
Astérisque

KEFENG LIU

XIAOFENG SUN

SHING-TUNG YAU
Geometry of moduli spaces

Astérisque, tome 321 (2008), p. 31-50
<http://www.numdam.org/item?id=AST_2008__321__31_0>

© Société mathématique de France, 2008, tous droits réservés.

L’accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/
Publications/Asterisque/) implique l’accord avec les conditions générales d’uti-
lisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou
impression systématique est constitutive d’une infraction pénale. Toute copie
ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AST_2008__321__31_0
http://smf4.emath.fr/Publications/Asterisque/
http://smf4.emath.fr/Publications/Asterisque/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Astérisque 
3 2 1 , 2008, p. 31-50 

GEOMETRY OF MODULI SPACES 

by 

Kefeng Liu, Xiaofeng Sun & Shing-Tung Yau 

Dedicated to Jean Pierre Bourguignon 

Abstract. — In this paper we describe some recent results on the geometry of the 
moduli space of Riemann surfaces. We surveyed new and classical metrics on the 
moduli spaces of hyperbolic Riemann surfaces and their geometric properties. We 
then discussed the Mumford goodness and generalized goodness of various metrics 
on the moduli spaces and their deformation invariance. By combining with the dual 
Nakano negativity of the Weil-Petersson metric we derive various consequences such 
that the infinitesimal rigidity, the Gauss-Bonnet theorem and the log Chern number 
computations. 

Résumé (Géométrie des espaces de modules). — Dans cet article nous décrivons certains 
résultats récents en géométrie de l'espace de modules des surfaces de Riemann. Nous 
parcourons un certain nombre de métriques classiques et nouvelles sur les les espaces 
de modules de surfaces de Riemann hyperboliques et leur propriétés géométriques. 
Ensuite nous discutons la bonté de Mumford et la bonté généralisée de différentes 
métriques sur l'espace de modules et leurs invariance de déformation. En combinant 
avec la négativité de Nakano duale de la métrique de Weil-Peterson nous en tirons 
différentes conséquences telles que la rigidité infinitésimale, le théorème de Gauss-
Bonnet et les calculs de nombres logarithmiques de Chern. 

1. Introduction 

In this paper we describe our recent work on the geometry of the moduli space 

of Riemann surfaces Mg. We will survey the properties of the canonical metrics 

especially the asymptotic behavior. 

This paper is organized as follows. In the second section we will briefly recall 

the deformation theory of Riemann surfaces. In the third section we will recall the 
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32 K. LIU, X. SUN Sz S.-T. YAU 

Ricci and perturbed Ricci metrics as welll as the Kahler-Einstein metric which were 

discussed in [5] and [6]. 

In the fourth section we will discuss the notion of Mumford goodness and our 

generalizations to the p-goodness and intrinsic goodness. We then discuss the relation 

of the goodness and the complex Monge-Ampere equation as well as the Kahler-Ricci 

flow. In the last section we will discuss the applications of these fine properties of the 

canonical metrics. 

2. Fundamentals of Teichmüller and Moduli Spaces 

We briefly recall the fundamental theory of the geometry of Teichmiiller and moduli 

spaces of hyperbolic Riemann surfaces in this section. Most of the results can be found 

in [5], [6], [7] and [18]. 

Let Mg,k t>e the moduli space of Riemann surfaces of genus g with k punctures 

such that 2g — 2 + k > 0. By the uniformization theorem we know there is a unique 

hyperbolic metric on such a Riemann surface. To simplify the computation, through 

out this paper, we will assume k = 0 and g > 2 and work on A4g. Most of the results 

can be trivially generalized to Aig,k-

We first recall the local geometry of Mg. For each point s G Mg, let Xs be the 

corresponding Riemann surface. By the Kodaira-Spencer deformation theory and 

Hodge theory, we know 

TaMg* <:;< XS,TXS) ^$$ if0'1! w<<ùù^^ ^^ 

It follows direct from Serre duality that 

T: Mg xw w^^p XS,K 2 
xs. ^^ 

By the Riemann-Roch theorem, we know that the complex dimension of the moduli 

space is n = dime Mg — 3# — 3. Given a Riemann surface X of genus g > 2, we 

denote by A the unique hyperbolic (Kahler-Einstein) metric on X. Let z be local 

holomorphic coordinate on X. We normalize A: 

(2.i: c^djlog A = A. 

Let Tg be the Teichmiiller space. It is well known that Tg is a domain of holomorphy 

and Mg is a quasi-projective orbifold. There are many canonical metrics on Tg. These 

are the metrics where biholomorphisms are automatically isometries and thus these 

metrics descent down to Mg. 

There are three complex Finsler metrics on Tg: The Teichmiiller metric || • | |T , 

the Kobayashi metric || • \\K and the Caratheodory metric || • \\c- Each of these 

metrics defines a norm on the tangent space of Tg. These metrics are non-Kahler. By 
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GEOMETRY OF MODULI SPACES 33 

the famous work of Royden we know that the Teichmiiller metric coincides with the 
Kobayashi metric: 

xw T = I • K' 

We now describe the Kàhler metrics. The first known Kàhler metric is the Weil-
Petersson metric coWP. Since Tg is a domain of holomorphy, there is a complete 
Kàhler-Einstein metric on Tg due to the work of Cheng and Yau [2]. Since Mg is quasi-
projective, there exist a Kàhler metric on Mg with Poincaré growth. Furthermore, one 
has the Bergman metric associate to Tg and the Kàhler metric defined by McMullen 
[10] by perturbing the Weil-Petersson metric. 

