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TWO-DIMENSIONAL MARKOVIAN
HOLONOMY FIELDS

Thierry Lévy

Abstract. — This text defines and studies a class of stochastic processes indexed by
curves drawn on a compact surface and taking their values in a compact Lie group.
We call these processes two-dimensional Markovian holonomy fields. The prototype
of these processes, and the only one to have been constructed before the present work,
is the canonical process under the Yang-Mills measure, first defined by Ambar Sen-
gupta and later by the author. The Yang-Mills measure sits in the class of Markovian
holonomy fields very much like the Brownian motion in the class of Lévy processes.
We prove that every regular Markovian holonomy field determines a Lévy process of
a certain class on the Lie group in which it takes its values, and we construct, for
each Lévy process in this class, a Markovian holonomy field to which it is associated.
When the Lie group is in fact a finite group, we give an alternative construction of this
Markovian holonomy field as the monodromy of a random ramified principal bundle.
Heuristically, this agrees with the physical origin of the Yang-Mills measure as the
holonomy of a random connection on a principal bundle.

Résumé. (Champs d’holonomie markoviens bidimensionnels). — Ce travail est consacré
à la définition et à l’étude d’une classe de processus stochastiques indexés par des
chemins tracés sur une surface, qui prennent leurs valeurs dans un groupe de Lie
compact et qui satisfont une propriété d’indépendance conditionnelle analogue à la
propriété de Markov. Nous appelons ces processus des champs d’holonomie markoviens
bidimensionnels. L’exemple fondamental de cette sorte de processus est le processus
canonique sous la mesure de Yang-Mills, qui a été construite d’abord par Ambar
Sengupta puis plus tard par l’auteur. C’est aussi le seul champ d’holonomie markovien
qui ait été construit avant ce travail. Le processus canonique sous la mesure de Yang-
Mills est assez exactement aux champs d’holonomie markoviens ce que le mouvement
brownien est aux processus de Lévy. Deux de nos principaux résultats affirment qu’à
tout champ d’holonomie markovien suffisamment régulier est associé un processus de
Lévy d’une certaine classe sur le groupe de Lie dans lequel il prend ses valeurs et
réciproquement que pour tout processus de Lévy dans cette classe il existe un champ
d’holonomie markovien auquel il est associé. Dans le cas particulier où le groupe de
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Lie considéré est un groupe fini, nous parvenons à réaliser ce champ d’holonomie
markovien comme la monodromie d’un fibré principal ramifié aléatoire. Ceci nous
rapproche de l’interprétation originelle de la mesure de Yang-Mills, issue de la théorie
quantique des champs, comme mesure de probabilités sur l’espace des connexions sur
un fibré principal.
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INTRODUCTION

The elementary theory of Markov processes establishes a correspondence between
several types of objects among which transition semigroups and stochastic processes.
These stochastic processes can take their values in fairly general spaces, but they
are usually indexed by a subset of the real numbers, for the Markov property relies
on the distinction between past and future. In the present work, we investigate a
correspondence between certain transition semigroups and another kind of stochastic
processes, where the notions of past and future are replaced by the notions of inside
and outside. The processes that we consider are indexed by curves, or rather loops,
drawn on a surface, and they take their values in a compact Lie group. We call them (2-
dimensional) Markovian holonomy fields. They are Markovian in the following sense:
if some piece of a surface is bounded by a finite collection of loops, then the values of
the process on loops located inside this piece and outside this piece are independent
given the value of the process on the finite collection of loops which bound this piece.

0.1. A 1-dimensional analogue

Let us start by discussing the 1-dimensional analogues of Markovian holonomy
fields, which are just Markov processes looked at from a slightly unusual point of
view. Let us choose a transition semigroup P = (Pt)t≥0 on some state space X . For
each t ≥ 0, Pt(x, dy) is a transition kernel on X × X . Under suitable assumptions,
we can associate to P a homogeneous Markov process with values in X , which we
denote by X. This Markov process is not really a single stochastic process, it is rather
a collection of processes, essentially one for each initial condition at a specific time. In
fact, if we considerX restricted to segments, we can say that to each segment [a, b] ⊂ R
and each initial condition x ∈ X we associate a process (Xt)t∈[a,b] with values in X
such that Xa = x almost surely. Within the structure implied by the fact that [a, b]

is a subset of R, what we really use is the topological structure of this interval, its
orientation and our ability to measure the distance between any two of its points.
Of course, in the present 1-dimensional setting, this structure suffices to characterise
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2 INTRODUCTION

the interval up to translation, and the last sentence may seem pointless. Its content
should however become clearer in the 2-dimensional setting.

Let us push the abstraction a little further and try to define, for all compact
1-dimensional manifold M , a process (Xt)t∈M with values in X . As we have just
observed, we need an orientation of M and a way to measure distances. If M is not
connected, let us agree that the restrictions of our process to the various connected
components of M will be independent. So, let M be a connected oriented compact
Riemannian 1-dimensional manifold. There are not so many options: M is either
homeomorphic to a segment or to a circle, it has a certain positive total length, and
this information characterises it completely up to orientation-preserving isometry.
If M is a segment of length L, it is isometric to [0, L] and there is no difficulty in
defining the process (Xt)t∈M given an initial condition. Before turning to the case of
the circle, let us interpret the Markov property of X in terms of these 1-dimensional
manifolds.

Let M1 and M2 be two manifolds as above, isometric to segments. Let M1 ·M2

denote the manifold obtained by identifying the final point ofM1 with the initial point
of M2. It is still homeomorphic to a segment. Choose an initial condition x ∈ X . We
are able to construct two stochastic processes indexed byM1·M2. On one hand, we can
takeM1·M2 as a segment on its own and simply consider the process (Xt)t∈M1·M2 with
initial condition x. On the other hand, we can also proceed as follows. For all segment
M and all x ∈ X , let L(x,M) denote the distribution of the process (Xt)t∈M with
initial condition x. Let us also denote by L(x,M, dy) the disintegration of L(x,M)

with respect to the value of X at the final point of M . Then the probability measure∫
X L(x,M1, dy) ⊗ L(y,M2) is the distribution of a process indexed by the disjoint

union ofM1 andM2 which takes the same value at the final point ofM1 and the initial
point of M2. It can thus be identified with the distribution of a process indexed by
M1 ·M2. It is exactly the content of the Markov property of X that the two measures
that we have considered are equal:

(1)
∫

X
L(x,M1, dy)⊗ L(y,M2) = L(x,M1 ·M2).

This example illustrates in the simplest possible way the fact that the Markov property
can be nicely formulated in terms of surgery of manifolds, in this case in terms of
concatenation of intervals. Manifolds of dimension 1 undergo another kind of surgery,
when the two endpoints of a single interval are glued together (see Figure 1). If we
try to mimic (1), we are tempted to define the distribution of a process indexed by
the circle S1 of length L, seen as the interval [0, L] of which the endpoints have been
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0.1. A 1-DIMENSIONAL ANALOGUE 3

identified, by

(2) L(S1) =

∫
X

L
(
x, [0, L], dx

)
,

an expression which unfortunately is meaningless. Still, this formula is consistent with
the fact that a circle has no boundary, so that there is no initial condition to specify.
What we are attempting to define here is a bridge, that is to say a probability measure
on closed trajectories in X , from the transition semigroup (Pt)t≥0.

M1 M2

M1 · M2

[0, L]

S1

Figure 1. The surgery of 1-dimensional manifolds.

Without aiming at the greatest possible generality, let us describe a situation in
which this is possible. We will assume that X is a smooth finite-dimensional manifold,
for example a vector space or a Lie group, which carries a Borel probability measure µ
which is stationary for the semigroup P . We will also assume that for all t > 0 and
all x ∈ X , the measure Pt(x, dy) has a continuous density with respect to µ, which
we denote by y 7→ Qt(x, y). In this situation, it is possible to define bridges of the
Markov process X between any two points of X . Hence, for each segment [0, L], it is
possible to define the finite measure L(x, [0, L], y) which is the conditional distribution
of (Xt)t∈[0,L] given X0 = x and XL = y, multiplied by the real number QL(x, y). With
this definition, L(x, [0, L], y) is not a probability measure in general but the relation
L(x, [0, L], dy) = L(x, [0, L], y)µ(dy) holds. We can then define a measure on the set
of trajectories in X indexed by a circle of length L by setting

(3) L(S1) =

∫
X

L
(
x, [0, L], x

)
µ(dx).

The identification of a trajectory indexed by the circle S1 with a process indexed
by [0, L] requires the choice of a base point on S1 but the stationarity of µ implies
that the resulting definition of L(S1) is independent of this choice.

The measure L(S1) defined by (3) is not a probability measure in general and,
in order to construct a stochastic process indexed by S1, one should consider the
associated normalised measure. Finite measures, as opposed to probability measures,
will play an important role throughout this work.

Let us summarise this discussion of the 1-dimensional case. Starting with a Marko-
vian transition semigroup on X with good properties, we have been able to associate
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4 INTRODUCTION

to each compact oriented 1-dimensional Riemannian manifold, endowed with an ini-
tial condition for each connected component homeomorphic to a segment, a stochastic
process with values in X indexed by the points of this manifold. This collection of
processes exhibits a Markovian behaviour with respect to the operations of cutting or
concatenation of 1-manifolds.

0.2. A first definition

A 2-dimensional Markovian holonomy field is a 2-dimensional analogue of the ob-
ject that we have just described. It is a collection of stochastic processes, one for
each compact surface endowed with boundary conditions and some way of measuring
areas. For each such surface, the process is indexed by a set of loops drawn on this
surface and the boundary conditions specify the value of the process on the loops
which bound the surface. Moreover, this collection of processes satisfies Markovian
properties with respect to the operations of cutting surfaces along curves or gluing
them along boundary components.

In contrast with the 1-dimensional case, the index sets of our processes now carry a
partially defined internal composition law, namely the concatenation of loops. We are
interested in stochastic processes which satisfy a property of additivity with respect
to the concatenation of loops. This requires that they take their values in a group
and since this group will usually not be assumed to be Abelian, and denoted multi-
plicatively, we will rather call this a property of multiplicativity. Let us give a precise
definition. IfM is a 2-dimensional manifold and m is a point ofM , let Lm(M) be a set
of loops on M based at m. We will discuss later which loops exactly we wish to con-
sider (see Section 0.4). To each loop l ∈ Lm(M) we can associate the inverse loop l−1,
which is simply l traced backwards. Also, to each pair of loops l1, l2 ∈ Lm(M) we can
associate their concatenation which we denote by l1l2. Let G be a group, which plays
the role of the space X above. A stochastic process (Hl)l∈Lm(M) with values in G is
said to be multiplicative if

∀l ∈ Lm(M), Hl−1 = H−1
l a.s.,(4)

∀l1, l2 ∈ Lm(M), Hl1l2 = Hl2Hl1 a.s.(5)

We will explain later, in Section 0.5, why we choose to reverse the order on the right-
hand side of this equality. For the time being, suffice it to say that the processes which
constitute a Markovian holonomy field will be multiplicative in the sense just defined.

Let us now describe further the transitions of a Markovian holonomy field. Just as
an interval has two extremities, a surface has a boundary which is homeomorphic to
a disjoint union of circles. The only difference is that the number of connected com-
ponents of the boundary of a connected surface can be any natural number. Another
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0.2. A FIRST DEFINITION 5

specificity of the 2-dimensional case, as opposed to the 1-dimensional one, is that
even when a surface is oriented, its boundary components are indistinguishable from
a topological point of view: any permutation of the boundary components can be re-
alised by an orientation-preserving homeomorphism. So, in order to see our surface as
realizing a cobordism, that is, a topological transition, between two sets of circles (see
Figure 2), we need to arbitrarily declare that some of these components are incom-
ing and the others are outgoing. If the surface is oriented, then we orient incoming
boundary components negatively and outcoming boundary components positively.
This matters because, according to (4), the boundary conditions on the incoming
components are associated with oriented loops: to each oriented incoming boundary
component we associate an element of G, and to the same boundary component with
the opposite orientation is associated the inverse element of G.

Figure 2. A surface seen as a topological transition between two collec-
tions of circles

The comparison with the 1-dimensional case reveals that we need to endow our
surfaces with a structure analogous to the metric structure of intervals and circles,
and the role of which is to incorporate a notion of time into the picture. It turns out,
in the present context, that the correct analogue of the ability to measure distances is
the ability to measure areas. On a surface, this requires much less than a Riemannian
metric, just a Borel measure which is smooth enough to be the Riemannian volume
of a Riemannian metric.

We can now give a loose definition of a Markovian holonomy field. The actual
definition unfortunately requires a great deal too many prerequisites to be given in
this introduction but the curious reader is welcome look it up on page 108.

Definition 0.2.1 (Markovian holonomy fields - first approach). — Let G be a group. A 2-
dimensional G-valued Markovian holonomy field is a collection of G-valued stochastic
processes, one for each compact surface endowed with a measure of area and a choice of
boundary conditions along its incoming boundary components. For each such surface,
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6 INTRODUCTION

the G-valued stochastic process is indexed by the set of loops on the surface and it is
multiplicative. Moreover, as a whole, the collection of stochastic processes behaves with
respect to the surgery of surfaces in a way which is governed by the Markov property.

0.3. Transition kernels

The transition kernels of a Markovian holonomy field describe the distribution
of the process on the outgoing circles of a surface given its values on the incoming
ones. There is a much greater variety of situations than in the 1-dimensional case, but
fortunately for us, this variety has been very well understood for about a century and is
easy to describe. Up to homeomorphism, a connected compact surface is characterised
by the fact that it is orientable or not, by the number of connected components of its
boundary, and by a single other topological invariant called its genus which can be any
non-negative integer if the surface is orientable and any positive integer if it is not.
Moreover, according to a theorem of Moser, the only invariant of a smooth measure
of area under diffeomorphisms is its total area. It turns out that, when one deals with
orientable and non-orientable surfaces at the same time, the genus is not the most
convenient way to label the possible topological types of surfaces. We prefer to work
with a slightly modified notion of genus, which is simply the genus if the surface is
not orientable, and twice the classical genus if it is orientable. The main advantage of
this genus is that it is additive with respect to the operation of connected sum.

For all integers p and q such that 0 ≤ q ≤ p, let us denote by M(Gp−q) the space of
probability measures on Gp−q. Then the transition kernels of a Markovian holonomy
field consist of a collection of mappings

(6) P±p,g,t(x1, . . . , xq, dxq+1, . . . , dxp) : Gq −→ M(Gp−q),

where the sign indicates the orientability of the surface, g is its genus, t its total area
and p the number of its boundary components, of which q are incoming and p − q
outgoing.

If q = 0, then the transition kernel is a measure on Gp, if q = p it is a function
on Gp and if p = 0, it is a real number. In order to avoid the problems that we
have encountered with the circle in the 1-dimensional case, we will make fairly strong
assumptions. Firstly, we will assume that G is a compact Lie group. Such a group car-
ries a unique probability measure invariant by translations, the Haar measure, which
we denote by dx. We will also assume that the transition kernels of the Markovian
holonomy field that we consider can be put under the form

P±p,g,t(x1, . . . , xq, dxq+1, . . . , dxp)(7)

= Z±p,g,t(x
−1
1 , . . . , x−1

q , xq+1, . . . , xp)dxq+1 · · · dxp
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for some functions Z±p,g,t which we will call the partition functions of the holonomy
field. The exponents that we have introduced take care of the issue of orientation.
They restore the symmetry between the boundary components of a surface, so that
the partition functions are invariant by permutation of their arguments.

The possibility of gluing together boundary components of one or two surfaces leads
to infinitely many relations analogous to (1) between the transition kernels and to just
as many relations between the partition functions. For instance, consider a cylinder
of area s with one incoming circle and one outgoing circle. A cylinder has genus 0 and
the corresponding transition kernel is P+

2,0,s(x, dy). By gluing the incoming circle of
this cylinder along an outgoing circle of an arbitrary surface, we do not change this
surface up to homeomorphism, we only increase its area by s. Hence, we have the
following relation between transition kernels:∫

G

P±p,g,t(x1, . . . , xq, dxq+1, . . . , dxp−1, dx)P+
2,0,s(x, dxp)(8)

= P±p,g,t+s(x1, . . . , xq, dxq+1, . . . , dxp).

t s t + s

x x

Figure 3. Gluing a cylinder does not affect a surface up to homeomor-
phism but it increases its area.

As another example, let us consider an orientable surface with at least one incoming
and one outgoing circle. If we glue these circles one along the other in such a way
that the result is still orientable, then we obtain a surface with two less boundary
components, a classical genus increased by 1, hence a reduced genus increased by 2,
and the same area. This example is reminiscent of the situation where we obtained a
circle by identifying the two endpoints of a segment. It is thus not surprising that in
this case, the Markov property is best expressed in terms of the partition functions,
rather than the transition kernels. It reads

(9)
∫
G

Z+
p,g,t(x1, . . . , xp−2, x, x

−1)dx = Z+
p−2,g+2,t(x1, . . . , xp−2).

If we identify an outgoing circle with an incoming one in a non-orientable sur-
face, then the reduced genus of the surface is also increased by 2. In this case, the
Kolmogorov-Chapman equation is

(10)
∫
G

Z−p,g,t(x1, . . . , xp−2, x, x
−1)dx = Z−p−2,g+2,t(x1, . . . , xp−2).
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t
t

x−1

x

Figure 4. Gluing together two boundary components of a connected surface.

A more unusual topological operation consists in identifying a boundary component
of a surface with itself by a fixed point free orientation-preserving involution (see
Figure 2 page 28). Up to homeomorphism, this operation is equivalent to gluing a
Möbius band along this boundary component. The resulting surface is always non-
orientable and its genus is increased by one. The corresponding relation for partition
functions is

(11)
∫
G

Z±p,g,t(x1, . . . , xp−1, x
2)dx = Z−p−1,g+1,t(x1, . . . , xp−1).

The equalities (8), (9), (10) and (11) essentially generate all the relations which
hold between the partition functions. Using these relations, we will prove that the
whole set of partition functions of a Markovian holonomy field is determined by just
those associated to a disk and a three-holed sphere of arbitrary areas. Indeed, any
surface can be built from these three elementary bricks by a finite number of gluings.
In fact, if the Markovian holonomy field is regular enough, then we will prove that its
transition kernels are all determined by the sole transition kernels associated to disks.
These transition kernels (P+

1,0,t(dx))t>0, also written (Z+
1,0,t(x)dx)t>0 in terms of the

partition functions, constitute a one-parameter family of probability measures on G
which will turn out to form a continuous convolution semigroup, hence the collection
of 1-dimensional marginals of a classical Lévy process on G, a process indexed by R+

and with independent and stationary multiplicative increments.

We are now able to give an idea of two of our main results. After giving an axiomatic
definition of a 2-dimensional Markovian holonomy field with values in a compact Lie
group G (Definition 3.1.2), we will prove, under a suitable regularity assumption, that
there is a classical Lévy process with values in G associated with each Markovian
holonomy field (Proposition 4.2.1). This Lévy process is characterised by the fact
that its 1-dimensional distributions are the transition kernels of the holonomy field
associated to disks. Moreover, all partition functions of the holonomy field can be
expressed in terms of these 1-dimensional distributions (Proposition 4.1.10). Then,
we will prove that for all Lévy process which satisfies some regularity properties,
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0.4. TWO FUNDAMENTAL EXAMPLES 9

there exists a Markovian holonomy field to which this Lévy process is associated
(Theorem 4.3.1).

We do not tackle in this work the question of the unicity of a Markovian holonomy
field with a given associated Lévy process. When the group G is Abelian, I believe
that this unicity holds and that the proof should be straightforward. However, when G
is not Abelian, the question seems to be more delicate and the answer is still unclear
to me.

0.4. Two fundamental examples

In this paragraph, we present two examples of stochastic processes which do not
exactly fit into our definition of Markovian holonomy fields, but are in a sense simpler
and should absolutely be kept in mind as fundamental examples. We will also take
the second example as an opportunity to discuss the role of loops with finite length.

Consider the plane R2 endowed with the Lebesgue measure denoted by dx. Let Π

denote a Poisson point process on R2 with intensity dx. Let l : [0, 1] → R2 be a
continuous loop. For each point x ∈ R2 \ l([0, 1]), the topological index of l with
respect to x is an integer denoted by nl(x) and defined, if we identify R2 with C, by

(12) nl(x) =
1

2iπ

∮
l̃

dz

z − x
,

where l̃ is any piecewise smooth loop which is uniformly close enough to l, for example
closer than the distance of x to the range of l. Provided the range of l is negligible,
we may define

Nl =

∫
R2

nl(x)Π(dx) =
∑
x∈Π

nl(x)dx.

Definition 0.4.1. — The stochastic process {Nl : l has negligible range} is called the
Poisson process indexed by loops on R2.

Let us define the Brownian motion indexed by loops in parallel to the Poisson
process. Let W : L2(R2, dx)→ G be a white noise, that is, an isometry into a Hilbert
space of centred real Gaussian random variables.

Let us say that a continuous loop l : [0, 1]→ R2 winds gently if its range is negligible
and if nl ∈ L2(R2, dx). In this case, it is legitimate to define

(13) Bl = W (nl).

Definition 0.4.2. — The stochastic process {Bl : l winds gently} is called the Brownian
motion indexed by loops on R2.
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To each subset D of the plane, we may associate two σ-fields F ND and F BD, which
we define by

F ND = σ (Nl : l has negligible range, l([0, 1]) ⊂ D) ,

F BD = σ (Bl : l winds gently, l([0, 1]) ⊂ D) .

If J is a Jordan curve in R2, then we denote respectively by int(J) and ext(J) the
bounded and unbounded connected components of R2 \ J , which we call the interior
and exterior of J . A basic property of the Poisson point process Π (resp. the white
noise W ) is that it associates independent random variables to disjoint subsets of the
plane (resp. to functions with disjoint supports). This implies the following property.

Proposition 0.4.3. — Let J1 and J2 be two Jordan curves with disjoint interiors. Then
the σ-fields F Nint(J1) and F Nint(J2) (resp. F Bint(J1) and F Bint(J2)) are independent.

Proof. — If l is a loop whose range is contained in int(J1), then the support of nl is
also contained in int(J1). The same holds for J2 and the result follows.

Let us now prove a Markov property.

Proposition 0.4.4. — Let J be a Jordan curve with negligible range. The σ-fields
F N

int(J)
and F N

ext(J)
(resp. F B

int(J)
and F B

ext(J)
) are independent conditionally on NJ

(resp. BJ).

Proof. — We prove the result for the Brownian motion. By the Jordan curve theorem,
a Jordan curve with negligible range winds gently. Let L be the line in L2(R, dx)

generated by nJ = 1int(J). Let Hin (resp. Hout) be the closed linear subspace of
L2(R, dx) spanned by nl for l which winds gently and l([0, 1]) ⊂ int(J) (resp. l([0, 1]) ⊂
ext(J)). The inclusions Hin ⊂ {f ∈ L2(R, dx) : supp(f) ⊂ int(J)} and Hout ⊂ {f ∈
L2(R, dx) : f is constant on int(J)} are straightforward. They are actually equalities
but we do not need this fact. In particular, Hin ∩ Hout = L. Moreover, with the
notation 	 for the orthogonal complement, we have

Hin 	 L ⊂
{
f ∈ L2(R, dx) : supp(f) ⊂ int(J) and

∫
int(J)

f(x)dx = 0
}
,

Hout 	 L ⊂
{
f ∈ L2(R, dx) : f = 0 on int(J)

}
.

In particular, the orthogonality relation Hin 	 L ⊥ Hout 	 L holds and the result
follows.

It is illuminating to discuss the role of loops of finite length with the example of
the Brownian motion indexed by loops in mind. A loop with finite length admits a
Lipschitz continuous parametrization. Hence, its range has Hausdorff dimension 1,
unless it is constant. In any case, its range is negligible. The fact that its topological
index is square-integrable is not at all obvious. It is granted by a generalization of
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0.4. TWO FUNDAMENTAL EXAMPLES 11

the isoperimetric inequality discovered by T. Banchoff and W. Pohl. We denote the
length of l by `(l).

Theorem 0.4.5 (Banchoff-Pohl). — Let l : [0, 1] → R2 be a Lipschitz continuous loop.
Then

4π

∫
R2

nl(x)2dx ≤ `(l)2.

The original reference for this theorem is the article [6] of T. Banchoff and W. Pohl.
They prove the inequality for a loop of classC2. An elementary proof of the inequality
for rectifiable curves can be found in a paper by A. Vogt [37].

Of course, there are many loops with infinite length whose topological index is
square-integrable, for instance fractal Jordan curves or simply loops of infinite length
whose range is contained in a line. It would probably be difficult to characterise
the set of loops which wind gently in a way which significantly differs from its def-
inition. Nevertheless, on the scale of roughness given by the p-variation, as defined
by L.C. Young [42], the space of rectifiable loops is the largest which contains only
loops which wind gently. Recall that the p-variation of a loop l : [0, 1] → R2 is de-
fined as the supremum over all subdivisions {t0 ≤ · · · ≤ tr} of [0, 1] of the quantity
(
∑
i ‖l(ti+1)− l(ti)‖p)

1
p . A loop has finite length if and only if it has finite 1-variation.

A loop with finite p-variation for p < 2 has negligible range.

Proposition 0.4.6. — There exists a loop l : [0, 1] → R2 such that l has finite p-
variation for all p > 1 and

∫
R2 nl(x)2dx = +∞.

1

1
2

1
3 1

4

Figure 5. This loop has finite p-variation for all p > 1 but its topological
index is not square-integrable.

Proof. — For each n ≥ 1, let ln be the loop based at the origin which goes once along
the circle of radius 1

n through the origin, tangent to the horizontal axis and contained
in the upper half-plane. Assume that ln is parametrised at constant speed by an
interval of length 2−n. Let l be the uniform limit of the finite concatenations l1 · · · ln
as n tends to infinity. This limit exists because the radii of the circles ln tend to 0 as n
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tends to infinity. For all p > 1, the p-variation of l raised to the power p is equal, up
to some constant, to

∑
n≥1 n

−p, hence it is finite. On the other hand, the squared L2

norm of nl is π
∑
n≥1 n

2( 1
n2 − 1

(n+1)2 ) = +∞.

0.5. Markovian holonomy fields and gauge fields

The original motivation for the study of processes indexed by loops is issued from
theoretical physics, indeed from quantum field theory and more precisely from quan-
tum gauge theories. Let us explain this on the example of electrodynamics. The clas-
sical theory of electrodynamics, as established in the second half of the nineteenth
century, is summarised by the Lorentz law and Maxwell’s equations. Maxwell’s equa-
tions relate the electric and magnetic fields to the density of electric charge and the
density of electric current in space.

In order to derive these equations from a principle of least action, which is usually
the first step in the procedure of quantization of a physical theory, it is convenient
to express the electric and magnetic fields in terms of a scalar potential and a vector
potential. These potentials are not uniquely defined by the fields and this indeter-
minacy is called the gauge symmetry of the theory. It turns out that the geometric
nature of the pair formed by the scalar and vector potentials is that of a connection
on a principal bundle with structure group U(1) over the space-time. At the level of
rigour of this discussion, we do not make a serious mistake by identifying this object
with a differential 1-form on the space-time. This 1-form is usually denoted by A and
called the gauge field. The exterior differential of the gauge field is a mixture of the
electric and magnetic fields called the electromagnetic field and denoted by F . The
relation F = dA implies the equality dF = 0, which is equivalent to the two homo-
geneous Maxwell equations. The two inhomogeneous equations can be put under the
form ∗d ∗ F = J , where ∗ is the Hodge operator on space-time associated with the
Minkowski metric, and J is a differential 1-form built from the densities of charge and
current.

The main fact for us in this discussion is that the gauge field, the object in terms
of which the classical electrodynamics is best described, is a differential 1-form on
space-time. The most natural way to evaluate a 1-form is to integrate it along paths.
In the case of electrodynamics, the gauge symmetry of the theory implies that any
two gauge fields which differ by a total differential describe the same physics. This
indicates that the natural gauge-invariant functionals of the gauge field are in fact its
integrals along loops.

If instead of doing quantum mechanics we prefer to do statistical mechanics, then
we turn the Minkowski space-time into a Euclidean space-time and put on the space of
gauge fields the Gibbs measure corresponding to the action which gives back Maxwell’s
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0.5. MARKOVIAN HOLONOMY FIELDS AND GAUGE FIELDS 13

equations through the least action principle. In an empty space-time, this action is
called the Yang-Mills action and it is essentially the squared L2 norm of the elec-
tromagnetic field. Just as in the deterministic case, an appropriate way of studying
a random gauge field is again to consider the random variables determined by its
integrals along loops, sometimes called Wilson loops, and this constitutes indeed a
stochastic process indexed by loops. The Markov property of such a process, in this
physical context, reflects the following property of locality of the Yang-Mills action:
if the space-time is partitioned into several regions, then each region contributes to
the action by a quantity which can be computed from the values of the field inside
this region only.

In general, the random object that we are studying is thus an analogue of the
electromagnetic field, or rather of the gauge field formed by the scalar potential of
the electric field and the vector potential of the magnetic field. Let us suggest an
idea of the physical meaning of the gauge field A. This field interacts with particles
which carry an analogue of electric charge. In fact, the 1-form A takes its values in
the Lie algebra of a Lie group G and the charge of a particle is, mathematically,
a linear action of G on some vector space in which the wave function of the particle
takes its values. For example, in the case of electrodynamics, the group is U(1), the
wave functions take their values in C and for a particle of charge ne, where −e is the
charge of the electron, the group U(1) acts on C be the representation eiθ · z = einθz.
The exponential of the integral of the gauge field along a certain loop, as an element
of U(1), describes the modification of the phase of the wave function of a particle
which travels along l. More generally, let l : [0, 1] → M be a loop. Assume that G is
a Lie group and that A is a differential 1-form on M with values in the Lie algebra
of G. Then, under fairly weak regularity assumptions, the differential equation

(14) h0 = 1, ḣth
−1
t = −A(l̇t), t ∈ [0, 1]

has a unique solution h : [0, 1] → G. The element h1 determined by (14) is called
the holonomy of A along l and this is why we call our processes holonomy fields.
The action of this element h1 of G on the left on the vector space in which the wave
function of a particle takes its values determines how the state of a particle is modified
when it travels along l. The reversed order in the right-hand side of (5) is due to the
fact that the state of a particle travelling along the concatenation of l1 and l2 is
modified first by the transformation due to the displacement along l1 and then by the
transformation due to the displacement along l2.
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0.6. Finite groups, gauge fields and ramified coverings

When the group G is finite, the heuristic idea that a Markovian holonomy field is
a reflection of a probability measure on a space of connections or differential 1-forms
with values in the Lie algebra of G becomes awkward. Indeed, this Lie algebra is the
null vector space. Topologically, a principal bundle with finite structure group is a
covering and it carries a unique connection, which is flat. If M is simply connected,
then the holonomy along any loop is the unit element of G. On the other hand, there
exist Markovian holonomy fields with values in finite groups, which are non-trivial
processes indexed by loops, even on the sphere S2.

When G is finite, the correct geometric picture is the following: a Markovian holon-
omy field with values in G is the monodromy of a random ramified G-bundle. By a
ramified G-bundle, we mean a ramified covering whose regular fibres are endowed
with a free transitive action of G, or equivalently, a principal G-bundle over the
complement of a finite set in the surface. There is still a unique connection on a
ramified principal bundle and this connection is flat at each point which is not a
ramification point, but each ramification point acts like a macroscopic amount of cur-
vature concentrated at a single point. For instance, if n ≥ 2 is an integer, then the
mapping z 7→ zn from C to itself is naturally a ramified Z/nZ-bundle. The group
Z/nZ = {e2ikπ/n : k ∈ {0, . . . , n−1}} acts by multiplication on C∗, freely and transi-
tively on the fibres of the covering map z 7→ zn. Any loop which goes once positively
around a disk which contains 0 has monodromy e

2iπ
n , no matter how small this disk.

This is consistent with the picture of a concentration of curvature at 0.
The idea that a Markovian holonomy field with values in a connected Lie group

is a probability measure on a space of connections looked at through its holonomy
is only a guide for the intuition and has in general no firm rigourous ground. On
the contrary, the fact that a large class of Markovian holonomy fields with values in
a finite group G can be realised as the monodromies of random ramified G-bundles
is a theorem that we will prove. In the intuitive picture of the Yang-Mills measure,
the curvature of the random connection is supposed to have the distribution of a
white noise. The correct distribution of the ramified G-bundles which correspond
with a given Markovian holonomy field can be roughly described as follows: first
choose the ramification locus by throwing a Poisson point process on the surface with
intensity the measure of area, then give a weight to every ramified G-bundle with this
ramification locus which depends on its monodromy at each ramification point and
the Lévy process associated to the Markovian holonomy field.
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0.7. Markovian holonomy fields and the Yang-Mills measure

The Yang-Mills measure is to Markovian holonomy fields what the Brownian mo-
tion is to Lévy processes. It is indeed a Markovian holonomy field, whose associated
Lévy process is the Brownian motion on G. It is also the only Markovian holonomy
field to have been constructed before the present work. The Yang-Mills measure has
been the object of mathematical work since around 1990. It was first constructed on
an arbitrary compact surface by Ambar Sengupta [35]. The author gave later a dif-
ferent construction of essentially the same measure in [24]. One of the by-products of
the present work is to provide another construction of the Yang-Mills measure, which
really is very close to that given in [24]. Yet, we would like to emphasise several
aspects in which it differs from the previous ones.

The first difference is a slight shift of point of view which we have already il-
lustrated. Instead of considering a specific surface, choosing boundary conditions and
constructing a process indexed by some class of loops on this surface, we now consider
as one single object a whole collection of processes indexed by loops on all possible
surfaces. The advantage of this view is that is leads quite naturally to an axiomatic
characterization of Markovian holonomy fields. The one which we propose is inspired
by the classical definition of a Markov process and by the axiomatic definition of a
topological quantum field theory (see the next section).

Another difference lies in the class of loops that we consider on a surface. Indeed,
on a surface M endowed with boundary conditions, a measure of the area, and a
base point m, the Yang-Mills measure produces a multiplicative G-valued stochastic
process (Hl)l∈Lm(M) for some class of loops Lm(M). In the two previous constructions
of the Yang-Mills measure mentioned above, the loops to which one was able to
attach a random variable were finite concatenations of very special curves, for example
segments of submanifolds in the author’s construction. On the other hand, it was
proved in [24] that the mapping l 7→ Hl is continuous in L1 norm on the class of
loops considered there and endowed with the topology of uniform convergence and
convergence of the length. This suggested that it should be possible to associate a
random variable at least to each loop of finite length. This is indeed what we achieve
in the present construction, thus increasing the coherence between the regularity
property of the stochastic process and the set of loops on which it is defined. Let us
point out that it is not necessary to be able to measure lengths in order to decide
if a loop has finite length. Indeed, a diffeomorphism does not alter the fact that a
curve has finite or infinite length. Thus, the definition of Lm(M) as the set of loops
on M with finite length based at m does not require the choice of a Riemannian
metric on M , a smooth structure is more than enough. It is natural to wonder if one
could define the Yang-Mills measure or any other Markovian holonomy field for a
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significantly larger class of loops. As the discussion at the end of Section 0.4 suggests,
we believe that this is not possible with only the techniques used in this work, and
probably very difficult anyway.

The third important difference between this work and the existing constructions
of the Yang-Mills measure concerns the group in which the stochastic process takes
its values, which we have already denoted by G. Since the Yang-Mills measure is
associated with the Brownian motion on G, it was natural to assume that it was a
connected group. In the present work, the Brownian motion is replaced by a Lévy
process, thus a process with jumps. This opens the possibility of considering non-
connected compact Lie groups and in particular finite groups. In the case of finite
groups, the Lévy processes have a very simple structure and we are able to give
a completely geometrical picture of Markovian holonomy fields, as we have already
briefly explained in the previous section.

0.8. Topological quantum field theories

So far, our presentation of Markovian holonomy fields has been based mainly on
the analogy with usual Markov processes indexed by intervals of time. Before closing
this introduction, we would like to indicate another analogy, between the notions of
Markovian holonomy field and topological quantum field theory (TQFT). We will
not pursue this analogy in this work, but still we would like to acknowledge it as an
important source of inspiration.

Let us start by recalling briefly what a TQFT is. Let n ≥ 0 be an integer. There
is a category, denoted by Cobn, whose objects are the compact oriented smooth
manifolds without boundary of dimension n and whose morphisms are given by the
cobordisms: if N1 and N2 are two oriented n-manifolds, then Hom(N1, N2) is the
set of oriented (n + 1)-manifolds whose boundary is endowed with an orientation-
preserving diffeomorphism with the disjoint union of N∗1 and N2, where N∗1 denotes
the manifold obtained from N1 by reversing the orientation. On the other hand, there
exists a perhaps much more familiar category, denoted by Vect, whose objects are
complex linear spaces and whose morphisms are linear mappings.

A (n + 1)-dimensional TQFT is a covariant functor from Cobn into Vect. This
functor is usually denoted by Z, in reference to the fact that this definition has initially
been given as a general framework for the partition functions of certain statistical or
quantum field theories. Thus, by definition, Z associates to each n-manifold N a
linear space Z(N) and to each (n + 1)-manifold M endowed with a diffeomorphism
between its boundary and the disjoint union N∗1 t N2 of two n-manifolds, a linear
map Z(M) : Z(N1)→ Z(N2).

This functor is required to satisfy a certain number of natural properties.
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Figure 6. Two examples of cobordisms, in dimensions n + 1 = 1 et n + 1 = 2.

1) To be multiplicative: for all n-manifolds N1 and N2, we insist that

Z(N1 tN2) = Z(N1)⊗ Z(N2)

(the tensor product of linear spaces) and, for any two (n+ 1)-manifolds M1 and M2,
that

Z(M1 tM2) = Z(M1)⊗ Z(M2)

(the tensor product of linear maps).
2) To be involutive: for all n-manifold N , we insist that

Z(N∗) = Z(N)∗

(the dual linear space) and, for all (n+ 1)-manifold, that

Z(M∗) = Z(M)∗

(the adjoint linear map).
3) To behave well with respect to the composition of cobordisms: if M1 realises a

cobordism between N1 and N2, and M2 a cobordism between N2 and N3, and if M
is formed by gluing M1 and M2 along N2, then we insist that

Z(M) = Z(M2) ◦ Z(M1).

This last axiom can be reformulated in a more general way by slightly shifting our
point of view. If we identify the space of linear maps from Z(N1) into Z(N2) with
Z(N1)∗ ⊗ Z(N2) = Z(N∗1 tN2), we can say that the linear map Z(M) is an element
of the linear space Z(∂M). In these terms, the axiom becomes the following.

3′) If the boundary of M can be written as N1 tN∗1 tN2 and if M ′ is formed by
gluing the two copies of N1, then we insist that

Z(M ′) = κ
(
Z(M)

)
,

where κ : Z(N1)∗ ⊗ Z(N1) ⊗ Z(N2) → Z(N2) is the natural contraction of the first
two factors.
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Z(S1)⊗4 Z(M1)−→ Z(S1)⊗5 Z(M2)−→ Z(S1)⊗2

M1 M2

Figure 7. Axiom 3: composition of two cobordisms in dimension 2.

M M ′

N1

N∗1
N2 N2

Figure 8. Axiom 3’: gluing two components of the boundary of a surface.

4) Finally, we insist that Z behaves well with respect to orientation-preserving
diffeomorphisms of manifolds of dimension n and n + 1, that is to say that to dif-
feomorphic n-manifolds it associates isomorphic linear spaces and to diffeomorphic
cobordisms it associates linear maps conjugated by the linear isomorphisms associ-
ated to the diffeomorphisms induced on the boundaries.

If ∅ designates the empty n-manifold, then the multiplicativity condition implies
for example that Z(∅) = Z(∅) ⊗ Z(∅). Thus, Z(∅) is either the null linear space
or C. In order to avoid trivial situations, we will assume that Z(∅) = C. Thus, for
all (n + 1)-manifold M without boundary, Z(M) is a linear map from C into itself,
that is, a complex number.

If N is an n-manifold, then Z(N × [0, 1]) is an endomorphism of Z(N). Since the
cylinder N × [0, 1] is diffeomorphic to two copies of itself glued together along two
copies of N , one has the identity

Z
(
N × [0, 1]

)
= Z

(
N × [0, 2]

)
= Z

(
N × [0, 1]

)
◦ Z
(
N × [0, 1]

)
.

Thus, Z(N × [0, 1]) is a projection in the linear space Z(N) and, since a surface is not
modified up to homeomorphism when one glues a cylinder along one of its boundary
components, one loses no generality in assuming that it is the identity. Then, gluing
the two ends of this cylinder and using the axiom 3′, on finds that Z(N×S1), where S1
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is the circle, is the natural contraction of the identity of Z(N), that is, the trace of
this linear map, which is nothing but the dimension of Z(N).

In the context of Markovian holonomy fields, we should modify slightly the
definition of a TQFT in order to incorporate in it the notion of volume, or area
when n+ 1 = 2. We just need to replace (n + 1)-manifolds by manifolds endowed
with a notion of (n+1)-volume, of which the only invariant under diffeomorphisms is,
according to a theorem of Moser, the total volume. In doing this, we modify only the
morphisms in the category Cobn. The axioms 1 to 4 are unchanged. The object thus
defined is called an area-dependent topological quantum field theory (ad-TQFT). For
all (n + 1)-manifold M , we will denote by Zt(M) the element of Z(∂M) associated
to M when it is endowed with a measure of (n+ 1)-volume of total area t.

Let us investigate a 1-dimensional ad-TQFT, which we denote by Z. There is only
one connected 0-manifold, the point, which we denote by pt. It can have two orienta-
tions, denoted by + and −. There is only one linear space involved, namely Z(pt+),
which we denote by V . Then, there are only two oriented connected 1-manifolds, the
interval and the circle. It is convenient to represent intervals as intervals of R endowed
with their natural length. Thus, for all s < t reals, Z([s, t]) is an endomorphism of
V , which depends only on the length of [s, t] and whiwh we denote by Pt−s. More-
over, the axiom 3 implies that the relation Z([s, u]) = Z([t, u]) ◦ Z([s, t]) holds for all
s < t < u, so that (Pt)t>0 is a semigroup of endomorphisms of V . Finally, according
to the general argument which we have presented above, we have for all t > 0 the
relation Zt(S1) = Tr(Pt).

Finally, a 1-dimensional ad-TQFT is the same thing as a semigroup of endomor-
phisms of a linear space. In contrast with the purely topological case, nothing here
prevents this linear space from being infinite-dimensional. For instance, in a Hilbertian
framework, it suffices that the semigroup should be of trace class.

A sufficiently regular classical Markov process, indexed by intervals of time, gives
rise, through its transition kernels, to a 1-dimensional ad-TQFT. Consider for instance
the Brownian motion X on a compact Lie group G. For all t > 0, let Qt denote the
density of the distribution of Xt with respect to the Haar measure on G. Define
Z(pt) as the space L2(G)G of square-integrable functions on G which moreover are
invariant by conjugation. Then, for all s < t, we can define Z([s, t]) as the mapping
(x, y) 7→ Qt−s(x

−1y), seen either as the integral kernel of a linear map from L2(G)G

into itself, or equivalently as an element of L2(G2)G
2 ' L2(G)G ⊗ L2(G)G.

Our definition of the 2-dimensional Markovian holonomy fields contains the defini-
tion of an ad-TQFT, given by the partition functions of the field. In the 2-dimensional
setting, there is also a unique connected 1-manifold, which is the circle S1, so that
there is also a unique linear space involved. We set Z(S1) = L2(G)G. Note that this
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space is finite-dimensional when G is finite. We will prove (see Proposition 4.1.4), that
the partition functions of a Markovian holonomy field are indeed invariant by conju-
gation and square-integrable with respect to all their arguments. They are moreover
symmetric. Each function Z±p,g,t can thus be seen as a symmetric tensor of (L2(G)G)⊗p.
Let us summarise this whole section in the following result.

Proposition 0.8.1. — Let G be a compact Lie group. Let (Z+
p,g,t)p,g≥0,t>0 be the par-

tition functions of a Markovian holonomy field, associated to oriented surfaces. Set
Z(S1) = L2(G)G, the space of square-integrable functions on G invariant by conjuga-
tion. For all surface M with genus g, total area t and such that ∂M has p connected
components, set Z(M) = Z+

p,g,t. Then the functor Z is a 2-dimensional ad-TQFT.

0.9. Structure

The present work consists of five chapters. In Chapters 1 and 2, we develop the
tools and prove most of the technical results that we use in our study of Markovian
holonomy fields. The first chapter covers the topology of surfaces and their surgery, the
topological space of paths on a surface, the fundamental notion of graph on a surface,
which we treat both topologically and combinatorially, and finishes with a discussion
of Riemannian metrics. The second chapter introduces the space of multiplicative
functions of paths with its measurable structures and its uniform measure. The last
section is devoted to a study of the free group of loops in a graph in relation with this
uniform measure.

In Chapter 3, we define Markovian holonomy fields and their discrete analogues.
We prove the first central result of this work (Theorem 3.2.9) which encapsulates in an
abstract way and extends the procedure which allowed us, in our previous construction
of the Yang-Mills measure, to take the continuous limit of a discrete gauge theory. In
our present language, we prove that every regular discrete Markovian holonomy field
can be extended in a unique way to a regular Markovian holonomy field.

In Chapter 4, we prove that a regular Markovian holonomy field with values in
a compact Lie group G determines a classical Lévy process in G, which in turn de-
termines completely the partition functions of the holonomy field (Propositions 4.2.1
and 4.1.10). We then prove that each Lévy process of a wide class can be obtained
in this way (Theorem 4.3.1). Whether or not two distinct Markovian holonomy fields
can have the same associated Lévy process is a natural question which we do not
settle here.

In Chapter 5, we prove that when the group G is finite, the Markovian holonomy
field constructed in the previous chapter is the monodromy process of a random
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ramified covering (Theorem 5.4.2). In fact, most of the chapter is devoted to the
construction of this random ramified covering.

The choice that we have made of concentrating to the extent possible the technical
results in the first two chapters has the obvious drawback that the results exposed
there often lack their real motivation, and that a linear reading of these two chapters
may not be very rewarding. We hope that this is compensated by the fact that the
study of Markovian holonomy fields themselves is much more straightforward than it
would be if one had to constantly interrupt the exposition to prove technical results.
In order to allow as much as possible the reader to jump from a section to another,
we have included an index of notation which should be helpful in locating the first
occurrence of a notation or a symbol.

0.10. References

The original paper of C.N. Yang and R. L. Mills where they introduced non-Abelian
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et al. [2]. A. Sengupta gave the first construction of the measure on the sphere S2
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structure of the space of connections on a principal bundle.
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CHAPTER 1

SURFACES AND GRAPHS

In this chapter, we introduce the tools of topology and geometry of surfaces that
we use in the rest of this work. We set up the notation, collect the necessary classical
results and prove less classical ones. After a short review of compact surfaces, we
describe their surgery and study in some detail the paths and graphs drawn on them.
In particular, we describe carefully the boundary of a face of a graph. Then we define
the group of reduced loops based at a point in a graph and recall why it is free. In
the next chapter, we will prove the existence of sets of generators of this group with
specific properties. Finally, we discuss Riemannian metrics on surfaces in relation with
our problem.

1.1. Surfaces

1.1.1. Classification of surfaces. — Let us start by recalling the definition of a
surface.

Definition 1.1.1. — A topological compact surface is a Hausdorff compact topological
space in which every point admits a neighbourhood homeomorphic to R2 or homeo-
morphic to R+ × R.

A smooth compact surface, or simply a compact surface, is a topological compact
surface equipped with a structure of smooth 2-dimensional manifold with boundary.

The distinction between topological and smooth surfaces is not essential, as the
following well-known result shows (see [33]).

Theorem 1.1.2. — Any topological compact surface is homeomorphic to a smooth com-
pact surface. Moreover, two smooth compact surfaces are diffeomorphic if and only if
they are homeomorphic.
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The classification theorem for compact surfaces is thus the same for smooth and
topological surfaces. We will now describe this theorem, using a slightly unorthodox
convention about the genus of a surface.

Recall that the connected sum of two surfaces is the surface obtained by remov-
ing a small disk from both surfaces and gluing the two resulting surfaces along the
boundaries of these disks. Of course, the connected sum of two surfaces is defined up
to homeomorphism only.

Let us describe two infinite series of surfaces. The first series is built from the torus,
which is the Cartesian product of two circles. For each even integer g ≥ 0 and each
integer p ≥ 0, let Σ+

p,g be the surface obtained by removing p pairwise disjoint open
disks from the connected sum of 1

2g tori. For g = 0, the surface Σ+
p,0 is a sphere with p

holes. The second series is built from the projective plane, which is the quotient of
the unit sphere of R3 by the group of isometries {id,−id}. For each integer g ≥ 1

and each p ≥ 0, let Σ−p,g be the surface obtained by removing p pairwise disjoint open
disks from the connected sum of g projective planes.

