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THE CALABI FUNCTIONAL ON A RULED SURFACE

 G SZÉKELYHIDI

A. – We study the Calabi functional on a ruled surface over a genus two curve. For po-
larizations which do not admit an extremal metric we describe the behavior of a minimizing sequence
splitting the manifold into pieces. We also show that the Calabi flow starting from a metric with suitable
symmetry gives such a minimizing sequence.

R. – On étudie la fonctionnelle de Calabi sur une surface réglée au-dessus d’une courbe de
genre deux. Pour les polarizations qui n’admettent pas de métrique extrémale, on décrit le comporte-
ment d’une suite minimisante partitionnant la variété. On montre aussi que le flot de Calabi partant
d’une métrique avec une symétrie appropriée produit une telle suite minimisante.

1. Introduction

In [3] Calabi introduced the problem of minimizing the L2-norm of the scalar curvature
(this is called the Calabi functional) over metrics in a fixed Kähler class on a compact Kähler
manifold. A critical point of the Calabi functional is called an extremal metric. The Euler-
Lagrange equation is that the gradient of the scalar curvature is a holomorphic vector field.
It is known that extremal metrics in fact minimize the Calabi functional (see [15], [5], [12]).
Recently much progress has been made in understanding when extremal metrics exist, at least
on a conjectural level. Kähler-Einstein metrics are a special case and when the first Chern
class of the manifold is positive (the manifold is called Fano in this case), Yau conjectured
that the existence of Kähler-Einstein metrics is related to the stability of the manifold in the
sense of geometric invariant theory. In the case of negative or zero first Chern class Yau [26]
and Aubin [2] have shown that Kähler-Einstein metrics always exist, answering a conjecture
of Calabi. Tian [24] made significant progress towards understanding the Fano case, solv-
ing it completely in the case of surfaces in [23]. Donaldson [9] showed that the scalar cur-
vature can be interpreted as a moment map (this was also observed by Fujiki [13]) and this
enabled extending the conjectures about the existence of Kähler-Einstein metrics to more
general constant scalar curvature and extremal metrics (see [10], [17], [22]).
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838 G. SZÉKELYHIDI

In this paper we look at what we can say about minimizing the Calabi functional in a
Kähler class which admits no extremal metric, concentrating on a concrete example. Let
Σ be a genus 2 curve and M a degree -1 line bundle on it. We consider the ruled surface
X = P(M⊕O) with a family of polarizations Lm = C + mS∞, where C is the class of a
fibre, S∞ is the infinity section (with self-intersection 1), and m > 0. Technically we should
take m to be rational, especially when discussing test-configurations, but by an approxima-
tion and continuity argument we can take m to be real. The aim is to study the problem of
minimizing the Calabi functional in these Kähler classes. Our main result is the following.

T 1. – There exist constants k1 ' 18.9, k2 ' 5.03, such that

1. If 0 < m < k1 thenX admits an extremal metric (this is due to Tønnesen-Friedman [25]).
2. If k1 6 m 6 k2(k2 + 2) then there exists a minimizing sequence of metrics which breaks
X into two pieces and converges to complete extremal metrics on both.

3. If m > k2(k2 + 2) then there exists a minimizing sequence of metrics which breaks X
into three pieces. It converges to complete extremal metrics on two of these and the third
degenerates into a fibration of infinitely long and infinitely thin cylinders.

Note that the fact that extremal metrics do not exist in the case m > k1 follows from the
work [1] where such existence issues are studied for a large class of ruled manifolds. Alterna-
tively it also follows from Donaldson’s theorem [12] on the lower bound of the Calabi func-
tional, and the computations in [22] (see also [21], Section 3.3). Here we go further in that
we compute the infimum of the Calabi functional and describe the behavior of a minimizing
sequence.

To construct metrics on our ruled surface, we use the momentum construction given in
Hwang-Singer [16]. This construction has been used repeatedly in the past to find special
metrics on ruled manifolds, in particular extremal metrics. See [1] for a unified treatment
of these constructions or [16] for a historical overview and more references. The momentum
construction allows us to construct circle invariant metrics from functions on an interval and
it gives a convenient expression for the scalar curvature. More precisely, let φ : [0,m] → R

be a smooth function, positive on the interior (0,m), vanishing at the endpoints, and such
that φ′(0) = 2, φ′(m) = −2. The momentum construction gives a metric ωφ in the Kähler
class Lm, with scalar curvature

S(ωφ) =
−2

1 + τ
− 1

2(1 + τ)

[
(1 + τ)φ

]′′
.

Here τ is the moment map for the S1-action on the fibres and working with this coordinate is
the central idea of the momentum construction. We will recall this construction in Section 2.
Of particular importance to us is the fact that we can consider momentum profiles which
vanish on a subset of (0,m). These correspond to degenerate metrics and they arise as the
limits of the minimizing sequences in Theorem 1.

In Section 3 we consider the problem of directly minimizing the Calabi functional on the
set of metrics obtained by the momentum construction. Since theL2-norm of the scalar cur-
vature is equivalent to the H2-norm of the momentum profiles, this is straightforward. We
find that the Euler-Lagrange equation for a minimizer φ is φS(φ)′′ = 0 and S(φ)′′ must be
a negative distribution, i.e., S(φ) is concave. We show that a unique minimizer exists in each
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Kähler class and its momentum profile is in C2. Note that S(φ)′′ = 0 is the equation for φ
to define an extremal metric.

