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R A T I O N A L L Y C O N N E C T E D 3 -FOLDS 

A N D S Y M P L E C T I C G E O M E T R Y 

by 

Claire Vois in 

Pour Jean Pierre Bourguignon, à l'occasion de ses 60 ans. 

Abstract. — We study the following question asked by Kollâr: Let X be a rationally 
connected 3-fold, and y be a compact Kâhler 3-fold symplectically equivalent to it. 
Is Y rationally connected? We show that the answer is positive if X is Fano or 
b2{X) < 2. 

Résumé (3-variétés rationnellement connexes et géométrie symplectique). — Nous étudions 
la question suivante posée par Kollâr: soient X et Y des variétés kàhlériennes com­
pactes de dimension 3 symplectiquement équivalentes. On suppose que X est ration­
nellement connexe. Y est-elle aussi rationnellement connexe? Nous montrons que la 
réponse est positive si X est une variété de Fano ou 62(X) < 2. 

0. Introduction 

Let X be a compact Kahler manifold. Denoting by J the operator of complex 

structure acting on Tx, Kahler forms on X are symplectic forms which satisfy the 

compatibility conditions 

w(Ju, Jv) = u(u, v), u, v £ Tx,x, u{u, Ju) > 0, 0 ^ u £ TX,x-

The first condition tells that u> is of type (1 ,1 ) . The last condition is called the taming 

condition. The set of Kahler forms is a convex cone, in particular connected, and thus 

determines a deformation class of symplectic forms on X. 

Let X and Y be two complex projective or compact Kahler manifolds. We will 

say that X and Y are symplectically equivalent if for some symplectic forms a on X , 

resp. ¡3 on y , which are in the deformation class of a Kahler form on X, resp. Y, 

there is a diffeomorphism 

tf> : X ^ y, 
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2 C. VOISIN 

such that ip*/3 = a. Notice that ip* induces a bijection between the sets of symplectic 
forms which are in the deformation class of a symplectic form on Y and X , and thus 
we may assume that a is a taming form, or even a Kahler form on X. 

In the sequel, the compact Kahler manifolds X we will consider are uniruled man­
ifolds, which means the following (cf [8]): 

Definition 0.1. — A projective complex manifold (or compact Kahler) is uniruled if 
there exist compact complex manifolds Z and B, and dominating morphisms 

f :Z^X,g:Z^B, 
where f is non constant on the fibers of g and the generic fiber of g is isomorphic 
to P 1 . 

In other words, there is a (maybe singular) rational curve in X passing through any 
point of X, where a (singular) rational curve is defined as a connected curve whose 
normalization has only rational components. 

The starting point of this work is the following result, due independently to Kollär 
[9] and Ruan [19] (we refer to [6], [13], [14] for purely symplectic characterizations 
and studies of uniruledness) : 

Theorem 0.2. — Let X and Y be two symplectically equivalent compact Kahler man­
ifolds. Then if X is uniruled, Y is also uniruled. 

We sketch later on the proof of this result, in order to point out why the proof 
does not extend to cover the rational connectedness property, which we will consider 
in this paper. Let us recall the definition (cf [2], [10], [8]). 

Definition 0.3. — A compact Kahler manifold X is rationally connected if for any 
two points x, y G X, there exists a (maybe singular) rational curve C C X with the 
property that x G C, y G C. 

Examples of rationally connected varieties are given by smooth Fano varieties, i.e. 
smooth projective varieties X satisfying the condition that — Kx is ample. (This is 
the main result of [2], and [10].) 

The following conjecture appears in [9]. It was asked to me by Pandharipande and 
Starr : 

Conjecture 0.4 (Kollär). — Assume X is rationally connected. Let Y be a compact 
Kahler manifold symplectically equivalent to X. Then Y is also rationally connected. 

Remark 0.5. — A compact Kahler manifold X whis is rationally connected satisfies 
H2(X, Ox) = 0, hence is projective. Thus, under the assumption above, X is projec­
tive, and if the answer to conjecture 0.4 is positive, Y is also projective. 
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RATIONALLY CONNECTED 3-FOLDS AND SYMPLECTIC GEOMETRY 3 

This conjecture has an easy positive answer in the case of surfaces, as an immediate 

consequence of theorem 0.2. Indeed, let X be rationally connected of dimension 2, 

and let Y be symplectically equivalent to X. Then Y is uniruled, as X is. On the 

other hand b\{Y) = 0, because b\(X) = 0 and Y is diffeomorphic to X. Thus Y is a 

rational surface, hence rationally connected. 

In this note, we prove the following partial results concerning conjecture 0.4 in 

dimension 3. I should mention here that in these form the results are partly due to 

Jason Starr. Indeed, in the original version of this paper, I had worked with a more 

restricted notion of symplectic equivalence between compact Kahler manifolds, where 

I considered only symplectic diffeomeorphisms (X, a) = (Y, (3) where a and /3 were 

taming for the complex structure. Jason Starr showed me how to make the proof of 

proposition 0.6 work as well when only a is taming, and /3 is any symplectic form 

which is a deformation (through a family of symplectic forms) of a Kahler form on Y. 

Proposition 0.6. — Let X be rationally connected of dimension 3, and let Y be compact 

Kahler symplectically equivalent to X. IfYis not rationally connected, X andY admit 

almost holomorphic rational maps 

<f) : X —• E, </>' : Y —• £' 

to a surface, with rational fibers C, resp. D, of the same homology class (where we use 

the symplectomorphism i/> : X = Y giving symplectic equivalence to identify H2 (X, Z) 

andH2(Y,Z)). 

Here almost holomorphic means that the map is well-defined near a generic fiber. 

We then consider the case where the above map <j> is well-defined. 

Proposition 0.7. — Under the same assumptions as in proposition 0.6, assume that 

the rational map <fi above is well-defined and that either £ is smooth, or <ft does not 

contract a divisor to a point. Then Y is also rationally connected. 

We will use this result together with some birational geometry arguments to prove 

the following: 

Theorem 0.8. — Let X , Y be compact Kahler 3-folds. Assume that X and Y are 

symplectically equivalent and that one of the two following assumptions hold: 

1. X is Fano. 

2. X is rationally connected, and b2(X) < 2. 

Then Y is rationally connected. 

This anwers conjecture 0.4 when X is a Fano threefold or satisfies b2 < 2. The 

two considered cases have a small overlap. In the class where b2(X) < 2, one has all 

the blow-ups of Fano manifolds with b2 — 1 along a connected submanifold. Thus 
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4 C. VOISIN 

this is not a bounded family. It is known on the contrary that Fano manifolds form a 
bounded family (see [2], [10], or [17] for the 3-dimensional case). However the bound 
for 62 of a Fano threefold is 10 (cf [17]), showing that the Fano case is far from being 
included in the second case. 

Remark 0.9. — Note that for varieties with 62 = 1, conjecture 0.4 obviously has an 
affirmative answer. Indeed a uniruled projective manifold with b2 = 1 is necessarily 
Fano. Hence if X is rationally connected with 62 = 1, by theorem 0.2 any projective 
manifold which is symplectomorphic to it is also uniruled with 62 = 1> hence Fano, 
hence rationally connected. 

Remark 0.10. — The results presented here have a partial overlap with [3], where the 
authors show that for rigid and "primitive" Fano threefolds with 62 = 2 and 63 = 0, 
the projective (equivalently Kahler) complex structure is unique. I thank the referee 
for bringing this reference to my attention. 

To conclude this introduction, let us sketch the proof of theorem 0.2, and explain 
on an example the difficulty one meets to extend it to the rational connectedness 
question. 

Proof of theorem 0.2. — Let a be a taming symplectic form on X (one can take here 
a Kahler form). We will denote in the sequel the degree of curves C in X with respect 
to a (that is the integrals Jca) by dega(C). Let fJLa{X) be the minimum of the 
following set: 

Sx := { d e g a ( C ) , C moving rational curve in X}. 

Here by "moving", we mean that the deformations of C sweep-out X. Note that the 
minimum of the set Sx is well defined, because there are finitely many families of 
curves of bounded degree in X and the (1, l)-part a 1 , 1 of a is > ecu where u is any 
Kàhler form on X. Let now C be a moving rational curve on X, which satisfies 
deg a (C) = / x a ( X ) and let [C] G H2(X,Z) be its homology class. We claim that for 
x G X, and for adequate cohomology classes A\,...,Ar G H4(X,Z), the Gromov-
Witten invariant G ^ 0 , [ c ] ( N ^ b • • • > Ar) counting genus 0 curves passing through x 
and meeting representatives Bi of the homology classes Poincaré dual to Ai, is non 
zero. To see this, we observe that by minimality of deg a (C) , any genus 0 curve of 
degree < deg a (C) is not moving, that is, its deformations do not sweep-out X. It 
follows that for a general point x G X, any genus 0 curve of class [C] and passing 
through x is irreducible, with normal bundle generated by sections. This implies that 
the set ZXi[c] of rational curves of classes [C] passing through x has the expected 
dimension and it is nonempty by assumption. Let r be its dimension, and choose 
for Ai, 1 < i < r, a class h2, where h is a Kàhler class on X. It is then clear 
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RATIONALLY CONNECTED 3-FOLDS AND SYMPLECTIC GEOMETRY 5 

that G W ^ C j ( [ # ] , A i , . . . , Ar) ^ 0, as this number is the volume of a semi-positive 

generically positive (1, l)-form on ZXi[c]-

As Y is symplectically isomorphic to X, (for some symplectic structures on X, 

resp. y , in the deformation class determined by Kahler forms,) we conclude that 
GWoMC](ly}' A'n • -' iA'r) + °> where A i = w*Ai E HA(Y,Z). But in turn, because 

Gromov-Witten invariants can be computed using rational curves on Y by excess 

formulas (see [12], [1], [20]), this implies that there is through any point y G Y a 

rational curve of class ip*[C]. Thus Y is uniruled. 

Remark 0.11. — The proof above shows in fact a strongest statement, namely the 

fact that a uniruled compact Kahler manifold X admits non-zero Gromov-Witten 

invariants in genus 0 passing through one point: 

(*) GW*[Ci([x],Ai,...,AT)ÏO. 

Prom this point of view, the proof of Theorem 0.8 is somewhat different. Indeed we do 

not prove that a projective rationally connected 3-fold X admits non-zero Gromov-

Witten in genus 0 passing through two points: GW*^ ([#], [x], A\,..., Ar) ^ 0, which 

would be the natural symplectic analogue of rational connectedness. 

Our argument uses Gromov-Witten invariants in higher genus, which of course 

works in the symplectic setting as well. What we show essentially is that there is a 

covering family of rational curves of class [C] with a non zero 1 point Gromov-Witten 

invariant: GW^c^([x],Ai,..., Ar) ^ 0, and that there is a non zero Gromov-Witten 

invariant of the following shape 

(**) GWxg[C'] [C],...,[C],A1,...,AN)^0, 

r 
for some r > g and curve class [Cf] not proportional to C. We have the same non 

vanishings for Y. 

The second ingredient is the notion of maximal rationally connected fibration due 

to Kollar-Miyaoka-Mori and Campana in the Kahler context. This last notion does 

not seem to extend well to the symplectic geometry context. The argument consists 

roughly in proving that the basis of the maximal rationally connected fibration of Y 

cannot be a 3-fold by the non vanishing (*), and cannot be a surface, which would 

be uniruled by the non-vanishing (**). Finally it cannot be a curve by elementary 

topological considerations. 

Remark 0.12. — We used in this sketch of proof the terminology "rational curve in 

X " to mean "stable n-pointed genus 0 maps / : C —> X" , which are the correct objects 

to count in order to compute the Gromov-Witten invariants (cf [4]). However, note 

that if / is as above, / ( C ) is a rational curve in the previous sense. 
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6 C. VOISIN 

If we want to apply the reasoning to study rational connectedness, we are faced to 
the following problem: we could as before introduce the minimal degree for which there 
are rational curves in X passing through any two points of X. On the other hand, 
it might be that curves of this degree are all reducible, with one component which 
is highly obstructed, so that one cannot conclude that the corresponding Gromov-
Witten invariant is non zero. In fact, consider the case of a Hirzebruch surface p : 
F —> P 1 which is a deformation (hence symplectically equivalent to) of a quadric 
P 1 x P 1 : Let Co be a rational curve which is a section of p with sufficiently negative 
self-intersection : CQ < —4. Then one has in F rational curves consisting of the 
union of two fibers with the section Co. Such curves C can be chosen so as to pass 
through any two points of F, and we may assume they are, among the rational curves 
satisfying this property, of minimal degree with respect to an adequate polarization. 
On the other hand, we have C2 < 0 and it is clear that these curves disappear under a 
deformation from F to P 1 x P 1 . The corresponding 2-points Gromov-Witten invariant 
is 0 in this case. 

The paper is organized as follows. In section 1, we prove proposition 0.6. In 
section 2, we study the remaining case, where X is an almost conic bundle (we mean 
by this that X admits a rational map / to a projective surface E, with generic fiber 
isomorphic to P 1 , and that the rational map / is well-defined along the generic fiber). 
We show that <fr is actually a morphism (for an adequate choice of birational model of 
E) when 62 (X) < 2 or X is Fano, unless there are some non trivial genus 0 Gromov-
Witten invariants of the form GW^c^([C],Ai,...,Ar), with [C] not proportional 
to [C]. These Gromov-Witten invariants will be used in the last section to conclude 
that in this last case, Y is also rationally connected. We also show that when 0 is 
well-defined, there are many non zero Gromov-Witten invariants on X , maybe not in 
genus 0 however. 

The proof of theorem 0.8 uses in turn these non zero Gromov-Witten invariants on 
Y. It is completed in section 3. 

Thanks. — It is a pleasure to acknowledge discussions with Jason Starr and Rahul 
Pandharipande, which started me thinking to this question. I thank Dusa McDuff, 
Yongbin Ruan and Johan de Jong for comments on various versions of the paper. I 
am mostly indebted to Jason Starr for showing me how to modify my original work 
to get the present version of the result. 
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RATIONALLY CONNECTED 3-FOLDS AND SYMPLECTIC GEOMETRY 7 

1. Study of the rationally connected fibration of Y 

This section has been much simplified and improved thanks to the help of Jason 

Starr. In the proof of proposition 1.1 below, he showed me how to work with general 

symplectic equivalence, instead of restricted symplectic equivalence as I did originally. 

We will assume that X is a projective rationally connected complex manifold, that 

Y is compact Kahler and that X and Y are symplectomorphic with respect to some 

symplectic forms a, ¡3 on X , Y respectively, with a a taming form for the complex 

structure on X and /3 in the deformation class (as a symplectic form) of a Kahler form 

on Y. We will denote as before ip : X = Y, ifr*(3 = a such a symplectomorphism. The 

theory of Gromov-Witten invariants shows that the map ip identifies the Gromov-

Witten invariants of X and Y, computed using holomorphic curves on X and Y. 

We start now as in the proof of Theorem 0.2. Introducing as before moving rational 

curves (or rather genus 0 stable maps) C on J , of minimal degree with respect to a, 

we concluded that there is a covering family of rational curves (genus 0 stable maps) 

in Y in the class t/>*([C]). 

Our goal in this section is to show the following, (which implies proposition 0.6): 

Proposition 1.1. — IfY is not rationally connected, then the covering family of curves 

C in X is given by an almost holomorphic rational map 

0 : X — • £ 

to a surface, with rational fibers of class [C]. Furthermore, Y also admits an almost 

holomorphic rational map 

<$>' : Y —> £' 

with rational fiber of class [D] = ip* [C]. 

Here almost holomorphic means that the rational map <j> is well-defined along the 

generic fiber of 4>. Equivalently, choosing a desingularization 

0 : X - + £ , T:X-+X 

of </>, where r is a composition of blow-ups along smooth centers, this means that 

the exceptional divisors of r do not dominate E. As the fibers of this fibration are 

rational curves, but X is not necessarily ruled (as it may not exist a line bundle with 

intersection —1 with fibers), we will say that X is an almost conic bundle. 

The proof of the proposition is based on the following lemma (here we do not 

distinguish the image curve and the map, as we know that the map is generically the 

normalization map): 

Lemma 1.2. — Y is rationally connected, unless possibly if the curve D above satisfies 

Cl(KY) - [D] = - 2 and GWot[D]([y]) = 1. 
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8 C. VOISIN 

Proof. — We study the maximal rationally connected fibration of Y, which exists 

even if Y is only Kahler by [2], and is an almost holomorphic rational map 

y —> B. 

Notice that dim B < 2 because Y is covered by rational curves D of class [D] = -0* [C]. 

We use now the following elementary lemma. 

Lemma 1.3. — Let X, Y be compact Kahler manifolds which are symplectically equiv­

alent. Assume X is rationally connected. If the basis B of the rationally connected 

fibration ofY has dimension < 1, Y is rationally connected. 

Proof. — We know that HX(X, C) = 0 because X is rationally connected and this 

obviously implies H°(X,Slx) = 0, hence i ^ p ^ C ) = 0 by Hodge theory. As Y 

is diffeomorphic to X , iJ 1 (y, C) = 0 as well. It follows that if the basis B of the 

rationally connected fibration of Y has dimension 1, it is isomorphic to P 1 . This 

contradicts [5], which implies that the basis of the rationally connected fibration is 

not uniruled. 

Thus we conclude that if Y is not rationally connected, the basis B of the maximal 

rationally connected fibration of Y is a surface Eé Furthermore the map (f)' :Y —-> £' 

is almost holomorphic. The surface £ ' is not uniruled by [5], and thus any (connected) 

rational curve (or rather genus 0 map) / : T —> Y passing through a general point y 

of y (where we may assume, because ft is almost holomorphic that ft is well-defined 

everywhere along the smooth connected curve D' := (j) ~1(ft(y))) must have image 

supported on D'. It follows that [f*T] = m[Df]1 for some m > 1. 

We apply this to our covering family of rational curves D (genus 0 stable maps) in 

y in the class [D] = ip*([C]) and we conclude that ^*[C] = m[D'\. Next we observe 

that GW 0

y | D , j([ | /]) = 1, because the only rational curve of class [D'\ passing through 

y is JD, which is smooth with trivial normal bundle, so that there is fact exactly one 

genus 0 map / of class [Df] passing through y, and as jff1(JV/(—y)) = 0, this stable 

map is computed with multiplicity 1 in GW0

y|D,j([|/]) 

This implies that m = 1, because we find that 

GWxom[C] ( И ) 5 е о, 

hence that X admits a covering by a family of rational curves of class ^ [C], so that 
m > 1 would contradict the minimality of deg a (C) . Hence we proved that 

[D] = [D']T 
GWlm ([»]) = 1-

Finally, as ft is well-defined along the generic fiber D', we conclude that N^jy is 
trivial, which implies by adjunction that Ky • D' = Ky • [D] = —2. Thus lemma 1.2 
is proved. 
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RATIONALLY CONNECTED 3-FOLDS AND SYMPLECTIC GEOMETRY 9 

Proof of proposition 1.1. — Notice that, as ^ is a symplectomorphism with respect 
to symplectic forms a, (3 of X , resp. Y, which are respective deformations of Kahler 
forms on X resp. Y, IJj*CI(KY) = c\{Kx)- This is indeed a standard fact of sym­
plectic geometry: the canonical class of a symplectic manifold X is an invariant of 
the deformation class of the symplectic form w on I . Indeed it can be computed 
using any almost complex structure on X which is tamed by w or a deformation of 
u, the set of such almost complex structures being connected. This almost complex 
structure makes the tangent bundle into a complex vector bundle and the canonical 
class is minus the first Chern class of this complex vector bundle. 

Furthermore, we have by assumption [D] — ^*([C]). Thus we have 

c1(KX)-[C]= c1(KY)-[D] = 2 , 

GW0

x

[c](\x}) GWl[D]{[y]) = l. 

The first equality together with the fact that the general curve passing through the 
point X is irreducible, and thus has globally generated normal bundle, implies that for 
general x G l , the normal bundle of a curve C of class [C] passing through x is trivial, 
which shows that there are finitely many such curves through x, and that the set of 
such curves has the expected dimension 0. Thus the number of these curves is equal 
to GW0

y|D,j([|/]) and this is equal to 1 by the second equality above. In conclusion we 
proved that if Eo is the set parameterizing rational curves in X of class [C] and E 
is the union of components of Eo parameterizing moving curves, then the universal 
curve 

q' : С -> E, Ф' : С -> X, 

has the property that Q' has degree 1. Thus Q' is birational, and 

ф:=д' оФ' 1 : X E 

gives the desired fibration into rational curves. 
In order to conclude the proof, it just remains to prove that the rational map 

ф : X ---> E is almost holomorphic. Assume this is not the case: let r : X' —• X be 
a composition of blow-ups along smooth centers, such that ф := ф о r is well-defined. 
Assume there is an exceptional divisor E С X' which dominates E and is contracted 
to a curve Z (or a point) in X. Then if С is the general fiber of ф, С meets E. On 
the other hand, Kxf = r*Kx + F where F is an effective divisor supported on the 
exceptional locus, and the multiplicity of E in F is > 0. Thus we find that 

CL(KX,) • [C] = - 2 = (T*CI(KX) + F) [C] > r*Cl(Kx) • [C] = a(KX) • [C] = - 2 , 

which is a contradiction. 
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10 C. VOISIN 

2. The case where X is an almost conic bundle 

We now study almost conic bundles <j> : X ---> £ with generic fiber C. When X 

is rationally connected, E is a rational surface, and thus we may assume to begin 

that £ = P 2 . (Indeed, the fact that (j) is almost a morphism does not depend on the 

birational model of the target.) Notice that, because 0 is almost holomorphic, we 

have H • C = 0, where the line bundle H on X is defined by 

H := 0*OP2(1). 

The first result is the following: 

Proposition 2.1. — Assume that either X is Fano, or b2 (X) = 2. Then H is numeri­

cally effective, unless we are not in the Fano case, and there exists a curve class [C] 

not proportional to [C] such that for some cohomology classes Ai,...,Ar G H*(X), 

GW0

y|D,j ([C\ ,A l t . . . ,A r ) ÏO. 

Proof. — Suppose first that X is Fano. Then any irreducible curve Z C X satisfies 

Kx - Z < 0, hence the Chow variety of its cycle is at least one dimensional because 

dim X = 3 (cf [8], theorem 1.15). (This can also be formulated by evaluating the 

dimension of the space of deformations of the composed map Z —• Z —• X , where 

Z —> Z is the normalization.) Thus, Z being irreducible, its cycle can be moved so as 

to be not contained in the indeterminacy locus of <\>. Thus 0*H • Z > 0. 

Suppose now that b2 (X) = 2 but X is not Fano. We have to show that either H 

is numerically effective, or there exists a curve class [C] not proportional to [C] such 

that for some cohomology classes Ai,...,Ar G H*(X), 

GW0

y[|/]) ([C],A 1 , . . . ,A r )^0. 

As Kx is not nef, there exists a Mori contraction c : X —> X', with (PicXf) (g) Q = Q 

and —Kx/x' relatively ample. We consider the three possible dimensions of X' (cf 

[i6]). 

1) dim X' — 1, that is X' = P 1 . In this case, the contraction is given by a pencil 

whose fibers are Del Pezzo surfaces. Let L = c*(9 P i ( l) . If L • C = 0, then L is 

proportional to H (because b2(X) = 2), and this contradicts the fact that the Iitaka 

dimension of H is at least 2. In the other case, we observe that the fibers of c are 

uniruled. Fix a polarization h on X and introduce the minimal degree with respect 

to h of rational curves contained in the fibers of c and sweeping-out X. Let [C] be 

a class curve such that L.[C] = 0 and achieving this minimal degree. All curves of 

class [C] are supported on fibers of c. Exactly as in the proof of theorem 0.2, one 

then shows that for a covering family of rational curves C of this minimal degree, the 

generic member is irreducible with semipositive normal bundle. Using now the fact 
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RATIONALLY CONNECTED 3-FOLDS AND SYMPLECTIC GEOMETRY 11 

that C intersects non trivially the generic fiber of c, one concludes immediately that 

there is a non zero Gromov-Witten invariant 

GW0

x

[Cf] (C},Au...,A r). 

2) dim X' = 2. We have c*PicX' = ZL, where L is ample on X1and if C • L = 0 

we conclude as before that L is proportional to H. In this case H is numerically 

effective. In the other case, the map c : X —> X' has for generic fiber a rational curve 

C with trivial normal bundle and satisfying Kx • C = —2. Furthermore there are 

only finitely many 2-dimensional fibers of c. If C is generic, there is thus exactly a 1-

dimensional family of fibers C meeting C, and this is exactly the expected dimension. 

It thus follows that there is a non trivial Gromov-Witten invariant 

GWX[ct]([C\M 

where A{ = h2 G # 4 ( X , Z ) for some ample class h G H2(X,Z). 

3) dim X' = 3. In this case c is a divisorial contraction. Note that C is not 

proportional to the contracted extremal ray, because C is a moving curve. A look at 

the list of divisorial contractions (cf [15]) shows the following (see [18]): Let E be the 

exceptional divisor of the contraction, so that E is either a ruled surface contracted 

to a smooth curve, or P 2 or P 1 x P 1 contracted to a point. Let [C] be the class of 

the fiber of the contracting ruling in the first case, or the class of a line in the second 

case, or the class of one of the two rulings in the third case. Then for any curve class 

7 such that 7 • E ^ 0, one has GWx^c,^(j, A\,..., Ar) ^ 0, for an adequate number 

r, which will be in fact 0 or 1. 

On the other hand E • C — 0 is impossible, because in this case E and H would 

be proportional in PicX, and E is contractible while the Iitaka dimension of H is 

at least 2. We deduce from this that one has GWX^C,^{[C], A\,... ,Ar) / 0, where 

Ai = h2 G H4(X, Z) for some ample class h G H2(X, Z) . • 

From this, we get the following result: 

Corollary 2.2. — Assume that either X is Fano, or b2(X) = 2. Then there exists a 

well-defined morphism 4> : X —• E with fiber C, where E is a normal surface, unless 

we are not in the Fano case and there exists a curve class [C] not proportional to [C] 

such that for some cohomology classes Ai,..., Ar G H*(X), 

GW0

x

[Cf] [[C\,A1,...,Ar)ÏQ. 

Proof — We use the contraction theorem (cf. [7], or [15], p 162) which tells that 

such a morphism exists if and only if H is numerically effective and the curves Z C X 

satisfying Z.H = 0 also satisfy Z • Kx < 0. 
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Indeed, by the previous theorem, we know that H is numerically effective, unless 

there exists a curve class [C'\ not proportional to [C] such that for some cohomology 

classes Ai,...,Ar G H*(X), 

GW0

x

[c,y [C],Au...,Ar)^0. 

Thus, in order to apply the contraction theorem, we just have to show that for any 

curve Z C X satisfying the condition Z • H = 0, one has Kx • Z < 0. 

In the Fano case, this is obvious. When b2(X) = 2, the orthogonal of H in H2(X, Q) 

is generated by the class of C, which satisfies the condition C • Kx = — 2. 

We will use the following observation: 

Lemma 2.3. — Assuming (j) is well defined and either b2(X) < 2 or X is Fano, we 

may furthermore assume (by changing £ if necessary) that (j) does not contract a 

divisor to a point o /E . 

Proof. — First of all, note that if b2(X) < 2, (/> cannot contract a divisor D to a point 

of E. Indeed, such a divisor would satisfy DC = 0, hence would be proportional 

to H. But the Iitaka dimension of H is 2, while no multiple of D moves, which is a 

contradiction. 

Consider now the Fano case. Let a; be a point of E, and let E be the pure 2-

dimensional part of Q-1(x) (counted with multiplicities). We claim that — E is nu­

merically effective on the fibers of 4> and non trivial on (j>~l(x). 

Assuming the claim, H — eE remains numerically effective for a sufficiently small 

e. On the other hand, curves Z satisfying Z • (H — eE) = 0 satisfy the condition 

Kx • Z < 0 for the same reasons as before, hence we can apply the contraction 

theorem to H — eE, which does not contract E anymore. This leads eventually to a 

morphism ft which does not contract any divisor to a point. 

To see the claim, we observe that — E • F = 0 for any irreducible curve F contained 

in a fiber of <\> but not contained in (j)~1(x). Furthermore —E\E is effective and non 

trivial on each component of E. This implies that —EF > 0 for any irreducible curve 

F C E whose deformations cover a 2-dimensional component of (j)~1(x). Consider now 

any irreducible curve F C X contained in (f)~1(x). As X is Fano of dimension 3, the 

cycle of any such F deforms to cover at least a divisor in X (cf [8], Theorem 1.15). 

On the other hand, all such deformations remain contained in a fiber of (j). It follows 

that either the cycle of F deforms to cover a 2-dimensional component of </> -1(x), so 

that — E - F > 0 as shown previously, or the cycle of F can be moved to be supported 

in another fiber, in which case we have — E • F = 0. 

We consider now the case where (j) is well defined (but E may be singular). Our 

main result is the following: 
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Theorem 2.4. — Let X be a rationally connected 3-fold which admits a morphism 

<j> : X —• E to a normal surface E, with generic fiber a rational curve C. Assume that 

either E is smooth, or (f> does not contract a divisor to a point o /E . Then there exist 

integers g, r with g < r, cohomology classes A±,..., AN G H4(X, Z) and a homology 

class [C] G H2 (X, Z) not proportional to [C] such that 

GW0

y|[C'] 
[C},...,[C],A1,...,AN)^0. 

r 

Before giving the proof, let us establish a few lemmas. 

Lemma 2.5. — E contains a complete linear system of generically smooth curves Z 

of genus g, which do not meet generically the singular locus of E, and satisfy 

(2.1) r = fc°(£,öE(Z)) - 1 = h°{Z,Oz{Z)) > g. 

Proof. — If E is smooth, E is rational and the result is obvious (we can even take 

g = 0). In general, we start from a "very moving" generic smooth rational curve 

r 0 C X. Recall that "very moving" means that the normal bundle NFo/X is ample. 

Using the assumption that no divisor is contracted to a point by <j> or that E is smooth, 

one concludes that for To generic, <j)(T0) = : T 0 avoids the singular locus of E. 

Let C := O s ( r o ) . Observe that i f 1 (E , (9s ) = 0, because E admits a desingular-

ization which is rationally connected. It follows that the restriction map: 

H0(Z,C)^H0(r'0,Nr,/E) 

is surjective. Observe now that because the equisingular deformations of T 0 in E 

(which are singular rational curves) cover E, one has K% • T'0 < 0. 

In fact we may even assume KE Tf

0 < —1, replacing if necessary r 0 by a ram­

ified cover of it, which by ampleness of the normal bundle can be deformed to an 

embedding. 

It thus follows that 

deg Nr>o/x = deg KY*o <8> KE-1|To > deg KT'0 + 2. 

This inequality implies that the linear system H°(T01 Nr^^) has no base-point on T 0 

so that a generic deformation Z of Tf

0 is smooth. Letting g be the arithmetic genus 

of T 0 , that is the genus of a generic deformation Z of Tf

0 in E, we now find that Z 

satisfies the desired property 

r = h°(E, 0*{Z)) - 1 = h°(Z, Oz(Z)) >g = h°(Z, Kz), 

because deg Oz{Z) > deg Kz + 2 by adjunction and because K% • Z < — 1. 

Remark 2.6. — The inequality deg Oz(Z) > deg Kz + 2 also implies that 

hx(Z, Oz{Z)) = 0, a fact which will be used later on. 
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Let x\,...,xr be r generic points of £ . Then there is a unique curve Z C E 

belonging to the linear system | C | and passing through xi,...,xr. This curve is 

smooth and by Bertini the surface Xz '•= <j)~l(Z) is smooth. Choose now a section 

T C Xz of the morphism <\>z '= <\>\xz '• Xz —> Z. Let d := (f)~1(xi). Let us prove 

now the following: 

Lemma 2.7. — C, xi,..., xr, V being as above, for any k > 0, any stable map f : 

Ti —• X of class 
[T] + k[C] 

meeting the r generic fibers C i , . . . , Cr of (j) has the property that (j) o f(Ti) = Z. 

Proof. — This is almost obvious. We just have to be a little careful with the singular­

ities of E. Let us thus introduce a desingularization r : £ ' —> E of E. Let CJ := r*C 

and xi,..., xr the points of E' over the generic points x±,...,xr of E. 

Then if / : Ti —* X is a curve as above, denote by T[ C £ ' the proper transform 

of T'1 := (f> o f(Ti) C E (counted with multiplicities) in We observe that because 

the class of f(Ti) is [F] + k[C] and 4>{C) is a point, T[ belongs to one of the linear 

systems 
\T*C-E\ 

on E', where E is an effective divisor supported on the exceptional locus of the 

desingularization. The linear system above has dimension < r, with equality if and 

only if E is empty. As r[ passes through r generic points of E r, it follows that the 

linear system | T*£ — E | has dimension r. Thus E is empty, and the curve T[ does 

not meet the singular locus of E. Hence F[ e\ C |, and as it passes through x\,..., x r , 

it must be equal to Z. 

Consider the morphism <t>z ' Xz —• Z. The smooth fiber of (f>z is a P 1 , and the 

singular fibers are chains of P^s. Note that by successive contractions of — 1-curves 

not meeting T, one can construct from Fz a geometrically ruled surface X\. The 

curve T is then the inverse image of a curve (still denoted T) in X\. T is a section 

of the structural morphism p : X\ = P(£) —> Z , where £ := P^Ox^(X) is a rank 2 

vector bundle on Z. We shall denote by a : Xz —> X% such a contraction morphism. 

It will be convenient to choose the following basis Ei of the lattice 

H2(XzZ)/o-*H2(X°ZlZ) <j*H2{XQz,Z)^. 

We factor a : Xz —* X\ a s a sequence of m blow-ups at one point. Let Oi : Xz —» Xl

z 

be the successive surfaces appearing in this factorization. Then we define for i > 1, 

[Ei] := a*[E], where E is the exceptional curve of the blow-up Xl

z —• X l

z

l . The 

classes [Ei] are effective, and they satisfy 

[Ei]2 = - 1 , [Ei] • KXz = - 1 . 
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Proof of theorem 2.4- — We will denote by j : Xz X the inclusion. For a curve 
T contained in Xz, we will denote by [T]xz € H2(Xz,%) its cohomology class in Xz 
and [r] G # 4 ( X , Z ) its cohomology class in X. Hence [r] = j . [ r ] x z . 

Let g, r, xi,..., xr, Z, T c X z be as in lemmas 2.5, 2.7. Let C\,..., Cr be the 
generic fibers (j)~1(xi) of 0. We now consider curves (stable maps) of genus g and 
class [r] + k[C] in X , where k will be chosen sufficiently large. 

The expected dimension of the family of such curves is equal to 

-Kx • ([T] + k[C}) = 2k-Kx- [T] = 2k + x(T, NT/X) 

= 2k + X ( r , Nv/Xz) + x(Z , i V z / E ) = 2fc + X ( r , i V r / x o ) + r 

= 2k + r + x (Z , £) + flf - 1 = 2k + r + deg S + 1 - 0. 

If we consider the family of such curves meeting Ci , . . . , C r , its expected dimension 
is N := 2k + deg £ + 1 — and by lemma 2.7, we know that these curves are all 
contained in a given surface Xz, where Z is a generic member of the linear system 
|C| on S. Note that N is the expected dimension of the space of deformations of 
a smooth curve of class [T] + fc[C] in Xz- If & satisfies the condition r 2 + 2k > 2g, 
choose a section I \ of Xz Z oi class [T] + k[C] in 

Then as NYk/xz nas degree > 2g — 2, it satisfies 

H1(Tk,Nrk/Xz) = 0. 

As furthermore i / 1 ^ , ( iVx z /x) | r f c ) — H1{NZiy) — 0 by remark 2.6, one concludes 
that Hl(Yk, NYk/x) = 0> s o that the deformation space of Tk in X is locally smooth 
of the right dimension N + r. Furthermore, if 2 /1, . . . ,yjv G I \ are generic, and 
Z) := { y i , . . . ,2/jv}, the restriction map: 

H°(rk,Nrk/Xz) - tf0(A(ATivxz)|D) 

is an isomorphism. Choosing N curves Bi,..., JBJV C X meeting Xz in 2 / 1 , . . . , 
respectively, we find that Tk is an isolated point in the family of curves of genus g 
meeting C i , . . . , Cr and Bi,..., Bjy. This gives at least one positive contribution to 
GW0

y([|/]) ([^••-[^[Si] W 
R 

However, in order to compute the Gromov-Witten invariant above, we need to 
control all curves in Xz whose class in X is equal to [I\] = j*\Tk]xz-

From lemma 2.7, we know that any curve in X of class [Tk] which meets C±,..., Cr 

is contained in Xz- In order to conclude the proof, we thus have to compute the 
contribution to Gw?\r 1 №,...,[C\,[BI],-~,[BN]) 

r 
of all the families of curves / : 

Ti —• Xz, where Ti is (maybe nodal) of arithmetic genus g, such that the class in X 
of / ( T i ) (counted with multiplicities) is equal to [Tk], with A; large. 

For this, we need the following lemma 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2008 



16 C. VOISIN 

Lemma 2.8. — Classes in the kernel of j * : H2 (Xz, Z) —> H2 (X, Z) are integral com­
binations of the classes | [C] — [Ei]. 

Proof — H2(Xz,Z) is generated over Z by the classes [C] of the fiber of (/>z, the 
class [r] of a section of <pz and the classes [Ei]. 

If a G Ker j * , write 

a = n[C] + m[T) + 
i 

Hi 
'1 
,2 

[C] - [Ei]) , n, m, ni G Z. 

Then we must have m = 0 because (j)*(j*a) = 0 = m[Z]. Next we have i fx • [^i] — —1, 
because Kxz • [i^] = — 1 and i^x has the same restriction as Kxz on the fibres of 
0 Z . Furthermore # x • [C] = - 2 ^ 0 , and Kx • (§[C] - [£*]) = 0. Thus 

j*a = 0 => Kx • a = 0 n = 0. 

Hence we proved that a is a combination of the \ [C] — [Ei] with integral coefficients 
Ui. Note that if such a combination belongs to H2(Xz,Z), the rti G Z satisfy the 
condition that 2 divides T^ra*. 

We need thus to study maps f : Ti —• I7 where Ti is a nodal curve of genus 0, 
f*[Fi]fund = 7 := [rfc] iЩа[с)-[Е,}) Note that for each such map, cj>z o / : 
I \ —> Z is an isomorphism on the (unique) genus g component of Ti and contracts all 
the other components of Ti, which must be rational. As deg NZ/T, > 2g — 2, it follows 
that H1 CTi, f*NZ/x) = 0, and as an easy consequence, for fixed 7, the contribution 
of this family to GW0

y

([|/]) [ C ] , . . . , [ C ] , [ B 1 ] , . . . , [ B A R ] ) 

r 

is equal to 

GWXz ([B1]\XZ,...,[BN]ixz). 

Of course [5 i ] |x z is a multiple of the class of a point of Xz- It thus remains to 
prove that for k large enough and any 7 = \Pk] + ini{\[C]-[Ei]), 

GWXz 

^vv 9,1 [pt] , . . . , [pt ] )>0. 

N 

Note that by deforming Xz, we may assume the successive blow-ups starting from 
X°z are at m distinct points zi,...,zm G X\ = P(£). 

We have the following: 

Lemma 2.9. — m being fixed, for k sufficiently large, for a fixed choice of distinct 

points zi,..., zm G P(£), for any choice of integers n i , . . . , n m G Z, any linear system 

L on the surface X'z which is P(£) blown-up at z\,..., Zm, of class 

Cl(L)=7=[Tk] + l[C]-

i 

ni[Ei], / = 1 
2 

i 
ni 
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satisfies h°(Xz, L) < N + 1 — g, and when equality holds, the generic member of this 

linear system is smooth. 

Assuming this lemma, it follows that for each 7 as above, the dimension of the 

space of divisors in X'z of class 7 has dimension < N. Thus the dimension of the 

space of divisors of class 7 passing through N generically chosen points is 0. Further­

more, when equality holds, the finitely many divisors of class 7 passing through N 

generically chosen points are smooth. It follows that the stable maps / : T\ —•> X'z of 

class f*[Ti]fund = 7 passing through N generically chosen points have finitely many 

possible images which are smooth curves of genus g. Thus each of these / ' s must 

be an isomorphism, and there are also finitely many such stable maps / . It follows 

that GWxg,y ( [pt] , . . . , [pt ] )>0. 

N 

The proof of Theorem 2.4 is thus finished, modulo the 

proof of lemma 2.9. 

Proof of lemma 2.9. — Note that if ni < 0, U{Ei is contained in the fixed part of 

I L |. Thus it suffices to prove the result assuming ni > 0, and I < | J2ini' Next, 

note that because 7 • [C] = 1, any section of L vanishing to order ni at z\ vanishes 

to order Ui — 1 along the fiber CZi passing through Z{. This way, we are now reduced 

to the case where Ui = 0 or ni = 1, and I < \ ^ n*. Notice that, in both reduction 

steps, if either one of the ni < 0 or n« > 2, the inequality becomes a strict inequality. 

We have thus to show that for k large enough, for any choice of s points , . . . , Zis 

among zi,..., zm, for L G PicXz, with 

ci(L) = [T] + fc[C] + /[C] 

j<s 

¡Eú, I < 
S 
2 ' 

we have hQ(X'z,L) < N + l-g, while for / < f , we have h°(X'z,L) < N + l-g. Note 

that for / = 0, s = 0, we can take for L the line bundle Oxz (^k) which has N + 1 — g 

sections. 

The points Z{. G P(£) determine a vector bundle 5' on Z , defined as the kernel of 

the evaluation map p*0p(£)(l) = £ —> 0 ( 9 ( l ) | Z i . . Then sections of L on Xz identify 

via p* to sections of £'{D) on Z , for some D G PickJrl(Z). There are finitely many 

bundles £'\ and thus for k large enough, and any / > 0, deg D = k + /, we have 

Hl(Z,£'(D)) = 0. As deg £' = deg £ - 5, it follows that 

h°(Z,e'(D)) = x(Z,£'(D)) = deg £'(D) + 2 - 2g 

= deg£-s + 2k + 2l + 2-2g<deg£ + 2-2g + 2k = h°(XZiTk) = N + 1 — g, 

with equality only when 21 = s. 

When equality holds, we have seen that all the ni must be equal to 0 or 1, and the 

fact that the generic curve of class 7 is smooth is deduced from the fact that with the 

notation above, the bundle £'{D) is generated by sections, for D G Pick+l(Z). 
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3. Proofs of the main results 

Proof of Proposition 0.7. — Here i/> : X = Y is a symplectomorphism with respect 

to some symplectic forms a, f3 on X, resp. Y, where a tames the complex structure 

on X and (3 is a deformation (as a symplectic form) of a Kahler form on Y. We 

assume that the conclusion of proposition 0.6 holds, but furthermore the rational 

map (j) : X --•> E is well-defined, and that either </> does not contract a divisor, or E 

is smooth. We can thus apply the conclusion of Theorem 2.4. This tells us that there 

exist integers g < r, cohomology classes Ai,..., AN G HA(Xy Z) and a homology class 

[C] G H2 {X, Z) not proportional to [C] such that 

GW^ [[C),...,[C},A1,...,AN)^0. 

r 
It follows that the curve class [£>'] = ip*[C] and the cohomology classes Ai := ip*Ai € 

H*(Y) satisfy: 

GWYg[D] [[D},...,[D},A[,...,A'N)^0. 

r 
But then this means that there exist a curve Df of genus g in V, of class not pro­

portional to [D], meeting r generic fibers Di,...,Dr of (j)'. This implies that the 

surface E7 contains genus g curves D" := (j)'(D') passing through r generic points, 

with r > g. In fact we will rather consider in the following lemma these curves as 

stable maps from a nodal curve to E. The normal bundle should be thought as Np. 

Lemma 3.1. — IfY,' satisfies this property, the Kodaira dimension o / E 7 is —00. 

Proof. — Indeed, the generic curve D" above has genus g and satisfies 

/i°(JVD,7E,/Tors) > r > g, 

where Tors is the torsion of ND"/E' • It follows that D" contains at least one moving 

irreducible component D0' which has genus go, and satisfies 

h0(D^NDfQf/^/Tois)>go. 

We claim that this implies deg (iV D/// E//Tors) > 2g0 - 2. Assuming the claim, it 

follows that deg {ND»/v) > 2go — 2, hence by adjunction that • D0' < 0. This 

implies that h°(llf,K®},D„) = 0,VZ > 0, and as D0

f is moving, this implies that 

/ i ° ( E , , K | / ) = 0 ,VZ>0. 

To see the claim, observe that Riemann-Roch gives 

X{D%, JVjv7E,/Tors) = deg (iVDJ7E,/Tors) +1-go 
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Thus, if deg (Ndh/W/Tors) < 2g0 - 2 and h?(D'¿, 7V D ^ / E / /Tors) > g0, we find that 

ft^-DA7, JVD///E//Tors) T¿ 0. Thus by Serre duality, 

hWJNwm/ToTsy ®KD,¿) ¿0. 

But then this implies, because D'¿ is irreducible, that 

/^£>£, Afy /E,/Tors) < h°{D'¿,KD») = go, 

which is a contradiction. 

Thus we conclude in this case that E' is (birationally) a ruled surface, and it follows 

that the basis of the rationally connected fibration of Y has dimension < 1. By lemma 

1.3, Y is rationally connected. • 

Proof of theorem 0.8. — We assume that X and Y are symplectically equivalent and 

that, either X is Fano, or X is rationally connected with b2{X) < 2. Thus there is 

a symplectomorphism tj) : X = Y between X endowed with a Kâhler form a and Y 

endowed with a symplectic form (3 which is a deformation of Kàhler form. 

We want to show that Y is rationally connected. We argue by contradiction, and 

assume that Y is not rationally connected. Applying lemma 1.2, we find that there 

are curve classes [C], [D] on X resp. Y, satisfying the following properties: 

1. c1(KY)'[D] = -2 = c1(Kx)-[C]-
2. GWl[D]{[y]) = l GW*[c]([x}). 
3. The class [C] is of minimal degree with respect to a, among those class curves 

satisfying the property G ^ [ c l ( [ x ] ) ^ 0 . 
Furthermore, as proved in proposition 1.1, the manifolds X and Y are in this case 

almost conic bundles with fiber D, resp. C of class [D], resp. [C] where [D] = ^>*[C]. 

Let us denote by </> : X ---> E, and ft : Y ---> E' the almost conic bundle structures 

on X and Y respectively. 

Our assumption is that b2 (X) < 2 or X is Fano. Hence we can apply to X the 

corollary 2.2, because X is an almost conic bundle with fiber C. Thus we conclude, 

with the notations of this section, that the morphism (j) : X E with fiber C is 

well-defined, unless there exists a curve class [C] not proportional to [C] such that 

for some cohomology classes Ai,...,Ar G H*(Xf

n_1), 

GW0

X

[CI] {[C],A1,...,Ar)^0. 

However, in the later case, we conclude, by denoting [D'\ — V ;*[C /], A!{ = ip*Ai, that 

GW0

Y

m ([D},A'1,...,A>r)¿0. 

It follows that there exists a rational curve of class [Df] which meets a generic curve 

D C Y and as [D'\ is not proportional to JD, we conclude that ft{D') is not a point. 

Hence it follows that the surface E r is swept-out by rational curves and the basis of 
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the rationally connected fibration of Y has dimension < 1, which implies by lemma 

1.3 that Y is rationally connected, a contradiction. 

Thus the morphism (j) : X —• E with fiber C is well-defined. Furthermore, by lemma 

2.3, we may assume that (j) does not contract a divisor to a point. By proposition 0.7, 

Y is then rationally connected, which is a contradiction. 
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THE Q-CURVATURE EQUATION 
IN CONFORMAL GEOMETRY 

by 

Sun-Yung Alice Chang & Paul C. Yang 

Dedicated to J. P. Bourguignon on his 60th birthday 

Abstract. — In this paper we survey some analytic results concerned with the top 
order Q-curvature equation in conformal geometry. Q-curvature is the natural gen­
eralization of the Gauss curvature to even dimensional manifolds. Its close relation 
to the Pfaffian, the integrand in the Gauss-Bonnet formula, provides a direct relation 
between curvature and topology. 

Résumé (L'équation de Q-courbure en géométrie conforme). — Dans cet article nous exa­
minons certains résultats analytiques autour de l'équation de Q-courbure d'ordre 
maximal en géométrie conforme. La Q-courbure est la généralisation naturelle de la 
courbure de Gauss aux variétés de dimension paire. Sa proximité avec le pfaffien 
(l'intégrande de la formule de Gauss-Bonnet) nous fournit une relation directe entre 
géométrie et topologie. 

1. Introduction 

Recently, there is a lot of interest in the study of higher order Q-curvature invariant. 

This notion arises naturally in conformal geometry in the context of conformally co-

variant operators. Paneitz ([23], see also [6]) gave the first construction of the fourth 

order conformally covariant Paneitz operator in the context of Lorentzian geometry 

in dimension four. Based on the ambient metric construction introduced by Feffer-

man and Graham ([14],[15]), Graham-Jenne-Mason and Sparling [18] systematically 

constructed conformally covariant operators of higher orders. Each such operator 

gives rise to a semi-linear elliptic equation analogous to the Yamabe equations which 
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Key words and phrases. — Q-curvature, compactification, Poincaré-Einstein structure, renormalized 
volume. 
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2 4 S.-Y. A. C H A N G & P. C. Y A N G 

we shall call the Q-curvature equation. These equations share a number of common 

features. Among these we mention the following: 

(i) the lack of compactness: the nonlinearity always occur at the critical exponent, 

for which the Sobolev embedding is not compact; 

(ii) the lack of maximum principle: for example, it is not known whether the solution 

of the fourth order Q-curvature equation on manifolds of dimensions greater 

than four may touch zero. 

In spite of these difficulty, there has been significant progress on questions of exis­

tence, regularity and classification of entire solutions for these equations in the recent 

work of Djadli-Malchiodi [13], Adimurthi-Robert-Struwe [1] and X . X u [25]. On the 

other hand, in the case when the dimension is even n = 2k, the Branson-Paneitz 

operator and its associated Q-curvature equation is more accessible. In this article, 

we will give a brief survey of two results for the Q-curvature equation, each of which 

makes use of its close relation to the Pfaffian; both of these results are joint works 

with Jie Qing. The first [10] is a generalization of the Cohn-Vossen-Huber inequality 

([22]) to complete conformai metrics on domains in R 4 . The second gives a Gauss-

Bonnet type formula for Poincaré-Einstein metrics in which the renormalized volume 

plays a role. As the original article [12] of the second result appeared in Russian, 

we provide an exposition with some details. In section two, we review the notion 

of conformally covariant equations, their associated Q-curvatures and the associated 

boundary operators for manifold with boundary. We then provide an outline for these 

two results in sections three to five. 

2. Conformally covariant operators and the Q-curvature equation 

In general, we call a metrically defined operator A defind on a Riemannian manifold 

( M n , # ) conformally covariant of bidegree (a, 6), if under the conformai change of 

metric gw = e2wg, the pair of corresponding operators Aw and A are related by 

Aw(Y)=e -bw A(ea Y) for all ipeC°°{Mn). 

A basic example is the conformai Laplacian L = - A + n - 2 
4 ( n - l ) R where R is the 

scalar curvature of the metric. The conformai Laplacian is conformally covariant 

of bidegree r n - 2 
2 ' 

n + 2 \ 
2 , and the associated curvature equation is the equation for 

prescribing scalar curvature: writing ew = 
2 

Un~2 we have 

a) Lu = 
n - 2 

4(n - 1) 
Ruu 

n + 2 
n - 2 

where Ru is the scalar curvature of the metric 9 W = 9 2 w 9 = 
4 

u"-*g. In case of surfaces, 

the corresponding Q-curvature equation becomes the equation for prescribing Gauss 
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curvature: 

(2) - Aw + K = Kwe2w, 

where Kw is the Gaussian curvature for the metric gw, and we have the Gauss-Bonnet 

formula: 

(3) 2nX(M) = 
M 

KdA. 

In dimension four, S. Paneitz found the fourth order conformally covariant operator: 

(4) PA(p = P<p = A2(p + S 
2 

,3 
Rg - 2Ric dip 

where S denotes the divergence, d the deRham differential and Ric the Ricci tensor. 

For example: 

- On ( # 4 , \dx\2), P = A 2 , 

- On ( S 4 , < ? C ) , P = A 2 - 2 A , 

- On ( M 4 , Ö ) , g Einstein, P = ( - A ) o ( L ) . 

The Paneitz operator P has bidegree (0 ,4) on 4-manifolds, i.e. 

(5) Pqw (Q) = e4wPq(Q) VQEC00(M4). 
The fourth order Q-curvature is given by 

(6) Q = 
1 

G 
( - A ß + # 2 - 3 | R i c | 2 ) . 

Under the conformal change of metric 9w=2weg the Q-curvature equation (see 

[6], also [8]) takes the form 

(7) Pw + Q = Qwe4w, 
where Qw is the Q curvature for the metric gw. 

The Gauss-Bonnet formula in dimension four may be written as 

(8) 8 T T 2 X ( M ) = 
M 

(\W\2 + Q)dV, 

where W is the Weyl tensor. Since \Wg\g = e~2w\W9w\gw, on manifold of dimension 

four, | W | 2 d F is a pointwise conformal invariant, thus it follows from the Gauss-

Bonnet formula that the Q-curvature integral is a global conformal invariant. 

For 4-manifold X4 with boundary M 3 and a Riemannian metric g defined on 

closure of X 4 , Chang-Qing [9] derived the matching boundary operator 

(9) P 3 = -
l d 

2dn 
A - Ä 

d 

dn 

2 

3 
H A + LagVaV0 + 

1 

.3 
R — RaNaN 

d 

dn + 2 
3 

VJH" • V . 

with the associated third order curvature invariant 

(10) T = 
1 

12 

d 

dn 
R + 

1 

6 
RH — RaNßNLaß + D 

9 
H 3 -

1 

3 
TrL3-

1 

3 
AH, 
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where where ^ is the outer normal derivative, A is the trace of the Hessian of 

the metric on the boundary, V is the derivative in the boundary, L is the second 

fundamental form of boundary, H = TrL, N denotes the inner normal direction. We 

have used an orthonormal frame and let the latin indices run through the ambient 

indices and the Greek indices only run through the boundary directions, and all 

curvature are taken with respect to the metric g. 

In particular, via the conformai change of metrics gw = e2wg, P3 and T satisfy the 

equation: 

( h ) P3W + T = Twe
3w on M, 

and 

(12) (P 3)«, = e~3wP3 
on M. 

The Chern-Gauss-Bonnet formula for 4-manifolds with boundary is then modified 

with a boundary term: 

(13) 8tt2

x(X) = 
X 

(\W\2 + Q)dv + 2 
M 

(T - £ 4 - C5)da. 

In the boundary integral above the invariants £ 4 and £ 5 involve the ambient curvature 

tensor and the second fundamental form L a&, and their expressions are 

£ 4 = -
RH 

3 
4- RaNaNH — RaNßNLaß + Rya-fßLaß, 

and 

£ 5 = -
2 
9 

LaoLßßLy + Laa Lßy Lßy — LotßLß1Lloc. 

Analogous to the Weyl term, £ 4 and £ 5 are boundary invariant of order three which 

are pointwise invariant under conformal change of metrics. Hence 

(14) 
X 

Qdv + 2 
M 

Tdo 

is a global conformal invariant. 

In dimension four, an important result is the following criteria for positivity of the 

Paneitz operator due to Gursky-Viaclovsky: 

Theorem 1 ([21]). Let (M4,g) be a metric with positive Yamabe constant Y (M, g) = 

infuno 
Luu 

ÌM1T 
and satisfying 

M 

Qdv-i 
1 

6 
( y ( M , < ? ) ) 2 > 0 , 

then the Paneitz operator is positive except for constants. 

It is an open question whether there is an analogous result in higher dimensions. 
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3. A Gauss-Bonnet formula for noncompact 4-manifolds 

On a four dimensional manifold, the conformal Laplacian and the Paneitz operator 

together give strong control of the geometry and topology. A particular example in 

the study of non-compact manifolds is the following: 

Theorem 2 ([10]). Let (Ç}cS4

ig = e2wg0) be a complete conformal metric satisfy­

ing 

(a) The scalar curvature is bounded between two positive constants, and \VgR\ is 

bounded, 

(b) The Ricci curvature of the metric g has a lower bound, 
(c) the Paneitz/Branson curvature is absolutely integrable, i.e. 

(15) 
M 

\Qg\dVg < oo; 

then n = s4\{Pu...iPk} and 

(16) 8 7 T 2 v ( 0 ) = QgdVg + 

k 

1 

Ik, 

where Ik is the local isoperimetric constant 

lb = lim 
r—• () 

Area({r = \x - xk\}) 
V o l ( { r < \ x - x k \ < r0}) 

An essential idea in the above finiteness result is to view the Q-curvature integral 

as measuring the growth of volume. The finiteness of the Q integral implies a control 

on the growth of volume, which can only accommodate the growth of a finite number 

of puncture ends. We outline the main arguments to show how to use the fourth order 

curvature equation in such a situation. 

Let us denote A = S4 \ il. 

Step I. — e w ^ « distix, A ) " 1 . 
This is the main analytic work. 

The lower bound follows from a Harnack estimate for the gradient of a conformal 

harmonic function. 

The upper bound is based on a delicate blowup argument. Assuming on the con­

trary that on a sequence of points {xk} we have ak = ew(Xk^d(xk, A) —> oo. Take a 

subsequence so that the balls B(xk, (l/2)d(xk, A)) are disjoint. A careful rescaling 

of the domain for the conformal metrics over suitably dilated balls will converge to 

a conformal metric on M4 with vanishing Q-curvature but having scalar curvature 

bounded from below by a positive constant. Such a metric cannot exist. This ar­

gument differs from the usual blowup argument in that the conformal factor only 

satisfies a differential inequality. 
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This assertion gives control of the level set of the function ew in terms of the 

distance to the complement. 

Step II. — An integration by parts computation yields an inequality using assumption 

(a): 

{ew>\} 
Qdv > CX 

d 

dX {ew>X} 
dv + positive terms. 

Step III. — To estimate the first term on the right hand side of the previous inequal­

ity, we use the coarea formula to find 

{ew>\} 
e4wdx > 

d 

c 2 / \ {d(XiA)=s} 

e4wdads 

Ci 

C 2 / A 

\{d(x,A) = s}\s-/lds. 

An elementary computation using a covering argument yields that 

\{d(XiA) = s}\> 
Ns3 if dim(A) = 0 and |A| > N 

Cs3~*ß if dim(A) = ß > 0. 

In either case, we reach a contradiction if the complement A is more than a finite 

number of points. 

A closely related result to Theorem 2 above is the recent work of Bonk-Heinorien-

Saksman [4]: To state their result, we first observe that for a metric gw = e2wdx2 

conformal to the flat metric dx2 on domains in M 4 , the equation (7) takes the form 

(17) A2w = Qwe
4w. 

Thus the integrability condition (15) of Qw is equivalent to the condition that A2w 

being integrable. 

Theorem 3 ([4]). — Suppose g = e2w\dx\2 is a complete conformal metric on R 4 where 

w is given as a potential 

w(x) = 
'r4 

log( 
\x-y\ 

Ivi 
)A2w(y)dyì 

and 

(18) 
R 4 

\A2w(y)\dy < C, 

then there is a bilipshitz equivalence $ : (R\\dx\2)-+(R\g). 
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Remarks 

1. The theorem does not assert the boundedness of the conformal factor. 

2. This result holds in all even dimensions. 

3. In the case of dimension two, the best constant in the inequality in (18) for the 

theorem to hold is 27r, which is given by the example of the half infinite cylinder 

as shown in the work of Bonk-Lang [5]. It is a natural open question whether 

the same example gives the sharp constant in all higher dimensions. 

4. Poincaré-Einstein structure and renormalized volume 

Given a smooth manifold X n + 1 of dimension n + 1 with smooth boundary dX = 

Mn. Let x be a defining function for Mn in X n + 1 as follows: 

x>0 inXn+1; 
x = 0 on Mn: 

dx^O o n M n . 

A Riemannian metric g on X n + 1 is conformally compact if {Xn+l ,x2g) is said to 

be a compact Riemannian manifold with boundary. A conformally compact man­

ifold ( X n + 1 , < 7 ) carries a well-defined conformal structure [g] on the boundary M n , 

where each g is the restriction of x2g for a defining function x. We call ( M n , [g]) the 

conformal infinity of the conformally compact manifold ( X n + 1 , g ) . If, in addition, g 

satisfies RiCp = —ng, where R i c p denotes the Ricci tensor of the metric g, then we 

call (Xn+1,g) a conformally compact Einstein manifold. 

A conformally compact metric is said to be asymptotically hyperbolic if its sectional 
curvature approach —1 at dX = M. If g is an asymptotically hyperbolic metric on X, 
then a choice of metric g in [g] on M uniquely determines a defining function x near 
the boundary M and an identification of a neighborhood of M in X with M x (0, e) 
such that g has the normal form 

(19) g = x 2(dx2 +gx) 

where gx is a 1-parameter family of metrics on M . In addition (see for example [17]) 

(20) 9x=9 + 9 { 2 ) x 2 + (even powers of x) + g (n-1)xn-1 +g(n)xn+... , 

when n is odd, and 

(21) 9x = g + g^x2 + (even powers of x) + g { n ) x n + hxnlogx + ' - , 

when n is even. Here g = x2g\x=o, g(2^ are determined by g for 2i < n. The trace 

part of g^ is zero when n is odd; the trace part of g^ is determined by g and h is 

traceless and determined by g too when n is even. 
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To introduce the renormalized volume, we follow Graham [17] to consider the 

asymptotics of the volume of a conformally compact Einstein manifold ( X n + 1 , g ) . 

Namely, denoting by x the defining function associated with a choice of a metric 

g G [#], we have 

Volg({x > e } ) = c0e-n + c 2 e " n + 2 + - - - + c n _ i e - 1 + F + o ( l ) 

for n odd, and 

Vo\g{{x > e}) = Coe"n + c2e~n^ \ Y c n _ 2 e 2 + L l o g 
1 
e 

+ F + o ( l ) 

for n even. We call the constant term V in all dimensions the renormalized volume 

for ( X n + 1 , # ) . We recall that V in odd dimension and L in even dimension are 

independent of the choice g in the class [g]. 

In this section, we will give an alternative proof of the following result of M. An­

derson [3]. The main point of our proof is to explore the relationship between the 

renormalized volume and the Q curvature. 

Theorem 4 ([3], [12]). — Suppose that (X4,g) is a conformally compact Einstein man­

ifold. Then 

(22) 8 T T 2 V ( X 4 ) = 

K4 
\W\2

gdvg + W{X\g) 

First we recall that motivated by the recent work of Graham-Zworski [20], Feffer-
man and Graham [15] introduced the following procedure to calculate the renormal­
ized volume V for a conformally compact Einstein manifold. Here we will quote a 
special case of their result. For odd n, upon a choice of a special defining function x, 
we solve for 

(23) -Av = n inXn+1, 

with the asymptotics 

(24) v = log x + A + Bxn 

in a neighborhood of M n , where A, B are functions even in x, and ^ 4 ^ = 0 = 0. 

Lemma 1 ([15]). — When n is odd, 

(25) V(Xn+\g) = Bdvg. 

In addition, we have 

Lemma 2. — When n is odd, {Qn+l)e2vg — 0-
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Proof of Lemma 2. — The proof is a computation based on an observation made by-

Graham ([17], see also [6]) that the Paneitz operator Pn+i on an Einstein manifold is 

a polynomial of the Laplacian V(A) and the polynomial V on the Einstein manifold 

is the same as the one on the constant curvature space with the same constant as the 

constant of the scalar curvature of the Einstein manifold. In addition, the Q-curvature 

Qn+i of an Einstein manifold is the same as the one on the constant curvature space. 

Therefore {Pn+i)g = V{Ag) if (Pn+i)gH = V{AQH), and (Qn+i)g = {Qn+i)9H, where 

(jffn+1, is the hyperbolic space. 

(26) (Pn+l)gHn+1 

n + l 
2 

¿ = 1 

(—AHn+l — Cl) 

where C7, = ( n ± i + J - 1 ) (n+1/2 -1) Therefore 

(27) (Pn+l)g = 

n + l  
2 

1 = 2 
( - 1 ) 

n + l 
2 -lB,(Ag)

1-{-1) 
n - 1  

2 ( n - l ) ! A f f , 

for some coefficient Bi depending on Cjs. Meanwhile (Qn+i)tf»+i = (-l)m+"2 nl. Thus 

(28) (Qn+l)g = ( " I ) 

n + l , 

2 Til. 

Thus if v satisfies the equation (23), we have 

(29) (Pn+l)gV + (Qn+l)<? = 0. 

It thus follows from the prescribing Q curvature equation (7) that (Qn+i)e2vg — 0-

We will now combine the results in the above lemmas to give an alternative proof 

of the result of Anderson [3] in Theorem 4 for conformal compact Einstein manifold 

(X4,g). We first relate our curvature T to the boundary term B in Lemma 1. 

Lemma 3. — We have 

(30) T e 2 v g = 3B\X=Q. 

Proof — According to the scalar curvature equation we have 

1 

12 
R e 2 v Q — 

D 
2 

( " A , e * + 
1 

6 
R9e

v)e-3v. 

Therefore for v satisfies equation (23), we have 

1 

12 
Re2vg — 

1 

2 
((e-vY - | V e ~ T ) . 

We now apply the asymptotic expansion of v in (24) and write 

e - 2 v = 
1 

x2 
- 2A2 - 2B0x + 0{x2) 

I V e - ^ l 2 = 
1 

x2 
+ 2A2 + 4B0x + O(x2), 
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where A2 is the coefficient of x2 of A and Bo = B\x=o We get 

Te2v = ~ 
1 d 

12 dx 
Re2vg\x=0 — 3i?(). 

This finishes the proof of the lemma. 

Proof of Theorem 4- — Applying Lemma 2 to the Gauss-Bonnet formula (13), we 

have 

8 T T 2 X ( X 4 ) = 

x 4 

\W\2

e2Vgdve2Vg + 2 
M 

(£ + T)(e2vgìg-) dv§. 

We now observe that as the boundary of M of X4 is umbilical, the second fun­

damental form La^p vanishes along M ; hence C = — £ 4 — £ 5 = 0. We then apply 

Lemma 1 and Lemma 3 to identify the area element in the integral JM T with the 

renormalized volume to establish the formula (22) for the metric e2vg. The last ob­

servation is that once the formula (22) holds for the metric e2vg, it holds for any 

metric g G [g] with {Xn+1,g) a conformally compact manifold as the term of the 

renormalized volume V is conformally invariant. 

5. Renormalized volume in higher dimensions 

In this section, we will continue to explore the relation between the Q curvature 

and the renormalized volume, and to extend the result of Theorem 4 above to all 

conformally compact Einstein manifolds ( X n + 1 , # ) when n is odd. The main result 

is: 

Theorem 5. — When n is odd. we have 

(31) 

Xn + 1 
(Wn+i)gdvg + ( - 1 ) 

n + 1  
2 

r ( n ± 2 ) 
n + 2 

7T 2 
V(Xn+1,g) = X(X

n+1) 

for some curvature invariant W n + i , which is a sum of contractions of Weyl curvatures 

and/or its covariant derivatives in an Einstein metric. 

In the case of conformally compact manifolds of dimension 3 + 1, one advantage 

we have taken is a precise formula of the Q on X4, which enables us to do the explicit 

computations in Lemma 2 and Lemma 3 above. In the case when the dimension m of 

the manifold Xm is even but greater than four, it has been established in ([18], [6]) 

the existence of some Q curvature satisfying the following properties: 

(i) It is a curvature invariant of weight — m. That is under the re-scale of metric 

9 t2g, Qg = t~mQt2g. 
(ii) J Q is a global conformal invariant. 

ASTÉRISQUE 322 



T H E Q - C U R V A T U R E E Q U A T I O N IN C O N F O R M A L G E O M E T R Y 3 3 

(iii) There exists a m order linear differential operator Pm defined on Xm which 
prescribes the changing of Q under conformal change of metric 9w = e 2 w 9 -

(32) PmW + Q = Qwe™>w 

One should remark that although the existence of Q is known, the explicit formula 

of the curvature is in general quite complicated and only known in dimensions six 

([17]) and eight. Only in the recent work of Graham-Juhl [19], there is an inductive 

formula to compute Q curvature in high dimensions. Thus it is remarkable that 

one knows (Theorem 6 below) the "leading" order term (in terms of the order of the 

differentiation on the metric) of the Q curvature for all dimensions and it is even 

more remarkable that under the assumptions (i) and (ii) above, S. Alexakis [2] has 

recently established a structure theorem of the Q curvature (Theorem 7 below) which 

is known in the field as the answer to the Deser-Schwimmer Conjecture. 

Theorem 6 (Branson [7]). — On any compact m-dimensional manifold for m even, 

(33) Qm = bmA 
m —2 

2 R + lower order terms, 

where 

bm = ( - 1 ) 
m —2 

2 
2 m " 1 ( f ) ! T ( ^ ) 

\fïï(m — lira! 

Theorem 7 (S. Alexakis [2]). — On any compact closed m-dimensional manifold with 

m even, we have 

(34) Qm = ame + J + Div(Tm). 

where e is the Euler class density, J is a pointwise conformal invariant, and Div(Tm) 

is a divergence term and am is some dimensional constant. 

Proof of Theorem 5. — Let {Xn+1,g) be a conformally compact Einstein manifold, 

where n = 2k + 1 > 3, we wish to determine the analogous formula for the renor­

malized volume. We continue to consider the metric ( X n + 1 , e2vg) where v satisfies 

the equations (23) and (24). We will find that the parity conditions imposed in (24) 

makes it possible to determine the local boundary invariants of order n for the com­

pact manifold (Xn+1,e2vg). According to (19) and (20) we have the expansion of the 

metric e2vg. 

(35) 
e2vg = H2dx2 + g + c™x2 + even powers in x 

+ à n - l ) x n - 1 + (2BQg + g^)xn + • • • 

where 

H = e A + B x n = 1 + e2x
2 + even powers in x + en-rxn-1 + Boxn + • • • 

and C(2i) for 1 < i < (n- 1)12 are local invariants of g. We remark that it is easy to 

see that the boundary of ( X n + 1 , e 2 » f f ) is totally geodesic. 
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Lemma 4. — We have 

(36) ( < 9 x A n 2 R ) e 2 v g \ x = 0 = -2nn\B0. 

Proof of Lemma 4- — We have 

(37) 
Ae2Vg = 

1 

H y/det gx 

da(Hy/aetg*gfdß) 

= Q a 
2 G2x+ Q 

(i) 
2 dx + Q (o) 

2 

where the coefficients Q(i) have the following properties: : Q(2)2 is a zeroth order dif­

ferential operator, having an asymptotic expansion in powers of x in which the first 

nonzero odd power term is x n . Q(2)2 is a zeroth order differential operator, having 

an expansion in which the first nonzero even degree term is xn~x. Q(2)2 is differential 

operator of order 2 of purely tangential differentiations with coefficients which have 

expansion in powers of x in which the first nonzero odd term is x n . Inductively, we 

see that, for k < n—3 
2 

(38) Ak = dé---déd2

x

k+1g^,dé---déd2

x

k+1g^, dé---déd2

x

k+1g^,dé---déd2

x 

where Q(2)2 (i * 0) is a differential operator of order 2k — i of purely tangential 

differentiations with coefficients having expansions in powers of x in which the first 

nonzero even terms are xn~(2k~^ if i is odd, and the first nonzero odd terms are 

xn-{2k-i) ^ ^ -1S eveil) an(j q(V) is a differential operator of order 2k of purely tangential 

differentiations with coefficients whose expansions in x have the first nonzero odd 

terms xn_2fc+2. Thus 

(39) dxAk = jr(2fc+l)02fc+l + F ( 2 f c ) ö 2 f c + . . . + F ( l ) ^ + F ( 0 ) 

where F{2k+1) = Q(2fc)> p{t) (0 < i < 2k + 1) is a differential operator of order 

2k - i + 1 of purely tangential differentiations with coefficients whose expansions in 

x have the first nonzero even terms are xn~^2k~^~1 if i is even, and the first nonzero 

odd terms are x 7 1 " ^ - ^ " 1 if i is odd, and F(0) is a differential operator of order 2k 

of purely tangential differentiations with coefficients whose expansions in x have the 

first nonzero even terms xn-2k+\ 

On the other hand, we have 

(40) Re2vq = -2n2(n - l)B0xn~2 + even powers of x terms + o ( x n - 2 ) . 

Keeping track of the parity, we obtain (36) in Lemma 4. 

Next we deal with all other boundary terms which may appear in integrating the 

Q curvature over X. These are contractions of one or more factors consisting of 

curvatures, covariant derivatives of curvatures, except d™~2R which is accounted in 

the above term dxA1^ R. Since n is odd, and dx is the normal direction, each 

such term must contain at least one x index. In fact, the total number of x indices 
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appearing in each of such terms must be odd. Thus one finds that each of such terms 

always contains a factor which is a covariant derivatives of curvature and in which 

x index appears odd number of times. Such factors, if we insist on taking Vx first, 

must appear as one of the following three different types 

VM...VM%V2k+1x RAAA 

where 4 stands for indices other than x, in other words, tangential. 