Recall that a smooth compact surface is orientable if it carries a non-vanishing
differential 2-form. We say that a topological compact surface is orientable if a smooth
compact surface to which it is homeomorphic is orientable. The following theorem is
proved for example in [30].

Theorem 1.1.3. — Any connected orientable topological compact surface is homeomor-
phic to one and exactly one of the surfaces {Σ+

p,g : p, g ≥ 0, g even}. Any connected
non-orientable compact surface is homeomorphic to one and exactly one of the surfaces
{Σ−p,g : p ≥ 0, g ≥ 1}. Any oriented smooth compact surface admits an orientation-
reversing diffeomorphism.

We call the integer g which appears in this classification the genus of a surface.
For orientable surfaces, it is twice the number which is usually called the genus. The
advantage of our convention is illustrated by Proposition 1.1.4. We denote the genus
of a surface M by g(M) and the number of connected components of its boundary
by p(M)

With this notation, we have g(Σ±p,g) = g and p(Σ±p,g) = p. Let us define a binary
operation ∧ on {+,−} by setting

+ ∧+ = + and + ∧− = − ∧+ = − ∧− = −.

If M1 and M2 are two compact topological surfaces, we denote by M1#M1 the con-
nected sum of M1 and M2.
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Proposition 1.1.4. — Let Σεp,g and Σε
′

p′,g′ be two surfaces of the list described above.
Then

(15) Σεp,g # Σε
′

p′,g′ = Σε∧ε
′

p+p′,g+g′ .

Proof. — It is clear that Σεp,g # Σε
′

p′,g′ has p + p′ boundary components. Moreover,
the connected sum of two manifolds is orientable if and only if both manifolds are.
The only non-trivial point is that the value of the reduced genus is correct when
exactly one of the two surfaces Σεp,g and Σε

′

p′,g′ is orientable. In this case, since the
operation of connected sum is commutative and associative, this boils down to the
fact that the connected sum of a projective plane and a torus is homeomorphic to
the connected sum of three projective planes. This is a classical result, proved as
Lemma 7.1 in [30].

It is useful to keep in mind that if M is a non-orientable compact topological
surface, then the connected sum of M with the torus Σ+

0,2 is homeomorphic to the
connected sum of M with the Klein bottle Σ−0,2.

The fundamental groups of surfaces are most easily described by generators and
relations. We denote by

〈x1, . . . , xn | r1, . . . , rm〉

the group generated by x1, . . . , xn subject to the relations r1, . . . , rm. If a and b are
two elements of a group, we denote their commutator by [a, b] = aba−1b−1.

Theorem 1.1.5. — The fundamental groups of compact surfaces are, up to isomor-
phism, the following.

1) π1(Σ+
0,0) = {1} and for all g ≥ 1,

π1(Σ+
0,2g) =

〈
a1, b1, . . . , ag, bg | [a1, b1] · · · [ag, bg] = 1

〉
.

2) For all g ≥ 0 and all p ≥ 1, π1(Σ+
p,2g) is free of rank 2g + p− 1.

3) For all g ≥ 1, π1(Σ−0,g) = 〈a1, . . . , ag | a2
1 . . . a

2
g = 1〉.

4) For all g ≥ 0 and all p ≥ 1, π1(Σ−p,g) is free of rank g + p− 1.

It follows from this theorem that a compact surface is not characterised up to
homeomorphism by its fundamental group. For example, a sphere with three holes
and a torus with one hole both have a fundamental group which is free of rank 3.
However, closed surfaces, that is, surfaces without boundary, are indeed characterised
by their fundamental group.

If M is a closed compact surface, then the genus of M is the minimal number of
generators in a presentation of the fundamental group of M . On the other hand, if M
has a non-empty boundary, then its fundamental group is free of rank g(M)+p(M)−1.
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The boundary of a compact surface is a compact 1-dimensional manifold without
boundary, hence a finite union of circles. If a surface is oriented, then every connected
component of ∂M carries an induced orientation, such that the surface stays on the
left of a person walking along the boundary in the positive direction.

Definition 1.1.6. — Let M be a compact surface. We denote by B(M) the set of con-
nected components of the boundary ofM , each taken twice, once with each orientation.
If M is oriented, we denote by B+(M) the subset of B(M) formed by the oriented
connected components of ∂M which bound M positively.

Any diffeomorphism of a compact surface induces a diffeomorphism of its bound-
ary. We need to know which diffeomorphisms of the boundary can be obtained in this
way. For this, observe that if the boundary of an oriented surface M has p connected
components, then, among the 2p distinct orientations of ∂M , the two distinct orienta-
tions ofM determine two preferred orientations. We say that a diffeomorphism of ∂M
is orientation-preserving if it preserves these orientations and orientation-reversing if
it exchanges them. Of course, if p ≥ 2, then there exist diffeomorphisms of ∂M which
are neither orientation-preserving nor orientation-reversing.

Theorem 1.1.7. — Let M be a smooth compact surface. If M is non-orientable, then
any diffeomorphism of ∂M can be extended to a diffeomorphism of M . If M is ori-
entable, then any orientation-preserving (resp. orientation-reversing) diffeomorphism
of ∂M can be extended to an orientation-preserving (resp. orientation-reversing)
diffeomorphism of M .

In order to prove this theorem, it suffices to prove the following two facts: that on a
disk with two holes (that is, a three-holed sphere) there exists a diffeomorphism which
fixes the outer boundary and exchanges the two holes ; and that on a Möbius band
with one hole (that is, a two-holed projective plane) there exists a diffeomorphism
which fixes the outer boundary and reverses the orientation of the boundary of the
hole. In both cases, these diffeomorphisms can be constructed by hand.

1.1.2. Surgery of surfaces. — Surfaces undergo natural operations of surgery
such as cutting along a curve or gluing one or two boundary components. When one
performs gluings and wants to keep track of where they have occurred, one ends up
with surfaces which carry marks. On the other hand, when one cuts a surface along
one or several curves, a convenient way of keeping track of what has been done is to
maintain an involution of the set of boundary components of the current surface.

Definition 1.1.8. — A marked surface is a pair (M,C ), where M is a smooth compact
surface and C is a finite collection of oriented smooth 1-dimensional submanifolds
of the interior of M , which are pairwise either disjoint or equal up to orientation,
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and such that an oriented curve belongs to C if and only if the same curve with the
opposite orientation belongs to C . The elements of C are called marks.

Figure 1. An orientable surface of genus 4 with two holes, marked by
three curves.

The marked surface (M,C ) is said to be oriented if every connected component
of M is orientable and oriented.

Let us emphasise that on a marked surface, even an oriented one, the marks do
not carry a preferred orientation. Recall the notation B(M) from Definition 1.1.6.
The group Z/2Z acts on C ∪B(M) by reversing the orientation, and we denote this
action by b 7→ b−1.

Definition 1.1.9. — A tubular pattern is a triple (M,C , τ) where (M,C ) is a marked
surface and τ is an involution of B(M) which commutes with the orientation reversal,
that is, which satisfies τ(b−1) = τ(b)−1. If C = ∅, the tubular pattern is said to be
split.

Let (M,C , τ) be a tubular pattern. Choose b ∈ B(M). If τ(b) is a component
of ∂M distinct from b, then b is meant to be identified with τ(b) by an orientation-
preserving diffeomorphism. If τ(b) = b, then b is not meant to be glued or altered in
any way. Finally, if τ(b) = b−1, then b is meant to be glued on itself according to an
orientation-preserving involution. Of course, this way of encoding the possible gluing
operations is purely conventional.

We define now the basic operation of surgery, which is the operation of gluing.

Definition 1.1.10. — Let (M,C , τ) and (M ′,C ′, τ ′) be two tubular patterns. A smooth
mapping f : M ′ → M is called an elementary gluing if one of the following sets of
conditions is satisfied.

1) The mapping f is the quotient map which identifies b′ with τ ′(b′) by an
orientation-preserving diffeomorphism for some b′ ∈ B(M ′) such that

{b′, b′−1} 6= {τ ′(b′), τ ′(b′)−1}.
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Moreover, f(C ′ ∪ {b′, b′−1}) = C and, on the set B(M ′) \ {b′, b′−1
, τ ′(b′), τ ′(b′)−1},

τ ◦ f = f ◦ τ ′. Such a gluing is called binary, and the pair of curves {f(b′), f(b′
−1

)}
is called its joint.

2) The mapping f is the quotient map which identifies the points of b′ by pairs
according to an orientation-preserving fixed-point free smooth involution for some
b′ ∈ B(M ′) such that

τ(b′) = b′
−1
.

Moreover, f(C ′ ∪ {b′, b′−1}) = C and, on B(M ′)− {b′, b′−1}, τ ◦ f = f ◦ τ ′. In this
case, the gluing is called unary and the pair of curves {f(b′), f(b′

−1
)} is called its

joint.
A gluing is a map which can be written as the composition of several elementary

gluings. A gluing is complete if the involution of the set of boundary components of
the target surface is the identity.

M ′

M

b′ τ(b′) b′

f

Figure 2. Binary and unary gluings.

Up to homeomorphism of the underlying surfaces and disregarding the markings,
performing a unary gluing along a boundary component is equivalent to gluing a
Möbius band along this boundary component. The result of this operation is never
orientable.

The other basic surgery operation is that of splitting. It is really the same thing as
a gluing, looked at in the other direction.

Proposition 1.1.11. — Let (M,C , τ) be a tubular pattern with C 6= ∅. Choose
{l, l−1} ⊂ C . Then there exists a tubular pattern (Spll(M),Spll(C ),Spll(τ)), and an
elementary gluing f : Spll(M) → M such that the joint of f is {l, l−1}. Moreover,
this gluing is unique up to isomorphism: if (M ′,C ′, τ ′) and f ′ : M ′ → M satisfy the
same properties, then there exists a diffeomorphism ψ : Spll(M)→M ′ such that

ψ
(
Spll(C ))

)
= C ′, ψ ◦ Spll(τ) = τ ′ ◦ ψ and f ′ ◦ ψ = f.
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This result is intuitively obvious and yet it lacks a concise and rigorous proof. Con-
sidering that the splitting operation is defined by a picture (Figure 21.1) in E.Moise’s
reference book [33], we feel excused for not attempting what would be a lengthy
and uninstructive proof. The surface Spll(M) can be defined as the topological space
underlying the universal completion of the metric space (M \ l, d), where d is the re-
striction to M \ l of an arbitrary Riemannian distance on M . The universal property
of the completion actually provides us with a continuous gluing map.

It is easy to determine from the pair (M, {l, l−1}) if the gluing is binary or unary. In
fact, the gluing is unary if and only if l does not admit an orientable neighborhood,
which is equivalent to the fact that for every neighborhood U of l there exists a
neighborhood V ⊂ U of l such that V \ l is connected. Another equivalent statement
is that l admits a compact neighborhood which is homeomorphic to a Möbius band
of which l is an equator.

When these equivalent properties do not hold and the gluing is binary, there is an
issue of orientation about the way in which the two boundary components of Spll(M)

which are glued together are identified. If M is orientable, then Spll(M) is also ori-
entable, because a gluing performed on a non-orientable surfaces always results in
another non-orientable surface, and the identification must be orientation-reversing.
IfM is non-orientable, then two situations arise. Either Spll(M) is orientable, in which
case the identification must be orientation-preserving, or Spll(M) is non-orientable.
In this last case, any identification of the two boundary components is convenient.
This is not in contradiction with the uniqueness part of the statement since, thanks
to Theorem 1.1.7, any diffeomorphism of the boundary of a non-orientable compact
surface can be extended to a diffeomorphism of the whole surface.

Let (M,C ) be a marked surface. By successively applying Proposition 1.1.11 to
the marks of M , one eventually gets a tubular pattern with no marks, from which
one can reconstruct (M,C ).

Proposition 1.1.12. — Let (M,C ) be a marked surface. Let (M,C , id) be the associated
tubular pattern. There exists a tubular pattern (M ′,∅, τ ′) and a smooth mapping
f : M ′ →M which is a complete gluing in the sense of Definition 1.1.10. This gluing
is unique up to isomorphism. The pattern (M ′,∅, τ ′) is called a split tubular pattern
of (M,C ).

The reader may find it an amusing exercise to draw a split tubular pattern of the
marked surface depicted in Figure 1. In the next definition, we still use our special
convention about the genus of a surface (see Theorem 1.1.3).
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Definition 1.1.13. — Let (M,C ) be a marked surface. Let (M ′,∅, τ ′) be a split tubular
pattern of (M,C ). Assume that M ′ is connected. We define the split genus of (M,C )

as the genus of M ′. We denote it by sg(M,C ).

1.2. Curves and paths

1.2.1. Definitions. — In the theory of Markovian holonomy fields, curves and
paths on a surface play the role of points of a time interval for classical Markov
processes. Please note that the words curve and path are not interchangeable in this
work: a path is a curve with finite length.

Definition 1.2.1. — Let M be a topological compact surface.
A parametrised curve on M is a continuous curve c : [0, 1] → M which is either

constant on [0, 1] or constant on no open sub-interval of [0, 1]. The set of parametrised
curves is denoted by PC(M).

Two parametrised curves on M are said to be equivalent if they differ by an in-
creasing homeomorphism of [0, 1]. An equivalence class is simply called a curve and
the set of curves on M is denoted by C(M).

A continuous loop is a curve whose endpoints coincide. A continuous loop is said
to be simple if it is injective on [0, 1).

If c is a curve, then we denote respectively by c and c the starting and finishing
point of c. We denote its inverse by c−1. It is defined as the class of the parametrised
curve t 7→ c(1 − t), which does not depend on the particular parametrization of c.
The concatenation of curves is defined in the usual way. It is only partially defined
on C(M) but associative whenever this makes sense.

The space C(M) is too large for many of our purposes. Let us define another space
of curves which we call paths. Let M be a smooth compact surface endowed with a
Riemannian metric. Let c : [0, 1] → M be a Lipschitz continuous curve. Then the
derivative of c is defined almost-everywhere and its norm is bounded above. We are
going to consider curves whose speed is also bounded below by a positive constant.
Since the range of a curve is compact, this notion is independent of the choice of the
Riemannian metric, as it would be on any smooth manifold.

Definition 1.2.2. — Let M be a smooth compact surface.
A parametrised path on M is a continuous curve c : [0, 1] → M which is either

constant or Lipschitz continuous with speed bounded below by a positive constant. The
set of parametrised paths is denoted by PP(M).
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Two parametrised paths on M are said to be equivalent if they differ by an increas-
ing bi-Lipschitz homeomorphism of [0, 1]. An equivalence class is simply called a path
and the set of paths on M is denoted by P(M).

A loop is a path whose endpoints coincide. The set of loops is denoted by L(M). A
loop is said to be simple if it is injective on [0, 1).

We use for paths the same notation as for curves. If c is a path, we denote its
endpoints by c and c, and its inverse by c−1. The concatenation of paths is also
associative whenever it is defined. When M is endowed with a specific Riemannian
metric, we usually identify P(M) with the subset of PP(M) consisting of paths which
are parametrised at constant speed.

While the inclusion PP(M) ⊂ PC(M) does not strictly speaking determine an
inclusion P(M) ⊂ C(M), because we are not using the same equivalence relation
on parametrised curves and parametrised paths, it is true that a path, as a set of
parametrised curves, is a subset of a unique curve. Moreover, two parametrised paths
which are equivalent as parametrised curves are also equivalent as parametrised paths.
Hence, there is a natural injection P(M) ⊂ C(M) which we use without further
comment.

Let us define a relation on L(M) by saying that two loops l1, l2 are related if and
only if there exists c, d ∈ P(M) such that l1 = cd and l2 = dc. It is not difficult to
check that this is an equivalence relation.

Definition 1.2.3. — LetM be a smooth compact surface. A cycle is an equivalence class
of loops for the relation on L(M) just defined. We call non-oriented cycle a pair {l, l−1}
where l is a cycle. We say that a cycle is simple if one of its representatives (hence
all ) are simple loops.

A cycle is simply a loop from which one has forgotten the origin. It is important to
observe that an oriented 1-dimensional submanifold of M determines a simple cycle.
Another definition derived from that of loops and which will be useful is the following.

Definition 1.2.4. — A path l ∈ P(M) is called a lasso if there exists a path s and a
simple loop m such that l = sms−1.

Lemma 1.2.5. — Let l be a lasso. There exist a unique path s and a unique simple
loop m such that l = sms−1. The path s is called the spoke of l and the simple loop m
the meander of l.

Proof. — Endow M with a Riemannian metric. Assume that l is parametrised at
constant speed by [0, 1]. Then the meander of l is the restriction of l to the largest
interval of the form [ 1

2 − t,
1
2 + t) on which l is injective.
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Figure 3. A lasso. The dotted path is the spoke and the solid loop is
the meander. Note that the spoke can intersect itself and the meander can
intersect the spoke.

We will use the topology of uniform convergence on C(M).

Definition 1.2.6. — Let M be a compact surface endowed with a Riemannian metric,
whose Riemannian distance we denote by d. Let c1, c2 be two curves of M . We define

d∞(c1, c2) = inf
param

sup
t∈[0,1]

d
(
c1(t), c2(t)

)
,

where the infimum is taken over all parametrizations of c1 and c2. The distance d∞
is known as the Fréchet metric.

The distance d∞ depends on the Riemannian metric chosen on M . However, the
topology on C(M) does not.

Lemma 1.2.7. — Let M be a compact surface. The distances on C(M) associated with
any two Riemannian metrics on M are equivalent.

Proof. — Since M is compact, the Riemannian distances on M determined by any
two Riemannian metrics are equivalent.

On P(M), we will use a topology which is stronger than the trace of the uniform
topology. We use an analogue of the topology of convergence in 1-variation of Lipschitz
continuous paths, for which a sequence of Lipschitz continuous paths in a Euclidean
space converges if it converges uniformly and the sequence of the derivatives of the
paths converges in L1. For the moment, we introduce a metric on P(M) which depends
on a Riemannian metric on M and is apparently weaker than the distance in 1-
variation.

When c is a path on a Riemannian surface, we denote by `(c) its length.

Definition 1.2.8. — Let M be a compact surface endowed with a Riemannian metric.
Let c1, c2 be two paths on M . We define

d`(c1, c2) = d∞(c1, c2) +
∣∣`(c1)− `(c2)

∣∣.
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It is not obvious, and we will prove in the next section, that the topology induced
by d` on P(M) does not depend on the Riemannian metric on M . Moreover, we will
prove that this topology can be metrised by a distance for which P(M) is a complete
metric space.

The topology on P(M) induced by the distance d` is the only one that we consider
in this work and it is always the one to which we refer when we say that a sequence
of paths converges. We will often add a condition on the endpoints of the paths which
we consider.

Definition 1.2.9. — Let (cn)n≥0 be a sequence of paths on M . Let c be a path on M .
We say that (cn)n≥0 converges to c with fixed endpoints if

1) d`(cn, c)→ 0 as n→∞,
2) for all n ≥ 0, cn = c and cn = c.

When M is endowed with a Riemannian metric, we will also make use of piecewise
geodesic paths.

Definition 1.2.10. — Let M be a compact surface endowed with a Riemannian met-
ric γ. We define Aγ(M) as the subset of P(M) containing the piecewise geodesic paths,
that is, the finite concatenations of segments of geodesics.

The letter A stands for affine, instead of the letter G which will be used for many
other things. We claim that Aγ(M) is dense in P(M). Indeed, there is an obvious way
to approximate an arbitrary path by piecewise geodesic ones.

Recall that any two points of a Riemannian manifold which are closer than the
injectivity radius are joined by a unique minimizing geodesic.

Definition 1.2.11. — Let M be a compact surface endowed with a Riemannian met-
ric γ. Consider c ∈ P(M), identified with a path parametrised at constant speed.
Let n ≥ 0 be an integer. Assume that 2−n`(c) is smaller than the injectivity ra-
dius of M . For each k ∈ {0, . . . , 2n − 1}, let σn,k be the minimizing geodesic which
joins c(k2−n) to c((k + 1)2−n). Then define

Dn(c) = σn,0 · · ·σn,2n−1.

Proposition 1.2.12. — Let M be a compact surface endowed with a Riemannian met-
ric γ. For all path c ∈ P(M), the sequence (Dn(c)) defined for n large enough converges
to c with fixed endpoints. In particular, the space Aγ(M) is dense in P(M) for the
convergence with fixed endpoints.

Proof. — Let n be large enough for the path Dn(c) to be defined. It has the same
endpoints as c by construction. Let us parametrise it in such a way that for each
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k ∈ {0, . . . , 2n − 1}, the restriction of Dn(c) to [k2−n, (k + 1)2−n] is the minimizing
geodesic which joins c(k2−n) to c((k + 1)2−n). It is straightforward that

sup
t∈[0,1]

d
(
c(t),Dn(c)(t)

)
≤ 2−n+1`(c).

Hence, Dn(c) converges uniformly towards c. Since the length is lower semi-continuous
with respect to pointwise convergence, this implies that lim inf `(Dn(c)) ≥ `(c). On
the other hand, `(Dn(c)) ≤ `(c), hence `(Dn(c)) converges to `(c).

1.2.2. The complete metric space of rectifiable paths. — The goal of this
section is to prove that the topology that we have introduced on P(M) does not
depend on a particular choice of a Riemannian metric onM and can be metrised by a
complete distance. Let us start by a negative result.

Lemma 1.2.13. — Let M be a compact surface endowed with a Riemannian metric.
The metric space (P(M), d`) is not complete.

c

D3(c)

Figure 4. Left: a piecewise geodesic approximation of a path. Right:
a Cauchy sequence for d` which does not converge to its uniform limit,
the dotted straight line.

Proof. — Let c : [− 1
4 ,

5
4 ]→ M be a segment of minimizing geodesic parametrised at

constant speed. For each n ≥ 1, define cn : [0, 1]→ M by cn(t) = c(t+ 1
n sin(2πnt)).

For all n ≥ 1, d∞(cn, c |[0,1]) = 1
n`(c |[0,1]). Moreover, for all n ≥ 1, `(cn) = 4`(c |[0,1]).

Hence, the sequence (cn)n≥1 is a Cauchy sequence for d` which converges uniformly
to c |[0,1]. Its only possible limit is c |[0,1], but `(cn) does not converge to `(c |[0,1]).

The main result of this section is the following.

Proposition 1.2.14. — Let M be a compact surface.
1) The topologies induced on P(M) by the distances d` associated to any two Rie-

mannian metrics on M are the same.
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2) Endow M with a Riemannian metric. There exists a metric d1 on P(M) which
induces the same topology as d` and such that (P(M), d1) is a complete metric space.

In order to prove this proposition, we define a new distance on P(M), which is
the analogue of the distance in 1-variation between Lipschitz continuous paths. Let
TM denote the tangent bundle of M . The Levi-Civita connection of γ determines a
splitting of the tangent bundle to TM as

T (TM) = TV (TM)⊕ TH(TM).

The vertical part TV (TM) is the kernel of the derivative of the bundle map
π : TM →M . It is canonically identified with TM by associating to X ∈ TmM

the vector d
dt |t=0

(Y + tX) ∈ TY (TmM). The horizontal part TH(TM) is mapped
isomorphically onto TM by the differential of π and the reciprocal mapping can be
defined as follows. Consider X,Y ∈ TmM . Let c : (−1, 1) → M be a smooth curve
such that c(0) = m and ċ(0) = X. Let Y (t) be the unique vector field along c such
that Y (0) = Y and ∇ċ(t)Y = 0 for all t. Then the element of THY (TmM) which is sent
to X by Tπ is Ẏ (0).

Since the tangent space to TM at each vector X ∈ TmM splits into the direct sum
of two subspaces isomorphic to TmM , there is a natural Riemannian metric on TM ,
which we denote by γ ⊕ γ. The corresponding Riemannian distance on TM can be
described as follows: if m and n are close enough on M to be joined by a unique
minimizing geodesic and if X ∈ TmM , Y ∈ TnM , then

dTM (X,Y ) =
(
d(m,n)2 + ‖//[m,n](X)− Y ‖2

) 1
2 ,

where //[m,n] denotes the parallel transport along the unique minimizing geodesic
from m to n.

Definition 1.2.15. — Let M be a compact surface endowed with a Riemannian met-
ric γ. Let c1, c2 be two paths on M . We define

d1(c1, c2) = inf
param.

(
sup
t∈[0,1]

d
(
c1(t), c2(t)

)
+

∫ 1

0

dTM
(
ċ1(t), ċ2(t)

)
dt
)
,

where the infimum is taken over all parametrizations of c1 and c2.
We define also

d1(c1, c2) = sup
t∈[0,1]

d
(
c1(t), c2(t)

)
+

∫ 1

0

dTM
(
ċ1(t), ċ2(t)

)
dt,

where c1 and c2 are parametrised at constant speed.

It is clear that the inequalities d` ≤ d1 ≤ d1 hold. We are going to prove that these
three metrics induce the same topology on P(M). The main result is the following.
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Proposition 1.2.16. — Let M be a compact surface endowed with a Riemannian met-
ric. Let c be a path on M and (cn)n≥1 a sequence of paths such that d`(cn, c) tends to
0. Then d1(cn, c) tends to 0.

Let us start with two preparatory lemmas.

Lemma 1.2.17. — Let M be a compact surface endowed with a Riemannian metric.
Let c be a path on M and (cn)n≥1 a sequence of paths such that d`(cn, c) tends to 0.
Then, the paths cn and c being parametrised at constant speed, the uniform convergence
holds:

sup
t∈[0,1]

d
(
cn(t), c(t)

)
−→
n→∞

0.

Proof. — Let us parametrise c and cn for all n ≥ 1 at constant speed. Let us
also choose for all n a parametrization c̃n of cn such that the uniform convergence
supt∈[0,1] d(c̃n(t), c(t)) → 0 holds as n tends to infinity. Consider t ∈ [0, 1]. Since
c̃n |[0,t] and c̃n |[t,1] converge uniformly respectively to c |[0,t] and c |[t,1], we have

lim inf `(c̃n |[0,t]) ≥ `(c |[0,t]) = t`(c) and lim inf `(c̃n |[t,1]) ≥ `(c |[t,1]) = (1− t)`(c).

Since `(c̃n) tends to `(c), this implies that `(c̃n |[0,t]) tends to t`(c) as n tends to
infinity. This convergence holds for all t ∈ [0, 1] and, since the functions t 7→ `(c̃n |[0,t])

are non-decreasing, a classical result ensures that the convergence is uniform:

sup
t∈[0,1]

∣∣`(c̃n |[0,t])− t`(c)∣∣ −→
n→∞

0.

Now, for all t ∈ [0, 1], c̃n(t) = cn(`(c̃n |[0,t])/`(cn)). Since cn is `(cn)-Lipschitz contin-
uous, we have thus

d
(
c̃n(t), cn(t)

)
≤
∣∣`(c̃n |[0,t])− t`(cn)

∣∣ ≤ ∣∣`(c̃n |[0,t])− t`(c)∣∣+ t
∣∣`(cn)− `(c)

∣∣.
The result follows easily.

The second lemma is the Euclidean version of Proposition 1.2.16.

Lemma 1.2.18. — Let N ≥ 1 be an integer. Consider RN endowed with its usual Eu-
clidean structure, with norm ‖.‖. Let f and (fn)n≥1 be measurable functions from [0, 1]

to the unit sphere of RN . Assume that the primitives of fn converge uniformly to the
primitive of f as n tends to infinity, that is,

sup
t∈[0,1]

∥∥∥∫ t

0

fn(s)ds −
∫ t

0

f(s)ds
∥∥∥ −→
n→∞

0.

Then fn converges in L1 towards f , that is,∫ 1

0

∥∥fn(t)− f(t)
∥∥dt −→

n→∞
0.
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The difficulty of this lemma is that the assumptions do not imply that the sequence
(fn) converges almost-everywhere to f . For example, if f is constant, fn can be
constant except on a small interval, which wanders around [0, 1], and inside which fn
oscillates rapidly around the value of f .

Proof. — Since all functions take their values in a bounded subset of RN , it suffices
to prove that the sequence (fn)n≥1 converges in measure to f , that is, denoting by
Leb the Lebesgue measure on [0, 1], to prove that

∀ε > 0, lim
n→∞

Leb
(
{t ∈ [0, 1] : ‖fn(t)− f(t)‖ > ε}

)
= 0.

According to Lebesgue’s differentiation theorem,

(16)
1

2h

∫ t+h

t−h
f(τ)dτ −→

h→0
f(t) for a.e. t ∈ (0, 1).

Let p, q ≥ 1 be two integers. Set

Cp,q =
{
t ∈ [0, 1] : ∀h ∈

[
0,

1

p

]
,
∥∥∥ 1

2h

∫ t+h

t−h
f(τ)dτ − f(t)

∥∥∥ ≤ 1

q

}
.

The relation (16) is equivalent to the fact that for all q ≥ 1, Leb(
⋃
p≥1 Cp,q) = 1.

Hence, for all α > 0 and all q ≥ 1, there exists p ≥ 1 such that Leb(Cp,q) ≥ 1− α.
Let us fix ε > 0. Then, let us choose two reals α > 0, r > 0 and an integer q ≥ 1.

Let p(q, α) ≥ 1 be an integer such that Leb(Cp(q,α),q) ≥ 1 − α. Set h = 1/p(q, α).
Let n0(r) ≥ 1 be an integer such that,

∀n ≥ n0(r), sup
t∈[0,1]

∥∥∥∫ t

0

fn(s)ds −
∫ t

0

f(s)ds
∥∥∥ ≤ 1

2r
·

Choose n ≥ n0(r) and t ∈ Cp(q,α),q. Then∥∥∥ 1

2h

∫ t+h

t−h
fn(τ)dτ − f(t)

∥∥∥ < 1

q
+

1

2hr
·

Since for all s ∈ [0, 1], ‖fn(s)‖ = ‖f(s)‖ = 1, we have

∀τ ∈ [t− h, t+ h], ‖fn(τ)− f(t)‖ > ε

2
=⇒ 1−

〈
fn(τ), f(t)

〉
>
ε2

8
·

Hence,
1

2h
Leb

({
τ ∈ [t− h, t+ h] : ‖fn(τ)− f(t)‖ > 1

2ε
})

≤ 8

ε2

1

2h

∫ t+h

t−h

〈
f(t)− fn(τ), f(t)

〉
dτ ≤ 8

ε2

(1

q
+

1

2hr

)
.

The same inequality holds when fn is replaced by f . Hence,

(17)
1

2h
Leb

({
τ ∈ [t− h, t+ h] : ‖fn(τ)− f(τ)‖ > ε

})
≤ 16

ε2

(1

q
+

1

2hr

)
.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2010



38 CHAPTER 1. SURFACES AND GRAPHS

This inequality holds for every t ∈ Cp(q,α),q. Consider a subset T of Cp(q,α),q such
that any two distinct points of T are at distance at least h. Take T to be maximal for
inclusion among all subsets of Cp(q,α),q with this property. Then by the assumption of
separation of the points of T , T has less than 1/h+ 1 points and by the maximality
of T , the intervals [t − h, t + h] with t ∈ T cover Cp(q,α),q. By applying (17) at the
points of T , we find

Leb
({
t ∈ Cp(q,α),q : ‖fn(t)− f(t)‖ > ε

})
≤ 32(1 + h)

ε2

(1

q
+

1

2hr

)
.

Since Leb(Cp(q,α),q) ≥ 1−α, and since h = 1/p(q, α) ≤ 1, we have finally proved that
for all α > 0, r > 0 and all q ≥ 1, there exists n0(r) such that

∀n ≥ n0(r), Leb
({
t ∈ [0, 1] : ‖fn(t)− f(t)‖ > ε

})
≤ 64

ε2

(1

q
+
p(q, α)

2r

)
+ α.

By choosing α sufficiently small and q sufficiently large, then r such that p(q, α)/(2r)

is sufficiently small, this proves that the left-hand side of this inequality can be made
arbitrarily small by choosing n sufficiently large. This is exactly the desired conver-
gence.

Let us now prove Proposition 1.2.16.

Proof of Proposition 1.2.16. — Let us parametrise (cn)n≥1 and c at constant speed.
For each n ≥ 1, set Un = supt∈[0,1] d(cn(t), c(t)). By Lemma 1.2.17, Un tends to 0 as
n tends to infinity. Hence, we need to prove that

∫ 1

0
dTM (ċn(t), ċ(t))dt tends to 0. Let

us choose n large enough for Un to be smaller than the injectivity radius of M . Then∫ 1

0

dTM
(
ċn(t), ċ(t)

)
dt =

∫ 1

0

(
d(cn(t), c(t))2 + ‖//[cn(t),c(t)]ċn(t)− ċ(t)‖2

) 1
2 dt

≤ Un +

∫ 1

0

∥∥//[cn(t),c(t)]ċn(t)− ċ(t)
∥∥dt.

Nash’s embedding theorem grants the existence of an isometric embedding of M in a
Euclidean space. Let i : M → RN be such an embedding. We denote its differential
by di and, using the natural identification TRN ' RN × RN , we see di as a map
from TM to RN . For all X ∈ TM , we have ‖di(X)‖RN = ‖X‖. Hence,∥∥//[cn(t),c(t)]ċn(t)− ċ(t)

∥∥ =
∥∥(di ◦ //[cn(t),c(t)])(ċn(t))− di(ċ(t))

∥∥
RN

≤
∥∥(di ◦ //[cn(t),c(t)])(ċn(t))− di(ċn(t))

∥∥
RN +

∥∥di(cn(t))− di(c(t))
∥∥

RN .

In order to estimate the first term, let us observe that, in local coordinates, the
linear operator di◦//[m,n]−di is a rectangular matrix whose entries depend on (m,n)

and vanish when m = n. The square of the first term of the right-hand side above is
bounded by

Tr
(
(di ◦ //[cn(t),c(t)] − di)(di ◦ //[cn(t),c(t)] − di)∗

)∥∥ċn(t)
∥∥2
.
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The trace, as a function of (cn(t), c(t)), is a sum of squares of smooth functions
on M ×M which vanish on the diagonal. Since M is compact, any such smooth
function is dominated by the Riemannian distance. Hence, there exists a constant
K > 0 such that for all m,n ∈M and all X ∈ TmM ,∥∥(di ◦ //[m,n])(X)− di(X)

∥∥
RN ≤ Kd(m,n)‖X‖.

Since the lengths of the paths cn converge, L = sup{`(cn) : n ≥ 1} is finite. Hence,
for n large enough, we have∫ 1

0

dTM
(
ċn(t), ċ(t)

)
dt ≤ (1 +KL)Un +

∫ 1

0

∥∥di(ċn(t))− di(ċ(t))
∥∥

RN dt.

It suffices to prove that the last integral converges to 0. As a mapping between metric
spaces, i is 1-Lipschitz continuous. Hence, i(cn) converges uniformly to i(c) as n tends
to infinity. Since i is a Riemannian isometry, i(cn) and i(c) are also parametrised at
constant speed for all n ≥ 1, respectively `(cn) and `(c). For all n ≥ 1, define

fn : [0, 1] −→ RN , fn =
1

`(cn)
di(ċn).

Define also f : [0, 1]→ RN by f = 1/`(c) · di(ċ). These functions take their values in
the unit sphere of RN . Since i(cn) converges uniformly to i(c) as n tends to infinity
and `(cn) tends to `(c), the primitives of (fn)n≥1 converge uniformly to the primitive
of f . By Lemma 1.2.18, this implies that (fn)n≥1 converges in L1 to f . Using again
the fact that `(cn) converges to `(c), we find that the derivative of i(cn) converges
in L1 to the derivative of i(c):

(18)
∫ 1

0

∥∥di(ċn(t))− di(ċ(t))
∥∥

RN −→n→∞ 0.

This is the expected convergence.

Lemma 1.2.19. — Let M be a compact surface. The topology on P(M) induced by the
distances d1 associated to any two Riemannian metrics on M are the same.

Proof. — Consider two Riemannian metrics γ and γ′ on M . We will denote with a
prime the quantities associated with γ′.

Let c be a path and (cn)n≥1 a sequence of paths such that d1(cn, c), and thus also
d`(cn, c), tend to 0 as n tends to infinity. Let us parametrise c and each path cn at
constant speed with respect to γ. By Proposition 1.2.16, we have

sup
t∈[0,1]

d
(
cn(t), c(t)

)
+

∫ 1

0

dTM
(
ċn(t), ċ(t)

)
dt −→

n→∞
0.

Set L = sup{`(cn) : n ≥ 1} ≥ `(c). On the compact subset

BL(TM) =
{
X ∈ TM : ‖X‖γ ≤ L

}
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of TM , the distances dTM and d′TM are equivalent. Moreover, the distances d and d′

on M are also equivalent. It follows that

sup
t∈[0,1]

d′
(
cn(t), c(t)

)
+

∫ 1

0

d′TM
(
ċn(t), ċ(t)

)
dt −→

n→∞
0

for some parametrization of c and the paths cn. Hence, d′1(cn, c) tends to 0.

Lemma 1.2.20. — Let M be a compact surface endowed with a Riemannian metric.
The metric space (P(M), d1) is complete.

Proof. — Let (cn)n≥1 be a Cauchy sequence of P(M) for the distance d1. Let us
parametrise all these paths at constant speed. They form a Cauchy sequence for the
uniform distance between continuous mappings from [0, 1] to M , so they converge
uniformly to some continuous mapping c : [0, 1]→M .

Let us use Nash’s theorem again to find an isometric embedding i : M → RN .
Since i is 1-Lipschitz continuous, the sequence (i(cn))n≥1 of paths in RN converges
uniformly to i(c).

The sequence (cn)n≥1 is in particular Cauchy for the distance d`, so that the
sequence (`(cn))n≥1 converges to some real l. Set L = sup{`(cn) : n ≥ 1} < +∞.
The restriction to the compact set BL(TM) = {X ∈ TM : ‖X‖ ≤ L} of the smooth
mapping di : TM → RN is Lipschitz continuous. Hence, the sequence (i(cn))n≥1 of
paths in RN is also a Cauchy sequence for the L1 distance of the derivatives. Hence,
the derivatives di(ċn) converge in L1 to some function f : [0, 1] → RN which takes
its values in the sphere of radius limn→∞ `(cn) = l. Passing the equality∫ t

0

di
(
ċn(s)

)
= i
(
cn(t)

)
− i
(
cn(0)

)
to the limit, we find that f is the derivative of i(c). Hence, i(c) is a Lipschitz continuous
path parametrised at constant speed l, and so is c. In particular, l = `(c).

Finally, the sequence (cn)n≥1 satisfies d`(cn, c) → 0 as n tends to infinity. By
Proposition 1.2.16, this implies that d1(cn, c) tends to 0 as n tends to infinity.

Let us collect the results that we have proved and deduce Proposition 1.2.14.

Proof of Proposition 1.2.14. — Since d` ≤ d1 ≤ d1 and by Proposition 1.2.16, the
three distances d`, d1 and d1 induce the same topology on P(M). By Lemma 1.2.19,
this topology does not depend on the Riemannian metric on M . By Lemma 1.2.20, it
is the topology of a complete metric space.
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1.3. Graphs

1.3.1. Graphs and the sewing of patterns. — A graph on a surface is a finite
set of paths or curves called edges and which satisfy several conditions. For Markovian
holonomy fields, these finite sets of paths play the role of the finite sets of points in a
time interval along which one considers the finite-dimensional marginals of a Markov
process. The fact that most finite collections of paths are not the set of edges of a
graph leads to quite a lot of technical complication: Markovian holonomy fields are
stochastic processes of which only a small number of finite-dimensional marginals can
be described by a simple formula.

Recall the distinction between curves, which are just continuous (see Defini-
tion 1.2.1) and paths, which are Lipschitz continuous (see Definition 1.2.2).

Definition 1.3.1. — Let M be a topological compact surface.
A curve on M which is injective or a simple continuous loop is called a continuous

edge. The set of continuous edges on M is denoted by CE(M).
Let M be a smooth compact surface. A path on M which is injective or a simple

loop is called an edge. The set of edges on M is denoted by E(M).

When we consider an edge or a continuous edge e, we will often abusively denote
the range of e by e instead of e([0, 1]).

Definition 1.3.2. — LetM be a connected compact surface (resp. a topological compact
surface).

A pre-graph on M is a triple G = (V,E,F), where:
1) V is a finite subset of M ,
2) E is a non-empty finite subset of E(M) (resp. CE(M)), stable by inversion, such

that V =
⋃
e∈E{e, ē}, and such that two edges of E which are not each other’s inverse

meet, if at all, only at some of their endpoints,
3) F is the set of the connected components of M −

⋃
e∈E e([0, 1]). The elements of

V,E,F are called the vertices, edges and faces of the pre-graph.
A graph on M is a pre-graph which satisfies the condition
4) Each face of G is homeomorphic to an open disk of R2.
The skeleton of a pre-graph G is the subset of M defined by Sk(G) =

⋃
e∈E e([0, 1]).

The set of paths (resp. curves) that can be obtained by concatenating edges of G is
denoted by P(G) (resp. C(G)). The subset of P(G) (resp. C(G)) consisting of loops is
denoted by L(G) (resp. CL(G)).

IfM is homeomorphic to a sphere and m is a point ofM , we include the exceptional
triple ({m},∅, {M − {m}}) in the set of graphs.
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A graph on a non-connected surface is defined as the data of a graph on each
connected component of this surface.

Let (M,C ) be a marked surface. Let G be a graph on M . We say that G is a graph
on (M,C ) if each cycle of C is represented by a loop of L(G).

In the terminology of Mohar and Thomassen [32], what we call a graph on a
topological surface is a cellular embedding of a combinatorial multigraph. It was
proved by Radó in 1925 that every surface can be triangulated. In particular, on
every topological compact surface there exists a graph. On a Riemannian surface, the
proof of the fact that there exists a triangulation given in [32] is still valid if one
uses only piecewise geodesic paths. Hence, a Riemannian surface admits a piecewise
geodesic triangulation. This triangulation is a graph and, by adding some vertices, one
may assume that the edges of this graph are geodesic. Finally, a Riemannian surface
admits a graph with geodesic edges.

The goal of this section is twofold: to provide us with an efficient combinatorial
tool for dealing with graphs (Proposition 1.3.8) and to establish a robust criterion
which tells us when a pre-graph is a graph (Proposition 1.3.10).

In order to analyze a pre-graph or a graph, an effective method consists in splitting
it along some of its edges. This is very similar to the surgery of smooth marked surfaces
described in Section 1.1.2. The operations described here are however less regular and
best defined in the category of topological surfaces.

Definition 1.3.3. — A pattern is a triple (M,G, ι), where M is a topological surface,
G is a pre-graph on M and ι is an involution of the set E of edges of G such that for
all edge e ∈ E,

1) ι(e) 6= e−1,
2) ι(e−1) = ι(e)−1,
3) e 6⊂ ∂M ⇒ ι(e) = e.
A pattern (M,G, ι) is split if Sk(G) ⊂ ∂M .
Two patterns (M,G, ι) and (M ′,G′, ι′) are isomorphic if there exists a homeomor-

phism ψ : M →M ′ such that ψ(G) = G′ and ψ ◦ ι = ι′ ◦ ψ.

A pattern is meant to be sewed according to the identifications determined by
its involution. Our convention here is slightly simpler than in the case of tubular
patterns, in that we exclude the case ι(e) = e−1 which was the purely conventional
encoding of unary gluings. Here, an edge e is always meant to be identified by an
orientation-preserving homeomorphism with ι(e).

When f : M ′ → M is a continuous mapping between two surfaces and e′ is a
continuous edge on M ′, we denote by f(e′) the curve f ◦ e′.

ASTÉRISQUE 329



1.3. GRAPHS 43

Definition 1.3.4. — Let (M,G, ι) and (M ′,G′, ι′) be two patterns.
A continuous mapping f : M ′ → M is called an elementary sewing if it is the

quotient map which identifies e′ with ι′(e′) by an orientation-preserving homeomor-
phism for some e′ ∈ E′. Moreover, it is required that f(E′) = E and ι ◦ f = f ◦ ι′ on
E′ − {e′, e′−1

, ι(e′), ι(e′)−1}, .
The unoriented edge {f(e′), f(e′)−1} is called the joint of the elementary sewing.
A sewing is a map which can be written as the composition of several elementary

sewings. A sewing is complete if the involution of the set of edges of the target surface
is the identity.

We have results for sewings which are similar to those we had for gluings. In
particular, sewings can always be performed and a surface can always be split along
an edge, provided the interior of the edge does not meet the boundary of the surface.

Proposition 1.3.5. — 1) Let (M ′,G′, ι′) be a pattern. Consider e′ ∈ E′ such that ι(e′) 6=
e′. There exists a pattern (M,G, ι) and an elementary sewing f : M ′ →M such that
the joint of f is {f(e′), f(e′)−1}. Moreover, this gluing is unique up to isomorphism:
if (M ′′,G′′, ι′′) and f ′′ : M ′ → M ′′ satisfy the same properties, then there exists an
isomorphism ψ : (M,G, ι)→ (M ′′,G′′, ι′′) such that ψ ◦ f = f ′′.

2) Let (M,G, ι) be a pattern. Choose {e, e−1} ⊂ E such that e ∩ ∂M ⊂ {e, ē}.
Then there exists a pattern (M ′,G′, ι′) and an elementary sewing f : M ′ → M such
that the joint of f is {e, e−1}. Moreover, this sewing is unique up to isomorphism:
if (M ′′,G′′, ι′′) and f ′′ : M ′′ → M satisfy the same properties, then there exists an
isomorphism ψ : (M ′,G′, ι′)→ (M ′′,G′′, ι′′) such that f ′′ ◦ ψ = f .

Just as Proposition 1.1.11, this result is obvious at a certain intuitive level but lacks
a concise proof. The first assertion relies on the fact that the result of the identification
of e with ι(e) is always a compact surface. This fact is explained in [32], at the
beginning of Section 3.1. The second assertion relies on the Jordan curve theorem
and on the theorem of Schönfliess, which asserts that the group of homeomorphisms
of R2 acts transitively on the set of parametrised Jordan curves. A self-contained
exposition of the theorems of Jordan and Schönfliess and of results which are very
close to the forthcoming Proposition 1.3.8 can be found in the book of B.Mohar and
C. Thomassen [32].

Let us only discuss the second assertion when the edge e is a simple loop and the
equator of a Möbius band. In this case, the surface M ′ has one more boundary com-
ponent than M and this boundary component is covered by two unoriented edges e′1
and e′2, which we may assume to be oriented in such a way that the concatenation e′1e′2
makes sense. In this case, e′1e′2 is a loop which represents the new boundary component
of M ′ and the involution ι exchanges e′1 and e′2.
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Figure 5. A three-holed sphere endowed with a graph, the same surface
cut along all edges of the graph, and the corresponding split pattern.

Since a gluing is a special case of a sewing, Proposition 1.3.5 implies that a pre-
graph can be lifted through a splitting, in a way which is unique up to homeomor-
phism. It also implies the following result.

Lemma 1.3.6. — Let M be a compact topological surface. The group of homeomor-
phisms of M acts transitively on the set of injective continuous edges contained in the
interior of M .
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Proof. — An injective continuous edge contained in the interior of M determines
a pre-graph on M . The associated split pattern is simply M to which a disk has
been removed. The boundary of this disk is the concatenation of two edges which are
identified with each other’s inverse by the involution. Hence, this split pattern does
not depend, up to homeomorphism, on the edge.

Corollary 1.3.7. — Let M be a topological compact surface. Let e be an injective con-
tinuous edge contained in the interior of M . There exists a graph on M of which e is
an edge.

Proof. — Let G be a graph on M . If M is a disk and Sk(G) ⊂ ∂M , or if M is a
sphere and G is the exceptional graph with no edge, let us add to G a continuous
edge whose interior is contained in the interior of M . In any other case, G contains
an edge whose interior is contained in the interior of M . By adding vertices to G if
necessary, we may assume that it has an edge, say e1, contained in the interior of M .
The image of G by a homeomorphism of M which sends e1 to e is a graph on M of
which e is an edge.

By successively applying Proposition 1.3.5 in order to split all the edges of a pre-
graph which are not located on the boundary, we end up with a split pattern.

Proposition 1.3.8. — Let M be a topological compact surface. Let G = (V,E,F) be
a pre-graph on M . Assume that each edge of G is either contained in ∂M or has
no interior point on ∂M . Endow E with the identity involution. There exists a split
pattern (M ′,G′, ι) and a sewing f : M ′ →M such that f(E′) = E. For each face F of
G, f−1(F ) is the interior of a connected component of M ′ which we denote by M ′F .
The sewing map f appliesM ′F \(Sk(G′)∩M ′F ) homeomorphically onto F and Sk(G′)∩
M ′F continuously onto the topological boundary of F .