In [5] and [6] we defined two new Kàhler metrics: the Ricci and perturbed Ricci 
metrics which have very nice curvature and asymptotic properties. These metrics will 
be discussed in the following sections. 

We now recall the construction of the Weil-Petersson metric. Let fai»-" ,sn) be 
local holomorphic coordinates on Mg near a point p and let Xs be the corresponding 

Riemann surfaces. Let p : TsMq ^H1 Xs, TX s ww #0,1 dSidzlxwwog be the Kodaira-
Spencer map. Then the harmonic representative of p d 

dsi ) is given by 

ww^^ P 
d 

xww 
woo^m f A - l dSidzl<og\ 

d 
dz 

® dz = Bi. 

dSidziigf^^log = - A -l ^^^w<< log À and let Ai = dzdi, then the harmonic lift Vi of d 
dsi is 

given by 

f2.3 Vi = 
d 

dsi 
+ ai 

d 
ldz' 

The well-known Weil-Petersson metric o;wp << c^^c, 
2 

-hßdsi A dsj on M g is the L2 
metric on Mg: 

'2.< ^^^ 
v,,nn 

s) = 
<<<< 

AiAj dv 

where dv = ^f^Xdz A dz is the volume form on Xs. It was proved by Ahlfors that 
the Ricci curvature of the Weil-Petersson metric is negative. The upper bound of 
the Ricci curvature of the Weil-Petersson metric was conjectured by Royden and was 
proved by Wolpert [16]. 

In our work [5] we defined the Ricci metric uT: 

;2.5) <<iipl —Rie ̂ ^w<< 

and the perturbed Ricci metric CJ~: 
T 

2.6 r w<a^^ + <hi^^^^ 

where C is a positive constant. These new Kàhler metrics have good curvature and 
asymptotic properties and play important roles in out study. 
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34 K. LIU, X. SUN & S.-T. YAU 

Now we describe the curvature formulas of the Weil-Petersson metric. Please see 

[5] and [6] for details. We denote by fq = AiAj where each A{ is the harmonic 

Beltrami differential corresponding to the local holomorphic vector field -J^. It is 

clear that fq is a function on X. We let • = —dzc\ be the Laplace operator, let 

T — ( • + l ) -1 be the Green operator and let eq — T(fq). The functions and fq 

are building blocks of these curvature formula. 

Theorem 2.1. — The curvature formula of the Weil-Petersson metric was given by 

(2.7) R ijkl 
^w<< 

<kk 
ddx fkl ww w<< fkj dv. 

This formula was first established by Wolpert [16] and was generalized by Siu [14] 

and Schumacher [13] to higher dimensions. A short proof can be found in [5]. 

It is easy to derive information of the sign of the curvature of the Weil-Petersson 

metric from its curvature formula (2.7). However, the Weil-Petersson metric is incom­

plete and its curvature has no lower bound. Thus we need to look at its asymptotic 

behavior. We now recall geometric construction of the Deligne-Mumford (DM) moduli 

space and the degeneration of hyperbolic metrics. Please see [5] and [16] for details. 

Let Mg be the Deligne-Mumford compactification of Mg and let D = Mg \ Mg. 

It was shown in [3] that D is a divisor with only normal crossings. A point y G D 

corresponds to a stable nodal surface Xy. A point p G Xy is a node if there is a 

neighborhood of p which is isometric to the germ {(u, v) \ uv = 0, \v\ < 1} C C2. 

Let pi, — - ^Pm £ Xy be the nodes. Xy is stable if each connected component of 

Xy \ {pi , • • • ,Pm} has negative Euler characteristic. 

Fix a point y G D, we assume the corresponding Riemann surface Xy has m nodes. 

Now for any point s G Mg lying in a neighborhood of y, the corresponding Riemann 

surface Xs can be decomposed into the thin part which is a disjoint union of m collars 

and the thick part where the injectivity radius with respect to the Kahler-Einstein 

metric is uniformly bounded from below. 

There are two kinds of local holomorphic coordinate on a collar or near a node. 

We first recall the rs-coordinate defined by Wolpert in [18]. In the node case, given 

a nodal surface X with a node p G X , we let a, b be two punctures which are glued 

together to form p. 

Definition 2.1. A local coordinate chart (U^u) near a is called rs-coordinate if 

u(a) = 0 where u maps U to the punctured disc 0 < \u\ < c with c > 0, and the re­
striction to U of the Kâhler-Einstein metric on X can be written as 

The rs-coordinate (V, v) near b is defined in a similar way. 
2|n|2(iog|u|; 2 du |2 

In the collar case, given a closed surface X , we assume there is a closed geodesic 

7 C X such that its length / = / ( 7 ) < c* where c* is the collar constant. 
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GEOMETRY OF MODULI SPACES 35 

Definition 2.2. — A local coordinate chart (U,z) is called rs-coordinate at 7 if 7 C U 

where z maps U to the annulus c-1|£|i < \z\ < c\t\i, and the Kàhler-Einstein metric 

on X can be written as 

1. 

2 

7Г 
,log|t| \z\ 

1^ 
CSC 

w<<<m^ù 

log 1*1 

2 
\dz\2. 

