is always positive, so this condition presents 

a genuine obstruction only when conic Euler characteristic is positive. Existence and 

uniqueness when K < 0 is due to Troyanov [42] and also McOwen [31]; Troyanov 

used variational methods and was also able to obtain existence in the spherical case 

(K > 0), assuming (3.3). Later, Luo and Tian [25] proved that (3.3) is necessary 
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and that the solution obtained by Troyanov is unique. We shall say that the A:-tuple 
[0u...,0k) e - 1 , 0 k lies in the Troyanov region if it satisfies (3.3). 

There are a few results concerning existence and uniqueness when some of the cone 
angles are larger than 27T, cf. [16], [44], but the situation is still far from being well 
understood. A very interesting recent survey paper by Troyanov [43] provides a lot 
of information about the flat case. 

Although it is implicit in these existence proofs that the solutions in Theorem 3.1 
depend smoothly on the underlying parameters, i.e. the marked conformal structure 
and cone angles, it is still of interest to understand the way in which all these metrics 
fit together. There are some analytic subtleties, and overcoming them in this context 
is good preparation for understanding the higher dimensional situation. Furthermore, 
it is hoped that these methods will eventually produce a much better picture of the 
existence theory when the cone angles are larger than 27T. This was carried out several 
years ago in joint work with Hartmut Weiss [30] (but only now finally being written). 

The basic result is the 

Theorem 3.2. — Let M be a compact orientable surface, as above. Let 7^mc denote 
the space of all constant curvature metrics on M with area equal to 1 and with conic 
singularities at k distinct points on M with cone angles 2TT (i + Pi) 7 ™d 7 ? n c the 
subset where the k-tuple Pi w<< satisfy the Troyanov constraint (3.3) and 0j G 
- i ,o ) for all j . Then 'yconic 2g,k,o is a smooth open manifold of dimension 6g - 6 + 3k; 

it contains as an open submanifold the subset of metrics with negative curvature, and 
as a hypersurface the subset of flat conic metrics. 

The complete result contains other statements about the limiting behaviour of 
these metrics as A . ,/3k approaches the boundary of the Troyanov region; we 
refer to [30] for more details. 

The proof involves constructing coordinate charts for this space, which we do by 
regarding its elements as satisfying the Einstein equations (just the constant Gauss 
curvature equation in this dimension) along with an auxiliary gauge condition. The 
new feature, however, is that these equations are singular at the conic points, so one 
must substitute other techniques to handle them. The gauge condition and some 
discussion of elliptic theory adapted to conic spaces will be given at the end of this 

paper. 
There are several intriguing open questions. First, although there is no constant 

curvature metric when the cone angles are still less than 27r but the 0j lie outside 
the Troyanov region, is there still some sort of canonical metric with these specified 
cone angles? Many years ago, Tian suggested that in these cases the canonical metric 
should be a Ricci soliton with prescribed cone angles; there has been no good progress 
on this yet. Second, when extending this result into the region where some of the 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2008 



178 R. MAZZEO 

cone angles are greater than 27r, it is likely that one will need to face the issue of 

bifurcations; for example a conic point with cone angle 3n may split into either two 

or three points. It will be interesting to put this on solid analytic footing. 

4. Conifolds in dimension 3 

Iterated cone-edge spaces with constant curvature (or more generally, with a (G, X) 

structure) were introduced by Thurston as a generalization of orbifolds. He called 

these 'cone-manifolds', but this is not a very satisfactory name, so we opt for the 

alternate moniker 'conifold'. Thus, for us, a conifold is an iterated cone-edge space 

(M,g) such that the induced metric gs on any stratum has constant sectional cur­

vature K, and each stratum is totally geodesic in an appropriate sense in all higher 

dimensional ones for which it lies in the frontier. As in the surface case, we call a 

conifold hyperbolic, flat or spherical depending on whether K is negative, zero or pos­

itive. We restrict attention to the 3-dimensional case, and mainly the hyperbolic case. 

This has been intensively studied due to many applications to the theory of smooth 

hyperbolic 3-manifolds, stemming from Thurston's proof of the orbifold theorem and 

various hopes to use similar methods to prove the full hyperbolization theorem. The 

monograph [14] provides a good introduction. 

The singular locus of M, denoted E, is a union of 1- and O-dimensional strata which 

constitute the edges and vertices of a graph (with the slightly nonstandard convention 

that it may have components which are closed loops). Near each edge of the singular 

locus, M is a bundle of cones with cone angle constant along that edge; this bundle 

is trivial unless the edge is a closed loop. Near each vertex, M is identified with the 

cone over a space Y, which is a copy of S2 with k conic points, where k is the valence 

of that vertex. (Thus the edges of E are depth 1 singularities, while its vertices are 

depth 2 singular points.) We shall denote the vertex set of E by V and its edge set 

by £. and we write the valence of a vertex v as the integer n(v) > 3. 

In a neighbourhood of the interior of any edge of E, the metric g has a standard 

form; this involves the function sni<;(p) used in the surface case, and its companion, 

es K (p), which is the unique solution to / " + K / = 0, CSK1 0 = 1, cs K '0) = 0. Now, 

with p equal to the distance from that edge (in a sufficiently small neighbourhood), 

we have 

[4.4) 9 = dp ,2 + sn 2 
K P) dy E + cs 2 , 

K w<< dt 2 
5 

y G R/27TOJ w<< ̂2 KOi ' 
t G (—a, a). 

We call this the constant curvature cylinder with cone angle 27ra. On the other hand, 

near a vertex p G V, M is a constant curvature cone over a spherical cone surface 

[N,h) , so g has the form 

;4.5) dr2 + sn 2 
K r h, 
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where r is the distance to the vertex. Of course, h in turn has the form described in 

the previous section with K x< +1 near each one of its singular points. Note that the 
cone points of each link N correspond to edges of M. 

Now let us identify natural geometric parameters. These are of two types: along 

each edge e there is the cone angle 27ra(e) or equivalently, the parameter /3(e) = 

ale) - V i, the length He) of the edge and also a certain twist parameter r e , which 

will be described below; at each vertex v the parameter is in fact the spherical cone 

metric on S with n(vl conic points, i.e. an element of T~conic 
20,n(v) r Hence the total set of 

free parameters lies in some subset of the space 

(0,00; \e\ 
ww X (0, 00' 

\s\ 
xw x (0, oo \s 

^ùù 
X 

vev 
n 

/yconic 
20,n(v)m 

There are some obvious constraints: the cone angle parameter a(e) associated to each 

edge e determines the angles at the cone points of the spherical links at the terminal 

vertices of that edge. The length and twist parameters do not satisfy any such 'local' 

constraints, nor apparently does the marked conformal structure on each spherical 

link. We denote the set of parameters satisfying these 'obvious' constraints by V. For 

the same reasons as in the last section, namely the poor understanding of spherical 

cone surfaces with cone angles larger than 2TT or outside the Troyanov region, we 

restrict attention to the subset VQ C V where the cone angles satisfy (3.3) and are all 

less than 27r. 

To each element (=(a(e),£(e),T(e),h(v))eV0) where ale) Me) and rle are the 

cone angle, length and twist parameters associated to each edge e G £ and h(v) is the 

spherical cone metric with n(v) conic points in S2 associated to each vertex v, we can 

associate a local conifold 'thickening' of the graph E as follows. First define the cones 

with constant curvature K over each spherical cone metric h(v). v e V by the formula 

(4.5), for 0 < r < r0. Next, over each edge e G £ construct the cylindrical metric 

(4.4), again only up to some small radius. Take the core geodesic of this cylinder to 

have length lie) ). The twist parameter Tie) provides a way of measuring how these 

cylinders are attached at either end. It is only a relative parameter unless the edge 

e is a closed loop, but in that case it is equal to the holonomy around that loop. 

Let us call this thickened graph the singular germ associated to the data £ (and with 

curvature K), and denote it by SIC). 

Here are the two main questions: 

Ï Which singular germs w<<< arise as the restriction to a neighbourhood of the 

singular set E of a compact conifold; alternately, to which elements of VQ does 

SIC) extend to a compact conifold? 
^^^^ Given a compact conifold M,g of curvature K, let S(Co) denote the associated 

singular germ. Describe the local, or even just the infinitésimal, structure of 
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the space of nearby conifolds with the same curvature, or equivalently, of their 

geometric parameter sets. 

Problem i) is much more subtle, and we do not have anything to say about it here. 

Problem ii), on the other hand, can be treated by analytic methods, much like for 

constant curvature conic surfaces. 

Before proceeding, we describe one special case which is of interest in polyhedral 

geometry. Let A be a polyhedron in either the sphere 53, Euclidean space R3 or 

hyperbolic space M3. Then A has a set of edges and vertices and its faces are totally 

geodesic. At each edge e we may associate a dihedral angle, (5(e), which is the inner 

angle between the two faces meeting at that point; similarly, at each vertex v we may 

associate a 'solid angle', which is a spherical polygon Bv C S2 consisting of the set of 

interior normal directions at v (i.e. it is just the spherical link). The polyhedron A 

has other geometric parameters as well, namely the lengths of each edge, but in this 

context there is no twist parameter since there is a unique way of choosing a wedge 

with opening angle 8(e) along a geodesic of length £(e), and the local structure at each 

vertex is obtained uniquely by intersecting these wedges associated to all incoming 

edges. 

To pass from such a polyhedron to a conifold, double A simultaneously across all 

of its faces. Since these faces are totally geodesic, the resulting space M is singular 

only along a 1-skeleton. Its angle along each edge is given by angle 2na = 26(e), while 

its link at each vertex v is the double of the spherical polygon Bv, hence a spherical 

cone surface. This conifold has a natural involution, for which A is a fundamental 

domain. Convexity is a natural condition; if A is a convex polyhedron, then each 

5(e) < 7r, hence the cone angles along each edge in the conifold M are all less than 

2TT. Furthermore, these cone angles lie in the Troyanov region simply because the link 

at each vertex is a spherical cone surface with all angles less than 27r, and by Luo-

Tian [25], this can only exist when its cone angles satisfy (3.3). We have therefore 

proved that if the conifold M is the double of a convex polyhedron, then its geometric 

parameters lie in V0. 

In an influential 1967 paper [40], J.J. Stoker studied the flexibility of convex poly­

hedra in R3, and made the conjecture that the dihedral angles of a convex polyhedron 

determine the angles in each face. (The polyhedron itself is not determined even up 

to homothety since translating any face parallel to itself leaves all dihedral angles un­

changed.) This has become known as the Stoker conjecture. The analogous conjecture 

in hyperbolic space, that convex polyhedra in M3 are determined by their dihedral 

angles, was made explicit by Igor Rivin in his thesis. (Note the stronger statement 

than in the Euclidean setting; one does not have the same ambiguity from parallel 

translation of the faces.) Andreev [4] settled this when all dihedral angles are less 

than 7r/2, and it was proved by Rivin for ideal polyhedra [37] and later by Bao and 
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Bonahon for hyperideal polyhedra [5], with further extensions by Schlenker [39]. In 
the restricted setting of ideal and hyperideal polyhedra, the parameter space is convex, 
but one of the main difficulties in the general case is that this is no longer true, see 
[15]. There are counterexamples for spherical polyhedra due to Schlenker [38], and 
it is known that any corresponding assertion for conifolds will be more complicated, 
see [20]. 

One good place to start is to study the infinitesimal or local version of this conjec­
ture, either for polyhedra or conifolds, and for this, analytic methods turn out to be 
very well suited. One can state the infinitesimal conjecture in the hyperbolic setting 
as follows: 

If (M,gt) is a smooth one-parameter family of hyperbolic conifold structures 
with geometric parameters lying in V0 which preserves the cone angles at each 
edge to first order, then there is a one-parameter family of diffeomorphisms (j)t 

of the stratified space M such that qt — 6+qo vanishes to second order. 

Said more plainly, any nontrivial infinitesimal variation of conifold structures includes 
a nontrivial infinitesimal variation of some of the dihedral angles; likewise, in any 
nontrivial variation of convex polyhedra in M 3 , the set of dihedral angles must vary. 
The conjecture in the Euclidean setting is slightly more intricate since it must allow 
for the phenomenon of families of nonisometric polyhedra with the same dihedral 
angles which are obtained by parallel translations of the faces. 

Several papers in the last decade have addressed special cases. The first, by Hodg­
son and Kerckhoff [19], concerns the case of hyperbolic conifolds with singular set a 
finite union of loops (hence, no vertices), and they settled the infinitesimal and local 
conjectures for cone angles less than 27r. More recently, Weiss [45] in his thesis gen­
eralized their methods to prove the same result for conifolds for which the singular 
set is allowed to have trivalent vertices and all cone angles are less than 7r. Some 
other nice results in this direction have been obtained by Porti and Weiss [36] and 
Huesener, Porti and Suarez [18]. 

The point of view of all of these is to study this from the point of view of deforming 
representations of the fundamental group into the Möbius group. However, it is also 
possible to approach these problems using methods from global analysis similar to 
those used in other dimensions, and this has led to the following result by the author 
in collaboration with G. Montcouquiol: 

Theorem 4.1 (Infinitesimal conifold Stoker conjecture [27]). — Let (M, g) be a hyper­
bolic conifold with parameters lying in V0 • Then any nontrivial variation of g amongst 
hyperbolic conifolds changes at least one cone angle to first order. 
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More recently still, Montcouquiol and Weiss, independently, have established a local 
(rather than infinitesimal) result. One formulation is that there is a local parametriza-
tion of the set of hyperbolic conifold structures in some neighbourhood of (M, g) by 
an analytic set (i.e. the zero set of an analytic function) in an e-ball Be in the space 
of cone angle parameters A , << around those of g. In other words, all nearby 
conifolds are parametrized by letting /3 vary in some analytic subset of the space of 
cone angles. Both of these authors use techniques similar to the ones employed earlier 
by Hodgson-KerckhofT, Weiss, et al.; it is quite likely that the approach of [27] can 
be extended to handle this as well, but this is still work in progress. 

There are analogous results in the Euclidean case and also in both the infinitesimal 
and local setting for convex hyperbolic polyhedra, but we shall not state any of these 
explicitly here. One subtle point is that if A is a convex hyperbolic polyhedron and 
(M, g) its conifold double, then there may be conifold variations of (M, g) which are 
not doubles of hyperbolic polyhedra. This would be very interesting to understand 
better. The full Stoker conjecture in the polyhedral or conifold setting (either Eu­
clidean or hyperbolic) remains open. A substantial new difficulty which must be faced 
in the global problem for conifolds is that as the cone angles vary, the topology of the 
singular set might be forced to change. For example, under a family of deformations, 
edges might shrink and disappear, or conversely, be generated and grow, or disjoint 
'skew' edges might move toward each other and touch. As in the surface case, it is 
also important to try to push these techniques and results to when the cone angles 

are larger than 2TT. 

5. Higher dimensions and codimensions 

It is possible to obtain reasonably explicit results about local deformation theory 
for singular Einstein metrics in low dimensions simply because these metrics have 
constant sectional curvature. This allows the analytic problem to be reduced to a finite 
dimensional one. In higher dimensions the situation is quite different. Even though the 
gauged Einstein equation seems formally well-posed, it becomes highly over determined 
on an iterated cone-edge space, at least near edges of positive dimension, and with 
codimension at least two. Because of this, very few singular Einstein spaces with 
interesting singular sets are known in higher dimensions. In this section we first 
describe the local structure theory of the space of Einstein metrics with isolated 
conic singularities in general dimensions, and then go on to discuss a few examples 
of Einstein metrics with higher dimensional singular sets. These examples have a lot 
of symmetry, and although it is reasonable to think that there might be many other 
Einstein metrics with similar singular structure, this is quite unknown and seems to 
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be a very difficult problem. We do not discuss any examples where the singular set is 

itself stratified. 

A standard computation, see [6], shows that the exact conic metric g = dr2+r2h on 

R + x N is Einstein if and only if the link (N, h) is itself Einstein, with Ric h = (n-2)h 

(where dim N = n—1). This generalizes the standard picture of R n with its flat metric 

as a cone over the sphere with unit radius; cones over spheres of other radii are no 

longer even Ricci flat (except when dimiV = 1; in this case the condition on the link 

is satisfied by a circle of any radius). Based on this, we see immediately that Einstein 

deformations of the cone C(N) can be obtained by deforming the link (N,h) in its 

own Einstein moduli space. If dim TV = 3, the link is either the sphere or a spherical 

space form, neither of which admits Einstein deformations; on the other hand, when 

dim N > 4, it is sometimes possible to obtain a finite dimensional family of Einstein 

cones this way. More generally, if (M,g) is an Einstein space with isolated conic 

singularities p i , . . . ,jPfc, and if n = d imM > 5, then denote by (Nj,hj) the link at 

Pj and £(Nj) the Einstein deformation space of this link. We shall need to impose 

an extra integrability condition: for each such link, suppose that n is an infinitesimal 

Einstein deformation on the entire cone C(Nj) which is homogeneous of degree 0 with 

respect to radial dilations. Then we assume that K is the derivative of a one-parameter 

family of conic Einstein metrics. 

Theorem 5,1. — Let (M,g) be as above, and suppose that the integrability condition 

is satisfied at each pj. If the sectional curvature of (M, g) is nonpositive and nega­

tive somewhere, then the local Einstein deformation space can be identified with an 

analytic subset in the product Ylj£(Nj). If this curvature condition is not satisfied, 

the local Einstein deformation space is contained in an analytic subset in the larger 

space Ylj £(Nj) x Re, where £ is the dimension of the space of infinitesimal Einstein 

deformations which decay at each pj. 

The integrability condition is a bit of a surprise. It holds in all known situations, 

but seems to be necessary, at least using our approach. 

This theorem, joint with Frank Pacard and Hartmut Weiss [28], is a direct analog 

to the two-dimensional case, but with the important proviso that we know very little 

about the spaces S(Nj) beyond the fact that they too are finite dimensional analytic 

spaces. This last fact is a classical result due to Koiso, cf. [6]. The second result in 

this theorem, about the deformation space in the 'degenerate' situation where there 

are decaying infinitesimal Einstein deformations, follows by a standard adaptation of 

the proof of the first part, using Ljapunov-Schmidt reduction. 

One motivation for studying this type of singular Einstein space is the fact that 

Einstein metrics with conic singularities arise naturally as limits in the compactifica-

tion theory of the Einstein moduli space in four dimensions. This is due originally to 
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Anderson [lj and Nakajima [33j, but see the more recent work by Cheeger and Tian 
[13]. The precise mechanism by which a conic singularity arises is that a Ricci flat 
ALE space 'pinches off' in the limit. 

We finally turn to the case where (M, g) is an Einstein metric with higher dimen­
sional singular set. Of particular interest is the case when the singular set has a 
stratum of codimension two, partly because this is quite natural in complex geom­
etry, but also because this should correspond to the greatest flexibility. We mostly 
discuss this case. There are various examples of this phenomenon known; the simplest 
arise as quotients of smooth Einstein spaces. In particular, it is not hard to construct 
examples of hyperbolic manifolds singular along a codimension two edge. One may 
also construct cohomogeneity one metrics, for which the Einstein condition reduces 
to an ODE, and which have a singular edge. The paper [29] shows how to adapt 
an ansatz by Page and Pope to produce families of singular Einstein metrics with 
simple edge singularities along a smooth codimension two stratum. The examples 
emphasized there are actually noncompact (their other end is asymptotically hyper­
bolic), but this is immaterial for the present discussion. To write these down, fix 
a holomorphic line bundle L with Hermitian metric and connection 1-form 6 over a 
compact Kahler-Einstein manifold (X, g) with c\ > 0. The metrics are defined on the 
complement of a ball around the zero section in L by the formula 

9 = r2 - 1 ; n p r -l . dr2 + c2. P r lr2 << 1 — n e2 + CI r2 << 1 )9\ 

here P(r) satisfies the ODE 

d 
dr 

r l Pi << = r -2 A|(r2 - 1 n+l x<< -1 M r2 1 n 5 

and A, c and A are parameters. The issue is to show that there are choices for these 
parameters, including the initial condition for P, which yield metrics with the stated 
properties. We refer to [29] for more details. 

These metrics have a number of interesting features, but their definition relies 
on many strong hypotheses and it is unclear whether these features are in any way 
necessary. Following the approach of this paper, one should be able to discern some 
of this from the local deformation theory. One attack on this is in the thesis by 
Montcouquiol [32], who proved that for higher dimensional hyperbolic conifolds with 
smooth codimension two singular set, all nontrivial infinitesimal deformations must 
vary the cone angle. However, this result does not in any obvious way imply a local 
rigidity statement: in the language explained in the final section of this paper, the 
defect space is infinite dimensional, and does not seem to integrate to families of 
Einstein metrics, even those just defined near the singular set. 
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6. Methods 

After the geometric descriptions in the earlier parts of this paper, the reader is 

owed some indication of the methods used to prove these results. We begin with the 

fairly standard formalism of turning the Einstein deformation problem into an elliptic 

partial differential equation, and then discuss the extensions of ordinary elliptic theory 

to manifolds with conic and iterated cone-edge singularities needed for this problem. 

6.1. The Einstein equation and Bianchi gauge. — Let M be a smooth compact 

manifold with dim M = n and define x<<^^ as the space of all ̂ w<< metrics on M. 

The mapping 

g I—• Rie5 

is a second order quasilinear differential operator which is polynomial in the com­

ponents of 9, 9 w< 
<< Vg and V2#, hence is a real analytic mapping Mk+2>a( M) 

Qk.OL M, S2T*M . Fixing A G R, the metrics which are Einstein with this given con­

stant À are the solutions of 

6.6 Sx(g) := Ric*-A<7 = 0. 

Taking traces of both sides yields X = R9t n, where R9 is the scalar curvature. From 

now on we fix À and drop it from the notation. 
This equation is not elliptic because of its invariance under diffeomorphisms, i.e. if 

£{g) = o, then for any diffeomorphism 0 of M, e ^mmm = 0. Equivalently, the gauge 

group gk+i, ><*t x<< of C*+1'a diffeomorphisms acts on Mk,a by pullback, and the zero 

set of £ consists of the orbits of this action. This action is not C , so the orbits are 

not in general smooth, which complicates the global analysis slightly. 
Fix g with e g) = o. To study the Einstein deformations of g, consider the mapping 

(6.7; h^E9(h) := Rie* +/1 - A (g + h). 

From [6, p.63], 

(6.8) DE9 \h=0 << 
1 

2 
V*V - 2R9' <^^ d9Y(d + 

1 

2 
dir9 i; 

o 
here R9 is the curvature operator acting as a symmetric endomorphism on symmetric 
two-tensors, 

R9h x< <mm Ripjq ,hPq 

and 'àgYo>)a = 
1 , 
2 

K x Ae, a) = 2TTI I. For simplicity we set 

L9 dq 
1 

2 
V*V - 2R9> 5 B9 = S9 + 

1 

2 
dir9. 

so that (6.8) takes the simpler form 

6.9 DE9 <ccc $^** 
1 

<< 
L9 x<< S9)*B9. 
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The operator B9 is called the Bianchi operator, and appears in two important iden­

tities: 

6.10 B9(g) = 0, and B9(Ric9) = 0. 

The first is trivial, and the second follows from the contracted second Bianchi identity. 

Note that this yields 

h h—• B9+hE9(h) = 0 

for any g, h. Now suppose that g is Einstein; linearizing this identity at h = 0 gives 

;6.n; 0 = B9 DE9\0 = B9L9 - B9(S9YB9. 

This means in particular that 

ran (DE9 \0) C ker(B»); 

in other words, on any compact manifold, the Einstein equation is always obstructed 

since its linearization has range lying in a proper subspace (in fact, the nullspace of 

the underdetermined differential operator B9). 

The orbit of the diffeomorphism group has tangent space at g given by the range 

of the mapping (S9)*; the restriction of DE9 to the orthogonal complement of this 

subspace, i.e. to the nullspace of 59, is elliptic. We shall use a slight variant of this 

procedure, restricting DE9 instead to the nullspace of B9. This 'Bianchi gauge', 

introduced in [81, is very convenient for calculations. 

The system h h-> (DE9{h),B9(h)) is elliptic in the sense of Agmon-Douglis-

Nirenberg, and so one can look for gauge group representatives for all Einstein 

metrics near to g as solutions of E9 <ù^p = 0, B9{h) = 0. We consider instead the 

operator 

'6.12N h^N9(h) := E9(h) + (S9+hYB9(h). 

Its linearization when g is Einstein is 

6.13 DN9\ \h=0 
w<< L9 << 

s<< 

2' 
:v9)*vff - r9. 

o 

Clearly E9(h),B9(h)) = (0,0 implies №{h) = 0, and the converse is almost true 
as well: 

Proposition 6.1. — // №(h) = 0 and Ric 9+h < 0, then g+h is Einstein and h satisfies 
the aauae condition B9(h) = 0. 

Proof. — Let 7 = B9(h). Applying 69+h to №(h) = 0 gives (S9+h(89+h * 
l 
2 

dô9+h 7 = 0. Now recall the Weitzenbôck formula on 1-forms 

(6.14) Bk(sky = sk{sky x<< 
1 
2 

dSk << 
1 
2 

E9(h) + (S9+hYB 
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for any metric k (where the first equality uses trfe (Sk I* = -ök) ), and so the equation 
above becomes E9(h) w<<+ (S9+hYB 7 = 0. Because Ric >9+h < 0, this operator is 
an isomorphism, and so 7 = 0 as desired. • 

As a final comment, if h is an arbitrary (small) solution of №(h) = 0, then the 
metric 9 + h is a Ricci soliton: it satisfies the equation E{g + h) = №+h) where 
üü = -Bg(h). This suggests that a problem which may be somewhat less obstructed 
than the deformation problem for Einstein metrics is the deformation problem for 
Ricci solitons. 

6.2. Conic and edge operators. — Implementing this analytic formalism for 
the Einstein deformation problem on singular spaces requires an understanding of 
the mapping properties for linear elliptic operators on such spaces. There is a good 
theory to draw upon for spaces with isolated conic or simple edge singularities, which 
we describe briefly below, and this can be extended to the depth 2 singularities which 
appear in the three-dimensional theory. However, its full extension to the general 
iterated cone-edge setting does not yet exist. Rather than presenting this linear 
theory in any sort of generality, we present the main results quickly in two and three-
dimensions and then indicate the general picture. As a reference for this material we 
list [26]: it does contain all the results quoted below (at least when the singular set 
is either a point or a smooth submanifold), albeit in a very general form. There are 
other more accessible and direct approaches for some of this, which work particularly 
well in low dimensions, see [34] and [45], for example. 

Let M be a surface with isolated conic points, and suppose that L is a 'generalized 
Laplacian' associated to the metric. In other words L = V*V + R where R is a 
naturally defined symmetric endomorphism depending only on the curvature tensor 
and its covariant derivatives; rather than being precise about this we turn always 
to the special operators which were described in the last subsection, e.g. the scalar 
Laplacian, the linearized gauged Einstein operator, etc. Near a conic point p we can 

choose coordinates r> y in terms of which 

(6.15) x< a2 
dr2 + 

A(r,y) d 
r dr + 

1 
<< H 

where Air, y) is smooth on r > 0, A(0,y) = 1, and H = H(r) = <^m + #o(r, y) is a 
family of operators acting on (sections over the) circle, also depending smoothly on 
r. Associated to L is the set A of indicial weights. We sav that T is an indicial root 
of L if there exists a function Hy such that E9(hx<<<) + (S9+hYB This is one order 
better than the expected rate of blowup or decav, r7-2 , which indicates that there is 
some 'leading order' cancellation. Indeed, we see directly that 

L(r^4>(y)) = rT-2 (72 + dl + ÄoCO, 2/)) Hv) + Ofr^1), 
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SO - 7 2 is equal to an eigenvalue of <^$$ +#o(o,y; and (/) its corresponding eigenfunction. 

A priori, these indicial roots may be real or complex, and we define the set A to consist 

of the real parts of these indicial roots. It is easy to see that A is infinite and discrete. 

For example, if L is the scalar Laplacian, or the linearized gauged Einstein operator 

acting on trace-free symmetric two-tensors, for a metric g which has a single conic 

point with cone angle w<<< then A - {j/a : j e Z } and { ± ( 2 ± j/a) : j e Z } , 

respectively. For generalized Laplacians in two dimensions, A is symmetric about 0. 

In all the examples of interest here, all indicial roots are real, so we think of A as 
being precisely equal to the set of indicial roots. 

Consider the action of L on weighted Holder spaces c< u<7 1 AT consisting of func­

tions of the form u = ruv where v is in the 'geometric Holder space' with respect to 

the metric o, i.e. computed using derivatives and distance functions for g. The basic 

result is 

Proposition 6.2. — The mapping 

[6.16] L : << C2> oc. M — • r" -2 !C0, << M' 

is Fredholm if and only if v 4. A. This mapping is surjective for v 4. A, i / < 0 , and 

infective when v ^> 0. Finally, (6.16) is infe<ctive for some value v £ A if and only if 

the corresponding mapping with weight —v is surjective. 

If 7 is an indicial root, then a sequence of appropriate cutoffs of the approximate 

solution r7(j)(y) can be used to show that (6.16) does not have closed range when 

v = 7. The more subtle parts of this result are to show Fredholmness when v £ A, 

and to prove the final statement. We comment on this last part especially a bit 

further. Both assertions are proved by constructing, for each v £ A, a generalized 

inverse G for L. This is done using L2 based methods, but the key is to show that 

the Schwartz kernel of this operator has a precise structure as a smooth (or rather, 

polyhomogeneous) function, which allows one to pass easily between weighted L2 

and weighted Holder estimates. This is what makes it possible to prove the 'duality 

statement' in a Holder setting. 

For all the relevant operators in the Einstein deformation problem, one can prove 

that (6.16) is injective for v > v$ > 0, hence surjective for —v < —UQ < 0. In order to 

apply the inverse function theorem or any related contraction mapping arguments, the 

operator should be surjective, hence by this result we should be working on a Holder 

space with negative weight. However, it is impossible to let the nonlinear PDE act 

on functions unbounded at the conic points. The resolution of this dilemma rests on 

the 

Proposition 6.3. — Let L be as above, and suppose that A 3 v > 0 is such that '6.16) 

is injective. List the indicial roots of L with real parts in the interval ^ùmmm by 
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{lj : - N < j < N } w < with the convention that 1-3 = - 7 j - Then for any f eru ^ùw<< 

there exists a solution x<<^$$ w,<< to Lu = /, and this u has a decomposition 

'6.171 u = 

N 

j=-N 
Uj [y w<<< <^ùù ver xww 

where each ùù< is an eigenfunction associated with that indicial root. 

The finite dimensional span of terms Uj(y)r^ which appear in this partiale xpan-

sion is called the defect space. This result is general, but the crucial observation is 

that for our particular problem, every element of this defect space can be identified 

with an infinitesimal variation of a one-parameter family of solutions of the nonlinear 

gauged Einstein operator. All the geometric moduli for the problem appear in this 

way: the underlying Teichmuller parameter on the compact surface, the location of 

the conic points and the cone angles. We can then 'solve' the problem Lu = f with 

fer» ^9 w<< > vo, by first altering these geometric parameters and applying the 

operator L corresponding to the new metric to the remainder term v. In this way we 

can set up an iteration scheme to solve the nonlinear perturbation problem. 

Suitable generalizations of this idea are behind all of the other deformation results 

discussed in the earlier parts of this paper. (Indeed, this type of idea has been applied 

in very many other circumstances.) The result about higher dimensional Einstein 

spaces with isolated conic singularities uses essentially the same linear theory, and 

there are direct analogues of the Propositions 6.2 and 6.3. The calculational aspects 

are substantially different, however, and unfortunately much more complicated. On 

the other hand, the main indicial term to understand is the one corresponding to the 

indicial root 7 = 0. The integrability hypothesis we imposed is that this does indeed 

correspond to a one-parameter family of Einstein deformations of the cone C(N). 

This appears to be generically true, and can be checked explicitly in several cases of 

interest, but it is unclear if it holds in general (chances are that it does not). 

When the singular set is a submanifold Y of dimension d > 0, the linear theory is 

more complicated. It suffices to work in neighbourhoods diffeomorphic to U x d ( N ) , n n 

where U CY is a coordinate neighbourhood. Each of the operators of interest have 

the form 

L = 
d2 

dr2 
+ 

A(r,y) d 

r or 
+ 

1 
<< 

H + K: 

where H is much as before, an elliptic operator acting the link iV, while K restricts 

to an elliptic operator on Y. We can define the indicial roots of L exactly as in the 

previous case; the operator K does not appear at the lowest level in terms of a formal 

count of powers of r. It does play a role in a new model operator that we need to 
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consider in this setting, called the normal operator of L. This is denned as 

N(L) = 
d2 

dr2 
+ 

A(o,y) a 

r dr + 
1 

x< 
tf(0) + ARd, 

acting on function (or sections) on CIN) x Rd. We roll the requisite results into the 

one 

Proposition 6.4. — The mapping 

L :ru( c r i M) <o^^ c<<< 2/ u<7 [M] 

is Fredholm if and only if v does not lie in the indicial weight set A, and addition, 

N(L) : r jh^ùù C(N) x Rd) — r»~2i 2/̂ 0,a (C(N) x Rd 

is an isomorphism. If the nullspace of N(L) is nontrivial, then it is automatically 

infinite dimensional and the same is true for the nullspace of L for the space with the 

same weight; the analogous statement is true for the cokernel. As in the conic setting, 

this mapping is surjective from x<< r>2,a if and only if it is infective from p^ùù 7̂ 2,a 

Suppose A 3 v > 0 is such that '6.16, is infective, and list the indicial roots of L 

in the interval —z/, v as lj : \j\ < N] with 7 - j = -lj- Then for any f er»~2 ^9 > 
there exists a solution u G r x<<< such that 

'6.18 u = 
N 

j=-N 
<p ̂ xww ^$** + v. 

with each Uj(y) equal to a multiple of the eigenfunction associated with that indicial 

root. 