We call (M ′,G′, ι, f) a split pattern of the pair (M,G).
If (M ′′,G′′, ι′′) is another split pattern and f ′′ : M ′′ →M a sewing which sends G′′

to G, then there exists an isomorphism of patterns ψ : M ′ →M ′′ such that f ′′◦ψ = f .
Finally, if M is oriented, then M ′ can be oriented and the sewing map can be assumed
to be orientation-preserving.

One of the simplest consequences of this result is that a pre-graph has a finite
number of faces. Let us identify a simple condition under which the assumption on
the edges of pre-graph made in Proposition 1.3.8 are satisfied.

Lemma 1.3.9. — Let M be a topological compact surface. Let G be a pre-graph on M .
Let c be a subset of M homeomorphic to a circle. Then c is the image of a simple
loop of CL(G) if and only if c ⊂ Sk(G). Moreover, if c ⊂ Sk(G), then for each edge e
of G, either e is contained in c or e has no interior point on c.
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Proof. — One implication in the first assertion is obvious. Assume that c ⊂ Sk(G).
The image of (0, 1) by an edge is homeomorphic to (0, 1), hence it cannot contain a
subset homeomorphic to a circle. Thus, there is at least one vertex on c. Let us choose a
continuous parametrization of c by [0, 1], injective on [0, 1), such that c(0) = c(1) ∈ V.
The set c ∩V is finite and its complement in c is a finite union of open intervals. Let
(a, b) be such an interval. Each point of (a, b) belongs to one single edge of G. Assume
that there exists u, v with a < u < v < b, such that u and v do not belong to the
same edge. Since for each given edge, the subset of [0, 1] covered by that edge is closed,
there should necessarily be a point between u and v which is covered by at least two
distinct edges. Hence, (a, b) is covered by a single edge. Both a and b must be vertices
of this edge and the result follows.

Let e be an edge which has an interior point on c. Let us choose a parametrization
of e and t ∈ (0, 1) such that e(t) ∈ c. Let I ⊂ [0, 1] be the largest segment containing t
such that e(I) ⊂ c, that is, the connected component of t in {s ∈ [0, 1] : e(s) ∈ c}.
Assume first that I = {t}. In this case, since c is contained in Sk(G), e(t) belongs
to the closure of another edge of G, hence to another edge, and it is a vertex of G.
This is impossible since t /∈ {0, 1} by assumption. Let us now assume that I = [a, b]

with a < b. Since e is an edge, the equality e(a) = e(b) can occur only if a = 0

and b = 1, in which case e is contained in c. Actually, in this case, e is a simple
loop whose range is c. Assume now that e(a) 6= e(b). Then e(I) is a subset of c
homeomorphic to a segment. Since c ⊂ Sk(G), each endpoint of this segment belongs
to the range of another edge of G. Hence e(a) and e(b) are vertices. This forces a = 0,
b = 1 and in particular the fact that e is contained in c.

In our definition of graphs, the focus is put on edges: a graph is a set of edges which
satisfies certain properties. It is important that we find a robust criterion which tells
us when a pre-graph satisfies the topological condition (labelled 4. in Definition 1.3.2)
which makes it a graph. By a robust criterion, we mean a criterion which makes it
obvious that a pre-graph whose edges are close to those of a graph is also a graph.
Let us apply Proposition 1.3.8 to establish such a criterion.

Proposition 1.3.10. — Let M be a connected topological surface. Let G be a pre-graph
on M . The following properties are equivalent.

4) Each face of G is homeomorphic to an open disk of R2.
4′) The skeleton of G is connected, contains ∂M , and there exists v ∈ Sk(G)

such that any loop in M based at v is homotopic to a loop whose image is contained
in Sk(G).

In particular, if G is a graph, then each connected component of ∂M is the image
of a loop of CL(G).
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Of course, if 4′ is satisfied for some v ∈ Sk(G), it is satisfied for all such v. In the
course of the proof, we use the following lemma.

Lemma 1.3.11. — Let M be a topological surface. Let G be a topological pre-graph
on M . Assume that Sk(G) is connected and contains ∂M . Let v be a point of Sk(G).
Consider the quotient topological space M/Sk(G), in which all the points of Sk(G) are
identified. Then the natural mapping π1(M, v)→ π1(M/Sk(G), [v]) is onto.

Proof. — Let (M ′,G′, ι, f) be a split pattern of (M,G). Since Sk(G) contains ∂M ,
we have Sk(G′) = ∂M ′. Hence, the ill-defined mapping f−1 : M → M ′ descends to
a well-defined mapping f−1 : M/Sk(G) → M ′/∂M ′, which is a homeomorphism. In
particular, [v] admits in M/Sk(G) a neighbourhood homeomorphic to a finite bunch
of disks whose centres are identified, thus a contractible neighbourhood. Hence, any
loop in M/Sk(G) based at [v] is homotopic to a finite product of loops based at [v]

and whose interior does not visit [v].
Choose a loop l based at [v] on M/Sk(G). Assume that l is homotopic to l1 · · · ln

and the interiors of l1, . . . , ln do not visit [v]. Each loop li corresponds via f−1 to a
loop in the space M ′F /∂M

′
F for some F ∈ F. Such a loop can be lifted to a path ci

on M ′F which starts and finishes on ∂M ′F and stays in the interior of M ′F in the
meantime. Since Sk(G) contains ∂M , the paths f(ci) are paths onM which start and
finish in f(∂M ′) = Sk(G) ∪ ∂M = Sk(G). Since Sk(G) is connected, it is possible to
connect their endpoints inside Sk(G) and thus to produce a loop in M based at v
whose image in the quotient M/Sk(G) is l1 · · · ln.

Proof of Proposition 1.3.10. — 4)⇒ 4′). Let us assume that assumption 4 is satisfied.
Since the faces of G are homeomorphic to open disks, they contain no point of ∂M .
Hence, the skeleton of G contains ∂M . Let (M ′,G′, ι, f) be a split pattern of (M,G).
By Proposition 1.3.8, the interior of M ′F is homeomorphic to an open disk for each
F , so that M ′F is a closed disk. In particular, ∂M ′F is connected. By Proposition
1.3.8 again, it follows that the boundary of each face is connected. If Sk(G) was not
connected, there would exist a face whose boundary meets two distinct connected
components of Sk(G). The boundary of this face would not be connected: this is
impossible.

For each face F of G, choose a point xF in F . Choose v ∈ Sk(G). It is well
known that any continuous loop in M based at v is homotopic to a loop which avoids
the points xF , F ∈ F. To see this, endow M with a Riemannian metric. Then, any
two loops which are closer in uniform distance than the convexity radius of M are
homotopic to each other. In particular, any loop is homotopic to a piecewise geodesic
loop and it is possible to choose this loop such that it avoids the points xF , F ∈ F. By
Proposition 1.3.8, the skeleton of G is a retract by deformation of M −{xF : F ∈ F}.
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Hence, any loop based at v is homotopic in M to a loop which stays in the skeleton
of G.

4′)⇒ 4). Let (M ′,G′, ι, f) be a split pattern of (M,G). Let [v] denote the class of v
in the quotient topological spaceM/Sk(G). This class is nothing but Sk(G). The third
part of assumption 4′ implies that the homomorphism π1(M, v)→ π1(M/Sk(G), [v])

induced by the quotient mapping is trivial. By Lemma 1.3.11 above, this homo-
morphism is surjective. Hence, assumption 4′ implies that M/Sk(G) is simply con-
nected. Hence, it implies that M ′/∂M ′ is simply connected. The fundamental group
of this space is isomorphic to the free product of the fundamental groups of the
spaces M ′F /∂M

′
F . Hence, assumption 4′ implies that each space M ′F /∂M

′
F is simply

connected. Up to homeomorphism, there exist only two connected compact surfaces
which, when all their boundary points are identified to a single point, are simply con-
nected: the sphere and the disk. Finally, assumption 4′ implies that all surfaces M ′F
are homeomorphic to disks, that is, the assertion 4.

The last assertion follows from Lemma 1.3.9 and the fact that the skeleton of a
graph covers ∂M .

Corollary 1.3.12. — Let M be a topological compact surface. Let G = (V,E,F) be a
graph on M . For each n ≥ 0, let Gn = (V,En,Fn) be a pre-graph on M equipped with
a bijection Sn : E→ En such that for all e ∈ E, Sn(e−1) = Sn(e)−1. Assume that for
all n ≥ 0 and all edge e such that e ⊂ ∂M , Sn(e) = e. Assume also that for all e ∈ E,
the sequence (Sn(e))n≥0 converges uniformly to e with fixed endpoints. Then, for n
large enough, Gn is a graph on M .

Proof. — It suffices to check that Gn satisfies the condition 4′ of Proposition 1.3.10
for n large enough. Firstly, for all n ≥ 0, the skeleton of Gn contains ∂M because the
skeleton of G does and every edge of G located on ∂M is also an edge of Gn. Then,
for all n ≥ 0, the skeleton of Gn is connected. Indeed, let m and m′ be two points
of Sk(Gn). They can be respectively joined inside Sk(Gn) to two vertices v and v′,
which are also vertices of G. Since Sk(G) is connected, there exist a curve e1 · · · ek
in C(G) which joins v to v′. The curve Sn(e1) · · ·Sn(ek) joins v to v′ inside Sk(Gn).
Finally, for n large enough and for all e ∈ E, Sn(e) is homotopic with fixed endpoints
to e. By choosing a point of V as base point, we find that any loop in Sk(G) is
homotopic to a loop in Sk(Gn). This finishes the proof.

1.3.2. The boundary of a face. — Although a face in a graph is, by definition,
homeomorphic to an open disk, its closure needs not be homeomorphic to a closed
disk and even when it is the case, the topological boundary of the face may not be
homeomorphic to a circle. The boundary of a face of a graph can in fact be defined
as a cycle in the graph and this is the notion which matters for us. The appropriate
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intuitive picture is that of someone walking in the interior of the face, keeping her
right hand on the boundary. If the surface is non-orientable, the boundary of the face
is a non-oriented cycle.

Figure 6. These are two faces of the graph represented on Figure 5. The
closure of the first is not homeomorphic to a closed disk. The closure of
the second is homeomorphic to a closed disk, but its topological boundary
is not homeomorphic to a circle.

The following definition makes sense thanks to Proposition 1.3.8, in particular the
statement of uniqueness.

Definition 1.3.13. — Let M be a topological compact surface. Let G be a graph on M .
Let (M ′,G′, ι, f) be a split pattern of (M,G). Let F be a face of G. Let M ′F be the
connected component of M ′ such that f(M ′F ) = F .

If M is oriented, then the boundary of F is defined as the cycle ∂F = f(∂M ′F ) in
CL(G). If M is not oriented, we may still orient M ′F and the boundary of F is defined
as the unoriented cycle ∂F = {f(∂M ′F ), f(∂M ′F )−1}.

A cycle of the form ∂F for some face F is called a facial cycle of (M,G).

This definition allows us to make sense of an edge adjacent to a face.

Definition 1.3.14. — Let M be a topological compact surface endowed with a graph G.
Let (M ′,G′, ι, f) be a split pattern of (M,G). Let F be a face of G and M ′F the
corresponding connected component of M ′. Let e be an edge of G.

We say that the unoriented edge {e, e−1} is adjacent to F if there exists an edge e′

of G′ such that e′ ⊂ ∂M ′F and f(e′) ∈ {e, e−1}.
If M is oriented and M ′ is oriented accordingly, we say that e is adjacent to F if

there exists an edge e′ with the same properties as above and e′ bounds M ′F positively.

An unoriented edge is adjacent to a face if and only if it is contained in its topolog-
ical closure. When M is oriented, it follows from Proposition 1.3.8 that each oriented
edge is adjacent to exactly one face. It may however occur that e and e−1 are adjacent
to the same face.

The content of the next result is that an edge which is adjacent to two distinct faces
can be removed from a graph. Recall that a marked surface is a pair (M,C ) where C
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is a set of smooth curves on M (see Definition 1.1.8) and that a graph on (M,C ) is
a graph G on M such that each curve of C is the range of a cycle of C(G).

Proposition 1.3.15. — Let (M,C ) be a marked surface. Let G = (V,E,F) be a graph
on (M,C ).

1) Let e be an edge of G which is not contained in any curve of C . Assume that e
is adjacent to two distinct faces F1 and F2. Write ∂F1 = ce and ∂F2 = e−1d for some
c, d ∈ P(G).

Then E \ {e, e−1} is the set of edges of a graph on (M,C ), denoted by G \ e,
with the same faces as G, except for the faces F1 and F2 which are replaced by F =

F1 ∪ F2 ∪ e((0, 1)). Moreover, ∂F = cd.
2) Let e be an edge of G which finishes at a vertex of degree 1, that is, such that the

terminal point of e is the terminal point of no other edge of G. Let F be the unique
face adjacent to e. Let c ∈ P(G) be such that ∂F = cee−1 or ∂F = ce−1e.

Then E \ {e, e−1} is the set of edges of a graph on (M,C ), denoted by G \ e, with
the same faces as G, except for the face F which is replaced by F ∪e((0, 1]). Moreover,
∂F = c.

M ′
F1

M ′
F2

e′
2

e′
1

M ′
F1

M ′
F2

e′
1

e′
2

Figure 7. Removing one edge of the graph depicted on Figure 5.
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Proof. — The proofs of the two assertions are very similar. We prove only the first
one. Let (M ′,G′, ι, f) be a split pattern of (M,G). By suitably orienting M ′, we
may assume that e is the image by f of an edge e′1 which bounds M ′F1

positively
and e−1 the image of an edge e′2 = ι(e′1) which bounds M ′F2

positively. Let us
write ∂M ′F1

= c′e′1 and ∂M ′F2
= e′2d

′, where c′ and d′ are curves in G′ which sat-
isfy f(c′) = c and f(d′) = d.

Let us assume first that either c′ or d′ is not the constant curve, that is, that either
∂M ′F1

6= e′1 or ∂M ′F2
6= e′2. In this case, sewing e′1 and e′2 results in a new surface M ′F

which is still homeomorphic to a closed disk.
By removing the inner edge of this disk, we obtain a new split pattern (M ′′,G′′, ι′′)

with one connected component less than M ′. The mapping f ′′ : M ′′ → M induced
by f is a complete sewing of this pattern, so that (M ′′,G′′, ι′′, f ′′) is a split pattern
of (M,G \ e). It follows on one hand that G \ e is a graph and on the other hand that
the boundary of the new face F is f ′′(c′d′) = f(c′)f(d′) = cd.

It remains to check that each curve of C is represented by a loop of G \ e. By
Lemma 1.3.9, it suffices to check that each curve of C is contained in Sk(G \ e).
Consider l ∈ C . By the second assertion of Lemma 1.3.9, the assumption that e is not
contained in any curve of C ensures that e has at most some of its endpoints on l.
Hence, Sk(G \ e) contains at least the complement of a finite set in l, hence l itself
because it is closed. This finishes the proof.

Let us now treat the case where ∂M ′F1
= e′1 and ∂M ′F2

= e′2. In this case, the
image of M ′F1

∪ M ′F2
by f is a sphere of which e is an equator. This sphere is a

connected component of M and, ignoring possible other connected components, we
have E = {e, e−1} and C = ∅. Hence, G\ e is indeed a graph, namely the exceptional
graph with no edge and a single vertex. It has a unique face whose boundary is the
constant curve at this vertex.

The difficulty with the definition of the boundary of a face given by Definition 1.3.13
is the same as that regarding the topological condition on the faces of a graph and
which led us to state Proposition 1.3.10. It is not obvious from this definition that a
small deformation of the edges of a graph cannot significantly modify the facial cycles.
Since there will come a point in this work at which we will need to compare graphs
with close edges, we need to be able to extract in a fairly explicit and robust way the
amount of combinatorial structure of a graph which determines its facial cycles.

The content of the theorem of Schönfliess is that there is no local topological
invariant of a simple curve in a surface. Hence, in a graph, the only place where some
local structure arises is at the vertices. This structure at a given vertex is completely
described by the cyclic order of the edges which share this vertex as an endpoint. When
the surface is orientable, the information of these cyclic orders is in fact sufficient to
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determine completely the facial cycles of the graph, hence, by Proposition 1.3.8, the
pair (M,G) up to homeomorphism. When the surface is not orientable, a small amount
of global information is needed to recover the facial cycles. Before explaining this, let
us describe precisely what we mean by the cyclic order of the edges at a vertex. The
characterization of this order which we establish now will be useful later.

In the next lemma, the surface is equipped with a differentiable structure because
we need to consider a Riemannian metric on it. Nevertheless, the graph is allowed to
have continuous edges. Also, the result is stated on a surface without boundary. If M
has a boundary, then the cyclic order of the edges at a vertex should be computed
after a disk has been glued along each boundary component of M .

Lemma 1.3.16. — Let M be a smooth surface without boundary. Let G be a graph
on the topological surface underlying M . Let v ∈ V be a vertex. Let e1, . . . , en be n
parametrised curves which represent the edges of G which share v as their starting
point. Let γ be a Riemannian metric on M , whose Riemannian distance is denoted
by d. Let R be the injectivity radius of γ. Set

r0 = min
(
{R} ∪ {d(v, ei(

1
2 )) : i ∈ {1, . . . , n}}

)
.

For each r ∈ (0, r0) and each i ∈ {1, . . . , n}, define si(r), ti(r) ∈ [0, 1
2 ] by

si(r) = inf
{
t ∈ [0, 1

2 ] : d(v, ei(t)) = r
}
, ti(r) = sup

{
t ∈ [0, 1

2 ] : d(v, ei(t)) = r
}
.

If M is not oriented, choose an orientation of the ball B(v, r0). For each r ∈ (0, r0),
let ωfirst(r) be the cyclic permutation of {e1, . . . , en} corresponding to the cyclic order
of the points e1(s1(r)), . . . , en(sn(r)) on the circle C(v, r), oriented as the boundary of
the ball B(v, r). Similarly, let ωlast(r) be the cyclic permutation of {e1, . . . , en} corre-
sponding to the cyclic order of the points e1(t1(r)), . . . , en(tn(r)) on the circle C(v, r).
Then the following properties hold:

1) The cyclic order ωfirst(r) does not depend on r ∈ (0, r0). We denote it simply by
ωfirst.

2) There exists r1 ∈ (0, r0) such that for all r ∈ (0, r1), ωlast(r) = ωfirst.

In the proof of this lemma, we take the following fact (which can be deduced from
Proposition 1.3.8) for granted. On the compact cylinder [0, 1]×S1, consider n injective
continuous curves c1, . . . , cn which do not meet each other. Assume that each curve
starts at a point of {0} × S1 and finishes at a point of {1} × S1. Assume that no
point of these curves other than their endpoints is located on the boundary of the
cylinder. Then there exists an orientation-preserving homeomorphism of the cylinder
onto itself which sends each curve to a set of the form [0, 1]×{z} for some z ∈ S1. In
particular, the cyclic order of the initial points of c1, . . . , cn on the circle {0} × S1 is
the same as the cyclic order of their terminal points on the circle {1} × S1.
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Proof. — Let us choose r ∈ (0, r0) and r′ ∈ (0, r). For each i ∈ {1, . . . , n}, let us
define

ui(r
′, r) = sup

{
t ∈ [0, si(r)] : d(v, ei(t)) = r′

}
.

Thus, ci = ei([ui(r
′, r), si(r)]) is an injective curve which joins C(v, r′) to C(v, r) and

stays in the annulus r′ ≤ d(v, .) ≤ r. Moreover, only the endpoints of ci lie on the
boundary of the annulus. This annulus is homeomorphic to a cylinder and the curves
c1, . . . , cn do not meet each other. According to the remark made before the proof, the
cyclic order of the points e1(u1(r′, r)), . . . , en(un(r′, r)) on the circle C(v, r′), which
we denote by ωmixed(r′, r), is the same as the cyclic order of e1(s1(r)), . . . , en(sn(r))

on C(v, r), which is by definition ωfirst(r).
Set r1(r) = min({r} ∪ {d(v, ei([si(r),

1
2 ])) : i ∈ {1, . . . , n}}). Since the edges

e1, . . . , en are injective paths, r1(r) is a positive number and ui(r
′, r) = ti(r

′), for
all r′ < r1(r). Hence, for all r ∈ (0, r0) and r′ ∈ (0, r1(r)),

ωlast(r
′) = ωmixed(r′, r) = ωfirst(r).

Both assertions follow from this equality.

e2

e1

e3

e4

e5

e6

Figure 8. The cyclic order of first exit of the disk bounded by the dotted
circle for these six edges is (123456) but their cyclic order of last exit of
the same disk is (214365). For a disk smaller than the grey disk, the two
cyclic orders coincide.

Let us describe informally the algorithm which one uses to compute the facial
cycles of a graph. First, one has to land somewhere on the surface, near the boundary
of a face and to grasp the nearest edge with either hand. Then, one walks forward to
the next vertex without breaking the contact with the edge. There, one performs two
operations. The first consists in changing the hand which holds the edge in order to
turn round. One now has the vertex in one’s back. The second operation consists in
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grasping with one’s free hand the only outcoming edge at this vertex that one is not
already holding and that is accessible without crossing any edge, and finally releasing
the first edge. When one reaches a vertex at which there is only one outcoming edge,
one turns around this vertex and walks back along the same edge, on the other side
and holding it with the other hand. This process has to be iterated until one comes
back to one’s initial position.

Figure 9. A possible track followed by our explorer. The landing point is
denoted by a cross.

Formally, the facial cycles arise as the cycles of a certain permutation on a set
which corresponds to the possible ways of our explorer holding an edge. We call this
set a framing of the graph.

Definition 1.3.17. — Let M be a compact topological surface. Let G be a graph on M .
An orientation of the vertices of G is a collection (Uv)v∈V of pairwise disjoint open
subsets of M such that for all vertex v ∈ V, Uv is an orientable and oriented neigh-
bourhood of v.

Given an orientation of the vertices of G, and for each edge e, we use the orientation
of Ue to determine a left and a right of e, at least in the vicinity of e. If e is located
on the boundary of M , we say that is bounds M positively if M is on the left of e.

Definition 1.3.18. — Let M be a topological compact surface. Let G be a graph on M .
Let (Uv)v∈V be an orientation of the vertices of G. For each e ∈ E, set

fr(e) =


{−1, 1} if e is not contained in ∂M,

{1} if e ⊂ ∂M and e bounds M positively,
{−1} if e ⊂ ∂M and e bounds M negatively.

The framing of E is the subset fr(E) of E× {−1, 1} defined by

fr(E) =
⋃
e∈E
{e} × fr(e).

We have already mentioned that, without the assumption that M is orientable,
some amount of global information is needed to determine the facial cycles.
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Definition 1.3.19. — Let M be a compact topological surface. Let G be a graph on M .
Let (Uv)v∈V be an orientation of the vertices of G. The signature of this orientation is
the collection of signs (λe)e∈E ∈ {−1, 1}E defined as follows. For each edge e which is a
simple loop, set λe = 1 if e admits an orientable neighbourhood and λe = −1 otherwise.
Then, for each edge e such that e 6= ē, consider an orientable neighbourhood Ue of e
and set λe = 1 if there exists an orientation of Ue compatible with the orientations
of Ue and Uē, and λe = −1 otherwise.

If M is orientable, then it is possible to choose an orientation of the vertices of G
which is induced by an orientation of M . The signature of such an orientation is
simply given by λe = 1 for all e ∈ E.

We are now ready to define the permutation on fr(E) which determines the facial
cycles.

Definition 1.3.20. — Let M be a compact topological surface. Let G be a graph on M .
Let (Uv)v∈V be an orientation of the vertices of G. Let fr(E) be the associated framing
of G. Let (λe)e∈E be the signature of this orientation.

The collection of the cyclic orders of the outcoming vertices at each vertex relatively
to the orientation specified by the collection (Uv)v∈V is the the set of cycles of a
unique permutation of E which we denote by σ. The involution e 7→ e−1 is another
permutation of E which we denote by α.

We define now three permutations α, σ and ϕ of fr(E) as follows. Firstly, we set

∀(e, ε) ∈ fr(E), α(e, ε) = (e−1,−λeε) and σ(e, ε) =
(
σε(e),−ε

)
.

Then, we define ϕ by the relation ϕ ◦ α ◦ σ = id. Hence,

∀(e, ε) ∈ fr(E), ϕ(e, ε) =
(
σ−λeε(e−1), λeε

)
.

It is easy to check that σ and α, hence ϕ take indeed their values in fr(E). Both
permutations α and σ are involutions. They correspond respectively to the first and
second operations performed by our explorer after reaching a vertex. The permuta-
tion ϕ is the one whose cycles give the facial cycles of the graph.

Proposition 1.3.21. — Let M be a connected topological surface. Let G be a graph
on M . Let (Uv)v∈V be an orientation of the vertices of G. Let fr(E) be the associated
framing of G. Let ϕ be the permutation of fr(E) defined in Definition 1.3.20.

The range of the mapping which to each cycle ((e1, ε1) · · · (en, εn)) of the permuta-
tion ϕ associates the cycle e1 · · · en in G is exactly the set of the facial cycles of G,
taken once with each orientation.

If M is orientable and oriented, and if the orientation of the sets Uv is induced by
the orientation of M , then ϕ leaves fr(E) ∩ (E × {1}) globally invariant. Moreover,
the set of cycles of the restriction of ϕ to fr(E) ∩ (E × {1}) determines exactly the
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set of facial cycles which bound positively a face. These cycles are also those of the
permutation ϕ = σ−1 ◦ α−1 on E.

The best proof of this result is probably the one which the reader will make for
himself by drawing pictures. Another option is to read the section 3.3 of the book by
B.Mohar and C. Thomassen [32], although their description of the permutations is
slightly less formal than ours. This whole discussion is also a variation on the theme
of ribbon graphs or maps, which are discussed extensively in [23].

Let us apply Proposition 1.3.21 to prove a result in the same vein as Corol-
lary 1.3.12. If A and B are two subsets of a same set, we use the notation

AuB = (A ∪B) \ (A ∩B).

Proposition 1.3.22. — Let M be a connected compact topological surface. Let G =

(V,E,F) be a graph on M . For each n ≥ 0, let Gn = (Vn,En,Fn) be a graph on M

equipped with a bijection Sn : V → Vn and a bijection Sn : E → En such that for
all e ∈ E, Sn(e) is the starting point of Sn(e) and Sn(e−1) = Sn(e)−1. We assume that
for all n ≥ 0 and all edge e such that e ⊂ ∂M , Sn(e) = e. We assume also that for all
e ∈ E, the sequence (Sn(e))n≥0 converges uniformly to e. Finally, we assume that for
all n ≥ 0 and for some orientation (Uv)v∈V of the vertices of G such that Sn(v) ∈ Uv
for all n ≥ 0 and all v ∈ V, the cyclic order of the outcoming edges at every vertex is
preserved by the bijection Sn.

Then for all n ≥ 0, there exists a unique bijection Sn : F → Fn such that for
all F ∈ F, ∂Sn(F ) = Sn(∂F ). Moreover, for all F ∈ F, one has

lim sup
n→∞

(
F u Sn(F )

)
=
⋂
n≥0

⋃
m≥n

(F u Sm(F )) ⊂ Sk(G).

We use the following simple lemma.

Lemma 1.3.23. — Let M be a connected compact surface endowed with a graph G.
If M is non-orientable, then two faces cannot have the same bounding unoriented cy-
cle, and if M is oriented, then two faces cannot have the same oriented bounding
cycle.

More specifically, assume that there exist two faces of G whose boundaries are equal
as unoriented cycles. Then M is homeomorphic to a sphere and Sk(G) is homeomor-
phic to a circle. In particular, after choosing an orientation of M , the boundaries of
the two faces as oriented cycles are each other’s inverse.

Proof. — Let F1 and F2 denote two faces of G which share the same unoriented
bounding cycle. Let c be a simple loop which represents this cycle, oriented in an ar-
bitrary way. Consider, in a split pattern (M ′,G′, ι, f) of (M,G), the two disksM ′1 and
M ′2 corresponding to F1 and F2 respectively. They are bounded by the same number
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of edges, which is also the combinatorial length of c. Let e′1,1, . . . , e′1,n and e′2,1, . . . , e′2,n
denote respectively the set of edges located on the boundary of M ′1 and M ′2, in such
a way that ∂M ′1 = e′1,1 · · · e′1,n and ∂M ′2 = e′2,1 · · · e′2,n. Each edge on the boundary
of M ′1 is sent by f to an edge of G which is also adjacent to F2, hence is identified
by ι with an edge bounding M ′2. We may assume that ι(e′1,1) = e′2,1. We may also
assume that f(e′1,1) = f(e′2,1) is the first edge traversed by c and this characterises
fully c among all representatives of the unoriented cycle ∂F1. Indeed, c traverses each
unoriented edge of G at most once, for ι does never identify two distinct edges of
the boundary of M ′1, or M ′2. Hence, c = f(e′1,1, . . . , e

′
1,n) = f(e′2,1, . . . , e

′
2,n), so that

ι(e′1,i) = e′2,i for all i ∈ {1, . . . , n}. The result follows.

Proof of Proposition 1.3.22. — The first step of this proof is a rather unpleasant
construction whose aim is to provide us with a simple way of telling apart the faces of
G. We achieve this by adding an edge with one loose endpoint in each face, as follows.

In the case where M is a disk and Sk(G) ⊂ ∂M , Gn = G for all n and the result
is true. In any other case, each face of G is bounded by at least one edge which is
not contained in ∂M . For each face F of G, let us choose a point mF ∈ F and a
point vF in the interior of an edge eF adjacent to F and not contained in ∂M . Let us
choose a continuous edge f̃F which crosses Sk(G) exactly once at vF , and finishes at
mF . We assume that vF is not the initial point of f̃F . We denote by fF the portion
of f̃F which joins vF to mF . For n ≥ 0 large enough, f̃F meets Sk(Gn), more precisely
the edge Sn(eF ) and only this edge. For such n, let vF,n be the last exit point of f̃F
from Sk(Gn). It is an interior point of Sn(eF ). Let Sn(fF ) be the portion of f̃F which
joins vF,n to mF .

Let us perform this construction for each face F , with the edges f̃F chosen to
be pairwise disjoint. Let us define G′ as the graph obtained from G by subdividing
the edges eF at vF and adding the edges fF . Also, for all n ≥ 0, let G′n be the
graph obtained from Gn by subdividing the edges Sn(eF ) at vF,n and adding the
edges Sn(fF ). We extend Sn : V → Vn to S′n : V′ → V′n by setting Sn(vF ) = vF,n,
and extend also Sn : E→ En to S′n : E′ → E′n in the obvious way. It is not difficult to
check that vF,n tends to vF as n tends to infinity, and hence that S′n(fF ) converges
uniformly to fF . By considering a small ball around vF , one checks also that the
bijections S′n still preserve the cyclic order at each vertex, including vF and mF .

The faces of G and G′ (respectively Gn and G′n) are obviously in bijective cor-
respondence which we denote simply with a prime. For instance, for all F ∈ F, the
cycle which bounds F ′ is deduced from ∂F by the insertion of a sequence fF f−1

F .
In particular, F and F ′ have the same topological closure. The boundary of F ′ is
the only facial cycle of G′ which involves the edge fF and it involves no other edge
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mF

vF

vF,n

fF

eF

F

Sn(eF )

Figure 10. The construction of the graphs G′ and G′n.

of G′ which is not contained in the skeleton of G. Hence, any facial cycle of G′ which
involves fF must be the boundary of F ′.

The advantage of this tedious construction is that for all F ∈ F, F ′ is the only face
of F′ whose closure contains the edge fF and in particular the vertex mF .

Consider now n ≥ 1 and a face F of G. Since Sn preserves the cyclic order of the
edges at each vertex, it follows from Proposition 1.3.21 that the cycle Sn(∂F ) is a
facial cycle of Gn. By Lemma 1.3.23, two faces of Gn cannot have the same boundary.
Hence, Sn(∂F ) is the boundary of a unique face of Gn which we denote by Sn(F ). By
construction, the equality ∂Sn(F ) = Sn(∂F ) holds for all F ∈ F.

The same construction provides us with a bijection S′n between F′ and F′n. Now
consider F ∈ F. By definition, S′n(F ′) is the face of G′n whose boundary is the cy-
cle Sn(∂F ) in which S′n(fF )S′n(fF )−1 has been inserted at the occurrence of the vertex
vF,n. Hence, mF belongs to the closure of S′n(F ′) and, by the discussion a few lines
above, S′n(F ′) = Sn(F )′.

Now this implies that mF belongs to the closure of Sn(F )′, which is equal to the
closure of Sn(F ). Since mF does not lie on the skeleton of Gn, this implies that mF ∈
Sn(F ).

For each face F of G, let us choose a connected open subset UF of F which con-
tains mF and such that the closure of UF is contained in F . The last assumption
implies that for n large enough, Sk(Gn) is disjoint from UF . Hence, UF is contained
in a unique face of Gn, which must be Sn(F ).

In particular, F uSn(F ) is contained in (F ∪Sn(F ))\UF . Since F nor Sn(F ) meet
another subset of the form UF1

for some F1 ∈ F, we deduce from this inclusion that,
for n large enough, FuSn(F ) is contained inM \

⋃
F∈F UF . Hence, lim sup(FuSn(F ))

is contained in the same set. This inclusion holds for any choice of the sets UF and
the result follows.
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1.3.3. Adjunction of edges. — Proposition 1.3.15 gives us a way of removing
some edges from a graph. We will also need a way of adding edges to a graph. The
typical problem is the following: we are given a compact surface M endowed with a
graph G, we consider a face F of this graph, two vertices v1 and v2 on the boundary
of F and we would like to join them by a new edge whose interior is contained in F .

If we are working in the category of topological surfaces and graphs with continuous
edges, then Proposition 1.3.8 suffices to guarantee the existence of a continuous edge
with the desired properties. However, if we are working with a graph with rectifiable
edges and insist that the new edge be rectifiable too, then we need something more.
The problem is a purely local one and we loose nothing by formulating it in the
plane. The difficulty is that it seems not to be known whether a rectifiable edge can
be straightened, even locally, by a bi-Lipschitz continuous homeomorphism of the
plane (see for instance [28]).

In this section and in this section only, we use the symbol ∂ to denote the topological
boundary of a set. We denote by H 1 the 1-dimensional Hausdorff measure on R2.

Proposition 1.3.24. — Let K be a compact subset of R2. Assume that ∂K is connected
and satisfies H 1(∂K) < +∞. Let v be a point of ∂K. Let m be a point of R2 \K.
Assume that v is curve-accessible from m, that is, that there exists a continuous curve
c : [0, 1]→ R2 such that c(0) = m, c(1) = v and c([0, 1)) ∩K = ∅. Then there exists
an injective Lipschitz-continuous curve with the same properties as c.

We start by proving an intermediary result, whose content is that two points of
the bounded connected component of the complement of a Jordan curve with finite
length can be joined inside this component by a path with finite length controlled by
the length of the Jordan curve.

Proposition 1.3.25. — Let U be a non-empty bounded connected open subset of R2 with
connected boundary. Assume that H 1(∂U) < +∞. For all a, b ∈ U , there exists a
rectifiable path c which joins a to b and such that `(c) = H 1(c) ≤ 100H 1(∂U).

Proof. — Since U is connected and open, it is arcwise connected. Let γ be a contin-
uous curve which joins a to b inside U . Set

ε = 1
4 min

(
d(γ([0, 1]), ∂U),diam(∂U)

)
> 0.

Let X be a maximal subset of ∂U such that for all x, y ∈ X with x 6= y, d(x, y) ≥ 2ε.
The assumptions on U imply that ∂U is compact, so that X is finite. Write
X = {x1, . . . , xn}.

Let us say that a finite set of circles are in generic position if no two distinct of them
are tangent and no three pairwise distinct of them have a common point. We claim
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that it is possible to choose n positive real number r1, . . . , rn in the interval (2ε, 4ε)

such that the boundaries of the balls Bi = B(xi, ri) are in generic position.
Indeed, let us choose r1 = 3ε. There are only a finite number of values of r2

(actually, two values) for which ∂B2 is tangent to ∂B1. Thus, we can choose r2 ∈
(2ε, 4ε) such that ∂B1 and ∂B2 are not tangent. Assume that r1, . . . , rk have been
chosen such that ∂B1, . . . , ∂Bk are in generic position. Then there are only a finite
number of values of rk+1 for which ∂B1, . . . , ∂Bk+1 would not be in generic position.
Hence, we can choose rk+1 in (2ε, 4ε) such that this does not happen.

Set K =
⋃n
i=1B(xi, ri). This is a compact set which contains ∂U , by maximality

of X. Moreover, each connected component of K meets ∂U , which is connected by
assumption. Hence, K itself is connected. Finally, K does not meet γ, so that a and b
are in the same connected component of R2 \K.

Consider x ∈ ∂K. Then x is on the boundary of one or two of the balls B1, . . . , Bn.
In any case, x admits a neighbourhood in which ∂K is a simple curve composed of
one or two arcs of circle. It follows that the boundary of K is a compact set each point
of which admits a neighbourhood homeomorphic to R. Hence, it is homeomorphic to
a finite union of pairwise disjoint circles.

a

b

U

∂U

Figure 11. The compact set K is the union of all the small disks. In this
case, its boundary is the union of three Jordan curves. The thicker path is
the one of which we control the length by 100H 1(∂U).

We have proved that K is bounded by a finite collection of pairwise disjoint Jordan
curves. Let us call interior of a Jordan curve the bounded connected component of
its complement. Since K is bounded and connected, ∂K is necessarily the union of a
Jordan curve J0 such that K is contained in the interior of J0, and a certain number
of Jordan curves J1, . . . , Jk whose interiors are disjoint and contained in the interior
of J0. Since a and b belong to the same bounded connected component of R2 \ K,
they both lie in the interior of one of the curves J1, . . . , Jk, say J1.

Let us give a bound on the length of J1 by bounding the total length of ∂K. Since
ε < diam(∂U), none of the balls B(xi, ε) contains ∂U . Let us choose i ∈ {1, . . . , n}
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and set, for y ∈ R2, πi(y) = d(xi, y). Then πi(∂U) is connected, contains 0 and also
contains a real larger than ε. Hence, πi(∂U) ⊃ (0, ε) and in fact πi(∂U ∩B(xi, ε)) con-
tains (0, ε). Since πi is 1-Lipschitz continuous, it follows that H 1(∂U ∩B(xi, ε)) ≥ ε.
Using the fact that the n balls B(xi, ε), i ∈ {1, . . . , n} are pairwise distinct, we de-
duce that nε ≤ H 1(∂U), which combined with inequality H 1(∂K) ≤ 8πnε yields
H 1(∂K) ≤ 8πH 1(∂U).

Let s be the straight path from a to b. Its length is smaller than diam(U) ≤
diam(∂U) ≤ H 1(∂U). If s does not meet K, it does not meet ∂U either and the
result is proved. Otherwise, let a′ and b′ be respectively the first and the last point
at which s meets ∂K. Let c be the path obtained by concatenating the straight path
from a to a′, then an arc of J1 from a′ to b′ and finally the straight path from b′ to b.
The length of c is bounded by `(c) ≤ `(s) + `(J1) ≤ 100H 1(∂U) as expected.

Proof of Proposition 1.3.24. — Since H 1 is a σ-additive measure and H 1(∂K) is
finite, H 1(∂K ∩ B(v, r)) tends to H 1({v}) = 0 as r tends to 0. Let (rn)n≥0 be a
decreasing sequence of positive reals such that

(19)
∑
n≥0

(
H 1(∂K ∩B

(
v, 2rn)

)
+ 4πrn

)
< +∞.

By shifting the sequence (rn) if necessary, we may assume that B(v, 2r0) does not
contain K. Since ∂K is connected, this implies that for all n ≥ 0, K ∩ ∂B(v, rn) 6= ∅.

Let c be a continuous curve which joins m to v and meets K only at v. For each
n ≥ 0, let mn be the last point of the curve c which is on ∂B(v, rn). Choose n ≥ 0.
Consider the compact set Kn = (K ∩B(v, 2rn)) ∪ ∂B(v, 2rn). It is connected, as the
image of the connected set K ∪ ∂B(v, 2rn) by the projection on the closed convex
set B(v, 2rn). The points mn and mn+1 belong to the same connected component of
the complement of Kn (see Figure 12). Let Un denote this connected component.

As a bounded connected component of the complement of a connected compact
subset of R2, Un has a connected boundary (see [38, p. 47], where this property is
called the Brouwer property of the sphere). Moreover, ∂Un is contained in ∂Kn =

(∂K ∩B(v, 2rn)) ∪ ∂B(v, 2rn). Hence, H 1(∂Un) ≤H 1(∂K ∩B(v, 2rn)) + 4πrn. So,
by Proposition 1.3.25, there exists a path cn+1 which joinsmn tomn+1 and has length
smaller than 100H 1(∂Un).

Finally, let c0 be a path of finite length which joins m to m0 outside K. Set
C = {v} ∪

⋃
n≥0 cn([0, 1]). By (19), it is the Lipschitz-continuous image of a segment

and it joins m to v. The set C needs not be the image of an injective path but since it
is compact and connected, by Proposition 14 in [9], there exists an injective Lipschitz-
continuous path which joins m to v in C. Such a path is exactly what we were looking
for.

We will make use of this result under the following form.
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v

mn

mn+1

c

K

m

Un

∂B(v, rn)∂B(v, 2rn)
∂B(v, rn+1)

Figure 12. The path cn+1 will join mn to mn+1 inside Un.

Proposition 1.3.26. — Let M be a compact surface. Let G be a graph on M . Let F be
a face of G. Let v1 and v2 be two vertices which lie on the boundary of F . There exists
an edge e such that e = v1, ē = v2 and e((0, 1)) ⊂ F . In particular, E ∪ {e, e−1} is
the set of edges of a graph on M .

In this statement, the assumption that the vertices lie on the boundary of the
face F can be understood in the topological sense or, as it is equivalent, in the sense
that they are traversed by the facial cycle associated to F .

Proof. — Let us endowM with a Riemannian metric. By the same result used at the
end of the previous proof ([9], Proposition 14), it suffices to prove that there exists a
compact connected subset C ofM with finite 1-dimensional Hausdorff measure which
contains v1 and v2 and such that C \ {v1, v2} ⊂ F . Since F is arcwise connected
by paths of finite length (for instance piecewise geodesic paths), it suffices to prove
that v1, hence v2, can be joined to at least one point of F by a curve of finite length
which has only its starting point outside F .

For this, choose a point n in F and choose a continuous curve c which joins n to v
and has only its finishing point outside F . That such a curve exists is obvious in a split
pattern of G. Choose also r > 0 such that the metric ball B(v, r) is diffeomorphic to
a disk and each edge starting from v1 crosses the circle ∂B(v1, r). Choose a point m
on c which c traverses after its last entry time in the ball B(v1, r). By applying
Proposition 1.3.24 to m and (Sk(G) ∩ B(v1, r)) ∪ ∂B(v1, r) inside the ball B(v1, r)

smoothly identified with a ball in R2, we find the desired curve with finite length.
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1.3.4. The group of loops in a graph. — The concatenation of paths is not a
group operation, even when it is restricted to a set of loops based at the same point,
in which case all pairs of loops can be concatenated. The obstruction is the fact that
if c is a non-constant path, then there is no path c′ such that cc′ is constant. However,
the path cc−1 is equivalent to the constant path for a natural equivalence relation.

Definition 1.3.27. — Let M be a compact topological compact surface. Two curves
c, c′ ∈ C(M) are elementarily equivalent if there exist three curves a, b, d such that
{c, c′} = {ab, add−1b}. We say that c and c′ are equivalent and write c ' c′ if there
exists a finite chain c = c0, . . . , cn = c′ of curves such that ci is elementarily equivalent
to ci+1 for each i ∈ {0, . . . , n− 1}.

This relation is an equivalence relation on C(M) similar to the equality of words
in a free group, with the important difference that for the relation ', there is no
analogue of the reduced form of a word, even if we restrict ourselves to rectifiable
paths. For example, the class of the rectifiable infinite polygonal path in the complex
plane which joins the points 0, eiπ, 0, 2−1 e2−1iπ, 0, . . . , 0, 2−n e2−niπ, 0, . . . contains no
path of minimal length.

Figure 13. The equivalence class of this rectifiable path contains no short-
est element.

B. Hambly and T. Lyons have defined in [21] an equivalence relation on rectifiable
paths for which the path described above is equivalent to the constant path equal
to 0. This relation is strictly less fine than ' and each class contains a unique element
of minimal length. We plan to investigate in a future work the importance of this
equivalence relation in the framework of the present theory.

On a graph however, these subtleties do not arise. Until the end of this section,
we work on smooth surfaces and consider paths instead of curves but all our results
apply to graphs on topological surfaces.

Lemma 1.3.28. — Let M be a compact surface endowed with a graph G. Let c and c′

be elements of P(G). Assume that c and c′ are elementarily equivalent. Then there
exist a, b, d in P(G) such that {c, c′} = {ab, add−1b}.

Proof. — Let a, b, d be given by the definition of the fact that c and c′ are elementarily
equivalent. Let us assume that c = ab and c′ = add−1b. Since a, b, d are pieces of a
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path in G, it suffices to show that their endpoints are vertices of G to show that they
are themselves paths in G. This is clear for a = c and b = c.

Let us say that the curve c backtracks at a point m ∈ M if there exists t, ε > 0

such that (t− ε, t+ ε) ⊂ [0, 1] and a parametrization of c such that c(t) = m and for
all h ∈ [0, ε), c(t + h) = c(t − h). A point at which a path in G backtracks must be
a vertex, hence d, which is a point at which c′ backtracks, is a vertex. There remains
to prove that m = a = d = b is a vertex.

Let G′ be the graph obtained by addingm to the set of vertices of G and subdividing
the edges of G accordingly. The graph G′ has the same skeleton as G. We claim that
either m is a backtracking point for c or c′, or G′ has at least three distinct outgoing
edges at m. In both cases, it follows that m is a vertex of G.

Let e−1
a denote the last edge of a as a path in G′, and ed and eb the first edges of d

and b as paths in G′. Let us assume that c does not backtrack at m. Then ea 6= eb. Let
us assume that c′ does not backtrack at m either. Then ad and d−1b do not backtrack
at m, so that ea 6= ed and ed 6= eb. The claim is proved.

If c is a path in a graph, we call combinatorial length of c and denote by length(c)

the number of edges which constitute c. A path is said to be reduced if it contains no
sequence ee−1 for some e ∈ E. Equivalently, a path is reduced if it is not elementarily
equivalent to a combinatorially shorter path.

Corollary 1.3.29. — Let M be a compact surface endowed with a graph G. Every class
of equivalence of P(G) contains a unique element of shortest combinatorial length,
which is characterised by the fact that it is reduced.

Proof. — By Lemma 1.3.28, two paths in a graph which are equivalent differ by a
finite number of insertions or erasures of sequences ee−1, where e is an edge of G.

Let us consider an equivalence class of paths. This class contains paths of minimal
combinatorial length. These paths are necessarily reduced. Thus, it suffices to prove
that the given class contains only one reduced path. Assume that there are two distinct
reduced paths, say c and c′. Consider a chain of paths c = c0, . . . , cn = c′ obtained by
successive erasures and insertions of sequences ee−1 where e ∈ E. Assume that this
chain minimises max{length(c0), . . . , length(cn)} among all chains from c to c′ and
that, among those minimisers, it also minimises the number of intermediate paths
of maximal length. Consider an integer k such that ck has maximal length among
c0, . . . , cn. Since c0 and cn are reduced, c1 is deduced from c0 by an insertion and cn
from cn−1 by an erasure. Thus, k ∈ {1, . . . , n− 1}. So, ck is deduced from ck−1 by an
insertion of, say, ee−1 and ck+1 from ck by an erasure of ff−1. Let us assume that
e /∈ {f, f−1}. Then the sequence ff−1 is already present in ck−1 and could have been
removed before the insertion of ee−1, thus diminishing the number of intermediate
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paths of maximal length. By assumption, this is impossible. Hence, e = f . Moreover,
for the same reason, the sequence ee−1 removed between ck and ck+1 is not present in
ck−1. It cannot be the sequence ee−1 inserted between ck−1 and ck, for then ck−1 =

ck+1 and by removing ck and ck+1 from the chain, we would again diminish the number
of intermediate paths of maximal length. Hence, exactly one of the letters inserted in
ck is removed between ck and ck+1. There are two cases and in both, it appears that
ck−1 = ck+1. This is again impossible. Finally, there is exactly one reduced path in
each equivalence class of paths.

We can now define the group of reduced loops.

Definition 1.3.30. — Let M be a smooth surface endowed with a graph G. Let v be a
vertex of G. We denote by RL(G) (resp. RLv(G)) the subset of L(G) formed by reduced
loops (resp. reduced loops based at v).

The set RLv(G) is a group for the operation of concatenation-reduction, which to
two loops l1 and l2 associates the unique reduced loop equivalent to l1l2.