The existence of collar was due to Keen [4]. We formulate this theorem in the 

following: 

Lemma 2.1. — Let X be a closed surface and let 7 be a closed geodesic on X such 

that the length I of 7 satisfies I < c*. Then there is a collar £1 on X with holomorphic 

coordinate z defined on O such that 

1. z maps ft to the annulus r 1 
xx c^^ 27Г2 I < \z\ < c} for с > 0; 

2. the Kàhler-Einstein metric on X restricted to ft is given by 

(2.8) 
1 
2 

9 9 О 
и Г CSC г 

\dz\ 2 

where и = i 
2ir> 

r = \z\ and г = ulogr; 

3. the geodesic 7 is given by the equation \z\ = e ni 
I , 

4. the constant c has a lower bound such that the area of Q is bounded from below 
by a universal constant. 

We call such a collar ft a genuine collar. 

Now we describe the pinching coordinate chart of Mg near the divisor D [18]. 
Let X0 be a nodal surface corresponding to a codimension m boundary point and let 
Pir " ,PM be the nodes of XQ. Then X$ = XQ \ {pi , • • • ,pm} is a union of punctured 
Riemann surfaces. Fix rs-coordinate charts (C/j, r}i) and (V ,̂ Q) at pi for i = 1, • • • , m 
such that all the Щ and V{ are mutually disjoint. Now pick an open set UQ С XQ 
such that the intersection of each connected component of XQ and UQ is a nonempty 
relatively compact set and the intersection UQ П (Ui U Vi) is empty for all i. Now pick 
Beltrami differentials z/m+i, • • • , vn which are supported in Uo and span the tangent 
space at X0 of the deformation space of XQ. Let A^_m с Cn_m be the polydisc of 
radius e. For t" = (tm+w- ,*n) € A?~m, let v(t") = ^xw 

mwwdSidzlog 
w^mm We assume 

\t"\ = n 
i=m+l I \u?) 

1 2 small enough such that bf*")! < 1. The nodal surface XQ tu 
is obtained by solving the Beltrami equation dw = v(t")dw. Since v(t") is supported 
in UQ, (Ui,r)i) and (V*,Ci) are still holomorphic coordinates on X^^u. By the theory 
of Ahlfors and Bers [1] and Wolpert [18] we can assume that there are constants 
<S, c > 0 such that when \t"\ < 5, rji and Q are holomorphic coordinates on X$j" 
with 0 < \rji\ < c and 0 < \Q\ < c. Now we assume t' = (*i,--- ,£m) has small 

norm. We do the plumbing construction on XQ^I to obtain Xt = Xt^tn. For each 

i = 1, • • • ,ra, we remove the discs {0 < \rji\ < ^ } and {0 < \Q\ < ^ } from Xoft" 
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36 K. LIU, X. SUN & S.-T. YAU 

and identify 
xc 

c 
ww^$$ ww<< with r 1**1 

c 
\Q\ < c} by the rule r/iQ = U. This 

defines the surface Xt. The tuple t = (t',t,f) = (£i,• • • , £m,£m+i, • • • , tn) are the local 

pinching coordinates for the manifold cover of Mg. We call the coordinates rji (or Q) 

the plumbing coordinates on lf)S and the collar <^^ 
c 

< \rji\ < c} the plumbing collar. 

Remark 2.1. — Prom the estimate of Wolpert [17], [18] on the length of short 

geodesic, we have ui = h 
2ir 

^^w< 7T logltiT 

In [5] and [6] we derived the precise asymptotic of the Weil-Petersson metric and 

its curvature. This is one of the key components in the proof of its goodness. We 

have 

Theorem2.2. — Let (£, s) = (£i,--- , £m,sm+i,--- ,sn) be the pinching coordinates 

near a codimension m boundary point in Mg. Let h be the Weil-Petersson metric. 

Then we have the asymptotic: 

1. hu = 2ur3\ti\2(l + O(u0)) and hfi = i u? 
2 |ti|2 (1 + O(uo)) forl<i< m; 

2. hij = 0(\titj\) and h.j = O 3 3 
uiuj \Utj\ if 1 < hj < m and i 7̂  J; 

3. hij = O( l ) and hfj = O( l ) , ifm + l<i,j< n; 

4. hij =0(\U\) andhfj=0 
<< 
\u\. 

ifi<m< j ; 

5. W =0(1^-1) andhil = 0 U3 
<^^ù if j < m < i 

where UQ = m 
.7 = 1 

o^^$ m w<<ppo «IL-

The precise estimates of the asymptotic of the full curvature tensor of the Weil-

Petersson metric, which will be used in the proof of its goodness, can be found in [5], 

[6] and [7]. 

3. Canonical Metrics on Mg 

Since the Weil-Petersson metric is incomplete and does not have bounded geometry, 

it is hard to use it to study the geometry of Mg. In [5] we introduced the Ricci metric 

LUt = —Ric(uWP) and the perturbed Ricci metric û R = uT + CuWP. It turns out that 

these new Kahler metrics have nice curvature and asymptotic properties. These new 

metrics are also closely related to the Kahler-Einstein metric. Especially the Ricci 

metric is cohomologous to the Kahler-Einstein metric as currents. 

To describe the curvature formulae of the Ricci and perturbed Ricci metrics, we 

need to introduce several operators. We first define the operator : C°°(XS) —• 

C°°(XS) by 

(3.1) &(/) = d (i(Bk)df) = -\-xdz{Akdzf) = -AkKtKoV) 

where KQ,KI are the Maass operators [16], [5], 
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GEOMETRY OF MODULI SPACES 37 

It was proved in[5] that £k is the commutator of the Laplace operator and the Lie 

derivative in the direction vk: 

(3.2) (• + l)vk - vk(D + 1) = Dvk - vkBxw =bb::: 

We also need the commutator of the operator vk and vi. In [5] we defined the operator 

Qki:C™(Xs)^C°°(Xs<<<£)byCXX 

(3.3) (• + l)vk - vk(D + 1) = Dvk - vkB =(• + l)vk - vk(D + 1) = Dvk - vkB = 

where P : C°°(XS) -> r(A1'°(r°'1Xs)) is the operator defined by P(f) = dz(X~1dzf). 