VM...VM%V2k+1x RAAA 

and 

VM...VM%V2k+1x RAAA 
Note that in all three types 1 < 2h + l < n — 2. Since the boundary is totally geodesic, 

we only need to verify 

Lemma 5. — All three types of boundary terms 

(41) VM...VM%V2k+1x RAAA VM...VM%V2k+1x RAAA Vx Rx*x* 

vanish at the boundary for l < 2 f c + l < n - 2 . 

Proof of Lemma 5. — We consider a point at the boundary and choose a normal 

coordinate on the boundary Mn in the special coordinates for X n + 1 . Recall that 

Raß^ö — 
1 
2 (-dßd6gai - dadygßs + dßd1gOLs + dadsgß7) 

qny (|ay, n||ß8, i|+|ßy, n||a8,y|) 
and 

VxTaß...s = dxTaß...s - T a xT\ß...s — • • • — Ts x T a ß . . . \ 

where 

Taßy = qa8 [ßy, 8] 
and 

[a ,y] = 
1 
2 

(dolgß1 + dßg^ - d1gQiß). 

For simplicity of notation we will use g to stand for e2vg if no confusion can arise. 

Each of the three types is a sum of products of factors that are of the form: 

dadß • • • d1g\a 

or 
QaQß ... Ayqtyµ. 

We claim that each summand must has a factor that is one of the following 

dé---déd2

x

k+1g^, 
dé---déd2

x

k+1g^, 
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dé---déd2

x

k+1g^, 
and 

dé---déd2

x

k+1g^, 
where l < 2 A ; + l < n - 2 . To verify the claim, one needs to observe that, in writing 

the three types in local coordinates, the number of times the index x appears in each 

summand increases only when one sees 

r X rp 
* x-Laß- x»>ôi 

where the number of x increases by 2. Thus, in the end, the total number of index x 
in each summand is still odd. Therefore one of the factors must have an odd number 

of x. Finally one observes that for any individual factor arising here the number of x 
can not exceed n — 1. So the proof of Lemma 5 is complete. 

We now finish the proof of Theorem 5 for all n odd based on the results in Theorem 
6 and Theorem 7. 

Proof of Theorem 5. — We first establish that equation (34) remains valid on a con­

formally Einstein manifold ( X n + 1 , # ) . Let gw = e2wg be such a metric, then it follows 

from the Paneitz equation that for m = n + 1, 

(42) 

(Qm)Bwemv = (Pm)gv + (Qm)g 

— 0"т&д ~Ь Jg + Dw(T') 

= amegm + Jgw + D i v ( T " ) 

where the second equation follows from the fact that the Paneitz operator Pm is a 
divergence and Theorem 7. The third equation follows from the fact that the Pfaffians 
of any two Riemannian metrics on the same manifold differs by a divergence term and 
J is a conformal invariant. 

In order to apply this formula, we need to observe that the leading order term 

A 
m - 2  

2 R in formula (33) cannot appear in the conformally invariant term J. In 

order to see this, we first recall that J is a linear combination of terms of the 

form Tr(VhTl ® V / 2 f t . . . <g) V / f c f t) of weight m where Tr denotes a suitably cho­

sen pairwise contraction over all the indices. Observe that the conformal variation 

Qw / A M ~ 2 \ 

A — R, where 5W denotes the variation of the metric g to gw is of the form 
A 221 

A 2 w + lower order terms. Thus if 
. m — 2 

A ~ R does appear as a term in J, its conformal 

variation must be cancelled by the conformal variations of the other terms in the lin­

ear combination, but it is clear that the conformal variations of the other possibilities 

of the curvature 1Z other than the scalar curvature R cannot have order m in the 

number of derivatives of w and of the form A 21
 ? L » 
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We can now apply the formula (42) to the metric gv = e2vg where v is as in (23). 

Thus by Lemma 2 the left hand side of (42) is identically zero, and we find 

a m X ( X n + 1 ) = 

Xn + 1 
(Jgv-Div(T"))dv9v. 

Among the divergence terms in D i v ( T " ) , only the leading order term b m A ^ R 

has a non-zero contribution according to Lemma 5. The computation in Lemma 5 

determines the precise contribution of this term as a multiple of the renormalized 

volume. We also note that as g is an Einstein metric, we may assume that the terms 

which appear in the conformal invariant J are contractions of the Weyl curvature 

together with its covariant derivatives. We have thus finished the proof of Theorem 5. 

Corollary 1. — When (Xn+1,g) is conformally compact hyperbolic, we have 

(43) V ( X n + \ g ) = 
( —1) i IF i 

r ( = ± 2 ) 
x(x). 

One may compare (43) to a formula for renormalized volume given by Epstein in 

[24], where he has 

(44) V(Xn+1,g) = 
( - l ) m 2 2 m m ! 

(2m)! 
X(X) 

for n = 2m — 1 and our answers agree!. 
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A SURVEY OF THE HYPOELLIPTIC LAPLACIAN 

by 

Jean-Michel Bismut 

À Jean Pierre Bourguignon pour son soixantième anniversaire 

Abstract. — The purpose of this paper is to review the construction of the hypoelliptic 
Laplacian, in the context of de Rham theory for smooth manifolds, and also the 
construction of the hypoelliptic Dirac operator in the context of complex Kàhler 
manifolds. 

Résumé (Compte-rendu sur le laplacien hypoelliptique). — Le but de cet article est d'établir 
un compte-rendu de la construction du laplacien hypoelliptique dans le contexte de 
la théorie de de Rham des variétés lisses, ainsi que de la construction de l'opérateur 
de Dirac hypoelliptique dans le contexte des variétés kâhleriennes complexes. 

Introduction 

The purpose of this survey is to review certain aspects of the construction of the 

hypoelliptic Laplacian, in de Rham and in Dolbeault theory. The hypoelliptic Lapla­

cian was introduced in [3] in de Rham theory, and in [5] for Dirac operators. The 

crucial analytic foundations for the theory were developed by Lebeau and ourselves 

in [8]. 

One motivation given in [3] is to interpret the hypoelliptic Laplacian in de Rham 

theory as a semiclassical limit of the Witten deformation of the Hodge theory of the 

loop space of a Riemannian manifold, which is associated with the energy functional. 

This point of view remains formal, since the Hodge theory of the loop space of a 

manifold is not analytically well defined. The motivation for the construction of the 

hypoelliptic Dirac operator of [5] is to understand the effect of replacing the standard 

2000 Mathematics Subject Classification. — 35H10, 58A14, 58J20. 
Key words and phrases. — Hypoelliptic equations, Hodge theory, Index theory and related fixed point 
theorems. 
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L2 metric on the loop space of a manifold by a H1 metric. Again these considerations 

remain formal, although ultimately the hypoelliptic Dirac operator is well defined. 

Whatever the motivations, and there are many others, some of which are explained 

in [4, 6], the conclusion is that a geometric Laplacian can be deformed into a family 

of hypoelliptic second order differential operators acting on the total space of the 

tangent or the cotangent bundle of the given manifold, which interpolates in the 

proper sense between the Laplacian and the generator of the geodesic flow. The 

existence of this deformation is counter-intuitive, since ellipticity is a stable property. 

However, the fact that the hypoelliptic Laplacian acts on a bigger space than the 

original elliptic Laplacian explains why ultimately it can be made to 'collapse' on the 

elliptic Laplacian. 

Let us finally mention that up to lower order terms, the hypoelliptic Laplacian is 

the sum of a harmonic oscillator acting in the directions of the fibre, and of the vector 

field which generates the geodesic flow, these two operators being adequately scaled. 

In this paper, first, we fully develop the theory in the case where the base manifold is 

the circle. The main point is that while in this case, the geometry is trivial, a complete 

understanding of the hypoelliptic Laplacian and of the interpolation property can 

be easily obtained via Fourier analysis on the circle and the spectral theory of the 

harmonic oscillator. The case of the circle is also useful, because the objects which 

appear there turn out to be at the same time the principal symbols of the geometric 

hypoelliptic operators, and because the circle is the model of a closed geodesic. The 

fact that the hypoelliptic Laplacian is self-adjoint with respect to a symmetric form 

of signature ( o o , o o ) appears also naturally in that context. 

The basic difference between the case of the circle and the geometric case is that 

the analysis of the hypoelliptic Laplacian is no longer explicit, and also that the 

convergence arguments, which are easy for the circle, are built on a functional analytic 

machinery described in detail in our work with Lebeau [8]. 

Also we describe the construction of the hypoelliptic Laplacian, in the de Rham 

case, and also for Kahler manifolds. We emphasize the role of the symmetric bilinear 

forms, at least in the de Rham case, because of the important spectral theoretic 

consequences which are derived in [8]. 

This paper is organized as follows. In section 1, we consider the case of the circle. 

Since the hypoelliptic Laplacian is ultimately obtained as a Hodge Laplacian with 

respect to an exotic bilinear form on the de Rham or the Dolbeault complex, this 

point of view is systematically emphasized in this simple case too . 

In section 2, we recall classical results on the Hodge theory of a compact manifold, 

and on the Witten deformation of classical Hodge theory which is associated with a 

smooth function. Also we show that if (M,u) is a symplectic manifold, there is a 
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symplectic Witten Laplacian, which turns out to be the Lie derivative operator asso­

ciated with the corresponding Hamiltonian vector field. This point of view is further 

developed in [3], where the hypoelliptic Laplacian in de Rham theory is obtained by 

linearly interpolating between the Riemannian metric of the base manifold, and the 

symplectic form of its cotangent bundle. 

In section 3, we explain the construction of the hypoelliptic Laplacian in de Rham 

theory. We also give the main arguments of [3] in favour of the fact that the hypoel­

liptic Laplacian interpolates between the Hodge Laplacian and the geodesic flow. 

In section 4, we give the construction of the hypoelliptic Dirac operator of [5] in the 

context of Kahler manifolds, and we give the arguments showing that this operator 

should indeed be a deformation of the classical elliptic Dirac operator. 

As we already said, the analytic justifications which make that the whole construc­

tion ultimately exists as a mathematical theory are developed in detail in our work 

with Lebeau [8]. Also applications to Ray-Singer torsion [19] and Quillen metrics 

[17] are given in [8] and [5]. 

±. i n e case oi m e circle 

The purpose of this section is to construct the hypoelliptic Laplacian in the case 

where the base manifold X is just S1. In this case, all the objects are simple and 

natural. Besides, the operators which are obtained in this case can be viewed as the 

symbols of the operators which are obtained later in the geometric case. 

This section is organized as follows. In subsection 1.1, we recall elementary prop­

erties of elliptic and hypoelliptic operators. 

In subsection 1.2, we introduce the Kolmogorov operator on S1 x R , which is a 

simple case of an operator verifying Hormander's hypoellipticity theorem [14], and 

at the same time, coincides, up to important lower order terms, with the hypoelliptic 

Laplacian. Formal conjugation arguments are used to relate the hypoelliptic Laplacian 

to the elliptic Laplacian on S1. The fact that the hypoelliptic Laplacian interpolates 

in the proper sense between the Laplacian and the generator of the geodesic flow 

can be exhibited by hand. One obtains this way a proof of Poisson's formula by 

interpolation. 

In subsection 1.3, we show that our hypoelliptic Laplacian is a Hodge Laplacian 

with respect to an exotic bilinear form on the space of compactly supported differential 

forms on S1 x R. This result will be used in section 3 to construct the geometric 

hypoelliptic Laplacian in the context of de Rham theory. 

1.1. Elliptic and hypoelliptic operators. — Let X be a compact manifold. Let 

X* be the total space of T*X. Then X embeds in X* as the zero section of T*X. 
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Let E and F be two complex vector bundles on X. If P is a pseudodifferential 

operator of order m mapping C°° (X, E) into C°° ( X , F ) , its principal symbol ap (a:,^) 

is a smooth map on X* \X with values in Horn (E, F ) , which is homogeneous of order 

m in the variable £. The operator P is said to be elliptic if crp (x,E) is invertible on 

AT* / XX 
If X is equipped with a Riemannian metric, if AA is the Laplace-Beltrami operator 

acting on C°° (X, R ) , then — A x is an elliptic operator of order 2, and its principal 

symbol is |£|2. The standard example is the operator — ^ 2 acting on S1. 

Ellipticity is a stable property. Indeed a small deformation of an elliptic operator 

is still elliptic. This should make all the more surprising the fact that certain elliptic 

operators can be deformed into hypoelliptic operators. This is only possible because 

the deformed operators act on a different space than the original operator. Besides 

elliptic operators of order m act on Sobolev spaces, and decrease the Sobolev index 

by m. As an example, the operator — Ax decreases the Sobolev index by 2, and any 

pseudoinverse of — Ax (an inverse up to regularizing operators) increases the Sobolev 

index by 2. In particular if it is a scalar distribution on X such that — Axu G Hs, 

then u e Hs+2. 

Hypoellipticity is a weaker property. A pseudodifferential operator P is said to be 

hypoelliptic if when u is a distribution such that Pu is C°° on some open set, then u 

is also C°° on this open set. For example the parabolic operator q / q t — | A x on R x X 

is hypoelliptic. 

1.2. T h e Kolmogorov operator and Hormander's theorem. — Consider the 

operator A on R x R2 introduced by Kolmogorov [15], 

(1.1) A = 
a 
at 

1 
2 

a2 

Qdf y 
a 

dx 

In [15], Kolmogorov computed the fundamental solution of (1.1), as a time dependent 

Gaussian kernel in the variables (x,2/), from which the hypoellipticity of A follows. 

The hypoellipticity of A prompted Hormander [14] to develop his theory of hy­

poelliptic second order differential operators which we now briefly describe. Indeed if 

XQ, . . . , XM are smooth vector fields on Rn, consider the differential operator 

(1.2; M = 
1 
2 

m 

d 

X ) 
) 

+ X0 

Let £ (x) C Rn be the vector space spanned at x by XQ, . . . , XM and their Lie brackets. 

Hormander's theorem asserts that if at each x, £ (x) = Rn, then M is a hypoelliptic 

operator. 
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The fact that A is hypoelliptic is a consequence of Hormander's theorem since the 

Lie bracket d 
Idy 

d 
dt - I f 

dx dxs 
d 

dx is enough to make the Hormander distribution 

associated with dx dy 
d 

' dt -v d_ 
dx 

span R3. 

More generally, consider the operator A n on R2n+1 which is given by 

(1.3) An = d 

dt 
2 

l 
2 

Av - Ay 

In (1.3), Av denotes the Laplacian in the variables yi,... , ?/n, and Vy denotes dif­

ferentiation on the variables a;1,...,^™ in the direction y, i.e., Vy = Y^iV1 al1* n̂ 

this case, the n Lie brackets [^r, V ^ ] = q/qxi are necessary to make the Hormander 

distribution span R2n+1. 

The parabolic operator d 
at 

l 

2 
d2 

dx2 
is the model of the geometric parabolic operator 

d_ 
dt 

2 A W Let us now describe the model of its hypoelliptic deformation. 

Let L be the operator on R3, 

(1.4) L = li 
dt + E 

9 

d2 

dy2 
+ y2-l - V 

a 

dx 

Clearly, 

(1.5) L = A + 
1 

2 (y2 ~ 1) • 

The term which is added to A in the right-hand side of (1.5) has no effect on hypoel­

lipticity, which is by definition a local property. On the other hand, the operator H 

given by 

(1.6) H = 
1 

2 fg 
d2 

dy2 
+ y2-i 

is the harmonic oscillator, which has discrete spectrum and compact resolvent. Prom 

this point of view, the operator L is significantly different from the operator A in 

(l.i). 
As in (1.3), we may as well define the operator L n on R2n+1, which is given by 

(1.7) Ln — 
d 

dt + 
l 
2 

- A + \ y \ - n - V „ . 

To make the notation simpler, we now proceed with the case n = 1. Also we 

disregard for the moment the variable £, which can be included in everything which 

follows. For b > 0, set 

(1.8) Ln 1 

262 
df 

a2 

dy2 
dy2dy2dy2 df 

1 

6 
y 

1 

dx 

Clearly, 

(1.9) dy2 1 

262 s 
d2 

dy2 
+ y - b 

d 

dx. 

2 
- 1 d 

D1 

2 

d2 

dx2 
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In the sequel, it will be convenient to assume that x G S1 = R / Z , and that y G R 

lies in TS1 or T*SX. 

Let us formally make the translation y —> y + 6 ^ . Equivalently let Ub be the 

formal operator, 

(1.10) Ub = exp 6 
a2 

dxdy 

Set 

(1.11) Mb = UbCbUb-\ 

Then .Mb is given by the operator, 

(1.12) Mb = 
1 

262 
( _ A V + y2 _ 1} d 

1 

2 

a2 
ax2 

We can write the operator .Mb in the form, 

(1.13) Bm= 
H 

b2 

1 

2 

d2 

dx2' 

Before we proceed, let us observe that conjugation by Ub has transformed the 

hypoelliptic operator Cb into the elliptic operator Mb, in which the variables x,y 

have been uncoupled. 

Since the spectrum of H is equal to N , the spectrum of Alb is given by 

(1.14) Sp(Mb) = 
N 

62 
+ { 2 7 r 2 f c 2 , f c G Z } . 

Therefore when 6 —> 0, the finite part of the spectrum of Mb converges to the spectrum 

of — §J^2> and as b —> + o o , Sp(Mb) while staying real, accumulates near 0. Also 0 

is a simple eigenvalue of Mb-

Before we explain how the spectrum of Mb relates to the spectrum of Lb let us first 

explain how to eliminate the nonzero eigenvalues of H. Let A' ( R * ) be the exterior 

algebra of R , which is spanned by l,dy. Let N be the number operator on A" ( R * ) , 

which acts like 0 on 0-forms, and 1 on 1-forms. Set 

(1.15) O = H + N. 

Let Trs be our notation for the supertrace. Indeed let V — V+ 0 VL be a Z2-

graded Hilbert space, and let r = ± 1 be the endomorphism of V which defines the 

Z2-grading. If A G C (V) is trace class, then 

(1.16) Trs [A] = Tr [TA] . 

Here we use the Z2-grading associated with the grading of A' ( R * ) . Then one has 

the easy identity, 

(1.17) T r s [ e x p ( - t O ) ] = 1. 
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Put 

(1.18) M'h = Mh + 
N 

b2 

Of course (1.14) remains valid for M!h, and 0 is still a simple eigenvalue of Mfb. Prom 

(1.17), (1.18), we get 

(1.19) TVS [exp(-tM'h)\ =tr exp 
t 

2 

d2 

dx2 . 

The remarkable fact in (1.19) is that it does not depend on b > 0. We already 

saw that as b —> 0, the spectrum of M!h converges to the spectrum of —\-§^2- The 

question is now to know how to use (1.19) with b —> + o o . 

Using hypoellipticity, it is not difficult to show that Cb has a smooth heat kernel, 

and that for t > 0, exp (—tCb) is trace class. 

We claim that 

(1.20) Tr [exp (-tCb)] = Tr [exp (-tMb)]. 

One could try using the conjugation by the operator Ub which was described above 

to get (1.20). However, the operator Ub is poorly defined, and does not act on any 

natural function space. 

However, we can use Fourier series to diagonalize the operator Q:qs and try obtain­

ing an analogue of (1.20) for each eigenvalue 2iirk,k G Z , from which (1.20) would 

follow by summation. This can indeed be done. In fact the eigenvectors of the har­

monic oscillator H are given by Pn (y) exp (—y2/2) , n G N , where the Pn are the 

Hermite polynomials. Now the complex translations y —> y + 2i-Kbh, k G Z maps these 

eigenvectors into well defined elements of L2. It is not difficult to conclude that the 

consequences of the above conjugation by Ub are correct, and that (1.20) holds. 

Set 

(1.21) dy2dy2dy2 
N 

62' 

By (1.8) and (1.21), we get 

(1.22) L '1 
1 

262 = 
d2 

dy2 
+ y 2 - i + 

N 

b2 

1 

b 
y 

Q 

dx 

Using (1.18)-(1.21), we obtain, 

(1.23) Trs [exp ( - * £ ! ) ] = Tr exp 
t 
2 

a2 

dx2 

Instead of (1.23), one can replace (1.23) by a pointwise equality in the x variable of 

the integral of the corresponding kernels in the y variable, simply by using the Fourier 

series argument we just gave. However, this will not be used in the sequel. 
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Now we will make b —> + 0 0 in equation (1.23). For b > 0, let Kb be the map 

(1.24) Kbs (x, y) = six,by). 

Set 

(1.25) £b = KbC'bKb . 

By (1.22), we get 

(1.26) £ / , = 
y2 

2 
- y 

d 

dx 

1 
264 

a2 
ay2 + 

1 
62 + 

1 
2 

+ N 
. 

By (1.26), we find that as b —• + 0 0 , 

(1.27) L0 
y2 

2 
- 2/ 

6 

qx 
+ 0 ( 1 / 6 2 ) . 

2 

Equation (1.27) indicates that up to the translation by \ , the leading term in the 

asymptotics of £& is the generator of the geodesic flow. 

We briefly show how the above can be used to give a proof of the Poisson formula. 

Indeed (1.26), (1.27) already indicates that Trs [exp (—££&)] concentrates along the 

closed geodesies in S1 parametrized by [0,t], which start and end at x and have speed 
y- This means that y = k/t,k e Z. Let Rk b he the map 

(1.28 Rk,bs(x,y) = s (x,k/t + y/b2). 

Set 

(1.29) £'k,b — Rk,b£bRkJb' 

By (1.26), we get 

(1.30) &k,b — 
1 

2 
(k/t + y/b2)2 = {k/t + y/b2) 

a 
dx = 

1 

2 

d' 

dy< 
4-

1 

b2 df 
E 
fb2 

+ N 
? 

Now observe that the term k/tJ^ can be disregarded, because, once it is multiplied 

by t, it exponentiates to the identity. We still use the notation £fkb for the operator 

in which this term has been deleted. Let Sb be the map s {x,y) —> s (b2x,y). Note 

that this map is only defined for x G R . Put 

;i.31) £ k,b S 
- 1 

b £fk,bSb-

By (1.30), we obtain, 

(1.32) 
II 
K,0 

1 

2 
(k/t + y/b2)- y 

d 

dx 

1 

2 dy2 + 
1 

b2 

1 

2 

The effect of the above change of variables is that for every k G Z , we should 

evaluate the asymptotics as b —• + 0 0 of Ik,b,t given by 

(1.33) 4,6,t = b2 
R 

TVS [exp (-tZ'ib) ( (0 ,2 / ) , (0,2/))] dy. 
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In (1.33), exp (—t£'lb) ({x,y) ,(x',y')) denotes the smooth kernel on R2 which is 

associated with the operator exp (-t£,'{.b\. As to the factor b2, it appears because of 

Sb. 

Clearly, 

(1.34) b2Trs exp (-tN/b2)' = 62 ( l - e - ' / " 2 ) , 

so that as b —• + o o , 

(1.35) 62Trs [exp (-tN/b2)] t. 

Put 

1.36 91 = - « 
d 

da d 
G 
2 

d2 

dy2' 

By (1.33W1.36) , we find that as b -> + o o , 

(1.37) (-tN/b2) 4 , + O O , t = £exp (-k2/2t) 

s 
Tr [exp (-tm)((0,y), (0,y))]dy. 

Now one verifies easily that 

[1.38) 
Jr 

Tr [exp (— ((0,1/), (0,»))] (-tN/ 
¿ - 3 / 2 

(-t) 

By (1.37), (1.38), we obtain, 

(1.39) (-tN/b2) 
exp (-k2/2t) 

y/2rd 

which is exactly the contribution of k £ Z to Tr exp 2 
d2 

dx2 

The same sort of argument can also be used to evaluate the full heat kernel for 

e x p 2 
dd 

dx* 
o n S1. 

The operator £b is the prototype ot a hypoelliptic Laplacian. We have shown by 

elementary arguments how and in what sense it interpolates between the standard 

Laplacian and the generator of the geodesic flow. The remarkable fact is that the 

full spectrum of the Laplacian can be recovered from the spectrum of its hypoelliptic 

deformation, and the heat kernel on 51 can also be obtained by this procedure. 

Later, we will describe the deformation of the Laplacian of a manifold to a hypoel­

liptic Laplacian, that is in a geometric context. However, when taking the obvious 

n-dimensional extension of what we just did, the above exactly describes the deforma­

tion of the associated principal symbols. Needless to say, the proper geometric context 

cannot be described just via the principal symbol, the full symbol is obviously needed. 

This ultimately means that there is not only one hypoelliptic Laplacian, there are as 

many as possible geometric deformations which one can possibly envision. This will 

be illustrated in the sequel in the two main classes of examples, which correspond to 

deformations of de Rham Hodge theory, and of Dolbeault Hodge theory. Moreover it 

SOCIÉTÉ M A T H É M A T I Q U E DE F R A N C E 2008 



4 8 J . -M. B I S M U T 

will not be possible to make geometric sense of a conjugation like the one in (1.11), 

because the considered vector fields will not commute. 

Finally, it is instructive to observe that we made two kinds of translations on the 

variable y. One type of translations has been to replace y by y + 2inbk for k G Z , 

or equivalently to change y into y + b-^. This imaginary translation has allowed us 

to relate the hypoelliptic operator C'h to the elliptic operator Mb- The other kind of 

translation has been the real translation y —> y + bk/t, to connect the operator C'h 

with the geodesic flow. It should then be clear that the possibility to make at the 

same time translations on y in the imaginary and in the real directions is critical in 

explaining the fact that C'h interpolates between the Laplacian of S1 and the geodesic 

flow of S1. 

1.3. T h e hypoelliptic Laplacian as a Hodge Laplacian. — Now we will explain 

in what sense the operator C'h is a Laplacian of Hodge type. 

Let d 5 l x R be the de Rham operator on S1 x R . Then 

(1.40) ds*x* = dx 
d 

dx 
x dy 

8 

dy 

The standard adjoint d5lxR* of d 5 l x R is given by 

(1.41) dslxR* = - i s 
dx 

d 

dx 
— i a 

dy 

d 

dy 

Set 

(1.42) n(y) = 
y2 

2 

Let < £ l * R be the Witten twist of dslxR, i.e. 

(1.43) d: 31 

T 
x R = e (-tN/b2)(-tN/b2) 

Then 

(1.44) d T 
x R = dS1 x R _|_ Tydy A . 

Let d <R* be the usual adjoint of s S^xR 
T • i.e., 

1.45 d S ^ R * 
s sd 

S^R*S^R*S^R*S^R* 

Equivalently, 

(1.46) d 
S1xR* 
T = ds xR* + Tyi A 

dy 

Let 
S^xR 
T 

be the corresponding Witten Laplacian [20], i.e., 

(1.47) 
S1xH 

d d d 5xxR 
T d S1xTl* 

T 
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In (1.47), [] is our notation for a supercommutator, which, in this case, is an anti-

commutator. Then 

(1.48) 
1 

2 
S^R* 
x x 

x 
2 x 

d2 

dy2 
4- T V - T + TN-

1 

2 

d2 

dx2 

By (1.48), we get 

(1.49; 4- TV - T 
1 

2 
i S ! x R 
1 4- TV - T 

T 

2 c 
d2 

dy2 
+- y - 1 + T 7 V -

1 

2 

92 

<9rr2' 

If T = 1/b2, by comparing (1.12), (1.18) and (1.49), we get 

(1.50) s d 
VT 

1 

2 
S ^ x R 

d 
4- TV - T4- TV - T 

Equation (1.50) suggests what should be done to write C'h as a Hodge like Laplacian. 

Set 

(1.51) 
4- TV - T4- TV - T 

By (1.22), we obtain, 

(1.52) C" -
1 

2 s 
a2 

dy2 
+ 

sd 
b4 

sd 
1 

b2. 
+ 

sd 

62 d 
s 
62 

sd 

te 

Recall that Ub has been denned in (1.10). Set 

(1.53) m 
S1xH 
b = v 

T-l 
b2 m S1xH 

1/b2 Ub2, d S^xR* 

b 
= I 

T—-\ 

b2 0 
S ! x R * 
1/b2 

"Uh2 

By (1.40), (1.41), (1.44), (1.45), we get 

(1.54) q 31xK 
b = (dx — dy) 

d 

dx 
+ dv 

d 

dy 
_i 

1 

b2 
ydy, 

i 
S1xH* 

L-b 
4- TV - T a 

dx 4 
a 

ay 

d 

dx 
— i a 

ay 

d 

dy 
4 

1 

b2 
vi a_ 

oy 

Then (1.11), (1.18), (1.21), (1.47), (1.50) or an easy direct computation show that 

(1.55) 
1 

d 
s S1xR 

3 Ù 
S1xU^ 
'-b — C" 

— L-b-

Let (] 'c (S1 x R ) be the vector space of smooth forms on S1 x R with compact 

support. Let r be the map (x, y) —» (x, —y). Let ft be the symmetric bilinear form on 

Qc (S1 x R ) , 

(1.56) h (8, 8') = 
S1xR 

r*5, sf) dxdy. 

In (1.56), ( ) is the obvious scalar product on A' (T* (51 x R ) ) . Then (1.54) shows 

that dbS1xR* is the formal adjoint of dbs1xR with respect to ft. 
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Still dbs1 xR has no obvious relation to the de Rham operator. However, observe 

that 

(1.57) exp dyi a 
dcr. 

m 
S1xH 

d 
exp -dyi a 

dx 
= dx 

d 

dx 
d dy 

d 

dy + 
Q 

h2 
ydy, 

which we can rewrite in the form, 

(1.58) exp dyi a 
dx 

d 
S*xR 
b exp -dyi a = d S1xR 

"1/62 
Set 

(1.59) d] 
y1 xR* 

0 
= exp dy\ a 

dx 
d 

S1xH 
exp -dyi Ft 

dx s 
By (1.54), 

(1.60) d S1xH* 

'b 
S1 d 

a% 

d 

dx 
— i d 

dy d 
a 

dx 

d 

dy 
4 

y 

b2 
i d 

dy 
d 

dx 

By (1.52), (1.55), and (1.58)-(1.60), we get 

1.61) 
1 

2 
d 

S1xH 
I/o2 d 

^ x R * 

b d 
1 

2 d 
dd2 

dy2 + 
y1 

b4 
d 

1 

b2 
4 

1 

b2 
N - dyi d 

dx d 
d 
b2 

d 

dx 

Equations (1.54) and (1.61) should give ample matter to think about. First we 

consider (1.54). Observe that 

(1.62) dx — i d 

ax 

2 

sd= - 1 , dy -hi A 
dy 

2 

= 1, 

which shows that 

(1.63) dx — dy — i a 
dx 4 d ay 

2 

= 0. 

Equation (1.63) exactly says the operator dx — dy — i a 
dx + a 

dy 
is nilpotent. This in turn 

explains why there is no term d2 
dx2 in the right-hand side of (1.55). 

Now we concentrate on the pair sd S1xH 
.lb2 

-S^xR* 
. ù d From (1.57), (1.58), we will 

obtain an analogue of the bilinear form h. Indeed let t)T(s xR) be the bilinear form 

on T (S1 x R ) = R 0 R which is given by the matrix, 

(1.64) S1S1xxR) = 1 

1 

1> 

0 

The corresponding bilinear form on T* (S1 x R ) , which we denote by hT (5 x R ) , is 

given by 

(1.65) 
S1xHS1xHc 

0 
0 
1 

1 

- 1 

Then hT*(slxR) induces a corresponding symmetric bilinear form hA (T (s xR)) on 

A' (T* (S1 x R ) ) . 
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Let h be the symmetric bilinear form on Q c (S1 x R ) which is given by 

(1.66) h (s , s') 
S1xH 

h A ' r ( s l x R ) ) (s (x,-y),sr [x,y))dxdy. 

Observe that in (1.66), the map r is made only to act on the function s (xy y) without 

acting on the form part of s. Then db-s1 X R* is the formal adjoint of dS11/b2XR with respect 

to J). 

The bilinear forms h and f) are symmetric, but they are non local, in the sense their 

construction involves the antipodal map r. Consider instead the matrix (j) acting on 

T(Sl x R ) , 

(1.67) 0 = 
1 

1 

-1 

0 . 

and the corresponding bilinear form rj on T (S1 x R ) , 

(1.68) fl(U,V) = (U^V). 

Then 

(1.69) <t>~l = 
0 
1 
11 

1 

1 
. 

If we identify T (51 x R ) and T* (S1 x R ) by </>, the corresponding bilinear form 77* 

on T* (S1 x R ) is given by 

(1.70) r/* {8,8') = U-18,*'). 

Then 77* induces a nondegenerate bilinear form on A" (T* (S1 x R ) ) . If 5 , 5 ' G 

Qc (S1 x R ) , set 

(1.71) 77 (s. s') = 
S1xll 

77* ( 5 , s') dxdy. 

Then one verifies that 

(1.72) ss s,c 
S1xH 
S1 

a' = n I 
?*xR* 
6 5 , 5 C 

Let u be the symplectic form on S1 x R , 

(1.73) u = dy A D X . 

Then observe that if U, V e T (S1 x R): 

(1.74) V(U,V) = S1xHS1xH + u {U, V). 
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2. Hodge theory and the W i t t e n Laplacian 

In this section, we briefly recall elementary results in Hodge theory. Also we 

describe the Witten deformation of the classical Hodge Laplacian. Finally, we show 

that on a symplectic manifold, up to a constant, the symplectic Witten Laplacian 

is the Lie derivative operator associated with the corresponding Hamiltonian vector 

field. 

This section is organized as follows. In subsection 2.1, we recall known results on 

Hodge theory and on the Witten Laplacian. 

In subsection 2.2, we give a formula for the symplectic Witten Laplacian. 

2.1 . Classical Hodge theory and the W i t t e n Laplacian. — Let X be a com­

pact Riemannian manifold of dimension n, let gTX be the metric on TX, and let 

dvx be the associated volume form. The metric gTX induces a corresponding scalar 

product ( )A (T*x) on A" (T*X). 

Let (Q' (X), dx) be the de Rham complex on X. Let ( )Q-(X) ^e ^ne scalar product 

on £} (X) associated with gTX, i.e., 

(2.1) (s>s')n(x) — 
X 

[S>S')A(T*X) DV*-

Let dx* be the formal adjoint of d with respect to ()Q(X) 

The Hodge Laplacian DX is given by 

(2.2; ]x = dx,dx*' 

The Hodge Laplacian \3X is a second order elliptic self-adjoint nonnegative operator, 

whose principal symbol is |£|2. If Ax is the Laplace-Beltrami operator, the restriction 

of DX to smooth functions coincides with — Ax. 

Let H = ker DX be the finite dimensional vector space of the harmonic forms. The 

basic result of Hodge theory asserts that 

(2.3) S1xHS1xHS1xH 

Now we briefly describe the Witten deformation [20] of the above Hodge Laplacian. 

Its purpose is to provide an interpolation between classical Hodge theory and Morse 

theory. Let / : X —• R be a smooth function. For T > 0, as in (1.43), set 

(2.4) c 7 = e >~TfdxeTf. 

The complex (£2' (X) ,dx) is canonically isomorphic to the complex (O' (X) ,dx).' 

Let dx* be the formal adjoint of dx with respect to ( ) Q . ^ x ^ so that 

(2.5; E jX* 
'T sd 

S1xHS1xHS1xH 

A S T E R I S Q U E 322 



A S U R V E Y O F T H E H Y P O E L L I P T I C L A P L A C I A N 5 3 

The corresponding Witten Laplacian XT is given by 

(2.6) X 
t d i 1 5 fi T 

The Laplacian DX has exactly the same properties as DX. In particular if 

(2.7; HT = k e r ü £ , 

then 

(2.8) HT^H- (X,R) 

Of course, for T = 0,XT coincides with Dx, so that Dx is a deformation of Ox. 

Clearly, 

(2.9) d s = d x + TdfA, d T 
S1xHS1xHS1xH 

Let e i , . . . , en be an orthonormal basis of TX, let e 1 , . . . , en be the corresponding dual 

basis of T*X. From (2.9) we deduce that 

(2.10) 
X 
T d 

1 y 
+ T2 |c(f|2 + r ( 2 ( fTX 

sd 
f i £j / 6 i>ei 

,TX 

An essentially equivalent construction is to keep d fixed, and instead to consider 

the adjoint of dx with respect to the L2 scalar product in (2.1), in which the volume 

form dvx has been replaced by e~2T^dvx- The adjoint of dx is just dxf and the 

associated Laplacian is given by eT^Dxe~T^. 

Assume / to be a Morse function. Using (2.10), Witten showed in [20] that as T —* 

+ o o , most of the spectrum of Dx tends to + o o , and the remaining finite eigenvalues 

tend to 0. Some of these are exactly 0, and correspond to the harmonic forms, and 

others are asymptotically small, decaying to 0 like e~cT,c > 0. Let FT be the direct 

sum of eigenforms of DX for eigenvalues < 1. Witten showed that as T —> + o o , F^ 

localizes near the critical points of / . More precisely, i7^ localizes near the critical 

points of index i. Also Witten conjectured that as T —» + o o , the complex ^F^,dx) 

approximates in the proper sense a complex constructed from the 'instantons' which 

connect the critical points. These instantons are integral curves of the gradient field 

V / . When V / is Morse-Smale, this complex was identified to be the Morse-Smale 

complex associated with V / . In [12], Helffer and Sjostrand proved the conjecture of 

Witten. For another proof we refer to [10]. 

The Witten deformation was used in Bismut-Zhang [9, 10] to give a new proof of 

the Cheeger-Muller theorem [11, 16]. 

One of the main motivations given in [3] for the introduction of the hypoelliptic 

Laplacian has been an attempt to extend the construction of the Witten Laplacian to 

the loop space LX oiX. On LX there are many natural functional like the energy. If 

the Witten Laplacian associated with the energy existed, it would interpolate between 

the Hodge Laplacian DLX of LX and the Morse theory of the energy functional, whose 
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critical points are precisely the closed geodesies. The hypoelliptic Laplacian provides 

a semiclassical version of this interpolation. For a review of these aspects of the 

hypoelliptic Laplacian, we refer the reader to [4, 6 ] . 

2.2. T h e symplectic W i t t e n Laplacian. — Let (M,UJ) be a symplectic manifold 

of dimension n. The nondegenerate bilinear form UJ on TM induces an isomorphism 

<J) : TM —> T*M. so that 

(2.11) u,{U,V) = (U,4>V). 

Let UJ* be the nondegenerate bilinear form on T * M which corresponds to UJ via the 

canonical isomorphism </>. We still denote by a;* the associated bilinear form on 

A' (T*M). The form UJ determines a volume form dvM on M. 

If a G A ( T * M ) , set 

(2.12) La = UJ A a. 

Let A be the adjoint of L with respect to UJ*, so that 

(2.13) UJ* (As,*7) = UJ* la,La'). 

The operators L, A are the well-known Lefschetz operators. Let N be the number op­

erator of A' ( T * M ) , i.e. the operator which acts by multiplication by k on Ak ( T * M ) . 

Set 

(2.14' H = 
1 

2 
(N - n/2) 

Then we have the well-known commutation relations 

(2.15) [H,L} = L, [H,A] = -A, [L,A] = 2H. 

Let dM be the formal adjoint of dM with respect to the bilinear form associated with 

the symplectic form w as in (1.71), (1.72), with 77* replaced by u>* in (1.71). 

Now we state the simple result in [3, Theorem 2.21. 

Proposition 2.1. — The followinq identities hold: 

(2.16) dl 
= _ d , A 5 

S1xH —A: 
S1xH dM 

S1xH = 0. 

Proof. — Using Darboux's theorem, we may as well assume that locally, the form UJ 

has constant coefficients. Then (2.16) is elementary linear algebra. In particular the 

last identity is just a reflection of the fact that UJ vanishes on the diagonal. • 

Let H : M —> R be a smooth function. Let d^ be the twisted de Rham operator 

(2.17) d M 
n = e-ndMe'u, 

and lei s 
-M 

sd 
be its symplectic adjoint, i.e., 

(2.18) d 
M 
n s s s —M 

m e-n. 
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Then c 
M 

n 
Û 

•M 

d 
is the symplectic Witten Laplacian associated with H. 

Let Yn be the Hamiltonian vector field associated with W, so that 

(2.19) dH + iynoj = 0. 

Let LYn be the Lie derivative operator associated with Yn. 

Now we state a simple formula established in [6, eq. (2.34)1. 

Proposition 2.2. — The following identity holds: 

(2.20) c M 

n E 
M 

n = —2Lyn. 

Proof — One verifies easily that 

(2.21) sd 21 s s Ü 
M 

— 2iyn, 

so that using (2.16), we get 

(2.22) s 
s s 

ssM 
2H = —2Lyn. 

By conjugating (2.22) by e n and using the fact that Yn preserves W, we get (2.22). 

Proposition 2.2 is quite interesting. Indeed remember that our ultimate goal is to 

interpolate between the Hodge Laplacian DX of the Riemannian manifold X and the 

generator LYn of the geodesic flow on the total space X* of the cotangent bundle of 

X. However, (2.20) indicates that LYn is itself a symplectic Witten Laplacian. One 

possible construction of the hypoelliptic Laplacian consists in linearly interpolating 

between the scalar product of TX and the symplectic form of X*. This point of view 

is explained in detail in [3, section 2.12].We also refer to equations (1.74) and (3.5) 

for a hint on how to do this. 

3. The hypoelliptic Laplacian in de R h a m theory 

The purpose of this section is to construct the hypoelliptic Laplacian in de Rham 

theory. This operator, which acts on the total space X* of the cotangent bundle of 

a Riemannian manifold X , depends on a parameter b > 0. Also we give arguments 

showing that it should interpolate between the standard Hodge Laplacian of X and 

the generator of the geodesic flow on X*. 

This section is organized as follows. In subsection 3.1, we give a formula for the 

operator dx . 

In subsection 3.2, we introduce a symmetric bilinear form on fi,'c(X*), and we 

obtain the formal adjoint d * of dx* with respect to this form. 

In subsection 3.3, given a Hamiltonian function H on X*, we obtain corresponding 

symmetric bilinear forms, and we construct the adjoint of the Witten twist dy*. 
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In subsection 3.4, we discuss the self-adjointness of our first order differential op­

erators. 

In subsection 3.5, we give Weitzenbock formulas for our new Hodge like Laplacians. 

In subsection 3.6, when the function H is proportional to \p\2 / 2 , we show that our 

new Laplacians are hypoelliptic. 

In subsection 3.7, we show that &—•(), the hypoelliptic Laplacian should converge 

in the proper sense to the classical Hodge Laplacian of X. 

Finally, in subsection 3.8, we give arguments showing that as b —> + o o , the hypoel­

liptic Laplacian converges to the generator of the geodesic flow. 

3 .1 . T h e de R h a m operator on A"*. — Let X be a compact Riemannian manifold 

of dimension n, let X, X* be the total spaces of the vector bundles TX,T*X over X, 

and let 7r denote the projection from X or X* on X. The metric gTX induces an 

identification of the fibres TX and T*X, and a corresponding isomorphism of X and 

X*. 

Let VTX be the Levi-Civita connection on TX, and let RTX be its curvature. Let 

VT*X be the corresponding connection onT*X, and let RTX be its curvature. 

Let 

(3.1) TX* = 7T* (TX e T*X) 

be the splitting of X* which is associated with the connection V T * X . In (3.1), TX 

corresponds to the horizontal part of TX*, and T*X to the tangent bundle to the 

fibres T*X. 

From (3.1), we get the isomorphism, 

(3.2) A' (T*X*) = 7T* (a- (T*X) A (TX) 

In (3.2), A' (TX) is our notation for the exterior algebra of the fibre, the hat permitting 

us to distinguish A" (TX) from the exterior algebra A" (TX). Of course A' (TX) and 

A' (TX) are canonically isomorphic. Let VA (T***) be the connection on A' (T*X*) 

induced by VTX. 

Let (ft (X*), dx*) be the de Rham complex of X*. Let I be the vector bundle on 

X of smooth sections of A' (TX) along the fibre T*X. By (3.2), we get 

(3.3) n IX*) = ft (X,l) 

Let p be the tautological section of the fibre 7r*T*X over X*. Using (3.2), we may 

write dx in the form, 

(3.4) dx = dv + V1 + i 
RT*xp 

In (3.4), dv is the de Rham operator along the fibre T*X, V is the obvious connection 

on I, and i 
RT*xp 

is the interior multiplication by the vertical vector RT*xp. Of course 
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RT*X is viewed as a 2-form on X, so that ultimately i 
RT*xp 

- increases the total degree 

bv 1. 

3.2. A bilinear form on £}c (X*). — Now we inspire ourselves from the arguments 

which were given in subsection 1.3. Let Q,c (X*) be the vector space of smooth forms 

on X* which have compact support. Let UJ be the symplectic form of X*. On TX*, 

let 7] be the nondegenerate bilinear form, 

(3.5) V(U,V) = [*.U,*mV)+w(U,V). 

The isomorphism (F> : TX* —> T*X* associated to 77 is given by 

(3.6) CJ> = 

TX - 1 \T*X 

<MTX 0 

Equation (3.5) should be compared with equation (1.74), and equation (3.6) should 

be compared with equation (1.67). 

The volume form on A'* associated to rj is exactly the symplectic volume form 

dvx*- Let d be the formal adjoint of dx with respect to the bilinear form rj on 

O c (X*), which one obtains as in (1.71) from (3.5), (3.6). Of course, we use the same 

conventions as in subsection 1.3 to define the formal adjoint, and we use in particular 

equation (1.72). 

Let e i , . . . , en be an orthonormal basis of TX, let e 1 , . . . , en be the corresponding 

dual basis of T*X. Recall that TX* = tt* (TX 0 T*X). We denote by e 1 , . . . , ? 

the basis of the vertical fibre T*X in TX*, and by e i , . . . ,en the corresponding dual 

basis. 

Set 

(3.7) RT*xpA = 
1 

s p.% P.3 RT*X (ei,ej)pA. 

In (3.7), RT x (ei, ej)p is viewed as a section of T*X, which lifts to a 1-form on X*. 

Therefore RTXp decreases the total degree by 1. 

We now have the result established in [3, Proposition 2.10]. 

Proposition 3.1. — The following identity holds: 

(3.8) 
S1xHS1xH 
vS1xHS1xH 

T,X 
s 

+ iei 
7I + RT xpA-i7y7i. 

3.3. A Hamiltonian function. — Let H : X* —• R be a smooth function. Let 
yU be the associated Hamiltonian vector field, so that dH + ivnuj = O.We denote by 

VVH the fibrewise gradient field of H. 

Definition 3.2. — Set 

(3.9) Q d 
sd 

= e-ndx*eH, d n = eHdX e~n. 
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Observe that à 
x 
H is the adjoint o] e X* 

H with respect to rj. Also, if s,s' G fi c (Af*), 
put 

(3.10) rjn {s,s) = 
err 

rf {s,s')e-2Hdvx*-

Then d x* 
'2H is the adjoint of dx* with respect to 7 7 ^ . 

Definition 3.3. — Set 

(3.11) An = 
1 
2 

—X' 
r '2H + dX* r 

S1xH l 
d -x* 

•n + dy x* 
d 

Then 

(3.12) a w = e-nAnen. 

Moreover, 

(3.13) sd 2 
7i d 

d1 
4 

S1xH sd 
'2W d 

We have the result established in [3, Proposition 2.18]. 

Proposition 3.4. — The following identities hold: 

S1xH 1 
2 

S1xH 
S1xH 

A 
Ci 

(T*X*) + 
1 
2 

S1xHS1xH 
c 4 

1 
2 

# T x p A +2-
RT*xp, 

(3.14) S1xH S1xHS1xH S1xH 

S1xH 1 

2c 
S1xH A 

Ci 
S1xH 1 

2 
S1xHS1xH S1xH 1 

2 
S1xHS1xH 

S1xH 

+ 
1 
2 

S1xH vS1xH i 

2 
S1xHS1xH S1xH 

Set 

(3.15) M o = S1xH 

Put 

(3.16) 21' = e-/4oawe/4°. 

The proper interpretation for (3.16) can be guessed from (1.57W1.59) . The operator 
S1xH will also be considered in the sequel. 
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3.4 . A self-adjointness property. — The bilinear form rjn on ft (X*) is in gen­

eral not symmetric. However, we will here follow the arguments in (1.64)-(1.67). 

Let \)TX* be the bilinear form on TX* = n* (TX 0 T*X) which is given by 

(3.17) S1xH = 
GTX 

1\T*X 

MTX u 

Let tt : TX* —> T*X be the projection with respect to the above splitting of TX*. If 

U G TX*, then 

(3.18) DT*m {U,U) = (7T*C/,7r*C/)-h2(7r*t/,p(7). 

Then the volume form on X* which is attached to \ ^ x * is the symplectic volume 

form dvx*- Let J)A (T*x) be the corresponding symmetric form on A' (T*X*). 

Let r : (x,p) (x, -p) be the obvious involution of X*. 

Definition 3.5. — Let f) be the symmetric form on Çt'c (X*), 

(3.19) S1xHS1xH 

= 

LjA' {T* X*) 
(s o r, s') dvx*-

As in (1.66), in (3.19), the change of variable p —» — p is not made on the form part 

of s. Set 

(3.20) \)H (s, s') = [) (e-msts'). 

If H is r-invariant, then ^ is a symmetric form. 

Let gTT x be the natural metric on TX* which is associated with the splitting of 

TX*, and let g be the scalar product on Q,c (X*) associated to gTT*x. Let h be the 

symmetric form on Qc (X*), 

(3.21) h(s,sf) = g(r*s,s) 

The symmetric forms in (3.19) and (3.21) have signature (oo, o o ) . If H is r-invariant, 

the same property holds for the symmetric form in (3.20) . 

We state a result established in [3, Theorems 2.21 and 2.30]. 

Theorem 3.6. — If H is r-invariant, AJÌ is fa-symmetric, 21^ is {^-symmetric, and 

dh is h-symmetric. 

3.5 . The Weitzenbock formula. — We give the Weitzenbock formula established 

in [3, Theorem 3.3]. 
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Theorem 3.7. — The following identities hold: 

(3.22 A 2 
= 

1 

4 

-AV- a 
2 

(RTX (ei, ej) ek,et) e V i ^ + 2 L ^ n e 
1 

2 
S1xH 

21 2 
s 

2 
4 

S1xHS1xH 1 
2 

(iîT* (e*, e,-) cfc> e,) eV ' ^ i j » + | Vvf t 
2 

- A " W + 2 ( V ^ V s W ) g i i eij -A"W + 2(V^VsW)gii eij 
s 

s 

2 
-A"W 

3.6. The hypoelliptic Laplacian. — Let N the operator counting the degree in 

A (TX). For c G R , set 

(3.23) >|2 c >|2 
2 

Let w G R be an extra variable. The following result was established in [3, Theo­

rems 3.4 and 3.6]. 

Theorem 3.8. — The following identities hold: 

A 
2 
d s 

1 

4 
- AV + 2c. I 

d 
d 

1 

2 
(R TX (ei,ej)ek,ei )eleJi7ki~i ; 

1 

2 
eleJi7k 

(3.24) 21 2 

s s 
1 

2 
- A v + c2 |p|2 + c ( 2 i V - n ) -

1 

2 
(i? x (EI,EJ)EK,ET) wele 

1 

2 
eleJ 

F o r a ± 0 . £/?,e operators d 
DU s A 2 d 

du - 5 1 L2 are hypoelliptic. 

Remark 3.9. — Of course (3.24) follows from theorem 3.7. Hypoellipticity follows 

from Hormander [14]. Any of the operators in theorem 3.8 is called a hypoelliptic 

Laplacian. 

3.7. A n interpolation property: the limit b —> 0 and classical Hodge theory. 

— In the sequel, we take b > 0, and we set H = \p\ / 2 , c = 1/b2. 

For b > 0, let Kb be the map 5 (x,p) —• 5 (x, bp). By [3, Theorem 3.8], we get 

T3.25> #1.221 
'2 K —l 

6 62 
+ 

b + 7, 

with a, p given by 

(3.26) a = 
1 

2 
- A y + \p\2 - n •f AT, 0 = - 7: V)Z(U) 

Yh 

Observe that a is a standard self-adjoint harmonic oscillator. Also kera is spanned 

by the function exp - I p I 
2 

2 . 
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We identify ft (X) to ker a by the map 5 - * 7r*sexp ( - \p\2 /2) / W 4 . Let P be 

the standard L2 -projector from ft (Af*) on ker a. Note that (3 maps ker a into its L2 

orthogonal. 

Assume for the moment that a, /3 are endomorphisms of a finite dimensional vector 

space E, that a is semisimple, so that 

(3.27) E — ker a Im a 

Let Q be the projector from E on ker a with respect to the splitting (3.27). We also 

assume that /3 maps ker a into I m a . 

Let u G End (E). We write u as a matrix with respect to the splitting (3.27). 

(3.28) u = 
A E 

C D 

Suppose u to be invertible. Now we give a matrix expression for the inverse u~l of 

u under the assumption that D is invertible. We will assume implicitly that other 

matrix expressions are invertible as well. We have the formula, 

(3.29) u_1 = 
(A-BD^C) -1 - ( A - B D ~ X C ) - 1 ~lBD~l 

-D~lC ( A - B D - i C ) ' - 1 D-i + D - i c (A-BD~lC)-1 BD-l 

Let a 1 be the inverse of a restricted to I m a . By (3.29), when A S C , we get 

(3.30) A - a 

b2 d 
r 
b 

- 7 
, - l 

d (A - QiQ + Q Ba-l(3Q) 
- l 

+ 0(b) 0(b) 

0(b) 0(b2) 

By (3.30) we find that as b -> 0, 

(3.31) A - o 
h2 d 

d 
b - 7 

- 1 

= Q(X-Q ( 7 - / J O : - 1 / ? ) Q) 
- 1 

Q + G{b). 

The operator appearing in the limit b —• 0 is Q (7 — f3a~lf3) Q acting on ker a. 

Passing from the above finite dimensional argument to an infinite dimensional con­

sidered in (3.25) is a wild jump. However, this is the sort of situation one encounters 

typically in adiabatic limit problems in the theory of Quillen metrics [1, 7]. The 

major difference is that the operators considered in these references are elliptic and 

self-adjoint, which is not the case here. 

We have given enough motivation for studying the operator P (7 — (3a~l(J) P in 

the context of (3.25). 

In [3, Theorem 3.14], the following result is established. 
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Theorem 3.10. — The following identity holds: 

(3.32) Ph-3a-13)P = p 
2 

x 

Remark 3.11. — Theorem 3.10 gives an argument in favour of the fact that A^c is a 

deformation of D x / 4 . 

In joint work with Lebeau [8], the hard analysis involved in the convergence as 

b —» 0 of the resolvent of 22t^c to the resolvent of ^DX is carried out in detail. The 

convergence is also valid for the traces of the corresponding heat kernels, as well as 

for the spectrum of these operators. 

3.8. A n interpolation property: the limit b —> + o o and the geodesic flow. 

— We still take H = \p\2 /2,c = 1/b2. Let rb be the map (x,p) —» (x,bp). Using 

{Ô.ZZ), we get 

(3.33) rh22)Ancr1/h2 d 
1 

2 
\p\z -LYh+0(l/b) 

The dynamics associated to the right-hand side of (3.33) is the geodesic flow. 

Prom (3.33), we deduce that when b —> + o o , the trace of an operator like 

exp (—A^c) should localize around closed geodesies. 

4. The hypoelliptic Dirac operator 

The purpose of this section is to briefly develop the construction of the hypoelliptic 

Dirac operator obtained in [5] in the case of Kahler manifolds. This deformation of the 

classical elliptic Dirac operator is not a generalization of what was done in section 3. 

This section is organized as follows. In subsection 4.1, we discuss another method 

to obtain a Laplacian which looks like the hypoelliptic Laplacian of section 3. 

In subsection 4.2, we construct the hypoelliptic Dirac operator, which depends 

again on a parameter b > 0. 

In subsection 4.3, by squaring our Dirac operator, we get our new hypoelliptic 

Laplacian. 

In subsection 4.4, we give arguments in favour of the fact that as b —> 0, our 

hypoelliptic Laplacian converges in the proper sense to the classical elliptic Hodge 

Dolbeault Laplacian of X. 

4 .1 . Another approach to hypoellipticity. — Let (X,gTX) be a compact Rie­

mannian manifold, let X be the total space of TX. The generic element of X will be 

denoted (x,Y). We will now try to give another approach to the construction of a 

second order hypoelliptic operator on X. 

A S T É R I S Q U E 322 



A S U R V E Y O F T H E H Y P O E L L I P T I C L A P L A C I A N 6 3 

Let Yn be the generator of the geodesic flow over X, and let LYN be the corre­

sponding Lie derivative operator. Then 

(4.1) Ly-H = [dX,IYN] . 

On the other hand, one would would like to obtain as a square of a Dirac operator 

an operator C looking like the sum of a harmonic oscillator in the variable Y and of 

V y w , i.e., 

(4.2) C = 
1 

2 
'-Av + \Y\2-n eleJi7k 

We still write dx as in (3.4), i.e., 

(4.3) dx = dv + V1 + i eleJi7k 

Equation (4.3) expresses dx as a superconnection on I in the sense of Quillen [18]. 

For V y w to appear in (4.2), one should think of replacing dx by dx+iyn. However, 

how to obtain the full operator C is not clear, not to speak of the possibility of 

producing a deformation of the classical elliptic Dirac operator or of its square. 

4.2 . The hypoelliptic Dirac operator. — To explain the construction of the 

hypoelliptic deformation of the Dirac operator which is carried out in [5], we will 

work in the context of complex Kahler manifolds. 

Let (X,gTX) be a compact complex Kahler manifold of real dimension n. Let 

TX be the holomorphic tangent bundle to X, and let T r X be the corresponding real 

tangent bundle. Let (E, gE) be a holomorphic Hermitian vector bundle on X. We de­

note by VTX, the holomorphic Hermitian connections on TX, E, and by RTX ,RE 

their curvatures. Let VA (T*X®E) be the corresponding connection on A' (T*X) <8>E. 

Let 5 q50?;°(X, E ) , Q x ) be the Dolbeault complex of smooth antiholomorphic forms 

on X with coefficients in E. The cohomology of this complex is denoted H (0) (X, E). 

Let ( ) be the L<i Hermitian product on Q^0^ (X, E) which is associated with 

9TX,9E. L e t r * x 

be the formal adjoint of d with respect to ( ) . Set 

(4.4) Dx = dX + dX\ 

If u e TX, let u* € T*X corresponding to u by gTX. Recall that A- (T*X) is a 

( T R X , 5 T r X ) Clifford algebra. Namely if u 6 TX, set 

(4.5) c(u) = V2u*A, c(u) -V2iû-

We extend the definition of c to TRX ® R C by linearity. If U, V € TuX, then 

(4.6) c(U)c(V) + c(V) c(U) = -2(U,V). 
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By [13], V2DX is a Dirac operator. Namely, if e i , . . . , en is an orthonormal basis 

of T R X , then 

( 4 . 7 ) V2DX = c ( e * ) 
A' 
EI 

(T*X)(g>£ 

Let 7r : <Y —> X be the total space of T X , with fibre T X . The hat on T X will allow 

us to distinguish the fibre T X from the tangent bundle to X . Then X is a also a 

complex manifold. Let i : X —> A* be the embedding of X into # as the zero section of 

T X . Using the connection V T X , we have the identification of smooth vector bundles, 

( 4 . 8 ) TX ~ ir* (TX®TX 

From ( 4 . 8 ) , we get the smooth identification, 

( 4 . 9 ) A' (T*X) = 7T* A' (T*X) ® A ' T*X 

Set 

( 4 . 1 0 ) F = TT* (A- ( T * X £ ) • 

In ( 4 . 1 0 ) , A' ( T * X ) is the holomorphic exterior algebra of the base X . However, since 

T X and T X are isomorphic, A' ( T * X ) will also be considered as the holomorphic 

exterior algebra of the fibre T X . 

Let ( ft(°'') (X, F), d ) be the Dolbeault complex of smooth antiholomorphic forms 

on A* with coefficients in F. 

Let I be the vector bundle on X of the smooth sections of 7r* A' T * X E 

along the fibre T X . By proceeding as in ( 3 . 4 ) and using ( 4 . 9 ) , we get 

( 4 . 1 1 ) y = v I " + â v . 

In ( 4 . 1 1 ) , dV is the Dolbeault operator along the fibre T X , and V 1 " is the horizontal  
x 

part of d . Note that contrary to what happens in ( 3 . 4 ) , there is no extra term in 
x x 

( 4 . 1 1 ) . Writing d in the form ( 4 . 1 1 ) emphasizes the fact that d can also be viewed 

as a holomorphic superconnection on I. 

Let y be the tautological holomorphic section of 7 r * T X over X, and let Y = y + y 

be the corresponding section of 7 t * T r X . Of course T X and T X are canonically 

isomorphic. In particular the operator iy acts on 7r*A' ( T * X ) . The Koszul complex 

( 0 ^ 7 r * A ' ( T * X ) ,iy) provides a resolution of the sheaf i*Ox- More generally the 

Koszul complex (Ox (F) ,iy) provides a resolution of i*Ox (E). Observe that 

( 4 . 1 2 ) 75* . • ' 
2 

= 0 . 

Equation ( 4 . 1 2 ) reflects the fact that Q(X),d* + iy is the Dolbeault resolution 

of the Koszul complex we just considered. 
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For b > 0. set 

(4.13) A'l = d*+ iy/b2.' 

By (4.11), (4.13), we get 

(4.14) A'i = Vv' + Q V + i y / b 2 . 

Then A'l can be viewed as an operator acting on fi'0'') (X, F). By (4.12), 

4.15 K2 = 0. 

Let d be the fibrewise formal adjoint of d . Now we will take the 'adjoint' of 

Ab partly in the sense of superconnections. Namely set 

(4.16) A'h = d + Q - V q * + f + i y / b 2 . 

Then A'h also acts on ft((V) (X, F). Indeed V1 ' increases the degree in A* (T*X) by 1, 

and iy decreases the degree in A' (T*X) by 1. Moreover, 

(4.17) A3+ l'2 — n 

Set 

(4.18) Ab — Ab + Ab. 

When making instead y = 0, we will denote by A , A , A the corresponding operators. 

In particular, when identifying Y G T R X to the corresponding section of T R X , we 

get 

(4.19) Ab = A + iY/b2. 

Also A is a superconnection on I. 

Observe that the principal symbol of A or of Ab is exactly i£H A -hie (%v) / \ / 2 , 

where £H,£V are the horizontal and vertical components of £ G Tj^X. In particular 

the principal symbol of A2 is just | ^y |2 / 2 . Adding iy has no effect on the principle 

symbol of A2. However, 

(4.20) A 2 
b 

= A2+[A,iY/b2]. 

Now in [^My] appears the critical operator V y , which makes the operator A2 hy­

poelliptic. 

The operator A2 is still not the right one, since it does not contain a positive 

multiple of \Y\ / 2 , which is needed to produce a harmonic oscillator in the fibre 

direction. 

So we slightly modify the above construction. Let UJX be the Kâhler form associated 

with the metric gTX. If J is the complex structure of T R X , if U, V G T R X , then 

(4.21) WX(U,V) = (U,JV). 

We will view UJX as a section of A' (T*X) <g>A* ( T * X ) . 
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Put 

(4.22: n" — A" B'h = eiuj Ähe-iu) , &b = B'b + B'h. 

Since UJX is closed, we get the formula, 

(4.23) B'b = A'b + y* A / 6 2 . 

Of course, we still have 

(4.24) B •//2 
d 

= 0,E 
d/2 
d = 0. 

However, the effect of the addition of y* A /b2 in (4.23) is precisely to produce the 

desired \Y\2 /2i>4 in B$. We will give a formula for a conjugate of the operator B\. 

4.3 . T h e hypoelliptic Laplacian in Dolbeault theory. — If U e TRX, we 

define c (u) as in (4.5). Then c (u) acts on A' ( f * x ) . If u € T X , set 

(4.25) ? ( u ) = V2t„, ? ( « ) = >/2(ïï* A + i 5 ) . 

We extend c? by linearity into a linear map from T R X ® R C into End (A' ( T R X ) ) < 8 > R C , 

which is such that if U, V € TRX, 

(4.26) •Z(V)Z(U) •Z(V)Z(U) = 2(U,V). 

Of course, au e TRX, V € TRX, 

(4.27 c(U),Z(V) = 0. 

The curvature RE is a section of A2 ( T R X ) ® E n d ( E ) , and RTX a section of 

A 2 m x ) End (TX). The following result was established in [ 5 , Theorem 3.8]. 

Theorem 4.1. — The following identity holds: 

(4.28) 

A 
2 
b s 

1 

2 
•Z(V)Z 

\Y\2 

Ò4 
+ 

1 

Ò2 
c ( e i ) c / ( e i ) s RTXV + 

s 

4 
RTXei,ej)c(ei)c(ej) 

+ 
1 

2 
Tr •Z(V)Z 1 

Ò2 

d 
d + RE. 

Let L be the operator a a;x A a, and let A be its adjoint as in subsection 2.2. 

Set 

(4.29) Cb = exp (iA) Bb exp (—iA). 

The operators V 1 " , V1 ' increase the horizontal degree by 1. Let V 1 " * ^ 1 ' * be their 

formal adioints in the classical L2 sense. These operators decrease the horizontal 

degree by 1. 

Now we have the result of [ 5 , Theorem 3.6]. 
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Theorem 4.2. — The following identity holds: 

(4.30) C, = V 1 " + V1 ' + V 1 ' " -Vi>* + dv + iy/b2 + dv* •Z(V)Z(U) 

Remark 4.3. — Using (4.30), the fact that the horizontal part of the principal symbol 

of C\ is nilpotent follows from well-known identities in Kahler geometry. 

4.4. The limit as b 0. — Let Kb be the map s(x,Y) s(x,bY). Set 

(4.31) Db = K\)C\)Kh 1. 

By (4.30), we get 

(4.32) Db = V ^ + V ^ + V1"* - V1'* + 
1 

b 
d +iv + d +y*A ; 

Let u)x,v be the Kahler form of the fibre TX. Since A' (T*X) has been identified 

to A* ( T * X ) , UJX'V will be viewed as a section of A' ( T * X ) ® A ' ( f * x ) . 
—V 

By [2, Proposition 1.5 and Theorem 1.6], the fibrewise kernel of the operator d + 

iy + d + y* A is 1-dimensional and spanned by ß = exp (iQx<v-\Yf/2). 

We will embed í l ^ (X, E) into Í2<0'-) (X, F) by the embedding a —» 7r*a A /?. Let 

-P be the orthogonal projection operator from Í2^0'' ( A ' , F ) on i^0' ') (X,J5) . 
Set 

(4.33) E = V 1 " + V1 ' •Z(V)Z(U) 

Let us pretend for the moment ft(°') ( A , F ) to be finite dimensional. Elementary 

linear algebra shows that under the proper conditions, as b —> 0, 

(4.34) •Z(V)Z(U) P ( \ - PEP)'1 P. 

The critical result which was established in [5, Theorem 3.12] is as follows. 

Theorem 4.4. — The following identity holds: 

'4.35) PEP = dx + dx*. 

Proof. Let NA'(T*X\N 
A' T*X 

be the number operators of A' ( T * X ) , A' T*X 

Set 

(4.36) ÄF=NA-(T*X) _N A' T*X 

Then ft<0'-) ( X , E ) is of degree 0 with respect to A/*. The operators V1 ' , V1'* are of 

degree + 1 and —1 with respect to TV, so that they disappear under the compression 

by P. The proof of our theorem is completed. • 
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Remark 4.5. — Theorem 4.4 is the main algebraic argument which justifies that when 

6 —• 0, the operator D}> is indeed a deformation of the Dirac operator Dx. This result 

is intimately related with theorem 3.10. Indeed as explained in [3, Proposition 2.41] 

there is a corresponding version of theorem 4.4 in the context of de Rham theory. 

Conversely, by squaring (4.32), we see that the operator D\ can be written in the 

form (3.25). In [5, Theorem 1.14], an analogue of Theorem 3.10 is proved. One of 

the proofs consists simply into squaring (4.32) and identifying properly the various 

terms. 
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N E W RESULTS AND PROBLEMS 
ON KAHLER-RICCI FLOW 

by 

Gang Tian 

Abstract. — In this paper, I give a brief tour on a program of studying the Kâhler-Ricci 
flow with surgery and its interaction with the classification of projective manifolds. 
The Kàhler-Ricci flow may develops singularity at finite time. It is important to 
understand how to extend the Kàhler-Ricci flow across the singular time, that is, 
construct solution of the Kâhler-Ricci flow with surgery. The first task of this paper 
is to describe a procedure of constructing global solutions for the Kàhler-Ricci flow 
with surgery. This procedure is rather canonical. I will discuss properties of such 
solutions with surgery and their geometric implications. I will also discuss their 
asymptotic limits at time infinity. The results discussed here were mainly from my 
joint works with Z. Zhang, J. Song et al. Some open problems will be also discussed. 
The paper is mostly expository. 

Résumé (Nouveaux problèmes et résultats sur le flot de Kâhler-Ricci). — Dans cet article, 
nous donnons un aperçu rapide d'un programme d'études sur le flot de Kâhler-Ricci 
avec chirurgie et son interaction avec la classification des variétés projectives. Le flot 
de Kàhler-Ricci peut développer des singularités en un temps fini. Il est important 
de comprendre comment étendre le flot de Kâhler-Ricci à travers le temps singulier, 
c'est-à-dire, comment construire une solution du flot de Kàhler-Ricci avec chirurgie. 
La première tâche de cette article consiste à décrire une procédure de construction 
de solutions globales pour le flot de Kâhler-Ricci avec chirurgie. Cette procédure est 
plutôt canonique. Nous allons discuter les propriétés de telles solutions avec chirur­
gie et leurs implications géométriques. Nous allons également discuter leurs limites 
asymptotiques au temps infini. Les résultats présentés ici proviennent principalement 
de travaux communs avec Z. Zhang, J. Song et al. Nous allons également présenter 
certains problèmes ouverts. L'article est plutôt explicatif. 
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1. Introduction 

Let X be an n-dimensional compact Kahler manifold. We denote a Kahler metric 
by its Kahler form v, in local complex coordinates z1,..., zn, 

uü = y/^ïgijdz'1 A dz\ 

where we use the standard convention for summation and (g^) is the positive Hermi-
tian matrix valued function given by 

9ij = 9 
8 

Ric(cj 
d 

Ric(cj) = 

The Ricci flow was introduced by R. Hamilton. It has a nice property: If the initial 
metric is Kahlerian, so do any metrics which evolve along the Ricci flow. This can be 
proved by either using the uniqueness of its local solutions or applying the maximum 
principle in an appropriate way. Thus we can consider the following Kahler-Ricci flow 

(1.1) dQt 
dt 

-Ric(o)t), ÜJQ = uQì 

where u0 is any given Kahler metric and Ric(a;) denotes the Ricci form of u, i.e., in 
the complex coordinates above, 

Ric(o;) = y/^ÏRijdz* A dzj, 

where (Rtf) is the Ricci tensor of uo. 
This paper is essentially expository. In this paper, I will discuss some new results 

and open problems in recent study of the Kahler-Ricci flow. They were mainly from 
my joint works with Z. Zhang, J. Song et al. I will also describe briefly a program of 
studying the singularity formation of the Kahler-Ricci flow and how it interacts with 
the classification of projective manifolds. The results and problems discussed here 
arise from our long efforts in pursuing this program (cf. [28], [30], [20], [22], [31], [6] 
etc.). 

2. A sharp local existence for Kähler-Ricci flow 

By the local existence of Ricci flow, given any initial Kahler metric o;o, there is a 
unique solution ujt of (1.1) (t G [0,T)) for some T > 0. The following theorem was 
proved in [30] (also see [2] and characterizes the maximal T for which the solution 
ut exists for t < T. 

t1) In this cited paper, the authors claimed a proof of a related result under certain extra technical 
assumptions. 
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Theorem 2.1. — Let X be a compact Kahler manifold. Then for any initial Kahler 
metric UQ, the flow (1.1) has a maximal solution Cjt on X x [0,Tmax), where 

Tmax = sup{t I [LÜO] -td(X) > 0(2)}. 

In particularj if the canonical class Kx is numerically effective, then (1.1) has a global 
solution Qt for all t > 0. Here, c\(X) denotes the 2-K mutiple of the first Chern class. 

In [1], Cao proved this theorem in the case that ci(X) is definite and proportional 
to the initial Kâhler class. In the case that Kx is nef, i.e., numerically effective, and 
the initial metric UJQ is sufficiently positive, H. Tsuji proved in [32] the above theorem, 
that is, (1.1) has a global solution £jt. 

Now let us sketch a proof of the above theorem following the arguments in the 
proof of Proposition 1.1 in [30]. (3) 

For any small e > 0, we can choose Te > 0 such that Te + e < Tmax and a real closed 
(1,1) form ijje such that [i/)e] = c\{X) and UJ$ — (Te + e)^c > 0. Choose a smooth 
volume form Q,e such that Ric(îîe) = ?/>e. This Q,e is unique up to multiplication by a 
positive constant. 