It is a well-known fact that the group RLv(G) is free. At a later stage, we will
devote some time to finding families of generators of this group which satisfy special
properties. For the moment, let us simply recall why it is a free group, by using
spanning trees.

Definition 1.3.31. — Let M be a compact surface endowed with a graph G.
A spanning tree of G is a subset T ⊂ E such that T = T−1 and such that by

concatenating edges of T , one may construct a path from any vertex to any other but
no simple cycle.

For all vertices v1, v2 of G, we denote by [v1, v2]T the unique injective path in T

which joins v1 to v2. Let v be a vertex of G. For each edge e of E, we define the loop

le,T = [v, e]T e[ē, v]T .

If e ∈ T , then le,T is equivalent to the constant loop. Otherwise, it is reduced and in
fact a lasso (see Definition 1.2.4). Indeed, the paths [v, e]T and [v, ē]T can be written in
a unique way as [v, w]T [w, e]T and [v, w]T [w, ē]T with [w, e]T ∩ [w, ē]T = {w}. Then le
is the lasso with spoke [v, w]T and meander [w, e]T e[ē, w]T .

Definition 1.3.32. — Let M be a compact surface endowed with a graph G. An orien-
tation of G is a subset E+ of E such that for all e ∈ E, exactly one of the two edges
e and e−1 belongs to E+. If M is oriented, e is an edge which lies on the boundary
of M and which bounds M positively, we insist that e ∈ E+.

Given an orientation E+ of G and a subset Q ⊂ E, we use the notation

Q+ = Q ∩ E+.
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e

v

w

e

e

Figure 14. A spanning tree of our favourite graph. On the right, the
position of the vertex w at which the injective paths [e, v]T and [ē, v]T first
meet, for a certain choice of v and e.

Given a graph G, we set

v(G) = # V, e(G) = 1
2# E and f(G) = # F.

The following lemma is classical.

Lemma 1.3.33. — Let M be a compact surface endowed with a graph G. Let v be a
vertex of G. Let T ⊂ E be a spanning tree of G. Let E+ be an orientation of G. The
group RLv(G) is freely generated by the loops {le,T : e ∈ (E \ T )+}. In particular, it
is free of rank e(G)− v(G) + 1. Moreover, the natural mapping Lv(G)→ π1(Sk(G), v)

descends to a group isomorphism i : RLv(G)
∼−→ π1(Sk(G), v).

Proof. — If l = e1 · · · en belongs to Lv(G), then l ' le1,T · · · len,T . Hence, the
loops le,T , e ∈ E \ T generate RLv(G). Since le−1,T = l−1

e,T for all e ∈ E, this implies
that the loops le,T , e ∈ (E \ T )+ generate RLv(G). Now let X be a group. Let
x = {xe : e ∈ E \ T} be a collection of elements of X such that xe−1 = x−1

e for
all e ∈ E \ T . Complete the collection x by setting xe = 1 for all e ∈ T . The
mapping from Lv(G) to X which sends the loop l = e1 · · · en to x1 · · ·xn descends
to a group homomorphism from RLv(G) to X which sends le,T to xe for all e ∈ E.
Thus, RLv(G) satisfies the universal property which characterises freeness. Finally,
since T has v(G) vertices, it has v(G)− 1 unoriented edges. Hence, RLv(G) is free of
rank e(G)− v(G) + 1.

It is obvious that two equivalent loops are homotopic in Sk(G). Hence, the mor-
phism i is well defined. Let us use the letter T to denote the subset

⋃
e∈T e of Sk(G).

This subset is contractible and it is easy to check that Sk(G) has the same homo-
topy type as Sk(G)/T , the topological space obtained from Sk(G) by identifying
all the points of T . This topological space is a bunch of circles, one for each ele-
ment of (E \ T )+. Moreover, each loop le,T , composed with the continuous projection
Sk(G)→ Sk(G)/T , becomes a loop which goes once around the circle corresponding
to e. Thus, the composition of i with the isomorphism π1(Sk(G), v)→ π1(Sk(G)/T, v)

is an isomorphism, and i is also an isomorphism.
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1.3.5. Graphs with one face. — By Proposition 1.3.8, a graph with a single face
on a connected surface determines a way of realizing this surface as the quotient of
a disk by a suitable identification of its boundary. On the other hand, many non-
isomorphic patterns with a single face give rise, when they are completely sewed,
to homeomorphic surfaces. In this section, we discuss this fact in relation with the
classical proof of the theorem of classification of surfaces (see Theorem 1.1.3) by
cut-and-paste.

It is convenient to represent a pattern with one face by a word in a free group. This
is what we explain now. For each integer n ≥ 1, let us call n-gon the split pattern
(D,Gn) formed by a closed disk D and a graph Gn with n unoriented edges on the
boundary of D. This split pattern is unique up to homeomorphism.

Definition 1.3.34. — Consider a set X and let 〈X〉 denote the free group over X.
Let w be a an element of 〈X〉. Write w as a reduced word x1 · · ·xn with x1, . . . , xn
in X ∪X−1. We say that w is admissible if w is cyclically reduced, that is, if xn 6= x−1

1 ,
and each letter of X appears at most twice in w, that is, for each x ∈ X,

#
{
i ∈ {1, . . . , n} : xi ∈ {x, x−1}

}
≤ 2.

We say that an admissible word w is closed if no letter appears exactly once in w.

The fact that a word is admissible is not changed if this word is submitted to a
circular permutation of its letters nor if it is replaced by its inverse. Of course, it is not
changed either by changing the names of the letters: the set X plays no special role
and we identify two words which differ only by relabelling the letters which constitute
them. We define now a correspondence between admissible words and graphs with
one face.

Definition 1.3.35. — 1) Let M be a compact surface endowed with a graph G. Assume
that G has a single face and that each vertex of G is the starting point of at least
two distinct edges. Let E+ be an orientation of G. Then each cycle which represents
the boundary of the unique face of G is a cyclically reduced word in the letters of E+,
that is, an element of 〈E+〉. We define

W (M,G) =
{
w ∈ 〈E+〉 : w is a facial cycle of G

}
.

2) Let w = x1 · · ·xn be an admissible word of length n. Let (D,Gn) be an n-gon.
Write En = {e±1

1 , . . . , e±1
n } in such a way that e1 · · · en represents ∂D. Let ιw be the

involution of En defined as follows: for all i ∈ {1, . . . , n},

ιw(ei) =

{
eεj if there exists j 6= i and ε = ±1 such that xi = xεj ,

ei otherwise.
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The closed compact surface obtained by completely sewing the pattern (D,Gn, ιw) is
said to be associated with w and we denote it by Σ(w).

Let M be a compact surface. It follows from the definitions that for all graph G
with a single face on M and for all w ∈W (M,G), the surface Σ(w) is homeomorphic
to M . On the other hand, there are in general many admissible words which are not
in W (M,G) whose associated surface is homeomorphic to M . Ignoring the precise set
to which the letters of the words that we consider belong, we define a set of words as
follows:

W (M) =
{
w admissible word : M(w) is homeomorphic to M

}
.

Each word of W (M) belongs to W (M,G) for some graph G, for instance the graph
constructed by sewing the pattern associated to this word. We use this discussion to
prove the following theorem.

Proposition 1.3.36. — Let M be a compact surface. Let G1 and G2 be two graphs
on M . There exists a homeomorphism f : M → M which preserves each connected
component of ∂M , and which is orientation-preserving if M is oriented, and a finite
sequence of graphs G1,0, . . . ,G1,r such that G1,0 = G1 and G1,r = f(G2), and such that
for all i ∈ {0, . . . , r−1}, G1,i+1 is deduced from G1,i by erasure of an edge in the sense
of Proposition 1.3.15 or by adjunction of an edge in the sense of Proposition 1.3.26.

Proof. — By erasing enough edges of G1 and G2, we can transform them into two
graphs with a single face and of which every vertex is the initial point of at least two
distinct edges. Such graphs determine two words of W (M) which we denote by w1

and w2.
The theorem of classification of surfaces as it is proved in [30] asserts that, by

repeated operations of cutting and pasting, w1 and w2 can be put under one of the
standard words [a1, a2] · · · [ag−1, ag] or a2

1 · · · a2
g if M is closed of genus g, or the same

words multiplied by a word of the form d1c1d
−1
1 · · · dpcpd

−1
p if M has a boundary,

with c1, . . . , cp corresponding to the p boundary components of M .
The general operation of cutting and pasting, described at the level of a split

pattern (M ′,G′) of G, consists in choosing two vertices v1 and v2 on the boundary
ofM ′ and a pair of edges (e, ι(e)) which are identified by ι and separated by v1 and v2.
One then adds to G′ an edge inside M ′ which joins v1 to v2, identifies e and ι(e) and
removes the joint of this identification (see Figure 1.3.5). Seen onM , these operations
can be described simply as follows: add an edge to G1 joining v1 to v2, thanks to
Proposition 1.3.26, thus creating two faces, and remove the edge e, thus retrieving a
graph with a single face.
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eι(e)

v1

v2

Figure 15. The basic operation of cutting and pasting

Thus, by successively adding and erasing edges to G1 and G2, we may arrive at
a point where W (M,G1) = W (M,G2). Then, by Proposition 1.3.8, there exists a
homeomorphism of M which sends G1 to G2.

1.4. Riemannian metrics

1.4.1. Measured and Riemannian marked surfaces. — In the setting of
Markovian holonomy fields, the scale of time is provided by a means to measure areas
on each surface that one considers.

Definition 1.4.1. — Let M be a smooth compact surface. A measure of area on M is
a smooth non-vanishing density on M , that is, a Borel measure which has a smooth
positive density with respect to the Lebesgue measure in any coordinate chart.

A gluing is a diffeomorphism outside a negligible subset. Hence, a measure of area
on a surface determines a measure of area on any other surface obtained by splitting
this surface along a curve (see Proposition 1.1.11).

Definition 1.4.2. — Let M be a smooth compact surface endowed with a measure of
area denoted by vol. Let l be a mark on M and let Spll(M) be the surface obtained by
splitting M along l. Let f : Spll(M) → M be the associated gluing. Then vol ◦ f is a
measure of area on Spll(M) which we denote by Spll(vol).

On an oriented surface, a measure of area is also the same thing as a non-vanishing
differential 2-form. We are going to work with surfaces endowed with a specific mea-
sure of area, on which we will choose Riemannian metrics. We would like these two
structures to be compatible. In fact, we have the following result.

Proposition 1.4.3. — Let (M,C ) be a marked surface. Let vol be a measure of area
on M . There exists a Riemannian metric on M whose Riemannian volume is vol and
such that the curves of C ∪B(M) are closed geodesics.

Before proving this proposition, let us state a definition.
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Definition 1.4.4. — A marked Riemannian surface is a quadruple (M, vol, γ,C ), where
(M, vol,C ) is a marked surface endowed with a smooth density and γ is a Riemannian
metric on M with Riemannian volume vol and such that the curves of C ∪B(M) are
closed geodesics.

Proof. — We denote by volγ the Riemannian volume of a Riemannian metric γ

on M . Let us first assume that M is orientable and has no boundary. We write
C = {l±1

1 , . . . , l±1
q }.

Let γ0 be any Riemannian metric on M . Let f be the smooth real function on M
such that vol = efvolγ0

. Set γ1 = efγ0. The Riemannian volume of γ1 is vol.
For each i ∈ {1, . . . , q}, let Ti denote a neighbourhood of li diffeomorphic to

[−1, 1]×R/2πZ such that li corresponds to {0}×R/2πZ. We assume that T1, . . . , Tq
are pairwise disjoint. For each i ∈ {1, . . . , q}, we denote by (r, θ)i the natural coordi-
nates in Ti.

Let ϕ : [−1, 1] → [0, 1] be a smooth function such that ϕ([−1,− 3
4 ] ∪ [ 3

4 , 1]) = {0}
and ϕ([− 1

2 ,
1
2 ]) = {1}. Let Φ be the smooth real function on M defined by

Φ(m) =

{
ϕ(r) if m = (r, θ)i for some i ∈ {1, . . . , q},
0 otherwise.

For each i ∈ {1, . . . , q}, write T+
i = [0, 1] × R/2πZ, T−i = [−1, 0] × R/2πZ, and

define δ±i =
∫
T±i

Φvolγ1
. Then, choose a smooth function Ψ : M → R+, vanishing

outside the union of the Ti’s, such that the following properties are satisfied: for each
i ∈ {1, . . . , q}, Ψ = 1 in a neighbourhood of li and Ψ = 0 in a neighbourhood of ∂Ti,
Φ + Ψ > 0 on Ti and

∫
T±i

Ψvol(dr2+dθ2)i = δ±i . Now consider the Riemannian metric

γ2 = (1− Φ)γ1 + Ψ

q∑
i=1

(
dr2 + dθ2

)
i
.

The Riemannian volume of γ2 coincides with vol on M \ (T1 ∪ · · · ∪ Tq) and in a
neighbourhood of ∂T1 ∪ · · · ∪ ∂Tq. Moreover, for all i ∈ {1, . . . , q}, the total volume
of T±i is the same for vol and volγ2

. Finally, l1, . . . , lq are geodesic for γ2.
For each i ∈ {1, . . . , q}, and all r ∈ [−1, 1], set Vi(r) =

∫ r
0

∫ 2π

0
vol. It is understood

that Vi(r) < 0 when r < 0. Similarly, set Vi,γ2
(r) =

∫ r
0

∫ 2π

0
volγ2

. The functions Vi
and Vi,γ2

are both smooth, increasing, equal to 0 at r = 0 and they coincide on
neighbourhoods of 1 and −1. Define a diffeomorphism ρ of M by setting

ρ(m) =

{ (
V −1
i

(
Vi,γ2

(r)
)
, θ
)
i

if m = (r, θ)i for some i ∈ {1, . . . , q},
m otherwise.

The metric γ3 = (ρ−1)∗γ2 satisfies volγ3
= ρ∗volγ2

. Hence, the volume of any cylinder
[r, s] × R/2πZ, r, s ∈ [−1, 1] is the same for volγ3 and for vol. Moreover, since ρ
preserves the curves l1, . . . , lq, they are still geodesic for γ3.
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Let D and D3 be the two smooth functions defined on T1 ∪ · · · ∪ Tq such that
vol = Ddr ∧ dθ and volγ3 = D3dr ∧ dθ. For each i ∈ {1, . . . , q}, define

Ai(r, θ) =

∫ θ

0

D
(
(r, ξ)i

)
dξ and Ai,γ3(r, θ) =

∫ θ

0

D3

(
(r, ξ)i

)
dξ.

By construction of γ3, we have for each i ∈ {1, . . . , q} and all r ∈ [−1, 1] the equality
Ai(r, 2π) = Ai,γ3

(r, 2π). It is easy to check that the mapping α from M to itself
defined by

α(m) =

{ (
r,A−1

i

(
Ai,γ3

(θ)
))
i

if m = (r, θ)i for some i ∈ {1, . . . , q},
m otherwise

is a diffeomorphism. Set γ4 = (α−1)∗γ3. Then by construction, volγ4
and vol give the

same volume to any subset of Ti which is a rectangle in the coordinates (r, θ)i. Hence,
they agree on T1 ∪ · · · ∪ Tq, hence on M . Since α preserves the curves l1, . . . , lq, they
are still geodesic for γ4. Thus, γ4 has the desired properties.

Let us explain how the result extends to surfaces with boundary and non-orientable
surfaces. Let M be a non-orientable surface without boundary. Then there exists an
orientable double of M , that is, an orientable surface D(M) and a smooth mapping
f : D(M) → M which is a covering of degree 2. This surface D(M) can for instance
be constructed as the unitary frame bundle of the real line bundle

∧2
T ∗M for some

Riemannian metric on M . The density vol and the marks of M can be lifted through
f . This yields an orientable marked surface (D(M), D(C )) endowed with a density
D(vol) whose total area is equal to twice that of vol. The result that we have proved
above applied onD(M) yields a Riemannian metric γ with Riemannian volumeD(vol)

and such that the curves ofD(C ) are geodesics. Let α be the non-trivial automorphism
of the covering f : D(M)→M , that is, the diffeomorphism of D(M) which exchanges
the sheets of the covering. Then the Riemannian metric α∗γ has Riemannian volume
α∗D(vol) = D(vol) and makes the curves of α−1(D(C )) = D(C ) geodesics. Since the
equations of geodesics are linear in the metric, the curves of D(C ) are also geodesic
for the metric 1

2 (γ+α∗γ). This metric has also Riemannian volume D(vol). Moreover,
it is invariant by α, hence descends to a Riemannian metric on M with the desired
properties.

Finally, if M has a boundary, then we may glue a disk along each boundary com-
ponent of M and extend vol to a measure of area on the surface without boundary
thus obtained.

1.4.2. Partially ordered sets of graphs. — The set of graphs on a compact
surface carries a natural partial order.
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Definition 1.4.5. — Let M be a topological compact surface. Let G1 and G2 be two
graphs on M . We say that G2 is finer than G1 and write

G1 4 G2 if C(G1) ⊂ C(G2).

It is straightforward that G2 is finer than G1 if and only if E1 ⊂ C(G2). The
inclusion E1 ⊂ E2 implies G1 4 G2 but the converse is false.

Figure 16. The graph of Figure 5 and a refinement of it.

As a poset, the set of graphs on a surface has few good properties. In particular,
it is not directed, which means that it contains pairs without upper bound.

Lemma 1.4.6. — Let M be a topological compact surface. The set of graphs on M

endowed with the partial order 4 is not directed. In other words, there exist two
graphs G1 and G2 on M such that no third graph G satisfies G1 4 G and G2 4 G.

Proof. — Let U be an open subset of M identified through a homeomorphism with
the disk of R2 centred at the origin and of radius 2. Let e1 and e2 be the parametrised
curves defined by

∀t ∈ [0, 1], e1(t) = (t, 0) and e2(t) =
(
t, t2 sinπ/t

)
.

For all k ≥ 1, let Ak denote the open domain of R2 delimited by the restrictions of e1

and e2 to [ 1
k+1 ,

1
k ]. The sets Ak, k ≥ 1 are also the bounded connected components of

the complement of the union of the ranges of e1 and e2 in the plane.
The curves e1 and e2 are edges, so by Lemma 1.3.7, there exist two graphs G1

and G2 onM such that e1 is an edge of G1 and e2 is an edge of G2. Assume that there
exists a graph G such that G1 4 G and G2 4 G. Then Sk(G) would contain the union
of the ranges of e1 and e2. Since the range of an edge has an empty topological interior,
none of the sets Ak would be contained in Sk(G). Hence, G would have infinitely many
faces. We have observed after Proposition 1.3.8 that this is impossible.

In the lemma above, it is not difficult to check that one of the two graphs, for
instance G1, can even be chosen arbitrarily. This lack of upper bounds will anyway
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be a serious problem for us at a later stage. A better-behaved substitute for the set
of graphs is the set of graphs with piecewise geodesic edges.

Definition 1.4.7. — Let (M,C ) be a marked surface endowed with a Riemannian met-
ric γ. We define Grγ(M,C ) as the set of graphs on (M,C ) with piecewise geodesic
edges, that is

Grγ(M,C ) =
{
G = (V,E,F) graph on (M,C ) : E ⊂ Aγ(M)

}
.

The set Grγ(M,C ) can be non-empty only if the marks on M are geodesic curves.
We know by Proposition 1.4.3 that it is always possible to choose a Riemannian metric
on M for which this is the case.

The next result states that Grγ(M,C ) is indeed a better set of graphs than the set
of all graphs.

Proposition 1.4.8. — Let (M,C ) be a marked surface endowed with a Riemannian
metric for which the marks are geodesic curves. Any finite family of piecewise geodesic
paths on M is a subset of P(G) for some graph G on (M,C ) with geodesic edges.
In particular, the poset (Grγ(M,C ),4) is directed.

Proof. — We have observed after the definition of a graph (Definition 1.3.2) that
there exists a graph on M with geodesic edges. Now, by induction on the number of
curves in the finite family of curves that we consider, it suffices to prove that, given a
piecewise geodesic path c and a graph G0 with geodesic edges, there exists a graph G
with geodesic edges such that P(G) ⊃ P(G0) ∪ {c}.

For this, let us subdivide c into a product of geodesic edges e = e1 · · · em in such
a way that each edge ek either is contained in one edge of G0 or has its interior
contained in the interior of a face. By adding finitely many vertices to G0, which
means subdividing some of its edges, we produce a new graph G1 which is such that
each ek which is contained in an edge of G0 is an edge of G1. Each other ek has its
interior contained in a single face of G1. By lifting the curves e1, . . . , em to a split
pattern of G1, we reduce the problem to the case of a finite collection of geodesic
segments contained in the interior of a disk with piecewise geodesic boundary. In this
case, since the skeleton of G1 contains the boundary of the disk, it follows from
Proposition 1.3.10 that any pre-graph obtained by adding edges to G1 and whose
skeleton is connected is a graph. Thus, it suffices to join one endpoint of each of the
curves e1, . . . , em to a point on the boundary of the disk by a geodesic segment and
then to add a vertex at every point where two distinct geodesic curves meet. Hence,
G1 can be refined into a graph G with geodesic edges such that e1, . . . , em belong
to P(G).
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In order to prove that Grγ(M,C ) is directed, consider two graphs G1 and G2 with
piecewise geodesic edges. The property that we have just proved applied to E1 ∪ E2

provides us with a graph which is finer than both G1 and G2.

1.4.3. Approximation of graphs. — In this section, we prove that any graph can
be approximated in a strong sense by a sequence of graphs with piecewise geodesic
edges. We start by defining the lasso decomposition of a piecewise geodesic path,
which is a variant of the more familiar operation of loop-erasure. Recall the definition
of equivalence of paths and lassos (see Section 1.3.30).

Proposition 1.4.9. — Let (M,γ) be a Riemannian compact surface. Let c be an element
of Aγ(M) such that c 6= c. There exists in Aγ(M) a finite sequence of lassos l1, . . . , lp
with meanders m1, . . . ,mp and an injective path d with the same endpoints as c such
that

1) c ' l1 · · · lpd,
2) `(c) ≥ `(m1) + · · ·+ `(mp) + `(d).
If c is a loop, the same decomposition holds with the single difference that d is a

simple loop. In both cases, we call d the loop-erasure of c and denote it by LE(c).

Figure 17. A path, the two lassos involved in its lasso decomposition and
its loop-erasure.

Proof. — By Lemma 1.4.8, we may assume that c is a path in a graph. By adding
vertices to this graph, we may also assume that no edge of this graph is a simple loop.
Let us write c = ei1 · · · ein as a product of edges. We proceed by induction on n. If
n = 1, then c is its own loop-erasure. Now assume that n > 1. If c is not reduced, that
is, if it contains at least one sequence ee−1, then we reduce it. This can only shorten c.
Now set r = min{j > 1 : ∃ k ∈ {1, . . . , j−1}, eij = eik}. This is the first time at which
c hits itself. Assume that eir = eip with 1 ≤ p < r. By definition of r, p is uniquely
determined by this relation. Set t = ei1 · · · eip−1 , m = eip · · · eir and c′ = teir+1 · · · ein .
Then c ' tmt−1c′. By construction, m is a simple loop and c′ is a path shorter than
c with the same endpoints. Moreover, `(c) = `(c′) + `(m). The result follows.

Proposition 1.4.10. — Let (M, vol, γ,C ) be a marked Riemannian surface. Let G =

(V,E,F) be a graph on (M,C ). Let ε > 0 be a real number. There exists a graph
G′ = (V′,E′,F′) on (M,C ) with piecewise geodesic edges and two bijections S : E→ E′

and S : F→ F′, denoted by the same letter, such that the following properties hold.
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1) V′ = V.
2) The bijection S : E → E′ commutes with the inversion and preserves the end-

points: for all e ∈ E, S(e−1) = S(e)−1, S(e) = e and S(e) = ē.
3) The bijection S : P(G) → P(G′) induced by S is such that ∂(S(F )) = S(∂F ),

for all F ∈ F.
4) For all e ∈ E, d`(e, S(e)) < ε and for all F ∈ F, vol((F ∪S(F ))\(F ∩S(F ))) < ε.

Notice that it would not solve the problem to simply replace each edge by the loop-
erasure of a fine dyadic approximation of it. Indeed, the new edges thus produced may
behave badly near the vertices. For example, several edges may form a complicated
spiral near a vertex that they share. In this case, it is neither certain that their loop-
erased dyadic piecewise geodesic approximations do not intersect each other nor that
they leave the vertex in the same cyclic order as the original edges.

If x, y ∈ M and d(x, y) is smaller than the injectivity radius of (M,γ), we denote
by [x, y] the segment of minimizing geodesic joining x to y.

Proof. — Let R be the injectivity radius of M . Let r0 ∈ (0, R) be such that the
balls B(v, r0), v ∈ V are pairwise disjoint, an edge e meets a ball B(v, r0) only if v
is an endpoint of e, and the cyclic order of the outcoming edges at every vertex v is
the cyclic order of their last exit points from the ball B(v, r) for all r ∈ (0, r0). The
existence of such an r0 is granted by Lemma 1.3.16. Let us choose an orientation of
each ball B(v, r0), v ∈ V. Thanks to the Riemannian metric, we parametrise all edges
at constant speed.

For all real r ∈ (0, r0) and all e ∈ E, define

te(r) = sup
{
t ∈ [0, 1] : d(e, e(t)) = r

}
.

Observe that 1− te−1 = inf{t ∈ [0, 1] : d(e(t), ē) = r}. Define

Ar(e) =
[
e, e(te(r))

]
e |[te(r),1−te−1 (r)]

[
e(1− te−1(r)), ē

]
.

The path Ar(e) is the concatenation of three injective paths which meet only at their
endpoints, so that it is injective. Thus, Ar(e) is an edge with the same endpoints
as e. Let e and e′ be two edges such that e′ /∈ {e, e−1}. The central portions of Ar(e)
and Ar(e

′) are contained in e and e′ respectively, so that they are disjoint. By the
assumption made on r, they do not enter any ball B(v, r), v ∈ V. Hence, Ar(e)
and Ar(e′) meet, if at all, in one of these balls and this can occur only at one of their
endpoints.

Let e be an edge. The continuity and injectivity of e imply that te(r)→ 0 as r → 0.
Since d`(Ar(e), e) ≤ 2(te(r)+te−1(r))`(e), this implies that Ar(e) tends to e as r tends
to 0. Moreover, one always has the inequality `(Ar(e)) ≤ `(e).
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e Ar(e)

Cr,n(e) = Dn(Ar(e)) = S0
p(e) S1

p(e) = LE(S0
p(e))

Figure 18. The successive stages of the definition of the approximation
of an edge.

Let r ∈ (0, r0) be fixed. Let n0 ≥ 1 be an integer such that for all e ∈ E, 2−n0`(e) <

r < R. For all integer n ≥ n0, define

Cr,n(e) = Dn

(
Ar(e)

)
,

where Dn is the dyadic approximation of order n (see Definition 1.2.11). The
path Cr,n(e) is piecewise geodesic, with the same endpoints as e, but it may not
be injective, even for large n. On the other hand, it coincides with Ar(e) near its
endpoints, more precisely, on a segment of length at least r− 2−n`(e). When n tends
to infinity, Cr,n(e) converges to Ar(e). We claim that for all e, e′ ∈ E such that
e′ /∈ {e, e−1}, the paths Cr,n(e) and Cr,n(e′) intersect only at some of their endpoints
for n large enough. Indeed, consider for all e ∈ E the segment

A′r(e) =
{
m ∈ Ar(e) : d(m, e) ≥ 1

2r, d(m, ē) ≥ 1
2r
}
.

Choose n1 ≥ n0 such that

2−n1 max
{
`(e) : e ∈ E

}
< min

(
1
2r,

1
2 min{d(Ar(e), A

′
r(e
′)) : e, e′ ∈ E, e′ /∈ {e, e−1}}

)
.

Choose e, e′ ∈ E such that e′ /∈ {e, e−1}. For all n ≥ n1, Cr,n(e) and Cr,n(e′) are
respectively contained in the sets Ar(e) ∪ {m ∈ M : d(m,A′r(e)) < 2−n`(e)} and
Ar(e

′) ∪ {m ∈ M : d(m,A′r(e
′)) < 2−n`(e)}, whose intersection is the same as the

intersection of e and e′.
For each integer p ≥ 1, choose r ∈ (0, r0) such that d`(e,Ar(e)) < 1

2p for all e ∈ E.
Then choose n ≥ n1 such that d`(Ar(e), Cr,n(e)) < 1

2p for all e. Set S0
p(e) = Cr,n(e).

Then for each e ∈ E, the sequence (S0
p(e))p≥1 converges to e with fixed endpoints,

and satisfies `(S0
p(e)) ≤ `(e). For each e ∈ E and each p ≥ 1, set S1

p(e) = LE(S0
p(e)).

We claim that a subsequence of the sequence (S1
p(e))p≥1 tends to e when p tends to

infinity.
Indeed the sequence (S1

p(e))p≥1 is uniformly bounded in length by `(e). Hence, the
paths being parametrised at constant speed, it is relatively compact in the uniform
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topology and we can extract a sequence (S1
pq (e))q≥1 which converges uniformly to a

path ẽ. The image of ẽ is contained in the image of e and it joins e to ē. Hence, the
images of ẽ and e coincide. In particular, `(ẽ) ≥ `(e). Using the lower semi-continuity
of the length with respect to the uniform convergence, we find

`(e) ≤ `(ẽ) ≤ lim inf `
(
S1
pq (e)

)
≤ sup `

(
S1
pq (e)

)
≤ `(e).

It follows from these inequalities that `(S1
pq (e)) converges to `(e), hence S1

pq (e) to e,
as q tends to infinity. Let us choose a subsequence (pq)q≥0 such that the convergence
holds for each edge e ∈ E and define Sq(e) = S1

pq (e) for all q ≥ 0.
For all e ∈ E and all q ≥ 0, Sq(e) is a piecewise geodesic edge with the same

endpoints as e. Moreover, by construction, Sq(e−1) = Sq(e)
−1. If e is geodesic, then

Sq(e) = e. Finally, the set Eq = {Sq(e) : e ∈ E} is the set of edges of a pre-graph
on (M,C ). By Corollary 1.3.12, Eq is in fact the set of edges of a graph on (M,C ),
which we denote by Gq.

By construction, the bijection Sq between E and Eq preserved the cyclic order at
every vertex of V. Let us apply Proposition 1.3.22. Since vol(Sk(G)) = 0, the graph Gq

satisfies all the desired properties for q large enough.
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CHAPTER 2

MULTIPLICATIVE PROCESSES INDEXED BY PATHS

In this chapter, we begin the study of the class of objects to which Markovian
holonomy fields belong: stochastic processes indexed by paths on a compact surface
and with values in a compact Lie group, which satisfy a condition of multiplicativity.
We discuss the canonical space of such processes, two distinct σ-fields on it, and
prove the version of Kolmogorov’s theorem that is best suited to our situation. We
then study a kind of uniform measure on the canonical space, thus providing the first
example of what will be called in the next chapter a discrete Markovian holonomy
field. We conclude by constructing a set of generators of the group of reduced loops
in a graph for which we are able to determine the finite-dimensional marginal of the
uniform Markovian holonomy field.

From now on, the expression compact surface will mean smooth compact surface.

2.1. Multiplicative functions

Let G be a group, on which we make for the moment no assumption at all. Recall
that P(M) denotes the set of paths on the surface M (see Definition 1.2.2).

Definition 2.1.1. — LetM be a compact surface. Let P be a subset of P(M). A function
h : P → G is said to be multiplicative if h(c−1) = h(c)−1 for all c ∈ P such that
c, c−1 ∈ P and h(c1c2) = h(c2)h(c1) for all c1, c2 ∈ P such that c1 = c2 and c1c2 ∈ P .
The set of multiplicative functions from P to G is denoted by M(P,G).

For an explanation of the reversed order in this definition, see the introduction,
Section 0.5.

The gauge group is the symmetry group of the physical theory from which our
objects are issued.

Definition 2.1.2. — The group GM of all mappings from M to G is called the gauge
group ofM and it acts by gauge transformations on the space M(P(M), G), as follows.
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If j = (jm)m∈M belongs to GM and h belongs to M(P(M), G), then j · h is defined by

∀c ∈ P(M), (j · h)(c) = j−1
c̄ h(c)jc.

More generally, given a subset P of P(M), the group GV acts on M(P,G) in the same
way, where V is defined as the set of endpoints of the paths of P .

Example 2.1.3. — Assume that l1, . . . , ln are n simple loops based at the same pointm
of M . Write L = {l1, . . . , ln}. The concatenation of two loops of L is never a simple
loop, hence never an element of L. If we assume moreover that the inverse of a loop of L
is never in L, then anyG-valued function on L is multiplicative, so that M(L,G) = GL.
The action of the gauge group on M(L,G) is simply the action of G = G{m} on GL

by simultaneous conjugation of each factor. This fundamental example should be kept
in mind when one reads Lemma 2.1.5. It explains the importance of this action of G
in our context.

We cannot do much if we do not make a few assumptions on G. For the rest of this
section, we assume that it is a compact topological group. We do not assume that it
is connected, so that it can in particular be finite. Also, for the moment, we do not
assume that it is a Lie group. The group G carries its normalised Haar measure and
we denote simply by

∫
G
f(x)dx the integral of a function f : G→ R with respect to

this measure.
Let P be a subset of P(M). The object of this paragraph is to discuss two natural

σ-fields on M(P,G). The simplest one is the cylinder σ-field, denoted by C , which
is defined as the smallest σ-field which makes the evaluation mapping h 7→ h(c)

measurable for all c ∈ P . The gauge group acts by bi-measurable transformations
and it makes sense to speak of measures on M(P,G) which are invariant under gauge
transformations.

It is also natural to consider a smaller σ-field which consists in events which are
invariant under the action of the gauge group. In order to discuss this σ-field, let us
first associate an abstract graph to each subset of P(M).

Definition 2.1.4. — An abstract graph is a pair of sets (V,E), whose elements are
called vertices and edges, endowed with two mappings s, t : E → V , called respectively
source and target.

Let P be a subset of P(M). The configuration graph of P is the abstract graph
(V,E, s, t) defined by setting V =

⋃
c∈P {c} ∪ {c} ⊂ M , E = P and, for each e ∈ E,

s(e) = e and t(e) = ē.

In what follows, we will make use of the diagonal adjoint action of G on Gn defined
by g · (x1, . . . , xn) = (gx1g

−1, . . . , gxng
−1).
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Lemma 2.1.5. — Let M be a compact surface. Let P be a subset of P(M). Assume
that P is stable by concatenation and inversion, and the configuration graph of P is
connected. Let m be a vertex of this configuration graph. Let c1, . . . , cn be n elements
of P . There exists n loops l1, . . . , ln in P all based at m such that the following
property holds. For all continuous function f : Gn → R such that the function h 7→
f(h(c1), . . . , h(cn)) is gauge-invariant on M(P,G), there exists a continuous function
f̃ : Gn → R invariant under the diagonal action of G such that

∀h ∈ M(P,G), f
(
h(c1), . . . , h(cn)

)
= f̃

(
h(l1), . . . , h(ln)

)
.

Proof. — Consider the configuration graph of {c1, . . . , cn}. If it is not connected, let
us choose one vertex in each connected component not containing m and add to the
collection {c1, . . . , cn} a path of P joining m to this vertex. That such a path exists
follows from the assumptions made on P . The collection has become {c1, . . . , cr} for
some r ≥ n. We denote the configuration graph of this enlarged collection by (V,E).

Let T ⊂ E be a spanning tree of (V,E). Recall the notation [v1, v2]T introduced in
Definition 1.3.31. For each i ∈ {1, . . . , n}, the path [m, ci ]T ci [c̄i,m]T is a loop based
at m. When written as a product of edges, it becomes a word in c1, . . . , cr and this
word makes sense as an element of P . More precisely, it is a loop of P based at m,
which we denote by li.

Let h be an element of M(P,G). Let us define a gauge transformation j ∈ GM by
setting j(p) = 1 if p /∈ V and, for all v ∈ V , j(v) = h([m, v]T ). If e is an edge which
belongs to T , then it is easy to check that (j · h)(e) = 1. Hence, for all i ∈ {1, . . . , n},
(j · h)(li) = (j · h)(ci) and, by the invariance property of f , f(h(c1), . . . , h(cn)) =

f(h(l1), . . . , h(ln)).
Choose g ∈ G. Since the loops l1, . . . , ln are all based at m, the action of the

gauge transformation j defined by j(p) = 1 if p 6= m and j(m) = g−1 transforms
h(l1), . . . , h(ln) into gh(l1)g−1, . . . , gh(ln)g−1. Let us define f̃ : Gn → R by

f̃(x1, . . . , xn) =

∫
G

f(gx1g
−1, . . . , gxng

−1)dg.

Then f(h(l1), . . . , h(ln)) = f̃(h(l1), . . . , h(ln)) and f̃ is invariant under the diagonal
action of G. The result is proved.

This result motivates the following definition.

Definition 2.1.6. — Let P be a subset of P(M) stable by concatenation and inversion.
The invariant σ-field on M(P,G), denoted by I , is the smallest σ-field such that for
all m ∈ M , all integer n ≥ 1, all finite collection l1, . . . , ln of loops based at m and
all continuous function f : Gn → R invariant under the diagonal action of G, the
mapping h 7→ f(h(l1), . . . , h(ln)) is measurable.
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If P can be written as the disjoint union of P1 and P2 which are both stable by con-
catenation and inversion and whose configuration graphs are disjoint, then M(P,G) is
canonically isomorphic to M(P1, G)× M(P2, G) and the invariant σ-field on M(P,G)

is the tensor product of the invariant σ-fields on M(P1, G) and M(P2, G).
Let M and M ′ be two surfaces. Let ψ : M ′ →M be a smooth mapping. Let P ′ be

a subset of P(M ′) and P = ψ(P ′). Then ψ induces a map from P ′ to P , hence a map
from M(P,G) to M(P ′, G).

Lemma 2.1.7. — Let M and M ′ be two surfaces. Let ψ : M ′ → M be a smooth
mapping. Let P ′ be a subset of P(M ′) and P = ψ(P ′). Then the induced map ψ :

M(P,G) → M(P ′, G) is measurable with respect to the cylinder σ-fields, and also
with respect to the invariant σ-fields.

Proof. — Let f : G → R be continuous and consider c′ ∈ P ′. The function h 7→
f(ψ(h)(c′)) on M(P,G) is equal to the function h 7→ f(h(ψ(c′))), which is measurable
with respect to C because ψ(c′) belongs to P . This proves the first assertion.

Now let f : Gn → R be continuous and invariant under the diagonal action
of G by conjugation. Let l′1, . . . , l′n be n loops of P ′ based at the same point. Then
ψ(l1), . . . , ψ(ln) are n loops of P based at the same point and the function h 7→
f(ψ(h)(l′1), . . . , ψ(h)(l′n)) = f(h(ψ(l1), . . . , ψ(ln))) on M(P,G) is measurable with re-
spect to I . This proves the second assertion.

Let us conclude this paragraph by discussing the case where P is the set of paths
in a graph, in the sense of Definition 1.3.2. Let M be a surface endowed with a graph
G. Let E+ be an orientation of G, that is, a subset of E which contains exactly one
element of each of the pairs {e, e−1}, e ∈ E. It is plain that a multiplicative function
on P(G) is determined by its values on the edges E or even just those of E+. More
precisely, the natural surjective mapping M(P(G), G) → M(E+, G) induced by the
inclusion E+ ⊂ P(G) is one-to-one. Indeed, if c belongs to P(G), then c = eε11 · · · eεnn
for some e1, . . . , en ∈ E+ and ε1, . . . , εn ∈ {−1, 1}. Then, for all multiplicative function
h, one has h(c) = h(en)εn · · ·h(e1)ε1 .

Since the interior of an edge contains no vertex, the concatenation of at least two
edges is never an edge. Hence, every mapping from E+ to G is multiplicative. We will
often make the identifications

M
(
P(G), G

)
= M(E, G) = M(E+, G) = GE+

without further comment. In particular, we will sometimes use a collection (ge)e∈E+

of elements of G to denote an element of M(P(G), G). Recall the definition of the
group of reduced loops (Definition 1.3.30).
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Proposition 2.1.8. — Let M be a compact surface endowed with a graph G. Let v be a
vertex of G. Let {l1, . . . , lr} be a generating subset of the group RLv(G) of reduced loops
in G based at v. The invariant σ-field I on M(P(G), G) is generated by the functions
of the form f(h(l1), . . . , h(lr)) where f : Gr → R is continuous and invariant by
diagonal conjugation.

Proof. — By definition of the invariant σ-field and by Lemma 2.1.5, it suffices to
prove that for all l′1, . . . , l′n ∈ Lv(G) and all continuous f ′ : Gn → R invariant by
diagonal conjugation, the function f ′(h(l′1), . . . , h(l′n)) can be put under the form
f(h(l1), . . . , h(lr)) for some invariant function f . This is easily done by expressing,
modulo the equivalence relation on paths, the loops l′1, . . . , l′n as words in the genera-
tors l1, . . . , lr. One then uses the multiplicativity of the elements of M(P(G), G) and
the fact that the group operation of G, seen as a map G2 → G, is equivariant with
respect to the diagonal actions of G by conjugation.

2.2. Multiplicative families of random variables

Let M be a compact surface and P a subset of P(M). A probability measure on
( M(P,G), C) determines a family of G-valued random variables (Hc)c∈P which are
just the evaluation functions on M(P,G), defined by Hc(h) = h(c). These random
variables form a multiplicative family in the sense that Hc−1 = H−1

c and Hc1c2 =

Hc2Hc1 almost surely whenever this makes sense. If P is countable, then the converse
is true since one can dismiss the negligible event on which the equalities do not hold.
We prove in this section that the converse is in fact true even if P is not countable.
Let us recall the definition of a projective family of probability spaces.

Definition 2.2.1. — A projective family of probability spaces is the data of the follow-
ing ingredients.
. A partially ordered set (Λ,4).
. For each λ ∈ Λ, a probability space (Ωλ, Cλ,mλ).
. For each pair (λ, µ) ∈ Λ2 such that λ 4 µ, a measurable mapping ρλµ : Ωµ → Ωλ.

These ingredients are assumed to satisfy the following conditions.
1) The poset (Λ,4) is directed: for all λ, µ ∈ Λ, there exists ν ∈ Λ such that λ 4 ν

and µ 4 ν.
2) For all λ, µ, ν ∈ Λ such that λ 4 µ 4 ν, one has the equality ρλµ ◦ ρµν = ρλν .
3) For all λ, µ ∈ Λ such that λ 4 µ, one has mµ ◦ ρ−1

λµ = mλ.

Let us state a general result of existence and uniqueness.
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Proposition 2.2.2. — We keep the notation of Definition 2.2.1. Let Ω denote the set-
theoretic projective limit of the family ({Ωλ}, {ρλµ}), endowed for each λ ∈ Λ with the
canonical mapping ρλ : Ω→ Ωλ. Let C denote the smallest σ-field on Ω which makes
all the mappings ρλ measurable.

Assume that for each λ ∈ Λ, (Ωλ, Cλ) is a compact metric space endowed with the
Borel σ-field. Assume also that for all λ, µ ∈ Λ such that λ 4 µ, the mapping ρλµ is
continuous.

Then there exists a unique probability measure m on C such that for all λ ∈ Λ, one
has m ◦ ρ−1

λ = mλ.

This result belongs to a wide family of theorems whose prototype is due to Kolmo-
gorov and whose common ground is Caratheodory’s extension theorem. The most
common versions assert the existence and uniqueness of m under less restrictive con-
ditions on the probability spaces but more restrictive conditions on the poset. Typ-
ically, Λ is the set of finite subsets of a finite-dimensional Euclidean space and the
probability spaces are Polish spaces. The form which we have stated is in fact fairly
easy to prove thanks to the stronger assumptions which we make on the probability
spaces. We think wiser to give a proof than to refer to several places in the literature
from which the reader would have to collect the various pieces of the argument.

Proof. — Let ΠΛ denote the Cartesian product of the sets Ωλ, λ ∈ Λ. Recall that the
set-theoretic projective limit of the family ({Ωλ}, {ρλµ}) is, by definition, the set

Ω =
{

(ωλ)λ∈Λ ∈ ΠΛ : ∀λ, µ ∈ Λ, λ 4 µ⇒ ρλµ(ωµ) = ωλ
}
.

The set ΠΛ, endowed with the product topology, is a compact topological space of
which Ω, as intersection of closed subsets, is a compact topological subspace. It is
endowed with the continuous coordinate mappings ρλ : Ω→ Ωλ, λ ∈ Λ.

For each λ ∈ Λ, let Sλ denote the closed support of the probability measure mλ. It
is a non-empty compact subset of Ωλ. Consider λ 4 µ. The equality mµ ◦ ρ−1

λµ = mλ

implies that ρλµ(Sµ) = Sλ. We claim that for all ξ ∈ Λ, ρξ(Ω) ⊃ Sξ. Indeed, choose
ξ ∈ Λ and sξ ∈ Sξ. Define, for all µ 4 ν,

Ω(µ, ν; ξ) =
{

(ωλ)λ∈Λ ∈ ΠΛ : ρµν(ων) = ωµ, ωξ = sξ
}
.

Then on one hand,
⋂
µ4ν Ω(µ, ν; ξ) = ρ−1

ξ (sξ). On the other hand, no finite intersec-
tion of the sets Ω(µ, ν; ξ) is empty. Indeed, given µ1 4 ν1, . . . , µk 4 νk, consider ζ ∈ Λ

such that µ1, ν1, . . . , µk, νk, ξ 4 ζ. Since ρξζ(Sζ) = Sξ, there exists sζ ∈ Ωζ such that
ρξζ(sζ) = sξ. Then, the collection (ρµ1ζ(sζ), ρν1ζ(sζ), . . . , ρµkζ(sζ), ρνkζ(sζ), sξ), arbi-
trarily extended to an element of ΠΛ, belongs to Ω(µ1, ν1; ξ)∩ · · · ∩Ω(µk, νk; ξ). Since
the sets Ω(µ, ν; ξ) are compact, their intersection is non-empty. Hence sξ ∈ ρξ(Ω).

Define a collection CΛ of subsets of Ω by setting CΛ =
⋃
λ∈Λ ρ

−1
λ ( Cλ). The collec-

tion CΛ is not a σ-field, but it is stable by complementation, finite unions and finite
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intersections. Consider A ∈ CΛ. Assume that A = ρ−1
λ (Aλ) and A = ρ−1

µ (Aµ) for
some λ, µ ∈ Λ and Aλ ∈ Cλ, Aµ ∈ Cµ. Let ν be such that λ 4 ν and µ 4 ν. Then

A = ρ−1
ν

(
ρ−1
λν (Aλ)

)
= ρ−1

ν

(
ρ−1
µν (Aµ)

)
.

Since ρν(Ω) ⊃ Sν , this equality implies ρ−1
λν (Aλ) ∩ Sν = ρ−1

µν (Aµ) ∩ Sν . Hence,

mλ(Aλ) = mν

(
ρ−1
λν (Aλ)

)
= mν(ρ−1

λν (Aλ) ∩ Sν)

= mν

(
ρ−1
µν (Aµ) ∩ Sν

)
= mν

(
ρ−1
µν (Aµ)

)
= mµ(Aµ).

We have proved that ρ−1
λ (Aλ) = ρ−1

µ (Aµ) implies mλ(Aλ) = mµ(Aµ). Hence, for all
A ∈ CΛ, it is legitimate to call m(A) the common value of all mλ(Aλ) for λ ∈ Λ

and Aλ ∈ Cλ such that A = ρ−1
λ (Aλ). Thus, we have defined m : CΛ → [0, 1]. It is

not difficult to check that m is finitely additive.
We claim that m is σ-additive on CΛ. In order to prove this, it is sufficient to prove

that if (An)n≥1 is a decreasing sequence of elements of CΛ such that
⋂
n≥1An = ∅,

then limm(An) = 0. Let us choose such a sequence (An)n≥1. Let us also choose ε > 0.
For each n, let us write An = ρ−1

λn
(Aλn) for some λn ∈ Λ and some Aλn ∈ Cλn . For

each n, the inner regularity of the measure mλn implies the existence of a compact
subset Kλn of Aλn such that mλn(Aλn − Kλn) ≤ ε2−n. Since Ω endowed with the
trace of the product topology of ΠΛ is compact, the sets Kn = ρ−1

λn
(Kλn), n ≥ 0

are compact. Since Kn ⊂ An for all n ≥ 1, the intersection
⋂
n≥1Kn is empty.

Hence, there exists N ≥ 1 such that
⋂N
n=1Kn = ∅. Now, for each ω ∈ AN , there

exists at least one n ∈ {1, . . . , N} such that ω /∈ Kn, so that ω ∈ An −Kn. Hence,
m(AN ) ≤

∑N
n=1m(An −Kn) ≤ ε. This proves that m(An) tends to 0 when n tends

to infinity.
Carathéodory’s extension theorem asserts that m admits a unique σ-additive ex-

tension to the σ-field generated by CΛ, which is by definition the smallest σ-field on Ω

such that the mappings ρλ are measurable. This extension of m, which we still denote
by m, satisfies m ◦ ρ−1

λ = mλ for all λ ∈ Λ by definition.