The terms appeared in the curvature formulae of the Ricci and perturbed Ricci 

metrics are formally symmetric with respect to indices. For convenience, we recall 

the symmetrization operator defined in [51. 

Definition 3.1. — Let U be any quantity which depends on indices i,k,a and j,l,/3. 

The symmetrization operator a\ is defined by taking the summation of all orders of 

the triple (i,k,a). Similarly, o<i is the symmetrization operator of j and (3 and G\ is 

the symmetrization operator of j , I and ¡3. 

In [5] we derived the curvature formulae of the new metrics. These formulae, 

although very complicated, are integral formulae along the fibers of the universal 

curve. 

Theorem 3.1. — Let R{jkj and Pq^. ^e ̂ te curva^ure tensors of the Ricci and perturbed 

Ricci metrics respectively. In [5] we established the following curvature formulae of 

these metrics: 

R - - = - ha(3 ^ijkl 11 
w<< 

Xs 

(3.4) 

{mk(ei3)Meaß) + T(Ueilmß(ej} dv 

-h«ß 
1*1 

]xs 
Qki(eijKß dv 

+ TpqhaßW5 <ikl 
<xs 

£k{eiq)eaß dv l^^ùù 
'x. 

Qki(eijKß dvX<< 

Qki(eijQki(eijKß $^^ 
Qki(eijKß dvQki(eijKß dv 
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38 K. LIU, X. SUN & S.-T. YAU 

and 

P- - = - ha(3 ijkl n 
w<<< 

Xs 
{r(&(e,j))fi(ca5) + r(&(ey))^(caï)} di; 

<p^$$$wxx 
ù^^$$$< << 

Xs 
(• + l)vk - vk(w<< 

(3.5) 

+ rvqha^hl8 << £k(eiq)eap dv 
fxs 

xww 
Xs 

(• + l)vk - vk(D + 
1) = Dvk - vkB = 

(• + l)vk - vk(D + 1) = Dvkk<< 

Unlike the case of the Weil-Petersson metric from which we can see the sign of 

the curvature directly, the above formulae are too complicated. On one hand we can 

see that these metrics are Kahler from these formulae. On the other hand, we need 

to look at the asymptotic of the curvature of these new metrics. In [5] and [6] we 

computed the asymptotic of these new metrics and their curvature: 

Theorem 3.2. — Let UQ = w< 
'3 = 1 

Uj + << 
j=m+l 

<i^^ The Ricci metric has the asymp­

totic: 

1. Tii = 
3 

4TT2 

xww 

\U\2 
(1 + O(u0)) and rfi = 4TT2 

3 
l**|2 
<ww (1 + O(u0)), ifi < m; 

2. r,7 = O 2 2 
uiUi \UU\ 

(Ui + Uj) and = 0(\Utj\), ifij < m and i ^ j ; 

3. T.- = O ti? 
<< 

and r ww = 0(\ti\), if i < m and j > m + 1/ 

4. 7^ = 0 (1) , ifij>m + l. 

The holomorphic sectional curvature of the Ricci metric has the asymptotic: 

L Rilii = ~ 
ww 

87r4|ti|4 r(l + O ^ o ) ) ifi < m; 

2. ^ = 0(1) i f i > m . w j j i ù ù < < 

We also have a weak curvature estimate of the Ricci metric. Let 

Ai = 
Uj 
\u\ if i <m 

1 if i > m. 

Then 

L %fcz = 0<<(1) ifhx<<j,k,l<<>m; 

2.(• + l)vk - vk(D + = 0(AiAjAk<Ai)0(uo) if at least one of these indices i^j<<^kj is less than 

or equal to m and they are not all equal to each other. 

The asymptotic of the perturbed Ricci metric and its curvature can be found in [5] 

and [6]. Also, precise estimates of the full curvature tensor of the Ricci and perturbed 

Ricci metrics, which will also be used in the proof of their goodness, can be found in 

[7] and [8]. 
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GEOMETRY OF MODULI SPACES 39 

As a simple corollary of the curvature formulae and asymptotic analysis, in [5] we 
first proved the equivalence of canonical metrics on M5: 

Theorem 3.3. — All the canonical metrics on the moduli space Mg: the Teichmuller-
Kobayashi metric, the Carathéodory metric, the induced Bergman metric, the asymp­
totic Poincaré metric, the McMullen metric, the Ricci metric, the perturbed Ricci 
metric and the Kàhler-Einstein metric are equivalent. 

The new metrics we defined have nice curvature properties which can be used to 
control the Kàhler-Einstein metric. In [5] and [6] we proved 

Theorem 3.4. — Let Mg be the moduli space of genus g > 2 Riemann surfaces. Then 

— The Ricci and perturbed Ricci metrics are complete Kahler metrics with Poincaré 
growth. 

— The Ricci and perturbed Ricci metrics as well as the Kàhler-Einstein metric 
have bounded geometry on the Teichmüller space Tg. 

— The Ricci and holomorphic sectional curvatures of the perturbed Ricci metric 
are bounded from above and below by negative constants. 