It is no longer true that v or the coefficients Uj(y) in this decomposition are as 

smooth as formal considerations would dictate, and this leads to some considerable, 

and perhaps insurmountable, analytic difficulties when attempting to apply this linear 

theory to our nonlinear problem. More plainly, when the codimension of F in M is 

equal to 2, then the defect space corresponding to crossing the indicial root 0 is infinite 

dimensional, and its elements do not correspond in any reasonable way to geometric 

motions. 

When M is 3-dimensional, it is possible to overcome this using the fact that there 

is a simple correspondence between the overall geometric parameters for the problem 

in a neighbourhood of the singular set and their 'traces' in the asymptotic expansions 

of infinitesimal Einstein deformations along the singular set. 

The final issue to discuss is the general three-dimensional case, when M is a conifold 

whose singular set contains not only edges but also vertices. One now needs an 

extension of the theory of conic and edge operators discussed above. Fortunately, 

the generalization needed is the simplest one possible, where the depth 2 points are 
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isolated vertices of cones where the links are themselves spaces with isolated conic 

singularities. The idea is to try to adapt the conic theory at these vertices, even 

though the links are not smooth; in general one would expect to have difficulties with 

lack of smoothness in the asymptotic expansions along the edges which terminate 

at this vertex, and the main new steps are to control these expansions uniformly on 

approach to these depth 2 vertices. 
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ON UNIQUENESS OF STATIONARY 
VACUUM BLACK HOLES 

by 

Piotr T. Chrusciel & Joäo Lopes Costa 

It is a pleasure to dedicate this work to J.-P. Bourguignon 
on the occasion of his 60th birthday. 

Abstract. — We prove uniqueness of the Kerr black holes within the connected, non-
degenerate, analytic class of regular vacuum black holes. 
Résumé (Sur l'unicité de trous noirs stationnaires dans le vide). — On démontre 
l'unicité de trous noirs de Kerr dans la classe de trous noirs connexes, analytiques, 
réguliers, non-dégénérés, solutions des équations d'Einstein du vide. 

1. Introduction 

It is widely expected that the Kerr metrics provide the only stationary, asymptoti­
cally flat, sufficiently well-behaved, vacuum, four-dimensional black holes. Arguments 
to this effect have been given in the literature [12, 84] (see also [51, 77, 91]), with 
the hypotheses needed not always spelled out, and with some notable technical gaps. 
The aim of this work is to prove a precise version of one such uniqueness result for 
analytic space-times, with detailed filling of the gaps alluded to above. 

The results presented here can be used to obtain a similar result for electro-vacuum 
black holes (compare [13, 71]), or for five-dimensional black holes with three com­
muting Killing vectors (see also [56, 57]); this will be discussed elsewhere [31]. 

We start with some terminology. The reader is referred to Section 2.1 for a pre­
cise definition of asymptotic flatness, to Section 2.2 for that of a domain of outer 
communications ((^ext))> and to Section 3 for the definition of mean-non-degenerate 
horizons. A Killing vector K is said to be complete if its orbits are complete, i.e., for 
every p G J( the orbit (j)t[K](p) of K is defined for all t G R; in an asymptotically flat 
context, K is called stationary if it is timelike at large distances. 

2000 Mathematics Subject Classification. — 83C57. 
Key words and phrases. — Stationary black holes, no-hair theorems. 
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A key definition for our work is the following: 

Definition 1.1. — Letvxx:;ù^^^^ be a space-time containing an asymptotically flat end 
^ext; and let K be stationary Killing vector field on ^ . We will say that (^f,&,K) 
is 7+-regular if K is complete, if the domain of outer communications ((^ext)) is 
globally hyperbolic, and if ((^ext)) contains a spacelike, connected, acausal hyper-
surface y Z> ye*t, the closure y of which is a topological manifold with boundary, 
consisting of the union of a compact set and of a finite number of asymptotic ends, 
such that the boundary dy := y \ y is a topological manifold satisfying 

<=)) ds* c <r+ := di ngg,, ,,xxxw k<̂ ext)> 

with dy meetinq every qenerator of S+ precisely once. (See Figure 1.1.) 

dy. ^ext 

vbn 

(^ext)I y 

FIGURE 1.1. The hypersurface y from the definition of /"'"-regularity. 

In Definition 1.1, the hypothesis of asymptotic flatness is made for definiteness, 
and is not needed for several of the results presented below. Thus, this definition 
appears to be convenient in a wider context, e.g. if asymptotic flatness is replaced by 
Kaluza-Klein asymptotics, as in [20, 23]. 

Some comments about the definition are in order. First we require completeness 
of the orbits of the stationary Killing vector because we need an action of R on M 
by isometries. Next, we require global hyperbolicity of the domain of outer commu­
nications to guarantee its simple connectedness, to make sure that the area theorem 
holds, and to avoid causality violations as well as certain kinds of naked singularities 
in ((e^ext))- Further, the existence of a well-behaved spacelike hypersurface gives us 
reasonable control of the geometry of ((^ext))» and 1S a prerequisite to any elliptic 
PDEs analysis, as is extensively needed for the problem at hand. The existence of 
compact cross-sections of the future event horizon prevents singularities on the future 
part of the boundary of the domain of outer communications, and eventually guaran­
tees the smoothness of that boundary. (Obviously I+ could have been replaced by I~ 
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throughout the definition, whence<<would have become h<f~.) We find the require­
ment (1.1) somewhat unnatural, as there are perfectly well-behaved hypersurfaces in, 
e.g., the Schwarzschild space-time which do not satisfy this condition, but we have not 
been able to develop a coherent theory without assuming some version of (1.1). Its 
main point is to avoid certain zeros of the stationary Killing vector K at the boundary 
of y\ which otherwise create various difficulties; e.g., it is not clear how to guarantee 
then smoothness o f w o r the static-or-axisymmetric alternative. ^ Needless to say, 
all those conditions are satisfied by the Schwarzschild, Kerr, or Majumdar-Papapetrou 
solutions. 

We have the following, long-standing conjecture, it being understood that both the 
Minkowski and the Schwarzschild space-times are members of the Kerr family: 

Conjecture 1.2. — Let («y#, g) be a vacuum, four-dimensional space-time containing a 
spacelike, connected, acausal hypersurface 5?, such that 5? is a topological manifold 
with boundary, consisting of the union of a compact set and of a finite number of 
asymptotically flat ends. Suppose that there existsxxhon a complete stationary Killing 
vector K, that ((^#ext)) is globally hyperbolic, and that dS^ C M \ ((^ext))- Then 
((^ext)) is isometric to the domain of outer communications of a Kerr space-time. 

In this work we establish the following special case thereof: 

Theorem 1.3. — Letvvxxwwww be a stationary, asymptotically flat, I+ -regular, vacuum, 
four-dimensional analxytic space-time. If each component of the event horizon is mean 
non-degenerate, then ((^ext)) is isometric to the domain of outer communications of 
one of the Weinstein solutions of Section 6.7. In particular, i f i s connected and 
mean non-degenerate, then ((̂ #ext)) is isometric to the domain of outer communica­
tions of a Kerr space-time. 

In addition to the references already cited, some key steps of the proof are due to 
Hawking [48], and to Sudarsky and Wald [89], with the construction of the candidate 
solutions with several non-degenerate horizons due to Weinstein [93, 94]. It should 
be emphasized that the hypotheses of analyticity and non-degeneracy are highly un­
satisfactory, and one believes that they are not needed for the conclusion. 

One also believes that no candidate solutions with more than one component of S+ 
are singularity-free, but no proof is available except for some special cases [69, 92]. 

A few words comparing our work with the existing literature are in order. First, the 
event horizon in a smooth or analytic black hole space-time is a priori only a Lipschitz 
surface, which is way insufficient to prove the usual static-or-axisymmetric alternative. 

t1' In fact, this condition is not needed for static metric if, e.g., one assumes at the outset that all 
horizons are non-degenerate, as we do in Theorem 1.3 below, see the discussion in the Corrigendum 
to [18]. 
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Here we use the results of [22] to show that event horizons in regular stationary black 
hole space-times are as differentiable as the differentiability of the metric allows. 
Next, no paper that we are aware of adequately shows that the "area function" is non-
negative within the domain of outer communications; this is due both to a potential 
lack of regularity of the intersection of the rotation axis with the zero-level-set of the 
area function, and to the fact that the gradient of the area function could vanish on its 
zero level set regardless of whether or not the event horizon itself is degenerate. The 
second new result of this paper is Theorem 5.4, which proves this result. The difficulty 
here is to exclude non-embedded Killing prehorizons (for terminology, see below), and 
we have not been able to do it without assuming analyticity or axisymmetry, even for 
static solutions. Finally, no previous work known to us establishes the behavior, as 
needed for the proof of uniqueness, of the relevant harmonic map at points where the 
horizon meets the rotation axis. The third new result of this paper is Theorem 6.1, 
settling this question for non-degenerate black-holes. (This last result requires, in 
turn, the Structure Theorem 4.5 and the Ergoset Theorem 5.24, and relies heavily 
on the analysis in [19].) Last but not least, we provide a coherent set of conditions 
under which all pieces of the proof can be combined to obtain the uniqueness result. 

We note that various intermediate results are established under conditions weaker 
than previously cited, or are generalized to higher dimensions; this is of potential 
interest for further work on the subject. 

1.1. Static case. — Assuming staticity, i.e., stationarity and hypersurface-
orthogonality of the stationary Killing vector, a more satisfactory result is available 
in space dimensions less than or equal to seven, and in higher dimensions on manifolds 
on which the Riemannian rigid positive energy theorem holds: non-connected config­
urations are excluded, without any a priori restrictions on the gradient V(g(if, K)) 
at event horizons. 

More precisely, we shall say that a manifold 5? is of positive energy type if there 
are no asymptotically flat complete Riemannian metrics on 5? with positive scalar 
curvature and vanishing mass except perhaps for a flat one. This property has been 
proved so far for all n-dimensional manifolds 5? obtained by removing a finite num­
ber of points from a compact manifold of dimension 3 < n < 7 [86], or under the 
hypothesis that 5? is a spin manifold of any dimension n > 3, and is expected to be 
true in general [14, 70]. 

We have the following result, which finds its roots in the work of Israel [61], 
with further simplifications by Robinson [85], and with a significant strengthening 
by Bunting and Masood-ul-Alam [10]: 
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Theorem 1.4. — Under the hypotheses of Conjecture 1.2, suppose moreover that 
(((̂ #ext))> 9) is analytic and K is hypersurface-orthogonal. Let 5? denote the man­
ifold obtained by doublingw<across the non-degenerate components of its boundary 
and compactifying, in the doubled manifold, all asymptotically flat regions but one to 
a point. If 5? is of positive energy type, then ((^ext)) is isometric to the domain of 
outer communications of a Schwarzschild space-time. 

Remark 1.5. — As a corollary of Theorem 1.4 one obtains non-existence of black holes 
as above with some components of the horizon degenerate. In space-time dimension 
four an elementary proof of this fact has been given in [26], but the simple argument 
there does not seem to generalize to higher dimensions in any obvious way. 

Remark 1.6. — Analyticity is only needed to exclude non-embedded degenerate pre-
horizons within ((^#ext))- In space-time dimension four it can be replaced by the 
condition of axisymmetry and 7+-regularity, compare Theorem 5.2. 

Proof. — We want to invoke [18], where n = 3 has been assumed; the argument 
given there generalizes immediately to those higher dimensional manifolds on which 
the positive energy theorem holds. However, the proof in [18] contains one mistake, 
and one gap, both of which need to be addressed. 

First, in the case of degenerate horizons J^, the analysis of [18] assumes that the 
static Killing vector has no zeros on <ffi\ this is used in the key Proposition 3.2 there, 
which could be wrong without this assumption. The non-vanishing of the static Killing 
vector is justified in [18] by an incorrectly quoted version of Boyer's theorem [8], 
see [18, Theorem 3.1]. Under a supplementary assumption of J-1--regularity, the zeros 
of a Killing vector which could arise in the closure of a degenerate Killing horizon 
can be excluded using Corollary 3.3. In general, the problem is dealt with in the 
addendum to the arXiv versions viV, TV > 2, of [18] in space-dimension three, and 
in [20] in higher dimensions. 

Next, neither the original proof, nor that given in [18], of the Vishveshwara-Carter 
Lemma, takes properly into account the possibility that the hypersurface JV of [18, 
Lemma 4.1] could fail to be embedded. (2) This problem is taken care of by Theo­
rem 5.4 below with 5 = 1, which shows that ((^#ext)) cannot intersect the set where 
W := —g(K, K) vanishes. This implies that K is timelike on (<(^ext)) 3 a n d null 
on dy\ The remaining details are as in [18]. • 

(2) This problem affects points 4c,d,e and f of [18, Theorem 1.3], which require the supplementary 
hypothesis of existence of an embedded closed hypersurface within J{\ the remaining claims of [18, 
Theorem 1.3] are justified by the arguments described here. 
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2. Preliminaries 

2.1. Asymptotically flat stationary metrics. — A space-time (^f,g) will be 
said to possess an asymptotically flat end if M contains a spacelike hypersurface yext 
diffeomorphic to Rn \ B(R), where B(R) is an open coordinate ball of radius R, with 
the following properties: there exists a constant a > 0 such that, in local coordinates 
on ^xt obtained from Rn\B(R), the metric 7 induced by g on yext, and the extrinsic 
curvature tensor Kij of yext, satisfy the fall-off conditions 

(2.1) vvcxx Sij pp ok ww:^p <<vxw Ok-i< xx<wx 

for some k > 1, where we write / = Ok (r°) ) if / satisfies 

(2.21 ped<< •dkJ = 0( vcwww 0 e k. 

For simplicity we assume that the space-time is vacuum, though similar results hold 
in general under appropriate conditions on matter fields, see [4, 25] and references 
therein. Along any spacelike hypersurface y, a Killing vector field X of (^#, g) can 
be decomposed as 

X = Nn + Y, 

where Y is tangent to y, and n is the unit future-directed normal to yext- The 
vacuum field equations, together with the Killing equations imply the following set o: 
equations on y, where Rijij) is the Ricci tensor of 7: 

(2.3 DiYj + wcc<< ssf 2NKij, 

'2.4 Rij (7) gd KkkKij jg 2KikKkj AT1 <cc^^ob,iii + DiDjN = 0. 

Under the boundary conditions (2.1) with k > 2, an analysis of (2.3)-(2.4) provides 
detailed information about the asymptotic behavior of (N,Y). In particular, one can 
prove that if the asymptotic region ye^t is contained in a hypersurface y satisfying 
the requirements of the positive energy theorem, and if X is timelike along yeKt, then 
(AT, Yl) - v - ^ (A0, A1), where the A^'s are constants satisfying (A0)2 > Y,i(Ai)2-
One can then choose adapted coordinates so that the metric can, locally, be written 
as 

2.5 g = -V2 dt + 0idxl \2 w< 7ì j dx dx , 

=e =7 
with 

(2.6) w^^ù << lùhg dtl = 0 

'2.7 lij Sij = Ok( gkkmù$ 0i = Ok( ̂ jfff V-l = ok (r-a 

for any k G N. As discussed in more detail in [7], in 7-harmonic coordinates, and in 
e.g. a maximal time-slicing, the vacuum equations for g form a quasi-linear elliptic 
system with diagonal principal part, with principal symbol identical to that of the 
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scalar Laplace operator. Methods known in principle show that, in this "gauge", all 
metric functions have a full asymptotic expansion (3) in terms of powers of In r and 
inverse powers of r. In the new coordinates we can in fact take 

x2.8; a = n-2. 

By inspection of the equations one can further infer that the leading order corrections 
in the metric can be written in a Schwarzschild form, which in "isotropic" coordinates 
reads 

0m bvxx!$m 
1 - m 2|x|™-2 
1 + m 2\x\n~2 t 

2 
dt2 + 1 + m 

2\x\n~2. 
4 

n-2 
N 

vbx 
wbb 

1 

where m G K. 

2.2. Domains of outer communications, event horizons. — A key notion in 
the theory of black holes is that of the domain of outer communications: A space-
time ( ^ , g) will be called stationary if there exists on ^# a complete Killing vector 
field K which is timelike in the asymptotically flat region ^ext.(4) For t e R let 
<j>t[K] • ̂  —> denote the one-parameter group of diffeomorphisms generated by 
K; we will write 4>t for </>t[K] whenever ambiguities are unlikely to occur. The exterior 
region ^ext and the domain of outer communications ((^ext)) are then defined as (5) 
(compare Figure 2.1) 
'2.9) k«̂ ext) > = /+ (Ut^(^ext) 

— :̂ #ext 

n r i (Ut<M^ext)) 

The black hole region and the black hole event horizon Jf?+ are denned as 

38 = bxx xhh ,* êxt)) ¨¨^^** = ^*dss. 

The white hole region W and the white hole event horizon Jf are defined as above 
after changing time orientation: 

^^^*oooo^^ ^^ ^ext), 3HP- = cxxrr r^^^dd^ d ^gggcvdbhte 

(3) One can use the results in, e.g., [15] together with a simple iterative argument to obtain the 
expansion. This analysis holds in any dimension. 
(4) In fact, in the literature it is always implicitly assumed that K is uniformly timelike in the 
asymptotic region <5̂ext, by this we mean that g(K,K) < — e < 0 for some e and for all r large 
enough. This uniformity condition excludes the possibility of a timelike vector which asymptotes to 
a null one. This involves no loss of generality in well-behaved space-times: indeed, uniformity always 
holds for Killing vectors which are timelike for all large distances if the conditions of the positive 
energy theorem are met [5, 25]. 
(5) Recall that I~(Q), respectively J~(Cl), is the set covered by past-directed timelike, respectively 
causal, curves originating from 17, while I~ denotes the boundary of I~, etc. The sets /+, etc., are 
defined as J-, etc., after changing time-orientation. 
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dl- .̂ ext, 

I Ô ext) 

*̂éxt 

<-̂<ext 

vc cww 

wb ww 

/nn 

êxt 

FIGURE 2.1. «yext, ^ext, together with the future and the past of ^ext-
One has ^ext C ^(^ext), even though this is not immediately apparent 
from the figure. The domain of outer communications is the intersection 
7+(^ext) H /~(^ext), compare Figure 1.1. 

It follows that the boundaries of ((^ext)) are included in the event horizons. We set 

(2.10; ;:!ôooxw <<bnjkl lwcftyy -^ext)) yx<<xxx US". 

There is considerable freedom in choosing the asymptotic region <5̂ ext- However, 
it is not too difficult to show, using Lemma 3.6 below, that /^(^ext)? and hence 
((«^ext))j J$?± an(i are independent of the choice of ^ext whenever the associated 
text 's overlap. 

Several results below hold without assuming asymptotic flatness: for example, one 
could assume that we have a region ^ext on which K is timelike, and carry on with the 
definitions above. An example of interest is provided by Kaluza-Klein metrics with an 
asymptotic region of the form (Rn \ B(R)) x Tp, with the space metric asymptotic to 
a flat metric there. However, for definiteness, and to avoid unnecessary discussions, 
we have chosen to assume asymptotic flatness in the definition of 7+-regularity. 

2.3. Killing horizons, bifurcate horizons. — A null hypersurface, invariant un­
der the flow of a Killing vector K, which coincides with a connected component of 
the set 

vbxx tK) xbbb [0( K,K) 1 = 0, K^O}, 
is called a Killing horizon associated to K. 

A set will be called a bifurcate Killing horizon if it is the union of four Killing 
horizons, the intersection of the closure of which forms a smooth submanifold 5 of co-
dimension two, called the bifurcation surface. The four Killing horizons consist then 
of the four null hypersurfaces obtained by shooting null geodesies in the four distinct 
null directions normal to S. For example, the Killing vector xdt + tdx in Minkowski 
space-time has a bifurcate Killing horizon, with the bifurcation surface t = x = 0\. 

The surface gravity k of a Killing horizon jV is defined by the formula 

(2.111 d bc cbbw^^p p<<wcvvn -2*Kb , 
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where jmm ̂̂  + 2dvdvww<r A fundamental property is that the surface gravity K is 
constant over each horizon in vacuum, or in electro-vacuum, see e.g. [51, Theorem 7.1]. 
The proof given in [90] generalizes to all space-time dimensions n + 1 > 4; the result 
also follows in all dimensions from the analysis in [55] when the horizon has compact 
spacelike sections. (The constancy of K can be established without assuming any field 
equations in some cases, see [62, 82].) A Killing horizon is called degenerate if K 
vanishes, and non-degenerate otherwise. 

2.3.1. Near-horizon geometry. — Following [74], near a smooth event horizon one 
can introduce Gaussian null coordinates, in which the metric takes the form 

f2.12 S = ripdv2 + 2dvdr + 2rhadxadv + habdxadxb. 

(These coordinates can be introduced for any null hypersurface, not necessarily an 
event horizon, in any number of dimensions). The horizon is given by the equation 
{r = 0}; replacing r by —r if necessary we can without loss of generality assume that 
r > 0 in the domain of outer communications. Assuming that the horizon admits a 
smooth compact cross-section 5, the average surface gravity (K)S is defined as 

2.13) bcb S = -
D 
\s\ << 

<pdfih, 

where dfih is the measure induced by the metric h on 5, and \S\ is the volume of S. 
We emphasize that this is defined regardless of whether or not some Killing vector K 
is tangent to the horizon generators; but if K is, and if the surface gravity K of K is 
constant on 5, then (K)S equals K. 

On a degenerate Killing horizon the surface gravity vanishes by definition, so that 
the function cp in (2.12) can itself be written as rA, for some smooth function A. 
The vacuum Einstein equations imply (see [74, eq. (2.9)] in dimension four and [67, 
eq. (5.9)] in higher dimensions) 

(2.14) Rab = 
1 
2 

hahb !ù$ + 2dvdr 

where Rab is the Ricci tensor of hai, := hab\r=0i and D is the covariant derivative 
thereof, while ha << ha\r=Q. The Einstein equations also determine À b,bb, A\r=o 
uniquely in terms of ha and hab'. 

'2.15 À = 
2vb hahb Dak) 

(this equation follows again e.g. from [74, eq. (2.9)] in dimension four, and can be 
checked by a calculation in all higher dimensions). We have the following: (6) 

w Some partial results with a non-zero cosmological constant have also been proved in [26]. 
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Theorem 2.1 ([261). — Let the space-time dimension be n + 1, n > 3, suppose that a 
deqenerate Killinq horizon JV has a compact cross-section, and that <xx ww daX for 

some function A (which is necessarily the case in vacuum static space-times). Then 
2.U implies ha = 0, so that hab is Ricci-fìat. 

Theorem 2.2 ([47, 67]). — In space-time dimension four and in vacuum, suppose that 
a degenerate Killing horizon JV has a spherical cross-section, and that (JK, g) admits 
a second Killing vector field with periodic orbits. For every connected component JV§ 
of JV there exists an embedding of JV§ into a Kerr space-time which preserves ha, hab 
and A. 

It would be of interest to understand fully (2.14), in all dimensions, without re­
strictive conditions. 

In the four-dimensional static case, Theorem 2.1 enforces toroidal topology of cross-
sections of JV, with a flat hab- On the other hand, in the four-dimensional axisym-
metric case, Theorem 2.2 guarantees that the geometry tends to a Kerr one, up to 
errors made clear in the statement of the theorem, when the horizon is approached. 
(Somewhat more detailed information can be found in [47].) So, in the degenerate 
case, the vacuum equations impose strong restrictions on the near-horizon geometry. 

It seems that this is not the case any more for non-degenerate horizons, at least 
in the analytic setting. Indeed, we claim that for any triple (iV, ha, hab)-, where N is 
a two-dimensional analytic manifold (compact or not), ha is an analytic one-form on 
AT, and hab is an analytic Riemannian metric on N, there exists a vacuum space-time 
( ^ , with a bifurcate (and thus non-degenerate) Killing horizon, so that the metric 
a takes the form (2.12) near each Killing; horizon branching out of the bifurcation 
surface S ~ N, with hab w< hab\ r=0 and ha << ha |r=o; in fact haij is the metric induced 
by g on S. When N is the two-dimensional torus T2 this can be inferred from [73] 
as follows: using [73, Theorem ¡2)1 with 0, ßa,9ab \t=0 <x 0, 2ha, hab] one obtains 
a vacuum space-time JK1 <<x S1 x T2 x <w<< ,0': with a compact Cauchy horizon 
S1 x T2g and Killing vector K tangent to the S1 factor of Jt'. One can then pass 
to a covering space where S1 is replaced by R, and use a construction of Racz and 
Wald [82, Theorem 4.2] to obtain the desired J( containing the bifurcate horizon. 
This argument generalizes to any analytic [N, ha, hab) without difficulties. 

2.4. Globally hyperbolic asymptotically flat domains of outer communi­
cations are simply connected. — Simple connectedness of the domain of outer 
communication is an essential ingredient in several steps of the uniqueness argument 
below. It was first noted in [28] that this stringent topological restriction is a conse­
quence of the "topological censorship theorem" of Friedman, Schleich and Witt [37] 
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for asymptotically flat, stationary and globally hyperbolic domains or outer commu­
nications satisfying the null energy condition: 
(2.16) RpVY*Yv > 0 for null Y». 

In fact, stationarity is not needed. To make things precise, consider a space-time 
(</#,£j) with several asymptotically flat regions ^elxt, i = 1,... ,iV, each generating 
its own domain of outer communications. It turns out [41] (compare [42]) that the 
null energy condition prohibits causal interactions between distinct such ends: 

Theorem 2.3. —s / / g)cc is a globally hyperbolic and asymptotically flat space-time 

satisfying the null energy condition (2.16), then 

(2.17) « ^ x t » n JHd^xxLvv)v)) = 0forhsi^s j . 

A clever covering/connectedness argument (7) [41] shows then: (8) 

Corollary 2.4. — A globally hyperbolic and asymptotically flat domain of outer com­

munications satisfying the null energy condition is simply connected. 

In space-time dimension four this, together with standard topological results [76], 
leads to a spherical topology of horizons (see [28] together with Proposition 4.4 below): 

Corollary 2.5. — In I+-regular, stationary, asymptotically flat space-times satisfying 
the null energy condition, cross-sections of S+ have spherical topology. 

3. Zeros of Killing vectors 

Let 5? be a spacelike hypersurface in ((^ext)); in the proof of Theorem 1.3 it will 
be essential to have no zeros of the stationary Killing vector K on 5?. Furthermore, 
in the axisymmetric scenario, we need to exclude zeros of Killing vectors of the form 
•f(o) + aK(i) on ((^ext))? where K(0) — K and i^(i) is a generator of the axial 
symmetry. The aim of this section is to present conditions which guarantee that; for 
future reference, this is done in arbitrary space-time dimension. 

We start with the following: 

Lemma 3.1. — Let ^ext C S? C ((̂ #ext))> and suppose that y is achronal in 
((^ext))- Then for any p G «̂ #ext there exists to G R such that 

ynl+(4>to(P)) = 0. 

(7) Under more general asymptotic conditions it was proved in [44] that inclusion induces a surjective 
homeomorphism between the fundamental groups of the exterior region and the domain of outer 
communications. In particular, 7ri(̂ ext) = 0 7ri(((̂ #ext))) = 0. 
(8) Strictly speaking, our applications below of [41] require checking that the conditions of asymptotic 
flatness in [41] coincide with ours; this, however, can be avoided by invoking directly [28]. 
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Proof. — Let p G ^ext. There exists t0 such that r := 4>t0{p) € ^ext- Suppose that 
y D 7+(0to(p)) ^ 0. Then there exists a timelike future directed curve 7 from r 
to q € y. Let qi e y converge to q; then qi G 7+(r) for z large enough, which 
contradicts achronality of y within ((^ext))- • 

Lemma 3.2. — Let S C 7+(^ext) be compact. 

1. T/iere erriste p G ^ext 5itc/i that S is contained in 7+(p). 
2. 7/5 C 9((^#ext))n/+(«y#ext) and if (((^ext))50) ¿5 strongly causal at S, ^ then 

for any p G #̂ext £Aene exists ¿0 € R ŝ cft £fta£ 5 fl I+((j)to(p)) = 0. 

Proof. — 1: Let # G 5; there exists pg G */#ext such that q G 7+(pg), and since 
IJt{Pq) is open there exists an open neighborhood &q C S of # such that ^9 C 7+(pg), 
By compactness there exists a finite collection &q., i = 1 , . . . , / , covering 5, thus 
5 C Uil+(pqi). Letting p G «̂ ext be any point such that pQi G 7+(p) for z = 1,. . . , 7, 
the result follows. 

2: Suppose not. Then ())i(p) G I~{S) for all z G N, hence there exists qi G S 
such that <̂  £+ 2dvdr+ i By compactness there exits q G 5 such that ^ —• <?• Let 
^ be an arbitrary neighborhood of q\ since q Gxcvùthere exists r G ^ D ((^ext))? 
p+ G ^ext5 and a future directed causal curve 7 from r to p+. For all z large, 
this can be continued by a future directed causal curve from p+ to 4>i(p), which can 
then be continued by a future directed causal curve to q^. But qi G & for i large 
enough. This implies that every small neighborhood of q meets a future directed 
causal curve entirely contained within ((̂ #ext)) which leaves the neighborhood and 
returns, contradicting strong causality of ((̂ #ext))- D 

It follows from Lemma 3.1, together with point 1 of Lemma 3.2 with S = {r}, that 

Corollary 3.3. — Ifre ynl+(^ext), then the stationary Killing vector K does not 
vanish at r. In particular if (^,9) is I+ -regular, then K has no zeros on y. • 

To continue, we assume the existence of a commutative group of isometries R x 
Ts_1, s > 1. We denote byxwwthe Killing vector tangent to the orbits R factor, and 
we assume that if (0) is timelike in J%e*t • We denote ggbycwwwKfff ̂  ,z = l , j j , s — 1 the Killing 
vector tangent to the orbits of the z'th S1 factor of Ts_1. We assume that eachfddd 
is spacelike in ((^ext)) wherever non-vanishing, which will necessarily be the cadse if 
((^ext)) is chronological. Note that asymptotic flatness imposes 5 — 1 < n/2, though 
most of the results of this section remain true without this hypothesis, when properly 
formulated. 

(9) In a sense made clear in the last sentence of the proof below. 
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We say that a Killing orbit 7 : R —» jjt is future-oriented if there exist numbers 
7i > ro such that 7(71) G 7+(7(ro)). Clearly all orbits of a Killing vector K are 
future-oriented in the region where K is timelike. A less-trivial example is given by 
orbits of the Killing vector dt + fic^ in Minkowski space-time. Similarly, in stationary 
axisymmetric space-times, those orbits of this last Killing vector on which dt is timelike 
are future-oriented (let ro = 0 and T\ = 2ir/£l). 

We have: 

Lemma 3.4. — Orbits through ̂ #ext of Killing vector fields K of the form K^ + 
a(i)K(i) are future-oriented. 

Proof. — Recall that for any Killing vector field Z we denote by </>t[Z] the flow of Z. 
Let 

Y := ]a{i)K{iy 

Suppose, first, that there exists r > 0 such that 0r[^] is the identity. ooSince ggand 
Y commute we have 

<j>T[K] = MK(o) + Y} = <t>T[K(o)} o 4>T[Y} = < f . 

Setting ro = 0 and T\ = r, the result follows. 
Otherwise, there exists a sequence U —> 00 such that (f)ti[Y](p) converges to p. 

Since /+(p) is open there exists a neighborhood ^ + C I+(p) of (f>i[K^](p). Let 
y+ = 0_i[K(o)](^+)) then every point in ^ + lies on a future directed timelike path 
starting in namely an integral curve of if(o)- There exists io > 1 so that U > 1 
and 6t. \Y](p) G y+ for i>i0. We then have 

ct>ti[K](p) = &4[Jf(0) +r] (p) = ^-i[if(o)](0i(^[i1(p))) € /ggg+(p) 

ddfccw 
Ĝ  + C/+(p) 

The numbers ro = 0 and T\ = U0 satisfy then the requirements of the definition. • 

For future reference we note the following: 

Lemma 3.5. — The orbits through ((^ext)) of any Killing vector K of the form K^ + 
Yla(i)K(i) are future-oriented. 

Proof. — Let p G ((^ext))> thus there exist points p± G ^ext such that p± G ^(p), 
with associated future directed timelike curves 7±. It follows from Lemma 3.4 together 
with asymptotic flatness that there exists r such that c/>T[K](p-) G /+(p+) for some 
r, as well as an associated future directed curve 7 from p+ to <j>T[K](jp-). Then the 
curve 7+ • 7 • 0r[lf](7_), where • denotes concatenation of curves, is a timelike curve 
from p to 4>T (p). • 

The following result, essentially due to [27], turns out to be very useful: 
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Lemma 3.6. — Let G R. For any set C invariant under the flow of K = cww< 
J2i OCÌKÌ, the set w<< << n^ext coincides with #̂ext> if non-empty. 

Proof — The null achronal boundaries <^m mm H c^ext are invariant under the flow 
of K. This is compatible with Lemma 3.4 if and only if IT\x<<< (C) <^*m = 0. If c 
intersects << •^ext) then I- <mù Hcy#ext is non-empty, hence x<< << D «/#ext Since #̂ext 
is connected. A similar argument applies if C intersects I- < êxt)- • 

We have the following strengthening of Lemma 3.2: 

Lemma 3.7. — Let << G R. // UCxt)),fl) is chronological, then there exists no 
nonempty set N which is invariant under the flow of *(0) + E* <*iKi and which is 
included in a compact set Cc (^ext)). 