Set ojt = coo — ttpe for t G [0,TC]. One can easily show that Cjt — ujt + yf—ïddu 
satisfies (1.1) if u satisfies 

(2.1) 
du 
dt 

log 
r.n 
Ut ù*$ù u(0,-) = 0. 

We shall show the solution for (2.1) exists for t e [0,TC]. 
First observe that ujt is a Kahler metric for t G [0,T€] with uniformly bounded 

geometry. 
By the standard theory, u exists for small t > 0. In order to prove that u exists for 

t G [0, Te], we only need to get uniform estimates of u whenever it exists for t G [0,Te]. 
Applying the Maximum Principle to (2.1), we can easily have \u\ < Ce. ̂  In fact, 

the upper bound is independent of e. 
Taking derivative of (2.1) with respect to £, we get 

d 
!*ù$ 

(du" 
KdtJ 

mù*$ 'du 
dt 

Ric(cj) = —U) 

where Aw denotes the Laplacian of a Kahler metric u and (CJ, F) means the trace of 
F with respect to UJ for a real (1, D-form F. 

It follows 

(2.2) 
d 
dt 

du 

dt 
•ti !ù*$ù* 

du 
. dt 

u + n - (a>t,a;o>. 

(2) This means that [u>o] — tci(X) > 0 represents a Kahler class. 
(3) The flow equation in [30] is not the same as, but equivalent to (1.1). 
(4) The constant C, C€ may differ at various places. A subscript indicates the dependence on another 
constant. 
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Noticing (o)t, o;o) > 0 and applying the Maximum Principle, we see that the maximum 
of — u — nt is non-increasing, so we have that 

t 
du 

dt 
— u — nt ^ 0. 

Now we combine it with local existence for small time and the uniform upper bound 
for u to conclude that 

du 
dt 

:!ù*$ 

On the other hand, we have 

(2.3) d_ 

dt 
(Te + e-t)' 

du 

'dt :mù$ 

= A i , (Te + e - t] 
du 

'dt 
+ u - n + (o>t, ÜÜQ - (Tc + e)t/>€). 

Since (u>t,wo — (Te + €)ipe) > 0, by the Maximum Principle, we see that minimum of 
(T€ + e — i) ̂  + u + nt is non-decreasing. It follows 

(Te + 6 - i ) 
du 

dt 
+ u + nt^Z (Te + e)mint=c 

du 

dt 
= -ce, 

from this we can conclude 
du 

dt 
-Ce. 

Now we have gotten all the <7°-estimates needed. By using the Maximum principle 
and the standard arguments, one can derive the second and higher order estimates 
for u (cf. [30] for more details). Then one obtains the existence of solution for (2.1) 
for t e [o,rc]. 

The desired existence of the solution for (1.1) can be proved by considering the 
relations between all the equations as (2.1) for different e's as follows: 

Consider (2.1) for some 5 > 0. Assume fa = + y/—lddf for some smooth real 
function / over X. Since Ricfte = we have RicE-/QC = tp$. Thus we can take 
ils = e~f fie. Now the new uwt" is 

r]t = LÜ0 - tips = u)t - tyf^lddf. 

The equation (2.1) for 5 is 

dv 

dt 
•- log 

(m + y/^iddvr 
efQe 

v(0, •) = <>. 

Define ü = v — tf. Then 

(2.4) 

dû 

dt 

dv 

dt 
f = log 

(% + V^iddv)n 
e-fiie + f 

= log 
(wt + V-Lddü)n 

!ù*$ù 

ASTÉRISQUE 322 



NEW RESULTS AND PROBLEMS ON KÄHLER-RICCI FLOW 75 

Noticing that -¿¿(0, •) = v(0, •) = 0, from the uniqueness of the solution for (2.1), we 
conclude that u coincides with u. 

This actually gives the explicit relation between solutions of (2.1) associated to 
different e's and would allow us to glue together all these solutions for (2.1) to get a 
maximal solution of (1.1) until the time Tmax. Thus Theorem 2.1 is proved. 

Remark 2.2. — Note that uot depends on e and may not be a Kahler metric for t 
sufficiently close to Tmax The above arguments also show that the solution u of (2.1) 
extends to all t < Tmax even if u;t is a Kahler metric when t is sufficiently close to 

^max-

Next we need to examine behavior of Cut as t tends to Tmax. 

3. Finite-time singularity 

In this section, we assume that T = Tmax < oo, that is, the Kàhler-Ricci flow 
develops singularity at finite time T. We want to examine the limiting behavior of Qt 
as t tends to T. We shall adopt the notations in the last section. 

First we observe 

Lemma3.1. — Let ip be any smooth (l,l)-form ip representing C\(X). Then there is 
a smooth solution, say ut, for (2.1) with ip = i/;e satisfying: 

(1) ujt=ujo-tib- y/-lddüt; 

(2) For any sequence U —> T, a subsequence of ujti converges to a positive current 
CJT weakly. ^ 

(3) / / lini£->T supx ut is not —oo, then ut converges to a unique UT in any Lp-
topology as t tends to T for any p > 1. In particular, Cbt converges to a unique 
positive current CUT weakly as t tends to T in this case. 

Proof — (1) follows directly from the remark at the end of last section. 
For (2), we notice that Cjt > 0 and 

Jx 
UtAuj^-1 = ([u>o] ~ tCl(X))[LJ0}n-\X), 

so there is a a > 0 such that (cf. [23]) 

Ix 
e-oc{ùt-snVxùt)UJn < Cil 

In particular, for any p > 1, vt = UT — supx ut - 1 has uniformly bounded LP norm. 

(5) CUT can be 0. 
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Furthermore, for any ô € (0,1), we have 

C > 
x 

Ric(cj) = —U) + f*LOWPRic(cj) = —U) 45 
(1 - 5)2 X 

\ V ( - v t ) ^ \ 2 ^ . O L 

Choose ¿ = 1 / 3 . By the Sobolev embedding theorem, for any sequence U with 
\\mti = T, there is a subsequence, again denoted by U for simplicity, such that 
(1 + supx ut — uti)* converges to some function (—v)* in L2-norm. Since vt have 
uniform Lp-norm for any p > 1, Vi converges to v in the Lp-topology. Then (2) follows. 

Now we prove (3). First recall that by the Maximum Principle, we have proved in 
last section 

ut<C and t 
ù*$ù 
dt 

— ut — nt < 0. 

Here C is a uniform constant. It follows that t~xut — n \ogt is non-increasing, con­
sequently ut converges to a unique function UT, which may take — oo as values, as t 
tends to T. By our assumption, UT is not identically — oo, so supx^ is uniformly 
bounded. It follows that the above v coincides with UT — sup^^T- So we have 
proved (3). • 

Let &T be a limiting positive current at the finite-time singularity from the above 
lemma. A natural question is: How regular is this limiting O)T? It is reasonable to 
expect that UT is bounded and smooth on a Zariski open subset of X. We also expect 
that it has controlled behavior along its subvariety of singularity in a suitable sense. 

We conjecture that the limiting current &T is independent of the choice of the 
sequence {U}. But we can not prove it in full generality yet. The following lemma 
gives a sufficient condition for this to be true. 

Lemma 3.2. — / / there is a representative i\) of c\{X) such that LOQ — Tift > 0 as a 
(lyl)-form. Then the limiting potential UT is unique and bounded. If, in addition, 
fx(wo — Tip)n > 0, then UT is continuous. 

Proof. — Set ut = uo — ty, then ujt > 0 for any t G [0,T]. We have derived in last 
section 

(3-1) 
d 
dt 

(T-t) 
dût 

'at 
l;mù* *$ù$ù* Ric(cj) = —U) + f*LOWP 

- n + (iJt^T)' 

By using the Maximum principle, we can deduce from this equation that the auxiliary 
function 

(T-t) 
dut 
dt 

• + ût + nt 

is non-decreasing. Since ^ is bounded form above, ut is bounded from below. Then 
the uniqueness follows from Lemma 3.1. 
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The continuity follows from the extension of S. Kolodziej's work [17] by Z. Zhang 
in [35] or [9] (also see [11], [8]) since 

lim 
Jx 

,~,n 
V 

= lim 
t-+T M 

ut -
fx 

u% > 0. 

Now let me discuss some special cases: 
First we assume that UJT = 0, that is, C\(X) = ^[UJQ] is positive. (6) Set 

u{s) = EÏL>T{1_E-±Y 

Here s goes from 0 to oo. Then we have 

(3.2) 
duj(s) 

äs 
(Ric(u;(s)) - 1 ( 

T v 

This UJ(s) is a global solution for the renormalized Ricci flow. A challenging problem 
is to show the convergence of LU(S) as s goes to oo. A folklore conjecture claims that 
there is a family of diffeomorphisms (j)(s) : X i-> X such that C/)(S)*UJ(S) converges to a 
Kähler-Ricci soliton on a variety with possible singularity of codimension 2 (cf. [14], 
[27], [18]). In the case that X — 52, u>(s) converges to the standard metric on S2 as 
shown in [13] and [7] (also see [3]). In the case that CJO has non-negative bisectional 
curvature, it was proved in [4], [5] that LU(S) converges to the unique Kähler-Einstein 
metric on X. Perelman proved that the scalar curvature and the diameter of UJ(S) are 
uniformly bounded along (3.2) (cf. [19]). It follows that the above conjecture holds 
if one can bound the Ricci curvature of (3.2) [19]. The following theorem was first 
claimed by Perelman and proved in [31]. 

Theorem 3.3. — Assume that X has no non-trivial holomorphic fields. If X admits a 
Kähler-Einstein metric and ci(X) — t̂ [U;O], then UJ(S) converges to a Kähler-Einstein 
metric. 

In [31], the above theorem was also extended to the case that X admits only a 
Kähler-Ricci soliton. The proof of the above theorem was proved by using one of 
Perelman's estimates and exploring the properness of the K-energy. 

Next we consider X = X\ x X2 with both C\(Xi) and c\{X2) definite. For sim­
plicity, we assume that H2(Xi,Z) = Z with generator represented by a Kahler form 
ßi for i = 1,2. Then the initial Kahler class [uo] = ß\[ß\] + /¿2[#2] with /ii,//2 > 0. 
We further assume that C\{Xi) = rriißi with mi > max(0,ra2). Then the flow (1.1) 
develops singularity at T = \x\jm\. First we assume that UJQ is a product metric 
^01 + ̂ 02? where UQI is a Kahler metric on Xi, then the flow becomes a product flow 
&t = ̂ t i + ^ 2 , where uti solves (1.1) on Xi with initial metric ojoi- Then Coti converges 

(6) One can easily show that the limiting current is unique in this case, in fact, it is always zero. 
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to 0 as t tends to T, while £ut2 exists on X2 x [0, T + e] for some e > 0. Hence, the 
flow Qt collapses to Qt2 on ^ 2 at T and continues beyond T. 

Now if UJQ is a general Kahler metric in + ^[fo], then there is a smooth 
function 0 such that ĉo = ^01 + ^02 + y/—ldd0. By the Maximum Principle, the 
solution d)t of (1.1) with initial metric is equal to ujt\ + &*2 + y/^lddOt with 
#t uniformly bounded. This implies that modulo a bounded potential function, u>t 
collapses to a current on X2 at T. I believe that this collapsing occurs in the L°°-
topology. 

In our next example, we assume that X is a projective manifold with Kodaira 
dimension > 0 and UJ0 is rational. Then T = Tmax is rational and consequently, m[uo] 
is the first Chern class of a line bundle L and a = mT is an integer for some m > 0. 
Clearly, L+aKx is nef. Since the Kodaira dimension is non-negative, for m sufficiently 
large, aKx admits a holomorphic section S. It follows that SkSf is a global section of 
k(L+aKx) for any section S' of kL, so dimH°(X, k(L+aKx)) > ckn for some c > 0. 
It follows that (L + aKx)n > 0, i.e., it is big. By a result of Kawamata [16], L + aKx 
is semi-positive, i.e., there is a k > 0 such that any basis of H°(X, k(L + aKx)) maps 
X onto a subvariety in some CPN. In particular, there is a ip representing c\{X) such 
that LJO — Tip is a semi-positive smooth form. In this case, we can say more about the 
limiting behavior of Ut as t —> T. 

The following lemma can be found in [15]. 

Lemma 3.4. — Let E be a divisor in a projective manifold X. If E is nef and big, 
then there is an effective divisor D such that E — eD > 0 for any sufficiently small 
e > 0. 

The proof follows essentially from the openness of the big cone of X which clearly 
contains the positive cone and the fact that E is in the closure of the positive cone. 
In fact one can choose D to be big. (7) 

Applying the above lemma to L + aKx, there is a Hermitian metric he on D such 
that for any small e > 0, 

Ric(cj) = — ̂ lddloghe > 0. 

Let a be a defining holomorphic section for D. Then we have 

UJT + eV-lddlogH2 > 0, 

where | • | denotes the norm induced by he. ^ 
The following theorem was essentially proved in [30]. (9) 

(7) Even if [u;o] is irrational, the arguments for proving the above lemma still work. 
(8) For simplicity, if there is no possible confusion, we will drop the subscript e in the norm later. 
(9) In [30], Kx is assumed to be big. It is clear from the arguments in the proof that this assumption 
was not used. 
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Theorem 3.5. — LetX, L + aKx be as above. Then the solution Lot of (1.1) converges 
to a unique current LOT as t T satisfying: 

(1) COT represents the cohomology class of L + aKx; 
(2) CJT is a smooth Kahler metric outside a subvariety BT C X along which c\ (L + 

aKx) vanishes; 
(3) Cbt converges to LOT on any compact subset outside BT in the C°°-topology. 

Proof. — We will outline a proof of this theorem following [30]. 
Since L + aKx is semi-positive and big, by Lemma 3.2, we know that the limiting 

current LOT exists with locally continuous potential and satisfies (1). It suffices to 
prove (2). 

Let a be a defining section of D. Then log|cr|2 is a well-defined function outside 
D e l 

First we need a second order estimate. Set 

U*,e = ut + e\f^ldd\og\cr\2. 

Then for any t £ [0,T + 5], where S = 5(e) may depend on e, (10) ut,e is a smooth 
Kahler metric, in particular, there is a bound on their curvature which is uniform in 
t G [0, T + 6] but may depend on e. 

In order to derive the second order estimate, we need a lower bound on ^ for any 
t e [0,T]. Using the same arguments in deriving (3.1), we get 

(3.3) 
dwt 
dt 

= AcjtWt - n + (Ldt,LOT+ô,e), 

where 

wt = (T + 6-ty 
^dut 
' dt 

i-üt-e log|a|2. 

Since (a>t,̂ T+<5,e) ^ 0, by the Maximum Principle, we can show that the minimum of 
wt + nt is non-decreasing. Since ut is bounded for t € [0,T], we conclude from this 

(3.4) 
düt 
dt 

> ^log\a\2-Cs, 

where C$ is a uniform constant which may depend on Ô. 
Now we write 

#t = t̂,c + yf^ìdd(ut - elog|cr|2). 

Note that the function vt = Ut — e log |cr|2 is defined only outside D. 
On X \ D, we can rewrite (2.1) as 

(Lo^ + V^ddvt)71 = e-&CL. 

Note that Ric(fi) = ip. 

(10) One can show that ö > be for some b > 0. 
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As in [34], [1] and [32], using the bound on ^ and the curvature of wt>£, one can 
deduce 

eCvt 
ù*$ù$ dt 

(e-Cv*{u;t>e,wt)) 

(3.5) Ric(cj) = —U) + f*LOWPRic(cj) = —U) + f*LOWPRic(cj) = —U) + f*L 

> -C + (^-log|a|2 - C ' )H«><*> + C"Ke,ô>t>A-

Here G, C etc. are constants which may depend on e. For instance, we need to 
choose C such that C + INFM Rm(LOT,E) > 1 for t G [0,T], where Rm(u') denotes the 
bisectional curvature tensor of U/. 

Clearly, e-c(w-eiog|«R| )(UJte^t} attains its maximum in X \ {a = 0}. At such a 

maximum point, we have 

0 > -C + (C'loglal2 - C')lut,t,ût) + C<L>t.,û>t)^ 

= -C' + C'{ut,e,wt) ((ut,t,û>t)^ + C"log\a\2 - C') 

Here C" = Ce/S. Since \a\ is bounded, it follows from this 

{uT,T,ùt)<{C-C"\og\a\2)n-1. 

Hence, at this maximum point, 

e-cv*(ut,e,wt) < (C - C'loglal2)"-^-^ <Ci(l-log|a|2)|a|Ce. 

Here we have used that fact that ut is uniformly bounded and C\ is a constant which 
depends on e. 

Then we can easily deduce the second order estimate: 

(3.6) {u>o,u>t) ^C2\a\-Ce. 

Observe that our lower bound estimate on implies the volume estimate: 

LO+ > 03\a\ LOQ • 

It follows that a>t defines a Kahler metric on X \ {a = 0}. Furthermore, we have a 
uniform bound on ^ on any given compact subset outside D. 

The higher order derivative estimates for UT outside {a = 0} follow from the stan­
dard theory on Monge-Ampere equations ([10] etc.) or Calabi's third order estimates 
as shown in [34]. 

We have shown that UT = limT_+T ut exists. The above shows that UT is smooth 
and defines a smooth Kahler metric LOT outside D. Moreover, we have 

(3.7) (LOT + \f-îddÛT)n = e^'Tfi, onX\{a = 0}. 

Notice that D may not be unique. We can choose any JD'S in the above discussions so 
long as it satisfies Lemma 3.4. Since the limit UT is unique, UT is smooth and gives 
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rise to a Kàhler metric outside the intersection BT of all such D's. Thus this theorem 
follows. • 

Theorem 3.5 tells us that the solution £jt extends to a Kàhler metric CJT outside 
the subvariety BT C X. However, this limiting CUT does have singularity along BT-
This singular behavior can be caused by the metric's either blowing-up or failing to 
be non-degenerate along BT- In order to extend the Ricci flow across T, we need to 
study how U>T behaves along BT- Here is what we expect (also see [20]) 

Conjecture 3.6. — Let X\ be the metric completion of X \ BT with respect to the 
distance dT on X \ BT induced by CJT . Then X\ is a projective variety which can be 
obtained from X by flips or algebraic surgeries of certain "standard" type. Moreover, 
(LQ + aKx)\x\BT extends to an ample line bundle over X\. 

If X has the Kodaira dimension — oo and [UQ\ is again rational, then [UQ] —Tc\{M) 
is still rational and nef, but it is not big anymore. If [UJ0] — Tci(X) ^ 0 and the 
well-known Abundance Conjecture holds, then for k sufficiently large, any basis of 
H°(X,k(L0 + aKx)) maps to a subvariety Y C CPN for some N > 0. By Lemma 
3.2, the limit UT exists and clearly descends to a bounded function on 7. It follows 
that UT descends to a positive current on Y, denoted by CJT again for simplicity. We 
expect 

Conjecture 3.7. — The limit UT is continuous and U>T is a smooth Kahler metric out­
side a subvariety B'T of Y'. IfYi denotes the metric completion ofY\B'T with respect 
to the distance induced by CJT, then Y\ is a projective variety and {LQ + aKx)\y\B'T 
extends to an ample line bundle over Y\. 

More generally, I believe that even if X is only a Kàhler manifold (not necessarily 
projective) or CJO may be irrational, what we have shown and conjectured in the above 
still hold with slight modification. But it is harder to prove them. 

4. Extending Kâhler-Ricci flow across singular time 

In this section, we discuss how to extend the Kàhler-Ricci flow Qt across the singular 
time T, assuming that we have solved the two conjectures proposed at the end of last 
section. Then we have a projective variety XT, which can be either X\ or Y\ as 
above, and a limit CJT on XT which is smooth outside a subvariety B. A natural 
question is how to continue the Kâhler-Ricci flow on XT starting at UJT- There are 
two difficulties: 

1. XT may not be smooth; 
2. Even if XT is smooth, UJT or its potential UT may not be smooth. 
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Hence, we need a local existence theorem for (1.1) when the underlying space may be 
singular or initial Kahler potential is non-smooth. 

First we assume that XT is smooth. We have shown that the limiting current 
CUT has a bounded Kahler potential ÜT- Then, it follows from the theory of complex 
Monge-Ampere equations that u)£, where k = dime XT, is well-defined as a measure. 
So it makes sense to consider the Kähler-Ricci flow (2.1) with a weak initial value 
ÜT- IS there a smooth solution (p(t) of (2.1) for t > 0 such that limt_>o <p{t) = Cty? A 
partial answer to this question was provided in the following theorem. 

Theorem 4.1. — [6] Let X be a compact Kahler manifold and ujt be a smooth family 
of Kahler metrics (t G [0, to]). Assume that is any bounded function satisfying: 
There are smooth functions ipe (e > 0 ) such that 

(1) u;0 + V-iddip€ > 0; 

(2) lime_0 = ^0/ 
(3) The volume form UJQ + y/^lddipo is LP(M,UJ) for some p>3. 

Then there is a unique smooth solution ip(t) of (2.1), and consequently, a solution 
uj(t) of (1.1), for t G (0,£o] such that limt—o ¥>{t) — V>o and uj(t)n converges to (LÜO + 
/̂̂ Tд¿̂ 0o)n strongly in the L2-topology. 

If the Kodaira dimension of X is non-negative, then LQ + aKx is nef and big 
on XT and dimcXr = n. According to Conjecture 3.6, if XT is smooth, then UJT 
extends to be a Kahler class on XT- Since ^ is uniformly bounded from above 
for t G (0,T), we can show that the assumptions in the above theorem are satisfied. 
Then one can extend (1.1) across T and continue the flow on XT until T2 > T when 
[UJT] — (t — T)CI(XT) fails to be a Kahler class. If T2 is finite, one can proceed as we 
did for Cbt at T. 

However, in general, the resulting variety XT from the surgery at T may not be 
smooth. (n) Nevertheless, we expect 

Conjecture 4.2. — The algebraic variety XT given above has only mild singularity on 

which we can still run the Kähler-Ricci flow. 

There is an approach in [21] to this conjecture: One can try to run the Kähler-Ricci 
flow on a resolution XT of XT with the initial value being the the pull-back of UJT to 
XT , which may be a degenerate Kahler metric vanishing along the exceptional divisor 
E. 

Assuming that one can affirm the above three conjectures. When (1.1) runs into a 
finite-time singularity at T, one can apply the solutions to the above conjectures to 

(n) It will be interesting to construct an explicit example of such a singular XT, even though I 
believe it does exist. 
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extend (1.1) across T and evolve the Kahler metrics along the flow on XT until we 
run into another finite-time singularity at T2 > T. So we can get a solution (Xt,ut) 
with surgery for (1.1) for t G [0,T2) satisfying: 

(1) For t G [0, T) , Xt = X and uot is a standard solution of (1.1) with initial Kahler 
metric UJQ\ 

(2) For t G [T, T2), Xt = XT and ut is a solution of (1.1) on XT such that the 
potential ut of tbt converges to the potential UT of UJT in the L°°-topology as t tends 
to T. 

As usual, we call T a surgery time. One repeats the above process to continue 
the flow beyond T2 and so on. Thus one can construct a global solution (Xt,u>t) 
with surgery of (1.1) (t > 0). We expect that this process ends after finitely many 
finite-time singularities, that is, 

Conjecture 4.3. — There are only finitely many surgery times To = 0 < T\ < T2 < 
• • • < Tjy < 00 such that Xt = X^ and Qt is a solution of (1.1) on X^ for t G 
[Ti,Ti+i) (i = 0,1,... ,7V - 1) or t G [T/v, 00). Furthermore, for t > TN, either 
Xt = 0 or Kxt is nef and consequently, (1.1) has a global solution. 

There are two possibilities for t > TN. In the first case, Xt = 0 , i.e., (1.1) 
becomes extinct at TN. At each T{ (i = 1,..., N), we do surgery along some "rational" 
components along which c\(X) integrates positively. In particular, Xp. is birational 
to Xt for t <T{. Thus we have 

Conjecture 4.4. — The Kahler-Ricci flow (1.1) becomes extinct at finite time if and 
only if X is birational to a Fano manifold. (12) 

We will leave the second case to the next section. Note that XTN has nef canonical 
bundle if it is non-empty. 

5. Asymptotic behavior of Kahler-Ricci flow 

In last two sections, we have discussed results and speculations on singularity 
formation of the Kahler-Ricci flow at finite time. We also conjectured that there is 
always a global solution (Xt,u)t) with surgery of (1.1) with only finitely many surgery 
times. This generalized solution with surgery becomes an usual solution ut of (1.1) 
on a variety with nef canonical bundle when t is sufficiently large. In this section, we 
study the asymptotic behavior of Cot as t goes to 00. For simplicity, we assume that 
X is a compact Kahler manifold with Kx nef. The general case can be dealt with in 
the same approach as we did for Conjecture 4.3 in case of possible singular varieties. 

(12) To be safer, we may need to include some algebraic manifolds which are Fano-like if such 
manifolds ever exist. 
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It is known that (1.1) has a global solution Qt for any given initial metric. Set 
t = es — 1 and OJ(S) = e~sut, then û(s) is a solution of the following normalized 
Kàhler-Ricci flow: 

(5.1) 
dQ(s) 

ds 
• — Ric(u)(s)) — ÔJ(S), QJ(0) = UJQ. 

The advantage of doing this is that [o;(s)] = e~s[o;o] — (1 — e~s)ci(X), which converges 
to —ci(X) as s —> oo. 

We also assume that there is a (l,l)-form ip > 0 representing —c\(X). This is 
of course the case if Kx is semi-positive or equivalently, for m sufficiently large, 
H°(X,Kx) is free of base points. The Abundance conjecture in algebraic geometry 
claims that it is true for any X with Kx nef. 

Since H°(X,Kx) is base-point free, any basis of it induces a holomorphic map 
(p : X i—• CPN for some N > 0 so that ^OCPN(1) = K%. The dimension of 0's 
image is just the Kodaira dimension K = n{X) of X. 

If K(X) = 0, then ci(-X") = 0 and by the result in [1], the global solution Cbt of (1.1) 
converges to a Calabi-Yau metric on X. 

If K(X) = dimX = n, then X is minimal and of general type. It follows from 
[32] and [30] that UJ(S) converges to the unique (possibly singular along a subvariety) 
Kahler-Einstein metric with scalar curvature — n on X as s tends to oo. 

The more tricky cases are for those X with 1 < K(X) < n — 1. If X is such a 
manifold, one can not expect the existence of any Kahler-Einstein metrics (even with 
possibly singular along a subvariety) on X since K% — 0. Hence, the first problem is 
to find what limiting metrics for Cj(s) one supposes to have as s tends to oo. To solve 
this problem, we introduced a class of new canonical metrics which we call generalized 
Kahler-Einstein metrics in [20] (13) and [22]. Let us briefly describe them. 

Since we assume that Kx is semi-ample, the canonical ring 

R(X) = ®M>0H°(X,K%) 

is finitely generated, so there is a canonical model XCAN of X (possibly singular). Let 
7r : X i—> XCAN be the natural map from X onto its canonical model Xcan. Then 
generic fibers of 7r are Calabi-Yau manifolds of dimension n — « , and consequently, 
there is a holomorphic map / : X°an \-+ MCY which assigns p G X®AN to the fiber 
7T~1(p) in the moduli MCY, where X°an consists of all p such that 7R~1(p) is smooth. 

The moduli MCY admits a canonical metric, the Weil-Petersson metric. Let us 
recall its definition. Let X —> MCY be a universal family of Calabi-Yau manifolds. 
Let (U; ¿ 1 , . . . , it) be a local holomorphic coordinate chart of MCY, where I = dim At. 

(13) [20] is mainly for complex surfaces, but the part of introducing limiting metrics works for any 
dimensions. 
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Then each ^ - corresponds to an element ¿(¿̂ 7) € Hl(Xt,TXt) through the Kodaira-
Spencer map 1. The Weil-Petersson metric is defined by the L2-inner product of 
harmonic forms representing classes in Hl(Xt^Txt)' In the case of Calabi-Yau man­
ifolds, as shown in [24], it has the following simple expression: Let ^ be a nonzero 
holomorphic (n — 0)-form on the fibre Xt and \£jt(^-) be the contraction of ̂  and 
-J^-. Then the Weil-Petersson metric is given by 

(5.2) 
a d 

dti ' dtj 
ù*$% 

Ric(cj) = —U) + f*LOWPRic(cj) = —U) 

J * . * A ¥ 

Now we can introduce the generalized Kàhler-Einstein metrics. 

Definition 5.1. — Let X, XCAN etc. be as above. A closed positive (1, l)-current to on 
^CAN is called a generalized Kahler-Einstein metric if it satisfies the following. 

1. r ^ e - d p O ; 
2. u; is smooth on Xc°an; <14> 
3. Ric(u;) = — \/—199logo;K lifts to a well-defined current on X and on X®AN 

(5.3) Ric(o;) = —id + f*LdWP-

If K = n, then it is just the equation for Kahler-Einstein metrics with negative 
scalar curvature. 

Remark 5.2. — More generally, one can consider the generalized Kahler-Einstein 
equation: 

Ric(o;) = —Ao; + /*o;^p, 

where A is a constant. 

In [22], the following theorem was proved. 

Theorem 5.3. — Let X be an n-dimensional projective manifold with semi-ample 
canonical bundle Kx- Suppose that 0 < K(X) < n. There exists a unique generalized 
Kahler-Einstein metric on XCAN. 

To prove this theorem, we reduce (5.3) to a complex Monge-Ampere equation as 
in the proof of the Aubin-Yau theorem. 

First we introduce a function which will appear in such a complex Monge-Ampere 
equation. 

(14) One can establish an extra property: (tt*uj)k A 0 extends to a continuous function on X, where 
G is the (n-K, n-K)-form which restricts to polarized flat volume form on each smooth fiber (see [22], 
pl5). 
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Since Kx is semi-ample, there is a semi-ample form tt*x representing —ci(X), 
where x is defined in the following way: Xcan can be embedded into some projective 
space CPN by using any basis of H°(X, K™) for a sufficiently large m, then 

X = 
1 
m •^F5|xcan-

Let Q, be a volume form on X satisfying: 

Ric(cj) = —U) + f*LOWPRic(cj) = 

We push forward Q to get a current 7r*0, where tt : X —• Xcan as above, as follows: 
For any continuous function ib on Xcan 

•̂ CAN 
1Ï) 7T*fi = (7T»f2. 

It is easy to see that for any x G X ^ , we have 

Ric(cj) = —U) + f*LO 
:!ù*$ù* 

ù$*ù 

Definition 5.4. — We define a function F on Xcan by 

(5.4) F f - TT.ÎÎ. 

There is another way of denning F: Choose any Kahler class (3 on X, by using the 
Hodge theory, one can find a flat relative volume form 6 on X° = 7r~1(X^an) in the 
cohomology class Pn~K, this means a (n - ft, n — tf)-form 0 in (3n~K whose restriction 
to each fiber 7r_1(x) for x G Jc°an is flat, that is, 

ddlogGU-i^) = 0. 

This is possible because c\(X) vanishes along each smooth fiber. One can show 

(5.5) C7T*F = 
\G ATT*x,c> 

where c is a constant determined by 

c 
ù*$ù*$ 

Ric(cj) = —U) + f* 

where x is any point in X®an. For simplicity, assume that c = 1. In particular, it 
follows that 6 A7r*xK can be extended to X as a current. Furthermore, one can show 
(see [24]) 

f*u>WP = >/=T001og(e A XK) ~ V^ddlogx". 

The function F may not extend smoothly to Xcan, but we have some controls on 

it along the subvariety Xcan \ X®an. 

Lemma 5.5. — F is smooth on X°an and is in L1+e(Xcan) for some e > 0, where the 
Lp-norm is defined by using the metric corresponding to x-
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To prove it, we notice 

^can 
FlJrexK = 

ù*$ù 
7T*F1+e7r*x* A 9 = 

X 
yf^ddyf 

Furthermore, one can show that if i : Y —• Xcan is any resolution of Xcan, then t*F 
has at worst pole singularities on*y. The proof is a bit technical and we refer the 
readers to [22] for details. Consequently, ir*Fe is integrable for sufficiently small e > 0 
(see [22], Proposition 3.2). 

Consider 

(5.6) Ric(cj) = —U) + f*LOWPRic(cj) = —U) + f* 

If tp is a bounded solution for (5.6), then u = x + V—lddcp is a generalized Kahler-
Einstein metric. To see this, we first observe that [TT^LO] = [TT*x] = —ci(X). Next we 
observe 

Ric(cj) = -V^ïddlogtoK = -v^ddlogx" - V^ïddlogF - y/-ïddy 

is a well-defined current on Xcan. A direct computation shows 

sf^ldd log xK + yf^dd log F + v^ïddtp 

= V^ïddlogxK + V- ïdd l o g I;lmùù !ù*$^$ 
Gaxk 

+ LÜ-X 

= LU + y/^ï (-dd log(6 A xK) + dd log xK) 

= Lü - f*LÜWP-

Therefore 

Ric(cj) = —U) + f*LOWP> 

Thus, in order to prove Theorem 5.3, we only need to prove the following 

Theorem 5.6. — There exists a unique solution if G C°(Xcan) fl C°°(Xcan) for (5-6) 
with x + y/—lddip > 0. 

This is proved by using the continuity method and establishing an a priori C3-
estimate for solutions of (5.6). We refer the readers to [22] for its proof. 

We would like to point out that IT*LUK A © = tie?** is continuous since both n*tp 
and ft are continuous on X. 

Now we can discuss the limit of to(s) in (5.1) as s tends to oo. The following 
theorem was proved in [22] (also see [20] for complex surfaces). 

Theorem 5.7. — Let X be a projective manifold with semi-ample canonical bundle 
Kx- So X admits an algebraic fibration TT : X —> Xcan over its canonical model 
Xcan. Suppose 0 < dimXcan = K < dimX = n. Then for any initial Kahler metric 
LOQ, the solution tu(s) for (5.1) converges to 7r*o;cail as currents, where u;Can is the 
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unique generalized Kahler-Einstein metric on Xcan. Moreover, for any compact subset 

K C ̂ can> there is a constant CK such that 

(5.7) \ \R(ù>(s))\\L^(K))+e^SRic(cj) = —U) + f*LOWP sup 
xeK 

»||(D(s)n K\7r-i(X)\\L^(TT-1{x)) <CK, 

where R(UJ(S)) denotes the scalar curvature of u(s). 

If n = 2, then the above implies the convergence in the Cfl'a-topology for any 
a G (0,1) on any compact subset in X®an. We believe that the same can be proved in 
any dimensions. Moreover, we also expect 

Conjecture 5.8. — The solution ti(s) converges to the unique limit TT*UGKE in 
the Gromov-Hausdorff topology and the convergence is in the smooth topology in 

Ric(cj) = —U) + 

This is even open for complex surfaces. 
In the above, we assume that X has semi-ample Kx- This is indeed true if the 

Abundance conjecture holds. If Kx is nef, (5.1) still has a global solution u(s). 
Clearly, it will be extremely interesting to study the asymptotic behavior of ti(s) 
without assuming the Abundance Conjecture, namely, give a differential geometric 
proof of the convergence of UJ(S). The success of such a direct approach will yield 
many deep applications to studying the structures of Kahler manifolds. 

To solve the above conjecture or succeed in the above direct approach, we may need 
to develop a theory of compactness for Kahler metrics with bounded scalar curvature. 
For Kahler surfaces, a compactness theorem of this sort was proved in [29]. Also note 
that the scalar curvature is uniformly bounded along (5.1) on any compact projective 
manifold with big and nef canonical bundle (see [36]). 

6. The case of algebraic surfaces 

In this section, we will carry out the program described above for complex surfaces. 
Basically, all the results in this section are taken from [30] (for surfaces of general 
type) and [20] (for elliptic surfaces). We just make a few simple observations in order 
to deduce the program from those previous works. 

Let X be a compact algebraic surface. 
As before, let Qt De a maximal solution of (1.1) on X x [0,T]. If T < oo, then 

[uj0] — Tci(X) is nef. There are three possibilities: 

1. If [u)0] — Tci(X) = 0, then X is a Del-Pezzo surface and u(s) = (1 — ^)~1Cjt, 
where s = —Tlog(l — ^ ) , converges to a Kahler-Ricci soliton as s —> oo or 
equivalently, t -> T (cf. [26], [31], [33]). 
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2. If [o;0]-Tci(X) ^ 0 but ([uj^-Tc^X))2 = 0, then there is a fibration tt : X h+ E 

with rational curves as fibers (possibly with finitely many singular fibers) such 

that [ujo] — Tci(X) = 7t*[ujx] for some Kahler metric uj^, on E. It follows that 

as t —• T, o>t converges to a positive current of the form 7r*(a;s + \f^ldduT) for 

some bounded function on S. To extend (1.1) across T, one needs to solve 

(2.1) on E with ut as the initial value. This is the same as solving the following 

for t > T, 

(6.1) 
du 

dt 
= log 

Ric(cj) = —U) + f*LOWPRic(cj) = —U) + f 

fis 
t*(T, •) = tir, 

where fis is a volume form on E with Ric(fis) — ̂ s- One can solve this flow 

by using the standard potential theory in complex dimension 1. Let ujt be the 

resulting maximal solution of (6.1) (t > T). If the genus #(E) of E is zero, then 

ut becomes extinct at some finite time T2 > T or after appropriate scaling, these 

metrics converge to the standard round metric on E = S2 as t —• T2. Hence, it 

verifies Conjecture 4.4 in case of algebraic surfaces. If #(E) = 1, then Cbt exists 

for all t > T and converges to a flat metric as £ —• 00. If#(E) > 1, then Cot exists 

for alH > T and after scaling, converges to a hyperbolic metric as t —» 00. 

3. If ([ujo] — Tci(X))2 > 0, then [ujq] — Tc\(X) is semi-ample, so it can vanish only 

along a divisor. It is easy to see that for each irreducible component D of this 

divisor, Kx - D < 0. Moreover, D2 < 0. By the Adjunction Formula, D is 

a rational curve of self-intersection —1, so the divisor is made of finite disjoint 

(-1) rational curves and consequently, we can blow down them to get a new 

algebraic surface Xt- Moreover, the limit Cjt descends to a positive current 

with continuous potential and well-defined bounded volume form. By Theorem 

4.1, one can extend (1.1) across T. 

Notice that the extension Qt for t > T is smooth. Either KxT is nef and there 

is a global solution on X^,or ujt develops finite-time singularity at some T2 > T. In 

the later case, one can repeat the above steps 1, 2 and 3. Since H2(X,Z) is finite, 

after finitely many surgeries, we will arrive at a minimal algebraic surface X/v, that 

is, KxN is nef. Then (1.1) has a global solution, denoted again byô)t, on Ijy. Let us 

study its asymptotic behavior. 

There are 3 possibilities according to the Kodaira dimension k(X) of X: 

1. If k(X) = 0, then ci(X)k = 0 or a finite cover of X is either a K3 surface or an 

Abelian surface. In this case, the solution ût on X^ converges to a Ricci flat 

Kahler metric. 

In other two cases, we better use the normalized Kâhler-Ricci flow (5.1) on 

XN: 
dcj(s) 

ds 
-Ric(<D(s)) - o;(s), ô)(0) = uj0, 
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where t = es — 1 and LJ(S) = e~sujt. 

2. If K(X) = 1, then XN is a minimal elliptic surface: n : XN i—• E. It was proved 
in [20] that as s —• oo, u(s) converges to a positive current of the form 7r*(a)00) 
and the convergence is in the C1'1 -topology on any compact subset outside 
singular fibers FPL,..., FPK, where pi,.. . ,Pfc € Furthermore, a;̂  satisfies 
the generalized Kähler-Einstein equation: 

Ric(ô)00) = -oc» + f*uwp, on E \ { p i , . . . .pfc}, 

where / is the induced holomorphic map from E \ {pi, p^} into the moduli 
of elliptic curves. 

3. If K(X) = 2, then XN is a surface of general type and its canonical model Xcan is 
a Kahler orbifold with possibly finitely many rational double points and ample 
canonical bundle. By the version of the Aubin-Yau Theorem for orbifolds, there 
is an unique Kähler-Einstein metric UJQO on XCAN with scalar curvature —2. It 
was proved in [30] that as 5 —> oo, <D(s) converges to UOQ and converges in the 
C°°-topology outside those rational curves over the rational double points. 

This verifies that our program indeed works for algebraic surfaces except that 
we did not check if the blown-down surfaces coincide with the metric completions 
described in Conjecture 3.6. 

Furthermore, it should be possible to extend all the above discussions to compact 
Kahler surfaces which may not be projective. 
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ON RULED MANIFOLDS 

AND STABILITY 

by 

Vestislav Apostolov, David M. J. Calderbank, Paul Gauduchon 
& Christina W. T0nnesen-Friedman 

Abstract. — This article gives a detailed account and a new presentation of a part of 
our recent work [3] in the case of admissible ruled manifolds without blow-downs. It 
also provides additional results and pieces of information that have been omitted or 
only sketched in [3]. 

Résumé (Métriques kâhleriennes extrêmes). — Cet article fournit une étude détaillée et 
une nouvelle présentations d'une partie de notre travail récent [3] dans le cas des 
variétés admissibles réglées sans blow-down. Il fournit également des résultats supplé­
mentaires et des informations qui ont été omis ou simplement esquissés dans [3]. 

Introduction 

Compact complex manifolds which admit hamiltonian 2-forms of order 1 in the 

sense of [1, 2]—cf. Section 1.8 for a formal definition—have been classified in [2] 

and extensively studied in [3]. The main motivation in [3] for studying this class 

of Kahler manifolds is the fact that they provide a fertile testing ground for the 

conjectures relating extremal and CSC Kahler metrics to stability. In particular, by 

using recent results of X. Chen-G. Tian, here quoted as Theorem 2.1, we were able 

to solve in [3] a long pending open question since [42], namely the non-existence of 

extremal Kahler metrics in "large" Kahler classes on "pseudo-Hirzebruch surfaces", 

which was the last missing step towards the full resolution of the existence problem 

of extremal Kahler metrics on geometrically ruled complex surfaces [5]. 

2000 Mathematics Subject Classification. — 53C20, 53C55, 53C21, 53D20. 
Key words and phrases. — Kaehler manifolds, Calabi extremal metrics, space of Kaehler metrics, sta­
bility. 
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The main goal of this paper is to present some salient results of our joint work [3]. 
To simplify the exposition, we here only consider the simple case of P1-bundles over 
a product of compact Kâhler manifolds of constant scalar curvature, which in the 
terminology in [3] is referred to as the case without blow-downs. This allows us for 
a specific treatment, somewhat simpler than the general case worked out in [3], to 
which we refer the reader for more information and details. 

For the comfort of the reader, we tried to make this paper as self-contained and 
easy to read as possible. With regard to [3], we introduce in places slightly different 
notation and terminology, that seem to be more adapted to the specific situations 
worked out in this paper. Similarly, some computations and arguments taken from 
[3] here appear in a slightly different and/or a more detailed presentation. The paper 
also includes new pieces of information, which were omitted or only sketched in [3], 
like Proposition 1.5 in Section 1.9, Proposition A.l in Appendix A, a specific account 
of the deformation to the normal cone of the infinity section in admissible ruled 
manifolds, etc. 

The paper is organized as follows. 
In Sections 1.1 to 1.7, we set the general framework of the paper by introducing 

the class of admissible ruled manifolds, the cone of admissible Kahler classes, the set 
of admissible momenta and the associated set of of admissible Kahler metrics, and by 
recalling the main geometric features of these metrics (isometry groups, Ricci form, 
scalar curvature, etc.). In Section 1.8, we briefly explain how hamiltonian 2-forms of 
order 1 arise in this setting. In Section 1.9, we use a variant of the Calabi method 
in [8], also used in [42], to construct extremal admissible Kahler metrics in a given 
admissible Kahler class 0; as in [42], we show that this method works successfully if 
and only if the extremal polynomial FQ, canonically attached to ft, is positive on its 
interval of definition. Section 1.10 is devoted to the special case of admissible ruled 
surfaces, here called Hirzebruch-like ruled surfaces. 

In Section 2.1, we review some well-known general facts concerning the space of 
Kahler metrics in a given Kahler class on a compact complex manifold. In Section 
2.2, we recall some basic results recently obtained by X. X. Chen and G. Tian, here 
stated as Theorem 2.1, which play an important role in several parts of the paper. 
In Section 2.3, we compute the relative Mabuchi K-energy on the space of admissible 
Kahler metrics in any admissible Kahler class Q and we show that Q, admits an 
extremal Kahler metric, which is then admissible up to automorphism, if and only if 
FQ is positive on its interval of definition (Theorem 2.2). Proposition A.l established 
in Appendix A is used to complete the proof of Theorem 2.2 in the borderline case, 
when FQ is non-negative but has zeros, possibly irrational, in its interval of definition. 
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In Section 3.1, we recall the interpretation given by Donaldson and adapted by 

Szekelyhidi to the relative case of the Futaki invariant of an S1 -action on a general 

polarized projective manifold. In Section 3.2, we construct the deformation to the 

normal cone, V(M), of the infinity section of an admissible ruled manifold M. 

In Section 3.3, for any admissible polarization on M, we turn V(M) into a test 

configuration in the sense of Tian [41] and Donaldson [15], by constructing a family 

of relative polarizations, parametrized by rational numbers in the interval of defini­

tion of the extremal polynomial FQ. In Section 3.4, we extend to admissible ruled 

manifolds a beautiful computation done by G. Szekelyhidi [39] for ruled surfaces, 

and we show that, for any rational number x in (—1,1), FQ(X) is equal, up to a con­

stant (negative) factor, to the relative Futaki invariant of the test configuration V(M) 

equipped with the relative polarization determined by x, see Theorem 3.1. Together 

with Theorem 2.2, this striking—and still mysterious—fact has the following conse­

quence: for admissible ruled manifolds and admissible Kahler classes, the relative 

slope K-stability, as defined by J. Ross and R. Thomas [35, 34], implies the existence 

of extremal Kahler metrics, cf. [3, Theorem 2]. For a more detailed discussion on 

this matter, including the role of the examples of Section 2.4 in the current refined 

definitions of the slope stability, the reader is referred to [3, Theorem 2]. 

Notation and convention. — For any Kahler structure (g,J,w), the riemannian 

metric the complex structure J and the Kahler form u are linked together by u = 

g(J', •)• The Levi-Civita connection of g, as a covariant derivative acting on any sorts 

of tensor fields, will be denoted by D9, or simply D when the metric is understood. 

The twisted differential dc acting on exterior forms is defined by dc = JdJ~x, where 

J acts on a p-form <p by (Jip)(Xi,..., Xp) = <p(J~lX\,..., J~1XP); in terms of the 

operators d and 8 we then have dc = i(d — d) and ddc — 2idd. Our overall convention 

for the curvature of a linear connection V is y — V[x,y] — [Vx, V y ] . 

1. Extremal metrics on admissible ruled manifolds 

1.1. Admissible ruled manifolds. — Unless otherwise specified, M will denote 

a connected, compact, complex manifold of complex dimension m > 2, of the form 

(1.1) M = P ( 1 0 L ) , 

where L denotes a holomorphic line bundle over some (connected, compact) complex 

manifold S of complex dimension (ra - 1). Here, 1 stands for the trivial holomorphic 

line bundle S x C and P ( 1 © L ) then denotes the projective line bundle associated to 

the holomorphic rank 2 vector bundle E = 1 0 L: an element f of M over a point y 

of S is then a complex line through the origin in the complex 2-plane Ey = C 0 Ly, 

where Ey,Ly denote the fibres of E, L at y\ if £ is generated by the pair (z,u) in 
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C 0 Ly, we write £ = (z : u). The natural (holomorphic) projection 7r : M —> S 

admits two natural (holomorphic) sections: the zero section o~o : y H-* C C C 0 Ly, 

and the infinity section : j / n L y c C ® L r We denote by EQ,EQQ the images of 

<TO,0"OO in M , still called zero section and infinity section, both identified with S via 

7r. Each element of M \ over y has a unique generator of the form (l,u), with u 

in Ly\ we thus get a natural identification of M \ with L and M can therefore be 

regarded as a compactification of (the total space of) L obtained by adding a point at 

infinity to each fiber. The open set Mo = M \ (Eo U Eoo) is similarly identified with 

the set of non-zero elements of L. 

The natural C*-action on L extends to a holomorphic C*-action on M defined by: 

£ • (z : u) = (z : £u). This action pointwise fixes Eo and EQO. The vector field on M 

generating the induced 51-action is denoted by T. 

We furthermore assume that S = Yli^i &i 1S tne product of TV > 1 (connected, 

compact) complex manifolds 5 » , of complex dimensions di, and that L comes equipped 

with a (fiberwise) hermitian inner product, h, such that the curvature, i?v, of the 

corresponding Chern connection, V, is of the form: Rv = —i €i where each 

ti>Si is the Kahler form of a Kahler metric, , on Si (viewed as a 2-form on 5 . i.e. 

identified with p*(Ji, if Pi denotes the natural projection from S to Si), and is equal 

to 1 or to —1. In particular, J^^i ei [^sj = 27rci(L*), where ci(L*) denotes the first 

Chern class of the dual complex line bundle L* and [cjsj the class of uiSi in H2(S, R). 

Moreover, for i = 1 , . . . , N, we assume that RVi = —ieiUJSi is the Chern curvature 

of a hermitian holomorphic line bundle, Li, on Si—so that (Si,(jJSi) is polarized by 

Li = L~€i—and that L = ®iLiP*Li, equipped with the induced (fiberwise) hermitian 

metric. 

On MQ, identified with L \ EQ as above, define t by 

( 1 . 2 ) t = logr, 

where r = \ • \h denotes the norm relative to h, viewed as a function on L = M \ E ^ . 

We then have 

( 1 . 3 ) dCt(T) = 1, ddCt = 7T*( 
N 

i=l 
Ei wSi), 

where the twisted differential operator dc, as defined above, is relative to the natural 

complex structure of M . The latter, as well as the complex structures of S and of 

each factor Si, will be uniformly denoted by J and will be kept unchanged throughout 

the paper. 

Definition LI. — Ruled manifolds of the above kind, with the additional pieces of 

structure described in this section, will be referred to as admissible ruled manifolds. 
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Later on in this paper, we shall assume that the scalar curvature of each factor (S»» <7s») 

of S is constant, but this assumption is not needed until Section 1.9. 

1.2. Admissible Kahler classes. — We denote by eo, resp. e^ , the Poincaré 

dual of (the homology class of) Eo, resp. Eoo, in H2(M,R) and we set: 

( 1 . 4 ) £ = 27^0 + 600). 

The class eo + e 00 can be regarded as a projective version of the Thorn class of L, 

whereas 

( 1 . 5 ) TT*CI(L) = e0 - eoo, 

where c\{L) denotes the first Chern class of L (cf. Remark 1.1 below). Any element, 

7, of H2(M,R) can be written in a unique way as 7 = o S + ir*a, with a in R and a 

in H2(S, R ) . Moreover, in order that 7 belong to the Kàhler cone of M, it certainly 

must satisfy the following two conditions: (i) its value on each fiber of 7r is positive, 

hence a > 0; (ii) 7|£0 and 7|Eoo both belong to the Kàhler cone of S, via the natural 

identification of E0 and Eoo with S. Now, (e0 + eoo)|E0 = e0|s0 = e* [^sJ 

and (eo+eooiiEoo — eoo|£oo — 2TT S Ì = I ei [^Si\ì via ^ne natural identification of EQ, EQO 

with S (recall that eo|s0 is tne first Chern class of the normal bundle of Eo in M, 

identified with L on S; similarly, e o o ^ is the first Chern class of the normal bundle 

of EQO m identified with L* on S). It follows that does not belong to the Kàhler 

cone of M, whereas 

( 1 . 6 ) Oy = 
N 

i=l 

\i ir*[u>sA + E 

clearly satisfies the above conditions (i)-(ii) whenever all A '̂s are real numbers greater 

than 1. In fact, as will be checked in the next section (cf. Remark 1.2), Q,\ is a Kahler 

class on M for any TV-tuple X = (Ai , . . . ,Aiv) of real numbers such that Â  > 1, 

i = 1 , . . . , N. Such TV-tuples of real numbers will be called admissible. 

Definition 1,2. — A normalized admissible Kahler class is a Kahler class of the form 

( 1 . 6 ) , where X is an admissible AT-tuple of real numbers. The characteristic polynomial, 

PQX, of a normalized admissible Kahler class ft\ is defined by 

( 1 . 7 ) pOy (x) = 
N 

i=l 

(Xi+€i X)DI. 

An admissible Kàhler class is a multiple of a normalized one by a positive real number. 

The admissible Kâhler cone is the set of all admissible Kâhler classes. 

Remark 1.1. — Denote by O M ( - 1 ) the tautological line bundle on M and by 0 M ( 1 ) 

its complex dual: for any £ = (z : u) in M, the fiber of OM(—1) at £ is the complex 
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line £ itself, whereas the fiber of 0 M ( 1 ) at £ is £* = Hom(£, C ) . The natural projection 

of C 0 L on C determines a holomorphic section of 0 M ( 1 ) , whose zero locus is E ^ ; 

similarly, the natural projection of C 0 L on L determines a holomorphic section of 

OM(X) ® L, whose zero locus is Eo. We then have 

(1.8) eoo = d ( 0 M ( l ) ) , e0 = CI(Om(1)) + CI(TT*L), 

hence 

(1.9) E = 27r(2c1(0M(l)) + 7r*c1(L)), 

and 

(1.10) f2x = 27r (2Cl(CM(l) + 
N 

i=1 

(A, -6 , )Cl (7r*Lp)) . 

It follows that Q,\/27r belongs to the image of H2(M,Z) in H2(M,R) if and only if 

all Aj's are (positive) integers. If so, f£X/27r = ci(!F\), with 

(1.11) ^ X = O M ( 2 ) 0 T T * 
TV 
i=l 

L 1 —c»A» 
i . 

1.3. Admissible momenta and Kahler metrics. — For each admissible Kahler 

class we construct a distinguished family of Kahler metrics called admissible. For 

convenience, we restrict our attention to normalized admissible Kahler classes, i.e. to 

Kahler classes which are of the form (1.6). The other ones are obtained by homothety. 

Let z = z(t) be any smooth increasing function of t which, as a function on Mo, 

smoothy extends to M, with z^0 = —1 and zy^^ = +1. Equivalently, we demand 

that z, as a function of t, satisfies the following boundary conditions: 

B-oo : Near t = —oc, z(t) = $_oo(e2t), where $_oo is smoothly defined on [0,e), for 

some e > 0, with $_oo(0) = - 1 and ^ . ^ ( O ) > 0. 

B+OQ : Near t = +oo, z(t) = $+00(e~2t), where $+oo is smoothly defined on [0,e), 

for some e > 0, with $+oo(0) = +1 and $'+oo(°) < °-

Definition 1.3. — A smooth, increasing function z : R —• (—1,1), satisfying the 

boundary conditions -B-oo and B+OQ is called an admissible momentum. 

For any admissible momentum z, the 2-form ipz = z N 
i=l -K*€iUJSi + dz A dct on 

Mq smoothly extends to M. Because of (1.3), ipz is closed. Moreover, ipz\j:0 = 

- N 
•1=1 

Ei wSi, Yz|Eoo = N 
4=1 

€i LJSI, and, for any fiber 7r (y), 7T-1(y) ib = An, mean­

ing that [i/jz] = S for any admissible momentum z. For any admissible Kâhler class 
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and for any admissible momentum z, we then define 

(1.12) 

w = wY,z = 

N 

i=l 

yi u* wSi + Yz 

= 

N 

i=l 
(Xi + Ci z) n*LJs< + dz A dct. 

Then, u is closed, with [a;] = Q,\, and is positive definite with respect to J, as z'(t), 

the derivative of z with respect to £, is positive; it is then the Kahler form of a Kahler 

metric, g = g\̂ z, in Q,\. Moreover, by (1.3), LTW = —z'(t)dt = —dz, meaning that z is 

a momentum of T with respect to LJ. 

Definition 1.4. — A Kahler metric is called admissible if its Kahler form is of the form 

(1.12) (for some admissible momentum z) or is a multiple of such metric by a positive 

real number. 

Remark 1.2. — The above construction shows that fix actually belongs to the Kahler 

cone of M, as claimed in Section 1.2. This also shows that the necessary conditions 

(i) and (ii) in Section 1.2 are also sufficient. 

Remark 13. — In each admissible Kahler class fix, admissible Kahler metrics are, by 

their very definition, in one-to-one correspondence with the space, A say, of admissible 

momenta. Notice however that A is independent of Q\. 

Remark 1.4. — For any admissible Kahler class Q,\, the space of admissible Kahler 

metrics in Q\ is preserved by the natural C*-action on M: each admissible Kahler 

metric is S1 -invariant whereas, for any real number c and any admissible Kahler 

metric #x,z5 we have that ec • g\jZ = g\,zc, where z° denotes the translated admissible 

momentum defined by zc(t) = z(t 4- c). 

Proposition 1.1. — Let Q,/k be a sequence of (normalized) admissible Kahler classes 

converging to a (normalized) admissible Kahler class Q,/, meaning that 4- converges 

to f in R N for the usual topology. For each k, let ĝ  be an admissible Kahler metric 

in Q,/k, determined by the admissible momentum Zk in A. Suppose that gk tends to a 

(smooth) riemannian metric g in the C1-topology. Then, g is an admissible Kahler 

metric in Vt/. 

Proof. — Since the gk tend to g in the C1-topology, the limit, a;, of the corresponding 

Kahler forms Uk = gk(J^ •) is closed: g is then a Kahler metric in VL. On the other 

hand, Uk is of the form (1.12) for a well-defined Zk in A. Since the \zk\ are bounded 

and the sequence dzk converges to —LTV, the sequence Zk converges in the C°-topology 

to a smooth function z, which is the momentum of T with respect to u. This function 

z still factors through t, satisfies the boundary conditions i?_oo — #+oo and is still 
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increasing, since z1 = dz(T) = g(T,T)\ it then belongs to A and g is then the 

associated admissible Kàhler metric in fi. • 

1.4. Admissible momentum profiles. — It is convenient to consider an alter­

native parametrization of the space of admissible Kâhler metrics by introducing, for 

any admissible momentum map z : R —• (—1,1), the momentum profile © defined by 

(1.13) G(x) = z'(z~1(x)), 

for any x in the open interval (—1,1), where, z~l : (—1,1) —• R denote the inverse 

of z, cf. [26]. Alternatively, for any x in (—1,1), Q(x) is the square norm of T at 

any point of MQ in the level set z~x(x) with respect to the admissible Kâhler metric 

determined by z. In particular, © is positive on (—1,1) and smoothly extends to the 

closed interval [—1,1], with 

(1.14) e ( - i ) = e(i) = o. 

Moreover, it easily follows from the boundary conditions B^^andB^+00 for z that © 

satisfies the following additional boundary conditions: 

(1.15) e ' ( - i ) = 2, e'(i) = - 2 , 

where ©' denotes the derivative of © with respect to x. 

Definition 1.5. — A positive function © : (—1,1) —> R > 0 is called an admissible mo­

mentum profile if it smoothy extends to a function © : [—1,1] —> R - ° and satisfies the 

boundary conditions (1.14) and (1.15). 

Proposition 1.2. — For any (normalized) admissible Kâhler class Cl/9 there is a natural 

1-1 correspondence between the space of admissible momentum profiles and the space 

of admissible Kâhler metrics in Q/, up to the natural C*-action on M. 

Proof. — We recover z from © by firstly defining t : (—1,1) —> R by means of the 

differential equation ^ = ë£r)> then z : R —• (—1,1) as the inverse function of t 

(notice that t = t(x) is increasing, as 0 is positive on (—1,1)). It is then easily 

checked that z = z(t) defined that way is an admissible momentum, i.e. satisfies the 

boundary conditions B-QQ-B+OQ. Finally, t = t(x) is only defined up to an additive 

constant; we already saw that the corresponding admissible Kâhler metric is only 

defined up to the natural C*-action on M. • 

1.5. Standard admissible metrics. — Each admissible Kâhler class fi\ contains 

a standard C*-orbit of admissible Kâhler metrics, namely admissible Kâhler metrics 

determined by the admissible momentum ZQ = tanht or the translated momenta 

ZQ = tanh (t + c). For all of them, the momentum profile, ©o is given by 

(1.16) G0(x) = l-x2. 
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When restricted to the affine open set Ly \ {0} of each fiber 7r—1 (y), the Kah­
ler form CJ\JZ (corresponding to admissible momentum z = z(t)) is z'{i)dt A dct, 
or equivalently, is equal to ddc$(t), where the Kahler potential $(t) is a primi­
tive of z(t), defined up to an affine function of t. (Notice that the restriction of 
ddct on 7T—1 (2/) vanishes.) In the standard case, when the admissible momentum is 
zo(t) = tanht, we can choose as Kahler potential $o(t) = log (1 + e2t) = log (1 -H R2), 
which is the Kahler potential of the Fubini-Study of P1 of sectional curvature +1. 
The resulting toric Kahler manifold is then the standard unit sphere 52 = {u = 
{x1,x2,x3) I 3 

4=1 
x2 = 1} m M3, equipped with: (i) the standard S1 -action 

eld • (xi,X2,Xs) = (cos0#i + sin^X2, — sin0:ri + cos6x2,#3); (ii) the standard sym-
plectic form uo = dx$ A dO; (iii) the standard complex structure JX = u x X for 
any X in TUS2, where x stands for the cross product in E3 with respect to the 
natural orientation; (iv) the riemannian metric go induced by the standard flat met­
ric of R3. The momentum of the 51-action with respect to LUQ is then the map 
z0 : u = (xi,0:2,0:3) i-> x$. 

For a general admissible Kahler metric in a normalized admissible Kahler class, the 
induced toric Kahler structure on the fibres of 7r are again isomorphic to S2, equipped 
with the same S1 -action and the same complex structure J, and with symplectic form 
CJ = f w0 and the metric g = f go, where / = /(#3) denotes an ^-invariant invariant 
positive function on 52, submitted to the only constraint that fs2 f uo = fs2 0̂ or, 
equivalently, f{x) dx = 2; the corresponding admissible momentum is then 

(1.17) z(t) = - 1 + 
•tanh t 

- 1 
f(x) dx. 

1.6. Symmetries of admissible Kahler metrics. — In general, for any (con­
nected) compact complex manifold (M, J), we denote by H(M, J) the identity com­
ponent of the group of complex automorphisms of (M, J) and by f) = l)(M, J) its Lie 
algebra, which we regard as the Lie algebra of real vector fields X such that CxJ = 0, 
where Cx denotes the Lie derivative along X ; X is then called a (real) holomorphic 
vector field. Equivalently, X is the real part of a complex vector field of type (1,0), 
X1'0, which is a holomorphic section of the holomorphic tangent bundle T1,0M. 

For any riemannian metric g which is Kahler with respect to J, a (real) vector field 
X is holomorphic if and only if D~X^ = 0—where Xb denotes the riemannian dual 
1-form of X and D~X^ denotes the J-anti-invariant part of DX^—and X can then 
be written in a unique way as 

(1.18) X = XH + gradP/F + Jgrad ^ F , 

where Xh is the dual of a ^-harmonic (real) 1-form and , are real functions 
normalized by fMf*vg = fMh* vg = 0; ff, called the (real) 'potential of X , is 
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determined by Cxv = ddcf*, where u = g( J-, •) is the Kahler form of the pair (g, J), 

cf. e.g. [27]. 

A (real) vector field X is called a Killing vector field with respect to g if Cxg = 

0. The Lie algebra, denoted by I, of Killing vector fields is the Lie algebra of the 

identity component, K(M, g), of the group of isometries of (M, g). It is well-known W 

that K(M,g) is a (compact) subgroup of H(M, J). In view of the above, I then 

coincides with the space of those (real) holomorphic vector fields whose (real) potential 

is identically zero. 

The space, ()o5 of (real) holomorphic vector fields such that XJJ = 0 in the de­

composition (1.18) is the Lie algebra of a closed subgroup, Ho(M, J), of H(M, J), 

namely the kernel of the Albanese map from H(M, J) to the Albanese torus of (M, J): 

l)o is then the space of (real) vector fields of the form X = gradp/ + Jgradp/i, with 

D~ (df + dch) = 0. It can be alternatively described as the space of (real) holomorphic 

vector fields whose zero set is not empty [30]. The space £0 = £H ho is the Lie algebra 

of hamiltonian Killing vector fields, i.e. the space of Killing vector fields of the form 

X = Jgrad/i^- = grad^/i^-; it is the Lie algebra of a closed subgroup of K(M,g) 

denoted K0(M,g). 

We denote by Pg the space of Killing potential with respect to g, i.e. the space 

of a real functions, h, on M such that X = Jgrad^/i is a hamiltonian Killing vector 

field (notice that constants are included in Pg). This space is the kernel (2) of the 

Lichnerowicz fourth order differential operator (D~d)*D~d. 

The group H0(M, J) and its subgroup K0(M, g) will be referred to as the reduced 

automorphism group of (M, J) and the reduced isometry group of (M, g) respectively. 

We then have (cf. [3, Proposition 2]): 

Proposition 1.3. — (i) For any admissible ruled manifold M = P ( 1 0 L ) , 

H0(M, J) projects surjectively to H0(5, J) = Yli=i HoCS^ J), with kernel the semi-

direct product C* K H°(S, L^, where H°(S, L±) stands for the space of holomorphic 

sections of L or L* = L_1 according as H°(S, L*) or H°(S, L) is reduced to zero^. 

(ii) For any admissible Kahler metric g on M, K Q ( M , g) projects surjectively 

to Ko(5,gs) = Y\Ko(Si,gsj, with kernel S1, which is contained in the center of 

t1) The easy argument goes as follows: for any 7 in K(M, g), 7-0; is ̂ -harmonic, as 7 is an isometry, 
and it belongs to the de Rham class [CJ], as 7 is homotopic to the identity; since M is compact, this 
implies that 7 • u> = LJ, hence also 7 • J = 0. 
(2) Since M is compact, / belongs to the kernel of (D~d)*D~d if and only if the Hessian Ddf is 
J-invariant, which amounts to saying that the hamiltonian vector field Jgrad^/ is Killing. 
(3) For any non-trivial holomorphic line bundle over a connected compact complex manifold M, 
either H°(M,L) or H°(M,L*) is reduced to {0}: if a belongs to H°(M,L) and a belongs to 
H°(M, L*), the holomorphic function (cr, a) is constant, as M is compact, hence identically zero, as 
L is non-trivial; since M is connected, it follows that either a or a is identically zero. 
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K(M, J). In particular, Ko(M,#) independent of the chosen admissible Kahler 

metric. 

Proof. — For any X in f)(M, J) and for any 2/ in S, the projection of X^-i^ to Ty.S' 

can be viewed as a holomorphic map from the fiber ir~1(y) to Ty,0S, which is then 

constant: each X in i) is then projectable and we thus get a Lie algebra homomorphism 

from J)(M, J) to I)(5, J). This implies that any element of H(M, J) maps fiber to fiber, 

hence that the above Lie algebra homomorphism is induced by a homomorphism from 

H(M, J) to H(S', J). Moreover, if X belongs to t)o(M, J), its projection on S belongs 

to l)o(S, J), as each zero of X is mapped to a zero of its projection. We denote by r 

the resulting homomorphism from t)o(M*,J) to 1)0(5, J) and by f the corresponding 

Lie group homomorphism from Ho(M, J) to Ho(5, J). We show that r is surjective 

by constructing a right inverse. Any element V of fyo(S,J) splits as V = J2i^=i ^» 

with Vi in \jo(Si, J); we can then assume that V = gradps / + Jgmdgs h belongs to 

l)o(Si, J) for some i. Define V by 

(1.19) V = V + 6i(7r*h)T-ei(7r*f)JT 

on M, where V denotes the horizontal lift of V on Mo with respect to the Chern 

connection of L. In general, for any vector field X on any almost-complex manifold 

(M, J), the Lie derivative of J along X is given by CxJ = [X,J-] — J[X, •]; in 

particular, for any function / on M, we have: 

(1.20) CfxJ = f CXJ + dcf®X + df® JX. 

We thus get: 

£t>J = £v>J + €» d/ 0 T + Ci dc/i (8) T 
(1.21) 

-6idcf®JT + eidh®JT. 

In particular, (CyJ)(T) = 0, as F commutes with T and JT for am/ vector field 

V on 5. For any vector field Z on 5, the horizontal component of (CyJ)(Z) = 

[V, JZ] — J[V,Z] is zero, as V is (real) holomorphic, whereas its vertical component 

is equal to — e$ CT (̂V, JZ) T + a u>i(V, Z) JT, hence to 

-c. 4F (Z) - Ci dc(Z) T + Ci dc / (Z) - ei dh(Z) JT. 

By substituting in (1.21), we get CyJ = 0. The map T :V *->V is then a linear map— 

in fact a Lie algebra homomorphism (easy verification)—from J j o ^ - O to fj0(M, J), 

hence is right inverse of r. The kernel of r is the Lie algebra of those holomorphic 

vector fields on M which are tangent to the fibers of 7R, hence restrict to holomorphic 

vector fields on the projective lines P(C 0 Ly), for all y o n S: kerr is then identified 

with the space H°(S, End0(l 0 L)) of holomorphic sections of the holomorphic vector 

bundle Endo(^) of trace-free endomorphisms of E = 1 0 L, which is isomorphic to 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2008 



104 V. APOSTOLOV, D. CALDERBANK, P. GAUDUCHON & C. T0NNESEN-FRIEDMAN 

C 0 H°(S, L±) , cf. footnote 3 of page 102. The kernel of f in H0(M, J) is therefore 

identified with C* \xH°(S, (4\ This proves (i). For any admissible metric g = g\,z, 

(1.19) can be re-written as 

(1.22) V = gradp((A, + ei z) TT*/) + Jgradp((A, + a z) ir*h) 

In particular, V is Killing with respect to g if and only if V is Killing with respect 

to gs^ Moreover, all admissible Kahler metrics are invariant under the natural S1-

action; since S1 is a maximal subgroup of C* K if°(5.I /±), we get (ii). • 

In the sequel, the common reduced isometry group K0(M, g) for all admissible 

Kahler metrics will be simply denoted by G. The Lie algebra, a, of G splits as 

(1.23) g = E T © (E N 
i=l 

t0 (Si, gSi), 

which is a Lie algebra direct sum; in particular, T belongs to the center of q. For any 

X = aT + ^2^=i Xi in 0 and for any admissible metric g = g\,z in the (normalized) 

admissible Kâhler class Ox, a Killing potential of X with respect of q—cf. Section 

1.6—is h* = az + i=1 
(Xi + Ciz)7r*hi, where hi is a Killing potential of Xi with 

respect to #s.. 

1.7. Ricci form and scalar curvature. — Throughout this section we fix a (nor­

malized) admissible Kahler class For any admissible momentum z, Pnx{z) then 

denotes the function on M obtained by substituting z = x in the characteristic poly­

nomial; p'nx{z), Ptix(z),..., etc. are defined similarly, by substituting z = x in the 

derivatives of pnx. We then have (cf. [1, Section 5.1]): 

Lemma 1.1. — For any admissible metric g^z in Q/, the Ricci form, p, and the scalar 

curvature, s, of g/z, on Mo, are given by 

(1.24) P = 
N 

i=i 

n*pi -
1 

2 
idc log (pn/e)(z), 

and 

(1.25) S = 

N 

i=l 

71'Si 
(Xi + €i Z) 

-
(pn,eyf(z) 

PnÀz) ,5 

where pi and Si denote the Ricci form and the scalar curvature of the Kâhler structure 

(9Su wSi) on Si. 

(4) An element a of H° (S, L*) acts on M = P(1©L) as follows: for any element f = (z : u) of M over 
y in S, a • £ = (z + (a(y),u) : it); similarly, any a of H°(S, L) acts on M by: a • £ = (z : u + z cr(y)). 
In the former case, C* acts on H°(S,L*) by £a=C-1 *, in the latter case C* acts on H°(S,L) by 
C · o = Co. 
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Proof. — In general, the Ricci form of a Kahler structure (g, uj) of complex dimension 
m is denned by p(-, •) = r(J-, •), where r denotes the Ricci tensor of g, and has the 
following local expression on the domain of any system of holomorphic coordinates 

(1.26) P =loc — 
1 
2 

idc log V9 
vo 

where vg = ^ denotes the volume form of g and VQ stands for the volume form of 
the standard flat Kahler metric determined by the chosen holomorphic coordinates. 
(If these are denoted z±,..., zm, we then have vo = YYJLi \dzj A dz~j, but the rhs of 
(1.26) is independent of this choice.) 

For any admissible Kahler metric g, whose Kahler form is given by (1.12), we 
clearly have 

(1.27) Vg=pQx(z) 
N 

i=l 
v9Si Adz A dct = PQX{Z) 9(Z) 

N 

i=l 
v9Si Adt A dct. 