In Section 4 we explicitly construct the minimizers, which can be degenerate in the sense
that the momentum profiles can vanish on a subset of (0,m). Here we will see the three dif-
ferent kinds of behavior stated in Theorem 1. In Section 5 we construct test-configurations
forX and calculate their Futaki invariants. This will clarify the role of the concavity of S(φ)

for minimizers of the Calabi functional. In fact, rational, piecewise-linear convex functions
on [0,m] give test-configurations essentially by the construction in [10] as generalized to bun-
dles of toric varieties in [21]. We can approximate−S(φ) by such functions, and Donaldson’s
theorem on lower bounds for the Calabi functional in [12] shows that ωφ actually achieves
the infimum of the Calabi functional on the whole Kähler class, not just the metrics arising
from the momentum construction. This will complete the proof of Theorem 1.

An alternative approach to minimizing the Calabi functional is using the Calabi flow in-
troduced in [3]. This is the flow which deforms the Kähler potential in the direction of the
scalar curvature. It is expected (see [10], [11]) that the Calabi flow should minimize the Cal-
abi functional and if there is no extremal metric in a given Kähler class, then it should break
up the manifold into pieces which admit complete extremal metrics or collapse in some way.
In Sections 6 and 7 we will verify this, showing

T 2. – If the initial metric is given by the momentum construction then the Calabi
flow exists for all time and the momentum profiles converge inH2 to the minimizer of the Calabi
functional.

Not much is known about the long time behavior of the flow in general, except in the case
of Riemann surfaces, where existence and convergence to a uniformizing metric has been
shown by Chruściel [8] (see also [4] and [20]). More recently Chen and He [7] have studied the
flow on toric Fano surfaces. The Calabi flow on ruled manifolds has been previously stud-
ied in [14], where the long time existence and convergence is proved for the Kähler classes
which admit an extremal metric. We use similar techniques, the main difference being that
we introduce some variants of the Mabuchi functional when no extremal metric exists. In
particular in the unstable case where k1 6 m 6 k2(k2 + 2) we define a functional which
decreases along the Calabi flow, is bounded below, and whose derivative is given by the dif-
ference between the Calabi functional and its infimum. This leads to the convergence result.
The casem > k2(k2 +2) is more delicate since the analogous Mabuchi-type functional is not
bounded from below. Nevertheless it has at worst logarithmic decay along the Calabi flow
and this is enough to show that the flow minimizes the Calabi functional. This is discussed
in Section 6.

As far as the author is aware, Theorem 2 is the first case where the Calabi flow has been
successfully analyzed on a manifold which does not admit an extremal metric. We hope that
this example will be useful in studying the Calabi flow in general. For example in the Kähler
classes which do not admit an extremal metric, we can see that the Sobolev constant and
diameter do not remain bounded along the flow. This is in stark contrast to the (normalized)
Kähler-Ricci flow, for which the diameter and Sobolev constant remain uniformly bounded
for all time (see [19], [27] and [28]).

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



840 G. SZÉKELYHIDI

Note that throughout the paper we have ignored factors of 2π, for example in the defi-
nition of the Calabi functional. Also we normalize the Futaki invariant slightly differently
from usual in Section 5. Hopefully this will lead to no confusion.

Acknowledgements. – Part of this work has appeared in the author’s PhD thesis [21]. I would
like to thank my supervisor Simon Donaldson for his encouragement and for sharing his
insights.

2. Metrics on the ruled surface

In this section we describe the momentum construction for metrics on the ruled surface
(see Hwang-Singer [16]). LetX be the ruled surface as above, so that X = P(M⊕O)→ Σ,
where Σ is a genus 2 curve, andM is a degree -1 line bundle over Σ. Let ωΣ be a metric on Σ

with area 2π and constant scalar curvature−2 (we use the “complex” scalar curvature, which
is half of the usual Riemannian one). Also, let h be a Hermitian metric onMwith curvature
form iωΣ. We consider metrics onM\ {0}, the complement of the zero section in the total
space ofM, of the form

ω = p∗ωΣ + 2i∂∂̄f(s),

where p :M→ Σ is the projection map, s = 1
2 log |z|2h is the logarithm of the fibrewise norm

and f(s) is a suitable strictly convex function that makes ω positive definite. The point of the
momentum construction is the change of coordinate from s to τ = f ′(s). The metric ω is
invariant under the U(1)-action onM, and τ is just the moment map for this action. Let
I ⊂ R be the image of τ , and let F : I → R be the Legendre transform of f . By definition
this means that

f(s) + F (τ) = sτ,

and F is a strictly convex function. The momentum profile is defined to be the function

φ(τ) =
1

F ′′(τ)
.

We have the following relations:

s = F ′(τ),
ds

dτ
= F ′′(τ), φ(τ) = f ′′(s).

The metric in local coordinates. – Let us now see what the metric ω looks like in local co-
ordinates. Choose a local coordinate z on Σ and a fibre coordinate w forM. The fibrewise
norm is given by |(z, w)|2h = |w|2h(z) for some positive function h, so that

s =
1

2
log |w|2 +

1

2
log h(z).