Proof. — Assume that N C («^ext) is not empty. From Lemma 3.6 we obtain 
«̂ ext mm$*ù mm hence J+ (^ext; ww^*m [NY Arguing similarly with L I-we infer that 

!« êxt), C J+ [N] n j- i ùù^*ù 

Hence every point q in k êxt. is in 7+ (P) for some p E N. We conclude that 
ùù x<< n c ; pgAr is an open cover of C. Assuming compactness, we may then choose 
a finite subcover <<ù: Pi) DC x<<< This implies that each pi must be in the future of 
at least one pj, and since there is a finite number of them one eventually gets a closed 
timelike curve, which is not possible in chronological space-times. • 

Since each zero of a Killing vector provides a compact invariant set, from Lemma 3.7 
we conclude 

Corollary 3.8. — Let OLi GR. If X^ext)>,fl! is chronological, then Killing vectors of 
the form *(0) + Ei aiRi have no zeros in (^ext) 

4. Horizons and domains of outer communications in regular space-times 

In this section we analyze the structure of a class of horizons, and of domains of 
outer communications. 

4.1. Sections of horizons. — The aim of this section is to establish the existence 
of cross-sections of the event horizon with good properties. 

By standard causality theory the future event horizon x<<< ̂$*ùù (^ext) (recall that 
7± denotes the boundary of 7± is the union of Lipschitz topological hypersuriaces. 
Furthermore, through every point p G there is a future inextendible null geodesic 
entirely contained in <kù:; 'though it may leave x<<< when followed to the past of p). 
Such geodesies are called generators. A topological submanifold S of ^ + will be 
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called a local section, or simply section, if S meets the generators of w<< transversally; 
it will be called a cross-section if it meets all the generators precisely once. Similar 
definitions apply to any null achronal hypersurfaces, such as J?- or S±. 

We start with the proof of existence of sections of the event horizon which are 
moved to their future by the isometry group. The existence of such sections has been 
claimed in Lemma 5.2 of [16]; here we give the proof of a somewhat more general 
result: 

Proposition 4.1. — n H-neighborhood U x<<<$^*ùùùùùx<< ^ext)U/+ i«^ext) be a connected 
component of the event horizon J4? in a space-time $) with stationary Killing 
vector K(Q\ , and suppose that there exists a compact cross-section S of J#o satisfying 

S C S0 := <ow<<< M'ext). 

Assume that 

1. either 

((•^ext) <^ùmm ^ext is strongly causal, 

2. or there exists in ^w<<< a spacelike hypersurface w<<<^$nw<< achronal in 

l^ext)), so that S above coincides with the boundary of y: 

s = dy cS+. 

Then there exists a compact Lipschitz hypersurface So of So which is transverse to 
both the stationary Killing vector field K(0) and to the generators of So, and which 
meets every qenerator of So precisely once: in particular 

So = x<<< So)-

Proof. — Changing time orientation if necessary, and replacing JÍ by I+ <^*ùù \ 
J%o) I, we can without loss of generality assume that S = SQ — ¿%o — <p^ù*x<<<<< 

Choose a point p £ ^extj where the Killing vector K(o) is timelike, and let 

7p = cw<<< (p) 

be the orbit of K(0) through p. Then I~ (S) must intersect 7P (since So is contained 
in the future of ^fext)- Further, I~(S) cannot contain all of jp, by Lemma 3.1 or by 
part 2 of Lemma 3.2. Let q E 7P lie on the boundary of I~(S), then I+(q) cannot 
contain any point of S, so it does not contain any complete null generator of So. On 
the other hand, if I^~(q) failed to intersect some generator of So, then (by invariance 
under the flow of K(0)) each point of 7P would also fail to intersect some generator. By 
considering a sequence, {qn = </>tn ((?)}, along 7P with tn —• —oo, one would obtain a 
corresponding sequence of horizon generators lying entirely outside the future of {qn}. 
Using compactness, one would get an "accumulation generator" that lies outside the 
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future of all {qn} and thus lies outside of 

tha t S lies to the future of ^ext-

Set 

7+1 7p) = 7 + 1 («^ext) , contradicting the fact 

S 0 : = = / + ! (<z)n<?0, 

and we have just proved tha t every generator of So intersects So at least once. 

The fact tha t the only null geodesies tangent to So are the generators of So shows 

tha t the generators of 7+(g) intersect So transversally. (Otherwise a generator of 

7+(g) would become a generator, say T, of So. Thus T would leave So when followed 

to the past at the intersection point of 7+(g) and So, reaching which contradicts the 

fact tha t So lies at the boundary of 7 _ ( ^ E X T ) . ) As in [22], Clarke's Lipschitz implicit 

function theorem [29] shows now tha t So is a Lipschitz submanifold intersecting each 

horizon generator; while the argument just given shows tha t it intersects each genera­

tor at most one point. Thus, So is a cross-section with respect to the null generators. 

However, So also is a cross-section with respect to the flow of 7 Q 0 ) , because for all t 

we have 

x<< 'So) 
ùù*^^ :<pt : :^*ùù 

and for t > 0 the boundary of 1+ l<T>t< xw is contained within ùx< 
<<< In other words, 

4H{ So. cannot intersect So, which is equivalent to saying tha t each orbit of the flow of 

*(0) on the horizon cannot intersect So at more than one point. On the other hand, 

each orbit must intersect So at least once by the type of argument already given — 

one will run into a contradiction if complete Killing orbits on the horizon are either 

contained within I+(q) or lie entirely outside of 7+(g) . • 

Now, both S and So are compact cross-sections of So. Flowing along the generators 

of the horizon, one obtains: 

Proposition 4.2. — S is homeomorphic to Sq. 

We note tha t so far we only have a C0,1 cross-section of the horizon, and in fact 

this is the best one can get at this stage, since this is the natural differentiability of 

Sn. However, if So is smooth, we claim: 

Proposition 4.3. — Under the hypotheses of Proposition 1^.1, assume moreover that 

So is smooth, and that ((^ext)) is globally hyperbolic. Then So can be chosen to be 

smooth. 

Proof. — The result is obtained with the following regularization argument: Choose 

a point p G ey#ext> such tha t the section S of Proposition 4.1 does not intersect the 

future of p. Let the function u be the retarded t ime associated with the orbit jp 

through p parameterized by the Killing t ime from p; this is defined as follows: For 

any q G ^ we consider the intersection J- x<< n7p. If t ha t intersection is empty 
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we set A) = 00. If J- (Q) contains 7P we set u( a) = -co. Otherwise, as j - << is 
achronal, the set j - (?) H7p contains precisely one point << (p) for some r. We then 
set x<< = r. Note that, with appropriate conventions, this is the same as setting 

(4.1 u(q) = M\ t : <j>t\ IP) <:!^*ù x<< 

It follows from the definition of u that we have, for all r, 

(4.2) << Mr)] ^*mm (r) + t. 

In particular, u is differentiable in the direction tangent to the orbits of Kr0), with 

;4.3) K(o) (u) = fl( K{0), Vu) = 1, 

everywhere. 
The proof of Proposition 4.1 shows that u is finite in a neighborhood of So; let 

So = u~1 (o)n<?0, 

and let ^ denote a conditionally compact neighborhood of So on which u is finite; 
note that So here is a 0t[jFf(O)]_translate of the section 5o of Proposition 4.1. 

Let n be the field of future directed tangents to the generators of <§o, normalized 
to unit length with some auxiliary smooth Riemannian metric on M. For q G So 
let jVq C TqM denote the collection of all similarly normalized null vectors that 
are tangent to an achronal past directed null geodesic 7 from q to </>u(q)(p), with 7 
contained in ((e/#ext)) except for its initial point. (If u is differentiable at q then jVq 
contains one single element, proportional to Vix, but jVq can contain more than one 
null vector in general.) We claim that there exists c > 0 such that 

(4.4) inf 
qes0,iqe^K, 

<$ù x<<< > c> 0. 

Indeed, suppose that this is not the case; then there exists a sequence qi G 5o and 
a sequence of past directed null achronal geodesic segments 7̂  from q{ to p, with 
tangents li at such that g(li,n) —> 0. Compactness of So implies that there exists 
q G SQ such that q% —> q. 

Let 7 be an accumulation curve of the 7 '̂s passing through q. By hypothesis, SQ is 
a smooth null hypersurface contained in the boundary of ((^Cxt)), with q G S0. This 
implies that either 7 immediately enters ((^ext)), or 7 is a subsegment of a generator 
of So through q. In the latter case 7 intersects S when followed from q towards the 
past, and therefore the 70's intersect J- [S)n (^ext) for all i large enough. But this 

is not possible since 5H J+ (P) = 0. We conclude that there exists SQ > 0 such that 
7(«o) G ((^ext) }. Thus a subsequence, still denoted by ni [so), converges to 7(50), 
and global hyperbolicity of ((^ext)) implies that the 7*'s converge to an achronal null 
geodesic segment 7 through p, with tangent / at SQ satisfying g(l,n) = 0. Since both 
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/ and n are null we conclude that / is proportional to n, which is not possible as the 
intersection must be transverse, providing a contradiction, and establishing (4.4). 

Let 0i,i = L .,...,AT, be a family of coordinate balls of radii 3r̂  such that the balls 
of radius T{ cover O, and let tpi be an associated partition of unity; by this we mean 

that the IP^S are supported in and they sum to one on &. For E < R := minr* let 

Pel [X) Then th << w<< (recall that the dimension of is n + 1 I, where <P is a positive 
smooth function supported in the ball of radius one, with integral one. Set 

(4.5) <p^*ùù 
N 

i=l 
(fi (fe * U, 

where * denotes a convolution in local coordinates. Strictly speaking, CPE should be 
denoted by (PE^, as it depends explicitly on the local coordinates on but we will 
not overburden the notation with yet another index. (10) Then ue tends uniformly to 
u. Further, using the Stokes theorem for Lipschitz functions [751, 

(4.6) DUE = 
N 

c<<< 
IPE*U D(fi + (FI IPE* DU 

<< 

N 

i=l 
(IF€ *U — U) D<fi + <fi <fe* DU << 

I II 

where we have also used <$*ù x<< <!:^ùù DL = 0. It immediately follows that the 
term I uniformly tends to zero as e goes to zero. Now, the term II, when contracted 
with K(o), gives a contribution 

(4.7) x<<< we * du IX) << 
'\v-x\<* 

K(0) [x) diu( ym [X - Y] )DN+1Y 

^*ù 
\y-x\<e 

Kto) (X) - K(0) (y) diu(y) 

=0(e) 

+ K(0) [y) << [Y xw< (X-Y] \DN+1Y 

= 1 by (4.3) 
= I-H 0(E). 

It follows that, for all e small enough, the differential DUE is nowhere vanishing, and 
that if(o) is transverse to the level sets of UE. 

To conclude, let n denote any future directed causal smooth vector field on 6 
which coincides with the field of tangents to the null generators of SQ as defined 

,10) This is admittedly somewhat confusing since, e.g., n;; 
^*ùù = I-H 0(E) << 

w< <Pi) (fe * U. 
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above. By (4.4) the terms 77 in the formula for due, when contracted with n, will 
give a contribution 

(4.8) 

7̂1 ife * du] w<< w<< 
'\y-x\<e 

(n\x) -n* y) diu (y) <<mù iv) diu( y) ̂ << x-y) dn+1y 

=0(e) >c 
> c + O <<< 

and transversality of the generators of to the level sets of ue, for e small enough, 
follows. • 

4.2. The structure of the domain of outer communications. — The aim 
of this section is to establish the product structure of 7+-regular domains of outer 
communication, Theorem 4.5 below. The analysis here is closely related to that 
of [27]. 

As in Section 3, we assume the existence of a commutative group of isometries 
R x TP-1 with s > 1. We use the notation there, with K(0\ timelike in ^ext5 and 
each K(i spacelike in ((e/#ext))-

Let r — = I-H 0(E) be the radius function in #̂ext- By the asymptotic analysis 
of [25] there exists R so that for r > R the orbits of the 's are entirely contained 
in ^ext> so that the function 

Hp) = 
JGET3-1 

r( g(p)№9, 

is well defined, and invariant under Ts_1. Here d[ig is the translation invariant mea­
sure on Ts_1 normalized to total volume one, and g(p) denotes the action on ^ of 
the isometry group generated by the K^s. Similarly, let t be any time function on 
((-Cxt})5 the level sets of which are asymptotically flat Cauchy surfaces. Averaging 
over Ts_1 as above, we obtain a new time function t, with asymptotically flat level 
sets, which is invariant under Ts_1. (The interesting question, whether or not the 
level sets of t are Cauchy, is irrelevant for our further considerations here.) It is then 
easily seen that, for a large enough, the level sets 

ST,CR '- — t — T,r — a 

are smooth embedded spheres included in #̂ext-
Throughout this section we assume that= I-H 0(E) is 7+-regular. Let 5? be as in 

the definition of regularity, thus 5? is an asymptotically flat spacelike acausal hy­
persurface in ((./#ext)) with compact boundary, the latter coinciding with a compact 
cross-section of S+. Deforming 5? if necessary, without loss of generality we may 
assume that 5? H ^ x t is a level set of i. We choose R large enough so that SQ,R is 
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a smooth sphere, and so tha t the slopes of light cones on the ST,CT'S, for a > R, are 

bounded from above by two, and from below by one half, and redefine ^ext so tha t 

{bi} Uj Ix<<< 
Consider 

V+ := w<< <^mm \ ^ext> n !^ext))-

Then is a null, achronal, Lipschitz hypersurface generated by null geodesies ini­

tially orthogonal to Sq R . Let us write fa for fa[K(0\], and set 

= I-H 0(E) 
M x<< 5 

we then have 

= I-H 0(E) ßt,R. x<<<< i n ,-^ext w< 

(recall t ha t the flow of consists of translations in t in ^ex t ) which implies tha t 

every orbit of intersects ce?+ at most once. 

Since y is achronal it parti t ions ((^#ext)) as 

(4.91 (-#ext] << ^*mmm w<< («^ext ) u / - i x<<< 
(•^ext)! (disioint union). 

Indeed, as ( (^ext)) is globally hyperbolic, the boundaries 7± << o^ùl n < (^ext) 
are generated by null geodesies with end points on edge <w w<< ̂ext ) ) = 0 . 

We claim tha t every orbit of K(0\ intersects 5?. For this, recall tha t for any q in 

!(«^ext)) there exist points p± G ^ e x t such tha t q e Pi P±) ). Since the flow of << 

in ^#ext is by t ime translations there exist t± G M so tha t 0t± <km^ùù «^ext- Hence 

0*± (9) G /=F| («^3Xt) , which shows tha t every orbit of Kr0\ meets both the future and 

the past of 5?. By continuity and (4.9) every orbit meets 5? (perhaps more than 

once). Hence 

(4.IO; (•^ext) w< <vbnj w<<< M'ext)) 
^ùmm 

.^ext) w<<m^* w<< 

[for the second equality Proposition 4.1 has been used). Setting ^int = x<^^<< 

<y#ext> one similarly obtains 

(4.11) ^#int w<<<^ùm U/+C x<<< ̂ ùmm U J - x<< ^int disjoint union), 

(4.12) <vbn,;:^ù x<<< ^ùmm 

By hypothesis ^ \ ^ext is compact and so, by the first par t of Lemma 3.2, there 

exists p- G ^ex t such tha t 

(4.13; y^ <-̂ ext 
w<< <<< 

Choose £_ < 0 so tha t p _ e / + ( knw<< ); we obtain tha t y \ -̂̂ ext ci+ <^*mm 
I-H 0 

, hence 

= I-H 0( x<<< ^*ùù 

Since Sn B C y we have x<< 
C J + <:!ù By acausality of y and (4.9) we infer tha t 

y \ ye-xX C T I ^w<<< and hence <t>t-y ^ext, c / - ( ^ ) . 
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So, for p G y <^*,, the orbit segment 

, o] 3 t ,<w<< ,, 

SIARIÖ IN INE PAST UI w<< and finishes to its future. From (4.10) we conclude that 

4.14 « 2 C Ut€[t_i0] << [y \ y.xt) ; 

equivalently, 
C Ut€[0,_t. 0tl ^\^ext) . 

As the set at the right-hand-side is compact, we have established: 

Proposition 4.4. — Suppose that [Jt,g) is J+ -regular, then ^+ is compact. 

We are ready to prove now the following version of point 2 of Lemma 5.1 of [16]: 

Theorem 4.5 (Structure theorem). — Suppose that Jt,g I is an 7+ -regular stationary 
snace-time invariant under a commutative arouv of isometries R x Ts_1 , s > 1, with 
the stationary Killingssvectorw<^*tangent to the orbits of the R factor. There exists 
on ((e^ext)) a smooth time function t, invariant under Ts_1, which together with the 
flow of K^ induces the diffeomorphisms 

[4.15) («^ext) ) & Rx y, I^ext)) <<vc •^ext) = I-H 0(E) 
= I-H 0(E) 

where y := t 1(0) is asymptotically flat, (invariant under Ts x), with the boundary 
dy being a compact cross-section of . The smooth hypersurface with boundary y 
is acausal, spacelike up-to-boundary, and the flow of is a translation along the R 
factor in (4.15). 

Proof. — Prom what has been said, every orbit of if(0) through ((^#ext)) \ ^ext 
intersects ^+ precisely once. For p G ((^ext)) \ ^ext we let u(p) be the unique 
real number such that <t)u(p){p) £ while for p G ̂ ext we let u(p) be the unique 
real number such that 4>u(p)(p) € ^ext» The function u : ((^ext)) —» R is Lipschitz, 
smooth in ^#ext, with achronal level sets transverse to the flow of K^, and provides 
a homeomorphism 

(«^ext) ^ext « R X w<ml<< « R x ^ + U y.xt)-

The desired hypersurface y will be a small spacelike smoothing of ^_1(0), obtained 
by first deforming the metric g to a metric ge, the null vectors of which are spacelike 
for q. The associated corresponding function ue will have Lipschitz level sets which 
are uniformly spacelike for g. A smoothing of ue will provide the desired function t. 
The details are as follows: 

We start by finding a smooth hypersurface, not necessarily spacelike, transverse to 
the flow of K. We shall use the following general result, pointed out to us by R. Wald 
(private communication) : 
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Proposition 4.6. — Let So be a two-sided, smooth, hypersurface in a manifold M with 
an open neighborhood & such that M\ & consists of two disconnected components 
M_ and M_|_. Let X be a complete vector field on M and suppose that there exists 
T > 0 such that for every orbit <j>t(jp) of X, t G R, p G M, there is an interval \to,t\] 
with (t\ — to) < T such that (fit(p) lies in Af_ for all t < to, and 4>t{p) lies in M+ 
for all t > t\. If M has a boundary, assume moreover that dSo C DM, and that X 
is tangent to dM. Then there exists a smooth hypersurface Si C M such that every 
orbit of X intersects S\ once and only once. 

Proof. — Let / be a smooth function with the property that / = 0 in M_, 0 < / < 1 
in G, and / = 1 in M+; such a function is easily constructed by introducing Gauss 
coordinates, with respect to some auxiliary Riemannian metric, near So- For t G R 
and p G M let (j>t(p) denote the flow generated by X. Define F : M —• R by 

x<< P. << 
xw 

— oo 
f°<t>s [p)ds. 

Then F is a smooth function on M increasing monotonically from zero to infinity 
along every orbit of X. Furthermore F is strictly increasing along the orbits at points 
at which F > T (since such points must lie in M+, where / = 1). In particular, the 
gradient of F is non-vanishing at all points where F >T. Setting S\ = {F = T}, the 
result follows. • 

Returning to the proof of Theorem 4.5, we use Proposition 4.6 with X = x<< 

M = vw< <m^*ù w<< •̂ ext» 

and £0 = y n i . Letting t- be as in (4.14) we set 

0:= << (t_,-t_ 4>t <^ùm x<< 

by what has been said, & is an open neighborhood of 5?. Finally 

M_ := << -oo,t_] <:!^* w<< cw<< Ut€[ —t- ,00) << <^ù 

It follows now from Proposition 4.6 that there exists a hypersurface S\ C M which is 
transverse to the flow of if(o)-

Let T be any smooth, timelike vector field defined along Si, and define the smooth 
timelike vector field T on M as the unique solution of the Cauchy problem 

(4.16' <^*mm T = 0, T = f on Si. 

Since the flow of K(0) acts by time translations on #̂ext? it is straightforward to 
extend T to a smooth vector field defined on M, timelike wherever non vanishing, 
still denoted by T, which is invariant under the flow of if(o)» the support of which 
on y is compact. Replacing T by its average over Ts_1, we can assume that T is 
invariant under the action of Ts_1. 
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For all e > 0 sufficiently small, the formula 

(4.171 flel [Z\,Z2, = 9 [Z1.Z2) x<<< <$*ù T,Z2) I. 
defines a Lorentzian, R x Ts_1 invariant metric on the manifold with (ge-timelike) 

boundary ^^^^x<< •n/+ !«̂ ext. I. By definition of ge, vectors which are causal for g are 
timelike for a€. Wherever T / 0 the light cones of ge are spacelike for g, provided 
6 ^ 0 . 

Since g-causal curves are also ge-causal, 
communications with respect to $e. 

<p^ù** w<<;,, is also a domain of outer 

Set 
p^ùmmm cw<< [SO,R) <p^ùmm ) n ghw<< < 

where we denote by Je+(^) the future of a set Cl with respect to the metric ge. Then the 
^e+,s are Lipschitz, g-spacelike wherever differentiable, Ts_1 invariant, hypersurfaces. 
Continuous dependence of geodesies upon the metric together with Proposition 4.4 
shows that the ^e+'s accumulate at ^+ as e tends to zero. 

Let u€ : M —> IR be defined as in (4.1) using the metric ge instead of g. As before 
we have 

(4.18) << {4>t (p: *^$$$ x<< mù*w< so that *<0) ue) = 1. 

We perform a smoothing procedure as in the proof of Proposition 4.3, with 6 then 
replaced by a conditionally compact neighborhood of The vector field T in (4.16 
is chosen to be timelike on G\ the same will then be true of T. Analogously to (4.5 
we set 

(4.19Ì €̂,77 •— 
N 

i=l 
<Pi (pv*ue, 

so that the ue^ s converge uniformly on u to ue as 77 tends to zero. The calculation 
in (4.7) shows that 

K(o: <$*^^ > 
1 
2 

for 77 small enough, so that the level sets of ue „ near ^+ are transverse to the flow of 
^w<<< 

It remains to show that the level sets of ue^ are spacelike. For this we start with 
some lemmata: 

Lemma 4.7. — Let g be a Lipschitz-continuous metric on a coordinate ball 
&i of coordinate radius 3r^. There exists a constant C such that for any 

x<<<^$*ùù 

q G B(p,ri 
and for any timelike, respectively causal, vector Nq = <<p^*ùù G TqM satisfying 

U.20) 
<< 

x<< »2 = 1 
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there exists a timelike, respectively causal, vector field N = N»du on B ̂ :ù^* such 
that for all points y,z G B (p,2r,0 we have 

(4.211 w<<< < x<< < C \y- z 5 
c-1 < <ù \2 <c. 

< 
Proof. — We will write both cw and << :«) for the coordinate components of a vector 
field at q. For V = 0. , . . . ,n, let << << <!ù* v<< be any Lipschitz-continuous OAT basis 
for g on ^ . there exists a constant c such that on B (p,2ry we have 

<< 
^ù* 

cw< !^*ù x<< ̂*ù < x<< \y-z I-
Decompose iVg as iVg <^*ù nw ̂ *mm 

eri/' 4 , and for y e Gì set ATy cw< << :!^* w<< [v)\ (4.21 
easily follows. • 

Lemma4.8. — Under the hypotheses of Lemma J^.l, let f be differentiable on ft. 
Then V/ is timelike past directed on B(p, 2r*) if and only if N^d^f < 0 on ft for all 
causal past directed vector fields satisfying (4.20) and (4.21). 

Proof. — The condition is clearly necessary. For sufficiency, suppose that there exists 
q G B(p, 2ri) such that V/ is null, let Nq = AV/(g), where A is chosen so that (4.20) 
holds, and let N be as in Lemma 4.7; then N^d^f vanishes at q. If V/ is spacelike 
at q the argument is similar, with Nq chosen to be any timelike vector orthogonal to 
Vf(q) satisfying (4.20). • 

Let N be any g-timelike past directed vector field satisfying (4.20) and (4.21). 
Returning to (4.6) we find, 

'4.22 ijsfdueìTÌ << 
N 

i=l 
= I-H 0(E) iNdifi + (fi ìn (iprj * due) c<< 

i il 
For any fixed e, and for any S > 0 we can choose rjs so that the term / is smaller than 
S for all 0 < rj < rjs. 

To obtain control of II, we need uniform spacelikeness of due: 

Lemma 4.9. — There exists a constant c such that, for N as in Lemma 1.7, 

(4.23 N»duu€ < -ce 

almost everywhere, for all e > 0 sufficiently small. 

Proof. — Let << be an a-ON frame in which the vector field T of (4.17 equals 
T c< e(o)- Let <*^!! denote the components of due in a frame dual to x<< }. In this 

frame we have 

Ö = diag - 1 , 1 , ,1), 0e = diag I-H 0(E) №(0) <ù^* 1, . ,1 i. 
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Since du* is cL-null and past pointing we have 

tt(0 x<< 1 + (T(°) 2e 4 ) -
The last part of (4.18) reads 

K :o) 
0 a. '(0) + (0 

a(i) = 1. 

It is straightforward to show from these two equations that there exists a constant c\ 
such that, for all e sufficiently small, 

<< > ^mù* 
«?0 > c<<w \a(»)\ <Ci. 

Since A/" is ge causal past directed, (4.20) and (4.21) together with the construction 
of N show that there exists a constant c<i such that 

<<< < -c2. 

We then have 

N»dßue <l!: N (o) «(0) +: cw<< a(i) 

<< N(0) 1 + T(°) 2e- 4 ) + x<< a(i) 

<*ù N(0) 'l + (T(°) << - 1 ; x<< 
b;;:! + ^x<<< <<< + <p^mm a(0 

<0 by Cauĉ ĥy-Schwarz, as AT is g-timelike 

< 
C2 
4ci 

inf 
e 

•r(o) 2 e =: -ce, 

for e small enough. • 

Now, calculating as in (4.8), using (4.23), 

iN '<Prj * due (x) x<< 
\y-x\<rj 

<< < < ^*ù y) ù$*w<< <ù: •f << [y] x<<< (y). << ̂ mmùù dn+ly 

<Cr) <-C€ 

< -ce + 0(77), 

so that for 77 small enough each such term will give a contribution to (4.22) smaller 
than — ce/2. Timelikeness of Vwe?T7 on G follows now from Lemma 4.8. 

Summarizing, we have shown that we can choose e and 77 small enough so that 
the function ue^ : M —• R is a time function near its zero level set. It is rather 
straightforward to extend ue^ to a function on ((«/#ext)) ^5 w^h smooth spacelike 
zero-level-set, which coincides with 5? at large distances. Letting 5? be this zero 
level set, the function t(p) is defined now as the unique value of parameter t so that 
0t(p) € since the level sets of t are smooth spacelike hypersurface, t is a smooth 
time function. This completes the proof of Theorem 4.5. • 
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4.3. Smoothness of event horizons. — The starting point to any study of event 
horizons in stationary space-times is a corollary to the area theorem, essentially due 
to [22], which shows that event horizons in well-behaved stationary space-times are 
as smooth as the metric allows. In order to proceed, some terminology from that last 
reference is needed; we restrict ourselves to asymptotically flat space-times; the reader 
is referred to [22, Section 4] for the general case. Let (^K,g) be a C3 completion of 
(«^>fl) obtained by adding a null conformal boundary at infinity, denoted by J^+, 
to jjit, such that g = fl~2g for a non-negative function Q defined on jjt', vanishing 
precisely on<< and dQ, without zeros on<< Let <f + be the future event horizon 
in M. We say that (^,5) is ^+-regular if there exists a neighborhood G of <f + such 
that for every compact set C C G for which 7+(C;^#) ^ 0 there exists a generator 
of<<< intersecting I+(C\^() which leaves this last set when followed to the past. 
(Compare Remark 4.4 and Definition 4.3 in [22]). 

We note the following: 

Proposition 4.10. — Consider an asymptotically flat stationary space-time which is 

vacuum at larqe distances, recall that x<< = I- « êxt, <<:;ù («̂ ext. ). # « ^ e x t » IS 
globally hyperbolic, then [Jt,g] admits an x<<<regular conformal completion. 

Proof. — Let <M be obtained by adding to #̂ext the surface r = 0 in the coordinate 
system (it, f, 0, ip) of [34, Appendix A] (see also [32], where the construction of [34] is 
corrected; those results generalize without difficulty to higher dimensions). Let t be 
any time function on ((^#ext)) which tends to infinity when ^+ is approached, which 
tends to —oo when /+(«^ext) is approached, and which coincides with the coordinate 
t in ^ext as in [34, Appendix A]. Let 

G = ÍP t ) >o; ̂ x<< <:;; U<f+ ; 

then G forms an open neighborhood of . Let C be any compact subset of G such 
that x< (C\je) <<^* < ^ 0 ; then 0 ^ C PI ((^ext) c \t> oi. Let 7 be any future 
directed causal curve from C to ^ + , then 7 is entirely contained in ((^ext)), With 
t 07 > 0. In particular any intersection of 7 with 9^ext belongs to the set {* > 0}, 

so that at each intersection point 

u o 7 > inf u\ {¿=01 -nd̂ ext =:c> - 0 0 . 

The coordinate u of [34, Appendix A] is null, hence non-increasing along causal curves, 
so u o 7 > c, which implies the regularity condition. • 

We are ready to prove now: 

Theorem 4.11. — Let (^#,0) be a smooth, asymptotically flat, (n + 1)-dimensional 
space-time with stationary Killing vector K^, the orbits of which are complete. Sup­
pose that ((^#ext)) is globally hyperbolic, vacuum at large distances in the asymptotic 

ASTÉRISQUE 321 



ON UNIQUENESS OF STATIONARY VACUUM BLACK HOLES 221 

region, and assume that the null energy condition (2.16) holds. Assume that a con­
nected component J^o of 

Jt? := J?' U Jif+ 

admits a compact cross-section satisfying S c l + («^ext) • if 
1. either 

(«^ext) c<< (« êxt is strongly causal, 

2. or there exists in ((^#ext)) a spacelike hypersurface y D yext> achronal in 
((JZext)), so that S as above coincides with the boundary of y1: 

s = dy c<?+, 

then 
x<<< *(0)1 (S) <<^mm 

¿5 a smooth null hypersurface, which is analytic if the metric is. 

Remark 4.12. — The condition that the space-time is vacuum at large distances can 
be replaced by the requirement of existence of an <f+-regular conformai completion 
at null infinity. 

Proof. — Let E be a Cauchy surface for ((^ext))> and let ^ be the conformai com­
pletion of M provided by Proposition 4.10. By [22, Proposition 4.8] the hypotheses 
of [22, Proposition 4.1] are satisfied, so that the Aleksandrov divergence O^i of S+, as 
defined in [22], is nonnegative. Let 5i be given by Proposition 4.1. Since isometries 
preserve area we have O^i = 0 almost everywhere on Ut4>t(Si) = Ut4>t(S). The result 
follows now from [22, Theorem 6.18]. • 

4.4. Event horizons vs Killing horizons in analytic vacuum space-times. — 
We have the following result, first proved by Hawking for n = 3 [49] (compare [38] 
or [16, Theorem 5.1]), while the result for n > 4 in the mean-non-degenerate case is 
due to Hollands, Ishibashi and Wald [55], see also [54, 60, 68]: 

Theorem 4.13. — Let c<<< 
$^*ùù 

be an analytic, (n + l) -dimensional, vacuum space-time 
with complete Killing vector K^y Assume that contains an analytic null hyper­
surface S with a compact cross-section S transverse both to K^ and to the generators 
of S. Suppose that 

1. either (k) s ¿ 0 , where («>s is defined in (2.13), 
2. orn = 3. 

Then there exists a neighborhood ^ of S and a Killing vector defined on which is 
null on S. 

In fact, if K(q) is not tangent to the generators of S, then there exist, near S, 
N commuting linearly independent Killing vector fields Km w<< N)> N > 1, (not 
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necessarily complete but) with 2^-periodic orbits near £, and numbers 

such that 
(Ui{bi} Uj Ij), 

c<<< + = I-H 0(E) + . . . + = I-H 0(E) 

is null on £. 

In the black hole context, Theorem 4.13 implies: 

Theorem 4.14. — Let cw<< be an analytic, asymptotically flat, strongly causal, vac­
uum, n + 1) -dimensional space-time with stationary Killing vector K^, the orbits 

of which are complete. Assume that (i^^t)) is qlobally hyperbolic, that a connected 

component w<< contains a compact cross-section S satisfying 

Sc/+(I e x t)w<<, 

and that 

1. either Ms 4 0, 

2. or the flow defined by K^ on the space of the generators of J4?Q~ is periodic w<< 
Suppose moreover that 

a) either 

b;:!*** jni+ i^ext) is strongly causal, 

b) or there exists in {(J%ext)) an asymptotically flat spacelike hypersurface 5?, 

achronal in ((^^t)), so that S as above coincides with the boundary of 5?': 

S = dy a£+<<. 

If K(Q) is not tangent to the generators of J$f, then there exist, on ^ e x t ) ) U ^ 0

+ , 

TV complete, commuting, linearly independent Killing vector fields ^ ( l ) > • • • ,K(N), 

N > 1, with 2TT-periodic orbits, and numbers Q m , . . . ,fJ cw such that the Killing 

vector field 

*<o) + I-H 0(E) + ••• <+ x<<<^mmm< 

is null onx<< 

Remark 4.15. — For /^-regular four-dimensional black holes 5 is a two-dimensional 

sphere (see Corollary 2.5), and then every Killing vector field acts periodically on the 

generators of w<<<<<. 