To compute vo, we use holomorphic coordinates on each factor 5;, viewed as holomor­
phic coordinates on M, and complete them to a system of holomorphic coordinates 
on an appropriate open subset of Mo, by choosing any local non-vanishing holomor­
phic section a of L and adding the associated holomorphic coordinate A determined 
by u = \(u) <j(TT(U)) for any u in L (viewed as an element of Mo). We then have 
|dA A dX = | A|2 dt A dct up to terms which only involve the differential of holomorphic 
coordinates coming from the base 5, hence contribute nothing to VQ. We thus get 

(1.28) v 0 = |A|2 
N 

i=1 
Vi o Adt A dct, 

where v^o denotes the volume form of the flat Kahler metric determined by the chosen 
local holomorphic coordinates on Si. By comparing (1.27) and (1.28) and by using 
(1.26), we get (1.24). The scalar curvature s is deduced from the Ricci form p via the 
general identity: 

(1.29) p A *u> = p A 
wm-1 

(m - 1)! = 
s 
2 Vg. 
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From (1.12), we infera 

(1.31) 

us™-1 

(m-l)\ = PnAz) 

N 

i=l 
* V9Si 

+ Pnx(z) 

N 

i=l 

1 
(Xi + €i Z) 

7T Lü d,--l 
i 

(di - 1)! A 
k=i 

7T V 
9sk 

A dz A dct. 

The contribution of 7r*p¿ in p A o,— 1 
(m-1)! 

only involves the second term in the rhs 

of (1.31); by using (1.29) for each factor Si, this contribution is found to be equal 

to i 
2 

( N 
2=1 

7T* Si 
(Ai+c.) ) Vg. On the other hand, dclog0(2:) — e'(z) 

e(z) dcz = ®'{z)dct 

and dclogpftx(z) = Pfix(2) 
Pfix(2) 

sc z = Pin (*)©(*) 
P"X 

d% so that dc log (pftx(;z)0(z)) = 

(pnx e)'(z) 
P x̂C*) 

dct; it follows that: 

(1.32) 

= 
1 

2 
íMciog(pnx(2)e(¿)) = -

• 
2 

Pfi O)" (z) 

PÍÍA(*) 
dz Л dct 

+ 
D 
2 

Pfi O)" (z) 

№x(^) 

Pfi (z) 

Pfi (z) 
iz A dct -

N 

i=l 
¿i "Si . 

In the wedge product with no™'1 
(m-1)! ' 

dz A dct contributes via the first term in the 

rhs of (1.31) only, whereas N 
•i=l ti usi contributes via the second term only, giving 

N 
,¿=1 

did 
(A¿+e¿ z) V9 = Pfi (z) 

Pfi (z) 
vq', the second term of (1.32) then contributes to zero. • 

1.8. Hamiltonian 2-forms. — In general, a hamiltonian 2-form on a (connected) 

Kahler manifold (M, g, J, UJ) of complex dimension m is a J-invariant real 2-form 0 

such that 

(1.33) DX(t> = 
1 

2 
(dtr0A JXb - < f t r0AXb) 

for any vector field X, where X^ denotes the dual 1-form of X with respect to g 

and try? = (0, u) denotes the trace of 0 with respect to g, defined as follows: If 0 is 

viewed as a skew-hermitian C-linear endomorphism of (TM, J) via the metric g, so 

that 0(X,Y) = g((f)(X),Y), and if Ai < • • • < Am denote the (real) eigenvalues of 

the corresponding hermitian operator — J o 0 , then tr0 := m 
i=l 

Xi (for simplicity, the 

Ai's will be referred to as the eigenfunctions of 0). Hamiltonian 2-forms in Kahler 

geometry have nice properties, extensively studied in [2, 3, 4, 1]. In particular, for 

any hamiltonian 2-form 0, the elementary symmetric functions of its eigenfunctions 

(5) In this and the above computation we use the general combinatorial identity 

(1.30) 
d 
ii=l ai k 

k\ = ,fci ,...,kH 
E ki=k 

d 
.2=1 

a fc,-
i k41 ' 
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ai = ITÇ = Ai H h Am, CT2 = i<j Ai A . , . . . , a m = Ai . . . Am are Poisson commuting 

Killing potentials. Moreover, if Kr = Jgradp<rr, r = 1,..., m, denote the correspond­

ing hamiltonian vector fields, there exists an integer 0 < £ < m, called the order of 

0, and an open dense subset Mo of M such that Ki,...,Ki are linearly independent, 

whereas Kr linearly depends of K\,..., Kt for any r > £. If £ = 1, the case of main 

interest in this paper, K = K\ = Jgradptr</> is called the hamiltonian Killing vector 

field of (j). 

Proposition 1.4. — Let M be an admissible ruled manifold and let ft/ be a normalized 

admissible Kahler class on M. Then, any admissible Kahler metric g = g^z in ft/ 

admits a hamiltonian 2-form of order 1, whose hamiltonian Killing vector field is T, 

namely the 2-form cp defined by 

(1.34) <t> = -

N 

i=l 

ei\i(Xi + €iz) K*usi H- zdz A dct. 

Proof. — We fist observe that the eigenfunctions of the J-invariant 2-form ip defined 

by (1.34) with respect to g are the admissible momentum z, of multiplicity 1, and the 

constant functions & = — ê A ,̂ each of multiplicity di. In particular, 

(1.35) tl(j) = z — 
N 

i=l 

di tiXi-

The fact that tp is hamiltonian with respect to g is a straightforward consequence of 

the following two lemmas, whose easy verification is left to the reader: 

Lemma 1.2. — The covariant derivative of T with respect to the Levi-Civita connec­

tion of g is given by 

DTT = 
1 

2 
S'(z) JT, DjTT = -

1 

2 
9;(z)T, 

(1.36) 
DXT = 1 

2 
3(z) 

N 

i=l 

€i J Xi 

(Xi + e{z) 

for any vector field X = N 
i=1 Xi on S, where Xi sits in TSi, and X = 

M 

d=l Xi 

denotes its horizontal lift on M with respect to the Chern connection V. 

Lemma 1.3. — With the same notation, for i = 1,..., N, the covariant derivative of 

7r*o;5i is given by: 

(1.37) 

DT{ir*wSi) = 0, DjT(ir*u>Si) = ©(*) 

N 

i=l 

Ei u wSi 
(Xi + €iZ) 5 

DT{ir*wSi) = 
1 

2 

N 

i=l 

Ei 
(Xi + CiZ) 

dcz A 7T*(X2b) -dzA TT*( JX\) 
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where X\ stands for the dual 1-form of Xi with respect to gs^ • 

1.9. Extremal admissible Kahler class. — In general, a Kahler structure 

(g,J,u) is called extremal if the scalar curvature s = sg is a Killing potential with 

respect to g, i.e. if the hamiltonian vector field K — grades = Jgrad^s, is Killing or, 

equivalent ly, (real) holomorphic, cf. Section 1.6 and Section 2.1. 

Proposition 1.5. — Let g be an admissible Kahler metric in a (normalized) admissible 

Kahler class £1/, determined by an admissible momentum z. Then, g is extremal if 

and only if its scalar curvature s is an affine function of z. In this case the scalar 

curvatures of(Si,gsi) are constant. 

Proof — For any i = 1,..., N, the dual vector field of dc7r*Si with respect to the 

chosen admissible Kahler metric on M is l 
(\i+€i Z) 

Ki, where Ki denotes the dual 

vector field of dcsi on Si with respect to gs^ and Ki denotes the horizontal lift of 

Ki on Mo- Notice that for any vector field, X , on 5, the horizontal lift X commutes 

with T and JT; we thus have [Ki,T] = [Ki, JT] = 0 for all i. On the other hand, for 

any admissible Kâhler metric, T is the symplectic gradient of z. We thus infer from 

(1.25) the following expression of K: 

(1.38) K = 
N 

i=l 

1 
(Xi + ei zy 

(Ki-a (n*Si)T)-
(pU yO) 

pOy 

' 
(zyr. 

By using (1.20), we infer: 

(1.39) 

CKJ = 

N 

i=1 

1 
(Yi + Ei z) 2 

L 
[Ki-ei (ir*Si)T) 

J 

+ 

N 

i=l 

Ei 
(Xi + eizV 

' 
(Z) (dCZ ® (Ki - €i (n*Si) T) + dz® J(Ki - €i (V*8i) T)) 

-
(pOy O)" 

POy 

" 
(z) (dcz®T + dz® JT). 

Since the K^s commute with T and JT, we have that (C [Ki-ei (<rr*Si)T) I)(T) = 0, 

whereas dcz(T) = S(z), dz(T) = 0; we thus get 

(1.40) (CKJ)(T) = S(z)(i ( 

N 

i=1 

Ei 
(Xi + €iZ)* 

'(Ki-ei (>K*Si)T)- ( 
(pOy O)" 

pOy 
) " T). 

Assume that the chosen admissible Kâhler metric is extremal; then (CKJ)(T) is 

identically zero. Since T and the ^ ' s sit in separate spaces, we infer that the AVs, 

hence the K^s are all identically zero; the scalar curvatures Si are then constant, so 

that s is a function of z. Moreover, the coefficient of T in the rhs of (1.40), which is 
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identically zero, is then equal to , cf. (1.25); it follows that s is an affine function 
of z. Conversely, if s is an affine function of z, then K is a constant multiple of T, 
hence a Killing vector field, meaning that g is extremal. • 

In view of Proposition 1.5, we henceforth assume without further comment that the 
Si's are constant. 

This assumption has in particular the following consequence, cf. [3, Proposition 5]: 

Proposition 1.6. — The common reduced isometry group G of all admissible Kâhler 
metrics—cf. Proposition 1.3—is a maximal compact subgroup of the reduced auto­
morphism group HQ(M, J ) . 

Proof. — It is a well-known fact that for any compact Kàhler manifold ( M , J) of 
constant scalar curvature the reduced isometry group Ko(M, J) is a maximal compact 
subgroup of the reduced automorphism group HQ(M, J). Proposition 1.6 is then a 
direct consequence of Proposition 1.3. • 

For any (normalized) admissible Kâhler class ft\, we infer from (1.25) and Proposi­
tion 1.5 that an admissible Kâhler metric g = g\,z of momentum profile 6 is extremal 
if and only if 

(1.41) (pnke)"(x) = R(x), 

by setting 

(1.42) R(x) = pQx(x) 
N 

i=l 

Si 
(Xi + 6i x) 

-pnx(x)(ax + ß), 

for some (unknown) real constants a,0. All functions appearing in (1 .41) - (1 .42) are 
defined on the open interval (—1,1). Because of the boundary conditions (1.14)-(1.15) 
for O, the polynomial R is subjected to the following two constraints: 

(1.43) 
•l 

- l 
R{x)dx = -2pnx(-l) - 2pnx(l), 

(1.44) 
1 

-1 
R(x)xdx = 2pQx(-l) - 2№x(l). 

These constraints in turn determine a,/?, hence the polynomial R in terms of the 
(constant) scalar curvatures ŝ , and the characteristic polynomial pax(x). In partic­
ular, R is entirely determined by the chosen admissible Kâhler class Qx> as are the 
constants a, p. 

In view of the extremality equation (1.41), we define F = F(x)—a polynomial of 
degree at most (m + 2)—by 

(1.45) F"(x) = R(x) 
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and 

(1.46) F ( - 1 ) = F(1) = 0, 

cf. [3, Proposition 8]. The constraints (1.43)-(1.44) then insure that F also satisfies: 

(1.47) *"(-!) = 2pnx(-l), *"(!) = -2pnx( l ) . 

Like R(x), the polynomial F ( x ) determined that way only depends of the admissible 
Kahler OA. 

Definition 1.6. — For any (normalized) admissible Kahler class fix on M, the polyno­
mial F of degree at most (m + 2) determined by (1.45)-(1.46) is called the extremal 
polynomial of henceforth denoted by FQX. 

From the above discussion, we readily infer: 

(1.48) Fnx(*) = 2jmx(-l)( l + s) + 
x 

-1 
R(s)(x — s) ds. 

Remark 1.5. — It readily follows from (1.42) and from the above definition of the 
extremal polynomial FQX that for each i = 1,... ,7V, the scalar curvature Si can be 
expressed by 

(1.49) Si = 
F"Oy (-EiYi) 

кфг (Afe - tk îXi) 

provided that ei\i =̂  ê Ajt for k •=/=•%. 

Proposition 1.7. — A (normalized) admissible Kâhler class Q,/on M admits an ex­
tremal admissible Kâhler metric, g = g^z, for some admissible momentum z, if and 
only if its extremal polynomial F Q , is positive on the open interval (—1,1). The mo­
mentum profile of g is then given by 

(1.50) 0(a:) = FaXx) 
Pnix) 

In particular, g is then uniquely defined up to the natural C* -action on M . Moreover, 
the scalar curvature s of g is given by 

(1.51) s = a z + /3, 

where a,(3 are the real constants determined by (1.42)-(1.43)-(1.44). In particular, s 
is constant if and only if the leading coefficient of F Q , is equal to zero; it is identically 
zero if and only if the leading and the sub-leading coefficients of F Q , are both equal to 
zero. 
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Proof. — In view of the above discussion, g is extremal if and only if its momentum 
profile is given by (1.50). Prom (1.46)-(1.47), we deduce that the function 0 defined 
by (1.50) is smoothy defined on the closed interval [—1,1] and satisfies the boundary 
conditions (1.14)—(1.15). It is then an admissible momentum profile if and only if it is 
positive on (—1,1). Since pnxix) is positive on [—1,1], this is equivalent to FQX being 
positive on (—1,1). In view of Proposition 1.2, © is then the momentum profile of 
an extremal admissible Kahler metric, uniquely defined up to the natural C*-action. 
For a general admissible Kâhler metric in the scalar curvature is given by (1.25), 
or equivalently, 

(1.52) s = a z + p + 
R(z)-(pnx&)"(z) 

PuAz) 1 

where the constants a,/? are determined by (1.42)-(1.43)-(1.44). If g is extremal, 
this reduces to (1.51), because of (1.50) and (1.45). Moreover, from (1.42) and 
(1.45), we readily infer that the extremal polynomial FQX is of the form FQX(X) = 

m+2 
j=0 CijOL M+2-J , where the leading and the sub-leading coefficients are given by 

(1.53) aQ = ± a 
(ro + l)(ro + 2) ' CL\ = ± 

0 + N 
k=l dkXkek)a 

m(m -f 1) ' 5 

with ± = — N 
i=l 

Edi. The last statement of Proposition 1.7 follows immediately. 

In view of of (1.53), the constants a,(3 will be referred to as the renormalized 
leading coefficients of the extremal polynomial. 

Definition 1.7. — An admissible Kâhler class fi is said to be far from the boundary 
if 0 is a positive multiple of a normalized admissible Kâhler class with Â  ^> 1, 
t = l , . . . , iV . 

Lemma 1.4. — The extremal polynomial FQ, of a normalized admissible Kahler class 
il/far from the boundary has the following asymptotic behavior: 

(1.54) FOY (x) = 
N 

I=l 
A? ( l - x 2 ) + o ( 4 

meaning that each coefficients of the polynomial FOY (x) 
N 
I=L Y di 

— (1 — x2) tends to 0 when 

all Xi's tend to +00. 

Proof. — By dividing both sides of (1.43)-(1.44) by •N 
i=1 Af and observing that 

R TV 
t=l Af -1 PQX(X) tends to the constant polynomial 1 on [—1,1] when the A '̂s tend 

to +00, we get the following limits for a = OJ(AI, . . . , AJV) and (3 = / ? (Ai , . . . , XN): 

(1.55) lim 
Ai—•+OO,...,AJV—+OO 

a = 0, lim 
A1 —•+00,..., A N —*•+00 

3 = 2. 
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This, in turn, implies that the polynomial R in (1.42) tends to the constant polynomial 
- 2 ; since R = FQX and FQX ( - 1 ) = FQX (1) = 0 for all A^'s, we infer that FQX tends to 
the polynomial 1 — x2 when all Aj's tend to 0. • 

Proposition 1.8. — Each admissible Kâhler class far enough from the boundary admits 
an extremal admissible Kâhler metric. 

Proof. — We can assume that ft is a normalized admissible Kâhler class Q\. It follows 
from (1.54) that, when the A '̂s go to infinity, all roots of the extremal polynomial FQX 
other than ±1 go to infinity. In particular, FQX has no root in the open interval (—1,1) 
when fl\ is far enough from the boundary; because of the boundary conditions (1.46)-
(1.47) and the fact that pnx(- l ) = l[f=i(xi - ti)di and pnx(l) = n*Li(*i + ei)di are 
both positive, FQX is positive on (—1,1). Proposition 1.8 then follows from Proposition 
1.7. • 

A further consequence of Proposition 1.7 is the following result ([3, Proposi­
tion 11]): 

Proposition 1.9. — In the case when all Si are non-negative, any admissible Kâhler 
class admits an admissible extremal Kâhler metric. 

Proof. — By Proposition 1.7, it is sufficient to check that FQX is positive on (—1,1) for 
any (normalized) admissible Kâhler class Assume, for a contradiction, that FQX 
has zeros on (—1,1). Because of the boundary conditions (1.46)-(1.47), where Pnx(—1) 
and pnx(l) are both positive, FQX must have at least two maxima and two inflection 
point on (—1,1). Denote respectively by Xm < XM the smallest and greatest point of 
maxima in (—1,1). Note also that FA' = R(x) has at least two zeros in (—1,1). 

By (1.42), R(x) can be re-written as R(x) = •N 
.a=l 

(Xa + eax) ia-l q(x), where q 
is the polynomial defined by 

(1.56) q(x) = 
N 

o=l 
Sa 

b=a 
(Xh + ehx) - (ax + /3) 

N 

a=l 
(Xa + eax). 

In this expressions and in the sequel of the argument, we (temporarily) change our 
overall notation in the following manner: N denotes the number of distinct CiXi— 
that is to say the number of distinct constant values of the hamiltonian 2-form 0 , cf. 
Section 1.8—and the latter are labeled by a, b = 1,..., N in such a way that 

(1.57) eKXK < < eiAi < - ! < ! < eNXN < < eK+iA^+i 

where K is the number of negative e0's. For each label a, we put da = i |EiYi = EaYa di 
so that PQX(X) = •N 

a=l (Xa + eax) da and Sa = i |eiAi=eaAa Si. 
With this notation, the roots of R(x) are counted as follows: (1) the N real numbers 

—eaXa—each with multiplicity da — 1—which all sit outside [—1,1], and (2) the roots 
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of q. With our assumption, q has at least two roots, 7*1,7*2 say, in (—1,1), in fact in 
the subinterval (xm,XM)- Moreover, FQx(xm) and FQX^ are both non-positive; since 
n<^=i(^a + e0x)da-1 is positive on ( -1 ,1 ) , we then have q(xm) < 0 and q{xM) < 0. 

Denote by n_, resp. n+, the number of real roots of q in the interval ( - c o , — 1], 
resp. in the interval [1,-hoo) (counted with multiplicity). From (1.56), we infer 

(1.58) q(-eaK) = Sa 
b=a 

(A& — e&eaAa). 

Since all Si's, hence all sa's in the new notation, are non-negative, we infer that 
q(—eaXa) q(-CbXb) < 0 for any pair a, 6, such that a, 6 < K or a, 6 > K and \a — b\ = 1. 
There is then at least one real root of q between any two consecutive — eaAa, — ê Â , 
with a, 6 < K or a, 6 > K. It follows that 

(1.59) n+ + 1 > K, n_ + 1 > N - K, 

hence 

(1.60) n+ + n_ + 2 > N. 

On the other hand, 

(1.61) n+ + n _ + 2 < N + 1, 

as the degree of q is at most equal to N + 1 and q has at least n+ + n_ + 2 real roots: 
the 2 roots ri, T2 in (—1,1) and n+ + n_ roots outside this interval. From (1.60) and 
(1.61), we infer that n+ + 1 = K or n_ + 1 = N - K. 

First assume that n+ + 1 = X ; there is then exactly one root of q between any 
two consecutive —eaAa, — Q,Ab, with i,j<K and no roots in [1,-f-oo). In particular, 
there is no root in the interval [1, — eiAi). From (1.58) we easily infer q(-eiXi) > 0, 
whereas q(xM) ^ 0; then, there exists a root, 7*3 say, of q in the interval [XM, 1), hence 
distinct from 7*1,7*2; we thus get at least three roots of q in (—1,1) and (1.61) can then 
be replaced by n+ -f n_ + 2 < TV; this, together with (1.60), implies 71+ + TI_ + 2 = TV, 
hence n_ + 1 = N — K; as above, we infer that there is no root of q in the interval 
(—ejvAjv, — 1]; by (1.58) again, qi—e^X^) > 0, whereas q(xm) < 0; there then exists 
a root of q, 7*4 say, in the interval (—l,xm], hence distinct from 7*1,7*2 and 7*3; we thus 
obtain (at least) four roots, 7*1,7*2,7*3,7*4, of g in (—1,1). It follows that (1.61) can be 
improved by n+ + n_ + 2 < N — 1, which contradicts (1.60). Same reasoning and 
same conclusion apply if we assume ri- + I = N — K. • 

Remark 1.6. — Proposition 1.8 is a part of [3, Proposition 9]. Proposition 1.9 is [3, 
Proposition 10]; similar results have previously appeared in the literature, in particular 
in [25] and [21], cf. [3] for more details. 
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1.10. Hirzebruch-like surfaces. — In this section, we consider the particular case 

when N = 1 and the base S = Si is a compact Riemann surface of genus g. The 

resulting complex surface M = P(l 0 L) will be called a Hirzebruch-like surface of 

genus g: it is a genuine Hirzebruch surface [23] when g = 0, a pseudo-Hirzebruch 

surface in the sense of [42] if g > 1. We assume that the degree deg(L) = (ci(L), [S]) 

is negative—meaning that e\ = 1—equal to and that gs is of constant scalar 

curvature s = 2K. It then follows from the Gauss-Bonnet formula that 

(1.62) K = 
2 ( 1 - P ) 

£ . 

With the above assumption, for any real number À > 1, the characteristic polynomial 

of the (normalized) admissible Kâhler Q,\ is simply 

(1.63) Pnx(x) = X + x. 

In view of (1.5), Q\ can also be written: 

(1.64) nx = 2TT ( - (A - 1) e0 + (A + 1) e<x>) 

for A > 1. In the notation of Section 1.9, we have 

(1.65) R(x) = -ax2 - (Xa + 0)X + 2K- Xß. 

The constraints (1.43)-(1.44) then read: 

(1.66) 

R-l 

-1 
R(x)dx = — 

2a 

3 
+ 4 « - 2 A / ? = -4A, 

1 

'-1 
R(x) xdx = — 

2Xa 

3 

23 

3 
= - 4 , 

so that 

(1.67) a = 
12A - 6K 

3A2 - 1 ' 
0 = 

6A2 + 6A K - 6 

3 A 2 - 1 

The extremal polynomial is then FQX = (1 — x2) Q(x), with 

(1.68) Q{x) = A(x2 - 1) + x + A, 

by setting 

(1.69) A = A(X) = 
X - KI2 

3 A 2 - 1 

(because of (1.62), A is positive; moreover, lim/\-++0o A = 0). By Proposition 1.7, fix 

admits an admissible extremal Kâhler metric if and only if Q(x) is positive on the 

open interval (—1,1). Notice that Q(—1) = A — 1 and Q(l ) = A + 1 are both positive, 

whereas Q'(-l) = 1 - 2A = (A-1)(3A+1)+k 
3A2-1 

and Q;(l) = 1 + 2A > 0. If K > 0, i.e. if 

the genus g of 5 is 0 or 1, then Q'(—1) > 0 and Q(x) is then positive on (—1,1) for 

any A > 1. If K < 0, i.e. g > 1, Q X - ! ) ŝ positive for large values of A—hence Q(x) 

is positive on (—1,1)—but it takes negative values when A is small, namely for any 
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A such that (A — 1)(3A + 1) < —K. For these values of A, Q achieves its minimum at 

XQ = this belongs to the open interval (—1,0), as Q'(—1) = 1 — 2A < 0, and 

Q(x0) = - D(A) 
4(3A2-L)(A-«/2) ' 

where 

(1.70) 
D(X) = -3A4 + 6/sA3 + 2A2 - 6/cA + 1 + *2 

= (A2-1 ) ( -3A2 + 6 k A - 1 ) + k2. 

It is easyto check that, for any negative value of the rhs of (1.70) decreases from 

A ( l ) = K2 > 0 up to —OO, when A runs from 1 to +OO; it follows that the equation 

D(X) = 0 has a unique root greater than 1, called Ao- From this and from Proposition 

1.7 we infer: 

Theorem LI. — Let M be a Hirzebruch-like surface of genus g. Then, each Kahler 

class £1 is admissible, hence a positive multiple of a normalized admissible Kahler class 

Q\ for some A > 1. 

Denote by Ao the unique root greater than 1 of the equation D(X) = 0, where D(X) 

is defined by (1.70). Then: 

(i) If 9 < 1 or if g > 1 and A > Ao, then Q,\ admits an extremal admissible metric, 

unique up to the natural action of C*. 

(ii) If g > 1 and X < XQ, then tt\ admits no extremal admissible Kahler metric. 

Remark 1.7. — The case when g = 0 in Theorem 1.1, and, more generally, the case 

when 5 is a complex projective space of any dimensions, are due to E. Calabi [8] and 

constitute the first examples of (compact) extremal Kahler manifolds of non-constant 

scalar curvature (cf. also [37] for an alternative approach). As mentioned earlier, 

our general approach can be viewed as a generalization of Calabi's method. The case 

when g = 1 was worked out by A. Hwang in [25] and D. Guan in [21]. The case 

when g > 1 is due to the fourth author [42] and constitute the first known family of 

examples of (compact) Kahler manifolds where the extremal Kahler cone is non-empty 

but does not fill the Kahler cone. Notice that in the latter case, Theorem 1.1 does not 

imply the non-existence of—non-admissible—extremal Kahler metric if A > Ao (more 

on this point in [42]). This question will be settled in Section 2.3 (an alternative 

treatment can be found in [40]). 

2. Relative if-energy and extremal metrics 

2.1. The space of Kahler metrics. — In this section, we briefly review some 

general facts concerning the space Met of Kahler metrics on a compact complex 

manifold (M, J) of (complex) dimension m, in a fixed Kahler class £1. The presentation 

and the notations are taken from [19]. 
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An element of MQ will be indifferently designated by a Kahler riemannian metric 

g or by its Kahler form u = #(</•, •)> with [u] = f2, or by the pair (g,(j). As a 

consequence of the de/c-lemma in Kahler geometry, cf. e.g., [20], MQ is essentially a 

space of (real) functions. More precisely, for any fixed reference element UJ$ in MQ, 

we have that 

(2.1) Mn = W | u) := uo + ddcip > 0} , 

where <p, the relative Kahler potential of u relative to LJQ, is well-defined up to a (real) 

additive constant (here, u > 0 means that g = u;(-, J-) is a riemannian metric). The 

relative potential can be normalized, cf. [14], in such a way that, for any g in MQ, the 

tangent space TgMn be identified with the space of real functions / on M such that 

fMfvg = 0. The L2-norm on this space then gives MQ a structure of riemannian 

Frechet manifold, first introduced and studied by T. Mabuchi [32]. 

The Mabuchi metric on Mn admits a Levi-Civita connection, denoted by V. For 

any real function / on M, let / be the constant vector field on MQ defined by g •—• 

/ - / , where / = M 
jvg 

VO 
denotes the mean value of / . The covariant derivative T> is 

entirely determined by the P / ' s , which are given by 

(2.2) Vfj2 = -(dfi,df2)g + M 
(dfudf2)vg 

VO 

for any g in Mn and any / i in TgMn. In particular, a curve wt = w0 + ddc(pt, 

t G [0,1], in MQ is a geodesic if and only if 

(2.3) (ft ~ (d(pud(ft)gt = 0. 

As observed by S. Semmes [36], the geodesic equation (2.3) can be re-written as 

a degenerate homogeneous Monge-Ampère equation my considering ipt as a function, 

$ say, defined on the product M := M x E, where E here stands for the cylinder 

[0,1] x 51, equipped with the complex structure determined by Jd/dt = d/ds, where 

s denotes the natural parameter of the additional circle factor 51. By still denote by 

(j the pull-back of u on M, the geodesic equation can be rewritten as 

(2.4) (LJ + ddc$)m+1 = 0 

for ^-invariant functions $ defined on M x E such that $(•,£) is a relative Kahler 

potential on M with respect to UJQ. 

Remark 2.1. — The Monge-Ampere equation (2.4) makes sense when E is replaced 

by any Riemann surface with boundary. Let $ be a (smooth) solution of (2.4), such 

that 3>(-,T) is a relative Kahler potential on M with respect to (Jo for any r in E. 

Choose a local holomorphic coordinate z = t + is onE: $ then appears as a family of 
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relative Kahler potentials parametrized by IP = < (̂£, s), and the Monge-Ampere 

equation (2.4) is then equivalent to 

(2.5) (FTT + FISS ~ \D<PT - DCIPS\ 2 
9t,s = o, 

where gsj denotes the Kahler metric of relative Kahler potential </?(s,£), cf. [14]. 
The Monge-Ampere equation (2.4) makes sense in particular when E is the (closed) 

unit disk D in C . In this case, it has a nice interpretation in terms of holomorphic 

disks [31], [36], [13], which plays a crucial role in the theory, in particular in the proof 

given by Chen-Tian of Theorem 2.1 below. 

The group H(M, J)—cf. Section 1.6—acts on Mn and preserves its riemannian 

structure. For any (real) vector field X in its Lie algebra f) and any (#,u;) in Met-, the 

induced vector field X on Mn is g i—• where denotes the real potential of X 

with respect to g, as defined in Section 1.6. 

The scalar curvature determines a vector field, s, on Mn via the assignment q i—• 

(sg — s), with s = M Sg Vg 
VO 

(notice that 
M SgVg =27r(Cl(M)U Om-1 

(M-1)! )[M] = : Sn is 

independent of g in Mn)- The dual 1-form, cr, is a(g) = sg vg, via the duality relation 

((j, / ) = fM Sgfvg, for any / in TgMn. Both s and cr are left invariant by H(M, J). 

The covariant derivative of a is given by 

(2.6) Vfa = -2(D-d)*D-dfvg, 

for any g in Mn and any / in TgMn, cf. e.#. [19, Chapter 4] and Section 1.6 for the 

notation. Recall, cf. Section 1.6, that the kernel of the operator (D~d)*D~d is the 

space Pg of Killing potentials for g. It then follows from (2.6) that the critical point 

of the Calabi functional C(g) = fM(sg — s)2 vg = crg(s) on A4n are those metrics g in 

Mn whose scalar curvature is a Killing potential. 

Since (D~d)*D~d is self-adjoint, a further direct consequence of (2.6) is that the 

1-form a is closed. Since a is H(M, J)-invariant, by using the Cartan formula 0 = 

CJ^CF — LJ^da + (i(¿(5•cг), we infer that o~(X) is constant on Mn for any X in I), cf. [7]. 
We thus obtain an R-linear form Tn : h —> M, defined by 

(2.7) JPh(X) = a{X) = 
M 

f 5 
Q SNVA-

By the above discussion, the rhs of (2.7) is independent of the choice of the metric 
g in Mn- This linear form has been first introduced by A. Futaki in [17] for Fano 
manifolds, then extended to general Kahler manifolds by E. Calabi in [9]. It will be 
referred to as the Futaki invariant or the Futaki character^ of fi. 

(6) It easily follows from its definition that J7^ is a character of the Lie algebra f), i.e. vanishes on 
the derived ideal [h, h]. 
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We also consider the Futaki-Mabuchi bilinear form, BQ, defined on f)0, the Lie 

algebra of the reduced group of automorphisms H Q ( M , J ) , cf. Section 1.6, by 

( 2 . 8 ) Bn(X,Y) = 
M 

FX FY vg -

'M 
h*hYg vg, 

for any X = grad5/x + Jgra,dghx, Y = grad^/y + Jgra,dghY in l)0. It can be checked 

that the rhs of (2 .8 ) is independent of the metric g in Mn, cf. [18]. Notice that 

BQ(JX, JY) = —BQ(X,Y), for any X, Y in f)0 and that Bn is negative definite on 

the space, to, of hamiltonian Killing vector fields, and positive definite on Jto C f)o-

For any two elements X, Y in J)0> with BQ(Y, Y) ^ 0, we define the relative Futaki 

invariant of X with respect to Y by 

( 2 . 9 ) jFn(Xmod Y) = Fa(X) -
Bn(X,Y) 

Ba(Y,Y) 
W ) . 

The Mabuch K-energy, £, is defined on by 

( 2 . 1 0 ) a = —d£, 

i.e. 

(2 -11 ) d£g(f) = ~ 
M 

fSg Vg, 

for any g in Mn and any / in TgMn- Since a is closed and Mn is contractible, £ 

exists and is well-defined up to an additive constant; we denote by the unique 

determination of E which vanishes at the chosen base element u0 on M Q . It follows 

from ( 2 . 6 ) that E is X>-convex on Mn, meaning that its Hessian VdE is non-negative; 

moreover, for any g in Mn, its kernel in TgMn is the space of Killing potentials of 

mean value zero. 

Because of ( 2 . 1 0 ) , the critical points of £ are the zeros of a, hence the metrics 

of constant scalar curvature in Mn- To generalize the setting to include extremal 

metrics of non-constant scalar curvature—the case of main interest in this paper—it 

is convenient to substitute a relative version introduced by D. Guan in [22] and S. 

Simanca in [38]. This is done as follows. 

Let G be a maximal compact subgroup of Ho(M, J) and denote by M^ the space 

of G-invariant Kahler metrics in Q. MQ is a totally geodesic submanifold of Mn- In 

virtue of a celebrated theorem of Calabi [9], any extremal Kahler metric in Mn— 

if any—belongs to the H Q ( M , J)-orbit of an element of MQ. Since G is maximal in 

H0(M, J), its Lie algebra, g, is the Lie algebra of all hamiltonian Killing vector fields 

for each element, g, of MQ. Notice that, while the latter is independent of g, the 

space, Pg, of Killing potentials with respect to g does depend of g. 

For any g in MQ, of scalar curvature sg, the Killing part, N^(s^) , of sg is defined as 

the L2-projection of s relative to g in Pg. The reduced scalar curvature of g, denoted 
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by sG, is defined by 

(2.12) S 
G 
g = S9~ 

G 
9 

(SO). 

Then, g is extremal if and only if its reduced scalar curvature sG is identically zero. 
The vector field ZQ = grad(II^(s))—called the extremal vector field of the pair 

(fi, G)—is independent of g in MQ and can be alternatively determined by 

(2.13) W ) = Bn(JX,Zg), 

for any X in g. Notice that Zfi belongs to the center 3 of g. Its lift, Z ^ , on MQ is 
the vector field g 1—• IiG(sg). It turns out that Z$ is P-parallel, and so is its dual 
1-form Cn, cf. [19]. We now consider the 1-form on MQ defined by 

(2.14) o 
G = o |MG - CG 

Since is P-parallel, we infer from (2.6) 

(2.15) Vf(jG = -2(D-d)*D~df, 

for any / in T9MQ. In particular, o~G is closed. 
Denote by H G ( M , J ) the normalizer of G in Ho(M, G) and by f)c the Lie algebra 

of H G ( M , J ) . The group H G ( M , J ) acts on MQ and we define as above the relative 
Futaki character J7^ : \)G —• R by 

(2.16) ^ ( X ) = a G ( X ) = 
M 

/0 ôo u9' 

As before, Q : ()G —• R is independent of g in MQ. 
The relative K-energy EG is defined by 

(2.17) aG = -d£G, 

i.e. by 

(2.18) sEG (f) = -
M 

f*f V9> 

for any g in MQ and any / in T9MQ. Since aG is closed and MQ is contractible, 
£G is well-defined up to an additive real constant. As before, we denote by £GQ the 
determination of ZG which is zero at the chosen base point UJQ. By (2.17), the critical 
points of £G are the zeros of crG, hence the extremal metrics in MQ. Moreover, since 
VaG = VG \mg-> £G is ^-convex and, at each g in JMQ, the kernel of the Hessian 
Vd£G is the space of G-invariant Killing potentials relative to g. 
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2.2. The Chen-Tian Theorem. — The K-energy E and the relative if-energy 
EG defined in Section 2.1 play an important role in the theory of extremal Kahler 
metrics, due in particular to the following observation. 

Proposition 2.1 (S. Donaldson [14]). — LetujQ, UJ be any two elements of M Q . Assume 
that UOQ is extremal. Assume, moreover, that there exists a geodesic ut = u>o + ddc(pt, 
t G [0,1], between and u = u)\. Then 

(2.19) EG(u;) > £G(u;o) 

and equality holds if and only if LJ is extremal. If so, u belongs to the Ho (M, J)-orbit 
ofujQ. 

Proof. — (Sketch) To simplify notation, let's write f(t) for EG(ujt)\ we can assume 
/(0) = 0. By (2.17), we have that / '(*) = -crG(T), where T denotes the tangent 
vector field along the geodesic u;t, given by the assignment t i—> <pt G T ^ M Q . In 
particular, / '(0) = 0, since U;Q is extremal. By using (2.15), we get: 

(2.20) 

f"(t) = -(VTvG)(T)-aG(VTT) 

= -(VTaG)(T) = 2 
' M 

((D d)D dipt,<pt)vgt 

= 2 
M 

\D dipt\2vgt 

The last term is non-negative and is zero if and only if ipt is a Killing potential with 
respect to gt for each t in [0,1], cf. Section 1.6. Proposition 2.1 follows easily. • 

This argument has been extended by X. X. Chen and G. Tian in the following way 
(cf. also Remark 2.1 for the notation): 

Proposition 2.2 (X. Chen-G. Tian [13]). — Let u>o be a fixed element of M Q and let 
$ be a smooth G-invariant solution of the Monge-Ampere equation (2.4) defined on 
M x E for any Riemann surface with boundary E. Suppose that, for any r in E, 
$(-,p) is the relative Kahler potential of an element o/T) = uo 4- ddc$(',r) in M Q , 
so that the relative energy EG(r) := EG(u^) can be regarded as a function defined 
on E. Let z = t + is be a local holomorphic coordinate on E. Then, with the notation 
of Remark 2.1, EG(r) satisfies the following equality 

(2.21) 
d2eG 

dt2 + 
d2£G 

ds2 
= 2 

M 

\D~{dipt-dcws)\ 2 
<"(R) vg(r). 

In particular, d2EG 
dt2 + d2£G 

ds2 > 0, with equality if and only if Z := grad 9t,s (Û+ — 
Jgrad 

9t,s à* is a (real) holomorphic vector field on M for any rinY,. 
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Proof. — Prom (2.18), we infer d£G 
dt = - M S G 

GIR) ̂ Vn(T). It is easily deduced from 

(2.15) that, in general, the first variation of the reduced scalar curvature at g in M Q 
in the direction of / is given by 

(2.22) sG(f) = -2(D-d)*D-df + (dsf, / ) , 

whereas the first variation of the volume form is given by vg(f) = —Agfvg. The 
second derivative of £G with respect to t is then given by 

(2.23) 
d2£G 

dt2 
= 2 

M 
\D-dibt\2vQ-

rA4 
{(Ptt - (d(Pt,d<Pt)g{T))S q(T)V (T). 

We get a similar formula by replacing t by s, hence, by using (2.5): 

(2.24) 

d2£G 
dt2 + 

d2£G 

ds2 = 2 
M 

\D (dipt-dcips)\2VgT 

4-2 
IM 

(2(D-dêuD-dcês) + (dptldc<ps) 8fr) V9T 

where the second term in the rhs is actually zero (7). The last assertion of Proposition 
2.2 follows easily (see Section 1.6). • 

The argument in Proposition 2.1 only holds for metrics which are linked to extremal 
metrics by a geodesic. On the other hand, the existence issue for geodesies in Mn has 
remained an open question, principally because of the lack of regularity for solutions 
of the Monge-Ampere equation (2.4). In [13], X. X. Chen and G. Tian established a 
(weak) regularity theorem for solutions of (2.4), improving a previous regularity result 
by X. X. Chen [10] which asserts the existence of solutions in the class C1'1. Prom 
this, and by using the above Proposition 2.2, they were able to deduce the following 
fudamental results: 

Theorem 2.1 (X. X. Chen-G. Tian [12], [11], [13]). — (i) All extremal metrics in Mn, 
if any, belong to a unique Ho(M, J)-orbit. 

(ii) Let UJQ be an extremal metric in Mn- Without loss of generality, assume that 
UJQ belongs to M Q . Then, 

(2.26) £G(v) > £G(uo), 

with equality if and only if LU is extremal. 

(7) This is an easy consequence of the following general formula (see Section 1.6 for the notation): 

(2.25) (D-d)*D-dcf = -±£Kf 

for any function / on a Kahler manifold of scalar curvature SG, with K := Jgrad̂ ŝ . Here, (2.25) is 
applied to / = IPA. Moreover, since (PS is G-invariant, K can be replaced by KG := Jgrad ŝ̂ . 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2008 



122 V. APOSTOLOV, D. CALDERBANK, P. GAUDUCHON & C. T0NNESEN-FRIEDMAN 

2.3. The relative energy of admissible metrics. — Denote by Mf^1 the space 
of admissible Kàhler metrics in a given (normalized) admissible Kâhler class f̂ x-
Then, Mf̂ xm C where G is the maximal compact subgroup of Ho(M, J) given 
by Propositions 1.3-1.6, and the reduced scalar curvature is given by the following 
proposition (cf. [3, Proposition 6]): 

Proposition 2.3. — For any {normalized) admissible Kâhler class £1/and for any ad­
missible Kâhler metric g = ĝ z in Cl/, of scalar curvature sg, the Killing part of sg is 
given by 

(2.27) G 
*0 (sg) = az + /3, 

where a,/3 denote the renormalized leading coefficients of the extremal polynomial Fq^ 
defined by (1.53), whereas the reduced scalar curvature has the following expression: 

(2.28) sG = ( F n , - p n , e n z ) 

pOl(z) . 

Proof. — For any admissible Kàhler metric in a (normalized) Kâhler class, it follows 
from (1.23) that the space Pq of Killing potentials relative to g splits as 

(2.29) pg = R e R z e (e N 
i=l F »o 

9st 7 

where: R denotes the space of constant functions; Rz the space generated by z; Pgs 
denotes the space of Killing potentials of mean value zero on (Sij^sJ- By (1.52), the 
scalar curvature 5 is a function of z only; by (1.27), s is then L2-orthogonal to all 
Killing potentials in ^=1Pgs . In order to prove (2.27), it is sufficient to check that 
R(x) - (pOY O)"(x) 

pOy (x) 
is orthogonal to 1 and to z. In view of (1.27), this amounts to checking 

that 1 
-1 

(R(x) - (pQx 0)"(x)) dx = 0 and -l 
'-i 

R(x) — (pqx 0) (x))xdx = 0; in view 
of the boundary conditions (1.14)-(1.15) for ©, these two conditions are equivalent 
to (1.43)-(1.44); since R = F&x, (2.28) follows from (2.27) and (1.52). • 

Corollary 2.1. — For any admissible Kahler class Q,/, denote by the extremal vec­
tor field relative to the pair (G,Q^, see Section 2.1. Then 

(2.30) J Z ^ = a T . 

Proof. — By definition, Z^x = gradp(II^(55), for any g in hence for g\,z. Since, 

- JT = grad5A zz, (2.30) readily follows from (2.27). • 

Corollary 2.2. — For any admissible Kahler class ft/, we have 

(2.31) 

FOl(-JT) = 2irV(S) 

1 
-i 

Vois)ds 
x 

a ( 
i 

-1 
s2pnls)ds 

/•i 

J - i 
Pnls)ds -

1 

-1 
spçiXs)ds 

ri 

- l 
spçiXs)ds) 
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and 

(2.32) 

Bni-JT,-JT) = 
2nV(S) 

1 
-1 PnXs)ds 

X 

/•1 

-1 
s2pnls)ds 

1 

-1 
PnÁs)ds -

1 

-L 
spçiXs)ds 

RL 

-1 
spnls)ds), 

where V(S) = V(Sii9Si) denotes the volume ofS. In particular, 

(2.33) FçiA-JT) = aBnX-JT, -JT). 

Proof. — Since T is a hamiltonian Killing vector field of momentum 2, — JT belongs 

to J a and its real holomorphic potential is z — z, where z = M 
ZVG 

M V9 
is the mean value of 

z. Since z — z belongs to Pg, in (2.7) only the Killing part 11 (̂sg) = az+/3 contributes: 
we then get FQ(-JT) = a JM(z - z)zvg and BNX(-JT, -JT) = JM(z - z)2 vg. By 
using the expression (1.27) of vg, we readily get (2.31) and (2.32); (2.33) follows 
readily; alternatively, (2.33) follows from (2.32) and Corollary 2.1, via (2.13). • 

Choose a reference element in At^m, e.g. the standard admissible metric UJQ cor­
responding to the admissible momentum zo(t) = tanht, cf. Section 1.5. Any other 
element J of Mffm can be written u = u>o + ddc(f)1 where f = fi(t), called the relative 
potential of UJ, is uniquely determined by UJ up to an additive constant. Notice that 

(2.34) Z = Z0 + 
dò 

dt 

For any curve UJS in M ADM 
Oy we set UJ = duj a 

ds |s=0 
and we denote similarly the first 

variations of all objects determined by a;; we thus have: UJ = ddcè, z = drh 
dt ' 

fit r.. Rv 
identifying UJ with </> we identify each tangent space TgMffxm of Mff™ with the space 
of all smooth real functions of t mod constant functions. 

Although it is a hard task to get an explicit expression of the relative energy £G (g) 
for a general element of MQX, it turns out that the restriction of £G to Mf^xm admits 
a simple explicit expression in terms of the extremal polynomial FQX, given by the 
following proposition (cf. [3, Proposition 7]): 

Proposition 2.4. — For any admissible metric g in £1/, of momentum profile Q, we 
have 

(2.35) £G(g) = C 
1 

/-1 

Fnlx) 

G(x) 
+ PnXx) log6(x) dx mod R, 

with C — 2i\ - AT 
LI=L Vi, where V* denotes the volume of (Si, gsj. 
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Proof. — The restriction of £G to Mfim is determined by 

(2.36) d£G(<j>) = -
'M 

s a 
g 

ф у д 

for any g = g\,z in Mf?™ and for 0 = <p(t), any function of t mod R, where, we recall, 
sG denotes the reduced scalar curvature of g with respect to G. By using (2.28) and 
(1.27), we get 

(2.37) (d£G)M = - C 
rl 

-1 
(Fcii -PQx @)" (x)f(x) dx, 

where C is as above and by setting 

(2.38) f(x) = cj>(z-1(x)). 

By integrating by part twice and by observing that at each step the intregrated terms 
vanish because of (1.14)-(1.15)-(1.46)-(1.47), we get 

(2.39) (d£G)M = - C 
1 

'-i 
(FQx-pnx 6) (x)f"(x)dx. 

Prom (2.38) we get f'(x) = z(z-\x)) 
e(X) 

, hence 

F"(S) = 
l 

92(a;) 
dz 

dt 
{ z - \ x ) ) - Q'(x) (z{z - \ x ) ) . 

On the other hand, from (1.13), we get 0(x) = di 
dt 

(z-Hx)) - &(x)z(z-Hx)). We 
thus end up with 

(2.40) f" (x) = è(x) 

e2(x) . 

By substituting in (2.39), we eventually obtain 

(2.41) (d£G)g(<j>) = C 
1 

-1 
= 

FnJx) 
e2(x) + 

Vo, (x 
e(x] 

0(x) dx, 

for any 0 = <j)(t) in TgMffm, where the extremal polynomial Fçx and the character­
istic polynomial pnx are both independent of g in Mnx. The rhs of (2.41) is then the 
first derivative in Mf̂ m of the rhs of (2.35). • 

Proposition 2.5. — Let 0,/be any admissible Kàhler class on M. 
(i) Assume that FQ, is positive on (—1,1) and denote by go an admissible extremal 

Kahler metric in Q,/, of momentum profile OQ = (cf. Proposition 1.7). Then, for 

any admissible Kahler metric in ft/, we have 

(2.42) £G(g) > £G(g0), 

with equality if and only if g is extremal, hence equal to go up to the natural R>0-action 
on M. 
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(ii) Assume that FQ/ is negative on a non-empty open subinterval I of (—1,1). 
Then, for any admissible Kahler metric g in Q/, there exists a half-line gs of admissible 
Kahler metrics in £1/, with s in [0, + oo) and go = g, such that SG(gs) tends to —oo 
when s tends to +00. 

Proof. — (i) Prom (2.35) we infer 

(2.43) eG(9o) = c 
1 

/-1 
U + log 

FOy (x) 

FOy 
(x))pnx(x) dx, 

whereas 

(2.44) SG(g) = C 
»1 

-1 
( 

FOy (x) 

pnx{x)e{x) 
+ logQ(x))pnx(x) dx. 

We thus get 

(2.45) £G(g) - £G(g0) = C 
1 

-1 
(A(x) - 1 - \ogA(x))pnx(x) dx 

by setting 

(2.46) A(x) = 
FOy (x) 

pnx(x)@(x) 

Now, A(x) is positive for any x in (—1,1) by hypothesis and, by Proposition 1.7, is 
identically equal to 1 if and only if g is extremal. It is easy to check that the function 
cj)(t) := t — 1 — \ogt defined on (0, +00) is convex, tends to +00 when t tends to 0 or 
to +00, and reaches its unique minimum 0 at t = 1. It follows that the rhs of (2.45) 
is positive except when A = A(x) is identically equal to 1, i.e. when g is extremal. 

(ii) Let G be the momentum profile of any admissible Kahler metric g in Let 
(f be a non-negative, non-constant smooth function on (—1,1) which is compactly 
supported in the interval / , and set 

(2.47) e,(x) = 
e(x) 

1 + stp(x)@(x), 

for any non-negative real number s. By Proposition 1.2, ©s is the momentum profile 
of an admissible Kâhler metric, gs, in Q\ for any s > 0, with go = g- Moreover 

(2.48) 

£G(gs)=SG(g) + C 
»1 

-1 
s(p(x)Fnx(x) dx 

- C 
1 

-1 
log (1 + 5 (p(x)Q(x)) dx 

where, 1 
-l s ip(x)FçiAx)) dx = 7 <p(x)Ftox(x)) dx is a negative multiple of s. It follows 

that the rhs of (2.48) tends to — oo when s tends to +00. 
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Remark 2.2. — The expression (2.35) of the (relative) energy of admissible metrics, 
as well as the argument in Proposition 2.5, are quite reminiscent to Donaldson's paper 
[15] for toric manifolds. 

Now we are ready to state and prove the main result of [3]: 

Theorem 2.2. — Let M = P(10L) be any admissible ruled manifold and let 0,/be any 
(normalized) admissible Kahler class on M. Then, Vt/ contains an extremal Kahler 
metric—which is then admissible up to the action O/HQ(M, J)—if and only if the 
extremal polynomial FQ, is (strictly) positive on (—1,1). 

Proof — By Proposition 1.7, if FQX is positive on (—1,1), Q \ contains an admissible 
extremal Kahler metrics. By Proposition 2.5, if FQX is negative on some open subin-
terval of (—1,1), the relative if-energy £G is not bounded from below: by Theorem 
2.1 (ii), Sl\ contains no extremal Kahler metric. 

It remains to consider the limiting case, when FQx is non-negative but has (re­
peated) zeros on (—1,1). Suppose that FQX is of this form and assume, for a contra­
diction, that 0 = Q,\ contains an extremal Kahler metric, (g,w) say. In view of the 
already mentioned Calabi theorem, we can assume that the pair (g, u) is G-invariant 
(cf. Proposition 1.6). By LeBrun-Simanca's openness theorem [29, 30], any (nor­
malized) admissible Kahler class Sl\>, with A' close to X in RN, contains an extremal 
Kahler metric. More precisely, LeBrun-Simanca's theorem asserts the existence of 
a sequence of extremal Kahler metrics (gk,&k), with [Ok] — fife? which converges to 
(g,cu) in the Frechet topology and the (gk,&k) can be again chosen G-invariant. 

Two cases then may a priori occur: (i) either, F^x, has repeated roots on (—1,1) 
for all A' in some open neighborhood of X in WN, or else: (ii) there exists a sequence 
of (normalized) admissible Kahler classes Q,k = ft\k converging to fi—meaning that 
Xfc converges to X in the usual sense—such that F̂ k is positive on (—1,1) for each k. 

Case (i) would imply that the discriminant of FQX is zero as a polynomial with 
coefficients in the field i?(Ai,..., AJV) of rational fractions in { A i , . . . , X N } ' this would 
contradict Proposition A.l in Appendix A (by substituting Â  = ê A in Fnx, regarded 

as a polynomial with coefficients in i?(Ai,..., AJV), up to a factor •N 
i=1 E di 

i ' we eet the 
extremal polynomial of an admissible Kahler class fix, as a polynomial with coefficient 
in R( \ ) , on an admissible ruled manifold with N = 1, d = i=1 di and s = N 

i=1 Si). 
Case (i) is thus discarded. 

Now assume, again for a contradiction, that Case (ii) occurs. LeBrun-Simanca 
openness theorem actually guarantees the existence of a sequence, (gk,&k), of G-
invariant extremal Kâhler metrics, with [ÛJk] = fife for each k, which converges to 
(g,co) in the Fréchet topology. On the other hand, since Fnk is positive on (—1,1), 
Proposition 1.7 guarantees the existence of an admissible extremal Kàhler metric, 
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(gk,Uk) say, in each Qk, unique up to the natural C*-action, with ujk = N 
i=1 ((Yk)i + 

U zk) n*UJI + dzk A dct, cf. Section 1.3. 

By Theorem 2.1, for any k the extremal Kahler metrics (gk,Wk) and (gk,&k) m 
Q,k are linked together by gk — * gk, for some ^k in HQ(M, J ) . Moreover, from 
the invariance of the extremal vector field Z^k of each pair —see Sections 2.1 
and 2.3—we get Zgk = grades9k = grades~9k = • grad^s^, meaning that Zgfc, 
hence also T by Corollary 2.1, are preserved by for any k. We infer that the 
\£fc's all belong to the subgroup of elements of H0(M, J) which commute with C*, 
hence, by Proposition 1.3, to the extension of Ho (5, J) by C*. Moreover, since the 
{gk,Wk) are only defined up to the natural C*-action, we can actually arrange that 
the ^fc's all belong to a lift of Ho(5, J) in HQ(M, J), meaning that each is induced 
bv a linear lift on L of an element, $h sav, of Hn(5, J). Each a>jt. is then of the form 

ûk = N 
i=l 

((Xfc)i + s*) 7r*($* • a;.) + d(#fc • A dc(Vk • £), hence the Kahler 

form of an (extremal) admissible Kahler metrics on the admissible ruled manifold 
obtained by simply substituting the hermitian inner product hk = ^k ' h on L. Since 
any two hermitian inner products on L are conformal, hk can be alternatively written 
as hk = e2Fk h for some well-defined (real) smooth function Fk on S and we then 
have ik = ^k • t = t + 7r*Ffe. Since ^k • T = T, we also have that Zk = ^k • %k is a 
momentum of T with respect to tDfc. 

By assumption, the sequence ujk converges to UJ in the Prechet topology: it follows 
that Zk converges to a momentum of T with respect to UJ; similarly, since ijr^k = 
—gk(T,T)dcik = —gk(T,T)dc(t + 7r*Fk)I the sequence Fk converges to a smooth 
function F on 5, meaning that the sequence hk converges to the hermitian inner 
product h = e2F h, whereas each ^k • w% converges to &i, which is the curvature form 
of L~€i equipped with the hermitian inner product induced by h. 

It follows that UJ is the Kahler form of an extremal admissible Kahler metric on M 
with respect to (L,h). Since the extremal polynomial FQ of ft only depends of the 
iV-tuple A and of the e '̂s, FQ should then be positive on (—1,1) by Proposition 1.7 
again. Case (ii) is then discarded as well. • 

2.4. A borderline case example. — In this section, we present a family of ex­
amples of (normalized) admissible Kahler classes on an admissible rules manifold 
M = P(l ® L) —• S whose extremal polynomials are non-negative but have a repeated 
root, which can be chosen irrational, on (—1,1). 

The simplest examples are obtained by considering (complex) four-dimensional 
admissible ruled manifolds for which S = I~Ii=i where each Si is a Riemann surfaces 
of genus Qi greater than one. For I = 1,2,3, the (constant) scalar curvatures S{ of Si 
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is then negative; more precisely, by the Gauss-Bonnet formula, 

(2.49) St = 
4(1 - 9i) 

ki , 

where k{ denotes the degree of the polarizing line bundle Li = L^6i (cf. Section 1.1 
and formula (1.62) in Section 1.10). In particular, each si can be made equal to any 
negative rational number by an appropriate choice of the genus gi and of the degree 
ki. 

Our aim is to construct a family of (normalized) admissible Kahler classes fix °n 
M, for an appropriate choice of the scalar curvatures Si—hence of the line bundles Li 
on Si by (2.49)—in such a way that the extremal polynomials be of the form 

(2.50) FQx(x) = C(l - x2)(x2 + rx- l)2, 

for some positive constants C and r. The polynomial in the rhs of (2.50) satisfies 
the first boundary condition (1.46) for extremal polynomials and is non-negative on 
(—1,1). It has two repeated roots: a positive one, r+ = —r+\/r2+4 

2 , m the open 
interval (0,1); a negative one, r_ = —i—-v/r2+4 

2 , in (—oo, —1). The first and second 
derivatives of F^x are given by: 

(2.51) F^x(x) = C(-T6X5 - lOrx4 + 4(3 - r2)x3 + 12rx2 + 2(r2 - 3)x - 2r) 

and 

(2.52) Fnx(x) = C(-30x4 - AOrx3 + 12(3 - r2)x2 + 24rx + 2(r2 - 3)). 

In particular, F^x(-1) = 2Cr2 and F^x = -2CV2. It follows that Fnx satisfies the 
second boundary condition (1.47) for extremal polynomials if and only if 

(2.53) PQx(-l)=PQx(l) = Cr2, 

where pnx(x) = 3 
i=l (Xi + 6ix) denotes the characteristic polynomial (8) of fix, cf. 

(1.7). If we write pnx(x) = 3 
7=0 PjX3 j, with po = eie2e3, pi = Ci€jXk, P2 = 

<ijk eiXjXk, P3 = A1À2À3 (summation over the circular permutation of (1,2,3)), 
(2.53) is equivalent to the two conditions: 

(2.54) Po + Vi = 0, 

(2.55) Pi +P3 = Cr2. 

The condition (2.54) cannot be satisfied if all are equal to 1 or —1: We then assume 

(2.56) ex = e2 = 1, €3 = - 1 , 

(8) As long as the Si and the €i—hence the Si and the polarizing line bundles Li e% over Si— 
have not been fixed, QX is only a "virtual" admissible Kàhler class encoded by an admissible triple 
X = {Ai, À2, A3}. 
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and (2.54) then reads: 

(2.57) A3 = 
1 + AiA2 
Ai + Ao 

Notice that 1+AiAo 
Ai+A2 

= 1 + (Ai-1)(A 1) 
A1+A2 

> 1. The condition (2.55) determines the 

constant G as follows: 

(2.58) C = Pi +P3 
r2 -

A1À2A3 + A3 — Ai — A2 

r2 , 

Notice, by using (2.57), that A1A2A3 + A3 — Ai — A2 = (l+A1A2)2-(Ai+A2)2 
Ai+A2 

= 
(A? —l)(Ao —1) 

A1+A2 
> 0. Also notice that 

(2.59) Ai — A3 = 
A ? - l 

Ai + A2 
> 0, A2 - A3 = 

Al - 1 

Ai + A2 
> 0 . 

Now, for any positive real number r and for any admissible triple A = {Ai,A2,A3J 

satisfying (2.57), the polynomial Fnx defined by (2.50), where C is defined by (2.58), 

is actually the extremal polynomial of the (normalized) admissible Kahler class Ct\ if 

and only if FQX(X) = R(x), where, in general, R(x) is defined by (1.42) in Section 1.9. 

In the present situation, this condition is then: 

(2.60) 
F"Oa (x) = *i(À2 + (A3 -x) + S2(A3 - x)(Xi + x) + 53(Ai + x)(X2 + x) 

- (ax + /?)(Ai + x)(\2 + a?)(A3 - x) , 

where a,(3 are real constants. In view of (2.60), we now assume that Ai and A2 are 

distinct, hence Ai > A2 say. This implies that the s^s are uniquely determined by 

(2.61) 

SI = 
^ ; ( - A i ) 

(A2-A1)(A3 + A1)' 
SO -

^ ( - A 2 ) 

(Ai-A2)(A3 + A2)' 
«3 = 

F"OA (A3) 

(A1+A3XA2 + A3)' 

a special case of the general formula (1.49). By using (2.52), this can be re-written as 

(2.62) si = 
2 C 

(A1-A2Ï ÏA1+A3) 
((6A? - 1) r2 - 4Ai(5A2 - 3) r + 15A? - 18A? + 3)), 

(2.63) s2 = 
2C 

(Ai -A2XA2 + A3) 
( - (6A^ - 1) r2 + 4A2(5Al - 3) r - 15A| + 18A^ - 3)), 

(2.64) s3 = 
2C 

(Ai + A3)(A2 +A3) 
( - (6A2; - 1) r2 - 4A3(5A| - 3) r - 15A| + 18A^ - 3)). 

Conversely, if si,s2,s3 are given these values, then FQX(X) is of the form (2.60)—as 

-Ffix (x) - Si (A2 + x) (A3 - x) + s2 (A3 - x) (Ai + x) + s3 (Ai + x) (A2 + x) is then divisible 

by (Ai + x)(A2 + a;) (A3 — x)—so that FQX is indeed an extremal polynomial provided 

however that the real numbers Sj defined by (2.62)-(2.63)-(2.64) can be realized as 

the scalar curvatures of Riemann surfaces Si of genus greater than 1, polarized by a 

holomorphic line bundle L~€i. According to (2.49), this can be done whenever are 
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(arbitrary) negative rational numbers. This forces us to assume that Ai,A2—hence 

also A3 by (2.57)—are rational, as well as the parameter r. 

By (2.64), S3 is negative for any r > 0 and any admissible triple {Ai,A2,A3}. By 

(2.63)-(2.64), si is negative if and only if 

(2.65) ^ - ( A i ) < r < V>+(Ai), 

and so is negative if and only if 

(2.66) r<</>-(A2) or r>^+(A2) , 

by setting 

(2.67) IMA) = 
2A(5A2 - 3) ± VlOA6 + 3A4 + 3 

6A2-1 

It is easy to check that V - is increasing from ^_(1) = 0 to +00 and that is 

increasing from ?/>+(l) = 8/5 to 00 when A runs from 1 to +00. We readily infer: 

For any (rational) admissible triple {Ai,A2,A3} satisfying (2.57) and Ai > A2, the 

(rational) numbers si,s2,s3 given by (2.62)-(2.63)-(2.64) are all negative if and only 

if 

(2.68) ^_ (Ai ) < r < ^+(Ai) 

if < M A i ) > < M A 2 ) , o r 

(2.69) V+(A2) <r < V+(Ai), 

if ip-(Xi) < ^+(A2). The above discussion can be summarized by the following 

statement ([3, Example 1]): 

Proposition 2.6. — For any admissible triple /= {Ai,A2,A3J of rational numbers sat­

isfying (2.57) and Ai > A2, denote by I/the open interval in (8/5, +00) defined by 

(2.68W2.69). Then, for any rational number r in Is, there exists a (complex) four-

dimensional ruled manifold M = P(10L) —• S = r3 
2=1 Si, where each Si is a Riemann 

surface of hyperbolic type, such that 0,/is a (normalized) admissible Kâhler class on 

M whose extremal polynomial Fçt/ is of the form (2.50), with C defined by (2.58). 

Remark 2.3. — In view of the current conjectures concerning the link between the 

existence of extremal Kâhler metrics and stability questions considered in the next 

chapter, the case of particular interest in Proposition 2.6 is when r is chosen so that 

the repeated root r+ = -1 + Vr2 + 4 
2 

of FQX in (0,1) is irrational, lï r is written as 

r = p/q, for two (relatively prime) positive integers, this happens if and only if the 

integer p2 + 4#2 is not a square, hence for "most" rational numbers in I\. 
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3. Extremal metrics and stability 

3.1. The Futaki character on polarized manifolds. — In this section, M = 

(M, J, g, UJ) denotes a general compact Kahler manifold of complex dimension m, 

polarized by a hermitian holomorphic line bundle L, meaning that Rv = icu, i.e. that 

the Kahler form u is the curvature form of the Chern connection V of L. In particular, 

Q — [UJ] = 2TTCI(L). We denote by IT the projection of L on M. As usual, L is viewed 

as a complex manifold of complex dimension m + 1. 

We consider an S1 -action on M which preserves the whole Kahler structure. Denote 

by X the generator of this action, i.e. the (real) vector field X defined by X(x) = 

d 
dt \t=0 

eit - x, for any x in M. We assume that the action is hamiltonian, i.e. that 

X = gradw/x = Jgrad^/X, for some real function fx well-defined up to an additive 

constant. 

For any choice of fx, X lifts to a vector field I on L, preserving the natural 

complex structure of L, defined by X = X — (7r*fx) T, where X denotes the horizontal 

lift of X on L determined by V and T the generator of the standard S1 -action on 

L (= the usual multiplication by S1 on each fiber). Moreover, for an appropriate 

choice of fx, X is the generator of a holomorphic 51-action on L which lifts the given 

51-action on M, cf. e.g. [19, Proposition 7.5.1]. Such a distinguished momentum is 

well-defined up to an additive integer. We henceforth assume that X is the generator 

of a lifted 51-action on L, corresponding to the distinguished momentum fx. Notice 

that the lifted action on L determines a lifted 51-action on all tensor powers Lk of L. 

The lifted action induces a C-linear 51-action on the space, T(L), of smooth sections 

of L, defined by 

(3.1) (C-s)(x) = C-(s(C1-x)), 

for any s in T(L), any £ in S1 and any x in M. According to the general definition 

of the Lie derivative, we then define: 

(3.2) Cxs = -
d 

dt\t=o 
eu • s. 

for any s in T(L) and any x in M. In terms of covariant derivative, this can be 

rewritten as 

(3.3) Cxs = Vxs + ifxs. 

The Lie derivative Cx preserves the subspace H°(M, L) of holomorphic sections of L 

and thus induces a C-linear, skew-symmetric action on H°(M, L) and, more generally, 

on H°(M,Lk) for any positive integer k. 

Definition 3.1. — The infinitesimal weight of the lifted 51-action on L is the trace of 

the hermitian operator — iCx on H°(M,L). 
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Example 3.1. — Let (V, (•,•)) be any hermitian (m + l)-dimensional complex vector 
space and denote by P(V) the corresponding complex projective space, equipped with 
the induced Fubini-Study Kahler metric of holomorphic sectional curvature equal to 
2: the Kahler form UJ is then the curvature form —iRv of the Chern connection of 
the dual tautological line bundle (9(1), equipped with the induced hermitian inner 
product, cf. Section 1.1. Any hermitian endomorphism A of V with integer eigenval­
ues ao, a i , . . . , am determines an S^-action on P(V) by: elt • x = eltA(x), for any x in 
P(V). This action preserves the whole Kahler metric. The generator of this action 
is the (real) Hamiltonian Killing vector field XA defined by XA(x) : u G x i—> iA(u) 
mod x (we here the natural identification TXF(V) = Hom(a:, V/x)). This action has a 
natural, tautological, lift on the tautological bundle 0(—1), namely e%t • u = eltA(u), 
for any x in P(V) and any u in the complex line x. The dual 51-action on 0(1) 
is then (elt • a)(u) = a(e~ttA(u)), for any a in 0(1)* = x*. This is a lift of the 
above S1 -action on 0(1) , corresponding to the distinguished momentum defined by 
fx (x) = (Au,u), for any unit generator u of x. The space i f°(P(V), 0(1) ) is nat­
urally identified with the dual space V*: each element a of V* can be viewed as a 
holomorphic section of 0(1) by setting a(x) = ot\x. Prom the above discussion, we 
readily infer Cx^a = ao A. In particular, the infinitesimal weight of XA is the trace 
of A, i.e. m 

i=0 ai. 

It is a far reaching observation by S. Donaldson [15] that TQ(—JX) can be com­
puted by using the asymptotic expansions of the infinitesimal weights, Wk(X), of the 
lifted 51-action on Lfe, when k tends to infinity. More precisely, denote by dk the 
(complex) dimension of H°(M,Lk); then 

(3.4) 
wK(X) 

kdk = M fXVa 
VO + 

1 
4 

Tn(-JX) 
VO 

fc"1 + 0(A:-2), 

where fx denotes the distinguished momentum of X determined by the chosen lifted 
51-action on L and VQ the volume of ( M , fi). 

If Y is the generator of another hamiltonian 51-action on M, preserving the whole 
Kahler structure, the combined infinitesimal weight w(X, Y) on L is defined as the 
trace of the product operator (—iCx) ° (—iCy) on H°(M,L). Denote by Wk{X,Y) 
the combined infinitesimal weight on H°(M,Lk). We then have 

(3.5) 
wK(X,Y) 

k2dk -
wK(X) 

kdk 
wK(Y) 

kdk = 
Bn(-JX, - JY) 

VO 
+ 0(k ~ 1). 

The key point is that formulae (3.4)-(3.5) can be used to define J7n(—JX) and 
BQ(-JX, —JY) in the case when M is singular and these objects cannot be defined 
directly in geometric terms. Such situations occur in particular when considering test 
configurations introduced by G. Tian [41] and S. Donaldson [15] to check the stability 
of polarized projective manifolds. 
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3.2. Deformation to the normal cone. — In general, for any closed subscheme 
E of a complex variety M, the deformation to the normal cone of E in M is a classical 
construction in algebraic geometry, by which the embedding of E in M is connected 
to its embedding in its normal cone C = C^M as the zero section. 

This is done by considering the blow-up—call it V(M)—of the product M x P 1 
along Ex (1 : 0), where (1 : 0) is the point at infinity of the standard complex projective 
line P, and the induced projection p : V(M) - » P1. Denote by q : V(M) -* M x P1 the 
blow-down mapping: the exceptional divisor #-1(E x (1 : 0)) is then the projectivized 
normal cone P(C 0 1) of E x (1 : 0) in M x P1. For each (A : p) ^ (1 : 0) in P1, the 
fiber p-1((A : fi)) is naturally identified with M, whereas the central fiber p~l((l : 0)) 
splits into two pieces: 

(i) the exceptional divisor P(l © C), and 
(ii) the blow-up M of M along E. 

Notice that the two pieces M and P(10C) of the central fiber intersect at the divisor 
at infinity P(C) in P(l 0 C) , which is also the exceptional divisor of the blow-up of 
M along E. 

Since the blow-up of E x P1 along E x ((1 : 0)) is E x P1 again, E x P1 is naturally 
embedded over P1 in V(M): For any (A : p) ^ (1 : 0) in P1, the induced embedding 
E <̂-> P_1((A : fx)) = M is isomorphic to the initial embedding E M, whereas, over 
(1 : 0), E is embedded in p~x(l : 0)) = P(l 0 C ) UM as the zero section in the normal 
cone C C P(l 0 C) (cf. [16, Chapter 5] for details). 

In this paper, we consider this construction in the case when M = P(l 0 L) is an 
admissible ruled manifold and E = Eoo is the infinity section (9\ Since Eoo is smooth, 
its normal cone C is simply the normal bundle TM^^/TT,^ = (7r*L*)|Soo. With the 
above notation, the central fiber p_1((l : 0)) is the union of 

(i) M, identified with M, as E ^ is a divisor of M, and 
(ii) the exceptional divisor P(C© 1), identified with P(L* 0 1) via the natural iden­

tification EQO = S. 

Via the natural isomorphism P(L* 0 1) = P(l 0 L) obtained by tensoring L* 0 1 
by L, P(C 0 1) is naturally identified with M again and its intersection with M = M 
in V(M) is then the zero section Eo. 

As observed in Remark 1.1 of Section 1.2, E ^ is the zero divisor of the holomorphic 
section of 0M(1)> S say, determined by the natural projection of 1 0 L to the trivial 
bundle 1 = S x C. This allows for the following alternative description of V(M), 
which is a particular case of the general MacPherson's graph construction [33]. Let 
P(l © 0 M ( - 1)) denote the natural compactification of OM(—1) over M and consider 

(9) The choice of EQO instead of the zero section Eq is inessential. 
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the embedding M x (P1 \ (1 : 0)) ̂  P(l 0 OM (-1)) x P1 defined by 

(3.6) (£ = (z : u), (A : /x)) - ((As : /x (z, u)), (A : /x)) G P(C 0 f) x P1, 

for any £ = (z : u) e P(C 0 ^ ) in M—cf. Section 1.1 for the notation—and for 
any (A : /x) ^ (1 : 0) in P1. In (3.6), Xz has to be regarded as Xs(£)((z,u)). Then, 
V(M) is alternatively defined as the closure of the image of M x (P1 \ (1 : 0)) in 
P(100M(—1)) xP1 by the embedding (3.6), hence as the (closed) complex submanifold 
of P(l 0 O M ( - 1 ) ) x whose elements are of the form ((a : (/3, u)), (A : /x)), for any 
pair (a, (3) of complex numbers such that Xf3—iia = 0, cf. Example 5.1.2 and Example 
18.1.6 (d) in [16]. 