We can choose the local trivialization ofM in such a way that at a point (z0, w0) we have
d log h(z) = 0. We can then compute at the point (z0, w0)

2i∂∂̄f(s) = if ′(s)∂∂̄ log h(z) + f ′′(s)
i dw ∧ dw̄

2|w|2

= τp∗ωΣ + φ(τ)
i dw ∧ dw̄

2|w|2
.
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The metric at the point (z0, w0) is therefore given by

(1) ω = (1 + τ)p∗ωΣ + φ(τ)
i dw ∧ dw̄

2|w|2
.

In order to compute the scalar curvature of ω, note that the determinant of the metric g cor-
responding to ω is

det(g) =
1

|w|2
(1 + τ)φ(τ) det(gΣ),

which is valid for all points, not just (z0, w0). The Ricci form at (z0, w0) is given by

ρ = −i∂∂̄ log det g

= p∗ρΣ −
[
(1 + τ)φ

]′
2(1 + τ)

p∗ωΣ −
φ

2
·

(1 + τ)
[
(1 + τ)φ

]′′ − [(1 + τ)φ
]′

(1 + τ)2
· i dw ∧ dw
|w|2

,

where the derivatives are all with respect to τ (note that d/ds = φ(τ)d/dτ ) and ρΣ is the Ricci
form of the metric ωΣ. Taking the trace of this, we find that the scalar curvature of ω is given
by

(2) S(φ) =
−2

1 + τ
− 1

2(1 + τ)

[
(1 + τ)φ

]′′
.

In [16] the extendability of the metrics across the zero section, and to the projective com-
pletion ofM is studied. The proposition we need is the following.

P 3 (see [16]). – For some m > 0, let φ : [0,m] → R be a smooth function
such that φ is positive on (0,m), and

(3) φ(0) = φ(m) = 0, φ′(0) = 2, φ′(m) = −2.

Then the momentum construction defines a smooth metric ωφ on X in the Kähler class
C +mS∞, with scalar curvature S(φ) given by Equation 2. Here C is the class of a fibre, and
S∞ the infinity section.

If instead φ satisfies the boundary conditions

φ(0) = φ(m) = 0, φ′(0) = 0, φ′(m) = −2,

and φ(τ) 6 O(τ2) for small τ , then the momentum construction gives a complete metric with
finite volume on the complement of the zero section inX. Similarly if φ′(0) = 2 and φ′(m) = 0

then we obtain a complete metric on the complement of the infinity section.

The metrics are extremal, i.e., their scalar curvature has holomorphic gradient, when
S(φ)′′ = 0.

Let us also note the definition

D 4. – A momentum profile is a C2 function φ : [0,m] → R which is positive
on (0,m) and satisfies the boundary conditions (3). A singular momentum profile is the same
except we only require it to be non-negative instead of positive, i.e., it can vanish on a subset of
(0,m).
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842 G. SZÉKELYHIDI

Let us write Φ for the unique solution of S(Φ)′′ = 0 satisfying the same boundary con-
ditions as a momentum profile. Then Φ is positive on (0,m) precisely when the polarization
admits an extremal metric. We define the Calabi functional to be

(4)
Cal(φ) =

∫ m

0

(S(φ)− S(Φ))2(1 + τ) dτ

=

∫ m

0

1

4(1 + τ)

[
((1 + τ)(Φ− φ))

′′]2
dτ.

This differs from the L2-norm of S(φ) by a constant since integrating by parts we get∫ m

0

(S(φ)− S(Φ))S(Φ) (1 + τ)dτ =

∫ m

0

1

2
[(1 + τ)(Φ− φ)]′′S(Φ) dτ = 0,

so that

Cal(φ) =

∫ m

0

S(φ)2 (1 + τ)dτ −
∫ m

0

S(Φ)2 (1 + τ)dτ.

Throughout the paper when we integrate a function over X which only depends on τ we
will often use the volume form (1 + τ)dτ . From the formula (1) we see that this is a con-
stant multiple of the integral with respect to the volume form ω2. Because of the boundary
conditions on φ the Poincaré inequality shows that the Calabi functional is equivalent to the
H2-norm of φ. This makes it easy to minimize the Calabi functional directly as we do in the
next section.

3. Minimising the Calabi functional

It is fairly simple to directly minimize the Calabi functional on the set of metrics which
are given by momentum profiles. We introduce the set of functions

A =

®
φ : [0,m]→ R

∣∣∣∣∣φ ∈ H
2, φ > 0 and φ satisfies the

boundary conditions (3) in Proposition 3

´
,

and we want to minimize the Calabi functional on this space. Let us choose a minimizing
sequence φk ∈ A. Writing Gk = (1 + τ)(φk − Φ), we see from Equation (4) that we have a
bound ‖G′′k‖L2 6 C1 ·Cal(φk). SinceGk andG′k vanish at the endpoints of [0,m], using the
Poincaré inequality we obtain a bound ‖(φk − Φ)′′‖L2 6 C2 · Cal(φk). Using the Poincaré
inequality again, this implies a bound ‖φk−Φ‖H2 6 C3 ·Cal(φk), so since Φ is fixed, we have
‖φk‖H2 6 C ·Cal(φk). Therefore we can choose a subsequence converging weakly to some
φ ∈ H2. Weak convergence inH2 implies convergence inC1 so the boundary conditions and
non-negativity hold in the limit, i.e., φ ∈ A. Moreover Cal is lower-semicontinuous because
the H2-norm is, so φ is the required minimizer.