In our setting, this theorem can be applied as follows.

Proposition 2.2.3. — Let P be a subset of P(M). Let F be a collection of finite subsets
of P whose union is P and which, when ordered by the inclusion, is directed. For all
J ∈ F , let mJ be a probability measure on ( M(J,G), C). Assume that the probability
spaces ( M(J,G), C ,mJ) endowed with the restriction mappings ρJK : M(K,G) →
M(J,G) defined for J ⊂ K form a projective system. Then there exists a unique
probability measure m on ( M(P,G), C) such that for all J ⊂ P , the image of m by
the restriction mapping ρJ : M(P,G)→ M(J,G) is mJ .

In particular, if (Hc)c∈P is a collection of G-valued random variables such that
1) ∀c ∈ P , c−1 ∈ P implies Hc−1 = H−1

c a.s.;
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2) ∀c1, c2 ∈ P , c1c2 ∈ P implies Hc1c2 = Hc2Hc1a.s.,
then there exists a unique probability measure m on ( M(P,G), C) such that the dis-
tribution of the canonical process under m is the same as the distribution of (Hc)c∈P .

Proof. — Let J,K be elements of F such that J ⊂ K. Then M(J,G) is a compact
subset of GJ , actually a smooth compact submanifold. The evaluation mappings on
M(J,G) generate both the topology and the σ-field C . Hence, C is the Borel σ-field.
Moreover, the restriction mapping M(K,G)→ M(J,G) is continuous.

Proposition 2.2.2 ensures the existence of a probability measure on the projective
limit of the sets underlying our probability spaces, endowed with a certain σ-field. In
the present case, the projective limit of the sets M(J,G) is easily identified with the
set M(P,G) in such a way that the mappings ρJ : M(P,G) → M(J,G) are simply
the restrictions. Through this identification, the σ-field on which Proposition 2.2.2
constructs a measure is the usual cylinder σ-field. The first assertion follows.

Let (Hc)c∈P be a collection of random variables which satisfies the assumptions 1)
and 2). For each finite subset J of P , the distribution of (Hc)c∈J is a Borel probability
measure on GJ , which we denote by mJ and which is actually supported by M(J,G).
By applying the first assertion to the collection of probability spaces ( M(J,G), C ,mJ)

where J spans the collection of finite subsets of P , we find the desired probability
measure m on M(P,G).

2.3. Uniform multiplicative functions on a graph

LetM be a compact surface. Let G = (V,E,F) be a graph onM . In this paragraph,
we discuss the uniform measure on M(P(G), G) and some of its natural disintegra-
tions. The disintegrations that we have in mind are associated with random variables
associated to marking curves or boundary components. Before we define the measures,
let us set up some notation.

2.3.1. Constraints on marked surfaces. — Let us denote by Conj(G) the set of
conjugacy classes of G. The inversion map x 7→ x−1 on G descends to an involution
of Conj(G) which determines an action of Z/2Z on Conj(G). Recall that if (M,C )

is a marked surface (see Definition 1.1.8), then Z/2Z acts on C ∪B(M) by reversing
the orientation.

Definition 2.3.1. — Let (M,C ) be a marked surface. A set of G-constraints on (M,C )

is a Z/2Z-equivariant mapping

C : C ∪B(M) −→ Conj(G).
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A set of G-constraints on a marked surface determines a set of G-constraints on
any splitting of this surface. In the case of unary splittings, we need the following
observation. If O is a conjugacy class of G, then the set of squares of elements of O is
also a conjugacy class, which we denote by O2.

Definition 2.3.2. — Let (M,C , C) be a marked surface endowed with a set of G-
constraints. Consider l ∈ C . Let f : Spll(M) → M be the elementary gluing with
joint {l, l−1}. The marked surface (Spll(M),Spll(C )) carries the set of G-constraints
Spll(C) defined by

Spll(C)(l′) = C
(
f(l′)

)
, ∀l′ ∈ Spll(C ),

with the following exception: if f is a unary gluing and f(l′) = l±1, then

Spll(C)(l′) = C(l)±2.

Consider a marked surface (M,C , C) with G-constraints. The set of elements of
M(P(M), G) which satisfy the constraints C, that is, the set of elements h such that
for all l ∈ C ∪B(M), h(l) ∈ C(l), is globally invariant under the action of the gauge
group.

2.3.2. Uniform measures. — Let us start with a simple definition.

Definition 2.3.3. — Let M be a compact surface. Let G = (V,E,F) be a graph on M .
Let E+ be an orientation of G. The Haar measure on GE+

, seen as a probability
measure on ( M(P(G), G), C), is called the uniform measure and denoted by UG

M,∅.

Plainly, the uniform measure does not depend on the choice of E+. The reason for
the subscript ∅ will become apparent soon. We would like now to incorporate bound-
ary conditions and constraints along marking curves into the uniform measure UG

M,∅.
Let O ⊂ G be a conjugacy class. Let n ≥ 1 be an integer. The set

O(n) =
{

(x1, . . . , xn) ∈ Gn : x1 . . . xn ∈ O
}

is a Gn-homogeneous space under the action

(g1, . . . , gn) · (x1, . . . , xn) = (g1x1g
−1
2 , . . . , gnxng

−1
1 ).

Let δ O(n) denote the extension to Gn of the unique Gn-invariant probability measure
on O(n) ⊂ Gn. In particular, O(1) = O and δ O(1) is the G-invariant probability
measure on O, which we also denote simply by δ O. For each element x of G, we
denote by Ox the conjugacy class of x. Thus,

(20) ∀x ∈ G, δ Ox =

∫
G

δzxz−1 dz.
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Lemma 2.3.4. — Consider f ∈ C0(Gn), g ∈ C0(Gn−1), u ∈ C0(G) and a continuous
map h : Gn−1 → G. Let O be a conjugacy class of G. The following relations hold:∫

Gn
fdδ O(n) =

∫
Gn

f
(
x1, . . . , xn−1, (x1 . . . xn−1)−1y

)
dx1 · · · dxn−1δ O(dy),(21)

∫
Gn

u
(
h(x1, . . . , xn−1)x1 · · ·xnh(x1, . . . , xn−1)−1

)
(22)

× g(x1, . . . , xn−1)δ O(n)(dx1 · · · dxn)

=

∫
G

udδ O

∫
Gn−1

g(x1, . . . , xn−1)dx1 · · · dxn−1,∫
Gn+1

f(x1x2, x3, . . . , xn)δ O(n+1)(dg1 · · · dgn+1) =

∫
Gn

fdδ O(n),(23)

∫
Gn

f(x2, . . . , xn, x1)δ O(n)(dx1 · · · dxn) =

∫
Gn

fdδ O(n),(24)

∫
G

[ ∫
Gn

f(x1, . . . , xn)δ Oy(n)(dx1 . . . dxn)
]
dy(25)

=

∫
Gn

f(x1, . . . , xn)dx1 · · · dxn.

Proof. — The right-hand side of (21) defines a measure supported by O(n) and
invariant under the action of Gn. Hence, it is δ O(n). The relations (22) and (23)
follow form the fact that the mappings (x1, . . . , xn+1) 7→ (x1x2, x3, . . . , xn) and
(x1, . . . , xn) 7→ (x2, . . . , xn, x1) are G-equivariant maps, respectively from O(n+ 1) to
O(n) and from O(n) to O(n). The relation (25) follows from (20) and a simple change
of variables.

Let (M,C , C) be a marked surface with a set of G-constraints, endowed with a
graph G. Let us choose q simple loops l1, . . . , lq in L(G) which represent the unoriented
cycles of C ∪B(M), that is, such that C ∪B(M) = {l1, l−1

1 , . . . , lq, l
−1
q }. Recall that

for the sake of simplicity, we denote in the same way a cycle and the corresponding
simple loop. We label the elements of E in such a way that li = ei,1 . . . ei,ni for i ∈
{1, . . . , q}. Let E+ be an orientation of G such that ei,j ∈ E+ for all i ∈ {1, . . . , q}
and j ∈ {1, . . . , ni}. Let us label e1, . . . , em the other edges of E+.

Lemma 2.3.5. — Let (M,C , C) be a marked surface with G-constraints. Let G =

(V,E,F) be a graph on (M,C ). The uniform measure on GE+

with G-constraints
C is defined as the probability measure

dg1 ⊗ · · · ⊗ dgm ⊗ δC(l1)(n1)(dg1,n1
· · · dg1,1)⊗ · · · ⊗ δC(lq)(nq)(dgq,nq · · · dgq,1).
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It is denoted by UG
M,C ,C(dg). The corresponding probability measure on M(P(G), G),

also denoted by UG
M,C ,C , depends neither on the choice of the simple loops which

represent the marking of M nor on the choice of E+.

Proof. — The invariance of the measures δ O(n) by cyclic permutation of the variables,
granted by (24), ensures that the measure UG

M,C ,C does not depend on the simple
loops which we have chosen to represent the cycles of the marking of M . Since the
Haar measure on G is invariant by inversion, the measure induced on M(P(G), G)

by UG
M,C ,C does not depend on the choice of E+.

Let us state two basic properties of the measure UG
M,C ,C .

Proposition 2.3.6. — Recall the notation of Lemma 2.3.5.
1) The event N = {∃ l ∈ C ∪B(M), h(l) /∈ C(l)} satisfies UG

M,C ,C( N ) = 0.
2) The action of GV on M(P(G), G) preserves the probability measure UG

M,C ,C .

Proof. — 1) By definition of UG
M,C ,C , the support of UG

M,C ,C is contained in the closed
set {∀l ∈ C ∪B(M), h(l) ∈ C(l)} = N c.

2) Choose v ∈ V and x ∈ G. Set jw = 1 if w 6= v and jv = x. If v is not located
on a curve of C , then the translation invariance of the Haar measure implies that j
leaves the measure UG

M,C ,C invariant. Assume now that v is on the curve l1 which is
represented by the cycle e1 · · · en. Assume that e1 is outcoming at v and en is incoming.
Then the action of j translates the variables associated to the edges adjacent to v other
than e1 and en and it replaces (en, . . . , e1) by (x−1en, . . . , e1x). This leaves the measure
δC(l1)(n)(dgn . . . dg1) invariant. Finally, the action of j preserves the measure UG

M,C ,C .
Since the group GV is generated by elements which are equal to 1 at all vertices but
one, the result follows.

Let us state precisely the fact that the measures UG
M,C ,C disintegrate each other.

We use the notation C = {l1, l−1
1 , . . . , lq, l

−1
q }. In contrast with the notation used

befor Lemma 2.3.5, this set does not include the boundary components ofM anymore.
Let us define C0 = ∅ and for each r ∈ {1, . . . , q}, Cr = {l1, l−1

1 , . . . , lr, l
−1
r }. For each

r ∈ {1, . . . , q}, any collection ( O1, . . . , Or) of r conjugacy classes of G determines the
set of G-constraints on Cr which maps li on Oi for all i ∈ {1, . . . , r}. We denote this
set of constraints simply by ( O1, . . . , Or).

The following lemma is a direct consequence of the definition of UG
M,C ,C and (25). It

shows that the measures UG
M,C ,( O1,..., Or, Oxr+1

,..., Oxq ), seen as functions of xr+1, . . . , xq,

provide us with a regular disintegration of UG
M,Cr,( O1,..., Or) with respect to the random

variables h(lr+1), . . . , h(lq).
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Lemma 2.3.7. — Let r be an integer between 0 and q−1. Let O1, . . . , Or be conjugacy
classes of G. Let f : Gq−r → R be a continuous function. Then∫

M(P(G),G)

f
(
h(lr+1), . . . , h(lq)

)
UG
M,Cr,( O1,..., Or)(dh)(26)

=

∫
Gq−r

f(xr+1, . . . , xq)dxr+1 · · · dxq,

UG
M,Cr,( O1,..., Or) =

∫
Gq−r

UG
M,C ,( O1,..., Or, Oxr+1

,..., Oxq )dxr+1 · · · dxq.(27)

2.3.3. Surgery of uniform measures. — Let us investigate the behaviour of the
uniform measures that we have just defined under the basic operations of surgery. So
far, we have used the letter f to denote gluing maps and also test functions on G. In
the proof of the next result, we need to use both. This is why we change our notation
for gluings.

Proposition 2.3.8. — Let (M,C , C) be a marked surface with G-constraints endowed
with a graph G. Let (M ′,C ′, C ′) be a splitting of M and let π : M ′ → M denote
the gluing map. Let G′ be the graph on M ′ obtained by lifting G. Then the mapping
π : ( M(P(G), G), I )→ ( M(P(G′), G), I ′) induced by π satisfies

(28) UG′
M ′,C ′,C′ = UG

M,C ,C ◦ π−1.

In this proposition, it is crucial that we consider the invariant σ-fields, not only
because in general one should consider exclusively gauge-invariant quantities, but
because the equality (28), although meaningful with cylinder σ-fields thanks to
Lemma 2.1.7, would simply be false. For instance, consider a binary gluing along two
curves b′1 and b′2 with joint b = f(b′1) = f(b′2). Then the event {h′ : h′(b′1) = h′(b′2)}
belongs to C ′ and has measure zero. On the other hand, the pull-back by ψ of this
event is the event {h : h(b) = h(b)} of C which has full measure. The point is that
the first event does not belong to I ′.

Proof. — Let f : M(P(G′), G) → R be a continuous function invariant under the
action of GV′ . Then f induces a continuous function f̃ : M(P(G), G) → R and we
need to prove that

(29)
∫

M(P(G),G)

f̃dUG
M,C ,C =

∫
M(P(G′),G)

fdUG′
M ′,C ′,C′ .

We treat separately the cases of binary and unary gluings.
1) Binary gluing. — Let {b, b−1} be the joint of the gluing. Let b′1 and b′2 be the

two boundary components of M ′ which are identified by π, oriented in such a way
that π(b′1) = π(b′2) = b.
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Let Eb, E′1 and E′2 denote respectively the set of edges located on b, b′1 and b′2.
These three sets are naturally identified by the gluing. Set E′◦ = E′ − (E′1 ∪ E′2) and
E◦ = E−Eb = π(E′◦). The gluing identifies naturally E′◦ with E◦. With this notation,
we have the partitions

(30) E = E◦ ∪ Eb and E′ = E′◦ ∪ E′1 ∪ E′2.

The partition of E above determines the equality M(E, G) = M(E◦, G)× M(Eb, G),
according to which we denote by g = (g◦, gb) the generic element of M(E, G). Similarly,
we have the decomposition M(E′, G) = M(E′◦, G)×M(E′1, G)×M(E′2, G) and we write
g′ = (g′◦, g

′
1, g
′
2) for the generic element of M(E′, G).

With this notation and these identifications, the function f̃ is defined by the equal-
ity f̃(g◦, gb) = f(g◦, gb, gb).

Since each curve of C is covered either by E◦ or by Eb, the decomposition of
M(E, G) above determines a decomposition of the measure UG

M,C ,C as the tensor
product of two measures U◦ and Ub on M(E◦, G) and M(Eb, G) respectively, each of
which is invariant under the action of the gauge group GV. Let us assume that b is the
product of n edges of E. Then M(Eb, G) can be identified with Gn and the measure
Ub corresponds to δC(b)(n) under this identification.

Similarly, the measure UG′
M ′,C ′,C′ splits as the tensor product of three measures U ′◦,

U ′1 and U ′2, on M(E′◦, G), M(E′1, G) and M(E′2, G) respectively. The last two spaces
can be identified with Gn and the measures U ′1 and U ′2 both correspond to δC(b)(n)

under this identification.
The measures U◦ and U ′◦ correspond to each other via the identification of M(E◦, G)

and M(E′◦, G). Hence, the equality which we need to prove is

∫
M(P(G),G)

f(g◦, gb, gb)U◦(dg◦)Ub(dgb)

=

∫
M(E◦,G)×M(Eb,G)2

f(g◦, g1, g2)U◦(dg◦)Ub(dg1)Ub(dg2).

Let V′2 denote the subset of V′ consisting of the vertices which lie on b′2. The group
GV′2 is a compact Lie group and the invariant measure of its transitive action on
the subset C(b)(n) of M(E′2, G) is the measure δC(b)(n) = U ′2. Let us denote by j′2 the
generic element of GV′2 and by dj′ the Haar measure on this group. Since f is invariant
under the action of the gauge group, we have for all (g′◦, g

′
1, g
′
2) in M(P(G′), G) the

equality f(j′2 ·g′◦, g′1, j′2 ·g′2) = f(g′◦, g
′
1, g
′
2). Observe that some edges of E′◦ have some of

their endpoints in V′2, so that the term g′◦ is affected by the gauge transformation j′2.
On the contrary, the term g′1 is not affected because b′1 and b′2 are disjoint. Hence,
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with the identifications made earlier,∫
M(P(G),G)

f(g◦, gb, gb)U◦(dg◦)Ub(dgb)

=

∫
M(P(G),G)×GV′2

f(j′2 · g◦, gb, j′2 · gb)U◦(dg◦)Ub(dgb)dj
′
2.

Since the measure U◦ is invariant under the action of GV, the last term is equal to∫
M(P(G),G)×GV′2

f(g◦, gb, j
′
2 · gb)U◦(dg◦)Ub(dgb)dj′2.

It suffices now to prove an equality about the function
∫

M(E◦,G)
f(g◦, ·, ·)U◦(dg◦)

on G2n. Indeed, let us denote this function by u : G2n → R. All we need to prove is
that, for all conjugacy class O,∫

G2n

u(g1, . . . , gn, j1g1j
−1
2 , . . . , jngnj

−1
1 ) δ O(n)(dg1 · · · dgn)dj1 · · · djn

=

∫
G2n

ud(δ O(n) ⊗ δ O(n)).

But the left-hand side is equal to∫
Gn

∫
Gn

u(g1, . . . , gn, gn+1, . . . , g2n)δ Og1···gn (n)(dgn+1 · · · dg2n)δ O(n)(dg1 · · · dgn)

by the very definition of δ Og1...gn (n), hence it is equal to the right-hand side.

2) Unary gluing. — Let {b, b−1} be the joint of the gluing. Let b′ be the component
of the boundary of M ′ such that π(b′) = b. Let us write b = e1 · · · en and b′ =

e′1,1 · · · e′n,1e′1,2 · · · e′n,2 in such a way that π(b′i,1) = π(b′i,2) = bi for all i ∈ {1, . . . , n}.
Let Eb denote the set of edges located on b. Set E′1 = {e′1,1

±1
, . . . , e′n,1

±1} and
E′2 = {e′1,2

±1
, . . . , e′n,2

±1}. Set E′◦ = E′− (E′1 ∪E′2) and E◦ = E−Eb = π(E′◦). We will
identify freely E◦ with E′◦.

With this notation, the equalities (30) hold, as well as the subsequent decompo-
sitions of M(E, G) and M(E′, G). The function f̃ is also still defined by the equality
f̃(g◦, gb) = f(g◦, gb, gb).

The decomposition UG
M,C ,C = U◦ ⊗ Ub is valid just as in the binary case, but the

decomposition of UG′
M ′,C ′,C′ is now different. Indeed, this measure splits into the tensor

product of U ′◦ and a measure U ′12 on M(E′1, G)× M(E′2, G) which is δC(b)2(2n) under
the natural identification of M(E′1, G) × M(E′2, G) with G2n. The formula which we
need to prove is∫

M(P(G),G)

f(g◦, gb, gb)U◦(dg◦)Ub(dgb)

=

∫
M(E◦,G)×M(E′1∪E′2,G)

f(g◦, g1, g2)U◦(dg◦)U
′
12(dg1, dg2).
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Let V′12 denote the set of vertices which lie on b′. By using the invariance of f under the
action of the subgroup GV′12 of the gauge group and the invariance of the measure U◦
under the same action, we find just as in the binary case that the left-hand side of
the equality to prove is equal to∫

M(E◦,G)×M(Eb,G)×GV′12

f(g◦, j
′
12 · gb, j′12 · gb)U◦(dg◦)Ub(dgb)dj′12.

The notation here is misleading, since the two occurrences of j′12 ·gb do not denote the
same object. Indeed, the two occurrences of gb in the arguments of f are identified
respectively with an element of M(E′1, G) and an element of M(E′2, G), on which GV′12

acts differently.
Now what we have to prove is really an equality about the function∫

M(E◦,G)

f(g◦, . , .)U◦(dg◦)

on G2n. Let us call this function u : G2n → R. We need to prove that for all conjugacy
class O in G the following equality holds:∫
G3n

u(j−1
0 g1j1, . . . , jn−1gnjn, j

−1
n g1jn+1, . . . , j

−1
2n−1gnj0) δ O(n)(dg1 · · · dgn)dj0 · · · dj2n

=

∫
G2n

u δ O2(2n).

Recall that O2 is the conjugacy class constituted by the squares of the elements of O.
We claim that this equality holds for all continuous function u. Indeed, the integral∫

G2n

u(j−1
0 g1j1, . . . , jn−1gnjn, j

−1
n g1jn+1, . . . , j

−1
2n−1gnj0)dj0 · · · dj2n

is the integral of u with respect to the measure δ O(g1···gn)2 (2n), by the very defi-
nition of this measure as the invariant measure under the natural action of G2n

on O(g1···gn)2(2n). Hence, by a simple particular case of (22), the integral that we are
computing is equal to∫

Gn

(∫
G2n

u(x)δ O(g1···gn)2 (2n)(dx)
)
δ O(n)(dg1 · · · dgn)

=

∫
G2n

u(x)
(∫

G

δ Og2 (2n)δ O(dg)
)

(dx).

The measure δ O2
g(2n) is equal to δO2(2n) for δ O-almost all g. Hence, the measure between

the brackets is δ O2(2n). This concludes the proof.

Let us conclude this section by a much simpler result, which is the simplest instance
of invariance under subdivision.
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Proposition 2.3.9. — Let (M,C , C) be a marked surface with G-constraints. Let G1

and G2 be graphs on (M,C ). Assume that G1 4 G2. Then the inclusion P(G1) ⊂
P(G2) induces a measurable restriction map r : M(P(G2), G) → M(P(G1), G) which
satisfies

UG2

M,C ,C ◦ r
−1 = UG1

M,C ,C .

Proof. — Let us choose an orientation for G1 and G2. The restriction map, seen as a
map from GE+

2 to GE+
1 , multiplies the components which correspond to the edges of E2

which constitute each edge of E1 and forgets about the components which correspond
to edges which do not lie in the skeleton of E1.

Since the product of independent uniform variables on G is still uniform, the only
non-trivial thing to check is what happens along the marking curves or the boundary
components. There, the invariance follows from (23).

2.4. Tame generators of the group of reduced loops

Consider a surface (M,∅, C) with G-constraints along its boundary (see Definition
2.3.1), endowed with a graph G. Our objective in this section is to exhibit a family
of lassos (see Definition 1.2.4) which generates the group of reduced loops in G (see
Definition 1.3.30) and to compute the distribution of the G-valued random variables
associated with these lassos under the constrained uniform measure defined in the
previous section. Moreover, we are going to do this in a way which is consistent with
the partial order on the set of graphs. The main result of this section will not be used
until Chapter 5.

Definition 2.4.1. — Let M be a compact surface endowed with a graph G. Let v be a
vertex of G. A lasso l ∈ RLv(G) is said to be facial if its meander represents a facial
cycle of G. It is said to be bounding if its meander covers a connected component
of ∂M .

We want to prove the existence of systems of generators of RLv(G) which consist
in one bounding lasso for each connected component of ∂M , one facial lasso for each
face of G, and as many supplementary lassos with non-contractible meander as the
genus of M (see Section 1.1.1).

Recall the notation W (M) from Section 1.3.5. If w is a word in some set of letters,
we denote by ←−w the word obtained by reversing the order of the letters of w.

Proposition 2.4.2. — Let M be a connected compact surface. Let g = g(M) denote
the genus of M . Let p = p(M) be the number of connected components of ∂M . Write
B(M) = {b1, b−1

1 , . . . , bp, b
−1
p }. If M is oriented, we assume that b1, . . . , bp bound M
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positively. Let G be a graph on M . Let v be a vertex of G. Let f denote the number of
faces of G.

1) There exists, in the group RLv(G), g lassos a1, . . . , ag; p bounding lassos
c1, . . . , cp whose meanders are equivalent to b1, . . . , bp up to permutation; f facial
lassos l1, . . . , lf whose meanders bound the f faces of G, positively if M is oriented;
and there exists an word w in the letters a1, . . . , ag which belongs to W (M) such that
the group RLv(G) admits the presentation〈

a1, . . . , ag, c1, . . . , cp, l1, . . . , lf | w(a1, . . . , ag)c1 . . . cp = l1 . . . lf
〉

and, for all continuous function f : Gg+p+f → R and all set C of G-constraints along
the boundary components of G,∫

M(P(G),G)

f
(
h(a1), . . . , h(ag), h(c1), . . . , h(cp), h(l1), . . . , h(lf)

)
UG
M,∅,C(dh)

=

∫
Gg+p+f−1

f(x1, . . . , xg, y1, . . . , yp, z1, . . . , zf−1, zf)

dx1 · · · dxgδC(b1)(dy1) · · · δC(bp)(dyp)dz1 · · · dz f−1,

where we have set zf = yp · · · y1
←−w (x1, . . . , xg)(zf−1 · · · z1)−1.

A collection of lassos such as {a1, . . . , ag, c1, . . . , cp, l1, . . . , lf} will be called a tame
system of generators associated with the word w.

2) Let G1 and G2 be two graphs on M such that G1 4 G2. Set f1 = f(G1). Let v be
a vertex of G1. Let {a1, . . . , ag, c1, . . . , cp, l1, . . . , lf1} be a tame system of generators
of RLv(G1) associated with the word w. Assume that the faces of G1 are labelled
F1 = {F 1

i : i ∈ {1, . . . , f1}} in such a way that for all i ∈ {1, . . . , f1}, the meander of
the lasso li bounds F 1

i . For all i ∈ {1, . . . , n}, let F2,i = {F 2 ∈ F2 : F 2 ⊂ F 1
i } be the

set of faces of G2 contained in F 1
i and set f2,i = # F2,i.

Then there exists a set of facial lassos {li,j : i ∈ {1, . . . , f1}, j ∈ {1, . . . , f2,i}} in
RLv(G2) such that for all i, j, the meander of the lasso li,j bounds a face of F2,i, for
all i the equality li = li,1 · · · li,f2,i holds and{

a1, . . . , ag, c1, . . . , cp, l1,1, . . . , lf1,f2,f1
}

is a tame system of generators of RLv(G2) associated with the word w.

Until the end of this chapter we will use the notation

g = g(M), p = p(M) and f = f(G).

By Lemma 1.3.33, we know that RLv(G) is free of rank e(G)− v(G) + 1. By Euler’s
relation for the graph G, which writes v(G)−e(G)+f(G) = χ(M) = 2−g−p, the rank
of RLv(G) can also be written as g + p + f − 1. In order to find families of generators
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whose cardinal decomposes naturally as g + p + f − 1, we introduce the dual graph
of G.

Definition 2.4.3. — Let M be a compact surface endowed with a graph G. Let
(M ′,G′, ι, f) be a split pattern of (M,G). Let V̂ denote the set of connected compo-
nents of M ′, which is in canonical bijection with F. Then, set

Ê =
{
{e′, e′−1} : e′ ∈ E′

}
.

For each element ê = {e′, e′−1} of Ê, define the source s(ê) of ê as the connected
component ofM ′ which contains e′ and the target t(ê) of ê is the connected component
of M ′ which contains ι(e′).

The abstract graph Ĝ = (V̂, Ê, s, t) is called the dual graph of G.

Properly speaking, the dual graph of G depends on the choice of the split pattern
of G and it is unique only up to an obvious notion of isomorphism. We shall in fact
choose a split pattern and work with the associated dual graph.

The involution ι of the split pattern induces an involution on Ê, which we still
denote by ι. This involution is similar to an orientation reversal, but one should
observe that it may have fixed points. For example, if an edge e′ ∈ E′ is sent by f on
a boundary component of M , then ι(e′) = e′ and the dual edge ê = {e′, e′−1} also
satisfies ι(ê) = ê.

The orbits of ι on Ê, which we call unoriented edges of the dual graph, correspond
bijectively by f with the unoriented edges of the graph G, that is, the pairs {e, e−1}
for e ∈ E.

Definition 2.4.4. — Let M be a compact surface endowed with a graph G. Let
(M ′,G′, ι, f) be a split pattern of (M,G). Recall that a spanning tree of the dual
graph (V̂ , Ê, s, t) is a subset T̂ ⊂ Ê stable by the involution ι and such that any two
vertices of the dual graph are joined by a unique injective path made with edges of T̂ .

Let T̂ be a spanning tree of the dual graph. An orientation of M ′ is said to be
adapted to T̂ if for all ê = {e, e−1} ∈ T̂ , the edges e and ι(e) are neither both
positively oriented nor both negatively oriented with respect to this orientation of M ′.

Assume that M ′ is endowed with an orientation adapted to T̂ . Then we define the
image by f of an edge ê = {e′, e′−1} of T̂ as an edge of G by setting f(ê) = f(e′) if e′

is positively oriented as a subset of ∂M ′ and f(ê) = f(e′
−1

) otherwise.

It is not difficult to check that there are exactly two orientations of M ′, among
the 2f possible, which are adapted to any given spanning tree in the dual graph.
Moreover, for all ê ∈ T̂ , we have the equality f(ι(ê)) = f(ê)−1 in E.

It follows from Proposition 1.3.15 that E \ f(T̂ ) is the set of edges of a graph G0

on M with a single face. This graph has e0 = e(G)− (f(G)− 1) edges, so by Euler’s

ASTÉRISQUE 329



2.4. TAME GENERATORS OF THE GROUP OF REDUCED LOOPS 97

ê s(ê)

t(ê) ι(ê)

f(ê)

Figure 1. The split pattern of our favourite graph as its dual graph. The
edge f(ê) of G bounds positively the face corresponding to the face of the
split pattern on the boundary of which ê sits.

relation, it still has v0 = v(G) vertices. Moreover, its skeleton contains ∂M and every
edge of G which lies on ∂M is also an edge of G0. Let B+ ⊂ E0 be a collection of
edges of G0 comprising exactly one edge on each connected component of ∂M . If M
is oriented, we assume that the edges of B bound M positively. The set of edges
of G0 located on ∂M and which do not belong to B = B+ ∪ (B+)−1 form a cycle-free
subgraph of G0. Hence, it is possible to extend this subgraph to a spanning tree T
of G0 such that T ∩B = ∅ (see Figure 2).

Recall that for all e ∈ E0, the lasso le,T is defined as le,T = [v, e]T e[ē, v]T .

Lemma 2.4.5. — With the notation above, for each edge e ∈ B, the lasso le,T is a
bounding lasso whose meander covers the connected component of ∂M on which e lies
and whose spoke contains no edge lying on this connected component.

Proof. — Let b be the connected component of ∂M on which e lies. If the base point
v is located on b, then le,T is a simple loop which represents the cycle b. Otherwise,
since any two vertices located on b can be joined by a path in T which stays in b,
there exists a unique vertex w on b which is joined to the base point v by a path
in T with no edge lying on b. Hence, le,T = [v, w]T ([w, e]T e[ē, w]T )[w, v]T . The three
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paths between the brackets form the meander of the lasso, which is a simple loop
covering b.

Let us carry on with our construction. We have a partition E0 = T ∪B ∪R, where
R = E0 \(T ∪B). It follows from Euler’s relation that R contains exactly g unoriented
edges. From the fact that E0 has v(G) vertices, we deduce that T is in fact a spanning
tree of G. Hence, Lemma 1.3.33 implies the first assertion of the following result.

Proposition 2.4.6. — Let M be a compact surface endowed with a graph G. Let
(M ′,G′, ι, f) be a split pattern of (M,G). Let T̂ be a spanning tree of the dual graph
of G. Let B+ be a collection of edges comprising exactly one edge on each connected
component of ∂M , which we assume to be positively oriented if M is oriented. Set

B = B+ ∪ (B+)−1.

Let T be a spanning tree of E \ f(T̂ ) such that T ∩B = ∅. Set

R = E \ (f(T̂ ) ∪B ∪ T ).

Choose an orientation E+ of G such that B+ ⊂ E+. Write B+ = {e1, . . . , ep}. Let
b1, . . . , bp be the boundary components of M enumerated in such a way that for all
i ∈ {1, . . . , p}, bi is the meander of the lasso lei,T . Then R+, B+ and f(T̂ )+ contain
respectively g, p and f − 1 edges and the following properties hold.

1) The group RLv(G) is freely generated by the loops {le,T : e ∈ R+∪B+∪f(T̂ )+}.
2) Under the probability measure UG

M,∅,C on M(P(G), G), the collection of random
variables {h(le,T ) : e ∈ R+ ∪ B+ ∪ f(T̂ )+} is a collection of independent variables.
For all e ∈ R+ ∪ f(T̂ )+, the variable h(le,T ) is uniformly distributed on G and for all
i ∈ {1, . . . , p}, the variable h(lci,T ) has the distribution δC(bi).

Proof. — Let us prove the second assertion. By definition of the measure UG
M,∅,C , the

random variables {h(e) : e ∈ R+ ∪ f(T̂ )+} are independent, uniformly distributed
on G, and independent of {h(e) : e ∈ E+ \ (R+ ∪ f(T̂ )+)}. It is a general fact
that if X1, . . . , Xn are independent uniformly distributed random variables on G,
independent of Y1, . . . , Yn, Z1, . . . , Zn, then the n variables Y1X1Z1, . . . , YnXnZn are
independent, uniformly distributed, and independent of Y1, . . . , Yn, Z1, . . . , Zn. Hence,
the variables {h(le,T ) : e ∈ R+ ∪ f(T̂ )+} are independent, uniformly distributed and
independent of the variables {h(le,T ) : e ∈ B+}, which do not involve any edge
of R ∪ f(T̂ ).

Now choose i ∈ {1, . . . , p}. Consider the loop lei,T and the corresponding bounding
cycle bi. By Lemma 2.4.5, the spoke of the lasso lei,T does not involve any edge lying
on the boundary component bi of M . However, it may involve edges located on other
boundary components of M .
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f(T̂ )

B

T

T̂

R

Figure 2. Two examples of partitions of the set of edges of a graph as
R ∪ B ∪ f(T̂ ) ∪ T . The first example is our favourite graph, and since it
is a graph on a sphere, albeit with three holes, R is empty. In the much
simpler second example, R contains one edge.

We claim that for every subset I ⊂ {1, . . . , p}, there exists i0 ∈ I such that for all
j ∈ I − {i0}, the spoke of lej ,T does not involve edges located on bi0 . Assume to the
contrary that for some subset I there does not exist such an i0. Then there would
exist i1, . . . , ik−1 ∈ I all distinct and ik = i1 such that for all j ∈ {1, . . . , k − 1}, the
spoke of the lasso leij+1

,T involves an edge which lies on the boundary component bij .
This would in particular imply that for each j ∈ {1, . . . , k − 1} there exists a path
in T from bij to bij+1 and, since ik = i1, that T contains a cycle.

By relabelling the boundary components of M , we may assume that for all k
in {1, . . . , p}, the element k of the subset {k, . . . , p} ⊂ {1, . . . , p} has the prop-
erty described above. Since under UG

M,∅,C , the random variable h(bk) has the dis-
tribution δC(bk) and is independent of the variables h(e) for e ∈ E not located
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on bk, the variable h(lek,T ) itself has the distribution δC(bk) and is independent
of h(lek+1,T ), . . . , h(lep,T ). This implies easily the result.

With the proof of Proposition 2.4.2 in mind, the next step is to express the loops le,T
for e ∈ f(T̂ ) in function of facial lassos. The exact way in which these lassos decom-
pose into products of facial lassos depends on, and in fact encodes completely, the
geometry of the tree T̂ .

Let M ′ be endowed with an orientation adapted with T̂ . Let v̂ = M ′F be a vertex
of Ĝ which corresponds to a face F . The set of edges of Ĝ whose source is v̂ is in
one-to-one correspondence with the set of edges of G′ located on the boundary of M ′F
and which bound it positively. This set carries a natural cyclic order, which is the
order in which the edges are traversed by a cycle bounding M ′F . By restriction, the
set of edges of T̂ which share v̂ as their source is endowed with a cyclic order.

Let us root T̂ by not only choosing a reference vertex but also by choosing among
the edges issued from this vertex which one is the first. The simplest way to do this is
to choose a vertex of G′. This determines a root vertex for T̂ , namely the connected
component of M ′ which carries this vertex, and this also breaks the cyclic symmetry
of the edges issued from this connected component, which are now totally ordered.

The object that we are now contemplating is a tree (that is, an abstract graph
without simple cycle) endowed with a distinguished vertex, a total order on the edges
issued from this distinguished vertex and a cyclic order on the set of edges issued from
any other vertex. Such an object is called a rooted planar tree and it has a canonical
representation as a set of words of integers, according to a formalism due to J. Neveu.
Let us simply describe how the vertices are labelled by words of integers, that is, finite
sequences of non-negative integers.

The root vertex is labelled by the empty word ∅. Let k(∅) be the number of
children of ∅, that is, the number of vertices to which it is joined by an edge. These
vertices are labelled by words of length 1, namely 1, 2, . . . , k(∅), according to the total
order on these edges.

Then, consider a vertex labelled by a word u = u1 . . . un. The integer n is called the
height of u and it is denoted by h(u). Let π(u) = u1 . . . un−1 denote the predecessor of
u and let k(u) denote the number of vertices other than π(u) to which u is joined by an
edge. Then the edge from u to π(u), denoted by 〈u, π(u)〉, breaks the cyclic symmetry
among the edges issued from u and determines a total order on the k(u) other edges
issued from u. The k(u) targets of these edges are labelled u1 . . . un1, . . . , u1 . . . unk(u)

in this order.
Thus, the choice of a rooting of T̂ and an adapted orientation of M ′ determines a

labelling of F by words of integers (see Figure 3). As we shall see now, it determines
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also a specific facial lasso for each face of G and one of the loops le,T for each face
distinct from the root face.

1
2

3

11

111

3112

112

3111

31131

21

∅

v′

Figure 3. The labelling of the faces of a graph by words of integers. The
vertex v′ determines the rooting of T̂ .

Definition 2.4.7. — Let M be a compact surface endowed with a graph G. Let
(M ′,G′, ι, f) be a split pattern of (M,G). Let T̂ be a spanning tree of the dual graph
of G. Endow M ′ with an orientation adapted to T̂ . Choose a root for T̂ . Label the
faces of G with words of integers accordingly.

Consider a face F of G labelled by the word u. If u = ∅, let ∂T̂F be the unique
representative of ∂M ′F which starts at the root vertex chosen in V′ and bounds pos-
itively ∂M ′F . Otherwise, consider the edge 〈u, π(u)〉 of T̂ , which we identify with an
edge of G′ which bounds M ′F positively. Let ∂T̂F be the unique simple loop represent-
ing ∂M ′F which starts with this edge. Write ∂T̂F as a product of edges e1 · · · er. We
define the facial lasso lu ∈ RLv(G) (also denoted by lF ) by

lu = le1,T · · · ler,T .

Consider a face labelled by u 6= ∅. The edge 〈u, π(u)〉 of T̂ determines the edge
f(〈u, π(u)〉) of G and we define

lu,π(u) = lf(〈u,π(u)〉),T .

We also define l∅,π(∅) as the constant loop at v.

Let u and u′ be two vertices of T̂ . We say that u is a prefix of u′ if there exists a
word of integers u′′ such that u′ = uu′′, the concatenation of u and u′′. Genealogically,
this can be phrased by saying that u is an ancestor of u′. This is also equivalent to
the fact that the unique injective path in T̃ from v to u′ visits u.
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Lemma 2.4.8. — Recall the notation of Definition 2.4.7. Let F be a face of G labelled
by u. There exist k(u)+1 elements tu,π(u), tu,u1, . . . , tu,uk(u) of the subgroup of RLv(G)

generated by {le,T : e ∈ R ∪B} such that

(31) lu = lu,π(u)t
−1
u,π(u)l

−1
u1,ut

−1
u,u1 · · · l

−1
uk(u),ut

−1
u,uk(u).

Moreover, there exists an element t of the subgroup of RLv(G) generated by {lv :

u prefix of v} and {le,T : e ∈ R ∪B} such that

(32) lu = lu,π(u)t.

In the course of the proof of this result, we use an argument of downwards induction
along the branches of T̂ . We say that a vertex u of T̂ is a leaf if k(u) = 0. The induction
argument says that if a property is satisfied by all leaves of T̂ and if it satisfied by a
vertex as soon as it is satisfied by all the vertices of which it is a predecessor, then it
is satisfied by all vertices.

Proof. — Let us write ∂T̂F = e1 · · · en. By definition, e1 is the edge of G which
corresponds to the edge 〈u, π(u)〉 of T̂ . Hence, le1,T = lu,π(u). Then, the list (e2, . . . , en)

consists of the images by f of the edges of T̂ which join u to u1, . . . , uk(u), in this
order, and in the midst of which occur some edges of T and some edges of R∪B. The
claimed expression for lu follows. In the case where F is the root of T̂ , the edge e1

does not play a special role, it is either the image by f of the edge which joins ∅ to 1

in T̂ , or an edge of T ∪R ∪B.
The second expression of lu reduces to the first if u is a leaf. Let us now consider

a vertex u and assume that (32) holds for each vertex of which u is the predecessor,
that is, for u1, . . . , uk(u). For every vertex v, the fact that uj is a prefix of v for some
j ∈ {1, . . . , k(u)} implies that u is a prefix of v. Hence, by applying (31) to u and
then (32) to u1, . . . , uk(u), we find that (32) holds for u.

By downwards induction along the branches of T̂ , the second expression of lu holds
for all u ∈ T̂ .

Corollary 2.4.9. — Recall the notation of Proposition 2.4.6 and Definition 2.4.7. The
group RLv(G) is freely generated by {le,T : e ∈ R+ ∪ B+} and {lu : u 6= ∅}. More-
over, under UG

M,∅,C , the random variables {h(lu) : u 6= ∅} are mutually independent,
uniformly distributed and independent of {h(le,T ) : e ∈ R+ ∪B+}.

Proof. — Let us call the height of T̂ and denote by h(T̂ ) the maximal height of a
vertex of T̂ , which is necessarily a leaf. We claim that for all integer n ≥ 1, RLv(G) is
freely generated by the set X(n) defined by

X(n) =
{
le,T : e ∈ R+ ∪B+

}
∪
{
lu,π(u) : h(u) < n

}
∪
{
lu : h(u) ≥ n

}
.
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For n = 1, it is the statement which we wish to prove. For n > h(T̂ ), it is the
content of Proposition 2.4.6. The fact that the claim is true for all n is easily proved by
descending induction. Indeed, for all n ≥ 1, the set X(n) is deduced from X(n+1) by
replacing, for all labels u of T̂ such that h(u) = n, the loop lu,π(u) by the facial lasso
lu. If X(n+ 1) is a basis of RLv(G), then it follows immediately from (32) that X(n)

is another basis of RLv(G).
Since the sets {v : u prefix of v} are disjoint for the distinct labels u of height

n, the assertion on the distribution of the variables {h(l) : l ∈ X(n)} follows easily
from (32) and the distribution of {h(l) : l ∈ X(n+ 1)}.

At this point, we have proved most of the first assertion of Proposition 2.4.2. We
have exhibited a family of generators of the group RLv(G) which generate it freely. We
know that if we add one element to this family, we get a presentation of RLv(G) with
one relation. The next result helps us to get a relation of the form that we expect.

Lemma 2.4.8 defines tu,v for each ordered pair of adjacent vertices (u, v) in T̂ , and
also an extra element t∅,π(∅). Now for each pair of vertices (u, u′) of T̂ , not necessarily
adjacent, let us define tu,u′ = tv1,v2 · · · tvm−1,vm , where u = v1, . . . , vm = u′ is the
unique injective path in T̂ from u to u′.

Lemma 2.4.10. — Endow the set of vertices of T̂ with the lexicographic order associ-
ated to the reversed order on N. Enumerate its elements accordingly:

F =
{
u1 ≤ · · · ≤ uf

}
.

Then

(33) lu1tu1,u2 lu2tu2,u3 · · · tuf−1,uf
luf
tuf ,∅t∅,π(∅) = 1.

Moreover, the loop (tu1,u2
tu2,u3

· · · tuf−1,uf
tuf ,∅t∅,π(∅))

−1 is the boundary of the
unique face of G0. It is equal to a word in the lassos {le,T : e ∈ R+ ∪ B+} where
each lasso of the set {le,T : e ∈ R+} appears exactly twice, possibly sometimes with
exponent −1, and each lasso of the set {le,T : e ∈ B+} appears exactly once, possibly
with exponent −1. If M is oriented, then each lasso of the set {le,T : e ∈ B+} appears
with exponent 1.

Proof. — Equation (31) can be rewritten as

lu,π(u) = lutu,uk(u)luk(u),u · · · tu,u1lu1,utu,π(u).

Let us apply this relation to u = ∅. We find

(34) 1 = l∅t∅,k(∅)lk(∅),∅ · · · t∅,1l1,∅t∅,π(∅).
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1
2

3

11

111

3112

112

3111

31131

21

∅

v′

Figure 4. The lexicographic order on F associated to the reversed order
on N is the same order in which the faces are discovered for the first time
by an explorer who wanders around the dual tree along the track depicted
above.

Let us define, for all integer n ≥ 1 and all vertex u of T̂ such that h(u) ≤ n an
element l̃(n)

u of RLv(G) by setting

l̃(n)
u =

{
lu if h(u) < n

lu,π(u) if h(u) = n.

Also, for each n, let un1 ≤ · · · ≤ unrn be the vertices of T̂ of height at most n listed in
the lexicographic order corresponding to the reversed order on N. Then (34) can be
written as

1 = l̃
(1)

u1
1
tu1

1,u
1
2
l̃
(1)

u1
2
· · · tu1

r1−1,u
1
r1
l̃
(1)
u1
r1

t∅,π(∅).

By applying (31) iteratively to the terms of the form lu,π(u) in this equality, one
finds that the equality

1 = l̃
(n)
un1
tun1 ,un2 l̃

(n)
un2
· · · tunr1−1,u

n
r1
l̃
(n)
unrn

t∅,π(∅)

holds for all n ≥ 1. Here, tu,u′ has the meaning explained before the statement of
Lemma 2.4.10. For n larger than the height of T̂ , this formula is exactly what we
wanted to prove.

Finally, (tu1,u2tu2,u3 · · · tuf−1,uf
tuf ,∅t∅,π(∅))

−1 is the product of the loops le,T
where e goes around the unique face of the pattern of G0 obtained fromM ′ by sewing
the edges of T̂ . The result follows.

We are now ready to prove the main result of this section.

Proof of Proposition 2.4.2. — Let us consider the relation given by Lemma 2.4.10.
Let us define, for all i ∈ {1, . . . , f},

li = (tui,ui+1
· · · tuf−1,uf

tuf ,∅t∅,π(∅))
−1lui(tui,ui+1

· · · tuf−1,uf
tuf ,∅t∅,π(∅)).
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Then relation (33) becomes

(35) (tu1,u2
· · · tuf−1,uf

tuf ,∅t∅,π(∅))
−1 = l1 · · · lf .

By Corollary 2.4.9 and the general result of independence invoked at the beginning
of the proof of Proposition 2.4.6, RLv(G) is freely generated by{

le,T : e ∈ R+ ∪B+
}
∪
{
l1, . . . , lf−1

}
and, under UG

M,∅,C , the variables h(l1), . . . , h(lf−1) are independent, uniformly dis-
tributed and independent of {h(le,T ) : e ∈ R+ ∪B+}.

Let us write B+ = {b1, . . . , bp}. By the last part of Lemma 2.4.10, there exists
p + 1 elements t0, . . . , tp of the subgroup generated by {le,T : e ∈ R+}, p signs
ε1, . . . , εp ∈ {−1, 1}, and a permutation σ ∈ Sp such that

(tu1,u2
· · · tuf−1,uf

tuf ,∅t∅,π(∅))
−1 = t0l

ε1
bσ(1),T

t1 · · · tp−1l
εp

bσ(p),T
tp,

with ε1 = · · · = εp = 1 if M is oriented.
By Lemma 2.4.10 again, the loop t0 · · · tp can be written as a word in {le : e ∈ R+}

where each loop appears exactly twice, possibly sometimes with exponent −1. Recall
that #R+ = g. Let us name a1, . . . , ag the loops {le : e ∈ R+} and let w denote
the element of the free group of rank g such that w(a1, . . . , ag) = t0 . . . tp. Let us
also define, for all k ∈ {1, . . . , p}, ci = (ti · · · tp)−1lεibσ(i),T

(ti · · · tp). Then relation (35)
becomes

(36) w(a1, . . . , ag)c1 · · · cp = l1 · · · lf .