— All the covariant derivatives of the curvature of the Kàhler-Einstein metric are 
bounded. 

The finer asymptotic of these metrics, their local connection forms and curvature 
forms will lead to the Mumford goodness which is a set of growth conditions of these 
metrics and their derivatives modeled on the Poincaré metric on the punctured disk. 
These conditions will guarantee the behavior of the Chern forms of these complete 
metrics. 

4. Notions of Goodness 

In this section we will discuss various notions of goodness. The central idea is to 
control the Chern forms, as currents, of singular Hermitian metrics on holomorphic 
vector bundles over quasi-projective varieties. 

Let M be a compact complex manifold and let (E, h) be a Hermitian vector bundle 
over M. We denote by (zi, • • • , zn) the local holomorphic coordinates on M and by 
(ei, • • • , em) the local holomorphic frame of E. Let = /i(ea, ep) and denote by 9 
and O the local connection and curvature forms of h. Then we have 0% = dih^h1^ dzi 
and 91 - R? -dzi A dzn where di = 

OLII J 
d 

OZi 
and 

(• + l)vk - vk(D + 1) = Dvk - vkB =(• + l)vk -<< vk 
(• + l)vk - vk(D + 1) = sw<<(D + 1) = Dvk - vkB = 
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The k-th Chern form Ck(h) of h is given by the coefficient of the term tk in the 

polynomial det xww ii^$ 
2TT 

e It is well known that 

(4.1) [ck(h)i =ck(E) 

as cohomology classes. However, this is no long true in general when M is noncompact. 

One needs growth conditions on h and its derivatives. The class of noncompact 

manifolds we are interested in is the quasi-projective manifolds. 

The first condition was given by Mumford in [11] which we will describe now. Let 

Xn be a projective manifold of complex dimension n and let D C X be a divisor of 

normal crossings. Let X = X \ D. 

We cover a neighborhood of D C X by finitely many polydiscs 

{Ua = (An,(z1,~-,zn))}aeA 

such that Va = Ua\D = (A*)m X Afc"m. Namely, Ua H D = {zx • • • zm = 0} . We let 

U = IJaeA Ua and V = [jaeA Va- On each Va we have the local Poincaré metric 

w$*ùù<<< 
w<<o^^$$$ 

- 1 
2 

m 

\i=l 

1 

2 N 2 ( l o g M ) w< 
dzi A dzi + 

n 

i=m+l 

dzi A dzi 

The Mumford goodness is a growth condition on differential forms. We recall the 

following definitions from [11]: 

Definition 4.1. — Let rj be a smooth local p-form defined on Va. 

— We say rj has Poincaré growth if there is a constant Ca > 0 depending on rj 

such that 

(• + l)vk - vk(D + 1) xww 
V 

1=1 

\\ti\\lp 
P, OC 

for any point z £ Va and ti, • • • , tp G TZX. 

- We say 7] is good if both rj and drj have Poincaré growth. 

Now let E be a holomorphic vector bundle of rank k over X and let E be the 

restriction of E to X. Let h be a Hermitian metric on E which may be singular along 

the divisor D. 

Definition 4.2. — An Hermitian metric h on E is good if for all z G V, assuming 

z €Va, and for all basis (ei, • • • , Ck) of E over Ua we have 

(• + l)vk - vk(D + 1) = Dv m 
^^^w<< 

log | ^ | ) p for some C > 0 and p>l. 

— The local 1-forms [dh • h are good on Va. Namely the local connection and 

curvature forms of h have Poincaré growth. 

Remark 4.1. — It is easy to see that the definition of Poincaré growth is independent 

of the choice of local data. 
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GEOMETRY OF MODULI SPACES 41 

We collect the main properties of good metrics in the following theorem which is 

due to Mumford. Please see [11] for details. 

Theorem 4.1. — Let X and E be as above. Then 

— A form n G AP(X) with Poincaré growth defines a p-current [rj] on X. In fact 

we have 

r 
x 

\rj A £| < OO 

for any^eAk~P(X). 

- If both rj E AP(X) and£ G Aq(X) have Poincaré growth, thenrjAt, has Poincaré 

growth. 

- For a good form rj G AP(X), we have d[rj] = [drj]. 

- Given an Hermitian metric h on E, there is at most one extension E of E to 

X such that h is good. 

- If h is a good metric on E, the Chern forms Ci(E,h) are good forms. Fur­

thermore, as currents, they represent the corresponding Chern classes Ci{E) G 

H2i(X,C)-

The most important feature of a good metric on E is that we can compute the 

Chern classes of E via the Chern forms of h as currents. Namely, with the growth 

assumptions on the metric and its derivatives, we can integrate by part, so Chern-Weil 

theory still holds. However, the Mumford goodness is very strong and hard to check. 

Also, there are only few examples. In [7] we showed that the canonical metrics on 

the moduli space of Riemann surfaces are Mumford good. 

We now give weaker notions of goodness which still have the major properties of 

Mumford good metrics. The definition of Mumford on Poincaré growth and good 

forms is quite local. We first give a global formulation of these growth conditions. 

Please see [7] for details. 

We call a Kàhler metric wp o n l a Poincaré type metric if ujp is equivalent to uopi0i 

when restricted to VA. 

Remark 4.2. — It is easy to see that 

— Any two Poincaré type metrics are equivalent. 

- The quasi-projective Kàhler manifold (X, UJP) is complete and has finite volume. 