Proof. — Theorem 4.11 shows that £Q~ w<< <^*ùù vw<< (S) is an analytic null hyper­

surface. By Proposition 4.3 there exists a smooth compact section of £Q which is 

transverse both to its generators and to the stationary Killing vector. ( n ) We can thus 

invoke Theorem 4.13 to conclude existence of Killing vector fields Kay. i = l,...,iV, 
defined near £Q~. By Corollary 2.4 and a theorem of Nomizu [78] we infer that the 

(n) The hypothesis of existence of such a section needs to be added to those of [55, Theorem 2.1]. 
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if(i)'s extend globally to ((^ext))- It remains to prove that the orbits of all Killing 
vector fields are complete. In order to see that, we note that by the asymptotic anal­
ysis of Killing vectors of [5, 25] there exists R large enough so that the flows of all 
•K"(i)'s through points in the asymptotically flat region with r > R are defined for 
all parameter values t G [0, 2TT]. The arguments in the proof of Theorem 1.2 of [17] 
then show that the flows </>t[K^ys are defined for t G [0,2n] throughout ((^#ext))-
But (j)2n[K(i)} is an isometry which is the identity on an open set near <f0

+, hence 
everywhere, and completeness of the orbits follows. • 

5. Stationary axisymmetric black hole space-times: the area function 

As will be explained in detail below, it follows from Theorem 4.14 together with the 
results on Killing vectors in [6, 17], that 7+-regular, 3+1 dimensional, asymptotically 
flat, rotating black holes have to be axisymmetric. The next step of the analysis of 
such space-times is the study of the area function 

(5.1" W :=-det 3 k(u)>km) 'u,^=0,l' 

with if(0) being the asymptotically timelike Killing vector, andw<<the axial one. 
Whenever y/W can be used as a coordinate, one obtains a dramatic simplification of 
the field equations, whence the interest thereof. 

The function W is clearly positive in a region where if(0) is timelike a n d < < i s 
spacelike, in particular it is non-negative on ^ ext- As a starting point for further 
considerations, one then wants to show that W is non-negative on ((-#ext))-xww 

Theorem 5.1. — Let ( ^ , g) be a four-dimensional, analytic, asymptotically flat, vac­
uum space-time with stationary Killing vector K(0\ and periodic Killing vector Km, 

jointly generating an RxU w< subgroup of the isometry group of w<<^*ù =^* I-H 0(E) 

globally hyperbolic, then the area function (5.1) is non-negative on ( ( ^<<,xw vanishing 
precisely on the union of its boundary with the (non-empty) set {0< = I-H 0(E) = 0}. 

We also have a version of Theorem 5.1, where the hypothesis of analyticity is 
replaced by that of 7+-regularity: 

Theorem 5.2. — Under the remaining hypotheses of Theorem 5.1, instead of analyt­
icity assume that (JK, g) is J + -regular. Then the conclusion of Theorem 5.1 holds. 

Keeping in mind our discussion above, Theorem 5.1 follows from Proposition 5.3 
and Theorem 5.4 below. Similarly, Theorem 5.2 is a corollary of Theorem 5.6. 
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5.1. Integrability. — The first key fact underlying the analysis of the area func­
tion W is the following purely local fact, observed independently by Kundt and 
Triimper [65] and by Papapetrou [80] in dimension four (for a modern derivation 
see [51, 95]). The result, which does neither require AT(0) to be stationary, nor 
the if(i)'s to generate S1 actions, generalizes to higher dimensions as follows (com­
pare [11, 35]): 

Proposition 5.3. — Let x<< be a vacuum, possibly with a cosmoloqical constant 

(n + I] -dimensional vseudo-Riemannian manifold with n — 1 linearlu independent 

commuting Killing vector fields <^$ùù > M = 0,. . , 7 1 - 2- // 

;5.2) 2?dgt — [p^jt 1^(0) • A ... A K(n-2) Ip = o; ̂ 0 , 

then^12 

(5.31 vw<< ^ùùx<< A • • • A K(n-2) = 0. 

Proof. — To fix conventions, we use a Hodge star defined through the formula 

a A/3 = << l*a. fl) Vol, 

where the plus sign is taken in the Riemannian case, minus in our Lorentzian one, 
while Vol is the volume form. The following (well known) identities are useful [51]; 

5.4 * *0 = [-1Y n+l-s) <^*ùùù V<9 e As, 

(5.5) iK * 0 = *(0AK x<< V0 <e As, K e A1. 

Further, for any Killing vector K, 

(5.6) <o^ùmm = 0, 

The Leibniz rule for the divergence S:= w<<< reads, for 0 e As, 

[OAK) = *d * ( (OA if )(5=5) * d( <p^ùùm = * w<<<:;, — ixd * 0) 

[5.4 (5.6' 
w<< = I-H 0(E) <<o^mm (-1) (n+1- s+1) n+l-i n+1-<^*ùù -1 * *d * 0 

x< - 1 si (n+l-s) <<<p^ùm (-1 (n+i-s; )-n+l x<<< (60 A K) 

<<l - 1 s [n+l-s) - 1 $^^^x<< (-1: <<,;::: A if. 

Applying this to 6 = diiT one obtains 

x<<< [dKhK = -yKdK + << p^*ù 5dK AK 

w<< - 1 n+l. SdKAK. 

[12) Bv an abuse of notation, we use the same symbols for vector fields and for the associated 1-forms. 
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As any Killing vector is divergence free, we see that 

SdK = < << AK = - 1 \n+l %k Rie. 

Assuming that the Ricci tensor is proportional to the metric, Ric = Ag, we conclude 
that 

*d * dK A K << dK A K Aif = 0. 
Let Ufa) be the /i'th twist form, 

dK A K * dK, m: 
Aif( w< << 

The identity 

dK A K 
dK A Kx<< 

^* dK A K * dK A K A#(„)) 

= *i xw<< <<<i^m + x<< dK A K w<< = 0, 

together with 

<*mm^ù <ww,:^*$ x<<< ̂ $*ùù w<< ^*$ùùù dK A K 
w< 
<<w,;: dK A K = 0, 

and with Cartan's formula for the Lie derivative, gives 

(5.7: dl dK A K dK A K dK A K ̂ x< - 1 ' << 
Ml) 

<^* 
x<< 

da; w<< 
We thus have 

d * [dK mi A if I mi A • • • A if Mn-l) <jl cw< <<< <lù 
^^ 

>2 * dif( Ml, A << mi 
<< - 1 n-2 w< (Mn-l ^cw<< 

(M2) 
x<< 

(Mi! = 0. 

So the function * dK Pi) 
cw<^ùmm 

(Mi A if, (M2) A ... A << 
(Mn-l, 

is constant, and the result 
follows from (5.2). • 

5.2. The area function for a class of space-times with a commutative group 
of isometries. — The simplest non-trivial reduction of the Einstein equations by 
isometries, which does not reduce the equations to ODEs, arises when orbits have 
co-dimension two, and the isometry group is abelian. It is useful to formulate the 
problem in a general setting, with 1 < 5 < n — 1 commuting Killing vector fields K(a\, 

iz = 0 , . . . , s - l , , satisfying the following orthogonal integrability condition: 

(5.8; x<a^m 0 , . . . , s - l dK (m) Alf, (o) A-.-A K mx<< = 0. 

For the problem at hand, (5.8) will hold when s = n — 1 by Proposition 5.3. Note 
further that (5.8) with s = 1 is the definition of staticity. So, the analysis that 
follows covers simultaneously static analytic domains of dependence in all dimensions 
n > 3 (filling a gap in previous proofs), or stationary axisymmetric analytic four-
dimensional space-times, or five dimensional stationary analytic space-times with two 
further periodic Killing vectors as in [56]. It further covers stationary axisymmetric 
7+-regular black holes in n = 3, in which case analyticity is not needed. 
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Similarly to (5.2) we set 

Í5.9) dK A K <<<$*mm AK [a-r = 0 xw 

[5.10] JT := pG w<< : det 0 ww: 
x<< 

<pùl 
i,j=l,...s—l 

= 01. 

In the following result, the proof of which builds on key ideas of Carter [11, 121, 
we let if (o) denote the Killing vector associated to the R factor of : R x T s - \ and we 
let Ku\ denote the Killing vector field associated with the i — th S1 factor of Ts 1: 

Theorem 5.4. — Let w<<p^mm be an (n + l) -dimensional, asymptotically flat, analytic 
space-time with a metric invariant under an action of the abelian group G = R x T s _ 1 

with s-dimensional principal orbits, 1 < s < n — 1, and assume that (5.8) holds. If 
((^ext)) is globally hyperbolic, then the function 

(5.11] W :=- det ( fl( w<< <lpmmu 
fi,i/=0,...,s — 1 

is non-negative on ( ̂ ext) , vanishing on d( I^ext! uar. 

Remark 5.5. — Here analyticity could be avoided if, in the proof below, one could 
show that one can extract out of the degenerate 5 p 's (if any) a closed embedded 
hypersurface. Alternatively, the hypothesis of analyticity can be replaced by that of 
non-existence of non-embedded degenerate prehorizons within ((c^ext))- Moreover, 
one also has: 

Theorem 5.6. — Let n = 3, s = 2 and, under the remaining conditions of Theo­
rem 5.4, instead of analyticity assume that (^,q) is 7 + -regular. Then the conclusion 
of Theorem 5.4 holds. 

Before passing to the proof, some preliminary remarks are in order. The fact 
that ^ \ 3?dgt is open, where 3?dgt is as in (5.9), together with (5.8), establishes 
the conditions of the Probenius theorem (see, e.g., [52]). Therefore, for every p £ 
3fdgt there exists a unique, maximal submanifold (not necessarily embedded), passing 
through p and orthogonal to Span{if( 0 ) , i f ( s _i)}, that we denote by &v. Carter 
builds his further analysis of stationary axisymmetric black holes on the sets Gv. This 
leads to severe difficulties at the set of (5.10), which we were not able to resolve 
using neither Carter's ideas, nor those in [91]. There is, fortunately, an alternative 
which we provide below. In order to continue, some terminology is needed: 

Definition 5.7. — Let K be a Killing vector and set 

[5.12' x<< <$^** [fl( K,K) = o, dK A K 
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Every connected, not necessarily embedded, null hypersurface 
K is tangent will be called a Killing prehorizon. 

^6 C oV\ K to which 

In this terminology, a Killing horizon is a Killing prehorizon which forms an em­
bedded hypersurface which coincides with a connected component of J V \ K \ . 

The Minkowskian Killing vector dt - dx provides an example where JV is not a 
hypersurface, with every hyperplane t + x = const being a prehorizon. The Killing 
vector K = dt + Y on R x Tn, equipped with the flat metric, where Tn is an n-
dimensional torus, and where Y is a unit Killing vector on Tn with dense orbits, admits 
prehorizons which are not embedded. This last example is globally hyperbolic, which 
shows that causality conditions are not sufficient to eliminate this kind of behavior. 

Our first step towards the proof of Theorem 5.4 will be Theorem 5.8, inspired again 
by some key ideas of Carter, together with their variations by Heusler. We will assume 
that the if^ 's , 2 = 1,. . . , s — 1, are spacelike (by this we mean that they are spacelike 
away from their zero sets), but no periodicity or completeness assumptions are made 
concerning their orbits. This can always be arranged locally, and therefore does not 
involve any loss of generality for the local aspects of our claim; but we emphasize that 
our claims are global when the K^s are spacelike everywhere. 

In our analysis below we will be mainly interested in what happens in ((^ext)) 
where., bv Corollarv 3.8. we have 

x<<< ^$ùù — %dgt n ^ext)), 

in a chronological domain of outer communications. We note that $?dgt C{W = 0}, 
but equality does not need to hold for Lorentzian metrics. For example, consider in 
M1'2, JRT(O) — &x 4- dt and x<<w = <9y; then if(0) A ki11= dx A dy — dt A dy ^ 0 and 
W = 0. 

If the K^s generate a torus action on a stably causal manifold, (13) it is well 
known that 2f is a closed, totally geodesic, timelike, stratified, embedded submanifold 
of with codimension of each stratum at least two (this follows from [63] or [2, 
Appendix C]). So, under those hypotheses, within ((^ext))5 we will have 

(5.13) the intersection of 3?dgt with any null hypersurface JV is a 

stratified submanifold of JY, with o/K-codimension at least two. 

This condition will be needed in our subsequent analysis. We expect this property 
not to be needed, but we have not investigated this question any further. 

(13) Let t be a time-function on averaging t over the orbits of the torus generated by the 
's we obtain a new time function such that the 's are tangent to its level sets. This reduces 

the problem to the analysis of zeros of Riemannian Killing vectors. 
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Theorem 5.8. — Let w<<<< be an (n+i; -dimensional Lorentzian manifold with s > 1 
linearly independent commuting Killing vectors <ù^** , /x = 0, . . , 3 - 1 , satisfying the 
inteqrabilitv conditions (5.8), as well as :5.i3), with the K(i) 's, i = 1, . . , 5 - 1 , 
spacelike. Suppose that {W = 0} \ 3?dgt is not empty, and for each p in this set 
consider the Killinq vector field L defined as^1^ 

5.14; lp — tf(o) << x<< << <<< 0 'K{ (o) <$^* (0 i|Pif(j), 

where i <<<^ùm 1 ¿5 í/ie matrix inverse to 

(5.15) << WO) :=fl( if (i) << 
J). < ùùc<< { i , . . . , 5 - i} << 

Then the distribution lp C T^¿ of vectors orthogonal to lp is integrable over the 
non-empty set 

(5.16) {qeJt <cw<< 0 (Zp, lp) < < 0, w («) = 0} {q e J( lp < = 0 << 

If we define Sp to be the maximally extended over {W = 0}, connected, integral leaf 
of this distribution passing through p, then all Sp's are Killing prehorizons, totally 
geodesic in <JK \ {lp = 0}. 

In several situations of interest the 5p's form embedded hypersurfaces which coin­
cide with connected components of the set defined in (5.16), but this is certainly not 
known at this stage of the argument: 

Remark 5.9. — Null translations in Minkowski space-time, or in pp-wave space-times, 
show that the S '̂s might be different from connected components of JV^,V\. 

Remark 5.10. — It follows from our analysis here that for q G Sp \ 2?dgt we have 
lq = lp. For q G Sp fl Sfdgt we can define lq by setting lq := lp. We then have lp = lq 
for all q E Sp. 

Proof. — Let 

(5.17) w := *(0) if(0),if(s_i)} if(0),if(s_i)} 

We need an equation of Carter [111: 

Lemma 5.11 ([11]). — We have 

Í5.18) w A dW = : - i w< Wdw. 

r14i If S = 1 then = 0 and lp = K(0V 
:i5i To avoid ambiguities, we emphasize that points at which lv vanishes do not belong to Sv. 
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Proof. — Let F = {W = 0} . The result is trivial on the interior F of F, if non-empty. 
By continuity, it then suffices to prove (5.18) on J£ \ F. Let 6 be the set of points 
in M \ F at which the Killing; vectors are linearly independent. Consider any point 

if(0),if(s_i)} and let (xa,xA) ), a = 0 , . . . , 5 - 1, be local coordinates near p chosen so that 

*(») x<<< and Span^ 9a _L Span dA •; this is possible by (5.8). Then 

w = — Wdx° <^*mm dx8'1 
5 

and (5.18) follows near p. Since & is open and dense, the lemma is proved. • 

Returning to the proof of Theorem 5.8, as already said, (5.8) implies that for every 

P i ^dgt there exists a unique, maximal. [n + 1 - s) -dimensional submanifold (not 
necessarily embedded), , passing through p and orthogonal to Span x<n,; xw<< >-i) '5 
that we denote by úp. By definition, 

(5.19) 0V n &dgt = 0 , 

and clearly 

(5.20 if(0),if(s_i)}vv^*ù w<< &v = Gq. 

Recall that p G W = 0 ^àgù then *(0) A ••• A c<< <p^m t¿ 0 in 0V and we may 
choose vector fields Ufa) e TM , /i = 0, ., s — 1, such that 

K(o) A ••• A w<< 
(8-1) << (0) << (s-1) = 1 

in some neighborhood of p. Let 7 be a Ck curve, k > 1, passing through p and con­

tained in up. Since 71 G T7(s)<̂ p = Span [*<0), <mù [s-l) ^w< 7(s) I, after contracting 
£.18) with x<< ,wa_i,7) we obtain the following Cauchy problem 

(5.21) 
A 
ds 

[W o 7) » if(0),if(s_i)} <v;: 
w\P = 0. 

Uniqueness of solutions of this problem guarantees that ^ o 7(5) = 0 and therefore 
W vanishes along the (n + 1 — s)-dimensional submanifold Ov. Since G preserves W', 
W must vanish on the sets 

(5.22) Sp :— Gs - Up. 

Here Gs- denotes the motion of a set using the group generated by the K^s, i = 
1,.. . , s — 1; if the orbits of some of the K^s are not complete, by this we mean "the 
motion along the orbits of all linear combinations of the K^s starting in the given 
set, as far as those orbits exist". Since TqGv is orthogonal to all Killing vectors by 
definition, and the K^s are spacelike, the K^)S are transverse to 0P, so that the 
Sp's are smooth (not necessarily embedded) submanifolds of codimension one. 

On {W = 0}\3fdgt the metric q restricted to Span{Jf(0),..., K(s_1)} is degenerate, 
so that Span{K(0),..., K(s_i)} is a null subspace of TM. It follows that for q G 
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W = 0] 2?<igt some linear combination of Killing vectors is null and orthogonal 
to Span w<<< <^*ù (s-l \, thus in Tqffp. So for q G [W = 0 3?dgt the tangent 
spaces TqSp are orthogonal sums of the null spaces TqÛp and the spacelike ones 

Span [Km, if(0),if(s_i)} We conclude that the 5p's form smooth, null, not necessarily 
embedded, hypersurfaces, with 

f5.23) Sp — G • c [W = 0] ^dgt, 

where the action of G is understood as explained after (5.22) 
Let the vector t = SV x K, (m) jhc<< € R be tangent to the null generators of Sp, thus 

5.24) l^ùm >9( K, 
x<< << << ;,< = 0. 

Since det I <p^ùm w<< <^*m cw< <!;, 0 with one-dimensional null space on {W = 0} 3?dgt-> 
5.24) is equivalent there to 

(5.25) << vmù^p x<< <^mm = 0. 

Since the K(i) 's are spacelike we must have x<< ¿0, and it is convenient to normalize 

£ so that = 1. Assuming <^*x<aa from 5.25) one then immediately finds 

5.26) e = *(o) w<< ̂$*^^ <;:! <ù* *<0) x<<< ^x<< 0< *<0) x<< 
bvx^ù bx<< 

where h o^ù<w< is the matrix inverse to 

'5.27) h (0ü) = 0 <^*m << <^*mm G [ 1 , . . . , * - ! ] 

To continue, we show that: 

Proposition 5.12. — For each x<<<;: x<< t/ie function 

Sp3q^ <^*ùù w<< :o(i) < ^*ù ̂(0),^(i))(9) 

zs constant over Sp. 

Proof — The calculations here are inspired by, and generalize those of [51, pp. 93-
941. As is well known, 

(5.28) dh{ d)(i) = -h [i)(m) h w<< dh m <^*ù 

Prom (5.4: '5.5) together with 2k 
w<< 

<^*ù 
xww 

= 0 we have 

dh :o(i) << d\ 01 w^*mmmw<< ww diK Km <n,;; x<< dKU) 

if(0),if(s_i)} - 1 2( n+1-2) - 1 x<<,;:: (i) x<< - l ì )n* < << c<<< 
^*m 
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with a similar formula for d\ 9( K,o) ' KU) . Next, 

dü (i) = d{ -h (i)U) fl( K(o)>KU)-

<,,;:! ifl( if(0),if(s_i)} ^cww dh (i)U) + h1 << ù* 51 [Km >KU) 

mc<< - 0 'Kto),K << h i )(m) < < << dh is) (m) + h w< (m) d[ 0' if(0),if(s_i)} 

<^*ù h (i)(m x< - 1 x<< if(0),if(s_i)} Ci), U)(s) * ^*w<< 
w<<<< 

A*düT(m)) 

+ - 1 n * (*(0) A*dî (m); 

<< - 1 <^ùm < x< * <<m^*m K(s) + *(0) I A *dK( m 

c<< - 1 ,n+l Ti1 w< [m * A *dK( (rn 5 

and 

**(0> <kmp^^ù :;o^< x<< << - 1 \n+l w<< p^ù*x<< /1 ;i)(m) * * (£ A '(rn) 
<< h{ i)(m <o^ùm ,iK ̂ *mm {£ A *dK m))-

Since ' x<< £ x<< <o^mù <p^ùmm (0 w<< = 0, we obtain 

**(0) •^(3-1) ^ A *dK m <op^ùm c<< **<0) <^*m 
(s-2) cw<< 

cw< 
if(0),if(s_i)} (m) 

+ :-l <o^m x<< <^*m *dK{ (m) Sp 

w<< << iK, (s-2) 
{I A t jp. 

<< *dK (m) Sp 
< - 1 ùù MK, (0) <<$*ù 

[s-i) 
<wwm^* (m] ùù 

ùù -1 x<< A * [dK, 
(m) 

AK (8-1] A---A K( (o) k,;:^$ 
cw<<< 

and therefore 

£.29) *k(0) << (s-1 * dQ, (i) \sp = 0. 

This last result says that dft^\sp is a linear combination of the K^s, so for each i 
there exist numbers 6 l such that 

(5.30) dQ (i) sp ̂ *ù xw<< ̂*^$ 

Now, the cw<< 's are clearly invariant under the action of the group generated by the 
w<,^*ù , which implies 

0 = w^*mmdsw <<< (0 = 0' ̂ *<< I, a <<^*m l 

This shows that a<"> ̂ (m: is orthogonal to all Killing vectors, so it must be proportional 
to I. Since TqSp = i1-, we are done. • 

Returning to the proof of Theorem 5.8, we have shown so far that Sp is a null 
hypersurface in {W = 0} \ 2?&Qt, with the Killing vector lv := £ as in (5.14) tangent 
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to the generators of Sp. In other words, Sp is a prehorizon. Furthermore, 

(5.31) TqJt 3Y e TqSp for some p 

W = 0, K, (0) A • • • A s-1) 1*^0, Y ±lp. 

For further purposes it is necessary to extend this result to the hypersurface Sp 
defined in the statement of Theorem 5.8. This proceeds as follows: 

It is well known [43] that Killing horizons are locally totally geodesic, by which we 
mean that geodesies initially tangent to the horizon remain on the horizon for some 
open interval of parameters. This remains true for prehorizons: 

Corollary 5.13. — Sp is locally totally geodesic. Furthermore, if 7 
geodesic such that 7(1) 0 Sp, then 7(1) G Sfdgt-

: [0,i; —> Sp is a 

Proof. — Let 7 : / —> M be an affinely-parameterized geodesic satisfying 7 (0) = q G 
Sp and 7 0 G TqSp <w:ù^^ 7(0), lP) = 0. Then 

5.32; 
d 

dt 
0' lit) )' P̂, = 0' x<<^$* 

:*) 7 ùù ùc< <^*ù 7 x<< <p^*ù lp = 0, 

where the first term vanishes because 7 is an affinely parameterized geodesic, while 
the second is zero by the Killing equation. Since 0(7(0), lp) = 0, we get 

(5.33) 0 v<< t) <^*ù = 0, Vt G /. 

We conclude that 7 remains perpendicular to Zp, hence remains within 5P as long as 
a zero of A • • • Aif(0),if(s_i)} is not reached, compare (5.31). • 

Consider, now, the following set of points which can be reached by geodesies ini­
tially tangent to Sp: 

5.34 Sp w<< {q : 3 a geodesic segment 7 : [0,11 —> M such 

that 71 I] = q and 7( (s) G Sp for s G [0,1)] {q •• lP{ = 0}. 

Then Sp C Sp, and if G Sp \ Sp then 9 G «2^* by Corollary 5.13. We wish to show 
that Sp is a smooth hypersurface, included and maximally extended in the set (5.16); 
equivalently 

(5.35 Sp — Sp. 

For this, let q G Sp, let & be a geodesically convex neighborhood of q not containing 
zeros of Zp, and for r G ̂  define 

(5.36) #r = exp^<<c r <<<^* cw< < ^*m 

here exp^>r is the exponential map at the point r G 6 in the space-time (^, g|̂ >). It 
is convenient to require that 6 is included within the radius of injectivity of all its 
points (see [64, Theorem 8.7]). Let 7 be as in the definition of Sp. Without loss of 
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generality we can assume that 7(0) G (?. We have 7(5) J_ lp for all s G [0,1), and by 
continuity also at s = 1. This shows that 7QO, 1]) C Rq. 

Now, i?7(o) is a smooth hypersurface in 6\ It coincides with Sp near 7(0), and every 
null geodesic starting at 7(0) and normal to lp there belongs both to i?7(o) and Sp until 
a point in 3?dgt is reached. This shows that J£7(o) is null near every such geodesic until, 
and including, the first point on that geodesic at which Sfdgt is reached (if any). By 
(5.13) -R7(o)n5p is open and dense in R7(o)- Thus the tangent space to i?7(o) coincides 
with lp at the open dense set of points -R7(o) H5P, with that intersection being a null, 
locally totally geodesic (not necessarily embedded) hypersurface. By continuity i?7(o) 
is a subset of (5.16), with Ti27(0) = lp everywhere. Since i?7(o) C 5p, Equation (5.35) 
follows. 

The construction of the Sps shows that every integral manifold of the distribution 
lp over the set 

(5.37 w<<< {q G M ^dgt <^*ù lp,lp) m = 0, ùw< << = 0} 

can be extended to a maximal leaf contained in Q \ {q\lp(q) = 0}, compare (5.16). 
To finish the proof of Theorem 5.8 it thus remains to show that there exists a leaf 
through every point in Cl\ {q\lp(q) — 0}. Since this last set is contained in the closure 
of Q, we need to analyze what happens when a sequence of null leaves SPn, all normal 
to a fixed Killing vector field lq, has an accumulation point. We show in Lemma 5.14 
below that such sequences accumulate to an integral leaf through the limit point, 
which completes the proof of the theorem. • 

We shall say that S is an accumulation set of a sequence of sets Sn if S is the 
collection of limits, as i tends to infinity, of sequences qni G Sni. 

Lemma 5.14. — Let SPn be a sequence of leaves such that lPn = lq, for some fixed 

q, and suppose that pn —> p. Iflq(p) ? 0, then p belongs to a leaf Sp with lp = lq. 
Furthermore there exists a neighborhood ^ of p such that if(0),if(s_i)} {lq(p)^)QSpnW<< 
is the accumulation set of the sequence x<<<^* cw< [Pn] << mù^$ 

<<<p^*ù 
fi W, n G N. 

Proof — Let ^ be a small, open, conditionally compact, geodesically convex neigh­
borhood of p which does not contain zeros of lq. Let SPn be that leaf, withinx<< 
of the distribution lq which contains pn. The 5Pn's are totally geodesic submani-
folds of °i/ by Corollary 5.15, and therefore are uniquely determined by prescribing 
P̂n Spn . Now, the subspaces if(0),if(s_i)} x<<w (Pn) << obviously converge to lq(p)± in the 

sense of accumulation sets. Smooth dependence of geodesies upon initial values im­
plies thatwww< ww<<e<<xwP^,Pn<< IqVPn ,_L> converges in w<< for any k, to <^*mm Mp) x<< ). Since 
W vanishes on exP^,pJ (lq(Pn << ), we obtain that W vanishes on <p^*ùc<< :^(p)±). 
Since <p^ù exp^,p„ :^(Pn)x) w<n;:ù ^^*$<< for any ̂ )Q^)SpnW Upu^) we conclude that 
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Tr expqf p w<< <^$ù (r) for any r G exp^>p ùw<<< • So exp^p (IçiP^ is a leaf, 

withm ^ , through p ot the distribution lq over the set (5.1b), and e 
SvCiW is the accumulation set of the totally geodesic submanifolds 

exp^ ( Mp^) << 
5 Spn fl^'s. • 

The remainder of the proof of Theorem 5.4 consists in showing that the Sps cannot 
intersect ((̂ #ext))- We start with an equivalent of Corollary 5.13, with identical proof: 

Corollary 5.75. — Sp is locally totally geodesic. Furthermore, if 7 : [0,1) —> Sp is a 
geodesic segment such that 7(1) ^ Sp, then lp vanishes at 7(1). • 

Corollary 3.8 shows that Killing vectors as described there have no zeros in 
((^ext))» and Corollary 5.15 implies now: 

Corollary 5.16. — Sp D ((^ext)) is totally geodesic in ((-#ext)) (possibly empty). • 

To continue, we want to extract, out of the 5p's, a closed, embedded, Killing 
horizon SQ. NOW, e.g. the analysis in [55] shows that the gradient of q(Ip, lp) is either 
everywhere zero on Sp (we then say that Sp is degenerate), or nowhere vanishing there. 
One immediately concludes that non-degenerate 5p's, if non-empty, are embedded, 
closed hypersurfaces in ((^ext))- Then, if there exists non-empty non-degenerate 
SJs, we choose one and we set 

'5.38' SQ — SP. 

Otherwise, all non-empty S'p's are degenerate; to show that such prehorizons, if non­
empty, are embedded, we will invoke analyticity (which has not been used so far). So, 
consider a degenerate component 5P, and note that Sp does not self-intersect, being 
a subset of the union of integral manifolds of a smooth distribution of hyperplanes. 
Suppose that Sp is not embedded. Then there exists a point q E 5P, a conditionally 
compact neighborhood & of q, and a sequence of points pn G Sp lying on pairwise 
disjoint components of 0 D 5P, with pn converging to q. Now, Killing vectors are 
solutions of the overdetermined set of PDEs 

^)QSpnW — R̂ $*<<wY 
— 1L fivp^ai 

which imply that they are analytic if the metric is. So g(lp, lp) is an analytic function 
that vanishes on an accumulating family of hypersurfaces. Consequently q(IPJP) 
vanishes everywhere, which is not compatible with asymptotic flatness. Hence the 
5p's are embedded, coinciding with connected components of the set {q(IP,IP) = 0 = 
W} \ {lp = 0}; it should be clear now that they are closed in ((^ext))- We define Ŝ " 
again using (5.38), choosing one non-empty 5P, 

We can finish the proof of Theorem 5.4. Suppose that W changes sign within 
((^ext))- Then SQ is a non-empty, closed, connected, embedded null hypersurface 
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within ((^ext))- Now, any embedded null hypersurface SQ is locally two-sided, and 
we can assign an intersection number one to every intersection point of SQ with a curve 
that crosses SQ from its local past to its local future, and minus one for the remaining 
ones (this coincides with the oriented intersection number as in [45, Chapter 3]). Let 
p G SQ , there exists a smooth timelike future directed curve 71 from some point 
q G ̂ #ext to p. By definition there exists a future directed null geodesic segment 72 
from p to some point r G ^ext intersecting S precisely at p. Since ~<#ext is connected 
there exists a curve 73 C ̂ #ext (which, in fact, cannot be causal future directed, but 
this is irrelevant for our purposes) from r to q. Then the path 7 obtained by following 
71, then 72, and then 73 is closed. Since SQ does not extend into ^ext5 7 intersects SQ 
only along its timelike future directed part, where every intersection has intersection 
number one, and 7 intersects SQ at least once at p, hence the intersection number 
of 7 with SQ is strictly positive. Now, Corollary 2.4 shows that ((̂ #ext)) is simply 
connected. But, by standard intersection theory [45, Chapter 3], the intersection 
number of a closed curve with a closed, externally orientable, embedded hypersurface 
in a simply connected manifold vanishes, which gives a contradiction and proves that 
W cannot change sign on ((̂ #ext))-

It remains to show that W vanishes at the boundary of ((^ext))- For this, note 
that, by definition of W, in the region {W > 0} the subspace of Tj^ spanned by 
the Killing vectorscw<<< is timelike. Hence at every p such that W(p) > 0 there 
exist vectors of the form if(0) + Yl,ai^{i) which are timelike. But d((^ext)) C 
J~(^ext)U/+(^ext)> and each of the boundaries /~(^ext) and /^(^ext) is invariant 
under the flow of any linear combination of K^s, and each is achronal, hence W < 0 
on d((^ext))5 whence the result. • 

In view of what has been said, the reader will conclude: 

Corollary 5.17 (Killing horizon theorem). — Under the conditions of Theorem 5.4, 
away from the set ^dgt as defined in (5.9), the boundary ((^ext)) \ ((^ext)) is a 
union of embedded Killing horizons. • 

Let us pass now to the 

PROOF OF THEOREM 5.6: Let 

7T : i^ext, ^)QSpnW w<< p^*ùww / ( R x u ( i ; 

p^$*< 
denote the quotient map. As discussed in more detail in Sections 6.1 and 6.2 (keeping 
in mind that, by topological censorship, ((^ext)) has only one asymptotically flat 
end), the orbit space Q is diffeomorphic to the half-plane w<mù x > 0] from 
which a finite number h > 0 of open half-discs, centred at the axis [x = 0] , have 
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been removed. As explained at the beginning of Section 7, the case h = 0 leads toww 
Minkowski space-time, in which case the result is clear, so from now on we assume 
h > 1. 