P 5. – The minimizer φ in A satisfies φS(φ)′′ = 0 and S(φ)′′ is a negative
distribution. In particular S(φ) is continuous, so φ ∈ C2. Conversely if ψS(ψ)′′ = 0 and S(ψ)

is concave, then ψ = φ.
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Proof. – The variation of Cal at φ is given by

DCalφ(φ̃) = −
∫ m

0

(S(φ)− S(Φ))
î
(1 + τ)φ̃

ó′′
dτ.

We are considering variations inside A, so φ̃ and its first derivative vanish at the endpoints.
We can therefore integrate by parts, and find that

−
∫ m

0

S(φ)′′φ̃(1 + τ) dτ > 0

for all φ̃ such that φ + εφ̃ ∈ A for small enough ε. We can choose φ̃ to be an arbitrary
non-negative smooth function which vanishes along with its first derivative at the endpoints.
This shows that S(φ)′′ is a negative distribution. On the open set where φ is positive we can
choose φ̃ to be negative or positive, so it follows that S(φ)′′ = 0 at these points. Therefore
φS(φ)′′ = 0 on (0,m). The continuity of S(φ) follows from it being concave, and this implies
that φ ∈ C2.

The converse follows from the following computation.

Cal(ψ) 6 Cal(ψ) +

∫ m

0

(S(φ)− S(ψ))2(1 + τ) dτ

= Cal(φ) + 2

∫ m

0

(S(ψ)− S(φ))S(ψ)(1 + τ) dτ

= Cal(φ) +

∫ m

0

[
(1 + τ)φ− (1 + τ)ψ

]′′
S(ψ) dτ

= Cal(φ) +

∫ m

0

φS(ψ)′′(1 + τ) dτ

6 Cal(φ).

Since Cal(φ) is minimal we must have equality, i.e.,∫ m

0

(S(φ)− S(ψ))2(1 + τ) dτ = 0.

This implies that S(φ) = S(ψ), from which it follows that φ = ψ.

4. Explicit minimizers

In this section we compute explicitly the minimizers of the Calabi functional for all po-
larizations. For each m we are looking for a singular momentum profile (Definition 4) such
that S(φ)′′ = 0 wherever φ does not vanish, and in addition S(φ) is concave.

There are three cases to consider depending on the polarization.

Case 1. There exists an extremal metric, m < k1 ' 18.889. – In this case we want to solve
the equation S(φ)′′ = 0. By the Formula (2) for the scalar curvature, this is the ODE

1

2(1 + τ)
(−4− [(1 + τ)φ]′′) = Aτ +B,

for some constants A,B. Rearranging this and integrating twice we obtain

(5) (1 + τ)φ = −Aτ
4

6
− (A+B)τ3

3
−Bτ2 − 2τ2 + Cτ +D,
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where C and D are also constants. The boundary conditions on φ on the interval [0,m] give
a system of linear equations on A,B,C,D which we can solve to obtain

φ(τ) =
2τ(m− τ)

m(m2 + 6m+ 6)(1 + τ)

[
τ2(2m+ 2) + τ(−m2 + 4m+ 6) +m2 + 6m+ 6

]
.

This will give a metric when it is positive on the interval (0,m) which happens if and only if
the quadratic expression in square brackets is positive on this interval. This is the case for
m < k1 where k1 is the only positive real roof of the quarticm4−16m3−52m2−48m−12.
Approximately k1 ' 18.889, which is the result obtained by Tønessen-Friedman [25]. See
Figure 1 for a graph of φ(τ) for m = 17.

 0

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0  2  4  6  8  10  12  14  16

 0.5

m = 17

F 1. Momentum profile of an extremal metric on X when m = 17.

Case 2. X breaks up into two pieces, k1 6 m 6 k2(k2 + 2) ' 35.33. – When m > k1 we can
no longer find a positive solution of S(φ)′′ = 0 on the whole interval [0,m] so we split the
interval into two pieces [0, c] and [c,m]. We would like to find φ which vanishes at c, but on
the intervals (0, c) and (c,m) we have S(φ)′′ = 0, and S(φ) is concave on [0,m]. We first let
φ1 be the solution of the equation

S(φ1)′′ = 0 on the interval (0, c)

φ1(0) = φ1(c) = 0, φ′1(0) = 2, φ′1(c) = 0.

We obtain

φ1(τ) =
2τ(c− τ)2

c2(c2 + 6c+ 6)(1 + τ)

[
τ(−c2 + 2c+ 3) + c2 + 6c+ 6

]
.

This is positive on (0, c) if the linear expression in square brackets is positive on this interval.
This happens for c 6 k2 where k2 is the only positive real root of the cubic c3− 3c2− 9c− 6.
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Approximately k2 ' 5.0275. The scalar curvature is given by

S(φ1) =
12(c2 − 2c− 3)

c2(c2 + 6c+ 6)
τ − 6(2c2 − c− 4)

c(c2 + 6c+ 6)
.

To deal with the interval [c,m] we first solve the equation

S(ψ)′′ = 0 on the interval (0, d)

ψ(0) = ψ(d) = 0, ψ′(0) = 0, ψ′(d) = −2

for some constant d, and then shift the solution to [c,m]. The solution on [0, d] is given by

ψ(τ) =
2τ2(d− τ)

d2(d2 + 6d+ 6)(1 + τ)

[
τ(2d2 + 4d+ 3)− d3 + 3d2 + 9d+ 6

]
.