The first assertion result now from Proposition 2.4.6, Corollary 2.4.9 and the defi-
nition of l1, . . . , lf and c1, . . . , cp.

2) Let us prove the second assertion. By adding vertices to G1, we do not change the
group RLv(G1) nor the distribution of the associated random variables, according to
the property of invariance by subdivision (Lemma 2.3.9). Hence, we may add to G1 the
vertices of G2 located on Sk(G1) and, without loss of generality, assume that E1 ⊂ E2.

For the sake of simplicity, let us treat the case where only one face of G1 contains
the interior of an edge of E2 \ E1. Once the result is proved under this restrictive
assumption, the general result follows by iteration. So, let us denote by F1 the only
face which contains the interior of some edges of G2.

Let (M ′,G′1, ι, f) be a split pattern of (M,G1). Let M ′F1
be the closure of the

preimage by f of F1. Let G′2 be the restriction to M ′F1
of the lift to M ′ of G2 (this

lift can be rigourously defined by successive applications of the second assertion of
Proposition 1.3.5). Let v1 be the finishing point of the spoke of the lasso l1. Let us
choose a vertex v′1 of G′2 which is sent by f on v1.

The first assertion of the proposition that we are proving applied to the graph G′2
on the diskM ′F1

, whose reduced genus is 0, provides us with f1 facial lassos l′1, . . . , l′f2,1
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based at v′1 which bound the faces of G′2 and such that such that l′1 · · · l′f2,1 boundsM ′2.
By projecting these lassos on M by f and conjugating them by the spoke of l1, we
get lassos based at v which we denote by l1,1, . . . , l1,f2,1 .

Let G1 denote the tame set of generators of RLv(G1) that we are given. Let us prove
that the set G2 of loops obtained by replacing l1 by l1,1, . . . , l1,f2,1 in G1 is a set which
generates RLv(G2). Let c be a loop based at v in G2. Let us split c into a concatenation
of paths which are either paths in G1 or concatenation of edges of E2 \ E1. We get
an expression of the form c = c1d1 · · · cndn, where the paths c1, . . . , cn are in G1 and
the paths d1, . . . , dn are concatenations of edges of E2 \ E1. Choose k ∈ {1, . . . , n}
and consider the path dk. It can be lifted in a unique way to a path in G′2, which we
denote by d′k. Even if dk is a loop, d′k needs not be a loop. However, there exist two
paths a′k and b′k in G′2 which stay on the boundary of M ′F1

and such that a′kd
′
kb
′
k is

a loop based at v′1. Let us write ak = f(a′k) and bk = f(b′k), and denote the spoke of
the lasso l1 by s1. Finally, let fk be a path in G1 from dk to v. We have the equality
in RLv(G2)

c = (c1a
−1
1 s−1

1 )[s1a1d1b1s
−1
1 ](s1b

−1
1 f1) · · · (f−1

n−1cna
−1
n s−1

1 )[s1andnbns
−1
1 ](s1b

−1
n ).

The loops between brackets are loops of RLv(G1) and the loops between square brack-
ets are the image by f of loops in G′2, conjugated by the spoke of l1, hence, equal
to words in the loops l1,1, . . . , l1,f2,1 . Hence, the loops of G2 generate RLv(G2). They
satisfy the equation

w(a1, . . . , ag)c1 · · · cp = l1,1 · · · l1,f1 l2 · · · lf1 .

In particular, the set G2\{l1,1} for instance has cardinal g+p+f(G2)−1 and generates
RLv(G2) which is free of rank g + p + f(G2)− 1. Hence, it is a free basis of this group
(see Proposition 2.7 in Chapter 1 of [29]).

There remains to determine the distribution of {h(l) : l ∈ G2} under UG2

M,∅,C . It fol-
lows from the way in which the loops l1,1, . . . , l1,f2,1 were constructed that the random
variables h(l1,1), . . . , h(l1,f2,1−1) are independent, uniformly distributed, and indepen-
dent of σ(h(l) : l ∈ G1). Moreover, h(l1) is independent of σ(h(l) : l ∈ G1 \ {l1}).
Hence, the three σ-fields

σ
(
h(l1,1), . . . , h(l1,f2,1−1)

)
, σ

(
h(l1)

)
, σ

(
h(l) : l ∈ G1 \ {l1}

)
are independent. Since h(l1,1), . . . , h(l1,f2,1−1) and h(l1) are uniformly distributed,
and l1,f2,1 = (l1,1 · · · l1,f2,1−1)−1l1, it follows that h(l1,1), . . . , h(l1,f2,1) are uniformly
distributed and independent of σ(h(l) : l ∈ G2 \ {l1,1, . . . , l1,f2,1}).
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CHAPTER 3

MARKOVIAN HOLONOMY FIELDS

In this chapter, which is the core of this work, we define Markovian holonomy fields
and their discrete analogues. We prove in full generality that the partition functions
of a discrete Markovian holonomy field do not depend on the graph in which they are
computed. We then prove the first main result of this work, which asserts that any
discrete Markovian holonomy field which satisfies some regularity conditions can be
extended in a unique way to a Markovian holonomy field.

3.1. Definition

Recall the definitions of a marked surface (Definition 1.1.8) and of a set of G-
constraints (Definition 2.3.1).

Definition 3.1.1. — A measured marked surface with G-constraints is a quadruple
(M, vol,C , C) where (M,C ) is a marked surface, vol is a smooth non-vanishing den-
sity on M and C is a set of G-constraints on (M,C ).

Two measured marked surfaces (resp. oriented measured marked surfaces) with G-
constraints (M, vol,C , C) and (M ′, vol′,C ′, C ′) are isomorphic if there exists a dif-
feomorphism (resp. an orientation preserving diffeomorphism) ψ : M →M ′ such that
ψ∗vol = vol′, ψ sends each curve of C to a curve of C ′ and, for all l ∈ C ,

C ′
(
ψ(l)

)
= C(l).

From now on, we will make the assumption that G is a compact Lie group, not
necessarily connected. If dimG ≥ 1, we endow G with a bi-invariant Riemannian
metric which we normalise in such a way that the total Riemannian volume of G
is 1. In this way, the Riemannian density coincides with the normalised Haar measure
on G. If G is finite, we endow it with the distance dG(x, y) = δx,y and with the uniform
probability measure.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2010
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The set Conj(G) of conjugacy classes of G inherits the quotient topology from G

and the corresponding Borel σ-field. The space of G-constraints on a marked surface
(M,C ), which we denote by ConstG(M,C ), is a subset of Conj(G)C∪B(M) and thus
carries the trace topology and σ-field.

Let us introduce a last piece of notation. Let (M, vol,C , C) be a measured marked
surface with G-constraints. Let l be a curve which belongs to C ∪B(M). Let x be an
element of G. We define a new set of G-constraints Cl 7→x as follows:

Cl 7→x(l) = Ox, Cl 7→x(l−1) = Ox−1 and Cl 7→x = C onC ∪B(M)− {l, l−1}.

The main definition of this work is the following.

Definition 3.1.2. — A G-valued two-dimensional Markovian holonomy field is the
data, for each quadruplet (M, vol,C , C) consisting of a marked surface endowed
with a density and a set of G-constraints, of a finite measure HFM,vol,C ,C on
( M(P(M), G), I ) such that the following properties are satisfied.

A1) For all (M, vol,C , C), HFM,vol,C ,C (∃ l ∈ C ∪B(M), h(l) /∈ C(l)) = 0.
A2) For all (M, vol,C ) and all event Γ in the invariant σ-field of M(P(M), G), the

function C 7→ HFM,vol,C ,C(Γ) is a measurable function on the set ConstG(M,C ).
A3) For all (M, vol,C , C) and all l ∈ C ,

HFM,vol,C−{l,l−1},C |B(M)∪C\{l,l−1}
=

∫
G

HFM,vol,C ,Cl 7→xdx.

A4) Let ψ : (M, vol,C , C) → (M ′, vol′,C ′, C ′) be a homeomorphism such that
vol ◦ψ−1 = vol′, ψ(C ) = C ′ and C = C ′ ◦ψ. Let l1, . . . , ln be loops based at the same
point on M . Assume that their images l′1, . . . , l′n by ψ are also rectifiable loops. Then,
for all continuous function f : Gn → G invariant under the diagonal action of G by
conjugation,∫

M(P(M),G)

f
(
h(l1), . . . , h(ln)

)
HFM,vol,C ,C(dh)

=

∫
M(P(M ′),G)

f
(
h′(l′1), . . . , h′(l′n)

)
HFM ′,vol′,C ′,C′(dh′).

In particular, if ψ is a diffeomorphism, then the mapping from M(P(M ′), G) to
M(P(M), G) induced by ψ sends the measure HFM ′,vol′,C ′,C′ to HFM,vol,C ,C .

A5) For all (M1, vol1,C1, C1) and (M2, vol2,C2, C2), one has the identity

HFM1∪M2,vol1∪vol2,C1∪C2,C1∪C2 = HFM1,vol1,C1,C1 ⊗ HFM2,vol2,C2,C2 ,

where M1∪M2 denotes the disjoint union of M1 and M2, and vol1∪vol2, C1∪C2 and
C1∪C2 denote respectively the natural density, set of marks, and set of G-constraints
on M1 ∪M2.
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A6) For all (M, vol,C , C), all l ∈ C and all gluing ψ : Spll(M)→ M along l, one
has

HFSpll(M),Spll(vol),Spll(C ),Spll(C) = HFM,vol,C ,C ◦ ψ−1.

A7) For all (M, vol,∅, C) and for all l ∈ B(M),∫
G

HFM,vol,∅,Cl 7→x(1)dx = 1.

A G-valued two-dimensional oriented Markovian holonomy field is the data, for
each quadruplet (M, vol,C , C) consisting of an oriented marked surface endowed with
a density and a set of G-constraints, of a finite measure HFM,vol,C ,C on the measurable
space ( M(P(M), G), I ) such that the seven properties above are satisfied.

It is important to notice that the measures HF are not probability measures in
general. They are finite measures, whose masses carry a lot of information about the
holonomy field. It is actually possible that they characterise it completely, but this is
a question which has yet to be answered.

Let us discuss briefly the significance of these axioms. The axioms A1, A2 and A3

express the fact that the measure HFM,vol,C ,C , seen as a function of the G-constraints,
provides a regular disintegration of HFM,vol,∅,C |B(M)

with respect to the value of
the holonomy field along the curves of C . The simple expression of A3 is permitted
by the fact that we consider finite measures rather than probability measures. The
axiom A4 expresses the invariance of the field under area-preserving diffeomorphisms.
The axioms A5 and A6 express the Markov property of the field. Finally, A7 is a
normalization axiom. Without it, if HF was a given Markovian holonomy field, then
for any real α, the measures eαvol(M)HFM,vol,C ,C would constitute another Markovian
holonomy field.

Our purpose is not to study Markovian holonomy fields in full generality. In the
rest of this paper, we are going to make strong regularity assumptions and investigate
the corresponding fields.

Recall that dG denotes a bi-invariant distance on G. Let c and c′ be two
paths with the same endpoints. Then, although hc and hc′ are not measur-
able with respect with the invariant σ-field I , unless c and c′ are loops, the
function h 7→ dG(h(c), h(c′)) is I -measurable, because it can also be written as
h 7→ dG(1, h(c)−1h(c′)) = dG(1, h(c′c−1)) and c′c−1 is a loop.

Definition 3.1.3. — Let HF be a G-valued two-dimensional Markovian holonomy field.
1) We say that HF is stochastically continuous if, for all (M, vol,C , C) and

for all sequence (cn)n≥0 of elements of P(M) which converges with fixed endpoints to
c ∈ P(M), ∫

M(P(M),G)

dG
(
h(cn), h(c)

)
HFM,vol,C ,C(dh) −→

n→∞
0.
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2) We say that HF is Fellerian if, for all (M, vol,C ), the function

(t, C) 7−→ HFM,tvol,C ,C(1)

defined on R∗+ × ConstG(M,C ) is continuous.
3) We say that HF is regular if it is both stochastically continuous and Fellerian.

In the definition of stochastic continuity, we use L1 convergence ofG-valued random
variables. Since G is compact, this is equivalent to convergence in probability and to
convergence in Lp for any p ∈ [1,+∞).

From now on, the expression (regular) Markovian holonomy field will stand for
two-dimensional G-valued (regular) Markovian holonomy field.

3.2. Discrete Markovian holonomy fields

It is not easy to construct a Markovian holonomy field. Indeed, one has to construct
a stochastic process indexed by loops. To do this, one must naturally specify the finite-
dimensional marginals of this process. Thus, to each finite collection of loops, one has
to associate a probability measure on some power of G. But unlike points on a time
interval, loops on a surface may form a very complicated picture. In fact, in most
cases, it is impossible to determine a probability measure from a finite set of loops.
A way around this problem is to start by describing a restriction of the process to a
class of loops which are nice enough, like piecewise geodesic loops, and then to extend
the process by continuity. In fact, the very first step is to build a process indexed by
the set of loops in a graph for every graph on a surface. This is what we call a discrete
holonomy field. Recall the partial order on the set of graphs (Definition 1.4.5).

Definition 3.2.1. — A G-valued two-dimensional discrete Markovian holonomy field
is the data, for each measured marked surface (M, vol,C , C) with G-constraints, and
each graph G on (M,C ), of a finite measure DFG

M,vol,C ,C on ( M(P(G), G), I ) such
that the following properties hold.

D1) For all (M, vol,C , C) and all G,

DFG
M,vol,C ,C

(
∃ l ∈ C ∪B(M), h(l) /∈ C(l)

)
= 0.

D2) For all (M, vol,C ), all G and all event Γ in the invariant σ-field of M(P(G), G),
C 7→ DFG

M,vol,C ,C(Γ) is a measurable function on ConstG(M,C ).

D3) For all (M, vol,C , C), all G and all l ∈ C ,

DFG
M,vol,C−{l,l−1},C |B(M)∪C−{l,l−1}

=

∫
G

DFG
M,vol,C ,Cl7→xdx.

D4) Consider (M, vol,C , C) and (M ′, vol′,C ′, C ′), endowed respectively with G
and G′. Let ψ : M → M ′ be a homeomorphism. Assume that vol ◦ ψ−1 and vol′ give
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the same area to each face of G′, that ψ(C ) = C ′, C ′ ◦ ψ = C and ψ(G) = G′. Then
the mapping from M(P(G′), G) to M(P(G), G) induced by ψ satisfies

DFG′
M ′,vol′,C ′,C′ ◦ ψ−1 = DFG

M,vol,C ,C .

D5) For all (M1, vol1,C1, C1) and (M2, vol2,C2, C2), endowed respectively with two
graphs G1 and G2 one has the identity

DFG1∪G2

M1∪M2,vol1∪vol2,C1∪C2,C1∪C2
= DFG1

M1,vol1,C1,C1
⊗ DFG2

M2,vol2,C2,C2
.

D6) For all (M, vol,C , C), all G, all l ∈ C and all gluing ψ : Spll(M)→M along l,
one has

DF
Spll(G)
Spll(M),Spll(vol),Spll(C ),Spll(C) = DFG

M,vol,C ,C ◦ ψ−1.

D7) For all (M, vol,∅, C), all G and all l ∈ B(M),∫
G

DFG
M,vol,∅,Cl7→x(1)dx = 1.

DI) For all (M, vol,C , C), all G1 and G2 graphs on (M,C ) such that G1 4 G2,
the restriction map r : M(P(G2), G)→ M(P(G1), G) satisfies

DFG2

M,vol,C ,C ◦ r
−1 = DFG1

M,vol,C ,C .

A G-valued two-dimensional discrete oriented Markovian holonomy field is the
data, for each oriented measured marked surface (M, vol,C , C) with G-constraints
and all graph G on (M,C ), of a finite measure DFG

M,vol,C ,C on ( M(P(G), G), I ) such
that the properties above are satisfied.

The axiom DI is specific to discrete holonomy fields. It is an axiom of consistency
and is usually called the property of invariance under subdivision.

Lemma 3.2.2. — Any (oriented) Markovian holonomy field determines a discrete
(oriented) Markovian holonomy field.

Proof. — For all surfaceM endowed with a graph G, the set P(G) is a subset of P(M).
Hence, a Markovian holonomy field determines by restriction a discrete Markovian
holonomy field, except perhaps for the axiom DI . In fact, this axiom is satisfied by the
restriction of a Markovian holonomy field because the finite dimensional marginals of
a stochastic process constitute a consistent system of probability measures.

Our main goal in this chapter is to prove a result in the other direction and to
extend, when it is possible, a discrete holonomy field to a continuous one. For the
moment, let us discuss briefly discrete holonomy fields in themselves. It turns out
that we have already constructed a fundamental example of a discrete Markovian
holonomy field.
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Proposition 3.2.3. — The family of measures UG
M,C ,C is a discrete Markovian holon-

omy field. We call it the uniform G-valued discrete holonomy field.

Proof. — The measure UG
M,C ,C is a probability measure on the cylinder σ-field of

M(P(G), G). By restriction, it defines a measure on the invariant σ-field. The ax-
iom D1 is satisfied by Proposition 2.3.6. By Proposition 2.1.8 and the definition of the
measures δ O(n), it is possible to write UG

M,C ,C(Γ) as an expression which is explicitly
measurable with respect to the G-constraints. Hence, the axiom D2 is satisfied. Axiom
D3 is satisfied by (25) (Lemma 2.3.4). That axioms D4, D5 and D7 hold is straight-
forward. Axiom D6 is satisfied thanks to Proposition 2.3.8. The invariance property
DI holds by Proposition 2.3.9.

This discrete Markovian holonomy field is very special in that is consists only in
probability measures.

Definition 3.2.4. — Let DF be a collection of finite measures as in Definition 3.2.1,
which does not necessarily satisfy any of the axioms listed in this definition. To each
(M,C , vol, C) and each graph G, we associate the number

ZG
M,vol,C ,C = DFG

M,vol,C ,C(1),

which is called the partition function.

We have said earlier that these numbers carry a lot of information about the field.
A crucial property is that they do not depend on the graph G.

Proposition 3.2.5. — Let DF be a collection of finite measures as in Definition 3.2.1,
which satisfies axioms D4, D5, D6 and DI . Consider (M, vol,C , C) and two graphs
G1 and G2 on (M,C ). Then

(37) ZG1

M,vol,C ,C = ZG2

M,vol,C ,C .

The common value of all ZG
M,vol,C ,C , where G spans the set of graphs on (M,C ), is

denoted by ZM,vol,C ,C .

If there exists a graph G3 such that G1 4 G3 and G2 4 G3, then (37) is a straight-
forward consequence of the axiom DI . Unfortunately, by Lemma 1.4.6, the set of
graphs on M is not directed and such a graph G3 does not always exist.

Proof. — By Proposition 1.1.12, it is possible to split M along each of the curves
of C . Thus, there exists a measured surface (M ′, vol′,∅, C ′) with G-constraints and
no marks and a gluing f : M ′ → M whose joint is C . We can lift G1 to a graph G′1
onM ′ (see the comment before Lemma 1.3.6) and the axiom D6 enforces the equality
Z

G′1
M ′,vol′,∅,C′ = ZG1

M,vol,C ,C . Since we can do the same for the graph G2, it suffices to
prove the result when C = ∅. Then, the axiom D5 implies that the partition function
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associated to G1 (resp. G2) is the product of the partition functions associated to
the connected components of M endowed with the corresponding restrictions of G1

(resp. G2).
Hence, it suffices to prove the result when M is connected and C = ∅. In this

case, the axiom DI implies that we can remove or add edges to G1, in the sense of
Propositions 1.3.15 and 1.3.26, without altering the partition function.

By Proposition 1.3.36, by such transformations we can go from G1 to a graph which
is sent to G2 by a homeomorphism of M . By D4, this implies the result.

Let DF be a discrete holonomy field. In order to produce a Markovian holonomy
field from DF, the first natural step is to apply Proposition 2.2.2 to put together the
measures which DF associates to a directed subset of the set of graphs on a surface.
For this, we need to consider Riemannian metrics.

Let (M, vol, γ,C ) be a Riemannian marked surface (see Definition 1.4.4). Axiom DI
and Proposition 2.2.3 imply that the collection of the measures DFG

M,vol,C ,C , where G
spans the set Grγ(M,C ) of graphs with piecewise geodesic edges, determines a finite
measure on M(Aγ(M), G), where Aγ(M) is the set of piecewise geodesic paths on M .

Definition 3.2.6. — Let DF be a discrete holonomy field. Let (M, vol, γ,C , C) be a
Riemannian measured marked surface with G-constraints. The finite measure on
M(Aγ(M), G) obtained by taking the projective limit of the measures DFG

M,vol,C ,C

where G spans Grγ(M,C ) is denoted by DFγM,vol,C ,C .

At this point, there are two things to do. Firstly, one needs to extend the measure
DFγM,vol,C ,C to M(P(M), G) for all (M, vol,C , C) and secondly, one needs to prove
that the result of this procedure would have been the same with another Riemannian
metric. The first step requires some regularity from the holonomy field. We denote by
1 the unit element of G.

Definition 3.2.7. — Let DF be a discrete holonomy field. We say that DF is stochasti-
cally 1

2 -Hölder continuous if the following property holds.
Let (M, vol, γ,C , C) be a Riemannian marked surface with G-constraints. Then

there exists a constant K > 0 such that for all graph G on M and all simple loop
l ∈ P(G) with l(l) ≤ K−1 bounding a disk D,∫

M(P(G),G)

dG
(
1, h(l)

)
DFG

M,vol,C ,C(dh) ≤ K
√

vol(D).

Our unique example so far of a discrete holonomy field, the uniform holonomy
field, does unfortunately not satisfy this property. Indeed, it assigns uniform random
variables to arbitrary small simple loops. We will construct other more regular discrete
holonomy fields later.
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The second step of the program outlined above requires another regularity condi-
tion, which is more global but less quantitative.

Definition 3.2.8. — Let DF be a discrete holonomy field.
1) We say that DF is continuously area-dependent if the following property holds.
Let (M, vol,C , C) be a marked surface with G-constraints. Let (voln)n≥1 be a se-

quence of surface measures on M . Assume that for all F ∈ F, voln(F ) converges
to vol(F ). Then we have the weak convergence

DFG
M,voln,C ,C =⇒

n→∞
DFG

M,vol,C ,C .

2) We say that that DF is Fellerian if for all measured marked surface (M, vol,C ),
the mapping which to a set of G-constraints C associates the number ZM,vol,C ,C is
continuous on ConstG(M,C ).

3) We say that DF is regular if it is stochastically 1
2 -Hölder continuous, continuously

area-dependent and Fellerian.

It is tempting to conjecture that a stochastically 1
2 -Hölder continuous discrete

Markovian holonomy field is continuously area-dependent. At least, the two properties
are not equivalent, as our unique example so far shows. For the moment, let us state
our main result concerning the construction of Markovian holonomy fields.

Theorem 3.2.9. — Every regular discrete Markovian holonomy field is the restriction
of a unique regular Markovian holonomy field.

The proof of this theorem occupies the rest of this chapter.

3.3. An abstract extension theorem

The core of the proof of Theorem 3.2.9 is the next result, which we formulate in a
way which is mostly independent of the context of Markovian holonomy fields. Recall
the notation Aγ(M) for the set of piecewise geodesic paths on M (Definition 1.2.10).

Theorem 3.3.1. — Let (M,γ) be a compact Riemannian surface. Let vol denote the
Riemannian volume of γ. Let (Γ, d) be a complete metric group on which translations
and inversion are isometries. Let H ∈ M(Aγ(M),Γ) be a multiplicative function.
Assume that there exists K > 0 such that for all simple loop l ∈ Aγ(M) bounding a
disk D and such that `(l) ≤ K−1, the inequality d(1, H(l)) ≤ K

√
vol(D) holds.

Then H admits a unique extension to an element of M(P(M), G), also denoted
by H, such that if a sequence (cn)n≥0 of paths converges with fixed endpoints to a
path c, then H(cn) −→

n→∞
H(c).
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Let us state right now the application of this theorem to the extension of holonomy
fields.

Corollary 3.3.2. — Let DF be a stochastically 1
2 -Hölder continuous discrete Marko-

vian holonomy field. Let (M, vol, γ,C , C) be a Riemannian marked surface with G-
constraints. There exists a unique probability measure DF

(γ)
M,vol,C ,C on ( M(P(M), G), C)

whose image by the restriction mapping

M(P(M), G) −→ M(Aγ(M), G)

is the measure DFγM,vol,C ,C and such that for all sequence (cn)n≥0 of paths which
converges with fixed endpoints to a path c, one has∫

M(P(M),G)

dG
(
h(cn), h(c)

)
DF

(γ)
M,vol,C ,C(dh) −→

n→∞
0.

Proof. — The canonical process (Hc)c∈Aγ(M) on ( M(Aγ(G), G), C ,DFγM,vol,C ,C) can
be seen as a mapping from Aγ(M) to the set Γ = L1( M(Aγ(M), G), C ,DFγM,vol,C ,C ;G).
In general, the set L1(Ω, A,P;G) of G-valued random variables on any probability
space (Ω, A,P) is a group for the multiplication of random variables. The metric
d(H1, H2) = E[dG(H1, H2)] makes it a complete metric space. The two structures are
compatible in that the product and inverse mappings are continuous. Moreover, the
translations and the inversion map are isometries.

The assumption of stochastic Hölder continuity ensures that the regularity condi-
tion is satisfied by the family (Hc)c∈Aγ(M). Hence, we can apply Theorem 3.3.1. It pro-
duces a family of random variables (Hc)c∈P(M) which is multiplicative and continuous
with respect to the convergence of paths with fixed endpoints. Proposition 2.2.3 ap-
plied to this family asserts that there exists a probability measure on ( M(P(M), G), C)

under which the canonical process has the distribution of (Hc)c∈P(M).
The uniqueness of the measure DF

(γ)
M,vol,C ,C follows from Proposition 1.2.12 which

asserts that Aγ(M) is dense in P(M) for the convergence with fixed endpoints.

The rest of this section is devoted to the proof of Theorem 3.3.1. A basic tool for this
proof is the lasso decomposition of a piecewise geodesic path (see Proposition 1.4.9).

Proposition 3.3.3. — Under the assumptions of Theorem 3.3.1, there exists a constant
K > 0 such that for every loop l ∈ Aγ(M) with `(l) ≤ K−1,

d
(
1, H(l)

)
≤ K`(l).

Proof. — Assume first that l is a simple loop. If `(l) is small enough, then l bounds
a disk, which we denote by D. Moreover, a local isoperimetric inequality holds on M :
if `(l) is small enough, say `(l) < L, then

√
vol(D) ≤ K1`(l) for some constant
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K > 0. Then, if K denotes the constant given by the assumptions of Theorem 3.3.1,
d(1, H(l)) ≤ K

√
vol(D) ≤ KK1`(l). The result is proved in this case.

Let us now treat the general case. Let us apply Proposition 1.4.9 to find the lasso
decomposition l = l1 · · · lpd of l. By the multiplicativity of H, which is part of the
assumptions of Theorem 3.3.1, H(l) = H(d)H(lp) · · ·H(l1). Since the distance d on Γ

is invariant by left translations and inversion, we have, for all x, y ∈ Γ,

d(1, xy) = d(x−1, y) ≤ d(1, x−1) + d(1, y) = d(1, x) + d(1, y).

Hence, d(1, H(l)) ≤ d(1, H(d))+
∑p
i=1 d(1, H(li)) ≤ K`(d)+K

∑p
i=1 `(li). By Propo-

sition 1.4.9, `(d) +
∑p
i=1 `(li) ≤ `(l) and the result follows.

This result tells us that if l is a simple piecewise geodesic loop close to the constant
loop, then H(l) is close to the image by H of the constant loop. Our next generalises
this statement to the case of a piecewise geodesic path which is close to a geodesic
segment.

Proposition 3.3.4. — Under the assumptions of Theorem 3.3.1, there exists a constant
K > 0 such that the following property holds. Let s ∈ Aγ(M) be a segment of minimiz-
ing geodesic. Let c be a piecewise geodesic path with the same endpoints as s. Assume
that `(c) ≤ K−1. Then

d
(
H(c), H(s)

)
≤ K`(c) 3

4

∣∣`(c)− `(s)∣∣ 1
4 .

The assumptions imply that s is shorter than c. If we take `(s) = 0, then c is a
loop and we recover the estimate of Proposition 3.3.3.

In order to prove this proposition, we use a decomposition result similar to the
lasso decomposition and the following isoperimetric inequality. Needless to say, the
constant π/3

√
2 which appears in this Euclidean case is not optimal.

Lemma 3.3.5. — Let R, r ≥ 0 be real numbers.
Let J be a rectifiable Jordan curve of length 2R + r in the Euclidean plane such

that a piece of this curve is a segment of length R. Then the area A of the bounded
component of R2 \ J satisfies the inequality

A ≤ π

3
√

2
r

1
2 (R+ r)

3
2 .

Let M be a compact Riemannian surface. There exists a constant K > 0 such that
the following property holds. Let J be a rectifiable Jordan curve of length 2R+r < K−1

such that a piece of this curve is a segment of minimizing geodesic of length R. Then
the area A of the smallest disk bounded by J satisfies the inequality

A ≤ Kr 1
2 (R+ r)

3
2 .
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R+ rR+ r

ρ
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α

Figure 1. The generic case and two optimal cases.

Proof. — The Riemannian case can easily be deduced from the Euclidean case by
working in normal coordinates at one end point of the geodesic part of J . The com-
pactness ofM ensures that the resulting distortions of lengths and areas are bounded.

Let us consider the Euclidean case. Under the constraints on J , A is maximal
when J is the concatenation of a segment of length R and an arc of circle of
length R+ r. In this case, let ρ be the radius of this circle and α ∈ [0, 2π) the angle
under which the arc of circle is seen from the centre of the circle. Then R + r = ρα

and R = 2ρ sin 1
2α. Now one has the relations

A =
ρ2

2
(α− sinα) ≤ ρ2α3

12
=

α

12
(R+ r)2,(38)

sin 1
2α

1
2α

=
R

R+ r
·(39)

One checks easily that for all x ∈ [0, π], sinx/x ≤ 1 − x2/π2. Hence, (39) implies
α ≤ 2π

√
r/R, and since α ∈ [0, 2π), we have α ≤ 2π(

√
r/R∧1). Combining this with

(38), we find

A ≤ π

6
(R+ r)

3
2
√
r
(√

1 + r/R ∧
√

1 +R/r
)
≤ π

3
√

2
r

1
2 (R+ r)

3
2 .

This is the expected result.

The generalization of the lasso decomposition that we need is the following.

Proposition 3.3.6. — Let M be a Riemannian compact surface. Let s be a geodesic
segment onM and c an injective piecewise geodesic path with the same endpoints as s.
It is possible to decompose c and s as concatenations c = c1 · · · cp and s = s1 · · · sp in
such a way that, for each k = 1, . . . , p, ck = sk or cks−1

k is a simple loop. In particular,
if we set lk = (c1 · · · ck−1)cks

−1
k (c1 · · · ck−1)−1, then lk is a lasso and cs−1 ' l1 · · · lp.

Proof. — Consider the set c([0, 1]) ∩ s([0, 1]). It is a reunion of isolated points
and closed subintervals of s([0, 1]). Let V be the reunion of these isolated points
and the end points of these intervals. The set V contains the two end points of
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s

c

c6

c9
s6

s9

Figure 2. The pieces c6 and c9 of c (thicker on the picture) intersect s,
but not s6 nor s9 respectively (dotted on the picture).

s. Set n = #V − 1. Then V dissects both c and s into n edges: c = e1 · · · en and
s = f1 · · · fn.

For each i ∈ {1, . . . , n}, define j(i) by the relation ei = fj(i). Since c is injective,
the mapping j from {1, . . . , n} to itself is one-to-one. Hence, it is a permutation. We
look for records in the sequence j(1), j(2), . . . , j(n): define

I =
{
i : 1 ≤ i ≤ n, j(i) = max(j(1), . . . , j(i))

}
and write I = {i1 ≤ · · · ≤ ip}. Set J = j(I) = {j(i1) ≤ · · · ≤ j(ip)}. Observe that
ip = n = j(ip). Set i0 = j(i0) = 0. For each k = 1, . . . , p, set ck = eik−1+1 · · · eik and
sk = fj(ik−1)+1 · · · fj(ik). By construction, c = c1 · · · cp and s = s1 · · · sp.

Choose k ∈ {1, . . . , p} and consider ck = eik−1+1 · · · eik . Assume first that
ik = ik−1 + 1. Then ck = eik . Either this edge is contained in s, in which case
ck = eik = fj(ik) = sk, or it meets s only at its endpoints, which are also those of sk.
In this case, cks−1

k is a simple loop. Assume now that ik ≥ ik−1 + 2. We claim that
any point of ck other than one of its end points which is located on s is in fact located
on one of the edges f1, . . . , fj(ik−1). Indeed, if this was not the case, there would exist
l ∈ {ik−1 + 1, . . . , ik − 1} 6= ∅ such that el is located on s between eik and s̄. But
then we would have j(l) > j(ik) which contradicts the definition of ik. Hence, in this
case, cks−1

k is a simple loop.

We are now ready to prove Proposition 3.3.4.

Proof of Proposition 3.3.4. — Assume that c and s are shorter than the bound K−1

of Proposition 3.3.3. Let LE(c) be the loop-erasure of c. By the properties of the lasso
decomposition of c (Proposition 1.4.9) and Proposition 3.3.3,

d
(
H(c), H(LE(c))

)
≤ K

(
`(c)− d(c(0), c(1))

)
= K

∣∣`(c)− `(s)∣∣.
Now we are reduced to consider c′ = LE(c) which is an injective path. Let c′ = c′1 · · · c′p
and s = s1 · · · sp be the decomposition given by Proposition 3.3.6. We have

d
(
H(c′), H(s)

)
≤

p∑
i=1

d
(
1, H(c′is

−1
i )
)
≤ K

p∑
i=1

√
Ai,
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where Ai is the area enclosed by c′is
−1
i . By Lemma 3.3.5 and since `(s) ≤ `(c′) ≤ `(c),

Ai ≤ K`(ci)
3
2

∣∣`(ci)− `(si)∣∣ 1
2 .

By Hölder inequality, it follows that

d
(
H(c′), H(s)

)
≤ K`(c) 3

4

∣∣`(c)− `(s)∣∣ 1
4 .

Hence,

d
(
H(c), H(s)

)
≤ K

(
|`(c)− `(s)|+ `(c)

3
4 |`(c)− `(s)| 14

)
≤ 2K`(c)

3
4

(
`(c)− `(s)

) 1
4 .

The estimate given by Proposition 3.3.4 will allow us to associate an element of Γ

to every element of P(M). Recall the definition of the dyadic piecewise geodesic ap-
proximation of a path (Definition 1.2.11). For a given path c, Dn(c) is in general only
defined for n larger than a certain integer n0(c). Nevertheless, by Proposition 1.2.12,
the sequence (Dn(c))n≥n0(c) converges to c in 1-variation.

Proposition 3.3.7. — Let c ∈ P(M). Under the assumptions of Theorem 3.3.1, the
sequence (H(Dn(c)))n≥n0(c) is a Cauchy sequence in Γ.

Proof. — Let K be the constant given by Proposition 3.3.4. Let n1(c) be an integer
such that 2−n1(c)`(c) < K−1. Choose m ≥ n ≥ max(n0(c), n1(c)). Write

Dn(c) = σ0 · · ·σ2n−1

according to the notation of Definition 1.2.11. Write also Dm(c) = η0 · · · η2n−1, where
for each k ∈ {0, . . . , 2n − 1}, ηk = Dm−n(c |[k2−n,(k+1)2−n]). By Proposition 3.3.4, for
all k ∈ {0, . . . , 2n − 1},

d
(
H(ηk), H(σk)

)
≤ K`(ηk)

3
4

∣∣`(ηk)− `(σk)
∣∣ 1

4 .

Hence, by Hölder inequality, and since `(Dn)(c) ≤ `(Dm(c)) ≤ `(c),

d
(
H(Dn(c)), H(Dm(c))

)
≤ K`(c) 3

4

∣∣`(c)− `(Dn(c))
∣∣ 1

4 .

The result follows now from the fact that `(Dn(c)) converges to `(c).

By Proposition 3.3.7 and the assumption that (Γ, d) is complete, it is now legitimate
to set the following definition.

Definition 3.3.8. — For each c ∈ P(M) \ Aγ(M), we define

H(c) = lim
n→∞

H(Dn(c)).

Proposition 3.3.9. — The mapping H : P(M)→ Γ thus defined is continuous at fixed
endpoints.
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Notice that we have not proved yet that H is continuous even on Aγ(M).

Proof. — Take c ∈ P(M) and consider a sequence (cn)n≥0 in Aγ(M) converging
to c with fixed endpoints. We claim that H(cn) converges to H(c). An elementary
argument shows that this implies the continuity of H with fixed endpoints on P(M).

Choose ε > 0. Choose an integer m ≥ 0 such that d(H(Dm(c)), H(c)) < 1
2ε. Such

an integer exists by definition of H(c). Now for each n ≥ 0 and each k ∈ {0, . . . , 2m},
let ηn,k be the geodesic segment joining cn(k2−m) to c(k2−m). If k 6= 2m, let us also
denote by cn,k the portion of cn parametrised by the interval [k2−m, (k + 1)2−m].
Observe that ηn,0 and ηn,2m are constant paths. The equivalence of paths

cn = cn,0 · · · cn,2m ' (η−1
n,0cn,0ηn,1) · · · (η−1

n,kcn,kηn,k+1) · · · (ηn,2m−1cn,2m−1ηn,2m)

implies the following inequality:

d
(
H(cn), H(Dm(c))

)
≤

2m−1∑
k=0

d
(
H(η−1

n,kcn,kηn,k), H(σk)
)
,

where Dm(c) = σ0 . . . σ2m−1 is the decomposition given by the definition of Dm(c).
The path η−1

n,kcn,kηn,k is piecewise geodesic and shares the same endpoints as the
segment σk. Hence we can apply Proposition 3.3.4 to find

d
(
H(η−1

n,kcn,kηn,k), H(σk)
)
≤ K

(
`(cn,k)+2d∞(cn, c)

) 3
4
(
`(cn,k)− `(σk)+2d∞(cn, c)

) 1
4.

By Hölder inequality again,

d
(
H(cn), H(Dm(c))

)
≤ K

(
`(cn) + 2m+1d∞(cn, c)

) 3
4
(
`(cn)− `(c) + 2m+1d∞(cn, c)

) 1
4.

Since `(cn) converges to `(c) and d∞(cn, c) tends to 0, the right hand side tends to
zero as n tends to infinity. For n large enough, it is smaller than 1

2ε. For such n,
d(H(cn), H(c)) < ε.

Remark 3.3.10. — The factors 2m+1 in the last expression are very unpleasant, be-
cause they give the feeling that H is not uniformly continuous on P(M). In fact, the
last proof reveals that, on P(M) endowed with the distance d`, H is uniformly contin-
uous on subsets where ` ◦Dn converges uniformly to `. It is likely that a much better
result can be achieved by considering the stronger distance d1 on P(M). Ideally, one
could expect H to be 1

4 -Hölder continuous on (P(M), d1). I have not been able to
prove or disprove this statement.

3.4. Extension of discrete holonomy fields

Let (M, vol, γ,C , C) be a Riemannian marked surface with G-constraints. Starting
from a discrete Markovian holonomy field DF satisfying a condition of regularity, we
have constructed a measure DF

(γ)
M,vol,C ,C on ( M(P(M), G), C) (see Corollary 3.3.2).
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The construction of this measure involves a Riemannian metric and we must now prove
that the result is independent of this choice. We start by identifying the distribution
of (Hc)c∈P(G) under DF

(γ)
M,vol,C ,C for an arbitrary graph G.

Proposition 3.4.1. — Let DF be a stochastically 1
2 -Hölder continuous and continuously

area-dependent discrete Markovian holonomy field. Let (M, vol, γ,C , C) be a Rieman-
nian marked surface with G-constraints. Let G = (V,E,F) be a graph on (M,C ).
Recall the notation DF

(γ)
M,vol,C ,C from Corollary 3.3.2.

1) The distribution of (He)e∈E under DF
(γ)
M,vol,C ,C is DFG

M,vol,C ,C .

2) The measure DF
(γ)
M,vol,C ,C does not depend on the Riemannian metric γ. We

denote it by DFM,vol,C ,C .
3) The distribution of (He)e∈E under DFM,vol,C ,C is DFG

M,vol,C ,C .

Let us emphasise that the graph G considered in this statement is not assumed to
have piecewise geodesic edges.

Proof. — 1) For each n ≥ 1, let Gn be the graph produced by Proposition 1.4.10 with
ε = n−1. Let Sn : E −→ En denote the corresponding bijection. By the stochastic
continuity of the process (Hc)c∈P(M) under DF

(γ)
M,vol,C ,C , which follows from Theo-

rem 3.3.1, the distribution of (He)e∈E is the limit of the distributions of the families
(HSn(e))e∈E as n tends to infinity.

Since Sn preserves the cyclic order at each vertex of G, there exists for each n a
homeomorphism ofM which preserves C and which sends G on Gn and which induces
the bijection Sn. Let ψn be such a homeomorphism. Since for each face F of G, the
boundary of ψn(F ) is ψn(∂F ) = Sn(∂F ) = ∂Sn(F ), the face ψn(F ) is Sn(F ).

Moreover, the distribution of the family (HSn(e))e∈E under DF
(γ)
M,vol,C ,C is the dis-

tribution of the same family under DFGn
M,vol,C ,C , hence the distribution of (He)e∈E

under DFG
M,vol◦ψn,C ,C , where vol ◦ ψn denotes any measure of area on M which gives

to each face F of G the area vol(ψn(F )).
By the fourth assertion of Proposition 1.4.10, vol(ψn(F )) tends to vol(F ) as n

tends to infinity for all F ∈ F. Hence, the assumption that DF is continuously area-
dependent implies that the distribution of the family (HSn(e))e∈E under DF

(γ)
M,vol,C ,C

converges weakly to DFG
M,vol,C ,C as n tends to infinity.

2) Let γ and γ′ be two Riemannian metrics on (M, vol,C ). By Lemma 1.4.8 and the
property that we have just proved, the distributions of (Hc)c∈Aγ(M) under DF

(γ)
M,vol,C ,C

and DF
(γ′)
M,vol,C ,C agree. Since Aγ(M) is dense in P(M) for the convergence with fixed

endpoints (see Proposition 1.2.12), the continuity property granted by Theorem 3.3.1
implies that DF

(γ)
M,vol,C ,C = DF

(γ′)
M,vol,C ,C .

3) This property follows immediately from the first two.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2010



122 CHAPTER 3. MARKOVIAN HOLONOMY FIELDS

We can now finish the proof of the main theorem of this section.

Proof of Theorem 3.2.9. — Let DF be a regular discrete Markovian holonomy
field. By applying Corollary 3.3.2 and Proposition 3.4.1, we get for all measured
marked surface with G-constraints (M, vol,C , C) a finite measure DFM,vol,C ,C on
( M(P(M), G), C) which by restriction produces a measure on the invariant σ-field.
The total mass of the measure DFM,vol,C ,C is the common value of the masses
of the measures DFG

M,vol,C ,C for all graph G on (M,C ), which we have denoted
by ZM,vol,C ,C . In particular, this mass is finite.

Now, we check that the seven axioms of Definition 3.1.2 are satisfied. We choose
a measured marked surface with G-constraints (M, vol,C , C). We endow (M,C , C)

with a Riemannian metric γ and use without further comment the fact, granted by
Proposition 3.4.1, that DFM,vol,C ,C = DF

(γ)
M,vol,C ,C .

A1) Let N denote the event {∃ l ∈ C ∪ B(M), h(l) /∈ C(l)}. Let G be a graph
on (M,C ). By Proposition 3.4.1 and the axiom D1 for DF,

DFM,vol,C ,C( N ) = DFG
M,vol,C ,C( N ) = 0.

A2) The set of bounded measurable functions from ( M(P(M), G), I ) to R whose
integral against DFM,vol,C ,C depends measurably of the G-constraints C is a vec-
tor space which contains the constant functions and is stable by uniformly bounded
monotone limit. Thus, by a monotone class argument, and by definition of the in-
variant σ-field I , in order to show that this space contains all bounded functions
measurable with respect to I , it suffices to show that it contains all functions of the
form h 7→ f(h(l1), . . . , h(ln)) where l1, . . . , ln are loops based at the same point and
f : Gn → G is continuous and invariant under the diagonal action of G by conjugation.

Let us choose l1, . . . , ln and f as above. For each i ∈ {1, . . . , n} and all m ≥ 1

large enough, let Dm(li) denote the dyadic piecewise geodesic approximation of li
of order m. Let us define a function F and a sequence of functions Fm on the set
ConstG(M,C ) of G-constraints on (M,C ) as follows:

F (C) =

∫
M(P(M),G)

f
(
h(l1), . . . , h(ln)

)
DFM,vol,C ,C(dh)

and, for all m ≥ 1,

Fm(C) =

∫
M(P(M),G)

f
(
h(Dm(l1)), . . . , h(Dm(ln))

)
DFM,vol,C ,C(dh).

Our goal is to prove that the function F is measurable. For all C ∈ ConstG(M,C ),
the fact that Dm(li) converges to li with fixed endpoints implies, according to the
conclusion of Theorem 3.3.1, that HDm(li) converges in probability to Hli , so that
Fm(C) tends to F (C) as m tends to infinity. Hence, it suffices to prove that Fm is
measurable for m large enough. This follows immediately from the axiom D2.
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A3) Just as in the last point, it suffices to check the equality when it integrates a
function of the form h 7→ f(h(l1), . . . , h(ln)), where l1, . . . , ln are piecewise geodesic
and f is invariant by diagonal conjugation. Hence, it suffices to prove the equality
for DFG

M,vol,C ,C for any graph G with piecewise geodesic edges. In this last case, the
property follows from the axiom D3 satisfied by DF.

A4) The metric γ′ = (ψ−1)∗γ is a Riemannian metric on (M ′, vol′,C ′) in the sense
of Proposition 1.4.3. We need to prove that the image measure of DF

(γ)
M,vol,C ,C by the

mapping induced by ψ is DF
(γ′)
M ′,vol′,C ′,C′ . Again, we may restrict ourselves to functions

of the form h 7→ f(h(l1), . . . , h(ln)), where l1, . . . , ln are piecewise geodesic, hence to
the discrete measures associated to graphs with piecewise geodesic edges. Let G be
a graph on (M,C ) with piecewise geodesic edges. Then G′, the graph constituted by
the images by ψ of the edges of G, is a graph on (M ′,C ′) with piecewise geodesic
edges and, by the axiom D4 for DF, the distribution of (He)e∈E under DFG

M,vol,C ,C is
the same as the distribution of (He′)e′∈E′ under DFG′

M ′,vol′,C ′,C′ . The property follows.
A5, A6 and A7 follow respectively from the axioms D5, D6 and D7 satisfied by DF

and the same approximation argument as in the previous points.
The fact that the new Markovian holonomy field DF is stochastically continuous

is a part of the conclusion of Theorem 3.3.1. Finally, the Feller property follows from
the Feller property of DF.
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CHAPTER 4

LÉVY PROCESSES AND MARKOVIAN HOLONOMY
FIELDS

In this chapter, we apply the extension theorem proved in the previous chapter in
order to construct a whole family of Markovian holonomy fields. Before that, we study
the partition functions of an arbitrary regular Markovian holonomy field and prove
that they are completely determined by a Lévy process on the group G with some nice
properties, essentially a continuous density. We then construct a Markovian holonomy
field for each such Lévy process. The case of the Brownian motion on a connected Lie
group yields the Yang-Mills measure.

4.1. The partition functions of a Markovian holonomy field

In this section, we establish some fundamental properties satisfied by the masses
of the finite measures which constitute a Markovian holonomy field.

To start with, we describe the isomorphism classes of connected surfaces with
G-constraints on the boundary. If M is oriented, we denote by B+(M) the subset
of B(M) which consists of the curves which have the orientation induced by that
of M .

Proposition 4.1.1. — Let (M, vol,∅, C) and (M ′, vol′,∅, C ′) be two connected mea-
sured marked surfaces with G-constraints. If M and M ′ are orientable, we assume
that they are oriented. They are isomorphic if and only if the following conditions
hold simultaneously.

1) M and M ′ are homeomorphic.
2) vol(M) = vol′(M ′).
3) If M and M ′ are oriented, there exists a bijection ψ : B+(M)→ B+(M ′) such

that C = C ′ ◦ ψ on B+(M).
3′) If M and M ′ are non-orientable, there exists a Z/2Z-equivariant bijection ψ :

B(M)→ B(M ′) such that C = C ′ ◦ ψ.
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We use this result to associate to every Markovian holonomy field a family of
functions of one or several variables in Conj(G).