We denote by it : V(M) —» 5 the natural projection induced by n : M —» 5; for 
any y in 5, we set V(M)y — 7r~1(y). 

In order to get a more concrete grasp on V(M)y, we write P1 = P(Ci 0 C2), where 
Ci and C2 stand for two copies of C, we rewrite My = 7r~1(y) = P(C2 0 Ly) and we 
introduce the complex projective plane F2 = P(Ci 0 C2 0 Ly): V(M)y can then be 
viewed as a (compact) complex submanifold of the product My x P1 x P j , namely 
the space of ((z : u), (A : /x), (a : (3 : v)) in My x P1 x Fy such that (a,/3) belongs to 
the complex line (A : /x) (in P1 = P(Ci 0 C2)) and (/3,v) belongs to the complex line 
(z : u) (in My = P(C2 ©Ly)), that is to say the 2-dimensional (compact, smooth) 
complex submanifold of My xF1 xF2 defined by the equations: 

(3.7) /XOJ — A/3 = 0, zv — pu = 0. 

For any y in S, denote byphy : V(M)y -> My, p2,y : V(M)y P1, p3,y : £ > ( M ) Y - > P2 

the induced projections and by CIJ3/, C^y , C3?2/ the (complex) curves in V(M)y defined 
by 

(3.8) Ci,„ = { ( ( z : u ) , (1:0), (1 :0 :0 ) ) , (z : и) € My = P(C2 0 Ly)}, 

(3.9) Ca,, = {((0 : u ) , (A : j i ) , ( 0 : 0 : u ) ) , (A : ц) € P1 = P ( d © C2)}, 

(3.10) C3,v = {((0 : « ) , ( ! :0), (a : 0 : w ) ) , (a : v) € P(Ci © Ly)}. 

The curves Ci^ and C2j2/ are tautologically identified with My and P1 respectively, 
whereas C3,y will be identified with My via the the natural identification Ci = C2, i.e. 
via the map (a : v) G P(Ci 0 Ly) = P(C2 0 Ly) ((0 : w), (1 : 0), (a : 0 : v)). The 
curves Ci?2/ and C2,y are disjoint; the intersection C\,y n C3?y is (Joo(y) in Ci?y = My 
and o~o(y) in C35?/ = My; the intersection C2^y nC3??/ is (1 : 0) in C2,y = P1 and o~oo(y) 
in C3,y = My. 

Each fiber T>(M)y of 7r : P ( M ) —> S is a blow-up of P2 at two points, via the 
map ps^y, which contracts the curves C\,y and C2,y to the points [Ci] and [Ly] of P2 
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respectively, and a blow-up of My x P1 at one point, via the map (pi,y,P2,y)> which 

contracts the curve C3^y to the point ([Ly] = ^^(y), (1 : 0)) of My x P1. 

Denote by q : V(M) —> M x P1, resp. p : V(M) —• P1, the map whose restriction to 

each V(M)y is (pi,y,P2,y)5 resp. p2,y. Then, q realizes D(M) as a blow-up of M x P1 

along EQO x (1 : 0), hence as the deformation to the normal cone of E ^ , according 

to the general construction described at the beginning of this section, and p is the 

induced projection on P1. Accordingly, each (jP\,y,P2,y), resp. P2,y, will be renamed 

qy, resp. py. 

For any y in S and for any (A : p) ^ (1 : 0), pyl({\ : p)) is isomorphic to My, via 

the embedding My w V(M)y defined by: 

(3.11) (z : u) H-> ((2; : w), (A : / / ) , (Az : (iz : fiu)). 

This family of embeddings parametrized by P1 \ (1 : 0) can be viewed as a unique 

embedding of M x (P1 \ (1 : 0)) in V(M)y. The restriction of this embedding to 

0oo(2/) X (P1 \ (1 : 0)) then extends to an embedding of a^y) x P1 in V(M)y), given 

by 

(3.12) ((0: t i ) , (A: , i ) ) ~ ( ( 0 : u ) , (A:/x), ( 0 : 0 : u ) ) , 

whose image is C2,y. 

The central fiber p~x((l : 0)) is C\ìV U C3)2/ over each y in 5. By setting C\ — 

UyeSCiìyi C2 = UyesC2iy and C3 = UyeSC3iy, we then get 

(3.13) p - 1 ( ( l : 0 ) ) = CiUC3, 

where Ci and C3 are both identified with M as explained above. The intersection 

Ci fl C3 is then identified with E0 in C\ = M and with E ^ in C3 = M. 

3.3. The space T>(M) as a test configuration: Polarizations. — For any y 

in 5, denote by Ai)2/, A2}3/, A3jy the holomorphic line bundles on V(M)y defined by 

Pi,Y(°My(l)) , P2,y(CV(l)), PÌ,y(°^yiX)) respectively. Each Aijy,A2,y,A3)1, admits a 

distinguished holomorphic section whose zero divisor is C2,y + C3}2/, Ciìy + C3ìy, CiìV + 

C2,y + C3j2/ respectively. If CiìV, C2,y, C3jy are regarded a elements of H2(T>(M)y, Z), 

by Poincaré duality, we then have 

(3.14) 

Ci,y = С1(Л^®Л3) г / ) , 

C2,y = с 1 ( Л ^ ® Л 3 , у ) , 

C3,y = c i ( A i , „ <g> Л2,у О Л ^ ) , 

where ci(-) stands for the (first) Chern class. 
We now choose an admissible polarization on M, i.e. an admissible Kàhler class 

OA on M in the image of H2(M,Z) in #2(M ,R) . By Remark 1.1, this means that 
the A '̂s are integers and that Q/27T = C\(T\), where F\ is given by (1.11). 
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In order to turn V(M) into a test configuration compatible with this polarization, 
we need a hermitian holomorphic line bundle, £, on P ( M ) , whose restriction to 
p~l({\ : //)) is the chosen polarization of M = p_1((A : /x)) if (A : /x) ^ (1 : 0) and 
which induces, in some sense, a polarization on the central fiber : 0)) (however, 
C is not required to be a polarization on the whole space V(M)). 

For each V{M)y, this will be done by twisting the pull-back of (F\)\MV on 'D(M)y 
by an appropriate multiple —aCz,y of the exceptional divisor, i.e. by tensoring the 
pull-back of {T\)\MY by Aj^J® A^J ®Ag y for some positive rational number a (strictly 
speaking, a should be chosen an integer but, for our purposes, it will be sufficient that 
ka be an integer for k a positive integer growing to infinity). By using (1.11), we thus 
get: 

(3.15) L \V(M)Y = A 2-0 
1,2/ 

A — a 
2,y 

A a 
3,2/ 

N 

2=1 
L 1-CiXi 

i y. 

We now show that the restriction of C to each fiber p 1((X : /x)), is ample whenever 
0 < a < 2. 

We first consider the case when (A : /x) ^ (1;0). From (3.11) we infer that the 
restriction of As^y to p~X((A : /x)) is naturally identified with the restriction of Aij2/ <g> 
A2,y, so that: 

(3.16) L |Py 1 ((̂ :M)) = A 2 
i,y 

N 

i=l 
L 1-eiXi 

1 
y = № 0 |My, 

for any a. 
We now consider the central fiber p_1((l : 0)), which is C\^y UCsiV in each V(M)y. 

On Ci?y, we have A2,y = A3)2/ = C*, so that: 

(3.17) 

C \Cl, y = A 2-a 
1,2/ 

N 

i=1 
L l-e,A, 

i )y 

= (F (1 - a 
A ) |My 

N 

2 = 1 
E l-e,A, 

2 
9 
2/ J 

whereas, on CsiV, we have Aijy = L*, A2,y = CJ, A3>y = Ai>y, so that: 

(3.18) 

L C3,y = A a 
1,2/ 

Ca L a-2 
2/ 

N 

2=1 
L l-e,-A,- ly 

= (F a 
A [My 

N 

2=1 
L — 1 —€iAi 

2 
1— -

'y . 
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By setting: Q(0) = 2nci(C\c1) and 0(oo) = 27rci(£|C3), both regarded as defined 

on M, we thus get 

(3.19) ft(0) - (1 - a/2) (S + 

N 

i=l 

Xi - a/2 a 

1 -a/2 
h* [wSi]), 

and 

(3.20) O(oo> = a/2 (5 + 

N 

i=l 

Xi + (1 - a/2 e4 

a/2 
h* [wSi]), 

These evidently belong to the (admissible) Kâhler cone of M if and only if 0 < a < 2. 

Moreover, via the common identification Eo = S » = S, the restriction of to E ^ 

coincides with the restriction of to E0, as it must be. More precisely, by setting 

(3.21) a = 1 — x, 

we have 

(3.22) O (0) 
|Eoo = Si foo) |E0 = 

N 

i=l 

(Xi +X€i) [LUSI\I 

which is the class of the Kàhler form of the Kàhler reduction of M, equipped with the 

admissible Kâhler metric (1.12) in fix » for the level set z = x. We infer that the pair 

(ft(°),fl(°°)) determines a well-defined "polarization" on the (singular) central fiber 

p-1((l : 0)). This polarization depends on the parameter x in (—1,1) and will be 

therefore denoted by №x\ 

3.4. The space V(M) as a test configuration: C*-actions. — The C*-action 
on P1 defined by C • {X : p) = (C-1A : p) determines a C*-action, denoted by a, on 
£>(M), defined by: 

(3.23) C 'A ( ( * : u), (A : /x), (a : (3 : t;)) = ((* : u), (C_1A : p), ( C 1 a:0:v)). 

This action moves the fibers of p. It fixes the fiber p-1((0 : 1)) (this is smooth, 

identified with M, and plays no particular role in the story), and the central fiber 

p~1((l : 0)) = C\ U C3: the action OR is then trivial on C\ and coincides with the 

natural C*-action on C3 = M. 

The natural C*-action on M = P(l ® L)—cf. Section 1.1—induces an C*-action 

on V(M), denoted by 0, defined by 

(3.24) C 7* ((* : ti), (A : /i), (a : /? : V)) = ((* : C^), (A :p),(a:f3: C * ) ) , 

for £ in C*. This action preserves the fibers of p and coincides with the natural en­

action on each fiber p_1((A : //)), (A : p) ^ (1 : 0), via the embedding (3.11). On the 

central fiber p_1((l : 0) = C\ U C3, where C\ and C3 are both identified with M as 

explained above, the action /8 coincides with the natural C*-action on M. 
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Notice that these actions preserve each fiber of jf : V(M) —> S and are therefore 

entirely determined by their induced actions on V(M)y for each y in S. Moreover, on 

each V(M)y, both A and j8 have natural lifts on the line bundles Ai)3/, A2,y, &3,y This 

determines an A- and a j£J-action on C as well as on the vector space of its holomorphic 

sections. 

For each fiber p~1((X : u)), and each positive integer fc, the space of holomor­

phic sections of C k 
|p-i((A:/x))' 

coincides with the space of holomorphic sections of the 

holomorphic vector bundle, Efc'(A:/x\ on S whose fiber E k,(\:u) 
Y at y is the space of 

holomorphic sections of L 
IP̂ CCA-./X))-

If (A;/i) ^ (1 : 0), we infer from (3.16): 

(3.25) 

E k,(X:a) 
m 

= S2k((C2®Ly)*) 
M 

*=i 

L l — €i\i 
i 

k 
y 

= 
2k 

3=0 

a — 7 
y 

M 

i=1 

L 1-eiXi 
i 

k 
y' 

where, in general, Se(V) denotes the ^-th symmetric tensor power of V. We thus have 

(3.26) # (p ((A : u)),C k 
b-1((A:/x)) ) = 

2k 

3=0 
H°(S, 

M 

i=i 

9 1-c.Ai 
i 

)k L-j). 

On the central fiber p~1((l : 0)), Ey1'0' is obtained by considering the direct sum 

of the spaces of holomorphic sections of Ck on C\ and C3 separately, then removing 

the common part on C\ fl C3. From (3.17), we infer 

(3.27) 

H°(C 1,1/ ' c to 
|C1,y ) = ( 

N 

i=l 

L l-€iXi 
i 

\k 
y 

S k(2-a) ( ( c2eLy)*) 

= 
N 

i=l 

L 1 — tiXi 
i 

k 
y 

k{2-a) 

3=0 

L — 7 
y . 

Moreover, the infinitesimal weight of A, as defined in Definition 3.1, is 0 on this 

space, whereas the infinitesimal weight of p is J on each factor N 
'¿=1 

L 1-CiAt 
i 

k 
y 

Tri 

(for this computation and similar ones in the sequel, compare with Example 3.1 in 

Section 3.1). 

From (3.18), we infer 

(3.28) 

H°(C 3,y' c H 
C1,y ) = ( 

N 

i=l 

L i-€iXi k 
y 

C ka 
1 

L -k(2-a) 
Y 

S ka ( ( C I E I v n 

= 

N 

i=1 

L 1-eiXi 
i 

k 
>y 

2k 

j=k(2-a) 

C i-k 2-a) 
1 

L -j 
y . 
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Moreover, on each factor N 
i=l B 1 — €iXi 

I ) k 
y 

c j-k(2-a) 
1 

L —? 
y 

, the infinitesimal weight 

of a is j — k(2 — a), whereas the infinitesimal weight of p is j . 

Finally, i f°(C 1,y n C 3,2/5 fS k ) = ( N 
¿=1 

I 1 —€¿Ai 
i ) k 

2/ 
L -k(2-a) 

y , which appears in both 

expressions with weight 0 for a. 
By removing this term from the rhs of (3.27) or (3.28), and by removing the factors 

C i-k 2-a appearing in the rhs of (3.28)—but keeping them in mind for weight issues— 

we eventually get 

(3.29) IE fc,(l:0) 
y = 

N 

i=l 

ñ 1 - EiAi 
i ) fe 

y 

2k 

j=0 

L -7 

y , 

hence 

(3.30) H\p-\l:Q),C fc 
|p-H(l:0)) ) = 

2k 

3=0 

H°(S,( 
N 

i=l 
a 1—e¿A¿ 

i ) k L -j ). 

It is convenient to rewrite (3.30) as follows 

(3.31) tfOfr-1«! :())),/ <k 
|p-i((l:0)) ) = 

k 

i=-k 

H°(S,( 
N 

i=l 

L Ai + l/kEi 
i 

)k), 

where each Li = L{ €i is ample and polarizes (S^^sJ—cf. Section 1.1—and where 

we changed the index by setting 

(3.32) e = j - k. 

Moreover, the infinitesimal weight of a on H°(S, (i N 

i=l 
L Xi+i/kti 

i )fe)is 

(3.33) 
0 iî£<k(l-a) = kx 

t-kx if kx < £ < k, 

whereas the infinitesimal weight of j8 on H°(S, ( N 
i=1 L Xi+e/kei 

i )h) is 

(3.34) k + L -k<£<k. 

3.5. The relative Futaki invariant of V(M). — For any x in ( -1 ,1) D Q, the 

Futaki invariant of the C*-action a on the central fiber p~l((l : 0)) with respect to the 

polarization is defined by T^x\a) = FQ^X) (-JX), where X denotes the generator 

of the 51-action induced by a. We similarly define: T^x\fi) = Jr^)(—JF), where Y 

denotes the generator of the 51-action induced by /S, B^(a,fi) = B^X) (-JX, —JY) 

and B(P,fi) = B^X)(—JY, — JY) (as we shall see below, ^(fi) and B((i,fi) are inde­

pendent of x). The relative Futaki invariant of a with respect to j£J, in the sense of 

(2.9), is then 

(3.35) ^x)(a) = ^ \ a ) -
B(x) (a,B) 

B (b,b) 
T(ß). 
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The aim of this section is to provide a self-contained computation of T^x\ci) by 

using (3.4)-(3.5) and to prove the following theorem, first established by G. Szekelyhidi 

in [39] in the case of pseudo-Hirzebruch surfaces, then extended to the general case 

in [3, Section 4.4]: 

Theorem 3.1. — For any x in (-1, 1), we have 

(3.36) FixXa) = -2*V(S) 
Fnlx) 

1 
-1 

PnXsjds 

where V(S) = N 
i=1 

V(Si,9Si) denotes the volume of S and, we recall, pçt/ and Fq/ 

denote the characteristic and the extremal polynomial of ft/ respectively. 

Proof. — Denote by dk(t) the (complex) dimension of H°(S, ( N 
i=1 L Ai + l/k Ei 

i 
)k) and 

by dk the dimension of H°(p-l({l : 0)) ,£ 3 
|p-1 ((1:0)) 

); by (3.31), we then have 

(3.37) dk — 
k 

e=-k 
dk(t). 

We denote by Wk(a:), resp. wk((i), the infinitesimal weight of A, resp. jff, and by 

wk(a,(J), resp. wk((i,(i), the combined infinitesimal weight—as defined in Section 

3.1—of A,j8, resp. of j8,j8, on the space H°(p : 0)),£ k 
•|p-i((l:0)) 

) . Prom (3.33)-

(3.34), we readilv infer: 

(3.38) Wk(a) = 
k 

£=kx 

(£-kx)dk(£), Wk(fi) = 
k 

e=-k 

{t + k)dk(i\ 

(3.39) ti;* ( « , £ ) = 
k 

£=kx 

(e + k)(e-kx)dk{e), wK{P,P) = 

k 

£=-k 

(e + k)2dk(e). 

Lemma 3.1. — When k tends to infinity, dkU) has the asymptotic expansion 

(3.40) 

dk(£) = 
V(S) 

(27T)d 
(kdpnie/k) 

+ 
kd-1 

4 
{R(l/k) + pQX^/k)(ae/k + ¡3)) + 0(kd~2) 

where, we recall, pçL/ denotes the characteristic polynomial of Çt/, defined by (1.7); R 

is the polynomial defined in (1.42); a,(3 are the normalized leading coefficients of the 

extremal polynomial Fçif, i.e. the constant appearing in the rhs o/(1.42). 

Proof. — Since Li is ample on Si, and 0 < Â  — 1 < Xi + £/k €{< \i; + 1 for each — k < 

i < k, for k large enough dk(f) is equal to x((G$iLi L^l/ke*)k), the holomorphic 
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Euler characteristic of ( N 
H=l 

L \i+£/k€i 
i 

)k. By the Riemann-Roch theorem, we have 

that 

(3.41) X(( 

N 

i=l 

L Ai + l/k Ei 
i 

)*) = 
S 

ch(( 
N 

i=l 

L \i+£/k€i 
i 

T)td(S), 

where ch(( N 
i=l 

L \i+£/ke., 
i 

)k) denotes the Chern character of the complex line bundle 

( 
N 

i=l 
n Xi+£/k€i T and td(5) the Todd class of the holomorphic tangent bundle of S. 

Recall that the Chern character of any complex line bundle C is defined by ch(£) = 

e ci(£) = oo 
r=0 

CI (CV 
r\ 

, whereas the Todd class is the multiplicative characteristic class 

associated to the generating series x/(l — e x); in particular td(5) = l + CI(S)/2H , 
cf. e.g. [24]. We thus get: 

(3.42) 

dk (l) = 
d 

r=0 

kr 

(27T)r s 

N 
4=1 

(Xi + e/keA lcjsAY 

r\ 
(l + Cl(S ) /2+- . . ) 

= 
kd 

(2n)d 
'S 

N 
,i=l (\i + llk€i)[USi])d 

+ 
kd-1 

(2vr)d 's 

N 
/¿=1 (Xi + e/keAlLJsA) i-l 

( d - 1 ) ! 
A 

ci(S) 

2 
+ 0{kd-2) 

= 
V(S) 

(2n)d 
(kdpnx(e/k) + k d-1 pOA (t/k) 

N 

i=l 

Si/4 

\i + e/k ei 
+ 0(kd-2)). 

We conclude by using (1.42). 

In order to evaluate the asymptotic expansions of the sums in (3.37), (3.38) etc. 

we use the following asymptotic formula, known as the trapezium rule: 

(3.43) 
bk 

£=ak 

fU/k) = k 
•6 

a 
fit) dt + 

1 
2 

( / (a)+ /(&))+ 0 ( 0 

for any polynomial / , where ak < bk are integers, and £ runs over all integers between 

ka and kb. 

For convenience, we assume, without loss of generality, that V(S) = (27r)d and we 

simply write p(t) for pnx(t). 

Corollary 3.1. — When k tends to infinity, dk has the asymptotic expansion 

(3.44) dk = k^1 
rl 

r-l 
p(s) ds -+ 

kd 

4 

1 

-1 
{pL8 + ß)p(8)d8 + 0(kd-1). 

Proof. — Direct consequence of Lemma 3.1 and of the trapezium rule (3.43). 
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Corollary 3.2. — When k tends to infinity, wk(a) has the asymptotic expansion 

(3.45) 

Wk(a) = -kd+2 
-1 

FX 
(s — x)p(s)ds 

-
kd+1 

4 
(FM -f 

l 

x 
(s - x)(as + P)p(s)ds) + 0(kd). 

In particular, 

(3.46) 

wkU) 
kdk 

= 
1 
X (s — x)p(s)ds 

1 
-1 

p(s) ds 
= 

1 

4 
FnXx) 
l 
-l 

p(s)ds 
k-1 

= 
a 
4 

l 
X s(s — x)p(s)ds •l 

-1 p(s)ds — »i 
x 

(s — x)p(s)ds R.1 
-l sp(s)ds 

( •l -1 
v(s)ds )2 

fc"1 

+ 0(*T2) 

Proof. — (3.45) is a direct consequence of Lemma 3.1 and of (3.43), by using the 
identity (1.43)-(1.44) and the expression (1.48) of the extremal polynomial FQX; (3.46) 

readily follows from (3.45) and (3.44). • 

Corollary 3.3. — When k tends to infinity, wk(J) has the asymptotic expansion 

(3.47) wk{Jj = -k d+2 
1 

-1 
(s + l)p(s)ds -

ks+1 

4 

1 

-1 
(as + 8)(s + 1 ) p(s)ds + 0(kd). 

(3.48) 

In particular, 

wk(A 
kdk 

1 
-l 

(1 + s)p(s)ds 
•l 
-l 

p(s)ds 

+ 
a 
4 

l 
-l 

s2 p(s)ds •l 
-l 

p(s)ds — 1 
'-1 sp(s)ds 

1 
-l sp(s)ds 

1 
-l p(s)ds 2 

AT1 

+ 0(/T2). 

Proof. — Direct consequence of Lemma 3.1 and of (3.43). • 

Corollary 3.4. — When k tends to infinity, wk (a, J) has the asymptotic expansion 

(3.49) wk(a,J) = -k i+3 
1 

Jx 
(s-x)(s + l)p(s)ds + 0(k ¿+2 
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In particular, 

(3.50) 

wkU,A 
k2dk 

wkU) 
kdk 

wk(A 
kdk = 

-
l 

X 
s(s — x)p(s)ds -

-1 p(s)ds — 1 
X (s — x)p(s)ds 1 

- l s ms)ds 
1 
- l 

p(s)ds 2 

+ 0(AT1) 

Proof. — Direct consequence of Lemma 3.1 and of (3.43). • 

Corollary 3.5. — When k tends to infinity, wk (/, A) has the following asymptotic ex­
pansion: 

(3.51) wk(AA = h d+3 
1 

-1 
(s + l)2p(s)ds + 0(kd+2). 

In particular, 

(3.52) 

wk(AA 
k2dk -

wk (b) 
kdk 

WhiA 
kdk = 

1 
- l s2 p(s)ds l 

- l p(s)ds - 1 
'-1 tms)ds 

l 
-1 s v(s)ds 

'-1 
v(s)ds 2 

+ 0(fc"1) 

Proof. — Direct consequence of Lemma 3.1 and of (3.43). • 

By using (3.4W3.5) and VQx = 2TT V(S) - l v(s)ds (deduced from (1.27)), we obtain 

(by temporarily omitting the overall factor 2irV(S)/ .1 p(s)ds): 

(3.53) F(x) (a) = -FOA (x) 

— a l 
'x s(s — x)p(s)ds 1 

'-1 
p(s)ds 

- •l 
'x [s — x)p{s)ds 1 

-1 sp(s)ds), 

(3.54) Hß) = <*( .1 
'-1 

s2 p(s)ds l 
- l p{s)ds — 1 

- l 
sp(s)ds l 

- l 
sp(s)ds), 

(3.55) B(x) (a,B) = - l 
x 

5 (5 — x)p(s)ds >1 
-1 

p(s)ds 

-
.1 
-1 [5 — x)p(s)ds 1 

-1 5 ms)ds, 

(3.56) B(B,B) = 1 
-1 s2 p(s)ds 1 

-1 p(s)ds — 1 
-1 sp(s)ds 1 

-1 s p(s)ds. 

Notice that = aB(&,(i)—d. Remark 3.1 below—whereas ^ X ) ( A ) = - i ^ / ( z ) + 

aB^(a,fi). By restoring the missing factor 27rV(S')/ J^1p(s)ds, we get (3.36). • 
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Remark 3.1. — By comparing ( 3 . 5 4 ) and ( 3 . 56 ) with ( 2 . 3 1 ) and ( 2 . 3 2 ) in Corollary 
2.2, we get: 

( 3 . 5 7 ) T(fi) = Tsl{-JT), B(frp) = Bn(-JT,-JT). 

This was in fact quite expected as the action is the same on any fiber p-1((A : /i)) 
and coincides with the natural S1 -action on M. 

Remark 3.2. — The extremal polynomial FQx is of degree less than m + 2 if and only 
the normalized leading coefficient a is zero. In this case, F((l) = 0, by ( 3 . 5 4 ) , and, 
by ( 3 . 5 3 ) , ( 3 . 3 6 ) then reduces to 

( 3 . 5 8 ) J*x\a) = -2irV(S) 
FOA (x) 

l 
-1 Pnx{s)ds . 

Appendix A 

The extremal polynomial for N = 1 

We here compute the extremal polynomial FQX of any (admissible) Kàhler class on 
an admissible ruled manifold M : P ( l ® L) —» S = •N 

U=l Si in the case when N = 1. 
The Kahler class Q\ is then determined by a unique real number A > 1, the chosen 
(constant) scalar curvature s of S = Si and e = e\ which, without loss of generality, 
will be chosen equal to 1, see Section 1.1. For convenience, we set 

(A.l) K = s 
d ( d + l ) ' 

where d denotes the complex dimension of S (we then have dimcM = d + 1 and FOA 
is of degree at most d + 3 ) and we replace the variable x in ( — 1 , 1 ) by 

( A . 2 ) X := \ + x, 

in the interval (A - 1, A + 1 ) and we set P{X) = FQX (X): P = P{X) will be referred to 
as the modified extremal polynomial of Q\] it will be occasionally denoted by PK(X) 
or PK(X, A) to emphasize the dependence in K and A; it will be most often regarded 
as a polynomial in X with coefficients in the field -R(A) of rational fractions in A; in 
particular, except for poles, PK(X, A) is well-defined for any real (or complex) value 
of A, not only for admissible A > 1. In terms of the modified extremal polynomial 
P(X), the boundary conditions ( 1 . 4 6 ) - ( 1 . 4 7 ) read as follows 

(A.3) 
P(A - 1 ) = P(\ + 1 ) = 0, 

P'(A - 1 ) = 2(A - l)d, P'(X + 1 ) = - 2 ( A + l)2, 

whereas the second derivative of P has the form 

(A.4) P"{X) = -aXd+1 + {a\ -ß)Xd + d{d + 1)K Xd~\ 
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where a,/? are determined by (A.3), cf. Section 1.9. In particular, P is of the form 

(A.5) PK{X, A) = a0(A)Xd+3 + AI{\)XD+2 + KX**1 + a3(X)X + a4(A), 

where ao,ai, 0 3 , 0 4 are rational fractions in A, which depend on K in an affine way 
For convenience, we introduce 

(A.6) Sk(X) = (X + l)k + (X-l)h, Ak(X) = (X + l)k -(X-l)k. 

Then, an, ai are solutions of the linear system: 

(d + 3)Ad+2(X) a0 + (d + 2)Ad+1(X) 01 = - ( d + l)Ad(X) K - 2Sd(X), 

(A.7) 
((d + 3)Sd+2(X) - Ad+3)(X) a0 + ((d + 2)5,4+1 (A) - Ad+2)(X) oi 

= (Ad+1(X) - (d + l)Sd(A)) K - 2Ad{X), 

whereas 0 3 , 0 4 are deduced from ao,ai by 

(A.8) 
a3 = -

1 
2 

(A*+3(A) a0 + A*+2(A) ai + «.Ad+i(A)), 

04 = 
1 
2 

(A - l)(Ad+2(A) a0 + Ad+i(A) 01 + « Ad(A)), 

We thus get (see also [8]): 

(A.9) a0 = k 
MX) 

{S2d+2(X) + 2(A2 - l)d+1 + 4(d + 1)2(A2 - l)d) 

+ 
1 

A(A) 
( 2 i l 2 d + 2 ( A ) - 8 ( d + l ) A ( A 2 - l ) d ) , 

(A.10) ai = k 
A(A) 

(252rf+3(A) - 4A(A2 - l)d+1 - 8(d + l)(d + 2)A(A2 - l)d) 

+ 
1 

A(A) 
( - 2 A2d+3(X) + 4(2d + 3)(A2 - l)d+1 + 16(d + 2)(A2 - l )d ) , 

(A. l l ) a3 = 
(X2 - l)dK 

A(A) = 
1 
2 

(A2 - l)3Ad_i(A) - 2(d + 2)2(A2 - l)An-i(A) 

+ 2A(A2 - l)Ad+2(X) + 4(d + l)(d + 2)A4*+2(A) 

= 
3 
2 

(A2 - l)Ad+3(X) - 2(d+l)2Ad+3(X) 

+ 
(A2 - l)d 

A(A 
- 2(A2 - l)2Ad - 2(2d + 3)(A2 - l)Ad+2(X) 

- 8(d + 2)Ad+2{X) + 4(d + l)XAd+3(X) . 
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(A.12) a4 = 
(A2 - l)d+1 K 

A(A) 
3 

2 
(A2 - 1)2AKA) + 2(d + 2)2(A2 - l)Ad(X) 

- 2A(A2 - l ) A ^ i ( A ) - 4(d + l)(d + 2)XAd+1(X) 

+ 2(d+l )Md+2(A) + 1 
2 

Ad+4(A) 

+ 
(A2 - l)d+1 

A(A 
4(d + 2)(A2 + l)Ad+1(X) - 4(d + l)A^d+2(A) 5 

where we have set: 

(A.13) A(A) - -52d+4(A) + 4(d 4- 2)2(A2 - + 2(A2 - l)d+2. 

Proposition A. 1. — For an?/ real number K, the discriminant of PK(X) is non-zero in 
R(X). 

Proof — In general, for any polynomial f(X) = n 
A=0 ut X n—i = a0 n 

Lj = l (X - U) 
with coefficients in some field K, with a0 ^ 0 and n > 1, the discriminant (10\ D(f), 
of / is defined by 

(A.14) D(f) = a^R(f,f) = a 2n-2 
U 

j=k 
(TJ -TK) =Q n—Z 0 

n 

j=1 

f' (tj), 

where / ' ) denotes the resultant ^ of / and its derivative / ' , and tj, j = 1,..., n, 
denote the n roots of / in a suitable field extension K of K. 

In the present case, we observe that PK{X), defined by (A.5), can be written as 

(A.16) PK(X) = + (X + 04(A) 
03(A) 

P'(X), 

by setting $ ( X ) = -XdQ(X) and 

(A.17) 
Q ( X ) = (d + 2) oo(A) X3 + ((d + 3) oo(A) 

04(A) 
03(A) 

+ ( d + l ) a i ( A ) ) X 2 

+ ( ( d + 2 ) ax (A) 
04(A) 
03(A) 

+ d/t) X + ( d + 1) K 
04(A) 
03(A) 

We then have R(P, P') = R($, P'), hence 

(A.18) D(P) = (-l)d(d + 2)d+3a0(A)d+3a3(A)d 
3 

i=l 
p'(pi), 

(10) \Ye here adopt the definition which appears in [28]. The definition in [6] differs by a factor 

( - 1 ) n(n-l) 
2 

(n) Recall that the resultant R(f, g)~ of two polynomials f(X) = m 
fi=0 A . * " - * = a0 •n j=1 (X - tj) 

and o = \ra 
ri=C biX™-1 = b0 m 

r=l (X — ur), with aobo ^ 0, has the following expressions: 
(A.15) R(f,g) = a™b% rn 

Lj=i •m 
lr=l (tj -ur) = aV? •n j=1 9(t,-) = (-i)m"&g RM 

Lr=l f (ur). 
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where /?i,/?2,/?3 denote the roots of Q in a suitable field extension, R(X), of R(X). It 

follows that D(P) is zero in R(X) if and only if P ' ( A ) = 0 in R(X) for some i = 1, 2 

or 3. We show that this cannot happen by considering the behaviour of the product 

r3 
[¿=1 

P'(0i) near A = ± 1 . Notice that 

(A.19) 

a0(A) 9* 
1 

4 
[*=F2), 

ai(X) =i -K±1, I 

a3 (A) * (-(d + l) / c) ± 2) (A = F 

a 4 ( A ) ^ ( d K T 2 ) ( A T l ) d + 1 , 

modulo terms of higher orders in (A =f 1) near A = ± 1 . We temporarily assume that 

k = 2 
d and K / 2 

d+l ' 
so that cu( A) 

a3 A 
is exactly of order 1 in (A =F 1) near A = ± 1 . We 

also assume K ̂  ±2 and K ̂  0. It then follows that one root, p% say, of Q is of order 

1 as well, with 

(A.20) Ba = 
KT 

2 
d 

KT 2 
d+1 

( A T I ) , 

whereas the other two, /?i,/?2 tend to the roots, ri,r2 say, of the equation 

(A21) 
(d + 2) 

4 
(« t 2 ) I 2 t W + ! ) ( - « ±1)X + dK = 0, 

which are both finite (as K / ±2) and non zero (as K ̂  0). It is easily checked that, 

for i = 1,2, the limit of P'(ßi) at A = ±1 , which is equal to rf W-3 
4 

r? + (d + 2 ) ( - « ± 

l)ri + (d + 1)«) , is non-zero for any value of « ; indeed, a common root, r, of (A.21) 

and of the equation 

(A.22) 
(d + 3) 

4 
(K T2)X2 + (d + 2)(-K ± 1) X + (d + 1)K = 0. 

would satisfy r = - 2(-k+1) 
«q=2 

= - 2« 
(-«±1 ' 

which is clearly impossible. In particular, 

P (pi) and P \P2) are both non zero in A . As for P (P3), we have 

)(A.23) 

P'(/33)Sa3(A) + ( d + l ) a 2 ^ 

= -
(d + 1) 

(k + 2 +1)d 
((k + 2 

d + 1 
)d +1 — K(K =f 

2 

d 
d) (A+"l)d 

modulo terms of higher orders in A =F 1. If P'(Pz) was zero in if, the rhs of (A.23) 

would be zero for A = — 1 and A = 1, meaning that K and — K would be both a root 

of the equation 

(A.24) (X + 2 

d + 1 
)D+1 - X(X + 

2 
d 

)d = o. 
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On the other hand, if h(X) = d+1 
j=0 cj Xd+l J denotes the polynomial in the rhs of 

(A.24), we have that 

( A . 2 5 ) cj = 
2j f 

j 
(d + 1 - 7 ) ( d + l ) j-1dj 

Yj-1 (d), 

for j — 0 , . . . , d + 1, by setting <pk(x) = xk+x - (x - k)(x + l)fe, for any integer k. It 
follows that CQ = ci = 0, whereas Cj > 0 for any j > 2. To prove the last assertion, it 
is sufficient to check that (pk{x) is positive on [1, -foo) for all integers k > 1. Observe 
that ipk(x) = (k + l)(pk-i(x). We then conclude by a simple argument by induction: 
if ipk-i is positive, then <pk is increasing, hence positive on [1, +oo) , as ipk(l) = 1; the 
argument by induction is then completed by observing that ipi(x) = 1. We infer that 
K and —K cannot be simultaneously roots of (A.24), proving that P'{Pz) is non-zero 
in K. The case when K is ± 2 , ± | , ± ^ - which were discarded in the argument, is 
solved by using the same argument at A = —1 or at A = 1 and by observing that 
none of these values is a root of the equation (A.24). If K = 0, we observe that (A. 16) 
holds with $ = -Xd+1 Q(X) and 

(A.26) 
Q(X) = (d + 2)a0(A)X2 + ((d + 3) a0(A) a4(A) 

a3(A) + ( d + l ) a i ( A ) ) X 2 

+ (d + 2) ai(A) 
a4(A) 
a3(A) . 

This polynomial has two roots, a i ,a2 , in some extension of R(X) and, as before, the 
discriminant of P is zero if and only if P'(ai) or P'iaz) is 0 in this extension. One of 
these roots, a2 say, is zero at A = ± 1 , with 0L2 = (d+2) 

(d+1) (A =F 1), whereas OL\ = 2(d+l) 
d+2 • 

Then, P ' fa i ) = ± 2d+1(d+l)d+1 
(d+2)d+2 

7̂  0 at A = ±1 , whereas P'(ai) = as(A) is non-zero in 
i2(A). This completes the proof of Proposition A.l . 
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GEOMETRIC STRUCTURES ON UNIRULED PROJECTIVE 
MANIFOLDS DEFINED BY THEIR VARIETIES 

OF MINIMAL RATIONAL TANGENTS 

by 

N g a i m i n g M o k 

Abstract. — In a joint research programme with Jun-Muk Hwang we have been inves­
t igating geometric structures on uniruled projective manifolds, especially Fano mani­
folds of Picard number 1, defined by varieties of minimal rational tangents associated 
to moduli spaces of minimal rational curves. In this article we outl ine a heuristic 
picture of the geometry of Fano manifolds of Picard number 1 with non-linear vari­
eties of minimal rational tangents , taking as hints from prototypical examples such as 
those from holomorphic conformai structures. On an open set in the complex topol­
ogy the local geometric structure associated to varieties of minimal rational tangents 
is equivalently given by families of local holomorphic curves marked at a variable 
base point satisfying certain compatibil ity conditions. Differential-geometric notions 
such as (null) geodesies, curvature and parallel transport are a source of inspiration 
in our study. Formulation of problems suggested by this heuristic analogy and their 
solutions, somet imes in a very general context and at other t imes applicable only to 
special classes of Fano manifolds, have led to resolutions of a series of well-known 
problems in Algebraic Geometry. 

Résumé (Structures géométriques sur des variétés projectives uniréglées définies par leurs variétés 
de tangentes rationnelles minimales) 

Dans un programme de recherche avec Jun-Muk Hwang nous avons étudié des 
structures géométriques sur les variétés projectives uniréglées, en particulier les va­
riétés de Fano de nombres de Picard égaux à 1, définies par les variétés de tangentes 
rationnelles minimales associées aux espaces de modules de courbes rationnelles mi­
nimales. Dans cet article nous esquissons un dessin heuristique sur la géométrie des 
variétés de Fano de nombres de Picard égaux à 1 dont les variétés de tangentes ration­
nelles minimales sont non linéaires, en prenant comme prototypes les exemples tels 
ques les structures conformes holomorphes. Dans un ouvert par rapport à la topologie 
complexe, la structure géométrique associée aux variétés de tangentes rationnelles mi­
nimales équivaut aux données de familles de courbes holomorphes locales marquées 
à un point de base variable vérifiant des conditions de compatibil ité. Des notions 
de la géométrie différentielle comme les géodésiques (nulles), la courbure et le trans­
port parallèle constituent une source d'inspiration dans notre étude. Des formulations 
de problèmes suggérés par cette analogie heuristique et leurs solutions, parfois dans 
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un contexte très générale et parfois applicables seulement aux classes de variétés de 
Fano spéciales, ont conduit a des résolutions d'une série de problèmes bien connus en 
géométrie algébrique. 

1. Introduction 

1.1. Background and motivation. — In 1979, Mori [45] established the funda­

mental existence result on rational curves on a projective manifold where the canonical 

line bundle is not numerically effective, thereby resolving the Hartshorne Conjecture. 

When the manifold is Fano, Miyaoka-Mori [38] (1986) proved tha t the manifold is 

uniruled. In a joint research programme undertaken with Jun-Muk Hwang, we have 

been studying algebro-geometric and complex-analytic problems on uniruled projec­

tive manifolds basing on geometric objects arising from special classes of rational 

curves, viz., minimal rational curves. In this article the author would like to highlight 

some geometric aspects of the underlying theory. 

Given a uniruled projective manifold X and fixing an ample line bundle L, by a 

minimal rational curve we will mean a free rational curve of minimal degree with 

respect to L among all free rational curves. A connected component K, of the space of 

minimal rational curves will be called a minimal rational component. In practice we 

will fix a minimal rational component K, and consider only minimal rational curves 

belonging to /C. Associated to /C, there is the universal family p : U —> /C, p : U —» X, 

where p : U —» JC is a holomorphic P1-bundle, and p : U —» X is the evaluation 

map. In connection with U there is the tangent map r : U —> FTx- For a minimal 

rational curve C marked at x G X and immersed at the marking, and for a denoting a 

nonzero vector tangent to C at the marking, the tangent map associates to the marked 

point the element [a] G FTX(X). For a general point x G X we define the variety of 

minimal rational tangents (VMRT) Cx at x to be the strict transform of the tangent 

map rx :UX —• FTX(X). The basic set-up of our study takes place on the total space 

of the double fibration given by the universal family p :U —> X, p : U —> X, equipped 

with the tangent map r :U —• ¥TX(X) and the fibered space n : C —> X of VMRTs. 

The overriding question is the extent to which a uniruled projective manifold X is 

determined by its VMRTs. 

Given a uniruled projective manifold (X, K) equipped with a minimal rational com­

ponent /C, and a connected open subset U C X in the complex topology, we consider 

(U,C\u) as a complex manifold equipped with a geometric structure. Here the term 

'geometric s t ructure ' is understood by analogy to s tandard examples. As a prototype 

in the context of smooth manifolds, a real m-dimensional Riemannian manifold (M,g) 

can be understood as one equipped with a reduction of the frame bundle from the 
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structure group GL(ra ,R) to 0 ( r a ) . In the context of complex manifolds, a simplest 

example of a holomorphic geometric structure relevant to the study of uniruled pro­

jective manifolds is the case of holomorphic conformal structures, alias hyperquadric 

structures. A holomorphic conformal structure on an n-dimensional complex manifold 

X determines at every point x G X its null-cone, defining equivalently a holomorphic 

fiber subbundle Q C PTx consisting of fibers Qx isomorphic to an (n — 2)-dimensional 

hyperquadric. It corresponds to a reduction of the holomorphic frame bundle from 

GL(n;C) to C* • 0 ( n ; C ) , and this reduction is completely determined by Q C F T * . 

When X — Qn, the n-dimensional hyperquadric, Qx agrees with the VMRT Cx, and 

by analogy we speak of the geometric structure on a uniruled projective manifold 

(X, /C) equipped with a minimal rational component as defined by its fibered space 

7r : C —> X of VMRTs. As our geometric study of VMRTs are in many cases motivated 

by differential-geometric consideration, especially in relation to global properties tha t 

can be captured by local differential-geometric information, we will be considering a 

general point x £ X, and the local geometric structure defined by the germ of the 

fibered space n : C —> X at x, equivalently the restriction TT\U : C\u :—» U to arbitrarily 

small Euclidean open neighborhoods U of x. 

1.2. A heuristic picture. — While a substantial part of our programme applies 

generally to any uniruled projective manifold, our focus of investigation has been 

primarily on those of Picard number 1. These manifolds, which are necessarily Fano, 

are not amenable to further reduction by means of extremal rays in Mori theory, 

and as such they are called 'hard nuts ' among Fano manifolds in Miyaoka [36]. Our 

geometric theory on uniruled projective manifolds based on VMRTs serve in particular 

as a basis for a systematic study of all Fano manifolds of Picard number 1. There 

emerges a dichotomy between those for which the VMRT at a general point is the 

union of finitely many projective linear subspaces and the rest. We will say tha t 

(X, JC) has linear VMRTs in the former case and non-linear VMRTs otherwise. The 

linear case includes those for which the VMRT at a general point is O-dimensional, 

where the fibered space 7r : C —> X gives rise to a geometry on X resembling tha t 

of web geometry. We will discuss in this article exclusively the non-linear case and 

refer the reader to Hwang-Mok [20] (2003) for results in the case of O-dimensional 

VMRTs, and to Hwang [13] (2007) for a problem which necessitates the study of the 

hypothetical case of linear VMRTs of higher dimensions. 

At this stage of the investigation we have the following heuristic picture in the 

case of non-linear VMRTs. The universal P1-bundle p : U —• K associated to the 

minimal rational component /C gives rise via the tangent map to a tautological multi-

foliation on the fibered space TT : C —> X of VMRTs, and the 'local' geometric structure 

(U,C\u) on open subsets U C X in the complex topology corresponds to the da ta of 
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families of local holomorphic curves marked at points x G U. The local holomorphic 
curves are then solutions to a system of partial differential equations which in the 
case of holomorphic conformal structures correspond to the null geodesies. We may 
think of the local holomorphic curves as analogues of (null) geodesies. The fact 
tha t these 'geodesies' can be extended to minimal rational curves on (X, /C) should 
impose serious constraints on the underlying geometric structure. In the case of the 
holomorphic conformal structure on the hyperquadric, the splitting type of the tangent 
bundles on minimal rational curves is enough to force the vanishing of the holomorphic 
Bochner-Weyl tensor and thus to force flatness of the structure. In the general case 
of (X,/C), for a general /C-minimal rational curve the normal bundle has only direct 
summands of degree 1 or 0. Such a rational curve, to be called a s tandard rational 
curve, resembles minimal rational curves on a hyperquadric, and there ought to be 
partial 'flatness' of the geometric structure of (X,C) along s tandard rational curves 
which places serious restrictions on geometric structures tha t can possibly arise from 
VMRTs. The heuristic analogy between minimal rational curves and (null) geodesies 
also goes further as the former should serve to propagate geometric information from 
a germ of geometric structure to the ambient Fano manifold X of Picard number 1. 
In this case, any two general points can be connected by a chain of minimal rational 
curves, and the bad set of 'inaccessible points ' must be of codimension > 2. 

A further geometric concept tha t ought to play an important role in the study 
of geometric structures defined by VMRTs is the notion of parallel t ransport along 
a s tandard rational curve. In the special case of irreducible Hermitian symmetric 
spaces of the compact type the VMRTs are invariant under parallel t ransport with 
respect to any choice of a canonical Kahler-Einstein metric. For Fano manifolds of 
Picard number 1, endowed with geometric structures arising from VMRTs but without 
privileged local holomorphic connections, the only general source for the notion of 
parallel t ranspor t arises from splitting types over minimal rational curves. In this 
direction it is found tha t for the germ of families of VMRTs along the tautological 
lifting C of a s tandard rational curve, the second fundamental in the fiber directions 
can be identified as a section of a flat bundle over C, and as such one can speak of 
the parallel t ransport of second fundamental forms along a s tandard rational curve. 

Other than geometric structures defined by VMRTs, in important classes of Fano 
manifolds X of Picard number 1 there are additional underlying structures with 
differential-geometric meaning. These are the cases where the VMRTs are positive-
dimensional, irreducible and linearly degenerate at a general point. They span distri­
butions which give rise to differential systems by taking Lie brackets. The study of this 
class of manifolds, which is particularly important for questions on deformation rigid­
ity, reveals an intimate link between issues of integrability and projective-geometric 
properties of the VMRT at a general point. 
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1.3. Summary and presentation of results. — While some aspects of the over­
all heuristic picture on geometric structures defined by VMRTs can be confirmed to 
a large extent, other aspects are only beginning to be explored. In the research pro­
gramme emphasis has been placed on solutions of concrete problems, and in some 
cases confirmation of some conjectural properties on VMRTs in special cases can al­
ready lead to important consequences. Here we describe general results and highlights 
of applications tha t fall within the framework of the heuristic picture discussed. 

For the prototypical examples of geometric structures on irreducible Hermitian 
symmetric spaces S of the compact type and of rank > 2, Ochiai's result [47] (1970) 
can be interpreted as saying tha t a local VMRT-preserving holomorphic map nec­
essarily extends to an automorphism of S. In Hwang-Mok [17] (1999), [18] (2001) 
we established the analogous phenomenon, which we call Cartan-Fubini extension, 
for Fano manifolds of Picard number 1 with positive-dimensional VMRTs under the 
additional assumption tha t the Gauss map of the VMRT is generically finite, proving 
at the same time tha t the tangent map at a general point is birational under the same 
assumption. In conjunction with the works of Kebekus [26] (2002) on the tangent map 
and Cho-Miyaoka-Shepherd-Barron [3] (2002) on a characterization of the projective 
space in terms of minimal rational curves we proved in Hwang-Mok [21] (2004) tha t 
the same results hold t rue for any Fano manifold of Picard number 1 with non-linear 
VMRTs at a general point, resulting in a new solution of the Lazarsfeld Problem in 
[32] (1984) regarding finite holomorphic maps on rational homogeneous spaces G/P 
of Picard number 1 (Hwang-Mok [21]). Cartan-Fubini extension has recently been 
extended to non-equidimensional VMRT-respecting local holomorphic maps between 
uniruled projective manifolds in Mok [42] and Hong-Mok [9] with applications to the 
characterization of certain submanifolds saturated with respect to minimal rational 
curves, in analogy to totally geodesic submanifolds in Riemannian geometry. 

The idea of exploiting the splitting type of the tangent bundle over s tandard ra­
tional curves to prove vanishing theorems on curvature has given rise to a character­
ization of irreducible Hermitian symmetric spaces S of the compact type and of rank 
> 2 as the unique uniruled projective manifolds admitt ing G-structures for reductive 
complex Lie groups G (Hwang-Mok [14], 1997), leading also to an analogous result 
of Hong [6] (2000) for geometric structures modeled after Fano homogeneous contact 
manifolds of Picard number 1. The idea of parallel t ransport of second fundamental 
forms was first used in relation to the Campana-Peternell Conjecture, leading to the 
characterization of Fano manifolds of Picard number 1 with 1-dimensional VMRTs 
and nef tangent bundle under the additional assumption tha t the fourth Betti num­
ber equals 1 (Mok [41], 2001), a condition tha t was removed in Hwang [12] (2007), 
resulting together with earlier works in the confirmation of the Campana-Peternell 
Conjecture for 4 dimensions. The same idea was further exploited to yield for rational 
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homogeneous manifolds G/P of Picard number 1 defined by long simple roots a char­
acterization of G/P by the VMRT at a general point (Mok [43] and Hong-Hwang [8]). 
The study of distributions spanned by irreducible linearly degenerate VMRTs has led 
to projective-geometric necessary conditions on such VMRTs (Hwang-Mok [15], 1998; 
[17], 1999), and applications of such results to deformation of complex structures are 
important in the final confirmation of rigidity of rational homogeneous manifolds 
G/P of Picard number 1 under Kahler deformation (Hwang-Mok [23] (2005) and ref­
erences therein). Another important element in relation to deformation rigidity is the 
study of Lie algebras of holomorphic vector fields by means of prolongation theory for 
infinitesimal automorphisms of VMRTs. 

In the current article results falling within the general geometric framework de­
scribed revolving around the geometry of VMRTs will be stated and discussed, with 
(sketches of) proofs of special cases for the purpose of illustration, in an order different 
from the above tha t conforms more (but not strictly) to the chronology. The reader 
may consult Hwang-Mok [17], Hwang [11] (2000) for more systematic overviews at 
earlier stages of the programme, Mok [40] (1999) for aspects of the theory in relation 
to G-structures, Hwang-Mok [21] for general results on the tangent map, and Hwang 
[12] (2007) for an overview on rigidity of rational homogeneous manifolds. We have 
completely omitted the important role played by VMRTs on the geometry of moduli 
spaces of stable vector bundles on an algebraic curve, for which the reader is referred 
to Hwang-Ramanan [24] (2004) and the references contained therein. 

Acknowledgement. — This article is an outgrowth of a lecture given by the author 
in the conference "Differential Geometry, Mathematical Physics, Mathematics and 
Society" celebrating the 60th bir thday of Professor Jean Pierre Bourguignon held in 
August 27-31, 2007 at IHES. He would like to thank the organizers and IHES for 
their invitation and for their hospitality during the conference. The author wishes 
to dedicate this article to Jean Pierre, with whom among many other things we co-
organized the Prance-Hong Kong Geometry Conference in Hong Kong, 2002, for his 
relentless efforts to help bring together mathematicians across different cultures, and 
for his unfailing friendship. While the article serves to elaborate on the author 's 
lecture in the conference and his other recent lectures on the subject, needless to say 
the bulk of the article is a rendition of the fruits of a long series of joint works with 
Jun-Muk Hwang, to whom the author wishes to express his thankfulness. 

2. Varieties of minimal rational tangents 

2.1. Minimal rational curves. — By a projective P1-fibered space v : Z —» B we 
mean an irreducible reduced projective variety Z equipped with a surjective holomor­
phic map v onto a projective variety B, such tha t the general fiber of v is an algebraic 
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curve of genus 0, i.e., isomorphic to the Riemann sphere P1. A projective manifold 

X is said to be uniruled if there exists a projective P1-fibered space v : Z —> B and 

a dominant holomorphic map (p : Z —> X onto X. By restricting v to a properly 

chosen subvariety of B of dimension equal to d im(X) — 1, without loss of generality 

we may assume tha t the dominant holomorphic map (p : Z —> X is generically finite. 

Replacing Z by its normalization we may also assume tha t Z is a projective manifold. 

By Miyaoka-Mori [38] (1986) any Fano manifold is uniruled. 

By a parametrized rational curve on a projective manifold X we mean a noncon-

stant holomorphic map / : P1 —> X from the Riemann sphere P1 into X. We say tha t 

two parametrized rational curves / i and / 2 are equivalent if and only if they are the 

same up to a re-parametrization of P1, i.e., if and only if there exists 7 G Aut(P1) such 

tha t / 2 = / 1 0 7 . By a rational curve we mean an equivalence class [/] of parametrized 

rational curves / : P1 —• X under this equivalence relation. We will sometimes also 

refer to the nontrivial image / (P1) = C (as a cycle) as a rational curve. 

Let X be a uniruled projective manifold and fix an ample line bundle L on X. By 

the degree of an algebraic curve C on X will will mean the degree of C with respect 

to L, i.e., the integral of a (positive) curvature form of L over C. Let tp : Z —• X 

be a generically finite dominant holomorphic map from a projective P1-fibered space 

v : Z —> X onto X where Z is nonsingular. From the surjectivity of tp : Z —• X 

it follows tha t for a general P1 -fiber E of v : Z —> X, A : P1 = E, and for the 

parametrized rational curve / : P1 —> X defined by / := (p o A, the holomorphic 

vector bundle / * T x must be spanned by global sections at a general point. By the 

Grothendieck Splitting Theorem any holomorphic vector bundle over P1 splits into 

the direct sum of holomorphic line bundles, and it follows tha t f*Tx is nonnegative 

in the sense tha t it is a direct sum of holomorphic line bundles of degree > 0. 

By a free rational curve on X we mean the equivalence class of a nonconstant 

holomorphic map / : P1 —> X such tha t f*Tx is nonnegative. From the above 

discussion it follows tha t any uniruled projective manifold admits a free rational curve. 

Conversely, if a projective manifold X admits a free rational curve parametrized as 

/ : P1 -> X, then H°(¥1J*TX) is spanned by global sections, and fl^P1, f*Tx) = 0 

since H1(F1iO(k)) = 0 whenever k > —1, so tha t there is no obstruction in the 

deformation of / : P1 —> X as a parametrized rational curve. By deforming / and 

considering Chow spaces it follows readily tha t there exists a projective Px-fibered 

space v : Z —• B such tha t Z dominates X. As a consequence, a projective manifold 

X is uniruled if and only if X admits a free rational curve. 

By a minimal rational curve on X we will mean a free rational curve of minimal 

degree among all free rational curves on X. The set of minimal rational curves can 

be given naturally the structure of a complex manifold, a connected component of 

which will be called a minimal rational component /C. A rational curve belonging to 
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/C will sometimes be called a /C-curve. The degree of /C, to be denoted by deg(/C), is 
the degree of one and hence any /C-curve. 

For a general reference on rational curves in Algebraic Geometry we refer the reader 
to Kollar [29]. The reader may also consult Hwang-Mok ([15], §2; [17], (1.1)) for basic 
facts on the deformation theory of rational curves relevant to our discussion. 

2.2. The universal family of /C-curves and the canonical double fibration. 
— Associated to (X, /C) there is the universal family p :U —> K of /C-curves, where U 
is smooth and p : U —• /C is a holomorphic P1-bundle, constructed as follows. Let H 
be the connected component of the space of all parametrized free rational curves / : 
P1 —• X such tha t K = W/Aut(P1). Since f*Tx is nonnegative, the obstruction group 
H1(F1,f*Tx) = 0, hence H carries naturally the structure of a complex manifold with 
tangent spaces Tf(H) = # ° ( P \ / *TX) . Recall tha t /C is the quotient of H by the 
group Aut(P1), which acts on H by setting 7 ( / ) = / 0 7 for 7 G Aut(P*) and / G U. By 
the minimality of /C any / G W must be generically injective, from which it follows tha t 
Aut(P*) acts effectively on H , so tha t K inherits the structure of a complex manifold 
with Tm(/C) = H0(F\f*Tx)/df(H°(F\TFi)). The canonical projection p : H K 
realizes H as a principal Aut(P1)-bundle over /C. Aut(P*) ^ S L ( 2 , C ) / { ± / } is a 3-
dimensional complex Lie group which acts transitively on P1, and we can represent 
P1 ^ Aut (P1) /Aut (P1;0) ) , as a homogeneous space, where Aut(P1;0)) C Aut(Px) 
is the (2-dimensional) isotropy subgroup at 0 G P1. Define U := 7 i /Aut (P1; 0). 
Associated to the principal Aut(P1)-bundle p : H K we have thus a holomorphic 
bundle of homogeneous spaces p : U -> K with fibers Aut (P1) /Aut (P1; 0)) = P1, 
which gives the universal family TT : U —•> /C. 

It can be proven tha t as a complex manifold /C is biholomorphic to a quasi-
projective manifold. In fact, there is a canonical injective holomorphic map from 
JC into the Chow space of X whose image is a dense Zariski-open subset /Co of a pro­
jective subvariety Q of some irreducible component of the Chow space of X. Thus, 
/C can be identified as the normalization of /Co and must itself be quasi-projective. 
From this identification the universal P1-bundle p : U —• /C can be compactified to a 
projective P1-fibered space. In particular, U is also quasi-projective. 

The fiber p-1(ft) = P1 of a point K G /C gives a copy of the Riemann sphere P1 
corresponding to the rational curve represented by K. From any choice of parametriza-
tion / : P1 —• X of «, a point on p_1(ft) gives a point of the cycle C = / (P1) C X 
determined by ft, and we have in fact a canonical holomorphic map p : U —> X 
which we call the evaluation map. From the nonnegativity of f*Tx it follows read­
ily tha t p : U —* X must be a holomorphic submersion. Thus, the universal family 
comes equipped with a canonical double fibration p : U —• /C, p : U —> X such tha t 
p(U) must contain a dense Zariski-open subset of X. As X is of Picard number 1, 

ASTÉRISQUE 322 



GEOMETRIC STRUCTURES DEFINED BY VMRTS 159 

any /C-curve must intersect any nontrivial divisor D, hence /C-curves must cover the 

complement of a subvariety Z c X o f codimension > 2; i.e., \x{U) D X — Z. 

2.3. /C-curves marked at a point. — Fix a point x G X and consider the set Hx 

of all holomorphic maps / : P1 —> X belonging to H such tha t / ( 0 ) = x. As a space 

of free rational curves marked at x, Hx carries naturally the structure of a complex 

manifold, as follows. The infinitesimal deformation of / G Hx as a parametrized 

rational curve marked at x is given by H°(F1J*TX (8) J0) , while the obstruction 

group to the deformation of / fixing the marking at x is given by i f1(P1, f*Tx ® Jo) , 

where Jo stands for the ideal sheaf defined by the reduced point 0 G P1. Since / * T x is 

nonnegative, f*Tx 0 Jo — /*Tx <8> O(-l) is a direct sum of holomorphic line bundles 

of degree > - 1 , and we still have Hl{¥x,pTx 0 Jo) = 0. Again Aut(P1;0) acts 

effectively on Wx, and we have a nonsingular quotient manifold Kx = W:c/Aut(P1; 0) 

serving as the base manifold of a holomorphic principal Aut(P1; 0)-bundle qx : Hx —• 

K,x. Through a general point x G X any rational curve of degree < deg(/C) must 

be free. It follows tha t /C-curves marked at such a point x cannot be decomposed 

into two or more irreducible components under deformations fixing the base point x. 

Thus, Kx must be compact, hence projective for a general point x € X. 

For a point x G X , although the complex structures on Jix and Ti arise from 

two distinct classification problems, set-theoretically Hx can still be identified with 

a subset of the complex manifold H. For every / G Hx the canonical inclusion 

i : Hx C H identifies the tangent space Tf(Hx) = H°(F1J*TX <8> Jo) as a vector 

subspace of H°(F1, f*Tx) = Tf(H) so tha t i : Hx C H is a holomorphic immersion, 

hence an embedding. We can therefore identify Hx as a complex submanifold of 

Ti. After this identification, in the construction of the universal family p : U —* /C, 

¡1 : U —• X the //-fiber Ux over any x G X is nothing other than 7Yx/Aut(P1; 0), so 

tha t JCX can be identified with Ux. On the other hand, p\ux : Ux —> /C need not be an 

embedding. In fact, it need not be bijective as a priori the cycle C = / (P1) underlying 

/ G Hx may be locally reducible at a;. At the same time, a simple calculation also 

shows tha t p\ux is an immersion at u G U precisely when the /C-curve K — p(u) 

is immersed at x := /x('u). Thus, it fails to be an immersion at a point u G Ux 

corresponding to a cusp on the minimal rational curve K = p(u). 

2.4. The tangent map and varieties of minimal rational tangents. — By 

Mori's Breaking-up Lemma, on a projective manifold X there does not exist any 

nontrivial algebraic family of rational curves fixing 2 distinct points. In fact, to each 

nontrivial algebraic 1-parameter family of rational curves fixing two distinct points 

one can associate a ruled surface 7r : S —• B over an algebraic curve B equipped with 

two disjoint holomorphic sections T0 and corresponding to the two distinct fixed 
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points. On the one hand, each of the two sections must have negative self-intersection 
number as it is an exceptional divisor on S. On the other hand, TQ = — as disjoint 
sections of a ruled surface, thus leading to a contradiction. 

Let now (X, K) be a uniruled projective manifold equipped with a minimal rational 
component. For x G X denote by Kx the moduli space of /C-curves marked at x. From 
Mori's Breaking-up Lemma one deduces (cf. Mok [39], Lemma (2.4.3), pp . 203ff.) 

Lemma 1. — For a general point x G X, a general member [/] G Kx is standard in 
the sense that f*Tx = 0 ( 2 ) 0 [0( l ) ]p 0 Oq for some nonnegative integers p and q. 

Proof. — Suppose otherwise. Then, a general /C-curve is not s tandard. Hence there 
exists a nonempty open subset W C H and a holomorphic vector field Z on W 
such tha t for every / G W, Z{f) vanishes at 0, oo G P1 and does not belong to 
df(H°(F1, Tpi)). Integrating Z and descending from H to /C we obtain some nontrivial 
holomorphic 1-parameter family {$t : t G A } of /C-curves passing through two distinct 
points x, y G X. Identifying /C as the normalization of a Zariski-open subset /Co of a 
projective subvariety Q of the Chow space of X , the set of /C-curves passing through x 
and y is naturally endowed the structure of a quasi-projective variety. The existence 
of a nontrivial holomorphic 1-parameter family of such curves implies therefore tha t 
there also exists a nontrivial algebraic 1-parameter family {tyt • t G B} of such curves. 
We may choose x such tha t any rational curve passing through x of degree < deg(/C) 
must be free, in which case any /C-curve passing through x cannot decompose under 
deformation fixing x, and the base curve B can be taken to be projective, leading to 
a contradiction with Mori's Breaking-up Lemma. • 

We have the following important notion of the tangent map and the associated 
varieties of minimal rational tangents. 

Definition 1 (the tangent map & VMRTs). — Let (X, /C) be a uniruled projective man­
ifold equipped with a minimal rational component K. Over a general point x G X we 
have a rational map called the tangent map rx : Kx —• FTX(X) defined by assigning 
each rational curve [/] marked and immersed at x to the complex line Cd/(To(P1)) C 
TX(X). The total transform Cx := rx{Kx) C FTX(X) is called the variety of minimal 
rational tangents, alias VMRT, of (X, K) at x. 

Note tha t a s tandard rational curve is immersed, since the natural map v : 0 ( 2 ) = 
TPi -> f*Tx = 0 ( 2 ) ® 0(l)]p ® Oq is injective at every point. For x G X a general 
point and [a] G Cx a smooth point such tha t a is tangent to a s tandard /C-curve 
I, assumed embedded for convenience, we write Pa for the positive par t ( 0 (2 ) 0 
0 ( 1 ) * % C TX(X) at x with respect to a splitting of Tx\i- The following result 
highlights the role of s tandard rational curves in relation to the tangent map. 
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Lemma 2. — Let (X, /C) be a uniruled projective manifold equipped with a minima^ 

rational component. Suppose x G X, and A G JCX is a marked K-curve which u 

immersed at its marking at x. Then, the tangent map rx : JCX —• FTX(X) is a holo­

morphic immersion at A if and only if the underlying K-curve is standard. Moreover, 

writing rx{\) = Ca, in the latter case we have T^(CX) = Pa/Ca. 

Proof — Parametrize A by / : P1 —• X such tha t / ( 0 ) = x. A tangent vector in 

T\(HX) is equivalently a holomorphic section a G H°(F1,f*Tx <S>2o). Write a := 

a mod df^F1) 0 J O ) . Let rj G ^ ( P 1 ) and write a := df(r)) G TX(X). Let T C X 

be a germ of holomorphic curve at x G X which is the image under / of the germ 

of P1 at 0. The germ of s at 0 corresponds to a section s in H°(T1Tx) vanishing at 

x. Extend s to a holomorphic vector field s on a neighborhood of x in X. Choose 

any holomorphic coordinate system at x G X and denote by V the flat connection 

defined by it. Va( s ) is independent of the extension s, and it is further independent 

of the choice of holomorphic coordinates since s(x) = 0. The differential of the 

tangent map drx at s G T\(JCX) is an element of Hom(TA(/Cx),T[oi]{FTx(X))). Now 

T[a](FTx(X)) = H o m ( C a , T x ( X ) / C a ) , so tha t we can interpret drx as an element oi 

Hom(T\(lCx) (8) Ca,T[a](PTa;(X))/Ca) canonically. In local coordinates we have 

drx(s)(a) = Va(s) mod C a . 

Thus s G Ker(drx) if and only if Va(s ) G C a , which is the case if and only if s vanishes 

to the order > 2 at x modulo C a . Hence Ker(drx) = 0 if and only if / G Hx C H is 

s tandard. The last statement in Lemma 2 follows readily from the proof. • 

By a line on a projective subvariety S C FN we will mean a projective line lying 

on S. Regarding minimal rational components and their VMRTs on a projective 

submanifold X c FN uniruled by lines we have 

Lemma 3. — Let X c P ^ be a projective submanifold equipped with the polarization 

inherited from the projective space, and K be a minimal rational component of X 

corresponding to a uniruling of X by lines. Then, at a general point x G X, the 

variety of minimal rational tangents Cx C FTX(X) is nonsingular, and the tangent 

map TX : Kx —• FTX(X) is a biholomorphism onto Cx. 

Proof — A /C-curve is a line I on X , and we have Tx\e C TFn\e ^ (9(2) 0 ^ ( l ) ^ - 1 . 

When £ is a free rational curve on X , Tx\i is a direct sum of holomorphic line bundles 

of degree > 0. Since 0 ( 2 ) = T£C Tx\u we conclude tha t Tx\£ ^ 0(2) 0 0(l)p 0 Oq 

for some nonnegative integers p and q. Now every /C-curve passing through a general 

point x is free, and the moduli space ICX of /C-curves marked at x is projective. By 

Lemma 2 the tangent map Tx : JCX —> FTX(X) is a holomorphic immersion. On the 

other hand, for each nonzero vector f G TX(X) C TX(FN) there is at most one line £ 
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on X tangent to £, so tha t rx must be injective. In other words, rx : K,x —> FTX(X) 

is a biholomorphism onto its image Cx, the VMRT at as desired. • 

While for projective submanifolds X C FN uniruled by lines the tangent map at a 

general point is an isomorphism, and the same remains t rue for all known examples, on 

a theoretical level the behavior of the tangent map on an abstract uniruled projective 

manifold (X, /C) is far from being fully understood. In Hwang-Mok [17] (1999) it was 

proven tha t the tangent map rx : Kx —» FTX(X) is birational under an additional 

non-degeneracy assumption on the Gauss map of the VMRT. On the other hand, the 

tangent map rx is holomorphic whenever every /C-curve marked at x is immersed at 

the marking. In 2002, Kebekus [26] showed by studying cusps of rational curves on 

X t ha t this is indeed the case at a general point x G X. He proved in fact tha t the 

tangent map is a finite holomorphic map at a general point x G X. In conjunction 

with [26] and Cho-Miyaoka-Shepherd-Barron [3], we proved 

Theorem 1 (Hwang-Mok [21]). — Let (X, /C) be a uniruled projective manifold 

equipped with a minimal rational component JC and x be a general point on X. 

Then, {JCX is projective and) the tangent map rx : JCX —> Cx is a finite birational 

holomorphic map onto its image. In other words, JCX is the normalization of the 

variety of minimal rational tangents Cx at a general point x G X. 

Remarks. — The results on the tangent map apply to a rational component /C when­

ever the variety of /C-tangents is projective at a general point. In the literature /C is 

referred to as a non-splitting family of rational curves on X. One may extend the 

notion in (2.1) of a minimal rational component to mean a rational component JC 

such tha t the variety of /C-tangents at a general point is projective. In this article we 

use the term 'minimal ' to mean minimality of degrees among free rational curves, but 

s tatements of results remain valid for the extended meaning of 'minimality' . 

2.5. Examples. — As first examples we consider the n-dimensional Fermat hyper-

surface X of degree d in Pn+1, where 1 < d < n. Thus, 

X [ZQ,ZI, • • • ,zn+i] £ p n + 1 . z0 + tw0)d H[ZQ,ZI,[ZQ, 

To determine the VMRT at a general point x = [ZQ, zi,..., zn+i] € X, it is equivalent 

to find all (wo,w\,..., wn+i) such tha t for every t € C, [zo+two, z\ +twi,..., zn+i + 

twn+i] 6 X. In other words, we have 

(z0 + tw0)d H + (zn+1 + twn+i)d = 0, i.e., 

(4 +••• + 4) + *(*o_1™o + • • • + 4+\wn+i) • d 

+ t2(zd-2wl + -.- + zdn-+lwl+1)-
d(d-l) 

2 
\----+td(wd + wf + --- + wdn+1)=0. 
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When (¿0, ¿ 1 , . . . , zn+i) is fixed, we get d + 1 homogeneous equations given by 

(b)fc -̂*wg + .-. + z ^ X + i ; o < f c < d 

The equation (b)o says tha t x — [20,21, • • • , 2n+i] lies on X . The equation (b)i says 

tha t the vector (wo, wi , • • • , tun+i) mod C(^o, ¿1, • • • , £n+i) is tangent to X at The 

d — 1 other equations describe Cx as the intersection of d — 1 hypersurfaces of degree 

2 ,3 , • • • , d in PTX(X) ^ Pn_1 . Geometrically the system of equations (b)fc, 0 < k < d, 

says tha t a line ^ touching X at a; to the order > d must necessarily lie on X. By 

Lemma 3, Cx is smooth for a general point x G X . The anti-canonical line bundle of 

Pn+1 is isomorphic to 0(n + 2). Since X C Pn+1 is of degree d, the normal bundle 

iVx|p™+i on X is isomorphic to the restriction of 0(d) to X . By the Adjunction 

Formula, de t (Tx) = 0(n + 2 - d)\x. Over a line ^ C X C Pn+1 which is free as 

a rational curve we have Tx\t = 0 ( 2 ) 0 ( 0 ( l ) ) n _ d 0 Od~l by the proof of Lemma 

3, so tha t the VMRT at a general point of X is of dimension n — d. It follows tha t 

for 1 < d < n, the degree-d Fermat hypersurface X C Pn+1 is uniruled by lines 

such tha t the VMRT at a general point is the (n — d)-dimensional smooth complete 

intersection of d — 1 hypersurfaces on PTX(X) = Pn_1 , which is necessarily connected 

whenever n — d > 0. Wi th exactly the same argument the VMRT at a general point 

of any smooth Fano hypersurface of Pn+1 of degree d < n — 1 must necessarily be a 

(connected) smooth complete intersection of dimension n — d> 1. 