Suppose that {W = 0} fl ((^#ext)) is non-empty. Let po be an element of this set, 
with corresponding Killing vector field IQ := lPo. Let WQ be the norm squared of IQ: 

Wo := fli Jo,¿0)-

In the remainder of the proof of Theorem 5.2 we consider only those 5p's for which 
(Ui{bi} Uj Ij), 

Sp C W = 0] •n [Wo = 0} < 
We denote by Ctt(p; the image in Q, under the projection map ̂ *ù of Spn !«^ext) << 

^x<<< . Define 

Q = ;(^ext»/ RxU( l ) ) , 

<^*ù$$ {W0 = 0} n [^ = 0" n '(^ext) x<<ww / RxU( l ) << 

Thenw<<is a closed subset of Q, with the following property: through every point q 
of WQ there exists a smooth maximally extended curve CQ, which will be called orbit, 
entirely contained in W0B. The Cg's are pairwise disjoint, or coincide. Their union 
forms a closed set, and locally they look like a subcollection of leaves of a foliation. 
(Such structures are called laminations; see, e.g., [39].) 

An orbit will be called a Jordan orbit if CQ forms a Jordan curve. 
We need to consider several possibilities; we start with the simplest one: 

CASE I: If an orbit CQ forms a Jordan curve entirely contained in Q, then the cor­
responding Sp = 7r-1(Cq) forms a closed embedded hypersurface in ((^ext))> and a 
contradiction arises as at the end of the proof of Theorem 5.4. 

CASE II: Consider, next, an orbit CQ which meets the boundary of Q at two or more 
points which belong to 7r(^), and only at such points. Let Iq C CQ denote that part 
of CQ which connects any two subsequent such points, in the sense that Iq meets dQ 
at its end points only. Now, every Sp is a smooth hypersurface in M invariant under 
R x U(l), and therefore meets the rotation axis si orthogonally. This implies that 
7r~1(Iq) is a closed, smooth, embedded hypersurface in ((./#ext))? providing again a 
contradiction. 

To handle the remaining cases, some preliminary work is needed. It is convenient 
to double Q across {x = 0} to obtain a manifold Q diffeomorphic to R2 from which 
a finite number of open discs, centered at the axis {x = 0}, have been removed, see 
Figure 5.1. Connected components of the event horizon correspond to smooth 
circles forming the boundary of Q, regardless of whether or not they are degenerate. 
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cww 

FIGURE 5.1. The quotient space Q and its double Q. 

From what has been said, every C„ which has an end point at <p^m is smoothly 
extended in Q across \x = 0] by its image under the map w<< I—> mù^wwai I. We will 
continue to denote by Cq the orbits so extended in Q. 

The analvsis of CASES I and II also shows: 

Lemma 5.18. — An orbit Cq which does not meet dQ can cross the axis 
most once. 

x = 0) at 
• 

An orbit Cq will be called an accumulation orbit of an orbit Cr if there exists a 
sequence qn G Cr such that qn —» q. Every orbit is its own accumulation orbit. It is 
a simple consequence of the accumulation Lemma 5.14 that: 

Lemma 5.19. — Let Cq be an accumulation orbit ofCr. Then for every p G Cq there 
exists a sequence pn G Cr such that pn —• p. • 

We will need the following: 

Lemma 5.20. — Let rn G Cr be a sequence accumulating at p G TT (*0 \dQ. Then 
p G Cr, and Cr continues smoothly across [x = 0 at p. 

Proof. — By Lemma 5.14 there exists an orbit Cp crossing the axis x = 0 transver-
sally at p. Lemma 5.19 shows that Cr crosses the axis. But, by Lemma 5.18, Cr can 
cross the axis only once. It follows that Cr — Cp and that p G Cr- • 

Abusing notation, we still denote by W and WQ the functions Won and Wo on. If 
W and Wo vanish at a point lying at the boundary 9Q, then the corresponding circle 
forms a Jordan orbit. We have: 

Lemma 5.21. — The only orbits accumulating at dQ are the boundary circles. 
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Proof. — Suppose that rn G Cq accumulates at p G dQ. Then, by continuity, W(p) = 
WQ(P) = 0, which implies that the boundary component through p is a Jordan orbit. 
But it follows from Lemma 5.19 that any orbit accumulating at dQ has to cross the 
axis more than once, and the result follows from Lemma 5.18. • 

The remaining possibilities will be excluded by a lamination version of the Poincare-
Bendixson theorem. We will make use of a smooth transverse orientation of all the 
Sp's; such a structure is not available for a general lamination, but exists in the 

problem at hand. More precisely, we will endow ^<<w:!^* w<<< with a smooth vector 
field Z transverse to all Spsx<<<The construction proceeds as follows: Choose any 
decomposition of (^ext' Û $w<<as R x y, as in Theorem 4.5: thus each level set 
5?t of the time function t is transverse to the stationary Killing vector field KQ, with 
the periodic Killing vector K\ tangent to 5?t • Let q G Sp fl S^Q; as the null leaf Sp is 
transversal to S^o, the intersection S?o H Sp is a hypersurface in «y# of co-dimension 
two. There exist precisely two null directions at q which are normal to S^o fl Sp, one 
of them is spanned by lo(q)', we denote by Zq the unique future directed null vector 
spanning the other direction and satisfying Zq = Tq + Zq, where Tq is the unit timelike 
future directed normal to S^o at q, and Zq is tangent to 5?. 

The above definition of Zq extends by continuity to q G Sp fl Ĵ o-
Transversality and smoothness of IQ imply that there exists a neighborhood GQ of 

q and an extension ZQ of Zq to 6Q with the property that Zq(r) is transverse to Sr 
for everv r G ü„ satisfying Wo .r = W r = 0. The neighborhood ÜQ can, and will, 
be chosen to be invariant under R x U 1) ; similarly for Zq{r). 

Consider the covering of ^0n W = o] n \W = 0 by sets of the form ÜQ fl S^Q . 
Asymptotic flatness implies that wxx Wo = 0} n W = 0] is compact, which in turn 
implies that a finite subcovering 0i := 0qi can be chosen. Let (fi be a partition of 

unity subordinated to the covering of (^ext )U<f+ by the &iS together with 

0Q := ^ext, x^*mm W = 0 n-{^o = 0} mm 

The ifi's can, and will, be chosen to be : R X Ufi' Ì—invariant. Set 

Z := 
i>l 

mc<<< 

Then Z is smooth, tangent to an(i transverse to all Sps. 
Choose an orientation of Q. The vector field Z projects under TT to a vector field 

Zb on Q transverse to each Cq. For each r G Cq we define a vector Vq(r) by requiring 
Vq(r) to be tangent to C\ at r, with {Vq, Zb} positively oriented, and with Vq having 
length one with respect to some auxiliary Riemannian metric on Q. Then Vq varies 
smoothly along Cq, and each Cq is in fact a complete integral curve of its own Vq. 
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The vector field Vp along Cp defines an order, and diverging sequences, on Cp in the 
obvious way: we say that a point r' G Cp is subsequent to r G Cp if one flows from r to 
r' along VD in the forward direction; a sequence rn € Vp is diverging if rn = <f> v,,:!^** 
where <p(s) is the flow of Vp along Cp, with sn f oo or sn \ —oc. 

By Lemma 5.14, if a sequence rn G C9n tends to r G Cg, then the tangent spaces 
TCgn accumulate on TCq. This implies that there exist numbers en G {±1} such 
that enVqn ww< ̂Vq< r) 1 and this is the best one can sav in general. However, the 
existence of Z guarantees that <p^$* (r») w<<< r . 

We are ready now to pass to the analysis of 

CASE III: In view of Lemmata 5.18 and 5.21, it remains to exclude the existence 
of orbits Cq which are entirely contained within Q\dQ, and which do not intersect 
7T(j^), or which intersect 7r(gf) only once, and which do not form Jordan curves in 
Q. Since {W = 0} fl cî o is compact, there exists p G Q and a diverging sequence 
qn £ Cq such that qn —> p. Again by Lemmata 5.18 and 5.21, p £ dQ. The fact that 
Cp is a closed embedded curve follows now by the standard arguments of the proof 
of the Poincare-Bendixson theorem, as e.g. in [53]. The orbit Cp does not meet dQ 
by Lemma 5.21. If Cp met 7r(^), it would have an intersection number with {x = 0} 
equal to one by Lemma 5.18, which is impossible for a Jordan curve in the plane. 
Thus Cp is entirely contained in Q, which has already been shown to be impossible 
in CASE I, and the result is established. • 

Similarly to Corollary 5.17, we have the following Corollary of Theorem 5.6, which 
is essentially a rewording of Lemma 5.21: 

Corollary 5.22 (Embedded prehorizons theorem). — Under the conditions of Theo­
rem 5.2, away from the set 3?dgt as defined in (5.9), the boundary ((^ext)) \ ((^ext)) 
is a union of embedded Killing prehorizons. • 

5.3. The ergoset in space-time dimension four. — The ergoset E is defined 
as the set where the stationary Killing vector field K^ is spacelike or null: 

(5.39) E := {P\ 0( <ww K(0) w<< >0}. 

In this section we wish to show that, in vacuum, the ergoset cannot intersect the 
rotation axis within ((^ext)), if we assume the latter to be chronological. 

The first part of the argument is purely local. For this we will assume that the 
space-time dimension is four, that if (0) = X has no zeros near a point p, that K^ =Y 
has 27r-periodic orbits and vanishes at p, and that X and Y commute. 

Let T be any timelike vector at p, set 

(5.40) T := •27T 

0 
w^* [Y] .fdt, 
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then T is invariant under the flow of Y. Hence T1- is also invariant under Y. Letw<< 
denote expp(T±) D 6, where 6 is any neighborhood of p lying within the injectivity 
radius of expp, sufficiently small so thatcw<^mis spacelike; note that S^o is invariant 
under the flow of Y. A standard argument (see, e.g., [2] Appendix C) shows that Y 
vanishes on 

x<< := expp ;Kervr < 
and that siv is totally geodesic. Note that T € Ke rv r , which implies that ssv is 
timelike. 

We are interested in the behavior of the area function W near the set of points 
where Y vanishes. We have VW|^ = 0 and 
(5.41 ^)QSpnW << pôiw<< ^$*w< (0< {X,X >0 i(Y,Y] -9(X,Y)2) 

= - 2 x<< X,X)a(VuY,VvY) -01 [X,VuY)a(X,VvY) k 
The second term vanishes because X,Y]=0 I, with Y vanishing on si : 

XaV„Ya\ ̂ )QSpnW VnYu = --XaVaY„ + YaVaXv 
=0 

:-[X,Y]v=0. 

Now, the axis si is timelike, and the only non-vanishing components of the ten­
sor VYXV have a spacelike character on si. This implies that the quadratic form 
V'fjYaVvYoc is semi-positive definite. We have therefore shown 

Lemma 5.23. — If X is spacelike at p G si, then W < 0 in a neighborhood of p away 
from si. 

Under the conditions of Theorem 5.1, we conclude that X cannot be spacelike on 
si n ((^ext))- To exclude the possibility that g(X, X) = 0 there, (16) let w be defined 
as in (5.17), 

w = X" A Y c<<w; 
here, and throughout this section, we explicitly distinguish between a vector Z and 
its dual Zb := g(Z, •). We will further assume that X is causal at p, and that the 
conclusion of Lemma 5.11 holds: 

5.42) dW A w = Wdw. 

Let T denote the field of vectors normal to 5?$ normalized so that g(T,X) = 1; 
note that Tp is, up to a multiplicative factor, as in (5.40). Let 7 be any affinely 

(!6) The analysis in Section 6 shows that X cannot become null on si D ((^ext)) when the vacuum 
equations hold and the axis can be identified with a smooth boundary for the metric q; this can be 
traced to the "boundary point Lemma", which guarantees that the gradient of the harmonic function 
p has no zeros at the boundary {p = 0}. But the behavior of q at those axis points which are not on 
a non-degenerate horizon and on which X is null is not clear. 
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parameterized geodesic such that 7(0) = P, 71 (0) J. Tp and 7(0) X Xp; a calculation 
as in (5.32) shows that 

01 w<< p^*ù x<< I = 0 

along 7. As y is tangent to S^e, from (5.42) we obtain 

(5.43) 
dW 

ds 
<< Y,Y = Wdw (7,r,y). 

=dWAX>AYb(<y,T,Y) 

Now, iydit; = jSfyw — d iyw) = — d(ÌYw), so that 

<o^ù : 7 , r , r = -d ^)QSpnW ^*mmm 

= d -fll IY,X) <<< + 0 [Y,Y)Xb ^*mm 

x< - 0 (Y,X dY* + 9( YX. dXb :ix + 
x<< YX 

ds 

Inserting this in (5.43), we conclude that 

(5.44) d 
ds 

W 

0(YX) <^* x<< fll [Y,X] 

<< YX) 
dY*> + dXb ^*mcw X 0' 

W 
(Y,Y 

=-f 

Let h be the metric induced on 5?e by g. Then h is a Riemannian metric invariant 
under the flow of Y. As is well known (compare [19]) we have c~1s2 < g(Y,Y) = 
h(Y,Y) < cs2. Since T G KerVF we have dYb(T,-) = 0 at p. It follows that the 
function / defined in (5.44) is bounded along 7 near p. If g(X, X) = 0 at p, then the 
limit at p of W/g(Y9Y) along 7 vanishes by (5.41). Using uniqueness of solutions of 
ODE's, it follows from (5.44) that W vanishes along 7. But this is not possible in 
((•^ext)) away from si by Theorem 5.1. We have therefore proved that the ergoset 
does not intersect the axis within ((^ext)): 

Theorem 5.24 (Ergoset theorem). — In space-time dimension four, and under the con­
ditions of Theorem 5.1, is timelike on ((^ext)) H si. • 

A higher dimensional version of Theorem 5.24 can be found in [20]. 
A corollary of Theorem 5.24 is that, under the conditions there, the existence of 

an ergoset implies that of an event horizon. Here one should keep in mind a similar 
result of Hajicek [46], under conditions that include the hypothesis of smoothness of 
BE (which does not hold e.g. in Kerr [81]), and affine completeness of those Killing 
orbits which are geodesies, and non-existence of degenerate Killing horizons. On the 
other hand, Hajicek assumes the existence of only one Killing vector, while in our 
work two Killing vectors are required. 
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6. The reduction to a harmonie map problem 

6.1. The orbit space in space-time dimension four. — Let (jH , g) be a chrono­
logical, four-dimensional, asymptotically flat space-time invariant under a R x U(l) 
action, with stationary Killing vector field = X and 27r-periodic Killing vector 
field K(d =Y. Throughout this section we shall assume that 
(6.i) 

((e/#ext)) = R x M, where M is a three dimensional, simply connected manifold 

with boundary, invariant under the flow of Y, with the flow of X consisting of 

translations along the R factor. Moreover the closure M of M is the union of a 

compact set and of a finite number of asymptotically flat ends. 

Recall that (6.1) follows from Corollary 2.4 and Theorem 4.5 under appropriate con­
ditions. 

Because X and Y commute, the periodic flow of Y on ((^ext)) defines naturally 
a periodic flow on M; in our context this flow consists of rotations around an axis 
in the asymptotically flat regions. Now, every asymptotic end can be compactified 
by adding a point, with the action of U(l) extending to the compactified manifold 
by fixing the point at infinity. Similarly every boundary component has to be a 
sphere [50, Lemma 4.9], which can be filled in by a ball, with the (unique) action of 
U(l) on S2 extending to the interior as the associated rotation of a ball in R3, reducing 
the analysis of the group action to the boundary less case. Existence of asymptotically 
flat regions, or of boundary spheres, implies that the set of fixed points of the action is 
non-empty (see, e.g., [6, Proposition 2.4]). Assuming, for notational simplicity, that 
there is only one asymptotically flat end, it then follows from [83] (see the italicized 
paragraph on p.52 there) that, after the addition of a ball Bi to every boundary 
component, and after the addition of a point ¿0 at infinity to the asymptotic region, 
the new manifold M U Bi U {¿0} is homeomorphic to 53, with the action of U(l) 
conjugate, by a homeomorphism, to the usual rotations of S3. On the other hand, it is 
shown in [79, Theorem 1.10] that the actions are classified, up to smooth conjugation, 
by topological invariants, so that the action of U(l) is smoothly conjugate to the usual 
rotations of S3. It follows that the manifold M U Bi is diffeomorphic to R3, with the 
U(l) action smoothly conjugate to the usual rotations of R3. In particular: a) there 
exists a global cross-section M2 for the action of U(l) on M U Bi away from the set 
of fixed points STF, (17) with M2 diffeomorphic to an open half-plane; b) all isotropy 
groups are trivial or equal to U(l); c) SI is diffeomorphic to R. (18) 

We will use the symbol si to denote the set of fixed points of the Killing vector Y in M or in 
f̂, as should be clear from the context. 

,18) we are grateful to Allen Hatcher for clarifying comments on the classification of U(l) actions. 
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Somewhat more generally, the above analysis applies whenever M can be compact-
ified by adding a finite number of points or balls. A nontrivial example is provided by 
manifolds with a finite number of asymptotically flat and asymptotically cylindrical 
ends, as is the case for the Cauchy surfaces for the domain of outer communication 
of the extreme Kerr solution. 

Summarizing, under (6.1) there exists in ((^ext)) an embedded two-dimensional 
manifold M2, diffeomorphic to M2 « [0, oo) x R minus a finite number of points 
(corresponding to the remaining asymptotic ends), and minus a finite number of 
open half-discs (the boundary of each corresponding to a connected component of 
the horizon). We denote by M2 the manifold obtained by removing from M2 all its 
boundaries. 

6.2. Global coordinates on the orbit space. — We turn our attention now to 
the construction of a convenient coordinate system on a four-dimensional, globally 
hyperbolic, R x U(l) invariant, simply connected domain of outer communications 
((^ext))- Let M2 and M2 be as in Section 6.1. We will invoke the uniformization 
theorem to understand the geometry of M2; however, some preparatory work is useful, 
which will allow us to control both the asymptotic behavior of the fields involved, as 
well as the boundary conditions at various boundaries. 

For simplicity we assume that ((^ext)) contains only one asymptotically flat region, 
which is necessarily the case under the hypotheses of Theorem 2.3. On M2 there is a 
naturally defined orbit space-metric which, away from the rotation axis {Y = 0}, is 
defined as follows. Let us denote by g the metric on space-time, let X\ = X, X2 = Y, 
set hij = g(Xi,Xj), let W denote the matrix inverse to hij wherever defined, and on 
that last set for ZUZ2 € TPM2 set 

(6.2) q(Z1,Z2) = Q(ZuZ2)-ht>g(Z1,Xi)Q(Z2,Xj). 
Note that if Z\ and Z2 are orthogonal to the Killing vectors, then q(Zi,Z2) = 
g{Z\.Z2). This implies that if the linear span of the Killing vectors is timelike (which, 
under our hypotheses below, is the case away from the axis {Y = 0} in the domain 
of outer communications), then q is positive definite on the space orthogonal to the 
Killing vectors. Also note that q is independent of the choice of the basis of the space 
of Killing vectors. 

To take advantage of the asymptotic analysis in [19], a straightforward calculation 
shows that q equals 

(6.3) q(Z1,Z2) = j(Z1,Z2) -y(Y,ZiWY,Z2) 
^)QSpnW 

where 7 is the (obviously U(l)-invariant) metric on the level sets of t (where t is any 
time function as in Section 6.1) obtained from the space-time metric by a formula 
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similar to (6.2): 

(6.4) ^(Z1,Z2) = g(Z1,Z2) 
q(Z1,X)0(Z2,X)CW 

9(X,X) 

(So 7 is not the metric induced on the level sets of t by g.) The right-hand-side is mani­
festly well-behaved in the region where X is timelike; this is the case in the asymptotic 
region, and near the axis on ((^ext)) under the conditions of Theorem 5.24. 

In any case, the asymptotic analysis of [19] can be invoked directly to obtain 
information about the metric q at large distances. Recall that if the asymptotic 
flatness conditions (2.1) hold with k > 1, then by the field equations (2.1) holds with 
k arbitrarily large. We can thus use [19] to conclude that there exist coordinates xA, 
covering the complement of a compact set in R2 after the quotient space has been 
doubled across the rotation axis, in which q is manifestly asymptotically flat as well 
(see Proposition 2.2 and Remark 2.8 in [19]): 

(6.5; QAB - SAB = ok-3(r x). 

To gain insight into the geometry of q near the horizons, one can use (6.4) with X 
being instead the Killing vector which is null on the horizon. It is then shown in [18] 
that each non-degenerate component of the horizon corresponds to a smooth totally 
geodesic boundary for 7. (It is also shown there that every degenerate component 
corresponds to a metrically complete end of infinite extent provided that the Killing 
vector tangent to the generators of the horizon is timelike on ((.^ext)) near the hori­
zon, but it is not clear that this property holds.) Some information on the asymptotic 
geometry of 7 in the degenerate case can be obtained from [47, 66]; whether or not 
the information there suffices to extend our analysis below to the non-degenerate case 
remains to be seen. 

6.3. All horizons non-degenerate. — Assuming that all horizons are non-
degenerate, we proceed as follows: Every non-degenerate component of the boundary 
dM is a smooth sphere S2 invariant under U(l). As is well known, every isometry 
of S2 is smoothly conjugate to the action of rotations around the z axis in a flat R3, 
with the rotation axis meeting S2 at exactly two points. Thus, as already mentioned 
in Section 6.1, we can fill each component of the boundary dM by a smooth ball 
B3, with a rotation-invariant metric there. We denote by 7 any rotation-invariant 
smooth Riemannian metric on R3 which extends the original metric 7, and by q 
the associated two-dimensional metric as in (6.3). From what has been said we 
conclude that every non-degenerate component of the horizon corresponds to a 
smooth boundary dM/\](l) for the metric q, consisting of a segment which meets 
the rotation axis at precisely two points. The filling-in just described is equivalent to 
filling in a half-disc in the quotient manifold. Since the boundary dM is a smooth 
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U(l) invariant surface for 7, it meets the rotation axis orthogonally. This implies 
that each one-dimensional boundary segment of 9M/U(1) meets the rotation axis 
orthogonally in the metric q. 

Consider, then, a black hole space-time which contains one asymptotically flat end 
and N non-degenerate spherical horizons. After adding N half-discs as described 
above, the quotient space, denoted by M2, is then a two-dimensional non-compact 
asymptotically flat manifold diffeomorphic to a half-plane. Recall that we are assum­
ing (6.1), and that there is only one asymptotically flat region. We will also suppose 
that 
(6.6) W > 0 on ((^ext» \x<<and^)QSp 
(6.7) on ((̂ #ext)) H si the stationary Killing vector field X is timelike. 

Note that those conditions necessarily hold under the hypotheses of Theorem 5.1, 
compare Theorem 5.24. 

By (6.6) the metric q is positive definite away from si. Near si the metric 7 
denned in (6.4) is Riemannian and smooth by (6.7), and the analysis in [19] shows 
that si is a smooth boundary for q. After doubling across the boundary, one obtains 
an asymptotically flat metric on R2. By [19, Proposition 2.3], for k > 5 in (2.1) there 
exist global isothermal coordinates for q: 

(6.8) q = e2u(dx2 + dy2) with u x2+y2—*oo 0. 

In fact, u = Ofc_4(r~ ). The existence of such coordinates also follows from the 
uniformization theorem (see, e.g., [1]), but this theorem does not seem to provide the 
information about the asymptotic behavior in various regimes, needed here, in any 
obvious way. As explained in the proof of [19, Theorem 2.7], the coordinates (x,y) 
can be chosen so that the rotation axis corresponds to x = 0, with M2 = {x > 0}. 

The next step of the construction is to modify the coordinates (x, y) of (6.8) to a 
coordinate system (p, z) on the quotient manifold M2, covering [0, 00) x R, so that p 
vanishes on the rotation axis and the event horizons. This is done bv first solving the 
equation 

\PR = 0, 
on$^^= M2 fl {x2 + y2 < i?2}, with zero boundary value on dM2, and with Pr = x 
on {x2 + y2 = R2}. Note that 

C= sup x-pR, 
w<<<<< 

is independent of R, for R large, since x and pR differ only on the event horizons. 
Since Aax = 0, the maximum principle implies 

x — C < pr < x on Qr. 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2008 



246 P. T. CHRUSCIEL & J.L. COSTA 

By usual arguments there exists a subsequence p^ which converges, as i tends to 
infinity, to a ^-harmonic function p on M2, satisfying the desired boundary values. 
By standard asymptotic expansions (see, e.g., [15]) we find that Vp approaches Vx 
as x2 + y2 —> oo. In fact, for any j G N we have 

(6.9) p — X — 
3 

г=0 

<*i(y>) 
(x2+y2)i/2 + O((z2 + 2/2r0+1)/2) 

where <p denotes an angular coordinate in the (x, y) plane, with ai being linear com­
binations of cos(z<p) and sin(i<p), with the expansion being preserved under differ­
entiation in the obvious way. In particular Vp does not vanish for large x, so that 
for R sufficiently large the level sets {p = R} are smooth submanifolds. The strips 
0 < p < R are simply connected so, by the uniformization theorem, there exists a 
holomorphic diffeomorphism 

(x,y) (a(x,y),p(x,y)) 

from that strip to the set {0 < a < R, /3 G R}. By composing with a Mobius map we 
can further arrange so that the point at infinity of the (x, 2/)-variables is mapped to 
the point at infinity of the (a, /3)-variables. As the map is holomorphic, the function 
a(x, y) is harmonic, with the same boundary values and boundary and asymptotic 
conditions as p, hence a(x,y) = p(x,y) wherever both are defined. If we denote by z 
a harmonic conjugate to p, we similarly obtain that z — (3 is a constant, so that the 
map 

(6.10) (x,y) i-> (p,z) 

is a holomorphic diffeomorphism between the strips described above. Since the con­
stant R was arbitrarily large, we conclude that the map (6.10) provides a holomorphic 
diffeomorphism from the interior of M2 to {p > 0, z G R}, and provides the desired 
coordinate system in which q takes the form 

(6.11) q = e2u{dp2+ dz2). 

From (6.9) and its equivalent for z (which is immediately obtained from the defining 
equations dxp = dyz, dyp = —dxz) we infer that й —* 0 as у/p2 + z2 goes to infinity, 
with the decay rate u — Ok-±(r ) remaining valid in the new coordinates. 

In vacuum the area function W satisfies AqVW = 0 (see, e.g., [91]). If we as­
sume that W vanishes on d((^ext}) U si (which is the case under the hypotheses 
of Theorem 5.1), then W = p on d((^ext)) U si. Since Aqp = 0 as well, we have 
Aq(VW — p) = 0, with W — p going to zero as one tends to infinity by [19], and the 
maximum principle gives 

(6.12) Vw = p. 
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6.4. Global coordinates on ((^ext))« — According to Section 6.1 we have 

((^ext)) \ & ~ m x s1 x r ; X r, 

and this diffeomorphism defines a global coordinate system (t, <p, p, z) on (\^ext))x<<< 
with X = dt and Y = d^. Letting (xA) = (p,z) and (xa) = (t, <p), we can write the 
metric in the form 

0 = 5afe(^a + 6aAdxA)(dxb + 0 V ^ ) + qABdxAdxB, 

= :0a 
with all functions independent of t and (p. The orthogonal integrability condition of 

Proposition 5.3 gives 
dOa = 0, 

so that, by simple connectedness of R+ xR, there exist functions fa such that 0a = dfa. 
Redefining the xa's to xa + fa, and keeping the same symbols for the new coordinates, 
we conclude that the metric on ((^ext)) \ s/ has a global coordinate representation 

as 
(6.13) a = -p2e2Xdt2 + e"2A(d<p - vdt)2 + e2û{dp2 + dz2) 

for some functions v(p,z), A(p, z), with p, z and u as in Section 6.3, see in particular 
(6.12). We set 

(6.14) U = A + lnp, so that Bid^dtp) = p2e~2U = e~2X. 

Let lj be the twist potential defined by the equation 

(6.15) duj = *(dY AY), 

its existence follows from simple-connectedness of ((^ext)) and from d * (dF A7) = 
0 (see, e.g.,[91]). As discussed in more detail in Section 6.7 below (compare [91, 
Proposition 2]), the space-time metric is uniquely determined by the axisymmetric 

map 

(6.16) $ = (A,u) : R 3 \ ^ ^ H 2 , 

where H2 is the hyperbolic space with metric 

(6.17) 6:=dA2 + e 4 W , 

and si is the rotation axis si := {{0,0, z),z G R} C R . The metric coefficients can 
be determined from $ by solving equations (6.45)-(6.47) below. The map $ solves 
the harmonic map equations [36, 881: 

(6.18) \T\2 := (AA - 2eAX\Duj\2)2 + e4A(Au; + 4£>A • Du)2 = 0, 

where both D and A refer to the flat metric on R3, together with a set of asymptotic 
conditions depending upon the configuration at hand. 

We continue with the derivation of those boundary conditions. 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2008 



248 P. T. CHRUSCIEL & J.L. COSTA 

6.5. Boundary conditions at non-degenerate horizons. — Near the points 
at which the boundary is analytic (so, e.g., at those points of the axis at which X 
is timelike), the map defined by (6.10) extends to a holomorphic map across the 
boundary (see, e.g., [30]). This implies that u extends across the axis as a smooth 
function of p2 and z away from the set of points {q(X, X) = 0}. 

Let us now analyze the behavior of u near the points Z{ G si where non-degenerate 
horizons meet the axis. As described above, after performing a constant shift in the 
y coordinate, any component of a non-degenerate horizon can locally be described by 
a smooth curve in the ( := x -f iy plane of the form 

(6.19) y = 7(z), 7(0) = 0, j(x) = y{-x). 

Near the origin, the points lying in the domain of outer communications correspond 
then to the values of x + iy lying in a region, say Cl, bounded by the half-axis {x = 
0, y > 0} and by the curve x + ry(x), with x > 0. 

To get rid of the right-angle-corner where the curve x + ^{x) meets the axis, the 
obvious first attempt is to introduce a new complex coordinate 

(6.20) w := a + i(3 = —z£2. 

If we write 7(rr) = a2X2 + 0(x4), then the image of {x + i^ix), x > 0} under (6.20) 

becomes 

(6.21) fi(x + ii(x)) = 2a2x3 + 0(x5) i (x2 - alx4 + 0(x6)) 

= it + 2a2\t\3/2 + 0(\t\5/2) 

The remaining part {iy, y € K.+ }, of the boundary of fi, is mapped to itself. It follows 
that the boundary of the image of fl by the map (6.20) is a C1'1/2 curve. Here Ck'x 
denotes the space of fc-times differentiable functions, the fc'th derivatives of which 
satisfy a Holder condition with index A. 

To improve the regularity we replace — iÇ,2 by /2(C) = _»C2+cr3C3 f°r some constant 
<r3. Then (6.21) becomes 

(6.22) f2(x + ij(x)) = (2a2 + $ta3)x3 + 0(x5) - i (x2 + 0(x4)) -3(a3)0(z4) 

w<< 
= ii+(2a2 + 3?<73)|t|3/2 + 0(|t|5/2). 

The remaining part of the boundary of ft is mapped to the curve f2{iy), with y > 0: 

(6.23) h{iy) = $scr3y3 i(y2-$to3y3) 

= it + <Za3(\t\3/2 + 0(\t\2)). 
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and is thus mapped to itself if a3 is real. Choosing a3 = — 2a2 £ R one gets rid of the 
offending |£|3/2 terms in (6.22)-(6.23), resulting in the boundary of /2(fi) of C2'1/2 
differentiability class. 

More generally, suppose that the image of x + ij(x) by the polynomial map C |-» 
w = /fe-i(C) = ~*C2 + ••• nas a real Part equal to /32k-ix2k~1 + 0(#2/c+1); then 
the substraction from fk-i of a term /^fc-iC2*-1 leads to a new polynomial map 
£ —> w =x<<<< which has real part /?2fc+i£2/c+1 + 0(x2fc+3), and the differentiability 
of the image has been improved by one. Since all the coefficients /?2fc+i are rea^ 
the maps fk map the imaginary axis to itself. One should note that this argument 
wouldn't work if 7 had odd powers of x in its Taylor expansion. 

Summarizing, for any k we can choose a finite polynomial fk((), with lowest order 
term — i(2, and with the remaining coefficients real and involving only odd powers of 
£, which maps the boundary of £1 to a curve 

(6.24) (-e,e) 9 *»-(/*(«), «>(*)) 
;o,t), 
(0(ifc+1/2),t), 

* > 0; 

t < 0, 

which is Ck'1'2. 

Note that 

(6.25) MO :=>/*A(C) = C(l+0(|C|))cw<<, 

where denotes the principal branch of the square root, is a holomorphic diffeomor-
phism near the origin. So 

(6.26) ^)QSpnW^)w<QSpnWw<<< 

and we have 

(6.27) dwdw = 4\M'k\2dÇdÇ = 4Mtó\2dÇdÇ. 

We claim that the map 
w I—> Tj := p -\- iz 

extends across p = 0 to a Ck diffeomorphism near the origin. To see this, note that 
we have again Ap = 0 with respect to the metric dwdw, with p vanishing on a Cfc'1//2 
boundary. We can straighten the boundary using the transformation 

(6.28' w = (a, /?)-(<*- p(/3), /?) = w + (0(\ß\ fc+1/2 ,0) = ti; + 0(M fc+l/2> 

where // is as (6.24), and O(-) is understood for small \w\. Extending p with — p 
across the new boundary, one can use the standard interior Schauder estimates on 
the extended function to conclude that w h-» p(w) is C '̂1/2 up-to-boundary. Now, 
the condition dz = *dp, where • is the Hodge dual of the metric q, is conformally 
invariant and therefore holds in the metric dwdw, so z is a C^1'2 function of w. By 
the boundary version of the maximum principle we have dp ^ 0 at the boundary 
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(when understood as a function of w), and hence near the boundary, so dz is non-
vanishing near the boundary and orthogonal to dp. The implicit function theorem 
allows us to conclude that the map w i—• 77 is a Ck'1^2 diffeomorphism near w = 0. 