Let HF be a Markovian holonomy field. Let g and p be two non-negative integers,
with g even. Let t be a positive real number. Recall the notation of Section 1.1. LetM
be a surface homeomorphic to Σ+

p,g, endowed with a density vol of total area t. Let
b1, . . . , bp denote the positively oriented connected components of ∂M . Let x1, . . . , xp
be elements of G. Let C be the unique set of G-constraints on (M,∅) such that,
for all i ∈ {1, . . . , p}, C(bi) = Oxi . By Proposition 4.1.1 and the axiom A4, the
number HF(M,vol,∅,C)(1) depends onM , vol and C only through p, g, t, the unordered
list Ox1

, . . . , Oxp and the fact that M is orientable. Hence, it is legitimate to set

Z+
p,g,t(x1, . . . , xp) = HF(M,vol,∅,C)(1).

This defines a symmetric function Z+
p,g,t of p conjugacy classes of G. If the Marko-

vian field is Fellerian, then this function is continuous with respect to (t, x1, . . . , xp).
If p = 0, Z+

0,g,t is just a number, namely the total mass of the measure HF(M,vol,∅,∅)

where M is the connected sum of 1
2g tori endowed with a density of total area t.

Similarly, let g and p be two integers, respectively positive and non-negative. LetM
be a surface homeomorphic to Σ−p,g, endowed with a density vol of total area t. Let
b1, . . . , bp denote the disjoint connected components of ∂M endowed with an arbitrary
orientation. Let x1, . . . , xp be elements of G. Let C be the unique set of G-constraints
on (M,∅) such that, for all i ∈ {1, . . . , p}, C(bi) = Oxi . When HF is not oriented, we
define

Z−p,g,t(x1, . . . , xp) = HF(M,vol,∅,C)(1).

Again, if p = 0, Z−0,g,t is just the total mass of the measure HF(M,vol,∅,∅) where M is
the connected sum of g projective planes endowed with a density of total area t.

Definition 4.1.2. — Let HF be a Markovian holonomy field. The functions

Zεp,g,t : Gp −→ R∗+,

where (ε, p, g, t) spans ({+} × N × 2N × R∗+) ∪ ({−} × N × N∗ × R∗+), are called the
partition functions of the field HF.

In the rest of this section, we fix a Markovian holonomy field HF and study its
partition functions. They are infinitely many but the Markov property of the field
implies that they satisfy an infinite set of relations and that they are in fact completely
determined by a small number of them.

Let us introduce several operations on functions of conjugacy classes of G. Firstly,
we identify functions of a conjugacy class of G and functions on G which are constant
on the conjugacy classes. Thus, we may speak of continuous or integrable functions
of a conjugacy class. This point of view is consistent with our previous definition of a
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topology and σ-field on Conj(G) (see Section 3.1). Of particular interest is the space
of square-integrable functions of one conjugacy class of G, which we identify with the
space L2(G)G of conjugation-invariant square-integrable functions on G. If p ≥ 1 is an
integer, we identify the elements of the p-th symmetric tensor power Symp

(
L2(G)G

)
with symmetric functions of p conjugacy classes. We use the shorthand notation Sp(G)

for Symp
(
L2(G)G

)
.

Definition 4.1.3. — For all integers p, q, r ≥ 1 and s ≥ 2, the three linear mappings

υ : Sr(G) −→ Sr−1(G), β1 : Ss(G) −→ Ss−2(G),

β2 : Sp(G)⊗ Sq(G) −→ Sp−1(G)⊗ Sq−1(G)

are defined by

∀f ∈ Sr(G), (υf)(x1, . . . , xr−1) =

∫
G

f(x1, . . . , xr−1, x
2)dx,(40)

∀f ∈ Ss(G), (β1f)(x1, . . . , xs−2) =

∫
G

f(x1, . . . , xs−2, x, x
−1)dx,(41)

∀f ∈ Sp(G), ∀f ′ ∈ Sq(G),(42) (
β2(f ⊗ f ′)

)
(x1, . . . , xp−1, y1, . . . , yp−1)

=

∫
G

f(x1, . . . , xp−1, z)f
′(y1, . . . , yq−1, z

−1)dz.

We will now use these linear mappings to formulate the relations between the par-
tition functions of the holonomy field. The operation υ expresses the transformation
of the partition function under a unary gluing, and the contractions β1 and β2 corre-
spond to binary gluings, respectively of two boundary components which lie on the
same connected component of the surface and two boundary components which lie
on two distinct connected components.

Recall that we use the notation ε ∧ ε′ for ε, ε′ ∈ {−,+} with the meaning

ε ∧ ε′ =

{
+ if ε = ε′ = +,

− in all other cases.

Proposition 4.1.4. — Let (Z±p,g,t)p,g≥0,t>0 be the partition functions of a Markovian
holonomy field HF.

1) For all (ε, g) ∈ ({+} × 2N) ∪ ({−} × N∗), all integers p ≥ q ≥ 1 and all real
t > 0, the function Zεp,g,t is square-integrable with respect to any q of its variables for
any value of the p− q other.

2) The following equality holds:

(43) υ(Zεp,g,t) = Z−p−1,g+1,t.
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Moreover, if p ≥ 2, then

(44) β1(Zεp,g,t) = Zεp−2,g+2,t.

Finally, for all (ε′, g′) ∈ ({+} × 2N) ∪ ({−} × N∗), all p′ ≥ 1 and all real t′ > 0,

(45) β2(Zεp,g,t ⊗ Zε
′

p′,g′,t′) = Zε∧ε
′

p+p′−2,g+g′,t+t′ .

Proof. — Let us start by proving the second assertion. Choose ε, p, g, t as above.
It follows from the axiom A2 that Zεp,g,t : Gp → R∗+ is a measurable function. Since it
takes non-negative values, the integral which defines υ(Zεp,g,t) is well defined, possibly
infinite. Let us prove that the identity (43) holds.

Let M be a surface homeomorphic to Σεp,g, endowed with a surface measure vol

of total area t. Consider b ∈ B(M) and let f : M → M1 be a unary gluing along b,
with joint {l, l−1} = {f(b), f(b−1)}. Thus, M = Spll(M1). The surface M1 is not
orientable and it has p− 1 boundary components. According to the observation made
after Definition 1.1.10, it is homeomorphic to the connected sum of a projective plane
and the surface obtained by gluing a disk along one boundary component ofM . Thus,
it is homeomorphic to Σ−p−1,g+1. Finally, vol induces on M1 a surface measure vol1
with total area t.

Let C be a set of G-constraints on (M, {l, l−1}). Applying axioms A3 and then A6

gives us the relation

HFM1,vol1,∅,C(1) =

∫
G

HFM1,vol1,{l,l−1},Cl 7→x(1)dx =

∫
G

HFM,vol,∅,Spll(Cl 7→x)(1)dx.

Recall from Definition 2.3.2 that, since we are considering a unary gluing,
Spll(Cl 7→x) puts the constraint Ox2 on b ∈ B(M). Translating the last relation in
terms of the partition functions gives (43).

The proofs of the relations (44) and (45) are very similar. For the relation (44),
one considers a binary gluing in which one identifies two boundary components of
a connected surface. If the surface is orientable, the two boundary components are
identified by an orientation-reversing diffeomorphism. The result of this gluing can
be described as the connected sum of a torus and the surface obtained by gluing
two disks along two boundary components of the original surface. Thus, it has two
boundary components less, and reduced genus increased by 2. For the relation (45),
one considers a binary gluing in which one identifies two boundary components located
on two distinct connected components of a surface. Proposition 1.1.4 settles the issue
of orientation and reduced genus of the resulting surface.

The assertion of square-integrability follows from (44) and (45) as we shall see
now. Firstly, observe that Theorem 1.1.7 and the axiom A4 imply that the value of
a partition function is not affected by simultaneously replacing each argument by its
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inverse. Now, for all xq+1, . . . , xp ∈ G,∫
Gq
Zεp,g,t(x1, . . . , xp)

2dx1 · · · dxq

=

∫
Gq
Zεp,g,t(x1, . . . , xp)Z

ε
p,g,t(x

−1
1 , . . . , x−1

p )dx1 . . . dxq

= (βq−1
1 ◦ β2)(Zεp,g,t ⊗ Zεp,g,t)(xq+1, x

−1
q+1, . . . , xp, x

−1
p )

= Zε2(p−q),2(g+q−1),2t(xq+1, x
−1
q+1, . . . , xp, x

−1
p ).

The last number is indeed finite and the assertion is proved.

Corollary 4.1.5. — The partition functions of a Markovian holonomy field are com-
pletely determined by the functions (Z+

1,0,t)t>0 and (Z+
3,0,t)t>0.

Proof. — For all non-negative p and g, such that g is even and p+g > 0, the following
identity holds:

(46) Z+
p,g,t = (β

1
2 g
1 ◦ βp+g−1

2 )
(
Z+

1,0,t/(p+g) ⊗ Z
+
3,0,t/(p+g)

⊗(p+g−1))
.

Then, the equalities

(47) ∀p, g ≥ 0, Z−p,2g+1,t = υ(Z+
p+1,2g,t) and Z−p,2g+2,t = υ2(Z+

p+2,2g,t)

determine all non-orientable partition functions. Finally, the equality

Z+
0,0,t = β2(Z+

1,0, 12 t
⊗ Z+

1,0, 12 t
)

determines the only remaining partition function.

An important consequence of Proposition 4.1.4 is that for all ε, p, g, t, the function
Zεp,g,t is the density with respect to the Haar measure of a measure on Gp. According
to the axiom A7, this measure is a probability measure. In the next proposition,
we will study the behaviour of these probability measures as t tends to 0, under the
assumption that the holonomy field is stochastically continuous. Recall that we denote
by 1 the unit element of G and that we use the notation δ Ox for the unique G-invariant
probability measure on Ox, the conjugacy class of x ∈ G.

Proposition 4.1.6. — Let (Z±p,g,t)p,g,t be the partition functions of a stochastically con-
tinuous Markovian holonomy field. Then, as t tends to 0, one has the following weak
convergences of measures on G.

1) Z+
1,0,t(x)dx =⇒

t→0
δ1.

2) for all x, y ∈ G,

Z+
3,0,t(x, y, z

−1)dz =⇒
t→0

δ Ox ∗ δ Oy =

∫
G2

δvxv−1wyw−1 dvdw.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2010



130 CHAPTER 4. LÉVY PROCESSES AND MARKOVIAN HOLONOMY FIELDS

Proof. — 1) Let M be the disk of radius 1 centred at the origin in R2 endowed with
the Lebesgue measure, which we denote by vol. We denote by ∂M the positively
oriented boundary of M . For each r ∈ [0, 1], let sr be the path which goes straight
from the origin to the point (r, 0) and let cr be the loop based at (r, 0) which goes once
counterclockwise around the circle of radius r centred at the origin. For all y ∈ G, we
denote by (hc)c∈P(M) the canonical process on M(P(M), G), we consider the measure
HFM,vol,∅,∂M 7→y on M(P(M), G) and we denote by Ey the corresponding expectation.
Let f be a continuous invariant function on G. We compute Ey[f(hsrcrs−1

r
)]. By the

multiplicativity property of h, it is equal to Ey[f(h−1
sr hcrhsr )] = Ey[f(hcr )]. By the

axiom A3, we can disintegrate this expectation with respect to the value of h(cr).
We find

Ey
[
f(hcr )

]
=

∫
G×M(P(M),G)

f
(
h(cr)

)
HFM,vol,{cr,c−1

r },(∂M 7→y,cr 7→x)(dh)dx

=

∫
G

f(x)HFM,vol,{cr,c−1
r },(∂M 7→y,cr 7→x)(1)dx.

We use now the axioms A6 and A5 to split M along cr and we find

Ey
[
f(hcr )

]
=

∫
G

Z+
1,0,πr2(x)f(x)Z+

2,0,π(1−r2)(x
−1, y)dx.

By integrating over y and using the axiom A7, we find

(48)
∫
G

Ey
[
f(hcr )

]
dy =

∫
G

Z+
1,0,πr2(x)f(x).

Our goal is now to prove that the left-hand side tends to f(1) as r tends to 0. For
this, we use the stochastic continuity of the holonomy field. Indeed, as r tends to 0,
the loop srcrs−1

r converges with fixed endpoints to the constant loop c0 at the origin.
Hence, for all y ∈ G,

Ey
[
f(hcr )

]
−→ Ey

[
f(hc0)

]
as r tends to 0. By the multiplicativity of h and the fact that c0 = c0c

−1
0 , the mapping

hc0 : P(M)→ G is identically equal to 1. Hence,

Ey[f(hcr )] −→
r→0

f(1)Z+
1,0,π(y).

In order to integrate this convergence with respect to y, we use the fact that

|Ey[f(hcr )]| ≤‖ f ‖∞ Z+
1,0,π(y)

and the right-hand side is continuous, hence integrable, with respect to y. Hence, the
dominated convergence theorem applies and we deduce that the left-hand side of (48)
tends to f(1) as r tends to 0.

2) Let M be the closed disk of radius 4 centred at the origin in R2 from which
one has removed the two open disks of radius 1 centred respectively at the points
α = (2, 0) and β = (−2, 0). We endow M with some density denoted by vol. Let a
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(resp. b) be the loop which starts at (1, 0) (resp. (−1, 0)) and goes once around the
circle of radius 1 centred at α (resp. β), counterclockwise. Let d be the path which
goes straight from (1, 0) to (−1, 0). Choose r ∈ (0, 1). Consider the union of the two
closed disks of radius 1+r centred at α and β and the rectangle [−1, 1]×[−r, r]. Let cr
be the loop which starts at (2 −

√
1 + 2r, r) and bounds this domain with positive

orientation. Let sr be the path which goes straight from (1, 0) to (2 −
√

1 + 2r, r).
As r tends to 0, the loop srcrs−1

r converges with fixed endpoints to the loop dbd−1a.
However, in order to apply our axioms, we need to replace cr by a loop based at the
same point and whose image is a smooth submanifold of M . We do this in such a way
that the convergence of srcrs−1

r to dbd−1a is preserved.
We consider the measure HFM,vol,∅,Cx,y,z on M(P(M), G), where Cx,y,z is charac-

terised by the fact that C(a) = x, C(b) = y and C maps the circle of radius 4 centred
at the origin to z. We denote the corresponding expectation by Ex,y,z. Let f be a
continuous invariant function on G. For all r ∈ (0, 1), we have

(49) Ex,y,z
[
f(hsrcrs−1

r
)
]

=

∫
G

Z+
3,0,tr

(x, y, v)f(v)Z+
2,0,T−tr (v

−1, z)dv,

where tr is the area of the domain delimited by a, b and cr and T is the total area
of M . By the same arguments as in the previous proofs, the left-hand side converges
as r tends to 0 to Ex,y,z[f(hdbd−1a)] and the convergence is dominated with respect to
z. Since the two endpoints of d are distinct and the measure HFM,vol,∅,Cx,y,z is invari-
ant under gauge transformations, the distribution of hd is both left and right-invariant
on G. Thus, hd has the uniform distribution on G. Hence, Ex,y,z[f(hdbd−1a)] =∫
G
f(xwyw−1)dw. By integrating (49) with respect to z, we find∫

G

Z+
3,0,tr

(x, y, z)f(z)dz −→
r→0

∫
G

f(xwyw−1)dw.

We will now use this result to prove that the partition functions a stochasti-
cally continuous Markovian holonomy field are completely determined by the func-
tions (Z+

1,0,t)t>0. Let us introduce two probability measures on G.

Definition 4.1.7. — Let η and κ be the two invariant probability measures on G defined
respectively by the fact that for all continuous function f on G,

(50)
∫
G

fdη =

∫
G2

f(aba−1b−1)dadb and
∫
G

fdκ =

∫
G

f(a2)da.

The letters η and κ correspond to the words handle and cross-cap. We start by
proving some important properties of these measures.
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Let Irr(G) denote the set of isomorphism classes of irreducible representations of
G over C. Given α ∈ Irr(G) with character χα and a measure µ on G, the Fourier co-
efficient µ̂(α) is defined by µ̂(α) =

∫
G
χαdµ. Recall that an irreducible representation

is said to be complex if its character is not real valued, otherwise real (resp. quater-
nionic) if it preserves a non-degenerate symmetric (resp. skew-symmetric) complex
bilinear form.

If µ is a measure on G, we denote by µ∨ the measure defined by∫
G

fdµ∨ =

∫
G

f(g−1)µ(dg).

By an invariant measure we mean a measure which is invariant by conjugation.

Lemma 4.1.8. — Let µ, ν, ξ be three invariant probability measures on G. If µ̂(α) = 0

for every complex representation α, then µ∗ν = µ∗ν∨. In particular, κ∗ξ∗ν = κ∗ξ∗ν∨.
Moreover, κ ∗ η = κ∗3.

Proof. — The Fourier coefficients of η and κ can be computed easily by using the
elementary theory of characters: for all α ∈ Irr(G),

η̂(α) =
1

dimα
and κ̂(α) =


1 if α is real,
0 if α is complex,
−1 if α is quaternionic.

The Fourier coefficients of the convolution product of two measures is given by the
relation µ̂ ∗ µ′(α) = µ̂(α)µ̂′(α)/ dimα. Moreover, the Fourier coefficients of ν∨ are
the complex conjugate of those of ν. Hence, on real and quaternionic representations,
whose character is real, the Fourier coefficients of ν are real and agree with those
of ν∨. Hence, µ ∗ ν and µ ∗ ν∨ have the same Fourier coefficients. Since they are both
invariant, they are equal. The equality κ ∗ ξ ∗ ν = κ ∗ ξ ∗ ν∨ follows immediately. The
last assertion is proved by computing the Fourier coefficients of both sides.

Remark 4.1.9. — This equality κ ∗ η = κ∗3 should be compared to the fact that the
connected sum of a projective plane and a torus is homeomorphic to the connected
sum of three projective planes (or the connected sum of a projective plane and a Klein
bottle).

In the next proposition, we use the notation µ(f) for the integral of a function f
against a measure µ and we denote by ∗ the convolution of probability measures.

Proposition 4.1.10. — The partition functions of a regular Markovian holonomy field
are completely determined by the functions Z+

1,0,t for t > 0. One has the following
explicit formulas.
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For all p ≥ 0, all g ≥ 0 even, all t > 0 and all x1, . . . , xp ∈ G, one has

(51) Z+
p,g,t(x1, . . . , xp) = η∗

1
2 g ∗ δ Ox1

∗ · · · ∗ δ Oxp (Z+
1,0,t).

Moreover, for all p ≥ 0, all g > 0, all t > 0 and all x1, . . . , xp ∈ G, one has

(52) Z−p,g,t(x1, . . . , xp) = κ∗g ∗ δ Ox1
∗ · · · ∗ δ Oxp (Z+

1,0,t).

Proof. — Let us start by proving (51) when g = 0 and p > 0, by induction on p. For
p = 1, it is a consequence of the fact that Z+

1,0,t is invariant by conjugation. Assume
that p > 1 and the result has been proved for Z+

p−1,0,t. Then, for all x1, . . . , xp ∈ G
and all s ∈ (0, t), (45) yields

Z+
p,0,t =

∫
G

Z+
p−1,0,t−s(x1, . . . , xp−2, y)Z+

3,0,s(xp−1, xp, y
−1)dy.

Since the Markovian holonomy field that we consider is Fellerian, the function

(s, x1, . . . , xp−2, y) 7→ Z+
p−1,0,t−s(x1, . . . , xp−2, y)

is continuous on the compact set [0, 1
2 t]×G

p−1. Hence, when s tends to 0, it converges
uniformly as a function on Gp−1 towards Z+

p−1,0,t. Thus, using the convergence proved
in Proposition 4.1.6, we find

Z+
p,0,t =

∫
G

Z+
p−1,0,t(x1, . . . , xp−2, y)(δOxp−1

∗ δOxp )(dy).

Using the induction hypothesis, we find

Z+
p,0,t =

∫
G

(∫
Gp−1

Z+
1,0,t(w1 · · ·wp−2z)

p−2∏
i=1

δ Oxi
(dwi)δOy (dz)

)
(δOxp−1

∗ δOxp )(dy)

=

∫
Gp
Z+

1,0,t(w1 · · ·wp)
p∏
i=1

δ Oxi
(dwi)

because δOxp−1
∗δOxp is already an invariant measure on G. This is the expected result.

Let us now treat the case where p+ g > 0. We have

Z+
p,g,t(x1, . . . , xp) = β

1
2 g
1 (Z+

p+g,0,t)(x1, . . . , xp)

=

∫
G

1
2
g
Z+
p+g,0,t(x1, . . . , xp, y1, y

−1
1 , . . . , y 1

2 g
, y−1

1
2 g

)dy1 · · · dy 1
2 g

=

∫
Gp+ 3

2
g
Z+

1,0,t(w1 · · ·wpz1z
′
1 · · · z 1

2 g
z′1

2 g
)

×
p∏
i=1

δ Oxi
(dwi)

1
2 g∏
i=1

δ Oyi
(dz i)δ O

y
−1
i

(dz ′i)

1
2 g∏
i=1

dy i.

The result follows now from the equality
∫
G
δ Oy ∗δ Oy−1

dy = η which one checks easily
using the elementary properties of the Haar measure.
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In order to prove (51), we still have to prove that Z+
0,0,t = Z+

1,0,t(1). This fol-
lows from the equality Z+

0,0,t =
∫
G
Z+

1,0,t−s(y)Z+
1,0,s(y

−1)dy , Proposition 4.1.6 and the
argument of uniform convergence that we have already used above.

By (4.1) and the first part of this proof, we have for all p, g ≥ 0, all t > 0 and
all x1, . . . , xp ∈ G,

Z−p,2g+1,t(x1, . . . , xp) = η∗g ∗ δ Ox1
∗ · · · ∗ δ Oxp ∗

(∫
G

δ Oy2
dy
)

(Z+
1,0,t)

= κ ∗ η∗g ∗ δ Ox1
∗ · · · ∗ δ Oxp (Z+

1,0,t),

and

Z−p,2g+2,t(x1, . . . , xp) = η∗g ∗ δ Ox1
∗ · · · ∗ δ Oxp ∗

(∫
G2

δ O
y2
1

∗ δ O
y2
2

dy1dy2

)
(Z+

1,0,t)

= κ∗2 ∗ η∗g ∗ δ Ox1
∗ · · · ∗ δ Oxp (Z+

1,0,t).

The result is now a consequence of the last assertion of Proposition 4.1.8.

It is now easy to complete the result obtained in Proposition 4.1.6. We leave the
proof of the following corollary to the reader.

Corollary 4.1.11. — Let (Z±p,g,t)p,g,t be the partition functions of a regular Markovian
holonomy field. Then, as t tends to 0, one has the following weak convergences of
measures on G.

1) For all p ≥ 0, all g ≥ 0 even and all x1, . . . xp−1 ∈ G,

Z+
p,g,t(x1, . . . , xp−1, x

−1)dx =⇒
t→0

η∗
1
2 g ∗ δ Ox1

∗ · · · ∗ δ Oxp−1
.

2) For all p ≥ 0, all g > 0 and all x1, . . . xp−1 ∈ G,

Z−p,g,t(x1, . . . , xp−1, x
−1)dx =⇒

t→0
κ∗g ∗ δ Ox1

∗ · · · ∗ δ Oxp−1
.

Remark 4.1.12. — In the proofs so far, we have used the axiom A7 only for cylinders.
Let us call A′7 the axiom A7 restricted to cylinders. By using Propositions 4.1.6
and 4.1.10, one could easily prove now that A7 could be replaced by A′7 without
affecting the notion of regular Markovian holonomy field.

4.2. The Lévy process associated to a Markovian holonomy field

In the previous section, we have reduced the description of the partition functions
of a regular Markovian holonomy field to the description of the one-parameter family
of functions Z+

1,0,t : G→ [0,+∞), t > 0. This allows us to state a classification result.
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Proposition 4.2.1. — Let HF be a regular Markovian holonomy field. Then the probabil-
ity measures (Z+

1,0,t(x)dx)t>0 on G are the one-dimensional distributions of a unique
conjugation-invariant Lévy process issued from the unit element. If the Markovian field
is not oriented, then the distribution of this Lévy process is invariant by inversion.
Moreover, this Lévy process determines completely the partition functions of HF.

It is conceivable that a regular Markovian holonomy field is completely determined
by its associated Lévy process, but we have warned the reader in the introduction
that we are not yet able to settle this question.

Proof. — It suffices to prove that the probability measures νt = Z+
1,0,t(x)dx form a

convolution semigroup. Let us fix s, t > 0. We have Z+
2,0,s(x, y) =

∫
G
Z+

1,0,t(xwyw
−1)

by (51). Now,

νt ∗ νs(dy) =

∫
G

Z+
1,0,t(x)Z+

1,0,s(x
−1y)dxdy

=

∫
G2

Z+
1,0,t(wxw

−1)Z+
1,0,s(w

−1x−1wy)dwdxdy

=

∫
G

Z+
1,0,t(x)Z+

2,0,s(x
−1, y)dxdy

= β2(Z+
1,0,t ⊗ Z

+
2,0,s)(y) = Z+

1,0,s+t(y)dy = νt+s(dy).

Proposition 4.1.6 ensures that νt tends to the Dirac mass at the unit element as t
tends to 0. Moreover, the conjugation invariance of the partition functions implies
that the measure νt is invariant for all t ≥ 0.

If the Markovian field is not orientable, then for all t, it follows from the axiom A4

applied to an orientation-reversing diffeomorphism of a disk of area t that Z+
1,0,t(x) =

Z+
1,0,t(x

−1). It follows that the 1-dimensional distributions of the Lévy process are
invariant by inversion, hence the distribution of the process itself.

The fact that the measures (νt)t≥0 determine the partition functions is the main
content of Proposition 4.1.10.

Let us recall some classical facts about Lévy processes in compact Lie groups and
use them to prove that the function Z+

1,0,t is positive on the connected component of
the identity of G for all t > 0. Our constant reference in this section is the M. Liao [27]
book.

Let X be an arbitrary Lévy process on G with a conjugation-invariant distribution.
Let us describe briefly the generator of X. Let g be the Lie algebra of G. Let A :

G → g be a smooth mapping such that A(1) = 0, d1A = idg and, for all x, y ∈ G,
A(xyx−1) = Ad(x)A(y). For example, let r > 0 be such that the exponential mapping
is a diffeomorphism from the ball B(0, r) in g to the ball B(1, r) in G. Let log denote
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the inverse mapping. Let ϕ : [0,+∞) → [0, 1] be a smooth function with compact
support contained in [0, 1

2r] and equal to 1 in a neighbourhood of 0. Then A(x) =

log(x)ϕ(dG(1, x)) satisfies the required properties.

In what follows, we identify the elements of g with left-invariant vector fields on G.

Proposition 4.2.2. — Let X be a Lévy process on G whose distribution is invariant by
conjugation. Let {A1, . . . , Ad} denote a basis of g. Let z denote the centre of g. There
exists a symmetric non-negative definite matrix (ajk)j,k∈{1,...,d}, an element A0 ∈ z,
and a Borel measure Π on G which satisfies Π({1}) = 0 and

∫
G
dG(1, x)2Π(dx) <

+∞, such that the generator L of X is the following: for all f ∈ C2(G), all g ∈ G,

Lf(g) =
1

2

d∑
j,k=1

ajk(AjAkf)(g) + (A0f)(g) +

∫
G

[
f(gh)− f(g)− (A(h)f)(g)

]
Π(dh).

The differential operator

LD =
1

2

d∑
j,k=1

ajkAjAk

and the measure Π are both invariant by conjugation. They are called respectively the
diffusive part of the generator of X and the Lévy measure of X. Both are independent
of the choice of the mapping A : G→ g.

Proof. — The unique point in which this presentation differs from that of [27] is
the fact that A0 ∈ z. The mapping A : G −→ g has been chosen to be equivariant
under the adjoint action of G. This makes the third term of the generator invariant
by conjugation. Since LD is also invariant, the second term must be invariant as well.
This implies that A0 belongs to the invariant subspace of g under the adjoint action,
that is, z.

Let us now assume that, for all t > 0, the distribution of Xt has a density with
respect to the Haar measure on G, which we denote by Qt. The function Qt is a central
function and, if X is invariant by inversion, it satisfies the relation Qt(x) = Qt(x

−1)

for all t > 0 and all x ∈ G.
Let Irr(G) denote the set of isomorphism classes of irreducible representations of G.

For each α ∈ Irr(G), let χα : G→ C denote the character of α. Also, set

(53) λα = − (LDχα)(1)

χα(1)
, δα = − (A0χα)(1)

χα(1)
, πα =

∫
G

(
1− χα(x)

χα(1)

)
Π(dx).

The results of [27, Chapter 4] show that Qt is square-integrable for all t > 0 if and
only if, for all t > 0,

(54)
∑

α∈Irr(G)

e−(λα+δα+πα)tχα(1)2 < +∞.
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It is also proved in [27] that Qt is square-integrable for all t > 0 if and only if
(t, x) 7→ Qt(x) is continuous on (0,+∞) × G. Let us assume that these equivalent
properties are satisfied. In this case, the following expansion is uniformly absolutely
convergent on [η,+∞)×G for all η > 0:

(55) Qt(x) =
∑

α∈Irr(G)

e−(λα+δα+πα)tχα(1)χα(x).

In the following result, we use the compactness of G to prove that, in this situation,
Qt is positive for all t > 0.

Proposition 4.2.3. — Let G be a compact connected Lie group. Let (Xt)t≥0 be a Lévy
process on G issued from 1 and invariant in law by conjugation. Assume that, for all
t > 0, the distribution of Xt has a square-integrable density Qt with respect to the
Haar measure on G. Then (t, x) 7→ Qt(x) is a continuous function on (0,+∞) × G
and

∀t > 0, ∀x ∈ G, Qt(x) > 0.

Proof. — The continuity property follows from the results presented above. We focus
on the assertion of positivity.

We claim that there exists t0 > 0 such that Qt(x) > 0 for all x ∈ G and all t ≥ t0.
Indeed, since

∫
G
Q1(x)dx = 1, there exists an open subset U of G on which Q1 is

positive. Hence, for all n ≥ 1, Qn is positive on Un. Since G is a compact topological
group, there exists n0 > 1 such that Un0 = G. Then t0 = n0 satisfies the expected
property.

We write the generator of X as the sum of the diffusive part, a drift and the
jump part:

L = LD +A0 + LJ .

Since A0 belongs to z and LD is invariant by conjugation, these three operators
commute to each other. Let XD and XJ be independent Lévy processes on G with
respective generators LD and LJ . Then we have the identity in distribution

(56) ∀t > 0, Xt
(d)
= exp(tA0)XD

t X
J
t .

The term exp(tA0) modifies the subset of G where Qt is positive by a simple trans-
lation. Hence, we may and will assume that A0 = 0.

The topological support of the distribution of XD
t does not depend on t. We denote

it by D. It is the closure of the exponential of a Lie subalgebra of g which depends
on LD. Since LD is invariant by conjugation, D is a closed normal subgroup of G.

The topological support of the distribution of XJ
t does not depend on t either and

we denote it by J . It is the closure of the submonoid of G generated the topological
support of Π. Since G is compact, the closure of the submonoid generated by any
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element of G contains the inverse of this element. Hence, J is also the closed subgroup
generated by the support of Π. Since Π is invariant, J is also a closed normal subgroup
of G. In particular, DJ = JD is a closed subgroup of G.

For each t > 0, set
St =

{
x ∈ G : Qt(x) > 0

}
.

We claim that St = DJSt. Indeed, consider x ∈ St, d ∈ D and j ∈ J . Let U, V,W be
three open neighbourhoods of x, d, j respectively. We claim that

∫
UVW

Qt(y)dy > 0.
Since (t, x) 7→ Qt(x) is continuous, there exists ε > 0 such that Qt−ε(x) > 0. Now,
P(XD

1
2 ε
∈ V ) > 0 and P (XJ

1
2 ε
∈W ) > 0. Hence, by (56), P(Xε ∈ VW ) > 0 and∫

UVW

Qt(y)dy ≥
∫
U

Qt−ε(x)dx

∫
VW

Qε(y)dy > 0.

Since this holds for any choice of U, V,W , the integral of Qt over any neighbourhood
of xdj is positive. Hence, xdj ∈ St. The claimed equality follows.

Now, it follows from (56), after the simplification A0 = 0, that

P(∀t ≥ 0, Xt ∈ DJ) = 1.

If the inclusion DJ ⊂ G was a strict one, we would find a contradiction with the fact
that Qt is eventually everywhere positive on G. Hence, DJ = G.

Putting our results together, we find St = G for all t > 0. Now choose
t > 0, x ∈ G and consider the mapping y 7→ Q 1

2 t
(y)Q 1

2 t
(y−1x). It vanishes on

(G− S 1
2 t

) ∪ x(G− S 1
2 t

)−1 which is the union of two closed sets with empty interior.
This set has thus empty interior, so the mapping which we consider is continu-
ous, non-negative and not identically zero. By integrating it with respect to y, we
find Qt(x) > 0.

If G is not connected, let G0 denote the connected component of 1. It is a normal
subgroup of G and the quotient group G/G0 is finite. The measure Π induces a
measure on the group G/G0 which is finite excepted possibly on the unit element.
This measure, restricted to the complement of the unit element, is the jump measure
of the projection of X on this finite group.

Corollary 4.2.4. — Let G be a compact Lie group. Let (Xt)t≥0 be a Lévy process on G
which satisfies the assumptions of Proposition 4.2.3. Let G0 denote the connected
component of the unit element of G. Let H be the subgroup of G generated by G0

and the support of Π. Then for all t ≥ 0, Xt ∈ H almost surely and for all t > 0,
all x ∈ H, Qt(x) > 0.

Proof. — Let Π0 denote the restriction of Π to G0. Since G0 is a normal subgroup
of G, both Π0 and Π−Π0 are Lévy measures on G invariant by conjugation. Moreover,
Π−Π0 is a finite measure. Let X0 be the Lévy process whose generator is that of X
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in which Π is replaced by Π0. It is a Lévy process in G0. Let XJ be the pure jump
process with jump measure Π−Π0. Then the generators of X0 and XJ commute, so
that we have in distribution, for all t ≥ 0, Xt

d
= X0

tX
J
t .

For all α ∈ Ĝ, we have supx∈G |χα(x)| = χα(1). Hence, changing the measure Π by
adding or subtracting to it a finite measure of mass m changes each coefficient πα
by at most 2m. The condition (54) is not affected by such a change, so neither is the
existence of a square-integrable density. This proves that the process X0 satisfies the
assumptions, hence the conclusions, of Proposition 4.2.3.

The set of connected components of G visited by the process XJ is the set of
the connected components of the elements of the submonoid of G generated by the
support of Π−Π0. Since G is compact, this submonoid is also the subgroup generated
by the same set. The conclusion follows easily.

Corollary 4.2.5. — Let HF be a regular Markovian holonomy field. There exists a sub-
group H of G which contains the connected component of the unit element and such
that

(57) ∀t > 0, ∀p, g ≥ 0, ∀x1, . . . , xp ∈ H, Z+
p,g,t(x1, . . . , xp) > 0.

Proof. — By Propositions 4.2.1 and 4.1.4, the Lévy process associated with HF satis-
fies the assumptions of Corollary 4.2.4. Hence, (57) holds for Z+

1,0,t. The general case
follows by Proposition 4.1.10.

From now on, we will always assume that H = G.

Definition 4.2.6. — Let (Xt)t≥0 be a Lévy process on G. We say that X is admissible if
it is issued from 1, invariant in law by conjugation, and if for all t > 0 the distribution
of Xt admits a continuous density Qt with respect to the Haar measure on G, such
that the function (t, x) 7→ Qt(x) is continuous and positive on R∗+ ×G.

Let us discuss briefly the existence of a square-integrable density for the distri-
bution of X. If G is a finite group, this condition is always satisfied. An admissible
Lévy process in this case is simply a continuous-time random walk on G whose jump
distribution is invariant by conjugation and has a support which generates G. In the
case of the symmetric group, where every element is conjugated to its inverse, this
invariance property implies that the jump distribution, hence the distribution of X,
is also invariant by inversion.

If G is connected and dimG ≥ 1, an assumption under which the condition (54)
is always satisfied is the ellipticity of X. In general, the hypoellipticity is sufficient to
ensure the existence of a density, but a conjugation-invariant hypoelliptic process is
necessarily elliptic. Indeed, if G is Abelian, hypoellipticity is equivalent to ellipticity
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and if G is simple, the invariance of X implies that the diffusive part of the generator
of X must be a non-negative multiple of the Laplace operator, hence elliptic or zero.
The general case is a combination of these two.

In the case where the process is not elliptic, the distribution of X may or may
not have a density, depending on the jumps of X. The discussion of ellipticity and
hypo-ellipticity above implies that if X is not elliptic and has no jumps, then X

has no square-integrable density. The remark made in the course of the proof of
Corollary 4.2.4 implies that this is still true if the Lévy measure of X is finite.

Let us conclude this section by giving an example of an admissible pure jump
processes. Let us work on SU(2). Choose a real s and consider the measure

Π(dx) = d(1, x)sdx.

Since the dimension of SU(2) is 3, the integral
∫

SU(2)
d(1, x)2Π(dx) converges if and

only if s > −5 and Π is a finite measure for s > −3. The irreps of SU(2) are
labelled by their dimension, which can be any positive integer. Accordingly, the Fourier
coefficient πn, which is given, thanks to Weyl’s integration formula, by

πn =
2

π

∫ π

0

(
1− sin(nθ)

n sin θ

)
sin2(θ)θsdθ,

is non-negative and grows faster than a constant times n−s−3. In particular, if s < −3,
the series

∑
n≥1 e

−πnt converges and the condition (54) is satisfied. Finally, for all
s ∈ (−5,−3), the pure jump process on SU(2) with Lévy measure Π(dx) = d(1, x)sdx

is admissible.

4.3. A Markovian holonomy field for each Lévy process

In this section, we prove the following theorem, which is the second main result of
the present work. Recall Definitions 3.1.3 and 4.2.6, and Proposition 4.2.1.

Theorem 4.3.1. — Every admissible Lévy process is the Lévy process associated to a
regular oriented Markovian holonomy field.

Every admissible Lévy process whose distribution is invariant by inversion is the
Lévy process associated to a regular Markovian holonomy field.

Whether this regular Markovian holonomy field is unique is a natural question
which we hope to be able to answer in a future work.

In order to prove this theorem, we use the results of the previous chapter. We
start by constructing a discrete Markovian holonomy field, prove that it is regular
and extend it to a Markovian holonomy field.
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4.3.1. A discrete Markovian holonomy field. — Let X be an admissible Lévy
process. Let Qt denote the density of the distribution of Xt. Let (M, vol,C , C) be a
connected measured marked surface with G-constraints. Let G be a graph on (M,C ).
For each face F of G, recall that ∂F is a cycle, oriented or non-oriented depending on
the orientability of M . Assume first that M is orientable. For each h ∈ M(P(G), G),
different choices of the origin of ∂F lead to different elements h(∂F ) of G, but these
elements belong to the same conjugacy class of G. Hence, for all t > 0, the assump-
tion that the distribution of Xt is invariant by conjugation makes the positive real
number Qt(h(∂F )) well-defined.

IfM is non-orientable, then h(∂F ) is defined only up to conjugation and inversion.
In this case, we make the further assumption that the distribution of X is invariant
by inversion. Then, for all t > 0, the non-negative real number Qt(h(∂F )) is also
well-defined.

Definition 4.3.2. — Let X be an admissible Lévy process. Let (M, vol,C , C) be a mea-
sured marked surface with G-constraints. Let G be a graph on (M,C ). We define the
following measure on ( M(P(G), G), C):

DFX,GM,vol,C ,C(dh) =
∏
F∈F

Qvol(F )

(
h(∂F )

)
UG
M,C ,C(dh).

We denote the collection of these measures by DFX .

Proposition 4.3.3. — Let X be an admissible Lévy process. The collection of measures
DFX satisfies the axioms D1 to D6 of a discrete Markovian holonomy field.

Proof. — For each quadruple (M, vol,C , C), DFX,GM,vol,C ,C is a measure on the invari-
ant σ-field of M(P(G), G). It has a bounded density with respect to the probability
measure UG

M,C ,C , so that it is a finite measure. Let us prove that the axioms D1 to D6

are satisfied.
The fact that the discrete Markovian holonomy field U satisfies D1 and D3 implies

immediately that DFX also satisfies them. The argument used for U in the proof
of Proposition 3.2.3 shows that DFX satisfies D2. Let ψ be a homeomorphism as
in the statement of the axiom D4. The measure DFX,GM,vol,C ,C depends only on the
combinatorial structure of the graph G, on the cycles which represent the curves
of C , on the set of G-constraints and finally on the areas of the faces of G. These
characteristics are all preserved by the homeomorphism ψ. The axiom D5 is obviously
satisfied. Let us finally check that DFX satisfies D6.

Let us denote by M ′ the surface Spll(M) and by G′ the graph Spll(G). Let us
also denote by D′ : M(P(G′), G)→ R the density of the measure DFX,G

′

M ′,vol′,C ′,C′ with
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respect to UG′
M ′,C ′,C′ . Then D′ ◦ ψ : M(P(G), G) → R is the density of DFX,GM,vol,C ,C

with respect to UG
M,C ,C . Hence, the property follows from Proposition 2.3.8.

We prove now that the collection of measures that we consider satisfies the property
of invariance under subdivision.

Proposition 4.3.4. — Let X be an admissible Lévy process. The collection of measures
DFX satisfies the axiom DI of a discrete Markovian holonomy field.

Proof. — Consider (M, vol,C , C) endowed with two graphs G1 and G2 such that
G1 4 G2. Let r : M(P(G2), G) → M(P(G1), G) denote the restriction map. Let us
first make the assumption that E1 ⊂ E2 and choose orientations E+

1 and E+
2 of G1

and G2 such that E+
1 ⊂ E+

2 . The restriction map r can be thought of as a map
from GE+

2 to GE+
1 . Let us write E+

2 = E+
1 ∪ (E2 \ E1)+ and decompose the generic

element of GE+
2 as g = (g1, g2) accordingly. With this notation, r(g1, g2) = g1. Let

f : GE+
1 → R be a continuous function. We need to prove that∫

GE+
2

f(g1)DFX,G2

M,vol,C ,C(dg1, dg2) =

∫
GE+

1

f(g1)DFX,G1

M,vol,C ,C(dg1).

We are going to perform the integration on the left-hand side with respect to dg2.
For this, let us observe that the curves of C belong to P(G1), so that the measure
UG2

M,vol,C ,C(dg1, dg2) on GE+
2 can be written as UG1

M,vol,C ,C(dg1)dg2. This is in fact an
instance of Proposition 2.3.9. Hence, if we put together the faces of G2 according to
the face of G1 in which they are contained, we find the following expression for our
integral:

(58)
∫
GE+

1

f(g1)
∏
F1∈F1

[ ∫ ∏
F2∈F2
F2⊂F1

Qvol(F2)

(
g(∂F2)

) ∏
e∈E+

2 \E
+
1

e⊂F1

dge

]
UG1

M,C ,C(dg1).

The integral between the brackets is over G{e∈E+
2 \E

+
1 :e⊂F1}. It suffices to prove that

this integral is equal to Qvol(F1)(h∂F1
(g)).

We proceed by induction on the number of faces of G2 contained in F1. Let us
assume first that this number is 1 and denote by F2 the unique face of G2 contained
in F1. In order to treat this case, we proceed by induction on the number of edges
of G2 whose interior is contained in F1. If this number is zero, then F1 = F2 and the
expression between the brackets is exactly Qvol(F1)(g(∂F1)). Now let us assume that
there is at least one edge of G2 whose interior is contained in F1. Let us consider a split
pattern M ′ of (M,G1) and let M ′F1

denote the connected component corresponding
to F1. Let G′2 be the graph on M ′ induced by G2. The restriction of G′2 to M ′F1

is
a graph with a single face on a disk. By Euler’s formula, this graph has the same
number of edges and vertices. By assumption, there is at least one vertex of degree
at least 3 on the boundary of M ′F1

. Hence, G′2 has at least one vertex of degree 1,
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which must be in the interior of M ′F1
and hence is sent to a vertex of G2 of degree 1

contained in F1.

Figure 1. A graph with one face on a disk is a collection of trees grafted
on the vertices located on the boundary of the disk. The leaves of these
trees are vertices of degree 1.

Let e be an edge of G2 adjacent to a vertex v of degree 1. The cycle ∂F2 contains
either the sequence ee−1 or the sequence e−1e. This sequence can be removed without
affecting the value of the expression between the brackets. The cycle ∂F2 with the
sequence removed is the boundary of the face F2 ∪ e((0, 1)) ∪ {v} of the graph whose
set of edges is E2 \ {e, e−1}. This graph has one edge less inside F1 than G2 and the
result follows by induction.

Let n ≥ 2 be an integer and let us assume that the result has been proved when F1

contains at most n−1 faces of G2. Consider the case where F1 contains n faces of G2.
Let F2, F

′
2 be two distinct adjacent faces of G2 which are both contained in F1. The

boundaries of F2 and F ′2 are respectively of the form e1 · · · eke′′ and (e′′)−1e′1 · · · e′l,
where {e1, . . . , ek, e

′
1, . . . , e

′
l} ⊂ E+

2 and e′′ ∈ E+
2 \E

+
1 . When we integrate with respect

to the component of g corresponding to e′′ between the brackets in (58), we find∫
G

Qvol(F2)(ge′′gek · · · ge1)Qvol(F ′2)

(
ge′l · · · ge′1(ge′′)

−1
)
dge′′ ,

which, by the Markov property of X, is equal to Qvol(F∪F ′)(g
′
l · · · g′1gk · · · g1). We are

thus reduced to the graph obtained from G2 by merging F2 and F ′2 along the edge e′′.
By Proposition 1.3.15, the result of this operation is indeed a graph. The induction
hypothesis applied to this new graph yields the desired result.

Finally, let us treat the case where E1 6⊂ E2. In this case, there are vertices of G2

located on the edges of G1 which are not vertices of G1. Adding these vertices to G1

and splitting its edges accordingly produces a new graph G such that G1 4 G 4 G2

and E ⊂ E2. It remains to prove that the restriction r : M(P(G), G)→ M(P(G1), G)

sends the measure DFX,GM,vol,C ,C to DFX,G1

M,vol,C ,C . This follows directly from (23).
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In order to prove that DFX is a discrete Markovian holonomy field, there remains
to prove that it satisfies the axiom D7. Combining Propositions 3.2.5, 4.3.3 and 4.3.4,
we find the following result.

Proposition 4.3.5. — Let X be an admissible Lévy process. Let ZX,GM,vol,C ,C denote the
partition functions associated with the collection of measures DFX . Let (M, vol,C , C)

be a measured marked surface with G-constraints. Then ZX,GM,vol,C ,C does not depend
on the graph G. We denote it by ZXM,vol,C ,C .

We are now going to compute this partition function. For this, we start by as-
sociating a probability measures on G to each connected surface (M,∅, C) with G-
constraints along the boundary. Recall the definition of the measures η and κ from
Definition 4.1.7 and the properties that they satisfy proved in Proposition 4.1.8.

Definition 4.3.6. — Let (M,∅, C) be a connected surface with G-constraints along the
boundary.

If M is oriented, write B+(M) = {b1, . . . , bp} and set

mM,∅,C = η∗
1
2 g(M) ∗ δC(b1) ∗ · · · ∗ δC(bp).

If M is non-orientable, write B(M) = {b±1
1 , . . . , b±1

p } and set

mM,∅,C = κ∗g(M) ∗ δC(b1) ∗ · · · ∗ δC(bp).

Remark 4.3.7. — 1) The second definition is meaningful thanks to Lemma 4.1.8. In-
deed, the orientation chosen on the boundary components of M does not affect the
definition of mM,∅,C .

2) Assume that (M,∅, C) is an oriented surface with G-constraints. Write M∨ for
the same surface with the opposite orientation. Then mM∨,∅,C = m∨M,∅,C .

Lemma 4.3.8. — Let M be a connected compact surface.
1) The mapping which to a set C of G-constraints on B(M) associates the probabil-

ity measure mM,∅,C on G is continuous from ConstG(M,∅) to the space of probability
measures on G endowed with the topology of weak convergence.

2) For all b ∈ B(M), the measure
∫
G

mM,C ,Cb→xdx is the Haar measure on G.

Proof. — 1) This property follows from the continuity of the mapping x 7→ δ Ox and
the continuity of the convolution of measures.

2) This follows from the fact that
∫
G
δ Oxdx is the Haar measure on G.