As before, this is positive on (0, d) if the linear term in square brackets is positive on this
interval. This is the case for d 6 k2, for the same k2 as above. The scalar curvature is given
by

S(ψ) =
12(2d2 + 4d+ 3)

d2(d2 + 6d+ 6)
τ − 6(3d2 + 5d+ 2)

d(d2 + 6d+ 6)
.

Now note that if we define φ2 by

φ2(τ) = (c+ 1)ψ

Å
τ − c
c+ 1

ã
,

then φ2 solves the equation

S(φ2)′′ = 0 on the interval (c, (c+ 1)d+ c)

φ2(c) = φ2((c+ 1)d+ c) = 0, φ′2(c) = 0, φ′2((c+ 1)d+ c) = −2.

The scalar curvature is given by

S(φ2)(τ) =
1

c+ 1
S(ψ)

Å
τ − c
c+ 1

ã
.

We now define φ by

φ(τ) =

{
φ1(τ) τ ∈ [0, c],

φ2(τ) τ ∈ [c, (c+ 1)d+ c].

We can check that S(φ) will be continuous at τ = c precisely when c = d. We also want
(c+1)d+ c = m, which implies that c =

√
m+ 1−1. With these choices a simple computa-

tion shows that S(φ) is concave for m > k1 (note that it is linear for m = k1, and convex for
m < k1). Finally recall that the condition that φ is non-negative means that c 6 k2, which
in turn implies m 6 k2(k2 + 2). See Figure 2 for a graph of φ for m = 24.
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m = 24

F 2. Momentum profile of the minimizer on X when m = 24. The manifold
breaks into two pieces both of which are equipped with a complete extremal

metric.

Case 3. X breaks up into three pieces,m > k2(k2+2). – The previous construction no longer
works for m > k2(k2 + 2) so we need to split the interval [0,m] into three pieces. From the
previous case we have a solution φ1 to the equation

S(φ1)′′ = 0 on the interval (0, k1)

φ1(0) = φ1(k1) = 0, φ′1(0) = 2, φ′1(k1) = 0,

and also a solution φ2 to

S(φ2)′′ = 0 on the interval (c,m)

φ2(c) = φ2(m) = 0, φ′2(c) = 0, φ′2(m) = −2,

where the constant c is defined by

(6) c =
m+ 1

k2 + 1
− 1.

We define

φ(τ) =


φ1(τ) τ ∈ [0, k2]

0 τ ∈ [k2, c]

φ2(τ) τ ∈ [c,m].

We can check that c > k2 precisely when m > k2(k2 + 2), and this choice of φ satisfies that
φS(φ)′′ = 0 and S(φ) is concave. See Figure 3 for a graph of φ for m ' 41.2.

Conclusion. – For anym one of the previous 3 cases will hold, so we can construct a φwhich
satisfies the equation φS(φ)′′ = 0 and S(φ) is concave. According to Proposition 5 this φwill
give the minimum of the Calabi functional on the space of singular momentum profiles. In
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F 3. Momentum profile of the minimizer on X when m ' 53.2. The man-
ifold breaks into three pieces, two of which, A and C, admit complete extremal
metrics, and in the third, B, the S1-orbits collapse.

the next section we will show that they give the infimum of the Calabi functional over all
metrics in their Kähler class. This will complete the proof of Theorem 1.

5. Test-configurations

In the previous section we have found a (possibly degenerate) metric in each Kähler class,
which minimizes the Calabi functional on the set of metrics which come from the momentum
construction. In this section we want to show that these metrics minimize the Calabi func-
tional on their entire Kähler class. For this we use Donaldson’s theorem [12] which gives a
lower bound on the Calabi functional, given a destabilizing test-configuration. We will not
give a detailed explanation of the test-configurations that we use, and the computation of
their Futaki invariants. For more details see [21] and [10].

P 6 (Donaldson [12]). – Suppose there exists a test-configuration χ for a po-
larized variety (X,L) such that the Futaki invariant F (χ) is negative. Then for any metric ω in
the class c1(L) we have the inequality

‖S(ω)− Ŝ‖L2 >
−F (χ)

‖χ‖
.

Recall that a test-configuration for (X,L) is a flat C∗-equivariant family X → C with
an equivariant ample line bundle L, such that for t 6= 0 the fibre Xt is isomorphic to X,
and L|Xt = Lr for some integer r > 0. Given a test-configuration χ one defines the Futaki
invariant F (χ) ∈ R by looking at the weights of the induced C∗-action on the central fibre.
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For details see [10], and for the definition of the norm ‖χ‖ see [12]. Also note that we have
ignored factors of 2π.

In order to show that in each Kähler class the degenerate metricωwe found in the previous
section minimizes the Calabi functional, we want to define a sequence of test-configurations
χi for which

lim
i→∞

−F (χi)

‖χi‖
= ‖S(ω)− Ŝ‖L2 .

Using Donaldson’s theorem this implies that this is the infimum of the Calabi functional. To
obtain test-configurations we use the construction in [21] Section 4.1 (Theorem 4.1.2), which
is an extension of the construction of test-configurations for toric varieties by Donaldson [10]
to bundles of toric varieties. For the case of our ruled surface we obtain

P 7. – Given a rational, piecewise-linear, convex function h : [0,m] → R,
there exists a test-configuration for (X,Lm) with Futaki invariant given by

(7) F (h) = h(0) + (1 +m)h(m)− 2

∫ m

0

h(τ) dτ − Ŝ
∫ m

0

h(τ)(1 + τ) dτ,

and norm

‖h‖2 =

∫ m

0

(h(τ)− ĥ)2(1 + τ) dτ,

where ĥ is the average of h with respect to the measure (1 + τ) dτ .