Comparing (6.8) and (6.11) we have 

(6.29) e2ûdridfj = q = e2udÇdÇ = eÀ lu 
4|«MI2 

dw dw. 

in particular dwdw = e2ukdr]dr], and from what has been said the function is 
£rfc-i,i/2 Up {.Q boundary. Hence 

(6.30) e2û = „2u+2uk 
4MKI2 

where u is a smooth function of (x2,y), while i\)'k is a non-vanishing holomorphic 
function of £ = x 4- iy, Uk is a Ck~l function of 77 = p + iz, and 77 1—• w is a Cfc 
diffeomorphism, with it; having a zero of order one where the horizon meets the axis. 
Finally x + iy is a holomorphic function ofx<<ô *ùmcompare (6.26). 

Choosing k = 2 we obtain 

(6.31) x<< 
1 

2 
In |w| + Ûi + Û2, 

where w is a smooth complex coordinate which vanishes where the horizon meets the 
axis, U2 = — Inx<<<12/2 is a smooth function of (x,y), and u\ is a C1 function of (p, 2). 

Taylor expanding at the origin, from what has been said (recall that 77 i—̂  ^ is 
conformal and that, near the origin, {p = 0} coincides with {a — p(/3) = 0}) it follows 
that there exists a real number a > 0 such that 

(p, z) = (a~2(a - M/3)), a~2p) + 0((a - /x(/3))2 + (32), 

which implies 

(6.32) (a,(3) = (a2p,a2z) + 0(p2 + z2). 

Here we have assumed that z has been shifted by a constant so that it vanishes at 
the chosen intersection point of the axis and of the event horizon. 

We conclude that there exists a constant C such that 

(6.33) |û + 
1 
2 

In p2 + z2\ <C near (0,0; 

This is the desired equation describing the leading order behavior of u near the meeting 
point of the axis and a non-degenerate horizon. 

6.5.1. The Ernst potential. — We continue by deriving the boundary conditions sat­
isfied by the Ernst potential (17, u;) near the point where the horizon meets the axis. 
Here U is as in (6.13)-(6.14), and UJ is obtained from the function v appearing in the 
metric by solving (6.45) below. 
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Our analysis so far can be summarized as: 

(6.34) x + iy = C »"* f̂c(C) = w<<^ùm ^)QSpnW^)QSpnW^)QSpnW 

Each map is invertible on the sets under consideration; and each is a Ck diffeomor­
phism up-to-boundary except for the middle one, which involves the squaring of a 

complex number. 
Using £ = tph (y/iw), the expansion 

i/j-^c + id) = (c + W)(l + 0 /c2 + d2; 

which follows from (6.25), together with (6.32), we obtain 

x + iy = a -z + ip + 0(p2 + z2). 

Equivalently, 

(6.35) x = 
ap 

2(z+ y/^Tp2) 
+ 0(p2 + z2), y = a z + z2 + p2 

2 
+ 0(p2 + z2). 

To continue, in addition to (6.1), (6.6) and (6.7) we assume that 

(6.36) The level sets of the function t, defined as the projection on 

the R factor in (6.1), are spacelike, with d^t = 0; 

this is justified for our purposes by Theorem 4.5. Thus, the Killing vector is 
tangent to the level sets of t, so that 

^)QSpnW^)QSpnW^)QSpnW 

where h is the Riemannian metric induced on the level sets of t. As shown in [19], 
we have 

(6.37) hid^dy) = f(x,y)x2, 

where the function f(x,y) is uniformly bounded above and below on compact sets. 
Recall that U has been defined as — | ln^^^p-2), and that (p, z) have been nor­

malized so that (0,0) corresponds to a point where a non-degenerate horizon meets 
the axis. We want to show that 

(6.38) U = \b z+^z2 + p2 + 0(1) near (0,0). 

(This formula can be checked for the Kerr metrics by a direct calculation, but we 
emphasize that we are considering a general non-degenerate horizon.) To see that, we 
use (6.37) to obtain 

ln(Bwp"2) = ln(x2p"2) + ln(flwaT2) = 21n(xp"1) 4- 0(1). 
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We assume that p2+z2 is sufficiently small, as required by the calculations that follow. 

In the region 0 < \z\ < 2p we use (6.35) as follows: 

ln(x p 1] x<< In 
a + /2 Z 

p 
Z 2 

P2 + 1 Oi 9 
3 / 2 

+ 
z 2 

p l / 2 > 

2(z+y/z2 + p2) 

= - I n 2(s + y/z2 + p 2 ) + 0(1) 

In the region z < 0 w e note that 

1 

P 
2(z + v ^ 2

 4- p2) 
2{z + z2

 + P 2 ) 2 ( - * + V ^ + P 2 ) 

P 2 ( - 2 + z2 + p 2 ) 

<< 
2 

2( -z + Vz2 + P2] 
< 

'2 
(z2+p2y/jj* 

Hence, again by (6.35), 

m(£ p x) = In 
a < l 

< 2(z + z2 + p2) 0(p2+z2) 

2(z + z2 + p2) 

= In 
a 0((p2 + z2)3/4' 

2(z z2 + p2) 
= - In 2(z + z2 + p2) )+o(i). 

In the region 0 < p < z/2 some more work is needed. Instead of (6.35), we want to 

use a Taylor expansion of p around the axis a = 0, where a is as in (6.20). To simplify 

the calculations, note that there is no loss of generality in assuming that the map ifik 

of (6.25) is the identity, by redefining the original (x,y) coordinates to the new ones 

obtained fromcww<Since in the region 0 < p < z/2 we have ¡3 > 0, the function p(/?) 

in (6.28) vanishes, so 

^)QSpnW ^)QSpnW 

=P((3(0,Z))=0 

+dpa(0,z)p + O(p2) : dpa(0,z)p + O(p2). 

Note that dpa(0,z) tends to a2 as z tends to zero, so is strictly positive for z small 

enough. Instead of (6.35) we now have directly 

x = 
a 

2(f3+VP2 + a 2 ) 

x 

P 

dpa{0,z) +Q(p) 

2(13+ y/(32 + a2) 
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In the current region a is equivalent to p, ß is equivalent to z, ß2 + oc2 is equivalent 
to 2, and z is equivalent to 2(z + 22 + p2), WHICH LEADS TO THE DESIRED FORMULA: 

LNORP-1) = - In 2(ß + x//32 + a2) + 0(1) 

= - In 2(* + \A2 + fl2 
2(j9 + s/ß2 + a2) 

2(^+ 7Ì2 + P2) 
+ 0(1) 

= -LR 2(^ + VZ2 + P2) + 0(1) 

This finishes the proof of (6.38). 
Let us turn our attention now to the twist potential u: as is well known, or from [24, 

Equation (2.6)] together with the analysis in [19], a; is a smooth function of (x,y), 
constant on the axis {x = 0}, with odd x-derivatives vanishing there. So, Taylor 
expanding in x, there exists a constant LOQ and a bounded function Co such that 

c<< = coo + u(x,y)x2 

(6.39) <=x<< 
w(x,y) ap + /2(z + z2 + p2) iO(p2 + z2\ 

\2 

2 > + 'z2 + p2) 
In our approach below, the proof of black hole uniqueness requires a uniform bound 

•n the distance between the relevant harmonic maps. Now, using the coordinates 
(A,a;) on hyperbolic space as in (6.17), the distance d& between two points (xi,u;i) 
and (#2,^2) *s implicitly defined by the formula [3, Theorem 7.2.1]: 

cosh(db) — 1 = 
(e-2xx _e-2*2)2 + 4 iui - lü2)2 

2g —2a:i —2x2 
Using the (U,u) parameterization of the maps, with U as in (6.14), the distance 
measured in the hyperbolic plane between two such maps is the supremum of the 

function dt, 

cosh((ib) — 1 = 
p4 e -2Ü! — e -2U2 i2 + +dpa(0,z)p \2 

2p*e-2U1-2U2 
1 
2 

e 2(U!-U2) 
+ e2 +w<<<dp 

- 2 +2 9 
-4 02(C/1+C/2) [üû^ — üüo) |2 

(a) (6) 
Inserting (6.38) and the analogous expansion for the Ernst potential of a second 
metric into (a) above we obviously obtain a bounded contribution. Finally, assuming 
u;i(0,0) = a;2(0,0), up to a multiplicative factor which is uniformly bounded above 
and bounded away from zero, (b) can be rewritten as a square of the difference of two 
terms of the form 

(6.40) fi :=ù>i(ai + p 1 2(z + rï2~Vf)0{p2 + z2) \2 
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with i = 1,2. We have the following, for all z2 + p2 < 1: 

1. The functions fi in (6.40) are uniformly bounded in the sector \z\ < p: 

l/il < c [ai 2{z+^/z2+p2)0(p+z2/p]ww< w<< 

2. For 0 < p < — z we write 

0 < z z2+p2 = \z\ 1 + P2 
z2 - 1 ) < C 

P2 
c<<^*ù 

so that 

+dpa(0,z)p 1 

|z| 11/2 
0(p2 + z2)) 2 :C(ai + 0(|z|3/2))2 $^*ù 

3. For 0 < p < z one can proceed as follows: by (6.37), together with the analysis 
of u) in [19], there exists a constant C such that near the axis we have 

(6.41) C - V < gid^dy) = h{dv,dv) < Cx2, x< ̂ $*ù x=C 
w<<^*m 

<Cx2 

(recall that h denotes the metric induced by g on the slices t = const, where t 
is a time function invariant under the flow of d^). But 

(6.42) 
(ui - UJ2) w< 

p4e-2U1-2U2 p^mm 
+dpa(0,z)p i2 

01( ,̂̂ )52( ,̂9<< l̂ll̂ ,) 
< 2 (vi - wo) \2 - (u2 - Up) 2 

+dpa(0,z)p+dw<< 

2 ^1 — Cu>0 
5i (dipidy) 

t 2 0i(d<p,d<p) 
02(9vp,^) 

+-2 Ĉ2 — ^0 
02(^,9^) 

v 2 B2(du,,du,) 
+dpa(0,z)p 

<c2 = +de2(t/2-C/1) <C2 = e2(U1-U2) 
where gi denotes the respective space-time metric, while Xi denotes the respec­
tive x coordinate. Uniform boundedness of this expression, in a neighborhood 
of the intersection point, follows now from (6.38). 

We are ready now to prove one of the significant missing elements of all previous 
uniqueness claims for the Kerr metric: 

Theorem 6.1. — Suppose that (6.1); (6.6)-(6.7) and (6.36) hold. Let (Ui,Ui), z = 1,2, 
be the Ernst potentials associated with two vacuum, stationary, asymptotically flat 
axisymmetric metrics with smooth non-degenerate event horizons. If uj\ = UJ2 on 
the rotation axis, then the hyperbolic-space distance between (UI,UJI) and (U2,uo2) is 
bounded, going to zero as r tends to infinity in the asymptotic region. 

Proof. — We have just proved that the distance between two different Ernst poten­
tials is bounded near the intersection points of the horizon and of the axis. In view 
of (6.7), the distance is bounded on bounded subsets of the axis away from the hori­
zon intersection points by the analysis in [19]. Next, both o;a's are bounded on the 
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horizon, and both functions p2e~2Ua's are bounded on the horizon away from its end 
points. Finally, both u;a's approach the Kerr twist potential at infinity by the results 
in [87] (the asymptotic Poincaré Lemma 8.7 in [21] is useful in this context), so the 
distance approaches zero as one recedes to infinity by a calculation as in (6.42), to­
gether with the asymptotic analysis of [19]; a more detailed exposition can be found 

in [31]. 

6.6. The harmonic map problem: existence and uniqueness. — In this sec­
tion we consider Ernst maps satisfying the following conditions, modeled on the local 
behavior of the Kerr solutions: 

1. There exists iVdh > 0 degenerate event horizons, which are represented by 
punctures (p = 0, z = b{), together with a mass parameter m¿ > 0 and an­
gular momentum parameter a¿ = ±ra¿, with the following behavior for small 

+dpa(0,z)p+dpa(0,z)p 

(6.43) 17 = In 
xww 

\2rrii/ 
+ 

1 

2 
In 1 

(z-bi) )2 

„2 
+ 0(n). 

The twist potential UJ is a bounded, angle-dependent function which jumps by 
—4Ji = —Aairrii when crossing bi from z < bi to z > bi, where J{ is the "angular 
momentum of the puncture". 

2. There exists Nn^ > 0 non-degenerate horizons, which are represented by 
bounded open intervals (c~,c+) = I* C si, with none of the previous fy's 
belonging to the union of the closures of the I{. The functions U — 2 In p and UJ 
extend smoothly across each interval Ii, with the following behavior near the 
end points, for some constant C, as derived in (6.38): 

(6.44) \U-
1 
2 

Ini p2 + ( * - C ± ) 2 + Z - C ± ) | < C near (0,cf). 

The function u is assumed to be locally constant on g/ \ (Ui{bi} Uj Ij), with 
expansions as in (6.39) nearby. 

3. The functions U and UJ are smooth across si \ (Ui{bi} Uj Ij). 

A collection {bi.rrii}^, Ij, j = l,...,iVndhj and {ujk}, where the u^'s are the 
values of Ui on the connected components of si \ (Ui{bi} Uj Ij), will be called "axis 
data". 

We have the following [24, Appendix C] (compare [33, 93] and references therein 
for previous related results): 

Theorem 6.2. — For any set of axis data there exists a unique harmonic map $ : 
R3 \ si —> M2 which lies a finite distance from a solution with the properties 1.-3. 
above, and such that UJ = 0 on si for large positive z. • 
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Here the distance between two maps $1 and $2 is defined as 

d($i ,$2)= sup d6($i(p),$2(p)), 
w<<<< 

where the distance p^ùùis taken with respect to the hyperbolic metric (6.17). 
We emphasize the following corollary, first established by Robinson [84] using dif­

ferent methods (and assuming \a\ < m, which Weinstein [91] does not); the approach 
presented here is due to Weinstein [91]: (19) 

Corollary 6.3. — For each mass parameter m and angular momentum parameter a £ 
(—m,m) there exists only one map $ with the behavior at the axis corresponding to an 
7+ -regular axisymmetric vacuum black hole with a connected non-degenerate horizon 
centered at the origin and with to vanishing on S/ for large positive z. Furthermore, 
no 1+-regular non-degenerate axisymmetric vacuum black holes with \a\ > m exist. 

Proof — Theorem 4.5 shows that (6.1) and (6.36) hold, (6.6) follows from Theo­
rem 5.1, while (6.7) holds by the Ergoset Theorem 5.24. One can thus introduce 
(p, z) coordinates on the orbit space as in Section 6.2, then the event horizon cor­
responds to a connected interval of the axis of length £, for some £ > 0. Let (U,u) 
be the Ernst potential corresponding to the black hole under consideration, with u 
normalized to vanish on S/ for large positive z. Let J be the total angular momentum 
of the black hole, there exists a Kerr solution (UK, &K), with UJK normalized to vanish 
on SI for large positive 2, and such that the corresponding "horizon interval" has the 
same length £. We can adjust the z coordinate so that the horizon intervals coincide. 
The value of u on the axis for large negative z equals 4 J, similarly for LUK, hence 
UJ = UJK on the axis except possibly on the horizon interval. Theorem 6.1 shows that 
(U,UJ) lies at a finite distance from (UK^K)- By the uniqueness part of Theorem 6.2 
we find (U,u) = (UK,UK), thus the ADM mass of the black hole equals the mass of 
the comparison Kerr solution, and \a\ < m follows. • 

6.7. Candidate solutions. — Each harmonic map (A, a;) of Theorem 6.2 with 
-Ndh + Nndh > 1 provides a candidate for a solution with N^h + n̂dh components of 
the event horizon, as follows: let the functions v and û be the unique solutions of the 

(19) Yet another approach can be found in [77]; compare [72, Section 2.4]. In order to become 
complete, the proof there needs to be complemented by a justification of the assumed behavior of 
their potential $ (not to be confused with the map <1> here) on the set {p = 0}. More precisely, 
one needs to justify differentiability of $ on {p = 0} away from the horizons, continuity of <£ and 
$>; at the points where the horizon meets the rotation axis, as well as the detailed differentiability 
properties of near degenerate horizons as implicitly assumed in [72, Section 2.4]. 
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set of equations 

(6.45) 
(6.46; 
(6.47) 

dpv = -e4Xp dzuj, dzv = e4Xp dpuj, 
dpu = p [(0p\)2 - (0ZX)2 + \e4X{{dpuj)2 - (dzuj)2)] + dp\ 

dzu = 2 p [dpX dz\ + \e4Xdpuj dzu] + dzX, 

which go to zero at infinity. (Those equations are compatible whenever (A, a;) satisfy 
the harmonic map equations.) Then the metric (6.13) satisfies the vacuum Einstein 
equations (see, e.g., [95, Eqs. (2.19)-(2.22)]). Every such solution provides a candidate 
for a regular, vacuum, stationary, axisymmetric black hole with several components 
of the event horizon. If N^h + ^ndh = 1 the resulting metrics are of course the Kerr 
ones 

At the time of writing of this work, it is not known whether any such candidate 
solution other than Kerr itself describes an /^-regular black hole. It should be em­
phasized that there are two separate issues here: The first is that of uniqueness, which 
is settled by the uniqueness part of Theorem 6.2 together with the remaining analy­
sis in this section: if there exist stationary axisymmetric multi-black hole solutions, 
with all components of the horizon non-degenerate, then they belong to the family 
described by the harmonic maps of Theorem 6.2. Note that Theorem 6.2 extends 
to those solutions with degenerate horizons with the behavior described in (6.43). 
Conceivably this covers all degenerate horizons, but this remains to be established. 

Another question is that of the global properties of the candidate solutions: for 
this one needs, first, to study the behavior of the harmonic maps of Theorem 6.2 near 
the singular set in much more detail in order to establish e.g. existence of a smooth 
event horizon; an analysis of this issue has only been done so far [69, 91] if Â h — 0 
away from the points where the axis meets the horizon, and the question of space-time 
regularity at those points is wide open. Regardless of this, one expects that for all 
such solutions the integration of the remaining equations (6.45)-(6.47) will lead to 
singular "struts" in the space-time metric (6.13) somewhere on 

7. Proof of Theorem 1.3 

If is empty, the conclusion follows from the Komar identity and the rigid 
positive energy theorem (see, e.g. [18, Section 4]). Otherwise the proof splits into 
two cases, according to whether or not X is tangent to the generators of<<<to be 
covered separately in Sections 7.1 and 7.2. 

7.1. Rotating horizons. — Suppose, first, that the Killing vector is not tangent 
to the generators of some connected componen t<of<<= Jf + fl/+(.y#ext)- Theo­
rem 4.14 shows that the isometry group of {JK, Q) contains R x U(l). By Corollary 2.4 
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((^ext)) is simply connected so that, in view of Theorem 4.5, the analysis of Section 6 
applies, leading to the global representation (6.13) of the metric. The analysis of the 
behavior near the symmetry axis of the harmonic map 3> of Section 6.5 shows that $ 
lies a finite distance from one of the solutions of Theorem 6.2, and the uniqueness part 
of that last theorem allows us to conclude; compare Corollary 6.3 in the connected 

case. 

7.2. Non-rotating case. — The case where the stationary Killing vector X is 
tangent to the generators of every component of ^ + will be referred to as the non-
rotating one. By hypothesis V(g(X, X)) has no zeros on S+, so all components of 
the future event horizon are non-degenerate. 

Deforming 5? near 35? if necessary, we may without loss of generality assume that 
5? can be extended across S+ to a smooth spacelike hypersurface there. 

For the proof we need a new hypersurface 5?" which is maximal, Cauchy for 
((«y#ext)), with X vanishing on 35?". Under our hypotheses such a hypersurface 
will not exist in general, so we start by replacing (^ ,g) by a new space-time (^ / ,£ | / ) 
with the following properties: 

1. (^',g') contains a region ((^ext))' isometric to (((«^ext)),0); 
2.(Ui \g!) is invariant under the flow of a Killing vector X' which coincides with 

X On ((^ext)); 
3. Each connected component of the horizonw<<is contained in a bifurcate Killing 

horizon, which contains a "bifurcation surface" where X' vanishes. We will 
denote by S the union of these bifurcation surfaces. 

This is done by attaching to ((^ ext)) a bifurcate horizon near each connected 
component of <f + as in [82], invoking Corollary 5.17. 

We wish, now to construct a Cauchy surface 5?' for ((^ext))' such that 35?' = S. 
To do that, for e > 0 let ge denote a family of metrics such that ge tends to g, as e 
goes to zero, uniformly on compact sets, with the property that null directions for ge 

are spacelike for g. Consider the family of £e-null Lipschitz hypersurfaces 

(Ui{bi} Ujw<<< Ij), 

where J+ denotes the boundary of the causal future with respect to the metric ge. 
The c/f̂ 's are threaded with g€-null geodesies, with initial points on S, which con­
verge uniformly to g-null geodesies starting from 5, hence to the generators ofx<< 
(withinx<<^*m It follows that, for all e small enough, jVe intersects 5? transversally. 
Furthermore, since <§+ is smooth, decreasing e if necessary, continuity of Jacobi fields 
with respect to e implies that the jV^s remain smooth in the portion between S and 
their intersection with 5?. Choosing e small enough, one obtains a smooth g-spacelike 
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hypersurfacew<with boundary at S, by taking the union of the portion of JY€ be­
tween S and where it meets<<<with that portion of 5? which extends to infinity and 
which is bounded by the intersection wi th<<and smoothing out the intersection. 
The hypersurface 5?1 can be shown to be Cauchy by the usual arguments [9, 40]. 

By [27] there exists an asymptotically flat Cauchy hypersurface 5?" for ((^ext))j 
with boundary on 5, which is maximal. 

We wish to show, now, that ((^ext)Y > and hence ((^#ext))j are static; this has been 
first proved in [89], but a rather simple proof proceeds as follows: Let us decompose 
X' as Nn + Z, where n is the future-directed normal to y", while Z is tangent. The 
space-time Killing equations imply 

(7.1) DiZj+DjZi = -2NKij, 
where gij is the metric induced o n < < K i j is its extrinsic curvature tensor, and 
D is the covariant derivative operator of gij. Since 5?" is maximal, the (vacuum) 
momentum constraint reads 
(7.2) DiKij = 0. 

From (7.1W7.2) one obtains 

(7.3) DiiK^Zj) = -NKijKij. 
Integrating (7.3) over y", the boundary integral in the asymptotically flat regions 
gives no contribution because<<approaches zero there as 0(l/rn_1), while Z ap­
proaches zero there as 0(l/rn~2) [25]. The boundary integral at the horizons vanishes 
since Z and N vanish on S = dS^" by construction. Hence 

(7.4) 
w<<< 

NKijKa = 0. 

On a maximal hypersurface the normal component AT of a Killing vector satisfies the 
equation 
(7.5) AN = KijKaN, 
and the maximum principle shows that N is strictly positive except at dS?n 
Staticity of ((^ext))' along 5?" follows now from (7.4). Moving the yfns with the 
isometry group one covers ((^ext))' [27], and staticity of ((^ext))' follows. Hence 
((^ext)) is static as well, and Theorem 1.4 allows us to conclude that ((^ext)) is 
Schwarzschildian. This achieves the proof of Theorem 1.3. • 

8. Concluding remarks 

To obtain a satisfactory uniqueness theory in four dimensions, the following issues 
remain to be addressed: 
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1. The previous versions of the uniqueness theorem required analyticity of both the 
metric and the horizon. As shown in Theorem 4.11, the latter follows from the 
former. This is a worthwhile improvement, as even C1-differentiability of the 
horizon is not clear a priori. But the hypothesis of analyticity of the metric 
remains to be removed. 

In this context one should keep in mind the Curzon solution, where analyticity 
of the metric fails precisely at the horizon. We further note an interesting recent 
uniqueness theorem for Kerr without analyticity conditions [59]. However, the 
examples constructed at the end of Section 2.3.1 show that further insights are 
needed to be able to conclude along the lines envisaged there. 

The hypothesis of analyticity is particularly annoying in the static context, 
being needed there only to exclude non-embedded Killing prehorizons. The 
nature of that problem seems to be rather different from Hawking's rigidity, 
with presumably a simpler solution, yet to be found. 

2. The question of uniqueness of black holes with degenerate components of the 
Killing horizon requires further investigations. Recall that non-existence of sta­
tionary, vacuum, 7+-regular black holes with all components of the event hori­
zon non-rotating and degenerate, follows immediately from the Komar identity 
and the positive energy theorem [58] (compare [18, Section 4]). Furthermore, 
the results here go a long way to prove uniqueness of degenerate, stationary, 
axisymmetric, rotating configurations: the only element missing is an equiva­
lent of Theorem 6.1. We expect that Theorem 2.2 can be useful for solving this 
problem, and we hope to return to that question in the near future. 

In any case, the above would not cover solutions with degenerate non-rotating 
components. One could exclude such solutions by proving existence of maximal 
hypersurfaces within ((^ ext)) with an appropriate asymptotic behavior at the 
cylindrical ends. The argument presented in Section 7.2 would then apply to give 
staticity, and non-existence would then follow from [26], or from Theorem 1.4. 

3. The question of existence of multi-component solutions needs to be settled. 
And, of course, the question of classification of higher dimensional stationary black 

holes is largely unchartered territory. 
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A N E W NONFORMAL NONCOMMUTATIVE CALCULUS: 

ASSOCIATIVITY AND FINITE PART REGULARIZATION 

by 

Hideki O m o r i , Y o s h i a k i M a e d a , N a o y a M i y a z a k i &; A k i r a Y o s h i o k a 

Abstract. — We interpret the element* v + v * u) * v + v * v + v * u) in the generators u, v of 

the Weyl algebra W2 as an indeterminate in N + |<< or — (N + using methods of 
the transcendental calculus outlined in the announcement [13]. The main purpose 
of this paper is to give a rigorous proof for the part of [13] which introduces this 
indeterminate phenomenon. Namely, we discuss how to obtain associativity in the 
transcendental calculus and show how the Hadamard finite part procedure can be 
implemented in our context. 

Résumé (Un nouveau calcul non-formel et non-commutatif : associativité et régularisation des 
parties finies) 

Nous interprêtons l'élément ^ (u * v + v * u) dans les générateurs u,v de l'algèbre 
de Weyl W2 en tant qu'indéterminés dans N + ^ ou — (N + | ) , en utilisant des 
méthodes du calcul transcendental décrit dans l'annonce [13]. Le but principal de 
cet article est de donner une preuve rigoureuse de la partie de [13] qui introduit ce 
phénomène indéterminé. A savoir, nous discutons la manière d'obtenir l'associativité 
dans le calcul transcendental et de montrer comment la procédure de parties finies 
de Hadamard peut être implémentée dans notre contexte. 

1. Introduction 

Deformation quantization, first proposed in [3], is a fruitful approach to developing 

quantum theory in a purely algebraic framework, and was a prototype for noncom-

mutative calculus on noncommutative spaces. It was first treated as a formal non-

commutative calculus, with the Planck constant h regarded as a formal parameter, 

but has been extended to nonformal cases, as in the studies of noncommutative tori 

2000 Mathematics Subject Classification. — 53D55, 53D10; 46L65. 
Key words and phrases. — Weyl algebra, transcendental calculus. 
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[18] and quantum groups [20]. In fact, the formal and nonformal noncommutative 

calculus have quite different features. 

In [12], we analyzed star exponential functions of quadratic forms in the Weyl 

algebra and uncovered several mysterious phenomena unanticipated from the formal 

case. These mysterious phenomena reflect the fact that star exponential functions 

of quadratic forms (see [11] and [15]) lie outside of the Weyl algebra. These new 

features suggest a new approach to noncommutative nonformal calculus. In this 

paper, we show that this new calculus is necessary to treat transcendental elements 

of the Weyl algebra. 

From the papers [12]-[13], we know that the Moyal product, the most typical 

product on the Weyl algebra, is not sufficient to treat transcendental elements such 

as star exponential functions. For this reason, we introduced a family of ^ - p r o d u c t s 

on the Weyl algebra depending on a complex symmetric matrix K and developed a 

transcendental nonformal noncommutative calculus specifically formulated to treat 

star exponential functions of quadratic forms. The transcendental elements of the 

Weyl algebra have a realization depending on the *^-product , which we called the 

K-ordered expression. Thus, properties of (transcendental) elements of the Weyl 

algebra depend on the choice of product * x , 

We now propose as a principle, called the Independence of Ordering Principle 
( IOP) , that the relevant properties of transcendental elements of the Weyl algebra 
do not depend on the choice of ordered expression, just as properties and objects in 
differential geometry do not depend on the choice of coordinate expression. Following 
this principle, in [12] we proposed the notion of a group-like object of star exponential 
functions of quadratic forms on the Weyl algebra. The IOP seems to be a new outlook 
on interpreting physical phenomena/mathematical phenomena, especially for treating 
quantum objects and phenomena from an algebraic point of view. 

As a test case, we examine this principle on the nonformal noncommutative calculus 
for transcendental elements of the Weyl algebra. As part of this approach, we interpret 
an element as an indeterminate in a discrete set in the case of the Weyl algebra with 
two generators. 

Let W2 be the Weyl algebra with generators u, v obeying the commutation relation 

i) \u, v) = —ih. 

We consider the element 1 
ih u o v= 1 

2ih u * V + V * u of W2- We show that j ^ u o v can 

be interpreted as an indeterminate in N + 1 
2 or — N + 1 

2> not from a more standard 

operator theoretic point of view but from a purely algebraic approach, using the IOP 

that a physical/mathematical object should be independent of its various ordered 

expressions. 
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In our approach, we interpret j^uov in two ways: 1) via the analytic continuation of 

inverses of z+ j^uov and 2) via the *-product of the *-sin function and the *-gamma 

function using ordered expressions. These results have been already announced in 

[13] with outlines of proofs. The main purpose of this paper is to give a rigorous 

description of method 1) and therefore to realize j^u o v as an indeterminate in the 

discrete set. The main ingredients of the proof are dealing with associativity in the 

framework of the transcendental calculus of [13] and applying the Hadamard finite 

part procedure in this context. For a family of *x-products on the Weyl algebra W2, 

we provide rules for the associativity of the extended products * K , and in preparation 

for the definition of the inverse of z + 1 
ih 

uov, we investigate star exponentials e* 
cww I ih uov 

and their ordered versions. 

We leave the the finite part regularization method for Frechet algebra valued func­

tions in the subsection 6.1. For a holomorphic function f(z) with a pole at z = zo, 

we define the finite part of f(z) as 

F P ( / W ) = 

w^^ Z T¿ Z0 

x<<pml 1 
w f(z0 + w) Z = Z0. 

We first construct the inverses of z x<< 1 
ih 

uov by using the star exponential function 

z+ 
6* 

TKuox 
and a if-ordered expression. We can construct two inverses of z + ïhUOVÎiS 

follows: 

<oml Q 
ih 

uov) _ 1 
^$ù x<< 

*0 

— 00 

$^ùù z+ 1 
ih 

uov dt 

and 

z + 
1 

ih 
uov -1 

* — x<<< 
00 

'0 
pol t xq 1 

ih uov) dt 

(see [7] and flOl for more details). Both inverses have analytic continuations for 

generic ordered expression. In §6, we mainly study the inverse 

other inverse has similar properties. 

In §6, we show the following: 

> + 1 
ih uov -1 

/*+> 
as the 

Theorem 1.1. — For qeneric ordered expressions, the inverses z + 1 
ih uov )*+> 

(z- 1 
ih 

uov -1 
*— extend to £2+(C)-valued holomorphic functions of z onC— - : N + D 

Here, we refer the class £2+(C2) in the subsection 2.2. 

Employing the Hadamard technique of extracting finite parts of divergent integrals, 

we now extend the definition of the *-product using finite part regularization. We 

define the new product of z+ 1 
ih uov )*± with either the polynomial q(u, v) or q{u, v) = 

S-krUOV e ih * by 

(2) ^ùù* _1_ 
ih 

uov -1 
*± 

cx<< U, V <p^^ F P i z + 1 
ih 

uov _i 
<<< *<?( u,v). 
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Note that the result may not be continuous in z. 

The following is an description of the discrete phenomena for j^u o v via method 

1): 

Theorem 1.2. — Using definition (2) for the *-product, we have 

(3) <<op l 
ih uov * z + 1 

ih 
u o v) \-l 

x<w<< ^$$ 
1 - < 

n! ' 
1 
ih w< 

1 

n * v c<<+ v * u) 

* v ^ùmm+ v * u) 1 
2 

z = — [n + 1-2> 

(4) 2 — 1 
ih 

u o v) I* 2 — 1 
cww 

^$*ùùù -1 
* — 

x<< 
1 - 1 

n! 
1 

<< $^^ 

< 

n * ̂700 * V*™ 

* v + v *x<< u) l 
2 << 

z = -In 4 l 
2 

/or generic ordered expressions. 

We will interpret this discrete phenomena for j^uov via method 2) in a forthcoming 

paper. 

We would like to thank Steven Rosenberg and Sylvie Paycha for their suggestions 

about regularization methods. 

Finally, we are honored to contribute our paper to the Proceedings for the 60th 

birthday celebration of Jean Pierre Bourguignon, whose friendship with us for over 

20 years we warmly acknowledge. 

2. General ordered expressions and IOP 

We introduce a method to realize the Weyl algebra via a family of ordered expres­

sions. This leads to a transcendental calculus for the Weyl algebra. 