Our first observation is 

Lemma 4.1. — A smooth form rj G Aq(X) has Poincaré growth if and only if\\ri\\Up < 

C for some constant C and a Poincaré metric on X. Namely rj has L°° bound with 

respect to Poincaré metrics. 
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Parallel to the Poincaré growth and good forms, we know define the p-growth and 

p-good forms by replacing the L°° norm by Lp norm. 

Definition 4.3. — Let p > 1 be a real number. A differential form 77 G Aq(X) has 

p-growth if 

llnlL eW(X,w„). 

The form rj is p-good if both 77 and dr\ have p-growth. 

We note here that the above definition is independent of the choice of up. To 

study the currents of p-growth forms, we need a special cut-off functions. In [9] we 

construct a desirable cut-off function: 

Proposition 4.1. — There exists e$ > 0 such that for all 0 < £ < s$, there is a function 

p£ such that 

1. 0 < pe < 1. 

2. For any open neighborhood N of D in X, there is e > 0 such that supp(l — p£) C 

N. 

3. For each e > 0, there is a neighborhood N of D such that p£\N = 0. 

4. p£' > Pe for e' < e. 

5. There is a constant C, independent of e such that 

-CUJP < V^iddp£ < Cup 

and |V'p£| < C. 

6 lim p£ = 1. 
e—»0 

The p-good forms have similar behavior to good forms. 

Lemma 4.2. — For p > 1, if rj G Aq(X) has p-growth, then rj defines a q-current. If 

77 is p-good, then d[rj] = [drj]. Furthermore, if rj, 7/ have p and p' growth respectively, 

then 77 A 7/ has pp 
P+P' 

growth. 

Now we can generalize the Mumford good metrics. Similar to Definition 4.2 we 

define 

Definition 4.4. — A Hermitian metric h on E is p-qood if 

ocp (det h) -1 <C w<< 
fi=l logici 

v2s for some C > 0 and s > 1 

2. The local 1-forms (dh • h 1) 7 
a 

are p-good on Va. 

We have 

Theorem 4.2. — For p large enough, if the Hermitian metric h on E is p-good, then 

the Chern forms of h represent the corresponding Chern classes of E: 

[Ci(h)}=Ci(E)€H2i(X,C)-w< 
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The p-goodness is essentially integral conditions which is much easier to check than 
the Mumford goodness. Since the most important part of controlling the growth the 
singular metric h is to study its Chern forms, we can just take this as a definition. 

Definition 4.5. — A Hermitian metric h on E is intrinsically good if the Chern form 
cAh) defines a 2i-current and 

[ci(h)]=ci(E). 

It turns out that the intrinsic goodness is preserved by the continuity method and 
the Kahler-Ricci flow. We have the following relation: 

good metrics p-good metrics for large p =>• intrinsic good metrics 

There are only few examples of Mumford good metrics. In [11] Mumford 
showed that the invariant metrics on Hermitian symmetric spaces are good. Later 
Wolpert [18] showed that the hyperbolic metric on the relative dualizing sheaf is 
good. In [15] Trapani proved that the metric on the logarithmic tangent bundle of 
Mg is good. In the last cases, the holomorphic bundle involoved are line bundles. In 
[71 and [81 we nrove: 

Theorem 4.3. — Let E = T ^ ( — \ogD) be the logarithmic tangent bundle of the DM 
moduli space and let E = E \M)9- Then the metrics on E induced by the Weil-
Petersson metric, the Ricci and perturbed Ricci metrics are good in the sense of 

Mumford. 

The moduli space Mg together with these metrics provide very interesting examples 
of good geometry. It is more interesting to study the goodness of the Kahler-Einstein 
metric since many consequences follows. 

5. The Monge-Ampere Equation and the Goodness 

As we described in last section, the Chern forms of various good singular Hermitian 
metrics represent corresponding Chern classes. Thus it is important to study the 
goodness of canonical metrics on the quasi-projective manifold X such as the the 
Kahler-Einstein metric. 

Let X be a quasi-projective manifold obtained by removing a normal crossing 
divisor D from a projective manifold X. Let E = T^(—logD) be the logarithmic 
tangent bundle and let E be the restriction of E to X. In this section we will consider 
Hermitian metrics on E induced from a Kàhler metric on X. 
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Let ujg be a Kahler metric on X. Let U, (zi, • • • , zn) be a chart of X such that 
U C\ D = {zi • — ZM = 0}. It is clear that a local frame of E is given by 

e = (ei, • • • ,en) = ô w< 
<oo ^sqq <<^$ 

a 
x<o 

d 
dzm+i 

^^$w< 
0 

9zn 
Let ft be the metric on E induced by ujg. Then under this frame we have 

(5.1) 9~ = 

zizj9{j hj<m 

(• + l)vk - vk(D + 1) 

Zjg-î j <m<i 

9ij i,j > m. 

By using the above frame and the local formula of the metric ft, we have 

Lemma 5.1. — The Chern forms of ft and ujg coincide. Namely, 

Cfc(ft) = ck(g). 

If we assume the background metric UJ9 has Poincaré growth, then the induced 
metric ft is good will imply that the metric g has bounded curvature. The converse 
is not true in general. But we can bound the Chern froms: 

Lemma 5.2. — / / LU9 is a Kahler metric on X with bounded curvature and has 
Poincaré growth, then the Chern forms of the metric ft on E induced by u)g are good 
in the sense of Mumford. 

In the case when ft is induced by the Kàhler-Einstein metric on X, to ensure the 
Chern forms of ft represent the correct Chern classes, we need control on the Kahler-
Einstein metric. 