We now briefly describe what these test-configurations look like. On each P1 fibre they
are given by Donaldson’s construction of test-configurations on toric varieties. The central
fibre is a chain of normal crossing P1’s, one for each linear piece of h, and the C∗-action on
each piece is determined by the slope of h. In our situation this is done over a base curve, so
the central fibre will be a chainX1, . . . , Xk of copies ofX, so that the infinity section ofXi is
glued to the zero section of Xi+1. In particular when h is only non-linear at one point, then
the test-configuration is essentially a deformation to the normal cone of the zero section of
X (see [18] for the definition of deformation to the normal cone), except the C∗-action on
the total space of the test-configuration is multiplied by a C∗-action lifted from X.

To work with test-configurations we should restrict to polarizations Lm with m rational
but an approximation argument gives us the conclusion of Proposition 6 for any real m as
well. Given a continuous convex function h on [0,m] which is not necessarily rational or
piecewise-linear, we still define the “Futaki invariant” F (h) of h by Equation 7.

L 8. – Let φ be a singular momentum profile, and h : [0,m]→ R a piecewise-smooth
convex function. Suppose that h is linear on any interval on which φ does not vanish identically.
Then

F (h) =

∫ m

0

h(τ)(S(φ)− Ŝ) (1 + τ)dτ.

Proof. – The proof is a simple integration by parts, using the formulas forF (h) andS(φ).
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This result is analogous to the fact that the Futaki invariant of a holomorphic vector field
can be computed algebro-geometrically or differential geometrically (see [10]). Here if h is
rational and piecewise-linear then it does not define a holomorphic vector field but the result
says that we can still compute the Futaki invariant of the test-configuration it induces with a
differential geometric formula as long as we use a metric which degenerates in a suitable way
at points where h is not linear.

We can now complete the proof of Theorem 1.

Proof of Theorem 1. – What remains to be shown is that for each polarization, the mini-
mizerφ that we have constructed in the previous section minimizes the Calabi functional over
the whole Kähler class, not just over the set of metrics obtained from the momentum con-
struction. Let φ be one of these minimizers. Since−S(φ) is convex, we can approximate it in
the C0-norm by a sequence of rational, piecewise-linear convex functions hi. These define a
sequence of test-configurations χi such that

lim
i→∞

−F (χi)

‖χi‖
=
−F (−S(φ))

‖S(φ)− Ŝ‖L2

.

If we let h = −S(φ), then φ and h satisfy the conditions of Lemma 8 so that

F (−S(φ)) = −
∫ m

0

S(φ)(S(φ)(τ)− Ŝ)(1 + τ) dτ = −‖S(φ)− Ŝ‖2L2 .

Therefore

lim
i→∞

−F (χi)

‖χi‖
= ‖S(φ)− Ŝ‖L2 ,

so that Proposition 6 now implies that this limit is the infimum of the Calabi functional on
the Kähler class.

6. The Calabi flow

We have seen that in the case of a ruled surface it is fairly simple to minimize the Calabi
functional directly over the set of metrics given by momentum profiles. It is also interesting
to see whether the Calabi flow converges to these minimizers. In this section we will prove
that this is the case. In [14] Guan has shown that on a ruled manifold when an extremal
metric exists, then starting from a metric given by the momentum construction the Calabi
flow exists for all time and converges to the extremal metric exponentially fast. Our tech-
niques are similar to his, but we need to introduce some new functionals which are modifi-
cations of the Mabuchi functional more suited for studying the unstable polarizations.

We consider a family of metrics ωs given by the momentum construction (see Section 2),
i.e., on the complement of the zero and infinity sections we have

ωt = p∗ωΣ + 2i∂∂ft(s),

for some family of suitably convex functions ft. This path of metrics satisfies the Calabi flow
if

∂ft
∂t

= S(ωt).
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If we denote byFt the Legendre transforms of the ft, then from the definition of the Legendre
transformation we find

∂Ft
∂t

= −∂ft
∂t

,

so that the path of momentum profiles φt = 1/F ′′t satisfies

(8)
∂φt
∂t

= φ2
tS(φt)

′′,

where S(φt) is given by Equation 2. Note that φt only determines ft up to translation and
adding a constant. Therefore Equation (8) is the Calabi flow up to holomorphic automor-
phisms.

It is known that the flow exists for a short time with any smooth initial metric (see Chen-
He [6]). Also, the Calabi functional is decreased under the flow:

L 9. – If φ is a solution to the Calabi flow, then

dCal(φ)

dt
= −

∫ m

0

φ2 (S(φ)′′)
2

(1 + τ) dτ 6 0.

In particular the H2 norm of φt is uniformly bounded along the flow.

Proof. – The result follows from the following computation of the variation.

dCal(φ)

dt
= 2

∫ m

0

(S(φ)− S(Φ))

Å
− 1

2(1 + τ)

[
(1 + τ)φ2S(φ)′′

]′′ã
(1 + τ) dτ

= −
∫ m

0

φ2 (S(φ)′′)
2

(1 + τ) dτ.

We can perform the integration by parts because φ2 and (φ2)′ vanish at the endpoints. Also
recall that S(Φ)′′ = 0.