Note tha t in general for any smooth hypersurface X C Pn+1, K^1 = G{n + 2 — d) 

is in fact ample for 1 < d < n + 1. In the case where d = n + 1, the minimal rational 

curves are however no longer lines. They are quadric curves C of Pn+1 which lie on 

X , and Tx\c = 0 ( 2 ) 0 £>n-1, so tha t VMRTs are O-dimensional at a general point. 

Table 1 gives a description of the (smooth) VMRT at a general point of a smooth 

Fano hypersurface of degree < n in Pn+1 highlighting some examples of special inter­

est. Here we denote by X ^ a smooth hypersurface of degree d in Pn+1. 

The first problem tha t we treated in our programme is the question of rigidity 

of irreducible Hermitian symmetric spaces under Kahler deformation (Hwang-Mok 

[15]) by a s tudy of deformation of their VMRTs. Table 2, taken from [15] ((2.1), 

p. 440), gives their VMRTs. In this table G s tands for the identity component of 

the isometry group of (5 , #), where g is a canonical Kahler-Einstein metric on 5 , and 

K C G denotes the isotropy subgroup at 0 G S. G(p, q) s tands for the Grassmannian 

of p-planes in Cp+9, G7 / (n ,n ) c G ( n , n ) the complex submanifold of n-planes in C2n 

isotropic with respect to a non-degenerate symmetric form, G7/(n , n) C G(n, n) the 

complex submanifold of n-planes in C2n isotropic with respect to a symplectic form. 

O stands for the octonions. 
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X VMRT Cx at a general point 

pn jpn — 1 

Qn QU-2 c p n - 1 

smooth cubic C Pn+1 quadric D cubic in Pn 1 

X¡ CP6 if3-surfaces 

Xn c p n + 1 n\ points 

MXN c p n + l 5 d < n codim—(d — 1) complete intersection C Pn 1 

of hypersurfaces of degrees 2 , . . . , d 

TABLE 1. V M R T at a general point for smooth hypersurfaces of degree 

D < N in Pn+1 

Type G K G/K = S Co Embedding 

I \sU(p + q) S{U{p) x U(q)) G(p,q) pp - i x pq - i Segre 

II SO(2n) U(n) GH(n,n) G ( 2 , n - 2 ) Plücker 

III Sp{n) U(n) Gni(n,n) pn —1 Veronese 

IV SO(n + 2) SO(n) x 5 0 ( 2 ) Qn Qn~2 by 0(1) 

V 
E6 

Spin(lO) x [7(1) P2(0) ®RC G /7(5,5) by 0(1) 

VI E7 E6 x ¡7(1) exceptional P2(0) 0 R C Severi 

TABLE 2 . Table of irreducible Hermitian symmetric spaces S of the com­

pact type and their VMRTs Co 

3. Linearly degenerate VMRTs 

3.1. Distributions and differential systems generated by VMRTs. — Let 

(X, /C) be a uniruled projective manifold equipped with a minimal rational component. 

Suppose the VMRT Cx at a general point x G X is irreducible and linearly degenerate. 

Then, it spans a meromorphic distribution W C Tx- The singularity set Sing(W) is of 

codimension > 2 in X. Suppose W is integrable, then a leaf L of W is quasi-projective, 

and its compactification L can be obtained as follows. Pick a point x G X — Sing(VF). 

Consider the subvariety V\(x) swept out by all /C-curves passing through x. Enlarge 

Vi(x) to obtain V2(x) by adjoining all minimal rational curves passing through general 

points on V\(x) and taking topological closure. Repeating this process a finite number 

of times, we obtain a compactification of the leaf Lx through x (Hwang-Mok [15], 

Proposition 11). By definition, any /C-curve £Q emanating from x lies on Lx, and 
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by the deformation theory of rational curves £o can always be deformed to avoid the 

set Sing(VF) which is of codimension > 2 in X , yielding a /C-curve £ disjoint from a 

hypersurface Tí C X swept out by compactifications of leaves of W. This is possible 

only if X is of Picard number > 2. We have in fact 

Proposition 1. — Let (X, /C) be a Fano manifold of Picard number 1. Suppose for a 

general point x G X the associated variety of minimal rational tangents Cx is irre­

ducible and linearly degenerate. Then, the distribution W spanned at a general point 

by Cx cannot be integrable. More generally, any proper distribution D on X containing 

W cannot be integrable. 

In general, from W C X one can derive a finite series of distributions W = W\ C 

W2 C • • • C Wk = Wk+i = • • • where Wi is defined by induction by setting W¿+i = 

[Wj, Wj] as sheaves. We have thus the weak derived system generated by W. In case 

X is of Picard number 1, Proposition 1 applies to D = Wk to show tha t the tangent 

bundle can be recovered from W by successively taking Lie brackets. 

3.2. Integrability of distributions via projective geometry of VMRTs. — 
While [(3.1), Proposition 1] forces a distribution spanned by the VMRT at a general 

point to be non-integrable when the uniruled projective manifold X is of Picard 

number 1, we prove on the other hand tha t sufficient conditions for integrability of 

W can be deduced from projective-geometric properties of VMRTs. The argument 

goes as follows. The lack of integrability of W is encoded in the Probenius form 

<p : A2W —> Tx/W, and integrability amounts to the vanishing of ip by the Probenius 

Theorem. To prove tha t W is integrable it suffices to produce at a general point 

x G X enough elements of Ker((px) to span A2WX. In particular, if E is a germ 

of complex-analytic integral surface of W passing through x and TX(E) is spanned 

by rji and 772, then 771 A 772 G Ker(<px). We consider a s tandard /C-curve i passing 

through x and smooth at x, and take a smooth point XQ G I distinct from x. Then, 

any pencil of rational curves emanating from XQ including £ and smooth along £ 

produces a germ of surface E at x. Since the pencil fixes y,Tx(E) is spanned by 

Tx£ = Ca and a vector belonging to Pa. Thus TX(E) c Pa C S p a n ^ ) = Wx. An 

analogous statement holds for any y G E sufficiently close to x, implying tha t E is 

a germ of integral surface of W at x. By linear algebra as explained in Hwang-Mok 

([14], §2) we derived the following sufficient conditions for the integrability of W in 

terms of projective-geometric properties of VMRTs. For the formulation, given a 

finite-dimensional complex vector space V and any irreducible subvariety Z C PV, its 

tangent variety T C ¥(A2V) is by definition the closure of the set of elements [a A /3] 

where a is a smooth point of Z and j3 G Ta(Z). We have 
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Proposition 2. — The distribution W is integrable if the tangent variety Tx C 
P(A2W/X) of Cx is linearly non-degenerate for a general point x G X. The latter is in 
particular the case whenever the second fundamental form < 7 [ a ] : T[aj(Cx) xT[aj(Cx) —• 
Ncx\FWx,[ct] °& a general smooth point [a] of Cx is surjective. 

Proposition 3. — Suppose at a general point x G X the variety of minimal rational 
tangents Cx C FW C FTX(X) is irreducible and smooth anddim(Cx) > y rank ( V F ) - l . 
Then, W is integrable. 

3.3. Fano homogeneous contact manifolds. — From the perspective of geo­
metric structures associated to VMRTs, after the irreducible Hermitian symmetric 
spaces of the compact type one naturally turns to rational homogeneous manifolds 
S = G/P of Picard number 1. Here G is simple and P C G is a maximal parabolic, 
corresponding to the choice of a simple root in the Dynkin diagram of the Lie alge­
bra g of G. For the background on rational homogeneous manifolds, especially root 
space decompositions, graded Lie algebras and G-invariant distributions we refer the 
reader to Hwang-Mok ([16], (3.3)-(3.4)). Among them, the Fano homogeneous con­
tact manifolds were studied in relation to rigidity under Kahler deformation in Hwang 
[10] (1997). On a complex manifold X of dimension > 2, a holomorphic distribution 
W C Tx is said to be a contact distribution if and only if W is of co-rank 1 and the 
Frobenius form ip : A2W —> Tx/W is non-degenerate at every point x G X. 

For the classification of Fano homogeneous contact manifolds we follow Boothby 
[1]. In the case of g = Ak, k > 2, S is of Picard number 2, S = FT*k. For the case of 
g = Ck we have S = P2fc_1 as a complex manifold. These cases will be excluded. For 
any other simple complex Lie algebra g there is a unique choice of a long simple root in 
the Dynkin diagram of £j, corresponding to a choice of a maximal parabolic subalgebra 
peg, such tha t the associated rational homogeneous manifold S = G/P is of contact 
type. We write S = K(g). In Table 3 we list the relevant Fano homogeneous contact 
manifolds of Picard number 1 according to the classification of with information on 
the Levi factor q C p, and a description of the VMRT Co C PWo as given in Hwang 
([10], Proposition 5). 

As examples of Fano homogeneous contact manifolds described in geometric terms 
consider those arising from hyperquadrics as follows. For the hyperquadric Qn of 
dimension n > 5 consider the minimal rational component / C ( Q N ) , i.e., the moduli 
space of lines £ on Q N , which is a rational homogeneous manifold. We have TQ™^ = 
0 ( 2 ) 0 ( 0 ( l ) ) n _ 2 0 ( 9 for every £ G / C ( Q N ) . The normal bundle Ne]Qn ^ ( 0 ( l ) ) n - 2 0 0 . 
At any £ G K,(Qn) the tangent space T^{K{Qn)) can be identified with the vector space 
H°(£, Ni\Qn) and it contains a vector subspace № ( £ , (0 ( l ) )n~2) ) of codimension 1 

which defines, as £ varies, a holomorphic distribution V C T^Qn) of co-rank 1. Since 
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9 q Co Embedding 

Bk Ax x Bk-2 P1 x Q2k~5 Segre* 

Dk A1 x Dk-2 p i x Q 2 f c - 6 Segre* 

G2 A1 p i by 0 ( 3 ) 

F4 Cs G7/(3,3) by 0 ( 1 ) 

E6 A5 

E7 D6 

G(3,3) 

G/7(6,6) 

by 0 ( 1 ) 

by 0 ( 1 ) 

Es E? exceptional** by 0 ( 1 ) 

* Here k > 3 for q = Bk, k > 4 for g = D/e. The embedding arises from the Segre 

embedding of P1 x Pm into P2m+1 and the canonical embedding Qm_1 C Pm. 

** In this case CO is biholomorphic to the irreducible compact Hermitian symmetric space 

of type VI pertaining to E7, of dimension 27. 

TABLE 3. Table of Fano contact homogeneous spaces S ¥ P2n_1 of Picard 

number 1 and their varieties of minimal rational tangents 

ft > 5, Cx = Qn~2 is of Picard number 1, and the base manifold JC(Qn) of the double 

fibration 11 : U —> Qnp : U —> JC(Qn) is also of Picard number 1. For any x G Qn 

any vector a tangent to Cx arises from an element of H°(£,N¿\Qn) vanishing at 

thus taking values in ((D(l))n-2, and Cx projects under the canonical map p' : C —> K 

to a submanifold Qx G JC(Qn) which is tangent to V. The VMRT Cx is isomorphic 

to Qn~2 = Pn_1, and it contains a projective line A whose image under p' gives a 

minimal rational curve on K,{Qn). (For this n > 4 is enough.) Thus, any minimal 

rational curve on K(Qn) is tangent to V. From [(3.1), Proposition 1], V C 3jc(Qn) 

is not integrable. Qn is associated to the classical groups G of type Bk or for 

which every rational homogeneous manifold S = G / P of Picard number 1 has at 

most 1 proper G-invariant distribution. Hence, denoting by (p : A2T> —> T^Q^/V 

the Frobenius form, the kernel Ker(^) C P must be trivial, and we conclude tha t the 

Frobenius form (p defines a twisted symplectic form on the distribution V, and K{Qn) 

is a Fano homogeneous contact manifold of Picard number 1. 

For any I G /C(Qn), any x G £, Tx(£) = C a , FTe(Qx)nFT£(IC(Qn)) parametrizes the 

space of lines on Cx passing through [a], and it defines a hyperquadric in P7]a](Cx), 

of dimension n — 4. As the point x varies over £, we recover a P1-family of disjoint 

(n - 4)-dimensional hyperquadrics which exhausts the VMRT C'e G FT£()C(Qn)). This 
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family is actually isomorphic to the product P1 x Qn 4. (This product structure can 

be explained in terms of the parallel t ransport of second fundamental forms along £ to 

be given in (6.2).) For n = 2k - 1 with k > 3, /C(Qn) - K(Bk) and C'£^¥1x Q2k~5; 

for n = 2k - 2 with k > 4 we have K(Qn) = K{Dk) and P1 x Q2k~6. 

Excepting for P2n_1 of dimension > 3, which we exclude, for any Fano homogeneous 

contact manifold (S,D) of Picard number 1, dim(S) = 2s + 1, the line bundle L := 

Ts/D is isomorphic to 0 ( 1 ) , the positive generator of the Picard group Pic(S) . Thus 

for any minimal rational curve I on 5 , = 0 ( 2 ) must project to 0 on L — Ts/D, so 

tha t £ is tangent to D. Over a minimal rational curve £ on S we have D\t = 0 ( 2 ) 0 

( 0 ( 1 ) ) P ® 0 P 0 0 ( — 1 ) by root space decomposition. All known Fano contact manifolds 

are homogeneous. The question of characterization of Fano contact manifolds (X, D) 

is known to be reducible to the essential case where X is of Picard number 1 and where 

L := Tx/D ^ 0 ( 1 ) (Kebekus-Peternell-Sommese-Wisniewski [27] (2000)). Kebekus 

[25] (2001) proved in this case tha t X is uniruled by degree-1 curves. From elementary 

consideration involving splitting types and the non-degeneracy of the Frobenius form 

<p : A2D —• L one deduces readily tha t all minimal rational curves £ passing through 

a general point x are s tandard. In [25] it was proven tha t £ is actually smooth. Thus, 

Cx C ¥TX(X) is a Lagrangian submanifold with respect to the symplectic form (px. 

It is tempting to believe tha t the complex structure of X can be recovered from its 

VMRTs. 

Conjecture 1. — Let X be a Fano contact manifold. Then, X is biholomorphic to a 

Fano homogeneous contact manifold. 

Confirmation of Conjecture 1 would imply the same for the LeBrun-Salamon Con­

jecture (LeBrun [34], 1995), according to which a compact quaternionic Kahler mani­

fold (M, h) of positive scalar curvature is Riemannian symmetric. The link is given by 

the twistor construction, by which one obtains from (M, h) a twistor space X which 

admits the s tructure of a Fano contact manifold. We note tha t for a Fano contact 

manifold X of Picard number 1 other than p2n_15 the contact s tructure is unique 

since the contact distribution is spanned at a general point by the VMRT. 

Among Fano homogeneous contact manifolds of Picard number 1 other than p2n-15 

the one of smallest dimension is i f (G2), of dimension 5, where the VMRT is the cubic 

rational curve in FDX = P3 for the contact distribution D of rank 4. Other than 

the projective plane P2 and the 3-dimensional hyperquadric Q3, K(G2) is the only 

rational homogeneous manifold of Picard number 1 with 1-dimensional VMRTs. 

3.4. Applications to rigidity under Kahler deformation. — Regarding the 
problem of rigidity of rational homogeneous manifolds S = G/P of Picard number 

1 under Kahler deformation, the first result was established for the special case of 
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irreducible Hermitian symmetric spaces of the compact type in Hwang-Mok ([15], 

1998). After a series of articles we have now settled the problem, as follows. 

Theorem 2 (Hwang-Mok [23]). — Let S = G/P be a rational homogeneous manifold 

of Picard number 1. Let n : X —> A := {t G C, \t\ < 1} be a regular family of projective 

manifolds such that Xt := is biholomorphic to S for t ^ 0. Then, Xo is also 

biholomorphic to 5 . 

S = G/P is determined by the choice of a simple root in the Dynkin diagram. 

When it is a long root, considerations on integrability of distributions spanned by or 

derived from VMRTs enter in an essential way. In the case of irreducible Hermitian 

symmetric spaces 5 , excluding the obvious case of PN, we make use of 5-structures (cf. 

(4.2)). An 5-structure on a complex manifold M can be equivalently defined by the 

varieties of highest weight tangents 7r : W ( M ) —• M , and in the case of M = 5 , the 

latter agrees with the fibered space n : C —• 5 of VMRTs. The idea is to consider the 

VMRT CXO(XQ) at a general point of X0. Suppose CXo(Xo) c PTXo(X0) is congruent 

to the model Co C PTQ (5 ) . Prom closedness of the flatness condition (cf. (4.3)) the 

5-structure at x$ G Xo is flat. By Matsushima-Morimoto [35] the moduli space of 

projective submanifolds A C FV congruent to Co C PT0(5) is isomorphic to an affine 

algebraic variety. Let E C Xo be the singularity set of the 5-structure defined at 

general points of X Q . Since E C X is of codimension > 2 we have by [35] Hartogs 

extension of 5-structures on the relative tangent bundle of TT : X —> A, and Xo carries 

a flat 5-structure, implying tha t Xo is isomorphic to the model space 5 from Ochiai's 

Theorem [47] on 5-structures (cf. (4.2) here) and the method of developing maps. 

Thus it remains to identify the VMRT at a general point xo G XQ with tha t of 

the model space. For t G A, at xt G Xt denote by JCXt the moduli space of minimal 

rational curves marked at Xt. For a generic choice of holomorphic section a : A —> X, 

as t varies over A, {ICa^} constitutes a regular family of projective manifolds such 

tha t lCa(t) — Co(5) for t t£ 0. Noting tha t Co(5) is itself a Hermitian symmetric 

space (cf. (2.5)), irreducible except in the case of the Grassmannian, by an inductive 

argument coupled with cohomological considerations in the case of the Grassmannian, 

/CA(0) remains biholomorphically equivalent to Co (5) . To reconstruct an 5-structure 

on Xo it remains to examine the tangent map rCT(0) : /CA(0) —» PTcr(0)(^o)- From 

the rigidity of JCa^ at t = 0, degeneration of VMRTs can only arise from a linear 

projection on the model Co(5). If this happens at a general point of XQ , we obtain a 

distribution W C Tx0 generated at a general point by its VMRT. On the one hand, 

by [(3.1), Proposition 1] W is not integrable since Xo is of Picard number 1. On the 

other hand, from the description of Co (5) as the closure of the graph of a vector-valued 

quadratic polynomial, at any [a] G Co (5) the second fundamental form a is surjective. 

By linear projection the same remains t rue for Ca{o){Xo)-> and by [(3.2), Proposition 
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2] the distribution W C Tx0 is integrable, yielding a contradiction and proving tha t 

the VMRT is linearly non-degenerate at a general point of X Q , implying X0 = S. 

In the case where 5 is a Fano homogeneous contact manifold other than p2n-15 

the VMRT Co (S) c P£>0, where D C Ts is the contact distribution. The kernel of 

the Frobenius form ip0 : A2D0 —> T0(S)/Do = C is of codimension 1. Theorem 2 

for the contact case was established in Hwang [10]. Following the same scheme as 

in the Hermitian symmetric case, the problem reduces to showing tha t for a generic 

choice of a holomorphic section a : A —• X, the linear span Wa(0) of C£7(0)(X0) is of 

codimension 1, and C£7(o)(X0) C PWCT(0) is congruent to the model C0(5) C PZ>o- In 

fact, granting this one can recover the structure of a Fano contact manifold on the 

central fiber Xo, and we have Xo = S by the local rigidity result of LeBrun [34] for 

Fano contact manifolds. It remains to rule out degeneration of VMRTs at a general 

point xo G Xo corresponding to a proper linear projection of Co (S). Such a linear 

projection cannot occur, because the second fundamental form cro of Co C PL>o at 

[a] G Co(S) has image of codimension 1, and any proper linear projection \ °f Co(S) 

renders the second fundamental form surjective at a general point [/?] of the image 

x(Co(S)). In other words, if the VMRT at a general point on X0 were more linearly 

degenerate than the model case, the distribution W on Xo would become integrable, 

violating [(3.2), Proposition 2]. 

Given a distribution on a complex manifold, one can define a differential system 

by successively taking Lie brackets. On a uniruled projective manifold (X, /C) with 

an irreducible and linearly degenerate VMRT a general point, the distribution W 

spanned by VMRTs gives rise to such a differential system. When S = G/P is 

defined by a long simple root but is neither of the symmetric nor of the contact 

type, Theorem 2 was solved by Hwang-Mok ([19], 2001). We make use of the work 

of Yamaguchi [51] on symbol algebras arising from differential systems on rational 

homogeneous manifolds. Following the same scheme of proof for Theorem 2 as above 

and making use of [51], the key issue is to prove tha t the differential system on the 

central fiber derived from the VMRTs is isomorphic to tha t of the model space. The 

VMRTs are tangents to minimal rational curves, and the argument using pencils of 

minimal rational curves in (3.2) produces elements in the kernel of the Frobenius 

form (px : K2WXQ —• TXQ(Xo) /WXo at a general point Xo G X Q . We can consider the 

universal Lie algebra defined by taking elements of WXQ as generators, and by taking 

the relations to be those generated by the argument of pencils of minimal rational 

curves in (3.2). Using Serre relations, we show tha t this universal Lie algebra is 

isomorphic to the symbol algebra at 0 G S defined by To (S) as a nilpotent algebra. 

In particular, proper linear projection of Co (S) will yield a distribution such tha t 

the maximal distribution obtained by successively taking Lie brackets, which is by 

definition integrable, remains a proper distribution W$ C TxQ- This violates [(3.2), 
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Proposition 1] and solves the key difficulty of Theorem 2 for the long root case being 

considered. 

The method of using distributions associated to VMRTs does not in general work 

for the short root case. In all remaining cases one imitates the same scheme of proof, 

but in a typical case defined by a short root the key difficulty occurs after we already 

know tha t the VMRT at a general point of the central fiber agrees with tha t of the 

model space. New ideas are needed to complete the proof of Theorem 2. In (4.4) 

we will examine the degeneration of the Lie algebras of holomorphic vector fields 

associated to TT : X —• A by resorting to a study of prolongation of algebras of 

infinitesimal automorphisms associated to VMRTs. 

4. Holomorphic G-structures and prolongations associated to VMRTs 

4.1. Holomorphic conformal structures. — By a holomorphic metric on a com­

plex manifold M we mean a nowhere degenerate holomorphic symmetric 2-tensor. In 

local holomorphic coordinates (zi), we have g = gij(z)dzl®dzi sucn tha t det(gij)(z) 

is nowhere zero. For x G M , a tangent vector a G TX(M) is called a null vector if 

and only if g(a, a) = 0. The space Mx of null vectors at x is called the null cone at 

x. It corresponds to a hyperquadric Qx C FTX(M) which we call the variety of null 

tangents. On (M,g) there is a unique holomorphic torsion-free connection V such 

tha t V# = 0 on M , analogous to the Levi-Civita connection in Riemannian geometry, 

given by the same formula 

1 ij ~ 
1 

£ 

gM dgu 
dzj 

dgu 
dzi 

dgij 

dze 

for the Riemann-Christ off el symbols (T^-). On a complex manifold M two holomor­

phic metrics g and g on are said to be conformally equivalent to each other if and 

only if there exists a nowhere vanishing holomorphic function A such tha t g — Xg. 

The Riemann-Christoffel symbols (rfj) of g are related to those of g by 

ij 
1 

2X9 
H£ < d 

\dzj 
*9u) + Q^SX9ji) ~ Q^^j\ 

= TK 4 
I>3 

1 

2 

d 

dzj 
log A 4 

1 

2 

d 

dzi 
log A 

1 

2 
£ 

9M 
d 

dz£ 
log A 9ij • 

A (parametrized) complex geodesic on M is a nonconstant holomorphic map 7 : D —• 

M defined on some domain D c C satisfying in analogy to geodesies in Riemannian 

geometry the second order differential equation 

d27 

dt2 
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Replacing g by g = Xg we have 

¿>27 
dt2 r77 = (di loS A)7 

1 

2 
ù*$ 

*$ù a 
ù*$ù 

log A #77 ' 

where 7 s tands for In invariant form the differential equation is given by V77 = 0. 

A complex geodesic 7 is called a null geodesic if and only if j(t) lies on the null cone 

jV7(t) for every t G D. Since V# = 0, for a complex geodesic #77 is a constant. In 

particular, 7 is a null geodesic if and only if 7 is a null vector at one point. Suppose 7 

is a null geodesic on (M,g). Then, with respect to the holomorphic metric g we have 

¿^7 

at2 
- r 

1 77 
(d7 log A)7 . 

Write f(t) := d7logA(£). At a point to G D , making a local holomorphic change of 

variable s = s(t) at ¿0 and writing t = (p(s),^(t) = p(s), we have 

d2fi 

ds2 

=$ dp 

yds ds = <p'(sY-
ah 
at2 

[ZQ,ZI, 
dj 

dt 
\-<p\a)2T¥l = v"(s) + {<p'(s)2f(<p(t))) 

$7 

at 

Thus, making a change of variables by solving by means of power series the second 

order differential equation ip"{s) + ((p'(s)2f((p(s))) = 0 admits a unique solution 

subject to a choice of so = y~l{to) and a choice of <¿/(so). In other words, a germ 

of null geodesic on (M,g) can be re-parametrized to give a germ of null geodesic 

on (M,g). We will sometimes speak of a complex geodesic to mean the image of a 

parametrized complex geodesic. In this sense, the space of null geodesies on (M, g) is 

a property of the conformai equivalence class of g. 

By a holomorphic conformai s tructure on M we will mean a holomorphic line 

subbundle A c S'2T^f, generated at each point by a non-degenerate holomorphic 

symmetric 2-tensor. Equivalently, it is given by the da ta (t/a, ga)aeA consisting of 

holomorphic metrics ga on open subsets Ua covering M such tha t over the non-empty 

overlaps Uap = UanUp, ga and g@ are conformally equivalent. A holomorphic confor­

mai s tructure on M is equivalently defined by the fibered space of varieties of null tan­

gents 7T : Q —• M, and we will speak of (M, Q) as a complex manifold equipped with 

a holomorphic conformai structure. Each null geodesic lifts to a local holomorphic 

curve on Q by sending a point *y(t) to [y(i)] G Q[7(t)], which we call the tautological 

lifting, and we have a 1-dimensional holomorphic foliation on (M, Q) by liftings of 

null geodesies. In Riemannian geometry, for computations at a given base point one 

often makes use of local coordinates with respect to which the Riemann-Christ off el 

symbols ( r * - ) vanish at the base point 0. The proof of existence of such coordinates 

works verbatim in the holomorphic situation. Starting with a given holomorphic local 

coordinate system (ZÍ) at a point x G M , z(x) = 0, such tha t gij(0) = ¿¿j, we intro­

duce a new holomorphic coordinate system (vjj) such tha t w(0) = 0 and ^ - ( 0 ) = . 
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Writing 

kcc 

1 gijdz1 0 dz^ = 
k,£ 

hkedwk 0 dwe , hke = 

*,3 

9IJ 

ù*$ 

dwk 

dzj 
^ù$ 

dhk£ 

dws 
(0) 

dgki 
dzs 

(0) 

[ZQ,ZI, 

dwsdwk 
-(0) 

d2zk 

dwsdw£ 
( 0 ) . 

Now choose (wk) such tha t [ZQ,ZI, [ZQ,ZI,[ZQ,Z where = cks. Then, setting 

ù*$ 1 

2 

m:ù 

*ù* 
daks 
dz£ 

dgS£ 
dzk 

(0) = -ri(o). 

we conclude tha t ^ ^ ( 0 ) = 0, and as a consequence r^-(0) = 0 in w coordinates. 

In Riemannian geometry for a given base point x there is a privileged coordinate 

system adapted to x given by the geodesic normal coordinates in terms of which 

in particular the Riemann-Christoffel symbols vanish at x. The notion of geodesic 

normal coordinates generalizes in the setting of holomorphic metrics. 

To start with we note tha t complex geodesies can be re-parametrized by a rescaling 

of the domain variable. Let D C C be a domain containing 0, x G M , and 7 : D —» M 

be a parametrized complex geodesic such tha t 7(0) = x. Then, given any nonzero 

complex number A G C, the function S : -j^D —> M defined by S(t) = 7(At) is again 

a parametrized complex geodesic, as can be seen from the defining equation for a 

complex geodesic. On the total space n : L —> PTX(M) of the tautological line bundle 

over PTX(M), for a sufficiently small neighborhood U of FTX(M) one can define a 

holomorphic map $0 : U —> M, as follows. For [a] G PTX(M) and rj G L[a] = C a , 

x] — toe sufficiently small, let 3>oM De 7a (*) > where 7 is the unique germ of complex 

geodesic at 0 6 C such tha t 7(0) = x and |t=o = a- If we replace a by Aa for 

some nonzero A, then 7Aa(^) = 7«(*) fr°m uniqueness of geodesies with fixed initial 

value and initial first derivative. It follows tha t $(77) is well-defined, and we have a 

holomorphic map $0 : U —> M which collapses FTX(M) to x, from which it follows 

readily tha t $0 descends to a holomorphic map $ : Q —• M , where O is a neighborhood 

of 0 in Tx. From the construction we have readily d$(0) = id. (p is the holomorphic 

exponential map, and it defines holomorphic geodesic normal coordinates at x. Wi th 

respect to these coordinates, obviously the Riemann-Christoffel symbols vanish at 

0. Moreover, by the same proof as in Riemannian geometry, the holomorphic metric 

admits a power series expansion at 0 in terms of the curvature tensor and its covariant 

derivatives at x. In particular, if the curvature vanishes identically, the holomorphic 

geodesic normal coordinates define a coordinate system with respect to which the 

holomorphic metric tensor (gij) is of constant coefficients. We may take gij to be 6ij. 

Exactly as in Riemannian geometry, the curvature tensor Ri3k of (M,g) admits a 

decomposition Rijk£ = Aiju'+Wyk1, where W = (Wijk£) G # ° ( M , A2T^(g)End(TM)) 
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is the Bochner-Weyl tensor, which is unchanged when a holomorphic metric is mod­
ified by a conformal factor. A holomorphic metric is by definition conformally flat if 
and only if W = 0. A conformally flat holomorphic metric g is conformally equivalent 
to a holomorphic metric h with vanishing curvature, i.e., Rh — 0. Using holomorphic 
geodesic normal coordinates for h, we have seen tha t g is conformally flat if and only 
of it is given locally by gij = for an appropriate choice of holomorphic coordinates 
and for some non-zero holomorphic function A. 

4.2. G-structures associated to irreducible Hermitian symmetric spaces of 
rank > 2. — The model space of a holomorphic conformal s tructure is the hyper-
quadric Qn,n > 3. In terms of Harish-Chandra coordinates on an open Schubert 
cell U C Qn, the Euclidean translations on U extend to automorphisms of Qn, and 
the null-cones N on Qn form a constant family since they are invariant under auto­
morphisms of Qn, showing tha t the the holomorphic conformal s tructure on U C Qn 
is defined by the equivalence class of a holomorphic metric of constant coefficients. 
Holomorphic conformal structures will also be referred to as hyperquadric structures, 
or <2n-structures, in a sense tha t applies in general to Hermitian symmetric spaces 
S of the compact type and of rank > 2. In this general context the hyperquadric 
s tructure on Qn is said to be flat (or integrable) in the sense tha t there exists local 
holomorphic coordinates (the Harish-Chandra coordinates) with respect to which the 
null cones N C Tgn form constant families over the coordinate charts. 

The notion of a hyperquadric s tructure generalizes to 5-structures for any irre­
ducible Hermitian symmetric space of rank > 2. For the fibered space of null cones 
7T : N —» M of a complex manifold M equipped with a holomorphic conformal struc­
ture, there is an underlying complex Lie group consisting of linear transformations 
preserving a model light cone A/ó C V := To(Qn). The group is precisely the reductive 
complex Lie subgroup C • 0 ( n ; C) C GL(V). In general for any complex Lie subgroup 
G of GL(V) for a finite-dimensional complex vector space we have the notion of a 
(holomorphic) G-structure. For its formulation let n be a positive integer, V be an n-
dimensional complex vector space, and M be any n-dimensional complex manifold. In 
what follows all bundles are understood to be holomorphic. The frame bundle T{M) 
is a principal GL(F)-bundle with the fiber at x defined as Jr{M)x — Isom(V, TX(M)). 

Definition 2 (G-structure). — Let G C GL(V) be any complex Lie subgroup. A holo­
morphic G-structure is a G-principal subbundle Q(M) of T{M). An element ofQx(M) 
will be called a G-frame at x. For G C GL(V) we say thatQ(M) defines a holomorphic 
reduction of the tangent bundle to G. 

We have in general the notion of a flat G-structure, as follows. 
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Definition 3 (flat G-structure). — In terms of Euclidean coordinates we identify ^{UQ/) 

with the product G L ( y ) x Ua. We say that a G-structure Q(M) on M is flat if and 

only if there exists an atlas of charts {(pa : Ua —> V} such that the restriction Q(Ua) 

ofG(M) to Ua is the product G x Ua C GL(V) x Ua. 

Let (S,g) be an irreducible Hermitian symmetric space of the compact type and 

of rank > 2. Write Gc for the identity component of the isometry subgroup of (S,g), 

and K C Gc be the isotropy subgroup at a reference point 0 G S. As a rational 

homogeneous manifold S = G/P, where G is a complexification of Gc and P C S is 

a maximal parabolic subgroup. We have the Harish-Chandra decomposition of the 

Lie algebra g of G, g = m+ 0 £c 0 m~, in which tc is the complexification of the 

Lie algebra t of K. Regarding g as the Lie algebra of holomorphic vector fields on 

S, m~ stands for the vector space of holomorphic vector fields vanishing to the order 

> 2 at 0. P admits a Levi decomposition P = Kc • M~. Here Kc = exp(£c) is the 

reductive group consisting of automorphisms of S fixing 0, identified with a complex 

linear subgroup of GL(T0(S)) where 7 G Kc is mapped to (¿7(0), and M~ = exp(m~). 

S then carries a G-structure with G = Kc. Regarding .S-structures we have 

Theorem 3 (Ochiai [47]). — Let S be an irreducible Hermitian symmetric space of the 

compact type and of rank > 2. Let X be a compact simply-connected complex manifold 

with a flat S-structure. Then, X is biholomorphic to S. 

Kc acts irreducibly on the model vector space V = To (5) , and its highest weight 

orbits define a rational homogeneous manifold Wo C PTo(S), leading to a fibered 

space of highest weight tangents 7r : W —• M on any complex manifold equipped with 

a i fc-s t ructure . Let (Mi , Q\) resp. (M2, G2) be two complex manifolds equipped with 

G-structures, G = Kc, with fibered spaces of highest weight tangents TT\ : Wi —> Mi 

resp. 7T2 : W2 —> M2. A biholomorphism / : M i —> M2 preserves the G-structures if 

and only if it preserves the fibered spaces of highest weight tangents, i.e., /* Wi = W2. 

Denote by 0(1) the ample line bundle on S which is the positive generator of 

the Picard group of S. S can be embedded into the projective space by (9(1), e.g., 

the Grassmannian is embedded by the Plucker embedding. Wi th respect to this 

embedding, S is uniruled by lines. When S itself is considered as the underlying 

space of an 5-structure, the variety of highest weight tangents Wx agrees with the 

VMRT Cx at any x G S. This follows from the construction of lines on S by means 

of SL(2,C) orbits highest weight vectors (cf. Mok ([40], (1.4)) for a verification in 

the case of Grassmannians). To give a proof of Ochiai's Theorem using VMRTs, the 

starting point is the following result on local VMRT-preserving holomorphic maps. 

Lemma 4. — Let S be an irreducible Hermitian symmetric space of the compact type 

and of rank > 2. Let D,D' C S be nonempty connected open subsets of S and 
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/ : D —• D' be a VMRT-preserving biholomorphic map. Then, for any line on S 

intersecting D, f(L fl D) is an open subset of some line L' of S 

Proof. — Denote by 7r : C —> S the fibered space of VMRTs over 5 and by T the 

tautological foliation on C. By assumption [d/](C|£>) = C\D'> We have to show tha t 

for any line L c S such tha t L D D ^ 0 , [df](L C\C\D) is an integral curve of the 

tautological foliation on S. This is the case if and only if f*T agrees with T on C\D, 

i.e., if and only if the image under [df] of each L C\C\D is tangent at every point to 

the tautological lifting U of some line V. Equivalently this means tha t the image 

of each L fl D is tangent at every point to a line on S up to the second order. To 

prove Lemma 4 it suffices therefore to show tha t <92/(a,a) is proportional to df(a) 

for any minimal rational tangent [a]. In these coordinates IT : C —> S is a constant 

family. Let a , /3 be vectors in Co. (For a projective subvariety A C PN we denote 

by AC CN+1 - {0} its homogenization.) Then, d2f(a,(3) = da(df(/3*)), where 0* 

stands for the constant vector field on D such tha t /3^(0) = /3. Thus, d2f{a,f3) is the 

tangent at (3 to some holomorphic curve on Co, so tha t d2f(a,(3) G Pp = T^(Co)- By 

symmetry we have d2f(a,(3) G Pa H Pp. 

It remains to derive tha t for any a G C, d2f(a,a) — \a for some A. On a 

non-linear projective submanifold, by Zak's Theorem (Zak [52]) the Gauss map is 

non-degenerate at a general point. Thus, the kernel of the second fundamental form 

<j is trivial at a general point. In the case of Co C PTo(5), which is homogeneous as a 

projective submanifold, Ker(<j) = 0 everywhere. Equivalently, lifting to homogeniza-

tions, Ker(<ja) = C a for the (Euclidean) second fundamental form aa at any a G Co, 

and it remains for the proof of Lemma 4 to show tha t d2f(a,a) G Ker(5Q;) for any 

such a. Fix now a £ Co and let (3 = a(£), a (0) = a , vary holomorphically on Co in the 

complex parameter t. Writing £ = (a)(0) , from d2f(a,a(t)) G Pa it follows tha t 

92f(oi,0 e Pa. On the other hand dt(d2f(a(t),a(t))\t=0 = 2<92/(a,£), and hence 

V ^ ( 9 2 / ( a ( t ) , a(t))\t=o G Pa in terms of the Euclidean flat connection V on To(S). It 

follows tha t ÍJa(£, d2f(a, a ) ) = 0. Since £ can be chosen to be any tangent vector in 

Ta(Co) = Pa, we conclude tha t 9 2 / ( a , a ) G Ker(5a) , and we are done. • 

By means of Lemma 4 the mapping / : D —> D' can be analytically continued to 

give an automorphism of S. The idea is to pass to the moduli space K of lines. For 

each x G S denote by Qx C /C the projective submanifold consisting of lines passing 

through x. We may assume D to be convex in Harish-Chandra coordinates. For any 

i G K sufficiently close to Qx, i fl D is non-empty and connected, and / ( ¿ fl £>) is 

an open subset of some line £'. Thus, for a sufficiently small open neighborhood U 

of Qx in /C, / induces a holomorphic map : U —• /C. The problem of analytic 

continuation can be solved first by meromorphically extending to F$ : K, —> K and 

then by recovering F : S —• S by considering a point y G S as the intersection of 
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all lines passing through it, and by defining f{y) := f] {f^(£) : y G £} for a general 

point y G S. The meromorphic extension of f$ to F$ is plausible because U is a 

'big' open set in an analytic sense, as it contains the projective subvarieties Qy for 

y sufficiently close to x. This latter extension problem can be solved by methods of 

Hartogs extension as done in Mok-Tsai [44]. The extension F : S —> S thus obtained 

may have singularities, but they are proven to be removable by arguments involving 

deformation theory of rational curves (cf. Mok [40], (2.4)). 

4.3. Flatness of G-structures via VMRTs. — Let V be a fixed n-dimensional 

complex vector space and G C GL(V) be a connected complex Lie subgroup. Let X 

be an n-dimensional complex manifold endowed with a G-structure Q C F(X). We 

examine necessary and sufficient conditions for the G-structure to be flat. Recall tha t 

the G-structure Q is flat if local holomorphic trivializations of Q can be realized by 

choices of local holomorphic coordinates on X. Flatness imposes therefore differential 

constraints on (X, (?). The problem of identifying flat G-structures was solved in 

terms of obstructions to prolongations of G-structures (cf. Guillemin [4]). 

Given a G-structure (X, (?) and a biholomorphic map f : X —> Y onto another 

complex manifold Y, we have an induced G-structure (Y, /*(?). Let (X, (?) and (X ' , Q') 

be two complex manifolds endowed with G-structures. For x G X denote by (X, x) the 

germ of complex manifolds defined by X at a;, etc. A germ of local biholomorphism 

/ : (X,x) —> (X',xf) is said to be (0-th order) structure-preserving if (f*G)x> = G'x>> 

For k a positive integer, / is said to be k-th order structure-preserving if furthermore 

/*(? is tangent to Q' along G'x to an order > k. This notion depends only on the (fc+1)-

jet of / . For k > 0 the G-structure (X, G) is said to be fc-flat at x if there exists a local 

biholomorphism / : (X, x) —• (V, 0) which is k-th order structure-preserving, when V 

is endowed with the trivial G-structure V x G. 

When (X, (?) is uniformly fc-flat, i.e., fc-flat at every point x G X , one can de­

fine in a canonical way some structure function ck on some prolongation bundle over 

(?, such tha t ck = 0 if and only if (X, (?) is uniformly (A; + l)-flat (Guillemin [5], 

Cor. to Theorem 4.1). By the Cartan-Kahler Theorem (Singer-Sternberg [49]) a 

G-structure is flat if and only if it is fc-flat for every integer k > 0. In the case 

where G is reductive, the structure functions can be translated as obstruction ten­

sors 6k G # 0 ( X , H o m ( A 2 T x , T x o SkT£)). In the case of 5-structures (cf. (4.2)) 

corresponding to G = Kc it is known tha t (X, (?) is flat if and only if it is uni­

formly 2-flat. When S is Qn, n > 3, given a point x G X the fibered space 

7T : Q —* X of null tangents is always tangent at x to tha t of the flat Qn-S^ructure 

in terms of holomorphic normal coordinates at x. Thus, the only obstruction tensor 

is 0i G F 0 ( X , H o m ( A 2 T x , E n d ( T x ) ) ) , which agrees with the Bochner-Weyl tensor 

(Wijk£) of the holomorphic conformal structure. 
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Theorem 4 (Hwang-Mok [14]). — Let X be a uniruled projective manifold admitting 

an irreducible reductive G-structure, G C G L ( F ) . Then, X is biholomorphic to an 

irreducible Hermitian symmetric space of the compact type and of rank > 2. 

Outline of Proof — Associated to a G-structure with G C GL(V) reductive, there 

is on X the fibered space A : W —> X of highest weight tangents. We show first of 

all tha t the latter agrees with the fibered space n : C —• X of VMRTs. The proof 

makes use of Grothendieck's classification of G-principal bundles on P1 in [4]. Then, 

we show tha t the G-structure is flat by proving successively the vanishing of the 

structure functions ck. Finally, we identify the candidates of VMRTs on X to show 

tha t they correspond to ^-structures in the Hermitian symmetric case, and conclude 

tha t X = S by observing tha t X is rationally connected, hence simply connected. 

To prove the vanishing of the structure functions ck it suffices to prove the van­

ishing of the obstruction tensors 0 = 0k, which give in the reductive case sections in 

i J ° ( X , H o m ( A 2 T x , T x <8> SkT%)). Let £ be a s tandard rational curve, assumed em­

bedded for convenience, so tha t Tx\t = 0 ( 2 ) 0 {0(l))p 0 Oq. Each direct summand 

of {Tx <S> SkTJ,)\e is of degree < 2. If we fix x G X, then 0x(a, f) = 0 whenever a G Cx 

and £ G Ta(Cx) = Pa, since a A $ belongs to a direct summand of degree 3. By [(3.2), 

Proposition 3], such elements generate A2TX(X), and we conclude tha t 0 = 0. • 

In the same vein Hong ([6], Proposition (3.1.4)) established the following charac­

terization of Fano homogeneous contact manifolds of Picard number 1. The statement 

here is a slight modification of the original one which is implicit from the proof there. 

Theorem 5 (Hong [6]). — Let S be a Fano homogeneous contact manifold of Picard 

number 1 different from an odd-dimensional projective space. Let Co C PTb(S) be 

the VMRT of S at a reference point 0 G S. Let X be a Fano manifold of Picard 

number 1 whose VMRT Cx C TTX(S) at x G X is isomorphic to C0 c PTo(S) as 

a projective subvariety for x lying outside a subvariety Z C X of codimension > 2. 

Denoting by D the distribution on X spanned by VMRTs, assume that the Frobenius 

form if : A2D —> Tx/D is everywhere non-degenerate on X — Z. Suppose furthermore 

that at every point x G X — Z, a general minimal rational curve passing through x 

lies on X — Z. Then, X is biholomorphic to S. 

4.4. Prolongation of linear subalgebras of infinitesimal automorphisms of 
VMRTs. — Let (X, K) be a uniruled projective manifold equipped with a minimal 

rational component with non-linear VMRTs, and x G X be a general point. Regarding 

the VMRTs in a neighborhood of x as defining a germ of geometric s tructure at x, 

we are interested to study its germs of infinitesimal automorphisms vanishing at x. 

By Cartan-Fubini extension, as to be explained in §5, this is the same as studying 

holomorphic vector fields on X vanishing at x. As a preparation we have 
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Lemma 5. — Let X be a complex manifold, x G X be any point, m > 1 be a positive 

integer and Z be a holomorphic vector field vanishing at x to the order > m. Let {(ft} 

be the complex 1-parameter group of automorphisms on X generated by Z. Let E C 

FTx be an irreducible subvariety invariant under the induced automorphisms on 

PTx- Assume that 7T\E ' E —• X is a holomorphic submersion at a general smooth 

point of Ex := EC\FTX. In terms of local holomorphic coordinates (zi) at x; ZI(x) = 0; 

write Z = J2i1...irn;kAi1...irnzil "-zim^ + 0 ( | z | m + 1 ) , where the Taylor coefficients 

... im are symmetric in i\, - - - IM- Then, regarding the Taylor coefficients of m-th 

order terms as coefficients of a homomorphism A : SmTx —> Tx; for any choice of 

m — 1 tangent vectors 771, • • • , r/m_i; the linear vector field £^ wlA(rji, • • • , rym_i, ^ 7 ) 

on Tx is tangent to Ex at its smooth points. 

Proof — Write (p*(z) = z + T,Bi1---irn(t)zilm''zim + 0{\z\m+1) for z lying on a 

small neighborhood of x and for t sufficiently small, where the summation is over 

(hr" >*m)- We have J^B*...^(t)\t=o = -^H-IM- Writing (wi) for fiber coordinates 

for Tx induced by (zA, the induced automorphism $ t on Tx is given by 

$t(z,w) = {<Pt(z);d<pt(z)(w)) = 

[ZQ,ZI, [t)zix • -zimek 0(|*P+1); ™Bk, [t)zh • • • z^-'w^ek + 0(|z|mM) 

Here ek = and ek = [ZQ,ZI, Since ipt preserves the subvariety E, the infinitesimal 

automorphism Z = ^^t\t=o is tangent to E at smooth points. It is given by 

Z = (<...im^ • • • z'-ek + 0 ( | , r + 1 ) ; m 4 . . , m ^ • • • z^w^e, + 0(\z\m\w\J) 

showing tha t the latter vanishes on Tx to the order > m - 1. Taking partial deriva­

tives m — 1 times against horizontal constant vector fields 771, • • • r]M-i. we obtain 

* '•= Ei^K-VRN-^d^ = Hi^Mviim,'- ^ m - i , a | - ) . When m = 1 no dif­

ferentiation is involved, and a is simply the restriction of Z to Tx. Since at a smooth 

point of Ex, cr is both tangent to E and to Tx, it must be tangent to Ex, as desired. • 

Lemma 6. — Let X be an n-dimensional uniruled projective manifold admitting a 

minimal rational component whose VMRT CX C PTX at a general point x is p-

dimensional; 0 < p < n — 1; nonsingular and linearly non-degenerate. Given a general 

point x G X, let Z be a holomorphic vector field vanishing at x to the order > 2. In 

terms of local holomorphic coordinates (z^ in a neighborhood of x; ZI(x) = 0; write 

Z = Eij.fc A^z^z*+ 0(\z\3), where Ak- = Akj{. Then, regarding AKJ as coefficients 

of a linear homomorphism A : S2TX —» Tx we have Aaa G Ca for any a G CX. 

Proof — By Lemma 5, for any 77 G Tx and any nonzero a G CX we have Aarj G 

TA{CX) = Pa. In particular, if 77 is itself a nonzero vector in Cx, we have from the 
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symmetry of A the property tha t Aap G Pa^ Pp- The rest of the proof is the same 

as in Lemma 2. (Here A^p plays the same role as d2f(a,f3) there.) • 

Proposition 4. — Under the hypothesis in Lemma 6 and in the notations there, sup­

pose for the holomorphic vector field Z vanishing at x to the order > 2 we have 

Aaa = 0 for any a G Cx, then A = 0. 

Sketch of proof — Fixing rj G TX(X), Aari G Pa. From Aaa = 0 for every a G 

Cx, varying a = a(t) holomorphically and differentiating against t we conclude tha t 

Aa£ — 0 for every £ G Pa. Regarding Aa as an endomorphism of TX(X) given by 

Aa(v) ~ Aar], we have lm(Aa) C Pa C Ker(Aa) , so tha t A2a = 0. Thus, choosing 

sufficiently general points a,/3 G Cx, the closure of the orbit of [a] under exp(tAp) is 

a line joining [a] to [£], where £ := ^ a,/3; likewise with a and ¡3 interchanged. 

Hence Cx is rationally 2-connected by lines. Proposition 4 is proven inductively. We 

denote by K! a minimal rational component consisting of lines on Cx, and the 

associated VMRT at [a]. For induction we replace x by [a], X by Cx, and consider 

the VMRT at [a] G Cx. Given a holomorphic vector field Z vanishing at x to the 

order > 2 for which Aaot = 0 for every a G Cx, we derive a holomorphic vector field 

Z on Cx vanishing at [a] to the order > 2 such tha t — 0 for every fi G C'a. 

Start ing with the da ta (X, /C, x,Cx, Z, (Aij)) we derive (Cx, K', [a],C^, Z, (AM)), 

noting tha t C âj is nonsingular at a general point [a] G Cx, by Lemma 3. To be able 

to proceed by induction on the dimension, it remains to prove tha t C PT[a](Cx) 

is linearly non-degenerate. From the fact tha t C'^ is rationally 2-connected by lines, 

it follows tha t dim(C[a]) > ^-dim(PT[a](Cx)), and by [(3.2), Proposition 3] it would 

follow tha t C^a| is linearly non-degenerate in PX[a](Cx), if we knew tha t C[a] is of 

Picard number 1. However, the latter need not be the case. Nonetheless, the proof of 

Proposition 3 still works since we know tha t the VMRT is rationally 2-connected by 

lines as explained, making it possible to prove Proposition 4 by induction. 

Write f for the germs of C-preserving holomorphic vector fields at x. For £ > — 1, 

write f for the vector subspace of all Z G f vanishing to the order > £ + 1 at x. 

Then Proposition 4 says tha t , under the assumption tha t the VMRT Cx C FTX(X) 

is irreducible, nonsingular and linearly non-degenerate, there is an injection of f1 

into r(Cx,Hom(L2,L)) = r(Cx,L*), where L s tands for the tautological line bundle 

over FTX(X). If furthermore Cx is linearly normal in FTX(X), i.e., the embedding of 

Cx C VTX(X) is defined by a complete linear system, then dim(fx) < n. From the 

proof of Proposition 4 it follows readily tha t f = 0 for £ > 2, i.e., there does not 

exist any nontrivial holomorphic vector field vanishing at x to the order > 3. In fact, 

if a C-preserving germ of holomorphic vector field Z vanishes at x to the order > 2, 

and Aijk are the coefficients of the third order terms of the Taylor expansion of Z at 

x, then for any 7 G TX(X), Bap = Aap7 defines a 2-tensor for which the arguments 
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apply, and from there the vanishing of follows easily. The same arguments apply 

to the leading terms of any nontrivial holomorphic vector field Z vanishing at x to 

the order s > 3, and we have a contradiction unless Z = 0. • 

Lemma 5 can be stated in the language of prolongation theory for Lie subalgebras 

of End(Tx(X)) , as follows. Let V complex vector space, dim F = n, and g C End(V) 

be a Lie subalgebra. For k > — 1 denote by gW C Sk+1V* (g) V the vector subspace 

consisting of all a G 5fe+1 V* ® V such tha t , writing aVl,... ̂ Vk (v) = a(v; vi,..., VK), we 

have 0"Vlv„jVfc G g. Let now Y C FV be a projective subvariety, and Y C V be its 

lifting to V. We write aut(Y) := {A G End(V) : exp( tA) (? ) C ? for all t G C}. Then 

for every £ > 0, f C aut(Y")^. The argument in the proof of Proposition 4 applies to 

elements of aut(Cx)^ to imply tha t dim (aut(Cx)^) < d imr (Cx ,L*) , and hence tha t 

aut(Cx)W = 0 whenever £ > 2. In relation to holomorphic vector fields on a Fano 

manifold of Picard number 1 there are the following conjectures and results. 

Conjecture 2. — Let X be a Fano manifold of Picard number 1. Then, at a general 

point x G X there does not exist any nontrivial holomorphic vector field Z vanishing 

at x to the order > 3. 

Conjecture 3. — Let X be an n-dimensional Fano manifold of Picard number 1. Then, 

dim(Aut(X)) < n2 + 2n. Moreover, equality holds if and only if X = Pn. 

Theorem 6 (Hwang-Mok [23]). — Let (X, /C) be a uniruled projective manifold 

equipped with a minimal rational component. Suppose the variety of minimal 

rational tangents Cx C FTX(X) at a general point x G X is irreducible, nonsingular 

and linearly non-degenerate. Then, at a general point x G X there does not exist any 

nontrivial holomorphic vector field vanishing at x to the order > 3. If furthermore 

Cx C FTX(X) is linearly normal, then dim (out(Cx)^) < n, and equality holds if 

and only if Cx C FTX(X) is congruent to Co C PT0(5) for the variety of minimal 

rational tangents of an irreducible Hermitian symmetric space of the compact type. 

Furthermore, d im(Aut(X)) < n2 + 2n, and equality holds if and only if X = Pn. 

Remarks. — As will be seen in (6.3) the statement tha t Cx C FTX(X) is congruent 

to Co C FTQ(S) implies tha t X is biholomorphic to 5 . 

Corollary 1. — Let X be an n-dimensional Fano manifold of Picard number 1, and 

denote by (9(1) the positive generator of P ic (X) = Z. Assume that (9(1) is very 

ample. Suppose ci(X) > Then, for a general point x G X there does not exist 

any nontrivial holomorphic vector field vanishing at x to the order > 3. Suppose X 

satisfies the stronger condition c\(X) > 2i^t2l; then d im(Aut(X)) < n2 + 2n, and 

equality holds if and only if X = FN. 
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In relation to VMRTs in general the following conjecture summarizes what one can 
optimistically hope as compared to known results in [(2.4), Theorem 1]. 

Conjecture 4. — Let (X, K) be a uniruled projective manifold equipped with a minimal 
rational component, and TT : C —• X be the fibered space of varieties of minimal rational 
tangents associated to K. Then, at a general point x G X, either Cx is finite, or it is 
irreducible, nonsingular and linearly normal in its linear span FWX C FTX(X). 

Regarding Conjectures 2 and 3, the fundamental assumption in the partial result 
(Theorem 6) is the linear non-degeneracy of the VMRT Cx at a general point. At 
least the statement regarding vanishing orders of holomorphic vector field is accessible 
whenever an irreducible component of Cx is linearly non-degenerate. 

4.5. Applications to rigidity under Kahler deformation. — We return to the 
question of rigidity of rational homogeneous manifolds S = G/P of Picard number 
1 under Kahler deformation, as given in [(3.4), Theorem 2]. In (3.4) we explained 
tha t for the case of P C G defined by a long simple root, the problem is solved 
by studying the integrability of distributions spanned by or derived from VMRTs. 
In Hwang-Mok [22] we settled the problem for G = F4 for the 20-dimensional F4-
homogeneous space associated to a short root. There we have the nilpotent graded 
algebra n = Qi 0 Q2 0 03 0 04- As opposed to the long root case the VMRT does not 
lie in FDi for the minimal proper G-invariant distribution D\, but it remains linearly 
degenerate, spanning the proper G-invariant distribution D2 ^ T 5 , and the method 
using distributions spanned by VMRTs and Yamaguchi [51] is still applicable. 

W h a t remain are the cases of S = G/P defined by short simple roots in the cases 
of Gn, and the 15-dimensional case of type F4. In both cases we have n = Qi 0 0 2 , the 
VMRT Cx at any point x G S is almost homogeneous with two orbits corresponding 
to highest weight vectors in $i resp. g2> and Cx C FTX(S) is linearly non-degenerate. 
The problem is solved in Hwang-Mok [23] (2005). To proceed we showed tha t the 
VMRT at a general point of the central fiber X0 of TT : X —> A remains isomorphic 
to tha t of the model space Co C PT0(5). On X0 we still have a 2-step filtration 
0 C D1 C D2 = Tx0, but CXQ fl FDlQ does not have an algebro-geometric meaning, 
and the methods involving distributions spanned by VMRTs do not apply. 

To solve the problem we examine the Lie algebra of holomorphic vector fields on 
X0 which occur as limits of those on Xt,t ^ 0, with an aim to recuperating the 
Lie algebra g on l o - For illustration we consider the Hermitian symmetric case and 
sketch a proof in the last step using holomorphic vector fields in place of Ochiai's 
Theorem on 5-structures. We assume already known tha t , over a suitably chosen 
holomorphic section a : A —> X, the VMRTs of Ca(t) C FTa^(Xt) on Xa(t) form a 
holomorphically trivial family of projective submanifolds all congruent to Co C TQ(S) 
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on the model space S. Writing T for the relative tangent sheaf of 7r : X —> A, the 

direct image V = 7r*T is the sheaf of germs of sections of a holomorphic vector bundle 

V on A, where for t ^ 0,0* := Vt carries naturally the structure of a Lie algebra 

isomorphic to the Lie algebra g of G = Auto (5) , and our aim is to prove tha t this 

remains t rue at t = 0. The idea is to reconstruct the Lie algebra structure from da ta 

tha t can be recovered along a : A —• X. For the model space S = G/P we have the 

decomposition of the Lie algebra g of G as a graded Lie algebra, and equivalently the 

Harish-Chandra decomposition (in the notations of (4.2)) given by 

fl = fl-i0flo00i = m 0 r e m + ; 

[m",m"] = [m+,m+] = 0, where m- = {Z G T(S,TS) : ord0Z > 2}. 

For k,k' G £c, ra+ G m+ and m~ G m~ the Lie brackets [A;,m+] G m+,[A:,m~] G 

m~, [A;, &'], [m~,m+] G £c are completely determined by the leading terms of the Lie 

algebra elements at 0. Here the leading term stands for the 0-th order term for ra+, 

the first-order term for k and k1', and the second-order term for m~. For a holomorphic 

vector field Z on Xt vanishing at a(t) we denote by Az the coefficient matr ix for the 

linear term of Z , which defines an element of Eiid(Ta^(Xt)). Define 

4k) = {Z G g1 : orda(t)(Z) > fc}; /t = {Z e fl* : Z(a(t)) = 0 , A z G C • id} 

For t ^ 0 we have dimJtv = n;dimJtv = 0 for any /c > 3, and dimIT = n + 1, and 

any Z E IT, Az ^ 0 determines a C*-action. Since CCT(0) C PTcr(0)(^) is conjugate to 

C0 C PT0(5), by [(4.4), Theorem 6] we have 

dim 42) < n , 4k) = 0 for fe > 3 

Thus, d im/0 < n + 1 while dim Jo > n + 1 by upper semicontinuity of d i m / t in t G A. 

Therefore, dim Jo — n + 1» so tha t there exists Z G Jo such tha t ^4^ ^ 0 and such 

tha t exz defines a C*-action on Xo of period 27ri in A. This C*-action on XQ can be 

extended to a holomorphic family Tt of C*-actions on Xt, of period 2ni in A, given 

by Tt(A) = eXEt, E0 = Z . Finally, defining 

g\ := {Z eg* : [Eu Z] = zZ}; we have gl = g^ © gf0 0 

For t ^ 0, 

8 ^ {A G Enda(t)(Ta(i)) : A | ? is tangent to Cff(t)}. 

Dimension count forces the same for t = 0. The Lie algebra structure on g° is 

determined by leading terms at cr(0) of elements in g°_x, and 8?. Clearly, the rules 

for taking Lie brackets by means of the leading terms at o~o agrees with those at 0 G 5 

for the model space, and we have shown tha t X0 = G/P = S. 

Let n > 2 and W be a, 2n-dimensional complex vector space equipped with a 

symplectic form v. For 1 < k < n we denote by Sk,n the symplectic Grassmannian of 
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fc-planes V in W isotropic with respect to v. The symplectic Grassmannian S = Sk,n 

is clearly homogeneous under the group G of symplectic transformations of W, G = 

Sp(n, C) . It is a complex submanifold of the Grassmannian Gr(/c, W) of fc-planes in 

W. Wi th respect to the Plucker embedding p : Gr(fc, W) —> PN, a line £ on S passing 

through the point [V] G 5 , where V = V^k\ is defined by the choices of a (k — 1)-

plane f?^"1) and a (k + l)-plane [ZQ,ZI, such tha t E**"1) C C [ZQ,ZI, There are 

precisely two distinct isomorphism classes of lines with respect to the action of Sp(W), 

according to whether u\p is isotropic or otherwise. The VMRT Co at 0 G S is only 

almost homogeneous with precisely two orbits. Since S C Gr(fc, W) C P ^ is uniruled 

by lines, Co C FTQ(S) is non-singular. As a rational homogeneous manifold Sk,n is of 

type Cn, corresponding to a short simple root ak, 1 < k < n. The tangent bundle 

of Tsk has exactly one proper invariant distribution, and we have a decomposition 

0 = 0-2 0 0-1 © 0o © 01 © 02- Prom this description the SL(2, C)-orbit of a highest 

weight vector of Qi gives a highest weight line which is a minimal rational curve. Such 

a line corresponds to a line £ C Sk,n arising from the choice of some F(fe+1) Z) E^ for 

which V\F = 0. When S = G/P is defined by a short simple root, the SL(2, C)-orbit 

Cs defined by a highest weight vector of 0S need not be of degree s. In the case of 

s = 2 for S — Sfc,n, C = C2 is in fact a line, and it corresponds to the generic choice of 

so tha t v\F ^ 0. Prom this description the VMRT C0 C PT0(5/C,n) is linearly 

non-degenerate, and the question of rigidity under Kahler deformation of symplectic 

Grassmannians 5fc?n, 1 < k < n is therefore susceptible to be studied by means of the 

method of prolongation of infinitesimal automorphisms of VMRTs, as is the case of 

irreducible Hermitian symmetric spaces of rank > 2. 

The proof of deformation rigidity for Sj^n and also for the remaining 15-dimensional 

case of type F4 were settled along the line of arguments as sketched for the Hermitian 

symmetric case. For the graded Lie algebra g = g_2 0 0 - i 0 0o 0 0i 0 02 of the 

model space, the summands gi can be described in terms of conditions on vanishing 

orders and leading terms of holomorphic vector fields, and the multiplication table of 

g as a Lie algebra can be determined to a good extent from the leading terms. For 

instance, denoting by D C T5 the proper invariant distribution D C Ts, Q-i consists 

of holomorphic vector fields Z vanishing at 0 G S to the order > 1 with leading terms 

corresponding to Az G End(T0(S)) satisfying A\Dl = 0, and 0_2 C 0 is the subspace 

consisting of holomorphic vector fields vanishing to the order > 2. Nonetheless, as 

opposed to the Hermitian symmetric case, the structure of the Lie algebra 0 thus 

obtained is incomplete. In the case of the symplectic Grassmannian S = Sk,n the 

missing element is some symplectic form appearing implicitly in the Frobenius form 

ip : A2D —• Ts/D. From 7r : X —> A we are able to identify the s tructure of the Lie 

algebra 0° of limit holomorphic vector fields at the central fiber X0, thereby showing 

tha t Xo is obtained by blowing down some holomorphic fiber bundle, and the final step 
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is achieved by showing tha t , in the event tha t there is actually a degeneration of the 

Lie algebra structure, singularities must occur in the blown-down space, contradicting 

the start ing point tha t n : X —> A is a regular family. 

5. Analytic continuation of VMRT-preserving maps 

5.1. Characterization of the tautological foliation under a non-degeneracy 
condition on the Gauss map. — Let x G X be a general point and u G Ux be a 

point such tha t K := p(u) G /C is a s tandard rational curve. Then, the tangent map r 

is a holomorphic immersion at i¿, and it maps some open neighborhood W of u in U 

biholomorphically onto some locally closed complex submanifold SI of FTX • & gives 

the germ of some irreducible branch of C at [a]. Choosing x and u G Ux sufficiently 

general and W sufficiently small we assume furthermore tha t [a] G C is a smooth 

point and tha t Q, is a neighborhood of [a] in C. 

On il we define a distribution P , as follows. Let / : P1 —• U be a parametrization 

of n. The base point x e X is a, smooth point of the support C := of the 

s tandard rational curve K. The decomposition f*TX = 0 ( 2 ) 0 ( 0 ( l ) ) p 0 Oq over P1 

gives a filtration TPi C Q C f*TX of /*TX over P1, where Q = 0 ( 2 ) 0 ( 0 ( l ) ) p is 

the positive part of f*TX, which is well-defined since Q <g> 0 ( - l ) C / * T x 0 0 ( - l ) 

is the vector subbundle spanned by global sections. At the point x = / ( 0 ) we have 

correspondingly a filtration TX(C) C Px C TX(X), where Px = df(Q0). Define now 

V[a] C T[a] (C) to be the vector subspace consisting of all tangent vectors rj such tha t 

dn(r]) G Px. The tangent vector rj is equivalently the image under dr of some <r, where 

cr G ^ ( P 1 , / * ^ ) , and a := a mod ¿ / ( Í T ^ P 1 , TPi 010)) . For the universal family 

p : —• /C we have dp(a) = a mod ( ^ ( P 1 , T p i ) . Equivalently, writing jo := por-1 

over fi, where r _ 1 : O —> W, we have áp(?7) = a mod c¿/(üí0(P1, TPi)). The assumption 

tha t d7r(r¡) G Px means precisely tha t a(0) G Q0, thus cr ' : = cr mod Q G ^ ( P 1 , ^ 9 ) 

must vanish at 0 and hence on all of P1, showing tha t cr G ^ ( P 1 , ^ ) . On an open 

neighborhood U of K in JC consisting solely of s tandard rational curves we define a 

distribution V c TK|u by setting VK := # ° ( P \ Q) mod ¿ / ( ^ ( P 1 , TPi)) ^ C2p. Then, 

for £ G T[a] we have dp(£) G P „ if and only if dn(£) G Px, hence V[a] = (dp)~l(VK). 

Finally there is a 1-dimensional distribution underlying the tautological foliation T 

on ÍÍ which will be denoted by the same symbol T. Thus, := T^(p 

To relate the distributions f , P on i ] and the distribution V on Q we recall the 

notion of the Cauchy characteristic of a distribution. Given a complex manifold M 

and a holomorphic distribution E C TM and denoting by £ the corresponding locally 

free sheaf of germs of holomorphic sections of E, then Ch(£) C £ is the subsheaf 

consisting of germs of holomorphic sections £ such tha t [(,£] C £. Thus, the Cauchy 

characteristic Ch(£) = £ if and only if E C TM is integrable. Outside an analytic 
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subvariety of codimension > 2 the Cauchy characteristic is locally free, and from now 

on we will make no distinction between a distribution and its associated locally free 

sheaf, and think of the Cauchy characteristic as a distribution defined outside an 

analytic subvariety of codimension > 2. To proceed we note 

Lemma 7. — Let U c Cn, V c Cm be Euclidean domains, and A : U x V —> V be the 

canonical projection. Let S C Ty be a holomorphic distribution and G := (dX)~1(S). 

Write H C Tuxv for the distribution corresponding to the foliation by fibers of X, 

i.e., H = (dX)-1^). Then, H c Ch(G). 

At a general point of the fibered space ir : C —• X of VMRTs, a priori there can 

be more than one tautological foliation coming from different sets of families of local 

holomorphic curves. The question whether the tangent map rx is birational at a 

general point x G X has to do with uniqueness of the tautological foliation. Such a 

uniqueness result would follow if the tautological foliation T can be characterized as 

in fact the Cauchy characteristic of V at a general point of C. We have proven tha t 

T C Ch(V). For the inverse inclusion we impose an additional assumption on the 

Gauss map on the VMRT Cx C FTX(X) at a general point, a condition tha t is always 

satisfied whenever the Cx is nonsingular and non-linear. 

Proposition 5. — Let (X, /C) be a uniruled projective manifold equipped with a minimal 

rational component, and TT : C —> X be the associated fibered space of VMRTs. Let 

Q C C be a connected nonempty open subset consisting of nonsingular points on 

which both a tautological foliation T by standard JC-curves and hence the corresponding 

distribution V are defined. Suppose at a general point [a] G Ct, 7r([a]) := x, the Gauss 

map of Cx C FTX(X) is a holomorphic immersion at [a]. Then, T — Ch(P). 

Proof. — In what follows we denote by Q = 7r_1(f2) C C, V — (d7r ) -1 ( 'P ) , etc., by 

lifting to homogenizations. At a general point a G ^ choose local holomorphic co­

ordinates (zi , • • • , zn) at x = ir(a) and corresponding fiber coordinates (wi, • • • ,wn) 

on Tx in a neighborhood of u. Suppose s := 9%-§^. + ]C ^ *s a Serm of holo­

morphic section of V at u such tha t [s, rj] is a germ of V at a. Denote by V C V the 

subbundle of vertical vectors, i.e., of vectors tangent to the fibers Cy of TT\Q. Now for 

77 an arbi trary germ of vertical holomorphic vector field at a we have 

9l 
d 

dzi 
hj-

d 

dwj 
*$ 

d 

dwk 
$ù dg* 

dwk 

d 

dzi 
mod V . (*) 

The condition tha t [5,77] takes values in V implies tha t ^* *$ù 
dwk 

d 
dwi 

[ZQ,ZI, Since the 

germ of vertical vector field 77 is arbitrary, it follows tha t *$ù d 
dwi (a) G Ker(cra) = Ca. 

Thus, s = X ù d 
dzi *$ù _d_ 

dwj 
for some A holomorphic. Suppose the holomorphic 

vector field ^ù^ù d 
*$ù 

r3. d_ 
dwj takes values in T. Since T C Chip), comparing s 
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with T we conclude tha t for £ := ^{hP — Ar7') G Ch(V), and to prove Proposition 

5 it remains to show tha t £ is pointwise a multiple of the Euler vector field ^2 

(which descends to 0 when we project from C to C). Write £J := h? — \rK By the same 

formula (*) above for Lie bracket, replacing rjk by £fc and letting Y^9l~&r + S ^"aS" 

now stand for an arbitrary germ of valued holomorphic vector field at a we conclude 

tha t S £ f c J ^ d i r ^ f°r anY choice of (gl) such tha t ^g1-^: *s a V-valued germ 

of holomorphic vector field at a. Hence £ G Ker(cra) = C a , as desired. • 

5.2. Birationality of the tangent map and Cartan-Fubini extension. — 
The characterization of the tautological foliation under the Gauss map condition (f) 
in [(4.1), Propoition 5] implies the birationality of the tangent map rx : Kx —> Cx 
under the same condition (Hwang-Mok [17], 1999). Kebekus [26] (2002) proved tha t 
any /C-curve marked at a general point x is immersed at the marking, and deduced 

Theorem 7 (Kebekus [26]). — Let (X, K) be a uniruled projective manifold equipped 
with a minimal rational component. Then, at a general point x G X, the tangent map 
Tx ' K>x —> №TX(X) is a finite holomorphic map. 

Together with Theorem 7 one obtains a proof of [(2.4), Theorem 1], the structure 
theorem on the tangent map and VMRTs stating tha t the tangent map is a birational 
finite holomorphic map at a general point, under the additional Gauss map condition 
(f). To remove (f) the first question is to characterize the case where Cx = ¥TX(X). 

This was obtained by Cho-Miyaoka-Shepherd-Barron ([2], 2002) by a method involv­

ing the holomorphicity of the tangent map made possible by Kebekus [26]. 

Theorem 8 (Cho-Miyaoka-Shepherd-Barron [3]). — Let (X, /C) be a uniruled projective 

manifold equipped with a minimal rational component, d im(X) := n. Suppose at a 

general point x G l the associated variety of minimal rational tangents Cx is the same 

as FTX(X). Then, X is biholomorphic to Fn. 

To prove [(2.4), Theorem 1] in its full generality, we considered in Hwang-Mok 

[21] (2004) the integrable distribution Ch(V) for the distribution V defined in (4.1). 

We showed using [26] and [3] tha t a local leaf of Ch(P) is the projectivized tangent 

bundle of a locally closed complex submanifold on X which extends to an immersed 

projective space, and deduce from there the birationality of the tangent map at a 

general point, leading to a proof of Theorem 1. 