The following result is a weaker version of our work. We state this version to 
illustrate the ideas. 

Theorem 5.1. — Let X be a projective manifold with d i m c ^ = n. Let D C X be a 
divisor of normal crossings, let X = X\D, let E = T-^{— log D) and let E = E \x > 

Let cjg be a Kahler metric on X with bounded curvature and Poincaré growth. 
Assume Ric(cjg) + ug = ddf where f is a bounded smooth function. Then 

— There exist a unique Kähler-Einstein metric uKE on X with Poincaré growth. 
— The curvature and covariant derivatives of curvature of the Kähler-Einstein 

metric are bounded. 
— If Lüg is intrinsic good, then UJke is intrinsic good. Furthermore, all metrics 

along the paths of continuity and Kähler-Ricci flow are intrinsic good. 

Remark 5.1. — In [8] we will prove a stronger version of the above theorem by re­
placing the L°° bound of the Ricci potential / by Lp bound. 
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On the other hand, if we know the existence and properties of the Kàhler-Einstein 

metric by other means, we can prove the above theorem by only assuming / £ 

L (X,U>g) 

Theorem 5.2. — Let UJ9 be a Kàhler metric on X with Poincaré growth and bounded 

curvature. Assume Ric(ujg)+ug = ddf where f € L1(X,UJ9) and there exist a Kàhler-

Einstein metric on X which is equivalent to uog. If ujg is intrinsically good, then UJKE 

is also intrinsically good. 

By combining Theorem 3.3, 4.3 and 5.2 we have 

Theorem 5.3. — Let p be the metric on the logarithmic tangent bundle over the moduli 

space Mg induced by the Kàhler-Einstein metric on Mg. Then p is intrinsically good. 

The intrinsic goodness of the Kàhler-Einstein metric will imply stability of the log 

tangent bundle and a strong Chern number inequality. As a consequence we proved 

in [6] and [7] 

Theorem 5.4. — The logarithmic tangent bundle E of the DM moduli space Adg is 

stable with respect to the canonical polarization. Furthermore, we have 

C!(E)2 < 
eg - 4 

Sg-3 
C2(E) 

We now briefly describe the proof of these two theorems. Please see [7] and [8] for 

details. 

We first deform the background ug along the Kàhler-Ricci flow for short time such 

that all the covariant derivatives of uog are bounded. In the case, the intrinsic goodness 

of ujg is also preserved. 

The existence of the Kàhler-Einstein metric follows from the Ck estimates of the 

complex Monge-Ampere equation 

(ug + ddy)n 

9 

= ev+f 

where we use Yau's generalized maximum principle. To prove that the intrinsic good­

ness of ug is preserved along the path of continuity, if we denote by g' the Kàhler-

Einstein metric, we need to show that 

Ck(g)-ck(gf) 

is the 0-current. Let R, R', T, V be the curvatures and connections of g and g' respec­

tively. 

We first deal with renormalized Chern character forms. For a Hermitian metric h 

on a holomorphic vector bundle E with curvature 6 , the fc-th Chern character form 
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is defined by 

chk(h) = Tr 
f-l 
2tt 

e 
k k 

To simplify the notation, we drop the constant 
2TT 

As differential forms we have 

chk(g) - chk(g') = d Tr 

k-l 

i=0 

R*-1-1 A (r - r') A Rn 

and 

r ; p

f c - r r f c = ^ V ; ^ . 

By the C2 and C 3 estimate we know 

Tr 

(k-\ 

\ i = 0 

R k - l - i A _ p/) A jj/i 

has Poincaré growth. Since both chk(g) and chk(g
f) has Poincaré growth it is easy to 

see chk(g) — chk(g') is the 0 current. 

This is proved by integration by part where we use the cut-off function as in 

Proposition 4.1. Finally, by the expression of ck{g) and ck(g') via chk{g) and chk(g') 

we see that ck(g) — ck(g
f) is also the 0 current. 

6. Rigidity and Gauss-Bonnet Theorem 

In this final section we discuss the applications of the curvature and asymptotic 

properties of the canonical metrics on the curve moduli Mg. 

The Weil-Petersson metric has many negative curvature properties. Ahlfors showed 

that its Riemannian sectional curvature is negative. Later, it was proved by Wolpert 

that the bisectional curvature of the Weil-Petersson metric is negative. In [12] Schu­

macher showed that the curvature of the Weil-Petersson metric is strongly negative 

in the sense of Siu. In [7] we proved that the Weil-Petersson metric is dual-Nakano 

negative from which we will derive Nakano-type vanishing theorems. 

We first recall the concept of dual Nakano negativity. Let (Em, h) be a holomorphic 

vector bundle with a Hermitian metric over a complex manifold Mn. The curvature 

of E is given by 

(• + l)ww^^^^vk - vk(D + 1) = Dvk - vkB = 

(E, h) is Nakano semi-positive if the curvature P defines a semi-positive form on the 

bundle E®TM- Namely, 

(6.1) P.-: ^CÌaCJP > О dxww 
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for all m x n complex matrix C. The metric h is Nakano positive if (6.1) is a strict 

inequality whenever C ̂  0. E is dual Nakano (semi) negative if the dual bundle with 

the induced metric (E*,h*) is Nakano (semi) positive. 

In [7] we showed 

Theorem 6.1. — Let Mg be the moduli space of Riemann surfaces of genus g > 2. 

Then (TKA , u w i s dual Nakano neqative. 