Proposition 4.3.9. — Let X be an admissible Lévy process. Consider the collection
of measures DFX . Let (M, vol,C , C) be a connected measured marked surface. Let
(M ′, vol′,∅, C ′) be a split tubular pattern of (M,C , C) endowed with the induced
G-constraints. Let M ′1, . . . ,M ′s be the connected components of M ′ and for each i
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in {1, . . . , s}, let (M ′i ,∅, C ′i) be the associated connected surface with constraints.
If M is oriented, then M ′ carries the induced orientation. If M is non-orientable,
then let us assign an arbitrary orientation to each orientable connected component
of M ′. Then the following equality holds:

(59) ZXM,vol,C ,C =

s∏
i=1

∫
G

Qvol′(M ′i)
dmM ′i ,∅,C′i .

Proof. — When M is non-orientable, there is a choice made in assigning an orien-
tation to each orientable connected component of M ′. However, in this case, the
distribution of X, hence the function Qt for all t > 0, is invariant by inversion. Hence,
by the second part of Remark 4.3.7, the right-hand side of (59) is well defined.

The proof of this equality is of the same vein as that of Proposition 3.2.5. By D6,
ZXM,vol,C ,C = ZXM ′,vol′,∅,C′ . Then, by D5, ZXM ′,vol′,∅,C′ =

∏s
i=1 Z

X
M ′i ,vol′,∅,C′i

. The prob-
lem is thus reduced to the case of a connected surface with G-constraints along the
boundary.

Let us assume that M is connected and C = ∅. In order to compute the partition
function in this case, we choose a graph on M with a single face and, by cutting and
pasting, transform it so that the boundary of its unique face has a canonical form.
Then, we find, if M for instance is non-orientable of reduced genus g ≥ 1 with p

boundary components,

ZXM,vol,∅,C =

∫
Gg+2p

Qvol(M)(a
2
1 · · · a2

gu1c1u
−1
1 · · ·upcpu−1

p )

da1 · · · dagdu1 · · · dupδC(b1)(dc1) · · · δC(bp)(dcp)

=

∫
Gg+p

Qvol(M)(a
2
1 · · · a2

gc1 · · · cp)da1 · · · dagδC(b1)(dc1) · · · δC(bp)(dcp)

=

∫
G

Qvol(M)dmM,∅,C .

The other cases are similar.

We can summarise our results.

Proposition 4.3.10. — Let X be an admissible Lévy process. The collection of measures
DFX defined in Definition 4.3.2 is a discrete Markovian holonomy field.

Proof. — For all (M, vol,C , C), the measure DFX,GM,vol,C ,C is a measure on the cylinder
σ-field of M(P(G), G), hence it determines by restriction a measure on the invariant
σ-field. By Proposition 4.3.9, it is a finite measure.

The collections of these measures satisfies the axioms D1 to D6 by Proposition 4.3.3,
DI by Proposition 4.3.4 and D7 by the combination of Proposition 4.3.9, the second
assertion of Lemma 4.3.8 and the fact that for all t > 0,

∫
G
Qt(x)dx = 1.
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4.3.2. A Markovian holonomy field. — Our next goal is to prove that the dis-
crete Markovian holonomy field DFX is regular in the sense of Definition 3.2.8.

Proposition 4.3.11. — Let X be an admissible Lévy process. The discrete Markovian
holonomy field DFX is continuously area-dependent and Fellerian.

Proof. — For all segment [s, t] ⊂ R∗+, the mapping (t, x) 7→ Qt(G) is uniformly
continuous on [s, t] × G. Hence, for all face F ∈ F, Qvoln(F ) converges uniformly
to Qvol(F ) as n tends to infinity. The fact that DFX is continuously area-dependent
follows immediately.

The fact that DFX is Fellerian, that is, that the partition function ZXM,vol,C ,C

depends continuously on C ∈ ConstG(M,C ), follows at once from Proposition 4.3.9
and the first assertion of Corollary 4.3.8.

In order to prove that DFX is stochastically 1
2 -Hölder continuous, we need to es-

tablish the corresponding property for the Lévy process X.

Proposition 4.3.12. — Let (Xt)t≥0 be a Lévy process on the compact Lie group G issued
from 1. Then there exists a constant K such that

∀t ≥ 0, E
[
dG(1, Xt)

]
≤ K
√
t.

This property follows from Lemma 3.5 in the book of M. Liao [27], but we still
offer a short proof.

Proof. — We use the Itô formula for Lévy process on Lie groups, which has been
proved by Applebaum and Kunita [3]. We borrow the statement from [27, Section 1.4].
In fact we use the following weak statement. Let L be the generator of X. Let f be
a smooth function on G. Then f belongs to the domain of L and

(60) f(Xt)− f(X0)−
∫ t

0

Lf(Xs)ds, t ≥ 0

is a square-integrable martingale. This is the equation (1.18) of [27]. We apply this
to a function f which is close to the function dG(1, .)2.

Let {A1, . . . , Ad} be a basis of the Lie algebra of G, which we identify with the
space of left-invariant vector fields on G. Let a1, . . . , ad be smooth functions on G

such that for all i, j ∈ {1, . . . , d}, ai(1) = 0 and Aiaj(1) = δij . Set δ =
∑d
i=1 a

2
i . It

follows readily from the definition of δ and the fact that G is compact that there exists
a constant K1 such that for all x ∈ G, dG(1, x)2 ≤ K1δ(x). Now the fact that (60)
is a martingale implies that E[δ(Xt)] ≤‖ Lδ ‖∞ t. Hence, by Jensen’s inequality,
E[dG(1, Xt)]

2 ≤ K1 ‖Lδ‖∞ t for all t ≥ 0.
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In order to deduce the stochastic Hölder continuity of DFX from this property,
we need to be able to compare the values of some integrals with and without G-
constraints. Actually, we introduce random holonomy fields with free boundary con-
ditions. Recall the definition of the uniform measure UG

M,∅ (Definition 2.3.3).

Definition 4.3.13. — Let X be an admissible Lévy process. Let (M, vol) be a measured
surface endowed with a graph G. We define the measure DFX,GM,vol,∅,∅ by setting

DFX,GM,vol,∅,∅(dh) =
∏
F∈F

Qvol(F )

(
h(∂F )

)
UG
M,∅(dh).

In the following proofs, we use the fact that the functions t 7→ sup{Qt(x) : x ∈ G}
and t 7→ inf{Qt(x) : x ∈ G} are respectively non-increasing and non-decreasing. This
follows from (Qt)t>0 being a convolution semigroup of positive continuous functions.

Lemma 4.3.14. — Let (M, vol,C , C) be a measured marked surface with G-constraints.
Let G be a graph on (M,C ). Consider E1 ⊂ E and F1 ⊂ F. Assume that E1 = E1

−1.
Assume that for each l ∈ C ∪B(M), at least one edge of E1 is located on l, and each
face adjacent to an edge of E1 belongs to F1. Set r = ]F1,

A = min
{

vol(F ) : F ∈ F1

}
and K = sup

{
QA(x)/QA(y) : x, y ∈ G

}
.

Let f : M(E, G) → [0,+∞) be a non-negative continuous function. Assume that f
factorises through the restriction map M(E, G)→ M(E \ E1, G). Then

K−r
∫

M(E,G)

fdDFX,GM,vol,∅,∅ ≤
∫

M(E,G)

fdDFX,GM,vol,C ,C ≤ K
r

∫
M(E,G)

fdDFX,GM,vol,∅,∅.

Proof. — Increasing the number of edges in E1 can only increase F1, hence make A
smaller and K larger. So, without loss of generality, we may assume that E1 contains
exactly one non-oriented edge on each curve l ∈ C ∪B(M) and F1 is exactly the set
of faces adjacent to these non-oriented edges.

Let us choose an orientation E+ of G and identify M(E, G) with GE+

. Let us enu-
merate F1 as {F1, . . . , Fr} and denote the generic element of GE+

as g = (g1, g2) ac-
cording to the partition E = E1∪(E\E1). The assumption on f expresses that f(g1, g2)

depends only on g2.
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By (21), the integration against UG
M,C ,C can be decomposed into the integration

with respect to the Haar measure on M(E\E1, G) and then with respect to the explic-
itly known conditional distribution of g1 given g2, which we denote by UG

M,C ,C(dg1|g2).∫
M(E,G)

fDFX,GM,vol,C ,C

=

∫
M(E,G)

f(g)
∏
F∈F

Qvol(F )

(
g(∂F )

)
UG
M,C ,C(dg)

=

∫
G(E\E1)+

f(g2)
∏

F∈F\F1

Qvol(F )

(
g2(∂F )

)[ ∫
GE+

1

∏
F∈F1

Qvol(F )

(
g(∂F )

)
UG
M,C ,C(dg1|g2)

]
dg2.

Changing the probability measure with respect to which the integral between the
brackets is taken can at most multiply the integral by maxu/minu and at most divide
it by the same number, where u denotes the integrand. In the present situation, the
definition of K implies that maxu/minu ≤ Kr.

Hence, focusing for example on the upper bound, we have∫
M(E,G)

fDFX,GM,vol,C ,C ≤ K
r

∫
GE+

f(g2)
∏
F∈F

Qvol(F )

(
g(∂F )

)
dg1dg2

= Kr

∫
M(E,G)

fdDFX,GM,vol,∅,∅.

The derivation of the lower bound is similar.

Proposition 4.3.15. — Let X be an admissible Lévy process. The discrete Markovian
field DFX is stochastically 1

2 -Hölder continuous.

Proof. — Let (M, vol, γ,C , C) be a measured marked surface with G-constraints.
Write C ∪B(M) = {l1, l−1

1 , . . . , lq, l
−1
q }. Let M1, . . . ,Ms denote the connected com-

ponents ofM \C . Set A = 1
2 min{vol(Mi) : i ∈ {1, . . . , s}}. For each i ∈ {1, . . . , q}, let

us write li as the product of three edges: li = ei,1ei,2ei,3. Let L > 0 be such that any
Riemannian ball of radius smaller than L intersects at most one curve of C ∪B(M)

and at most two of the edges {ei,j : i ∈ {1, . . . , q}, j ∈ {1, 2, 3}}, and has a Riemannian
area smaller than A.

Let l be a piecewise geodesic loop such that `(l) < L and l bounds a disk which we
denote by D. If l bounds two disks, we choose the one included in the ball of radius L
centred at the basepoint of l. By assumption on L, there is at most one i ∈ {1, . . . , q}
such that l meets one of the edges ei,1, ei,2, ei,3 and it does not meet the three of them.
We may assume that l meets none of the edges ei,j except possibly e1,2 and e1,3.

Let G be a graph on (M,C ) such that the edges ei,j are edges of G. By repeated
applications of Proposition 1.3.15, we may assume that G has exactly one face in each
connected component of M \ (C ∪{l}). The number of these components depends on
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the relative position of l and the curve l1. Nevertheless, G has the following property:
each face adjacent to one of the edges e1,1, e2,1, . . . , ep,1 or their inverses has an area
greater or equal to A.

Let us define E1 = {e1,1, e
−1
1,1, . . . , eq,1, e

−1
q,1} and F1 as the subset of F consisting of

all faces adjacent to an edge of E1. We have # F1 ≤ 2q. Set

KX,A = sup
{
QA(x)/QA(y) : x, y ∈ G

}
.

Then, by Lemma 4.3.14,∫
M(P(G),G)

dG
(
1, h(l)

)
DFX,GM,vol,C ,C(dh)(61)

≤ K2q
X,A

∫
M(P(G),G)

dG
(
1, h(l)

)
DFX,GM,vol,∅,∅(dh).

By the axiom DI , we can remove edges from G so that it becomes a graph G1 with
only two faces, D and another one, denoted by F , of area vol(M \D), without altering
the value of the integral above. Hence, by Proposition 4.3.12,

l.h.s. of (61)

≤ K2q
X,A

∫
M(P(G1),G)

dG
(
1, h(l)

)
Qvol(D)

(
h(l)

)
Qvol(M−D)

(
h(∂F )

)
UG
M,∅(dh)

≤ K2q+1
X,A

∫
G

dG(1, x)Qvol(D)(x)dx

= K2q+1
X,A E

[
dG(1, Xvol(D))

]
≤ KK2q+1

X,A

√
vol(D).

This is the expected result.

We can conclude this chapter by proving Theorem 4.3.1.

Proof of Theorem 4.3.1. — Let X be an admissible Lévy process. Let DFX be de-
fined by Definition 4.3.2. By Proposition 4.3.10, it is an oriented discrete Markovian
holonomy field, and a discrete Markovian holonomy field if X is invariant in law by
inversion. By Propositions 4.3.11 and 4.3.15, it is regular. By Theorem 3.2.9, DFX is
the restriction of a regular Markovian holonomy field, which we denote by HFX . By
Proposition 4.3.9, the Lévy process associated with HFX is indeed X.
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CHAPTER 5

RANDOM RAMIFIED COVERINGS

In this chapter, we investigate the Markovian holonomy field that we have as-
sociated to a Lévy process in the case where G is a finite group. In this case, the
structure of the Lévy process is particularly simple. It is a continuous time random
walk with a jump distribution invariant by conjugation and, depending on the issue
of orientability, by inversion.

It turns out that in this case, the canonical process associated to the Markovian
holonomy field is the process of monodromy in a random ramified covering picked un-
der a probability measure which depends in a simple way on the Lévy process. This
is consistent with the usual heuristic interpretation of the Yang-Mills measure as a
probability measure on the space of connections on a principal bundle. Indeed, ram-
ified coverings can be naturally interpreted as discrete models for principal bundles,
endowed with a connection which is flat everywhere but at the ramification points,
where its curvature is concentrated.

5.1. Ramified G-bundles

Let us choose once for all a finite group G. Let (M, vol,∅, C) be a measured
surface with G-constraints on the boundary. For the sake of simplicity, we treat the
case C = ∅.

Let Y ⊂M \ ∂M be a finite subset. A principal G-bundle over M − Y is a smooth
covering π : P →M \ Y of M \ Y by a surface P on which G acts freely on the right,
by smooth automorphisms of covering and transitively on each fibre. The surface P
is not compact unless Y = ∅ and in general it is not connected. Two G-bundles
π : P → M \ Y and π′ : P ′ → M \ Y are isomorphic if there exists a G-equivariant
diffeomorphism h : P → P ′ such that π′ ◦ h = π.

A ramified covering over M with ramification locus Y is a continuous mapping
π : P → M from a surface P such that the restriction of π to π−1(M \ Y ) is a
covering and, for all y ∈ Y and all p ∈ π−1(y), there exists a neighbourhood U of p
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and an integer n ≥ 1 such that the mapping π |U : (U, p)→ (π(U), y) is topologically
conjugated to the mapping z 7→ zn : (C, 0) → (C, 0). This means that there exists
homeomorphisms h1 : U → C and h2 : π(U) → C such that h2 ◦ π |U ◦ h−1

1 is the
mapping z 7→ zn. The integer n is called the order of ramification of p. We assume
that for all y ∈ Y , there exists p ∈ π−1(y) whose order of ramification is at least 2.
Two ramified coverings π : P → M and π′ : P ′ → M are isomorphic if there exists a
homeomorphism h : P → P ′ such that π′ ◦ h = π.

From the classical fact that the only connected coverings of finite degree of C∗ are,
up to isomorphism, the mappings z 7→ zn : C∗ → C∗ for n ≥ 1, it follows that a
principal G-bundle π : P → M \ Y can always be extended to a ramified covering
of M by a suitable compactification of P , and that any two such extensions give rise
to isomorphic ramified coverings. Moreover, it is possible to endow the total space of
the ramified covering with a differentiable structure in such a way that the covering
map is smooth.

Definition 5.1.1. — A ramified principal G-bundle over M with ramification locus Y
is a smooth ramified covering π : R → M of M with ramification locus Y , together
with an action of G on π−1(M \ Y ) which endows the restriction of π to π−1(M \ Y )

with the structure of a principal G-bundle.
Two ramified principal G-bundles π : R → M and π : R′ → M with ramification

locus Y are isomorphic if their restrictions to M \ Y are isomorphic as principal
G-bundles.

Remark 5.1.2. — By the discussion before the definition, two isomorphic ramified
G-bundles are also isomorphic as ramified coverings. However, an isomorphism of
ramified coverings between two ramified G-bundles is not necessarily an isomorphism
of ramified G-bundles. Consider for example, for n ≥ 3, the trivial Z/nZ-bundle
R = M×Z/nZ. The group Sn acts on R by permuting the sheets and this is an action
by automorphisms of covering. Nevertheless, only a cyclic permutation of the sheets is
an isomorphism of Z/nZ-bundle. In general, the group of covering automorphisms of
a principal G-bundle is bigger than G. This is related to the fact that the total space
of the covering is not always connected, so that the group of covering automorphisms
does not always act freely.

Remark 5.1.3. — In the case where G is the symmetric group Sn, ramified G-bundles
are the same thing as ramified coverings of degree n. Indeed, let π : P → M be a
principal Sn-bundle, ramified over Y . The group Sn acts naturally on {1, . . . , n} and
the associated bundle P ×Sn {1, . . . , n}, which is the quotient of P ×{1, . . . , n} by the
relation

(p, k) ' (p′, k′) ⇐⇒ ∃σ ∈ Sn, (p′, k′) =
(
pσ, σ−1(k)

)
,
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is a ramified covering of M of degree n with ramification locus Y .
Conversely, let π : R −→ M be a ramified covering of degree n with ramification

locus Y . Let m be a point of M \ Y . By a labelling of R at m we mean a bijection
between π−1(m) and the set {1, . . . , n}. For each m ∈M \Y , let Labm(R) denote the
set of labellings of R at m. The group Sn acts on the right, transitively and freely
on Labm(R). Then Lab(R) = ∪m∈MLabm(R) endowed with the natural topology and
projection on M , is a principal Sn-bundle over M ramified over Y . At a point y ∈ Y ,
the ramification type of R is a partition of n and the monodromy of Lab(R) around y
is the corresponding conjugacy class of Sn.

It is easy to check that, if P is a Sn-bundle, then Lab(P ×Sn {1, . . . , n}) is canon-
ically isomorphic to P .

Let R(M) (resp. R(M,Y )) denote the set of isomorphism classes of ramified prin-
cipal G-bundles over M (resp. with ramification locus Y ).

Definition 5.1.4. — A based ramified G-bundle is a pair (R, p) where π : R→M is a
ramified bundle and p ∈ R is a point such that π(p) does not belong to the ramification
locus of R. The pair (R, p) is said to be based at π(p).

Two based ramified G-bundles (R, p) and (R′, p′) are isomorphic if there exists an
isomorphism f : R→ R′ of ramified G-bundles such that f(p) = p′.

The importance of this notion comes from the fact that the automorphism group
of a based ramified bundle over a connected surface is trivial.

Let m be a point ofM . We denote by Rm(M) (resp. Rm(M,Y )) the set of isomor-
phism classes of based ramified G-bundles based at m (resp. with ramification locus
Y ).

5.2. Monodromy of ramified G-bundles

From now on we will assume that the surface M is connected. Consider R in
R(M,Y ). Choose m ∈ M \ Y . Choose p ∈ π−1(m). For each loop l ∈ Lm(M) which
does not meet Y , the lift of l starting at p finishes at pg for a unique g ∈ G, called the
monodromy of R along l with respect to p. This monodromy depends on l only through
its homotopy class inM \Y . Hence, the choice of p determines a group homomorphism
monp : π1(M \ Y,m) −→ G, which characterises the based ramified G-bundle (R, p)

up to isomorphism. Another choice of p would lead to another homomorphism, which
differs from monp by composition by an inner automorphism of G. The class of the
homomorphism monp modulo inner automorphisms of G characterises the ramified
G-bundle R up to isomorphism (see [36]).
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The words monodromy and holonomy are synonymous in this work, but we use the
first in the context of ramified bundles and the second in the framework of Markovian
holonomy fields.

An automorphism of the ramified G-bundle R is completely determined by the
point to which it sends p. This point is of the form pg for a unique g ∈ G, hence
the choice of p allows us also to identify the group Aut(R) of automorphisms of
R with a subgroup of G which we denote by Autp(R). Let Monp(R) be the image
of the homomorphism monp : π1(M \ Y,m) → G. Then Autp(R) is the centraliser
of Monp(R). Again, changing p to ph for some h ∈ G would conjugate Monp(R)

and Autp(R) by h.
In order to study R(M,Y ), it is convenient to choose a system of generators of

π1(M \ Y,m). To do this, let us first assume that Y is not empty and set k = # Y .
Let us choose on M a graph G such that m is a vertex of G and each face of
G contains exactly one point of Y . Throughout this chapter, we use the notation
g = g(M) for the genus of M , p = p(M) for the number of boundary components
of M , and f = f(G) for the number of faces of G. In the present situation, f = k.
By Lemma 1.3.33, the group RLv(G) of reduced loops in G (see Definition 1.3.30)
is naturally isomorphic to π1(M \ Y,m). Thanks to Proposition 2.4.2, let us choose
a tame system G = {a1, . . . , ag, c1, . . . , cp, l1, . . . , lk} of generators of RLv(G), associ-
ated with a certain word w in the free group of rank g. This means that the loops
a1, . . . , ag generate the fundamental group of the surface obtained by gluing a disk
along each boundary component of M , the loops c1, . . . , cp are lassos whose meanders
cover the boundary components of M , the loops l1, . . . , lk are lassos whose meanders
cover the boundary of the faces of G, and all these loops generate RLv(G) with the
single relation w(a1, . . . , ag)c1 · · · cp = l1 · · · lk. For all ramification point y ∈ Y , we
denote by O(R, y) the conjugacy class of the monodromy along the facial lasso whose
meander goes around y. This is also the conjugacy class of the monodromy along any
small loop which circles once around y, positively if M is oriented. In particular, it
does not depend on the choice of G.

Recall that the surface M is endowed with a set C of G-constraints along its
boundary. Thus, to each oriented connected component b of ∂M , the G-constraints
C associate a conjugacy class C(b) of G. Let us write B(M) = {b1, b−1

1 , . . . , bp, b
−1
p }

and, for all i ∈ {1, . . . , p}, Oi = C(bi). We define the sets R(M,C), (resp. R(M,Y,C),
Rm(M,C), Rm(M,Y,C)) as the sets of isomorphism classes of ramified G-bundles
(resp. with ramification locus Y , based at m, based at m with ramification locus Y )
such that the monodromy along bi belongs to Oi for all i ∈ {1, . . . , p}.
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Let us use the information gathered so far to build concrete models for the various
spaces of isomorphism classes of ramified G-bundles. Let us define

H (M,k,C,w)=
{

(a1, . . . , ag, c1, . . . , cp, d1, . . . , dk)∈Gg × O1× · · ·× Op×(G\{1})k :

w(a1, . . . , ag)c1 · · · cp = d1 · · · dk
}
.

We denote by ai, ci, di : H (M,k,C,w)→ G the obvious coordinate mappings.
If Y is empty, then we choose G with a single face. In this case the appropriate

concrete model is the following space:

H (M, 0, C, w) =
{

(a1, . . . , ag, c1, . . . , cp) ∈ Gg × O1 × · · · × Op :

w(a1, . . . , ag)c1 . . . cp = 1
}
.

The group G acts on H (M,k,C,w) by simultaneous conjugation on each factor.
Let us consider the diagram

(62)

Rm(M,Y,C)
∼ //

��

H (M,k,C,w)

��
R(M,Y,C)

∼ // H (M,k,C,w)/G

The vertical arrow on the left is the map which forgets the base point. The vertical
arrrow on the right is the quotient map. The top horizontal arrow is given by the
monodromy with respect to the base point along the elements of G . The bottom
horizontal arrow is also given by this monodromy, but since no base point is specified,
it is defined up to global conjugation.

This diagram is commutative and, according to the discussion at the beginning of
this section, its horizontal arrows are bijections.

The preimage of an element R ∈ R(M,Y,C) by the vertical arrow consists
in # G/# Aut(R) elements. It follows that, for all function f : R(M,Y,C) −→ C,
which can alternatively be seen as an invariant function on H (M,k,C,w), we have
the counting formula∑

R∈R(M,Y,C)

1

# Aut(R)
f(R) =

1

# G

∑
(R,p)∈Rm(M,Y,C)

f(R)(63)

=
1

# G

∑
h∈ H (M,k,C,w)

f(h).

5.3. Measured spaces of ramified G-bundles

Let us start by putting a topology on the sets of ramified G-bundles. For each
based ramified G-bundle (R, p) based at π(p) = m with ramification locus Y , and
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each open subset U of M \ {m} containing Y , we define

V
(
(R, p), U

)
=
{

(R′, p′) ∈ Rm(M,C) : (R, p) |M\U ' (R′, p′) |M\U as G-bundles
}
.

The sets V ((R, p), U) form a basis of a topology on Rm(M,C) and from now on we
consider this space endowed with that topology. Similarly, we endow R(M,C) with
the topology generated by the sets

V (R,U) =
{
R′ ∈ R(M,C) : R |M\U ' R′|M\U

}
,

where U contains the ramification locus of R. These topologies make the projection
Rm(M,C)→ R(M,C) continuous. However, observe that the number of ramification
points is not a continuous function with respect to these topologies, it is only lower
semi-continuous. In fact, these topologies are the roughest which make the monodromy
along any loop on M a continuous functions on its definition set.

Let F(M) denote the set of finite subsets ofM . For each k ≥ 0, let ∆k ⊂Mk denote
the subset of Mk on which at least two components are equal. We endow F(M) with
the topology which makes the bijection F(M) '

⊔
k≥0(Mk \ ∆k)/Sk a homeomor-

phism. Once again, the natural mapping Ram : R(M,C) −→ F(M) which associates
to a covering its ramification locus is not continuous.

It is now time to introduce the Lévy process. Let X be a continuous time random
walk on G, with jump measure invariant by conjugation, and also invariant by inver-
sion ifM is non-orientable. Its Lévy measure Π is a finite invariant measure supported
by G \ {1}. We assume that the support of Π generates G.

We denote by Π1 the probability measure Π/Π(G) on G. We define now the weight
of a ramified G-bundle with respect to Π. Recall that if R is ramified at y, then
O(R, y) denotes the conjugacy class of the monodromy of a small circle around y,
positively oriented if M is oriented.

Definition 5.3.1. — Consider R ∈ R(M). Let Y denote the ramification locus of R.
The weight of R is the non-negative real number

Π1(R) =
∏
y∈Y

Π1( O(R, y))

# O(R, y)
·

If R is represented by an element h of H (M,k,C,w), then Π1(R) =
∏k
i=1 Π1({di(h)}).

The notion of weight of a ramified G-bundle allows us to define positive measures
on the spaces of bundles. The choice of the normalization will be justified by later
results.

Definition 5.3.2. — The Borel measure BBXM,m,Y,C on Rm(M,Y,C) is defined by

BBXM,m,Y,C =
#G1−g

# O1 · · ·# Op

∑
(R,p)∈Rm(M,Y,C)

Π1(R)δ(R,p).

ASTÉRISQUE 329



5.3. MEASURED SPACES OF RAMIFIED G-BUNDLES 157

By the left vertical arrow of (62), this measure is projected on the Borel measure
RBXM,Y,C on R(M,Y,C) defined by

RBXM,Y,C =
#G2−g

# O1 · · ·# Op

∑
R∈R(M,Y,C)

Π1(R)

# Aut(R)
δR.

Thanks to the counting formula (63), we can roughly bound above the total mass
of BBXM,m,Y,C by

(64) BBXM,m,Y,C(1) =
#G1−g

# O1 · · ·# Op

∑
h∈ H (M,k,C,w)

Π1(h) ≤ #G.

Our next objective is to put measures on Rm(M,C) and R(M,C), the sets of
ramified bundles in which the ramification loci are not fixed. We have endowed
both spaces with topologies. Thus, they carry a Borel σ-field. Let M+( R(M,C))

and M+( Rm(M,C)) denote the spaces of positive Borel measures on R(M,C)

and Rm(M,C) respectively, endowed with the topology of weak convergence.

Proposition 5.3.3. — The mapping from F(M) to M+( R(M,C)) which sends Y to
RBXM,Y,C is continuous. Similarly, the mapping from F(M) to M+( Rm(M,C)) which
sends Y to BBXM,m,Y,C is continuous on its definition set.

Proof. — We prove only the first statement. The second one is very similar.
By definition of the topology on F(M), it suffices to prove that the mapping from

Mk \ ∆k to M+( R(M,C)) which sends Y = (y1, . . . , yk) to RBXM,Y,C is continuous
for all k ≥ 0. Consider k ≥ 0, Y = {y1, . . . , yk} and a bounded continuous function
f : R(M,C) → R. Choose ε > 0. For simplicity, assume that M is endowed with a
Riemannian metric.

Since R(M,Y,C) is a finite set, the continuity of f implies the existence of r > 0

such that the balls B(yi, r) are contained in M \ ∂M , pairwise disjoint and such that
the neighbourhood U = B(y1, r)× · · · ×B(yk, r) of Y in Mk \∆k satisfies

∀R ∈ R(M,Y,C), ∀R′ ∈ V (R,U),
∣∣f(R′)− f(R)

∣∣ < ε

# R(M,Y,C)
·

Let Y ′ = {y′1, . . . , y′k} be an element of U . Let φ be a diffeomorphism of M such
that φ |M\U = idM\U and φ(yi) = y′i for all i ∈ {1, . . . , k}. For each bundle π :

R → M belonging to R(M,Y,C), the bundle φ(R) = (φ ◦ π : R → M) belongs
to R(M,Y ′, C). Replacing φ by its inverse in the definition of φ : R(M,Y,C) →
R(M,Y ′, C) yields the inverse mapping, hence φ is a bijection. Moreover, for each
i ∈ {1, . . . , k}, O(φ(R), y′i) = O(R, yi), so that Π1(φ(R)) = Π1(R). Also, the conju-
gation by φ determines an isomorphism between Aut(R) and Aut(φ(R)). Finally, R
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and φ(R) are isomorphic outside U . Altogether,∣∣RBXM,Y ′,C(f)− RBXM,Y,C(f)
∣∣ ≤ ∑

R∈R(M,Y,C)

Π1(R)

# Aut(R)

∣∣f(φ(R))− f(R)
∣∣ < ε.

Since k, Y , f and ε were arbitrary, the result follows.

We choose for the ramification locus a very simple probability distribution which
incorporates the measure vol on M . Let Ξ be the distribution of a Poisson point pro-
cess of intensity Π(G)vol on M . It is a Borel probability measure on F(M). Moreover,
for all m ∈ M , Ξ({Y : m ∈ Y }) = 0. According to Proposition 5.3.3, the following
definition is legitimate.

Definition 5.3.4. — The Borel measures RBXM,vol,C on R(M,C) and BBXM,m,vol,C

on Rm(M,C) are defined by

RBXM,vol,C =

∫
F(M)

RBXM,Y,C Ξ(dY ) =

∫
F(M)

( ∑
R∈R(M,Y,C)

Π1(R)

# Aut(R)
δR

)
Ξ(dY ),

BBXM,m,vol,C =

∫
F(M)

BBXM,m,C Ξ(dY )

=

∫
F(M)

( 1

#G

∑
(R,p)∈Rm(M,Y,C)

Π1(R)δ(R,p)

)
Ξ(dY ).

Since Ξ({Y : m ∈ Y }) = 0, the subset of R(M,C) which consists in bundles rami-
fied over m is negligible for the measure RBXM,vol,C . Hence, the measure BBXM,m,vol,C

projects on RBXM,vol,C by the left vertical arrow of the diagram (62). In particular,
these measures have the same total mass. Thanks to (64), this total mass is finite.
Hence, RBXM,vol,C and BBXM,m,vol,C are finite measures. We will denote by NRBXM,vol,C

and NBBXM,m,vol,C the corresponding probability measures.
Although this is not absolutely necessary, let us compute BBXM,m,vol,C(1). Recall

that (55) gives an expression of the density of the 1-dimensional marginals of the Lévy
process X with respect to the uniform measure on G: setting, for all α ∈ Irr(G),

Π̂(α) =
∑
x∈G

χα(x)Π({x}),

we have

(65) ∀t > 0, ∀x ∈ G, Qt(x) = e−tΠ(G)
∑

α∈Irr(G)

etΠ̂(α)/χα(1)χα(1)χα(x).

In the present context, this equality can be checked by an elementary computation,
using the following formula, which we will need again later and which is proved by
using the standard properties of characters.
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Lemma 5.3.5. — For all k ≥ 1 and all x ∈ G, the following equality holds:∑
x1,...,xk∈G

Π
(
{x1}

)
· · ·Π

(
{xk}

)
1x1···xk=x =

1

#G

∑
α∈Irr(G)

( Π̂(α)

χα(1)

)k
χα(1)χα(x).

We can now compute the mass of BBXM,m,vol,C(1).

Proposition 5.3.6. — The total mass of the measure BBXM,m,vol,C is equal to

(66)
1

#Gg∏p
i=1 # Oi

∑
a1,...,ag∈G

c1∈ O1,...,cp∈ Op

Qvol(M)

(
w(a1 · · · ag)c1 · · · cp

)
,

which, with the notation of Definition 4.3.6, is equal to∫
G

Qvol(M)dmM,∅,C .

Proof. — Choose Y ∈ F(M). Set k = #Y . Choose a graph G, a vertex v of G
and a tame system of generators of RLv(G) associated with some word w, as we did
in Section 5.2. This determines a bijection Rm(M,Y,C) ' H (M,k,C,w). By the
counting formula (63),

BBXM,m,Y,C(1) =
#G1−g∏p
i=1 # Oi

∑
h∈ H (M,k,C,w)

k∏
i=1

Π1

(
{di(h)}

)
=

#G1−g∏p
i=1 # Oi

∑
a1,...,ag∈G

c1∈ O1,...,cp∈ Op

∑
d1,...,dk∈G

k∏
i=1

Π({di(h)})
Π(G)

1d1···dk=w(a1···ag)c1...cp
.

By Lemma 5.3.5, this is equal to

1

#Gg∏p
i=1 # Oi

∑
a1,...,ag∈G

c1∈ O1,...,cp∈ Op

α∈Irr(G)

1

Π(G)k

( Π̂(α)

χα(1)

)k
χα(1)χα(w(a1 · · · ag)c1 · · · cp).

Integrating this expression with respect to Y under the probability measure Ξ amounts
to replacing k by a Poisson random variable with parameter Π(G)vol(M) and taking
the expectation. Using (65), we find that this expectation is equal to (66).

5.4. The monodromy process as a Markovian holonomy field

Let m be a point of M . Let l ∈ Lm(M) be a loop based at m. Since l is rectifiable,
its range is negligible for the measure vol. Hence, the ramification locus of a ramified
G-bundle based at m distributed according to the probability measure NBBXM,m,vol,C

is almost surely disjoint from the range of l. The mapping Pl : Rm(M,C)→ G which
sends a pair (R, p) to the monodromy of R along l with respect to p is defined on
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the subset where the ramification locus is disjoint from l and thus is a well-defined
random variable under the probability measure NBBXM,m,vol,C .

Let l1, l2 ∈ Lm(M) be two loops. Let (R, p) be an element of Rm(M,C). Let g1

and g2 be the monodromies of l1 and l2 respectively. Let us compute the monodromy
of l1l2. The point p is sent to pg1 by the parallel transport along l1. Then, on one hand
the parallel transport along l2 sends p to pg2 and on the other hand the the parallel
transport commutes to the action of G on the right on π−1(m). Thus, the parallel
transport along l2 sends pg1 to pg2g1. It appears that monodromies are multiplied
in the reversed order of concatenation. Coming back to the probabilistic setting, this
implies that

∀l1, l2 ∈ Lm(M), Pl1l2 = Pl2Pl1 almost surely.

It is even easier to check that for all l ∈ Lm(M), Pl−1 = P−1
l almost surely.

Thanks to Proposition 2.2.3, these two relations ensure that the collection of ran-
dom variables (Pl)l∈Lm(M) defined on the probability space ( Rm(M,C),NBBXM,m,vol,C)

determines a probability measure on the space ( M(Lm(M), G), C) (see Section 2.1).
We denote this probability measure by NMFXM,m,vol,C . By restriction, this probability
measure is also defined on the invariant σ-field and, by Lemma 2.1.5, determines a
probability measure on the measurable space ( M(P(M), G), I ), which we denote by
NMFXM,(m),vol,C . Finally, we define a finite measure on ( M(P(M), G), I ) by

MFXM,(m),vol,C = BBXM,vol,C(1)NMFXM,(m),vol,C .

Lemma 5.4.1. — The measure MFXM,(m),vol,C on ( M(P(M), G), I ) does not depend on
the point m. We denote it by MFXM,vol,C .

Proof. — By Definition 2.1.6, it suffices to show that if l1, . . . , ln are loops on M

based at the same point m0, and f : Gn → C is a function invariant under the
action of G by diagonal conjugation, then the distribution of f(h(l1), . . . , h(ln)) un-
der NMFXM,(m),vol,C does not depend on m. By definition, this distribution is that
of f(Pcl1c−1 , . . . , Pclnc−1) under BBXM,m,vol,C , where c is an arbitrary path from m

to m0. Let m and m′ be two points. Let us chose a path c from m to m0 and a path c′

from m′ to m. It suffices to prove that the distributions of f(Pcl1c−1 , . . . , Pclnc−1)

under BBXM,m,vol,C and f(Pc′cl1c−1c′−1 , . . . , Pc′clnc−1c′−1) under BBXM,m′,vol,C coincide.
Let Y be a finite subset of M which does not meet c′. Let (R, p′) be an element of

Rm′(M,Y,C). Then, for each i ∈ {1, . . . , n}, the monodromy of R along c′clic−1c′
−1

relatively to p′ is equal to the monodromy of R along clic−1 relatively to the image
of p′ by parallel transport along c′, which we denote by p. Thus, it suffices to prove that
the mapping Rm′(M,Y,C)→ Rm(M,Y,C) which sends (R, p′) to (R, p), where p is
the image of p′ by parallel transport along c′, sends the measure BBM,m′,Y,C to the
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measure BBM,m,Y,C . This follows from the definition of these measures and the fact
that the mapping which we consider is a bijection which preserves the weight.

The main result of this chapter is the following.

Theorem 5.4.2. — The finite measures HFXM,vol,∅,C and MFXM,vol,C on the measurable
space ( M(P(M), G), I ) are equal.

This theorem expresses, at least when the surfaces carry only G-constraints along
their boundary, the fact that the holonomy process associated with the Markovian
holonomy field HFX is the monodromy process associated to a random ramified G-
bundle taken under the appropriate distribution.

The proof of this theorem consists in two main steps. In the first step, we prove
that the monodromy process is stochastically continuous. Then, we prove that the
holonomy process and the monodromy process coincide in distribution on the set of
piecewise geodesic loops for some Riemannian metric on M .

Proposition 5.4.3. — The measure MFXM,vol,C is stochastically continuous, in the sense
that is satisfies the first property of Definition 3.1.3.

Proof. — We need to prove that for all m ∈ M , all l ∈ Lm(M) and all sequence
(ln)n≥0 of loops based at m converging to l, the sequence (Pln)n≥0 converges in
measure to Pl. Let us endowM with a Riemannian metric and choosem, l and (ln)n≥0

as above. We assume that all loops are parametrised at constant speed, so that the
sequence of parametrised paths (ln)n≥0 converges uniformly to l.

Choose ε > 0. For each r > 0, let N r(l) denote the r-neighbourhood of the image
of l. Since the distribution of the ramification locus Ram(R) of R under the finite
measure BBXM,m,vol,C is absolutely continuous with respect to Ξ,

lim
r→0

BBXM,m,vol,C

({
(R, p) : Ram(R) ∩ N r(l) 6= ∅

})
= 0.

Choose r > 0 such that this probability is smaller than ε. Assume also that r is smaller
than the convexity radius of our Riemannian metric onM . Finally, let n0 be such that
n ≥ n0 implies d∞(ln, l) < r. Then, if n ≥ n0, ln and l are homotopic inside N r(l)

which, with probability greater than 1 − ε, does not contain any ramification point.
Hence,

∀n ≥ n0, BBXM,m,vol,C

({
(R, p) : Pln(R) 6= Pl(R)

})
< ε.

Since ε is arbitrary, this proves that Pln converges to Pl in measure.

Theorem 5.4.2 asserts the equality of two finite measures. We consider the two
stochastic processes (Hl)l∈Lm(M) and (Pl)l∈Lm(M) which are both the canonical pro-
cess on M(Lm(M), G), the first considered under the measure HFXM,vol,∅,C and the
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second under the measure MFXM,(m),vol,C . Although these measures are not in general
probability measures, we use the language of stochastic processes for H and P .

By Proposition 5.4.3 and Theorem 3.3.1, it suffices to endowM with a Riemannian
metric and to show that the restrictions of P and H to piecewise geodesic loops agree
in distribution. For this, as we have already observed several times, it suffices to show
that they agree in distribution when restricted to the set of loops in a graph with
piecewise geodesic edges, or in fact any graph.

Proposition 5.4.4. — Let G = (V,E,F) be a graph onM such thatm ∈ V. The families
of random variables (Pl)l∈Lm(G) and (Hl)l∈Lm(G) have the same distribution.

Proof. — It suffices to prove that the equality holds when the processes are re-
stricted to a family of loops which generate the group RLm(M). Consider a tame
family of generators G = {a1, . . . , ag, c1, . . . , cp, l1, . . . , lf} of RLm(G) associated with
a word w. The loop lf is a function of all other loops, so that it suffices to compute
the distribution of H = (Ha1

, . . . ,Hag , Hc1 , . . . ,Hcp , Hl1 , . . . ,Hlf−1
). Let us choose

h = (ga1 , . . . , gag , gc1 , . . . , gcp , gl1 , . . . , glf−1
) in Gg × O1 × · · · × Op ×Gf−1. By Propo-

sition 2.4.2,

HFXM,vol,∅,C(H = h) =
#G1−g−f∏p
i=1 # Oi

f∏
i=1

Qvol(Fi)(gli),

where we have set glf = w(ga1
, . . . , gag)gc1 · · · gcp(gl1 · · · glf−1

)−1.
Now let us compute the corresponding quantity for the monodromy field. Let Y

be a finite subset of M which does not meet G. Let us refine G inside each face which
meets Y in order to get a new graph G′, finer than G, such that each face of G′ either
does not meet Y and is equal to a face of G, or contains exactly one point of Y .

By applying the second assertion of Proposition 2.4.2, we can construct a tame
family of generators G ′ of the group of reduced loops of G′ which is finer than G in
the sense that for each face F , the facial lasso of G corresponding to F is the product
in a certain order of the facial lassos of G ′ corresponding to the faces of G′ contained
in F .

For each i ∈ {1, . . . , f}, let us write Yi = Y ∩ Fi = {yi,1, . . . , yi,ki}. Let{
li,j : i ∈ {1, . . . , f}, j ∈ {1, . . . , ki}

}
be the set of facial lassos of G ′ indexed accordingly. We may assume that for all
i ∈ {1, . . . , f}, li = li,1 · · · li,ki .

The family G ′ determines a bijection between Rm(M,Y,C) and H (M,k,C,w).
This allows us to compute the distribution of the random variable

M = (Ma1
, . . . ,Mag ,Mc1 , . . . ,Mcp ,Ml1 , . . . ,Mlf−1

)
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under BBXM,m,Y,C . We find

BBXM,m,Y,C(M = h)(67)

=
#G1−g∏p
i=1 # Oi

f∏
i=1

∑
gli,1 ,...,gli,ki

∈G
Π1

(
{gli,1}

)
· · ·Π1

(
{gli,ki}

)
1gli,ki···gli,1=gli

.

Using Lemma 5.3.5, we find that the quantity (67) is equal to

#G1−g−f∏p
i=1 # Oi

f∏
i=1

∑
αi∈Irr(G)

( Π̂(αi)

Π(G)χαi(1)

)ki
χαi(1)χαi(gli).

By integrating this expression with respect to Y under the measure Ξ, we find

BBXM,m,vol,C(M = h) =
#G1−g−f∏p
i=1 # Oi

f∏
i=1

e−vol(Fi)Π(G)
∑

α∈Irr(G)

evol(Fi)
Π̂(α)
χα(1)χα(1)χα(gli)

=
#G1−g−f∏p
i=1 # Oi

f∏
i=1

Qvol(Fi)(gli).

This proves that BBXM,m,vol,C(M = h) = HFXM,vol,∅,C(H = h).
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Aγ(M), 33
abstract graph, 80
admissible
word, 68

area, 69
B(M), 26
Banchoff-Pohl inequality, 11
binary, see also gluing
boundary of a face, see also graph, 48–58
Brouwer property of the sphere, 61
Brownian motion
indexed by loops, 9
on G, 15, 21

Conj(G), 108
Const(G), 108
C, 86
C , 80
C , 27
cellular embedding of a graph, 42
charge of a particle, 13
cobordism, 5
concatenation, 4, 13, 30
conjugation
diagonal action by, 80
Lévy process invariant by, 136
measures invariant by, 132

connection
Levi-Civita, 35
on a principal bundle, 12, 14, 21

constraints, see also surface
curve, 30
equivalence, 63

curve accessible, 59
cycle, 31

facial, 49
DFX,GM,vol,C ,C , 141
Dn(c), 33

∂F , 49
δ O(n), 87
directed set of graphs, see also graph
E, 41
E+, 66
e(G), 66
η, κ, 131
edge, see also graph
F, 41
f(G), 66
face, see also graph
framing, see also graph
G, 80
G, 41
Grγ(M,C ), 73
G , 154
Ĝ, 96
gauge group, 80
G-constraints, see also surface
genus, see also surface
gluing, 28
graph, 41

abstract, 80
approximation by piecewise geodesic

graphs, 75
dual, 96
edge, 41

adjunction, 62
cyclic order, 52

face
boundary (combinatorial description), 55
boundary (definition), 49
topology, 46
with the same bounding cycle, 56

framing, 54
partial order on the set of, 72
spanning tree, 96
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vertex
orientation, 54

group of reduced loops, 65
tame generators, 94

H (M,k,C,w), 155
HFM,vol,C ,C , 108
I , 82
isoperimetric inequality, 116
Klein bottle, 132
Kolmogorov’s extension theorem, 84
Kolmogorov-Chapman equation, 128
Lévy process, 134–140
admissible, 139
generator, 136
pure jump admissible, 140
with positive density, 137

LE(c), 74
L(M), 31
lasso, 31
bounding, 94
decomposition of a path, 74
facial, 94
meander, 31
spoke, 31

loop, 31
reduced, 65
simple, 31

loop erasure, 74
(M,C ), 27
MFXM,vol,C , 160
M(P(M), G), 79
Markovian holonomy field

definition, 108
discrete, 110, 141–149

continuously area-dependent, 114
Fellerian, 114
regular, 114
stochastically 1

2
-Hölder continuous, 113

Fellerian, 109
partition function, 126–134, 139
partition functions, 112
regular, 109
stochastically continuous, 109

meander, see also lasso
multiplicative function, 79

invariant σ-field, 82
uniform, 87
uniform with constraints, 89–94

Ox, 86
O(R, y), 154
PP(M),P(M), 31
Π, 136
Π(R), 156
path, 31

convergence, 35
convergence with fixed endpoints, 33
dyadic approximation, 33
equivalence, 63
piecewise geodesic, 33

pattern, 42
split, 45
tubular, 27

planar tree, 101
Poisson point process, 158

indexed by loops, 9
projective family of probability spaces, 83
Qt, 136
ramified principal bundle, 152

automorphisms, 154
counting, 155
monodromy, 153
random, 158
topology, 156
weight, 156

BBXM,m,Y,C ,RBXM,Y,C , 157
RLm(G), 65
R(M), R(M,Y ), 153
Rm(M), Rm(M,Y ), 153
Riemannian metric, 69
Sk(G), 41
Spll(M), 29
skeleton, see also graph
spanning tree, 96
split genus, see also surface
splitting, 28
spoke, see also lasso
surface
G-constraints, 87
genus, 24
classification, 25, 126
marked, 27
split genus, 30
surgery, 28, 87

UG
M,C ,C , 89

unary, see also gluing
V, 41
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v(G), 66

vertex, see also graph

Ξ, 158
F(M), 156
Z+
p,g,t, Z

−
p,g,t, 126
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This text defines and studies a class of stochastic processes
indexed by curves drawn on a compact surface and taking
their values in a compact Lie group. We call these processes
two-dimensional Markovian holonomy fields. The prototype
of these processes, and the only one to have been con-
structed before the present work, is the canonical process
under the Yang-Mills measure, first defined by Ambar Sen-
gupta and later by the author. The Yang-Mills measure sits
in the class of Markovian holonomy fields very much like the
Brownian motion in the class of Lévy processes. We prove
that every regular Markovian holonomy field determines a
Lévy process of a certain class on the Lie group in which
it takes its values, and we construct, for each Lévy process
in this class, a Markovian holonomy field to which it is as-
sociated. When the Lie group is in fact a finite group, we
give an alternative construction of this Markovian holon-
omy field as the monodromy of a random ramified principal
bundle. Heuristically, this agrees with the physical origin
of the Yang-Mills measure as the holonomy of a random
connection on a principal bundle.