The statement of birationality of the tangent map leads to a method of analytic 

continuation, which we call Cartan-Fubini extension, for local VMRT-preserving bi­

holomorphic maps. In 2004 we proved 
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Theorem 9 (Hwang-Mok [21]). — Let X and X' be Fano manifolds of Picard number 

1 with minimal rational components. Assume that at a general point x G X the variety 

of minimal rational tangents CX(X) of X is non-linear and of positive dimension. Let 

f : U —• U' be a biholomorphic map from an open connected subset U C X onto 

U' C X'. Suppose the differential df sends each irreducible component of C(X)\u 

to an irreducible component of C(X')\u> biholomorphically. Then, f extends to a 

biholomorphic map F : X —> X'. 

Sketch of proof. — In the case of an irreducible Hermitian symmetric space S of the 

compact type and of rank > 2, Cartan-Fubini extension is equivalent to Ochiai's 

Theorem, and in (4.2) we sketched a proof using VMRTs. The analogue of [(4.2), 

Lemma 4] for Theorem 9 under the additional Gauss map condition (f) is given by 

[(5.1), Proposition 5]. In Hwang-Mok [18] we proved Theorem 9 under the condition 

(f), and in [21] the latter condition was removed start ing with an extension of the 

birationality result for non-linear VMRTs. To explain the special case in [18], along 

the line of argument of (4.2) for a proof of Ochiai's Theorem we can likewise pass to 

the moduli space /C resp. KJ of minimal rational curves on X resp. X'. Picking a 

base point x G l , and denoting by Qx C /C the subspace of minimal rational curves 

passing through x, f : U = U' extends by Proposition 5 to some holomorphic map 

ft on some neighborhood U of Qx in /C as in (4.2). In the general case we do not 

however have the Hartogs-type extension theorem as used in Mok-Tsai [MT] to extend 

ft meromorphically to /C. Instead, we developed in [18] a method of parametrized 

analytic continuation along minimal rational curves. Let p : U —• /C, \i : U —> X 

be the universal family of (X, JC). Fix a s tandard /C-curve £ G /C passing through 

x G U. We have a map X := ft o p o r~1 which is defined on some arbitrarily small 

neighborhood ft of the tautological lifting £ of £ in C. To extend / meromorphically 

on a neighborhood of £ G X by the argument in (4.2) in which a point y is regarded 

as the intersection of minimal rational curves passing through y, it is not necessary 

to have A defined on all of C\i. It suffices to have A defined on the arbitrarily small 

neighborhood Q, of £, and the upshot is tha t we can do meromorphic extension of 

/ and ft simultaneously along a s tandard /C-curve issuing from U. Each general 

point of X is accessible from U by a finite chain of s tandard /C-curves. Since X is 

of Picard number 1, the inaccessible points can be cut down to codimension > 2. A 

major difficulty in completing the proof after meromorphic extension along s tandard 

/C-curves lies in the lack of univalence, and, after proving univalence, there remains 

the difficulty due to singularities of the extended map. Overcoming these difficulties 

necessitates the use of the deformation theory of rational curves, and for the latter 

difficulty we need to further use the Fano property of both X and X\ which gives 

rise to projective embeddings using positive powers of the anti-canonical line bundle. 

ASTÉRISQUE 322 



GEOMETRIC STRUCTURES DEFINED BY VMRTS 189 

The proof of Theorem 9 in the general case requires a combination of [18] and the 

use of integral manifolds of Ch(V) as mentioned in relation to Theorem 8. • 

The method of analytic continuation on VMRT-preserving maps makes explicit use 

of the geometry arising from minimal rational curves. Prom the perspective of Several 

Complex Variables, it would be of interest to prove an extension result solely basing 

on the neighborhood structure of the cycles Qx C K. Examination of the Hermitian 

symmetric case suggests tha t in general one can hope for constructing a fundamen­

tal system of pseudoconcave neighborhoods Qx, thereby guaranteeing meromorphic 

extension of f$ and hence of / from methods in Several Complex Variables. In this 

direction the following formulation in a special case is of independent interest. 

Conjecture 5. — Let (X, /C) be a Fano manifold of Picard number 1 equipped with a 

minimal rational component. Assume that at a general point x G l the moduli space 

fcx of K-curves marked at x is irreducible and non-linear, and that the tangent map 

TX • £>x —*• Cx is a biholomorphism onto Cx, so that, denoting by p : Kx —> /C the 

canonical map, the image Qx = p(JCx) is nonsingular. Let U D Qx be any connected 

open neighborhood of Qx in K. Then, any meromorphic function on U extends to a 

meromorphic function on /C. 

5.3. The Lazarsfeld Problem and other applications of Cartan-Fubini ex­
tension. — As an application of the Cartan-Fubini extension on uniruled projective 

manifolds with non-linear VMRTs ([(5.2), Theorem 9]) we have the following result 

on the local rigidity of generically finite surjective holomorphic maps of a fixed pro­

jective manifold X' onto a Fano manifold (X, /C) of Picard number 1 equipped with 

a minimal rational component with non-linear VMRTs. We have 

Theorem 10 (Hwang-Mok [21]). — Let n : X -> A := {t G C,\t\ < 1} be a regular 

family of Fano manifolds of Picard number 1 so that Xo = 7r-1(0) has a minimal 

rational component with non-linear varieties of minimal rational tangents. For a 

given projective manifold Y, suppose there exists a surjective holomorphic map f : y = 

Y x A —> X respecting the projections to A so that ft :Y —• Xt is a generically finite 

for each t G A. Then, there exists e > 0 and a holomorphic family of biholomorphic 

maps 3>¿ : XQ —• Xt for \t\ < e, satisfying $o = id and ft = $t ° /o-

Sketch of proof — Fix a minimal rational component /Co on Xo with non-linear 

VMRTs. To simplify notations we assume minimal rational curves to be embedded. 

Let £Q C XO be a /Co-curve. £0 is also free on X since Tx\e0 = Tx0\e0 0 O. Consider 

the space /C of free rational curves on X obtained by deforming some £o in X. Any 

I G /C must lie on some Xt,t G A. We may think of (# , /C) as a holomorphic family 

of (Xt, /Ct) fibered over A. To simplify the discussion we assume tha t the VMRTs are 
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irreducible at a general point of X = X0. Shrinking A around 0 if necessary we may 
assume tha t the VMRT at a general point of XT remains irreducible. 

In Hwang-Mok [16] we introduced the notion of varieties of distinguished tangents 
on a projective manifold Y (cf. Hwang-Mok [17], §5) which generalizes the notion of 
VMRTs. Let y G Y be a very general point, i.e., a point outside some countable union 
of proper subvarieties. Consider an irreducible component M of the Chow space of 
curves on y , and denote by My C M the subvariety corresponding to curves through 
y. For curves belonging to My and smooth at y we have the notion of the tangent 
map. The rank on the tangent map leads to stratifications of My such tha t the 
tangent map is of constant rank on each s t ra tum. Fix a uniruled projective manifold 
(X, /C) equipped with a minimal rational component and denote by Cx C FTX(X) the 
VMRT at a general point x G X. For a generically finite surjective holomorphic map 
h : Y —> X and for a very general point y eY such tha t dh(y) is of maximal rank at 

[dh{y)]~l{Ch{y)) is a variety of distinguished tangents at y. 
If we take y G Y to be a very general point of Y, a variety of distinguished tan­

gents at y is the closure under the tangent map of a s t ra tum of My. Since there are 
only countably many irreducible components of the Chow space of curves on Y, from 
the construction by stratification there are at most countably many varieties of distin­
guished tangents passing through y. In the context of Theorem 10, choose a connected 
open subset U C Y such tha t ft is a biholomorphism of U onto Vt C XT. Let y eY be 
a very general point lying on U. We have a holomorphic family of VMRTs CfT(Y)(XT). 
Then, for each t G A, ff1(CFT(Y))(XT)) := Vt c FTy(Y) is a variety of distinguished 
tangent at y. By the countability of the space of varieties of distinguished tangents 
at y it follows tha t Vt is actually independent of t. There is an obvious identification 
<Pt-VT = V0 given by (pt = ft o and we have [dipt](Cf(T)(XT)) = C/(0)(X0). Thus 
ipt is VMRT-preserving, and by Cartan-Fubini extension as given in Theorem 9, <pt 
extends to a biholomorphism $T : XQ = XT such tha t f0 = $t o ft. • 

In relation to finite holomorphic maps on rational homogeneous manifolds S = 
G/P, Lazarsfeld [32] proved tha t for any finite holomorphic map / : Pn —> X from 
the complex projective space onto a projective manifold X , X must itself be biholo-
morphic to Pn. He raised the question of characterizing finite holomorphic maps 
/ : S —• X from a rational homogeneous manifold S of Picard number 1 onto a 
projective manifold. Hwang-Mok [16] solved the problem in 1999, and obtained [21] 
(2004) a new proof using Cartan-Fubini extension as given in Theorem 10. 

Theorem 11 (Hwang-Mok [16], [21]). — Let S = G/P be a rational homogeneous man­
ifold of Picard number 1. Let f : S —> X be a nonconstant surjective holomorphic 
map onto a projective manifold X. Then either X = Fn, where n = d i m ( 5 ) ; or f is 
a biholomorphism. 
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In the first proof in [16] we considered intertwining maps of / : S —> X , as follows. 

Suppose / : S —> X is not a biholomorphism and X ^ Pn, and write s for the 

sheeting number of the map. The image manifold X is necessarily Fano. Equip 

X with a minimal rational component /C. Denote by Cx the variety of /C-tangents 

at x and assume known in the ensuing discussion tha t Cx ^ FTX(X) at a general 

point. Let x G X be outside the branch locus of / , and let V be a sufficiently small 

connected open neighborhood of x in X such tha t decomposes into a union 

of s open subsets [/¿,1 < i < s„ where fa := f\u. : [/* —• V is a biholomorphism 

for each i. For i j let ip : U{ —> Uj be defined by (p(z) = f~x o Consider 

the pull-back P := [d/]_1(C|y). We have tautologically [d<p] : P|c/. = V\Vj. For a 

general point s G 5 , P s is a variety of distinguished tangents. At any such point P s 

is shown to be invariant under the isotropy subgroup Ps C G at s. For instance, in 

the Hermitian symmetric case this implies tha t Vs must be one of the finitely many 

proper Ps-invariant subsets defined in terms of ranks of tangent vectors, V is actually 

G-invariant, and the condition [dip] '-D\ui = V\uj forces [dip] to be VMRT-preserving, 

since at s G S the variety of minimal rational tangents CS(S) is the most singular Ps-

invariant s t ra tum of Vs. In this case by Ochiai's Theorem [47] the intertwining map 

must extend to an automorphism of S, and tha t is enough to force a contradiction. In 

the general case there may be continuous families of Ps-orbits, but using the fact tha t 

there are at most countably many distinct varieties of distinguished tangents at s G 5 , 

it remains t rue tha t V is G-invariant. This leads to the conclusion tha t either Vs C 

FTS(S) is linearly non-degenerate, in which case we proved using Hwang-Mok [14] 

tha t S must be Hermitian symmetric, or Vs C FTS(S) is linearly degenerate, and the 

intertwining map (p must preserve some proper G-invariant distribution, after which 

we can work with results of Yamaguchi [51] to show tha t ip extends to $ G Aut(5') 

to reach a contradiction. This line of argument has been recently generalized to the 

case of rational homogeneous spaces of Picard number > 2, leading to a solution to a 

generalized Lazarsfeld Problem. 

Theorem 12 (Lau [31]). — Let G be a simple complex Lie group and Q C G be a 

parabolic subgroup. Denote by S = G/Q the corresponding rational homogeneous 

manifold, d im(5) = n. Let f : S —> X be a surjective holomorphic map from S onto 

a projective manifold X. Then one of the following holds: (1) / is a biholomorphism; 

(2) / : S —> X is a finite map and X is the projective space Fn; (3) there exists 

a parabolic subgroup Q' of G containing Q as a proper subgroup such that f factors 

through a finite map g : G/Q' —> X. 

The generalized Lazarsfeld Problem for S = G/Q of Picard number > 2 leads to 

a Fano manifold (X, /C) equipped with a minimal rational component and admitt ing 

the structure of a holomorphically fibered space A : X —> B such tha t the /C-curves 
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lie on the fibers of A. The principal algebro-geometric difficulty, solved in [31], is to 
produce a minimal rational component K! such tha t the /C'-curves are transversal to 
the fibration A. After tha t Lau made use of multi-graded differential systems using 
Yamaguchi [51]. As in [16] the proof involves a substantial amount of Lie theory. 

As far as the original Lazarsfeld Problem is concerned, Hwang-Mok [21] gave a new 
proof which frees the solution from Lie theory, deriving Theorem 11 as a consequence 
of Theorem 10, as follows. Let S = G/P be an n-dimensional rational homogeneous 
manifold of Picard number 1 and / : S —» X be a generically finite surjective holomor­
phic map onto a projective manifold X , which is necessarily Fano, such tha t X ^ Pn 
and / is not a biholomorphism. Equip X with a minimal rational component /C and 
suppose tha t the associated VMRT at a general point is non-linear. Let 6 be a holo­
morphic vector field on S and Qt = exp(t0) be a holomorphic 1-parameter group of 
automorphism of S. Write ft = f °@t- Then, applying the local rigidity result Theo­
rem 11 we have ft = $tof. Thus dft(r)) = 0 whenever df(rf) = 0. Thus the non-empty 
ramification divisor R of / = /o remains the ramification divisor of ft for t ^ 0. On 
the other hand from the definition ft = f o @t it follows tha t the ramification divisor 
of ft is 0 _ t ( P ) , and a contradiction is obtained when we choose the vector field 0 
not to vanish identically on R. Finally, it remains to rule out the possibility tha t the 
VMRT of (X, /C) is linear at a general point x G X . Choose a general point x G X 
lying outside the branching locus of / , s G S such tha t f(s) = x. An irreducible com­
ponent of [df]~1(Cx) then gives a Ps-invariant projective linear subspace of FT8(S), 
giving rise to one of the finitely many G-invariant holomorphic distributions on S. 
D is non-integrable since S is of Picard number 1. On the other hand in the case 
of linear VMRTs on X an irreducible component of C over a sufficiently small open 
subset corresponds to an integrable distribution, a contradiction. 

It would be interesting to give a proof of Theorem 12 along the line of Cartan-Fubini 
extension for special classes of Fano manifolds of Picard number > 2. 

6. Parallel transport of the second fundamental form 

6.1. VMRTs in a differential-geometric context-parallel transport in the 
solution of the Generalized Frankel Conjecture. — In Algebraic Geometry 
Hartshorne conjectured tha t over an algebraically closed field a projective manifold 
with ample tangent bundle is isomorphic to the projective space. The conjecture was 
solved by Mori [45] (1979) by proving an existence theorem on rational curves using 
methods of characteristic p > 0, and the deformation theory of rational curves. In 
the context of Káhler Geometry, Frankel conjectured tha t a compact Káhler man­
ifold of positive holomorphic bisectional curvature is biholomorphic to the complex 
projective space. The conjecture was resolved in the affirmative by the method of 
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stable harmonic maps by Siu-Yau [50] (1980) who further formulated the conjecture 
tha t a compact Kahler manifold of nonnegative holomorphic bisectional curvature is 
locally symmetric. The latter conjecture, commonly called the Generalized Frankel 
Conjecture, was resolved in the affirmative by Mok [39] (1988). 

Mok [39] made use of the Kahler Ricci flow, proving tha t nonnegativity of holomor­
phic bisectional curvature is preserved under the flow for the evolved metric gt,t > 0. 
Prom earlier reduction of the problem, to confirm the Generalized Frankel Conjecture 
it suffices to consider the case where we have a compact Kahler manifold (X, g) of non-
negative holomorphic bisectional curvature and of positive Ricci curvature at some 
point such tha t furthermore &2 (X) = 1. For the latter class of (X, g), the evolved 
Kahler metric (X,gt) is shown to be of positive Ricci curvature. Thus, X is Fano 
and hence uniruled by Miyaoka-Mori [38]. Since (X, g) is of nonnegative holomor­
phic bisectional curvature, the pull-back of its tangent bundle by any / : P1 —> X 
is nonnegative, hence every rational curve on X is free. In [39] we studied mini­
mal rational curves on X and the associated varieties of minimal rational tangents 
Cx C FTX(X) (although the terminology was not used there). We proved tha t there 
are the following alternatives on the evolved metrics gt defined for t > 0 sufficiently 
small. For such t > 0, either (X,gt) is of positive holomorphic bisectional curvature, 
or (X,gt) admits non-trivial zeros of holomorphic bisectional curvature at any point 
of X. Write n for dim(X). If the VMRT Cx C FTX(X) is of dimension p < n - 1 at 
a general point, we showed tha t C is invariant under parallel t ransport of (X,gt). If 
however Cx agrees with FTX(X), we showed tha t there exists a hypersurface S C FTx 
such tha t S is invariant under parallel t ransport of (X,gt). In either case we applied 
Berger's Theorem which characterizes Riemannian locally symmetric spaces by the 
fact tha t at any point there exists some proper subset of the unit sphere invariant 
under parallel t ransport . Thus (X,gt) is an irreducible Hermitian symmetric space 
of the compact type for t > 0 and hence for t = 0; go = g> More precisely we have 
proved 

Theorem 13 (Mok [39]). — Let (X, g) be a compact Kahler manifold of nonnegative 
holomorphic bisectional curvature and of positive Ricci curvature at some point. As­
sume that X is of Picard number 1. Then, either X is biholomorphically equivalent to 
the complex projective space, or (X, g) is biholomorphically isometric to an irreducible 
Hermitian symmetric space S of rank > 2. 

On an irreducible Hermitian symmetric space of the compact type and of rank > 2, 
the fibered space 7r : C —> S is invariant under parallel t ransport with respect to any 
choice of a canonical Kahler-Einstein metric, an elementary fact tha t follows from the 
parallelism of the Riemannian curvature tensor. Theorem 13 says in particular tha t on 
S this basic fact can be derived from curvature properties. In the negative direction, 
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Berger's Theorem implies tha t for a rational homogeneous manifold S = G/P of 

Picard number 1 which is not isomorphic to a Hermitian symmetric space, the VMRTs 

are not invariant under parallel t ransport . In an algebro-geometric context it remains 

interesting to introduce some algebraic notion of parallel t ransport applicable to any 

uniruled projective manifold (X, /C) equipped with a minimal rational component. A 

related problem is the Campana-Peternell Conjecture, which is a form of Generalized 

Hartshorne Conjecture (cf. (6.4)). Here the principal geometric problem is whether 

the notion of invariance of VMRTs under some restricted form of parallel t ransport is 

sufficient to characterize rational homogeneous manifolds S = G/P of Picard number 

1 by means of some algebro-geometric condition of nonnegativity on the tangent 

bundle. Such an approach in a very special situation has been established for Fano 

manifolds of Picard number 1 with nef tangent bundle and 1-dimensional VMRTs by 

Mok [41] (2001) and Hwang [13] (2007). 

6.2. Propagation of the second fundamental form along a standard rational 
curve. — Let (X, /C) be a uniruled projective manifold equipped with a minimal 

rational component, p :U —> /C, // : —> X be the universal family of /C-curves and 

7r : C —> X be the fibered space of varieties of minimal rational tangents. Let B C X 

be the largest subvariety, necessarily of codimension > 2, such tha t TT\X-B C\X-B —• 

X — B is flat. Let / : P1 —• X be a parametrized s tandard rational curve, / (P1) := C, 

such tha t C C X — B. C lifts canonically to C C U, whose image under the tangent 

map gives the tautological lifting C C C. At each of the finitely many points Xk of 

Cfl / i_1(x) there is an open neighborhood Uk such tha t rx embeds Uk holomorphically 

onto a smooth submanifold C£, which is the germ of some irreducible component of 

CX at [c*fc] = rx(xk)- In what follows C will mean the pull-back of the tautological 

lifting of C to /*C, so tha t C is smooth. For t G P1 we write CT for (/*C)t, [a(t)) for 

C H CU and VT for / *T / ( t ) (X) . We have CT C FVt. For every t G P1 we have a germ 

of smooth projective submanifold Cf C CT C FVt at [a(t)] corresponding to one of the 

germs C%,x = / (£ ) , chosen in such a way tha t the union of Cf is a germ of complex 

submanifold along the smooth curve C C FV. Write Tja(t)j for T[A(T)](C°). In Mok 

[14] (§3.2, p . 2651ff.) we introduced implicitly the notion of parallel t ranspor t of the 

second fundamental form along the tautological lifting C of a s tandard rational curve 

C. By this we mean tha t the second fundamental form can be interpreted in a natural 

way as a holomorphic section of a vector bundle which is trivial over C. We formulate 

the notion of isomorphisms of second fundamental forms and the result on parallel 

t ransport , as follows. 

Definition 4. — Let V and V be two complex Euclidean spaces of the same dimension, 

and A C FV, A! C PV7 be two local complex submanifolds of the same dimension. Let 

aeA, a= [a); a! G A!, a' = [a'\. Write Ta(A) = FE/Ca (resp. Ta(Af) = FE'/Ca' 
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where E C V (resp. E' C V) is a vector subspace containing a (resp. a'). We 

say that the second fundamental form aa of A C FV at a £ A is isomorphic to the 

second fundamental form aa> of A' C FV at a' G A' if and only if there exists a linear 

isomorphism ip : V = V such that <p(a) = a', <p(E) = E', and such that (p satisfies 

the following additional property (fl) 

(tt) Let Tp : V/E —> V/E' be the linear map induced by <p, <p(E) = E', and denote 

by cra (resp. 5a/) the second fundamental form of A at a (resp. of A' at af). 

Then, for any £,r? G E we have <?a, (y>(£), ¥>fa)) = v{°a(C,v)) • 

Proposition 6. — For every t G P1 , denote by cr[açt)] S2T[a^ —> NCO\F>vT,[A(t)] the 

second fundamental form of C° C FVt at [a(t)]. Then, for t\,ti G F1, cr[a(tx)] is 

isomorphic to 0"[a(t2)]-

Proof. — Write v : FV —• P1 for the canonical projection, where V = f*Tx, and Tv 

for its relative tangent bundle. Write A = v\f*c, and recall tha t T[a^ = Xja(t)](C°). 

Write N[a(t)] = TI/?[a(t)]/T[a(t)]. Put t ing together T|a(t)], t G P1, we obtain a holomor­

phic vector bundle T\\^ on C. Likewise, put t ing together N[a^, t G P1, we obtain 

a holomorphic vector bundle N\\Q on C. For a nonzero vector a(t) G Vt we have 

the canonical isomorphism T^t^(FVt) ® — v*Vt/L[a(t)], where — C a ( t ) 

is the tautological line at . Varying over C we obtain a canonical isomorphism 

Tv 0 L = v*Vt/L over C Since L|g- = canonically, and C is a s tandard rational 

curve, we have ^ 0(2) © (0(1))P 0 0*, so tha t 

T„\d v*V\d/Te <g> TX^ {(0(1))P 0 0 « ) 0 0(-2) (0(-l))p 0 (0( -2) )* . 

Since at [a(£)],T[a(t)] 0 p(p+i) — PA(T)/Ca(t), where Pa(t) c VT is the positive par t 

of Vt at [a(t)], over C we have TA|g 9* (0(l))p ® C(-2) ^ ( 0 ( - l ) ) P and iVA|£ ^ 

0« 0 0(-2) *È ( 0 ( - 2 ) ) 9 . Thus, over C 

Hom(52TA|a,7VA|a) ^ H o m 
p(p+i) > 

( 0 ( -2 ) ) 2 , ( < 9 ( - 2 ) ) ^ 
[ZQ,ZI,p(p+i) 

is holomorphically trivial. Hence, at ¿ 1 , £2 G P1 the second fundamental forms <7[A(TI)] 

S2T\a(t)] —• N\a(t)]: i = 1,2; must be isomorphic to each other, as desired. 

Taking <T[a(t)] as defining a holomorphic section of a holomorphically trivial vector 

bundle E := S2T\\^ <8> iV^|g over P1, parallel t ransport of the second fundamental 

form from t\ G P1 to ¿2 G P1 can be understood as sending an element of et1 G 

Etl to the unique element et2 G Et2 for which there exists e G T(F1,E) such tha t 

e(ti) = €tl, e(£2) = ^ 2 . Fixing a decomposition of V = f*Tx over P1 given by 

V = 0 ( 2 ) 0 (0(l))p 0 Oq, there is a linear isomorphism tp:Vtl-> Vt2 which respects 

the decomposition of V and which induces parallel t ransport from p(p+i)and cr[a(t2)]. 
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6.3. Recognition of certain rational homogeneous manifolds from VMRTs 
at a general point. — We consider the question of characterizing certain rational 
homogeneous manifolds of Picard number 1 by their VMRTs at general points. Let 
S be an irreducible Hermitian symmetric space of Picard number 1, and denote its 
VMRT at 0 G 5 by C0 C PT0(5). Suppose (X , /C) is a uniruled projective manifold 
equipped with a minimal rational component such tha t at a general point x G X the 
VMRT Cx C FTX(X) is congruent to C0 C FT0(S) of the model space. Let B c X 
be a proper subvariety such tha t 7T\X-B : C ^ J is a locally trivial holomorphic 
fiber bundle with fibers Cx C FTX(X) being congruent to Co C PTo(5) as a projective 
submanifold. By [(4.3), Theorem 4], which in particular characterizes irreducible 
Hermitian symmetric spaces S of rank > 2 by means of .^-structures, to prove X = S 
it suffices to show tha t B can be reduced to the empty set by methods of holomorphic 
extension. By Hartogs extension of 5-structures (cf. (3.4)) it is enough to show 
tha t for every irreducible component Ei C B of codimension 1 in X and any general 
point y e Ei, there exists a neighborhood Uy of y such tha t ir\uy-Ei : C\uy-Ei —> 
Uy — Ei extends holomorphically across Uy fl Ei as a holomorphic fiber subbundle of 
7r : FTjjy —> Uy. Since X is of Picard number 1, for y G Ei sufficiently general there 
exists a s tandard parametrized rational curve / : P1 -> X such tha t / ( 0 ) g B and 
/ ( o o ) = y. The idea is to consider the tautological lifting of C = / (P1) to C C / *C , 
and to recapture C ^ which corresponds to Cy by knowing its second fundamental form 
at the point [OJ(OO)] G C ^ corresponding to [d/(oo)] G Cy. 

The simplest case for this to work is the case of the n-dimensional hyperquadric 
Qn,n > 3. For the family f*C C F(f*Tx), the general fiber is isomorphic to a 
hyperquadric in Pn_1 . Degeneration of the hyperquadrics can occur at t = oo, to give 
a degenerate hyperquadric defined by a degenerate symmetric bilinear form. However, 
this is precisely the case if and only if the second fundamental form cr at a general 
point of Coo is degenerate. The method of parallel t ransport of second fundamental 
forms then rules out the latter possibility, showing tha t Cy C FTy(X) is congruent 
to the VMRT of the model space for a general point y of the hypersurface Ei. Wi th 
this holomorphic extension result of VMRTs across general points of hypersurfaces 
and Hartogs extension for bad sets of codimension > 2 we have shown tha t X is 
biholomorphically isomorphic to the hyperquadric whenever the VMRT at a general 
point is congruent to Qn~2 C Pn_1 . 

As seen from the table in (2.4) in the general symmetric case the VMRT Co C 
PTo(5) is itself a Hermitian symmetric space, either of rank 2 and embedded by the 
minimal canonical embedding, or of rank 1 and embedded by the second canonical 
embedding. In some sense they are quadratic objects. In fact, Co is the closure 
of the graph of a vector-valued quadratic function Q on the tangent space T[Q](Co). 
Q is essentially the second fundamental form. To illustrate how the argument of 
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parallel t ransport of second fundamental forms works in the other cases, we consider 
the cases where Co C FT0(S) is an irreducible Hermitian symmetric space of rank 
2, so tha t it carries a canonical G-structure for some reductive Lie subgroup of the 
general linear group. In the notations analogous to those in the preceding discussion, 
Coo C P ( / * T x ) has the same second fundamental form at [«(00)] as tha t of the 
model space. Co C FTo(S) is uniruled by lines. Denoting by K' the minimal rational 
component on Co consisting of lines, the G-structure of Co is completely determined 
by VMRTs C[aj associated to (Co,/C;), where is defined by the set of non-zero 
tangent vectors rj G 7]a](Co) such tha t o-[aj(rj,rj) = 0. Parallel t ransport of second 
fundamental forms then implies tha t C^ inherits a G-structure. By making use of 
developing maps C^ C F(f*Ty(X) can be shown to be congruent to Co C FT0(S). 
Here one has to exclude the possibility of linear degeneration of C^ C F(f*Ty(X), a 
possibility tha t is ruled out by the surjectivity of the second fundamental cr[a] on the 
model space, and hence of 0"[a(oo)] at 2/ = /(00) on X by parallel t ransport . 

The preceding line of argumentation can be strengthened to yield 

Theorem 14 (Mok [43], Hong-Hwang [8]). — Let G be a simple complex Lie group, 
P C G be a maximal parabolic subgroup corresponding to a long simple root, and by 
S := G/P be the corresponding rational homogeneous manifold of Picard number 1. 
Denote by Co C FTQ(S) the variety of minimal rational tangents at a reference point 
0 G S associated to the minimal rational component of lines on S. Let X be a Fano 
manifold of Picard number 1 and K be a minimal rational component on X. Suppose 
the variety of K-tangents Cx C FTX(X) at a general point x G X is congruent to 
Co C FTo(S) as a projective submanifold. Then, X is biholomorphic to S. 

For the case where S is the projective space Theorem 14 follows from [3]. A sketch 
of the proof for S Hermitian symmetric and of rank > 2 has been given in the above. 
When P C G corresponds to a long simple root, the VMRT Co C FDo for the minimal 
nontrivial G-invariant distribution D on S. Co is the highest weight orbit in FDo, and 
it is itself a Hermitian symmetric space. D Ts unless S is Hermitian symmetric. 
When S is non-symmetric and Co is irreducible as a Hermitian symmetric space, it 
is of rank 3, embedded by the minimal canonical embedding. In general Co C FDo 
is of rank 3 as an embedded Hermitian symmetric space, when the degree for the 
embedding on each irreducible factor of Co is taken into account in the obvious way. 
In fact, Co C FDo is a cubic object, being the closure of the graph of a vector-valued 
cubic polynomial on the tangent space T[a](Co) (cf. Hwang-Mok [17], p . 377). The 
cubic nature of the VMRT is reflected in the table for Fano contact homogeneous 
manifolds of Picard number 1 in (3.1), and applies in general to the long-root case. 

For non-symmetric S there is an additional notion of the third fundamental form 
for Co C FDo, defined as follows. The image of the second fundamental form <7[a] : 
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S2T[a} —> To(S)/Pa is not surjective. For a G Co one can define a filtration Ca C Pa C 

C T0 (5) , where Qa is obtained by adjoining the image of the second fundamental 

form at a. This filtration corresponds to the splitting D\¿ = O(2) 0 {0{l))p 0 O9 0 

l ) ) r for the minimal proper distribution D C T^. At every point [a] C Co one 

can define the third fundamental form K[Q] : 53X|a] —> To(S)/QA. In the case of a 

Fano manifold X of Picard number 1 satisfying the hypothesis of Theorem 14 for a 

non-symmetric S defined by a long simple root, Proposition 6 generalizes to show 

tha t over a s tandard parametrized rational curve / : P 1 —• X , the corresponding 

third fundamental form on its tautological lifting C defines a holomorphic section of a 

holomorphically trivial vector bundle over P 1 . Using this we have a version of parallel 

t ransport of the third fundamental form /t, with which one can prove extension results 

of VMRTs across a general point of a hypersurface as in the Hermitian symmetric 

case. In the contact case Theorem 14 is proved in Mok [43] by resorting to Hong's 

characterization of Fano contact homogeneous manifolds of Picard number 1 in [Ho]. 

In the remaining cases Theorem 14 was established in Hong-Hwang [8]. 

In view of Theorem 14, one may raise the following conjecture. 

Conjecture 6. — Let S = G/P be any Fano homogeneous manifold of Picard number 1 

and denote by Co{S) C FTo(S) its variety of minimal rational tangents at a reference 

point 0 G S. Let (X, K) be a Fano manifold of Picard number 1 equipped with a 

minimal rational component such that the associated VMRT at a general point is 

congruent to Co(S) C PTo(S). Then, X is biholomorphic to S. 

To resolve Conjecture 6 it remains to consider the short-root case. Confirmation of 

the conjecture would provide a unified proof of rigidity of Fano homogeneous manifolds 

of Picard number 1 under Káhler deformation [(3.4), Theorem 2]. 

6.4. Projective manifolds with nef tangent bundles and 1-dimensional 
VMRTs. — In analogy with the Generalized Frankel Conjecture in Káhler Geom­

etry one can formulate a Generalized Hartshorne Conjecture in Algebraic Geometry. 

This is given by the Campana-Peternell Conjecture [2] (1991). In particular, restrict­

ing to Fano manifolds X of Picard number 1, the Campana-Peternell Conjecture 

asserts tha t X is biholomorphic to a rational homogeneous manifold S = G/P when­

ever the tangent bundle of X is nef, i.e., numerically effective. The latter assumption 

implies tha t the deformation of any rational curve on X is unobstructed. As a 

consequence, for any choice of a minimal rational component /C on X , the evaluation 

map p : U —> X associated to the universal family for /C gives a regular family of 

projective manifolds. This imposes some restrictions on possible complex structures 

of moduli spaces )QX — Mx of /C- curves marked at x by restricting U over minimal 

rational curves. While there is so far no strong evidence why the Campana-Peternell 
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Conjecture should hold, with the latter fact in mind Mok [41] considered a special 

case of the conjecture, under the restrictive assumption tha t the VMRT at a general 

point is 1-dimensional. In [41] we considered Fano manifolds whose second and 

fourth Bett i numbers are equal to 1. The condition on the fourth Betti number was 

removed recently by Hwang [12], and we have now 

Theorem 15. — (Mok [43], Hwang [12]) Let X be a Fano manifold of Picard number 

1 with nef tangent bundle. Suppose X is equipped with a minimal rational component 

for which the variety of minimal rational tangents at a general point x G X is 1-

dimensional. Then, X is biholomorphic to the projective plane F2, the 3-dimensional 

hyperquadric Q3, or the 5-dimensional Fano contact homogeneous manifold i f (G2) of 

type G2. In particular, X is a rational homogeneous manifold. 

We note tha t the only algebro-geometric property used which arises from the nef-

ness of the tangent bundle is the fact tha t the restriction of the tangent bundle to 

any /C-curve is nonnegative. In particular, the nefness assumption in Theorem 15 can 

be replaced by the assumption tha t any rational curve on X is free. The approach of 

[41] was to reconstruct X under the given assumptions from its VMRTs by making 

use of the canonical double fibration p : U —> /C , ¡i : U —• X associated to /C. We 

note tha t no a priori assumption is placed on d im(X) . 

To start with, restricting fi : U —• X to a minimal rational curve we obtain an 

algebraic surface E holomorphically fibered over P1 which admits a holomorphic sec­

tion r corresponding to the tautological lifting of the minimal rational curve. Thus, 

T C E is an exceptional curve. Since the base is P1, if the fibers are of genus > 1 

the family must be holomorphically trivial, and the existence of the exceptional curve 

r C E forces a contradiction. Thus, any tix is isomorphic to P1. At a general point 

x G X the tangent map rx : Ux —> FTX(X) is a holomorphic map. To determine the 

VMRT at a general point the next step is to bound d := deg(r*((9( l)) . For this pur­

pose we introduce the use of Chern class inequalities. First, the universal P1-bundle 

p \ U —> JC gives rise to a holomorphic rank-2 vector bundle v : V —> /C such tha t 

FV = U. We prove tha t V is stable and deduce tha t d < 4 from the Bogomolov 

inequality c2(V) • [u;]n~2 < 4c2(V) • [o;]n~2 for stable rank-2 vector bundles V over 

an n-dimensional projective manifold, where u s tands for the first Chern form of a 

positive line bundle on X, and [LJ] for its cohomology class. It is here tha t we make 

use of the assumption 64 (X) = 1 when applying Chern class inequalities. Using the 

existence of Hermitian-Einstein metrics due to Uhlenbeck-Yau the equality case in 

the Bogomolov inequality can be ruled out, and we end up with d = 1,2,3, which we 

eventually prove to correspond to the three examples in the statement of Theorem 

15. To proceed we make use of results from (2.3) on the integrability of differential 

systems generated by VMRTs to show tha t in each of the three cases d = 1, 2 ,3 the 
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VMRT Cx C FTX(X) is congruent to Co C S of the model space, and the proof is com­

pleted by invoking special cases of Theorem 14. The condition 64 (X) = 1 is removed 

in Hwang [10] by resorting to the determination of a certain Chow group pertinent 

to the problem in the application of the Bogomolov inequality. 

Finally, from Theorem 15, together with earlier works of Campana-Peternell [2] and 

Zheng [53], and Miyaoka's characterization of the hyperquadric [37], one confirms the 

Campana-Peternell Conjecture up to 4 dimensions. More precisely, we have 

Theorem 16. — Let X be a Fano manifold of dimension < 4 on which all rational 

curves are free. Then, X is biholomorphic to a rational homogeneous manifold. 

7. Privileged subvarieties of uniruled projective manifolds 

7.1. Subvarieties saturated with minimal rational curves. — In analogy to 
totally geodesic submanifolds in Riemannian geometry we introduce for uniruled pro­

jective manifolds (XK,) endowed with minimal rational components the notion of 

/C-saturated subvarieties, as follows. 

Definition 5. — Let (X, K) be a uniruled projective manifold equipped with a mini­

mal rational component, IT : Cx —> X be the associated fibered space of varieties 

K-tangents. Let E C X be an irreducible analytic subvariety of some connected open 

subset U C X and £ C be an analytic subvariety. For y G S denote by £y the 

fiber of 8 over y. We say that ( E , £ ) (X, Cx) is JC-saturated if and only if 

(a) Sy = PT2/(E) f lCx ^ 0 for a smooth point y G S , and 

(b) for a general smooth point y on E, and for the germ C of an irreducible branch of 

a standard K-curve passing through y, C must lie on E whenever [Ty(C)] G Ey. 

When the choice of /C is understood, we simply say tha t E is saturated with respect 

to minimal rational curves. If we take a minimal rational curve on (X, JC) to play the 

role of a geodesic, a /C-saturated subvariety is the analogue of a totally geodesic 

subspace in Riemannian geometry, except tha t the 'geodesies' are now only defined 

for tangent directions corresponding to varieties of minimal rational tangents. 

7.2. A relative version of the Gauss map condition for linear sections of 
VMRTs. — In (5.1) we have introduced a non-degeneracy condition (f) on the 

Gauss map of the variety of minimal rational tangents Cx at a general point x of 

a uniruled projective manifold (X, K) equipped with a minimal rational component, 

viz., we require tha t the Gauss map is generically finite on Cx. Equivalently (f) is 

satisfied if and only if at a general smooth point [a] of Cx, the kernel Ker a^a] = 0 for 

the second fundamental form cr[a] at [a] G Reg(Cx). We extend this to the situation 

of a linear section of Cx and define a non-degeneracy condition (ff) which reduces 
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to (f) when the linear section is Cx itself. Recall tha t a variety is said to be of pure 
dimension n if and only if each irreducible component is of the same dimension n. 

Definition 6. — Let m > 2, A C Pm be a projective subvariety of pure dimension 
a > 1. Let II C Pm be a projective linear subspace, and B := U D A be a non-empty 
projective subvariety of pure dimension b > 1. We say that the pair (#, A) satisfies the 
non-degeneracy condition ( f f ) if and only if for every general smooth point [/?] G B, 
[P] is also a smooth point of A and Ker cr^] (T^(B), •) = 0. 

By an adaptat ion of the proof of Cartan-Fubini extension in the equidimensional 
case under the non-degeneracy assumption (f) as explained in (5.2) we have the fol­
lowing non-equidimensional analogue of Cartan-Fubini extension under some non-
degeneracy assumption involving (ff) on second fundamental forms. For the formu­
lation a point x G X is said to be a good point if and only if every minimal rational 
curve passing through x is free, and a general element of every irreducible component 
of Kx represents a s tandard rational curve, otherwise x is called a bad point. The 
bad locus of (X, K) is the set of bad points on X , which is a subvariety of X . 

Theorem 17 (Hong-Mok [9]). — Let (Z, TL) and (X, K) be two uniruled projective man­
ifolds equipped with minimal rational components. Assume that Z is of Picard number 
1 and that CZ(Z) is of positive dimension at a general point z G Z. Let U C Z be 
a connected open subset and f : U —> X be a holomorphic embedding onto a lo­
cally closed complex submanifold S C X lying outside the bad locus of (X, /C). Sup­
pose f respects varieties of minimal rational tangents in the sense that df(Cz(Z)) = 
df(Tz(Z)) Pi Cf(z)(X). Assume furthermore that at a general point x G S, the 
non-degeneracy condition ( f f ) on second fundamental forms is satisfied for the pair 
(Cx fl PTX(5),CX). Then, f extends to a rational map F : Z —> X . 

In terms of the holomorphic map / , the non-degeneracy condition on second fun­
damental forms translate into 

Ker âdfia)(Tdfia)(df(Cz(Z))), •) = C4f(a). 

As an important intermediate step in the proof of Theorem 17, Hong-Mok established 
under the assumption there the following result. 

Proposition 7. — Under the assumptions of Theorem 17 and in the notations there, 
f sends germs of standard H-curves into germs of standard K-curves. In particular, 
(S,C f lPTs) c (X,C) is saturated with respect to K-curves. 
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7.3. Parallel transport of VMRTs along minimal rational curves. — As an 
application of non-equidimensional Cartan-Fubini extension, Mok [42] gave a charac­

terization of s tandard embeddings between Grassmannians of rank > 2. The result 

by itself had been known and proven by different methods by Neretin [46] and Hong 

[7]. Our proof started with non-equidimensional Cartan-Fubini extension in the Her­

mitian symmetric case with a proof relying on the use of Harish-Chandra coordinates. 

More recently, Hong-Mok [9] have established the general form of Proposition 7, ob­

taining at the same time a characterization of a general class of s tandard embeddings 

between rational homogeneous manifolds of Picard number 1. On a rational homo­

geneous manifold Y of Picard number 1 we consider the minimal rational component 

consisting of lines on Y and denote by Cy(Y) the associated VMRT at y G Y. 

Theorem 18 (Hong-Mok [9]). — Let X = G/P be a rational homogeneous manifold of 

Picard number 1 associated to a long simple root and let Z = GQ/PQ be a rational 

homogeneous space associated to a subdiagram of the marked Dynkin diagram of G/P. 

Assume that Z is not linear. If f : U —> X is a holomorphic embedding from a 

connected open subset U of Z into X satisfying dfz(CZ(Z)) = dfZ(TZ(Z)) nCf^(X) 

for a general point z eU, then f extends to a standard embedding of Z into X. 

Sketch of proof — A marked Dynkin subdiagram defines naturally an embedding A 

from Z = Go/Po into X = G/P. By a s tandard embedding from Z into X we mean 

(p o A for some ip G A u t ( X ) . For the proof of Theorem 18, first of all the method 

of non-equidimensional Cartan-Fubini extension as given in [(7.2), Theorem 17] can 

be implemented by checking the validity of the non-degeneracy condition (ff) on the 

Gauss map yielding therefore a rational extension F : Z —» X. Write S = F(Z) for 

the total transform of F. By Proposition 7, S C X is /C-saturated. The condition 

dfz(CZ(Z)) = dfZ(TZ(Z)) C\Cf(z)(X) says tha t S is tangent at a general point s G f(U) 

to a (unique) copy ZS of a s tandard embedding of Z into X. Extending f : U —> X 

to F : Z —> X the same applies for a general point s G S. 

Start with a base point 0 E Z , / ( 0 ) = 0. ZQ and S are tangent to each other at 

0 and they share the same VMRTs at 0. Let A be the subvariety on ZQ swept out 

by lines £ on ZQ passing through 0. Since S C X is /C-saturated, £ G A C ZQ fl S. 

At a general point s G £, write £s := PTS(5) fl CS(X) = FTS(ZS) fl CS(X). We 

argue tha t ZQ and S are tangent at s G £, i.e., CS(ZQ) = £S. Write TS{£) = Ca. 

From the deformation theory of rational curves T^(CS(ZQ)) = TS(A)/TS(£) while also 

T[a](£s) = TS(A)/TS(£). This means tha t £s and CS(Z0) are tangent to each other at 

[a]. In general the tangency property does not imply identity of the two VMRTs, but 

we have found tha t this is the case for pairs (Z, X) of rational homogeneous manifolds 

of Picard number 1 as given in Theorem 18. We may think of this as a form of parallel 

t ranspor t of VMRTs for /C-saturated subvarieties along a minimal rational curve in 
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special situations. Thus, Zs = ZQ for any line I on Z0 passing through 0 and for a 

general point s G £. It follows tha t Zs = Zo for a general point s G A, and s can now 

play the same role as the initial base point 0. Finally, S = F(Z) can be recovered 

from the single point 0 G Z in a finite number of steps by the procedure of adjoining 

minimal rational curves (cf. (3.1)), and we have proven tha t S = ZQ, as desired. • 
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Abstract. — We prove results allowing us to count, mod 2, the number of embedded 
minimal surfaces of a specified topological type bounded by a curve T C dN, where N 
is a weakly mean convex 3-manifold with piecewise smooth boundary. These results 
are extended to curves and minimal surfaces with prescribed symmetries. The parity 
theorems are used in an essential manner to prove the existence of embedded genus-# 
helicoids in S 2 x R, and we give an outline of this application. 

Résumé (Sur le nombre de surfaces minimales avec une frontière donnée). — Nous démontrons 
des résultats qui nous permettent de compter, modulo 2, le nombre de surfaces mi­
nimales plongées d'un type topologique donné, borné par une courbe F C dN, où N 
est une 3-variété convexe faiblement moyenne munie d'une frontière lisse par mor­
ceaux. Ces résultats sont étendus aux courbes et aux surfaces minimales à symétries 
prescrites. Les théorèmes de parité sont utilisés de manière essentielle pour prouver 
l'existence d'hélicoïdes de genre imbriqué g dans S 2 x R, et nous donnons un aperçu 
de cette application. 

1. Introduction 

In [4], Tomi and Tromba used degree theory to solve a longstanding problem about 

the existence of minimal surfaces with a prescribed boundary: they proved that every 

smooth, embedded curve on the boundary of a convex subset of R 3 must bound an 

embedded minimal disk. Indeed, they proved that a generic such curve must bound an 

odd number of minimal embedded disks. White [8] generalized their result by proving 

the following parity theorem. Suppose N is a, compact, strictly convex domain in R 3 
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with smooth boundary. Let E be a compact 2-manifold with boundary. Then a 
generic smooth curve T = 9E in dN bounds an odd or even number of embedded 
minimal surfaces diffeomorphic to E according to whether E is or is not a union of 
disks. 

In this paper, we generalize the parity theorem in several ways. First, we prove 
(Theorem 2.1) that the parity theorem holds for any compact riemannian 3-manifold 
TV such that N is strictly mean convex, N is homeomorphic to a ball, dN is smooth, 
and N contains no closed minimal surfaces. We then further relax the hypotheses by 
allowing N to be mean convex rather than strictly mean convex, and to have piecewise 
smooth boundary. Note that if N is mean convex but not strictly mean convex, then 
T might bound minimal surfaces that lie in dN. We prove (Theorem 2.4) that the 
parity theorem remains true for such N provided (1) unstable surfaces lying in dN are 
not counted, and (2) no two contiguous regions of (dN) \ T are both smooth minimal 
surfaces. We give examples showing that the theorem is false without these provisos. 

We extend the parity theorem yet further (see Theorem 2.7) by showing that, 
under an additional hypothesis, it remains true for minimal surfaces with prescribed 
symmetries. 

The parity theorems described above are all mod 2 versions of stronger results that 
describe integer invariants. The stronger results are given in section 3. 

The parity theorems are used in an essential way to prove the the existence of 
embedded genus-g helicoids in S 2 x R. In Sections 4 and 5 we give a very brief 
outline of this application. (The full argument will appear in [3].) 

2. Counting minimal surfaces 

Throughout the paper, N will be a compact riemannian 3-manifold and E will be 
a fixed compact 2 manifold. If T is an embedded curve in N diffeomorphic to 9E, we 
let M(N, r) denote the set of embedded minimal surfaces in N that are diffeomorphic 
to E and that have boundary T. We let \M(N, T)\ denote the number of surfaces in 
M(N,T). 

In case N has smooth boundary, we say that N is strictly mean convex provided 
the mean curvature is a (strictly) positive multiple of the inward unit normal on a 
dense subset of dN. 

2.1. Theorem. — Let N be a smooth, compact, strictly mean convex riemannian 3-
manifold that is homeomorphic to a ball and that has smooth boundary. Suppose 
also that N contains no closed minimal surfaces. Let T C dN be a smooth curve 
diffeomorphic to dY>. Assume that T is bumpy in the sense that no surface in M(N, T) 
supports a nontrivial normal Jacobi field with zero boundary values. 
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Then \M(N,T)\ is even unless E is a union of disks, in which case \M(N,T)\ is 
odd. 

We remark that generic smooth curves T C dN are bumpy [7]. 

Proof. — Theorems 2.1 and 2.3 of [8] are special cases of the theorem. The proofs 
given there establish the more general result here provided one makes the following 
observations: 

1. There N was assumed to be strictly convex, but exactly the same proof works 
assuming strict mean convexity. 

2. There E was assumed to be connected, but the same proof works for discon­
nected E. 

3. In the proofs of Theorems 2.1 and 2.3 of [8], the assumption that N is a subset 
of R 3 was used in order to invoke an isoperimetric inequality, i.e., an inequality 
bounding the area of a minimal surface in N in terms of the length of its bound­
ary. There are compact mean convex 3-manifolds for which no such isoperimetric 
inequality holds. However, if (as we are assuming here) TV contains no closed 
minimal surfaces, then N does admit such an isoperimetric inequality [9]. 

4. In the proofs in [8], one needs to isotope any specified component of T to a 
curve C that bounds exactly one minimal surface, namely an embedded disk. 
This was achieved by choosing C to be a planar curve. For a general ambient 
manifold TV, "planar" makes no sense. However, any sufficiently small, nearly 
circular curve C C ON bounds exactly one embedded minimal disk and no 
other minimal surfaces. (This property of such a curve C is proved in the last 
paragraph of §3 in [8].) 

2.2. Mean convex ambient manifolds N with piecewise smooth boundary. 
— For the remainder of the paper, we allow dN to be piecewise smooth. For simplic­
ity, let us take this to mean that dN is a union of smooth 2-manifolds with boundary 
("faces" of N), any two of which are either disjoint or meet along a common edge with 
interior angle everywhere strictly between 0 and 2ir. (More generally, one could allow 
the faces of N to have corners.) We say that such an N is mean convex provided (1) 
at each interior point of each face of JV, the mean curvature vector is a nonnegative 
multiple of the inward-pointing unit normal, and (2) where two faces meet along an 
edge, the interior angle is everywhere at most 7r. 

The following example shows what can go wrong in Theorem 2.1 if N is mean 
convex but not strictly mean convex. 

Example 1. Let N be a region in R 3 whose boundary consists of an unstable 
catenoid C bounded by two circles, together with the two disks bounded by those 
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circles. Note that JV is mean convex with piecewise smooth boundary. Let T be a pair 
of horizontal circles in C that are bumpy (in the sense of Theorem 2.1). Theorem 2.1 
suggests that V should bound an even number of embedded minimal annuli in N. 
First consider the case when F consists of two circles in C very close to the waist 
circle. Then T bounds precisely two minimal annuli. One of them is the component 
of C bounded by T. Because the circles in T are close, this annulus is strictly stable. 
The other annulus bounded by T is a strictly unstable catenoid lying in the interior 
of iV. In order to get an even number of examples, we must count the stable catenoid 
lying on C. Now suppose the two components of T are the two components of dC. 
Then again T bounds exactly two minimal annuli: the unstable catenoid C, which is 
part of dN, and a strictly stable catenoid that lies outside N. Here, of course, we do 
not count the stable catenoid since it does not lie in N. Thus to get an even number, 
we also must not count the unstable catenoid that lies in dN. 

This example motivates the following definition: 

2.3. Definition. — M*(N,T) is the set of embedded minimal surfaces M C N such 
that 

i.) dM = r, 
ii.) M is diffeomorphic to E, and 

iii.) each connected component of M lying in dN is stable. 

Example 1 suggests that in order to generalize Theorem 2.1 to mean convex N 
with piecewise smooth boundary, we should replace M(N, T) by M*(N, T). However, 
even if one makes that replacement, the following example shows that an additional 
hypothesis is required. 

Example 2. Let N be a compact, convex region in R 3 such that dN is smooth and 
contains a planar disk D. Let T be a pair of concentric circles lying in D. Then T 
bounds exactly one minimal annulus: the region in D between the two components 
of T. That annulus is strictly stable and lies in dN. Thus T is bumpy (in the sense of 
Theorem 2.1) and \M*(N,T)\ = 1. Consequently, if we wish \M*(N,T)\ to be even 
(as Theorem 2.1 suggests it should be), then we need an additional hypothesis on N 
and T. 

Note that in example 2, (dN)\T contains two contiguous connected components (a 
planar annulus and a planar disk) both of which are minimal surfaces. The additional 
hypothesis we require is that (dN) \ T contains no two such components. 

2.4. Theorem. — Let N be a smooth, compact, mean convex riemannian 3-manifold 
that is homeomorphic to a ball, that has piecewise smooth boundary, and that contains 
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no closed minimal surfaces. Let T C dN be a smooth, embedded bumpy curve diffeo-

morphic to 9E. Suppose that no two contiguous connected components of (dN) \ T 

are both smooth minimal surfaces. 

Then \M*(N, T)| is even unless £ is a union of disks, in which case \M*(N, T)\ is 

odd. 

Proof — Since N is compact, mean convex, and contains no closed minimal surfaces, 

the areas of minimal surfaces in N are bounded in terms of the lengths of their 

boundaries [9]. 

If dN is smooth and has nowhere-vanishing mean curvature, the result follows 

immediately from Theorem 2.1. We reduce the general case to this special case as 

follows. Note that we* can find a one-parameter family Nt, 0 < t < e, of mean convex 

subregions of N such that 

i.) N0 = N, 

ii.) the boundaries dNt foliate a relatively open subset of N containing dN. 

iii.) for t > 0 small, dNt is smooth and the mean curvature of dNt is nowhere zero 

and points into Nt. 

For example, we can let dNt be the result of letting dN flow for time t by the mean 

curvature flow. 

Claim. — Suppose Mi are smooth embedded minimal surfaces in N diffeomorphic to 

£ and that dMi —> Y smoothly. Then a subsequence of the Mi converges smoothly to 

a limit M € M*(N,T). 

Proof of claim. — By Theorem 3 in [6] a subsequence converges smoothly away from 

a finite set S to a limit surface M. The surface M is smooth and embedded, though 

portions of it may have multiplicity > 1. Indeed, the proof of Theorem 3 in [6] shows 

that the multiplicity is 1 and the convergence Mi —> M is smooth everywhere unless 

an interior point of M touches T. 

In fact, no interior point of M can touch T. For suppose to the contrary that the 

interior of M touches T at a point p. Let C be the connected component of T con­

taining p. By the strong maximum principle, M must contains a whole neighborhood 

of p G dN. Indeed, by the strong maximum principle (or by unique continuation), M 

must contain the two connected components of (dN) \ T on either side of C. But by 

hypothesis, at most one of those components is a minimal surface, a contradiction. 

This proves that no interior point of M touches T. 

Consequently, as noted above, M has multiplicity 1 and the convergence Mi —> M 

is smooth everywhere. Thus M £ M(N,T). 

Now suppose some connected component M' of M lies in dN. Then the corre­

sponding component M[ of Mi converges smoothly to M' from one side of M. This 
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one-sided convergence implies that M' is stable. Thus M e M*(N,T). This com­
pletes the proof of the claim. 

Continuing with the proof of Theorem 2.4, note that M*(N, T) is finite. For 
if it contained an infinite sequence of surfaces then by the claim, it would contain a 
smoothly convergent subsequence. The limit of that subsequence would be an element 
of M*(N,T). But by bumpiness of T, the elements of M*(N,T) are isolated. The 
contradiction proves that M*(N, T) is finite. 

Let Tt, 0 < t < e, be a smooth one-parameter family of embedded curves such that 
T 0 = r and such that Tt C dNt. Let M 0 \ . . . M 0

F C be the set of surfaces in M*(N, T). 
By the implicit function theorem, we can (if e is sufficiently small) extend these to 
one-parameter families 

Mi e M*(N,Tt) (i = l ,2 , . . . , / c ; 0 < t < e) 

where N is a riemannian 3-manifold containing N in its interior. 
In fact, Ml must lie in N provided e > 0 is chosen sufficiently small. To see this, 

assume for simplicity that E is connected. If MQ does not lie in dN, then by the 
strong maximum principle, it is never tangent to dN, so by continuity, Ml C N for 
all sufficiently small t. Now suppose that MQ does lie in dN. Then (by definition of 
M*(N, T)) it is strictly stable. The strict stability implies that in fact Ml lies in N 
for sufficiently small t. 

Indeed, Ml must lie not only in N but also in Nt C N, for all sufficiently small t. 
For let T = T{t) e [0,t] be the largest number such that Mf C NT. If T < t, then 
Ml would touch dNr at an interior point, violating the maximum principle. Hence 
T — t and therefore M\ C Nt. 

The claim implies that if e is sufficiently small, then each surface in M*(Nt,Tt) 
will be one of the surfaces in M\,..., M*. We may also choose e sufficiently small 
that the M\ all have zero nullity. Then 

\M*(N,T)\ = k = \M(Nt,Tt)\ 

which must have the asserted parity by Theorem 2.1 (applied to Nt and Tt.) 

2.5. Counting in the presence of symmetry. — In some situations, it is im­
portant to be able to say something about the number of minimal surfaces that are 
diffeomorphic to a specified surface E and that possess specified symmetries. Suppose 
G is a group of isometries of N. 

2.6. Definition. — If T is a G-invariant curve in TV, we let MQ(N,T) C M*(N,T) 
denote the set of surfaces in M*(N,T) that are invariant under G. A boundary 
T C dN is called G-bumpy if no surface in MQ(N, T) has a nontrivial G-invariant 
normal Jacobi field that vanishes on dM. 
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Theorem 2.4 has a natural extension to G-invariant surfaces: 

2.7. Theorem. — Let N be a smooth, compact, mean convex riemannian 3-manifold 

that is homeomorphic to a ball, that has piecewise smooth boundary, and that contains 

no closed minimal surfaces. Let G be a group of isometries of N. Let T C ON be 

a smooth curve that is G-invariant and G-bumpy. Suppose that no two contiguous 

components of (dN) \ T are both minimal surfaces. 

Suppose also that 

(*) r = dft for some G-invariant region Q, C dN. 

Then |Ai^(iV,r)| is even unless £ is a union of disks, in which case \MQ(N,T)\ is 

odd. 

2.8. Remark. — In Theorem 2.7, the hypothesis that N contains no closed minimal 

surfaces is equivalent to the hypothesis that N contains no closed G-invariant minimal 

surfaces. See [9], Theorem 2.5. 

Proof. — In general, the proof is exactly the same as the proof in the non-invariant 

case. However (see Observation (4) in the proof of Theorem 2.1), to carry out the 

proof, one must be able to isotope the connected components of T in a G-invariant 

way to arbitrarily small, nearly circular curves in dN. The hypothesis that T = dQ 

for a G-invariant region 0 C dN ensures that such isotopy is possible. (Indeed, it is 

equivalent to the existence of such G-invariant isotopies.) 

We do not know whether Theorem 2.7 remains true without the hypothesis (*). 

3. An Integer Invariant 

Suppose N C R 3 is a compact, strictly convex set with smooth boundary. In the 

introduction, we quoted Theorems 2.1 and 2.3 of [8] as asserting that if F C dN is a 

smooth, bumpy curve diffeomorphic to d£, then 

(1) \M{N,T)\* 
1 if E is a union of disks, and 

0 if not 

where = denotes congruence modulo 2. 

In fact, the conclusion in [8] is actually much stronger than (1). To state that 

conclusion, we need some terminology. 

3.1. Definition. — Let £(£) = 1 if £ is a union of disks and 0 if not. If M is a 

collection of smooth minimal surfaces, let 

d(M) = IXeven I - |Xodd| 
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where .Meven is the set of surfaces in M with even index of instability and M0dd is 
the set of surfaces in M with odd index of instability. 

With this terminology, the conclusion of Theorem 2.1 in [8] is 

(2) d(M(N,r)) = 6CE). 

Note that (2) is stronger than (1). Indeed, (1) merely asserts that the two sides of (2) 
are congruent modulo 2. (See [5] for a similar result for immersed minimal disks in 
R n . ) 

If we start with the stronger conclusion (2), then the arguments in §2 produce 
stronger versions of Theorems 2.1, 2.4, , and 2.7: 

3.2. Theorem. — Under the hypotheses of Theorem 2.1, 

d{M(N,T) = 6(Yt). 

Under the hypotheses of Theorem 2.4, 

d(M*(N,T)) = SCE). 

Under the hypotheses of Theorem 2.7, 

dG(Mh(N,T)) = 6(E) 

where dc(') is defined exactly like d(-), except that in determining index of instability, 
we only count eigenfunctions that are G-invariant. 

The proofs are exactly as before. 

4. Counting the number of handles on a surface 
invariant under an involution 

Consider a minimal surface that has an axis of orientation preserving, 180° rota­
tional symmetry. In many examples of interest, the handles of the surface are in some 
sense aligned along the axis. In this section, we make this notion precise, and we 
observe that our parity theorems apply to such surfaces. 

Recall, for example, that Sherk constructed a singly periodic, properly embedded 
minimal surface M C R 3 that is asymptotic to the planes x = 0 and z = 0 away 
from the y-axis, Y. By scaling, we may assume that M intersects Y precisely at the 
lattice points (0,n, 0), n G Z. Now M has various lines of orientation preserving, 
180° rotational symmetry. For example, Y is one such a line, and the line L given 
by x = z, y = 1/2 is another. Intuitively, the handles of M are lined up along Y but 
not along L. (The surface M is also invariant under 180° rotation about the x and 
z axes, but those rotations reverse orientation on M.) We make the intuition into 
a precise notion by observing that the rotation about Y acts on the first homology 
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group Hi(M, Z) by multiplication by —1, whereas rotation about L acts on Hi(M, Z) 
in a more complicated way. 

4.1. Proposition. — Suppose S is a noncompact 2-dimensional riemannian manifold 
of finite topology. Suppose that p : S —> S is an orientation preserving isometry of 
order two, and that S/p is connected. Then the following are equivalent: 

1. p acts by multiplication by — 1 on the first homology group Hi(S,Z). 
2. the quotient S/p is topologically a disk. 
3. S has exactly 2 — x ( ^ ) fixed points of p, where x ( 5 ) is the Euler characteristic 

ofS. 

4.2. Corollary. — / / the equivalent conditions (l)-(S) hold, then the surface S has 
either one or two ends, according to whether p has an odd or even number of fixed 
points in S. 

4.3. Remark. — To apply Proposition 4.1 and its corollary to a compact manifold M 
with non-empty boundary, one lets S = M \ dM. Of course the number of ends of S 
is equal to the number of boundary components of M. 

Proof of Proposition J^.l. — Suppose that (1) holds. Let 7r : S —> S/p be the projec­
tion and let C be a closed curve in S/p. Then C = 7r _ 1 (C) is a p-invariant cycle 
in S and thus (by (1)) it bounds a 2-chain in S. Consequently 7r(C") = 2C bounds 
a 2-chain in S/p. Thus 2C is homologically trivial in S/p. But S/p is orientable, so 
Hi(S, Z) has no torsion. Thus C is homologically trivial in S/p. Since S/p is non-
compact and connected with trivial first homology group, it must be a disk. Hence 
(1) implies (2). 

To see that (2) implies (1), suppose that (2) holds. It suffices to show that any 
p-invariant 1-cycle in S is a boundary. (For if Co is any cycle in 5, then Co + p{Co) 
forms a p-invariant cycle.) Since S is oriented, Hi(S, Z) has no torsion, so it suffices 
to show that any p-invariant cycle 1-cycle in S must be a boundary mod 2. Let C C S 
be any p-invariant closed curve, not necessarily connected. We may assume that C 
is smooth and in general position, i.e., that the self-intersections are transverse. By 
doing the obvious surgeries at the intersections, we may assume in fact that C is 
embedded. 

Now 7r(C) is a smooth, embedded, not necessarily connected, closed curve in S/p. 
Since S/p is topologically a disk, ir(C) bounds a region Q. It follows that C bounds 
the region 7r_1(fJ). Thus C is homologically trivial mod 2. This completes the proof 
that (2) implies (1). 

Finally we show that (2) and (3) are equivalent. Let P be the number of fixed 
points of p. Consider a triangulation of S/p such the fixed points of p are vertices 
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in the triangulation, and consider the corresponding triangulation of S. Then from 
Euler's formula one sees that 

X(S) = 2X(S/p) - P 

or 
P = 2X(S/p) - x(S). 

Thus P = 2 — x(S) ^ and only if x ( 5 / p ) = 1. Since S/p is orientable and connected, 
its Euler characteristic is 1 if and only if it is a disk. This proves that (2) and (3) are 
equivalent. 

Proof of Corollary 4.2 — Since S/p is a disk, it has exactly one end. Since S is a 
double cover of S/p, it must have either one or two ends. Since S is oriented, 

(3) x ( S ) = 2 c - 2 < ? - e , 

where c is the number of connected components, g is the sum of the genera of the 
connected components, and e is the number of ends. Thus e is congruent mod 2 to 
x ( 5 ) , which by Proposition 4.1 is congruent, mod 2, to the number of fixed points 
of p. 

4.4. Counting y-surfaces. — Let AT be a riemannian 3-manifold. We suppose 
that N has a geodesic Y and an orientation preserving, order two isometry p = pY : 
N —> N for which the set of fixed points is Y. 

4.5. Definition. — Suppose M C N is an orientable, non-closed p-invariant surface 
such that p : M —> M preserves orientation and such that (M \ dM) /p is connected. 
We will say that M is a Y-surface if S := M \ dM satisfies the equivalent conditions 
in Proposition 4.1. 

Suppose for example that N = R 3 and that y is a line. Then p = py is 180° 
rotation about Y. If M is a py-invariant catenoid, then either Y is the axis of 
rotational symmetry of M, or else Y intersects M orthogonally at two points on the 
waist of M. In the first case, p acts trivially on the first homology of M, so M is not 
a y-surface. In the second case, p acts by multiplication by —1 on the first homology 
of M, so M is a y-surface. 

4.6. Definition. — We let 

MY(N,T) = {M e M*{N,T) M is a y-surface}. 

We say that a curve T C dN is Y-bumpy if no surface in MY (AT, T) carries a nontrivial, 
PY-invariant, normal Jacobi field that vanishes on T. 

The following result is a version of Theorem 2.7: 
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4.7. Theorem. — Let N be a smooth, compact, mean convex riemannian 3-manifold 
that is homeomorphic to a ball, that has piecewise smooth boundary, and that contains 
no closed minimal surfaces. Suppose that Y is a geodesic in N and that p = py : 
N N is an orientation preserving, order two isometry of N with fixed point set Y. 

Let T C dN be a smooth, embedded, p-invariant, Y-bumpy curve that carries a 
p-invariant orientation. 

Suppose that no two contiguous components of (ON) \ T are both minimal surfaces. 
Then \MY(N,T)\ is even unless E is a union of disks, in which case |A4y(iV, T)| 

is odd. 

Proof. — The proof is almost identical to the proof of Theorem 2.7. One lets the 
group G in Theorem 2.7 be the group generated by p. The hypothesis (*) there 
follows from the hypothesis here that T carries a py-invariant orientation. 

5. Higher genus helicoids in S 2 x R 

5.1. A boundary value problem for minimal Y-surfaces. — Our motivation 
in formulating Proposition 4.1 and Theorem 4.7 comes from the desire to construct 
embedded minimal surfaces in S 2 x R, each of whose ends is asymptotic to a helicoid 
in S 2 x R. Take as a model of S 2 x R the space R 2 x R on which each R 2 x {z} has 
the metric of the sphere pulled back by inverse stereographic projection. (The radius 
of that sphere is fixed but arbitrary.) This model is missing a line, Z* = {oo} x R, 
which we append in a natural way to R 2 x R with the aforementioned product metric. 
It is easy to verify that a standard helicoid H C R 3 with axis Z = {(0,0, z) : z E R} , 
an embedded and ruled surface, is also a minimal surface in S 2 x R. Here, it has two 
axes, Z and Z*. By a slight abuse of notation, we will use H to refer to this minimal 
surface in S 2 x R . 

The horizontal lines on the euclidean helicoid are great circles in the totally geodesic 
level-spheres of S 2 x R, the circle at height z passing through the antipodal points 
(0,*) e Z and (oo,*) € Z*. Let 

X = (S 2 x {0} ) H H, 

and denote by Y the great circle at height 0 passing through O = (0,0), O* = (oo, 0), 
and orthogonal to the great circle X. Just as on the Euclidean helicoid, py, order-
two rotation about Y, is an orientation preserving involution of H. Note that under 
our identification of S 2 x R with R 3 , each of the great circles on H corresponds 
to a horizontal line passing throught the 2-axis, and the great circles X and Y are 
identified with the x- and y-axes of R 3 . 

Denote by H+ the component of the complement of H that contains Y + := 
{(0,2/,0) | y > 0} . Then for any c > 0, py is an orientation preserving involution of 
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the domain 

(4) . Nc = H+n{\z\ <c}. 

Note that dNc is mean convex, consisting of three minimal surfaces: H n {\z\ < c } , 
and two totally geodesic hemispheres, H+ D {z = ± c } . We will label these minimal 
surfaces Hc and S±c, respectively. 

The set Hc \ (Z U Z* U X) has four components. Let Q be the component whose 
boundary contains the three geodesies X + = {(x , 0,0) | x > 0} , Z D {0 < z < c } , and 
Z* n {0 < z < c } . The "quadrant" Q has a fourth boundary curve, which is one of 
the two semicircular components of dSc \ (Z U Z*) . We label this semicircle T c . Note 
that T_ c := py(T c ) lies in d(pY(Q)). 

Fix a value of c and let N = Nc. Consider the union QUpy (Q), and define T C dN 
to be the boundary of Q U py (Q). Then 

(5) r = (Z n Hc) U T c U (Z* n ffc) U T_ c U X 

See Figure 1. The first four segments of T form a piecewise smooth curve with four 
corners. Adding the great circle X produces a curve that is singular at O = (0,0) and 
at O* = (oo,0), where there are right-angle crossings. Note that T is py-invariant. 

T 

Z z* 

o\ 

Y+ o* X 

Tc 

FIGURE 1. The curve T. In the figure, we have taken R 3 = R 2 x R as 
our model for S 2 x R, with the metric on R 2 given by the pullback of the 
metric on S 2 via inverse stereographic projection. In this case, the pole of 
S 2 is placed at the center of the semicircle Y~. 

If T defined in (5) is not F-bumpy, we can make arbitrarily small perturbations 
of the curves T±c to make it so, while keeping the resulting curve in dN, and also 
py-invariant. We will assume from now on that T is Y-bumpy. 
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Suppose for the moment that we could produce a connected Y-surface M C N 
with boundary T. We will show in the next paragraph how this will enable us to 
construct a higher-genus helicoid. 

Since py | M is orientation preserving, Y must intersect M orthogonally in a discrete 
set of points, precisely the fixed points of PY\M- We will consider M without its 
boundary, allowing us to apply Proposition 4.1. Namely, if k = \Y f l M| , the number 
of points in Y f l M, then 

k = 2 - v(M). 

Extend M by p^, Schwarz reflection in Z (or equivalently in Z*), and let 

(6) M = interior (M U pz(M). 

The surface M is smooth because M is py-symmetric, and 

\YHM\ = 2k + 2 

because the points O = (0,0) and at O* = (co,0), which lie on Y, are in M. The 
surface M is bounded by two great circles at levels dbc. It is embedded because pz{M) 
lies in H~. Furthermore it is py-invariant by construction and satisfies the condition 
that py acts by multiplication by - 1 on # i ( M , Z). Therefore, 2k + 2 = 2 - xO&O by 
Proposition 4.1. Since M has two ends, we have 

2k + 2 = 2 - (2 - 2genus(M) - 2), 

or 
genus (M) = k. 

If we can produce M = Mc for any cutoff height c, it is reasonable to expect that as 
c —̂  oo, the Mc converge subsequentially to an embedded genus-A: minimal surface 
each of whose ends is asymptotic to H or a rotation of H. In [3], we prove that this 
is the case. 

5.2. Existence of a suitable M e MY(N,T) with |Y f l M\ = k. — How are 
we going to produce, for each positive integer k, a connected, embedded, minimal 
Y-surface M c N with boundary T? The answer is: by induction on k, using Theo­
rem 4.7. The details, carried out in [3] are somewhat intricate. We describe here the 
main idea and the intuition behind the proof. 