Let us briefly describe the idea. Please see [7] for details. By the definition of the 

dual-Nakano negativity, we only need to show that (T*Mg,h*) is Nakano positive. 

Let Rfikj be the curvature of Mg and Pfjkl be the curvature of the cotangent bundle. 

We first have 

P - - = 
mnkl 

(• + l)vk - v d 
+ 1) = Dvk - g 

Thus if we let akj <c 
^^c^<x^^x we have 

mnkl Qmkçril _ 

i,j,k,l 
RijklakJali -

i,j,k,l 
RkjilakJali = 

i,j,k,l 
Ri~jkìa^alk-

Recall that at X G Mg we have 

Rijkl 
'x 

(eijfkl + eiJkj> dv. 

By combining the above two formulae, to prove that the WP metric is Nakano negative 

is equivalent to show that 

(6.2) 
X 

(eijfki + eufkj) aiJaik dv>0 

and the left hand side of the above formula is strictly positive if A = [a^] ̂  0. 

We now describe the proof with the assumption that the matrix [a^] is invertible. 

The general case can be found in [7] which follows from the same idea. 

Recall that if we let • = — \~Ydzc\ be the Laplace operator with respect to the KE 

metric A on X and let T = ( • + l ) - 1 , then e.j = T ( / ^ ) where f^ = AiAj and Ai 

is the harmonic representative of the Kodaira-Spencer class ofw<<^ùwhere • • ss• ,tn) 

are local coordinates on Mg and z is the local coordinate on Xt. 

Let Bj = Yl7=i aijM- Then the inequality (6.2) is equivalent to 

(6=3] 
3,k 

R(BjìBkìAk,Aj) =w<< 

3,k X 
(T (BjAj) AkBk + T (BjBk) AkAj) dv > 0. 

Since {Ak} is a basis of the space H0il(X,Tx) and the matrix { a ^ } is an arbitrary 

invertible matrix, we need to show that the inequality (6.3) holds for any two bases 

{Ai} and {Bi}. Of course we can choose one basis, say {Ai}, and let the other basis 

vary freely. 
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Now we prove the inequality (6.3). Let \x = J \ BjAj. Then the first term in (6.3) 
is 

3,k X 
T (BjAj) AkBk dv = 

X 
T(fi)jl dv > 0. 

To check the second term, we let G(z, w) be the Green's function of the operator T. 
Namely, for any function / € C°°(X), we have T(f) = JxG(z,w)w<^^f(w) dv(w). Now 
we let 

H(z,w) = 
J 

(• + l)vk - vk(D + 

We know the second term of (6.3) is 

3,k FX 
T (BjBk) AkAj dv = 

3,k 
X 'X 

G(z,w)Bj(w)Bk(w)Ak^^(z)Aj^^(z) dv(w)dv(z) 

^nb 
X X 

G(z,w)H(z,w)H(z,wbv)dv^^(w)dv(z) > 0 

where the last inequality follows from the fact that the Green's function G is non-
negative which was proved by Wolpert in [16]. 

The asymptotic of Weil-Petersson , Ricci and perturbed Ricci metrics give us good 
control of the L2 cohomology with bundle twist. In [7] we showed 

Theorem 6.2. — Let Mg be the moduli space of genus g curves and let Mg be its 
Deligne-Mumford compactification. Then 

#*2) ({Mg,ur),^w<<{TMg,uWP)) ̂  H\Mgcxx,Tjtg{-\ogD)). 

Combining with the dual-Nakano negativity of the Weil-Petersson metric we have 

Theorem 6.3. — The Chern numbers of the log cotangent bundle T-^ (log D) of the 
moduli spaces of Riemann surfaces are positive. 

More importantly, we proved that the complex structure of the moduli space is 
infinitesimally rigid: 

Theorem 6.4. — When q / 3g — 3, the L2 cohomology groups vanish 

H$ ((Mg,uT), (Tjig(-\ogD),uWP)) = 0. 

One of the most important consequence of the curvature properties and goodness of 
the Ricci, perturbed Ricci and Kàhler-Einstein metrics is the Gauss-Bonnet Theorem 
on Mg. Together with L. Ji, we showed in [7] 

Theorem 6.5. — (Liu, Ji, Sun, Yau) The Gauss-Bonnet Theorem hold on the moduli 
space equipped with the Ricci, perturbed Ricci or Kàhler-Einstein metrics: 

Mg 
w<<$$$ôoo 

x<<< 
Cn(^f) = 

^$$w< 
Cn(VKE)=X(Mg) = 

B2g 
Mg -1) 
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Here x(Mg) is the orbifold Euler characteristic of Mg and n = 3g — 3. 

The computation of the Euler characteristic of the moduli space is due to Zagier. 

In the proof of the Gauss-Bonnet Theorem we used the fact that the curvature of 

the Ricci, perturbed Ricci and Kahler-Einstein metrics are bounded. However, the 

curvature of the Weil-Petersson metric is not bounded. However, as an application of 

the Mumford goodness of the Weil-Petersson metric and the Ricci metric we have 

Theorem 6.6. — We have 

X vxw!: (-log£>)) = 
'Mg 

Cn(^r) = 
JMQ 

cn(0JWP) = 
B2q 

4 0 ( 0 - 1 ) 

where n = 3q — 3. 

This theorem gave us the first log Chern number of the DM moduli space Mg. 

Corollary 6.1. — We have 

x(Mg,Tjz(-iogD)) = x(Mg) = 
B2g 

4 0 ( 0 - 1 ) ' 
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