In Section 7 we will show that there is a solution to the Calabi flow for all time for any
polarization. In this section we concentrate on proving the following.

P 10. – If the flow exists for all time then the momentum profiles converge in
H2 to the minimizer that we found in Section 4.

Proof. – Let us write Ψ for the minimizer, so when m < k1 then Ψ is the momentum
profile of an extremal metric, whenm 6 m 6 k2(k2 +2) then Ψ vanishes at an interior point
of (0,m) and when m > k2(k2 + 2) then Ψ vanishes on an interval inside (0,m).

Introduce the functional

(9) M(φ) =

∫ m

0

Å
Ψ

φ
+ log φ

ã
(1 + τ) dτ,

defined on momentum profiles φ. When m < k1 then in factM is the modified Mabuchi
functional (see [1] Section 2.3).
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The key point is thatM is decreasing under the flow (this is well-known for the modified
Mabuchi functional, since the Calabi flow is its gradient flow). This follows from the com-
putation

dM(φt)

dt
=

∫ m

0

(−ΨS(φt)
′′ + φtS(φt)

′′)(1 + τ) dτ

=

∫ m

0

(φt −Ψ)(S(φt)− S(Ψ))′′(1 + τ) dτ +

∫ m

0

φtS(Ψ)′′(1 + τ) dτ

6 −2

∫ m

0

(S(φt)− S(Ψ))2(1 + τ) dτ,

where we have used that ΨS(Ψ)′′ = 0 and S(Ψ)′′ is a negative distribution.

On the other hand we have that

M(φ) >

∫ m

0

log φ · (1 + τ)dτ > −C1

∫ m

0

log
Θ

φ
dτ − C2,

where Θ is a fixed momentum profile andC1, C2 are constants. Since log is concave we obtain

M(φ) > −C3 log

∫ m

0

Θ

φ
dτ − C4,

for some constants C3, C4. The lemma that follows now implies that along the flow

M(φt) > −C log(1 + t)−D.

SinceM(φt) is decreasing, we necessarily have that along a subsequence its derivative tends
to zero, i.e., S(φt) → S(Ψ) in L2 (integrating with respect to (1 + τ)dτ as usual). Since
‖S(φt)‖L2 is decreasing along the flow, it follows that

(10) lim
t→∞

‖S(φt)‖L2 = ‖S(Ψ)‖L2 .

Let us now take any subsequence φi. Because of the uniform H2-bound there is a subse-
quence also denoted by φi which converges weakly in H2 to some limit. Now Equation 10
implies the convergence of theH2-norms, which together with the weak convergence implies
strong convergence inH2. The limit then has to be Ψ since the minimizer of the Calabi func-
tional is unique (Proposition 5).

L 11. – Let Θ : [0,m]→ R be a momentum profile. For the solution φt to the Calabi
flow we have

(11)
∫ m

0

Θ

φt
dτ < C(1 + t)

for some constant C.

Proof. – Let us define the functional

F(ψ) =

∫ m

0

Θ

ψ
− log

Θ

ψ
dτ

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



852 G. SZÉKELYHIDI

for any momentum profile ψ. Along the Calabi flow we have

d

dt
F(φt) =

∫ m

0

(φt −Θ)S(φt)
′′ dτ =

∫ m

0

(φt −Θ)′′ S(φt) dτ

6
Å∫ m

0

(φ′′t −Θ′′)2 dτ

ã1/2

(Cal(φt) + C)1/2.

The uniformH2 bound on φt now implies thatF(φt) 6 C(1+t) for someC > 0. The result
follows from the inequality x− log x > x/2.

R. – Note that when m 6 k2(k2 + 2) the functionalM is bounded below on the
set of momentum profiles. This is because we can write

M(φ) =

∫ m

0

Å
Ψ

φ
− log

Ψ

φ

ã
(1 + τ)dτ +

∫ m

0

log Ψ · (1 + τ)dτ.

Since Ψ only vanishes at isolated points and to finite order, the integral of log Ψ is finite, so
the inequality log x < x implies

M(φ) >

∫ m

0

log Ψ · (1 + τ)dτ.

In the case m > k2(k2 + 2) howeverM is not bounded from below since now Ψ vanishes on
an interval. In particular as φ→ Ψ, it is clear thatM(φ)→ −∞.

7. Long time existence

The existence of the Calabi flow for a short time has been proved by Chen-He [6] (also
Guan [14] for ruled manifolds). In the case when an extremal metric exists, the long time
existence has also been shown in [14] for ruled manifolds.

To show that the flow exists for all time we first need to show that φt(x) does not become
zero in finite time for x ∈ (0,m). Let Θ be a fixed momentum profile, i.e., a non-negative
function on [0,m], strictly positive on the interior, and satisfying the usual boundary condi-
tions. We want to show

P 12. – If φt is the solution to the Calabi flow, then sup Θ(x)
φt(x) does not blow up

in finite time.

Proof. – This follows from Lemma 11 and the following lemma.

L 13. – Given a constant C > 0 there exists a constant D > 0 such that if for a
momentum profile ψ we have∫ m

0

Θ

ψ
dτ < C and ‖ψ‖C1,1/2 < C,

then

sup Θ/ψ < D.
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Proof. – Let us derive the estimate near the boundary first. Because of the C1,1/2 bound
on ψ, there exists a constant C1 such that

|ψ′(x)− ψ′(0)| < C1

√
x,

i.e.,
ψ′(x) > 2− C1

√
x.