First of all, it would seem that Theorem 4.7 is not suited to prove existence of the 
desired surfaces because in most cases it asserts that the number of surfaces in a given 
class is even. This could mean that there are zero surfaces in the class. We begin 
to address this problem by dividing the class of surfaces according to their geometric 
behavior near O. Why this helps will be made clear below. 

Since we are working with one fixed domain, namely N = Nc as defined in (4), 
we will suppress the reference to N and write MY(T) instead of MY(N, F). We can 
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decompose M*Y(Y) into two sets by looking at how a surface S G M*Y(Y) attaches 
to r at the crossing 0 , the intersection of the vertical line Z and the great circle 
X. The geodesies X , Z , and Z* divide H into four "quadrants". A quadrant whose 
boundary contains Z + U l + or Z~ UX~will be called a positive quadrant. The other 
two quadrants will be called negative quadrants. 

5.3. Definition. — Given a nonnegative integer k, 

MY(Y,k) C M*Y(Y) is the collection of embedded minimal y-surfaces M with 
the property that \M H Y| = k. 
MY(I\ k, +) C My (r, k) is the subset of surfaces tangent to the positive quad­
rants at O. 
My (r, k, — ) C My (r, k) is the subset of surfaces tangent to the negative quad­
rants at O. 

Now we approximate T by smooth embedded curves Y(t) C dN. We have to do this 
in order to apply any of our parity theorems. We want the four corners to be rounded 
and the two crossings to be resolved. At O, we modify Y in a small neighborhood of 
radius t > 0 by connecting Z + to X + and Z~ to X~. Given this choice at O, we 
resolve the crossing at O* according to whether k is even or odd as follows: connect 
positively if k is even (i.e. Z + to X + and Z~ to X~) and negatively (i.e. Z + to 
X~ and Z~ to X+) if k is odd. Again we modify in a manner that preserves py-
invariance, and we choose t small enough so that the neighborhoods of the corners 
and the crossings are pairwise-disjoint. We will refer to such a rounding as an adapted 
positive rounding ofY. Note that when k is odd, an adapted positive rounding of Y is 
connected, while when k is even, such a rounding has two components. See Figure 2. 

Our motivation for the choice of desingularization at O* is given by the following 

5.4. Proposition. — A surface S G My (Y, fc, + ) is tangent at O* to the positive quad­
rants if k is even, and to the negative quadrants if k is odd. 

Proof. — For any oriented surface S, we have (3) 

X(S) = 2c(S)-2genus(S)-e(S), 

where e(s) is the number of ends of 5, c(S) is the number of components of 5, and 
genus(5) is the sum of the genera of the components of S. If S G MY(Y,k), then 
using Proposition 4.1 we have 

(7) k = \YnS\ = 2-x(S)^e(S), 

where = denotes equivalence mod 2. 
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1 

o* 

o 
0* 

FIGURE 2. The two adapted positive roundings of T. On the left, the 
rounding at O* is the same as at the point O, resulting in a curve with 
two components. On the right the rounding at O* is positive to negative, 
resulting in a connected curve. 

Claim. If S e M(T,k,+), then e(S) = 
2 if S is positive at O*, 

1 if S is negative at O*. 

The proposition follows from the claim and the congruence (7). 

Proof of Claim. — Let B(0) be a geodesic ball of radius r > 0 centered at O, and 

let B(0*) be the corresponding ball centered at O* with the same radius. We may 

choose r small enough so that the surface S' = S \ (B(0) U B(0*)) has the same 

number of ends as S: i.e., e(S ) = e(S). We may make r smaller if necessary so 

that near O (say in a geodesic ball of radius 2r centered at O), the boundary curve 

r' = dS' consists of a segment of X + joined to a segment of Z+ by a single curve in 

0B(O) together with a segment of X~ joined to a segment of Z~ by a single curve in 

dB{0). It is precisely here that we have used the fact that S G MY(I\ k, + ) and not 

just in MY (r, k). Making r smaller if necessary, we may assert that if S is tangent to 

the positive quadrants at O*, then near O* the curve T connects positively, just as it 

does near O. This implies that T has two components. Therefore e(S ) = 2. If S is 

tangent to the negative quadrants at O*, then near O* the curve T will connect X + 

to Z~ and X~ to Z + . In this case, T is connected and e(S ) = 1. Since we chose r 

small enough so that e(S') = e(5), we have proved the claim. 

Let T(£), t > 0 small, be a smooth family of adapted positive roundings of T. We 

will round in such a way that for each corner and crossing q, 

lim(l/t)(T(t)-Q) 
t->0 
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is a smooth embedded curve, and such that T(t) converges smoothly to T except 

perhaps at the corners and crossings of T. It is now reasonable to expect that if we 

specify a surface M G MY(Tt, k) as a sort of initial data at T = T(0) we can deform 

it to a family of embedded minimal Y-surfaces St C N with dSt = T(t). In fact we 

can do this in a unique manner. 

5.5. Definition. — For any nonegative integer j , the set MY(T(t),j) is the collection 

of embedded minimal Y-surfaces S C N with OS = T(t) and \S Pi Y\ = j 

5.6. Theorem. — Let N = Nc c S 2 x R be a domain of the form given in (4) for some 

fixed positive constant c. Let T be the curve specified in (5), perturbed if necessary to 

become Y-bumpy. 

Let T(t), t > 0 small, be a smooth family of adapted positive roundings of T. 

Suppose for some nonnegative integer j , that there exists a surface M G M*Y(T,j). 

Then there exists a constant a = a(T, M) > 0 such that for t < a, each approximating 

curve T(t) bounds an embedded minimal Y-surface St with the following properties: 

1. Each St is the normal graph over a region ftt C M that is bounded by the 

projection ofT(t) onto M; 

2. The family of surfaces St is smooth in t and converges smoothly to M as t —• 0; 

3. IfMeM*Y(r,j,+), thenSteMY(T(t),j), i.e. \StnY\=j; 
l IfMeMìFJ,-), thenSteMY(T(t)J + 2), i.e. \StnY\=j + 2. 
Furthermore, if S G M.Y(r(£o), j), to < a, then it lies in a smooth one-parameter 

family of surfaces St G A4Y(T(t), j), t < to, with the property that the family has, as 

a smooth limit as t —> 0, an embedded minimal Y-surface M C N that lies either in 

M*Y(T,j) or in M*Y{T,j-2). 

Statements (3) and (4) have a simple geometric interpretation. Suppose we have 

a family of surfaces in St G MY(T(t),k) for some smooth family T(t) of adapted 

positive roundings of V. They will limit to an embedded minimal y-surface M C N 

with boundary T. If they limit to an M G MY(T,j,+), then the points St f l Y 

stay bounded away from the crossings { 0 , 0 * } . Hence the St have the property that 

\St n Y\ = \M f l Y\ = j . However, if they limit to an M G MY(T,j, - ) , then each of 

the St is a graph over a region Qt that contains both O and O*. Two points are lost. 

Hence j = | 5 t n y | = | M n y | + 2. 

Since the theorem above tells us that there is a correspondence between every 

surface in M(T(t), k) and some embedded minimal Y-surface in N bounded by T, we 

have 

5.7. Corollary. — We have 

\MY(T(t), k)\ = \MY(T, k, +)| + \M*Y(r, k - 2, - ) | . 
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We can now carry out the induction. We use = to denote congruence modulo 2. 
In our situation, the number of ends of a surface S G MY(T,k) is one or two, so 
the number of components of S is at most two. Since S is a Y-surface we know, by 
Proposition 4.1, that k = \S fl Y| = 2 - x(S). It is easy to see that when k = 1 (or 
k = 0), 5 is a disk (or the union of two disks). Corollary 5.7 and Theorem 4.7 yield 
in this situation that 

1 <* \MY(T(t),k)\ = \MY(F,*,+)! + \M*Y(T,k - 2 , - ) | = \MY(T,k, +)|, 

the last equality being simply the fact that it is impossible for a surface to intersect Y 
in a negative number of points. Therefore we have established the existence of the de­
sired surface for k = 0 or k = 1. In fact we get existence of a surface in My (I\ k, +). 
However there is nothing special in this context about being in MY(T,k,+) as op­
posed to being in MY (r, k, —). If we redid the entire construction by starting out by 
requiring our smoothing to be negative at O, we would wind up with an odd number 
of surfaces in My (I\ k, —), for k = 0 and k = 1. 

Now assume k > 2, and suppose that for any j < k, that | A ^ y ( r , j , + ) | = 
My(T,j,—) = 1. Corollary 5.7 together with Theorem 4.7 yield in our situation 
that 

0 s |.MMr(*), fc)| = |M*Y(R,k*,+) | + | A ^ ( r , k - 2, - ) | . 

But |JWy(r, fc - 2, - ) | ^ 1, by assumption. Therefore 0 ^ |A^y(r, k,+)\ + 1, or 

| .M y (r , f c ,+) | = l. 

Hence, this class of surfaces is not empty for any value nonnegative integer k. As 
indicated above the same is true for My (I\ fc, —). Whether or not we have produced 
two geometrically different (i.e. non-congruent) solutions to our problem turns out to 
depend on whether k is even or odd—but that is another story. 
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E Q U I D I S T R I B U T I O N A N D P R I M E S 

by 

Peter Sarnak 

To Jean Pierre Bourguignon* 

Abstract. — We begin by reviewing various classical problems concerning the exis­
tence of primes or numbers with few prime factors as well as some of the key develop­
ments towards resolving these long standing questions. Then we put the theory in a 
natural and general geometric context of actions on affine n-space and indicate what 
can be established there. The methods used to develop a combinational sieve in this 
context involve automorphic forms, expander graphs and unexpectedly arithmetic 
combinatorics. Applications to classical problems such as the divisibility of the areas 
of Pythagorean triangles and of the curvatures of the circles in an integral Apollonian 
packing, are given. 

Résumé (Équidistribution des nombres premiers). — Nous commençons par l'examen de di­
vers problèmes classiques concernant l'existence de nombres premiers ou de nombres 
avec peu de facteurs premiers, ainsi que quelques-uns des développements clés vers 
la résolution de ces questions posées il y a bien longtemps. Ensuite, nous plaçons 
la théorie dans un contexte géométrique naturel et général d'actions sur le n-espace 
affine et nous indiquons ce qui peut être établi dans ce contexte. Les méthodes utili­
sées pour développer un crible combinatoire dans ce contexte impliquent les formes 
automorphes, les graphes d'expansion et, de manière inattendue, les combinatoires 
arithmétiques. Nous fournissons des applications aux problèmes classiques, tels que 
la divisibilité des aires des triangles pythagoriens et les courbures des circles dans un 
paquetage apollonien entier. 

I have chosen to talk on this topic because I believe it has a wide appeal and 

also there have been some interesting developments in recent years on some of these 

classical problems. The questions that we discuss are generalizations of the twin prime 

conjecture; that there are infinitely many primes p such that p + 2 is also a prime. I 

2000 Mathematics Subject Classification. — llAxx, 20Gxx. 
Key words and phrases. — Primes, sieves, affine orbits, saturation numbers, expanders and sum-
product. 

* This is an expanded version of the lecture that I had intended to give at the conference honor­
ing Bourguignon on the occasion of his 60 t h birthday and which I gave at the Pacific Institute of 
Mathematical Sciences in 2007. 
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am not sure who first asked this question but it is ancient and it is a question that 
occurs to anyone who looks, even superficially, at a list of the first few primes. Like 
Fermat's Last Theorem there appears to be nothing fundamental about this problem. 
We ask it simply out of curiosity. On the other hand the techniques, theories and 
generalizations that have been developed in order to understand such problems are 
perhaps more fundamental. 

Dirichlet's Theorem. — In many ways this theorem is still the center piece of 
the subject. Like many landmark papers in mathematics, Dirichlet's paper proving 
the theorem below, initiated a number of fields: abelian groups and their characters, 
L-functions, class number formulae... The theorem asserts that an arithmetic pro­
gression c, c + q, c + 2#, c + 3#, . . . contains infinitely primes if and only if there is 
no obvious congruence obstruction. An obvious such obstruction would be say that 
c and q are both even or more generally that the greatest common divisor (c, q) of 
c and q is bigger than 1. Stated somewhat differently, let L ^ 0 be a subgroup of 
Z, so L = qZ for some q > 1, and let O = c + L be the corresponding orbit of c 
under L, then O contains infinitely many primes iff (c, q) = 1 (strictly speaking this 
statement is slightly weaker since Dirichlet considers one-sided progressions and here 
and elsewhere we allow negative numbers and call — p a prime if p is a positive prime). 

Initial Generalizations. — There are at least two well known generalizations of 
Dirichlet's Theorem that have been investigated. The first is the generalization of his 
L-functions to ones associated with general automorphic forms on linear groups. This 
topic is one of the central themes of modern number theory but other than pointing 
out that these are used indirectly in proving some of the results mentioned below, I 
will not discuss them in this lecture. The second generalization is to consider other 
polynomials besides linear ones. Let / G Z[x] be a polynomial with integer coefficients 
and let O = c + L as above. Does f(0) contain infinitely many primes? For example 
if O = Z; is f(x) = x2 +1 a prime number for infinitely many x (a question going back 
at least to Euler). Is f(x) = x{x + 2) a product of two primes infinitely often? (this 
is a reformulation of the twin prime question). Neither of these questions have been 
answered and the answer to both is surely, yes. We will mention later what progress 
has been made towards them. In his interesting and provocative article "Logical 
Dreams" [35], Shelah puts forth the dream, that this question of Euler "cannot be 
decided". This is rather far fetched but for the more general questions about primes 
and saturation on very sparse orbits associated with tori that are discussed below, 
such a possibility should be taken seriously. We turn first in the next paragraph to 
several variables, that being the setting in which some problems of this type have 
been resolved. 
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Two Variables. — Let O = 1? and let / be a nonconstant polynomial in Z[xi, x2]. 

If / is irreducible in Q[xi ,#2] and the greatest common divisor of the numbers f(x) 

with x E O is 1, then it is conjectured that / takes on infinitely many prime values. 

In this higher dimensional setting we have found it more intrinsic and natural from 

many points of view to ask for more. That is the set of x G O at which f(x) is 

prime should not only produce an infinite set of primes for the values f(x) but these 

(infinitely) many points should not satisfy any nontrivial algebraic relation. In the 

language of algebraic geometry, these points should be Zariski dense in the affine 

plane A2. The Zariski topology on affine n-space An is gotten by declaring the closed 

sets to be the zero sets (over C) of a system of polynomial equations. Thus a subset 

S of An is Zariski dense in An iff S is not contained in the zero set of a nontrivial 

polynomial g(xi,..., xn). In A1 a set is the zero set of a nontrivial polynomial iff the 

set is finite. So the Zariski dense subsets of A1 are simply the infinite sets. We denote 

the operation of taking the Zariski closure of a set in An by Zcl. 

All the approaches to the conjecture that we are discussing involve giving lower 

bounds for the number of points in finite subsets of O at which f(x) is prime. Usually 

one defines these sets by ordering by size of the numbers (so a big box in A2) but 

in some variations of these problems that I discuss later quite different orderings are 

employed. A measure of the quality of the process is whether in the end the lower 

bound is strong enough to ensure the Zariski density of the points produced. As far 

as the conjecture that under the assumptions on / at the beginning of (4), the set of 

x e O a,t which f(x) is prime, is Zariski dense in A2, the following is known: 

(i) For / linear it follows from Dirichlet's theorem. 

(ii) For / of degree two and / non-degenerate (in the sense of not reducing to a poly­

nomial in one variable) it follows from Iwaniec [23]. His method uses the combi­

natorial sieve which we will discuss a bit further on, as well as the Bombieri-A. 

Vinogradov theorem which is a sharp quantitative version of Dirichlet's theorem 

(when counting primes p of size at most x and which are congruent to varying 

c modulo 0, with a as large as x1/2). 

(m) A striking breakthrough was made by Friedlander and Iwaniec [10]. It follows 

from their main result that the conjecture is true for f(x1,x2) X^ ~\~ X2 • They 

exploit the structure of this form in that it can be approached by examining 

primes a = a + byf^l in Z[y/^ï\ with b — z2. This was followed by work of 

Heath-Brown and the results in [19] imply that the conjecture is true for any 

homogeneous binary cubic form. They exploit a similar structure, in that such 

an f(xi,x2) is of the form N(xi,x2,0) where N(xi,x2,xs) is the norm form 

of cubic extension of Q, so that the problem is to produce prime ideals in the 

latter with one coordinate set to 0. 
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(iv) If f(xi, x2) is reducible then we seek a Zariski dense set of points x G 1? at which 
f(x) has as few as possible prime factors. For polynomials / of the special form 
f(x) = fi(x)f2(x)--ft(x), with fj(x) = xi + 9j(x2) where g5 G Z[x] and 
<7j(0) = 0, it follows from the results in the recent paper of Tao and Ziegler [36] 
that the set of x G Z2 at which f(x) is a product of t primes, is Zariski dense in 
A2. Equivalently the set of x at which fi(x),..., ft(x) are simultaneously prime, 
is dense. This impressive result is based on the breakthrough in Green and 
Tao [16] in particular their transference principle, which is a tool for replacing 
sets of positive density in the usual setting of Szemeredi type theorems with a set 
of positive density in the primes. The corresponding positive density theorem 
is that of Bergelson and Leibman [2]. Note that for these fj's there is no local 
obstruction to x\ + gj(x2) being simultaneously prime since for a given q > 1 
we can choose X\ = l(q) and x2 = 0(q) (gj(0) = 0). Apparently this is a feature 
of these positive density Szemeredi type theorems in that they don't allow for 
congruence obstructions.(*) The above theorem with gj(x2) = (j — l)x2, j = 
1,..., t recovers the Green-Tao theorem, that the primes contain arbitrary long 
arithmetic progressions. From our point of view in paragraph (8) the amusing 
difference between the "existence of primes in an arithmetic progression" and 
that of an "arithmetic progression in the primes", will be minimized as they 
both fall under the same umbrella. 

Hardy-Lit tie wood n-tuple Conjecture. — This is concerned with Z n and sub­
groups L of Z n acting by translations. If L is such a group denote by r(L) its rank. 
We assume L 7̂  0 so that 1 < r < n and also that for each j the coordinate function 
Xj restricted to L is not identically zero. For c G Z n and O = c + L the conjecture 
is about finding points in O all of whose coordinates are simultaneously prime. We 
state it as the following local to global conjecture: 

HLC. — If O = c + L as above then the set of x = (xi,..., xn) G O for which the 
Xj ys are simultaneously prime, is Zariski dense in Zcl(0) iff for each q > 1 there is 
an x G O such that X\X2 .. .xn G (Z/gZ)*. 

Note that the condition on </, which is obviously necessary for the Zariski density, 
involves only finitely many q (for each given O). Also to be more accurate, the 
conjecture in [18] concerns only the case of r(L) = 1 (which in fact implies the 
general case). In this case Zcl(0) is a line and the conjecture asserts that there are 
infinitely many points in x G O for which the n-tuples (#i, x2,... xn) are all prime 

(*) Though the paper "Intersective polynomials and polynomial Szemeredi theorem" by V. Bergelson, 
A. Leibman and E. Lesigne posted on ArXiv Oct/25/07, begins to address this issue. 
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iff there is no local obstruction. We observe that for any r the Zcl(0) is simply a 

translate of a linear subspace. 

The main breakthrough on the HLC as stated above is due to I. Vinogradov (1937) 

in his proof of his celebrated "ternary Goldbach theorem", that every sufficiently large 

positive odd number is a sum of 3 positive prime numbers. His approach was based 

on Hardy and Littlewood's circle method, a novel sieve and the technique of bilinear 

estimates, see Vaughan [37]. It can be used to prove HLC for a non-degenerate L in 

Z3 of rank at least 2. Special cases of HLC in higher dimensions are established by 

Balog in [1] and recently Green and Tao [15] made a striking advance. Their result 

implies HLC for L < Z4 and r(L) > 2 and L non-degenerate in a suitable sense. 

Their approach combines Vinogradov's methods with their transference principle. It 

makes crucial use of Gowers' techniques from his proof of Szemeredi's theorem, and 

it has close analogies with the ergodic theoretic proofs of Szemeredi's theorem due 

to Furstenberg and in particular the work of Host and Kra [22]. These ideas have 

potential to establish HLC for L < ZN of rank at least two (and non-degenerate), 

which would be quite remarkable. 

Pythagorean Triples. — We turn to examples of orbits O in ZN of groups acting by 

matrix multiplication rather than by translations (i.e. addition). By a Pythagorean 

triple we mean a point x € Z3 lying on the affine cone C given as {x : F(x) = 

X-^ -j- X<2 ^3 — ^ and for which gcd(xi^x2lxs) = 1. We are allowing Xj to be 

negative though in this example we could stick to all Xj > 0, so that such triples 

correspond exactly to primitive integral right triangles. Let OF denote the orthogonal 

group of F, that is the set of 3 x 3 matrices g for which F(xg) = F(x) for all x. Let 

OF(Z) be the group of all such transformations with entries in Z. Some elements of 

OF{Z) are 

A, = 

1 2 2 

- 2 - 1 - 2 

2 2 3 

A2 = 

1 2 2 

2 1 2 

2 2 3 

A3 = 

- 1 - 2 - 2 

2 1 2 

2 2 3 

In fact OF(Z) is generated by A\,A2 and A 3 . It is a big group and one can show 

that the set of all Pythagorean triples P is the orbit of (3,4,5) under OF(Z), i.e. 

P = ( 3 , 4 , 5 ) O F ( Z ) . Following the lead of Dirichlet, let L be a subgroup of 0F(Z) 

and let O = (3,4,5)L be the corresponding orbit of Pythagorean triples. The area 

A(x) = x\x2/2 of the corresponding triangle is in Q[xi, x2, £ 3 ] . We seek triangles in O 

for which the area has few prime factors. What is the minimal divisibility of the areas 

of a Zariski dense (in Zcl(0), which for us will be equal to C) set of triples in Ol We 

return to this later on. As a side comment, a similar problem asks which numbers are 

the square free parts of the areas of Pythagorean triangles in P? This is the ancient 
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"congruent number problem" about which much has been written especially because 
of its connection to the question of the ranks of a certain family of elliptic curves. 
Heegner [20] using his precious method for producing rational points on elliptic curves 
shows that any prime p = 5 or 7 mod 8 is a congruent number. For a given such p 
the set of triangles realizing p is very sparse but never-1he-less is Zariski dense in C. 
Via the same relation the congruent number problem is connected to automorphic 
L-functions through the Birch and Swinnerton-Dyer Conjecture (see [38]). 

Integral Apollonian Packings. — As a final example before putting forth the 
general theory we discuss some Diophantine aspects of integral Apollonian packings. 
Descartes is well known among other things for his describing various geometric facts 
in terms of his Cartesian coordinates. One such example is the following relation 
between four mutually tangent circles: 

If the radius of the jth circle is Rj then its curvature dj is equal to 1/Rj, j = 
1, 2,3,4. The relation is that 

F(ai,a2,a3,a4) := 2 (a\ + a2

2 + al + a\) (ai +a 2 +a 3 + a4)2 = 0 . 
Consider now an Apollonian packing which is defined as follows; starting with 4 

tangent circles of the first generation in Figure 2 (in this configuration the outer circle 
has all the other circles in its interior so by convention its curvature is —1/R where 
R is its radius). 

Génération 1 Génération 2 

35 

14 

23 

1 1 

26 

15 

a = (-6, 11, 14, 23) 

Now place a circle in each of the 4 lune regions in generation 1 so that these are 
tangent to the three circles that bound the lune. The placement is possible and is 
unique according to a theorem of Apollonius. At generation 2, there are now 12 new 
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limes and we repeat the process ad-infinitum. The resulting packing by circles is 

called an Apollonian packing. The complement of all the open disks in the packing is 

a closed fractal set whose Hausdorff dimension S is approximately 1.30. Boyd [7] has 

shown that if N(T) is the number circles in the packing whose curvature is at most 

T, then log N(T)/log T —• S as T — • oo. The interesting Diophantine fact is that 

if the initial 4 circles have integral curvatures then so do all the rest of the circles in 

the packing. This is apparent in the example in Figure 2 where the initial 4 circles 

have curvatures (-6, 11, 14, 23) and where the curvatures of each circle is displayed 

in the circle. It is customary in any lecture to offer at least one proof. Ours is the 

demonstration of this integrality of curvatures. 

In this figure the inversion S in the dotted circle, which is the unique cir­

cle orthogonal to the inside circles, takes the outermost circle to the innermost 

one and fixes the other three. It takes the 4-tuple (01,02,03,04) representing 

the curvatures of the 4 outer circles to (0^,02,03,04) where a[ is the curva­

ture of the inner most circle. From the Descartes relation it follows that a\ 

and a[ are roots of the same quadratic equation and a simple calculation yields 

that a[ = — 01 -h 202 + 203 + 204. This inversion is also the step which places 

the circle in the corresponding lune, that being a single step in the Apollonian 

packing. It follows that if the 4 x 4 integral involutions S i , 52, £3, S4 are given by 

Si = 

- 1 0 0 0 

2 1 0 0 

2 0 1 0 

2 0 0 1 

S2 = 

1 2 0 0 

0 - 1 0 0 

0 2 1 0 

0 2 0 1 

s3 = 

1 0 2 0 

0 1 2 0 

0 0 - 1 0 

0 0 2 1 

s 4 = 

1 0 0 2 

0 1 0 2 

0 0 1 2 

0 0 0 -1 

and A is the group generated by S i , S2, S3, S4 then the orbit O = (01,02,03,0,4)A, 

corresponds precisely to the configurations of 4 mutually tangent circles in the packing. 

Hence if o E Z 4 and is primitive then so is every member of the orbit and in particular 

every curvature is an integer. The Diophantine properties of the numbers that are 
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curvatures of an integral packing are quite subtle and are investigated in [13]. The 

reason for the subtlety is that the Apollonian group A is clearly a subgroup of Op (Z) 

but it is of infinite index in the latter (corresponding to the fractal dimension 5 = 

1 . 3 0 . . . ) . Still, the Zcl(A) is all of O F , which is important for our investigation 

below. Prom the point of view of our theme in this lecture the immediate question 

is whether there are infinitely many circles in an integral packing with curvature a 

prime number. Or on looking at Figure 2, are there infinitely many "twin primes" 

that is pairs of tangent circles with curvatures that are both prime? 

Affine Orbits and Saturation. — There is a simple and uniform formulation of 

all the questions above which is as follows: Let L be a group of morphisms (that is 

polynomial maps) of affine n-space which preserves Z n . Let c G Z n and O = cL the 

corresponding orbit. If / 6 Q [ # i , . . . , xn] for which f(0) is integral and is infinite, we 

seek points x G O at which f(x) has few (or fewest) prime factors. We assume that 

/ when restricted to O is primitive, that is gcd ( / (0 ) ) = 1 (otherwise divide / by the 

gcd). The key definition is the saturation number r*o(0, / ) , of the pair ( (9 , / ) , which 

is the least r such the set of x G O for which f(x) has at most r prime factors, is 

Zariski dense in Zcl(0). This number is by no means easy to determine and it is far 

from clear that it is even finite. Knowing it however answers all our questions. For 

example the following are easy to check 

(i) r*o(c + qZ,x) = 1 is Dirichlet's Theorem. 

(ii) ro(Z, x(x + 2)) = 2 is the twin prime conjecture. 

(iii) If feZ[x] and / factors into t irreducible factors over Q[x], then r*o(Z,/)=£ is 

equivalent to Schinzel's hypothesis H [34] concerning simultaneous primality of 

t distinct irreducible integral polynomials in one variable. 

(iv) Let O = c + L as in the HLC in (5). Then r*o(0, x\x2 ... xn) = n is equivalent 

to the HLC as stated in (5). 

The fundamental general tool to study r*o is the Brun combinatorial sieve. He used 

his ingenious invention to show that ro(Z, x(x + 2)) is finite and his arguments can be 

easily extended to show that r*o(Z, / ) < oo for any / G Z[x). In fact the combinatorial 

sieve in any of its axiomatic modern formulations can be used to show that ro(0, f) < 

oo for any orbit O of L which is a subgroup of Z n acting by additive translations. 

As pointed out at the end of paragraph (2) above we insist on not restricting f(x) to 

be positive when looking for primes or numbers with few prime factors. The reason 

is that in this several variable context the condition that f(x) > 0, / G Z [x i , . . . , x n ] 

can encode the general diophantine equation (for example if f(x) = 1 — g2(x) then 

f(x) > 0 is equivalent to g(x) = 0 ) . The work of Matiyasevich et al [26] on Hilbert's 

10 T H problem shows that given any recursively enumerable subset S of the positive 

integers, there is a g G Z [ # i , . . . , xio] such that S is exactly the set of positive values 
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assumed by g. Prom this it is straight forward to construct an / G Z [x i , . . . ,Xio] such 

that for any r < oo, {x G Z 1 0 : fix) > 0 and / ( * ) is a product of at most r primes} 

is not Zariski dense in Zcl{x € Z 1 0 : f(x) > 0} . That is if we insist on positive values 

for / we may lose the basic finiteness of saturation property. 

Returning to one variable the theory of the sieve has been developed and refined 

in far-reaching ways to give good bounds for TQ. For example: 

r0(Z,x(x + 2)) < 3 (Chen 1973) 

r 0(Z,x 2 + l) < 2 (Iwaniec 1978) 

r0(Z,f) < d + 1, if / is irreducible over Q[x] and has degree d [17]. 

The first two are especially striking as they come as close as possible to the twin prime 

and Euler problems, without solving them. 

While there are interesting examples of groups L acting nonlinearly and morphi-

cally on An and preserving Z n , that come from the actions of mapping class groups 

on representation varieties [11], the understanding of anything about saturation num­

bers in such cases is very difficult and is at its infancy. For L acting linearly (as in 

paragraphs (6) and (7)) a theory can be developed. 

An Affine Linear Sieve. — The classical setting is concerned with motions of 

n-space of the form x —• x + b. In this affine linear setting we allow multiplication 

as well, that is transformations of the form x —• xa + b with a G GLn(Z) and 

b G Z n (such as the orthogonal group examples (6) and (7)). Note that it is only 

for n > 2 that this group of motions is significantly larger than translations (since 

GLi(Z) = ±1). For the purpose of developing a Brun combinatorial sieve, apparently 

multiplication is quite a bit more difficult than addition. The basic problems for our 

pair ( O , / ) are 

(i) Is r 0 (£>,/) finite? 

(ii) If it is, then to give good upper bounds for r*o((9, / ) . Ideally these should be in 

terms of the degree of / and its factorization in the coordinate ring of Zcl(0), 

as has been done in the setting of one variable [17]. 

(iii) To determine r o ( 0 , / ) for some interesting pairs and to give an algorithm to 

predict its exact value in general, that is a generalized local to global conjecture 

for which HLC and Schinzel's Hypothesis H, are special cases. 

When L is a group of affine linear transformations we now have a theory that 

comes close to answering these questions, there being the caveat of tori (see below) 

and some other nontrivial technical issues that still need to be resolved in general. 

In Bourgain-Gamburd-Sarnak ([4], [5]) the finiteness of ro{0,f) is proven in many 

cases. The new tools needed to address these questions, as well as the general setup 

that we have been discussing are introduced in these papers. The proof given there 
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of the finiteness does not yield any feasible values for ro(0, / ) . In [28] the problem is 

studied in the case that L is a congruence subgroup of the Q points of a semi-simple 

linear algebraic group defined over Q, such as the group Op(Z) in paragraphs (6) 

and (7) above (an affine linear action can be linearized by doubling the number of 

variables). For such congruence L's we develop the combinatorial sieve using tools 

from the general theory of automorphic forms on such groups and in particular make 

use of the strong bounds towards the general Ramanujan Conjectures that are now 

known (see [31], [9]). With this we get, in this congruence subgroup case, effective 

bounds for r o ( 0 , / ) which in many such cases are of the same quality as what is 

known in one variable. 

There is a lacuna in this affine linear sieve theory coming from tori. As we men­

tioned, allowing multiplication as well as addition, is what makes the problem hard 

and in fact pure multiplication is simply too hard and even the finiteness is question­

able in that case. Consider the example of L = • 3 1] 
-1 0 in n e z < SL 2 (Z) . L is 

infinite cyclic, Zcl(L) is a torus and if O = (1,0) • L then Zcl(O) is the hyperbola 

{(xux2) x\ — 3#i£2 + x2 — 1 The orbit consists of pairs (^271,^271-2) n G Z 

where F m is the m t h Fibonacci number. This kind of sequence is too sparse both 

from the analytic and algebraic points of view to do any kind of (finite) sieve. While 

it is conjectured that Fm is prime for infinitely many m, as was pointed out to me 

by Lagarias, standard heuristic probabilistic considerations suggest a very different 

behavior for F2n. Indeed F2n — Fn - Ln where Ln is the n t h Lucas number and as­

suming a probabilistic model for the number of prime factors of a large integer in 

terms of its size and that Fn and Ln are independent leads to F2n having an un­

bounded number of prime factors as n —+ 00. A precise conjecture along these lines 

is put forth in [8] (see Conjecture 5.1). In our language this asserts that if O is as 

above and f{xi,x2) = x\ then ro(0,f) = 00. It would be very interesting to pro­

duce an example of a pair (O.f) for which one can prove that 7*0((9,/) is infinite. 

In view of the above we must steer clear of tori and the precise setting in which 

the affine linear sieve is developed (see [29]) is for linear L's for which the radical 

(the largest normal solvable subgroup) of the Q linear algebraic group G := Zcl(L), 

contains no tori (the unipotent radical causes no difficulties). Applying this theory 

to the examples of orthogonal groups in (6) and (7) we obtain the following. Let 

F(xux2,x3) x\ — 3#i£2 + x2 and L < 0F(Z) Assume that L is not an elementary 

group (in particular not finite or abelian, in fact precisely that Zcl(L) is either of the 

linear algebraic groups Op or SOF)- If O = (3,4,5)L, then Zcl(0) = C the affine 

cone; F = 0. For / G Z[xi,X2,xs] the results in [5] imply that r*o(0,/) < 00. In 

particular this applies to f(x) = A(x) = xix2/2, the area. This says that given such 

an orbit of Pythagorean triangles (which may be very sparse!) there is an r < 00 such 

that the set of triangles in O whose areas have at most r prime factors is Zariski dense 
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in C. It is elementary that gcd(A(0)) = 6. Prom the ancient parametrization of all 

the Pythagorean triples P (i.e. the Q morphism of A2 into C) these are all of the form 

(x1,x2,x3) = (a2-b2,2ab,a2-\-b2) with a, b G Z, (a, b) = 1 and not both odd, one sees 

that A/6 = (a- b)(a + b)(ab)/6. Now the last has at most two prime factors for only 

finitely many pairs (a, b). The set of (a, b) for which it has at most 3 prime factors 

lie in a finite union of curves in C (and if HLC is true for O — (2,2,0) + (3,3,1)Z, 

i.e. this rank one orbit in Z 3 , then these curves contain infinitely many points with 

A/6 having 3 prime factors). Hence for any O as above r*o(0, A/6) > 4. The general 

local to global conjectures [5] then assert that r0(O,A/6) = 4 for any such orbit. 

Interestingly the recent advance in [15] mentioned in (5) above just suffices to prove 

that for the full set of Pythagorean triples P, ro(P, A/6) = 4. Put another way the 

minimal divisibility of the areas of a Zariski dense set of Pythagorean triangles is 6 

(here we include the forced factors 3 and 2). The deduction is immediate, set a = 2x 

and b = 3y in the ancient parametrization. Then A/6 = xy(2x + 3y) (2x — 3y) and 

apply [15] to O = L = (1 ,0 ,2 ,2)Z+ (0,1,3, - 3 ) Z . For some other applications of [16] 

see Granville [14]. 

As an example of an application of the affine linear sieve in the context of an L which 

is a congruence group, consider an integral quadratic form F(x) in 3-variables. That 

is F{x) = xfAx where A is 3 x 3 symmetric and is integral on the diagonal and half 

integral on the off-diagonal. We assume that F is indefinite over the reals but that it is 

anisotropic over Q (so F(x) = 0 for x G Z 3 implies that x = 0) and that det A is square 

free (so F(xi,x2,x3) X2^ ~\~ X2 IXQ is an example, the anisotropy following from 

looking at F{x) = 0 mod 8). Let 0 / t G Z for which VJ(Z) = {x G Z 3 : F(x) = t} 

is nonempty, which according to the work of Hasse and Siegel will happen iff there 

are no local congruence obstructions to solving F{x) = £(mod q) for q > 1. In this 

case Vt(Z) is a finite union of Op(Z) orbits and Zcl(Vt(Z)) = Vt, the affine quadric 

{x : F(x) = t}. We seek points in Vt(Z) whose coordinates have few prime factors, i.e. 

to estimate ro(V^(Z),xix 2xs). By the general finiteness theorem, r*o(Vi(Z), xix2xs) is 

finite. However by developing optimal weighted counting results on such quadrics and 

also exploiting the best bounds known towards the Ramanujan-Selberg Conjecture, 

it is shown in [24] that r 0(T4(Z),x\x 2xs) < 26. 

We turn to the Apollonian packing. An extension of the (O, f) finiteness theorem 

in [5] applies to the orbit O = aL for any L which is Zariski dense in O^, where F 

is the quadratic form in 4-variables in paragraph (7). In particular it applies to the 

Apollonian group A with f(x) = x\x2xsX4. This asserts that in any given integral 

packing there is an r < oo such that the set of 4 mutually tangent circles in the 

packing for which all 4 curvatures have at most r prime factors is Zariski dense in 

Zcl(0) = C = {x : F{x) = 0} . One can determine r$ for O = a.A and some special 

/ ' s using some ad hoc and elementary methods together with (ii) of paragraph (4). 
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In [32] it is shown that ro((D,xi) = 1 and ro(0,xix2) = 2, from which it follows that 

in any such packing there are infinitely many circles whose curvatures are prime and 

better still there are infinitely many pairs of tangent circles both of whose curvatures 

are prime. 

As a final example of an interesting pair ( 0 , / ) for which we can determine ro, 

consider the variety Vt in affine n2-space given by Vt = {X = (Xii) i=l,.. .n 
? = 1,... n : detX = t}. 

For t a nonzero integer V*(Z) consists of a finite union of L = SL n (Z) orbits where 

the action of g is by X —• X.g. In [28] we show using Vinogradov's methods 

mentioned in (5), that if n > 3 then ro(V^(Z) 
i,j 

Xij = n 2 if 
i,j 

X{j is primitive on 

Vt(Z). Examining in detail when this happens, we deduce that the set o f n x n integral 

matrices of determinant t all of whose entries are prime, is Zariski dense in Vt iff t = 0( 

mod 2 n _ 1 ) . This should of course, also hold for n = 2 where it is concerned with the 

equation xnx22 ~~ ^12^21 = t and the x^s are to be primes. The best that appears 

to be known concerning this is the recent development by [12] from which it follows 

that for this n = 2 case, ro(Vi(Z), £11X12X21X22) = 4, for at least one t in {2,4,6}. 

Comments about Proofs. — I end the lecture with a very brief hint as to what is 

involved in developing a combinatorial sieve in the affine linear context. This entails 

getting a little more technical. Let O = cL be our orbit and / G Z [ # i , . . . , xn). After 

some algebro-geometric reductions of the problems (using the Q dominant morphisms 

from G = Zcl(L) to V = Zcl(0) and G to G where G is the simply connected cover 

of G) we can assume that O is the group L itself (as a group of matrices in the affine 

space o f n x n matrices) and Zcl(0) = Zcl(L) = G is a simply connected Q-group. 

To do any kind of sieving we need to order the elements of L, so as to carry out some 

truncated inclusion-exclusion procedure, this being at the heart of Brun's method. 

Usually one orders by archimedian size perhaps with positive weights, however in this 

general setting we don't know how to do this, so we order L combinatatorially instead. 

For the groups that we are considering and for the purpose of proving that r*o((9, / ) is 

finite, we can (according to a theorem of Tits) assume that L is free on two generators 

A and B. We use the tree structure of the Cayley graph T = (L, S) of L with respect 

to the generators S = {A, A~l, B, B~1}. T is a 4-regular tree; 

A-1 A 

AB-i 

H"2 

A^B-1 

B-1 

A_1B 
B 

AB 

P 
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For x, y e T let d(x, y) denote the distance from x to y in the tree. The key sums 
that arise in sieving on L for divisibility of / are: 

For d > 1 square-free and XQ G T, 

S(Y,d) := 
xeL 

d(x,x0) < Y 
f(x) = 0(d) 

1, 

or perhaps with 1 replaced by positive weights. 
We are interested in S(Y, d) when Y is large and d as large as e a Y for some a > 0. 

The larger the a for which S can be understood the better. To study such sums a 
couple of key features intervene: 

(i) Algebraic stabilization: This is the analogue of the Chinese remainder theorem. 
We state it for the basic case of G = SL n , it is valid for G semisimple and simply 
connected. It is due (originally) to Matt hews-Vaserstein and Weisfeiler [27] who 
employ the classification of finite simple groups in the proof. Let L < SL n (Z) 
be Zariski dense in SL n . Then there is a positive integer v = v{L) such that for 
d with (d, v) = 1 the reduction L —• SLn(Z/dZ) is onto. 

This eventually allows us to bring in more standard tools from arithmetic 
algebraic geometry, in order to identify the main term in the form 

S(Y,d) = p(d)S(Y,l) + R(Y,d). 

Here (3(d) is a multiplicative arithmetical function associated with counting 
points mod d on the variety G fl { / = 0} and R is the remainder which is 
expected to be smaller. The demonstration of the latter for the purpose of 
sieving far enough to get the finiteness of ro(Ot / ) , is essentially equivalent to 
the second feature. 

(ii) The (finite) Cayley graphs (SL n (Z/dZ) , S) are an expander family as d —> oo 
(see [30] for a definition of expanders and [25] where this is conjectured). As 
yet, this expander property has not been established in general and this is the 
main reason that the finiteness of r*o(<9,/) has not been established in general 
for the affine linear sieve. It is proven for SL2 and related groups for d square 
free, in [5]. The proof uses a variety of inputs some of which were to me at least, 
quite unexpected. We list them for the simpler case that d = p is prime: 

(a) The dichotomy that an irreducible complex representation of G(Z/pZ) 
is either 1-dimensional or is of very large dimension (here p —> 0 0 ) cou­
pled with a "softer" upper bound density theorem for multiplicities of 
exceptional eigenvalues of the Cayley graphs, leads to a proof of the key 
spectral gap defining an expander [33]. For the soft upper bound we use 
techniques from arithmetic combinatorics. 
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(b) Sum-Product Theorem [6]: This is an elementary and very useful theorem 

concerning mixing the additive and multiplicative structures of a finite 

field. Let e > 0 be given, there is a 5 > 0, S = 5(e), such that if A C ¥ p 

and |A| < pl~e then \A + A\ + \A • A\ > | A | 1 + < 5 (here p is sufficiently 

large). 

(c) Helfgott's SL 2 (F P ) Theorem [21]: Let e > 0 there is S = 5(e) > 0 such 

that if A C SL2(FP), A is not contained in a proper subgroup of SL2(FP) 

and \A\ < I S M F p ) ! 1 - then \A-A-A\ > \A\l+s. 

(d) Balog-Szemeredi, Gowers Theorem: This is a purely combinatorial the­

orem from graph theory which is used in [3] to give the required upper 

bounds on counting closed circuits in the graph, and leads to a proof that 

(SL2(Z/pZ), S) is an expander family. 

A point worth noting is that once the affine sieve is set up and gives lower 

bounds in our combinatorial group theoretic ordering, for points in O for which 

/ has at most r prime factors, the expander property is used again and in a 

different way to demonstrate the Zariski density of these points. 

To end let me highlight the fundamental difference between the additive transla-

tional counting and the affine linear counting which necessitates the introduction of 

expanders. In Z the boundary of a large interval is small compared with the size of 

the interval and the same is true uniformly for an arithmetic progression of common 

difference q in the interval, even for q almost as large as the interval length. On the 

other hand on a ^-regular tree (k > 3) this is not true. Given a big ball B (or any 

large finite set), the size of the boundary dB is of the same order of magnitude as B. 

It is exactly the expander property that allows one to draw an effective approximation 

for the number of points in B lying in the orbit with a congruence condition. 
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Abstract. — The projective hull X of a compact set X C Pn is an analogue of the 
classical polynomial hull of a set in Cn. In the special case that X C Cn C Pn, the 
affine part X D Cn can be defined as the set of points x G Cn for which there exists 
a constant Mx so that 

\p(x)\ <M£supx \p\ 

for all polynomials p of degree < d, and any d > 1. Let X(M) be the set of points x 
where Mx can be chosen < M. Using an argument of E. Bishop, we show that if 
7 C C2 is a compact real analytic curve (not necessarily connected), then for any 
linear projection 7r : C2 —• C, the set 7(M) PI n~1(z) is finite for almost all z G C. 
It is then shown that for any compact stable real-analytic curve 7 C Pn, the set 7 — 7 
is a 1-dimensional complex analytic subvariety of¥n — 7. Boundary regularity for 7 
is also discussed in detail. 

Résumé (L'enveloppe projective de certaines courbes dans C2). — L'enveloppe projective X 
d'un compact I c P " est l'analogue de l'enveloppe polynomiale classique d'un sous-
ensemble de Cn. Dans le cas particulier où X C Cn C Pn, la partie affine I f l C n 
peut être définie en tant qu'ensemble de points x G Cn pour lesquels il existe une 
constante Mx telle que 

U a O | < M ^ s u p x \p\ 

pour tous les polynômes p de degré < d, et tout d > 1. Soit X(M) l'ensemble 
de points x où Mx peut être choisi < M. En utilisant un argument d'E. Bishop, 
nous montrons que si 7 C C2 est une courbe analytique réelle compacte (non né­
cessairement connexe), alors pour toute projection linéaire 7r : C2 —• C, l'ensemble 
7(M) Pi7r_1(z) est fini pour presque tout z G C. Nous montrons alors que pour toute 
courbe analytique réelle compacte stable 7 C Pn, l'ensemble 7—7 est une sous-variété 
de Pn — 7 analytique complexe de dimension 1. Nous discutons également en détail 
la régularité de la frontière de 7. 
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1 . I n t r o d u c t i o n 

The classical polynomial hull of a compact subset X of Cn is the set of points 
x eCn such tha t 

(1.1) |p(x) | < suplp 
X 

for all polynomials p. 

In [4] the first two authors introduced an analogue for compact subsets of projective 
space. Given I c P n , the projective hull of X is the set X of points # G Pn for which 
there exists a constant C = Cx such tha t 

(1.2) l | p ( z)ll<adSup i |p | 
x 

for all sections Pe#0(Pn,e>(d)) 

and all d > 1. Here O(d) is the d-th power of the hyperplane bundle with its stan­
dard metric. Recall t ha t H°(Fn, 0(d)) is given naturally as the set of homogeneous 
polynomials of degree d in homogeneous coordinates. If X is contained in an affine 
chart X C Cn C Pn and x G Cn, then condition (1.2) is equivalent to 

(1.3) \p(x)\ < M x d s u p | p | 
X 

for all polynomials p of degree d 

and all d > 1 where Mx = pJ\ + \\x\\*Cx and p depends only on X. Therefore the 
set i n c n consists exactly of those points x G Cn for which there exists an Mx 
satisfying condition (1.3). 

This paper is concerned with the case where X = 7 is a real analytic curve. In [4] 
evidence was given for the following conjecture. 

Conjecture 1.1. — Let 7 c Pn be a finite union of simple closed real analytic curves. 
Then 7 — 7 is a 1-dimensional complex analytic suvariety o/Pn — 7. 

This conjecture has many interesting geometric consequences (see [7], [5], and [6]). 
The assumption of real analyticity is important . The conjecture does not hold for 

all smooth curves. In particular, it does not hold for curves which are not pluripolar. 

One point of this paper is to prove Conjecture 1.1 under the hypothesis tha t the 
function Cx is bounded on 7. We begin by adapting arguments of E. Bishop [2] to 
prove the following finiteness theorem. 

Theorem 1.1. — Let 7 c C2 be a finite union of simple closed real analytic curves. 
Set 

7M= {xe^}nC2:Mx<M} 
where Mx is the function appearing in condition (1.3). Let n : C2 —> C be a linear 
projection. Then 

Y/MUr-1(z) is finite for almost all z G C. 

Consequently, 7 D 7r X(Z) is countable for almost all z G C. 
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In Section 3 this theorem is combined with results from [4] and the theorems 

concerning maximum modulus algebras to prove the following. 

A set X C Pn is called stable if the function Cx in (1.2) is bounded on X. 

Note tha t if X is stable and I c C n c P n , then the function Mx is bounded on Cn 

b y p ^ l + H2. 

Theorem 1.2. — Let 7 C Pn be a finite union of simple closed real analytic curves. As­

sume 7 is stable. Then 7 — 7 is a 1-dimensional complex analytic subvariety of¥n — 7. 

2 . T h e finiteness t h e o r e m 

Let X be a compact set in Cn and denote by Vd the space of polynomials of 

degree < d on Cn. 

Definition 2.1. — Denote by X H Cn the set of all x e Cn such tha t there exists a 

constant Mx with 

(2.1) |P(s)|<M*sup|P| 
X 

for every P eVd and d > 1. The set X fl Cn is called the projective hull of X in Cn. 

As noted above, the projective hull, defined in [4], is a subset of projective space Pn, 

and the set X ( l C n is exactly tha t part of the projective hull which lies in the affine 

chart Cn C Pn. Closely related to Definition 2.1 is the following. 

Definition 2.2. — Fix a number M > 1 and a point z G Cn 1. Then we set 

XM(Z) = {w E C : \P(z,w)\ < M d s u p 
X 

| P | , VPePd and V d > 1} 

and let X(z) = U M > I XM(z) = {w e C : (z,w) e X}. 

We consider a special case of these definitions. We fix n = 2 and consider a simple 

closed real-analytic curve X in C2. Let A denote the unit disk in C. 

Theorem 2.1. — Fix M > 1. For almost all z e A, XM(Z) is a finite set. 

Corollary 2.1. — For almost all z € C the set X(z) is countable. 

We shall prove Theorem 2.1 by adapting an argument, for the case of polynomially 

convex hulls, by Erret t Bishop in [ 2 ] . We shall follow the exposition of Bishop's 

argument in [ 1 0 , Chap. 12]. 

Definition 2.3. — The polynomial Q(z,w) ~ E n , m cnmZnWrn is called a unit polyno­

mial if maxn?m |cnm| — 1. 
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Definition 2.4. — The polynomial Q(z,w) = Yjn,mcnmZnwrn is said to have bidegree 

(d, e), for non-negative integers d and e, if cnm = 0 unless n < d and m < e, and d, e 

are minimal with this property. 

Note tha t d e g Q <d + e< 2 d e g Q . 

Definition 2.5. — Fix M > 1. For each z G C set 

SM(s) = {weC: \Q(z,w)\ < (Md+e)sup \Ql 

VQ G C[z, IÌ;] of bidegree (d, e) for d, e > l } . 

We now fix a number M > 1 and keep it fixed throughout what follows. 

Theorem 2.2. — For almost all z G A, SM(Z) is a finite set. 

Theorem 2.1 is an immediate consequence of Theorem 2.2. To see this, fix z G A 

and choose w G XM{Z). Choose next a polynomial Q of bidegree (d, e) and let 

5 = d e g Q . Then 

\Q{z,w)\<M6\\Q\\x<Md+*\\Q\\x 
and so w G SM(Z). Since this holds for all such XM{Z) C SM{Z). By Theorem 2.2 

SM(Z) is a finite set for a. a. z G A, so I M ( ^ ) is a finite set for almost all z G A. 

Thus Theorem 2.1 holds. 

We now go to the proof of Theorem 2.2. 

Lemma 2.1. — Let Q be a plane domain, let K be a compact set in Q, and fix zo G Ct. 

Then there exists a constant r, 0 < r < 1, so that if f is holomorphic on ft and 

| / | < 1 on Q, and if f vanishes to order X at ZQ, then \ f\ < rx on K. 

Proof. — We construct a bounded and smoothly bounded subdomain f20 of Q. with 

CIQ C O, zo G f̂ o and K C ^o- Denote by G(zo,z) the Green's function of f2o with 

pole at ZQ. 

Then e~(G+lif) is a multiple-valued holomorphic function on do with a single-

valued modulus e_G, and this modulus is = 1 on dfto (H is the harmonic conjugate 

of G). Consequently, 
yye-A(G+it f ) 

is multiple-valued and holomorphic on fi05 and its modulus is single-valued and < 1 

on dQ,Q. By the maximum principle for holomorphic functions, for each z G K, we 

have | / / e _ A ( G + ^ | < 1 at z and so 

|f (z)|< [e-(z0,z)]y 
Put t ing r = supK e G, we get our desired inequality. 
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Lemma 2.2. — Let Q be a bounded plane domain and K a compact subset of ft. Let 

C be an algebra of holomorphic functions on ft. Put \\<j)\\ = supK \4>\ for all <\> € C. 

Fix f,g € C. Then there exist r, 0 < r < 1 and C > 0 such that for each pair of 

positive integers (d, e) we can find a unit polynomial F^ e of bidegree (d, e) such that 

(2.2) \\FdAf>9) || <Cd+erde. 

Proof. — Choose a subdomain fti of ft with K c ft\ C fl\ C ft. Choose CQ > 1 with 

| / | < Co, \g\ < CQ on f^i. Consider an arbitrary polynomial 

F(z,w) = 
d 

n=0 

e 

m=0 

Enmzn wm 

and let h be the function F(f,g) in C. Fix a positive integer A. The requirement 

tha t h should vanish at z$ to order A imposes A linear homogeneous conditions on 

the cnm, and hence has a non-trivial solution if A < (d + l ) (e + 1). We may assume 

tha t the corresponding polynomial F is a unit polynomial. Since 

DVH 

Azv 
(*o) = 0, i/ = 0 , l , . . . , A - l , 

Lemma 2.1 gives us some r, 0 < r < 1, such tha t 

\h\< sup Ihi 
fìi 

on 

Since F is a unit polynomial, 

\h\< 
d 

n=0 

e 

m—0 
| c „ m | - | / r - M m < ( ^ + l ) ( e + l)C70d+e on î î i . 

Hence for large C, 

| | / i | | < ( d + l ) ( e + l)C0d+e < Cd+erx. 

We choose A = de. Since de < ( d + l ) ( e + l ) , we get 

\\nf,9)\\ = \\h\\ < Cd+e rde 

as desired. 

Note. — We shall apply this result to the case when K is the unit circle, Q is an 

annulus containing K, and C is the algebra of functions holomorphic on ft. 

The curve X in our Theorem 2.2 is real analytic by hypothesis, and hence can be 

represented parametrically: 

* =/(C), w = g(0 Cefi 
where f, q are functions in C. 
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Lemma 2.3. — Let r, C and F^e be as in Lemma 2.2. Fix ro, r < r*o < 1. Then there 

exists do such that 

(2.3) (MC)d+erde < r$e for d,e > do. 

Proof. — We write ~ for "is equivalent to". 

(2.3) - (MC)d+e < 
ro 

r 

de 
~(d + e) log(MC) < de log 

ro 

r 
1 

e + 
1 

d 
log(MC) < log ro 

r 

The last inequality is t rue for d, e > do for some suitable do. We are done. 

Wi th M , r, ro fixed, we choose do as in (2.3). Henceforth, we tacitly as­

sume d, e > do-

Definition 2.6. — Fix d, e and put F = Fde as above. Then 

F(z,w) = 
e 

3=0 

G3 (z) w3 

where for some j = jo, Gj0 is a unit polynomial of degree < d. We define 

T(d,e) = { z e A : \ G j o ( z ) \ < R R } . 

Lemma 2.4. — Let F be a unit polynomial in z, of degree k, and let a be a positive 

number. Put A = {z e A : |F(z)| < ak}. Then 

m(A) < 48a, 

where m is 2-dimensional measure. 

Proof. — This is Lemma 12.3 in [ 1 0 ] , and a proof of it is given there. 

Lemma 2.5. — Fix d,e. Fix a point z\ G A — T(d1e). Then there exists a unit 

polynomial B in one variable, of degree < e, such that for every WQ £ SM(ZI), we have 

\B(w0)\ < r01/2de 

Proof. — Define the polynomial A in one variable by A(w) = F(zi,w), where 

F = Fd,e- As in Definition2.6 then 

A(w) = 
e 

j=0 

GMw* 

and GjQ is a unit polynomial in z\. Since z\ £ T(d, e), we have 

(2.4) Gjo(Zl)\ > 
\de 

ro • 
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Fix Wn G SM(ZI). Then 

\F(zlfvjo)\ < Md+e • \\F\\X 

< Md+e Cd +e rde by (2.2) 

< rdr 0 by (2.3). 

We shall divide A by its largest coefficient K. Note tha t 

1*1 > |G,O(zi)L > T1/2 de0 
by (2.4). Pu t B(w) = A(w)/K. Then d e g B < e and 

\B(wo)\ = \M*>o)\ 
\K\ 

\F(zuw0)\ 

\K\ < 
rae 

1 de 
\de 

r0 ' 

We are done. 

Lemma 2.6. — For each d, 
ra(T(d,e)) < 48rf. 

Proof. — Fix e and fix d. Wi th GjQ as above, write G = Gj0. Then d e g G < d. 
By definition of T(d, e), if z G T(d, e), then 

\G(z)\<r 0 
1/2de = (r|e)d<(r|e)degG, 

and so 
T ( d , e ) ç { z e A : | G W | < ( r | e ) d e ^ } . 

Therefore, 
ra[T(d,e)] < ra{* G A : |G(*)| < afc} 

where A = r1/ 
20e 

and k = degG. By Lemma 2.4, m{z G A : \G(z)\ < ak} < 48a, 

and so m[T(d,e)] < 48r o 
1/2e , as was to be shown. 

Definition 2.7. — Fix e and and set 

He = {z : z G A - T ( d , e ) for infinitely many d } . 

Lemma 2.7. — If z* e He, then SM(Z*) has at most e elements. 

Proof — Fix z* G He. Then there exists a sequence {dj} such tha t z* G A - T(d/, e) 
for each j . By Lemma 2.5, for each j there is a unit polynomial B« with d e g R < e 
such tha t 

(2.5) Bj(w0)\ < r0 
1/2 

(die) for each WQ G SM(Z*)-

Since degi?j < e for all j , and each Bj is a unit polynomial, there exists a sub­
sequence of the sequence {Bj} converging uniformly to a unit polynomial B* on 
compact sets in the w-plane. Because of (2.5), B*(wo) = 0 for each wo G SM(Z*). 
Also, degB* < e. Hence the cardinality of SM(Z*) is < e. We are done. 
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Proof of Theorem 2.2. — Our task is to show tha t m{z G A : SM(Z) is infinite } = 0. 

Fix e. Fix z G A — He. Since z £ He, we have z G A — T(d, e) for only finitely many d, 

so z G T(d, e) for all d from some d = k on. Therefore, 

z G 

oo 

d=fc 

T ( d , e ) 

and so 

(2.6) A - # e C 
00 

k=ko 

oo 

k=ko 

T ( d , e ) 

By Lemma 2.6, m(T(d ,e ) ) < 48r 
o 

for each d. Therefore, 

m 

oo 

k=l 

T ( d , e ) < 4 8 r 0

2 e 

for each k. So the right hand side of (2.6) is the union of an increasing family of sets 

each of which has m-measure < 48r 0

2 . Thus (2.6) gives 

(2.7) m(A-He) <48r 0

2 e. 

Also, by Lemma 2.7, we have 

(2.8) If Z* G tfe, then#{5 jwrCO} < e 

Fix z G A such tha t the set SM{Z) is infinite. Then z £ He for each e, tha t is, 

z G A — He for all e. Hence, { z G A : SM(Z) is infinite } C A — i J e . Therefore 

777,(2: G A : SM(Z) is infinite } < ra(A-Ue) < 4 8 r 0

2 e 

by (2.7). We now let e —> 0 0 and conclude tha t rajz G A : SM(Z) is infinite } = 0. 

Theorem 2.2 is proved. 

Proof of Corollary 2.1. — Fix r > 0 and apply Theorem 2.1 to the curve pr(X) where 

pr : C 2 —• C 2 is given by p r ( z ) = rz. Since p r ( X n C 2 ) = (prX) fl C 2 , we conclude 

tha t Theorem 2.1 holds with A replaced by ^ A . 

Theorem 2.3. — Theorem 2.1 remains valid without the assumption that X is con­

nected, that is, it is valid when X is a finite union of real analytic simple closed 

curves in C 2 . 

Proof. — Write X = 71 U 72 U • • • U 7A/ where each 7^ C C 2 is a simple closed real an­

alytic curve. Choose a neighborhood Q, of the unit circle K in C and complex analytic 

maps (fk,9k) : f̂c —> C 2 , k = 1 , . . . , N whose restriction to K is a parameterization 

of 7fc. We now apply the following. 
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Lemma 2.8. — Let Ct be a plane domain and K a compact subset of ft. Let C be 

an algebra of holomorphic functions on fl. Put \\(j>\\ = supK \</>\ for all (f) G C. Fix 

fk,9k € £ for k = 1 , . . . , N. Then there exist r, 0 < r < 1 and C > 0 such that for 

each pair of positive integers (d, e) with d + e > N, we can find a unit polynomial F^e 

of bidegree (d, e) such that 

(2.9) Fdte(fk,9k)\ < Cd+r r deN for & = 1 , . . . ,7V. 

Proof. — We fix a point ZQ G ft and choose F^e so tha t Fd^e(fk,gk) vanishes to 

order de/N at z0 for all k. This is possible if d + e > N. We then proceed as in the 

proof of Lemma 2.2. 

One can now carry out the arguments given above for the case of one component. 

The only difference is tha t in the estimates, re0 will be replaced by r^N. • 

3. T h e ana ly t i c i ty t h e o r e m 

Let 0(1) —> Pn denote the holomorphic line bundle of Chern class 1 over complex 

projective n-space, endowed with its s tandard U(n+1)-invariant metric | | . ||. Follow­

ing [4], we define the projective hull of a compact subset X C Pn to be the set X of 

points x G Pn for which there exists a constant C = Cx such tha t 

(3-1) | | P ( x ) | | < C x d s u p | | P | | . 
X 

for all holomorphic sections P G #°(Pn, 0 ( d ) ) and all d > 1. 

Note. — Recall tha t the holomorphic sections H°(Pn, 0(d)) correspond naturally to 

the homogeneous polynomials of degree d in homogeneous coordinates [Zo , . . . ,Zn] 

for Pn. From this one can see (cf. [4, §6]) tha t if X is contained in an affine 

chart Cn C Pn, then XflCn is exactly the "projective hull of X in Cn" introduced in § 2. 

Moreover, the function MR appearing in (2.1) can be taken to be mc = py/i + ||CII2cc 
for C £ X fl Cn, where p is a constant depending only on X. 

For each x G X there is a best constant C(x) = min{Cx : (3.1) holds VP} . The 

set X is called stable if the best constant function C is bounded on X. We know 

from [4, Prop. 10.2] tha t if X is stable, then X is compact. 

The point of this section is to prove the following projective version of the main 

theorem in [9]. 

Theorem 3.1. — Letj c Pn be a finite union of real analytic closed curves and assume 

7 is stable. Then 7 — 7 is a one-dimensional complex analytic subvariety ofFn — 7. 
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Note. — When this conclusion holds, one can show tha t , in fact, 7 is the image of a 
compact Riemann surface with analytic boundary under a holomorphic map to PN. 
We will prove this in § 4. 

Proof. — Assume to begin tha t n = 2. Since 7 is real analytic, it is pluripolar, i.e., 
locally contained in the {—oo}-set of a plurisubharmonic function (which is ^ —00). 
Therefore, by [4, Cor. 4.4] we know tha t 7 is also pluripolar. In particular, it is 
nowhere dense. As noted above, 7 is closed by stability. Hence, we may choose a 
point x G P 2 and a ball B centered at x such tha t 7 C P 2 — B. Let 

(3.2) P2 _ {x} JL> pi 

be linear projection with center x. This projection (3.2) is naturally a holomorphic 
line bundle ^ 0 ( 1 ) , and 

(3.3) P 2 - B —> P 1 

can be identified, after scalar multiplication by some constant r > 0, with its open 
unit disk bundle. 

Cover P 1 with two affine charts: VQ = P1—{0} and Voo = P 1 — { 0 0 } , and assume tha t 
7 fl 7T-1(0) = 7 n 7r_1(oo) = 0 . By symmetry we may restrict at tention to 7r_1(Vr00). 
This chart has an identification 

t t - ^ K o ) ^ C2 = {(z,w) : z,w e C} 

with the property tha t V00 maps linearly to the z-axis and n can be writ ten as 
7r(z, W) = z. The subset P 2 — B, intersected with this chart, is represented by 

(3.4) (P2 - B) n C2 = Uz,w) : \w\2 < \z\2 + 1} . 

Set 
ÎÎ = C - tt(7) and C/ = 7 r - 1 ( n ) = C 2 - 7 r - 1 ( 7 r ( 7 ) ) . 

Proposition 3.1. — Let 7 c C be a stable real analytic curve with the property that 

(3.5) 7 n C 2 C Uz,w) : \w\2 < \z\2 + l}. 

Then •jdU is a 1-dimensional complex analytic subvariety ofU. 

Proof. — Note to begin tha t since 7 is compact, condition (3.5) implies tha t 

(3.6) 7T : 7 D U —• ft is a proper map. 

Consider now the algebra A of functions on 7 fl U given by restriction of the holomor­
phic functions on [/, i.e., 

A={fcnU- . f eO(U)} . 
We now claim tha t ( A , 7 ( 1 U,ft,ir) is a maximum modulus algebra, as defined in [ 1 , 
p. 64]. Given (3.6) this means tha t we need only prove the following. 
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Lemma 3A. — For each ZQ € ft and each closed disk D C ft centered at ZQ, the 

equality 

(3.7) \f(z0,w0)\ < sup 
7RI7R-1(aD) 

l/l 

/io/ds for all f € A. 

Proof — By hypothesis (3.5) there exists an R > 0 such tha t 

7 PI 7r_1(i^) c D x A 
è * 

where Ar = {w : \w\ < r}. In particular, we have tha t 

(3.8) JND(D x AR) = 7 n (3D x A ^ ) = 7 fi 7r_i(&D). 

Now Theorem 12.8 in [4] states tha t 

7 fi 7T_1(Z)) = 7 f ] ( D x Atf) C polynomial hull of 7 fi D(D x AR). 

Applying (3.8) gives 

7 fl 7T 1 (D) C polynomial hull of 7 fl n 1 {3D), 

and Lemma 3.1 follows immediately. 

We have now shown tha t (A, 7 fl f/, ft, 7r) is a maximum modulus algebra. Further­

more, since 7 is stable, we know from Theorem 2.1 tha t there exists an N > 0 such 

tha t 

il(N) = {z £ ft : # (TT -1 (^ ) fl 7) < iV} 

has positive measure. (Since 0 — [jN Cl(N) has measure zero.) It now follows from 

Theorem 11.8 in [1] tha t : 

(i) Çl = il(N), and 

(ii) there exists a discrete subset A C ft such tha t 7 fl 7r 1 (ft — A) has the structure 

of a Riemann surface on which every function in A is analytic. 

Since A is the restriction of holomorphic functions on U to 7, condition (ii) implies 

tha t 7 fl 7r-1(ft — A) is a 1-dimensional complex analytic subvariety of 7r_1(ft — A) = 

U - r-1(A) . 
It now follows tha t 7 fl U is a 1-dimensional complex analytic subvariety of U. 

To see this, fix zo £ A and choose a small closed disk D C ft centered at z$ 

with DC\A = {zo}. The arguments above show tha t 7 fl n~1(D) is contained in 

the polynomial hull of the real analytic curve 7fl7r_1(9Z>). Applying s tandard results 

[ 1 , §12] proves Proposition 3.1. 

Proposition 3.1 together with the discussion preceding it, give the following. 

Corollary 3.1. — The set 7 — 7r (^7) is a complex analytic subvariety of dimension 1 

in P2 - T T - 1 ^ ) . 
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Observe tha t for every point y G P — 7 there is a point x G P — 7 such tha t 

ir(y) £ TT(7) where IT is the projection (3.2) with center x. Consequently, Corollary 3.1 

proves Theorem 3.1 for the case n = 2. 

Suppose now tha t n = 3 and choose x G P3 — 7. The set of such x is open and 

dense since 7 is a compact pluripolar set of Hausdorff dimension 2 (cf. [4, Cor. 4.4 

and Thm. 12.5]). Let LT : P3 — {x} —• P2 be the projection with center x. One sees 

easily tha t 

n (7 ) C n 7 , 

and by the above II7 —II7 is a complex analytic curve in P2 — II7. Standard arguments 

now show tha t 7 — 7 is a complex analytic curve in P3 — 7. Proceeding by induction 

on n completes the proof of Theorem 3.1. 

4. B o u n d a r y R e g u l a r i t y 

The conclusion of Theorem 3.1 implies a strong regularity at the boundary. For 

future reference we include a discussion of this regularity. 

Theorem 4.1. — Let 7 C Pn be a finite disjoint union of real analytic regular closed 

curves, and suppose V is a 1-dimensional complex analytic subvariety of the comple­

ment Pn — 7. Then the closure 

V = 

m 

j=1 
VI 

t 

k=m-\-l 

v'k 

where: 

1) Each Vj is a 1-dimensional complex analytic subvariety of finite area in Pn — 7 

whose closure Vj is an immersed variety in Pn with non-empty boundary dVj = jj 

consisting of a union of components 0 / 7 . In particular, there exists a connected 

Riemann surface Sj, a compact subdomain Wj C Sj with real analytic boundary, and 

a generically injective holomorphic map 

PJ : SJ —• Pn with pj (Wj) = Vj 

which is an embedding on a neighborhood of dWj and has pj(dWj) = jj. 

2) The closure of each Vk is an irreducible algebraic curve in Pn with 7^ C Reg(Ffc) 

where 7^ is a (possibly empty) finite union of components of 7. 

Note. — When 7 is stable and V = 7, each 7^ is non-empty for m < k < i. 

Theorem 4.1 can be put into a more succinct form. 
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Theorem 4.2. — Let 7 and V be as above. Then there exists a Riemann surface S (not 

necessarily connected), a compact subdomain W C S with real analytic boundary, and 

a holomorphic map p : S —> P n which is generically infective and satisfies 

1) p(W) = V, 

2) p is an embedding on a tubular neighborhood of dW in S and 

3) p(dW) is a union of components ofj. 

Proof of Theorem J^.l. — We assume n = 2. The case of general n is similar. 

We first note tha t V has finite area and finitely many irreducible components 

V i , . . . , Vi. This follows from work of Shiffman, but can be seen directly as follows. 

Choose any p G P2 — V and let TT : P2 — {p} —> P1 be projection. Then TT\V is finitely 

sheeted over P1 — 7r(7), and therefore V has finitely many components. In fact 7r\v 

must also be finitely sheeted over all of P1 . To see this note tha t V can contain no fibre 

of 7r since p £ V = V U 7. Hence, the intersection /ir~1(x) fl V for x G ir(j) is at most 

countable. If it were infinite, one easily sees tha t the sheeting number in contiguous 

domains of P1 — 7r(7) is unbounded. Choosing two distinct such projections and an 

easy estimate shows tha t the integral of the projective Kahler form on V is finite. 

Now each irreducible component Vj of V defines a current [Vj] by integration whose 

boundary is supported in 7. By the Federer Flat Support Theorem [3, 4.1.15], 

d[Vj} = nJhi] 

where 7^ = suppd[VJ] is a union of connected components of 7 (appropriately ori­

ented) and rij > 0 is a locally constant integer-valued function on 7^. Order the Vj so 

tha t d[Vj] ^ 0 for j = 1 , . . . , m and d[Vj] = 0 for j > m. 

Since 7 is a regularly embedded real analytic curve, it has a complexification E D 7 

which is a union of regularly embedded closed complex analytic annuli. Let £ j denote 

tha t par t of £ which is the complexification of 7^ for j < m. Write E j =Ej U77 U E ~ 

where E^1 are the components of T,j — 7^ with signs chosen so tha t S + is the "outer 

strip", tha t is, so tha t 

«t í = iî -ъ-
Consider the current [Vj] = [Vj] + nj [Zj+] which has 

d[v;} = nj[1+}. 
The structure theorem of King [8] implies tha t supp[VJ*] is a 1-dimensional subvariety 
of P2 - 7+. It follows tha t Vj* is an analytic continuation of Vj and in particular 

Uj = 1 and E - C Vj. 

Defining pj : Sj —» V* to be the normalization of V* and setting Wj = p-\Vj) 
completes par t 1) unless there exist Vi ^ Vj which share some common boundary 
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components. In this case Vi and Vj are analytic continuations of each other and can 

be combined into a single component of V. Eliminating all common boundaries in 

this manner completes part 1). 

Note tha t after fusing components, one may obtain algebraic curves which contain 

a non-empty union of components of 7 in their regular locus. These will be listed 

in par t 2). The remaining components of V (whose current boundaries are zero) are 

algebraic curves by King [8]. 
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