2.1. Fundamental product formulas and intertwiners. — Let 6 (n ) and 2l(n) 

be the spaces of complex symmetric matrices and skew-symmetric matrices respec­

tively, and set SDt(n) = 6 (n ) 0 St(n). We denote by u the set of generators u — 

(u\,... ,U2m)- For an arbitrary fixed nxn-complex matrix AE9Jt(n), we define a 

product *A on the space of polynomials C[u] by the formula 

j^mm /*A0 = fe ih 
2 

r ^ A ^ ' a ^ ; 
9 = 

k 

[ih) 

k\2k 
A*iii . . .A^a ...aUijdu....au3kg. 

It is known and not hard to prove that (C[ix], *A) is an associative algebra. 

The algebraic structure of (C[tx], *A) is determined by the skew-symmetric part of 

A, if the generators are fixed. In particular, if A is a symmetric matrix, (C[u], *A) is 

isomorphic to the usual polynomial algebra. 
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For every symmetric matrix K G* v + v * xxxw<<u) the operator 

5 Io f = exp 
xww 

4 
x<< 

* v + v * u) 
* v + v * u) 

if 

gives an isomorphism io : ( C [ u ] , . A ) - ( C [ u ] , . A + J . Namely, for any / , g € C[u] : 

7) Io f *A 9) = Io /)*A+K Io ^ùù 

Let A = K + J be the symmetric/skew symmetric parts of A, K G 6 (n ) , J G 2l(n). 

Changing K while leaving J fixed will be called a deformation of the expression of 

elements, as the algebra remains in the same isomorphism class. 

We view these expressions of algebra elements as analogous to the "local coordinate 

expression" of functions on a manifold. Changing K corresponds to a local coordinate 

transformation on a manifold. In this context, we call the product formula (5) the 

K-ordered expression, i.e. ignoring the fixed skew part J, and *K stands sometimes 

for *A with J understood. 

The big difference from local coordinate expressions for functions on a manifold is 

precisely that in our context there is no "underlying topological space". 

In the following we set n = 2m and J = 
0 ^ùw< 

x<<< 0 
. (C[n], *A) is called the Weyl 

algebra, with isomorphism class denoted by W^m-

According to the choice of K = 0, 
0 <<^* 

^w<< o 5 
0 Ira 

Im 0 5 the jftT-ordered ex­

pression is called the Weyl ordered, the normal ordered and the anti-normal ordered 

expressions, respectively. The intertwiner between a if-ordered expression and a K '-

ordered expression is given by 

(8) 
<pm ( / ) = exp 

ih 

4 
^w<< 

(K'ij - Kij)dUidUj' f = i f Io) 
<<^ù w<< 

giving an isomorphism 
<^ù$ 

•• (C[tt];.K+J) - > ( C [ « ] ; W between algebras. 

2.2. Extension of products and intertwiners. — 

In what follows we write for *#+J for simplicity. Let C[ti][[fi]] be the space 

of all formal power series in h with polynomials in u as coefficients. Obviously, the 

*„-product and the intertwiners extend naturally to CftAlffftH by the same formu-

las. № ] [ [ / ! ] ] , * J K' 
is an associative algebra and IK is an algebra isomorphism from 

№][[ /*] ] ,**) to (C[tt][[R]]lV). 
Let Hol(Cn) be the space of all holomorphic functions on Cn with the topology 

of uniform convergence topology on compact domains. The following fundamental 
lemma follows easily from the product formula (5) together with Taylor's formula: 
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Lemma 2.1. — Let p(u) be either a polynomial of u or an exponential function of a 
linear combination of generators p(u) = eYlaiUi. Then the left multiplication p(u)*K 
(resp. the right multiplication *Kp(u) ) is a continuous linear mapping from Hol(CN) 
to itself. Associativity (f*K9>Kh = f*K{g*Kh) holds if two of f, q, h are polynomials. 

For every positive real number p, we set 

(9) £P(CN) = [f G Hol(Cn) I ||/||p,a = sup l/l e s\t\p < oo, Vs > 0} 

where |£| = (J2i \ui\ ) • The family of seminorms {|| • ||p,s}s>o induces a topology 
on £P(CN) and (£p(Cn),-) is an associative commutative Frechet algebra, where the 
dot • is the ordinary product for functions in £P(CN). 

Let i f be a polynomial of order p. Then, eH G £P'(CN) for every p' > p, but 
eH £ £P(CN). Note also that exptfH G £p'/q for every pf > p on a suitable Riemann 
surface. 

It is easily seen that for 0 < p < pf, there is a continuous embedding 

w<< £p(Cn)c£p,(Cn) 

as commutative Frechet algebras (cf. [4],[15]), and that £P(CN) is Sp(m, C)-invariant. 
It is obvious that every polynomial is contained in £P(CN) and that C[u] is dense 

in £P(CN) for any p > 0 in the Frechet topology denned by the family of seminorms 
{|| ||p,s}s>0-

Theorem 2.1. — Assume 0 < p < 2. The product formula (5) extends in the following 
way: 
(а) The space (£p(Cn),*K) forms a complete noncommutative topological associative 
algebra over C (cf. [11]). 
(б) The intertwiner I* extends to an isomorphism of(£P(CN), *K) onto z£se//(cf.[12]). 

See also [15] for the general case with precise proofs and several comments. 

It is easily seen that the following identities hold on £JCn), p < 2: 

( u f, 
K' 

w<< 
^ùùmm = i, 

xw<< 
^ùmvx 

K' 
< 

^ùmm 
^c<aa 

For every / G £P(CN) such that p < 2, f(K) = IQ (f) is globally defined on 6 (n ) . 

Thus, we naturally extend our object / to the space of all mutually intertwined 

sections \f(K)\K G &(n)} of the trivial bundle * v +x< v * u) £p c<<ol^ù c<< , 0<p<2. 

However, several anomalous phenomena occur in the space (£2+(c"),*K; vxx 

r W W * ) , . * ) . See [7]-[10], [12]-[14]. 

Theorem 2.2. — For every pair [p,Pf such that l v + 
j_ 
v' > 1 the product (5) extends to 

a continuous bilinear mapping £p x £pl ^*ùù * v + v * u) CN). 
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By Theorems 2.1 and 2.2, associativity / * (g * h) = (/ * g) * h holds for / , h G 
£2(Cn). Moreover if one of f,g,h is in £p\ cn), P > 2, then by using the polynomial 

approximation theorem, we have that associativity holds if the two others are in 
£D/(Cn) such that l + < > 1. 

x< v' 
Since £p(Cn) is a Frechet space, we have: 

Lemma 2.2. — Let M be a compact domain in Rm, and let x i—• fx e £p(Cn be a 
continuous mapping of M into £p(Cn). Then the integral J M fxdVx of fx on M is an 

element of £p(Cn). 

3. Star exponential functions 

In differential geometry, it is widely accepted that geometrical notions should have 

coordinate free expressions. Obviously, the algebraic structure of (C[IX],*A) depends 

only on the skew part of A. This analogy with geometry makes it plausible to in­

troduce the Independence of Ordering Principle (IOP), namely that the algebraic 

interpretation of physical phenomena should be independent of the choice of ordered 

expression (cf. [1]). 

In fact, this principle for the class £2(Cn) is reflected in Theorem 2.1. However, as 

will be seen below, we have to think carefully about the true meaning of IOP, since 

there are many delicate anomalous phenomena in the transcendental calculus of star-

exponential functions. In spite of these difficulties, we believe that properties which 

appear in generic (i.e. almost all/open dense) ordered expressions are fundamental 

features of this theory. In the end, IOP provides deeper insight into the extended 

Weyl algebra. 

For an element H* of the Weyl algebra, we define the *-exponential function e*/1* 

as the family {ft(K)} of real analytic solutions of the evolution equation 

(12) 
d 

dt 
ft K <xwoùm ̂ ^$w< ft K), 

with the initial condition fn(K) = 1. We think of f+(K) as the if-ordered expression 

of elH* , and denote it by .PtH+ 
• K = ft(K). 

Provided .paHm. 
•C* • K exists for every s G C, they form a complex one parameter 

subgroup, for the exponential law holds by the uniqueness of real analytic solutions. 

If :e%H*: K exists for every s G R, it is a real one parameter subgroup. 

If we have the real analytic solution of (12) with initial condition fo(K) = o, 

then it is natural to denote the solution by <o^^$** 
K*K9' This definition works for 

g e £P(C2m), p>2. 

Warning In general, (12) is a misleading definition, as we can expect neither the 

existence of a solution of (12), nor any continuity in the initial data. For il* = ^tuoy, 
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there are branching singular points in elH*. If if* is an exponential function such as 

eauv, then (12) is not a partial differential equation, but rather a difference-differential 

equation (cf.[7]). 

If if* is a quadratic form, :e%H*: K is defined with a certain discrete set of singu­

larities, as we shall see in §3.1. In general, there is no reflection symmetry for the 

domain of existence of the solution of (12). 

3.1. General properties of *-exponential functions. — For a given if, suppose 

that (12) has real analytic solutions in t on some domain D(K) including 0 for the 

initial functions 1 and g. We denote the solution of (12) with initial function g by 

(13) .etH. :K*K9, t G D{K). 

Proposition 3.1. — f/if* is a polynomial and '.e1/1*: K is defined on a domain D(K), 

then x<<: K*KP> (tt) is defined for every polynomial p(u) on the same domain D(K). 

ifp(u) = Y:Aa(S)ua is a polynomial whose coefficients depend smoothly on s, then 

the formula 

dì: 
w<< 
mù^^ -•K*KP*> u x<<w ^ùm * 

K K 
dip( :«) 

holds for every £. 

Proof Multiplying the denning equation (12) by *p(u) and applying the associativity 

in Lemma 2.1, we have 

(14) 
m 

df 
w< <$*ù *p(u) = '.if* : K K [ft(K)*p(u)), fo(K) = 1. 

Since ft(K) *p(u) is a real analytic solution, this is written in our notation as 

p(u). Applying di to (14) gives the second assertion by a similar argument. 

e\H* * 

• 

Let Pn be the space of polynomials of degree at most n. Then there are natural 

inclusions Pn C Pn+i- We view C[u] as the inductive limit lim^Pn with the inductive 

limit topology. The second assertion of Proposition 3.1 then yields continuity with 

respect to the initial condition in the inductive limit topology. We use this topology 

in calculations with inverse elements. However, we should remark that C[u] is not a 

Frechet space in this topology, as the first axiom of count ability fails. 

Remark Although .ptHm. w<<^*ù = 0, since (12) is linear, it does not necessary follow 

that 
<ww^m w<<^ù x<<pmùù U) = 0, when limfcPfc(n) = 0 in the uniform convergence topology. 

Suppose w<< is singular at t = £Q. Since .ptHm. * 0 
K K 

= 0 on an open dense domain, 

the zero function is the real analytic solution of (12), but for a series cn G C such 

that limn_̂ oo cn = 0, limn_*, .ptH* <p^ùmm does not converge to 0 in this topology. 

In the following, we often omit the subscript K, and so denote 

by *, a* when the context is clear. 
*K* :9*: K simply 
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Suppose i2* is a polynomial and G\ t;K] - .ptHm : K*K :9*: K is defined. Then for 

every polynomial p(u), G(t;K) satisfies 

d 

dt 
K)*Kp(u) x<< u <pm :.H*:K*KG(t,K)) *Kp(u) = :H.:«*«(G(t,K)*«p(u)), 

3(0,K)*Kp(u) = :g*:K*Kp(u). 

Since G (t,K)*Kp{u) is real analytic in t, we have the following associativity: 

Proposition 3.2 

for K and 
— IfelH**g* is defined for some K, then c<<^ù 

ù**$$$ 
[g**p(u)) is defined 

elH* * (g* *p(u)) = (elH* * g*) *p(u) for every p(u) G C[*u]. 

Let H* be a polynomial. Since w< ww <ipm 
K and : kmw< <p^ù 

• K satisfy the same dif­

ferential equation with the same initial data, the uniqueness of real analytic solutions 
gives x<< < <^ù H.: ' K w<< :H, * cww r 

K ' 
Using this, we also have 

Proposition 3.3. — If H* is a polynomial such that 

the real analytic solution ht (K) of the equation 

PtH* ¿5 defined, then $*w< K is 

15 
d 

dt 
ht K = ht ww *K ^ùù • K 

with the initial condition ho(K) = 1. 

Prom this fact, we see that p(u) * e*/1* is the solution of (15) with the initial 

condition ho — p(u). Hence the exponential law and the uniqueness of solutions give 

de) c<< * et m^^$* << <pmk s+t cww 
w^ùm U [p(u) * el 

c<< <^$*ù H, = P( << * e* s+t)H+ 

Let ad H*)(h) = [H^h] = H**h-h* H. If H* is a quadratic form, then ad(iJ*) 

defines a linear transformation on the linear hull of the generators. By exponentia­

tion, expsad(iï*) is a degree preserving linear transformation on the space C[u] of 

polynomials such that 

(expsad(#*))/, (exp sad(i2*))#] = (expsad(i?*))[/,g]. 

Note also that (exp £ad(fZ*))(p(izV is the solution ft of 

d 

dt 
ft = H*,ft] fo =p(u). 

Since ps u I = (exp sad (if*, p(Uj is a polynomial, we see by Proposition 3.1 

d 

ds 
<< sH* <o^ùm u x<< -sH*{ -H**ps(u) + [H^pa(u)]) <<o^m ^ù*m xw< ( u ) . ( - f f . ) . 

Since .«ff. *JMu)U=o = p(tt), we have 

(17) e sH* <o^ùm u) x<o< ^cxx -sH* 
<< 
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Combining (17) with (16), we get the following associativity: 

(18) vww^^ù {p(u) x<<< <pm 
^ùmm 

* P << p^ùmm 

It also follows that 

:i9) esH, * 'plu] x<ww sH+ p^ù x<< * P [u] p^ùm cw< << exp sad (if* ) ) (p ( u ) ). 

3.2. Star-exponentials of quadratic forms in the normal ordered expres­

sion. — In this section, we set n = 2m and u = [uw- ,-um), v = (vi,-- - ,vm) = 

^ra+l 5 * * * 5 2̂m> ). For every C = (Cij) G SDt(m), we consider K)*Kp(u) K)*Kp(u) 

The star exponential function of this special quadratic form is easily obtained in 

the normal ordered expression, since no anomalous phenomena occur. By setting 

A = K0 + J, K0 = 
0 T 

I 0 
in the product formula (5), a direct calculation gives 

20; geih 
2_ Aklukvi * 

«o 
g eih 2_ BstUsVt 

= 99' 
_2_ 

gift K)*Kp(u) 
5 

where C = A + 5 + 2 AB. For (o; A) = 2 geih Akiukvi this product formula becomes 

(2i; = (<w';¿ + B (</;JB) = (<w';¿ + B + 2AB), ( ( / ;A) , (^ ;B )GCxan (m) . 

Note that 

[I + 2A)(J + 25) = I + 2(A + £ + 2AB). 

Under the correspondence A <-» J + 2A, the structure of the usual matrix algebra 

97l(m) is carried over to the space ein 
2 C(u,v) C € ÎXJtfm)}. However, note here that 0 

corresponds to I. In (21) we see that - J ) + ( -J ) + 2 ( - / ) ( - 7 ) = 0, and i 
2 

J + C + 

2 ( - i 
2J 
w< c = - i 

2 
/ for every C. 

Although these elements are in £2+(Cn), associativity still holds for the products 

(22 [9', A) Ko 
x<^ù $^ùk (9";C) x<< <p^mm *cb 

*0 
;</;£)) *Ko (</';C), 

and 

cww 
_2_ C( u,v) * 

*0 
^ùù 

^ù $ ^cww <<ww 
i_ u,v) * 

*0 
eia 

2_ C(w,v) c<< << 
$* IX,1>) 

By (21), we see that 

23; eih 
1 eisC ̂c< <pl l^ù,n x< 

1 <pll -I) x<< J_hm 
kmù 

cww (s + t)C_/)( X 
vw< 

Differentiating the exponential law (23) to obtain the if0-expression (the normal or­

dered expression) of the *-exponential function, we have 

(241 .0 %n 
.0* 

il Ckiuk*vi 
<p ^^m^ù 

c< (eitc -I) klUkVi 

This is holomorphic in t G C and the r.h.s of (24) is contained in £2+(C2). 

Set 

006 = 
1 
2y 

a * b + b * a). 
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By the exponential law for scalar exponential functions, (24) becomes 

25) c<< 
11 \ Ckiukovi 

<^^ù lm e 2 
it I Tr( c 

<p 
x<< eitc -I] )kiukvi 

This is also a holomorphic one parameter group contained in = (<w';¿ + B However, 

this property of O* 
it Ckiukovi is not generic, as we see in §3.3. Indeed, a generic 

element has branching singular points periodically distributed in C. On the other 

hand, for the special case C = L we see that : ̂ xw 2m , UkOVk 
' Ko ww w^m m . Intertwiners 

map scalars to scalars, but may change the sign oi the scalar ( — 1) in this equation. 

The property that m$$ 2-ni > UkOVk 
' K = ±1 is generic. 

We note that l i m ^ _ oo -c* 
$*^^ ukovk 

^$^^ = 0 but lim^oo .0 %ñ 
c<< . ukovk 

' Ko = oo. It 

is rather surprising that the finiteness of the integral 

< 
— oo 

< 
it 1_ 

ih uov dt: K w';¿ + B c2 

is a generic property, as we will see in §3.4. 

3.3. Intertwiners for exponential functions of quadratic forms. — In this 

section we extend intertwiners to the space Ce6^2m^ of exponential functions of 

quadratic forms ge^u(^'u\ where g £ C,Q e 6(2m). This will be used to obtain 

if-ordered expressions of star-exponential functions of quadratic forms. 

The exact formula for intertwiners is obtained by solving the evolution equation 

d 

dt 
w< < Pih 

< (uQ(t),u) << 
^m 

KijdUidUj m$ gih ^c<< [uQ(t),u) , Q(0) = A, g(0) = g 

by setting 

(26) t 
e 

iij = (<w';¿ + B geih 
x< uA,u) = 9( < 

<< 
< [uQ(t),u) 

^^ùù 

A direct calculation gives 

-ji K^dUidUj >(*) ßih 
x< uQ(t),u <w';¿ + B Í2TrK 

ih 
i Q(*)+4- i 

m2 
{QKQ)ijUiUj ßih (uQ(t),u) 

To find the intertwiner, we solve the ODE system: 

d 

dt 
Q(t) x<< 

4 
ih 

zQ(t)KQ(t) 

d 
dt 

<< t) = 9 << 
2 

ih 
TrKQ(t) 

Q(0) = A, g(0) =g. 

Then Q(t) < i 
^^ n 

ih 
AK A, g(t) = g ídet 7 - 4t 

ih 
AK )-1/2 is the solution of the ODE 

system by the uniqueness of real analytic solutions. 

Here the inverse matrix of X is denoted bv i 
X' Note also that i i 

X Y w<< 1 
YX' It is 

easy to check that i 
I-AK A is a symmetric matrix by the identity: 

27 
1 

I-AK 
A = A 

1 

I-KA' 
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Setting t w< hi 
4 > we can build the intertwiner io from 

28 Q 
hi 
4 

<< 
1 

I-AK 
A, 9( 

hi 

4 
= 9( det I - AK l 

2 

as follows. For ge l 
in 

(uA,u ̂ ù 9\ A] as before, we call g and A the amplitude and phase 

part of (a; A) , respectively. In this notation, we see that 

Io [g; A) ̂ùù ff det ( (I-AK 1 
I-5 

;TK(A 5 

where TK : 6(2m) -+ 6(2m), 
^^$* 
vw< A << l 

I-AK A is the phase part of the intertwiner 
f io • 

Computing the inverse 1 ^ù f - l and taking the composition io 1° 
K ' 

we easily 

obtain 

(29; i f 0 ; 4 xww #det 7 - A(K' - K) 1 
2 • 

1 
J - A(K' - K) 

-A ww 

The mapping (29) is singular at those A where either det I (I-AiK'-K) = 0 or the 

sign ambiguity in the square root cannot be removed. We denote the phase part of 

the intertwiner xww by 
^k^ù 
fw<< A) = 1 

I-A{K'-K) 
A. 

Note that the identities 

K' 

hw< ~TK> ̂ $* 
x<< 

-1 
5 

^ù$* 
w<<< x< 

x<< 
^ùm I I 

hold in the same sense as the algebraic identities x/x = 1, /1 + x/y/1 + x = 1, i.e. 

whenever the denominator is nonzero. Here we use the notation ~ to distinguish such 

an algebraic calculation. Singularities are moving by this algebraic trick. 

By setting B = l 
I-A(K'-K) 

A, the r.h.s of (29) is gdet(I + B(K' - K) l 
2 ; 

x< <^ù 
Moving branching singularities are a remarkable feature of this calculus. 

For every A, gi l 
w< uA,u) is an element of ¿2+ ;c»). i f (<?(•), ¿ 0 is a a continuous 

mapping from a compact manifold M into C x 6 ( n ) , then Lemma 2.2 shows that 

M 

<< x \ßih 
l (uA(x),u) dVx €£2+ Cn). 

Suppose further that M is simply connected. Since the intertwiner 

concrete form, we see the following: 

IK: is given in a 

Lemma 3.1. — For every K,K' e &(n), 

K' 

IK 
M 

9 x] eih 
i_ uA(x),u) )dVx ^* 

M 

x<< X 
<^mù 
^ùù** x<< 

l uA{x),u) dVx 

is also an element of w<<^ùmm whenever det (I-A(x)(K'-K) I is nowhere zero on M. 
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3.4. The general ordered expression of 
x<< 
x<< 

2 + 1 
ih uov . — From here on, we set 

n = 2m = 2, and (^1,^2) = (u^v). We are mainly concerned with functions of 

u o v = 1 it * i> + v * it) alone. The general ordered expression :e* >+ 1 itoi; J : K will be 

given by applying intertwiners to the normal ordered expression. 

For this Durnose, we set 2u o v = [uA,u), where u = (u,v), A = 
0 1 

1 0 
. The 

intertwiner 
^$ù 
ù*x<< is given by (29). 

We determine the formula of a general ordering expression .0* • K 1 K = 

6' Al 

A Ô 
, A, 6, 8' e C. 

Setting B = 
0 ß 

[fi 0 
, we note that 

(/ - B(K - Ko) << B = 
1 

(1 - ß{\ - l))2 - 0*66' 

ßH (1 - ß(X - l))ß 

(1 - ß(X - l)ß = (<w';¿ + B ßH' 

Recalling the formulas (24) and (29), we have 

x< 
<$ù 2uov 

' K c<< 
2 

yjA2 - (e* - e-t^öö' 

x exp 
1 

ih 

= (<w';¿ + B 

A2- 'e* — e~v \2Ö6' 
= (<w';¿ + B Su2 + A2uv + (e* - e-<)<5V 

where A = (e* + e"*; - Afe* - e"M. Here we note that the sign ambiguity of the 

square root is removed by choosing a path from the t = 0 to t on which no singular 

point appears, and by choosing the initial condition w<< 
0 1 

ih 2uov = 1 at t = 0. 

Replacing t by it, we see that 

'30) 

x<< ihÀ it 2uov 
' K <p 

1 

= (<w';¿ + B 
exp 

1 sint 

hA(K)(t) (u 
io sin t 

cos t — iX sin £ 

cos t — iX sin t 

io' sin £ 
> ti), 

where 

m^^ A ( ( t ) = (cost-i(X + ^85') sin*) (cos t - i(X - VóW) sint) 

Note that A + VSS' and A — v W can be arbitrary complex numbers. Both (30) 

and (31) are 7r-periodic. Here we note that the sign of JA^{t) depends on the 

ordered expression parameter K. It follows that ^w< <^ù 2uov 
' K x<< 2 

= (<w';¿ + B 
which is ±1 

depending on K and the path from 0 to ni. 
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In the remainder of this section, we comment on the appearance of these singular 

points. The sign ambiguity of cannot be removed on the whole complex plane. 

Thus these *-exponentials are double valued functions of t G C in general (cf. [12], 

[6]). The sign ambiguity is removed only when S 8' = 0 by choosing the initial condition 

e®ih2uov — 1 at t = 0. In this case, cusp singular points appear n (and not 27r)-

periodically along a line parallel to the real axis. However, singular points are not 

stable under general intertwiners, as intertwiners are double valued in general (cf. 

[12]). 
Prom these observations we see that in generic ordered expressions the singular 

points of :e* 
it ih 2uov 

' K appear ^-periodically on two lines parallel to the real axis and 
the ordered expression has e >*'-decay on any line parallel to the imaginary axis. 

Moreover, the generic ordered expression does not have singular points, and the exis­

tence of << << t ih uov at is a generic property. However, we see there are several categories 
for the behavior of expression parameters. 

To fix the notation, we denote by D the open dense domain of expression param­

eters i f such that ^ùù 
it_. 
ih ' 

•2uov 
' K has no singular point on either the real or imaginary 

axis. Generic patterns of the properties for .0 ih 
it 2uov : K are as follows: 

(1) On a domain 2)+ (resp. for the parameter if, the singular set of .¿5 %h 2uov 
' K 

appears only in the open lower (resp. upper) half plane, and the *-exponential func­

tions form a complex semi-group over the upper (resp. lower) half plane without sign 

ambiguity by demanding the value 1 at t = 0. :e* 
± .it_> 
• ih' 

2uov 
' K > is alternating ^-periodic 

ambiguity by demanding the value 1 ax<<t t alternating = 0. [z + nn) = (-l)nf(z) for any 

integer n). 

(2) On a domain 2)Q for the parameter K, the singular set occurs in both the upper 

and lower half-planes, but not on the real axis. In this domain, :e* 
± il 

ih 
2uov 

' K 1 is 
7r-periodic on the real axis by demanding the value 1 at t = 0. 

Note Some delicate arguments about the winding number are required to determine 

the periodicity of •6* ± ü 
ih 

2uov : K , as will be discussed in a forthcoming paper. 

3.5. Star exponential functions of general quadratic forms. — In this section 

we give without proof formulas for if-ordered expressions of star exponential functions 

of p-pnprfl.l mifl.rlra.tir. form, with details in ffil. 

As in [17], star exponential functions xw 1 ^*ù for a linear form (£, u) are well 

defined as the family e*ih 
l x<< 

eih 
l pm , i f G 6 (n) ; However, for a quadratic form 

= (<w';¿ ^ùù+ B = (<w';¿ + B the star exponential function e^f 
^c<< uA,u) << will be defined 

only on a dense domain of if-ordered expressions, and is in general a double valued 

function of t G C (cf. [6]). 
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For every a G sp(ra,C), we first consider the one parameter subgroup e~2ta of 

Sp(ra, C), and consider the inverse image of the twisted Cayley transform C~1(e~2toc): 

For K G sp(m, C), we set 

;32) 
w<< 

e -2ta < 
1 

(I-K) + e-2ta(I + K) 
[I - e~2ta <^^ 

1 

cosh ta — (sinh ta)K 
sinh ta. 

The exponential function must lie in a certain submanifold T>K through (1;0), and 

points of this manifold are determined by their phases. Setting K = JK, we have 

33 ^^ 
^dw< (u(oJ),u), 

' K 'det(I + ̂ * l G -2sa> w<<< l 
2 <^ùù :«( w<< (e~2sa <o^ù x<< 

More precisely, for every a G sp(m, C), the if-ordered expression of the *-exponential 

function is given as follows (see [121-[131 for special cases): 

(34) w<< 
<< (u(aJ),u)* 

' K << 
2m 

v/det(J - K + e~2ta(I + K) 
<< 

t u 1 
I-K + e-2TA(I + K) 

(I-e~2ta )J,U 
c< 

It is not hard to see that (34) is the real analytic solution of (12). Note that det etaI = 

1 for every a G sp(m, C). Thus (34) can be rewritten as 

;35; 

.¿3 zn 
_t_ u(a J),u)* 

* K pl 
2m 

y/det(eta(I - K) + e~ta(I + 
l 

l l etQ!(7-K) + e-tQ!(/ + / t ) 
(eta-c-*a). )J,t*> 

In spite of the sign ambiguity of the square root, the exponential law 

[36) .p ih 
<< ti = ¿ + B c<< < :e* 

ih {u(aJ),u)* 
' K = :e\ S + t) JL_ 

ih 
(«(aJ),tt)« 

^ù 

holds using y/ay/b = Vab without regard to sign ambiguities, as the exponential law 

and associativity hold on the group Sp(ra,C). Note however that we allow y/l = ± 1 . 

To treat these formulas without sign ambiguity, we always have to specify a path 

with no singular points from t = 0 to the considered point. 

From (34) we derive the following: 

Proposition 3.4. 

ofK. 

— Ife2™ = I (e.g. a = J), then .e^i ih 
j_ tta J,u) cv ' K = y/I independent 

The sign of vT depends on the if-ordered expression and also on a path from 0 to 

7T as above. 

Hence, even though (VT)2 = 1 is trivial, the strict exponential law may fail, that 

is, w< 2TT ih 
x< = (<w';¿ + B 

' K = 1 or x< 
^ùm uaJ,u) w< ' K *K:e 

7T 
* 

ih [uaJ,u <w 'K = 1 may not hold auto­

matically. If << t ih l ua J,u)* 
' K has a singular point on the interval [0,2n], then it may 

happen that 
^*ù ih uaJ,u)* >2 c<< 2TT ih <^mmù 

5 
although equality holds up to sign. In spite of this, we have 
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Proposition 3.5. — Ifez™ = I, then 
< 7T 
e* 

ih (uCxJ,U 2 = 1 for every K-ordered expres­

sion such that t ih UOLJ,U) 
' K has no singular point on the interval [0, TT] . 

Proof Note first that this is by no means trivial, because t 
:e* 

l 
ih 

[uaJ,u] w< 
' K 

may have 

a singular point on the interval [7T,27r; Since : 
7T 

e* 
l 
Jh 

[uaJ,u) 
' K 

= ± 1 , one can define 

t 
.6* 

ih (uaJ,u) ^** 
'K *< 

K 

:1: 
K ' or 

t 
.e* 

à' uaJ,u) < : * 
K K 

< - 1 < 

by the solution of the evolution equation (12). By Proposition 3.2, 

t l 
ih 

(uaJ,u) x<< 
' K K 

TT 
.e* 

ih [uatJ,u) << 
' K 

is the solution of (12). This gives the result. • 

By (34), we also see that s ì 
ih 

[u(oiJ).u) << 
' K has m general discrete branching singu­

larities in C with some periodicity depending on the parameter n = JK. 

4. Criteria for associativity 

In this section, we give several criteria which imply associativity for the extended 

product *K. However, we note that there is no generally applicable lemma guaran­

teeing associativity. For simplifying notation, we often omit the subscript K of the 

product * w and the expression : • if it contains no confusion. 

4.1. Remarks on star exponential functions. — We first note how to define 

rigorously the product of star exponential functions and a general function z 
6* 

ih uov * 
f(u,v). There are essentially two approaches. The first is, as mentioned in §3.1, to 

use the real analytic solution f+ of 

d 

dt ft 
^** 

1 

ih uov* ft. 

with the initial condition /0 = f(u,v) provided such a solution exists. The second 

approach is to define 

z 
e* 

j_ 
ih 

uov <<w pùll p^ù<< lim 
<pôo 

z ih rUOV wi^$$ w<<< if /1 (u,v) << lim 
n—*oo 

=<w';¿ + B 

where fn are polynomials. These two definitions do not coincide in general, since 

multiplication by z 
e* 

ih uov * is not a continuous linear mapping of Hol(C2) to itself (cf. 

[42), (43)) Note that z 
e* 

ih -uov e S2+(C2). If f(u,v) € €2-(C2) = UP<2^(C2) with 

the inductive limit topology, then the two definitions coincide. 

Since star exponential functions of quadratic forms are elements of ^2+(Cn), their 

product may not be defined, and even if the product is defined associativity may not 

hold. 
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We show that •oo 
1 —oo 

t ih uov dt e £2+ (C2) in the Weyl ordered expression. In the 

Weyl ordered expression, we have t-_L_ 
ih 

uov : 0 = 1 
cosh ^ 

e (tanh t 2 1 
ih 

2uv . Thus, 

< 
< 

t 
6# 

1 
ih 

uov dt:o x< 
poo 

'-00 

1 

cosh t 
2 

[tanh t 2 ih 2uv dt. 

For cos s = tanh §, —2 sin sds = sin2 sdt, the integral on the r.h.s. of the last equation 

becomes 

2 
0 

— 7T 

e ̂ cos s) 1 2wi> ̂*ùù 
•7T 

— 7T 
e (cos sy _1_ 2nv ds. 

Since #(s) = e cos s) J_ 

ih 
uv is a continuous curve in £2+(C ), Lemma 2.2 implies that the 

last integral belongs to £2+(C2). Hence, by Lemma 3.1 this property is generic. 

Using the intertwiner IQ , we see that : R 
t 

e* 

1 
Th 

uov dt:K x<< C7T 
— 7T 

$$$ cos ih zuov, ' K 
ds e 

£2+(C2). Then we have 

Proposition 4.1. — In generic ordered expressions, the integral : f»CO 
J-00 

t-ih uov dt:K is 

in ̂ 2+(C2). Furthermore, integration by parts gives 

ever the inteqral is defined. 

d 
de 

poo 
'-oo 

<< t ih uov el$dt = 0 when-

We have seen that in generic ordered expressions, ^kuov has two different inverses, 

1 

ih 
uov) -1 

*+ ^w<< 
,0 

—00 

t ih*1 uov dt, 
1 

ih 
uov 

-1 
* — 

x<< 
00 

/0 

t 
e* 

ih uoi dt 

in the space £2+(Cn), which implies the failure of associativity in general: 

37) 
1 

ih 
uov) -1 

<< * 
1 
ih 

uov *! 
1 

<< ito v -1 
'* — 

^ù 1 

ih 
uov -1 

ù* * 
1 

Kih 
UOV * 

1 
ih 

-uov -1 
* — 

Indeed 1 
ih 

uov) )*+ * ih uov -1 
'*- diverges in any ordered expression. This gives an 

examnle where [f *g)*h = f *(g*h) does not hold even if a is a polynomial. 