This implies that

ψ(x) > x

Å
2− 2

3
C1

√
x

ã
,

so that for x < (3/2C1)2 we have ψ(x) > x. We can apply the same argument around x = m

as well, so we obtain a small constant δ such that

if x < δ or x > m− δ, then
Θ(x)

ψ(x)
< D.

Now we concentrate on the set (δ,m − δ). On this set we have a uniform lower bound
Θ(x) > ε > 0 so we just need a lower bound on ψ. There is a constant C2 such that
|ψ′(x)| < C2 for all x. Suppose that for some x ∈ (δ,m − δ) we have ψ(x) < ε/k where k is
large. Assume for simplicity that x < m/2. Then for y < m/2− δ we have

ψ(x+ y) <
ε

k
+ C2y.

Writing a = m/2− δ, this implies that

C >

∫ m

0

Θ

ψ
dτ > ε

∫ a

0

1
ε
k + C2y

dy >
ε

C2

[
logC2a− log

ε

k

]
.

Since this tends to infinity as k →∞, we get the required lower bound on ψ(x) for
x ∈ (δ,m− δ). Combining this with the boundary estimate we obtain the statement of
the lemma.

Next we would like to estimate the derivatives of φ following the calculation in Guan [14].
Let us introduce the functional

L(φ) =

∫ m

0

(φS(φ)′′)2 (1 + τ)dτ.

We want to show

L 14 (Guan [14]). – For φt a solution of the Calabi flow we have that L(φt) 6 C(t)

for some function C(t) defined for all t.

Proof. – All our constants will depend on t but will be finite for all t. All the integral
norms will be with respect to the measure dτ and not (1 + τ)dτ as before.

In the proof we will repeatedly use the Hardy-type inequality

‖f‖L2(0,m) 6 C‖φ−k+1
t (φkt f)′‖L2(0,m)

for k > 1 and any f ∈ C1[0,m] with the constant C depending on t. Using Proposition 12,
this is easy to derive from the inequality∫ 1

−1

f(x)2 dx 6 C

∫ 1

−1

[
(1− x2)−k+1((1− x2)kf(x))′

]2
dx.
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This in turn follows from the inequality∫ 1

0

f(x)2 dx 6 C

∫ 1

0

(
x−k+1(xkf)′

)2
dx

for f with f(1) = 0, applied to the intervals [−1, 0] and [0, 1] separately (see [14]).
Let us compute the derivative of L(φt).

d

dt
L(φt) = 2

∫ m

0

(φtS(φt)
′′)3 (1 + τ)dτ −

∫ m

0

[
(1 + τ)φ2

tS(φt)
′′]′′2 dτ

1 + τ

6 C1

∫ m

0

(φtS(φt)
′′)3 dτ − C2

∥∥∥(φ2
tS(φt)

′′)′′∥∥∥2

L2
.

Let us estimate the cubed term. We have∫ m

0

(φtS(φt)
′′)3 dτ 6 C3‖φtS(φt)

′′‖C0L(φt)

6 C4‖(φtS(φt)
′′)′‖L2L(φt)

6 C(ε)L(φt)
2 + ε‖(φtS(φt)

′′)′‖2L2 ,

for any ε > 0 using Young’s inequality. Using the uniform H2-bound on φt and the Hardy-
type inequality twice we obtain

‖(φ−1
t · φ2

tS(φt)
′′)′‖L2 6 ‖φ−1

t (φ2
tS(φ)′′)′‖L2 + ‖φ′tS(φt)

′′‖L2

6 C5‖φ−1
t (φ2

tS(φt)
′′)′‖L2

6 C6‖(φ2
tS(φt)

′′)′′‖L2 ,

so if we choose ε small enough (depending on t), then we obtain the inequality

d

dt
L(φt) 6 C1(t)L(φt)

2.

This implies that
d

dt
logL(φt) 6 C1(t)L(φt),

i.e., for any T > 0 we have

logL(φT ) 6 logL(φ0) + sup
t∈[0,T ]

C1(t)

∫ T

0

L(φt) dt.

Now Lemma 9 gives a bound on the integral of L(φt) since the Calabi functional is non-
negative, so the proof is complete.

Now we need to use the inequality

‖f‖2L2 6 C(‖φf ′‖2L2 + f(m/2)2)

for all f ∈ C1(0,m) which can be proved in the same way as the Hardy-type inequalities we
used before. This implies that

‖S(φt)‖2C0 6 C1‖S(φt)
′‖2L2 6 C2

[
‖φtS(φt)

′′‖2L2 + (S(φt)
′(m/2))2

]
.

The bound on ‖φtS(φt)
′′‖L2 gives a bound on |S(φt)

′(x) − S(φt)
′(m/2)| for x inside the

interval
(
m
3 ,

2m
3

)
. The bound on ‖S(φt)‖L2 (the Calabi functional decreases along the flow)

then gives an a priori bound on S(φt)
′(m/2). Therefore as long as L(φt) remains bounded,

we have a C2 bound on φt (depending on t). To obtain estimates for the higher derivatives
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of φt we could either continue with similar integral estimates in the manner of [14] or we
can note that a C2 bound on the momentum profile implies a uniform bound on the Ricci
curvature. According to Chen-He [6] the Calabi flow exists for all time as long as the Ricci
curvature remains uniformly bounded.
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