4.2. Basic criteria for associativity for the extended product. — Suppose 

f,g e Hol(Cn) are given by / = lim fk,g = l i m ^ in the topology of Hol(Cn) for 

sequences {fk}, {gg} C Hol(Cn). Even if /*g and lim^ /*gg exist, /*g may not equal 

lim^ f * gg, since / * is not continuous in general. Moreover, it may happen that even 

though lim gg diverges, lim^ / * gg exists. 

If / = lim fk,g = limgg, we have 

lim fk * p( 
k 

u) = f*p(u), limp(u) *gg =p(u) * g 
g 

for every polynomial. However, as we saw in (37), we may have 

lim(lim/ib * (p(u) * gg) ^ lim(lim/fc *p(ti)) * gg), 
k g g k 

even if both sides exist. In this case, limrk g\ fk *p(u) * gg does not converge. 
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Suppose fk * g g converges to an element h in Hol(Cn). Then we define / * g = h, 

i.e. 

'38^ f*g = lim 
= (<w';¿ + B 

fk* 9e = h. 

where in the limit k2 +£2 —» oo. The same definition is also employed for the product 

'39) 
w< 

'-oo 

< <is' S 
e* 

z+ 1 
ih uov, ds* 

< 

m 
— oo 

<< ti e* 2 + 1 
ih 

uov) 'dt = lim 
(5,T 

(0,0) 

-(S,T) 
f(s)g(t) << 

(s+i)(^èuov) dsdt 

although these integrals are not in ^(C71). 

Suppose f,g G Hol(Cn) are given as / = lim/fc,<7 = l i m ^ in the topology of 

Hol(Cn) as above. For polynomials p(ti), g(ti), Lemma 2.1 gives that limfcp(iz) */& = 

p(u) * / , limfc q(u) *gk = q(u) * 

Lemma 4.1. — Suppose that associativity holds for the approximating series: 

(p(u) * fk) * (q(u) * g¿) = ((p(u) * fk) * g(u)) * gA, 

and lim ÍM)(P(W) * fk) * (g(tt) * converges to an element h in Hol(Cn). Then 

'p(u) * / ) * (q(u) * g equals h, and the following associativity holds: 

2>(u) * /) * (q(u) *g) = (p(u) * / * g(u)) * g. 

Proof — By definition, we have (p(v)*f)*(q(u)*g) = lim(M)(p(u)*/ik)*(gf(ti)*^). 
Using the associativity of the inside of the r.h.s. of the last equation in Lemma 4.1, 

we have 

lim 
(M) 

[p(u) * fk) * (g(ti) *g¿) ̂* lim (p(u)*fk *q(u))*g£. 

From Lemma 2.1, we see that lim^ p\ [u) * (fk * q(u)) xw p(u)*f*q(u) ). It follows that 

[p(u) * /) * (q(u) * #) <^ù lim I 
^*ùù 

>(*0 * (/fc * ^(ti); = (<w'^*ùù;¿ + B = (<w';¿ + B • 

Note that if the approximating series are in ^(C71), then associativity holds before 

the limiting procedure. 

Lemma 4.2. — Suppose f, g,f * g are given as in (38). Then, for any polynomials 

p(u),q(u), the product (p(u) * /) * (g * q(u) is defined and associativity holds: 

lp(u) * /) * (g * q{u)) = p{u) * (/ * g) * q(u). 

Proof — By Lemma 2.1, we see that p(u) * / = limfcp(u) * fk, g* q(u) = lim¿(g¿ * 
q(u)), and the product is defined by 

(plu) * / ) * (q * q(u)) = lim 
(M) 

= (<w';¿ + B = (<w';¿ + B << lim 
w< 

p(u) * (fk*ge)*q(u). 

Hence Lemma 2.1 gives (p(u) * /) * (g * g(u)) = p(u) * (f *g)*q(u). • 
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It does not seem that the existence of lim [k,£) fk * 91 yields that of lim (k.£) fk * 
(p(u) * Qi) or lim(fc * p(u)) * gi for every polynomial p(u). In spite of this, we 

have the following for the special element uov: 

Lemma 4.3. — If (39) is defined, then 

x< 

— oo 
^m \ s s)e* >+ ih uov) ds * p(u) * 

•0 

— oo 
9 x<< < 

^mù 
Z + 1 

' ih 
uov) dt 

is defined for every polynomial p(u). 

Proof. — Using the "bumping identity" : 

v * f(u * v) = f(v * г¿) * v 

several times, we find a polynomial p(u) such that: 

p(u) * 
S 3 

— oo 
9(t) 

< 
^ù 

2 + x< x<< '(ft = 
•0 

—oo 
g{t)p{u) * e* 

z+ ih uov' dt = 
r0 

f 
—oo 

^ù* le. 
fww ww w dt*p(u). 

Hence Lemma 4.2 gives the result. • 

In the general setting, suppose the limits f * g = lim(fc^) fk * gi in (38) and 
lim(Mi dafk *dßgt exist for every a, ß. Then it is not hard to show the existence of 
lim(M) fk * (p(u) * gi) and lim(fc^)(/fc * p(u)) * ^ for every polynomial p(u). 

The following is useful in concrete computations. Note that for (C[it][[/i]], *K), the 

space of formal power series in h, the *K-product is always defined by the product 

formula (5) and associativity holds. The elements of £2+(Cn) are often given as a real 

analytic function of h defined on a certain interval containing h — 0. 

The following is easy to see: 

Lemma 4.4. — Suppose f(h,u), g(h,u) and h(h,u) are given as real analytic func­

tions of h in some interval [0,if]. 

If f(h, u)*g(h, u), (f(h, u)*g(h, u))*h(h, u), g(h, u)*h(h, u) and f(h, u)*(g(h, w)* 

h(h, u)) are defined as real analytic functions on [0, H], then the following associativity 

holds: 

(/(ft, u) * g(h, u)) * ft(ft, u) = /(ft, u) * (#(ft, ti) * ft(ft, ti) 

Remark In the following, elements are often given in the form f(j^(p(t), u) for a real 

analytic function /(£, u) in t G [0, T], where (p(t) is a real analytic function such that 

<p(0) = 0 (cf. (24)). In such a case, replacing t by sh gives a real analytic function of 

ft, and such an element lies in (C[ti][[ft]], *K). Thus, we can apply Lemma 4.4. 

However, there are many elements in <?2+(Cn) of the form f(j^^p(t), u) such that 

(p(0) 7^ 0. For these elements we have to use Lemmas 4.1 and 4.2 carefully. 
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As mentioned before, we know that t _1_ 
ih 

•uov 
' K G Hol(C2) for every fixed t whenever 

defined. We also see that t ih uov ' K is rapidly decreasing with respect to t in a generic 
ordered expression. 

5. Vacuums and their matrix element expressions 

In this section, we give properties of vacuums which we can compare to similar 

properties in operator theory. 

Noting; that v*u = uov + \ih, we begin with the following: 

Proposition 5.1. — In generic ordered expressions with no singular points on the real 

axis, we have 

lim 
£—•—00 

t-
e*1 ih 2v*u = 0, lim 

1—+00 

t 
e* 

1 
ih 

2u*v = 0, 

and the following limits exist: 

lim 
£-—•00 

t 
e* 

ih 2v*u 
= ^00, lim 

£—+—00 

t 1, 
ih 

2u*v w<<^** 

We call woo and woo the vacuum and bar-vacuum respectively. Strictly speak­

ing, such vacuums should be defined together with the one parameter semigroups 
t 1 
ih 
-2v*u 

x<< —t-kr2v*u , t>0, for they depend on the K-ordered expression and may change 

sign if there are singular points on t>0. When the ordered expressions K(s), s G 7, 

Since ^^the *-exponential functions^^s .0*bbxxx K(S) has no singular point on [0, 00) x I. 

Since the *-exponential function e ihx<< d* can be defined as a single valued element 

by requiring it equal 1 at t = 0, the sign ambiguity does not occur in the K-ordered 

expression. Thus, we have 

lim 
£—>oo 

£ m2v*u. 
K 

2 

y/(l - A)2 + SS' 
:6ih 1 

(l-A)2-(5<5' {6u2 + (l-\)2uv+ö'v2) 
5 

40 lim 
£—•—00 

t 
:e* 

ih -2u*v 
' K xw 

2 

J (I + A)2 + 66' 
e ̂<^ 1 

ih 
1 (l + A)2-5<5' (Su2 + (l+\)2uv+ô'v2) 

lim 
£—• — 00 

t 
:e* 

ih 2v*u vu 
' K 

= 0, lim 
£—•00 

t ih 2u*v : K = 0 . 

The exponential law gives 

ZÜQ0 *0 ^00 = ^00? ^00 *0 ^00 = ^00-

However, we easily see 

Theorem 5.1. — The product WQO *O ^00 diverges in any ordered expression. 

ASTÉRISQUE 321 



A NEW NONFORMAL NONCOMMUTATIVE CALCULUS 287 

The existence of the limits (40) also gives 

u * v * WQO = 0 = ^oo * u * v, 

but the bumping identity v * f(u * v) = f(v * u) * ' v gives the following: 

Lemma 5.1. — v * moo = 0 = moo *u in generic ordered expressions. 

Proof. — Using the continuity of v*. we see that v*\imf^- t 
-oo *̂ 

Th2u*v = lim^-oo^* 
t -Àr2u*v 

e in * 
Hence, the bumping identity proved by the uniqueness of the real analytic 

solution for linear ODE and (40) give lim* -> —oo e* t-J_ 
ih 
r2v*u * v = 0. • 

The following identities ensure associativity: 

Lemma 5.2. — moo * (up * moo) = 0, and (moo * vp) * a70u = 0. 

Proof. — By the formal power series expansion in ih for eju*v, associativity for the 

equations in Lemma 5.2 holds, and the following computation is justified by the 

bumping identity: 

su*v * up * elu*v w<< = (<w';¿ + B x<<< ^ùm i/p * e (s+t)n*v+iflps 
* 

The r.h.s of this equation is continuous in s, t. In particular, 

lim esu*v ^ (up * elu*v] = e* * limi 
t->a 

up*elu*v I. 

Using the bumping identity, we have 

su*v . [up* lim e{u*v) 
t—> — oo 

= (<w';¿ + B lim 
£—• — 00 

up * elu*v = lim 
t—» — oo 

= ¿ + B = (<w';¿ + B 

w';¿ + B lim 
t—> — oo 

6* = (<w';¿ + B = ixpeiÄpa*tuoo. 

It follows that 

tuoo * (up * ÎUoo) = lim 
s—• — oc 

* = ( w< ( lim up 
t—• —oo 

= (<w';¿ + B = lim upeps * m0o = 0. 
.s—• — oo 

Similarly, we also have (moo * vp) * moo — 0. • 

Lemma 5.3. — For every polynomial /(г¿, v) = V aPatzp * u9, 

^oo * (/(u, v) * tuoo) = /(0, OWQO = (^oo * f{u, v)) * ^700-

Consequently, associativity holds for moo * f{v>, v) * tuoo for all polynomials f(u, v) . 

Reasoning as above, we see that 

( e f * W ) * = (<w';¿ + B _ su*v . (^*^*etu*v; (^*^*etu*v; (s+t)u*v 
6* 

*vq*up for q> p, 

= (<w';¿ + B )* K*etn*v) = (<w';¿ + B v9*^*e^*v) = vq*up*e (s+t)u*v ,|eE(P-9)«*^ for q < p. 
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Replacing s, t by 1 s J_t and taking the limits t —• — 00 and 5 —• 00 for the case p > q 

and # > p respectively, we have 

(41) ( ^ o o * ^ ) * ( ^ p * ^ o o ) = öPiqp\(ih)p = moo*(vq*up*m00) = (w0o*vq*up)*m0o. 

Since woo *vq*up* ZUQO = $v,qp\(ih)p moo, we have the following: 

Proposition 5.2. 1 
y/p\ql(ih)P+<i -up * woo * vq i>s the (p, q)-matrix element. 

As mentioned in the Remark in §3.4, we have two definitions of 

However, both definitions satisfy 

Z-ArUOV e in * * f(u,v). 

w< Z-krUOV 
* * ^00 = e -\z 

* ^00-

Remark In contrast, since ih uov * ö* l^u o v = 0, where 5* (\uov) I = (°° esTKuov. J 00 

we must set 
tjjrUOV 

6* * s* \u 0 v << 
<pm \\uov) as the real analytic solution of -^ft = 

±UOV*ft. However, computing 

lim t^krUOV e in * 
w< 

<< 

STKuov 
ds = lim 

N—+00, 

^ùm 

cw< 
el YtUOV 

ds 

gives the following: 

(43) <pm^ù 
(x+iy ]TKuov w<< 1 

xw<< uov 
iy 

= e* 

<p^ùm 
* (5* 

1 
xww uov). 

Note that 
Ì7r iuoi; 

= — 1 in the Weyl ordered expression. Thus, (42) is holomorphic 

with respect to 2, while (43) is only continuous and not real analytic with respect to 

z = x + iy. 

6. Inverses and their analytic continuation 

6.1. The Hadamard finite part procedure. — We first recall the Hadamard 

finite part procedure, a well known technique in distribution theory to extract a finite 

quantity from a divergent expression, (cf. [19]). We reformulate this procedure on 

abstract Frechet algebra in order to extract information on the eigenspaces of a given 

matrix via its inverse. We conclude that the element \u o v is an indeterminate 
in­

lying in a discrete set. Let (A; *) be a complex, complete, topological associative 

Frechet algebra with 1 and A a Frechet space with a (A; *)-bimodule structure (i.e. 

a continuous bilinear product * is defined for Ax A, A x A into A with the natural 

associativity). We call A G C a resolvent of X G A if A — X has inverse (A — X ) - 1 

in A. 

Suppose the resolvent set p(X) of X G A is open and dense in C, and (£ — X ) - 1 is 

holomorphic in £ G p(X). Since (C — X) * (£ — X ) - 1 = 1 on the open dense domain 
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p(X), the singularities of this equation are all removable in the usual complex analysis 

sense. 

An isolated singular point ZQ o f ( C - X ) - 1 is a pole, if I (^*^*etu*v; can be expressed 

in the form 

w<<< - l ^* 
x<;,, 

w<ipmù + 4 
<w<< 

C~ zo 
+ AQ-\ 

on a neighborhood of ZQ. We call AQ the finite part of X-x) -1 and denote the finite 
part by FPl [C-X - i xw 

In general, for an A-valued holomorphic function f(z) with a pole at z = ZQ the 

finite part FP(/ (z)) is denned as follows: 

F P ( / ( * ) ) =WW^^ 
Rest/;=o l w ^ 

x<< 

(/(*o + w)) 

z ^ z0 

Z = Z0. 

This definition is valid for z in a neighborhood of ZQ containing no other pole. Although 

: c - x ) * ( c - x ) < < < < - l = 1 for C ^ ZQ, we have 

« - x ) * F P | :c-x\ - l < 
1 

<(^*^*etu<<*v; 

(^*^*etu 

C = zo 

where we use 'zQ-X)A0 + A-1 = 1, which follows easily from the identity <-x)* 

( C - x ) - 1 = l . We will employ this trick to analyze singularities of (C-x w<< in 

calculations in extensions of star algebras. In particular, we use this procedure to 

define a new product by 

( C - X ) . ( C - X ) < < < < -1 ^mm ; < - X ) * F P ( C - X < < < < ) -1 

Note that this trick applied to the usual matrix algebra naturally relates to generalized 

eigenspaces. For a matrix X of finite rank with the eigenvalues A i , . . . , An, we have 

(zl - X)*(zl - X<) o^m ^$ 
x<< 

I - P i < < 

z-^ A i , . . . , An 

z = Xi 

where Pi is the projection to the generalized eigenspace corresponding to the eigen­

value A .̂ 

Since the inverse C-X' - l is given very often via the Laplace transform 
< 
— oo 

w< <<ij dt, we have the following theorem: 

Theorem 6.1. — Let A and A be as above. Suppose X G A is an element such that 

the equation 

44 
d 

dz z i z) = X*f(z), f(0) = 1 
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has a complex analytic solution in the Frechet space A defined on a connected open 

domain D. If A -h X has an inverse in the Frechet algebra A for some A G C, then D 

is simply connected and f lz = w< 
n! 

^*mm 

Proof. — The proof is elementary. Denote the solution by ezX. Let T,(X) be the set 

of singular points of ezX in C. If C (^*^*etu*v;(^*w<\ is not simply connected, there is a closed 

curve C in D surrounding a singular point ZQ. • 

By the uniqueness of real analytic solutions, the exponential law ezX * e™x w< 

< 
{z+w)X holds, provided all three terms exist. Suppose there is a A G C such that 

(A + X << G A. Since ez ',\pzX is the solution of the equation d 
dz 

fz = {x + x * fz, we 

derive a second exponential law p^m ezX Z\ 
— 6* 

m$^^ K It follows that E( (^*^*etu*v;*etu*v; 

Obviously, for every integer k > 0 the contour integral c \Z - ZQ) k z 
re* 

\+X] ]dz gives 

an element of A. It follows that 

(A + X w<<< 

c 
[Z - ZQ 

^ùm X+X] ]dz = 
'c 

[Z - ZQ] k [\ + X m$* * e* x<< dz 

<< 
c 

<Z - ZQ k dk+1 

dz**1 
w< <^ù 

dz = - 1 mm 

<< 

d 

dz 
e*1 ̂w<< 

dz = 0. 

The existence of (A + X <<< gives << Z - Z0) )keï 'MX) dz = 0 for every integer k, 

which implies that ZQ is not a singular point. Thus, D is an open simply connected 
neighborhood of the origin. Standard Taylor series methods yield / < ^m ezX w< 

1 
n! ' 

zX << • 

This theorem suggests that we have to go beyond the category of Frechet algebra 

valued meromorphic functions to treat the inverse of z + i 
ih 

uov, as e * i 
Ih 

uov has discrete 

singular points in general ordered expressions. The regularized product ( C - x ) * ( c -
<^mm seems to be a good method to treat singularities. 

6.2. Basic DroDerties of the inverse of z + ih uov. — We first study basic 

properties of the inverse of z + 
ih 

uov. 
By the results of §4, the integrals 

Í451 xw 
ww 

— oo 

tz 
e 

t 
e* 

i 
ih uov dt'.Q < 

E 

— OO 

etz 

cosh i 
2 
t 

e i 
ih 

luvtanh i. 
2' 

dt, Rez > ww 
1 

2 ' 

;46) w 
'OO 

^^ 
^^w< t ih uov dt: o = — 

fOO 

/0 

etz 

cosh i 
2' 
t 

i 
3 ih ' •2uvtanh i 

21 t. dt, Rez < 
w 

2 

converge in the Weyl ordered ^^expression. 
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One can analyze the r.h.s. of (45) and (46) more closely via a change of variables 

as in Proposition 4.1. For < i 
2 

< Re z < 0, the change of variables tanh << = cos s 
transforms the r.h.s of (45) into 

2 
•o 

— 7T 

1 + COS S X 

1 — COS S 
x<< cos s 1 

ih 2uvds. 

For 0 < Rez i 
^2 

and for — cos s = tanh t 
2' 

2 sin sds = sin2 sdt, the r.h.s. of (46) 

transforms into 

2 
7T 

^ùù 

1 + COS s 

1 - COS s 
x<< 'cos s i ih 

2uvds. 

Hence, Lemmas 2.2, 3.1 give that 'OO 
— oo < 

< z+ ih •uov dt is an element of Hol(C2) in generic 

ordered expressions. Thus, both (45) and (46) give inverses of z + i 
ih uov for generic 

ordered expressions, which will be denoted by <^ùm 1 
ih uov - l c<< <^ùù 1 

ih 
:UOV - l 

ùw< respec­
tively. 

The following may be viewed as a Sato hyperfunction: 

Proposition 6.1. — If 1 
2 

< Rez < i 
2> 

£/ien the difference of the two inverses is given 
by 

!47) z + 
1 

<< 
u o v) -1 

<ùm 
2 + E 

ih uov \ - l 
* — ù; 

•oo 

— oo 

ù^* Z + 1 
in 1 uov dt. 

The difference is holomorphic in this strip for generic ordered expressions. 

An elementary change of variables gives 

-z w< E 
ih 

uov -1 
* — 

x<< 
oo 

< 
*ù 

-t z — 1 
in w<< 'dt = -<<< 

0 

— oo 
e* 

[2— • 1 
in UOV 

dt. 

Thus, for generic ordered expressions, we see that 

Ì48Ì z-
1 

ih 
•uov -1 

' * — <^ùù -z) w< 
1 

<< 
^ùm -1 

w<< 

This is holomorphic on the domain Rez> < 1 
2' 

on which z + 1 
<< uov) _1 

<< is alsc 
holomorphic. All of these results are easily proved for the Weyl ordered express<ion. 

However, for generic if-ordered expression, 

the same computation gives the following: 
<< 

t ih uov * K is rapidly decreasing in £, and 

Proposition 6.2. — For generic ordered expressions, z + 1 
ih uov 

-1 
^*ù and z — 

1 
ih 

uov v-l 
*— 

are defined for Re z> w< 1 
2 • 

The product <^ùm 1 
ih uov -1 

w<< << w + 1 
ih 

uov -1 
^ùm 

is naturally defined for z, w 4. — ( N+ 1 
2 

by the usual resolvent identity. 2 + 1 
<< -u o v) w<< 

<< i^ùmm <<ww 1 
2 forms an associative 

algebra, in £2+(C2m). 
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Note that <ww 1_ 
ih 

uov -î 
*+ * —z < 1 

ih 
uov ^ùm diverges for any ordered expression. 

However, the standard resolvent formula gives the following: 

Proposition 6.3. — If z + w ^ 0, then 

1 
z + w z + 

1 
x<< 

<p^m ,-1 
*+ 

+ w — 
1 

ih 
uov) -1 

* — 

is an inverse of z + 1 
ih cw<< * (VJ — 1 

za U O v) ). In particular, for every positive integer 
n, and for every complex number z such that Rez> — n + l 

2 ^^ 
1 

2n 
1 + 

1 

<< 
2 + 

1 

ih 
uov -1 

w< + 1 -
1 

n 
z + 

1 

ih 
uov \ - l 

'*—J 

is an inverse of 1 — l 
n2 2 + E 

< UOV 
2 
* /or generic ordered expressions. 

6.3. Analytic continuation of inverses. — Recall that [z± l 
ih 

uov - l 
±* is holo­

morphic on the domain Re 2 > l 
2 

for generic ordered expressions. It is natural to 

expect that 'z± l 
ih 

:UOV -1 
'±* w< C(C(* ± 1 

ih 
u o v . -i 

±* 
for any non-zero constant C. To 

confirm this, we set C = eie and consider the ^-derivative of 

<<^m 
•0 

'-oo 

dw 
^$* 

z± l 
w< ^ù* dt. 

In generic if-ordered expressions, the phase part of the integrand is bounded in t and 

the amplitude is given by 

2eietz 

w<< ee v;, 2 + + _pi6 
e e 

t, '2 ' 1. 

The integral converges whenever Ree^ x<< 1> 
2> 

> 0, and by integration by parts this 

convergence is independent of 0. It follows that <^ùù 
ih uov -1 

±* is holomorphic on the 
domain C - { z ; -oo<z< - l 

2 
Next, it is natural to expect that the bumping identity u o v) * v = v * (uov — ih] 

gives the following "sliding identities" 

<w< 
- l _1* ̂ ùm 

1 
w<< uov - l 

*+ 
*v = p^mm .+ 

1 

ih 
uov - l 

>+*> x< - l 
+ * 2— 

1 

ih 
uov - l 

*— *v = 2 + 1 -
D 

$*ù 
uov 1-1 

c<< 

whenever the inverse of v exists in a particular ordered expression. In this section, 

analytic continuation will be produced via these sliding identities. 

However, the existence of < - l 
+ is not a generic property. As a result, instead of 

using << - l 
^*ù 

we will apply the sliding identity to the left inverse v° of v given below. 

Remark There is a if-ordered expression such that : 
<< 
— oo 

c* 1 dt:K converges to give 

an inverse of :v -l. 
K of V [cf. [17]), but it is easy to see that :v; - l * GJQO'- K diverges. 

First, we remark that the formula in Proposition 6.1 gives 

u * v 
- l 
*— 

^ù* 
1 

ih 

/»OO 

0 
** 

t l *ih -u*v dt, V * u] ,-1 
cww ^* 

0 
ih — oo 

t 
e* 

JL 

ih 
V*U dt 
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for generic ordered expressions. Then 

y° = u * V * u v-1 
* + 5 u* = V * u * v - l 

*— 5 

are left and right inverses of v and u respectively. That is, 

V * V° = 1, V° * V = 1 — WQQ, U * U* = 1, It* * U = 1 — VDQQ. 

The bumping identity gives 

v*l > + 
1 

ih 
uov o 

l*V 
= z + l + 

1 

ih 
uov. v°* (24 

1 
w<< uovi *v = 1—^00; *{ 2 - 1 + 

• 

ih uov) J-

Successive applications of the bumping identity give the following useful formula: 

(49) lu * (v * u -1 
<^ù 

x< * WQQ = 
1 

n! 
1 

ih 
u * ^00-

Using v° instead of <p^ 
<<m 

we can produce the analytic continuation of inverses. 

However, we have to be careful about the continuity of the *-product. We compute 

v° * ^ùù 
1 

ih 
uov -1 

w< ̂* u * 
— oo 

ti 
e* 

ì 
ih uov-\-l 

2 'db * 
•o 

— oo 

s 
e* 

>+ ì 
in uov) ds 

= u * 
•0 -0 

— oo — oo 

ti 
e* 

in x<< 1 ' 2 
* e* 

.s << i 
in ̂ ùù w<<< (cf. (39); 

< 
0 0 

— oo '-oo 
e* 2 ' s*u * e* 

<^ùm ì ih -uov dtds (cf. Lemma 2.1 

<< 
r0 << 

— oo — oo 
e* 

1 2 + SZ — (t + 8 
e* 

p^ùm ì 
in << * udtds. 

Hence, whenever both sides are denned, we obtain 

(v° * <w 
1^$* 

ih 
uov -1 

x<< 
* V = 

*0 r»0 

/-oo — oo 
e"* l 

2 
+ 5 p^ùm ^^ t+s J, 'In * (U * V; x<< 

<< 
0 

— oo 
U * V t 

* e* 

l 
' ih u*v dt * 

0 

— oo 

s 
e* 

[z-ì ì ih uov ds 

=( 1 — ZUQO w< > - 1 4 
1 

ih 
uovj -1 

<< 

Noting that 

ZDQO * 2 - 1 + 
1 

ih 
uov ,-1 

<< << 'z- 14-
1 

<< Uov \ - l 
'*+ * ^00 << 2 — 

1 

2; 
-ì ^00, 

whenever 2 - 1 4 ì 
ih 

uov -1 
< is defined, we have 

f50) <^ùm > + 
1 
<< -uov -1 

*4. * v 4 2 — 
1, 

2J 
-l ^00 = w<< 1 + 

a 
<< uov 

- l 
<< 

Since (z- l 
< 

-1 << is always denned, we see that the functional equation (50) gives 

an analytic continuation for <<< l 
ih1 ti, o V -1 

*+• Namely, we have the following (see [7] 

and [10] for more details): 
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Theorem 6.2. — For generic ordered expressions, the inverses z + l 
ih uov - l 

w<< z — 
1_ 
ih uov -1 

* — 
extend to £2+(C2) -valued holomorphic functions of z on C — <ùù N + l 

2> xw 
In particular, z2 < i 

ih uov 2 -1 
±* 

extends to a holomorphic function of z on this 

domain. 

The residue at a singular point ZQ is denned as usual by i 
2ni xww 'z + 1 

ih 
uov - l 

*± dz. 
The analytic continuation formula gives the following: 

Theorem 6.3. — Res > + i 
w< uov -1 

<^ùm x< [ra + 1 
2) <^$* 1 

(*fi)nn! 
w< * WQQ * Vn /or generic 

ordered expressions. 

For the proof, we remark that [z+n+ _1 ¿Al <<m - l 
'*± is holomorphic for sufficiently large 

n, and the contour integral is an integral on a compact set. Note that 'z + 
ih taxa -1 

<< 
is singular at z = n + i 

2' but z + 1 
ih 

uov] * z + x< 
¿AI w<c -1 

^*ù x<< 1 for z £ — (N + i 
2* for 

generic ordered expressions. 

Note also that if we exchange << i 
ih UOV * and the integration, then 

,o 

— oo 
Z + 

1 

ih 
u o v * e* 

t >+ i 
^*ù ItOt/ dt = 

1 

, 1 - ^oo 

Rez > - i 
2 

5 z — — 1 
2 

r.0 

— oo 
2 -

1 

ih 
U o v) * e* 

<< w< 1 ih uov dt = 
1 

1 — ^00 

Re z > - i 
2 

Z = — 1 
2 

As suggested by these formulas and Hadamard's technique of extracting finite parts 

of divergent integrals, we now extend the definition of the *-product using the finite 

part regularization mentioned in the introduction. 

We consider the inductive limit topology on the space Cft*l. We define the new 

product of <^mm i 
ih uov) V 1 

w<< with either polynomials q (u,v) or q(u, v) = e* s I in. <ww by 

(5i: z + 
1 

x<< uov tí << u, 1? <<^ù FP w<< 
1 

<^ùm 
<wwx ,-1 

^*m (^*^*etu*v; 

where FPf(z) denotes its finite part of / at z. The result may not be continuous in 

z. 
For Re z > _ i 

2 
we easily see that 

^*m 
1 

ih 
uov ,-1 

'*+ 
*q( c<< = lim 

N-+00 

r0 

-N 
e* z+ ih uov 

*9( i¿, v)dt 

Hence we have the formula 

52 > + 
1 

<< 
<o^m >* > + 

1 
mw< x<< tí << 

1 Re z > - i 
2 

1 — ^00 z — — 1 
2 

x<< 

Using (Vo )n * Í2 + 1 
¿/i 

uov * > + 
1 
¿Ai 

a o v - i 
<< 

* vn ̂ ùù v°' 71 * z + 1 
¿Al 

1¿ o v * vn * <<^m n * 

<<^m 1 
¿ft -t¿ o v) v-1 

x<< *Vn and (50), we have the following: 
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Theorem 6.4. — Using definition (51) for the ̂ -product, we have 

53) x<< 1 

ih 
-u O 1> I * > + 

l 

ih 
-uov -1 

*+ << 
1 

1 - 1 
n! 

1 
y ih u l n * w0o * vn 

z € - x<< 1 
2 <5 

z = — <<$*ù 1 
2 

(54) <^mm 
1 

ih 
uov z — 

1 

ih uov 
-1 
* — < 

1 

1 - 1 
n! ' 

1 
^ ih v. m (^*^*etu*v; 

z ï - N -f l 
2 x< 

Z = — fn-f 1 
2 

/or generic ordered expressions. 

Although z = -( x<< l 
2 

), n = 0, l ,2 ,- • are all removable singularities for (53) and 

(54) as a function of z, it is better to retain these singular points. 

In these computations, elements are often given via a limiting procedure. As usual, 

*-products of such elements depend delicately on the limiting procedure. There is no 

general rule guaranteeing associativity. 

Via the identity (i + 
l 
m 

cw< 1 
ih rana y-1 

^m;,, = m m + z + î 
ih uov 

<< 
<^*ù we have, in 

particular 

'55Ì 

1+ î 
m w< 1 

ih 
uov )* 1+ 1 

m ' 
<< 1 

ih 
uov -1 

*+ x<< 
1 

1 -^^ù i 
x< ̂mm x< * -ĉ oo * ffe 

z i - N + ra + ì 
2-

£ = — f/c + ra + ì 
2> 

for every fixed positive integer m and for arbitrary k G N for generic ordered expres­

sions. 

By the associativity stated in Lemma 2.1, we see the following: 

Theorem 6.5. — We have 

(~n- 1 
2 + 1 

zh 
uov * un * Woo = un * 1 

w< [/ * i; )woo = 0. 

.And tfms, 

( 1 -
1 

e 
<^ùm 1 

ih u o v) * x<< l 
m 

^ùm 1 
ih uov) x< 1 + l 

m 2 + 1 
< 

v<ww ^ù 
x<< 

<< 

1 - 1 
e 

z + l 
ih uov 

1 - l 
< z + 1 

ih 
u o v) 

z t - 'N + ra + i 
2> 

2 = — <ù ^x<< 
2 J 

1 - 1 
< 2 + 1 

ih •uov * 1 - l 
fep 

1 
< u \k * Cc7()0 * Vk Z=-lk + 1 

2̂  
(^*^*etu*v; 1 

2 
/or generic ordered expressions. 

We note here that singularities such as w< 1 
ih 

u 1 *woo g 
* V 

disappear from the r.h.s. 

of the above equality because of the term 1 << l 
£ 

z + 1 
ih uov) 

We also define a *-product for a certain class of elements by 

/1 ti)* [z + 
1 

ih uov -1 
*+ w< (^*^*etu*v; (FP (z + 

1 

ih 
<p^mm wx 

^*ù x< 
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These formulas will be applied to the computation of 

sin* mù 
1 

ih 
uov I * ^x< i 

m 
<^$ 1 

ih 
u o v) -1 

*+ 

along with an infinite product formula for sin*( w<< i ih1 uov in a forthcoming paper. 
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